

2 nd edition

Python for finance and

algorithmic trading

Lucas INGLESE

Disclaimer: I am not authorized by any financial authority to give
investment advice. This book is for educational purposes only. I
disclaim all responsibility for any loss of capital on your part.
Moreover, 78.18% of private investors lose money trading CFD.
Using the information and instructions in this work is at your own
risk. Suppose any code samples or other technologies this work
contains or describes are subject to open-source licenses or the
intellectual property rights of others. In that case, your responsibility
is to ensure that your use thereof complies with such licenses and
rights. This book is not intended as financial advice. Please consult a
qualified professional if you require financial advice. Past
performance is not indicative of future performance.

WARNINGS: Any partial or complete reproduction without the
author's consent may result in legal action.

A question to ask the author? Section 1.3 "Join the community”

Table of contents

Table of contents
Why should you read this book?

Chapter 1: Read me
1.1. Find the code
1.2. Conventions used in this book
1.3. Join our community

Chapter 2: Prerequisites
2.1. Mathematical prerequisites

2.1.1. Algebra
2.1.2. Statistics
2.1.3. Optimization

2.2. Prerequisites in finance
2.2.1. Market efficiency
2.2.2. Basics of trading
2.2.3. Basics of portfolio management

2.3. Prerequisites in Python
2.3.1. Libraries for data sciences
2.3.2. Libraries for finance
2.3.3. Libraries for mathematics

Part 1: Portfolio management, risk management and backtesting
Chapter 3: Static Portfolio management

3.1. Explanation behind portfolio optimization method
3.1.1. Systemic risk and specific risk
3.1.2. Diversification

3.2. The traditional portfolio optimization methods
3.2.1. Portfolio utility function
3.2.2. Mean-variance criterion

file:///C:/Users/ADMINI~1/AppData/Local/Temp/calibre_qflryb/rzphwo_pdf_out/OEBPS/XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

3.2.3. Mean-variance-skewness-kurtosis criterion
3.3. The modern portfolio optimization methods

3.3.1. Sharpe criterion
3.3.2. Sortino criterion

Chapter 4: Tactical portfolio management
4.1. How dynamic methods works?

4.1.1. Short a stock
4.1.2. Momentum factor
4.1.3. Rebalancing

4.2. Moving average strategy
4.2.1. Moving average
4.2.2. Moving average factor
4.2.3. Build the strategy

4.3. Trend following strategy
4.3.1. Correlation
4.3.2. Trend following factor
4.3.3. Compute the strategy

Chapter 5: Risk management and backtesting
5.1. The backtesting metrics

5.1.1. The CAPM metrics
5.1.2. Sharpe and Sortino
5.1.3. Drawdown

5.2. Risk management metrics
5.2.1. Value at risk (VaR)
5.2.2. Conditional Value at risk (cVaR)
5.2.3. Contribution risk

5.3. Automate the analysis
5.3.1. Create a function
5.3.2. Analyze static portfolio
5.3.3. Analyze dynamic portfolio

Chapter 6: Advanced backtest methods

6.1 Useful backtest advice
6.1.1 Backtest is not a searching tool
6.1.2 Big days are not your friends
6.1.3 Understand your strategy

6.2 Compute the strategy returns using TP and SL
6.2.1 Find the extremum
6.2.2 Calculate the returns
6.2.3 Analyze the backtest

6.3 Advanced backtest tools
6.3.1 Backtest metrics list
6.3.2 Monte Carlo simulation
6.3.3 Easy Trailing stop

Part 2: Statistics predictive models
Chapter 7: Statistical arbitrage Trading

7.1. Stationarity to Cointegration
7.1.1. Stationarity
7.1.2. Cointegration

7.2. Pairs trading
7.2.1. How it works
7.2.2. Applications

Chapter 8: Auto Regressive Moving Average model
(ARMA)

8.1. Time series basics
8.1.1. Trend, cycle, seasonality
8.1.2. Log price properties
8.1.3. The linear regression

8.2. AR and MA models
8.2.1. Autoregressive model (AR)
8.2.2. Moving average model (MA)

8.3. ARMAs models
8.3.1. ARMA model

8.3.2. ARIMA model
Chapter 9: Linear regression and logistic regression

9.1. Regression and classification
9.1.1. Reminder about regression
9.1.2. Understand the classification

9.2. Linear regression
9.2.1. Preparation of data
9.2.2. Implementation of the model
9.2.3. Predictions and backtest

9.3. Logistic regression
9.3.1. Preparation of data
9.3.2. Implementation of the model
9.3.3. Predictions and backtest

Part 3: Machine learning, deep learning, live trading
Chapter 10: Features and target engineering

10.1 Motivation and intuition
10.1.1 Features engineering
10.1.2 Target engineering
10.1.3 Why is it so important?
10.2 Trading application
10.2.1 Create trading indicators and useful trading
features
10.2.2 Target labeling

Chapter 11: Support vector machine (SVM)
11.1. Preparation of data

11.1.1. Features engineering
11.1.2. Standardization

11.2. Support Vector Machine Classifier (SVC)
11.2.1. Intuition about how works an SVC
11.2.2. How to create an SVC using Python
11.2.3. Predictions and backtest

11.3. Support Vector Machine Regressor (SVR)
11.3.1. Intuition about how works an SVR
11.3.2. How to create an SVR using Python
11.3.3. Predictions and backtest

Chapter 12: Ensemble methods and decision tree
12.1. Decision tree

12.1.1. Decision Tree classifier
12.1.2. Decision tree regressor
12.1.3. Optimize the hyperparameters

12.2. Random Forest
12.2.1. Random Forest classifier
12.2.2. Random Forest Regressor
12.2.3. Optimize the hyperparameters

12.3. Ensemble methods
12.3.1. Voting method
12.3.2. Bagging method
12.3.3. Stacking method

Chapter 13: Deep Neural Networks (DNN)
13.1. Intuition behind DNN

13.1.1. Forward propagation
13.1.2. Gradient descent
13.1.3. Backpropagation

13.2. DNN for classification
13.3.1. Preparation of data
13.2.2. Implementing a DNN for a classification task
13.2.3. Prediction and Backtest

13.3. DNN for regression
13.3.1. Implementing a DNN for a regression task
13.3.2. Custom loss function
13.3.3. Prediction and Backtest

Chapter 14: Recurrent neural network

14.1 Principles of RNN
14.1.1. How an RNN works
14.1.2. LSTM neuron
14.1.3. GRU cell

14.2. RNN for classification
14.2.1. Transform 2d data to 3d data
14.2.2. Implementing the model
14.2.3. Prediction and backtest

14.3. RNN regressor
14.3.1. Precision about standardization
14.3.2. Implementing the model
14.3.3. Predictions and backtest

Chapter 15: Bonus / Example of RNN with CNN (RCNN)
15.1. Intuition of CNN
15.2. Create an RCNN
15.3. Backtest

Chapter 16: Real-life full project
16.1. Preparation of the data

16.1.1. Import the data
16.1.2. Features engineering
16.1.3. Train, test and validation sets

16.2. Modelling the strategy
16.2.1. Find the best assets
16.2.2. Combine the algorithms
16.2.3. Apply portfolio management technics

16.3. Find optimal take profit, stop loss and leverage
16.3.1. Optimal take profit (tp)
16.3.2. Optimal stop loss (sl)
16.3.3. Optimal leverage

Chapter 17: From nothing to live trading
17.1 Trading strategies creation guidelines

17.1.1 The trading plan
17.1.2 The process of a trading strategy building
17.1.3 Trading journal

17.2 Do not put all your eggs in one basket
17.2.1 Bet sizing
17.2.2 Why create a trading strategy portfolio?

17.3. Live trading process
17.3.1. Safety first
17.3.2 Incubation phase
17.3.3 When to quit?

Annex: Compounding versus simple interest
What is the difference between the simple and the
compounding methods?
How to compute the simple and compounding interest

Annex: Save and load scikit-learn and Tensorflow models
Annex: MetaTrader class
Additional readings

Why should you read this book?

The financial sector is undergoing significant restructuring. Traders
and portfolio managers are increasingly becoming financial data
scientists. Banks, hedge funds, and fintech are automating their
investments by integrating machine learning and deep learning
algorithms into their decision-making process. This book presents
the benefits of portfolio management, statistics, and machine
learning applied to live trading with MetaTrader 5.

Part 1 is dedicated to portfolio management, risk management,
and back testing. These chapters will allow us to understand how to
combine strategies and which metrics to look at to understand the
strategy robustness.

Part 2 discusses statistical predictive models . We will discuss the
statistical arbitrage and autoregressive moving average (ARMA)
model and introduce the classification algorithms through logistic
regression.

Part 3 gives us an understanding of Machine Learning and Deep
Learning predictive models . We will see these algorithms using
trading strategies example: Support Vector Machines (SVM), decision
tree, random forest, ensemble methods, Artificial Neural Network
(ANN), Recurrent Neural Network (RNN), Recurrent Convolutional
Neural Network (RCNN)

The book ends with a concrete project from A to Z: Importing data
from your broker, creating a portfolio of trading strategies,
deployment in live trading, or using a screener.

Who am I?
I am Lucas, an independent quantitative trader specializing in Machine
learning and data science and the founder of Quantreo, an algorithmic

trading E-learning website (www.quantreo.com).

I graduated in mathematics and economics from the University of
Strasbourg (France). I already help more than 56.000 students through
my online courses and YouTube channel dedicated to algorithmic trading.

I have a quantitative trading approach, combining predictive models,
financial theory, and stochastic calculus.

To show you some realistic results, you can see the profit of my last
portfolio of strategies in live trading: 2.5% of return for a 0.6%
drawdown without leverage in 1 month and a half.

Figure 1: My last live trading signal on BullTrading

You can see one of my last signals on BullTrading (bulltrading.be), a
copy trader platform. This strategy is based on machine learning and
quantitative analysis (the same as in the book).

http://www.quantreo.com/

Chapter 1: Read me

1.1. Find the code

All the resources in the book are available on the GitHub repository (
https://github.com/Quantreo/2nd-edition-BOOK-AMAZON-Python-
for-Finance-and-Algorithmic-Trading). If there is an issue with this
link or something else related to the code, contact us using the
contact page www.quantreo.com .
Before reading this book, you should download Jupyter Notebook
using Anaconda Navigator (https://www.anaconda.com). In Chapter
01, you can find a notebook that installs all the necessary libraries for
the book. All the additional readings can be found on the
README.md file on the repository Github.

1.2. Join our community

Follow us on social media to obtain the latest algorithmic trading
information, tips, and ready-to-use strategies. Moreover, join the
discord forum of the community to ask any questions about the book
to read it easily!

https://github.com/Quantreo/2nd-edition-BOOK-AMAZON-Python-for-Finance-and-Algorithmic-Trading
http://www.quantreo.com/
https://www.anaconda.com/

Linktree QRCODE

Chapter 2: Prerequisites

This chapter discusses the necessary prerequisites to understand this
book thoroughly. First, we will discuss some math, statistics, algebra,
and optimization basics. Then, the leading financial theories and the
Python basics are mandatory to implement our trading strategies.

2.1. Mathematical prerequisites

This section aims to detail many mathematical terms and concepts
necessary for the book's whole comprehension. However, it is not
complete math for the finance course. We will cover some
introductory algebra, statistics, and optimization.

2.1.1. Algebra

Algebra is a significant field to know when we work in finance.
Indeed, we will work with matrices all the time because it is the heart
of algebra. Thus, it is required to understand the basics about them.

There are many theories about matrices in math, more complex than
others, but for us, it will be straightforward: a matrix will be a set of
data. Let us see an example of a matrix A with shape (n,m), where
m is the number of columns and n is the number of rows in the
matrix.

We can imagine that matrix A with a shape of (3,2) will give us the
daily return of some assets. Usually, the rows will be the days, and
the columns represent the assets. Thus, the matrix has two assets and
three daily returns for each.
There are many essential operations that we can apply to a matrix.
Let us see some of them:

Addition : we need matrices with the same shape to add
them. Then, we must add matrix A's coefficients to matrix B's
coefficients, one by one. Let us take an example to explain.

Subtraction : We need matrices with the same shape to add
them. Then, we must subtract the coefficients of matrix A
from the coefficients of matrix B, one by one. Let us take an
example to explain.

Scalar multiplication : We multiply each coefficient by the
scalar (just a number). Let us take an example to explain.

The three previous operations are the basic operations between
matrices but exist more complex operations like inverse, comatrix,
and transpose. Thankfully, we only need to know the transpose
matrix for the rest of this book. Suppose each matrix coefficient is

noted where is the row number and the column number of the

coefficient. All matrix coefficients A become in the transpose

matrix called . Let’s take an example to explain it.

2.1.2. Statistics

Statistics are mandatory when we work in quantitative finance. From
calculating the returns to the computation of probabilities, we will see
the necessary skills to work on a financial project with peace of mind.
First, we will see some statistical metrics, but do not worry if you do
not understand them 100% because we will discuss them later in the
book! To compute an example of each metric, we will work with
these vectors (vectors are matrices with a shape (1,n))

Mean : It is the most detailed statistic. It is the sum of all
values divided by the number of values.

Variance : The variance is a measure of the dispersion of
values in a sample. This metric allows an understanding of
how much the values are dispersed around the mean.

Standard deviation : The variance is a measure of the
dispersion of values in a sample. This metric also allows us to
understand the values' dispersion around the mean. It is the
squared root of the variance. In finance, it allows us to
compute the volatility of an asset.

Cumulative sum : This metric returns a vector, not only a
float. A cumulative sum is a sequence of partial sums of a
given sequence.

Cumulative product : This metric returns a vector, not only a
float. It does the product of all the values before for each
coefficient.

Mean squared error (MSE): This metric is used to compute
the loss of an algorithm which allows us to train it (but we
will talk more about it later). To penalize the significant error,
it will compute all the differences between predictions and
actual values. We need two vectors or matrices with the same
shapes.

Mean absolute error (MAE): This metric is also used to
compute the loss of an algorithm. It will compute all the

differences between predictions and take the absolute value of
the subtraction. We need two vectors or matrices with the
same shapes.

Where |-x| = |x| = x. It means that the absolute value takes only the
values not the sign.

Now, let us discuss statistic tests. There are many, but we will see
only one in this book, which is essential to understand: the
augmented Dick and Fuller test. However, first, let us explain how a
statistic test generally works. Usually, there are two hypotheses: H0
and H1. The objective of the test is to test the H0 hypothesis.

It is a vast and exciting field that can be covered in an entire book.
So, we will try to make it simple quickly. When we perform a
statistical test, we will have only two possibilities: we reject H0, or
we cannot reject H0. To find the situation we are in, we will use the
p-value (a value between 0 and 1). The following rules can be applied
to every hypothesis test; if we take an error threshold s and the p-
value of a test which is called p, we have these two possibilities:

• p > s: we can’t reject H0
• p < s : we can reject H0

Finally, we need to discuss probability laws. They are essential in
finance because they allow us to understand how the observations are
distributed. The most used law in finance is the normal law. Thus, we
will illustrate the following notion taking it. There are two essential
functions in a probability law:

Cumulative distribution function or repartition function
(CDF) : This function returns the probability that the random

variable X is below the value x. The CDF takes in all absolute
values and returns a value between 0 and 1 because it is a
probability. Let us formalize this a little bit.

Probability density function (PDF) : This function allows us
to understand the distributions of observations. Let us see inf
figure 2.1 the difference between CDF and PDF.

Figure 2.1: CDF and PDF for the normal law

We can see the CDF to the right and the PDF to the left of the figure.
However, the percentage between the standard deviation interval is
only available with a normal law, not for the others.

2.1.3. Optimization

When we talk about portfolio management, it always implies talking
about optimization. The optimization methods allow us to minimize
or maximize a function under constraints. For example, in portfolio
management, we maximize the portfolio's utility under constraints

that the portfolio's weight must equal 100%. Let us take an example
of an optimization problem explaining each part.

The function to maximize is , and we want to maximize it.

However, we have a constraint which meaning we
want to invest all our capital. The vector of the weights is the
variable that allows us to optimize the function.

2.2. Prerequisites in finance

This section will explain some mandatory theories to know before
creating some algorithmic trading strategies: market efficiency,
basics of trading, and portfolio management theory.

2.2.1. Market efficiency

The theory of market efficiency implies that we cannot predict the
stock behavior because it is a random walk. However, it is the theory.
In practice, it is possible to predict stock behavior. Let us see the
different levels of efficiency to explain that.

Weak market efficiency : This part implies that it is
impossible to predict the stock price using past prices. Thus,
the stock price is a random walk. However, we can predict the
future stock price using machine learning techniques. This
book will only use quantitative predictive models to prove
that weak efficiency is not always respected.

Semi-strong market efficiency : This part implies that all the
information is always considered in the stock’s prices. It
means that we cannot make a profit using the news. Indeed,
the market should already consider the news before it comes
using the previsions of the investors. However, it is possible
to prove that the semi-strong efficiency market is not always
respected using Natural Language Processing (NLP). For
example, using machine learning algorithms, we can use
tweets, news, and TV to find opportunities.

Strong market efficiency: This part implies that all the
information is available to anybody. However, it is incorrect
because the firm's CEO can access some information that
private investors do not have. It can be used to make a profit
on the market. Thus, this proves that the strong efficiency
market is not always respected. However, we cannot use
algorithms to predict it.

2.2.2. Basics of trading

When we talk about trading in this book, we speak only about
speculative trading. The goal is to make profit using CFD (Contract
for Differences).

A Contract for Differences (CFD) is a derivative that follows the
same variation as its underlying. The advantage of the CFD is that we
can bet on the decrease of the stock. It is called shorting an asset (we
will discuss that later).

When we buy a CFD, we will pay some fees. These fees are either
commission or spread. The spread is the difference between the bid
price and the asking price. Moreover, the commissions are a fixed
amount that we will pay the broker to enter positions and exit.

The last notion that we need to know is leverage . A financial tool
available when we open an account with the broker allows, we to
multiply the strategy's returns. Thus, it is good when we earn money
and wrong when we lose it. Leverage is a powerful tool that can be a
destructor of our capital in the wrong hands (reminder: with great
power comes great responsibility)
Usually, leverage is taken by the account and not by each trade. As
we said earlier, leverage increases the risk of losing money. However,
it allows people with little capital to invest in the market. So, in
practice, it is strongly recommended to work on accounts with capital
coverage, which means that the broker closes our positions before we
run out of capital so that we do not get into debt with the broker, even
though during extremely volatile movements, we may owe the broker
money if he could not close the positions in time.

There is another variable that we need to consider: the swap . It is an
interest paid to the broker to keep the position open the night. As the
swap is a difference in interest rates, it can be negative or positive.

When we have opened trades, we can set a Stop Loss (SL) or a
Take Profit (TP). The stop loss is a threshold that is the associate's
price to the worst loss that we want to accept. It means that if we do
not want to lose more than 1% of our capital, we set our stop loss at
the asset price, which makes we lose only 1% of the capital. For
example, we have 100$ of capital, and we want to limit the loss on
this position to 1%. If we are in an extended position, we will set the
stop loss at 99$. If the price goes below 99$, the position is closed
automatically. It allows us to limit the risk of the investment. The
take profit is the same thing but with the inverse reflection. We will
close the position when we earn the desired amount.

2.2.3. Basics of portfolio management

The goal of portfolio management is to invest using technic to reduce
the portfolio’s risk (diversification). The foundation of portfolio

management was put in place by M.Markovitz (1952). The mean-
variance portfolio theory was the basis of the portfolio management
technique. Indeed, the first theory focuses more on statistics than the
other parameters. It will be the foundation of our static portfolio
analysis.

2.3. Prerequisites in Python

In this part, we will discuss the main functions of the libraries for
data science, math, and finance that we will use.

2.3.1. Libraries for data sciences

Numpy

np.array(obj) create an array
np.zeros([n,m]) create a matrix of size (n,m)
np.ones([n,m]) create a matrix full of one
np.mean(array,
axis=)

return the mean of the array

np.std(array, axis=) return the standard
deviation of the array

np.var(array, axis=) return the variance of the
array

np.sum(array,axis=) return the sum of the array
np.cumprod(array,
axis=)

return the cumulative
product of the array

np.where(condition,
value_true,
value_false)

apply condition to a numpy
array

np.concatenate([arr, concatenate some arrays

…],axis=)

Pandas

pd.DataFrame(obj,
index=[], columns=[])

create a dataframe

df.columns = [col,…,col] change the columns of a
dataframe

pd.Series(obj, index=[]) create a series

Matplotlib

plt.figure() modify the figure
plt.plot(x,y) plot a line
plt.fill_between(x,y,conditio
n)

plot an area

plt.title(“title”) give a title
plt.xlabel(“title”) give x label
plt.ylabel (“title”) give y label
plt.legend([col,…,col]) name the legend
plt.xlim([a,b]) Resize the limit
plt.show() show a figure

2.3.2. Libraries for finance

Yfinance

yf.download(ticker,
start=, end=)

download stock price

Datetime

datetime.now() give the date in datetime

format
datetime.now().strftime(%
Y-%m-%d)

datetime to string

datetime.now().week() Find weekday

Time
time.sleep(n) Put the computer in a

break of n seconds

2.3.3. Libraries for mathematics

Scipy

scipy.optimize.minimize(criterio
n, x, args=())

Minimize a
function

StatsModels

statsmodels.tsa.stattools.adfuller(arr) Compute adfuller test

statsmodels.api.stat.OLS(x,y).fit() Train model
model.resid() Give the residuals
statsmodels.tsa.arima_model.ARIMA(arr
)

Compute ARIMA model

statsmodels.graphics.tsaplots.plot_acf(arr
)

Plot the acf

statsmodels.graphics.tsaplots.plot_pcaf(a
rr)

Plot the pacf

Part 1: Portfolio management,
risk management and
backtesting

In this part, we will discuss static portfolio optimization methods,
such as mean-variance optimization and Sharpe ratio optimization.
We will also see some dynamic portfolio optimization, such as
momentum criteria. Once we have created some portfolios, we will
analyze the risk of these portfolios and backtest them.

Summary:

Chapter 3: Static portfolio optimization

Chapter 4: Dynamic portfolio optimization

Chapter 5: Risk management and backtesting

Chapter 6: Advanced backtest methods

Chapter 3: Static Portfolio
management

This chapter will discuss static portfolio optimization methods. First,
we will see the intuition behind portfolio optimization and why they
are so valuable for portfolio management. Then, we will look at the
traditional portfolio optimization method like the mean-variance
criterion or mean-variance skewness kurtosis criterion. Moreover, we
will study how to do our criterion for portfolio optimization.

3.1. Explanation behind portfolio
optimization method

This section will explain why portfolio optimization is so valuable in
finance. First, we will see the difference between systemic and
specific risks. Then, we highlight the advantages of diversification.

3.1.1. Systemic risk and specific risk

When we talk about the risk of an asset, we think about asset
volatility. In contrast, we can decompose the risk of an asset in two
ways: the systemic risk and the specific risk.

Asset-specific risk is the risk associated with an asset that does not
depend on market conditions. For example, an issue in a factory of
Tesla can reduce the price of the Tesla stock but only the Tesla stock
because there are no reasons that this issue affects the Netflix stock
price, for example.

The systemic risk is a macroeconomic risk on all the economy's
assets. For example, suppose there is a significant recession caused
by geopolitical instability. In that case, all stock prices will decrease
because people do not want to consume because of the uncertainty of
the future. It is a systemic risk because it affects all the economy's
assets.

The big difference between specific and systemic risk is that the
systemic risk does not depend on the firm's actions. Thus, the
objective of the portfolio optimization methods is to reduce the
specific risk in the portfolio. To do that, we use diversification.

This book only sees how to reduce the specific risk,
but it is possible to reduce the systemic risk using
derivatives.

3.1.2. Diversification

Diversification is the core process of portfolio management. It allows
us to reduce the specific risk of the portfolio, as explained above. The
strategy aims to increase the number of assets in the portfolio to
make the specific risk of each asset insignificant. The explanation is
shown in figure 3.1.

Figure 3.1: Risk of portfolio

In this figure, we see the decomposition of the risk between the
specific risk and systemic risk. The more the number of asset
increases, the more we are closer to the systemic portfolio risk.

The figure shows that the increase in the number of assets allows us
to reduce the portfolio's risk to the portfolio's systemic risk because
each asset's specific risk decreases with the number of assets. So, the
figure highlights the power of diversification to decrease the risk of a
portfolio.

Diversification decreases the specific risk to a
theoretical level of 0, but in practice, the cost of the
transaction or tax forces to limit the diversification a
little and find a reasonable allocation considering the
cost of the transaction.

3.2. The traditional portfolio optimization
methods

In this section, we will learn the traditional portfolio optimization
methods. This book will not focus on the theory of the portfolio
utility function but only on this calculation and its advantages [1] .

Next, we will use a derivative of the portfolio utility function to
create advanced diversification criteria.

3.2.1. Portfolio utility function

We will explain some exciting results about the portfolio utility
function and the process we will follow in the following parts. The
portfolio utility function is the main point in portfolio management
theory. Indeed, with this function, we can quantify the satisfaction
given by the portfolio. Naturally, we will use this function to
maximize the investor's utility.

The utility function is tough to compute in its original form. Thus, to
avoid this issue, we will use the Taylor approximation of this
function to find the mean-variance and the mean-variance skewness
kurtosis criterion.

The equation is the mean-variance criterion, and the

 is the mean-variance-skewness-kurtosis criterion. In the
following equation, μ is the mean of the portfolio's returns, the
portfolio's volatility, s the skewness of the portfolio, and k the
kurtosis of the portfolio. Moreover, is the level of risk aversion (we

set it at 3 because it is a usual risk aversion), the risk-free wealth
(we set 1.0025), and w the wealth of the portfolio.

Don’t worry we will show you how to compute it in the next section!

Date 05-21 05-22 05-23 05-24 05-25 05-29
Facebook -0.110 -0.089 0.032 0.032 -0.34 -0.096

3.2.2. Mean-variance criterion

In this subsection, we will implement a mean-variance optimization
[2] . It is necessary to download a database with some assets' adjusted
close stock prices. To do the portfolio optimization, we will use these
assets: Facebook, Netflix, and Tesla. For the importation, we will use
the library yfinance , which allows us to import data very quickly.
Moreover, we transform the data into daily variation to put all assets
on the same scale.

Code 3.1: Importation of data

Importation of data

list_tickers = ["FB" , "NFLX" , "TSLA"] 1
database = yf.download(list_tickers) 2

Take only the adjusted stock price

database = database["Adj Close"] 3

Drop missing values

data = database.dropna().pct_change(1).dropna() 4

1 Create a list of tickers using the Yahoo notation.

2 Use the download() function of yfinance to import
the dataset.

3 Select only the adjusted close prices.

4 Create returns and remove missing values.

Figure 3.2: Extract from the database

Extract from
the database
from code 3.1,

Netflix 0.025 -0.056 0.062 -0.023 -0.001 -0.011
Tesla 0.044 0.071 0.007 -0.024 -0.016 0.063

which imports
the data of
Facebook (FB),

Netflix (NFLX), and Tesla (TSLA) from 2012 to 2021.

Now, we need to define the function MV_criterion to calculate the
utility of the function and find the best distribution among the three
assets. To do it, we will compute the equation in part 3.2.1 (

).

Code 3.2: mean-variance criterion function
def MV_criterion (weights , data):
 """
 --
 | Output: optimization portfolio criterion |
 --
 | Inputs: -weight (type ndarray numpy): Weight for portfolio |
 | -data (type ndarray numpy): Returns of stocks |
 --
 """

 # Parameters 1
 Lambda = 3
 W = 1
 Wbar = 1 + 0.25 / 10 0 2

 # Compute portfolio returns

 portfolio_return = np.multiply(data, np.transpose(weights)) 3
 portfolio_return = portfolio_return. sum (axis= 1) 4

 # Compute mean and volatility of the portfolio

 mean = np.mean(portfolio_return, axis= 0) 5
 std = np.std(portfolio_return, axis= 0) 6

 # Compute the criterion
 criterion = Wbar ** (1 - Lambda) / (1 + Lambda) + Wbar ** (-
Lambda)

 \ * W * mean - Lambda / 2 * Wbar ** (-1 - Lambda) * W ** 2
*\ std

 ** 2 7

 criterion = -criterio n 8
 return criterion

1 Set the parameters of the model above.

2 The risk-free wealth is 1 + the risk-free rate
(0.25%).

3 Multiply the columns by their coefficient to keep a
matrix with shape (n,m).

4 Sum all the columns to have the portfolio (shape=
(n,1)).

5 Compute the mean of the portfolio daily returns
(using axis=0 to do on the rows).

6 Compute the daily volatility of the portfolio (the
standard deviation).

7 Compute using the previous formula.

8 Return the opposite of the criterion to minimize it.

Maximizing a function is the same as minimizing the
opposite of this function. So, we will use the minimize
function in the following code because the

MV_criterion returns us .

Once we have a function to minimize (maximize the inverse of
U(w)), we need to configure the bounds for the following
optimization problem.

It means we will maximize the utility under the constraints to use all

the capital because the sum of must equal 100%. Therefore, we
need to use all our capital. Thus, the bounds for each asset are (0,1).

We also need to set a weight for the start of the optimization.
Furthermore, we will only perform the optimization on the train set
(70% of the data) and analyze the test set's performance (30% of the
data).

Code 3.3: Implementation of the portfolio optimization problem
split = int(0.7 * len (data)) 1
train_set = data.iloc[:split, :]
test_set = data.iloc[split:, :]

Find the number of assets

n = data.shape[1] 2

Initialization weight value

x0 = np.ones(n) 3

Optimization constraints problem

cons = ({ 'type' : 'eq' , 'fun' : lambda x: sum (abs (x)) - 1 }) 4

Set the bounds

Bounds = [(0 , 1) for i in range (0 , n)] 5

Optimization problem solving
res_MV = minimize(MV_criterion, x0, method= "SLSQP" ,
 args=(train_set), bounds=Bounds,

 constraints=cons, options={ 'disp' : True }) 6

Result

X_MV = res_MV.x 7

Asset Facebook Netflix Tesla
Weight 33.35% 33.35% 33.30%

1 The variable split is an integer representing the
value at 70% of the data. It is a tip to select the
train and test sets.

2 n is the number of assets, so we use the command
.shape[1] to have the number of columns which is
the number of assets.

3 Initialize the value of the weight vector. It is a
vector full of one with a shape (n,).

4 Define the constraints of the optimization. Here,
we want the investor to use all its capital. Thus,
we wish that the sum of the weight equal 100%.
(There is absolute value if we wish to short also).

5 Define the bound of the optimization. We define the
bounds from 0 to 1 because we want a long-only
strategy. If we create a long-short strategy, bounds
 will be (-1,1).

6 Minimize the opposite of the using the
minimize function of scipy.

7 Extract the optimal weight for our portfolio.

With the previous code, we have found the best allocation for this
asset and, the vector of the weights is available in figure 3.3.

Figure 3.3: Weights allocation of the portfolio using MV criterion

As we can see,
the optimization
with the MV

criterion takes the Facebook stock for 33.35%, the Netflix stock for
33.35%, and the Tesla stock for 33.30%.

Now, we have the weights of each asset in our portfolio. So, we need
to display the returns of the portfolio on the test set to see if the
portfolio optimization is good or not. Even if the cumulative returns
of the portfolio cannot say alone if it is a good optimization or not, it
is a good indication.

Code 3.4: Testing performance on test set
Compute the cumulative return of the portfolio (CM)
portfolio_return_MV = np.multiply(test_set,np.transpose(X_MV))

1
portfolio_return_MV = portfolio_return_MV. sum (axis= 1) 2

Plot the CM

plt.figure(figsize=(15 , 8)) 3
plt.plot(np.cumsum(portfolio_return_MV)* 100 ,
color= "#035593" , linewidth= 3) 4
plt.ylabel("Cumulative return %" , size= 15 , fontweight= "bold")

5
plt.xticks(size= 15 ,fontweight= "bold")
plt.yticks(size= 15 ,fontweight= "bold")
plt.title("Cumulative return of the mean variance potfolio" , size=
20)
plt.axhline(0 , color= "r" ,linewidth= 3) 6
plt.show() 7

1 We have multiple columns by his coefficient.
Thus, we always have a shape (n,m) matrix.

2 We do the sum of each column to have the
portfolio return.

3 We change the size of the figure to have a better
visualization.

4 Print the cumulative sum of the portfolio and put
it in percentages.

5 Put a name and increase the size of the y-labels.

6 Put a horizontal line at 0 to highlight this
threshold.

7 We show the graph using plt.show().

In figure 3.4, we can see the plot of the cumulative return on the test
set. It is good to see the portfolio's return, but only in the next chapter
will we learn how to complete risk analysis and backtest.

Indeed, we will see many metrics such as Sharpe and Sortino ratios,
drawdown, and the CPAM metrics to only give them as an example.

Figure 3.4: Cumulative return of the portfolio on the test set

As we can see, the cumulative return of the portfolio is stagnant in
the first year. However, after this period, the portfolio's return has
considerable growth.

3.2.3. Mean-variance-skewness-kurtosis
criterion

In the last subsection, we have seen the mean-variance criterion. In
this subsection, we will see an extension of the mean-variance
criterion: the mean-variance-skewness-kurtosis criterion [3] (SK
criterion).
We are going to take precisely the same data to compare the

optimizations. Here, we will use the and not as a
criterion. So, we will see the difference in the weight with different
criteria.

Code 3.6: SK criterion Implementation
def SK_criterion (weights , data):
 """
 --
 | Output: optimization portfolio criterion |
 --
 | Inputs: -weight (type ndarray numpy): Weight for portfolio |
 | -data (type ndarray numpy): Returns of stocks |
 --
 """

 from scipy.stats import skew, kurtosis

 # Parameter s 1
 Lambda = 3
 W = 1
 Wbar = 1 + 0.25 / 100

 # Compute portfolio return s 2
 portfolio_return = np.multiply(data, np.transpose(weights))
 portfolio_return = portfolio_return. sum (axis= 1)

 # Compute mean, volatility, skew, kurtosis of the portfolio
 mean = np.mean(portfolio_return, axis= 0)
 std = np.std(portfolio_return, axis= 0)
 skewness = skew(portfolio_return, 0) 3

 kurt = kurtosis(portfolio_return, 0) 4

 # Compute the criterion
 criterion = Wbar ** (1 - Lambda) / (1 + Lambda) + Wbar ** (-Lambda) \

 * W * mean - Lambda / 2 * Wbar ** (-1 - Lambda) * W ** 2 * std ** 2 \

 + Lambda * (Lambda + 1) / (6) * Wbar ** (-2 - Lambda) * W ** 3 *
skewnes\

 - Lambda * (Lambda + 1) * (Lambda + 2) / (24) * Wbar ** (-3 - Lambda) *\

 W ** 4 * kur t 5

 criterion = -criterio n 6
 return criterion

1 Set the parameters of the models (lambda=3 is a
typical risk aversion. The higher the lambda, more
you hate the risk).

2 Multiple each asset by its coefficient and do the
sum to have the portfolio return.

3 Compute the skewness, which calculates the
asymmetry of the probability density function
(PDF).

4 Compute the kurtosis, which represents the
"tailedness" of the probability density function
(PDF).

5 Compute

6 Compute the opposite of the criterion because we
will minimize it.

Following the same process as the MV criterion, we will do
optimization with the SK criterion.

Code 3.7: Optimization with SK criterion
Find the number of assets

Asset Facebook Netflix Tesla
Weight 32.75% 21.06% 46.19%

n = data.shape[1]

Initialization weight value
x0 = np.ones(n)

Optimization constraints problem
cons = ({ 'type' : 'eq' , 'fun' : lambda x: sum (abs (x)) - 1 })

Set the bounds
Bounds = [(0 , 1) for i in range (0 , n)]

Optimization problem solving
res_SK = minimize(SK_criterion, x0, method= "SLSQP" ,
 args=(train_set), bounds=Bounds,
 constraints=cons, options={ 'disp' : True })
Result for computations
X_SK = res_SK.x

Figure 3.5:

Weights
allocation of

the portfolio using SK
The optimization with the SK criterion takes the Facebook stock for
32.75%, Netflix stock for 21.06%, and Tesla stock for 46.19%.

The weights of the portfolio are different from the MV optimization.
The objective is to plot the MV optimization portfolio return and SK
optimization portfolio return to compare the best in this situation
(Figure 3.6).

Figure 3.6: Cumulative returns of the portfolios on the test set

We can see that the two portfolios follow the same trend, but the SK
portfolio is a little better than the MV portfolio.

3.3. The modern portfolio optimization
methods

In this section, we discuss the modern portfolio optimization method.
We will see how to create its criterion using the example of Sharpe
and Sortino criteria.

3.3.1. Sharpe criterion

In this subsection, we will speak about the Sharpe criterion. First, we
need to define the Sharpe ratio to understand the benefits of this
optimization.

The Sharpe ratio is the best known of the financial metrics. Indeed, it
is a reference metric in the industry. It allows us to understand the
additional benefits for 1% more risk. We can compute the Sharpe
ratio with the following formula:

 is the mean of the portfolio returns (annualized), is the volatility

of the portfolio returns (annualized) and is the risk-free asset (we
set 0 for the risk-free assets because it is currently around this value).

So, the objective is to create a portfolio optimization criterion with
this metric. To do it, we will follow the same process as the
traditional method in the previous section. So we need to create an
SR_criterion() function, which returns the opposite of the Sharpe
ratio because maximizing the Sharpe ratio is equal to minimizing the
opposite of the Sharpe ratio.

Code 3.8: SR criterion function
def SR_criterion (weight , data):
 """
 --
 | Output: Opposite Sharpe ratio to minimize it. |
 --
 | Inputs: -Weight (type ndarray numpy): Weight for portfolio |
 | -data (type dataframe pandas): Returns of stocks |
 --
 """

 # Compute portfolio returns
 portfolio_return = np.multiply(data, np.transpose(weight))
 portfolio_return = portfolio_return. sum (axis= 1)

 # Compute mean, volatility of the portfolio
 mean = np.mean(portfolio_return, axis= 0)
 std = np.std(portfolio_return, axis= 0)

 # Compute the opposite of the Sharpe ratio
 Sharpe = mean / std
 Sharpe = -Sharpe
 return Sharpe

Now, we can do the optimization problem as in the previous section.
However, we will plot the results to compare the optimization

Asset Facebook Netflix Tesla
Weight 24.08% 48.01% 27.91%

methods in figure 3.8 and the portfolio weights in figure 3.7.

