

Mariot Tsitoara

Beginning Git and GitHub

Version Control, Project Management

and Teamwork for the New Developer

2nd ed.

Mariot Tsitoara
Antananarivo, Madagascar

ISBN 979-8-8688-0214-0 e-ISBN 979-8-8688-0215-7
https://doi.org/10.1007/979-8-8688-0215-7

© Mariot Tsitoara 2020, 2024

This work is subject to copyright. All rights are solely and
exclusively licensed by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of
translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other
physical way, and transmission or information storage and
retrieval, electronic adaptation, computer software, or by
similar or dissimilar methodology now known or hereafter
developed.

The use of general descriptive names, registered names,
trademarks, service marks, etc. in this publication does not
imply, even in the absence of a specific statement, that
such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to
assume that the advice and information in this book are
believed to be true and accurate at the date of publication.
Neither the publisher nor the authors or the editors give a
warranty, expressed or implied, with respect to the
material contained herein or for any errors or omissions
that may have been made. The publisher remains neutral

https://doi.org/10.1007/979-8-8688-0215-7

with regard to jurisdictional claims in published maps and
institutional affiliations.

This Apress imprint is published by the registered company
APress Media, LLC, part of Springer Nature.
The registered company address is: 1 New York Plaza, New
York, NY 10004, U.S.A.

This book is dedicated to the generous individuals who

have made the Git community an incredible environment to

work in. Your contributions have resulted in one of the most

valuable tools in the tech world. Thank you!

Introduction

This book has a clear objective: to serve as the resource I
wish I had when I started my tech career. Each chapter is
designed to teach you only what you need to know as a
beginner. It’s not an exhaustive reference book, but it will
equip you with the necessary knowledge to significantly
impact your career.

By the end of this book, you will understand the
essential tools for version control and project management.

Who This Book Is For

This book is aimed at absolute beginners with Git and
GitHub, as well as those who have some experience but
want to deepen their understanding. If you’re seeking the
most effective way to quick-start your journey in the right
direction, this book is for you.

How to Use This Book

Git is a straightforward tool to learn, but practical
experience is crucial for grasping its concepts. The best
way to learn is by applying it directly to one of your real
projects. Reading the book without engaging in the
exercises will prolong your learning curve.

Any source code or other supplementary material
referenced by the author in this book is available to readers
on GitHub (https://github.com/Apress). For more detailed
information, please visit
https://www.apress.com/gp/services/source-code.

Acknowledgments

I would like to express my gratitude to my parents, Jeanne
and Tsitoara, for the incredible opportunities they have
provided me. Without their support and sacrifices, I
wouldn’t be where I am today.

I give special thanks to my wonderful wife, Miora, and
my amazing daughter, Maeva.

I am also grateful to my siblings, Alice, Elson, Thierry,
Eliane, Annick, and Mamitiana, for being exceptional role
models and offering unwavering support. To my lifelong
friends, Christino, Johanesa, Laza, Lova, Miandry, Mihaja,
and Rindra, who have taught me so much, I dedicate this
book to you.

I must acknowledge my coworkers for imparting their
knowledge of Git and being helpful and enjoyable to work
with.

Table of Contents

Part I: Version Control with Git

Chapter 1: Version Control Systems

What Is Version Control?

Why Do I Need One?

What Are the Choices?

Local Version Control Systems

Centralized Version Control Systems

Distributed Version Control Systems

What Is Git?

What Can Git Do?

How Does Git Work?

What Is the Typical Git Workflow?

Summary

Chapter 2: Installation and Setup

Installation

Windows

macOS

Linux

Setting up Git

Summary

Chapter 3: Getting Started

Repositories

Working Directory

Staging Area

Commits

Quick Start with Git

Summary

Chapter 4: Diving into Git

Ignoring Files

Checking Logs and History

Viewing Previous Versions

Reviewing the Current Changes

Summary

Chapter 5: Commits

The Three States of Git

Navigating Between Versions

Undo a Commit

Modifying a Commit

Amending a Commit

Summary

Chapter 6: Git Best Practices

Commit Messages

Git Commit Best Practices

What to Do

What Not to Do

How Git Works (Again)

Summary

Chapter 7: Remote Git

Why Work in Remote Git

How Does It Work?

The Easy Way

Summary

Part II: Project Management with GitHub

Chapter 8: GitHub Primer

GitHub Overview

GitHub and Open Source

Personal Use

GitHub for Businesses

Summary

Chapter 9: Quick Start with GitHub

Project Management

How Remote Repositories Work

Linking Repositories

Pushing to Remote Repositories

Summary

Chapter 10: Beginning Project Management: Issues

Issues Overview

Creating an Issue

Interacting with an Issue

Labels

Assignees

Linking Issues with Commits

Working on the Commit

Referencing an Issue

Closing an Issue Using Keywords

Summary

Chapter 11: Diving into Project Management:

Branches

GitHub Workflow

Branches

Creating a Branch

Switch to Another Branch

Deleting a Branch

Merging Branches

Pushing a Branch to Remote

Summary

Chapter 12: Better Project Management: Pull

Requests

Why Use Pull Requests?

Pull Requests Overview

Pull

What Does a Pull Request Do?

Create a Pull Request

Code Reviews

Give a Code Review

Leave a Review Comment

Update a Pull Request

Summary

Part III: Teamwork with Git

Chapter 13: Merge Conflicts

How Does a Merge Work?

Pulling

Fast-Forward Merge

Merge Conflicts

Pulling Commits from origin

Resolving Merge Conflicts

Summary

Chapter 14: More About Conflicts

Pushing After a Conflict Resolution

Review Changes Before Merging

Check the Branch Location

Review the Branch Differences

Merging

Reducing Conflicts

Having a Good Workflow

Aborting a Merge

Using a Visual Git Tool

Summary

Chapter 15: Git GUI Tools

Default Tools

Committing: git-gui

Browsing: gitk

IDE Tools

Visual Studio Code

Specialized Tools

GitHub Desktop

Summary

Chapter 16: Advanced Git

Reverting

Stashing

Resetting

Summary

Part IV: More with GitHub

Chapter 17: More with GitHub

Wikis

GitHub Pages

Releases

Project Boards

Summary

Chapter 18: Common Git Problems

Repository

Starting Over

Change Origin

Working Directory

git diff Is Empty

Undo Changes to a File

Commits

An Error in a Commit

Undo Commits

Branches

Detached HEAD

Working in the Wrong Branch

Catch up with the Parent Branch

Branches Have Diverged

Summary

Chapter 19: Git and GitHub Workflow

How to Use This Workflow

GitHub Workflow

Every Project Starts with a Project

Every Action Starts with an Issue

No Direct Push to main

Any Merge into the Main Branch Needs a Pull

Request

Use the Wiki to Document Your Code

Git Workflow

Always Know Where You Are

Pull Remote Changes Before Any Action

Take Care of Your Commit Message

Don’t Rewrite History

Summary

Chapter 20: Making Git Yours with Aliases

What Are Git Aliases?

Using Git Aliases

Using the Git Config File

Editing the Git Config File Directly

Examples of Useful Git Aliases

Common Command Shortcuts

Listing Aliases

Summary

Index

About the Author

Mariot Tsitoara

is a software engineer with a
passion for the open web. He has
been involved with Mozilla as a
rep and a tech speaker since 2015
and has spoken extensively about
open source and new technology,
including Rust, WebVR, and
online privacy. You can reach him
at mariot@tsitoara.fr.

About the Technical Reviewer

Mihajatiana Maminiaina Rakotomalala

was initially inspired by movies
highlighting futuristic technology
and hacking to ignite his passion
for IT.

His journey began as an IT
support engineer, demonstrating
a keen understanding of network
monitoring and management and
server maintenance.

Venturing into web application
development, he contributed
significantly to creating dynamic
websites using JavaScript
frameworks like ReactJS.

Simultaneously, he broadened my technical knowledge
by installing and troubleshooting different operating
systems and applications providing essential problem
resolution services to users.

Currently serving as an IT engineer in the government
sector, he oversees setting up and improving the IT
infrastructure.

Part I

Version Control with Git

(1)

© The Author(s), under exclusive license to APress Media, LLC, part of
Springer Nature 2024
M. Tsitoara, Beginning Git and GitHub

https://doi.org/10.1007/979-8-8688-0215-7_1

1. Version Control Systems

Mariot Tsitoara1

Antananarivo, Madagascar

This chapter introduces you to version control systems. By
the end of this chapter, you will understand Git version
control and its historical background. The primary goal is
to recognize the scenarios that necessitate version control
and to comprehend why Git is a reliable and secure choice.

What Is Version Control?

As the name implies, version control involves managing
multiple versions of a project. It tracks every change made
to project files (additions, edits, or deletions). Each change
is recorded, allowing for easy undoing or rolling back.

To effectively implement version control, you need to
utilize version control systems. These systems facilitate
navigation through changes and provide a swift way to
revert to previous versions when needed.

Teamwork is a significant advantage of version control.
When multiple individuals contribute to a project, tracking
changes can become chaotic, increasing the risk of
overwriting each other’s work. With version control, team
members can work on separate copies of the project
(referred to as branches) and merge their changes into the

https://doi.org/10.1007/979-8-8688-0215-7_1

main project only when they, or other team members, are
satisfied with the work.

Note This book was written from a developer’s
perspective; however, the concepts and principles
discussed apply to any type of text file, not just code.
Version control systems can track changes not only in
text files but also in various non-text files such as images
or Gimp files.

Why Do I Need One?

Have you ever worked on a text project or code that
required you to recall the specific changes made to each
file? If yes, how did you manage and control each version?
Perhaps you attempted to duplicate and rename files using
suffixes like Reviewed, Fixed, or Final? Figure 1-1
illustrates that kind of version control.

Figure 1-1 Compressed files with suffixes to track versions

The figure illustrates the approach that many people
adopt to handle file changes. However, this method can
quickly become unmanageable. It is easy to lose track of
file identities and the specific changes made between them.

To effectively track versions, one suggestion is to
compress the files and append timestamps to their names.
This arrangement organizes the versions based on their

creation dates. Figure 1-2 demonstrates this type of version
tracking.

Figure 1-2 Compressed files with prefixes sorted by date

The solution depicted in Figure 1-2 may seem ideal, but
it becomes evident that there is no way to determine the
contents or descriptions of each version.

To address this issue, some developers employ a
solution similar to the one shown in Figure 1-3. They
include a separate file containing a summary of the
changes made. This helps provide clarity and context to
each version.

Figure 1-3 A separate file to track changes in the project

Figure 1-3 portrays the inclusion of a separate file
within the project folder containing concise descriptions of
the changes made. Additionally, note the presence of
compressed files that store previous versions of the project.

However, this system falls short in comparing each
version and tracking file changes. Memorization becomes
necessary, especially as the project grows and the folder
expands with each version.

Consider the challenges that arise when new team
members join your project. Would you resort to emailing
files or versions back and forth? Or would you opt to work
on the same remote folder? In the latter case, how would
you determine who is working on which file and what
changes have been made?

Furthermore, have you ever desired to undo a change
made years ago without disrupting the entire project? The
need for an unlimited and powerful Ctrl+Z arises.

All these issues can be resolved using a version control
system (VCS). A VCS tracks every change made to each file
in your project and provides a straightforward method for
comparing and reverting those changes. Each project
version is accompanied by a description of the
modifications and a list of new or edited files. When
additional individuals join the project, a VCS can precisely
identify the author of a specific file edit at a given time.
This saves you valuable time, as you can focus on writing
instead of meticulously tracking each change. Figure 1-4
depicts a versioned project managed by Git, showcasing
the combination of all the solutions discussed in this
chapter: change descriptions, teamwork, and edit dates.

Figure 1-4 A project versioned by Git

Let’s find out more about version control systems.

What Are the Choices?

There are many flavors of version control systems, each
with its own advantages and shortcomings. A VCS can be
local, centralized, or distributed.

Local Version Control Systems

These were the first VCSs created to manage source code.
They worked by tracking the changes made to files in a
single database that was stored locally. This meant that all
the changes were kept on a single computer, and if there
were any problems, all the work would be lost. It also
meant that working with a team was out of the question.

One of the most popular local VCSs was a source code

control system (SCCS), which was free but closed source.
Developed by AT&T, it was widely used in the 1970s until
the introduction of a revision control system (RCS). RCS
became more popular than SCCS because it was open
source, cross-platform, and much more effective. Released
in 1982, RCS is currently maintained by the GNU Project.
One of the drawbacks of these two local VCSs was that they
only worked on one file at a time; there was no way to track
an entire project with them.

To help you visualize how it works, Figure 1-5 illustrates
a simple local VCS.

Figure 1-5 How a local VCS works

As you can see in Figure 1-5, everything is on the user’s
computer, and only one file is tracked. The versioning is
stored in a database managed by the local VCS.

Centralized Version Control Systems

Centralized VCS (CVCS) stores the change history on a
single server to which the clients (authors) can connect.
This offers a way to work with a team and allows
monitoring a project’s pace. They are still popular because
the concept is simple and easy to set up.

The main problem with CVCS, like local VCS, is that a
server error can result in losing all of the team’s work. A
network connection is also required since the main project
is stored on a remote server.

Figure 1-6 shows how it works.

Figure 1-6 How a centralized VCS works

Figure 1-6 shows that a centralized VCS works similarly
to a local VCS, but the database is stored on a remote
server.

The main problem teams face using a centralized VCS is
that once someone uses a file, it is locked, and other team
members cannot work on it. As a result, they have to
coordinate among themselves to modify a single file. This
creates significant delays in development and leads to
frustration for contributors. Moreover, the more members
there are on the team, the more problems arise.

To address the issues of local VCS, the concurrent

version system (CVS) was developed. It was open source
and could track multiple sets of files instead of just one.
Many users could also work on the same file
simultaneously, hence the word concurrent in the name. All
the history was stored in a remote repository, and users
would keep up with the changes by checking out the

server, which involved copying the contents of the remote
database to their local computers.

Apache Subversion (SVN) was developed in 2000 and
offered everything that CVS could, with an additional
benefit: it could track non-text files. One of the main
advantages of SVN was that, instead of tracking a group of
files like the previous VCS, it tracked the entire project.
Thus, it essentially tracked the directory instead of
individual files. This meant that renaming, adding, and
removing files were also tracked. These features, combined
with its open source nature, made SVN a very popular VCS,
which is still widely used today.

Distributed Version Control Systems

Distributed VCS works similarly to centralized VCS but
with a significant difference: no main server holds all the
history. Instead, each client has a copy of the repository
(including the change history) rather than checking out a
single server.

This greatly reduces the risk of losing everything since
each client has a clone of the project. With a distributed
VCS, the concept of a “main server” becomes blurred
because each client has all the power within their own
repository. This greatly encourages forking within the open
source community. Forking refers to cloning a repository to
make your own changes and have a different perspective
on the project. The main benefit of forking is that you can
pull changes from other repositories if you see fit, and
others can do the same with your changes.

A distributed version control system is generally faster
than other types of VCS because it doesn’t require network
access to a remote server. Nearly everything is done
locally. There is also a slight difference in how it works:
instead of tracking the changes between versions, it tracks

all changes as patches, which can be freely exchanged
between repositories, so there is no main repository to keep
up with.

Figure 1-7 illustrates how a distributed VCS works.

Figure 1-7 How a distributed VCS works

Note When looking at Figure 1-7, it may be tempting to
conclude that there is a main server that the users are
keeping up with. However, in the case of a distributed
VCS, it is important to note that it is only a convention
many developers follow to have a better workflow. In
reality, there is no requirement for a centralized main
server in a distributed VCS setup. Each client has its own
repository, and changes can be exchanged directly
between repositories without needing a central server.

BitKeeper SCM was a proprietary distributed VCS that was
released in 2000. Similar to SCCS in the 1970s, BitKeeper

SCM was closed source. It offered a free Community
version that lacked many of the advanced features of the
full BitKeeper SCM. Despite this limitation, being one of
the first distributed VCSs, it gained popularity even within
the open source community.

The popularity of BitKeeper played a significant role in
the creation of Git. In 2016, the source code of BitKeeper
was released under the Apache License, making it an open
source software. The current BitKeeper project is at
www.bitkeeper.org. While the development has slowed,
the BitKeeper community is still actively contributing.

What Is Git?

Remember the proprietary distributed version control
system BitKeeper SCM from the last section? Well, the
Linux kernel developers used it for their development. The
decision to use it was wildly regarded as a bad move and
made many people unhappy. In 2005, BitKeeper SCM
ceased to be free, leading to the need for a new VCS for the
Linux kernel development. Since no suitable alternative
was available, the decision was made to develop a new VCS
from scratch, creating Git.

Git shares similarities with BitKeeper SCM, a distributed
VCS, but it offers several improvements. It is known for its
speed and efficiency, particularly when handling large
projects. The Git community is highly active, with
numerous contributors involved in its development and
maintenance. To learn more about Git, visit the official
website at https://git-scm.com.

The features and workings of Git will be explained in
more detail later in this section.

What Can Git Do?

http://www.bitkeeper.org/
https://git-scm.com/

Remember all those problems at the beginning of this
chapter? Well, Git can solve them all. It can even solve
problems you may not have been aware of. The following
are some of the key capabilities of Git.

Track changes
– Navigate back and forth between versions.
– Review the differences between different versions.
– Check the change history of specific files.
– Tag specific versions for easy referencing.
Collaboration and teamwork
– Exchange “changesets” between repositories.
– Review the changes made by other team members.
Branching and merging
– Git’s branching system allows you to create copies of

the project, called branches, where you can work
independently without affecting the main repository.

– Merging enables you to incorporate changes in a
branch back into the main source.

Stashing
– Git provides a stashing feature that allows you to safely

set aside your current edits, creating a clean working
environment to focus on a different task.

– Stashing is useful when temporarily storing changes
while working on a different feature or priority task.
You can later retrieve and apply those changes to your
current working environment.

Git’s versatility and robust feature set make it a valuable
tool for version control, enabling efficient collaboration,
flexible branching, merging capabilities, and the ability to
track changes effectively.

As a little appetizer, here are some of the Git commands
you will learn in this book.

$ git init # Initialize a new git database

$ git clone # Copy an existing database

$ git status # Check the status of the local

project

$ git diff # Review the changes done to the

project

$ git add # Tell Git to track a changed file

$ git commit # Save the current state of the

project to database

$ git push # Copy the local database to a remote

server

$ git pull # Copy a remote database to a local

machine

$ git log # Check the history of the project

$ git branch # List, create or delete branches

$ git merge # Merge the history of two branches

together

$ git stash # Keep the current changes stashed

away to be used later

As you can see, the commands are self-explanatory.
Don’t worry about knowing all of them by heart; you will
learn them one by one. And, you won’t need to always use
all the commands. You will mostly use git add and git
commit. This chapter focuses on the commands commonly
used in a professional setting. But before diving into that,
let’s explore the inner workings of Git.

How Does Git Work?

Unlike many version control systems, Git works with
snapshots rather than differences. This means that instead
of tracking the difference between two versions of a file,
Git captures a complete snapshot of the project’s current
state.

This approach contributes to Git’s exceptional speed
compared to other distributed VCSs. It allows for swift and

effortless switching between versions and branches.
In contrast to centralized version control systems, Git

operates differently. You don’t need to communicate with a
central server to perform work. As a distributed VCS, each
user has their own independent repository with a complete
history and changesets. Consequently, most actions in Git
are performed locally, except for sharing patches or
changesets. While a central server is not necessary, many
developers still use one as a convention for easier
collaboration.

Let’s discuss how Git identifies and associates
changesets with respective users. When Git captures a
snapshot, it computes a checksum for it. This checksum
allows Git to determine which files have changed by
comparing their checksums. This mechanism enables Git to
track changes between files and directories while checking
for file corruption.

The main feature of Git is its “three states” system,
which consists of the working directory, the staging area,
and the git directory.

The working directory represents the current snapshot of
the project that you are actively working on.
The staging area is where modified files are marked in
their current version, indicating they are ready to be
stored in the database.
The git directory serves as the database where the
project’s complete history is stored.
In essence, Git operates in the following manner: you

modify the files in the working directory, then add each file
you want to include in the next snapshot to the staging area
using the git add command. Once the files are added to
the staging area, you can create a snapshot of the project
by committing the changes using the git commit
command. In Git terminology, a modified file added to the
staging area is known as staged, and a file that has been

committed and added to the database is committed.
Therefore, the life cycle of a file in Git progresses from
modified to staged to committed.

What Is the Typical Git Workflow?

To help you visualize the concepts discussed in this section,
I will briefly demonstrate a typical workflow using Git.
Don’t worry if you don’t fully understand everything;
subsequent chapters guide you through the setup process.

On your first day at work, you must add your name to an
existing project description file. Since it’s your first day, a
senior developer will review your code.

To begin, you need to obtain the project’s source code.
You can ask your manager for the server where the code is
stored. In this demo, the code is stored on GitHub, which
means that the Git database is hosted on a remote server
provided by GitHub. You can access it through a URL or
directly on the GitHub website. In this case, the clone
command is used to retrieve the database, but you could
also download the project as a zip file from the GitHub
website. By cloning the repository, you receive a complete
copy of the project files along with its entire history.

So, to obtain the source code, you can use the clone
command followed by the repository’s URL. Figure 1-8 is
an example.

$ git clone

https://github.com/mariot/thebestwebsite.git

Figure 1-8 The result of the git clone command

Git then downloads a copy of the repository into the
current directory you are working from. Once the cloning
process is complete, you can navigate the newly created
directory and inspect its contents, as demonstrated in
Figure 1-9.

Figure 1-9 The contents of the repository are shown

If you want to examine the recent changes made to the
project, you can utilize the log command to display the
commit history. Here is an example of how it looks, similar
to Figure 1-10.

$ git log

Figure 1-10 A typical Git history log

Running this command presents a chronological list of
commits, including the commit hash, author, date, and
commit message. It provides an overview of the project’s
history and the changes made.

Nice! Now, you should create a new branch to work on
to avoid messing up with the project. You can create a new
branch by using the branch command and checking it out
with the checkout command.

$ git branch add-new-dev-name-to-readme

$ git checkout add-new-dev-name-to-readme

Now that the new branch is created, you can modify the
files. You can use whatever editor you want; Git tracks all
the changes via checksums. Now that you have made the
necessary changes, it is time to put them in the staging
area. As a reminder, you put modified codes ready to be
snapshotted in the staging area. If you modified the
README.md file, you could add it to the staging area using
the add command.

$ git add README.md

You don’t have to add every file you modified to the
staging area, only those you want to be accounted for in the
snapshot. Now that the file is staged, it is time to commit it
or put its change in the database. You do this by using the
command commit and attaching a brief description.

$ git commit -m "Add Mariot to the list of

developers"

And that’s it! The changes you made are now in the
database and safely stored. But only on your computer! The
others can’t see your work because you worked on your

own repository and a different branch. You must push your
commits to the remote server to show your work to others.
But you must show the code to the senior dev before
making a push. If they are okay with it, you can merge your
branch with the main snapshot of the project (called the
main branch). So first, you must navigate back to the main
branch using the checkout command.

$ git checkout main

You are now on the main branch, where all the team’s
work is stored. But by the time you worked on your fix, the
project may have changed, meaning that a team member
may have changed some files. You should retrieve those
changes before committing your own changes to the main.
This limits the risk of conflicts, which can happen when
two or more contributors change the same file. You must
pull the project from the remote server (also called origin)
to get the changes.

$ git pull origin main

Even if another coworker changed the same file as you,
the risk of conflicts is low because you only modified a line.
Conflicts only arise when multiple people have modified the
same line. Everything would be okay if you and your
coworkers each changed different parts of the file.

Now, it’s time to commit your version to main. You can
merge your branch with the merge command.

$ git merge add-new-dev-name-to-readme

Now that the commit has been merged into the main, it
is time to push the changes to the main server. You do that
by using the push command.

$ git push

Figure 1-11 shows the commands used and the results.

Figure 1-11 A simple Git workflow

It’s that simple! And again, don’t worry if you don’t
understand everything yet. This is just a little demo of how
Git is usually used. It is also unrealistic: no manager would
give a new recruit an all-access pass to their main
repository like that.

Summary

This chapter offered a sneak peek at Git, which has many
more powerful features to learn about. Before moving to
the next step, ask yourself: How will Git help me in my
projects? Which features are the most important? Will Git
improve my workflow?

The main takeaway from this chapter is the difference
between distributed and centralized VCSs. Team workflows
using CVCS is less organized and leaves too many

developers unfulfilled. Therefore, you must learn more
about distributed VCS to keep up with the times.

You’ve seen the typical workflow of a team using Git in
this chapter. It’s the workflow most teams use in
professional environments and the open source community.
This workflow will increase your productivity even if you
plan to work alone.

Don’t worry about understanding all of Git right now;
focus on what it can do for you. You will become familiar
with it after a couple of chapters. Next, let’s focus on
installing Git on your system.

(1)

© The Author(s), under exclusive license to APress Media, LLC, part of
Springer Nature 2024
M. Tsitoara, Beginning Git and GitHub

https://doi.org/10.1007/979-8-8688-0215-7_2

2. Installation and Setup

Mariot Tsitoara1

Antananarivo, Madagascar

Now that you know what version control is and how Git
works, you are ready to learn how to install and set it up,
which is quite easy.

Installation

The files required to install Git are available at
https://git-scm.com/downloads for all systems. Follow
the link and choose your operating system.

Figure 2-1 shows that GUI clients are available for Git.
However, I recommend not venturing into that area until
you complete Part III of this book. It is important to
familiarize yourself with Git commands before using GUI
clients; otherwise, you may waste a lot of time trying to
resolve a simple issue that could be easily resolved using
basic Git commands in seconds.

https://doi.org/10.1007/979-8-8688-0215-7_2
https://git-scm.com/downloads

Figure 2-1 The download section of git-scm.com as of June 2023

Once familiar with Git commands, you can explore GUI
clients and see for yourself. There is a chapter about GUI
clients in Part IV of this book. However, please refrain from
using any GUI client beforehand because it may
significantly prolong your learning process.

Note Git is bundled with two GUI tools: gitk, which is
used for reviewing history, and git-gui, which is used for
basic commands. These tools are explained in Chapter

15. Therefore, the previous advice still applies, and it is
recommended to follow it before delving into the GUI
tools.

Windows

Installing Git on Windows systems is a straightforward
process. After opening the link (https://git-
scm.com/download/win), the download should start
automatically, and you are directed to the confirmation
page, as shown in Figure 2-2. If the download doesn’t start
automatically, you can manually download the build
corresponding to your Windows version.

Figure 2-2 The Git download screen for Windows

https://git-scm.com/download/win

To begin the installation, execute the downloaded exe
file. The first screen is the license declaration, which
outlines the terms and conditions. Reading the license
agreement thoroughly (although it’s often skipped) is
recommended. Once done, click Next to proceed to the
component selection screen, like the one shown in Figure
2-3. On this screen, you are prompted to select which
components to install.

Figure 2-3 Select the components to install

I recommend leaving the default options selected for
installation.

As Figure 2-3 depicts, you must check the components
you wish to install. It is advisable to leave the “Windows

Explorer integration” option checked. This lets you
conveniently access Git by right-clicking a folder and
finding the options to launch Git in the default GUI or the
Bash (command window) context menu. The other
components are self-explanatory, so deciding whether to
install them is at your discretion.

Note If you didn’t install the Windows Explorer
integration and want to open the command window in a
folder, you must open the extended context menu. To do
this, you can use the Shift+right-click keyboard shortcut.
This provides additional options, including opening a
command window in the selected folder.

After making your choices, click Next, and you are
presented with the default editor selection screen, as
shown in Figure 2-4. Git requires you to define a default
editor since you need an editor to write commit
descriptions and comments.

Figure 2-4 Default editor selection

As shown in Figure 2-4, Vim is the default editor for Git.
You can select your preferred text editor from the drop-
down list. The first two options, Nano and Vim, work within
the console or command window, eliminating the need to
open another program. The list includes popular editors
like Sublime Text, Atom, and Visual Studio Code. If your
preferred editor is not listed, you can choose the last
option, and a new input field appears (as shown in Figure
2-5), allowing you to provide a link to the editor’s main
executable file.

Figure 2-5 Setting up a custom editor

In Figure 2-5, you can see the screen where you can set
up your custom editor if it is not listed in the drop-down
options.

I have decided to stick with the default option and use
Vim for this book. However, it does not make a difference
in this book if you use any other editor. If you are
interested in learning Vim (which takes some time), you
can explore the Vim Tutor program that comes with Vim or
try out a fun video game at https://vim-
adventures.com/. Additionally, you can refer to the
comprehensive guide at www.vi-
improved.org/vimusermanual.pdf, which spans more than
300 pages.

https://vim-adventures.com/
http://www.vi-improved.org/vimusermanual.pdf

Do not worry, though, as this choice is not permanent.
You can change your preferred editor at any time. You
learn how to do this in the last section of the chapter.

Caution Never start or participate in an editor war
while online. Just choose your preferred text editor and
refrain from discussing it with anyone. I still bear scars
from my previous experiences during the Emacs vs. Vim
war.

The next step is to choose the name of the initial branch, as
shown in Figure 2-6. This is the name of the first branch
created when initializing a new repository. Traditionally,
the default name has been “master”. However, many teams
prefer “main” as the default branch name.

Figure 2-6 Choosing git init default name

The choice of branch name does not have any impact on
your Git journey, so you can select the name that you are
most comfortable with. Additionally, it’s worth noting that
you can always change the branch name when initializing a
repository or at a later stage. I use “main” for new projects,
while my team at work uses “devel”.

Once you have chosen your favorite editor, you can
proceed to the next screen, which is the PATH environment
adjustment screen as shown in Figure 2-7. The PATH
environment variable holds a list of directories where
executable programs are located. It is necessary so that
you don’t have to enter the full path to an executable when

you want to run it in the console; you only need to type its
name.

