PYTHON FOR BEGINNERS

PYTHON FOR DATA SCIENCE

MACHINE LEARNING WITH PYTHON

Python programming for beginners

3 booksin 1

Beginner’s guide, Data science and Machine learning.

Switch from noobgramming to PROgramming in 27 days and bring out your
code poet attitude.

William Wizner

© Copyright 2020 - All rights reserved.

The content contained within this book may not be reproduced, duplicated or transmitted without direct
written permission from the author or the publisher.

Under no circumstances will any blame or legal responsibility be held against the publisher, or author,
for any damages, reparation, or monetary loss due to the information contained within this book. Either
directly or indirectly.

Legal Notice:

This book is copyright protected. This book is only for personal use. You cannot amend, distribute, sell,
use, quote or paraphrase any part, or the content within this book, without the consent of the author or
publisher.

Disclaimer Notice:

Please note the information contained within this document is for educational and entertainment
purposes only. All effort has been executed to present accurate, up to date, and reliable, complete
information. No warranties of any kind are declared or implied. Readers acknowledge that the author is
not engaging in the rendering of legal, financial, medical or professional advice. The content within this
book has been derived from various sources. Please consult a licensed professional before attempting
any techniques outlined in this book.

By reading this document, the reader agrees that under no circumstances is the author responsible for
any losses, direct or indirect, which are incurred as a result of the use of the information contained
within this document, including, but not limited to, — errors, omissions, or inaccuracies.

Python for beginners

Introduction

Chapter 1: Installing Python
Local Environment Setup
Getting Python
Installing Python
Here Is A Quick Overview Of Installing Python On Various Platforms:

Unix And Linux Installation

Windows Installation
Macintosh Installation

Setting Up PATH

Setting Path at Unix/Linux
Setting Path At Windows
Python Environment Variables

Running Python

Interactive Interpreter

Script from The Command-Line

Integrated Development Environment
IDLE
A File Editor

Editing A File
How to Improve Your Workflow
Chapter 2: Python Loops and Numbers

Loops
Numbers

Chapter 3: Data Types

String Manipulation

String Formatting

Type Casting

Assignment and Formatting Exercise
Chapter 4: Variable in Python

Variable Vs. Constants

Variables Vs. Literals

Variables Vs. Arrays

Naming Variables
Learning Python Strings, Numbers and Tuple

Types of Data Variables

Chapter 5: Inputs, Printing, And Formatting Outputs
Inputs
Printing and Formatting Outputs
Input and Formatting Exercise

Chapter 6: Mathematical Notation, Basic Terminology, and Building
Machine I.earning Systems

Mathematical Notation for Machine Learning

Terminologies Used for Machine I.earning
Chapter 7: Lists and Sets Python

Lists

Sets

Chapter 8: Conditions Statements

“if” statements

Else Statements
Code Blocks
While

For Loop
Break

Infinite I.oop
Continue

Practice Exercise

Chapter 9: Iteration
While Statement

Definite and Indefinite L.oops
The for Statement

Chapter 10: Functions and Control Flow Statements in Python
What is a Function?

Defining Functions
Call Function

Parameters of Function

Default Parameters

What is the control flow statements?

break statement

continue statement

pass statement
else statement

Conclusion:
Python for data science

Introduction:
Chapter 1: What is Data Analysis?

Chapter 2: The Basics of the Python I.anguage

The Statements

The Python Operators

The Keywords

Working with Comments
The Python Class

How to Name Your Identifiers

Python Functions

Chapter 3: Using Pandas

Pandas
Chapter 4: Working with Python for Data Science

Why Python Is Important?
What Is Python?

Python's Position in Data Science

Data Cleaning
Data Visualization

Feature Extraction

Model Building

Python Installation
Installation Under Windows

Conda

Spyder
Installation Under MAC

Installation Under Linux

Install Python
Chapter 5: Indexing and Selecting Arrays

Conditional selection

NumPy Array Operations
Array — Array Operations

Array — Scalar operations

Chapter 6: K-Nearest Neighbors Algorithm
Splitting the Dataset
Feature Scaling
Training the Algorithm
Evaluating the Accuracy
K Means Clustering
Data Preparation
Visualizing the Data
Creating Clusters

Chapter 7: Big Data

The Challenge
Applications in the Real World

Chapter 8: Reading Data in your Script
Reading data from a file
Dealing with corrupt data

Chapter 9: The Basics of Machine Learning
The Learning Framework

PAC Learning Strategies
The Generalization Models

Chapter 10: Using Scikit-I earn

Uses of Scikit-Learn

Representing Data in Scikit-Learn

Tabular Data

Features Matrix

Target Arrays
Understanding the API

Conclusion:

Machine learning with Python
Introduction:

Chapter 1: Python Installation
Anaconda Python Installation
Jupyvter Notebook

Fundamentals of Python programming

Chapter 2: Python for Machine I.earning
Chapter 3: Data Scrubbing
What is Data Scrubbing?

Removing Variables

One-hot Encoding
Drop Missing Values

Chapter 4: Data Mining Categories
Predictive Modeling
Analysis of Associations

Group Analysis
Anomaly Detection

Chapter 5: Difference Between Machine Learning and Al
What is artificial intelligence?
How is machine learning different?

Chapter 6: K-Means Clustering

Data Preparation

Visualizing the Data
Creating Clusters

Chapter 7: Linear Regression with Python

Chapter 8: Feature Engineering

Rescaling Techniques
Creating Derived Variables

Non-Numeric Features

Chapter 9: How Do Convolutional Neural Networks Work?

Pixels and Neurons

The Pre-Processing

Convolutions

Filter: Kernel Set

Activation Function

Subsampling

Subsampling with Max-Pooling
Now, More Convolutions!

Connect With a "Traditional" Neural Network

Chapter 10: Top Al Frameworks and Machine L.earning Libraries

TensorFlow
Scikit-learn

Al as a Data Analyst

Theano

Caffe

Keras

Microsoft Cognitive Toolkit

PyTorch
Torch

Chapter 11: The Future of Machine L.earning
Conclusion:

Python for beginners:

LEARN CODING, PROGRAMMING, DATA ANALYSIS, AND
ALGORITHMIC THINKING WITH THE LATEST PYTHON
CRASH COURSE. A STARTER GUIDE WITH TIPS AND TRICKS
FOR THE APPRENTICE PROGRAMMER.

William Wizner

© Copyright 2020 - All rights reserved.

The content contained within this book may not be reproduced, duplicated or transmitted without direct
written permission from the author or the publisher.

Under no circumstances will any blame or legal responsibility be held against the publisher, or author,
for any damages, reparation, or monetary loss due to the information contained within this book. Either
directly or indirectly.

Legal Notice:

This book is copyright protected. This book is only for personal use. You cannot amend, distribute, sell,
use, quote or paraphrase any part, or the content within this book, without the consent of the author or
publisher.

Disclaimer Notice:

Please note the information contained within this document is for educational and entertainment
purposes only. All effort has been executed to present accurate, up to date, and reliable, complete
information. No warranties of any kind are declared or implied. Readers acknowledge that the author is
not engaging in the rendering of legal, financial, medical or professional advice. The content within this
book has been derived from various sources. Please consult a licensed professional before attempting
any techniques outlined in this book.

By reading this document, the reader agrees that under no circumstances is the author responsible for
any losses, direct or indirect, which are incurred as a result of the use of the information contained
within this document, including, but not limited to, — errors, omissions, or inaccuracies.

Introduction

So, you have heard about this programming language that everyone considers
amazing, easy and fast.... the language of the future. You sit with your
friends, and all they have to talk about is essentially gibberish to you, and yet
it seems interesting to the rest of them. Perhaps you plan to lead a business,
and a little research into things reveals that a specific language is quite a lot
in demand these days. Sure enough, you can hire someone to do the job for
you, but how would you know if the job is being done the way you want it to
be, top-notch in quality and original in nature?

Whether you aim to pursue a career out of this journey, you are about to
embark on or set up your own business to serve hundreds of thousands of
clients who are looking for someone like you; you need to learn Python.

When it comes to Python, there are so many videos and tutorials which you
can find online. The problem is that each seems to be heading in a different
direction. There is no way to tell which structure you need to follow, or
where you should begin and where should it end. There is a good possibility
you might come across a video that seemingly answers your call, only to find
out that the narrator is not explaining much and pretty much all you see, you
have to guess what it does.

I have seen quite a few tutorials like that by myself. They can be annoying
and some even misleading. Some programmers will tell you that you are
already too late to learn Python and that you will not garner the kind of
success you seek out for yourself. Let me put such rumors and ill-messages to
rest.

e Age—Itis just a number. What truly matters are the desire you have to
learn. You do not need to be X years old to learn this effectively.
Similarly, there is no upper limit of Y years for the learning process. You
can be 60 and still be able to learn the language and execute brilliant
commands. All it requires is a mind that is ready to learn and a piece of
good knowledge on how to operate a computer, open and close programs,
and download stuff from the internet. That’s it!

e Language — Whether you are a native English speaker or a non-native
one, the language is open for all. As long as you can form basic sentences
and make sense out of them, you should easily be able to understand the

language of Python itself. It follows something called the “clean-code”
concept, which effectively promotes the readability of codes.

e Python is two decades old already — If you are worried that you are two
decades late, let me remind you that Python is a progressive language in
nature. That means, every year, we find new additions to the language of
Python, and some obsolete components are removed as well. Therefore,
the concept of “being too late” already stands void. You can learn today,
and you will already be familiar with every command by the end of a
year. Whatever has existed so far, you will already know. What would
follow then, you will eventually pick up. There is no such thing as being
too late to learn Python.

Of course, some people are successful and some not. Everything boils down
to how effectively and creatively you use the language to execute problems
and solutions. The more original your program is, the better you fare off.

“I vow that I will give my best to learn the language of Python and master the
basics. I also promise to practice writing codes and programs after I am done
with this book.”

Bravo! You just took the first step. Now, we are ready to turn the clock back
a little and see exactly where Python came from. If you went through the
introduction, I gave you a brief on how Python came into existence, but I left
out quite a few parts. Let us look into those and see why Python was the need
of the hour.

Before the inception of Python, and the famous language that it has gone on
to become, things were quite different. Imagine a world where programmers
gathered from across the globe in a huge computer lab. You have some of the
finest minds from the planet, working together towards a common goal,
whatever that might be. Naturally, even the finest intellectuals can end up
making mistakes.

Suppose one such programmer ended up creating a program, and he is not too
sure of what went wrong. The room is full of other programmers, and sure
enough, approaching someone for assistance would be the first thought of the
day. The programmer approaches another busy person who gladly decides to
help out a fellow intellectual programmer. Within that brief walk from one
station to the other, the programmer quickly exchanges the information,
which seems to be a common error. It is only when the programmer views the

code that they are caught off-guard. This fellow member has no idea what
any of the code does. The variables are labeled with what can only be defined
as encryptions. The words do not make any sense, nor is there any way to
find out where the error lies.

The compiler continues to throw in error after error. Remember, this was well
before 1991 when people did not have IDEs, which would help them see
where the error is and what needs to be done. The entire exercise would end
up wasting hours upon hours just to figure out that a semi-colon was missing.
Embarrassing and time-wasting!

This was just a small example, imagine the entire thing but on a global scale.
The programming community struggled to find ways to write codes that
could be understood easily by others. Some languages supported some
syntaxes, while others did not. These languages would not necessarily work
in harmony with each other, either. The world of programming was a mess.
Had Python not come at the opportune moment that it did, things would have
been so much more difficult for us to handle.

Guido Van Rossum, a Dutch-programmer, decided to work on a pet project.
Yes, you read that, right! Mr. Van Rossum wanted to keep himself occupied
during the holiday season and, hence, decided to write a new interpreter for a
language he had been thinking of lately. He decided to call the language
Python, and contrary to popular belief, it has nothing to do with the reptile
itself. Tracing its root from its predecessor, the ABC, Python came into
existence just when it was needed.

For our non-programming friends, ABC is the name of an old programming
language. Funny as it may sound, naming conventions wasn't exactly the
strongest here.

Python was quickly accepted by the programming community, albeit there is
the fact that programmers were a lot less numerous back then. It’s
revolutionary user-friendliness, responsive nature and adaptability
immediately caught the attention of everyone around. The more people
vested their time into this new language, the more Mr. Van Rossum started
investing his resources and knowledge to enhance the experience further.
Within a short period, Python was competing against the then leading
languages of the world. It soon went on to outlive quite a few of them owing
to the core concept is brought to the table: ease of readability. Unlike any

other programming language of that time, Python delivered codes that were
phenomenally easy to read and understand right away.

Remember our friend, the programmer, who asked for assistance? If he were
to do that now, the other fellow would immediately understand what was
going on.

Python also acquired fame for being a language that had an object-oriented
approach. This opened more usability of the language to the programmers
who required an effective way to manipulate objects. Think of a simple game.
Anything you see within it is an object that behaves in a certain way. Giving
that object that ‘sense’ is object-oriented programming (OOP). Python was
able to pull that off rather easily. Python is considered as a multi-paradigm
language, with OOP being a part of that as well.

Fast forward to the world we live in, and Python continues to dominate some
of the cutting-edge technologies in existence. With real-world applications
and a goliath of a contribution to aspects like machine learning, data sciences,
and analytics, Python is leading the charge with full force.

An entire community of programmers has dedicated their careers to maintain
Python and develop it as time goes by. As for the founder, Mr. Van Rossum
initially accepted the title of Benevolent Dictator for Life (BDFL) and retired
on 12 July 2018. This title was bestowed upon Mr. Van Rossum by the
Python community.

Today, Python 3 is the leading version of the language alongside Python 2,
which has its days numbered. You do not need to learn both of these to
succeed. We will begin with the latest version of Python as almost everything
that was involved in the previous version was carried forward, except for
components that were either dull or useless.

I know, right about now you are rather eager to dive into the concepts and get
done with history. It is vital for us to learn a few things about the language
and why it came into existence in the first place. This information might be
useful at some point in time, especially if you were to look at various codes
and identify which one of those was written in Python and which one was
not.

For anyone who may have used languages like C, C++, C#, JavaScript, you
might find quite a few similarities within Python, and some major
improvements too. Unlike in most of these languages, where you need to use

a semicolon to let the compiler know that the line has ended, Python needs
none of that. Just press enter and the program immediately understands that
the line has ended.

Before we do jump ahead, remember how some skeptics would have you
believe it is too late to learn Python? It is because of Python that self-driving
cars are coming into existence. Has the world seen too much of them
already? When was the last time you saw one of these vehicles on the road?
This is just one of a gazillion possibilities that lay ahead for us to conquer.
All it needs is for us to learn the language, brush up our skills, and get started.

“A journey to a thousand miles begins with the first step. After that, you are
already one step closer to your destination.”

Chapter 1: Installing Python

Python can be obtained from the Python Software Foundation website at
python.org. Typically, that involves downloading the appropriate installer for
your operating system and running it on your machine. Some operating
systems, notably Linux, provide a package manager that can be run to install

Python.

Python is available on a wide variety of platforms including Linux and Mac
OS X. Let's understand how to set up our Python environment.

Local Environment Setup

Open a terminal window and type "python" to find out if it is already
installed and which version is installed.

Unix (Solaris, Linux, FreeBSD, AIX, HP/UX, SunOS, IRIX,
etc.)

Win 9x/NT/2000
Macintosh (Intel, PPC, 68K)
0S/2

DOS (multiple versions)
PalmOS

Nokia mobile phones
Windows CE
Acorn/RISC OS

BeOS

Amiga

VMS/OpenVMS

QNX

VxWorks

Psion

Python has also been ported to the Java and .NET virtual machines

Getting Python

The most up-to-date and current source code, binaries, documentation, news,
etc., is available on the official website of Python https://www.python.org/

You can download Python documentation from https://www.python.org/doc/.
The documentation is available in HTML, PDF, and PostScript formats.

Installing Python
Python distribution is available for a wide variety of platforms. You need to
download only the binary code applicable for your platform and install
Python. If the binary code for your platform is not available, you need a C
compiler to compile the source code manually. Compiling the source code
offers more flexibility in terms of choice of features that you require in your
installation.

Here Is A Quick Overview Of Installing Python On Various
Platforms:

Unix And Linux Installation
Here are the simple steps to install Python on Unix/Linux machine.

e Open a Web browser and go to
https://www.python.org/downloads/.

e Follow the link to download zipped source code available
for Unix/Linux.

e Download and extract files.

e Editing the Modules/Setup file if you want to customize
some options.

e Run. /configure script
e Make install

e This installs Python at standard location /usr/local/bin and
its libraries at /usr/local/lib/pythonxx where XX is the
version of Python.

Windows Installation
Here are the steps to install Python on Windows machine.

e Open a Web browser and go to
https://www.python.org/downloads/.

e Follow the link for the Windows installer python-XYZ.msi
file where XYZ is the version you need to install.

e To use this installer python-XYZ.msi, the Windows system
must support Microsoft Installer 2.0. Save the installer file
to your local machine and then run it to find out if your
machine supports MSI.

e Run the downloaded file. This brings up the Python install
wizard, which is really easy to use. Just accept the default
settings, wait until the install is finished, and you are done.

Macintosh Installation

Recent Macs come with Python installed, but it may be several years
out of date. See http://www.python.org/download/mac/ for instructions on
getting the current version along with extra tools to support development on
the Mac. For older Mac OS's before Mac OS X 10.3 (released in 2003),
MacPython is available.

Setting Up PATH

Programs and other executable files can be in many directories, so operating
systems provide a search path that lists the directories that the OS searches
for executables.

The path is stored in an environment variable, which is a named string
maintained by the operating system. This variable contains information
available to the command shell and other programs. The path variable is
named as PATH in Unix or Path in Windows (Unix is case sensitive;
Windows is not).

In Mac OS, the installer handles the path details. To invoke the Python
interpreter from any particular directory, you must add the Python directory
to your path.

Setting Path at Unix/Linux
To add the python directory to the path for a particular session in Unix:

e In the csh shell — type sentence PATH
"$PATH:/usr/local/bin/python" and press Enter.

e In the bash shell (Linux) — type export
PATH="$PATH:/usr/local/bin/python" and press Enter.

e In the sh or ksh shell — type PATH="$PATH:/usr/local/bin/
python" and press Enter.

e Note — /usr/local/bin/python is the path of the Python
directory

Setting Path At Windows
To add the Python directory to the path for a particular session in Windows:

e At the command prompt — type path %path%; C:\Python
and press Enter.

e Note — C:\Python is the path of the Python directory
Python Environment Variables

Here are important environment variables, which can be recognized by
Python:

Sr.No. | Variable Description

1 PYTHONPATH It has a role similar to PATH. This
variable tells the Python interpreter where
to locate the module files imported into a
program. It should include the Python
source library directory and the
directories containing Python source
code. PYTHONPATH is sometimes
preset by the Python installer

2 PYTHONSTARTUP | It contains the path of an initialization file
containing Python source code. It is
executed every time you start the
interpreter. It is named as. pythonrc.py in
Unix and it contains commands that load
utilities or modify PYTHONPATH.

3 PYTHONCASEOK | It is used in Windows to instruct Python
to find the first case-insensitive match in
an import statement. Set this variable to

any value to activate it.

4 PYTHONHOME It is an alternative module search path. It
is usually embedded in the
PYTHONSTARTUP or PYTHONPATH
directories to make switching module
libraries easy.

Running Python
There are three different ways to start Python:

Interactive Interpreter
You can start Python from Unix, DOS, or any other system that provides you
a command-line interpreter or shell window.

Enter python the command line.

Start coding right away in the interactive interpreter.

e S$python # Unix/Linux
o or

e python% # Unix/Linux
o or

e (C:> python # Windows/DOS

Here is the list of all the available command line options:

Sr.No. | Option Description
1 -d It provides debug output.
2 -O

It generates optimized bytecode (resulting in. pyo
files).

Do not run import site to look for Python paths on
startup.

4 -V Verbose output (detailed trace on import
statements).

5 -X Disable class-based built-in exceptions (just use
strings); obsolete starting with version 1.6.

6 -c cmd Run Python script sent in as cmd string

7 File
Run Python script from given file

Script from The Command-Line
A Python script can be executed at command line by invoking the interpreter
on your application, as in the following:

e S$python script.py # Unix/Linux
o or

e python% script.py # Unix/Linux
o or

e (: >python script.py # Windows/DOS
Note: Be sure the file permission mode allows execution.

Integrated Development Environment
You can run Python from a Graphical User Interface (GUI) environment as
well, if you have a GUI application on your system that supports Python.

e Unix: IDLE is the very first Unix IDE for Python.

e Windows: PythonWin is the first Windows interface for
Python and is an IDE with a GUL.

e Macintosh: The Macintosh version of Python along with the
IDLE IDE is available from the main website, downloadable
as either MacBinary or BinHex'd files.

If you are not able to set up the environment properly, then you can take help
from your system admin. Make sure the Python environment is properly set
up and working perfectly fine.

Note: All the examples given in subsequent chapters are executed with
Python 2.4.3 version available on CentOS flavor of Linux.

IDLE
What Is Python IDLE?

Every Python installation comes with an Integrated Development and
Learning Environment, which you’ll see shortened to IDLE or even IDE.
These are a class of applications that help you write code more efficiently.
While there are many IDEs for you to choose from, Python IDLE is very
bare-bones, which makes it the perfect tool for a beginning programmer.

Python IDLE comes included in Python installations on Windows and Mac.
If you’re a Linux user, then you should be able to find and download Python
IDLE using your package manager. Once you’ve installed it, you can then
use Python IDLE as an interactive interpreter or as a file editor.

IDLE is intended to be a simple IDE and suitable for beginners, especially in
an educational environment. To that end, it is cross-platform, and avoids
feature clutter. According to the included README, its main features are:

e Multi-window text editor with syntax highlighting,
autocompletion, smart indent and other.

e Python shell with syntax highlighting.

e Integrated debugger with stepping, persistent breakpoints,
and call stack visibility.

A File Editor

Every programmer needs to be able to edit and save text files. Python
programs are files with the .py extension that contain lines of Python code.
Python IDLE gives you the ability to create and edit these files with ease.

Python IDLE also provides several useful features that you’ll see in
professional IDEs, like basic syntax highlighting, code completion, and auto-
indentation. Professional IDEs are more robust pieces of software and they
have a steep learning curve. If you’re just beginning your Python

programming journey, then Python IDLE is a great alternative!

Editing A File

Once you’ve opened a file in Python IDLE, you can then make changes to it.
When you’re ready to edit a file, you’ll see something like this:

e An opened python file in IDLE containing a single line of
code

e The contents of your file are displayed in the open window.
The bar along the top of the window contains three pieces of
important information:

e The name of the file that you’re editing

e The full path to the folder where you can find this file on
your computer

e The version of Python that IDLE is using

In the image above, you’re editing the file myFile.py, which is located in the
Documents folder. The Python version is 3.7.1, which you can see in
parentheses.

There are also two numbers in the bottom right corner of the window:

e Ln: shows the line number that your cursor is on.
e (Col: shows the column number that your cursor is on.

It’s useful to see these numbers so that you can find errors more q uickly.
They also help you make sure that you’re staying within a certain line width.
There are a few visual cues in this window that will help you remember to
save your work. If you look closely, then you’ll see that Python IDLE uses
asterisks to let you know that your file has unsaved changes:

e Shows what an unsaved file looks like in the idle editor

The file name shown in the top of the IDLE window is surrounded by
asterisks. This means that there are unsaved changes in your editor. You can
save these changes with your system’s standard keyboard shortcut, or you
can select File — Save from the menu bar. Make sure that you save your file
with the. py extension so that syntax highlighting will be enabled.

How to Improve Your Workflow

Now that you’ve seen how to write, edit, and execute files in Python IDLE,
it’s time to speed up your workflow! The Python IDLE editor offers a few
features that you’ll see in most professional IDEs to help you code faster.
These features include automatic indentation, code completion and call tips,
and code context.

Chapter 2: Python Loops and Numbers

Loops
In general, statements are executed sequentially: The first statement in a
function is executed first, followed by the second, and so on. There may be a
situation when you need to execute a block of code several number of times.

Programming languages provide various control structures that allow for
more complicated execution paths. A loop statement allows us to execute a
statement or group of statements multiple times. The following diagram
illustrates a loop statement.

Loop Architecture

Python programming language provides following types of loops to handle
looping re q uirements.

SR | Loop Type Description

No.

1 1 while loop | Repeats a statement or group of statements while a
given condition is TRUE. It tests the condition
before executing the loop body.

2 for loop Executes a se g uence of statements multiple times
and abbreviates the code that manages the loop
variable.

3 Nested loops
You can use one or more loop inside any another
while, for or do. while loop.

Loop Control Statements

Loop control statements change execution from its normal se q uence. When
execution leaves a scope, all automatic objects that were created in that scope
are destroyed. Python supports the following control statements. Click the
following links to check their detail.

Let us go through the loop control statements briefly.

SR | Control Statement Description
No.
1 break statement Terminates the loop statement and transfers

execution to the statement immediately
following the loop.

2 continue statement Causes the loop to skip the remainder of its
body and immediately retest its condition
prior to reiterating.

3 pass statement The pass statement in Python is used when
a statement is re q uired syntactically but
you do not want any command or code to
execute.

Numbers

Number data types store numeric values. They are immutable data types,
means that changing the value of a number data type results in a newly
allocated object. Number objects are created when you assign a value to
them. For example:

e varl=1
e var2=10

You can also delete the reference to a number object by using the del
statement. The syntax of the del statement is:

Del varl[, var2[, var3|...., varN]
You can delete a single object or multiple objects by using the del statement.
For example:
e Del var
e Delvar a, var b
Python Supports Four Different Numerical Types

1. Int (Signed Integers): They are often called just integers or ints, are

positive or negative whole numbers with no decimal point.

2. Long (Long Integers): Also called longs, they are integers of unlimited
size, written like integers and followed by an uppercase or lowercase L.

3. Float (Floating Point Real Values): Also called floats, they represent real
numbers and are written with a decimal point dividing the integer and
fractional parts. Floats may also be in scientific notation, with E or e
indicating the power of 10 (2.5e2 = 2.5 x 102 = 250).

4. Complex (Complex Numbers): are of the form a + bJ, where a and b are
floats and J (or j) represents the s q uare root of -1 (which is an imaginary
number). The real part of the number is a, and the imaginary part is b.
Complex numbers are not used much in Python programming.

Examples

Here Are Some Examples Of Numbers

e int long float complex
e 1051924361L 0.0 3.14j
e 100 -0x19323L 15.20 45. j
e -7860122L -21.9 9.322e-36j
e (080 OxDEFABCECBDAECBFBAEL 32.3+e18 .876j
e -0490 535633629843L -90. -.6545+0J
e -0x260-052318172735L -32.54e100 3e+26J
e 0x69 -4721885298529L 70.2-E12 4.53e-7]

Python allows you to use a lowercase L with long, but it is recommended that
you use only an uppercase L to avoid confusion with the number 1. Python
displays long integers with an uppercase L.

A complex number consists of ordered pair of real floating point numbers
denoted by a + bj, where a is the real part and b is the imaginary part of the
complex number.

Number Type Conversion

Python converts numbers internally in an expression containing mixed types
to a common type for evaluation. But sometimes, you need to coerce a

number explicitly from one type to another to satisfy the requirements of an
operator or function parameter.

e Type int(x) to convert x to a plain integer.
e Type long(x) to convert x to a long integer.

e Type float(x) to convert x to a floating-point number.
e Type complex(x) to convert X to a complex number with
real part x and imaginary part zero.

e Type complex (X, y) to convert X and y to a complex number with real
part x and imaginary part y. X and y are numeric expressions

Mathematical Functions —

Python includes following functions that perform mathematical calculations.

