100 Excel VBA

Simulations

Using Excel to Model Risk, Investments, Genetics,
Growth Gamblmg and Monte Carlo Analy515

\\\\\

W
W aw By: Drmd M. schu
Wy

100 Excel VBA Simulations

Dr. Gerard M. Verschuuren

100 Excel VBA Simulations

Using Excel VBA to Model Risk,
Investments, Genetics, Growth,
Gambling, and Monte Carlo
Analysis

Copyright © 2016 by Gerard M. Verschuuren
All rights reserved.
ISBN-13: 978-1540445179
ISBN-10:1540445178

[

I. TABLE OF CONTENTS

GAMBLING

Chapter 1: The Die Is Cast
Chapter 2: Casting Six Dice
Chapter 3: Roulette Machine
Chapter 4: An X-O Game
Chapter 5: A Slot Machine
Chapter 6: Gamblers’ Ruin
Chapter 7: Lottery Numbers
Chapter 8: Win or Lose?
Chapter 9: Al etter Game
Chapter 10: A Three-Way Circuit
Chapter 11: Flock Behavior

STATISTICS

=

Chapter 12: Samples

Chapter 13: A Normal Distribution
Chapter 14: Distribution Simulations

Chapter 15: Discrete Distributions
Chapter 16: Peaks

Chapter 17: Confidence Margins
Chapter 18: Sample Size and Confidence Interval

Chapter 19: Random Repeats
Chapter 20: Flipping a Fair Coin?

Chapter 21: Simulation of Sick Cases
Chapter 22: Unbiased Sampling

Chapter 23: Transforming a LogNormal Distribution
Chapter 24: Outlier Detection

Chapter 25: Bootstrapping
Chapter 26: Bean Machine Simulation
Chapter 27: Correlated Distributions

Chapter 28: Sorted Random Sampling
Chapter 29: Frequencies

MONTE CARLO SIMULATIONS

Chapter 30: The Law of Large Numbers
Chapter 31: Brownian Motion
Chapter 32: Ehrenfest Urn

Chapter 33: Random Walk

Chapter 34: A Data Table with Memory
Chapter 35: Juror Selection in Court
Chapter 36: Running Project Costs
Chapter 37: Forecasting Profits
Chapter 38: Uncertainty in Sales

Chapter 39: Exchange Rate Fluctuations
V. GENETICS

Chapter 40: Shuffling Chromosomes

Chapter 41: Sex Determination
Chapter 42: Mendelian Laws

Chapter 43: The Hardy-Weinberg [aw
Chapter 44: Genetic Drift

Chapter 45: Two Selective Forces
Chapter 46: Differential Fitness
Chapter 47: Molecular Clock

Chapter 48: DNA Sequencing
V. SCIENCE

Chapter 49: Matrix Elimination
Chapter 50: Inteeration with Simulation

Chapter 51: Two Monte Carlo Integrations
Chapter 52: Monte Carlo Approach of Pi
Chapter 53: A Population Pyramid
Chapter 54: Predator-Prey Cycle

Chapter 55: Taking Medication
Chapter 56: The Course of an Epidemic

Chapter 57: Boltzmann Equation for Sigmoidal Curves
Chapter 58: Interpolation

Chapter 59: ARigid Pendulum

Chapter 60: A Piston Sinusoid

Chapter 61: The Brusselator Model

Chapter 62: A Hawk-Dove Game

VL BUSINESS

Chapter 63: Prognosis of Sales
Chapter 64: Cycle Percentiles

Chapter 65: Cost Estimates
Chapter 66: A Filtering Table

Chapter 67: Profit Changes
Chapter 68: Risk Analysis

Chapter 69: Scenarios

Chapter 70: Market Growth

Chapter 71: A Traffic Situation
Chapter 72: Quality Control

Chapter 73: Waiting Time Simulation
Chapter 74: Project Delays

FINANCE

Chapter 75: Buy or Sell Stock

Chapter 76: Moving Averages

Chapter 77: Automatic Totals and Subtotals
Chapter 78: Fluctuations of APR

Chapter 79: Net Present Value

Chapter 80: Loan with Balance and Principal
Chapter 81: S&P500 Performance

Chapter 82: Stock Market

Chapter 83: Stock Volatility

Chapter 84: Return on Investment

Chapter 85: Value at Risk

Chapter 86: Asian Options
MISCELLANEA

Chapter 87: Cracking a Password
Chapter 88: Encrypting Text

Chapter 89: Encrypting a Spreadsheet
Chapter 90: Numbering Records
Chapter 91: Sizing Bins for Frequencies
Chapter 92: Creating Calendars

Chapter 93: Populating a Jagged Array
Chapter 94: Filtering a Database

Chapter 95: Formatting Phone Numbers
Chapter 96: Creating Gradients

Chapter 97: Aligning Multiple Charts
Chapter 98: Temperature Fluctuations

Chapter 99: Working with Fiscal Years
Chapter 100: Time Calculations

APPENDIX

Data Tables
If Statements
Value Type Variables

Ranges vs. Cells
FormulaR1Cl1

Arrays
Error Handling

INDEX

II. INSTRUCTIONS

All simulations in this book are supported by files that you can
download from the following website:

http://www.genesispc.com/download/100VBAsimulations.zip.

[assume that you are already familiar with many Excel features,
including graphs or charts. In this book, I will only explain in more detail
those features that are very helpful when you do what-if-analysis with
simulations. For more basic features of Excel, I would refer you to some
learning tools that you can find on www.mrexcel.com/microsoft-office-

visual-learning.html.
If you want to create simulations exclusively with Excel functions and
formulas, without using VBA, 1 recommend another book:

http://genesispc.com/tocsimulations 100.htm.

This book is not about the basics of Visual Basic (VBA) either. It only
uses VBA to make simulations faster, better, and more user-friendly. If you
want to learn VBA from the bottom up, I would recommend my interactive

CD-ROM: http://genesispc.com/tocvba2013CD.htm. Yet, here are a few

basic rules for using VBA:

* To start a new command line in VBA, use ENTER.

* Never use ENTER inside a command line. (In this book
lines may wrap to the next line, but in VBA that is not
allowed.)

* Acolon (:) can separate amd combine several commands
on the same line

» Use an apostrophe () for a comment after, or at the end
of, a command line.

* To create shortcuts in Excel for a macro (or Sub in VBA),
you need the Developers tab (if that tab 1s missing, go to File
Options | Macros | Options | Shift + a character.

« Files with macros open with the message “Enable
Content.” If you find that annoying place such files in a so-
called Trusted Location: Files | Options | Trust Center | Trust
Center Setting | Trusted Locations.

http://www.genesispc.com/download/100VBAsimulations.zip
http://www.mrexcel.com/microsoft-office-visual-learning.html
http://genesispc.com/tocsimulations100.htm
http://genesispc.com/tocvba2013CD.htm

* To open VBA, you can use this shortcut: ALT F11.

e Onthe VBA screen, choose: Insert | Module.

» T always use Option Explicit in VBA: Tools | Options |
Require Variable Declaration.

* This means you always have to declare variables with a
Dim statement.

» There are value type variables such as integer, double,
string (see Appendix) and object type variables (Range,
Sheet). The latter require the Set keyword.

« Type a dot (.) after an object such as Range or Chart in
order to get access to its properties and methods.

» Itis wise to use consistent indentation to make your code
more readable and checkable.

* A With statement allows us to refer to it later with just a
simple dot (.), followed by a property or method.

* Formulas are always strings in VBA, so they should be

(13 29

inside double quotes (“...”). If there are double quotes inside
those double quotes, they should be “”...””.

» To split a long string into several lines, you use
endquotes-space-ampersand-space-underscore-enter-
openquotes.

* To interrupt running code, use Ctrl + Break.

« Ifyour VBA code ever runs into trouble (and it will!),
make sure you stop the Debugger before you can run the code

again. You do so by clicking the Reset button:

Ld

% fle Edit Miew Inset Format Debug HRun JTools Add-lns Window Help

BE&E-d # b ,j@ o @ Lnlcol |

I. GAMBLING
Chapter 1: The Die Is Cast

What the simulation does

Emmummhwmu—t

o Ctr+Sh+D

We start with a very simple case of simulation—casting a die. The
code generates a random number. According to that outcome, the colored die
shows the appropriate number of eyes at their proper locations. Each time
the random number changes, the die adjusts accordingly. The code stops
when you hit the number 6.

What you need to know

Excel has a volatile function called RAND. On each recalculation,
this function generates a new random number between 0 and 1. The
equivalent of RAND in VBA is Rnd. In addition to these two operators, later
versions of Excel also let you use RANDBETWEEN, which returns a
random integer between two integers. Instead of using RANDBETWEEN,
you can always use a more complicated formula. If you want numbers

between 1 and 6, for instance, you multiply by 6, round the number down by
using the INT function, and then add 1 to the end result. More in general:
=INT((high-low+1)*RAND()+low). In VBA, you must replace RAND with
Rnd.

Finally, we need to regulate which eyes should pop up for each new
random number. This 1s done by using the //f function in VBA. This function
1s a “decision maker,” which determines whether a specific eye should be
on or off.

Golo allows the code to jump to a specific label—in this case called
Again, followed by a colon. GoTo lets you jump forward or backward in
code.

A MsgBox can just have an OK button, or a combination of OK,
Cancel, Yes, and No. In case there is more than one option, an IF statement
has to check what the users decided to click on.

What you need to do

Sub Dice()
Dim i As Integer
Again: 'this is called a label that we use at the end
to go back to
i=1Int(Rnd * 6) + 1
Range("B3") — IIf(i > 1, "O", "")
Range("D3") — IIf(i > 3, "O", "")
Range("BSH) — IIf(i — 6’ "OH, "")
Range("CS")=1If(i=10ri=30ri=5,"0","")
Range("DS") — IIf(i — 6, "O", nvv)
Range("B7") — IIf(l > 3, vvon, vv")
Range("D7") — IIf(l > 1, uon, n")
If i = 6 Then Exit Sub
If MsgBox("Number " & i & vbCr & "Again?",

vbOKCancel) = vbOK Then GoTo Again
End Sub

W~ AWk

Chapter 2: Casting Six Dice

What the simulation does

A

2 .
o o o o) o o))
0 o) 0 o] 0
)) o o)))))

[T i
Ctr+Sh+D ' e

This time we have six different dice. Each die “listens” to a random
number in VBA. The settings for each die are similar to what we did in
simulation 1.

There is not much new on this sheet. The main difference is that we
need 6 different cells with a RAND function in order to control the six die
displays. This is done with a For-loop in VBA, running from 0 to 5 (or 1 to
0).

When there are at least 3 dice in a row with six eyes, all dice get
marked at the same time.

What you need to know

A variable of the Variant type can hold an array of items. We fill the
array here by using the Array function in VBA. This array starts at 0 (that’s
why the For-loop runs from 0 to 5 instead of from 1 to 6). Notice that cell
rows and columns always start at 1 (not 0).

VBA can use almost all Excel functions by calling them with
WorksheetFunction. In this case we use Excel’s COUNTBLANK function.

The use of Range and Cells in VBA can be very powerful, but can
also be rather confusing at first sight (see Appendix). Range(“Al”) 1is
equivalent to Cells(1,1), but the latter one is more flexible in loops because

we can use a loop variable for the row and/or the column position.
Sometimes, they are combined: Range(Cells(1,1),Cells(10,2)) would refer
to A1:B10.

Another important tool in VBA is Offset, with which you can specify
the row offset and the column offset. For instance, Range(“Al”).Offset(2,2)
would evaluate to cell C3.

Don’t confuse End Sub with Exit Sub. Each Sub must close with End
Sub. But if you want to prematurely end the Sub routine, you must use Exit
Sub.

What you need to do

Sub Dice()
Dim vArr As Variant, i As Integer, r As Integer, n
As Integer, iSix As Integer, oRange As Range
Sheetl.Cells.Interior.ColorIndex = 0
VAIT = Array("BS", "F3", "J3", va3n, "R3",
nv3u)
Again:
Sheetl.Cells =""
iSix=20
Forr=07To 5
Set oRange = Range(Range(vArr(r)),
Range(Range(vArr(r)).Offset(4, 2).Address))
With oRange
i=Int(Rnd * 6) +1
Cells(1, 1) =1Ifi > 1, "O", "")
Cells(1, 3) =1Ifi > 3, "O", "")
Cells(3, 1) =1If(i= 6, "O", "")
Cells(3,2)=1If(i=10ri=30ri=5,"0",
"H)
Cells(3, 3) =1If(i= 6, "O", "")
Cells(5, 1) =1Ifi >3, "O", "")
Cells(5, 3) =1Ifi>1, "O", "")
If WorksheetFunction.CountBlank(.Cells)
=9 Then iSix =iSix + 1

End With
Next r
n=n-+1
If iSix >= 3 Then
Cells.Interior.Color = vbYellow
MsgBox "3x6 or more! After " & n & " runs."
Exit Sub
End If
If MsgBox(n & " runs. Again?", vbOKCancel) =
vbOK Then GoTo Again

End Sub
—
=
(s] [a] 0 [a] 0 [a] 8] [a] [a] o (=]
o (=] Q Q Q (o] Q o (o]

Chapter 3: Roulette Machine

What the simulation does

A] C D E F €] H I J K
1 {odd) or
1 | Random | 2 (even)]
2| 16 1 -1
Ctr+Sh+G
39 1 o
4 1 1 1
39 1 2
) 7 R
7 Microsaft Excal] |
8 [o Sl
=1 |
= | Odd (Ves), Even (No), Stop (Cancel)
i [
11
12
E Yes i | Mo | Cancel
14 —————— i

Most people believe that if they keep consistently betting “odd,” the
ball will most certainly land on an odd number sometime soon. This is
called “the law of averages” which says, the longer you wait for a certain
random event, the more likely it becomes.

Do not believe it! Try it out in this “real life” simulation and find out
how the casino makes money on people who think that way. You may
initially gain but eventually lose.

The code clears previous results in the columns A:C when you start
the code. Column A simulates a roulette with 1,000 random numbers
between 1 and 36. In column B, the code types 1 if you confirm an odd
number through the MsgBox, expecting the next number to be odd—
otherwise 2 for even.

Column C keeps track of the score: it adds 1, when your prediction
was correct—otherwise it subtracts 1.

Once you hit Cancel, a MsgBox tells you whether you won or lost, and
with which score.

What you need to know

CurrentRegion represents the entire range bounded by any
combination of blank rows and blank columns. So in the above case, that
would be A1:C5, and in the case below A1:Cl11.

Excel has a MOD function that returns the remainder after a number is
divided by a divisor. For instance, =MOD(3, 2) returns the remainder of the
division 3/2, which is 1. VBA, however, uses the Mod operator, which does
basically the same. So the syntax would be: 3 Mod 2, which also returns 1.

What you need to do

Sub Guess()
Dim r As Long, iGuess As Integer, vGuess As
Variant, oRange As Range
Range("'A1").CurrentRegion.Offset(1, 0).Delete
Do
r = Range("'A1").CurrentRegion.Rows.Count + 1
vGuess = MsgBox("'Odd (Yes), Even (No), Stop
(Cancel)", vbYesNoCancel)
Select Case vGuess
Case 6: Cells(, 2) =1
Case 7: Cells(r, 2) =2
Case 2: Go'To Report
End Select
Cells(r, 1) = Int(Rnd * 50) + 1
Cells(r, 3) = Hf(Cells(r, 1) Mod 2 = Cells(r, 2)
Mod 2, Cells(r-1,3) + 1, Cells(r-1,3) - 1)
Loop
Report:
Set oRange =
Cells(Range("A1").CurrentRegion.Rows.Count, 3)
MsgBox "You " & IIf(oRange <1, "lost", ""won'"")
& " with a score of " & oRange
End Sub

A B C D E F G H [

1 (odd) or
1 | Random 1 2(even) 1}
2 16 1 -1
e ; Ctr+Sh+G
4 1 1 1
3 39 1 2
6 41 1 3 ;
7 36 1 2] Microsoft Excel
8 3 1 3 i
9 21 1 4 4| Youwon with a score of 2
10 44 1 3
11 40 1 . |
i3 |
14

Chapter 4: An X-O Game

What the simulation does

A B C D P F G H [|
1| X

2 X - . .

3| 0 0 Ctrl +Sh +1

4 X 0 «

5| o X Lost

B Lost Lost

This is a game with two players who “choose” X or O randomly. They
win when a row or column has the same entries. As soon as a row or column
has different entries, the word “lost” gets displayed. As soon as all 5 entries
in a row or column are the same, the game is won. A MsgBox displays the
endresult and keeps track of previous results during the game.

What you need to know

Option Explicit at the beginning of the code requires that all variables
are explicitly declared as of a certain type with a Dim statement. This is a
safe way to prevent you from misspelling a variable farther down in your
code.

Do-loops run an unspecified number of times until a certain condition
kicks in or while that condition persists.

To keep track of previous results, we need a global variable. Local
variables are declared inside a Sub, but global variables need to be
declared at the top of the Module. They retain information until the file is
closed.

We also use the 7imer of VBA. The Timer counts the number of
seconds since midnight on your machine. This way we can pause a process
for a short time. DoEvents prevents that the system is blocked during that
time period.

Lost

Lost

Lost

Lost

0
0

o]

X

Lost Lost

Lost

6 Lost

What you need to do

Option Explicit
Dim iO As Integer, iX As Integer, iTotal As Integer

Sub IntelligentGame()
Dim oBoard As Range, bPlayer As Boolean, i As
Integer, 0Cell As Range
Dim iRow As Integer, iCol As Integer, iTime As
Long
Set oBoard = Range(Cells(1, 1), Cells(5, 5))
With oBoard
.Cells(1.1).CurrentRegion.Clear
.BorderAround , xIThick :
.Cells.HorizontalAlignment = xlCenter
Do
bPlayer = Not bPlayer
Do
iRow =
WorksheetFunction.RandBetween(1, 5)
iCol = WorksheetFunction.RandBetween(1,
S)
If .Cells(iRow, iCol) = "" Then
.Cells(iRow, iCol) = IIf(bPlayer, " X",
"0"): Exit Do
End If
Loop

iTime = Timer + 1
Do Until Timer > iTime

DoEvents
Loop
Fori=1To 5

If

WorksheetFunction.Countlf(.Rows(i).Cells, "X") >=
1 And WorksheetFunction.CountIf(.Rows(i).Cells,
"O'") >=1 Then .Cells(i, 6) = "Lost"

If
WorksheetFunction.Countlf(.Columns(i).Cells, "X")
>=1 And
WorksheetFunction.Countlf(.Columns(i).Cells, ""O")
>=1 Then .Cells(6, i) = ""Lost"

Next i

If WorksheetFunction.Countlf(.Cells(1,
1).CurrentRegion.Cells, "Lost'") = 10 Then MsgBox
"No winner'': Exit Do

Fori=1To 5

If
WorksheetFunction.Countlf(.Rows(i).Cells, "X'") =5
Then MsgBox "X is the winner.": iX =iX + 1: Exit
Do

If
WorksheetFunction.Countlf(.Rows(i).Cells, "O'") =5
Then MsgBox "O is the winner.": 10 =i0 + 1: Exit
Do

If
WorksheetFunction.Countlf(.Columns(i).Cells, "X")
= 5 Then MsgBox "X is the winner.": iX =iX + 1:
Exit Do

If
WorksheetFunction.CountIf(.Columns(i).Cells, ""O")
=5 Then MsgBox "O is the winner.": iO =i0 + 1:
Exit Do

Next i
If WorksheetFunction.CountBlank(oBoard) =
0 Then MsgBox "No winner': Exit Do
Loop
End With
iTotal = iTotal + 1
MsgBox "X won " & iX & vbCr & "O won " & 10
& vbCr & "in " & iTotal & " games."
End Sub

Chapter 5: A Slot Machine

What the simulation does

run 1] cumulative game u';lpr_aa.e sCore
HEIEEE 1 Gamel 1 [os |
F -2 2 -1 =1 Game2 5
A 2 1 1 Game3d -1
4 -2 Li] 2 o Gamed 2
5 -1 [i] 1] -1 Game5 1
B o 1 2 3 Gameb 4
7 -2 o 2 o Game7 0O
E -2 -1 0 -3 GameB8 5
9 1 1 0 2 Game 9 0O
10 1 1 -1 1 Game 10 1
11 o 1 1 2 Gamell 5
12 -1 o 2 1 Game 12 -1
13 |2 2|0 o Game 13 1
4 -1 [i] 2 1 Game 14 -1
15 -1 1 -1 -1 Game 15 -1
16 0 -1 1 o Game 16 -2
17y -2 -2 4 -2 Game 17 0O
is -2 2 1 1 Game 18 2
19 0 2 1 3 Game 19 -1
20 -2 L] 0 -2 Game 20 -2

This spreadsheet makes 20 runs for each game (columns F:H). Each
run creates 3 random numbers between -2 and +2, and then calculates the
cumulative total in column J. After 20 runs, a new game starts.

The results for each game are recorded in columns N and O. After 20
games, the average score features in cell R3. At any moment, the user can
cancel further runs and a MsgBox reports what the average score was in X
games of 20 runs. Then the process can start all over with run 1 for game 1.

What you need to know

To make all of this possible, we need a Do-loop for the runs inside a
Do-loop for the games. Besides we added a Timer loop so the results come
in gradually

To make the code more understandable, we used Range Names here

that were assigned in Excel. The range name “games,” for instance, refers to
the range SN$2:SN$21.

The VBA function FormatNumber lets you determine the number of

decimals by specifying the second argument.

Instead of using RANDBETWEEN(-2,2), we can use also: -2 +
Int(Rnd * 5).

What you need to do

Option Explicit

Sub Run()
Dim iRun As Integer, iGame As Integer, pTime As
Long
Range(Cells(2, 1), Cells(21, 18)).ClearContents
Do
iRun =iRun + 1
Do
iGame = iGame + 1
With Range("Runs'"')
.Cells(iGame, 1) = iGame
.Cells(iGame, 2) = -2 + Int(Rnd * 5)
.Cells(iGame, 3) = -2 + Int(Rnd * 5)
.Cells(iGame, 4) = -2 + Int(Rnd * 5)
Range("cumsums').Cells(iGame,
1).FormulaR1C1 = "=SUM(RC|[-4]:RC[-2])"
End With
pTime = Timer + 0.5
Do While Timer < pTime
DoEvents
Loop
Loop Until iGame = 20
Range("'run'') = iGame

iGame = ()
Range(''game") = iRun
Range(''games').Cells(iRun, 1) = "Game " &
iRun
Range("'gamescores').Cells(iRun, 1) =
Range("'cumsums').Cells(20, 1)
Range("avgscore').Formula =
"=average(gamescores)"
If iRun = 20 Then Exit Do
Loop Until MsgBox("New run?", vbOKCancel) =
vbCancel
MsgBox "Average of "' &
FormatNumber(Range("'avgscore'), 1) & "in " &
iRun & " games of 20 runs"

End Sub

un @ 0 purmdative geme 000 aversge o

20 ENERE Gamal ¥ [oz |
F F 3 -1 3 famed -1
x -3 1 -3 3 Gama 3 0 |
i1 4 8 -3 3 Gamud -F
51 % |l 2 Game5S & .
5 1 1 1 " Gamak [." '-"""'.:_"-Z"."'-_-_-
(SO B B | 1 Game? - j8 R |
A 0 0 @ o Game® 3 - oy
HMEAITER 3 Gamed 5 ’
W -1 a2 - 1 Game 10 1 asinla o
& I o 1 3 Gama 11 & | - i
12 F -1 1] 1 Gama 1 -
3 F 1 a 3 Gama 1 1 | .
AEIERE 1 Gams 14 I A
s 2 & 1 3 Gama 15 %
® 1 a2 2 Game 15 &
L I R 3 Game 17 ©
I 1 Game 18 I
w | > |73 [-3 5 Game19 @

1 -1 (=] o

Chapter 6: Gamblers’ Ruin

What the simulation does

A ¥ E (e

1 [i] Average Min Max S0 Final

2 1 9.58 2 24 7.74881 | Y,

= 0 -0.24 5 4 187552 | 1

4 1 1.04 3 5 163857 1 1

5) .44 a 10 2.19881 B s

i 3 7.04 3 15 4.56362 Bl - p '
i 4 -11.14 22 0 5.4%016[0 15 il i
C] 3 -0.54 5 4 1.76624 I -1

: 1 7.84 [17 4.943%6 B pibuadingei-si sttt
10 i 738 -15 0 354412 [N 11
11 a -5.46 -13 2 485428 [H 7 —_—
12 1 -4.76 15 3 4.81605 1 13

13 a -3.62 10 4 3.41648 1 3

14 1 0.06 5 212165 1] 3

1: 2 1.78] B 2.73614 l 1

1€ -1 2.4 4 7 2.69305 B s
17 -2 -1.8 -& 4 275241 [l 3
18 -1 -2.7 & 3 283021 A -3
19 2 -13.22 -25 0 7.64963 1 -15
1 -2.94 T 2 2.48153 | 5
a -5.26 -0 0 233zss [9
Py 1 -1.26 8 5 286962 i 1
¥y 2
24 3 1

This sheet simulates what may happen to people who are addicted to
gambling. When we run the code, we are asked how many chances we want
in column A to go for odd or even. We simulate a 50% probability for either
choice. If the choice was correct, the count in column A goes up by 1,
otherwise it goes down by 1. All this is done on a new sheet.

Next we simulate that this addicted player repeats
the game for some twenty more times. This 1s done with a
Data Table in D:H (see Appendix). In its top row, we
calculate average, mimimum, maximum, standard
dewviation, and the final score (in column H). At the end,
we calculate how often the player had a positive final
score, and how often a negative one. Most of the work
goes into the conditional formatting bars.

What you need to know

Usually a Data Table has have a formula in the first cell—which
would be cell C1 in our case. Based on that formula, a Data Table typically
uses a row input of variables and a column input of variables to recalculate
the formula placed at its origin. It does so by filling the table cells with a
formula that has the following syntax: {=TABLE(row-input, col-input)}.

In this case we use a Data Table merely to trick Excel into simulating
20 (or many more) iterations of column A. Wedo so by not placing a
formula at the origin, but by leaving the row-input argument empty, and
having the col-input argument refer to an empty cell somewhere outside the
table. Yes, that does the trick!

By using Worksheet.Add we create a new worksheet either before (1°
argument) or after (2" argument after the comma) the Activesheet, which is
the sheet we are currently on.

An InputBox provides users to provide their own input for variables
or questions.

What you need to do

Sub Gambling()

Dim oWS As Worksheet, iRow As Long

iRow = InputBox("How many rows?", , 100)

Set oWS = Worksheets.Add(, ActiveSheet)

Range("'A1") =0

Range(Cells(2, 1), Cells(iRow, 1)).Formula =
"=IF(RAND()>0.5,A1+1,A1-1)"

Range("D1") = "Average': Range(""D2").Formula
= "=AVERAGE(A:A)"

Range("E1") = "Min": Range("E2").Formula =
"=MIN(A:A)"

Range("'F1'") = "Max'": Range("F2").Formula =
"=MAX(A:A)"

Range("'G1") = "SD": Range(''G2").Formula =
"=STDEV(A:A)"

Range('"H1") = "Final": Range(""H2").Formula =
"=" & Cells(iRow, 1).Address(False, False)

Range(Range(""C2"), Range(""H22")).Table ,
Range(''B2")

Dim oRange As Range, oFormat As
FormatCondition

Set oRange = Range(Range("'D2"), Range("'D22"))

Set oFormat =

oRange.FormatConditions.Add(xlICell Value, xlLess,
n=0n)
oFormat.Interior.Color = 13551615

'Conditional Formatting with Bars (only in later
versions of Excel)

Dim oBar As Databar

Set oRange = Range(Range(""H2'"), Range('"H22"))

oRange.ColumnWidth = 15

Range('"H24").Formula = "=AVERAGE(" &
oRange.Address &)"

Set oBar = oRange.FormatConditions.AddDatabar

oBar.MinPoint.Modify
newtype:=xlConditionValueAutomaticMin

oBar.MaxPoint.Modify
newtype:=xlCondition ValueAutomaticMax

oBar.BarFillType = xIDataBarFillGradient

oBar.Direction = xIContext

oBar.NegativeBarFormat.ColorType =
xIDataBarColor

oBar.BarBorder. Type = xIDataBarBorderSolid

oBar.NegativeBarFormat.BorderColorType =
xIDataBarColor

oBar.AxisPosition = xIDataBarAxisAutomatic

oBar.BarColor.Color = 13012579

oBar.NegativeBarFormat.Color.Color = 5920255

ActiveWindow.Zoom = 130

Dim sMsg As String

sMsg = WorksheetFunction.Countlf(Columns(4),
">0") & " runs with average above 0"

sMsg = sMsg & vbCr & ""Average of final scores: "
& FormatNumber(Range(''H24"), 2)

MsgBox sMsg
End Sub

Chapter 7: Lottery Numbers

What the simulation does

A B C D E F G H
1 I.Mter 37656 tickets. Winning number: 7552 |

After 48106 tickets.
After 898 tickets.
After 1085 tickets.
After 6195 tickets.
After 8761 tickets.
After 18619 tickets. Ctrl = Sh ift Sl
After 894 tickets.
After 15229 tickets.
After 34119 tickets.

!

Each time we run this macro, the code creates a 4-digit random
number in cell F1. Then it tries to match that number by creating new 4-digit
random numbers until the two numbers match.

O e~ o Wk

el el =
wm s W=D

After each match, it plots in column A how many times—how many
“tickets”—it took to find a match. The simulation keeps doing this until we
hit the No-button in the MsgBox.

What you need to know

Each random digit 1s generated by Int(Rnd * 10). The Int function
always rounds down to the nearest integer (0 — 9). But because this digit has
to be incorporated in the 4-digit lottery number, we need also the CStr
function which converts the number into a String.

To “string” things together, we always need [space][ampersand]
[space] between the individual strings that need to be “stringed” together.

Do-loops are perfect when we don’t know ahead of time how many
loops we need. The loop can be stopped by adding a While or Until
condition on the Do-line or the Loop-line. Another possibility is—which we
did here—using an /F-statement. If the condition of the /f-statement kicks in,
we perform an Exit Do (not to be confused with an Exit Sub), which takes us
to the line after the Loop-statement.

What you need to do

Option Explicit

Sub Lottery()
Dim sNumber As String, sGuess As String, i As
Integer, j As Long, n As Long
Range("'Al1").EntireColumn.Clear
If MsgBox("New winning number?', vbYesNo) =
vbYes Then
sNumber =""
Fori=1To 4
sNumber = sNumber & CStr(Int(Rnd * 10))
Next i
Range("F1'") ="'"" & sNumber
Else
sNumber = Range("F1")
End If
Do
Fori=1To 4
sGuess = sGuess & CStr(Int(Rnd * 10))
Next i
n=n-+1
If CStr(sNumber) = CStr(sGuess) Then
j=j+1
Cells(j, 1) = "After " & n & " tickets."

n=>0
If MsgBox("Another run?", vbYesNo, sGuess)
= vbNo Then Exit Do

End If
sGuess = """
Loop
End Sub
! l A . E . i mn:IngnumIfH: @ = | ? | : 1 2 X . ; | M

[Micrasoft Excel]

IMews winming nurmber?

L Ys | No

[T - "R R S TR

Ctrl + Shift + L

=

Chapter 8: Win or Lose?

What the simulation does

A B C D F G H
1 |Time [WinOrLose Total
2 10/30/2016 5:22 ($0.41) (50.41)
3 10/30/20165:22 ($0.07) ($0.48) £
4 10/30/20165:22 [$0.16) ($0.64) Ctrl + Shift+ W
5 10/30/2016 5:22 5042 (50.22)
6 10/30/2016 5:22 $0.40 $0.18
7 10/30/20165:22 ($0.55) ($0.37) —
2 10/30/2016 5:22 $0.97 $0.60 ot o
9 10/30/2016 5:22 {50.52) 50.08
10 10/30/20165:22 ($0.63) ($0.55) Anather triall
11 10/30/20165:22 [$0.42) ($0.97)
12 10/30/2016 5:22 $0.51 ($0.06)
13 10/30/2016 5:22 $0.17 $0.11 [y]| he
14 10/30/2016 5:22 {50.73) (50.62)
15
16

After each trial, the macro plots the current time in Column A, then a
random win or lose amount of money in column B, and a cumulative total of
what has been won or lost so far in column C.

When we decide to quit, a MsgBox reports to us how much we have
won or lost in total after an X number of trials.

What you need to know

The Now function returns the serial number of the current date and
time. If the cell format was General before the function was entered, Excel
changes the cell format so that it matches the date and time format of your
regional settings.

AutoFit widens the EntireColumn to its widest entry. It does so for the
entire sheet if you use Cells, or for a specific range on the sheet that you
specify—for instance, Cells(1,1).

FormulaRI1CI uses a row and column notation—for instance, R1C1—
instead of the more common notation of Al. To use this notation also in

Excel itself, you can go here: File | Options | Formulas | RICI1 reference
style.

FormulaR1CI can have relative or absolute references. Here are
some examples: RC refers to the same row and column number as where the
cell itself is located; RICI refers to a cell inrow 1 and column 1 (which is
Al); R[-1]C[1] refers to 1 row up and 1 column to the right of where the
reference is located (see Appendix).

FormatCurrency does something similar to what FormatNumber
does. It lets you specify the number of decimals in the 2" argument, but it
also adds a currency symbol (which is a non-numeric entity).

What you need to do

Sub WinOrLose()
Dim i As Long, sMsg As String
Columns("A:C").ClearContents
Range("Al1'") = "Time": Range('"'B1") =
"WinOrLose'": Range("C1") = "Total"
Fori=2 To 1000
Cells(i, 1) = Now
Cells(i, 2) = FormatCurrency(1 - 2 * Rnd, 2)
Cells(i, 3).FormulaR1C1 = "=SUM(R2C2:RC2)"
Cells.EntireColumn.AutoFit
If MsgBox(" Another trial?", vbYesNo) = vbNo
Then Exit For
Next i
With Cells(i, 3)
If .Value >= 0 Then sMsg = "you WON: " Else
sMsg = "you LOST: "
MsgBox "After " & i-1& " trials " & sMsg &
FormatCurrency(Cells(i, 3), 2)
End With
End Sub

-l RENEE- T I ST

[ol el el il il
[TR, SR T T T R

A] C

| Time |WinOrLose Total
10/30/2016 5:22 (50.41) (50.41)
10/30/2016 5:22 ($0.07) (50.48)
10/30/2016 5:22 ($0.16) (50.64)
10/30/2016 5:22 $0.42 (50.22)
10/30/2016 5:22 $0.40 50.18
10/30/2016 5:22 (50.55) (50.37)
10/30/2016 5:22 $0.97 50.80
10/30/2016 5:22 (50.52) $0.08
10/30/2016 5:22 [$0.63) [$0.55)
10/30/2016 5:22 ($0.42) [$0.97)
10/30/2016 5:22 $0.91 (50.06)
10/30/2016 5:22 5017 50.11
10/30/2016 5:22 (50.73) (50.62)

g
Microsoft Excel

Ctrl + Shift + W

After 13 trials you LOST: (30.62)

Chapter 9: A Letter Game

What the simulation does

A B C D E F G H 1 1l K L M N 8] P
i To{ale|us|r{Lt][e]|nN]w
2 ¥ vl el vide]l®»]e | nlx .
3 Z k|[m|[1|op|a[Dp|[x|o|u Ctrl + Shift + L
4 p|lp|lale[v]n|rp|w]o]|nr
5 P P T | DIW[EFE|1[Mm]L]C . .
6 E ||z [T|E|D | ElvlalT Moo el
/ T 0 5 K F u c n z G Foursd N0 alfer 5 brak
8 P T M D M N Q L Y B in cells 5555+ SHIE
9 L H T X C K E D Q T
10) (Rlx[e[{mlulifule] o)
11 5—r
12

The macro asks you first whether you want to use the 1% or the 2
sheet. The 2" sheet uses “weighting”; the weight of each character is
assigned in column O. Then the macro asks which word should be found;
don’t make this more than 2 characters long, for that could be a very time-
consuming search.

In a Do-loop with two nested For-loops, the code scans all numbers
in B1:K10 until it finds the word you are looking for. Obviously, that goes
faster with “weighted” characters.

What you need to know

A B C 0 E F G H | K | ¥ | N O P Q_ R
1 D L&) M s] (8] G H (4] A A [i] A 4
2 1 L 0 E (o] M (#] (4] L (8] 4 ‘B 3
3 o [clo| 1 [wlel 1ol n]o 7 le] 2
4 i (Al Fleg|E|[N|[N|[G[O|M 9 [o] 3 Moot et N
5 N [n|[m|nN|[F|E|[N|]O|[N]|GBG 12 [E]| s

| Fourd WO after 1 trish
(] A M 4] M B M M J M] 17 F 2 | vewh 5051+ 5E5L
7 (4] D [#] I H M M 4] 0] M 19 G 2 |
] M M B O E H [4] N N E 21 H 3 | | e
L] 0] M & M M M D] [} 24] i —_—
10 F lalo|lfr[n[Aafec|nN[oO]H B 1 2
11 30 [k | 3
12 s1 L] 2
13 z i3 M 3
14 Ctrl + Shift + L 36 [N | 20 N+ 0 are heavily
|15 56 |0 | 20 welghted

16 e P 3

All capitals have an ASCI number between 65 and 90. The Excel
function CHAR returns the corresponding letter. Column M totals the scores
in column O cumulatively. So cell M2 has this formula: =SUM(O1:508$1).
Now VLOOKUP can find a random number between 0 and 70 in column M,
and then return the corresponding letter from column N. VLOOKUP always
searches vertically, from top to bottom, in the first column of a table and
then finds a corresponding value in a column to the right, specified by a
number. So we need a lookup column of cumulative values before column
N. Besides, VLOOKUP looks for the previous value in an ascending order.

What you need to do

Option Explicit

Sub Letters()
Dim sWord As String, oRange As Range, ¢ As
Integer, r As Integer, n As Integer, sFormula As String
Application.Calculation = xlCalculationManual
If MsgBox("Equal chars (Y) or weighted chars
(N)?", vbYesNo) = vbYes Then
Sheetl.Activate
sFormula =
"=CHAR(RANDBETWEEN(65,90))" '65-90 are the
capitals
Else
Sheet2.Activate
sFormula =
"=VLOOKUP(RANDBETWEEN(0,70),M1:N26,2)
End If
Set oRange = Range("'B1:K10")
oRange.ClearContents:
oRange.Interior.ColorIndex = 0
sWord = InputBox("Which 2-letter word?", ,
"NO")
sWord = UCase(Left(sWord, 2))
oRange.Cells.Formula = sFormula

With oRange

Do
Sheetl.Calculate
n=n-+1

For r=1 To .Rows.Count
For ¢ =1 To .Columns.Count
If .Cells(r, ¢) = Left(sWord, 1) Then
If ¢ <.Columns.Count Then
If .Cells(r, ¢ + 1) = Right(sWord,
1) Then Exit Do
'so this loop stops when it finds
one (the 1st) case
End If
End If
Next ¢
Next r

Loop Until MsgBox("Trial " & n & '"': not
found! Try again?", vbYesNo) = vbNo

.Range(.Cells(r, ¢ - 1), .Cells(r, ¢)).Interior.Color
= vbYellow

MsgBox "Found " & sWord & " after" & n & "
trials" & vbCr &

"in cells " & .Cells(r, ¢).Address & "'+
& .Cells(r, ¢ + 1).Address
End With

End Sub

Chapter 10: A Three-Way Circuit

What the simulation does

A B
o — s -
] —_— Iaip ey Sy fma
-—a . —a .
he " ‘ R =a \'.J = ._.l
Marsy [- Mg » -
newiral way 3w T-aRf Ay
8 - —a
= -J —— .-—‘]L

This sheet has a simulation of a three-way circuit. It is, for example,
used when a light is regulated by two switches. Either switch can turn the
light on or off, but the connections have to be in a certain way, as explained
in the diagrams to the right.

The position of the switches in column C and F is regulated randomly
by either showing the switch with a black font or hiding it with a white font.
What you need to know

This time we declare Boolean variables, which can only be either
True(1) or False (0).

In an /F-statement we use a combination of And and Or operators.

Like FormatCurrency, the FormatPercent function has a 2"! argument
for the number of decimals, and it adds the %-sign as a non-numeric entity.

This 1s ON:

hat

This is OFF:

nainral

Aaiitral

What you need to do

Option Explicit

Sub Hits()
Dim b1l As Boolean, b2 As Boolean, b3 As Boolean,
b4 As Boolean
Dim iHit As Integer, n As Integer, sMsg As String
Do
If Rnd > 0.5 Then
Range(""C4").Font.Color = vbBlack:
Range(""C5").Font.Color = vbWhite
bl = True: b2 = False
Else
Range(""C4").Font.Color = vbWhite:
Range(""C5").Font.Color = vbBlack
bl = False: b2 = True
End If
If Rnd > 0.5 Then
Range("F4'").Font.Color = vbBlack:
Range(""F5").Font.Color = vbWhite
b3 = True: b4 = False
Else
Range(''F4'").Font.Color = vbWhite:
Range("'F5").Font.Color = vbBlack
b3 = False: b4 = True

End If

n=n-+1

If (b1 And b3) Or (b2 And b4) Then iHit = iHit +
1

sMsg = sMsg & "Runs: " & n & vbTab & "Hits:
" & iHit & vbTab & FormatPercent(iHit / n, 0) &
vbCr

MsgBox sMsg

Loop Until MsgBox("Again?'", vbYesNo) = vbNo

End Sub

Chapter 11: Flocking Behavior

What the simulation does

A] L K] : F i H 1 L %] M L&) o o " 5 T
1 chance direction count majority decision
Bl [w|wlx]r]alw|m a2/]w] [=& [23%. & = ==
(el m v e lalwnlelwlwle] [2 [20 ™ oen b bl Bt
4 W | R ¥ | K ¥ | R| | w A | A 5% W 30 B i I —
s 2w v rRlele[R[e][] |75 « |19 . e
6| [mlaluwlw|rm|a|w|al’]|w [COUNTIF(s852i5K511A3) |

L0 I T T T T T T

B ¥ [w [w|w[2a][rR]|rR[&e[r]|w
NI LSRR A nEREREN Ctrl + Shift + F
10 Rle|a[la|la[sa|uw|[w]|[r]|a
11 Al R Al u ¥ | w o ¥ u | R
12

Flocking behaviorr is the behavior exhibited when a group of birds,
called a flock, are foraging or in flight. There are clear parallels with the
shoaling behavior of fish, the swarming behavior of insects, and herd
behavior of land animals. It is considered the emergence of collective
behavior arising from simple rules that are followed by individuals and
does not involve any central coordination

Scientists have demonstrated a similar behavior in humans. In their
studies, people exhibited the behavioral pattern of a “flock”: If a certain
percentage of the flock changes direction, the others follow suit. In
experiments, when one person was designated as a “predator” and everyone
else was supposed to avoid him or her, the human flock behaved very much
like a school of fish.

What you need to know

G H [. K |1 M M 0 p 0 R = - :
chance direction count majority decision
e o o T LS = -' S nn T3
253 2 100 5 e _...[;IF{FQ— +",0FFSET(P2,,-2),") |
50% N o
g 3 75% ¥ 0 [z1F{02>=35"+""-") |

|=mun1:rms:m:su,nn |

Ctrl + Shift + F

WYYy
u-u-u-u-u-u-u u‘utx
huwuu*utsu‘u.u
IR I AR A AR A A AR AL
MNH‘HHHHENNN

We assume that all animals (100) start randomly in one of four
different directions (M2:N5). Once animals with a certain direction happen
to gain a certain percentage (say, 35%), all the other animals follow suit.

In the range B2:K11 we place a VLOOKUP function that finds in
M2:M5 a random number between 0 and 1, and then returns the
corresponding direction arrow. Once column O registers a count over 35, all
cells in B2:K11 display that arrow, and the count becomes 100. In other
words, the flock has “decided” in which direction to fly or to swim.

What you need to do
Option Explicit

Sub FlockBehavior()
Dim oRange As Range, i As Integer, bWon As
Boolean, pTime As Double
Set oRange = Range("B2:K11")
oRange.ClearContents
Do
oRange.Formula =
"=VLOOKUP(RAND(),M2:5N$5,2)"
oRange.Formula = oRange.Value
pTime = Timer + 0.5 'Timer: secs since
midnight; pause by .5 seconds
Do While Timer < pTime

DoEvents
Loop
Fori=1To 4

If Range("O1").Offset(i, 0) >= 35 Then bWon
= True: Exit For
Next i
Loop Until bWon = True
If bWon Then oRange =
WorksheetFunction.VLookup('+",
Range("P2:5Q$%$5"), 2, 0)

MsgBox "One direction"

O

p

Q R S

chance direction count majority decision

End Sub

L M N
0% F
25% A
50% N
75% ¥

0

=COUNTIF(B2:K11,N2)

II. StATISTICS
Chapter 12: Samples

What the simulation does

i TR

The simulation first asks how many rows we want to plot on a new
sheet. Each cell in that range—in the above case range B2:K18—holds a
random number between 0 and 10. Columns O and P hold two frequency
tables. The top one calculates frequencies for row 2, which are the values
for a sample of 10 cases. The bottom one calculates frequencies for row 20,
which holds the averages of each column based on a sample of 17x10=170
cases.

It is to be expected that the frequency curve for the large sample
resembles more of a normal distribution than the curve for the small sample
of 10 cases. Below is the result of 25 rows.

What you need to know

NI ATEGEL 523D RN P FEREL R ENLE) E L] i

The FREQUENCY function is a so-called array function. That means
in Excel, you have to select multiple cells at once and accept the formula
with Ctrl + Shift + Enter (on a Mac: Command + Return). In VBA you do
this by using the FormulArray property of a range of cells.

We also added two ChartObjects to the code and the sheet. They are
numbered in the order they were created: 1 and 2. Notice that

SetSourceData is followed by a space—yes, every minute detail counts in
VBA!

What you need to do

Option Explicit

Sub Samples()

Dim oWS As Worksheet, iRow As Long, oRange As
Range, oChart As Chart

iRow = InputBox(""How many rows on a new
sheet?'",, 25) + 2

Set oWS = Worksheets.Add(, ActiveSheet)

Range(Cells(2, 2), Cells(2, 11)).Formula =
"=INT(RAND()*11)"

Range(Cells(2, 2), Cells(2, 11)).Interior.Color =
vbYellow

Cells(2, 13).Formula = "=STDEV(B2:K2)"

Range(Range(""A2"), Cells(iRow, 11)).Table ,
Range("'A1")

Set oRange = Range(Cells(iRow + 2, 2), Cells(iRow
+ 2, 11))

oRange.FormulaR1C1 = "=AVERAGE(R][-2]C:R]|-
" & iRow & "] C)"

oRange.Interior.Color = vbYellow

Cells(iRow + 2, 13).FormulaR1C1 =
"=STDEV(RC|[-11]:RC][-2])"

Range("02:011").Formula = "=ROW(A1)"

Range("P2:P11").FormulaArray =

"=FREQUENCY(B2:K2,02:011)"
Range(""014:023") = "=ROW(A1)"
Range('"P14:P23").FormulaArray =

"=FREQUENCY(" & oRange.Address &

",014:023)"

Range("'O2:P11").Select
oWS.Shapes.AddChart2(240,
xIXYScatterLines).Select
ActiveChart.SetSourceData oWS.Range("O2:P11")
ActiveChart.HasTitle = False
oWS.ChartObjects(1). Top = Range(''R2").Top
oWS.ChartObjects(1).Left = Range('"R2").Left
oWS.ChartObjects(1).Width = 300
oWS.ChartObjects(1).Height = 150

Range(""O14:P23").Select
oWS.Shapes.AddChart2(240,
xIXYScatterLines).Select
ActiveChart.SetSourceData
oWS.Range("'O14:P23")
ActiveChart.HasTitle = False
oWS.ChartObjects(2).Top = Range(""R14").Top
oWS.ChartObjects(2).Left = Range(''R14").Left
oWS.ChartObjects(2).Width = 300
oWS.ChartObjects(2).Height = 150
Range(""A1").Select

End Sub

Chapter 13: A Normal Distribution

What the simulation does

T C D E F G H 1] K 1 N
|1 B‘..‘i?i.iasl |
_? 1001572 In A rarrdom Prisibear generation [rel00, =1, S0= 5 |
g KL]
i =.g9R197 - Frequency Hoarmiist I- 0% 3
& | 9886509 LE] 0 08 Mt el
& | 1007344 LR/] 2 4100
| 7 wsrmang 9.00 1 17 Ml N
& 801588 .28 4 0¥
| 2 asi7e08 9.5 12 AR
10| 521391 a7 14 TEIVm o
11| Aa4873 10,00 FTI T s, -
17| 1056585 10.28 LU I 2% |
11 1080518 0.8 L1 Al T¥S
14| 8214568 078 4 1EEm -
15| 9873386 11,00 2 BE1%
16| 10,38115 11,28 2 1T
17 9945152 14,50 0 .35 2 1
1% | 2905559] 0.0
19| 1019188
| 70| 101616 |
21 Baznms - i o T e =
2| wzsens Ctr+Sh+B = =222 EB3E 228
1| 9651587
4| 1074378
75 | MR

The macro places a new distribution on a new sheet with a number of
rows in column A that you the user chose in a MsgBox, based on a mean and
SD of our choosing as well. Column C has the number of bins chosen,
column D the frequencies for each bin, and column E what the corresponding
normal distribution values would be.

What you need to know

A B C o E G H 1 ! K L M]
[1 9.503276 10.00451
2 | 9.380082 10,4266 0.197581
3 | 9.929534 " e
4 | 9.913304 9, 564875 1 [.169845 ¥
5 | 10,0974 5. E26476 7 0323762 14 g
6 | 10.07556 9688076 2 0559995 12
I L 9, PAHE TG 6 057588 0 =
2 | 10.03684 9811276 2 1751586 5
39 | 9.820353 9.572876 8 LB17251 !
10| 1013408 5.538476 5 1836184 i
11| 10.23a9 9.996075 8 1017295 4 A 0.5
12 | 10.24665 10.05763 17 1947352 E
13| 9.835572 10.11928 12 L705711 0 . p
14| 9.685239 10,1808 11 L.355665 256 963 96D 975 581 2.7 953 ILD010.0610 12 §0.1810 24 10 301E 571043
15| 586851 10.2424% 6 0STTESS TSt S ey
16 | 9.875087 10.30408 4 0639741
17| 10.30287 10. 36563 4 0379847
16 | 1003428 10.42728 1 0204645
e ILLIAT3

The function NORMINV (or NORM.INV, if available) in column A
returns the inverse of the normal cumulative distribution for the specified
mean and standard deviation. The function NORMDIST in E returns the
normal distribution for the specified mean and standard deviation.

By replacing the Formula property of a range with its Value property,
we are mimicking a Paste Special procedure for values—so that things
don’t keep recalculating.

The Chart has two cases of a FullSeriesCollection, 1 and 2.

What you need to do

Option Explicit

Sub Bins()

Dim iSize As Integer, pMean As Double, pSD As
Double, iBins As String, oWS As Worksheet

iBins = 15

iSize = InputBox(''New sheet: The size of your
sample:", , 100)

pMean = InputBox("New sheet: The mean of your
sample:", , 10)

pSD = InputBox("New sheet: The SD of your
sample:", , 0.2)

Set oWS = Worksheets.Add(, ActiveSheet)

Range(Cells(1, 1), Cells(iSize, 1)).Formula =
"=NORMINV(RAND()," & pMean & "," & pSD &
")"

Range(Cells(1, 1), Cells(iSize, 1)).Formula =
Range(Cells(1, 1), Cells(iSize, 1)).Value

Range("C1").Formula = "=MIN(A:A)"

Range("'C2").Formula = "=MAX(A:A)"

Range(Cells(4, 3), Cells(3 + iBins, 3)).Formula =
"=CS1+(ROW(A1))*(ROUND((C2-CS1)/(" &
iBins & '"),4))"

Range(Cells(4, 4), Cells(3 + iBins,

4)).FormulaArray = "=FREQUENCY(A:A," &
Range(Cells(4, 3), Cells(3 + iBins, 3)).Address &)"
Range("E1") =
WorksheetFunction.Average(Columns(1))
Range("E2") =
WorksheetFunction.StDev(Columns(1))
Range(Cells(4, 5), Cells(3 + iBins,
5)).FormulaR1C1 =
"=NORMDIST(RC][-2],R1C5,R2C5,FALSE)"

Range(""C4:E18").Select
oWS.Shapes.AddChart2(240,
xIXYScatterLines).Select
With ActiveChart
.SetSourceData Range(''C4:E18")
.HasTitle = False
FullSeriesCollection(1).ChartType =
xIColumnClustered
FullSeriesCollection(2).ChartType = xlArea
JFullSeriesCollection(2).AxisGroup = 2

ActiveChart.Axes(xlCategory).TickLabels.NumberFor!
= "#,##0.00"

End With

Cells(1, 1).Select
End Sub

Chapter 14: Distribution Simulations
What the simulation does

[L {el'n 3 F] H [i K L 1 M a
|1 count Distribution normal
2 50,DEATESE] nl% Sargile Sire 100000
i 5639531045 T Mioan 50
4 52, 711348304 44| 10rE ko 5 'ct.r sh 5:
D ATISSERRT 50| 38532 o .
& s03s3rEa0s 55 38313 ND: Normal Distribution
T SAORSOEMRE 62| n0TEy
2 48.2I0M@AT 8 78 LN: Lugl’llurmal Distribution
5 457000749 ET) k I 5
0 5556305 w0 Bl: Binomial Distribution
11 49.582 7050 a0 IJ_
12 49, TS PLS [
13 65100
14 57.2843E331
15 4R55PRESSA P
15 SO.EEELEED Z
T R M [rorena, LM (hognoeral), 1 fnomial) @
15 A63HENILE | wsoce - T — T [Cmen |
15 3856710013 soen - 1 T llr-"?x 1
0 40,8501 |Gt | | e L g
21 SLATMLFSE [\
2 aB.FIa1H104 Bo0 1 | \
2T A9.8R5T5 | #3000 7 T 1 I|II T II.
4 621993733 (soogme L A 1 A 1 |
25 aBONSENL2 il || ,|"I- | "
J SREBATREME |] h
27 4551915672 1oo0g T T 1 T T T
SR RA MINIES | somd -+ - — ' 1 T T
5 53185056 [ad 1 1 | | |
0 488631205 20 | e [48 | so-| 56| €2 | &8 | M | w0 | 80
31 AR.SAFITERZ -0
22 S5LESS1E31T

This macro simulates 3 types of distributions: Normal, LogNormal, or
Binomial.

What you need to know

E__| 'm |E|E | & | ¥ & U SN
1| 17.83853906 Count Distribution| LN
2 | B.046223369 o o sample Size 100000
3 | B.708708094 71| 5150 Maan :
1 | 4295507152 28] 1436 50 05
5| 203857961 T
4 | 2188620078 2 [
7 | 4062345432 T | Count
3| 665800683 56 5 | 120000
9 | Bos030215 6 o g |
10| 1831480405 7 1 | 200000 A — — S B
11| B072019796 w0 | _ |
17| 10.95876581 o | e |
13| 16.35682003 i 50000 i
14| B.551455525 | .
15| 6.370823455 | apena / \ | | ' i
16 | 6.65TBE8T856 | 20000 I
17| 4580788078 [5 fl' _/
iz- T | b | 21 | | as | a2 | as |86 |8 | 70| M
| 054368504 20000 — -
FIERRF R DR NE]
21| asmmomnss

A Select Case statement in VBA lets us regulate specifics for each
case (ND, LN, or BI).

What you need to do

Sub Simulation()
Dim sChoice As String, n As Long, pOne As
Double, pTwo As Double, i As Long
Dim arr() As Variant, sFormula As String, oRange
As Range, oWS As Worksheet
Dim pMin As Double, pMax As Double, oChart As
Chart
sChoice = InputBox(""ND (normal), LN
(lognormal), BI (binomial)', , "ND")
n = InputBox("How many numbers?", , 100000)
If n > 1000000 Then MsgBox "The max is
1000000": Exit Sub
Set oWS = Worksheets.Add(, ActiveSheet)
Select Case UCase(sChoice)
Case "ND":
pOne = InputBox('"What is the mean?", , 50)
pTwo = InputBox("What is the standard
deviation?'", , 5)
sFormula = "=NORM.INV(RAND()," & pOne
& "," & pTWO & ")"
Case "LN":
pOne = InputBox(""What is the mean?", , 2)
pTwo = InputBox("What is the standard
deviation?'", , 0.5)
sFormula = "=LOGNORM.INV(RAND()," &

pOne & ","" & pTwo & "")"
Case "BI'':
pOne = InputBox(""What is the probability?",
, 0.5)
pIwo = InputBox("How many trials?", , 50)
sFormula = "=BINOML.INV(" & pTwo & ","
& pOne & ",RAND())"
Case Else: MsgBox "Not a valid option': Exit
Sub
End Select
Set oRange = Range(Cells(1, 1), Cells(n, 1))
oRange.Formula = sFormula : oRange.Formula
= oRange. Value
Cells(1, 4) = "Count"
Cells(2, 3).Formula = "=MIN(A:A)-
MOD(MIN(A:A),10)" : pMin = Cells(2, 3)
Cells(11, 3).Formula = "=MAX(A:A)+10-
MOD(MAX(A:A),10)" : pMax = Cells(11, 3
Fori=3To 10
Cells(i, 3) = pMin +i * Round((pMax - pMin) /
10, 0)
Next i
Set oRange = Range(Cells(2, 4), Cells(12, 4))
oRange.FormulaArray = "=FREQUENCY (A:A,"
& Range(Cells(2, 3), Cells(11, 3)).Address & ')"
oRange.Cells.Borders.LineStyle = xIContinuous :
Cells.EntireColumn.AutoFit

Cells(1, 6) = "Distribution': Cells(1, 7) = sChoice

Cells(2, 6) = "Sample Size'": Cells(2, 7) =n :
Cells(3, 6) = "Mean': Cells(3, 7) = pOne

Cells(4, 6) = "SD": Cells(4, 7) = pTwo

Set oRange = oWS.Range(Cells(1, 3), Cells(11, 4))

Set oChart = Charts.Add

oChart.HasLegend = False: oChart.ChartType =
xlLine

oChart.FullSeriesCollection(1).Smooth = True

oChart.SetSourceData oRange: oChart.PlotBy =
xIColumns

oChart.Axes(xlCategory).HasMajorGridlines =
True

oChart.Location xlLocationAsObject, oWS.Name

Sheetl.ChartObjects(1).Left = 125:
Sheetl.ChartObjects(1).Top = 250

Sheetl.ChartObjects(1).Chart.HasTitle = False:
Cells(1, 1).Select
End Sub

Chapter 15: Discrete Distributions

What the simulation does

A R C o E F [H I 1} K L M

1[5 sm i 81 2% =
2§ 1000 0% 55 0%
35 1000 _ s0% $10 zo‘x.
4 510000 0% S20 'll:m
5 % 10000 BO% 5100 205

6 |5 500
7 | 510000
85 1000 51 13%

5 1)) 55 ETGE-
e - 5 m
£ 500 520 9%

q L L
i *
12 | 5 100000 5100 13%
13| & 5.00
14 |5 100
15 | § 10000
16 | 5 10uDD
17 | 5 20000
18 | 5 10000
19 | & 5000
20 5 20,00

21 5 100.00
27 | 5 100.00
1% o0

Let’s pretend you are a persistent, but very systematic, gambler. You
decide ahead of time how to spend your different kinds of banknotes, which
is specified in range D1:ES. The first columns in the chart display these
settings as well.

Then the macro lets the machine determine one hundred times, in
column A, when and which kind of banknotes to use and in which order.
This is a random process, but within the margins set in D1:ES. The results
are shown in the second columns of the chart.

Although the process is random, it follows a discrete distribution
which comes always very close to what you would expect.

What you need to know

For the Range E1:ES, the macro creates random percentages, which
together should make for 100%. That requires some math manipulation. Then
we need the function VLOOKUP to use these percentages to find the
corresponding type of banknote.

However, VLOOKUP always searches vertically, from top to bottom,

in the first column of a table, and then finds a corresponding value in a
column to the right, specified by a number. So we need a lookup column
before D1:D5 in order to determine the type of banknote to use. Besides,
VLOOKUP looks for the previous value in an ascending order, so it would
find $1 for all percentages between 0% and 60%, $5 between 60% and
80%, and $100 for percentages greater than or equal to 98%.

Therefore, we need cumulative totals in the first column (C), starting
at 0%. The third column (E) is now redundant, but is still needed for the
chart to the right in order to show the expected frequencies—versus the
randomly generated frequencies.

What you need to do
Option Explicit

Sub Distribution()

Dim i As Integer, arr() As Integer, n As Integer

ReDim arr(4)

n = WorksheetFunction.RandBetween(0, 60)

arr(0) =n - (n Mod 5)

n = WorksheetFunction.RandBetween(0, 100 -
arr(0))

arr(l) =n - (n Mod 5)

n = WorksheetFunction.RandBetween(0, 100 -
(arr(0) + arr(1)))

arr(2) =n - (n Mod 5)

n = WorksheetFunction.RandBetween(0, 100 -
(arr(0) + arr(1) + arr(2)))

arr(3) =n - (n Mod 5)

arr(4) =100 - (arr(0) + arr(1) + arr(2) + arr(3))

Fori=0To 4

Cells(i + 1, 5) = FormatPercent(arr(i) / 100, 0)

Next i

Range("'C2:C5").Formula = "=SUM(SES$1:E1)"

Range(''A1:A100").Formula =
"=VLOOKUP(RAND(),C1:8D5,2)"
End Sub

ko
m
(el
=]

{ =
1000 0%, 25
5.00 “ A% 510
1L.00 S0 20
ek L] 100f% 100

W w B An e b |

Ctr ShD

=}
LEUE R e R T C T L e TR PO LR S RE TR T LR P URE TR LS LU T Y

10,00

Chapter 16: Peaks

What the simulation does

s
=
Btop
walue
6 L]
10

EZEERZEzsazmEsy

1

E

subsati

e arn 4"_
50 10
subsat]
0o X ird
[0 123
Loz 22M
oms 14873
posy Sea
ba31 31333
(L] 11.082
pam 134
O 0De [4]
b o Bobi
D00 .00
[00 .00
oong &0
L apg .00
b 002 .00
[0DE .00
Do0g .00
[03 3. 000
b abd &0

"
subsat?