Figure 2-7 Choosing to add Git to PATH or not

For example, to launch Visual Studio Code from the
console, you typically need to type C:\Program Files

(x86)\Microsoft VS Code\bin\code. However, you can
type the code to launch by adding C:\Program Files
(x86)\Microsoft VS Code\bin to the PATH.

The same principle can be applied to Git if desired. If
you prefer to use Git with its own isolated console called
Git Bash, select the first option. In this case, you would
need to launch Git from the Apps list or the context menu

of a folder (if you installed the Windows Explorer
integration).

However, if you want to be able to use Git globally, it is
recommended to leave the default option checked to add
Git to your PATH environment. By doing so, other tools can
also utilize Git, and you can work with Git from any
command window. I highly recommend choosing this option
for greater convenience and flexibility.

The last option is invasive because it adds numerous Git
commands to your PATH and potentially overwrites some of
Windows’ default tools. It is recommended to choose this
option only if you have a valid reason. In most cases, there
is no need for such a modification.

Please select an option shown in Figure 2-7 and proceed
to the next step accordingly. Next, you reach the SSH
executable adjustment screen, shown in Figure 2-8. You
can choose between using the bundled OpenSSH or an
external SSH executable. Unless you have a specific reason
to use a different SSH executable, it is recommended to use
the bundled one.

Figure 2-8 Choosing an SSH executable

Afterward, you encounter a screen regarding HTTPS
connections, as depicted in Figure 2-9. You must select the
library for sending data over HTTPS on this screen. As you
progress through this book, you learn about connecting to
remote servers since Git is a distributed VCS. To share your
commits with others, it is crucial to establish secure and
encrypted connections to protect your data from potential
theft or unauthorized access.

Figure 2-9 Choosing the HTTPS transport backend

Unless you have a specific reason, such as company
policy or personal security setup, it is recommended to
stick with the default option for HTTPS connections.

The next step involves line endings. This step presents
you with a selection screen, which should resemble the one
shown in Figure 2-10. Different operating systems handle
text files differently, particularly when it comes to line
endings. Considering the likelihood of collaborating with a
team that uses various operating systems, Git needs to
convert line endings to and from each style before sharing
commits.

Figure 2-10 Line ending conversions

Selecting the default option for line endings is advisable
if you are using Windows. The other two options can
potentially cause issues with your commits if you are not
careful with line endings. You can proceed to the next step
once you have chosen the default option.

Caution This step is crucial because Windows and
macOS use “\r\n” to end lines, whereas Linux uses “\n”.
If you do not convert line endings appropriately, your
files can become difficult to read, and Git may detect
numerous changes even if you made minimal
modifications. It is important to ensure proper line-

ending conversion to maintain consistency and avoid
unnecessary complications in your Git workflow.

In the next step, you choose a default terminal emulator or
console. This is a straightforward selection screen like the
previous ones, as shown in Figure 2-11. Git Bash requires a
console emulator to function properly, so you must make a
choice. The default emulator is MinTTY, while the
alternative option is Windows’ default console.

Figure 2-11 Choosing a terminal emulator

I recommend sticking with the default option for the
terminal emulator, as MinTTY offers improved functionality

compared to the Windows console window. Click Next to
proceed to the final steps.

Next, you select the default behavior for the git pull
command. Choose the default behavior as shown in Figure
2-12.

Figure 2-12 Configuring default git pull behavior

You have reached the end of the installation process.
There are just a few adjustments to make on the extra
options screen, as depicted in Figure 2-13 and Figure 2-14.
This screen allows you to enable additional features that
complement your Git installation. For instance, the Git
Credential Manager enhances secure connections to
remote servers and integrates well with other Git tools.

Figure 2-13 Configuring credential helper

Figure 2-14 Configuring extra options

Unless you have a specific reason not to, it is
recommended to leave the default options as they are.
Once you have made your selections, launch the installation
and allow it to complete. Congratulations! Git is now
installed on your Windows system. The next section
explains how to set it up properly.

macOS

If you have previously done software development on
macOS X, it’s likely that Git is already installed on your
system, because it comes bundled with Xcode
(https://developer.apple.com/xcode/). You can check if

https://developer.apple.com/xcode/

Git is installed by running the following command in your
console.

$ git --version

This command displays the currently installed version of
Git. If Git is not installed, you are prompted to install
Xcode’s command-line tools. Select the option in the
prompt to install Git, and you can skip the remaining steps
in this section.

To install Git on macOS, visit https://git-
scm.com/download/mac. There are several choices
available for installing Git on macOS, as depicted in Figure
2-15. Choose the option you are most comfortable with and
proceed with the installation.

https://git-scm.com/download/mac

Figure 2-15 Downloads for macOS

I recommend using Homebrew (https://brew.sh/) to
install Git and its tools on macOS. Run the brew install
git git-gui command in your terminal. This command
installs Git along with its dependencies. The installation
process may take some time as it installs the necessary
components.

Installing Git on macOS is relatively easier, especially if
Homebrew is installed.

https://brew.sh/

Linux

If you are using a Linux distribution, the installation of Git
can vary depending on your distribution. However, most
popular distributions have Git available in their package
manager. Let’s discuss the commands for some common
Linux distributions.

The following are for Ubuntu and Debian.

$ sudo apt-get install git

or

$ sudo apt install git

The following is for Fedora.

$ sudo yum install git

or

$ sudo dnf install git

If you use a different distribution, you can visit the Git
website’s Linux download page (https://git-
scm.com/download/linux) to find the appropriate
installation commands for your specific distribution. The
commands provided should be like the ones shown in
Figure 2-16, with instructions for various Linux flavors.

https://git-scm.com/download/linux

Figure 2-16 Downloads for Linux and Unix

Since you are already familiar with your Linux
distribution, you may have a preferred method of package
management or specific steps to install software. Feel free
to use the method you are most comfortable with to install
Git on your Linux system.

After you use the command corresponding to your
distribution listed in Figure 2-16, Git is installed!

Caution Like the editor war, the distribution war is a
big no-no online.

Setting up Git

Before using Git, you must do a little setup. This setup is
typically done only once because all the configuration is
stored in an external global file, which means that all your
projects share the same settings. However, there is also a
way to configure projects individually, which is covered
later.

Since Git is a distributed version control system, there
will come a time when you need to connect to remote
repositories. To ensure no identity mistakes, you must
provide Git with some information about yourself. Don’t
worry. It won’t ask for any fun facts!

To set up Git, open Git Bash (for Windows systems) or
the default console window (for Linux/ macOS or Windows
systems that modified their PATH environment). In the
command prompt, specify your name and email address to
Git using the following commands.

$ git config --global user.name "Mariot Tsitoara"

$ git config --global user.email

"mariot.tsitoara@gmail.com"

Note the global argument, which indicates that the
configuration is applied to all future Git repositories. This
means you won’t have to set up your name and email again
in the future.

Using the config command, you can also change your
default editor. If you ever want to switch your editor

because you found a new one or uninstalled your previous
one, the config command is there to assist you. For
example, you would use the following command to change
the default editor to Nano.

$ git config --global core.editor="nano"

The Git configuration file, which stores your setup, can
be found in your home folder. For Windows, it is located at
C:\Users\YourName\.gitconfig. It is at
/home/yourname/.gitconfig for Linux and macOS.

You can manually edit this file if you prefer to make
changes directly.

Summary

Let’s review what we’ve learned so far! First, you should
have Git installed on your system by now. The installation
process is very easy on Windows and even easier on macOS
and Linux. I suggest keeping all the default options (even if
they aren’t shown in the preceding screenshots) if you are
unsure what you need.

Next, there is the setup. You only need to do this once in
every system where you install Git. Git uses your name and
email to sign every action you make, so setting this up first
is necessary.

And that’s it! You are now ready to use Git with all its
glory. Head to the next chapter to jump-start with Git.

(1)

© The Author(s), under exclusive license to APress Media, LLC, part of
Springer Nature 2024
M. Tsitoara, Beginning Git and GitHub

https://doi.org/10.1007/979-8-8688-0215-7_3

3. Getting Started

Mariot Tsitoara1

Antananarivo, Madagascar

You’re finally ready to dive into Git! This chapter
introduces you to some key Git terminologies and concepts
that are essential for any project. After that, you learn how
to set up a project, make changes, review those changes,
and navigate between different versions. So, let’s get
started!

Repositories

A repository serves as a storage for your project and keeps
track of all its changes. You can think of it as a “change
database.” However, it’s important to note that a repository
is simply a regular folder on your system, making it easy to
work with.

To manage a project with Git, you must set up a
repository specifically for that project. The process of
setting up a repository is straightforward. Just navigate to
the desired folder where you want to track your project and
instruct Git to initialize a repository there.

To start a project and set up a repository, follow these
steps.

https://doi.org/10.1007/979-8-8688-0215-7_3

1. Create a directory for your project.
2.

Navigate into the directory using the command prompt
or terminal.

3.

Initialize a Git repository by executing the appropriate
command.

See? It’s very easy. Let’s convert those statements into

commands. But first, let’s open a console to enter the
commands.

Follow these instructions to open a console or terminal
on different operating systems.

Linux: Launch your favorite terminal using the shortcut
Ctrl+Alt+T for Debian-like distributions.
macOS: Press Cmd+space to bring up Spotlight and
search for the Terminal app. Open it.
Windows: There are two options available: cmd and
PowerShell.

cmd: Press Windows+R to open the Run dialog, then
type cmd and press Enter.
PowerShell: Press Windows+R to open the Run dialog,
then type powershell and press Enter.

Note If you had them open before installing Git for the
first time, restart these consoles. Additionally, Git for
Windows offers the Git Bash console emulator, which
provides a similar environment to Linux and macOS
consoles. If you’re using Windows, I highly recommend
using Git Bash to have a consistent experience with users
on different operating systems.

To open Git Bash and execute the commands, please follow
these steps.

1. Open Git Bash from the Apps list or the contextual
menu.

2.
In the Git Bash terminal, type the following commands.

$ mkdir mynewproject

$ cd mynewproject/

$ git init

The mkdir command creates a directory (folder) named
“mynewproject.” The cd command navigates to the
“mynewproject” directory. Finally, the git init command
initializes a Git repository in the current directory.

After executing the git init command, Git provides
you with the location of the repository, like shown in Figure
3-1.

Figure 3-1 Initialization of a new repository

Note mkdir and cd are system commands the operating
system manages, whereas init is a Git command. Every

Git command begins with git.

Git creates a directory called .git that contains all your
changesets and snapshots. To check it out, show hidden
files from your File Explorer settings. The repository looks
like the directory shown in Figure 3-2.

Figure 3-2 An empty repository

And if you open the .git directory, you find many more
items in the Git database. Figure 3-3 shows an example.

Figure 3-3 Inside the .git directory

Chapter 1 mentioned that instead of tracking changes
between versions, Git takes snapshots? Well, all those
snapshots are stored in the .git directory. Each snapshot
is called a commit, which is covered shortly.

The HEAD file in the .git directory points to the current
“branch” or subversion of the project you are working on.
The default branch is called “main,” but it is just like any
other branch; the name is simply an old convention.

You should also know that initializing is the only way to
create a repository. You can copy an entire repository with
all its history and snapshots. This process is called cloning,
which is explored in another chapter.

EXERCISE: CREATE AN EMPTY REPOSITORY

Our first exercise is quite simple. Just create an empty
repository anywhere on your system. You can use either
the default console or Git Bash.

Working Directory

What about the empty area outside the .git directory?
That area is called the working directory, which contains
the files you will be working on. Typically, the most recent
version of your project resides in the working directory.

Each file you work with is in the working directory.
There is nothing particularly special about this area except
that it’s where you directly manipulate the files. It’s
important to note that you should never modify the files
inside the .git directory.

Git detects any new files you add to the working
directory. You can check the status of the directory by
using the status command.

$ git status

For example, if you create a new file called README.md in
the working directory, Git recognizes that the project has
changed. Place your new file alongside the .git directory,
as shown in Figure 3-4, and not inside it.

Figure 3-4 Creation of a new file in the working directory

If you check the status of the working directory, you
receive a result like the one shown in Figure 3-5. Observe
that you don’t have any commits yet because you are still in
the working directory and haven’t taken any snapshots. The
status also indicates that you are on the “main” branch,
which is the default name for the initial branch created
during repository initialization. There is also a list of
untracked files. These are the files that have been modified
or created in this instance.

Figure 3-5 The status of the working directory

Essentially, the working directory is where you directly
interact with your project files. It is the space where you
make changes, create new files, and modify existing ones
before committing them to the Git repository.

EXERCISE: CREATE SOME FILES FOR THE

PROJECT

This exercise is also very easy. Create files within your
project directory (repository) and check the working
directory status.

Staging Area

The staging area is where your files go before snapshots
are taken. Not every file you modify in the working
directory should be included in the snapshot of the current
state of the project. Only the files placed in the staging
area are captured in the snapshot.

So, before taking a snapshot of the project, you must
select which changed files to include. Changes in a file can
involve creating, deleting, or editing it. Think of it as
deciding which files are in the family photo. Use the add
command to add a file to the staging area.

The following is an example.

$ git add nameofthefile

It’s that simple. To stage the README.md file created
earlier, use git add README.md. If you have created
multiple files, you can add them individually or together,
like git add file1 file2 file3.

Let’s stage a new file by using the following command.

$ git add README.md

Then, let’s check the status using the git status
command.

$ git status

Adding a file to the staging area won’t produce any
visible result, but checking the status gives you a result like
what is shown in Figure 3-6.

Figure 3-6 Staging a file

Figure 3-6 shows that the working directory is cleaned
after staging the file. That’s because the git status
command only tracks unstaged files, which are edited files
that have not been marked for a snapshot.

Additionally, as shown in Figure 3-6, you can unstage a
file using the git rm command with the --cached option.

$ git rm --cached README.md

Caution Don’t forget the --cached option when
unstaging a file. If you forget it, you could lose your file!

After you have staged all the files that you want the
changes to be considered, you are now ready to take your
first snapshot!

EXERCISE: STAGE AND UNSTAGE YOUR FILES

Take the files you created in the previous exercise and
stage them. Unstage one file and then restage it. Check

the working directory status after each stage/unstage.

Commits

As discussed, a commit represents a snapshot of the entire
project at a specific point in time. Git does not record
individual changes to the files; it captures the project.

In addition to the snapshot, a commit includes
information about the author of the content and the
committer who added the changeset to the repository.

Note The author and the committer are typically the
same person unless the committer applied the changeset
from another team member. It’s important to remember
that Git commits are interchangeable since it is a
distributed version control system (VCS).

A commit represents a snapshot of the project’s state, and
each commit has a previous state known as its parent

commit. The initial commit in a repository, created by Git
upon repository creation, is the only commit without any
parents. Subsequent commits are linked to each other
through parentage. The collection of commits that are
connected through parent-child relationships is called a
branch.

Note If a commit has two parents, it indicates that the
commit was created by merging two branches.

A commit is identified by its name, which is a 40-character
string obtained by hashing the commit. It is a simple SHA1
hash, so multiple commits with the same information have
the same name.

A reference to a specific commit is called a head, and it
has a name. The head you are currently working on is
called HEAD.

Now, you can commit the files you staged earlier. Before
each commit, it’s recommended to check the status of the
working directory and the staging area. You can proceed
with the commit if all the files you want to commit are in
the staging area (under the phrase “Changes to be
committed”). Otherwise, you must stage them using the
git add command.

To commit all the changes, use the git commit
command.

$ git commit

Executing this command opens the default editor (refer
to Chapter 2 if you want to modify yours) and prompts you
for a commit message. A commit message is a short
description of what has changed in the commit compared to
the previous one.

For example, if my default editor is Notepad, executing
the commit command displays a screen like the one shown
in Figure 3-7.

Figure 3-7 Git opens the default editor so you can edit the commit message

Figure 3-7 shows that the first line of the file is empty,
and that’s where you should write the commit message.
The commit message should ideally be written on a single
line, but you can also add additional lines for comments.
Comments in the commit message start with the # symbol,
and Git ignores them. They only provide additional
information and make the commit message more
descriptive. It’s important to note that Git automatically
includes the list of changed files in the commit comments
(the same files you saw with git status).

In the later chapters, you will learn how to write commit
messages properly. But for now, you can enter a simple
message like “Add README.md to the project” on the first
blank line, as shown in Figure 3-8.

Figure 3-8 The commit message written on top of the file

After you have written your commit message, like in
Figure 3-8, you can close the editor after saving your
changes. Upon closing the editor, you receive a summary of
the commit, as depicted in Figure 3-9.

Figure 3-9 Summary of the commit

The summary of the commit contains several pieces of
information.

The current branch: main
The name of the previous commit: root-commit (since this
is your first commit)
The name of the commit: the first seven characters of the
commit hash
The commit message
The number of files changed: one file
The operation performed on each file: creation
Congratulations! You have taken your first snapshot. If

you check the status of the repository, you see that it is
clean again unless you have left some files unstaged.

EXERCISE: COMMIT YOUR CHANGES

Take your staged files from the previous exercise and
commit them. Then, modify one of your tracked files,
stage it again, and make a new commit. Compare the

summary of each commit. What is different? In what way
are those commits linked?

Quick Start with Git

Now that you are familiar with the basic concepts of Git,
you can apply them in a real project. Let’s imagine you
want to create a folder to hold your to-do list and make it
versioned so you can track when each item was completed.

To help you become more familiar with Git, complete the
following exercise without assistance. If you encounter any
difficulties, refer to the previous sections for guidance.

Remember the basic principles of Git.
Modify files in the working directory.
Add the files you want to include in the current state to
the staging area.
Create a snapshot of the project by committing the
changes.
Ensure that you add the modified files to the staging

area before committing, or they are not included in the
snapshot. Any modified files not added to the staging area
remain in the working directory until you decide to discard
them or include them in a future commit.

Let’s get started with the exercise! Please complete it
thoroughly before moving on to the next chapter. It is
essential to have a clear understanding of how Git works.

EXERCISE: A VERSIONED TODO APP

1.
Create a new repository.

2.
Create a file named TODO.txt in the directory and
add some text.

3. Stage TODO.txt.

4.
Commit the project with a short commit message.

5.
Create two new files named DONE.txt and
WORKING.txt.

6.

Stage and commit those files.
7.

Rename WORKING.txt to IN PROGRESS.txt.
8.

Add some text to DONE.txt.
9.

Check the directory status.
10.

Stage WORKING.txt and DONE.txt.
11.

Unstage DONE.txt.
12.

Commit the project.
13.

Check the directory status.
After completing this exercise, close the book and try

to explain the following concepts to yourself in your own
words.

Working directory
Staging area
Commit
If you understand these concepts well without

encountering many problems, you are ready to learn
more Git commands and concepts.

Summary

This chapter is of great importance for your understanding
of Git. The following are the three states that a file can be
in.

Modified: You have made changes to a file in the working
directory.
Staged: You have added the file to the staging area to
prepare it for snapshotting.
Committed: You have captured a snapshot of the entire
project, including all unmodified and staged files.
If a file was part of the previous commit and you haven’t

made any modifications, it is automatically included in the
next commit. A modified but unstaged file is considered
unmodified. You need to explicitly stage those files to make
Git track their changes.

You have also touched upon committing and commit
messages. Opening an external editor to write commit
messages may initially feel unfamiliar, but you will become
more comfortable with it in time.

The next chapter delves into checking the project
history, navigating between versions, ignoring specific
files, and reviewing the current changes made to the
project since the last commit.

(1)

© The Author(s), under exclusive license to APress Media, LLC, part of
Springer Nature 2024
M. Tsitoara, Beginning Git and GitHub

https://doi.org/10.1007/979-8-8688-0215-7_4

4. Diving into Git

Mariot Tsitoara1

Antananarivo, Madagascar

Now that you are familiar with the basic commands of Git,
it’s time to dive deeper into its other features.

Ignoring Files

Not everything in the working directory should be tracked
by Git. Certain files (configs, passwords, bad code) are
generally left untracked by authors or developers. The files
(or directories) to be ignored should be listed in a simple
file named .gitignore. Note that the proceeding period in
the name is important.

Let’s return to the previous chapter’s repository, the to-
do list. Let’s imagine that you want to include a private,
untracked file named PRIVATE.txt. First, you must create
the .gitignore file using your favorite text editor and write
PRIVATE.txt in it, as shown in Figure 4-1.

https://doi.org/10.1007/979-8-8688-0215-7_4

Figure 4-1 The .gitignore file with PRIVATE.txt in it

If you create and modify the PRIVATE.txt file (like in
Figure 4-2), it won’t be considered by Git when you check
the status.

Figure 4-2 Adding PRIVATE.txt

Let’s try to check the status.

$ git status

You get a similar result as shown in Figure 4-3.

Figure 4-3 Status of the working directory

As you can see from the status shown in Figure 4-3,
PRIVATE.txt is not tracked. However, you can also observe
that the .gitignore file IS tracked. Therefore, after
modifying the .gitignore file, you must add and commit it
to include the changes in the Git repository.

$ git add .gitignore

$ git commit

Staging a file and committing the project result in a
confirmation message summarizing the changes made (see
Figure 4-4).

Figure 4-4 Committing .gitignore

Remember that the .gitignore global file should be
placed at the root of your repository. Placing it in a
directory only ignores matching files in that specific
directory. It is generally considered bad practice to have
multiple .gitignore files scattered across various directories
unless your project is enormous. Listing all the rules in a
single .gitignore file located at the root of your repository is
preferable.

You might wonder what kind of files should be ignored
when using Git. The general rule of thumb is to ignore all
files generated by the project. For instance, in a software
source code project, you should ignore the compiled
outputs (such as executable or translated files).
Additionally, it’s recommended to exclude temporary files,
logs, and large libraries (e.g., node_modules). Also,
remember to exclude any personal configuration files and
temporary files created by your text editor.

The .gitignore file is not limited to ignoring files by their
exact names; you can also ignore directories and files that
match certain descriptions. Table 4-1 is a handy reminder
of all the templates you can use.

Table 4-1 .gitignore Lines

.gitignore Line What Is Ignored Example

config.txt config.txt in any directory
config.txt
local/config.txt

build/
any build directory and all
files in it. But not a file
named build

build/target.bin
build/output.exe
not output/build

build
any build directory, all
files in it, and any file
named build

build/target.bin
output/build

∗.exe all files with the extension
.exe

target.exe
output/res.exe

bin/∗.exe all files with the extension
.exe in the bin/ directory bin/output.exe

temp∗ all files with name
beginning by temp

temp
temp.bin
temp_output.exe

∗∗/configs any directory named
configs

configs/prod.py
local/configs/preprod.py

∗∗/configs/local.py
any file named local.py in
any directory named
configs

configs/local.py
server/configs/local.py
not configs/fr/local.py

output/
∗∗/result.exe

any file named result.exe
in any directory inside
output

output/result.exe
output/latest/result.exe
output/1991/12/16/result.exe

Those are the most common lines used with .gitignore.
There are others, but they are only used in specific
situations and almost never used in common projects. If
you are using a computer language or framework, go to

https://github.com/github/gitignore for a template of
the .gitignore file you should use.

But what if you want to ignore all files matching a
description except one? Well, you can tell Git to ignore all
the files and then immediately make an exception. To
exclude a file from the ignored list, you use “!”. For
example, if you want to ignore all .exe files except
output.exe, write .gitignore like in Figure 4-5.

Figure 4-5 How to make an exception

Note the order of the lines. The exception comes after

the rule!
This exception marking only works for lines describing

file names, though. You can’t use it with lines ignoring
directories.

And that’s how you ignore files! It’s almost as easy as
ignoring your responsibilities! The .gitignore file is
tracked and versioned, so don’t forget to stage it before
committing!

Checking Logs and History

If you followed the exercises (as you should) or began to
use Git for your projects, you now have a problem I

https://github.com/github/gitignore

promised would solve easily with Git: how to consult the
history log.

This is one of the most used features of Git and one of
the easiest Git commands: git log.

$ git log

Try it! Open your repository and run the command. You
should see a view similar to the one shown in Figure 4-6.

Figure 4-6 The commit log

The commit log lists (from the most recent to the oldest)
all the snapshots you or others committed. It also includes
the following for each commit.

The name (unique, obtained by hash)
The author
The date
The description

Since the commit names are often lengthy, let’s only use
the first five letters as the name. This is important for the
next section.

If your commit history is very long, you can use the
keyboard to do the following.

Go forward or backward one line: key up and down OR
press j and k
Go forward or backward one window: press f and b
Go to the end of the log: press G
Go to the beginning of the log: press g
Get help: press h
Quit the log: press q
You can use many parameters with git log, as presented

in Table 4-2.

Table 4-2 The Most Common Git Log Parameters

Command Use Example

git log --reverse reverse the order of commits

git log -n <number>
Limit the number of commits
shown git log -n 10

git log --since=

<date>

git log –after=

<date>

only show commits after a certain
date

git log

--

since=2023/11/11

git log --until=

<date>

git log --before=

<date>

only show commits before a
certain date

git log --author=

<name>

Show all commits from a specific
author

git log

--author=Mariot

git log --stat Show change statistics

git log --graph Show commits in a simple graph

Viewing Previous Versions

Now that you know how to check the history and commit
logs, it is time to inspect the files to see what changes were
made.

Remember those long names that are created with each
commit? You are going to use those to navigate between
commits or snapshots. To check your files in a specific
snapshot, you must know its name. The best way to find the
name of each commit is to check the history log.

To view and learn what changes have been made to your
project, you can use the git show command followed by
the name of the commit. You don’t need to write the full
name; the first seven letters suffice.

$ git show <name>

Try it with your repository! You should get a result like
the one shown in Figure 4-7.

Figure 4-7 Result of git show

As you can see, the commit is displayed in a highly
detailed manner. You can observe the differences between
the selected commit and the previous one. Additions are
shown in green, and deletions are displayed in red. Using
the git show command, you can examine the details of any
commit.

Reviewing the Current Changes

Checking previous versions is helpful, but what if you only
want to review the changes you just made? Examining
differences between the last commit and the current
working directory is an essential feature of Git, which is
very useful. The command to check these differences is
simple: git diff.

$ git diff

Modify one or multiple files in your directory, and then
execute the command. You get a result like the one shown
in Figure 4-8, which is very similar to the result of the git
show command from the previous section. They display the
same view because the information shown is identical.

Figure 4-8 Checking all the changes done in the working directory

Most of the time, you only need to check the changes
made to a single file, not the entire project. You can pass
the file name as a parameter to review its differences
compared to the last commit.

$ git diff TODO.txt

The main thing to remember is that git diff checks the
changes made to the files in the working directory; it
doesn’t check staged files! You must use the --staged
parameter to examine changes made to staged files.

$ git diff --staged

You should always check the diff in the staged files
before committing a project so you can do a final review.
You may forget to do so one day, so proceed to the next
chapter to learn how to undo or modify your commits.

Before moving on to the next chapter, please make sure
you are comfortable with these features.

Ignoring files
Checking history logs
Reviewing local and staged changes
Congratulations if you are comfortable with these

concepts and have completed the exercises! However, you
aren’t finished with commits yet!

Summary

This chapter was all about project history. You learned
about checking logs with git log and git show. You also
reviewed the current changes with git diff. git log and
git diff will be particularly useful in the future, so make
sure you understand them well. git diff is about
comparing the current modified files to the files in the last
commit. In contrast, git log is just a list of all previous
commits.

The ability to ignore files with .gitignore is also a
valuable skill to have, so your git status isn’t cluttered
with modified files that you aren’t interested in committing.
It’s also a good way to ensure that a particular file
(probably containing secret keys) isn’t accidentally
committed.

You still have a lot to learn about commits in the next
chapter. Chapter 5 reviews the three states of Git files and
shows how to bring back previous versions into the working

directory. You also learn how to undo and modify commits.
Hang tight!

(1)

© The Author(s), under exclusive license to APress Media, LLC, part of
Springer Nature 2024
M. Tsitoara, Beginning Git and GitHub

https://doi.org/10.1007/979-8-8688-0215-7_5

5. Commits

Mariot Tsitoara1

Antananarivo, Madagascar

The previous chapter taught you a little about the essential
features of Git. By now, you should know how to check the
history log and see the changes made to the current
version. However, Git commits can be a complex concept,
so this chapter delves deeper into them in this chapter.
First, you explore (again) the inner workings of Git and its
terminology. Then, you’ll learn how to view and examine
previous versions. Let’s get started!

The Three States of Git

Before delving into the details of commits, let’s revisit the
basics and understand how Git works. You may already
know the three states a file can be in. Regardless, don’t
skip this chapter; it is essential for everything you do with
Git. I encourage you to read on.

As you saw in the last chapter, not all files are tracked
by Git; some files are ignored (by the .gitignore file).
Additionally, some files aren’t ignored but are not yet
tracked by Git. These are the newly created files that have
never been part of a snapshot (commit).

Tracked files can be in three states.

https://doi.org/10.1007/979-8-8688-0215-7_5

Modified: You changed the file.
Staged: You changed the file and prepared it to be
snapshotted.
Committed: You took a snapshot of the entire project, and
the file was part of it.
Untracked files remain as such until you decide to stage

and commit them or explicitly ignore them.

Note Git doesn’t track changes; it tracks snapshots.
Each time you commit, the state of the entire project is
saved, not just the small changes that were made.

Nerd fact: Git is fast because you always work on the last
state of the project. When you want to see a previous
commit, it just shows you the state of the project at that
specific time. Many version control systems stored each
change made to a file, and when you wanted to go back to a
previous state, they replayed the changes in reverse. This
approach caused many problems with speed and memory
when the project grew large. However, Git’s way of
thinking avoids such issues by creating efficient databases.
When you take a snapshot and a file doesn’t change, it is
not stored again; instead, a reference to the existing file is
used.

