

100 Excel VBA Simulations

Dr. Gerard M. Verschuuren

100 Excel VBA Simulations

Using Excel VBA to Model Risk,
Investments, Genetics, Growth,

Gambling, and Monte Carlo
Analysis

Copyright © 2016 by Gerard M. Verschuuren

All rights reserved.
ISBN-13: 978-1540445179

ISBN-10:1540445178

I. TABLE OF CONTENTS
I. GAMBLING

Chapter 1: The Die Is Cast
Chapter 2: Casting Six Dice
Chapter 3: Roulette Machine
Chapter 4: An X-O Game
Chapter 5: A Slot Machine
Chapter 6: Gamblers’ Ruin
Chapter 7: Lottery Numbers
Chapter 8: Win or Lose?
Chapter 9: A Letter Game
Chapter 10: A Three-Way Circuit
Chapter 11: Flock Behavior

II. STATISTICS
Chapter 12: Samples
Chapter 13: A Normal Distribution
Chapter 14: Distribution Simulations
Chapter 15: Discrete Distributions
Chapter 16: Peaks
Chapter 17: Confidence Margins
Chapter 18: Sample Size and Confidence Interval
Chapter 19: Random Repeats
Chapter 20: Flipping a Fair Coin?
Chapter 21: Simulation of Sick Cases
Chapter 22: Unbiased Sampling
Chapter 23: Transforming a LogNormal Distribution
Chapter 24: Outlier Detection
Chapter 25: Bootstrapping
Chapter 26: Bean Machine Simulation
Chapter 27: Correlated Distributions
Chapter 28: Sorted Random Sampling
Chapter 29: Frequencies

III. MONTE CARLO SIMULATIONS
Chapter 30: The Law of Large Numbers
Chapter 31: Brownian Motion
Chapter 32: Ehrenfest Urn
Chapter 33: Random Walk

Chapter 34: A Data Table with Memory
Chapter 35: Juror Selection in Court
Chapter 36: Running Project Costs
Chapter 37: Forecasting Profits
Chapter 38: Uncertainty in Sales
Chapter 39: Exchange Rate Fluctuations

IV. GENETICS
Chapter 40: Shuffling Chromosomes
Chapter 41: Sex Determination
Chapter 42: Mendelian Laws
Chapter 43: The Hardy-Weinberg Law
Chapter 44: Genetic Drift
Chapter 45: Two Selective Forces
Chapter 46: Differential Fitness
Chapter 47: Molecular Clock
Chapter 48: DNA Sequencing

V. SCIENCE
Chapter 49: Matrix Elimination
Chapter 50: Integration with Simulation
Chapter 51: Two Monte Carlo Integrations
Chapter 52: Monte Carlo Approach of Pi
Chapter 53: A Population Pyramid
Chapter 54: Predator-Prey Cycle
Chapter 55: Taking Medication
Chapter 56: The Course of an Epidemic
Chapter 57: Boltzmann Equation for Sigmoidal Curves
Chapter 58: Interpolation
Chapter 59: A Rigid Pendulum
Chapter 60: A Piston Sinusoid
Chapter 61: The Brusselator Model
Chapter 62: A Hawk-Dove Game

VI. BUSINESS
Chapter 63: Prognosis of Sales
Chapter 64: Cycle Percentiles
Chapter 65: Cost Estimates
Chapter 66: A Filtering Table
Chapter 67: Profit Changes
Chapter 68: Risk Analysis
Chapter 69: Scenarios

Chapter 70: Market Growth
Chapter 71: A Traffic Situation
Chapter 72: Quality Control
Chapter 73: Waiting Time Simulation
Chapter 74: Project Delays

VII. FINANCE
Chapter 75: Buy or Sell Stock
Chapter 76: Moving Averages
Chapter 77: Automatic Totals and Subtotals
Chapter 78: Fluctuations of APR
Chapter 79: Net Present Value
Chapter 80: Loan with Balance and Principal
Chapter 81: S&P500 Performance
Chapter 82: Stock Market
Chapter 83: Stock Volatility
Chapter 84: Return on Investment
Chapter 85: Value at Risk
Chapter 86: Asian Options

VIII. MISCELLANEA
Chapter 87: Cracking a Password
Chapter 88: Encrypting Text
Chapter 89: Encrypting a Spreadsheet
Chapter 90: Numbering Records
Chapter 91: Sizing Bins for Frequencies
Chapter 92: Creating Calendars
Chapter 93: Populating a Jagged Array
Chapter 94: Filtering a Database
Chapter 95: Formatting Phone Numbers
Chapter 96: Creating Gradients
Chapter 97: Aligning Multiple Charts
Chapter 98: Temperature Fluctuations
Chapter 99: Working with Fiscal Years
Chapter 100: Time Calculations

IX. APPENDIX
Data Tables
If Statements
Value Type Variables
Ranges vs. Cells
FormulaR1C1

Arrays
Error Handling

X. INDEX

II. INSTRUCTIONS
All simulations in this book are supported by files that you can

download from the following website:
http://www.genesispc.com/download/100VBAsimulations.zip.

I assume that you are already familiar with many Excel features,
including graphs or charts. In this book, I will only explain in more detail
those features that are very helpful when you do what-if-analysis with
simulations. For more basic features of Excel, I would refer you to some
learning tools that you can find on www.mrexcel.com/microsoft-office-
visual-learning.html.

If you want to create simulations exclusively with Excel functions and
formulas, without using VBA, I recommend another book:
http://genesispc.com/tocsimulations100.htm.

This book is not about the basics of Visual Basic (VBA) either. It only
uses VBA to make simulations faster, better, and more user-friendly. If you
want to learn VBA from the bottom up, I would recommend my interactive
CD-ROM: http://genesispc.com/tocvba2013CD.htm. Yet, here are a few
basic rules for using VBA:

• To start a new command line in VBA, use ENTER.
• Never use ENTER inside a command line. (In this book
lines may wrap to the next line, but in VBA that is not
allowed.)
• A colon (:) can separate amd combine several commands
on the same line
• Use an apostrophe (‘) for a comment after, or at the end
of, a command line.
• To create shortcuts in Excel for a macro (or Sub in VBA),
you need the Developers tab (if that tab is missing, go to File
Options | Macros | Options | Shift + a character.
• Files with macros open with the message “Enable
Content.” If you find that annoying place such files in a so-
called Trusted Location: Files | Options | Trust Center | Trust
Center Setting | Trusted Locations.

http://www.genesispc.com/download/100VBAsimulations.zip
http://www.mrexcel.com/microsoft-office-visual-learning.html
http://genesispc.com/tocsimulations100.htm
http://genesispc.com/tocvba2013CD.htm

• To open VBA, you can use this shortcut: ALT F11.
• On the VBA screen, choose: Insert | Module.
• I always use Option Explicit in VBA: Tools | Options |
Require Variable Declaration.
• This means you always have to declare variables with a
Dim statement.
• There are value type variables such as integer, double,
string (see Appendix) and object type variables (Range,
Sheet). The latter require the Set keyword.
• Type a dot (.) after an object such as Range or Chart in
order to get access to its properties and methods.
• It is wise to use consistent indentation to make your code
more readable and checkable.
• A With statement allows us to refer to it later with just a
simple dot (.), followed by a property or method.
• Formulas are always strings in VBA, so they should be
inside double quotes (“...”). If there are double quotes inside
those double quotes, they should be “”...””.
• To split a long string into several lines, you use
endquotes-space-ampersand-space-underscore-enter-
openquotes.
• To interrupt running code, use Ctrl + Break.
• If your VBA code ever runs into trouble (and it will!),
make sure you stop the Debugger before you can run the code
again. You do so by clicking the Reset button:
•

I. GAMBLING

Chapter 1: The Die Is Cast
What the simulation does

We start with a very simple case of simulation—casting a die. The
code generates a random number. According to that outcome, the colored die
shows the appropriate number of eyes at their proper locations. Each time
the random number changes, the die adjusts accordingly. The code stops
when you hit the number 6.

What you need to know
Excel has a volatile function called RAND. On each recalculation,

this function generates a new random number between 0 and 1. The
equivalent of RAND in VBA is Rnd. In addition to these two operators, later
versions of Excel also let you use RANDBETWEEN, which returns a
random integer between two integers. Instead of using RANDBETWEEN,
you can always use a more complicated formula. If you want numbers

between 1 and 6, for instance, you multiply by 6, round the number down by
using the INT function, and then add 1 to the end result. More in general:
=INT((high-low+1)*RAND()+low). In VBA, you must replace RAND with
Rnd.

Finally, we need to regulate which eyes should pop up for each new
random number. This is done by using the IIf function in VBA. This function
is a “decision maker,” which determines whether a specific eye should be
on or off.

GoTo allows the code to jump to a specific label—in this case called
Again, followed by a colon. GoTo lets you jump forward or backward in
code.

A MsgBox can just have an OK button, or a combination of OK,
Cancel, Yes, and No. In case there is more than one option, an IF statement
has to check what the users decided to click on.

What you need to do

Sub Dice()
 Dim i As Integer
Again: 'this is called a label that we use at the end
to go back to
 i = Int(Rnd * 6) + 1
 Range("B3") = IIf(i > 1, "O", "")
 Range("D3") = IIf(i > 3, "O", "")
 Range("B5") = IIf(i = 6, "O", "")
 Range("C5") = IIf(i = 1 Or i = 3 Or i = 5, "O", "")
 Range("D5") = IIf(i = 6, "O", "")
 Range("B7") = IIf(i > 3, "O", "")
 Range("D7") = IIf(i > 1, "O", "")
 If i = 6 Then Exit Sub
 If MsgBox("Number " & i & vbCr & "Again?",

vbOKCancel) = vbOK Then GoTo Again
End Sub

Chapter 2: Casting Six Dice
What the simulation does

This time we have six different dice. Each die “listens” to a random
number in VBA. The settings for each die are similar to what we did in
simulation 1.

There is not much new on this sheet. The main difference is that we
need 6 different cells with a RAND function in order to control the six die
displays. This is done with a For-loop in VBA, running from 0 to 5 (or 1 to
6).

When there are at least 3 dice in a row with six eyes, all dice get
marked at the same time.

What you need to know
A variable of the Variant type can hold an array of items. We fill the

array here by using the Array function in VBA. This array starts at 0 (that’s
why the For-loop runs from 0 to 5 instead of from 1 to 6). Notice that cell
rows and columns always start at 1 (not 0).

VBA can use almost all Excel functions by calling them with
WorksheetFunction. In this case we use Excel’s COUNTBLANK function.

The use of Range and Cells in VBA can be very powerful, but can
also be rather confusing at first sight (see Appendix). Range(“A1”) is
equivalent to Cells(1,1), but the latter one is more flexible in loops because

we can use a loop variable for the row and/or the column position.
Sometimes, they are combined: Range(Cells(1,1),Cells(10,2)) would refer
to A1:B10.

Another important tool in VBA is Offset, with which you can specify
the row offset and the column offset. For instance, Range(“A1”).Offset(2,2)
would evaluate to cell C3.

Don’t confuse End Sub with Exit Sub. Each Sub must close with End
Sub. But if you want to prematurely end the Sub routine, you must use Exit
Sub.

What you need to do

Sub Dice()
 Dim vArr As Variant, i As Integer, r As Integer, n
As Integer, iSix As Integer, oRange As Range
 Sheet1.Cells.Interior.ColorIndex = 0
 vArr = Array("B3", "F3", "J3", "N3", "R3",
"V3")
Again:
 Sheet1.Cells = ""
 iSix = 0
 For r = 0 To 5
 Set oRange = Range(Range(vArr(r)),
Range(Range(vArr(r)).Offset(4, 2).Address))
 With oRange
 i = Int(Rnd * 6) + 1
 .Cells(1, 1) = IIf(i > 1, "O", "")
 .Cells(1, 3) = IIf(i > 3, "O", "")
 .Cells(3, 1) = IIf(i = 6, "O", "")
 .Cells(3, 2) = IIf(i = 1 Or i = 3 Or i = 5, "O",
"")
 .Cells(3, 3) = IIf(i = 6, "O", "")
 .Cells(5, 1) = IIf(i > 3, "O", "")
 .Cells(5, 3) = IIf(i > 1, "O", "")
 If WorksheetFunction.CountBlank(.Cells)
= 9 Then iSix = iSix + 1

 End With
 Next r
 n = n + 1
 If iSix >= 3 Then
 Cells.Interior.Color = vbYellow
 MsgBox "3x6 or more! After " & n & " runs."
 Exit Sub
 End If
 If MsgBox(n & " runs. Again?", vbOKCancel) =
vbOK Then GoTo Again
End Sub

Chapter 3: Roulette Machine
What the simulation does

Most people believe that if they keep consistently betting “odd,” the
ball will most certainly land on an odd number sometime soon. This is
called “the law of averages” which says, the longer you wait for a certain
random event, the more likely it becomes.

Do not believe it! Try it out in this “real life” simulation and find out
how the casino makes money on people who think that way. You may
initially gain but eventually lose.

The code clears previous results in the columns A:C when you start
the code. Column A simulates a roulette with 1,000 random numbers
between 1 and 36. In column B, the code types 1 if you confirm an odd
number through the MsgBox, expecting the next number to be odd—
otherwise 2 for even.

Column C keeps track of the score: it adds 1, when your prediction
was correct—otherwise it subtracts 1.

Once you hit Cancel, a MsgBox tells you whether you won or lost, and
with which score.

What you need to know
CurrentRegion represents the entire range bounded by any

combination of blank rows and blank columns. So in the above case, that
would be A1:C5, and in the case below A1:C11.

Excel has a MOD function that returns the remainder after a number is
divided by a divisor. For instance, =MOD(3, 2) returns the remainder of the
division 3/2, which is 1. VBA, however, uses the Mod operator, which does
basically the same. So the syntax would be: 3 Mod 2, which also returns 1.

What you need to do

Sub Guess()
 Dim r As Long, iGuess As Integer, vGuess As
Variant, oRange As Range
 Range("A1").CurrentRegion.Offset(1, 0).Delete
 Do
 r = Range("A1").CurrentRegion.Rows.Count + 1
 vGuess = MsgBox("Odd (Yes), Even (No), Stop
(Cancel)", vbYesNoCancel)
 Select Case vGuess
 Case 6: Cells(r, 2) = 1
 Case 7: Cells(r, 2) = 2
 Case 2: GoTo Report
 End Select
 Cells(r, 1) = Int(Rnd * 50) + 1
 Cells(r, 3) = IIf(Cells(r, 1) Mod 2 = Cells(r, 2)
Mod 2, Cells(r - 1, 3) + 1, Cells(r - 1, 3) - 1)
 Loop
Report:
 Set oRange =
Cells(Range("A1").CurrentRegion.Rows.Count, 3)
 MsgBox "You " & IIf(oRange < 1, "lost", "won")
& " with a score of " & oRange
End Sub

Chapter 4: An X-O Game
What the simulation does

This is a game with two players who “choose” X or O randomly. They
win when a row or column has the same entries. As soon as a row or column
has different entries, the word “lost” gets displayed. As soon as all 5 entries
in a row or column are the same, the game is won. A MsgBox displays the
endresult and keeps track of previous results during the game.

What you need to know
Option Explicit at the beginning of the code requires that all variables

are explicitly declared as of a certain type with a Dim statement. This is a
safe way to prevent you from misspelling a variable farther down in your
code.

Do-loops run an unspecified number of times until a certain condition
kicks in or while that condition persists.

To keep track of previous results, we need a global variable. Local
variables are declared inside a Sub, but global variables need to be
declared at the top of the Module. They retain information until the file is
closed.

We also use the Timer of VBA. The Timer counts the number of
seconds since midnight on your machine. This way we can pause a process
for a short time. DoEvents prevents that the system is blocked during that
time period.

What you need to do
Option Explicit
Dim iO As Integer, iX As Integer, iTotal As Integer

Sub IntelligentGame()
 Dim oBoard As Range, bPlayer As Boolean, i As
Integer, oCell As Range
 Dim iRow As Integer, iCol As Integer, iTime As
Long
 Set oBoard = Range(Cells(1, 1), Cells(5, 5))
 With oBoard
 .Cells(1.1).CurrentRegion.Clear
 .BorderAround , xlThick :
.Cells.HorizontalAlignment = xlCenter
 Do
 bPlayer = Not bPlayer
 Do
 iRow =
WorksheetFunction.RandBetween(1, 5)
 iCol = WorksheetFunction.RandBetween(1,
5)
 If .Cells(iRow, iCol) = "" Then
 .Cells(iRow, iCol) = IIf(bPlayer, "X",
"O"): Exit Do
 End If
 Loop

 iTime = Timer + 1
 Do Until Timer > iTime
 DoEvents
 Loop
 For i = 1 To 5
 If
WorksheetFunction.CountIf(.Rows(i).Cells, "X") >=
1 And WorksheetFunction.CountIf(.Rows(i).Cells,
"O") >= 1 Then .Cells(i, 6) = "Lost"
 If
WorksheetFunction.CountIf(.Columns(i).Cells, "X")
>= 1 And
WorksheetFunction.CountIf(.Columns(i).Cells, "O")
>= 1 Then .Cells(6, i) = "Lost"
 Next i
 If WorksheetFunction.CountIf(.Cells(1,
1).CurrentRegion.Cells, "Lost") = 10 Then MsgBox
"No winner": Exit Do
 For i = 1 To 5
 If
WorksheetFunction.CountIf(.Rows(i).Cells, "X") = 5
Then MsgBox "X is the winner.": iX = iX + 1: Exit
Do
 If
WorksheetFunction.CountIf(.Rows(i).Cells, "O") = 5
Then MsgBox "O is the winner.": iO = iO + 1: Exit
Do

 If
WorksheetFunction.CountIf(.Columns(i).Cells, "X")
= 5 Then MsgBox "X is the winner.": iX = iX + 1:
Exit Do
 If
WorksheetFunction.CountIf(.Columns(i).Cells, "O")
= 5 Then MsgBox "O is the winner.": iO = iO + 1:
Exit Do
 Next i
 If WorksheetFunction.CountBlank(oBoard) =
0 Then MsgBox "No winner": Exit Do
 Loop
 End With
 iTotal = iTotal + 1
 MsgBox "X won " & iX & vbCr & "O won " & iO
& vbCr & "in " & iTotal & " games."
End Sub

Chapter 5: A Slot Machine
What the simulation does

This spreadsheet makes 20 runs for each game (columns F:H). Each
run creates 3 random numbers between -2 and +2, and then calculates the
cumulative total in column J. After 20 runs, a new game starts.

The results for each game are recorded in columns N and O. After 20
games, the average score features in cell R3. At any moment, the user can
cancel further runs and a MsgBox reports what the average score was in X
games of 20 runs. Then the process can start all over with run 1 for game 1.

What you need to know
To make all of this possible, we need a Do-loop for the runs inside a

Do-loop for the games. Besides we added a Timer loop so the results come
in gradually

To make the code more understandable, we used Range Names here
that were assigned in Excel. The range name “games,” for instance, refers to
the range N2:N21.

The VBA function FormatNumber lets you determine the number of

decimals by specifying the second argument.
Instead of using RANDBETWEEN(-2,2), we can use also: -2 +

Int(Rnd * 5).

What you need to do

Option Explicit

Sub Run()
 Dim iRun As Integer, iGame As Integer, pTime As
Long
 Range(Cells(2, 1), Cells(21, 18)).ClearContents
 Do
 iRun = iRun + 1
 Do
 iGame = iGame + 1
 With Range("Runs")
 .Cells(iGame, 1) = iGame
 .Cells(iGame, 2) = -2 + Int(Rnd * 5)
 .Cells(iGame, 3) = -2 + Int(Rnd * 5)
 .Cells(iGame, 4) = -2 + Int(Rnd * 5)
 Range("cumsums").Cells(iGame,
1).FormulaR1C1 = "=SUM(RC[-4]:RC[-2])"
 End With
 pTime = Timer + 0.5
 Do While Timer < pTime
 DoEvents
 Loop
 Loop Until iGame = 20
 Range("run") = iGame

 iGame = 0
 Range("game") = iRun
 Range("games").Cells(iRun, 1) = "Game " &
iRun
 Range("gamescores").Cells(iRun, 1) =
Range("cumsums").Cells(20, 1)
 Range("avgscore").Formula =
"=average(gamescores)"
 If iRun = 20 Then Exit Do
 Loop Until MsgBox("New run?", vbOKCancel) =
vbCancel
 MsgBox "Average of " &
FormatNumber(Range("avgscore"), 1) & " in " &
iRun & " games of 20 runs"
End Sub

Chapter 6: Gamblers’ Ruin
What the simulation does

This sheet simulates what may happen to people who are addicted to
gambling. When we run the code, we are asked how many chances we want
in column A to go for odd or even. We simulate a 50% probability for either
choice. If the choice was correct, the count in column A goes up by 1,
otherwise it goes down by 1. All this is done on a new sheet.

Next we simulate that this addicted player repeats
the game for some twenty more times. This is done with a
Data Table in D:H (see Appendix). In its top row, we
calculate average, minimum, maximum, standard
deviation, and the final score (in column H). At the end,
we calculate how often the player had a positive final
score, and how often a negative one. Most of the work
goes into the conditional formatting bars.

What you need to know
Usually a Data Table has have a formula in the first cell—which

would be cell C1 in our case. Based on that formula, a Data Table typically
uses a row input of variables and a column input of variables to recalculate
the formula placed at its origin. It does so by filling the table cells with a
formula that has the following syntax: {=TABLE(row-input, col-input)}.

In this case we use a Data Table merely to trick Excel into simulating
20 (or many more) iterations of column A. We do so by not placing a
formula at the origin, but by leaving the row-input argument empty, and
having the col-input argument refer to an empty cell somewhere outside the
table. Yes, that does the trick!

By using Worksheet.Add we create a new worksheet either before (1st

argument) or after (2nd argument after the comma) the Activesheet, which is
the sheet we are currently on.

An InputBox provides users to provide their own input for variables
or questions.

What you need to do

Sub Gambling()
 Dim oWS As Worksheet, iRow As Long
 iRow = InputBox("How many rows?", , 100)
 Set oWS = Worksheets.Add(, ActiveSheet)
 Range("A1") = 0
 Range(Cells(2, 1), Cells(iRow, 1)).Formula =
"=IF(RAND()>0.5,A1+1,A1-1)"
 Range("D1") = "Average": Range("D2").Formula
= "=AVERAGE(A:A)"
 Range("E1") = "Min": Range("E2").Formula =
"=MIN(A:A)"
 Range("F1") = "Max": Range("F2").Formula =
"=MAX(A:A)"
 Range("G1") = "SD": Range("G2").Formula =
"=STDEV(A:A)"
 Range("H1") = "Final": Range("H2").Formula =
"=" & Cells(iRow, 1).Address(False, False)
 Range(Range("C2"), Range("H22")).Table ,
Range("B2")

 Dim oRange As Range, oFormat As
FormatCondition
 Set oRange = Range(Range("D2"), Range("D22"))
 Set oFormat =

oRange.FormatConditions.Add(xlCellValue, xlLess,
"=0")
 oFormat.Interior.Color = 13551615

 'Conditional Formatting with Bars (only in later
versions of Excel)
 Dim oBar As Databar
 Set oRange = Range(Range("H2"), Range("H22"))
 oRange.ColumnWidth = 15
 Range("H24").Formula = "=AVERAGE(" &
oRange.Address & ")"
 Set oBar = oRange.FormatConditions.AddDatabar
 oBar.MinPoint.Modify
newtype:=xlConditionValueAutomaticMin
 oBar.MaxPoint.Modify
newtype:=xlConditionValueAutomaticMax
 oBar.BarFillType = xlDataBarFillGradient
 oBar.Direction = xlContext
 oBar.NegativeBarFormat.ColorType =
xlDataBarColor
 oBar.BarBorder.Type = xlDataBarBorderSolid
 oBar.NegativeBarFormat.BorderColorType =
xlDataBarColor
 oBar.AxisPosition = xlDataBarAxisAutomatic
 oBar.BarColor.Color = 13012579
 oBar.NegativeBarFormat.Color.Color = 5920255
 ActiveWindow.Zoom = 130

 Dim sMsg As String
 sMsg = WorksheetFunction.CountIf(Columns(4),
">0") & " runs with average above 0"
 sMsg = sMsg & vbCr & "Average of final scores: "
& FormatNumber(Range("H24"), 2)
 MsgBox sMsg
End Sub

Chapter 7: Lottery Numbers
What the simulation does

Each time we run this macro, the code creates a 4-digit random
number in cell F1. Then it tries to match that number by creating new 4-digit
random numbers until the two numbers match.

After each match, it plots in column A how many times—how many
“tickets”—it took to find a match. The simulation keeps doing this until we
hit the No-button in the MsgBox.

What you need to know
Each random digit is generated by Int(Rnd * 10). The Int function

always rounds down to the nearest integer (0 – 9). But because this digit has
to be incorporated in the 4-digit lottery number, we need also the CStr
function which converts the number into a String.

To “string” things together, we always need [space][ampersand]
[space] between the individual strings that need to be “stringed” together.

Do-loops are perfect when we don’t know ahead of time how many
loops we need. The loop can be stopped by adding a While or Until
condition on the Do-line or the Loop-line. Another possibility is—which we
did here—using an IF-statement. If the condition of the If-statement kicks in,
we perform an Exit Do (not to be confused with an Exit Sub), which takes us
to the line after the Loop-statement.

What you need to do

Option Explicit

Sub Lottery()
 Dim sNumber As String, sGuess As String, i As
Integer, j As Long, n As Long
 Range("A1").EntireColumn.Clear
 If MsgBox("New winning number?", vbYesNo) =
vbYes Then
 sNumber = ""
 For i = 1 To 4
 sNumber = sNumber & CStr(Int(Rnd * 10))
 Next i
 Range("F1") = "'" & sNumber
 Else
 sNumber = Range("F1")
 End If
 Do
 For i = 1 To 4
 sGuess = sGuess & CStr(Int(Rnd * 10))
 Next i
 n = n + 1
 If CStr(sNumber) = CStr(sGuess) Then
 j = j + 1
 Cells(j, 1) = "After " & n & " tickets."

 n = 0
 If MsgBox("Another run?", vbYesNo, sGuess)
= vbNo Then Exit Do
 End If
 sGuess = ""
 Loop
End Sub

Chapter 8: Win or Lose?
What the simulation does

After each trial, the macro plots the current time in Column A, then a
random win or lose amount of money in column B, and a cumulative total of
what has been won or lost so far in column C.

When we decide to quit, a MsgBox reports to us how much we have
won or lost in total after an X number of trials.

What you need to know
The Now function returns the serial number of the current date and

time. If the cell format was General before the function was entered, Excel
changes the cell format so that it matches the date and time format of your
regional settings.

AutoFit widens the EntireColumn to its widest entry. It does so for the
entire sheet if you use Cells, or for a specific range on the sheet that you
specify—for instance, Cells(1,1).

FormulaR1C1 uses a row and column notation—for instance, R1C1—
instead of the more common notation of A1. To use this notation also in

Excel itself, you can go here: File | Options | Formulas | R1C1 reference
style.

FormulaR1C1 can have relative or absolute references. Here are
some examples: RC refers to the same row and column number as where the
cell itself is located; R1C1 refers to a cell in row 1 and column 1 (which is
A1); R[-1]C[1] refers to 1 row up and 1 column to the right of where the
reference is located (see Appendix).

FormatCurrency does something similar to what FormatNumber
does. It lets you specify the number of decimals in the 2nd argument, but it
also adds a currency symbol (which is a non-numeric entity).

What you need to do

Sub WinOrLose()
 Dim i As Long, sMsg As String
 Columns("A:C").ClearContents
 Range("A1") = "Time": Range("B1") =
"WinOrLose": Range("C1") = "Total"
 For i = 2 To 1000
 Cells(i, 1) = Now
 Cells(i, 2) = FormatCurrency(1 - 2 * Rnd, 2)
 Cells(i, 3).FormulaR1C1 = "=SUM(R2C2:RC2)"
 Cells.EntireColumn.AutoFit
 If MsgBox("Another trial?", vbYesNo) = vbNo
Then Exit For
 Next i
 With Cells(i, 3)
 If .Value >= 0 Then sMsg = "you WON: " Else
sMsg = "you LOST: "
 MsgBox "After " & i - 1 & " trials " & sMsg &
FormatCurrency(Cells(i, 3), 2)
 End With
End Sub

Chapter 9: A Letter Game
What the simulation does

The macro asks you first whether you want to use the 1st or the 2nd

sheet. The 2nd sheet uses “weighting”; the weight of each character is
assigned in column O. Then the macro asks which word should be found;
don’t make this more than 2 characters long, for that could be a very time-
consuming search.

In a Do-loop with two nested For-loops, the code scans all numbers
in B1:K10 until it finds the word you are looking for. Obviously, that goes
faster with “weighted” characters.

What you need to know

All capitals have an ASCI number between 65 and 90. The Excel
function CHAR returns the corresponding letter. Column M totals the scores
in column O cumulatively. So cell M2 has this formula: =SUM(O1:O1).
Now VLOOKUP can find a random number between 0 and 70 in column M,
and then return the corresponding letter from column N. VLOOKUP always
searches vertically, from top to bottom, in the first column of a table and
then finds a corresponding value in a column to the right, specified by a
number. So we need a lookup column of cumulative values before column
N. Besides, VLOOKUP looks for the previous value in an ascending order.

What you need to do

Option Explicit

Sub Letters()
 Dim sWord As String, oRange As Range, c As
Integer, r As Integer, n As Integer, sFormula As String
 Application.Calculation = xlCalculationManual
 If MsgBox("Equal chars (Y) or weighted chars
(N)?", vbYesNo) = vbYes Then
 Sheet1.Activate
 sFormula =
"=CHAR(RANDBETWEEN(65,90))" '65-90 are the
capitals
 Else
 Sheet2.Activate
 sFormula =
"=VLOOKUP(RANDBETWEEN(0,70),M1:N26,2)"
 End If
 Set oRange = Range("B1:K10")
 oRange.ClearContents:
oRange.Interior.ColorIndex = 0
 sWord = InputBox("Which 2-letter word?", ,
"NO")
 sWord = UCase(Left(sWord, 2))
 oRange.Cells.Formula = sFormula

 With oRange
 Do
 Sheet1.Calculate
 n = n + 1
 For r = 1 To .Rows.Count
 For c = 1 To .Columns.Count
 If .Cells(r, c) = Left(sWord, 1) Then
 If c < .Columns.Count Then
 If .Cells(r, c + 1) = Right(sWord,
1) Then Exit Do
 'so this loop stops when it finds
one (the 1st) case
 End If
 End If
 Next c
 Next r
 Loop Until MsgBox("Trial " & n & ": not
found! Try again?", vbYesNo) = vbNo
 .Range(.Cells(r, c - 1), .Cells(r, c)).Interior.Color
= vbYellow
 MsgBox "Found " & sWord & " after " & n & "
trials" & vbCr & _
 "in cells " & .Cells(r, c).Address & "+"
& .Cells(r, c + 1).Address
 End With
End Sub

Chapter 10: A Three-Way Circuit
What the simulation does

This sheet has a simulation of a three-way circuit. It is, for example,
used when a light is regulated by two switches. Either switch can turn the
light on or off, but the connections have to be in a certain way, as explained
in the diagrams to the right.

The position of the switches in column C and F is regulated randomly
by either showing the switch with a black font or hiding it with a white font.

What you need to know
This time we declare Boolean variables, which can only be either

True(1) or False (0).
In an IF-statement we use a combination of And and Or operators.
Like FormatCurrency, the FormatPercent function has a 2nd argument

for the number of decimals, and it adds the %-sign as a non-numeric entity.
This is ON:

This is OFF:

What you need to do

Option Explicit

Sub Hits()
 Dim b1 As Boolean, b2 As Boolean, b3 As Boolean,
b4 As Boolean
 Dim iHit As Integer, n As Integer, sMsg As String
 Do
 If Rnd > 0.5 Then
 Range("C4").Font.Color = vbBlack:
Range("C5").Font.Color = vbWhite
 b1 = True: b2 = False
 Else
 Range("C4").Font.Color = vbWhite:
Range("C5").Font.Color = vbBlack
 b1 = False: b2 = True
 End If
 If Rnd > 0.5 Then
 Range("F4").Font.Color = vbBlack:
Range("F5").Font.Color = vbWhite
 b3 = True: b4 = False
 Else
 Range("F4").Font.Color = vbWhite:
Range("F5").Font.Color = vbBlack
 b3 = False: b4 = True

 End If
 n = n + 1
 If (b1 And b3) Or (b2 And b4) Then iHit = iHit +
1
 sMsg = sMsg & "Runs: " & n & vbTab & "Hits:
" & iHit & vbTab & FormatPercent(iHit / n, 0) &
vbCr
 MsgBox sMsg
 Loop Until MsgBox("Again?", vbYesNo) = vbNo
End Sub

Chapter 11: Flocking Behavior
What the simulation does

Flocking behaviorr is the behavior exhibited when a group of birds,
called a flock, are foraging or in flight. There are clear parallels with the
shoaling behavior of fish, the swarming behavior of insects, and herd
behavior of land animals. It is considered the emergence of collective
behavior arising from simple rules that are followed by individuals and
does not involve any central coordination

Scientists have demonstrated a similar behavior in humans. In their
studies, people exhibited the behavioral pattern of a “flock”: If a certain
percentage of the flock changes direction, the others follow suit. In
experiments, when one person was designated as a “predator” and everyone
else was supposed to avoid him or her, the human flock behaved very much
like a school of fish.

What you need to know

We assume that all animals (100) start randomly in one of four
different directions (M2:N5). Once animals with a certain direction happen
to gain a certain percentage (say, 35%), all the other animals follow suit.

In the range B2:K11 we place a VLOOKUP function that finds in
M2:M5 a random number between 0 and 1, and then returns the
corresponding direction arrow. Once column O registers a count over 35, all
cells in B2:K11 display that arrow, and the count becomes 100. In other
words, the flock has “decided” in which direction to fly or to swim.

What you need to do

Option Explicit

Sub FlockBehavior()
 Dim oRange As Range, i As Integer, bWon As
Boolean, pTime As Double
 Set oRange = Range("B2:K11")
 oRange.ClearContents
 Do
 oRange.Formula =
"=VLOOKUP(RAND(),M2:N5,2)"
 oRange.Formula = oRange.Value
 pTime = Timer + 0.5 'Timer: secs since
midnight; pause by .5 seconds
 Do While Timer < pTime
 DoEvents
 Loop
 For i = 1 To 4
 If Range("O1").Offset(i, 0) >= 35 Then bWon
= True: Exit For
 Next i
 Loop Until bWon = True
 If bWon Then oRange =
WorksheetFunction.VLookup("+",
Range("P2:Q5"), 2, 0)

 MsgBox "One direction"
End Sub

II. STATISTICS

Chapter 12: Samples
What the simulation does

The simulation first asks how many rows we want to plot on a new
sheet. Each cell in that range—in the above case range B2:K18—holds a
random number between 0 and 10. Columns O and P hold two frequency
tables. The top one calculates frequencies for row 2, which are the values
for a sample of 10 cases. The bottom one calculates frequencies for row 20,
which holds the averages of each column based on a sample of 17x10=170
cases.

It is to be expected that the frequency curve for the large sample
resembles more of a normal distribution than the curve for the small sample
of 10 cases. Below is the result of 25 rows.

What you need to know

The FREQUENCY function is a so-called array function. That means
in Excel, you have to select multiple cells at once and accept the formula
with Ctrl + Shift + Enter (on a Mac: Command + Return). In VBA you do
this by using the FormulArray property of a range of cells.

We also added two ChartObjects to the code and the sheet. They are
numbered in the order they were created: 1 and 2. Notice that
SetSourceData is followed by a space—yes, every minute detail counts in
VBA!