.08 0,000
0.000 0003
0.090 0.048
a.0e0 048
0,08 F T
o.0ia 1037
oE a0
N EAes
0.082 2,080
oo 1037
0.8 2,880
0.090 0431
0.0 0048
0.080 0,003
0.080 0.000
0.000 0.000
n.m0 0.000
a.680 0,600
.06 .030

both

idd
2264
1545
e
alEm
A2
258584
et
18272
28649
B4E1

.00
LY
B0
00
oM
(X

1 R
Ctr+5h+P
1
.'\.
.'|
A S
-1 9 o a0 0 40 506 60 ¢ B} S0 100 110 135 183 140 150 180 170 180

Here we are dealing with a population (in I) that is composed of two

sub-populations (in D and G). As long as the two subpopulations have the
same mean, even with different standard deviations, the entire population
may look nicely symmetrical. But when the mean of one subpopulation
changes, the symmetrical curve may easily lose its symmetry and may even
become bi-modal. The macro simulates this by looping with a timer.

What yo

=

Stop |
R |

5 walus
i
10
B m
n
an
50
50
1, ™
14 #
1 0
100
10
130
130
140
150
10
170
130

subset]
maan | 44:
so | 10
subsatl

080 0.002
000 0123
(10 2298
A TT] 14,873
w03 3EE2T
[ATE N E]
LRI T]
.08 1588
¥ opa 0,01
2000 .01
0000 0.000
00 .00
@.68a 0,080
[0,000
000 0000
.00 0,000
3 0og .m0
@08 0,600
000 0.000

subssr?
subsail

L] SETE
D301 270
030 L]
LT IF 12089
[T 17,603
0a2E 19947
natE 17.609
L 17.08
b a0s [T E]
Dol 2700
a1 BLBTE
LE [b-Fr)
[0] .04
b0 0BT
0303 []
030G .00
0002 000
o302 @080
ik @000

Dars
2333
BET1E
aran
e
GLITH
2E60E
B any
B&3T
27
Dare
p2Er
b O&d
oo
oo
0ang
D ooy
BOo3
D003

u need to know

o]

12

(=]

Ctr+5h+P

i & 30 M 3 & Sy &0 F0 8D OO 100 180 120 83D 40 1EQ 180 17D 38D

We have a global variable again to stop the macro: bStopMacro.
Stopping the macro is done with a CommandButton on the sheet: Developer
| Design Mode | Insert | Command Button | View Code (don’t forget to click
the Design Mode button OFF when you are done). The VBA code behind the
button is very simple. Most of the work is done in the Module.

The UBound function of an array returns the index of the last array
element.

What you need to do

In a module:

Option Explicit

Dim bStopMacro As Boolean
'Place Commandbutton on the sheet to run the next
Sub

Sub StopLooping()
bStopMacro = True
End Sub

Sub Peaks() 'Ctr+ Sh + P
Dim vMeans As Variant, vSDs As Variant, i As
Integer, j As Integer, pTime As Double
vMeans = Array(40, 50, 60, 70, 80, 90, 100)
vSDs = Array(14, 16, 18, 20)
Fori =0 To UBound(vMeans)
Range("G2'") = vMeans(i)
For j = 0 To UBound(vSDs)
Range("'G3") = vSDs(j)
pTime = Timer + 1
Do
DoEvents
Loop Until Timer > pTime

If bStopMacro Then bStopMacro = False: Exit
Sub
Next j
Next i
If MsgBox("Start again?'", vbYesNo) = vbYes Then
Peaks
End Sub

On the sheet that has the commandButtonl:

Option Explicit

Private Sub CommandButtonl_Click()
StopLooping
Cells(1, 1).Select

End Sub

Chapter 17: Confidence Margins

What the simulation does

Iy 1 E H K
1 Mean 45 3.0 __o18 _saf
] 7.4 . B F
2 5D o. R 17 L@ 342
i |Size 5 ! 247 DE¥ 354
A i ’ & : S— S A1 1 = 4
1 2-tailed error level 5'?&# [~ COMFIDENCE(B4,B2,63) I =NORM.INV[K1, 5651 SB52) 2.1 1 8% 3.66
5 Confidence margin g1y —t 18 6% 378
=TEXT(B1-B5,"0.00°) &~ to " & TEXT{B1+B5,"0.00" .
L=TENTRL KR o - R TECTIAE RS TS, 15 BTH 390
7 |95% conf. margin | 4.37 to 4,63 10 20 an 40 50 Size 1.2 115% 402
0.2 43880462 "4 41t0450 443tod57 449tod56 4.49to 456 v s, S
3 4 g, 3 Fme LD A0 4.4 &4 =L} o .
431w d69 4.3 anqﬂﬂ-]«-u 61 1o 4.59 2 to 4.58 06 274% 426
10 o 42560478 432weve wootod64 438tod B2 4,30to4.61 0.3 BI% 438
11 .5 119t 4.81 42810472 432todE8 435todE5 4.36tod5d — 0.0 S50.0% 450
1 0.6 41310487 431047 wﬂf 0.3 618% 462
13 0.7 4070493 419w48)| 42500475 (e 72 4.31tod469 0.6 TIEN 474
14 0.8 40018500 4151 4.8 . 4.25t04.75 4.28t04.72 09 8l6%x 486
i 0.8 38450506 411todBs 418tod82 422t0d7H 4,25t0475 i.2 S88%% 498
1.0 38880512 40810494 414tod88 415tod 8l 4322t0d78 15 913k 510
17 71 18 964% 522
s s o e ——]
1t |Cols 3:L conditional formatting: | <1 98.2% 35.34
!niND[l.L'l »=4, 38, 5L1c=4.6F) 2.4 99.7% £.45
click on a cell inside this box [i o e
3.0 995% 570

This sheet 1s actually done with Excel functions and formulas as
mentioned in the inserted comments. The function CONFIDENCE in Excel
returns the confidence interval for a population mean, using a normal
distribution. It works best for sample sizes over 32.

In this case we used a 2-tailed error level of 5% (2.5% for each tail),
which equates to a 95% confidence level. This means we have a 95%
confidence that the vales we found in this sample lie actually between the
two values mentioned in the Data Table (which equates to the mean plus the
confidence margin and the mean minus the confidence margin). Notice how
confidence margins depend heavily on sample size and standard deviation.

The only thing VBA does on this sheet is following which cell the user
clicks on inside the Data Table.

What you need to know

Instead of using a Module, the VBA code is on the sheet itself:
SelectionChange (see the screen shot on the next page). This is a Sub that
kicks in whenever the user selects another cell on that sheet.

Instead of using a regular For-loop, we used a For-Each-loop that
scans every single cell in a range of cells. The Boolean variable bFound
always starts as 0 (False) until it is set to 1 (True).

We also applied conditional formatting by adding a FormatCondition
to the collection of FormatConditions, starting at 1. In this case we used a
formula for this condition as shown in the VBA code which marks the
correct range in columns J:L with a certain color.

Because adding to the FormatConditions keeps literally adding the
same condition again and again, the macro deletes all conditions earlier in
the code first.

What you need to do

Option Explicit

Private Sub Worksheet SelectionChange(ByVal
Target As Range)

Dim oRange As Range, sFormula As String,
pLower As Double, pUpper As Double

Dim oCell As Range, bFound As Boolean

For Each oCell In Range(''B8:G16")

If 0Cell = ActiveCell Then bFound = True: Exit

For

Next oCell

If bFound = False Then Exit Sub

Set oRange = Range("J1:L21")

oRange.FormatConditions.Delete

pLower = Left(ActiveCell, 4)

pUpper = Right(ActiveCell, 4)

sFormula = "=and($L1>=" & pLower & ", $L1<=""
& pUpper &)"

oRange.FormatConditions.Add xlExpression, ,
sFormula

oRange.FormatConditions(1).Interior.Color =
vbYellow
End Sub

& " i L
B R e e et £ e
@ Eir [Mew [med Fgmal [Oebug B Jooch Adddn Window Hel

HE-d B0 s M NEY @ e e JE R e T R R v B
Project - VAPrject b | rrese— = | sekctionchame lal
= Auckiste

"B B Sovar (RANVERLILAN) Option Explicit R

E B borsilgh ikl

Private Sub l'l“:n-‘li::tl".m-t_i-ulm=llm'nl‘:l'mln'n;E:'t
Dim oRange As Range, sFormula As [/

‘Lesdaneryiradat pages
Dim oCell As Range, bFound As Bool o i
For Each oCell In Range("B2:G18") L asiimimm
If oCell = ActiveCell Then bFound siic. il
Mext oCell

Chapter 18: Sample Size and

Confidence Interval
What the simulation does

| A B £ o E F G H I] K L 1A
| 1 value 55
! 2 n T} Al 1T il 1A
| 3 5D 0.5 58 w3
| 4 |se [oo ks e
| : v o __—.I—__'__ =T
| & confidence t-val margin min max e e R
| 7 SoN .76 0.252 5.248 5.752 5.6
[& 15 205 0187 5313 5687 .
! 9 D0 1.70 0,155 5,345 5655 - B
| 20 =
| 'f . iy [E7TY
| 12 confidence interval: —_— W
13 : ——— <3
! 14 Ctrl + Shift + C 1
15 for sample size: e L
16 3 % % 2% S¥% S4% O4% Shh S SEW 99k 100%
| 17 Ctrl + Shift+ S T 554, Confidence

This sheet has two macros. The first macro (see above) simply asks
for input variables and calculates confidence intervals.

The second macro (see below) calculates how many cases you would
need in your sample in order to reach a specific margin limit.

What you need to know

A B C D E F G H I] K L A

| 1 |value 55
| 2 n lmlnls el min | === MUx

3 5D 05 57 :

4 SE 0.08 et

g i 5,550 [

f 5T - ——

& | confidence t-val margin min max —

7 99% 262 0.119 5.381 5.619 56

8 5% 158 0,050 5,410 2590 2

a G 1.66 0.078 5.424 L5768 L:s

10 S

il 35 LT

= confidence interval: | e | R N

13 3 [hicemcatest S | '—————_______ 5381

4 Ctrl + Shift + C [—e
I : Taminh a swsbaberr ol o 5%
| 15 for sample size: R aumetnci /. [
| 16 i Pi% 93 4% 95% 964 9THR H8% % 100%
[17 Ctrl + Shift+ 5 e 55% Canfidence
| 1B s :

The WorksheetFunction T Inv 2T returns the t-value of the Student t-
distribution as a function of the probability and the degrees of freedom. The
degrees of freedom are the number of cases minus 1. The t-value works for
all sample sizes, even under 32.

The Standard Error (SE) is the Standard Deviation (SD) divided by
the SQRT of the number of cases. So the confidence margin is the Standard
Error times the t-value.

The 2" macro uses Excel’s GoalSeektool thatallows you to alter
data in formulas to get a specific result that you want to reach by changing a
specific value (here B2, in the 2" argument).

What you need to do
Option Explicit

Sub Confidencelntervall()

Dim pValue As Double, iCases As Long, pSE As
Double, pPerc As Double

Dim pTInv As Double, pMin As Double, pMax As
Double, pMargin As Double

On Error Resume Next

pValue = InputBox("Which value?", , 5.5)

iCases = InputBox("How many cases?", , 30)

pSE = InputBox("SD", , 0.5) / Sqr(iCases)

pPerc = InputBox(""Confidence", , 0.95)

pTInv = WorksheetFunction.T Inv_2T(1 - pPerec,
iCases - 1)

pMargin = pSE * pTInv

pMin = FormatNumber(pValue - pMargin, 3)

pMax = FormatNumber(pValue + pMargin, 3)

MsgBox pPerc * 100 & "% confidence: " & vbCr
& "between " & pMin & " and " & pMax
End Sub

Sub SampleSize()
Dim pConf As Double, pGoal As Double, iRow As
Integer, sAddr As String, sMsg As String

pConf = InputBox(""Which confidence level?", ,
0.95)

iRow = WorksheetFunction.Match(0.95,
Range(""A7:A9"))

sAddr = Range(""C7:C9").Cells(iRow, 1).Address

pGoal = InputBox(""Which limit do you want to
reach?'",, 0.09)

Range(sAddr).GoalSeek pGoal, Range(''B2")

sMsg = ""To reach a confidence level of " &
FormatPercent(pConf, 0) & vbCr

sMsg = sMsg & "and a limit of " &
FormatNumber(pGoal, 3) & vbCr

sMsg = sMsg & "'you would need a sample of at
least " & FormatNumber(Range("B2"), 0) & "
cases!"

MsgBox sMsg

Range(''B2'") = 30 : Calculate

End Sub

Chapter 19: Random Repeats

What the simulation does

"
1[Tead | Mermat "

T anrd w00
100,30 | W

1 st (A mean of 400 | 10015 423 T "

' ik |amdsnuofs, | 3 . A Ctr+Sh+N

5 BTIE S 1.7 i 1] F
= S L / \\ F3 to refresh
: o A .

| | | -

1 e 1 s .I - 1 | = Y i

4 i 10K} ¥ [\ f II 1\'. e

11 ADELIE 113 i | W Il |

iz §07 103 &0 | LY | i

B ougss | 0 | iwm | A\

14 e 1080 8 . 4

15 103

1 s 10019

17 5 57 :

A a0k wLED 5

i o F ——mraan ——masn ol

n [8 1mis

- TR T wL i

7 BESE [L]

T 100 -

RN [1001 f:" o

= T e
air. | \
el | »

1 e e’ s O

T - L

U T

This time we are going to simulate several runs in order to check as to
whether the normal distribution we tried to simulate earlier did come out the
way we would expect.

In column B the macro simulates a series of 100 random numbers—not
equally but normally distributed, with a mean of 100 and a SD of 10. In the
range D2:F22, it simulates 20 repeats of this random number generation,
with a Data Table, so we end up with 20 x 100 = 2,000 trials (which is still
a very modest number for statistical standards). As it turns out, the mean of
means oscillates around 100 (cell E24) and the mean of SDs stays more or
less around 10 (cell F24).

The top graph plots the mean values as found in 20 runs (E2:E22).
Even the frequency distribution of all the means, calculated in range
R12:T19, creates a rather normal distribution with a bell shape in the lower
graph, although the number of cases is still very modest in statistical terms.

What you need to know

The 100 sequential numbers in column A were calculated by using the
ROW function. This function returns the row number of the cell the function

happens to be in—so ROW() in A10 would return 10. If you provide a cell
reference as an argument, it returns the row number of that specific cell
reference—so ROW(B25) in cell A10 (or in cell B1) would always return
25.

The VBA code copies the first sheet to a new sheet, but mean and SD
can be changed. It also asks whether you want to replace formulas with
values. If you do, F9 will not recalculate anything, and the Data Table will
no longer work.

The average line in the graph is based on cells D24:E25.

This time we decided to also add a so-called error-handler, in case
something goes (unexpectedly) wrong. It works with On Error GoTo [label]
at the beginning, and at the end, after Exit Sub, a label like “Trap” or so and
a MsgBox that uses information from the Err object (see Appendix).

What you need to do

Option Explicit

Sub NewSample()

Dim oWS As Worksheet, oRange As Range, oChart
As ChartObject

Dim pMean As Double, pSD As Double

On Error GoTo Trap

pMean = InputBox("The new mean on a new
sheet:", , 50)

pSD = InputBox("The new SD:", , 10)

Set oWS = ActiveSheet

oWS.Copy , Sheets(Sheets.Count)

Set oRange =
ActiveSheet.Range("Al1").CurrentRegion.Offset(1, 0)

oRange.Columns(2).Formula =
"=NORMINV(RAND()," & pMean & "," & pSD &
")"

If MsgBox("'Keep formulas for F9?", vbYesNo) =
vbNo Then

oRange.Columns(2).Formula =

oRange.Columns(2).Value

End If

Range(''B2").Comment.Text ""A mean of " &
pMean & " and SD of "' & pSD & "."

Set oChart = ActiveSheet.ChartObjects("Chart 2")

oChart.Chart.Axes(xlCategory).MinimumScale =
Round(Range("'S12"), 1)

oChart.Chart.Axes(xlCategory).MaximumScale =
Round(Range("'S19"), 1)

Range("A1").Select

Exit Sub
Trap:

MsgBox "There was an error: " & Err.Description
End Sub

&
L[Teml | Marma

1. asa

g “"“I_. I - L m "A"‘qll

3 1535 |4 meam of 25 2656 a0 . I "r ﬁ

1 W (and SO ef10, | HLas LE; = 2\ i II': | |I p Ctr+Sh+N

5 3347 e o R TETITY 2 i \

3 i " 1 1 AT F9 to refresh
01T == I.' B = - I . |I
LR I} I

o T ™ + IL III I| | | :i II I|I
X " LY | - L
s L3 I II { jl 151854
= =3 ! 1 { LErr L]
. [| ¥ e
P 2a1Em
L&] 287
ar #315h
10 B4 — - X2 Oes
101 5580
S —- -
100
m
F
LN
#—
/N
— \‘L ——
Y] 1 o

Chapter 20: Flipping a Fair Coin?

What the simulation does

A (] [5 K i . & 3
1 chanoe for & FO 30H S0% S0% P WL 200 G A0 S0
DHOs0O0ND) L] D
= e
+ O0DONK 2 1
ODOXNE 3 4
ODHENE 4 5
ONHENN 5
XNNENK 6

Mipthass cons e 20% 30 40% S0%

cnuwsl S

This simulation is about flipping a coin six times, calculating how
often we hit six times “tails” (0), five times, and so on (column A). The most
likely outcome is 3x “heads” (X) and 3x “tails” (0)—actually 31% of all
cases (column F). The center curve in the graph is a “bell-shaped” curve that
represents this situation. Going more to the left or to the right under the bell-
shaped curve, the chances decrease dramatically, but they will never
become 0.000000000000.

Events with random outcomes have the property that no particular
outcome is known in advance. However, in the aggregate, the outcomes
occur with a specific frequency. When we flip a “fair” coin, we do not know
how it will land, but if we flip the coin millions of times, we know that it
will land heads up (X) very close to 50% of the time—unless...

Unless... the coin is not “fair” and has a “preference” for lower X
percentages (columns C:E and the other curves in the graph). To determine
whether a coin is fair or not, we would need to flip a coin millions of times.
In this simulation we only simulated some 100 coin tosses. In the situation
shown on the next page, we would probably declare the fair coin unfair
(column U). It is clear we need many more flips for a reliable verdict.

What you need to know

Place a copy of the sheet on a new sheet after (2"¢ argument) the last
one in the collection of Sheets so far—that is, Sheets(Sheets. Count).

In order to create a normal distribution for a binary situation—such as
yes/no, correct/defect, heads/tails, success/failure—we need the function
BINOMDIST (or BINOM.DIST). It returns a binomial distribution
probability for problems with a fixed number of tests or trials, when the
outcomes of any trial are either success or failure, when trials are
independent, and when the probability of success is constant throughout the
experiment.

The Formula property of a range requires a string, so the formula
property is set with an equal sign (=) to a string that starts with a double
quote, followed by another equal sign (=), and ending with a double quote. If
there 1s another string inside this string, we need two double quotes instead
of one.

What you need to do

Option Explicit

Sub Coins()
Dim oWS As Worksheet
Set oWS = ActiveSheet
oWS.Copy , Sheets(Sheets.Count)

Range("C2:G8,C11:F16,C18:F18,R2:U18,R20:U20").C

Range(""A1").Select

MsgBox "The chances for X (head) if the coin is 20
to 50% fair:"

Range(''C2:G8").Formula =
"=BINOMDIST($B2,6,C$1,0)"

MsgBox "Flip these coins 6 times randomly:"

Range("C11:F16").Formula = "=IF(RAND()
<=C$109""X"",""0"")"

MsgBox "Here are the chances of X for each coin:"

Range(""C18:F18").Formula =
"=COUNTIF(C11:C16,""X"")/6"

MsgBox "Then we repeat these calculations 17
times:"

Range(''R2:U2").Formula = "=C18"

Range(''Q2:U18").Table , Cells(100, 100)

MsgBox "How often did we hit 50% chance of

head vs. tail?"

Range(""R20:U20").Formula =
"=COUNTIF(R2:R18,0.5)"
End Sub

A L] [o E F
1 chance for K 20% 30% 40% S0
: 0DOODD O 6% 11% 5%
: 0DOOOK 1 |39% 30% 19%
o 0DOOXN 2 |28% 32k 31%
S ODOXEM 3 8% 19% 8% 31
o DOMMEN 4 2% 6% 14% 2
T OXHEXK 5 0% 1% 4%
5 KODIH B 0% 0% 0%

30| fip these oo s

0% 30% 40% 50

o o Q

(= =T N = I = =]

o 0
o X
[
L
a o

O M MM OO

i preroenbage N

o | 1T :I.IH-:I:I'K

fric i} [ret (Lot

EETE —Y —

[Tl [Liili]

AT —

RN

L]

[T

] 5 T 1]

20% 30% 40% 50%

[
1
]

T

E E = =&

B LG

L O o T TR P

™ ™ 5% 5%
o R 1T mk
O AN TN 50N
3% o™k BYN 50N
1™ TR 0% Ie%
M YN SOl
T ok Ak
o 31%
AN 67N
™™ TR
LET L
aI%
IT%
=
0T

Siry

N

(7

17%

NN AT
[o |

Chapter 21: Simulation of Sick Cases

What the simulation does

A B C (] E F €] H
1 [Sample Size | Sick Cases | |
2 Confidence ‘A Ctr+Sh+S
3
4 sickinpopul. Min sickof [Maxsickof | ‘sick in popul. |Prob. of finding up to cases
5. 5% | 5%
6 10% L 0%
7| 1% ' 15%
6 2% 20%
9 25% 25%
10 3% 0%
L .. Ay
I ' e
13 45% sy,
14 50% sy
15 s5% | [e

16

If a certain percentage of people is sick in the population (column A),
we can find out with a 95% confidence how many in a sample of 100
persons will be sick, either as a minimum (column B) or as a maximum
(column C) based on that confidence level.

We can also calculate what the probability is of finding up to a certain
number of sick cases (column G), given a certain sample size (B1).

We can vary the sample size (B1) as well as the number of sick cases
(G1) by answering both InputBox questions. The confidence level can be
manually adjusted on the sheet.

The macro simulates all of this on the sheet.

What you need to know

One of the functions we need in column G is BINOMDIST (or
BINOM.DIST) again. As explained in the previous Chapter, it returns a
binomial distribution probability for problems with a fixed number of tests
or trials, when the outcomes of any trial are either success or failure, when
trials are independent, and when the probability of success is constant
throughout the experiment.

The other crucial function is BINOM.INV (which replaces

CRITBINOM in pre-2010 versions. It has 3 arguments: the number of trials,
the probability of a success on each trial, and the criterion value (alpha).

The function IFERROR is also quite recent (ISERROR could be used
in earlier versions, but is a bit mpore involved). If there is an error in a
certain BINOMDIST calculation, it should display an empty string—which
calls for four double quotes (a string inside a string).

What you need to do

Option Explicit

Sub SickCases()
Dim iSize As Integer, iSick As Integer
iSize = InputBox(""What is the sample size?", , 100)
Range(''B1"") = iSize
Range(""BS5:B15").Formula =
"=BINOM.INV(B1,$A5,1-$B$2)"
Range("C5:C15").Formula =
"=BINOM.INV(B1,5A5,B2)"
iSick = InputBox("How many sick cases?", , iSize /
4)
Range("G1'") =iSick
Range("'G5:G15").Formula = "=IFERROR(1-
BINOMDIST(G$1,$B$1,$F5, TRUE),"""")"
If MsgBox("Empty calculated cells?', vbYesNo) =
vbYes Then
Range("Blﬂ) — "n
Range("'B5:B15") =""
Range("'C5:C15") =""
Range("Gl") — nn
Range("G5:G15") =""
End If
End Sub

A B C

1 Sample Size 100

2 Confidence 95%

3

4 sick in popul. |Min sick of 100 |Max sick of 100
5 % 2 :]
[10% 5 15
T 15% 9 21
8 20% 14 27
4 18 32
10 30% 23 38
11 35% 27 43
12 Al 32 48
13 A5 k1) 53
14 50% 42 58
15 55% 47 B3

16

D

E

|sick g-m |
Ctr+Sh+S

sick in popul. |[Prob. of finding up to 25 cases
5% 0.00%
10% 0.00%
9% [0.30%
20% 8.75%
25% 44 65%
30% 83.69%
35% 97 .89%
400, 99.88%
45%, 100.00%
50% 100.00%
55% 100.00%

Chapter 22: Unbiased Sampling

What the simulation does

0,26 of randess | | ey 10 codes | 0 wightad area codes |

|arma cade 36% |mrma cocde rand 10 |eumud, ama cosde weight bar aample ol 10 w

| 206 = | 200 w0ae B4 | 1 I I

| 515 m= | 202 oma 24 | 06+

| am1 e | moa misy kW | wmy

| ®a R | a0 LR (44] | anr e

| 435 FRLE | =05 867 243 219 had

| &oE FELE | e oag] 200 *
[| 20¥ msma 5l 20T e

| 7ra THE | 20m oeTa E FIL

| w5 s | a4 omaz L] T e

| @33 s | 710 ooas s 0F -

| oo e | :m2 032
(] PR 210 i1rs1

| 215 e | 24 wms

| 2 FELE | %15 635

| 235 s | 218 0ars

| S04 mm | 7 o7

| 775 e | :8 oese

| BFG e | 219 D474 | |

| S02 (LTS | ¥4 DA% | |
] THE | s m1ss |
f18 T | I8 (PR E LY

| 340 s | a0 0o46

| ase R | »4&8 o577 |

| s62 | 54 mss9 | Ctr+Sh+R

| 03 = | 256 maoz | |

| 514 e | 264 oa1s | |

| 435 FRUE | *6F L ETS | _'

When taking samples, the problem is that some are more likely to be
chosen than others—so we call them biased samples. Unbiased sampling
requires some bias-proof techniques. Therefore, we need the unbiased
verdict of mathematical tools.

In this simulation, we use four different techniques to select telephone
area codes at random. Technique #1 assigns a random number, sorts by that
number, and then takes the first or last N cases. Technique #2 selects X% of
the area codes randomly. Technique #3 produces N cases randomly.
Technique #4 “weighs” each area code (say, depending on population
density) and then performs a weighted sampling of N cases.

The simulation scrolls through these four different techniques of
unbiased sampling,

What you need to know

Case #1 sorts the random numbers after their formulas have been
changed into values. The Sort method has many optional arguments. The 1°
argument specifies the first sort field, either as a range name (String) or
Range object; it determines the values that need to be sorted. The 2™

argument determines the sort order—by default x/4scending.

Case #4 may need some more explanation. In column K, we calculate
the cumulative total of all previous weights. So area code 202 (in LS) 1s four
times included in that total. In column O, we multiply the grand total (K24)
with a random number between 0 and 1, and then we look up that value in
range K4:1.24 and determine its corresponding area code. In other words,
the second area code, 202, can be found through the random numbers
between >=1 and <5; this amounts to 4 chances of being picked (4x more
than the first area code, 201).

What you need to do

Option Explicit

Sub RandomSelect()
Dim oRange As Range, iSize As Integer
If MsgBox("'Sort all areacodes randomly",
vbYesNo) = vbNo Then Exit Sub
Range(''B4:B270").Formula = "=RAND()"
Range(''B4:B270").Formula =
Range(''B4:B270").Value
Range(''A4:B270").Sort Range(''B4")

If MsgBox(Range(""E3") & " sample from column
D?", vbYesNo) = vbNo Then Exit Sub

Range("'E4:E270").Formula = "=RAND()<E3"

Range(''E4:E270").Formula =
Range(''E4:E270").Value

Range(""D4:E270").Sort Range(''E4"),
xIDescending

If MsgBox("Random selection of " & Range("13"),
vbYesNo) = vbNo Then Exit Sub
Range(""H4:H270").Formula = "=RAND()"

Range('""H4:H270").Formula =
Range('"H4:H270").Value

iSize = Range("'I3")

Range(Range("14""), Cells(3 + iSize, 9)).Formula =
"=INDEX(G%4:5G$270,RANK(H4,5H$4:H270))"

If MsgBox("Weighted sample of 10", vbYesNo) =
vbNo Then Exit Sub

Range(''P4:P13").Formula =
"=VLOOKUP(K24*RAND(), K4:31L.$24, 2)"

Range(""Q4:Q13").Formula =
"=VLOOKUP(P4,$1.$4:N23,3,0)"

End Sub

Chapter 23: Transforming a

LogNormal Distribution
What the simulation does

B B o F F 1] H | 1 K | M] u] P a
1 formule probssivey BT 141 v o rad

2| 4me0 o0r49 10 3.851] | 186amE] LoygMearmal Distribution

3 TE 00578 shewm [EIT 2452044 -

4 BS43 00R3EE7 sign v 2 145131

5 A1 0.008EN 2 287524 . Ctr+Sh+T
6 1259 0108872 : o 2 530G =

T 2396 0055158 1 11 0873628 i or F9

A BE01 0ORMMZE " a0 7 PRIEED e

0 AEDd 0074411 " 15 1 560371 =

10| GE4E 00TReGR o 15 1.730857

11 1238 0.10BZ74 1 10 2518074 !

12 TES 0.08088 14 o 2 034858 4

19 3067 0.061TET bt n 1130558 ’ - b =
14 3953 0.060641 i3 1 1:37aE14 - B M U ¥ N N ¥ O MW B &
15 | 166E 0120856 kin 1 2 H14306

16 1381 0112805 n o 2 625206

1713002, 0.0G0A) L 9 10e8e Tramsformed LogMormal Distributsan

18 1302 0110355 i n 7 SERGEG g

18 1133 0104706 1 1 2427547 o

20 153 0117442 1 273365

21 1105 0103713 2 4012544 ,-

242 | B2 0002005 200482 o

23 1496 0116199 2 T0512 2

24 5305 QOTTSIS t 5 1 GBASED

35 7312 0.08828 L 13 1 SBOJES =

26 BS01 009TESS 7 2 251378 = . .

27 B4E 0092556 2s 2 108T5E 5

70| TESE 00506 1 1 080272 a & —

20 406 00B040E 1 409788
30 3456 0064757 1.280186
31 E255 008296 1833341
42 A58 DO6ESY maan | 1555 1302408
33 BETA 000854 30 b5 2 260435
34 | 8188 00023 shew | ooz 2 102600
38 46544 0073374 ui ;] 1 536641

B BM&S 00803 1TS54

Column A holds 100 random values based on a lognormal distribution
with a mean of 2 and a Standard Deviation of 0.5. Column B shows the
probability of each value. In column G, the lognormally distributed values
are transformed by taking their natural logarithm.

In columns D:E, we calculate the mean and SD plus their frequencies
—first of the values in A, then for the transformed values in G. We also
calculate if and how skewed they are.

It turns out that the transformed lognormal distribution comes close to
a normal distribution.
What you need to know

The function LOGNORM.INV allows us to create a series of values

that have a lognormal distribution: =LOGNORM.INV(RAND(),2,0.5).

In cell E3 (and E34) we use the SKEW function, but nested inside a
TEXT function, so we can use a formatted result in the MsgBox:
=TEXT(SKEW(A:A), "0.000"). Skewness characterizes the degree of
asymmetry of a distribution around its mean.

In cell E4 (and E35) we use a thumb rule as to whether a distribution
is significantly skewed or not. The formula is for E4 as follows: =IF(E3>
(2*SQRT(6/COUNT(A:A))),"Y","N")

What you need to do
Option Explicit

Sub TransformLogNormal()
Dim oWS As Worksheet
Set oWS = ActiveSheet
oWS.Copy , Sheets(Sheets.Count)
Range(""A2:A101").Clear:
Range("'B2:B101").Clear: Range("G2:G101").Clear
If MsgBox("Create a random LogNormal
Distribution?', vbYesNo) = vbNo Then
Application.DisplayAlerts = False
Sheets(Sheets.Count).Delete
Application.DisplayAlerts = True
Exit Sub
End If
Range("A2:A101").Formula =
"=LOGNORM.INV(RAND(),2,0.5)"
Range(""B2:B101").Formula =
"=LOGNORM.DIST(A2,E1,E2, TRUE)"
If MsgBox("Transform the data?", vbYesNo) =
vbNo Then Exit Sub
Range("'G2:G101").Formula = "=LN(A2)"
MsgBox "Lognormal is " & IIf(Range("E4") =
"Y"’ "", "IlOt ") & _

"significantly skewed: " & Range("E3") &
vbCr & "After transformation " &
[Hf(Range("E35") ="Y", "slightly "', "no
longer'") & _
"skewed: " & Range("E34") & ""
End Sub

A] [F a d K 1 M N a P
1 Sgemaile grobobeRny iransfon e
2 A EEN O ORS00 1.7I6aTa Loghoemal Distribution
1 7437 00%ETE4 2 DOBTET w
a| ez oovase Z 470610
5| 8181 006ITST 201851 i Ctr+Sh+T
E 2366 000844 F) E 1222581 =
7 4266 OOTETE F 11 2 B3HIEE " or Fg
8 &307 0051833 [a7 2 104266 -
9 2560 005G] ¢ 22220
10 440 004447 10 22 1.483800 n
11 Q109 00T 12 7 2 200715
17 46RO 0dISO 14 7 1.40103 L l
13 150 oEAT 14 E 2 114825
14 5361 0048811 11 1 1670208 ' - T T -- | T_
15 1142 0072009 10 o 2 43577
16 1468 0oEdT n ¥ ZRAT204
Bt e L = . ey Trarrslosrne LogNorrmal Distsibaution
18 0BT 0O0ET0ED bt ; 3036118 e
19 1406 0080832 e E 2 645300
0 944 O0EE4 a 2344030 - e N e
7 536 0049EaT 1 RAGA2A |
22 65 00550 1.8706T1 i | Losgmaimaal i thgrs sty thisesd: 1 209
' & r5 0051888 -__ : Aftny bramuformalian ra lenger skewed: 060
v e T |
2= 2411 00MES3 |
26 1029 0O0SEaze i |
27 1544 00T i {
M fedd aoiEEhe :
0 QT 05708 o u L o ¥ m 18
W82 0062189
B OGATE 00SEaTY
32 E6T 00nasen mcan 1] 1.860122
33 3308 000E04 0 nary] 1211434
M 0B AOTI0IS v 03 3 37RO16
3% 1347 OOTH1E i [2 E00748
7 oosrose 1870353

Chapter 24: Outlier Detection

What the simulation does

‘:."l i 1.86- |25 n;:r:bnluio - . = = :
[RTE] 11 827 | 7%-parcentila
21.218)iaR Ctr + Sh +0
*3.3 M0
ol .
HE Bk

in | & 7770 i1 |
Arya [|

A B
I :‘ Median
MAL

12| of 42 830 it OAITLIER] I\ | f
13| o 20244 outher | | | A !

13 |11 15110 \ A4 1 VA1 |
15 |12 11.181 L AL ¥ il |
39t | | L} |

a4l 11 A3 Wi \ 1 i |
19 19 11.827 : 1] | | |
* | i 1 1 1

< T1o 20838
18 1329 ' il
| l;i fi.082 |
16 93 o |
%2 @.dm s —b- :':

77 |23 38 3 nuthies OLUITLIER]
o4 11 207

Outliers are defined as numeric values in any random data set that
have an unusually high deviation from either the statistical mean or the
median value. In other words, these numbers are relatively extreme. It
requires sound statistics—not intuition—to locate them. A rather simple rule
is that all values outside a range of three times the standard deviation around
the mean could be considered outliers—provided they follow a normal
distribution.

What you need to know

In this simulation, however, we will use a more robust statistical
detection of outliers by calculating the deviation for each number, expressed
as a “modified Z-score,” and testing it against a predefined threshold. Z-
scores stand for the amount of standard deviation relative to the statistical
median (in D1). MAD (in D2) stands for Median Absolute Deviation. Any

number in a data set with the absolute value of modified Z-SCOres
exceeding 3.5 times MAD is considered an outlier.

Column D shows the outcome.

In the 1970’s the famous statistician John Tukey decided to give the
term outlier a more formal definition. He called any observation value an
outlier if it is smaller than the first quartile (F1) minus 1.5 times the /QR
(F3), or larger than the third quartile (F2) plus 1.5 times the /OR. The Inter-
Quartile Range, /QR, 1s the width of the interval that contains the middle half
of the data. Column F shows the outcome.

The graph to the right shows the observed values marked with a
square shape if it is an outlier according to the first method, or with a
diamond shape 1f it is an outlier according to the second method. Most of the
time, the first method detects more outliers than the second one.

What you need to do

Option Explicit

Sub Outliers()

Dim oWS As Worksheet

Set oWS = ActiveSheet

oWS.Copy , Sheets(Sheets.Count)

Range(""B5:B29").Formula =
"=NORMINV(RAND(),30,15)*(1-2*RAND())"

Range(''D5:D29").Formula = "=IF(ABS(D$1-B5)>
(3.5*D$2), ""Olltlier"", """")"

Range("F5:F29").Formula = "=IF(OR(B5>
(F2+1.5*F3),BS<(F1-
1.5*F3)),""OUTLIER"","""")"

Range("D5:D29,F5:F29").FormatConditions.Add
xlExpression, ,
"=AND($D5=""Outlier"",$F5=""OUTLIER"")"

Range('"D5:D29,F5:F29").FormatConditions(1).Interic
= vbYellow
End Sub

A B € o E P G A, | i £ | % | | W] Pe| R LW a R
| Median 12 24525 percentiie
5. parcantila

on Ctr+5h+0

o

Chapter 25: Bootstrapping

What the simulation does

I

-]
]

= BEEaE
S i-aZ® X
¥ .-}
+BEEEE -
Fakai
E
"..'..'EE
AR

afamEf O ITRAEAN

FETI T A

FRTSIPRr. T |

LB EEEAESEA

s tgam, 8
CIF -

e dHEZFE- 2

BELMETAGORIE

2
aRENE NG RAREEXBERASES
SRR EMESENLRESAES

EEE - E B AR BT
Efwabdi @ B23E8 0
ZERSEZ R B L EAE

EDBRSERE.E3RA N LB
Lo B

SECOENFREEE naa EREE

e 2 TR EEREN -2 2 B X

~E2ENE .

ax
-

-?;.-L!E!.-I:g.hi..t.:::i:‘l..I;L!:.:ll;‘;:i:s!.|:5tgl;.. E(E N
I E RN ¥ ERETEE K
S - T
BESEEunbOcERAEKELENE
- I AT
w RN LEE.FREERELRIEAE
CRE Y
EEFS Rl -FRRT2N 2T
BE

2 NEAREEREENEEAAR.-RUE.KA.REEREROS

E R BBl EcERER R,
q EES RO EARMESZEEERER

§ AEEEREE~®

o ALK En

&
i
£l
'l
X
¥
=
®
L}

AL} R Y WAET 40T

When you have a series of values that are not normally distributed—
say, 30 values such as in column A—it is not so simple to calculate a mean,
a median, a SD, or a margin. You need some kind of technique such as
bootstrapping.

This sheet uses that technique by randomly selecting values from the
sample in A. We do that, for instance, 15 times: first in column D, then in
column E, and so on until column R. At the bottom of each column we
calculate the average. Based on these averages, we are able to know what
the statistical parameters are that we were looking for.

In the VBA code, we do all of this, not 15 times, but 1,000 times by
storing the results of each drawing in an array, from which we calculate the
bootstrapping results. Larger number of drawings are obviously less
susceptible to random fluctuations. A MsgBox reports what the outcome is
(see picture on the next page).

What you need to know

The Excel function INDEX 1is a more sophisticated version of
VLOOKURP. It looks in a table at a certain row position and a certain column
position. It uses this syntax: INDEX(table, row#, col#). Whereas VLOOKUP

works only with column numbers, INDEX also uses row numbers, which is
very important when we want to look at a record that is located a certain
number of rows above or below another record.

Each cell n D1:R30 has this:
=INDEX(A1:A30,ROWS(SA$1:$A$30)*RAND()+1)

In cell U2 is the mean of means: =AVERAGE(D32:R32)
In cell U3 is the number of samples: =COUNT(D32:R32)
In cell U4 is the 2.5% cut off: =U3*0.025

In cell Us is the lower bound:
=SMALL(D32:R32,ROUNDUP($§U$4,0))
In cell U6 is the upper bound:

=L ARGE(D32:R32,ROUNDUP(US4,0)):

What you need to do

Option Explicit

Sub BootStrap()
Dim i As Long, r As Long, j As Long, oRange As
Range, sMsg As String
Dim pValue As Double, pMean As Double, pSE As
Double, iCutOff As Integer, pMargin As Double
Dim arrMeans() As Double, arrValues() As Double
r = Range(''A1").CurrentRegion.Rows.Count
Set oRange = Range(Cells(1, 1), Cells(r, 1))
ReDim arrMeans(1 To 1000)
For j=1 To 1000
ReDim arrValues(1 To r)
Fori=1Tor
arrValues(i) =
WorksheetFunction.Index(oRange, r * Rnd() + 1)
Next i
arrMeans(j) =
WorksheetFunction.Average(arrValues)
Next j
iCutOff = WorksheetFunction.RoundUp(100 *
0.025, 0)
pMean =
Format(WorksheetFunction.Average(arrMeans),

"0.00")

pSE =
Format(WorksheetFunction.StDev_S(arrMeans),
"0.0001)

pMargin = Format(pSE *
WorksheetFunction.T Inv_2T(0.05, r - 1), "0.00")

sMsg = "Based on 1000 runs:" & vbCr

sMsg = sMsg & '""Mean of the arrMeans: " &
pMean & vbCr

sMsg = sMsg & "'SE of the arrMeans: " & pSE &
vbCr

sMsg = sMsg & "Margin at 95%: " & pMargin &
vbCr

sMsg = sMsg & "Lower Bound: " & pMean -
pMargin & vbCr

sMsg = sMsg & "Upper Bound: " & pMean +
pMargin

MsgBox sMsg
End Sub

Microsoft Excel

Based om 1000 rums:

Mean of the arrfMeans: 41.44
SE of the arffMeans: 4.64
Margin at 95%: 949

Lower Bound: 31.95

Upper Bound: 50.93

Chapter 26: Bean Machine
Simulation

What the simulation does

e o
goa
e op o
ﬂﬂf’DU
R
A EREE N

tl ‘3 I !|3

The Galton board, also known as a quincunx or bean machine, is a
device for statistical experiments named after English scientist Sir Francis
Galton. It consists of an upright board with evenly spaced nails (or pegs)
driven into its upper half, where the nails are arranged in staggered order,
and a lower half divided into a number of evenly-spaced rectangular slots.
The front of the device is covered with a glass cover to allow viewing of
both nails and slots. In the middle of the upper edge, there is a funnel into
which balls can be poured, where the diameter of the balls must be much
smaller than the distance between the nails. The funnel is located precisely
above the central nail of the second row so that each ball, if perfectly
centered, would fall vertically and directly onto the uppermost point of this
nail's surface.

Each time a ball hits one of the nails, it can bounce right or left. For
symmetrically placed nails, balls will bounce left or right with equal

probability. This process therefore gives rise to a binomial distribution of in
the heights of heaps of balls in the lower slots. If the number of balls is
sufficiently large, then the distribution of the heights of the ball heaps will
approximate a normal distribution.

What you need to know

This sheet simulates this process. All you have to do is keep holding
the keys Ctrl + Shift + B down, and the slots will fill as to be expected. If
you want to start all over, with an empty board, just hit the command button
in the top right corner. In the beginning, the distribution may be not be very
“normal” (see picture below), but that will soon change.

What you need to do

Place in a Module:

Option Explicit

Sub Beans()
Dim oStart As Range, oPrev As Range, oNext As
Range, ¢ As Integer, r As Integer
Set oStart = Range("'L1")
oStart.Interior.ColorIndex = 15
Set oPrev = oStart
Forr=1To 10
If Rnd>0.5Thenc=c+1Elsec=c-1
Set oNext = oStart.Cells.Offset(r, ¢)
oNext = oNext + 1
oNext.Interior.ColorIndex = 15
oPrev.Interior.ColorIndex = 0
Set oPrev = oNext
Next r
End Sub

Place on Sheetl:

Option Explicit

Private Sub CommandButtonl Click()
Range("'A1:X11").ClearContents
Range("L1").Select

End Sub

i Bean Board of Sir Francis Galton 1

j! 3
- ¥ .
|1 I 1
| N i _

B T & E

5 10 11 12 13 314 1% 36 17 18 19 X 71 I 28 M
T T

Chapter 27: Correlated Distributions

What the simulation does

A B C D E F G
1 X I b wanted comelation coefficient (r]
2 513 8.7 | 0.9 |
3 10.52 125
1097 13.97
5 0.4 1231
& 6.55 1 9.57 i —
7 1025 12.4 14.66
B 7.44 1.2 r*x+ SQRTH. - r*‘Z] L 4
[9.1 1 12.08
13 .52 - 10.86
11 a.88 13.12
12 8.74 10.42
13 wH 1 14.14 Ctrl + Shift + C
14 10,949 131,33
15 10.77 15.07
1# 121 13.9
1 14.14 1 17.67
18 13.42 1 17.19 f .
= = S Mhcrrsoft Excal ==
X 11.94 11.4 15.73
I .57 12.67 H-T correfation: 0156
27 (¥ #] a1 E-Y correlation: 0926
= ou requested a comelation of: 0.9
23 1042 12.31
24 9.59 i | 1275
25 a8.77 12,55
26 13.13 1511
10.35 14,03 ‘—
11.11 14.1
" | 9.18 12.42
0 11.29 14.58
31 B.2% 61 9.43

When you create multiple distributions, you may want to make this
happen with a specific correlation coefficient between them. This simulation
does so for you. In columns A:B, the macro creates two sets of normally
distributed values in columns A and B. However, we want these two sets (X
and Z) to be correlated as requested by cell E2. This simulation does so by
using a transformation with the formula mentioned above. Then, in a
MsgBox, it compares the old correlation coefficient with the new one.

What you need to know

When there are not 2 but 3 sets involved, you could hit Ctrl + Shift +
D, which does the following. It performs the so-called Cholensky
decomposition with a customized array function (see VBA-code), and then

converts your three sets of values by using the array function results with
another array formula like this: =MMULT(A2:C31,TRANSPOSE(F8:H10)).
MMULT returns the matrix product of two arrays, with one of them
transposed by using the TRANSPOSE function.

What you need to do

Sub Correlation()

Dim oRange As Range

Sheet2.Select

Set oRange = Range("A2:C31"):
oRange.ClearContents

MsgBox "First randomized values for X, Y, and Z"

oRange.Formula =
"=ROUND(NORMINV(RAND(),10,2),2)"

Set oRange = Range("'F8:H10"):
oRange.ClearContents

MsgBox "Now the Cholensky Decomposition in
F8:H10"

oRange.FormulaArray = "=Cholenksy(F3:HS)"
'see function below

Set oRange = Range(''J2:L31"):
oRange.ClearContents

MsgBox "Now the matrix manipulation in J2:L31"

oRange.FormulaArray =
"=MMULT(A2:C31, TRANSPOSE(F8:H10))"
End Sub

Sub Decomposition()
Dim oRange As Range

Sheet2.Select

Set oRange = Range(""A2:C31"):
oRange.ClearContents

MsgBox "First randomized values for X, Y, and Z"

oRange.Formula =
"=ROUND(NORMINV(RAND(),10,2),2)"

Set oRange = Range("F8:H10"):
oRange.ClearContents

MsgBox "Now the Cholensky Decomposition in
F8:H10"

oRange.FormulaArray = "=Cholenksy(F3:HS)"
'see function below

Set oRange = Range(''J2:L31"):
oRange.ClearContents

MsgBox "Now the matrix manipulation in J2:L.31"

oRange.FormulaArray =
"=MMULT(A2:C31, TRANSPOSE(F8:H10))"
End Sub

Function Cholenksy(oMatrix As Range) 'partially
borrowed from Kurt Verstegen

Dim i As Integer, j As Integer, k As Integer, N As
Integer

Dim arrMatrix() As Double, arrLower() As Double,
pValue As Double

N = oMatrix.Columns.Count

ReDim arrMatrix(1 To N, 1 To N) : ReDim

arrLower(1 To N, 1 To N)
Fori=1To N
Forj=1To N
arrMatrix(i, j) = oMatrix(i, j).Value :
arrLower(i, j) =0
Next j
Next i
Fori=1To N
Forj=1To N
pValue = arrMatrix(i, j)
Fork=1Toi-1
pValue = pValue - arrLower(i, k) *
arrLower(j, k)
Next k
Ifi =j Then
arrLower(i, i) = Sqr(pValue)
Elself i <j Then
arrLower(j, i) = pValue / arrLower(i, i)
End If
Next j
Next i
Cholenksy =
WorksheetFunction.Transpose(arrLower)
End Function

Chapter 28: Sorted Random
Sampling

What the simulation does

A H [4 1] E F [£] H [[X]
g | w
Vlomm)
£ N sEMple fipe - o
T . Ctrl + Shift+ N
BB L [ide with wiite font
5 002099 — random, no duplicates, sorted
i D.40038 & 1} 1 18
7 0.08481 2 a| 21
8 0.25094 2 3 (-] 22
I 053029] 4 8 3
11 013669 5 g T
11 0078) 12
17 071064 12 7 13
| o7es11 13 g 18]
14 0.02006 9 15
15 051336 15 10 17
15 094128 16 0 10 0 30 a 50 &0 0 B0 %0
029696 17

Sheetl of this simulation takes random samples from values in column
A—but without any duplicates, and in a sorted order, based on a specific lot
size and sample size. It does so by sampling numbers in column A, then
manipulates them in column B (see picture on the next page), and displays
them orderly in E6:N15. Sheet2 does something similar, but this time with
dates.

What you need to know

= o E F G H l 1 E L L2 M n] P

1| 13-Febean’ lot size 50/

: e-Mar-10 sample size 25 Ctrl + Shift+ D

3 20-Mar-10

4 15-Masr-10 randem positions

5 l-Ape10 1 3 5 a1

i 3-Ape-10 z 6 26 43

7 S-Ape-10 3 7 27 &

8 13-Ape-10 4 18 2 a7

4 2E-Apr-id 5 17 5

10 29-Ape-10 & 18 30

i1 2&-May-10 7 18 32

17 1%-Aug-10] 21 33|

13 2T-aug-10 L] 22 38

14 2WAug-10 10 24 an|

15 27-Sep-10 o 10 20 30 a0 50 &0 0 a0 20
16 2240ct-10

17 2d-Mow-10 loak up dates at random positions

16 30-Mow-10
19 1%-Dec-10
20 1d-lan-11

1 20-Mar-10 19-Apr-11 17-Mar-12
2 S-Apr-id 25-April 17-May-12
3 S-Apeld 25-Aprll 16-Jub12
' 28-Feb-11 4 27-Sep-10 30-Aprll 17-Jublz
10 eMar-i1 § 24-Now-10 S-May-11 4-Sep-12
23 22-Mar-1l 6 30-New1D 7-May-11
7
B
9
o

24 d-Apr-11 19-Dee-10 18-Jul-11
25 1i=Apr-11 23-Feb-11 3-Jukll
26 25-Apr-11 S-Mar-11 D-Dec-11
27 29-Apr-11 1 4-Apr-11 10-lan-12

28 30-Apr-11] o 20 30 40 50 2] Ta a0 a0

Sheet2 has an extra secret: two hidden rows before column C. The
hidden columns A and B do the same work as they did on sheetl. In
F18:027 it finds the dates corresponding to F5:014.

What you need to do

Option Explicit

Sub Numbers()

Dim iLot As Integer, iSample As Integer

Sheetl.Select

Range("A1:B100,E6:N15").ClearContents

iLot = InputBox("Lot size (max of 100)",, 25): If
iLot > 100 Then Exit Sub

iSample = InputBox("Sample size (max of 100)", ,
15): If iLot > 100 Then Exit Sub

Range("G1") = iLot: Range("G2") = iSample

Range(''A1:A100").Formula =
"=IF(ROW(A1)>GS1,"""",RAND())"

Range(''B1:B100").Formula =
"=IF(A1="""""""TF(RANK(A1,5A$1:$A%$101)>$GS$.

Range(""E6:N15").Formula =
"=IF($D6+E$16>GS2,"""",SMALL(B1:B100,$D(

Do

Calculate

Loop Until MsgBox("'Again?", vbYesNo) = vbNo

End Sub

Sub Dates()
Dim iLot As Integer, iSample As Integer

Sheet2.Select

Range(""A1:B100,F5:014,F18:027'").ClearContents

iLot = InputBox("Lot size (max of 100)", , 25): If
iLot > 100 Then Exit Sub

iSample = InputBox(''Sample size (max of 100)", ,
15): If iLot > 100 Then Exit Sub

Range("'G1") = iLot: Range("G2") = iSample

Range("'A1:A100").Formula =
"=IF(ROW(A1)>G1,"""",RAND())"

Range("A1:A100").EntireColumn.Hidden = True

Range(""B1:B100").Formula =
"=IF(A1=""""""TF(RANK(A1,5A%$1:$A%$100)>$GS$

Range("B1:B100").EntireColumn.Hidden = True

Range("F5:014").Formula =
"=IF($ES+F$15>8GS$2,"""",SMALL($B$1:$B$100,$E*

Range("'F18:027").Formula =
"=IF($E5+F$15>8GS$2,"""",SMALL($B$1:$B$100,$E*

Do

Calculate

Loop Until MsgBox("'Again?", vbYesNo) = vbNo

End Sub

I &IF|ROWTAL[5G5L."" RANDL|] sIF{ALs"""" FF{RAMK[ALSAS1ISAS10] = 5E52," ROWAL)|)] =

SIF[ROWIAZISGSL" RAND{ =IF{AZ="","" F{RAMK[AZ SAS1: 5051015652, ROW|AZ)))

sIF|ROWIA3|5G5L"" RAN () sIF{A3="","" F{RAMKIAZ SASLISAS 1015652, " ROW]AZ)))
| slIF|ROWIMSGSL." " RAND] =lF{Ad= FIRAMK[ASSA51: 55101 = 5G52, " ROW{AA)])

SIFROWIASESG50." RAND{]] =IF{AS= FIRAMKIAS, SAS1: 585101 3652, ROV ASI]) | |
6 |=IF[ROWIABI5G50"" RANDMH =IFjAB= FIRAMKIAS SASLSAS 1015652, ROW]AB))) [1 [-FiSDE+ES 16-5682, SMALL{SES1:SES 100, 506:E516)) |

SIF[ROWIATI=SGSL " RAND{|] sIF{A7"","" SF{RAMK[AT SASL:5A5 1015652, ROWATI))] :'-_lFL_.M:-_n_E§_1_5_=»s_vqs_z.:":;ml_l._ﬁpﬂ;ss_;mg;pgqg_smn_ |
4 cIF|ROWIAB[-SGSL" " RAND(Y =IF{AB="","" SF{RAMKIAZ, 5051505101)=5652," ROW{AB))) 3 |=IF[SOBHES LE>5G52, " SMLLSBS LIS BS 100, 508+E516])

Chapter 29: Frequencies

What the simulation does

A B £ D F F G H | K
1 mean . 5D
2 15 4 -
: Ctrl + Shift + F
4
5 1 1]
& 3 16 000
7 7 214 3500
8 11 1341
9 15 3385 P}
10 19 3443 2500
11 23 1385 _—
12 27 201
13 31 15 1500
14 i
15
15 500
17
18] [i] 5 10 1 X 5] g
19 pae
20

There is not much new in this simulation. It asks for a specific mean
and SD, loops for a specific amount of runs, creates a frequency table, and
then replaces the chart with a new one.

What you need to know

W 00 = o WA e g e

(o R R
bWk o

A B
mean 5D

20 4

4 1

8 15

12 207

16 1378

20 3378

24 3372

28 1421

32 217

36 11

DI | E | F G H

Ctrl + Shift + F

After 10000 runs:
Mean = 20.040
5D =401

Lo)

What you need to do
Option Explicit

Sub Frequencies()

Dim pMean As Double, pSD As Double, pArr() As
Double, i As Long

ActiveSheet.Shapes(2).Delete

pMean = InputBox("Mean", , Cells(2, 1))

pSD = InputBox("SD", , Cells(2, 2))

Cells(2, 1) = pMean: Cells(2, 2) = pSD

Cells(5, 1) = pMean - 4 * pSD

Cells(6, 1) = pMean - 3 * pSD

Cells(7, 1) = pMean - 2 * pSD

Cells(8, 1) = pMean - 1 * pSD

Cells(9, 1) = pMean

Cells(10, 1) = pMean + 1 * pSD

Cells(11, 1) = pMean + 2 * pSD

Cells(12, 1) = pMean + 3 * pSD

Cells(13, 1) = pMean + 4 * pSD

Fori =1 To InputBox("Runs'', , 10000)

ReDim Preserve pArr(i)
pArr(i) = WorksheetFunction.Norm_Inv(Rnd,

pMean, pSD)

Next i

pMean = WorksheetFunction.Average(pArr)

pSD = WorksheetFunction.StDev_S(pArr)

Range("BS5:B13") =
WorksheetFunction.Frequency(pArr,
Range("'A5:$A%13"))

Range("'AS:B13").Select

ActiveSheet.Shapes.AddChart2(240,
xIXYScatterSmooth).Select

ActiveChart.SetSourceData Range("AS5:B13"):
ActiveChart.HasTitle = False

Range(""A1").Select

MsgBox "After " & i-1& " runs:" & vbCr &
"Mean =" & _

FormatNumber(pMean, 3) & vbCr & "'SD

=" & FormatNumber(pSD, 3)
End Sub

III. MONTE CARLO SIMULATIONS

Chapter 30: The Law of Large
Numbers

What the simulation does

T g

Lot [Raedety ad sormally | I

|t beatesd gvromaiad 1015
|k S o 1

G EEEEE

7

I N al m For] x 7 o
] E . am) [|
1 & E i k=] [-
[3 u am [i T Lo 1 TN
a il = £ [i '
a 1 ¥ P . F \
3 L a7 ¥ = 3 [i L
- x 2 e am » . 1
3 7 5 3 2] =4 3]
a «] £t xiy s a [f
] I8 . | - . [L o - L | \
- T T | T O | — / \
| ST S ST 1 S~ N~ G G ™ A4 rd 4
i |-

g ¢
1133 [B rara by
1142
1842
L8 s q] r 1] 1] 1 o [
i [d I —wl a| | e & p E|
i 113K
-
|
SRS —

e |
ifii f %

1248 b

15 itx

e -

miz

Lid 7 \

[| | | N

This is an example of a Monte Carlo simulation. Why are they called
Monte Carlo simulations? The name came up in the 1940s when Los
Alamos physicists John von Neumann, Stanislaw Ulam, and Nicholas
Metropolis were working on nuclear weapon research during the Manhattan
Project in the Los Alamos National Laboratory. They were unable to solve
their problems using conventional, deterministic mathematical methods.
Then one of them, Stanistaw Ulam, had the idea of using random simulations
based on random numbers. The Monte Carlo simulations required for the
Manhattan Project were severely limited by the computational tools at the
time. Nowadays we have Excel!

LR

Currently, the technique is used by professionals in such widely
disparate fields as finance, project management, energy, manufacturing,
engineering, research and development, insurance, and transportation. Monte
Carlo simulation furnishes you as a decision-maker with a range of possible
outcomes and the probabilities they will occur for any choice of action.
Always run at least 1,000 iterations of Monte Carlo models to reduce the

risk of random impact.

What you need to know

This simulation shows the effect of large numbers. Column A contains
“only” 1,000 numbers (plotted in the chart lower left). Then we run the
results of those 1,000 numbers 10 more times in a Data Table, which makes
for 10,000 cases (plotted in the chart top right). Finally we let VBA loop
through these results some 100 times, and average them again. Row 15 keeps
track of how many runs have not been executed yet. The outcome of these
1,000,000 runs in total is plotted in the third chart (lower right).

Notice how all three charts change during execution, but the third one
stays rather stable.

Needless to say that this is a time consuming process—mostly because
of cell manipulation on the sheet, for the use of arrays in VBA is
comparatively fast. When all the runs are completed (probably after some 60
seconds), a MsgBox shows the time needed for completion, which depends
partly on the processing speed of your machine.

What you need to do
Option Explicit

Sub Repeating()
Dim i As Integer, vArr As Variant, arrTotals() As
Long
Dim iRepeats As Integer, n As Integer, iTime As
Long
iTime = Timer
Range(''G19:019").ClearContents
iRepeats = InputBox('""How many repeats?", , 100)
Cells(1, 1).Select
ReDim arrTotals(1 To 9)
Fori=1 To iRepeats
ActiveSheet.Calculate
vArr = Range(""G13:013")
For n =1 To UBound(vArr, 2)
arrTotals(n) = arrTotals(n) + Int(vArr(1, n))
Range("G19:019").Cells(1, n) =
Int(arrTotals(n) /i)
Range("G15") = iRepeats - i & " runs left"
Next n
Next i
Range(''F18'") = iRepeats & '"x10,000 runs:"
MsgBox iRepeats & "x10,000 runs took " &

Int(Timer - iTime) & " seconds."
End Sub

G H I J K L M N 0
1 5 48 237 405 237 57) 1
0 11 bl 225 55 5 1
1 4 Microsoft Excel &9 7 o
0 s [o ' a1 3 0
o 3 100,10,000 runs took 64 seconds. 60] 0
1 4 53 7] |
0 8 64 6 1
1 8 56 3 of
0 13 60 5 0
0 8 57 8 0
7 9 10 11 12 13 14 15
60/ 240 390 238 57 6 |

|

Chapter 31: Brownian Motion

What the simulation does

= 1.