Let’s revisit the three states and explore their
relationship:

The working directory is where you work with your files.
It’s the directory you created before initializing the
repository. Here, you can read, modify, and edit your
files.
The staging area is where you place your changed files
before taking a snapshot of the entire project. You cannot
create a snapshot (commit) without staging your changed
files first. Only staged files (along with unchanged files)

are included in the snapshot. Unstaged files (whether
tracked or untracked) and ignored files remain in their
current state.
The database or .git directory stores every snapshot
you’ve taken. These snapshots are known as commits.
Recall that staging concerns only the changed files you

select, while committing encompasses the entire project.
You stage individual files, and then commit the entire
project to create a snapshot.

Navigating Between Versions

Many times, you won’t only want to know what has
changed in your project, but also to see the state of the
project at a specific point in time, to view the snapshot you
took. With Git, this is easy to achieve.

When you want to return the project to a previous state
in the working directory, you can use the git checkout
command followed by the commit name. However, it’s
important to note that this operation changes the files in
the working directory. Therefore, you must ensure that you
don’t have any unstaged files. Untracked files are fine since
Git doesn’t track their states yet.

To view a project snapshot, use the git checkout
command and pass the commit name as a parameter. It
allows you to see how the project looked at that specific
point in its history.

$ git checkout <name>

Let’s try it! Open your current project in a text editor
and take note of its contents. Then, check out a previous
commit, as Figure 5-1 shows.

Figure 5-1 Checking out older commits

Warning You can’t check out any other commit if your
working directory isn’t clean! Make sure to commit your
changes before switching snapshots.

If you check your text editor, you notice that the project is
now just like when you took the snapshot. That’s one of the
best things about Git—nothing you took a snapshot of is
ever lost!

Now, let’s learn some Git terminology. Instead of saying
name when talking about commits, you use the term head.
When switching between different commits, you need a
way to know which head you are on. A head refers to a
commit (there can be multiple heads in a repository), and
the head pointing to the currently checked-out commit is
called HEAD.

But how do you return to the normal, current working
directory? Since you didn’t make any significant changes to
the repository, returning to the working directory is as
simple as checking out the only branch you have. By
convention, that branch is called main.

$ git checkout main

Try it out! Remember the two golden rules of time
travel.

Only travel back in time when the present is clean
(nothing unstaged in the working directory).
If you change the past, make sure to store the changes
somewhere (in a new branch).
Don’t forget to check out the current branch (main)

after navigating between versions.

Undo a Commit

The time comes when you stage and commit files but later
change your mind. It happens to everyone. However, with
traditional methods (without versioning), it is very difficult
to roll back changes, especially if they were made ages ago.
With Git, it’s as simple as using a single command: git
revert.

Why not just delete the commit? That’s because of the
time-traveling rule from the previous section: never change
the past. Whatever changes were committed must stay for
the sake of history. Changing what has happened in the
past is very dangerous and counterintuitive. Instead, you
use git revert to create a new commit that contains the
exact opposite of the commit you are trying to undo.

So, undoing a commit is just committing its exact
opposite. It’s that simple! To use it, you must pass the
name of the commit to be undone as a parameter.

$ git revert <commit name>

You can revert any commit, but make sure to work on a
clean working directory. So, don’t forget to stage and
commit your files before reverting a commit. Let’s try it!

First, ensure that the working directory is clean, as
shown in Figure 5-2.

Figure 5-2 Using git status to check the working directory

Perfect. Now that you know the working directory is
clean, it’s time to check the history to determine which
commit to undo. You should get a result like the one shown
in Figure 5-3.

Figure 5-3 Checking commit history with git log

Note If you don’t like the way the commit history is
displayed, you can pass the --oneline parameter to
reduce the information shown. Figure 5-4 shows an
example.

Figure 5-4 A prettier git log output

Let’s revert the last commit! Use git revert followed
by the commit name.

$ git revert d57c3a6

Since git revert only creates a new commit containing
opposite changes, the rest of the procedure is the same as
any new commit. Figure 5-5 shows that you are asked to
describe your new commit. I suggest always keeping the
default commit description, as it makes it easy to identify.

Figure 5-5 The new commit description

After you save the commit description (as with all
commits), you are presented with a summary of the
snapshot content. Figure 5-6 shows the result after running
the commands and saving the commit description.

Figure 5-6 Summary of the revert

As you can see, undoing changes is very easy with Git.
The key thing to remember is that git revert only creates
a new commit containing opposite changes. This means you
can revert a revert! Reverting a revert reapplies your
original commit, and the two reverts cancel each other out.
However, the commits remain in your history log because
you can’t change the past.

Note You can change the past using various advanced
Git techniques. But never do it unless you know what
you’re doing. It’s a very bad idea, and it likely leads to
more problems down the road. It’s always safer to use
git revert to undo changes.

Modifying a Commit

As I promised you in the last chapter, you learn how to
modify a commit in this chapter. It is used when you forgot
to stage a file or want to change the commit message.
However, this should not be used to modify a lot of files, as
doing so is counterintuitive. The next chapter discusses in
detail when and where to use this feature. And I’ll say it
again: never try to change the past.

To modify a commit, you must use the git commit
command, but with --amend as a parameter. It opens your
default text editor, just like a normal commit, but with the
staged files and commit message already there.

$ git commit --amend

Then, save and close the text editor, as you would for
any regular commit. The term modify I used earlier is a bit
misleading because you are not directly modifying an
existing commit; you are creating a new one and replacing
the current one. So, from now on, I use the term amend to
refer to this process.

Amending a commit takes everything in the staged area
and creates a new commit with those changes. If you want
to add a new file to the commit or remove a file from it, you
can stage and unstage them as needed. To unstage a file,
you can use git reset HEAD <file>.

For example, let’s use the TODO app again. First, edit
an existing file, then create two new files named
filenottocommit.txt and fileforgotten.txt, as shown
in Figure 5-7.

Figure 5-7 All the files in the working directory

You can check the project’s current state by executing
the git status command.

$ git status

You might have a slightly different result depending on
how many files you added to the project before, but it
should look like Figure 5-8.

Figure 5-8 The modified and untracked files are highlighted

The next thing you must do is stage the files to be part
of the commit. Add the changed files and
filenottocommit.txt to the staging area to do this.

$ git add TODO.txt DONE.txt filenottocommit.txt

As you learned from the last chapter, you should always
check what you’ve staged with git diff --staged before
committing. However, let’s pretend that you forgot to
check and proceed to commit immediately.

$ git commit

Even in that case, you arrive at the commit message
screen that outlines the changes to be committed, like
Figure 5-9.

Figure 5-9 The commit message screen is the last failsafe

As you can see, the changes to be committed and the
untracked files are outlined and highlighted. It’s difficult to
miss them, but let’s pretend to overlook them. Write a
simple commit message, save it, and close the editor. You
get the usual summary shown in Figure 5-10.

Figure 5-10 The commit summary

Now that you’ve read the commit summary, you notice
that you committed the wrong file and forgot to commit
another. First, you should remove the last commit from
your project with git reset. You use the --soft option so
that the changes you made stay in the working directory.
HEAD~1 refers to the previous commit, as HEAD refers to the
current one.

$ git reset --soft HEAD~1

After this, you can unstage the file with git reset again:

$ git reset HEAD filenottocommit.txt

Check if the commands worked as intended by reviewing
the project’s current status. Use the git status command
to see if the last commit has been removed from the project
and the changes are in the working directory.

$ git status

You get a result like the one shown in Figure 5-11.

Figure 5-11 Status of the project after resetting

As you can see, filenottocommit.txt is untracked
because you removed it from the staging area. Naturally,
fileforgotten.txt is also untracked because you didn’t
stage it. Only TODO.txt remains in the staging area
because you haven’t made any changes after the commit.

Warning Be very careful when you use the reset
command, as it can be quite dangerous. Always make
sure to double-check the command you write before
executing it.

Then, stage the correct one.

$ git add fileforgotten.txt

You can commit the project now that you have staged
the correct files.

$ git commit

Let’s intentionally add a grammatical error to the
commit message to demonstrate another feature of Git.

Amending a Commit

There is no need to modify the entire commit for simple
mistakes like an error in the commit message. You need to
amend it. Let’s try it with our project!

$ git commit --amend

The amend process looks just like a normal commit, but
instead, the commit message is already written, as you can
see in Figure 5-12.

Figure 5-12 Editing a commit message

You can change the commit message as you wish and
then save and close the editor as usual. It’s that simple!
Look at the new commit’s name and compare it to the old
one. You’ll notice that they are different. That’s because the
commit name is a hash of the information in the snapshot—
different states of the project result in different commit
names.

A parting note about modifying commits: don’t abuse it!
Yes, making errors is not ideal when writing code, and you
usually want to correct them immediately. However, errors
also help you become better; keeping track of your
mistakes is a great way to learn and improve.

Summary

This chapter primarily focused on navigating, undoing, and
amending versions of your project. You should now be
comfortable with making small corrections in your
commits. Review the first section of this chapter, as it’s
essential for everything you do in Git. You should know the
differences between the three states of Git by heart.

The next chapter is a brief one, only discussing theory.
You learn how to write a nice commit message, what to
include and ignore in commits, and common errors that
beginners often make. Read Chapter 6 carefully because it
greatly benefits you and your team. Let’s go!

(1)

© The Author(s), under exclusive license to APress Media, LLC, part of
Springer Nature 2024
M. Tsitoara, Beginning Git and GitHub

https://doi.org/10.1007/979-8-8688-0215-7_6

6. Git Best Practices

Mariot Tsitoara1

Antananarivo, Madagascar

Chapter 5 was one of the most important ones in this book.
Make sure to return to it whenever you have doubts about
commits. At this point, you should be able to create, review,
and amend project snapshots without problems. Now that
you know the basic features of Git, it’s time to learn the
best practices to make your life (and your teammates’)
easier. These are the things that I wish I knew when I first
used Git. This chapter covers commit messages, the dos
and don’ts of Git, and a list of the most common mistakes
beginners make. It finishes with a reminder of how Git
works.

Commit Messages

Commit messages are one of the most important aspects of
version control and yet often overlooked. These messages
help you understand what changes were made in the
commit and, most importantly, why those changes were
made. Clean and readable commit messages are essential
for a better Git experience. Let’s begin by identifying the
problem.

https://doi.org/10.1007/979-8-8688-0215-7_6

The most common problem faced with Git is that commit
messages are often void of sense and don’t convey any
meaningful information. Moreover, most of the time, the
messages get less and less clear with each commit. This
happens because of a misunderstanding of Git concepts:
each commit must stand by itself, and if a commit requires
other commits to make sense, it shouldn’t exist. You should
never commit a half-done project. Instead, if a task
becomes too big, it’s best to split it into several logical
chunks, where each part makes sense independently.

A good way to gauge if you are on the right path when
splitting tasks is to check the potential commit message: if
you think about using a very similar commit message for
multiple commits, you likely made an error when splitting
the task. For example, if your task is to make many small
corrections in a large website, it would make sense to
divide it into smaller tasks, such as a commit for each page
or a commit for each page category. So remember: your
commits must be independent, atomic, and complete.

One problem many beginners also have is including too
much information in the commit message, which can lead
to unnecessary details clogging the commit history. A
commit message should be concise and straight to the
point. You don’t need to list everything that has changed;
instead, focus on explaining why those changes were made.
The git show command can be used to see a complete
recap of the changed files in the commit if someone is
interested in the specific changes.

It’s important to remember that you are not the only one
who will read your code or text. Take the time to explain
the context of the changes and why they were made.
Thinking that you’ll remember it is a mistake and should
never be practiced. For every commit, ask yourself: If
another person looks at my project, will they understand
the timeline of changes in the project just by looking at my

commit messages? Also, remember that the other person
might be you in a few months; code is easily forgotten.

Your Git commit message should focus on why the
changes were made. If someone wants to see what has
changed, they can refer to git diff.

Git Commit Best Practices

For a better commit message and to avoid the problems
listed earlier, here are some tips that you should follow
from now on. These tips help your coworkers and provide
you with a clear view of why a commit was made in the
future. Having a good history log is imperative in a fast-
paced development environment.

The following are some tips.
Commit messages should be easy to read at a glance.
When you use git log, long messages without newlines
can be hard to read, requiring unnecessary scrolling to
view everything. Keeping messages concise and well-
formatted helps with easy searching and retrieval of
commits.
Keep the commit messages to a maximum of 50
characters.
Begin the message with a capital letter for clarity and
consistency.
Avoid ending the message with a period; it’s not
necessary.
Use the present tense to describe the changes made.
Avoid using unnecessary articles or words that don’t
clarify the message.
Keep commit messages consistent in style and format
throughout the project.
By following these tips, you’ll improve the readability

and usefulness of your commit messages, making it easier

for everyone, including your future self, to understand the
changes made in the project’s history.

Since Git commit messages are fundamental in any
project, they should be consistent and not subject to abrupt
changes. Using the same language and following internal
logic for commit messages is essential. Changing writing
styles mid-project can make it challenging to search for
specific commits and understand the project’s history.

Here are some best practices for writing commit
messages.

Messages must be clear and contextualized, especially in
big projects with multiple developers working on
different parts. Consider starting the commit message
with the context or area of the project impacted by the
changes, particularly in large projects.
Avoid using vague or unclear messages such as “change
CSS,” “fix tests,” “hotfix,” “little fixes,” and “updates.”
These messages are often misleading and require users
to look at diffs to understand the changes. Always include
why the changes were made and never force users to
decipher the code changes to understand the commit’s
purpose.
While you can expand the commit message in the body,
avoid providing excessive details. The focus of the
commit message should be WHY the changes were made,
not a comprehensive list of WHAT changed.
Use clear, present-time, and imperative language in your
commit messages. The best commit messages are usually
short, direct, and easy to understand.
To make it clearer, let’s provide some examples. Table 6-

1 is a handy tool to guide you in the right direction when
writing commit messages.

Table 6-1 Some Examples of the Best and Worst Commit Messages

Best Bad Worst

Best Bad Worst

[login] Fix typo in DB
call Fixed typo in DB call Fix typo

refactor login function
for reuse

Changing login function by moving
declarations to parameters

Code
refactoring

add new api for user
program check adding a new api for user program check New user

api

The examples presented in Table 6-1 should serve as
guidance to help you write better commit messages. They
indicate whether you are heading in the right direction
when crafting a commit message.

It’s important to note that these are recommended
actions and not strict rules set in stone. In some
exceptional cases, you may find it necessary to deviate from
these guidelines to make the message clearer and more
informative. The key is to balance providing sufficient
context and keeping the message concise and to the point.

Ultimately, the goal of a commit message is to convey
why the changes were made, making it easier for you, your
team, and anyone else who reads the commit history to
understand the purpose and intent behind each commit. So,
while following best practices is beneficial, use your
judgment to adapt the message as needed for clarity and
comprehension.

What to Do

Let’s enumerate the good practices you should always
remember when using Git. These practices are essential to
your success and will save you significant time.

Each commit should stand on its own. Keep your commits
small and independent. A commit should introduce a
feature or fix a bug, not track every change you make. If
a task requires multiple independent steps, separate

them into multiple commits. For example, if a feature
needs both an API endpoint and a frontend call, make
separate commits for each, as they are not logically
linked. This approach improves readability in the commit
history and provides clearer commit messages.
Write informative commit messages. Each commit
message should answer a question. Why was the commit
created? What problem does it solve? Since commits can
be shared among many users in Git, the commit message
should explain the result of applying the commit. Use the
present tense in commit messages, even though the
temptation to use the past tense might persist initially.
Over time, you’ll become more comfortable with the
present tense convention.
That’s it! The list of things to do in Git is concise. Just

focus on writing clear messages for your small,
independent commits. Now, let’s look at the things you
should avoid in Git.

What Not to Do

This list is a bit longer than the previous one because Git is
a powerful tool that doesn’t limit what you can do.
However, this can also lead to more opportunities for
mistakes, especially when trying to save time. Ultimately,
bad practices will create more problems than they solve, so
it’s best to avoid them altogether.

One common mistake beginners make is trying to solve
multiple problems in one commit. For example, they might
fix a bug when they notice another one, then solve both
problems and commit the project. This may seem fine
initially, but later, it becomes difficult to identify which
changes introduced the new problems. It also makes
writing coherent and clear commit messages challenging. If

you commit many changes from different contexts, consider
splitting the commits into smaller, more focused ones.

Another related mistake is combining commits that have
nothing in common. For instance, code refactoring should
be in a separate commit from bug fixes or new features.
Keeping them separate facilitates bug tracking and
maintains a cleaner history log.

The next mistake is related to using Git as a backup
system, which happens when some developers commit their
changes at the end of each day, regardless of whether it
makes sense. This is often driven by companies that
measure productivity based on the number of lines of code
produced. However, this counterintuitive approach leads to
confusing commits that repeatedly try to resolve the same
problem. It’s essential to commit when the work is ready
and not just to meet a daily quota. If you need to switch
tasks, you can use concepts like branching or stashing to
handle unfinished work.

Another misuse of Git is the overuse of the amend
command. Amending commits should be reserved for
correcting typos, adding forgotten files, or making small
changes. It should not be used to introduce significant
changes to a commit. If the changes are substantial enough
to require a new commit message, create a new commit
instead. It’s essential to keep track of your mistakes and
not be afraid to leave them in the codebase. Git is there to
track versions and show what has changed, including
errors. Trying to erase mistakes does not help anyone and
may cause more problems in the long run.

Finally, the last common mistake is attempting to
change history in Git. This dangerous practice can lead to
confusion, frustration, and problems in the repository.
Instead of trying to change the past, the correct approach
is to make a new commit to introduce changes. The past
should be left as it is, and developers should move forward

with new commits for any updates or corrections. Let the
past die. Kill it if you have to.

Note Later in the book, you are shown how to go back
in time and change history. Never do this.

How Git Works (Again)

I know, I know. You’ve been through this already. But I
want to make sure that you are completely comfortable
with it before moving on to Part II of this book.

Remember the three states of Git? They are also called
the “three trees” (in fact, it is the official appellation in the
docs). Let’s review them once again. Figure 6-1 helps you
quickly identify the trees.

Figure 6-1 The relationship between the three states of Git

As shown in Figure 6-1, there’s nothing new here, just a
reminder. To track changes in a project, you need to take a

snapshot of the entirety of it. Git doesn’t track changes; it
tracks versions.

You will only interact with the working directory
because that’s where your files can be freely edited. There
is nothing to say about it; it’s just the current state of your
files.

The staging area is where you put your files when ready
to take a snapshot of your project. Any changed files that
haven’t been put on the staging area (or staging index) are
not part of the snapshot. The changes are still available in
the working directory, though. So, it’s necessary to check
the state of the working directory before and after adding
files to the staging index to ensure everything is okay.

The repository is the database of the Git architecture.
You will find all your commits and history logs there. You
can find it in the .git folder (which you should never touch
unless to adjust configs). Committing takes everything in
the staging area and creates a snapshot. That’s why we say,
“commit a project,” not “commit a file” or “commit
changes.” Unchanged files committed in the past are
already in the staging area. That’s why you don’t have to
stage everything, just the edited files. Remember to stage
new or deleted files, too!

Finally, checking out brings back the state of a project
to a previous one. The working directory updates to reflect
the changes, so ensure no uncommitted files are lying
around.

The following are the basic steps in Git.
1.

Make changes (in the working directory).
2.

Stage every changed file (in the staging index).
3.

Commit the project (in the repository).

It’s that simple, but please be sure to understand the
relationship between those states before proceeding to the
next chapter. Every section after this one assumes that you
are familiar with those.

But how do the commits look inside the repository? It’s
simple: they look like linked lists. A commit contains many
pieces of information: the contents and the metadata. The
contents are just the project files (changed files and
references to unchanged files). The metadata contains
other data that are also very important: the date of commit,
committer identity, and Git messages. Another metadata
present in the commit is the parent pointer or reference. It
is just the name of the previous commit; if it’s empty, it
means the commit is the first one. So, each commit is
linked to the next with a parent-child relationship.

Summary

This chapter focused on important concepts and
terminologies in Git, which are essential to your success
with version control. You should now understand when it’s
the right time to commit and how to write clear and
meaningful commit messages. Remember that the commit
message should answer the question: what does the
commit bring? It should provide context and explain the
reason behind the changes, making it easier for others,
including non-developers, to follow the project’s progress.

The key takeaway is that commits are the building
blocks of your project, and each one should be stable and
independent. Your commit messages should explain why a
commit exists rather than detailing what was done.

Additionally, this chapter provided valuable tips on the
dos and don’ts of Git. Remembering these practices will
save you significant time and effort in the long run,
especially when it comes to debugging.

This chapter concludes Part I of the book. Part II
introduces a very useful tool: GitHub. You can share and
track your projects in GitHub, enhancing collaboration and
project management. Rest assured; the Git features
promised earlier are covered in subsequent chapters after
the GitHub section. Let’s move forward with excitement
and dive into the next part!

(1)

© The Author(s), under exclusive license to APress Media, LLC, part of
Springer Nature 2024
M. Tsitoara, Beginning Git and GitHub

https://doi.org/10.1007/979-8-8688-0215-7_7

7. Remote Git

Mariot Tsitoara1

Antananarivo, Madagascar

Congratulations on completing the first part of this book!
You’ve learned the basic features of Git, which should make
you comfortable making and tracking changes. Writing
meaningful commit messages might have been a bit
challenging, but following the advice from the last chapter
can help you improve with each commit. Additionally, you
should now be able to view previous versions and access
the history logs, which are crucial features for the
upcoming chapters.

Now, get ready for a new challenge: working with
remote repositories. In this chapter, you’ll discover the
importance of working with remote repositories and how it
works. You’ll also be introduced to typical team workflows
and the correct usage of remote repositories. Since the
concept of remote Git might seem complex, don’t worry!
You’ll use an easy tool that will greatly assist you
throughout the process (hint: it’s in the title of this book).
Let’s dive into the world of online collaboration!

Why Work in Remote Git

https://doi.org/10.1007/979-8-8688-0215-7_7

Throughout this book, you’ve been working alone in your
local repository. However, Git is an excellent tool for team
collaboration, and it would be a shame to limit its usage to
only local repositories. This section explores remote Git and
explains why it’s crucial for effective teamwork.

As you know, Git is a distributed version control system,
meaning repositories are not centralized on a single server
but spread across multiple local repositories. Each team
member has their own local repository, containing their
commits and history. These commits can be easily
exchanged between repositories, and all files are constantly
ready for editing.

For effective team collaboration, a method must be
devised to ensure that all commits are readily accessible.
Waiting for coworkers to arrive at work and start their
computers before gaining access to their commits would be
highly inconvenient. The solution lies in having a central
server host the repository, and team members can push
and pull their commits to and from it. But wait, doesn’t that
resemble a central version control system workflow? Not
entirely, though there are similarities.

Recall that distributed version control systems were
developed to address the issues associated with central
repositories. In Git, each client has its own repository,
allowing them to work on it whenever they want. Almost all
Git operations are performed locally. The remote server is
just treated as a client with a repository where everyone
can push their commits. This approach ensures that all
changes are available to everyone at any time. Notably, this
method is only used to facilitate commit exchange and is
not an inherent part of Git. For Git, all repositories are
considered equal; developers have agreed that some
repositories are more equal than others, in the sense that
they serve as designated central repositories for teamwork.

Caution It is possible to share commits without the
need for an intermediate server, but it is such a bad idea
that it is not covered in this book.

Even if you work alone, having a remote repository in
addition to your local one is still a good idea. That way, you
have a backup of your project with all its history in a safe
location. You can also access your project anytime,
provided you have network access to the repository server.

Caution Just because Git can be used as a backup
system doesn’t make it one. Using it for this sole purpose
is not a good idea.

So, are you interested in that remote repository yet? Of
course you are! It’s amazing! Let’s see how it all works.

How Does It Work?

Using a remote server means having a computer that holds
a copy of your project and its history. You don’t have to
push all your commits into it; you only push the commits
you want to share. Your coworkers then pull the commits
that interest them and apply them to their own
repositories. And that’s it! Working with a remote server
involves copying repositories and pushing and pulling
changes. Let’s see in detail how it all works.

To set up a remote repository, you first need a server
capable of running the Git software. Any computer worth
its salt can run Git as it is a very small software. You won’t
need a lot of firepower to run it properly. Even a very small
computer like the Raspberry Pi is more than enough for Git.

Now that you have the server, you must find a way to
communicate with it. Network access to the server is

necessary so that multiple clients can push and pull from
the same repository. This communication with the server
should be very secure. It would be extremely disappointing
if anyone with access to the server could read and edit the
repository. To be able to interact with the repository, users
must authenticate themselves with each Git operation. A
login/password HTTPS type of authentication can be used,
but it’s not secure enough. Using SSH authentication is
better. The principle of SSH authentication is simple: only
the clients that have been predetermined can access the
repository.

And that’s it! Setting up a remote Git server is a
straightforward task. Maintaining and securing it, on the
other hand...

Note Git doesn’t distinguish between “server” and
“client.” They are just social constructs enforced by the
developers.

Using your own server to host your Git projects is a good
idea if you work alone or want to keep them private.
However, it becomes a pain when you work with a team.
Each team member must have access to the Git server via a
network, so you need to set up a local network if your team
is in the same working space. The server should also run
24/7 so that there is no delay in Git operations.

What happens if some of your coworkers are remote or
in a different working space? Well, you need to hook your
server up to the Internet. Thus, you also need to ramp up
your security game. The more coworkers you have, the
more authentication exceptions you have to manage.

Another problem with using your own Git server is that
you need to deal with permissions. As seen in Chapter 1,
not all developers should have writing access to the
repository. Junior members, for example, need their

commits reviewed by senior members before pushing to the
repository. Giving them direct access to the project is a bad
idea (due to their insatiable need to change history).

These are the problems that come with maintaining your
own Git server. If only a tool could take care of those for
us...

The Easy Way

Guess what? There is a tool that takes care of all those
things for us, and its name is GitHub! GitHub is the tool of
choice when dealing with remote repositories. You can
think of GitHub as a code hosting server for projects using
Git. It works just like your own Git server but with fewer
headaches.

GitHub was created in 2008 to host Git projects and is
now a subsidiary of Microsoft, which has invested a lot in
open source communities. Figure 7-1 shows the GitHub
home page at github.com.

Figure 7-1 GitHub home page

GitHub covers nearly every need of developers, whether
they are open source developers wanting to share their
software or professional teams seeking to work privately
without the hassle of managing their own servers.

Like a social media platform, GitHub provides a space
for developers to build, share, and document their projects,
eliminating the need for external tools or websites. GitHub
is a vital tool for open source projects as it facilitates
developer collaboration and code release. Users can review
and propose changes to each other’s projects, follow and
contribute to their favorite repositories, fostering a vibrant
community of developers.

GitHub is not limited to open source projects; companies
and individual developers can create private repositories
accessible only to them. This allows them to benefit from
the powerful features of Git while also enjoying additional
tools and functionalities provided by GitHub. The platform’s
versatility is a key factor in its popularity, appealing to
many users.

Other software companies offer services like GitHub,
with GitLab and BitBucket being the most popular
alternatives. GitLab is highly like GitHub in most of its
features and comes in two editions: Community and
Enterprise. The Community edition is open source and can
be used alongside GitHub without issues. GitLab is also
renowned in DevOps circles, making it an attractive option
for those interested in that career.

Initially designed to host Mercurial projects, BitBucket
expanded its support to include Git projects in 2011.
Developed by Atlassian, BitBucket offers enterprise
benefits like GitHub and has become a trusted platform in
the industry.

While using a local server has advantages and
disadvantages, this book chooses the easier route of
utilizing GitHub for remote repositories. However, it is
essential to understand how a remote repository works and

why it is needed. If you still wish to use your own server,
there is a guide in one of the annexes of this book to assist
you. Enjoy your journey. ☺

Summary

This chapter explored the concept of remote repositories
and why they are essential for team collaboration. While
working locally in Git is enjoyable, sharing commits with
teammates requires remote repositories. These repositories
are typically hosted on servers, and developers can push
and pull changes to and from them to exchange code
seamlessly.

GitHub is introduced as an excellent tool for remote
repositories, offering code hosting services for both open
source projects and private teams. It serves as a version
control system and provides a platform for developers to
build, share, and document their projects, fostering a
strong community of collaboration.

The chapter emphasized the importance of
understanding how remote repositories work and why they
are needed, even if the decision is made to use a service
like GitHub to simplify the process.

The next chapter delves deeper into GitHub’s vast array
of features. It explores bug tracking, access control, feature
requests, and many other functionalities that make GitHub
a powerful platform for team development. Let’s continue
your journey into GitHub’s capabilities!

Part II

Project Management with

GitHub

(1)

© The Author(s), under exclusive license to APress Media, LLC, part of
Springer Nature 2024
M. Tsitoara, Beginning Git and GitHub

https://doi.org/10.1007/979-8-8688-0215-7_8

8. GitHub Primer

Mariot Tsitoara1

Antananarivo, Madagascar

In the last chapter, you embarked on an initial exploration
of remote repositories and their significance. By now, you
should understand how they function and, more
importantly, the advantages they offer. Now, let’s delve
into the details of one of the most renowned code hosting
platforms: GitHub.

The chapter begins with a brief history of GitHub to help
you gain better insights into this platform. The chapter also
discusses the diverse community of users who utilize
GitHub and the various purposes for which they use it.

GitHub Overview

Defining GitHub is quite challenging because it
encompasses numerous functionalities. Therefore, I’ll use
their own words: “GitHub is a development platform
inspired by the way you work. From open source to
business, you can host and review code, manage projects,
and build software alongside 36 million developers.”

GitHub isn’t just a code hosting platform; it serves as a
comprehensive development platform. What does that
entail? It means that GitHub goes beyond storing code; it

https://doi.org/10.1007/979-8-8688-0215-7_8

aids in planning and tracking the evolution of your projects.
Its features are explored in the next section, but the key
takeaway is that GitHub is designed to assist you in
building and releasing your projects.

If there’s one compelling reason to use GitHub, it’s its
development workflow. Gone are the days when project
managers would write pending tasks on a whiteboard, and
team members would send emails to keep track of who was
working on what. There’s no need for lengthy chain of
back-and-forth emails to check a task’s progress. GitHub
efficiently manages all of these aspects.

