

Head First JavaScript Programming

Second Edition

A Learner’s Guide to Modern JavaScript

Eric Freeman and Elisabeth Robson

 Head First JavaScript Programming

 by
 Eric
 Freeman
 and
 Elisabeth
 Robson

 Copyright © 2025 Eric Freeman and Elisabeth Robson. All rights
 reserved.

 Printed in the United States of America.

 Published by
 O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

 O’Reilly books may be purchased for educational, business, or sales
 promotional use. Online editions are also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional sales
 department: 800-998-9938 or
 corporate@oreilly.com.

 	
 Acquisitions Editor:
 David Michelson

 	
 Development Editor:
 Michele Cronin

 	
 Production Editor:
 Christopher Faucher

 	
 Interior Designer:
 David Futato

 	
 Cover Designer:
 Susan Thompson, based on a series design by Ellie Volckhausen

 	
 Illustrator:
 José Marzan Jr.

 	
 March 2025:
 Second Edition

 Revision History for the Second Edition

 	
 2024-02-06:
 First Release

 See
 http://oreilly.com/catalog/errata.csp?isbn=9781098147945
 for release details.

 The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Head
 First JavaScript Programming, the cover image, and related trade dress are
 trademarks of O’Reilly Media, Inc.

 The views expressed in this work are those of the authors and do not
 represent the publisher’s views. While the publisher and the
 authors have used good faith efforts to ensure that the information and
 instructions contained in this work are accurate, the publisher and the
 authors disclaim all responsibility for errors or omissions, including
 without limitation responsibility for damages resulting from the use of or
 reliance on this work. Use of the information and instructions contained
 in this work is at your own risk. If any code samples or other technology
 this work contains or describes is subject to open source licenses or the
 intellectual property rights of others, it is your responsibility to
 ensure that your use thereof complies with such licenses and/or rights.

 978-1-098-14788-4

Brief Table of Contents (Not Yet Final)

Chapter 1, A Quick Dip into JavaScript: Getting Your Feet Wet (available)

Chapter 2, Writing Real Code: Going Further (available)

Chapter 3, Introducing Functions: Getting Functional (unavailable)

Chapter 4, Putting Some Order in Your Data: Arrays (unavailable)

Chapter 5, Understanding Objects: A Trip to Objectville (unavailable)

Chapter 6, Interacting With Your Web Page: Getting to Know the DOM (unavailable)

Chapter 7, Types, Equality, Conversion, and All that Jazz: Serious Types (unavailable)

Chapter 8, Bringing It All Together: Building an App (unavailable)

Chapter 9, Asynchronous Coding: Handling Events (unavailable)

Chapter 10, First Class Functions: Liberated Functions (unavailable)

Chapter 11, Anonymous Functions, Scope, and Closures: Serious Functions (unavailable)

Chapter 12, Advanced Object Construction: Creating Objects (unavailable)

Chapter 13, Using Prototypes: Extra Strength Objects (unavailable)

Appendix A, Leftovers: The Top Ten Topics (we didn’t cover) (unavailable)

Chapter 1. A Quick Dip into Javascript: Getting your Feet Wet

A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the authors’ raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

This will be the 1st chapter of the final book.

If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the editor at mcronin@oreilly.com.

[image: Image]

JavaScript gives you superpowers. The true programming language of the web, JavaScript lets you add behavior to your web pages. No more dry, boring, static pages that just sit there looking at you—with JavaScript, you’ll be able to reach out and touch your users, react to interesting events, grab data from the web to use in your pages, draw graphics right in your web pages and a lot more. And once you know JavaScript you’ll also be in a position to create totally new behaviors for your users.

You’ll be in good company too. JavaScript’s not only one of the most popular programming languages, it’s also supported in all modern browsers and is used in many environments outside of the browser. More on that later; for now, let’s get started!

The way JavaScript works

If you’re used to creating structure, content, layout and style in your web pages, isn’t it time you add a little behavior as well? After all, there’s no need for the page to just sit there. Great pages should be interative and dynamic. That’s where JavaScript comes in. Let’s start by taking a look at how JavaScript fits into the web page ecosystem:

[image: Image]

How you’re going to write JavaScript

JavaScript is fairly unique in the programming world. With your typical programming language you have to write it, compile it, link it and deploy it. JavaScript is much more fluid and flexible. With JavaScript all you need to do is write JavaScript right into your page, and then load it into a browser. From there, the browser will happily begin executing your code. Let’s take a closer look at how this works:

[image: Image]

How to get JavaScript into your page

First things first. You can’t get very far with JavaScript if you don’t know how to get it into a web page. So, how do you do that? Using the <script> element of course!

Let’s take a boring old, garden-variety web page and add some dynamic behavior using a <script> element. Now, at this point, don’t worry too much about the details of what we’re putting into the <script> element—your goal right now is to get some JavaScript working.

[image: Image]

A little test drive

[image: Image]

Go ahead and type this page into a file named “behavior.html”. Drag the file to your browser (or use File > Open) to load it. What does it do? Hint, you’ll need to wait five seconds to find out.

[image: Image]

Relax

[image: Image]

Just relax. At this point we don’t expect you to read JavaScript like you grew up with it. In fact, all we want you to do right now is get a feel for what JavaScript looks like.

That said, you’re not totally off the hook because we need to get your brain revved up and working. Remember that code on the previous page? Let’s just walk through it to get a feel for what it might do:

[image: Image]

there are no Dumb Questions

Q: I’ve heard JavaScript is a bit of a wimpy language. Is it?

A: JavaScript certainly wasn’t a power lifter in its early days, but its importance to the web has grown since then, and as a result, many resources (including brain power from some of the best minds in the business) have gone into supercharging the performance of JavaScript. But, you know what? Even before JavaScript was super fast, it was always a brilliant language. As you’ll see, we’re going to do some very powerful things with it.

Q: Is JavaScript related to Java?

A: Only by name. JavaScript was created during a time when Java was a red hot popular language, and the inventors of JavaScript capitalized on that popularity by making use of the Java name. Both languages borrow some syntax from programming languages like C, but other than that, they are quite different.

Q: Is JavaScript the best way to create dynamic web pages? Are there other technologies?

A: Not really. JavaScript is the language for programming in the browser. There are variants of JavaScript, like TypeScript, but those are not in common use, and even then the TypeScript code you write will be translated into JavaScript before it runs in the browser. With today’s super fast JavaScript enviroments and sophisticated APIs, JavaScript is here to stay and is the standard for programming in the browser.

Q: My friend is using JavaScript inside a music application, or at least he says he is. Is that possible?

A: Yes, JavaScript is breaking out of the browser as a general scripting language for many applications from graphics utilities to music applications and even to server-side programming. Your investment in learning JavaScript is likely to pay off in ways beyond web pages in the future.

Q: You say that many other languages are compiled. What exactly does that mean and why isn’t JavaScript?

A: With conventional programming languages like C, C++ or Java, you compile the code before you execute it. Compiling takes your code and produces a machine efficient representation of it, usually optimized for runtime performance. Scripting languages are typically interpreted, which means that the browser runs each line of JavaScript code as it gets to it. Scripting languages place less importance on runtime performance, and are more geared towards tasks like prototyping, interactive coding and flexibility. This was the case with early JavaScript, and was why, for many years, the performance of JavaScript was not so great. There is a middle ground however; an interpreted language can be compiled on the fly, and that’s the path browser manufacturers have taken with modern JavaScript. In fact, with JavaScript you now have the conveniences of a scripting language, while enjoying the performance of a compiled language. By the way, we’ll use the words interpret, evaluate and execute in this book. They have slightly different meanings in various contexts, but for our purposes, they all basically mean the same thing.

JavaScript, you’ve come a long way...

