

Head First JavaScript Programming

Second Edition

A Learner’s Guide to Modern JavaScript

Eric Freeman and Elisabeth Robson

 Head First JavaScript Programming

 by
 Eric
 Freeman
 and
 Elisabeth
 Robson

 Copyright © 2025 Eric Freeman and Elisabeth Robson. All rights
 reserved.

 Printed in the United States of America.

 Published by
 O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

 O’Reilly books may be purchased for educational, business, or sales
 promotional use. Online editions are also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional sales
 department: 800-998-9938 or
 corporate@oreilly.com.

 	
 Acquisitions Editor:
 David Michelson

 	
 Development Editor:
 Michele Cronin

 	
 Production Editor:
 Christopher Faucher

 	
 Interior Designer:
 David Futato

 	
 Cover Designer:
 Susan Thompson, based on a series design by Ellie Volckhausen

 	
 Illustrator:
 José Marzan Jr.

 	
 March 2025:
 Second Edition

 Revision History for the Second Edition

 	
 2024-02-06:
 First Release

 See
 http://oreilly.com/catalog/errata.csp?isbn=9781098147945
 for release details.

 The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Head
 First JavaScript Programming, the cover image, and related trade dress are
 trademarks of O’Reilly Media, Inc.

 The views expressed in this work are those of the authors and do not
 represent the publisher’s views. While the publisher and the
 authors have used good faith efforts to ensure that the information and
 instructions contained in this work are accurate, the publisher and the
 authors disclaim all responsibility for errors or omissions, including
 without limitation responsibility for damages resulting from the use of or
 reliance on this work. Use of the information and instructions contained
 in this work is at your own risk. If any code samples or other technology
 this work contains or describes is subject to open source licenses or the
 intellectual property rights of others, it is your responsibility to
 ensure that your use thereof complies with such licenses and/or rights.

 978-1-098-14788-4

Brief Table of Contents (Not Yet Final)

Chapter 1, A Quick Dip into JavaScript: Getting Your Feet Wet (available)

Chapter 2, Writing Real Code: Going Further (available)

Chapter 3, Introducing Functions: Getting Functional (unavailable)

Chapter 4, Putting Some Order in Your Data: Arrays (unavailable)

Chapter 5, Understanding Objects: A Trip to Objectville (unavailable)

Chapter 6, Interacting With Your Web Page: Getting to Know the DOM (unavailable)

Chapter 7, Types, Equality, Conversion, and All that Jazz: Serious Types (unavailable)

Chapter 8, Bringing It All Together: Building an App (unavailable)

Chapter 9, Asynchronous Coding: Handling Events (unavailable)

Chapter 10, First Class Functions: Liberated Functions (unavailable)

Chapter 11, Anonymous Functions, Scope, and Closures: Serious Functions (unavailable)

Chapter 12, Advanced Object Construction: Creating Objects (unavailable)

Chapter 13, Using Prototypes: Extra Strength Objects (unavailable)

Appendix A, Leftovers: The Top Ten Topics (we didn’t cover) (unavailable)

Chapter 1. A Quick Dip into Javascript: Getting your Feet Wet

A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the authors’ raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

This will be the 1st chapter of the final book.

If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the editor at mcronin@oreilly.com.

[image: Image]

JavaScript gives you superpowers. The true programming language of the web, JavaScript lets you add behavior to your web pages. No more dry, boring, static pages that just sit there looking at you—with JavaScript, you’ll be able to reach out and touch your users, react to interesting events, grab data from the web to use in your pages, draw graphics right in your web pages and a lot more. And once you know JavaScript you’ll also be in a position to create totally new behaviors for your users.

You’ll be in good company too. JavaScript’s not only one of the most popular programming languages, it’s also supported in all modern browsers and is used in many environments outside of the browser. More on that later; for now, let’s get started!

The way JavaScript works

If you’re used to creating structure, content, layout and style in your web pages, isn’t it time you add a little behavior as well? After all, there’s no need for the page to just sit there. Great pages should be interative and dynamic. That’s where JavaScript comes in. Let’s start by taking a look at how JavaScript fits into the web page ecosystem:

[image: Image]

How you’re going to write JavaScript

JavaScript is fairly unique in the programming world. With your typical programming language you have to write it, compile it, link it and deploy it. JavaScript is much more fluid and flexible. With JavaScript all you need to do is write JavaScript right into your page, and then load it into a browser. From there, the browser will happily begin executing your code. Let’s take a closer look at how this works:

[image: Image]

How to get JavaScript into your page

First things first. You can’t get very far with JavaScript if you don’t know how to get it into a web page. So, how do you do that? Using the <script> element of course!

Let’s take a boring old, garden-variety web page and add some dynamic behavior using a <script> element. Now, at this point, don’t worry too much about the details of what we’re putting into the <script> element—your goal right now is to get some JavaScript working.

[image: Image]

A little test drive

[image: Image]

Go ahead and type this page into a file named “behavior.html”. Drag the file to your browser (or use File > Open) to load it. What does it do? Hint, you’ll need to wait five seconds to find out.

[image: Image]

Relax

[image: Image]

Just relax. At this point we don’t expect you to read JavaScript like you grew up with it. In fact, all we want you to do right now is get a feel for what JavaScript looks like.

That said, you’re not totally off the hook because we need to get your brain revved up and working. Remember that code on the previous page? Let’s just walk through it to get a feel for what it might do:

[image: Image]

there are no Dumb Questions

Q: I’ve heard JavaScript is a bit of a wimpy language. Is it?

A: JavaScript certainly wasn’t a power lifter in its early days, but its importance to the web has grown since then, and as a result, many resources (including brain power from some of the best minds in the business) have gone into supercharging the performance of JavaScript. But, you know what? Even before JavaScript was super fast, it was always a brilliant language. As you’ll see, we’re going to do some very powerful things with it.

Q: Is JavaScript related to Java?

A: Only by name. JavaScript was created during a time when Java was a red hot popular language, and the inventors of JavaScript capitalized on that popularity by making use of the Java name. Both languages borrow some syntax from programming languages like C, but other than that, they are quite different.

Q: Is JavaScript the best way to create dynamic web pages? Are there other technologies?

A: Not really. JavaScript is the language for programming in the browser. There are variants of JavaScript, like TypeScript, but those are not in common use, and even then the TypeScript code you write will be translated into JavaScript before it runs in the browser. With today’s super fast JavaScript enviroments and sophisticated APIs, JavaScript is here to stay and is the standard for programming in the browser.

Q: My friend is using JavaScript inside a music application, or at least he says he is. Is that possible?

A: Yes, JavaScript is breaking out of the browser as a general scripting language for many applications from graphics utilities to music applications and even to server-side programming. Your investment in learning JavaScript is likely to pay off in ways beyond web pages in the future.

Q: You say that many other languages are compiled. What exactly does that mean and why isn’t JavaScript?

A: With conventional programming languages like C, C++ or Java, you compile the code before you execute it. Compiling takes your code and produces a machine efficient representation of it, usually optimized for runtime performance. Scripting languages are typically interpreted, which means that the browser runs each line of JavaScript code as it gets to it. Scripting languages place less importance on runtime performance, and are more geared towards tasks like prototyping, interactive coding and flexibility. This was the case with early JavaScript, and was why, for many years, the performance of JavaScript was not so great. There is a middle ground however; an interpreted language can be compiled on the fly, and that’s the path browser manufacturers have taken with modern JavaScript. In fact, with JavaScript you now have the conveniences of a scripting language, while enjoying the performance of a compiled language. By the way, we’ll use the words interpret, evaluate and execute in this book. They have slightly different meanings in various contexts, but for our purposes, they all basically mean the same thing.

JavaScript, you’ve come a long way...

[image: Image]

Sharpen your pencil: Look how easy it is to write JavaScript

[image: Image]

You don’t know JavaScript yet, but we bet you can make some good guesses about how JavaScript code works. Take a look at each line of code below and see if you can guess what it does. Write in your answers below. We’ve done one for you to get you started. If you get stuck, the answers are on the next page.

let price = 28.99;
let discount = 10;
let total =
 price - (price * (discount / 100));
if (total > 25) {
 freeShipping();
}

let count = 10;
while (count > 0) {
 juggle();
 count = count - 1;
}

const dog = {name: "Rover", weight: 35};
if (dog.weight > 30) {
 alert("WOOF WOOF");
} else {
 alert("woof woof");
}

let circleRadius = 20;
let circleArea =
 Math.PI * (circleRadius * circleRadius);

[image: Image]

Sharpen your pencil Solution: Look how easy it is to write JavaScript

[image: Image]

You don’t know JavaScript yet, but we bet you can make some good guesses about how JavaScript code works. Take a look at each line of code below and see if you can guess what it does. Write in your answers below. We’ve done one for you to get you started. Here are our answers.

let price = 28.99;
let discount = 10;
let total =
 price - (price * (discount / 100));
if (total > 25) {
 freeShipping();
}

let count = 10;
while (count > 0) {
 juggle();
 count = count - 1;
}

const dog = {name: "Rover", weight: 35};
if (dog.weight > 30) {
 alert("WOOF WOOF");
} else {
 alert("woof woof");
}

let circleRadius = 20;
let circleArea =
 Math.PI * (circleRadius * circleRadius);

[image: Image]

[image: Image]

With HTML and CSS you can create some great looking pages. But once you know JavaScript, you can really expand on the kinds of pages you can create.

Note

Knowing JavaScript might increase the size of your paycheck too!

So much so, in fact, you might actually start thinking of your pages as applications (or even experiences!) rather than mere pages.

Now, you might be saying, “I already know that, why do you think I’m reading this book?” Well, we actually wanted to use this opportunity to have a little chat about learning JavaScript. If you already have a programming language or scripting language under your belt, then you have some idea of what lies ahead. However, if you’ve mostly been using HTML & CSS to date, you should know that there is something fundamentally different about learning a programming language.

With HTML & CSS what you’re doing is largely declarative—for instance, you’re declaring, say, that some text is a paragraph or that all the HTML elements in the “sale” class should be colored red. With JavaScript you’re adding behavior to the page, and to do that you need to describe computation. You’ll need to be able to describe things like, “compute the user’s score by summing up all the correct answers” or “do this action ten times” or “when the user clicks on that button play the you-have-won sound” or even “go off and get my latest tweet, and put it in this page.”

To do those things you need a language that is quite different from HTML or CSS. Let’s see how...

How to make a statement

When you create HTML you usually mark upg text to give it structure; to do that you add elements, attributes and values to the text:

[image: Image]

CSS is a bit different. With CSS you’re writing a set of rules, where each rule selects elements in the page, and then specifies a set of styles for those elements:

[image: Image]

With JavaScript you write statements. Each statement specifies a small part of a computation, and together, all the statements create the behavior of the page:

[image: Image]

Variables and values

You might have noticed that JavaScript statements usually involve variables. Variables are used to store values. What kinds of values? Here are a few examples:

[image: Image]

There are other values that variables can hold beyond numbers, strings and booleans, and we’ll get to those soon enough, but, no matter what a variable contains, we create all variables the same way. Let’s take a little closer look at how to declare a variable:

[image: Image]

We say optionally, because if you want, you can create a variable without an initial value, and then assign it a value later. To create a variable without an initial value, just leave off the assignment part, like this:

[image: Image]

[image: Image]

Brain Power

[image: Image]

If you copy the start, stop, and drive methods into the chevy and cadi objects we created earlier, what do you have to change to make the methods work correctly?

If you declare a variable without a value, such as:

[image: Image]

What value do you think JavaScript is assigning to this variable?

Constants, another kind of variable

So far, we’ve used the keyword let to declare our variables. And that’s typically what we want to do with variables whose values can vary, or in other words, change their value over time. For instance, if we use let to declare the variable winners, assign it the value 2, we can change the value in winners later to be 3 if another winner comes along:

[image: Image]

Sometimes, however, we do not want the values in our variables to vary at all. There are situations in which we might want to give a name to a value that we’ll use in our code, but we don’t ever want that value to change. Here’s a good example: the radius of planet Earth. It might be handy to assign this value to a variable so we can use EARTH_RADIUS instead of the number in our code. We don’t want anyone to come along and change this value accidentally, so how can we make sure the value of EARTH_RADIUS never changes? We can use a constant instead of a variable, like this:

[image: Image]

Sharpen your pencil

[image: Image]

Identify that declarations below that you think are best suited for let and for const. Remember, while all uppercase text is a convention for constants, it isn’t always adhered to. We’ve done a couple for you:

[image: Image]

Back away from that keyboard!

You know variables have a name, and you know they have a value.

You also know some of the things a variable can hold are numbers, strings and boolean values.

But what can you call your variables? Is any name okay? Well no, but the rules around creating variable names are simple: just follow the two rules below to create valid variable names:

	[image: Image] Start your variables with a letter, an underscore or a dollar sign.

	[image: Image] After that, use as many letters, numeric digits, underscores or dollar signs as you like.

Oh, and one more thing; we really don’t want to confuse JavaScript by using any of the built-in keywords, like let or function or false, so consider those off limits for your own variable names. We’ll get to some of these keywords and what they mean throughout the rest of the book, but here’s a list to take a quick look at:

	break

	case

	catch

	class

	const

	continue

	debugger

	default

	delete

	do

	else

	enum

	export

	extends

	false

	finally

	for

	function

	if

	implements

	import

	in

	instanceof

	interface

	let

	new

	package

	private

	protected

	public

	return

	static

	super

	switch

	this

	throw

	true

	try

	typeof

	var

	void

	while

	with

	yield

[image: Image]

there are no Dumb Questions

Q: What’s a keyword?

A: A keyword is a reserved word in JavaScript. JavaScript uses these reserved words for its own purposes, and it would be confusing to you and the browser if you started using them for your variables and constants.

Q: Why aren’t we using var to declare our variables?

A: The var keyword is no longer recommended and has been largely replaced by let and const. These keywords work slightly differently to var and have some benefits over var that we’ll come back to later.

Q: What if I used a keyword as part of my variable name? For instance, can I have a variable named ifOnly (that is, a variable that contains the keyword if)?

A: You sure can, just don’t match the keyword exactly. It’s also good to write clear code, so in general you wouldn’t want to use something like elze, which might be confused with else.

Q: Is JavaScript case sensitive? In other words, are myvariable and MyVariable the same thing?

A: If you’re used to HTML markup you might be used to case insensitive languages; after all, <head> and <HEAD> are treated the same by the browser. With JavaScript however, case matters for variables, constants, keywords, function names and pretty much everything else, too. So pay attention to your use of upper- and lowercase.

[image: Image]

Syntax Fun

[image: Image]

	Each statement ends in a semicolon.

x = x + 1;

	A single line comment begins with two forward slashes. Comments are just notes to you or other developers about the code.They aren’t executed.

// I’m a comment

	Whitespace doesn’t matter (almost everywhere).

x = 2233;

	Surround strings of characters with double quotes (or single, both work, just be consistent).

"You rule!"
’And so do you!’

	Don’t use quotes around the boolean values true and false.

rockin = true;

	Variables don’t have to be given a value when they are declared: let width;

	JavaScript, unlike HTML markup, is case sensitive, meaning upper- and lowercase matters. The variable counter is different from the variable Counter.

BE the Browser

Below, you’ll find JavaScript code with some mistakes in it. Your job is to play like you’re the browser and find the errors in the code. After you’ve done the exercise look at the end of the chapter to see if you found them all.