GitHub and Open Source

GitHub has always been a close ally of open source
projects; in fact, it is home to the largest open source
community in the world. Since developers need a
convenient place to build and share their projects, GitHub
is an obvious choice. This way, all decisions and discussions
concerning the projects can be accessed and joined by
anyone, which is the beauty of open source.

With GitHub, the best thing you can do for an open
source project is now easier than ever: contributing. When
you find a project you like, you can follow it and track its
progress. If you want to work on a new feature or fix a bug,
you must make a clone of the project and start working on
it. This process is called forking; it serves as the backbone
of open source projects. Once you have made all the
changes to your copy of the project, you can submit a pull
request to the project’s maintainer. This means you request
that your changes be pulled and merged into the project.
Other contributors review your changes and may request
some additional modifications. All this communication
occurs on GitHub, eliminating the need for email or instant
messaging. Once all parties agree on the changes, the pull

request is accepted, and your changes become part of the
project!

Of course, open source projects involve more than just
code; they require documentation, translators, community
managers, maintainers, and more. You can contribute to
projects by writing documentation, providing translations,
or reviewing the changes made by other contributors.
Projects also need testers and individuals to offer insights
about the final products. Some projects have millions of
contributors, necessitating the need for community
managers responsible for the community’s well-being and
enforcing the internal code of conduct. Additionally, some
contributors welcome and mentor beginners, which is
challenging yet vital for any project.

Millions of open source projects have chosen GitHub
because its workflow from idea to release is simple and
accessible. Forking a project to contribute to it is the
driving force behind any successful open source project. If
you like a project but disagree with its direction, you can
fork it and start your own version. In this case, you become
the maintainer of the new project, and others can submit
pull requests to you if they want to contribute. This way,
everyone is happy!

Again, open source projects need documentation and
tutorials for beginners. A text file (called README by
convention) is sufficient for small projects. The README file
should present the project and convey the problems it aims
to solve.

It should also instruct users on how to install and use it,
as well as how to contribute to it. Refer to Figure 8-1 for an
example of a README file (also available at
https://github.com/git/git).

https://github.com/git/git

Figure 8-1 Git README file

As you can see in Figure 8-1, README files can have
basic text formatting and links. They can also include
images and code examples.

README files are written in the Markdown markup
language. It’s a straightforward language that can render

simple formatting and linking. You can find a Markdown
cheat sheet in the Appendix of this book!

As you can see, GitHub has a lot to offer to the open
source community, and all of that is free of charge! But
now, let’s see what GitHub has to offer you personally.

Personal Use

Yes, open source is great, but what if it’s not your jam? Or
when you have a project that you want to keep to yourself?
GitHub has you covered as well!

You don’t have to make all your GitHub repositories
public; you can also make them private. That way, only you
and a few collaborators (that you choose) can access it. You
can create an unlimited number of public and private
repositories on GitHub; the only limit is your creativity and
time. However, there is a limit on the number of
contributors you can have on private repositories: 3. If you
want to work with more contributors, you can sign up for
GitHub Pro, a paid plan. But for almost everybody, the free
plan is more than enough.

Having a personal GitHub account to showcase your
work is also a good way to market yourself. That way,
people can check the open source or personal projects you
contribute to and even review your code. It is a portfolio
demonstrating your skills and expertise to potential
employers or collaborators. Additionally, many employers
in the tech industry value candidates who actively
participate in the open source community and have a
visible presence on platforms like GitHub. So, having a
well-maintained GitHub profile can benefit your career
advancement and networking opportunities.

And since there are 36 million developers on GitHub,
you might want to connect with some. One way to connect
is to follow a particular project. When the project
progresses, you receive updates and can check out the

changes. Note that you automatically follow a repository
you contribute to. Another way to show appreciation for a
project is to star it. It’s akin to liking a piece of content on
social media.

Hence, the more stars a repository has, the more users
are happy with it. GitHub also offers a news feed that
provides news and notifications from specific projects.
These projects are chosen because you contribute to or
have “starred” them. The news feed is also tailored by
analyzing your most-used language or tools, providing
relevant updates and information. It’s a great way to stay
connected with projects you are interested in and to
engage with the GitHub community.

Before moving on to the next section, there is a cool
feature you can check out on GitHub: your contribution
activity. If you enable the option, every commit you push on
GitHub is registered as a contribution—even to your
personal or private repositories. These activities are
displayed in a nice illustration, like the one shown in Figure
8-2. They showcase your contributions throughout the year
and indicate your achievements to your profile’s visitors.
It’s a great way to visually represent your coding progress
and involvement in various projects.

Figure 8-2 My contribution history in 2018

GitHub for Businesses

GitHub is not just for personal projects or open source
communities; businesses also have their place there. Many
businesses now invest in open source for some of their
products, and what better place to find quality developers
than GitHub?

GitHub offers an Enterprise plan that incorporates all
the benefits of a paid plan and many additional features.
These features range from the choice of hosting to security

and online support. While all these features may be very
attractive to businesses, a simple Free plan is enough for
most people.

Summary

This chapter overviewed GitHub users and some of its
small features. By now, you should have some ideas about
how you want to utilize GitHub. The next chapter explores
GitHub’s main features and shares tips on collaborating
effectively with teammates. It covers project management,
code reviews, and more, and you start using GitHub with
your first repositories! Get ready for action in the next
chapter, and review the previous exercises to stay sharp.
Let’s begin!

(1)

© The Author(s), under exclusive license to APress Media, LLC, part of
Springer Nature 2024
M. Tsitoara, Beginning Git and GitHub

https://doi.org/10.1007/979-8-8688-0215-7_9

9. Quick Start with GitHub

Mariot Tsitoara1

Antananarivo, Madagascar

So far, the book has only discussed what GitHub is and who
can benefit from it. Now, you will delve into its specific
capabilities and main features. One of the most crucial
aspects of GitHub is its project management tools, which,
when used with the right development workflow, can
propel a project forward with great efficiency.

This section of the book embarks on a series of exercises
to familiarize ourselves with GitHub. While I could explain
all the advantages of GitHub, you will gain a better
understanding through hands-on exploration. Let’s get
started by creating a GitHub account and initiating a
project.

Project Management

The ability to manage a project while adhering to a well-
established path is one of GitHub’s most revered features. I
encourage you to follow along with me in this section
because it gives you a comprehensive understanding of
these features.

The first step is to create a GitHub account because you
are managing your project using Git and GitHub. The

https://doi.org/10.1007/979-8-8688-0215-7_9

process is straightforward, and you only need to provide
basic information, such as your name and email, as shown
in Figure 9-1.

Figure 9-1 GitHub signup page

After signing up, you receive a confirmation link in your
email. Simply follow the provided link to complete the
registration process. Once done, you are directed to the
GitHub dashboard, which should look like Figure 9-2.

Figure 9-2 GitHub dashboard

Your GitHub dashboard may appear empty now, but
you’ll work on filling it with some cool projects soon. You’ll
notice some trending repositories and news stories on the
right side of the page, but you won’t explore those just yet.

Now, as shown in Figure 9-2, there are three links you
can follow to create a new repository: one on the left side,
one in the middle, and the last one in the navigation bar.
Click any of them to begin creating the repository.

The repository creation form is also straightforward, as
illustrated in Figure 9-3. You only need to provide a name
and a short project description. While the description is
optional, try to make it concise so that users visiting your
repository understand its purpose.

Figure 9-3 Starting a new repository

You can make the repository private if you prefer; in that
case, only you can access it. A public repository, however,
doesn’t mean that anyone can freely edit it; it simply means
that anyone can read it, and logged-in users can propose
changes to it. However, you are still the project’s
maintainer and the repository’s owner.

Regarding initializing the repository with a README file,
you can ignore this option for now, as you aim to create a
repository from scratch. You’ll add the README, .gitignore,
and license files later.

Once you’ve made your selections, click the Submit
button to create your first GitHub repository! It’s as simple
as that! You are redirected to your project page, which has
a unique link representing your repository. The link format
is as follows:

https://github.com/your_username/your_repository.
For example, the new repository I created is accessible
through https://github.com/link-skyloft/todo-list.
Therefore, you cannot create two repositories with the
same name. Your project page should look similar to the
one shown in Figure 9-4.

Figure 9-4 Your brand-new repository

As you can see in Figure 9-4, there are instructions on
how to get started, whether you want to create a new
repository or push an existing one. Let’s proceed with
pushing the to-do list! For this, you need to choose the
second option.

First, you must choose an authentication method. You
have two options: HTTPS and SSH. The main difference is
that HTTPS uses a login/passphrase combination, while

https://github.com/your_username/your_repository
https://github.com/link-skyloft/todo-list

SSH uses keys. Let’s opt for SSH to avoid the need to enter
a passphrase with each action.

To learn more about SSH, you can check this link:
https://docs.github.com/en/authentication/connecti

ng-to-github-with-ssh.
To generate an SSH key, follow the instructions

provided in this link:
https://docs.github.com/en/authentication/connecti

ng-to-github-with-ssh/generating-a-new-ssh-key-

and-adding-it-to-the-ssh-agent. From the time of
writing this, the website looks like the Figure 9-5.

https://docs.github.com/en/authentication/connecting-to-github-with-ssh
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent

Figure 9-5 Instructions on how to generate a new pair of keys

I used the following command on Git Bash to create my
SSH keys.

$ ssh-keygen -t ed25519 -C "mariot@tsitoara.fr"

Use the default file location and the email you used to
sign up with GitHub. You could enter a passphrase if you
want, but I don’t recommend doing so because you’ll need
to enter it each time. If you follow the instructions, you’ll
get a result similar to the one shown in Figure 9-6.

Figure 9-6 Generating a pair of keys

You’ll also notice that I changed my email to be the
same as my GitHub account.

Now that you have your keys, add them to the ssh-agent.
Follow the instructions as you can see on the website
shown in Figure 9-7.

Figure 9-7 How to add the keys to the ssh-agent

As you can see on the website, you must first ensure
that the ssh-agent is running with the following command.

$ eval "$(ssh-agent -s)"

Then, add the SSH private key to the ssh-agent with the
following command.

$ ssh-add ~/.ssh/id_ed25519

You can see the result in Figure 9-8.

Figure 9-8 Adding the private key to the ssh-agent

Now it’s time to add the public key to GitHub! Follow
this link for the instructions:
https://docs.github.com/en/authentication/connecti

ng-to-github-with-ssh/adding-a-new-ssh-key-to-

your-github-account. The website should look like the
one shown in Figure 9-9.

https://docs.github.com/en/authentication/connecting-to-github-with-ssh/adding-a-new-ssh-key-to-your-github-account

Figure 9-9 Adding an SSH key to GitHub

You can use a clip to copy the public key to your
clipboard.

$ clip < ~/.ssh/id_ed25519.pub

You should then go to your GitHub account and access
the Settings page. Under the Access section in the
navigation pane on the left, click “SSH and GPG keys” and
then click the “New SSH Key” button, as shown in Figure
9-10.

Figure 9-10 SSH keys settings

Choose a title for your key and paste the public key. And
that’s it! Now, you are using SSH to connect to GitHub.
Let’s push the to-do list to GitHub!

How Remote Repositories Work

In Chapter 7, you learned about remote Git and using
GitHub as a remote repository store. This section is a
logical extension of that chapter because you will learn how
remote repositories managed with GitHub work.

When you created the repository using the GitHub
website, you were provided instructions to GitHub servers
and asked them to initialize an empty repository. If you
recall Chapter 2, initializing a repository is simple: go to
any directory and execute git init. That’s what happened
here, except not on your computer but on a server hosted
by GitHub.

So, it’s as if you executed the following commands on a
faraway server with Git installed.

$ mkdir todo-list

$ cd todo-list

$ git init

It’s the same commands used to create the local
repository. So now, there is a remote repository on
GitHub’s servers to share your project.

Remote repositories are used, so you don’t have to use
your own computer to share your project. In the case of
GitHub, the remote repositories are accessible by anyone,
but only the owner can edit them. Teamwork is discussed in
a later section.

The main takeaway is that a remote repository lets you
publish your project to make it available to everyone.
Anyone can clone your repository to follow your
advancements to get the latest changes.

Publishing your local repository to a remote one is called
pushing. Getting the latest commits from a remote
repository to a local one is called pulling. Push and pull are
perhaps the most used commands in Git.

But how can I inform GitHub about the remote
repository I want to link with my local one? This is where
the unique link to your repository comes into play. You’ll
use this link to push your local changes or pull any commits
that you don’t already have.

In conclusion, GitHub has created an empty remote
repository that can only be modified by you but can be
viewed by everyone. The next step is to create a local
repository and connect with the remote one.

Linking Repositories

Now that GitHub has created the remote repository for us,
it’s time to link your own local repository to the remote
one.

To list, add, or remove remotes, use the git remote
command. For example, let’s link your current remotes
using the following command.

$ git remote

You shouldn’t get any results because it’s a brand-new
repository, and you haven’t linked any remote to it. Let’s
add one now.

Important If you see remotes in your results, you can
remove them using git remote rm [remote_name]. You
shouldn’t see any remote if it’s a new repository.

You need the unique link to your repository to link a local
repository to it, so grab yours from the previous section.
Mine is git@github.com:link-skyloft/todo-list.git, as
shown in Figure 9-4. Make sure to copy the SSH link and
not the HTTPS!

You also need to create a name for your remote
repository. That way, you can have multiple remotes within
a single project. It may be necessary when the test and
production remotes are different from each other. The
default name is origin per convention. Although you can
choose any name, it is recommended to use origin as the
name of the remote where teammates share their work.

The command to add a link to a remote is simple.

git remote add [name] [link]

So, to add a link to the newly created repository, you’ll
have to execute the following command.

$ git remote add origin git@github.com:link-

skyloft/todo-list.git

That’s it! You can check if the remote has been added by
executing git remote or git remote -v to get more
information. You should get a result similar to the screen
shown in Figure 9-11.

Figure 9-11 Adding the origin remote

And that’s it! Adding a new remote is a simple,
straightforward task. Now that that is cleared, let’s push
the project to GitHub!

Pushing to Remote Repositories

You finally got the local and remote repositories linked. It’s
time to push the project to GitHub so you can share your
work.

The command to push changes to the remote is simple;
you just need the name of the remote repository and the
branch to be pushed. Since you haven’t created any
branches yet (branches are discussed later), the only
branch is called main. The following shows the git push
command.

git push <remote_name> <branch_name>

So, in this case, the command is as follows.

$ git push origin main

Git checks the authenticity of the GitHub server. Type
yes to continue connecting; the branch will be pushed. You
get a result like the one shown in Figure 9-12.

Figure 9-12 The first push

Now, the project is visible on GitHub for everyone to
see! Let’s check it out on its project page. If you refresh the
project page, you should see a page like the one shown in
Figure 9-13.

Figure 9-13 The updated project page

As you can see in Figure 9-13, the repository page now
displays valuable information.

The number of commits
The last commit name and its committer
A list of all project files
What you just did is the basis of code sharing: pushing

changes. You will use this command repeatedly when
working with remote repositories. It is a simple feature, but
you must understand what it does. Pushing means copying
all your current commits (in a specific branch) to a remote
branch in a remote repository. All history logs are also
copied.

Before you proceed to the next chapter, ask yourself
these questions: Where are the remote repositories stored?
Who has read-only access to them? Who can edit them?
Also, you should understand the basics of linking remote
and local repositories and why it is necessary.

Summary

In this chapter, you first interacted with remote Git
repositories. They are just normal repositories stored on a
remote server instead of your local machine. You saw how
to create and link local and remote repositories, an often
used feature. The main command you learned was git push,
which copies the state of your local repository to a remote
one.

The next chapter dives into project management and
explores other GitHub features. You will learn how to pull
changes from the remote repository and resolve push and
pull issues. Let’s get started!

(1)

© The Author(s), under exclusive license to APress Media, LLC, part of
Springer Nature 2024
M. Tsitoara, Beginning Git and GitHub

https://doi.org/10.1007/979-8-8688-0215-7_10

10. Beginning Project

Management: Issues

Mariot Tsitoara1

Antananarivo, Madagascar

Chapter 9 offered a quick peek at using GitHub to host and
share code. However, that barely scratches the surface of
what GitHub can offer; it has numerous features that can
assist in maturing your project. In this chapter, you start
learning about managing projects with GitHub. Therefore,
let’s begin with the fundamental aspect of GitHub project
management: issues.

Issues Overview

Planning is crucial to successfully manage any project;
merely reacting to new inputs and doing things based on
whims is a perfect recipe for disaster. Managing a GitHub
project follows a similar principle; you must keep track of
your actions before initiating them. This is why GitHub
incorporates an excellent Issues feature. This section
delves into discussing them and learning proper
management techniques.

Throughout all the chapters in this book, you’ve
assumed both developer and project manager roles.

https://doi.org/10.1007/979-8-8688-0215-7_10

However, in larger projects, you might not participate in
the planning phases. But for now, consider yourself
temporarily promoted to project manager and lead
developer (while also being the sole developer).
Congratulations! One of the responsibilities of a project
manager is to plan all the tasks that need completion.
These plans don’t need to be overly precise yet (in reality,
they seldom are), but it’s crucial to have a list of all the
tasks that require attention. These tasks can encompass
new features, bug fixes, or team discussions. In GitHub,
these tasks are called issues.

An issue tracks the progress of new features, bug fixing,
or ideas team members propose. They constitute the
cornerstone of GitHub project management; ideally, no
action should proceed without an associated issue. The aim
of every action you undertake should be geared toward
resolving an issue.

The era of organizing the next steps through tedious
team meetings is long gone. Now, you clearly understand
your upcoming actions and, crucially, are aware of
everyone else’s tasks. Proposing new ideas to your
colleagues has become more straightforward than ever;
open an issue to initiate a discussion with your team,
eliminating the need for additional apps or email clients.
The greatest benefit of utilizing issues is the everlasting
preservation of history—each feature, bug, and discussion
remains documented indefinitely.

Creating an Issue

To better understand issues, the most effective method is
direct interaction with them. Let’s return to the GitHub
project page and engage with these issues.

Upon opening your GitHub project page, you’ll be
directed to the Code section, where your project files are

showcased. Your project page should resemble mine at this
stage, as depicted in Figure 10-1.

Figure 10-1 Project page open on the “code” section

Directly below the project name, numerous tabs
showcase the various sections of your project. Your primary
focus typically revolves around the Code, Issues, Pull
Requests, and Projects sections. However, for the present
task, let’s concentrate on the Issues tab. Click it to begin.
You’ll land on an empty section akin to the one depicted in
Figure 10-2 since your project currently lacks any issues.

Figure 10-2 Issues section

Several calls to action are available to create a new
issue. Click any of them, and you’ll encounter a form
similar to mine, as displayed in Figure 10-3.

Figure 10-3 New issue form

The form is straightforward; only the title is mandatory.
There’s also a comment section below the title in case you
need more space to elaborate. Let’s proceed to create the
first issue with the basic details. Don’t modify the values on
the right side just yet.

For the inaugural issue, let’s discuss the product’s
technology choices. Remember that issues aren’t solely for
feature and bug tracking; they are also instrumental in
initiating discussions and sharing ideas. Fill in your first
issue similar to mine, as shown in Figure 10-4. My issue,
“Choose the technologies to be used for the app”, marks
the initial step of a project.

Figure 10-4 The first issue

Now that you’ve completed the basic information for the
issue, submit it. You are redirected to the detailed view of
your new issue. It should resemble my issue, as depicted in
Figure 10-5.

Figure 10-5 Details of an issue

The first noticeable aspect is that your issue has been
assigned a unique number. Each issue retains its distinct
number, which is never recycled. Even if an issue is
deleted, its number will not be reused. This number holds
significance, as you’ll discover in this section.

The details page also features a comment section where
team members can discuss. Additionally, a limited selection
of emojis is available for use as responses. For instance,
using a thumbs-up emoji to agree is more efficient than
cluttering the conversation with repetitive comments like
“mine too.” This helps maintain smoother communication
and avoids stalling the discussion.

You’ll find a Subscribe button at the bottom-right corner
of the page. Opting to subscribe to an issue ensures you
receive notifications for any changes made to it, including
new comments and updates on milestones reached.

Since you are the sole team member, there won’t be
much discussion. Simply add a comment or a reaction emoji
and then close the issue. Closing the issue does not delete
it; instead, it marks it as completed. Deleting issues is not
recommended because maintaining a project history is
crucial, and issues are the best way to track changes. Keep
in mind that if your repository is public, anyone can read
your comments. Thus, please maintain kindness and
address any unpleasantness that may arise.

After commenting and closing the issue, you’ll return to
the issue details page, resembling mine, as shown in Figure
10-6.

Figure 10-6 A closed issue

While it’s possible to continue commenting on a closed
issue, it’s generally discouraged because everyone has
acknowledged the issue’s completion and shifted focus.
Issues can also be locked, preventing further comments, a
final resort to maintaining peace. We all have differing
opinions, so discussing them on the Internet, especially in
an open forum, can be challenging. However, maintain
professionalism because everything you communicate will
be visible to anyone reading.

Interacting with an Issue

You’ve successfully created and closed an issue, yet your
involvement with them has been limited. However, what
purpose does an issue serve if it doesn’t impact the project?
This section actively engages with issues both on GitHub
and within the code.

Put on your project manager hat for the initial segment
because you need to strategize the project. Until now, the

TODO list app comprised multiple text files placed side by
side. Let’s use HTML5 to enhance its presentation.
Executing this requires an action plan, and it falls upon
you, as a project manager, to outline this plan.

Given that it’s a simple HTML5 app, you don’t need an
elaborate plan—just a few essential bullet points will
suffice. So, to create this app, you need to do the following.
1.

Write the skeleton of the app with HTML5.
2.

Add some styles to make it prettier with CSS3.
3.

Describe the app in README.md.
4.

Document the code.
5.

Create a web page for the app.
These are the fundamental steps necessary to achieve

the objective of shipping a TODO app.
Since you’re familiar with creating issues, I’ll leave it to

you to generate an issue for each bullet point. Once
completed, your Issues page should resemble mine, as
Figure 10-7 depicts.

Figure 10-7 All open tasks

As observed, the tasks are presented in the order of
their introduction, lacking distinguishing features besides
their numbers. This setup can lead to confusion,
particularly if there’s an abundance of issues. Let’s employ
labels to ensure a clearer overview of all the tasks.

Labels

Labels serve precisely as you’d expect: texts that facilitate
quick issue filtering. Let’s directly apply them to help you
become acquainted with this concept.

As depicted in Figure 10-7, the issues page contains a
search bar to filter through issues. However, since you
haven’t assigned labels, the filtering options are limited to
basic search functions. Click the Labels button next to the
search bar to display all available labels. You’ll then
encounter a list of default labels that can be utilized, as
illustrated in Figure 10-8.

Figure 10-8 List of the default labels

These labels represent the most commonly used ones
within the developers’ community. However, they aren’t
mandatory or immutable; you can modify them based on
your preferences and project requirements. It’s generally
inadvisable to alter these labels, especially when working
on an open source project, as many developers are
accustomed to these standard labels.

But given that this is your personal project and you
serve as the project manager, you can add, edit, or remove
any label as needed. For instance, the label “help wanted”
might not serve a purpose if you work alone in a private
setting. Labels can also signify an issue’s severity;
commonly used labels like “urgent” or “breaking” indicate
severe issues. Additionally, labels can differentiate the
origin of an issue, especially in larger projects. For
instance, “frontend,” “backend,” or “database” labels can
categorize issues into distinct groups.

Once you’ve made changes to the labels (although I
recommend adding new ones as needed while retaining the
default ones), return to your issues and access the details
page. Then, assign one or more labels to each issue by
clicking the Labels button. You can refer to Figure 10-9 for
an example.

Figure 10-9 Adding a label to an issue

After you add the labels, a notification appears in the
comment section of the issue page. Figure 10-10 shows an
example.

Figure 10-10 Notification about the newly added labels

Now, go through each of your issues and apply some
labels to them. Once you’ve finished, return to the issues
page. It should resemble mine, as depicted in Figure 10-11.

Figure 10-11 Labeled issues

Now that you’ve added labels to the issues, you can
filter through them. For instance, to view all issues labeled
“enhancement”, click the Labels filter (as displayed in
Figure 10-12), and you’ll see a result similar to mine
depicted in Figure 10-13.

Figure 10-12 Filtering by label

Figure 10-13 Filtered issues

Isn’t filtering fun?! But you know what is even more fun?
Assign issues to others! Let’s do it.

Assignees

Now that the issues are correctly labeled, it’s time to
assign them to a developer. It’s a relatively easy task and is
not so different from labeling.

You can assign an issue to up to 10 members of your
team. However, you can only assign yourself since you’re
the only one currently. Let’s proceed! Navigate to the
issues titled “Write the skeleton of the app with HTML5”
and “Add some styles to make it prettier with CSS3” and
assign them to yourself. Assigning an issue to a team
member operates similarly to adding labels. You can refer
to Figure 10-14 as an example.

Figure 10-14 Assigning an issue

After you assign these two issues to yourself, you get a
result like mine, as shown in Figure 10-15 on your Issues
page. You can now filter through your issues by labels and
assignees.

Figure 10-15 A complete issues list

Now that the issues are assigned to you, take off your
manager’s hat and put on your developer’s hat. It’s time to
get your hands dirty!

Linking Issues with Commits

Every action performed with Git should aim to resolve an
issue. When using Git, most of your work involves commits;
thus, each commit should be associated with an issue. In
this section, you learn how to link the commits to issues.

Firstly, let’s determine which issues to address. As seen
in Figure 10-15, two issues are assigned: “Write the
skeleton of the app with HTML5” and “Add some styles to
make it prettier with CSS3”. Let’s start by working on
writing the app skeleton because it’s a logical starting
point. Therefore, access the details page of this issue and
make a note of its number. As depicted in Figure 10-16,
mine is issue number 2 (#2).

Figure 10-16 Issue number 2 details page

Working on the Commit

Now that you have an issue to resolve and its number, it’s
time to prepare the commit. Since simple HTML5 is used
for this app, you only need a single file for the skeleton. So,
create a file named index.xhtml in your working directory
and paste it into this code.

<!doctype html>

<html>

 <head>

 <meta charset="utf-8">

 <title>TODO list</title>

 </head>

 <body>

 <h1>TODO list</h1>

 <h3>Todo</h3>

 Buy a hat for the bat

 Clear the fogs for the frogs

 Bring a box to the fox

 <h3>Done</h3>

 Put the mittens on the

kittens

 </body>

</html>

I’ll let you stage the newly created file, but don’t commit
it yet; first, let’s talk about the commit message.

Referencing an Issue

You are prepared to commit the project in its current state;
however, you need to modify the commit message to link
the commit to an issue. The most common method to link a
commit to an issue is by referencing the issue number
within the commit message.

Thus far, you’ve solely used very concise commit
messages, aiming to keep them within a single line.
However, as you now require a more detailed way to
describe the commits, you’ll structure the commit
messages as follows: a title, a body, and a footer separated
by a blank line. Refer to Figure 10-17.

Figure 10-17 The commit message structure

Caution Don’t forget the blank line between each part
of the commit message. It is important.

The body and footer sections within the commit structure
are optional and should only be used when necessary,
particularly the body. People tend to skim, often reading
only the title before moving on. Therefore, ensure the title
is self-explanatory even without the body.

The footer section is now the focus; it’s designated for
issue trackers like GitHub. Utilize the footer to reference
issues by their numbers. For instance, to reference the
issue you’re addressing, include its number in the footer
preceded by a #. Once GitHub detects this formatting, it
automatically links the commit to the referenced issue.

Note You can put the references to the issues
anywhere in the commit message, even in the title. But
this practice is very ugly and should be discouraged.

Combining all of that, let’s make the commit with a proper
commit message. Look at the example of my commit, as
shown in Figure 10-18.

Figure 10-18 Commit message linked to issue #2

I skipped the body part in my commit message because
it was unnecessary. I only needed to link this commit to
issue #2, so I put that number in the footer.

Now, push it! Look at the previous chapter if you forgot
how.

Next, let’s go back to the issue’s details page. The first
thing you notice is that a new comment has been added:
the reference to the commit. It should look like mine
depicted in Figure 10-19.

Figure 10-19 A reference to the last commit

This a very useful feature of GitHub that you will
certainly use; show all the commits linked to a particular
issue. That’s why no commit should be pushed without
being tied to an issue. It’s better for the management of the
project.

If you tap the name of the commit shown on the
reference (see Figure 10-19), you see a familiar screen. I’ll
let you discover which screen is depicted in Figure 10-20.

Figure 10-20 A detailed view of a commit

That’s right! It’s the git show view. There is no need to
get lost in Git commands to see what a commit does; you
can directly see it in GitHub!

Now that you have resolved the issue, go back to its
details page and close it. Let’s resolve the next one!

Closing an Issue Using Keywords

It was nice to work on an issue and close it, right? There is
still something even more fun: closing an issue by using
keywords in a commit message!

First, you must decide which issue to resolve. The next
issue is “Add some styles to make it prettier with CSS3,”

which has the number 3. Let’s resolve it! Open index.xhtml
and change the contents to the following.

<!doctype html>

<html>

 <head>

 <meta charset="utf-8">

 <title>TODO list</title>

 <style>

 h1 {

 text-align:center;

 }

 h3 {

 text-transform: uppercase;

 }

 li {

 overflow: hidden;

 padding: 20px 0;

 border-bottom: 1px solid #eee;

 }

 </style>

 </head>

 <body>

 <h1>TODO list</h1>

 <h3>Todo</h3>

 Buy a hat for the bat

 Clear the fogs for the frogs

 Bring a box to the fox

 <h3>Done</h3>

 Put the mittens on the

kittens

 </body>

</html>

Stage the file, but don’t commit yet. The following are
keywords to close an issue.

close
closes
closed
fix
fixes
fixed
resolve
resolves
resolved
Using one of these words followed by an issue number,

mark it as resolved and close it. The commit resolves issue
#3, so it puts that in the commit message footer. Your
commit message should look like mine (see Figure 10-21).