[image: Image]

Sharpen your pencil: Look how easy it is to write JavaScript

[image: Image]

You don’t know JavaScript yet, but we bet you can make some good guesses about how JavaScript code works. Take a look at each line of code below and see if you can guess what it does. Write in your answers below. We’ve done one for you to get you started. If you get stuck, the answers are on the next page.

let price = 28.99;
let discount = 10;
let total =
 price - (price * (discount / 100));
if (total > 25) {
 freeShipping();
}

let count = 10;
while (count > 0) {
 juggle();
 count = count - 1;
}

const dog = {name: "Rover", weight: 35};
if (dog.weight > 30) {
 alert("WOOF WOOF");
} else {
 alert("woof woof");
}

let circleRadius = 20;
let circleArea =
 Math.PI * (circleRadius * circleRadius);

[image: Image]

Sharpen your pencil Solution: Look how easy it is to write JavaScript

[image: Image]

You don’t know JavaScript yet, but we bet you can make some good guesses about how JavaScript code works. Take a look at each line of code below and see if you can guess what it does. Write in your answers below. We’ve done one for you to get you started. Here are our answers.

let price = 28.99;
let discount = 10;
let total =
 price - (price * (discount / 100));
if (total > 25) {
 freeShipping();
}

let count = 10;
while (count > 0) {
 juggle();
 count = count - 1;
}

const dog = {name: "Rover", weight: 35};
if (dog.weight > 30) {
 alert("WOOF WOOF");
} else {
 alert("woof woof");
}

let circleRadius = 20;
let circleArea =
 Math.PI * (circleRadius * circleRadius);

[image: Image]

[image: Image]

With HTML and CSS you can create some great looking pages. But once you know JavaScript, you can really expand on the kinds of pages you can create.

Note

Knowing JavaScript might increase the size of your paycheck too!

So much so, in fact, you might actually start thinking of your pages as applications (or even experiences!) rather than mere pages.

Now, you might be saying, “I already know that, why do you think I’m reading this book?” Well, we actually wanted to use this opportunity to have a little chat about learning JavaScript. If you already have a programming language or scripting language under your belt, then you have some idea of what lies ahead. However, if you’ve mostly been using HTML & CSS to date, you should know that there is something fundamentally different about learning a programming language.

With HTML & CSS what you’re doing is largely declarative—for instance, you’re declaring, say, that some text is a paragraph or that all the HTML elements in the “sale” class should be colored red. With JavaScript you’re adding behavior to the page, and to do that you need to describe computation. You’ll need to be able to describe things like, “compute the user’s score by summing up all the correct answers” or “do this action ten times” or “when the user clicks on that button play the you-have-won sound” or even “go off and get my latest tweet, and put it in this page.”

To do those things you need a language that is quite different from HTML or CSS. Let’s see how...

How to make a statement

When you create HTML you usually mark upg text to give it structure; to do that you add elements, attributes and values to the text:

[image: Image]

CSS is a bit different. With CSS you’re writing a set of rules, where each rule selects elements in the page, and then specifies a set of styles for those elements:

[image: Image]

With JavaScript you write statements. Each statement specifies a small part of a computation, and together, all the statements create the behavior of the page:

[image: Image]

Variables and values

You might have noticed that JavaScript statements usually involve variables. Variables are used to store values. What kinds of values? Here are a few examples:

[image: Image]

There are other values that variables can hold beyond numbers, strings and booleans, and we’ll get to those soon enough, but, no matter what a variable contains, we create all variables the same way. Let’s take a little closer look at how to declare a variable:

[image: Image]

We say optionally, because if you want, you can create a variable without an initial value, and then assign it a value later. To create a variable without an initial value, just leave off the assignment part, like this:

[image: Image]

[image: Image]

Brain Power

[image: Image]

If you copy the start, stop, and drive methods into the chevy and cadi objects we created earlier, what do you have to change to make the methods work correctly?

If you declare a variable without a value, such as:

[image: Image]

What value do you think JavaScript is assigning to this variable?

Constants, another kind of variable

So far, we’ve used the keyword let to declare our variables. And that’s typically what we want to do with variables whose values can vary, or in other words, change their value over time. For instance, if we use let to declare the variable winners, assign it the value 2, we can change the value in winners later to be 3 if another winner comes along:

[image: Image]

Sometimes, however, we do not want the values in our variables to vary at all. There are situations in which we might want to give a name to a value that we’ll use in our code, but we don’t ever want that value to change. Here’s a good example: the radius of planet Earth. It might be handy to assign this value to a variable so we can use EARTH_RADIUS instead of the number in our code. We don’t want anyone to come along and change this value accidentally, so how can we make sure the value of EARTH_RADIUS never changes? We can use a constant instead of a variable, like this:

[image: Image]

Sharpen your pencil

[image: Image]

Identify that declarations below that you think are best suited for let and for const. Remember, while all uppercase text is a convention for constants, it isn’t always adhered to. We’ve done a couple for you:

[image: Image]

Back away from that keyboard!

You know variables have a name, and you know they have a value.

You also know some of the things a variable can hold are numbers, strings and boolean values.

But what can you call your variables? Is any name okay? Well no, but the rules around creating variable names are simple: just follow the two rules below to create valid variable names:

	[image: Image] Start your variables with a letter, an underscore or a dollar sign.

	[image: Image] After that, use as many letters, numeric digits, underscores or dollar signs as you like.

Oh, and one more thing; we really don’t want to confuse JavaScript by using any of the built-in keywords, like let or function or false, so consider those off limits for your own variable names. We’ll get to some of these keywords and what they mean throughout the rest of the book, but here’s a list to take a quick look at:

	break

	case

	catch

	class

	const

	continue

	debugger

	default

	delete

	do

	else

	enum

	export

	extends

	false

	finally

	for

	function

	if

	implements

	import

	in

	instanceof

	interface

	let

	new

	package

	private

	protected

	public

	return

	static

	super

	switch

	this

	throw

	true

	try

	typeof

	var

	void

	while

	with

	yield

[image: Image]

there are no Dumb Questions

Q: What’s a keyword?

A: A keyword is a reserved word in JavaScript. JavaScript uses these reserved words for its own purposes, and it would be confusing to you and the browser if you started using them for your variables and constants.

Q: Why aren’t we using var to declare our variables?

A: The var keyword is no longer recommended and has been largely replaced by let and const. These keywords work slightly differently to var and have some benefits over var that we’ll come back to later.

Q: What if I used a keyword as part of my variable name? For instance, can I have a variable named ifOnly (that is, a variable that contains the keyword if)?

A: You sure can, just don’t match the keyword exactly. It’s also good to write clear code, so in general you wouldn’t want to use something like elze, which might be confused with else.

Q: Is JavaScript case sensitive? In other words, are myvariable and MyVariable the same thing?

A: If you’re used to HTML markup you might be used to case insensitive languages; after all, <head> and <HEAD> are treated the same by the browser. With JavaScript however, case matters for variables, constants, keywords, function names and pretty much everything else, too. So pay attention to your use of upper- and lowercase.

[image: Image]

Syntax Fun

[image: Image]

	Each statement ends in a semicolon.

x = x + 1;

	A single line comment begins with two forward slashes. Comments are just notes to you or other developers about the code.They aren’t executed.

// I’m a comment

	Whitespace doesn’t matter (almost everywhere).

x = 2233;

	Surround strings of characters with double quotes (or single, both work, just be consistent).

"You rule!"
’And so do you!’

	Don’t use quotes around the boolean values true and false.

rockin = true;

	Variables don’t have to be given a value when they are declared: let width;

	JavaScript, unlike HTML markup, is case sensitive, meaning upper- and lowercase matters. The variable counter is different from the variable Counter.

BE the Browser

Below, you’ll find JavaScript code with some mistakes in it. Your job is to play like you’re the browser and find the errors in the code. After you’ve done the exercise look at the end of the chapter to see if you found them all.