[image: Image]

[image: Image]

Express yourself

To truly express yourself in JavaScript you need expressions. Expressions evaluate to values. You’ve already seen a few in passing in our code examples. Take the expression in this statement for instance:

[image: Image]

If you’ve ever taken a math class, balanced your checkbook or done your taxes, we’re sure these kinds of numeric expressions are nothing new.

There are also string expressions; here are a few:

[image: Image]

We also have expressions that evaluate to true or false, otherwise known as boolean expressions. Work through each of these to see how you get true or false from them:

[image: Image]

And expressions can evaluate to a few other types; we’ll get to these later in the book. For now, the important thing is to realize all these expressions evaluate to something: a value that is a number, a string or a boolean. Let’s keep moving and see what that gets you!

Sharpen your pencil

[image: Image]

Get out your pencil and put some expressions through their paces. For each expression below, compute its value and write in your answer. Yes, WRITE IN... forget what your Mom told you about writing in books and scribble your answer right in this book! Be sure to check your answers at the end of the chapter.

[image: Image]

Serious Coding

[image: Image]

Did you notice that the = operator is used in assignments, while the == operator tests for equality? That is, we use one equal sign to assign values to variables. We use two equal signs to test if two values are equal to each other. Substituting one for the other is a common coding mistake.

[image: Image]

Doing things more than once

You do a lot of things more than once:

Lather, rinse, repeat...

Wax on, wax off...

Eat candies from the bowl until they’re all gone.

Of course you’ll often need to do things in code more than once, and JavaScript gives you a few ways to repeatedly execute code in a loop: while, for, for in and forEach. Eventually, we’ll look at all these ways of looping, but let’s focus on while for now.

We just talked about expressions that evaluate to boolean values, like scoops > 0, and these kinds of expressions are the key to the while statement. Here’s how:

[image: Image]

How the while loop works

Seeing as this is your first while loop, let’s trace through a round of its execution to see exactly how it works*. Notice we’ve added a declaration for scoops to declare it, and initialize it to the value 5.

Now let’s start executing this code. First we set scoops to five.

[image: Image]

After that we hit the while statement. When we evaluate a while statement the first thing we do is evaluate the conditional to see if it’s true or false.

[image: Image]

Because the conditional is true, we start executing the block of code. The first statement in the body writes the string “Another scoop!
” to the browser.

[image: Image]

* To follow along, grab the code for this chapter from http://wickedlysmart.com/hfjs and drag the file icecream.html into your browser.

The next statement subtracts one from the number of scoops and then sets scoops to that new value, four.

[image: Image]

That’s the last statement in the block, so we loop back up to the conditional and start over again.

[image: Image]

Evaluating our conditional again, this time scoops is four. But that’s still more than zero.

[image: Image]

Once again we write the string “Another scoop!
” to the browser.

[image: Image]

The next statement subtracts one from the number of scoops and sets scoops to that new value, which is three.

[image: Image]

That’s the last statement in the block, so we loop back up to the conditional and start over again.

[image: Image]

Evaluating our conditional again, this time scoops is three. But that’s still more than zero.

[image: Image]

Once again we write the string “Another scoop!
” to the browser.

[image: Image]

And as you can see, this continues... each time we loop, we decrement (reduce scoops by 1), write another string to the browser, and keep going.

[image: Image]

And continues...

[image: Image]

Until the last time... this time something’s different. Scoops is zero, and so our conditional returns false. That’s it folks; we’re not going to go through the loop anymore, we’re not going to execute the block. This time, we bypass the block and execute the statement that follows it.

[image: Image]

Now we execute the other document.write, and write the string “Life without ice cream isn’t the same”. We’re done!

[image: Image]

if (cashInWallet > 5) {
 order = "I’ll take the works:
cheeseburger, fries and a coke";
} else {
 order = "I’ll just have a glass of
water";
}

Making decisions with JavaScript

You’ve just seen how you use a conditional to decide whether to continue looping in a while statement. You can also use boolean expressions to make decisions in JavaScript with the if statement. The if statement executes its code block only if a conditional test is true. Here’s an example:

[image: Image]

With an if statement we can also string together multiple tests by adding on one or more else if’s, like this:

[image: Image]

And, when you need to make LOTS of decisions

You can string together as many if/else statements as you need, and if you want one, even a final catch-all else, so that if all conditions fail, you can handle it. Like this:

[image: Image]

[image: Image]

there are no Dumb Questions

Q: What exactly is a code block?

A: Syntactically, a code block (which we usually just call a block) is a set of statements, which could be one statement, or as many as you like, grouped together between curly braces. Once you’ve got a block of code, all the statements in that block are treated as a group to be executed together in sequence. For instance, all the statements within the block in a while statement are executed if the condition of the while is true. The same holds for a block in an if or else if.

Q: I’ve seen code where the conditional is a variable with a value that isn’t a boolean, like a string or a number. How does that work?

A: We’ll be covering that a little later, but the short answer is JavaScript is quite flexible in what it thinks is a true or false value. For instance, any variable that holds a (non-empty) string is considered true, but a variable that hasn’t been set to a value is considered false. We’ll get into these details soon enough.

Q: You’ve said that expressions can result in things other than numbers, strings and booleans. Like what?

A: Right now we’re concentrating on what are known as the primitive types, that is, numbers, strings and booleans. Later we’ll take a look at more complex types, like arrays, which are collections of values, objects and functions.

Q: Where does the name boolean come from?

A: Booleans are named after George Boole, an English mathematician who invented Boolean logic. You’ll often see boolean written “Boolean,” to signify that these types of variables are named after George.

Code Magnets

[image: Image]

A JavaScript program is all scrambled up on the fridge. Can you put the magnets back in the right places to make a working JavaScript program to produce the output shown below? Check your answer at the end of the chapter before you go on.

[image: Image]

Reach out and communicate with your user

We’ve been talking about making your pages more interactive, and to do that you need to be able to communicate with your user. As it turns out there are a few ways to do that, and you’ve already seen some of them. Let’s get a quick overview and then we’ll dive into these in more detail throughout the book:

Create an alert

As you’ve seen, the browser gives you a quick way to alert your users through the alert function. Just call alert with a string containing your alert message, and the browser will give your user the message in a nice dialog box. A small confession though: we’ve been overusing this because it’s easy; alert really should be used only when you truly want to stop everything and let the user know something.

Write directly into your document

Think of your web page as a document (that’s what the browser calls it). You can use a function document.write to write arbitrary HTML and content into your page at any point. In general, this is considered bad form, although you’ll see it used here and there. We’ve used it a bit in this chapter too because it’s an easy way to get started.

Note

We’re using these three methods in this chapter.

Use the console

Every JavaScript environment also has a console that can log messages from your code. To write a message to the console’s log you use the function console.log and hand it a string that you’d like printed to the log (more details on using console log in a second). You can view console.log as a great tool for troubleshooting your code, but typically your users will never see your console log, so it’s not a very effective way to communicate with them.

Note

The console is a really handy way to help find errors in your code! If you’ve made a typing mistake, like missing a quote, JavaScript will usually give you an error in the console to help you track it down.

Directly manipulate your document

This is the big leagues; this is the way you want to be interacting with your page and users—using JavaScript you can access your actual web page, read & change its content, and even alter its structure and style! This all happens by making use of your browser’s document object model (more on that later). As you’ll see, this is the best way to communicate with your user. But, using the document object model requires knowledge of how your page is structured and of the programming interface that is used to read and write to the page. We’ll be getting there soon enough. But first, we’ve got some more JavaScript to learn.

Note

This is what we’re working towards. When you get there you’ll be able to read, alter and manipulate your page in any number of ways.

Who Does What

All our methods of communication have come to the party with masks on. Can you help us unmask each one? Match the descriptions on the right to the names on the left. We’ve done one for you.

[image: Image]

A closer look at console.log

Let’s take a closer look at how console.log works so we can use it in this chapter to see the output from our code, and throughout the book to inspect the output of our code and debug it. Remember though, the console is not a browser feature most casual users of the web will encounter, so you won’t want to use it in the final version of your web page. Writing to the console log is typically done to troubleshoot as you develop your page. That said, it’s a great way to see what your code is doing while you’re learning the basics of JavaScript. Here’s how it works:

[image: Image]

there are no Dumb Questions

Q: I get that console.log can be used to output strings, but what exactly is it? I mean why are the “console” and the “log” seperated by a period?

A: Ah, good point. We’re jumping ahead a bit, but think of the console as an object that does things, console-like things. One of those things is logging, and to tell the console to log for us, we use the syntax “console.log” and pass it our output in between parentheses. Keep that in the back of your mind; we’re coming back to talk a lot more about objects a little later in the book. For now, you’ve got enough to use console.log.

Q: Can the console do anything other than just log?

A: Yes, but typically people just use it to log. There are a few more advanced ways to use log (and console), but they tend to be browser-specific. Note that console is something all modern browsers supply, but it isn’t part of any formal specification.

Q: Uh, console looks great, but where do I find it? I’m using it in my code and I don’t see any output!

A: In most browsers you have to explicitly open the console window. Check out the next page for details.

Opening the console

Every browser has a slightly different implementation of the console. And, to make things even more complicated, the way that browsers implement the console changes fairly frequently—not in a huge way, but enough so that by the time you read this, your browser’s console might look a bit different from what we’re showing here.

So, we’re going to show you how to access the console in the Chrome browser (version 120) on the Mac, and we’ll put instructions on how to access the console in all the major browsers online at http://wickedlysmart.com/hfjsconsole. Once you get the hang of the console in one browser, it’s fairly easy to figure out how to use it in other browsers too, and we encourage you to try using the console in at least two browsers so you’re familiar with them.

Note

Note: You don’t need to type the Howdy code in. We’re just learning where the console is. We’ll start typing in code in just a sec...

[image: Image]

Coding a Serious JavaScript Application

Let’s put all these new JavaScript skills and console.log to good use with something practical. We need some variables, a while statement, some if statements with elses. Add a little more polish and we’ll have a super-serious business application before you know it. But, before you look at the code, think to yourself how you’d code that classic favorite, “99 bottles of rootbeer.”

[image: Image]

const word = "bottles";
let count = 99;
while (count > 0) {
 console.log(count + " " + word + " of rootbeer on the wall");
 console.log(count + " " + word + " of rootbeer,");
 console.log("Take one down, pass it around,");
 count = count - 1;
 if (count > 0) {
 console.log(count + " " + word + " of rootbeer on the wall.");
 } else {
 console.log("No more " + word + " of rootbeer on the wall.");
 }
}

Brain Power

[image: Image]

There’s still a little flaw in our code. It runs correctly, but the output isn’t 100% perfect. See if you can find the flaw, and fix it.

[image: Image]

Good point! Yes, it’s time. Before we got there we wanted to make sure you had enough JavaScript under your belt to make it interesting. That said, you already saw in the beginning of this chapter that you add JavaScript to your HTML just like you add CSS; that is, you just add it inline with the appropriate <script> tags around it.

Now, like CSS, you can also place your JavaScript in files that are external to your HTML.

Let’s first get this serious business application into a page, and then after we’ve thoroughly tested it, we’ll move the JavaScript out to an external file.

Test Drive

[image: Image]

Okay, let’s get some code in the browser... follow the instructions below and get your serious business app launched! You’ll see our result below:

Note

To download all the code and sample files for this book, please visit http://wickedlysmart.com/hfjs.

[image: Image]

How do I add code to my page? (let me count the ways)

You already know you can add the <script> element with your JavaScript code to the <head> or <body> of your page, but there are a couple of other ways to add your code to a page. Let’s check out all the places you can put JavaScript (and why you might want to put it one place over another):

[image: Image]

[image: Image]

We’re going to have to separate you two

Going separate ways hurts, but we know we have to do it. It’s time to take your JavaScript and move it into its own file. Here’s how you do that...

[image: Image]

[image: Image]

Anatomy of a Script Element

[image: Image]

You know how to use the <script> element to add code to your page, but just to really nail down the topic, let’s review the <script> element to make sure we have every detail covered:

[image: Image]

And when you are referencing a separate JavaScript file from your HTML, you’ll use the <script> element like this:

[image: Image]

Watch it!

[image: Image]

You can’t use inline and external together.

If you try throwing some quick code in between those <script> tags when you’re already using a src attribute, it won’t work. You’ll need two separate <script> elements.

<script src="goodies.js">
 let x = "quick hack";
</script>

[image: Image]

JavaScript Exposed: This week’s interview: Getting to know JavaScript

[image: Image]

Head First: Welcome JavaScript. We know you’re super-busy out there, working on all those web pages, so we’re glad you could take time out to talk to us.

JavaScript: No problem. And, I am busier than ever these days; people are using JavaScript on just about every page on the Web nowadays, for everything from simple menu effects to full blown games. It’s nuts!

Head First: That’s amazing given that just a few years ago, someone said that you were just a “half-baked, wimpy scripting language” and now you’re everywhere.

JavaScript: Don’t remind me. I’ve come a long way since then, and many great minds have been hard at work making me better.

Head First: Better how? Seems like your basic language features are about the same...

JavaScript: Well, I’m better in a couple of ways. First of all, I’m lightning fast these days. While I’m considered a scripting language, now my performance is close to that of native compiled languages.

Head First: And second?

JavaScript: My ability to do things in the browser has expanded dramatically. Using the JavaScript libraries available in all modern browsers you can find out your location, play video and audio, paint graphics on your web page and a lot more. But if you wanna do all that you have to know JavaScript.

Head First: But back to those criticisms of you, the language. I’ve heard some not so kind words... I believe the phrase was “hacked up language.”

JavaScript: I’ll stand on my record. I’m pretty much one of, if not the most widely used languages in the world. I’ve also fought off many competitors and won. Remember Java in the browser? Ha, what a joke. VBScript? Ha. JScript? Flash?! Silverlight? I could go on and on. So, tell me, how bad could I be?

Head First: You’ve been criticized as, well, “simplistic.”

JavaScript: Honestly, it’s my greatest strength. The fact that you can fire up a browser, type in a few lines of JavaScript and be off and running, that’s powerful. And it’s great for beginners too. I’ve heard some say there’s no better beginning language than JavaScript.

Head First: But simplicity comes at a cost, no?

JavaScript: Well that’s the great thing, I’m simple in the sense you can get a quick start. But I’m deep and full of all the latest modern programming constructs.

Head First: Oh, like what?

JavaScript: Well, for example, can you say dynamic types, first-class functions and closures?

Head First: I can say it but I don’t know what they are.

JavaScript: Figures... that’s okay, if you stay with the book you will get to know them.

Head First: Well, give us the gist.

JavaScript: Let me just say this, JavaScript was built to live in a dynamic web environment, an exciting environment where users interact with a page, where data is coming in on the fly, where many types of events happen, and the language reflects that style of programming. You’ll get it a little more a bit later in the book when you understand JavaScript more.

Head First: Okay, to hear you tell it, you’re the perfect language. Is that right?

JavaScript tears up...

JavaScript: You know, I didn’t grow up within the ivy-covered walls of academia like most languages. I was born into the real world and had to sink or swim very fast in my life. Given that, I’m not perfect; I certainly have a few “rough spots.”

Head First with a slight Barbara Walters smile: We’ve seen a new side of you today. I think this merits another interview in the future.

Bullet Points

	JavaScript is used to add behavior to web pages.

	Browser engines are much faster at executing JavaScript than they were just a few years ago.

	Browsers begin executing JavaScript code as soon as they encounter the code in the page.

	Add JavaScript to your page with the <script> element.

	You can put your JavaScript inline in the web page, or link to a separate file containing your JavaScript from your HTML.