Figure 10-21 Resolving an issue by commit message

Like commit messages, the issue references should use
the imperative tone, so it is preferred to use resolve instead

of resolved. Now, it’s time to push the commit and see for
ourselves!

Navigate to the issue you worked on (you won’t find it in
the open issues, use the filter to see the closed issues) and
open the details page. You should see a new comment on it,
just like mine, as shown in Figure 10-22.

Figure 10-22 Issue close by keywords

If you tap the commit name, you again see the git show
view of the commit.

The little feature of GitHub is useful, but be very careful
when using it. Only close an issue when you are perfectly
sure that it was resolved. Closing and reopening issues
confuse people and generate a lot of notifications. And
don’t close a different issue by mistake! 83% of all
workplace violence is due to issues closing mistakes. And
just because I invented this statistic doesn’t mean you
should take it seriously!

Summary

Phew! This chapter was a bit lengthy, wasn’t it? It delved
into understanding issues, notably learning how to link
them to commits. Always remember to log all your actions

into issues before executing them. And ensure you triage
them using labels and assignees.

That wraps up basic project management. By now, you
should be familiar with planning your GitHub moves. Yet,
project management isn’t solely about pre-planning tasks;
having a clear record of past events and achieved
milestones is crucial. Therefore, the next chapter dives into
“proper” project management. It also provides a concise
summary of various GitHub workflows. Let’s proceed!

(1)

© The Author(s), under exclusive license to APress Media, LLC, part of
Springer Nature 2024
M. Tsitoara, Beginning Git and GitHub

https://doi.org/10.1007/979-8-8688-0215-7_11

11. Diving into Project

Management: Branches

Mariot Tsitoara1

Antananarivo, Madagascar

In the last chapter, you discovered issues and used them to
plan a project. You also learned how to link commits to
issues so that you can track each change in a project. The
workflow was simple: choose an issue, create a commit that
can resolve it, and push it to GitHub. The issue was then
marked as resolved and closed. However, this workflow is
not well-suited for most real-world projects, as the potential
for mistakes is too high.

What if you need more than one commit to resolve an
issue? What if other team members have pushed commits
that contain changes to the same files you’re working on?
How can you ensure that the pushed commits truly resolve
the issue? These are some of the reasons why making
direct changes to the project is not advisable, even if you’re
working alone.

Remember, closing an issue by using keywords in the
commit message is convenient, but it requires caution. You
may have overlooked issues in your work, or your changes
might introduce new bugs into the project. That’s why it’s
advisable to have someone else review your code before

https://doi.org/10.1007/979-8-8688-0215-7_11

accepting the changes. This is the aspect covered in this
chapter.

First, you are introduced to the most common GitHub
workflow, which is how most teams work on GitHub. Then,
you delve into the concept of branches.

But before beginning this chapter, here’s a little thing
that you should always remember: “You will make
mistakes. A lot of the time. So, you must make sure to use
as many safeguards as possible.” Let’s go!

GitHub Workflow

This section discusses the most common way that
developers use GitHub. Remember that each team has its
way of doing things, but each way of working is inspired by
the basic workflow to present.

Remember the little fact about making mistakes? This
omnipresent possibility of mistakes is why you need to
follow this GitHub workflow so that even if mistakes
happen, you isolate their repercussions in a controlled
manner. The way of working from the previous chapter was
to commit everything directly to the main project, which is
very dangerous. The main project is usually the
“production” line, the version the clients see and use. So,
this version must be very clean and should always be
exploitable. If errors are made in the main version, the
clients will experience bugs, disrupting every team
member.

One way to resolve this issue is to create a copy of the
main project and work on this clone. Each change you
make to this copy does not affect the main project, so none
of your mistakes can impact clients. And when you (and
other people) are perfectly sure that the changes you made
resolve the issue, you can reproduce those changes in the
main version.

These copies of the main project are called branches,
and the concept of reproducing changes into another
branch is called merging. You can make as many branches
as you like and trade commits between them. When you
first create a repository, Git creates a new branch for you,
called main. Most developers put their main or production
version in main and only re-create changes there when they
are sure that it’s okay to do so.

Just like tree branches, Git branches can have many
ramifications, meaning that you can even create new
branches from branches other than the main one, even if
it’s difficult to maintain such architecture. Most of the time,
you create a branch when working on an issue and delete it
after the issue is resolved.

To put all this into perspective, you will learn about the
default or common GitHub workflow. As you know,
everything should begin with an issue. You are already
familiar with this. So, let’s talk about each of the next steps
of the workflow.

When you want to resolve an issue by making code
changes, you should first copy the project’s current
working version and create a new branch.

Then, as usual, you make your changes and commit the
state of the project. You can make any number of commits
you need; it won’t affect the main branch. You can also
push your commits to GitHub so that your code can be
seen.

Then, you link your branch to the main one so that
others can compare the changes and review your code.
This link is called a pull request; you request that your
commits be applied to the main branch.

Other team members can then review and comment on
your code on GitHub. You then push more commits
addressing those comments until all problems are solved.

The pull request is accepted if every party (developers,
managers, testers, or clients) agrees that your changes are
okay and resolve the issue at hand. This means every
commit you make on your branch is applied to the main
branch. You can then delete the branch you created.

And that’s it! You might wonder how it differs from
directly pushing to the main branch. It’s very different
because mistakes and omissions are caught before applying
the changes to the production version. This means that the
number of production bugs is reduced to a minimum. It
also makes it possible for various members of your team to
review the changes before they are applied, which is the
standard way of working in most tech companies. Bundling
the changes into one pull request also solves the problem of
multiple people pushing commits to solve different issues at
the same time. It keeps the history log clean.

You might be tempted to open pull requests only when
you feel that you are done with your work. Unless your
work is very small and straightforward, don’t wait long
before opening a pull request. By opening a pull request
early in your development, you can receive feedback before
making too many changes. It is very useful for beginners
especially because following the wrong path from the start
takes a long time to correct, and you would wish that you
were told the correct way earlier. Opening a pull request
doesn’t mean the work is done; it just means that you are
considering applying commits from one branch to another.

Note You can create branches from any branch and
open pull requests. It’s not only reserved for the main
branch.

Figure 11-1 summarizes all the steps.

Figure 11-1 Basic Git workflow

As you can see, you can create branches from any
branch in the project. Git created a branch called “main” at
the initialization of the repository. You can then create
more branches (for example, a bugfix branch or a feature
branch) to introduce changes to the this branch.

Branches

Branches are the main feature behind code reviews. You
must work on your own branch before publishing your work
so that you won’t be bothered by other people’s changes.
Simply put, a branch is your independent copy of the
project at a certain time. Let’s see how they work and
create and delete some.

The logic behind branches is simple: make a copy of the
current state of the project. In this copy, you can make your
changes without affecting other people. You can use
branches to have distinct channels of distribution or to try
new things with the project.

When creating a repository, you get a branch by default:
main. This branch is enough when working on very small
projects, but most projects need more branches to get the
best results. First, they need a production branch where
clients can get the latest stable version of the software; this
is the main branch. You will mostly work on the

development branch, where most of the action happens.
Finally, there are short-lived patching branches that you
create to hold your commits before merging them into the
development branch. These patching branches live and die
with a pull request. You create one when you are solving an
issue and delete them afterward.

To summarize a little bit, there are three sorts of
branches.

Production branch: where you release stable versions of
your project
Development branch: where you test your latest version
Patching branch: where you work on your issues
Unless there is a very urgent major problem that needs

solving immediately, you never commit directly to the
production or the development branch. To update those
branches, you use pull requests to review and test the
changes. There are some companies where every developer
commits directly to the development branch, but this is
very counterintuitive because if a bug is discovered, they
won’t know which commit introduced it. Also, it forces the
developer to push “do-it-all” commits, which is an anti-
pattern. Do-it-all commits are commits that try to resolve
many issues at the same time; for example, a commit that
fixes a bug and introduces a new feature simultaneously.
The laziness of developers often causes this practice when
they don’t want to create a new branch for another issue.
This creates very bad pull requests and makes tracking the
project’s progress difficult. It also creates a big challenge
for the testers as they don’t know which version is stable.
It’s an all-around bad idea; don’t do it even with small
projects. Creating and deleting branches all the time may
seem tiring, but it is the best workflow when working with
Git.

The one thing to remember about Git branches is that
they are simple references to commits; that’s why creating

and deleting them is so fast. Recall that Git stores its
commits in chained links. Well, a branch is just a reference
to one of those commits. A commit contains information
about the author, the date, the snapshot, and, most
importantly, the name of the previous commit. The name of
the previous commit is called the parent, and every commit
except the first one has at least one parent. Thus, each
commit is linked to the previous one so that you can re-
create the change history of the project.

For now, you only have the default “main” branch, which
references your project’s last commit. To create a new
commit, Git checks where the reference is and uses the
information in that commit to build the link between the
new commit and the previously referenced one. So, each
time you commit, the reference moves to the new commit,
and the cycle continues. Thus, a branch is just a reference
to a commit designed to be the parent of the next one.

But how does Git know which branch you are on? Well,
it uses another reference called HEAD that references the
current commit. If you are on a branch, HEAD references
the last commit of that branch. But if you are checking out
a previous version (like you did when you used git
checkout <commit_name>), the HEAD references that
commit, and you are in a state called detached HEAD.

Caution You never want to be in a “detached HEAD”
state. It is a very dangerous situation to find yourself in.

For most situations, you can think of HEAD as the reference
to the current branch, and every commit you create uses
the last commit in that branch as a parent.

When you merge a branch into another, a new commit is
created. It has two parents: one from each branch. So, you
can recognize a commit type from its number of parents.

No parents: the very first commit
One parent: normal commit in a branch
Multiple parents: a commit created by the merge of
branches

Creating a Branch

Now that you know a lot about branches, let’s create one!
It’s very easy; you need to use the git branch command
followed by the branch name. Remember that the branch
name should only contain alphanumeric values and dashes
or underscores; no spaces are allowed.

$ git branch <name>

For example, let’s create a development branch for the
project. Let’s name it develop. Here’s how to do it.

$ git branch develop

After executing the command, you notice that nothing
has changed in your project. That’s because creating a
branch is simply about referencing the last commit of the
current branch, and nothing else. To begin working with a
branch, you must switch to it.

Switch to Another Branch

You created the development branch, and now it’s time to
switch to it. But here’s the problem: I’ve forgotten the
name I gave to the branch. Someone might suggest you
turn back and look at the previous section to find the name.
But I have a better idea: list all the current branches. To do
so, execute the git branch command without any
parameters.

$ git branch

This command gives you the list of branches you
currently have and puts an asterisk next to the one you’re
currently on (the HEAD). Check out Figure 11-2 for an
example of a branch list.

Figure 11-2 List of branches in the project

Notice that you are still on the main branch because you
haven’t created anything other than a branch. Now, let’s
switch to it.

You already know the command to switch between
versions. Well, you use the same command to navigate
between branches. Simply use git checkout with the
name of the branch as a parameter.

$ git checkout <name>

So, if you want to switch to the develop branch, you
must execute the following.

$ git checkout develop

Note As when you navigated between versions, you
can’t switch branches if you have uncommitted changed
files. Commit before you move. Or use a technique called
stashing, which is covered in later chapters.

After checking out the new branch, you get a confirmation
message from Git, and you can also check the result of Git
status to make sure. Figure 11-3 shows the result of those
commands.

Figure 11-3 Switching branches

EXERCISE: CREATE A TESTING BRANCH

Let’s do a simple exercise before moving on to the next
task. It’s very straightforward because all the answers
are in this section. The exercise is to create a branch

named testing where you test a project before merging
all the commits to the main branch. You must do the
following.
1.

Go back to the main branch.
2.

Create a new branch named testing.
3.

Switch to the new branch.

Tip

To immediately switch to a new branch after creating
it, use the -b option with the git checkout command.
For example, is the same as git branch testing and
then git checkout testing.

Deleting a Branch

Did you have fun creating the testing branch? Good. It’s
time to delete it because you already have a testing branch:
develop. That’s where you merge the patching branches,
and all the testing is done there.

You can delete a pushed branch, which is present on the
remote repository, by checking the “delete branch after PR
merged” option when creating a pull request. This deletes
the remote branch, but your local branches are unchanged.
You have to delete your local branches manually.

To delete a branch, use the same command to create
one but with the option -d.

$ git branch -d <name>

So, to delete the testing branch, use the following.

$ git branch -d testing

Like a real tree branch, you don’t cut the Git branch you
are currently standing on. Check out another branch before
deleting the branch; for this reason, you can’t have less
than one branch in a project. If you try anyway, you get an
error like the one shown in Figure 11-4.

Figure 11-4 Deleting current branch

Thus, you must check out the main or develop branch
before deleting the testing branch. If you did it correctly,
you should get a result like mine shown in Figure 11-5.

Figure 11-5 Deleting of a branch (we hardly knew ye)

Take note of the confirmation message; it gives you the
SHA-1 name of the branch you just deleted. Since the
branch you created and deleted contained no commits, it
just referenced the last commit of the current branch. Let’s
check the history log to confirm this. Execute the git log
command to get the list of the latest commits, just like in
Figure 11-6.

Figure 11-6 Commit name check

The last commit name and the branch name are the
same because you haven’t made any commits in the
branch. You also see on the history log where the branches
are originating from. In this example, the develop branch
originates from the 98c0ec8 commit, the branch’s parent.

Merging Branches

Merging branches has been discussed in this chapter, but
you haven’t made a single merge. Let’s change that.

Let’s imagine that you want to improve the project’s
README file by adding a few pieces of information. This task
is already listed in the GitHub issues, so there’s no problem
with that. The next step is to create a new branch from the
development branch so you can merge them later. You
must create a new branch from the develop branch instead
of the main branch because you won’t touch the main
branch until everything is properly tested. If everything is

clear and clean, you merge the development branch into
the main branch.

It’s clear then, let’s create the new branch where you
will work. Let’s name it improve-readme-description.
Don’t forget to check out the develop branch before
creating a new one. Thus, you execute the following.

$ git checkout develop

$ git branch improve-readme-description

Now that the branch has been created, switch to it so
you can begin to work. To switch to the new branch, use
the checkout command.

$ git checkout improve-readme-description

Perfect! Now you have a branch named improve-
readme-description originating from the develop branch.
You like branches so much that you created a branch from
a branch!

Now let’s get to work. Open the README.md file and
change its content to the following.

TODO list

A simple app to manage your daily tasks.

It uses HTML5 and CSS3.

Features

* List of daily tasks

Now, stage the file and get ready to commit. I’ll let you
choose the commit message, but don’t forget to put a
reference to the issue you are trying to resolve! Thus, the
following are the next steps.

$ git add README.md

$ git commit

There is nothing new here because every command is
the same for any branch. The only slight change is that the
branch name differs in the commit description. You can see
it in my result shown in Figure 11-7.

Figure 11-7 Committing on another branch

After you have made the commit, check the Git history
to put everything you did in perspective. Execute the git
log command to view the project’s history.

$ git log

Tip Use the --oneline option when using git log to get
a prettier result

Your project history log should look like the one shown in
Figure 11-8 after you have committed.

Figure 11-8 History log after committing on a branch

As you can see in the figure, HEAD now points to the
last commit of the new branch. This means that every
commit you create has that as a parent. Also, note that the
main and develop branches didn’t change because you only
worked on the newly created branch.

If you are satisfied with the fix, let’s merge the branch
into the develop branch so you can test it. To merge the
branch into develop, you first must check it out. So,
navigate there by using the git checkout command.

$ git checkout develop

Now, let’s try to merge this branch into the develop
branch. Merging means reproducing all the commits from
one branch into another. To do so, use the git merge
command followed by the name of the branch to be
merged.

$ git merge <name>

Since you want to merge improve-readme-description
into develop, the following is the command to execute on
the develop branch.

$ git merge improve-readme-description

This command integrates your commits from improve-
readme-description into develop. You receive a similar
result as a confirmation for the merge. Figure 11-9 shows
an example.

Figure 11-9 Merge result

Let’s recheck the git log to better understand what
happened. After executing git log --oneline, you see a
result similar to mine, as shown in Figure 11-10.

Figure 11-10 History log after merge

As you can see, HEAD now points to develop because it’s
the checked-out branch. Note that develop and improve-
readme-description now point to the same commit
because of the merge.

Congratulations on your first merge! It won’t be so easy
next time. (Hint: Merge conflicts appear when the same
line of code has been modified in different commits.)

Pushing a Branch to Remote

Branches are not only made for working locally; you can
also publish them to the world by pushing them to the
remote repository. For example, let’s push the development
branch to GitHub so everyone can see the progress.

The command for pushing a branch to remote is (you
guessed it!) git push, just like what you learned in a
previous chapter. The command is as follows.

$ git push <remote_name> <branch_name>

The remote name hasn’t changed; it’s still origin. It’s
the branch name that is different this time. Instead of main,
you push the develop branch. So, the command is as
follows.

$ git push origin develop

Since you’ve already pushed to remote before, the result
shown in Figure 11-11 is familiar to you.

Figure 11-11 Pushing to a remote branch

As you can see, there is a little difference in the result. It
has a link to create a pull request to ask for permission to
reproduce the commits on develop into main. Take note of
the link because you will learn about pull requests in the
next chapter.

If you return to GitHub to check your project page, you
also have the call-to-action button for creating pull
requests. Ignore this for now and instead navigate between
the main branch and the develop branch. Figure 11-12
shows an example of a project page after a new branch has
been pushed.

Figure 11-12 The new project page

It’s all about branches for now. You now know how to
create, merge, and delete them. And most importantly, you
have a basic knowledge of the GitHub workflow: create a
branch, work on that branch, and create a pull request.

Now, you may be wondering if you even used the
workflow. No, you didn’t use the workflow because you
used the direct approach: directly messing with the
branches. In a real-world project, you won’t commit and
push directly to the main or the develop branch as you did
earlier. Instead, you use pull requests to merge branches
together. That way, your work can be reviewed by your

coworkers before you can merge them into the develop or
main branch.

Summary

This chapter dealt with what makes Git a powerful tool for
project management: branches. Branches are necessary for
fast-paced development because you probably work on
many issues at once. Keeping all those changes in the same
place is a recipe for disaster. For example, you need to
start in a clean environment to fix a bug or introduce a
feature; trying to do both at the same time seriously
increases the risk of introducing more bugs.

The main takeaway of this chapter is the importance of
using a workflow when developing with Git. And those
workflows all use branches to separate the different types
of work necessary for clean issue resolution.

You’ve seen how to create, check out, and delete
branches. Now, let’s learn more about pull requests and
code review so you can propose changes to the main
branch!

(1)

© The Author(s), under exclusive license to APress Media, LLC, part of
Springer Nature 2024
M. Tsitoara, Beginning Git and GitHub

https://doi.org/10.1007/979-8-8688-0215-7_12

12. Better Project Management:

Pull Requests

Mariot Tsitoara1

Antananarivo, Madagascar

In the last chapter, you learned about the typical GitHub
workflow that most companies use or variations of it for
their day-to-day work. You also learned about branches and
how to use them. However, there is one crucial aspect you
didn’t cover: how to combine these two concepts
effectively. The answer is simple: pull requests and code
reviews.

The previous chapter highlighted many reasons why
using a traditional approach to code management (where
everybody commits to the same branch) is a bad idea. Even
though you work alone on this project, you might not
experience the inconveniences yet. But they do exist, and
resolving them can be time-consuming. So, trust me, it’s
better to follow the workflow.

This chapter demonstrates how to implement the
workflow presented in the previous chapter. You utilize the
branches created to introduce changes to older branches.
Additionally, you delve into code review and how to manage
it effectively.

https://doi.org/10.1007/979-8-8688-0215-7_12

Why Use Pull Requests?

Many developers who don’t follow a particular workflow
argue that it wastes time because it consumes valuable
development time. There is truth in this statement because
adhering to the workflow may involve waiting for others to
review your code. However, it’s essential to remember that
you don’t have to sit idle while waiting for a review. You
can continue working on other tasks, such as solving
another issue. This is precisely why branches are so
powerful in version control systems; they enable you to
work on multiple issues concurrently. With the workflow,
you can initiate work on an issue, seek ideas or guidance
from your peers, and then switch to another issue while
waiting for responses. Once you receive the necessary
feedback, you can resume work on the first issue. You can
also start working on an issue even if you don’t have
complete information about what needs to be done; you can
pause midway to gather more information. Importantly,
having someone else review your code is one of the most
effective ways to reduce bugs. The time saved by not
chasing bugs later is more significant than the time you
gain by committing directly to the main branch.

The GitHub workflow is also the preferred method of
work for open source contributors. It would be chaotic if
anyone could push commits directly to a branch without
any review. Instead, each contributor has a working clone
of the project and can propose changes that other
contributors review and discuss.

In conclusion, working with the GitHub workflow is the
best approach, significantly reducing the likelihood of
introducing bugs. As you saw in the last chapter, using
branches is just the first step; you must also use pull
requests to complete the workflow. Let’s learn more about
them!

Pull Requests Overview

Pull requests are a relatively easy-to-understand concept.
Submitting a pull request is a way to ask for permission to
apply all the commits in a branch to another branch.
However, before diving into the subject, it’s essential to
understand what a pull is.

Pull

In Git terminology, a pull is essentially the opposite of a
push (congratulations if you guessed that correctly!). When
you push, you take your local branch and copy all its
commits to a remote branch, creating the branch on the
server if it doesn’t exist. On the other hand, a pull is the
reverse; it looks at a remote branch and copies the commits
from that branch to your local repository. It’s essentially an
exchange of commits: push when moving from local to
remote and pull when moving from remote to local.

The syntax is very similar, too.

$ git pull <remote_name> <branch_name>

So, for example, if you wanted to fetch the commits from
the main branch on GitHub and bring them into your local
repository, you would execute the following command while
checking out the main branch.

$ git pull origin main

Always be on the branch corresponding to the one you
are pulling before running any command. So, in this case,
you must check out main before running git pull. After
executing the command, you get a result like mine, as
shown in Figure 12-1.

Figure 12-1 Pulling main from origin

Nothing happened since you have the same commits in
your local repository and on GitHub. But once you start
working with other people, you have to pull their branches
to your local machine to review their changes, or review
the changes on GitHub.

That’s it! Pulling is just copying commits from a remote
branch to a local one. And don’t worry. You will have more
opportunities to use git pull soon.

What Does a Pull Request Do?

Now that you know more about pulling, you should have a
clearer idea of how a pull request works. It requests
permission to execute a pull action on a remote repository.
However, pulling a branch alone is not enough for the
action to be complete; you must also merge the branches.

Remember when you merged a patch branch into the
development branch? A pull request is just a way of

formally asking for permission. You can do anything you
want with your local branches, but when you deal with
upstream branches (branches in the remote repository), it’s
considered good practice to ask for permission first. This
ensures that every fix committed to the main branches is
properly tested and reviewed.

So, to put it all together, a pull request is a request you
make to get GitHub to perform these actions: pull your
patching branch and merge it with another branch. For
example, in this project, you currently have three local
branches (main, develop, and improve-readme-
description) and two remote branches (main and
develop). If you made any new commits to improve-
readme-description and wanted to merge it with develop,
you would open a pull request. After it is accepted, GitHub
performs the following actions: pulls the improve-readme-
description branch and merges it with the develop
branch.

You might wonder, “If the end goal of a pull request is to
merge a branch, why not call it a merge request?” Well,
many people (including other Git hosting services like
GitLab) do call it a merge request. It means the same thing.
This book uses the two terms interchangeably.

Create a Pull Request

Let’s get down to business! Creating a new pull request is
very easy. You only need two branches: one to work on and
another to merge into. Let’s do it!

First, let’s create an issue to work on. So, go to GitHub
and create an issue called “Improve the app style”. Yes,
there was a similar issue previously, but since you’ve
already solved that issue, you will open a new one.
Recycling issues is not a good idea because it makes it
harder to follow your progress.

After you’ve created the issue, it’s time to go back to
your terminal because each pull request begins with a
branch. Create a branch named improve-app-style from
the latest development branch (develop). As you saw in the
last chapter, the way to create a new branch from another
is to check out the source branch and execute the branch
creation command. So, you have to execute those
commands one after another.

$ git checkout develop

$ git branch improve-app-style

$ git checkout improve-app-style

After executing those three commands, the new branch
is checked out, as seen in Figure 12-2.

Figure 12-2 Creation of a new branch

Let’s work on the issue within the newly created branch.
Open index.xhtml and replace its contents with the
following.

<!doctype html>

<html>

 <head>

 <meta charset="utf-8">

 <title>TODO list</title>

 <style>

 h1 {

 text-align:center;

 }

 h3 {

 text-transform: uppercase;

 }

 ul {

 margin: 0;

 padding: 0;

 }

 ul li {

 cursor: pointer;

 position: relative;

 padding: 12px 8px 12px 40px;

 background: #eee;

 font-size: 18px;

 transition: 0.2s;

 }

 ul li:nth-child(odd) {

 background: #f9f9f9;

 }

 ul li:hover {

 background: #ddd;

 }

 </style>

 </head>

 <body>

 <h1>TODO list</h1>

 <h3>Todo</h3>

 Buy a hat for the bat

 Clear the fogs for the frogs

 Bring a box to the fox

 <h3>Done</h3>

 Put the mittens on the

kittens

 </body>

</html>

Then, stage the file and prepare to commit. Put
something very simple as a commit message; there’s no
need to reference the issue. You’ll do this later. As a
commit message, you can state: “Add basic color changes
on item rows”. As usual, you get a confirmation message
after the commit, like the one shown in Figure 12-3.

Figure 12-3 Commit confirmation

Now it’s time to push it to GitHub. As you’ve seen, you
have to use the git push command, followed by the remote
name and the branch name. So, the command is as follows.

$ git push origin improve-app-style

After you’ve pushed your branch to GitHub, you get
another familiar confirmation message. Figure 12-4 shows
an example of this.

Figure 12-4 Pushing the branch to GitHub

As you can see in the confirmation message, Git
provides a link for you to follow so you can create a pull
request. However, let’s create it using another method:
directly on GitHub.

Go to your project page and look for something different
in the layout. After a recent push to a new branch, your
project page should look like the one shown in Figure 12-5.

Figure 12-5 Project page after a recent push

As you can see, there is a new call to action on the page
above the list of branches. It displays the name of the
branch that you just created and a prominent button for
creating a pull request. Click the button to proceed, and
you should be taken to the creation form, as shown in
Figure 12-6.

Figure 12-6 Pull request creation form

You can note that the pull request creation form is
similar to the issue creation form. On the right, you can
find the same information about assignees and labels; they
work the same. At the bottom of the page, you can see the
commits that the pull request applies; if you scroll down,

you’ll find the differences between the versions. Figure 12-
7 shows an example of this.

Figure 12-7 Differences between versions

But you might ask yourself why there are two commits
to be applied. It’s because of the target branch. If you
examine Figure 12-6 closely, you’ll find that the base
branch for the pull request is set to main. This is not what
you want because you are targeting the develop branch.
Change the base branch to develop. After you change it,
the page reloads, and you’ll get a different result, as shown
in Figure 12-8.

Figure 12-8 Pull request on develop

As you change it, notice that the pull request name has
also changed because it takes the last commit message as a
default name. But you can change it, especially if you have
multiple commits in one. Remember one thing about the
pull request name: it should be as clear and straight to the
point as commit messages. The name should answer this
question: What will this pull request do if I merge it? Be
thoughtful when choosing a name and description so the
reviewers know which problem you are trying to solve
without reading your code.

You can expand your pull request explanation in the
description textbox, and don’t hesitate to provide more
information about the changes. You should also include
keywords for closing issues there. Figure 12-9 shows an
example of this.

Figure 12-9 A completed pull request

Once you are ready, click “Create pull request” to
submit it; you are taken to a page similar to the one shown
in Figure 12-10.

Figure 12-10 Your new pull request

Again, this view is very similar to its issues counterpart,
with the pull request number following the issues number.

The only difference is the “Merge pull request” button.
Tapping it merges the branches. But don’t do that yet! Let’s
play around with the pull request before merging it.

Once the pull request is submitted, it’s time to review it!
Remove your developer hat for a while and put on your
tech lead hat; it’s time to do a code review!

Code Reviews

Code reviews are one of the best features of GitHub. Long
gone are the days when you had to schedule a one-on-one
meeting with your tech lead so they could check your code.
There is no need to send each other long chains of emails
(with many annoyed people on the cc list) for each change
request in the code. Now, everything is done in GitHub.
Let’s see!

Give a Code Review

Figure 12-9 provided a glimpse of the code review process.
You saw all the changes made to the files compared to the
current version, but you couldn’t interact with them yet.
This section teaches how to review your co-contributors’
code.

Figure 12-10 shows that the pull request page has many
sections, just like the Issues page. You must click “Files
changed” to begin the code review. You then arrive on a
page like the one shown in Figure 12-11.

Figure 12-11 The Code Review section

This view should remind you of the git diff results
because it’s essentially the same thing. It shows you the
differences between the versions in detail, which means
that you see what has been added, removed, or replaced.

Leave a Review Comment

Now, let’s pretend to review this code. During code
reviews, you can comment on the overall changes or a
specific piece of code. For example, let’s put a comment on
the ul li CSS definition on line 17. As you move your
cursor around, the code review changes, and a little plus

icon (+) follows it. It means that you can comment there.
Let’s do that. Place your cursor on line 17, and when the
plus icon appears, click it. It opens a small comment
section like in Figure 12-12.

Figure 12-12 A code review on a line

As always, you can make all kinds of comments in this
section with the help of Markdown syntax. For this
example, add this comment: “Make the list items
unselectable for a cleaner UX. Use user-select: none”.
You should check the preview before you submit the
comment.