[image: Image]

[image: Image]

Express yourself

To truly express yourself in JavaScript you need expressions. Expressions evaluate to values. You’ve already seen a few in passing in our code examples. Take the expression in this statement for instance:

[image: Image]

If you’ve ever taken a math class, balanced your checkbook or done your taxes, we’re sure these kinds of numeric expressions are nothing new.

There are also string expressions; here are a few:

[image: Image]

We also have expressions that evaluate to true or false, otherwise known as boolean expressions. Work through each of these to see how you get true or false from them:

[image: Image]

And expressions can evaluate to a few other types; we’ll get to these later in the book. For now, the important thing is to realize all these expressions evaluate to something: a value that is a number, a string or a boolean. Let’s keep moving and see what that gets you!

Sharpen your pencil

[image: Image]

Get out your pencil and put some expressions through their paces. For each expression below, compute its value and write in your answer. Yes, WRITE IN... forget what your Mom told you about writing in books and scribble your answer right in this book! Be sure to check your answers at the end of the chapter.

[image: Image]

Serious Coding

[image: Image]

Did you notice that the = operator is used in assignments, while the == operator tests for equality? That is, we use one equal sign to assign values to variables. We use two equal signs to test if two values are equal to each other. Substituting one for the other is a common coding mistake.

[image: Image]

Doing things more than once

You do a lot of things more than once:

Lather, rinse, repeat...

Wax on, wax off...

Eat candies from the bowl until they’re all gone.

Of course you’ll often need to do things in code more than once, and JavaScript gives you a few ways to repeatedly execute code in a loop: while, for, for in and forEach. Eventually, we’ll look at all these ways of looping, but let’s focus on while for now.

We just talked about expressions that evaluate to boolean values, like scoops > 0, and these kinds of expressions are the key to the while statement. Here’s how:

[image: Image]

How the while loop works

Seeing as this is your first while loop, let’s trace through a round of its execution to see exactly how it works*. Notice we’ve added a declaration for scoops to declare it, and initialize it to the value 5.

Now let’s start executing this code. First we set scoops to five.

[image: Image]

After that we hit the while statement. When we evaluate a while statement the first thing we do is evaluate the conditional to see if it’s true or false.

[image: Image]

Because the conditional is true, we start executing the block of code. The first statement in the body writes the string “Another scoop!
” to the browser.

[image: Image]

* To follow along, grab the code for this chapter from http://wickedlysmart.com/hfjs and drag the file icecream.html into your browser.

The next statement subtracts one from the number of scoops and then sets scoops to that new value, four.

[image: Image]

That’s the last statement in the block, so we loop back up to the conditional and start over again.

[image: Image]

Evaluating our conditional again, this time scoops is four. But that’s still more than zero.

[image: Image]

Once again we write the string “Another scoop!
” to the browser.

[image: Image]

The next statement subtracts one from the number of scoops and sets scoops to that new value, which is three.

[image: Image]

That’s the last statement in the block, so we loop back up to the conditional and start over again.

[image: Image]

Evaluating our conditional again, this time scoops is three. But that’s still more than zero.

[image: Image]

Once again we write the string “Another scoop!
” to the browser.

[image: Image]

And as you can see, this continues... each time we loop, we decrement (reduce scoops by 1), write another string to the browser, and keep going.

[image: Image]

And continues...

[image: Image]

Until the last time... this time something’s different. Scoops is zero, and so our conditional returns false. That’s it folks; we’re not going to go through the loop anymore, we’re not going to execute the block. This time, we bypass the block and execute the statement that follows it.

[image: Image]

Now we execute the other document.write, and write the string “Life without ice cream isn’t the same”. We’re done!

[image: Image]

if (cashInWallet > 5) {
 order = "I’ll take the works:
cheeseburger, fries and a coke";
} else {
 order = "I’ll just have a glass of
water";
}

Making decisions with JavaScript

You’ve just seen how you use a conditional to decide whether to continue looping in a while statement. You can also use boolean expressions to make decisions in JavaScript with the if statement. The if statement executes its code block only if a conditional test is true. Here’s an example:

[image: Image]

With an if statement we can also string together multiple tests by adding on one or more else if’s, like this:

[image: Image]

And, when you need to make LOTS of decisions

You can string together as many if/else statements as you need, and if you want one, even a final catch-all else, so that if all conditions fail, you can handle it. Like this:

[image: Image]

[image: Image]

there are no Dumb Questions

Q: What exactly is a code block?

A: Syntactically, a code block (which we usually just call a block) is a set of statements, which could be one statement, or as many as you like, grouped together between curly braces. Once you’ve got a block of code, all the statements in that block are treated as a group to be executed together in sequence. For instance, all the statements within the block in a while statement are executed if the condition of the while is true. The same holds for a block in an if or else if.

Q: I’ve seen code where the conditional is a variable with a value that isn’t a boolean, like a string or a number. How does that work?

A: We’ll be covering that a little later, but the short answer is JavaScript is quite flexible in what it thinks is a true or false value. For instance, any variable that holds a (non-empty) string is considered true, but a variable that hasn’t been set to a value is considered false. We’ll get into these details soon enough.

Q: You’ve said that expressions can result in things other than numbers, strings and booleans. Like what?

A: Right now we’re concentrating on what are known as the primitive types, that is, numbers, strings and booleans. Later we’ll take a look at more complex types, like arrays, which are collections of values, objects and functions.

Q: Where does the name boolean come from?

A: Booleans are named after George Boole, an English mathematician who invented Boolean logic. You’ll often see boolean written “Boolean,” to signify that these types of variables are named after George.

Code Magnets

[image: Image]

A JavaScript program is all scrambled up on the fridge. Can you put the magnets back in the right places to make a working JavaScript program to produce the output shown below? Check your answer at the end of the chapter before you go on.

[image: Image]

Reach out and communicate with your user

We’ve been talking about making your pages more interactive, and to do that you need to be able to communicate with your user. As it turns out there are a few ways to do that, and you’ve already seen some of them. Let’s get a quick overview and then we’ll dive into these in more detail throughout the book:

Create an alert

As you’ve seen, the browser gives you a quick way to alert your users through the alert function. Just call alert with a string containing your alert message, and the browser will give your user the message in a nice dialog box. A small confession though: we’ve been overusing this because it’s easy; alert really should be used only when you truly want to stop everything and let the user know something.

Write directly into your document

Think of your web page as a document (that’s what the browser calls it). You can use a function document.write to write arbitrary HTML and content into your page at any point. In general, this is considered bad form, although you’ll see it used here and there. We’ve used it a bit in this chapter too because it’s an easy way to get started.

Note

We’re using these three methods in this chapter.

Use the console

Every JavaScript environment also has a console that can log messages from your code. To write a message to the console’s log you use the function console.log and hand it a string that you’d like printed to the log (more details on using console log in a second). You can view console.log as a great tool for troubleshooting your code, but typically your users will never see your console log, so it’s not a very effective way to communicate with them.

Note

The console is a really handy way to help find errors in your code! If you’ve made a typing mistake, like missing a quote, JavaScript will usually give you an error in the console to help you track it down.

Directly manipulate your document

This is the big leagues; this is the way you want to be interacting with your page and users—using JavaScript you can access your actual web page, read & change its content, and even alter its structure and style! This all happens by making use of your browser’s document object model (more on that later). As you’ll see, this is the best way to communicate with your user. But, using the document object model requires knowledge of how your page is structured and of the programming interface that is used to read and write to the page. We’ll be getting there soon enough. But first, we’ve got some more JavaScript to learn.

Note

This is what we’re working towards. When you get there you’ll be able to read, alter and manipulate your page in any number of ways.

Who Does What

All our methods of communication have come to the party with masks on. Can you help us unmask each one? Match the descriptions on the right to the names on the left. We’ve done one for you.