What you need to do

Option Explicit

Sub Samples()
 Dim oWS As Worksheet, iRow As Long, oRange As
Range, oChart As Chart
 iRow = InputBox("How many rows on a new
sheet?", , 25) + 2
 Set oWS = Worksheets.Add(, ActiveSheet)
 Range(Cells(2, 2), Cells(2, 11)).Formula =
"=INT(RAND()*11)"
 Range(Cells(2, 2), Cells(2, 11)).Interior.Color =
vbYellow
 Cells(2, 13).Formula = "=STDEV(B2:K2)"
 Range(Range("A2"), Cells(iRow, 11)).Table ,
Range("A1")
 Set oRange = Range(Cells(iRow + 2, 2), Cells(iRow
+ 2, 11))
 oRange.FormulaR1C1 = "=AVERAGE(R[-2]C:R[-
" & iRow & "]C)"
 oRange.Interior.Color = vbYellow
 Cells(iRow + 2, 13).FormulaR1C1 =
"=STDEV(RC[-11]:RC[-2])"
 Range("O2:O11").Formula = "=ROW(A1)"
 Range("P2:P11").FormulaArray =

"=FREQUENCY(B2:K2,O2:O11)"
 Range("O14:O23") = "=ROW(A1)"
 Range("P14:P23").FormulaArray =
"=FREQUENCY(" & oRange.Address &
",O14:O23)"

 Range("O2:P11").Select
 oWS.Shapes.AddChart2(240,
xlXYScatterLines).Select
 ActiveChart.SetSourceData oWS.Range("O2:P11")
 ActiveChart.HasTitle = False
 oWS.ChartObjects(1).Top = Range("R2").Top
 oWS.ChartObjects(1).Left = Range("R2").Left
 oWS.ChartObjects(1).Width = 300
 oWS.ChartObjects(1).Height = 150

 Range("O14:P23").Select
 oWS.Shapes.AddChart2(240,
xlXYScatterLines).Select
 ActiveChart.SetSourceData
oWS.Range("O14:P23")
 ActiveChart.HasTitle = False
 oWS.ChartObjects(2).Top = Range("R14").Top
 oWS.ChartObjects(2).Left = Range("R14").Left
 oWS.ChartObjects(2).Width = 300
 oWS.ChartObjects(2).Height = 150
 Range("A1").Select

End Sub

Chapter 13: A Normal Distribution
What the simulation does

The macro places a new distribution on a new sheet with a number of
rows in column A that you the user chose in a MsgBox, based on a mean and
SD of our choosing as well. Column C has the number of bins chosen,
column D the frequencies for each bin, and column E what the corresponding
normal distribution values would be.

What you need to know

The function NORMINV (or NORM.INV, if available) in column A
returns the inverse of the normal cumulative distribution for the specified
mean and standard deviation. The function NORMDIST in E returns the
normal distribution for the specified mean and standard deviation.

By replacing the Formula property of a range with its Value property,
we are mimicking a Paste Special procedure for values—so that things
don’t keep recalculating.

The Chart has two cases of a FullSeriesCollection, 1 and 2.

What you need to do

Option Explicit

Sub Bins()
 Dim iSize As Integer, pMean As Double, pSD As
Double, iBins As String, oWS As Worksheet
 iBins = 15
 iSize = InputBox("New sheet: The size of your
sample:", , 100)
 pMean = InputBox("New sheet: The mean of your
sample:", , 10)
 pSD = InputBox("New sheet: The SD of your
sample:", , 0.2)
 Set oWS = Worksheets.Add(, ActiveSheet)
 Range(Cells(1, 1), Cells(iSize, 1)).Formula =
"=NORMINV(RAND()," & pMean & "," & pSD &
")"
 Range(Cells(1, 1), Cells(iSize, 1)).Formula =
Range(Cells(1, 1), Cells(iSize, 1)).Value
 Range("C1").Formula = "=MIN(A:A)"
 Range("C2").Formula = "=MAX(A:A)"
 Range(Cells(4, 3), Cells(3 + iBins, 3)).Formula =
"=C1+(ROW(A1))*(ROUND((C2-C1)/(" &
iBins & "),4))"
 Range(Cells(4, 4), Cells(3 + iBins,

4)).FormulaArray = "=FREQUENCY(A:A," &
Range(Cells(4, 3), Cells(3 + iBins, 3)).Address & ")"
 Range("E1") =
WorksheetFunction.Average(Columns(1))
 Range("E2") =
WorksheetFunction.StDev(Columns(1))
 Range(Cells(4, 5), Cells(3 + iBins,
5)).FormulaR1C1 =
"=NORMDIST(RC[-2],R1C5,R2C5,FALSE)"

 Range("C4:E18").Select
 oWS.Shapes.AddChart2(240,
xlXYScatterLines).Select
 With ActiveChart
 .SetSourceData Range("C4:E18")
 .HasTitle = False
 .FullSeriesCollection(1).ChartType =
xlColumnClustered
 .FullSeriesCollection(2).ChartType = xlArea
 .FullSeriesCollection(2).AxisGroup = 2

ActiveChart.Axes(xlCategory).TickLabels.NumberFormat
= "#,##0.00"
 End With
 Cells(1, 1).Select
End Sub

Chapter 14: Distribution Simulations
What the simulation does

This macro simulates 3 types of distributions: Normal, LogNormal, or
Binomial.

What you need to know

A Select Case statement in VBA lets us regulate specifics for each
case (ND, LN, or BI).

What you need to do
Sub Simulation()
 Dim sChoice As String, n As Long, pOne As
Double, pTwo As Double, i As Long
 Dim arr() As Variant, sFormula As String, oRange
As Range, oWS As Worksheet
 Dim pMin As Double, pMax As Double, oChart As
Chart
 sChoice = InputBox("ND (normal), LN
(lognormal), BI (binomial)", , "ND")
 n = InputBox("How many numbers?", , 100000)
 If n > 1000000 Then MsgBox "The max is
1000000": Exit Sub
 Set oWS = Worksheets.Add(, ActiveSheet)
 Select Case UCase(sChoice)
 Case "ND":
 pOne = InputBox("What is the mean?", , 50)
 pTwo = InputBox("What is the standard
deviation?", , 5)
 sFormula = "=NORM.INV(RAND()," & pOne
& "," & pTwo & ")"
 Case "LN":
 pOne = InputBox("What is the mean?", , 2)
 pTwo = InputBox("What is the standard
deviation?", , 0.5)
 sFormula = "=LOGNORM.INV(RAND()," &

pOne & "," & pTwo & ")"
 Case "BI":
 pOne = InputBox("What is the probability?",
, 0.5)
 pTwo = InputBox("How many trials?", , 50)
 sFormula = "=BINOM.INV(" & pTwo & ","
& pOne & ",RAND())"
 Case Else: MsgBox "Not a valid option": Exit
Sub
 End Select
 Set oRange = Range(Cells(1, 1), Cells(n, 1))
 oRange.Formula = sFormula : oRange.Formula
= oRange.Value
 Cells(1, 4) = "Count"
 Cells(2, 3).Formula = "=MIN(A:A)-
MOD(MIN(A:A),10)" : pMin = Cells(2, 3)
 Cells(11, 3).Formula = "=MAX(A:A)+10-
MOD(MAX(A:A),10)" : pMax = Cells(11, 3
 For i = 3 To 10
 Cells(i, 3) = pMin + i * Round((pMax - pMin) /
10, 0)
 Next i
 Set oRange = Range(Cells(2, 4), Cells(12, 4))
 oRange.FormulaArray = "=FREQUENCY(A:A,"
& Range(Cells(2, 3), Cells(11, 3)).Address & ")"
 oRange.Cells.Borders.LineStyle = xlContinuous :
Cells.EntireColumn.AutoFit

 Cells(1, 6) = "Distribution": Cells(1, 7) = sChoice
 Cells(2, 6) = "Sample Size": Cells(2, 7) = n :
Cells(3, 6) = "Mean": Cells(3, 7) = pOne
 Cells(4, 6) = "SD": Cells(4, 7) = pTwo
 Set oRange = oWS.Range(Cells(1, 3), Cells(11, 4))
 Set oChart = Charts.Add
 oChart.HasLegend = False: oChart.ChartType =
xlLine
 oChart.FullSeriesCollection(1).Smooth = True
 oChart.SetSourceData oRange: oChart.PlotBy =
xlColumns
 oChart.Axes(xlCategory).HasMajorGridlines =
True
 oChart.Location xlLocationAsObject, oWS.Name
 Sheet1.ChartObjects(1).Left = 125:
Sheet1.ChartObjects(1).Top = 250
 Sheet1.ChartObjects(1).Chart.HasTitle = False:
Cells(1, 1).Select
End Sub

Chapter 15: Discrete Distributions
What the simulation does

Let’s pretend you are a persistent, but very systematic, gambler. You
decide ahead of time how to spend your different kinds of banknotes, which
is specified in range D1:E5. The first columns in the chart display these
settings as well.

Then the macro lets the machine determine one hundred times, in
column A, when and which kind of banknotes to use and in which order.
This is a random process, but within the margins set in D1:E5. The results
are shown in the second columns of the chart.

Although the process is random, it follows a discrete distribution
which comes always very close to what you would expect.

What you need to know
For the Range E1:E5, the macro creates random percentages, which

together should make for 100%. That requires some math manipulation. Then
we need the function VLOOKUP to use these percentages to find the
corresponding type of banknote.

However, VLOOKUP always searches vertically, from top to bottom,

in the first column of a table, and then finds a corresponding value in a
column to the right, specified by a number. So we need a lookup column
before D1:D5 in order to determine the type of banknote to use. Besides,
VLOOKUP looks for the previous value in an ascending order, so it would
find $1 for all percentages between 0% and 60%, $5 between 60% and
80%, and $100 for percentages greater than or equal to 98%.

Therefore, we need cumulative totals in the first column (C), starting
at 0%. The third column (E) is now redundant, but is still needed for the
chart to the right in order to show the expected frequencies—versus the
randomly generated frequencies.

What you need to do

Option Explicit

Sub Distribution()
 Dim i As Integer, arr() As Integer, n As Integer
 ReDim arr(4)
 n = WorksheetFunction.RandBetween(0, 60)
 arr(0) = n - (n Mod 5)
 n = WorksheetFunction.RandBetween(0, 100 -
arr(0))
 arr(1) = n - (n Mod 5)
 n = WorksheetFunction.RandBetween(0, 100 -
(arr(0) + arr(1)))
 arr(2) = n - (n Mod 5)
 n = WorksheetFunction.RandBetween(0, 100 -
(arr(0) + arr(1) + arr(2)))
 arr(3) = n - (n Mod 5)
 arr(4) = 100 - (arr(0) + arr(1) + arr(2) + arr(3))
 For i = 0 To 4
 Cells(i + 1, 5) = FormatPercent(arr(i) / 100, 0)
 Next i
 Range("C2:C5").Formula = "=SUM(E1:E1)"
 Range("A1:A100").Formula =
"=VLOOKUP(RAND(),C1:D5,2)"
End Sub

Chapter 16: Peaks
What the simulation does

Here we are dealing with a population (in I) that is composed of two
sub-populations (in D and G). As long as the two subpopulations have the
same mean, even with different standard deviations, the entire population
may look nicely symmetrical. But when the mean of one subpopulation
changes, the symmetrical curve may easily lose its symmetry and may even
become bi-modal. The macro simulates this by looping with a timer.

What you need to know

We have a global variable again to stop the macro: bStopMacro.
Stopping the macro is done with a CommandButton on the sheet: Developer
| Design Mode | Insert | Command Button | View Code (don’t forget to click
the Design Mode button OFF when you are done). The VBA code behind the
button is very simple. Most of the work is done in the Module.

The UBound function of an array returns the index of the last array
element.

What you need to do

In a module:

Option Explicit

Dim bStopMacro As Boolean
'Place Commandbutton on the sheet to run the next
Sub

Sub StopLooping()
 bStopMacro = True
End Sub

Sub Peaks() 'Ctr + Sh + P
 Dim vMeans As Variant, vSDs As Variant, i As
Integer, j As Integer, pTime As Double
 vMeans = Array(40, 50, 60, 70, 80, 90, 100)
 vSDs = Array(14, 16, 18, 20)
 For i = 0 To UBound(vMeans)
 Range("G2") = vMeans(i)
 For j = 0 To UBound(vSDs)
 Range("G3") = vSDs(j)
 pTime = Timer + 1
 Do
 DoEvents
 Loop Until Timer > pTime

 If bStopMacro Then bStopMacro = False: Exit
Sub
 Next j
 Next i
 If MsgBox("Start again?", vbYesNo) = vbYes Then
Peaks
End Sub

On the sheet that has the commandButton1:

Option Explicit

Private Sub CommandButton1_Click()
 StopLooping
 Cells(1, 1).Select
End Sub

Chapter 17: Confidence Margins
What the simulation does

This sheet is actually done with Excel functions and formulas as
mentioned in the inserted comments. The function CONFIDENCE in Excel
returns the confidence interval for a population mean, using a normal
distribution. It works best for sample sizes over 32.

In this case we used a 2-tailed error level of 5% (2.5% for each tail),
which equates to a 95% confidence level. This means we have a 95%
confidence that the vales we found in this sample lie actually between the
two values mentioned in the Data Table (which equates to the mean plus the
confidence margin and the mean minus the confidence margin). Notice how
confidence margins depend heavily on sample size and standard deviation.

The only thing VBA does on this sheet is following which cell the user
clicks on inside the Data Table.

What you need to know
Instead of using a Module, the VBA code is on the sheet itself:

SelectionChange (see the screen shot on the next page). This is a Sub that
kicks in whenever the user selects another cell on that sheet.

Instead of using a regular For-loop, we used a For-Each-loop that
scans every single cell in a range of cells. The Boolean variable bFound
always starts as 0 (False) until it is set to 1 (True).

We also applied conditional formatting by adding a FormatCondition
to the collection of FormatConditions, starting at 1. In this case we used a
formula for this condition as shown in the VBA code which marks the
correct range in columns J:L with a certain color.

Because adding to the FormatConditions keeps literally adding the
same condition again and again, the macro deletes all conditions earlier in
the code first.

What you need to do

Option Explicit

Private Sub Worksheet_SelectionChange(ByVal
Target As Range)
 Dim oRange As Range, sFormula As String,
pLower As Double, pUpper As Double
 Dim oCell As Range, bFound As Boolean
 For Each oCell In Range("B8:G16")
 If oCell = ActiveCell Then bFound = True: Exit
For
 Next oCell
 If bFound = False Then Exit Sub

 Set oRange = Range("J1:L21")
 oRange.FormatConditions.Delete
 pLower = Left(ActiveCell, 4)
 pUpper = Right(ActiveCell, 4)
 sFormula = "=and($L1>=" & pLower & ",$L1<="
& pUpper & ")"
 oRange.FormatConditions.Add xlExpression, ,
sFormula
 oRange.FormatConditions(1).Interior.Color =
vbYellow
End Sub

Chapter 18: Sample Size and
Confidence Interval

What the simulation does

This sheet has two macros. The first macro (see above) simply asks
for input variables and calculates confidence intervals.

The second macro (see below) calculates how many cases you would
need in your sample in order to reach a specific margin limit.

What you need to know

The WorksheetFunction T_Inv_2T returns the t-value of the Student t-
distribution as a function of the probability and the degrees of freedom. The
degrees of freedom are the number of cases minus 1. The t-value works for
all sample sizes, even under 32.

The Standard Error (SE) is the Standard Deviation (SD) divided by
the SQRT of the number of cases. So the confidence margin is the Standard
Error times the t-value.

The 2nd macro uses Excel’s GoalSeektool that allows you to alter
data in formulas to get a specific result that you want to reach by changing a
specific value (here B2, in the 2nd argument).

What you need to do

Option Explicit

Sub ConfidenceIntervalI()
 Dim pValue As Double, iCases As Long, pSE As
Double, pPerc As Double
 Dim pTInv As Double, pMin As Double, pMax As
Double, pMargin As Double
 On Error Resume Next
 pValue = InputBox("Which value?", , 5.5)
 iCases = InputBox("How many cases?", , 30)
 pSE = InputBox("SD", , 0.5) / Sqr(iCases)
 pPerc = InputBox("Confidence", , 0.95)
 pTInv = WorksheetFunction.T_Inv_2T(1 - pPerc,
iCases - 1)
 pMargin = pSE * pTInv
 pMin = FormatNumber(pValue - pMargin, 3)
 pMax = FormatNumber(pValue + pMargin, 3)
 MsgBox pPerc * 100 & "% confidence: " & vbCr
& "between " & pMin & " and " & pMax
End Sub

Sub SampleSize()
 Dim pConf As Double, pGoal As Double, iRow As
Integer, sAddr As String, sMsg As String

 pConf = InputBox("Which confidence level?", ,
0.95)
 iRow = WorksheetFunction.Match(0.95,
Range("A7:A9"))
 sAddr = Range("C7:C9").Cells(iRow, 1).Address
 pGoal = InputBox("Which limit do you want to
reach?", , 0.09)
 Range(sAddr).GoalSeek pGoal, Range("B2")
 sMsg = "To reach a confidence level of " &
FormatPercent(pConf, 0) & vbCr
 sMsg = sMsg & "and a limit of " &
FormatNumber(pGoal, 3) & vbCr
 sMsg = sMsg & "you would need a sample of at
least " & FormatNumber(Range("B2"), 0) & "
cases!"
 MsgBox sMsg
 Range("B2") = 30 : Calculate
 End Sub

Chapter 19: Random Repeats
What the simulation does

This time we are going to simulate several runs in order to check as to
whether the normal distribution we tried to simulate earlier did come out the
way we would expect.

In column B the macro simulates a series of 100 random numbers—not
equally but normally distributed, with a mean of 100 and a SD of 10. In the
range D2:F22, it simulates 20 repeats of this random number generation,
with a Data Table, so we end up with 20 x 100 = 2,000 trials (which is still
a very modest number for statistical standards). As it turns out, the mean of
means oscillates around 100 (cell E24) and the mean of SDs stays more or
less around 10 (cell F24).

The top graph plots the mean values as found in 20 runs (E2:E22).
Even the frequency distribution of all the means, calculated in range
R12:T19, creates a rather normal distribution with a bell shape in the lower
graph, although the number of cases is still very modest in statistical terms.

What you need to know
The 100 sequential numbers in column A were calculated by using the

ROW function. This function returns the row number of the cell the function

happens to be in—so ROW() in A10 would return 10. If you provide a cell
reference as an argument, it returns the row number of that specific cell
reference—so ROW(B25) in cell A10 (or in cell B1) would always return
25.

The VBA code copies the first sheet to a new sheet, but mean and SD
can be changed. It also asks whether you want to replace formulas with
values. If you do, F9 will not recalculate anything, and the Data Table will
no longer work.

The average line in the graph is based on cells D24:E25.
This time we decided to also add a so-called error-handler, in case

something goes (unexpectedly) wrong. It works with On Error GoTo [label]
at the beginning, and at the end, after Exit Sub, a label like “Trap” or so and
a MsgBox that uses information from the Err object (see Appendix).

What you need to do

Option Explicit

Sub NewSample()
 Dim oWS As Worksheet, oRange As Range, oChart
As ChartObject
 Dim pMean As Double, pSD As Double
 On Error GoTo Trap
 pMean = InputBox("The new mean on a new
sheet:", , 50)
 pSD = InputBox("The new SD:", , 10)
 Set oWS = ActiveSheet
 oWS.Copy , Sheets(Sheets.Count)
 Set oRange =
ActiveSheet.Range("A1").CurrentRegion.Offset(1, 0)
 oRange.Columns(2).Formula =
"=NORMINV(RAND()," & pMean & "," & pSD &
")"
 If MsgBox("Keep formulas for F9?", vbYesNo) =
vbNo Then
 oRange.Columns(2).Formula =
oRange.Columns(2).Value
 End If
 Range("B2").Comment.Text "A mean of " &
pMean & " and SD of " & pSD & "."

 Set oChart = ActiveSheet.ChartObjects("Chart 2")
 oChart.Chart.Axes(xlCategory).MinimumScale =
Round(Range("S12"), 1)
 oChart.Chart.Axes(xlCategory).MaximumScale =
Round(Range("S19"), 1)
 Range("A1").Select
 Exit Sub
Trap:
 MsgBox "There was an error: " & Err.Description
End Sub

Chapter 20: Flipping a Fair Coin?
What the simulation does

This simulation is about flipping a coin six times, calculating how
often we hit six times “tails” (0), five times, and so on (column A). The most
likely outcome is 3x “heads” (X) and 3x “tails” (0)—actually 31% of all
cases (column F). The center curve in the graph is a “bell-shaped” curve that
represents this situation. Going more to the left or to the right under the bell-
shaped curve, the chances decrease dramatically, but they will never
become 0.000000000000.

Events with random outcomes have the property that no particular
outcome is known in advance. However, in the aggregate, the outcomes
occur with a specific frequency. When we flip a “fair” coin, we do not know
how it will land, but if we flip the coin millions of times, we know that it
will land heads up (X) very close to 50% of the time—unless...

Unless... the coin is not “fair” and has a “preference” for lower X
percentages (columns C:E and the other curves in the graph). To determine
whether a coin is fair or not, we would need to flip a coin millions of times.
In this simulation we only simulated some 100 coin tosses. In the situation
shown on the next page, we would probably declare the fair coin unfair
(column U). It is clear we need many more flips for a reliable verdict.

What you need to know
Place a copy of the sheet on a new sheet after (2nd argument) the last

one in the collection of Sheets so far—that is, Sheets(Sheets.Count).
In order to create a normal distribution for a binary situation—such as

yes/no, correct/defect, heads/tails, success/failure—we need the function
BINOMDIST (or BINOM.DIST). It returns a binomial distribution
probability for problems with a fixed number of tests or trials, when the
outcomes of any trial are either success or failure, when trials are
independent, and when the probability of success is constant throughout the
experiment.

The Formula property of a range requires a string, so the formula
property is set with an equal sign (=) to a string that starts with a double
quote, followed by another equal sign (=), and ending with a double quote. If
there is another string inside this string, we need two double quotes instead
of one.

What you need to do

Option Explicit

Sub Coins()
 Dim oWS As Worksheet
 Set oWS = ActiveSheet
 oWS.Copy , Sheets(Sheets.Count)

Range("C2:G8,C11:F16,C18:F18,R2:U18,R20:U20").ClearContents
 Range("A1").Select
 MsgBox "The chances for X (head) if the coin is 20
to 50% fair:"
 Range("C2:G8").Formula =
"=BINOMDIST($B2,6,C$1,0)"
 MsgBox "Flip these coins 6 times randomly:"
 Range("C11:F16").Formula = "=IF(RAND()
<=C$10,""X"",""0"")"
 MsgBox "Here are the chances of X for each coin:"
 Range("C18:F18").Formula =
"=COUNTIF(C11:C16,""X"")/6"
 MsgBox "Then we repeat these calculations 17
times:"
 Range("R2:U2").Formula = "=C18"
 Range("Q2:U18").Table , Cells(100, 100)
 MsgBox "How often did we hit 50% chance of

head vs. tail?"
 Range("R20:U20").Formula =
"=COUNTIF(R2:R18,0.5)"
End Sub

Chapter 21: Simulation of Sick Cases
What the simulation does

If a certain percentage of people is sick in the population (column A),
we can find out with a 95% confidence how many in a sample of 100
persons will be sick, either as a minimum (column B) or as a maximum
(column C) based on that confidence level.

We can also calculate what the probability is of finding up to a certain
number of sick cases (column G), given a certain sample size (B1).

We can vary the sample size (B1) as well as the number of sick cases
(G1) by answering both InputBox questions. The confidence level can be
manually adjusted on the sheet.

The macro simulates all of this on the sheet.

What you need to know
One of the functions we need in column G is BINOMDIST (or

BINOM.DIST) again. As explained in the previous Chapter, it returns a
binomial distribution probability for problems with a fixed number of tests
or trials, when the outcomes of any trial are either success or failure, when
trials are independent, and when the probability of success is constant
throughout the experiment.

The other crucial function is BINOM.INV (which replaces

CRITBINOM in pre-2010 versions. It has 3 arguments: the number of trials,
the probability of a success on each trial, and the criterion value (alpha).

The function IFERROR is also quite recent (ISERROR could be used
in earlier versions, but is a bit mpore involved). If there is an error in a
certain BINOMDIST calculation, it should display an empty string—which
calls for four double quotes (a string inside a string).

What you need to do

Option Explicit

Sub SickCases()
 Dim iSize As Integer, iSick As Integer
 iSize = InputBox("What is the sample size?", , 100)
 Range("B1") = iSize
 Range("B5:B15").Formula =
"=BINOM.INV(B1,$A5,1-$B$2)"
 Range("C5:C15").Formula =
"=BINOM.INV(B1,$A5,$B$2)"
 iSick = InputBox("How many sick cases?", , iSize /
4)
 Range("G1") = iSick
 Range("G5:G15").Formula = "=IFERROR(1-
BINOMDIST(G$1,$B$1,$F5,TRUE),"""")"
 If MsgBox("Empty calculated cells?", vbYesNo) =
vbYes Then
 Range("B1") = ""
 Range("B5:B15") = ""
 Range("C5:C15") = ""
 Range("G1") = ""
 Range("G5:G15") = ""
 End If
End Sub

Chapter 22: Unbiased Sampling
What the simulation does

When taking samples, the problem is that some are more likely to be
chosen than others—so we call them biased samples. Unbiased sampling
requires some bias-proof techniques. Therefore, we need the unbiased
verdict of mathematical tools.

In this simulation, we use four different techniques to select telephone
area codes at random. Technique #1 assigns a random number, sorts by that
number, and then takes the first or last N cases. Technique #2 selects X% of
the area codes randomly. Technique #3 produces N cases randomly.
Technique #4 “weighs” each area code (say, depending on population
density) and then performs a weighted sampling of N cases.

The simulation scrolls through these four different techniques of
unbiased sampling.

What you need to know
Case #1 sorts the random numbers after their formulas have been

changed into values. The Sort method has many optional arguments. The 1st

argument specifies the first sort field, either as a range name (String) or
Range object; it determines the values that need to be sorted. The 2nd

argument determines the sort order—by default xlAscending.
Case #4 may need some more explanation. In column K, we calculate

the cumulative total of all previous weights. So area code 202 (in L5) is four
times included in that total. In column O, we multiply the grand total (K24)
with a random number between 0 and 1, and then we look up that value in
range K4:L24 and determine its corresponding area code. In other words,
the second area code, 202, can be found through the random numbers
between >=1 and <5; this amounts to 4 chances of being picked (4x more
than the first area code, 201).

What you need to do

Option Explicit

Sub RandomSelect()
 Dim oRange As Range, iSize As Integer
 If MsgBox("Sort all areacodes randomly",
vbYesNo) = vbNo Then Exit Sub
 Range("B4:B270").Formula = "=RAND()"
 Range("B4:B270").Formula =
Range("B4:B270").Value
 Range("A4:B270").Sort Range("B4")

 If MsgBox(Range("E3") & " sample from column
D?", vbYesNo) = vbNo Then Exit Sub
 Range("E4:E270").Formula = "=RAND()<E3"
 Range("E4:E270").Formula =
Range("E4:E270").Value
 Range("D4:E270").Sort Range("E4"),
xlDescending

 If MsgBox("Random selection of " & Range("I3"),
vbYesNo) = vbNo Then Exit Sub
 Range("H4:H270").Formula = "=RAND()"

 Range("H4:H270").Formula =
Range("H4:H270").Value
 iSize = Range("I3")
 Range(Range("I4"), Cells(3 + iSize, 9)).Formula =
"=INDEX(G4:G270,RANK(H4,H4:H270))"

 If MsgBox("Weighted sample of 10", vbYesNo) =
vbNo Then Exit Sub
 Range("P4:P13").Formula =
"=VLOOKUP(K24*RAND(), K4:L24, 2)"
 Range("Q4:Q13").Formula =
"=VLOOKUP(P4,L4:N23,3,0)"

End Sub

Chapter 23: Transforming a
LogNormal Distribution

What the simulation does

Column A holds 100 random values based on a lognormal distribution
with a mean of 2 and a Standard Deviation of 0.5. Column B shows the
probability of each value. In column G, the lognormally distributed values
are transformed by taking their natural logarithm.

In columns D:E, we calculate the mean and SD plus their frequencies
—first of the values in A, then for the transformed values in G. We also
calculate if and how skewed they are.

It turns out that the transformed lognormal distribution comes close to
a normal distribution.

What you need to know
The function LOGNORM.INV allows us to create a series of values

that have a lognormal distribution: =LOGNORM.INV(RAND(),2,0.5).
In cell E3 (and E34) we use the SKEW function, but nested inside a

TEXT function, so we can use a formatted result in the MsgBox:
=TEXT(SKEW(A:A), "0.000"). Skewness characterizes the degree of
asymmetry of a distribution around its mean.

In cell E4 (and E35) we use a thumb rule as to whether a distribution
is significantly skewed or not. The formula is for E4 as follows: =IF(E3>
(2*SQRT(6/COUNT(A:A))),"Y","N")

What you need to do

Option Explicit

Sub TransformLogNormal()
 Dim oWS As Worksheet
 Set oWS = ActiveSheet
 oWS.Copy , Sheets(Sheets.Count)
 Range("A2:A101").Clear:
Range("B2:B101").Clear: Range("G2:G101").Clear
 If MsgBox("Create a random LogNormal
Distribution?", vbYesNo) = vbNo Then
 Application.DisplayAlerts = False
 Sheets(Sheets.Count).Delete
 Application.DisplayAlerts = True
 Exit Sub
 End If
 Range("A2:A101").Formula =
"=LOGNORM.INV(RAND(),2,0.5)"
 Range("B2:B101").Formula =
"=LOGNORM.DIST(A2,E1,E2,TRUE)"
 If MsgBox("Transform the data?", vbYesNo) =
vbNo Then Exit Sub
 Range("G2:G101").Formula = "=LN(A2)"
 MsgBox "Lognormal is " & IIf(Range("E4") =
"Y", "", "not ") & _

 "significantly skewed: " & Range("E3") &
vbCr & "After transformation " & _
 IIf(Range("E35") = "Y", "slightly ", "no
longer ") & _
 "skewed: " & Range("E34") & ""
End Sub

Chapter 24: Outlier Detection
What the simulation does

Outliers are defined as numeric values in any random data set that
have an unusually high deviation from either the statistical mean or the
median value. In other words, these numbers are relatively extreme. It
requires sound statistics—not intuition—to locate them. A rather simple rule
is that all values outside a range of three times the standard deviation around
the mean could be considered outliers—provided they follow a normal
distribution.

What you need to know
In this simulation, however, we will use a more robust statistical

detection of outliers by calculating the deviation for each number, expressed
as a “modified Z-score,” and testing it against a predefined threshold. Z-
scores stand for the amount of standard deviation relative to the statistical
median (in D1). MAD (in D2) stands for Median Absolute Deviation. Any
number in a data set with the absolute value of modified Z-scores
exceeding 3.5 times MAD is considered an outlier.

Column D shows the outcome.
In the 1970’s the famous statistician John Tukey decided to give the

term outlier a more formal definition. He called any observation value an
outlier if it is smaller than the first quartile (F1) minus 1.5 times the IQR
(F3), or larger than the third quartile (F2) plus 1.5 times the IQR. The Inter-
Quartile Range, IQR, is the width of the interval that contains the middle half
of the data. Column F shows the outcome.

The graph to the right shows the observed values marked with a
square shape if it is an outlier according to the first method, or with a
diamond shape if it is an outlier according to the second method. Most of the
time, the first method detects more outliers than the second one.

What you need to do

Option Explicit

Sub Outliers()
 Dim oWS As Worksheet
 Set oWS = ActiveSheet
 oWS.Copy , Sheets(Sheets.Count)
 Range("B5:B29").Formula =
"=NORMINV(RAND(),30,15)*(1-2*RAND())"
 Range("D5:D29").Formula = "=IF(ABS(D$1-B5)>
(3.5*D$2), ""outlier"", """")"
 Range("F5:F29").Formula = "=IF(OR(B5>
(F2+1.5*F3),B5<(F1-
1.5*F3)),""OUTLIER"","""")"
 Range("D5:D29,F5:F29").FormatConditions.Add
xlExpression, ,
"=AND($D5=""outlier"",$F5=""OUTLIER"")"

Range("D5:D29,F5:F29").FormatConditions(1).Interior.Color
= vbYellow
End Sub

Chapter 25: Bootstrapping
What the simulation does

When you have a series of values that are not normally distributed—
say, 30 values such as in column A—it is not so simple to calculate a mean,
a median, a SD, or a margin. You need some kind of technique such as
bootstrapping.

This sheet uses that technique by randomly selecting values from the
sample in A. We do that, for instance, 15 times: first in column D, then in
column E, and so on until column R. At the bottom of each column we
calculate the average. Based on these averages, we are able to know what
the statistical parameters are that we were looking for.

In the VBA code, we do all of this, not 15 times, but 1,000 times by
storing the results of each drawing in an array, from which we calculate the
bootstrapping results. Larger number of drawings are obviously less
susceptible to random fluctuations. A MsgBox reports what the outcome is
(see picture on the next page).

What you need to know
The Excel function INDEX is a more sophisticated version of

VLOOKUP. It looks in a table at a certain row position and a certain column
position. It uses this syntax: INDEX(table, row#, col#). Whereas VLOOKUP

works only with column numbers, INDEX also uses row numbers, which is
very important when we want to look at a record that is located a certain
number of rows above or below another record.

Each cell in D1:R30 has this:
=INDEX(A1:A30,ROWS(A1:A30)*RAND()+1)

In cell U2 is the mean of means: =AVERAGE(D32:R32)
In cell U3 is the number of samples: =COUNT(D32:R32)
In cell U4 is the 2.5% cut off: =U3*0.025
In cell U5 is the lower bound:

=SMALL(D32:R32,ROUNDUP(U4,0))
In cell U6 is the upper bound:

=LARGE(D32:R32,ROUNDUP(U4,0)):

What you need to do

Option Explicit

Sub BootStrap()
 Dim i As Long, r As Long, j As Long, oRange As
Range, sMsg As String
 Dim pValue As Double, pMean As Double, pSE As
Double, iCutOff As Integer, pMargin As Double
 Dim arrMeans() As Double, arrValues() As Double
 r = Range("A1").CurrentRegion.Rows.Count
 Set oRange = Range(Cells(1, 1), Cells(r, 1))
 ReDim arrMeans(1 To 1000)
 For j = 1 To 1000
 ReDim arrValues(1 To r)
 For i = 1 To r
 arrValues(i) =
WorksheetFunction.Index(oRange, r * Rnd() + 1)
 Next i
 arrMeans(j) =
WorksheetFunction.Average(arrValues)
 Next j
 iCutOff = WorksheetFunction.RoundUp(100 *
0.025, 0)
 pMean =
Format(WorksheetFunction.Average(arrMeans),

"0.00")
 pSE =
Format(WorksheetFunction.StDev_S(arrMeans),
"0.00")
 pMargin = Format(pSE *
WorksheetFunction.T_Inv_2T(0.05, r - 1), "0.00")
 sMsg = "Based on 1000 runs:" & vbCr
 sMsg = sMsg & "Mean of the arrMeans: " &
pMean & vbCr
 sMsg = sMsg & "SE of the arrMeans: " & pSE &
vbCr
 sMsg = sMsg & "Margin at 95%: " & pMargin &
vbCr
 sMsg = sMsg & "Lower Bound: " & pMean -
pMargin & vbCr
 sMsg = sMsg & "Upper Bound: " & pMean +
pMargin
 MsgBox sMsg
End Sub

Chapter 26: Bean Machine
Simulation

What the simulation does

The Galton board, also known as a quincunx or bean machine, is a
device for statistical experiments named after English scientist Sir Francis
Galton. It consists of an upright board with evenly spaced nails (or pegs)
driven into its upper half, where the nails are arranged in staggered order,
and a lower half divided into a number of evenly-spaced rectangular slots.
The front of the device is covered with a glass cover to allow viewing of
both nails and slots. In the middle of the upper edge, there is a funnel into
which balls can be poured, where the diameter of the balls must be much
smaller than the distance between the nails. The funnel is located precisely
above the central nail of the second row so that each ball, if perfectly
centered, would fall vertically and directly onto the uppermost point of this
nail's surface.

Each time a ball hits one of the nails, it can bounce right or left. For
symmetrically placed nails, balls will bounce left or right with equal

probability. This process therefore gives rise to a binomial distribution of in
the heights of heaps of balls in the lower slots. If the number of balls is
sufficiently large, then the distribution of the heights of the ball heaps will
approximate a normal distribution.

What you need to know
This sheet simulates this process. All you have to do is keep holding

the keys Ctrl + Shift + B down, and the slots will fill as to be expected. If
you want to start all over, with an empty board, just hit the command button
in the top right corner. In the beginning, the distribution may be not be very
“normal” (see picture below), but that will soon change.

What you need to do
Place in a Module:

Option Explicit

Sub Beans()
 Dim oStart As Range, oPrev As Range, oNext As
Range, c As Integer, r As Integer
 Set oStart = Range("L1")
 oStart.Interior.ColorIndex = 15
 Set oPrev = oStart
 For r = 1 To 10
 If Rnd > 0.5 Then c = c + 1 Else c = c - 1
 Set oNext = oStart.Cells.Offset(r, c)
 oNext = oNext + 1
 oNext.Interior.ColorIndex = 15
 oPrev.Interior.ColorIndex = 0
 Set oPrev = oNext
 Next r
End Sub

Place on Sheet1:

Option Explicit

Private Sub CommandButton1_Click()
 Range("A1:X11").ClearContents
 Range("L1").Select

End Sub

Chapter 27: Correlated Distributions
What the simulation does

When you create multiple distributions, you may want to make this
happen with a specific correlation coefficient between them. This simulation
does so for you. In columns A:B, the macro creates two sets of normally
distributed values in columns A and B. However, we want these two sets (X
and Z) to be correlated as requested by cell E2. This simulation does so by
using a transformation with the formula mentioned above. Then, in a
MsgBox, it compares the old correlation coefficient with the new one.