Figure 3.7:
Weights

allocation of
the portfolio using SR criterion

As we can see, the optimization with the SR criterion takes Facebook
stock for 24.08%, Netflix stock at 48.01%, and Tesla stock for
27.91%.

Figure 3.8: Cumulative returns of the portfolios on the test set

We can make the same interpretation as before. The portfolio follows
the same trend but with a bit of variation.

3.3.2. Sortino criterion

In the last subsection, we have learned the maximum Sharpe ratio
criterion. However, the Sharpe ratio has a big lousy point: it
computes the volatility as the sum of the upward and downward
volatility. Nevertheless, are we really against significant upward
volatility when we are an investor? No, of course, because it is a

synonym for a considerable profit. So, the enemy is just the
downward volatility.

The Sortino ratio is an excellent metric because it derives from the
Sharpe ratio, which only considers downward volatility. So, it allows
us to understand the additional benefits for 1% more risk (only low
risk). We can compute the Sortino ratio with the following formula:

Where is the mean of the portfolio returns (annualized),

 is the downward volatility of the portfolio returns

(annualized) and is the risk-free asset (we set 0 for the risk-free
assets because it is actually around this value).

So, as previously, we need to compute a function to minimize. In the
following code part, we can find the SOR (Sortino) criterion
function.

Code 3.9: SOR function criterion

def SOR_criterion (weight , data):
 """
 --
 | Output: Opposite Sortino ratio to do a minimization |
 --
 | Inputs: -Weight (type ndarray numpy): Wheight for portfolio |
 | -data (type dataframe pandas): Returns of stocks |
 --
 """

 # Compute portfolio returns
 portfolio_return = np.multiply(data, np.transpose(weight))
 portfolio_return = portfolio_return. sum (axis= 1)

 # Compute mean, volatility of the portfolio
 mean = np.mean(portfolio_return, axis= 0)
 std = np.std(portfolio_return[portfolio_return < 0], axis= 0) 1

Asset Facebook Netflix Tesla
Weight 21.87% 49.85% 28.28%

 # Compute the opposite of the Sharpe ratio
 Sortino = mean / std
 Sortino = -Sortino

 return Sortino

1 To compute the downward volatility, we take all
negative returns and calculate their standard
deviation.

Now, we can do the optimization problem as in the previous section.
However, we will plot the results to compare the optimization
methods in figure 3.10 and the portfolio weights in figure 3.9.

Figure 3.9:
Weights

allocation of
the portfolio using SOR criterion

As we can see, the optimization with the SOR criterion takes
Facebook stock for 21.87%, Netflix stock at 49.85%, and Tesla stock
for 28.28%.

The weight is also nearly the same. So, the portfolio
will also be very similar to the others because the
correlation between these three assets is high.

Figure 3.10: Cumulative returns of the portfolios on the test set

We can make the same interpretation as before. The portfolio follows
the same trend but with a bit of variation.

Summary

• The specific risk is related to only one stock. In contrast,
systemic risk is a macroeconomic risk that can affect all assets in
the economy.

• Traditionally, we used approximation of the utility function to

find criteria to maximize. For example, the mean-variance
criterion and mean-variance skewness kurtosis criterion.

• Maximizing a function is equal to minimizing the opposite of

the function.

• The Sharpe ratio quantifies the additional benefits for 1% more
risk in the cost of total volatility.

• The Sortino ratio quantifies the additional benefits for 1% more

risk in the low volatility cost.

• The key to a diversified portfolio is negatively correlated assets (we
will discuss this in the next chapter about correlation).

Chapter 4: Tactical portfolio
management

Static portfolio optimizations are an excellent way to optimize for a
long-term investment. However, sometimes we need to deviate from
our optimal static portfolio optimization using dynamic portfolio
management. Moreover, dynamic portfolio methods can short some
assets, and it can be advantageous to make benefits if the market goes
up or down. To explain these methods, we will explain how a
dynamic portfolio works, the moving average strategy, and the
correlation strategy.

4.1. How dynamic methods works?

This section will explain how tactical asset allocation (TAA) works.
To illustrate this notion, we will explain what short selling is, how to
create a momentum factor and how to rebalance a dynamic portfolio.

4.1.1. Short a stock

Usually, in the static portfolio strategies (SAA) , we buy the stocks
in suitable proportions. However, in the dynamic methods (TAA), we
can also bet on the decrease of the stock, and it is called short selling.
Short selling is usually used only with the TAA because the TAA has
a tiny rebalancing interval: for example, one month, unlike SAA,
which has a rebalancing interval very long, for example, three years.
So, the TAA can capture the benefits when the price increase or
decreases instead of the SAA, which allows us to bet only on the
increase. Thus, when we buy a short-sell contract, we only bet on the
decrease of the stock.

It is infrequent to short a stock directly. Usually, we
will use a Contract for Difference (CFD) to bet to
decrease the stock.
Reminder: We do not have access to the dividend
with the CFD.

In figure 4.1, we can see the cash flows of a long contract (bet for the

increase) and a short contract (bet for the decrease). is the cash
flow at time 1, when purchasing the contract. For a long, we buy the

stock in . Thus, the cash flow is minus the stock price (with no
transaction costs), and when we close the position, we have the actual

price of the stock For the short contract, it is precisely the
opposite. Indeed, when we buy the selling contract, we sell a lengthy
contract that we do not already have but with the obligation to buy

the stock later (in our example). So, the benefits of an extended

contract are - and for the short contract - .

Figure 4.1: Cash flow for long and short contracts

This figure shows the cash flow of a long and short contract from

time to time . In the figure, we can learn the following

calculations, the benefits of an extended contract are - and

for the short contract - .

4.1.2. Momentum factor

At the beginning of a tactical asset allocation, we must choose a
momentum factor. It is a value that we can build on the strategy. For
example, in the next section, we will create a momentum factor with
the autocorrelation of the asset. This factor is the strategy pillar.
Indeed, if it is a good choice, we can do benefits, and if it is wrong,
we will lose money.
We must understand that the momentum factor can be whatever we
want. For example, we can create momentum using the interest rate
growth, the country's inflation, the percentage of return over the last
12 months, etc.
We set a vector factor for this part to do all the necessary
transformations. When we have this factor, we usually create a z-
score, the normalization of the factor. We will put the formula of a z-
score to highlight the process.

Where is a value of the vector , is the mean of the vector ,

and is the standard deviation of the vector

Asset Facebook Netflix Tesla
Weight -33% /

+33%
-33% /
+33%

-33% /
+33%

In this situation, the normalization of the data is not
necessary. However, it is a good practice to keep in
mind because it transforms our distribution into a
mean 0 and standard deviation of 1.

When we have our z-score vector, we need to compute the median of
the vector. Then, we will take a long position for all assets with a z-
score superior to the median and a short position for all assets with a
z-score inferior to the median. (This is our strategy, but we can take
the threshold we want).

4.1.3. Rebalancing

The rebalancing of a TAA is an essential thing. Indeed, at this
moment that the weights of each asset in the portfolio are determined.
In the following examples, we will use allocation with the same
weights for all assets to make things easier. The dynamic of the
strategy will be only the sign (positive if we long and negative if we
short).

Usually, we take the same weight to each asset and then
combine the SAA and TAA portfolios following this
equation [4] .
with . Naturally, advanced technics
changed each month's weight, but it will not be seen in
the book.

Figure 4.2: Weights allocation of the TAA portfolio

The weights of
the assets as
the same the
only difference

is that the contract can be long or short each month. So, the weight
-33% or +33%.

4.2. Moving average strategy

This section will explain how to compute a tactical portfolio based on
a moving average momentum. We will explain how moving averages
work and how to make a dynamic portfolio using a moving average
factor.

4.2.1. Moving average

This subsection will compute some moving averages to create the
momentum factor in the second part. The moving average is the
easiest to understand technical indicator. Indeed, it is a mean, but
instead of doing the average on all the samples, we will create a
vector of a mean of the n last day for each selected day..

It allows us to have a better comprehension of the stock behavior. We
can build the moving average vector with the following formula.

Where is the moving average at the index , n is the window

(the number of days you want to take to do the moving average), is
the asset's value.

Now, we will compute a moving average on the three previous assets
for a window of 15 days with this code. Moreover, we will display
the results in figure 4.3.

Code 4.1: Moving average computation
data["SMA15 FB"] = data["FB"].rolling(15).mean().shift(1
)

Date FB NFLX TSLA SMA 15
FB

SMA 15
NFLX

SMA 15
TSLA

06-11 27.01 9.00 5.82 29.84 9.63 5.89
06-12 27.40 9.00 5.93 29.01 9.56 5.91
06-13 27.27 8.97 5.95 28.65 9.48 5.93

data["SMA15 NFLX"] = data["NFLX"].rolling(15
).mean().shift(1)
data["SMA15 TSLA"] = data["TSLA"].rolling(15
).mean().shift(1)

In code 4.1, it is necessary to put a shift of 1. If one does
not put it, we will forecast the value in t+15 in t+14 but
using t+15 data. We will explain this later.

 Figure 4.3: Assets with their simple moving average (SMA 15)

The moving
average is
often used to
understand

the trend of the asset. Figure 4.4 shows the stock price with the SMA
(simple moving average) of 15 and SMA of 60. So, it can be easy to
understand the upward and downward trends.

Figure 4.4: Facebook stock price with SMA 15 and SMA 60

This figure shows the Facebook stock price with the SMA 15 and the
SMA 60. When the trend is up, we see that the fast SMA is above the
slow SMA and the opposite when the trend is down.

4.2.2. Moving average factor

In this subsection, we are going to build the moving average factor.
Indeed, we will use the SMA for three months and SMA for 12
months of each stock (Facebook, Netflix, Tesla) to create a monthly
signal to rebalance our portfolio.

We will use the same samples as in the previous chapter. We will use
70% of the data to create the strategy. Then, we will test it on the test
set (the other 30%). The difference between the previous chapter and
this one is that we keep the price in absolute value and not in
variations. Then, we can compute the factor making the difference
between the small and the long SMA. Moreover, we are computing
the z-score in normalizing the factor. We can see how to do it in code
4.2 and the results in figure 4.5.
Code 4.2: Create the z-scores
list_tickers = ["FB" , "NFLX" , "TSLA"]
We do a loop to create the SMAs for each asset
for col in list_tickers:
 data[f "pct {col} "] = data[col].pct_change(1)
 data[f "SMA3 {col} "] = data[col].rolling(3).mean().shift(1)
 data[f "SMA12 {col} "] = data[col].rolling(12).mean().shift(1
)
 data[f "Momentum factor {col} "] = data[f "SMA3 {col} "] - \
 data[f "SMA12 {col} "]

Normalizing the zscore
split = int(0.7 * len (data))
train_set = data.iloc[:split,:]
test_set = data.iloc[split:,:]

Find the mean and std vectors
columns = [f "Momentum factor {col} " for col in list_tickers]
train_set_mean = train_set[columns].mean()
train_set_std = train_set[columns].std()

Create the zscores

Date Momentum
FB

Momentum
NFLX

Momentum
TSLA

06-01 -1.38 -0.36 0.16
07-01 -1.35 -0.39 0.68
08-01 -1.10 -0.42 1.23

train_set[columns] = (train_set[columns]-train_set_mean)/
train_set_std
test_set[columns] = (test_set[columns]-train_set_mean)/ train_set_st

d 1

Find the medians
median = train_set[columns].median()

1 Computation of the test set z-scores using the
train set's mean and std to avoid interference in
the data. Usually, we cannot know the mean and
std of this set because it is the future.

Figure 4.5: z-scores of the assets

In this figure,
we can see the
z-score
momentum
factor for each

portfolio asset (Facebook, Netflix and Tesla).

4.2.3. Build the strategy

This subsection will show us how to build the tactical portfolio
strategy using the moving average factor. We will do it using the z-
scores calculated before.

First, we need to compute the signal of each asset if we take a long or
short position in the coming month. Suppose the median of the z
score is inferior to the z-score month. In that case, we take a short
position the next month, and if the median of the z score is superior,
we take a long position on the asset.
Code 4.3: Computation of signal and profit for SMA strategy
Compute the signals and the profits

for i in range (len (columns)) : 1

 # Initialize a new column for the signal

 test_set[f "signal {columns[i]} "] = 0 2

 # Signal is -1 if factor < median
 test_set.loc[test_set[f " {columns[i]} "]<median[i],
 f "signal {columns[i]} "] = -1

 # Signal is 1 if factor > median
 test_set.loc[test_set[f " {columns[i]} "]>median[i],
 f "signal {columns[i]} "] = 1

 # Compute the profit
 test_set[f "profit {columns[i]} "] = (test_set[f "signal

{columns[i]} "].shift(1)) * test_set[f "pct {list_tickers[i]} "] 3

1 Loop to compute the signal and profit for each
asset.

2 Creation of a new column for the signal.

3 Add a shift to the signal because the signal tells us
to enter in position. The profit signals today's and
tomorrow's returns because we open the position

at the close of the asset. If we take *

 will have excellent results but
wrong.

We have also shifted to the signal because we see the next month if it
is profitable when we have a signal. If we do not shift, we will make
a massive profit because we will predict the past with the future, not
the inverse. Now, let us see in figure 4.6 the results of this strategy.

Figure 4.6: Cumulative return of the tactical portfolio strategy

This figure shows that this strategy is not very profitable in the long
term. Over the period, we have a drawdown of around 30% for a
return of -3%.

4.3. Trend following strategy

This section will talk about the trend-following strategy. First, we
need to explain the Pearson statistic correlation. Then, we will find
the best asset for this strategy. Then, we will create a strategy with
our trend following factor.

4.3.1. Correlation

This section will explain in detail how correlation works and why it
is essential in this strategy. Indeed, the correlation will allow us to
understand if there is some relation between the two-time series.
Correlation is an essential tool in finance. It allows us to understand
the relationship between assets. However, many people use it in the
wrong way. That is why we have a whole part dedicated to this
notion.

Many types of correlation exist, but the Pearson correlation is the
most useful. It calculates the linear correlation between time series x
and y with this formula:

Where is an observation of the time series is an observation

of the time series . and are respectively the mean of the time

series and .

In straightforward terms, the correlation
captures how the values of the two-time
series vary to their means. If the value of the
time series x and y are below their mean or
above simultaneously frequently, they are
correlated.

It is usually a good thing to take the time to analyze this equation a
little bit. Indeed, as we can see, this formula computes the distance
from the mean to the observation. So, as many assets have an upward
trend, the correlation between the absolute price of the asset is
positive. At the same time, the trend does represent the asset
behavior. To solve this problem, we need to correlate the asset's
variation percentage. Let us see some examples to be sure that the
notion is understood.
In figure 4.7, we can see the value difference between the absolute
value correlation and the variation percentage correlation.

Figure 4.7: Absolute value and return percentage correlation

Absolute value correlation
 Facebook Netflix Tesla

Facebook 1
Netflix 0.94 1
Tesla 0.76 0.74 1

Variation percentage correlation
 Facebook Netflix Tesla

Facebook 1
Netflix 0.31 1
Tesla 0.29 0.19 1

We can see that the difference between the absolute value and the
variation percentage correlation is enormous. Some boxes are empty
because the matrix is symmetric, which means the correlation
between Facebook and Netflix is similar to the correlation between
Netflix and Facebook.

Now, let us see how to interpret the Pearson correlation:

-1 < corr < 0 : There is a negative correlation between the two
assets. That means if the first increase, the second has more
chance to decrease. More Pearson correlation is close to -1 more
the chance of decreasing is high.

Corr = 0 : There is no correlation. That means if one increases
or decreases, we can say nothing about the behavior of the other
asset.

0 < corr < 1 : There is a positive correlation between the two
assets. That means if the first increase the second has more
chance to increase. More Pearson correlation is close to 1 more,
the probability of increasing is high.

If the assets have a robust correlation, they
will often dry up in the same direction but
not necessarily with the same intensity.

4.3.2. Trend following factor

In this subsection, we have to change the assets a little. We probably
ask why, for this last strategy, we must change the asset instead. We
said that we take only the same to compare the strategy in the next
chapter. True, but this strategy has a different process from the others.

This strategy uses the 12 of last month's returns to create a factor
investment. Moreover, the position is rebalancing each month.
However, to find the best asset, we need to use the correlation on
many assets to find the bests. So, naturally, the best assets are not the
same as the previous ones.

To find the best assets, we will take ten assets, but we can take more
to have a better choice. Furthermore, we compute the autocorrelation
between the 12 last month and the one next month to find the best
asset for the strategy on the train set. That means we search for the
assets with the best correlation between the lookback period and the
hold period (you can also find the best lookback and hold period with
this technique).

Code 4.4: Best asset selection
Compute the lookback and hold period
for col in list_:

 data[f "pct+1 {col} "] = data[f " {col} "].pct_change(-1) 1
 data[f "pct-12 {col} "] = data[f " {col} "].pct_change(12) 2

Normalizing the zscore
split = int(0.7 * len (data))
train_set = data.iloc[:split,:]
test_set = data.iloc[split:,:]

Asset INTC GOOG PYPL TSLA FB NFLX
Corr 0.29 0.24 0.19 0.17 0.09 0.07

Compute the correlation
corr = []
for col in list_:
 cor = train_set[[f "pct-12 {col} " , f "pct+1 {col} "
]].corr().values[0][1]

 corr.append(cor)
correlation = pd.DataFrame(corr, index=list_, columns=["Corr"])

3
correlation.sort_values(by= "Corr" , ascending= False)

1 Computation of the hold period return (1 month).

2 Computation of the lookback period return (12
months).

3 List_ is a list containing all the assets that we
want to test for the strategy.

Figure 4.8: Best assets with the previous asset correlation

This figure
shows the

correlation between the lookback and holds period for the three best
and previous assets.

Now, we have three assets (Intel, Google, and PayPal) to compute a
strategy. First, we need to compute the z-score to find the signal
investment. Now, we have three assets to compute a strategy. First,
we must compute the z score to find the signal investment. Then as
previously, we will take a short position if the z score is below the
median and take a long position if the z score is above the median.

Code 4.5: Create the z-scores
best = ["PYPL" , "INTC" , "GOOG"]

Find the mean and std vectors
columns = [f "pct-12 {col} " for col in best]
train_set_mean = train_set[columns].mean()
train_set_std = train_set[columns].std()

Create the zscores
train_set[columns] = (train_set[columns] - train_set_mean) /
train_set_std
test_set[columns] = (test_set[columns] - train_set_mean) /
train_set_std

Find the medians
median = train_set[columns].median()

4.3.3. Compute the strategy

In this part, we will compute the strategy. To do it, it is precisely the
same code as for the moving average strategy. Now, let us see in
figure 4.9 the results of this strategy.

Unlike the SMA strategy after the corona crisis, we can see a
decrease in the cumulative return. It can be explained by the fact that
the crisis misleads the 12 last month's returns.

Figure 4.9: Performance of the trend returns strategy

In this figure, we can see the profit of the trend return strategy.

Summary
A short position allows us to bet on the decrease of a stock.

Tactical portfolio strategies are an excellent way to capture
benefits when the market increases or decreases.

TAA portfolio is helpful to correct the imperfection of the
SAA. So, we need to combine both to have a good portfolio.

Moving average is an excellent way to have a more
significant average.

Correlation is an excellent way to understand the relation
between two behavior stocks.

Chapter 5: Risk management
and backtest ing

This chapter will backtest some previous investment strategies using
risk management metrics and other indicators. We will begin with the
best-known backtest metrics like beta, alpha, Sharpe ratio, Sortino
ratio, and drawdown. Then, we will explain how to perform risk
analysis using VaR, cVaR, and Risk contributions. Moreover, we will
automatize this analysis to apply it to later strategies.

5.1. The backtesting metrics

This section will discuss CPAM metrics to understand the
relationship between our strategy and the market. Then, we will
compute the drawdown of our strategies to understand how much
time we lose money over the period when we follow a strategy.

5.1.1. The CAPM metrics

First, we will talk about the CAPM [5] metrics. Indeed, CAPM is the
most famous model for portfolio management and gives us some
exciting metrics: the beta and the alpha.

The beta metric of a stock highlights the relation between the market
represented by a market stock index like S&P 500 and the portfolio.
For example, a beta of 1.15 implies that if the market has a variation
of 1%, the portfolio varies to 1.15%. It can be considered a metric
of systemic portfolio risk. It is computed using the following
formula:

 is the asset's return and is the market index's return.
When we compute the beta, you will be in one of these situations:

 < 1 : It means that the portfolio is less volatile than the
market, which is good because it does not have a significant
systemic risk.

 = 1 : The portfolio moves in the same market proportion.
Suppose the market moves to 1%, and the portfolio moves to
1%.

 > 1 : The portfolio is more volatile than the market and has
a significant systemic risk.

Now, let us create a function to compute the beta of a portfolio. (In
this example, the benchmark will be the S&P 500 and his Yahoo
symbol is "^GSPC").

Code 5.1: beta ratio function
def beta_function (portfolio , ben = "^GSPC") : 1
 """
 --
Output: Beta CAPM metric
Inputs: - portfolio (type dataframe pandas): Returns of the portfolio
- ben (type string): Name of the benchmark
 --
 """

 # Import the benchmark
 benchmark = yf.download(ben)["Adj Close"].pct_change(1
).dropna()

 # Concat the asset and the benchmark

 join = pd.concat((portfolio, benchmark), axis= 1).dropna() 2

 # Covariance between the asset and the benchmark

 cov = np.cov(join, rowvar= False)[0][1] 3

 # Compute the variance of the benchmark
 var = np.cov(join, rowvar= False)[1][1]

 return cov/var

1 The default setting for the benchmark is S&P 500
(^GSPC), but we can put all indices that we want
depending on the market we want to take.

2 Creation of a data frame with the strategy and
benchmark returns to delete the days that are not
in the two-time series.

3 It is essential to specify rowvar =False because,
without that, python will consider that each row
represents a time series instead of each column.
Thus, if we do not set this parameter, we will have a
bad result.

We have computed the benchmark variance using the
covariance matrix because the diagonal values are the
variance of the assets.

With this function, we have obtained a beta at 1.08 for the portfolio
using the mean-variance criterion. It means that when the market
(S&P 500) varies by 1%, the portfolio varies by 1.08%.
Now let us talk about the alpha metric. It allows us to understand if a
portfolio outperforms or underperforms the benchmark. For example,
suppose we have a portfolio with an alpha of 0.0115. In that case, the
portfolio outperforms the benchmark by 1.15%, considering the
portfolio's returns and risk. It can be computed using the following
formula:

Where is the mean of the asset’s return and is the of the

market index returns, the return of the risk-free asset and the
asset’s beta.

When we compute a mean of return, volatility, Sharpe
ratio, etc. We need to annualize the values (always).
Because if we want to compare some strategies with
different time frames, it can be very hard.

The risk-free asset is very close to 0%, even negative
in some situations. So, it is preferred to set it at 0% to
facilitate computation and comprehension.

When we compute the alpha, we will be in one of these situations:

 < 0 : That means that the portfolio underperforms the
benchmark. This is not a good thing because it would have
been a better investment if we had just bought the benchmark.

 = 0 : That means that the portfolio neither underperforms
nor outperforms the benchmark, this is not good because it
means that if we had just bought the benchmark, it is the same
couple risk-return.

 > 0 : That means that the portfolio outperforms the
benchmark, and this is a good thing. It means that we had a
better investment than the benchmark.

Code 5.2: alpha ratio function
def alpha_function (portfolio , ben = "^GSPC" , timeframe = 252
):
 """
 --

Output: Alpha CAPM metric
Inputs: - portfolio (type dataframe pandas): Returns of the portfolio
- ben (type string): Name of the benchmark
- timeframe (type int): annualization factor
 --
 """

 # Import the benchmark
 benchmark = yf.download(ben)["Adj Close"].pct_change(1
).dropna()

 # Concat the asset and the benchmark
 join = pd.concat((portfolio, benchmark), axis= 1).dropna()

 # Compute the beta

 beta = beta_function(portfolio_return_MV, ben=ben) 1

 mean_stock_return = join.iloc[:, 0].mean()*timeframe
 mean_market_return = join.iloc[:, 1].mean()*timeframe
 return mean_stock_return - beta*mean_market_return

1 Utilization of beta_function created before to
compute the beta.

We have set a new parameter named timeframe to
allow us to manage the annualization of the data.
Indeed, we cannot multiply by the same factor if we
have monthly and daily returns. Here, the timeframe is
252 because there are daily returns.

We obtained an alpha of 35% for the portfolio using the mean-
variance criterion with this function. It means that when the portfolio
outperforms by 35%, the benchmark.

5.1.2. Sharpe and Sortino

In this part, we will discuss some metrics we have already seen.
Indeed, these metrics are used in chapter 3: Sharpe and Sortino ratios.
However, we will go deeper into the subject to understand these
metrics.

Let us talk about the Sharpe ratio. This metric is very used in finance;
as we said before, it allows us to understand the additional benefits of
1% more risk.

Where is the mean of the portfolio returns (annualized), is the

volatility of the portfolio returns (annualized) and is the risk-free
asset (we set 0 for the risk-free assets because it is actually around
this value).

To annualize the volatility, we need to multiply the
volatility by the square root of the annualization factor.
For example, if we want to annualize daily volatility,

we do .

When we compute the Sharpe ratio, we will be in one of these
situations:

 < 0 : This is not a good investment. We took some
risks, but we have a negative expected return on our portfolio.

0 < < 1 : This is a good investment. We have a
positive expected return, but the risk we take is higher than
the return.

 > 1 : This is an excellent investment. We have a
positive expected return but with riskless importance than the
returns.

Code 5.3: Sharpe ratio function
def sharpe_function (portfolio , timeframe = 252):
 """
 --
Output: Sharpe ratio metric
Inputs: - portfolio (type dataframe pandas): Returns of the portfolio
- timeframe (type int): annualization factor
 --
 """
 mean = portfolio.mean() * timeframe
 std = portfolio.std() * np.sqrt(timeframe)

 return mean/std

Using the mean-variance criterion with this function, we obtained a
Sharpe ratio of 1.37 for the portfolio. This is an outstanding portfolio
because 1% of additional risk gives 1.37% of return.

Now, let us talk about the Sortino ratio. The Sortino ratio is an
excellent metric because it derives from the Sharpe ratio, which only
considers downward volatility. So, it allows us to understand the
additional benefits for 1% more of low risk. We can compute the
Sortino ratio with the following formula:

Where is the mean of the portfolio returns (annualized),

 is the downward volatility of the portfolio returns

(annualized), and is the risk-free asset (we set 0 for the risk-free
assets because it is actually around this value).

The Sortino ratio can be better than the Sharpe ratio
because it is only sensible to downward volatility. Thus,
it is more representative of what the investor wants.

When we compute the Sortino ratio, we will be in one of these
situations:

 < 0 : This is not a good investment. We took some
low risk, but we have a negative expected return on our
portfolio.

0 < sortino < 1 : This is a good investment. we have a
positive expected return, but the low risk we take is higher
than the return.

 > 1 : This is an excellent investment. We have a
positive expected return but a less crucial downward risk than
the returns.

The only difference between Sharpe and Sortino ratios
is how to compute the risk. One chooses the volatility
and another the downward volatility.

Code 5.4: Sortino ratio function
def sortino_function (portfolio , timeframe = 252):
 """
 --
Output: Sortino ratio metric
Inputs: - portfolio (type dataframe pandas): Returns of the portfolio
- timeframe (type int): annualization factor
 --
 """

 # Take downward values
 portfolio = portfolio.values
 downward = portfolio[portfolio< 0]

 mean = portfolio.mean() * timeframe
 std = downward.std() * np.sqrt(timeframe)

 return mean/std

With this function, we have obtained a Sortino ratio of 1.87 for the
portfolio using the mean-variance criterion. This is an excellent

portfolio, and 1% of additional downward risk gives 1.87% of return.

5.1.3. Drawdown

In this part, we will talk about drawdown. It is one of the best metrics
for a backtest. Indeed, it allows us to understand the significant loss
we suffer. It gives us the most prominent loss if we enter a position at
the worst time of this period. Now, it can be complicated to
understand, but it is a straightforward thing. Let us see. First, we need
to explain the formula to compute the drawdown:

Where is the drawdown at the time , the cumulative product

return at the time and is the running max at the time for in
[portfolio start date: portfolio end date].

Code 5.5: drawdown vector function
def drawdown_function (portfolio):
 """
 --
Output: Drawdown
Inputs: - portfolio (type dataframe pandas): Returns of the portfolio
 --
 """

 # Compute the cumulative product returns

 cum_rets = (portfolio+ 1).cumprod() 1

 # Compute the running max

 running_max = np.maximum.accumulate(cum_rets.dropna()) 2
 running_max[running_max < 1] = 1

 # Compute the drawdown

 drawdown = ((cum_rets)/running_max - 1) 3

 return drawdown

1 Computation of the cumulative return using the
compounding interest (you can read the annex
about this subject) because it is more sensible to
the losses.

2 Computation of the cumulative max value.

3 Compute the drawdown which is the ratio
between the cumulative return and the cumulative
max.

Then, we can compute the drawdown of the mean-variance portfolio.
We can display the drawdown of the portfolio in figure 5.1.

Figure 5.1: Drawdown of the mean-variance portfolio

This figure shows the drawdown of the mean-variance portfolio
computes in chapter 3 of this book.

As we can see, the max drawdown is around 40% during the corona
crisis. It is because it is a long-only strategy. Except for this period,
the drawdown is around 15%. It means that if we enter in position
with this portfolio just before the crisis, we have lost 40% of our

capital in 1 month. However, after May, we have found our capital at
100%.

We can compute the cumulative return of the portfolio
using the cumulative sum or the product sum. The
cumulative sum is used for the fixed lot strategy and the
cumulative product for the auto lot strategy.

5.2. Risk management metrics

In this section, we will talk about the risk management metrics. We will
see the best-known risk management metric, the Value at Risk (VaR).
Then we will see a derivative of this metric: the conditional value at risk
(cVaR). Moreover, we will learn how to compute the risk contribution of
each asset in the portfolio.

5.2.1. Value at risk (VaR)

In this subsection, we discuss Value at Risk (VaR). It is an excellent
risk metric. Indeed, it allows us to understand how much we lose in
the worst case, considering an error threshold. First, let us see one
formula to compute the VaR (there are many, and we will see only
one).

Where is the returns of the portfolio, the volatility of the
portfolio, the error threshold and the CDF of N(0,1).

The VaR depends on the timeframe we use. We will
have a worse daily loss if we use daily return

distribution. So, if we want the yearly worse loss, we
need to annualize the returns and the volatility before.

The reflection with the inverse of the CDF function is a little bit
complicated. We can explain the concept easier in figure 5.2.

Figure 5.2: VaR explanation

The objective of VaR is to find the value that has % of the values
above it. For example, if theta is equal to 5%, the VaR is the value
with 5% of the returns ordered above it.

Code 5.6: VaR function
def VaR_function (theta , mu , sigma):
 """
 --
Output: VaR
Inputs: - theta (type float): % error threshold
- mu (type float): portfolio expected return
- sigma (type float): portfolio volatility
 --
 """

 # Number of simulations
 n = 100000

 # Find the values for theta% error threshold
 t = int(n*theta)

 # Create a vector with n simulations of the normal law
 vec = pd.DataFrame(np.random.normal(mu, sigma, size=(n,)),
 columns = ["Simulations"])

 # Orderer the values and find the theta% value
 var = vec.sort_values(by= "Simulations").iloc[t].values[0]

 return var

To compute the VaR easier, we have used the large
number law. Indeed, to find the % value, we have
simulated 100,000 simulations of N (,) and take
the % value of the ordered vector.

Using this function, we can find the VaR for the mean-variance
portfolio. Indeed, for this portfolio, we found a VaR of 3.87% for a
day, 13.61% for a month, and 7.02% for a year. It means that in the
5% of the worst-case, we can lose more than 3.87% by day, 13.61%
by month, and 7.02% by year with this strategy.

The Var is an exciting metric. However, it does not consider the
extremity (whether they are much or not) of the values below the
VaR. To do it, we need to compute the cVaR.

5.2.2. Conditional Value at risk (cVaR)

This subsection will discuss the conditional Value at risk (cVaR [6]).
It is a derivative of the VaR. Indeed, this metric is in the same mind
as the VaR but takes extreme values into account, unlike the ordinary
VaR.

Indeed, the cVaR does a mean of each value below the VaR. So, if
there are extreme values, they will consider them.Let us put the

formula of the cVaR before a schema in figure 5.3 to understand
easier:

Where is the returns of the portfolio, the volatility of the
portfolio, the error threshold, the PDF (Partial Distribution
Function) of N(0,1) and the CDF (Cumulative Distribution
Function) of N(0,1).

Figure 5.3: cVaR explanation

In this figure, we can see how to compute the cVaR. Indeed, it is the
mean of the values below the VaR.

Code 5.7: Function for cVaR
def cVaR_function (theta , mu , sigma):
"""
 --
Output: cVaR
Inputs: - theta (type float): % error threshold
- mu (type float): portfolio expected return
- sigma (type float): portfolio volatility
 --
"""

 # Number of simulations
 n = 100000

 # Find the values for theta% error threshold
 t = int(n*theta)

 # Create a vector with n simulations of the normal law
 vec = pd.DataFrame(np.random.normal(mu, sigma, size=(n,)),
 columns = ["Simulations"])

 # Orderer the values and find the theta% value
 cvar =vec.sort_values(by= "Simulations").iloc[0
:t,:].mean().values[0]

 return cvar

Using this function, we can find the cVaR for the mean-variance
portfolio. Indeed, for this portfolio, we found a cVaR of 4.87% for a
day, 18.28% for a month, and 24.20% for a year. It means that in the
5% of the worst-case, we can lose more than 4.87% by day, 18.28%
by month, and 24.20% by year with this strategy.

I am using the cVaR. It is most interesting because it
considers significant money losses below the VaR.

5.2.3. Contribution risk

Risk contribution is an interesting metric because it allows us to
understand the percentage of risk for each asset. Indeed, this metric
lets us know which asset adds the most risk to the portfolio.

To compute the risk contribution, we need to have the beta of the
assets and the weight of each asset in the portfolio. Let us see how to
compute with the formula:

Where is the contribution to the risk of each asset, is the beta of

the assets and is the weight of the asset in the portfolio.

To computes the percentage of each risk asset in the

portfolio we need to divide the by the sum () to
have a base of 100%.

Code 5.8: Risk contribution function
def CR_function (weights , database , ben = "^GSPC"):
 """---
Output: Contribution risk metric
Inputs: - weights (type 1d array numpy): weights of the portfolio
- database (type dataframe pandas): Returns of the asset
- ben (type string): Name of the benchmark
 --
 """

 # Find the number of the asset in the portfolio
 l = len (weights)

 # Compute the risk contribution of each asset
 crs = []
 for i in range (l):
 cr = beta_function(data.iloc[:,i]) * weights[i]
 crs.append(cr)

 return crs/np. sum (crs) # Normalizing by the sum of the risk
contribution

Using this function, we can find the risk contribution of each asset.
Indeed, Facebook represents 31.04% of the portfolio's risk, Netflix
30.61%, and Tesla 38.34%. We can also represent these values in a
graphic like in figure 5.4.

Figure 5.4: Risk contribution graphic

In this figure, we can see each asset's risk contribution to the
portfolio's risk.

Now, we have the necessary metrics to backtest a strategy. In the next
section, we will create a function to apply easily to each strategy.

5.3. Automate the analysis

This section will create a backtesting function, and we will backtest
all the previous strategies.

5.3.1. Create a function

In this subsection, we will retake sections 5.1 and 5.2 to create a
function, which will be used in the next chapter. Let us see the code
and explain some details.

Code 5.9: Function for backtesting

def backtest (weights , database , ben = "^GSPC" , timeframe =
252 , CR = False):
 """
 --
Output: Beta CAPM metric
Inputs: - weights (type 1d array numpy): weights of the portfolio
- database (type dataframe pandas): Returns of the asset
- ben (type string): Name of the benchmark
- timeframe (type int): annualization factor
 --
 """

 # Compute the portfolio
 portfolio = np.multiply(database,np.transpose(weights))
 portfolio = portfolio. sum (axis= 1)
 columns = database.columns
 columns = [col for col in columns]

 ###################### COMPUTE THE BETA
#########################
 # Import the benchmark
 benchmark = yf.download(ben)["Adj Close"].pct_change(1
).dropna()

 # Concat the asset and the benchmark
 join = pd.concat((portfolio, benchmark), axis= 1).dropna()

 # Covariance between the asset and the benchmark
 cov = np.cov(join, rowvar= False)[0][1]

 # Compute the variance of the benchmark
 var = np.cov(join, rowvar= False)[1][1]

 beta = cov/var

 ####################### COMPUTE THE ALPHA
########################
 # Mean of returns for the asset
 mean_stock_return = join.iloc[:, 0].mean()*timeframe

 # Mean of returns for the market
 mean_market_return = join.iloc[:, 1].mean()*timeframe

 # Alpha

 alpha = mean_stock_return - beta*mean_market_return

 ###################### COMPUTE THE SHARPE
######################
 mean = portfolio.mean() * timeframe
 std = portfolio.std() * np.sqrt(timeframe)
 Sharpe = mean/std

 ###################### COMPUTE THE SORTINO
#######################
 downward = portfolio[portfolio< 0]
 std_downward = downward.std() * np.sqrt(timeframe)
 Sortino = mean/std_downward

 ##################### COMPUTE THE DRAWDOWN
#######################
 # Compute the cumulative product returns
 cum_rets = (portfolio+ 1).cumprod()

 # Compute the running max
 running_max = np.maximum.accumulate(cum_rets.dropna())
 running_max[running_max < 1] = 1

 # Compute the drawdown
 drawdown = ((cum_rets)/running_max - 1)
 min_drawdon = -drawdown. min ()

 ###################### COMPUTE THE VaR
###########################
 theta = 0.01
 # Number of simulations
 n = 100000

 # Find the values for theta% error threshold
 t = int(n*theta)

 # Create a vector with n simulations of the normal law
 vec = pd.DataFrame(np.random.normal(mean, std, size=(n,)),
 columns = ["Simulations"])

 # Orderer the values and find the theta% value

 VaR = -vec.sort_values(by= "Simulations").iloc[t].values[0]

 ##################### COMPUTE THE cVaR
###########################
 cVaR = -vec.sort_values(by= "Simulations").iloc[0 :t,:].mean()\
 .values[0]

 ##################### COMPUTE THE RC
#############################
 if CR:
 # Find the number of the asset in the portfolio
 l = len (weights)

 # Compute the risk contribution of each asset
 crs = []
 for i in range (l):
 cr = beta_function(data.iloc[:,i]) * weights[i]
 crs.append(cr)

 crs = crs/np. sum (crs) # Normalizing by the sum of the risk
contribution

 ##################### PLOT THE RESULTS
###########################
 print (f """ ---
 Portfolio: {columns}

 Beta : {np. round (beta, 3)} \t Alpha: {np. round (alpha, 3)}
\t \
 Sharpe: {np. round (Sharpe, 3)} \t Sortino: {np. round
(Sortino, 3)}

 VaR : {np. round (VaR, 3)} \t cVaR: {np. round (cVaR, 3)} \t
\
 VaR/cVaR: {np. round (cVaR/VaR, 3)}

 """)
 plt.figure(figsize=(10 , 6))
 plt.plot(portfolio.cumsum())
 plt.title("CUMULTATIVE RETURN" , size= 15)
 plt.show()

 plt.figure(figsize=(10 , 6))
 plt.fill_between(drawdown.index, drawdown* 100 , 0 , color=
"#E95751")
 plt.title("DRAWDOWN" , size= 15)
 plt.show()

 if CR:
 plt.figure(figsize=(10 , 6))
 plt.scatter(columns, crs, linewidth= 3 , color = "#B96553")
 plt.axhline(0 , color= "#53A7B9")
 plt.grid(axis= "x")
 plt.title("RISK CONTRIBUTION PORTFOLIO" , size= 15)
 plt.xlabel("Assets")
 plt.ylabel("Risk contribution")
 plt.show()

Incorporating a parameter that displays or does not
display specific metrics avoids needing to create many
functions.