	Use the src attribute in the <script> tag to link to a separate JavaScript file.

	HTML declares the structure and content of your page; JavaScript computes values and adds behavior to your page.

	JavaScript programs are made up of a series of statements.

	One of the most common JavaScript statements is a variable declaration, which uses the let keyword to declare a new variable and the assignment operator, =, to assign a value to it.

	Use const to assign a value that shouldn’t change.

	The value of a constant doesn’t vary, so we call them constants, not variables.

	There are just a few rules and guidelines for naming JavaScript variables and constants, and it’s important that you follow them.

	Remember to avoid JavaScript keywords when naming variables.

	JavaScript expressions compute values.

	Three common types of expressions are numeric, string and boolean expressions.

	if/else statements allow you to make decisions in your code.

	while/for statements allow you to execute code many times by looping.

	You can group statements together into a code block by enclosing them in curley braces.

	Use console.log instead of alert to display messages to the console.

	Console messages should be used primarily for troubleshooting as users will most likely never see console messages.

	JavaScript is most commonly found adding behavior to web pages, but is also used to script many creative applications, and is used as a server-side programming language with node. js.

JavaScript cross

[image: Image]

Time to stretch your dendrites with a puzzle to help it all sink in.

[image: Image]

ACROSS

1. Variables are used to store these.

4. Use _____________ to troubleshoot your code.

7. Today’s JavaScript runs a lot ________________ than it used to.

8. There are 99 _____________ of rootbeer on the wall.

9. To link to an external JavaScript file from HTML, you need the _______ attribute for your <script> element.

10. Each time through a loop, we evaluate a ______________ expression.

13. The if/else statement is used to make a ____________.

14. All JavaScript statements end with a ___________.

16. You put your JavaScript inside a ______________ element.

DOWN

2. You can concatenate _______________ together with the + operator.

3. Store values that don’t change in this.

5. 3 + 4 is an example of an _____________.

6. JavaScript adds _______________ to your web pages.

9. Each line of JavaScript code is called a _______________.

10. To avoid embarrassing naming mistakes, use __________ case.

11. Do things more than once in a JavaScript program with the _________ loop.

12. JavaScript variable names are _________ sensitive.

15. To declare a variable, use this keyword.

Sharpen your pencil Solution

[image: Image]

Identify that declarations below that you think are best suited for let and for const. Remember, while all uppercase text is a convention for const variable, it isn’t always adhered to. We’ve done a couple for you:

[image: Image]

BE the Browser Solution

[image: Image]

Below, you’ll find JavaScript code with some mistakes in it. Your job is to play like you’re the browser and find the errors in the code. After you’ve done the exercise look at the end of the chapter to see if you found them all.

[image: Image]

Sharpen your pencil Solution

[image: Image]

Get out your pencil and let’s put some expressions through their paces. For each expression below, compute its value and write in your answer. Yes, WRITE IN... forget what your Mom told you about writing in books and scribble your answer right in this book! Here’s our solution.

[image: Image]

Code Magnet Solution

[image: Image]

A JavaScript program is all scrambled up on the fridge. Can you put the magnets back in the right places to make a working JavaScript program to produce the output shown below?. Here’s our solution.

[image: Image]

[image: Image]

JavaScript cross Solution

[image: Image]

[image: Image]

Who Does What? Solution

All our methods of communication have come to the party with masks on. Can you help us unmask each one? Match the descriptions on the right to the names on the left. Here’s our solution:

[image: Image]

Chapter 2. Writing Real Code: Going Further

A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the authors’ raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

This will be the 2nd chapter of the final book.

If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the editor at mcronin@oreilly.com.

[image: Image]

You already know about variables, types, expressions... we could go on. The point is, you already know a few things about JavaScript. In fact, you know enough to write some real code. Some code that does something interesting, some code that someone would want to use. What you’re lacking is the real experience of writing code, and we’re going to remedy that right here and now. How? By jumping in head first and coding up a casual game, all written in JavaScript. Our goal is ambitious but we’re going to take it one step at a time. Come on, let’s get this started, and if you want to launch the next startup, we won’t stand in your way; the code is yours.

Let’s build a Battleship game

It’s you against the browser: the browser hides ships and your job is to seek them out and destroy them. Of course, unlike the real Battleship game, in this one you don’t place any ships of your own. Instead, your job is to sink the computer’s ships in the fewest number of guesses.

Goal: Sink the browser’s ships in the fewest number of guesses. You’re given a rating, based on how well you perform.

Setup: When the game program is launched, the computer places ships on a virtual grid. When that’s done, the game asks for your first guess.

How you play: The browser will prompt you to enter a guess and you’ll type in a grid location. In response to your guess, you’ll see a result of “Hit”, “Miss”, or “You sank my battleship!” When you sink all the ships, the game ends by displaying your rating.

Our first attempt...

... a simplified Battleship

For our first attempt we’re going to start simpler than the full-blown 7x7 graphical version with three ships. Instead we’re going to start with a nice 1-D grid with seven locations and one ship to find. It will be crude, but our focus is on designing the basic code for the game, not the look and feel (at least for now).

Don’t worry; by starting with a simplified version of the game, you get a big head start on building the full game later. This also gives us a nice chunk to bite off for your first real JavaScript program (not counting the Serious Business Application from Chapter 1, of course). So, we’ll build the simple version of the game in this chapter, and get to the deluxe version later in the book after you’ve learned a bit more about JavaScript.

[image: Image]

[image: Image]

First, a high-level design

We know we’ll need variables, and some numbers and strings, and if statements, and conditional tests, and loops... but where and how many? And how do we put it all together? To answer these questions, we need more information about what the game should do.

First, we need to figure out the general flow of the game. Here’s the basic idea:

[image: Image]

Now we have a high-level idea of the kinds of things the program needs to do. Next we’ll figure out a few more details for the steps.

[image: Image]

A few more details...

We have a pretty good idea about how this game is going to work from the high-level design and professional looking flowchart, but let’s nail down just a few more of the details before we begin writing the code.

Representing the ships

For one thing, we can start by figuring out how to represent a ship in our grid. Keep in mind that the virtual grid is... well, virtual. In other words, it doesn’t exist anywhere in the program. As long as both the game and the user know that the battleship is hidden in three consecutive cells out of a possible seven (starting at zero), the row itself doesn’t have to be represented in code. You might be tempted to build something that holds all seven locations and then to try to place the ship in those locations. But, we don’t need to. We just need to know the cells where the ship is located, say, at cells 1, 2 and 3.

[image: Image]

Getting user input

What about getting user input? We can do that with the prompt function. Whenever we need to get a new location from the user, we’ll use prompt to display a message and get the input, which is just a number between 0 and 6, from the user.

Displaying the results

What about output? For now, we’ll continue to use alert to show the output of the game. It’s a bit clunky, but it’ll work. (For the real game, later in the book, we’ll be updating the web page instead, but we’ve got a way to go before we get there.)

Working through the Pseudocode

We need an approach to planning and writing our code. We’re going to start by writing pseudocode. Pseudocode is halfway between real JavaScript code and a plain English description of the program, and as you’ll see, it will help us think through how the program is going to work without fully having to develop the real code.

In this pseudocode for Simple Battleship, we’ve included a section that describes the variables we’ll need, and a section describing the logic of the program. The variables will tell us what we need to keep track of in our code, and the logic describes what the code has to faithfully implement to create the game.

[image: Image]

Sharpen your pencil

[image: Image]

Let’s say our virtual grid looks like this:

[image: Image]

And we’ve represented the ship locations using our location variables, like this:

location1 = 3;
location2 = 4;
location3 = 5;

Use the following sequence as your test user input:

1, 4, 2, 3, 5

Now, using the pseudocode on the previous page, walk through each step of code and see how this works given the user input. Put your notes below. We’ve begun the exercise for you below. If this is your first time walking through pseudocode, take your time and see how it all works.

Note

If you need a hint, take a quick peek at our answer at the end of the chapter.

[image: Image]

Oh, before we go any further, don’t forget the HTML!

You’re not going to get very far without some HTML to link to your code. Go ahead and type the markup below into a new file named “battleship.html”. After you’ve done that we’ll get back to writing code.

[image: Image]

[image: Image]

Brain Power

[image: Image]

Flex those dendrites.

This is thinking ahead a bit, but what kind of code do you think it would take to generate a random location for the ship each time you load the page? What factors would you have to take into account in the code to correctly place a ship? Feel free to scribble some ideas here.

Writing the Simple Battleship code

We’re going to use the pseudocode as a blueprint for our real JavaScript code. First, let’s tackle all the variables we need. Take another look at our pseudocode to check out the variables we need:

[image: Image]

Let’s get these variables into a JavaScript file. Create a new file named “battleship.js” and type in your variable declarations like this:

[image: Image]

Serious Coding

[image: Image]

If you don’t provide an initial value for a variable, then JavaScript gives it a default value of undefined. Think of the value undefined as JavaScript’s way of saying “this variable hasn’t been given a value yet.” We’ll be talking more about undefined and some other strange values a little later.

Now let’s write the game logic

We’ve got the variables out of the way, so let’s dig into the actual pseudocode that implements the game. We’ll break this into a few pieces. The first thing you’re going to want to do is implement the loop: it needs to keep looping while the ship isn’t sunk. From there we’ll take care of getting the guess from the user and validating it—you know, making sure it really is a number between 0 and 6— and then we’ll write the logic to check for a hit on a ship and to see if the ship is sunk. Last, we’ll create a little report for the user with the number of guesses it took to sink the ship.

[image: Image]

[image: Image]

[image: Image]

Step One: setting up the loop, getting some input

Now we’re going to begin to translate the logic of our game into actual JavaScript code. There isn’t a perfect mapping from pseudocode to JavaScript, so you’ll see a few adjustments here and there. The pseudocode gives us a good idea of what the code needs to do, and now we have to write the JavaScript code that can do the how.

[image: Image]

Let’s start with all the code we have so far and then we’ll zero in on just the parts we’re adding (to save a few trees here and there, or electrons if you’re reading the digital version of the book):

[image: Image]

Brain Power

[image: Image]

If you ran this code now, would the game ever end?

How prompt works

The browser provides a built-in function you can use to get input from the user, named prompt. The prompt function is a lot like the alert function you’ve already used—prompt causes a dialog to be displayed with a string that you provide, just like alert—but it also provides the user with a place to type a response. That response, in the form of a string, is then returned as a result of calling the function. Now, if the user cancels the dialog or doesn’t enter anything, then null is returned instead.

[image: Image]

Watch it!

[image: Image]

You might be tempted to try this code now...

...but don’t. If you do, your browser will start an infinite loop of asking you for a guess, and then asking you for a guess, and so on, without any means of stopping the loop (other than using your operating system to force the browser process to stop).

Checking the user’s guess

If you look at the pseudocode, to check the user’s guess we need to first make sure the user has entered a valid input. If so, then we also check to see if the guess was a hit or miss. We’ll also want to make sure we appropriately update the guesses and hits variables. Let’s get started by checking the validity of the user’s input, and if the input is valid, we’ll increment the guesses variable. After that we’ll write the code to see if the user has a hit or miss.

[image: Image]

[image: Image]

Let’s look a little more closely at the validity test. You know we’re checking to see that the guess is between zero and six, but how exactly does this conditional test that? Let’s break it down:

[image: Image]

there are no Dumb Questions

Q: I noticed there is a cancel button on the prompt dialog box. What gets returned from the prompt function if the user hits cancel?

A: If you click cancel in the prompt dialog box then prompt returns the value null rather than a string. Remember that null means “no value”, which is appropriate in this case because you’ve cancelled without entering a value. We can use the fact that the value returned from prompt is null to check to see if the user clicked cancel, and if they did, then we could, say, end the game. We’re not doing that in our code, but keep this idea in the back of your mind as we might use it later in the book.

Q: You said that prompt always returns a string. So how can we compare a string value, like “0” or “6”, to numbers, like 0 and 6?

A: In this situation, JavaScript tries to convert the string in guess to a number in order to do the comparisons, guess < 0 and guess > 6. As long as you enter only a number, like 4, JavaScript knows how to convert the string “4” to the number 4 when it needs to. We’ll come back to the topic of type conversion in more detail later.

Q: What happens if the user enters something that isn’t a number into the prompt? Like “six” or “quit”?

A: In that case, JavaScript won’t be able to convert the string to a number for the comparison. So, you’d be comparing “six” to 6 or “quit” to 6, and that kind of comparison will return false, which will lead to a MISS. In a more robust version of battleship, we’ll check the user input more carefully and make sure they’ve entered a number first.

Q: With the OR operator, is it true if only one or the other is true, or can both be true?

A: Yes, both can be true. The result of the OR operator (||) is true if either of the tests is true, or if both are true. If both are false, then the result is false.

Q: Is there an AND operator?

A: Yes! The AND operator (&&) works similarly to OR, except that the result of AND is true only if both tests are true.

Q: What’s an infinite loop?

A: Great question. An infinite loop is one of the many problems that plague programmers. Remember that a loop requires a conditional test, and the loop will continue as long as that conditional test is true. If your code never does anything to change things so that the conditional test is false at some point, the loop will continue forever. And ever. Until you kill your browser or reboot.

Two-minute Guide to Boolean Operators

A boolean operator is used in a boolean expression, which results in a true or false value. There are two kinds of boolean operators: comparison operators and logical operators.

Comparison Operators

Comparison operators compare two values. Here are some common comparison operators:

	<
	means “less than”

	>
	means “greater than”

	==
	means “equal to”

	===
	means “exactly equal to” (we’ll come back to this one later)

	<=
	means “less than or equal to”

	>=
	means “greater than or equal to”

	!=
	means “not equal to”

Logical Operators

Logical operators combine two boolean expressions to create one boolean result (true or false). Here are two logical operators:

	||
	means OR. Results in true if either of the two expressions is true.

	&&
	means AND. Results in true if both of the two expressions are true.

Another logical operator is NOT, which acts on one boolean expression (rather than two):

	!
	means NOT. Results in true if the expression evaluates to false.

So, do we have a hit?

This is where things get interesting—the user’s taken a guess at the ship’s location and we need to write the code to determine if that guess has hit the ship. More specifically, we need to see if the guess matches one of the locations of the ship. If it does, then we’ll increment the hits variable.

[image: Image]

Here’s a first stab at writing the code for the hit detection; let’s step through it:

[image: Image]

Sharpen your pencil

[image: Image]

What do you think of this first attempt to write the code to detect when a ship is hit? Does it look more complex than it needs to be? Are we repeating code in a way that seems a bit, well, redundant? Could we simplify it? Using what you know of the || operator (that is, the boolean OR operator), can you simplify this code? Make sure you check your answer at the end of the chapter before moving on.

Adding the hit detection code

Let’s put everything together from the previous couple of pages:

[image: Image]

[image: Image]

Hey, you sank my battleship!

[image: Image]

We’re almost there; we’ve almost got this game logic nailed down. Looking at the pseudocode again, what we need to do now is test to see if we have three hits. If we do, then we’ve sunk a battleship. And, if we’ve sunk a battleship then we need to set isSunk to true and also tell the user they’ve destroyed a ship. Let’s sketch out the code again before adding it in:

[image: Image]

Provide some post-game analysis

After isSunk is set to true, the while loop is going to stop looping. That’s right, this program we’ve come to know so well is going to stop executing the body of the while loop, and before you know it the game’s going to be over. But, we still owe the user some stats on how they did. Here’s some code that does that:

[image: Image]

[image: Image]

Now let’s add this and the sunk ship detection into the rest of the code:

[image: Image]

Exercise

[image: Image]

Remember we said pseudocode often isn’t perfect? Well we actually left something out of our original pseudocode: we’re not telling the user if her guess is a HIT or a MISS. Can you insert these pieces of code in the proper place to correct this?