If you are satisfied with your comment, tap “Start a
review” to go to the next step. The comment is displayed on
the Review page, and there is also a Reply button on the
comment, just like in the result shown in Figure 12-13.

Figure 12-13 The posted comment

Using this button, the developer can discuss the
comment with the reviewer before reworking the pull
request. You can comment more if you want because
comments constitute a code review. If you are satisfied, tap
the “Finish your review” button at the top of the page. You
are again greeted with a small section, similar to the one
shown in Figure 12-15.

Figure 12-14 Finishing the review

Upon finishing the review, you get three choices:
Comment, Approve, or Request changes. Since it’s your
own pull request, you cannot approve or request changes
to it. Choose the default option, which is general feedback
on the changes. Let’s put: “Don’t forget to take into
account different browsers” as a comment and submit the
review. You return to the pull request details page, as
shown in Figure 12-15.

Figure 12-15 Your completed code review

The details page shows overall comments and those by
the reviewer. Let’s address these comments.

Update a Pull Request

The comment left by the reviewer suggested that you
should make some changes to the code before the pull
request can be accepted. So, let’s do that! You must update
it by pushing new commits to the patching branch.

Note The patching branch is also called the topic

branch because each branch should have its own topic to
resolve.

Open index.xhtml once again and change its contents to the
following.

<!doctype html>

<html>

 <head>

 <meta charset="utf-8">

 <title>TODO list</title>

 <style>

 h1 {

 text-align:center;

 }

 h3 {

 text-transform: uppercase;

 }

 ul {

 margin: 0;

 padding: 0;

 }

 ul li {

 cursor: pointer;

 position: relative;

 padding: 12px 8px 12px 40px;

 background: #eee;

 font-size: 18px;

 transition: 0.2s;

 -webkit-user-select: none;

 -moz-user-select: none;

 -ms-user-select: none;

 user-select: none;

 }

 ul li:nth-child(odd) {

 background: #f9f9f9;

 }

 ul li:hover {

 background: #ddd;

 }

 </style>

 </head>

 <body>

 <h1>TODO list</h1>

 <h3>Todo</h3>

 Buy a hat for the bat

 Clear the fogs for the frogs

 Bring a box to the fox

 <h3>Done</h3>

 Put the mittens on the

kittens

 </body>

</html>

Stage the file again and commit the changes with the
message: “Make the list items unselectable”. Then, push
the branch to GitHub again using the git push origin
improve-app-style command.

After you’ve pushed the branch, return to the Pull
Requests page. Notice a new comment on the details page,
as shown in Figure 12-16.

Figure 12-16 New changes detected by GitHub

After each commit you push, GitHub updates the pull
request to reflect the changes made to the branch. Click
“View changes” to review the new changes. You arrive on
the Code Review page again, but this time, you only see the
new changes that haven’t been reviewed yet. This makes it
easier for the reviewer to track the progress of the pull
request.

Since there aren’t any additional comments, click
“Finish review” and provide a general comment. In a work
environment, you would have the option to approve the
changes, but since you’re working alone, leave a general
comment like “Good job!” to acknowledge the developer’s
hard work. The general comment appears on the details
page, as shown in Figure 12-17.

Figure 12-17 A final comment has been made

You can safely merge your branch into the base branch
because your code has been properly reviewed. Click the
big green “Merge pull request” button to accept and merge
it. You are asked for confirmation before the branch is
merged. After you confirm, the branches are merged, and

the pull request is closed. You can even delete the source
branch, as Figure 12-18 shows.

Figure 12-18 Pull request accepted

Whether or not you want to delete the branch is up to
you. Sometimes, teams don’t delete branches until a tester
has confirmed that everything is working as expected.

You might wonder why your issue wasn’t automatically
closed. That’s because the issue is associated with the
develop branch, which is not the default branch. Only fixes
merged into the default branch (main) automatically close
issues. But since you’re concerned about that issue, let’s
complete an exercise before moving on to the next chapter.

EXERCISE: MERGE DEVELOP INTO MAIN

Let’s pretend a tester tested a new feature and said it
was okay to release. So, you must merge the develop
into the main branch. The exercise is to do the following.

1. Go back to the project page.
2.

Open a pull request to merge develop.
3.

Accept the pull request and merge.

Summary

Congratulations on getting your first pull requests
accepted! (Although it would be more impressive if you
didn’t accept them yourself). This chapter has been quite
long, but it’s important to fully understand it to benefit
from the awesome features of GitHub. Remember to open a
pull request for your issues instead of committing directly
to the main branch. Keep in mind that in most professional
settings, committing to the main branch is discouraged and
denied by default in GitHub. Each change should come
from a pull request.

You should now be comfortable with using pull requests.
If not, consider revisiting the first sections of this chapter.
The key thing to remember is that a pull request is just a
formal way of requesting permission to apply commits to a
branch.

You might have some questions now, like “What if
somebody else pushed some changes to the base branch
before I completed my pull request?” or “What if someone
else modified the same file as me?” or “What if I’m tasked
with resolving another issue while I’m working on a pull
request?” These are indeed important questions, so they
are addressed in the next chapter. You’ll learn about merge
conflicts and how to resolve them. But first, you’ll learn
how to avoid them altogether! Let’s go!

Part III

Teamwork with Git

(1)

© The Author(s), under exclusive license to APress Media, LLC, part of
Springer Nature 2024
M. Tsitoara, Beginning Git and GitHub

https://doi.org/10.1007/979-8-8688-0215-7_13

13. Merge Conflicts

Mariot Tsitoara1

Antananarivo, Madagascar

This chapter revisits how branch merging works and
discuss some common problems you might encounter in
your development journey. You explore the solutions to
these problems, particularly when resolving merge
conflicts. While merge conflicts can be frustrating, they are
a natural part of collaborative development and can be
managed effectively. Let’s dive into these topics to better
understand and address the challenges of working with
branches and merging changes.

How Does a Merge Work?

It’s important to understand the fundamental purpose of
merging in Git. Merging combines the changes made in one
branch with another. However, even with careful planning,
conflicts can arise when multiple people work on the same
file. Git allows for distributed development, meaning each
contributor has their own copy of the project and can make
changes independently. When these changes conflict,
merging is necessary to reconcile the differences.

A key principle to remember is that you should only
merge a branch when you are certain that the commits in

https://doi.org/10.1007/979-8-8688-0215-7_13

that branch are final and the work is complete. Merging
incomplete or unfinished work can lead to confusion and
disrupt the clarity of your project’s history. It’s acceptable
to open a pull request for review even if you don’t intend to
merge it immediately, but merging should be reserved for
fully completed work. This ensures that your project’s
history remains coherent and understandable.

Pulling

Let’s revisit the pulling command once again. Pulling
means copying a remote branch to the local repository. For
example, you have merged a branch into develop and main
but have not made any changes to the local branches. This
means that you are “behind” in the history timeline
because there are commits in the remote repository that
you don’t have.

The word behind is a bit of a misnomer because, as
established, every repository is independent, and there are
no central repositories in Git. A main remote repository
makes team collaboration easier. However, in practice, you
can exchange commits as you like; the concept of being
“behind” was introduced to simplify developers’ workflows.

Let’s attempt to pull the main branch into the local
repository. Please ensure that you have completed the
exercise from the last chapter (merging develop into main)
before proceeding with the steps in this chapter. First,
check out your local main branch and ensure it’s clean.

$ git checkout main

$ git status

If you haven’t made any unexpected changes in your
working directory, you should see the same result depicted
in Figure 13-1: a clean directory.

Figure 13-1 A clean directory is needed before a pull

Now, let’s check the history log before making any
changes.

$ git log --online

This displays the commit history of the main branch,
which does not include the recent changes you made
because those changes are currently only in the remote
repository. The main branch’s history log should resemble
the one shown in Figure 13-2.

Figure 13-2 The history log before the pull

Figure 13-2 shows that the HEAD is pointing to the
branch’s last commit (most of the time, it is that way).
According to this result, the local main branch and the
remote main branch are on the same level, meaning they
contain the same commits. However, you know that this
isn’t true because you’ve made changes on the remote main
branch. Your local Git repository doesn’t know this because
you haven’t yet fetched any commits from the server. Let’s
do that.

As you saw in the last chapter, the pull and push
commands work the same way: you need to provide the
remote repository name and the remote branch name as
parameters. So, the command is as follows.

$ git pull origin main

After executing this code on a clean working directory,
you get the result shown in Figure 13-3.

Figure 13-3 Pulling main from origin

Fast-Forward Merge

After you’ve pulled main from origin, you receive a
summary of the operation. This summary includes the
number of files changed and the type of merging
performed. In this case, it is a fast-forward merge, which is
the easiest type. A fast-forward merge occurs when the
commits on the remote branch are on the same timeline as
the local branch. Consequently, Git only needs to move
HEAD to the last commit of the origin branch. Recall the
discussion on commits being linked to one another through
parent-child relationships. If Git recognizes this link
between the commits on the first branch and the branch to
be merged, it performs a fast-forward merge. Only a
pointer move is necessary, making Git very efficient. You

should always aim to use fast-forward merging because it’s
the easiest and, most importantly, the cleanest method for
the history log.

Speaking of the history log, let’s check it to see the
changes you’ve fetched from the server. Once again, use
the --oneline option to obtain a more readable result.

$ git log --oneline

The result is shown in Figure 13-4.

Figure 13-4 History log after pulling from origin

You have additional commits now! Commits from the
remote branch have been merged into your local branch.
Consequently, your local main branch now points to the
same commit as the origin branch.

Let’s break this down. First, let’s discuss the branch
colors. Green branches represent your local branches,

while red branches are remote branches. Remote branches
have two names, as their names are combined with the
remote repository name.

You can observe that improve-readme-description,
develop, and origin/develop are at the same level. You
know this is not correct because you made changes to
develop on GitHub. Git won’t know these changes until you
pull the develop branch from origin.

You’ll also notice there are commits in this history that
you didn’t make. Specifically, “Merge pull request #3 from
link-skyloft/develop” and “Merge pull request #2 from link-
skyloft/improve-app-style”. These are called merge

commits, which Git creates when you merge two or more
commits. This project merges improve-app-style into
develop and develop into main. Each of these merges
generates a merge commit.

Like regular commits, you can view more information
about them using the git show command. Let’s examine
the details of the first merge commit.

$ git show 438a30e

This results in a familiar view: the commit intel view.
You should get the same result shown in Figure 13-5.

Figure 13-5 A detailed view of a merge commit

This view might not seem particularly interesting as it
primarily displays the commit parents and the user who
performed the merge. However, it’s important to note that
the committer and the merger can be different individuals.
Additionally, it’s advisable to include keywords for
resolving issues in the merge commit message rather than
in the commit messages themselves. Most of the time, a
single commit won’t be sufficient to address a problem, so
including these keywords in the pull request message
ensures that the issue is only closed when the branch is
merged.

The history log displayed in Figure 13-4 is visually
appealing but doesn’t effectively illustrate the concept of
branches and merges. To get a more appropriate
representation, you can use the --graph parameter with --
oneline when using the git log command. This
combination provides a graph-style view of your commit

history, making it easier to understand branching and
merging.

$ git log --oneline --graph

This command produces simple graphs like the one
shown in Figure 13-6.

Figure 13-6 The history graph of the project

The log graph indeed provides a more detailed history of
your project. Each asterisk represents a commit, as usual,
but there’s a new element shown on this graph: branches.
You can see how the project’s history has diverged and
merged over time. For example, you diverged from the
main branch to create the develop branch, which in turn
diverged to form the improve-app-style branch. Commits
were made to this branch before merging it back into
develop. Finally, the develop branch was merged into the
main branch.

When working on a project with many branches and
frequent merges (as you should in a collaborative
environment), the graph view is more helpful than the

traditional view. It provides a clearer visual representation
of your project’s history, and the use of colors can make it
even more intuitive.

If you want to maintain a cleaner history log, consider
deleting the local improve-app-style branch, especially if
it’s no longer needed for your current work. However,
ensure that you’ve already pushed any relevant changes to
the remote repository or merged them into other branches
before deleting the branch locally.

$ git branch -D improve-app-style

Deleting an already merged branch carries little risk,
but many developers avoid it in case they need to revisit it
later. Most of the time, this situation doesn’t arise. A good
rule of thumb is to delete branches only when you’re
certain you won’t need to check them out again for testing
or other purposes.

What is demonstrated here is the simplest form of
merging: a fast-forward. However, you’re in a completely
separate context after you’ve diverged from a branch, as
you did with main and develop. You won’t automatically
receive updates from the other branches; you need to
request them explicitly. This also means that the other
branches evolve independently of your branch. When you
create a pull request on a branch, that branch may have
already changed. For instance, multiple contributors can
create new branches from develop and work on their
respective issues. These issues may not be resolved
simultaneously, so each pull request is accepted one after
the other. This is where the challenge arises: your target
branch can change independently while you’re working on
your issue. The reality you’re working with might evolve
when you finish your changes. Perhaps multiple people
have modified the same files in their respective branches.
These situations occur frequently in your career, and often,

a pull request won’t go as smoothly as ours did in this
chapter. These challenges are known as conflicts, and
learning how to resolve them is crucial to your Git journey.
Let’s delve into it!

Merge Conflicts

The best way to understand merge conflicts is to create
one. So, let’s deliberately introduce a conflict into the
project! First, ensure that you’re on your local develop
branch. Since you haven’t made any changes to this
branch, it should still be clean.

$ git checkout develop

Next, let’s check the history log to see the current state
of the branch.

$ git log --oneline --graph

You get the same result because you haven’t pulled from
“origin” yet. The result is depicted in Figure 13-7.

Figure 13-7 develop history log before pull

There is nothing spectacular here—just a good old log
without any problems. Since you deleted the improve-
readme-description branch, no branch is left in the develop
history log.

The log says that develop and origin/develop are in
the same state, but this isn’t true because you made
changes on GitHub. But instead of pulling from origin,
let’s make changes in the branch first—changes that cause
conflicts with the changes from origin.

Open index.xhtml and replace its contents with the
following code.

<!doctype html>

<html>

 <head>

 <meta charset="utf-8">

 <title>TODO list</title>

 <style>

 h1 {

 text-align: left;

 }

 h3 {

 text-transform: capitalize;

 }

 li {

 overflow: hidden;

 padding: 22px 0;

 border-bottom: 2px solid #eee;

 }

 </style>

 </head>

 <body>

 <h1>TODO list</h1>

 <h3>Todo</h3>

 Buy a hat for the bat

 Clear the fogs for the frogs

 Bring a box to the fox

 <h3>Done</h3>

 Put the mittens on the

kittens

 </body>

</html>

Run git diff to review your changes. These were only
small changes, so it shouldn’t be a big deal, right?

$ git diff

The result is very familiar because you see it all the time
on GitHub and with git show. Your result should be the
same as mine, as shown in Figure 13-8.

Figure 13-8 Difference between develop and the working directory

Nothing new here. Let’s add the changed file to the
staging area and then commit the current project.

$ git add index.xhtml

Tip Is opening your text editor for each commit
tiresome? Well, you can skip it if you are in a hurry. To
commit the project while skipping the commit message
editing phase, you can pass the commit message as a
parameter.

$ git commit -m "<commit_message>"

Don’t forget the -m!

$ git commit -m "Change CSS to introduce

conflicts"

Caution Using the shorthand form of the git commit
command can save you a few seconds, but it also makes
it easier to make mistakes because you won’t have the
chance to review your changes before committing. I
highly suggest only using it when you have only one
changed file. Plus, you can’t use it to write a multiline
commit message.

This won’t produce any results that you haven’t seen
before. Figure 13-9 shows a standard result because there
is no conflict yet.

Figure 13-9 The commit that introduces conflicts

To produce the conflict, you need to retrieve the
commits you pushed to develop when merging a branch
into it.

Pulling Commits from origin

You’ve already seen the pull command in action, but in this
scenario, you encounter a little problem: you’ve made
changes to the same file in different commits. This leads to
conflicts that must be resolved before you can complete the
pull operation. Don’t forget that pulling means copying
remote commits into your local repository.

Let’s start by directly pulling the develop branch from
origin. Again, the command is very similar to the push
command. You need to specify the remote repository and
branch name.

$ git pull origin develop

The result is quite different from what you’ve seen
earlier. Instead of a successful merge, you encounter a
conflict, and the repository is now in a state where it’s
stuck between two conflicting versions. Figure 13-10 shows
an example of this.

Figure 13-10 Merge conflict during the pull command

Let’s break down the result step by step. First, the URL
is being used for the pull, which is straightforward.

Next, you encounter the first action performed by Git,
which is called fetch. Its role is to copy the selected branch
from the remote repository to the local repository. This
branch is then stored in a temporary storage area called
FETCH_HEAD. Just like HEAD refers to the last commit you are
working from, FETCH_HEAD references the tip of the branch
that you just fetched from origin.

The following action is a basic merge, like you’ve seen
before. You fetched the remote branch, and it’s time to
merge it with the current branch. The details of the action
specify the branches being merged, which are develop and
origin/develop. It even specifies the commits that would
be used. Your commit names are different, but to verify the
first commit, you can use the following command to check
the commit log.

$ git log --oneline

You find the commit name on the second to last commit,
as shown in Figure 13-11.

Figure 13-11 The second to last commit is used for the merge

Note that the merge won’t use the last commit because
that’s the commit you are currently working on, the one
that introduced the changes.

Figure 13-10 also references another commit for the
merge, and you can find that commit on origin/develop.
Select the develop branch to see the history log of the
remote branch on your project page on GitHub.
Alternatively, you can directly access it using your GitHub
link, such as https://github.com/link-skyloft/todo-
list/commits/develop. This provides you with a view of
the latest commits, as shown in Figure 13-12.

https://github.com/link-skyloft/todo-list/commits/develop

Figure 13-12 The commits on origin/develop

As you can see, the second commit referenced in Figure
13-10 is the latest commit of the remote branch, the one
that was created by the previous merge on GitHub. You can
click it and access the commit details to gather even more
information. You can refer to Figure 13-13 for an example
of this.

Figure 13-13 More info on the merge commit

Figure 13-13 shows that this commit has two parents
because it’s a commit created by merging two branches.
One of the parents is also referenced in Figure 13-10
because it was the last commit pushed before you merged
the branches on GitHub.

Now, let’s return to Figure 13-10. In the next part of the
result, Git attempts to merge the branches automatically.
This usually goes smoothly when different files or different
parts of the files have been changed in the branches to be
merged. However, in this case, conflicts were found, so the
merge failed. It’s now up to you to resolve these conflicts.

Git tried to merge the local develop branch with
FETCH_HEAD. Because both branches contain changes to the
same parts of the index.xhtml file, you must decide which
changes to keep. You’ll see how to do that in the next
section.

The last information to note from Figure 13-10 is the
state of the local repository. If you look at the left part of
the console, you’ll see that the repository is in the
develop|MERGING state instead of the standard develop
branch. This indicates that there are unresolved conflicts in
the project, and the merge (and, by extension, the pull) is
not complete. You can use the git status command to get
more information about the current state of the repository.

$ git status

This provide you with a new result that you haven’t seen
before, as shown in Figure 13-14.

Figure 13-14 Status of the merge

This result is quite straightforward and provides helpful
guidance for the next steps. First, it advises on what to do:
resolve conflicts and commit the project. Additionally, it
mentions a way to abort the current merge if you decide to
give up on resolving the conflicts. In some cases, this can
be a good option because you can work on the local branch
to resolve the conflicts before attempting the merge again.
For example, you could abort this merge, revert the commit
that introduced the conflicts, and then pull again. This
would result in an automatic merge without any conflicts.
However, for the sake of learning, let’s resolve the conflicts
the hard way!

Next, there’s a list of files affected by the merge. In this
case, only index.xhtml is involved and has been modified
in both branches. Let’s open this file to examine the
conflicts. You’ll see substantial changes in it, as shown in
Figures 13-15 and 13-16.

Figure 13-15 index.xhtml in Visual Studio Code

Figure 13-16 index.xhtml in vim

You’ll notice the three prominent lines that divide your
code within the file. These lines are consistent in every
code conflict but might appear differently depending on
your text editor. For instance, an integrated development
environment (IDE) like Visual Studio Code may render the
code with different colors and even provide buttons to
interact with the code, as shown in Figure 13-15. On the
other hand, a basic text editor might display these lines as
regular lines of code, potentially disrupting your color
scheme. In Figure 13-16, I used Vim without additional
tools, resulting in a more straightforward rendering.

However, there are many plugins available to enhance this
experience.

Resolving Merge Conflicts

Let’s start by explaining the meaning of those three lines.
The “<<<<<<<” and “>>>>>>>” lines delineate the
region where a conflict exists. It’s important to note that a
file can have multiple conflicting regions.

These regions are separated by the “=======” line,
which displays the code from the two branches. The first
part represents the code from your current branch, while
the second part represents the code from the branch you’re
attempting to merge.

To resolve the merge conflict, you need to edit the file so
that only one changeset remains. This doesn’t necessarily
mean you must choose between the two changesets; you
need to combine them into one coherent code. In this case,
retaining most of the second part is advisable since those
changes have already been reviewed and accepted.
However, there might be some elements from the first part
that should be incorporated.

To achieve this, copy the code you need from the first
part and paste it into the second part. The resulting code
should look like the following.

<!doctype html>

<html>

 <head>

 <meta charset="utf-8">

 <title>TODO list</title>

 <style>

 h1 {

 text-align: left;

 }

 h3 {

 text-transform: capitalize;

 }

<<<<<<< HEAD

 li {

 overflow: hidden;

 padding: 22px 0;

 border-bottom: 2px solid #eee;

=======

 ul {

 margin: 0;

 padding: 0;

 }

 ul li {

 cursor: pointer;

 position: relative;

 padding: 12px 8px 12px 40px;

 background: #eee;

 font-size: 18px;

 transition: 0.2s;

 -webkit-user-select: none;

 -moz-user-select: none;

 -ms-user-select: none;

 user-select: none;

 overflow: hidden;

 }

 ul li:nth-child(odd) {

 background: #f9f9f9;

 }

 ul li:hover {

 background: #ddd;

>>>>>>> 33753ecaebae2ba1c3ffdc1e543d372385884c78

 }

 </style>

 </head>

 <body>

 <h1>TODO list</h1>

 <h3>Todo</h3>

 Buy a hat for the bat

 Clear the fogs for the frogs

 Bring a box to the fox

 <h3>Done</h3>

 Put the mittens on the

kittens

 </body>

</html>

You’ve only copied one line from the first part since the
second part was already almost complete. Now, it’s time to
clean the file of unnecessary parts. First, you can remove
the first part of the code conflict (between “<<<<<<<”
and “=======”) because you don’t need it anymore.
Then, you can simply remove the remaining line
(“>>>>>>>”) because it doesn’t make sense to keep it.
The file then looks like the following.

<!doctype html>

<html>

 <head>

 <meta charset="utf-8">

 <title>TODO list</title>

 <style>

 h1 {

 text-align: left;

 }

 h3 {

 text-transform: capitalize;

 }

 ul {

 margin: 0;

 padding: 0;

 }

 ul li {

 cursor: pointer;

 position: relative;

 padding: 12px 8px 12px 40px;

 background: #eee;

 font-size: 18px;

 transition: 0.2s;

 -webkit-user-select: none;

 -moz-user-select: none;

 -ms-user-select: none;

 user-select: none;

 overflow: hidden;

 }

 ul li:nth-child(odd) {

 background: #f9f9f9;

 }

 ul li:hover {

 background: #ddd;

 }

 </style>

 </head>

 <body>

 <h1>TODO list</h1>

 <h3>Todo</h3>

 Buy a hat for the bat

 Clear the fogs for the frogs

 Bring a box to the fox

 <h3>Done</h3>

 Put the mittens on the

kittens

 </body>

</html>

The file is back to normal, with a merged version of the
conflicting codes and no more of those three big lines.
Now, you can continue the merge process. If you forgot the
next step, you could run git status again (see Figure 13-
14).

So, now that the file is ready, you must stage it.

$ git add index.xhtml

After that, you must commit the project as usual.

$ git commit

You are greeted by the familiar commit message view,
but with a little twist: the commit message is already
written. Figure 13-17 shows an example of this.

Figure 13-17 The default commit message

Of course, you can always modify the commit message,
but I suggest leaving the default one unless you follow a
personal or company guideline. You can save the commit
message and move on.

If you look at the command result (see Figure 13-18),
you see that you are back on the develop branch and no
longer in the merging state.

Figure 13-18 Back to normal state

You can also check if the merge has been completed by
checking the history log. Make sure to add a graph option
for a beautiful result.

$ git log --oneline --graph

This produces this stunning visual shown in Figure 13-
19.

Figure 13-19 The recent history of the project

You can see on that graph that when the
origin/develop branch was merged, all its history was
imported. So, it seems like there is a branch from a branch.
In big Git projects, it happens all the time.

Summary

Congratulations on completing this chapter! You’ve learned
about pulling code from a remote server, handling merge
conflicts when two branches modify the same code, and
resolving those conflicts.

Remember that pulling involves two steps: fetching,
which copies the remote branch into a temporary branch,
and merging, which combines the temporary branch with
the current one. When conflicts arise, you must manually
decide which code to keep, stage the changes, and commit
them.

Merge conflicts can be frustrating, but they are a
common part of working with Git. In the next chapter,
you’ll learn how to reduce the occurrence of conflicts and
manage branches more effectively. Keep up the good work!

(1)

© The Author(s), under exclusive license to APress Media, LLC, part of
Springer Nature 2024
M. Tsitoara, Beginning Git and GitHub

https://doi.org/10.1007/979-8-8688-0215-7_14

14. More About Conflicts

Mariot Tsitoara1

Antananarivo, Madagascar

The last chapter was intense, wasn’t it? It talked about
what merge conflicts are and when they would happen. You
also saw how to resolve them manually. Don’t worry. This
chapter is much easier to digest. It covers how to push your
branch to remote after a merge conflict. Also, you will see
some strategies to adopt to reduce the number of conflicts
that might happen. Let’s go!

Pushing After a Conflict Resolution

I’ve made some grammar and style improvements to the
text. Here’s the revised version.

As you saw in the earlier chapters, pushing means
copying the local commits to a remote branch. This means
that every commit you have locally is applied to the remote
repository.

You learned in the last section that a pull action is just
two actions executed one after the other: a fetch action that
copies the remote branch into a temporary location and a
merge action that merges the temporary branch with the
local one. Since the pull and push actions are essentially

https://doi.org/10.1007/979-8-8688-0215-7_14

the same but in different directions, they work similarly
when pushing your local branch to origin.

So, a push action is divided into two parts: the copy of
your local branch to the remote and the merging of the
branches. The only difference between push and pull
actions is who initiates the action: you or the server.

Under normal circumstances, the push goes smoothly
because the merge is automatically performed using fast-

forward, which is possible when the commits on your local
branch can be directly linked to the commits on the remote
branch. For example, simply adding commits one after
another to the main branch (like you’ve done until now) and
then pushing them results in a fast-forward merge, with no
need to create a merge commit.

It also happens in this situation since you’ve only added
new commits to the develop branch. You won’t encounter
any problems unless you or someone else tampered with
the commit history in the past. Never attempt to do this.

With that said, let’s push the develop branch using the
usual command.

$ git push origin develop

As expected, you get the usual result shown in Figure
14-1.

Figure 14-1 Pushing the develop branch

In conclusion, pushing a branch back to origin after
pulling and merging the changes shouldn’t lead to
unexpected behavior unless someone has tampered with
the commit history.

Review Changes Before Merging

Before attempting any merge, reviewing all the changes
your branch introduces is crucial. This step should not be
ignored, as it can save you countless hours of battling with
Git.

Check the Branch Location

First, ensure that you are in the correct branch location.
You must have the target branch checked out to merge two
branches together. For instance, if you intend to merge
develop into main, you should first check out main. The
commands would be as follows (please don’t execute the
second command at this moment).

$ git checkout main

$ git merge develop

Review the Branch Differences

Reviewing differences is not limited to commits; you can
also use it to check the variances between two branches.
This is particularly helpful in delicate situations like
merging. The command is relatively straightforward.

$ git diff branch1..branch2

Take note of the two dots between the two branch
names. This command displays the differences between the
two branches in a familiar diff view. Let’s compare develop
to main.

$ git diff main..develop

The result is quite like the diff output when comparing
commits. Refer to Figure 14-2 as an example.

Figure 14-2 Differences between branches

If you’ve made numerous changes and don’t want to
scroll through them all in the terminal, you can also view
them on GitHub. Simply push the branch and open a pull
request!

Merging

You’ve learned various concepts about Git merges, but let’s
summarize them to better understand this feature. As
discussed, merging involves combining two branches or,
more accurately, integrating the changes from one branch
into another.

Branches can be created from any other branch, and
once a branch is created, it becomes independent from its
parent branch. Changes made in one branch do not
immediately affect the other; they remain separate until it’s
time to merge.

Consider a scenario where you create a child branch and
make commits on that new branch. When it’s time to
merge, several situations can arise.

No changes in parent branch: If the parent branch hasn’t
changed (no new commits have been made), and you
attempt to merge, Git performs a fast-forward merge.
Technically, this isn’t a merge but a reference change in
Git. Git moves the reference of the parent branch
forward, effectively appending the commits from the
child branch to the parent branch. This is the easiest type
of merge but is less common, especially in collaborative
settings.
Parent branch has changes: If the parent branch has
changed (received new commits), a fast-forward merge is
not possible. Instead, a true merge, or a three-way
merge, occurs. This type of merge was discussed in the

last chapter. It creates a new commit that incorporates
all the changes from the child branch and appends this
commit to the parent branch. This new commit is called a
merge commit, it has two parents: one from the parent
branch and one from the child branch. A conflict can
arise if different commits in both branches modify the
same lines of code, requiring the developer to manually
select which changes to keep.
In essence, merges are a sophisticated way of creating

commits that contain all the changes from a child branch
and adding them to the parent branch. Understanding this
process is crucial for minimizing the frequency of merge
conflicts.