LiL i 78 EXvE 1
11202483 . e o052 || =53

T T

i 1 " |

v ae el e — . 4 | a e

azm s | SROURD 1DV HAR{L T} _ N

e o | i i Ctr+5h+R
v s = an) " L L 1D L4l

ML 1- 2" BN}, 4] I o Y . | ; LE7

% LE] 1: a i T ! L 1 L5
n .1 (1] 1 LT s, 1 5 £ . | o an [—— e
{51 A4 (5 [N X ¥ :‘, N 1.7 L7
I. e a 2 L i = == 4 B o B S e s B ot o 5
1 BT o oar) L ‘_ L » snd FFE
14 [0 & 43 L
nm an = | wm L /
L Tt [t o ¥ L L =
B Lw | om a4
o L |
1] i axr
et e |
=

L, ¢ L&Y

Brownian motion was discovered in the early 1800s by botanist
Robert Brown, who noticed under his microscope how grains of pollen
appeared to constantly and randomly move in a jittery way on the surface of
the water. In his 1905 paper, Albert Einstein hypothesized that Brownian
motion was caused by actual atoms and molecules hitting the grains of
pollen, impelling them to take a “random walk™ on the surface of the liquid.
Einstein’s work eventually led to the inherently probabilistic nature of
quantum mechanics.

This is a simulation of how a grain of pollen—or a molecule, for that
matter—takes a “random walk” on the surface of the water.

Dealing with the uncertain and the unknown is the realm of
probability, which helps us to put a meaningful numerical value on things we
do not know. Although a single random event is not predictable, the
aggregate behavior of random events is.

What you need to know

Column B displays random X-changes and column C displays random
Y-changes. In D and E, we start at coordinates 0,0 and keep adding the
random changes from the previous columns. In P:Q we repeat each run 14

times and stop the macro as soon as we ended up close to 0,0 again.

The VBA code creates this random path, but keeps checking when the
end point is the same as the starting point (0,0)—that is when the random
walk took us back very close to where we started (within a range of 0.02).
When that happens, it stops the process and reports how many runs that took.

The center chart only reflects the first run (to the left), so it only shows
when that run ended where it started. See the chart below.

We also used FormatConditions again, but only once, for otherwise
the macro keeps adding the same condition.

What you need to do
Option Explicit

Sub Returning()
Dim i As Integer, oORange As Range, bBack As
Boolean, n As Long
Range(''03:Q32").Table , Range(""N1")
Range("A1").Select
Set oRange = Range(''P3:(Q32")
'oRange.FormatConditions.Add xlExpression, ,
"=AND(AND($P3>=0,$P3<0.05),AND($Q3>=0,$Q3<0.!
'oRange.FormatConditions(1).Interior.Color =
vbYellow
Do While bBack = False
Calculate
Fori=1 To 30
If oRange.Cells(i, 1) > -0.03 And
oRange.Cells(i, 1) < 0.03 Then
If oRange.Cells(i, 2) > -0.03 And
oRange.Cells(i, 2) < 0.03 Then bBack = True: Exit Do
End If
Next i
n=n-+1
Loop
MsgBox "Back to 0 at the " & i & "th run after "

& n & " repeats of 30 runs."
End Sub

€] H I] K L M M o P a
repeat 50 runs until they end
where they started

-15 #MSA 3.49 3.07

Chapter 32: Ehrenfest Urn

What the simulation does

|:| EH % W
g o« 3L i 3 | K M " i
1| i|lo|lealalalzx £ | = B3 1
% ol x| x| xx[o]x 62 2
-h;i ----- -\:.|__E- 4 _:'E--u-. ND O I-:i_ Bl 3
X A X X o] o X [u] B 4
X X [n] 4 X | X O X 28 5
1] i i 4]] 0 i X 5B &
] [:] =] % o] a 0 [=] 57 7
ololojloa]x]lx]o]«x 56 8
55 3
24 10
Ctrl + 5h + R [reset) 55 9
Ctri+Sh+E 56 3
LU 78
(equilibrium) e S
53 11
52 12
51 13
50 14
1 449 15
48 16
A7

Consider two urns A and B. Urn A contains N marbles and urn B
contains none. The marbles are labelled 1,2,..N. At each step of the
algorithm, a number between 1 and N is chosen randomly, with all values
having equal probability. The marble corresponding to that value is moved
to the opposite urn. Hence the first step of the algorithm will always involve
moving a marble from A to B.

What will the two urns look like after k steps? If k is sufficiently large,
we may expect the urns to have equal populations, as the probabilities of
drawing a marble from A or from B become increasingly similar. States in
which one urn has many more marbles than the other may be said to be
unstable, as there is an overwhelming tendency to move marbles to the urn
that contains fewer. This phenomenon is called the “Ehrenfest Urn.”

Ehrenfest sometimes used the image of two dogs; the one with fleas
gradually infects the other one. In the long-time run, the mean number of
fleas on both dogs converges to the equilibrium value.

What you need to know

Instead of using two urns, we use a “board” that has X ’s at all
positions. Each time, at a random row and column position (cells B11 and
B12), an X is replaced by an O, or vice-versa. Gradually, we reach an
equilibrium where the number of X’s and O’s have become very similar,
albeit with some oscillations of course.

The VBA code finds a random row and column position to replace an
X with an O or reversed. It counts the number of X’s and Y’s after each
change and places that number sequentially in row J (for X’s) and in row K
for O’s. These two columns gradually feed the progressing curves in the
chart.

One macro feeds the board; the other macro resets the board.

What you need to do
Option Explicit
Dim i As Integer 'global variable

Sub Equilibrium()
Dim oRange As Range, iRow As Long, iCol As
Integer
Set oRange = Range(''A1").CurrentRegion
With oRange
iRow = WorksheetFunction.RandBetween(1, 8)
iCol = WorksheetFunction.RandBetween(1, 8)
If .Cells(iRow, iCol) = "X" Then .Cells(iRow,
iCol) = "O" Else .Cells(iRow, iCol) = "X"
Range("J1").Offset(i) =
WorksheetFunction.Countlf(oRange, "X'"")
Range("'K1").Offset(i) =
WorksheetFunction.Countlf(oRange, "O")
i=it+1
End With
Do While i <200
Equilibrium
Loop
End Sub

Sub Reset()

W b ko e

Dim oRange As Range
Set oRange = Range(""A1").CurrentRegion

oRange.Cells = "X"
Columns(10).Clear
Columns(11).Clear
i=0
End Sub

B C 8] E F G H
o X X 8] X X X X
o 0 0 X X o X X
]] Q X X] X X
X X o o X X X X
X X L8] 1 X o lu] X
o 2] o X a X o] X
X 5] X X ¥ X] Q
X X o o a X X X

Ctrl + 5h + R (reset)

Ctrl +Sh+E
{equilibrium)

=

E2
El

El

54

57

L T T

Ln
L
w

54 10
331
52 12
31 13

PRI TSN REERE

Chapter 33: Random Walk

What the simulation does

[
2 e [0 7] E wnd g -8 -8

1) 1 - HhA) 4|

z 2 2 12 i0] E 1 S 7 | BN 18 2

3 a a BHA 10 B

5 o o - B J/__‘ e & LY -2 o

5 1 1 \/)f’ p. 9) ENA 4 T
] & -2 3 i g L . TS o 2
] 7 -3 -a . e L R = o 7 o
1 & -4 4 ‘ b i S e k BN 8 2
1] -5 -) & s B a
12| 10 & -4 = 4 of o of
1 11 -7 -5 & o
14 12 -B - 2 B A
1 13 & 5 4 o -4
16| 24 -10 - -z -4
1 1% - 5 20 End Positions] 4
18 u -8 4 -8 14
1 17 7 3 B 5
b T -8 -4 2 AZ

13 -7 -a a .10

] -8 -2

21 7 3 e -

n -4 -4 z _

)] -3 P 5 I s e bl

E & 2

=) - 4 . Ctr+Sh+W

% 5 2 .

Y K] 4

= -B -2

This simulation uses a random-walk approach, similar to Brownian
motion. Imagine we are leaving home (position 0). [if we flip a coin and get
heads, we go one block north (position +1); if we flip tails, we go one block
south (position -1). We keep doing this many times and then check how far
we end up being from home. (We may also ask what the probability is that
we return to where we started—believe it or not, that probability is 100% 1f
the walk is long enough!).

First we will simulate 50 steps for columns B and C, plotted in the top
graph. In the Data Table to the right, we repeated all 50 steps 14 times. The
columns O and P of the Data Table are plotted in the bottom graph.

As it turns out, we could make big “gains” and drift far away from
where we started. But not always! If this random-walk were interpreted as a
case of gambling, we could encounter many negative, perhaps even huge
negative outcomes—*“losses” in gambling terms. Random walks are just
fascinating.

What you need to know

We do use FormatConditions again, but not in the macro, for that
would create the same condition over and over again.

In addition, we use the Excel function COUNTIFS (missing in pre-
2007), which allows for multiple count criteria: a zero in column B as well
as a zero in column C.

In Range N3:N22, we use a formula with a nested NA function. This
function returns #N/A. The advantage of doing so is that a curve in the chart
does not display #N/A, but just “skips™ it.

At the end, the macro can call itself again if so desired.

What you need to do

Option Explicit

Sub Walking()
Dim oRange As Range, i As Integer, sBack As
String, sEndScores As String
Set oRange = Range("B3:C52")
With oRange
.Columns(1).ClearContents
.Columns(2).ClearContents
.Columns(1).FormulaR1C1 = "=IF(RAND()
<0.5,R[-1]C-1,R[-1]C+1)"
.Columns(2).FormulaR1C1 = "=IF(RAND()
<0.5,R[-1]C-1,R[-1]C+])"
' JFormatConditions.Add xIExpression, ,
"=AND($B3=0,$C3=0)"
' JormatConditions(1).Interior.Color = vbYellow
End With
Range('"N3:N21").Formula =
"=IF(AND(0O3=0,P3=0),0,NA())"
Set oRange = Range("O2:P21")
oRange.FormatConditions.Add xlExpression, ,
"=AND($02=0,$P2=0)"
' oRange.FormatConditions(2).Interior.Color =
vbYellow

'

sBack =
WorksheetFunction.Countlfs(Range(''B3:B52"), 0,
Range("C3:C52"), 0) & _
"x back to a position of 0,0 during 1st
run"
sEndScores =
WorksheetFunction.Countlfs(Range(''02:021"), 0,
Range(''P2:P21"), 0) &
"x back to start position 0,0 in 20 runs"
If MsgBox(sBack & vbCr & sEndScores & vbCr &
"Try again?", vbYesNo) = vbYes Then Walking
End Sub

i

tll= = s m a2 a s s s aasg o
ma A A A A - A A R - A R =z 2
(I) EE L LS —OE N <N L L A N Ll L Lot .-}
-1 PR R B R E B PRERRERBEBR B R)
- =]

A

Chapter 34: A Data Table with

Memory
What the simulation does

A B C D E [= G H]
1 | Dl 10% 100
2 0 11% 105 i g T—— ——]
3 0 12% 99 Ctr+Sh+M S
4 0 13% 85 A s D8
5 0 14% 93 b B s
6 0 15% 109 :h ; :
' o 16% a5 b .
8 0 17% 104
] 1 18% 57 o
10 0 19% 80 \
11 0

In column A, we randomly choose 1,000 times O’sor 1’s,with a
chance for 1°s based on an InputBox (say, 10%, shown in cell C1). The
number of 1’s is calculated in cell D1, but also for other percentages. This is
done by using a Data Table. Based on this calculation, the Data Table in
columns E and F runs all of this again for the next 9 percentages. When the
percentage in C1 has been chosen to be 15%, column C shows the next 9
percentages from 16% to 24%.

A MsgBox displays the lowest and highest value. After the first run,
these two values are the same, but when you keep running the macro, the
difference between the two will begin to rise.

Doing this in Excel with formulas is hard to do, because that requires
self-reference, and thus leads to circular reference. This can only be done
with iterations ON. VBA can solve this easily.

What you need to know

locah i

WAPTonet. Madus | Memorine

Cxprasyion | Wnhn Type

B Modakd ggis 10 poied

[cRarge FangaFargs
neger

pPEent B Dwaisie

To prevent the screen from flashing
during operations, we can use Application.ScreenUpdating. If you set this to
False, make sure you set it later back to True.

We use four Variant arrays, because they can hold an array or series
of values, including the values found in a range of cells. However, this
creates a two-dimensional array, starting at element 1 (not O this time). So in
order to address one of its elements, we need rwo indexes, one for each
dimension (e.g. array(1l,1)).

L sxssy 9 uam | T

[Range("D1"LFormula = "=COUNTIF{AuA1)"
Set oRange = Range{"C1:D10")
oRange.Table , Range(*C1%)

Calculate
arrPerc = Range("C2:C107)
£ llanTable = Range(D2:0107)

VBA can let you see what is in the array
by doing the following: View | Locals Window (see picture to the left).
Place a BreakPoint in the code after the line you want to check by clicking
in the gray margin to the left of it; this creates a brown line. Then click
inside the Sub and hit the Run button; the yellow line indicates where the
code has come to a halt. Now the Locals Window shows the values of all
your variables, including the arrays. Click the BreakPoint off, so the code
no longer stops there.

What you need to do

Option Explicit

Sub Memorize()

Dim oRange As Range, i As Integer, pPercent As
Double, sMsg As String

Dim arrTable As Variant, arrMin As Variant,
arrMax As Variant, arrPerc As Variant

Range("'F2:G10").ClearContents

pPercent = InputBox('"The chance for 1's is:", ,
0.1)

If pPercent > 1 Then MsgBox "Must be between 0
and 1": Exit Sub
Again:

Application.ScreenUpdating = False

Range("A1:A1000").Formula = "=IF(RAND()<="
& pPercent & ",1,0)"

Range(""C1") = FormatPercent(pPercent, 2)

Fori=1To9

Range("C2:C10").Cells(i, 1) = pPercent +1i /100

Next i

Range(''D1").Formula = "=COUNTIF(A:A,1)"

Set oRange = Range("C1:D10")

oRange.Table , Range("'C1")

Calculate

arrPerc = Range("C2:C10")
arr'lable = Range("D2:D10")
If IsEmpty(arrMin) Then
arrMin = Range(""'D2:D10")
arrMax = Range(''D2:D10")
Else
Fori=1T09
If arrTable(i, 1) < arrMin(i, 1) Then arrMin(i,
1) = arrTable(i, 1)
If arrTable(i, 1) > arrMax(i, 1) Then arrMax(i,
1) = arrTable(i, 1)
Next i
End If
sMsg = "Percent" & vbTab & "Min" & vbTab &
"Max" & vbCr
Fori=1To09
sMsg = sMsg & arrPerc(i, 1) & vbTab &
arrMin(i, 1) & vbTab & arrMax(i, 1) & vbCr
Next i
Application.ScreenUpdating = True
MsgBox sMsg
If MsgBox("Keep running?', vbYesNo) = vbYes
Then GoTo Again
End Sub

Chapter 35: Juror Selection in Court
What the simulation does

A E I E F ' K o
1 Candidetss. 1M Fwadud] i
R Ctr+Sh +)
Mo apisdon Mo witneds Vil deack b E
i ad oLy & hurnr qualifies 7 & L 13 L & L] 13 kl 1 Waar
Furar 1 - - [v n-: v &) oo &) 300 m| soe 3o aoe 3| aoed a0 1o 6| 1eo 4| 1s0 a3 108 ¥
Barad * #* L] IS0 LDy BS0 MRl BEO NE| MR3 Bl 153 00| 158 @) 150 14| LD 1N 150 8§ 15D w3
Barad B L] 200 L1 200 §T| 200 EE| 00 07| @ xR 108 15 13| D0 13| PO 16| D0 B e Ay
P P & ® 150 LW 150 A% 250 EER| IS0 Q1| 288 M| X 9 14| I50 18| IS0 15 ESD IS5 =
Burar §] 300 L% 0 2r| 300 30| 300 1R 300 18| 00 18 3| =0 bl 0 I3 80 21 e A
10 purer & [] 50 21) 450 2%| 450 | 350 24| 350 | 850 W | who ra| w80 4] 450 28 s 8%
Burcr T L) am .“-i 400 2E| 400 BT) 401 28| 400 31| 400 E1 4| SO0 &8 &S00 25 &80 22 A Lo
12 burer B o 430 2% 450 3r| 430 25| 4530 2IT| 450 20| 430 31 31| &30 3| 430 34 &30 31 ¥ &E,
Burar 8 o s0a l:'" 300 37| 300 25| 300 42| 300 40| 300 30 &3 00 83| 00 37| 500 37 o ™
1= Burar 10 = o s5a H‘ 550 AL| 5530 40| 550 3T 550 41] 550 43 43| 550 3E| 550 34| S50 a8 T a7
" Burar 11 + - 1 im.“.-:mn &00 WE| EDT 4%| 03 43| 00 AL 50| GO0 7| GOD 53| SO0 S o kit
o parar 33 [(17 n: 50 &0 &30 =] &50 11| em2 53| emE 3 | w0 &7 sso 31| &s0 4 B0
' purer 13] 700 47 00 61| 700 63| 7m0 58| o2 5if oo 46 51| mo0 &3 oo 3| Te0 53 T8 LLH
4 e 14 L] TE0 4B 7RO BT TR BE| TR} 47| TRE 59| TRD 65 &) TED G| THO B TEO &3 TEE LI
+ Juirar 15 #* L] 300 61 30 &8 300 50) 00 54) 0% 0| BOR EL B5| B0 B3| BA0 6B B0 53 B L
Jurar 16 L] 850 66| 450 60| 450 58| 850 €5) £S5 49) B0 55 6| 50 53| 850 63| @50 &3 = 19
Burar 17 [] 00 &4 300 75| 900 S1) 800 55| 00 €7 SO0 65 | w0 Ta| G0 61| S50 o S8 144
2 urer 18) 950 541 950 7B| 950 ¥5| 950 ra| 950 EP| 950 Ti| 9500 54| w50 pe| 950 65| @h0 7S wE 14
S Burar 13 L] 1000 43 LMD ::-mn:l.mMxmwtmomtmjulmmlmumr: LooS 131
I Burar 10 + L]

Countries with a juror system in court have to face the fact that they
must choose 2x12 jurors from a larger pool of candidates after checking
each candidate for certain criteria.

We assume we need 24 jurors (cell E1) from a pool of 100 (cell B1).
We also use the following criteria: #1 they have no opinion yet whether the
defendant is guilty (column B); #2 they were not witness to the crime
(column C); #3 they accept the possibility of the death penalty (column D).
These criteria have a probability in the population as shown in range B4:D4.
Column E decides whether all three conditions have been met. Cell F4
counts how many in the pool of candidates actually qualified to be a juror in
the case.

Finally we run this setup with a Data Table repeated 10 times (G:H,
I:J, up to Y:Z); each one running pool sizes from 100 to 1000. We average
these results in column AC, and we mark pool sizes that meet the needed
number of candidates (F2) with Conditional Formatting.

What you need to know

All gray cells have a formula in it. This is done by selecting all cells
and 1implementing Condition Formatting based on this formula:
=ISFORMULA(A1).

In the run shown below, a pool of 100 or 150 candidates would not be
enough to reach the 24 jurors needed, given the three conditions in B:D and
their probabilities. But 200 would! Again, we are dealing with probabilities
here, so results may vary!

L M MO PO RS T [WX ¥ T MR BB | e any

B ') £ F [[* i X
= N i . m
3 o epision Mo wilness ®m desks

1 04 B 08 jusme? qualified 11 7 £ B 4 i1 § 7 i [Ere
| 8 [murera . . . 1 w0 3 w0 s a0 8 100 11 e 5[1we & 10f w0 & 100 3 10 we 18
G urerr e 150 B 150 8 150 ms| 150 18 159 11 180 12 12 130 9| 1%0 12 1s0 16 2
urer 3 L] 200 200 % 200 B4l 200 11| 206 11| 08 12 9| 0 12 M0 1% 200 1 me
1 durerd ® 2 38 280 i1 2 26| W an| oW | 29 W ol me | ool 2w e
-H:Irl'lrl L) 300 28 300 IN| 300 ED| 300 14| 300 18| 306 17 19| =00 1%| 300 18 530 14 Lo] 4
10 Buror B L) a5 350 26| 330 NT| 353 36| 350 34| 350 1) F1| ES0 FE| NS0 34| =50 2 =5

What you need to do

Option Explicit

Sub Jurors()
Dim iCand As Integer, iNeeded As Integer, i As
Integer, oRange As Range
Application.ScreenUpdating = False
Range(''H4,J4, 1.4, N4, P4, R4,
T4,V4,X4,74,AC4"").EntireColumn.ClearContents
Set oRange = Range(''A5:E1005")
oRange.ClearContents
Range(""H5:H23").ClearContents
Application.ScreenUpdating = True
Range("B1") = InputBox('""How many
candidates?", , 100)
Range("E1") = InputBox("How many jurors
needed?', , 24)
With oRange
.Columns(1).Formula = "=IF(ROW(A1)
<=B1,TEXT(ROW(A1), ""Juror O""),"""")H
.Columns(2).Formula = "=IF(ROW(A1)
<=B1,IF(RAND()<B$4,""+"",""""),"""")"
.Columns(3).Formula = "=IF(ROW(B1)
<=B1,IF(RAND()<C$4,""+"",""""),"""")"
.Columns(4).Formula = "=IF(ROW(C1)

<=B1,IF(RAND()<D$4," "+" "," (ARA) ")," (ARA) ")"
.Columns(5).Formula =
"=IF(COUNTIF(BS5:DS5,""+"'")=3,1,0)"
End With
Application.ScreenUpdating = False
Range(''H4,J4, L4, N4, P4, R4,
T4,V4,X4,74").Formula = "=SUM(SE$5:$SE$1005)"
With Range("G4:R23")
Fori=2 To 20 Step 2
.Range(Cells(1, i - 1), Cells(20, i)). Table ,
Range(''B1"")
'to prevent each table from recalculating,
replace with values:
.Range(Cells(1, i - 1), Cells(20, i)).Formula =
.Range(Cells(1, i - 1), Cells(20, i)).Value
Next i
End With
Range("ACS5:AC23").Formula =
"=INT(AVERAGE(HS,J5,L5,N5,P5,R5,US5,T5,V5,X5,Z5
Application.ScreenUpdating = True
End Sub

Chapter 36: Running Project Costs

What the simulation does

[} 1

Extimates SubProject] SubProject? SubProjectd Subfrojectd SubProjectd Tobsl Muan $112.50000

2 MamCosts § 30,000 5§ 10000 5 50000 5 80000 5 100000 S2TO.000 50 5 35, TELSS
: MEA.Costs 9 20008 & EABd 5 25800 5 50000 § 75000 S175000 Margin & TMLET
5 Maverage 25,007 750 37561 5 65,034 B7.598 SXX2.709
Gfupperbound § 30,631 5 10373 £ SL7I6 5 82035 5 10LE24 5245662 Ruing: | 10,505 |
lrwarbownd 5 19,384 % 4643 % 23080 5 48032 5 TREMA £155.756 |
B
1 CR 1 X TT R Er4 § A1roed 5 Ta0ld & BOGEE SXMTH1
0 5 IraEs 3§ 957 § 29187 § 77819 § 78,281 S2rLas2
11 § 21,53 § EEE4 5 42005 5 77004 § TETR4 SEDaEsE
1 § a1z 712§ 45Tes 5 62AM0 § TRTIA SnuaTI
1 § 2712 8 7A7F 5 3LMES 5 B4854 5§ BO.BRE SiM0g88
§ 041 % #4188 5 45631 3 53000 § 05,054 Lrdas
5 I3 5 5005 5 19767 5 51469 5 99,038 508358
& 233 8§ 9083 5 47534 5 B4895 5§ DO.31F £33 049
' $ TR % BB 5 2vamd 5 SASa% § Badrs Sa00das
18 5 29822 5 BT42 5 45267 5 6222 5 B2.0Bl 5233134
1 § MMPOE % 656F £ 41287 4 TAH12 § 00459 S340d04
1 § Ine0m 3 S.I4% % 40403 § T5A97 5 BRLI06 SI6453
§ 22.BER 5 TEHSL 5 49610 5 TIAST 5§ BO206 5243805
5 25243 § T § 15383 3 88,158 § BA, 168 $711430
5 2E7IE 5 SEEE 5 35684 £ 50437 5 BT.AR] S304.964

This Monte Carlo simulation deals with risks we encounter when we
have project costs that we anticipate to be between a maximum value and a
minimum value for several sub-projects or various products.

Based on 10,500 runs the simulation starts a new sheet and narrows
down our risks with a 95% confidence to be between a certain upper- and
lowerbound. As usual, results may vary since there is randomness involved.
But a Monte Carlo simulation can reduce this risk.

Manually changing maximum and minimum costs in rows 2 and 3
should affect the outcome.

What you need to know

B [i} E F G H " L K

Estinatei SubPraject] SubPrejectd SubPrajestd SubPrajectd SubPrejects Total Maan §223,500.00
I MaxCosts § 30,000 5 10,000 $ 50,000 § 80,000 5 100,000 5370,000 50 § 38,733.59
Min.Costs § 20,000 § 5000 $§ 25000 5 50,000 5 75000 §175.000 Margin 5 T4LET
i Iort il 1.54
s Rurs 10,508

The number of runs (J6) is determined by the values in the cells above
it: ((1.96/(margin/mean)) * 2) * ((SD/mean) " 2)

The mean (J1) is: =AVERAGE(G2:G3).

The Standard Deviation (J2) is: =STDEVP(G2:G3.J1).
The Margin (J3) 1s: =J1/300.
The Z or t value for 95% confidence is approximately 1.96.

What you need to do
Option Explicit

Sub ProjectCosts()

Dim i As Integer, iRuns As Long

Dim oWS As Worksheet, oRange As Range, oCell
As Range

iRuns = Range("J6") 'Formula:
((1.96/(margin/mean)) * 2) * ((SD/mean) " 2)

ActiveSheet.Copy , Sheets(Sheets.Count)

Application.Calculation = xlCalculationManual

Set oRange = Range(Range("'B9"),
Range("'B9").Cells(iRuns, 5))

oRange.Formula = "=RAND()*(B$2-B$3)+B$3"

Set oRange = Range(Range("'G9"),
Range("'G9").Cells(iRuns, 1))

oRange.Formula = "=SUM(B9:F9)"

Range("B5:GS5").FormulaR1C1 =
"=average(R[4]C:R[" & iRuns + 3 & "|C)"

Range(""AS") = "average"

Range(''B6:G6").FormulaR1C1 = "=R|[-1]C +
1.96* stdev(R[3]C:R[" & iRuns +2 & "|C)"

Range("'A6'"") = "upper bound"

Range(''B7:G7").FormulaR1C1 = "=R[-2]C - 1.96*
stdev(R[2]C:R[" & iRuns + 1 & "|C)"

Range("'A7") = "lower bound"

Application.Calculation = xlCalculationAutomatic

Cells.EntireColumn.AutoFit

MsgBox "Based on " & iRuns & " iterations"

Range(''B5:G7").Formula =
Range("'B5:G7").Value

If MsgBox("Delete the calculations that were
generated?'", vbYesNo) = vbYes Then

Range(Range('"'B9"), Range(''B9'"").Cells(iRuns,

6)).ClearContents

End If
End Sub

Chapter 37: Forecasting Profits

What the simulation does

A B C I : F K
! produced Shjli]-ﬂ_ e gy — demand probabifities
+ [=RANI{) |
2 |rand® [u.3153151a_r =RAM] | 0.00 20,000 10%
1 | demand 30,000 NN 0.10 30,000 5%
4 |unit cost $1.50 0,45 40,000 0% .
5 unit price c4.00 0.7 &0,000 2585 . :
£ |unit disposal £0.20 CtrSh P

B revenues 5120, 000,00
% prod. costs 550,000.00
17 digpos. Costs 56,000.00

1 profi
5 produstion
13 ean prafit | $50,000.00] 570,632.00] $7s,690.00] $71,198.00] %e6.452.00] $4535000] 40,000 bast prafit
14 5D profits £0.00 512,827.36 528,281.58 %39, 776.81 4555,919.21 555,100.08 60,000 most risky
15 lower 35% $50.000.00 $63.836.95 574,037.00 $68,731.51 S$61006.09 542,834.86
16 upper9%% $50,000.00 $TLAZ7.08 $78,442.91 $78,665.39 $69,527.91 §49,285.14

s2a00000 0000 30,000 40,000 50,000 £0,000 70,000 |unins produced

£1,00 %$50,000.00 $75,000.00 558,000.00 -51,000.00 -$18,000.00 $49,000.00
52,00 S$50,000.00 $75,000.00 5100000.00 3541,000.00 $150,000.00 57,000.00
53.00 550,000.00 575,000.00 553,000.00 -51,000.00 3524,000.00 57,000.00
54,00 550.000,00 533,000,00 51600000 512500000 534,000,00 5133,000,00

Let’ssay we are trying to the figure out the optimal amount of
production needed in order to maximize our profits. If the demand for this
product is regulated by a range of probabilities, then we can determine our
optimal production by simulating demand within that range of probabilities
and calculating profit for each level of demand.

The simulation uses three tables to set up this calculation. The table top
right (E:F) sets up the assumed probabilities of various demand levels. The
table top left (A:B) calculates the profit for one trial production quantity.
Cell B1 contains the trial production quantity. Cell B2 has a random number.
In cell B3, we simulate demand for this product with the function
VLOOKUP.

The third table, on the lower left, is a Data Table which simulates
each possible production quantity (20,000, 30,000, to 70,000) some 1,000
times and calculates profits for each trial number (1 to 1,000) and each
production quantity (10,000, etc.).

Finally, row 13 calculates the mean profit for the six different
production quantities. In this example, the figures show that a production of

40,000 units results in maximum profits.

The VLOOKUP function in B3 matches the value in Bl with the
closest previous match in the first column of table D2:ES5; column D has
cumulative totals.

In cell A18 starts a Data Table. A18 has a link to the profit in B11.
Then it uses cell B1 (20,000) for the row input, and an empty cell (say, H12)
for the column input.

What you need to know

The VBA code creates each time a new sheet and plots range
A13:H16 six times (after recalculation) on this new sheet. At the bottom of
the new sheet, it calculates the average for the upper and lower bounds.
These averages are essentially based on 6x1,000 runs. A real Monte Carlo
simulation would need more iterations, of course.

Setting the CutCopyMode fo False is usually wise after a copy
operation—otherwise the copied area remains highlighted.

What you need to do

Sub Profit()
Dim oData As Worksheet, oWS As Worksheet,
oRange As Range, i As Integer
Sheetl.Activate
Set oData = ActiveSheet
Set oWS = Worksheets.Add(, Sheets(Sheets.Count))
Fori=1 To 30 Step 5
oData.Calculate
Set oRange = oData.Range("'A13:J16")
oRange.Copy
oWS.Cells(i, 1).PasteSpecial xIPasteValues
Next i
Application.CutCopyMode = False
Range("B31:G31").Formula =
"=AVERAGE(B3,B8,B13,B18,B23,B28)"
Range(""B32:G32").Formula =
"=AVERAGE(B4,B9,B14,B19,B24,B29)"
oWS.Cells.NumberFormat = "$#,##0.00":
oWS.Columns(1).NumberFormat = "(Q"
oWS.Cells.EntireColumn.AutoFit
oWS.Cells(1, 1).Activate
End Sub

A

B C D E F G

mean profit | $50,000.00 $70,206.00 57881200 $68,930.00 $64,8456.00 S48, 790,00

mazan profit
S0 profits
lowser 95%

mean profit
50 profits
liwaresr 5%
upper 95%

mazan profit
5D profits
howeer 95%
upper 95%

mean profit
S0 profits
lowser 95%
upper 95%

mean profit
50 profits
lowrer 95%
upper 95%

50.00 $13,252.02 $26,840,35 $40,365.58 $55,677.94 556,517.49
$50,000,00 569,474,63 577,108,427 $56,428.10 $060,905.06 545, 287.01
$50,000.00 $71,117.37 $80,495.58 47143190 $67,896.95 $52,292.99

$50,000.00 571,262.00 578,370.00 $72,038.00 $63,354.00 $49,000.00

4000 $11,965.22 43880126 $39,7510.06 S55,414.00 $56,782.82
550,000.00 570,520,390 576,5B4.88 $60,574.20 $50,010,80 $45,480.56
550,000,00 572,003,61 580,155,12 $74,500,80 566,788.60 §52,510.44

$50,000.00 $70,548.00 577,614.00 $71,576.00 $65,420.00 $50,680.00

5000 512,935.65 578,341.95 $40,085.85 $56,625.56 555,504.03
$50,000.00 $69,746.24 57580730 $60,000.45 $62,010.31 £47,234.19
$50,000.00 571,399.76 579,370.65 $74,060.55 $69,920.69 $54,125.81

$50,000.00 $70,716.00 $76,606.00 $70,232.00 $60,582.00 $47 530,00

50.00 $12,717.50 $28,274.50 540,208.20 $54,806.41 $55,806.03
550,000,00 569,927,76 $74,853.52 $67,730.86 S57,200.86 544,071.05
$50,000.00 $71,504.24 $78,358.88 $72,724.14 $63,954.14 $50,988 95

550,000,00 570,254,00 578,790.00 $69,644.00 $61,926.00 $45,472.00

£0.00 413,303,550 42780037 $40,192.74 $53,642 11 455 50837
$50,000.00 $69,429.41 577,066.36 $67,152.83 $58,600L21 $42,031.56
$50,000.00 571,078,556 580,513,664 $72,135.17 $65,250.77 548,912.44

§50,000.00 $71,136.00 $77,495.00 $69,728.00 $63,354.00 $45,010.00

50.00 $12,145.16 $28,519.58 $39,467.20 554,402.17 $54,400.18
450,000.00 $70,383.23 $75,678.34 S67,281.80 550,977.06 541,638.29
$50,000.00 $71,888.77 $79,211.66 $72,174.20 $66,7I0.84 $48,181.76

50,000.00 $60,913.61 $76,200.88 S67,878.04 559,935.50 544,790.44

0,000.00 571,490.39 579,684.52 §72,837.06 %66, T58.50 $51,001.56

I 1
production
500,000,00 best profit
$70,000.00 maost risky

production
£40,000.00 best profit
£70,000.00 enost flsky

production
$40,000.00 best profit
S60,000.00 mast risky

production
£a0,000.00 best profit
S70,000.00 meost rishky

production
£40,000.00 best profit
5S70,000.00 st risky

production
540,000,000 best profit
S60,000.00 most risky

Chapter 38: Uncertainty in Sales

What the simulation does

& L] C

(1]

i Valums] |evaatationna 10w
Probabiliy Velums [Engine Enr Yalsme Valums Comesron Sug Ovder Tomal Lagt puaer's bain S 560,000 Auarags Sales Cuy § 7L
% 300,000 000 300,000 T iza000 3% § 7L00 §TI,015 Change By year § (L6279 lirdrmam 5 4TLITE
1% 273,000 o amoos 100,000 1% 5 7RE0 §%62300 ™ alesDmy & ETLETS
BRE AS, LELRE- T A 30 Lis B ThED 5 EAi A0
[RS 530 Lis B TRED FENATR
09,000 LI B TR0 §AT500 " ange . Brahabidity Fusitive 166w
Camesrion 300,000 2i% & TR0 847550 T T tazpans § mmamas | 0F% Mepative TmA
Probubs by Race II:n.pu-I..ru__l:_l_‘|_l-__ [T S——) - “ 2% SEIIAN 5§ 73 L%
PR ER L am Tiw d 1 B0 L AR § AR T
B Liw am Liw [ey pp—— ik AR FRIEAE § AN A Sales mil merwed
B T 08 L B! (1900t mymrages 340,701 ™ A GR308E § KL 1.0 00, 0% 1o,
Pl s LE] FE Liwapet [HICOR bewmak: wvarmes 1,738 L. | eNANE 3 e008E Ld s o0s LLYE
T tn B GESEARE § BALaNe Sk §500,008 0.1%
—= [| GEEEARE § PR BR AR §E68 593 e
Avrage e L] AN N 0 irin HE00 o FLE
Prababily Ameum [ngne B Gmoust | s i e e GaEE R ST 1.1%
% F T 000 § 7a08 100,000 LI 7RO §34T500 ™ ¥ SN0 § sRLAN <29% Sabas il e ey
110 Tam amM § Tasd e 330 Li% B 7RED §SELBOO ™ T fRLARE § AR 11 S SED0. D02 [ERs
1% & T80 a@s § T8 175,000 1% 5 7780 $EMLITS ™ sl Se0RaNe § G 2o §8TS.000 T
o ATS 030 3% & TReD §EA3 A3 0 N SEREARE § ST -0 568 I T
800,000 L% & THE0 4 84T500 150 0%, SEAS 48T 4 panwed Lzw 4500,008 wem
73,000 LN & TR0 4 NISES v 29 seaass ¥ Tiaan e $450,008 1o
00 00 LW B TRAO O BE6500 Feid a0 BTLD A8 8§ Taadadl 0 fads o0s L8l
chl * shm,; ﬂ!m E.?h l ;I! ” jﬁ!uﬂ — T —r——1 — —_— —_—
[shaded cells can 100,000 LW 7RSO §BEL500
manually be changed) 100050 LI Theo §BELe
Rl 338 Lis B TRED FETYREG
100,000 L% B TR0 § %61,500

As said before, Monte Carlo simulations are computerized
mathematical techniques that allow people to account for risks in
quantitative analysis and decision making.

In this case, the decision-maker supplies sales data and probabilities
(the shaded cells in columns A and B).

Based on this information, the macro simulates some 10,000
distributions with a range of possible outcomes (center section) and with the
probabilities they will occur for any choice of action (right section).

At the end, a MsgBox reports for every new trial what the average
sales are for each consecutive loop.The results are pretty close to each
other.

What you need to know

The situation is basically simple. The major functions we need to
achieve such kinds of predictions in this case are RAND, VLOOKUP,

COUNT, and COUNTIF. Again we use 1,000 simulations in the center
section (F:I) to reach more reliable predictions.

]

1] walume. | 1000

] Probabliity Walume | Engine B Voluma Wakema ‘Carreesdian fug Orsar Tatal
| B [l =Rl TVLOCHLP{RAND|SCEIE053,2) vl | (I FCREEE0GIRT) wvl |RARDY| FCALESOF0E) TFITGI"HE

4 DA ATHOON [CReAR R4 SVLOCHUSTRAND) SCRES0FS,]) =VIDOKUP|REMDLFCHIOECEIRT] VLOOKUPIRARD{LACSLESORING SFe"GA"HL

5 aAE-{SUM|A3-A4]] ATIO0D (CAsAd =g SVLODEUP{RANDY}SCE0-4055,2) aVLOOKUP|RAKD]| SCEECSDE10 Y] sVLDOKUP|RARD] SCELE-S0420T) sPetasvsiy
L TAODALPRANDLSCERSDRS Y sVLDOKUP|RAKD]LFCHIOEDRIRZ] sVLOOKUPRANDLCELESCEINT] =FE"GE"HE

T SVLOCHSRAND() SCEESEEY) SVIOORKUPRAMOILSCHIOECSIRT] =VLODKUPIRANDLICSLESORIOG =FI a1 s]

i Comsantiss SVLODHUS{RAND(} SCERE055,2) sVLDOKUP|RARD SCEEEICEINT] sWLOOKUPRARD] SCELES0EI0T) sFICGI "SI
] Prabekik Ratn | Engine B Aste SVLOCHUSRAND(), SCH84005,3) =VLOOKUPRAMD[LSCHIBSOMIS 2] VLOOKUPIRARGILSCELES0RI0T] =Fitas sl
10 a7 L =RED SUOCELSRANDLECERE0RE) -VIDORUP|RAKND]LFCHIDEORIR T —VIOOKUPRAWDF3LESCRIDG =FI0"GIO"HLE
118 BEEE [CCLSHARD =BED SVLOCHUSRANDL SCHEEDES,Y) SVLCOKUP|RAMD]LSCHIOF0SIRY) VLOOKUPRANG]LACSLESORIOY =FIL GI1"HL]
12 ad BBES [tineanl =Bi SVLOCEUS{RAND{)SCH8:4085,2) SVLOOKUP[RAMO]LSCHIO40815 2] VLOOKU RIRANGILACLEI0RI0E) =F12 012" HLD
17 mAlS-{SUBMALALZ|| DEEF (eCLISALT =ELN SVLOCHUP{RAND{}, SCEI-H04S, 2 sWLOOKUP|RARD{| SCEECICE 10 T] sVLOOKUP|RARD{| SCELES0420T] #F10°G6107 MLl
FEI] EVLOCHLS{RAND() SCFLS0H3,) vl |RA RO SOREDECH18,3] VL |RANDFCSLESOEI0E SFIA"GIA"HLA
15 SVLOCHLSTRAND() SCERECHSY) =VIDOKUP|REMDSCHIDECHIRT) VLOOKUPRAND{LACELESORING =FIS"GIS"HLE
1 Avarags Ordar SVLOCHUSRAND(), SCI8EE05,3) =VLOOKUP[RAND[LICHIBE0A1E 2] VLOOKU RIRARGILSCELES0RI0 Y] =FIE" 018" HiE
17 Prabakility Ammurt| Engine Bna Ameusk SOCEWRAND L SR SDOKUP|RanD{ kiR and) SvLDDRUPRA R AL EICRDG) SFLTT L LY
14 o7 ™ ") “ELE SVLOCHUS{RANDY), SCERH058,2) sVLOOKUP|RARD{] SCENEICE1N D] aVLOOKUP{RARD SCELE:50420,2) #F10°010°HLE
19 gas ™ ECLESALE =RIR SVLOCHLS{RANDY|SCEIE053,]) sVLOOKUP|RAMD||SCHLEEOFIAZ) =VLDOKUPIRARD{LFCSLESDRI0G =FIS"GIa LY
o7 =AR-SAMALRAIT])] 7T FCLBHALS RO SVOCHLSRANDLSCEREEES,Y) =VICORUPRAMDLSCHOECSIRT] VIOOKUPIREND{LACSLEEOAI0G =FI0GIa"HaS
i SVLOCHUSTRAND() SCIRE005,1) =VLOOKUP[REMD]LICHIDECNIR Y] VLOOKU PRANGILMELREORI0D =FH GII"H
u SVLOCALS{RAND)SCEIS05S,2) =VLOOKUP|RAKD]| SCHLOECRINT) sVLOOKUPIRARG]SCSLISDRI0T] =FIZ"GI2 2D

What you need to do
Option Explicit

Sub SalesSimulation()

Dim oRange As Range, oTable As Range, i As
Long, n As Long, sMsg As String

Set oRange = Range(''F4'"").CurrentRegion

With oRange

Set o'Table = .Offset(2, 0).Resize(.Rows.Count -

2, .Columns.Count)

End With

oTable.ClearContents

n = InputBox("How many runs (1,000 to
100,000)?", , 10000)

Set oTable = Range(Cells(3, 6), Cells(n, 9))
'oTable.Offset(0, 0).Resize(n, Columns.Count)

oTable.Columns(1).Formula =
"=VLOOKUP(RAND(),$C8$3:D5,2)"

oTable.Columns(2).Formula =
"=VLOOKUP(RAND(),C10:D13,2)"

oTable.Columns(3).Formula =
"=VLOOKUP(RAND(),C18:D20,2)"

oTable.Columns(4).Formula = "=F3*G3*H3"

Do

Application.Calculate

i=it+1

sMsg =sMsg & "Loop" &i & " ("&n&"
times): average=""

sMsg = sMsg & FormatCurrency(Range(''Q2"),
0) & vbCr

MsgBox sMsg

Loop Until MsgBox(""Run again?", vbYesNo) =

vbNo
End Sub

q - -
i
Last yaas b BEEIL huwangs Sabsi Day =ANERAGET)
Chiange this yosr 02T Whnimien Sabee Dy =MIN[H]
WAs mirvven Sbei Dy =MARJLT]
— — Probabditin e e e e et i ——
range Sale range Probabily Pt Z{BAUNTI, " BARELCOURT L)
A -0 OF =SMEDMEMEITNE] =S MENCENEITLE] o DOUKNTIF, " A |COUMTIF]H, & Rl A COUSTN Hegative ={DOURNTIIE, * «~ RARTUOOURT] H|)
3 % AIR EMEIHMETER] SHMBIHBMGITLE) (=) B4, R ORI B N EEINTI)
S L] 02 =SMITHEMITNLO] SSMEHENSEZ"LI0] [S[COUNTRS,"6e" BMLO}- COURTIRE, "< BN 10 [OOUNT]H]|
1 - 013 =HMITHEMEZELL] SEMSIHEMEZ"LIL] [SICOUNTII, 4o BMLLHCOURTR{E, < BNILGVICOUNTIIL Sahs wil sscend:
I T A1 SEMITHEIMITELZ] SSMEIAENEZTLLZ) [S[COUNTRLL, "6a" ML COURTIFI, " BN 120 ODUNT]H]| [aomar SCOUNTINE, " BFL2 o T
-0s O07 =SMETHEMETTNLT] sSMEDCENEZ"L1T] (o] COUNTILL, *dn" ALY COURTIFE, 0 SN LG TOIUNT]H]| 430000 #{DOUNTIE, »° BPLENCOUNTO S
4 e DI SMETHEMETELA] =SMEDENEZTLIA| (o] COUNTIIE, “dn" BRALA COURTIFE, "4 N IS0V TODUNTIH]|] S{OOUNTIIE, " »° EPLA OO
| 002 =SMITHEMETTNLS] =SREHEMEZTLIY| (o] COUNTEIE, " n" BMLY |- COURTIFE, * BN 180 TODUNTIH]| Lz S{COUNTIL, " BP1S |ACOUSTE
o (] =EMETHEMETNLE] =EME2 | COURTR{IE, ds" BANLE |- COURTIF, 4 BN 1B TCoUNT|H|| S{COUNTIIE, ® »° BrLs oS T
] 002 ={SMEZHEMITEL?]| =SMEDENEZ"LLT] (o] COUNTFIE, " " BAAL7}- COURTIFI, *4 BN 1T/ ICOUNT]H]| 30030 S{COUNTI, " BPLT OO
IE noe OO =SMETHEMET'ELN] sSMEWEMEZ"LIE] [s|COUNTIS, " de" BMLE}- COURTFL, " SN 1B CTUNT{H]| Saler will b under:
0 oS 007 =SMETHEMET'NIT] *SMEHENEZ"L1T] (o[COUNTEIS, " s" BALI|- COURTIFE, " BN 1S [CTUNT]H]| T S{COUNTIA, " 4" BP1 | NCOUNTIEN
o oET 01 =SMITHIMATEIN] =SMEDENMEZ LIN] (S| COUNTIE, 0" RMROH COURTIF I, "4 SN0 TODumT{H)| [AT=00 S{DOUNTI, £ BPT | Coa T
1 el 013 =SMITHEMIT'EIL] SSMEDEMEZ LIL] [S|COUNTILS, *0s" BMEL |- COURTIFL, "4 SN2 10 TO0UNTIH]| [z S{OOUNTIIE, 4" BRPTL A Cous T
F RIS 03 =EMETHEMEITEIN] =EMEIHENRILID) [={COURTEL =" RAGI - COUNTIFI L™ BRI TEDUNTL]| m S{COUNTIIA, ™ <" RFEILCCUNTI
%] OF8 =EMEMERMEIEET] ERAEENRILEN] [=ICOUNTENA, =" AR COURNTF, " BRI TESURTTN] | E:w =TCOURTIRIA " <" RETALALCNTI
4 B OR =EMEIHEMET'ED] =EMEIHERGILIA] =IWUN'|'H|l'*:’mHmUlel.'*'lNIlm"fﬂJWII||| b STOOUNTI]A " BRTAIAOUNTI NG |

Chapter 39: Exchange Rate

Fluctuations
What the simulation does

A y F F
1 Input Rate Prefit
Units Sold 100,000 0919 052 5 126.434.782.51 [r—— ; n pe=y=]
081 §1Z7,310.319.38
4 Unit price US 5 1,200.00 0584 5123,B21.167.28 s Jag i :
el Ml AT e s e P mMammm s G
£ &0 exchange rate 0.02 0.8 §121.573.008.72 5 1M S e 11843
1 i §124 337 2 fLpda5 L5 SLH 754005
0.5 5 127.063.327.04 5 TR K] 51,70, 300 17T R T
& Unit Cost 5 40.00 084 517381293139 T e R oA
0.85 5 1XL-B13.985.45
10 Tobsl Cost US . 4,000,000 095 5111451.519.42 —— -
1 [=B2*(BA/B5) | — 0.8 $121.302,297.98 L
12 Rewenue US 1!&.!3-1.]'!-? 081 S1XT, T24.324.7T6
042 5126, 061.5083.14
14 ;;.III:] 5 126,433, TELEL 035 5122.481.863.75
081 5127,387.149.02
092 §1Z7092.673.05
0,52 %176 B41 29345

The profit of a certain company depends on a fluctuating exchange rate
between the American and Australian dollar—or any other foreign currency.
The average profit we predict in cell B14 is based on a fixed exchange rate
(BS5). But in reality this rate has normally distributed fluctuations with a
Standard Deviation shown in cell B6. So we need to simulate such
variations.

This simulation is done by using a Data Table combined with repeated
calculations in arrays operating in the background. First the user is asked
how many rows the Data Table should have—by default 1,000. The Data
Table shows what the profits would be for different exchange rates.

The MsgBox displays what the average profit would be, plus the 25-
percentile and 75-percentile profit values. Then the user has a chance to run
the Data Table repeatedly. The results of each run are added to the MsgBox.
When the user decides to stop any further runs, the average and two
percentile values are calculated from all these runs. So the end result in the
above picture 1s based on 10 x 1,000 normally distributed calculations.

What you need to know

' o -
Microsaft el ﬂ'

Runs 2% Awerage %
124,522 79 5126, 851 BI5 §128 316, 762

| §1M

1 $H4,537, 101 5126 850 306 £176,300,433
3 §124,603 482 5136 456,430 5128,309 962
i 1M 617 136,500 08 L1 A9 61
5 124,401,811 5126377 681 §138 3148
[§124,630, 008 516,503 552 178 362420
! §1204 650 B8 G136, 545 13 S10 5551
a $124, 726,104 §126,579.973 5179 437 414
3 504,625,811 5126 518527 178 459,518
10 §124 629 24 S136, 847 4515 128 298 sae
mepns §L4, 526302 H126,435.7 I8 AT

I... = =

An essential part of this simulation
is the first column of the Data Table (column D). It holds this formula:
=NORMINV(RAND(),0.92,0.02)—or whatever the fixed numeric values
should be. In the macro we change these random settings from formulas to
values, so those numbers don’t keep changing while the Data Table makes
its calculations.

The column input cell of the Data Table is the exchange rate value in
cell BS.

You also should know that we need variables of the Double type for
mathematical calculations, but if we want to format them as currency, we
need variables of the String type as well.

The three arrays we use must be “redimensioned” for a new element
each time we run the loop. This is done with a ReDim statement, but make
sure you include also the Preserve keyword, otherwise the array loses its
previous contents.

What you need to do

Option Explicit

Sub ExchangeRates()

Dim oRange As Range, iRuns As Long, i As Long,
sMsg As String

Dim arrAvg() As Double, arr25() As Double,
arr75() As Double

Dim pAvg As Double, p25 As Double, p75 As
Double 'for the currencies

Dim sAvg As String, s25 As String, s75 As String
'for the formatted currencies

Range("D1").CurrentRegion.Offset(1,
0).ClearContents

iRuns = InputBox('""How many runs?", , 1000)

Range("'E2").Formula = "=B5"

Range("'F2").Formula = "=B14"

Set oRange = Range(Range("'D2"),
Range("F2").Cells(iRuns, 1))

oRange.Table , Range(''B5"")

sMsg = "Runs" & vbTab & '"25%" & vbTab &
vbTab & "Average" & vbTab & vbTab & "75%" &
vbCr

Do

oRange.Columns(1).Formula =

"=NORMINV(RAND(),B5,B%$6)"
oRange.Columns(1).Formula =
oRange.Columns(1).Value
ReDim Preserve arrAvg(i): ReDim Preserve
arr25(i): ReDim Preserve arr75(i)
arrAvg(i) =
WorksheetFunction.Average(oRange.Columns(3))
arr25(i) =
WorksheetFunction.Percentile(oRange.Columns(3),
0.25)
arr75(i) =
WorksheetFunction.Percentile(oRange.Columns(3),
0.75)
sAvg = FormatCurrency(arrAvg(i), 0)
s25 = FormatCurrency(arr25(i), 0)
s75 = FormatCurrency(arr75(i), 0)
sMsg=sMsg & i +1 & vbTab & s25 & vbTab &
sAvg & vbTab & s75 & vbCr
i=it+1
Loop Until MsgBox(sMsg & '""Run again?"',
vbYesNo) = vbNo
pAvg = WorksheetFunction.Average(arrAvg): sAvg
= FormatCurrency(pAvg, 0)
p25 = WorksheetFunction.Percentile(arr25, 0.25):
s25 = FormatCurrency(p25, 0)
p75 = WorksheetFunction.Percentile(arr75, 0.75):
s75 = FormatCurrency(p75, 0)

sMsg = sMsg & vbCr & "mean:" & vbTab & 525 &
vbTab & sAvg & vbTab & s75

MsgBox sMsg
End Sub

IV. GENETICS
Chapter 40: Shuffling Chromosomes

What the simulation does

A, B

1 "urulpluni

) 0.0000001 % chromosome|s) from one grandparent
0.0000027% R))) I
00000302 % [Microsoft Laced o el
CLODDZ111%
0.0010556% | ! | ! un min g e
QUDDA011E% I 2 1143 i
0.0120338% : 1 s oI
DLOZ92250% 1
0.0584500% . & 31 ns =
0.09TALEE 7 i T
0.1363838% JL | [2 1145 1)
0.1611808%
0.1611803%
0.1363833%
0.0974166%
0.0%84500%
DLOZIZ250%
0.0120338%
0.0040113%

0U00105565%
CLODDZ111%:
0.00003025% Ctrl + Shift + C
CUDODODIT
00000001 %

26 tetal L.0000000%:

i .
1150 2

MW~ "W B WO

probability
=]
2

(e =
= o w
=]
=
#

s
N

-
-

D.OTE += -
o & i) 15 Fatl
e of Chiamn S0

,_
[
-

R I
LB R - B B

This simulation shows what the probability is that an individual still
has chromosomes derived from one particular grandparent. Since we have
23 pairs of chromosomes, on average we have 11 or 12 chromosomes that
were handed down to us from one particular grandparent, two generations
ago—actually a 16% chance (row 13 and 14). But the outcome can vary
between 0 chromosomes or the entire set of 23 chromosomes—but these
extremes are very unlikely. Genetics, the science of inheritance of traits and
characteristics, is modeled probabilistically.

As an aside, the situation 1s much more complicated. One problem is
that chromosomes do not remain identical during the formation of
reproductive cells, but they can exchange parts between the two of a pair—
which is called crossing-over or recombination. In this simulation, we stay
clear of that issue.

What you need to know

We will also use the new function BINOM.INV in this simulation.
There is no pre-2010 version of this function, so if you use a file with this

function in 2007, you will get an error message. In Excel 2007, an
alternative would be CRITBINOM.

Cells B2:B25 hold this formula: =BINOMDIST(A2,23,0.5,0)/100.
BINOMDIST needs to know the number of “successes” (running from 0 to
23 in column A), out of 23 trials (23 chromosomes), with a 50% probability

of “success” in each trial, and with a non-cumulative setting in our case.
Make sure to divide by 100.

What you need to do
Option Explicit

Sub Chromosomes()
Dim pArr() As Double, i As Long, n As Long, sMsg
As String
Dim pAvg As Double, pMin As Double, pMax As
Double, pCount As Long
sMsg = sMsg & "run" & vbTab & "min" & vbTab
& "avg" & vbTab & "max" & vbCr
Do
Fori =0 To 100000
ReDim Preserve pArr(i)
pArr(i) = WorksheetFunction.Binom_Inv(23,
0.5, Rnd)
Next i
n=n-+1
pAvg =
FormatNumber(WorksheetFunction.Average(pArr),
2)
pMin = WorksheetFunction.Min(pArr)
pMax = WorksheetFunction.Max(pArr)
pCount = UBound(pArr)
sMsg = sMsg & n & vbTab & pMin & vbTab &
pAvg & vbTab & pMax & vbCr

Loop Until MsgBox(sMsg, vbOKCancel) =
vbCancel
End Sub

F L = -
Microsoft Excel ﬂ

_‘
E
3

in avyg rax
1151 21
11.5
11.5
11.5
1149
11.5
11.52
11.5
1151
11.5

= LD G md LA B L P

=)
PO LU LU RO LR P LR L g

REERMNEEMNER

Chapter 41: Sex Determination

What the simulation does

5 . o ; F G H
y | xy ¥ X
o< 1 ﬁ
genl KX JK_ XY s :
o Hiss gy st (<=L01T T
gend ®K :_ o =
L LS x ny
L
' gend = . =
. 4
] Xy x XX
=
L1 gend Ctrl + Shift + 5 i~
A Female descendants In calor. o
5 gen? The orlginal Y-chromosome - . —
marked. 1
7 gend = : -
S
| gend b - —
=
21 genlD - _ —
e

This sheet simulates what happens when a father (XY) and a mother
(XX) have one descendant, who has in turn another descendant, and so forth.
It 1s something like a family tree.

If the descendant is a female (XX), that cell gets marked with a color.
If the descendant still has the original Y-chromosome (Y*) from the (great-
great-grand-) father, that chromosome is marked with an asterix (*). In the
figure above, there happen to be seven female descendants, and the ancestral
Y-chromosome got already “lost” by mere chance in the first generation.

The macro asks the user first how many generations they want to
simulate (the maximum is set to 10). The macro keeps asking that question
by calling itself again, and it does so until the user hits the Cancel button of
the Inputbox. It is possible, by mere change, that the paternal X-chromosome
persists for six generations (see picture below)—or even longer.

What you need to know

One of the 23 pairs of chromosomes is called the sex-chromosome

pair. It either holds two similar chromosomes (XX) or two unalike
chromosomes (XY; Y is actually a very short chromosome). The presence of
the Y-chromosome determines maleness.

The father (XY) produces sperm cells with either an X-chromosome
(50% chance) or a Y-chromosome (50% chance). If the egg cell—which has
always one X-chromosome—is fertilized by a sperm cell with a Y-
chromosome, the descendant will be a male. So there 1s a 50% chance for
either a male or a female descendant (in reality, there is a slight difference in
chance, though).

What you need to do

Option Explicit

Sub Sex()
Dim r As Integer, ¢ As Integer, sGens As String,
0oCell As Range
sGens = InputBox("How many generations
(<=10)?",, 10, 10000, 2000)
If sGens ="" Then Exit Sub
If CInt(sGens) > 10 Then MsgBox "Not more than
10": Exit Sub
For Each oCell In Range("D3:022")
If oCell = "XX" Or oCell = "XY" Or oCell =
"XY*" Then
0Cell.ClearContents:
oCell.Interior.ColorIndex = 0
End If
Next oCell
c=3
Forr=3 To (2 * CInt(sGens) + 1) Step 2
c=c+1
Cells(r, ¢) = IIf(Rnd > 0.5, "XX", IIf(Cells(r - 2,
c - 1) — "XY*", "XY*", "XY"))
Cells(r, ¢ + 2) = Hf(Cells(r, ¢) = "XX", "XY",
"XX")

If Cells(r, ¢) = "XX" Then
Cells(r, ¢).Interior.Color = vbYellow
Else
Cells(r, c¢).Interior.ColorIndex = 0
End If
Next r
Call Sex 'the Sub calls itself again
End Sub

Xy XX
L
e -
genl Xy x M
4 oSS ——
pen Xy XX e
=
[
gend N X
gend Xy ® LA
+
geni e] W
S
H L Cirl + Shift + 5 o B S
Female descendants in color, -
1% gent The ariginal ¥-chromosome xx x XY
rmarkad. 4
gend Y MM
+
gend i x Xy
-

21 genld ¥ i v

I+

Chapter 42: Mendelian Laws

What the simulation does

A B C o [F G i 1 I K L

1| dominantA recessive a finked, recessiv [6actam 200000 |
' Aa x aa Hh x H- -
L 4 :
: [[T | . '
i @a|aalas |2a 50% #pa Aa Aa | Aa| 25% H- |H- |H-|"h-| 25% ;

Ctrl + Shift + M = :

Certain diseases, such as a particular form of dwarfism, are based on
a dominant allele (say, A). Anyone who carries such an allele (4a) is called
a heterozygote and has the disease.

Other diseases, such as cystic fibrosis, are based on a recessive allele
(say, a@). Only people with two of those alleles (aa) show the disease and is
called a homozygote. So someone can be a carrier (4a) of the disease
without showing its symptoms.

Then there are also diseases, such as a known form of hemophilia, that
are called sex-linked because they are based on a recessive allele (say, /)
located on the X-chromosome; such alleles come always to expression in
males (XY)—because there is no second chromosome to counteract it—but
in females (XX) only when both X-chromosomes have that recessive allele.

The simulation applies Mendelian laws each time for 10,000 cases.
Because of such a large sample, the results come very close to what we
would expect. Besides, the user can repeat these 10,000 runs again and
again. There will be differences, but they fluctuate within a very narrow
margin (see below). All of this is based on simple Mendelian rules.