[image: Image]

And that completes the logic!

Alright! We’ve now fully translated the pseudocode to actual JavaScript code. We even discovered something we left out of the pseudocode and we’ve got that accounted for too. Below you’ll find the code in its entirety. Make sure you have this typed in and saved in “battleship.js”:

[image: Image]

let location1 = 3;
let location2 = 4;
let location3 = 5;
let guess;
let hits = 0;
let guesses = 0;
let isSunk = false;

while (isSunk == false) {
 guess = prompt("Ready, aim, fire! (enter a number from 0-6):");
 if (guess < 0 || guess > 6) {
 alert("Please enter a valid cell number!");
 } else {
 guesses = guesses + 1;

 if (guess == location1 || guess == location2 || guess == location3) {
 alert("HIT!");
 hits = hits + 1;
 if (hits == 3) {
 isSunk = true;
 alert("You sank my battleship!");
 }
 } else {
 alert("MISS");
 }
 }
}
let stats = "You took " + guesses + " guesses to sink the battleship, " +
 "which means your shooting accuracy was " + (3/guesses);
alert(stats);

Doing a little Qualit y Assurance

QA, or quality assurance, is the process of testing software to find defects. So we’re going to do a little QA on this code. When you’re ready, load “battleship.html” in your browser and start playing. Try some different things. Is it working perfectly? Or did you find some issues? If so list them here. You can see our test run on this page too.

[image: Image]

[image: Image]

[image: Image]

Boolean operators allow you to write more complex statements of logic.

You’ve seen enough conditionals to know how to test, say, if the temperature is greater than 32 degrees. Or, that a variable that represents whether an item is inStock is true. But sometimes we need to test more. Sometimes we need to know not only if a value is greater than 32, but also if it’s less than 100. Or, if an item is inStock, and also onSale. Or that an item is on sale only on Tuesdays when the user is a VIP member. So, you see, these conditionals can get complex.

Let’s step through a few to get a better idea of how they work.

Say we need to test that an item is inStock AND onSale. We could do that like this:

[image: Image]

We can simplify this code by combining these two conditionals together. Unlike in Simple Battleship, where we tested if guess < 0 OR guess > 6, here we want to know if inStock is true AND onSale is true. Let’s see how to do that...

[image: Image]

We don’t have to stop there; we can use multiple boolean operators to combine conditionals in a variety of ways:

[image: Image]

Sharpen your pencil

[image: Image]

We’ve got a whole bunch of boolean expressions that need evaluating below. Fill in the blanks, and then check your answers at the end of the chapter before you go on.

[image: Image]

Exercise

[image: Image]

Bob and Bill, both from accounting, are working on a new price checker application for their company’s web site. They’ve both written if/else statements using boolean expressions. Both are sure they’ve written the correct code. Which accountant is right? Should these accountants even be writing code? Check your answer at the end of the chapter before you go on.

[image: Image]

[image: Image]

Can we talk about your verbosit y...

We don’t know how to bring this up, but you’ve been a little verbose in specifying your conditionals. What do we mean? Take this condition for instance:

[image: Image]

As it turns out, that’s a bit of overkill. The whole point of a conditional is that it evaluates to either true or false, but our boolean variable inStock already is one of those values. So, we don’t need to compare the variable to anything; it can just stand on its own. That is, we can just write this instead:

[image: Image]

Now, while some might claim our original, verbose version was clearer in its intent, it’s more common to see the more succinct version in practice. And, you’ll find the less verbose version easier to read as well.

Exercise

[image: Image]

We’ve got two statements below that use the onSale and inStock variables in conditionals to figure out the value of the variable buyIt. Work through each possible value of inStock and onSale for both statements. Which version is the biggest spender?

[image: Image]

Finishing the Simple Battleship game

Yes, we still have one little matter to take care of because right now you’ve hard coded the location of the ship—no matter how many times you play the game, the ship is always at locations 3, 4 and 5. That actually works out well for testing, but we really need to randomly place the ship to make it a little more interesting to the user.

Let’s step back and think about the right way to place a ship on the 1-D grid of seven cells. We need a starting location that allows us to place three consecutive positions on the grid. That means we need a starting location from zero to four.

[image: Image]

How to assign random locations

Now, once we have a starting location (between zero and four), we simply use it and the following two locations to hold the ship.

Note

Take the random location along with the next two consecutive locations.

let location1 = randomLoc;
let location2 = location1 + 1;
let location3 = location2 + 1;

Okay, but how do we generate a random number? That’s where we turn to JavaScript and its built-in functions. More specifically, JavaScript comes with a bunch of built-in math-related functions, including a couple that can be used to generate random numbers. Now we’re going to get deeper into built-in functions, and functions in general, a little later in the book. For now, we’re just going to make use of these functions to get our job done.

The recipe for generating a random number

We’re going to start with the Math.random function. By calling this function we’ll get back a random decimal number:

[image: Image]

What we need is an integer between 0 and 4—that is, 0, 1, 2, 3 or 4—not a decimal number, like 0.34. To start, we could multiply the number returned by Math.random by 5 to get a little closer; here’s what we mean...

[image: Image]

That’s closer! Now all we need to do is clip off the end of the number to give us an integer number. To do that we can use another built-in Math function, Math.floor:

[image: Image]

there are no Dumb Questions

Q: If we’re trying to generate a number between 0 and 4, why does the code have a 5 in it, as in

Math.floor(Math.random() * 5)?

A: Good question. First, Math.random generates a number between 0 and 1, but not including 1. The maximum number you can get from Math.random is 0.999.... When you multiply that number by 5, the highest number you’ll get is 4.999... Math.floor always rounds a number down, so 1.2 becomes 1, but so does 1.9999. If we generate a number from 0 to 4.999... then everything will be rounded down to 0 to 4. This is not the only way to do it, and in other languages it’s often done differently, but this is how you’ll see it done in most JavaScript code.

Q: So if I wanted a random number between 0 and 100 (including 100), I’d write

Math.floor(Math.random() * 101)?

A: That’s right! Multiplying by 101, and using Math.floor to round down, ensures that your result will be at most 100.

Q: What are the parentheses for in Math.random()?

A: We use parentheses whenever we “call” a function. Sometimes we need to hand a value to a function, like we do when we use alert to display a message, and sometimes we don’t, like when we use Math.random. But whenever you’re calling a function (whether it’s built-in or not), you’ll need to use parentheses. Don’t worry about this right now; we’ll get into all these details in the next chapter.

Q: I can’t get my battleship game to work. I’m not seeing anything in my web page except the “Play battleship” heading. How can I figure out what I did wrong?

A: This is where using the console can come in handy. If you’ve made an error like forgetting a quote on a string, then JavaScript will typically complain about the syntax of your program not being right, and may even show you the line number where your error is. Sometimes errors are more subtle, however. For instance, if you mistakenly write isSunk = false instead of isSunk == false, you won’t see a JavaScript error, but your code won’t behave as you expect it to. For this kind of error, try using console.log to display the values of your variables at various points in your code to see if you can track down the error.

[image: Image]

Back to do a little more QA

That’s all we need. Let’s put this code together (we’ve already done that below) and replace your existing location code with it. When you’re finished, give it a few test runs to see how fast you can sink the enemy.

[image: Image]

Here’s one of our test sessions. The game’s a little more interesting now that we’ve got random locations for the ship. But we still managed to get a pretty good score...

[image: Image]

Exercise

[image: Image]

Wait a sec, we noticed something that looks wrong. Hint: when we enter 0, 1, 1, 1 things don’t look right! Can you figure out what’s happening?

[image: Image]

It’s a cliff-hanger!

Will we find the bug?

Will we fix the bug?

Stay tuned for a much improved version of Battleship a little later in the book...

And in the meantime, see if you can come up with ideas for how you might fix the bug.

QA Notes

[image: Image]

Found a bug! Entering the same number that is a hit on a ship results in sinking the ship, when it shouldn’t.

Congrats on your first true JavaScript program, and a short word about reusing code

You’ve probably noticed that we made use of a few built-in functions like alert, prompt, console.log and Math.random. With very little effort, these functions have given you the ability to pop up dialog boxes, log output to the console and generate random numbers, almost like magic. But, these built-in functions are just packaged up code that’s already been written for you, and as you can see their power is that you can use and reuse them just by making a call to them when you need them.

Now there’s a lot to learn about functions, how to call them, what kinds of values you can pass them, and so on, and we’re going to start getting into all that in the next chapter where you learn to create your own functions.

But before you get there you’ve got the bullet points to review, a crossword puzzle to complete... oh, and a good night’s sleep to let everything sink in.

Bullet Points

	You can use a flowchart to outline the logic of a JavaScript program, showing decision points and actions.

	Before you begin writing a program, it’s a good idea to sketch out what your program needs to do with pseudocode.

	Pseudocode is an approximation of what your real code should do.

	There are two kinds of boolean operators: comparison operators and logical operators. When used in an expression, boolean operators result in a true or false value.

	Comparison operators compare two values and result in true or false. For example, we can use the boolean comparison operator < (“less than”) like this: 3 < 6. This expression results in true.

	Logical operators combine two boolean values. For example true || false results in true; true && false results in false.

	You can generate a random number between 0 and 1 (including 0, but not including 1) using the Math.random function.

	The Math.floor function rounds down a decimal number to the nearest integer.

	Make sure you use Math with an uppercase M, and not m, when using Math.random and Math.floor.

	The JavaScript function prompt shows a dialog with message and a space for the user to enter a value.

	In this chapter, we used prompt to get input from the user, and alert to display the results of the battleship game in the browser.

JavaScript cross

[image: Image]

How does a crossword puzzle help you learn JavaScript? The mental twists and turns burn the JavaScript right into your brain!

[image: Image]

ACROSS

1. This helps you think about how a program is going to work.

7. Both while and if statements use __________ tests.

8. Boolean operators always result in true or _________.

9. To get a true value from an AND operator (&&), both parts of the conditional must be ___________.

10. JavaScript has many built-in __________ like alert and prompt.

11. To randomly choose a position for a ship, use Math._________.

DOWN

1. To get input from a user, you can use the _________ function.

2. == is a _____________ operator you can use to test to see if two values are the same.

3. OR (||) and AND (&&) are ___________ operators.

4. If you’re good at testing programs, you might want to become a ________ Assurance specialist.

5. If you don’t initialize a variable, the value is __________.

6. We keep track of whether a ship is sunk or not with a ________ variable.

8. To get a false value from an OR operator (||), both parts of the conditional must be __________.

Sharpen your pencil Solution

[image: Image]

Let’s say our virtual row looks like this:

[image: Image]

And we’ve represented that by setting:

location1 = 3;
location2 = 4;
location3 = 5;

Assume the following user input:

1, 4, 2, 3, 5

Now, using the pseudocode on the previous page, trace through each step of code, and see how this works. Put your notes below. We’ve started the trace for you below. Here’s our solution.

[image: Image]

Exercise Solution

[image: Image]

We’ve got two statements below that use the onSale and inStock variables in conditionals to figure out the value of the variable buyIt. Work through each possible value of inStock and onSale for both statements. Which version is the biggest spender? The OR (||) operator!

[image: Image]

Sharpen your pencil Solution

[image: Image]

We’ve got a whole bunch of boolean expressions that need evaluating below. Fill in the blanks. Here’s our solution:

[image: Image]

Exercise Solution

[image: Image]

Bob and Bill, both from accounting, are working on a new price checker application for their company’s web site. They’ve both written if/else statements using boolean expressions. Both are sure they’ve written the correct code. Which accountant is right? Should these accountants even be writing code? Here’s our solution.

[image: Image]

[image: Image]

Exercise Solution

[image: Image]

Remember we said pseudocode often isn’t perfect? Well we actually left something out of our original pseudocode: we’re not telling the user if her guess is a HIT or a MISS. Can you insert these pieces of code in the proper place to correct this? Here’s our solution:

[image: Image]

Sharpen your pencil Solution

[image: Image]

What do you think of this first attempt to write the code to detect when a ship is hit? Does it look more complex than it needs to be, or are we repeating code in a way that seems a bit, well, redundant? Could we simplify it? Using what you know of the || operator (that is, the boolean OR operator), can you simplify this code? Here’s our solution.

[image: Image]

JavaScript cross Solution

[image: Image]

How does a crossword puzzle help you learn JavaScript? The mental twists and turns burn the JavaScript right into your brain! Here’s our solution.

[image: Image]

 About the Authors

 Eric Freeman is a computer scientist, technology writer, and entrepreneur. Previously, he was a CTO at the Walt Disney Company. Eric’s most recent book, Head First Learn to Code, is a beginner’s guide to coding and computational thinking. Eric lives with his wife and young daughter in Austin, Texas. He holds a PhD in computer science from Yale University.

 Elisabeth Robson first got hooked on computers when she wrote a BASIC program to fill up her Commodore 64’s monitor screen full of hearts. She’s loved getting computers to do fun things ever since. She’s tinkered with everything from super computers to her iPhone, and she’s been programming the Web since the early days, when she built one of the first online resources for women in technology. Along with her many years of programming experience, Elisabeth has produced online training, and written four best-selling books and an online video course for O’Reilly Media (Head First Design Patterns, Head First HTML and CSS, Head First JavaScript Programming, Head First HTML5 Programming, and Learn to Build iPhone Apps with HTML, CSS, and JavaScript). She is currently co-founder and principal at WickedlySmart, an education content and technology company.

 assets/2-f0007-02.png
| Play battleship!
{
i

Z\ |

Here's what you'll see when you load
the page. We need to write some
¢ode o get the game going!

assets/2-f0007-01.png
. P imple;
BTML $or the Battleship game is super simplc)
£ 1—,:3\.3{ need :rpagc Ehat links £o the JavaSeript

<!doctype html> tode, and that's where all the action happens.

<html lang="en">
<head>
<title>Battleship</title>
<meta charset="utf-g">
</head>
<body>
<h1>Play battleship!</hl>
<script src="battleship.js"></script>

</body> 'vS

</html>
We've linking to the JavaSeript at the
bottom of the <body> of the page, so the
Page is loaded by the Lime the browser
starts executing the code in “battleship.js”.

assets/2-f0006-04.png
i i k
location1 location2 location3 guess guesses hits isSunl
3 4 5 —_ o o false
3 & 5 I I o false

The fiest vow shows the inidial
values of the variables, before
the user entevs their first guess.
We're not. initializing the variable
guess, so its value is undefined.

assets/2-f0006-02.png

assets/2-f0008-01.png
We need three variables to
hold the ship’s location-

DECLARE three variables to hold the location of each cell J
of the ship. Let's call them locationl, location2 and
location3.

DECLARE a variable to hold the user's current guess. Let's
call it guess. And three more (guess, hits
and. uesses) 4o deal vith

DECLARE a variable to hold the number of hits. We'll call it)
the user’s quess.

hits and setitto 0.

DECLARE a variable to hold the number of guesses. We'll
call it guesses and set it to O

DECLARE a variable to keep track of whether the ship is And another to track whether or
sunk or not. Let's call it isSunk and set it to false. not the ship is sunk

assets/2-f0007-03.png

assets/2-f0006-01.png

assets/2-f0005-01.png
DECLARE three variables to hold the location of each cell of the ship. Let's call them
locationl, location2 and location3.