SR.NO | Functions and Return Description

1 abs(x) The absolute value of x: the
(positive) distance between x and
Zero.

2 ceil(x) The ceiling of x: the smallest integer

not less than x

3 cmp (X, y) -lifx<y,0ifx==y,orlifx>y
4 exp(x) The exponential of x: ex
5 modf(x) The fractional and integer parts of x

in a two-item tuple. Both parts have
the same sign as x. The integer part is
returned as a float.

6 floor(x) The floor of x: the largest integer not
greater than x

7 log(x) The natural logarithm of x, for x> 0

8 log10(x) The base-10 logarithm of x for x> 0.

9 max (x1, x2,) The largest of its arguments: the
value closest to positive infinity.

10 min (x1, x2,) The smallest of its arguments: the
value closest to negative infinity.

11 modf(x) The fractional and integer parts of x
in a two-item tuple. Both parts have
the same sign as x. The integer part is
returned as a float.

12 pow (X, y) The value of x**y.

13 round (x [, n]) x rounded to n digits from the
decimal point. Python rounds away
from zero as a tie-breaker: round
(0.5) is 1.0 and round (-0.5) is -1.0.

14 14 s q rt(x) The s q uare root of x for x > 0

Random Number Functions

Random numbers are used for games, simulations, testing, security, and
privacy applications. Python includes following functions that are commonly
used.

SR.NO.| Functions Description

1 choice(seq) A random item from a list, tuple, or string.

2 randrange ([start,] stop [, step])
A randomly selected element from range (start,
stop, step)

3 random () A random float r, such that 0 is less than or

e qual torandr is less than 1

seed([x])

Sets the integer starting value used in generating
random numbers. Call this function before
calling any other random module function.
Returns None.

shuffle(lst)

Randomizes the items of a list in place. Returns
None.

uniform (x, y)

A random float r, such that x is less than or
e qual tor andris less than y

Trigonometric Functions

Python includes following functions that perform trigonometric calculations.

SR.NQ Functions Description

1 acos(x) Return the arc cosine of x, in radians.

2 asin(x) Return the arc sine of x, in radians.

3 atan(x) Return the arc tangent of x, in radians.

4 atan2(y, x) Return atan (y / x), in radians.

5 cos(x) Return the cosine of x radians.

6 hypot (x, y) Return the Euclidean norm, s q rt (x*x +
y*y).

7 sin(x) Return the sine of x radians.

8 tan(x) Return the tangent of x radians.

9 degrees(x) Converts angle x from radians to degrees.

Mathematical Constants

The module also defines two mathematical constants:

SR.No| Constants Description
1 pi The mathematical constant pi.
2 e The mathematical constant e

Chapter 3: Data Types

Computer programming languages have several different methods of storing
and interacting with data, and these different methods of representation are
the data types you’ll interact with. The primary data types within Python are
integers, floats, and strings. These data types are stored in Python using
different data structures: lists, tuples, and dictionaries. We’ll get into data
structures after we broach the topic of data types.

Integers in Python is not different from what you were taught in math class: a
whole number or a number that possess no decimal points or fractions.
Numbers like 4, 9, 39, -5, and 1215 are all integers. Integers can be stored in
variables just by using the assignment operator, as we have seen before.

Floats are numbers that possess decimal parts. This makes numbers like
-2.049, 12.78, 15.1, and 1.01 floats. The method of creating a float instance in
Python is the same as declaring an integer: just choose a name for the
variable and then use the assignment operator.

While we’ve mainly dealt with numbers so far, Python can also interpret and
manipulate text data. Text data is referred to as a “string,” and you can think
of it as the letters that are strung together in a word or series of words. To
create an instance of a string in Python, you can use either double quotes or
single quotes.

string_1 = "This is a string."
string_2 = ‘This is also a string.’

However, while either double or single quotes can be used, it is
recommended that you use double quotes when possible. This is because
there may be times you need to nest quotes within quotes, and using the
traditional format of single quotes within double quotes is the encouraged
standard.

Something to keep in mind when using strings is that numerical characters
surrounded by quotes are treated as a string and not as a number.

The 97 here is a string
Stringy = "97"

Here it is a number

Numerical = 97

String Manipulation

When it comes to manipulating strings, we can combine strings in more or
less the exact way we combine numbers. All you must do is insert an
additional operator in between two strings to combine them. Try replicating
the code below:

Str 1 ="Words "

Str 2="and "

Str_3 = "more words."

Str 4=Str 1+ Str 2+ Str_3

print (Str_4)

What you should get back is: “Words and more words.”

Python provides many easy-to-use, built-in commands you can use to alter
strings. For instance, adding. upper () to a string will make all characters in
the string uppercase while using. lower () on the string will make all the
characters in the string lowercase. These commands are called “functions,”
and we’ll go into them in greater detail, but for now know that Python has
already done much of the heavy lifting for you when it comes to
manipulating strings.

String Formatting

Other methods of manipulating strings include string formatting
accomplished with the “%” operator. The fact that the “%” symbol returns
remainders when carrying out mathematical operations, but it has another use
when working with strings. In the context of strings, however, the % symbol
allows you to specify values/variables you would like to insert into a string
and then have the string filled in with those values in specified areas. You can
think of it like sorting a bunch of labeled items (the values beyond the %
symbol) into bins (the holes in the string you’ve marked with %).

Try running this bit of code to see what happens:

String_to_print = "With the modulus operator, you can add %s, integers like
%d, or even floats like %2.1f." % ("strings", 25, 12.34)

print (String_to_print)

The output of the print statement should be as follows:

“With the modulus operator, you can add strings, integers like 25, or even
float like 12.3.”

The “s” modifier after the % is used to denote the placement of strings, while
the “d” modifier is used to indicate the placement of integers. Finally, the “f”
modifier is used to indicate the placement of floats, and the decimal notation
between the “%” and “f” is used to declare how many columns need to be
displayed. For instance, if the modulator is used like this %2.1, it means you
need two columns after the decimal place and one column before the decimal
place displayed.

There’s another way to format strings in Python. You can use the built-in
“format” function. We’ll go into what functions are exactly. Still, Python
provides us with a handy shortcut to avoid having to type out the modulus
operator whenever we want to format a string. Instead, we can just write
something like the following:

“The string you want to format {}”. format (values you want to insert).

The braces denote wherein the string you want to insert the value, and to
insert multiple values, all you need to do is create multiple braces and then
separate the values with commas. In other words, you would type something
like this:

String_to_print = "With the modulus operator, you can add {0: s}, integers
like {1: d}, or even floats like {2:2.2f}."

print (String_to_print. format ("strings", 25, 12.34))

Inside the brackets goes the data type tag and the position of the value in the
collection of values you want to place in that spot. Try shifting the numbers
in the brackets above around and see how they change. Remember that
Python, unlike some other programming languages, is a zero-based system
when it comes to positions, meaning that the first item in a list of items is
always said to be at position zero/0 and not one/1.

One last thing to mention about string formatting in Python is that if you are
using the format function and don’t care to indicate where a value should go
manually, you can simply leave the brackets blank. Doing so will have

Python automatically fill in the brackets, in order from left to right, with the
values in your list ordered from left to right (the first bracket gets the first
item in the list, the second bracket gets the second item, etc.).

Type Casting
The term “type casting” refers to the act of converting data from one type to
another type. As you program, you may often find out that you need to
convert data between types. There are three helpful commands that Python

has which allow the quick and easy conversion between data types: int (),
float () and str ().

All three of the above commands convert what is placed within the
parenthesis to the data type outside the parentheses. This means that to
convert a float into an integer, you would write the following:

int (float here)

Because integers are whole numbers, anything after the decimal point in a
float is dropped when it is converted into an integer. (Ex. 3.9324 becomes 3,
4.12 becomes 4.) Note that you cannot convert a non-numerical string into an
integer, so typing: int (“convert this”) would throw an error.

The float () command can convert integers or certain strings into floats.
Providing either an integer or an integer in quotes (a string representation of
an integer) will convert the provided value into a float. Both 5 and “5”
become 5.0.

Finally, the str () function is responsible for the conversion of integers and
floats to strings. Plug any numerical value into the parenthesis and get back a
string representation of it.

We’ve covered a fair amount of material so far. Before we go any farther,
let’s do an exercise to make sure that we understand the material we’ve
covered thus far.

Assignment and Formatting Exercise
Here’s an assignment. Write a program that does the following:

e Assigns a numerical value to a variable and changes the value in some
way.

e Assigns a string value to some variable.

e Prints the string and then the value using string formatting.

e Converts the numerical data into a different format and prints the new
data form.

Give it your best shot before looking below for an example of how this could
be done.

Ready to see an example of how that could be accomplished?

R=9

R=9/3

stringy = "There will be a number following this sentence: {}”. format(R)
print(stringy)

R = str(R)

print(R)

Chapter 4: Variable in Python

When writing complex codes, your program will demand data essential to
conduct changes when you proceed with your executions. Variables are,
therefore, sections used to store code values created after you assign a value
during program development. Python, unlike other related language
programming software, lacks the command to declare a variable as they
change after being set. Besides, Python values are undefined like in most
cases of programming in other computer languages.

Variation in Python is therefore described as memory reserves used for
storing data values. As such, Python variables act as storage units, which feed
the computer with the necessary data for processing. Each value comprises of
its database in Python programming, and every data are categorized as
Numbers, Tuple, Dictionary, and List, among others. As a programmer, you
understand how variables work and how helpful they are in creating an
effective program using Python. As such, the tutorial will enable learners to
understand declare, re-declare, and concatenate, local and global variables as
well as how to delete a variable.

Variable Vs. Constants

Variables and constants are two components used in Python programming
but perform separate functions. Variables, as well as constants, utilize values
used to create codes to execute during program creation. Variables act as
essential storage locations for data in the memory, while constants are
variables whose value remains unchanged. In comparison, variables store
reserves for data while constants are a type of variable files with consistent
values written in capital letters and separated by underscores.

Variables Vs. Literals

Variables also are part of literals which are raw data fed on either variable or
constant with several literals used in Python programming. Some of the
common types of literals used include Numeric, String, and Boolean, Special
and Literal collections such as Tuple, Dict, List, and Set. The difference
between variables and literals arises where both deal with unprocessed data
but variables store the while laterals feed the data to both constants and
variables.

Variables Vs. Arrays

Python variables have a unique feature where they only name the values and
store them in the memory for quick retrieval and supplying the values when
needed. On the other hand, Python arrays or collections are data types used in
programming language and categorized into a list, tuple, set, and dictionary.
When compared to variables, the array tends to provide a platform to include
collectives functions when written while variables store all kinds of data
intended. When choosing your charming collection, ensure you select the one
that fits your requirements henceforth meaning retention of meaning,
enhancing data security and efficiency.

Classifications of Python Arrays Essential for Variables
Lists

Python lists offer changeable and ordered data and written while
accompanying square brackets, for example, "an apple,” "cherry." Accessing
an already existing list by referring to the index number while with the ability
to write negative indexes such as '-1' or -2'. You can also maneuver within
your list and select a specific category of indexes by first determining your
starting and endpoints. The return value with therefore be the range of
specified items. You can also specify a scale of negative indexes, alter the
value of the current item, loop between items on the list, add or remove
items, and confirming if items are available.

Naming Variables
The naming of variables remains straightforward, and both beginners and
experienced programmers can readily perform the process. However,
providing titles to these variables accompany specific rules to ensure the
provision of the right name. Consistency, style, and adhering to variable
naming rules ensure that you create an excellent and reliable name to use
both today and the future. The rules are:

e Names must have a single word, that is, with no spaces

e Names must only comprise of letters and numbers as well as
underscores such as (L)

e The first letter must never be a number

e Reserved words must never be used as variable names

When naming variables, you should bear in mind that the system is case-
sensitive, hence avoid creating the same names within a single program to
prevent confusion. Another important component when naming is
considering the style. It entails beginning the title with a lowercase letter
while using underscores as spaces between your words or phrases used.
Besides, the program customarily prevents starting the name with a capital
letter. Begin with a lowercase letter and either mix or use them consistently.

When creating variable names, it may seem so straightforward and easy, but
sometimes it may become verbose henceforth becoming a disaster to
beginners. However, the challenge of creating sophisticated names is quite
beneficial for learned as it prepares you for the following tutorials. Similarly,
Python enables you to write your desired name of any length consisting of
lower- and upper-case letters, numbers as well as underscores. Python also
offers the addition of complete Unicode support essential for Unicode
features in variables.

Specific rules are governing the procedure for naming variables; hence
adhere to them to create an exceptional name to your variables. Create more
readable names that have meaning to prevent instances of confusion to your
members, especially programmers. A more descriptive name is much
preferred compares to others. However, the technique of naming variables
remains illegible as different programmers decide on how they are going to
create their kind of names.

Learning Python Strings, Numbers and Tuple

Python strings are part of Python variables and comprise of objects created
from enclosing characters or values in double-quotes. For example, 'var =
Hello World’. With Python not supporting character types in its functions,
they are however treated as strings of one more character as well as
substrings. Within the Python program, there exist several string operators
making it essential for variables to be named and stored in different formats.
Some of the string operators commonly used in Python are [], [:], ‘in’, /R, %,
+, and *.

There exist several methods of strings today. Some include replacing Python
string () to return a copy of the previous value in a variable, changing the
string format, that is, upper and lower cases, and using the 'join' function,
especially for concatenating variables. Other methods include the reverse

function and split strings using the command' word. split'. What to note is
that strings play an important role, especially in naming and storage of values
despite Python strings being immutable.

On the other hand, Python numbers are categorized into three main types;
that is, int, float, and complex. Variable numbers are usually created when
assigning a value for them. For instance, int values are generally whole
numbers with unlimited length and are either positive or negative such as 1,
2, and 3. Float numbers also either positive or negative and may have one or
more decimals like 2.1, 4.3, and 1.1 while complex numbers comprise both of
a letter 'j' as the imaginary portion and numbers, for example, 1j, -7j or 6j+5.
As to verify the variable number is a string, you can readily use the function
'type ().

A collection of ordered values, which remain unchangeable especially in
Python variables, is referred to as a tuple. Python tuples are indicated with
round brackets and available in different ways. Some useful in Python
variables are access tuple items by index numbers and inside square brackets.
Another is tuple remaining unchanged, especially after being created but
provides a loop by using the function 'for." And it readily encompasses both
count and index methods of tuple operations.

Types of Data Variables
String

A text string is a type of data variable represented in either String data types
or creating a string from a range of type char. The syntax for string data
comprises multiple declarations including 'char Str1[15], 'char Str5[8] =
“ardiono”; among others. As to declare a string effectively, add null character
'Str3', declare arrays of chars without utilizing in the form of 'Str1’, and
initialize a given array and leave space for a larger string such as Str6. Strings
are usually displayed with doubles quotes despite the several versions of
available to construct strings for varying data types.

Char

Char are data types primarily used in variables to store character values with
literal values written in single quotes, unlike strings. The values are stores in
numbers form, but the specific encoding remains visibly suitable for
performing arithmetic. For instance, you can see that it is saved as 'A' +, but it
has a value of 66 as the ASCII 'A' value represents 66. Char data types are

usually 8 bits, essential for character storage. Characters with larger volumes
are stored in bytes. The syntax for this type of variable is 'char var = val’;
where 'var' indicates variable name while 'val’ represents the value assigned
to the variable.

Byte

A byte is a data type necessary for storing 8-bit unsigned numbers that are
between 0 to 255 and with a syntax of 'byte var = val;' Like Char data type,
'var' represents variable name while 'val’ stands for the value to he assigned
that variable. The difference between char and byte is that char stores smaller
characters and with a low space volume while byte stores values which are
larger.

int

Another type of data type variable is the int, which stores 16-bit value
yielding an array of between -32,768 and 32,767, which varies depending on
the different programming platforms. Besides, int stores 2’s complement
math, which is negative numbers, henceforth providing the capability for the
variable to store a wide range of values in one reserve. With Python, this type

of data variable storage enables transparency in arithmetic operations in an
intended manner.

Unsigned int

Unsigned int also referred to, as unsigned integers are data types for storing
up to 2 bytes of values but do not include negative numbers. The numbers are
all positive with a range of 0 to 65,535 with Duo stores of up to 4 bytes for
32-byte values, which range from 0 to 4,294,967,195. In comparison,
unsigned integers comprise positive values and have a much higher bit.
However, ints take mostly negative values and have a lower bit hence store
chapters with fewer values. The syntax for unsigned int is ‘unsigned int var =
val;” while an example code being ‘unsigned int ledPin = 13;’

Float

Float data types are values with point numbers, that is to say, a number with a
decimal point. Floating numbers usually indicate or estimate analog or
continuous numbers, as they possess a more advanced resolution compared to
integers. The numbers stored may range from the highest of 7.5162306E+38

and the lowest of -3.2095174E+38. Floating-point numbers remain stored in
the form of 32 bits taking about 4 bytes per information fed.

Unsigned Long

This is data types of variables with an extended size hence it stores values
with larger storages compare to other data types. It stores up to 32 bits for 4
bytes and does not include negative numbers henceforth has a range of 0 to
4,294,967,295. The syntax for the unsigned long data type is 'unsigned long
var = val;’ essential for storing characters with much larger sizes.

Chapter 5: Inputs, Printing, And Formatting Outputs

Inputs

So far, we’ve only been writing programs that only use data we have
explicitly defined in the script. However, your programs can also take in
input from the user and utilize it. Python lets us solicit inputs from the user
with a very intuitively named function - the input () function. Writing out the
code input () enabless us to prompt the user for information, which we can
further manipulate. We can take the user input and save it as a variable, print
it straight to the terminal, or do anything else we might like.

When we use the input function, we can pass in a string. The user will see
this string as a prompt, and their response to the prompt will be saved as the
input value. For instance, if we wanted to query the user for their favorite
food, we could write the following:

favorite_food = input ("What is your favorite food? ")

If you ran this code example, you would be prompted for your favorite food.
You could save multiple variables this way and print them all at once using
the print () function along with print formatting, as we covered earlier. To be
clear, the text that you write in the input function is what the user will see as a
prompt; it isn’t what you are inputting into the system as a value.

When you run the code above, you’ll be prompted for an input. After you
type in some text and hit the return key, the text you wrote will be stored as
the variable favorite_food. The input command can be used along with string
formatting to inject variable values into the text that the user will see. For
instance, if we had a variable called user_name that stored the name of the
user, we could structure the input statement like this:

favorite_food = input (" What is ()’s favorite food? "). format (" user name
here")

Printing and Formatting Outputs
We’ve already dealt with the print () function quite a bit, but let’s take some
time to address it again here and learn a bit more about some of the more
advanced things you can do with it.

By now, you’ve gathered that it prints whatever is in the parentheses to the
terminal. In addition, you’ve learned that you can format the printing of

statements with either the modulus operator (%) or the format function (.
format ()). However, what should we do if we are in the process of printing a
very long message?

In order to prevent a long string from running across the screen, we can use
triple quotes that surround our string. Printing with triple quotes allows us to
separate our print statements onto multiple lines. For example, we could print
like this:

print ("' By using triple quotes we can

divide our print statement onto multiple

lines, making it easier to read. ")

Formatting the print statement like that will give us:
By using triple quotes, we can

divide our print statement onto multiple

lines, making it easier to read.

What if we need to print characters that are equivalent to string formatting
instructions? For example, if we ever needed to print out the characters “%s
“or “%d “, we would run into trouble. If you recall, these are string
formatting commands, and if we try to print these out, the interpreter will
interpret them as formatting commands.

Here’s a practical example. As mentioned, typing “/t” in our string will put a
tab in the middle of our string. Assume we type the following:

print (“We want a \t here, not a tab.”)
We’d get back this:
We want a here, not a tab.

By using an escape character, we can tell Python to include the characters
that come next as part of the string’s value. The escape character we want to
use is the “raw string” character, an “r” before the first quote in a string, like
this:

print (r'"We want a \t here, not a tab.")
So, if we used the raw string, we’d get the format we want back:

We want a \t here, not a tab.

The “raw string” formatter enables you to put any combination of characters
you’d like within the string and have it to be considered part of the string’s
value.

However, what if we did want the tab in the middle of our string? In that
case, using special formatting characters in our string is referred to as using
“escape characters.” “Escaping” a string is a method of reducing the
ambiguity in how characters are interpreted. When we use an escape
character, we escape the typical method that Python uses to interpret certain
characters, and the characters we type are understood to be part of the string’s
value. The escape primarily used in Python is the backslash (\). The
backslash prompts Python to listen for a unique character to follow that will
translate to a specific string formatting command.

We already saw that using the “\t” escape character puts a tab in the middle
of our string, but there are other escape characters we can use as well.

\n - Starts a new line
\\ - Prints a backslash itself

\” - Prints out a double quote instead of a double quote marking the end of
a string

\’ - Like above but prints out a single quote

Input and Formatting Exercise

Let’s do another exercise that applies what we’ve covered in this section.
You should try to write a program that does the following:

e Prompts the user for answers to several different questions

e Prints out the answers on different lines using a single print
statement

Give this a shot before you look below for an answer to this exercise prompt.
If you’ve given this a shot, your answer might look something like this:
favorite_food = input ("What's your favorite food? :")

favorite_animal = input ("What about your favorite animal? :")
favorite_movie = input ("What's the best movie? :")

print ("Favorite food is: " + favorite_food + "\n" +

"Favorite animal is: " + favorite_animal + "\n" +
"Favorite movies is: " + favorite_movie)

We’ve covered a lot of ground in the first quarter of this book. We’ll begin
covering some more complex topics and concepts. However, before we move
on, let’s be sure that we’ve got the basics down. You won’t learn the new
concepts unless you are familiar with what we’ve covered so far, so for that
reason, let's do a quick review of what we’ve learned so far:

Variables - Variables are representations of values. They contain the value
and allow the value to be manipulated without having to write it out every
time. Variables must contain only letters, numbers, or underscores. In
addition, the first character in a variable cannot be a number, and the variable
name must not be one of Python’s reserved keywords.

Operators - Operators are symbols which are used to manipulate data. The
assignment operator (=) is used to store values in variables. Other operators
in Python include: the addition operator (+), the subtraction operator (-), the
multiplication operator (*), the division operator (/), the floor division
operator (//), the modulus operator (%), and the exponent operator (**). The
mathematical operators can be combined with the assignment operator. (Ex.
+=, -=, *=),

Strings - Strings are text data, declared by wrapping text in single or double-
quotes. There are two methods of formatting strings; with the modulus
operator or the. format () command. The “s,” “d,” and “f” modifiers are used
to specify the placement of strings, integers, and floats.

Integers - Integers are whole numbers, numbers that possess no decimal
points or fractions. Integers can be stored in variables simply by using the
assignment operator.

Floats - Floats are numbers that possess decimal parts. The method of
creating a float in Python is the same as declaring an integer, just choose a
name for the variable and then use the assignment operator.

Type Casting - Type casting allows you to convert one data type to another if
the conversion is feasible (non-numerical strings cannot be converted into
integers or floats). You can use the following functions to convert data types:
int (), float (), and str ().

Lists - Lists are just collections of data, and they can be declared with

brackets and commas separating the values within the brackets. Empty lists
can also be created. List items can be accessed by specifying the position of
the desired item. The append () function is used to add an item to a list, while
the del command and remove () function can be used to remove items from a
list.

List Slicing - List slicing is a method of selecting values from a list. The item
at the first index is included, but the item at the second index isn’t. A third
value, a stepper value, can also be used to slice the list, skipping through the
array at a rate specified by the value. (Ex. - numbers [0:9:2])

Tuples - Tuples are like lists, but they are immutable; unlike lists, their
contents cannot be modified once they are created. When a list is created,
parentheses are used instead of brackets.

Dictionaries - Dictionaries stored data in key/value pairs. When a dictionary
is declared, the data and the key that will point to the data must be specified,
and the key-value pairs must be unique. The syntax for creating a key in
Python is curly braces containing the key on the left side and the value on the
right side, separated by a colon.

Inputs - The input () function gets an input from the user. A string is passed
into the parenthesis, which the user will see when they are prompted to enter
a string or numerical value.

Formatting Printing - Triple quotes allows us to separate our print statement
onto multiple lines. Escape characters are used to specify that certain
formatting characters, like “\n” and “\t,” should be included in a string’s
value. Meanwhile, the “raw string” command, “r,” can be used to include all
the characters within the quotes.

Chapter 6: Mathematical Notation, Basic Terminology, and
Building Machine Learning Systems

Mathematical Notation for Machine Learning

In your process of machine learning, you will realize that mathematical
nomenclature and notations go hand in hand throughout your project. There
is a variety of signs, symbols, values, and variables used in the course of
mathematics to describe whatever algorithms you may be trying to
accomplish.

You will find yourself using some of the mathematical notations within this
field of model development. You will find that values that deal with data and
the process of learning or memory formation will always take precedence.
Therefore, the following six examples are the most commonly used notations.
Each of these notations has a description for which its algorithm explains:

1. Algebra

To indicate a change or difference: Delta

To give the total summation of all values: Summation
To describe a nested function: Composite function

To indicate Euler's number and Epsilon where necessary
To describe the product of all values: Capital pi

2. Calculus

To describe a particular gradient: Nabla

To describe the first derivative: Derivative

To describe the second derivative: Second derivative

To describe a function value as x approaches zero: Limit
3. Linear Algebra

To describe capitalized variables are matrices: Matrix
To describe matrix transpose: Transpose

To describe a matrix or vector: Brackets

To describe a dot product: Dot

To describe a Hadamard product: Hadamard

To describe a vector: Vector
To describe a vector of magnitude 1: Unit vector
4. Probability

The probability of an event: Probability

5. Set theory

To describe a list of distinct elements: Set

6. Statistics

To describe the median value of variable x: Median

To describe the correlation between variables X and Y: Correlation

To describe the standard deviation of a sample set: Sample standard deviation
To describe the population standard deviation: Standard deviation

To describe the variance of a subset of a population: Sample variance

To describe the variance of a population value: Population variance

To describe the mean of a subset of a population: Sample mean

To describe the mean of population values: Population means

Terminologies Used for Machine Learning

The following terminologies are what you will encounter most often during
machine learning. You may be getting into machine learning for professional
purposes or even as an artificial intelligence (Al) enthusiast. Anyway,
whatever your reasons, the following are categories and subcategories of
terminologies that you will need to know and probably understand to get
along with your colleagues. In this section, you will get to see the significant
picture explanation and then delve into the subcategories. Here are machine-
learning terms that you need to know:

1. Natural language processing (NLP)

Natural language is what you as a human, use, i.e., human language. By
definition, NLP is a way of machine learning where the machine learns your
human form of communication. NLP is the standard base for all if not most
machine languages that allow your device to make use of human (natural)
language. This NLP ability enables your machine to hear your natural

(human) input, understand it, execute it then give a data output. The device
can realize humans and interact appropriately or as close to appropriate as
possible.

There are five primary stages in NLP: machine translation, information
retrieval, sentiment analysis, information extraction, and finally question
answering. It begins with the human query which straight-up leads to
machine translation and then through all the four other processes and finally
ending up in question explaining itself. You can now break down these five
stages into subcategories as suggested earlier:

Text classification and ranking - This step is a filtering mechanism that
determines the class of importance based on relevance algorithms that filter
out unwanted stuff such as spam or junk mail. It filters out what needs
precedence and the order of execution up to the final task.

Sentiment analysis - This analysis predicts the emotional reaction of a human
towards the feedback provided by the machine. Customer relations and
satisfaction are factors that may benefit from sentiment analysis.

Document summarization - As the phrase suggests, this is a means of
developing short and precise definitions of complex and complicated
descriptions. The overall purpose is to make it easy to understand.