What you need to know
When there are not 2 but 3 sets involved, you could hit Ctrl + Shift +

D, which does the following. It performs the so-called Cholensky
decomposition with a customized array function (see VBA-code), and then

converts your three sets of values by using the array function results with
another array formula like this: =MMULT(A2:C31,TRANSPOSE(F8:H10)).
MMULT returns the matrix product of two arrays, with one of them
transposed by using the TRANSPOSE function.

What you need to do
Sub Correlation()
 Dim oRange As Range
 Sheet2.Select
 Set oRange = Range("A2:C31"):
oRange.ClearContents
 MsgBox "First randomized values for X, Y, and Z"
 oRange.Formula =
"=ROUND(NORMINV(RAND(),10,2),2)"
 Set oRange = Range("F8:H10"):
oRange.ClearContents
 MsgBox "Now the Cholensky Decomposition in
F8:H10"
 oRange.FormulaArray = "=Cholenksy(F3:H5)"
'see function below
 Set oRange = Range("J2:L31"):
oRange.ClearContents
 MsgBox "Now the matrix manipulation in J2:L31"
 oRange.FormulaArray =
"=MMULT(A2:C31,TRANSPOSE(F8:H10))"
End Sub

Sub Decomposition()
 Dim oRange As Range

 Sheet2.Select
 Set oRange = Range("A2:C31"):
oRange.ClearContents
 MsgBox "First randomized values for X, Y, and Z"
 oRange.Formula =
"=ROUND(NORMINV(RAND(),10,2),2)"
 Set oRange = Range("F8:H10"):
oRange.ClearContents
 MsgBox "Now the Cholensky Decomposition in
F8:H10"
 oRange.FormulaArray = "=Cholenksy(F3:H5)"
'see function below
 Set oRange = Range("J2:L31"):
oRange.ClearContents
 MsgBox "Now the matrix manipulation in J2:L31"
 oRange.FormulaArray =
"=MMULT(A2:C31,TRANSPOSE(F8:H10))"
End Sub

Function Cholenksy(oMatrix As Range) 'partially
borrowed from Kurt Verstegen
 Dim i As Integer, j As Integer, k As Integer, N As
Integer
 Dim arrMatrix() As Double, arrLower() As Double,
pValue As Double
 N = oMatrix.Columns.Count
 ReDim arrMatrix(1 To N, 1 To N) : ReDim

arrLower(1 To N, 1 To N)
 For i = 1 To N
 For j = 1 To N
 arrMatrix(i, j) = oMatrix(i, j).Value :
arrLower(i, j) = 0
 Next j
 Next i
 For i = 1 To N
 For j = 1 To N
 pValue = arrMatrix(i, j)
 For k = 1 To i - 1
 pValue = pValue - arrLower(i, k) *
arrLower(j, k)
 Next k
 If i = j Then
 arrLower(i, i) = Sqr(pValue)
 ElseIf i < j Then
 arrLower(j, i) = pValue / arrLower(i, i)
 End If
 Next j
 Next i
 Cholenksy =
WorksheetFunction.Transpose(arrLower)
End Function

Chapter 28: Sorted Random
Sampling

What the simulation does

Sheet1 of this simulation takes random samples from values in column
A—but without any duplicates, and in a sorted order, based on a specific lot
size and sample size. It does so by sampling numbers in column A, then
manipulates them in column B (see picture on the next page), and displays
them orderly in E6:N15. Sheet2 does something similar, but this time with
dates.

What you need to know

Sheet2 has an extra secret: two hidden rows before column C. The
hidden columns A and B do the same work as they did on sheet1. In
F18:O27 it finds the dates corresponding to F5:O14.

What you need to do

Option Explicit

Sub Numbers()
 Dim iLot As Integer, iSample As Integer
 Sheet1.Select
 Range("A1:B100,E6:N15").ClearContents
 iLot = InputBox("Lot size (max of 100)", , 25): If
iLot > 100 Then Exit Sub
 iSample = InputBox("Sample size (max of 100)", ,
15): If iLot > 100 Then Exit Sub
 Range("G1") = iLot: Range("G2") = iSample
 Range("A1:A100").Formula =
"=IF(ROW(A1)>G1,"""",RAND())"
 Range("B1:B100").Formula =
"=IF(A1="""","""",IF(RANK(A1,A1:A101)>G2,"""",ROW(A1)))"
 Range("E6:N15").Formula =
"=IF($D6+E$16>G2,"""",SMALL(B1:B100,$D6+E$16))"
 Do
 Calculate
 Loop Until MsgBox("Again?", vbYesNo) = vbNo
End Sub

Sub Dates()
 Dim iLot As Integer, iSample As Integer

 Sheet2.Select

Range("A1:B100,F5:O14,F18:O27").ClearContents
 iLot = InputBox("Lot size (max of 100)", , 25): If
iLot > 100 Then Exit Sub
 iSample = InputBox("Sample size (max of 100)", ,
15): If iLot > 100 Then Exit Sub
 Range("G1") = iLot: Range("G2") = iSample
 Range("A1:A100").Formula =
"=IF(ROW(A1)>G1,"""",RAND())"
 Range("A1:A100").EntireColumn.Hidden = True
 Range("B1:B100").Formula =
"=IF(A1="""","""",IF(RANK(A1,A1:A100)>G2,"""",ROW(A1)))"
 Range("B1:B100").EntireColumn.Hidden = True
 Range("F5:O14").Formula =
"=IF($E5+F$15>G2,"""",SMALL(B1:B100,$E5+F$15))"
 Range("F18:O27").Formula =
"=IF($E5+F$15>G2,"""",SMALL(B1:B100,$E5+F$15))"
 Do
 Calculate
 Loop Until MsgBox("Again?", vbYesNo) = vbNo
End Sub

Chapter 29: Frequencies
What the simulation does

There is not much new in this simulation. It asks for a specific mean
and SD, loops for a specific amount of runs, creates a frequency table, and
then replaces the chart with a new one.

What you need to know

What you need to do

Option Explicit

Sub Frequencies()
 Dim pMean As Double, pSD As Double, pArr() As
Double, i As Long
 ActiveSheet.Shapes(2).Delete
 pMean = InputBox("Mean", , Cells(2, 1))
 pSD = InputBox("SD", , Cells(2, 2))
 Cells(2, 1) = pMean: Cells(2, 2) = pSD
 Cells(5, 1) = pMean - 4 * pSD
 Cells(6, 1) = pMean - 3 * pSD
 Cells(7, 1) = pMean - 2 * pSD
 Cells(8, 1) = pMean - 1 * pSD
 Cells(9, 1) = pMean
 Cells(10, 1) = pMean + 1 * pSD
 Cells(11, 1) = pMean + 2 * pSD
 Cells(12, 1) = pMean + 3 * pSD
 Cells(13, 1) = pMean + 4 * pSD
 For i = 1 To InputBox("Runs", , 10000)
 ReDim Preserve pArr(i)
 pArr(i) = WorksheetFunction.Norm_Inv(Rnd,
pMean, pSD)
 Next i
 pMean = WorksheetFunction.Average(pArr)

 pSD = WorksheetFunction.StDev_S(pArr)
 Range("B5:B13") =
WorksheetFunction.Frequency(pArr,
Range("A5:A13"))
 Range("A5:B13").Select
 ActiveSheet.Shapes.AddChart2(240,
xlXYScatterSmooth).Select
 ActiveChart.SetSourceData Range("A5:B13"):
ActiveChart.HasTitle = False
 Range("A1").Select
 MsgBox "After " & i - 1 & " runs:" & vbCr &
"Mean = " & _
 FormatNumber(pMean, 3) & vbCr & "SD
= " & FormatNumber(pSD, 3)
End Sub

III. MONTE CARLO SIMULATIONS

Chapter 30: The Law of Large
Numbers

What the simulation does

This is an example of a Monte Carlo simulation. Why are they called
Monte Carlo simulations? The name came up in the 1940s when Los
Alamos physicists John von Neumann, Stanislaw Ulam, and Nicholas
Metropolis were working on nuclear weapon research during the Manhattan
Project in the Los Alamos National Laboratory. They were unable to solve
their problems using conventional, deterministic mathematical methods.
Then one of them, Stanisław Ulam, had the idea of using random simulations
based on random numbers. The Monte Carlo simulations required for the
Manhattan Project were severely limited by the computational tools at the
time. Nowadays we have Excel!

Currently, the technique is used by professionals in such widely
disparate fields as finance, project management, energy, manufacturing,
engineering, research and development, insurance, and transportation. Monte
Carlo simulation furnishes you as a decision-maker with a range of possible
outcomes and the probabilities they will occur for any choice of action.
Always run at least 1,000 iterations of Monte Carlo models to reduce the

risk of random impact.

What you need to know
This simulation shows the effect of large numbers. Column A contains

“only” 1,000 numbers (plotted in the chart lower left). Then we run the
results of those 1,000 numbers 10 more times in a Data Table, which makes
for 10,000 cases (plotted in the chart top right). Finally we let VBA loop
through these results some 100 times, and average them again. Row 15 keeps
track of how many runs have not been executed yet. The outcome of these
1,000,000 runs in total is plotted in the third chart (lower right).

Notice how all three charts change during execution, but the third one
stays rather stable.

Needless to say that this is a time consuming process—mostly because
of cell manipulation on the sheet, for the use of arrays in VBA is
comparatively fast. When all the runs are completed (probably after some 60
seconds), a MsgBox shows the time needed for completion, which depends
partly on the processing speed of your machine.

What you need to do

Option Explicit

Sub Repeating()
 Dim i As Integer, vArr As Variant, arrTotals() As
Long
 Dim iRepeats As Integer, n As Integer, iTime As
Long
 iTime = Timer
 Range("G19:O19").ClearContents
 iRepeats = InputBox("How many repeats?", , 100)
 Cells(1, 1).Select
 ReDim arrTotals(1 To 9)
 For i = 1 To iRepeats
 ActiveSheet.Calculate
 vArr = Range("G13:O13")
 For n = 1 To UBound(vArr, 2)
 arrTotals(n) = arrTotals(n) + Int(vArr(1, n))
 Range("G19:O19").Cells(1, n) =
Int(arrTotals(n) / i)
 Range("G15") = iRepeats - i & " runs left"
 Next n
 Next i
 Range("F18") = iRepeats & "x10,000 runs:"
 MsgBox iRepeats & "x10,000 runs took " &

Int(Timer - iTime) & " seconds."
End Sub

Chapter 31: Brownian Motion
What the simulation does

Brownian motion was discovered in the early 1800s by botanist
Robert Brown, who noticed under his microscope how grains of pollen
appeared to constantly and randomly move in a jittery way on the surface of
the water. In his 1905 paper, Albert Einstein hypothesized that Brownian
motion was caused by actual atoms and molecules hitting the grains of
pollen, impelling them to take a “random walk” on the surface of the liquid.
Einstein’s work eventually led to the inherently probabilistic nature of
quantum mechanics.

This is a simulation of how a grain of pollen—or a molecule, for that
matter—takes a “random walk” on the surface of the water.

Dealing with the uncertain and the unknown is the realm of
probability, which helps us to put a meaningful numerical value on things we
do not know. Although a single random event is not predictable, the
aggregate behavior of random events is.

What you need to know
Column B displays random X-changes and column C displays random

Y-changes. In D and E, we start at coordinates 0,0 and keep adding the
random changes from the previous columns. In P:Q we repeat each run 14

times and stop the macro as soon as we ended up close to 0,0 again.
The VBA code creates this random path, but keeps checking when the

end point is the same as the starting point (0,0)—that is when the random
walk took us back very close to where we started (within a range of 0.02).
When that happens, it stops the process and reports how many runs that took.

The center chart only reflects the first run (to the left), so it only shows
when that run ended where it started. See the chart below.

We also used FormatConditions again, but only once, for otherwise
the macro keeps adding the same condition.

What you need to do

Option Explicit

Sub Returning()
 Dim i As Integer, oRange As Range, bBack As
Boolean, n As Long
 Range("O3:Q32").Table , Range("N1")
 Range("A1").Select
 Set oRange = Range("P3:Q32")
 'oRange.FormatConditions.Add xlExpression, ,
"=AND(AND($P3>=0,$P3<0.05),AND($Q3>=0,$Q3<0.05))"
 'oRange.FormatConditions(1).Interior.Color =
vbYellow
 Do While bBack = False
 Calculate
 For i = 1 To 30
 If oRange.Cells(i, 1) > -0.03 And
oRange.Cells(i, 1) < 0.03 Then
 If oRange.Cells(i, 2) > -0.03 And
oRange.Cells(i, 2) < 0.03 Then bBack = True: Exit Do
 End If
 Next i
 n = n + 1
 Loop
 MsgBox "Back to 0 at the " & i & "th run after "

& n & " repeats of 30 runs."
End Sub

Chapter 32: Ehrenfest Urn
What the simulation does

Consider two urns A and B. Urn A contains N marbles and urn B
contains none. The marbles are labelled 1,2,...N. At each step of the
algorithm, a number between 1 and N is chosen randomly, with all values
having equal probability. The marble corresponding to that value is moved
to the opposite urn. Hence the first step of the algorithm will always involve
moving a marble from A to B.

What will the two urns look like after k steps? If k is sufficiently large,
we may expect the urns to have equal populations, as the probabilities of
drawing a marble from A or from B become increasingly similar. States in
which one urn has many more marbles than the other may be said to be
unstable, as there is an overwhelming tendency to move marbles to the urn
that contains fewer. This phenomenon is called the “Ehrenfest Urn.”

Ehrenfest sometimes used the image of two dogs; the one with fleas
gradually infects the other one. In the long-time run, the mean number of
fleas on both dogs converges to the equilibrium value.

What you need to know
Instead of using two urns, we use a “board” that has X ’s at all

positions. Each time, at a random row and column position (cells B11 and
B12), an X is replaced by an O, or vice-versa. Gradually, we reach an
equilibrium where the number of X’s and O’s have become very similar,
albeit with some oscillations of course.

The VBA code finds a random row and column position to replace an
X with an O or reversed. It counts the number of X’s and Y’s after each
change and places that number sequentially in row J (for X’s) and in row K
for O’s. These two columns gradually feed the progressing curves in the
chart.

One macro feeds the board; the other macro resets the board.

What you need to do

Option Explicit

Dim i As Integer 'global variable

Sub Equilibrium()
 Dim oRange As Range, iRow As Long, iCol As
Integer
 Set oRange = Range("A1").CurrentRegion
 With oRange
 iRow = WorksheetFunction.RandBetween(1, 8)
 iCol = WorksheetFunction.RandBetween(1, 8)
 If .Cells(iRow, iCol) = "X" Then .Cells(iRow,
iCol) = "O" Else .Cells(iRow, iCol) = "X"
 Range("J1").Offset(i) =
WorksheetFunction.CountIf(oRange, "X")
 Range("K1").Offset(i) =
WorksheetFunction.CountIf(oRange, "O")
 i = i + 1
 End With
 Do While i < 200
 Equilibrium
 Loop
End Sub

Sub Reset()
 Dim oRange As Range
 Set oRange = Range("A1").CurrentRegion
 oRange.Cells = "X"
 Columns(10).Clear
 Columns(11).Clear
 i = 0
End Sub

Chapter 33: Random Walk
What the simulation does

This simulation uses a random-walk approach, similar to Brownian
motion. Imagine we are leaving home (position 0). Iif we flip a coin and get
heads, we go one block north (position +1); if we flip tails, we go one block
south (position -1). We keep doing this many times and then check how far
we end up being from home. (We may also ask what the probability is that
we return to where we started—believe it or not, that probability is 100% if
the walk is long enough!).

First we will simulate 50 steps for columns B and C, plotted in the top
graph. In the Data Table to the right, we repeated all 50 steps 14 times. The
columns O and P of the Data Table are plotted in the bottom graph.

As it turns out, we could make big “gains” and drift far away from
where we started. But not always! If this random-walk were interpreted as a
case of gambling, we could encounter many negative, perhaps even huge
negative outcomes—“losses” in gambling terms. Random walks are just
fascinating.

What you need to know
We do use FormatConditions again, but not in the macro, for that

would create the same condition over and over again.
In addition, we use the Excel function COUNTIFS (missing in pre-

2007), which allows for multiple count criteria: a zero in column B as well
as a zero in column C.

In Range N3:N22, we use a formula with a nested NA function. This
function returns #N/A. The advantage of doing so is that a curve in the chart
does not display #N/A, but just “skips” it.

At the end, the macro can call itself again if so desired.

What you need to do

Option Explicit

Sub Walking()
 Dim oRange As Range, i As Integer, sBack As
String, sEndScores As String
 Set oRange = Range("B3:C52")
 With oRange
 .Columns(1).ClearContents
 .Columns(2).ClearContents
 .Columns(1).FormulaR1C1 = "=IF(RAND()
<0.5,R[-1]C-1,R[-1]C+1)"
 .Columns(2).FormulaR1C1 = "=IF(RAND()
<0.5,R[-1]C-1,R[-1]C+1)"
' .FormatConditions.Add xlExpression, ,
"=AND($B3=0,$C3=0)"
' .FormatConditions(1).Interior.Color = vbYellow
 End With
 Range("N3:N21").Formula =
"=IF(AND(O3=0,P3=0),0,NA())"
 Set oRange = Range("O2:P21")
' oRange.FormatConditions.Add xlExpression, ,
"=AND($O2=0,$P2=0)"
' oRange.FormatConditions(2).Interior.Color =
vbYellow

 sBack =
WorksheetFunction.CountIfs(Range("B3:B52"), 0,
Range("C3:C52"), 0) & _
 "x back to a position of 0,0 during 1st
run"
 sEndScores =
WorksheetFunction.CountIfs(Range("O2:O21"), 0,
Range("P2:P21"), 0) & _
 "x back to start position 0,0 in 20 runs"
 If MsgBox(sBack & vbCr & sEndScores & vbCr &
"Try again?", vbYesNo) = vbYes Then Walking
End Sub

Chapter 34: A Data Table with
Memory

What the simulation does

In column A, we randomly choose 1,000 times 0 ’s or 1 ’s , with a
chance for 1 ’s based on an InputBox (say, 10%, shown in cell C1). The
number of 1’s is calculated in cell D1, but also for other percentages. This is
done by using a Data Table. Based on this calculation, the Data Table in
columns E and F runs all of this again for the next 9 percentages. When the
percentage in C1 has been chosen to be 15%, column C shows the next 9
percentages from 16% to 24%.

A MsgBox displays the lowest and highest value. After the first run,
these two values are the same, but when you keep running the macro, the
difference between the two will begin to rise.

Doing this in Excel with formulas is hard to do, because that requires
self-reference, and thus leads to circular reference. This can only be done
with iterations ON. VBA can solve this easily.

What you need to know

To prevent the screen from flashing
during operations, we can use Application.ScreenUpdating. If you set this to
False, make sure you set it later back to True.

We use four Variant arrays, because they can hold an array or series
of values, including the values found in a range of cells. However, this
creates a two-dimensional array, starting at element 1 (not 0 this time). So in
order to address one of its elements, we need two indexes, one for each
dimension (e.g. array(1,1)).

VBA can let you see what is in the array
by doing the following: View | Locals Window (see picture to the left).
Place a BreakPoint in the code after the line you want to check by clicking
in the gray margin to the left of it; this creates a brown line. Then click
inside the Sub and hit the Run button; the yellow line indicates where the
code has come to a halt. Now the Locals Window shows the values of all
your variables, including the arrays. Click the BreakPoint off, so the code
no longer stops there.

What you need to do

Option Explicit

Sub Memorize()
 Dim oRange As Range, i As Integer, pPercent As
Double, sMsg As String
 Dim arrTable As Variant, arrMin As Variant,
arrMax As Variant, arrPerc As Variant
 Range("F2:G10").ClearContents
 pPercent = InputBox("The chance for 1's is:", ,
0.1)
 If pPercent > 1 Then MsgBox "Must be between 0
and 1": Exit Sub
Again:
 Application.ScreenUpdating = False
 Range("A1:A1000").Formula = "=IF(RAND()<="
& pPercent & ",1,0)"
 Range("C1") = FormatPercent(pPercent, 2)
 For i = 1 To 9
 Range("C2:C10").Cells(i, 1) = pPercent + i / 100
 Next i
 Range("D1").Formula = "=COUNTIF(A:A,1)"
 Set oRange = Range("C1:D10")
 oRange.Table , Range("C1")
 Calculate

 arrPerc = Range("C2:C10")
 arrTable = Range("D2:D10")
 If IsEmpty(arrMin) Then
 arrMin = Range("D2:D10")
 arrMax = Range("D2:D10")
 Else
 For i = 1 To 9
 If arrTable(i, 1) < arrMin(i, 1) Then arrMin(i,
1) = arrTable(i, 1)
 If arrTable(i, 1) > arrMax(i, 1) Then arrMax(i,
1) = arrTable(i, 1)
 Next i
 End If
 sMsg = "Percent" & vbTab & "Min" & vbTab &
"Max" & vbCr
 For i = 1 To 9
 sMsg = sMsg & arrPerc(i, 1) & vbTab &
arrMin(i, 1) & vbTab & arrMax(i, 1) & vbCr
 Next i
 Application.ScreenUpdating = True
 MsgBox sMsg
 If MsgBox("Keep running?", vbYesNo) = vbYes
Then GoTo Again
End Sub

Chapter 35: Juror Selection in Court
What the simulation does

Countries with a juror system in court have to face the fact that they
must choose 2x12 jurors from a larger pool of candidates after checking
each candidate for certain criteria.

We assume we need 24 jurors (cell E1) from a pool of 100 (cell B1).
We also use the following criteria: #1 they have no opinion yet whether the
defendant is guilty (column B); #2 they were not witness to the crime
(column C); #3 they accept the possibility of the death penalty (column D).
These criteria have a probability in the population as shown in range B4:D4.
Column E decides whether all three conditions have been met. Cell F4
counts how many in the pool of candidates actually qualified to be a juror in
the case.

Finally we run this setup with a Data Table repeated 10 times (G:H,
I:J, up to Y:Z); each one running pool sizes from 100 to 1000. We average
these results in column AC, and we mark pool sizes that meet the needed
number of candidates (F2) with Conditional Formatting.

What you need to know
All gray cells have a formula in it. This is done by selecting all cells

and implementing Condition Formatting based on this formula:
=ISFORMULA(A1).

In the run shown below, a pool of 100 or 150 candidates would not be
enough to reach the 24 jurors needed, given the three conditions in B:D and
their probabilities. But 200 would! Again, we are dealing with probabilities
here, so results may vary!

What you need to do

Option Explicit

Sub Jurors()
 Dim iCand As Integer, iNeeded As Integer, i As
Integer, oRange As Range
 Application.ScreenUpdating = False
 Range("H4,J4, L4, N4, P4, R4,
T4,V4,X4,Z4,AC4").EntireColumn.ClearContents
 Set oRange = Range("A5:E1005")
 oRange.ClearContents
 Range("H5:H23").ClearContents
 Application.ScreenUpdating = True
 Range("B1") = InputBox("How many
candidates?", , 100)
 Range("E1") = InputBox("How many jurors
needed?", , 24)
 With oRange
 .Columns(1).Formula = "=IF(ROW(A1)
<=B1,TEXT(ROW(A1), ""Juror 0""),"""")"
 .Columns(2).Formula = "=IF(ROW(A1)
<=B1,IF(RAND()<B$4,""+"",""""),"""")"
 .Columns(3).Formula = "=IF(ROW(B1)
<=B1,IF(RAND()<C$4,""+"",""""),"""")"
 .Columns(4).Formula = "=IF(ROW(C1)

<=B1,IF(RAND()<D$4,""+"",""""),"""")"
 .Columns(5).Formula =
"=IF(COUNTIF(B5:D5,""+"")=3,1,0)"
 End With
 Application.ScreenUpdating = False
 Range("H4,J4, L4, N4, P4, R4,
T4,V4,X4,Z4").Formula = "=SUM(E5:E1005)"
 With Range("G4:R23")
 For i = 2 To 20 Step 2
 .Range(Cells(1, i - 1), Cells(20, i)).Table ,
Range("B1")
 'to prevent each table from recalculating,
replace with values:
 .Range(Cells(1, i - 1), Cells(20, i)).Formula =
.Range(Cells(1, i - 1), Cells(20, i)).Value
 Next i
 End With
 Range("AC5:AC23").Formula =
"=INT(AVERAGE(H5,J5,L5,N5,P5,R5,U5,T5,V5,X5,Z5))"
 Application.ScreenUpdating = True
End Sub

Chapter 36: Running Project Costs
What the simulation does

This Monte Carlo simulation deals with risks we encounter when we
have project costs that we anticipate to be between a maximum value and a
minimum value for several sub-projects or various products.

Based on 10,500 runs the simulation starts a new sheet and narrows
down our risks with a 95% confidence to be between a certain upper- and
lowerbound. As usual, results may vary since there is randomness involved.
But a Monte Carlo simulation can reduce this risk.

Manually changing maximum and minimum costs in rows 2 and 3
should affect the outcome.

What you need to know

The number of runs (J6) is determined by the values in the cells above
it: ((1.96/(margin/mean)) ̂2) * ((SD/mean) ̂2)

The mean (J1) is: =AVERAGE(G2:G3).

The Standard Deviation (J2) is: =STDEVP(G2:G3,J1).
The Margin (J3) is: =J1/300.
The Z or t value for 95% confidence is approximately 1.96.

What you need to do

Option Explicit

Sub ProjectCosts()
 Dim i As Integer, iRuns As Long
 Dim oWS As Worksheet, oRange As Range, oCell
As Range
 iRuns = Range("J6") 'Formula:
((1.96/(margin/mean)) ^ 2) * ((SD/mean) ^ 2)
 ActiveSheet.Copy , Sheets(Sheets.Count)
 Application.Calculation = xlCalculationManual
 Set oRange = Range(Range("B9"),
Range("B9").Cells(iRuns, 5))
 oRange.Formula = "=RAND()*(B$2-B$3)+B$3"
 Set oRange = Range(Range("G9"),
Range("G9").Cells(iRuns, 1))
 oRange.Formula = "=SUM(B9:F9)"
 Range("B5:G5").FormulaR1C1 =
"=average(R[4]C:R[" & iRuns + 3 & "]C)"
 Range("A5") = "average"
 Range("B6:G6").FormulaR1C1 = "=R[-1]C +
1.96* stdev(R[3]C:R[" & iRuns + 2 & "]C)"
 Range("A6") = "upper bound"
 Range("B7:G7").FormulaR1C1 = "=R[-2]C - 1.96*
stdev(R[2]C:R[" & iRuns + 1 & "]C)"

 Range("A7") = "lower bound"
 Application.Calculation = xlCalculationAutomatic
 Cells.EntireColumn.AutoFit
 MsgBox "Based on " & iRuns & " iterations"
 Range("B5:G7").Formula =
Range("B5:G7").Value
 If MsgBox("Delete the calculations that were
generated?", vbYesNo) = vbYes Then
 Range(Range("B9"), Range("B9").Cells(iRuns,
6)).ClearContents
 End If
End Sub

Chapter 37: Forecasting Profits
What the simulation does

Let’s say we are trying to the figure out the optimal amount of
production needed in order to maximize our profits. If the demand for this
product is regulated by a range of probabilities, then we can determine our
optimal production by simulating demand within that range of probabilities
and calculating profit for each level of demand.

The simulation uses three tables to set up this calculation. The table top
right (E:F) sets up the assumed probabilities of various demand levels. The
table top left (A:B) calculates the profit for one trial production quantity.
Cell B1 contains the trial production quantity. Cell B2 has a random number.
In cell B3, we simulate demand for this product with the function
VLOOKUP.

The third table, on the lower left, is a Data Table which simulates
each possible production quantity (20,000, 30,000, to 70,000) some 1,000
times and calculates profits for each trial number (1 to 1,000) and each
production quantity (10,000, etc.).

Finally, row 13 calculates the mean profit for the six different
production quantities. In this example, the figures show that a production of

40,000 units results in maximum profits.
The VLOOKUP function in B3 matches the value in B1 with the

closest previous match in the first column of table D2:E5; column D has
cumulative totals.

In cell A18 starts a Data Table. A18 has a link to the profit in B11.
Then it uses cell B1 (20,000) for the row input, and an empty cell (say, H12)
for the column input.

What you need to know
The VBA code creates each time a new sheet and plots range

A13:H16 six times (after recalculation) on this new sheet. At the bottom of
the new sheet, it calculates the average for the upper and lower bounds.
These averages are essentially based on 6x1,000 runs. A real Monte Carlo
simulation would need more iterations, of course.

Setting the CutCopyMode fo False is usually wise after a copy
operation—otherwise the copied area remains highlighted.

What you need to do

Sub Profit()
 Dim oData As Worksheet, oWS As Worksheet,
oRange As Range, i As Integer
 Sheet1.Activate
 Set oData = ActiveSheet
 Set oWS = Worksheets.Add(, Sheets(Sheets.Count))
 For i = 1 To 30 Step 5
 oData.Calculate
 Set oRange = oData.Range("A13:J16")
 oRange.Copy
 oWS.Cells(i, 1).PasteSpecial xlPasteValues
 Next i
 Application.CutCopyMode = False
 Range("B31:G31").Formula =
"=AVERAGE(B3,B8,B13,B18,B23,B28)"
 Range("B32:G32").Formula =
"=AVERAGE(B4,B9,B14,B19,B24,B29)"
 oWS.Cells.NumberFormat = "$#,##0.00":
oWS.Columns(1).NumberFormat = "0"
 oWS.Cells.EntireColumn.AutoFit
 oWS.Cells(1, 1).Activate
End Sub

Chapter 38: Uncertainty in Sales
What the simulation does

As said before, Monte Carlo simulations are computerized
mathematical techniques that allow people to account for risks in
quantitative analysis and decision making.

In this case, the decision-maker supplies sales data and probabilities
(the shaded cells in columns A and B).

Based on this information, the macro simulates some 10,000
distributions with a range of possible outcomes (center section) and with the
probabilities they will occur for any choice of action (right section).

At the end, a MsgBox reports for every new trial what the average
sales are for each consecutive loop.The results are pretty close to each
other.

What you need to know
The situation is basically simple. The major functions we need to

achieve such kinds of predictions in this case are RAND, VLOOKUP,
COUNT, and COUNTIF. Again we use 1,000 simulations in the center
section (F:I) to reach more reliable predictions.

What you need to do

Option Explicit

Sub SalesSimulation()
 Dim oRange As Range, oTable As Range, i As
Long, n As Long, sMsg As String
 Set oRange = Range("F4").CurrentRegion
 With oRange
 Set oTable = .Offset(2, 0).Resize(.Rows.Count -
2, .Columns.Count)
 End With
 oTable.ClearContents
 n = InputBox("How many runs (1,000 to
100,000)?", , 10000)
 Set oTable = Range(Cells(3, 6), Cells(n, 9))
'oTable.Offset(0, 0).Resize(n, Columns.Count)
 oTable.Columns(1).Formula =
"=VLOOKUP(RAND(),C3:D5,2)"
 oTable.Columns(2).Formula =
"=VLOOKUP(RAND(),C10:D13,2)"
 oTable.Columns(3).Formula =
"=VLOOKUP(RAND(),C18:D20,2)"
 oTable.Columns(4).Formula = "=F3*G3*H3"
 Do
 Application.Calculate

 i = i + 1
 sMsg = sMsg & "Loop" & i & " (" & n & "
times): average="
 sMsg = sMsg & FormatCurrency(Range("Q2"),
0) & vbCr
 MsgBox sMsg
 Loop Until MsgBox("Run again?", vbYesNo) =
vbNo
End Sub

Chapter 39: Exchange Rate
Fluctuations

What the simulation does

The profit of a certain company depends on a fluctuating exchange rate
between the American and Australian dollar—or any other foreign currency.
The average profit we predict in cell B14 is based on a fixed exchange rate
(B5). But in reality this rate has normally distributed fluctuations with a
Standard Deviation shown in cell B6. So we need to simulate such
variations.

This simulation is done by using a Data Table combined with repeated
calculations in arrays operating in the background. First the user is asked
how many rows the Data Table should have—by default 1,000. The Data
Table shows what the profits would be for different exchange rates.

The MsgBox displays what the average profit would be, plus the 25-
percentile and 75-percentile profit values. Then the user has a chance to run
the Data Table repeatedly. The results of each run are added to the MsgBox.
When the user decides to stop any further runs, the average and two
percentile values are calculated from all these runs. So the end result in the
above picture is based on 10 x 1,000 normally distributed calculations.

What you need to know

An essential part of this simulation
is the first column of the Data Table (column D). It holds this formula:
=NORMINV(RAND(),0.92,0.02)—or whatever the fixed numeric values
should be. In the macro we change these random settings from formulas to
values, so those numbers don’t keep changing while the Data Table makes
its calculations.

The column input cell of the Data Table is the exchange rate value in
cell B5.

You also should know that we need variables of the Double type for
mathematical calculations, but if we want to format them as currency, we
need variables of the String type as well.

The three arrays we use must be “redimensioned” for a new element
each time we run the loop. This is done with a ReDim statement, but make
sure you include also the Preserve keyword, otherwise the array loses its
previous contents.

What you need to do

Option Explicit

Sub ExchangeRates()
 Dim oRange As Range, iRuns As Long, i As Long,
sMsg As String
 Dim arrAvg() As Double, arr25() As Double,
arr75() As Double
 Dim pAvg As Double, p25 As Double, p75 As
Double 'for the currencies
 Dim sAvg As String, s25 As String, s75 As String
'for the formatted currencies
 Range("D1").CurrentRegion.Offset(1,
0).ClearContents
 iRuns = InputBox("How many runs?", , 1000)
 Range("E2").Formula = "=B5"
 Range("F2").Formula = "=B14"
 Set oRange = Range(Range("D2"),
Range("F2").Cells(iRuns, 1))
 oRange.Table , Range("B5")
 sMsg = "Runs" & vbTab & "25%" & vbTab &
vbTab & "Average" & vbTab & vbTab & "75%" &
vbCr
 Do
 oRange.Columns(1).Formula =

"=NORMINV(RAND(),B5,B6)"
 oRange.Columns(1).Formula =
oRange.Columns(1).Value
 ReDim Preserve arrAvg(i): ReDim Preserve
arr25(i): ReDim Preserve arr75(i)
 arrAvg(i) =
WorksheetFunction.Average(oRange.Columns(3))
 arr25(i) =
WorksheetFunction.Percentile(oRange.Columns(3),
0.25)
 arr75(i) =
WorksheetFunction.Percentile(oRange.Columns(3),
0.75)
 sAvg = FormatCurrency(arrAvg(i), 0)
 s25 = FormatCurrency(arr25(i), 0)
 s75 = FormatCurrency(arr75(i), 0)
 sMsg = sMsg & i + 1 & vbTab & s25 & vbTab &
sAvg & vbTab & s75 & vbCr
 i = i + 1
 Loop Until MsgBox(sMsg & "Run again?",
vbYesNo) = vbNo
 pAvg = WorksheetFunction.Average(arrAvg): sAvg
= FormatCurrency(pAvg, 0)
 p25 = WorksheetFunction.Percentile(arr25, 0.25):
s25 = FormatCurrency(p25, 0)
 p75 = WorksheetFunction.Percentile(arr75, 0.75):
s75 = FormatCurrency(p75, 0)

 sMsg = sMsg & vbCr & "mean:" & vbTab & s25 &
vbTab & sAvg & vbTab & s75
 MsgBox sMsg
End Sub

IV. GENETICS

Chapter 40: Shuffling Chromosomes
What the simulation does

This simulation shows what the probability is that an individual still
has chromosomes derived from one particular grandparent. Since we have
23 pairs of chromosomes, on average we have 11 or 12 chromosomes that
were handed down to us from one particular grandparent, two generations
ago—actually a 16% chance (row 13 and 14). But the outcome can vary
between 0 chromosomes or the entire set of 23 chromosomes—but these
extremes are very unlikely. Genetics, the science of inheritance of traits and
characteristics, is modeled probabilistically.

As an aside, the situation is much more complicated. One problem is
that chromosomes do not remain identical during the formation of
reproductive cells, but they can exchange parts between the two of a pair—
which is called crossing-over or recombination. In this simulation, we stay
clear of that issue.

What you need to know
We will also use the new function BINOM.INV in this simulation.