What you need to know

7
Each run 10000x &

run Aa dom. aarec, X rec,

1 4967% MI0N MB6%
2 51.00% 25001% 2547%
3 4965% M51% M4.93%
4 944% 2502% 25.07%
5 4907% 2529% 2491%
G 1963% 2513% 25.0%
7 5018% M63I% 25.00%
B 50.4% M4.76% 25.66%

] 5017% MI¥M MR
10 d48B6% M435% MR
11 A9E7% 24T73% 24.19%
12 S0B6% 258d% 2516%
13 4954% 1500% MI%
14 4957% 2M448% ME2%
i5 48.70% 2500% 2533%

| oK - Cancel

L

This sheet simulates the chances for
passing on such an allele to the next generation. When the allele does come
to expression, it is marked with conditional formatting, Because conditional
formatting cannot distinguish between lowercase and uppercase characters
—it’s not case sensitive—we need to mark the capital with an apostrophe,
or something like it.

The first case: Parents with 4a and aa have 50% Aa children and 50%
aa children. The chance that a dominant allele (4) from such parents comes
to expression in the next generation is 50%.

The second case: The offspring of parents who are both Aa is 44
(25%), Aa (50%), and aa (25%). The chance that a recessive allele (a)
comes to expression in the next generation is 25% (aa).

The third case: The offspring of a mother with Hh and a father with H-
would be HH (25%), Hh (25%), H- (25%), and h- (25%). The chance that a
recessive, X-linked allele (#) comes to expression in the next generation is
therefore 25% (h-).

What you need to do

Option Explicit

Sub Mendel()
Dim arrDom() As Variant, arrRec() As Variant,
arrX() As Variant '3 arrays
Dim iDom As Long, iRec As Long, iX As Long, i
As Long, n As Long, sMsg As String
sMsg = "run" & vbTab & "Aa dom." & vbTab &
"aa rec." & vbTab & "X rec." & vbCr
Again:
n=n-+1
sMsg = sMsg & n & vbTab
Fori=0 To 10000
ReDim Preserve arrDom(i)
arrDom(i) = IIf(Rnd < 0.5, "'Aa"", "aa"")
If arrDom(i) = ""'Aa" Then iDom =iDom + 1
Next i
sMsg = sMsg & FormatPercent(iDom / 10000, 2) &
vbTab
Fori=0 To 10000
ReDim Preserve arrRec(i)
arrRec(i) = IIf(Rnd < 0.5, "'AA", IIf(Rnd < 0.5,
"Aa", maa"))
If arrRec(i) = '""'aa" Then iRec = iRec + 1

Next i
sMsg = sMsg & FormatPercent(iRec / 10000, 2) &
vbTab
Fori=0 To 10000
ReDim Preserve arrX(i)
arrX(i) = IIf(Rnd < 0.25, "HH", IIf(Rnd < 0.33,
"th", IIf(Rnd < 05, "H-", "'h-")))
If arrX(i) = "'h-" Then iX=iX+1
Next i
sMsg = sMsg & FormatPercent(iX / 10000, 2) &
vbCr

If MsgBox(sMsg, vbOKCancel, "Each run
10000x") = vbOK Then
iDom =0: iRec=0:iX=0
GoTo Again
End If
End Sub

Chapter 43: The Hardy-Weinberg
Law

What the simulation does

1 cumul. [type % parents olfspring
0% | aa |10%] [=2"sQRT(D2)* AAAA| AA AN AA AW [r——)
. 10% | a%a [a3x] [SRTIDY) ANAE | AN AN A'a A'a
4 53% |A'A[47x] AAaa | A A'a A'a A'a At D gemraics
[Freomapa | SR S A
B o e b T e Alalk's Al A'a Al'a aa
A'aaa | A'a A'a aa EE
] AR A'a A'a A'a A'a o
] aad'a A'a A'a aa aa
100 @333 | aa aa aa aa

A gene can carry various alleles. Let us assume there are only two
alleles, A and a. People who have two of the same alleles are homozygotes
(A4 or aa). Those who carry both alleles are heterozygotes (4a). Let us take
the example of an allele for albinism (a), which is recessive, so albinos
must be aa, whereas individuals with the genotypes A4 and Aa are not
albinos. If we know the percentage (g2) of albinos (aa), we can calculate the
frequency g of allele a, as well as the frequency p of allele A—provided
there are no other alleles—since p=1-g.

As a consequence, the frequency would be p? for the homozygotes A4
(cell D4), g2 for the homozygotes aa (cell D2), and 2pq for the heterozygotes
(in cell D3: pq for Aa and gp for aA). So if we know that aa has a frequency
of 10%, we can deduce what the frequencies are for Aa and A4 (see the
comments in those cells shown in the figure above).

What you need to know

Microsoft Excel -

After 10000 generations:
az: 40.7%
Ala: 45.9%

AAT13.4%

The Hardy-Weinberg law states that if
these genotypes would randomly mate, the frequencies would stay the same
in the next generations. We are going to simulate this with a macro. We
know, based on Mendelian laws, what the offspring would be of certain
pairs of parents (see H1:L10). The macro i1s going to randomly make these
combinations and randomly determine what their offspring would be. The
result, based on 10,000 runs, is displayed in a MsgBox. Notice how the
frequencies in the next generation are extremely close to the frequencies of
the parent generation—which is exactly what the Hardy-Weinberg law
states.

The VLOOKUP function plays an important role in this simulation. It
finds randomly the genotype of each parent and then finds randomly (with a
random number between 2 and 5) the child’s genotype in one of the 2"¢ to 5t
columns of range H:L.

If we change the frequency of aa to 40%, the next generation will

more or less keep that frequency because of random mating. Obviously, the
total of the frequencies should be 100%

What you need to do

Option Explicit

Sub HardyWeinberg()
Dim arrMales() As String, arrFemales() As String,
arrChildren() As String
Dim iHomDom As Long, iHetero As Long,
iHomRec As Long
Dim i As Long, pRec As Double, iRnd As Integer,
sMsg As String, iCount As Long
pRec = InputBox("'Frequency of aa", , 0.1)
Range(""D2") = pRec
ReDim arrMales(0 To 10000)
ReDim arrFemales(0 To 10000)
ReDim arrChildren(0 To 10000)
Fori=0 To 10000
arrMales(i) =
WorksheetFunction.VLookup(Rnd, Range(''B2:C4"),
2, 1)
arrFemales(i) =
WorksheetFunction.VLookup(Rnd, Range(''B2:C4""),
2, 1)
iRnd = WorksheetFunction.RandBetween(2, 5)
arrChildren(i) =
WorksheetFunction.VLookup(arrMales(i) &

arrFemales(i), Range('""H2:L.10"), iRnd, False)
If arrChildren(i) = "A'A'"" Then iHomDom =
iHomDom + 1
If arrChildren(i) = "A'a" Then iHetero = iHetero
+1
If arrChildren(i) = "aa" Then iHomRec =
iHomRec + 1
Next i
iCount = UBound(arrChildren)
sMsg = "After " & iCount & " generations:" &
vbCr
sMsg = sMsg & "aa: " & FormatPercent(iHomRec
/ iCount, 1) & vbCr
sMsg = sMsg & "A'a: " & FormatPercent(iHetero /
iCount, 1) & vbCr
sMsg = sMsg & "A'A": " &
FormatPercent(iHomDom / iCount, 1)
MsgBox sMsg
End Sub

Chapter 44: Genetic Drift

What the simulation does

A B J
1) a

o

2 heksla 0% A0
605 36,00 24 00k
A% | 24.00% 16.00%

i
ji
!
|
|

The Hardy-Weinberg law (see Chapter 44) states that allele
frequencies remain the same over the next generations. Even in case of a
recessive allele, it will not entirely disappear. However, by random chance,
the percentage of alleles may, and usually does, change in the next
generations. This 1s called “genetic drift.” The effect increases when the
population size decreases—the so-called “founder effect.”

The macro simulates the effect of genetic drift during 50 generations
assuming that the frequencies randomly fluctuate by a certain percentage.
The macro asks the users which “drift factor” they want to apply (by default
2% for each generation). During this ongoing process, recessive
homozygotes (aa) may eventually, by mere chance, disappear from stage, to
the advantage of the dominant homozygotes (44). This happened in the
picture above.

The macro does part of its work by temporarily using the range
D8:D108, which it deletes later. It is through this range that curves can be
plotted in a chart. Because a chart cannot display anything after its source
data are deleted, we change the chart into a picture before the macro deletes
its source data.

What you need to know

If the frequency of allele 4 is 0.6 (=p), then the frequency of allele a
must be 1-0.6 = 0.4 (=¢g)—assuming there are only two alleles for this gen.
So the frequency of genotype A4 would be p? and the frequency of genotype
aa would be ¢2. The frequency of Aa and a4 would then be 2pq.

The VBA code also uses some form of so-called Error Handling (see
Appendix). The simplest version of Error Handling is the following VBA
line: On Error Resume Next. When some error occurs, this line skips over
the line that caused the error, and executes the next line in the VBA code.
That can easily be troubling, though. That’s why it is better to use a more
robust kind of Error Handling: On Error GoTo [label]. The label is
something you chose (in our case: ErrTrap). Place that label at the end after
Exit Sub but before End Sub. Usually after the label, we place a line that is
based on the Err object, which deals with the latest error. One option is:
MsgBox Err.Description, which tells the user what the actual error was. It
is always wise to have some kind of Error Handling in every macro you
create. (I skipped this part for most macros in this book.)

What you need to do

Option Explicit

Sub Drifting()

Dim pDrift As Double, i As Long, oRange As
Range, oChart As Chart, oShape As Shape

On Error GoTo ErrTrap

pDrift = InputBox("Drift factor", , 0.02)

Set oRange = Range("'A8:A108")

oRange.Formula = "=ROW(A1)-1"

Range("B7") — "AA"

Range(''B8'"").Formula = "=C3"

Range("C7") — "Aa"

Range(''C8").Formula = "=C4+D3"

Range("D7") = "aq"

Range("D8").Formula = "=D4"

Set oRange = Range(''B9:B108")

oRange.Formula = "=NORMINV(RAND(),BS8," &
pDrift &)"

Set oRange = Range("C9", "C108")

oRange.Formula = "=IFERROR((2*SQRT(B9)*(1-
SQRT(B9)),NA())"

Set oRange = Range("'D9:D108'"")

oRange.Formula = "=IFERROR((1-
SQRT(BY))"2,NA()"

Set oRange = Range(''B7'").CurrentRegion
Set oChart = Charts.Add
oChart.SetSourceData oRange
oChart.ChartType = xIXYScatterLinesNoMarkers
Sheets(1).Select
ActiveChart.ChartArea.Copy
Sheets(2).Select
ActiveSheet.PasteSpecial Format:="Picture
(JPEG)"
Selection.ShapeRange.ScaleWidth 0.8, msoFalse
Selection.ShapeRange.ScaleHeight 0.8, msoFalse
Selection.ShapeRange.IncrementLeft 100
Selection.ShapeRange.IncrementTop 100
Application.DisplayAlerts = False
Sheets(1).Delete
oRange.Clear
Application.DisplayAlerts = True
Exit Sub
ErrTrap:
Err.Clear
End Sub

Chapter 45: Two Selective Forces

What the simulation does

'.[____p:_ _‘i‘ ns | | i o1 | [Fr" ' [] J-!‘_I‘?'i.t:
e ws | - .t S| TR T e e T Sh
III 2 - s~ # T 056 s 54 pag -3 Clr| + ift+%
2 AW om oo M ou

i pureiabion n (5 AR LT Ll
0] TG Mo LATN -
N AN W L%
E] LA AR .40
s i o i (T T ha -
L GRETH EEY 555
A W% HTE LR
bl AT R HOI% LM%
e iating nE LE T i aa
[} LA ARAEN AREDN
] HE RN IR
) LI ALArR 1XJER
o pereratines ne 0t LT ha a
[0 (A1 WOTR SR
M L% 1EITR BLETN
b 1118 ZOAR BN
pereationn onr [15= Ll fua -
1] 1Tk AT 1190
F] 1rwH aark 14,50
n 1% sk]
4% peremnsbon or oy A i Ll
"
El
*!

hegasrcios ol 3 prnoteon
5 A -

LN TLATH 640N na
LEEN. MANE TR
1 1L71% RRATE AN

It is rather common that both alleles have a selection factor working
against them; let’s designate those two factors with the symbols s and ¢. The
most well-known case 1s sickle-cell anemia. Because there is strong
selection pressure (s) against the homozygote (aa), who suffers from anemia,
we would expect allele a to disappear from the population. However, in
malaria areas it has a rather stable frequency (¢g). The explanation is that
there is also a selection pressure (¢) against the other homozygote (44), who
is more vulnerable to malaria than the other individuals, especially the
heterozygotes (Aa).

Our simulation loops through six different settings for the selective
factors s and ¢, shown in range A4:F27. The first two settings come close to
the situation for sickle-cell anemia; the first one is shown in the figure
above, where we see the frequencies of the heterozygotes increase at the
cost of both types of homozygotes.

What you need to know

G H I] O

W] K33 | 2*]3*K3|

(pa + q~2(15)) / q P =
(1-tp~2-sq~2) 1 .50 0.50 025 Dl'i
2 0.59 0.41 0.17 0.48 0.35

The columns J:N calculate frequencies for 33 generations (from row 2
to row 35). See the formulas here above. The columns D:F derive their
information from the calculations in these columns (J:N).

What you need to do

Option Explicit

Sub Selecting()
Dim i As Integer, n As Integer, oRange As Range, j
As Integer
Set oRange = Range(""'D4:F27")
Fori=1 To 24
If i Mod 4 <> 1 Then oRange.Range(Cells(i, 1),
Cells(i, 4)).ClearContents
Next i
MsgBox "This starts looping through 6 settings for
t and s."
For i =4 To 24 Step 4
Range(""E1") = Cells(i, 2)
Range("'E2") = Cells(i, 3)
Forn=1To3
Set oRange = Range(Cells(i + n, 4), Cells(i +
n, 6))
oRange.FormulaArray = "=INDEX(L2:N34,"
& Cells(i+n, 1) & ",0)"
oRange.NumberFormat = "0.00%"
oRange.Formula = oRange.Value
Next n
If MsgBox("Factor tis " & Range("E1") & "

factorsis " &

Range(""E2"), vbOKCancel) = vbCancel

Then Exit Sub
Next i
End Sub

A B E

i as | = | ar |
] = | bk | [w5 |
4 gesrations 1 [T Y aa -
5 L] L% PepAW LEl%

A TRAIR MITR LM%
7 = BLIES IETHR Li0%
4 goriations Bl nH A L L]
] u BRATE EIN% G5
o F] ELETE WLE LT
11 = ETBEN, moad nu%
17 prrsratioes BE [T) As ™
1 w PR T T Y
12] A% mork s
15 = S1L4% m 1mes
¢ gersialions [LY AA A -
17 bt] AN ek s
L] n ENC TS T

a0 LN EOas e
A pareiations i 08 A A -
n W ATE5N EEEW 3100

i IR A% 0T
= u LI SE% MOTs
24 | peearations Y] wa as ™ -
= W
. F]

u

H

[l + & AL m——
LI o B 1]

Freparniled ol § phasiypes

Em E)]
et

Ctrl + Shift + 5

- —1 *
it 1 m'.-:- ol ns-b m-' Bl
2 (A5 L] an
——
Mo fasl

Factort midl? lecior s D3

—_—
o F Tl —_—ts
— — ™
— —
10 15 1] 0

rarsbar al gessiation:

Chapter 46: Differential Fitness

What the simulation does

L]
1 El:urnul. L ‘3"- , parenty Hitness parents

a% 55 10% | | AmAA | AR A& AR AR 55 04| | dnan A AR d
10% _A._l'-\ 47% __AA_A_S AR AA AS AS AR D.?E ._I_A_.P_.E_ Al AK AS AS _”L‘V"'":' il
ST | A5 | 48N | MASE | AS AF A3 AS A5 1.0 | AASS |AS A% AS A5 | : :
100% | asan | an Aa s as | asas |an aa as as | Mg W% TR ATE
| asas | aa As as 83 | asAs [an 4t s 53 p——
| AS55 A5 AS 55 55 | ASSE |AS AS
Y | ssan | as a5 s As | ssan [As s As As
{ | 55_&5_ A5 A5 55 5% _§!A§_ AS A%

el | %858 55 55 55 5 | 5555 55 55

This simulation is similar to the previous one. Again, we assign
relative fitness factors—for instance, genotype AS (fitness factor 1 in cell
M4) is more “fit” than genotype SS (fitness factor 0.4 in cell). So gradually,
up to a certain point, the frequency of AS will increase, while the frequency
of genotype SS (sickle cell anemia, for instance) will decrease in future
generations.

All the gray cells on the sheet have formulas in it. We assume that each
combination of parents has up to 4 children each generation (columns F:I).
Most formulas are identical to the ones used in Chapter 45. The main
difference 1s that the range P2:S10 is based on the different fitness factors
for each genotype. The offspring is not only determined by Mendel’s laws
but also by the fitness of that specific genotype. That’s why certain cells
remain empty in P2:S10.

This will obviously affect frequencies in the next generation. The
simulation calculates the average frequencies of the three genotypes based
on 10,000 couples with each couple having up to 4 children. The simulation
calculates the results for the next generation and compares them with the
original frequencies in the 1% generation of the parents. It is to be expected
that there 1s a change of frequencies—but again, not always, for there is still
randomness involved. Sometimes, the effect i1s quite dramatic (see the
picture below).

Microsoft Excel &J

Frequencies for b Al AS

1st generation: 10% 47% 43%

2nd generation: 1% 41% 58%
0K

What you need to know

Only the gray cells on the sheet have formulas in it; the rest is manual
input. To mark the cells with formulas in them, conditional formatting can be
a helpful tool. Select all the cells and then use conditional formatting with
the following formula: =ISFORMULA(A1). The function ISFORMULA
came available in more recent versions of Excel.

What you need to do

Option Explicit

Sub Fitness()

Dim arrParents() As String, arrChild() As String, i
As Long, sMsg As String

Dim pFreqAA As Double, pFreqAS As Double,
pFreqSS As Double

Dim pAA As Double, pAS As Double, pSS As
Double, iCount As Long, iBlank As Long

pFreqSS = Range(''D2")

pFreqAA = Range(''D3"")

pFreqAS = Range(''D4")

sMsg = "Frequencies for" & vbTab & "SS" &
vbTab & "AA" & vbTab & "AS" & vbCr

sMsg = sMsg & "'1st generation: " & vbTab &
FormatPercent(pFreqSS, 0) & vbTab &
FormatPercent(pFreqAA, 0) & vbTab &
FormatPercent(pFreqAS, 0) & vbCr

Range("'P2:S10") =""

Range(''P2:S10").Formula = "=IF(RAND()
<VLOOKUP(G2,L2:M4,2,0),G2,"""")"

Fori=0 To 10000

ReDim Preserve arrParents(i)
ReDim Preserve arrChild(i)

arrParents(i) =
WorksheetFunction.VLookup(Rnd, Range(''B2:C4"),
2, 1) & WorksheetFunction.VLookup(Rnd,
Range(''B2:C4"), 2, 1)
arrChild(i) =
IIf(WorksheetFunction.RandBetween(0, 6) > 1,
WorksheetFunction.VLookup(arrParents(i),
Range(""'02:S10"),
WorksheetFunction.RandBetween(2, 5), False), '"")
If arrChild(i) = "AA" Then pAA=pAA+1
If arrChild(i) = "AS" Then pAS =pAS + 1
If arrChild(i) = "SS" Then pSS=pSS + 1
If arrChild(i) = "" Then iBlank = iBlank + 1
Next i
iCount = UBound(arrChild) - iBlank
sMsg = sMsg & '"2nd generation: " & vbTab &
FormatPercent(pSS /iCount, 0) & vbTab &
FormatPercent(pAA/iCount, 0) & vbTab &
FormatPercent(pAS / iCount, 0) & vbCr
'For more generations, Range(''D2") needs to be
reset to (pSS/iCount)
MsgBox sMsg
End Sub

Chapter 47: Molecular Clock

What the simulation does

R

A] [n] ; F G - I | K
1 |Comparing twa individuals with a commaon ancestor
2 |individuals 2 Ctrl + Shift + A prEye =
i mutation rateyr D.0O00001
F i ERadllE !
- S

4 unchanged 06995955 target & 5%
v mumbar of years 50000 107%

1 Instead of using a Data Table |see below] or using Solver/Goalsask

0.9999990 (.00909%8 0.9999997 0.9099096 0.9999995 0.9999094 0.99990993 (0.9959992 0.9999951|1 - mutation rate

50,000 L% 2.0 3.0% 4.0% 4.9% 5.9% 6.9% 7.8% B.B%
100,000 2.0% 4.0% .o T.8% 88K 11.6% 13.5% 15.4% 17.2%
1 150,000 L% 5.0% B.E% 11.6% 14.5% 17.7% 19.9% 12.6% 15.3%
14 200,000 4.07% 8% 11.6% 15.4% 15.0% &1.8% 26,1% 29.6% 32.9%
250,000 4.5% 0E% 14.5% 10.0% 21.5% 27.0% 312.1% 36.3% 4. 3%
300,000 5.9% 1LE% 17.2% 22.6% 27.5% 3L.9% 37.9% 42.7% A7.3%
17 350,000 E.o% 13.5% 10.5% 26.1% 32 1% 37.9% 4358 A48.8% 54.0%
18 400,000 T.B% 15.4% 2L.6% 29.6% B6.3% 42, 7% 48.8% 54.8% B0L.5%
f A58 000 8.8Y 17.3% 25.5% 31.8% £0,3% 47.3% 54.0% B0.5% B 6%
S0, 000 0.E% 19.0% IT.E% 36.3% 84.7% 51.B% 59.1% 65.9% T2.5%
550,000 10. 7% 20.B% 304% 39.5% SE.1% 56.2% 63.9% T1.2% 7B.1%

22 years ago

Genes may undergo changes, called mutations. Mutations to non-
essential portions of the DNA are useful for measuring time—the so-called
molecular clock. It is assumed that such mutations occur with a uniform
probability per unit of time in a particular portion of DNA, because they are
not exposed to selection. If P is the percentage of no-mutations in a year,
then PNis the probability of no-mutations over N years.

On average, given two individuals who had a common ancestor many
generations ago, you would expect—assuming that mutations are so rare that
it 1s very unlikely that a mutation in the same segment has occurred in two
individuals—that the percentage of segments that are mutated in one or the
other is, on average, 2(1 — PN). This is an estimate of the percentage of
segments to be found different when comparing two individuals with a
common ancestor N years ago.

This macro provides a simplified version of the technique that has
been used to locate the first common ancestors of all human beings in
evolution—the first female and the first male, so to speak. Non-essential
DNA sections can be tested for single-nucleotide-polymorphisms (SNPs,

pronounced “snips”), which are single base pair changes in DNA that occur
throughout the genome, including its “silent” DNA sections.

What you need to know

]
Microsoft Excel H-H
Fer 10% e Ferursd:
Vears sgor 100000 st rrbes 050599005
Vears ago: 250000 sk rrbe: O SOS0G0E
Vears sgo: 00000 of rabe: 09990090

h.. =

Place in cell C6: =2*(1-C4”°C5). This is the
mutation percentage after a certain numbers of years this case 50,000 years
as shown in cell C4).

Notice the following: If two individuals have a 10% difference, their
most recent common ancestor lived 100,000 years ago if the mutation rate
for those DNA segments 1s 0.9999995, but 250,000 years ago based on a
rate of 0.9999998, or even 50,000 years ago based on a rate of 0.9999999.
So small differences in mutation rate can have an enormous impact.
Apparently, the accuracy of the molecular clock depends heavily on the
accuracy of the mutation rate.

What you need to do

Option Explicit

Sub Ancestry()
Dim pTarget As Double, sTarget As String, pPerc
As Double, iStepYrs As Long
Dim iUnchanged As Long, iYrs As Double, iRate
As Double, sMsg As String
sTarget = InputBox("Percentage of DNA
difference?", , "10%"")
If Right(sTarget, 1) <> "%" Then sTarget = sTarget
& "%"
pTarget = Left(sTarget, Len(sTarget) - 1) / 100
Range("'F5") = sTarget 'OR:
FormatPercent(pTarget, 2)
iStepYrs = Range("CS")
iUnchanged = Range(""C4'") * 10000000
sMsg = "For " & sTarget & " we found:" & vbCr
ForiYrs = iStepYrs To (iStepYrs + 10 * iStepYrs)
Step iStepYrs
For iRate = (iUnchanged - 8) To iUnchanged
pPerc =2 * (1 - (iRate / 10000000) * iYrs)
If pPerc < (pTarget + 0.005) And pPerc >
(pTarget - 0.005) Then
sMsg = sMsg & "Years ago: " & iYrs &

vbTab & "at rate:

End If

Next iRate

NextiYrs

If Len(sMsg) < 25 Then sMsg = sMsg & ""No

results"

MsgBox sMsg

End Sub

" & iRate /10000000 & vbCr

A] q [E f EE
1 [Companing two indriduals with a
2 individuats 2 ctr[+ 5 ft -+ A
1 madlation ratefyr 0.000000]
4 umeharped =13 targat ¢ 5%
5 numbser of years 50000 0.55
B
A Efther using & Dats Table [ies bak
g |
0 =E*[1-L CLRRR0000 [, G90000E 0.0000997 0L 0.0099995 0.0000004
1 50000 =TABLE[TA,CE) =TABLE{CA C5) =TABLE(CS C5] =TABLE|C4,C5) =TABLEICS C5} =TABLE(CA.C
100000 =TRBLE[T4,C%) =TABLE|CA 8} =TABLE(C4 CY) =TAELE[C4,C5) =TABLE(CA C5 =TagLE[{4,
131 150000 =TABSLE|TA,CZ) =TABLE|CL C5| =TABLELCS C5] =TABLE|CA,Co) =TABLE(C4,C5) =TABLEICA.L
4 200000 =THELE[TA,CF) =TABLE{CL Co) =TABLE{CA TS| =TABLE[C4,C5) =TABLE(C4,C5] =THELE[4L
250000 =THBLE[TA,C%) =TABLE|CL CS) =TAHBLE(CA CY) =T&ELE[C4,C5) =TABLE{C4 C5] =TAILE[C4L
& 300000 =TABLE[TA,CE) =TABLE|C4 C5) =TABLEICS C5] =TABLE|C4,C5) =TABLEICS C5} =TASLE(CA.L
¢ 350000 =TRBLE[TA,CT) =TABLE{CL C5) =TAHLE(C4, C5) =TABLE|C4,C5) =TABLE{C4 C5} =TagLE(C4.C
14 400000 =THBLE[C4,C%) =TABLE{CL T8} =TABLE(CA, C8) =TAELE|C4,C5) =TABLE{C4 C5] =TaALE(C4 L
15 450000 =TABLE[CA,CS =TABLE{CS 5} =TABLE{CS O8] =TABLE[C4,C5) =TABLE(CS, 8] =TAELE(CA,C
0 S00000 =THBLE[TA,[%) =TABLE{CL C5) =TABLE(CS C5| =TRELE|CA,C5) =TABLE{C4 C5) =TASLE[C4.C
550000 sTABLE[C4,C5) =TABLE|{C4,C5) sTABLE(C4,CS) sTABLE[C4,C5) =TABLE{C4,C5] STABLE(CA,C
£ WIS MO

ey .

Chapter 48: DNA Sequencing

What the simulation does

1| _-___-_-_|l:|.m |
1 A T b e
i G Ctrl + Shift + 5
- N @300 Rt .
T A
T a | T
|
] c e[=
c |c = C r o &
C Al G G o |SES
c G & * I e e
L L] ol
A T T ™ — r [®
¢ |a & o a | e
[L= [= = [=l I--ﬂ
T A A A A A" T
I
c G o [E
A T ™ L ™ T T ™| a
A ™ ™ ™ ™ ™ ™ ™| &
T At A e A w [
5 c c c C Lo
A ™ T ™ [Eam
Micredalt Exoel bt
With 10% labeled rclestides
A T T Tewih
G C ce [- Cx6
G [[C C -
T & A oy
c G G G
T A P
G c C C Cot
C G G-
T A3
i c [at:
c . G G
[o

This is a very simple simulation of
what was done in the Human Genome Project. Today, “dideoxy sequencing”
is the method of choice to sequence very long strands of DNA. DNA is
composed of 4 different nucleotides—A, C, G, and T. The composition of a
DNA string is randomly generated in column A. It is clear that this
composition is not known yet until we use a technique in the middle section
that we are going to describe soon. The end result is shown in the columns
AQ and AR by using formulas on the sheet, but the macro also does this
work in the background and then displays the outcome in a MsgBox.

What you need to know

To determine the unknown sequence of nucleotides in a DNA section
of interest, the double-stranded DNA 1is separated into single strands

(denaturation). In the next step, a new DNA strand is made, complementary
to the template strand, by using the bacterial enzyme DNA polymerase.
During this step, A-nucleotides will be “paired” with T-nucleotides, and C-
nucleotides with G-nucleotides—they are called complementary.

Then follows a key step. In addition to the four regular single
nucleotides, the reaction mixture also contains small amounts of four
dideoxy-nucleotides which lack a group necessary for chain extension. Once
in a while—by low chance, because of its much lower concentration—a
dideoxy-nucleotide will be incorporated into the growing DNA strand
instead of the regular nucleotide. This will prevent the DNA chain from
growing further. Since each of these four special nucleotides is labeled with
a different fluorescent dye, a certain type of laser can later detect them. We
marked them with an asterix (*) in our simulation.

So DNA chains end up being very short, very long, and of every
possible length in between. The newly synthesized DNA strands are then
passed through a laser beam that excites the fluorescent dye attached to the
dideoxy-nucleotide at the end of each strand. This color is then detected by a
photocell, which feeds the information to a computer. Finally, the computer
does the rest of the work by piecing the short sequences together like a
puzzle.

What you need to do
Option Explicit

Sub Sequencing()
Dim pNoLabel As Double, i As Integer, j As
Integer, sMsg As String
Dim arrDNA() As String, arrStrand() As String,
sNucl As String, bFound As Boolean
pNoLabel = InputBox(""Choose % unlabeled
between 0.85 and 0.95", , 0.9)
If pNoLabel > 0.95 Then Exit Sub
Range(''B1'"") = pNoLabel
sMsg = "With " & FormatPercent(1 - pNoLabel, 0)
& " labeled nucleotides:" & vbCr
ReDim arrDNA(0 To 10)
Fori=0 To 10
arrDNA() =
WorksheetFunction.VLookup(WorksheetFunction.Ran
4), Range("A2:B5"), 2, 0)
sMsg = sMsg & arrDNA(I) & vbTab
ReDim arrStrand(0 To 39)
For j =0 To 39
arrStrand(j) = IIf(Rnd > Range("'B1""),
Left(WorksheetFunction.VLookup(arrDNA(),
Range("B2:C5"), 2,0),1)," ")

If arrStrand(j) <> " " Then sNucl =
arrStrand(j): bFound = True
Next j
sMsg = sMsg & Join(arrStrand) & vbTab
sMsg = sMsg & IIf(bFound, sNucl, "-") & "->"
& arrDNA(I) & vbCr
sNucl ="": bFound = False
Next i
MsgBox sMsg
End Sub

B i
1 0.9 |=1-81
S | A [™
2 C G*
3 G c*
4 T A*
! =VLOOKUP{RANDBETWEEN|1,4), 5A52:5655,2,0) |=IF{RAMD{)=5BS1,VLOOKUP{S$AT SB52:5055,2,00,"") =IF[RAND{ =IF[RAI=IF[RAI

i =NLOOKUP{RANDBETWEEN|1,4) 5A52:5655,2,0) |=IF|RAND{}>5BS1,VLOOKUP{3A8,5852:5055,2,0),"") =IF[RAND{ =IF[RAl =IF[RAI
G =VLOOKUP{RAMDBETWEEM(L,4) 5A52:50855,2,0) [=IFIRAND{)>SBSLVLOOKUR{SAD SES2:5055,2,00,") =IF[RAND] =IF[RAI=IF[RAI
10 =VLOOKUP{RANDBETWEEN|1,4),5A52:5855,2,0) |=IF(RAND{)>5B51,VLOOKUP|{5A10,5B52:5C55,2,0,™") =IF{RAND{ =IF[RAI =IF[RAI
11 =sVLOOKMUP{RAMNDBETWEEN|L4) SAS2:5R55,2,0) |=IF{RAND|{}=5BS1,VIOOKUP{SALL, SBS2:5055,2,00,"") =IF[RAND| =IF[RAI=IF[RAI

V. SCIENCE
Chapter 49: Matrix Elimination

What the simulation does

A B iC =] E F -] H K L
1 3 pquations with 3 unknown X's: ¥ =a,K, * a; + a,X; 1|

m L L] ay

o Zequations [8375 3.047] | | = [3231]

with 2 3.042] 6.183] [= [8203
! unknowns 0658 1.002
0 Jequatons | 9975 3042 -2.437 | = [9231
with 3 3042 6483 1.218] | = [az02|

11 unknowns | 2437 1.218] s.443 3.031)
L 0,896 0. TE5 06494

14 " owrs| 304 2aar zwal = | 6]

15 AOWNONS [aoaa] ess[q218] aesel = [s202

T By 2437 1216] 443 53| = [3931

1 1234 2453 8443 3453 = [asmg
1.01858 0.38285 038032 0.47534

If you need to solve equations, it can be helpful to use matrixes. This
file has a few examples of such equations. Let’s focus on the last one: four
equations with four unknown X-values. The equation uses four different
coefficients for a, as shown in matrix /4] (C14:F17). These four equations
should equate to the Y-values shown in matrix /Y] (H14:H17).

You need to determine what the four X-values must be to solve the
equations. Here's what you do. 1. Invert matrix /4] by using the multi-cell
array function MINVERSE. 2. Multiply the matrix /nv/A] with the matrix /Y]
by using the array function MMULT. 3. You could have combined both steps
by using a nested function instead: =MMULT(MINVERSE([4]),[Y]). 4. This
creates vertical array results, so to plot them horizontally you need also the
TRANSPOSE function.

So we end up with: =TRANSPOSE(MMULT(MINVERSE([A4]),[Y]))).
Thanks to this technique of matrix elimination, you can solve the equations
and find the four X-values for a, through a, in the cells C18:F18. These four
X-values make the four equations, based on the a values specified in the first
matrix, equate to the Y-values specified in the second matrix. To test the
outcome in a cell like J14, use this formula:

=C14*C18+D14*D18+E14*$ES18+F14*$F$18.

[a.a78 [2.0a2 [-2.237 [-1.234 | = [p220842
4 quations with 4 1047 CRIE] [1:218 |4.854 | = [nao@ass
wnki e 2437 11218 18443 |5.731 | = |l83088
1.234 |4.453 |.443 |-3.483 | = |as7e
4x's =TRANSPOSE(MMUI=TRANSFOSEMIUI=TRANSFOSEMMUI =TRANSFOSEMMUI

What you need to know

The VBA code applies all these formulas in the background, without
using formulas on the sheet, but be aware that they are array functions, so we
need the VBA property FormulaArray.

In addition we wused a different type of InputBox:
Application.InputBox. This kind of InputBox lets the user select manually
and directly a certain range of cells by using the mouse. If you want the
InputBox to return a range—instead of a range address or so—you must set
its last argument to the number 8. You can also include a default range
address for what the user had selected already.

What you need to do
Option Explicit

Sub MatrixElimination()

Dim oMatrixA As Range, oMatrixY As Range,
oResults As Range, sMsg As String, i As Integer

On Error GoTo ErrTrap 'Set
Tools|Options|General: Break on unhandled errors

Set oMatrixA = Application.InputBox("'Select
range of A-coefficients'", ,
Range(""C14:F17").Address, , , , , 8)

Set oMatrixY = Application.InputBox("'Select
corresponding range of Y's", ,
Range('""H14:H17").Address, , , , , 8)

Set oResults =
oMatrixA.Rows(oMatrixA.Rows.Count + 1)

oResults.FormulaArray =
"=TRANSPOSE(MMULT(MINVERSE(" &
oMatrixA.Address & ")," &

oMatrixY.Address &
"))"
sMsg = ""Results for X-values:" & vbCr
Fori =1 To oResults.Cells.Count
sMsg =sMsg & "X" & i & '":" & vbTab &
oResults.Cells(1, i) & vbCr

Next i
MsgBox sMsg
Exit Sub
ErrTrap:
MsgBox "There was an error: " & Err.Description
Err.Number =0
End Sub

i C D E F G H

1 3 equations with 3 unknown ¥'s: ¥ o= a,), + al; + &), 1
3 a, a, # a, ¥'s

4

L 2 eguations 8.375 3.042 | = 9.2
6 with 2 1.042 6,183 | = 8.202
! unknowns 0.659 1.002

E

9 3 eguations 9.375 3042 -2.437 L] 9.2
10 with 3 3.042 6,183 1.216 = 8.202
11 unknowns =2.437 1,216 B.443 = 318
12 iX's 0.896 0,765 0514 ‘e
13
l-l| & equations 8.375 3042 2437 12M| = 8.2
15 with 4 .04 6183 1.216 4654 = 8.202
16 e e -2.437 1.218 8.443 5731 = 1M
ir 1.234 4.453 8.443 =3.453| = 4.576
18 4¥'s 1.04858 0.39285 038032 047534
19

Chapter 50: Integration with
Simulation

What the simulation does

A B <
i |Ir‘hg-n-u--w-l:> Munne Cacl | Lata Run
= hiroa]
i el BT

‘ il ara
anahyt wrvs -
wmer % 2.40%

s o Orve: Imbegrad (0% + 082« Sadn:
|={Lia i e (1) Al an=Te 3 210~

f(x)

Instead of performing integration the mathematical way, you can also
use a simulation. With a large number of runs, you can get very close to the
analytic result found based on an integral. To do so, consider a circle
inscribed within a square with sides of s units. The radius of the circle
equates to s/2. Now, ten-thousand darts (F2) are randomly thrown at the
diagram and then we count the number of darts that fall inside the circle
(F3).

Although this is basically an integration problem that has an analytical
solution, we can also simulate it with a Monte Carlo technique that gives us
an approximation of the analytical integral. The advantage of using this
example 1s that we can compare the simulation result (F4) with the
analytical result (F5), telling us how close we came to the “real” solution.

What you need to know

I won’t explain this part, but the integral would be (-x3 + 10xz +
5x)dx. This formula is used in cell F5. The graph plots the analytic solution
based on columns I and J. The curve is withina 10 by 200 rectangle.

Latast Aun

throws 10000

in circle 408
simiul. araa !
wnalyt, ares i
wmor % =|Fd-F5]/F5

bkl oo e Inbegieal {23 o D02 o S
=-{ L{ A} 10~4-+{10/3)* 10~ 3+{5/2)* 10~2

.
WM M W B oW kRO X

-
[=]

1

flx]

[=-1203+10%1272+5% 12
2=13A3+ 10138245513
- 143+ 10" 18245 14
=I5A3410° (5424515
=-IEN 3+ 10" IBA2+5" 16
- [PABH 107 TS 1T
5-IE03+10°BA2+5" 18
=-1BA 3+ 107 84T 519
=-110°3+10* 110 2+5°110
=-i1iAF+10"I1103+ 8%
=-11273+10" 112" 2+5° 112

The VBA code creates an array of X’s with a random number between
0 and 10, plus an array of Y’s with a random number between 0 and 200 (so
the curve is within a 10 by 200 rectangle). Then it checks in a 3™ array
whether the “dart” is inside or outside the circle by using the integral
formula: /lf(pY(i) > -pX(@i) ~3 + 10 * pX(@i) "2 + 5 * pX(i), 0, 1). So 1 is

“in,” 0 is “Ollt_”

The simulation does all of this 10,000 times—or whatever the user
decides. After each trial, the macro shows the previous results and the new

result in a MsgBox.

What you need to do
Option Explicit

Sub Integration()
Dim i As Long, n As Long, pX() As Double, pY()
As Double, pInOut() As Integer
Dim iCount As Long, iSimulArea As Long, sMsg
As String, iLoops As Integer
n = InputBox("How many runs?", , 10000)
Do
Fori=0Ton-1
ReDim Preserve pX(i)
pX(i) = Rnd * 10 '=RAND()*10
ReDim Preserve pY(i)
pY(i) = Rnd * 200
ReDim Preserve pInOut(i)
pInOut(i) = Hf(pY (i) > -pX(i) * 3 + 10 * pX(i)
"2+5*pX(), 0, 1)
Next i
Range("F2")=n
iCount = WorksheetFunction.Sum(pInQOut)
Range("'F3") = iCount
iSimulArea = 2000 * iCount / n
Range(''F4'") = iSimulArea
MsgBox "Throws: " & n & vbCr & "in circle: "

& iCount & vbCr & "simul.area: " & iSimulArea
iLoops = iLoops + 1
sMsg = sMsg & "Loop " & iLLoops & " area: " &
vbTab & iSimulArea & vbCr
Loop Until MsgBox(sMsg & vbCr & "Keep
looping?", vbYesNo) = vbNo
End Sub

A 2 z r ; -
| [mepration with Moma el LatewtRun =l Ita

o T R fr=yus] (=)

' airreal, area W o

mnahit ses - Lisig J dona v 180

Ctrl + Shift + | amar % e T e 160

Lop B amme o v

i e -

[o thve Imtegrad [53 + N0AF + Anpin: A im

[ER EEE NG L Es RERE TR TR e g T 3 =P 1m

; =

: 1 ey [T (=]

.)

—— ¢ 5

m

S [
£ 3 1 1 . ' o

Chapter 51: Two Monte Carlo

Integrations
What the simulation does

A B C D : F G H I i K L M M

1 ¥=K | total area 150
2 under curve
4 range X o 10 sum 33368.00 Ctrl + Shift + |
5 range ¥ o 15 total 100000
& All K and ¥ values for K=Y X and ¥ under the curve
8] o R [T —— [

1 - q

'E ' o, wt #‘L I.”t_'i"l ‘ . r
£ , N ;;\g? ¥ e . & | .y o ' :‘: r e ad
MIBR T4 4 MCCH -f{':it. IRRCY P2 M SR) Ll P

This time, we discuss only two equations as an example: Y=X (on the
Ist sheet) and Y=X"2 (on the 2nd sheet), and we do so without using any
integration formula.

What you need to know

[w]

1| ¥=xn2 | towalares 1000
2 undercurve 335.01

range o - 33301 Ctrl + Shift +1
g =

o

7 K analytical outcome: XA3/3 m"ﬁ] =(C4~3/3)-(B4"3/3) |

)

L B C o E F G H I I K L] 1]

AN Y and Y vahows for Y=X'2 ¥ and Y under the curve

; =) ";‘2: ;-i{*?{i*':'-" :f :-'rz-;,":"" 120

1] w f.q. B s Weph o/ e f""ﬁﬂj . b

= "l;rzh“ﬁg:é;-: .'1;-:} : .:’"" “1 Aree urde the cunve 3308 s

'_: . *:‘hﬁ'.q"i ""-qf"-' 4 o 'J
50]

RS AR A~ o, Ea - 5
17 .l.' ;i:" ”'l.'*l-.. {:‘r "ﬁ []
18] | o f*nf: 'ﬂ'*‘l""'h'-“': wrel 'h{:)

= 3 - 'K

s Lt e

2 TEE LR SRS et Ry aect ' ﬁ" l{
2 T J"'l_ - b

R By =N 0 N R 1L, - T kel &

24 2 1 [9 1o o |] b B il+]
25

VBA generates two arrays of random X-values and random Y-values.
They are plotted in the left graph.Then another set of two arrays, according
to the formulas shown in VBA. Those two are plotted in the right graph. In a
5™ array, we assign 1’s when the two previous columns have X- and Y-

values 1n it, so we can calculate the area under the curve. All of this 1s done
100,000 times.

What you need to do

Sub Integration()
Dim pXmin As Double, pXmax As Double, pYmin
As Double, pYmax As Double
Dim oWS As Worksheet, pX() As Double, pY() As
Double, i As Long, iCount As Long
Dim pXif() As Double, pYif() As Double, pInOut()
As Double, pSum As Double
If MsgBox("Do you want to be on Sheetl1?",
vbYesNo) = vbYes Then
Sheetl.Select
Else
Sheet2.Select
End If
iCount = InputBox("How many runs?", , 100000)
Set oWS = ActiveSheet
pXmin = Range('"B4"): pXmax = Range(''C4")
pYmin = Range(""BS"): pYmax = Range("'C5")
Fori=0 To (iCount - 1)
ReDim Preserve pX(i)
pX(i) = pXmin + (pXmax - pXmin) * Rnd
ReDim Preserve pY(i)
PY(i) = pYmin + (pYmax - pYmin) * Rnd
ReDim Preserve pXif(i)
If oWS.Name = Sheetl.Name Then

pXif(i) = If(pY (i) < pX(i), pX(i), 0)
'=IF(C8<B8,B8,0)
Else
pXif(i) = Hf(pY (D) < (pX(®) * 2), pX(i), 0)
'=IF(C8<B8,B8,0)
End If
ReDim Preserve pYif(i)
pYif(i) = Hf(pXif(i) =0, 0, pY(i))
ReDim Preserve pInOut(i)
pInOut(i) = IIf(pYif(i) = 0, 0, 1)
pSum = pSum + pInOut(i)
Next i
Range("F4") = pSum
Range("'F5") = iCount
Range(''F1'") = (pXmax - pXmin) * (pYmax -
pYmin)
Range("'F2'") = Range("F1") * Range("'F4") /
Range("F5")
MsgBox "Arae under the curve: " &
FormatNumber(Range("F2'"), 2)
End Sub
The 2" sheet (Y=X"2) has a few differences with the 15¢ sheet (Y=X):

B C
1 ¥=Xn2 | total area 1000
undercurve 333.01

| range X 0 10 SUIM 33301
5 range'f =B472 =C4nd total 100000

analytical outcoma: ingfg =(C4r3/3)-|Bans 3] I

Chapter 52: Monte Carlo Approach
of Pi

What the simulation does

A B C o E F G H 1 K |

1 3.14159E Pi mean ofall: 3.14153

2
3.14240 mean 3.13460 mean 3.13520

5 3.13640 3.11760 3.13400 Ctrl + Shift +P

6 3.13520 3.12720 3.13160

T 315000 3.13120 3.15560

& 1 3.15400 3.10640 3.15640 FEEETEE B
9 3.17520 3.13240 3.14120 :

10 3.14120 3.14960 3.15280 | —————

11 3.13440 3.16240 3.09800 | '

12 3.13560 3.12400 3.14960 !

13 1 3.13880 3.11400 3.13880 | F--E|
14 1 3.13400 3.11040 3.16040 —

This simulation estimates what Pi is by using a custom (user-defined)
function PiEstimate, which has one argument: the number of times you want

to run this calculation. By default it runs two random numbers internally
10,000 times.

The function PiEstimate is used in a Sub called PiSimulation which
places that function in three columns of 1,000 rows. And then it calculates
the average of these 3,000 cells. Notice that the results in each of these cells
can vary quite a bit, but their average in E1 is rather stable.

What you need to know

Because Excel has also a PI function, we can compare its value (cell
A1) with the value we received through our simulation (E1). There are only
very minor deviations, because of the large number of runs.

Notice that the custom function has Application.Volatile not enforced.
What that line would do is recalculating the function each time something on
the sheet changes. We don’t want that here.

LV B - - N = T, (Y S T R

[y
(=]

[=pI()

3.1468

=PiEstimate(10000)
=PiEstimate{10000)
=PiEstimate(10000)
=PiEstimate(10000)
=PiEstimate(10000)
=PiEstimate(10000)

B
Pi

mean

C

mean of all:

3.1476

=PiEstimate(10000)
=PiEstimate(10000)
=PiEstimate(10000)
=PiEstimate(10000)
=PiEstimate(10000)
=PiEstimate(10000)

mean

E

=AVERAGE(AS:EL004)

3.14

=PiEstimate(10000)
=PiEstimate(10000)
=PiEstimate(10000)
=PiEstimate(10000)
=PiEstimate(10000)
=PiEstimate(10000)

What you need to do
Option Explicit

Function PiEstimate(n As Long)
Dim pRand As Double, pInside As Double, i As
Integer, pApprox As Double
Dim XRand As Double, YRand As Double, RRand
As Double
'Application.Volatile True 'recalculates whenever
anything changes on the sheet
pInside = 0
Fori=1Ton
XRand = Rnd
YRand = Rnd
RRand = XRand * 2 + YRand * 2
If (RRand <=1) Then
pInside = pInside + 1
End If
Next i
pApprox =4 * plnside / n
PiEstimate = pApprox
End Function

Sub PiSimulation()
Dim i As Integer

MsgBox "Be patient until the next MsgBox
appears"

Cells.EntireColumn.AutoFit

Cells.EntireColumn.NumberFormat = "0.00000"

Range(''Al1").Formula = "=Pi()"

Fori=1 To 6 Step 2

Range(Cells(5, i), Cells(1004, i)).Formula =
"=PiEstimate(10000)"

Cells(3,1i) =
WorksheetFunction.Average(Cells(5, i), Cells(1004,
i))

Next i
Range(""E1").Formula = "=AVERAGE(A5:E1004)"
MsgBox "Mean of 3x1,000 runs is " &
FormatNumber(Range(""E1"), 5)
End Sub

Microsoft Excel [i‘z-l

Mean of 31,000 runs is 314161

| ok |

———

Chapter 53: A Population Pyramid

What the simulation does

age razdomipe B L x AL m 2]] 0 [a0

W el msea] ses™ BB aoek a4 aMel LAa M Jeed 1AM ASH e
50-37 casl iopas| meoe lm_ps AT IS DA GBS LOAns . 1B NS apoas I
§ MHE pax M| am? CHAT O ETET MWHT MTET MM MAT IS B4 OB
- DAY M0N0 | A0 40N SIESD HDEN OB WEW EM lsm 4 Ham)| me .
b B SHSY| WA SEIAD SRISY SESD BAIST MAGM SRIW AN LA 5TAW
a5 o M| Meml ME M TRESE IDGET STV MATEE ATGM LM 13440 -
5 =0 oo ELMIT| a2a1? ERANT ERANT 104807 TEOGl STBW ADLEES MATES . 11040 111888
0 eof oie| ouios [SSUMTDRROSOITDSIT [oasms Lila wem LA hgMs nwes | e -
1o W2 cosl ceove| waooe | THONE SOVET WELANL limren iaen Rss 43 LALEMD 113717 115,08
] poaf amoor | miaon sees weom 1319W 106003 AL Rs0OM4 LILIP 11iam ssom —
Sirthzulw sardomiced [T F: 2 P < aw w1 (3T _
RS R | - I
aher W e i
o o o 000 |
nrsty
2457
- Ctrl + Shift + P I
L v
na]
34,507
a6,k
]
el

This simulation shows how a population pyramid may change over the
course of 100 years. The simulation is based on several grossly
oversimplified assumptions.

Assumption #1: The population starts at 100,000 (cell D11).

Assumption #2: The birth rate is partially randomized (row 12) and is
based on participation by everyone over 20 years old.

Assumption #3: Every age group has a certain survival value (column
B) which is subject to small fluctuations, determined by a randomize factor
(InputBox, by default 2%).

With three InputBoxes you can determine your randomize factor (by
default 0.02), the minimum birth rate (by default 0.1), and the maximum birth
rate (by default 0.4). Then the macro loops through 100 years in steps of 10
and shows the situation after that number of years.

What you need to know

The cells B16:B25 use the function HLOOKUP, which searches for a
value in the top row of a table or an array of values, and then returns a value
in the same column from a row you specify in the table or array. It has the
following syntax: HLOOKUP(value, table or array, row index number, exact

match or not). So the formula in B16 18s:
=HLOOKUP([Years],D1:N11,ROW(A2),0)., where ROW(A2), copied
down, becomes ROW(A3), etc. So it finds the number of years horizontally
in the first row of D1:N11, and then returns the 2™ cell down, 3™ cell, etc.
For 100 years, B16:B25 should be the same as N2:N11.

The cells C16:C25 calculate how far each bar in the chart should be
offset to the right, which is done with the formula: =(MAX(B16:B25)-
B16)/2.

The chart is a stacked bar chart, and plots A2:A11 against B6:B25 and
C6:C25.

What you need to do

Option Explicit

Sub Pyramid()
Dim iYears As Integer, pSurvivalFluct As Double,
pMinRate As Double, pMaxRate As Double
MsgBox "You can manually change survival rates
in the cells B2:B11"
pSurvivalFluct = InputBox(""What is the
randomize factor?'",, 0.02)
pMinRate = InputBox("Minimum birthrate', ,
0.1)
pMaxRate = InputBox(""Maximum birthrate', ,
0.4)
'iYears = InputBox("The situation after how many
years?'", , 100)
Do
Range("C2:C11").Formula =
"=NORMINV(RAND(),B2," & pSurvivalFluct & ")"
Range(""C2:C11").Formula =
Range("C2:C11").Value
Range("'D12:N12").Formula =
"=RANDBETWEEN(" & (pMinRate * 100) & "," &
(pMaxRate * 100) & '')/100"
Range("'D12:N12").Formula =

Range(''D12:N12").Value
For iYears = 10 To 100 Step 10
Range(""B15") = iYears
Range(''B16:B25").Formula =
"=HLOOKUP(" & iYears &
", D1:SNS11,ROW(A2),0)"
MsgBox "After " & iYears & " years."
Next iYears
Range(''B16:B25").Formula =
Range(''B16:B25").Value
Loop Until MsgBox("Another run?'", vbYesNo) =
vbNo
End Sub

C

1 ape reraeie 0 12 o w &0 =0

2 90100 T 171965667972 =[3"5L3 =03"5L3 ‘_—E?-‘S.'.' =F3"5L3 =G3"50 =50
0.8 0.ZAGGTIEIELIE |=Da"504 =[e" 504 BT G454 A5

4 | TO-EG 0AS035 I TRLIES =055 =D5"5C5 =E5T) =i I =55"505 =HE"SCS

3070 O HTEIEZEN 40] =Da" 506 =Da " 50 =EG" 508 =Fl" 508 =56 508 =HE"508
305 0, TATANE TR =0T =pTT =ETT =FTasT =GTRCT =HT T

T a0 0, Ta313313 A TN =0a"5CE =0a"5Ce —ER"5CE =FE"5C3 =GR “HE"D
-1 0,ESE01915 27801 S e e e et S . o) S

s | 20-30 0L L LB A Lot 1] S Lt T I { SUMI DS DS D13 105010
-7 0,95 12 18 SR =1 411 =141 f bt SFTT™SETT SRITET et
3-1D 055705 MGELR)E D00 =CLINY| CrE2 0455 'DSLET-El."-‘:FB_‘ ESFY"ESLY =ELIWN FE2:F 53] "FELT =SLIMMGERAG 59} " GE] =5 LIV HE2 H 5

Birth Fate rar e .4 035 038 [ET] iET 'ET]

Chapter 54: Predator-Prey Cycle

What the simulation does

™ . p . : i i X
kL | k2 k8 m et thess sabtings to be
1 |target * | bumter * hunter ¥ selected from randamiy
[a,0004 [T =ikl *th-k2*t*h) ekl *1)-{k2 *1*hj4t 082 00004 |;|,|;|-.I:|
Ak = B]-{k1%h| h'=[k2* " hj-[k3*hjek 0.0 00,0008 ﬂ.ﬂl!
. t l:rnlll:u ht h"‘"‘:'nf [=[$BE2=B5*C5)-[$C52°CH)+C5 | 0.4 0.0008 0.05|
T 00400005008 2 foeene -
T wa m o
3 106 C s miad
R - 8
10 [=(5AS2YB5)-[SBS2B5*CS)+B5 | i
| L-3 LTIX L -] = is - 'I u
T 114 44
-] 116 45
9 118 45
i 1zo 46
11 123 a7
12 128 in
13 127 ™
i 18 50
15 130 B
15 132 53
i 133 4
12 136 L=
19 137 57
n 159 5=
i 140 &1 R
Fr 142 &

The so-called Lotka-Volterra model, dealing specifically with the
relationship between predator and prey (or hunter and target) makes the
following simplified assumptions: The change in the prey’s numbers is given
by its own growth minus the rate at which it is preyed upon (E2). On the
other hand, the change in growth of the predator population is fueled by the
food supply, minus natural death (E3). The equations that were used are
explained on the sheet.

What you need to know

[0.04 | 0.0004 0.05]

160 job 3D [a5 i dkp

— e

— e

1354

[0.03 | 0,0006]0.06]

This simulation loops randomly through the values in 12:K4 to
determine the three settings for A2:C2. Based on these settings, it plots the
corresponding charts next to each other on a new sheet. The title of each
chart specifies what the specific three values for A2:C2 were (see also

Chapter 97).

What you need to do

Sub LotkaVolterra()
Do
Range("'A2") =
Cells(WorksheetFunction.RandBetween(2, 4), 9)
Range("'B2") =
Cells(WorksheetFunction.RandBetween(2, 4), 10)
Range("C2") =
Cells(WorksheetFunction.RandBetween(2, 4), 11)
CreateCharts 'see Sub below
Loop Until MsgBox("Loop again?", vbYesNo) =
vbNo
End Sub

Sub CreateCharts()
Dim oRange As Range, i As Integer, oChart As
Chart, sCaption As String
Dim oWS As Worksheet, bWS As Boolean, 0AS As
Worksheet
Set 0AS = ActiveSheet
For Each oWS In Worksheets
If oWS.Name = "Chart" Then bWS = True
Next oWS
If bWS = False Then
Set oWS = Worksheets.Add(, ActiveSheet):

oWS.Name = "Chart"
Else
Set oWS = Worksheets('"Chart'")
End If
0AS.Select
Set oRange = Range(""B5").CurrentRegion
Set oChart = Charts.Add
With oChart
SetSourceData oRange:
.ChartArea.Border.Weight = xIThick
.ChartType = xIXYScatterSmoothNoMarkers
.HasTitle = True:
Axes(xlCategory).MaximumScale = 500
JFullSeriesCollection(1).XValues =
JFullSeriesCollection(1).XValues
JFullSeriesCollection(2).Values =
JFullSeriesCollection(2).Values
sCaption = 0AS.Range(""A2") & "|" &
0AS.Range("B2") & "|" & 0AS.Range(""C2")
.ChartTitle.Caption = sCaption: .Location
xlLocationAsObject, oWS.Name
End With
oWS.Activate
Fori=1 To oWS.ChartObjects.Count
With oWS.ChartObjects(i)
.Width = ActiveWindow. Width * 0.4:
.Height = ActiveWindow.Height * 0.6

Left = ((i - 1) Mod oWS.ChartObjects.Count)
* ActiveWindow.Width * (.41
JJop = Int((i - 1) / oWS.ChartObjects.Count) *
150
End With
Next i
MsgBox "Here is the Chart'": 0AS.Activate
End Sub

Chapter 55: Taking Medication

What the simulation does

‘_ i
| megltis per dey | 4
h=derage | [Carl + Shift + M
t=wfenination 1
J=IF{AND{ALD=INT(5051"
d=mit of time 008 || 410} $BS1ATD<INT($B51
T h=time interval 0ot || *A10)/$RS1+5B56),8,0)
| H
[r.:hop?lld::mumratinn % ,
(10048 0 o =
1 00500 B .30 -
12 0.1000 0 01900 3
: 01500 0 01805 S
T 1. M 0 01ns E MecrooH Eawl -
| L 0.0 o 016749
[.30 L T rearmizar < pille par d
T 0.3500 0 03am Contime?
! 04000 0 n32m
1 04500 0 03042
2 o.5000] T [T
1 0.5500 E [T =5 =
1, BN 1] n.4dm
04500 0 oaeE
07000 L
07500 0 03865
08000 E 05572
0850 T e
0. %HK) 1] 0.%119
0,550 n 04861

When taking medication, we want to reach a rather steady
concentration of the medicine inside the body. The concentration rises each
time we take a pill, but then it also declines because the body metabolizes
and/or excretes it.

We simulate this process based on at least 5 parameters. The three
important ones are the number of pills a day (B1), the strength of each pill
(B3), and the elimination factor (B4). You may want to change these
variables manually to find out what the best regimen is.

What you need to know

The simplest model would be as follows: If u(?) is the concentration
of the medication in the body, then du = b f(t) dt — cu dt. In words: the
change in concentration equals (the amount of medication entering the body
at time ¢ during the period df) minus (the amount of medication leaving the
body during a small time interval df). Instead of differentiating the equation,
we use an Excel simulation.

The formula in cell B10 and down is complex and looks like this:

=IF(AND(A10>INT(B1*A10)/B1,A10<INT(B1*A10)/B1+B6),8
In VBA, we build this formula up in two pieces to keep the line more
manageable.

The formula in Cl11 and down determines the concentration at a
specific point in time: =C10+B5*(B2*B11-B3*C10).

The simulation loops through the number of pills, running from 1 to 5
pills, and another loop that builds up the cells 11 to 211 in columns A:C.

Since the 2™ loop has a Timer interval in it, we see the data and the chart
gradually building up.