Figure 5.5: Backtest for the mean-variance portfolio

Portfolio: ['FB', 'NFLX', 'TSLA']

Beta: 1.066 Alpha: 35.45 % Sharpe: 1.51 Sortino: 2.034

VaR: 30.74 % cVaR: 42.98 % VaR/cVaR: 1.398 drawdown: 39.27 %

This figure shows the backtest of the mean-variance strategy with
metrics and some plots to better understand the portfolio behavior.
5.3.2. Analyze static portfolio

With the backtesting function, we can now compare static portfolios
with each other.

All the strategies are nearly the same because these
strategies allow the long position only, and the
correlation between these assets is very high.

It would be helpful to find assets with a negative
correlation of returns. It would provide excellent
portfolio diversification.

Figure 5.6: Metrics for mean-variance portfolio (Reminder)

Portfolio: ['FB', 'NFLX', 'TSLA']

Beta: 1.066 Alpha: 35.45 % Sharpe: 1.51 Sortino: 2.034

VaR: 30.74 % cVaR: 42.98 % VaR/cVaR: 1.398 drawdown: 39.27 %

This figure shows that this strategy is perfect because the alpha is equal
to 35.45%. However, a huge VaR implies a significant risk in this
strategy.

Figure 5.7: Metrics for mean-variance-skewness-kurtosis portfolio

Portfolio: ['FB', 'NFLX', 'TSLA']

Beta: 1.136 Alpha: 47.35 % Sharpe: 1.547 Sortino: 2.105

VaR: 33.36 % cVaR: 47.59 % VaR/cVaR: 1.427 drawdown: 44.24 %

This figure shows that this strategy is good because the alpha is
equal to 47.35%. However, a massive VaR implies a significant risk
in this strategy and a drawdown at 44.24%.

Now, we compare these two strategies because it is strategies with
the same mind. As we can see from the mean-variance, all metrics
imply that the strategy is very profitable but highly risky. At the same
time, the mean-variance skewness kurtosis portfolio also has a better
return with a higher risk.

With these metrics, we cannot say which strategy is the
best. This choice depends on the investor. Indeed, if it
likes risky investment, it will choose the second,
otherwise the first.

The only differences are the contribution risk of each
asset. So, if we have some preferences in an asset, we
can also choose the best portfolio.

Let us discuss the two other static strategies, Sharpe and Sortino
portfolios. We can see in figures 5.8 and 5.9 the metrics of the
respective strategy.

Figure 5.8: Metrics for Sharpe optimization portfolio

Portfolio: ['FB', 'NFLX', 'TSLA']

Beta: 1.048 Alpha: 31.28 % Sharpe: 1.266 Sortino: 1.772

VaR: 40.37 % cVaR: 53.62 % VaR/cVaR: 1.328 drawdown: 35.52%

In this figure, we can say that this strategy is excellent because the
alpha equals 40.37%. However, a massive VaR implies a significant
risk in this strategy.

Figure 5.9: Metrics for Sortino optimization portfolio

Portfolio: ['FB', 'NFLX', 'TSLA']

Beta: 1.042 Alpha: 30.28 % Sharpe: 1.241 Sortino: 1.739

VaR: 41.13 % cVaR: 54.7 % VaR/cVaR: 1.33 drawdown: 34.92 %

This figure shows that this strategy is excellent because the alpha is
equal to 41.13%. However, a massive VaR implies a significant risk
in this strategy.

As we can see, the two strategies have nearly the same metrics. We
cannot say if one or the other is better. The only difference is the risk
in each asset. If we prefer investing in Netflix stock and believe in
this stock, we take the Sortino portfolio. However, if we prefer Tesla,
we choose the Sharpe portfolio, for example.

5.3.3. Analyze dynamic portfolio

In this part, we talk about the analysis of dynamic portfolios. Indeed,
they were awful compared to the static portfolio.

But why? There are several answers to this question. First, it was
critical to understand that our dynamic portfolio is a fundamental
strategy.

Also, we did not make asset selection for the first strategy with the
SMA. The strategies are also straightforward, but the objective was
to enter smoothly into the field of long-short strategies. So, we will
see in the following chapters how to create short-term algorithmic
trading strategies that work much better than these. Let us see the
results of these strategies in figure 5.10 and figure 5.11.

Figure 5.10: Metrics for SMA optimization portfolio

Beta: -0.917 Alpha: 13.58 % Sharpe: 0.4 Sortino: 0.929

VaR: 64.9 % cVaR: 76.31 % VaR/cVaR: 1.176 drawdown: 44.05 %

This figure shows that this strategy is not good because the alpha
equals 13.58%, and the VaR is at 64% annually. The Sharpe ratio is
meager (0.40).

Figure 5.11: Metrics for Trend returns optimization portfolio

Beta: -2.118 Alpha: -1.31 % Sharpe: -0.058 Sortino: -0.092

VaR: 40.74 % cVaR: 46.4 % VaR/cVaR: 1.134 drawdown: 27.7%

This figure shows that this strategy is not good because the alpha
equals -1.53%, but the VaR is at 40%, and the Sharpe ratio is meager
(0.031).

Summary

The CAPM metrics, the alpha, and the beta are fascinating to
understand the links between the portfolio and the
benchmark.

Drawdown gives us the most significant loss we can have in a
period if we enter in position at the worse time of this period.
Sharpe and Sortino's ratios allow us to understand the return
gain for 1% of risk-taking. However, the way to compute the
risk is different.

The VaR and the cVaR allow us to speculate about the worst
losses you can have used the strategy.

Chapter 6: Advanced backtest
methods

This chapter discusses advanced backtest technic such as take-profit,
stop-loss backtest, interesting metrics, and trailing stop loss. It will
give us more ideas about measures used in finance and trading.

6.1 Useful backtest advice

We have already seen how to make a backtest, but we have not
discussed the most frequent errors among more than 60,000 students.

6.1.1 Backtest is not a searching tool

The first and most important rule to follow is “Backtest is not a
searching tool.” Marco Lopez de Prado said in one of his books:
“Backtesting while researching is like drinking and driving.”

We will take a little example of the steps followed by nearly all
students to highlight the issue in their process:

1. Find some data, create new features, and split the dataset between

a train set and a test set.
2. Create a strategy using only the train set
3. Backtest the strategy on the test
4. Repeat until we find a profitable strategy on the test set

STEP 4 IS WHAT WE MUST AVOID !

Why? Because we will obtain hidden strategy overfitting. Without
realizing it, we will use a dataset that is supposed to represent reality
as much as possible to develop our strategy. However, in reality, we
do not have access to the future price: that is the problem! We will use

the future to train our algorithms, so we have very different
performances in live trading.
Now, let me show the steps to follow to avoid finding a "lucky"
strategy or an overfitted strategy like in our previous example:

1. Find the data, create new features, and split the dataset.
2. Create a strategy and OPTIMIZE it on the train set
3. Backtest the strategy on the test set: keep it if it is good or stop

here. Do not change the strategy's parameters; the strategy is not
profitable. It does not matter; we will try another one!

We need to understand that the more we touch our test set to adapt the
strategy, the more we will have bad performances in the future (in live
trading).

6.1.2 Big days are not our friends

Obviously big profit days are our friends, so why does the title section
tell the opposite? The second rule to follow when we backtest a
strategy is not to consider the big profit.

Indeed, the more the event is uncommon on the backtest, the more the
probability of facing it again is low. So, suppose we base the
profitability of our strategy on these 2 or 3 big profits. In that case, the
probability of being profitable in live trading is very low.

Figure 6.1: Strategy with a poor return’s stability

We see that the strategy will be a losing strategy without these three
big profits. It means that it is a risky strategy, so, in my opinion, it is
better not to select it.

To illustrate this purpose, let us see Figure 6.1 and Figure 6.2, in
which we see two strategies with the same return over the period but
with very different behavior. The first one loses a significant part of
the trades but is good thanks to the three significant earnings.
Conversely, the second strategy (Figure 6.2) is much more interesting
because the capital growth is more stable.

Figure 6.2: Strategy with an excellent return’s stability

This strategy is much more stable because the profit comes from much
of the trade. We do not have big profits or significant losses on the
returns, which is essential to see our capital growth safely.

Never forget that the first goal of trading is to
preserve our capital and a second time to make it
grow, not the opposite!

6.1.3 Understand your strategy

Doing a backtest is not interesting to predict the future behavior of the
strategy returns. The price has followed only one path between an
infinite number of possible paths. So, why should we do a backtest?
Because it will allow us to understand the strategy's strengths and
weaknesses, it is essential before putting it in live trading.

The first thing to check is the HIT ratio, the winning trade percentage:
keeping a strategy with a HIT ratio adapted to our goals is essential.
For example, suppose we want to create a trading signal to put in copy
trading (like in BullTrading). In that case, we should have the highest
HIT ratio possible because people will be more confident if they see
many profits, even small ones. However, we can accept the lowest
HIT ratio if we develop algorithms only for our investment.

On the other hand, the HIT ratio is nothing without a risk-reward
ratio, which is the ratio between the targeted reward (often the take-
profit) and the risk we take (often the stop-loss). We always need to
remember that the HIT and risk-reward ratios are two faces of the
same coin!

Figure 6.3 : Relationship between HIT and risk-reward ratio to be

at break even

We should find an equilibrium between these two metrics because we
will never obtain 95% of the winning trade with R (risk reward ratio)
greater than 1. Moreover, it is okay because in Figure 6.3, with a 95%
HIT ratio, we only need R of 0.052, which means that if we have a
risk of 1%, we need a profit of 0.052% when we earn a trade (with a
95%-win rate) to be at the break-even.

These two metrics are suitable to classify the strategy and understand
if they are suitable for our investor profile or not. Moreover, we need
to look at more metrics like the trade lifetime and time underwater
(when the strategy drawdown is lower than 0, but we will explain it in
detail in the next section).

There is no good value for these values; even if the more time
underwater is small, the best it is. However, it depends on our strategy
target: if we want a scalping strategy. We have a max time underwater
of 2 months; it is not good, but if we use a swing strategy, it can be
acceptable.

Always adapt the analysis of your backtest to your
target strategy. For example, do not expect a trading
lifetime of 10 minutes if you use a swing strategy.

6.2 Compute the strategy returns using TP
and SL

This section will show us how to compute the strategy returns using a
TP-SL strategy, adapt the data to this backtest method, and analyze the
results.

6.2.1 Find the extremum

In the previous chapter, we used vectorized backtesting. However, it is
impossible here because we need to check for each position when we
have touched the take-profit or the stop-loss. However, if we use the
ticks, the backtest will take much time (hours, maybe days if we do
not have a performant computer).

So, to fix this issue, we will use a little tip. Indeed, why do we need
the ticks? We touch the take-profit or the stop-loss first to find it for
each position. So, for each candle, we need to know which came first,
the low or the high!

Using only one timeframe will be impossible. However, suppose we
use the highest timeframe (ex: hourly) database and the lowest
timeframe (ex: 15 min) database. In that case, knowing which is
touched first will be possible. The advantage of this strategy is that we
keep the same number of data with one new attractive row, which will
be called “First” and will tell us if we have touched the high or the
low of this candle first. We need to look at the Github repository (link
in chapter 1) to find the database used in the code.

Code 6.1: Find if the first touch price: Low or High

def find_timestamp_extremum (data , df_lowest_timeframe):
 """

 :params: data(highest timeframe OHLCV data),
df_lowest_timeframe (lowest timeframe OHLCV data)
 :return: data with three new columns: Low_time (TimeStamp),
High_time (TimeStamp), High_first (Boolean)
 """

 # Set new columns
 data["Low_time"] = np.nan
 data["High_time"] = np.nan
 data["First"] = np.nan

 # Loop to find out which of the Take Profit and Stop loss appears
first

 for i in tqdm(range (len (data) - 1)): 1

 # Extract values from the lowest timeframe dataframe
 start = data.iloc[i:i + 1].index[0]
 end = data.iloc[i + 1 :i + 2].index[0]
 row_lowest_timeframe = df_lowest_timeframe.loc[start:end].
 iloc[: -1]

 # Extract Timestamp of the max and min over the period
(highest timeframe)
 try :
 high = row_lowest_timeframe["high"].idxmax()
 low = row_lowest_timeframe["low"].idxmin()

 data.loc[start, "Low_time"] = low
 data.loc[start, "High_time"] = high

 except Exception as e:
 print (e)
 data.loc[start, "Low_time"] = start
 data.loc[start, "High_time"] = start

 # Find out which appears first
 data.loc[data["High_time"] > data["Low_time"], "First"] = 1
 data.loc[data["High_time"] < data["Low_time"], "First"] = 2
 data.loc[data["High_time"] == data["Low_time"], "First"] =

0 2

 # Verify the number of row without both TP and SL on same time
 percentage_garbage_row= len (data.loc[data["First"]== 0
].dropna())
/ len (data) * 100

 #if percentage_garbage_row<95:
 print (f "WARNINGS: Garbage row: { '%.2f' %

percentage_garbage_row} %") 3

 # Transform the columns in datetime columns
 data.High_time = pd.to_datetime(data.High_time)
 data.Low_time = pd.to_datetime(data.Low_time)

 # We delete the last row because we can't find the extremum
 data = data.iloc[: -1]

 # Specific to the current data
 if "timestamp" is data.columns:
 del data["timestamp"]

 return data

1 Iterate on each highest timeframe row and
select the associated lowest timeframe rows to
find the first touch highest timeframe point
using the low and high price of the lowest
timeframe.

2 Sometimes, you will have some undetermined
row if the high and the low of the highest
timeframe is a touch on the same lowest
timeframe row.

3 Compute the number of rows in which we
cannot find which extremum is touched first

We have 0.86% of undetermined rows in our example, so it is
acceptable. However, if we have more than 5% of garbage row, it is
better to take a lower timeframe.

6.2.2 Calculate the returns

Once we have a complete database with our OHLCV data and we
have a new row which tells us which extremum is touched first, we
can compute the returns of our strategy using a TP-SL exit strategy.

To put our backtest into practice, we need a signal: -1 if we want to
take a sell position, 0 if we hold, and 1 if we take a buy position.
However, if we do not have these signals, we can simulate them using
the following code.

Code 6.2: Compute random signals

Create random signals
np.random.seed(70)
values = [-1 , 0 , 1]
df["Signal"] = [np.random.choice(values

 , p=[0.10 , 0.80 , 0.10]) for _ in range (len (df))]

It will be very simple. To compute the returns using a Take-profit /
Stop-loss exit strategy, we need to consider four cases:

1. We open a buy position, and we touch the TP first (High price)
2. We open a buy position, and we touch the SL first (Low price)
3. We open a sell position, and we touch the TP first (Low price)
4. We open a sell position, and we touch the SL first (High price)

It is a little bit fastidious, but the reasoning is straightforward: we
have a signal, and at the opening of the next candle, we open a trade
(buy or sell, depending on it). Then, for each high and low, we check

the variation from the open to the current high and low to see if we
have crossed or not the TP or the SL.

Code 6.3: Backtest using TP and SL

def run_tp_sl (data , leverage = 1 , tp = 0.015 , sl = -0.015 , cost
= 0.00):

 """
 :params (mandatory): data(have to contain a High_time and
a Low_time columns)
 :params (optional): leverage=1, tp=0.015, sl=-0.015,
cost=0.00
 :return: data with three new columns: Low_time
(TimeStamp), High_time (TimeStamp), High_first (Boolean)
 """

 # Set some parameters
 buy= False
 sell= False
 data["duration"] = 0

 for i in range (len (data)):

 # Extract data
 row = data.iloc[i]

 ######## OPEN BUY ########
 if buy== False and row["Signal"]== 1 :
 buy = True
 open_buy_price = row["open"]
 open_buy_date = row.name

 #VERIF
 if buy:
 var_buy_high = (row["high"] - open_buy_price) /
 open_buy_price
 var_buy_low = (row["low"] - open_buy_price) /
 open_buy_price

 # VERIF FOR TP AND SL ON THE SAME
CANDLE

 if (var_buy_high > tp) and (var_buy_low < sl): 1

 # IF TP / SL ON THE SAME TIMESTAMP, WE
DELETE THE TRADE RETURN
 if row["Low_time"] == row["High_time"]:
 pass

 elif row["First"]== 2 :
 data.loc[row.name, "returns"] = (tp-cost) *
 leverage
 data.loc[row.name, "duration"] = row.High_time
–
 open_buy_date

 elif row["First"]== 1 :
 data.loc[row.name, "returns"] = (sl-cost) *
 leverage
 data.loc[row.name, "duration"] = row.Low_time
–
 open_buy_date

 buy = False
 open_buy_price = None
 var_buy_high = 0
 var_buy_low = 0
 open_buy_date = None

 elif var_buy_high > tp:
 data.loc[row.name, "returns"] = (tp-cost) * leverage
 buy = False
 open_buy_price = None
 var_buy_high = 0
 var_buy_low = 0
 data.loc[row.name, "duration"] = row.High_time –
 open_buy_date
 open_buy_date = None

 elif var_buy_low < sl:
 data.loc[row.name, "returns"] = (sl-cost) * leverage
 buy = False
 open_buy_price = None

 var_buy_high = 0
 var_buy_low = 0
 data.loc[row.name, "duration"] = row.Low_time –
 open_buy_date
 open_buy_date = None

 ######## OPEN SELL ########
 if sell== False and row["Signal"]== -1 :
 sell = True
 open_sell_price = row["open"]
 open_sell_date = row.name

 #VERIF

 if sell: 2
 var_sell_high = -(row["high"] - open_sell_price) /
 open_sell_price
 var_sell_low = -(row["low"] - open_sell_price) /
 open_sell_price

 if (var_sell_low > tp) and (var_sell_high < sl):

 if row["Low_time"] == row["High_time"]:
 pass
 elif row["First"]== 1 : #À INVERSER POUR LE
BUY
 data.loc[row.name, "returns"] = (tp-cost) *
 leverage
 data.loc[row.name, "duration"] = row.Low_time
–
 open_sell_date

 elif row["First"]== 2 :
 data.loc[row.name, "returns"] = (sl-cost) *
 leverage
 data.loc[row.name, "duration"] = row.High_time
–
 open_sell_date

 sell = False
 open_sell_price = None
 var_sell_high = 0

 var_sell_low = 0
 open_sell_date = None

 elif var_sell_low > tp:
 data.loc[row.name, "returns"] = (tp-cost) * leverage
 sell = False
 open_sell_price = None
 var_sell_high = 0
 var_sell_low = 0
 data.loc[row.name, "duration"] = row.Low_time –
 open_sell_date
 open_sell_date = None

 elif var_sell_high < sl:
 data.loc[row.name, "returns"] = (sl-cost) * leverage
 sell = False
 open_sell_price = None
 var_sell_high = 0
 var_sell_low = 0
 data.loc[row.name, "duration"] = row.High_time –
 open_sell_date
 open_sell_date = None

 # Put 0 when we have missing values

 data["returns"] = data["returns"].fillna(value= 0) 3
 return data

1 We must check first if both TP and SL are
crossed in the same row to look at the First
columns to see which is touched first (if First =
0, we do not count the trade)

2 We need to be very careful when we compute
the selling positions profit because we need to
use the low time to find the TP and the high
time to find the SL.

3 It would help if we replaced all the Nan values
with zeros to compute the backtest metrics

efficiently.

We have already made the backtest but do not know how to interpret
it. Indeed, we have a return series without clear information. That is
the point of the next section

6.2.3 Analyze the backtest

Computing the returns is not enough; we need to calculate different
metrics for a quick overview of our strategy performance. To do that,
we will change our previous backtest function a little bit.

The most significant modification in the output is that we do not have
the Sharpe and Sortino ratio in this backtest. Why? Because the TP
and SL are fixed, there is no utility to compute the volatility,
especially the downward volatility, because all the losses are equal to
the stop-loss minus the fees. So, we can replace that with the average
trade lifetime and the VaR over cVaR ratio by the TUW (time
underwater) because the ratio will be close to 1 because of the stop-
loss.

Figure 6.4: Random signal backtest

 Beta: -0.019 Alpha: -0.47 AVERAGE TRADE LIFETIME: 3H 11min

 VaR: 1.26 % cVaR: 1.45 % TUW: 99.04% drawdown: 63.3 %

Just take one minute to analyze the backtest. Here, the strategy will go
directly to the bin. Why? Because of the risk, it takes. The TUW equals
99.04%, with a drawdown max of 63.3%.

Moreover, we can also display the monthly returns, which can be an
interesting indication. Let us know how to do it in the following code

and see the result in Figure 6.5.

Code 6.4: Compute monthly returns

Bonus
def profitable_month_return (p):

 total = 0
 positif = 0

 r=[]
 # Loop on each different year
 for year in p.index.strftime("%y").unique():
 e = []
 nbm = p.loc[p.index.strftime("%y")==year].index.strftime(
"%m").unique()
 # Loop on each different month
 for mois in nbm:

 monthly_values = p.loc[p.index.strftime("%y:%m")== f "
{year} : {mois} "]
 sum_ = monthly_values. sum ()

 # Verifying that there is at least 75% of the values
 if len (monthly_values)> 15 :

 # Computing sum return
 s = monthly_values. sum ()

 if s> 0 :
 positif+= 1

 else :
 pass

 total+= 1

 else :
 pass
 e.append(sum_)
 r.append(e)

 r[0]=[0 for _ in range (12 - len (r[0]))] + r[0]
 r[-1]= r[-1] + [0 for _ in range (12 - len (r[-1]))]
 return pd.DataFrame(r,columns=["January" , "February" ,
"March" , "April" , "May" , "June" ,
 "July" , "August" , "September" , "October" ,
"November" , "December"], index=p.index.strftime("%y"
).unique())

def heatmap (data):
 htm = profitable_month_return(data["returns"])* 100
 htm.index.name = "Year"
 htm.index = [f "20 {idx} " for idx in htm.index]

 plt.figure(figsize=(20 , 8))
 pal = sns.color_palette("RdYlGn" ,n_colors= 15)
 sns.heatmap(htm, annot= True , cmap =pal, vmin= -100 , vmax=
100)

 plt.title("Heatmap Monthly returns")
 plt.show()

Figure 6.5: Heatmap monthly returns

It is a very interesting way to show visually the stability of the strategy
performance.

6.3 Advanced backtest tools

Once we have a classic backtest, we can adjust the metrics and
simulate different paths. Moreover, we can easily backtest a trailing
stop loss strategy.

6.3.1 Backtest metrics list

In this section, we will recap several backtest indicators (some that we
have already seen in the book, but we will put them here again to have
a complete list of indicators). This is a non-exhaustive list!

1. Time underwater : the percentage of time we have a drawdown

below 0. It allows us to understand the percentage of time we will
earn money. It is essential to understand that the time does not
give the intensity of the loss: we can have a 1% time underwater
and a max drawdown of 100%, so we will lose all of our capital.
This metric should always be combined to the maximum
drawdown.

2. Trade lifetime : the average time of a trade position. The more
scalping-like the strategy, the more the trade lifetime is essential.

3. Assets under management : It is the dollar value of our portfolio
at each time (it is a vector). We usually compute the average AUM
(assets under management).

4. Long – short ratio : Number of long positions over the number of
sell positions. So, if we work with a long-short strategy, the more
the value is close to 0.5, the better it is.

5. Number of trades : very important to understand how many
trades you take and see if it is accorded to your trading plan: a

strategy with 12 trades over a year is not a significative backtest
but 500 is.

6. Annualized returns : It is essential to compute the annualized
return to be able to compare several strategies between them.

7. Correlation to underlying: Pearson’s correlation is usually
between the strategy returns and the underlying returns. The more
the value is close to 1, the more the strategy long the asset and the
more the correlation is close to -1, the more the strategy short the
asset. So, the strategy is not adding a lot of value if the correlation
is close to -1 or 1.

8. HIT ratio: percentage of winning trade. It must be associated
with the risk-reward ratio.

9. Risk-reward ratio: Essential to understand how many our risk is
compared to our targeted reward. Again, HIT and risk-reward
ratios (R ratios) are the two faces of the same coin

10. Sharpe ratio: An essential financial metric, it allows us to
understand the benefits of return of one more percentage risk. It
must be annualized.

11. Sortino ratio: Same metric as the Sharpe ratio, but we compute
the risk using the downward volatility instead of the classic
volatility for the Sharpe ratio.

12. Beta: It will give us some indications about how much the
strategy is correlated to the market (SP500, for example) (more
explanation in chapter 5)

13. Alpha: tells us how the strategy overperforms or underperforms
the market. (More explanation in chapter 5)

14. Information ratio: it will allow us to compare the risk-reward
couple of the strategy to the benchmark risk-reward couple.

15. Risk-free asset return: Consider the risk-free asset returns over

the period (annualized) to compare them to the annualized
strategy returns.

16. VaR: Will give us the worst loss we can make with a 5% error
threshold. We can compute it on the period that you want: the
worst loss per day, month or year for example. (More explanation
in chapter 5)

17. cVaR: Like the VaR but some difference in the computation.
(More explanation in chapter 5)

Use 20 backtest metrics will not render your strategy
better. In my opinion, 5 good indicators are clearly
enough to have a quick overview.

6.3.2 Monte Carlo simulation

So far, we have analyzed the performance of our strategy on only one
possible path. Indeed, the past is only one possible path between an
infinity.

To analyze different possible paths, we can use Monte Carlo
simulations. To create one Monte-Carlo simulation, we will randomly
take the strategy returns and reorganize the data.

Code 6.4: Compute monthly returns

def monte_carlo (data , method = "simple"): 1
 random_returns = []
 data["returns"] = data["returns"].fillna(value= 0)

 for _ in tqdm(range (100)):

 returns = data["returns"] -10 ** -100 2
 np.random.shuffle(returns)
 random_returns.append(returns)

 if method== "simple" :
 df_ret =
pd.DataFrame(random_returns).transpose().cumsum()* 100
 cur_ret = data["returns"].cumsum()* 100
 else :
 df_ret = ((1
+pd.DataFrame(random_returns).transpose()).cumprod() -1)* 100
 cur_ret = ((1 +data["returns"]).cumprod() -1)* 100

 p_90 = np.percentile(df_ret, 99 , axis= 1)
 p_50 = np.percentile(df_ret, 50 , axis= 1)
 p_10 = np.percentile(df_ret, 1 , axis= 1)

 plt.figure(figsize=(20 , 8))

 plt.plot(df_ret.index, p_90, color= "#39B3C7")
 plt.plot(df_ret.index, p_50, color= "#39B3C7")
 plt.plot(df_ret.index, p_10, color= "#39B3C7")

 plt.plot(cur_ret, color= "blue" , alpha= 0.60 , linewidth= 3 ,
label= "Current returns")

 plt.fill_between(df_ret.index, p_90, p_10,
 p_90>p_10, color= "#669FEE" , alpha= 0.20 ,
label= "Monte carlo area")

 plt.ylabel("Cumulative returns %" , size= 13)
 plt.title("MONTE CARLO SIMULATION" , size= 20)

 plt.legend()
 plt.show()

1 We can choose the method of capitalization.
The results will differ if we use simple or

compounded capitalization.

2 For each simulation, we need to change a little
bit the values to shuffle the data again (it is just
a programming constraint), but it will change
nothing to the results.

Once we have several simulations, we need to plot them intelligently.
To highlight the different possible paths, we will create a Monte-Carlo
area (between the dynamic 1st centile and 99th centile) and put the
dynamic median with the returns like in Figure 6.6.

It is essential to do this analysis to understand the loss that we have
had in the worst case (1st centile curve). In our case, we can see that
we have lost nearly all our capital in the first year. This strategy is too
volatile because even if it is followed the strategy distribution, it is
possible to have lost 90% of our capital in the first year.

When we have our Monte-Carlo area, the best thing to see is a short
area close to an upward trending line. The more area is small, the less
the strategy is volatile.

Figure 6.6: Monte-Carlo simulation with simple interest

capitalization

Seen the lower band of the Monte-Carlo, we can see that in one of the
worst paths, we can lose a lot of many after our strategy launching.
Moreover, the Monte-Carlo area is too large.

6.3.3 Easy Trailing stop

Trailing stop loss required ticks to be computed correctly. However,
here is a quick tip for finding the worst-case possible using a trailing
stop loss strategy. So, if we use the backtest function that will find the
worst case, we will see if, in the worst case, we are profitable or not. If
yes, it is a good thing because it means that all the big profits from the
trailing stop loss will be a bonus.
There are a lot of other trailing stop losses like classic trailing stop
loss and double profit targets. In our example, we will use the
threshold trailing stop loss. Once we have touched the TP, we begin
the Trailing Stop Loss (TSL) with a margin of 0.1%. It means that
when we touch the TP, we secure 1.4% with a TP of 1.5%, and then
we use a classic TSL: for each price augmentation, we increase the
stop loss to secure more and more profit. The goal will be to find the
returns. If we never earn any bonus profit from the trailing stop loss,
check the strategy's profitability to increase the probability of
profitability in live trading.

Code 6.5: Compute monthly returns
def run_tsl (data , leverage = 1 , tp = 0.015 , sl = -0.015 , tsl = 0.001 ,
cost = 0.00):
 """
 :params (mandatory): data(have to contain a High_time and a Low_time
columns)
 :params (optional): leverage=1, tp=0.015, sl=-0.015, cost=0.00
 :return: data with three new columns: Low_time (TimeStamp),
High_time (TimeStamp), High_first (Boolean)
 """

 tpl = tp – tsl 1

1 The only difference with the run_tpsl function
is that we need to have the TSL margin.

Sometimes compute the worst case of a strategy or an
indicator is much easier to compute the whole process.
Use it in your advantage.

As shown in figure 6.7, the random signal with worst-case TSL is not
profitable. This is because of poor strategy robustness with high
volatility underlying.

Logically, the worst TSL case is not very good. However, the goal
will be too delicate, something with acceptable returns, which will
increase the probability of being profitable in the future. It will be
much more difficult in creation but much easier when we are in live
trading, and we need to know when we want to suffer.

Figure 6.7: Worst TSL case with a random signal
--
 Beta: -0.018 Alpha: -3.13 % AVERAGE TRADE LIFETIME: 3H 11min
--
 VaR: 1.32 % cVaR: 1.5 % TUW: 99.71% drawdown: 87.8 %

Summary
Understand how to process to create a Backtest as clean as
possible.

How to create a long-short backtest using TP and SL as exit
signals.

There are many metrics to understand our backtest (17 in the
chapter but an infinity that can be used). Do not forget that
making 20 backtest metrics will not render our strategy better!

Use Monte-Carlo simulation to understand different previous
possible paths of your data

How to compute an easy Trailing Stop Loss

Part 2: Statistics predictive
models

This part discusses the classic technique used in the financial
industry. First, we will learn the statistical arbitrage trading with an
example: pair trading. Then we will talk about the ARMA model to
predict the returns of stocks. And to finish, we will see more
profound the notion of linear regression and the classification concept
with the logistic regression.

Summary:

Chapter 7: Statistical Arbitrage Trading

Chapter 8: Auto Regressive Moving Average (ARMA) models

Chapter 9: Linear regression and Logistic regressio n

Chapter 7: Statistical arbitrage
Trading

In this chapter, we will discuss statistical arbitrage in finance. The
notion will be learned through the pair trading strategy. First, we will
see the idea of stationarity and cointegration. Then, we will explain
how the pairs trading strategy works.

Before we begin the chapter, let us talk about statistical arbitrage.
This chapter will only see one of many examples of the statistical
arbitrage strategy.

Theoretically, making a long-term profit with a trading strategy is
impossible because the market should be equilibrium and efficient.
However, in reality, it is a little bit different. Indeed, there are many
unbalances in the financial market, and the statistical arbitrage
strategies make this disequilibrium in a profit. For example, one of
the most straightforward strategies is to find errors in the Forex
quotations.

For example, we have the following pairs of currencies:
NZD/AUD=1, AUD/CAD=1.5, and NZD/CAD=1. If we have CAD
and want to use a statical arbitrage opportunity to make a profit.
Using the third pair of currency, we can buy 100NZD because
100NZD=100AUD and 100AUD=150CAD. It is a statistical
opportunity trading because we have 100CAD. We can have
150CAD using an imbalance in the market with no risk.

7.1. Stationarity to Cointegration

This section will study the stationarity of a time series and how to use
the stationarity of time series to find cointegration between two time

series.

7.1.1. Stationarity

The stationarity of a time series is essential because it is a crucial
point of the behavior of a time series.
There is stationarity if the time series is flat around the mean and
without trend . Moreover, it needs to have a constant variance in
time . [7] (There are many assumptions to check, but these are the
most important).

A time series tends to return to a constant mean if it is
stationary. So, it is a good thing if you want to use
statistical arbitrage trading.

We can check the stationarity of a time series using the Dick and
Fuller test. The test's null hypothesis (H0) is that the time series is not
stationary. So, suppose we have a p-value inferior at error threshold s.
In that case, hypothesis H0 is not accepted, and it is a stationarity
time series. For example, if we want to know at an error threshold of
10% (if the time series is stationary), we will compute an augmented
Dick and Fuller test and check if the p-value is below or above 10%.
So, there are the following possibilities:

• p > 0.10 : H0 is accepted, and the time series is not stationary.
We need to make some modifications if we want it to become
stationary.

• p < 0.10 : H0 is not accepted, and the time series is stationary.

There are many tests to determine whether a time
series is stationary. However, be careful because all
tests have different null hypotheses, for one is
stationarity, and the other is non-stationarity.

Here are some pictures of stationarity and non-stationarity time
series. In figure 7.1 and figure 7.2, we can see a non-stationary and
stationary time series, respectively.

Figure 7.1: Non-stationary series

As we can see in the title, the p-value of this time series is 1.0. It
means that there is no doubt that this series is not stationary.

The more the p-value is close to 0, the higher the
chance the time series is stationary.

On the next page, Figure 7.2 shows the behavior of a stationary time
series. It is the most stationarity data that we can have. So, we can find
the differences between figure 7.1 and figure 7.2.

Figure 7.2: Stationary time series

As we can see in the title, the p-value of this time series is 0.0. It
means that there is no doubt that this series is stationary.

7.1.2. Cointegration

Many of the time, the stock prices are not stationary. So, how can we
apply models which need stationary data? To do it, we are going to
talk about cointegration. The cointegration allows us to find a
stationary time series combining non-stationaries time series. [8]

To find if two time series are cointegrated, you need to
find a relationship like this (where Y and X are two
time series) , where is
stationary (the error term) and X and Y are two non-
stationary time series.

So, to create a cointegration test, we need to compute linear
regression. We will learn how it works in detail in one of the
following chapters. Now, the only thing we need to know is that the
purpose of the regression is to find relations between the data. As we
have seen before in the tips box, the linear regression gives us the

alpha and the beta to approximate the Y, only knowing the X and the
epsilon is the error term.

Code 7.1: cointegration test
import statsmodels.api as stat
import statsmodels.tsa.stattools as ts

def cointegration (x , y):
 ols = stat.OLS(x, y).fit() 1
 adf_results = ts.adfuller(ols.resid) 2
 if adf_results[1] <= 0.1 : 3
 return 'Cointegration'
 else :
 return 'No Cointegration'

1 Fit linear regression using Statsmodels.

2 ols.resid allows us to take the residuals easily.

3 The threshold for the acceptability of the test is
0.1. It means 10%.

With Python, it is easier to work with the best library
for each situation. StatsModels is better when you need
to do statistics tasks with linear regression, and if you
want to do a linear regression for machine learning,
you will use Scikit-learn.

Figure 7.3 shows the difference between two cointegrated time series.
Indeed, in the figure, we can see the residual between both time
series. In this example, both the series are not stationary. Indeed, the
p-value for the augmented dick fuller test for the two times series
equals 1. Moreover, the p-value of the augmented dick and fuller test
for the residuals are 0. So, the residuals are stationary. Moreover, it is
possible to see that in the figure without computations.

Figure 7.3: Cointegrate two time series

As we can see, the residuals of this times series are stationary, and
this implies that the two series are cointegrated because it is also
easy to see that the two time series are not stationary.

7.2. Pairs trading

In the previous section, we have seen some statistics notions. In this
section, we will apply them to a financial context with a pairs trading
strategy [9] .

7.2.1. How it works

In this part, we will talk about how pairs trading works theoretically.
It will allow us to understand how to choose the best assets and
process to do this strategy:

We need to execute a qualitative analysis of the two pairs :
we need assets of the same sector. For example, BTC/USD
and ETH/USD. Then, it is less critical, but we need to find
assets with similar market capitalization and equivalent daily
traded volumes.