There is no pre-2010 version of this function, so if you use a file with this
function in 2007, you will get an error message. In Excel 2007, an
alternative would be CRITBINOM.

Cells B2:B25 hold this formula: =BINOMDIST(A2,23,0.5,0)/100.
BINOMDIST needs to know the number of “successes” (running from 0 to
23 in column A), out of 23 trials (23 chromosomes), with a 50% probability
of “success” in each trial, and with a non-cumulative setting in our case.
Make sure to divide by 100.

What you need to do

Option Explicit

Sub Chromosomes()
 Dim pArr() As Double, i As Long, n As Long, sMsg
As String
 Dim pAvg As Double, pMin As Double, pMax As
Double, pCount As Long
 sMsg = sMsg & "run" & vbTab & "min" & vbTab
& "avg" & vbTab & "max" & vbCr
 Do
 For i = 0 To 100000
 ReDim Preserve pArr(i)
 pArr(i) = WorksheetFunction.Binom_Inv(23,
0.5, Rnd)
 Next i
 n = n + 1
 pAvg =
FormatNumber(WorksheetFunction.Average(pArr),
2)
 pMin = WorksheetFunction.Min(pArr)
 pMax = WorksheetFunction.Max(pArr)
 pCount = UBound(pArr)
 sMsg = sMsg & n & vbTab & pMin & vbTab &
pAvg & vbTab & pMax & vbCr

 Loop Until MsgBox(sMsg, vbOKCancel) =
vbCancel
End Sub

Chapter 41: Sex Determination
What the simulation does

This sheet simulates what happens when a father (XY) and a mother
(XX) have one descendant, who has in turn another descendant, and so forth.
It is something like a family tree.

If the descendant is a female (XX), that cell gets marked with a color.
If the descendant still has the original Y-chromosome (Y*) from the (great-
great-grand-) father, that chromosome is marked with an asterix (*). In the
figure above, there happen to be seven female descendants, and the ancestral
Y-chromosome got already “lost” by mere chance in the first generation.

The macro asks the user first how many generations they want to
simulate (the maximum is set to 10). The macro keeps asking that question
by calling itself again, and it does so until the user hits the Cancel button of
the Inputbox. It is possible, by mere change, that the paternal X-chromosome
persists for six generations (see picture below)—or even longer.

What you need to know
One of the 23 pairs of chromosomes is called the sex-chromosome

pai r. It either holds two similar chromosomes (XX) or two unalike
chromosomes (XY; Y is actually a very short chromosome). The presence of
the Y-chromosome determines maleness.

The father (XY) produces sperm cells with either an X-chromosome
(50% chance) or a Y-chromosome (50% chance). If the egg cell—which has
always one X-chromosome—is fertilized by a sperm cell with a Y-
chromosome, the descendant will be a male. So there is a 50% chance for
either a male or a female descendant (in reality, there is a slight difference in
chance, though).

What you need to do

Option Explicit

Sub Sex()
 Dim r As Integer, c As Integer, sGens As String,
oCell As Range
 sGens = InputBox("How many generations
(<=10)?", , 10, 10000, 2000)
 If sGens = "" Then Exit Sub
 If CInt(sGens) > 10 Then MsgBox "Not more than
10": Exit Sub
 For Each oCell In Range("D3:O22")
 If oCell = "XX" Or oCell = "XY" Or oCell =
"XY*" Then
 oCell.ClearContents:
oCell.Interior.ColorIndex = 0
 End If
 Next oCell
 c = 3
 For r = 3 To (2 * CInt(sGens) + 1) Step 2
 c = c + 1
 Cells(r, c) = IIf(Rnd > 0.5, "XX", IIf(Cells(r - 2,
c - 1) = "XY*", "XY*", "XY"))
 Cells(r, c + 2) = IIf(Cells(r, c) = "XX", "XY",
"XX")

 If Cells(r, c) = "XX" Then
 Cells(r, c).Interior.Color = vbYellow
 Else
 Cells(r, c).Interior.ColorIndex = 0
 End If
 Next r
 Call Sex 'the Sub calls itself again
End Sub

Chapter 42: Mendelian Laws
What the simulation does

Certain diseases, such as a particular form of dwarfism, are based on
a dominant allele (say, A). Anyone who carries such an allele (Aa) is called
a heterozygote and has the disease.

Other diseases, such as cystic fibrosis, are based on a recessive allele
(say, a). Only people with two of those alleles (aa) show the disease and is
called a homozygote. So someone can be a carrier (Aa) of the disease
without showing its symptoms.

Then there are also diseases, such as a known form of hemophilia, that
are called sex-linked because they are based on a recessive allele (say, h)
located on the X-chromosome; such alleles come always to expression in
males (XY)—because there is no second chromosome to counteract it—but
in females (XX) only when both X-chromosomes have that recessive allele.

The simulation applies Mendelian laws each time for 10,000 cases.
Because of such a large sample, the results come very close to what we
would expect. Besides, the user can repeat these 10,000 runs again and
again. There will be differences, but they fluctuate within a very narrow
margin (see below). All of this is based on simple Mendelian rules.

What you need to know

This sheet simulates the chances for
passing on such an allele to the next generation. When the allele does come
to expression, it is marked with conditional formatting. Because conditional
formatting cannot distinguish between lowercase and uppercase characters
—it’s not case sensitive—we need to mark the capital with an apostrophe,
or something like it.

The first case: Parents with Aa and aa have 50% Aa children and 50%
aa children. The chance that a dominant allele (A) from such parents comes
to expression in the next generation is 50%.

The second case: The offspring of parents who are both Aa is AA
(25%), Aa (50%), and aa (25%). The chance that a recessive allele (a)
comes to expression in the next generation is 25% (aa).

The third case: The offspring of a mother with Hh and a father with H-
would be HH (25%), Hh (25%), H- (25%), and h- (25%). The chance that a
recessive, X-linked allele (h) comes to expression in the next generation is
therefore 25% (h-).

What you need to do

Option Explicit

Sub Mendel()
 Dim arrDom() As Variant, arrRec() As Variant,
arrX() As Variant '3 arrays
 Dim iDom As Long, iRec As Long, iX As Long, i
As Long, n As Long, sMsg As String
 sMsg = "run" & vbTab & "Aa dom." & vbTab &
"aa rec." & vbTab & "X rec." & vbCr
Again:
 n = n + 1
 sMsg = sMsg & n & vbTab
 For i = 0 To 10000
 ReDim Preserve arrDom(i)
 arrDom(i) = IIf(Rnd < 0.5, "'Aa", "aa")
 If arrDom(i) = "'Aa" Then iDom = iDom + 1
 Next i
 sMsg = sMsg & FormatPercent(iDom / 10000, 2) &
vbTab
 For i = 0 To 10000
 ReDim Preserve arrRec(i)
 arrRec(i) = IIf(Rnd < 0.5, "'AA", IIf(Rnd < 0.5,
"Aa", "'aa"))
 If arrRec(i) = "'aa" Then iRec = iRec + 1

 Next i
 sMsg = sMsg & FormatPercent(iRec / 10000, 2) &
vbTab
 For i = 0 To 10000
 ReDim Preserve arrX(i)
 arrX(i) = IIf(Rnd < 0.25, "HH", IIf(Rnd < 0.33,
"H'h", IIf(Rnd < 0.5, "H-", "'h-")))
 If arrX(i) = "'h-" Then iX = iX + 1
 Next i
 sMsg = sMsg & FormatPercent(iX / 10000, 2) &
vbCr

 If MsgBox(sMsg, vbOKCancel, "Each run
10000x") = vbOK Then
 iDom = 0: iRec = 0: iX = 0
 GoTo Again
 End If
End Sub

Chapter 43: The Hardy-Weinberg
Law

What the simulation does

A gene can carry various alleles. Let us assume there are only two
alleles, A and a. People who have two of the same alleles are homozygotes
(AA or aa). Those who carry both alleles are heterozygotes (Aa). Let us take
the example of an allele for albinism (a), which is recessive, so albinos
must be aa, whereas individuals with the genotypes AA and Aa are not
albinos. If we know the percentage (q2) of albinos (aa), we can calculate the
frequency q of allele a, as well as the frequency p of allele A—provided
there are no other alleles—since p=1-q.

As a consequence, the frequency would be p2 for the homozygotes AA
(cell D4), q2 for the homozygotes aa (cell D2), and 2pq for the heterozygotes
(in cell D3: pq for Aa and qp for aA). So if we know that aa has a frequency
of 10%, we can deduce what the frequencies are for Aa and AA (see the
comments in those cells shown in the figure above).

What you need to know

The Hardy-Weinberg law states that if
these genotypes would randomly mate, the frequencies would stay the same
in the next generations. We are going to simulate this with a macro. We
know, based on Mendelian laws, what the offspring would be of certain
pairs of parents (see H1:L10). The macro is going to randomly make these
combinations and randomly determine what their offspring would be. The
result, based on 10,000 runs, is displayed in a MsgBox. Notice how the
frequencies in the next generation are extremely close to the frequencies of
the parent generation—which is exactly what the Hardy-Weinberg law
states.

The VLOOKUP function plays an important role in this simulation. It
finds randomly the genotype of each parent and then finds randomly (with a
random number between 2 and 5) the child’s genotype in one of the 2nd to 5th

columns of range H:L.
If we change the frequency of aa to 40%, the next generation will

more or less keep that frequency because of random mating. Obviously, the
total of the frequencies should be 100%

What you need to do

Option Explicit

Sub HardyWeinberg()
 Dim arrMales() As String, arrFemales() As String,
arrChildren() As String
 Dim iHomDom As Long, iHetero As Long,
iHomRec As Long
 Dim i As Long, pRec As Double, iRnd As Integer,
sMsg As String, iCount As Long
 pRec = InputBox("Frequency of aa", , 0.1)
 Range("D2") = pRec
 ReDim arrMales(0 To 10000)
 ReDim arrFemales(0 To 10000)
 ReDim arrChildren(0 To 10000)
 For i = 0 To 10000
 arrMales(i) =
WorksheetFunction.VLookup(Rnd, Range("B2:C4"),
2, 1)
 arrFemales(i) =
WorksheetFunction.VLookup(Rnd, Range("B2:C4"),
2, 1)
 iRnd = WorksheetFunction.RandBetween(2, 5)
 arrChildren(i) =
WorksheetFunction.VLookup(arrMales(i) &

arrFemales(i), Range("H2:L10"), iRnd, False)
 If arrChildren(i) = "A'A'" Then iHomDom =
iHomDom + 1
 If arrChildren(i) = "A'a" Then iHetero = iHetero
+ 1
 If arrChildren(i) = "aa" Then iHomRec =
iHomRec + 1
 Next i
 iCount = UBound(arrChildren)
 sMsg = "After " & iCount & " generations:" &
vbCr
 sMsg = sMsg & "aa: " & FormatPercent(iHomRec
/ iCount, 1) & vbCr
 sMsg = sMsg & "A'a: " & FormatPercent(iHetero /
iCount, 1) & vbCr
 sMsg = sMsg & "A'A': " &
FormatPercent(iHomDom / iCount, 1)
 MsgBox sMsg
End Sub

Chapter 44: Genetic Drift
What the simulation does

The Hardy-Weinberg law (see Chapter 44) states that allele
frequencies remain the same over the next generations. Even in case of a
recessive allele, it will not entirely disappear. However, by random chance,
the percentage of alleles may, and usually does, change in the next
generations. This is called “genetic drift.” The effect increases when the
population size decreases—the so-called “founder effect.”

The macro simulates the effect of genetic drift during 50 generations
assuming that the frequencies randomly fluctuate by a certain percentage.
The macro asks the users which “drift factor” they want to apply (by default
2% for each generation). During this ongoing process, recessive
homozygotes (aa) may eventually, by mere chance, disappear from stage, to
the advantage of the dominant homozygotes (AA). This happened in the
picture above.

The macro does part of its work by temporarily using the range
D8:D108, which it deletes later. It is through this range that curves can be
plotted in a chart. Because a chart cannot display anything after its source
data are deleted, we change the chart into a picture before the macro deletes
its source data.

What you need to know
If the frequency of allele A is 0.6 (=p), then the frequency of allele a

must be 1-0.6 = 0.4 (=q)—assuming there are only two alleles for this gen.
So the frequency of genotype AA would be p2 and the frequency of genotype
aa would be q2. The frequency of Aa and aA would then be 2pq.

The VBA code also uses some form of so-called Error Handling (see
Appendix). The simplest version of Error Handling is the following VBA
line: On Error Resume Next. When some error occurs, this line skips over
the line that caused the error, and executes the next line in the VBA code.
That can easily be troubling, though. That’s why it is better to use a more
robust kind of Error Handling: On Error GoTo [label]. The label is
something you chose (in our case: ErrTrap). Place that label at the end after
Exit Sub but before End Sub. Usually after the label, we place a line that is
based on the Err object, which deals with the latest error. One option is:
MsgBox Err.Description, which tells the user what the actual error was. It
is always wise to have some kind of Error Handling in every macro you
create. (I skipped this part for most macros in this book.)

What you need to do

Option Explicit

Sub Drifting()
 Dim pDrift As Double, i As Long, oRange As
Range, oChart As Chart, oShape As Shape
 On Error GoTo ErrTrap
 pDrift = InputBox("Drift factor", , 0.02)
 Set oRange = Range("A8:A108")
 oRange.Formula = "=ROW(A1)-1"
 Range("B7") = "AA"
 Range("B8").Formula = "=C3"
 Range("C7") = "Aa"
 Range("C8").Formula = "=C4+D3"
 Range("D7") = "aa"
 Range("D8").Formula = "=D4"
 Set oRange = Range("B9:B108")
 oRange.Formula = "=NORMINV(RAND(),B8," &
pDrift & ")"
 Set oRange = Range("C9", "C108")
 oRange.Formula = "=IFERROR(2*SQRT(B9)*(1-
SQRT(B9)),NA())"
 Set oRange = Range("D9:D108")
 oRange.Formula = "=IFERROR((1-
SQRT(B9))^2,NA())"

 Set oRange = Range("B7").CurrentRegion
 Set oChart = Charts.Add
 oChart.SetSourceData oRange
 oChart.ChartType = xlXYScatterLinesNoMarkers
 Sheets(1).Select
 ActiveChart.ChartArea.Copy
 Sheets(2).Select
 ActiveSheet.PasteSpecial Format:="Picture
(JPEG)"
 Selection.ShapeRange.ScaleWidth 0.8, msoFalse
 Selection.ShapeRange.ScaleHeight 0.8, msoFalse
 Selection.ShapeRange.IncrementLeft 100
 Selection.ShapeRange.IncrementTop 100
 Application.DisplayAlerts = False
 Sheets(1).Delete
 oRange.Clear
 Application.DisplayAlerts = True
 Exit Sub
ErrTrap:
 Err.Clear
End Sub

Chapter 45: Two Selective Forces
What the simulation does

It is rather common that both alleles have a selection factor working
against them; let’s designate those two factors with the symbols s and t. The
most well-known case is sickle-cell anemia. Because there is strong
selection pressure (s) against the homozygote (aa), who suffers from anemia,
we would expect allele a to disappear from the population. However, in
malaria areas it has a rather stable frequency (q). The explanation is that
there is also a selection pressure (t) against the other homozygote (AA), who
is more vulnerable to malaria than the other individuals, especially the
heterozygotes (Aa).

Our simulation loops through six different settings for the selective
factors s and t, shown in range A4:F27. The first two settings come close to
the situation for sickle-cell anemia; the first one is shown in the figure
above, where we see the frequencies of the heterozygotes increase at the
cost of both types of homozygotes.

What you need to know

The columns J:N calculate frequencies for 33 generations (from row 2
to row 35). See the formulas here above. The columns D:F derive their
information from the calculations in these columns (J:N).

What you need to do

Option Explicit

Sub Selecting()
 Dim i As Integer, n As Integer, oRange As Range, j
As Integer
 Set oRange = Range("D4:F27")
 For i = 1 To 24
 If i Mod 4 <> 1 Then oRange.Range(Cells(i, 1),
Cells(i, 4)).ClearContents
 Next i
 MsgBox "This starts looping through 6 settings for
t and s."
 For i = 4 To 24 Step 4
 Range("E1") = Cells(i, 2)
 Range("E2") = Cells(i, 3)
 For n = 1 To 3
 Set oRange = Range(Cells(i + n, 4), Cells(i +
n, 6))
 oRange.FormulaArray = "=INDEX(L2:N34,"
& Cells(i + n, 1) & ",0)"
 oRange.NumberFormat = "0.00%"
 oRange.Formula = oRange.Value
 Next n
 If MsgBox("Factor t is " & Range("E1") & "

factor s is " & _
 Range("E2"), vbOKCancel) = vbCancel
Then Exit Sub
 Next i
End Sub

Chapter 46: Differential Fitness
What the simulation does

This simulation is similar to the previous one. Again, we assign
relative fitness factors—for instance, genotype AS (fitness factor 1 in cell
M4) is more “fit” than genotype SS (fitness factor 0.4 in cell). So gradually,
up to a certain point, the frequency of AS will increase, while the frequency
of genotype SS (sickle cell anemia, for instance) will decrease in future
generations.

All the gray cells on the sheet have formulas in it. We assume that each
combination of parents has up to 4 children each generation (columns F:I).
Most formulas are identical to the ones used in Chapter 45. The main
difference is that the range P2:S10 is based on the different fitness factors
for each genotype. The offspring is not only determined by Mendel’s laws
but also by the fitness of that specific genotype. That’s why certain cells
remain empty in P2:S10.

This will obviously affect frequencies in the next generation. The
simulation calculates the average frequencies of the three genotypes based
on 10,000 couples with each couple having up to 4 children. The simulation
calculates the results for the next generation and compares them with the
original frequencies in the 1st generation of the parents. It is to be expected
that there is a change of frequencies—but again, not always, for there is still
randomness involved. Sometimes, the effect is quite dramatic (see the
picture below).

What you need to know
Only the gray cells on the sheet have formulas in it; the rest is manual

input. To mark the cells with formulas in them, conditional formatting can be
a helpful tool. Select all the cells and then use conditional formatting with
the following formula: =ISFORMULA(A1). The function ISFORMULA
came available in more recent versions of Excel.

What you need to do

Option Explicit

Sub Fitness()
 Dim arrParents() As String, arrChild() As String, i
As Long, sMsg As String
 Dim pFreqAA As Double, pFreqAS As Double,
pFreqSS As Double
 Dim pAA As Double, pAS As Double, pSS As
Double, iCount As Long, iBlank As Long
 pFreqSS = Range("D2")
 pFreqAA = Range("D3")
 pFreqAS = Range("D4")
 sMsg = "Frequencies for" & vbTab & "SS" &
vbTab & "AA" & vbTab & "AS" & vbCr
 sMsg = sMsg & "1st generation: " & vbTab &
FormatPercent(pFreqSS, 0) & vbTab &
FormatPercent(pFreqAA, 0) & vbTab &
FormatPercent(pFreqAS, 0) & vbCr
 Range("P2:S10") = ""
 Range("P2:S10").Formula = "=IF(RAND()
<VLOOKUP(G2,L2:M4,2,0),G2,"""")"
 For i = 0 To 10000
 ReDim Preserve arrParents(i)
 ReDim Preserve arrChild(i)

 arrParents(i) =
WorksheetFunction.VLookup(Rnd, Range("B2:C4"),
2, 1) & WorksheetFunction.VLookup(Rnd,
Range("B2:C4"), 2, 1)
 arrChild(i) =
IIf(WorksheetFunction.RandBetween(0, 6) > 1,
WorksheetFunction.VLookup(arrParents(i),
Range("O2:S10"),
WorksheetFunction.RandBetween(2, 5), False), "")
 If arrChild(i) = "AA" Then pAA = pAA + 1
 If arrChild(i) = "AS" Then pAS = pAS + 1
 If arrChild(i) = "SS" Then pSS = pSS + 1
 If arrChild(i) = "" Then iBlank = iBlank + 1
 Next i
 iCount = UBound(arrChild) - iBlank
 sMsg = sMsg & "2nd generation: " & vbTab &
FormatPercent(pSS / iCount, 0) & vbTab &
FormatPercent(pAA / iCount, 0) & vbTab &
FormatPercent(pAS / iCount, 0) & vbCr
 'For more generations, Range("D2") needs to be
reset to (pSS/iCount)
 MsgBox sMsg
End Sub

Chapter 47: Molecular Clock
What the simulation does

Genes may undergo changes, called mutations. Mutations to non-
essential portions of the DNA are useful for measuring time—the so-called
molecular clock. It is assumed that such mutations occur with a uniform
probability per unit of time in a particular portion of DNA, because they are
not exposed to selection. If P is the percentage of no-mutations in a year,
then PN is the probability of no-mutations over N years.

On average, given two individuals who had a common ancestor many
generations ago, you would expect—assuming that mutations are so rare that
it is very unlikely that a mutation in the same segment has occurred in two
individuals—that the percentage of segments that are mutated in one or the
other is, on average, 2(1 – PN). This is an estimate of the percentage of
segments to be found different when comparing two individuals with a
common ancestor N years ago.

This macro provides a simplified version of the technique that has
been used to locate the first common ancestors of all human beings in
evolution—the first female and the first male, so to speak. Non-essential
DNA sections can be tested for single-nucleotide-polymorphisms (SNPs,

pronounced “snips”), which are single base pair changes in DNA that occur
throughout the genome, including its “silent” DNA sections.

What you need to know

Place in cell C6: =2*(1-C4^C5). This is the
mutation percentage after a certain numbers of years this case 50,000 years
as shown in cell C4).

Notice the following: If two individuals have a 10% difference, their
most recent common ancestor lived 100,000 years ago if the mutation rate
for those DNA segments is 0.9999995, but 250,000 years ago based on a
rate of 0.9999998, or even 50,000 years ago based on a rate of 0.9999999.
So small differences in mutation rate can have an enormous impact.
Apparently, the accuracy of the molecular clock depends heavily on the
accuracy of the mutation rate.

What you need to do

Option Explicit

Sub Ancestry()
 Dim pTarget As Double, sTarget As String, pPerc
As Double, iStepYrs As Long
 Dim iUnchanged As Long, iYrs As Double, iRate
As Double, sMsg As String
 sTarget = InputBox("Percentage of DNA
difference?", , "10%")
 If Right(sTarget, 1) <> "%" Then sTarget = sTarget
& "%"
 pTarget = Left(sTarget, Len(sTarget) - 1) / 100
 Range("F5") = sTarget 'OR:
FormatPercent(pTarget, 2)
 iStepYrs = Range("C5")
 iUnchanged = Range("C4") * 10000000
 sMsg = "For " & sTarget & " we found:" & vbCr
 For iYrs = iStepYrs To (iStepYrs + 10 * iStepYrs)
Step iStepYrs
 For iRate = (iUnchanged - 8) To iUnchanged
 pPerc = 2 * (1 - (iRate / 10000000) ^ iYrs)
 If pPerc < (pTarget + 0.005) And pPerc >
(pTarget - 0.005) Then
 sMsg = sMsg & "Years ago: " & iYrs &

vbTab & "at rate: " & iRate / 10000000 & vbCr
 End If
 Next iRate
 Next iYrs
 If Len(sMsg) < 25 Then sMsg = sMsg & "No
results"
 MsgBox sMsg
End Sub

Chapter 48: DNA Sequencing
What the simulation does

This is a very simple simulation of
what was done in the Human Genome Project. Today, “dideoxy sequencing”
is the method of choice to sequence very long strands of DNA. DNA is
composed of 4 different nucleotides—A, C, G, and T. The composition of a
DNA string is randomly generated in column A. It is clear that this
composition is not known yet until we use a technique in the middle section
that we are going to describe soon. The end result is shown in the columns
AQ and AR by using formulas on the sheet, but the macro also does this
work in the background and then displays the outcome in a MsgBox.

What you need to know
To determine the unknown sequence of nucleotides in a DNA section

of interest, the double-stranded DNA is separated into single strands

(denaturation). In the next step, a new DNA strand is made, complementary
to the template strand, by using the bacterial enzyme DNA polymerase.
During this step, A-nucleotides will be “paired” with T-nucleotides, and C-
nucleotides with G-nucleotides—they are called complementary.

Then follows a key step. In addition to the four regular single
nucleotides, the reaction mixture also contains small amounts of four
dideoxy-nucleotides which lack a group necessary for chain extension. Once
in a while—by low chance, because of its much lower concentration—a
dideoxy-nucleotide will be incorporated into the growing DNA strand
instead of the regular nucleotide. This will prevent the DNA chain from
growing further. Since each of these four special nucleotides is labeled with
a different fluorescent dye, a certain type of laser can later detect them. We
marked them with an asterix (*) in our simulation.

So DNA chains end up being very short, very long, and of every
possible length in between. The newly synthesized DNA strands are then
passed through a laser beam that excites the fluorescent dye attached to the
dideoxy-nucleotide at the end of each strand. This color is then detected by a
photocell, which feeds the information to a computer. Finally, the computer
does the rest of the work by piecing the short sequences together like a
puzzle.

What you need to do

Option Explicit

Sub Sequencing()
 Dim pNoLabel As Double, i As Integer, j As
Integer, sMsg As String
 Dim arrDNA() As String, arrStrand() As String,
sNucl As String, bFound As Boolean
 pNoLabel = InputBox("Choose % unlabeled
between 0.85 and 0.95", , 0.9)
 If pNoLabel > 0.95 Then Exit Sub
 Range("B1") = pNoLabel
 sMsg = "With " & FormatPercent(1 - pNoLabel, 0)
& " labeled nucleotides:" & vbCr
 ReDim arrDNA(0 To 10)
 For i = 0 To 10
 arrDNA(i) =
WorksheetFunction.VLookup(WorksheetFunction.RandBetween(1,
4), Range("A2:B5"), 2, 0)
 sMsg = sMsg & arrDNA(i) & vbTab
 ReDim arrStrand(0 To 39)
 For j = 0 To 39
 arrStrand(j) = IIf(Rnd > Range("B1"),
Left(WorksheetFunction.VLookup(arrDNA(i),
Range("B2:C5"), 2, 0), 1), " ")

 If arrStrand(j) <> " " Then sNucl =
arrStrand(j): bFound = True
 Next j
 sMsg = sMsg & Join(arrStrand) & vbTab
 sMsg = sMsg & IIf(bFound, sNucl, "-") & "->"
& arrDNA(i) & vbCr
 sNucl = "": bFound = False
 Next i
 MsgBox sMsg
End Sub

V. SCIENCE

Chapter 49: Matrix Elimination
What the simulation does

If you need to solve equations, it can be helpful to use matrixes. This
file has a few examples of such equations. Let’s focus on the last one: four
equations with four unknown X-values. The equation uses four different
coefficients for a, as shown in matrix [A] (C14:F17). These four equations
should equate to the Y-values shown in matrix [Y] (H14:H17).

You need to determine what the four X-values must be to solve the
equations. Here's what you do. 1. Invert matrix [A] by using the multi-cell
array function MINVERSE. 2. Multiply the matrix Inv[A] with the matrix [Y]
by using the array function MMULT. 3. You could have combined both steps
by using a nested function instead: =MMULT(MINVERSE([A]),[Y]). 4. This
creates vertical array results, so to plot them horizontally you need also the
TRANSPOSE function.

So we end up with: =TRANSPOSE(MMULT(MINVERSE([A]),[Y]))).
Thanks to this technique of matrix elimination, you can solve the equations
and find the four X-values for a1 through a4 in the cells C18:F18. These four
X-values make the four equations, based on the a values specified in the first
matrix, equate to the Y-values specified in the second matrix. To test the
outcome in a cell like J14, use this formula:

=C14*C18+D14*D18+E14*E18+F14*F18.

What you need to know
The VBA code applies all these formulas in the background, without

using formulas on the sheet, but be aware that they are array functions, so we
need the VBA property FormulaArray.

In addition we used a different type of InputBox:
Application.InputBox. This kind of InputBox lets the user select manually
and directly a certain range of cells by using the mouse. If you want the
InputBox to return a range—instead of a range address or so—you must set
its last argument to the number 8. You can also include a default range
address for what the user had selected already.

What you need to do

Option Explicit

Sub MatrixElimination()
 Dim oMatrixA As Range, oMatrixY As Range,
oResults As Range, sMsg As String, i As Integer
 On Error GoTo ErrTrap 'Set
Tools|Options|General: Break on unhandled errors
 Set oMatrixA = Application.InputBox("Select
range of A-coefficients", ,
Range("C14:F17").Address, , , , , 8)
 Set oMatrixY = Application.InputBox("Select
corresponding range of Y's", ,
Range("H14:H17").Address, , , , , 8)
 Set oResults =
oMatrixA.Rows(oMatrixA.Rows.Count + 1)
 oResults.FormulaArray =
"=TRANSPOSE(MMULT(MINVERSE(" &
oMatrixA.Address & ")," & _
 oMatrixY.Address &
"))"
 sMsg = "Results for X-values:" & vbCr
 For i = 1 To oResults.Cells.Count
 sMsg = sMsg & "X" & i & ":" & vbTab &
oResults.Cells(1, i) & vbCr

 Next i
 MsgBox sMsg
 Exit Sub
ErrTrap:
 MsgBox "There was an error: " & Err.Description
 Err.Number = 0
End Sub

Chapter 50: Integration with
Simulation

What the simulation does

Instead of performing integration the mathematical way, you can also
use a simulation. With a large number of runs, you can get very close to the
analytic result found based on an integral. To do so, consider a circle
inscribed within a square with sides of s units. The radius of the circle
equates to s/2. Now, ten-thousand darts (F2) are randomly thrown at the
diagram and then we count the number of darts that fall inside the circle
(F3).

Although this is basically an integration problem that has an analytical
solution, we can also simulate it with a Monte Carlo technique that gives us
an approximation of the analytical integral. The advantage of using this
example is that we can compare the simulation result (F4) with the
analytical result (F5), telling us how close we came to the “real” solution.

What you need to know
I won’t explain this part, but the integral would be (-x3 + 10x2 +

5x)dx. This formula is used in cell F5. The graph plots the analytic solution
based on columns I and J. The curve is within a 10 by 200 rectangle.

The VBA code creates an array of X’s with a random number between
0 and 10, plus an array of Y’s with a random number between 0 and 200 (so
the curve is within a 10 by 200 rectangle). Then it checks in a 3rd array
whether the “dart” is inside or outside the circle by using the integral
formula: IIf(pY(i) > -pX(i) ^ 3 + 10 * pX(i) ^ 2 + 5 * pX(i), 0, 1). So 1 is
“in,” 0 is “out.”

The simulation does all of this 10,000 times—or whatever the user
decides. After each trial, the macro shows the previous results and the new
result in a MsgBox.

What you need to do

Option Explicit

Sub Integration()
 Dim i As Long, n As Long, pX() As Double, pY()
As Double, pInOut() As Integer
 Dim iCount As Long, iSimulArea As Long, sMsg
As String, iLoops As Integer
 n = InputBox("How many runs?", , 10000)
 Do
 For i = 0 To n - 1
 ReDim Preserve pX(i)
 pX(i) = Rnd * 10 '=RAND()*10
 ReDim Preserve pY(i)
 pY(i) = Rnd * 200
 ReDim Preserve pInOut(i)
 pInOut(i) = IIf(pY(i) > -pX(i) ^ 3 + 10 * pX(i)
^ 2 + 5 * pX(i), 0, 1)
 Next i
 Range("F2") = n
 iCount = WorksheetFunction.Sum(pInOut)
 Range("F3") = iCount
 iSimulArea = 2000 * iCount / n
 Range("F4") = iSimulArea
 MsgBox "Throws: " & n & vbCr & "in circle: "

& iCount & vbCr & "simul.area: " & iSimulArea
 iLoops = iLoops + 1
 sMsg = sMsg & "Loop " & iLoops & " area: " &
vbTab & iSimulArea & vbCr
 Loop Until MsgBox(sMsg & vbCr & "Keep
looping?", vbYesNo) = vbNo
End Sub

Chapter 51: Two Monte Carlo
Integrations

What the simulation does

This time, we discuss only two equations as an example: Y=X (on the
1st sheet) and Y=X^2 (on the 2nd sheet), and we do so without using any
integration formula.

What you need to know

VBA generates two arrays of random X-values and random Y-values.
They are plotted in the left graph.Then another set of two arrays, according
to the formulas shown in VBA. Those two are plotted in the right graph. In a
5th array, we assign 1 ’s when the two previous columns have X- and Y-
values in it, so we can calculate the area under the curve. All of this is done
100,000 times.

What you need to do

Sub Integration()
 Dim pXmin As Double, pXmax As Double, pYmin
As Double, pYmax As Double
 Dim oWS As Worksheet, pX() As Double, pY() As
Double, i As Long, iCount As Long
 Dim pXif() As Double, pYif() As Double, pInOut()
As Double, pSum As Double
 If MsgBox("Do you want to be on Sheet1?",
vbYesNo) = vbYes Then
 Sheet1.Select
 Else
 Sheet2.Select
 End If
 iCount = InputBox("How many runs?", , 100000)
 Set oWS = ActiveSheet
 pXmin = Range("B4"): pXmax = Range("C4")
 pYmin = Range("B5"): pYmax = Range("C5")
 For i = 0 To (iCount - 1)
 ReDim Preserve pX(i)
 pX(i) = pXmin + (pXmax - pXmin) * Rnd
 ReDim Preserve pY(i)
 pY(i) = pYmin + (pYmax - pYmin) * Rnd
 ReDim Preserve pXif(i)
 If oWS.Name = Sheet1.Name Then

 pXif(i) = IIf(pY(i) < pX(i), pX(i), 0)
'=IF(C8<B8,B8,0)
 Else
 pXif(i) = IIf(pY(i) < (pX(i) ^ 2), pX(i), 0)
'=IF(C8<B8,B8,0)
 End If
 ReDim Preserve pYif(i)
 pYif(i) = IIf(pXif(i) = 0, 0, pY(i))
 ReDim Preserve pInOut(i)
 pInOut(i) = IIf(pYif(i) = 0, 0, 1)
 pSum = pSum + pInOut(i)
 Next i
 Range("F4") = pSum
 Range("F5") = iCount
 Range("F1") = (pXmax - pXmin) * (pYmax -
pYmin)
 Range("F2") = Range("F1") * Range("F4") /
Range("F5")
 MsgBox "Arae under the curve: " &
FormatNumber(Range("F2"), 2)
End Sub

The 2nd sheet (Y=X^2) has a few differences with the 1st sheet (Y=X):

Chapter 52: Monte Carlo Approach
of Pi

What the simulation does

This simulation estimates what Pi is by using a custom (user-defined)
function PiEstimate, which has one argument: the number of times you want
to run this calculation. By default it runs two random numbers internally
10,000 times.

The function PiEstimate is used in a Sub called PiSimulation which
places that function in three columns of 1,000 rows. And then it calculates
the average of these 3,000 cells. Notice that the results in each of these cells
can vary quite a bit, but their average in E1 is rather stable.

What you need to know
Because Excel has also a PI function, we can compare its value (cell

A1) with the value we received through our simulation (E1). There are only
very minor deviations, because of the large number of runs.

Notice that the custom function has Application.Volatile not enforced.
What that line would do is recalculating the function each time something on
the sheet changes. We don’t want that here.

What you need to do

Option Explicit

Function PiEstimate(n As Long)
 Dim pRand As Double, pInside As Double, i As
Integer, pApprox As Double
 Dim XRand As Double, YRand As Double, RRand
As Double
 'Application.Volatile True 'recalculates whenever
anything changes on the sheet
 pInside = 0
 For i = 1 To n
 XRand = Rnd
 YRand = Rnd
 RRand = XRand ^ 2 + YRand ^ 2
 If (RRand <= 1) Then
 pInside = pInside + 1
 End If
 Next i
 pApprox = 4 * pInside / n
 PiEstimate = pApprox
End Function

Sub PiSimulation()
 Dim i As Integer

 MsgBox "Be patient until the next MsgBox
appears"
 Cells.EntireColumn.AutoFit
 Cells.EntireColumn.NumberFormat = "0.00000"
 Range("A1").Formula = "=Pi()"
 For i = 1 To 6 Step 2
 Range(Cells(5, i), Cells(1004, i)).Formula =
"=PiEstimate(10000)"
 Cells(3, i) =
WorksheetFunction.Average(Cells(5, i), Cells(1004,
i))
 Next i
 Range("E1").Formula = "=AVERAGE(A5:E1004)"
 MsgBox "Mean of 3x1,000 runs is " &
FormatNumber(Range("E1"), 5)
End Sub

Chapter 53: A Population Pyramid
What the simulation does

This simulation shows how a population pyramid may change over the
course of 100 years. The simulation is based on several grossly
oversimplified assumptions.