What you need to do

Option Explicit

Sub Medication()
Dim n As Integer, i As Integer, pTime As Double,
sStr As String
Dim pDosage As Double, pElim As Double, pUnit
As Double, pInterv As Double
pDosage = Range(''B3"): pElim =
Range(""B4"): pUnit = Range(''B6'"): plnterv =
Range("'B7"")
For n =1 To 5 '"for number of pills
Range("B1'") =n
Range(Cells(11, 1), Cells(211, 3)).ClearContents
Fori=11 To 211

Cells(i, 1) = Cells(i - 1, 1) + pInterv

sStr ="INT(R1C2*RC[-1])/R1C2"

Cells(i, 2).FormulaR1C1 =
"=IF(AND(RC[-1]>" & sStr & ",RC][-1]<" & sStr &
"+R6C2),8,0)"

Cells(i, 2).Formula = Cells(i, 2).Value

Cells(i, 3) = Cells(i - 1, 3) + pInterv *
(pDosage * Cells(i, 2) - pElim * Cells(i - 1, 3))

pTime = Timer + 0.005

Do While Timer < pTime

DoEvents
Loop
Next i
sStr = "This is for " & n & " pills per day."
If n <5 Then
If MsgBox(sStr & vbCr & "Continue?",
vbYesNo) = vbNo Then Exit Sub
Else
MsgBox sStr
End If
Next n
End Sub

ltimn riwreal T || e)

iR iRRERERRRRRRE)

|
1
{
{

Chapter 56: The Course of an
Epidemic
What the simulation does

& -)
L| time |nmcaptile infacted racoversd diad ‘i’ dan 5

4asn 5 & a imitial ¥ suscestible: 49990 dﬂnf 1nﬂ%|
43375 1078 T Initial ¥ infacted: 5 Ctﬂ + Shift +E

arniz 31l 1.50 noa Tatal ¥ in populstian: 50000

49541 44 AR BE s 5]

4AETHAS ADETD aan 044 tresomizion rate: G305

439T46.41 I2R0T 13.54 nsa fRcovery rirle: b

4980152 s9108 L h 5] 212 dazth rata: 0.0% mn e i i e e e e
AARIAI1 1Saw LR Lo LEL]
472 TITZEE LB 08z
KIS0 SE3008 IWLDS 2043

MToA1T MOTHI APLED 4430 o
B3545 18 iFEGLAE 1TEL4 5134
15B48.86 2954088 34XS04 13037
40563 AMEROS 2HLA R7AT : T
10634 382577 #EINI7 A4 l‘l'. susoaphibie
133 3538R50 1IGRATI TIOIS \

0mo \
017 3200102 1706363 B :a
003 2EEZE0% IOLOSST 10SEIS II| """ ched ooy
\
000 2594527 I847.24 120248 5050 | J

050 2535678 2RAI3A4 18323 1l ‘\

000 Z1S15 68 2TNI0BE 184897
000 IBIL811 29SDE.ES 155404 2w
000 ITGZETD BIA13.63 LG4B.6T |
113 000 1532043 BIG0.BA 1TIATE 'Ill
130 000 LA7RESR B4GWE.29 LRIDIR 100D I
13 000 1240935 F370E.18 1E7927 Il ol

130 000 111655 SEE.09 1M1LI2
184 000 1085178 794610 18718
148 050 SS4E5E BES0L00 204742 b e

EEERUZABEEAREBHEBEE ule

=l
E2B

150 153 200 50 30

In this simple simulation, we follow the course of an epidemic (e.g.
the flu) based on certain variables in column H. In general, epidemics
follow a more or less fixed pattern. Initially only a few people get sick, but
soon the number of sick cases rises exponentially until stabilization sets in,
and more and more people have recovered.

We need some essential parameters, although they may not always be
exactly known. We will only focus on transmission rate, recovery rate, and
death rate—without going into issues such as mutation rate for the virus or
bacterium.

The model that we apply is the standard S/R model, commonly used
for many infectious diseases. The name of the model reflects the three
groups of individuals that it models: Susceptible people, Infected people,
and Recovered people. There are a number of important thresholds in this
model. Reaching, or failing to reach, these thresholds is a crucial feature of
managing the spread of infectious diseases. The system is sensitive to

certain changes and not to others, so this may give us some insight as to
when and where the problem should be attacked.

In order to make the appropriate calculations, we use the Euler’s
method, without explaining it any further. You can find it explained
elsewhere.

What you need to know

The simulation gradually fills 300 cells in each of the columns A:E
with the appropriate equations. It does this in steps, thanks to a 7imer loop.
To keep track of its progress, cell N1 is being updated during the process.
This is also done with some kind of simple progress bar in cell J8 by using
the function REPT. This function repeats a certain charcter as often as the 2"
argument indicates.

At the end of the simulation, a MsgBox reports how many people were
susceptible, infected, recovered, or died during the course of the epidemic

What you need to do
Option Explicit

Sub Epidemic()
Dim sMsg As String, pTime As Double, i As Long
Range("A3:E302").ClearContents
'If MsgBox("Are the values in column H as you
want them?", vbYesNo) = vbNo Then Exit Sub
Fori=3 To 302
Cells(i, 1).FormulaR1C1 = "=R][-1]C+R1C8"
'A2+HS1"
Cells(i, 2).FormulaR1C1 = "=R][-1]C-
(R6C8*R[-1]C*R][-1]C[1]D*R1C8"
Cells(i, 3).FormulaR1C1 = "=R|[-1]C+
(R6C8*R][-1]C[-1]*R][-1]C-R7C8*R][-1]C)*R1C8"
Cells(i, 4).FormulaR1C1 = "=R[-1]C+((1-
R8C8)*R7C8*R[-1]C[-1])*R1C8"
Cells(i, 5).FormulaR1C1 = "=R][-1]C+
(R8C8*R7C8*R|[-1]C[-2])*R1CS8"
Range(""N1") = "done " & FormatPercent(i /
302, 0)
Range("'J8'") = WorksheetFunction.Rept(">", i/
302 * 100)
Ifi/ 302 <=0.25 Then
If i Mod 5 =0 Then

pTime = Timer
Do While Timer < pTime + 1.5
DoEvents
Loop
End If
End If
Next i
sMsg = "Total recovered: " &
FormatNumber(Range(''D302"), 0) & vbCr
sMsg = sMsg & ""Total deaths: " &
FormatNumber(Range(""E302"), 0) & vbCr
sMsg = sMsg & "Total never sick: " &
FormatNumber(Range(''B302'"), 0) & vbCr
sMsg = sMsg & '""Max sick at once: " &
FormatNumber(WorksheetFunction.Max(Columns(3))
0)
MsgBox sMsg
If MsgBox("Do you want to keep the formulas on
the sheet?", vbYesNo) = vbNo Then
Range("'A3:E302").Formula =
Range(""A3:E302").Value
End If
End Sub

]

L

| [e—— infuctad P— e

da =HX =H3 o -]

3 =ATESHSL =B2-{§HSE"B2*C2|"5HSL =L+ SHEE"BI"CI-5HETCZ|*5HEL =D2+[L-5HEB|*SHET*C2]*5H5L =ERHEHEF FHETTC2|"SHEL
4 sazefMil =BI-{SHSETBICCA)IMAL SCIM{EMBE"BI CI-SHET T SHEL SORI-SHSEISHET*CHI*SHEL =EB+(SH58*SHET CAI"SHEL
S oAdeddL mBA-{SHSECBACCA)SHEL eSS B4 CA-SHET C4] SH 1 SBAH1-SHERISSHET CAI SHEL mHAe[Shea0 SHET L] SHEL
© =AS=SHd =H1$H’E"“'E"Ni wm'l!“!“’!rﬂ]"usl =D§ﬂ[b$“"|‘!“!?'ﬁ1"“’i ﬂw’“!?'ﬂr"“!i
| cAESMSL BE-{HSETBE"CE|SHSL SCEH{§HEE"BE 065 HET CEI*§HS1 DEHIL-SHSEI"SHSTEI"SHEL —EE+(SHSE*SHETCE|"5HSL
B =aTeiHil =BT-{SHSE*BTCT)"SHEL SCTH{ERSE BT CT-SHATCT] " 5HE1 SDTH{1-5H58)* SHETET]*5HEL SETHSHE SHET*CT " 5HEL
5 ANl sRA-SHSEBACCH)SNSL SCRH{SHIE B CB-SHET CB*$H81 RORHI-SHSRISHST CHI SHEL mEme(SHcSa"SHET Ca) SHE1
0 =ASeHS1 =BA-|SHEE"BI*Ca)tSHIL =C84{SHEE"BE"ES SHAT €8] L =ErE+{1-SHEE)* SHET £ SHEL =ESH{SHEETSHATH L8] SHEL

Chapter 57: Boltzmann Equation for
Sigmoidal Curves

What the simulation does

A " y " ' .
1 |vihage [Duts Beltamann Upger I Lower €1 Halfwalue’ -10,317

_-60] 0.00| 0.00672 (.OS93T 40.02583 Shopa 12,1938
b 551"—'J"| 0.02498 DUOETS3 0.00757 Miean-¥ 045526
?u-:-"-'-';-'-!-‘i Q04717 0LOFSTZ -0.00538 df 17
45:1J-nli Q05488 009752 O,00243 SE-Y , o7
-0 0.10 0.08060 012314 0.03B05 SumSgRes DLDDES]
_35/0.15 0.11668 0L15923 0.07413 Crit. T 2.10982

_ 30/0.8) 06601 Q20836 01235 cl 004255
2% 0,30 0.23074 02739 018819
gqu:@u- 0.30120 (L35384 026874

_ -15/0.40| 040515 044770 036260

17 -10/050| 0.50650 DL54505 045305 |
_4'4:.14:] 0.G0TH] OUBASSE 056477 Ctrl +Shift +8
o070 06874 0742 065TI0 N0
5020 0.77236 LUA2091 0.73581
_ 10/0.85 0.84106 (BE3S1 0.79852
15/ 0,83 088357 093112 0.84602
20(0.90) 092317 0UDGSTE O.BH062
z;_-g;i_u;! 094766 (LO9021 090513
30/ 1.00) 0.96465 100713 0.92F10

l“'. = Vi].1

This simulation deals with curves that are of the logistic, s-shaped, or
sigmoidal type, so we could use the Boltzmann equation as explained in the
figure above (where E is the independent variable in column A, and V the
half-way activity). The values in columns C:E and H are all calculated (see
figure on the next page), except for the values in H1 and H2, which are
based on an educated guess.

Something similar can be done for EC50 or IC50 determination.The
term ‘“half maximal effective concentraion” (EC50) refers to the
concentration of a drug, antibody, or toxicant which induces a response
halfway between the baseline and maximum after a specified exposure time.
It is commonly used as a measure of a drug’s effective potency. (IC50, on the
other hand, is the “half maximal inhibitory response.”)

The columns D and E calculate the confidence interval on both sides
of the curve of observed values based on cell HS (see Chapter 18).

-
e L T e —

bl LT BRTaned Valotie HEn Reganne

What you need to know

In order to get a more accurate value for the half-way value and the
slope, we need to set the Sum of Squared Residuals (H6) to a minimum,
which means that the difference between what we observed and what we
expected according to the equation is minimal.

We can do so by using Excel’s Solver tool. Make sure Solver is active
in VBA: Tools | References | Solver ON. Now the macro can call Solver.
On the screen shot to the left, cell H6 is set to a minimum by changing the
variable cells H1:H2 (the educated guesses). Since there can be several
solutions to this problem, it is wise to add some constraints—for instance,
that H1 should be between -5 and -15.

What you need to do

Option Explicit

Sub Boltzman()

Dim pHalfX As Double, pSlope As Double

Range(''C2:E20").ClearContents:
Range('""H1:H8").ClearContents

pHalfX = InputBox("Guess half-X-value for half-Y
at 0.5",, -10)

pSlope = InputBox(""Guess what the slope would
be", , 10)

Range('"H1").Formula = pHalfX:
Range(""H2").Formula = pSlope

Range('"H3").Formula = "=AVERAGE(B:B)"
'mean Y

Range(''H4"").Formula = "=COUNT(B:B)-
COUNT(H1:H2)" 'degrees of freedom

Range(""HS").FormulaArray =
"=SQRT(SUM((B2:B20-C2:C20)"2)/H4)" 'Standard
Error Y

Range('"H6").FormulaArray = "=SUM((B2:B20-
C2:C20)"2)" 'Sum Squared Residuals

Range("H7'").Formula = "=TINV(0.05,H4)"
'Critical t-value

Range('"H8").Formula = "=H7*HS" 'Confidence

Interval
Range("C2:C20").Formula = "=(1/(1+EXP((H1-
A2)/HS2)))"
Range(''D2:D20").Formula = "=C2+HS8"
Range(""E2:E20").Formula = "=C2-$§H$8"
'"Tools | References | Solver ON
SolverOkDialog "Hé6'", 2, 0, "H1:H2", 1, "GRG
Nonlinear"
End Sub

A { G
1 ‘Jnll:qe EDE“ Baoltemann Lipperi:l Lowanar ol Half-value 1-15
2 60 |0 |=[1/[1+EXP[[SHS1-AZ)/5H52)]) =C245HSE =C2-5HSE Slope 5

55 |0 |=[Lf{1EXP{|SHE1-A3)/5H52)]] =C345HSE =CI-3HEE Mean-Y =AVERAGE|B:E]
4 50 |0.05 |=[1/[1+EXP]{SHS1-A4)/5HE2]]) =C4+3HSB =C4-SH3B df =COUNT{B:B)-COUNT{H1:H2)
545 0,08 |=[1/[1+EXP({5H51-A5)/5H52]]) SC5e5HSE =C5-5H3E SE-Y =SORT(SUM((B2:B20-C2:C20)%2)/H4a] |
Boa0 |0 |={1/(1+ExXP({sHE1-A6)/5H52]]) =CEeSHER =CE-SHIB SumSqRes " =5UM|(B2:B20-C2:C2002)]
I <35 0.15 | ={1/[1+EXP{|SHS1-AT)/SHE2]]] =CT+5H58 =C7-5HS8 Crit. T =TINV|0.05,H4)
§ .30 0.8 |S{1/{1+EXP({SHS 1-A8]/5HE2]]) =CH+SHSE =CH-SH5S cl =H7*H5

Chapter 58: Interpolation

What the simulation does

1 Kogncamr. Tansorp target X 0.20

0003 25 balore 0.18) 58.20|
0003 28 after 0.25 ©8.00]
0044 33
0.8 23 coord. 1] 0.00] 67.71] _
& 0.029 38 coord. 2 0.0 6771
7| ons0 a2 coord. 3 0.20) 0.00
0.057 58 i
0OT0 B0
0,090 a9
0125 233 J
0180 58.2 2
0250 BA.O
0300 964 -
0,425 95.9
0.500 100.0

Interpolation is a process of estimating a missing value by using
existing, observed values. For example, in a graph, you might want to mark a
specific point on the curve that has not been measured; so it has to be
interpolated. The graph must be of the XY type because interpolation works
with values in between—and such values do not exist in charts carrying a
category axis.

This time the simulation 1s not done with a macro script in a Module,
but it is activated by the sheet itself when the user changes the number in cell
El. In the VBA editor, double-click the sheet in the panel to the left (see
figure below). Then you select Worksheet from the dropdown in the left top
corner followed by Change in the right top corner. This creates a Sub
Worksheet Change in your VBA code.

2 e k&
..U..m.l--mm..m. 4 Option Explicit El:.-. I
N ey |
A PE—— Private Sub Worksheet Changs({ByVal Targst As Range} I o :
- Rt iy Dim cRange As Range, vindex As Variant, viMatoh As Va [° —
B VAR YRR 11 g £
Dim wvMinX As Variant, vMinY &s Voriant, ¥Trend &s Var 20000000

What you need to know

To plot an interpolation insert in your XY-graph you need three sets of
coordinates (E5:F7) based on the observed value just before your target
value and the one just after your target value. To find these coordinates you
need three Excel functions: MATCH, INDEX, and TREND.

The function MATCH is needed to locate in which row the value of E1l
was found. MATCH has 3 arguments: what to match (E1), in which range
(column A), and with which match type 1 for an ascending list (0 for an
exact match, and -1 for a descending list). This locates the target value (E1)
in column A, by looking for the closest previous value in an ascending order
(1).

Now INDEX can find the corresponding value in the same row and in

one row farther down (+1)—that is, for column A: E2+E3; for column B:
F2:F3.

To calculate the interpolated X-value between E2 and E3, and the
interpolated Y-value between F2 and F3, we need the TREND function. It
has this syntax: TREND(2 known Y’s, two known X’s, target X). This way,
we are able to find E6:E7 and F5:F6. Cells ES and F6 should be 0 if both
axes start at 0.

What you need to do

Private Sub Worksheet Change(ByVal Target As
Range)

Dim oRange As Range, vindex As Variant, vMatch
As Variant

Dim vMinX As Variant, vMinY As Variant, vIrend
As Variant

If Target.Address <> "E1" Then Exit Sub

Set oRange = Range(Cells(2, 1),
Cells(Range("A1").CurrentRegion.Rows.Count, 2))

If Range(""E1") >=
WorksheetFunction.Max(oRange.Columns(1)) Then
Exit Sub

Range("E1:F1'").Merge

vMatch =
WorksheetFunction.Match(Range(""E1"),
oRange.Columns(1), 1)

vindex = WorksheetFunction.Index(oRange,
vMatch, 1): Range(""E2") = vindex

vindex = WorksheetFunction.Index(oRange,
vMatch, 2): Range("F2'") = vindex

vindex = WorksheetFunction.Index(oRange,
vMatch + 1, 1): Range("E3") = vindex

vindex = WorksheetFunction.Index(oRange,
vMatch + 1, 2): Range("F3'") = vindex

vMinX =

WorksheetFunction.Min(oRange.Columns(1)):
Range("ES") = vMinX

Range("E6'") = Range("E1'"): Range("E7") =
Range("E1")

vIrend =
WorksheetFunction. Trend(Range("F2:F3"),
Range("'E2:E3"), Range("'E1"))

Range("'F5'") = vIrend: Range("'F6'") = vIrend

vMinY =
WorksheetFunction.Min(oRange.Columns(2)):
Range("F7") = vMinY

If MsgBox(" A separate graph?', vbYesNo) = vbYes
Then Charting
End Sub

Sub Charting()

Dim r As Long, pMinl As Double, pMin2 As
Double, sX As String, sY As String

Dim oChart As Chart, oRange As Range

Set oRange = Range(''Al1").CurrentRegion: r=
oRange.Rows.Count

sX = Range(Cells(2, 1), Cells(r, 1)).Address: sY =
Range(Cells(2, 2), Cells(r, 2)).Address

Set oRange = Union(Range(sX), Range(sY)): Set
oChart = Charts.Add(, ActiveSheet)

With oChart

.ChartType = xIXYScatterSmooth:

SetSourceData oRange
.HasTitle = True: .HasLegend =
True:.Axes(xlCategory).HasMajorGridlines = True
Axes(xlCategory).HasMinorGridlines = True:
pMinl =
WorksheetFunction.Min(Columns(1)): pMin2 =
WorksheetFunction.Min(Columns(2))
Axes(xlValue).MinimumScale = IIf(pMin1 <
pMin2, Int(pMinl), Int(pMin2))
.Axes(xIValue).HasMinorGridlines = True
.ChartTitle.Caption = "Graph based on columns
" &
vbCr & Cells(1, 1) & " and " & Cells(1,
2) & " for X=" & Range("E1")
.SeriesCollection(1).Name = Cells(1, 1):
.SeriesCollection(2).Name = Cells(1, 2)
End With
With oChart.SeriesCollection.NewSeries
.XValues = Range(""ES:E7'"): .Values =
Range("F5:F7")
.Name = "insert": .ChartType =
xIXYScatterLines
.HasDatal.abels = True: .Datal.abels.Select
Selection.ShowCategoryName = True:
Selection.ShowValue = True
End With
oChart.SizeWithWindow = True

End Sub

Chapter 59: A Rigid Pendulum

What the simulation does

B o ey, iy Spp— i
o e e st 11 - ; -
" . oy |- g O T B it L) R [T [T 5 1]
L T R T TN Y e -
BELO*O2 L R T 1 a
s[=Hr a0y | SRR,

npremam |0

FEEET

Sheet5 has two Commandbuttons which run VBA code on Sheet5
when you click on the buttons. This way the pendulum can start swinging,
can pause swinging, or can be reset. The calculations in the background
(columns M through Z) are based on the values that can be manually set in
column B. The VBA code only regulates when the calculations are being
updated.

What you need to know

This simulation is partly borrowed from George Lungu. The major
factor involved in the equations for calculating the frequency of a pendulum
is the length of the rod or wire, provided the initial angle or amplitude of the
swing is small. The mass or weight of the bob is not a factor in the frequency
of the simple pendulum, but the acceleration of gravity is in the equation.
Knowing the length of the pendulum, you can determine its frequency. Or, 1f
you want a specific frequency, you can determine the necessary length.

The period of the motion for a pendulum is how long it takes to swing
back-and-forth, measured in seconds. Period is designated as 7. The
frequency of a pendulum is how many back-and-forth swings there are in a
second, measured in hertz. Frequency 1s usually designated as f. The period
T 1s the reciprocal of the frequency: 7=1/f and f=1/T.

The equation for the period of a simple pendulum starting at a small
angle (@) is: T=2pi*SORT(L/g) or T = 2zx\(L/g).

Notice how columns Y and Z change dramatically and quickly while
the macro runs.

K L [[] P a [5 T u W w x v z A AB
] []
] :*:-13111‘.{409:-! 0 0ENMI™ A06
go3 53 ; I S2BLGD|
=-5B8512*5B53*COS({P2)- i
55:“'-{'2 E]
BI040
0I5 | 223478 ! ; 5 0.51303
088 | -232804 108052 #45588 SATARE 137G neme =1.11+B16/7000 AX[SBS
021 | -12453 1INE1E §.4B406 12984 14846 052 111
O3 128047 SpEedE 1513 SOEBES 14075 8 LELE]
02F 0853 AGEE bIMET B0485E £ A9E04 & L ELk]
& B3 -053DH 951955 4 .5EBET R3S 15 oy 0 0513
'“f"__d"”": 033 -011488 S01653 §SETT D005 1 AGEED downtal 11 0533
036 020804 GEISE 1623 -0LOTS6E 145788 rewd2 | s
038 071336 QO4685 1ESTIE LAZHE 149502 13 0513

What you need to do

‘This code is on Sheets

Private Sub Reset Click()
Range(''B22'") = "RESET"
Range(''B16") =0

End Sub

Private Sub Release Click()
i = Range(''B16")
If Not (Range(""B22") = "ON") Then
Range("'B22'") = "ON"
Else
Range("'B22") = "PAUSE"
Exit Sub
End If
Do
If i <3000 And Range(""B22") = "ON" Then
DoEvents
i=it+1
Range(''B16") =i
If Range(''B22'") = "PAUSE" Then Exit Sub
If Range(''B22'") = "RESET" Then
Range("'B16'") = 0: Exit Sub
Else
i=0

Range("B16'") =0
End If

Loop
End Sub

What the simulation does

A simple engine and periodic functions.

24 4
20 o
16 o

IPlot of the angle of rotation of the
crankshaft vs distance from plstan
fio the center of the circle.

.06

Chapter 60: A Piston Sinusoid

12 4 y

" g 9 35 £\ ."”l.
)

2 : \ s A
14 P 606 ——%—F—1
34 320 16 42 B 4:"‘1?"" 4 8 12 18 W 3 e f— L4 Figure 1.
1F e z TE, '|| . y
17 B gr 1 \ J © David Hil
18 _ i V) :
19 1% 4 L 5L Demos with Pesitive ITmpoct
a0 586 MSF DUE-9952306

A6 4

www_mathdemos . org

a2 -20 1

23 2

24 =z frovm 0 o 380
e angle= | 333
26 I

a7 | Shap? Set bo ves

The periodic rotation of the piston-crankshaft assembly in an engine
generates a sinusoid when we plot the angle of rotation of the crankshaft
versus the distance from the piston to the center of the circle. If the radius of
the circle is changed, then the sinusoid also changes.

This file simulates the engine and the resulting sinusoid. The VBA
code runs a (the minimum distance from the piston to the top of the circle)
from 1 to 7, and the radius from 0 to 360. During each loop, the
accompanying graph nicely builds up in a timed fashion.

What you need to know

Sheetl uses equations implemented on Sheet2. The simulation is partly
borrowed from David Hill. It plots the angle of rotation of the crankshaft
versus the distance from piston to the center of the circle. Here are the
needed equations on Sheet?2.

A B C 1] E F G H I J K L M M

9 | shaft x -lhll'r'_r AL -

2 ais the minimum distance from linked call 1.2‘{' =FA+SQRT((CA+27Ch)~ 2-{F3)"2) |
3 the piston to the top of the circle wal= 'I.'.I'llﬂiii:x bot 1.mma nmnm"‘j =F4 |

4 a= i yaal= 090TS81R, |—ViOOKUP(ELWW,3

] radius s :linked cell x‘x! P(EL; WA)|

A radiuse 2 [=VLOOKUR(E1,WW,4] |

T

B rees rsin ,-/l =IF(A1D<=5ES1,E10,NA(Y) |

a ErEcE cire Irace wav radians +

degrees radians - X

(=

D copy
LY F iy mm d these
-0.0345| 5656962 19996 columns
-0.0698 | 5.667205 1.958782 5687 RADIANS(ALD) down to
0 =TF{ALD==%E%1,C1 0 0.08236 row 370
mawvmt::l M
17431 :!H&H 1.992389 B5.655635 00873268 l

. —Dnn+{1*l:s-6+c$4}'cnsmsmtc m#tz'csmmm

g i R i e

What you need to do

Option Explicit

Sub Sinusoid()
Dim i As Integer, j As Integer, pTime As Double
Range("'J27") = "no'"": Range("J27").Select
Fori=1To 7
Sheet2.Range(""C6'") =i
For j =0 To 360
Sheet2.Range("E1") =
pTime = Timer + 0.005 'Timer: secs since
midnight; pause by .005 seconds
Do While Timer < pTime
DoEvents
Calculate
If Range(''J27") = "yes" Then Exit Sub
Loop
Next j
Next i
End Sub

DO~ O Oh e L R -

D E F

Fe

4 20 16 A 4
4-20325%-

12
-16
-0

Tl

jﬁ 12 15 20 M

=i

Piot of the angle of rotation of the
crankehaf ve distance from piston

o fthe center of the circle.

162

16
164
56
164
6

s
14E
144
g

A A

[}
R

\
1
L

|
[
/
|
i
{

\
\/

fram 0 ko 360

fromi1inT

[(mngie= | 317

radurs= |

Shop? Sef o yes:

Figure 1.

& David Hill

Demos with Pagitive Impoct
MEF DUE-9982306

www mathdemos org

Ctrl + Shift + 5

Chapter 61: The Brusselator Model

What the simulation does

R B . step 11| A + x|k
s L4 step i IX+Y 9 X |k
s ! L shep M B+X S P4YK, Ctrl + Shift + O
limiw_sbep il (X o . step 4 | X * G|k
time X ¥ a
1 .
: || | || II | |
: £ I
1 cnanuuu i - | || |||||
t k:{qm]:zﬂ:.l-nn B bl IL | Ib |u
£ | o I |
-: v.l:un[[w::unl:-“ = |
h:i.'lﬂmkd‘“[rhw-lﬂr‘ _: !)
1 1=}
L M-’u‘.ﬂ.“l.|.”|"
1 | I | _-" I‘)ll|' ! 'L |J- FAF ljl (FRF
1k [:]
e B L L
g Vit 5

The Brusselator model was proposed by Prigogine and his coworkers
in 1967 at Free University of Brussels. This model was created for the
explanation of the mechanism of a Bray-Liebhafsky reaction proposed by
Bray and Liebhafsky at University of California, Berkeley. This model is
one of the oscillating reactions which can be seen in real cases.

What you need to know

The sheet has sliders that you can manually move. If you run the VBA
code instead, it loops from 35 to 100 for cell D3 (behind the control) and
from 100 to 240 for cell D4. If you want to stop the loops, type “yes” in cell
D2 (and Enter). The cells C3:C5 do not have values in them but a formula
that 1s connected to cells hidden behind the sliders.

DUZIEIY 1ABBEIL
UL 1 S4Bl

1

il o i [0 20 pac ro] w1 ‘ i ¥

1 AN bl | ¥ k2 S | ¥

i E D 14 " ' (%] # P

e ey DE © L k4 o L

]

T

4 tima K ¥ uh

L]] 1 1 a

o 1 &?IH&"\;!E]

1 T nsmme Lingam

= ¥ olmss 1 L]

o & nsam 1311?;\ _

1| =Cos{k_3"B_0"B9-]

= 2 21ee

e T 016 179380 1] J

1y ¥ O1MMT 1ETEEE

'] 3 oomem; g \: ! z | y
1 “ROH_LTA_G+k_F((RO)X"C8- | O |
o BB RS-k 4B time_step i £ —
71 1T N2PH 108

= 1) 020wl 1113 -

z 1 ANOET LIMIE e

2 18 AILIEDY a7

= TS LS P B R o |) LJ'-J : LJL-"II.:' [
= 1T Q1801 LTI A = pam =
v 1IN Al AN

= 15

= -

What you need to do

Option Explicit

Sub Oscillation()
Dim i As Integer, j As Integer, pTime As Double
Range(''D2") = "no'"": Range("D2").Select
Fori=35To 100
Range(''D3") =i
For j =100 To 240
Range(''D4") = j
pTime = Timer + 0.005 'Timer: secs since
midnight; pause by .005 seconds
Do While Timer < pTime
DoEvents
Calculate
If Range("D2") = "yes" Then Exit Sub
Loop
Next j
Next i
End Sub

T 0N LaEM
B 0JFE] HGRE

SHGHR_1A_07k 2-{(BAT I

k_F"E_D"ES-k_4"B9) time_step

L]
K3
i

=T

HEESEREER

L
LAY
L3151
L WA
L
L HTAT
LT
L ITARE
AL IMFT

Laam
1isal
1essn
190083
laEam
1wEDal
PR]
TRl
T.LusE

— |

Ctrl + Shift + O

Chapter 62: A Hawk-Dove Game

What the simulation does

M

A I i f G
1 |Frequen|:y -lHawH. Dowve Hawk Dowe benefit - cost win chance
F 1 520 1B8.0 Hawk| -20 [0 Gain 60| H-H 50% 50%
0.2 440 160 Dove | i} i Lose L] H-On 100% 0%
| 03 360 140 Injury =100 D-H Orde 100r3¢
04 280 120 Cast -10 DD SO SO
05 200 10.0
06 120 B0
07 40 ED ES5: Evolutionary Stable Strategy
0B -40 4.0 Gain X-intersect i]
101 e -12.0 20 II 0667 i '\"'\\K 1 g Sy g B acpin: UBST =
1 e | 10 0,250 i b I —
| 20 0.333 R |
| =0 0.417 ! . 1=
| % osoof = — “‘x.h'\b
15 slope 1l +2 -B0 20 | 50 0.583 [- T
16 interc. 1+2 60 20 | o 0.667 : b~ o
| 7o 0750 o 2 14 i A,
18 | =o 0,833 3 -
19 X intersect OLBET -| S0 0917
A ¥ imtersect 6.667 =#=Hrak ==l
)} avg 0,552

Game theory is the study of mathematical models of conflict and
cooperation. The name “Hawk-Dove” refers to a situation in which there is
a competition for a shared resource and the contestants can choose either
conciliation or conflict; this terminology is most commonly used in biology
and economics.

The traditional payoff matrix for the Hawk-Dove game includes the
value of the contested resource, and the cost of an escalated fight. It is
assumed that the value of the resource is less than the cost of a fight.
Sometimes the players are supposed to split the payoft equally, other times
the payoft is assumed to be zero. These values can be found in columns J, M,
and N.

A “mixed” evolutionary strategy (ESS) is where two strategies
permanently coexist. For a given set of payoffs, there will be one set of
frequencies where this mix is stable. A mixed ESS can be achieved if
individuals either play one strategy all of the time in a population where the
two strategies are at the equilibrium frequencies (for example, 60% of the
individuals always call and 40% always act as satellites), or all individuals

play a mixed strategy where each behavior in the mix is performed at the
equilibrium frequency.

What you need to know

The VBA code loops for the “gain” setting (cell J2) from 10 to 90 by
increments of 10, and displays each time an ImputBox, which can be
cancelled to stop the loop.

Unlike a MsgBox, an InputBox can be positioned on the screen
(through the 4" and 5% argument). When an Inputbox is cancelled, it returns

an empty string (*”’). So we can check for an empty string and then exit the
For-loop.

What you need to do

Option Explicit

Sub HawkDove()
Dim iGain As Integer, sMsg As String, iTrick As
String
Range("B2:B10").Formula = "=A2*§F$2+(1-
A2)*GS2"
Range("C2:C10").Formula = "=A2*F3+(1-
A2)*$GS3"
For iGain = 10 To 90 Step 10
Range("J2") = iGain
Sheetl.Calculate
sMsg = "The intersect for gain " & iGain & "
equals: " &
FormatNumber(Range(''B19"), 3)
'to position the MsgBox use an InputBox instead
iTrick = InputBox(sMsg, , '""next", 1000, 2500)
If iTrick = "" Then Exit Sub
Next iGain
Range("J2") =50
End Sub

L TR N

& 2 =l

10
11
12
13
14
15
16
1!
18

19 Wintersect | ={inter2-inter1]/[slopel-sloped]

B

frequency Hawk

0.1
0.2
0.3
.4
0.5
0.6
.7
0.2
0.3

slope1+32 | =SLOPE(E2:A10,5A52:54510)
intere. 1+ 2 =INTERCEPT[BZ:B10,5A52-5A510)

=AT*SFSRA1-AZ)"5G52
~A3*SFETA1-A3) 5652
=A8*5F520{1-08) 5652
“AS*5FSTe{1-A5) 5552
AE*SF524{1-86)"5552
=AT*SF52+[1-AT)* $G452
=AR*SF524[1-AB)"5G52
~AT*SFSTA1-AB) 652

=AL0*FPE2+(1-A10)" 5652

20 |¥ Intersect |=slope 1D 10+nter]

21
a3

L

Dharaw

=AZ*5F5 34 1-A2) " 5653
=3 EFSTe1-A3) 5653
AR SFE TN 1R8] 5633
=A5*EFSTe|1-A5) 5653
BB SFF01-A6] " 56353
=ATUSES 41 AT| 4043
=B §F T 1085633
=AU EFSTe|1-A0) 5653

=ALD*SFRIH 1-AL0]" 5653

=SLOPE|C2:010, 552 54510)
=ANTERCE PTIC2:C10,5052:-58510])

F

5]

Havwik Do
=[SM32* SIS #{[SNSTTSI54)] =5MBITRI52-0
=SMEAT SIS SNEAT 4153 ~SMES* (5152 45085)-5
Gain H-livbirsect
=B19
18 =TABLE 3]
20 =TABLE| 2]
50 =TABLE| 1]
a0 =TABLE(JZ]
50 <TABLE(12)
60 =TABLE|J2}
70 STABLE| 2]
B0 =TABLE| 12}
a0 =TABLE| 12}
avg =AVERAGE|G10:G1%

V1. BUSINESS

Chapter 63: Prognosis of Sales

What the simulation does

a I

1 |Year [Froductl

5 000 %14,002.00
53100050
§34,577.00
$41,732.00
£ 85.5652.00
458 HIA.80
$25,774.00
& 28, 840.00
4 48,257.00
5 20,560.00
L4E 50,80
$22.873.00
EIT. 21050
£ 34, 886,00
5 36,052.00
£481.0%3.00
12 014,80
$41,956.00

BHERREREEE

$24,000.43 |

Productd

$15.957.00
526984, 00
535, 5809.00
$1L.7T0.00
520,350,008
S aE 263,00
517.809.00
5 3T.915.00
$28.2T4.00
HARER. 0
LEPELER.]
$10,164.00
527.75.00
S125884.00
528,170.00
S 10.253.00
418 447,00
53690600

$17357.3

Preduced

5 16,.685.00
44,500 08
$40,504.00
53144100
545 404,08
429, 165.08
12, 06800
S 302008
517 03500
FI07E00
4140808
$41.590.00
16,65, 00
J47. 57000
$40,371.00
51559008
$234.317.08
F1a.401.00

Froducad

$19,420.00
I, TPLO0
F17490.00
$13,357.00
51343000
411,153 66
FAN,A5F 00
§43,431.00
31,434.00
F1.12500
454, p8E 00
$48,173.00
516, 523.00
§84,031.00
$15,392.00
531.E30.00
F 71,003 00
Fa7,TA1.00

$23,224.88

$19,m3112 | $1e.883.30 |

Produstd
$15,470.00
511.680.00
£31,206.00
H41,343.00
S28.587 80
L56 491.00
F20,707.00
S18137.00
Szo.817.00
5AE017.20
L% 030,80
$23,096.00
EI7. 88600
$12,205.00
H13,361.00
£1%. 14880
L15 999.00
526,A12.00

Productd

$29.271.00
520209, 00
£38188.00
$11.543.00
5 16.507.00
$aF 1T 00
$35.706.00
3T 589,00
SITama.m
SANERE. M
FELEEEN.]
$13,480.00
H2RETI.00
£35.214.00
$25.063.00
83T 32100
$1F 814,00
$47.500.00

Preduet?

$33,158.00
FALTST.00
54605000
I1Z.1M5.00
SI5IT0 08
$43,424.00
$44,190.00
FISATEOS
3880800
ERERFCA S
43,380 08
SITALT.00
FITFLL00
S4057400
5 16.607.00
53819808
$1i881.08
FI7A84.00

Productk

£31,795.00
AL IE 00
§43,106.00
5B, 36200
B4}, (a0 00
& 34, i 00
£137.040.00
509600
514,676.00
FERLS00
1,440 00
£ T4,683.00
1631100
5 55, E45.00
547, 30000
S3E,135.00
19, k1900
§37,8907.00

Producd
4§32, 59400
51647180
S26,141.00
$30,011.00
£15.60.80
458 48500
S a1, 30620
586,507 .00
$13,280.00
510.530.00
£33 20080
$a3,981.00
£25, 139,00
La3,120.00
515, 746.00
S 18.034.00
42065100
$15.561.00

$21,437.04 | 525,483.00 | $23,607.91 | $20,042.28 |

K

Productid

$15,212.00
SR TLS, 0
$26.752.00
$A06T1.00
S4F20L.00
437 180,00
54148100
545406500
$31.470.00
51T IE.M
LELEEN
$28.795.00
S20069,00
36 452.00
16T
544 9. (]
445 514,00
FLAS16.00

%24, 40848

SALIT0.E9

5 6. 60 B7

FILESLET | SH.QLEE

£ 95,8308

S34 55404

499, 708.23 | 552 S30.00

§1.800.16

SI00E7.14 | $32.580.00 | 53069151 | $37.058.43

SLA6.8

558, 106,55

535 96273 | S30.524.89 | §57,75110 | §34,141.07

540285, 14

Ctrl + Shift + P

This is basically a simple simulation. It gives a prognosis for each
product based on its previous performance. It assumes that each product will
sell next year according to a random distribution based on the average of
pervious years’ sales and the standard deviation of those sales. It does so
with the Excel function NORMINV. The simulation also plots the 25" and
75% percentile. Obviously, results will vary, but using a high number of
loops (10,000) limits fluctuations.

What you need to know

The simulation loops slowly through each product, from B through K,
thanks to a Timer interval. It shows progress by assigning a color to each
finished cell of averages in row 22.

21 18%| §24.821.52

$17,682.12 | $18,075.07

§20,081.51 | §16,766.18

§21,402.10 | 52543522

525,550.75 [$15.897.24

$24,569.36 |

77 mean $32404,11

§26,173.45 | 53140504

$28,606.02 | 523.746.73

§28,469.50 $32.511.78

1 75%| $39,957.69

%34,632.37 | §39,676.89

£37,365.56 | $30,803,74

§35,471.54 | $39,500.88

537,779.70 | $34,394.44

§32.374.05
540,410,39

24

| 20
Z1 | 16%

$24,83.07

$18,111.55

§23,437.53

$19,919.97

§16,712.92

521,402,190

$25,435.22

525,350,758

§19,897.24

524,369,36

| 77 mwan

532,404.24

§126,310.68

531,462.79

518,388.94

513.753.12

4§ 28,469.50

$31.521.76

§31,602.60

517,187.55

§32,374.05

|43 75%

$39,947.12

534,462.31

$39,774.35

537,116.02

$30,726.30

535,471.54

$39,509.88

§37,772.70

534,394.44

540,410,339

20
21 5%

2428511 | $17,718.35 |

§21,284.68

21 mear

532, 50084

526,151.29

$51,448.97

528,541.91

435,847.46

§28,478.00

23| 1%

§99,871.83

$534,879.76

§50,619.97

537,208,253

4 31,050.86

535, 612.20

24

What you need to do
Option Explicit

Sub Prognosis()
Dim r As Long, ¢ As Integer, oRange As Range, i
As Long, iTime As Long
Dim pAvg As Double, pSD As Double, arrRuns() As
Double
MsgBox "Prognosis per column based on 10,000
iterations."
With Range("A1").CurrentRegion
.Rows(.Rows.Count + 3).Interior.Color =
vbWhite
r = .Rows.Count
For ¢ = 2 To .Columns.Count
PAvVg =
WorksheetFunction.Average(.Columns(c))
pSD =
WorksheetFunction.StDev(.Columns(c))
ReDim arrRuns(0 To 9999)
For i =0 To 9999
arrRuns(i) =
WorksheetFunction.Norm_Inv(Rnd, pAvg, pSD)
Next i
iTime = Timer + 1

Do Until Timer > iTime
DoEvents
Loop
LCells(r + 2, ¢) =
WorksheetFunction.Percentile(arrRuns, 0.25)
Cells(r+ 3, ¢) =
WorksheetFunction.Average(arrRuns)
Cells(r+ 4, ¢) =
WorksheetFunction.Percentile(arrRuns, 0.75)
With .Cells(r + 3, c¢).Interior
If .Color = vbYellow Then .Color = vbWhite
Else .Color = vbYellow
End With
Next ¢
End With
End Sub

Chapter 64: Cycle Percentiles

What the simulation does

P 0 i : F
Sunday Mondiy Tussday Wednesday Thursday Friday Saturday

d lan $21,156.00 £17,7M8.00 $16,921.00
1 |Feb 518,562.00 524,043.00 524,310.00 520,154.00

4 Mar 5 16,676.00 $21,121.00
5 Apr 51BA5LD0
i May 51775600 518,157.00 % 20,0594.00 £24807.00 $23.797.00

T |lun 524.290.00 52450500 522.918.00 | | 523.007.00 | Mraat: i i
i jul £22,584.00 $24,846.00
Aug 518,000.00 §21,737.00
1} Sap 51849500 518978.00
11 ot S16,808.00 $17,393,00 = —
12 Mow $17,420.00 §23,347.00 ——

17 Dec SI0B9R.00 524,152.00 519.505.00 523,232.00 5 16,429.00
14

This is a simple macro to show the user during a nice cycle of views
what the best or worst sales were—in which months and on which days.

The macro does so by cycling through percentile views in steps of 10.
It allows the user to specify whether to go up from the 10™ to 90™ percentile,
or down from the 90™ percentile to the 10" percentile. It also calculates the
total amount of sales for each percentile view.

What you need to know

There is nothing really new in this VBA code. Based on a Boolean
variable, set through a MsgBox, the cycle goes either up or down.

For the percentile scores, we used the Excel function PERCENTILE.
This function works in all Excel versions. In version 2010 and later, it can
be replaced with PERCENTILE.EXC or PERCENTILE. INC. The former
function does not include k=1, whereas the latter one does. So the latter one
is equivalent to the older function PERCENTILE.

Depending on the percentile step, certain numbers are “hidden” by
assigning a white font. This 1s done by adding to the collection of
FormatConditions. To prevent that these pile up, we delete all
FormatConditions in the range of sales figures at the end.

To make everything work properly, the macro also needs to “play”
with ScreenUpdating settings.

[T A R

o™

o =]

P g
R

3 B
Sunday

lan $21,156.00

Feb 512,750,00

Mar 513,695.00

Apr $18,45L00

May 51775600

[n 524,290.00

Jul 51051500
Aug §18,010.00
Sep 5 9,515.00
Oct 5 6217.00
Mov $12394.00
Dec 52089800

C
Moniday

£ 8,310.00
§14,758.00
§ B,005.00
4 69600
$18,157.00
§29,505.00
$ 5,017.00
$12 663,00
$18,495.00
% 5,125.00
£15,879.00
524,152.00

1]
Tuesday

£ 13 602,00
518,562.00
516,676.00
$ 6,513.00
§ 9,004.00
522,315.00
$22,584.00
$15 648,00
$18,978.00
5 5,168.00
5§11 605,00
5149,505.00

E i F

Wednesday Thursday

514,363.00 $13573.00
§10,273.00 524,043.00
$14,154.00 5 6,036.00
S BA5.00 510,611.00

=

Friday
£17,775.00
514,310.00
$21,121.00
512,655.00

S20,004.00 513,731.00 534,807.00
$13,960.00 m $12,111.00

£10,133.00 % 24,846.00
§ 745400 %12,420.00
$14,235.00 515345.00
$16,808.00 §17,393.00
£17,420.00 § 7,623.00
5233,232.00 5 841400

515,429.00
$12,6159.00
$16,216.00
£14,B06.00
£11,010.00
5 9,733.00

H
Saturday

£16,921.00
520,154.00
5 5724.00
515,348.00
$23,797.00
523,007.00
§ 9,445.00
£21 787,00
511,548.00
§ 9,839.00
523,347.00
516,429.00

] K L

Ctrl + Shift + P

What you need to do
Option Explicit

Sub PercentileUpOrDown()
Dim oRange As Range, oFormat As
FormatCondition
Dim bDown As Boolean, i As Integer, iPerc As
Integer, pPerc As Double, sMsg As String
If ActiveSheet.Name <> Sheetl.Name Then Exit
Sub
Set oRange = Range(""Al1").CurrentRegion
Set oRange = oRange.Offset(1,
1).Resize(oRange.Rows.Count - 1,
oRange.Columns.Count - 1)
If MsgBox("Go Down? (No = Go Up)", vbYesNo) =
vbYes Then bDown = True: iPerc = 100
Fori=1To9
Application.ScreenUpdating = False
If bDown Then iPerc = iPerc - 10 Else iPerc =
iPerc + 10
pPerc =
WorksheetFunction.Percentile Exc(oRange, iPerc /
100)
Set oFormat =
oRange.FormatConditions.Add(xlExpression,

xlIFormula, '"=B2<" & pPerc) 'not Al
Application.ScreenUpdating = True
oFormat.Font.Color = vbWhite '.Interior.Color
= RGB(0, 0, 0) with max of 255
sMsg = ""Above the " & iPerc & "th percentile: "
& FormatCurrency(pPerc) & vbCr & '"Next?"
If MsgBox(sMsg, vbOKCancel) = vbCancel
Theni=9
Application.ScreenUpdating = False
oRange.FormatConditions.Delete
Application.ScreenUpdating = True
Next i
End Sub

Chapter 65: Cost Estimates

What the simulation does

B B L D E I G H I
1 |Time (Secs) Annual Cost Monthly Volume Monthly cost |
z 120 200000 10000 adjust AZ2:C3 S
3 240, 300000/ 12000 manually Ctrl + Shift + C
4 210.22 § 215,563 11,269.40 5 3,928,264,400
5 17962 § 259,889 11,063.11 $3,972,533,173
£ 180,06 & 262,164 10,770.73 53,911,129,666
7 20263 5 265,317 10,486.27 54,336,539,291 Wicrasott Excel [
& 181.98 5 272,186 10,741.20 54,092,528,916
1 199.79 & 257,961 11,290.24 54,475,930,758 Afer 10,000 x 120 uns of manthly costs
the Jih peroentile = S2calniz 15T
10 22412 5 273,949 11,396.18 55,382,236,284 the 93th percentie & £4.074.901 61158
11 236.29 5 250,139 11,691.60 55315561388
12 14095 5 226,396 10,215.83 5 2,667,783,686 o]
| 195.53 & 281,656 11,444.80 54848321336
14 143.05 & 273.878 10,570.59 53,185,708,528
236.06 5 268,810 10,718.84 %5,232,131,696
16 177.78 & 228924 10,565.25 % 3,307,569,043
17 17211 5 262,873 10,873.77 $3,784,402,517
18 126.35 & 245,648 10,908.49 5 2,604,401,970
15 16543 § 234,815 11,498.62 $3,435.962,377
20 153.08 5 232,416 10,814.71 §2,577,249,305

The cells A2:C3 are based on manual input, with the low estimates in
row 2 and the high estimates in row 3.

For each of the columns A, B, and C, we simulate normally distributed
values with a mean between low (row 2) and high (row 3) as well as a
standard deviation of 2 units on either side. On the sheet, we use only 100
repeats up to row 103—which is rather risky. Column D calculates the
monthly costs for each case.

To reduce the risk of estimating costs, the macro repeats these 100
steps some 10,000 times by storing the results for each run in arrays. Arrays
work very swiftly and make our estimates less subject to random
fluctuations.

At the end of the macro, a MsgBox displays the 5™ and 95" percentile
for these 1,000,000 projections. A new run of the macro will yield different
results, but they differ only slightly.

What you need to know

[E SR |

I F SR

] € D

|1‘1rr|-! [Becs) I.lur:!'u.ql Cost .anml_r.\'nll.l'ru Ilnmﬂ& Cost
iy R (R0 adjust AZ:E3 manualiy
240 | 3poman | 12000

SHORMIMV[FAND], SUM{ASZ:AS3NZ [MAKIAS2:AS3|-MINIASZ-AS3 1)
ENORMIMRUANDY, SUM|AS2-AS T2 [MANIASZ:AS |- MIN|AS 2 A5 |)d)
=NORMIN[RAND), SN AS2-ASIY2 [MAK|AL2:-ASI|-MIN|AS2-AS1|)14)
=NORMINYIRAND], SUM{ASZ:-ASINZ IMAKIASZ:ASI - MINAS T ASI|14)
SNORMINV{FANDY, SUNAS2-ASINZ [MAXIASZ:AS3|- MINIAS T AS 3 |1id)
=NORMIB FUANDY), SUM{AS 2 AS 32, [MANIAS2:ASS|-MINAS 2 AS3|)d)

=HOR MUK RN, SUM{BS2:E =NORMINY[RAND]], SUM{CE2 =a4/130*Ba*Ca
=NORMINY[RAND(], SUM{BS 2B =NORMINY[RAND{], SUM{CS2 =AS 130" B5"CS
sNORMINY]RAND(], SUM{BS2:B =NORMINY[RAND|{], SUM{C32 =86/ 120*B6*C6
=HNORMINYRAND{], SUM{BS2:E =NORMINY[RAND{] SUMCS2 =AT/13:0*BTC7
=NORMINA R M|] SUM{BS 2B =N ORMIBVRAND{], SUM{CS2 =00/ 130*BE* C
=NORMINY[RANG[], SUM{BS2:B =NORMINY[RAND(], SUM{CE2 =A%/ 130*BS*CO

What you need to do

Option Explicit

Sub Costs()
Dim i As Long, dSPerc As Double, d95Perc As
Double, sMsg As String
Dim arr5Perc() As Double, arr95Perc() As Double
With Range("A4:D103")
.ClearContents
MsgBox "First normally distributed random
calculations:"
Application.Calculation = xlCalculationManual
.Columns(1).Formula =
"=NORMINV(RAND(),SUM(A$2:A8$3)/2,
(MAX(A$2:A%$3)-MIN(A$2:A8$3))/4)"
.Columns(2).Formula =
"=NORMINV(RAND(),SUM(B$2:B$3)/2,
(MAX(B$2:B$3)-MIN(B$2:B$3))/4)"
.Columns(3).Formula =
"=NORMINV(RAND(),SUM(C$2:C$3)/2,
(MAX(C$2:C$3)-MIN(CS$2:CS$3))/4)"
.Columns(4).Formula = '""=A4/130*B4*(C4"
MsgBox "Now follow 10,000 runs with arrays:"
ReDim arrSPerc(0 To 9999): ReDim arr95Perc(0
To 9999)

Fori= 0 To 9999
.Calculate
arrSPerc(i) =
WorksheetFunction.Percentile(.Columns(4), 0.05)
arr95Perc(i) =
WorksheetFunction.Percentile(.Columns(4), 0.95)
Next i
End With
d5Perc = WorksheetFunction.Average(arrSPerc)
d95Perc = WorksheetFunction.Average(arr95Perc)
sMsg = "After 10,000 x 100 runs of monthly costs:"
& vbCr
sMsg = sMsg & '""the Sth percentile is:" & vbTab &
vbTab
sMsg = sMsg & FormatCurrency(d5Perc, 2) &
vbCr & "the 95th percentile is:"
sMsg = sMsg & vbTab &
FormatCurrency(d95Perc, 2)
MsgBox sMsg
End Sub

A B c]
Time (Secs) |Annual Cost Monthly Volume | Monthly cost
120 200000 10000 adjust A2:C3
240 300000 12000 manually
140,10 § 262,519 11,286.60 $3,193,069,216
21057 5 236,562 12,311.95 %4,717,623,339
165.30 5 252,137 10,663.90 &§3,418,857,122
17B.65 5 226,212 11,669.60 % 3,627,607,932
16143 § 240,053 11,106.80 5 3,310,862,276
203.06 § 220,358 10,668.50 $3,672,153,381
20360 § 237,088 4,811.33 % 3,644,801,749
13652 5 251,841 12,033 68 53,182,497,973
19149 5 263,496 10,951.46 5 4,250,613,908
19014 5 224,615 9,969.40 3% 3,430,290,437

F G H
Ctrl + Shift + C
Micrascft Excel o
Ao 10,000 5 100 rgnv of menthly come
tha Sth parcentile ix 2647, 268 43500
the B5th pescentile b £2,078.008 457 58
=]

Chapter 66: A Filtering Table

What the simulation does

A i C D | | G H] J K
1 |Product Menth Cost Sold Total no spaces in |
2 Lime January % 036 946 5 331.10 header names!
i Diet Lime January § 0.35 T62 § 266.70
4 Orange January § 036 224 § Ta4D
5 Diet Orange January $ 0.35 95 § 325
6 Kiwl January % 036 716 § 260.26 $3504.90 January February March
7 Diet Kiwi January § 0.35 506 § 17710 Limea 53M.10 531850 S5294.00
I Apple Japuary $ 0.36 364 5§ 12390 Diet Lime S$266.70 53290 $154.70
9 Diet Apple January § 0.35 542 5 18970 Crange 5000 §$32410 514315
100 Lime February % 0.36 910 § 318.50 Diet Orange $0.00 5164.85 $0.00
11 Diet Lime Februery % 0.5 894 § M2890 Kiwd §260.25 §172.55 $0.00
12 Orange February % 0.356 926 § 324.10 Diet Kiwi £177.10 §0.00 $0.00
13 Diet Orange February $ 0.35 471 § 164.85 Apple $0.00 $0.00 $5211.05
14 Kiwi February $% 0.35 493 § 1725656 Diet Apple §189.70 $0.00 $194.25
15 Diet Kiwi February % 035 276 § 966D
16 Apple February $ 0.35 45 § 1675
{7 Diet Apple February % 0.35 01 5 10535
18 Lime March $ 035 840 5 294.00
19 Diet Lime March § 0.35 442 § 164.70 i
200 Orange March $ 035 408 § 14315 ctrl * Shlﬂ + F
21 Diet Orange March $ 036 206 § T71.76
22 Kiwi March $ 0235 108 § 3815
23 Diet Kiwi March $ 036 263 § 9206
24 Apple March $ 035 603 § 211.05
25 Diet Apple March $ 036 566 § 194.26
26
27 | Product Manth Cost Sald Total
28 =400
29

Range (G6:J14 contains a 2-dimensional table with information that the
macro has extracted from the database Al:E25. The macro also creates a

filter in A27:E28 which regulates what the table G6:J14 displays (in this
case, whatever was sold with quantities over 400.

The filter works through the labels, or headers, of the database. The
filter sums the totals by using the function DSUM at the origin of the table
(GO).

27 :Product Month Cost Sold Total
28 >400 =300

What you need to know

To create a list of unique entries in row1 and columnl of the table

(G6:J14), we can use AdvancedFilter. It has four arguments: Action (e.g.
xIFilterCopy), CriteriaRange (optional), CopyToRange, Unique (True).

Since AdvancedFilter returns a vertical list of unique entries, we need
to manipulate the two lists. This can be done by storing the two lists in a
Variant array that is 2-dimensional. The array helps us to place the lists in a
2-dimensional table by using a loop for the 1% dimension inside a loop for
the 2" dimension. The function UBound(array, 1) returns the index number
of the last element in the 1%' dimension; UBound(array,2) does that for the
2" dimension.

In cell G5, the macro implements DSUM. Unlike SUM, it accepts also

certain criteria as to what to sum. It has 3 arguments: the database, the field
label, and the criteria range (A27:E28).

What you need to do

Option Explicit

Sub Filtering()
Dim vArr As Variant, i As Integer, j As Integer,
sFilter As String
Dim oFilter As Range, oRange As Range
Range("'G6").CurrentRegion.Delete xIShiftToLeft
With Range("Al1").CurrentRegion
i = .Rows.Count
.Range(Cells(i + 2, 1), Cells(i + 3, 5)).Delete
xIShiftUp
MsgBox ""Prepare the matrix and the filter"
.Columns(1).AdvancedFilter xlFilterCopy, ,
Range("'G6"), True
.Columns(2).AdvancedFilter xlFilterCopy, ,
Range(""H6'"), True
Set oFilter = .Range(Cells(i + 2, 1), Cells(i + 3,
S))
oFilter. Rows(1) = .Rows(1).Value
End With
With Range("G6")
vArr = .CurrentRegion
.CurrentRegion.ClearContents
MsgBox "Fix the matrix"

For i =2 To UBound(vArr, 1) '1 is label |
UBound(x,1) is 1st dimension
For j =2 To UBound(vArr, 2) '1 is label |
UBound(x,2) is 2nd dimension
Offset(i - 1, 0) = vArr(i, 1)
Offset(0, i - 1) = vArr(i, 2)
Next j
Next i
MsgBox "Implement the filter"
Set oRange = Range("Al1").CurrentRegion
.Cells(1, 1).Formula = "=DSUM(" &
oRange.Address & ",E1," & oFilter.Address & ")"
'E1 is the Totals label
.Cells(1, 1).CurrentRegion.Table Range(''B28"),
Range(""A28")
.Cells(1, 1).CurrentRegion.NumberFormat =
"$##0.00"
.Cells(1,
1).CurrentRegion.EntireColumn.AutoFit
End With
oFilter.Cells(2, 4) = InputBox("Sold filter (or
Cancel)", , ">400")
oFilter.Cells(2, 5) = InputBox("'Total filter (or
Cancel)", , ">300")
End Sub

$1286.60 January February March

|Lime $331.10
| Diet Lime $0.00
|Orange $0.00
|Diet Orange $0.00
| Kiwi $0.00
| Diet Kiwi $0.00
|Apple $0.00

| Diet Apple $0.00

$318.50
$312.90
$324.10
$0.00
$0.00
$0.00
$0.00
$0.00

$0.00
$0.00
$0.00
$0.00
$0.00
$0.00
$0.00
$0.00

Chapter 67: Profit Changes

What the simulation does

&

changs in wnit price change in cosk prics

charge im units sold

i n 1 :
2 [Prics par unit | gagg,pp SR T 0 § 0,000,000 §125.00 T 3 5,990,000 HE00 T 5 9,990,000 100,000
Units Said wonoe™ | .A0%[§ 3,740,000 50 [§11.240,000 o § 4,890,000
+ Total Revenue| § 12,300,000.00 Mo g% § 4,990,000 =40%.| 510,990,000 =A%) § 5,990,000
: A0%| § 6,240,000 0% | 510,740,000 %) § 8,990,000
& Costs por unit 525,00 el 20%| § 7,480,000 20%| § 10,450,000 <20%| § 7.990,000
Fled Costs = : A0%| § 8,740,000 0% 510,240,000 A0%| § 2,990,000
Total Costs [§ 0%| § 9,900,000 %) § 9,990,000 o%| § 9,990,000
10%| 5 11,240,000 0% | 5 8,740,000 10%| §10.990,000
1 Prafit 20%| % 12,480,000 20%| 5 9490000 20| 511,990,000
30%| % 13,740,000 30%| § 9240000 0%, §12,990,000
40°%| % 14,890,000 40| 3 ssm0000 40| §13,990,000
50% | % 16,240,000 S0%) § &.740.000 50| §14,990,000
Ctrl + Shift + P ¥ 0,000,000 0% 35 T FE B0 | cost price
40§ 4,990,000 § 4,368,000 § 2740000 § 3115000 § 2480000
29%| § 8,115,000 § 7,490,000 § €895,000 § L240000 § 5615000
0% §11,240,000 510,645,000 § 5590000 § SM4000 § BT40000
25%| §14,265000 §13,740,000 512115000 $1Z450000 511,865,000
50%| §17.490,000 516,865,000 516.340,000 §15515000 5 14,980,000
unit prics
§ 0,990,000 0%, 257 0% 5% 50%|units sald
S0% | & 1665000 § T802,500 § JT40.000 §F AATTS00 § 5615000
<25%| § JA2T.500 % 5,046,250 § 6885000 § E5SERTI0 §10,. 502500
0% % 4000000 § 7400000 $ 9000000 S124900000 § 14,000,000
25%) % 8,552,500 % 983,750 S13115.000 516354250 1067700
0% § 8,115,000 $42.477,800 $18.2040.000 $20302500 § 24 565000
unit price

This simulation creates and populates five different Data Table
ranges. The first three have a column input of D2, which holds the price per
unit. However, we have a powerful “trick” here: there is no value in cell D2
but a formula that multiplies its value with (1+D2), so the Data Table can
use price changes in percentages in its 15' column, and the corresponding

price in the 3™ column.

What you need to know

Since cells such as B2 and B3 don’t contain a value but a formula, the
macro locks and protects all cells, so no formulas can be overwritten. The
Protect method of VBA can do so; it has many arguments; the 5™ one is
UserInterfaceOnly; when set to True, macro’s can still change cells, but

users cannot.