Named-Entity Recognition (NER) - This activity involves getting structured
and identifiable data from an unstructured set of words. The machine learning
process learns to identify the most appropriate keywords, applies those words
to the context of the speech, and tries to come up with the most appropriate
response. Keywords are things like company name, employee name, calendar
date, and time.

Speech recognition - An example of this mechanism can easily be appliances
such as Alexa. The machine learns to associate the spoken text to the speech
originator. The device can identify audio signals from human speech and
vocal sources.

It understands Natural language and generation - As opposed to Named-
Entity Recognition; these two concepts deal with human to computer and
vice versa conversions. Natural language understanding allows the machine
to convert and interpret the human form of spoken text into a coherent set of
understandable computer format. On the other hand, natural language
generation does the reverse function, i.e., transforming the incorrect computer

format to the human audio format that is understandable by the human ear.

Machine translation - This action is an automated system of converting one
written human language into another human language. Conversion enables
people from different ethnic backgrounds and different styles to understand
each other. An artificial intelligence entity that has gone through the process
of machine learning carries out this job.

2. Dataset

A dataset is a range of variables that you can use to test the viability and
progress of your machine learning. Data is an essential component of your
machine learning progress. It gives results that are indicative of your
development and areas that need adjustments and tweaking for fine-tuning
specific factors. There are three types of datasets:

Training data - As the name suggests, training data is used to predict patterns
by letting the model learn via deduction. Due to the enormity of factors to be
trained on, yes, there will be factors that are more important than others are.
These features get a training priority. Your machine-learning model will use
the more prominent features to predict the most appropriate patterns required.
Over time, your model will learn through training.

Validation data - This set is the data that is used to micro tune the small tiny
aspects of the different models that are at the completion phase. Validation
testing is not a training phase; it is a final comparison phase. The data
obtained from your validation is used to choose your final model. You get to
validate the various aspects of the models under comparison and then make a
final decision based on this validation data.

Test data - Once you have decided on your final model, test data is a stage
that will give you vital information on how the model will handle in real life.
The test data will be carried out using an utterly different set of parameters
from the ones used during both training and validation. Having the model go
through this kind of test data will give you an indication of how your model
will handle the types of other types of inputs. You will get answers to
questions such as how will the fail-safe mechanism react. Will the fail-safe
even come online in the first place?

3. Computer vision
Computer vision is responsible for the tools providing a high-level analysis of

image and video data. Challenges that you should look out for in computer
vision are:

Image classification - This training allows the model to identify and learn
what various images and pictorial representations are. The model needs to
retain a memory of a familiar-looking image to maintain mind and identify
the correct image even with minor alterations such as color changes.

Object detection - Unlike image classification, which detects whether there is
an image in your model field of view, object detection allows it to identify
objects. Object identification enables the model to take a large set of data and
then frames them to detect a pattern recognition. It is akin to facial
recognition since it looks for patterns within a given field of view.

Image segmentation - The model will associate a specific image or video
pixel with a previously encountered pixel. This association depends on the
concept of a most likely scenario based on the frequency of association
between a particular pixel and a corresponding specific predetermined set.

Saliency detection - In this case, it will involve that you train and get your
model accustomed to increase its visibility. For instance, advertisements are
best at locations with higher human traffic. Hence, your model will learn to
place itself at positions of maximum social visibility. This computer vision
feature will naturally attract human attention and curiosity.

4. Supervised learning

You achieve supervised learning by having the models teach themselves by
using targeted examples. If you wanted to show the models how to recognize
a given task, then you would label the dataset for that particular supervised
task. You will then present the model with the set of labeled examples and
monitor its learning through supervision.

The models get to learn themselves through constant exposure to the correct
patterns. You want to promote brand awareness; you could apply supervised
learning where the model leans by using the product example and mastering
its art of advertisement.

5. Unsupervised learning

This learning style is the opposite of supervised learning. In this case, your
models learn through observations. There is no supervision involved, and the
datasets are not labeled; hence, there is no correct base value as learned from

the supervised method.

Here, through constant observations, your models will get to determine their
right truths. Unsupervised models most often learn through associations
between different structures and elemental characteristics common to the
datasets. Since unsupervised learning deals with similar groups of related
datasets, they are useful in clustering.

6. Reinforcement learning

Reinforcement learning teaches your model to strive for the best result
always. In addition to only performing its assigned tasks correctly, the model
gets rewarded with a treat. This learning technique is a form of
encouragement to your model to always deliver the correct action and
perform it well or to the best of its ability. After some time, your model will
learn to expect a present or favor, and therefore, the model will always strive
for the best outcome.

This example is a form of positive reinforcement. It rewards good behavior.
However, there is another type of support called negative reinforcement.
Negative reinforcement aims to punish or discourage bad behavior. The
model gets reprimanded in cases where the supervisor did not meet the
expected standards. The model learns as well that lousy behavior attracts
penalties, and it will always strive to do good continually.

Chapter 7: Lists and Sets Python

Lists

We create a list in Python by placing items called elements inside square
brackets separated by commas. The items in a list can be of a mixed data

type.

Start IDLE.

Navigate to the File menu and click New Window.

Type the following:

list_mine= [] #empty list list_mine= [2,5,8] #list of integers
list_mine= [5,” Happy”, 5.2] #list having mixed data types

Practice Exercise

Write a program that captures the following in a list: “Best”, 26,89,3.9
Nested Lists

A nested list is a list as an item in another list.

Example

Start IDLE.

Navigate to the File menu and click New Window.

Type the following: list_mine= [“carrot”, [9, 3, 6], [‘g’]]

Practice Exercise

Write a nested for the following elements: [36,2,1],” Writer”,’t’, [3.0, 2.5]
Accessing Elements from a List

In programming and in Python specifically, the first time is always indexed
zero. For a list of five items, we will access them from index0 to index4.
Failure to access the items in a list in this manner will create index error. The
index is always an integer as using other number types will create a type
error. For nested lists, they are accessed via nested indexing.

Example
Start IDLE.

Navigate to the File menu and click New Window.

Type the following:

list_mine=[‘b’,’e’,’s’,’t’] print(list_mine[0]) #the output will be b
print(list_mine[2]) #the output will be s print(list_mine[3]) #the output will
bet

Practice Exercise Given the following list: your_collection=
[‘t”’k”’V’,’W’,’Z’,’n”’f’]
v Write a Python program to display the second item in the list

v Write a Python program to display the sixth item in the last
v Write a Python program to display the last item in the list.

Nested List Indexing

Start IDLE.

Navigate to the File menu and click New Window.
Type the following:

nested_list= [“Best’, [4,7,2,9]]

print (nested_list [0][1]

Python Negative Indexing

For its sequences, Python allows negative indexing. The last item on the list
is index-1, index -2 is the second last item, and so on.

Start IDLE.

Navigate to the File menu and click New Window.

Type the following:

list_mine=[‘c’,’h’,’a’,’n’,’g’,’e’,’s’] print (list_mine [-1]) #Output is s print
(list_mine [-4]) ##Output is n

Slicing Lists in Python

Slicing operator (full colon) is used to access a range of elements in a list.
Example

Start IDLE.

Navigate to the File menu and click New Window.

Type the following:

”’JJ’J’)]

list_mine=[‘c’,’h’,’a’,’n’,’g’,’e’,’s

print (list_mine [3:5]) #Picking elements from the 4 to the sixth
Example

Picking elements from start to the fifth Start IDLE.

Navigate to the File menu and click New Window.

Type the following: print (list_mine [: -6])

Example

Picking the third element to the last.

print (list_mine [2:])

Practice Exercise

Given class_names= [‘John’, ‘Kelly’, “Yvonne’, ‘Una’,’Lovy’, Pius’,
“Tracy’]

v Write a python program using a slice operator to display from
the second students and the rest.

v Write a python program using a slice operator to display the
first student to the third using a negative indexing feature.

v Write a python program using a slice operator to display the
fourth and fifth students only.

Manipulating Elements in a List using the assignment operator
Items in a list can be changed meaning lists are mutable.

Start IDLE.

Navigate to the File menu and click New Window.

Type the following: list_yours= [4,8,5,2,1] list_yours [1] =6
print(list_yours) #The output will be [4,6,5,2,1]

Changing a range of items in a list

Start IDLE.

Navigate to the File menu and click New Window.

Type the following: list_yours [0:3] =[12,11,10] #Will change first item to
fourth item in the list print(list_yours) #Output will be: [12,11,10,1]

Appending/Extending items in the List

The append () method allows extending the items on the list. The extend ()
can also be used.

Example

Start IDLE.

Navigate to the File menu and click New Window.

Type the following: list_yours= [4, 6, 5] list_yours. append (3)
print(list_yours) #The output will be [4,6,5, 3]

Example

Start IDLE.

Navigate to the File menu and click New Window.

Type the following: list_yours= [4,6,5] list_yours. extend ([13,7,9])
print(list_yours) #The output will be [4,6,5,13,7,9]

The plus operator (+) can also be used to combine two lists. The * operator
can be used to iterate a list a given number of times.

Example

Start IDLE.

Navigate to the File menu and click New Window.

Type the following: list_yours= [4,6,5]

print (list_yours+ [13,7,9]) # Output: [4, 6, 5,13,7,9]

print([‘happy’] *4) #Output: [“happy”,” happy”, “happy”,” happy”]
Removing or Deleting Items from a List

The keyword del is used to delete elements or the entire list in Python.
Example

Start IDLE.

Navigate to the File menu and click New Window.

Type the following:

b % I i B PSS I B I e B

list_mine=[‘t’,’r’,’0’,’g’,’r’,’a’,’m’] del list_mine [1] print(list_mine) #t, o, g,

r,a, m
Deleting Multiple Elements

Example

Start IDLE.

Navigate to the File menu and click New Window.
Type the following: del list_mine [0:3]

Example

print(list_mine) #a, m

Delete Entire List Start IDLE.

Navigate to the File menu and click New Window.
Type the following:

delete list_mine

print(list_mine) #will generate an error of lost not found

The remove () method or pop () method can be used to remove the specified
item. The pop () method will remove and return the last item if the index is
not given and helps implement lists as stacks. The clear () method is used to
empty a list.

Start IDLE.

Navigate to the File menu and click New Window.

Type the following: list_mine=[‘t’,’k’,’b’,’d’,’w’,’q’,’V’]
list_mine.remove(‘t’) print(list_mine) #output will be
[‘t’,’k’,’b’,’d’,’w’,’q’,’v’] print(list_mine.pop(1)) #output will be ‘k’
print(list_mine.pop()) #output will be ‘v’

Practice Exercise

Given list_yours=[‘K’,’N’,’O’,’C’,’K’,’E’,’D’]

v Pop the third item in the list, save the program as list1.

v Remove the fourth item using remove () method and save the
program as list2

v Delete the second item in the list and save the program as list3.

v Pop the list without specifying an index and save the program as
list4.

Using Empty List to Delete an Entire or Specific Elements

Start IDLE.

Navigate to the File menu and click New Window.

Type the following: list_mine=[‘t’,’k’,’b’,’d’,’w’,’q’,’v’] list_mine= [1:2] =
(]

print(list_mine) #Output will be [‘t’,’w’,’q’,’V’

Practice Exercise

> Use list access methods to display the following items in reversed
order list_yours= [4,9,2,1,6,7]

> Use list access method to count the elements in a.

> Use list access method to sort the items in a. in an ascending
order/default.

Summary

Lists store an ordered collection of items which can be of different types. The
list defined above has items that are all of the same type (int), but all the
items of a list do not need to be of the same type as you can see below.

Define a list
heterogenousElements = [3, True, 'Michael', 2.0]

Sets

The attributes of a set are that it contains unique elements, the items are not
ordered, and the elements are not changeable. The set itself can be changed.

Creating a set

Example

Start IDLE.

Navigate to the File menu and click New Window.
Type the following: set_mine= {5,6,7} print(set_mine)
set_yours= {2.1,” Great”, (7,8,9)} print(set_mine)

Creating a Set from a List

Example

Start IDLE.

Navigate to the File menu and click New Window.

Type the following: set_mine=set ([5,6,7,5]) print(set_mine) Practice
Exercise Start IDLE.

Navigate to the File menu and click New Window.
Type the following:

Correct and create a set in Python given the following set, trial_set=
{1,1,2,3,1,5,8,9}

Note

The {} will create a dictionary that is empty in Python. There is no need to
index sets since they are ordered.

Adding elements to a set for multiple members we use the update () method.

For a single addition of a single element to a set, we use the add () method.
Duplicates should be avoided when handling sets.

Example
Start IDLE.
Navigate to the File menu and click New Window.

Type the following: your_set={6,7} print(your_set) your_set.add(4)
print(your_set) your_set.update([9,10,13]) print(your_set)
your_set.update([23, 37],{11,16,18}) print(your_set)

Removing Elements from a Set

The methods discard (0 and remove () are used to purge an item from a set.
Example

Start IDLE.

Navigate to the File menu and click New Window.

Type the following: set_mine= {7,2,3,4,1} print(set_mine) set_mine. discard
(2) print(set_mine) #Output will be {7,3,4,1} set_mine. remove (1)

print(set_mine) #Output will be {7,3,4}
Using the pop () Method to Remove an Item from a Set
Since sets are unordered, the order of popping items is arbitrary.

It is also possible to remove all items in a set using the clear () method in
Python.

Start IDLE.
Navigate to the File menu and click New Window.

Type the following: your_set=set(“Today”) print(your_set) print
(your_set.pop ()) your_set.pop () print(your_set) your_set. clear ()
print(your_set)

Set Operations in Python

We use sets to compute difference, intersection, and union of sets.
Example

Start IDLE.

Navigate to the File menu and click New Window.

Type the following:

C={5,6,7,8,9,11} D= {6,9,11,13,15}

Set Union

A union of sets C and D will contain both sets’ elements.

In Python the| operator generates a union of sets. The union () will also
generate a union of sets.

Example

Start IDLE.

Navigate to the File menu and click New Window.
Type the following:

C={5,6,7,8,9,11} D= {6,9,11,13,15}

print(C|D) #Output: {5,6,7,8,9,11,13,15}
Example 2

Using the union () Start IDLE.

Navigate to the File menu and click New Window.
Type the following:

C={5,6,7,8,9,11} D= {6,9,11,13,15}

print (D. union(C)) #Output: {5,6,7,8,9,11,13,15}
Practice Exercise

Rewrite the following into a set and find the set union.
A=1{1,1,2,3,4,4,5,12,14,15}

D={2,3,3,7,8,9,12,15}

Set Intersection

A and D refer to a new item set that is shared by both sets. The & operator is
used to perform intersection. The intersection () function can also be used to
intersect sets.

Example

Start IDLE.

Navigate to the File menu and click New Window.
Type the following:

A ={11,12, 13, 14, 15}

D= {14, 15,16, 17, 18}

Print(A&D) #Will display {14,15}

Using intersection ()

Example

Start IDLE.

Navigate to the File menu and click New Window.
Type the following:

A ={11,12, 13, 14, 15}

D= {14, 15,16, 17, 18}

A. intersection(D)

Chapter 8: Conditions Statements

Computing numbers and processing text are two basic functionalities by
which a program instructs a computer. An advanced or complex computer
program has the capability to change its program flow. That is usually done
by allowing it to make choices and decisions through conditional statements.

Condition statements are one of a few elements that control and direct your
program’s flow. Other common elements that can affect program flow are
functions and loops.

A program with a neat and efficient program flow is like a create-your-own-
adventure book. The progressions, outcomes, or results of your program
depend on your user input and runtime environment.

For example, say that your computer program involves talking about cigarette
consumption and vaping. You would not want minors to access the program
to prevent any legal issues.

A simple way to prevent a minor from accessing your program is to ask the
user his age. This information is then passed on to a common functionality
within your program that decides if the age of the user is acceptable or not.

Programs and websites usually do this by asking for the user’s birthday. That
being said, the below example will only process the input age of the user for
simplicity’s sake.
>>> user Age = 12
>>> if (userAge < 18):
print ("You are not allowed to access this program.")
else:
print ("You can access this program.")

You are not allowed to access this program.
>>>

Here is the same code with the user’s age set above 18.

>>>userAge = 19

>>> if (userAge < 18):
print ("You are not allowed to access this program.")
else:
print ("You can access this program.")

You can access this program.
>>>

The if and else operators are used to create condition statements. Condition
statements have three parts. The conditional keyword, the Boolean value
from a literal, variable, or expression, and the statements to execute.

In the above example, the keywords if and else were used to control the
program’s flow. The program checks if the variable userAge contains a value
less than 18. If it does, a warning message is displayed. Otherwise, the
program will display a welcome message.

The example used the comparison operator less than (<). It basically checks
the values on either side of the operator symbol. If the value of the operand
on the left side of the operator symbol was less than that on the right side, it
will return True. Otherwise, if the value of the operand on the left side of the
operator symbol was equal or greater than the value on the right side, it will
return False.

“if” statements

The if keyword needs a literal, variable, or expression that returns a Boolean
value, which can be True or False. Remember these two things:

1. If the value of the element next to the if keyword is equal to
True, the program will process the statements within the if
block.

2. If the value of the element next to the if keyword is equal to
False, the program will skip or ignore the statements within
the if block.

Else Statements
Else statements are used in conjunction with “if” statements. They are used to

perform alternative statements if the preceding “if” statement returns False.

In the previous example, if the userAge is equal or greater than 18, the
expression in the “if” statement will return False. And since the expression
returns False on the “if” statement, the statements in the else statement will
be executed.

On the other hand, if the userAge is less than 18, the expression in the “if”
statement will return True. When that happens, the statements within the “if”
statement will be executed while those in the else statement will be ignored.

Mind you, an else statement has to be preceded by an “if” statement. If there
is none, the program will return an error. Also, you can put an else statement
after another else statement as long as it precedes an “if” statement.

In summary:

1. If the “if” statement returns True, the program will skip the
else statement that follows.

2. If the “if” statement returns False, the program will process
the else statement code block.

Code Blocks

Just to jog your memory, code blocks are simply groups of statements or
declarations that follow if and else statements.

Creating code blocks is an excellent way to manage your code and make it
efficient. You will mostly be working with statements and scenarios that will
keep you working on code blocks.

Aside from that, you will learn about the variable scope as you progress. For
now, you will mostly be creating code blocks “for” loops.

Loops are an essential part of programming. Every program that you use and
see use loops.

Loops are blocks of statements that are executed repeatedly until a condition
is met. It also starts when a condition is satisfied.

By the way, did you know that your monitor refreshes the image itself 60

times a second? Refresh means displaying a new image. The computer itself
has a looping program that creates a new image on the screen.

You may not create a program with a complex loop to handle the display, but
you will definitely use one in one of your programs. A good example is a
small snippet of a program that requires the user to login using a password.

For example:

>>> password = "secret"

>>> user Input =
>>> while (userInput! = password):
userInput = input ()

This example will ask for a user input. On the text cursor, you need to type
the password and then press the Enter key. The program will keep on asking
for a user input until you type the word secret.

While
Loops are easy to code. All you need is the correct keyword, a conditional
value, and statements you want to execute repeatedly.

One of the keywords that you can use to loop is while. While is like an “if”
statement. If its condition is met or returns True, it will start the loop. Once
the program executes the last statement in the code block, it will recheck the
while statement and condition again. If the condition still returns True, the
code block will be executed again. If the condition returns False, the code
block will be ignored, and the program will execute the next line of code. For
example

>>>i=1
>>> while i < 6:
print(i)

i+=1

>>>

For Loop

While the while loop statement loops until the condition returns false, the
“for” loop statement will loop at a set number of times depending on a string,
tuple, or list. For example:

>>> carBrands = ["Toyota", "Volvo", "Mitsubishi", "Volkswagen"]
>>> for brands in carBrands:
print(brands)
Toyota
Volvo
Mitsubishi
Volkswagen

>>>

Break

Break is a keyword that stops a loop. Here is one of the previous examples
combined with break.

For example:

>>> password = "secret"

>>> userlnput = ""
>>> while (userInput! = password):
userInput = input ()
break
print ("This will not get printed.")
Wrongpassword
>>>

As you can see here, the while loop did not execute the print keyword and did

not loop again after an input was provided since the break keyword came
after the input assignment.

The break keyword allows you to have better control of your loops. For
example, if you want to loop a code block in a set amount of times without
using sequences, you can use while and break.

>>>x =0

>>> while (True):

x+=1
print(x)
if (x ==5):
break

1

2

3

4

5

>>>

Using a counter, variable x (any variable will do of course) with an integer
that increments every loop in this case, condition and break is common
practice in programming. In most programming languages, counters are even
integrated in loop statements. Here is a “for” loop with a counter in
JavaScript.

for(i=0;i<10;i++) {
alert(i);
}

This script will loop for ten times. On one line, the counter variable is
declared, assigned an initial value, a conditional expression was set, and the
increments for the counter are already coded.

Infinite Loop

You should be always aware of the greatest problem with coding loops:
infinity loops. Infinity loops are loops that never stop. And since they never
stop, they can easily make your program become unresponsive, crash, or hog
all your computer’s resources. Here is an example similar with the previous
one but without the counter and the usage of break.
>>> while (True):

print ("This will never end until you close the program")
This will never end until you close the program
This will never end until you close the program
This will never end until you close the program
Whenever possible, always include a counter and break statement in your
loops. Doing this will prevent your program from having infinite loops.

Continue

The continue keyword is like a soft version of break. Instead of breaking out
from the whole loop, “continue” just breaks away from one loop and directly
goes back to the loop statement. For example:

>>> password = "secret"

>>> userInput = ""
>>> while (userInput! = password):
userInput = input ()
continue
print ("This will not get printed.")
Wrongpassword
Test
secret

>>>

When this example was used on the break keyword, the program only asks
for user input once regardless of anything you enter and it ends the loop if
you enter anything. This version, on the other hand, will still persist on
asking input until you put the right password. However, it will always skip on

the print statement and always go back directly to the while statement.

Here is a practical application to make it easier to know the purpose of the
continue statement.

>>> carBrands = ["Toyota", "Volvo", "Mitsubishi", "Volkswagen"]
>>> for brands in carBrands:
if (brands == "Volvo"):
continue
print ("I have a " + brands)
I have a Toyota
I have a Mitsubishi

I have a Volkswagen

>>>

When you are parsing or looping a sequence, there are items that you do not
want to process. You can skip the ones you do not want to process by using a
continue statement. In the above example, the program did not print “I have a
Volvo”, because it hit continue when a Volvo was selected. This caused it to
go back and process the next car brand in the list.

Practice Exercise

For this chapter, create a choose-your-adventure program. The program
should provide users with two options. It must also have at least five choices
and have at least two different endings.

You must also use dictionaries to create dialogues.
Here is an example:

creepometer = 1

prompt = "\nType 1 or 2 then press enter...\n\n: :> "
clearScreen = ("\n" * 25)

scenario = [

"You see your crush at the other side of the road on your way to school."”,

"You notice that her handkerchief fell on the ground.",

"You heard a ring. She reached on to her pocket to get her phone and
stopped.",

"Both of you reached the pedestrian crossing, but its currently red light.",
"You got her attention now and you instinctively grabbed your phone."

]

choicel = [
"Follow her using your eyes and cross when you reach the intersection.",
"Pick it up and give it to her.",
"Walk pass her.",
"Smile and wave at her.",

"Ask for her number."

Chapter 9: Iteration

The term iteration in programming refers to the repetition of lines of code. It
is a useful concept in programming that helps determine solutions to
problems. Iteration and conditional execution are the reference for algorithm
development.

While Statement

The following program counts to five, and prints a number on every output
line.

print(1l
print(2

print(3
print (4
print(5

Well, how can you write a code that can count to 10,000? Are you going to
copy-paste and change the 10, 000 printing statements? You can but that is
going to be tiresome. But counting is a common thing and computers count
large values. So, there must be an efficient way to do so. What you need to do
is to print the value of a variable and start to increment the variable, and
repeat the process until you get 10,000. This process of implementing the
same code, again and again, is known as looping. In Python, there are two
unique statements, while and for, that support iteration.

Here is a program that uses while statement to count to five:

count 1
count

print(count)
count 1

The while statement used in this particular program will repeatedly output the

variable count. The program then implements this block of statement five
times:

print{count)

count |

After every display of the count variable, the program increases it by one.
Finally, after five repetitions, the condition will not be true, and the block of
code is not executed anymore.

This line is the opening of the while statement.

The expression that follows the while keyword is the condition that
determines whether the block is executed. As long as the result of the
condition is true, the program will continue to run the code block over and
over. But when the condition becomes false, the loop terminates. Also, if the
condition is evaluated as false at the start, the program cannot implement the
code block inside the body of the loop.

The general syntax of the while statement is:

while | condition

block

The word while is a Python reserved word that starts the statement.

The condition shows whether the body will be executed or not. A colon (:)
has to come after the condition.

A block is made up of one or more statements that should be implemented if
the condition is found to be true. All statements that make up the block must
be indented one level deeper than the first line of the while statement.
Technically, the block belongs to the while statement.

The while statement can resemble the if statements and thus new
programmers may confuse the two. Sometimes, they may type if when they
wanted to use while. Often, the uniqueness of the two statements shows the
problem instantly. But in some nested and advanced logic, this error can be
hard to notice.

The running program evaluates the condition before running the while block
and then confirms the condition after running the while block. If the
condition remains true, the program will continuously run the code in the
while block. If initially, the condition is true, the program will run the block
iteratively until when the condition is false. This is the point when the loop
exits from execution. Below is a program that will count from zero as long as
the user wants

count
entry i o8
entry ‘N’ entry

print(count)

entry input('Please enter "Y" to continue or "N" to quit: ')
entry o e entry)" st~
count ‘

entry "N’ entry & | P
print(*"™" entry '™ is not a valid choice’)

it to
do.

Here is another program that will let the user type different non-negative
integers. If the user types a negative value, the program stops to accept inputs
and outputs the total of all nonnegative values. In case a negative number is

entry
sum

print("Enter numbers to sum, negative number ends list:")
entry
entry int(input())
entry :
sum entry
print("Sum =", sum)

the first
entry, the sum will be zero.

Let us explore the details of this program:

First, the program uses two variables, sum and entry.

e [Entry

At the start, you will initialize the entry to zero because we want the
condition entry >=0 of the while statement to be true. Failure to initialize the
variable entry, the program will generate a run-time error when it tries to
compare entry to zero in the while condition. The variable entry stores the
number typed by the user. The value of the variable entry changes every time
inside the loop.

e Sum

This variable is one that stores the total of each number entered by the user.
For this particular variable, it is initialized to zero in the start because a value
of zero shows that it has not evaluated anything. If you don’t initialize the
variable sum, the program will also generate a run-time error when it tries to
apply the +- operator to change the variable. Inside the loop, you can
constantly add the user’s input values to sum. When the loop completes, the
variable sum will feature the total of all nonnegative values typed by the
user.

The initialization of the entry to zero plus the condition entry >= 0 of the
whiles ensures that the program will run the body of the while loop only
once. The if statement confirms that the program won’t add a negative entry
to the sum.

When a user types a negative value, the running program may not update the
sum variable and the condition of the while will not be true. The loop exits
and the program implements the print statement.

This program doesn’t store the number of values typed. But it adds the values
entered in the variable sum.

print(“Help! My computer doesn't work!")
done False
done:
print("Does the computer make any sounds (fans, etc.) ")
choice = input("or show any lights? (y/n):")

choice g -
choice = input("Is it plugged in? (y/n):")

choice |
print(“Plug it in.")

choice input("Is the switch in the on position? (y/n):")
choice) b
print("Turn it on."™)

choice input(“Does the computer have a fuse? (y/n):™)
choice | B

choice input(“Is the outlet O0K? (y/n):™)
choice e

print(“"Check the outlet’'s circuit ")

print(“breaker or fuse. Move to a")

print(“"new outlet, if necessary. ™)

L -

print("Please consult a service technician.")
done

print(“Check the fuse. Replace if *)
print(“"necessary.")

print("Please consult a service technician.")
done '

A while block occupies a huge percent of this program. The program has a
Boolean variable done that regulates the loop. The loop will continue to run
as long as done is false. The name of this Boolean variable called a flag.
Now, when the flag is raised, the value is true, if not, the value is false.