Assumption #1: The population starts at 100,000 (cell D11).
Assumption #2: The birth rate is partially randomized (row 12) and is

based on participation by everyone over 20 years old.
Assumption #3: Every age group has a certain survival value (column

B) which is subject to small fluctuations, determined by a randomize factor
(InputBox, by default 2%).

With three InputBoxes you can determine your randomize factor (by
default 0.02), the minimum birth rate (by default 0.1), and the maximum birth
rate (by default 0.4). Then the macro loops through 100 years in steps of 10
and shows the situation after that number of years.

What you need to know
The cells B16:B25 use the function HLOOKUP, which searches for a

value in the top row of a table or an array of values, and then returns a value
in the same column from a row you specify in the table or array. It has the
following syntax: HLOOKUP(value, table or array, row index number, exact

match or not). So the formula in B16 is:
=HLOOKUP([Years],D1:N11,ROW(A2),0)., where ROW(A2), copied
down, becomes ROW(A3), etc. So it finds the number of years horizontally
in the first row of D1:N11, and then returns the 2nd cell down, 3rd cell, etc.
For 100 years, B16:B25 should be the same as N2:N11.

The cells C16:C25 calculate how far each bar in the chart should be
offset to the right, which is done with the formula: =(MAX(B16:B25)-
B16)/2.

The chart is a stacked bar chart, and plots A2:A11 against B6:B25 and
C6:C25.

What you need to do

Option Explicit

Sub Pyramid()
 Dim iYears As Integer, pSurvivalFluct As Double,
pMinRate As Double, pMaxRate As Double
 MsgBox "You can manually change survival rates
in the cells B2:B11"
 pSurvivalFluct = InputBox("What is the
randomize factor?", , 0.02)
 pMinRate = InputBox("Minimum birthrate", ,
0.1)
 pMaxRate = InputBox("Maximum birthrate", ,
0.4)
 'iYears = InputBox("The situation after how many
years?", , 100)
 Do
 Range("C2:C11").Formula =
"=NORMINV(RAND(),B2," & pSurvivalFluct & ")"
 Range("C2:C11").Formula =
Range("C2:C11").Value
 Range("D12:N12").Formula =
"=RANDBETWEEN(" & (pMinRate * 100) & "," &
(pMaxRate * 100) & ")/100"
 Range("D12:N12").Formula =

Range("D12:N12").Value
 For iYears = 10 To 100 Step 10
 Range("B15") = iYears
 Range("B16:B25").Formula =
"=HLOOKUP(" & iYears &
",D1:N11,ROW(A2),0)"
 MsgBox "After " & iYears & " years."
 Next iYears
 Range("B16:B25").Formula =
Range("B16:B25").Value
 Loop Until MsgBox("Another run?", vbYesNo) =
vbNo
End Sub

Chapter 54: Predator-Prey Cycle
What the simulation does

The so-called Lotka-Volterra model, dealing specifically with the
relationship between predator and prey (or hunter and target) makes the
following simplified assumptions: The change in the prey’s numbers is given
by its own growth minus the rate at which it is preyed upon (E2). On the
other hand, the change in growth of the predator population is fueled by the
food supply, minus natural death (E3). The equations that were used are
explained on the sheet.

What you need to know

This simulation loops randomly through the values in I2:K4 to
determine the three settings for A2:C2. Based on these settings, it plots the
corresponding charts next to each other on a new sheet. The title of each
chart specifies what the specific three values for A2:C2 were (see also
Chapter 97).

What you need to do

Sub LotkaVolterra()
 Do
 Range("A2") =
Cells(WorksheetFunction.RandBetween(2, 4), 9)
 Range("B2") =
Cells(WorksheetFunction.RandBetween(2, 4), 10)
 Range("C2") =
Cells(WorksheetFunction.RandBetween(2, 4), 11)
 CreateCharts 'see Sub below
 Loop Until MsgBox("Loop again?", vbYesNo) =
vbNo
End Sub

Sub CreateCharts()
 Dim oRange As Range, i As Integer, oChart As
Chart, sCaption As String
 Dim oWS As Worksheet, bWS As Boolean, oAS As
Worksheet
 Set oAS = ActiveSheet
 For Each oWS In Worksheets
 If oWS.Name = "Chart" Then bWS = True
 Next oWS
 If bWS = False Then
 Set oWS = Worksheets.Add(, ActiveSheet):

oWS.Name = "Chart"
 Else
 Set oWS = Worksheets("Chart")
 End If
 oAS.Select
 Set oRange = Range("B5").CurrentRegion
 Set oChart = Charts.Add
 With oChart
 .SetSourceData oRange:
.ChartArea.Border.Weight = xlThick
 .ChartType = xlXYScatterSmoothNoMarkers
 .HasTitle = True:
.Axes(xlCategory).MaximumScale = 500
 .FullSeriesCollection(1).XValues =
.FullSeriesCollection(1).XValues
 .FullSeriesCollection(2).Values =
.FullSeriesCollection(2).Values
 sCaption = oAS.Range("A2") & "|" &
oAS.Range("B2") & "|" & oAS.Range("C2")
 .ChartTitle.Caption = sCaption: .Location
xlLocationAsObject, oWS.Name
 End With
 oWS.Activate
 For i = 1 To oWS.ChartObjects.Count
 With oWS.ChartObjects(i)
 .Width = ActiveWindow.Width * 0.4:
.Height = ActiveWindow.Height * 0.6

 .Left = ((i - 1) Mod oWS.ChartObjects.Count)
* ActiveWindow.Width * 0.41
 .Top = Int((i - 1) / oWS.ChartObjects.Count) *
150
 End With
 Next i
 MsgBox "Here is the Chart": oAS.Activate
End Sub

Chapter 55: Taking Medication
What the simulation does

When taking medication, we want to reach a rather steady
concentration of the medicine inside the body. The concentration rises each
time we take a pill, but then it also declines because the body metabolizes
and/or excretes it.

We simulate this process based on at least 5 parameters. The three
important ones are the number of pills a day (B1), the strength of each pill
(B3), and the elimination factor (B4). You may want to change these
variables manually to find out what the best regimen is.

What you need to know
The simplest model would be as follows: If u(t) is the concentration

of the medication in the body, then du = b f(t) dt – cu dt. In words: the
change in concentration equals (the amount of medication entering the body
at time t during the period dt) minus (the amount of medication leaving the
body during a small time interval dt). Instead of differentiating the equation,
we use an Excel simulation.

The formula in cell B10 and down is complex and looks like this:

=IF(AND(A10>INT(B1*A10)/B1,A10<INT(B1*A10)/B1+B6),8,0).
In VBA, we build this formula up in two pieces to keep the line more
manageable.

The formula in C11 and down determines the concentration at a
specific point in time: =C10+B5*(B2*B11-B3*C10).

The simulation loops through the number of pills, running from 1 to 5
pills, and another loop that builds up the cells 11 to 211 in columns A:C.
Since the 2nd loop has a Timer interval in it, we see the data and the chart
gradually building up.

What you need to do

Option Explicit

Sub Medication()
 Dim n As Integer, i As Integer, pTime As Double,
sStr As String
 Dim pDosage As Double, pElim As Double, pUnit
As Double, pInterv As Double
 pDosage = Range("B3"): pElim =
Range("B4"): pUnit = Range("B6"): pInterv =
Range("B7")
 For n = 1 To 5 'for number of pills
 Range("B1") = n
 Range(Cells(11, 1), Cells(211, 3)).ClearContents
 For i = 11 To 211
 Cells(i, 1) = Cells(i - 1, 1) + pInterv
 sStr = "INT(R1C2*RC[-1])/R1C2"
 Cells(i, 2).FormulaR1C1 =
"=IF(AND(RC[-1]>" & sStr & ",RC[-1]<" & sStr &
"+R6C2),8,0)"
 Cells(i, 2).Formula = Cells(i, 2).Value
 Cells(i, 3) = Cells(i - 1, 3) + pInterv *
(pDosage * Cells(i, 2) - pElim * Cells(i - 1, 3))
 pTime = Timer + 0.005
 Do While Timer < pTime

 DoEvents
 Loop
 Next i
 sStr = "This is for " & n & " pills per day."
 If n < 5 Then
 If MsgBox(sStr & vbCr & "Continue?",
vbYesNo) = vbNo Then Exit Sub
 Else
 MsgBox sStr
 End If
 Next n
End Sub

Chapter 56: The Course of an
Epidemic

What the simulation does

In this simple simulation, we follow the course of an epidemic (e.g.
the flu) based on certain variables in column H. In general, epidemics
follow a more or less fixed pattern. Initially only a few people get sick, but
soon the number of sick cases rises exponentially until stabilization sets in,
and more and more people have recovered.

We need some essential parameters, although they may not always be
exactly known. We will only focus on transmission rate, recovery rate, and
death rate—without going into issues such as mutation rate for the virus or
bacterium.

The model that we apply is the standard SIR model, commonly used
for many infectious diseases. The name of the model reflects the three
groups of individuals that it models: Susceptible people, Infected people,
and Recovered people. There are a number of important thresholds in this
model. Reaching, or failing to reach, these thresholds is a crucial feature of
managing the spread of infectious diseases. The system is sensitive to

certain changes and not to others, so this may give us some insight as to
when and where the problem should be attacked.

In order to make the appropriate calculations, we use the Euler’s
method, without explaining it any further. You can find it explained
elsewhere.

What you need to know
The simulation gradually fills 300 cells in each of the columns A:E

with the appropriate equations. It does this in steps, thanks to a Timer loop.
To keep track of its progress, cell N1 is being updated during the process.
This is also done with some kind of simple progress bar in cell J8 by using
the function REPT. This function repeats a certain charcter as often as the 2nd

argument indicates.
At the end of the simulation, a MsgBox reports how many people were

susceptible, infected, recovered, or died during the course of the epidemic

What you need to do

Option Explicit

Sub Epidemic()
 Dim sMsg As String, pTime As Double, i As Long
 Range("A3:E302").ClearContents
 'If MsgBox("Are the values in column H as you
want them?", vbYesNo) = vbNo Then Exit Sub
 For i = 3 To 302
 Cells(i, 1).FormulaR1C1 = "=R[-1]C+R1C8"
'A2+H1"
 Cells(i, 2).FormulaR1C1 = "=R[-1]C-
(R6C8*R[-1]C*R[-1]C[1])*R1C8"
 Cells(i, 3).FormulaR1C1 = "=R[-1]C+
(R6C8*R[-1]C[-1]*R[-1]C-R7C8*R[-1]C)*R1C8"
 Cells(i, 4).FormulaR1C1 = "=R[-1]C+((1-
R8C8)*R7C8*R[-1]C[-1])*R1C8"
 Cells(i, 5).FormulaR1C1 = "=R[-1]C+
(R8C8*R7C8*R[-1]C[-2])*R1C8"
 Range("N1") = "done " & FormatPercent(i /
302, 0)
 Range("J8") = WorksheetFunction.Rept(">", i /
302 * 100)
 If i / 302 <= 0.25 Then
 If i Mod 5 = 0 Then

 pTime = Timer
 Do While Timer < pTime + 1.5
 DoEvents
 Loop
 End If
 End If
 Next i
 sMsg = "Total recovered: " &
FormatNumber(Range("D302"), 0) & vbCr
 sMsg = sMsg & "Total deaths: " &
FormatNumber(Range("E302"), 0) & vbCr
 sMsg = sMsg & "Total never sick: " &
FormatNumber(Range("B302"), 0) & vbCr
 sMsg = sMsg & "Max sick at once: " &
FormatNumber(WorksheetFunction.Max(Columns(3)),
0)
 MsgBox sMsg
 If MsgBox("Do you want to keep the formulas on
the sheet?", vbYesNo) = vbNo Then
 Range("A3:E302").Formula =
Range("A3:E302").Value
 End If
End Sub

Chapter 57: Boltzmann Equation for
Sigmoidal Curves

What the simulation does

This simulation deals with curves that are of the logistic, s-shaped, or
sigmoidal type, so we could use the Boltzmann equation as explained in the
figure above (where E is the independent variable in column A, and V the
half-way activity). The values in columns C:E and H are all calculated (see
figure on the next page), except for the values in H1 and H2, which are
based on an educated guess.

Something similar can be done for EC50 or IC50 determination.The
term “half maximal effective concentraion” (EC50) refers to the
concentration of a drug, antibody, or toxicant which induces a response
halfway between the baseline and maximum after a specified exposure time.
It is commonly used as a measure of a drug’s effective potency. (IC50, on the
other hand, is the “half maximal inhibitory response.”)

The columns D and E calculate the confidence interval on both sides
of the curve of observed values based on cell H8 (see Chapter 18).

What you need to know
In order to get a more accurate value for the half-way value and the

slope, we need to set the Sum of Squared Residuals (H6) to a minimum,
which means that the difference between what we observed and what we
expected according to the equation is minimal.

We can do so by using Excel’s Solver tool. Make sure Solver is active
in VBA: Tools | References | Solver ON. Now the macro can call Solver.
On the screen shot to the left, cell H6 is set to a minimum by changing the
variable cells H1:H2 (the educated guesses). Since there can be several
solutions to this problem, it is wise to add some constraints—for instance,
that H1 should be between -5 and -15.

What you need to do

Option Explicit

Sub Boltzman()
 Dim pHalfX As Double, pSlope As Double
 Range("C2:E20").ClearContents:
Range("H1:H8").ClearContents
 pHalfX = InputBox("Guess half-X-value for half-Y
at 0.5", , -10)
 pSlope = InputBox("Guess what the slope would
be", , 10)
 Range("H1").Formula = pHalfX:
Range("H2").Formula = pSlope
 Range("H3").Formula = "=AVERAGE(B:B)"
'mean Y
 Range("H4").Formula = "=COUNT(B:B)-
COUNT(H1:H2)" 'degrees of freedom
 Range("H5").FormulaArray =
"=SQRT(SUM((B2:B20-C2:C20)^2)/H4)" 'Standard
Error Y
 Range("H6").FormulaArray = "=SUM((B2:B20-
C2:C20)^2)" 'Sum Squared Residuals
 Range("H7").Formula = "=TINV(0.05,H4)"
'Critical t-value
 Range("H8").Formula = "=H7*H5" 'Confidence

Interval
 Range("C2:C20").Formula = "=(1/(1+EXP((H1-
A2)/H2)))"
 Range("D2:D20").Formula = "=C2+H8"
 Range("E2:E20").Formula = "=C2-H8"
 'Tools | References | Solver ON
 SolverOkDialog "H6", 2, 0, "H1:H2", 1, "GRG
Nonlinear"
End Sub

Chapter 58: Interpolation
What the simulation does

Interpolation is a process of estimating a missing value by using
existing, observed values. For example, in a graph, you might want to mark a
specific point on the curve that has not been measured; so it has to be
interpolated. The graph must be of the XY type because interpolation works
with values in between—and such values do not exist in charts carrying a
category axis.

This time the simulation is not done with a macro script in a Module,
but it is activated by the sheet itself when the user changes the number in cell
E1. In the VBA editor, double-click the sheet in the panel to the left (see
figure below). Then you select Worksheet from the dropdown in the left top
corner followed by Change in the right top corner. This creates a Sub
Worksheet_Change in your VBA code.

What you need to know
To plot an interpolation insert in your XY-graph you need three sets of

coordinates (E5:F7) based on the observed value just before your target
value and the one just after your target value. To find these coordinates you
need three Excel functions: MATCH, INDEX, and TREND.

The function MATCH is needed to locate in which row the value of E1
was found. MATCH has 3 arguments: what to match (E1), in which range
(column A), and with which match type 1 for an ascending list (0 for an
exact match, and -1 for a descending list). This locates the target value (E1)
in column A, by looking for the closest previous value in an ascending order
(1).

Now INDEX can find the corresponding value in the same row and in
one row farther down (+1)—that is, for column A: E2+E3; for column B:
F2:F3.

To calculate the interpolated X-value between E2 and E3, and the
interpolated Y-value between F2 and F3, we need the TREND function. It
has this syntax: TREND(2 known Y’s, two known X’s, target X). This way,
we are able to find E6:E7 and F5:F6. Cells E5 and F6 should be 0 if both
axes start at 0.

What you need to do
Private Sub Worksheet_Change(ByVal Target As
Range)
 Dim oRange As Range, vIndex As Variant, vMatch
As Variant
 Dim vMinX As Variant, vMinY As Variant, vTrend
As Variant
 If Target.Address <> "E1" Then Exit Sub
 Set oRange = Range(Cells(2, 1),
Cells(Range("A1").CurrentRegion.Rows.Count, 2))
 If Range("E1") >=
WorksheetFunction.Max(oRange.Columns(1)) Then
Exit Sub
 Range("E1:F1").Merge
 vMatch =
WorksheetFunction.Match(Range("E1"),
oRange.Columns(1), 1)
 vIndex = WorksheetFunction.Index(oRange,
vMatch, 1): Range("E2") = vIndex
 vIndex = WorksheetFunction.Index(oRange,
vMatch, 2): Range("F2") = vIndex
 vIndex = WorksheetFunction.Index(oRange,
vMatch + 1, 1): Range("E3") = vIndex
 vIndex = WorksheetFunction.Index(oRange,
vMatch + 1, 2): Range("F3") = vIndex
 vMinX =

WorksheetFunction.Min(oRange.Columns(1)):
Range("E5") = vMinX
 Range("E6") = Range("E1"): Range("E7") =
Range("E1")
 vTrend =
WorksheetFunction.Trend(Range("F2:F3"),
Range("E2:E3"), Range("E1"))
 Range("F5") = vTrend: Range("F6") = vTrend
 vMinY =
WorksheetFunction.Min(oRange.Columns(2)):
Range("F7") = vMinY
 If MsgBox("A separate graph?", vbYesNo) = vbYes
Then Charting
End Sub

Sub Charting()
 Dim r As Long, pMin1 As Double, pMin2 As
Double, sX As String, sY As String
 Dim oChart As Chart, oRange As Range
 Set oRange = Range("A1").CurrentRegion: r =
oRange.Rows.Count
 sX = Range(Cells(2, 1), Cells(r, 1)).Address: sY =
Range(Cells(2, 2), Cells(r, 2)).Address
 Set oRange = Union(Range(sX), Range(sY)): Set
oChart = Charts.Add(, ActiveSheet)
 With oChart
 .ChartType = xlXYScatterSmooth:

.SetSourceData oRange
 .HasTitle = True: .HasLegend =
True:.Axes(xlCategory).HasMajorGridlines = True
 .Axes(xlCategory).HasMinorGridlines = True:
 pMin1 =
WorksheetFunction.Min(Columns(1)): pMin2 =
WorksheetFunction.Min(Columns(2))
 .Axes(xlValue).MinimumScale = IIf(pMin1 <
pMin2, Int(pMin1), Int(pMin2))
 .Axes(xlValue).HasMinorGridlines = True
 .ChartTitle.Caption = "Graph based on columns
" & _
 vbCr & Cells(1, 1) & " and " & Cells(1,
2) & " for X=" & Range("E1")
 .SeriesCollection(1).Name = Cells(1, 1):
.SeriesCollection(2).Name = Cells(1, 2)
 End With
 With oChart.SeriesCollection.NewSeries
 .XValues = Range("E5:E7"): .Values =
Range("F5:F7")
 .Name = "insert": .ChartType =
xlXYScatterLines
 .HasDataLabels = True: .DataLabels.Select
 Selection.ShowCategoryName = True:
Selection.ShowValue = True
 End With
 oChart.SizeWithWindow = True

End Sub

Chapter 59: A Rigid Pendulum
What the simulation does

Sheet5 has two Commandbuttons which run VBA code on Sheet5
when you click on the buttons. This way the pendulum can start swinging,
can pause swinging, or can be reset. The calculations in the background
(columns M through Z) are based on the values that can be manually set in
column B. The VBA code only regulates when the calculations are being
updated.

What you need to know
This simulation is partly borrowed from George Lungu. The major

factor involved in the equations for calculating the frequency of a pendulum
is the length of the rod or wire, provided the initial angle or amplitude of the
swing is small. The mass or weight of the bob is not a factor in the frequency
of the simple pendulum, but the acceleration of gravity is in the equation.
Knowing the length of the pendulum, you can determine its frequency. Or, if
you want a specific frequency, you can determine the necessary length.

The period of the motion for a pendulum is how long it takes to swing
back-and-forth, measured in seconds. Period is designated as T. The
frequency of a pendulum is how many back-and-forth swings there are in a
second, measured in hertz. Frequency is usually designated as f. The period
T is the reciprocal of the frequency: T=1/f and f=1/T.

The equation for the period of a simple pendulum starting at a small
angle (a) is: T=2pi*SQRT(L/g) or T = 2π√(L/g).

Notice how columns Y and Z change dramatically and quickly while
the macro runs.

What you need to do

‘This code is on Sheet5

Private Sub Reset__Click()
 Range("B22") = "RESET"
 Range("B16") = 0
End Sub

Private Sub Release__Click()
 i = Range("B16")
 If Not (Range("B22") = "ON") Then
 Range("B22") = "ON"
 Else
 Range("B22") = "PAUSE"
 Exit Sub
 End If
 Do
 If i < 3000 And Range("B22") = "ON" Then
 DoEvents
 i = i + 1
 Range("B16") = i
 If Range("B22") = "PAUSE" Then Exit Sub
 If Range("B22") = "RESET" Then
Range("B16") = 0: Exit Sub
 Else
 i = 0

 Range("B16") = 0
 End If
 Loop
End Sub

Chapter 60: A Piston Sinusoid
What the simulation does

The periodic rotation of the piston-crankshaft assembly in an engine
generates a sinusoid when we plot the angle of rotation of the crankshaft
versus the distance from the piston to the center of the circle. If the radius of
the circle is changed, then the sinusoid also changes.

This file simulates the engine and the resulting sinusoid. The VBA
code runs a (the minimum distance from the piston to the top of the circle)
from 1 to 7, and the radius from 0 to 360. During each loop, the
accompanying graph nicely builds up in a timed fashion.

What you need to know
Sheet1 uses equations implemented on Sheet2. The simulation is partly

borrowed from David Hill. It plots the angle of rotation of the crankshaft
versus the distance from piston to the center of the circle. Here are the
needed equations on Sheet2.

What you need to do

Option Explicit

Sub Sinusoid()
 Dim i As Integer, j As Integer, pTime As Double
 Range("J27") = "no": Range("J27").Select
 For i = 1 To 7
 Sheet2.Range("C6") = i
 For j = 0 To 360
 Sheet2.Range("E1") = j
 pTime = Timer + 0.005 'Timer: secs since
midnight; pause by .005 seconds
 Do While Timer < pTime
 DoEvents
 Calculate
 If Range("J27") = "yes" Then Exit Sub
 Loop
 Next j
 Next i
End Sub

Chapter 61: The Brusselator Model
What the simulation does

The Brusselator model was proposed by Prigogine and his coworkers
in 1967 at Free University of Brussels. This model was created for the
explanation of the mechanism of a Bray-Liebhafsky reaction proposed by
Bray and Liebhafsky at University of California, Berkeley. This model is
one of the oscillating reactions which can be seen in real cases.

What you need to know
The sheet has sliders that you can manually move. If you run the VBA

code instead, it loops from 35 to 100 for cell D3 (behind the control) and
from 100 to 240 for cell D4. If you want to stop the loops, type “yes” in cell
D2 (and Enter). The cells C3:C5 do not have values in them but a formula
that is connected to cells hidden behind the sliders.

What you need to do

Option Explicit

Sub Oscillation()
 Dim i As Integer, j As Integer, pTime As Double
 Range("D2") = "no": Range("D2").Select
 For i = 35 To 100
 Range("D3") = i
 For j = 100 To 240
 Range("D4") = j
 pTime = Timer + 0.005 'Timer: secs since
midnight; pause by .005 seconds
 Do While Timer < pTime
 DoEvents
 Calculate
 If Range("D2") = "yes" Then Exit Sub
 Loop
 Next j
 Next i
End Sub

Chapter 62: A Hawk-Dove Game
What the simulation does

Game theory is the study of mathematical models of conflict and
cooperation. The name “Hawk-Dove” refers to a situation in which there is
a competition for a shared resource and the contestants can choose either
conciliation or conflict; this terminology is most commonly used in biology
and economics.

The traditional payoff matrix for the Hawk-Dove game includes the
value of the contested resource, and the cost of an escalated fight. It is
assumed that the value of the resource is less than the cost of a fight.
Sometimes the players are supposed to split the payoff equally, other times
the payoff is assumed to be zero. These values can be found in columns J, M,
and N.

A “mixed” evolutionary strategy (ESS) is where two strategies
permanently coexist. For a given set of payoffs, there will be one set of
frequencies where this mix is stable. A mixed ESS can be achieved if
individuals either play one strategy all of the time in a population where the
two strategies are at the equilibrium frequencies (for example, 60% of the
individuals always call and 40% always act as satellites), or all individuals

play a mixed strategy where each behavior in the mix is performed at the
equilibrium frequency.

What you need to know
The VBA code loops for the “gain” setting (cell J2) from 10 to 90 by

increments of 10, and displays each time an InputBox, which can be
cancelled to stop the loop.

Unlike a MsgBox, an InputBox can be positioned on the screen
(through the 4th and 5th argument). When an Inputbox is cancelled, it returns
an empty string (“”). So we can check for an empty string and then exit the
For-loop.

What you need to do

Option Explicit

Sub HawkDove()
 Dim iGain As Integer, sMsg As String, iTrick As
String
 Range("B2:B10").Formula = "=A2*F2+(1-
A2)*G2"
 Range("C2:C10").Formula = "=A2*F3+(1-
A2)*G3"
 For iGain = 10 To 90 Step 10
 Range("J2") = iGain
 Sheet1.Calculate
 sMsg = "The intersect for gain " & iGain & "
equals: " & _
 FormatNumber(Range("B19"), 3)
 'to position the MsgBox use an InputBox instead
 iTrick = InputBox(sMsg, , "next", 1000, 2500)
 If iTrick = "" Then Exit Sub
 Next iGain
 Range("J2") = 50
End Sub

VI. BUSINESS

Chapter 63: Prognosis of Sales
What the simulation does

This is basically a simple simulation. It gives a prognosis for each
product based on its previous performance. It assumes that each product will
sell next year according to a random distribution based on the average of
pervious years’ sales and the standard deviation of those sales. It does so
with the Excel function NORMINV. The simulation also plots the 25th and
75th percentile. Obviously, results will vary, but using a high number of
loops (10,000) limits fluctuations.

What you need to know
The simulation loops slowly through each product, from B through K,

thanks to a Timer interval. It shows progress by assigning a color to each
finished cell of averages in row 22.

What you need to do

Option Explicit

Sub Prognosis()
 Dim r As Long, c As Integer, oRange As Range, i
As Long, iTime As Long
 Dim pAvg As Double, pSD As Double, arrRuns() As
Double
 MsgBox "Prognosis per column based on 10,000
iterations."
 With Range("A1").CurrentRegion
 .Rows(.Rows.Count + 3).Interior.Color =
vbWhite
 r = .Rows.Count
 For c = 2 To .Columns.Count
 pAvg =
WorksheetFunction.Average(.Columns(c))
 pSD =
WorksheetFunction.StDev(.Columns(c))
 ReDim arrRuns(0 To 9999)
 For i = 0 To 9999
 arrRuns(i) =
WorksheetFunction.Norm_Inv(Rnd, pAvg, pSD)
 Next i
 iTime = Timer + 1

 Do Until Timer > iTime
 DoEvents
 Loop
 .Cells(r + 2, c) =
WorksheetFunction.Percentile(arrRuns, 0.25)
 .Cells(r + 3, c) =
WorksheetFunction.Average(arrRuns)
 .Cells(r + 4, c) =
WorksheetFunction.Percentile(arrRuns, 0.75)
 With .Cells(r + 3, c).Interior
 If .Color = vbYellow Then .Color = vbWhite
Else .Color = vbYellow
 End With
 Next c
 End With
End Sub

Chapter 64: Cycle Percentiles
What the simulation does

This is a simple macro to show the user during a nice cycle of views
what the best or worst sales were—in which months and on which days.

The macro does so by cycling through percentile views in steps of 10.
It allows the user to specify whether to go up from the 10th to 90th percentile,
or down from the 90th percentile to the 10th percentile. It also calculates the
total amount of sales for each percentile view.

What you need to know
There is nothing really new in this VBA code. Based on a Boolean

variable, set through a MsgBox, the cycle goes either up or down.
For the percentile scores, we used the Excel function PERCENTILE.

This function works in all Excel versions. In version 2010 and later, it can
be replaced with PERCENTILE.EXC or PERCENTILE. INC. The former
function does not include k=1, whereas the latter one does. So the latter one
is equivalent to the older function PERCENTILE.

Depending on the percentile step, certain numbers are “hidden” by
assigning a white font. This is done by adding to the collection of
FormatConditions. To prevent that these pile up, we delete all
FormatConditions in the range of sales figures at the end.

To make everything work properly, the macro also needs to “play”
with ScreenUpdating settings.

What you need to do

Option Explicit

Sub PercentileUpOrDown()
 Dim oRange As Range, oFormat As
FormatCondition
 Dim bDown As Boolean, i As Integer, iPerc As
Integer, pPerc As Double, sMsg As String
 If ActiveSheet.Name <> Sheet1.Name Then Exit
Sub
 Set oRange = Range("A1").CurrentRegion
 Set oRange = oRange.Offset(1,
1).Resize(oRange.Rows.Count - 1,
oRange.Columns.Count - 1)
 If MsgBox("Go Down? (No = Go Up)", vbYesNo) =
vbYes Then bDown = True: iPerc = 100
 For i = 1 To 9
 Application.ScreenUpdating = False
 If bDown Then iPerc = iPerc - 10 Else iPerc =
iPerc + 10
 pPerc =
WorksheetFunction.Percentile_Exc(oRange, iPerc /
100)
 Set oFormat =
oRange.FormatConditions.Add(xlExpression,

xlFormula, "=B2<" & pPerc) 'not A1
 Application.ScreenUpdating = True
 oFormat.Font.Color = vbWhite '.Interior.Color
= RGB(0, 0, 0) with max of 255
 sMsg = "Above the " & iPerc & "th percentile: "
& FormatCurrency(pPerc) & vbCr & "Next?"
 If MsgBox(sMsg, vbOKCancel) = vbCancel
Then i = 9
 Application.ScreenUpdating = False
 oRange.FormatConditions.Delete
 Application.ScreenUpdating = True
 Next i
End Sub

Chapter 65: Cost Estimates
What the simulation does

The cells A2:C3 are based on manual input, with the low estimates in
row 2 and the high estimates in row 3.

For each of the columns A, B, and C, we simulate normally distributed
values with a mean between low (row 2) and high (row 3) as well as a
standard deviation of 2 units on either side. On the sheet, we use only 100
repeats up to row 103—which is rather risky. Column D calculates the
monthly costs for each case.

To reduce the risk of estimating costs, the macro repeats these 100
steps some 10,000 times by storing the results for each run in arrays. Arrays
work very swiftly and make our estimates less subject to random
fluctuations.

At the end of the macro, a MsgBox displays the 5th and 95th percentile
for these 1,000,000 projections. A new run of the macro will yield different
results, but they differ only slightly.

What you need to know

What you need to do

Option Explicit

Sub Costs()
 Dim i As Long, d5Perc As Double, d95Perc As
Double, sMsg As String
 Dim arr5Perc() As Double, arr95Perc() As Double
 With Range("A4:D103")
 .ClearContents
 MsgBox "First normally distributed random
calculations:"
 Application.Calculation = xlCalculationManual
 .Columns(1).Formula =
"=NORMINV(RAND(),SUM(A$2:A$3)/2,
(MAX(A$2:A$3)-MIN(A$2:A$3))/4)"
 .Columns(2).Formula =
"=NORMINV(RAND(),SUM(B$2:B$3)/2,
(MAX(B$2:B$3)-MIN(B$2:B$3))/4)"
 .Columns(3).Formula =
"=NORMINV(RAND(),SUM(C$2:C$3)/2,
(MAX(C$2:C$3)-MIN(C$2:C$3))/4)"
 .Columns(4).Formula = "=A4/130*B4*C4"
 MsgBox "Now follow 10,000 runs with arrays:"
 ReDim arr5Perc(0 To 9999): ReDim arr95Perc(0
To 9999)

 For i = 0 To 9999
 .Calculate
 arr5Perc(i) =
WorksheetFunction.Percentile(.Columns(4), 0.05)
 arr95Perc(i) =
WorksheetFunction.Percentile(.Columns(4), 0.95)
 Next i
 End With
 d5Perc = WorksheetFunction.Average(arr5Perc)
 d95Perc = WorksheetFunction.Average(arr95Perc)
 sMsg = "After 10,000 x 100 runs of monthly costs:"
& vbCr
 sMsg = sMsg & "the 5th percentile is:" & vbTab &
vbTab
 sMsg = sMsg & FormatCurrency(d5Perc, 2) &
vbCr & "the 95th percentile is:"
 sMsg = sMsg & vbTab &
FormatCurrency(d95Perc, 2)
 MsgBox sMsg
End Sub

Chapter 66: A Filtering Table
What the simulation does

Range G6:J14 contains a 2-dimensional table with information that the
macro has extracted from the database A1:E25. The macro also creates a
filter in A27:E28 which regulates what the table G6:J14 displays (in this
case, whatever was sold with quantities over 400.

The filter works through the labels, or headers, of the database. The
filter sums the totals by using the function DSUM at the origin of the table
(G6).

What you need to know
To create a list of unique entries in row1 and column1 of the table

(G6:J14), we can use AdvancedFilter. It has four arguments: Action (e.g.
xlFilterCopy), CriteriaRange (optional), CopyToRange, Unique (True).

Since AdvancedFilter returns a vertical list of unique entries, we need
to manipulate the two lists. This can be done by storing the two lists in a
Variant array that is 2-dimensional. The array helps us to place the lists in a
2-dimensional table by using a loop for the 1st dimension inside a loop for
the 2nd dimension. The function UBound(array, 1) returns the index number
of the last element in the 1st dimension; UBound(array,2) does that for the
2nd dimension.

In cell G5, the macro implements DSUM. Unlike SUM, it accepts also
certain criteria as to what to sum. It has 3 arguments: the database, the field
label, and the criteria range (A27:E28).

What you need to do

Option Explicit

Sub Filtering()
 Dim vArr As Variant, i As Integer, j As Integer,
sFilter As String
 Dim oFilter As Range, oRange As Range
 Range("G6").CurrentRegion.Delete xlShiftToLeft
 With Range("A1").CurrentRegion
 i = .Rows.Count
 .Range(Cells(i + 2, 1), Cells(i + 3, 5)).Delete
xlShiftUp
 MsgBox "Prepare the matrix and the filter"
 .Columns(1).AdvancedFilter xlFilterCopy, ,
Range("G6"), True
 .Columns(2).AdvancedFilter xlFilterCopy, ,
Range("H6"), True
 Set oFilter = .Range(Cells(i + 2, 1), Cells(i + 3,
5))
 oFilter.Rows(1) = .Rows(1).Value
 End With
 With Range("G6")
 vArr = .CurrentRegion
 .CurrentRegion.ClearContents
 MsgBox "Fix the matrix"

 For i = 2 To UBound(vArr, 1) '1 is label |
UBound(x,1) is 1st dimension
 For j = 2 To UBound(vArr, 2) '1 is label |
UBound(x,2) is 2nd dimension
 .Offset(i - 1, 0) = vArr(i, 1)
 .Offset(0, i - 1) = vArr(i, 2)
 Next j
 Next i
 MsgBox "Implement the filter"
 Set oRange = Range("A1").CurrentRegion
 .Cells(1, 1).Formula = "=DSUM(" &
oRange.Address & ",E1," & oFilter.Address & ")"
'E1 is the Totals label
 .Cells(1, 1).CurrentRegion.Table Range("B28"),
Range("A28")
 .Cells(1, 1).CurrentRegion.NumberFormat =
"$##0.00"
 .Cells(1,
1).CurrentRegion.EntireColumn.AutoFit
 End With
 oFilter.Cells(2, 4) = InputBox("Sold filter (or
Cancel)", , ">400")
 oFilter.Cells(2, 5) = InputBox("Total filter (or
Cancel)", , ">300")
End Sub

Chapter 67: Profit Changes
What the simulation does

This simulation creates and populates five different Data Table
ranges. The first three have a column input of D2, which holds the price per
unit. However, we have a powerful “trick” here: there is no value in cell D2
but a formula that multiplies its value with (1+D2), so the Data Table can
use price changes in percentages in its 1st column, and the corresponding
price in the 3rd column.

What you need to know
Since cells such as B2 and B3 don’t contain a value but a formula, the

macro locks and protects all cells, so no formulas can be overwritten. The
Protect method of VBA can do so; it has many arguments; the 5th one is
UserInterfaceOnly; when set to True, macro’s can still change cells, but
users cannot.