The variables we need
DECLARE a variable to hold the user's current guess. Let's call it quess. k_/

DECLARE a variable to hold the number of hits. We'll call it hits and set it to 0.

DECLARE a variable to hold the number of guesses.We'll call it guesses and set it to 0.

DECLARE a variable to keep track of whether the ship is sunk or not. Let's call it isSunk
and setitto false.

—— LOOP: while the ship is not sunk
GET the user's guess #And here’s the logie.
COMPARE the users input to valid input values 1‘_/

— IF the user's guess is invalid,

TELL user to enter a valid number

| ELsE

ADD one to guesses

IF the ser's guess matches a location

ADD one to the number of hits IE's not JavaSeript, but you
ean probably alveady see how
to begin implementing this
SET isSunk to true I%i‘ in tode.
TELL user “You sank my battleship!” r
END IF

END IF \
L END ELSE Notice that we've using indentation to

help make the pseudotode easier to vead
—— ENDLOOP We'l be doing £hat in the veal code oo.

TELL user stats

IF number of hits is 3

assets/2-f0004-01.png
Game starts, and creates one battleship
o and gives it a location on three cells in the
single row of seven cells.

The locations are just integers; for
example, 1,2,3 are the cell locations in this

picture:
o 1 2 3 4 5 6

Check to see if user's input hit any of the
ship's three cells. Keep track of how many
hits there are in a variable.

Game finishes when all three cells have
been hit and our number of hits variable
value is 3. We tell the user how many
guesses it took to sink the ship.

Sawple game interaction

X [em—"
€2 C A [octbosy-sers
Play batﬂeship!
thepage a locahast sas:
@ i et e 190
G) (0K

g T

s,

assets/2-f0003-02.png
e Get user
guess

miss / Check _hit Mark ship as
guess hit
A diamond o
vepresents @
detision point ik
Mark ship
as sunk

e Display user
score/rating

Game
over

Whoa A real flowchart

toc01.html
		Brief Table of Contents (Not Yet Final)

		1. A Quick Dip into Javascript: Getting your Feet Wet

		The way JavaScript works

		How you’re going to write JavaScript

		How to get JavaScript into your page

		A little test drive

		JavaScript, you’ve come a long way...

		How to make a statement

		Variables and values

		Constants, another kind of variable

		Back away from that keyboard!

		Express yourself

		Doing things more than once

		How the while loop works

		Making decisions with JavaScript

		And, when you need to make LOTS of decisions

		Reach out and communicate with your user

		Create an alert

		Write directly into your document

		Use the console

		Directly manipulate your document

		A closer look at console.log

		Opening the console

		Coding a Serious JavaScript Application

		How do I add code to my page? (let me count the ways)

		We’re going to have to separate you two

		JavaScript cross

		JavaScript cross Solution

		2. Writing Real Code: Going Further

		Let’s build a Battleship game

		Our first attempt...

		... a simplified Battleship

		First, a high-level design

		A few more details...

		Representing the ships

		Getting user input

		Displaying the results

		Working through the Pseudocode

		Oh, before we go any further, don’t forget the HTML!

		Writing the Simple Battleship code

		Now let’s write the game logic

		Step One: setting up the loop, getting some input

		How prompt works

		Checking the user’s guess

		So, do we have a hit?

		Adding the hit detection code

		Hey, you sank my battleship!

		Provide some post-game analysis

		And that completes the logic!

		Doing a little Qualit y Assurance

		Can we talk about your verbosit y...

		Finishing the Simple Battleship game

		How to assign random locations

		The recipe for generating a random number

		Back to do a little more QA

		Congrats on your first true JavaScript program, and a short word about reusing code

		JavaScript cross

		JavaScript cross Solution

		About the Authors

assets/2-f0020-02.png
o Fiest, see i€ the item is in stotk-.

if (inStock == true) {
if (onSale == true) {
// sounds like a bargain!

And, if so, then see if it is on sale

alert ("buy buy buy!") ; And if so, then take some
) 19 attion, like buy a few!

Notice this code is exceuted only
if both eonditionals ave truel

assets/2-f0020-01.png
The game logic is pretty
clear to me, except for
the boolean operators. Is that
Jjust giving me a way to combine
conditionals together?

assets/2-f0019-02.png
Heve's what our game interattion

looked like. "3/

[—m]s

R e e om .

)

o

& First we enteved an

invalid number, 9. u

Then we entered O,

to get a miss. ~N_—>

But then we get
three hits in a vow!

~— 5

= On the thivd and final Wit, 7
]

we sink the battleship.

And see that it took & — |

guesses to sink the ship with
an aeewraty of 0.75.

‘\ o B

The pageat localhost says:

e

outok s s e b, hich e o

L

o

(o]

J

assets/f0045-03.png
document.write I’ll stop your user in his tracks and deliver a short

message. The user has to click “ok” to go further.

console.log I can insert a little HTML and text into a document.
I’'m not the most elegant way to get a message to

your users, but | work on every browser.

alert Using me you can totally control a web page: get
values that a user typed in, alter the HTML or the style,

or update the content of your page.

document object model I’'m just here for simple debugging purposes. Use
me and | can write out information to a special

developer’s console.

assets/f0045-02.png
[VIATL]V]ETS
I
el Rl
1o} Ll
N N
[c]oN[s[O][LTE[L]O]G,
LTl X1 S
Pl [B]
[FTATSITIE[R] [E]
E]l [H]
[Blo[TIT[L]E[S]| [A] 's[rR[C]
s| [v T -
[E[o[N[p[1]T[1]o]N[A]L]]
Al |91 (9 T H
vl [E] [N [R] [BlE[C[iIS[1][olN]
IEl (Al L (L]
L] [s E [E]
'S[E[M[1]c[o[L]o[N
El [T}
STclrTiTPIT

assets/2-f0002-01.png
Heve's what we've shooting for: a nice T<7

o hunt down. Right now

we've going le simpler, but once

You know a bit more JavaSeript we Il complete

the implementation so it looks just like this

complete with araphies and everything..we'll
he sound to You as extra tredit

assets/2-f0001-01.png

assets/2-f0003-01.png
o User starts the game

Game places a battleship at a
random location on the grid.

Game play begins

Repeat the following until the
battleship is sunk:

Prompt user for a guess
(] (2", 0", etc.)

Check the user’s guess against
the battleship to look for a
hit, miss or sink.

Game finishes

Give the user a rating based on
the number of guesses.

assets/2-f0002-02.png
Instead of a 7x7 grid, like the one above,
we've qoing to start wi{hius{ a Ix7 grid.

And, we'll worry about just one ship for now.

===

(\No{ite that eath ship
takes up three grid
loeations (similar to the
veal board game).

assets/2-f0016-03.png
/ Variable declarations go here

LOOP: while the ship while (isSunk == false) {
is not sunk

GET the user’s guess guess = prompt("Ready, aim, fire! (enter a number from 0-6):");

if (guess < 0 || guess > 6) {

alert("Please enter a valid cell number!");

} else {
ADD one to guesses guesses = guesses + 1;
IF the user’s guess if (guess locationl || guess == location2 || guess == location3) {

matches a location

ADD one to the hits = hits + 1;

number of hits

IF number of hits is 3 if (hits

SET isSunk to true issunk = true;

TELL user"You sank
my battleship!”

alert("You sank my battleship!")

}
TELLuserstals 1ot stats = "You took " + guesses + " guesses to sink the battleship, " +
"which means your shooting accuracy was " + (3/guesses);

alert(stats) ;

assets/2-f0016-02.png
45 SEALS. = TI0n ok = F guESsSESs + T guesses B0 Sk tue BRbnieshop, S %
"which means your shooting accuracy was " + (3/guesses);
alert(stats) ;
R Here weve eveating a string that contains a message to the user inchuding the

number ?4' guesses they took, along with the aceuraey of their shots. Notice
that we've splitting up the string into pieces (o insert the variable guesses, and
also to £it the string into multiple lines) using the contatenation opevator, +.
For now just type this as is, and we'll explain more about this later.

assets/2-f0016-01.png
|, Greate loop and get user guess
I check user guess
[Checkif ship has been sunk

[bisplay stats 1o user

assets/2-f0019-01.png
Jot down anything that doesr’t
work the vay it should, or that

could be improved: —

assets/2-f0018-01.png
E/Cmmekmvandgﬂmguﬂs
Check user guess
R Checkif ship has been surk

[visplay stats to user

assets/2-f0017-02.png
alert("HITI"); else {

alert("MISS"):

Tﬁﬁﬁ

Here's the code you'll need to insert

// Variable declarations go here

while (isSunk == false) {
guess = prompt ("Ready, aim, fire! (enter a number from 0-6):");
if (guess < 0 || guess > 6) {

alert("Please enter a valid cell number!");
} else {

guesses = guesses + 1;

if (guess == locationl || guess == location2 || guess == location3) ({
hits = hits + 1;

if (hits == 3) {
issunk = true;

alert("You sank my battleship!");

}
) This is a lot of curly braces o mateh. £ you've
having brouble matehing them, just. draw fines vight
i in the book to match them up
3
let stats =

"You took " + guesses + " guesses to sink the battleship, " +

"which means your shooting accuracy was " + (3/guesses);
Blert (state)

assets/2-f0017-01.png

assets/2-f0023-04.png

assets/2-f0023-03.png
if

£ we just use the boolean variable by itself, then
(inStock) L & e e o test is
true, and the block is executed.

fnd if inStoek is false, then Lhe ¢onditional
test fails and the code block is skipped.

assets/2-f0021-04.png
let temp = 81; let keyPressed =

let willRain = true; let points = 142;
let humid = (temp > 80 && willRain == true); let level;

if (keyPressed "y ||
(points > 100 && points < 200))

What's the value of humid?

level = 2;
let guess = 6;
N . } else {
let isvalid = (guess >= 0 && guess <= 6);
level
What's the value of isValid?)
Jat kB = 1287 What's the value of level?

let tooBig = (kB > 1000) ;
let urgent = true;
let sendFile =
(urgent == true || tooBig == false);

What's the value of sendFile?

assets/2-f0021-03.png

assets/2-f0021-02.png
Now we're using both AND and OR in the same conditional expression. This one says: I¥
an item is in stock AND it's either on sale, OR the price is less than b0, then buy.

g if (inStock == true && (onSale == true || price < 60)) {
// sounds like a bargain!

alert("buy buy buy'"); Notice we've using parentheses to group the tonditionals
) together so we get the vesult of the OR fivst, and ther
use that vesult to compute the vesult of the AND.

assets/2-f0021-01.png
Heve's our AND operator. With AND this combined conditional
s true only i the fivst part AND the second part ave true.

\

if (instock == true && onsale == true) {
// sounds like a bargain! R Not orlyis this code more contise, it's also
more veadable. Compare this tode with the

alert("buy buy buy!") ;)
i A it tode on the previous page to see.

assets/2-f0023-02.png
We often compare our boolean
variables to true or false to
form our eonditional- 1/

if (inStock == true) {

} And, inStotk is a variable that holds 3
boolean value of rue or false.

assets/2-f0023-01.png

assets/2-f0022-02.png
Bob's solution

L? if (price < 200 || price > 600) {
alert("Price is too low or too high! Don't buy the gadget.");
} else {

alert("Price is right! Buy the gadget.");

<

Who got it vight? Bob or Bill?

Bill's solution

S

if (price >= 200 || price <= 600) {
alert("Price is right! Buy the gadget.");

} else {
alert("Price is too low or too high! Don't buy the gadget.");

assets/2-f0022-01.png

assets/2-f0011-01.png
Heve we've assigring the vesult

of the prompt funttion to

g the gquess variable-
(enter a number from 0-6):");

guess = prompt ("Ready, aim, fire!

'L You provide prompt vith a string,
which is used as instruetions 4o

The prompt function’s job i i
ion's job s to get input Your user in the dialog box.

£eom the user. Depending on your devite,
that usually happens in a dialog box. w

The page at lo:-.lhnﬁay:
Ready, aim, firel (enter a rigmber from o-g): ‘
. |

[s
] |
[Cancel | oy |

dotains input from the usev, it
&, in the

Onte the prompt function
vetuens that input £o your eode. In this case the inpu
3 sking, is assigned 4o the variable guess-

Lorm

assets/2-f0010-03.png
SR

assets/2-f0010-02.png
DECLARE variables

LOOP: while the ship
is not sunk

GET the user's guess

L T Weve alveady covered these,
but we've including them

heve for completeness.

let locationl 3;
let location2 = 4;

let location3 = 5;

Here's the start of the loop. While

et guess; Ehe ship isn't surk, we've still in the

let hits = 0; game, so keep looping:

let guesses = 0; Remember, while uses 3 conditional test ’oo
let isSunk = false; debermine whether £o keep looping: In this

case we've testing to make sure that isSunk

1< shill false. We'll set it o true as soon as
while (iosunk == fatse) (= the l'l-.gav.i‘mi

guess = prompt("Ready, aim, fire! (enter a number from 0-6):");

) 0\ Each time we g0 through the while loop we've
going to ask the user for a 2uess To do that

we use the prompt built—in function. More on
+that on the next page...

assets/2-f0010-01.png
oooo

Create loop and get user guess
Check user guess
Check if ship has been sunk

Display stats fo user

assets/2-f0011-02.png

assets/f0037-05.png

assets/f0040-01.png

assets/f0038-01.png

UbuntuMono-BoldItalic.otf

assets/f0034-02.png
Despite evidence
to the contrary, T
still think the <head> is a
great place for code.

UbuntuMono-Italic.otf

assets/f0034-01.png
You can place your code e,
in the <head> element. The most
common way to add code to your pages is
to puta <script> element in the <head>.
Sure, it makes your code easy to find

and seems to be a logical place for

your code, but it's not always the

best place. Why? Read on

Or, you can add your
code inline in the body
of the document. Todo
this, enclose your JavaScript
code in the <script> element x
and place it in the <body> of

your page (typically at the end of

the body).

This s a little better, Why? When

your browser loads a page, it loads
everything in your page’s <head>
before it loads the <body>. So, if

your code is in the <head>, users might
have to wait a while to see the page. If
the code is loaded after the HTML in the
<body>, users will get to see the page
content while they wait for the code to
load.

Or, put your code own file
and link to it from the <head>.
This i just like linking to a CSS file. The
only difference is that you use the
src attribute of the <script> tag to
specify the URL to your JavaScript
file.

R —)

When your code is in an external

file, it's easier to maintain

(separately from the HTML)
and can be used across
multiple pages. But this
method still has the drawback
that all the code needs to be
loaded before the body of the
page. Is there a better way?

Read on \

Finally, you can link to
an external file in the
body of your page. Ahhh,

<script src="mycode.js"</script>

<script>
statement;
statement;
</script>

<script src="somecode. js"></script>

the best of both worlds. We have a
nice, maintainable Javascript file that
can beincluded in any page, and it's
referenced from the bottom of the body
of the page, soit's only loaded after the
body of the page. Not bad.

N

still, is there a better way? Read on. }

UbuntuMono-Regular.otf

assets/f0036-01.png
Now we need to place a reference to the "code.js" file in

@ “index.html" so that it's retrieved and loaded when the page
loads. To do that, delete the JavaScript code from “index.html”,

but leave the <script> tags. Then add a src attribute to your
opening <script> tag to reference “code.js".