We analyze if the time series are cointegrated : this is the
essential part of the process. We need to have two non-
stationary time series with stationary residuals to find a linear
relationship between the two assets.

Analyze the correlation : if we have a set of assets and too
many with cointegration, we can take the n best-correlated
asset (in returns).

Once we have done this, we have the pair of assets to do the pair
trading strategy. It is necessary to compute z-scores using the
differences between the two time series for the dynamic portfolio (if
you do not remember how to do that, you can go to section 4.1).

For the pair trading strategy, you can compute the z-
score using the difference of log difference. It is a
personal choice.

Now that we have the z-score, we need to define the long and short
signals. There are many ways to do it. One of these ways is to enter
positions when we pass a standard deviation threshold and exit the
positions at the mean of the spread.

Figure 7.4 shows the spread of figure 7.3 with the standard deviation and
the mean of the values. The green circle represents a short position for
time series 1 and a long position for time series 2. Indeed, the spread is
ts1 minus ts2. We need a decrease of the time series 1 or an increase of

the time series 2, to return to the mean of the spread. The red circle
represents the inverse for the positions because the spread is negative.

Figure 7.4: Spread with thresholds

This figure shows the spread with the standard deviation and means
of the spread and the enter position signal.

It is essential to enter in position when the spread
crosses the threshold a second time and not before
because the spread can continue to increase the first
time.

7.2.2. Applications

In this part, we are going to compute a pair trading strategy. First, we
will use a function to find the cointegrate pairs and the correlation
between the two assets to choose the better pair.

We have a list of 10 currencies, and we need to find all combinations
of 2 currencies of these ten currencies. To find the number of

combinations, we can use the following formula:

Where is the number of the elements and the number of elements

we choose by combination. Here =2 and = 10 because for each
combination we choose 2 assets in the 10.

n! is the product of all numbers from 1 to n. For
example,

 It is
called the factorial.

Once we know that we will have 45 possible combinations, we
compute them in a list with the code 7.2.

Code 7.2: Find the combinations
We need to find the number of combinations of 2 by 10

10! / (2!*8!) = 4 5 1

Initialize the variables
nbc = 0
list_com = []

while nbc < 45 :
 # Take the assetes for the pair randomly
 c1 = np.random.choice(currencies)

 c2 = np.random.choice(currencies) 2

 # Add the list of the two asset
 if c1 != c2 and [c1, c2] not in list_com and [c2, c1] not in
list_com:
 list_com.append([c1,c2])

 nbc+= 1 3

1 We can compute the factorial using

np.math.factorial(n).

2 np.random.choice() takes a value of the list
randomly.

3 Add 1 to the number of pairs to stop the loop
when nbc=45.

We verify if [c1,c2] and [c2,c1] is not in the list of the
combinations because it is the same pair. Example:
(EUR/USD, USD/AUD) = (USD/AUD, EUR/USD).

Now, we have the possible combination. We need to compute the
cointegration and the correlation between the two assets of each pair.
We will use the previous cointegration function to do it. We can see
in code 7.3 how to compute these metrics efficiently for each pair.

Code 7.3: Compute the correlation and the cointegration test
Initialize the storage variable for all row
resume = []
for com in list_com:
 # Initialize the list
 row = []

 # Add the name of the assets in the list
 row.extend(com)

 # Add the result of the cointegration test
 row.append(cointegration(train_set[com[0]].values,
train_set[com[1]].values))

 # Add the results of the correlation
 row.append(train_set[com].pct_change(1).corr().values[0][1])

 # Add each row to make a list of lists
 resume.append(row)

Create a dataframe to a better visualization
sum = pd.DataFrame(resume,columns=["Asset1" , "Asset2" ,
 "Cointegration" , "Cor"])

Filtered the row by the cointegred pair
sum.loc[sum["Cointegration"] == "Cointegration"]

We will use the list of list structure because it does not
depend on the number of pairs. So, we can apply this
code to any list of pairs.

Figure 7.5: Resume of the metrics for each pair
Asset 1 Asset 2 Cointegratio

n
Correlatio

n
NZDUS

D
AUDNZ

D
True -0.27

AUDNZ
D

EURUS
D

True -0.01

USDCHF EURUS
D

True -0.55

EURAU
D

USDCHF True -0.15

In this figure, we can see the cointegrated pairs of the 45 possible
combinations.

Instinctively, the lower the negative correlation between the asset's
return, the better the strategy will work because we take inverse
positions. Whereas (USDCHF, EURUSD) and (NZDUSD,
AUDZND) take no positions with this strategy (you can verify with
the code). So, we take the pair (EURAUD, USDCHF). We can see
the result of the strategy in figure 7.6.

Figure 7.6: Performance of the strategy on (EUR/AUD,USD/CHF

Beta: -0.016 Alpha: 1.41 %. Sharpe: 0.047. Sortino: 0.056

VaR: 17.6 %. cVaR: 20.01 %. VaR/cVaR: 1.137. drawdown:24.86 %

This figure shows the backtest of the pairs trading strategy on
EURAUD USDCHF. The backtest is not exciting because the
cumulative returns are not very high. We have a little Sharpe ratio;
above all, the drawdown does not stop growth for 3 years.

The pair trading has a big assumption which is the fact
that the market situation must not change. However,
the corona crisis has caused a considerable market

disequilibrium, and it has not returned to equilibrium
quickly.

Summary

• Statistical arbitrage is when we can profit from the financial
market with no risk because of an unbalancing in the market.

• A time series is stationary when flat around the mean,

without trend, and constant time variance.

• Cointegration is helpful in finance to create a stationary time
series using two non-stationary time series.

Application Live Trading and Screener
This code is based on the class created in the annex: MetaTrader

Code 7.7: Application Trading / Screener for Pair trading

 import warnings
warnings.filterwarnings("ignore")
from MT5 import *
import numpy as np
import time

def pair_trading (ts1_symbol , ts2_symbol , pair = 1):
 mt5.initialize()

 #Import the data
 ts1_data = MT5.get_data(ts1_symbol, 3500)["close"]
 ts2_data = MT5.get_data(ts2_symbol, 3500)["close"]
 train_set = pd.concat((ts1_data, ts2_data), axis= 1
).dropna()
 train_set.columns = [ts1_symbol, ts2_symbol]

 train_set["spread"] = train_set[ts1_symbol]-
train_set[ts2_symbol]

 train_set["z-score"] = (train_set["spread"] - train_set[
"spread"].mean()) / train_set["spread"].std()

 std_high = train_set["z-score"].mean() + train_set["z-
score"].std()
 std_low = train_set["z-score"].mean() - train_set["z-
score"].std()
 mean = train_set["z-score"].mean()

 # Yersteday
 yts1 = train_set[ts1_symbol].values[-2]
 yts2 = train_set[ts2_symbol].values[-2]

 #Today
 pts1 = train_set[ts1_symbol].values[-1]
 pts2 = train_set[ts2_symbol].values[-1]

 # Today data
 spread = pts1 - pts2
 zscore = (spread-train_set["spread"].mean())/train_set[
"spread"]
.std()

 # Yersteday
 yspread = yts1 - yts2
 yzscore = (yspread-train_set["spread"].mean())/train_set[
"spread"]
.std()

 # TS1
 short_ts1 = False
 long_ts1 = False

 if zscore < std_high and yzscore > std_high:
 short_ts1 = True
 long_ts1 = False

 elif zscore > std_low and yzscore < std_low:
 short_ts1 = False
 long_ts1 = True

 else :
 pass

 #TS2
 short_ts2 = False
 long_ts2 = False

 if zscore < std_high and yzscore > std_high:
 short_ts2 = False
 long_ts2 = True

 elif zscore > std_low and yzscore < std_low:
 short_ts2 = True
 long_ts2 = False

 else :
 pass

 # Positions
 if pair == 1 :
 buy, sell = long_ts1, short_ts1

 else :
 buy, sell = long_ts2, short_ts2

 return buy, sell

True = Live Trading and False = Screener
live = True

if live:
 current_account_info = mt5.account_info()
 print ("---")
 print ("Date: " , datetime.now().strftime("%Y-%m-%d
%H:%M:%S"))

 print (f "Balance: {current_account_info.balance} USD,
\t"
 f "Equity: {current_account_info.equity} USD, \t"
 f "Profit: {current_account_info.profit} USD")
 print ("---")

Initialize the inputs
symbols = ["EURUSD" , "EURGBP"]
lots = [0.01 , 0.01]
pairs = [1 , 2]

start = datetime.now().strftime("%H:%M:%S") #"23:59:59"
while True :
 # Verfication for launch
 if datetime.now().weekday() not in (5 , 1):
 is_time = datetime.now().strftime("%H:%M:%S") ==
start
 else :
 is_time = False

 # Launch the algorithm
 if is_time:
 for symbol, lot, pair in zip (symbols, lots, pairs):

 # Create the signals
 buy, sell = pair_trading(symbols[0], symbols[1],
pair=pair)

 # Run the algorithm
 if live:
 MT5.run(symbol, buy, sell,lot)

 else :
 print (f "Symbol: {symbol} \t"
 f "Buy: {buy} \t"
 f "Sell: {sell} ")
 time.sleep(1)

The live parameter sets the live trading mode (live = True) or
the screener mode (live = False).

Chapter 8: Auto Regressive
Moving Average model (ARMA)

In this chapter, we will explain how works the ARMAs models. In
the first section, we will explore the time series concepts. Then, we
will explain the AR model and the MA model. Moreover, we will
explain the ARMA model and its derivatives.

8.1. Time series basics

This section explains some prerequisites of the time series [10]

concept. We will explain the idea of trends, cycles, and seasonality.
Then, we will explain some interesting things about the different
ways to compute the returns. After that, we will explain the easier to
understand predictive model: the linear regression.

8.1.1. Trend, cycle, seasonality

Time series has three essential concepts: trend, cycle, and seasonality.
Let us start with the easiest. The trend is a long-term behavior
followed by the time series. We can see an example in figure 8.1.

Figure 8.1: Upward trend on the stock price Google (2007 to 2021)

This figure shows an exponential upward trend for Google stock
price from 2007 to 2021. Indeed, we can see that the stock price
increases even if there is some downward period.

There is also the possibility of a downward trend in a stock price, but it
is only interesting if we can short the stock.

Now, let us talk about the cycle in time series. To explain this, we will
create a fictive time series to highlight some points. A time series is
cyclical if there is a repeated schema on the price with a non-determined
time between two repetitions of this behavior. Let us see an example in
figure 8.2.

Figure 8.2: Cyclical time series

We see that the same behavior sometimes appends but with a non-
determinate time between each repetition.

Now, let us see how to find a seasonal time series. Seasonality is like
cyclicality, but we talk about seasonality with equal time between each
repetition. Let us see the difference between the two concepts in figure
8.3.

Figure 8.3: Seasonal time series

In this figure, we can see the same time between two repetitions of the
behavior. So, it is a seasonal time series.

8.1.2. Log price properties

Before going deeper, we need to learn some log price properties. We
sometimes use the log price because it allows us to understand the
return variation better. Suppose we want to find the best rentability
period (for Google stock). In that case, we will check the price of
Google and try to see the best augmentation on a graphic. However,
the price of a stock is an absolute value, and it does not highlight the
relative evolution of the stock. Let us explain this with an example in
figure 8.4.

The choice between returns and log returns is a
personal choice, but I nearly always test both to
optimize my algorithms.

Figure 8.4: Log price and price for Google’s stock price
Absolute stock price

Log stock price

This figure shows that the period from 2005 to 2008 is better than the
period from 2017 to 2020 for a long-only strategy thanks to the log

price graphic because it puts the price in a minimal range.

8.1.3. The linear regression

In this subsection, we will create a linear regression model. We will
explain how linear regression works because this concept is
necessary to understand the ARMAs models.

Linear regression is a predictive algorithm. The goal of this algorithm
is to allow us to predict some data. For example, suppose we know
the relationship between gold and S&P 500. We can use linear
regression to predict the S&P 500 stock price using the gold price.

Let us see how to compute a linear regression using an optimization
problem and explain more profoundly the intuition using figure 8.5.

Where is the predicted value, the real value and are the
parameters of the model.

The intuition of the linear regression can be resumed
by an algorithm that tries to find the best way to
minimize the distance between the predicted and real
values.

Figure 8.5: Linear regression intuition

This figure shows how linear regression works with a model that
takes the gold and predicts the S&P 500 price.

It is important to understand that for a dataset X which has m rows

and n columns . In our example

with S&P 500 and gold (to are
the model’s parameters).

8.2. AR and MA models

In this section, we will learn two practical predictive algorithms: the
autoregressive model (AR) and the moving average model (MA).

8.2.1. Autoregressive model (AR)

The intuition behind the autoregressive model is straightforward. It is
a linear regression but uses the previous value of the stock to predict
the value of today or tomorrow.

For example, if we take the model with S&P 500 and gold again, we
predict S&P 500 using gold in the linear regression. Now, we will

predict the S&P 500 at time t using S&P 500 at time t-1, which can
be extended to S&P 500 at time t-p. Let us see the AR(p) model
equation, where p is the number of previous data you take.

Where to are the parameters of the model and each parameter
must be a value between 0 and 1.

Now let us see how to do an AR model using Python on the
EURUSD currency.

Code 8.1: Implementation AR model

 def AR_predict_value (train_set):
 """ Function for predict the value of tomorrow using AR
model"""

 # Define model
 p = 1
 model = ARIMA(train_set, order=(p, 0 , 0))

 # Fit the model
 model_fit = model.fit(disp= 0)

 # Make forecast

 forecast = model_fit.forecast() 1

 return forecast[0][0]
def AR (df , returns = True):
 """ Function to predict the test set with a AR model """

 # Find the split
 split = int(len (df)* 0.70)

 # Predict the price using AR function
 df['predicted_value'] = df['Adj Close'].rolling(split).\

apply(AR_predict_value) 2

 # Compute the returns and the signal of the asset
 if returns:

 df['returns'] = df['Adj Close'] 3
 df['signal'] = np.where(df.predicted_value > 0 , 1 , -1) 4
 else :
 df['returns'] = df['Adj Close'].pct_change(1) 5
 df['signal'] = np.where(df.predicted_value > df['Adj Close'],

1 , -1) 6
 # compute strategy returns

 df['strategy'] = df.signal.shift(1) * df.return s 7

 return df

1 Forecast the next value using the fitted model.

2 Apply a function to the whole dataset using
rolling() from pandas.

3 If we use the returns to fit the model, the
columns “returns“ is equal to the columns “Adj
Close”.

4 If the predicted return is positive, we long, and
if it is negative, we short.

5 Compute the percentage of return of the asset
because “Adj Close” is the absolute price.

6 Create the signal using the condition: if the
predicted value is below the Adjusted close,
tomorrow we long neither we short.

7 Compute the strategy returns as the signal of
yesterday times the returns.

In the AR function, we have had a parameter
return=True. This allows us to work with stock returns
or stock prices.

We can answer why doing an AR model with the returns is better
than the price. The answer needs some skills from the previous
chapter. Indeed, it is better to work with stock return than stock price
because we need stationary data (confer section 7.1).

Usually, with AR or ARMA model, we use the differencing methods
to transform the data (pt - pt-1). Still, it is difficult for us to use this
data because, in finance, we do not just want to predict a value, we
want to create a strategy with this value, and we need the percentage
of variation to compute the strategy returns. It can be fastidious about
calculating returns using different steps while a function exists to do
it more accessible.

In finance, it is better to use returns to have stationary
data because it will be easier to compute the returns of
the strategy and to compare the assets to each other.

In code 8.1, we can see that the p of the AR model is set to 1 (number
of lags for the autoregressive model). But why not 3, 8, or 10? There
exist many ways to find the best value for p. The first is to try the
model's error using MSE or MAE (confer section 1.1) for p from 1 to
15, for example, and choose the lowest error. However, it can be very
long to compute all the models.

The other way is to use a partial autocorrelation graph to find the best
theoretical number of lags. Nevertheless, what is partial
autocorrelation? A partial autocorrelation summarizes the
relationship between an observation in a time series with previous
observations with the relationships of intervening observations
removed.

Let us see how to interpret a partial autocorrelation graph (you can
find the code to do it in the notebook associated with the chapter) in
figure 8.6.

Figure 8.6: Partial autocorrelation graph

We see the autocorrelation graph of the EURUSD returns. The blue
area is the interval in which the partial autocorrelation is not
significant, which means that all the lag greater or lower than the
blue is significant. Thus, we can see that lag 1, 6, and 8 are
significant and have better results. We must choose an AR(8) to
estimate the EURUSD model theoretically.

In finance, we always lag slightly to avoid overfitting
the algorithm. A maximal lag of 3 can be a good idea
because if we take several lags, for example, 150, the
model will be perfect on the train data and not useable
on the test set. We need a model to predict the value of
a test set.

Now, let us talk about the strategy's performance with the AR model.
In figure 8.7, we can see the cumulative returns of a method using the
AR model on EURUSD. We could say that the model works well
enough because, in 1 year, it have made 8% of return even if it had a
high risk but, it is not the point highlighted here.

During the corona crisis, the market situation was different from
normal. Whereas the AR model is a predictive algorithm that uses
past data to predict the value (regressor algorithm), the training data
can have very different properties like two other time series.

Figure 8.7: Backtest of the AR model on EURUSD

Beta: -0.021 Alpha: -1.13 %. Sharpe: -0.211 Sortino: -0.313

VaR: 16.21 % cVaR: 18.34 % VaR/cVaR: 1.131 drawdown: 10.36 %

The figure shows that the backtest of the strategy is not good. Indeed,
alpha, Sharpe, and Sortino are negative. In contrast, we see an
excellent capacity to predict the return before the corona crisis, even
if it is not excellent. Since the corona crisis, the drawdown has had
constant growth. Thus, the strategy is not good, and we do not use it
like this. We need to search for another asset with a higher partial
autocorrelation.

8.2.2. Moving average model (MA)

Now let us talk about the moving average model. This model will not
use the moving average as the name but the past error of the model. It
is an essential part of the ARMA model because it allows us to learn
not from the value of the train set but from the algorithm's error. Let
us see how the MA model works with his equation:

Where to are the parameters of the models and

 .

Code 8.2: Moving average implementation (MA)
def MA_predict_value (train_set):
 """ Function for predict the value of tomorrow using AR
model"""

 # Define model
 q = 1
 model = ARIMA(train_set, order=(0 , 0 , q)) 1

 # Fit the model
 model_fit = model.fit(disp= 0)

 # Make forecast
 forecast = model_fit.forecast()

 return forecast[0][0]

def MA (df , returns = True):
 """ Function to predict the test set with a MA model """

 # Find the split
 split = int(len (df)* 0.70)

 # Predict the price using AR function
 df['predicted_value'] = df['Adj Close'].rolling(split).\
apply(MA_predict_value)

 # Compute the returns of the asset
 if returns:
 df['returns'] = df['Adj Close']
 df['signal'] = np.where(df.predicted_value > 0 , 1 , -1)
 else :
 df['returns'] = df['Adj Close'].pct_change(1)
 df['signal'] = np.where(df.predicted_value > df['Adj Close'],
1 , -1)

 df['strategy'] = df.signal.shift(1) * df.returns

 return df

1 The only difference between the AR and the
MA models is the parameters of the ARIMA
function of StatModels.

To compute the moving average model (MA), we have
used the same function as the AR model, the ARIMA
function of statsmodels. Still, there is function
parameter difference so this function will be much
better explained in the next section.

How to choose the q? We can also use the technique which tests all
the q from 1 to 20 to see which has the lowest error on the train set.
Alternatively, we can choose the same method as partial
autocorrelation but using absolute autocorrelation. Let us see the
autocorrelation graph of the EURUSD returns in figure 8.8.

Figure 8.8: Autocorrelation graph for the EURUSD returns

We see that the autocorrelation is insignificant from lag 1 to lag 10
except for lag 6 and 8, but it is tiny.

We choose to take a lag of 1 for this model because there is no
autocorrelation. In figure 8.9, we can see the return of the MA(1),
which is very similar to the AR(1). However, there is a loss lowest
than the AR(1) during the corona crisis because yesterday's error fits
it.

When there is no significant partial autocorrelation or
autocorrelation, it is advised not to use an AR or MA
model. Indeed, sometimes doing nothing is the best
action.

Figure 8.9: Backtest MA model on EURUSD

Beta: -0.017. Alpha: 0.68 % Sharpe: 0.167 Sortino: 0.259

VaR: 13.76 % cVaR: 15.92 % VaR/cVaR: 1.157 drawdown: 8.01 %

The alpha, Sharpe, and Sortino ratios are positive. However, as for the
previous strategy, the strategy does not work anymore after the corona
crisis. The excellent point is that the cVaR is equal to 16%, so we should
not lose more than 16% in one year.

8.3. ARMAs models

This section will explain the ARMA [11] model, which combines MA
and AR models. Then, we answer one of the biggest problems with
the ARMA model: how to use an ARMA model on non-stationary
data?

8.3.1. ARMA model

We will explain the autoregressive moving average (ARMA) model
in this part. This model is a combination of the AR model and the
MA model shown before.

The model is the combination of the AR equation and MA equation.
We are going to show the ARMA model equation.
So, an ARMA model has two parameters, q and p. The parameter q is
the number of lags for the moving average part, and p is for the
autoregressive part.

Where to are the parameters of the MA part and

 , to are the parameters of the
AR part and each parameter must be a value between 0 and 1.

Remember that the data need to be stationary while
using an ARMA model.

Code 8.4: ARMA model implementation

def ARMA_predict_value (train_set):
 """ Function for predict the value of tomorrow using AR
model"""

 # Define model
 p = 1

 q = 1
 model = ARIMA(train_set, order=(p, 0 , q)) 1

 # Fit the model
 model_fit = model.fit(disp= 0)

 # Make forecast
 forecast = model_fit.forecast()

 return forecast[0][0]

def ARMA (df , returns = True):
 """ Function to predict the test set with a ARMA model """

 # Find the split
 split = int(len (df)* 0.70)

 # Predict the price using AR function
 df['predicted_value'] = df['Adj Close'].rolling(split).\
apply(ARMA_predict_value)

 # Shift the predicted price by 1 period
 df['predicted_value'] = df['predicted_value'].shift(1)

 # Compute the returns of the asset
 if returns:
 df['returns'] = df['Adj Close']
 df['signal'] = np.where(df.predicted_value > 0 , 1 , -1)
 else :
 df['returns'] = df['Adj Close'].pct_change(1)
 df['signal'] = np.where(df.predicted_value > df['Adj Close'],
1 , -1)

 df['strategy'] = df.signal.shift(1) * df.returns

 return df

1 The only difference between the previous
models is the parameters of the ARIMA

function of StatModels. Now, it combines AR
and MA parameters.

Now, you understand two of the three parameters of
the ARIMA function, The p of the AR model and the q
of the MA model.

Figure 8.10: Backtest ARMA model on the EURUSD

Beta: -0.023 Alpha: 1.75 % Sharpe: 0.227 Sortino: 0.341

VaR: 13.45 %. cVaR: 15.55 % VaR/cVaR: 1.156 drawdown: 10.0 %

ARMA has been a combination of two losing models on this data. We
have a bad return using the ARMA model in this example.

8.3.2. ARIMA model

We have seen enough ARMA models in this chapter. However, we
need to understand the d parameter of the ARIMA model. If you
remember the previous section skillfully, we have seen that the data
need to be stationary to use the ARMA model.

However, in finance, most of the time, series is not stationary. So, we
need to transform the data into a stationary time series. To do it, we
use differencing. The differentiation is the price t-1 to price. The
ARIMA function allows us to differ with parameter d. Usually, with
financial time series, d=1 if we fit the ARIMA model using the price
or d=0 if we use the asset's returns.

It is essential to understand that the ARIMA model is
an ARMA model using non-stationary data, and it is
the only difference.

Code 8.5: ARIMA model implementation

def ARIMA_predict_value (train_set):
 """ Function for predict the value of tomorrow using AR
model"""

 # Define model
 p = 1
 q = 1
 d = 1
 model = ARIMA(train_set, order=(p, d, q))

 # Fit the model
 model_fit = model.fit(disp= 0)

 # Make forecast
 forecast = model_fit.forecast()

 return forecast[0][0]

def ARIMA_model (df , returns = True) : 1
 """ Function to predict the test set with a ARIMA model """

 # Find the split
 split = int(len (df)* 0.70)

 # Predict the price using AR function
 df['predicted_value'] = df['Adj Close'].rolling(split).\
apply(ARIMA_predict_value)

 # Shift the predicted price by 1 period
 df['predicted_value'] = df['predicted_value'].shift(1)

 # Compute the returns of the asset
 if returns:
 df['returns'] = df['Adj Close']
 df['signal'] = np.where(df.predicted_value > 0 , 1 , -1)
 else :
 df['returns'] = df['Adj Close'].pct_change(1)
 df['signal'] = np.where(df.predicted_value > df['Adj Close'],
1 , -1)

 df['strategy'] = df.signal.shift(1) * df.returns

 return df

1 Warning: we cannot call this function ARIMA
because there will be interference with this and
the ARIMA function of StatModels.

Figure 8.11: Backtest ARIMA model on EURUSD

Beta: -0.016 Alpha: -0.25 % Sharpe: 0.103 Sortino: 0.16

VaR: 14.16 %. cVaR: 16.43 % VaR/cVaR: 1.16 drawdown: 9.6 %

Same interpretation as for the ARMA model

Summary

The log price properties are fascinating to understand the
natural variation of the assets.

The linear regression finds the line which minimizes the
distance between all the observations.

The Autoregressive model is a linear regression of the
previous data. We can find the optimal lags using the partial
autocorrelation graph.

The moving average model uses the past error term to adjust
the model. We can find the optimal lag using an
autocorrelation graph.

The ARMA model is a combination of the AR and the MA
models. We can find the best parameters using the same
criteria as for the AR and MA.

The ARMA model needs stationary data. We can put the
stock price in return to use it or use the ARIMA model, which
allows us to add differentiation in the model to have
stationary data.

Application Live Trading and Screener
This code is based on the class created in the annex: MetaTrader

Code 8.6: Application Trading / Screener for ARIMA model
from MT5 import *
import numpy as np
import pandas as pd
import warnings
warnings.filterwarnings("ignore")
from statsmodels.tsa.arima_model import ARIMA
import time

def sig_ARIMA_model (symbol):
 """ Function for predict the value of tommorow using
ARIMA model"""

 train_set = MT5.get_data(symbol, 3500)["close"]

 # Define model

 p = 1
 q = 1
 d = 1
 model = ARIMA(train_set, order=(p, d, q))

 # Fit the model
 model_fit = model.fit(disp= 0)

 # Make forecast
 forecast = model_fit.forecast()

 value_forecasted = forecast[0][0]
 buy = train_set.iloc[-1] < value_forecasted
 sell = not buy

 return buy, sell

True = Live Trading and False = Screener
live = True

if live:
 current_account_info = mt5.account_info()
 print ("---")
 print ("Date: " , datetime.now().strftime("%Y-%m-%d
%H:%M:%S"))
 print (f "Balance: {current_account_info.balance} USD,
\t"
 f "Equity: {current_account_info.equity} USD, \t"
 f "Profit: {current_account_info.profit} USD")
 print ("---")

info_order = {
 "Euro vs USdollar" : ["EURUSD" , 0.01]
}

start = datetime.now().strftime("%H:%M:%S") #"23:59:59"
while True :
 # Verfication for launch
 if datetime.now().weekday() not in (5 , 6):

 is_time = datetime.now().strftime("%H:%M:%S") ==
start
 else :
 is_time = False

 # Launch the algorithm
 if is_time:

 # Open the trades
 for asset in info_order.keys():

 # Initialize the inputs
 symbol = info_order[asset][0]
 lot = info_order[asset][1]

 # Create the signals
 buy, sell = sig_ARIMA_model(symbol)

 # Run the algorithm
 if live:
 MT5.run(symbol, buy, sell,lot)

 else :
 print (f "Symbol: {symbol} \t"
 f "Buy: {buy} \t"
 f "Sell: {sell} ")
 time.sleep(1)

The live parameter sets the live trading mode (live =
True) or the screener mode (live = False).

Chapter 9: Linear regression
and logistic regression

This chapter discusses the regression model. First, we will go deeper
into the simple linear regression. Then, we will see another class of
predictive models, the classifiers.

9.1. Regression and classification

First, in this section, we will learn the difference between regression
[12] and classification models.

9.1.1. Reminder about regression

In the previous chapter, we have done a little resume of the linear
regression. Here, we will remind and explain how regression works
for any regression algorithms.

• All regression models want to predict a continuous value. For
example, if a model predicts the percentage of stock variation,
the prediction will be contained into the interval [-30%; +30%],
and it can take all values in this interval (for example, 1.57%,
6.78%, 13.39%).

• Intuitively, the idea of regression is to find a model which can be

closer to each value of a dataset. We can compute the sum of the

distance between the predicted value and the real value
using the mean squared error (MSE). Mathematically, MSE =

• All regression algorithms have their method to be optimized.
However, all can be tested with the MSE to find if it is a good
model or not. In comparison, the line regression is the only
which optimizes the MSE to find the best parameters.

9.1.2. Understand the classification

In this part, we will talk about the classification models. To
understand it quickly, we will follow the same guideline as the
previous reminder about linear regression to highlight the differences.

• When we work with a classification algorithm, the target is
not a continuous value. Indeed, it is a definite value. For
example, we can predict if the stock price will increase or
decrease tomorrow but not predict a value. In classification,
the target vector is 0 for the decreasing day and 1 for the
increasing day.

• Naturally, the cross-entropy function is the most common to

find the best parameters for this algorithm. It is a complicated
name for a simple thing. This function calculates the
percentage of the excellent prediction.

• The most used metrics to understand the performances of a

classification model are the precision and confusion matrix.

Now, suppose we have understood all these points perfectly. In that
case, we can ask ourselves: "Why was cross-entropy used to optimize
the classification algorithm and not just the precision." We use the
cross-entropy function to optimize because, in optimization, we need
a continuous function like f(x) = x. Still, the precision is not
continuous, so we need to find other solutions, and we find this
solution using cross-entropy. The function is unimportant but is put
for the one who wants to know it.

Where M is the number of classes, N is the number of observations,

 is the true observation and is the predicted probability
observation. We will go deeper into the predicted probability notion
later in the chapter.

Now, let us talk about the testing-performances metrics for the
classification. The best-known metric is precision. It is calculated by
the number of true predictions divided by the number of predictions.

The confusion matrix has been explained as one of the best testing
performance metrics. It is a matrix with true positive, false positive,
false negative, and true negative. It is interesting to understand in
which way the algorithm is wrong. Let us see in figure 9.1 a
theoretical confusion matrix.

Figure 9.1: Theoretical confusion matrix

Real \
Prediction

True False

True True positive True negative
False False negative False positive

Moreover, the utilization of the confusion matric depends on the
context. Suppose we work on an earthquake predictive algorithm. In
that case, the worst value is the true negative because it means we do
not predict the earthquake, but it happened. The False positives are
wrong, but not really because we expected the earthquake, and it did
not happen. Suppose the model predicts a corporate's upward trend
the following year. In that case, True negatives are insignificant
because we do not invest in this corporate, so we do not lose money
instead of the False positive, which means we have invested in the
wrong company.

9.2. Linear regression

In this section, we will learn how to perform a linear regression on the
stock price. We will learn how to prepare the data, perform a linear
regression, and backtest it.

9.2.1. Preparation of data

First, we need to import the data. We have chosen the EURUSD
currency to be able to compare to the performance of the ARIMA
model.

I work only with the percentage of variation because
we do not need to standardize the data in many cases,
and the variations are more representative than the
stock price (we will explain this point in part 9.3.1).

In the data, we add a new column with yesterday's price. It will be the
variable that we will use to predict the price of today. Let us see this
in code 9.1.

Code 9.1: Import the data
Import the data
df = yf.download("EURUSD=X" , end= "2021-03-01")[["Adj
Close"]].\
pct_change(1)

Create a X

df["Adj Close t-1"] = df[["Adj Close"]].shift(1) 1

Drop missing values
df = df.dropna()

1 Add a shift to put the X (yesterday’s return) and
the y (today’s return) of the same day on the same
row.

In statistics and machine learning, the data are divided into X and y.
X is all the variables that we use to predict the variable y. In our case,
X is yesterday's return, and y is today's return. Moreover, we need to
divide a train set and a test set. This decomposition allows us to train
the model on the train set and test the performances on unknowing
data, the test set. Usually, we use 80% of the data for the train set and
20% for the test.

Code 9.2: Creation of the train and test set
Percentage train set
split = int(0.80 * len (df))

Train set creation
X_train = df[["Adj Close t-1"]].iloc[:split]
y_train = df[["Adj Close"]].iloc[:split]

Test set creation
X_test = df[["Adj Close t-1"]].iloc[split:]
y_test = df[["Adj Close"]].iloc[split:]

You can use the train_test_split function of scikit-learn
to do the same. Be sure that you understand the
function because there are many subtilities in this
function, as the possibility of doing a shuffle which is
not good in finance (we do not want to predict the past
with the future).

9.2.2. Implementation of the model

In this part, we implement the linear regression model. Before we
begin the code, it is interesting to have the linear regression equation
here because it is a straightforward equation (we do not do that with
the other algorithms).

Where the are the parameters of the model, the observations

from the dataset and the prediction. In our case the equation is:

Where is the return of the EURUSD at time t.

Code 9.3: Linear regression implementation
Import the class

from sklearn.linear_model import LinearRegressio n 1

Initialize the class

lr = LinearRegression() 2

Fit the model

lr.fit(X_train, y_train) 3

1 Import the LinearRegression class from scikit-
learn.

2 Instancy the class (Interesting when we have two
models on different data).

3 Use the fit() command to train the coefficient of
the linear regression.

When the model is trained, we can use it to have the
parameters (only for linear regression and some other
algorithms) and make predictions.

Using the command lr.coef_ and lr.intercept_ we can find the
parameters of the linear regression equation:

9.2.3. Predictions and backtest

This part will use the model implemented in the last part to make
predictions and backtest the strategy.

We will use the predict command of the class lr to make predictions.
Then, we need to find out how to code our strategy. It is easy. We buy
if the predicted return is positive and sell if it is negative. We backtest
using the function of chapter 5.

Code 9.4: Predictions and backtesting
Create predictions for the whole dataset

df["prediction"] = lr.predict(df[["Adj Close t-1"]]) 1

Compute the strategy

df["strategy"] = np.sign(df["prediction"]) * df["Adj Close"] 2

Backtest

backtest_dynamic_portfolio(df["strategy"].iloc[split:]) 3

1 Use the predict() command of the class lr to
predict the future variations.

2 We do not need to put a shift(1) because it is put

at the X.

3 Backtest only for the values after the split (test
set).

Figure 9.2: Backtesting strategy created using linear regression on

EURUSD

Beta: -0.0 Alpha: -2.33 % Sharpe: -0.34 Sortino: -0.509

VaR: 17.93 % cVaR: 20.23 % VaR/cVaR: 1.128 drawdown: 21.15 %

This figure shows that the performance is bad. Indeed, there is a
negative Sharpe ratio, which means we lose money if we choose this
strategy. Moreover, we lose money from the beginning: it is easy to
see using the drawdown graphic.

9.3. Logistic regression

This section will use logistic regression to create a trading strategy.
However, we need to give a little explanation of the logistic
regression before beginning.

The logistic regression is mathematically like the linear regression
but with one step added. To create a logistic regression, we need to
use a sigmoid. The sigmoid function returns only values between 0
and 1 (there are probabilities). Then, we need a threshold. Usually is
50%. If the chance is higher than 0.5, the prediction is one, and it is 0
if it is lower.

Where the are the parameters of the model, the observations

from the dataset, the continuous prediction and

 the categorical prediction. Let us resume this in figure
9.3.

Figure 9.3: Logistic regression explanation

9.3.1. Preparation of data

In this part, we will prepare the data for a classification algorithm. It
is nearly the same as a regression algorithm. The difference is the
target which needs to be a categorical variable.

There are many ways to process to create a categorical (or dummy)
variable. The most useful is using the function where of numpy,
which allows us to replace some value using conditions.

We will see in the next section how to use np.where. It is a little
tricky as we work with stock returns. The stock has increased if the
return was higher than 0 and decreased if the returns were lower than
0. So, suppose we add 0.5 to each value and round to the nearest
integer. In that case, we have 1 for the increasing value and 0 for the
decreasing value.
Code 9.5: data preparation for a classifier
Percentage train set

split = int(0.75 * len (df)) 1

Train sets creation
X_train = df[["Adj Close t-1"]].iloc[:split]
y_train = np. round (df[["Adj Close"]].iloc[:split]+ 0.5)

Test sets creation
X_test = df[["Adj Close t-1"]].iloc[split:]
y_test = np. round (df[["Adj Close"]].iloc[split:]+ 0.5)

1 We can choose 75% of the data for the train set.
The rule to respect is that the train set must
contain at least 70% and maximum 80% of the
data.

9.3.2. Implementation of the model

The logistic regression class is from the library scikit-learn too. The
syntax is the same as for the linear regression. So, we need to
initialize the class and fit it using the X_train and y_train data.

Code 9.6: Logistic regression implementation
Import the class
from sklearn.linear_model import LogisticRegression

Initialize the class
lr = LogisticRegression()

Train the model
lr.fit(X_train, y_train)

Model parameters exit:
LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
 intercept_scaling=1, l1_ratio=None, max_iter=100,
 multi_class='auto', n_jobs=None, penalty='l2',
 random_state=None, solver='lbfgs', tol=0.0001, verbose=0,
 warm_start=False)

There are not many parameters for linear regression. So, it is better to
analyze some parameters of this model. It is essential to understand
that each model can be custom changing the parameters of the
models. Suppose we create a logistic regression on the same data. In
that case, the results can be different if we change the parameters. It
is advised to consult the library's documentation to understand all the
parameters. However, we are going to explain some essential
parameters:

• fit_intercept : it can be true or false. We indeed have a in
the linear regression equation. If it is false, we don't have one.

• penalty: if it is 'l2', the error function (the function we want

to minimize) is an MSE. If it is 'l1', the error function is the
MAE (mean absolute error).

• verbose : it can be 0 or 1. If it is 0, we cannot see details

about the optimization of the algorithm. If it is 1, we have
more information about the training.

It is interesting to change some parameters to improve your
model, but if you adapt it too far from the data. The model
can be unusable on other data. This problem is called
overfitting, which is very active in finance because of the
changing market situation.