Reducing Conflicts

In the previous chapter, you learned that resolving conflicts
can be a challenging and time-consuming process,
especially when conflicts are extensive. Therefore, it’s
advantageous to adopt strategies to minimize conflicts. This
section explores these strategies.

Having a Good Workflow

Many problems in Git and GitHub can be mitigated by
implementing a well-defined workflow. The most common
Git workflow was covered in previous chapters, but let’s
revisit it for clarity.

First and foremost, it’s essential not to commit directly
to your main branches. In other words, any changes you
intend to make to your primary or development branches
should be carried out through merging. Each merge should
be initiated via a pull request. This approach allows you to
receive feedback as you work, provides testers with a clear
means of tracking project alterations, and ensures that all
changes are well-documented in your project’s history.

Even if you’re working solo, using PRs to introduce changes
to main branches is advisable.

Every pull request should be focused on resolving a
single issue. Whether it’s a bug fix, a feature enhancement,
or documentation changes, keep each pull request
dedicated to one specific task. Avoid the temptation to
address multiple issues in a single pull request, which can
lead to merge conflicts.

Another aspect that developers often overlook is line
endings and file formatting. As discussed in an earlier
chapter, different operating systems use different line
endings. Your team must agree on a consistent line-ending
style for each project. Most teams opt for Unix-style line
endings, so Windows users should configure their Git
clients accordingly. The specifics can vary regarding
formatting, but all team members must adhere to the same
formatting standards for indentations and line returns.

Caution Things might get heated when discussing tabs
vs. spaces. Prepare your arguments in advance!

Aborting a Merge

Keep in mind that many merge conflicts won’t necessarily
arise from clashes in code logic; some can stem from
differences in formatting and whitespace. For instance, a
trailing space or variations in the number of indentation
spaces can lead to conflicts, even if the code remains
unchanged.

When you encounter conflicts of this nature, it’s often
best to abort the merge, reconcile the formatting
differences, and then attempt the merge again. You can
abort a merge using the following command.

$ git merge --abort

This action won’t delete any of your commits; it simply
cancels the ongoing merge and leaves you in your current
state.

Using a Visual Git Tool

Resolving conflicts can be challenging when working with a
basic text editor, as it often disrupts the code’s color
scheme and formatting. An effective solution to this issue is
to employ specialized Git tools. These tools can take the
form of IDE extensions or dedicated Git software. The next
chapter explores these options in more detail!

Summary

This chapter was a valuable refresher on merge in Git. It
explored the different types of Git merges and the
scenarios in which they come into play. Additionally, it
delved into the mechanics of how a merge functions, which
is essentially about integrating commits from one branch
into another.

The key takeaways from this chapter are the various
strategies you can employ to reduce the occurrence of
merge conflicts. While you might not be able to eliminate
them entirely, following these guidelines helps keep
conflicts to a minimum.

Up to this point, you’ve made significant progress in the
Git journey, all through the command-line interface. It’s
time to add some color to the Git projects by exploring Git
GUIs in the next chapter!

(1)

© The Author(s), under exclusive license to APress Media, LLC, part of
Springer Nature 2024
M. Tsitoara, Beginning Git and GitHub

https://doi.org/10.1007/979-8-8688-0215-7_15

15. Git GUI Tools

Mariot Tsitoara1

Antananarivo, Madagascar

The earlier chapters covered many important Git features
and concepts. You’ve delved into commits, branches, pull
requests, and merging. Armed with these concepts, you’re
already equipped to accomplish a wide range of tasks in
Git. However, one small caveat: you’ve primarily used the
terminal or console window for these operations. In this
chapter, you won’t encounter new Git concepts or features.
Instead, you’ll learn how to apply what you already know
with style. 😊

Let’s begin by exploring the default tools bundled with
Git and then delve into integrated development
environments that seamlessly integrate Git functionality.
Finally, you’ll look at specialized tools designed to enhance
your Git experience.

Default Tools

If you’ve followed the installation steps outlined in the
earlier chapters, you should already have these tools
installed on your computer. If not, you can easily obtain
them from your preferred software store. These default
tools are bundled with Git to offer users straightforward

https://doi.org/10.1007/979-8-8688-0215-7_15

GUIs (Graphical User Interfaces) for navigating their
repositories and preparing commits. They are accessible on
almost any operating system, so you needn’t worry about
compatibility. I’m presenting them in this book for
historical context because they are integrated directly into
Git.

Committing: git-gui

The first tool to explore is called git-gui, which serves as
a graphical interface for committing changes in Git. You’ll
use it for committing your projects and reviewing proposed
modifications. For more information about git-gui, visit
https://git-scm.com/docs/git-gui.

To open git-gui, you can follow the same methods you
use to open Git Bash: through the command line, context
menu, or the Start page. Choose the method that suits you
best. On Windows and Debian-based operating systems,
you can open a Git GUI by navigating to the directory of
your repository and right-clicking an empty space. Doing so
brings up a menu similar to the one shown in Figure 15-1.

https://git-scm.com/docs/git-gui

Figure 15-1 Windows context menu

The menu shows you can access Git GUI or Git Bash.
Let’s select Git GUI. This opens a small program window
that provides details about the current status of your
working directory. You can see what the window looks like
in Figure 15-2.

Figure 15-2 Git GUI interface

If you don’t want to use the context menu or cannot, you
can open Git GUI by launching a terminal or command
prompt in the directory of your Git repository and running
the following command.

$ git gui

The Git GUI interface is lightweight and consistent
across different operating systems, making it easy to use. It
is divided into four main sections.

Top left: A list of edited files not staged for commit.
Bottom left: A list of files that have been staged for
commit.
Top right: A diff view that displays the changes between
the current state and the previous commit.
Bottom right: A text area for entering the commit
message.

Since you haven’t made any changes to the project,
everything is currently empty. To demonstrate how Git GUI
works, let’s make some additional commits. First, ensure
that you are on the main branch, and then create a new
branch from it. You can do this by going to the Branch
menu and selecting “Checkout...”. This opens the branch
selection window, as shown in Figure 15-3.

Figure 15-3 Choosing a branch to check out

You’ll notice that information about its last commit
appears when you hover your cursor over a branch. This
can help identify the right branch, although it ideally
shouldn’t be necessary if you have clear and descriptive
branch names.

To proceed, check out the main branch and create a new
one. You can do this by selecting “Create...” from the
Branch menu. This opens the branch creation window, as
Figure 15-4 shows.

Figure 15-4 Creating a new branch

The first input area is crucial; it’s where you provide the
name of your new branch. Let’s name the branch
separate-code-and-styles.

The second input is a choice menu where you need to
select the branch you want to create from. In this case, you
want to create a new branch based on your local main
branch. So, choose Local Branch and select main.

The third part consists of options, and it’s generally a
good idea to stick with the default settings. With the
default options, Git fetches the latest commits from the
remote tracking branch and checks out the new branch.

Now, click Create. You’ll notice that the message box in
the top left corner now lists separate-code-and-styles as
the current branch. To provide some perspective, here are
the equivalent command-line commands for what you just
did.

$ git checkout main

$ git branch -b separate-code-and-styles

You can start working on the commit now that you’re in
the correct branch. Each commit should have an issue
resolution as its goal. Create the issue.

EXERCISE: CREATE AN ISSUE

1.
Go to GitHub issues.

2.
Create an issue called “Separate code and styles”.

3.
Take note of the issue number.

Now you’re ready to commit! Create a new file called
style.css in your repository and paste it into the following
code.

h1 {

 text-align:center;

}

h3 {

 text-transform: uppercase;

}

ul {

 margin: 0;

 padding: 0;

}

ul li {

 cursor: pointer;

 position: relative;

 padding: 12px 8px 12px 40px;

 background: #eee;

 font-size: 18px;

 transition: 0.2s;

 -webkit-user-select: none;

 -moz-user-select: none;

 -ms-user-select: none;

 user-select: none;

}

ul li:nth-child(odd) {

 background: #f9f9f9;

}

ul li:hover {

 background: #ddd;

}

Then, open index.xhtml and change its content to the
following.

<!doctype html>

<html>

 <head>

 <meta charset="utf-8">

 <title>TODO list</title>

 <link rel="stylesheet" href="style.css" />

 </head>

 <body>

 <h1>TODO list</h1>

 <h3>Todo</h3>

 Buy a hat for the bat

 Clear the fogs for the frogs

 Bring a box to the fox

 <h3>Done</h3>

 Put the mittens on the

kittens

 </body>

</html>

Save the two files, and now let’s switch to Git GUI to see
the result. Initially, you won’t see any changes because Git
GUI isn’t aware of the recent modifications. To make Git
GUI recognize the changes, click Rescan near the commit
message box. This refreshes the view, and you’ll see the
result, which is depicted in Figure 15-5.

Figure 15-5 Changes shown on Git GUI

Now that the changes have been loaded, you can
observe the list of modified files in the top left of Git GUI,
which represents the unstaged files. You’ll notice that these
files have different icons, each indicating a different status.

An empty file icon signifies a new file (never been
committed).
A file icon indicates a modified file (previously
committed).
A question mark (?) icon suggests a deleted file (also
previously committed).
This view should remind you of the git status

command. Clicking Rescan in Git GUI is equivalent to
executing the following command in the terminal.

$ git status

In this case, you’ve modified index.xhtml and created
style.css. If you click the file names (not the icons), you’ll

see the diff view changes, as illustrated in Figure 15-6.

Figure 15-6 Diff on the newly created style.css file

It’s certainly quicker than executing git diff! Also, it’s
easier on the eyes if you have a lot of changed files. So,
clicking the file name is equivalent to executing the
following commands.

$ git diff index.xhtml

$ git diff style.css

Now is the time to stage the files in preparation for the
commit. Staging and unstaging a file is easy: just click its
icon. Alternatively, you can select the files you want to
stage (by clicking their names) and select “Stage to
Commit” in the Commit menu. Clicking the file icons is the
same as executing the following commands.

$ git add index.xhtml style.css

$ git reset HEAD index.xhtml

$ git reset HEAD style.css

See? Way quicker than typing commands!
You can finally commit the project! But first, make sure

that all the files you created or modified are staged,
meaning that they are in the bottom-left section. Then, you
can write your commit message in the bottom right section
of Git GUI, just like in Figure 15-7.

Figure 15-7 Writing of a commit message

You’re ready to commit now that the files are staged and
the commit message is written. Click the Commit button
near the commit message box. After doing so, Git GUI
returns to its normal, empty state. You’ve committed using
the graphical tool!

Clicking the Commit button has the same result as
executing the following command.

$ git commit -m "Move style code to external file"

Since you’re my best student (don’t tell the others), I’ll
let you make another commit in the branch.

EXERCISE: MAKE ANOTHER COMMIT

1.
Open README.md.

2.
Add this line at the end of the file: License: MIT.

3.
Create a new file called LICENSE.

4.
Copy the license text from
https://choosealicense.com/licenses/mit/ into
the LICENSE file.

5.
Stage both files.

6.
Commit with the message, “Add MIT license”.

Great job! Now you have two commits on your new branch,
and it’s time to push them to the remote repository.
Clicking the Push button gives you the result shown in
Figure 15-8.

https://choosealicense.com/licenses/mit/

Figure 15-8 Pushing a branch

It’s a straightforward interface. You just have to select
the branch you want to push and the location where you
want to push it.

The current branch is selected by default, so you don’t
have to change anything. The second section is the
destination selection drop-down, and again, you don’t have
to change anything because you only have one remote
repository. Ignore the options for now; you see them in a
later chapter.

Press the Push button to push! If you use HTTPS
authentication to connect with GitHub, you are asked for
your GitHub username and password and then get the
result shown in Figure 15-9.

Figure 15-9 Push result

Tip If you don’t want to enter your password each time
you push, you can cache them or use SSL authentication.
All of this was explained in the previous chapters.

Nothing new here. You got the same result as the following
command.

$ git push origin separate-code-and-styles

EXERCISE: CREATE A PULL REQUEST

1.
Follow the link you got after pushing.

2.
Create a pull request with this description: “Fix
#10” (replace the number with the issue number you
created earlier).

3. Merge the PR.

4.
Rejoice.

And that’s how you commit with Git GUI! Simple, right?
And very quick, too. It’s a great tool that can save you time
when reviewing commits. Speaking of commits, let’s look at
the other default tool!

Browsing: gitk

The previous section explained creating and pushing
commits. Now, you will visualize those commits in their
natural habitat: the repository. gitk is a simple tool to
visually represent your project’s history. You can think of it
as a more powerful version of the git log command. More
information is available at https://git-
scm.com/docs/gitk.

Since you already have the Git GUI open, let’s use it to
open gitk. Simply choose Visualize All Branch History from
the Repository menu. You see the window shown in Figure
15-10.

https://git-scm.com/docs/gitk

Figure 15-10 The gitk interface

At the top of the window is a list of all your project’s
commits from all branches. It is presented in a graphical
view that you can reproduce in the console with the
following command.

$ git log --oneline --graph

You can click the commits to get more information about
them. Selecting a commit updates the views at the bottom
of the window. The bottom-left is a diff view again, but with
a twist: you can choose to view the old or the new version
of the files. The bottom-right shows a list of all the files
changed in the commit. You can click them to see the
changes in the diff view. Clicking a commit is the
equivalent of executing the following code.

$ git show <commit_name>

And that’s it for gitk, the default browsing tool of Git!
Since you can now commit and browse with the default
graphical tools, it’s time to introduce you to other tools.

IDE Tools

As you saw in the previous section, committing with a
graphical tool is much faster than typing in the console.
However, there’s still a drawback: you must leave your
integrated development environment (IDE) to use these
tools. Wouldn’t it be great if you could access these
graphical tools directly from your code editor?

This is possible with many modern code editors. I’ll
introduce you to two popular IDEs that have Git integration
built-in, allowing you to use Git seamlessly within your
development environment. Additionally, if you prefer to use
a different code editor or are already attached to your
current one, chances are that it also has integrated Git
tools or plugins, especially if it’s a modern IDE. Each IDE
offers a unique interface and user experience, so in this
section, I’ll provide an overview of the available features
without going into specific details.

Visual Studio Code

Visual Studio Code, often abbreviated as VS Code, is a
highly popular code editor. It’s a lightweight IDE developed
by Microsoft, and you can download it from
https://code.visualstudio.com. Despite being relatively
new, it has quickly gained popularity and boasts a wide
range of integrated features, including robust Git
integration. You can get a glimpse of the look and feel of VS
Code in Figure 15-11.

https://code.visualstudio.com/

Figure 15-11 Visual Studio Code

It features a familiar interface like any other IDE but
with a little bonus: you’ll find traces of Git integration
throughout the editor. First, the edited parts are
highlighted when you modify a tracked file (in the example,
README.md). There’s no need to run git diff separately
anymore.

You can see the current branch name in the bottom left
of the window. If you click it, you can select the branch you
want to switch to or create a new one. If you have unstaged
changes, you’ll see a little asterisk (*) next to your branch
name and an M icon next to the file names with changes. If
you’ve staged but not committed files, you’ll see a plus sign
(+).

Clicking the source control icon in the left-hand sidebar
opens the Git tab, as illustrated in Figure 15-12.

Figure 15-12 Source Control view

This view looks and works very much like git-gui, so I’ll
let you discover it yourself!

Specialized Tools

The previous sections explored the default Git tools and Git
integration in popular IDEs, and now, let’s delve into some
specialized tools designed specifically for Git.

GitHub Desktop

GitHub Desktop is a great choice if you appreciate the
functionality of the default Git tools (like gitk and git-gui)
but find their interfaces outdated. It offers a more modern
and user-friendly interface while retaining all the essential
features of those tools. You can download GitHub Desktop
from https://desktop.github.com/. The interface of
GitHub Desktop is depicted in Figure 15-13.

Figure 15-13 GitHub desktop

Summary

This chapter was fun, wasn’t it? You learned how to use a
graphical tool to make and browse commits. You also
discovered many new tools available, whether integrated
into an IDE or as specialized tools. And how can you forget
about the good old default tool?!

https://desktop.github.com/

You may wonder why the graphical tool wasn’t used
from the very beginning. It’s because using a tool without
understanding the concepts behind it is counterproductive
and a waste of time. Trust me, learning to use the terminal
was worth it! Speaking of terminals, let’s get back to it for
some more advanced Git commands!

(1)

© The Author(s), under exclusive license to APress Media, LLC, part of
Springer Nature 2024
M. Tsitoara, Beginning Git and GitHub

https://doi.org/10.1007/979-8-8688-0215-7_16

16. Advanced Git

Mariot Tsitoara1

Antananarivo, Madagascar

In Chapter 15, you learned how to use basic Git features in
a graphical context. Now, let’s explore some additional Git
commands that you won’t use as frequently as the others
but are powerful and necessary for improved productivity.
These commands are easy to learn and invaluable if you
ever make a mistake when using Git.

This chapter addresses common problems you will likely
encounter after using Git for some time, and then you’ll
explore the easiest ways to resolve them. While this
chapter may seem relatively straightforward, it dives into
some powerful Git features.

Reverting

You’ve already learned how to revert a commit in previous
chapters. However, often, you only want to revert a single
file to a previous state. This situation typically arises when
you’ve been working on a file for some time, only to realize
that your entire approach was incorrect. Instead of
manually undoing changes with hundreds of Ctrl+Z or
Cmd+Z keystrokes, it’s more efficient to revert the file.

https://doi.org/10.1007/979-8-8688-0215-7_16

You probably already know how to do this because Git
provides instructions after you check the git status. First,
let’s open the README.md file and add some text to it.

TODO list

A simple app to manage your daily tasks.

It uses HTML5 and CSS3.

Features

* List of daily tasks

* Pretty colors

License: MIT

Now, let’s see the status.

$ git status

As usual, you see the status of your repository (shown in
Figure 16-1).

Figure 16-1 Git status after a changed file

There is nothing new here, but please direct your
attention to the instructions above the modified file. As you
can see, reverting a file to a previous state involves
checking it out. The following is the command for this.

$ git checkout -- <file>

This command discards any changes you’ve made to a
particular file. Be cautious when using it to avoid erasing
valuable code. It might be better to use a GUI tool to
quickly review the current changes before discarding them.
Let’s try to discard the changes to README.md using the
following command.

$ git checkout -- README.md

You won’t receive any response from this command, but
if you check git status again, you’ll see that README.md
has been reverted to its previous state.

Stashing

You’ll often want to navigate between branches but can’t
because your working directory is dirty. In this context,
dirty means you have uncommitted changes in files,
whether modified or staged. The only way to change
branches is to first commit these changes. However, you
often won’t be ready to commit because the issue you’re
working on isn’t resolved yet.

One solution to this dilemma is to make a temporary
commit, switch branches, work on the new branch, and
then go back and amend the temporary commit. However,
this method has several drawbacks:

First, the working directory is clean after you commit, so
you won’t know which files were being changed anymore.

Second, it’s a somewhat dirty and inelegant approach.
This isn’t why the amend command was created.

The ideal solution is to use a technique called stashing,
which involves taking any modified tracked file in your
working directory and putting it away for later. This allows
you to have a clean directory and move around your
repository without committing changes. These changes are
stored in a small database called the stash. You can think of
the stash as a temporary repository for your unfinished
commits. It’s designed as a last-in, first-out (LIFO)
database, meaning the most recent changes you stashed
are presented to you first. The best way to understand it is
to try it out. So, let’s make changes to the README.md file
again.

TODO list

A simple app to manage your daily tasks.

It uses HTML5 and CSS3.

Features

* List of daily tasks

* Pretty colors

License: MIT

If you check the status, you’ll see that README.md has
been modified but is unstaged, resulting in the same result
as before (see Figure 16-1).

Let’s suppose that while you’re working on this issue, an
urgent one requires your attention. You can’t switch to the
main branch now because your working directory is dirty,
and you can’t commit your current changes because you
haven’t quite finished yet. The solution is to stash your
current changes somewhere so you can have a clean
directory to work with. To do this, you’ll use the stash
command, which is straightforward.

$ git stash push

Note Using the command git stash is the same as
using git stash push. Using the full command is
recommended because it’s more intuitive and easier to
understand.

This command stages your modified files and creates a
temporary commit within the stash, leaving your working
directory clean. Try it, and you get the result shown in
Figure 16-2.

Figure 16-2 Stashing current changes

As you can see, your stashed changes were given a
name and a description, just like a regular commit. This is
normal because the stash is a temporary repository with
only one branch. If you check the repository status, you will
find a clean working directory as intended, as shown in
Figure 16-3. Now, you can navigate to other branches
without any issues.

Figure 16-3 A stash push produces a clean working directory

Pushing changes into the stash can provide more
flexibility and freedom to move between branches without
losing your current work. This can be especially useful in
fast-paced development environments where you frequently
need to switch between different tasks and branches.

Caution Even though this isn’t a book about
productivity, here’s a little tip: if you find yourself
jumping back and forth between issues, you may have a
problem with your priorities, and resolving two issues at
the same time can cost you precious time.

Since the stash is just a mini repository, you can execute
most Git features, like checking the history log or getting a
detailed view of the changes. Let’s explore the stash to get
a better understanding of it. First, show the history log
using the git stash list command.

$ git stash list

This gives you a familiar, albeit simplified, view of the
history log, as shown in Figure 16-4.

Figure 16-4 List of stashed changes

Again, this database works on a LIFO basis, so if you
made other changes to the working directory and stashed
them, they appear on top of the current stash.

Figure 16-4 shows that each stash has a number. It’s
easier to interact with them; unlike commits, where you
must call them by their names. Let’s look at the detailed
view of the stashed change using the stash show command.

$ git stash show

This simple command shows you the files changed at the
tip of the stash, meaning the last changes pushed into it.
Figure 16-5 shows an example of this.

Figure 16-5 Detailed view of the tip of the stash

The stash show command shows you the description of
the changes in the stash, but not much else. To see the
changes, you must apply the stash. Applying the stash is
very simple: execute the following command.

$ git stash pop

This command applies the latest changes in the stash to
the current branch. And as the name implies, popping the
changes removes them from the stash. So, if you only had
one set of changes in your stash, it would be empty after
you popped the tip. If you execute the previous command,
the result is the same as if you re-created the changes and
then checked the status (see Figure 16-6).

Figure 16-6 Popping the last set of changes

Back at the beginning! But you could have changed
branches, made commits, or pushed to origin without
losing precious changes. Stashing is particularly useful
when setting aside your current changes to make quick
changes elsewhere. As a rule of thumb, you might be
handling your workflow incorrectly if you need to use more
than one set of stashed changes.

Resetting

I hope you won’t need to use this feature often because it’s
very destructive! Sometimes, you may want to discard
everything you’ve done and start with a clean slate, even if
you’ve already committed your project. Let’s create a
commit and discard it to better understand it. Make some
modifications to README.md, stage it, and then commit the
project, as shown in Figure 16-7.

Figure 16-7 Add a bad commit to the project

To put this into perspective, let’s check the current
history log after this commit using the git log command.

$ git log --oneline

This command shows you the latest commits on this
branch, just like in Figure 16-8.

Figure 16-8 History log of the current branch

As you can see, the latest commit sits at the top of the
log. Notice that the HEAD reference is pointed to it, which
means that the next commit (or branch) has that commit as
the parent. Note that the remote branch origin/separate-
code-and-styles hasn’t changed because you haven’t
pushed the project yet.

But let’s imagine that you are utterly dissatisfied with
that last commit and want to start over. Your only choice is
to reset the branch back to a previous state. To reset the
project, you use the git reset command followed by the
state of the project to reset to. You must use the option --
hard to accomplish this because it’s a very dangerous
command. For example, returning to the same state as the
remote branch requires the following command.

$ git reset --hard origin/separate-code-and-styles

This command erases everything so the project can
return to its previous state. Figure 16-9 shows the results.

Figure 16-9 Status of the project after a reset

Your commits made after the target state, current
changes, and the staged files are all deleted because the --
hard option overwrites everything in its path. It’s the most
dangerous command in Git, and you should think hard
before using it.

Resetting should only be done as a last resort. Revert
the commit, if possible, or work on a new branch. When
used carelessly, a reset can destroy your data.

Summary

This chapter dealt with some advanced concepts of Git that
are useful when confronted with certain situations. Use
reset to revert a file to a previous state without much
effort, and of course, you can revert those changes using
the GUI, too. Stashing is also useful when you need a quick
change of context. And finally, the hard reset is an all-
powerful feature that is very destructive; don’t use it unless
you have no other choice.

This concludes the lesson about advanced Git
commands. Let’s return to GitHub to discover more
features to help with project management.

Part IV

More with GitHub

(1)

© The Author(s), under exclusive license to APress Media, LLC, part of
Springer Nature 2024
M. Tsitoara, Beginning Git and GitHub

https://doi.org/10.1007/979-8-8688-0215-7_17

17. More with GitHub

Mariot Tsitoara1

Antananarivo, Madagascar

You’ve seen almost every Git feature that you use daily in
the previous chapters. Now, let’s turn your eyes to GitHub,
which only served as a code hosting site until now. But
GitHub is so much more than that. You can use it to host
project documentation and software releases. You also
mainly use it as a project management tool and a way to
connect with your collaborators. Let’s learn about those
features.

Wikis

Your project can be the best in its category, but you would
get nowhere if other people don’t know how to use it or
how it works. That’s why documentation is important,
especially in software development. GitHub provides a nice
way to document your project: wikis.

GitHub wikis work much like the world’s most popular
wiki: Wikipedia. Their goal is to provide in-depth
information about your project: what it does, how it works,
how someone can contribute, and so on.

Let’s create a wiki page so you can better understand it.
Go to your project’s main page and click Wiki. You arrive at

https://doi.org/10.1007/979-8-8688-0215-7_17

the page shown in Figure 17-1.

Figure 17-1 Wiki home page

On the Wiki home page, click the button to create your
first page. You’ll arrive at the page creation page, shown in
Figure 17-2.

Figure 17-2 Creation of a page

As you can see, it’s a very simple view that is divided
into three sections: the title, the content, and the edit
message. Think of the title as a web page title, so it must
adhere to the same standards: clear and inviting. The
content should be written in Markdown, just like
README.md. You can write the wikis in other formats, but
Markdown is the recommended choice because so many
editors already use it, and it’s much easier to read. The edit
message is just like commit messages: a simple description
of your proposed changes.

Change the content of your wiki. The following is an
example.

What is this

This is a simple app to track your daily goals

Why another TODO app

Because that is never enough TODO apps in the

world

How does it work

Open `index.xhtml` and update the goals as you

wish

How can I contribute to the project

You can contribute by forking the project and

proposing pull requests. Check [Issues]

(https://github.com/mtsitoara/issues) to see the

current areas that need help

Save the changes. You are redirected to the wiki home
page, as shown in Figure 17-3.

Figure 17-3 Wiki home page showing the newly created wiki

As you can see, the wiki you just created is automatically
visible on your project page, and each page you create
appears on the sidebar on the right. You can create as
many wiki pages as you like, but make sure they are
understandable and useful. Don’t forget to add images and
relevant links!

GitHub Pages

In simple terms, GitHub Pages is a website hosting service
provided by GitHub. You can use it to showcase a project,
host your portfolio, or even create an online version of your
resume.

GitHub Pages can be used for your personal account,
where you might showcase your portfolio or resume, or for
your projects to create showcases for them. If you choose

to use it for your account, you can create a single page.
However, if it’s for showcasing your projects, you can
create a page for each. For a more detailed explanation,
you can visit https://pages.github.com/.

Let’s say you want to create a page to showcase your to-
do list project. First, you’ll need to go to your project page
and click Settings, which takes you to the page displayed in
Figure 17-4.

Figure 17-4 Settings page

Scroll down to the GitHub Pages settings, as shown in
Figure 17-5.

https://pages.github.com/

Figure 17-5 GitHub Pages settings

The first option is a drop-down list that contains the
location of your page source. You must host your page on
the main branch, but you have two choices for the source
files. One is to place them directly on the main branch, and
the other is to use a docs directory within the main branch.
I recommend the second option as it provides a clearer
structure for any visitors.

First, you need to create the docs directory. Then, using
GitHub or Git tools, create a file called “index.xhtml” within
the directory. In this file, write the following basic HTML
code.

<!doctype html>

<html>

 <head>

 <meta charset="utf-8">

 <title>Docs</title>

 </head>

 <body>

 <h1>Docs</h1>

 <p>Example of documentation</p>

 </body>

</html>

This serves as your documentation. Your main branch
should now resemble what is shown in Figure 17-6.

Figure 17-6 Docs folder and index.xhtml

You can then return to the settings page and choose the
documentation source. Select the docs folder as the source,
and the page refresh, displaying a link as shown in Figure
17-7.

Figure 17-7 Page published

Following the provided link takes you to a splendid view
of your GitHub project page! The possibilities are
boundless, as you can design your page just like any other
static website page. If you’re looking for enhanced styling
options, consider checking out https://jekyllrb.com/,
which can assist you in generating GitHub Pages quickly!

Releases

Your project won’t remain in development indefinitely; it
must be released sooner or later. And what better platform
to release your app than GitHub? It’s straightforward.

To start, return to your project page and click Releases.
You are directed to the main page, as depicted in Figure
17-8.

https://jekyllrb.com/

Figure 17-8 Releases page

Let’s create your very first release! Click the “Create a
new release” button to be directed to the release creation
view shown in Figure 17-9.

Figure 17-9 Release creation form

It’s a straightforward form to fill out, with clear and
easy-to-understand sections. The main task is to upload the
release binaries by dragging and dropping them onto the
form shown in Figure 17-9. Since this app is in HTML, let’s
attach compressed versions of the main branch. It would be
an executable binary for installable apps, but here they are
zip and 7z files. Don’t forget to change the target of the
release if necessary. The default option is the main branch,
but you can specify another branch or a specific commit.
The form then looks like the one shown in Figure 17-10.

Figure 17-10 Filled release form with binaries

Click “Publish release” to finalize it. You are then
redirected back to the Releases list, where your new
release is listed. You can refer to Figure 17-11 for an
example.