A B G E F G k

1) o e 1-:.,15 7 change in unit price change in cost py
2 Price per unit $125.00 0 % 9,990,000 $125.00 0 % 9,990,000
i Units Sold 100,000 <50% 50%

Total Revenue| § 12,500,000.00 | 40%, ——_— 7

& |Costs per unit $25.00 " ——— Best extimate of the unit price] =

! Fixed Costs $10,000.00 €L =

8 Total Costs § 2,510,000,00 |

=] e

10 Profit |$ 9,990,000.00 | - _

11 30% 1 g1

A Variant type of variable can hold an array, even an array that comes
from the VBA function Array. In our simulation, the Array function holds the
addresses of 5 cell ranges, and returns a 1-dimensional array. (You can
always check this in your code by placing a BreakPoint after the array line
and then opening the Locals Window.) Based on this list, the corresponding
ranges can be cleared.

A combination of Offset and Resize allows VBA to change ranges. For
example. Range(“Al:D4”).0Offset(1,1).Resize(4,4).Address would change
the range from A1:D4 to B2:ES.

What you need to do

Option Explicit

Sub Profits()

Dim oUnitPrice As Range, 0CostPrice As Range,
oUnitsSold As Range

Dim oUnitAndCost As Range, oUnitAndSold As
Range

Dim pUnitPrice As Double, pCostprice As Double,
iSold As Long, vArr As Variant, i As Integer

vArr = Array(""E3:F13", "H3:113", "K3:L13",
"E16:120", "E24:128")

For i =0 To UBound(vArr)

Range(vArr(i)).ClearContents

Next i

Sheetl.Protect , , , , True 'no changes on sheet
except throug macro (=true)

pUnitPrice = InputBox(''Best estimate of the unit
price?", , 125)

Range(""B2").Formula = "=(1+D2)*" & pUnitPrice

pCostprice = InputBox("'Best estimate of the cost
price?", , 25)

Range(''B6'"").Formula = "=(1+G2)*" & pCostprice

iSold = InputBox(''Best estimate of items sold?", ,
100000)

Range("B3").Formula = "=(1+J2)*" & iSold

Set oUnitPrice = Range(vArr(0)).Offset(-1,
-1).Resize(Range(vArr(0)).Rows.Count + 1,
Range(vArr(0)).Columns.Count + 1)

Set 0CostPrice = Range(vArr(1)).Offset(-1,
-1).Resize(Range(vArr(1)).Rows.Count + 1,
Range(vArr(1)).Columns.Count + 1)

Set oUnitsSold = Range(vArr(2)).Offset(-1,
-1).Resize(Range(vArr(2)).Rows.Count + 1,
Range(vArr(2)).Columns.Count + 1)

Set oUnitAndCost = Range(vArr(3)).Offset(-1,
-1).Resize(Range(vArr(3)).Rows.Count + 1,
Range(vArr(3)).Columns.Count + 1)

Set oUnitAndSold = Range(vArr(4)).Offset(-1,
-1).Resize(Range(vArr(4)).Rows.Count + 1,
Range(vArr(4)).Columns.Count + 1)

oUnitPrice.Table , Range(''D2")

0CostPrice.Table , Range("G2")
oUnitsSold.Table , Range("J2")

oUnitAndCost.Table Range(''G2'"), Range("D2")
oUnitAndSold.Table Range(''J2'"), Range(""D2")

End Sub

R TR X

A a8
Price perunit =S[1+07)*123
Units Sold =(1+J2)"100000
Total Revenue |=B2°B3 3
Costs per unit =(1+32)"25

Fixed Costs 10000
Total Costs =B3"BE+8T

Profit =B4-B8

[%]

E
chamge inunit price

=B10 =g2

=TABLE(,DZ)
=TABLE(,D2)
=TABLE(D2}
=TABLE(,D2)
=TABLE(,DZ)
=TABLE(,D2)
=TABLE(,D2)
=TABLE(,D2)

=TABLE(,DZ)

Chapter 68: Risk Analysis

What the simulation does

B - [£} H
produced F000 - ~ probability demand
2 demand D00 |y e | | et % 10,000
i unit prod cast 5 250 D_1ep=D.25 10% 20,000
e il price 5 5,00 OL25=p= 0.8 25% 40,000 ek iy e (18001 - 00 00 [
0.6<p= B0% 60,000 =

revenise £ 120,000.00
total prod cost 5 50,000.00
s e Ctrl + Shift + R

If the demand for some product is regulated by a range of probabilities
(G2:H4), then you can determine your optimal production by simulating
demand within that range of probabilities and calculating profit for each
level of demand.

The top left section (B:C) calculates the profit for one trial production
quantity. Cell C1 has a trial production quantity. Cell C2 has a random
number. In cell C3, we simulate demand for this product with the function
VLOOKUP: =VLOOKUP(RAND(),G2:H5,2,1).

The macro creates a Data Table which simulates each possible
production quantity (10,000, 20,000, 40,000 or 60,000) some 1,000 to
100,000 times and calculates profits for each trial number (1 to 1,000) and
each production quantity (10,000, etc.). At the origin of the Data Table
(A13) is a reference to the profit calculation in C8. The Data Table uses cell
C1 (a specific production quantity) for the row input, and an empty cell (say,
G14) for the column input.

Finally, row 10 calculates the mean profit for the four different
production quantities. In the example shown at the end, the results indicate
that production of 40,000 units results in maximum profits. Row 11 does
something similar, but now for the standard deviation. Notice that the SD
increases when the quantities increase.

What you need to know

The VLOOKUP function in C3 matches the value in Cl with the
closest match in the first column of table F2:G5. The corresponding value
from the second column in table F2:G5 1s then entered into C3.

5
2]

4

.

g
=

10 mesn =AVERAGE|BS14:B10013)
11 st dev =STOEWBE14:B10014]

13
141

162
163
.1'-. 4

How does the Data Table work? Consider cell D14: the column input
cell value of 1 is placed in a blank cell (G14) and the random number in cell
C2 recalculates. The corresponding profit is then recorded in cell D14. Next
the column cell input value of 2 is placed in the blank cell G14, and the
random number in C2 again recalculates. The corresponding profit is
entered in cell D15. And so on. A Data Table has an amazing power!

]
produced
gemand
it prod cost
unit price

revenue
bFal prod cosl
pralit

-

s

EVLOGKUPRAMEY), 2 Ho,2 1) |

25
6

SMINC1 C2)°Ca
=L1"C3

=AVERASE|CE4:C10013)
=STODEWV|CE14:C10014)

=AVERAGE[DS 14:D10043) =AVERAGE[ES14:E10813)
=ETDEVIES14:E10014]

=ETDEWVIDE14:D10014)

10000 20000 40000 0000

=TABLEC1.G14) =ETABLECT G14) =TABLE|C1.G1d) =TABLE|C1.G14)
=TABLE(C1.G14) =TABLECT . G14) STABLE|CY.G1d) STAELE|C1.G14)
STABLEC1.G14) STABLECT G14) STABLE|C1.G14) STAELE|C1.G14)
STABLEC1.G14) STABLE(CT G14) STABLE|C1,G14) STABLE|C1,G14d)

F

prabability demand

=G & "epe B G310
=G & "epst & GA 0.4
=34 & "<p=" & 85 0.25
=G5 & e & GO 06

[H

woon |
20000 |
s0000 |
ao0000 |

What you need to do

Option Explicit

Sub Risks()

Dim oRange As Range, oTable As Range, i As Long

Range("'B10:E11").ClearContents

Range("C2").Formula =
"=VLOOKUP(RAND(),G2:H5,2,1)"

Set oRange = Range(''B14"").CurrentRegion

With oRange

Set oTable = .Offset(1, 1).Resize(.Rows.Count -

1, .Columns.Count - 1)

End With

oTable.ClearContents

i = InputBox("How many runs (1,000 - 100,000)?",
, 10000)

Set oRange = Range(Cells(13, 1), Cells(13 + i, 5))

oRange.Table Range(''C1"), Range(''G14")

i=it+3

Range(''B10:E10").FormulaR1C1 =
"=AVERAGE(RI4C:R[" & i & "]C)"

Range(''B11:E11").FormulaR1C1 =
"=STDEV(R14C:R[" & i-1 & "]C)"

MsgBox "Results based on 1,000 x " & Format(i -
3, "#,##0") & " runs."

End Sub

A B F G H |
1 produced probability demand
2 demand O=p=0.1 0% 10,000
3 unit prod cost 0.1<p>0.2 10% 20,000
4 unit price 0.25<p=0, 25% 40,000
5 0.6<p> 60% 60,000
8 revenue % 120,000.00
7 total prod cost £ 50,000.00 0 Wicrauht Excel e
8] oroft % 7000000 Ctrl + Shift + R
] Rerwir: bamed on L0 » 10 000 nera,
10 mean $35,000.00 $63,808.00 $104,006.00 $101,670.00
11 st dev $ L % 1825411 §63.804.53 5104,980.73
o 2 !
13 10,000 20,000 40,000 60,000
14 1 $35,000.00 §70,000.00 $20,000.00 $90,000.00
15 2 £35000.00 $10,000.00 $140,000.00 $210,000.00
16 3 $35,000.00 $70,000.00 $140,000.00 ($30,000.00)

Chapter 69: Scenarios

What the simulation does

E E F [H i 1 K 1
1 | scmnarios most likaly WOrEL Cata bt casa uncamainty scanasio oombinatons
- | S] | [148 26
Yokame 2000 1,800 200 1.823.09
| | Costfunit § 300 5 78 a2 v] £3.11 copy down Min % 78,6a7.88
5 |Profasunic § Lol $ 5800] oo | $61.18 % |5 9142149
£ Overhesd § 80000 § 80000 § moono Madian | $104,216.20
7 TSN | S110,490054
7 Revenues £111,529.71 Max 513519035
3 Expenses £6.463.80
10 Ctrl + Shift +5
11| Prafit EELDE.DES.QE
i3 Wolume Reverses Expenzes Prodit
precest liksdy WSS LSk | bt casa $105,065,92 1,823 5111,529.7L 36,463.B0 510506592
1 2 [] i] 5 [1,586 § 8019407 5563330 5 B4,4B0.77
1,500 | 2000 | 1200 | veoo | Zknl 2200 1861 §11E14937 $6377.54 S111,770L79
6§ 2sals 300§ 2305 73 8 7% i 1L70F 510640508 5625067 $100.154.41
17 § w00 % oo § 4700 | § ss00 § @ Sa00 |4 &3.00 2070 513558641 S7.240.55 5126,345.86
a 2153 S13744447 ST.TITET 5129,716.30
15 eEnEioE el resll | median resull Best sl 1,899 511717154 5S6845.46 35105337.08
H 135 55367040 5 A0235TR S10LE0G.G0 150 515730638 5720020 5130.097.40%
I 136 $51.991.25 5 8A922.04 513035774 1,786 511574669 5620702 510953877
145 570,350,331 § 591,422.30 510658564 1577 & BESOEEE 5552168 § BI,BES.1E
145 ST4.585.02 | % 100,073.85 S1I9.847.77 1.BE7 S106425 61 $6348.95 5100,076.66
ns SERAMM0N 5 7792030 S1020M.51 2006 S114446.66 ST293.51 $107,155.15
136 SEEARDAT 5 O0,21R55 S123.995.45 1,033 S1M00M047 5628804 5113,752.38
M5 ST0J86.60 § 8568235 S107.989.57 B89 11334755 5638040 5106,B66.14
46 STEAGATEE 3 10421830 §13519035] I INDEN[$RSH: | 1908 S173EEIIE $6764.24 511711852
18 C |sng 27 MATOH] 1634 § PLTSE0S A5375.80 5 86,3R0.26
29 weomtimedian/oest results] S5L991.25 |5 B7826.00 | S1segeraa) |E29,E20:E27,0)) | 1686 S10B31455 $6543.54 10176501
sonnario: 136 136 —l 1863 § BEPGLOG 5530740 5 BO95166

Predictions of expenses and revenues are subject to lots of uncertainty.
Nevertheless, let’s say we want to predict these under a few defined
scenarios, such as the most likely, the best case, and the worst case scenario,
in order to project a range of possible profit levels.

We use several tables to set up this calculation. The top left table
shows the 3 scenarios that were actually chosen. There are actually six

scenarios—two for each case—with settings as displayed in the 2" table
(A13:F17).

The main calculations occur in the Data Table in the lower-right
corner. It 1s two-dimensional, but has a “hidden” third dimension: the 3
scenarios that were actually chosen in the top left table. All values in
column H depend on these 3 scenarios.

The user has a choice of six different scenarios—1 and 2 for the most
likely scenario, 3 and 4 for the worst-case scenario, and 5 and 6 for the
best-case scenario. So there are actually 8 possible combinations as is

shown in B20:B27 (135, 136, etc.). The macro loops through these
comnbinations and shows the results for each combination in the table
B19:E27.

What you need to know

The cells B3:F5 use the function HLOOKUP, which stands for
Horizontal lookup. It is similar to VLOOKUP, only it searches horizontal
data rather than columnar data. HLOOKUP is used in the top left table to
locate the correct input in the scenario table A14:F17. Because the scenario
numbers are in a row (row 14), we need a horizontal lookup—HLOOKUP,

not VLOOKUP.

What you need to do
Option Explicit

Sub Scenarios()
Dim vArr As Variant, i As Integer, sCombo As
String, iRow As Integer, oTable As Range
Range("'C20:E27").ClearContents
Range("114:1.1013").ClearContents
i = InputBox("How many runs (100-1000)?", , 100)
Set oTable = Range(Cells(13, 8), Cells(13 + i, 12))
'Starts at SH$13
oTable.Table , Range(""F11")
vArr = Array(135, 136, 145, 146, 235, 236, 245, 246)
Fori=0To 7
sCombo = vArr(i)
Cells(2, 2) = Left(sCombo, 1): Cells(2, 4) =
Mid(sCombo, 2, 1): Cells(2, 6) = Right(sCombo, 1)
Application.Calculate
iRow =
WorksheetFunction.Match(CInt(sCombo),
Range(''B20:B27"))
Range("'C20:E27").Cells(iRow, 1) =
Range("'L4")
Range("'C20:E27").Cells(iRow, 2) =
Range("'L6")

Range("'C20:E27").Cells(iRow, 3) =
Range("L8")
Cells.EntireColumn.AutoFit
MsgBox ""Results for scenarios " &
Range("'K2")
Next i
End Sub

A B £ o] E F H
reeriniTy

| Voheme =HLOOKUPIESSASLE-SPET 0N 215}

(FE2.5a =D+ RAND{|*[F3-03]
4 Costfuag sHLODEUPESLSak1a-Srdaa mowisaio SHLUDOOAmoEE, fad14-Erd1 7 moRACE, 5] LIPS 2 k14 w i a RAMD]2 Fd-Dé]

camy dosm
5 'Profbieni cHUOOKUPRES] SAELE SPEET S0 ATLD} S4ERELT, = mann | Fs-as
§ Chuibmad 888 [
§ Awvenzas =HI*H5
5 Espereses "G+ HE"
i0
L1 Profit =Hg-ng
|12 =1
|13 reowt bnky | worl case | bk o | =Hii aH3
|1e 7 0 [TaBLELF13]
|15 2300 [2000 1200 |3s00 =TABLELF13]
e 1 13 EE =TABLELFI1}
|17/ M o it <TABLELF11)
|18 =TABLELF11}
19 frenen o il i bkt st ~TABLELFiA|
a 115 BIGIETIMY DIEECR.SOIL =TABLL|F11}
fl 1% BESUL 1806 EAZ2ET A} «TABLELF1a}
2, 145 S1432.93011 jo L LR =TABLE| F11}
s SiE DT REED LFRRAT, MR =TABLELF11]
2] FELS FIIT. M E LIEIIE AL = TaBLE| F11}
F-1 e & BOGIN353T (kL L LS =TABLE|F11}
el s b BSGEG 543 PRSI -]“ﬂ“!m:ﬂ-i = TABLE|Fi1)}
i 2 . TR 135 tasnsesst | || A RCHCE 29,0 0:E 27, =TABLELF1T)
m | B “TapLE|F11|
ey el o re s NN 7T [=wutRAGRDGI N T} [asaramian | “TABLELF13}
C] icwraria: SINDETSAS 2SR IT MAT) =ROK TS =TABLELF11)

Chapter 70: Market Growth

What the simulation does

A 5 ‘ y L f '] 1 | J K L M H
1 Market [2o00000] share | 2w
| mean I] L5 [T | Ctrl + Shift + M
1 50 1 L) e
GOP Markat Mew Markst BARERRL1 - M
Miudiiale Share Market Sales Velurms Results of 100 x 100 runs.
[Growih w ot Hea Grawth Share
! Tamza aTian LT 10,585, 94T QoL oaal 4500971 & 16T, 107 [SIh]
TIBET -Ta040 -13.7ARE -SEMITA0E Qm? o7 24,811,718 7| a2,a70481 MED
13800 55180 -Q0.26%F .B7OS2TYF 0053 0453 <16,792 157 B 747415 MY
i4asy L RT 4.475% 21 553,055 L1k] 0.45% 5484 544 Ll 6,558 337
L7025 18457 48R4 23,557,458 0049 049 10,762,228 5 5,686,042
44488 S 0618 225180 -BE 044 048 =15] faaz -5E,015, 715 [4,011 564
13570 54104 £.8547 31413811 Ll] 0445 14083 775 7| 5,166,721
13427 49283 -RESIF -26600,040 QD23 028 -11,293,006 8 s@s0a7
30346 67943 206180 BEAT2 1533 L0001 0395 54 500,103 5 4,281 €53
11134 11361 -L391% -6.3%7, 436 £i0a3 0aay -1B33,38T 10 7,106 853
13890 -5.4870 78208 25,383 45F 0027 0427 -10, 805, 058 11| 6, B66E3S
L7460 =15434 50884 23537634 0009 0.391 =3,350,376 1z 8,832,158
GE930 -S9E3% 50247 173Gl G002 002 -6, 041,063 13| 7047549
13182 53452 12.327% 53,3LL78F OUME 0.41E 12041 483 14 5095442

When talking about GDP growth (Gross Domestic Product) and the
relationship between GDP growth and market growth, or the increase in
market share, we are dealing with three uncertain inputs. The obvious
approach is to use the best estimate for each of these inputs.

A better approach might be using a probability distribution, rather than
using the single best estimate. Monte-Carlo modelling would use the
probability distributions of the inputs. Rather than using the distributions
themselves as inputs, we use the distributions to generate random inputs.

Based on a certain market volume (cell D1) and a certain market share
(cell F1), the simulation calculates possible sales volumes (column G). It
uses random distributions in 100 to 1,000 runs to estimate GDP growth
(column A), the relationship between GDP and market size (column B), and
the market share growth (column E).

Then it repeats this set of runs another 100 to 1,000 times, in columns
J:K. After at least 10,000 runs, we get an rather good estimate of the
minimum and maximum sales volumes in column N. Needless to say that
these figures can still vary quite a bit, because Monte Carlo simulations
become more reliable when based on at least 1,000,000 runs.

What you need to know

The model we use is basically very simple:

C3: market growth = GDP growth x multiple
D3: market size = current size x (market growth + 1)
F3: market share = current market share + gain

(G3: sales volumes = market size x market share

What you need to do

Option Explicit

Sub Market()

Dim i As Long, n As Long, oRange As Range,
oTable As Range

Set oRange = Range(''B6'"').CurrentRegion

With oRange

Set oRange = .Offset(1, 0).Resize(.Rows.Count -

1, .Columns.Count)

End With

oRange.ClearContents

Set oTable = Range(''J7").CurrentRegion

With oTable

Set o'Table = .Offset(1, 1).Resize(.Rows.Count -

1, .Columns.Count - 4)

End With

oTable.ClearContents

i = InputBox("How many row calculations (100-
1000)?", , 100)

n = InputBox("How many table runs (100-1000)?",
, 100)

Range("J6")=i&"X" & n&"="&i*n&"
calculations"

Set oRange = Range(Cells(7, 2), Cells(6 + i, 8))

oRange.Columns(1).Formula =
"=NORMINV(RAND(),B3,B4)"

oRange.Columns(2).Formula =
"=NORMINV(RAND(),C3,C4)"

oRange.Columns(3).Formula = "=B7*C7"

oRange.Columns(4).Formula = "=D1*(D7+1)"

oRange.Columns(5).Formula =
"=NORMINV(RAND(),F3,5F$4)"

oRange.Columns(6).Formula = "=F1+F7"

oRange.Columns(7).Formula = "=E7*G7"

Set oTable = Range(Cells(7, 10), Cells(6 + n, 11))

oTable.Cells(1, 1).Formula = "=AVERAGE(" &
oRange.Columns(7).Address & ')"

oTable.Cells(1, 2).Formula = "=AVERAGE(" &
oRange.Columns(7).Address & '")"

oTable.Table , Range("16")

Range(''N7").Formula = "=MIN(" &
oTable.Columns(2).Address & '")"

Range(""N8").Formula = "=MEDIAN(" &
oTable.Columns(2).Address & '")"

Range(""N9").Formula = "=MAX(" &
oTable.Columns(2).Address &)"

Range("J6") ="Resultsof " & i & "x" & n & "
runs."

MsgBox Range(''J6")
End Sub

’ TR —

s

i |
2
| wwan [T L8 Bk I
il |1) ear
3
o 1
EOF Grawih Sighilple Marked Growih Waw Market Sine Markcw Share Growih Markon Sales Volume 100x100 =
L] Share
7 raci AN DO IR BR SMORRHRARELE T BRSO cRORWRAWAMMO L SIS SEER R i dnne] cANRAG el |
'] =R SCeBETCE =4051%| DE6L) =RORMFRARMD IS SF4) «SFSLeFE =EI°GE 2 [eTamuEr e
a SCoRe (S TR0E1" | DL} TROFARARAMNI] I 5| SRR]] ["TAMLEL]
16 IRARD{| 45010 T30 SATA17|0LFL) SROMARRSARMD Sty sdrSpeRID SENGSELO ly |aTamue g
1 b SCap117C31 =S0817|DLLALY SHORWRPARAMDOFS SNt «SPSEerll sE11°GLL] |sTamLEg)
17 =ha $CeR12TCAL »0S1°|DLZ4L) cHORMFSAAMMDOSFS] 54| =SFRESFLT eE12°GLD A T AmLET]
13 TS EV RIS T THOE 1% | D) EEE T FI10 sRII*GLE o [=TAMLEL]
1 s e e bkl TrANGL ¢ B4 e L L T L L Y 4 rasig

Chapter 71: A Traffic Situation

What the simulation does

o

A E 8 ¥ F I
1 |lit-it;il_el;iml|ht el straiel secomdd ifauled e, it
[im 05.96 240 41896 5.95 o] e
111 0.0 40 35100 5.85 0| 380
111 .00 240 351.00 5,85 0| 1m0
111 0.0 240 35100 5.85 90| 1s00|
iii .05 240 351.08 5.5
111 716 240 33816 6.47
111 o.oo Ian 351.00 5.85 E.A45 [-X:5
111 57.83 240 408.83 651 6.52 6.87)
iid 15.54 a0 376.34 6.27 5.51 685
111 53.50 240 404,50 6.74 .45 6.801
111 35.19 2400 386.10 .44 E47 688
360 17.74 xan BE17.74 10.30 B.53 B.BE
111 (el v] 40 351.00 5.85 E.45 684
111 3Z.10] 323.10 639 BAE BBL
60 TE.S 40 67691 11.18 645 683
111 47.38 xan 338.36 B.54 B.51 B.84
i 111 5134 A0 402,34 671 6.4 B0
] 360 55.25 280 B5525 10.52 544 578
20 111 44,33 240

335.39 6.%9

A Monte Carlo simulation really illustrates how we can tame the
uncertainty of the future with ranges and probabilities, but it also shows how
impossible it is to be extremely precise.

Column A: We simulate driving 2 miles on a highway, with 90%
probability we will average 65 MPH, but with a 10% probability that a
traffic jam will result in an average speed of 20 MPH (column A).

Column B: Then there is a traffic light that goes through a 120 second
cycle with 90 seconds for “red” and 30 seconds for “green.” If we hit it on
green then there is no delay, but if we hit it on red we must wait for green.

Column C: Finally, we have 2 more miles to go: 70% of the time at 30
MPH, 10% at 20 MPH, 10% at 40 MPH, and 10% of the time it takes us 30
minutes. This can be calculated with a VLOOKUP function based on H2:15.

Instead of using a fixed value for input variables, we can model an
input variable with a probability distribution and then run the model a large
number of times and see what impact the random variation has on the output.

Again, it is wise to run at least 1,000 iterations in the columns A:E.
This is to ensure that we have a statistical chance of getting sufficient
outliers (extreme values) to make the variance analysis meaningful. This is

important because as the number of iterations increases, the variance of the
average output decreases.

What you need to know

The simulation also adds a Data Table that shows how the median and
the average can slightly vary when repeated some 12 times (see screen shot
on the next page).

Much more could have been done to this simulation—such as using
arrays, more looping, and higher numbers of runs—but I leave that up to you.

What you need to do

Option Explicit

Sub TrafficCommute()

Dim oRange As Range, oTable As Range

Dim sMsg As String, pMedian As Double, pAvg As
Double

Set oRange = Range(''A1").CurrentRegion

With oRange

Set oRange = .Offset(1, 0).Resize(.Rows.Count -

1, .Columns.Count)

End With

oRange.ClearContents:
Range(''19:J19").ClearContents

MsgBox "New calculations"

oRange.Columns(1).Formula = "=IF(RAND() <
0.9, 111, 360)"

oRange.Columns(2).Formula = "=MAX(0,
(RAND() * 120) - 30)"

oRange.Columns(3).Formula =
"=VLOOKUP(RAND(),HS2:SIS5, 2)"

oRange.Columns(4).Formula = "=SUM(A2:C2)"

oRange.Columns(5).Formula = "=D2/60"

Range("'18").Formula = "=MEDIAN(E:E)":
Range("'J8").Formula = "=AVERAGE(E:E)"

Set oTable = Range("H8:J19")
oTable.Table , Range("'G7")
With oTable
sMsg = "For 1000 x 12 runs:" & vbCr
pMedian =
FormatNumber(WorksheetFunction.Median(.Columns
3)
sMsg = sMsg & "Median: " & vbTab & pMedian
& " mins." & vbCr
pAvg =
FormatNumber(WorksheetFunction.Average(.Column:
3)
sMsg = sMsg & ""Average: " & vbTab & pAvg &
" mins." & vbCr
End With
MsgBox sMsg
End Sub

minutes curmaal. SEOE

=D260 |D 240

=Di3/60 |70 360

=060 |80 180

=D5,/60 |80 1800

=D6/60

=0760

=pg/en =MEDIAM[E:E] =AVERAGE(EIE)
=ba/60 =TABLE|,G7) =TABLE([,GT)
=D10/60 sTABLE(,G7) sTABLE(,GT)
=D11/60 =TABLE|.GT] =TABLE(,G7)
=D12/60 =TABLE(,G7] =TABLE(,G7)
=D13/60 =TABLE|,G7] =TABLE(,G7)
=D14/60 =TABLE(,G7) =TABLE[,G7)
=D15/60 sTABLE(.GT] sTABLE(,G7)
=D16/60 =TABLE[,G7) =TABLE[,G7)
=017 /60 =TABLE|.G7) =TABLE(,GT)
=D18/60 =TABLE(.GT] =TABLE(,G7)
=D19/60 =TABLE(,G7) =TABLE(,G7)

=020/60

Chapter 72: Quality Control

What the simulation does

1 I?rndutl:ir.m‘ 1.I.H.I_| Saimpla 1% pray Cielly s s LT D] [1] onit
I Maah 15 Anript detact .9 aiie doiia prodiudts sample samples fejects Fojiects
E1¢] 2 Confidence 5% ranually 148357 148357 1A.TMM 7 il 1

154nde 150382 7 (1] 1

samplis ieject nax fejedls wendict 15.1%0 144717 1 1 1

[e 7 [1 . U872 1468 1 [1
148750 154541 B L1 a 1

1758 oK 15160 154851 W 1 1
150007 155651 q 1 1

Ctrl + Shift + Q 15495 1578 10 o 1

15,4486 138672 i [1

150134 151113 W 1 1

’ 15145 15.HM W 1 1

Murmat Dunel ==y 148475 137990 W [1

105162 15806 7 1 1

The =ean of wtrage of 220080 russ 150064 | 149757 8 1 1

————] 148300 1556E 1 q 1

184800 DK Mbinmplar . ;‘i:j:?' 146734 148264 1 1 1
por et ot 150060 136837 1 1 1

153557 11517 [1 1

14458 134362 10 1 1

= 144118 1640050 5 1 1

ey 148250 14.3515 1 [1

1 15.00H 154063 [0 1

Here we are dealing with an assembly line that creates between 100
and 1,000 products (B1) per period of time. One particular variable of this
product is supposed to be close to a value of 15 (B2) but is allowed to vary
witha SD of 2 (B3), as shown some 1,000 times in column A.

To ensure quality, we take a certain percentage of samples (EI1) in
which we accept 2% defects (E2, or whatever is in there). Based on such a
sample we decide, with 95% confidence (E3), to accept or reject the entire
production lot.

Since this process is far from certain but depends heavily on
probabilities, we repeat this process a number of times in the Data Table far
to the right.

At the end of the simulation, the macro reports several averages in a
MsgBox.
What you need to know

In cell D8, the VBA code inserts the following formula (copied down
to E1007):
=[F(AND(ROW(D7)+1<=(B1+7),COUNT($D§7:D7)

<(B1*$ES1)),IF(RAND()<=SE$1,A8,""),"")

D8)/B3)>1.96,"reject","OK"),"")

The function used in G6 1s CRITBINOM. It determines the greatest
number of defective parts that are allowed to come off an assembly line
sample without rejecting the entire lot. It has 3 arguments: The number of

trials, the probability of a success on each trial, and the criterion value
(alpha). Recently, this function has been replaced with BINOM.INV.

|-

What you need to do

Option Explicit

Sub QualityControl()
Dim oRange As Range, oTable As Range, sFormula
As String, sMsg As String
Dim pAvgProd As Double, pAvgSampl As Double,
pAvgCount As Double, iReject As Integer
Set oRange = Range("'D8:E1007")
With oRange
.ClearContents
sFormula = "=IF(AND(ROW(D7)+1<=
(B1+7),COUNT(SDS7:D7)
<(B1*E1)),IF(RAND()<=E1,AS,""""),"""")"
'double quotes inside double quotes
.Columns(1).Formula = sFormula
sFormula = "=IF(D8<>"""",IF((ABS(B2-
D8)/B3)>1.96,""l.eject"",""OK""),"""")"
.Columns(2).Formula = sFormula
End With
Set oTable = Range(''J3").CurrentRegion
With oTable
Set o'Table = .Offset(3, 1).Resize(.Rows.Count -
3, .Columns.Count - 1)
End With

With oTable
.ClearContents
Set oTable = .Offset(-1, -1).Resize(.Rows.Count +
1, .Columns.Count + 1)
oTable.Table , Range("I1")
End With
With oTable
pAvgProd =
WorksheetFunction.Average(.Columns(2))
pAvgSampl =
WorksheetFunction.Average(.Columns(3))
pAvgCount =
WorksheetFunction.Average(.Columns(4))
iReject =
WorksheetFunction.Countlf(.Columns(7), ""reject")
End With
sMsg = ""The mean or average of 22x1000 runs:" &
vbCr
sMsg = sMsg & "all products: " & vbTab &
FormatNumber(pAvgProd, 4) & vbCr
sMsg = sMsg & "all samples: " & vbTab &
FormatNumber(pAvgSampl, 4) & vbCr
sMsg = sMsg & '"'all sample counts: " & vbTab &
FormatNumber(pAvgCount, 4) & vbCr
sMsg = sMsg & "number of rejects: " & vbTab &
iReject
MsgBox sMsg

End Sub

Chapter 73: Waiting Time Simulation

What the simulation does

B C O
min. b/t arrival probability

5 o
0.3 pi o
1% o,

-] next arriwal

1 scale scale

o
0.7

o
20
25
33
50
&0
70
75
FH]
a5

7 Customerl 1]
B Custermer2 pli}
9 Customerd 5
10 Custamerd w
11 Customerd is
1¢ Customeri 1
13 Custemar? i
14 Customer8 5
17 Gustemerd i
16 CustormerlD i

1
1

1

EREEESEEERS

=

18 total visit time per customer {last run)
19| .

14

12

a I I I
PO
_J:'- ___S .-"'z

Bd Pd B
R TR

; b N
AN N LN
o) -2 -

4
5

arrival time start time treatment finish time total time

5
o
Ls]
L]
]
5
o
5
H
5

) = 3
o i P

o

tFIIt:Tblﬂt prnhfhlﬁty . : : - .
5 N
10 0.3 Ctrl + Shift + W
15 0.2

15 5

20 10 Microsoh Excel [

&0 15

45 i After 100 narmy, the sewrage of

55 5 BT WAk R i 215 e

(%] 3

20 o

= i =]
180 13
108 16

max time

15]
o

We simulate here the flow of patients in something like a walk-in
clinic. Based on experience, we know the probabilities of patients coming in
with 5, 10, or 15 minutes between arrivals (B2:C4). We also know the
probabilities that the treatment takes 5, 10, or 15 minutes (F2:G4). Let’s
assume there are usually 10 patients in the morning (which we won’t
simulate, though). And there 1s only one nurse or doctor in the clinic.

Now we can simulate the flow of patients through the system
(A7:G16). The chart shows how visit times can vary randomly. Since there
1s much volatility involved, we repeat this process some 100 to 1,000 times
through the help of a VBA array in the background, so we can calculate what
the average maximum visit time is, based on waiting time and treatment
time. The simulation reports its results in a MsgBox.

What you need to know

To randomly assign arrival times and treatment times, we need an extra
column in front of the two probability tables shown on top of the sheet. These
two columns must start at 0 and then cumulatively increase, so we can use
VLOOKUP to assign these times in a random manner.

Other formulas on the sheet are shown in the screen shot on the next
page.

What you need to do

Option Explicit

Sub WaitingTime()
Dim oRange As Range, iMaxVisitTime As Integer,
arrVisTime() As Integer, i As Integer, n As Long
Set oRange = Range(''B7:G16")
With oRange
.ClearContents
.Columns(1).Formula =
"=VLOOKUP(RAND(),A2:B4,2, TRUE)"
.Columns(2).Formula = "=SUM(B7:B7)"
.Columns(3).Cells(1, 1).Formula = "=C7"
Range(""D8:D16").Formula =
"=1F(C8<F7,F7,F7+(C8-F7))"
.Columns(4).Formula =
"=VLOOKUP(RAND(),E2:F4,2, TRUE)"
.Columns(5).Formula = "=D7+E7"
.Columns(6).Formula = "=F7-C7"
.Calculate
End With
n = InputBox("How many runs (100-1000)?", , 100)
ReDim arrVisTime(0 Ton - 1)
Fori=0Ton-1
Range(""B7:G19").Calculate

iMaxVisitTime = Range("'G19")
arrVisTime(i) = iMaxVisitTime
Next i

MsgBox "After " & n & " runs, the average of " &

vbCr &
"maximum wait times is " &

WorksheetFunction.Average(arrVisTime) & " mins."

End Sub

| | SSUMISCEIER)
| =ELIMI5CEDCI)

! Curtomarl
2 ‘Cudtomard
i Customard
10 Customard
11 Customar
11 tustemark
11 Cuwtomer?
14 Cumtomard
15 Customard
4 Customerdll

ity

mibn. byt mretval prokabiiiy
1] (8.
19 2.3
15 [

next arrival arriaal tima atart tima
SLOOKUP{RAND|) SA52-5654 2 TRUE] =SURMMSEST-BT] =07
SUGOKUP{RAND]| SAST- 4054 2 TRUE) =SURMSEST-BE] =IF|CE<FT,FT FI+|CEFT]]
SAUOOEUPTRAND]) SASTAB54,2 TRUE] =SUMMSEST-BS] =IF[CH<Fa FEFE+ C3FE]|
SUOOKUFIRAND]), SA52 4844 3 TRUE] =SUM|SEST-B10) =IF|C10-FS FS,Fas{CL0-Fo])
SHLOOKUPTRAND]) SASZ- 9854 2 TRUE] =SUMMSEST-BI11) =IF[C11<F13,F10 FLO={C11-F10))
SUGOKUPTRAND|| SA4T 4854 2 TRUE] =SURMSEST-B12) =IF[C12<F1f F11 Fiis{Ei2Fit))
SAUOOKUPTRAND|) SAST 8542 TRUUE] =SURMSESTB13) =IF[C13<F1id FiX FiZ={{18FidY)
SUOOKUPRAND|), 3442 4854 2 TRUE] =SUM|SEST:B14) =IFC14<F13 F1% F1Ss{C18-F13)]
SHLDOKUPTRAND|| SAS2 9854 2 TRUE] =SUMMSEST-B1S) =IF[C15<F14,F14 FLa={{1%-F14])

AAOOKUPRAND]) 2442 4854 3 TRUE]

=EURMEEET.BIS) =iF|C16<Fi8 FiB FEB-JLIE-FIY)

scale

a

=SSN SGETG2)
=SUMNEGELGIY

treatmant
SVLOOKUP[RAND]] $842- 5054, 5 TLE)
EVLOOKUP[RAME]] 8426554, % TRUE)
EVLOOKLP[RAND]] 8526054, 3 TRUE)
SVLOOKUP[RAND]] 8526554, % TRLIE)
SVLOOKUP[RAND] 8525654, 5 TRUE)
=VLOGKUP[RAME]] $852- 6554, ¥ TRUE)
SVLOOKLIP|RAMD]] $£52 6544, 3 TRUE)
SVLOOKUP|RAND] $£52: 6554, ¥ TRLE)
SVLOOKUP|RAND]] 852 SF44, } TRUE)
=WLGGKLIB[RARDT 288 LFE4 T TRUIE)

G
traatwant probabilay
5 0.4
10 035
15 035
finizh tima total tima
Tt
SBEEE [=PE-CE
spasEs (zFe.cH
I T =]
shuisEll [sFL14E11
=BEBSELY [=FiBE13
=hissEid |sFiS-C1%
SDL&eE1d [SFLAC14
SDUSSELS [sFLL1S
=bibeesd |oHiELis

Chapter 74: Project Delays

What the simulation does

i -
bt Buretien finish wet. Dussbioecl. Sart ach Frss
Vaskd EERLVELIE] £ 1151072838 TORLR L 34710
tash 12/93/3015 ¥ 11197308 E/A1I0LS 30/ H00 LS
tamk 11/20/3003 7 113520 & £3/21/3008 11/ 151 =
taakd L3/27/2003 3 fiyans ERSTEE LT e
tamk PR E] LIRETL T L] Toanafms zfermis m—
tamik FERRRE] XA FOANSIOLS a1NRaEs ==
task] L3018 CRETESTE TS 10 L3/ 36THILS 310353088
taki. 13243015 B 1L a0s 9 L}IGfI00S LiafmiE 3 _—
Taak 110 LT T 2 LML 112N teen . ——
taakln 1/3i08 B 11472018 3 02873008 bt —m —
===
! drequerey bekle 1S ooeE L ———
15of end drtex 1izfzaee o 5
FECTE o 1 e —
e o i 2 —-—
T E
h 16/ TaLE o a| viizimse
17y 1 & 11z
FELTE L ?| 1rasymu
. L L & 1/1aimue Gl
+P BRLET 4 3 ame
1/1me if 1w 1NazsmuE
1/1z/ 18 L 1 1f1sfz0g
118/ 2018 L 12 1fmsz
1/187 0058 L (LR RLIE T
1187 mke [| Lhvime

Here we have a sequence of tasks that start at a certain day, have a
certain duration, and then end, to be followed by the next task. So the entire
project is supposed to be finished on the date shown in cell E11.

Usually, however, there are random changes in the duration (column F)
—say, up to 2 days shorter or longer than anticipated. Such random changes
would obviously affect the end date of the total project. In cell H11, we
calculate what the actual end date of the project would be.

We run this project some 100 times in a Data Table (G14:H151), so
we can calculate what on average the “real” end date of the project would
be after random changes in duration per task. We then calculate how the final
end dates for each run are distributed in a frequency chart (in the right lower
corner of the sheet).

What you need to know

There are some fomulas on this sheet (see screen shot on the next
page). The only new function used in the VBA code is Excel’s DAYS
function. It returns the number of days between two dates, where the first
argument indicates the end date, and the 2" argument the start date. If the
number of days is negative, then the end date is earlier than the start date.

The way Excel handles dates may need some explanation. Excel stores
dates as sequential serial numbers so that they can be used in calculations.
By default, Jan 1, 1900 is serial number 1, and January 1, 2008 is serial
number 39448 because it is 39447 days after January 1, 1900. This number
can also have decimals to indicate the time of the day. So basically 39447 is
January 1, 2008 at 12 AM, and 39447.5 is 12 PM on that day.

The chart in the upper right of the sheet is a so-called Gantt chart. In
Excel, 1t is a stacked bar chart with two series of values, of which the first
series, or stack, has no fill color or line color, so it is actually invisible. We
have actually 2 charts here. They both use B2:B11 as categories. One is
based on series G2:G11 (invisible) and series F2:F11. The other one is
plotted from series C2:C11 (invisible) and series D2:D11. The second chart
has a plot area with no fill, so you can lay it over the first one with a slight
offset down.

What you need to do
Option Explicit

Sub ProjectDelays()

Dim oTable As Range, i As Integer, sMsg As String,
dAvgDate As Date, iOff As Long

With Range("E2:H11")

.ClearContents

.Columns(1).Formula = "=C2+D2-1"

.Columns(2).Formula =
"=D2+RANDBETWEEN(-2,2)"

.Columns(3).Formula = "=IF(ROW()=2,C2,
H1+1)"

.Columns(4).Formula = "=G2+F2-1"

End With

Set oTable = Range(''G14").CurrentRegion

Range("H15:H115").ClearContents

oTable.Table , Range(''F13")

Range("E14:E33") =
WorksheetFunction.Frequency(oTable.Columns(2),
Range(''D14:D33"))

'OR: Range("E14:E33").FormulaArray =
"=FREQUENCY(R14C8:R115C8,R14C4:R33C4)"

dAvgDate =
Round(WorksheetFunction.Average(oTable.Columns(2

0)
iOff = WorksheetFunction.Days(dAvgDate,
Range(""E11")) '+ HHf(iOff >= 0, 1, -1)

If dAvgDate = Range(""E11") Then iOff =0
sMsg = ""Average finish date of 100 runs: " &
FormatDateTime(dAvgDate, vbShortDate) & vbCr

sMsg = sMsg & ""On average " & Abs(iOff) & "
days " & II{(iOff >= 0, "later", "earlier")
sMsg = sMsg & " than " & Range("E11")
MsgBox sMsg
End Sub

R UL L] el Duration ah, ran B, Fisdgh

Aan L
taakl Lrioh]] SC3#02-1 SOTRRANDEETWELN[-2, SIFROW(]S2,C2, M141) ®31F2-1
ikl £+l L] =CI+H0E-1 =DE+AANDBETWEEN[-2, I AOWTI=LER, HI+1} =G3+FE1
aakd =53] 7 =CA4 -1 =DaeRANDRETWERN -2, =IF[ROW{|=2,08, HI+1} =GaHFE-]
eaakd ALl L] SCHH0S-1 000 =OSeRANDEETWELN |-2, SIFROW(J52,05, avl) saiers-1
ks E§+1 5 =CE+DE-1 =DE-RANDEETWEEN[-2, SIFROWIZL06, Hi+1} =66+
aakk TEEH] 7 2C7407-1 =OTERANCEETWERN|-2, sIFACW(]22 7, HE41) sGTFT-1
Eaak? 1 18 =Ea+DE-1 =DE+RANDEETWELN]-2, SIFROW{]=2 .68, Wi+l =8E+FB-1
waikd =ER+] a =CH+0E-1 =DS+AAMDEETWEEN[-2, IF[ROW{I=2.08, Ha+l} =GFR-1
(310 L1 b L} #C108010-1 ED10HER NDBETWEER. 8[F|ROWY 22,010, WBe1] mG104FED-1
emakill =E10+1 L] sC1i#011e1 =011 +RA NDBETWEEN]: SIFROW{ISL.610, Hig+d a8 1i+Fil-1
¢ Ermquancy Tablis a1370] =811
af end datas AI3TL o =ACIWTAL) =TABLE|,F13}
ErE b 3 =ROWTAZ] =TABLE|F1d]
LEERE] = =RCWTAE] =TABLE| F13}
azaTa 4 SAOWIAS] STABLE(,F11)
43478 3 ZROWTAS] =TABLE| F13]
A3ATH 1 =RCIWILE] =TadLE|.F13}

VII. FINANCE
Chapter 75: Buy or Sell Stock?

What the simulation does

A B c D E F G H
1 Date_ Value

> " 1/612016 10.0000

3 1712016 10.1191

4 1/8/2016 9.8428

5 1/9/2016 9.7680 .

6 11202016 9.7327 Ctrl + Shift + B
¥ 1113/2016 9.5452

8 11412016 9.8715

o 11512016 9.7237

10 116/2016 9.5760

Based on the performance of a certain stock, we want to anticipate its
value the next day, so we can decide whether to buy or to sell.

Since there 1s much uncertainty involved, we need to consider the
mean and standard deviation of its past history, and based on this
information, the macro projects some 10,000 normally distributed values in
order to somewhat harnass volatility.

Part of the decision is determined by how far we want to go back in
history. So the macro goes back in the entire history shown in column A by
steps of 5 days, and then makes a provisional decision as to either buy or
sell for each step. This decision is obviously debatable. The macro uses the
following rule: if the average of 10,000 runs is greater than 0.01 times the
SD, go for “buy”; if it is less than 0.01 times the SD, go for “sell.” This rule
can be adjusted at any time, of course.

Finally, the macro displays the verdict of all periods and lets the user
determine which decision to make based on this information.

[Microzott Excel]

Latest 31 9.82539275763635 sell
Latest 26 9.81026893087344 sell
Latest 21 9.B3740947555262 buy
Latest 16 9.85812976186832 buy
Latest11 957307342731563 buy
Latest6 10.00053355214%4 buy

What you need to know

The background calculations are stored in an array with 10,000
elements. The average and standard deviation are based on those 10,000
values. There will always be volatility (and unexpected events!), but they
can be better harnassed by using huge amounts of numbers.

What you need to do
Option Explicit

Sub BuySell()
Dim i As Long, o0CurReg As Range, oRange As
Range, iOffset As Long, n As Long
Dim pAvg As Double, pSD As Double, arrVal() As
Double, sMsg As String, sVerdict As String
Dim pAvgAvg As Double, pLatestVal As Double
Set 0CurReg = Range(""A1").CurrentRegion
With oCurReg
iOffset = 0CurReg.Rows.Count
pLatestVal = .Cells(iOffset, 2)
For i = i0ffset To 2 Step -5
Set oRange = .Range(Cells(iOffset - 1 + 1, 2),
Cells(iOffset, 2))
pAvg = WorksheetFunction.Average(oRange)
pSD = WorksheetFunction.StDev(oRange)
ReDim arrVval(0 To 9999)
For n =0 To 9999
arrval(n) =
WorksheetFunction.Norm_Inv(Rnd, pAvg, pSD)
Next n
PAVgAvVE =
WorksheetFunction.Average(arrVval)

sVerdict = IIf(pAvgAvg > (pLatestVal + pSD *
0.01), "buy", IIf(pAvgAvg < (pLatestVal - pSD * 0.01),
"SEH", "_"))
sMsg = sMsg & "Latest " & i & vbTab &
pAvgAvg & vbTab & sVerdict & vbCr
Next i
MsgBox sMsg
End With
End Sub

R -]
1 Dante, Valua
2 [ETE R e]

LTEE BhiE
T T
L MG 76
oM RTIET Ctrl + Shift + B
T iMME01E RB4E2

B AM4IH018 BET1S
B AMAETIE L rp
10 IHEGME BETE
11 1M9G0M6 67488
12 1rsie01s $E0E
R TTE TR T T]
14 ArdnaE 8N
1OATInME RAME
18 iMMTHE R
17 ArmeEtiE RBME
5 irNiE RENT
i irdidniE &¥is
20 ArEME RTI80
1 RAIHME REER
2E . MMEHME RTMT
23 IMRE0ME BBSES
24 BA0ME BRAE1
25 AMIAME sh1tEE
5 RMOITE BODEET
I BMARTHE BREHOT
25 HMHME REBSES
PR SE T IR R T T

Chapter 76: Moving Averages

What the simulation does

A] c i E F &) H | d K | M H
1 [Time lvalue Avgeond - 1
2 2:30 0.81 P
3 935 074 I ' | rarrcieat Eecel =i
I 940 076 | I
5 g46 087 opo | 09 i Muenber ol inbanale b b varged o |
5. %50 o080 079 | In’\.L e
7 e85 085 077 | 08 e
] 10:00 0.52 or1 | \,,li ‘\
] 10:05 0.38 058 | g7 L] 4
Lt} 10:10 0.83 0.55 \
1 10:18 0.36 048 | . \ 'l
12| 10:20 046 048 | -
19 028 ods 0as |, \\ H -
4] 1030 083 o048 | U \| rf_
15 1035 048 048 | / N
G 1040 043 048 | D4 " if T
7 1045 054 g4n | | 4] M-‘
1 150 028 043 | 03 9. Py
19 10:55 0.35 0.40 | U |
20, 1100 040 040 | o | | | |
21, 108 040 036 | gy 0:38 1004 1033 1102 11 1200
2| 1m0 032 e |
B MAs 038 037
24 120 022 033 .
7| 1135 0.31 030 MovingCurve: Ctri+Sh+M
0 11:30 0.27 028 =
27 MovingAverage: Ctrl+Sh+A
% ExponSmoothing: Ctri+5h+D
30

This file has 3 sheets and 3 similar macros for “moving averages” and
“exponential smoothing.” It simulates what happens when we reduce the
amount of “noise” with a certain factor.

What you need to know

i i BT = R R

RUERENEY RNM

A B

| Period | Value
1 0.81
i 074
3 om
4 087
[0,80
§ 0.68
7 us2
i 03
[] 0,63
10 038
M 048
12 o4
13 0,83
14 045
15 043
% 084
17 0,29
% 03
19 040
a1 0.49
4l 0,32
n 0.
B o
24 0.3
28 0.27

¥ B4 E
015 damping factor o
0.8
0.8 1.9
.80
ors e
0.8 e
0.0
LT L%
T4
065 [Sr=]
Q.68
063 -
el
088 -
0.58 i
0.56
0.54 (%]
0.84
050 i
048
047 0o
048
odd
043
0.8
0.8

Sy = @,y + (1-@)Sy4

12 3 45 6 7B 9 100102131415 1647 18 19 10 1 32 13 24 25

b g b il

MovingCurve: Ctrl+5h+M

MovingAverage: Ctrl+Sh+A
ExponSmoothing: Ctri+Sh+D

What you need to do

Sub MovingAverage()

Dim oChart As Chart, oSelect As Range, oSeries
As Series

Dim oTrendCol As Trendlines, oTrend As Trendline

Sheetl2.Activate: Range(""Al'").Select

Set oSelect = ActiveCell.CurrentRegion : Set
oChart = Charts.Add

oChart.SetSourceData oSelect

oChart.ChartType = xIXYScatterLines

oChart.HasLegend = False: oChart.HasTitle =
False

oChart.Axes(xlCategory).HasMajorGridlines =
True

oChart.Location xlLocationAsNewSheet

Set oSeries = oChart.SeriesCollection(1)

Set oTrendCol = oSeries.Trendlines

Set oTrend = oTrendCol.Add(xIMovingAvg, ,
InputBox('"Period", , 3))

oTrend.Border.LineStyle = xIDot :
Application.DisplayAlerts = False

If MsgBox("Delete?'", vbYesNo) = vbYes Then
oChart.Delete

Application.DisplayAlerts = True
End Sub

Sub AvgSmoothed()
Dim i As Integer, oRange As Range
Sheetl(.Activate: Range(''Al1").Select
i = InputBox("Number of intervals to be
averaged', , 2)
With Range("C1")
.Value ="Avgon " & i
Set oRange = .Range(Cells(2, 1),
Cells(.CurrentRegion.Rows.Count, 1))
oRange.Clear
Set oRange = .Range(Cells(i +1, 1),
Cells(.CurrentRegion.Rows.Count, 1))
oRange.FormulaR1C1 = "=AVERAGE(RC]-1] :
R[-" &i-1&"|C[-1D)"
oRange.NumberFormat = "0.00"
End With
End Sub

Sub Damping()
Dim pDamp As Double, o0Range As Range
Sheetll.Activate: Range("Al").Select
pDamp = InputBox("Damping factor', , 0.15)
With Range("C1")
.Value = pDamp : .Offset(1, 0).Formula =
"=B2"
Set oRange = .Range(Cells(3, 1),

Cells(.CurrentRegion.Rows.Count, 1))
oRange.Clear
Set oRange = .Range(Cells(3, 1),

Cells(.CurrentRegion.Rows.Count, 1))
oRange.Formula = "=§C$1*B2+(1-$C$1)*C2"
oRange.NumberFormat = "0.00":

oRange.Font.Bold = True

End With
End Sub

Chapter 77: Automatic Totals and
Subtotals

What the simulation does

A B c D E F G H |

1 [North East South West SuM AVERAGE

2 [January $7,379.99 §1,029.86 S63B1.49 $4.746.99 | $1953833 §7,815.33 For totals:
3 |February $2,257.77 $5642.29 S$5066.77 $2,838.23 | $15805.06 $6,322.02

4 [March $6,362.84 S$160233 S8STROZ $5.720.38 | $2226447 SB005T9 Ctrl + Shift +T
5 |Apr $1934.61 $1956.97 S$1561.74 $9.946.94 | $1540026 $6,160.10 For subtotals:
B M $994.72 $1266.83 $3662.34 $9.954.95| $15878.84 $6,35154

e $0,668.29 S$4.438.05 $8,15534 $571T.85| $27,979.53 $11,191.81 Ctrl + Shift + 5
B |[July $7410.15 $898.97 $85153 $4.957.52| $1381847 $5527.27

3 |August §9,933.38 §7,873.05 $3308.09 SB9A.1B| 52201270 $B,805.08

10 |September $3136.02 $982.83 $4.45391 S4007.00| $1257085 §5031.94

11 [Dctober $5709.66 5232259 5230023 $2.698.55| $13111.03 $5244.41

12 [November $4,595.87 $8,13212 §7.699.10 $5,018.93 | $25446.02 $10,178.41

13 [December $2,981.89 $7,243.42 $9.700.10 $6.795.27| $2672068 $10,688.27

14 SUM $62,14519 $43380.31 $61,719.56 563,00088 $230,554.94 $02,221.98

15 AVERAGE $5178.77 $361578 $5143.30 $527507 $1921291 $7,685.16

6

At the bounds of the database A1:E13, the first macro, Zotals, adds
summaries of your choosing—SUM, STDEV, MEDIAN, and so on. The
second macro, SubTotals, creates subtotals and lets the users determine
which columns they like to use for sorting and summing. Then it offers the
option to copy this summary of subtotals to a new sheet.

What you need to know

The macro assumes that your database does not have formulas in it, so
it can use the VBA property HasFormula to determine where the database
ends.

What you need to do

Sub Subtotals()

Dim oSelect As Range, oSort As Range, oTotal As
Range, oWS As Worksheet

Sheetl.Activate: Range(''A1").Select

With ActiveCell.CurrentRegion

Set oSort = Application.InputBox("Sort by
Label"a ’ "Gl"a 9999 8)

Sort oSort, xlAscending, , , ,, , xIYes

Set oTotal = Application.InputBox(""SUM by
Label"a ’ "Dl"a 9999 8)

.Subtotal oSort.Column, xISum,
Array(oTotal.Column)

Set oWS = ActiveSheet

ActiveSheet.Outline.ShowLevels 2 '[row-levels],
[col-levels]

Set oSelect = Application.InputBox("Which
range to copy', , Range(''D1:D24,G1:G24").Address,
9999 8)

Set oSelect =
oSelect.SpecialCells(xICellType Visible)

Set oWS = Worksheets.Add(, ActiveSheet)

oSelect.Copy Cells(1,1) : oSelect.Font.Color =
vbRed

oSelect.Rows(1).Font.Color = vbBlack

.EntireColumn.AutoFit:
Cells().EntireColumn.AutoFit

Application.CutCopyMode = False ;
.Range("'Al1").RemoveSubtotal

End With
End Sub

Sub Totals()
Dim r As Long, ¢ As Long, sOper As String,
oRange As Range, o0CurReg As Range, n As Integer
Sheet2.Select: Range("Al").Select
With ActiveCell.CurrentRegion
r =.Rows.Count: ¢ =.Columns.Count
If .Cells(r, ¢).HasFormula = False Then
.BorderAround , xIThick
sOper =
InputBox("SUM/AVERAGE/MAX/STDEV/MODE/ME
, "SUM")
sOper = UCase(sOper)
Do Until .Cells(r, ¢).HasFormula = False
r=r-1l:c=c-1l:n=n+1
Loop
If n > 0 Then
If MsgBox("Add " & sOper & " (instead of
replace)?', vbYesNo) = vbYes Then
r=r+n:c=c+n
End If
End If
Cells(1, ¢ + 1) =sOper: .Cells(r + 1, 1) = sOper
Set oRange = .Range(.Cells(r + 1, 2), .Cells(r + 1,
¢))
oRange.FormulaR1C1 ="=" & sOper & "
(R2C:R[-"" & n+1 & "]CO)"

oRange.NumberFormat = .Cells(r,
¢).NumberFormat
Set oRange = .Range(.Cells(2, ¢ + 1), .Cells(r +
1,c+1))
oRange.FormulaR1C1 ="=" & sOper & "
(RC2:RCI[-1D"
oRange.NumberFormat = .Cells(r,
¢).NumberFormat
If MsgBox("Delete summary?", vbYesNo) =
vbYes Then
With Range("B2").CurrentRegion
For r = .Rows.Count To 1 Step -1
If .Cells(r, 2).HasFormula Then
.Rows(r).ClearContents
Next r
For ¢ = .Columns.Count To 1 Step -1
If .Cells(2, ¢).HasFormula Then
.Columns(c).ClearContents
Next ¢
End With
End If
End With
End Sub

Winikdh range to copy

S051:308 S5 ELSGEM

D E F
{SALARY |HOURS DOH
1 $296,450.00!

1 $112,750.00/
| $180,400.00
:$195.smm:
1 $785,400.00

ErRkacdac==

G

[LOCATION |

|Boston Total
|Cambridge Total
|Marlboro Total
EWoms‘lnr Total

e . e S e B s . s

Chapter 78: Fluctuations of APR

What the simulation does

L)

o [T o I
0 | Dmpoait | § @epoe.00 Yaar APE Savings 5 anzezy |
7 Wumber of yre i » 1 4.00% § 66X 23R4 § Hamzm
WPR Fi 2 400% § 6LELIE § HBITAR | »
1 Wkt 0.3% Baa B a3 Bas B HEAELSE | -
Savings mio valagin ™ = e 5 16T 80 | A
: i ¢ maoni ' . I
- - B - 3, £} Fi ™y AW o Y
. |=B1%(1+E3)~ B2 i . T e \ v 'F";"‘."?' bl g
3 § 19321681 W it . LT w
10 REEY ¥ X T
11 i) § o | rr__,.-"'
12 § METET TS e
1 M+Shm+s 12 1% § 9516889 § 19784389 _..-l""
14 12 434% § BRIOTE § tREGREAD |
1 14 AR B 10319945 § HIA03041 | L
1¥ 14 4.08% § 107407 48 § W B0 |
18 3.73% § 1 i § 13605458
— e WO L% mareiT]

Let’s pretend we are trying to predict what the total return would be
over a period of years if the initial deposit is fixed and the annual percentage
rate (APR) is fluctuating. So this sheet calculates how a fixed deposit
compounds over a specific number of years with a fluctuating APR.

We use three tables to set up this calculation. In the left table, we set up
our parameters and use a simple calculation of return without considering
any volatility. In the middle table, we simulate how APR could fluctuate
during the time period—in this case 30 years—if the volatility is 0.3% (cell
B4). Since this middle table represents only one of the many possible
outcomes, we need to run additional scenarios to model fluctuations in
return. In the Data Table to the right, we run these additional scenarios of the
middle table some 25 times.

The macro summarizes the results of 25 runs for what your savings
would be after 30 years—minimum, average, and maximum.

What you need to know

Microsoft Excel ﬁ

Minimum savings: 5188,74011
Average savings: 5195,202.37
Maximum savings: 5203,719.88

.

y,

Compounding a certain amount of
money 1s based on a very simple formula: the starting amount multiplied by
(1+APR) raised to the power of the number of years—or: X*(1+APR)"yrs.
This 1s the formula used in the left table.

The middle table uses the function NORMINYV to simulate fluctuations
in the annual percentage rate each year.

The Data Table to the right runs the end result of the middle table at
least 25 times by using the array formula {=TABLE(,G1)}—pointing to any
empty cell outside the table (e.g., cell G1). The more runs, the more reliable
the outcome is.

The chart is linked to columns D:F. One curve, the upward one, is for
the compounding savings amount; the other curve shows APR fluctuations.