9.3.3. Predictions and backtest

We analyze the strategy created using the logistic regression algorithm in
this part. It will be the same as the linear regression, but after we will
compare both algorithms.

Code 9.6: Logistic regression predictions

Create predictions
df["prediction"] = lr.predict(df[["Adj Close t-1"]])

Create the positions
df["prediction"] = np.where(df["prediction"]== 0 , -1 , 1)

Compute the returns of the strategy
df["strategy"] = np.sign(df["prediction"]) * df["Adj Close"]

We have used the function of numpy to give an example of
power of this function.

Figure 9.4: Cumulative return of the strategy using logistic

regression

Beta: 0.055 Alpha: 7.27 % Sharpe: 0.596 Sortino: 1.06

VaR: 20.77 % cVaR: 24.91 % VaR/cVaR: 1.199 drawdown: 29.08 %

It is a good backtest. We have good metrics but a high drawdown
(usually before a combination of strategies). The negative point is
that the growth of the cumulative returns has stopped since 2010. The
issues can be solved by fitting the model again because there are six
years without another fitting (not very realistic).

Summary

Linear regression is the most easy-to-understand algorithm of
regression. It is trained using the MSE.

The logistic regression is the classification algorithm derivate
from the linear regression. To find the class, it uses the
sigmoid function.

If we want to adjust the algorithm to the train data too much,
it will be unusable to the test data. This problem is called
overfitting.

Application Live Trading and Screener
This code is based on the class created in the annex: MetaTrader

Code 9.7: Application Trading / Screener for logistic regression
from MT5 import *
import numpy as np
import numpy as np
import pandas as pd
import warnings
warnings.filterwarnings("ignore")
from sklearn.linear_model import LogisticRegression
import time
import pickle
from joblib import dump, load
import os

path = "" # Ex:
C:/Desktop/Python_for_finance_and_algorithmic_trading/ChapterN/
Models

def create_model_weights (symbol):
 """ Weights for Linear regression on the percentage change"""
 # Import the data
 data = MT5.get_data(symbol, 3500)[["close"]].pct_change(1)

 # Create new variable
 data["close t-1"] = data[["close"]].shift(1)

 # Split the data
 data = data.dropna()
 split = int(0.80 * len (data))

 # Train set creation
 X_train = data[["close t-1"]].iloc[:split]

 y_train = np. round (data[["close"]].iloc[:split]+ 0.5)

 # Create the model
 alg = LogisticRegression()

 # Fit the model
 alg.fit(X_train, y_train)

 # Save the model
 alg_var = pickle.dumps(alg)
 alg_pickel = pickle.loads(alg_var)

 dump(alg_pickel ,os.path.join(path, f "Models/ {symbol} .joblib"
))

def log_reg_sig (symbol):
 """ Function for predict the value of tommorow using ARIMA
model"""

 # Create the weights if there is not in the folder
 try :
 alg = load(os.path.join(path, f "Models/ {symbol} .joblib"))
 except :
 create_model_weights(symbol)
 alg = load(os.path.join(path, f "Models/ {symbol} .joblib"))

 # Take the lastest percentage of change
 data = MT5.get_data(symbol, 3500)[["close"]].pct_change(1)
 data["close t-1"] = data[["close"]].shift(1)

 X = data["close t-1"].iloc[-1].reshape(-1 , 1)

 # Find the signal
 prediction = alg.predict(X)
 prediction = np.where(prediction== 0 , -1 , 1)
 buy = prediction[0][0] > 0
 sell = not buy

 return buy, sell

True = Live Trading and False = Screener
live = True

if live:
 current_account_info = mt5.account_info()
 print ("---")
 print ("Date: " , datetime.now().strftime("%Y-%m-%d
%H:%M:%S"))
 print (f "Balance: {current_account_info.balance} USD, \t"
 f "Equity: {current_account_info.equity} USD, \t"
 f "Profit: {current_account_info.profit} USD")
 print ("---")

info_order = {
 "Euro vs USdollar" : ["EURUSD" , 0.01]
}

start = datetime.now().strftime("%H:%M:%S") #"23:59:59"
while True :
 # Verfication for launch
 if datetime.now().weekday() not in (5 , 6):
 is_time = datetime.now().strftime("%H:%M:%S") == start
 else :
 is_time = False

 # Launch the algorithm
 if is_time:

 # Open the trades
 for asset in info_order.keys():
 # Initialize the inputs
 symbol = info_order[asset][0]
 lot = info_order[asset][1]

 # Create the signals
 buy, sell = log_reg_sig(symbol)

 # Run the algorithm
 if live:
 MT5.run(symbol, buy, sell,lot)

 else :
 print (f "Symbol: {symbol} \t"
 f "Buy: {buy} \t"
 f "Sell: {sell} ")
 time.sleep(1)

The live parameter sets the live trading mode (live =
True) or the screener mode (live = False).

Part 3: Machine learning, deep
learning, live trading

This part will discuss implementing the most famous machine
learning algorithms for trading: support vector machine, decision
tree, random forest, etc. Then we will learn how to create some of the
most powerful algorithms: deep neural network, recurrent neural
network, and recurrent convolutional neural network. Moreover, we
will implement a whole project using portfolio management,
statistics, and machine learning algorithms.

Summary:

Chapter 10: Features and target engineering

Chapter 11: Support vector machine (SVM)

Chapter 12: Ensemble methods and decision tree

Chapter 13: Deep neural network (DNN)

Chapter 14: Recurrent neural network (RNN)

Chapter 15: Recurrent convolutional neural network (RCNN)
BONUS

Chapter 16: Real life full project realization

Chapter 17: From nothing to live trading

Chapter 10: Features and target
engineering

Classic data such as OHLCV are like a dismantled car, i.e., we cannot
go anywhere. That is why we need to assemble the car (features
engineering) to be able to drive. To find the destination, we will use
the target engineering.

10.1 Motivation and intuition

Features and target engineering is one of the essential parts. Even if
we have the most powerful algorithm if we give it to garbage input,
we will have garbage output.

10.1.1 Features engineering

Let us give a simple example to understand better what features
engineering is. Imagine that we want to predict the time we will take
to go from point A to point B, and the only features we have at this
step are the longitude and latitude of the two points. So, in our
database, we have 5 columns: longitude_start, latitude_strat,
longitude_end, latitude_end, and travel_time.

The question is: How can we help our algorithm better predict travel
time with the longitude and attitude data? An example of that will be
to compute the distance in kilometers between the start and the end
point for each travel. We will find an excellent relation between the
new feature (distance) and the target (travel time).

Features engineering can also allow us to find the best features for
our problem by looking at the variance of the features. However,
these methods are not relevant in trading because we will carefully

create new variables to give more information to our algorithms
about trends, short-term movement, volatility, etc.
Most of the new features in trading are technical indicators, price
action figures, or quantitative metrics. Here are some metrics that
will give some ideas for projects:

Quantitative features : The variation from the N previous
period to now, moving correlation between two columns. It
will allow us to understand the short and long-term trend.

Price action patterns: Detect some patterns to give us
information about the downward and upward forces in the
market, like engulfing and doji.

Technical indicators: They are very versatile and can help us
understand volatility, volume variation, and momentum.

To conclude, features engineering is the heart of our trading prediction
problem because data is essential in data science. So, we have to choose
features carefully!

The best way to create new features is by adding your
own experience. Choose indicators that you know are
important for the problem.

10.1.2 Target engineering

Features engineering is the car, but we will not go anywhere without
a clear goal. That is why we need a clear target. So, we need to do
some target engineering.

Understanding that the best features are nothing if we do not know
the target is essential. Retaking our example of the car, if we want to
go to a fantastic mountain spot, we should take a 4x4 vehicle instead
of a racing car because the 4x4 vehicle is more adapted to the target
(rough and winding terrain).

In trading, it is the same thing; we cannot create one set of features
for all our algorithms because the goal of each of them is not the
same. So, before creating the features, we need to choose the target.
Let us give some examples of target engineering for a better
understanding:

Triple barrier method: Highlight by Marco Lopez de Prado is a
common technique to create a dummy variable containing -1 if we
touch barrier 2, 0 if we touch barrier 3, and 1 if we touch barrier
1(Figure 10.1). If we work with a sell position, we need to inverse
Barrier 1 and 2.

Figure 10.1: Triple barrier method with barrier 1 crossed

Variation threshold : we look at the next N candles and
compute the variation from now to in N candles to obtain a
regressive target.

10.1.3 Why is it so important?

Even if we have said that many times before, the features and target
engineering are essential. Here, we will create the “problem” to
define which variable we want to predict (the target) using which
features.

Once we have good features, finding a good predictive model is
straightforward. However, if we do not have good data, we can create
the more complex algorithm that we can, but it will not be capable of
predicting something.

In our car example, the model is like the car tires; even if we keep
our summer tires in winter, we can go anywhere we want. We will
take more time and increase the accident risk. So, finding the model
adapted to our problem is essential. However, it will be easy to find
with good features and clear target.

Indeed, suppose we have a poor-quality data import. In that case,
even if we have perfect features engineering, it will not be easy to
have good results, and it is the same for the following step.

Moreover, as the features and target engineering are one of the first
steps of a project, but not less important because we spend 80% of
the time on a project on this step, it is essential to do it carefully.

10.2 Trading application

This section will apply the theory that we have spoken about
previously. We will see how to create some interesting features and
some relevant targets.

10.2.1 Create trading indicators and useful
trading features

We will split this subsection into quantitative features, price action
patterns, and technical indicators. The list that will be given is not
exhaustive, so feel free to test many others to find the best.

Quantitative features
N previous days : it is one of the most accessible variables but also
one of the most important because it will allow us to understand the
previous long or short-term variation depending on the period we
take.

Code 10.1: N previous day variation computation

N previous days variation
n = 10
df[f "var_ {n} "] = df["Adj Close"].pct_change(n)

Moving correlation: For this example, we will choose to compute
the moving correlation between the 10 previous day variations and
the 200 previous day variations. We do that to understand the relation
between the long-term trend and the short-term behavior. It is an
exciting feature for a machine learning algorithm (from my
experience).

Code 10.2: Moving correlation computation

Moving correlation
col_1 = "var_200"
col_2 = "var_10"
df["moving_correlation"] = df[col_1].rolling(50
).corr(df[col_2])

Price action patterns
Doji: generally, we say that doji’s express indecision. That is why we
do not classify the doji as increasing doji or decreasing doji like in
the following figure. It is helpful for the algorithm to understand

when the investors are indecisive because it can show us the end or
the start of a trading trend.

Code 10.3: Doji computation

DOJI
df["DOJI"] = ta.CDLDOJI(df["Open"], df["High"], df[
"Low"], df["Close"])

To detect the Doji, we use the Python TA-lib library
because it is always better to use the library: you will
minimize the error risk and optimize your code.

Figure 10.2 Some Doji examples

We can see that the sign of the candle does not mean anything to the
Doji because it gives us indecision movement.

Engulfing pattern: There are two different engulfing patterns: the
bullish and the bearish engulfing. We can see graphically both in
Figure 10.3 and how to compute them without a library in Code 10.4.

Figure 10.3: Engulfing patterns

Graphically we speak about engulfing when the close price of the
previous candle is nearly equal to the opening of the actual candle.
Moreover, the actual candle must be greater than the previous.

Code 10.4: Engulfing computation

ENGULFING
df["candle_way"] = -1
df.loc[(df["Open"] - df["Close"]) < 0 , "candle_way"] = 1

Amplitude
df["amplitude_abs"] = np. abs (df["Close"] - df["Open"])
df["Engulfing"] = 0

df.loc[

 # Yersteday red candlestick and Today increase
 (df["candle_way"].shift(1) == -1) &\
 (df["candle_way"] == 1) &\

 # Close of the last decreasing candlestick = Open of today
increase candlestick
 (df["Close"].shift(1) < df["Open"]*(1 + 0.5 / 100))
&\
 (df["Close"].shift(1) > df["Open"]*(1-0.5 / 100)) &\

 # Last decreaing candlestick is less strong than the Today
increasing candlestick

 (df["amplitude_abs"].shift(1)* 1.5 < df[
"amplitude_abs"]), "Engulfing"] = 1

df.loc[
 # Yersteday green candlestick and Today decrease
 (df["candle_way"].shift(1) == 1) &\
 (df["candle_way"] == -1) &\

 # Close of the last decreasing candlestick = Open of today
decrease candlestick
 (df["Close"].shift(1) < df["Open"]*(1 + 0.5 / 100))
&\
 (df["Close"].shift(1) > df["Open"]*(1-0.5 / 100)) &\

 # Last decreaing candlestick is less strong than the Today
candlestick
 (df["amplitude_abs"].shift(1)* 1.5 < df[
"amplitude_abs"]), "Engulfing"] = -1

As we can see, this simple figure has several lines of code. That is
why it is much better to use a library or create our function if we
want to find a specific pattern.

Technical indicators
Resistance: The resistance can be computed using a lot of different
ways. This book will use the max value over the last 150 periods. The
support is the same thing but using the minimum.

Code 10.5: Resistance computation

Max value in the last n days
n = 150
df["resistance"] = df["Close"].rolling(n). max ()

Relative Strength Index (RSI): It will allow us to understand if the
market is in an overbought or overselling market. So, it is ideal to
have these features; for example, combining a doji can better predict
the retracement.

Code 10.6: RSI computation

RSI
n = 15
df["RSI"] = ta.RSI(df["Close"], timeperiod=n)

To create technical indicators, you can use TA-lib. It
will allow you to create nearly 100 indicators for your
trading strategies.

10.2.2 Target labeling

As we said before, features are nothing if we do not create an
interesting label. In this subsection, we will create classifier and
regressor targets. All targets will be derived from the variation
percentage, but obviously, we can create the target that we want; for
example, we can predict a chart figure and try to detect if, after this
figure, there is an increase or a decrease in the price.

First, we will compute the future N-day variation. We need to shift
the data to align features and targets on the same row, but we will
explain this more in detail in section 11.1.

Code 10.7: Futures N days variation

""" Next N days variations """
n = 1
df[f "target_var_ {n} "] = df["Close"].pct_change(n).shift(n)

1

1 We put the shift(n) to not create interference in the
data (like predict the past using the future)

Once we have this metric, creating a dummy variable to use a
classifier algorithm will be easy. For example, we can create a

dummy variable with only 2 values: -1 if the future return over N
days is negative and 1 if it is positive.

Code 10.8: Futures N days variation (dummy variable)

""" Next N days variations (dummy)"""
n = 1
df[f "target_var_ {n} "] = df["Close"].pct_change(n).shift(n)

df["target_dummy"] = 1
df.loc[df[f "target_var_ {n} "]< 0 , "target_dummy"] = -1

However, with this technique, it cannot be easy to profit when the
market is broad because the variation will be positive, but the
variation will be minimal. So, to avoid having this issue, we can
create a dummy variable with three values: -1, 0, and 1.

To do it, we will compute the percentiles 33 and 67. However, it is
essential to compute the percentiles using the train set not to create
any interference in the future (test set). Then, suppose the value is
below percentile 33. In that case, we classify it as -1, if it is between
percentile 33 and percentile 67 as 0, and 1 if it is greater than
percentile 67.

Code 10.9: Futures N days variation (dummy variable bis)

""" Classify the variations"""
find the variations
n = 1
df[f "target_var_ {n} "] = df["Close"
].pct_change(n).shift(n)

Find the centile 33 and 67 on the train set
split = int (0.80 * len (df))
centile_33 = np.percentile(df[[f "target_var_ {n} "
]].iloc[:split].dropna(), 33)
centile_67 = np.percentile(df[f "target_var_ {n} "
].iloc[:split].dropna().values, 67)

Dummy variable
df["target_dummy"] = 0

df.loc[df[f "target_var_ {n} "]>centile_67, "target_dummy"
] = 1
df.loc[df[f "target_var_ {n} "]<centile_33, "target_dummy"
] = -1

Summary

OHLCV data are like dismantled car, so it is necessary to
transform them.

Features engineering helps the algorithm to better understand
the relation between the data (is like assemble the car)

Target labeling is the variable we want to predict (is where we
want to go)

Chapter 11: Support vector
machine (SVM)

This chapter discusses one of the most used algorithms in finance, the
support vector machine. It is advantageous in finance because it does
not need much data to train. Before learning SVM, we will make a
point about data preprocessing. Then, we will learn how to use a
support vector machine regressor (SVR) and a support vector
machine classifier (SVC).

11.1. Preparation of data

In this section, we will prepare the data for our SVM [13] and recap
what we already know about data preparation. Then we will go
deeper into the concept explaining the data standardization.

11.1.1. Features engineering

In this section, we will quickly recap the data preparation. Indeed, we
will do the same as in the previous chapters. So, we need to define
sets of training and sets of tests. Furthermore, we will improve the
features of our model. To do it, we will add some technical
indicators. We do not explain the technical indicators that we will not
use into the book. If you want to find some documentation about this,
we can find it on internet and in books. We make a features
engineering reminder here to truly understand how to incorporate it
into our project.

Features engineering helps the algorithm to find the
best pattern in the data. For example, the stock price if
you have an asset with a price between 50$ and 5000$,
the model's parameters cannot be fit correctly. Instead
of this, use the percentage variation which turns all
assets into the same range. It is very helpful for the
algorithm.

To create technical indicators, there are two ways. First, we can
create by ourselves.

We can also use the technical analysis library of Python (ta). In this
part, we will create the needed indicators by ourselves.

For this example, we have created a mean of returns and volatility of
returns. These indicators cannot be found in the ta library, so we need
to compute them ourselves. Moreover, we have put two timeframes
on each indicator.

Code 11.1: Features engineering
Features engeeniring

df["returns t-1"] = df[["returns"]].shift(1) 1

Mean of returns
df["mean returns 15"] = df[["returns"]].rolling(15
).mean().shift(1)
df["mean returns 60"] = df[["returns"]].rolling(60
).mean().shift(1)

Volatility of returns
df["volatility returns 15"] = df[["returns"]].rolling(15).std()
.shift(1)
df["volatility returns 60"] = df[["returns"]].rolling(60).std()
.shift(1)

1 It is expected as this step because we have seen
it many times, but the shift to the feature

columns allows us to put the X and the y on the
same day in the same row.

Do not forget to add a shift to these indicators to not
interfere in the data. Let us see why in figure 11.1

Figure 11.1: How to avoid interferences in the data

This figure shows that if we do not shift the data, we will have
interferences because we predict the 15th day while we already have
the 15th day in the features. It cannot be accurate, and we can lose
much money if we make this error.

11.1.2. Standardization

This subsection will explain the concept of standardization. We see
this in the SVM chapter because it is a geometric algorithm, and it is
necessary to standardize the data for these algorithms. Still, we can
apply this method to another algorithm.

The standardization allows doing the computation
faster. Thus, it is interesting for the algorithm which
demands many resources.

Sometimes like with this dataset, the data are not at the same scale.
For example, we can have a volatility of 60% with a return of 1.75%.
So, the algorithm has many difficulties working with that. We need to
standardize the data to put it on the same scale. Let us see graphicly
why we need to standardize the data in figure 11.2.

Figure 11.2: How standardization works?

This figure shows that it is difficult for us to understand the pattern
between the two lines before standardization. It is also for the
algorithm. Thus, we need to standardize the data to help us to
understand it better.

Now, let us see the formula to standardize the data and standardize
the data using Python.

Where is the standardize value, is the value of the observation,

 is the mean of the vector and the volatility of the vector .

Code 11.2: Standardize the data
Import the class
from sklearn.preprocessing import StandardScaler

Initialize the class
sc = StandardScaler()

Standardize the data
X_train_scaled = sc.fit_transform(X_train)
X_test_scaled = sc.transform(X_test)

As for the other algorithms, we need to fit on the train
set only because we cannot know the test set's mean
and standard deviation in real life.

11.2. Support Vector Machine Classifier
(SVC)

This section will explain how an SVC works, then how to create an
SVC using Python and make predictions with the SVC to create a
trading strategy.

11.2.1. Intuition about how works an SVC

In this part, we will see the intuition behind the support vector
machine classifier.
To do it, we are beginning with a little graphic to understand what the
SVC wants to do.

Figure 11.3: Functioning of an SVC

In this figure, we can see the question to which the SVC replies: " How
can the groups of points be separated optimally?".

We use margins to find the optimal line between the two groups.
These margins want to maximize the distance between the two
groups. Then, we will take the middle of the two margins to find the
delimitation for the two groups. Moreover, we will see that the points
on the margins are called supports, and these points are the only
important points in the algorithm. If we remove all the other points,
the performance of the algorithm will be the same.

Figure 11.4: Optimize the distance

In this figure, we can see the functioning of an SVC and the supports.

The issue is that if a squared is in the circle group, the algorithm
cannot run. It is because the algorithm has hard margins. Fortunately,
it is possible to create an SVC with soft margins to avoid this
problem.
With scikit-learn, it is possible to manage the margin encroachment.
Suppose we put a C with a high value; we will not allow the model to
have much margin encroachment. However, the more the value is
low, the more the margin encroachment is significant.

Now let us talk about the kernel of the model. The kernel is the way
that our algorithm is training. There are many ways to optimize an
SVC, but the most used is the Gaussian kernel or the linear kernel in
finance.

There are other kernels available on scikit-learn like a sigmoid
kernel. However, we will see only the linear and the gaussian. A line
like in figure 11.4 schematizes the linear, but the gaussian can keep a
non-linear pattern like in figure 11.5.

Figure 11.5: Gaussian kernel schematization

In this figure, we can see the functioning of an SVC using a Gaussian
kernel.

11.2.2. How to create an SVC using Python

We will compute a Support Vector Machine Classifier (SVC) in this
part using Python. It is effortless because it follows the same syntax
as the logistic regression. We need to change the function to use the
SVC function of scikit-learn.

Code 11.2: SVC implementation
Import the class
from sklearn.svm import SVC

Initialize the class
svc = SVC()

Fit the model
svc.fit(X_train_scaled, y_train_cla)

We will use an SVC with an RBF kernel, the
Gaussian kernel on scikit-learn.

11.2.3. Predictions and backtest

As we can see in figure 11.6, the performances of the strategy are
terrible because we have a drawdown of 67% (confer the code) and a
loss of 60%. So, if we are searching for an algorithm to put in
production, we do not need to go deeper. It would help if we explored
another combination between data, model, and strategy.

Figure 11.6: Backtest of a strategy using the SVC predictions

Beta: 0.248 Alpha: -21.69 % Sharpe: -0.602 Sortino: -0.684

VaR: 87.9 % cVaR: 98.54 % VaR/cVaR: 1. 121 drawdown: 67.1 %

The constant growth of the drawdown is the worst thing that can
happen to a strategy. Thus, it is a very bad strategy.

11.3. Support Vector Machine Regressor
(SVR)

In this section, we will explain the intuition of the Support Vector
Machine Regressor (SVR), then create the model and make a trading
strategy using the prediction of our SVR.

11.3.1. Intuition about how works an SVR

It will be easy to understand because the SVR follows nearly the
same process as the SVC. We need to take the problem in another
way. Instead of maximizing the distance between two groups, the
SVR tries to maximize the number of observations between the
margins or minimize the number of observations outside the margins.
Let us see an example in figure 11.7.

Figure 11.7: Intuition about SVR

In this figure, we can see the functioning intuition of the SVR. The
most useful parameter is the epsilon because it manages the path of
the SVR.

The parameter epsilon is the tolerance of the model. It can be
changed using the hyperparameter of the scikit-learn function. Many
functions allow us to find the best combination between the
hyperparameters of the models (we will see a technique in the next
chapter) but do not forget that the more you optimize the algorithm to
fit our data, the more the risk of overfitting increases.

11.3.2. How to create an SVR using Python

In this part, we want to create an SVR model using scikit-learn. To do
it, we will use the SVR class of scikit-learn.

Code 11.3: SVR implementation
Import the class
from sklearn.svm import SVR

Initialize the class
svr = SVR()

Fit the model
svr.fit(X_train_scaled, y_train_reg)

11.3.3. Predictions and backtest

We can mention that the features are the same for both. In
comparison, the performance of the models is very different. Let us
see figure 11.8. It is because of the target labeling (this time, the
regressor is better).

As we can see, the regressor model wins 35% simultaneously as the
classifier model loses 60% of the initial capital. However, why does
nearly the same algorithm have some significant differences? The
truth is that we cannot say why. Whereas, to avoid having some
algorithms with an awful performance like the SVC model, we can
do a deep backtest to find the best algorithms that can be used to
minimize the risk of losing money. We can also do a portfolio of
strategies to reduce the risk and have more stable returns.

Figure 11.8: Cumulative return of the strategy using the SVR
predictions

Beta: 0.787 Alpha: 2.15 % Sharpe: 0.455 Sortino: 0.584

VaR: 56.1 % cVaR: 66.0 % VaR/cVaR: 1.176 drawdown: 30.32 %

The strategy has a very good Sharpe ratio because it begins to be
reasonably close to 0.5 (sharpe=0.45). It is not significantly
correlated to the market (beta=0.787). However, many fluctuations in
the cumulative returns imply a considerable risk of losses (cVaR =
66%). It is an excellent strategy to a portfolio of strategies to
decrease the risk because now this strategy is too risky, considering
the overperform of the market.

Summary

The standardization is mandatory for the SVM because they
are based on a geometric process.

The support vector machine classifier searches to optimize the
distance between the two groups.

We can change the value of the margin encroachment using
the parameters C when we work with scikit-learn.

The support vector machine regressor tries to create path with
maximum of observations.

We can change the path width using the parameter epsilon in
scikit learn.

The most used kernel in finance for both SVC and SVR is the
linear and the gaussian kernel.

Application Live Trading and Screener
This code is based on the class created in the annex: MetaTrader

Code 11.4: Application Trading / Screener for SVR

 from MT5 import *
import numpy as np
import pandas as pd
import warnings
warnings.filterwarnings("ignore")
from sklearn.linear_model import LogisticRegression
import time
import pickle
from joblib import dump, load
import os

path = "" # Ex:
C:/Desktop/Python_for_finance_and_algorithmic_trading/
ChapterN/

def create_model_weights (symbol):
 """ Weights for Linear regression on the percentage
change"""
 # Import the data
 data = MT5.get_data(symbol, 3500)[["close"
]].pct_change(1)

 # Create new variable
 data["close t-1"] = data[["close"]].shift(1)

 # Split the data
 data = data.dropna()
 split = int(0.80 * len (data))

 # Train set creation
 X_train = data[["close t-1"]].iloc[:split]
 y_train = np. round (data[["close"]].iloc[:split]+ 0.5)

 # Create the model
 alg = LogisticRegression()

 # Fit the model
 alg.fit(X_train, y_train)

 # Save the model
 alg_var = pickle.dumps(alg)
 alg_pickel = pickle.loads(alg_var)

 dump(alg_pickel ,os.path.join(path, f "Models/ {symbol}
.joblib"))

def log_reg_sig (symbol):
 """ Function for predict the value of tommorow using
ARIMA model"""

 # Create the weights if there is not in the folder
 try :

 alg = load(os.path.join(path, f "Models/ {symbol}
.joblib"))
 except :
 create_model_weights(symbol)
 alg = load(os.path.join(path, f "Models/ {symbol}
.joblib"))

 # Take the lastest percentage of change
 data = MT5.get_data(symbol, 3500)[["close"
]].pct_change(1)
 data["close t-1"] = data[["close"]].shift(1)

 X = data["close t-1"].iloc[-1].reshape(-1 , 1)

 # Find the signal
 prediction = alg.predict(X)
 prediction = np.where(prediction== 0 , -1 , 1)
 buy = prediction[0][0] > 0
 sell = not buy

 return buy, sell

True = Live Trading and False = Screener
live = True

if live:
 current_account_info = mt5.account_info()
 print ("---")
 print ("Date: " , datetime.now().strftime("%Y-%m-%d
%H:%M:%S"))
 print (f "Balance: {current_account_info.balance} USD,
\t"
 f "Equity: {current_account_info.equity} USD, \t"
 f "Profit: {current_account_info.profit} USD")
 print ("---")

info_order = {

 "Euro vs USdollar" : ["EURUSD" , 0.01]
}

start = datetime.now().strftime("%H:%M:%S") #"23:59:59"
while True :
 # Verfication for launch
 if datetime.now().weekday() not in (5 , 6):
 is_time = datetime.now().strftime("%H:%M:%S") ==
start
 else :
 is_time = False

 # Launch the algorithm
 if is_time:

 # Open the trades
 for asset in info_order.keys():

 # Initialize the inputs
 symbol = info_order[asset][0]
 lot = info_order[asset][1]

 # Create the signals
 buy, sell = log_reg_sig(symbol)

 # Run the algorithm
 if live:
 MT5.run(symbol, buy, sell,lot)

 else :
 print (f "Symbol: {symbol} \t"
 f "Buy: {buy} \t"
 f "Sell: {sell} ")
 time.sleep(1)

The live parameter sets the live trading mode (live =
True) or the screener mode (live = False).

Chapter 12: Ensemble methods
and decision tree

In this chapter, we will see many algorithms of machine learning.
First, we will see the decision tree, then the random forest, and some
other ensemble methods instrumental in finance. All algorithms in this
chapter will be applied to the Google stock price.

12.1. Decision tree

In this section, we will study the decision tree algorithm. This
statistical machine learning algorithm is most useful in finance
because it understands the nonlinear relationship between data.

12.1.1. Decision Tree classifier

We are beginning with the decision tree [14] classifier in this
subsection. Before coding something, we will explain how a decision
tree classifier works.

Mathematically, when we have a space with groups of points, the
decision tree will cut the space with hyperplanes to separate the
groups. A hyperplane is a line in a 2d space, so if we do not know
what this means, remember it is a line in our example.

Moreover, each hyperplane is orthogonal to the others. What does it
mean? In our case, each hyperplane is perpendicular to the others. It is
essential to know that to understand the behavior of the algorithm. In
the following figure, we will see how a decision tree works in an
easier way.

Figure 12.1: How works graphically a decision tree

In this figure, we can see the different hyperplanes of the decision tree.
In this example, there are three hyperplanes, meaning the depth of this
decision tree is 3.

We will schematize the functioning of a decision tree to be sure we
have understood what a decision tree classifier does. The decision tree
works with conditions, let us see in figure 10.2.

Figure 12.2: Decision tree classifier

Besides that, it is a very interpretable model, which is interesting in
finance. The decision trees do not need normalization to have good results.
Moreover, it is a perfect algorithm when you have many dummy variables
in features.

Now, we will see how to implement a decision tree
classifier with Python. To do it, we import the
DecisionTreeClassifier class of scikit-learn, and we
will use the same syntax as for the previous
algorithms.

Code 12.1: Decision tree classifier
Import the class
from sklearn.tree import DecisionTreeClassifier

Initialize the class
trc = DecisionTreeClassifier(max_depth= 6)

Fit the model
trc.fit(X_train, y_train_cla)

The hyperparameter max_depth is set at 6. However, it
is a random choice. It is just not to let the tree go too
deep because it is not good; we will see later why. We
will see how to find the best depth in the next part.

Then, we have the model we can make predictions and backtest the
strategy. As shown in figure 12.3, we have an excellent return using
the depth of 6 because we have nearly 30% of returns yearly.
Whereas, when we do not make precise the depth, the algorithm can
go as deep as it wants, and it is not good; we can see that the returns
of the same model but without precise the depth is -80% on the
period.

Figure 12.3: Backtest depending on the depth max

Depth_max = 6
Beta: 1.056 Alpha: 12.44 % Sharpe: 0.931 Sortino: 1.227

VaR: 41.76 % cVaR: 52.03 % VaR/cVaR: 1.246 drawdown: 30.79 %

Depth_max = None

Beta: -0.034 Alpha: -20.95 % Sharpe: -0.715. Sortino: -0.906

VaR: 91.56 % cVaR: 101.59 % VaR/cVaR: 1.11 drawdown: 57.31 %

In this figure, we can see that the depth of the decision tree plays a
crucial role. Indeed, the return difference between the two strategies is
nearly 160% in the period. This highlights the overfitting problem
when we let the algorithm with no depth restrictions.

The most critical hyperparameters in the decision tree
are the depth of the tree which is given by the

hyperparameter max_depth in scikit-learn.

12.1.2. Decision tree regressor

This part will explain how a decision tree regressor works and how to
implement a decision tree regressor using Python and backtest the
strategy.

The decision tree regressor follows nearly the same process as the
decision tree classifier. So, let us see this in a simple tree in figure
12.4.

Figure 12.4: Decision tree regressor

To implement a decision tree regressor, we will use the same syntax as
the decision tree classifier.

Code 12.2: Decision tree regressor
Import the class
from sklearn.tree import DecisionTreeClassifier

Initialize the class
trc = DecisionTreeClassifier(max_depth= 6)

Fit the model
trc.fit(X_train, y_train_cla)

We can see the strategy results in figure 12.5, and as we can see with
the constraint on the depth of the algorithm, it also gives good results.

Figure 12.5: Backtest strategy-based Google stock prediction

Beta: 0.243 Alpha: 18.27 % Sharpe: 0.728 Sortino: 0.96

VaR: 47.95 % cVaR: 57.81 % VaR/cVaR: 1.206 drawdown: 25.35 %

It is a very good backtest. We have a Sharpe ratio of 0.72 and an
alpha at 18.27%, which means we overperform the market. However,
we have a considerable drawdown. The best way to reduce the risk of
a strategy is to combine it with the others, but we will see it later.

12.1.3. Optimize the hyperparameters

In the last part, we have said it is not an excellent choice to let the max
depth without constraint, but we do not have to say how to find the
optimal.

To find the best value for the parameter max_depth, we will use the
GridShearchCV algorithm of scikit-learn. It is a straightforward
algorithm. It just tests all the possibilities and takes the best.

Code 12.3: Grid Search CV
Import the class
from sklearn.model_selection import GridSearchCV

Create the model
dtr = DecisionTreeRegressor()

Choose a list of parameters

param = { "max_depth" : [3 , 6 , 15] } 1

Create the GridSearch
model = GridSearchCV(dtr, param_grid=param, cv= 3 ,)

Train the model
model.fit(X_train.values, y_train_reg.values)

Print best model
model.best_estimator_

Exit (best model):
DecisionTreeRegressor(ccp_alpha=0.0, criterion='mse', max_depth=3,
max_features=None, max_leaf_nodes=None, min_impurity_decrease=0.0,
min_impurity_split=None, min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, presort='deprecated',random_state=None, splitter='best')

1 Create a dictionary containing all the variables
we want to try with the different values. Here,
we only want to test the test model depending
on the maximum depth of the tree (3, 6, or 15).

As we can see, the best model is a length of 3. It is the best model on
which criterion? As we do not have to specify, a criterion is the
training criterion of the algorithm that will use the MSE. The
wonderful thing is that we can customize the function to find the best
algorithm using our criterion. We will create some criteria to explain
this. The sum of the returns and the Sharpe ratio is proposed here, but
we can create the ratio we want.

Code 12.4: Create new metrics
Import the function
from sklearn.metrics import make_scorer

RETURNS
Create returns criterion

def returns (y , y_pred) : 1
 return np. sum (np.sign(y_pred) * y)

Transform criterion into a metric

returns_metric = make_scorer(returns, greater_is_better= True) 2

SHARPE
Create sharpe criterion
def sharpe (y , y_pred):
 r = np.sign(y_pred) * y

 return np.mean(r) / np.std(r) 3

Transform criterion into a metric
sharpe_metric = make_scorer(sharpe, greater_is_better= True)

1 Criterion function for hyperparameters
optimization takes only two input parameters: the
real target and the predicted target.

2 The parameter greater_is_better highlights the
algorithm if we want to maximize or minimize the
metric.

3 It is unnecessary to annualize the Sharpe ratio
here because the size relation does not matter.
Thus, we add fewer things possible to optimize
the time of computation.

The function make_score allows us to transform a
simple function into a metric compatible with the scikit-
learn algorithms.

The function make_score allows us to transform a simple function
into a metric compatible with the scikit-learn algorithms.

With the returns_metric and the sharpe_metric, we have an optimal
depth of 3. It means that with the 3 ways, we have an optimal depth of
three. So, we can say that in the training set, the best depth for the
algorithm is 3.

12.2. Random Forest

This section discusses the random forest. First, we will see how to
compute a random forest classifier, then a random forest regressor,
and how to optimize the hyperparameters of a random forest.

12.2.1. Random Forest classifier

In this part, we will learn how to implement a random forest classifier.
The random forest is the first ensemble method that we will learn. An
ensemble method is a method that regroups algorithms to have a better
prediction.

Naturally, as his name says, the random forest is an ensemble of
decision trees. Indeed, the random forest is just an algorithm that
combines the predictions of many decision trees to have better
predictions.

We are not going deep in explaining the random forest because
intuition is easy to understand. However, if we want to go deeper, we
need much math, which is irrelevant to this book. Let us see the code
of a random forest classifier.

Code 12.5: Random forest classifier
Import the class
from sklearn.ensemble import RandomForestClassifier

Initialize the class
lr = RandomForestClassifier()

Fit the model
lr.fit(X_train, y_train_cla)

Note that there is no hyperparameter custom here to
show you the difference in figure10.6.

We will highlight the issue with the random forest (same as a decision
tree) when you do not make precise the depth and the number of
estimators (only for the random forest). There is big overfitting, as we
can see in figure 12.6.

Figure 12.6: Highlight the overfitting

Train set backtest

Beta: -0.001 Alpha: 315.67 % Sharpe: 14.104 Sortino: nan

VaR: -263.64 % cVaR: -256.21 % VaR/cVaR: 0.972 drawdown: -0%

Test set backtest

Beta: -0.018 Alpha: -6.45 Sharpe: -0.224 Sortino: -0.28

--

VaR: 76.65 % cVaR: 86.33 % VaR/cVaR: 1.126 drawdown: 61.75 %

As we can see on the screen, there is overfitting because, in the train
set (the data that the algorithm already knows), we win 350% per year
with a drawdown of 0%, instead of the test set losing money.

12.2.2. Random Forest Regressor

In this part, we will about random forest regressors. Naturally, a
random forest regressor is an ensemble of decision tree regressors.

We do not explain the same things to avoid being boring for this
algorithm. We can copy exactly what we say for the random forest
classifier on the random forest regressor. So, let us see how to
implement it and highlight the overfitting problem of these algorithms
again.