[image: Image]

A closer look at console.log

Let’s take a closer look at how console.log works so we can use it in this chapter to see the output from our code, and throughout the book to inspect the output of our code and debug it. Remember though, the console is not a browser feature most casual users of the web will encounter, so you won’t want to use it in the final version of your web page. Writing to the console log is typically done to troubleshoot as you develop your page. That said, it’s a great way to see what your code is doing while you’re learning the basics of JavaScript. Here’s how it works:

[image: Image]

there are no Dumb Questions

Q: I get that console.log can be used to output strings, but what exactly is it? I mean why are the “console” and the “log” seperated by a period?

A: Ah, good point. We’re jumping ahead a bit, but think of the console as an object that does things, console-like things. One of those things is logging, and to tell the console to log for us, we use the syntax “console.log” and pass it our output in between parentheses. Keep that in the back of your mind; we’re coming back to talk a lot more about objects a little later in the book. For now, you’ve got enough to use console.log.

Q: Can the console do anything other than just log?

A: Yes, but typically people just use it to log. There are a few more advanced ways to use log (and console), but they tend to be browser-specific. Note that console is something all modern browsers supply, but it isn’t part of any formal specification.

Q: Uh, console looks great, but where do I find it? I’m using it in my code and I don’t see any output!

A: In most browsers you have to explicitly open the console window. Check out the next page for details.

Opening the console

Every browser has a slightly different implementation of the console. And, to make things even more complicated, the way that browsers implement the console changes fairly frequently—not in a huge way, but enough so that by the time you read this, your browser’s console might look a bit different from what we’re showing here.

So, we’re going to show you how to access the console in the Chrome browser (version 120) on the Mac, and we’ll put instructions on how to access the console in all the major browsers online at http://wickedlysmart.com/hfjsconsole. Once you get the hang of the console in one browser, it’s fairly easy to figure out how to use it in other browsers too, and we encourage you to try using the console in at least two browsers so you’re familiar with them.

Note

Note: You don’t need to type the Howdy code in. We’re just learning where the console is. We’ll start typing in code in just a sec...

[image: Image]

Coding a Serious JavaScript Application

Let’s put all these new JavaScript skills and console.log to good use with something practical. We need some variables, a while statement, some if statements with elses. Add a little more polish and we’ll have a super-serious business application before you know it. But, before you look at the code, think to yourself how you’d code that classic favorite, “99 bottles of rootbeer.”

[image: Image]

const word = "bottles";
let count = 99;
while (count > 0) {
 console.log(count + " " + word + " of rootbeer on the wall");
 console.log(count + " " + word + " of rootbeer,");
 console.log("Take one down, pass it around,");
 count = count - 1;
 if (count > 0) {
 console.log(count + " " + word + " of rootbeer on the wall.");
 } else {
 console.log("No more " + word + " of rootbeer on the wall.");
 }
}

Brain Power

[image: Image]

There’s still a little flaw in our code. It runs correctly, but the output isn’t 100% perfect. See if you can find the flaw, and fix it.

[image: Image]

Good point! Yes, it’s time. Before we got there we wanted to make sure you had enough JavaScript under your belt to make it interesting. That said, you already saw in the beginning of this chapter that you add JavaScript to your HTML just like you add CSS; that is, you just add it inline with the appropriate <script> tags around it.

Now, like CSS, you can also place your JavaScript in files that are external to your HTML.

Let’s first get this serious business application into a page, and then after we’ve thoroughly tested it, we’ll move the JavaScript out to an external file.

Test Drive

[image: Image]

Okay, let’s get some code in the browser... follow the instructions below and get your serious business app launched! You’ll see our result below:

Note

To download all the code and sample files for this book, please visit http://wickedlysmart.com/hfjs.

[image: Image]

How do I add code to my page? (let me count the ways)

You already know you can add the <script> element with your JavaScript code to the <head> or <body> of your page, but there are a couple of other ways to add your code to a page. Let’s check out all the places you can put JavaScript (and why you might want to put it one place over another):

[image: Image]

[image: Image]

We’re going to have to separate you two

Going separate ways hurts, but we know we have to do it. It’s time to take your JavaScript and move it into its own file. Here’s how you do that...

[image: Image]

[image: Image]

Anatomy of a Script Element

[image: Image]

You know how to use the <script> element to add code to your page, but just to really nail down the topic, let’s review the <script> element to make sure we have every detail covered:

[image: Image]

And when you are referencing a separate JavaScript file from your HTML, you’ll use the <script> element like this:

[image: Image]

Watch it!

[image: Image]

You can’t use inline and external together.

If you try throwing some quick code in between those <script> tags when you’re already using a src attribute, it won’t work. You’ll need two separate <script> elements.

<script src="goodies.js">
 let x = "quick hack";
</script>

[image: Image]

JavaScript Exposed: This week’s interview: Getting to know JavaScript

[image: Image]

Head First: Welcome JavaScript. We know you’re super-busy out there, working on all those web pages, so we’re glad you could take time out to talk to us.

JavaScript: No problem. And, I am busier than ever these days; people are using JavaScript on just about every page on the Web nowadays, for everything from simple menu effects to full blown games. It’s nuts!

Head First: That’s amazing given that just a few years ago, someone said that you were just a “half-baked, wimpy scripting language” and now you’re everywhere.

JavaScript: Don’t remind me. I’ve come a long way since then, and many great minds have been hard at work making me better.

Head First: Better how? Seems like your basic language features are about the same...

JavaScript: Well, I’m better in a couple of ways. First of all, I’m lightning fast these days. While I’m considered a scripting language, now my performance is close to that of native compiled languages.

Head First: And second?

JavaScript: My ability to do things in the browser has expanded dramatically. Using the JavaScript libraries available in all modern browsers you can find out your location, play video and audio, paint graphics on your web page and a lot more. But if you wanna do all that you have to know JavaScript.

Head First: But back to those criticisms of you, the language. I’ve heard some not so kind words... I believe the phrase was “hacked up language.”

JavaScript: I’ll stand on my record. I’m pretty much one of, if not the most widely used languages in the world. I’ve also fought off many competitors and won. Remember Java in the browser? Ha, what a joke. VBScript? Ha. JScript? Flash?! Silverlight? I could go on and on. So, tell me, how bad could I be?

Head First: You’ve been criticized as, well, “simplistic.”

JavaScript: Honestly, it’s my greatest strength. The fact that you can fire up a browser, type in a few lines of JavaScript and be off and running, that’s powerful. And it’s great for beginners too. I’ve heard some say there’s no better beginning language than JavaScript.

Head First: But simplicity comes at a cost, no?

JavaScript: Well that’s the great thing, I’m simple in the sense you can get a quick start. But I’m deep and full of all the latest modern programming constructs.

Head First: Oh, like what?

JavaScript: Well, for example, can you say dynamic types, first-class functions and closures?

Head First: I can say it but I don’t know what they are.

JavaScript: Figures... that’s okay, if you stay with the book you will get to know them.

Head First: Well, give us the gist.

JavaScript: Let me just say this, JavaScript was built to live in a dynamic web environment, an exciting environment where users interact with a page, where data is coming in on the fly, where many types of events happen, and the language reflects that style of programming. You’ll get it a little more a bit later in the book when you understand JavaScript more.

Head First: Okay, to hear you tell it, you’re the perfect language. Is that right?

JavaScript tears up...

JavaScript: You know, I didn’t grow up within the ivy-covered walls of academia like most languages. I was born into the real world and had to sink or swim very fast in my life. Given that, I’m not perfect; I certainly have a few “rough spots.”

Head First with a slight Barbara Walters smile: We’ve seen a new side of you today. I think this merits another interview in the future.

Bullet Points

	JavaScript is used to add behavior to web pages.

	Browser engines are much faster at executing JavaScript than they were just a few years ago.

	Browsers begin executing JavaScript code as soon as they encounter the code in the page.

	Add JavaScript to your page with the <script> element.

	You can put your JavaScript inline in the web page, or link to a separate file containing your JavaScript from your HTML.