A Variant type of variable can hold an array, even an array that comes
from the VBA function Array. In our simulation, the Array function holds the
addresses of 5 cell ranges, and returns a 1-dimensional array. (You can
always check this in your code by placing a BreakPoint after the array line
and then opening the Locals Window.) Based on this list, the corresponding
ranges can be cleared.

A combination of Offset and Resize allows VBA to change ranges. For
example. Range(“A1:D4”).Offset(1,1).Resize(4,4).Address would change
the range from A1:D4 to B2:E5.

What you need to do

Option Explicit

Sub Profits()
 Dim oUnitPrice As Range, oCostPrice As Range,
oUnitsSold As Range
 Dim oUnitAndCost As Range, oUnitAndSold As
Range
 Dim pUnitPrice As Double, pCostprice As Double,
iSold As Long, vArr As Variant, i As Integer
 vArr = Array("E3:F13", "H3:I13", "K3:L13",
"E16:I20", "E24:I28")
 For i = 0 To UBound(vArr)
 Range(vArr(i)).ClearContents
 Next i
 Sheet1.Protect , , , , True 'no changes on sheet
except throug macro (=true)
 pUnitPrice = InputBox("Best estimate of the unit
price?", , 125)
 Range("B2").Formula = "=(1+D2)*" & pUnitPrice
 pCostprice = InputBox("Best estimate of the cost
price?", , 25)
 Range("B6").Formula = "=(1+G2)*" & pCostprice
 iSold = InputBox("Best estimate of items sold?", ,
100000)

 Range("B3").Formula = "=(1+J2)*" & iSold
 Set oUnitPrice = Range(vArr(0)).Offset(-1,
-1).Resize(Range(vArr(0)).Rows.Count + 1,
Range(vArr(0)).Columns.Count + 1)
 Set oCostPrice = Range(vArr(1)).Offset(-1,
-1).Resize(Range(vArr(1)).Rows.Count + 1,
Range(vArr(1)).Columns.Count + 1)
 Set oUnitsSold = Range(vArr(2)).Offset(-1,
-1).Resize(Range(vArr(2)).Rows.Count + 1,
Range(vArr(2)).Columns.Count + 1)
 Set oUnitAndCost = Range(vArr(3)).Offset(-1,
-1).Resize(Range(vArr(3)).Rows.Count + 1,
Range(vArr(3)).Columns.Count + 1)
 Set oUnitAndSold = Range(vArr(4)).Offset(-1,
-1).Resize(Range(vArr(4)).Rows.Count + 1,
Range(vArr(4)).Columns.Count + 1)
 oUnitPrice.Table , Range("D2")
 oCostPrice.Table , Range("G2")
 oUnitsSold.Table , Range("J2")
 oUnitAndCost.Table Range("G2"), Range("D2")
 oUnitAndSold.Table Range("J2"), Range("D2")
End Sub

Chapter 68: Risk Analysis
What the simulation does

If the demand for some product is regulated by a range of probabilities
(G2:H4), then you can determine your optimal production by simulating
demand within that range of probabilities and calculating profit for each
level of demand.

The top left section (B:C) calculates the profit for one trial production
quantity. Cell C1 has a trial production quantity. Cell C2 has a random
number. In cell C3, we simulate demand for this product with the function
VLOOKUP: =VLOOKUP(RAND(),G2:H5,2,1).

The macro creates a Data Table which simulates each possible
production quantity (10,000, 20,000, 40,000 or 60,000) some 1,000 to
100,000 times and calculates profits for each trial number (1 to 1,000) and
each production quantity (10,000, etc.). At the origin of the Data Table
(A13) is a reference to the profit calculation in C8. The Data Table uses cell
C1 (a specific production quantity) for the row input, and an empty cell (say,
G14) for the column input.

Finally, row 10 calculates the mean profit for the four different
production quantities. In the example shown at the end, the results indicate
that production of 40,000 units results in maximum profits. Row 11 does
something similar, but now for the standard deviation. Notice that the SD
increases when the quantities increase.

What you need to know
The VLOOKUP function in C3 matches the value in C1 with the

closest match in the first column of table F2:G5. The corresponding value
from the second column in table F2:G5 is then entered into C3.

How does the Data Table work? Consider cell D14: the column input
cell value of 1 is placed in a blank cell (G14) and the random number in cell
C2 recalculates. The corresponding profit is then recorded in cell D14. Next
the column cell input value of 2 is placed in the blank cell G14, and the
random number in C2 again recalculates. The corresponding profit is
entered in cell D15. And so on. A Data Table has an amazing power!

What you need to do

Option Explicit

Sub Risks()
 Dim oRange As Range, oTable As Range, i As Long
 Range("B10:E11").ClearContents
 Range("C2").Formula =
"=VLOOKUP(RAND(),G2:H5,2,1)"
 Set oRange = Range("B14").CurrentRegion
 With oRange
 Set oTable = .Offset(1, 1).Resize(.Rows.Count -
1, .Columns.Count - 1)
 End With
 oTable.ClearContents
 i = InputBox("How many runs (1,000 - 100,000)?",
, 10000)
 Set oRange = Range(Cells(13, 1), Cells(13 + i, 5))
 oRange.Table Range("C1"), Range("G14")
 i = i + 3
 Range("B10:E10").FormulaR1C1 =
"=AVERAGE(R14C:R[" & i & "]C)"
 Range("B11:E11").FormulaR1C1 =
"=STDEV(R14C:R[" & i-1 & "]C)"
 MsgBox "Results based on 1,000 x " & Format(i -
3, "#,##0") & " runs."

End Sub

Chapter 69: Scenarios
What the simulation does

Predictions of expenses and revenues are subject to lots of uncertainty.
Nevertheless, l e t’s say we want to predict these under a few defined
scenarios, such as the most likely, the best case, and the worst case scenario,
in order to project a range of possible profit levels.

We use several tables to set up this calculation. The top left table
shows the 3 scenarios that were actually chosen. There are actually six
scenarios—two for each case—with settings as displayed in the 2nd table
(A13:F17).

The main calculations occur in the Data Table in the lower-right
corner. It is two-dimensional, but has a “hidden” third dimension: the 3
scenarios that were actually chosen in the top left table. All values in
column H depend on these 3 scenarios.

The user has a choice of six different scenarios—1 and 2 for the most
likely scenario, 3 and 4 for the worst-case scenario, and 5 and 6 for the
best-case scenario. So there are actually 8 possible combinations as is

shown in B20:B27 (135, 136, etc.). The macro loops through these
comnbinations and shows the results for each combination in the table
B19:E27.

What you need to know
The cells B3:F5 use the function HLOOKUP, which stands for

Horizontal lookup. It is similar to VLOOKUP, only it searches horizontal
data rather than columnar data. HLOOKUP is used in the top left table to
locate the correct input in the scenario table A14:F17. Because the scenario
numbers are in a row (row 14), we need a horizontal lookup—HLOOKUP,
not VLOOKUP.

What you need to do

Option Explicit

Sub Scenarios()
 Dim vArr As Variant, i As Integer, sCombo As
String, iRow As Integer, oTable As Range
 Range("C20:E27").ClearContents
 Range("I14:L1013").ClearContents
 i = InputBox("How many runs (100-1000)?", , 100)
 Set oTable = Range(Cells(13, 8), Cells(13 + i, 12))
'Starts at H13
 oTable.Table , Range("F11")
 vArr = Array(135, 136, 145, 146, 235, 236, 245, 246)
 For i = 0 To 7
 sCombo = vArr(i)
 Cells(2, 2) = Left(sCombo, 1): Cells(2, 4) =
Mid(sCombo, 2, 1): Cells(2, 6) = Right(sCombo, 1)
 Application.Calculate
 iRow =
WorksheetFunction.Match(CInt(sCombo),
Range("B20:B27"))
 Range("C20:E27").Cells(iRow, 1) =
Range("L4")
 Range("C20:E27").Cells(iRow, 2) =
Range("L6")

 Range("C20:E27").Cells(iRow, 3) =
Range("L8")
 Cells.EntireColumn.AutoFit
 MsgBox "Results for scenarios " &
Range("K2")
 Next i
End Sub

Chapter 70: Market Growth
What the simulation does

When talking about GDP growth (Gross Domestic Product) and the
relationship between GDP growth and market growth, or the increase in
market share, we are dealing with three uncertain inputs. The obvious
approach is to use the best estimate for each of these inputs.

A better approach might be using a probability distribution, rather than
using the single best estimate. Monte-Carlo modelling would use the
probability distributions of the inputs. Rather than using the distributions
themselves as inputs, we use the distributions to generate random inputs.

Based on a certain market volume (cell D1) and a certain market share
(cell F1), the simulation calculates possible sales volumes (column G). It
uses random distributions in 100 to 1,000 runs to estimate GDP growth
(column A), the relationship between GDP and market size (column B), and
the market share growth (column E).

Then it repeats this set of runs another 100 to 1,000 times, in columns
J:K. After at least 10,000 runs, we get an rather good estimate of the
minimum and maximum sales volumes in column N. Needless to say that
these figures can still vary quite a bit, because Monte Carlo simulations
become more reliable when based on at least 1,000,000 runs.

What you need to know
The model we use is basically very simple:

• C3: market growth = GDP growth × multiple

• D3: market size = current size × (market growth + 1)

• F3: market share = current market share + gain

• G3: sales volumes = market size × market share

What you need to do

Option Explicit

Sub Market()
 Dim i As Long, n As Long, oRange As Range,
oTable As Range
 Set oRange = Range("B6").CurrentRegion
 With oRange
 Set oRange = .Offset(1, 0).Resize(.Rows.Count -
1, .Columns.Count)
 End With
 oRange.ClearContents
 Set oTable = Range("J7").CurrentRegion
 With oTable
 Set oTable = .Offset(1, 1).Resize(.Rows.Count -
1, .Columns.Count - 4)
 End With
 oTable.ClearContents
 i = InputBox("How many row calculations (100-
1000)?", , 100)
 n = InputBox("How many table runs (100-1000)?",
, 100)
 Range("J6") = i & "x" & n & " = " & i * n & "
calculations"
 Set oRange = Range(Cells(7, 2), Cells(6 + i, 8))

 oRange.Columns(1).Formula =
"=NORMINV(RAND(),B3,B4)"
 oRange.Columns(2).Formula =
"=NORMINV(RAND(),C3,C4)"
 oRange.Columns(3).Formula = "=B7*C7"
 oRange.Columns(4).Formula = "=D1*(D7+1)"
 oRange.Columns(5).Formula =
"=NORMINV(RAND(),F3,F4)"
 oRange.Columns(6).Formula = "=F1+F7"
 oRange.Columns(7).Formula = "=E7*G7"
 Set oTable = Range(Cells(7, 10), Cells(6 + n, 11))
 oTable.Cells(1, 1).Formula = "=AVERAGE(" &
oRange.Columns(7).Address & ")"
 oTable.Cells(1, 2).Formula = "=AVERAGE(" &
oRange.Columns(7).Address & ")"
 oTable.Table , Range("I6")
 Range("N7").Formula = "=MIN(" &
oTable.Columns(2).Address & ")"
 Range("N8").Formula = "=MEDIAN(" &
oTable.Columns(2).Address & ")"
 Range("N9").Formula = "=MAX(" &
oTable.Columns(2).Address & ")"
 Range("J6") = "Results of " & i & " x " & n & "
runs."
 MsgBox Range("J6")
End Sub

Chapter 71: A Traffic Situation
What the simulation does

A Monte Carlo simulation really illustrates how we can tame the
uncertainty of the future with ranges and probabilities, but it also shows how
impossible it is to be extremely precise.

Column A: We simulate driving 2 miles on a highway, with 90%
probability we will average 65 MPH, but with a 10% probability that a
traffic jam will result in an average speed of 20 MPH (column A).

Column B: Then there is a traffic light that goes through a 120 second
cycle with 90 seconds for “red” and 30 seconds for “green.” If we hit it on
green then there is no delay, but if we hit it on red we must wait for green.

Column C: Finally, we have 2 more miles to go: 70% of the time at 30
MPH, 10% at 20 MPH, 10% at 40 MPH, and 10% of the time it takes us 30
minutes. This can be calculated with a VLOOKUP function based on H2:I5.

Instead of using a fixed value for input variables, we can model an
input variable with a probability distribution and then run the model a large
number of times and see what impact the random variation has on the output.

Again, it is wise to run at least 1,000 iterations in the columns A:E.
This is to ensure that we have a statistical chance of getting sufficient
outliers (extreme values) to make the variance analysis meaningful. This is

important because as the number of iterations increases, the variance of the
average output decreases.

What you need to know
The simulation also adds a Data Table that shows how the median and

the average can slightly vary when repeated some 12 times (see screen shot
on the next page).

Much more could have been done to this simulation—such as using
arrays, more looping, and higher numbers of runs—but I leave that up to you.

What you need to do

Option Explicit

Sub TrafficCommute()
 Dim oRange As Range, oTable As Range
 Dim sMsg As String, pMedian As Double, pAvg As
Double
 Set oRange = Range("A1").CurrentRegion
 With oRange
 Set oRange = .Offset(1, 0).Resize(.Rows.Count -
1, .Columns.Count)
 End With
 oRange.ClearContents:
Range("I9:J19").ClearContents
 MsgBox "New calculations"
 oRange.Columns(1).Formula = "=IF(RAND() <
0.9, 111, 360)"
 oRange.Columns(2).Formula = "=MAX(0,
(RAND() * 120) - 30)"
 oRange.Columns(3).Formula =
"=VLOOKUP(RAND(),H2:I5, 2)"
 oRange.Columns(4).Formula = "=SUM(A2:C2)"
 oRange.Columns(5).Formula = "=D2/60"
 Range("I8").Formula = "=MEDIAN(E:E)":
Range("J8").Formula = "=AVERAGE(E:E)"

 Set oTable = Range("H8:J19")
 oTable.Table , Range("G7")
 With oTable
 sMsg = "For 1000 x 12 runs:" & vbCr
 pMedian =
FormatNumber(WorksheetFunction.Median(.Columns(2)),
3)
 sMsg = sMsg & "Median: " & vbTab & pMedian
& " mins." & vbCr
 pAvg =
FormatNumber(WorksheetFunction.Average(.Columns(3)),
3)
 sMsg = sMsg & "Average: " & vbTab & pAvg &
" mins." & vbCr
 End With
 MsgBox sMsg
End Sub

Chapter 72: Quality Control
What the simulation does

Here we are dealing with an assembly line that creates between 100
and 1,000 products (B1) per period of time. One particular variable of this
product is supposed to be close to a value of 15 (B2) but is allowed to vary
with a SD of 2 (B3), as shown some 1,000 times in column A.

To ensure quality, we take a certain percentage of samples (E1) in
which we accept 2% defects (E2, or whatever is in there). Based on such a
sample we decide, with 95% confidence (E3), to accept or reject the entire
production lot.

Since this process is far from certain but depends heavily on
probabilities, we repeat this process a number of times in the Data Table far
to the right.

At the end of the simulation, the macro reports several averages in a
MsgBox.

What you need to know
In cell D8, the VBA code inserts the following formula (copied down

to E1007):
=IF(AND(ROW(D7)+1<=(B1+7),COUNT(D7:D7)

<(B1*E1)),IF(RAND()<=E1,A8,""),"")
In cell E8: =IF(D8<>"",IF((ABS(B2-

D8)/B3)>1.96,"reject","OK"),"")
The function used in G6 is CRITBINOM. It determines the greatest

number of defective parts that are allowed to come off an assembly line
sample without rejecting the entire lot. It has 3 arguments: The number of
trials, the probability of a success on each trial, and the criterion value
(alpha). Recently, this function has been replaced with BINOM.INV.

What you need to do

Option Explicit

Sub QualityControl()
 Dim oRange As Range, oTable As Range, sFormula
As String, sMsg As String
 Dim pAvgProd As Double, pAvgSampl As Double,
pAvgCount As Double, iReject As Integer
 Set oRange = Range("D8:E1007")
 With oRange
 .ClearContents
 sFormula = "=IF(AND(ROW(D7)+1<=
(B1+7),COUNT(D7:D7)
<(B1*E1)),IF(RAND()<=E1,A8,""""),"""")"
'double quotes inside double quotes
 .Columns(1).Formula = sFormula
 sFormula = "=IF(D8<>"""",IF((ABS(B2-
D8)/B3)>1.96,""reject"",""OK""),"""")"
 .Columns(2).Formula = sFormula
 End With
 Set oTable = Range("J3").CurrentRegion
 With oTable
 Set oTable = .Offset(3, 1).Resize(.Rows.Count -
3, .Columns.Count - 1)
 End With

 With oTable
 .ClearContents
 Set oTable = .Offset(-1, -1).Resize(.Rows.Count +
1, .Columns.Count + 1)
 oTable.Table , Range("I1")
 End With
 With oTable
 pAvgProd =
WorksheetFunction.Average(.Columns(2))
 pAvgSampl =
WorksheetFunction.Average(.Columns(3))
 pAvgCount =
WorksheetFunction.Average(.Columns(4))
 iReject =
WorksheetFunction.CountIf(.Columns(7), "reject")
 End With
 sMsg = "The mean or average of 22x1000 runs:" &
vbCr
 sMsg = sMsg & "all products: " & vbTab &
FormatNumber(pAvgProd, 4) & vbCr
 sMsg = sMsg & "all samples: " & vbTab &
FormatNumber(pAvgSampl, 4) & vbCr
 sMsg = sMsg & "all sample counts: " & vbTab &
FormatNumber(pAvgCount, 4) & vbCr
 sMsg = sMsg & "number of rejects: " & vbTab &
iReject
 MsgBox sMsg

End Sub

Chapter 73: Waiting Time Simulation
What the simulation does

We simulate here the flow of patients in something like a walk-in
clinic. Based on experience, we know the probabilities of patients coming in
with 5, 10, or 15 minutes between arrivals (B2:C4). We also know the
probabilities that the treatment takes 5, 10, or 15 minutes (F2:G4). Let’s
assume there are usually 10 patients in the morning (which we won’t
simulate, though). And there is only one nurse or doctor in the clinic.

Now we can simulate the flow of patients through the system
(A7:G16). The chart shows how visit times can vary randomly. Since there
is much volatility involved, we repeat this process some 100 to 1,000 times
through the help of a VBA array in the background, so we can calculate what
the average maximum visit time is, based on waiting time and treatment
time. The simulation reports its results in a MsgBox.

What you need to know
To randomly assign arrival times and treatment times, we need an extra

column in front of the two probability tables shown on top of the sheet. These
two columns must start at 0 and then cumulatively increase, so we can use
VLOOKUP to assign these times in a random manner.

Other formulas on the sheet are shown in the screen shot on the next
page.

What you need to do

Option Explicit

Sub WaitingTime()
 Dim oRange As Range, iMaxVisitTime As Integer,
arrVisTime() As Integer, i As Integer, n As Long
 Set oRange = Range("B7:G16")
 With oRange
 .ClearContents
 .Columns(1).Formula =
"=VLOOKUP(RAND(),A2:B4,2,TRUE)"
 .Columns(2).Formula = "=SUM(B7:B7)"
 .Columns(3).Cells(1, 1).Formula = "=C7"
 Range("D8:D16").Formula =
"=IF(C8<F7,F7,F7+(C8-F7))"
 .Columns(4).Formula =
"=VLOOKUP(RAND(),E2:F4,2,TRUE)"
 .Columns(5).Formula = "=D7+E7"
 .Columns(6).Formula = "=F7-C7"
 .Calculate
 End With
 n = InputBox("How many runs (100-1000)?", , 100)
 ReDim arrVisTime(0 To n - 1)
 For i = 0 To n - 1
 Range("B7:G19").Calculate

 iMaxVisitTime = Range("G19")
 arrVisTime(i) = iMaxVisitTime
 Next i
 MsgBox "After " & n & " runs, the average of " &
vbCr & _
 "maximum wait times is " &
WorksheetFunction.Average(arrVisTime) & " mins."
End Sub

Chapter 74: Project Delays
What the simulation does

Here we have a sequence of tasks that start at a certain day, have a
certain duration, and then end, to be followed by the next task. So the entire
project is supposed to be finished on the date shown in cell E11.

Usually, however, there are random changes in the duration (column F)
—say, up to 2 days shorter or longer than anticipated. Such random changes
would obviously affect the end date of the total project. In cell H11, we
calculate what the actual end date of the project would be.

We run this project some 100 times in a Data Table (G14:H151), so
we can calculate what on average the “real” end date of the project would
be after random changes in duration per task. We then calculate how the final
end dates for each run are distributed in a frequency chart (in the right lower
corner of the sheet).

What you need to know
There are some fomulas on this sheet (see screen shot on the next

page). The only new function used in the VBA code is Excel’s DAYS
function. It returns the number of days between two dates, where the first
argument indicates the end date, and the 2nd argument the start date. If the
number of days is negative, then the end date is earlier than the start date.

The way Excel handles dates may need some explanation. Excel stores
dates as sequential serial numbers so that they can be used in calculations.
By default, Jan 1, 1900 is serial number 1, and January 1, 2008 is serial
number 39448 because it is 39447 days after January 1, 1900. This number
can also have decimals to indicate the time of the day. So basically 39447 is
January 1, 2008 at 12 AM, and 39447.5 is 12 PM on that day.

The chart in the upper right of the sheet is a so-called Gantt chart. In
Excel, it is a stacked bar chart with two series of values, of which the first
series, or stack, has no fill color or line color, so it is actually invisible. We
have actually 2 charts here. They both use B2:B11 as categories. One is
based on series G2:G11 (invisible) and series F2:F11. The other one is
plotted from series C2:C11 (invisible) and series D2:D11. The second chart
has a plot area with no fill, so you can lay it over the first one with a slight
offset down.

What you need to do

Option Explicit

Sub ProjectDelays()
 Dim oTable As Range, i As Integer, sMsg As String,
dAvgDate As Date, iOff As Long
 With Range("E2:H11")
 .ClearContents
 .Columns(1).Formula = "=C2+D2-1"
 .Columns(2).Formula =
"=D2+RANDBETWEEN(-2,2)"
 .Columns(3).Formula = "=IF(ROW()=2,C2,
H1+1)"
 .Columns(4).Formula = "=G2+F2-1"
 End With
 Set oTable = Range("G14").CurrentRegion
 Range("H15:H115").ClearContents
 oTable.Table , Range("F13")
 Range("E14:E33") =
WorksheetFunction.Frequency(oTable.Columns(2),
Range("D14:D33"))
 'OR: Range("E14:E33").FormulaArray =
"=FREQUENCY(R14C8:R115C8,R14C4:R33C4)"
 dAvgDate =
Round(WorksheetFunction.Average(oTable.Columns(2)),

0)
 iOff = WorksheetFunction.Days(dAvgDate,
Range("E11")) '+ IIf(iOff >= 0, 1, -1)
 If dAvgDate = Range("E11") Then iOff = 0
 sMsg = "Average finish date of 100 runs: " &
FormatDateTime(dAvgDate, vbShortDate) & vbCr
 sMsg = sMsg & "On average " & Abs(iOff) & "
days " & IIf(iOff >= 0, "later", "earlier")
 sMsg = sMsg & " than " & Range("E11")
 MsgBox sMsg
End Sub

VII. FINANCE

Chapter 75: Buy or Sell Stock?
What the simulation does

Based on the performance of a certain stock, we want to anticipate its
value the next day, so we can decide whether to buy or to sell.

Since there is much uncertainty involved, we need to consider the
mean and standard deviation of its past history, and based on this
information, the macro projects some 10,000 normally distributed values in
order to somewhat harnass volatility.

Part of the decision is determined by how far we want to go back in
history. So the macro goes back in the entire history shown in column A by
steps of 5 days, and then makes a provisional decision as to either buy or
sell for each step. This decision is obviously debatable. The macro uses the
following rule: if the average of 10,000 runs is greater than 0.01 times the
SD, go for “buy”; if it is less than 0.01 times the SD, go for “sell.” This rule
can be adjusted at any time, of course.

Finally, the macro displays the verdict of all periods and lets the user
determine which decision to make based on this information.

What you need to know
The background calculations are stored in an array with 10,000

elements. The average and standard deviation are based on those 10,000
values. There will always be volatility (and unexpected events!), but they
can be better harnassed by using huge amounts of numbers.

What you need to do

Option Explicit

Sub BuySell()
 Dim i As Long, oCurReg As Range, oRange As
Range, iOffset As Long, n As Long
 Dim pAvg As Double, pSD As Double, arrVal() As
Double, sMsg As String, sVerdict As String
 Dim pAvgAvg As Double, pLatestVal As Double
 Set oCurReg = Range("A1").CurrentRegion
 With oCurReg
 iOffset = oCurReg.Rows.Count
 pLatestVal = .Cells(iOffset, 2)
 For i = iOffset To 2 Step -5
 Set oRange = .Range(Cells(iOffset - i + 1, 2),
Cells(iOffset, 2))
 pAvg = WorksheetFunction.Average(oRange)
 pSD = WorksheetFunction.StDev(oRange)
 ReDim arrVal(0 To 9999)
 For n = 0 To 9999
 arrVal(n) =
WorksheetFunction.Norm_Inv(Rnd, pAvg, pSD)
 Next n
 pAvgAvg =
WorksheetFunction.Average(arrVal)

 sVerdict = IIf(pAvgAvg > (pLatestVal + pSD *
0.01), "buy", IIf(pAvgAvg < (pLatestVal - pSD * 0.01),
"sell", "-"))
 sMsg = sMsg & "Latest " & i & vbTab &
pAvgAvg & vbTab & sVerdict & vbCr
 Next i
 MsgBox sMsg
 End With
End Sub

Chapter 76: Moving Averages
What the simulation does

This file has 3 sheets and 3 similar macros for “moving averages” and
“exponential smoothing.” It simulates what happens when we reduce the
amount of “noise” with a certain factor.

What you need to know

What you need to do

Sub MovingAverage()
 Dim oChart As Chart, oSelect As Range, oSeries
As Series
 Dim oTrendCol As Trendlines, oTrend As Trendline
 Sheet12.Activate: Range("A1").Select
 Set oSelect = ActiveCell.CurrentRegion : Set
oChart = Charts.Add
 oChart.SetSourceData oSelect
 oChart.ChartType = xlXYScatterLines
 oChart.HasLegend = False: oChart.HasTitle =
False
 oChart.Axes(xlCategory).HasMajorGridlines =
True
 oChart.Location xlLocationAsNewSheet
 Set oSeries = oChart.SeriesCollection(1)
 Set oTrendCol = oSeries.Trendlines
 Set oTrend = oTrendCol.Add(xlMovingAvg, ,
InputBox("Period", , 3))
 oTrend.Border.LineStyle = xlDot :
Application.DisplayAlerts = False
 If MsgBox("Delete?", vbYesNo) = vbYes Then
oChart.Delete
 Application.DisplayAlerts = True
End Sub

Sub AvgSmoothed()
 Dim i As Integer, oRange As Range
 Sheet10.Activate: Range("A1").Select
 i = InputBox("Number of intervals to be
averaged", , 2)
 With Range("C1")
 .Value = "Avg on " & i
 Set oRange = .Range(Cells(2, 1),
Cells(.CurrentRegion.Rows.Count, 1))
 oRange.Clear
 Set oRange = .Range(Cells(i + 1, 1),
Cells(.CurrentRegion.Rows.Count, 1))
 oRange.FormulaR1C1 = "=AVERAGE(RC[-1] :
R[-" & i - 1 & "]C[-1])"
 oRange.NumberFormat = "0.00"
 End With
End Sub

Sub Damping()
 Dim pDamp As Double, oRange As Range
 Sheet11.Activate: Range("A1").Select
 pDamp = InputBox("Damping factor", , 0.15)
 With Range("C1")
 .Value = pDamp : .Offset(1, 0).Formula =
"=B2"
 Set oRange = .Range(Cells(3, 1),

Cells(.CurrentRegion.Rows.Count, 1))
 oRange.Clear
 Set oRange = .Range(Cells(3, 1),
Cells(.CurrentRegion.Rows.Count, 1))
 oRange.Formula = "=C1*B2+(1-C1)*C2"
 oRange.NumberFormat = "0.00":
oRange.Font.Bold = True
 End With
End Sub

Chapter 77: Automatic Totals and
Subtotals

What the simulation does

At the bounds of the database A1:E13, the first macro, Totals, adds
summaries of your choosing—SUM, STDEV, MEDIAN, and so on. The
second macro, SubTotals, creates subtotals and lets the users determine
which columns they like to use for sorting and summing. Then it offers the
option to copy this summary of subtotals to a new sheet.

What you need to know
The macro assumes that your database does not have formulas in it, so

it can use the VBA property HasFormula to determine where the database
ends.

What you need to do

Sub Subtotals()
 Dim oSelect As Range, oSort As Range, oTotal As
Range, oWS As Worksheet
 Sheet1.Activate: Range("A1").Select

 With ActiveCell.CurrentRegion
 Set oSort = Application.InputBox("Sort by
Label", , "G1", , , , , 8)
 .Sort oSort, xlAscending, , , , , , xlYes
 Set oTotal = Application.InputBox("SUM by
Label", , "D1", , , , , 8)
 .Subtotal oSort.Column, xlSum,
Array(oTotal.Column)
 Set oWS = ActiveSheet
 ActiveSheet.Outline.ShowLevels 2 '[row-levels],
[col-levels]
 Set oSelect = Application.InputBox("Which
range to copy", , Range("D1:D24,G1:G24").Address,
, , , , 8)
 Set oSelect =
oSelect.SpecialCells(xlCellTypeVisible)
 Set oWS = Worksheets.Add(, ActiveSheet)
 oSelect.Copy Cells(1, 1) : oSelect.Font.Color =
vbRed
 oSelect.Rows(1).Font.Color = vbBlack
 .EntireColumn.AutoFit:
Cells().EntireColumn.AutoFit
 Application.CutCopyMode = False ;
.Range("A1").RemoveSubtotal
 End With
End Sub

Sub Totals()
 Dim r As Long, c As Long, sOper As String,
oRange As Range, oCurReg As Range, n As Integer
 Sheet2.Select: Range("A1").Select
 With ActiveCell.CurrentRegion
 r = .Rows.Count: c = .Columns.Count
 If .Cells(r, c).HasFormula = False Then
.BorderAround , xlThick
 sOper =
InputBox("SUM/AVERAGE/MAX/STDEV/MODE/MEDIAN/COUNT",
, "SUM")
 sOper = UCase(sOper)
 Do Until .Cells(r, c).HasFormula = False
 r = r - 1: c = c - 1: n = n + 1
 Loop
 If n > 0 Then
 If MsgBox("Add " & sOper & " (instead of
replace)?", vbYesNo) = vbYes Then
 r = r + n: c = c + n
 End If
 End If
 .Cells(1, c + 1) = sOper: .Cells(r + 1, 1) = sOper
 Set oRange = .Range(.Cells(r + 1, 2), .Cells(r + 1,
c))
 oRange.FormulaR1C1 = "=" & sOper & "
(R2C:R[-" & n + 1 & "]C)"

 oRange.NumberFormat = .Cells(r,
c).NumberFormat
 Set oRange = .Range(.Cells(2, c + 1), .Cells(r +
1, c + 1))
 oRange.FormulaR1C1 = "=" & sOper & "
(RC2:RC[-1])"
 oRange.NumberFormat = .Cells(r,
c).NumberFormat
 If MsgBox("Delete summary?", vbYesNo) =
vbYes Then
 With Range("B2").CurrentRegion
 For r = .Rows.Count To 1 Step -1
 If .Cells(r, 2).HasFormula Then
.Rows(r).ClearContents
 Next r
 For c = .Columns.Count To 1 Step -1
 If .Cells(2, c).HasFormula Then
.Columns(c).ClearContents
 Next c
 End With
 End If
 End With
End Sub

Chapter 78: Fluctuations of APR
What the simulation does

Let’s pretend we are trying to predict what the total return would be
over a period of years if the initial deposit is fixed and the annual percentage
rate (APR) is fluctuating. So this sheet calculates how a fixed deposit
compounds over a specific number of years with a fluctuating APR.

We use three tables to set up this calculation. In the left table, we set up
our parameters and use a simple calculation of return without considering
any volatility. In the middle table, we simulate how APR could fluctuate
during the time period—in this case 30 years—if the volatility is 0.3% (cell
B4). Since this middle table represents only one of the many possible
outcomes, we need to run additional scenarios to model fluctuations in
return. In the Data Table to the right, we run these additional scenarios of the
middle table some 25 times.

The macro summarizes the results of 25 runs for what your savings
would be after 30 years—minimum, average, and maximum.

What you need to know

Compounding a certain amount of
money is based on a very simple formula: the starting amount multiplied by
(1+APR) raised to the power of the number of years—or: X*(1+APR)^yrs.
This is the formula used in the left table.

The middle table uses the function NORMINV to simulate fluctuations
in the annual percentage rate each year.

The Data Table to the right runs the end result of the middle table at
least 25 times by using the array formula {=TABLE(,G1)}—pointing to any
empty cell outside the table (e.g., cell G1). The more runs, the more reliable
the outcome is.

The chart is linked to columns D:F. One curve, the upward one, is for
the compounding savings amount; the other curve shows APR fluctuations.

What you need to do

Option Explicit

Sub Savings()
 Dim oRange As Range, oTable As Range,
oFormulas As Range, n As Integer
 Dim sMsg As String, sMin As String, sMax As
String, sAvg As String
 Set oRange = Range("D1").CurrentRegion
 oRange.ClearContents
 Set oTable = Range("H1").CurrentRegion
 oTable.ClearContents
 n = InputBox("For how many years (max of 30)?",
, 30)
 If n > 30 Then Exit Sub Else Range("B2") = n
 Set oRange = Range("D1").Range(Cells(1, 1),
Cells(n + 1, 3))
 oRange.Cells(1, 1) = "Year": oRange.Cells(1, 2) =
"APR": oRange.Cells(1, 3) = "Savings"
 Set oFormulas = oRange.Range(Cells(2, 1), Cells(n
+ 1, 3))
 With oFormulas
 .Columns(1).Formula = "=ROW(A1)"
 .Columns(2).Formula =
"=NORMINV(RAND(),B3,B4)"

 .Columns(3).Cells(1, 1).Formula = "=B1*
(1+E2)^D2"
 .Columns(3).Range(Cells(2, 1), Cells(n,
1)).Formula = "=F2*(1+E3)"
 oTable.Cells(1, 2).Formula = "=" &
.Columns(3).Cells(n, 1).Address
 End With
 Set oTable = Range("H1").Range(Cells(1, 1),
Cells(26, 2))
 oTable.Table , Range("G1")
 With oTable
 sMin =
FormatCurrency(WorksheetFunction.Min(.Columns(2)),
2)
 sAvg =
FormatCurrency(WorksheetFunction.Average(.Columns(2)),
2)
 sMax =
FormatCurrency(WorksheetFunction.Max(.Columns(2)),
2)
 End With
 sMsg = "Minimum savings: " & vbTab & sMin &
vbCr
 sMsg = sMsg & "Average savings: " & vbTab &
sAvg & vbCr
 sMsg = sMsg & "Maximum savings: " & vbTab &
sMax & vbCr

 MsgBox sMsg
End Sub

Chapter 79: Net Present Value
What the simulation does

When you have three scenarios (likely, best, worst) for your costs,
benefits, and growth rate (in A1:D4), you probably want a random outcome
between the extremes of best and worst. Then ultimately you want to
calculate the net present value (NPV) of your cash flows (in cell K10).

Here is some terminology. Having projected a company’s free cash
flow for the next five years, you want to figure out what these cash flows are
worth today. That means coming up with an appropriate discount rate which
you can use to calculate the net present value (NPV) of the cash flows. A
discount rate of 5% is used in column I (see screen shot below).

The most widely used method of discounting is exponential
discounting, which values future cash flows as “how much money would
have to be invested currently, at a given rate of return, to yield the cash flow
in the future.”

After running your 5 year projection (H1:K8), the simulation repeats
this with some 10,000 runs ithrough a VBA array. The simulation calculates
the average NPV and its standard deviation in cell K10 and K11 for the
latest run. The MsgBox keeps track of the results for previous runs.

Based on this information, you may want to find out what the

distribution of NPV values would be given the average of K10 and the
standard deviation of K11. This is done below them in cells J17:K51,
ranging from 2.5% to 97.5%. The graph shows the results, with the
“average” featuring at 50% (see screen shot on the next page).