Code 12.6: Random forest regressor
Import the class
from sklearn.ensemble import RandomForestRegressor

Initialize the class
lr = RandomForestRegressor()

Fit the model
lr.fit(X_train, y_train_reg)

Figure 12.7: Highlight overfitting on the random forest

Beta: 0.511 Alpha: 9.76 % Sharpe: 0.574 Sortino: 0.777

VaR: 52.51 % cVaR: 62.26 % VaR/cVaR: 1.186 drawdown: 43.26 %

It is a good performance, but there is a significant drawdown over a
very long period. It means that the strategy is perilous.

12.2.3. Optimize the hyperparameters

In this part, we will optimize the hyperparameters for the decision
tree. For that, we will use the Sharpe metric used in part 12.1.3.

Code 12.7: Optimize the hyperparameters
Import the class
from sklearn.model_selection import GridSearchCV

Create the model
dtr = RandomForestRegressor()

Choose a list of parameters
param = { "max_depth" : [3 , 6 , 15], "n_estimators" : [50 , 100
, 150]}

Import the function
from sklearn.metrics import make_scorer

SHARPE
Create sharpe criterion
def sharpe (y , y_pred):
 r = np.sign(y_pred) * y
 return np.mean(r) / np.std(r)

Transform criterion into a metric
sharpe_metric = make_scorer(sharpe, greater_is_better= True)

model = GridSearchCV(dtr, param_grid=param,
scoring=sharpe_metric, cv= 3)

model.fit(X_train.values, y_train_reg.values)

model.best_estimator_

The parameters influencing a random forest are the number
of trees and the deeper the trees are.

In the following figure, we can see that the tuning of the
hyperparameters impacts the performances considerably. Indeed, this
allows us to have a smoother curve and better backtest indicator.

Figure 12.8: Returns with and without tuning

Without tuning model
Beta: -0.056 Alpha: 24.09 % Sharpe: 0.776 Sortino: 1.143

VaR: 46.72 % cVaR: 56.63 % VaR/cVaR: 1.212 drawdown: 33.43 %

With tuning model

Beta: 0.553 Alpha: 18.25 % Sharpe: 0.879 Sortino: 1.194

VaR: 44.05 % cVaR: 54.37 % VaR/cVaR: 1.234 drawdown: 29.33 %

Unfortunately, for the example, the model without tuning is not
overfitting because it has reasonable returns. However, the model with

tunning is better because it has less drawdown, a higher Sharpe ratio,
and fewer cVaR.

12.3. Ensemble methods

In this section, we will learn some ensemble methods [15] . First, we
will see the simplest ensemble, the voting, the bagging, and the
stacking methods.

12.3.1. Voting method

The voting method is the simplest method of the ensemble method.
Let us see how it works in figure 12.9.

As we can see that the algorithms are well different, the prediction is
better when we aggregate their prediction. However, we need some
mathematical assumptions like the independence of the estimator. But,
it is nearly impossible to have in real life because the algorithms train
on the same data.

Figure 12.9: Voting classifier

As we can see in the figure the aggregation of the estimators is better
than the estimators alone.

When we work with regression estimators, we follow the same
process, except that the prediction is the mean of all predictions. Let
us see a code for a VotingRegressor that uses LinearRegression, SVR,
and RandomForestRegressor. Then we put the results in figure 10.10.

Code 12.8: Voting regressor implementation
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVR
from sklearn.ensemble import RandomForestClassifier,
VotingRegressor

Intitialize the estimators
clf1 = LinearRegression()
clf2 = RandomForestRegressor(n_estimators= 150 , max_depth= 3
)
clf3 = SVR(epsilon= 1.5)

Create the ensemble method
eclf1 = VotingRegressor(estimators=[

 ('lr' , clf1), ('rf' , clf2), ("svc" , clf3)]) 1

Train the method
eclf1.fit(X_train, y_train_reg)

Create predictions for the whole dataset
df["prediction"] = eclf1.predict(np.concatenate((X_train,X_test),
 axis= 0))

Compute the strategy
df["strategy"] = np.sign(df["prediction"]) * df["returns"]

Backtest
backtest_dynamic_portfolio(df["strategy"].iloc[split:])

1 Voting models are defined by a list of the
estimators.

Figure 12.10: Cumulative returns of the voting regressor

Beta: 1.056 Alpha: 7.16 % Sharpe: 0.754 Sortino: 0.968

VaR: 47.4 % cVaR: 57.12 % VaR/cVaR: 1.205 drawdown: 30.79 %

The voting method has similar results as the random forest, but the
cumulative return is less volatile.

12.3.2. Bagging method

In this part, we will talk about the bagging method. It is a simple way
to have an ensemble method in a few lines of code. Indeed, bagging is
a method that allows us to train an ensemble method with n same
estimators. For example, a random forest is bagging with decision
trees. Now, we will create a bagging regressor that uses 150 SVR.

Figure 12.11: Cumulative return of bagging using 150 SVR

Beta: 1.056 Alpha: 7.16 % Sharpe: 0.754 Sortino: 0.968

VaR: 47.31 % cVaR: 57.77 % VaR/cVaR: 1.221 drawdown: 30.79 %

In this figure, we can see the cumulative return of a bagging algorithm
created with 150 SVR.

Code 12.10: Bagging with SVR
from sklearn.svm import SVR
from sklearn.ensemble import BaggingRegressor

Initialize the bagging
bag_reg = BaggingRegressor(SVR(epsilon= 1.5), n_estimators=
150)

Train the method
bag_reg.fit(X_train, y_train_reg)

Create predictions for the whole dataset
df["prediction"] =
bag_reg.predict(np.concatenate((X_train,X_test),
 axis= 0))

Compute the strategy
df["strategy"] = np.sign(df["prediction"]) * df["returns"]

Backtest
backtest_dynamic_portfolio(df["strategy"].iloc[split:])

12.3.3. Stacking method

In this part, we will talk about the stacking method. This method is a
little different from the others because now, instead of doing a mean,
for example, we will give the prediction of the estimators to another
algorithm that will give the prediction.

Figure 12.12: Stacking method schematization

This figure shows the difference between the voting and bagging (left),
which do the mean of the estimator prediction instead of the stacking
(right), which does an algorithm to aggregate the prediction better.

Usually, we put a decision tree or a random forest when we do a
stacking classifier because they work very well with the dummy
variable.

Code 12.11: Stacking regressor implementation
from sklearn.linear_model import LinearRegression
from sklearn.svm import SVR
from sklearn.ensemble import RandomForestRegressor,
StackingRegressor

Intitialize the estimators
clf1 = LinearRegression()
clf2 = RandomForestRegressor(n_estimators= 150 , max_depth= 3
)
clf3 = SVR(epsilon= 1.5)

Create the ensemble method
eclf1 = StackingRegressor(estimators=[
 ('lr' , clf1), ('rf' , clf2), ("svc" , clf3)])

Train the method
eclf1.fit(X_train, y_train_reg)

Create predictions for the whole dataset

df["prediction"] = eclf1.predict(np.concatenate((X_train,X_test),
 axis= 0))

Compute the strategy
df["strategy"] = np.sign(df["prediction"]) * df["returns"]

Backtest
backtest_dynamic_portfolio(df["strategy"].iloc[split:])

Figure 12.11: Cumulative return of a stacking method

Beta: 1.056 Alpha: 7.16 % Sharpe: 0.754 Sortino: 0.968

VaR: 46.46 % cVaR: 56.64 % VaR/cVaR: 1.219 drawdown: 30.79 %

In this figure, we can see the cumulative return of a stacking regressor.

As we can see, the results of the ensemble methods are the same. It
means that we cannot do a better prediction using this data with this
type of algorithm. To avoid this issue, we will see something most
powerful using deep learning later.

Summary

To find the best separation between groups, the decision tree
cut the space with n hyperplanes (where n is the depth of the
tree).

A random forest is an ensemble method (bagging) that uses a
much different decision tree to have better predictions than a
decision tree.

The decision tree and random forest are very exposed to
overfitting. To avoid that, we need to constrain the depth of the
tree and the number of trees for the random forest.

The voting methods combine some algorithms. It gives the
mean of individual algorithm predictions for the regression

and the most voted class for the classification.

Bagging is an ensemble method that combines the exact
algorithm n times (for example, random forest).

Stacking is an ensemble method that uses an algorithm with
the predictions of algorithms in features to find the best
predictions.

Application Live Trading and Screener
This code is based on the class created in the annex: MetaTrader

Code 12.12: Application Trading / Screener for Decision Tree
Regressor

 from MT5 import *
import numpy as np
import pandas as pd
import warnings
warnings.filterwarnings("ignore")
from sklearn.tree import DecisionTreeRegressor
import time
import pickle
from joblib import dump, load
import os
from sklearn.preprocessing import StandardScaler

path = "" # Ex:
C:/Desktop/Python_for_finance_and_algorithmic_trading/
ChapterN/

def create_model_weights (symbol):
 """ Weights for Linear regression on the percentage
change"""
 # Import the data
 data = MT5.get_data(symbol, 3500)[["close"
]].pct_change(1)

 # Create new variable

 data.columns = ["returns"]

 # Features engeeniring
 data["returns t-1"] = data[["returns"]].shift(1)

 # Mean of returns
 data["mean returns 15"] = data[["returns"]].rolling(15
).mean()
.shift(1)
 data["mean returns 60"] = data[["returns"]].rolling(60
).mean()
.shift(1)

 # Volatility of returns
 data["volatility returns 15"] = data[["returns"]].rolling(
15).std()
.shift(1)
 data["volatility returns 60"] = data[["returns"]].rolling(
60).std()
.shift(1)

 # Split the data
 data = data.dropna()
 split = int(0.80 * len (data))

 # Train set creation
 X_train = data[["returns t-1" , "mean returns 15" , "mean
returns 60" ,
 "volatility returns 15" ,
 "volatility returns 60"]].iloc[:split]
 y_train = data[["returns"]].iloc[:split]

 sc = StandardScaler()
 X_train = sc.fit_transform(X_train)

 # Create the model
 alg = DecisionTreeRegressor(max_depth= 6)

 # Fit the model
 alg.fit(X_train, y_train)

 # Save the model
 alg_var = pickle.dumps(alg)
 alg_pickel = pickle.loads(alg_var)

 dump(alg_pickel ,os.path.join(path, f "Models/ {symbol}
_reg.joblib"))

def tree_reg_sig (symbol):
 """ Function for predict the value of tommorow using
ARIMA model"""

 # Create the weights if there is not in the folder
 try :
 alg = load(os.path.join(path, f "Models/ {symbol}
_reg.joblib"))
 except :
 create_model_weights(symbol)
 alg = load(os.path.join(path, f "Models/ {symbol}
_reg.joblib"))

 # Take the lastest percentage of change
 data = MT5.get_data(symbol, 3500)[["close"
]].pct_change(1)

 # Create new variable
 data.columns = ["returns"]

 # Features engeeniring
 data["returns t-1"] = data[["returns"]].shift(1)

 # Mean of returns
 data["mean returns 15"] = data[["returns"]].rolling(15
).mean()
.shift(1)
 data["mean returns 60"] = data[["returns"]].rolling(60
).mean(
).shift(1)

 # Volatility of returns
 data["volatility returns 15"] = data[["returns"]].rolling(
15).std()

.shift(1)
 data["volatility returns 60"] = data[["returns"]].rolling(
60).std()
.shift(1)

 X = data[["returns t-1" , "mean returns 15" , "mean returns
60" ,
 "volatility returns 15" ,
 "volatility returns 60"]].iloc[-1 :,:].values

 # Find the signal
 prediction = alg.predict(X)
 buy = prediction[0] > 0
 sell = not buy

 return buy, sell

True = Live Trading and False = Screener
live = True

if live:
 current_account_info = mt5.account_info()
 print ("---")
 print ("Date: " , datetime.now().strftime("%Y-%m-%d
%H:%M:%S"))
 print (f "Balance: {current_account_info.balance} USD,
\t"
 f "Equity: {current_account_info.equity} USD, \t"
 f "Profit: {current_account_info.profit} USD")
 print ("---")

info_order = {
 "Google" : ["Alphabet_Inc_C_(GOOG.O).a" , 1.00]
}
start = datetime.now().strftime("%H:%M:%S") #"23:59:59"
while True :
 # Verfication for launch
 if datetime.now().weekday() not in (5 , 6):

 is_time = datetime.now().strftime("%H:%M:%S") ==
start
 else :
 is_time = False
 # Launch the algorithm
 if is_time:

 # Open the trades
 for asset in info_order.keys():

 # Initialize the inputs
 symbol = info_order[asset][0]
 lot = info_order[asset][1]

 # Create the signals
 buy, sell = tree_reg_sig(symbol)

 # Run the algorithm
 if live:
 MT5.run(symbol, buy, sell,lot)

 else :
 print (f "Symbol: {symbol} \t"
 f "Buy: {buy} \t"
 f "Sell: {sell} ")
 time.sleep(1)

The live parameter sets the live trading (live = True) or the
screener mode (live = False).

Chapter 13: Deep Neural
Networks (DNN)

In this chapter, we see our first algorithm for deep learning. We will
talk about the deep neural network DNN, or artificial neural network
ANN. Deep learning is a field of machine learning which uses the
most powerful algorithms. However, it demands many resources to
run. To explain the DNN and create a trading strategy using this
algorithm, we will explain the intuition behind the DNN and how to
create a DNN classifier and a DNN regressor. Moreover, after this
chapter, we will be capable of making our loss function. We will
implement the algorithms on the Apple stock price.

13.1. Intuition behind DNN

This part will discuss the intuition behind the Deep Neural Network or
DNN. To do it, we will speak about the forward propagation of a
neural network, then about the gradient descent, and finally about the
backpropagation.

13.1.1. Forward propagation

In this subsection, we will learn a lot about forwarding propagation
which is the process used by the algorithm to create a prediction. The
essential thing in this process is the neuron. Indeed, it is an essential
part of understanding the concept of forwarding propagation. To
begin, we explain how one neuron works.

One neuron is like linear regression. It has an input named X and a set
of parameters to predict an output y. The parameters are named

weights in deep learning, and the intercept (in the linear
regression) is called bias. The only difference between the neuron and
a linear regression is that we put in an activation function (we will
discuss the action functions later). Let us see the process behind a
neuron in figure 13.1.

Figure 13.1: Neuron process

In this figure, we can see the process behind one neuron in a deep
neural network.

Now, let us discuss the activation function. Usually, it is just a way to
contain the value of the output. However, we will explain later that in
the hidden layer, the choice of the activation function is not "really"
essential but is crucial for the output layer. Let us see the different
activation functions in figure 13.2 to understand the notion better.

Figure 13.2: Some activation function

This figure shows some activation functions, whereas the most used
are the ReLu, the linear, and the sigmoid function.

Now, we already know nearly all about the intuition behind
forwarding propagation. The only thing that we need to know is how
to combine neurons to create a neural network.

The construction of a neural network is straightforward. In figure
13.1, we have created one neuron with inputs and output. We must
connect some neurons to create a neural network, like in figure 13.3.
So, the output of the first neuron becomes the input of the following
and so on until the output neuron.

Figure 13.3: Deep neural network

In this figure, we can see the functioning of a DNN. We see the input
layer with the data, the hidden layer, and the output layer.

As you can see, the interpretability of the model is
tricky because there is a lot of computation and
weight. So, some people in finance do not like the
DNNs because it wants to know which criteria they
will invest. However, the majority does not care.

So, forwarding propagation is to have data put into the neural network
and give an output, the prediction. However, this process does not
train our algorithm. So, in the following parts, we will see how to train
the DNN.

13.1.2. Gradient descent

In this part, we will learn what gradient descent is. Gradient descent is
the most popular algorithm in machine learning to optimize the weight
of an algorithm. It is a way to solve an optimization problem.

The gradient descent is an algorithm based on the function's gradient
that wants to optimize. This algorithm is mathematically easy-to-
understand, but we need to use some very complex math to create it.
So, we will see only the intuition here. However, if we want to go
deeper into the subject, we can find much documentation about it on
the internet.

We need to take a simple example to understand how gradient descent
works. We are on a mountain and there is a vast mist. We want to get
down the mountain but cannot see anything.

To do it, we will search only with our feet the way with the most
downward slope, and we go in this direction after some meters; we
will continue this process until we are down.

It is precisely what the algorithm does. After we want to check which
way has the most downward slope, the algorithm uses the most
negative gradient as we use our feet to find the most downward slope.
The choice of the learning rate is essential. Let us see in figure 13.4
the importance of the learning rate.

Figure 13.4: Learning rate choice

In this figure, we can see the importance of learning in the training
process.

In deep learning, the letter represents all the weight
of all neurons of the network. It is the parameters of

the models. So, if we change , we change some or all
weight and bias of the neurons.

The only problem with the gradient descent is that it can fall at a local
minimum. To schematize the local and global minimum, we can think of
a gold digger in a cave. There is a pack of 1kg gold (the local minimum)
and only one pack of 100kg (the global minimum). Suppose we do not
know that there is a pack in the cave. There is much chance of finding a
pack of 1kg and leaving the cave without the pack of 100kg; this problem
depends on the cost function. Usually, for a regression task, we use the
MSE, which is convex, so there is no issue. However, the algorithm can
fall at a local minimum if we create our loss function as in the next part.

Figure 13.5: Global minimum VS local minimum

This figure shows that if the function is not strictly convex, the algorithm
can fall into a local minimum even if there is a global minimum
elsewhere.

To solve this problem, we can use stochastic gradient
descent [16] or one other of these derivatives.

13.1.3. Backpropagation

We will talk about backpropagation. At this step, we know all we
must do to explain the backpropagation. We need to assemble the
parts.

Figure 13.6: DNN training

After seeing this figure, we can understand the definition of
backpropagation: changing the weight after each iteration according to
the gradient descent to optimize the algorithm and make better
predictions in the future.

13.2. DNN for classification

This section will explain how to do a DNN correctly for a
classification task using Python. We will prepare the data and
highlight some points to know. Then we will implement the DNN and
create a strategy with the prediction.

13.3.1. Preparation of data

In this subsection, we will discuss about the preparation of the data.
As for the previous algorithms, the data will be split into train and test
sets. We work at the Apple stock price with a daily timeframe.

Code 13.1: Preparation of the data
Import the data
df = yf.download("AAPL" , end= "2021-01-01")[["Adj Close"
]].pct_change(1)
df.columns = ["returns"]

Features engeeniring
df["returns t-1"] = df[["returns"]].shift(1)

Mean of returns
df["mean returns 15"] = df[["returns"]].rolling(15
).mean().shift(1)
df["mean returns 60"] = df[["returns"]].rolling(60
).mean().shift(1)

Volatility of returns
df["volatility returns 15"] = df[["returns"]].rolling(15
).std().shift(1)
df["volatility returns 60"] = df[["returns"]].rolling(60
).std().shift(1)

Drop missing values
df = df.dropna()

Percentage train set
split = int(0.80 * len (df))

Train set creation
X_train = df[["returns t-1" , "mean returns 15" , "mean returns 60"
,
 "volatility returns 15" ,
 "volatility returns 60"]].iloc[:split]

y_train_reg = df[["returns"]].iloc[:split]

y_train_cla = np. round (df[["returns"]].iloc[:split]+ 0.5)

Test set creation
X_test = df[["returns t-1" , "mean returns 15" , "mean returns 60" ,
 "volatility returns 15" ,
 "volatility returns 60"]].iloc[split:]

y_test_reg = df[["returns"]].iloc[split:]
y_test_cla = np. round (df[["returns"]].iloc[split:]+ 0.5)

NORMALIZATION
Import the class
from sklearn.preprocessing import StandardScaler

Initialize the class
sc = StandardScaler()

Standardize the data
X_train_scaled = sc.fit_transform(X_train)
X_test_scaled = sc.transform(X_test)

We do not explain this part because it is coded from the previous
chapters. At the same time, it is essential to standardize our data when
we work with a neural network because it is a very complex
algorithm.

13.2.2. Implementing a DNN for a
classification task

In this part, we will implement a DNN for a classification task. We
will use TensorFlow to create the model. The deep learning algorithms
demand a little comprehension to create them. So, ensure we
understand the previous chapters before beginning.

Creating a model with TensorFlow gives us many possibilities.
However, on the contrary, we need to understand what we want to do
instead of the scikit-learn algorithm in which we have to put the data.

However, do not worry, we are going to explain step by step the
construction the different steps of the DNN.

Code 13.2: Deep neural network for classification task
LIBAIRIES
import tensorflow
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense

nb_hidden_layer = 1 1

INTIALIZATION SEQUENTIAL MODEL

classifier = Sequential() 2

ADD HIDDEN LAYER

for _ in range (nb_hidden_layer) : 3
 classifier.add(Dense(75 , input_shape = (X_train.shape[1],),
activation= "relu")) 4

OUTPUT LAYER DENSE

classifier.add(Dense(1 , activation= "sigmoid")) 5

COMPILE THE MODEL
classifier. compile (loss= "binary_crossentropy" , optimizer=

"adam") 6

TRAINING
classifier.fit(X_train_scaled, y_train_cla, epochs= 15 , batch_size=

32 , verbose= 1) 7
1 Define the number of hidden layers.

2 Initialize the neural network.

Create a loop that add the hidden layers.

3
4 input_shape = (X_train.shape[1],) is only

necessary for the first layer.

5 It is necessary to put a sigmoid to the activation
because it is a classifier.

6 Compilation of the model using the stochastic
gradient and binary cross-entropy as loss function.

7 Fit the model using only verbose=1 to highlight
the training of the model.

Now, we will explain this code. First, we need to initialize the model
as for the scikit-learn models. After that, we have just an empty
model; we need to build it. The loop allows us to create as hidden
layers as we want. The Dense function of TensorFlow creates a layer
of neural networks. We have to be precise about how many neurons
we want, the shape of the inputs, and the activation function.
Then we need to define a particular layer for the output because we
need to predict the class. So, we want to predict a 0 or a 1. We choose
the sigmoid to activate this neuron because the value will be between
0 and 1, and we want a probability.
Then we have to explain how we want to train the algorithm. We
choose the cross-entropy function and a stochastic descent gradient
named "adam." To fit the model, we must choose the number of
epochs and the batch_size.

We can put callbacks in the fit function to stop the
algorithm to a certain level of function loss, but this is
not relevant for this book. You can read the
TensorFlow documentation for more details.

13.2.3. Prediction and Backtest

In this part, we will analyze the performance of a strategy created
using a DNN. We are going to use precisely the same code as the
previous backtest.

Code 13.3: Compute return strategy using the DNN predictions
Create predictions for the whole dataset
df["prediction"] =
classifier.predict(np.concatenate((X_train,X_test),
 axis= 0))
df["prediction"] = np.where(df["prediction"] == 0 , -1 , 1)
Compute the strategy
df["strategy"] = np.sign(df["prediction"]) * df["returns"]

Backtest
backtest_dynamic_portfolio(df["strategy"].iloc[split:])

With this code, we can see backtest of a strategy using the DNN
classifier on Apple stock. As we can see, there is an excellent
performance because we win more than 30% annually. In comparison,
we need to consider that we have not integrated the fees.

Figure 13.7: Backtest of a DNN prediction strategy on Apple stock

Beta: 1.23 Alpha: 17.49 % Sharpe: 0.594 Sortino: 0.841

VaR: 84.73 % cVaR: 100.5 % VaR/cVaR: 1.186 drawdown: 81.8 %

We can see a good trend in the growth of capital using this strategy.

13.3. DNN for regression

In this section, we will learn how to create a DNN for a regression
task and how to create our loss function. Then, backtest the strategy.

13.3.1. Implementing a DNN for a regression
task

In this part, we will create a DNN for a regression task. It is very
similar to the classifier, but there are some subtilities. We only need to
change the loss function to optimize the activation of the output
neuron. Let us see the code then we will explain it more in detail.

Code 13.4: DNN regressor implementation
nb_hidden_layer = 1

INTIALIZATION SEQUENTIAL MODEL
regressor = Sequential()

ADD HIDDEN LAYER
for _ in range (nb_hidden_layer):
 regressor.add(Dense(75 , input_shape = (X_train.shape[1],),
activation= "relu"))

OUTPUT LAYER DENSE
regressor.add(Dense(1 , activation= "linear"))

COMPILE THE MODEL
regressor. compile (loss= "mse" , optimizer= "adam")

TRAINING
regressor.fit(X_train_scaled, y_train_reg, epochs= 15 , batch_size=
32 , verbose= 1)

Here the activation function of the output neuron is
essential. For example, if we put a sigmoid, the
algorithm predicts only a positive return, which is
impossible.

We have chosen to train the model using the Mean Squared Error
(MSE) as a loss function.

If we begin deep learning, it is advised to keep the linear
activation function for the output of a regressor. If we
understand the concept well, we can try a tanh function
or others as seen before.

13.3.2. Custom loss function

We have seen how to train the model with a usual metric in the last
part. At the same time, we can create our metrics if we want. The
question is, why do we want to do that? Let's explain some
limitations:

We take the same investment if the algorithm predicts 15% or
- 0.000001%.

The error is almost the same for the MSE between 0.000001 or
-0.000001.

We must therefore incorporate in our loss function that if the
prediction is wrong in sign, we add a malus. We need to calculate the
following equation in Tensorflow.

Where is the prediction, is the true value and > 1.

Code 13.5: Custom MSE function
def ALPHA_MSE (y_true , y_pred) : 1
 y_true_roll = tf.roll(y_true, shift= 1 , axis= 0) 2
 y_pred_roll = tf.roll(y_pred, shift= 1 , axis= 0)
 y_true_dif = tf.math.sign(y_true_roll-y_true) 3
 y_pred_dif = tf.math.sign(y_pred_roll-y_pred)

 booleen_vector = y_true_dif == y_pred_di f 4
 alpha = tf.where(booleen_vector, 1 , 3) 5
 alpha = tf.cast(alpha, dtype=tf.float32) 6
 mse = F.square(y_true-y_pred)
 mse = tf.cast(mse, dtype=tf.float32)
 scale_mse = tf.multiply(alpha, mse)
 alpha_mse = F.mean(scale_mse)
 return alpha_mse

1 Custom loss function needs to have two
parameters y_true and y_pred, which are tensors.
Thus, all the computations need to use
TensorFlow functions.

2 Create a new variable containing the target shift
by 1.

3 Take the sign of the daily variation.

4 Create a Boolean tensor in which each value is
True if y_true and y_pred varies in the same way
and False neither.

5 Create multiplicator vector, which is equal to 1 if
the two vectors vary in the same way and 3
neither to penalize the wrong size.

6 Transform a tensor in a constant vector.

This part is not mandatory for the book, but you should
know that creating a custom loss function is possible.
You can consult the TensorFlow documentation if you
want to go deeper into the subject.

Keep in mind that customizing a loss function and creating a
metric with scikit learn are two distinct things; do not confuse
them. With the custom metrics of scikit-learn, we train a model
using an MSE or another essential function and we take the best

models following the created metrics. However, the loss function
custom in TensorFlow is the function that computes the model's
error (like MSE in scikit-learn).

13.3.3. Prediction and Backtest

In this part, we will backtest the strategy created using the custom loss
and the strategy using the DNN training with MSE loss.

As we can see in the figure and as we have said in the last part, the
custom loss is not for beginners. Indeed, the custom loss strategy is
good but not better than the strategy using the MSE.

Figure 13.8: Backtest of the strategy using MSE and MSE alpha

MSE alpha

Beta: 1.127 Alpha: 15.55 % Sharpe: 1.065 Sortino: 1.396

VaR: 36.33 % cVaR: 45.6 % VaR/cVaR: 1.255 drawdown: 38.52 %

MSE

Beta: 1.127 Alpha: 15.55 % Sharpe: 1.065 Sortino: 1.396

VaR: 36.33 % cVaR: 45.6 % VaR/cVaR: 1.255 drawdown: 38.52 %

This figure shows that the custom loss function does not impact the
performances because the two backtest are similar.

With the DNN, we have excellent results, but the DNN does not
consider that we work with a time series.

Summary

The process behind a neuron is like linear regression; instead
of putting the y in a activation function.

There are many activation functions. However, the most used
are the ReLu function and the sigmoid. The choice of the
function is crucial in some situations.

The essential thing in gradient descent is the learning rate.
Moreover, we use the stochastic gradient descent to avoid
falling to a local minimum.

The backpropagation is the moment when we change the
weights of the model. Thus, without this part, we cannot train
our model.

We can custom a loss function. However, it needs much
knowledge in deep learning to do it properly. Thus, if we are
not comfortable with the notions of the books, we should not
go into this subject.

Application Live Trading and Screener
This code is based on the class created in the annex: MetaTrader

Code 13.6: Application Trading / ANN Regressor
from MT5 import *
import numpy as np
import pandas as pd
import warnings
warnings.filterwarnings("ignore")
import time
import pickle

from joblib import dump, load

import os
from sklearn.preprocessing import StandardScaler
import tensorflow
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense

path = "" # Ex:
C:/Desktop/Python_for_finance_and_algorithmic_trading/
ChapterN/

def ANN ():
 # Create the model
 nb_hidden_layer = 1

 # INTIALIZATION SEQUENTIAL MODEL
 alg = Sequential()

 # ADD HIDDEN LAYER
 for _ in range (nb_hidden_layer):
 alg.add(Dense(75 , input_shape = (5 ,), activation=
"relu"))

 # OUTPUT LAYER DENSE
 alg.add(Dense(1 , activation= "linear"))

 # COMPILE THE MODEL
 alg. compile (loss= "mse" , optimizer= "adam")
 return alg

def create_model_weights (symbol):
 """ Weights for Linear regression on the percentage
change"""
 # Import the data
 data = MT5.get_data(symbol, 3500)[["close"
]].pct_change(1)

 # Create new variable

 data.columns = ["returns"]

 # Features engeeniring
 data["returns t-1"] = data[["returns"]].shift(1)

 # Mean of returns
 data["mean returns 15"] = data[["returns"]].rolling(15
).mean()
.shift(1)
 data["mean returns 60"] = data[["returns"]].rolling(60
).mean()
.shift(1)

 # Volatility of returns
 data["volatility returns 15"] = data[["returns"]].rolling(
15).std()
.shift(1)
 data["volatility returns 60"] = data[["returns"]].rolling(
60).std()
.shift(1)

 # Split the data
 data = data.dropna()
 split = int(0.80 * len (data))

 # Train set creation
 X_train = data[["returns t-1" , "mean returns 15" , "mean
returns 60" ,
 "volatility returns 15" ,
 "volatility returns 60"]].iloc[:split]
 y_train = data[["returns"]].iloc[:split]

 # Initialize the class
 sc = StandardScaler()

 # Standardize the data
 X_train = sc.fit_transform(X_train)

 alg = ANN()

 # TRAINING

 alg.fit(X_train, y_train, epochs= 13 , batch_size= 32 ,
verbose= 1)

 # Save the model
 alg.save_weights(os.path.join(path, f "Models/ANN_reg_
{symbol} "))

def ANN_cla_sig (symbol):
 """ Function for predict the value of tommorow using
ARIMA model"""

 # Create the weights if there is not in the folder
 try :
 alg = ANN()
 alg.load_weights(os.path.join(path, f "Models/ANN_reg_
{symbol} "))
 except :
 create_model_weights(symbol)
 alg = ANN()
 alg.load_weights(os.path.join(path, f "Models/ANN_reg_
{symbol} "))

 # Take the lastest percentage of change
 data = MT5.get_data(symbol, 3500)[["close"
]].pct_change(1)
 # Create new variable
 data.columns = ["returns"]

 # Features engeeniring
 data["returns t-1"] = data[["returns"]].shift(1)

 # Mean of returns
 data["mean returns 15"] = data[["returns"]].rolling(15
).mean()
.shift(1)
 data["mean returns 60"] = data[["returns"]].rolling(60
).mean()
.shift(1)

 # Volatility of returns

 data["volatility returns 15"] = data[["returns"]].rolling(
15).std()
.shift(1)
 data["volatility returns 60"] = data[["returns"]].rolling(
60).std()
.shift(1)

 X = data[["returns t-1" , "mean returns 15" , "mean returns
60" ,
 "volatility returns 15" ,
 "volatility returns 60"]].iloc[-1 :,:].values

 # Find the signal
 prediction = alg.predict(X)
 prediction = np.where(prediction== 0 , -1 , 1)
 buy = prediction[0][0] > 0
 sell = not buy

 return buy, sell

True = Live Trading and False = Screener
live = True

if live:
 current_account_info = mt5.account_info()
 print ("---")
 print ("Date: " , datetime.now().strftime("%Y-%m-%d
%H:%M:%S"))
 print (f "Balance: {current_account_info.balance} USD,
\t"
 f "Equity: {current_account_info.equity} USD, \t"
 f "Profit: {current_account_info.profit} USD")
 print ("---")

info_order = {
 "Apple" : ["AAPL.a" , 1.00]
}

start = datetime.now().strftime("%H:%M:%S") #"23:59:59"
while True :
 # Verfication for launch
 if datetime.now().weekday() not in (5 , 1):
 is_time = datetime.now().strftime("%H:%M:%S") ==
start
 else :
 is_time = False

 # Launch the algorithm
 if is_time:

 # Open the trades
 for asset in info_order.keys():

 # Initialize the inputs
 symbol = info_order[asset][0]
 lot = info_order[asset][1]

 # Create the signals
 buy, sell = ANN_cla_sig(symbol)

 # Run the algorithm
 if live:
 MT5.run(symbol, buy, sell,lot)

 else :
 print (f "Symbol: {symbol} \t"
 f "Buy: {buy} \t"
 f "Sell: {sell} ")
 time.sleep(1)

The live parameter sets the live trading (live = True)
or the screener mode (live = False).

Chapter 14: Recurrent neural
network

In this chapter, we will talk about Recurrent Neural Networks (RNN).
This algorithm specialized in time series can be a precious ally in
creating a trading strategy because the asset prices are time series.
Moreover, it is one of the most complex deep learning algorithms.
We will implement the strategies using the Netflix stock.

14.1 Principles of RNN

In this section, we will learn how an RNN works. Here, we will see
the basis of RNN, but you may check some internet papers if you
want to go deeper into the subject.

14.1.1. How an RNN works

This part will discuss the intuition behind the RNN. RNN models are
specialized in time series modeling. Indeed, the network structure is
slightly different from the ANN because the hidden layers are
interconnected.

The interconnection between the hidden layer allows the model to
"remember" the past. In the RNN, there are two types of memory
instead of the ANN. The RNN has its long-term memory but also a
short-term memory created by the interconnection that we speak
previously.

We need a little representation to understand better how an RNN
works. To do it, we need to simplify the representation of the ANN.
We will schematize the ANN only with his layer and not all neurons.

It allows us to visualize the model straightforwardly to create the
representation for the RNN easier. Let us see figure 14.1.

Figure 14.1: New schematization of the ANN

This figure showed the representation of an ANN using the layer only
with the square instead of the left with all neurons. However, it is the
same ANN.

Figure 14.2: Schematization of RNN

As we can see, the RNN is nothing else that ANN connected. We see
that the information of the hidden layer is given directly to the next
hidden layer, and it is not integrated only with the weights of the
models.

The problem with the RNN is that the model may have some
problems with the gradient since there are many more derivations
than in the ANN case, which can cause vanishing gradient issues. At
the same time, the researchers have found a solution to this problem.
They have created new neurons named Long Short-Term Memory
(LSTM) neurons. It is slightly different from the structure of a neuron
we see in the last secion, so we need to study it.

14.1.2. LSTM neuron

How does an LSTM cell work? Naturally, it is not a deep learning
course. So, if you want to understand the LSTM cell better, you need to
go on the internet because this subject is irrelevant to this book. Let us
know what it looks like for an LSTM cell. Then, we explain the
difference between the dense and LSTM cells.

Figure 14.3: LSTM cell

This figure shows the functioning of an LSTM cell where the memory

at time t is , and the information at time t is . So, we can say
that there are a long-term and short-term memory.

To better understand the LSTM cell, we will take a little example.
Suppose we have an algorithm that predicts the next word, for
example. We need C, which is the sentence, and h, which is some
adjective, and x, the previous word.

The sigma is the sigmoid activation function. The most adds
information it works like a plumbing valve it will let the information
pass or not using the property of the sigmoid function.

So we don't go any further. It is understandable that this notion is not
understood. However, this section only gives us some information to
better understand how we are going to create the strategy using the
RNN and not be a complete deep learning course. If you don't
understand this explanation, don't worry, we can continue the book
without understanding it.

14.1.3. GRU cell

In this part, we will see derivatives of the LSTM neuron, the Gated
Recurrent Unit (GRU). It is an excellent alternative to the LSTM
because it takes only the information from the previous neuron and
not the memory, which can be problematic in our case. Indeed,
suppose we remember how the market reacted 15 years ago. In that
case, it will not be the same as the market's reaction now because the
market institutions have changed, the technologies have been
evolved, etc.

Figure 14.4: GRU cell

As we can see in the GRU cell, only the information , we do not

consider the memory instead as in the LSTM.

Even if the GRU and the LSTM differ, you must test
both when creating your trading strategy on an RNN
model.

In this section, we have seen much information about RNN. We can
reread this section if we are uncomfortable with this notion or go to
the next section because the theory is necessary to understand what
we do but not to create the model. After all, we already know the
functioning of an ANN. The RNN is similar even if it has some
specificities. Now, we are ready to begin the code of the RNN using
TensorFlow.

14.2. RNN for classifi cation

We will see how to transform our data into 3d data (necessary for
classification and regression and implement our model) and how to
backtest the created strategy.

14.2.1. Transform 2d data to 3d data

This part will explain why and how to transform our 2d data into 3d
data. If we have understood the theory behind the RNN very well
(even if it is very hard with the information that is given you), we
have understood that this network takes for each a matrix of shape
(lags, m) where lag is the number of lag and m is the number of
features. So, if we have n observations, we have a matrix with a
shape (n, lags, m). Figure 14.5 represents the database we need.

Figure 14.5: Schematization of the data for an RNN

 One observation All observations

As we can see, the database for an RNN needs to be 3-dimensional. It
is the same rules as for the ANN. However, for the ANN, we have a
line as observation, so a 1-dimensional array, and when we have
more than one, the matrix becomes 2-dimensional, instead of the
RNN, which needs a 2-dimensional array BY observation. Naturally,
if we have more than one, the array will be 3-dimensional.