What you need to do

Option Explicit

Sub Savings()

Dim oRange As Range, oTable As Range,
oFormulas As Range, n As Integer

Dim sMsg As String, sMin As String, sMax As
String, SAvg As String

Set oRange = Range(''D1").CurrentRegion

oRange.ClearContents

Set oTable = Range(""H1'").CurrentRegion

oTable.ClearContents

n = InputBox("For how many years (max of 30)?",
, 30)

If n > 30 Then Exit Sub Else Range(''B2'") =n

Set oRange = Range(''D1'"").Range(Cells(1, 1),
Cells(n + 1, 3))

oRange.Cells(1, 1) = "Year': oRange.Cells(1, 2) =
"APR'": oRange.Cells(1, 3) = "Savings"

Set oFormulas = oRange.Range(Cells(2, 1), Cells(n
+1, 3))

With oFormulas

.Columns(1).Formula = "=ROW(A1)"
.Columns(2).Formula =

"=NORMINV(RAND(),B3,B4)"

.Columns(3).Cells(1, 1).Formula = "=B1*
(1+E2)*D2"

.Columns(3).Range(Cells(2, 1), Cells(n,
1)).Formula = "=F2*(1+E3)"

oTable.Cells(1, 2).Formula = "=" &
.Columns(3).Cells(n, 1).Address

End With

Set oTable = Range(""H1'").Range(Cells(1, 1),
Cells(26, 2))

oTable.Table , Range("'G1")

With oTable

sMin =
FormatCurrency(WorksheetFunction.Min(.Columns(2
2)

SAVg =
FormatCurrency(WorksheetFunction.Average(.Columi
2)

sMax =
FormatCurrency(WorksheetFunction.Max(.Columns(2
2)

End With

sMsg = "Minimum savings: " & vbTab & sMin &
vbCr

sMsg = sMsg & ""Average savings: " & vbTab &
sAvg & vbCr

sMsg = sMsg & "Maximum savings: " & vbTab &
sMax & vbCr

MsgBox sMsg

End Sub

E R

E
APR

SMOAMNVIRAND]LSEED SB434)
=MORMINV{RAND{), SBEN, FESL)
=HORMNYTRAND]), $B53, $a%L)
=HORMNG RAND] L IEES, SB44)
=MOSRMINYRANDY), SBEY, $8%4)
=MCENNY RAND)L SR Fide)
EHOAMNVIRAND] L SEES S844)

;
Savings
=3851°(1+E3) “I2
SFI1+EY)
=FI(1E4)
=FA'{1+EE)
=FE[14E8)
=Fir{1+EH)
=FT(1+E8)

=$FEN

=TABLE|,G1)
=TABLE|,G1)
=TABLE(G1}
=TABLE| 31}
=TABLE(G1)
=TABLE| 51}
=TABLE|,G1)

Chapter 79: Net Present Value

What the simulation does

I [H [
1 Worst Liely Sest Fandemly Yoar Diisc. 5% Py Py
7 Cost ~SE1000 555,000 -542,000 556,354,432 0 1 -556,B54.87 -556,B64.42 | Merreoot Exce

i Banafit S04 500 S13Gded G160 £13,143.99 G8E 515314304 S1R51T.13 |
Groth Rate noo -2}] [t] 0TS

Q.81 51548076 51218117 satwe 1
0.BE 513,745.28 S11.BT3.69 :
OB 51408870 $11.58448
078 514,375.17 51L.263.32

[hm [5258537

i iob S N, . LN

) e
|Awaruge rp| 5524426 | e
0 | $7.503.04 | Fepenl

PRSI
=P R
=ESg
E|

REEEEREEER
¥ =

s 'L g e o o
ERREEHIYHINS

FEERERERRS

=8E

ne ki s.uu| .sa.mg?.u!
=5 ” 100% -53,07L27
15.0% 41,552 14

0.0% -ST0a
25.0% 51,1B3.54
#0.0% S7.50068

35.0% 53,3515

40.0% 54,3833
45.0% 5550147
50.0% 5624436
55.0% $n08700
60.0% 58,145.13
B5.0% 5913533

When you have three scenarios (likely, best, worst) for your costs,
benefits, and growth rate (in A1:D4), you probably want a random outcome
between the extremes of best and worst. Then ultimately you want to
calculate the net present value (NPV) of your cash flows (in cell K10).

Here is some terminology. Having projected a company’s free cash
flow for the next five years, you want to figure out what these cash flows are
worth today. That means coming up with an appropriate discount rate which
you can use to calculate the net present value (NPV) of the cash flows. A
discount rate of 5% is used in column I (see screen shot below).

The most widely used method of discounting is exponential
discounting, which values future cash flows as “how much money would
have to be invested currently, at a given rate of return, to yield the cash flow
in the future.”

After running your 5 year projection (H1:K8), the simulation repeats
this with some 10,000 runs ithrough a VBA array. The simulation calculates
the average NPV and its standard deviation in cell K10 and K11 for the
latest run. The MsgBox keeps track of the results for previous runs.

Based on this information, you may want to find out what the

distribution of NPV values would be given the average of K10 and the
standard deviation of K11. This is done below them in cells J17:K51,
ranging from 2.5% to 97.5%. The graph shows the results, with the
“average” featuring at 50% (see screen shot on the next page).

What you need to know

I I K
Randamly Year Dise. 5% 2% Pv

=RAND(|*[B2-D2)+D2 o =1/1.05%82 =F2 =12%)2
=RAND()*(B3-D3)+D3 1 =1/1.05%843 =F3 =13%13
=RAMND()*(B4-D4)+D4 z =1/1.05%H4 =13*(1+5F34) =1a*14
3 =1/1.054M5 =ia*(1+5F54) =I5% 5
4 =1/1.05%86 =I5*(1+5F54) =l6% 16
5 =1/1.05%H7 =I6* [1+5F34) =17*17

[mpy [=sun(kz:K7)

What you need to do

Option Explicit

Sub NPV()
Dim i As Long, n As Long, pNPV As Double,
arrNPV() As Double, sMsg As String
Dim pSum As Double, pAvg As Double, pSD As
Double, sAvg As String, sSD As String
n = InputBox("How many iterations (1000 to
10,000)?", , 1000)
sMsg = "After " & n & " calculations:" & vbCr
Do
ReDim arrNPV(0 Ton - 1)
Fori=0Ton-1
Range("A1:K8").Calculate
arrNPV(i) = Range("'K8")
pSum = pSum + arrNPV(i)
Next i
PAvVE = pSum / n: SAvg =
FormatCurrency(pAvg, 2): pSum = 0
pSD = WorksheetFunction.StDev_S(arrNPV):
sSD = FormatCurrency(pSD, 2)
Range(""K10") = sAvg: Range("K11'") = sSD
sMsg = sMsg & "Mean NPV:" & sAvg & vbTab
& vbTab & "SD NPV:" & vbTab & sSD & vbCr

Loop Until MsgBox(sMsg & vbCr & "Repeat?",
vbYesNo) = vbNo
End Sub

NEV curve 0,05 SNORMIBV[I13,$KS10,5K511)

al =NORMIBV{I1, SKE 1D, SHE11)

i . 0.1% =HORMINW]IL5, SKS10,5K511)

S L SHORMINWIILE, SKS10,5K511)

s | HORMINVILTSKS10.5K511)

1 — = L =HORMIBV(ILE$KE10,$KE11)
15 -— ” .35 =HORMINV{I19SKE10L5HE11])
0 4 300 e 0.4 SHORMIN]I20, 5KS 10, 5K511)
z I i 0.45 =HORMINV]IZ1 $K510,5K511)
@ i a8 =HORMIBV{IZ2, $KE10, K811
23 o |-.|I'}.-"' w IR a0 BOM oUW DM EOM DOW L0 .55 =HORMINYIZISKEL05KE1L)
L] 53,000 & 2 a.6 sHORMINW] 124, SKS10,5K511)
5 065 =NORMIBV(125,$KE10,$KE11)
E S11.000 ¥ =HORMIBIVI26, $KE 10, $KE11)

Chapter 80: A Loan with Balance
and Principal

What the simulation does

1] & i) [F |
Loan APR fixed Years Monthly |
F 65,000.00] s60% 0 15373.45)
| Pariod Date Balance Payment Interest Principal Cum.imterest Cum.Principal
1 Dscd8] 6300000 ($373.4%)[(S300.33]] (See.s2j] (S30033)] {569.83)
¥ Jan-17] B4.930.18) ($372.15] (5302.01) [§70.14) {S60634) [§139.06)
3 Feb-17| 64.860.04| ($371.15)| ($302.68) [3T0.47]) {5909.02) [5210.43)
4 Mard7? G4,789.57| (3373.15)| (SI023S5) (STO.80]| (SA.137)) (S281.23)
5 APr—'I?r 54,718, 7T {$373 15-| |"$.'Il:|2' ﬂ?] |_".i?1.13_|I I_E"I..’n'IH 3!1‘_] Iil!l?.ﬁﬁi-
6| Maya7] B4847.84| (5272.15) (530168 [S71.48]] (51.815.08) [§422.83)
7 Jun-17] B4.578.17| ($373.15)] ($301.35) [571.80)] (32.116.44) [$495.62)
Ed Jul-i7] 64,504.38] ($373.15)] ($301.02) [572.13)] [52.417.45) [$567.75)
9 Aug-17| 64432.25| |$373.15)[(5300.68) [5T247]] [52,718.14) [5640.22)
10 Bep-17| B4.384.78| (837115} |S300.35) [§72.81]] ($3.018.49) [$713.03)

This is basically a simple macro. We enter estimates for loan amount,
term of the loan, and annual percentage rate through an InputBox three times.
Then the macro calculates, on a new sheet, the monthly payments, the total of
payments, and the total of interest.

Since there is not much “uncertainty” involved—all variables are
fixed—don’t expect any volatility here.

What you need to know

We need the Excel function PMT. Its syntax is: PMT(rate, nper, pv,
[fv], [type]). It calculates the payment for a loan (pv or present value) based
on constant monthly payments and a constant interest rate (rate per month)
for a certain period of time (nper in months). The last two other arguments
we can ignore here. Since we are dealing here with months, make sure to
divide rate (APR) by 12, and multiply the number of years by 12. Be aware
PMT returns a negative value (a value that is owed), unless you enter the
present value as a negative amount.

In addition, we need the Excel functions IPMT to calculate the
interest, and PPMT to calculate the principal. They have basically the same
syntax. All formulas are shown here below.

B [o E v B H
— G A A Ve _—

L) N =M TR L EI.C0)

Fatied L __ GumPri
=ROWAT] (=0 = "
=ROWAY |eOK o F
=ROWAL (=0 B

i =ROWIAY |=ON r

i =ROWAS [=0N -

i =RCHATAR L] ALK = F1

Here is the new sheet for $50,000 and an APR of 4.5%:
R 8 | ©¢ | b | FE | F | G | H I] 73

1 |Period IMonth Balance Manthly Interast Principal Cum_ Interest Cum. Principal [||
2 1 Dec-16 550,000.00 (518 750.00) ($18.750.00) (50.00) {$18.750.00) (50.00) [
3| 2| Jan-1T 550,000.00 (318.750.00) (18,750.00) (50.00) ($37,500.00) (50.00)
4| 3 Fab-17 §50.000.00 ($18.750.00) ($18.750.00) (30.00) (%56,250.00) (50.00)
5 | 4 Mar-17 550,000.00 (518750 00) (318.750.00) ($0.00) {375,000.00) (50.00}
61 5 Ape17 550,000 R0l Nt Gwiwie (WY

| principal [§ 50000-37.50%-360 @ Gl

What you need to do

Sub Loan()
Dim cLoan As Currency, pAPR As Double,
iDuration As Integer, i As Integer
Dim oWS As Worksheet
cLoan = InputBox("Loan amount", , 65000)
PpAPR = InputBox("Fixed APR", , 0.056) / 12
iDuration = InputBox(""Number of years', , 30) *
12
Set oWS = Worksheets.Add(, ActiveSheet)
oWS.Name = cLoan & "-" &
FormatPercent(pAPR, 2) & "-" & iDuration
Cells(1, 1) = "Period"
Cells(1, 2) = "Month"
Cells(1, 3) = "Balance"
Cells(1, 4) = "Monthly"
Cells(1, 5) = "Interest"
Cells(1, 6) = "Principal"
Cells(1, 7) = "Cum. Interest"
Cells(1, 8) = "Cum. Principal"
Application.Cursor = xIWait
With Range("Al1")
Fori=1 To iDuration
Offset(i, 0).Formula = "=ROW()-1"
'=DATE(YEAR(B5),MONTH(BS5)+1,1)

.Offset(i, 1).Formula =
"=DATE(YEAR(TODAY()), MONTH(TODAY())+" &
i& ",1)"

Offset(i, 1).NumberFormat = "mmm-yy"

'=Loan and then =C3+F3

Offset(i, 2).FormulaR1C1 = IIf(i = 1, cLoan,
"=R[-1]C3+R[-1]C6")

'=PMT(pAPR,iDuration,cLoan)

Offset(i, 3).Formula = "=PMT(" & pAPR &
"," & iDuration & "," & cLoan & '"")"

'=IPMT(pAPR,period,iDuration,cLoan)

Offset(i, 4).FormulaR1C1 = "=IPMT(" &
pAPR & ",RC1," & iDuration & "," & cLoan &)"

'=PPMT(pAPR,period,iDuration,cLoan)

Offset(i, 5).FormulaR1C1 = "=PPMT(" &
pAPR & ",RC1," & iDuration & "," & cLoan &)"

'=SUM(SE$2:E2)

Offset(i, 6).FormulaR1C1 =
"=SUM(R2C5:RC5)"

'=SUM(F2:F2)

Offset(i, 7).FormulaR1C1 =
"=SUM(R2C6:RC6)"

Next i
End With
Cells.EntireColumn.AutoFit
Application.Cursor = xIDefault
End Sub

Chapter 81: S&P500 Performance

What the simulation does

A B C D E F G H I
1| S&P 500 | Daily Cumulative [i =)
2 Avg. Daily Return 0.03% Monday 1.30% 1.30%

3 Daily St. Dev. 0.98% Tuesday -0.46% 0.84% | iemeiinn o
4 Wednesday 1.41% 2.26% 2;:;;: iz .;{.r;;.t
5 from 3 January 1950 through 31 July 2012 Thursday 0.10% 2.36% e
6 @ _ Friday 1.07%| 3.45%|

Ctrl + Shift + P —
l Ctrl + Shirt + |
gz | .

Based on data from 1950 to 2012, we have an average daily return
value (in cell B2) and a daily standard deviation value (in cell B3) for
S&P500 performance. This information we use to calculate what the
percentage would be at the end of a week (in cell F6).

Then we repeat this volatile calculation some 10,000 times with a
VBA array of 10,000 elements. There is going to be quite some volatility,
but because we have a reasonable sample size now, we can find a more
reliable average and SD through the array of 10,000 values. We can repeat
this several times, while the MsgBox keeps track of the results. That may
give 1s a bit more certainty in the midst of uncertainties.

What you need to know

A B C D E F
1 SEP 500 Daily Cumulative
2 Avg. Daily Return 0.0003 Monday =NORMINV(RAND(],5B%52,5B53) =E2
3 Daily St. Dev. 0.0098 Tuesday =NORMINV{RAND[),5B%2,5B53) =[E3+1)*{F2+1)-1
4 Wednesday =NORMINV{RAND(),$BS2,5B%3) =(E4+1)*(F3+1)-1
5 from 3 January 1950 through 31 July 2012 Thursday =NORMINV{RAND({),5B52,5B53) =(E5+1)*(Fd+1)-1
6 Friday =NORMINV(RANDY(),$852,58%3) |=(E6+1)*(F5+1)-1
7

The historical values in column B are used in column E with a
NORMINYV Excel function.

In column F, we calculate the cumulative end-of-week result: (daily %
+1) * (previous cumulative % + 1) — 1.

What you need to do
Option Explicit

Sub Performance()

Dim oRange As Range, arrVals() As Double, i As
Long, n As Integer

Dim pAvg As Double, pSD As Double, sMsg As

String
Do
ReDim arrVals(0 To 9999)
n=n-+1

Fori =0 To 9999
Range("'E2:F6'").Calculate
arrVals(i) = (Cells(6, 5) + 1) * (Cells(5, 6) + 1)

Next i

pAvg = WorksheetFunction.Average(arrVals)

pSD = WorksheetFunction.StDev(arrVals)

sMsg = sMsg & "Average: " &
FormatPercent(pAvg, 3) & vbTab &

"SD: " & FormatPercent(pSD, 3) & vbCr
MsgBox n & " x 10,000 runs:" & vbCr & sMsg
Loop Until MsgBox("Another run?'", vbYesNo) =

vbNo
End Sub

’ .
Microsoft Bucel [

10 5 10,000 runs:

Average: 0.117% 50: 2199%
Average: 0.182% SD: 2195%
Average: 0.153% SD: 2.200%
Average: 0.130% SD: 2.196%
Average: 0.136% SD: 2.166%
Average: 0.160% 50: 2167%
Average: 0.120% SD: 2.202%
Average: 0.142% 50: 2192%
Average: 0.139% 50: 2175%
Average: 0.129% S0 2192%

Chapter 82: Stock Market

What the simulation does

[E

i g] E F H i K M H] P
1 I Mgk | Tradttionsl SEP G0D el Tradrional Trad-3me Banchidark SAPI00 5 P-3ma Berchiark
R 0T 150 6580 L1106 TR 8410 noF [FETY RLEE ooy
1o 3247 66 1171, E7.41 GEAB e (LTH LT o Ctrl + shift + 5
i 304 5137 6540 0108 €818 &104 nom [TE Y TITE .08
A a0 T 871,706 w440 5098 nas LR TT.H0 o
5104 5139 8556 LTRE [FET] LTLH nos (T H rir oo
1| e 5336 AA8a TS0 .04 [FR1] -L0F TI.TR TRAR 40
i TMod 5055 5472 6106 £0.99 6150 LR | TI50 rEAY Q01
¥ B E0.73 2408 1o 057 S0A1 noo 7T30 TTAT LT
| W 3138 558 106 5233 BlAS Doz 7980 Trk6 fu0g
11 1 5247 G658 /108 150 ELEE] nos R4S TRIT o4
1

1006 041 5948 nos TTAT THEd 003
171,06 LI 56499 L[] 7116 7LD o7

15 | Hm5 5547 a7
16 M5 S50 P30
Toams W05 saar

6 S8 5573 T8
15| #ine a0 MAE
1| TS 5749 7aa1

1 #1mh ¥n LEA L)
71

The left section of this sheet contains hard-coded data, comparing past
S&P 500 values (C) with the past values of a traditional portfolio (B).

The right section analyses this information from the most recent month
(12/1/06) down to the previous month (11/1/06) and much further back in
time, if needed. The overview “grows” back in time if you copy its first row
down as far as you want to go back in history.

In addition, when new records are added at the bottom of the left
section, the first row in the right section will automatically update the history
from the most recent data down.

The macro does all of this automatically, once you decide on the
number of rows “back in history.”
What you need to know

The only new function is COUNTA. The COUNTA function works

like COUNT, but it also counts cells with text in them, such as the headers
above each column.

As said before, the function INDEX is a more sophisticated version of
VLOOKUP. It looks in a table at a certain row position and a certain column
position. It uses this syntax: INDEX(table, row#, col#). Whereas VLOOKUP
works only with column numbers, INDEX also uses row numbers, which is
very important when we want to look at a record that is located, for
instance, 3 or 12 rows above another record (like in columns G and J).

This time we use the function ROW again, but for a different reason—
to make the month go down: row# — ROW(A1)+1. Each time we copy that
formula one row down, the formula subtracts one more row: — ROW(A2),
then — ROW(A3), and so forth.

What you need to do

Option Explicit

Sub Stock()
Dim oRange As Range, oTable As Range
Dim vArr As Variant, i As Long, n As Long
vArr = Array('""Month", "Traditional", "Trad-
3mo'", "BenchMark", "S&P500", "S&P-3mo"',
"BenchMark")
Set oRange = Range("Al1").CurrentRegion
Set oTable = Range(""E1").CurrentRegion
oTable.Clear
Range(""E1:K1") = vArr
n = InputBox('""How many months?", , 12)
Set oTable = Range(Cells(2, 5), Cells(1 + n, 11))
With oTable
.Columns(1).Formula =
"=INDEX($A:$C,COUNTA($A:$A)-ROW(A1)+1,1)"
.Columns(2).Formula =
"=INDEX($A:$C,COUNTA($A:$A)-ROW(B1)+1,2)"
.Columns(3).Formula =
"=INDEX($A:$C,COUNTA($A:$A)-ROW(C1)+1-
3,2)n
.Columns(4).Formula = "=F2/G2-1"
.Columns(5).Formula =

"=INDEX($A:$C,COUNTA(SA:$A)-ROW(A1)+1,3)"
.Columns(6).Formula =
"=INDEX($A:$C,COUNTA(SA:$A)-ROW(A1)+1-
393)1!
.Columns(7).Formula = "=12/J2-1"
Fori =2 To .Columns.Count
.Columns(i).Cells.NumberFormat = "0.00"
Next i
.Columns(1).Cells.NumberFormat = "m/d/yy"
.BorderAround , xIThick
.Cells.Font.Bold = True
End With
End Sub

A I {] : F I K

1 Moath Tradional S&P 500 Month Traditional Trad-3mo Benchidark SEPS00 SEF-3ma BanchMark
2| 104 5450 65,90 12/1/06 68,38 54,10 007 B7. B1.68 n.07]]
1 2004 5247 681 11,/1/06 oos B5.9 79.63 0,08
4 | 304 5137 6580 10/1/06 66,18 5104 008 B4, 77.78 0.08
5 4104 S00B0 B4TT 9/1/06 64,10 g LS Bi. 7730 0.6
6 | SM04 5128 65.66 Ef1/06 6248 6052 003 7963 7120 Mk

604 5226 6693
i THi4 5055 6472
9 | adi04 5073 6408
10 a4 51.29 65,68
11 101304 52147 L1 |
12 11104 54.30 6938 |1 |lII
17 2] &aa2] 7174 v

Chapter 83: Stock Volatility

What the simulation does

iiiiii

LIS F el 4 shift -

Rl T SRT Y |
[e e A]

There is much uncertainty on the stock market. Monte Carlo
simulations are a great tool to get a bit more certainty in the midst of
numerous uncertainties.

The information needed is in the left top corner. The expected return in
cell B3 is based on history: an expected return of 10% divided by 250
trading days per year. The volatility in cell B4 is also based on past
performance: an annualized volatility of 25% divided by the square root of
trading days per year.

The simulation plots in column B the changes in stock value up to a
maximum of 250 trading days. To harness our uncertainty a little better, the
macro runs at least 1,000 to 10,000 iterations to beat volatility. This is to
ensure that we have a statistical chance of getting sufficient outliers (extreme
values) to make the variance analysis meaningful.

The simulation does all of this without a Data Table—which saves us
some “overhead costs.” Instead it uses a VBA array of 10,000 entries. It
finds the value after the first 10 days, repeats this 10,000 times, and stores
these 10,000 values in the array; the average of these values is entered in
cell F20. Then it does this again, but now for 30 days (G20), and so on, up to
250 days at the most. The chart shows the results of one run (columns A:C)
and of 10,000 runs (F20:R20).

What you need to know

The sheet itself has only formulas in rows A:C (column C is solely for
a baseline in the chart). The formulas from row 7 down are generated by the
macro.

A B C
1
2 |stock price 10
3 expected return =10%/250
4 wolatility =25%/SORT(250)
5
] value
7 =ROW(A1) =B2
& =ROW(AZ) =BT4+BT*(5SBS I+ 5BSA NORMINY(RAND(),0,1))
o =ROW(A3) =BB+BE*($B53+5BS4*NORMINV(RAND(),0,1))
10 =ROW(A4) =B9+B0*($B53+5B54*NORMINV(RAND(),0,1))

What you need to do

Option Explicit

Sub Volatility()
Dim oRange As Range, i As Long, n As Long, ¢ As
Integer, j As Integer
Dim arrVals() As Double, oTotals As Range
Set oRange = Range(''A7").CurrentRegion
oRange.ClearContents
n = InputBox("How many days ahead (10-250)?", ,
250)
If n > 250 Then Exit Sub Elsen=n +1
Range("B2'").Activate
With oRange
.Cells(1, 2) = "value": .Cells(1, 3) = "base'':
.Cells(2, 2).Formula = "=B2"
.Range(Cells(2, 1), Cells(n, 1)).Formula =
"=ROW(A1)"

.Range(Cells(3, 2), Cells(n, 2)).Formula =
"=B7+B7*(B3+B4*NORMINV(RAND(),0,1))"
.Range(Cells(2, 3), Cells(n, 3)).Formula =

"=B7"
End With
Set oTotals = Range(Cells(20, 6), Cells(20, 18))
oTotals.ClearContents

With oTotals
For ¢ =10 To n Step 20
ReDim arrVals(0 To 9999)
Fori =0 To 9999
oRange.Calculate
arrVals(i) =
WorksheetFunction.VLookup(c,
oRange.Range(Cells(2, 1), Cells(n, 2)), 2, True)
Next i
j=j+1
Cells(1, j) =
WorksheetFunction.Average(arrVals)
Calculate
DoEvents
Next ¢
End With
End Sub

Chapter 84: Return on Investment
What the simulation does

A B C D E F G H
CD value § 100,000.00

CD interest B% i
Taf:::es 25% ctrl + Shlft + c
Inflation rate 10%

Number of years MRcresch Exeal =
After inflation

To keep power o

9 |CD interest |
10 Taxes on prufft ; -
11 ROl {return on investment)

12

oW b -

m|m o~ o

Far how many years! o

In this simulation, we want to calculate our return on an investment,
but also take into consideration the cost of inflation and taxes for our
mvestment.

The sheet simulates the return on investment (ROI) when buying bank
CDs for a certain amount of money (B1), with the assumption that these have
a fixed interest rate (B2), a certain fixed inflation rate (B4), and that we are
taxed at 25% for CD profits (B3). We also assume that we want to keep our
CD value at its original power by, at least theoretically, putting in more
money each year (B8). We do all of this for a certain number of years (B6).

The core part of this simulation is calculating the return on investment
(ROI) in cell B11, based on all the cells above it. The macro also creates a
Data Table to be placed in D6:K13. This table shows at what return rates
and inflation rates our investment becomes profitable. It uses a link to that
calculation in B11. Based on this calculation, the two-dimensional Data
Table shows what the ROI is for a range of changes in CD interest and in
inflation rate.

What you need to know

A B

1 EDwvalue § 100,000,060
2 CDinterest

3 Taxes 2
4 Inflation rate

5

B Mumber ol years o

7 After inflation 4 3486754
E Tokeop power 4 85,13316
U CDinterest $ B0,000.00
10 Taxes on profit

11 | ROH raturn on investmaent)

12

13

T4
15

Ctrl + Shift + C

-311% 4.00% S00% B.00% T.00% B.O00% B00% 10.00% CD inberesl
400%f -283% 2688% B.60% 14.22% 1B.B4% 2545% 31.07%
BOO%| -TI23W - ATR A4B% BAM 14.98% TRBA% 24.80%
G00%) -1104% -581% -D.7BW 4.35% B48% 1462% 1875%
FO0%| -14.25% -830% -4.35% O0.58% E.54% 10.49% 15.43%
8.00%] -1EHT% 1297 -TI8% Z5E% Z20% A09% 11.T9%
P00% -1828% -14B3% -99TH -531% 0% 400% B.66%
10.00%) -21. 3% -1673% -12.18% -TEH% -311% 143% G0d%
wriflabion rabe

What you need to do

Option Explicit

Sub CDReturn()
Dim i As Integer, oTable As Range
Range("B6:B11").ClearContents
Range(''D6").CurrentRegion.Clear
i = InputBox("For how many years?", , 10)
Range("'B6") =i
Range("B7").Formula = "=B1*(1-B4)"B6"
Range(""B8").Formula = "=B1-B7"
Range(''B9"").Formula = "=B1*B2*B6"
Range(''B10").Formula = "=B9*B3"
Range(''B11").Formula = "=(B9-B8-
B10)/(B1+B8)"
Set oTable = Range(Cells(6, 4), Cells(13, 11))
With oTable
.Cells(1, 1).Formula = "=B11"
.Range(Cells(1, 2), Cells(1, 8)).Formula =
"=COLUMN(D1)/100"
.Range(Cells(1, 2), Cells(1,
8)).Borders(xlEdgeBottom).Weight = xIMedium
.Range(Cells(2, 1), Cells(8, 1)).Formula =
"=ROW(A4)/100"
.Range(Cells(2, 1), Cells(8,

1)).Borders(xlEdgeRight).Weight = xIMedium
.Table Range(''B2'"), Range('"'B4")

5
|
B
g

10

11 |FH:II [return an investment)

12
13
14

=
1

.Cells.NumberFormat = "0.00%;[Red] -0.00%"

.Cells(8, 1).Offset(1, 0) = "inflation rate"
.Cells(1, 8).Offset(0, 1) = "CD interest"

End With
End Sub

B
CD value -1|:|0'|:|IJO
CD interest 0.08
Taxes 0.25
Inflation rate 0.1
8 MNumber of years 10
7 After inflation =B1*(1-B4}B6
5 To keep power =ﬂ 1-87
CO interest =B1*B2*B6
Taxes on profit .=°EEII"E|-3

|=(B8-B8-B10N{B1+BE) |

=B11
=ROW(ASV100
=ROW(ASV100
=ROW(AB V100
=ROW(ATV100
=ROW(ABL100
=ROW(ASV100
=ROW(A10)/100
inflation rate

=COLUMNIDA W00

=COLUMNE1)100

=TABLE(EZ B4)
=TABLE(E2 B4)
=TABLE{BZ B4)
=TABLE{EZ B4)
=TABLE{E2 B4)
=TABLE{EZ B4)
=TABLE(B2 B4)

=TABLE(BZ B4
=TABLE(BZ B4
=TABLE(BZ B4
=TABLE(B2 B4
=TABLE(B2 B4
=TABLE(BZ.B4)
=TABLE(EZ B4)

Chapter 85: Value at Risk

What the simulation does

A B [D E F G
1 [Portfolio [$25,000.00 |

2 |Avg return 0.152

3 5; 0.135 Ctrl Shift T
4 Confidence 95%

5

6 Confidence Min. return New value Value atrisk Monthly VaR

7 95% -0.07 $23,24862 $1,751.38 $8,21441 |

8 90% -0.02 $24,474.76 $525.24 $2,46958

9 85% 0.01 $25302.04 (5302.04) (51,41f68)

10 80% 0.04 $25,959.53 ($959.53) (54,508.59)

11 75% 0.06 $26,523.60 (51,523.60) ($7/148.20)

12 70% 0.08 $27,030.15 ($2,030.15) ($9,528.24)

13 65% 0.10 $27,499.54 (52,499.54) ($11,728.90)

14 60% 0.12 $27,944.95 (52,944.95) | Ema]

15 55% 0.14 $28,375.89 ($3,375.89) 33

16 50% 0.15 $28,800.00 (53,800.00)((517,82 53]

17

Value-at-Risk, or VaR, is the potential maximum loss in a portfolio
(and a certain standard deviation) at a given confidence interval over a
given period of time (which could be a day, a month, or a year). We
calculate the minimum expected return, which is done with the function
NORMINV in B7 (although investments do not always follow a normal
distribution!).

What you need to know

The VaR is for a single time period (say, one trading day). To convert
that value to a longer range, simply multiply the VaR by the square root of
the number of single periods within the longer period. Say, you calculated
the JaR for one day and want it for a month, use the number of trading days
in a month, say 22, and multiply your VaR with V22.

VaR 1s not your worst case loss. At a confidence level of 95%, the
VaR 1s your minimum expected loss 5% of the time—not your maximum

expected loss. So don’t be surprised.

5

& Confidence Min. return Hew value Walue at risk Monthly VaR

7 03s =NORM.INVI1-B4,82,83) =B1*|5BS7+1) 815057 =sps7esarmizz) |
4 09 =TABLE|.B4) =TAELE|.B4) -TH.BLELEM =TABLE[,B4) I
9 0.85 =TABLE[.B4) =TABLE| B4} =TABLE(B4}

10 OB =TABLE| B4} =TABLE{.B4) =TABLE{ Bd}

11 075 =TABLE|.B4) =TABLE{.B4) =TABLE(B4}

12 0.7 =TABLE{,B4) =TABLE{.B4) =TABLE(B4}

13 065 =TABLE|.B4) =TAELE|.B4} =TABLE| B4}

14 06 =TABLE[.B4) =TABLE{B4) =TABLE(B4}

15 055 =TABLE|.B4) =TABLE|.B4) =TABLE{ Bd}

16 05 “TAELE|.B4) =TAELE|.B4) =TABLE{, B4}

17

What you need to do

Sub TableBox()
Dim cPort As Currency, pAvg As Double, pSD As
Double, pCont As Double
Dim sStart As String, i As Integer, oRange As
Range
Range("'A6'"").CurrentRegion.ClearContents
cPort = InputBox('""Portfolio", , Cells(1, 2)):
Cells(1, 2) = cPort
pAvg = InputBox(" Average", , Cells(2, 2)):
Cells(2, 2) = pAvg
pSD = InputBox("Standard Deviation", , Cells(3,
2)): Cells(3, 2) =pSD
pConf = InputBox("Confidence Level", , 0.95):
Cells(4, 2) = pConf
sStart = InputBox(''Start table in", , ""A6")
If Range(sStart) <> "" Then
Range(sStart).CurrentRegion.Delete
With Range(sStart)
.Offset(0, 0) = "Confidence': Offset(0, 1) =
"Min. return"
.Offset(0, 2) = "New value'': Offset(0, 3) =
"Value at risk"
.Offset(0, 4) = "Monthly VaR"
Fori=1To 10

Offset(i, 0) = FormatPercent(pConf-(i-1) *
0.05, 0)
Next i
Offset(1, 1).Formula = "=NORM.INV(1-
B4,B2,B3)"
Offset(1, 2).Formula = "=B1*(" & .Offset(1,
1).Address & "+1)"
.Offset(1, 3).Formula = "=B1-" & .Offset(1,
2).Address
Offset(1, 4).Formula = "=" & .Offset(1,
3).Address & "*SQRT(22)"
Set oRange = Range(.Offset(1, 0), .Offset(10, 4))
; ORange.Table , Range(''B4")
oRange.Columns(2).NumberFormat = "0.00"
oRange.Columns(3).NumberFormat =
"$#,##0.00);[Red]($#,##0.00)"
oRange.Columns(4).NumberFormat =
"$#,##0.00);[Red]($#,##0.00)"
oRange.Columns(5).NumberFormat =
"$#,##0.00);[Red]($#,##0.00)"
Cells.Columns.AutoFit
End With
'Conditional Formatting with Bars (only in later
versions of Excel)
With oRange.Columns(5)
Dim oBar As Databar
Select

Set oBar =
Selection.FormatConditions.AddDatabar
oBar.MinPoint.Modify
newtype:=xlConditionValueAutomaticMin
oBar.MaxPoint.Modify
newtype:=xlCondition ValueAutomaticMax
oBar.BarFillType = xIDataBarFillGradient
oBar.Direction = xlContext
oBar.NegativeBarFormat.ColorType =
xIDataBarColor
oBar.BarBorder. Type = xIDataBarBorderSolid
oBar.NegativeBarFormat.BorderColorType =
xIDataBarColor
oBar.AxisPosition = xlDataBarAxisAutomatic
End With
Range("B1").Select
End Sub

Chapter 86: Asian Options
What the simulation does

™ | % dl:l_l:rﬂl

D E f | H i |
2 mean B ﬂﬁ?,’;
1 (50 0.2 e e
- . W risk-free rate o
e af the aption B Idmuum this. |

1
Time 0 1 2 3 4 5 L AVG Fayaff
-, =g F
§ 4000 $4355 6071 % 6759 & BSET § 740 § 5745 § G145 § S545 [P]

=B7*EXP(NORMINV{RAND(), [=Max{0,17-5854) | At 180,900 rum, we e
%B%2-0.5*5B%3" 2, $B%3)) Wk co Tt tha pr

This simulation concerns an Asian option, which is valued by
determining the average underlying price over a period of time. Simply put,
an option contract is an agreement between two people that gives one the
right to buy or sell a stock at some future date for some preset price. To
price an Asian option by its mean, we need to know, at least to some degree,
the path that the stock will take as time progresses.

An Asian option (or “average value option”) is a special type of
option contract. The payoff is determined by the average underlying price
over some pre-set period of time. This is different from the usual European
options and American options which are valued at the expiration of the
contract.

One advantage of Asian options is that these reduce the risk of
market manipulation. Another advantage is the relatively low cost of Asian
options. Because of the averaging feature, Asian options reduce the
volatility inherent in the option; therefore, Asian options are typically
cheaper than European or American options.

What you need to know

To simplify things, we will track the stock over 5 years in yearly
increments (B7:H7). To derive the average value in 17, we multiply the
initial stock price (column B) by the first randomly generated log-normal

number (with the functions EXP and NORMINYV in C7:H7) to obtain a value
for year 1 (I won’t go into further explanations). The result must be
multiplied by the second randomly generated number (column C), and so on.

To make the predictions more reliable, we give it 10,000 runs in this
simulation. This 1s done with a VBA array (so we won’t need a Data Table).
For each trial, the simulation recalculates row 7 and stores the payoff
amount (J7) for each run in an array of 10,000 elements. Then the simulation
calculates the average payoff and its standard deviation in the array.

The Standard Error of the mean (SE) is the Standard Deviation (SD)
divided by the square root of the number of cases. A confidence level of
95% evaluates to the mean+ (1.96 * SE).

The macro reports in a MsgBox what the payoft amount would be with
95% confidence.

What you need to do

Option Explicit

Sub AsianOption()

Dim arrPayoffs() As Double, i As Long

Dim pAvg As Double, pSD As Double, pSE As
Double

Dim sLower As String, sUpper As String, sAvg As
String, sSD As String

ReDim arrPayoffs(0 To 99999)

For i =0 To 99999

Range("'B7:J7'").Calculate
arrPayoffs(i) = Range("J7")

Next i

pAvg = WorksheetFunction.Average(arrPayoffs)

pSD = WorksheetFunction.StDev(arrPayoffs)

pSE = pSD / Sqr(100000)

sLower = FormatCurrency(pAvg - (1.96 * pSE), 2)

sUpper = FormatCurrency(pAvg + (1.96 * pSE), 2)

MsgBox "After 100,000 runs, we have " & vbCr &
"95% confidence that the payoffis:" &

vbCr & "between:" & vbTab & sLower &

vbCr & "and:" & vbTab & sUpper
End Sub

-

- - - T
Microsoft Excel u Microsoft Excel u

After 100,000 runs, we have After 100,000 runs, we have
95% confidence that the payoff iz 95% confidence that the payoff is:
between: $44.66 between: S$44.69

and: 244,85 and: $44 .89

VIII. MISCELLANEA
Chapter 87: Cracking a Password

What the simulation does

A B

1 1]
& 2 =
3 -: Micrasal Exoel !'H
44
5 | m + shm + p Found the pacowsond pills pfter 479657 tnsls
6 —
i =]
23
3

This is not a real password cracker, of course, but we can still mimic
part of the process. First of all, in real life you don’t know the password yet.
Second, the password can be, and should be, rather long. Neither condition
can be met in this simulation.

Let us assume that the password is “p@s.” This is a 3-letter word, so
even if we only use the characters a-z (no capitals), then we would still have
26”3 possible combinations—which amounts to 17,576 different
arrangements. But we would like to use other characters as well. So don’t
make the password longer than 3 characters, for that could take an enormous
amount of processing time. Even in the simple example shown above, we
were “lucky enough” to find one matching combination after 479,657 trials.
Run times may vary considerably, of course.

What you need to know

There 1s a VBA function called Chr (in Excel it’s the CHAR function)
which returns the character that comes with a certain asci number. To find
out what the asci number of a certain key is, we could use the VBA function
Asc (in Excel it’s the CODE function); for instance, Chr(“a”) would give us
the number 97.

The sheet shows 125 asci numbers in column A and the corresponding
characters in B, just for your information. To limit ourselves to “readable”
characters, we use the Excel function RANDBETWEEN to get a random

character between the asci-numbers 33 and 122

The macro also uses the Application.StatusBar property to report
progress on the status bar after every 1,000 runs.

-
Microsoft Excel ﬁ

Found the password p@s after 1872928 trials.

What you need to do

Option Explicit

Sub Password()
Dim i As Long, j As Integer, sPass As String,
sGuess As String
sPass = InputBox('""Which password?", "Watch the
Status Bar", "p@s'")
'"More than 3 chars could take very long
If Len(sPass) > 3 Then MsgBox "No more than 3
chars': Exit Sub
Range("'Al1").Select
Do
For j =1 To Len(sPass)
sGuess = sGuess &
Chr(WorksheetFunction.RandBetween(33, 122))
Next j
If sGuess = sPass Then Exit Do
i=itl1
DoEvents
If i Mod 1000 = 0 Then Application.StatusBar =
i & " runs"
sGuess =""
Loop
MsgBox "Found the password " & sPass & " after

"&i& " trials."
End Sub

E

.
NSciosolt Faced e

Found the password p@s after 389988 trials.

(P |

Found the password p@$ after 728004 trials.

Chapter 88: Encrypting Text

What the simulation does

F:% i C [E S L

1 [Mame 558 Emcrypted Decrypted 1 sCHAR{I1) =CODE[K1)
! Avery,G. 157933429 | MFHGGMEIE 157933429) 21 2
| Babeock, €. |10B064226 JFFRIMLME 198064226 : H BL 3
| Brown,G. |751208333 | FEGIMFEIK 751296322 Ctrl + Shift + C 4! 4
L Bucca, P, 467349145 | HEMHGIIH 467349145 CM + shiﬁ + E 5| 5
i carrel, M. |547195212 FEFIMEKHI 547195212 z : ! 6- &
' Donaldsen, 5. 476173168 | UEGKEIKH 476173168 = 7= 7
4 Frommer,F. |387671515 IEIEKIKLG IMTEFIS15 &g 8
| Gary, 5. 3945895588 | IIMLIHMH 494589558 5 8
10 Josephs, P. 963427969 | MIMKFHGIM 963427969 10 10
11 Lively, 5. 338639296 IMFMGILGG 338639206 11 ¢ 1
17 Matthews,). |188B86695 IMULLLLE 188EAGESS 120 12
17 Piazza, L B93TSA524 | HEHIKGML 593754524 13 13
14 Rice, R. 237655466 | UHIUBKGF 137655366 14 8 14
15 Senith, 1. 219654667 KILHUMEH 419654867 15 & 15
16 Smithers, 5. 692117613 GEMEEFMI 692117613 16 16
17 Stewens,). |223938571 | EKIIGMGEE 223538571 17 4 17
14 Stevens, M. |925929609 | MMIMFMIFM 825929699 18 [18
19 Stevens, P, |917499325 | IFGMMHKEM 917499325 19 1 19
20 Johnson, A [B52448510 MEMLHHFU 652448519 201 20
1 White, M. 925579926 IEMMKIFM 525579920 I 21
') Green, S, 971141551 ENEHEEKM 871141551 b 22

23 4 13

This file has two sheets. It uses two different macros: one for the 1%
sheet, and the other for the 2" sheet. They both encrypt and decrypt cells—
in this case cells with Social Security numbers (SSN). Both macros use a
costom function that I gave the name Encrypt (the first code on the next
page). This function has been given two arguments, the second of which is
Boolean and determines whether to encrypt the SSN or decrypt the
encrypted SSN. In the former case, it shifts asci numbers up by 20 (or so); in
the latter case it shifts them down by that amount. Obviously, it is one of the
simplest algorithms one could think of.

The difference between macros (Sub) and functions (Function) is a bit
semantic. Functions return something—a word, a value—just like the
function SUM returns the total of values. Subs, on the other hand, change
things. Let’s leave it at that.

The first macro (the second code on the next page) places in column D
of the 1% sheet an encrypted SSN, and then decrypts it again in column E. It
does so by setting the Formula property of those cells that uses the function
Encrypt.

The second macro (the third code on the next page) does something
similar, but this time by directly calling the Encrypt function.

What you need to know

To make the encrypted version a bit harder to crack, we used the VBA
function StrReverse, which puts the text, a String, in a reversed order.

What you need to do

Option Explicit
'A simple algorithm, so if law enforcement detects
illegal use of it, the code can be cracked easily

Function Encrypt(sInput As String, bEncrypt As
Boolean) As String
Dim i As Integer, sChar As String, sNew As String
sInput = StrReverse(UCase(sInput))
Fori=1 To Len(sInput)
sChar = Mid(sInput, i, 1)
sChar = Chr(Asc(sChar) + IIf(bEncrypt, 20,
-20))
sNew = sNew & sChar
Next i
Encrypt = sNew 'OR: = LCase(sNew)
End Function

Sub CreateFormulas()
Dim iRows As Long
Sheetl.Activate: Range(''Al1").Select
iRows = Range("A1").CurrentRegion.Rows.Count
Range(''D1").Range(Cells(2, 1), Cells(iRows,
1)).ClearContents
Range("'E1").Range(Cells(2, 1), Cells(iRows,

1)).ClearContents
If MsgBox("Encrypt and decrypt with formula?",
vbYesNo) = vbNo Then Exit Sub
Range(""D1").Range(Cells(2, 1), Cells(iRows,
1)).Formula = "=Encrypt(B2,TRUE)"
Range("'E1").Range(Cells(2, 1), Cells(iRows,
1)).Formula = "=Encrypt(D2,FALSE)"
End Sub

Sub Encrypting()
Dim sText As String, i As Long
Sheet3.Activate
Columns("D:E").ClearContents
MsgBox "Encrypting and decrypting column B"
Fori=2To
Range("'A1").CurrentRegion.Rows.Count
Cells(i, 4) = Encrypt(Cells(i, 2), True)
Cells(i, 5) = Encrypt(Cells(i, 4), False)
Cells.EntireColumn.AutoFit
Next i
End Sub

Chapter 89: Encrypting a
Spreadsheet

What the simulation does

A i C] ; f
1] o | FunNAME DEPT SSN 2 DOH | SALARY |
7 MAR1422 Awery, G. Marketing B4ETII4ZZ 02081 $ 99,046.00 |
| |FIN1978 Babeock, C. Finance FA9EF1 978 0ONES § 11850600 |
4 |ACCTE23 Brown, G. Accounting SIRTIIERZE OS/ONET $ 63.139.00 |
5 MARIZIZ Bucea, P. Markeling S4B361212 DE/OUTS § 6349200 !
f |PLAS2S0 Carrel, M. Planning 071379240 060130 § 68.763.00 |
i |COMSMEZ Donaldson, §. Communication 226839463 070189 $ 93,306.00 |
§ IMANS21D Frommar, F Managamant 016339310 o4f05m8e § $?.5?B.Dﬂ:
i :SALJIM Gary, 5. Sales BATAZAR5T osas #1.43‘3.90:
10 MANSTO1 Josephs, P Managemenl TI0BOS701 O70U90 § 67.055.00
11 MANA1SD Lively, S. Managemenl 294114190 OX05/86 % 80,517.00 |
17 (PLAZTES Mathews. J. Planning TOETEATEZ O2M4/85 $ 55.403.00 |
17 [FING211 Piazza, L. Finance SI4560811 03047858 ¢ 2831400 |
14 [PLASIES Rice, A Planning 133048364 OS0ET 10853500 |
15 [SAL2T20 Smith, J. Sales /79212720 0JOUEO § T23M.00)
16 (ACCE?35 Smithers, 5. Accounling MIS48735 OF05ET7 § 47.062.00 |
17 |PLATT37 Stevens, J. Planning 161457737 OBJ01/90 $ 52,829.00 |
4 |PLAGEST Stevens, M. Planning BATTEIED OH04/90 $ T1.401.00 |
19 [COMaGED Swevans, P, Cormmamnicalion 897683680 030490 % TaME.00 |

[-l:-u-ﬁhl'l

LY
fLHE Lol

With an Application.InputBox, the user
sheet to encrypt. Then the macro uses the function Encrypt (the same
function as used in the previous chapter) to encrypt each cell in this selected
range and place it on a new sheet. This is done with a For-Each-1oop.

can indicate which part of a

Next the macro asks the user whether they want to create a CSV-file of
this encrypted sheet (see below). If the user says yes, another Sub is called,
SaveAsText, which opens NotePad and copies the encrypted text onto it.

What you need to know

A]
ZibLaY
|autenFF Uytipale
|Z]BEMEL Vuvwiw(BIWE
|UWABRIFG Wi, @48
|aUfEFEF Wiewwu S4dB
| UMFHD WuttyES4aR
IWeaMHIG Xfuextf, 24gh
|aUbMGED ZTyT@4TE
|[gUHUG [utE4gs
|SUBIKDE Afiy. | Teude
|aUBHEMD “YSyE@4gt
12 [dUGKIG au” |yst@ds
13 |Z]lbEE djuZiu@d’B
14 dULGIH fiwy@4fB
15 |gUFKFD gl | @448
16 UWWLEGH gl |yTH@dgh
17 [dUKKGE g ydy, 3@4ne
18 [dUMIGE g yiy, FiD4al
|WeaGID g Sy, @4

=R R BT R R e

et
=

L D
wrdh ggb
autlyL{ MHIKGEHFF
Ty FGMUFEMEL
Uww¥e,"].| IGLKKKIFG
autly"L{ IHIGIEFEF
deu,, .0 DHEGEMFHD
Wi, fwu*If, FRILGMHIG
s ufyy,” DEIMGMGED
ittt LHEHFHLIG
Ly, KKDLMEDE
auulyy,” FMHEEHEMD
de€u,,] EDIELGENS
Thu,wy IGHIZDLEE
d€u,.1{ EGGOHLGIH
Byt LKMGEFKFD
Uwwf¥e, L MHEIHLEG!
d€u,, 1 EIEHIKKGK
diu,. 1 LLEKIMIGE

WS, w1, UMBILGALD

e,
FCGCEMLE
ECECEMLI
GCHCEMLK
JCECEMEKI
JCECEMMD
KCECEMLM
HCICEMLM
JCECEMLI
KCECEMNED
GCICEMLU
FCEHCEMLI
GCHCEMLM
ICECEMLE
ECECEMLD
GCICEMLK
LCECEMMD

f
U
MLDHI
EELMDI
IGEGM
IGHNEF
ILKIG
MGG
LKIKL
HEHGG
JEDH
LDIEK
IHDG
FLGEH
EDLIGI
KFGKE
HEDUF
IFLFM

GCHCEMM KEHDE
GCHCEMMD KGDEF

[Micrasoft Excel [

Do you want an encrypted C5V file?

It is thanks to a global variable, bEncrypt, that the macro Processing
“knows” whether to encrypt or decrypt.

What you need to do

Option Explicit
Dim bEncrypt As Boolean

Sub Processing()
If bEncrypt = False Then
bEncrypt = True: Encrypting
Else
bEncrypt = False: Encrypting
End If
End Sub

Sub Encrypting()

Dim oWS1 As Worksheet, oWS2 As Worksheet,
oCell As Range, oSelect As Range, sAddr As String

Set oWS1 = ActiveSheet

Set oSelect = Application.InputBox('"'Range'', ,
Range("A1").CurrentRegion.Address, , , , , 8)

Set oWS2 = Sheets.Add(, oWS1)

For Each oCell In oSelect

sAddr = oCell.Address ; oWS2.Range(sAddr) =

Encrypt(oCell.Value, bEncrypt)

Next oCell

oWS2.Cells.EntireColumn.AutoFit

If MsgBox("Do you want an encrypted CSV file?",

vbYesNo) = vbYes Then SaveAsText

If bEncrypt = False Then Exit Sub

If MsgBox("Do you want to decrypt next?",
vbYesNo) = vbYes Then bEncrypt = False: Encrypting
End Sub

Function Encrypt(sTxt As String, bEncr As Boolean)
Dim i As Long, sChar As String, sNew As String
Fori=1 To Len(sTxt)

sChar = Mid(sTxt, i, 1) : sChar =
Chr(Asc(sChar) + IIf(bEncr, 20, -20))
sNew = sNew & sChar
Next
Encrypt = sNew
End Function

Sub SaveAsText()

Dim vExe As Variant, oSelect As Range

Set oSelect = Application.InputBox("'Range'', ,
Range(''A1").CurrentRegion.Address, , , , , 8)

oSelect.Copy : vExe = Shell("'notepad.exe",
vbNormalFocus)

AppActivate vExe ; SendKeys "*V", True
End Sub

Chapter 90: Numbering Records

What the simulation does

i f D I T i

1jjiD Patient Gender DOB Age Weight Systolic
Bush] 1131975 41 160 178
Coarter F 106221937 79 192 151

4 Clintan M 751971 45 171 175 ctf[+ Shift +N
Eisanhower F 117241934 81 154 124
Fﬁrd ” 141 r — — - —_— - — — —
Johnson F cchlca SR VB 125 | =VLOOKUP{SMALL(SIS11:51516,H11),51511:5K$16,2,0)
Kennedy M 193 :
Lincoln M 166
Mixon F 146 & RAND unsorted sorted
Reagan M 170 1 0.435 Top Mgmt Administration
Roosevelt M 196 2 0323 Senior Mgmt Senior Mgmt
Truman F 1002011962 54 151 134 3 0.466 Finance Top Mgmt
Washington F 101151963 53 155 1840 4 0,632 Marketing Finance
Adams M 101964 52 159 175 5 0892 Sales Marketing
Jafferson F 10/4/11965 51 163 170 6 0.089 Administration Sales

This macro automatically “numbers” each record in a database by
inserting a column before the first column and then populating it with various
options:

* Consecutive numbering

* With leading zeros

« Starting at a specific number

* Repeating from 1 ton

* Repeating each number n times

At the end of all these options, the macro lets the user sort range
(J11:J16) in a randomly sorted way. The sorting is based on random
numbers in column I. The randomly sorted list uses the Excel functions
VLOOKUP and SMALL as shown in the comment of cell L11.

What you need to know

The Excel functions that can be used here are ROW, RIGHT, MOD,
QUOTIENT, VLOOKUP, and SMALL.

QUOTIENT returns the integer portion of a division; its 1% argument
holds the numerator, the 2"¢ argument the divisor.

]

|Patient
Bush

Carter
Clinton
Eisenhower
Ford
Johnson
Kennedy
Lincoln
Mixon
Reagan
Roosevelt
Truman
Washington
Adams
Jefferson

Boae e Ln B L R e

[I TR S T (RO S |
PR TR TR TR

1001 Bush

1002 Carter

1003 Clinton
1004 Eisenhower
1005 Ford

1006 Johnsom
1007 Kennedy
1008 Lincoln
1009 Mixon

1010 Reagan
1011 Roosavell
1012 Truman
1013 Washinggton
1014 Adams
1015 Jefferson

A

B
|1 |Patient

2

bt B = SR T I T

=M

=

L

| 16

1 Bugh

2 Carter

3 Clinton

4 Eisenhower
5 Ford

1 Johnson

2 Kennedy

3 Lincoln

4 Nizon

5 Reagan

1 Roosevelt

2 Truman

3 Washington
4 Adams

5 Jefferson

3 Washington
3 Adams
3 Jefferson

What you need to do
Option Explicit

Sub Numbering()
Dim oRange As Range
Range(" Al1").EntireColumn.Insert
Range("Alﬂ) — "ID"
Set oRange = Range(''A1").CurrentRegion
Set oRange = oRange.Offset(1,
0).Resize(oRange.Rows.Count - 1, 1)
With oRange
MsgBox "Consecutive numbering."
JFormula = "=ROW(A1)"
JJFormula = .Value
MsgBox "With leading zeros."
JFormula = "=RIGHT(""000"" & ROW(A1),3)"
.Copy: .PasteSpecial
xIPasteValuesAndNumberFormats
Application.CutCopyMode = False:
Range('"'A1").Select
MsgBox '"Starting at 1001."
JFormula = "=ROW(A1001)"
JFormula = .Value: Application.CutCopyMode =
False
MsgBox "Repeating from 1 to 5."

JFormula ="=MOD(ROW(A1)-1,5)+1"
.JFormula = .Value
MsgBox "Repeating each number S times."
JFormula = "=QUOTIENT(ROW(A1)-1,5)+1"
JFormula = .Value

End With

MsgBox "The last step deletes column A"

Range("'Al1").EntireColumn.Delete

Do While MsgBox("'In H11: K16, we sort data

randomly. Again?", vbYesNo) = vbYes

Calculate
Loop
End Sub
RAND wunsorted sorted
1 0.731 [Top Mgmt Sales
2 0.993 Senior Mgmt |Marketing
3 0.813 Finance Top Mgmt
4 0.611 Marketing Finance
5 0.538 [Sales Administration
6 0.955 JAdministration |Senior Mgmt

Chapter 91: Sizing Bins for

Frequencies
What you need to know

A B c] E ; 1 | 1 i K

1 56 1 B B 1] 25]

i 118 18 82 EL] 9 50 1

1 124 Ho 18 ETI I 75 2

il 126 B0 1% 124 118 100 T

5 147 B 187 1Tr 1M 125 10

] 181 =] 163 188 127 180]

¥ 152 113 73 19T 175 12 Mberoich Bz et resd
8 %6 13 198 ;8 148 200 7) ;
g 187 14 M 208 170 295 10 Ficen mens it 5103007 [Los |
10 179 183 208 31 47T 250 8 —
11 21 3 3 213 BB 75 5

12 50 T8 FEL 33 M2 00 4
13 €2 185 389 241 30 138 7 o

14 T 248 303 34 240 80 8
15 288 183 3 34 M2 7B 2

16 g FE| kLT nur 244 400 4

17 3 M6 IH 323 254 425 0

12 386 384 400 ur baji] 480 2

15| 456 479 436 3E2 300 478 1

0| 488 500 444 400 34 00 3

3 100

In this macro, an Application.Inputbox asks the user which values
from A1:E20 should be covered in the frequency table of columns G:H. The
macro also checks how many bins the user wants to create, so the VBA code
can properly calculate the bin sizes.

What the simulation does

The VBA code creates a Range Name for the range that has been
selected, so that this Name can be used in formulas. At the beginning of the
code, a previously assigned Name has to be deleted, if there is one. But if
this Name did not exist yet, the code would run into trouble for it cannot
delete what 1s not there—that’s what the line On Error Resume Next tries to
prevent.

An alternative would be to declare a variable of the Name type: Dim
oName as Name. And then make a loop like this: For Each oName in
Names | If oName = “data” then oName.Delete | Next oName.

The FREQUENCY function returns the frequencies for each bin, but
also returns one additional value for what we could call the “left-overs.” If

that extra bin i1s not 0, then some or more values have been left out. That is a
final check that not all values have been covered.

The formula in the bins range that creates the bins would look like
this:
=INT(MIN(data)+(ROW(A1)*(MAX(data)-MIN(data))/" & iBin & ")).

What you need to do
Option Explicit

Sub BinSizing()

Dim iBin As Integer, oData As Range, oBins As
Range, oFreqs As Range

On Error Resume Next

Sheetl.Names(''data'").Delete

Set oData = Application.InputBox(''Range'", ,
Range("A1").CurrentRegion.Address, , , , , 8)

oData.Name = "data"

iBin = InputBox('"How many bins (5-10...-30)?", ,
20)

If iBin > 30 Then Exit Sub

Columns("G:H").ClearContents

Set oBins = Range(Cells(1, 7), Cells(iBin, 7))

oBins.Formula = "=INT(MIN(data)+(ROW(A1)*
(MAX(data)-MIN(data))/" & iBin & "))"

Set oFreqs = Range(Cells(1, 8), Cells(iBin + 1, 8))
'+1 for the left-overs

oFreqs.FormulaArray = "=FREQUENCY (data," &
oBins.Address & '")"

oData.Select
End Sub

10 08 B e

14
35
w
18

1 Kk | L M

Ctrl + Shift + B

Chapter 92: Creating Calendars

What the simulation does

A H Li L1 E | L7}
f F— W)

———) Ctrl Sh C: Calendar
&, » i § L & 2 Ctrl Sh M: MonthDisplay
: I 2 I E “o5 Ctrl Sh S: SheetCalendar
i =

This macro creates a calendar for the month and year of your
choosing, either in a MsgBox (picture above) or on the sheet itself (picture
below)

What you need to know

| |: r
Nowdh]

I Eun Mo Tum Wed Thu Fn £ad)) 1] :'r'-l:-'v:\hl-l' i
Lz & 4 B Cirl Sh C; Calendar || w e
L] T] ¥ 0 1i 13 | —
13 14 i6 18 7 18 1 » g x Coarosi
= S LI, R Ctrl Sh M: MonthDisplay
T Ctrl Sh S: SheetCalendar | T

The VBA function DateSerial returns a date based on 3 arguments
(year, month, day). The VBA function WeekDay returns the day of the week
from 1 (Sunday) to 7 (Saterday). So the VBA expression WeekDay(2) would
return “Monday.”