	Use the src attribute in the <script> tag to link to a separate JavaScript file.

	HTML declares the structure and content of your page; JavaScript computes values and adds behavior to your page.

	JavaScript programs are made up of a series of statements.

	One of the most common JavaScript statements is a variable declaration, which uses the let keyword to declare a new variable and the assignment operator, =, to assign a value to it.

	Use const to assign a value that shouldn’t change.

	The value of a constant doesn’t vary, so we call them constants, not variables.

	There are just a few rules and guidelines for naming JavaScript variables and constants, and it’s important that you follow them.

	Remember to avoid JavaScript keywords when naming variables.

	JavaScript expressions compute values.

	Three common types of expressions are numeric, string and boolean expressions.

	if/else statements allow you to make decisions in your code.

	while/for statements allow you to execute code many times by looping.

	You can group statements together into a code block by enclosing them in curley braces.

	Use console.log instead of alert to display messages to the console.

	Console messages should be used primarily for troubleshooting as users will most likely never see console messages.

	JavaScript is most commonly found adding behavior to web pages, but is also used to script many creative applications, and is used as a server-side programming language with node. js.

JavaScript cross

[image: Image]

Time to stretch your dendrites with a puzzle to help it all sink in.

[image: Image]

ACROSS

1. Variables are used to store these.

4. Use _____________ to troubleshoot your code.

7. Today’s JavaScript runs a lot ________________ than it used to.

8. There are 99 _____________ of rootbeer on the wall.

9. To link to an external JavaScript file from HTML, you need the _______ attribute for your <script> element.

10. Each time through a loop, we evaluate a ______________ expression.

13. The if/else statement is used to make a ____________.

14. All JavaScript statements end with a ___________.

16. You put your JavaScript inside a ______________ element.

DOWN

2. You can concatenate _______________ together with the + operator.

3. Store values that don’t change in this.

5. 3 + 4 is an example of an _____________.

6. JavaScript adds _______________ to your web pages.

9. Each line of JavaScript code is called a _______________.

10. To avoid embarrassing naming mistakes, use __________ case.

11. Do things more than once in a JavaScript program with the _________ loop.

12. JavaScript variable names are _________ sensitive.

15. To declare a variable, use this keyword.

Sharpen your pencil Solution

[image: Image]

Identify that declarations below that you think are best suited for let and for const. Remember, while all uppercase text is a convention for const variable, it isn’t always adhered to. We’ve done a couple for you:

[image: Image]

BE the Browser Solution

[image: Image]

Below, you’ll find JavaScript code with some mistakes in it. Your job is to play like you’re the browser and find the errors in the code. After you’ve done the exercise look at the end of the chapter to see if you found them all.

[image: Image]

Sharpen your pencil Solution

[image: Image]

Get out your pencil and let’s put some expressions through their paces. For each expression below, compute its value and write in your answer. Yes, WRITE IN... forget what your Mom told you about writing in books and scribble your answer right in this book! Here’s our solution.

[image: Image]

Code Magnet Solution

[image: Image]

A JavaScript program is all scrambled up on the fridge. Can you put the magnets back in the right places to make a working JavaScript program to produce the output shown below?. Here’s our solution.

[image: Image]

[image: Image]

JavaScript cross Solution

[image: Image]

[image: Image]

Who Does What? Solution

All our methods of communication have come to the party with masks on. Can you help us unmask each one? Match the descriptions on the right to the names on the left. Here’s our solution:

[image: Image]

Chapter 2. Writing Real Code: Going Further

A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—the authors’ raw and unedited content as they write—so you can take advantage of these technologies long before the official release of these titles.

This will be the 2nd chapter of the final book.

If you have comments about how we might improve the content and/or examples in this book, or if you notice missing material within this chapter, please reach out to the editor at mcronin@oreilly.com.

[image: Image]

You already know about variables, types, expressions... we could go on. The point is, you already know a few things about JavaScript. In fact, you know enough to write some real code. Some code that does something interesting, some code that someone would want to use. What you’re lacking is the real experience of writing code, and we’re going to remedy that right here and now. How? By jumping in head first and coding up a casual game, all written in JavaScript. Our goal is ambitious but we’re going to take it one step at a time. Come on, let’s get this started, and if you want to launch the next startup, we won’t stand in your way; the code is yours.

Let’s build a Battleship game

It’s you against the browser: the browser hides ships and your job is to seek them out and destroy them. Of course, unlike the real Battleship game, in this one you don’t place any ships of your own. Instead, your job is to sink the computer’s ships in the fewest number of guesses.

Goal: Sink the browser’s ships in the fewest number of guesses. You’re given a rating, based on how well you perform.

Setup: When the game program is launched, the computer places ships on a virtual grid. When that’s done, the game asks for your first guess.

How you play: The browser will prompt you to enter a guess and you’ll type in a grid location. In response to your guess, you’ll see a result of “Hit”, “Miss”, or “You sank my battleship!” When you sink all the ships, the game ends by displaying your rating.

Our first attempt...

... a simplified Battleship

For our first attempt we’re going to start simpler than the full-blown 7x7 graphical version with three ships. Instead we’re going to start with a nice 1-D grid with seven locations and one ship to find. It will be crude, but our focus is on designing the basic code for the game, not the look and feel (at least for now).

Don’t worry; by starting with a simplified version of the game, you get a big head start on building the full game later. This also gives us a nice chunk to bite off for your first real JavaScript program (not counting the Serious Business Application from Chapter 1, of course). So, we’ll build the simple version of the game in this chapter, and get to the deluxe version later in the book after you’ve learned a bit more about JavaScript.

[image: Image]

[image: Image]

First, a high-level design

We know we’ll need variables, and some numbers and strings, and if statements, and conditional tests, and loops... but where and how many? And how do we put it all together? To answer these questions, we need more information about what the game should do.

First, we need to figure out the general flow of the game. Here’s the basic idea:

[image: Image]

Now we have a high-level idea of the kinds of things the program needs to do. Next we’ll figure out a few more details for the steps.

[image: Image]

A few more details...

We have a pretty good idea about how this game is going to work from the high-level design and professional looking flowchart, but let’s nail down just a few more of the details before we begin writing the code.

Representing the ships

For one thing, we can start by figuring out how to represent a ship in our grid. Keep in mind that the virtual grid is... well, virtual. In other words, it doesn’t exist anywhere in the program. As long as both the game and the user know that the battleship is hidden in three consecutive cells out of a possible seven (starting at zero), the row itself doesn’t have to be represented in code. You might be tempted to build something that holds all seven locations and then to try to place the ship in those locations. But, we don’t need to. We just need to know the cells where the ship is located, say, at cells 1, 2 and 3.

[image: Image]

Getting user input

What about getting user input? We can do that with the prompt function. Whenever we need to get a new location from the user, we’ll use prompt to display a message and get the input, which is just a number between 0 and 6, from the user.

Displaying the results

What about output? For now, we’ll continue to use alert to show the output of the game. It’s a bit clunky, but it’ll work. (For the real game, later in the book, we’ll be updating the web page instead, but we’ve got a way to go before we get there.)

Working through the Pseudocode

We need an approach to planning and writing our code. We’re going to start by writing pseudocode. Pseudocode is halfway between real JavaScript code and a plain English description of the program, and as you’ll see, it will help us think through how the program is going to work without fully having to develop the real code.

In this pseudocode for Simple Battleship, we’ve included a section that describes the variables we’ll need, and a section describing the logic of the program. The variables will tell us what we need to keep track of in our code, and the logic describes what the code has to faithfully implement to create the game.

[image: Image]

Sharpen your pencil

[image: Image]

Let’s say our virtual grid looks like this:

[image: Image]

And we’ve represented the ship locations using our location variables, like this:

location1 = 3;
location2 = 4;
location3 = 5;

Use the following sequence as your test user input:

1, 4, 2, 3, 5

Now, using the pseudocode on the previous page, walk through each step of code and see how this works given the user input. Put your notes below. We’ve begun the exercise for you below. If this is your first time walking through pseudocode, take your time and see how it all works.