Don’t forget the not done is the opposite of the variable done.

Definite and Indefinite Loops
Let us look at the following code:

print(n)
n 1

We examine this code and establish the correct number of iterations inside
the loop. This type of loop is referred to as a definite loop because we can
accurately tell the number of times the loop repeats.

Now, take a look at the following code:

stop = int{input())
n stop:

print{n)
n 1

In this code, it is hard to establish the number of times it will loop. The
number of repetitions relies on the input entered by the user. But it is possible
to know the number of repetitions the while loop will make at the point of
execution after entering the user’s input before the next execution begins.

For that reason, the loop is said to be a definite loop.

Now compare the previous programs with this one:

done False
done:
entry int(input())

entry
done True

print(entry)

For this program, you cannot tell at any point inside the loop’s execution the
number of times the iterations can run. The value 999 is known before and
after the loop but the value of the entry can be anything the user inputs. The
user can decide to input 0 or even 999 and end it. The while statement in this
program is a great example of an indefinite loop.

So, the while statement is perfect for indefinite loops. While these examples
have applied the while statements to demonstrate definite loops, Python has a
better option for definite loops. That is none other than the for statement.

The for Statement
The while loop is perfect for indefinite loops. This has been demonstrated in
the previous programs, where it is impossible to tell the number of times the
while loop will run. Previously, the while loop was used to run a definite loop
such as:

n

print{n)
n 1

In the following code snippet, the print statement will only run 10 times. This
code demands three important parts to control the loop:

e [nitialization
e (Check
e Update

Python language has an efficient method to demonstrate a definite loop. The

for statement repeats over a series of values. One method to demonstrate a
series is to use a tuple. For example:

n

print(n)

This code works the same way as the while loop is shown earlier. In this
example, the print statement runs 10 times. The code will print first 1, then 2,
and so forth. The last value it prints is 10.

It is always tedious to display all elements of a tuple. Imagine going over all
the integers from 1 to 1, 000, and outputting all the elements of the tuple in
writing. That would be impractical. Fortunately, Python has an efficient
means of displaying a series of integers that assume a consistent pattern.

This code applies the range expression to output integers between 1-10.

n range(1l, 11):

print(n)

The range expression (1,11) develops a range object that will let the for loop
to allocate the variable n the values 1, 2,10.

The line of code in this code snippet is interpreted as “for every integer n in
the range 1 < n < 11.” In the first execution of the loop, the value of n is 1
inside the block. In the next iteration of the loop, the value of n is 2. The
value of n increases by one for each loop. The code inside the block will
apply the value of n until it hits 10. The general format for the range
expression goes as follows:

range(begin,end, step)
From the general syntax:

e Begin represents the leading value in the range; when it is
deleted, the default value becomes 0.

e The end value is one value after the last value. This value is
necessary, and should not be deleted.

e Step represents the interval of increase or decrease. The
default value for step is 1 if it is deleted.

All the values for begin, step, and end must be integer expressions. Floating-
point expressions and other types aren’t allowed. The arguments that feature
inside the range expression can be literal numbers such as 10, or even
variables like m, n, and some complex integer expressions.

One thing good about the range expression is the flexibility it brings. For
example:

n range(21, O,
pr\lnt(n’ E.rl.l.j ' .)

output

This means that you can use the range to display a variety of sequences.

For range expressions that have a single argument like range(y), the y is the
end of the range, while 0 is the beginning value, and then 1 the step value.

For expressions carrying two arguments like range (m, n), m is the begin
value, while y is the end of the range. The step value becomes 1.

For expressions that have three arguments like range (m, n, y), m is the begin
value, n is the end, and y is the step value.

When it comes to a for loop, the range object has full control on selecting the
loop variable each time via the loop.

If you keep a close eye on older Python resources or even online Python
example, you are likely to come across the xrange expression. Python version
2 has both the range and xrange. However, Python 3 doesn’t have the xrange.
The range expression of Python 3 is like the xrange expression in Python 2.

In Python 2, the range expression builds a data structure known as a list and
this process can demand some time for a running program. In Python 2, the

xrange expression eliminates the additional time. Hence, it is perfect for a big
sequence. When creating loops using the for statement, developers of Python

2 prefer the xrange instead of the range to optimize the functionality of the
code.

Chapter 10: Functions and Control Flow Statements in Python

This chapter is a comprehensive guide about functions. We will look at
various components of function with examples. Let us go!

What is a Function?

Functions are organized and reusable code segments used to implement
single or associated functionalities, which can improve the modularity of
applications and the reuse rate of codes. Python provides many built-in
functions, such as print (). Also, we can create our own functions, that is,
custom functions.

Next, look at a code:
// display (" * ")

// display (" *** ")
/I display ("*****")

If you need to output the above graphics in different parts of a program, it is
not advisable to use the print () function to output each time. To improve
writing efficiency and code reusability, we can organize code blocks with
independent functions into a small module, which is called a function.

Defining Functions

We can define a function to achieve the desired functionality. Python
definition functions begin with def, and the basic format for defining
functions is as follows:

Def function {Enter the name here} (Enter parameters here):
"//Use this to define function String"

Function {Body}

Return expression

Note that if the parameter list contains more than one parameter, by default,
the parameter values and parameter names match in the order defined in the
function declaration.

Next, define a function that can complete printing information, as shown in
Example below.

Example: Functions of Printing Information

defines a function that can print information.

def Overprint ():

print ('-----mmmmmm e N
print ('life is short, I use python')
print (-----mmmmm e)

Call Function

After defining a function, it is equivalent to having a piece of code with
certain methods. To make these codes executable, you need to call it. Calling
a function is very simple. You can call it by "function name ()".

For example, the code that calls the Useforprint function in the above section
is as follows:

After the function is defined, the function will not be executed
automatically and needs to be called

Useforprint ()

Parameters of Function

Before introducing the parameters of the function, let's first solve a problem.
For example, it is required to define a function that is used to calculate the
sum of two numbers and print out the calculated results. Convert the above
requirements into codes.

The sample codes are as follows:
def thisisaddition ():

result = 62+12

print(result)

The functionality of the above function is to calculate the sum of 62 and 12.
At this time, no matter how many times this function is called, the result will
always be the same, and only the sum of two fixed numbers can be
calculated, making this function very limited.

To make the defined function more general, that is, to calculate the sum of
any two numbers, two parameters can be added when defining the function,

and the two parameters can receive the value passed to the function.

Next, a case is used to demonstrate how a function passes parameters.

Example: Function Transfer Parameters
defines a function that receives 2 parameters

def thisisaddition (first, second):
third = first+second
print(third)

In Example, a function capable of receiving two parameters is defined.
Where first is the first parameter for receiving the first value passed by the
function; the second is the second parameter and receives the second value
passed by the function. At this time, if you want to call the thisisaddition
function, you need to pass two numeric values to the function's parameters.

The example code is as follows:

When calling a function with parameters, you need to pass data in
parentheses.

thisisaddition (62, 12)

It should be noted that if a function defines multiple parameters, then when
calling the function, the passed data should correspond to the defined
parameters one by one.

Default Parameters

When defining a function, you can set a default value for its parameter, which
is called the default parameter. When calling a function, because the default
parameter has been assigned a value at the time of definition, it can be
directly ignored, while other parameters must be passed in values. If the
default parameter does not have an incoming value, the default value is
directly used. If the default parameter passes in value, the new value passed
in is used instead.

Next, we use a case to demonstrate the use of the default parameter.

Example: Default Parameters
def getdetails (input, time = 35):

prints any incoming string

print ("Details:", input)

print ("Time:", time)

calls printinfo function

printinfo (input="sydney”)

printinfo (input="sydney”, time=2232)

In an example, lines 1-4 define the getdetails function with two parameters.
Among them, the input parameter has no default value, and age has already
set the default value as the default parameter.

When calling the getdetails function, because only the value of the name
parameter is passed in, the program uses the default value of the age
parameter. When the getdetails function is called on line 7, the values of the
name and age parameters are passed in at the same time so that the program
will use the new value passed to the age parameter.

It should be noted that parameters with default values must be located at the
back of the parameter list. Otherwise, the program will report an error, for
example, add parameter sex to the getdetails function and place it at the back
of the parameter list to look at the error information.

With this, we have completed a thorough explanation of functions in python.
Control flow Statements

In this chapter, we will further continue discussing control statements briefly.
A lot of examples are given to make you understand the essence of the topic.
Let us dive into it.

What is the control flow statements?

All conditionals, loops and extra programming logic code that executes a
logical structure are known as control flow statements. We already have an
extensive introduction to conditionals and loops with various examples. Now,
you should remember that the control flow statements we are going to learn
now are very important for program execution. They can successfully skip or
terminate or proceed with logic if used correctly. We will start learning about
them now with examples. Let us go!

break statement

The break statement is used to end the entire loop (the current loop body) all
at once. It is preceded by a logic.

for example, the following is a normal loop:
for sample in range (10):

print sample

After the above loop statement is executed, the program will output integers
from 0 to 9 in sequence. The program will not stop running until the loop
ends. At this time, if you want the program to output only numbers from 0 to
2, you need to end the loop at the specified time (after executing the third
loop statement).

Next, demonstrate the process of ending the loop with a break.

Example: break Statement
end=1

for end in range (10):
end+=1

print ("------- ")

if end==3:

break

print(end)

In Example, when the program goes to the third cycle because the value of
the end is 3, the program will stop and print the loop until then.

continue statement

The function of continue is to end this cycle and then execute the next cycle.
It will look at the logical values and continue with the process.

Next, a case is used to demonstrate the use of the continue statement below.

Example continue statement

sample=1

for sample in range (10):

sample+=1

if sample==3:
continue
print(sample)

In Example, when the program executes the third cycle because the value of
sample is 3, the program will terminate this cycle without outputting the
value of sample and immediately execute the next cycle.

Note:

(1) break/continue can only be used in a cycle, otherwise, it cannot be used
alone.

(2) break/continue only works on the nearest loop in nested loops.

pass statement

Pass in Python is an empty statement, which appears to maintain the integrity
of the program structure. Pass does nothing and is generally used as a
placeholder.

The pass statement is used as shown in Example below.
Example pass Statement

for alphabet in "University":

if letter == 'v":

pass

print ('This is the statement")

print ('Use this alphabet’, letter)

print ("'You can never see me again”)

In Example above, when the program executes pass statements because pass
is an empty statement, the program will ignore the statement and execute the
statements in sequence.

else statement

Earlier, when learning if statements, else statements were found outside the
scope of the if conditional syntax. In fact, in addition to judgment statements,
while and for loops in Python can also use else statements. When used in a
loop, the else statement is executed only after the loop is completed, that is,
the break statement also skips the else statement block.

Next, we will demonstrate it through a case for your better understanding of
the else block.

Example: else statement
result =0

while result < 5:

print (result, " is less than 5")
result = result + 1

else:

print (result, " is not less than 5")

In Example, the else statement is executed after the while loop is terminated,
that is, when the value of the result is equal to 5, the program executes the
else statement.

With this, we have completed a short introduction to control flow statements
in Python programming. It is always important to use control flow statements
only when they are necessary. If they are used without any use case, they
may start creating unnecessary blockages while programming. Let us go!

Conclusion:

For every programmer, the beginning is always the biggest hurdle. Once you
set your mind to things and start creating a program, things automatically
start aligning. The needless information is automatically omitted by your
brain through its cognitive powers and understanding of the subject matter.
All that remains then is a grey area that we discover further through various
trials and errors.

There is no shortcut to learn to program in a way that will let you type codes
100% correctly, without a hint of an error, at any given time. Errors and
exceptions appear even for the best programmers on earth. There is no
programmer that I know of personally who can write programs without
running into errors. These errors may be as simple as forgetting to close
quotation marks, misplacing a comma, passing the wrong value, and so on.
Expect yourself to be accompanied by these errors and try to learn how to
avoid them in the long run. It takes practice, but there is a good chance you
will end up being a programmer who runs into these issues only rarely.

We were excited when we began this workbook. Then came some arduously
long tasks which quickly turned into irritating little chores that nagged us as
programmers and made us think more than we normally would. There were
times where some of us even felt like dropping the whole idea of being a
programmer in the first place. But, every one of us who made it to this page,
made it through with success.

Speaking of success, always know that your true success is never measured
properly nor realized until you have hit a few failures along the road. It is a
natural way of learning things. Every programmer, expert, or beginner, is
bound to make mistakes. The difference between a good programmer and a
bad one is that the former would learn and develop the skills while the latter
would just resort to Google and locate an answer.

If you have chosen to be a successful Python programmer, know that there
will be some extremely trying times ahead. The life of a programmer is rarely
socially active, either unless your friend circle is made up of programmers
only. You will struggle to manage your time at the start, but once you get the
hang of things, you will start to perform exceptionally well. Everything will
then start aligning, and you will begin to lead a more relaxed lifestyle as a

programmer and as a human being.

Until that time comes, keep your spirits high and always be ready to
encounter failures and mistakes. There is nothing to be ashamed of when
going through such things. Instead, look back at your mistakes and learn from
them to ensure they are not repeated in the future. You might be able to make
programs even better or update the ones which are already functioning well
enough.

Lastly, let me say it has been a pleasure to guide you through both these
books and to be able to see you convert from a person who had no idea about
Python to a programmer who now can code, understand and execute matters
at will. Congratulations are in order. Here are digital cheers for you!

Print (“Bravo, my friend!”)

I wish you the best of luck for your future and hope that one day, you will
look back on this book and this experience as a life-changing event that led to
a superior success for you as a professional programmer. Do keep an eye out
for updates and ensure you visit the forums and other Python communities to
gain the finest learning experience and knowledge to serve you even better
when stepping into the more advanced parts of Python.

Python for data science:

DATA ANALYSIS AND DEEP LEARNING WITH PYTHON
CODING AND PROGRAMMING. THE LATEST BEGINNER’S
GUIDE WITH PRACTICAL APPLICATIONS ON MACHINE
LEARNING AND ARTIFICIAL INTELLIGENCE.

William Wizner

© Copyright 2020 - All rights reserved.

The content contained within this book may not be reproduced, duplicated, or transmitted without
direct written permission from the author or the publisher.

Under no circumstances will any blame or legal responsibility be held against the publisher, or author,
for any damages, reparation, or monetary loss due to the information contained within this book. Either
directly or indirectly.

Legal Notice:

This book is copyright protected. This book is only for personal use. You cannot amend, distribute, sell,
use, quote or paraphrase any part, or the content within this book, without the consent of the author or
publisher.

Disclaimer Notice:

Please note the information contained within this document is for educational and entertainment
purposes only. All effort has been executed to present accurate, up to date, and reliable, complete
information. No warranties of any kind are declared or implied. Readers acknowledge that the author is
not engaging in the rendering of legal, financial, medical, or professional advice. The content within
this book has been derived from various sources. Please consult a licensed professional before
attempting any techniques outlined in this book.

By reading this document, the reader agrees that under no circumstances is the author responsible for
any losses, direct or indirect, which are incurred as a result of the use of the information contained
within this document, including, but not limited to, — errors, omissions, or inaccuracies.

Introduction:

In this Book, we will lay down the foundational concepts of data science,
starting with the term ‘big data.” As we move along, we will steer the focus
of our discussion towards the recognition of what exactly is data science and
the various types of data we normally deal with within this field. By doing so,
the readers will be able to gather a much-needed insight on the processes
surrounding the niche of data science and, consequently, easily understand
the concepts we put forward in this regarding the fields of data science and
big data. After the theoretical explanatory sections, the book will conclude on
working out some basic and common examples of Hadoop.

When handling data, the most common, traditional, and widely used
management technique is the ‘Relational Database Management Systems,’
also known as ‘RDBMS.’ This technique applies to almost every dataset as it
easily meets the dataset’s required demands of processing; however, this is
not the case for ‘Big Data.’ Before we can understand why such management
techniques fail to process big data, we need first to understand what does the
term ‘Big Data’ refers to. The name itself gives away a lot of the information
regarding the data natures. Nevertheless, big data is a term that is used to
define a collection of datasets that are very large and complex in size alone.
Such datasets become difficult to process using traditional data management
techniques and, thus, demand a new approach for handling them, as it is
evident from the fact that the commonly used technique RDBMS has zero
working compatibility with big data.

The core of data science is to employ methods and techniques that are the
most suitable for the analysis of the sample dataset so that we can take out the
essential bits of information contained in it. In other words, big data is like a
raw mineral ore containing a variety of useful materials. Still, in its current
form, its contents are unusable and no use to us. Data science is the refinery
which essentially uses effective techniques to analyze this ore and then
employ corresponding methods to extract its contents for us to use.

The world of big data is exponentially vast, and the use of data science with
big data can be seen in almost every sector of the modern age, be it
commercial, non-commercial, business, or even industrial settings. For
instance, in a commercial setting, the corresponding companies use the data
science and big data elements to chiefly get a better insight into the demands

of their customers and information regarding the efficiency of their products,
staff, manufacturing processes, etc. Consider Google’s advertising
department AdSense; it employs data science to analyze the big data (which
is a collection of user internet data) to extract information to ensure that the
person browsing the internet is seeing relevant advertisements. The uses of
data science extend far and beyond what we can imagine. It is not possible to
list all of its advantageous uses currently being employed in the modern-day.
However, what we do know is that the majority of the datasets gathered by
big companies all around the world are none other than big data. Data science
is essential for these companies to analyze this data and benefit from the
information it contains. Not only that, big educational institutions like
Universities and research work also benefits from data science.

While venturing across the field of data science, you will soon come to
realize that there is not one defined type of data. Instead, there are multiple
categories under which data is classified, and each category of data requires
an entirely different toolset to be processed.

Following are the seven major categories of data:

1. Structured Data

2. Unstructured Data

3. Natural Language Data
4. Machine Generated Data
5. Graph-based Data

6. Audio, Video, and Image Data
7. Streaming Data

As the name suggests, a collection of data that is organized according to a
defined model and restricted in the record’s corresponding data fields is
known as structured data. For instance, data that is organized in the form of a
table is known as structured data (such as Excel tables or in databases). To
manage and analyze such data, a preferable method is to use the Structured

Query Language or SQL. However, not all structured datasets are easily
manageable; for instance, the family data tree is also a structured dataset, but
it becomes difficult to process and analyze such structured datasets. In other
words, there are some exceptions in these data categories that may demand
another data processing technique.

Raw data is never structured; it is brought into a defined setting by the users.
Hence, if we are given a data sample that is structured, then all is good,
however, if the data is unstructured, then we must bring into a structured
format before applying the SQL technique. Below is an example showing a
dataset structured into an Excel table:

1 |Indicator ID |Dimension List Timeframe Numeric Value Missing Value Flag Confidence Inti
2 |214390830 |Total (Age-adjusted) "008 74.6% 73.8%
L r
3 |214390833 |Aged 18-44 years 2008 59.4% 58.0%
4 1214390831 |Aged 18-24 years '2008 37.4% 34.6%
5 (214390832 |Aged 25-44 years "008 66.9% 65.5%
6 |214390836 |Aged 45-64 years "2008 88.6% 87.7%
7 (214390834 |Aged 45-54 years "008 86.3% 85.1%
8 (214390835 [Aged 55-64 years "2008 91.5% 90.4%
9 |214290840 [aged 65 years and over "008 94.6% 93.8%
" LA
10|214390837 |Aged 65-74 years 2008 93.6% 92.4%
11 (214390838 |Aged 75-84 years "2008 95.6% 94.4%
12214390839 |Aged 85 years and over "2008 96.0% 94.0%
13214390841 |Male (Age-adjusted) '2008 72.2% 71.1%
14214390842 |Female (Age-adjusted) "2008 76.8% 75.9%
15214390843 |white only (Age-adjusted) "2008 73.8% 72.9%
L r
16214390844 |Black or African American only (Age-adjusted) 2008 77.0% 75.0%
L L4
17|214390845 |American Indian or Alaska Native only (Age-adjusted) 2008 66.5% 57.1%
18214390846 |Asian only (Age-adjusted) "2008 80.5% 77.7%
19 | 214390847 |(Native Hawaiian or Other Pacific Islander only (Age-adjusted) 2008 Dsu
201214390848 |2 or more races (Age-adiusted) "2008 75.6% 69.6%

Data usually found in emails is a common example of unstructured data.
Hence to process and analyze the data, we must first filter it and bring it into
a structured form.

One may argue that data contained in an email is also structured to some
extent because there are fields such as the sender, the receiver, the subject.
However, the reason why traditional structural data analyzing techniques do
not apply to emails is that the data contained within them are either highly
varying or context-specific. Moreover, the choice of words, the language
used, and the intonations to refer to something in an email also varies,
making the task even more complicated.

This is also a type of unstructured data, and it is also very complicated to
process as we would need to factor in linguistics. Hence, for such datasets,
the user must have a good understanding of various data science techniques
in addition to linguistics. The main concern of the community working with

natural language processing is the lack of generalization in their models. Each
model is trained specifically to one aspect, such as entity recognition, topic
recognition, and summarization, etc. but these models fail to generalize over
to other domains such as text completion and sentiment analysis. The reason
is that language is ambiguous, and it is impossible to program and train
machines to overcome this ambiguity when humans themselves have failed to
do so.

As the name suggests, the data produced by a computer or its corresponding
processes and applications without any external fiddling of humans is known
as machine-generated data. Such types of data have become a major data
resource as it is automated. To analyze and extract the information being
contained within this machine-generated data, we would need to use very
scalable tools. This is accordingly with this type of dataset that is not only
high in volume but also in the speed generated. Data such as crash logs, web
server logs, network logs, and even call record logs are all in nature,
machine-generated data as shown in the example below:

CSIPERF:TXCOMMIT ;313236

2014-11-28 11:36:13, Info CSI 00000153 Creating NT transaction (seq
69), objectname [6]" (null)"

2014-11-28 11:36:13, Info CSI 00000154 Created NT transaction (seq €9)
result 0x00000000, handle @O0x4eS4

2014-11-28 11:36:13, Info CsI 0000015502014/11/28:10:36:13.471
Beginning NT transaction commit...

2014-11-28 11:36:13, Info CsI 00000156@2014/11/28:10:36:13.705 CSI perf
trace:

CSIPERF:TXCOMMIT;273983

2014-11-28 11:36:13, Info [} ¢ 00000157 Creating NT transaction (seq
70), objectname [€]" (null)"™

2014-11-28 11:36:13, Info CSI 00000158 Created NT transaction (seq 70)
result 0x00000000, handle @0x4eSc

2014-11-28 11:36:13, Info CsI 00000159@2014/11/28:10:36:13.764
Beginning NT transaction commit...

2014-11-28 11:36:14, Info CsI 0000015a@2014/11/28:10:36:14.094 CSI pert
trace:

CSIPERF:TXCOMMIT ;386259

2014-11-28 11:36:14, Info CSI 0000015k Creating NT transaction (seq
71), objectname [6]" (null)"

2014-11-28 11:36:14, Info CSI 0000015¢c Created NT transaction (seq 71)
result 0x00000000, handle @Ox4eSc

2014-11-28 11:36:14, Info Ccs1 00000154@02014/11/28:10:36:14.106
Beginning NT transaction commict...

2014-11-28 11:36:14, Info Cs1 0000015e@2014/11/28:10:36:14.428 CSI pert

é;;;EQF:TXCOHHIT:37SSSI
We must not confuse the terms ‘graph’ and ‘graph theory.” The first one
represents the geometrical representation of data in a graph, and any data can
be made into a graph, but that does not necessarily change the nature of the
data. The latter refers to the mathematical structure, which essentially is a

model that connects the objects into a pair based on their inherent
relationship with each other. Hence, we can also term such categories of data
as Network data. This type of data emphasizes elements such as the
adjacency and relationship of objects and the common structures found in
graphs found in graph-based data are:

e Nodes

e FEdges
e Properties

Graph-based data is most commonly seen on social media websites. Here’s
an example of a graph-based data representing many friends on a social

network.

o
To query graph-based data, we normally use specialized query languages
such as SPARQL.

Everyone is familiar with audio, image, and video data to a certain extent.
However, out of all the data categories, audio, image, and video data are very
difficult to deal with for a data scientist. This is partly because though we
analyze this data, the computer must recognize elements, such as in image
data, discerning between objects, and identifying them is a very difficult task.
However, it is easy for the user. To deal with such categories of data, we
usually implement deep learning models.

This category of data can take on the nature of any of the data categories
mentioned previously. However, the aspect which makes it different from the

other data categories is that in streaming data, the data only comes into the
system after an event happens in real-time, unlike other categories where the
data is loaded into the systems in the form of batches. The reason as to why
streaming data is defined as an entirely different category is because we need
an altogether different process to analyze and extract information from
streaming data.

Chapter 1: What is Data Analysis?

Now that we have been able to spend some time taking a look at the ideas of
python and what we can do with that coding language, it is time for us to
move on to some of the things that we can do with all of that knowledge and
all of the codes that we are looking. We are going to take a look here to see
more about data analysis, and how we can use this to help us see some good
results with our information as well.

Companies have spent a lot of time taking a look at data analysis and what it
has been able to do for them. Data are all around us, and it seems like each
day, tons of new information is available for us to work with regularly.
Whether you are a business trying to learn more about your industry and your
customers, or just an individual who has a question about a certain topic, you
will be able to find a wealth of information to help you get started.

Many companies have gotten into a habit of gathering up data and learning
how to make them work for their needs. They have found that there are a lot
of insights and predictions inside these data to make sure that it is going to
help them out in the future. If the data are used properly, and we can gain a
good handle of those data, they can be used to help our business become
more successful.

Once you have gathered the data, there is going to be some work to do. Just
because you can gather up all of that data doesn’t mean that you will be able
to see what patterns are inside. This is where the process of data analysis is
going to come into play to help us see some results as well. This is a process
that is meant to ensure that we fully understand what is inside of our data and
can make it easier to use all of that raw data to make some informed and
smart business decisions.

To make this a bit further, data analysis is going to be a practice where we
can take some of the raw data that our business has been collecting, and then
organize and order it to ensure that it can be useful. During this process, the
information that is the most useful is extracted and then used from that raw
data.

The one thing that we need to be careful about when we are working with
data analysis, though, is to be careful about the way that we manipulate the
data that we have. It is really easy for us to go through and manipulate the

data in the wrong way during the analysis phase, and then end up pushing
certain conclusions or agendas that are not there. This is why we need to pay
some close attention to when the data analysis is presented to us and to think
critically about the data and the conclusions that we were able to get out of
it.

If you are worried about a source that is being done, and if you are not sure
that you can complete this kind of analysis without some biases in it, then it
is important to find someone else to work on it or choose a different source.
There is a lot of data out there, and it can help your business to see some
results, but you have to be careful about these biases, or they will lead us to
the wrong decisions in the end if we are not careful.

Besides, you will find that during the data analysis, the raw data that you will
work with can take on a variety of forms. This can include things like
observations, survey responses, and measurements, to name a few. The
sources that you use for this kind of raw data will vary based on what you are
hoping to get out of it, what your main question is all about, and more.

In its raw form, the data that we are gathering is going to be very useful to
work with, but you may find that it is a bit overwhelming to work with as
well. This is a problem that a lot of companies are going to have when they
work with data analysis and something that you will have to spend some time
exploring and learning more about, as well.

Over the time that you spend on data analysis and all of the steps that come
with the process, the raw data are going to be ordered in a manner that makes
it as useful to you as possible. For example, we may send out a survey and
then will tally up the results that we get. This is going to be done because it
helps us to see at a glance how many people decided to answer the survey at
all, and how people were willing to respond to some of the specific questions
that were on that survey.