Code 14.1: Transform 2d data into 3d data
def X_3d_RNN (X_s , y_s , lag):

 # Simple verification

 if len (X_s) != len (y_s):
 print ("Warnings")

 # Create the X_train
 X_train = []
 for variable in range (0 , X_s.shape[1]):
 X = []
 for i in range (lag, X_s.shape[0]):
 X.append(X_s[i-lag:i, variable])
 X_train.append(X)
 X_train, np.array(X_train)
 X_train = np.swapaxes(np.swapaxes(X_train, 0 , 1), 1 , 2)

 # Create the y_train
 y_train = []
 for i in range (lag, y_s.shape[0]):
 y_train.append(y_s[i, :].reshape(-1 , 1).transpose())
 y_train = np.concatenate(y_train, axis= 0)
 return X_train, y_train

To check if X_train and y_train have the same size, we display
a message but we don't raise an error because for some reason
we can use X_train and y_train with different lengths.

We note that the y_train shape will not change, but we put it into the
function to shift the value due to the lag. Now, we have the data in a
suitable format. We can begin to implement the RNN classifier using
TensorFlow.

14.2.2. Implementing the model

Creating the network in Python will be very similar to the ANN. So,
we will only highlight the new points. With the LSTM function, we
have a new argument which is return_sequences. To make it easy, if

this parameter is false, we will return a 2-dimensional array, and if it
is True, we will return a 3-dimensional array. So, we need to put it in
the right place. If we do not use our loss function, we will have no
issue with that, but if we use our loss function, we need to use this
parameter correctly.

Code 14.2: RNN classifier
LIBAIRIES
import tensorflow
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, LSTM

INITIALIZATION OF THE MODEL
classifier = Sequential()

ADD LSTM LAYER
classifier.add(LSTM(units = 10 , return_sequences = True ,
 input_shape = (X_train_3d.shape[1
],X_train_3d.shape[2],)))
LOOP WHICH ADD LSTM LAYER
for _ in range (1):
 classifier.add(LSTM(units = 10 , return_sequences = True))

LAST LSTM LAYER BUT WITH return_sequences = False
classifier.add(LSTM(units = 10 , return_sequences = False))

OUTPUT DENSE LAYER
classifier.add(Dense(1 , activation= "sigmoid"))

COMPILE THE MODEL
classifier. compile (loss= "binary_crossentropy" , optimizer=
"adam")
TRAINING
classifier.fit(X_train_3d, y_train_3d, epochs= 15 , batch_size= 32
, verbose= 1)

As we see, the RNN needs many resources. To avoid
computation, you can take a model already trained on the
internet and modify it a little bit to adapt it to your data. You
also can use GPU, CPU, or TPU on Google Colab.

14.2.3. Prediction and backtest

Now that we have our algorithm, we will see the slight differences in
the code when we want to make a prediction and backtest with a
strategy using an RNN.

Code 14.3: Predictions and backtest
Create predictions for the whole dataset
y_pred_train = np.concatenate((np.zeros([lag, 1]),
classifier.predict(X_train_3d)),axis= 0)
y_pred_test = np.concatenate((np.zeros([lag, 1]),
classifier.predict(X_test_3d)),axis= 0)

df["prediction"] = np.concatenate((y_pred_train,y_pred_test),
 axis= 0)
df["prediction"] = np.where(df["prediction"] == 0 , -1 , 1)

Compute the strategy
df["strategy"] = np.sign(df["prediction"]) * df["returns"]
Backtest
backtest_dynamic_portfolio(df["strategy"].iloc[split+lag:])

We need to add a vector of 0 of the lag lengths to
ensure that the data will be in a good place. We have
deleted 15 data each day using the function to
transform the data in 3d.

As we can see on the backtest, it is an excellent algorithm because
capital growth is very stable. We have excellent indicators like the
Sharpe ratio of more than one, but we have a drawdown at 45%; that is
why we will see in the chapter in which we are going to create the
project, how we can create a portfolio of strategies to decrease the
volatility of the portfolio (like previous in chapter 3 on the static
portfolio optimization).

Figure 14.6: Backtest of strategy using RNN predictions on
Netflix stock

Beta: 0.953 Alpha: 28.52 % Sharpe: 1.04 Sortino: 1.539

VaR: 52.82 % cVaR: 66.92 % VaR/cVaR: 1.267 drawdown: 44.18 %

In this figure, we can see that the growth of the capital is very well,
except from 2018-07 to 2019-07 with a drawdown of 45%.

14.3. RNN regressor

This section will explain how to do an RNN regressor and create a
function to automate the building. To do it, we will do a tiny
precision about standardization. Then we will see a new deep
learning function named dropout and how to perform our trading
strategy created with the RNN regressor.

14.3.1. Precision about standardization

Previously, we said that normalization should not be applied to the
target. TRUE! However, using RNN, both X and y will be used to
train the model. So, it will be better to normalize the y to decrease the
computation time. Moreover, later we will have to do the inverse
transformation on the y's afterward to get the right scale values to
make our investment decisions.

Code 14.4: Standardization of the target
STANDARDIZATION
sc_y = StandardScaler()
y_train_scaled = sc_y.fit_transform(y_train_reg)
y_test_scaled = sc_y.transform(y_test_reg)

It is essential to create a new variable sc_y to standardize
this data and keep it because we have the inverse transform
once the algorithm gives predictions.

14.3.2. Implementing the model

This part will explain a new concept, the dropout layer. To better
utilization, we create a function RNN that allows us to create a model

only taking some necessary parameters.
First, let us talk about the dropout. It is an exciting thing and very
simple. It is a layer that we add to the model, which turns a
percentage of the neurons of a layer off. However, why do we want to
do that?

Add some dropout layer are very useful in two principal ways:

Better training : Turn some neurons off and constrain the
others to learn more than usual so that the model will be
better trained.

Reduce overfitting risk : the dropout allows us to reduce the
risk of overfitting because randomly turning some neurons off
forces the other neurons to not focus on one point.

Code 14.5: Factorize RNN implementation in a function
def RNN (number_neurons , number_hidden_layer , shape , loss
= "mse" , metrics =["mae"], activation = "linear" , optimizer =
"adam" , pct_dropout = 0.5):

 # LIBAIRIES
 import tensorflow
 from tensorflow.keras.models import Sequential
 from tensorflow.keras.layers import Dense, LSTM, Dropout

 # INITIALIZATION OF THE DATA
 model = Sequential()

 # ADD LSTM LAYER
 model.add(LSTM(units = number_neurons, return_sequences =
True ,

input_shape = shape))

 # ADD DROPOUT LAYER
 model.add(Dropout(pct_dropout))

 # LOOP WHICH ADD LSTM AND DROPPOUT LAYER
 for _ in range (number_hidden_layer):

 model.add(LSTM(units = number_neurons, return_sequences =
True))
 model.add(Dropout(pct_dropout))

 # LAST LSTM LAYER BUT WITH return_sequences = False TO
HAVE 2D ARRAY
 model.add(LSTM(units = number_neurons, return_sequences =
False))

 # ADD DROPOUT LAYER
 model.add(Dropout(pct_dropout))

 # OUTPUT DENSE LAYER
 model.add(Dense(1 , activation=activation))

 # COMPILE THE MODEL
 model. compile (loss=loss, optimizer=optimizer, metrics=metrics)
 return model

regressor = RNN(15 , 3 , taille = (X_train_3d.shape[1
],X_train_3d.shape[2]),
 loss = "mse" , metrics=["mae"], activation= "linear" ,
 optimizer= "adam" , pct_dropout= 0.65)

regressor.fit(X_train_3d, y_train_3d, epochs= 1 , batch_size= 32 ,
verbose= 1)

14.3.3. Predictions and backtest

This part will see how to do the inverse transform of standardization
and backtest the trading strategy using an RNN regressor.

Code 14.6: Inverse standardization transform and backtest
Create predictions for the whole dataset

Inverse transform
y_train_sc = sc_y.inverse_transform(regressor.predict(X_train_3d))

Predictions

y_pred_train = np.concatenate((np.zeros([lag, 1]),y_train_sc),
 axis= 0)

Inverse transform
y_test_sc = sc_y.inverse_transform(regressor.predict(X_test_3d))

Predictions
y_pred_test = np.concatenate((np.zeros([lag, 1]),y_test_sc),
 axis= 0)

df["prediction"] = np.concatenate((y_pred_train,y_pred_test),
 axis= 0)

Compute the strategy
df["strategy"] = np.sign(df["prediction"]) * df["returns"]

Backtest
backtest_dynamic_portfolio(df["strategy"].iloc[split+lag:])

As shown in figure 14.7, it is the same as for the classifier instead of
the dropout. That means that there is no overfitting in the classifier.

Figure 14.7: Backtest of strategy using RNN predictions on
Netflix stock

Beta: 0.953 Alpha: 28.52 % Sharpe: 1.04 Sortino: 1.539

VaR: 52.82 % cVaR: 66.92 % VaR/cVaR: 1.267 drawdown: 44.18 %

The strategy has the same returns as the classifier RNN which can be
possible because it is training on the same data.

Before closing this chapter, there are some points about deep learning
need to be highlighted:

The algorithms need many data , nearly 50,000 or 100,000
minimum, to be trained even if we have taken a tiny database
here.

The deep learning algorithms are the most powerful but also
the most challenging to train because of the number of
hyperparameters.

The risk of overfitting increases with the number of
parameters. So, neural networks are very touched by these
issues.

Summary

The data need to be 3-dimensional to train an RNN because
each observation is a 2-dimensional matrix.

The Recurrent neural network is useful when we work on
time series.

The dropout layer allows us to turn some neural off to
optimize the training and avoid overfitting.

Application Live Trading and Screener
This code is based on the class created in the annex: MetaTrader

Code 14.7: Application Trading / RNN Regressor
from MT5 import *
import numpy as np
import pandas as pd
import warnings
warnings.filterwarnings("ignore")
import time
import pickle
from joblib import dump, load
import os
from sklearn.preprocessing import StandardScaler
from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense, LSTM, Dropout

path = "" # Ex:
C:/Desktop/Python_for_finance_and_algorithmic_trading/
ChapterN/

def X_3d_RNN (X_s , y_s , lag):

 # Simple verification
 if len (X_s) != len (y_s):
 print ("Warnings")

 # Create the X_train
 X_train = []
 for variable in range (0 , X_s.shape[1]):
 X = []
 for i in range (lag, X_s.shape[0]):
 X.append(X_s[i-lag:i, variable])
 X_train.append(X)
 X_train, np.array(X_train)
 X_train = np.swapaxes(np.swapaxes(X_train, 0 , 1), 1 , 2)

 # Create the y_train
 y_train = []
 for i in range (lag, y_s.shape[0]):
 y_train.append(y_s[i, :].reshape(-1 , 1).transpose())
 y_train = np.concatenate(y_train, axis= 0)
 return X_train, y_train

def RNN ():
 # Create the model
 number_hidden_layer = 15
 number_neurons = 10
 loss= "mse"
 metrics=["mae"]
 activation= "linear"
 optimizer= "adam"
 pct_dropout= 0.5

 # INITIALIZATION OF THE DATA

 model = Sequential()

 # ADD LSTM LAYER
 model.add(LSTM(units = number_neurons, return_sequences =
True , input_shape = (15 , 5 ,)))

 # ADD DROPOUT LAYER
 model.add(Dropout(pct_dropout))

 # LOOP WHICH ADD LSTM AND DROPPOUT LAYER
 for _ in range (number_hidden_layer):
 model.add(LSTM(units = number_neurons, return_sequences =
True))
 model.add(Dropout(pct_dropout))

 # LAST LSTM LAYER BUT WITH return_sequences = False
 model.add(LSTM(units = number_neurons, return_sequences =
False))

 # ADD DROPOUT LAYER
 model.add(Dropout(pct_dropout))

 # OUTPUT DENSE LAYER
 model.add(Dense(1 , activation=activation))

 # COMPILE THE MODEL
 model. compile (loss=loss, optimizer=optimizer,
metrics=metrics)
 return model

def create_model_weights (symbol):
 """ Weights for Linear regression on the percentage change"""
 # Import the data
 data = MT5.get_data(symbol, 3500)[["close"]].pct_change(1)

 # Create new variable
 data.columns = ["returns"]

 # Features engeeniring
 data["returns t-1"] = data[["returns"]].shift(1)

 # Mean of returns

 data["mean returns 15"] = data[["returns"]].rolling(15
).mean()
.shift(1)
 data["mean returns 60"] = data[["returns"]].rolling(60
).mean()
.shift(1)

 # Volatility of returns
 data["volatility returns 15"] = data[["returns"]].rolling(15
).std()
.shift(1)
 data["volatility returns 60"] = data[["returns"]].rolling(60
).std()
.shift(1)

 # Split the data
 data = data.dropna()
 split = int(0.80 * len (data))

 # Train set creation
 X_train = data[["returns t-1" , "mean returns 15" , "mean returns
60" ,
 "volatility returns 15" ,
 "volatility returns 60"]].iloc[:split]
 y_train = np. round (data[["returns"]].iloc[:split]+ 0.5)

 # Initialize the class
 sc = StandardScaler()

 # Standardize the data
 X_train = sc.fit_transform(X_train)

 lag = 15
 X_train, y_train = X_3d_RNN(X_train, y_train.values, 15)

 alg = RNN()

 # TRAINING
 alg.fit(X_train, y_train, epochs= 1 , batch_size= 32 , verbose= 1
)

 # Save the model
 print ("Train the model because there are no existed weights")
 alg.save_weights(os.path.join(path, f "Models/RNN_reg_
{symbol} "))

def RNN_reg_sig (symbol):
 """ Function for predict the value of tommorow using ARIMA
model"""

 # Create the weights if there is not in the folder
 try :
 alg = RNN()
 alg.load_weights(os.path.join(path, f "Models/RNN_reg_
{symbol} "))
 except :
 create_model_weights(symbol)
 alg = RNN()
 alg.load_weights(os.path.join(path, f "Models/RNN_reg_
{symbol} "))

 # Take the lastest percentage of change
 data = MT5.get_data(symbol, 3500)[["close"]].pct_change(1)
 # Create new variable
 data.columns = ["returns"]

 # Features engeeniring
 data["returns t-1"] = data[["returns"]].shift(1)

 # Mean of returns
 data["mean returns 15"] = data[["returns"]].rolling(15
).mean()
.shift(1)
 data["mean returns 60"] = data[["returns"]].rolling(60
).mean()
.shift(1)

 # Volatility of returns

 data["volatility returns 15"] = data[["returns"]].rolling(15
).std()
.shift(1)
 data["volatility returns 60"] = data[["returns"]].rolling(60
).std()
.shift(1)

 X = data[["returns t-1" , "mean returns 15" , "mean returns 60" ,
 "volatility returns 15" ,
 "volatility returns 60"]]

 # Initialize the class
 sc = StandardScaler()

 # Standardize the data
 X = sc.fit_transform(X)

 y = data[["returns t-1"]]

 X, _ = X_3d_RNN(X, y.values, 15)

 X = X[-1 :,:,:]

 # Find the signal
 prediction = alg.predict(X)
 buy = prediction[0][0] > 0
 sell = not buy

 return buy, sell

True = Live Trading and Flse = Screener
live = True

if live:
 current_account_info = mt5.account_info()
 print ("---")
 print ("Date: " , datetime.now().strftime("%Y-%m-%d
%H:%M:%S"))

 print (f "Balance: {current_account_info.balance} USD, \t"
 f "Equity: {current_account_info.equity} USD, \t"
 f "Profit: {current_account_info.profit} USD")
 print ("---")

info_order = {
 "Netflix" : ["Netflix_Inc_(NFLX.O)" , 1.00]
}

start = datetime.now().strftime("%H:%M:%S") #"23:59:59"
while True :
 # Verfication for launch
 if datetime.now().weekday() not in (5 , 1):
 is_time = datetime.now().strftime("%H:%M:%S") == start
 else :
 is_time = False

 # Launch the algorithm
 if is_time:

 # Open the trades
 for asset in info_order.keys():

 # Initialize the inputs
 symbol = info_order[asset][0]
 lot = info_order[asset][1]

 # Create the signals
 buy, sell = RNN_reg_sig(symbol)

 # Run the algorithm
 if live:
 MT5.run(symbol, buy, sell,lot)

 else :
 print (f "Symbol: {symbol} \t"
 f "Buy: {buy} \t"
 f "Sell: {sell} ")

 time.sleep(1)

The live parameter sets the live trading (live = True)
or the screener mode (live = False).

Chapter 15: Bonus / Example of
RNN with CNN (RCNN)
In this bonus, we will an example of an advanced deep learning
algorithm, the RCNN, which combines a 1d-CNN [17] and an RNN. It
allows us to keep the best of the two models.

Indeed, the RNN is good for finding relationships in time because it
is a time series analysis algorithm. At the same time, CNN can catch
more features because it has a different method to fit.

15.1. Intuition of CNN

The Convolutional neural network (CNN) specialty is that it works
with filters. The filters in a CNN layer are like the number of neurons
with an RNN. The more filters there are, the more the algorithm is
complex. CNN is mainly used for image detection. We will explain a
little bit the notion using the example of an image.

Figure 15.1: Intuition behind CNN

In this figure, we can see the representation of CNN’s functioning .

M is the length of the stripe, which is a significant parameter.
If the stripe is too tiny, our algorithm takes too much time to
train, increasing the overfitting risk. Do not forget that the

more your increase the complexity, the more the overfitting
risk increase.

N is the number of filters. The more filters there are, the more
powerful and take time to train.

The convolutional layer is created by the function conv1D or
conv2D of TensorFlow.

The pooling layer allows us to reduce the shape, whereas we
will not use it in our model.

15.2. Create an RCNN

Each neural network has many structures, particularly this one,
because it combines them. We will use a 1-dimensional CNN because
it needs 3-dimensional data like the RNN.

Figure 15.2: Description of the model

Our model is a little more complex than the other. Indeed, it combines
RNN, CNN, and dropout .

Code 15.1: RCNN
def RCNN (number_neurons , number_hidden_layer , shape , loss
= "mse" , metrics =["mae"], activation = "linear" , optimizer =
"adam" , pct_dropout = 0.5):

 # LIBAIRIES
 import tensorflow
 from tensorflow.keras.models import Sequential
 from tensorflow.keras.layers import Conv1D, Dense, LSTM,
Dropout

 # INITIALIZATION OF THE DATA
 model = Sequential()

 # ADD LSTM LAYER
 model.add(LSTM(units = number_neurons, return_sequences =
True , input_shape = shape))

 # ADD DROPOUT LAYER
 model.add(Dropout(pct_dropout))

 # LOOP WHICH ADD LSTM AND DROPPOUT LAYER
 for _ in range (number_hidden_layer):
 model.add(Conv1D(64 , 3 , activation= 'relu'))
 model.add(LSTM(units = number_neurons, return_sequences =
True))
 model.add(Dropout(pct_dropout))

 # LAST LSTM LAYER BUT WITH return_sequences = False
 model.add(LSTM(units = number_neurons, return_sequences =
False))

 # OUTPUT DENSE LAYER
 model.add(Dense(1 , activation=activation))

 # COMPILE THE MODEL
 model. compile (loss=loss, optimizer=optimizer, metrics=metrics)
 return model

regressor = RNN(15 , 3 , shape = (X_train_3d.shape[1
],X_train_3d.shape[2]),
 loss = "mse" , metrics=["mae"], activation= "linear" ,
 optimizer= "adam" , pct_dropout= 0.65)

regressor.fit(X_train_3d, y_train_3d, epochs= 1 , batch_size= 32 ,
verbose= 1)

15.3. Backtest

In this section, we will backtest the trading strategy based on an
RCNN. For that we will use the same function as previously created
in chapter 5.

Figure 15.3: Backtest of the strategy using RCNN Google
predictions

Beta: 1.054 Alpha: 6.37 % Sharpe: 0.721 Sortino: 0.926

VaR: 48.25 % cVaR: 59.27 % VaR/cVaR: 1.229 drawdown: 30.79 %

The strategy is good because the alpha, Sharpe, and Sortino ratios
are positive. The beta is close to 1, which means we correlate to the
market returns. The drawdown is close to 30%, which is high but
good for a strategy without combining other strategies.

Chapter 16: Real-life full project

In the previous chapter, we have seen a lot of techniques and
algorithms from many fields. We will see that to put a robust
quantitative trading algorithm in place, the key is using all these fields
simultaneously to take advantage of each. We will combine machine
learning to create predictive algorithms, statistics to do features
engineering, and portfolio management to combine our strategies to
decrease the risk of this investment.

First, we will search for many assets for our strategy. Then we will
select the best assets using a Sharpe ratio criterion. Moreover, we will
find the optimal stop loss, take profit, and leverage.

16.1. Preparation of the data

In all projects in finance, the data are the most important thing. The
most powerful algorithm cannot predict if we ask it to predict Google
stock price using the ice cream consummation. It is exaggerated, but
we need to prepare the data with the most attention we can because we
can lose money by one error into them. Usually, the data preparation
is 60 to 80% of the project.

16.1.1. Import the data

The goal of the strategy is to test some algorithms on many assets.
The point is that we already know how to import data using a symbol.
So, why is there a part to explain that? We want to work with all the
assets available on our broker. There are more than 2000. Thus, we
need to run a little code to have all of them.

Moreover, we will work with the data of our broker directly because
we need to be as close as possible to the market. Indeed, in the

previous chapter, we explored each technique using Yahoo data.
Indeed, the point was to explain that the techniques do not create a
strategy in the previous chapters. However, when we work on a real-
life project, it is better to have the broker data using the MetaTrader 5
platform because it is closer to reality.

Code 16.1: How scrap all the symbol name

INITIALIZE THE DEVICE
mt5.initialize()

Create empty list
symbols = []
sectors = []
descriptions = []

Get the information for all symbol

symbols_information = mt5.symbols_get() 1

Tuple to list

symbols_information_list = list(symbols_information) 2

Extract the name of the symbol
for element in symbols_information_list:

 symbols.append(list(element)[-3]) 3
 sectors.append(list(element)[-1].split("\\")[0]) 4
 descriptions.append(list(element)[-7]) 5

Create a dataframe
informations = pd.DataFrame([symbols, sectors, descriptions], index=[

"Symbol" , "Sector" , "Description"]).transpose() 6

1 The function symbols_get() give us the
information for all the symbols the broker offers
us to trade.

2 symbols_get() return a tuple, so we need to
transform it into a list to work with this object.

3 Take the symbol of the asset.

4 Take the path to have the sector of the asset.

5 Take a description of the asset.

6 Put all information into a dataframe.

Figure 16.1: Extraction of the symbols and their sector

Symbol Sector Description
AUDUSD FX Majors Australian Vs

US
EURUSD FX Majors US Vs Euro

We can see that we have scrapped all the symbols with its sector.
Thus, it is easy to do if we want to try an algorithm only on one sector.

Selecting a sector can be interesting if we create an algorithm
that uses bagging on assets.

Our strategy will take only the assets with a meager spread. It is a
personal choice. We can choose another criterion of asset selection,
such as the volatility of the asset.

Code 16.2: Find the lowest spread asset
Create empty list
spread = []

Computze the spread
for symbol in informations["Symbol"]:
 try :
 ask = mt5.symbol_info_tick(symbol).ask
 bid = mt5.symbol_info_tick(symbol).bid
 spread.append((ask - bid) / ask)
 except :
 spread.append(None)

Take the assets with the spread < 0.07%
informations["Spread"] = spread
lowest_spread_asset = informations.dropna().\

loc[informations["Spread"]< 0.0007]

16.1.2. Features engineering

As said previously, the data are an essential part of the project. Thus,
we cannot give the algorithm only the OHLC data because it is
insufficient. We need to help our algorithm. To do it, we will use the
previous features' engineering method. Indeed, we will create some
moving averages and some moving volatility in the function. Then,
we will apply a PCA algorithm to the dataset to reduce the number of
columns.

Code 16.3: Create new features and apply PCA

def features_engeeniring (df):
 """ This function which creates all the necessary sets for the
algorithms"""

 # Allows the variables to be call outside the function
 global X_train
 global X_test
 global y_train_reg
 global y_train_cla
 global X_train_scaled
 global X_test_scaled
 global split_train_test
 global split_test_valid
 global X_valid
 global X_valid_scaled
 global X_train_pca
 global X_test_pca
 global X_val_pca

 # Create ours own metrics to compute the strategy returns
 df["returns"] = ((df["close"] - df["close"].shift(1)) / df[
"close"])

.shift(1)
 df["sLow"] = ((df["low"] - df["close"].shift(1)) / df[
"close"]
.shift(1)).shift(1)
 df["sHigh"] = ((df["high"] - df["close"].shift(1)) / df[
"close"]
.shift(1)).shift(1)

 # Features engineering
 df["returns t-1"] = df[["returns"]].shift(1)

 # Mean of returns
 df["mean returns 15"] = df[["returns"]].rolling(15
).mean().shift(1)
 df["mean returns 60"] = df[["returns"]].rolling(60
).mean().shift(1)

 # Volatility of returns
 df["volatility returns 15"] = df[["returns"]].rolling(15).std()
.shift(1)
 df["volatility returns 60"] = df[["returns"]].rolling(60).std()
.shift(1)

 # Drop missing values
 df = df.dropna()

 # Percentage train set
 split = int(0.80 * len (df))

 list_x = ["returns t-1" , "mean returns 15" , "mean returns 60" ,
 "volatility returns 15" ,
 "volatility returns 60"]

 split_train_test = int(0.70 * len (df))
 split_test_valid = int(0.90 * len (df))

 # Train set creation
 X_train = df[list_x].iloc[:split_train_test]

 y_train_reg = df[["returns"]].iloc[:split_train_test]

 y_train_cla = np. round (df[["returns"]].iloc[:split_train_test]+
0.5)

 # Test set creation
 X_test = df[list_x].iloc[split_train_test:split_test_valid]

 # Test set creation
 X_val = df[list_x].iloc[split_test_valid:]

 # NORMALIZATION
 # Import the class
 from sklearn.preprocessing import StandardScaler

 # Initialize the class
 sc = StandardScaler()

 # Standardize the data
 X_train_scaled = sc.fit_transform(X_train)
 X_test_scaled = sc.transform(X_test)
 X_val_scaled = sc.transform(X_val)

 # PCA
 # Import the class
 from sklearn.decomposition import PCA

 # Initiliaze the class
 pca = PCA(n_components= 3)

 # Apply the PCA
 X_train_pca = pca.fit_transform(X_train_scaled)
 X_test_pca = pca.transform(X_test_scaled)
 X_val_pca = pca.transform(X_val_scaled)

If the function modifies the values of the global
variable, then it must be declared by preceding it with
the keyword global.

In the next section, we will train all algorithms with
the same data, as in chapter 10. It is better to train
different models with different (independent) features
to have better results. So, in your project, you can
find the best features for each asset, but it takes a lot
of time.

16.1.3. Train, test and validation sets

In the previous chapters, to test the performances of our algorithms,
we have used the train set to train the algorithm and the test set to test
its performance. In a more significant project, we need to create three
sets of data: the train set, the test set, and the validation set.

This project must have three sets because we work with predictive
models, and we need one set to train it and two sets to work with
portfolio management technics. Let us see in figure 14.3 the utility of
each set in our project.

Training set: It allows us to train the predictive models. We
do not train the optimal portfolio allocation with the train set
because the predictions on the train set are not significant
(because the algorithm already knows the data because it is fit
to them).

Test set: It allows us to find the best predictive models on the
unknown data. Then, because the returns of the strategy based
on the predictions are significant here (because the algorithm
does not know the data before), we choose the bests models
(with the criterion of your choice). Then, we have our best
models. We can find the optimal portfolio allocation between
our n best strategies (only on the test set returns).

Validation set: Now, we have the best models and the best
allocation of our capital between the models (the best portfolio

allocation). We can backtest the portfolio on this anonymous
data.

Figure 16.2: Utility of each set of data

We can see a little summary of the decision process to find the best
portfolio of trading strategies.

16.2. Modelling the strategy

We have prepared many functions for the data: import, feature
engineering and transformation. This section aims to find assets with a
low spread that are not subject to the weak efficiency market.

First, we will find the bests strategies using a Sharpe ratio criterion.
Then, we will take the most profitable strategies and use a voting
method on the algorithm. Moreover, we will use a portfolio method on
the test set data to find the best allocation in our portfolio strategies.

16.2.1. Find the best assets

We will take the symbols with a spread lower than our spread
threshold of 0.07%.

Then, we will compute the Sharpe ratio of a trading strategy created
using each machine learning algorithm. Furthermore, we take the
strategy with the highest Sharpe ratio. We will use only classifier
algorithms for this project, but we can use regression algorithms in
our project. It is the same.

We cannot work with deep learning algorithms for
this project because some assets have only 1000 data.
So, we need to use the appropriate algorithms: linear
regression, SVR, and decision tree.

First, to automate the functioning, we need to create a function that
produces a strategy and compute the Sharpe ratio of this strategy on
the test set. The only required parameter is the model that we want to
use. If we are going to test a regression algorithm, we have to use the
parameter reg=True.

Code 16.4: Predictor function
def predictor (model , reg = True, spread=0.035):
 global df
 model.fit(X_train, y_train_cla)

 df = df.dropna()
 # Create predictions for the whole dataset
 df["prediction"] = model.predict(np.concatenate((X_train,
X_test, X_valid), axis= 0))
 if reg== False :
 df["prediction"] = np.where(df["prediction"]== 0 , -1 , 1)
 # Compute the strategy
 df["strategy"] = np.sign(df["prediction"]) * df["returns"]

 returns = df["strategy"].iloc[split_train_test:split_test_valid]

 return np.sqrt(252) * (returns.mean()-(spread/100))/
returns.std()

We add the spread of the asset in the computation of
the Sharpe ratio because all the assets do not have the
same spread. So, the more the asset spread is
significant, the more it will be penalized.

Keep attention to the spread, sometimes it is in
percentage and sometimes not. Thus, verify before
using it.

With this function, we can automate the computation of 450 trading
strategies. Indeed, we will take 150 assets, and we will try 3 machine
learning algorithms.

Code 16.5: Automatization of the testing
Import the class
from sklearn.svm import SVR
from sklearn.tree import DecisionTreeRegressor
from sklearn.linear_model import LinearRegression

from tqdm import tqdm
Models
tree = DecisionTreeRegressor(max_depth= 6)
svr = SVR(epsilon= 1.5)
lin = LinearRegression()

Initialization
symbols = symbols[: 150] #["EURUSD", "GBPAUD"]
lists = []

for symbol in tqdm(symbols):
 try :
 df = data(symbol, 3500)[["close"]].dropna().pct_change(1
).dropna()
 df.columns = ["returns"]
 features_engeeniring(df)

 """ Decision tree rgressor"""
 sharpe_tree = predictor(tree, reg= True)

 lists.append([symbol, "Tree" , sharpe_tree])

 """ SVR """
 sharpe_svr = predictor(svr, reg= True)
 lists.append([symbol, "SVR" , sharpe_svr])

 """ Linear Regression"""
 sharpe_linreg = predictor(lin, reg= True)
 lists.append([symbol, "LinReg" , sharpe_linreg])
 except :
 pass

With this code, we have found the Sharpe ratio for each strategy. We
will take the asset with the best Sharpe ratio and have good results
with the three algorithms.

The three algorithms chosen are very different. The
linear regression finds linear patterns, the SVR the
non-linear, and the decision tree also has another way
to fit it. So, if these three algorithms have good
results, we optimize our chances of better results.

Figure 16.3: Bests assets chosen

Asset Bitcoin JPN225 NAS100 US2000 XPTUSD
Sortino 2.9 1.6 1.2 1.1 0.7

This table shows the best assets of our selection with their Sortino
ratio compute on the test set.

16.2.2. Combine the algorithms

In chapter 10, we have seen the power of the ensemble method. Here,
we will apply the voting method. This method will combine the three
previous algorithms: decision tree, SVC, and Logistic regression.

We have seven assets with an excellent Sharpe ratio on the test set.
Before creating a portfolio using these strategies, we need to create
one algorithm to predict each asset. To do it, we will use a voting
classifier.

Code 16.6: Voting classifier implementation

def voting (df , reg = True):
 """ Create a strategy using a voting method"""
 # Import the class

 # Import the models
 if reg:
 tree = DecisionTreeRegressor(max_depth= 6)
 svr = SVR(epsilon= 1.5)
 lin = LinearRegression()
 vot = VotingRegressor(estimators=[
 ('lr' , lin), ("tree" , tree), ("svr" , svr)])
 else :
 tree = DecisionTreeClassifier(max_depth= 6)
 svr = SVC()
 lin = LogisticRegression()

 vot = VotingClassifier(estimators=[
 ('lr' , lin), ("tree" , tree), ("svr" , svr)])

 # Train the model
 if reg== False :
 vot.fit(X_train_pca, y_train_cla)
 else :
 vot.fit(X_train_pca, y_train_reg)

 # Remove missing values
 df = df.dropna()

 # Create predictions for the whole dataset
 df["prediction"] = vot.predict(np.concatenate((X_train_pca,
 X_test_pca,
 X_val_pca),
 axis= 0))

 # Remove missing values

 df = df.dropna()

 if reg== False :
 df["prediction"] = np.where(df["prediction"]== 0 , -1 , 1)

 # Compute the strategy
 df["strategy"] = np.sign(df["prediction"]).shift(1) * df[
"returns"]
 df["low_strategy"] = np.where(df["prediction"]> 0 , df[
"sLow"], -df["sHigh"])
 df["high_strategy"] = np.where(df["prediction"]> 0 , df[
"sHigh"], -df["sLow"])

 return vot, df["strategy"], df["low_strategy"], df[
"high_strategy"]

We also return the voting model to save it in a folder
for the live trading algorithm implementation
(Annex: How to save a model in scikit-learn and
Tensorflow).

As we can see in figure 16.4, the return of each asset alone is not very
profitable, taking into account the volatility of these strategies. The
following subsection will apply a portfolio method to the trading
strategies to decrease the investment risk.

Figure 16.4.: Cumulative returns of the portfolio assets on the test

set

This figure shows the cumulative return of each asset of the portfolio.
As we can see, the strategies are not very profitable and very risky
alone.

16.2.3. Apply portfolio management technics

We have seven strategies for trading, and we will use portfolio
management techniques to create a portfolio to work with as one
strategy in the following section. Furthermore, we will use the mean-
variance-skewness-kurtosis criterion because it allows us to have a
less risky portfolio.

Figure 16.5: Backtest of the portfolio on the test set

Beta: -0.144 Alpha: 27.36 % Sharpe: 0.603 Sortino: 0.954

VaR: 66.69 % cVaR: 79.23 % VaR/cVaR: 1.188 drawdown: 20.91 %

This figure shows us the backtest of the portfolio without leverage,
stop loss or take profit. As we can see, the backtest is good, with an
alpha of 27%. There is a good trend in the profit but with high
volatility.

The allocation of the portfolio is to remove two assets. Thus, we take
31% of our budget of Russel 2000, 50% of Bitcoin, and 19% of JPN
225. The criterion considers that the other assets are too risky or not
enough profitable to come into the portfolio. Moreover, the drawdown

remains high because the majority of the underlying assets are very
volatile.

16.3. Find optimal take profit, stop loss and
leverage

As shown in figure 16.6, the portfolio's performance is good because
we have earned 15% in 12 months. The strategy is risky even if we
have decreased the risk (drawdown max: 20%). Until now, we have
worked with machine learning to predict the behavior of the asset. We
have applied portfolio management to decrease the risk. We will use a
statistical method to find the best take profit, stop loss, and leverage
for the strategy.

16.3.1. Optimal take profit (tp)

The take profit threshold of a strategy is critical. It can change a non-
profitable strategy into a profitable strategy. This subsection will see a
grid search technique to find the best take profit threshold. We will
create a function that returns the Sharpe ratio depending on his take
profit threshold to find the optimal values.

Code 16.7: Best take profit threshold function
def find_best_tp (tp):

 tp = tp/ 100

 # Create the portfolio
 pf = pd.concat((low_portfolio, portfolio_return_test,
high_portfolio), axis= 1).dropna()-spread

 pf.columns = ["low" , "Return" , "high"]

 # Apply the tp
 pf["Return"] = np.where(pf["high"].values>tp, tp, pf["Return"
].values)

 pf["Return"] = np.where(pf["Return"].values>tp, tp, pf["Return"
].values)

 # Return sharpe raatio
 return np.sqrt(252)*pf["Return"].mean()/pf["Return"].std()

 pd.DataFrame([find_best_tp(tp) for tp in np.linspace(1.5 , 3 , 10
)], index=np.linspace(1.5 , 3 , 10), columns=["Sharpe"])

We replace return by the take profit when the high of
the day is above the tp threshold. We do the same for
the returns because sometimes, in real life, there are
issues in the data (high < close, for example).

Using this function, we will converge to a tp of 0.
However, the best profit threshold does not consider
the swap, a penalty, or a bonus given by the broker to
incite people to go in a certain way. If the tp is very
low in the backtest, you will have a profitable
strategy, but the swap will take all your profit in real
life. It is necessary to keep a high enough take profit
threshold.

With our computation, we have found an optimal take profit threshold
at 2.1% on the test set with a Sharpe ratio of 3.7 on the validation
period but less in real life because there are additional fees that we
cannot consider precisely. Thus, 40% in 9 months of the validation
period does not mean we need to put in production with 100 000$
now. We need to put in a demo account to find the real-life best
parameters for our strategies and ensure there are no issues in
our computations.

16.3.2. Optimal stop loss (sl)

Previously, we have seen how to earn money, but the stop loss's utility is
to avoid losing money. In this subsection, we will only create a strategy

with a stop loss because we cannot combine tp and sl with the daily data
(confer chapter 6). Indeed, we cannot say which threshold is passed first.

Using the find_best_sl function, we are going to find
the best sl. Moreover, we will see a convergence of the
Sharpe ratio after 9.6% of sl. It means that there are
no values after this point. Thus, we can put this
threshold in our strategy because we need an sl in
trading, and this threshold is never touched in the test
set.