What you need to know

What you need to do

Option Explicit

Sub NPV()
 Dim i As Long, n As Long, pNPV As Double,
arrNPV() As Double, sMsg As String
 Dim pSum As Double, pAvg As Double, pSD As
Double, sAvg As String, sSD As String
 n = InputBox("How many iterations (1000 to
10,000)?", , 1000)
 sMsg = "After " & n & " calculations:" & vbCr
 Do
 ReDim arrNPV(0 To n - 1)
 For i = 0 To n - 1
 Range("A1:K8").Calculate
 arrNPV(i) = Range("K8")
 pSum = pSum + arrNPV(i)
 Next i
 pAvg = pSum / n: sAvg =
FormatCurrency(pAvg, 2): pSum = 0
 pSD = WorksheetFunction.StDev_S(arrNPV):
sSD = FormatCurrency(pSD, 2)
 Range("K10") = sAvg: Range("K11") = sSD
 sMsg = sMsg & "Mean NPV:" & sAvg & vbTab
& vbTab & "SD NPV:" & vbTab & sSD & vbCr

 Loop Until MsgBox(sMsg & vbCr & "Repeat?",
vbYesNo) = vbNo
End Sub

Chapter 80: A Loan with Balance
and Principal

What the simulation does

This is basically a simple macro. We enter estimates for loan amount,
term of the loan, and annual percentage rate through an InputBox three times.
Then the macro calculates, on a new sheet, the monthly payments, the total of
payments, and the total of interest.

Since there is not much “uncertainty” involved—all variables are
fixed—don’t expect any volatility here.

What you need to know
We need the Excel function PMT. Its syntax is: PMT(rate, nper, pv,

[fv], [type]). It calculates the payment for a loan (pv or present value) based
on constant monthly payments and a constant interest rate (rate per month)
for a certain period of time (nper in months). The last two other arguments
we can ignore here. Since we are dealing here with months, make sure to
divide rate (APR) by 12, and multiply the number of years by 12. Be aware
PMT returns a negative value (a value that is owed), unless you enter the
present value as a negative amount.

In addition, we need the Excel functions IPMT to calculate the
interest, and PPMT to calculate the principal. They have basically the same
syntax. All formulas are shown here below.

Here is the new sheet for $50,000 and an APR of 4.5%:

What you need to do

Sub Loan()
 Dim cLoan As Currency, pAPR As Double,
iDuration As Integer, i As Integer
 Dim oWS As Worksheet
 cLoan = InputBox("Loan amount", , 65000)
 pAPR = InputBox("Fixed APR", , 0.056) / 12
 iDuration = InputBox("Number of years", , 30) *
12
 Set oWS = Worksheets.Add(, ActiveSheet)
 oWS.Name = cLoan & "-" &
FormatPercent(pAPR, 2) & "-" & iDuration
 Cells(1, 1) = "Period"
 Cells(1, 2) = "Month"
 Cells(1, 3) = "Balance"
 Cells(1, 4) = "Monthly"
 Cells(1, 5) = "Interest"
 Cells(1, 6) = "Principal"
 Cells(1, 7) = "Cum. Interest"
 Cells(1, 8) = "Cum. Principal"
 Application.Cursor = xlWait
 With Range("A1")
 For i = 1 To iDuration
 .Offset(i, 0).Formula = "=ROW()-1"
 '=DATE(YEAR(B5),MONTH(B5)+1,1)

 .Offset(i, 1).Formula =
"=DATE(YEAR(TODAY()), MONTH(TODAY())+" &
i & ",1)"
 .Offset(i, 1).NumberFormat = "mmm-yy"
 '=Loan and then =C3+F3
 .Offset(i, 2).FormulaR1C1 = IIf(i = 1, cLoan,
"=R[-1]C3+R[-1]C6")
 '=PMT(pAPR,iDuration,cLoan)
 .Offset(i, 3).Formula = "=PMT(" & pAPR &
"," & iDuration & "," & cLoan & ")"
 '=IPMT(pAPR,period,iDuration,cLoan)
 .Offset(i, 4).FormulaR1C1 = "=IPMT(" &
pAPR & ",RC1," & iDuration & "," & cLoan & ")"
 '=PPMT(pAPR,period,iDuration,cLoan)
 .Offset(i, 5).FormulaR1C1 = "=PPMT(" &
pAPR & ",RC1," & iDuration & "," & cLoan & ")"
 '=SUM(E2:E2)
 .Offset(i, 6).FormulaR1C1 =
"=SUM(R2C5:RC5)"
 '=SUM(F2:F2)
 .Offset(i, 7).FormulaR1C1 =
"=SUM(R2C6:RC6)"
 Next i
 End With
 Cells.EntireColumn.AutoFit
 Application.Cursor = xlDefault
End Sub

Chapter 81: S&P500 Performance
What the simulation does

Based on data from 1950 to 2012, we have an average daily return
value (in cell B2) and a daily standard deviation value (in cell B3) for
S&P500 performance. This information we use to calculate what the
percentage would be at the end of a week (in cell F6).

Then we repeat this volatile calculation some 10,000 times with a
VBA array of 10,000 elements. There is going to be quite some volatility,
but because we have a reasonable sample size now, we can find a more
reliable average and SD through the array of 10,000 values. We can repeat
this several times, while the MsgBox keeps track of the results. That may
give is a bit more certainty in the midst of uncertainties.

What you need to know

The historical values in column B are used in column E with a
NORMINV Excel function.

In column F, we calculate the cumulative end-of-week result: (daily %
+1) * (previous cumulative % + 1) – 1.

What you need to do

Option Explicit

Sub Performance()
 Dim oRange As Range, arrVals() As Double, i As
Long, n As Integer
 Dim pAvg As Double, pSD As Double, sMsg As
String
 Do
 ReDim arrVals(0 To 9999)
 n = n + 1
 For i = 0 To 9999
 Range("E2:F6").Calculate
 arrVals(i) = (Cells(6, 5) + 1) * (Cells(5, 6) + 1)
- 1
 Next i
 pAvg = WorksheetFunction.Average(arrVals)
 pSD = WorksheetFunction.StDev(arrVals)
 sMsg = sMsg & "Average: " &
FormatPercent(pAvg, 3) & vbTab & _
 "SD: " & FormatPercent(pSD, 3) & vbCr
 MsgBox n & " x 10,000 runs:" & vbCr & sMsg
 Loop Until MsgBox("Another run?", vbYesNo) =
vbNo
End Sub

Chapter 82: Stock Market
What the simulation does

The left section of this sheet contains hard-coded data, comparing past
S&P 500 values (C) with the past values of a traditional portfolio (B).

The right section analyses this information from the most recent month
(12/1/06) down to the previous month (11/1/06) and much further back in
time, if needed. The overview “grows” back in time if you copy its first row
down as far as you want to go back in history.

In addition, when new records are added at the bottom of the left
section, the first row in the right section will automatically update the history
from the most recent data down.

The macro does all of this automatically, once you decide on the
number of rows “back in history.”

What you need to know
The only new function is COUNTA. The COUNTA function works

like COUNT, but it also counts cells with text in them, such as the headers
above each column.

As said before, the function INDEX is a more sophisticated version of
VLOOKUP. It looks in a table at a certain row position and a certain column
position. It uses this syntax: INDEX(table, row#, col#). Whereas VLOOKUP
works only with column numbers, INDEX also uses row numbers, which is
very important when we want to look at a record that is located, for
instance, 3 or 12 rows above another record (like in columns G and J).

This time we use the function ROW again, but for a different reason—
to make the month go down: row# – ROW(A1)+1. Each time we copy that
formula one row down, the formula subtracts one more row: – ROW(A2),
then – ROW(A3), and so forth.

What you need to do

Option Explicit

Sub Stock()
 Dim oRange As Range, oTable As Range
 Dim vArr As Variant, i As Long, n As Long
 vArr = Array("Month", "Traditional", "Trad-
3mo", "BenchMark", "S&P500", "S&P-3mo",
"BenchMark")
 Set oRange = Range("A1").CurrentRegion
 Set oTable = Range("E1").CurrentRegion
 oTable.Clear
 Range("E1:K1") = vArr
 n = InputBox("How many months?", , 12)
 Set oTable = Range(Cells(2, 5), Cells(1 + n, 11))
 With oTable
 .Columns(1).Formula =
"=INDEX($A:$C,COUNTA($A:$A)-ROW(A1)+1,1)"
 .Columns(2).Formula =
"=INDEX($A:$C,COUNTA($A:$A)-ROW(B1)+1,2)"
 .Columns(3).Formula =
"=INDEX($A:$C,COUNTA($A:$A)-ROW(C1)+1-
3,2)"
 .Columns(4).Formula = "=F2/G2-1"
 .Columns(5).Formula =

"=INDEX($A:$C,COUNTA($A:$A)-ROW(A1)+1,3)"
 .Columns(6).Formula =
"=INDEX($A:$C,COUNTA($A:$A)-ROW(A1)+1-
3,3)"
 .Columns(7).Formula = "=I2/J2-1"
 For i = 2 To .Columns.Count
 .Columns(i).Cells.NumberFormat = "0.00"
 Next i
 .Columns(1).Cells.NumberFormat = "m/d/yy"
 .BorderAround , xlThick
 .Cells.Font.Bold = True
 End With
End Sub

Chapter 83: Stock Volatility
What the simulation does

There is much uncertainty on the stock market. Monte Carlo
simulations are a great tool to get a bit more certainty in the midst of
numerous uncertainties.

The information needed is in the left top corner. The expected return in
cell B3 is based on history: an expected return of 10% divided by 250
trading days per year. The volatility in cell B4 is also based on past
performance: an annualized volatility of 25% divided by the square root of
trading days per year.

The simulation plots in column B the changes in stock value up to a
maximum of 250 trading days. To harness our uncertainty a little better, the
macro runs at least 1,000 to 10,000 iterations to beat volatility. This is to
ensure that we have a statistical chance of getting sufficient outliers (extreme
values) to make the variance analysis meaningful.

The simulation does all of this without a Data Table—which saves us
some “overhead costs.” Instead it uses a VBA array of 10,000 entries. It
finds the value after the first 10 days, repeats this 10,000 times, and stores
these 10,000 values in the array; the average of these values is entered in
cell F20. Then it does this again, but now for 30 days (G20), and so on, up to
250 days at the most. The chart shows the results of one run (columns A:C)
and of 10,000 runs (F20:R20).

What you need to know

The sheet itself has only formulas in rows A:C (column C is solely for
a baseline in the chart). The formulas from row 7 down are generated by the
macro.

What you need to do

Option Explicit

Sub Volatility()
 Dim oRange As Range, i As Long, n As Long, c As
Integer, j As Integer
 Dim arrVals() As Double, oTotals As Range
 Set oRange = Range("A7").CurrentRegion
 oRange.ClearContents
 n = InputBox("How many days ahead (10-250)?", ,
250)
 If n > 250 Then Exit Sub Else n = n + 1
 Range("B2").Activate
 With oRange
 .Cells(1, 2) = "value": .Cells(1, 3) = "base":
.Cells(2, 2).Formula = "=B2"
 .Range(Cells(2, 1), Cells(n, 1)).Formula =
"=ROW(A1)"
 .Range(Cells(3, 2), Cells(n, 2)).Formula =
"=B7+B7*(B3+B4*NORMINV(RAND(),0,1))"
 .Range(Cells(2, 3), Cells(n, 3)).Formula =
"=B7"
 End With
 Set oTotals = Range(Cells(20, 6), Cells(20, 18))
 oTotals.ClearContents

 With oTotals
 For c = 10 To n Step 20
 ReDim arrVals(0 To 9999)
 For i = 0 To 9999
 oRange.Calculate
 arrVals(i) =
WorksheetFunction.VLookup(c,
oRange.Range(Cells(2, 1), Cells(n, 2)), 2, True)
 Next i
 j = j + 1
 .Cells(1, j) =
WorksheetFunction.Average(arrVals)
 Calculate
 DoEvents
 Next c
 End With
End Sub

Chapter 84: Return on Investment
What the simulation does

In this simulation, we want to calculate our return on an investment,
but also take into consideration the cost of inflation and taxes for our
investment.

The sheet simulates the return on investment (ROI) when buying bank
CDs for a certain amount of money (B1), with the assumption that these have
a fixed interest rate (B2), a certain fixed inflation rate (B4), and that we are
taxed at 25% for CD profits (B3). We also assume that we want to keep our
CD value at its original power by, at least theoretically, putting in more
money each year (B8). We do all of this for a certain number of years (B6).

The core part of this simulation is calculating the return on investment
(ROI) in cell B11, based on all the cells above it. The macro also creates a
Data Table to be placed in D6:K13. This table shows at what return rates
and inflation rates our investment becomes profitable. It uses a link to that
calculation in B11. Based on this calculation, the two-dimensional Data
Table shows what the ROI is for a range of changes in CD interest and in
inflation rate.

What you need to know

What you need to do

Option Explicit

Sub CDReturn()
 Dim i As Integer, oTable As Range
 Range("B6:B11").ClearContents
 Range("D6").CurrentRegion.Clear
 i = InputBox("For how many years?", , 10)
 Range("B6") = i
 Range("B7").Formula = "=B1*(1-B4)^B6"
 Range("B8").Formula = "=B1-B7"
 Range("B9").Formula = "=B1*B2*B6"
 Range("B10").Formula = "=B9*B3"
 Range("B11").Formula = "=(B9-B8-
B10)/(B1+B8)"
 Set oTable = Range(Cells(6, 4), Cells(13, 11))
 With oTable
 .Cells(1, 1).Formula = "=B11"
 .Range(Cells(1, 2), Cells(1, 8)).Formula =
"=COLUMN(D1)/100"
 .Range(Cells(1, 2), Cells(1,
8)).Borders(xlEdgeBottom).Weight = xlMedium
 .Range(Cells(2, 1), Cells(8, 1)).Formula =
"=ROW(A4)/100"
 .Range(Cells(2, 1), Cells(8,

1)).Borders(xlEdgeRight).Weight = xlMedium
 .Table Range("B2"), Range("B4")
 .Cells.NumberFormat = "0.00%;[Red] -0.00%"
 .Cells(8, 1).Offset(1, 0) = "inflation rate"
 .Cells(1, 8).Offset(0, 1) = "CD interest"
 End With
End Sub

Chapter 85: Value at Risk
What the simulation does

Value-at-Risk, or VaR, is the potential maximum loss in a portfolio
(and a certain standard deviation) at a given confidence interval over a
given period of time (which could be a day, a month, or a year). We
calculate the minimum expected return, which is done with the function
NORMINV in B7 (although investments do not always follow a normal
distribution!).

What you need to know
The VaR is for a single time period (say, one trading day). To convert

that value to a longer range, simply multiply the VaR by the square root of
the number of single periods within the longer period. Say, you calculated
the VaR for one day and want it for a month, use the number of trading days
in a month, say 22, and multiply your VaR with √22.

VaR is not your worst case loss. At a confidence level of 95%, the
VaR is your minimum expected loss 5% of the time—not your maximum

expected loss. So don’t be surprised.

What you need to do

Sub TableBox()
 Dim cPort As Currency, pAvg As Double, pSD As
Double, pConf As Double
 Dim sStart As String, i As Integer, oRange As
Range
 Range("A6").CurrentRegion.ClearContents
 cPort = InputBox("Portfolio", , Cells(1, 2)):
Cells(1, 2) = cPort
 pAvg = InputBox("Average", , Cells(2, 2)):
Cells(2, 2) = pAvg
 pSD = InputBox("Standard Deviation", , Cells(3,
2)): Cells(3, 2) = pSD
 pConf = InputBox("Confidence Level", , 0.95):
Cells(4, 2) = pConf
 sStart = InputBox("Start table in", , "A6")
 If Range(sStart) <> "" Then
Range(sStart).CurrentRegion.Delete
 With Range(sStart)
 .Offset(0, 0) = "Confidence": .Offset(0, 1) =
"Min. return"
 .Offset(0, 2) = "New value": .Offset(0, 3) =
"Value at risk"
 .Offset(0, 4) = "Monthly VaR"
 For i = 1 To 10

 .Offset(i, 0) = FormatPercent(pConf - (i - 1) *
0.05, 0)
 Next i
 .Offset(1, 1).Formula = "=NORM.INV(1-
B4,B2,B3)"
 .Offset(1, 2).Formula = "=B1*(" & .Offset(1,
1).Address & "+1)"
 .Offset(1, 3).Formula = "=B1-" & .Offset(1,
2).Address
 .Offset(1, 4).Formula = "=" & .Offset(1,
3).Address & "*SQRT(22)"
 Set oRange = Range(.Offset(1, 0), .Offset(10, 4))
; oRange.Table , Range("B4")
 oRange.Columns(2).NumberFormat = "0.00"
 oRange.Columns(3).NumberFormat =
"$#,##0.00_);[Red]($#,##0.00)"
 oRange.Columns(4).NumberFormat =
"$#,##0.00_);[Red]($#,##0.00)"
 oRange.Columns(5).NumberFormat =
"$#,##0.00_);[Red]($#,##0.00)"
 Cells.Columns.AutoFit
 End With
 'Conditional Formatting with Bars (only in later
versions of Excel)
 With oRange.Columns(5)
 Dim oBar As Databar
 .Select

 Set oBar =
Selection.FormatConditions.AddDatabar
 oBar.MinPoint.Modify
newtype:=xlConditionValueAutomaticMin
 oBar.MaxPoint.Modify
newtype:=xlConditionValueAutomaticMax
 oBar.BarFillType = xlDataBarFillGradient
 oBar.Direction = xlContext
 oBar.NegativeBarFormat.ColorType =
xlDataBarColor
 oBar.BarBorder.Type = xlDataBarBorderSolid
 oBar.NegativeBarFormat.BorderColorType =
xlDataBarColor
 oBar.AxisPosition = xlDataBarAxisAutomatic
 End With
 Range("B1").Select
End Sub

Chapter 86: Asian Options
What the simulation does

This simulation concerns an Asian option, which is valued by
determining the average underlying price over a period of time. Simply put,
an option contract is an agreement between two people that gives one the
right to buy or sell a stock at some future date for some preset price. To
price an Asian option by its mean, we need to know, at least to some degree,
the path that the stock will take as time progresses.

An Asian option (or “average value option”) is a special type of
option contract. The payoff is determined by the average underlying price
over some pre-set period of time. This is different from the usual European
options and American options which are valued at the expiration of the
contract.

One advantage of Asian options is that these reduce the risk of
market manipulation. Another advantage is the relatively low cost of Asian
options. Because of the averaging feature, Asian options reduce the
volatility inherent in the option; therefore, Asian options are typically
cheaper than European or American options.

What you need to know
To simplify things, we will track the stock over 5 years in yearly

increments (B7:H7). To derive the average value in I7, we multiply the
initial stock price (column B) by the first randomly generated log-normal

number (with the functions EXP and NORMINV in C7:H7) to obtain a value
for year 1 (I won’t go into further explanations). The result must be
multiplied by the second randomly generated number (column C), and so on.

To make the predictions more reliable, we give it 10,000 runs in this
simulation. This is done with a VBA array (so we won’t need a Data Table).
For each trial, the simulation recalculates row 7 and stores the payoff
amount (J7) for each run in an array of 10,000 elements. Then the simulation
calculates the average payoff and its standard deviation in the array.

The Standard Error of the mean (SE) is the Standard Deviation (SD)
divided by the square root of the number of cases. A confidence level of
95% evaluates to the mean ± (1.96 * SE).

The macro reports in a MsgBox what the payoff amount would be with
95% confidence.

What you need to do

Option Explicit

Sub AsianOption()
 Dim arrPayoffs() As Double, i As Long
 Dim pAvg As Double, pSD As Double, pSE As
Double
 Dim sLower As String, sUpper As String, sAvg As
String, sSD As String
 ReDim arrPayoffs(0 To 99999)
 For i = 0 To 99999
 Range("B7:J7").Calculate
 arrPayoffs(i) = Range("J7")
 Next i
 pAvg = WorksheetFunction.Average(arrPayoffs)
 pSD = WorksheetFunction.StDev(arrPayoffs)
 pSE = pSD / Sqr(100000)
 sLower = FormatCurrency(pAvg - (1.96 * pSE), 2)
 sUpper = FormatCurrency(pAvg + (1.96 * pSE), 2)
 MsgBox "After 100,000 runs, we have " & vbCr &
"95% confidence that the payoff is:" & _
 vbCr & "between:" & vbTab & sLower &
vbCr & "and:" & vbTab & sUpper
End Sub

VIII. MISCELLANEA

Chapter 87: Cracking a Password
What the simulation does

This is not a real password cracker, of course, but we can still mimic
part of the process. First of all, in real life you don’t know the password yet.
Second, the password can be, and should be, rather long. Neither condition
can be met in this simulation.

Let us assume that the password is “p@s.” This is a 3-letter word, so
even if we only use the characters a-z (no capitals), then we would still have
26^3 possible combinations—which amounts to 17,576 different
arrangements. But we would like to use other characters as well. So don’t
make the password longer than 3 characters, for that could take an enormous
amount of processing time. Even in the simple example shown above, we
were “lucky enough” to find one matching combination after 479,657 trials.
Run times may vary considerably, of course.

What you need to know
There is a VBA function called Chr (in Excel it’s the CHAR function)

which returns the character that comes with a certain asci number. To find
out what the asci number of a certain key is, we could use the VBA function
Asc (in Excel it’s the CODE function); for instance, Chr(“a”) would give us
the number 97.

The sheet shows 125 asci numbers in column A and the corresponding
characters in B, just for your information. To limit ourselves to “readable”
characters, we use the Excel function RANDBETWEEN to get a random

character between the asci-numbers 33 and 122
The macro also uses the Application.StatusBar property to report

progress on the status bar after every 1,000 runs.

What you need to do

Option Explicit

Sub Password()
 Dim i As Long, j As Integer, sPass As String,
sGuess As String
 sPass = InputBox("Which password?", "Watch the
Status Bar", "p@s")
 'More than 3 chars could take very long
 If Len(sPass) > 3 Then MsgBox "No more than 3
chars": Exit Sub
 Range("A1").Select
 Do
 For j = 1 To Len(sPass)
 sGuess = sGuess &
Chr(WorksheetFunction.RandBetween(33, 122))
 Next j
 If sGuess = sPass Then Exit Do
 i = i + 1
 DoEvents
 If i Mod 1000 = 0 Then Application.StatusBar =
i & " runs"
 sGuess = ""
 Loop
 MsgBox "Found the password " & sPass & " after

" & i & " trials."
End Sub

Chapter 88: Encrypting Text
What the simulation does

This file has two sheets. It uses two different macros: one for the 1st

sheet, and the other for the 2nd sheet. They both encrypt and decrypt cells—
in this case cells with Social Security numbers (SSN). Both macros use a
costom function that I gave the name Encrypt (the first code on the next
page). This function has been given two arguments, the second of which is
Boolean and determines whether to encrypt the SSN or decrypt the
encrypted SSN. In the former case, it shifts asci numbers up by 20 (or so); in
the latter case it shifts them down by that amount. Obviously, it is one of the
simplest algorithms one could think of.

The difference between macros (Sub) and functions (Function) is a bit
semantic. Functions return something—a word, a value—just like the
function SUM returns the total of values. Subs, on the other hand, change
things. Let’s leave it at that.

The first macro (the second code on the next page) places in column D
of the 1st sheet an encrypted SSN, and then decrypts it again in column E. It
does so by setting the Formula property of those cells that uses the function
Encrypt.

The second macro (the third code on the next page) does something
similar, but this time by directly calling the Encrypt function.

What you need to know
To make the encrypted version a bit harder to crack, we used the VBA

function StrReverse, which puts the text, a String, in a reversed order.

What you need to do

Option Explicit
'A simple algorithm, so if law enforcement detects
illegal use of it, the code can be cracked easily

Function Encrypt(sInput As String, bEncrypt As
Boolean) As String
 Dim i As Integer, sChar As String, sNew As String
 sInput = StrReverse(UCase(sInput))
 For i = 1 To Len(sInput)
 sChar = Mid(sInput, i, 1)
 sChar = Chr(Asc(sChar) + IIf(bEncrypt, 20,
-20))
 sNew = sNew & sChar
 Next i
 Encrypt = sNew 'OR: = LCase(sNew)
End Function

Sub CreateFormulas()
 Dim iRows As Long
 Sheet1.Activate: Range("A1").Select
 iRows = Range("A1").CurrentRegion.Rows.Count
 Range("D1").Range(Cells(2, 1), Cells(iRows,
1)).ClearContents
 Range("E1").Range(Cells(2, 1), Cells(iRows,

1)).ClearContents
 If MsgBox("Encrypt and decrypt with formula?",
vbYesNo) = vbNo Then Exit Sub
 Range("D1").Range(Cells(2, 1), Cells(iRows,
1)).Formula = "=Encrypt(B2,TRUE)"
 Range("E1").Range(Cells(2, 1), Cells(iRows,
1)).Formula = "=Encrypt(D2,FALSE)"
End Sub

Sub Encrypting()
 Dim sText As String, i As Long
 Sheet3.Activate
 Columns("D:E").ClearContents
 MsgBox "Encrypting and decrypting column B"
 For i = 2 To
Range("A1").CurrentRegion.Rows.Count
 Cells(i, 4) = Encrypt(Cells(i, 2), True)
 Cells(i, 5) = Encrypt(Cells(i, 4), False)
 Cells.EntireColumn.AutoFit
 Next i
End Sub

Chapter 89: Encrypting a
Spreadsheet

What the simulation does

With an Application.InputBox, the user can indicate which part of a
sheet to encrypt. Then the macro uses the function Encrypt (the same
function as used in the previous chapter) to encrypt each cell in this selected
range and place it on a new sheet. This is done with a For-Each-loop.

Next the macro asks the user whether they want to create a CSV-file of
this encrypted sheet (see below). If the user says yes, another Sub is called,
SaveAsText, which opens NotePad and copies the encrypted text onto it.

What you need to know

It is thanks to a global variable, bEncrypt, that the macro Processing
“knows” whether to encrypt or decrypt.

What you need to do

Option Explicit
Dim bEncrypt As Boolean

Sub Processing()
 If bEncrypt = False Then
 bEncrypt = True: Encrypting
 Else
 bEncrypt = False: Encrypting
 End If
End Sub

Sub Encrypting()
 Dim oWS1 As Worksheet, oWS2 As Worksheet,
oCell As Range, oSelect As Range, sAddr As String
 Set oWS1 = ActiveSheet
 Set oSelect = Application.InputBox("Range", ,
Range("A1").CurrentRegion.Address, , , , , 8)
 Set oWS2 = Sheets.Add(, oWS1)
 For Each oCell In oSelect
 sAddr = oCell.Address ; oWS2.Range(sAddr) =
Encrypt(oCell.Value, bEncrypt)
 Next oCell
 oWS2.Cells.EntireColumn.AutoFit
 If MsgBox("Do you want an encrypted CSV file?",

vbYesNo) = vbYes Then SaveAsText
 If bEncrypt = False Then Exit Sub
 If MsgBox("Do you want to decrypt next?",
vbYesNo) = vbYes Then bEncrypt = False: Encrypting
End Sub

Function Encrypt(sTxt As String, bEncr As Boolean)
 Dim i As Long, sChar As String, sNew As String
 For i = 1 To Len(sTxt)
 sChar = Mid(sTxt, i, 1) : sChar =
Chr(Asc(sChar) + IIf(bEncr, 20, -20))
 sNew = sNew & sChar
 Next
 Encrypt = sNew
End Function

Sub SaveAsText()
 Dim vExe As Variant, oSelect As Range
 Set oSelect = Application.InputBox("Range", ,
Range("A1").CurrentRegion.Address, , , , , 8)
 oSelect.Copy : vExe = Shell("notepad.exe",
vbNormalFocus)
 AppActivate vExe ; SendKeys "^V", True
End Sub

Chapter 90: Numbering Records
What the simulation does

This macro automatically “numbers” each record in a database by
inserting a column before the first column and then populating it with various
options:

• Consecutive numbering
• With leading zeros
• Starting at a specific number
• Repeating from 1 to n
• Repeating each number n times

At the end of all these options, the macro lets the user sort range
(J11:J16) in a randomly sorted way. The sorting is based on random
numbers in column I. The randomly sorted list uses the Excel functions
VLOOKUP and SMALL as shown in the comment of cell L11.

What you need to know
The Excel functions that can be used here are ROW, RIGHT, MOD,

QUOTIENT, VLOOKUP, and SMALL.
QUOTIENT returns the integer portion of a division; its 1st argument

holds the numerator, the 2nd argument the divisor.

What you need to do

Option Explicit

Sub Numbering()
 Dim oRange As Range
 Range("A1").EntireColumn.Insert
 Range("A1") = "ID"
 Set oRange = Range("A1").CurrentRegion
 Set oRange = oRange.Offset(1,
0).Resize(oRange.Rows.Count - 1, 1)
 With oRange
 MsgBox "Consecutive numbering."
 .Formula = "=ROW(A1)"
 .Formula = .Value
 MsgBox "With leading zeros."
 .Formula = "=RIGHT(""000"" & ROW(A1),3)"
 .Copy: .PasteSpecial
xlPasteValuesAndNumberFormats
 Application.CutCopyMode = False:
Range("A1").Select
 MsgBox "Starting at 1001."
 .Formula = "=ROW(A1001)"
 .Formula = .Value: Application.CutCopyMode =
False
 MsgBox "Repeating from 1 to 5."

 .Formula = "=MOD(ROW(A1)-1,5)+1"
 .Formula = .Value
 MsgBox "Repeating each number 5 times."
 .Formula = "=QUOTIENT(ROW(A1)-1,5)+1"
 .Formula = .Value
 End With
 MsgBox "The last step deletes column A"
 Range("A1").EntireColumn.Delete
 Do While MsgBox("In H11:K16, we sort data
randomly. Again?", vbYesNo) = vbYes
 Calculate
 Loop
End Sub

Chapter 91: Sizing Bins for
Frequencies

What you need to know

In this macro, an Application.Inputbox asks the user which values
from A1:E20 should be covered in the frequency table of columns G:H. The
macro also checks how many bins the user wants to create, so the VBA code
can properly calculate the bin sizes.

What the simulation does
The VBA code creates a Range Name for the range that has been

selected, so that this Name can be used in formulas. At the beginning of the
code, a previously assigned Name has to be deleted, if there is one. But if
this Name did not exist yet, the code would run into trouble for it cannot
delete what is not there—that’s what the line On Error Resume Next tries to
prevent.

An alternative would be to declare a variable of the Name type: Dim
oName as Name. And then make a loop like this: For Each oName in
Names | If oName = “data” then oName.Delete | Next oName.

The FREQUENCY function returns the frequencies for each bin, but
also returns one additional value for what we could call the “left-overs.” If

that extra bin is not 0, then some or more values have been left out. That is a
final check that not all values have been covered.

The formula in the bins range that creates the bins would look like
this:
=INT(MIN(data)+(ROW(A1)*(MAX(data)-MIN(data))/" & iBin & ")).

What you need to do

Option Explicit

Sub BinSizing()
 Dim iBin As Integer, oData As Range, oBins As
Range, oFreqs As Range
 On Error Resume Next
 Sheet1.Names("data").Delete
 Set oData = Application.InputBox("Range", ,
Range("A1").CurrentRegion.Address, , , , , 8)
 oData.Name = "data"
 iBin = InputBox("How many bins (5-10...-30)?", ,
20)
 If iBin > 30 Then Exit Sub
 Columns("G:H").ClearContents
 Set oBins = Range(Cells(1, 7), Cells(iBin, 7))
 oBins.Formula = "=INT(MIN(data)+(ROW(A1)*
(MAX(data)-MIN(data))/" & iBin & "))"
 Set oFreqs = Range(Cells(1, 8), Cells(iBin + 1, 8))
'+1 for the left-overs
 oFreqs.FormulaArray = "=FREQUENCY(data," &
oBins.Address & ")"
 oData.Select
End Sub

Chapter 92: Creating Calendars
What the simulation does

This macro creates a calendar for the month and year of your
choosing, either in a MsgBox (picture above) or on the sheet itself (picture
below)

What you need to know

The VBA function DateSerial returns a date based on 3 arguments
(year, month, day). The VBA function WeekDay returns the day of the week
from 1 (Sunday) to 7 (Saterday). So the VBA expression WeekDay(2) would
return “Monday.”

What you need to do

Sub Calendar()
 Dim dStart As Date, dDay As Date
 Dim i As Integer, sCal As String
 dStart = InputBox("Start", , Date)
 For i = 0 To 30

 dDay = dStart + i
 If Weekday(dDay) <> 1 And Weekday(dDay) <>
7 Then
 sCal = sCal & vbCr & Format(dDay, "ddd" &
vbTab & "mm/dd/yy")
 Else
 sCal = sCal & vbCr
 End If
 Next i
 MsgBox sCal
End Sub

Sub MonthDisplay()
 Dim dDate As Date, sCal As String, i As Integer,
iMonth As Integer, iYear As Integer
 iMonth = InputBox("Month", , Month(Now()))
 iYear = InputBox("Year", , Year(Now()))
 sCal = MonthName(iMonth) & " " & iYear &
vbCr
 sCal = sCal & "S" & vbTab & "M" & vbTab &
"T" & vbTab & "W" & vbTab & "T" & vbTab & "F"
& vbTab & "S" & vbCr
 dDate = DateSerial(iYear, iMonth, 1 : dDate =
dDate - Weekday(dDate) + 1
 Do
 For i = 1 To 7
 If Month(dDate) = iMonth Then sCal = sCal
& Day(dDate)
 sCal = sCal & vbTab
 dDate = dDate + 1
 Next i
 sCal = sCal & vbCr
 Loop While Month(dDate) = iMonth
 MsgBox sCal
End Sub

Sub SheetCalendar()
 Dim dDate As Date, iMonth As Integer, iYear As

Integer
 Dim sRange As String, r As Integer, i As Integer
 sRange = Application.InputBox("Start in cell", ,
"A1")
 iMonth = InputBox("Month", , Month(Now()))
 iYear = InputBox("Year", , Year(Now()))
 With Range(sRange)
 .Value = MonthName(iMonth) & " " & iYear
 .Range(Cells(1, 1), Cells(1, 7)).Merge
 .HorizontalAlignment = xlCenter
 r = 2
 For i = 1 To 7
 .Cells(r, i) = Left(WeekdayName(i), 3)
 Next i
 dDate = DateSerial(iYear, iMonth, 1)
 dDate = dDate - Weekday(dDate) + 1
 Do
 r = r + 1
 For i = 1 To 7
 If Month(dDate) = iMonth Then .Cells(r, i)
= Day(dDate) Else .Cells(r, i) = ""
 dDate = dDate + 1
 Next i
 Loop While Month(dDate) = iMonth
 .CurrentRegion.BorderAround , xlThick
 End With
End Sub

Chapter 93: Populating a Jagged
Array

What the simulation does

This simulation creates random sales per row—which could be per
day, per week, or whatever. Since the number of sales per row can vary, a
simulation like this can best be done with a so-called jagged array.

The “main” array has 26 elements (0 to 25). But each one of these 26
elements holds another array of elements. So we end up with an array of
arrays—a 1-dimensional “main array” with 1-dimensional “subarrays.” The
dimension of each subarray is determined randomly.

What you need to know
The simulation loops through the 26 elements of the main array and

starts each time a subarray with a random amount of (random) elements, the
sales. Once the subarray is finished, the simulation stores it in the main
array: arrMain(i) = arrSub. Make sure the main array is of the Variant type,
for only a Variant can store another array.

To populate the cells on the sheet, you need to address each element in
the main array as well as in the subarray. This is done as follows:
arrMain(i)(j)—with j refering to a subarray element, and i to a main array

element.
On the last line, the simulation calculates the total sales amount.
In case you want to create the jagged array on a new sheet, the VBA

code has also a Sub called InsertSheet.

What you need to do

Option Explicit

Sub JaggedArray()
 Dim arrMain(25) As Variant, arrSub() As String
 Dim i As Integer, j As Integer, iRand As Integer
 Dim cSubTotal As Currency, cGrandTotal As
Currency

Range("A1").CurrentRegion.Cells.Interior.ColorIndex
= 0
 Range("A1").CurrentRegion.ClearContents
 'Loop thru Main Array and create Sub arrays of
random length
 For i = 0 To UBound(arrMain)
 iRand = Int(Rnd() * 15)
 ReDim arrSub(iRand)
 For j = 0 To UBound(arrSub)
 arrSub(j) = FormatCurrency(Rnd() * 1000)
 Next j
 arrMain(i) = arrSub
 Next i
 'Call InsertSheet below if you like
 For i = 0 To UBound(arrMain)
 For j = 0 To UBound(arrMain(i))

 ActiveCell.Offset(i, j) = arrMain(i)(j)
 cSubTotal = cSubTotal + arrMain(i)(j)
 Next j
 ActiveCell.Offset(i, j) = cSubTotal
 cGrandTotal = cGrandTotal + cSubTotal:
cSubTotal = 0
 ActiveCell.Offset(i, j).Interior.ColorIndex = 15
 Next i
 ActiveCell.Offset(i, j) = cGrandTotal
 ActiveCell.Offset(i, j - 1) = "GrandTotal"
 Cells.EntireColumn.AutoFit
End Sub

Sub InsertSheet()
 Dim oWS As Worksheet, sName As String
Again:
 sName = InputBox("Which name?")
 If sName = "" Then Exit Sub
 For Each oWS In Worksheets
 If LCase(oWS.Name) = LCase(sName) Then
GoTo Again
 Next oWS
 Set oWS = Worksheets.Add(, ActiveSheet)
 oWS.Name = sName
End Sub

Chapter 94: Filtering a Database
What the simulation does

The first macro creates an AdvancedFilter on a new sheet. It loops
through all the headers and asks the users if they want a filter for label1,
label2, etc. (see next picture).