In the process of going through and organizing the data, a trend is likely
going to emerge, and sometimes more than one trend. And we are going to be
then able to take some time to highlight these trends, usually in the write-up
that is being done on the data. This needs to be highlighted because it ensures
that the person who is reading that information is going to take note.

There are a lot of places that we are going to see this. For example, in a
casual kind of survey that we may try to do, you may want to figure out the

preferences between men and women of what ice cream flavors they like the
most. In this survey, maybe we find out that women and men are going to
express a fondness for chocolate. Depending on who is using this information
and what they are hoping to get out of that information, it could be something
that the researcher is going to find very interesting.

Modeling the data that is found out of the survey, or out of another form of
data analysis, with the use of mathematics and some of the other tools out
there, can sometimes exaggerate the points of interest, such as the ice cream
preferences from before, in our data, which is going to make it so much
easier for anyone who is looking over the data, especially the researcher, to
see what is going on there.

In addition to taking a look at all of the data that you have collected and
sorted through, you will need to do a few other parts as well. These are all
meant to help the person who needs this information to read through it and
see what is inside and what they can do with all of that data. It is the way that
they can use the information to see what is going on, the complex
relationships that are there, and so much more.

This means that we need to spend our time with some write-ups of the data,
graphs, charts, and other ways to represent and show the data to those who
need it the most. This will form one of the final steps that come with data
analysis. These methods are designed in a manner to distill and refine the
data so that the readers are then able to glean some of the interesting
information from it, without having to go back through the raw data and
figure out what is there all on their own.

Summarizing the data in these steps is going to be critical, and it needs to be
done in a good and steady manner as well. Doing this is going to be critical to
helping to support some of the arguments that are made with that data, as is
presenting the data clearly and understandably. During this phase, we have to
remember that it is not always possible that the person who needs that
summary and who will use it to make some important decisions for the
business will be data scientists. They need it all written out in a simple and
easy to understand this information. This is why the data has to be written out
in a manner that is easy to understand and read through.

Often this is going to be done with some sort of data visualization. There are
many choices of visuals that we can work with, and working with some kind

of graph or chart is a good option as well. Working with the method that is
the best for your needs and the data that we are working with is going to be
the best way to determine the visual that is going to be the best for you.

Many times, reading through information that is in a more graphical format is
going to be easier to work with than just reading through the data and hoping
it to work the best way possible. You could just have it all in a written form if
you would like, but this is not going to be as easy to read through nor as
efficient. To see some of those complex relationships quickly and efficiently,
working with a visual is going to be one of the best options to choose from.

Even though we need to spend some time working with a visual of the data to
make it easier to work with and understand, it is fine to add in some of the
raw data as the appendix, rather than just throwing it out. This allows the
person who is going to work with that data regularly a chance to check your
resources and your specific numbers and can help to bolster some of the
results that you are getting overall.

If you are the one who is getting the results of the data analysis, make sure
that when you get the conclusions and the summarized data from your data
scientist that you go through and view them more critically. You should take
the time to ask where the data comes from is going to be important, and you
should also take some time to ask about the method of sampling that was
used for all of this as well when the data was collected. Knowing the size of
the sample is important as well.

Chapter 2: The Basics of the Python Language

Python language is one of the best coding languages that you can start
handling for your first data science project. This is a fantastic language that
capable to take on all of the work that you want to do with data science and
has the power that is needed to help create some great machine learning
algorithms. With that said, it is still a great option for beginners because it
has been designed to work with those who have never done programming
before. While you can choose to work with the R programming language as
well, you will find that the Python language is one of the best options because
of its ease of use and power that combines.

Before we dive into how Python can work with some of the things that you
would like to do with data science, we first need to take some time to look at
the basics of the Python language. Python is a great language to look through,
and you will be able to learn how to do some of the codings that you need to
in no time. Some of the different types of coding that you can do with the
Python language will include:

The Statements

The first thing that we are going to take a moment to look through when it
comes to our Python language is the keywords. This is going to focus on the
lines or sentences that you would like to have the compiler show up on your
screen. You will need to use some of the keywords that we will talk about
soon, and then you can tell the compiler what statements to put up on the
screen. If you would like to leave a message on the screen such as what we
can do with the Hello, World! The program, you will need to use that as your
statement, and the print keyword, so the compiler knows how to behave.

The Python Operators

We can also take some time to look at what is known as the Python operators.
These are often going to get ignored when it comes time to write out codes
because they don’t seem like they are that important. But if you skip out on
writing them, they are going to make it so that your code will not work the
way that you would like. We can focus on several different types of Python
operators, so making sure that you know what each kind is all about, and
when to add these into your code will make a world of difference as well.

The Keywords

The keywords are another important part of our Python code that we need to
take a look at. These are going to be the words that we need to reserve
because they are responsible for giving the compiler the instructions or the
commands that you would like for it to use. These key words ensure that the
code is going to perform the way that you would like it for the whole time.

These keywords need to be reserved, so make sure that you are not using
them in the wrong places. If you do not use these keywords in the right
manner, or you don’t put them in the right place, then the compiler is going to
end up with some issues understanding what you would like it to do, and you
will not be able to get the results that you want. Make sure to learn the
important keywords that come with the Python language and learn how to put
them in the right spot of your code to get the best results with it.

Working with Comments

As we work with the Python coding, there are going to be times when we
need to spend our time working with something that is known as a comment.
This is going to be one of the best things that we can do to make sure that we
can name a part of the code, or when we want to leave a little note for
yourself or another programmer, then you are going to need to work with
some of the comments as well.

These comments are going to be a great option to work with. They are going
to allow you to leave a nice message in the code, and the compiler will know
that it should just skip over that part of the code, and not read through it at all.
It is as simple as that and can save you a lot of hassle and work inside of any
code you are doing.

So, any time that you would like to write out a comment inside of your
Python code, you just need to use the # symbol, and then the compiler will
know that it is supposed to skip over that part of the code and not read it. We
can add in as many of these comments as we would like into the code. Just
remember to keep these to the number that is necessary, rather than going
overboard with this, because it ensures that we are going to keep the code
looking as nice and clean as possible.

The Python Class

One thing that is extremely important when it comes to working with Python,

and other similar languages, is the idea that the language is separated into
classes and objects. The objects are meant to fit into the classes that you
create, giving them more organization, and ensuring that the different parts
are going to fit together the way that you would like without trouble. In some
of the older types of programming languages, the organization was not there,
and this caused a lot of confusion and frustration for those who were just
starting.

These classes are simply going to be a type of container that can hold onto
your objects, the ones that you write out, and are based on actual items in the
real world and other parts of the code. You will need to make sure that you
name these classes in the right manner, and then have them listed out in the
code in the right spot to make sure they work and call up the objects that you
need. And placing the right kinds of objects into the right class is going to be
important as well.

You can store anything that you want inside a class that you design, but you
must ensure that things that are similar end up in the same class. The items
don’t have to be identical to each other, but when someone takes a look at the
class that you worked on, they need to be able to see that those objects belong
together and make sense to be together.

For example, you don’t have just to put cars into the same class, but you
could have different vehicles in the same class. You could have items that are
considered food. You can even have items that are all the same color. You
get some freedom when creating the classes and storing objects in those
classes, but when another programmer looks at the code, they should be able
to figure out what the objects inside that class are about and those objects
should share something in common.

Classes are very important when it comes to writing out your code. These are
going to hold onto the various objects that you write in the code and can
ensure that everything is stored properly. They will also make it easier for
you to call out the different parts of your code when you need them for
execution.

How to Name Your Identifiers

Inside the Python language, there are going to be several identifiers that we
need to spend some time on. Each of these identifiers is going to be
important, and they are going to make a big difference in some of the

different parts of the code that you can work with. They are going to come to
us under a lot of different names, but you will find that they are going to
follow the same kinds of rules when it comes to naming them, and that can
make it a lot easier for a beginner to work with as well.

To start with, you can use a lot of different types of characters in order to
handle the naming of the identifiers that you would like to work with. You
can use any letter of the alphabet that you would like, including uppercase
and lowercase, and any combination of the two that you would like. Using
numbers and the underscore symbol is just fine in this process as well.

With this in mind, there are going to be a few rules that you have to
remember when it comes to naming your identifiers. For example, you are
not able to start a name with the underscore symbol or with a number. So,
writing something like 3puppies or _threepuppies would not work. But you
can do it with something like threepuppies for the name. A programmer also
won’t be able to add in spaces between the names either. You can write out
threepuppies or three_puppies if you would like, but do not add the space
between the two of them.

In addition to some of these rules, we need to spend some time looking at one
other rule that is important to remember. Pick out a name for your identifier
that is easy to remember and makes sense for that part of the code. This is
going to ensure that you can understand the name and that you will be able to
remember it later on when you need to call it up again.

Python Functions

Another topic that we are going to take a quick look at here as we work with
the Python language is the idea of the Python functions. These are going to be
a set of expressions that can also be statements inside of your code as well.
You can have the choice to give them a name or let them remain anonymous.
They are often the first-class objects that we can explore as well, meaning
that your restrictions on how to work with them will be lower than we will
find with other class objects.

Now, these functions are very diversified and there are many attributes that
you can use when you try to create and bring up those functions. Some of the
choices that you have with these functions include:

__doc__: This is going to return the docstring of the function that you

are requesting.

Func_default: This one is going to return a tuple of the values of your
default argument.

Func_globals: This one will return a reference that points to the
dictionary holding the global variables for that function.

Func_dict: This one is responsible for returning the namespace that
will support the attributes for all your arbitrary functions.

Func_closure: This will return to you a tuple of all the cells that hold
the bindings for the free variables inside of the function.

Chapter 3: Using Pandas

It would be difficult to delve deeper into the technical aspect of data science
and analysis without a refresher course on the basics of data analysis. Come
to think of it, data science, new as it is, is still a generally broad topic of
study. Many books have tried to specifically define what data science and
being a data scientist means. After all, it was voted one of the most highly
coveted jobs this decade, according to surveys done by Google.
Unfortunately, the sheer wide and general variety of data science topics
ranging from Artificial Intelligence to Machine Learning means that it is
difficult to place data science under one large umbrella. Despite the attempt
to define data science, having to clearly define it is a daunting task and one
that shouldn’t be taken lightly.

However, one fact remains about data science that could be consistently said
throughout the various practices of data science: the use of software and
programming basics is just as integral as the analysis of the data. Having the
ability to use and create models and artificially intelligent programs is
integral to the success of having clean, understandable, and readable data.
The discussions you will find in this book will regard the latest and more
advanced topics of interest in the topic of data science, as well as a refresher
course on the basics.

Pandas

The core of Data Science lies in Python. Python is one of the easiest and most
intuitive languages out there. For more than a decade, Python has absolutely
dominated the market when it comes to programming. Python is one of the
most flexible programming languages to date. It is extremely common, and
honestly, it is also one of the more readable languages. As one of the more
popular languages right now, Python is complete with an ever-supporting
community and deep and extensive support modules. If you were to open
GitHub right now, you’d find thousands of repositories filled with millions of
lines of Python code. As flexible programming, python is used for machine
learning, deep learning applications, 2D imagery, and 3D animation.

If you have no experience in Python, then it is best to learn it before
progressing through further sections of this book.

Assuming that you do have a basic understanding of Python and that coding
in this language has almost become natural to you, the following sections will
make more sense. If you have experience in Python, you should at least have
heard about Pandas and Scikit Library.

Essentially, Pandas is a data analysis tool used to manipulate and analyze
data. It is particularly useful as it offers methods to build and create data
structures as well as methods used to manipulate numerical tables and time
series. As an open-source library, the Pandas library is built on top of
NumPy, indicating that Pandas requires the prior installation of NumPy to
operate.

Pandas make use of data frames, which is essentially a two-dimensional array
with labeled axes. It is often used as it provides methods to handle missing
data easily, efficient methods to slice, reshape, merge, and concatenate data
as well as providing us with powerful time series tools to work with.
Learning to write in Pandas and NumPy is essential in the beginning steps of
becoming a Data Scientist.

A Pandas array looks like the sample photo below:

Item Price
0 A 2
1 B 3

Now, the data frame doesn’t look too difficult to understand, does it? It’s
similar to the product lists you see when you check out the grocery.

This tiny 2x2 data frame is a perfect encapsulation of one of the things that
this has been trying to show. Data Science isn’t as tricky, nor is it as difficult
as some people make it seem because Data Science is simply the process of
making sense of data tables given to you. This process of analyzing and
making sense is something that we’ve been unconsciously practicing for our
whole lives, from us trying to make sense of our personal finance to us
looking at data tables of products that we’re trying to sell.

Let’s dive in further as to how to use this powerful library. As it is one of the
most popular tools for data manipulation and analysis, Pandas data structures
were designed to make data analysis in the real-world significantly easier.

There are many ways to use Pandas, and often, the choices in the
functionality of the program may be overwhelming. In this section, we’ll
begin to shed some light on the subject matter and, hopefully, begin to learn
some Pandas functionality.

Pandas have two primary components that you will be manipulating and
seeing a lot of; these are the Series and the DataFrame. There is not much
difference between these two, besides a series essentially being the
representative of a smaller DataFrame. A series is simply one column of data.
At the same time, a DataFrame is a multi-dimensional table, meaning that it
has multiple combinations of columns and arrows that are made up of a
collection of Series. We can create these DataFrames through many options,
such as lists or tuples, but for this tutorial, we’ll just be using a simple
dictionary.

Let’s create a dictionary that symbolizes the fruit that a customer bought, and
as a value connected to the fruit, the amount that each customer purchases.

data= {
‘apples’: [3,2,0,1],
‘oranges’: [0,3,7,2]
}

Great! We now have our first DataFrame. However, this isn’t accessible to
Pandas yet. For Pandas to be able to access the DataFrame, we need to pass
in the dictionary into the Pandas DataFrame constructor. We simply type in:

customer_purchases=pd. DataFrame(data)

print(purchases)

And it should output something like this:
applesoranges

030

123

207

312

Basically, what happened here was that each (key, value) item in the

dictionary “data” corresponds to a column in the data frame. Understanding
the data that we placed, here it could be said that the first customer bought
three apples and 0 oranges, the second customer bought two apples and three
oranges, the third customer bought no apples and seven oranges, and so on.
The column on the right refers to the index of the item in relation to its
position on the sequence. In programming, counting an index doesn’t begin
with one, as the counting begins, instead, with 0. So, this means that the first
item has an index of zero, the second has an index of one, the third has an
index of two, and so and so forth. We can now call the items in a sequence
based on their index. So, by calling ‘apples [0]’ where we use apples as our
key and then 0 as our index, it should return the value of ‘3’.

However, we can also replace the value of our index. To do that, we input the
following line of code.

purchases =pd. DataFrame (data, index= [‘June’, ‘Robert,” ‘Lily,” ‘David’])
print(purchases)

Now, instead of using the index positions to locate the item in the sequence,
we can use the customer’s name to find the order. For this, we could use the
loc function, which is written in this manner: “DataFrame.loc[x]” where
DataFrame is the name of the dataset that you would like to access, and loc is
the location of the item that you would like to access. Essentially, this
function accesses a group of rows and columns through the index or index
names. For example, we can now access June’s orders through the command
purchases.loc[‘June’], which can be found on index 0. This would return the
following:

Apples 3
oranges 0
Name: June dtype: int64

We can learn more about locating, accessing and extracting DataFrames later,
but for now, we should move on to loading files for you to use.

Honestly, the process of loading data into DataFrames is quite simple.
Assuming you already have a DataFrame that you would like to use from an
outside source, the process of creating a DataFrame out of it is much simpler
than loading it into a google drive. However, we will still be using the
purchases dataset as an example of a CSV file. CSV files are comma-

separated value files that allow for data to be used and accessed in a tabular
format. CSV files are basically spreadsheets but with an ending extension of
.csv. These can also be accessed with almost any spreadsheet program, such
as Microsoft Excel or Google Spreadsheets. In Pandas, we can access CSV
files like this:

df=pd. read_csv(‘purchases.csv’)
df

If you input it right, your text editor should output something similar to this:

Unnamed:0 apples | ORANGES
0 June 3 0
1 Robert 2 3
2 Lily 0 7
3 David 1 2

What happened? Well, basically, it created another DataFrame, and it
assumed that the newly renamed indexes of June, Robert, Lily, and David
were already parts of the DataFrame. As a result, it ended up giving out new
indexes to the DataFrame, adding a new column of 0 to 3. However, we can
designate a certain column to be our index; in that case, we can input:

df=pd. read_csv (‘purchases.csv’, index_col=0)
df

The lines of code above will output that your names column will still remain
to be the index column. Essentially, we’re setting the index to be column
zero. However, you will find that more often than not, CSV’s won’t add an
index column to your DataFrame so you can forget about this step, and most
probably, nothing will change.

After loading in your dataset, it is best to make sure that you loaded in the
correct one - while also making sure that your index column is properly set.

In that case, you could simply type in the name of the dataset you’re using
into Jupyter notebooks, and it would show the whole dataset. It is always a
good idea to eyeball the data you’re using so that you can quickly fix
mistakes and avoid any future problems down the road.

Aside from CSVs, we can also read JSON files, which are basically stored
versions of dictionary files in Python. It is important to note that JSON
allows indexes to work through a process called nesting, so that means that
this time, our index should come back to us correctly. Accessing JSON files
works essentially the same as accessing CSV files, we simply input the
following lines of code.

df=pd. read_json (‘purchases. json’)
df

Notice that we are using the same dataset to load both the CSV and JSON
files. Why does this work? Well, these two really only look at the extension
of the files to make sure that they could load it. As long as it looks like
something even remotely related to a DataFrame, your computer is smart
enough to recognize the fact that it is a dataset and read it from there.

Furthermore, we can also read data from SQL databases. SQL stands for
Structured Query Language and is the standard language for dealing with a
concept known as Relational Databases. What can SQL do? It executes
queries, retrieves data, insert, update, and delete records all from a database,
as well as giving you the ability to create tables and entirely new databases
from scratch.

Chapter 4: Working with Python for Data Science

Programming languages help us to expand our theoretical knowledge to
something that can happen. Data science, which usually needs a lot of data to
make things happen, will by nature take advantage of programming
languages to make the data organize well for further steps of the model
development. So, let us start learning about Python for a better understanding
of the topic.

Why Python Is Important?

To illustrate this problem more vividly, we might as well assume that we
have a small partner named Estella. She just got a job related to Data Science
after graduating from the math department. On her first day at work, she was
enthusiastic and eager to get in touch with this dude-new industry. But she
soon found herself facing a huge difficulty:

The data needed to process the work is not stored in her personal computer,
but in remote servers, some in traditional relational databases, and some in
Hadoop clusters. Unlike Windows, which is mostly used by personal
computers, Linux-like systems are used on remote servers. Estella is not
used to this operating system because the familiar graphical interface is
missing. All operations, such as the simplest reading of files, need to be
programmed by oneself. Therefore, Estella is eager to find a programming
language that is simple to write, easy to learn and easy to use.

What is more fatal is that the familiar data modeling software, such as SPSS
and MATLAB, cannot be used in the new working environment. However,
Estella often uses some basic algorithms provided by this software in her
daily work, such as linear regression and logical regression. Therefore, she
hopes that the programming language she finds will also have a library of
algorithms that can be used easily, and of course, it is better to be free of
charge.

The whole process is very similar to Estella's favorite table tennis. The
assumption is sent to the data as a "ball", and then the adjustment is made
according to the "return ball" of the data, and the above actions are repeated.
Therefore, Estella added one more item to her request: the programming
language can be modified and used at any time without compilation. It is
better to have an immediate response command window so that she can

quickly verify her ideas. After a search, Estella excitedly told everyone that
she had found an IT tool that met all her requirements that is Python.

I hope you have got a good layman introduction on why programming
language is important for Data Science. In the next sections, we will describe
the language and its basic functions in detail.

What Is Python?

Python is an object-oriented and interpretive computer program language. Its
syntax is simple and contains a set of standard libraries with complete
functions, which can easily accomplish many common tasks. Speaking of
Python, its birth is also quite interesting. During the Christmas holidays in
1989, Dutch programmer Guido van Rossum stayed at home and found
himself doing nothing. So, to pass the "boring" time, he wrote the first
version of Python.

Python is widely used. According to statistics from GitHub, an open-source
community, it has been one of the most popular programming languages in
the past 10 years and is more popular than traditional C, C++ languages, and
C# which is very commonly used in Windows systems. After using Python
for some time, Estella thinks it is a programming language specially designed
for non-professional programmers.

Its grammatical structure is very concise, encouraging everyone to write as
much code as possible that is easy to understand and write as little code as
possible.

Functionally speaking, Python has a large number of standard libraries and
third-party libraries. Estella develops her application based on these existing
programs, which can get twice the result with half the effort and speed up the
development progress.

Python's Position in Data Science

After mastering Python as a programming language, Estella can do many
interesting things, such as writing a web crawler, collecting needed data from
the Internet, developing a task scheduling system, updating the model
regularly, etc.

Below we will describe how the Python is used by Estella for Data Science
applications:

Data Cleaning

After obtaining the original data, Estella will first do preliminary processing
on the data, such as unifying the case of the string, correcting the wrong data,
etc. This is also the so-called "clean up" of "dirty" data to make the data more
suitable for analysis. With Python and its third-party library pandas, Estella
can easily complete this step of work.

Data Visualization

Estella uses Matplotlib to display data graphically. Before extracting the
features, Estella can get the first intuitive feeling of the data from the graph
and enlighten the thinking. When communicating with colleagues in other
departments, information can be clearly and effectively conveyed and
communicated with the help of graphics so that those insights can be put on

paper.

Feature Extraction

In this step, Richard usually associates relevant data stored in different
places, for example, integrating customer basic information and customer
shopping information through customer ID. Then transform the data and
extract the variables useful for modeling. These variables are called features.
In this process, Estella will use Python's NumPy, SciPy, pandas, and
PySpark.

Model Building

The open-source libraries sci-kit-learn, StatsModels, Spark ML, and
TensorFlow cover almost all the commonly used basic algorithms. Based on
these algorithm bases and according to the data characteristics and algorithm
assumptions, Estella can easily build the basic algorithms together and create
the model she wants.

The above four things are also the four core steps in Data Science. No
wonder Estella, like most other data scientists, chose Python as a tool to
complete his work.

Python Installation

After introducing so many advantages of Python, let's quickly install it and
feel it for ourselves.

Python has two major versions: Python 2 and Python 3. Python 3 is a higher

version with new features that Python 2 does not have. However, because
Python 3 was not designed with backward compatibility in mind, Python 2
was still the main product in actual production (although Python 3 had been
released for almost 10 years at the time of writing this book). Therefore, it is
recommended that readers still use Python 2 when installing completely. The
code accompanying this book is compatible with Python 2 and Python 3.

The following describes how to install Python and the libraries listed in
section

It should be noted that the distributed Machine Learning library Spark ML
involves the installation of Java and Scala, and will not be introduced here for
the time being.

Installation Under Windows

The author does not recommend people to develop under Windows system.
There are many reasons, the most important of which is that in the era of big
data, as mentioned by Estella earlier, data is stored under the Linux system.
Therefore, in production, the programs developed by data scientists will
eventually run in the Linux environment. However, the compatibility
between Windows and Linux is not good, which easily leads to the
development and debugging of good programs under Windows, and cannot
operate normally under the actual production environment.

If the computer the reader uses is a Windows system, he can choose to install
a Linux virtual machine and then develop it on the virtual machine. If readers
insist on using Windows, due to the limitation of TensorFlow under
Windows, they can only choose to install Python 3. Therefore, the tutorial
below this section is also different from other sections, using Python 3.
Anaconda installed several applications under Windows, such as IPython,
Jupyter, Conda, and Spyder. Below we will explain some of them in detail.

Conda

It is a management system for the Python development environment and open
source libraries. If readers are familiar with Linux, Conda is equivalent to
pip+tvirtualenv under Linux. Readers can list installed Python libraries by
entering "Condolist" on the command line.

Spyder

It is an integrated development environment (IDE) specially designed for

Python for scientific computing. If readers are familiar with the mathematical
analysis software MATLAB, they can find that Spyder and MATLAB are
very similar in syntax and interface.

Installation Under MAC

Like Anaconda's version of Windows, Anaconda's Mac version does not
contain a deep learning library TensorFlow, which needs to be installed using
pip (Python Package Management System). Although using pip requires a
command line, it is very simple to operate and even easier than installing
Anaconda. Moreover, pip is more widely used, so it is suggested that readers
try to install the required libraries with pip from the beginning. The
installation method without Anaconda is described below.

Starting with Mac OS X 10.2, Python is preinstalled on macs. For learning
purposes, you can choose to use the pre-installed version of Python ;
directly. If it is for development purposes, pre-installed Python is easy to
encounter problems when installing third-party libraries, and the latest
version of Python needs to be reinstalled. The reader is recommended to
reinstall Python here.

Installation Under Linux
Similar to Mac, Anaconda also offers Linux versions. Please refer to the
instructions under Windows and the accompanying code for specific
installation steps.

There are many versions of Linux, but due to space limitations, the only
installation on Ubuntu is described here. The following installation guide
may also run on other versions of Linux, but we have only tested these
installation steps on Ubuntu 14.04 or later.

Although Ubuntu has pre-installed Python, the version is older, and it is
recommended to install a newer version of Python.

Install Python
install [insert command here]

Pip is a Python software package management system that facilitates us to
install the required third-party libraries. The steps for installing pip are as
follows.

1) Open the terminal

2) Enter and run the following code
Python shell

Python, as a dynamic language, is usually used in two ways: it can be used as
a script interpreter to run edited program scripts; At the same time, Python
provides a real-time interactive command window (Python shell) in which
any Python statement can be entered and run. This makes it easy to learn,
debug, and test Python statements.

Enter "Python" in the terminal (Linux or Mac) or command prompt
(Windows) to start the Python shell.

1) You can assign values to variables in the Python shell and then calculate
the variables used. And you can always use these variables as long as you
don't close the shell. As shown in lines 1 to 3 of the code. It is worth noting
that Python is a so-called dynamic type language, so there is no need to
declare the type of a variable when assigning values to variables.

2) Any Python statement can be run in the Python shell, as shown in the
code, so some people even use it as a calculator.

3) You can also import and use a third-party library in the shell, as shown. It
should be noted that as shown in the code, the third-party library "numpy"
can be given an alias, such as "np" while being imported. When "numpy" is
needed later, it is replaced by "np" to reduce the amount of character input.

Chapter 5: Indexing and Selecting Arrays

Array indexing is very much similar to List indexing with the same
techniques of item selection and slicing (using square brackets). The methods
are even more similar when the array is a vector.

Example:

In []: # Indexing a vector array (values)
values

values [0] # grabbing 1st item

values [-1] # grabbing last item

values [1:3] # grabbing 2nd & 3rd item
values [3:8] # item 4 to 8

Out []: array ([1.33534821, 1.73863505, 0.1982571, -0.47513784,
1.80118596, -1.73710743, -0.24994721, 1.41695744, -0.28384007,
0.58446065])

Out []: 1.3353482110285562
Out []: 0.5844606470172699
Out []: array ([1.73863505, 0.1982571])

Out []: array ([-0.47513784, 1.80118596, -1.73710743, -0.24994721,
1.41695744])

The main difference between arrays and lists is in the broadcast property of
arrays. When a slice of a list is assigned to another variable, any changes on
that new variable does not affect the original list. This is seen in the example
below:

In []: num_list = list (range (11)) # list from 0-10

num_list # display list
list_slice = num_list [:4] # first 4 items
list_slice # display slice

list_slice [:]1 =[5,7,9,3] # Re-assigning elements
list_slice # display updated values
checking for changes

print (' The list changed!") if list_slice == num_list [:4] \
else print (' no changes in original list")

Out[]: [0, 1, 2,3,4,5,6,7,8,9, 10]
Out []: [0, 1, 2, 3]
Out []: [5, 7, 9, 3]

no changes in the original list

For arrays, however, a change in the slice of an array also updates or
broadcasts to the original array, thereby changing its values.