Note

If you need a hint, take a quick peek at our answer at the end of the chapter.

[image: Image]

Oh, before we go any further, don’t forget the HTML!

You’re not going to get very far without some HTML to link to your code. Go ahead and type the markup below into a new file named “battleship.html”. After you’ve done that we’ll get back to writing code.

[image: Image]

[image: Image]

Brain Power

[image: Image]

Flex those dendrites.

This is thinking ahead a bit, but what kind of code do you think it would take to generate a random location for the ship each time you load the page? What factors would you have to take into account in the code to correctly place a ship? Feel free to scribble some ideas here.

Writing the Simple Battleship code

We’re going to use the pseudocode as a blueprint for our real JavaScript code. First, let’s tackle all the variables we need. Take another look at our pseudocode to check out the variables we need:

[image: Image]

Let’s get these variables into a JavaScript file. Create a new file named “battleship.js” and type in your variable declarations like this:

[image: Image]

Serious Coding

[image: Image]

If you don’t provide an initial value for a variable, then JavaScript gives it a default value of undefined. Think of the value undefined as JavaScript’s way of saying “this variable hasn’t been given a value yet.” We’ll be talking more about undefined and some other strange values a little later.

Now let’s write the game logic

We’ve got the variables out of the way, so let’s dig into the actual pseudocode that implements the game. We’ll break this into a few pieces. The first thing you’re going to want to do is implement the loop: it needs to keep looping while the ship isn’t sunk. From there we’ll take care of getting the guess from the user and validating it—you know, making sure it really is a number between 0 and 6— and then we’ll write the logic to check for a hit on a ship and to see if the ship is sunk. Last, we’ll create a little report for the user with the number of guesses it took to sink the ship.

[image: Image]

[image: Image]

[image: Image]

Step One: setting up the loop, getting some input

Now we’re going to begin to translate the logic of our game into actual JavaScript code. There isn’t a perfect mapping from pseudocode to JavaScript, so you’ll see a few adjustments here and there. The pseudocode gives us a good idea of what the code needs to do, and now we have to write the JavaScript code that can do the how.

[image: Image]

Let’s start with all the code we have so far and then we’ll zero in on just the parts we’re adding (to save a few trees here and there, or electrons if you’re reading the digital version of the book):

[image: Image]

Brain Power

[image: Image]

If you ran this code now, would the game ever end?

How prompt works

The browser provides a built-in function you can use to get input from the user, named prompt. The prompt function is a lot like the alert function you’ve already used—prompt causes a dialog to be displayed with a string that you provide, just like alert—but it also provides the user with a place to type a response. That response, in the form of a string, is then returned as a result of calling the function. Now, if the user cancels the dialog or doesn’t enter anything, then null is returned instead.

[image: Image]

Watch it!

[image: Image]

You might be tempted to try this code now...

...but don’t. If you do, your browser will start an infinite loop of asking you for a guess, and then asking you for a guess, and so on, without any means of stopping the loop (other than using your operating system to force the browser process to stop).

Checking the user’s guess

If you look at the pseudocode, to check the user’s guess we need to first make sure the user has entered a valid input. If so, then we also check to see if the guess was a hit or miss. We’ll also want to make sure we appropriately update the guesses and hits variables. Let’s get started by checking the validity of the user’s input, and if the input is valid, we’ll increment the guesses variable. After that we’ll write the code to see if the user has a hit or miss.

[image: Image]

[image: Image]

Let’s look a little more closely at the validity test. You know we’re checking to see that the guess is between zero and six, but how exactly does this conditional test that? Let’s break it down:

[image: Image]

there are no Dumb Questions

Q: I noticed there is a cancel button on the prompt dialog box. What gets returned from the prompt function if the user hits cancel?

A: If you click cancel in the prompt dialog box then prompt returns the value null rather than a string. Remember that null means “no value”, which is appropriate in this case because you’ve cancelled without entering a value. We can use the fact that the value returned from prompt is null to check to see if the user clicked cancel, and if they did, then we could, say, end the game. We’re not doing that in our code, but keep this idea in the back of your mind as we might use it later in the book.

Q: You said that prompt always returns a string. So how can we compare a string value, like “0” or “6”, to numbers, like 0 and 6?

A: In this situation, JavaScript tries to convert the string in guess to a number in order to do the comparisons, guess < 0 and guess > 6. As long as you enter only a number, like 4, JavaScript knows how to convert the string “4” to the number 4 when it needs to. We’ll come back to the topic of type conversion in more detail later.

Q: What happens if the user enters something that isn’t a number into the prompt? Like “six” or “quit”?

A: In that case, JavaScript won’t be able to convert the string to a number for the comparison. So, you’d be comparing “six” to 6 or “quit” to 6, and that kind of comparison will return false, which will lead to a MISS. In a more robust version of battleship, we’ll check the user input more carefully and make sure they’ve entered a number first.

Q: With the OR operator, is it true if only one or the other is true, or can both be true?

A: Yes, both can be true. The result of the OR operator (||) is true if either of the tests is true, or if both are true. If both are false, then the result is false.

Q: Is there an AND operator?

A: Yes! The AND operator (&&) works similarly to OR, except that the result of AND is true only if both tests are true.

Q: What’s an infinite loop?

A: Great question. An infinite loop is one of the many problems that plague programmers. Remember that a loop requires a conditional test, and the loop will continue as long as that conditional test is true. If your code never does anything to change things so that the conditional test is false at some point, the loop will continue forever. And ever. Until you kill your browser or reboot.

Two-minute Guide to Boolean Operators

A boolean operator is used in a boolean expression, which results in a true or false value. There are two kinds of boolean operators: comparison operators and logical operators.

Comparison Operators

Comparison operators compare two values. Here are some common comparison operators:

	<
	means “less than”

	>
	means “greater than”

	==
	means “equal to”

	===
	means “exactly equal to” (we’ll come back to this one later)

	<=
	means “less than or equal to”

	>=
	means “greater than or equal to”

	!=
	means “not equal to”

Logical Operators

Logical operators combine two boolean expressions to create one boolean result (true or false). Here are two logical operators:

	||
	means OR. Results in true if either of the two expressions is true.

	&&
	means AND. Results in true if both of the two expressions are true.

Another logical operator is NOT, which acts on one boolean expression (rather than two):

	!
	means NOT. Results in true if the expression evaluates to false.

So, do we have a hit?

This is where things get interesting—the user’s taken a guess at the ship’s location and we need to write the code to determine if that guess has hit the ship. More specifically, we need to see if the guess matches one of the locations of the ship. If it does, then we’ll increment the hits variable.

[image: Image]

Here’s a first stab at writing the code for the hit detection; let’s step through it:

[image: Image]

Sharpen your pencil

[image: Image]

What do you think of this first attempt to write the code to detect when a ship is hit? Does it look more complex than it needs to be? Are we repeating code in a way that seems a bit, well, redundant? Could we simplify it? Using what you know of the || operator (that is, the boolean OR operator), can you simplify this code? Make sure you check your answer at the end of the chapter before moving on.

Adding the hit detection code

Let’s put everything together from the previous couple of pages:

[image: Image]

[image: Image]

Hey, you sank my battleship!

[image: Image]

We’re almost there; we’ve almost got this game logic nailed down. Looking at the pseudocode again, what we need to do now is test to see if we have three hits. If we do, then we’ve sunk a battleship. And, if we’ve sunk a battleship then we need to set isSunk to true and also tell the user they’ve destroyed a ship. Let’s sketch out the code again before adding it in:

[image: Image]

Provide some post-game analysis

After isSunk is set to true, the while loop is going to stop looping. That’s right, this program we’ve come to know so well is going to stop executing the body of the while loop, and before you know it the game’s going to be over. But, we still owe the user some stats on how they did. Here’s some code that does that:

[image: Image]

[image: Image]

Now let’s add this and the sunk ship detection into the rest of the code:

[image: Image]

Exercise

[image: Image]

Remember we said pseudocode often isn’t perfect? Well we actually left something out of our original pseudocode: we’re not telling the user if her guess is a HIT or a MISS. Can you insert these pieces of code in the proper place to correct this?