<!doctype html>
<html lang="en">

<head>
<meta charset="utf-8">
<title>My First JavaScript</title>
Use the see atteibube of the <seript>

</head>
L clement o link o your JavaSevipk File

<body>
<script src="code.js">

</scx‘ipt>e\\ Where your ¢ode was.

bod;)
</:;:>y> Believe it or not we still need the ending <sevipt> tag, even if
Ehere is no code bebueen the buo tags

000 0,

R T
* D ag

That's it, the surgery is complete. Now
you need to test it. Reload your

“index.html" page and you should see RO Goments Conty
T SO Mok Pt ey o
ton » 1

50 wpr o o
Cotomionty " s
05 Nokses

exactly the same result as before. Note 5 bottles of roggees . "
N " L g &5 of rootbeer on .

that by using a src="code.js", we're 58011 of rpeey or 1 YO Fowriny
assuming that the code file is in the same o s of reotoar, intennimt
directory as the HTML file. £ 0001 o1 Loty o o vty
£ 59Res o ey on e U e
BOLELES of rootpeey, 1 "N dtality
;‘::t::::::"’ P355. it aroung, mm.mLu
3 LS ot ooy o 1€ L ttaliy
3 Dot of rootpeer, "o ey

2K ane down, pass g3 7o :
y " 2 00016 o1 Fopaes o ot faataly
lou should get the same vesult as 2 398165 of rustey g e pont e iy
before. But now your HTML and T o som 20T, dndexbtatizg

X 0N, pass it aroun, :
JavaSeript ave in separate files 1210 o oty iy ez
Doesn't that just feel eleaner, more 100kt o rogeer o0 the st inteenmt
Take one o, pags 1t o ftenttaluz
round, Andex.ha:1;
Andex.htnl; 14

vess—free alveady?
manangable, more sre VR
o the wall,

css_assets/titlepage_footer_ebook.png
Beijing + Boston + Farnham - Sebastopol + Tokyo

assets/f0035-01.png
@ Open index.html and select all the code; that is, everything
between the <script> tags. Your selection should look like this:

<!doctype html>
<html lang="en">
<head>
<meta charset="utf-g">
<title>My First JavaScript</title>

:/heiad> Seleet just the code, not the <seript> tags
il ¢ you won't need those wheve You've going
<script>

const word = "bottles";
let count = 99;
while (count > 0) {
console.log(count + " " + word + " of rootbeer on the wall");
console.log(count + " " + word + " of rootbeer,");
console.log("Take one down, pass it around,");
count = count - 1;
if (count > 0) {
console.log(count + " " + word + " of rootbeer on the wall.");
} else {
console.log("No more " + word + " of rootbeer on the wall.");

}
</script>
</body>
</html>

@ Now create a new file named “code.js" in your editor, and place the
code info it. Then save “code.js".

tode;js
7

assets/f0037-02.png
The type attribute tells the browser you've writing JavaSeript. The thing
is, browsers assume You've using JavaSeript if you leave it off. So, we
vetommend You leave it off, and so do the people who write the standards.

The <sevipt>

opening £33, ~—

<script |type="text/javascript"|>

alert("Hello world!") ;|—

</script>

N\ You mst end the seript vith a elosing
</stript> tag, always/

Don't forget the vight

/braak:é on the opening tag.

Everything between the seript tags
must be valid JavaSeript.

assets/f0037-01.png

assets/f0037-04.png

assets/f0037-03.png
Add a sre attribute to specif:
the URL of the JavaSevipt "yiiz.

/

<script ||src="myJavaScript.]js"

</script> \ T Use " as the extension
scrip

on JavaSeript files.

When vefeventing a separate JavaSeript
Again, don’t foraet the file, you don't put any JavaSqu;{ in the
tlosing </stripts tag You tonkent of the <stvipt> element.
need it even when you've

linking £0 an external Lile.

assets/2-f0008-02.png
i iables. We'll go ahead
Here ave ow thvee lotation variables. we'll
a:;ese": u;«a ship at loeations 3, & and %, Just £or now.

> We'll eome back later and wite some

let locationl = 3
let location2 4

tode 4o generate a vandom lotation for

let location3 = 5; the ship £o make it havder for the user.
We didn't make these
/ The variable guess won't have a value until constants betause well
the user makes a quess. Until then it will vary them later.
let guess; have the value undefined. g

let hits = 0; &\
T~

let guesses = We'll assign initial
values of O 4o both

hits and gquesses.

let issunk = false;

’K Finally, the isSurk variable gets

a value of false. We'll set this £o

true when we've sunk the ship.

assets/2-f0009-03.png
To Do;

D Create loop and 9et user guess
Check user guess

D Check if ship has beep sunk

D Display stats to ysep

DejaVuSans-Bold.otf

assets/2-f0009-02.png
—— LOOP: while the ship is not sunk

STEPI: Set up the loops
= get the user's input. and

GET the user’s guess validate it.
COMPARE the user's input to valid input values <')
— IF the user's guess is invalid,
TELL user to enter a valid number
— ELSE s i‘[:{&l:ﬁ]{{;h;:[f:\; guess.
ADD one to guesses
IF the user's guess matches a location

ADD one to the number of hits
STEP3: Chetk to see if

IF number of hits is 3 Ehe ship is sunk.

SET issunk to true
TELL user "You sank my battleship!”
END IF
END IF

— END ELSE

L STEP4- Handle the
FRE RS & final message to the user.
TELL user stats

DejaVuSerif.otf

assets/2-f0009-01.png

UbuntuMono-Bold.otf

assets/2-f0008-03.png

assets/2-f0015-04.png
Fiest eheek to see if Take another look at. the while loop
there are three hits. above. What happens when i<Surk iy 4rue?
if (hits == 3) {
issunk = true;
alert("You sank my battleship!

— And if s, set isSunk to true.

)i

,t_ And also let the user know.

assets/2-f0015-03.png
K/, Create loop and get user guess
Check user guess

R’ Check if ship has been sunk

[Display stats to user

assets/2-f0015-02.png
LOOP: while the ship
is not sunk

GET the user's guess

ADD one to guesses

IF the user's guess
matches a location

ADD one to the
number of hits

/ Variable declarations go here

while (isSunk == false) {

guess = prompt ("Ready, aim, fire! (enter a number from 0-6):");

if (guess < 0 || guess > 6) { &— Check the user’s guess...
alert("Please enter a valid cell number!");

} else e The s s ooks il o I
guesses = guesses + 1; increase the number of quesses by one.
if (guess == locationl || guess == location2 || guess == location3) {
hits = hits + 1; R I¥ the quess matthes one of the ship's

) locations we intrement the hits counter.

)

We've tombined the three conditionals into one if
statement using || (OR). So vead it like this: “If quess
is equal to lotationl OR quess is equal to lotation2 OR
guess is equal to loeation3, intrement. hits”

assets/2-f0015-01.png
E’Cwlwpwwmg\m
Check user guess

[Checkif ship has been sunk

[Display stats to user

assets/f0044-02.png
Here are the unserambled magne{su

Declave a tonstant for the name “Joe”. The

«
const name = "Joe"; ' name doesn't thange, so we use const, not let.

i is our while loop variable, it needs to

& Chinae cath time through the loop.
- - Keep looping as long as the
while (i <2) ' PR ey
4 Display a message to the

document . write ("Happy Birthday to you.
"); browser page-

«— Intrement the while loop variable.

} | & End the while loop blotk.
j e Display a message to the

document .write ("Happy Birthday dear " + name + ",
"); browser page, including the
value of the variable name.

Display a message to the
; browser page-

document.write ("Happy Birthday to you.
")

assets/f0044-01.png

assets/f0045-01.png

assets/f0044-03.png
Your unsevambled program
& should produce this output.

=

Happy Birthday t0 you.
Happy Birthday to you.
Happy Birthday dear Joc,
Happy Birthday t0 you.

C i | () locathost/-Beth/HEsS/chasterd brtrday.ntml_ 7z | »

assets/f0041-01.png

assets/f0040-02.png
CITT]

L1 [

[T 111]

CITTTI] []
P [| []
Il [[]

[TTF -

CITLI

assets/f0042-01.png

assets/f0041-02.png
tonst
let

tonst

tonst

let

2\: distante to the moon isn't going

_ X change durring this computation,

DISTANCE_TO MOON = 2389007 (o this is a constant value. At least
we hope it doesn't thange!

L Presumably this is 4o keep the value of a
user quess that is going to change over time,
so this is not a constant and we use let.

& Although sereen sizes ean sometimes thange,
SCREEN_WIDTH = 1024/ |ike if the browser window vesizes, in this
case the uppertase Lreatment signifies that
+this is intended o be a fixed constant value.

last_guess = 0;

counter = 1007 |t ve counting something then this value needs 4o

chanae over time; thus, we have a variable and use let.

firstUsPresident = "Washington";

The fiest president of the United States vill
& alwcayswbe 2:.»(5: Washington, so this is & tonst even
thoush it doesn't use the all uppercase tonvention:

fluxcapacitorneading = "System Nomal"; £
You never know when the status of the flux eapacitor is

going £o change. Sure, everything may be normal row, but
watth out! So we have a vaviable declaved with let.

assets/f0043-01.png

assets/f0042-02.png
Delmit, your strings with buo double quotes

[(9 or 4o single auotes (). Dor't mix:
o Don't put quotes around boolean

const joke = "JavaScript walked into a baz....'s .
k—’—u—f values unless you veally want a sting.
let toldJoke = "false";

'
let $punchline = & It's kay, but not vetommended, to begin a variable with a 7.
"Better watch out for those semi-colons."4 ™ Don't forget to end
let sentage = 20; £ Can't use % in variable names. statements with a semi—colon!
1
ot TeSULES N A other missing semictalon

// Test for jokes

if (toldJoke == true) {

Alert ($punchline) ; & Shauld be alert, not Alert.
JavaSeript is ease—sensitive.

} else

alert(joke) ; We've missing an
) oPening brace heve. — We've trying o change the
joke = "Knock, knock. Who's there? JavaScript...."; value of a tonstant heve.

\\ Movie Night L~ Comments should begin with // not \\.

let zip code = 98104; 5\ No spates allowed in variable names.
K But we do need quotes

oe's lowed around the string
let movieTicket§ = 9; in variable names. “Focbidden Planet”.

const joe'sFavoriteMovie = Forbidden Planet; &\ No ﬂuoﬂs all

if (movieTicket$ >= 9) {
alert("Too much!") ;
} else { [\ This if/else doesn't work

alert("We're going to see " + joe'sFavoriteMovie); betause of the invalid
} ¢onstant name heve.

assets/f0043-02.png
Can you say “Celsius to Fahvenheit
g caleulator”?
(9 / 5) * temp + 32

This is @ boolean expression. The
== operator tests if two values
ave equal to eath other.

"orange"

name + ", " + "you've won!"

This Lests if the fivst
v value is greater than the
setond. You ean also use
>= to test if the fiest
value is greater than or
equal to the second.

yourLevel > 5

(level * points) + bonus

color !'= "orange"

t The |= operator tests if bwo values
are NOT equal 4o each other.

V(Extva CREDIT!

What is the result when temp is 10? 50

Is this expression true or false when color has the value
“pink™? ¢
Or, has the value “orange™ _true

What value does this compute to when name is “Martha?
“Martha, you've wonl”

When yourLevel is 2, what does this evaluate to? false
When yourLevel is 5, what does this evaluate to? false
When yourLevel is 7, what does this evaluate to? true

Okay, level is 5, points is 30,000 and bonus is 3300. What
does this evaluate to? 153300

Is this expression true or false when color has the value
“pink’? _true

1000 + "108" Are there a few possible answers?
Only one is correct. Which would you
choose? “1000108”

assets/2-f0012-02.png
/ Variable declarations go here

while (issunk

false) {
guess = prompt("Ready, aim, fire!

(enter a number from 0-6):");
if (guess < 0 || guess > 6) {

<= We check validity by
alert("Please enter a valid cell number! making sure the quess is

A & bebween zevo and six.

guesses = guesses + 1;

1€ the quess isn’t valid, we'll
tell the user with an alert.

And if the guess is valid, go ahead and
add one to guesses so we ¢an keep track
of how many times the user has quessed

assets/2-f0012-01.png
g/oum loop and get user guess
[Check user guess

[] Checkif ship has been sunk
[Display stats to user

assets/2-f0014-03.png

assets/2-f0014-02.png
£ I£ the quess is at location], then

we hit the ship, so intrement. the
hits variable by oe.

if (guess == locationl) {
hits = hits + 1;

} else if (guess == 1°cat1°n2)K‘J Otherviise, if the guess is lotationZ,
hits = hits + 1;

then do the same thing.
} else if (guess == location3) {

hits = hits + 1; Firally, if the quess is location3, then we
need to intrement. the hits variable.

And if none of these are true, then the

T Notice we've using indentation for the code
hits variable is never incremented.

in each if/else block. This makes Your tode

easier to vead, especially when you've got
lots of blotks nested ir'\zid: Hozls. ¥

assets/2-f0014-01.png
K Create loop and get user guess
[Check user quess
[Checkif ship has been sunk

[Display stats to user

assets/2-f0012-03.png
Tey to vead this like it's English: this conditional is true if the user’s guess is less than
urZo ORr the us.cr'.s guess is :rea{er than six. £ either is true, then the input is invalid.

— A
if (guess < 0 || guess > 6) {

B‘z‘l;:a&‘)at b?hma“ And this one ehetks 4o see if
ev. :
fiest test chsetcks i 5u; is /3 quess is oeater than six.

less than zevo.

And this, which we ¢all the OR operator, tombines
the two tests so that if either test is true, then
the entive conditional is true. [£ both fests are
false, then the statement is false, and the guess
is between O and b, whith means it's valid.

assets/f0025-01.png
In this tode we theck to see if there are

& five or more stoops left..

alert("Eat faster, the ice cream is going to melt!");
} else if (scoops == 3) { 4 wor if there are pretisely three left..

if (scoops >= 5) {

alert("Ice cream is running low!");
2) {

else if (scoops =

alert("Going once!") ; S orif theve are 2, 1 or O, and then
} else if (scoops == 1) { &—_ we provide the appropriate alert.
alert("Going twice!"); /
} else if (scoops == 0) {
alert("Gone!") ;
} else {
alert("still lots of ice cream left, come and get it.");
} K And i£ none of the conditions above are

true, then this code is executed.

assets/f0022-02.png
let scoops = 57

while (scoops > 0) {
(document.write ("Another scoop!
");

scoops = scoops - 1;

}
document.write ("

ife without ice cream isn't the same") :

assets/f0022-01.png
Z stoops gone,

3 left

>

let scoops = 5;

while (scoops > 0) {
document.write ("Another scoop!
") ;
scoops = scoops - 1;

}
document.write ("Life without ice cream isn't the same") ;

assets/f0022-04.png
P —

e P!
7 =E
scoops = scoops - 1;

let scoops = 5;
document.write ("Life without ice cream isn't the same");

while (scoops > 0) {
document.write ("Another scoop!
");

}

assets/f0022-03.png
Still plenty left!
let scoops = 5; ///7 il plenty T
while (scoops > 0) {

document.write ("Another scoop!
");
scoops = scoops - 1;

}
document.write("Life without ice cream isn't the same!

assets/f0023-02.png
let scoops = 5;

while (scoops > 0) {
document.write ("Another scoop!
");
scoops = scoops - 1;

}

document.write("Life without ice cream isn't the

I seoops gone, | left!

same") ;

assets/2-f0033-03.png
Bob's the better toder (and passibly, a better actountant, too):
Bob's solution works, but Bill's doesnt. To see why, let’s try three
different prices (koo low, too high and just vight) with Bob's and
Bill's conditionals and see what vesults we get:

2 1£ price is 100, then 100 is less than
200, so Bob's tonditional is true
(remember, with OR, you only need one of

IS Eob's Eills the expressions £ be true for the whole

100 troe troe thing to be true), and we alert NOT to
alert: Dowt buy! alert: Buy! ;‘V' 5

700 ut Bill's conditional is also true, because

frue frue price is <= b0O. So the vesult of the

alert: Don't buy! alert: Buy! entive expression is true, and we alert

400 false true the user to buy, even though the price is

alert: Buy! alert: Buy! o0los:

C Turns out Bill's eonditional is always true, no
matter what the price is, so his code tells us +o
Buy! every time. Bill should stick with aceounting.

assets/f0023-01.png
let scoops = 5;
while (scoops > 0) {
document.write ("Another scoop!
");
scoops = scoops - 1;
}

document.write("Life without ice cream isn't the same");

3 stoops gone,

2 left!