 Code 16.7: find best stop loss threshold

 def find_best_sl (sl):
 sl = sl/ 100

 # Create the portfolio
 pf = pd.concat((low_portfolio, portfolio_return_test,
 high_portfolio),axis= 1).dropna()-spread
 pf.columns = ["low" , "Return" , "high"]

 # Apply the sl
 pf["Return"] = np.where(pf["low"].values<-sl, -sl, pf["Return"
].values)
 pf["Return"] = np.where(pf["Return"].values<-sl, -sl,
 pf["Return"].values)

 # Return sharpe raatio
 return np.sqrt(252)*pf["Return"].mean()/pf["Return"].std()

 pd.DataFrame([find_best_sl(sl) for sl in np.linspace(3 , 10 , 30)],
 index=np.linspace(3 , 10 , 30), columns=["Sharpe"])

So, we have a tp at 2.1% and an sl at 9.6% for our strategy. It only
misses leverage to optimize the earn of the strategy.

16.3.3. Optimal leverage

Leverage multiplies our investment power and our profits. However, it
also multiplies our risk in the same way. If we are new to trading, we
must master this tool and understand how to use it effectively.

Depending on our level of risk aversion, there are several ways to
determine the best leverage to use. One of the best known is the Kelly
criterion.
We will use another method: the drawdown method. In finance, all
people are unique, so it cannot be one method to find the best leverage
because it depends on the risk aversion of each investor.

The drawdown method is straightforward to compute, we take the

max drawdown of our strategy without leverage (), and we

must know the maximum drawdown we want (). Then
leverage is:

So, suppose we work with our strategy using 2.1% for the tp threshold
and 9% for the sl. In that case, we want a maximum drawdown of
15% because we are not risky lovers, and the maximum drawdown is
10%. Then the leverage for the strategy is 15/10 = 1.5.

We have all the financial hyperparameters of the strategy. A take
profit threshold at 2.1%, stop loss threshold at 9%, and optimal
leverage at 1.5

Figure 16.6: Backtest the portfolio with leverage, sl and tp

Beta: -0.174 Alpha: 93.37 %. Sharpe: 2.178 Sortino: 2.529

VaR: 5.95 %. cVaR: 20.88 % VaR/cVaR: 3.508 drawdown: 13.32 %

How to improve the project?

Use ticks to do the backtest to find better combinations
between taking profit and stop-loss threshold.

Use ticks to compute the spread in the time and not at one day
to select the asset because it is not representative.

Use ticks to work with subsequent stop loss.

Try to use bagging on assets in a deep learning algorithm.

Try another criterion than the spread to select assets.

Adjust the leverage depending on the calculation of the
interest

Trailing stop loss to optimize the gain

Application Live Trading and Screener
This code is based on the class created in the annex: MetaTrader

Code 16.6: Application Trading / Project

 from MT5 import *
import numpy as np
import pandas as pd
import warnings
warnings.filterwarnings("ignore")
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier
from sklearn.linear_model import LogisticRegression
import time
from sklearn.ensemble import VotingClassifier
import pickle
from joblib import dump, load
import os
from sklearn.preprocessing import StandardScaler

path = "" # Ex:
C:/Desktop/Python_for_finance_and_algorithmic_trading/
ChapterN/

def create_model_weights (symbol):
 """ Weights for Linear regression on the percentage change"""

 # Import the data
 data = MT5.get_data(symbol, 3500)[["close"]].pct_change(1)

 # Create new variable
 data.columns = ["returns"]

 # Features engeeniring
 data["returns t-1"] = data[["returns"]].shift(1)

 # Mean of returns
 data["mean returns 15"] = data[["returns"]].rolling(15
).mean()
.shift(1)
 data["mean returns 60"] = data[["returns"]].rolling(60
).mean()
.shift(1)

 # Volatility of returns
 data["volatility returns 15"] = data[["returns"]].rolling(15
).std()
.shift(1)
 data["volatility returns 60"] = data[["returns"]].rolling(60
).std()
.shift(1)

 # Split the data
 data = data.dropna()
 split = int(0.80 * len (data))

 # Train set creation
 X_train = data[["returns t-1" , "mean returns 15" , "mean returns
60" ,
 "volatility returns 15" ,
 "volatility returns 60"]].iloc[:split]
 y_train = np. round (data[["returns"]].iloc[:split]+ 0.5)

 sc = StandardScaler()
 X_train = sc.fit_transform(X_train)

 # Create the model
 tree = DecisionTreeClassifier(max_depth= 6)
 svr = SVC()

 lin = LogisticRegression()

 alg = VotingClassifier(estimators=[
 ('lr' , lin), ("tree" , tree), ("svr" , svr)])

 # Fit the model
 alg.fit(X_train, y_train)

 # Save the model
 alg_var = pickle.dumps(alg)
 alg_pickel = pickle.loads(alg_var)

 dump(alg_pickel ,os.path.join(path, f "Models/ {symbol}
_reg.joblib"))

def vot_cla_sig (symbol):
 """ Function for predict the value of tommorow using ARIMA
model"""

 # Create the weights if there is not in the folder
 try :
 alg = load(os.path.join(path, f "Models/ {symbol} _reg.joblib"
))
 except :
 create_model_weights(symbol)
 alg = load(os.path.join(path, f "Models/ {symbol} _reg.joblib"
))

 # Take the lastest percentage of change
 data = MT5.get_data(symbol, 3500)[["close"]].pct_change(1)

 # Create new variable
 data.columns = ["returns"]

 # Features engeeniring
 data["returns t-1"] = data[["returns"]].shift(1)

 # Mean of returns
 data["mean returns 15"] = data[["returns"]].rolling(15
).mean()
.shift(1)

 data["mean returns 60"] = data[["returns"]].rolling(60
).mean()
.shift(1)

 # Volatility of returns
 data["volatility returns 15"] = data[["returns"]].rolling(15
).std()
.shift(1)
 data["volatility returns 60"] = data[["returns"]].rolling(60
).std()
.shift(1)

 X = data[["returns t-1" , "mean returns 15" , "mean returns 60" ,
 "volatility returns 15" ,
 "volatility returns 60"]].iloc[-1 :,:].values

 # Find the signal
 prediction = alg.predict(X)
 prediction = np.where(prediction== 0 , -1 , 1)
 buy = prediction[0] > 0
 sell = not buy

 return buy, sell

True = Live Trading and False = Screener
live = True

if live:
 current_account_info = mt5.account_info()
 print ("---")
 print ("Date: " , datetime.now().strftime("%Y-%m-%d
%H:%M:%S"))
 print (f "Balance: {current_account_info.balance} USD, \t"
 f "Equity: {current_account_info.equity} USD, \t"
 f "Profit: {current_account_info.profit} USD")
 print ("---

info_order = {
 "RUSSEL 2000" : ["US2000" , 1.1],
 "Bitcoin" : ["Bitcoin" , 0.1],

 "Nasdaq 100" : ["NAS100" , 0.3]
}

start = datetime.now().strftime("%H:%M:%S")
while True :
 # Verfication for launch
 if datetime.now().weekday() not in (5 , 3):
 is_time = datetime.now().strftime("%H:%M:%S") == start
#"23:59:59"
 else :
 is_time = False

 # Launch the algorithm
 if is_time:

 # Open the trades
 for asset in info_order.keys():

 # Initialize the inputs
 symbol = info_order[asset][0]
 lot = info_order[asset][1]

 # Create the signals
 buy, sell = vot_cla_sig(symbol)

 # Run the algorithm
 if live:
 MT5.run(symbol, buy, sell,lot)

 else :
 print (f "Symbol: {symbol} \t"
 f "Buy: {buy} \t"
 f "Sell: {sell} ")
 time.sleep(1)

Chapter 17: From nothing to live
trading

This chapter discusses the process of creating and putting a trading
strategy into production, managing a live trading strategy, and combining
strategies between them.

17.1 Trading strategies creation guidelines

This section will first recap the whole process to create a trading strategy
properly to minimize the risk of error. Then we will discuss the trading
plan and trading journal.

17.1.1 The trading plan

Many people neglect the trading plan but remember that many people
also lose money. It is not a perfect relationship, but a negative
relationship exists between making a trading plan and being profitable.
Why? Because the trading plan is created with a fresh mind before
beginning manual trading. So, it will be easier to follow the plan if we
have our guidelines when searching for more than 50 hours for a
profitable trading strategy. Because modifying the trading plan according
to difficulties is not good.

As we are not making manual trading here, the trading plan will be
slightly different, as we already know. A trading plan will give us the
entry and exit point with the money management to follow for each
strategy. However, if we have automatized this, we do not need to check
it for each trade. So, in algo trading, what a trading plan looks like?
We need to put all the strategy characteristics in the same place, i.e., the
performance, the risk, how many trades we want to take (maximum one
trade and at least three trades in a day), which timeframe we want to use
(daily, hourly, weekly), which asset we want to trade (low spread asset,

volatile asset), which market we want to trade (forex, stocks, crypto), do
we want to be overnight exposed, etc.,

Figure 17.1: Trading plan component

This is an example of the different things we can incorporate into our
trading plan; it is not an exhaustive list. Feel free to create your own,
according to your attempts.

To conclude, the trading plan will allow us to plan which type of strategy
we want to begin the research process peacefully.

We have to think about all the main characteristics of our
strategy before doing the research. It is important not to
change the plan because we do not find what we want; keep
searching! Find a trading strategy it demands, on average,
100 tries.

17.1.2 The process of a trading strategy building

Creating a trading strategy requires discipline, creativity, and practice.
We need to follow several steps:

1. Make a trading plan which will accept or reject a strategy. Always

create it before doing anything, so we do not have to adjust the
attempt in the future if the coding part is too hard.

2. Importing the data seems easy, but it is crucial; remember the

quote: “garbage in, garbage out.” So, be careful of the source we use
and always import as much data as possible from the broker.

3. The preprocessing part contains the features and target

engineering, transformation like standardization, and PCA. It will
help the algorithm to understand the relationship between the data
better.

4. Model the target behavior using machine learning or deep learning

algorithms in our case or simple conditions if we use only technical
analysis or price action.

5. Backtest the strategy two times maximum to avoid overfitting the

results and losing our capital in the future.

6. Apply the prediction according to the trading plan during incubation
(entry and exit conditions, take-profit, stop-loss)

7. Check the incubation results and compare them to the backtest

results to see if the distribution is similar (more details in the
following section)

8. Repeat this process for each strategy.

As we can see, the process seems simple, but we have taken the whole
book to explain it. So, please do not underestimate the difficulty of this
process; we will need at least 100 tries to find one good strategy (on
average). Do not give up and be stable in our work; you will find
profitable strategies but it requires much time.

17.1.3 Trading journal

g j

In discretionary (manual) trading, the trading journal contains
information about each trade you will pass on the market: entry and exit,
take-profit, stop-loss, bet sizing, risk management, etc.

The goal is to have a trading journal (the practice) as close as possible to
the trading plan (theory). However, when we work on an algorithmic
trading project, we will adopt a different approach. Why? Because all the
parameters are set using the algo, they cannot change. So, what will we
write in our trading journal?

When we work on algorithmic trading, we also need a trading journal,
but for several other things:

Analyze the trade manually and write what you think about it:
positive and negative points to correct. Here is an idea to
understand the utility better:

Stop-loss above the support too many times � Define
another way to place stop-loss.
False signals after some news � Do not trade 1 hour
before some news.
Checking about the return’s distribution between
production and backtest and see that the production
returns are less and less � Upgrade the strategy or stop
it

Keep an history of the coding issue and how to solve them; it is
valuable when we are on other projects to solve our issues easily.

17.2 Do not put all your eggs in one basket

We thought that once we had a profitable strategy, the work was done.
No, once we have one strategy, we need to create others to combine them
and find a robust trading strategies portfolio.

17 2 1 Bet sizing

17.2.1 Bet sizing

The first rule is that we will NEVER invest all our capital in one strategy. It
is simple, but it is essential. Moreover, there are several simple rules to
follow to minimize the risk of losing much money:

1. Never risk more than 1% of your capital in one trade (adapt the
volume)

2. Depending on strategy, stop the algo for the day after 3 losses or stop
it for the week after 5% loss, etc.

If we use compounded interest, let us see the danger of taking too
prominent positions. In figure 17.1, we see that the more the position size
increases, the more the risk of being a losing trader increases.

Figure 17.1: Chances to be a losing trader depending on the bet size

As we can see, if we have 50% chances to win 1% or 50% chances to
lose 1%, with one trade per day over one year, the chances of being a
losing trader is around 52%. However, if we increase the bet size from
1% to 30% per trade, we see that the chances of being a losing trader
are around 100%. It is logical because after three consecutive losing
trades, it left only 10% of our capital, and we will need 900% of earnings
to come back to our initial amount.

The main point of bet sizing is that it is better to use compounded interest
to obtain the benefit of exponential growth, but we need to manage risk
because the more the loss is significant, the more it is not easy to come
back to the initial amount as shown in figure 17.2

Figure 17.2: Necessary profit to recover a x% loss

As we can see, using compounded interest (represented by a dynamic lot
in trading), the more the loss is big, the more it is difficult to return to the
initial amount.

17.2.2 Why create a trading strategy portfolio?

There are many reasons to create a trading strategy portfolio. The best
way to create it is to check uncorrelated assets or, even better, a negative
correlation between assets.

Above all, creating a trading strategy portfolio is
essential to reduce the risk of your investment:
drawdown, VaR, etc…

Mainly, suppose we use leverage and compounded interest. In that case,
we need to create a portfolio to diversify our risk and decrease the
position risk (which is possible by increasing the number of trading
strategies). Moreover, the portfolio and the bet sizing parts fit very well
together because the more we add trading strategies to the portfolio, the
more we can decrease the weight of one strategy in the portfolio and then
create a robust investment strategy.

The main point of creating a trading strategy portfolio is to decrease the
portfolio's drawdown while keeping a comfortable return. Let us see an
example.

Figure 17.3: Portfolio advantage compared to individual strategy

As we see, combining the strategy, the portfolio return is the mean
between the three strategies. However, the main point is that the
drawdown is very low compared to an individual strategy.

17.3. Live trading process

The live trading process is not the hardest part, but if there is one error in
this, we will lose a lot of money. So, we need to be as meticulous as
possible.

17.3.1. Safety first

When we put our strategy into live trading, we need to pay attention to
the security of our capital. So, the best way to do it is to place some
securities like the following example:

1. Stop the algorithm after X% loss in one day: It will be good
to do it if the algo does something wrong, like taking 100
positions simultaneously. However, we need to backtest the
consecutive losses in one-day distribution to find the best
value. For example, suppose we see that there is only a 1%
chance of having more than two losing trades a day. In that
case, we can put the following security: “if we have three
losing trades a day, we stop the algorithm for the day.”

2. Stop the algorithm after X% loss in one month: sometimes,

the market conditions can be tough for our algorithm; try to
find the best moment to stop it in the backtest and check the
performance considering that we stop the algorithm in some
market situations.

3. Stop the algorithm if the drawdown in live trading becomes

two times higher than the drawdown in incubation: it is very
interesting to find when an algo needs to be stopped, but we
will discuss it later in the chapter.

These three rules are not exhaustive; there are a lot of different similar rules
to manage our risk and be a profitable trader.

17.3.2 Incubation phase

This part is one of the most important. In this part, we will check if our
theoretical profitable trading strategy can be put into live trading or not.
Fortunately, it is the easiest part of the project on the programming side.
However, it is the hardest on the psychological side also. So, let us see all
the process in detail:

1. We put our strategy in incubation on a demo account or with
very small capital in live trading to check how the strategy
works in live trading. We need to understand if we have not
made any mistakes or forgotten something essential for the
profitability of the strategy.

2. WE NEED TO CHOOSE IF WE KEEP THE STRATEGY:
it seems easy, but it is not. After one month minimum of live
trading, we need to check if the results of the incubation are
good or not.

How to tell if the incubation returns are good or not? There are many
ways, but here is the easiest one. To do it, we can compare the

distribution between the backtest returns and the incubation returns. The
best way to do it is to compare the statistics with the theoretical values
obtained in the backtest on the train and test sets. Then compute the
return in the incubation period using our backtest function.

It will be exciting to understand if we do not make any mistakes because
we should have something very close. Let us see the following figure
with two cases to understand when we have a problem or not.

Figure 17.4: two situations after an incubation period

As we can see, the first distributions are similar instead of to the seconds,
so we need to review all our code to find the issue (frequent in the
backtest function).

You can use a Kolmogorov statistical test to compare two
distributions if you need to automatize the process instead of
doing it using graph only.

17.3.3 When to quit?

It is the eternal question of when the algorithm needs to be stopped. It is
very difficult to say that, and we need to adapt our analysis to the market
conditions. It is a subjective choice.

However, we can find some tips to stop the algo, especially computation
about the drawdown: the method is called the drawdown management
method.

It is simple to understand that we stop the algorithm when the drawdown
falls below a threshold. So, the goal when we have stopped the algorithm
is to determine if we will activate the algorithm again or not! To do this,
there are no rules. However, we need to analyze the strategy's
performance from A to Z. If the performances were extraordinary and
during the COVID crisis, we have an abnormal drawdown, and the
algorithm shutdown; then, then I personally will put the algo again in
production when I see that the market conditions are normal.. In the
second case, if we have an algorithm with stable returns and from 6
months ago to now, the drawdown does not stop increasing, , I will not
activate it after the drawdown management shutdown.

I hope you have enjoyed the book. Do not hesitate to join the discord
forum (QRCODE in chapter 1) if you have questions about the book or
see the other traders' questions. I wish you a fantastic continuation!

Annex: Compounding versus
simple interest

This paper will learn the difference between the compounding
interest strategy and the simple interest strategy. We will explain why
the difference between these types of calculations. Then, we will see
how to compute the cumulative returns using these methods.

What is the difference between the simple and
the compounding methods?

The simple interest strategy is a fixed lot strategy. It means that each
day, we will invest capital . We have a capital C*r. If we simulate
this behavior over days, we have the following equation:

Where is the strategy's profit, is the capital invested, and is
the return in the percentage of the day .

However, the compounding interest works with a global multiplicator
coefficient. If we have an initial capital of , the day 1, we have *

 and day2 * * . Thus, the day n, we

have * *...* . With this strategy, the whole

capital will be invested instead of the simple interest, which
constantly invests the same capital:

Where is the strategy's profit, is the capital invested, and is
the return in the percentage of the day .

How to compute the simple and compounding
interest

To compute the cumulative return of a simple interest strategy, we
need to compute the cumulative return. To do it, we can use the
numpy function cumsum().

Code: Cumulative return using the simple interest method
cumulative_return = np.cumsum(returns)

However, to compute the cumulative return of a compounding
interest strategy, need to use the product of the multiplicator
coefficient. To do it, we will use the cumprod() function of numpy.

Code: Cumulative return using the compounding interest method
cumulative_return = np.cumprod(1+returns) - 1

Annex: Save and load scikit-
learn and Tensorflow models

In this paper, we will learn how to save, and load fitted scikit-learn
and TensorFlow models. We will begin by saving a scikit-learn
model. To do it, we will use the library pickle and joblib using the
following code.

Code: Save and load scikit-learn model
from sklearn.svm import SVC
import pickle
from joblib import dump, load

Save
svc = SVC()
alg_pickle = pickle.dumps(svc)
dump(alg_pickle, "svc.joblib")

Load
alg = load("voting.jolib")

To save models with TensorFlow, we need to use the command of
TensorFlow.

Code: How to save and load TensorFlow models
def create_model ():
 # INTIALIZATION SEQUENTIAL MODEL
 classifier = Sequential()

 # AJOUT COUCHE DENSE ET DROPOUT
 for _ in range (nb_hidden_layer):
 classifier.add(Dense(75 , input_shape = (X_train.shape[1],),
activation= "relu"))

 # AJOUT COUCHE DENSE
 classifier.add(Dense(1 , activation= "sigmoid"))

 # COMPILATION DU MODÈLE
 classifier. compile (loss= "binary_crossentropy" , optimizer= "adam"
)

 return classifier

Save the weights
classifier.save_weights('classifier')

Create a new model instance
model = create_model()

Restore the weights
model.load_weights('classifier')

Annex: MetaTrader class

For more information about the configuration of MetaTrader device.
Check the README.md file of the Github repository (link available
in chapter 1).

 import warnings
from datetime import datetime
import pandas as pd
import MetaTrader5 as mt5
warnings.filterwarnings("ignore")
mt5.initialize()

class MT5:

 def get_data (symbol , n , timeframe =mt5.TIMEFRAME_D1):
 """ Function to import the data of the chosen symbol"""

 # Initialize the connection if there is not
 mt5.initialize()

 # Current date extract
 utc_from = datetime.now()

 # Import the data into a tuple
 rates = mt5.copy_rates_from(symbol, timeframe, utc_from, n)

 # Tuple to dataframe
 rates_frame = pd.DataFrame(rates)

 # Convert time in seconds into the datetime format
 rates_frame['time'] = pd.to_datetime(rates_frame['time'],
unit= 's')

 # Convert the column "time" in the right format
 rates_frame['time'] = pd.to_datetime(rates_frame['time'],
format= '%Y-%m-%d')

 # Set column time as the index of the dataframe

 rates_frame = rates_frame.set_index('time')
 return rates_frame

 def orders (symbol , lot , buy = True , id_position = None):
 """ Send the orders """

 # Initialize the connection if there is not
 if mt5.initialize() == False :
 mt5.initialize()

 # Filling order mode (you need to try 0,1 or 2
 # because it is depending of the broker)
 i = 1

 # Take ask price
 ask_price = mt5.symbol_info_tick(symbol).ask

 # Take bid price
 bid_price = mt5.symbol_info_tick(symbol).bid

 # Take the point of the asset
 point = mt5.symbol_info(symbol).point

 deviation = 20 # mt5.getSlippage(symbol)
 #************************ Open a trade

 if id_position == None :

 # Buy order Parameters
 if buy:
 type_trade = mt5.ORDER_TYPE_BUY
 sl = ask_price - 100 * point
 tp = ask_price + 100 * point
 price = ask_price

 # Sell order Parameters
 else :
 type_trade = mt5.ORDER_TYPE_SELL
 sl = bid_price + 100 * point
 tp = bid_price - 100 * point
 price = bid_price

 # Open the trade
 request = {
 "action" : mt5.TRADE_ACTION_DEAL,
 "symbol" : symbol,
 "volume" : lot,
 "type" : type_trade,
 "price" : price,
 "deviation" : deviation,
 "sl" : sl,
 "tp" : tp,
 "magic" : 234000 ,
 "comment" : "python script order" ,
 "type_time" : mt5.ORDER_TIME_GTC,
 "type_filling" : i,
 }
 # send a trading request
 result = mt5.order_send(request)
 result_comment = result.comment

 *************************** Close a trade

 else :
 # Buy order Parameters
 if buy:
 type_trade = mt5.ORDER_TYPE_SELL
 price = bid_price

 # Sell order Parameters
 else :
 type_trade = mt5.ORDER_TYPE_BUY
 price = ask_price

 # Close the trade
 request = {
 "action" : mt5.TRADE_ACTION_DEAL,
 "symbol" : symbol,
 "volume" : lot,
 "type" : type_trade,
 "position" : id_position,
 "price" : price,

 "deviation" : deviation,
 "magic" : 234000 ,
 "comment" : "python script order" ,
 "type_time" : mt5.ORDER_TIME_GTC,
 "type_filling" : i,
 }

 # send a trading request
 result = mt5.order_send(request)
 result_comment = result.comment
 return result.comment

 def resume ():
 """ Return the current positions. Position=0 --> Buy """
 # Initialize the connection if there is not
 mt5.initialize()

 # Define the name of the columns that we will create
 colonnes = ["ticket" , "position" , "symbol" , "volume"]

 # Go take the current open trades
 current = mt5.positions_get()

 # Create a empty dataframe
 summary = pd.DataFrame()

 # Loop to add each row in dataframe
 # (Can be ameliorate using of list of list)
 for element in current:
 element_pandas = pd.DataFrame([element.ticket,
 element. type ,
 element.symbol,
 element.volume],
 index=colonnes).transpose()
 summary = pd.concat((summary, element_pandas), axis= 0)

 return summary

 def run (symbol , long , short , lot):

 # Initialize the connection if there is not
 if mt5.initialize() == False :

 mt5.initialize()

 # Choose your symbol
 print ("---")
 print ("Date: " , datetime.now().strftime("%Y-%m-%d
%H:%M:%S"))
 print ("SYMBOL:" , symbol)

 # Initialize the device
 current_open_positions = MT5.resume()
 # Buy or sell
 print (f "BUY: { long } \t SHORT: {short} ")

 """ Close trade eventually """
 # Extraction type trade
 try :
 position =
current_open_positions.loc[current_open_positions["symbol"
]==symbol].values[0][1]

 identifier =
current_open_positions.loc[current_open_positions["symbol"
]==symbol].values[0][0]
 except :
 position= None
 identifier = None

 print (f "POSITION: {position} \t ID: {identifier} ")

 # Close trades
 if long == True and position== 0 :
 long = False

 elif long == False and position== 0 :
 res = MT5.orders(symbol, lot, buy= True , id_position=
identifier)
 print (f "CLOSE LONG TRADE: {res} ")

 elif short== True and position == 1 :
 short= False

 elif short == False and position == 1 :
 res = MT5.orders(symbol, lot, buy= False , id_position=
identifier)
 print (f "CLOSE SHORT TRADE: {res} ")

 else :
 pass

 """ Buy or short """
 if long == True :

 res = MT5.orders(symbol, lot, buy= True , id_position=
None)
 print (f "OPEN LONG TRADE: {res} ")

 if short== True :
 res = MT5.orders(symbol, lot, buy= False , id_position=
None)
 print (f "OPEN SHORT TRADE: {res} ")

 print ("---")

 def close_all_night ():
 result = MT5.resume()
 for i in range (len (result)):
 before = mt5.account_info().balance
 row = result.iloc[0 +i: 1 +i,:]
 if row["position"][0]== 0 :
 res = MT5.orders(row["symbol"][0], row["volume"][
0], buy= True , id_position=row["ticket"][0])

 else :
 res = MT5.orders(row["symbol"][0], row["volume"][
0], buy= False , id_position=row["ticket"][0])

Additional readings

Chapter 3

Markowitz’s “Portfolio Selection “: A Fifty-Year
Retrospective, The University of Chicago Press
https://www.jstor.org/stable/269777
 Portfolio management: mean-variance analysis in the US
asset market, Narela (Bajram) Spaseski ,
https://www.researchgate.net/publication/264423979_PORTF
OLIO_MANAGEMENT_MEAN-
VARIANCE_ANALYSIS_IN_THE_US_ASSET_MARKET
Mean-variance-skewness-kurtosis based portfolio
optimization, KingKeung Lai, Shouyang Wand, Lean yu
https://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.898.991&rep=rep1&type=pdf

Chapter 4

Tactical Asset Allocation (TAA), ADAM BARONE .
https://www.investopedia.com/terms/t/tacticalassetallocation.
asp

Chapter 5

Optimization of conditional value-at-risk, R. Tyrrell
Rockafellar .
https://www.ise.ufl.edu/uryasev/files/2011/11/CVaR1_JOR.p
df

Chapter 7

Stationarity and differencing .
https://people.duke.edu/~rnau/411diff.htm
Cointegration, Niti Gupta.
https://www.wallstreetmojo.com/cointegration/
Pairs Trading, James Chen.
https://www.investopedia.com/terms/p/pairstrade.asp

https://www.jstor.org/stable/269777
https://www.researchgate.net/publication/264423979_PORTFOLIO_MANAGEMENT_MEAN-VARIANCE_ANALYSIS_IN_THE_US_ASSET_MARKET
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.898.991&rep=rep1&type=pdf
https://www.investopedia.com/terms/t/tacticalassetallocation.asp
https://www.ise.ufl.edu/uryasev/files/2011/11/CVaR1_JOR.pdf
https://people.duke.edu/~rnau/411diff.htm
https://www.wallstreetmojo.com/cointegration/
https://www.investopedia.com/terms/p/pairstrade.asp

Chapter 8

What Is a Time Series?, Adam Hayes.
https://www.investopedia.com/terms/t/timeseries.asp
Autoregressive–moving-average model, Wikipedia.
https://en.wikipedia.org/wiki/Autoregressive–moving-
average_model

Chapter 9

Linear Regression for Machine Learning, Jason
Brownlee. https://machinelearningmastery.com/linear-
regression-for-machine-learning/

Chapter 11

Support-vector machine, Wikipedia.
https://en.wikipedia.org/wiki/Support-vector_machine

Chapter 12

Decision Trees in Machine Learning, Prashant Gupta.
https://towardsdatascience.com/decision-trees-in-machine-
learning-641b9c4e8052
Ensemble Methods in Machine Learning: What are They
and Why Use Them? Evan Lutins.
https://towardsdatascience.com/ensemble-methods-in-
machine-learning-what-are-they-and-why-use-them-
68ec3f9fef5f

Chapter 13

Stochastic Gradient Descent — Clearly Explained !!,
Aishwarya V Srinivasan.
https://towardsdatascience.com/stochastic-gradient-descent-
clearly-explained-53d239905d31

Chapter 14

Recurrent Neural Networks cheatsheet, Afshine Amidi
and Shervine Amidi.

https://www.investopedia.com/terms/t/timeseries.asp
https://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
https://machinelearningmastery.com/linear-regression-for-machine-learning/
https://en.wikipedia.org/wiki/Support-vector_machine
https://towardsdatascience.com/decision-trees-in-machine-learning-641b9c4e8052
https://towardsdatascience.com/ensemble-methods-in-machine-learning-what-are-they-and-why-use-them-68ec3f9fef5f
https://towardsdatascience.com/stochastic-gradient-descent-clearly-explained-53d239905d31

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-
recurrent-neural-networks

Chapter 15

Introduction to Convolutional Neural Networks (CNN),
Manav Mandal .
https://www.analyticsvidhya.com/blog/2021/05/convolutiona
l-neural-networks-cnn/

[1] Additional lecture : Markowitz’s “Portfolio Selection “: A Fifty-Year Retrospective

[2] Additional lecture: Portfolio management: mean-variance analysis in the US asset
market .
[3] Additional lecture : Mean-variance-skewness-kurtosis based portfolio optimization
[4] Additional lecture : Additional lecture :Tactical Asset Allocation (TAA), Adam
BARONE
[5] Additional lecture : https://en.wikipedia.org/wiki/Capital_asset_pricing_model
[6] Additional lecture: Optimization of conditional value-at-risk, R. Tyrrell Rockafellar
[7] Additional lecture: Stationarity and differencing

[8] Additional lecture : Cointegration, Niti Gupta
[9] Additional lecture : Pairs Trading, James Chen
[10] Additional lecture: What Is a Time Series? Adam Hayes
[11] Additional lecture : Autoregressive–moving-average model, Wikipedia
[12] Additional lecture : Linear Regression for Machine Learning, Jason Brownlee
[13] Additional lecture : Support-vector machine, Wikipedia
[14] Additional lecture : Decision Trees in Machine Learning, Prashant Gupta
[15] Additional lecture : Ensemble Methods in Machine Learning: What are They and Why
Use Them? Evan Lutins
[16] Additional lecture : Stochastic Gradient Descent — Clearly Explained !!, Aishwarya V
Srinivasan
[17] Additional lecture : Introduction to Convolutional Neural Networks (CNN), Manav
Mandal

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks
https://www.analyticsvidhya.com/blog/2021/05/convolutional-neural-networks-cnn/

	Table of contents
	Why should you read this book?
	Chapter 1: Read me
	1.1. Find the code
	1.3. Join our community

	Chapter 2: Prerequisites
	2.1. Mathematical prerequisites
	2.1.1. Algebra
	2.1.2. Statistics
	2.1.3. Optimization

	2.2. Prerequisites in finance
	2.2.1. Market efficiency
	2.2.2. Basics of trading
	2.2.3. Basics of portfolio management

	2.3. Prerequisites in Python
	2.3.1. Libraries for data sciences
	2.3.2. Libraries for finance
	2.3.3. Libraries for mathematics

	Part 1: Portfolio management, risk management and backtesting

	Chapter 3: Static Portfolio management
	3.1. Explanation behind portfolio optimization method
	3.1.1. Systemic risk and specific risk
	3.1.2. Diversification

	3.2. The traditional portfolio optimization methods
	3.2.1. Portfolio utility function
	3.2.2. Mean-variance criterion
	3.2.3. Mean-variance-skewness-kurtosis criterion

	3.3. The modern portfolio optimization methods
	3.3.1. Sharpe criterion
	3.3.2. Sortino criterion

	Chapter 4: Tactical portfolio management
	4.1. How dynamic methods works?
	4.1.1. Short a stock
	4.1.2. Momentum factor
	4.1.3. Rebalancing

	4.2. Moving average strategy
	4.2.1. Moving average
	4.2.2. Moving average factor
	4.2.3. Build the strategy

	4.3. Trend following strategy
	4.3.1. Correlation
	4.3.2. Trend following factor
	4.3.3. Compute the strategy

	Chapter 5: Risk management and backtesting
	5.1. The backtesting metrics
	5.1.1. The CAPM metrics
	5.1.2. Sharpe and Sortino
	5.1.3. Drawdown

	5.2. Risk management metrics
	5.2.1. Value at risk (VaR)
	5.2.2. Conditional Value at risk (cVaR)
	5.2.3. Contribution risk

	5.3. Automate the analysis
	5.3.1. Create a function
	5.3.2. Analyze static portfolio
	5.3.3. Analyze dynamic portfolio

	Chapter 6: Advanced backtest methods
	6.1 Useful backtest advice
	6.1.1 Backtest is not a searching tool
	6.1.2 Big days are not your friends
	6.1.3 Understand your strategy

	6.2 Compute the strategy returns using TP and SL
	6.2.1 Find the extremum
	6.2.2 Calculate the returns
	6.2.3 Analyze the backtest

	6.3 Advanced backtest tools
	6.3.1 Backtest metrics list
	6.3.2 Monte Carlo simulation
	6.3.3 Easy Trailing stop

	Part 2: Statistics predictive models

	Chapter 7: Statistical arbitrage Trading
	7.1. Stationarity to Cointegration
	7.1.1. Stationarity
	7.1.2. Cointegration

	7.2. Pairs trading
	7.2.1. How it works
	7.2.2. Applications

	Chapter 8: Auto Regressive Moving Average model (ARMA)
	8.1. Time series basics
	8.1.1. Trend, cycle, seasonality
	8.1.2. Log price properties
	8.1.3. The linear regression

	8.2. AR and MA models
	8.2.1. Autoregressive model (AR)
	8.2.2. Moving average model (MA)

	8.3. ARMAs models
	8.3.1. ARMA model
	8.3.2. ARIMA model

	Chapter 9: Linear regression and logistic regression
	9.1. Regression and classification
	9.1.1. Reminder about regression
	9.1.2. Understand the classification

	9.2. Linear regression
	9.2.1. Preparation of data
	9.2.2. Implementation of the model
	9.2.3. Predictions and backtest

	9.3. Logistic regression
	9.3.1. Preparation of data
	9.3.2. Implementation of the model
	9.3.3. Predictions and backtest

	Part 3: Machine learning, deep learning, live trading

	Chapter 10: Features and target engineering
	10.1 Motivation and intuition
	10.1.1 Features engineering
	10.1.2 Target engineering
	10.1.3 Why is it so important?
	10.2 Trading application
	10.2.1 Create trading indicators and useful trading features
	10.2.2 Target labeling

	Chapter 11: Support vector machine (SVM)
	11.1. Preparation of data
	11.1.1. Features engineering
	11.1.2. Standardization

	11.2. Support Vector Machine Classifier (SVC)
	11.2.1. Intuition about how works an SVC
	11.2.2. How to create an SVC using Python
	11.2.3. Predictions and backtest

	11.3. Support Vector Machine Regressor (SVR)
	11.3.1. Intuition about how works an SVR
	11.3.2. How to create an SVR using Python
	11.3.3. Predictions and backtest

	Chapter 12: Ensemble methods and decision tree
	12.1. Decision tree
	12.1.1. Decision Tree classifier
	12.1.2. Decision tree regressor
	12.1.3. Optimize the hyperparameters

	12.2. Random Forest
	12.2.1. Random Forest classifier
	12.2.2. Random Forest Regressor
	12.2.3. Optimize the hyperparameters

	12.3. Ensemble methods
	12.3.1. Voting method
	12.3.2. Bagging method
	12.3.3. Stacking method

	Chapter 13: Deep Neural Networks (DNN)
	13.1. Intuition behind DNN
	13.1.1. Forward propagation
	13.1.2. Gradient descent
	13.1.3. Backpropagation

	13.2. DNN for classification
	13.3.1. Preparation of data
	13.2.2. Implementing a DNN for a classification task
	13.2.3. Prediction and Backtest

	13.3. DNN for regression
	13.3.1. Implementing a DNN for a regression task
	13.3.2. Custom loss function
	13.3.3. Prediction and Backtest

	Chapter 14: Recurrent neural network
	14.1 Principles of RNN
	14.1.1. How an RNN works
	14.1.2. LSTM neuron
	14.1.3. GRU cell

	14.2. RNN for classification
	14.2.1. Transform 2d data to 3d data
	14.2.2. Implementing the model
	14.2.3. Prediction and backtest

	14.3. RNN regressor
	14.3.1. Precision about standardization
	14.3.2. Implementing the model
	14.3.3. Predictions and backtest

	Chapter 15: Bonus / Example of RNN with CNN (RCNN)
	15.1. Intuition of CNN
	15.2. Create an RCNN
	15.3. Backtest

	Chapter 16: Real-life full project
	16.1. Preparation of the data
	16.1.1. Import the data
	16.1.2. Features engineering
	16.1.3. Train, test and validation sets

	16.2. Modelling the strategy
	16.2.1. Find the best assets
	16.2.2. Combine the algorithms
	16.2.3. Apply portfolio management technics

	16.3. Find optimal take profit, stop loss and leverage
	16.3.1. Optimal take profit (tp)
	16.3.2. Optimal stop loss (sl)
	16.3.3. Optimal leverage

	Chapter 17: From nothing to live trading
	17.1 Trading strategies creation guidelines
	17.1.1 The trading plan
	17.1.2 The process of a trading strategy building
	17.1.3 Trading journal

	17.2 Do not put all your eggs in one basket
	17.2.1 Bet sizing
	17.2.2 Why create a trading strategy portfolio?

	17.3. Live trading process
	17.3.1. Safety first
	17.3.2 Incubation phase
	17.3.3 When to quit?

	Annex: Compounding versus simple interest
	What is the difference between the simple and the compounding methods?
	How to compute the simple and compounding interest

	Annex: Save and load scikit-learn and Tensorflow models
	Annex: MetaTrader class
	Additional readings