The second macro asks users to select the item they want to filter for
(bottom picture).

What you need to know

What you need to do

Option Explicit

Sub FilterDB()
 Dim oData As Range, oFilter As Range, i As
Integer, sSet As String, oWS As Worksheet
 Set oData = ActiveCell.CurrentRegion
 oData.Rows(1).Copy
 Set oWS = Worksheets.Add(, ActiveSheet)
 ActiveCell.PasteSpecial
 For i = 1 To oData.Columns.Count
 sSet = InputBox("Set filter (or leave empty) " &
oData.Cells(1, i))
 If sSet <> "" Then ActiveCell.Offset(1, i - 1) =
sSet
 Next i
 Set oFilter = ActiveCell.CurrentRegion
 oData.AdvancedFilter xlFilterCopy,
Range(oFilter.Address), Range("A4")
 oFilter.EntireColumn.AutoFit
End Sub

Sub HideRows()
 Dim col As Integer, r As Long, i As Long, iCount
As Long, oSelect As Range

 With ActiveCell.CurrentRegion
 r = .Rows.Count
 Set oSelect = Application.InputBox("Select a
value to filter for", , Range("G4").Address, , , , , 8)
 oSelect.Select: col = ActiveCell.Column
 For i = 2 To r
 If .Cells(i, col) <> ActiveCell Then
 .Cells(i, col).EntireRow.Hidden = True
 Else
 iCount = iCount + 1
 End If
 Next i
 MsgBox iCount & " records"
 If MsgBox("Unhide rows?", vbYesNo) = vbYes
Then .EntireRow.Hidden = False
 End With
End Sub

Chapter 95: Formatting Phone
Numbers

What the simulation does

This macro formats “messy” phone numbers so they look properly
formatted. It works even for seriously mutilated numbers (see column E).
The macro is based on the format that the USA uses for its phone numbers.
You may have to adjust the VBA code to your country’s format.

Through an Application.InputBox, the users can select the top phone
number in a column. The macro will insert a new column to the right of it
and produce the formatted version of all the numbers in the preceding
column.

What you need to know

The macro PhoneColumn does the heavy work, but it does so in the
new column by creating formulas that use the custom function PhoneFormat.
This function does the cobbling together of the numbers by using VBA
functions such as Len, Right, Mid, and IsNumeric. They all speak for
themselves. To determine the number of characters in a string, we use the
Len function. Perhaps Mid needs a bit more information. It has 3 arguments:
string, start (the character position in a string), and length (the number of
characters to return).

Another new VBA element is the Select Case statement. In this macro,
it specifies the length of the string we have reached so far in the process.

What you need to do

Option Explicit

Function PhoneFormat(Phone As String) As String
 Dim i As Integer, sFormat As String, sCur As
String, sTrunc As String, n As Integer
 sTrunc = Phone
 For i = 1 To Len(sTrunc)
 If IsNumeric(Mid(sTrunc, i, 1)) Then n = n + 1
 Next i
 If n > 10 Then sTrunc = Right(sTrunc, Len(sTrunc)
- 1)
 For i = 1 To Len(sTrunc)
 sCur = Mid(sTrunc, i, 1)
 If IsNumeric(sCur) Then
 Select Case Len(sFormat)
 Case 0: sFormat = "(" & sCur
 Case 3: sFormat = sFormat & sCur & ")-"
 Case 8: sFormat = sFormat & sCur & "-"
 Case Else: sFormat = sFormat & sCur
 End Select
 End If
 Next i
 PhoneFormat = sFormat
End Function

Sub PhoneColumn()
 Dim r As Long, c As Integer, i As Long, iLast As
Long, oSelect As Range
 Set oSelect = Application.InputBox("Select the top
number", , Range("B2").Address, , , , , 8)
 oSelect.Select
 r = ActiveCell.Row
 c = ActiveCell.Column
 iLast = ActiveCell.CurrentRegion.Rows.Count
 ActiveCell.Offset(0, 1).EntireColumn.Insert
 Range(Cells(2, c + 1), Cells(iLast, c +
1)).NumberFormat = "General"
 Range(Cells(2, c + 1), Cells(iLast, c +
1)).FormulaR1C1 = "=PhoneFormat(RC[-1])"
End Sub

Chapter 96: Creating Gradients
What the simulation does

This simulation creates gradients between the four corner cells of
range A8:E12. At each run the four corner cells change randomly. All the
other cells have to be adjusted so they form a smooth gradient with gradual
transitions.

What you need to know

The “trick” to achieve this is using the AVERAGE function, but in such
a way that the formula refers to two neighboring cells plus itself—for
instance, in cell B8: =AVERAGE(A8:C8). Since the formula in such cells

uses a reference to itself, it causes circular reference. Excel does not allow
this, unless you temporarily turn Iteration on.

Once the formulas are “settled,” the macro replaces them with the
values found, so it can turn Iteration back off.

If the matrix would have more cells, you may have to increase
MaxIterations in the VBA code, to make sure each cells reaches a stable
value.

What you need to do

Option Explicit

Sub Gradients()
 Application.Iteration = True
 Application.MaxIterations = 1000
 Application.Calculation = xlCalculationAutomatic
 Do
 Range("A8") = Rnd: Range("A8").Formula =
Range("A8").Value
 Range("E8") = Rnd: Range("E8").Formula =
Range("E8").Value
 Range("A12") = Rnd: Range("A12").Formula
= Range("A12").Value
 Range("E12") = Rnd: Range("E12").Formula
= Range("E12").Value
 'Fill the outer ranges first and then the center
 Range("B8:D8").Formula =
"=AVERAGE(A8:C8)"
 Range("E9:E11").Formula =
"=AVERAGE(E8:E10)"
 Range("B12:D12").Formula =
"=AVERAGE(A12:C12)"
 Range("A9:A11").Formula =
"=AVERAGE(A8:A10)"

 Range("B9:D11").Formula =
"=AVERAGE(A8:C10)"
 'Replace formulas with values
 Range("A8:E12").Formula =
Range("A8:E12").Value
 Loop Until MsgBox("Repeat?", vbYesNo) = vbNo
 Application.Iteration = False
End Sub

Chapter 97: Aligning Multiple
Charts

What the simulation does

This sheet has multiple Areas—that is, sections separated by empty
rows (or columns). The macro loops through the collection of Areas and
creates charts next to each other of a new sheet.

What you need to know

The file contains
also a UserForm with a ComboBox on it. The ComboBox is
populated with information stored on Sheet22 (see picture
to the left). With the settings in column C, the user can
regulate through the ComboBox which type of chart to
display. The user can activate the form with the Sub Types
(Ctrl+Sh+T).

What you need to do

Private Sub UserForm_Activate() ‘code in a
UserForm with a ComboBox
 Dim i As Integer
 With Sheet22.Range("A1").CurrentRegion
 For i = 1 To .Rows.Count
 ComboBox1.AddItem .Cells(i, 1) & "-" &
.Cells(i, 2)
 Next i
 End With
End Sub

Private Sub ComboBox1_Click()
 Dim oWS As Worksheet, i As Integer
 On Error Resume Next
 Set oWS = ActiveSheet
 For i = 1 To oWS.ChartObjects.Count
 oWS.ChartObjects(i).Chart.ChartType =
Left(ComboBox1.Text, InStr(1, ComboBox1.Text, "-
") - 1)
 Next i
End Sub

Sub CreateCharts() ‘this code is in a Module
 Dim oRange As Range, i As Integer, oChart As

Chart, oWS As Worksheet
 Set oWS = Worksheets.Add(, ActiveSheet)
 Set oRange =
Sheet1.Columns(1).SpecialCells(xlCellTypeConstants).Cells
 For i = 1 To oRange.Areas.Count
 Set oChart = Charts.Add
 With oChart
 .SetSourceData
oRange.Areas(i).CurrentRegion
 .ChartArea.Border.Weight = xlThick :
.ChartType = xlColumnClustered
: .HasTitle = True : .ChartTitle.Caption
= oRange.Areas(i).Cells(1, 1)
 .Location xlLocationAsObject, oWS.Name
 End With
 Next i
 oWS.Activate
 For i = 1 To oWS.ChartObjects.Count
 With oWS.ChartObjects(i)
 .Width = ActiveWindow.Width * 0.4 :
.Height = ActiveWindow.Height * 0.6
 .Left = ((i - 1) Mod oWS.ChartObjects.Count)
* ActiveWindow.Width * 0.41
 .Top = Int((i - 1) / oWS.ChartObjects.Count) *
150
 End With
 Next i

End Sub

Sub Types()
 UserForm1.Show vbModeless ‘see code above
End Sub

Chapter 98: Temperature
Fluctuations

What the simulation does

As they say, nothing is as fickle as the weather. We will simulate this
for temperature, having it oscillate around a mean of 65o F and a standard
deviation of 10 during a period of 65 years.

As to be expected, there will be some relatively extreme values
below the 5th percentile mark or above the 95th percentile mark by mere
randomness. Sometimes we might hit more “peaks” or more extreme
“peaks” than usual.

What you need to know

Dramatic swings in temperature can be quite common because of pure
randomness. The 5th and 95th percentile lines in the chart are based on the
“hidden” columns C and D. The markers for extremes outside that range are
based on hidden columns E and F. The VBA code changes the font color in
these four columns to white, and it can protect these columns from manual
changes.

The chart plots the series of values in columns B:F. The horizontal
axis is based on the first column. Columns E and F plot only the positive and
negative peaks; the other cells in those two columns contain the function NA
and do not show.

What you need to do

Option Explicit

Sub Temps()
 Dim oRange As Range, r As Long
 'to protect the "hidden" columns
 Sheet1.Unprotect
 Columns("C:F").Cells.Font.Color = vbWhite
 Sheet1.Protect , False, , , True 'True allows VBA to
work
 Set oRange = Range("A1").CurrentRegion
 r = oRange.Rows.Count: r = r - 1
 Set oRange = oRange.Offset(1, 0).Resize(r,
oRange.Columns.Count)
 Do
 oRange.Columns(3).Formula =
"=PERCENTILE(B2:B66,C1)"
 oRange.Columns(4).Formula =
"=PERCENTILE(B2:B66,D1)"
 oRange.Columns(5).Formula =
"=IF(B2>C2,B2,NA())"
 oRange.Columns(6).Formula =
"=IF(B2<D2,B2,NA())"
 Loop Until MsgBox("Repeat?", vbYesNo) = vbNo
 If MsgBox("Protect the formulas in columns

A:E?", vbYesNo) = vbYes Then
 Cells.Locked = False
 Columns("A:F").Locked = True
 Sheet1.Protect , , , , True, True
 End If
End Sub

Chapter 99: Working with Fiscal
Years

What the simulation does

Excel has great functions to extract the year, month, and day part of a
date—but amazingly enough, it has no function to find out to which quarter
of the year such a date belongs. For data analysis and summary overviews,
that is quite a limitation. This problem can be solved, though, with a simple
formula of nested functions such as ROUNDUP(MONTH(any date)/3,0).

However, finding the correct quarter becomes much harder when your
company does not have a regular fiscal year. That’s where a macro comes in
handy. On this sheet, an InputBox inquires in which month your fiscal year
starts and stores that number in an internal variable (and in cell K2). Based
on that information, the macro calculates for any particular date to which
fiscal year and quarter that date belongs.

The sheet contains two macros: RegularYear for a regular year and
FiscalYear for a fiscal year. However, the 2nd macro can also handle a
regular year by calling the 1st macro, RegularYear, when needed.

What you need to know

The table to the right is only for comparison purposes so you can
check whether your calculations in the left table are correct. Conditional
formatting in the range M1:P24 does the rest:
=AND(ROW()>=K2,ROW()<K2+12)

What you need to do

Option Explicit

Sub RegularYear()
 Dim i As Long, dDate As Date, pQtr As Double,
oStart As Range
 Columns("D:E").ClearContents
 Set oStart = Application.InputBox("Select the top
date", , Range("C2").Address, , , , , 8)
 With oStart
 Do While .Offset(i, 0) <> ""
 dDate = .Offset(i, 0)
 .Offset(i, 1) = Year(dDate)
 pQtr = Month(dDate) / 3
 .Offset(i, 2) = IIf(pQtr - Int(pQtr) = 0, pQtr,
Int(pQtr) + 1) 'Instead of RoundUp
 i = i + 1
 Loop
 End With
End Sub

Sub FiscalYear()
 Dim i As Long, dDate As Date, iFiscMonth As
Integer, iMonth As Integer, oStart As Range
 Columns("D:E").ClearContents

 Set oStart = Application.InputBox("Select the top
date", , Range("C2").Address, , , , , 8)
 iFiscMonth = InputBox("In which month does
your fiscal year start?", , 10)
 Range("K2") = iFiscMonth
 If iFiscMonth = 1 Then RegularYear: Exit Sub
 With oStart
 Do While .Offset(i, 0) <> ""
 dDate = .Offset(i, 0)
 .Offset(i, 1) = Year(dDate) + IIf(Month(dDate)
>= iFiscMonth, 1, 0)
 iMonth = Month(.Offset(i, 0)) - iFiscMonth +
1
 If iMonth <= 0 Then iMonth = iMonth + 12
 .Offset(i, 2) = IIf(iMonth / 3 - Int(iMonth / 3)
= 0, iMonth / 3, Int(iMonth / 3) + 1)
 i = i + 1
 Loop
 End With
End Sub

Chapter 100: Time Calculations
What the simulation does

In Excel, time is a value that ranges from 0 to 0. 999988425925926,
representing the times from 0:00:00 (12:00:00 AM) to 23:59:59 (11:59:59
PM). You can see the value of a particular time under General Format or by
using Ctrl + ~ (the tilde is just below the Esc key). The advantage of using
decimal values for time is that you can then easily add and subtract them.
You can even use functions such as SUM, AVERAGE, and so on.

When the difference in time values or their total is more than 24 hours,
the decimal time values go beyond 0.9999999. This causes trouble, for time
values beyond 0.9999999 get truncated when forced into the h:mm:ss
format. If the sum is 1.5, for example, Excel shows only its decimal part,
0.5, which is 12:00:00 AM. To solve this problem, you must change the
format of this number from h:mm:ss to [h]:mm.ss. Then a number such as
1.5 will indeed show up as 1.5 (in the proper time format, of course:
36:00:00). Thanks to the [h]:mm:ss format, you can calculate with time
values beyond the duration of 1 day, which is usually necessary for sum
operations.

What you need to know

This is basically all the macro does for summaries below the table, if
needed,and also to the right, if so desired. On the next run it will delete

those summaries first.
Some people prefer to use hours with decimals—where, for example,

13.50 (with a decimal point) is 13 hours and 30 minutes, as opposed to
13:50 (with a colon), which is 13 hours and 50 minutes. To convert these
decimals to Excel's time decimals, you need to divide by 24 because Excel
works with day units of 24 hours, 60 minutes, and 60 seconds.

What you need to do

Option Explicit

Sub TimeCalc()
 Dim oSum As Range, oTable As Range, oAvg As
Range, r As Long, c As Long
 Set oTable = Range("B2").CurrentRegion
 r = oTable.Rows.Count: c = oTable.Columns.Count
 oTable.Rows(r).Offset(2, 0).ClearContents
 oTable.Rows(r).Offset(3, 0).ClearContents
 oTable.Columns(c).Offset(0, 2).ClearContents
 oTable.Columns(c).Offset(0, 3).ClearContents
 If MsgBox("Summaries at the bottom?", vbYesNo)
= vbYes Then
 Cells(r + 2, 1) = "Sum"
 Set oSum = Range(Cells(r + 2, 2), Cells(r + 2, c))
 Cells(r + 3, 1) = "Mean"
 Set oAvg = Range(Cells(r + 3, 2), Cells(r + 3, c))
 oSum.FormulaR1C1 = "=SUM(R[-" & r &
"]C:R[-2]C)"
 oSum.NumberFormat = "[h]:mm:ss"
 oAvg.FormulaR1C1 = "=AVERAGE(R[-" & r +
1 & "]C:R[-3]C)"
 oAvg.NumberFormat = "h:mm:ss"
 End If

 If MsgBox("Also summaries to the right?",
vbYesNo) = vbYes Then
 Cells(1, c + 2) = "Sum"
 Set oSum = Range(Cells(2, c + 2), Cells(r, c +
2)): oSum.ClearContents
 Cells(1, c + 3) = "Mean"
 Set oAvg = Range(Cells(2, c + 3), Cells(r, c + 3)):
oAvg.ClearContents
 oSum.FormulaR1C1 = "=SUM(RC[-" & r &
"]:RC[-2])"
 oSum.NumberFormat = "[h]:mm:ss"
 oAvg.FormulaR1C1 = "=AVERAGE((RC[-" & r
+ 1 & "]:RC[-3]))"
 oAvg.NumberFormat = "h:mm:ss"
 End If
End Sub

IX. APPENDIX

Data Tables
A Data Table is a range of cells that shows how changing one or two

variables in your formulas will affect the results of those formulas. A Data
Table provides a powerful way of calculating multiple results in one
operation and a way to view and compare the results of all the different
variations together on your worksheet.

To implement a Data Table, you select the entire range, including its
point of origin with a formula in it—so that is B3:F13 in the example above.
Then you go through the following menus: Data | What-If Analysis | Data
Table. In the dialog box, set the row input to cell B2 and the column input to
cell B1.

Once you click OK, Excel replaces all empty cells (in the shaded area)
with an array formula like this: {=TABLE(B2,B1)}. Or more in general,
{=TABLE(row-input-cell, column-input-cell)}. Sometimes, one or both of the
two arguments are missing. Do not type the braces—Excel creates them
automatically when you hit the Data Table button. And do not type the
formula!

Why use a Data Table? There are several reasons. First, it might be
easier to implement one than working with locked and unlocked cell
references. Second, no part of the array can inadvertently be deleted or
changed, because the array acts as one entire unit. Third, a Data Table has
much more extra potential, as you can see in many of the simulations we use

in this book.
However, there is one drawback. Because there may be many

operations involved in a Data Table, Excel may run into speed problems.
There are two ways to get around this speed issue. Method #1 is to stop
automatic recalculation—at least for Data Tables. Do the following: File |
Options | Options | Formulas | Automatic Except for Data Tables (you can
even set all calculations to manual). If you ever need to recalculate a Data
Table, just use Sh + F9, and that will recalculate only the particular sheet
you are on (whereas F9 alone would recalculate the entire file).

Method #2 is that, after you run a specific what-if analysis, you copy
the Data Table section—that is, the area between the top row and the left
column—and then paste it as values over itself. Move on to the next Data
Table, run it, and paste values again. Whenever you need to run a pasted table
again, quickly reimplement the Data Table.

One more limitation: A Data Table cannot accommodate more than two
variables. So they are at best two-dimensional but never three-dimensional.
There are ways to get around this limitation as shown in some simulations
(e.g. Chapter 69).

In VBA, it is actually very easy to implement a Data Table by using a
range’s Table method followed by a space and two arguments, one for the
row input and one for the column input.

Simulation Controls
Controls such as spin buttons and scroll bars are great tools for many

kinds of what-if analysis. They quickly reset specific hard-coded values and
then show you the impact of such operations.

In order to create such controls, you need the Developer tab in your
menu, which may not be present on your machine. To add it to the ribbon,
you do the following, depending on your Excel version. Pre-2010: File |
Options | General | Enable the Developer Tab. In 2010 and 2013: File |
Options | Customize Ribbon | in the far right list: Developer. From now on,
the tab can be found in the menu on top.

On the above sheet, we placed three controls. You do so by clicking
on the Insert button and then on one of the options in the lower section of
the list (Active-X Controls). Draw the control you have chosen on your
sheet.

Then click on the Properties menu (make sure the control you want to
set the properties for is still selected, or select it). Set at least the
properties Min, Max, and LinkedCell (that is, the cell where you want the
control’s value to appear).

Once you are done, do not forget to click the Design Mode button
OFF, so you can go back to your sheet!!! Be aware, though, that when you

change a control and calculation is not automatic, you need to activate the
sheet first before you can hit the “run” keys Sh F9.

You probably noticed already that the properties Min and Max can
only hold integers. So if you want to regulate decimals with your control
(like in the scroll bar to the far right), you need an intermediate cell. I
happened to choose a LinkedCell reference located behind the control (e.g.
cell I5). In the cell where you want the decimal number visibly displayed,
you need to place a formula like =I5/10 (or I5/100, etc.).

Controls like these are fantastic. I used them for several simulations
in this book. They are not only fun, but also very informative and
revealing. I think you will love them more and more, if you did not al-
ready.

If Statements

Either one-liners:

If Then
If Then [Else]
If Then [ElseIf Then
.....] [Else]

Or multi-liners:

If
Then

If
Then

If Then

.....

.....

End If Else ElseIf
Then

.....

 End If Else

 End If

Value Type Variables

Data type Storage
size Range

Byte 1 byte 0 to 255

Boolean 2 bytes b True or False
Integer 2 bytes i -32,768 to 32,767
Long
(long integer) 4 bytes l -2,147,483,648 to 2,147,483,647

Single
(single-
precision
floating-point)

4 bytes f
-3.402823E38 to -1.401298E-45 for negative
values; 1.401298E-45 to 3.402823E38 for
positive values

Double
(double-
precision
floating-point)

8 bytes p

-1.79769313486231E308 to
-4.94065645841247E-324 for negative
values; 4.94065645841247E-324 to
1.79769313486232E308 for positive values

Currency
(scaled integer) 8 bytes c -922,337,203,685,477.5808 to

922,337,203,685,477.5807

Decimal 14 bytes

+/-79,228,162,514,264,337,593,543,950,335
with no decimal point;
+/-7.9228162514264337593543950335 with
28 places to the right of the decimal; smallest
non-zero number is
+/-0.0000000000000000000000000001

Date 8 bytes d January 1, 100 to December 31, 9999
String
(variable-
length)

10 bytes
+ string
length

s 0 to approximately 2 billion

String
(fixed-length)

Length of
string s 1 to approximately 65,400

Variant Any numeric value up to the range of a

(with numbers) 16 bytes v Double

Variant
(with
characters)

22 bytes
+ string
length

v Same range as for variable-length String

Ranges vs. Cells

FormulaR1C1

Arrays

Error Handling

This would make a very general error handler:
Sub AnySub()
 On Error GoTo ErrTrap

 Exit Sub
ErrTrap:
 MsgBox "Number: " & Err.Number & vbCr & _
 "Description: " & Err.Description & vbCr & _
 "Source: " & Err.Source, vbCritical, "Call 1-800-123-

4567"

X. INDEX

A
Activesheet 12
Active-X Controls 203
AdvancedFilter 132, 188
ampersand 14
Application.InputBox 98
Application.ScreenUpdating 68
Application.StatusBar 174
Application.Volatile 104
APR 156, 160
Areas 194
arrays 208
Asc 174
Asian option 172
AutoFit 16
average value option 172

B
bi-modal 32
BINOM.INV 42
BINOMDIST 40, 42
binomial distribution 28, 40
Boltzmann equation 114
Boolean 20
bootstrapping 50
BreakPoint 68
Brownian motion 62
Brusselator model 122

C
calendar 184
Cells 4

CHAR 18, 174
ChartObjects 24
Cholensky decomposition 54
Chr 174
chromosomes 80
circular reference 68, 192
CODE 174
ComboBox 194
CommandButton 32
compounding 156
CONFIDENCE 34
confidence interval 36, 114
controls 203
correlated distributions 54
COUNTA 164
COUNTIFS 66
CRITBINOM 42
CStr 14
CurrentRegion 6
CutCopyMode 74

D
Data Table 12, 202
dates 148
DateSerial 184
DAYS 148
degrees of freedom 36
Design Mode 203
Dim 8
DNA sequencing 96
DoEvents 8
Do-loop 8, 14
DSUM 132

E
EC50 determination 114
Ehrenfest Urn 64
encryption 176

EntireColumn 16
epidemic 112
Err 38
error handling 88, 209
evolutionary strategy 124
exchange rate 78
Exit Sub 4
EXP 172
exponential discounting 158
exponential smoothing 152

F
filter 132, 188
fiscal year 198
fitness 92
flocking behavior 22
For-Each-loop 34, 178
For-loop 4
FormatConditions 34
FormatCurrency 16
FormatNumber 10
Formula 40
FormulaR1C1 16, 207
FormulArray 24
founder effect 88
FREQUENCY 24, 182

G
Galton board 52
game theory 124
Gantt chart 148
GDP growth 140
genetic drift 88
GoalSeek 36
GoTo 2
gradients 192

H

Hardy-Weinberg law 86
HasFormula 154
heterozygote 84
HLOOKUP 106, 138
homozygote 84

I
IC50 determination 114
IF statements 204
IFERROR 42
iif function 3
INDEX 50
InputBox 12, 124

Application. 98
Int 14
INT 2
integration 100, 102
interpolation 116
Inter-Quartile Range 48
IPMT 160
ISERROR 42
ISFORMULA 70
Iteration 192

J
jagged array 186, 208

L
Len 190
LinkedCell 203
Locals Window 68
logistic equation 114
LOGNORM.INV 46
lognormal distribution 28, 46
Lotka-Volterra model 108

M
MATCH 116
matrix elimination 98

Median Absolute Deviation 48
medicine 110
Mendelian laws 84
Mid 190
MINVERSE 98
MMULT 54, 98
Mod 6
MOD 6
molecular clock 94
Monte Carlo simulation 60
moving averages 152
MsgBox 2
mutations 94

N
NA 66, 196
natural selection 90
net present value 158
normal distribution 24, 26
NORMDIST 26
NORMINV 26, 78
NotePad 178
Now 16
NPV 158
numbering 180

O
Offset 4, 134
On Error GoTo 38
Option Explicit 8
outliers 48

P
password 174
pendulum 118
percentile 128
PERCENTILE 128
phone number 190

PI function 104
PMT 160
population pyramid 106
PPMT 160
Preserve 78
project delay 148
Protect 134

Q
quality control 144
QUOTIENT 180

R
RAND 2
RANDBETWEEN 2
random sampling 56
random walk 62, 66
Range 4
Range Name 10, 182
ranges and cells 206
ReDim 78
REPT 112
Resize 134
return on investment 168
Rnd 2
ROI 168
ROW 38, 164

S
S&P500 performance 162
scenarios 138
Select Case 28, 190
SelectionChange 34
self-reference 68
SetSourceData 24
sex determination 82
Sheets.Count 40
sigmoidal equation 114

sinusoid 120
SIR model 112
SKEW 46
slope 114
Solver 114
solving equations 98
Sort 44
SQRT 36
standard deviation 36
standard error 36, 172
StrReverse 176
Student t-distribution 36
subtotals 154
Sum of Squared Residuals 114

T
Table 202
temperature 196
TEXT 46
time 200
time format 200
Timer 8
traffic 142
TRANSPOSE 54
TREND 116

U
UBound 32, 132
UserForm 194
UserInterfaceOnly 134

V
value type variables 205
Value-at-Risk 170
VaR 170
variable

global 8
Variant 4, 134

Variant arrays 68
VLOOKUP 18, 30, 74

W
waiting time 146
WeekDay 184
weighting 18, 44
Worksheet.Add 12
Worksheet_Change 116

About the Author

Dr. Gerard M. Verschuuren is a human
geneticist who also earned a doctorate in the philosophy of science. He
studied and worked at universities in Europe and the United States and
wrote several biology textbooks in Dutch. During this time, he also used and
programmed computer software, including Excel, to simulate scientific
problems.

Currently, he is semi-retired and spends most of his time as a writer,
speaker, and consultant on the interface of science and computer
programming.

His most recent computer-related books are:

1. From VBA to VSTO (Holy Macro! Books, 2006).
2. Visual Learning Series (MrExcel.com).
3. VBScript (CD)
4. Excel 2013 for Scientists (CD)
5. Excel 2013 for Scientists (book)

6. 100 Excel Simulations (book)
7. Excel 2013 VBA (CD)
8. Excel Video Medley (double DVD)

For more info see: http://en.wikipedia.org/wiki/Gerard_Verschuuren
For his YouTube videos on Excel and VBA:

http://www.genesispc.com/links.htm#videos
All his books, CDs, and DVD’s can be found at

http://www.genesispc.com

http://en.wikipedia.org/wiki/Gerard_Verschuuren
http://www.genesispc.com/

All by the same author,
Dr. Gerard M. Verschuuren

Part 1: General Techniques
 Chapter 2: The Fill Handle
 Chapter 3: Relative vs. Absolute
 Chapter 4: Range Names
 Chapter 5: Nested Functions
 Part 1 Exercises

Part 2: Data Analysis
 Chapter 7: Subtotals
 Chapter 8: Summary Functions
 Chapter 9: Unique Lists

 Chapter 10: Data Validation
 Chapter 11: Conditional Formatting
 Chapter 12: Filtering Tools
 Chapter 13: Lookups
 Chapter 14: Working with Trends
 Chapter 15: Fixing Numbers
 Chapter 16: Copying Formulas
 Chapter 17: Multi-cell Arrays
 Chapter 18: Single-cell Arrays
 Chapter 19: Date Manipulation
 Chapter 20: Time Manipulation
 Part 2 Exercises

Part 3: Plotting Data
 Chapter 22: A Chart’s Data Source
 Chapter 23: Combining Chart Types
 Chapter 24: Graph Locations
 Chapter 25: Templates and Defaults
 Chapter 26: Axis Scales
 Chapter 27: More Axes
 Chapter 28: Error Bars
 Chapter 29: More Bars
 Chapter 30: Line Markers
 Chapter 31: Interpolation
 Chapter 32: Graph Formulas
 Part 3 Exercises

Part 4: Regression and Curve Fitting
 Chapter 34: Nonlinear Regression

 Chapter 35: Curve Fitting
 Chapter 36: Sigmoid Curves
 Chapter 37: Predictability
 Chapter 38: Correlation
 Chapter 39: Multiple Regression
 Chapter 40: Reiterations + Matrixes
 Chapter 41: Solving Equations
 Chapter 42: What-If Controls
 Chapter 43: Syntax of Functions
 Chapter 44: Worksheet Functions
 Part 4 Exercises

Part 5: Statistical Analysis
 Chapter 46: Types of Distributions
 Chapter 47: Simulating Distributions
 Chapter 48: Sampling Techniques
 Chapter 49: Test Conditions
 Chapter 50: Estimating Means
 Chapter 51: Estimating Proportions
 Chapter 52: Significant Means
 Chapter 53: Significant Proportions
 Chapter 54: Significant Frequencies
 Chapter 55: Chi-Squared Testing
 Chapter 56: Analysis of Variance
 Part 5 Exercises

100 Excel Simulations:
very similar to the ones in this book
but all done with formulas (no VBA)

Part 1: Basic Essentials
 Object Oriented
 Recording Macros
 Branch Statements
 Interaction
 Variables (Value Type)
 Variables (Object Type)
 Collections
 Loop Statements

 Variables as Arguments
 Pivot Tables and Charts

Part 2: Formulas and Arrays
 Dates and Calendars
 The Current-Region
 WorksheetFunction
 Property Formula
 Property FormulaR1C1
 Custom Functions
 Array Functions
 1D- and 2D-Arrays
 Customized Arrays
 Variant Arrays

Part 3: Buttons and Forms
 Importing and Exporting
 Buttons, Bars, Menus
 Application Events
 User Forms
 Data Entry + Mail Merge
 Custom Objects (Classes)
 Class Collections
 Error Handling
 Distributing VBA code
 VBA Monitoring VBA

	I. Gambling
	Chapter 1: The Die Is Cast
	Chapter 2: Casting Six Dice
	Chapter 3: Roulette Machine
	Chapter 4: An X-O Game
	Chapter 5: A Slot Machine
	Chapter 6: Gamblers’ Ruin
	Chapter 7: Lottery Numbers
	Chapter 8: Win or Lose?
	Chapter 9: A Letter Game
	Chapter 10: A Three-Way Circuit
	Chapter 11: Flock Behavior

	II. Statistics
	Chapter 12: Samples
	Chapter 13: A Normal Distribution
	Chapter 14: Distribution Simulations
	Chapter 15: Discrete Distributions
	Chapter 16: Peaks
	Chapter 17: Confidence Margins
	Chapter 18: Sample Size and Confidence Interval
	Chapter 19: Random Repeats
	Chapter 20: Flipping a Fair Coin?
	Chapter 21: Simulation of Sick Cases
	Chapter 22: Unbiased Sampling
	Chapter 23: Transforming a LogNormal Distribution
	Chapter 24: Outlier Detection
	Chapter 25: Bootstrapping
	Chapter 26: Bean Machine Simulation
	Chapter 27: Correlated Distributions
	Chapter 28: Sorted Random Sampling
	Chapter 29: Frequencies

	III. Monte Carlo Simulations
	Chapter 30: The Law of Large Numbers
	Chapter 31: Brownian Motion
	Chapter 32: Ehrenfest Urn
	Chapter 33: Random Walk
	Chapter 34: A Data Table with Memory
	Chapter 35: Juror Selection in Court
	Chapter 36: Running Project Costs
	Chapter 37: Forecasting Profits
	Chapter 38: Uncertainty in Sales
	Chapter 39: Exchange Rate Fluctuations

	IV. Genetics
	Chapter 40: Shuffling Chromosomes
	Chapter 41: Sex Determination
	Chapter 42: Mendelian Laws
	Chapter 43: The Hardy-Weinberg Law
	Chapter 44: Genetic Drift
	Chapter 45: Two Selective Forces
	Chapter 46: Differential Fitness
	Chapter 47: Molecular Clock
	Chapter 48: DNA Sequencing

	V. Science
	Chapter 49: Matrix Elimination
	Chapter 50: Integration with Simulation
	Chapter 51: Two Monte Carlo Integrations
	Chapter 52: Monte Carlo Approach of Pi
	Chapter 53: A Population Pyramid
	Chapter 54: Predator-Prey Cycle
	Chapter 55: Taking Medication
	Chapter 56: The Course of an Epidemic
	Chapter 57: Boltzmann Equation for Sigmoidal Curves
	Chapter 58: Interpolation
	Chapter 59: A Rigid Pendulum
	Chapter 60: A Piston Sinusoid
	Chapter 61: The Brusselator Model
	Chapter 62: A Hawk-Dove Game

	VI. Business
	Chapter 63: Prognosis of Sales
	Chapter 64: Cycle Percentiles
	Chapter 65: Cost Estimates
	Chapter 66: A Filtering Table
	Chapter 67: Profit Changes
	Chapter 68: Risk Analysis
	Chapter 69: Scenarios
	Chapter 70: Market Growth
	Chapter 71: A Traffic Situation
	Chapter 72: Quality Control
	Chapter 73: Waiting Time Simulation
	Chapter 74: Project Delays

	VII. Finance
	Chapter 75: Buy or Sell Stock
	Chapter 76: Moving Averages
	Chapter 77: Automatic Totals and Subtotals
	Chapter 78: Fluctuations of APR
	Chapter 79: Net Present Value
	Chapter 80: Loan with Balance and Principal
	Chapter 81: S&P500 Performance
	Chapter 82: Stock Market
	Chapter 83: Stock Volatility
	Chapter 84: Return on Investment
	Chapter 85: Value at Risk
	Chapter 86: Asian Options

	VIII. Miscellanea
	Chapter 87: Cracking a Password
	Chapter 88: Encrypting Text
	Chapter 89: Encrypting a Spreadsheet
	Chapter 90: Numbering Records
	Chapter 91: Sizing Bins for Frequencies
	Chapter 92: Creating Calendars
	Chapter 93: Populating a Jagged Array
	Chapter 94: Filtering a Database
	Chapter 95: Formatting Phone Numbers
	Chapter 96: Creating Gradients
	Chapter 97: Aligning Multiple Charts
	Chapter 98: Temperature Fluctuations
	Chapter 99: Working with Fiscal Years
	Chapter 100: Time Calculations

	IX. Appendix
	Data Tables
	If Statements
	Value Type Variables
	Ranges vs. Cells
	FormulaR1C1
	Arrays
	Error Handling

	X. Index