Adother scoop, Lt v

assets/2-f0033-02.png
Bob's solution
—>

if (price < 200 || price > 600) {
alert("Price is too low or too
} else {

alert("Price is right! Buy the

Bill's sclution

—

if (price >= 200 || price <= 600)
alert("Price is right! Buy the
} else {

alert("Price is too low or too

high! Don't buy the gadget.");

gadget.") ;

{
gadget.") ;

high! Don't buy the gadget.");

assets/f0023-04.png
LYY
£0.C 0 ecshons-senngg

Another scoopt
Another scaop!

let scoops = 5;

while (scoops > 0) {
document.write ("Another scoop!
") ;

scoops = scoops - 1;

}
document.write ("Life without ice cream isn't the same"); J

Ancterscpon
L wibout i crcam s e e

assets/2-f0033-01.png

assets/f0023-03.png
5 seoops gone, O left]

let scoops = 5;

while (scoops > 0) {
document.write ("Another scoop!
") ;
scoops = scoops - 1;

}
document.write("Life without ice cream isn't the same");

assets/f0024-02.png
else if’s, like this: r We tan have one test, and 'ﬁ.:hcn
if (scoops >= 5) { another test with i /else ¥
alert("Eat faster, the ice cream is going to melt!");

} else if (scoops < 3) { Ao Add 35 many tests vith “clse if” 55 i el e
alert("Ice cream is running low!"); with its own assotiated code block that will be

) exetuted when the condition is frue.

assets/2-f0035-02.png
We're using the same code over
if (guess == locationl) { and over heve.

hits = hits + 1;

) else if (guess == location2) (N |t e have by change how hiks are
hits = hits + 1; < updated, we've got three places to change

} else if (guess == location3) { our tode. Changes like this are often a
hits = hits + 1; sourte of bugs and issues in code.

Not only that, this code is just way more complex than it
needs to be. [t's harder to vead than it should be, and it
took a lot move thought and typing than needed.

But, with the boolean OR operator we can tombine the
dests so that if guess matthes any of lotation], lotation2 o
lotation3, then the if conditional will be true, and the hits

variable will be updated. / N

if (guess == locationl || guess == location2 || guess == location3) {

hits = hits + 1;
) 'S Isn't that muth easier on the eye? Not
to mention easier to understand.

And if we ever have to thange how hits is updated,
well, then we only have one place to do it, which is
muth less error prone.

assets/f0024-01.png
Heve's the if keywords Lollowed by 3 tonditional

and a block of code This conditional tests 4o see if we've down

/U N LT o fewer than three stocps.

if (scoops < 3) {

alert("Ice cream is running low!");
’){\

browser. Give it a tey!

—And if we've got fewer than three left, then
we exetute the if statement’s code block.

alert takes a string and displays it in a popup dialo in your —~ 9 ool

assets/2-f0035-01.png

assets/2-f0034-02.png
/ Variable declarations go here

while (isSunk == false) {
guess = prompt("Ready, aim, fire! (enter a number from 0-6):");
if (guess < 0 || guess > 6) {
alert("Please enter a valid cell number!");
} else {

guesses = guesses + 1;

if (guess

alert("HITI);
hits = hits + 1;

locationl || guess location2 || guess location3) {

if (hits == 3) {
issunk = true;

alert("You sank my battleship!");

alert("MISS"):

}
let stats = "You took " + guesses + " guesses to sink the battleship, " +
"which means your shooting accuracy was " + (3/guesses);

alert(stats) :

assets/2-f0034-01.png

assets/2-f0036-02.png
‘T[R|U|E

O|N[A]|L

E

T

I |JO[N|S

O

‘C[O|N]|D] 1

‘EIUIN[C|T

'R|A[N|D[O[M

'P|S|E[u|D|O[c|o[D|E

‘F|A|L[S|E

S

assets/2-f0036-01.png

assets/f0033-03.png
Y

Check out the HTML below; that's where your JavaScript's going to go. Go ahead

@ and type in the HTML and then place the JavaScript from two pages back in between
the <script> tags. You can use an editor like Notepad (Windows) or TextEdit (Mac),

making sure you are in plain text mode. Or, if you have a favorite HTML editor, like
Dreamweaver, Coda or WebStorm, you can use that too.

<!doctype html> £~ > Type Lhis in-

<html lang="en">
<head>
<meta charset="utf-8">
<title>My First JavaScript</title>

</head>
<body>
Heve are the <seript> £ags. At this point you

ipt:
<seript> (_’__/(know that’s where You should put your code.

</script>
</body>
</html>
“5oae
@ Save the file as “index.html".
0 T S S o s
Load the file into your browser. You can either drag the file 5:5;“ o fsotieer on the' o ""ZZM“;‘:‘.';& x
right on top of your browser window, or use the File > Open e i
(or File > Open File) menu option in your favorite browser. 4 ot ot o lotentatiny
ot
. Andex.htalizy
You won't see anything in the web page itself because we're o i
logging all the output to the console, using console.log. So ot e, P
open up the browser's console, and congratulate yourself on e ot o s
your serious business application. o s ke frrord
ot o ot i m
-
i
o

Here's our test vun of this code. The code cha{gs‘]

the entive lyvies Lor the 99 bottles of vootbeer
song and logs the text to the browser’s console.

assets/f0033-01.png

assets/f0026-01.png
|7

assets/f0025-02.png

assets/f0028-01.png
document.write

console.log

alert

document object model

I’ll stop your user in his
tracks and deliver a short
message. The user has
to click on “ok” to go
further.

| can insert a little HTML

and text into a document.
I’'m not the most elegant

way to get a message to

your users, but | work on
every browser.

Using me you can totally
control a web page: get
values that a user typed in,
alter the HTML or the style,
or update the content of
your page.

I'm just here for simple
debugging purposes. Use
me and | can write out
information to a special
developer’s console.

assets/cover.png
Head First %

Jaqucrlpt

Programmlng

A Learner's Guide to
@ f

Modern JavaScript

Eric Freeman &
Elisabeth Robson

A Brain-Friendly Guide

assets/f0026-02.png
Avrrange these magnets to make a
working JavaSexipt program. J

document .write ("Happy Birthday dear " + name + ",
");

document.write ("Happy Birthday to you.
"); '
let i = 0;

document.write ("Happy Birthday to you.
"); ' Yo b
our unstrambled program
L should produce this autput

@ 8 | ocalhost/~8eth/HFjs/chapterbintndayml 72| »| =

Happy Birthday to you.
Happy Birthday to you.
‘Happy Birthday dear Joe,
Happy Birthday to you.

1

Use this spate for your
ve—arranged magnets.

assets/f0030-02.png
To aceess the console in Chrome (on
the Mae), use the View > Developer >
JavaSeript Console menu.

E—

st s

™ x o+

The eonsole will appear in
K {1 boktom art of your

browser window-

€ 5 C O ocaosy-satnHSchaptaripowsy b 6% o2

Make sure the Console tab is
selected in the tab bar alony
the top of the console. Don't worry about what these
[k @ Eements Console Souces Network Pedormance Memory » 81 x other tabs are for. They're useful,

B2 w6pr © fiter Defaultiovels Nolssues @ but the most important one now

oy partrer banely.htnlisd is Console, so we ¢an see console.
log messages from our code.

You should see any messages you
give to consolelog in your code
displayed in the window heve.

assets/f0029-01.png
[\ Take any old string...

let message = "Howdy" +" " + "partner";

console.log(message); give it 4o console.log, and it will be

shown in the browser’s tonsole, like this.

\

© Eements Resources' Network| Sources ' Timelinel Frofiles " Audis | [JEEREEE
/? Honey partner Ty

The ¢onsole contains all the
output logged by your code.

0,2 Q © <wopframe>v <page context» v @D | Erors warmings | $%

assets/f0031-02.png

assets/f0031-01.png

assets/f0032-01.png
Isn't it about
time to put code in an
actual web page? Or are we just
going to keep writing answers on
the pages of this book?>

assets/f0004-02.png

assets/f0004-03.png

assets/f0005-01.png

assets/f0005-02.png
m L™ Pechaps a way to count five setonds of time? Hin®
setTimeout (wakeUpUser, 5000); 000 milliseconds = | setond:

—> 5
A way 4o eveate function wakeUpUser() {

vessable code it :
you i 1
et) going to /Eare at this boring page forever?");
“wakellpUser”?
Clearly a way 4o alert the user with 3 message.

assets/2-f0028-02.png
Here are our guesses... 2

Th sape st lcaiestsas:
e e e .5

Y~ Wemissonawr — 7 ‘

Ffirst quess.

On our second guess
e £ e ind 8 locabion
of the ship-

(came) (0K

4— And then we keep

enteving that same
E—— lotation, and keep
- ‘/ getting hits! S
—

Rty am e e e o 06

T

On the thivd hit, .

we see that we sank
the battleship/ But k)
something's wrong. We =

el o

We enteved O, I, |, |, and 5
the ship is at |, 2, 3.

shouldn’t be able to sink
it by hitting the same
lotation three Limes.

assets/f0006-01.png
JavaSeript 1.0

Netscape might have been before your
time, but it was the first 7eal browser
company. Back in the mid-1990s browser
competition was fierce, particula
icrosoft, and so adding new, exciting
features to the browser was a priority.

with

And towards that goal, Netscape wanted
ate a scripting language that would
anyone to add scripts to their pages.
Enter LiveScript, a language developed
in short order to meet that need. Now if
you've never heard of LiveScript, that’s
because this all about the time that
Sun Microsystems introduced Java, and,
as a result, drove their own stock to
stratospheric levels. So, why not capital
on that success and rename LiveScript
to JavaScript? After all, who s if they
don’t actually have anything to do with
cach other? Right?

ted
own scripting language soon after
Netscape did, named, um, JScript, and

it was, um, quite similar to_JavaScript.
And 50 began the browser wars and a
frustrating time for developers

Did we mention Microsoft?

hey

the

Javadeript 2015

After all that confusion, JavaScript
finally grew up. ECMAScript, an
official language definition for
Javascript was born, and now serves
as the standard language definition
for all JavaScript implementations
(in and out of the browser).

By 2015, JavaScript finall
of age and gained the respect of
professional developers. Having a
solid standard helped, along with
serious commitment from browser-
makers like Google, that pushed
JavaScript into the professional
limelight with Google Maps and
other complex browser-based
applications.

With all the new attention, many
of the best programming language
minds focused on improving

Ja ript’s interpreters and made
improvements to its runtime
performance. After JavaScript
2015, a major language update,
tched from official ve

we
numbers for language relea

Javadeript 2024

Today, JavaScript is the language
of the Web. Pre-compilers
make interpreting JavaScript
code in web-pages blindingly
fast. Syntax checkers, syntax-
code editors, and robust
based debugging tools
professionalized web
lopment. JavaScript is one
of the most popular languages
in the world, and has been

awar

implemented in environments
as dive

embedded systems,
web serv
applications.

ers, and music-making

The language is fairly mature
at this point. Most language
updates are small, and
incorporated quickly into

. Numerous JavaScript
ries and frameworks mean

browser
libs
that you can do almost anything

with JavaScript that you can do
in any other language.

After a strange and contentious
history, JavaScript has made it!

assets/f0015-01.png
WEBVILLE TIMES

How to avoid those embarassing naming mistakes

Youve got a lot of flexibility in Use “camel case” when creating Use variables that begin with _and §
choosing your variable and constant multiword variable names, only with very good reason,

o met S0 here are a few Webville tips Ssgme point You'te going (o have 10 Variables that begin with § are

{0 make your naming casier: decide how yoi name a variably th. usually reserved for JavaScrip
Cloose names that mean something, represents, say, a two-headed dragon libraris and whie some authors uso

) i fre. How? Just use camel case, vargapis oo inning with _ for various
Yariable names like _m, §, r and foo in which you capitalize the first lofgor conventions we recomménd you stay
might o Something to you b“‘;“?{ of each word (other than the firsty: away from both unless you have very
N Senerally f“’“‘VFedl ypon in "l"eh“‘ © twoHeadedDragon WithFire. Camel good reason (you'll know if you do).
ot only aré you likely (0 forget them case is easy to form, widely spoken

over time, your code will be much in Webvileand gives you s Be safe.
cnore veadable with names like angle, flexibility to create as specific & Be safe in your variable naming; we 11
currentPressure and passedExam. viriable name as you nced. There are 5% a {ew more tips for staying safe
Use all uppercase name for constants. :)}:her schemes moi but ﬂéis is on; of " later in the book, but for now be clear

b) aSoremmony used (even beyond in youn myi , avoid keywords, an
This s a common convention in JavaScript). For cozslams,(usean alwyays use xelgwﬁen declayring‘: varigble

Pprogramming, underscore between words. and const when declaring a constant,

assets/f0014-01.png

assets/f0016-01.png

assets/2-f0023-05.png
~E=T

buyIt = (1nStock || onSale);

-

onSale inStock buylt buylt
true true
true false
false true
false false

let buyIt = (inStock && onSale) ;

assets/f0015-02.png

assets/f0017-01.png
This expression evaluates to a price veduced by a discount
that is a percent of the price. So if Your price is [0 and
the discount is 20, we get @ as a vesult.

Heve's a JavaSeript statement that assigns the vesult of ¢ Lor miltiply
c:arli.:{ing an expression {0 the variable total We use ¥ or ™

and / for divide:
v 'R
letﬂtctal = price - (price * (discount / 100));
Here’s our 7 —V

Wariable tots) And the And this whole £hing is an expression
assignment.

assets/f0016-02.png
A

// Test for jokes

const joke = "JavaScript walked into a bar....';
let toldJoke = "false";

let $punchline =

"Better watch out for those semi-colons."
let %entage = 20;

let result Don't worry too much about what this
JavaSevipt does for now; just fotus on
i (tolddoke == true) { looking for evrors in variables and syntax.
Alert($punchline) ; 43_/
} else
alert (joke) ;
}
joke = "Knock, knock. Who's there? JavaScript..

B

\\ Movie Night

let zip code = 98104;

const joe'sFavoriteMovie = Forbidden Planet;
let movieTicket$ = 9;

if (movieTicket$ >= 9) {
alert("Too much!");
} else {
alert("We're going to see " + joe'sFavoriteMovie);

assets/f0017-03.png
roe < 14 & |Fapersors age is less than 14 this is true, otherwise it is alse.
e We could use this 4o test if someone is a child or not.