In []: # Checking the broadcast feature of arrays
num_array = np. arrange (11) # array from 0-10
num_array # display array
array_slice = num_array [:4] # first 4 items
array_slice # display slice
array_slice [:] =[5,7,9,3] # Re-assigning elements

array_slice # display updated values
num_array

Out []: array ([0, 1, 2,3,4,5,6,7,8,9, 10])
Out []: array ([0, 1, 2, 3])
Out []: array ([5, 7, 9, 3])
Out []: array ([5, 7,9, 3,4,5,6,7,8,9, 10])

This happens because Python tries to save memory allocation by allowing
slices of an array to be like shortcuts or links to the actual array. This way it
doesn’t have to allocate a separate memory location to it. This is especially
ingenious in the case of large arrays whose slices can also take up significant

memory. However, to take up a slice of an array without broadcast, you can
create a ‘slice of a copy’ of the array. The array. copy () method is called to
create a copy of the original array.

In []: # Here is an array allocation without broadcast
num_array # Array from the last example

copies the first 4 items of the array copy
array_slice = num_array. copy () [:4]
array_slice

display array

array_slice [:] =10

re-assign array

array_slice

display updated values

num_array

checking original list

Out []: array ([5, 7,9, 3,4,5,6,7,8,9, 10])
Out []: array ([5, 7, 9, 3])

Out []: array ([10, 10, 10, 10])

Out []: array ([5, 7,9, 3,4,5,6,7,8,9, 10])

Notice that the original array remains unchanged.

For two-dimensional arrays or matrices, the same indexing and slicing
methods work. However, it is always easy to consider the first dimension as
the rows and the other as the columns. To select any item or slice of items,
the index of the rows and columns are specified. Let us illustrate this with a
few examples:

Example 63: Grabbing elements from a matrix

There are two methods for grabbing elements from a matrix:
array_name[row][col] or array_name [row, col].

In []: # Creating the matrix
matrix = np. array (([5,10,15], [20,25,30], [35,40,45]))

matrix #display matrix
matrix [1] # Grabbing second row
matrix [2][0] # Grabbing 35
matrix [0:2] # Grabbing first 2 rows
matrix [2,2] # Grabbing 45
Out []: array ([[5, 10, 15],

[20, 25, 30],

[35, 40, 45]])
Out []: array ([20, 25, 30])
Out []: 35

Out []: array ([[5, 10, 15],
[20, 25, 30]])

Out []: 45

Tip: It is recommended to use the array_name [row, col] method, as it
saves typing and is more compact. This will be the convention for the rest

of this section.

To grab columns, we specify a slice of the row and column. Let us try to grab
the second column in the matrix and assign it to a variable column_slice.

In []: # Grabbing the second column
column_slice = matrix [: 1:2] # Assigning to variable
column_slice
Out []: array ([[10],
[25],
[4011)

Let us consider what happened here. To grab the column slice, we first
specify the row before the comma. Since our column contains elements in all

rows, we need all the rows to be included in our selection, hence the ‘:’ sign
for all. Alternatively, we could use ‘0:’, which might be easier to understand.
After selecting the row, we then choose the column by specifying a slice
from ‘1:2’°, which tells Python to grab from the second item up to (but not
including) the third item. Remember, Python indexing starts from zero.

Exercise: Try to create a larger array, and use these indexing techniques to
grab certain elements from the array. For example, here is a larger array:

In[]: #5 * 10 Array of even numbers between 0 and 100.
large_array = np. arrange (0,100,2). reshape (5,10)
large_array # show

Out []: array ([[O, 2, 4, 6, 8, 10, 12, 14, 16, 18],

[20, 22, 24, 26, 28, 30, 32, 34, 36, 38],

[40, 42, 44, 46, 48, 50, 52, 54, 56, 58],

[60, 62, 64, 66, 68, 70, 72, 74, 76, 78],

[80, 82, 84, 86, 88, 90, 92, 94, 96, 98]])
Tip: Try grabbing single elements and rows from random arrays you
create. After getting very familiar with this, try selecting columns. The
point is to try as many combinations as possible to get you familiar
with the approach. If the slicing and indexing notations are confusing,
try to revisit the section under list or string slicing and indexing.

Click this link to revisit the examples on slicing: "istindexing

Conditional selection

Consider a case where we need to extract certain values from an array that
meets a Boolean criterion. NumPy offers a convenient way of doing this
without having to use loops.

Example: Using conditional selection

Consider this array of odd numbers between 0 and 20. Assuming we need to
grab elements above 11. We first have to create the conditional array that

selects this:
In []: odd_array = np. arrange (1,20,2) # Vector of odd numbers

odd_array # Show vector
bool_array = odd_array > 11 # Boolean conditional array
bool_array

Out[J:array ([1, 3,5, 7,9, 11, 13, 15, 17, 19])

Out []: array ([False, False, False, False, False, False, True, True, True,
True])

Notice how the bool_array evaluates to True at all instances where the
elements of the odd_array meet the Boolean criterion.

The Boolean array itself is not usually so useful. To return the values that we
need, we will pass the Boolean_array into the original array to get our
results.

In []: useful_Array = odd_array[bool_array] # The values we want
useful_Array

Out []: array ([13, 15, 17, 19])

Now, that is how to grab elements using conditional selection. There is
however a more compact way of doing this. It is the same idea, but it reduces

typing.
Instead of first declaring a Boolean_array to hold our true values, we just
pass the condition into the array itself, as we did for useful_array.

In []: # This code is more compact
compact = odd_array[odd_array>11] # One line
compact

Out []: array ([13, 15, 17, 19])

See how we achieved the same result with just two lines? It is recommended
to use this second method, as it saves coding time and resources. The first
method helps explain how it all works. However, we would be using the
second method for all other instances in this book.

Exercise: The conditional selection works on all arrays (vectors and matrices

alike). Create a two 3 * 3 array of elements greater than 80 from the
‘large_array’ given in the last exercise.

Hint: use the reshape method to convert the resulting array into a 3

X 3 matrix.

NumPy Array Operations

Finally, we will be exploring basic arithmetical operations with NumPy
arrays. These operations are not unlike that of integer or float Python lists.

Array — Array Operations

In NumPy, arrays can operate with and on each other using various arithmetic
operators. Things like the addition of two arrays, division, etc.

Example 65:
In []: # Array - Array Operations

Declaring two arrays of 10 elements
Arrayl = np. arrange (10). reshape (2,5)
Array2 = np. random. rind (10). reshape (2,5)

Arrayl; Array2 # Show the arrays
Addition

Array_sum = Arrayl + Array?2

Array_sum # show result array
#Subtraction

Array_minus = Array1 - Array?2
Array_minus # Show array

Multiplication
Array_product = Array1 * Array2

Array_product # Show

Division

Array_divide = Array1 / Array2

Array_divide # Show

Out []: array ([[0, 1, 2, 3, 4],
[5, 6, 7,8, 91])

array ([[2.09122638, 0.45323217, -0.50086442, 1.00633093, 1.24838264], [
1.64954711, -0.93396737, 1.05965475,
0.78422255, -1.84595505]])

array ([[2.09122638, 1.45323217, 1.49913558, 4.00633093, 5.24838264],
[6.64954711, 5.06603263, 8.05965475, 8.78422255, 7.15404495]])

array ([[-2.09122638, 0.54676783, 2.50086442, 1.99366907, 2.75161736], [
3.35045289, 6.93396737, 5.94034525, 7.21577745, 10.84595505]])

array ([[0., 0.45323217, -1.00172885, 3.01899278, 4.99353055], [
8.24773555, -5.60380425,
7.41758328, 6.27378038, -16.61359546]])

array ([[0., 2.20637474, -3.99309655, 2.9811267, 3.20414581], [
3.03113501, -6.42420727, 6.60592516,
10.20118591, -4.875525]])

Each of the arithmetic operations performed is element-wise. The division
operations require extra care, though. In Python, most arithmetic errors in
code throw a run-time error, which helps in debugging. For NumPy,
however, the code could run with a warning issued.

Array — Scalar operations

Also, NumPy supports scalar with Array operations. A scalar in this context
is just a single numeric value of either integer or float type. The scalar —
Array operations are also element-wise, by the broadcast feature of NumPy
arrays.

Example:
In []: #Scalar- Array Operations
new_array = np. arrange (0,11) # Array of values from 0-10
print('New_array")
new_array # Show
Sc =100 # Scalar value

let us make an array with a range from 100 - 110 (using +)
add_array = new_array + Sc # Adding 100 to every item
print("\nAdd_array")

add_array # Show

Let us make an array of 100s (using -)

centurion = add_array - new_array

print("\nCenturion")

centurion # Show

Let us do some multiplication (using *)

multiplex = new_array * 100

print(\nMultiplex")
multiplex # Show
division [take care], let us deliberately generate
an error. We will do a divide by Zero.
eIT_vec = new_array / new_array
print("\nError_vec')
err_vec
Show
New_array
Out []: array ([0, 1, 2,3,4,5,6, 7, 8,9, 10])
Add_array
Out []: array ([100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110])
Centurion
Out []: array ([100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100])
Multiplex
Out []: array ([0, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000])
Error_vec
C:\Users\Oguntuase\Anaconda3\lib\site-
packages\ipykernel_launcher.py:27:
RuntimeWarning: invalid value encountered in true_divide
array ([nan, 1.,1.,1.,1.,1.,1.,1.,1,, 1., 1.])

Chapter 6: K-Nearest Neighbors Algorithm

The KNN algorithm is highly used for building more complex classifiers. It is
a simple algorithm, but it has outperformed many powerful classifiers. That is
why it is used in numerous applications data compression, economic
forecasting, and genetics. KNN is a supervised learning algorithm, which
means that we are given a labeled dataset made up of training observations
(X, y) and our goal is to determine the relationship between x and y. This
means that we should find a function that x to y such that when we are given
an input value for x, we can predict the corresponding value for y. The
concept behind the KNN algorithm is very simple. We will use a dataset
named Iris. We had explored it previously. We will be using this to
demonstrate how to implement the KNN algorithm.

First, import all the libraries that are needed:

numpy np
pandas pd

matplotlib.pyplot plt

Splitting the Dataset

We need to be able to tell how well our algorithm performed. This will be
done during the testing phase. This means that we should have the training
and testing data. The data set should be divided into two parts. We need to
split the data into two parts. 80% of the data will be used as the training set,
while 20% will be used as the test set. Let us first import the train_test_split
method from Scikit-Learn.

Feature Scaling

Before we can make real predictions, it is a good idea for us to scale the
features. After that, all the features will be evaluated uniformly. Scikit-Learn
comes with a class named StandardScaler, which can help us perform the
feature scaling. Let us first import this class.

We then instantiate the class then use it to fit a model based on it:

feature scaler = StandardScaler()
feature scaler.fit(X train)

X _train - feature_scaler.transform(X_train)
X test - feature scaler.transform(X_ test)

The instance was given the name feature_scaler.

Training the Algorithm

With the Scikit-Learn library, it is easy for us to train the KNN algorithm. Let
us first import the KNeighborsClassifier from the Scikit-Learn library:

from sklearn. neighbors import KNeighborsClassifier
The following code will help us train the algorithm:

knn_classifier KNeighborsClassifier(n_neighbors=5)

knn_classifier.fit(X _train, y_train)

Note that we have created an instance of the class we have created and named
the instance knn_classifier. We have used one parameter in the instantiation,
that is, n_neighbors. We have used 5 as the value of this parameter, and this
basically, denotes the value of K. Note that there is no specific value for K,
and it is chosen after testing and evaluation. However, for a start, 5 is used as
the most popular value in most KNN applications. We can then use the test
data to make predictions. This can be done by running the script given below:

pred_y = knn_classifier. predict(X_test)

Evaluating the Accuracy

Evaluation of the KNN algorithm is not done in the same way as evaluating
the accuracy of the linear regression algorithm. We were using metrics like
RMSE, MAE, etc. In this case, we will use metrics like confusion matrix,
precision, recall, and f1 score. We can use the classification_report and
confusion_matrix methods to calculate these metrics. Let us first import these
from the Scikit-Learn library: from sklearn. metrics import confusion_matrix,
classification_report

Run the following script:

print(confusion matrix(y test, pred y))

print(classification report(y test, pred y))

The results given above show that the KNN algorithm did a good job of
classifying the 30 records that we have in the test dataset. The results show
that the average accuracy of the algorithm on the dataset was about 90%. This
is not a bad percentage.

K Means Clustering

Let us manually demonstrate how this algorithm works before implementing
it on Scikit-Learn:

Suppose we have two-dimensional data instances given below and by the
name D:

Our objective is to classify the data based on the similarity between the data
points.

We should first initialize the values for the centroids of both clusters, and this
should be done randomly. The centroids will be named c1 and c2 for clusters
C1 and C2 respectively, and we will initialize them with the values for the
first two data points, that is, (5,3) and (10,15). It is after this that you should
begin the iterations. Anytime that you calculate the Euclidean distance, the
data point should be assigned to the cluster with the shortest Euclidean
distance. Let us take the example of the data point (5,3):

Euclidean Distance the Cluster Centroid cl

Euclidean Distance the Cluster Centroid c2

The Euclidean distance for the data point from point centroid c1 is shorter
compared to the distance of the same data point from centroid c2. This means
that this data point will be assigned to the cluster C1 the distance from the
data point to the centroid c2 is shorter; hence, it will be assigned to the cluster
C2. Now that the data points have been assigned to the right clusters, the
next step should involve the calculation of the new centroid values. The

values should be calculated by determining the means of the coordinates for
the data points belonging to a certain cluster. If for example for C1 we had
allocated the following two data points to the cluster:

(5, 3) and (24, 10). The new value for x coordinate will be the mean of the
two:

x=(5+24)/2

x =14.5

The new value for y will be:
y=(3+10)/2

y =13/2

y =6.5

The new centroid value for the c1 will be (14.5, 6.5).

This should be done for c2, and the entire process is repeated. The iterations
should be repeated until when the centroid values do not update anymore.
This means if, for example, you do three iterations, you may find that the
updated values for centroids c1 and c2 in the fourth iterations are equal to
what we had in iteration 3. This means that your data cannot be clustered any
further. You are now familiar with how the K-Means algorithm works. Let
us discuss how you can implement it in the Scikit-Learn library. Let us first
import all the libraries that we need to use:

matplotlib.pyplot plt

numpy np
sklearn.cluster KMeans

Data Preparation

We should now prepare the data that is to be used. We will be creating a
numpy array with a total of 10 rows and 2 columns. So, why have we chosen
to work with a numpy array? It is because the Scikit-Learn library can work
with the numpy array data inputs without the need for preprocessing.

Visualizing the Data

Now that we have the data, we can create a plot and see how the data points
are distributed. We will then be able to tell whether there are any clusters at
the moment:

plt. scatter (X [:0], X [:1], label="True Position")
plt. show ()
The code gives the following plot:

<o
80 - ® %
[]
bo -
[
&
40 -
20 4
o p
@
L]
0 R T i i T L) L) 1 L]
10 20 30 40 50 60 70 a0

If we use our eyes, we will probably make two clusters from the above data,
one at the bottom with five points and another one at the top with five points.
We now need to investigate whether this is what the K-Means clustering
algorithm will do.

Creating Clusters

We have seen that we can form two clusters from the data points, hence the
value of K is now 2. These two clusters can be created by running the
following code:

kmeans_clusters = KMeans(n_clusters=2)
kmeans_clusters.fit(X)

We have created an object named kmeans_clusters, and 2 have been used as
the value for the parameter n_clusters. We have then called the fit () method
on this object and passed the data we have in our numpy array as the
parameter to the method. We can now have a look at the centroid values that
the algorithm has created for the final clusters: print
(kmeans_clusters.cluster_centers_) This returns the following: The first row
above gives us the coordinates for the first centroid, which is, (16.8, 17). The
second row gives us the coordinates of the second centroid, which is, (70.2,
74.2). If you followed the manual process of calculating the values of these,
they should be the same. This will be an indication that the K-Means
algorithm worked well.

The following script will help us see the data point labels:
print (kmeans_clusters. labels_)
This returns the following:

The above output shows a one-dimensional array of 10 elements that
correspond to the clusters that are assigned to the 10 data points. Note that the
0 and 1 have no mathematical significance, but they have simply been used to
represent the cluster IDs. If we had three clusters, then the last one would
have been represented using 2’s.

We can now plot the data points and see how they have been clustered. We
need to plot the data points alongside their assigned labels to be able to
distinguish the clusters. Just execute the script given below:

plt. scatter (X [:0], X [:1], c=kmeans_clusters. labels_, cmap="rainbow")
plt. show ()

The script returns the following plot:

®
80 - é °
@
60 4
Re]
B
40 -
20 -
=
¢ k=)
L
0 -
10 20 30 40 50 60 70 8O

We have simply plotted the first column of the array named X against the
second column. At the same time, we have passed kmeans_labels_ as the
value for parameter c, which corresponds to the labels. Note the use of the
parameter cmap="rainbow'. This parameter helps us to choose the color type
for the different data points.

As you expected, the first five points have been clustered together at the
bottom left and assigned a similar color. The remaining five points have been
clustered together at the top right and assigned one unique color. We can
choose to plot the points together with the centroid coordinates for every
cluster to see how the positioning of the centroid affects clustering. Let us use
three clusters to see how they affect the centroids. The following script will
help you to create the plot:

plt. scatter (X [:0], X [:1], c=kmeans_clusters. labels_, cmap="rainbow")

plt. scatter (kmeans_clusters. cluster centers_ [:0], kmeans_clusters. cluster
centers_ [:1], color="black’)

plt. show ()

The script returns the following plot:

80 -
60 -
B
40..
20 4
. ®
* o
°
O-

Chapter 7: Big Data

In data science, the purpose of supervised and unsupervised learning
algorithms is to provide us with the ability to learn from complicated
collections of data. The problem is that the data that is being gathered over
the past few years has become massive in size. The integration of technology
in every aspect of human life and the use of machine learning algorithms to
learn from that data in all industries has led to an exponential increase in data
gathering. These vast collections of data are known in data science as Big
Data. What’s the difference between regular datasets and Big Data? The
learning algorithms that have been developed over the decades are often
affected by the size and complexity of the data they have to process and learn
from. Keep in mind that this type of data no longer measures in gigabytes,
but sometimes in petabytes, which is an inconceivable number to some as
we’re talking about values higher than 1000 terabytes when the common
household hard drive holds 1 terabyte of information, or even less.

Keep in mind that the concept of Big Data is not new. It has been theorized
over the past decades as data scientists noticed an upward trend in the
development of computer processing power, which is correlated with the
amount of data that circulates. In the 70s and 80s when many learning
algorithms and neural networks were developed, there were no massive
amounts of data to process because the technology back then couldn’t handle
it. Even today, some of the techniques we discussed will not suffice when
processing big data. That is why in this chapter we are going to discuss the
growing issue of Big Data in order to understand the future challenges you
will face as a data scientist.

The Challenge

Nowadays, the problem of Big Data has grown so much that it has become a
specialized subfield of data science. While the previous explanation of Big
Data was rudimentary to demonstrate the problem we will face, you should
know that any data is considered Big Data as long as it is a collection of
information that contains a large variety of data that continues to grow at an
exponential rate. This means that the data volume grows at such a speed that
we can no longer keep up with it to process and analyze it.

The issue of Big Data appeared before the age of the Internet and online data

gathering, and even if today’s computers are so much more powerful than in
the pre-Internet era, data is still overwhelming to analyze. Just look around
you and focus on how many aspects of your life involve technology. If you
stop to think you will realize that even objects that you never considered as
data recorders, save some kind of data. Now, this thought might make you
paranoid, however, keep in mind that most technology records information
regarding its use and the user’s habits to find better ways to improve the
technology. The big problem here is that all of this technology generates too
much data at a rapid pace. In addition, think about all the smart tech that’s
being implemented into everyone’s homes in the past years. Think of
Amazon’s Alexa, “smart” thermostats, smart doorbells, smart everything. All
of this records data and transmits it. Because of this, many professional data
scientists are saying that the current volume of data is being doubled every
two years. However, that’s not all. The speed at which this amount of data is
generated is also increasing roughly every two years. Big Data can barely be
comprehended by most tech users. Just think of the difference between your
Internet connection today and just five years ago. Even smartphone
connections are now powerful and as easy to use as computers.

Keep in mind that we are dealing with a vicious circle when it comes to Big
Data. Larger amounts of data generated at higher speeds mean that new
computer hardware and software has to be developed to handle the data. The
development of computer processing power needs to match the data
generation. Essentially, we are dealing with a complex game of cat and
mouse. To give you a rough idea about this issue, imagine that back in the
mid-80s the entire planet’s infrastructure could “only” handle around 290
petabytes of information. In the past 2 years, the world has reached a stage
where it generates almost 300 petabytes in 24 hours.

What all that in mind, you should understand that not all data is the same. As
you probably already know, information comes in various formats.
Everything generates some kind of data. Think of emails, cryptocurrency
exchanges, the stock market, computer games, and websites. All of these
create data that needs to be gathered and stored, and all of it ends up in
different formats. This means that all of the information needs to be separated
and categorized before being able to process it with various data science and
machine learning algorithms and techniques. This is yet another Big Data
challenge that we are going to continue facing for years to come. Remember

that most algorithms need to work with a specific data format, therefore data
exploration and analysis become a great deal more important and more time-
consuming.

Another issue is the fact that all the gathered information needs to be valued
in some way. Just think of social media networks like Twitter. Imagine
having to analyze all of the data ever recorded, all of the tweets that have
been written since the conception of the platform. This would be extremely
time-consuming no matter the processing power of the computers managing
it. All of the collected data would have to be pre-processed and analyzed to
determine which data is valuable and in good condition. Furthermore, Big
Data like what we just discussed raises the issue of security. Again, think
about social media platforms, which are famous for data gathering. Some of
the data include personal information that belongs to the users and we all
know what a disaster a Big Data breach can be. Just think of the recent
Cambridge Analytica scandal. Another example is the European Union’s
reaction to the cybersecurity threats involving Big Data which led to the
creation of the General Data Protection Regulation to define a set of rules
regarding data gathering. Company data leaks can be damaging, but Big Data
leaks lead to international disasters and changes in governments. But enough
about the fear and paranoia that surrounds today’s Big Data. Let’s discuss the
quality and accuracy of the information, which is what primarily concerns us.

A Big Data collection never contains a consistent level of quality and value
when it comes to information. Massive datasets may contain accurate and
valuable data that we can use, however, without a doubt it also involves
several factors that lead to inaccuracy. One of the first questions you need to
ask yourself is regarding those who have recorded the data and prepared the
datasets. Have they made some assumptions to fill in the blanks? Have they
always recorded nothing but facts and accurate data? Furthermore, you need
to concern yourself with the type of storage system that was used to hold on
to that data and who had access to it. Did someone do anything to change the
data? Was the storage system damaged in some way that led to the corruption
of a large number of files? In addition, you need to consider the way that data
was measured. Imagine four devices being used in the same area to measure
the temperature of the air. All of that data was recorded, but every device
shows a different value. Which one of them holds the right values? Which
one has inaccurate measurements? Did someone make any mistakes during

the data gathering process?

Big Data poses many challenges and raises many questions. Many variables
influence the quality and the value of data and we need to consider them
before getting to the actual data. We have to deal with the limitations of
technology, the possibility of human error, faulty equipment, badly written
algorithms, and so on. This is why Big Data became a specialization of its
own. It is highly complex and that is why we are taking this section of the
book to discuss the fundamentals of Big Data and challenges you would face
as a data scientist if you choose to specialize in it.

Applications in the Real World

Big Data is a component of Data Science, which means that as long as
something generates and records data, this field will continue being
developed. Therefore, if you are still having doubts regarding your newly
acquired skill, you should stop. Just think about a market crash. Imagine it as
bad as any other financial disasters in the last century. This event would
generate a great deal of data, personal, commercial, scientific, and so on.
Someone will have to process and analyze everything and that would take
years no matter how many data scientists you would have available.

However, catastrophes aside, you will still have to rely on several pre-
processing, processing, and analysis to work with the data. The only
difference is that datasets will continue to grow and in the foreseeable future,
we will no longer deal with small datasets like the ones we are using in this
book for practice. Big Data is the future, and you will have to implement
more powerful learning models and even combine them for maximum
prediction accuracy. With that being said, let’s explore the uses of Big Data
to understand where you would apply your skills:

1. Maintenance: Sounds boring, but with the automation of
everything, massive amounts of data are produced and with
it, we can determine when a certain hardware component or
tool will reach its breaking point. Maintenance is part of
every industry whether we’re talking about manufacturing
steel nails or airplanes. Big Data recorded in such industries
will contain data on all the materials that were used and the
various attributes that describe them. We can process this
information and achieve a result that will immediately tell

us when a component or tool should expire or need
maintenance. This is a simple example of how Big Data
analysis and data science, in general, can be useful to a
business.

Sales: Think of all the online platforms and shops that offer
products or services. More and more of them turn up every
single day. Large businesses are even warring with each
other over the acquisition of data so that they can better
predict the spending habits of their customers to learn how
to attract those who aren’t interested or how to convince the
current ones to make more purchases. Market information is
generated at a staggering pace and it allows us to predict
certain human behavioral patterns that can generate more
business and the improvement of various products and
services.

Optimization: Big Data is difficult and costly to process and
analyze, however, it is more than worth it since corporations
are investing more and more into data scientists and
machine learners.

Chapter 8: Reading Data in your Script

Reading data from a file

Let’s make our data file using Microsoft Excel, LibreOffice Calc, or some
other spreadsheet application and save it in a tab-delimited file ingredients.txt

Food carh fat protein calories serving
size

pasta 39 | 1 7 210 56

parmesan 0 1.5 2 20 5

grated

Sour 1 5 1 60 30

cream

Chicken 0 3 22 120 112

breast

Potato 28 | 0 3 110 148

Fire up your IPython notebook server. Using the New drop-down menu in the
top right corner, create a new Python3 notebook and type the following
Python program into a code cell:

#open file ingredients.txt
with OPEN (‘ingredients.txt', 'rt") as f:

for line in f: #read lines until the end of file
print(line) #print each line

Remember that indent is important in Python programs and designates nested
operators. Run the program using the menu option Cell/Run, the right arrow
button, or the Shift-Enter keyboard shortcut. You can have many code cells
in your IPython notebooks, but only the currently selected cell is run.
Variables generated by previously run cells are accessible, but, if you just
downloaded a notebook, you need to run all the cells that initialize variables
used in the current cell. You can run all the code cells in the notebook by
using the menu option Cell/Run All or Cell/Run All Above

This program will open a file called "ingredients" and print it line by line.
Operatorwithis a context manager - it opens the file and makes it known to
the nested operators asf. Here, it is used as an idiom to ensure that the file is
closed automatically after we are done reading it. Indentation beforeforis

required - it shows thatfor is nested inwithand has an access to the
variablefdesignating the file. Functionprintis nested insideforwhich means it
will be executed for every line read from the file until the end of the file is
reached and thefor cycle quits. It takes just 3 lines of Python code to iterate
over a file of any length.