[image: Image]

And that completes the logic!

Alright! We’ve now fully translated the pseudocode to actual JavaScript code. We even discovered something we left out of the pseudocode and we’ve got that accounted for too. Below you’ll find the code in its entirety. Make sure you have this typed in and saved in “battleship.js”:

[image: Image]

let location1 = 3;
let location2 = 4;
let location3 = 5;
let guess;
let hits = 0;
let guesses = 0;
let isSunk = false;

while (isSunk == false) {
 guess = prompt("Ready, aim, fire! (enter a number from 0-6):");
 if (guess < 0 || guess > 6) {
 alert("Please enter a valid cell number!");
 } else {
 guesses = guesses + 1;

 if (guess == location1 || guess == location2 || guess == location3) {
 alert("HIT!");
 hits = hits + 1;
 if (hits == 3) {
 isSunk = true;
 alert("You sank my battleship!");
 }
 } else {
 alert("MISS");
 }
 }
}
let stats = "You took " + guesses + " guesses to sink the battleship, " +
 "which means your shooting accuracy was " + (3/guesses);
alert(stats);

Doing a little Qualit y Assurance

QA, or quality assurance, is the process of testing software to find defects. So we’re going to do a little QA on this code. When you’re ready, load “battleship.html” in your browser and start playing. Try some different things. Is it working perfectly? Or did you find some issues? If so list them here. You can see our test run on this page too.

[image: Image]

[image: Image]

[image: Image]

Boolean operators allow you to write more complex statements of logic.

You’ve seen enough conditionals to know how to test, say, if the temperature is greater than 32 degrees. Or, that a variable that represents whether an item is inStock is true. But sometimes we need to test more. Sometimes we need to know not only if a value is greater than 32, but also if it’s less than 100. Or, if an item is inStock, and also onSale. Or that an item is on sale only on Tuesdays when the user is a VIP member. So, you see, these conditionals can get complex.

Let’s step through a few to get a better idea of how they work.

Say we need to test that an item is inStock AND onSale. We could do that like this:

[image: Image]

We can simplify this code by combining these two conditionals together. Unlike in Simple Battleship, where we tested if guess < 0 OR guess > 6, here we want to know if inStock is true AND onSale is true. Let’s see how to do that...

[image: Image]

We don’t have to stop there; we can use multiple boolean operators to combine conditionals in a variety of ways:

[image: Image]

Sharpen your pencil

[image: Image]

We’ve got a whole bunch of boolean expressions that need evaluating below. Fill in the blanks, and then check your answers at the end of the chapter before you go on.

[image: Image]

Exercise

[image: Image]

Bob and Bill, both from accounting, are working on a new price checker application for their company’s web site. They’ve both written if/else statements using boolean expressions. Both are sure they’ve written the correct code. Which accountant is right? Should these accountants even be writing code? Check your answer at the end of the chapter before you go on.

[image: Image]

[image: Image]

Can we talk about your verbosit y...

We don’t know how to bring this up, but you’ve been a little verbose in specifying your conditionals. What do we mean? Take this condition for instance:

[image: Image]

As it turns out, that’s a bit of overkill. The whole point of a conditional is that it evaluates to either true or false, but our boolean variable inStock already is one of those values. So, we don’t need to compare the variable to anything; it can just stand on its own. That is, we can just write this instead:

[image: Image]

Now, while some might claim our original, verbose version was clearer in its intent, it’s more common to see the more succinct version in practice. And, you’ll find the less verbose version easier to read as well.

Exercise

[image: Image]

We’ve got two statements below that use the onSale and inStock variables in conditionals to figure out the value of the variable buyIt. Work through each possible value of inStock and onSale for both statements. Which version is the biggest spender?

[image: Image]

Finishing the Simple Battleship game

Yes, we still have one little matter to take care of because right now you’ve hard coded the location of the ship—no matter how many times you play the game, the ship is always at locations 3, 4 and 5. That actually works out well for testing, but we really need to randomly place the ship to make it a little more interesting to the user.

Let’s step back and think about the right way to place a ship on the 1-D grid of seven cells. We need a starting location that allows us to place three consecutive positions on the grid. That means we need a starting location from zero to four.

[image: Image]

How to assign random locations

Now, once we have a starting location (between zero and four), we simply use it and the following two locations to hold the ship.

Note

Take the random location along with the next two consecutive locations.

let location1 = randomLoc;
let location2 = location1 + 1;
let location3 = location2 + 1;

Okay, but how do we generate a random number? That’s where we turn to JavaScript and its built-in functions. More specifically, JavaScript comes with a bunch of built-in math-related functions, including a couple that can be used to generate random numbers. Now we’re going to get deeper into built-in functions, and functions in general, a little later in the book. For now, we’re just going to make use of these functions to get our job done.

The recipe for generating a random number

We’re going to start with the Math.random function. By calling this function we’ll get back a random decimal number:

[image: Image]

What we need is an integer between 0 and 4—that is, 0, 1, 2, 3 or 4—not a decimal number, like 0.34. To start, we could multiply the number returned by Math.random by 5 to get a little closer; here’s what we mean...

[image: Image]

That’s closer! Now all we need to do is clip off the end of the number to give us an integer number. To do that we can use another built-in Math function, Math.floor:

[image: Image]

there are no Dumb Questions

Q: If we’re trying to generate a number between 0 and 4, why does the code have a 5 in it, as in

Math.floor(Math.random() * 5)?

A: Good question. First, Math.random generates a number between 0 and 1, but not including 1. The maximum number you can get from Math.random is 0.999.... When you multiply that number by 5, the highest number you’ll get is 4.999... Math.floor always rounds a number down, so 1.2 becomes 1, but so does 1.9999. If we generate a number from 0 to 4.999... then everything will be rounded down to 0 to 4. This is not the only way to do it, and in other languages it’s often done differently, but this is how you’ll see it done in most JavaScript code.

Q: So if I wanted a random number between 0 and 100 (including 100), I’d write

Math.floor(Math.random() * 101)?

A: That’s right! Multiplying by 101, and using Math.floor to round down, ensures that your result will be at most 100.

Q: What are the parentheses for in Math.random()?

A: We use parentheses whenever we “call” a function. Sometimes we need to hand a value to a function, like we do when we use alert to display a message, and sometimes we don’t, like when we use Math.random. But whenever you’re calling a function (whether it’s built-in or not), you’ll need to use parentheses. Don’t worry about this right now; we’ll get into all these details in the next chapter.

Q: I can’t get my battleship game to work. I’m not seeing anything in my web page except the “Play battleship” heading. How can I figure out what I did wrong?

A: This is where using the console can come in handy. If you’ve made an error like forgetting a quote on a string, then JavaScript will typically complain about the syntax of your program not being right, and may even show you the line number where your error is. Sometimes errors are more subtle, however. For instance, if you mistakenly write isSunk = false instead of isSunk == false, you won’t see a JavaScript error, but your code won’t behave as you expect it to. For this kind of error, try using console.log to display the values of your variables at various points in your code to see if you can track down the error.

[image: Image]

Back to do a little more QA

That’s all we need. Let’s put this code together (we’ve already done that below) and replace your existing location code with it. When you’re finished, give it a few test runs to see how fast you can sink the enemy.

[image: Image]

Here’s one of our test sessions. The game’s a little more interesting now that we’ve got random locations for the ship. But we still managed to get a pretty good score...