- £ [£ the cost is 3.99 or greater, this i -
t >= 3.99 or greater, this is true. Otherwi:
eos Lalse. Get veady to buy on sale when i{':?als:,’ e s

imal == "bear" £— 7. - ;
animal bear This is true when animal contains the string “bear”. [£ it does, bewarel

assets/2-f0025-03.png
We ean use Math.floor to vound down all these
numbers to theiv nearest integer value.

let randomLoc = Math.floor (Math.random() * 5);

(sm for instante, 0.13983 betomes O,
234 betomes 2 and 4999 becomes 4.

assets/f0017-02.png
This adds together, or contatenates, these strings to

Loem a new sbring “Dear Reader,”-

- Same heve, extept we have a variable that
tontains a shring as part of the expression This
evaluates to “suycuali(:ragilistiuﬁyialidociws”,

"Dear " + "Reader" + "
"super" + "cali" + youKnowTheRest

" ;

phoneNunber . substring (0,3) < Just another example of an expression that vesults in a string,
Well get to exaetly how this works later, but this veturns the
avea tode of a US phone rumber string.

assets/2-f0025-02.png
Fiest, if we multiply the vandom number
by 5, then we get a number between

O and 5, but not including 5. Like
013983, 4231, 23451, or say 999,

</

let randomLoc = Math.random() * 5;
Remember, ¥ means multiplication.

assets/f0018-02.png
g Can you say “Celsius to Fahvenheit caleulator”?

(9 / 5) * temp + 32

This is a boolean expression. The
== opevator Lests if wo values
are equal to eath other.

"orange"

name + ",

" + "you've won!"

This dests if the fivst
v value is greater than the
setond. You ean also use
>= 4o fest if the first
value is greater than or
equal to the second.

yourLevel > 5

(level * points) + bonus

color != "orange"

t The |= operator tests if dwo values
ave NOT equal 4o each other.

(Extva CREDIT!

1000 + "108"

What is the result when temp is 10?7

Is this expression true or false when color has the value
“pink"?
Or has the value “orange”?

What value does this compute to when name is “Martha™?

When yourLevel is 2, what does this evaluate to?
When yourLevel is 5, what does this evaluate to?
When yourLevel is 7, what does this evaluate to?

Okay, level is 5, points is 30,000 and bonus is 3300. What
does this evaluate to?

Is this expression true or false when color has the value
“pink"?

Are there a few possible answers?

Only one is correct. Which would you

choose?

assets/2-f0025-01.png
. Math.random is part of
Our variable vandomlot. We want standard JavaSeript s

to assign a rumber from O to 4 to :
this variable. ve u:zs a vandom number-

let randomLoc = Math.random() ;

The only problem is it veturns numbers like
0128, 0.830, 0.9, 042 These numbers
are between O and | (not intluding exactly
1. So we need a way to use this to
genevate vandom numbers O—4-.

assets/f0018-01.png

assets/2-f0024-01.png
[[[===

o 1 2 3 ;j B
We ¢an start in locations O, |, 2,3
or & and still have voom 4o place the
ship in the next three positions.

N}

But, starting at position 5 or b won't work.

assets/f0001-01.png

assets/2-f0028-01.png

assets/f0002-01.png
HTML|

~

You already know

we use HTML, or

Hypertext Markup
Language, to specify
all the content of
your pages along
with their structure,

like paragraphs,
headings and
sections.

f&

And you already know that we

JS

use CSS, or Cascading Style
Sheets, to specify how the
HTML is presented...the colors,
fonts, borders, margins, and
the layout of your page. CSS
gives you style, and it does it
in a way that is separate from
the structure of the page.

Browser

So let’s introduce JavaScript, HTML & CSS's
computational cousin. JavaScript lets you create
behavior in your web pages. Need to react when a user
clicks on your “On Sale for the next 30 seconds!” button?
Double check your user’s form input on the fly? Grab
some tweets from Twitter and display them? Or how
about play agame? Look to JavaScript. JavaScript gives
you a way to add code to your page so that you can
compute, react, draw, communicate, alert, alter, update,
change, and we could go on... anything dynamic, that's
JavaScript in action.

assets/2-f0027-02.png
MR Davee & n'
L ——

€ 5 C A | [} localhost/~Beth/HEJS/chapters... | » =

Play battleship!

f— Weoet ahiton —> e o

our First guess. o)

- On our setord = e The page at locabos say:

guess, we miss

=37

o Bub thenweaet < e e ——

two hits in a row. _'m:.:’:..‘.n N
On the last hit, we T
sink the batleship! ° e

o

assets/f0003-01.png
P
<bead>
<title>Teecreanc/title>

</nean>

<boay>
<hi>Tcecrean Flavors</n1>
<2>e3 favors</h2>
<eAIL your favorite
Savorsi</p>

</wody>

</ntml>

@ Writing

You create your page
just like you always do,
with HTML content and
CSS style. And you also
include JavaScript in
your page. As you'll see,
just like HTML and CSS,
you can put everything
together in one file, or
you can place JavaScript
in its own file, to be
included in your page.

/C We'll talk about the
best way in a bit...

Browser Browser

@ Loading © Executing

Point your browser to your The browser starts

page, just as you always executing your code as
do.The browser sees the soon as it encounters the
code and begins parsing it code in your page, and
immediately, getting ready continues executing it

to execute it. Note that for the lifetime of your

like HTML and CSS, if the page. Unlike early versions
browser sees errors in your of JavaScript, today’s

code, itwill do its best to JavaScript is a powerhouse,
keep moving and reading using advanced compilation
more JavaScript, HTML and techniques to execute

CSS. The last thing it wants your code at nearly the

to do is not be able to give same speed as many native
the user a page to see. programming languages.

For future veferente, the browser also

builds an “cbject model” of you HTML ™™ g
page that JavaSeript ean make use of.
Put that in the back of your brain, we'll (i L (o [(e

tome back +o it later.

assets/2-f0027-01.png
let
let
let
let
let
let
let
let

while (isSunk

randomLoc = Math.floor (Math.random() * 5);
randomLoc;

location2 = locationl + 1;

locationl

location3 = location2 + 1;

guess;
hits =

guesses 0;
isSunk = false;

= false) {

Go ahead and veplace your
lotation variable declarations
with these new statements

guess = prompt("Ready, aim, fire! (enter a number from 0-6):");

if (guess < 0 || guess > 6) {
// the rest of your code goes here.

assets/f0004-01.png
Here's our standard HTML dottype, and

<html> and <head> elements.
<!doctype html>

chtml lang="en"s And we've ot a pretty generic <body> for this page as well.

<head>
<meta charset="utf-8">

Ah, but we've added a stript element to
<title>gust a Generic Page</title> , fic cheads of the page.
<script>

setTimeout (wakeUpUser, 5000) ;
function wakeUpUser() {

alert("Are you going to stare at this boring page forever?");

} And we've written some JavaSeript tode (—3
</script> inside it
</head> Again, don't worry too muth about what this code does.
<body>

Then again, we bet you'll want to take a look at the eode
<hi>Just a generic heading</hi> and see if you can £hink throush what each part might do
<p>Not a lot to read about here. I'm just an obligatory paragraph living in

an example in a Javascript book. I'm looking for something to make my life more
exciting.</p>

</body>
</html>

assets/2-f0026-01.png

assets/f0018-03.png

assets/f0019-02.png
While uses a boolean expression

that we call a conditional test, or
conditional for short.

/\ If the conditional is true,
everything in the code
while (scoops > 0) { block is executed.

A while statement starts
with the keyword while.

document.write ("Another scoop!") ; What's a code block?
Everything between the curly
scoops = scoops - 1; braces; that is, between {}.

} ~J

And, if our conditional is true, then,

after we execute the code block, we LN |
" , lather, vinse, vepeat!

loop back around and do it all again. If Like we said, lather, i i

the conditional is false, we’re done.

assets/f0019-01.png
while (juggling) {
keepBallsInAir() ;

assets/f0020-02.png
s soops greater
let scoops = 5; +than zevo? Looks
while (scoops > 0) { like it to us!

document .write ("Another scoop!
");
scoops = scoops - 1;
}
document.write ("Life without ice cream isn't the same") :

4

assets/2-f0030-01.png

assets/f0020-01.png
let scoops = 5;
while (scoops > 0) {
document.write ("Another scoop!
");
scoops = scoops - 1;
}
document .write("Life without ice cream isn't the same") :

assets/2-f0028-03.png

assets/f0021-01.png
| seoop gone,

& left!

let scoops = 5;

while (scoops > 0) {
document.write ("Another scoop!
");
scoops = scoops - 1;

}
document.write ("Life without ice cream isn't the same") :

assets/f0020-03.png
let scoops = 5; i
while (scoops > 0) { ﬁ P
document . write ("Another scoop!
") ;
scoops = scoops - 1;

}
document.write("Life without ice cream isn't the same");

assets/f0021-03.png
Sl plenty left! /

let scoops = 5;

while (scoops > 0) {
document.write ("Another scoop!
") ;
scoops = scoops - 1;

}
document.write ("Life without ice cream isn't the same!

assets/2-f0031-03.png
locauoni location2 location 3 guess guesses hits 1sSunk

3 4 5 — o o false
3 4 5 | | o false
3 4 5 4 2 I false
3 4 5 2 3 | false
3 4 5 3 4 2 false
2 4 5 5 5 2 $rue

assets/f0021-02.png
let scoops = >

while (scoops > 0) {
(document.write ("Another scoop!
");

scoops = scoops - 1;

}
document.write("Life without ice cream isn't the same") :

assets/2-f0031-02.png
===

assets/2-f0031-01.png

assets/f0021-04.png
let scoops = 5; =

while (scoops > 0) { /% p]
document.write ("Another scoop!
");

scoops = scoops - 1;

}
document.write("Life without ice cream isn't the same");

assets/2-f0030-02.png
g

assets/2-f0032-04.png
let temp = 8 let keyPressed
let willRain = true; let points = 142;
let humid = (temp > 80 && willRain == true); let level;
. b e if (keyPressed == "Y" ||
WhatSthe Valie of humidz s (points > 100 && points < 200)) |
level = 2;
let guess =
: . } else {
let isvalid = (guess >= 0 && guess <= 6);
level = 1;
What's the value of isValid? brue 5
. 2
let kB = 1287; What's the value of level? 2

let tooBig = (kB > 1000);
let urgent = true;
let sendFile =
(urgent == true || tooBig == false);

What's the value of sendFile? true

assets/2-f0032-03.png

assets/2-f0032-02.png
let buyIt = (1nStock || onSale);

—

onSale inStock buylt buylt
true true true true
true false true false
false true true false
false false false false

let buyIt = (inStock && onSale) ;

assets/2-f0032-01.png

assets/f0007-02.png
Create a variable named price, and assign the value 2899 4o it.

assets/f0007-01.png

assets/f0008-02.png
Create a variable named price, and assign the value 28.99 to it
Create a variable named discount, and assign the value 10 to it

Compute a new price by applying a discount and then assign it
o the vaviable Eﬁl. ¥ oy -

Compare the value in the variable total to 25. [§ it's greater...
then do something with freeShipping,

End the if statement

Create a variable named count, and assign the value 10 to it

As long as the variable count is greater than O..

do some juggling, and...

~veduce the value of count by | each time.
End the while loop

Create a tonstant dog with a name and weight.

1 the dog’s weight is greater than 30..

-.alert “WOOF WOOF” 1o the browser’s web page
Otherwise...

.alert “woof woof” to the browser’s web page
End the if /else statement
I
Create a variable, civeleRadius, and assign the value 20 4o it
Create a variable named civeleAvea...

~and 2o the vealt of this copresson b0
(256 b 10H 43591 5)

assets/f0008-01.png

assets/f0010-01.png
<hl class="drink">Mocha Caffe Latte</hl>

Y
-) I need 3 la
<p>Espresso, steamed milk and chocolate syrup, :C:dvhs called Mocha Cafe | gt '15:
; .
just the way you like it.</p> ading for a drink. And [need 3

Paragraph afier that”

assets/f0009-01.png
Totally, if you want to go
beyond creating just static

web pages, you've got o know
JavaScript.

assets/f0010-03.png
‘C\ A set of statements. Each statement does a little bit of work, like

declaring some variables to contain values for vs.

let age = 25; /—\ Here we eveate a variable to contain an age of 25, and we also need

. A Do
let name = "Owen"; a variable to tontain—or as we usually say, store—the value “Owen”.

O making detisions, such as: s the age of the user greater than 142
if (age > 14) {

alert("Sorry this page is for kids only!"); Aud if so alerting the wser
} else { F— they are too old for this page.

alert("Welcome " + name + "!V);
}
Othevvise, we weleome the user by name,

like this: ‘Weleome Owen!” (but since Owen
is 25 we don't do that in +his case.)

assets/f0010-02.png
With CSS we write vules that use selettors,

o ke W drnk and p, bo determine what parts

hl.drink { of the HTML the style is applied to.
color: brown; & Let's make sure all drink

} headings are colored brown..

p {

~-and we want all the paragraphs 4o

font-family: sans-serif; = | " "% fype font

assets/f0011-02.png
. Even it JavaSevipt
We start vith the L~ oon ¢ SO bEY

let keyword when leave off the let,
detlaring a vaviable I should declave your

hose vl can change- To0 0 G AR T Nexk we e bhe

later...
\‘ vy f_/ variable a name.

let winners = 2/ Wealays end an assignment
l\ statement with a semicolon.

And, optionally, we assign a value to the vaviable by
adding an equals sign followed by the value.

assets/f0011-01.png
This statement declaves a
; variable named winnevs and
tet winners = 2; assiops a numeric value of 2 to it

This one assigns a sbring of

let name = "Duke"; tharatters to the variable name
(we all these “strings,” for short).

find this statement assigns
the value false to the i i
K= ariable sElgble. We call femtiginte
true/false values “booleans.” e~

Pronounted “boo_lee—ans”

let isEligible = false;

assets/f0011-03.png
™ By leaving off the

equals sign and value
let losers; You've just. deelaving the
vaviable for later use.

assets/f0012-01.png

assets/f0011-04.png
No value?! What am
T supposed to do now?!
I'm so humiliated.

losers

assets/f0012-03.png
let winners = 2;

Later on, more people play the
game and another pevson wins. So,

g] we thange the value of winners.

winners = 3;

Notice we don't vedetlare winners heve,
we only assign a new value. £ you try to

vedetlave winners, You'll get an evvor.

—

winners

éb

winners

We inidially set the value
of winners to 2 when we
detlare the variable.

Now the val, .
ha mhacd"; ogf winners

assets/f0012-02.png
We've calling the
We've sing let to variable flavor.
declave a new vaviable.

\ 57 But we'e wot. giving it an

let flavor; o
initial value.

assets/f0013-02.png

assets/f0013-01.png
This statement declares a 9,69’
constant with the keyword tonst ——
const EARTH RADIUS = 3959; &

named EARTH_RADIUS and
assigns a mumevic value of 3959 to

£ you ey o assign 8 new value o it (ue've measuring the vadivs of

EARTH KADIMS youll gt an err

p the Earth in miles heve): / EARTH_RADIUS
EARTH_RADIUS = 9000;

Note that by convention we
typically use all uppevease letters
This vl nok vork! in the names of constants.

P . € No evil space aliens ean come ‘A:::{’:o%d The value in 3
Lo along and change the vadius we call"ﬂl oesn't vavy, so
of Earth in our code. Whew! ot vanabT: eonstants,

.

assets/f0014-00.png

assets/f0013-03.png
tonst DISTANCE_TO_MOON = 238900;

lck last_guess = 0;

SCREEN WIDTH = 1024;
counter = 100;
firstUSPresident = "Washington";

fluxCapacitorReading = "System Normal

assets/f0014-00a.png