Now, let’s extract fields from every line. To do this, we will need to use a
string's methodsplit () that splits a line and returns a list of substrings. By
default, it splits the line at every white space character, but our data is
delimited by the tab character - so we will use tab to split the fields. The
tabcharacter is designated\t in Python.

vith gpen (‘ingredients.txt', 'rt') as f:
for ine In f:
fields=line. split('\t') #split line in separate fields
print(fields) #print the fields
The output of this code is:
['food', 'carb’, 'fat’, 'protein’, 'calories’, 'serving size\n']
['pasta’, '39', '1', '7', '210', '56\n']
['parmesan grated', '0, '1.5', '2', '20", '5\n]
['Sour cream’, '1', '5', '1", '60', '30\n']
['Chicken breast', '0', '3', '22', '120', '112\n']
['Potato’, '28','0', '3', '110", '148\n']
Now, each string is split conveniently into lists of fields. The last field
contains a pesky\ncharacter designating the end of line. We will remove it
using thestrip () method that strips white space characters from both ends of a
string.
After splitting the string into a list of fields, we can access each field using an
indexing operation. For example, fields [0] will give us the first field in

which a food’s name is found. In Python, the first element of a list or an array
has an index O.

This data is not directly usable yet. All the fields, including those containing
numbers, are represented by strings of characters. This is indicated by single
quotes surrounding the numbers. We want food names to be strings, but the
amounts of nutrients, calories, and serving sizes must be numbers so we

could sort them and do calculations with them. Another problem is that the
first line holds column names. We need to treat it differently.

One way to do it is to use file object's methodreadline () to read the first line
before entering theforloop. Another method is to use functionENUMERATE
() which will return not only a line, but also its number starting with zero:
with OPEN (‘ingredients.txt', 'rt") as f:

#get line number and a line itself

#in i and line respectively

for i, line in ENUMERATE(f):

fields=line. strip (). split(\t’) #split line into fields
print (i, fields) #print line number and the fields

This program produces following output:
0 ['food', 'carb’, 'fat’, 'protein’, 'calories’, 'serving size']
1 ['pasta’, '39', '1','7', '210', '56']
2 ['parmesan grated', '0', '1.5', '2', '20', '5']
3 ['Sour cream’, '1', '5', '1', '60', '30']
4 ['Chicken breast', '0", '3', '22', '120', '112']
5 ['Potato’, 28, '0', '3', '110', '148']
Now we know the number of a current line and can treat the first line
differently from all the others. Let’s use this knowledge to convert our data
from strings to numbers. To do this, Python has functionFLOAT (). We have
to convert more than one field so we will use a powerful Python feature

called list comprehension.
with OPEN ('ingredients.txt, 'rt") as f:

for i, line in ENUMERATE(f):
fields=line. strip (). split(\t)

if i==0: # if it is the first line
print (i, fields) # treat it as a header
continue # go to the next line

food=fields [0] # keep food name in food

#convert numeric fields no numbers

numbers=[FLOAT(n) for n in fields [1:]]

#print line numbers, food name and nutritional values
print (i, food, numbers)

Operatoriftests if the condition is true. To check for equality, you need to
use==. The index is only 0 for the first line, and it is treated differently. We
split it into fields, print, and skip the rest of the cycle using thecontinue
operator.

Lines describing foods are treated differently. After splitting the line into
fields, fields [0] receives the food's name. We keep it in the variablefood. All
other fields contain numbers and must be converted.

In Python, we can easily get a subset of a list by using a slicing mechanism.
For instance, list1[x: y] means that a list of every element in listl -starting
with indexx and ending with y-1. (You can also include stride, see help). Ifxis
omitted, the slice will contain elements from the beginning of the list up to
the elementy-1. Ifyis omitted, the slice goes from elementxto the end of the
list. Expressionfields [1:] means every field except the firstfields [0].
numbers=[FLOAT(n) for n in fields [1:]]

means we create a new listhumbersby iterating from the second element in
thefields and converting them to floating-point numbers.

Finally, we want to reassemble the food's name with its nutritional values
already converted to numbers. To do this, we can create a list containing a
single element - food's name - and add a list containing nutrition data. In
Python, adding lists concatenates them.

[food]+ numbers

Dealing with corrupt data

Sometimes, just one line in a huge file is formatted incorrectly. For instance,
it might contain a string that could not be converted to a number. Unless
handled properly, such situations will force a program to crash. In order to
handle such situations, we must use Python's exception handling. Parts of a
program that might fail should be embedded into atry ... except block. In our
program, one such error-prone part is the conversion of strings into numbers.
numbers=[FLOAT(n) for n in fields [1:]]

Let’s insulate this line:
with OPEN ('ingredients.txt', 'rt') as f:

for i, line in ENUMERATE(f):

fields=line. strip (). split("\t")

if i==0:
print (i, fields)
continue

food=fields [0]

try: # Watch out for errors!
numbers=[FLOAT(n) for n in fields [1:]]

except: # if there is an error

print (i, line) # print offenfing lile and its number

print (i, fields) # print how it was split

continue # go to the next line without crashin
print (i, food, numbers)

Chapter 9: The Basics of Machine Learning

As you start to spend some more time on machine learning and all that it has
to offer, you will start to find that there are a lot of different learning
algorithms that you can work with. As you learn more about these, you will
be amazed at what they can do.

But before we give these learning algorithms the true time and attention that
they need, we first need to take a look at some of the building blocks that
make machine learning work the way that it should. This chapter is really
going to give us some insight into how these building blocks work and will
ensure that you are prepared to really get the most out of your learning
algorithms in machine learning.

The Learning Framework

Now that we have gotten to this point in the process, it is time to take a closer
look at some of the framework that is going to be present when you are
working with machine learning. This is going to be based a bit on statistics,
as well as the model that you plan to use when you work with machine
learning (more on that in a moment). Let’s dive into some of the different
parts of the learning framework that you need to know to really get the most
out of your machine learning process.

Let’s say that you decide that it is time to go on vacation to a new island. The
natives that you meet on this island are really interested in eating papaya, but
you have very limited experience with this kind of food. But you decide that
it is good to give it a try and head on down to the marketplace, hoping to
figure out which papaya is the best and will taste good to you.

Now, you have a few options as to how you would figure out which papaya is
the best for you. You could start by asking some people at the marketplace
which papayas are the best. But since everyone is going to have their own
opinion about it, you are going to end up with lots of answers. You can also
use some of your past experiences to do it.

At some point or another, you have worked with fresh fruit. You could use
this to help you to make a good choice. You may look at the color of the
papaya and the softness to help you make a decision. As you look through the
papaya, you will notice that there are a ton of colors, from dark browns to

reds, and even different degrees of softness so it is confusing to know what
will work the best.

After you look through the papayas a bit, you will want to come up with a
model that you can use that helps you to learn the best papaya for next time.
We are going to call this model a formal statistical learning framework and
there are going to be four main components to this framework that includes:

e Learner’s input

e Learner’s output

e A measure of success

e Simple data generalization

The first thing that we need to explore when it comes to the learning
framework in machine learning is the idea of the learner’s input. To help us
with this, we need to find a domain set, and then put all of our focus over to
it. This domain can easily be an arbitrary set that you find within your chosen
objects, and these are going to be known as the points, that you will need to
go through and label.

Once you have been able to go through and determine the best domain points
and then their sets that you are most likely to use, then you will need to go
through and create a label for the set that you are going to use, and the ones
that you would like to avoid. This helps you to make some predictions, and
then test out how well you were at making the prediction.

Then you need to take a look back at the learner’s output. Once you know
what the inputs of the scenario are all going to be about, it is going to be time
to work on a good output. The output is going to be the creation of a rule of
prediction. This is sometimes going to show up by another name such as the
hypothesis, classifier, and predictor, no matter what it is called, to take all of
your points and give them a label.

In the beginning, with any kind of program that you do, you are going to
make guesses because you aren’t sure what is going to work the best. You, or
the program, will be able to go through and use past experience to help you
make some predictions. But often, it is going to be a lot of trial and error to
see what is going to work the best.

Next, it is time to move on to the data generalization model. When you have

been able to add in the input and the output with the learner, it is time to take
a look at the part that is the data generalization model. This is a good model
to work with because it ensures that you can base it on the probability
distribution of the domain sets that you want to use.

It is possible that you will start out with all of this process and you will find
that it is hard to know what the distribution is all about. This model is going
to be designed to help you out, even if you don’t know which ones to pick out
from the beginning. You will, as you go through this, find out more about the
distribution, which will help you to make better predictions along the way.

PAC Learning Strategies

While we have already talked about how you can set up some of your
hypothesis and good training data to work with the other parts we have
discussed in the previous section, it is now time to move on to the idea of
PAC learning and what this is going to mean when we are talking about
machine learning. There are going to be two main confines and parameters
that need to be found with this learning model including the output classifier
and the accuracy parameter.

To start us off on this, we are going to take a look at what is known as the
accuracy parameter. This is an important type of parameter because it is
going to help us determine how often we will see correct predictions with the
output classifier. These predictions have to be set up in a way that is going to
be accurate but also is based on any information that you feed the program.

It is also possible for you to work with what is called the confidence
parameter. This is a parameter that will measure out how likely it is that the
predictor will end up being a certain level of accuracy. Accuracy is always
important, but there are going to be times when the project will demand more
accuracy than others. You want to check out the accuracy and learn what you
can do to increase the amount of accuracy that you have.

Now, we need to look at some of the PAC learning strategies. There are a few
ways that you will find useful when you are working on your projects. You
will find that it is useful when you bring up some training data to check the
accuracy of the model that you are using. Or, if you think that a project you
are working with is going to have some uncertainties, you would bring these
into play to see how well that program will be able to handle any of these. Of

course, with this kind of learning model, there are going to be some random
training sets that show up, so watch out for those.

The Generalization Models

The next thing that we need to look at in machine learning is the idea of
generalization models. This means, when we look at generalization, that we
will see two components present, and we want to be able to use both of these
components in order to go through all of the data. The components that you
should have there include the true error rate and the reliability assumption.

Any time that you want to work with the generalization model, and you are
also able to meet with that reliability assumption, you can expect that the
learning algorithm will provide you with really reliable results compared to
the other methods, and then you will have a good idea of the distribution. Of
course, even when you are doing this, the assumption is not always going to
be the most practical thing to work with. If you see that the assumption
doesn’t look very practical, it means that you either picked out unrealistic
standards or the learning algorithm that you picked was not the right way.

There are a lot of different learning algorithms that you can work with when
you get into machine learning. And just because you choose one specific one,
even if it is the one that the others want to work with, using one doesn’t
always give you a guarantee that you will get the hypothesis that you like at
all. Unlike with the Bayes predictor, not all of these algorithms will be able to
help you figure out the error rate type that is going to work for your business
or your needs either.

In machine learning, you will need to make a few assumptions on occasion,
and this is where some of the past experiences that you have are going to
need to come into play to help you out. In some cases, you may even need to
do some experimenting to figure out what you want to do. But machine
learning can often make things a lot easier in the process.

These are some of the building blocks that you need to learn about and get
familiar with when it comes to machine learning and all of the different
things that you can do with this. You will find that it is possible to use all of
these building blocks as we get into some of the learning algorithms that
come with machine learning as we go through this guidebook.

Chapter 10: Using Scikit-Learn

Scikit-Learn is a versatile Python library that is useful when building data
science projects. This powerful library allows you to incorporate data
analysis and data mining to build some of the most amazing models. It is
predominantly a machine learning library, but can also meet your data
science needs. There are many reasons why different programmers and
researchers prefer Scikit-Learn. Given the thorough documentation available
online, there is a lot that you can learn about Scikit-Learn, which will make
your work much easier, even if you don’t have prior experience. Leaving
nothing to chance, the API is efficient and the library is one of the most
consistent and uncluttered Python libraries you will come across in data
science.

Like many prolific Python libraries, Scikit-Learn is an open-source project.
There are several tools available in Scikit-Learn that will help you perform
data mining and analysis assignments easily. Earlier in the book, we
mentioned that some Python libraries will cut across different dimensions.
This is one of them. When learning about the core Python libraries, it is
always important that you understand you can implement them across
different dimensions.

Scikit-Learn is built on Matplotlib, SciPy, and NumPy. Therefore, knowledge
of these independent libraries will help you get an easier experience using
Scikit-Learn.

Uses of Scikit-Learn

How does Scikit-Learn help your data analysis course? Data analysis and
machine learning are intertwined. Through Scikit-Learn, you can implement
data into your machine learning projects in the following ways:

° Classification

Classification tools are some of the basic tools in data analysis and machine
learning. Through these tools, you can determine the appropriate category
necessary for your data, especially for machine learning projects. A good
example of where classification models are used is in separating spam emails
from legitimate emails.

Using Scikit-Learn, some classification algorithms you will come across
include random forest, nearest neighbors, and support vector machines.

PY Regression

Regression techniques in Scikit-Learn require that you create models that will
autonomously identify the relationships between input data and output. From
these tools, it is possible to make accurate predictions, and perhaps we can
see the finest illustration of this approach in the financial markets, or the
stock exchanges. Common regression algorithms used in Scikit-Learn include
Lasso, ridge regression, and support vector machines.

PY Clustering

Clustering is a machine learning approach where models independently
create groups of data using similar characteristics. By using clusters, you can
create several groups of data from a wide dataset. Many organizations access
customer data from different regions. Using clustering algorithms, this data
can then be clustered according to regions. Some of the important algorithms
you should learn include mean-shift, spectral clustering, and K-means.

e Model selection

In model selection, we use different tools to analyze, validate, compare, and
contrast, and finally choose the ideal conditions that our data analysis
projects will use in operation. For these modules to be effective, we can
further enhance their accuracy using parameter tuning approaches like
metrics, cross-validation, and grid search protocols.

e Dimensionality reduction

In their raw form, many datasets contain a high number of random variables.
This creates a huge problem for analytics purposes. Through dimensionality
reduction, it is possible to reduce the challenges expected when having such
variables in the dataset. If, for example, you are working on data
visualizations and need to ensure that the outcome is efficient, a good
alternative would be eliminating outliers. To do this, some techniques you
might employ in Scikit-Learn include non-negative matrix factorization,
principal component analysis, and feature selection.

PY Preprocessing

In data science, preprocessing tools used in Scikit-Learn help you extract
unique features from large sets of data. These tools also help in
normalization. For instance, these tools are helpful when you need to obtain
unique features from input data like texts, and use the features for analytical
purposes.

Representing Data in Scikit-Learn

If you are working either individually or as a team on a machine learning
model, working knowledge of Scikit-Learn will help you create effective
models. Before you start working on any machine learning project, you must
take a refresher course on data representation. This is important so that you
can present data in a manner such that your computers or models will
comprehend easily. Remember that the kind of data you feed the computer
will affect the outcome. Scikit-Learn is best used with tabular data.

Tabular Data

Tables are simple two-dimensional representations of some data. Rows in a
table identify the unique features of each element within the data set.
Columns, on the other hand, represent the quantities or qualities of the
elements you want to analyze from the data set. In our illustration for this
section, we will use the famous Iris dataset. Lucky for you, Scikit-Learn
comes with the Iris dataset loaded in its library, so you don’t need to use
external links to upload it. You will import this dataset into your
programming environment using the Seaborn library as a DataFrame in
Pandas. We discussed DataFrames on Pandas, so you can revert and remind
yourself of the basic concepts.

The Iris dataset comes preloaded into Scikit-Learn, so pulling it to your
interface should not be a problem. When you are done, the output should give
you a table whose columns include the following:

e sepal_length

e sepal_width

e petal_length

e petal_width
® species
We can deduce a lot of information from this output. Every row represents an
individual flower under observation. In this dataset, the number of rows
infers the total number of flowers present in the Iris dataset. In Scikit-Learn,
we will not use the term rows, but instead, refer to them as samples. Based on

this assertion, it follows that the number of rows in the Iris dataset is
identified as n_samples.

On the same note, columns in the Iris dataset above provide quantitative

information about each of the rows (samples). Columns, in Scikit-Learn, are
identified as features, hence the total number of columns in the Iris dataset
will be identified as n_features.

What we have done so far is to provide the simplest explanation of a Scikit-
learn table using the Iris dataset.

Features Matrix

From the data we obtained from the Iris dataset, we can interpret our records
as a matrix or a two-dimensional array as shown in the table above. If we
choose to use the matrix, what we have is a features matrix.

By default, features matrices in Scikit-Learn are stored in variables identified
as x. Using the data from the table above to create a features matrix, we will
have a two-dimensional matrix that assumes the following shape [n_samples,
n_features]. Since we are introducing arrays, this matrix will, in most cases,
be part of an array in NumPy. Alternatively, you can also use Pandas
DataFrames to represent the features matrix.

Rows in Scikit-Learn (samples) allude to singular objects that are contained
within the dataset under observation. If, for example, we are dealing with
data about flowers as per the Iris dataset, our sample must be about flowers.
If you are dealing with students, the samples will have to be individual
students. Samples refer to any object under observation that can be quantified
In measurement.

Columns in Scikit-Learn (features) allude to unique descriptive observations
we use to quantify samples. These observations must be quantitative in
nature. The values used in features must be real values, though in some cases
you might come across data with discrete or Boolean values.

Target Arrays

Now that we understand what the features matrix (x) is, and its composition,
we can take a step further and look at target arrays. Target arrays are also
referred to as labels in Scikit-Learn. By default, they are identified as (y).

One of the distinct features of target arrays is that they must be one-
dimensional. The length of a target array is n_samples. You will find target
arrays either in the Pandas series or in NumPy arrays. A target array must
always have discrete labels or classes, and the values must be continuous if

using numerical values. For a start, it is wise to learn how to work with one-
dimensional target arrays. However, this should not limit your imagination.
As you advance into data analysis with Scikit-Learn, you will come across
advanced estimators that can support more than one target array. This is
represented as a two-dimensional array, in the form [n_samples, n_targets].

Remember that there exists a clear distinction between target arrays and
features columns. To help you understand the difference, take note that target
arrays identify the quantity we need to observe from the dataset. From our
knowledge of statistics, target arrays would be our dependent variables. For
example, if you build a data model from the Iris dataset that can use the
measurements to identify the flower species, the target array in this model
would be the species column.

The diagrams below give you a better distinction between the target vector
and the features matrix:

Diagram of a Target vector

Diagram of a Features Matrix

Understanding the API

Before you start using Scikit-Learn, you should take time and learn about the
API. According to the Scikit-Learn API paper, the following principles are
the foundation of the Scikit-Learn API:

PY Inspection

You must show all the parameter values in use as public attributes

PY Consistency

You should use a limited number of methods for your objects. This way, all
objects used must have a common interface, and to make your work easier,
ensure the documentation is simple and consistent across the board.

e Limited object hierarchy
The only algorithms that should use basic Python strings are those that
belong to Python classes.

e Sensible defaults
For models that need specific parameters unique to their use, the Scikit-Learn
library will automatically define the default values applicable

PY Composition

Given the nature of machine learning assignments, most of the tasks you
perform will be represented as sequences, especially concerning the major
machine learning algorithms.

Why is it important to understand these principles? They are the foundation
upon which Scikit-Learn is built, hence they make it easier for you to use this
Python library. All the algorithms you use in Scikit-Learn, especially
machine learning algorithms, use the estimator API for implementation.
Because of this API, you can enjoy consistency in development for different
machine learning applications.

Conclusion:

Thank you for making it through to the end of Python for Data Science, let’s
hope it was informative and able to provide you with all of the tools you need
to achieve your goals whatever they may be.

The next step is to start putting the information and examples that we talked
about in this guidebook to good use. There is a lot of information inside all
that data that we have been collecting for some time now. But all of that data
is worthless if we are not able to analyze it and find out what predictions and
insights are in there. This is part of what the process of data science is all
about, and when it is combined with the Python language, we are going to see
some amazing results in the process as well.

This guidebook took some time to explore more about data science and what
it all entails. This is an in-depth and complex process, one that often includes
more steps than what data scientists were aware of when they first get started.
But if a business wants to be able actually to learn the insights that are in
their data, and they want to gain that competitive edge in so many ways, they
need to be willing to take on these steps of data science, and make it work for
their needs.

This guidebook went through all of the steps that you need to know in order
to get started with data science and some of the basic parts of the Python
code. We can then put all of this together in order to create the right
analytical algorithm that, once it is trained properly and tested with the right
kinds of data, will work to make predictions, provide information, and even
show us insights that were never possible before. And all that you need to do
to get this information is to use the steps that we outline and discuss in this
guidebook.

There are so many great ways that you can use the data you have been
collecting for some time now, and being able to complete the process of data
visualization will ensure that you get it all done. When you are ready to get
started with Python data science, make sure to check out this guidebook to
learn how.

Many programmers worry that they will not be able to work with neural
networks because they feel that these networks are going to be too difficult
for them to handle. These are more advanced than what we will see with

some of the other forms of coding, and some of the other machine learning
algorithms that you want to work with. But with some of the work that we
did with the coding above, neural networks are not going to be so bad, but the
tasks that they can take on, and the way they work, can improve the model
that you are writing, and what you can do when you bring Python into your
data science project.

Machine learning with Python:

UNDERSTANDING HOW PYTHON CODE IS USEFUL TO
MANAGE AND IMPROVE ARTIFICIAL INTELLIGENCE AND
DEEP LEARNING. THE EASY TRAINING GUIDE FOR
PROGRAMMERS AND DATA SCIENTISTS.

William Wizner

© Copyright 2020 - All rights reserved.

The content contained within this book may not be reproduced, duplicated, or transmitted without
direct written permission from the author or the publisher.

Under no circumstances will any blame or legal responsibility be held against the publisher, or author,
for any damages, reparation, or monetary loss due to the information contained within this book. Either
directly or indirectly.

Legal Notice:

This book is copyright protected. This book is only for personal use. You cannot amend, distribute, sell,
use, quote or paraphrase any part, or the content within this book, without the consent of the author or
publisher.

Disclaimer Notice:

Please note the information contained within this document is for educational and entertainment
purposes only. All effort has been executed to present accurate, up to date, and reliable, complete
information. No warranties of any kind are declared or implied. Readers acknowledge that the author is
not engaging in the rendering of legal, financial, medical, or professional advice. The content within
this book has been derived from various sources. Please consult a licensed professional before
attempting any techniques outlined in this book.

By reading this document, the reader agrees that under no circumstances is the author responsible for
any losses, direct or indirect, which are incurred as a result of the use of the information contained
within this document, including, but not limited to, — errors, omissions, or inaccuracies.

Introduction:

Derived from Artificial Intelligence, the concept of machine learning is a
complete area of study. It focusses on developing automated programs to
acquire knowledge from data in order to make a diagnosis or a prediction.
Machine learning relies on the concept that machines can learn, identify
trends, and provide decisions with minimal human intervention. These
machines improve with experience and build the principals that govern the
learning processes.

There is a wide variety of machine learning uses, such as marketing, speech
and image recognition, smart robots, web search, etc. Machine learning
requires large datasets to train the model and get accurate predictions.
Different types of machine learning exist and can typically be classified into
two separate categories supervised or unsupervised learning. Other
algorithms can be labeled as semi-supervised learning or reinforcement
machine learning.

Supervised learning is mainly used to learn from a categorized or labeled
dataset than applied to predict the label for the unknown dataset. In contrast,
unsupervised learning is used when the training dataset is neither categorized
nor labeled and is applied to study how a function can describe a hidden
pattern from the dataset. Semi-supervised learning uses together categorized
and non-categorized dataset. Reinforcement is a method that relies on the trial
and error process to identify the most accurate behavior in an environment to
improve its performance.

This chapter will go through the details for each type of machine learning and
explains in-depth the differences between each type of learning and their pros
and cons. Let’s start with the supervised learning that is commonly used and
the simplest learning paradigm in machine learning. Before we dive into the
details about machine learning when machine learning is the best approach to
solve a problem?

It is crucial to understand machine learning is not the go-to approach to solve
any problem in hand. Some problems can be solved with robust approaches
without relying on machine learning. Problematics with few data with target
value that can easily be defined by a deterministic approach. In this case,
when it is easy to determine and program a rule that drives the target value,

machine learning is not the best approach to follow.

Machine learning is best used when it is impossible to develop and code a
rule to define the target value. For instance, image and speech recognition is a
perfect example of when machine learning is best used. Images, for example,
have a lot of features and pixels that a simple human task is very hard to
implement to recognize the image. A human being can visually recognize an
image and classify it. But how to develop an algorithm and a rule-based
approach is exhausting and not very effective for image recognition. So, in
this case building an image dataset and flag each image with its specific
contents (i.e., animal, flower, object, etc..) and use a machine-learning
algorithm to detect each category of images is very efficient. In short,
machine learning is very handy when you have several factors that impact the
target value with little correlation.

Machine learning is also the best approach to automate a task for large
datasets. For example, it is easy to detect manually a spam email or a
fraudulent transaction. However, it is very time consuming and tedious tasks
to the same task for a hundred million emails or transactions. Machine
learning is very cost-effective and computationally efficient to handle large
datasets and large-scale problems.

Machine learning is also best used in cases where human expertise to solve a
problem is very limited. An example of these problems is when it is
impossible to label or categorize the data. Machine learning in this situation
is used to learn from the datasets and provide answers to the problems of the
questions we are trying to solve.

Overall, machine learning is best used to solve a problem when: 1) human
have the expertise to solve the problem but it almost impossible to develop
easily a program to mimic the human task, 2) human have no expertise or an
idea regarding the target value (i.e., no label or classified data), 3) human
have the expertise and knows the possible target values but it has cost-
effective and time consuming to implement such an approach. In general
machine learning is best used to solve complex data-driven problems like
learning behaviors for clients targeting or acquisition, fraud analysis,
anomaly detection in large systems, diseases diagnostic, shape/image, and
speech recognition among others. Problems when few data are available, and
human expertise can be easily programmed as a rule-based approach it is best
to use a deterministic rule-based method to resolve the problem. The large

dataset should be available to machine learning to be efficient and effective,
otherwise it can raise issues of generality and overfitting. Generality means
the ability of a model to be applied in case scenarios similar to case scenarios
that served to build the model. When machine learning models are built on a
small dataset, they become very inefficient when applied on new datasets that
they have not been exposed to. Hence, their applicability becomes very
limited. For example, building a model that recognizes an image as a cat or
dog image, then apply the same with new images data of other animals. The
model will give an inaccurate classification of the new dataset of the other
animals like dogs or cat images. Overfitting is when the model shows a high
accuracy when applied to the training data, and its accuracy drops drastically
when applied to a test data similar to the training data. Another issue with
machine learning that should be considered in developing a machine learning
model is the similarity between inputs which are associated with several
outputs. It becomes very difficult to apply a classification machine learning
model in this case as similar inputs yield to different outputs. Therefore, the
quality and quantity of data are very important in machine learning. One
should keep in mind that not only the quantity of data but also the quality of
data affects the accuracy and applicability of any machine learning approach.
If the right data is not available, collecting the right data is crucial and is the
first step to take to adopt a machine learning approach. Now, you have
learned when it is useful to adopt a machine learning approach, when you
should avoid machine learning and when a simple rule-based deterministic
approach is the simple way to solve a problem. Next, you will learn the
different types of machine learning that you might use when each type is
applied, the data that it requires, widely used algorithms, and the steps to
follow to solve a problem with machine learning.

In supervised learning, we typically have a training data set with
corresponding labels. From the relationship that associates the training set
and the labels, we try to label new unknown data sets. To do so, the learning
algorithm is supplied with the training set and the corresponding correct
labels. Then, it learns the relationship between the training set and the labels.
That relationship is then applied by the algorithm to label the unknown data
set. Formally, we want to build a model that estimates a function of that
relates a data set X (i.e., input) to labels Y (i.e., output): Y=£f(X). The
mathematical relationship f is called the mapping function.