What you need to do

Sub Calendar()
Dim dStart As Date, dDay As Date
Dim i As Integer, sCal As String
dStart = InputBox("'Start", , Date)
Fori=0 To 30

dDay = dStart + i
If Weekday(dDay) <> 1 And Weekday(dDay) <>
7 Then
sCal = sCal & vbCr & Format(dDay, "ddd" &
vbTab & "mm/dd/yy")
Else
sCal = sCal & vbCr
End If
Next i
MsgBox sCal
End Sub

Sub MonthDisplay()
Dim dDate As Date, sCal As String, i As Integer,
iMonth As Integer, iYear As Integer
iMonth = InputBox("Month', , Month(Now()))
iYear = InputBox("Year", , Year(Now()))
sCal = MonthName(iMonth) & " " & iYear &
vbCr
sCal =sCal & "S" & vbTab & "M" & vbTab &
"T" & vbTab & "W" & vbTab & "T" & vbTab & "F"
& vbTab & "S" & vbCr
dDate = DateSerial(iYear, iMonth, 1 : dDate =
dDate - Weekday(dDate) + 1
Do
Fori=1To7
If Month(dDate) = iMonth Then sCal = sCal
& Day(dDate)
sCal = sCal & vbTab
dDate = dDate + 1
Next i
sCal = sCal & vbCr
Loop While Month(dDate) = iMonth
MsgBox sCal
End Sub

Sub SheetCalendar()
Dim dDate As Date, iMonth As Integer, iYear As

Integer
Dim sRange As String, r As Integer, i As Integer
sRange = Application.InputBox("'Start in cell", ,
"Al")
iMonth = InputBox(""Month", , Month(Now()))
iYear = InputBox("Year", , Year(Now()))
With Range(sRange)
.Value = MonthName(iMonth) & " " & iYear
.Range(Cells(1, 1), Cells(1, 7)).Merge
.HorizontalAlignment = xlCenter
r=2
Fori=1To 7
.Cells(r, i) = Left(WeekdayName(i), 3)
Next i
dDate = DateSerial(iYear, iMonth, 1)
dDate = dDate - Weekday(dDate) + 1

Do
r=r+1
Fori=1To7

If Month(dDate) = iMonth Then .Cells(r, i)
= Day(dDate) Else .Cells(r, i) = """
dDate = dDate + 1
Next i
Loop While Month(dDate) = iMonth
.CurrentRegion.BorderAround , xIThick
End With
End Sub

Chapter 93: Populating a Jagged
Array

What the simulation does

0 f
1[ma]mrm mna mms @as sew e s BT

STELIE BLTY SEIIA1 AN MTRES SRR SMIREE MRHAL SA05A STRLAE RWRIM Senaar (ETANLAER r i
dE SEL SSHOL . Gn M i e MmO SA W e SAEEET e
ST BMATG GIMLRE H1RAD RMLE SRAGEE STARAS TLET BEMD SHAR it BREISE Elﬂ ""m"l
der1y2 e jasem deman Ssensw deman dranar dweer Seierz deaw dnosa (80D

£ ORETLED BEMEZ MGG TTA] RMUAT 8001 FUAM SMMEL BIELI SR FI0E RBMAT EMAM MG BLERAT
el SIaAE S dearas WLE SrA e Jimom S dsesy Wmow Saase jsesan NRISAY
$552.70 SRELTR
ST SMAES SSMA0 SRS APLAOS SArREY AmRIR Smars Saehdl o deindd Seon Saeeco SEASLE

0 SE0.IA SELLSH SABAO0 BEROE SEMAEE SAEG7 T BAS0LEG
STUrP S3eesa Septad dkrem SLASE

17 BASTA0 FTAON SEERAS ADLM BNTET STEAOT WDATT SEATE STIEI IRl |SEINEAS
SSELI SSELER GEINAS GBRO) STREE SEERM diSAde SEwae e [SRARESY

4 BITAS WV MG BRI SMAET BISRS] GAIT SIRT ST WS | SRATREE
SHEIET SIMSE SR N ST SHAE WA S 5 SN
4TRSS SLEIE
SRILEE SRATL GERRIR SRLED RPOET S0TRAD RS MEMTE BMERAS f00o BAEOAED

1 b ST G W e e T Bma SeMar nn s e e (SRR

S GETRAE BINRNT SANNED fdRdd EMGLTR SoRl) RGN

o dseas Sysa | EINE

10 LAY BIRLER SAER MR GRGETE SRMAVE 4TIRM fAMAI BARIER ol |BENEE
drpan e dars does dibame deem Biomein

19 ML SELe 0w [RLIRLED

¢ G Srmed SELA) AR MeAs SEme LSk SSEam sa.m KLk

I3 SEHUMA SMIEFE SN MM RELEE SIS ReLN (0 SOWSAN ST SRR

SEPASE SMIEE SHRE AL SISATE S8R diasS SMaLba §AMEA4 SMITP A6 SREDET BASASS deeRas " ek
) GrandTotsl 115 43060

This simulation creates random sales per row—which could be per
day, per week, or whatever. Since the number of sales per row can vary, a
simulation like this can best be done with a so-called jagged array.

The “main” array has 26 elements (0 to 25). But each one of these 26
elements holds another array of elements. So we end up with an array of
arrays—a l-dimensional “main array” with 1-dimensional “subarrays.” The
dimension of each subarray is determined randomly.

What you need to know

The simulation loops through the 26 elements of the main array and
starts each time a subarray with a random amount of (random) elements, the
sales. Once the subarray is finished, the simulation stores it in the main
array: arrMain(i) = arrSub. Make sure the main array is of the Variant type,
for only a Variant can store another array.

To populate the cells on the sheet, you need to address each element in
the main array as well as in the subarray. This is done as follows:
arrMain(i) (j)—with j refering to a subarray element, and i to a main array

element.
On the last line, the simulation calculates the total sales amount.

In case you want to create the jagged array on a new sheet, the VBA
code has also a Sub called InsertSheet.

What you need to do
Option Explicit

Sub JaggedArray()
Dim arrMain(25) As Variant, arrSub() As String
Dim i As Integer, j As Integer, iRand As Integer
Dim cSubTotal As Currency, cGrandTotal As
Currency

Range("'A1").CurrentRegion.Cells.Interior.ColorIndex
=0
Range("'Al1").CurrentRegion.ClearContents
'Loop thru Main Array and create Sub arrays of
random length
For i =0 To UBound(arrMain)
iRand = Int(Rnd() * 15)
ReDim arrSub(iRand)
For j = 0 To UBound(arrSub)
arrSub(j) = FormatCurrency(Rnd() * 1000)
Next j
arrMain(i) = arrSub
Next i
'Call InsertSheet below if you like
For i =0 To UBound(arrMain)
For j = 0 To UBound(arrMain(i))

ActiveCell.Offset(i, j) = arrMain(i)(j)
cSubTotal = cSubTotal + arrMain(i)(j)
Next j
ActiveCell.Offset(i, j) = cSubTotal
cGrandTotal = cGrandTotal + cSubTotal:
cSubTotal = 0
ActiveCell.Offset(i, j).Interior.ColorIndex = 15
Next i
ActiveCell.Offset(i, j) = cGrandTotal
ActiveCell.Offset(i, j - 1) = "GrandTotal"
Cells.EntireColumn.AutoFit
End Sub

Sub InsertSheet()

Dim oWS As Worksheet, sName As String
Again:

sName = InputBox(""Which name?")

If sName = "" Then Exit Sub

For Each oWS In Worksheets

If LCase(oWS.Name) = LCase(sName) Then

GoTo Again

Next oWS

Set oWS = Worksheets.Add(, ActiveSheet)

oWS.Name = sName
End Sub

Chapter 94: Filtering a Database

What the simulation does

A B Lo D E F G H |) K
[|||:1 NAME DEFT SALARY HOURS DOH LOCATION
21 Smaith. . Sales $41.260.00 40 17B0 Boaton a
1 2 Gary. 5. Sales $44.000.00 #6 B35 Marlboro Ctrl + shlﬂ: +F
4 3 Rice. R. Planing $37.400.00 26 6/1/87 Boston_ | Ctrl + Shift+ H
5 4 Carrel, M. Plainning $26.300.00 40 BIJS0 Cambridge
6 B Matthews, J. Planming $55, 00000 35 2114785 Marlboro
7 & Stevens, . Planning F55.000 00 5 BNJA0 Worcester
E 7 Stevens, M Flanning $26.300.00 40 3590 Warcester Trgad [
9 & Bucca, P Marketing $60.500.00 # BLTE Boston [t =
10 9 Avory. G Markeding $44.000.00 Fh AR Marlboro | s
11 10 Frommed. F. Management $49 50000 40 4/6J/89 Boslaon [|
12 11 Josephs, P Management $49.500 00 35 72090 Worcaster |] bt |
13 12 Livaly, S5 Management FEE 000 00 5 G586 Worcester
14 13 Baboock, . Finance $26.300.00 40 1185 Boston
15 14 Piagza, L Finance $49.500.00 ¥ 30 Cambridge
16 16 Donmaldson. 5 Communication $33.000 00 b 1ME9 Boston
17 16 Stevens. P Communication $49.500.00 40 SR80 Boston
18 17 Smithers. 5. Accounting 37896000 I 3EAET Cambridge
19 18 Brown. G. Accounting $37.400.00 26 34587 Marlboro

The first macro creates an AdvancedFilter on a new sheet. It loops
through all the headers and asks the users if they want a filter for labell,
label2, etc. (see next picture).

The second macro asks users to select the item they want to filter for
(bottom picture).

What you need to know

A B C D E F G H

1|ID INAME DEPT SALARY HOURS DOH LOCATION

2 >35000 Boston

4 ID NAME DEPT SALARY HOURS DOH LOCATION

5 | 1 Smith, J. Sales $41.250.00 40 1/1/80 Boston

6 3 Rice. R. Flanning $37.400.00 25 5/1/87 Boston

7 8 Bucca, P. Marketing $60.500.00 35 6/2/75 Boston

& 10 Frommer, F. Management $49.500.00 40 4/5/89 Boston

9 16 Stevens, P. Communication $49.500.00 40 3/5%/90 Boston

10

A B | < | B | E | F NN H [)
1 1D NAME DEPT SALARY HOWRS DOH LOCATION
2 1 Smith. J. Sales $41.250.00 40 11480 Boston Microsaft xcel
4| 3 Rice R. Planning $37.400.00 25 BN{87|Boston
3 8 Bucca, P. Marketing $60,600.00 36 6f2/76 Boston 7 recards
11 10 Frommer, F. Management $49.500.00 40 4mE9 Boston
14 13 Babeock. C Finance $26.300.00 40 111485 Boston EI]
16 15 Donaldson. 5. Communication $33.000.00 25 Tl4189 Boston
16 Stevens, P. Communication $49 500 .00 40 35090 Boston

What you need to do

Option Explicit

Sub FilterDB()
Dim oData As Range, oFilter As Range, i As
Integer, sSet As String, oWS As Worksheet
Set oData = ActiveCell.CurrentRegion
oData.Rows(1).Copy
Set oWS = Worksheets.Add(, ActiveSheet)
ActiveCell.PasteSpecial
Fori=1 To oData.Columns.Count
sSet = InputBox("Set filter (or leave empty) " &
oData.Cells(1, i))
If sSet <> """ Then ActiveCell.Offset(1,i-1) =
sSet
Next i
Set oFilter = ActiveCell.CurrentRegion
oData.AdvancedFilter xIFilterCopy,
Range(oFilter.Address), Range('"'A4")
oFilter.EntireColumn.AutoFit
End Sub

Sub HideRows()
Dim col As Integer, r As Long, i As Long, iCount
As Long, oSelect As Range

With ActiveCell.CurrentRegion
r = .Rows.Count
Set oSelect = Application.InputBox("'Select a
value to filter for'", , Range(''G4'"").Address, , , , , 8)
oSelect.Select: col = ActiveCell.Column
Fori=2Tor
If .Cells(i, col) <> ActiveCell Then
.Cells(i, col).EntireRow.Hidden = True
Else
iCount = iCount + 1
End If
Next i
MsgBox iCount & " records"
If MsgBox("Unhide rows?", vbYesNo) = vbYes
Then .EntireRow.Hidden = False
End With
End Sub

Chapter 95: Formatting Phone
Numbers

What the simulation does

el B D E = G H i 1 K
1 [LASTNAME | PHONE Messy Qriginal
2 Avery 11834520047y 1234567 890
3 Babcock 9224239443 12§-4567 890
4 Brown 3368841703 173-456-7 800 r
5 Bucca 7507630703 23456-7 800
§ Carrel 4554403898 123-456-7 800
7 Donaldson 0913951309 1-B00-123-4 567
5 Frommer BOZ9074123
5 Gary 5650231575 .
10 Josephs 3037571800 it e
i1 Lively 4105913993 Seiec thy tap et
12 Matthews 6294591887 =
13 Piazza 1300196632 [ox Larmud
{4 Rice 1344396282
15 Smith 5429153981
I.3

This macro formats “messy” phone numbers so they look properly
formatted. It works even for seriously mutilated numbers (see column E).
The macro 1s based on the format that the USA uses for its phone numbers.
You may have to adjust the VBA code to your country’s format.

Through an Application.InputBox, the users can select the top phone
number in a column. The macro will insert a new column to the right of it
and produce the formatted version of all the numbers in the preceding

column.

What you need to know

A B C F G
1 LASTNAME PHONE Messy Original
2 |Awry 1834520047 § (183)-452-0047 1234567890§ (123)-456-7890
3 Babeock 9224239443 | (922)-423-9443 123-4567890) (123)-456-7890
4 Brown 3368841703 | (386)-884-1703 123-456-7890§ (123)-456-7 890
5 Bucca 7507630703 § (750)-763-0703 123456-T890§ (123)-456-7800
E Carrel 4554403898 § (455)-440-3898 1123-456-T890§ (123)-456-7890
7 Denaldson 0913951309 §(091)-395-1309 1-800-123-4567 | (800)-123-4567
& Frommer 8029074123 | (B02)-907-4123
2 Gary 5650231575 | (665)-023-1575
10 | Josephs 3037571800 § (303)-757-1800
11 Lively 4105913993 § (410)-591-3993
12 Mafthews 6294591887 | (629)-453-1887
13 Piazza 1300196632 § (130)-018-6632
14 Rice 1344396282 | (134)-439-6282
15 Smith 5429153981 | (542)-915-3981
16

The macro PhoneColumn does the heavy work, but it does so in the
new column by creating formulas that use the custom function PhoneFormat.
This function does the cobbling together of the numbers by using VBA
functions such as Len, Right, Mid, and IsNumeric. They all speak for
themselves. To determine the number of characters in a string, we use the
Len function. Perhaps Mid needs a bit more information. It has 3 arguments:
string, start (the character position in a string), and length (the number of
characters to return).

Another new VBA element is the Select Case statement. In this macro,
it specifies the length of the string we have reached so far in the process.

What you need to do
Option Explicit

Function PhoneFormat(Phone As String) As String
Dim i As Integer, sFormat As String, sCur As
String, sTrunc As String, n As Integer
sTrunc = Phone
Fori=1 To Len(sTrunc)
If IsNumeric(Mid(sTrunc, i, 1)) Thenn=n +1
Next i
If n > 10 Then sTrunc = Right(sTrunc, Len(sTrunc)
-1)
Fori=1 To Len(sTrunc)
sCur = Mid(sTrunc, i, 1)
If IsNumeric(sCur) Then
Select Case Len(sFormat)
Case 0: sFormat ="(" & sCur
Case 3: sFormat = sFormat & sCur & ')-"
Case 8: sFormat = sFormat & sCur & "-"
Case Else: sFormat = sFormat & sCur
End Select
End If
Next i
PhoneFormat = sFormat
End Function

Sub PhoneColumn()

Dim r As Long, ¢ As Integer, i As Long, iLast As
Long, oSelect As Range

Set oSelect = Application.InputBox(''Select the top
number", , Range("B2").Address, , , , , 8)

oSelect.Select

r = ActiveCell.Row

¢ = ActiveCell.Column

iLast = ActiveCell.CurrentRegion.Rows.Count

ActiveCell.Offset(0, 1).EntireColumn.Insert

Range(Cells(2, ¢ + 1), Cells(iLast, ¢ +
1)).NumberFormat = "General"

Range(Cells(2, ¢ + 1), Cells(iLast, ¢ +
1)).FormulaR1C1 = "=PhoneFormat(RC|[-1])"
End Sub

Chapter 96: Creating Gradients

What the simulation does

A B C o E F G H I K L W M o

Ctrl + Shift + G

s 026] 035 044 054 063 = L6000
]] 335 037 042 047 051 - a0
o040 040 o040 o038 039 e

047] 042] 037 032 027
D.54] 045 035 025 0.6 e

This simulation creates gradients between the four corner cells of
range A8:E12. At each run the four corner cells change randomly. All the
other cells have to be adjusted so they form a smooth gradient with gradual
transitions.

What you need to know

A B i (K] E F iz H I J K L 7]]

; Ctrl + Shift + G

B

|e[071 o066 062 058 053 = 0.G0-0.30
s __ 087 062 057 052 047

w064 058 053] 047 041

061 055 048 042 038

058 051 043 038 028

& D.A0-0.60

020040

= (00000

The “trick” to achieve this is using the AVERAGE function, but in such
a way that the formula refers to two neighboring cells plus itselft—for
instance, in cell B8: =AVERAGE(AS:C8). Since the formula in such cells

uses a reference to itself, it causes circular reference. Excel does not allow
this, unless you temporarily turn /teration on.

Once the formulas are “settled,” the macro replaces them with the
values found, so it can turn /teration back off.

If the matrix would have more cells, you may have to increase
MaxlIterations in the VBA code, to make sure each cells reaches a stable
value.

What you need to do

Option Explicit

Sub Gradients()
Application.Iteration = True
Application.MaxIterations = 1000
Application.Calculation = xlCalculationAutomatic
Do
Range("'A8") = Rnd: Range("'A8").Formula =
Range(''A8").Value
Range("E8") = Rnd: Range(""E8").Formula =
Range("'E8").Value
Range(""A12") = Rnd: Range(""A12").Formula
= Range("'A12").Value
Range(""E12") = Rnd: Range("E12").Formula
= Range("'E12").Value
'Fill the outer ranges first and then the center
Range("B8:D8'").Formula =
"=AVERAGE(AS8:C8)"
Range("E9:E11").Formula =
"=AVERAGE(ES:E10)"
Range("'B12:D12").Formula =
"=AVERAGE(A12:C12)"
Range(''A9:A11").Formula =
"=AVERAGE(A8:A10)"

Range("B9:D11").Formula =
"=AVERAGE(A8:C10)"
'Replace formulas with values
Range(""A8:E12").Formula =
Range(""A8:E12").Value
Loop Until MsgBox(''Repeat?', vbYesNo) = vbNo
Application.Iteration = False
End Sub

Ctrl + Shift + G

mAN-1.00
g | 0.56 0.568 063 0.66| 0.69
ﬂ$5| 0.67) 088 0.7 073 - {60-0ED
0.74 074 075 076 076 e
0.83] 082 081 081 080 020
091 o088 087 085 083) RS

b vk Evigt | =1 a0a
Aot
| [T | ™

Chapter 97: Aligning Multiple
Charts

What the simulation does

A B c D 3 F G H I | K L
1 2010 I'l:lﬂ.l‘l Oir2 a3 Cited

? location] $B1145.00 $53.993.00 S$58.63L00 $85241.00

3 |Location? $70,153.00 $72,777.00 $67.987.00 $89,929.00

4 |locationd SO5,EB3.00 $79,376.00 $6526500 $05,282.00 Ctr Shift C: creates charts
5 |Locationd 4$96,694.00 $8553400 SBL54300 $53427.00

6

-

B

011 Ol Qtr2 Qtr3 Otrd Ctr Shift T: changes type
Location]l S$66,617.00 591,839.00 5E4.354.00 589,384.00

2 Location SS6890.00 55611100 S$87,324.00 56554900
10 Locatiend | 563,447.00 $70,792.00 S$85567.00 56391100
11_Luuticrr-d S64,535.00 $97,190.00 $75,64B.00 566,033.00
| 12

This sheet has multiple Areas—that is, sections separated by empty
rows (or columns). The macro loops through the collection of Areas and
creates charts next to each other of a new sheet.

What you need to know

] E £ a E F L] H | M 0 [o [5 T

2010

Ctrl + Shift+ T

SLEOMD0 -+

SLA0,0M 00

N0 000 DD

m Lacabend
= Lacationd
= Lacaberd
o LELErd

4| se0E0ane

ig| LD

-]

550,000 b0

el ol apd

A

1 1lArea
H

10
11
1

13

4 Lime
51 Chustered Column

52 Stacked Column.

53|10:0% Stacked Column.

24 30 Clustered Colurmn,

55/3D Stacked Column,

56 3D 100% Stacked Column

57 Clustered Bar,

58 Stacked Bar

59 100% Stacked Bar.
60| 30 Clustered Bar

61 3D Stacked Bar

xlArea

xlLine
xiColumnClustered
xiColumn5Stacked
xlColumn5Stacked 100
xl3DColumnClustered
xl3DColumnStacked
xl3DColumnStacked100
xiBarClustered
xlBarStacked
xlBarStacked100
xl3DBarClustered
xl3DBarStacked

The file contains

also a UserForm with a ComboBox on it. The ComboBox 1s
populated with information stored on Sheet22 (see picture
to the left). With the settings in column C, the user can
regulate through the ComboBox which type of chart to
display. The user can activate the form with the Sub Types
(Ctr+Sh+T).

What you need to do

Private Sub UserForm_Activate() ‘code in a
UserForm with a ComboBox
Dim i As Integer
With Sheet22.Range(''A1").CurrentRegion
Fori=1 To .Rows.Count
ComboBox1.AddItem .Cells(i, 1) & "-" &
.Cells(i, 2)
Next i
End With
End Sub

Private Sub ComboBox1 Click()

Dim oWS As Worksheet, i As Integer

On Error Resume Next

Set oWS = ActiveSheet

Fori=1 To oWS.ChartObjects.Count

oWS.ChartObjects(i).Chart.ChartType =

Left(ComboBox1.Text, InStr(1, ComboBox1.Text, -
") - 1)

Next i
End Sub

Sub CreateCharts() ‘this code is in a Module
Dim oRange As Range, i As Integer, oChart As

Chart, oWS As Worksheet
Set oWS = Worksheets.Add(, ActiveSheet)
Set oRange =
Sheetl.Columns(1).SpecialCells(xICellTypeConstants).
Fori=1 To oRange.Areas.Count
Set oChart = Charts.Add
With oChart
SetSourceData
oRange.Areas(i).CurrentRegion
.ChartArea.Border.Weight = xIThick :
.ChartType = xIColumnClustered
: .HasTitle = True : .ChartTitle.Caption
= oRange.Areas(i).Cells(1, 1)
.Location xlLocationAsObject, oWS.Name
End With
Next i
oWS. Activate
Fori=1 To oWS.ChartObjects.Count
With oWS.ChartObjects(i)
.Width = ActiveWindow.Width * 0.4 :
.Height = ActiveWindow.Height * 0.6
Left = ((i - 1) Mod oWS.ChartObjects.Count)
* ActiveWindow. Width * 0.41
JJop = Int((i - 1) / oWS.ChartObjects.Count) *
150
End With
Next i

End Sub

Sub Types()
UserForm1.Show vbModeless ‘see code above
End Sub

Chapter 98: Temperature

Fluctuations
What the simulation does

51 [LTX 1

Lel .y

4 I 331
{:t] e
Lol Lot
FEEL] M

Y | 1583 LR}

| X L1
brak] L
3 138 e
W mMT frs]
L] 557

L 193 a0
1 A cT - |

1h e

MM onn on
s mn MIT
N oM 2]
a7 1 oA
1080 F=

£ SLET
X mu
it | 1IN Anil
pLo 354

I 513

Wicrrc Exal il
e
=] L
--”ﬂ
I I
(1|) | |
, f [
I I
[F Y 1
I:xfl f| s | r = |
I/ | ViR Ta
| 1 | f | ¥
I: |/ h
I! IEII !

As they say, nothing is as fickle as the weather. We will simulate this
for temperature, having it oscillate around a mean of 65° F and a standard
deviation of 10 during a period of 65 years.

As to be expected, there will be some relatively extreme values
below the 5™ percentile mark or above the 95" percentile mark by mere
randomness. Sometimes we might hit
“peaks” than usual.

What you need to know

'

[

1950
1951
1952
1853
1954
1955
1356
1957

O 6 =4 o b oW

B

yEar .ilemp in £

=NORMINV{RAND(),55,10)
=MORMINY{RAND(|65, 10)
=NORMINV{RAND(),65,10)
=NORMINV|RAND(],65,10)
=NORMINV{ RAND(],65,10)
=NORMINV{RAND(),65,10)
=MNORMINY{RAND(],65,10)
=NORMINV{RAND(|,65,10)

&
0.95

=PERCENTILE|SB52:5B566, 5051
=PERCENTILE{SB52:5B566,5C51)
=PERCENTILE|SBS2:SB566,5051)
=PERCENTILE{$B32: 58566, 5C51)
=PERCEMNTILE{%BS2:5B566,5C51)
=sPERCENTILE|SB52: SBS6E,5C51)
=PERCENTILE|SBS2:5B566, 3C51)
=PERCENTILE|SB52:5R566,5C51)

more “peaks” or more extreme

(] £

0.05

=PERCEMNTILE[5B52:5B566,5051) =IF(BX=C2,B2,NA())
=PERCENTILE[5B52:58566,5051) =IF(BI>C3,B3,MA())
=PERCENTILE[SB52:58566,5051) =IF[B4>C4,B4,NA())
=PERCEMTILE[5B52:58566,5051) =IF[B5>C5,B5,MA(])
=PERCENTILE[SB52:5B566,5051) =IF(B&>C6,B6,MA[))
sPERCENTILE[3B52:58566,5051) =iF{BT=CT.B7,NA())
=PERCENTILE[3B52:38566,5051) =IF[BE>C8,B3,MA())
=PERCEMTILE[5B52:58566,5051) =IF(BO=C9,B9, NA(L)

Dramatic swings in temperature can be quite common because of pure
randomness. The 5™ and 95 percentile lines in the chart are based on the
“hidden” columns C and D. The markers for extremes outside that range are
based on hidden columns E and F. The VBA code changes the font color in
these four columns to white, and it can protect these columns from manual
changes.

The chart plots the series of values in columns B:F. The horizontal
axis 1s based on the first column. Columns E and F plot only the positive and
negative peaks; the other cells in those two columns contain the function NA
and do not show.

What you need to do

Option Explicit

Sub Temps()
Dim oRange As Range, r As Long
'to protect the "hidden' columns
Sheetl.Unprotect
Columns("C:F").Cells.Font.Color = vbWhite
Sheetl.Protect , False, , , True 'True allows VBA to
work
Set oRange = Range(""Al1").CurrentRegion
r = oRange.Rows.Count: r=r-1
Set oRange = oRange.Offset(1, 0).Resize(r,
oRange.Columns.Count)
Do
oRange.Columns(3).Formula =
"=PERCENTILE(B2:5B$%$66,C%1)"
oRange.Columns(4).Formula =
"=PERCENTILE(B2:5B$%$66,D1)"
oRange.Columns(5).Formula =
"=IF(B2>C2,B2,NA())"
oRange.Columns(6).Formula =
"=IF(B2<D2,B2,NA())"
Loop Until MsgBox("Repeat?', vbYesNo) = vbNo
If MsgBox('"'Protect the formulas in columns

A:E?", vbYesNo) = vbYes Then
Cells.Locked = False
Columns("A:F").Locked = True
Sheetl.Protect, , , , True, True

End If

End Sub

B [o
1 [ywar ftiwrra
1 LR "
1851 W
RETTE! n
1853 A0
e l1am =
1885 wiR
£ | 1356 8.0
RET sL14
| mm Il] I II
ala f
Ml Ctrl + Shift+ T [\ f\ i
FERRT | & |1 II | I | | 1 ﬁ
: 1: :I:m' t I] |I | 'i |4 || 1 I| | I|II
1% g -)
1384 wm | | iI | I| |"'*\\ '\-\ | L I| f IL_JI Il
7 1 Lo 1 WL [|I Y L | 5
1388 3% 1/ AN \ [N \ \
| R e | ! |
M7 1T | \f A llll | |
1% T | I| ¥ \ | \f
[TE] 84T | III "'
. s ! &
s
o] 17
17 T

Chapter 99: Working with Fiscal
Years

What the simulation does

A E

| |Account [Sale Diate
Young §146.81 Fabsuary 3, 2001
donma $155.08 Fpril 18, 7004
{ ek & 4155 Jume 25, W01
5 O'Fries §972.30 Sepiembaer 4, 3004
1 Browm $900.73 Hovesber 4. 2001
! Bmwn §319,85 Decsmber 1, 2001
Fobarts §110.068 January 24, 7002
1 mown & 1827 April §, 2002
Young § BG4S Jurme 15, 7003
| dunaa 510398 August 28, 7002
Mamsky F1030 Movemberd, D02
11 bimzky § 6398 Novesiberd, 102
| Jankaes § 4029 Jarmary 14, 2003

For a regular year:

Ctrl + Shift + R
For a fiscal year:
Ctr + Shift + F

5 donkees § 8819 March 14, ha3
10 Pusesll § 1943 Mareh 26, 2003
' Camnace §109.40 Jume &, 2003

10 Aupenll $171.53 Bugaret 15, 103
191 Aobars § 4677 Oetsbar 25, 2003
=1 D'Bhes §146.32 January 4, 3004
21 Jdones § 8583 March 15, hi0d
72 "oung § 37.BE Mary 25, 2004
i1 dones § BAET Fuguast 4, 104
ibeke § TTE1 October 14, b0d

O'Hnes 32423 December 14, 1004

7 Furowm F14415 Mareh &, 2008
7 Aoboms § 2467 May 18, 2004
I own - § T July 25, 7045

"1 Jones § 1813 Detober 4, 3006

EogeE s e e Bl o R o
T [R R

YrHESHEEHEEEEY

[

[
= e Gk B = = o G R R e G R ORR KT = e O SR = e R S M

Excel has great functions to extract the year, month, and day part of a
date—but amazingly enough, it has no function to find out to which quarter
of the year such a date belongs. For data analysis and summary overviews,
that is quite a limitation. This problem can be solved, though, with a simple
formula of nested functions such as ROUNDUP(MONTH (any date)/3,0).

However, finding the correct quarter becomes much harder when your
company does not have a regular fiscal year. That’s where a macro comes in
handy. On this sheet, an InputBox inquires in which month your fiscal year
starts and stores that number in an internal variable (and in cell K2). Based
on that information, the macro calculates for any particular date to which
fiscal year and quarter that date belongs.

The sheet contains two macros: RegularYear for a regular year and
FiscalYear for a fiscal year. However, the 2" macro can also handle a
regular year by calling the 1% macro, RegularYear, when needed.

What you need to know

[T

Jum;ar', -4NI['|-H|.'I.'[1|I-1 SHET ATV =YEAS]TODAY])COUMTIF{SME1 M1, SHET)

1 sEars in 1

! E 2 Fabirary AT -MODMZ SHEZAZVH) =YEAR{TODAYI+COUNTIF{SME M2, $KE7)
1 3 March =IHT[1- MO SHEZAZVH =VEAR[TODAYT+COUNTIF(IME-M3,5H52)
4 1 Apail ~IHTi1- MDD SHEZAZVE ~VEAR{TODAYTCOUNTIF{SME ML SHER
5 5 Mary =IHTIT-MODMMSSHEZAZVE ~VEAR[TODAYCOUNTIF{FME:MS,SH52)
i i Junz =INTI1=MODMME SHEZ12VE) ~YEARITODAY+COUNTIF{EME-ME,SKEZ)

The table to the right is only for comparison purposes so you can
check whether your calculations in the left table are correct. Conditional
formatting in the range M1:P24 does the rest:
=AND(ROW()>=K2,ROW()<§K$2+12)

What you need to do

Option Explicit

Sub RegularYear()
Dim i As Long, dDate As Date, pQtr As Double,
oStart As Range
Columns("D:E").ClearContents
Set oStart = Application.InputBox('"'Select the top
date", , Range("C2").Address, , , , , 8)
With oStart
Do While .Offset(i, 0) <> """
dDate = .Offset(i, 0)
Offset(i, 1) = Year(dDate)
pQtr = Month(dDate) / 3
Offset(i, 2) = IIf(pQtr - Int(pQtr) = 0, pQtr,
Int(pQtr) + 1) 'Instead of RoundUp
i=i+1
Loop
End With
End Sub

Sub FiscalYear()
Dim i As Long, dDate As Date, iFiscMonth As
Integer, iMonth As Integer, oStart As Range
Columns(""'D:E").ClearContents

Set oStart = Application.InputBox("Select the top
date', , Range(""C2").Address, ,, , , 8)
iFiscMonth = InputBox("In which month does
your fiscal year start?', , 10)
Range("'K2") = iFiscMonth
If iFiscMonth = 1 Then RegularYear: Exit Sub
With oStart
Do While .Offset(i, 0) <> ""
dDate = .Offset(i, 0)
.Offset(i, 1) = Year(dDate) + IIf(Month(dDate)
>= jFiscMonth, 1, 0)
iMonth = Month(.Offset(i, 0)) - iFiscMonth +
1
If iMonth <= 0 Then iMonth = iMonth + 12
Offset(i, 2) = IIf(iMonth / 3 - Int(iMonth / 3)
= (0, iMonth / 3, Int(iMonth / 3) + 1)
i=itl
Loop
End With
End Sub

Chapter 100: Time Calculations

What the simulation does

n
Testl Test? Tastz Tastd Tas Tesi Tessd? TestE Tactd Tastln

#|Camal [FIEEA] 148TAE BOSOE I0MED JEIEIF O BITEY ERITHN O0Ei4 0 AR
Casn? FARG P44 MICTE VICEEDS IZIIG4 1004 FIEVIE AT UG IEmS0s 3EeTsT | M
Casas ZEOTE? AEETN BBRIAT 304765 B3R 1BGESD E&al09 IFEEIT 18FKID AEIEI
Cnsnd 161084 170548 FIDEA1 P90 ZTAMFI IGARSA 401A0 T HeAT 1 #0706
Gaisal 240049 DEIEAE NEERID N FFIE N A40E VIE 162048 FEEIR ZEITO0E TATDE
Cank POARE] PEAIIA FREFOM 120D (USOEE JOIESA OREIM O-ONE0 ATEOS IR0 eE
Tasa? ERIAM0 FIOIRAD FEV A6 GREER 213337 BRIAGG 2RI WD 28 Gdd 26008
Casab TO137 idabal i32T84 ARAER (03VAD PO0EE 2040 MOSED0 A03F0R |BEE
Casnf 120648 TETAR FAET O UIEFIE IPI6AT 63130 PeO6I8 FTPEGA PEOLOR 072NN

Cagald 2E6197 F0EA2 FO0TAE 3R 3 D4Q0E 323Edd 190613 BRDEAR I6IEX J0CREET

In Excel, time is a value that ranges from 0 to 0. 999988425925926,
representing the times from 0:00:00 (12:00:00 AM) to 23:59:59 (11:59:59
PM). You can see the value of a particular time under General Format or by
using Ctrl + ~ (the tilde 1s just below the Esc key). The advantage of using
decimal values for time is that you can then easily add and subtract them.
You can even use functions such as SUM, AVERAGE, and so on.

When the difference in time values or their total 1s more than 24 hours,
the decimal time values go beyond 0.9999999. This causes trouble, for time
values beyond 0.9999999 get truncated when forced into the h:mm:ss
format. If the sum is 1.5, for example, Excel shows only its decimal part,
0.5, which 1s 12:00:00 AM. To solve this problem, you must change the
format of this number from A:mm:ss to [h]:mm.ss. Then a number such as
1.5 will indeed show up as 1.5 (in the proper time format, of course:
36:00:00). Thanks to the [A]:mm:ss format, you can calculate with time
values beyond the duration of 1 day, which is usually necessary for sum
operations.

What you need to know

n =
Tastl Tasts Tasid Tastd Teslh Tersit Tasty Tasss Tasth Tasi1d S e

2 |[Carml S8 1AATah m0Dah 192638 A6 REVhE IRATNE RERId M Ad FLR0 M IR BE IHZAA0
Casa? TEEOA PAAFIA BAA1TG 10AFE6 BEIIS IDIED 2108 ITIEE] 1asE1E S30T6T PG EEOD A EFAR |-|
i ol FRAOTET FETA0 ONEPINY. BeAVER ZANER O IRBELE BALE IBEZIT O IRESIE 36200 LR U R LR Hft
Casad TETEGE D2EEA0 11004l 1E03Ed 2T2MEE 1640068 4F10BE VERAT 407 NEBEAE 1206000 VE0E0Y Ctrl+5 +T
[amah FADEAN MAS0E TAER 1Y FIFARY A40EM VELEE IEPOAS ZUEPE 2RaT0hR rATof TR0 AR 120 06
Casa HLERGT HEBIZE MEERAM X330 10603 FDN00E DE3RE 003 LD AES03 NEDEd0 149:55 22 N46T 20
Lo d FLFIG0 FUIEIE O FEAAE &30 MIANE 22N BEaE 100 re Bedid 0046 LETE-T B ER T
I Cased TONET NEADd] NEITE4 EGOES 10ATNl E0N0CBER 274D MR R0 30EFOR NGB0 1700547 1T EE3E
[znat 10SAE TETAH POOEQY 1R EONE IFZEET 63050 2OCONE 2VFR04 I200 82 3 PEIR TREI0T &
Caseld 2056007 F0E42 240748 53432 DADIE 323900 10006013 130EAE IS4 BRI 13075 21 N0E 6D
|5un- NEABE IR 1610322 PO 1200 1664141 1053230 1662025 400308 NGGIE0R 1T0BEAZ 2N] -lml.:]
M IGETHG I8 500 S 302 184000 183304 16606 148418 IHEE 86 bR OSRe X 1006

This is basically all the macro does for summaries below the table, if
needed,and also to the right, if so desired. On the next run it will delete

those summaries first.

Some people prefer to use hours with decimals—where, for example,
13.50 (with a decimal point) is 13 hours and 30 minutes, as opposed to
13:50 (with a colon), which is 13 hours and 50 minutes. To convert these
decimals to Excel's time decimals, you need to divide by 24 because Excel
works with day units of 24 hours, 60 minutes, and 60 seconds.

What you need to do

Option Explicit

Sub TimeCalc()
Dim oSum As Range, oTable As Range, 0Avg As
Range, r As Long, ¢ As Long
Set oTable = Range(""B2'").CurrentRegion
r = oTable.Rows.Count: ¢ = oTable.Columns.Count
oTable.Rows(r).Offset(2, 0).ClearContents
oTable.Rows(r).Offset(3, 0).ClearContents
oTable.Columns(c).Offset(0, 2).ClearContents
oTable.Columns(c).Offset(0, 3).ClearContents
If MsgBox("Summaries at the bottom?", vbYesNo)
= vbYes Then
Cells(r+2,1) ="Sum"
Set oSum = Range(Cells(r + 2, 2), Cells(r + 2, ¢))
Cells(r + 3, 1) = "Mean"
Set 0Avg = Range(Cells(r + 3, 2), Cells(r + 3, ¢))
oSum.FormulaR1C1 ="=SUMR|[-" & r &
"1C:R[-2]C)"
oSum.NumberFormat = "[h]:mm:ss"
oAvg.FormulaR1C1 = "=AVERAGE(R[-" & r +
1 & "]C:R[-3]C)"
oAvg.NumberFormat = "h:mm:ss"
End If

If MsgBox(" Also summaries to the right?",
vbYesNo) = vbYes Then
Cells(1, ¢ +2) ="Sum"
Set oSum = Range(Cells(2, ¢ + 2), Cells(r, ¢ +
2)): oSum.ClearContents
Cells(1, ¢ + 3) = "Mean"
Set 0Avg = Range(Cells(2, ¢ + 3), Cells(r, ¢ + 3)):
0Avg.ClearContents
oSum.FormulaR1C1 ="=SUMRC[-" & r &
"]ZRC[-Z])"
oSum.NumberFormat = "[h]:mm:ss"
oAvg.FormulaR1C1 = "=AVERAGE((RC[-" & r
+1 & "]:RC[-3])"
oAvg.NumberFormat = "h:mm:ss"
End If
End Sub

IX. APPENDIX
Data Tables

A Data Table is a range of cells that shows how changing one or two
variables in your formulas will affect the results of those formulas. A Data
Table provides a powerful way of calculating multiple results in one
operation and a way to view and compare the results of all the different
variations together on your worksheet.

A B (] [] E ,
| AMOUMT § 5,000.00
! KPR 4%
| 4% 5% 6% T¥| APR
| $ 500000 |$ 200.00 (% 250.00 (% 300,00 | % 350.00
5 $10,000.00 | $§ 400.00 | $ 500.00 [§ 600.00 |5 700.00

fi $15000.00 | 5 60000 | $ 75000 (§ 900,00 | 51,050,00
: $20,000.00 | § B00.00 | $1,000.00 | $1,200.00 | $1.400.00
8 §25,000.00 | $1,000.00 | $1,250.00 | $1,500.00 | $1,750.00
q $30,000.00 | $1,200.00 | $1,500.00 | $1,800.00 | 52,100.00
u 5 35,000.00 | $1,400.00 | 51,750.00 | 52,100.00 | $2,450.00
11 $40,000.00 | $1,600.00 | $2,000.00 | $2,400.00 | $2,800.00
12 $45,000.00 | $1,800.00 | $2,250.00 | $2,700.00 | $3,150.00
1 5 50,000.00 | $2,000.00 | $2,500,00 | $3,000.00 | $3,500.00

14 AMOUNT

To implement a Data Table, you select the entire range, including its
point of origin with a formula in it—so that is B3:F13 in the example above.
Then you go through the following menus: Data | What-If Analysis | Data
Table. In the dialog box, set the row input to cell B2 and the column input to
cell B1.

Once you click OK, Excel replaces all empty cells (in the shaded area)
with an array formula like this: {=TABLE(B2,B1)}. Or more in general,
{=TABLE(row-input-cell, column-input-cell)}. Sometimes, one or both of the
two arguments are missing. Do not type the braces—Excel creates them
automatically when you hit the Data Table button. And do not type the
formula!

Why use a Data Table? There are several reasons. First, it might be
easier to implement one than working with locked and unlocked cell
references. Second, no part of the array can inadvertently be deleted or
changed, because the array acts as one entire unit. Third, a Data Table has
much more extra potential, as you can see in many of the simulations we use

in this book.

However, there is one drawback. Because there may be many
operations involved in a Data Table, Excel may run into speed problems.
There are two ways to get around this speed issue. Method #1 1s to stop
automatic recalculation—at least for Data Tables. Do the following: File |
Options | Options | Formulas | Automatic Except for Data Tables (you can
even set all calculations to manual). If you ever need to recalculate a Data
Table, just use Sh + F9, and that will recalculate only the particular sheet
you are on (whereas F'9 alone would recalculate the entire file).

Method #2 is that, after you run a specific what-if analysis, you copy
the Data Table section—that is, the area between the top row and the left
column—and then paste it as values over itself. Move on to the next Data
Table, run it, and paste values again. Whenever you need to run a pasted table
again, quickly reimplement the Data Table.

One more limitation: A Data Table cannot accommodate more than two
variables. So they are at best two-dimensional but never three-dimensional.
There are ways to get around this limitation as shown in some simulations
(e.g. Chapter 69).

In VBA, it is actually very easy to implement a Data Table by using a
range’s Table method followed by a space and two arguments, one for the
row input and one for the column input.

Simulation Controls

Controls such as spin buttons and scroll bars are great tools for many
kinds of what-if analysis. They quickly reset specific hard-coded values and
then show you the impact of such operations.

In order to create such controls, you need the Developer tab in your
menu, which may not be present on your machine. To add it to the ribbon,
you do the following, depending on your Excel version. Pre-2010: File |
Options | General | Enable the Developer Tab. In 2010 and 2013: File |
Options | Customize Ribbon | in the far right list: Developer. From now on,
the tab can be found in the menu on top.

FAIR™ B Fi= 8-Appe
Hiae Imseit Page Layaut Formulas
i — ﬂP:.--:nr:r.'.l.".' £ E | _'_r'-’,In'pn".
- .i-"il..lf-f Relative References - i nsion Pack
Visual Macros Add-Ins COM
Basic ity Add-1
B2 ~ 6
A C B E F G H I] K

B0 =) On Lm B W |k |

On the above sheet, we placed three controls. You do so by clicking
on the /nsert button and then on one of the options in the lower section of
the list (Active-X Controls). Draw the control you have chosen on your
sheet.

Then click on the Properties menu (make sure the control you want to
set the properties for is still selected, or select it). Set at least the
properties Min, Max, and LinkedCell (that is, the cell where you want the
control’s value to appear).

Once you are done, do not forget to click the Design Mode button
OFF, so you can go back to your sheet!!! Be aware, though, that when you

change a control and calculation is not automatic, you need to activate the
sheet first before you can hit the “run” keys S F9.

You probably noticed already that the properties Min and Max can
only hold integers. So if you want to regulate decimals with your control
(like in the scroll bar to the far right), you need an intermediate cell. I
happened to choose a LinkedCell reference located behind the control (e.g.
cell I5). In the cell where you want the decimal number visibly displayed,
you need to place a formula like =I5/10 (or 15/100, etc.).

Controls like these are fantastic. I used them for several simulations
in this book. They are not only fun, but also very informative and
revealing. I think you will love them more and more, if you did not al-
ready.

If Statements

Either one-liners:

If Then

If Then [Else]

If Then [Elself Then
.....] [Else]

If If If Then

Then Then

End If Else Elself
Then

End If |(Else

End If

Value Type Variables

Storage

Data type size Range

Byte 1 byte 0 to 255

Boolean 2 bytes True or False

Integer 2 bytes -32,768 to 32,767

Long 4 bytes -2,147,483,648 t0 2,147,483,647

(long integer)

Single -3.402823E38 to -1.401298E-45 for negative

(single- 4 bytes values; 1.401298E-45 to 3.402823E38 for

precision positive values

floating-point)

Double -1.79769313486231E308 to

(double- 8 bytes -4.94065645841247E-324 for negative

precision values; 4.94065645841247E-324 to

floating-point) 1.79769313486232E308 for positive values

Currency 8 bytes -922,337,203,685,477.5808 to

(scaled integer) 922,337,203,685,477.5807
+/-79,228,162,514,264,337,593,543,950,335
with no decimal point;

Decimal 14 bytes +/—7.9228162514.26433759354_3950335 with
28 places to the right of the decimal; smallest
non-zero number 1s
+/-0.0000000000000000000000000001

Date 8 bytes January 1, 100 to December 31, 9999

String 10 bytes

(variable- + string 0 to approximately 2 billion

length) length

(S;lr égg-length) ;i?f; hof 1 to approximately 65,400

Variant Any numeric value up to the range of a

(with numbers) |16 bytes Double

Variant 22 bytes

(with + string Same range as for variable-length String
characters) length

Ranges vs. Cells

Range(“A1") A1
Range(“A1:A7") A1:A7
Range(“A1, A5”)

Ra ngE(“AI‘ ” HAS")

AII cells

Range("A1:A5").Cells(1, 1)
Range("B1:C5").Cells(1, 1)

Range(“A1:A5").Cells(5, 1)

Range("AS").Range("A2") | OR: .Offset(1,0)

Range(Cells(1, 1), Celis(5, 1))
Range(Cells(1, 1), Celis(5, 3))

Range(Celis(2, 2), Cells(5, 5)) .Range("A1")

FormulaR1C1
Fortlzif] ol

Arrays

Dim arr(1 To 10) As String Can hold
10 Strings
: Can hold
Dim arr(0 To 4) As Integer § Integers
Can hold
Dim arr(4) As Variant 5 items of
anything
Dim arr() As String Reset to hold
ReDim arr(9) 10 Strings

Jagged Array

(1)(0) (2)(0)

Error Handling

Error rlancdling

On Error 0 Switches off error handling (until
next On Error statement)

On Error Resume Next Execution continues with the line
following the error line

On Error GoTo myLabel Execution jumps to line starting
with the specified label (+ colon)

Resume Execution resumes with the
statement that caused the error

Resume Next Execution resumes with the line

following the error line

Resume myLabel Execution resumes at the line
starting with a specified label

This would make a very general error handler:
Sub AnySub()
On Error GoTo ErrTrap

Exit Sub
ErrTrap:
MsgBox "Number: " & Err.Number & vbCr &
"Description: " & Err.Description & vbCr &

"Source: " & Err.Source, vbCritical, "Call 1-800-123-
4567"

X. INDEX

Activesheet 12

Active-X Controls 203
AdvancedFilter 132, 188
ampersand 14
Application.InputBox 98
Application.ScreenUpdating 68
Application.StatusBar 174
Application.Volatile 104
APR 156, 160

Areas 194

arrays 208

Asc 174

Asian option 172

AutoFit 16

average value option 172

bi-modal 32

BINOM.INV 42
BINOMDIST 40, 42
binomial distribution 28,40
Boltzmann equation 114
Boolean 20

bootstrapping 50
BreakPoint 68

Brownian motion 62
Brusselator model 122

C

calendar 184
Cells 4

CHAR 18, 174
ChartObjects 24
Cholensky decomposition 54
Chr 174

chromosomes 80

circular reference 68, 192
CODE 174

ComboBox 194
CommandButton 32
compounding 156
CONFIDENCE 34
confidence interval 36, 114
controls 203

correlated distributions 54
COUNTA 164

COUNTIFS 66
CRITBINOM 42

CStr 14

CurrentRegion 6
CutCopyMode 74

D

Data Table 12, 202
dates 148
DateSerial 184
DAYS 148
degrees of freedom 36
Design Mode 203
Dim 8
DNA sequencing 96
DoEvents 8
Do-loop 8, 14
DSUM 132

E

EC50 determination 114
Ehrenfest Urn 64
encryption 176

EntireColumn 16

epidemic 112

Err 38

error handling 88, 209
evolutionary strategy 124
exchange rate 78

Exit Sub 4

EXP 172

exponential discounting 158
exponential smoothing 152

F

filter 132, 188

fiscal year 198

fitness 92

flocking behavior 22
For-Each-loop 34,178
For-loop 4
FormatConditions 34
FormatCurrency 16
FormatNumber 10
Formula 40
FormulaRI1CI 16, 207
FormulArray 24
founder effect 88
FREQUENCY 24, 182

G

Galton board 52
game theory 124
Gantt chart 148
GDP growth 140
genetic drift 88
GoalSeek 36
GoTo 2

gradients 192

H

Hardy-Weinberg law 86
HasFormula 154
heterozygote 84
HLOOKUP 106, 138
homozygote 84

IC50 determination 114

IF statements 204

IFERROR 42

iif function 3

INDEX 50

InputBox 12, 124
Application. 98

Int 14

INT 2

integration 100, 102

interpolation 116

Inter-Quartile Range 48

IPMT 160

ISERROR 42

ISFORMULA 70

Iteration 192

J
jagged array 186, 208
L
Len 190
LinkedCell 203
Locals Window 68
logistic equation 114
LOGNORM.INV 46

lognormal distribution 28, 46
Lotka-Volterra model 108

M

MATCH 116
matrix elimination 98

Median Absolute Deviation

medicine 110
Mendelian laws 84
Mid 190
MINVERSE 98
MMULT 54, 98
Mod 6
MOD 6
molecular clock 94
Monte Carlo simulation 60
moving averages 152
MsgBox 2
mutations 94

N
NA 66, 196
natural selection 90
net present value 158
normal distribution 24,26
NORMDIST 26
NORMINV 26, 78
NotePad 178
Now 16
NPV 158
numbering 180

(0]
Offset 4, 134
On Error GoTo 38
Option Explicit 8
outliers 48

P
password 174
pendulum 118
percentile 128
PERCENTILE 128

phone number 190

PI function 104

PMT 160

population pyramid 106
PPMT 160

Preserve 78

project delay 148
Protect 134

0

quality control 144
QUOTIENT 180

R

RAND 2
RANDBETWEEN 2
random sampling 56
random walk 62, 66
Range 4

Range Name 10, 182
ranges and cells 206
ReDim 78

REPT 112

Resize 134

return on investment 168
Rnd 2

ROI 168

ROW 38, 164

S&P500 performance 162
scenarios 138

Select Case 28, 190
SelectionChange 34
self-reference 68
SetSourceData 24

sex determination 82
Sheets. Count 40
sigmoidal equation 114

sinusoid 120

SIR model 112

SKEW 46

slope 114

Solver 114

solving equations 98

Sort 44

SQRT 36

standard deviation 36

standard error 36, 172

StrReverse 176

Student t-distribution 36

subtotals 154

Sum of Squared Residuals 114
T

Table 202

temperature 196

TEXT 46

time 200

time format 200

Timer 8

traffic 142

TRANSPOSE 54

TREND 116
U

UBound 32,132

UserForm 194

UserInterfaceOnly 134
V

value type variables 205

Value-at-Risk 170

VaR 170

variable

global 8

Variant 4,134

Variant arrays 68

VLOOKUP 18, 30, 74
w

waiting time 146

WeekDay 184

weighting 18, 44

Worksheet. Add 12

Worksheet Change 116

About the Author

/ Dr. Gerard M. Verschuuren is a human
geneticist who also earned a doctorate in the philosophy of science. He
studied and worked at universities in Europe and the United States and
wrote several biology textbooks in Dutch. During this time, he also used and
programmed computer software, including Excel, to simulate scientific
problems.

Currently, he is semi-retired and spends most of his time as a writer,
speaker, and consultant on the interface of science and computer
programming,

His most recent computer-related books are:
From VBA to VSTO (Holy Macro! Books, 2006).
Visual Learning Series (MrExcel.com).
VBScript (CD)
Excel 2013 for Scientists (CD)
Excel 2013 for Scientists (book)

Al o e

6. 100 Excel Simulations (book)
7. Excel 2013 VBA (CD)
8. Excel Video Medley (double DVD)

For more info see: http://en.wikipedia.org/wiki/Gerard Verschuuren

For his YouTube videos on Excel and VBA:
http://www.genesispc.com/links.htm#videos

All his books, CDs, and DVD’s can be found at
http://www.genesispc.com

http://en.wikipedia.org/wiki/Gerard_Verschuuren
http://www.genesispc.com/

Visual [earnin

Facel 2013
| VBA

Series o o pvD)

Excel 2013
For Scientists

Excel Video Medley (2016} Excel 2013 VBA (2014}

el 2007
Eﬂﬁ

Excel 2007 Expert (2007) Excel VBA 2007 (2008)

VB-Senpt (2013)

[Visual C= Express DVD (2008)

Maser
The Vet

Access 2007 VBA (2008) Access VBA Accessble (2003)

Your Access to the World (2004

HTML and JavaScnpt (20035)

All by the same author,
Dr. Gerard M. Verschuuren

T o bl e vie doe by dlie 0 peered 13 howe dor wrong
st Pl ® o it profeshom [b ores ket sesy 1a sadar
b n bk g ppecan] covering Doth the Bared s did o in deplh
ek T Fignly inlomsartve with orear rriermnce anerial and b great b
1 gt 1 oo mase pifsgraed Lo, Yg by 1D in e v |
v ved 17 1 cpeed 0 o e -faa Becl Pyent Bed™ama

Ug;:G-Erar WERSE U SR
{

Part 1: General Techniques
Chapter 2: The Fill Handle
Chapter 3: Relative vs. Absolute
Chapter 4: Range Names
Chapter 5: Nested Functions

Part 1 Exercises

Part 2: Data Analysis
Chapter 7: Subtotals
Chapter 8: Summary Functions

Chapter 9: Unique Lists

Chapter 10:
Chapter 11:
Chapter 12:
Chapter 13:
Chapter 14:
Chapter 15:
Chapter 16:
Chapter 17:
Chapter 18:
Chapter 19:
Chapter 20:

Data Validation
Conditional Formatting
Filtering Tools
Lookups

Working with Trends
Fixing Numbers
Copying Formulas
Multi-cell Arrays
Single-cell Arrays
Date Manipulation

Time Manipulation

Part 2 Exercises

Part 3: Plotting Data

Chapter 22

Chapter 23:
Chapter 24:
Chapter 25:
Chapter 26:
Chapter 27:
Chapter 28:
Chapter 29:
Chapter 30:
Chapter 31:
Chapter 32:

A Chart’s Data Source
Combining Chart Types
Graph Locations
Templates and Defaults
Axis Scales

More Axes

Error Bars

More Bars

Line Markers
Interpolation

Graph Formulas

Part 3 Exercises

Part 4: Regression and Curve Fitting
Chapter 34:

Nonlinear Regression

Chapter 35:
Chapter 36:
Chapter 37:
Chapter 38:
Chapter 39:
Chapter 40:
Chapter 41:
Chapter 42:
Chapter 43:
Chapter 44:

Curve Fitting

Sigmoid Curves
Predictability
Correlation

Multiple Regression
Reiterations + Matrixes
Solving Equations
What-If Controls
Syntax of Functions
Worksheet Functions

Part 4 Exercises

Part 5: Statistical Analysis
Chapter 46:
Chapter 47:
Chapter 48:
Chapter 49:
Chapter 50:
Chapter 51:
Chapter 52:
Chapter 53:
Chapter 54:
Chapter 55:
Chapter 56:

Types of Distributions
Simulating Distributions
Sampling Techniques
Test Conditions
Estimating Means
Estimating Proportions
Significant Means
Significant Proportions
Significant Frequencies
Chi-Squared Testing
Analysis of Variance

Part 5 Exercises

100 Excel
Simulations

Using Excel to Model Risk, Investments, Genetics,
Growth, Gambling and Monte Carlo Analysis

Dr. Gerard M. Verschuuren

100 Excel Simulations:
very similar to the ones in this book
but all done with formulas (no VBA)

maﬂﬂw

Excel 2013
VBA

Part 1: Basic Essentials
Object Oriented
Recording Macros
Branch Statements
Interaction
Variables (Value Type)
Variables (Object Type)
Collections

Loop Statements

Variables as Arguments
Pivot Tables and Charts

Part 2: Formulas and Arrays
Dates and Calendars
The Current-Region
WorksheetFunction
Property Formula
Property FormulaR1Cl1
Custom Functions
Array Functions
1D- and 2D-Arrays
Customized Arrays
Variant Arrays

Part 3: Buttons and Forms
Importing and Exporting
Buttons, Bars, Menus
Application Events
User Forms
Data Entry + Mail Merge
Custom Objects (Classes)
Class Collections
Error Handling
Distributing VBA code
VBA Monitoring VBA

	I. Gambling
	Chapter 1: The Die Is Cast
	Chapter 2: Casting Six Dice
	Chapter 3: Roulette Machine
	Chapter 4: An X-O Game
	Chapter 5: A Slot Machine
	Chapter 6: Gamblers’ Ruin
	Chapter 7: Lottery Numbers
	Chapter 8: Win or Lose?
	Chapter 9: A Letter Game
	Chapter 10: A Three-Way Circuit
	Chapter 11: Flock Behavior

	II. Statistics
	Chapter 12: Samples
	Chapter 13: A Normal Distribution
	Chapter 14: Distribution Simulations
	Chapter 15: Discrete Distributions
	Chapter 16: Peaks
	Chapter 17: Confidence Margins
	Chapter 18: Sample Size and Confidence Interval
	Chapter 19: Random Repeats
	Chapter 20: Flipping a Fair Coin?
	Chapter 21: Simulation of Sick Cases
	Chapter 22: Unbiased Sampling
	Chapter 23: Transforming a LogNormal Distribution
	Chapter 24: Outlier Detection
	Chapter 25: Bootstrapping
	Chapter 26: Bean Machine Simulation
	Chapter 27: Correlated Distributions
	Chapter 28: Sorted Random Sampling
	Chapter 29: Frequencies

	III. Monte Carlo Simulations
	Chapter 30: The Law of Large Numbers
	Chapter 31: Brownian Motion
	Chapter 32: Ehrenfest Urn
	Chapter 33: Random Walk
	Chapter 34: A Data Table with Memory
	Chapter 35: Juror Selection in Court
	Chapter 36: Running Project Costs
	Chapter 37: Forecasting Profits
	Chapter 38: Uncertainty in Sales
	Chapter 39: Exchange Rate Fluctuations

	IV. Genetics
	Chapter 40: Shuffling Chromosomes
	Chapter 41: Sex Determination
	Chapter 42: Mendelian Laws
	Chapter 43: The Hardy-Weinberg Law
	Chapter 44: Genetic Drift
	Chapter 45: Two Selective Forces
	Chapter 46: Differential Fitness
	Chapter 47: Molecular Clock
	Chapter 48: DNA Sequencing

	V. Science
	Chapter 49: Matrix Elimination
	Chapter 50: Integration with Simulation
	Chapter 51: Two Monte Carlo Integrations
	Chapter 52: Monte Carlo Approach of Pi
	Chapter 53: A Population Pyramid
	Chapter 54: Predator-Prey Cycle
	Chapter 55: Taking Medication
	Chapter 56: The Course of an Epidemic
	Chapter 57: Boltzmann Equation for Sigmoidal Curves
	Chapter 58: Interpolation
	Chapter 59: A Rigid Pendulum
	Chapter 60: A Piston Sinusoid
	Chapter 61: The Brusselator Model
	Chapter 62: A Hawk-Dove Game

	VI. Business
	Chapter 63: Prognosis of Sales
	Chapter 64: Cycle Percentiles
	Chapter 65: Cost Estimates
	Chapter 66: A Filtering Table
	Chapter 67: Profit Changes
	Chapter 68: Risk Analysis
	Chapter 69: Scenarios
	Chapter 70: Market Growth
	Chapter 71: A Traffic Situation
	Chapter 72: Quality Control
	Chapter 73: Waiting Time Simulation
	Chapter 74: Project Delays

	VII. Finance
	Chapter 75: Buy or Sell Stock
	Chapter 76: Moving Averages
	Chapter 77: Automatic Totals and Subtotals
	Chapter 78: Fluctuations of APR
	Chapter 79: Net Present Value
	Chapter 80: Loan with Balance and Principal
	Chapter 81: S&P500 Performance
	Chapter 82: Stock Market
	Chapter 83: Stock Volatility
	Chapter 84: Return on Investment
	Chapter 85: Value at Risk
	Chapter 86: Asian Options

	VIII. Miscellanea
	Chapter 87: Cracking a Password
	Chapter 88: Encrypting Text
	Chapter 89: Encrypting a Spreadsheet
	Chapter 90: Numbering Records
	Chapter 91: Sizing Bins for Frequencies
	Chapter 92: Creating Calendars
	Chapter 93: Populating a Jagged Array
	Chapter 94: Filtering a Database
	Chapter 95: Formatting Phone Numbers
	Chapter 96: Creating Gradients
	Chapter 97: Aligning Multiple Charts
	Chapter 98: Temperature Fluctuations
	Chapter 99: Working with Fiscal Years
	Chapter 100: Time Calculations

	IX. Appendix
	Data Tables
	If Statements
	Value Type Variables
	Ranges vs. Cells
	FormulaR1C1
	Arrays
	Error Handling

	X. Index