[image: Image]

Exercise

[image: Image]

Wait a sec, we noticed something that looks wrong. Hint: when we enter 0, 1, 1, 1 things don’t look right! Can you figure out what’s happening?

[image: Image]

It’s a cliff-hanger!

Will we find the bug?

Will we fix the bug?

Stay tuned for a much improved version of Battleship a little later in the book...

And in the meantime, see if you can come up with ideas for how you might fix the bug.

QA Notes

[image: Image]

Found a bug! Entering the same number that is a hit on a ship results in sinking the ship, when it shouldn’t.

Congrats on your first true JavaScript program, and a short word about reusing code

You’ve probably noticed that we made use of a few built-in functions like alert, prompt, console.log and Math.random. With very little effort, these functions have given you the ability to pop up dialog boxes, log output to the console and generate random numbers, almost like magic. But, these built-in functions are just packaged up code that’s already been written for you, and as you can see their power is that you can use and reuse them just by making a call to them when you need them.

Now there’s a lot to learn about functions, how to call them, what kinds of values you can pass them, and so on, and we’re going to start getting into all that in the next chapter where you learn to create your own functions.

But before you get there you’ve got the bullet points to review, a crossword puzzle to complete... oh, and a good night’s sleep to let everything sink in.

Bullet Points

	You can use a flowchart to outline the logic of a JavaScript program, showing decision points and actions.

	Before you begin writing a program, it’s a good idea to sketch out what your program needs to do with pseudocode.

	Pseudocode is an approximation of what your real code should do.

	There are two kinds of boolean operators: comparison operators and logical operators. When used in an expression, boolean operators result in a true or false value.

	Comparison operators compare two values and result in true or false. For example, we can use the boolean comparison operator < (“less than”) like this: 3 < 6. This expression results in true.

	Logical operators combine two boolean values. For example true || false results in true; true && false results in false.

	You can generate a random number between 0 and 1 (including 0, but not including 1) using the Math.random function.

	The Math.floor function rounds down a decimal number to the nearest integer.

	Make sure you use Math with an uppercase M, and not m, when using Math.random and Math.floor.

	The JavaScript function prompt shows a dialog with message and a space for the user to enter a value.

	In this chapter, we used prompt to get input from the user, and alert to display the results of the battleship game in the browser.

JavaScript cross

[image: Image]

How does a crossword puzzle help you learn JavaScript? The mental twists and turns burn the JavaScript right into your brain!

[image: Image]

ACROSS

1. This helps you think about how a program is going to work.

7. Both while and if statements use __________ tests.

8. Boolean operators always result in true or _________.

9. To get a true value from an AND operator (&&), both parts of the conditional must be ___________.

10. JavaScript has many built-in __________ like alert and prompt.

11. To randomly choose a position for a ship, use Math._________.

DOWN

1. To get input from a user, you can use the _________ function.

2. == is a _____________ operator you can use to test to see if two values are the same.

3. OR (||) and AND (&&) are ___________ operators.

4. If you’re good at testing programs, you might want to become a ________ Assurance specialist.

5. If you don’t initialize a variable, the value is __________.

6. We keep track of whether a ship is sunk or not with a ________ variable.

8. To get a false value from an OR operator (||), both parts of the conditional must be __________.

Sharpen your pencil Solution

[image: Image]

Let’s say our virtual row looks like this:

[image: Image]

And we’ve represented that by setting:

location1 = 3;
location2 = 4;
location3 = 5;

Assume the following user input:

1, 4, 2, 3, 5

Now, using the pseudocode on the previous page, trace through each step of code, and see how this works. Put your notes below. We’ve started the trace for you below. Here’s our solution.

[image: Image]

Exercise Solution

[image: Image]

We’ve got two statements below that use the onSale and inStock variables in conditionals to figure out the value of the variable buyIt. Work through each possible value of inStock and onSale for both statements. Which version is the biggest spender? The OR (||) operator!

[image: Image]

Sharpen your pencil Solution

[image: Image]

We’ve got a whole bunch of boolean expressions that need evaluating below. Fill in the blanks. Here’s our solution:

[image: Image]

Exercise Solution

[image: Image]

Bob and Bill, both from accounting, are working on a new price checker application for their company’s web site. They’ve both written if/else statements using boolean expressions. Both are sure they’ve written the correct code. Which accountant is right? Should these accountants even be writing code? Here’s our solution.

[image: Image]

[image: Image]

Exercise Solution

[image: Image]

Remember we said pseudocode often isn’t perfect? Well we actually left something out of our original pseudocode: we’re not telling the user if her guess is a HIT or a MISS. Can you insert these pieces of code in the proper place to correct this? Here’s our solution:

[image: Image]

Sharpen your pencil Solution

[image: Image]

What do you think of this first attempt to write the code to detect when a ship is hit? Does it look more complex than it needs to be, or are we repeating code in a way that seems a bit, well, redundant? Could we simplify it? Using what you know of the || operator (that is, the boolean OR operator), can you simplify this code? Here’s our solution.

[image: Image]

JavaScript cross Solution

[image: Image]

How does a crossword puzzle help you learn JavaScript? The mental twists and turns burn the JavaScript right into your brain! Here’s our solution.

[image: Image]

 About the Authors

 Eric Freeman is a computer scientist, technology writer, and entrepreneur. Previously, he was a CTO at the Walt Disney Company. Eric’s most recent book, Head First Learn to Code, is a beginner’s guide to coding and computational thinking. Eric lives with his wife and young daughter in Austin, Texas. He holds a PhD in computer science from Yale University.

 Elisabeth Robson first got hooked on computers when she wrote a BASIC program to fill up her Commodore 64’s monitor screen full of hearts. She’s loved getting computers to do fun things ever since. She’s tinkered with everything from super computers to her iPhone, and she’s been programming the Web since the early days, when she built one of the first online resources for women in technology. Along with her many years of programming experience, Elisabeth has produced online training, and written four best-selling books and an online video course for O’Reilly Media (Head First Design Patterns, Head First HTML and CSS, Head First JavaScript Programming, Head First HTML5 Programming, and Learn to Build iPhone Apps with HTML, CSS, and JavaScript). She is currently co-founder and principal at WickedlySmart, an education content and technology company.

		Brief Table of Contents (Not Yet Final)

		1. A Quick Dip into Javascript: Getting your Feet Wet		The way JavaScript works

		How you’re going to write JavaScript

		How to get JavaScript into your page

		A little test drive

		JavaScript, you’ve come a long way...

		How to make a statement

		Variables and values

		Constants, another kind of variable

		Back away from that keyboard!

		Express yourself

		Doing things more than once

		How the while loop works

		Making decisions with JavaScript

		And, when you need to make LOTS of decisions

		Reach out and communicate with your user		Create an alert

		Write directly into your document

		Use the console

		Directly manipulate your document

		A closer look at console.log

		Opening the console

		Coding a Serious JavaScript Application

		How do I add code to my page? (let me count the ways)

		We’re going to have to separate you two

		JavaScript cross

		JavaScript cross Solution

		2. Writing Real Code: Going Further		Let’s build a Battleship game

		Our first attempt...		... a simplified Battleship

		First, a high-level design

		A few more details...		Representing the ships

		Getting user input

		Displaying the results

		Working through the Pseudocode

		Oh, before we go any further, don’t forget the HTML!

		Writing the Simple Battleship code

		Now let’s write the game logic

		Step One: setting up the loop, getting some input

		How prompt works

		Checking the user’s guess

		So, do we have a hit?

		Adding the hit detection code

		Hey, you sank my battleship!

		Provide some post-game analysis

		And that completes the logic!

		Doing a little Qualit y Assurance

		Can we talk about your verbosit y...

		Finishing the Simple Battleship game

		How to assign random locations

		The recipe for generating a random number

		Back to do a little more QA

		Congrats on your first true JavaScript program, and a short word about reusing code

		JavaScript cross

		JavaScript cross Solution

		About the Authors