Figure 17-11 List of all the releases

As you can see, GitHub also bundles the source code
with your release! When creating a release, thoroughly test
everything to ensure it functions correctly.

Project Boards

Project boards are a very useful feature of GitHub because
they provide a way to track and organize your project. For
example, you can create cards for any new ideas you have
so you can discuss them with your team later. However, the
main use of project boards is to track the advancement of
your project. They go beyond issues because issues only
describe a feature or a bug to be worked on, while project
boards can show you if someone is actively working on it or
if it’s just a plan to be executed.

The best way to understand project boards is to
experiment with them directly. So, go back to your project
page and select Projects. You see the empty project board
shown in Figure 17-12.

Figure 17-12 Projects main page

The project main page is still empty because you haven’t
created any projects yet. It also provides examples of
situations where you might want to use project boards.
Click “Create a project” to continue. You see the page
shown in Figure 17-13.

Figure 17-13 Creation of a project

Again, it’s a very simple form, but pay attention to the
Template section; it’s quite important. As a beginner, you
should use the basic kanban template because it is
prefilled. You can create the boards yourself, but let’s stick
to the basics for now. Create the project. You will see the
semi-empty board shown in Figure 17-14.

Figure 17-14 New project created

As you can see, there are three boards created: “To do,”
“In progress,” and “Done,” just like your app! You can see a
list of the open issues on the right side of the screen. Drag
and drop those issues into their respective boards. In the
“To do” board, you have a little example of what you can do
with your boards; it’s not only for issues but also for pull
requests or simple notes. After you’ve placed your issues in
the desired boards, you get a result like Figure 17-15.

Figure 17-15 Project boards

As you move the issues around the board, the colored
bar near the project name changes. It’s a good way to track
your progress!

Project boards are more than just project progress
trackers! You can create project boards for many
situations: release tracking, meeting notes, developer idea
notes, user feedback, and so on. You can find the project
board for this book in Figure 17-16, which is also available
at https://github.com/mariot/boky/projects/1.

Figure 17-16 A project board for this book

I advise you to use project boards for future projects
because having a clear view of your progress is a sure way
to success. If you’re feeling adventurous, check out the
automated kanban, which automatically moves the cards
for you. For example, every new issue is placed under “To
do” and every closed issue is moved to “Done.”

Summary

This chapter took you away from Git and focused on
GitHub. You’ve seen that GitHub is more than just a
storage place for your code; it’s a complete tool for
managing and releasing your projects. After this chapter,
you should be able to create a basic website for your
project, have some documentation for it, and make your
first release.

https://github.com/mariot/boky/projects/1

The most important feature covered was project boards.
Use them to better understand what you’ve accomplished
and where you’re headed. They may seem simple, but they
are incredibly useful for project management.

You’ve now mastered the basics of Git and GitHub.
However, there are still challenges ahead in a real-world
working environment. The next chapter explores the
common problems you’ll encounter when collaborating with
others and how to resolve them. Stay tuned!

(1)

© The Author(s), under exclusive license to APress Media, LLC, part of
Springer Nature 2024
M. Tsitoara, Beginning Git and GitHub

https://doi.org/10.1007/979-8-8688-0215-7_18

18. Common Git Problems

Mariot Tsitoara1

Antananarivo, Madagascar

You’ve come a long way since your first Git command!
You’ve learned a lot about basic and advanced Git features
and when to use them. However, since you are only human,
you will encounter a lot of problems during your Git
journey. Most of these problems result from inadvertent
mistakes, so simply being aware of their existence is a
significant step toward avoiding them. But if you still run
into them, here are the best solutions!

Repository

The repository is the backbone of your Git experience;
everything begins and ends there. It’s very difficult to mess
it up, but in the slight chance that something goes wrong,
here are some tips.

Starting Over

This is the most radical "solution" in the chapter, and I
hope you never have to use it. This solution is essentially a
way to delete everything and start over. It should only be
considered an option when you have a remote repository

https://doi.org/10.1007/979-8-8688-0215-7_18

and want to delete your local one for some reason. Reasons
to do this might include the following.

Changing your work computer
Encountering unreadable sectors in the hard drive
Facing unrecoverable errors in the .git directory
To start over, you must clone the remote repository

using the git clone command.

$ git clone <repository_location>

The repository location is the HTTPS or SSH link to your
remote repository, which you can find on your GitHub
project page.

Cloning has the same effect as initializing a repository
but with a significant bonus: all history and commits are
copied to your new local repository. You won’t need to
specify the origin link anymore.

Change Origin

Under normal circumstances, you would want to keep the
remote repository’s URL the same throughout your
development. However, there are certain circumstances
where it’s necessary to change it.

When switching between HTTPS and SSH links
When transferring the repository to another host
When adding a dedicated repository for release or testing
First, let’s gather some more information about the

current remotes. To do this, use the git remote command
with the -v option.

$ git remote -v

It lists your current remotes, as shown in Figure 18-1.

Figure 18-1 List of current remotes

To modify the remote URL, use the git remote set-url
subcommand in the following format.

$ git remote set-url <remote_name> <remote_url>

For example, you can execute the following command if
you want to switch from using an HTTPS link to an SSH
link for your GitHub access.

$ git remote set-url origin

git@github.com:mtsitoara/todo-list.git

Doing this allows you to push to and pull from GitHub
without providing your username and password. The
authentication is handled using a private key stored on
your local computer and a corresponding public key needed
to upload to GitHub. If you’re interested in using SSH for
authentication, you can find more information in the
GitHub Help documentation based on your operating
system at https://docs.github.com/en/get-

https://docs.github.com/en/get-started/getting-started-with-git/about-remote-repositories%2523choosing-a-url-for-your-remote-repository

started/getting-started-with-git/about-remote-

repositories#choosing-a-url-for-your-remote-

repository.
You can use a credential helper if you prefer to continue

using HTTPS but want to cache your password to avoid
typing it every time. More information about this can be
found in the GitHub Help documentation, also based on
your operating system at
https://docs.github.com/en/get-started/getting-

started-with-git/caching-your-github-credentials-

in-git.

Caution If you change your remote name, don’t forget
to use the new name for every push and pull action.

Working Directory

You spend most of your time in the working directory, and
here again, there are few things you can break.

git diff Is Empty

This comes up a lot, but it’s not dangerous. Sometimes,
you’ve made a lot of changes and want to check the
differences. But when you run git diff, the result is
empty. Don’t panic! git diff only shows modified files, so if
your file is staged, you won’t see it there. To see changes
done to staged files, you must run the following.

$ git diff --staged

Tip Using a GUI tool greatly helps when reviewing
changes.

Undo Changes to a File

https://docs.github.com/en/get-started/getting-started-with-git/about-remote-repositories%2523choosing-a-url-for-your-remote-repository
https://docs.github.com/en/get-started/getting-started-with-git/caching-your-github-credentials-in-git

This comes up a lot when you use Git. Sometimes, you want
to revert a file back to its previous state without having to
check out an entire commit and then copy-paste the code.
You’ve already seen the command earlier.

$ git checkout <commit_name> -- <file_name>

This command checks out the file as it was in the
commit and, thus, changes your working directory. Be
careful not to lose any uncommitted changes!

Commits

Most problems arise when you try to commit your current
project. But don’t worry, there is always a simple solution
for these problems. The most important thing to consider
is: are the commands you are using destructive?
Commands like reset or checkout change your working
directory, so please make sure that you know what you are
doing before executing them.

An Error in a Commit

This is a basic error in Git. After you commit your hard
work, you’ll sometimes notice that a little grammatical
error found its way into your commit message or that you
forgot to stage a file. The solution to these problems is to
amend the commit, meaning that you cancel the immediate
commit and make a new one. The command is simple.

$ git commit --amend

The commit name changes because you are changing its
content. That’s why you should not amend a commit you’ve
already pushed to a remote branch, especially if somebody
else works on that branch. This is rewriting history, and
you should never do it.

That said, if you’ve pushed your commit and are alone
on the branch, you can amend a commit and try to push it
again. But since the commit name changed, Git won’t allow
you to change history without a fight. You have to erase all
the history on the remote branch and replace it with yours,
meaning that you overwrite everything on the remote
branch. That’s why you should never amend a commit if
you aren’t alone on a branch. To push a branch with
amended commits, you must force it.

$ git push <remote_name> <branch_name> -f

The “-f” option forces Git to overwrite everything on the
remote branch and replace it with your current branch
history.

Caution Rewriting history on a branch where
somebody else is working is just plain rude and selfish.
Don’t do it.

Undo Commits

If you committed on a branch but then realized it’s the
wrong one, you can undo it, but only when you haven’t
pushed to a remote branch.

The command is simple but dangerous: it’s the reset
command. But in contrast to a hard reset where everything
is cleared, a soft reset is necessary to undo the commit but
keep the changes.

$ git reset HEAD~ --soft

The commit disappears, leaving you with options to
stash the changes and apply them to another branch.

Again, this is rewriting history and should not be used if
you’ve already pushed to a remote branch.

Branches

You need to work with branches a lot to have an optimized
workflow. When working on a new feature or bugfix, your
first instinct should be creating a branch. But the more you
get comfortable with branches, the more likely you are to
forget a little detail that can lead to problems. Here are the
most common problems that you encounter with Git.

Detached HEAD

HEAD refers to the currently checked-out commit, which
means it points to the parent commit of any future commit
you create. Usually, HEAD points to the last commit of the
current branch, and all future branches and commits have
it as their parent.

When you check out branches, HEAD moves back and
forth between the last commits of the branches. But when
you check out a specific commit, you enter a state called
detached HEAD, which means that you are in a state where
nothing you create is attached to anything. Trying to
commit during this state is useless because any changes
are lost.

Git informs you when you are in that state (as shown in
Figure 18-2), so you will never be in that state
unknowingly.

Figure 18-2 Checking out a commit

Checking out a commit is thus only needed to test
something on your software. You can, however, create a
branch from that specific commit if you want to keep the
commits you intend to make. The command is the same as
creating a branch from another branch.

$ git checkout -b <branch_name>

Working in the Wrong Branch

Working in the wrong branch happens a lot. The situation
is usually like this: you receive a task and are so eager to
complete it that you begin to code immediately. You are
already an hour into the task when you notice that you
were working in the main branch all along! Don’t worry.
It’s very simple to resolve this.

If you modify some files on the wrong branch, you can
create a new branch (and check it out) to take the current
changes there. It’s the same command again.

$ git checkout -b <branch_name>

It creates a new branch with your current changes and
checks it out. You can then stage your modified files and
commit the project.

However, this won’t work if you’ve already pushed the
branch to a remote repository; history is history, so don’t
change it. The only way to fix that is to revert to the commit
you push and live with that shame all your life.

Catch up with the Parent Branch

When you create a branch from another (usually main),
their histories are not linked anymore, so what happens in
one branch doesn’t have any incidence on the other. This
means that while you are working on your branch, other
people can commit on the base branch, and those commits
won’t be available to your branch.

If you are still working on your branch but are
interested in having those new commits on the base
branch, you must first have a clean plate, which means that
you need to commit your project (or stash your current
changes).

Then, you must check out the parent branch, pull the
new commits, and then go back to your branch.

$ git checkout main

$ git pull origin main

$ git checkout <branch_name>

Safely on your local branch, you can then catch up to the
parent branch. The concept is simple: Git takes out your
current commits and creates a new branch from the tip of
the parent branch; your commits can then be applied to
your new branch. It would be like you create a branch from
the latest commit of the main branch. The command is
called rebase.

$ git rebase main

The commits on main might introduce conflicts in your
branch, so be prepared to get your hands dirty. Resolving
those merge conflicts is the same as what’ve you’ve done
previously: open each conflicted file and choose which code
you want to keep; then, you can stage them and commit.

You can find an example of rebase conflict in Figure 18-
3, on which both commits on main and test_branch
modified README.md.

Figure 18-3 Merge conflict during rebase

As you can see, it’s almost exactly like any merge
conflict, and the resolution is the same.

$ git add <conflicted_files>

$ git rebase --continue

If you are not feeling brave enough for conflicts, you can
abort the rebase and return to the initial state.

$ git rebase --abort

If you work on a branch for a long time, it’s a good idea
to rebase occasionally so you aren’t left too far behind the
parent branch. Of course, you can face merge conflicts, but
those are more likely to appear the bigger your changes
are. And if you delay rebases for fear of conflicts, you only
set yourself up for failures because those conflicts appear
again when you attempt to merge the branches anyway. It’s
better to occasionally deal with small conflicts with a
rebase than having to merge many conflicted files
simultaneously.

Branches Have Diverged

This can happen if you’re using an inefficient Git workflow.
It’s advisable to work on your own branch when resolving
an issue because multiple people committing to the same
branch can lead to problems.

The term diverged describes a situation where you can’t
push to your remote branch anymore due to changes in the
commit history. This occurs when you’ve committed
changes to your local branch, but others have pushed their
commits to the remote branch before you. When you
attempt to push, Git prevents you from doing so because
the latest commit on the remote branch doesn’t exist in
your local history. You’ll encounter an error message like
the one shown in Figure 18-4.

Figure 18-4 Rejected changes

The most practical solution is to pull the commits from
the remote branch and merge your changes. This way, you
incorporate their changes into your history (after resolving
any potential merge conflicts) and then push your changes.

$ git pull origin <branch_name>

$ git push origin <branch_name>

This approach may result in a messy history log, but it
ensures that all commits are preserved. You can see an
example of this in Figure 18-5.

Figure 18-5 Merge local and remote branch

Another solution is more drastic: overwriting everything
on the remote branch and replacing its history with yours.
To do this, you can push with the force option.

$ git push origin <branch_name> -f

However, this approach results in lost commits and
potential conflicts, and it’s strongly discouraged. It’s best
to avoid this situation altogether by following a well-
structured Git and GitHub workflow.

Summary

This chapter guides you toward the right solutions when
faced with common Git problems. While you may encounter
more complex issues as you gain experience, this chapter
provides a solid starting point. The key takeaway is always

to double-check your context before taking any actions,
especially when committing.

However, these problems should ideally not arise if you
adhere to the standard Git and GitHub workflow. So, let’s
revisit this workflow in the next chapter. It’s worth
revisiting now that you’re familiar with the most commonly
used Git and GitHub features.

(1)

© The Author(s), under exclusive license to APress Media, LLC, part of
Springer Nature 2024
M. Tsitoara, Beginning Git and GitHub

https://doi.org/10.1007/979-8-8688-0215-7_19

19. Git and GitHub Workflow

Mariot Tsitoara1

Antananarivo, Madagascar

A substantial amount of information was covered in the
previous chapters, particularly the technical aspects of Git.
You now have a solid understanding of how to effectively
version control your projects and how to address common
issues that may arise. You’ve also learned the fundamentals
of project management using GitHub.

It’s time to bring it all together and create a
comprehensive game plan for your projects. In this chapter,
you’ll be introduced to a meticulously designed workflow
that you can follow to ensure the success of your projects.
Think of it as a “best practices” section or a practical “how-
to” guide for your project management needs.

How to Use This Workflow

The workflow outlined in this chapter has been crafted with
both beginners and experienced users in mind. It’s widely
utilized in open source projects, so many developers are
already familiar with it. However, it’s essential to
understand that this workflow isn’t set in stone. If those
changes are reasonable, you can adjust to align with your
specific project requirements.

https://doi.org/10.1007/979-8-8688-0215-7_19

For beginners, I recommend following this workflow
diligently. It helps you grasp the workings and rituals of Git
and GitHub. As you gain more experience, you can tailor
the workflow to increase efficiency. But never compromise
security for the sake of saving time. Skipping essential
steps might seem like a time-saver initially, but it can lead
to more bugs and merge conflicts, ultimately
counterproductive.

After several years of using Git and GitHub, you’ll
become a main and can develop your workflow. Your
changes should aim to enhance your team’s efficiency and
productivity.

GitHub Workflow

One of the most fundamental mistakes you can make when
working with GitHub is viewing it solely as a code hosting
service. In other words, use it solely to share code among
collaborators or release your product to users. GitHub is an
incredibly powerful tool, and it would be a tremendous
missed opportunity not to leverage its full potential.

Consider GitHub as your primary project management
tool. Every action you plan to take within your project
should be meticulously tracked within GitHub. This ensures
that you can always refer to and comprehend the project’s
history. You cannot simply make changes without
adequately documenting the reasons behind those changes.
Therefore, here are the golden rules of GitHub.

Every Project Starts with a Project

When starting a new project, it’s advisable to create a
GitHub project shortly after setting up the repository. This
step should be taken as early as possible because utilizing
project boards is the most effective means of monitoring
your project’s progress. At the very least, you should
establish a kanban board to keep track of your project’s to-

do tasks. You can also utilize other boards to manage user
feedback or compile a list of your spontaneous ideas. The
key lesson here is to always document everything that
crosses your mind, because you’ll likely forget many details
otherwise.

Every Action Starts with an Issue

Using issues is an effective method to keep track of the
tasks that need to be addressed in your project. When you
encounter a bug in your program, your initial response
should not be to start fixing it in your integrated
development environment (IDE) immediately but rather to
create an issue to document and track it. The same
principle applies to feature ideas; even if you’re unsure
whether you’ll implement them in the future, create an
issue to record your intent. You can close it later if you
decide not to proceed with the implementation.

This practice emphasizes that every action you take in
your local Git should ultimately contribute to resolving an
issue. So, when working on something in your IDE, it’s
essential to ask yourself: Which issue does this address?
You should create an issue, regardless of how small the
task may seem.

No Direct Push to main

This primary ritual can be challenging to adhere to but
significantly simplifies project management for everyone
involved. The concept is straightforward: no one should
push commits directly to the main branch. The sole method
for introducing changes to the main branch is by merging
other branches into it.

The direct consequence of this practice is that every
change you make should be isolated on its own branch
before it’s eligible for merging into the main branch.
Therefore, any new feature or bugfix should originate from
a branch and then be merged into the main branch when

it’s considered “ready,” which in this context means
thoroughly reviewed and tested.

Any Merge into the Main Branch Needs a Pull

Request

Since you can’t push changes directly to the main branch,
the only option is to merge branches into it. However, you
shouldn’t blindly merge any branches into main either.
Instead, you must create pull requests to propose the
changes. This way, another team member can thoroughly
review your code to ensure everything is in order.

In the pull request description, you should include
references to the issue numbers that the pull request
resolves. This practice ensures that the associated issues
are automatically closed when the pull request is accepted.

Use the Wiki to Document Your Code

This might seem like an additional burden, but it’s the best
way to document your code thoroughly. The README file,
while helpful, isn’t always sufficient for comprehensive
code documentation, which is where the wiki comes in. It
might appear to be a daunting task, but the most effective
approach is to write documentation concurrently with your
code development. This way, you only need to document
small changes periodically. If you postpone documentation
until later stages, you risk becoming overwhelmed and
forgetting critical information.

Git Workflow

Let’s now discuss Git. By this point, you’re likely familiar
with all of Git’s most commonly used features. However,
using them at the appropriate times is the best way to
prevent errors and conflicts.

Always Know Where You Are

This is a fundamental aspect that’s also easy to overlook.
You should always be aware of the branch you’re working
on before making any changes or executing any commands.
If you’re using a modern IDE, your current branch is often
displayed at the bottom of your screen. If not, you can
always rely on the trusty git status command!

Pull Remote Changes Before Any Action

Before creating a branch from the remote main branch, it’s
a good practice to pull the latest changes from it. This
helps you stay up-to-date with your colleagues and reduces
the likelihood of merge conflicts. Additionally, while
working on your local branch, consider rebasing
occasionally to incorporate the latest updates. This reduces
the chance of future merge conflicts and keeps your git log
graph looking cleaner and more organized! 😊

Take Care of Your Commit Message

Referring to the chapter on commits is a valuable way to
review how to write effective commit messages. This may
seem like a minor detail, but it’s crucial for maintaining a
clear and organized history log. Writing good commit
messages will not only save you a few minutes initially. But,
it can also prevent countless hours of searching for the
commit that introduced bugs when the inevitable bugfix
time arrives. Trust me, it’s worth the effort!

Don’t Rewrite History

Just don’t. This is one of the worst things you can do when
using Git within a team. If you change a commit and force-
push it to a remote branch, everything done to that branch
is overwritten by your changes. That means if somebody
else worked on that branch, they would have to discard
everything they’ve done and reset their local branch. If you
really must do it, make sure that you are the only one
working on that branch.

Summary

Indeed, this chapter is short but packed with essential
advice for a successful project. The main thing to
remember is that GitHub is much more than just a code
hosting service. You should use it to track your project’s
evolution. By following this workflow, you set yourself up
for success and avoid most problems with Git and GitHub.

You now have all the tools you need to succeed with Git
and GitHub! It all depends on your imagination and
courage. Use these tools properly to steer your project
down the right path. Good luck!

(1)

© The Author(s), under exclusive license to APress Media, LLC, part of
Springer Nature 2024
M. Tsitoara, Beginning Git and GitHub

https://doi.org/10.1007/979-8-8688-0215-7_20

20. Making Git Yours with

Aliases

Mariot Tsitoara1

Antananarivo, Madagascar

Git is a powerful version control system that offers a
multitude of commands and options. This flexibility is great
but can lead to longer and more complex command
sequences. This is where Git aliases come in. Git aliases
allow you to create shortcuts or custom commands for
frequently used Git actions, making your Git workflow more
efficient and personalized.

What Are Git Aliases?

Git aliases are custom shortcuts for Git commands. They
allow you to create your own Git commands or
abbreviations for commonly used sequences of Git
operations. With Git aliases, you can save time and
keystrokes by creating shorter and more intuitive
commands.

Using Git Aliases

https://doi.org/10.1007/979-8-8688-0215-7_20

Setting up Git aliases is straightforward and can be done by
either using a git config file or by editing the git config file
directly.

Using the Git Config File

You can define Git aliases in your global or local Git
configuration file. Open your terminal to set up a global
alias and use the following command.

 git config --global alias.<alias-name> '<git-

command>'

For example, you would use the following to create a
global alias co for checkout.

 git config --global alias.co 'checkout'

To set up a local alias for a specific Git repository,
navigate to the repository’s root directory and use the same
command without the --global flag.

Editing the Git Config File Directly

You can manually edit your Git configuration file. The
global configuration file is typically located at
~/.gitconfig. You can add aliases directly under this file’s
[alias] section.

 [alias]

 co = checkout

Examples of Useful Git Aliases

The following are some commonly used Git aliases to get
you started.

Common Command Shortcuts

– co for checkout
– ci for commit
– st for status
– br for branch
– df for diff

[alias]

 co = checkout

 ci = commit

 st = status

 br = branch

 df = diff

Listing Aliases

List aliases

- aliases to list all configured aliases

[alias]

 aliases = config --get-regexp alias

View the Git log

- lg for a nicely formatted log
- lga to include author information

[alias]

 lg = log --graph --oneline --abbrev-commit --

all

 lga = log --graph --oneline --abbrev-commit --

all --author

Interactive rebase

- ri for an interactive rebase
- rif for an interactive rebase with autosquash

[alias]

 ri = rebase -i

 rif = rebase -i --autosquash

Push and pull

- pl for pull
- pu for push
- puf for a forced push

[alias]

 pl = pull

 pu = push

 puf = push --force

Create and switch branches

- cb for creating and checking out a new branch
- cof for checking out a branch by name (forces it)

[alias]

 cb = "!f() { git checkout -b $1; }; f"

 cof = checkout -f

List commits with colors and annotations

- ls to list commits in short form, with colors and
branch/tag annotations

[alias]

 ls = log --

pretty=format:"%C(yellow)%h%Cred%d\\

%Creset%s%Cblue\\ [%cn]" --decorate

This alias provides a visually appealing and informative
log of commits.

List oneline commits with relative dates

- ld to list oneline commits showing relative dates

[alias]

 ld = log --pretty=format:"%C(yellow)%h\\

%ad%Cred%d\\ %Creset%s%Cblue\\ [%cn]" --decorate -

-date=relative

This alias displays commits with human-friendly relative
dates.

List oneline commits with dates

- lds to list oneline commits showing dates

[alias]

 lds = log --pretty=format:"%C(yellow)%h\\

%ad%Cred%d\\ %Creset%s%Cblue\\ [%cn]" --decorate -

-date=short

This alias includes precise commit dates.
Show modified files in last commit

- dl to display modified files in the last commit

[alias]

 dl = "!git ll -1"

This alias provides a concise list of files changed in the
most recent commit.

Show a diff of the last commit

- dlc to show a diff of the last commit

[alias]

 dlc = diff --cached HEAD^

This alias displays the changes made in the last commit.
Find a file path in the codebase

- f to find a file path in the codebase

[alias]

 f = "!git ls-files | grep -i"

This alias allows you to search for file paths within your
codebase.

Search/grep your entire codebase for a string

- gr to search/grep your entire codebase for a string

[alias]

 gr = grep -Ii

This alias simplifies searching for text across your
project.

List all files with TODO or FIXME comments

- todo-list to list all files containing TODO or FIXME
comments

[alias]

 todo-list = "! git grep --extended-regexp -I -

-line-number --count 'TODO|FIXME'"

This alias helps you identify files with outstanding tasks
or issues.

View details of the last commit

- last to view details about the most recent commit

[alias]

 last = log -1 HEAD --stat

This alias provides information about the latest commit,
including the changed files.

These are just a few examples, and you can create
aliases that suit your specific workflow and preferences.
Customizing your Git workflow with aliases can
significantly improve your productivity and make Git more
intuitive and enjoyable.

Summary

Git aliases are a powerful tool for customizing your Git
workflow. Creating shortcuts for commonly used Git
commands and sequences can save time and make Git
more user-friendly. Don’t hesitate to experiment with
aliases and tailor them to your needs. With the right
aliases, you can make Git yours and enhance your version
control experience.

Index

A

Assignees

B

BitKeeper SCM
Branches

check out
commit
convention
creation
deletion
differences
Git
Git workflow
location
logic
master
merging
pushing
pushing to remote
separate-code-and-styles
stashing
switching
types

Browsing
Businesses

C

Centralized VCS (CVCS)
cmd
Code reviews

choices
co-contributors’ code
review comment

section
Collaboration

and code release
online
team

Commit log
Commits

amending
branch
detached HEAD
error
git-gui
GitHub workflow
and history
linking issues

closing
referencing
working

messages
modification
origin/development
remote branch
three states of Git
undo
wrong branch

Conflicts
See also Merging conflicts
aborting
reduction
resolution
workflow

D

Debian-based operating systems
Distributed VCS

E

External SSH

F

Fast-forward merge

G

Git
BitKeeper SCM
capabilities
checking logs
checksum
commands
commits
current changes reviewing
default editor
directory
features and workings
GUI clients
history
ignoring files

exception
gitignore lines
personal configuration
PRIVATE.txt file
status
working directory

Linux
log output
mistakes
opportunities
PATH environment
practices
principles
repository
setting up

snapshots
staging area
steps
straightforward process
trees
visual tool
workflow

Git aliases
commands
Git Config File
listing aliases

Git Bash
Git command
git-gui
Git GUI interface

See also Graphical User Interfaces (GUI)
GitHub

actions
businesses
code hosting
dashboard
functionalities
issue
linking repositories
and open source
pages
personal use
project management
remote repositories
wikis
workflow

GitHub desktop
gitk
GitLab
Graphical User Interfaces (GUI)

browsing
git-gui

H

HEAD references
Homebrew
HTTPS key

I, J, K

Installation
Git commands
GUI clients

Integrated development environment (IDE)
Integrated development environment (IDE) tools

Git integration
Visual Studio Code

Issues
See also Commits
bug tracking
code section
creation
details
GitHub project
interaction

assignees
HTML5 app
labels
TODO app

internet
subscribe button

L

Labels
Last-in, first-out (LIFO) database
Linux
Listing aliases
Log graph

M

macOS
Git
Homebrew
setting up Git
software development

Memorization
Merging conflicts

branch
branch differences
branch location
contents
fast-forward merge
Git
GitHub
principle
pulling command
pulling commits
resolving

MinTTY

N

Navigation

O

Open Git Bash
Open source
OpenSSH

P, Q

Parent branch
PowerShell
Project boards
Project management

GitHub
issues

pull requests
See Pull requests

Pulling command
Pull requests

branch
creation
description
issue
updation
workflow

R

README files
Releases
Remote Git

backup
distributed VCS
repositories
team collaboration
working

Remote main branch
Remote repositories

pushing
Repositories

linking
origin
remote

Resetting
Reverting

S

Snapshots
Source code control system (SCCS)
SSH key
Staging area
Stashing

style.css
Subversion (SVN)

T, U

Text editor
Track changes
Tracked files

V

Version control system (VCS)
See also Git
commits
CVCS
description
distributed VCS
local
memorization
repositories
with suffixes
teamwork
tracking

Vim Tutor
Visual Studio Code

W, X, Y, Z

Wikis
Windows

Bash
company policy
confirmation page
credential helper
default editor selection
default emulator
default options
download
Git installation
HTTPS connections

initial branch
installation process
license agreement
line endings
PATH environment

Workflow
action
GitHub
project
push

Working directory
git
undo changes

	Front Matter
	Part I. Version Control with Git
	1. Version Control Systems
	2. Installation and Setup
	3. Getting Started
	4. Diving into Git
	5. Commits
	6. Git Best Practices
	7. Remote Git

	Part II. Project Management with GitHub
	8. GitHub Primer
	9. Quick Start with GitHub
	10. Beginning Project Management: Issues
	11. Diving into Project Management: Branches
	12. Better Project Management: Pull Requests

	Part III. Teamwork with Git
	13. Merge Conflicts
	14. More About Conflicts
	15. Git GUI Tools
	16. Advanced Git

	Part IV. More with GitHub
	17. More with GitHub
	18. Common Git Problems
	19. Git and GitHub Workflow
	20. Making Git Yours with Aliases

	Back Matter