Let’s consider we have an ensemble of images and try to label it as a cat

image or not cat. We first provide as an input to the learning algorithm
images (X) and labels of these images (cat or no cat). Then, we approximate
the relationship f that estimates Y according to X as accurately as possible:
Y=f(X)+e, € is an error which is random with a mean zero. Note that we are
approximating the relationship between the dataset and the labels and we
want the error € as close as possible to 0. When ¢ is exactly 0, that means the
model is perfect and 100% accurate, which is very rare to build such a
model.

Typically, a subset of available labeled data, which is often 80%, is utilized
as a training set to estimate the mapping task to build such a model. The extra
20% of the labeled data is utilized to assess the model’s efficiency and
precision. At this step, the model is fed with the 20% data, and the predicted
output is compared to the actual labels to compute the model performance.

Supervised learning has mainly two functions, namely, classification or
regression. Classification is used when the output Y is a quality or category
data (i.e., discrete variable) whereas regression is used when the output Y is
quantity data (i.e., continuous numerical values). Classification aims at
predicting a label or assigning data to a class to which they are most similar.
The output Y is a binary variable (i.e., 0 or 1). The example is given above,
labeling images as cat or no cat is an example of classification. The model
can also be a multi-class classification where the model predicts different
classes. For example, Outlook classifies mails in more than a category like
Focused, Other, Spam. Several algorithms can be used, such as logistic
regression, decision tree, random forest, multilayer perceptron. Regression is
used when we want to predict a value such as house pricing, human height, or
weight. Linear regression is the simplest model for this type of problem.

The disadvantage of supervised learning is the fact that they cannot process
new information, and training should be reconsidered when new information
is available. For instance, we have a set of training images of dogs and cats,
and the model is trained to label images as dog images or cat images. In other
words, we have developed a model with two categories of dogs and cats.
When this model is presented with new images of other animals, for example,
a tiger, it labels incorrectly the tiger image as a dog or cat image. The model
does not recognize the tiger image, but it provides a classification of the
image in a category. Therefore, the model should be trained whenever new
information is available.

Chapter 1: Python Installation

Python is a powerful programming language developed by Guido Van
Rossum in the late 1989s. This language is currently used in many domains
such as web development, software development, education, and data
analysis. Reasons for its widespread use include:

Python is easy to learn and understand
e The Syntax of python is easy
e Python has its way of managing memory associated with objects.
e Python is not propriety software.

e [t is compatible with all platforms (i.e. Windows, Linux, and
Mac)

e Can be interfaced with other programming languages

e Many Python libraries and packages are available for data
science and machine learning related applications.

Anaconda Python Installation

Step 1: Download the latest Anaconda distribution file from
https://www.anaconda.com/distribution/

There are download options for 32-bit and 64-bit operating systems (Figure
1.1).

Step 2: Click on the executable installation file. A welcome screen will
appear (Figure

1.2)

Step 3: Click next, read and accept the license agreement by clicking on “I
Agree” button (Figure

1.3)

https://www.anaconda.com/distribution/

Step 4: Choose installation type (i.e. One user or All users) (Figure 1.4)

Step 5: Choose a location to install Anaconda Python distribution (Figure
1.5)

Step 6: Select all options in “Advanced installation options” screen and
ignore all warnings

(Figure 1.6) and click on the “Install” button.

Step 7: Wait until the installation is complete (Figure 1.7) and then click
“next” button

Step 8: Now the Anaconda python distribution has been successfully
installed, click on the

“Finish” button (Figure 1.8)

Step 9: To check whether the Anaconda has been installed successfully, on
command prompt type python, you should see python shell as shown in
Figure 1.9

< @& https.//www.anaconda.com/distribution/ e

}J ANACONDA Products Why Anaconda? Solutions Resources Company

Anaconda Distribution

The World's Most Popular Python/R Data Science Platform

Download |

The open-source Anaconda Distribution Is the easiest way to perform Python/R

data science and machine learning on Linux, Windows, and Mac OS X. With ';-{ (I
over 11 million users worldwide, it is the industry standard for developin il Numpy @Sc"’y |
d Y PIng: b spyder | | l || Numba
testing, and training on a single machine, enabling individual data scientists to: - — = =
« Quickly download 1,500+ Python/R data science packages p_an_d_as @ o ? | P Datashader
DASK || Bokeh | HoloViews |

+ Manage libraries, dependencies, and environments with Canda
+ Develop and train machine learning and deep learning models with scikit- |

learn, TensorFlow, and Theano matptodi .@"’ H2° TensorFlow| | CONDA
« Analyze data with scalability and performance with Dask, NumPy, pandas o & g

and Numba

« Visualize results with Matplotlib, Bokeh, Datashader, and Holoviews

&8 Windows ‘ ® macos] 8 Linux

Figure 1.1 Anaconda distribution

Figure 1.2 Anaconda installation welcome

2 Anaconda3 2019.03 (64-bit) Setup =

Welcome to Anaconda3 2019.03
(64-bit) Setup

& e
-

[x]

o

s &

ANACONDA.

Setup will guide you through the installation of Anaconda3
2019.03 (64-bit).

It is recommended that you dose all other applications
before starting Setup. This will make it possible to update
relevant system files without having to reboot your
computer,

Click Next to continue.

Cancel

Figure 1.3 License Agreement

2 Anaconda3 2019.03 (64-bit) Setup ==

a8 License Agreement
.) ANACONDA Please review the license terms before installing Anaconda3
2019.03 (64-bit).

Press Page Down to see the rest of the agreement.

Copyright 2015, Anaconda, Inc.
All rights reserved under the 3-clause BSD License:

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

If you accept the terms of the agreement, dick I Agree to continue. You must accept the
agreement to install Anaconda3 2019.03 (64-bit).

Anaconda, Inc,

< Back || I Agree I ’ Cancel

. Anaconda3 2019.03 (64-bit) Setup

Select Installation Type

Anaconda3 2019.03 (64-bit).

X

‘:-) ANACONDA Please select the type of installation you would like to perform for

Install for:

(®3ust Me (recommended

() All Users (requires admin privileges)

Anaconda i Mple

< Back

Mext =

Figure 1.4 Installation type

el eV o)

Figure 1.8 Installation Complete Screen

Cancel

) Anaconda3 2019.03 (64-bit) Setup

Choose Install Location

X

.) ANACONDA Choose the folder in which to install Anaconda3 2019.03 (64-bit).

Setup will install Anaconda3 2019.03 (64-bit) in the following folder. To install in a different
folder, dick Browse and select another folder. Click Next to continue.,

Destination Folder

| C:\Users\surface\Anaconda3

Space reguired: 3.1GB
Space available: 58.4GB

Anaconda, Inc.

< Back

Next >

Cancel

Figure 1.5: Choose destination folder
screen

. Anaconda3 2019.03 (64-bit) Setup = X

Advanced Installation Options
‘EJ ANACONDA Customize how Anaconda integrates with Windows

Advanced Options

Add Anaconda to my PATH environment variable

Mot recommended. Instead, open Anaconda with the Windows Start
menu and select "Anaconda (64-bit)". This "add to PATH™ option makes
Anaconda get found before previously installed software, but may
cause problems requiring you to uninstall and reinstall Anaconda.

B

This will allow other programs, such as Python Tools for Visual Studio
PyCharm, Wing IDE, PyDev, and M5I binary packages, to automatically
detect Anaconda as the primary Python 3.7 on the system.

Anaconda, Inc,

< Back Install - Cancel

Figure 1.6 Advanced Installation Options
Screen

2 Anaconda3 2019.03 (64-bit) Setup =

Installing
":D ANACONDA Please wait while Anaconda3 2019.03 (64-bit) is being installed.

Extract: traitlets-4.3.2-py37_0.tar.bz2

§ Show g;t;l? ;

Anaconda, Inc,

< Back Mext = Cancel

Figure 1.7: Installation Progress
Screen

) Anaconda3 2019.03 (64-bit) Setup =
Thanks for installing Anaconda3!

Anaconda is the most popular Python data science platform.

Share your notebooks, packages, projects and environments
ANACONDA on Anaconda Cloud!

[“]iearn more about Anaconda Cloud

[]Learn how to get started with Anaconda

< Back Finish Cancel

Figure 1.8 Installation Complete
Screen

Figure 1.9 Python Shell

Jupyter Notebook

One of the most convenient tools to write Python programs and work
with scientific libraries is Jupyter Notebook. Jupyter Notebook is an open-
source web-based application. Users can write and execute python code.
Moreover, the user can choose, create, and share documents. Moreover, it
provides a formatted output which can contain tables, figures, and
mathematical expression. To use Jupyter Notebook follow the bellowing
steps:

Step 1: Jupyter Notebook is installed with Anaconda Python Distribution.
After installing Anaconda, go the start menu, and run Jupyter Notebook
(Figure 1.10)

Step 2: After opening the Jupyter Notebook, A “Jupyter Notebook” shell
screen will appear (Figure 1.11)

Step 3: After a few seconds, “Jupyter Notebook” dashboard will open in the
default browser (Figure 1.12)

Step 4: Now, the user can initialize a new python editor by clicking on the
“New” pull-down list and choosing “Python 3” (Figure 1.13)

Step 5: A Jupyter Notebook python editor will be opened (Figure 1.14)

Step 6: Now users can write and execute python codes. In Figure 1.15 a
famous “Hello World” code is written and executed

#

@ 3D Viewer

A

Access
Acrobat Reader DC

Alarms & Clock

Anaconda3 (64-bit)
Anaconda Navigator
New

Anaconda Powershell Prompt

Anaconda Prompt

Jupyter Notebook

_

. Reset Spyder Settings
New

@ Spyder
New

C
E Calculator

Calendar
Camera

D'E Connect

Jupyter Notebook Icon

Jupyter Notebook

teb] ion loaded from \Users\surface\Anaconda3\1lil

17:02:08,921

tebo Jupyt ation directory is C:\Users\surface\Anaconda3
tebookApp] Serving note ks from local directory

ytebo The Jupyter Notebook unning at:

tebo local : 8888/ 21« 3 7 4 109,

tebook!] e Control-C stof erver and shut down all k t y skip confirm

Jupyter Notebook Shell

B & 5 Home % |] Untitled1 + v
&~ 0O o @ localhast
Find on page ter text to search No results C
_ Jupyter
Files RuUnNir Clusters

Select items to perform actions on them

COo - W/

O O _viminfo

http/flocalhost:8888/tree# clusters

Jupyter Notebook

Quit

Upload

Name ¥ Las

dified
35 minutes ago
20 minutes ago
3 months ago
2 minutes ago
2 hours ago
3 hours ago
3 months ago
3 months ago
3 months ago
a day ago
4 days ago
3 months ago
3 months ago
3 months ago
2 hours ago
Running seconds ago
3 months ago

3 days ago

W

Logout

New~=| &

File size

952 B
812B
398

249kB

™

B

B &8 5 Home B umitled
= o localhast

Find on page ter text to search

jupyter

No results

w ¥*=
Options v
it Logout

jpload [News| &

Text File

2 hours ago

3 hours ago

3 months ago
3 months ago
3 months ago
@ day ago

4 days ago

3 months ago
3 months ago

3 months ago

2 hours & a52
ing 2 minutes age 28
3 months ago 38

3 days ago 249kB

Creating new Jupyter Notebook for

Derblh A

Jupyter Notebook python

& B Home 5 untitled X |+ W - =] X
b ocalhas! * * L &
sult
Find on page pouya No results £ > Options v X
" Jupyter Untitied? Last Checkpoini: afew seconds ago (unsaved changes) Ll
B 4+ x @B+ + HFRn B C W

1 L

Writing and executing python code in Jupyter
Notebook

" Jupyter Untitled2 Last Checkpoint: a minute ago {unsaved changes A
[
B+ x @B |+ & HRin B C W co

1] Mip

L

Fundamentals of Python programming

After learning how to install python, in this section fundamentals of

python programming which should be learned for writing basic python
programs will be described.

Data Types
In Python, data types are divided into the following categories:

1) Numbers: Includes integers, floating numbers, and complex numbers.
Integers can be at any length and are only limited by available machine
memory. Decimal points can contain up to 15 decimal places

2) Strings: Includes a sequence of one or more characters. Strings can
contain numbers, letters, spaces, and special characters.

3) Boolean: Includes logical values either True or False.

4) None: Represents when the value of a variable is absent

Data Structures

A data structure or data type is a certain method a programming language
relies on for organizing data so it can be utilized most efficiently. Python
features four of these data types. Let’s go over them one by one.

1) Lists: Collections that are ordered, changeable, indexed, and allow
duplicate members.

2) Tuples: Collections that are ordered, unchangeable, indexed, and allow
duplicate members.

3) Sets: Collections that are unordered, unindexed, and don’t allow
duplicate members.

4) Dicts (Dictionaries): Collections that are unordered, changeable,
indexed, and don’t allow duplicate members.

List

Python lists can be identified through their use of square brackets.
The idea is to put the items in an orderly fashion separating each item with a
comma. Items can contain different data types or even other lists (resulting in
nested lists). After creation, you may modify the list by adding or removing
items. It is also possible to search through the list. You may access the
contents of lists by referring to the index number.

Example
In [1]: M |1list = ["sam", "bob", “"sara"]
In [2]: M print(list)
['sam’, 'bob", ‘sara’]
In[1: M
Tuple

Tuples use parentheses to enclose the items. Other than that, tuples

are structured the same way as lists and you can still bring them up by
referring to the bracketed index number. The main difference is that you can’t
change the values once you create the tuple.

Example
In [3]: M| tuple=("sam™, "bob™, "sara™)
print(tuple)
('sam', 'bob', 'sara')
Set

When you are using curly braces to surround a collection of elements,
you are creating a set. Unlike a list (which is something you naturally go
through from top to bottom), a set is unordered which means there is no index
you can refer to. However, you can use a “for loop” to look through the set or
use a keyword to check if a value can be found in that set. Sets let you add
new items but not change them.

Example

In [4]: M |set = {"sam™, “"bob"”, "sara"
print(set)

{"sara’, "sam”, “"boh"}

Dicts (Dictionaries)

Dictionaries or dicts rely on the same curly braces as sets and share
the same unordered properties. However, dicts are indexed by key names so
you have to define each by separating the key name and value with a colon.
You may also alter the values in the dict by referring to their corresponding
key names.

Example:

In [S]: M |dict = {
"namel”:"sam",
"name2":"bob",
"name3":"sara"

}
print(dict)

{'namel': 'sam', 'name2': 'bob', 'name3': 'sara'}
Variable names or identifiers

In python, variable names or identifiers (i.e. names given to variables,
functions, modules, ...) can include either lowercase or uppercase letters,
numbers, parentheses, and underscore. However, python names and
identifiers cannot start with digits

Example: In the first example given in Figure 1.16, a variable called “test” is
assigned with a value of 2. In the second example, a variable called “1test” is
defined and assigned with a value of 2. However, as mentioned above,
python does not accept a variable name starting with a digit so here it gives
an error. Some predefined keywords are reserved by python and cannot be
used as variable names and identifiers. The list of these keywords is given in
Table 1.1

In [1]: M |[test = 2

In [2]: M |1test = 2

File "<ipython-input-2-f8b048elff71>", line 1
ltest = 2

SyntaxError: invalid syntax

Defining variables in python

Arithmetic Operations in Python

Similar to other programming languages, basic arithmetic operations
including add, subtract, division, multiplication, and exponentiation can be
performed in Python. The arithmetic operators and their corresponding

symbols are summarized in table 1.2.

Arithmetic operators in Python

Operator Symbol | Operator name Operator Description

+ Addition Adds the two values

- Subtraction Subtracts the two values

" Multiplication Gives the product of two
values

/ Division Produces the quotients of
two values

o Modulus Divides two values and

%o :
returns the remainder

Rk Exponent Returns exponential power

/) Floor division Returns an integral part of

the quotient

Examples: Examples of arithmetic operations in python are given below:

In [1]: M 10 + 2

Out[1]: 12

In [2]: M|10 - 2

out[2]: 8

In [3]: M 10 * 2

out[3]: 20

In [4]: M 10 / 2

Out[4]: 5.0

In [5]: M|[1a ®=2

Out[5]: 100

In [6]: M 10 % 2

out[6]: ©

In [7]: M 10 // 2

Out[7]: 5
Assignment Operators

Assignment operators are used to assign the values after evaluating
the operands on the right sides. These assignments work from right to left.
The simplest assignment operator is the equal sign which is used to simply
assign the value from the right side to the operand on the right side. All
assignment operators are summarized in table 1.3.

Assignment operators in Python

Operator Symbol

Operator name

Operator Description

kk—

Assignment

Addition

Subtraction

Multiplication

Division

Exponentiation

Floor Division

Remainder

Assigns the value of the
left operand to the right
operand

Adds the values of right
operands to the left and

assigns the results to the
left

Subtract the values of right
operands to the left and
assigns the results to the
left

Multiplies the values of
right operands to the left
and assigns the results to
the left

Divides the values of right
operands to the left and
assigns the results to the
left

Calculates the exponential
power and assigns the
result to the left operand

Calculates an integral part
of quotient and assigns the
result to the left operand

Calculates the remainder
of quotient and assigns the
result to the left operand

Examples: Examples of assignment operations in python are given below:

In [10]: M m = 2
m+=1
print(m)

In [12]: M|m= 5

n=2
m-=n
print(m)
3

In [13]: M|m= 4
n=3
m*=n
print(m)

12

Comparison Operators

Comparison operators are used to compare the values of the operands.
These operators return Boolean (logical) values, True or False. The values of
operands can be numbers, strings, or Boolean values. The strings are
compared based on their alphabetical order. For instance, “A” is less than
“C”. All comparison operators are given in table 1.4.

Comparison Operators

Operator Symbol Operator name Operator Description

Equal to

Not equal to

Greater than

Less than

Greater or equal two

Less or equal to

Returns True if the
operands on both sides are
equal, otherwise returns
false

Returns True if the
operands on both sides are
not equal, otherwise returns
false

Returns True if the operand
on the left side is greater
than the operand in the right
side

Returns True if the operand
on the left side is less than
the operand in the right side

Returns True if the operand
on the left side is greater or
equal to the operand in the
right side

Returns True if the operand
on the left side is less or
equal to the operand in the
right side

Examples

: Examples of comparison operations in python are given below:

In [14]: M

Out[14]:

In [15]: M

Out[15]:

5 5 5

Chapter 2: Python for Machine Learning

In order to use machine learning, we need a programming language to
provide instruction to the machine to execute the code. In this section, we are
going to learn the basics of the Python language, how to install and launch
python. We are also going to learn some Python syntax and some useful tools
to run Python. We also cover some basic Python libraries that useful for
machine learning.

Why use Python for machine learning?

Python is a programming language extensively used for many reasons. One
main reason it is a free and open-source language, which means it is
accessible for everybody. Although it is free, it is a community-based
language, meaning that it is developed and supported by a community that
gathers its effort through the internet to improve the language features. Other
reasons people would use Python are 1) quality as a readable language with a
simple syntax, 2) program portability to any operating system (e.g. Windows
, Unix) without or with little modifications,3)Speed of execution: Python
does not need compilation and run faster than similar programming
languages, 4) Component integration which means that Python can be
integrated with other programs, can be called from C and C++ libraries, or
call another programming language. Python comes with basic and powerful
standard operations as well as advanced pre-coded libraries like Numpy for
numeric programming. Another advantage of Python is automatic memory
management and does not require variable and size declaration. Moreover,
Python allows developing different applications such as developing
Graphical User Interface (GUI), doing numeric programming, do game
programming, database programming, internet scripting, and much more. In
this book section, we will focus on how to do numeric programming for
machine learning applications and how to get started with Python.

How to Get started with Python?

Python, a scripting language, and like any other programming language, it
needs an interpreter. The latter is a program that executes other language
programs. As its name indicates, it works as an interpreter for computer
hardware to execute the instructions of a Python programming. Python comes
as a software package and can be downloaded from Python’s website:

www.python.org. When installing Python, the interpreter is usually an
executable program. Note that if you use UNIX and LUNIX, Python might
be already installed and probably is in the /usr directory. Now that you have
Python installed let’s explore how we can run some basic code.

To run Python, you can open your operating system’s prompt (on Windows
open a DOS console Window) and type python. If it does not work, it means
that you don’t have python in Shell’s path Environment variable. In this case,
you should type the full path of the Python executable. On Windows, it
should be something similar to C:\Python3.7\python and in UNIX or LUNIX
is installed in the bin folder: /usr/local/bin/python (or /usr/bin/python).

When you launch Python, it provides two lines of information with the first
line is the Python version used as in the example below:

Python 3.7.1 (default, Dec 10 2018, 22:54:23) [MSC v.1915 64 bit
(AMDG64)]: Anaconda, Inc. on win32

mon mwon

Type "help", "copyright", "credits" or "license" for more information.

>>>

Once a session is launched, Python prompts >>> which means it is ready. It
is ready to run line codes you write in. The following is an example of
printing statement:

>>> print ('Hello World!")
Hello World!

>>>

When running Python in an interactive session as we did, it displays the
results after >>> as shown in the example. The code is executed interactively.
To exit the interactive Python session type Ctrl-Z on Windows or Ctrl-D on
Unix/UNIX machine.

Now we learned how to launch Python and run codes in an interactive
session. This is a good way to experiment and test codes. However, the code
is never saved and need to be typed again to run the statement again. To store
the code, we need to type it in a file called module. Files that contain Python
statements are called modules. These files have an extension ‘.py.” The
module can be executed simply by typing the module name. A text editor like

Notepad++ can be used to create the module files. For instance, let's create a
module named text.py that prints ‘Hello World,” and calculates 3/2. The file
should contain the following statements:

print ('Hello World! ")

print ('3A2 equal to ' 3**2)

To run this module, in the operating system’s prompt, type the following
command line:

python test.py

If this command line does not work, you should type the full path of Python’s
executable and the full path of the test.py file. You can also change the
working directory by typing cd full path of the test.py file, then type python
test.py. Changing the working directory to the directory where you saved the
modules is a good way to avoid typing the full path of the modules every
time you are running the module. The output is:

C:\Users>python C:\Users\test.py
Hello World!

372 equal to 9

When we run the module test.py, the results are displayed in the operating
system’s prompt and go away as the prompt is closed. To store the results in
a file, we can use a shell syntax by typing:

python test.py > save.txt
The output of test.py is redirected and saved in the save.txt file.

In the next sections, we are going to learn Python syntax. For now, we are
going to use the command line to explore Python syntax.

Python syntax

Before we learn some Python syntax, we are going to explore the main types
of data that can be used in Python and how a program is structured. A
program is a set of modules that are a series of statements that contain
expressions. These expressions create and process objects which are variables
that represent data.

Python Variables

In Python, we can use built-in objects, namely numbers, strings, lists,
dictionaries, tuples, and files. Python supports the usual numeric types the
integer and float as well as complex numbers. Strings are character chains
whereas lists and dictionaries are an ensemble of other objects that can be a
number or a string or other lists or dictionaries. Lists and dictionaries are
indexed and can be iterated through. The main difference between lists and
dictionaries is the way items are stored and how they can be fetched. Items in
a list are ordered and can be fetched by position whereas they are stored and
fetched in dictionaries by key. Tuples like lists are positionally ordered set of
objects. Finally, Python allows also creating and reading files as objects.
Python provides all the tools and mathematical functions to process these
objects. In this book, we will focus on the number variables and how to
process them as we won’t need the other variables for basic machine learning

Python does not require a variable declaration, or size or type declaration.
Variables are created once they are assigned a value. For example:

>>> x=5

>>> print (X)

5
>>> x="Hello World! '
Hello World!

In the example above, x was assigned a number then it was assigned a string.
In fact, Python allows changing the type of variables after they are declared.
We can verify the type of any Python object using the type () function.

>>>x,y, z=10,'Banana,2.4
>>> print (type(x))

<class 'int >

>>> print(type(y))

<class 'str >

>>> print (type(z))

<class 'float ">

To declare a string variable, both single and double quotes can be used.

To name a Python variable, only alpha-numeric characters and underscores
can be used (e.g., A_9). Note that the variable names are case-sensitive and
should not start with a number. For instance, price, Price, and PRICE are
three different variables. Multiple variables can be declared in one line, as
seen in the example above.

Number Variables

Python allows three numeric types: int (for integer), float and complex.
Integers are positive or negative numbers without decimals of unlimited
length. Floats are negative or positive numbers with decimals. Complex
numbers are expressed with a ‘j’ for the imaginary part as follows:

>>> x=2+5]
>>> print(type(x))
<class 'complex ">

We can convert from one number type to another type with int (), float () and
complex () functions. Note that you cannot convert a complex number to
another type.

Python has built-in mathematic operators that allow doing the basic
operations such as addition, multiplication, and subtraction. It also has the
power function. No, if we want to process a set of values, we would want to
store them in one single object as a list. To define a list, we type the set of
values separated by a comma between square brackets:

>>> A=[10,20,30,40,50]

We can select one element by typing the element index between the square
brackets:

>>> print (A [1])
20

We can also slicer notation to select several elements. For example,
displaying the 2nd to 4th element:

>>> print (A [1:4])
[20,30,40]

Note that indexing in Python starts with O which is the index of the first
element is 0. When using the slicer notation, the element of the second index

is not included as in the example above. The value of A [4] is 50 and is not
included in the output. To verify the dimension of an array, the Len ()
function can be used.

The disadvantage of using lists to store a set of variables is Python does not
allow to apply the mathematical operations on lists. Let’s say we want to add
a constant variable to the list X we created. We have to iterate over all the list
elements and add the constant variable. However, there is a Numpy library
that allows us to create an array of the same type and do the basic
mathematical operations. The Numpy arrays are different from the basic list
arrays of Python as the Numpy arrays allow only to store variables of the
same type. The Nymph library is useful in machine learning to create input,
output variables, and perform necessary calculations.

In order to be able to exploit the built-in function of the Numpy library, we
must import the library into the workspace by typing:

>>> import numpy as np

Use the command pip -install "numpy" to install this toolbox, if it is not
already installed in the system.

To create an array, we type:
>>> A=np.array([10,20,30,40])

Now, we can add, multiply or subtract a constant value from the array X by
using the simple mathematical operators:

>>> X=np.array([1,2,3,4]) # Creating a vector
>>> print(X)

[1234]

>>> X=X+5 # Adding 5 to all elements

>>> print(X)

[6789]

>>> X=X*10 # Multiplying all elements by 10
>>> print (X)

[60 70 80 90]

>>> X=X-10 # Subtracting 10 from all elements

>>> print (X)

[50 60 70 80]

>>> X=X**2 # Square of all elements
>>> print (X)

[2500 3600 4500 6400]

Chapter 3: Data Scrubbing

Similar to Swiss or Japanese watch design, a good machine learning model
should run smoothly and contain no extra parts. This means avoiding syntax
or other errors that prevent the code from executing and removing redundant
variables that might clog up the model’s decision path.

This push towards simplicity extends to beginners developing their first
model. When working with a new algorithm, for example, try to create a
minimal viable model and add complexity to the code later. If you find
yourself at an impasse, look at the troublesome element and ask, “Do I need
it?” If the model can’t handle missing values or multiple variable types, the
quickest cure is to remove the troublesome elements. This should help the
afflicted model spring to life and breathe normally. Once the model is
working, you can go back and add complexity to your code.

What is Data Scrubbing?

Data scrubbing is an umbrella term for manipulating data in preparation for
analysis. Some algorithms, for example, don’t recognize certain data types or
they return an error message in response to missing values or non-numeric
input. Variables, too, may need to be scaled to size or converted to a more
compatible data type. Linear regression, for example, analyzes continuous
variables, whereas gradient boosting asks that both discrete (categorical) and
continuous variables are expressed numerically as an integer or floating-point
number.

Duplicate information, redundant variables, and errors in the data can also
conspire to derail the model’s capacity to dispense valuable insight.

Another potential consideration when working with data, and specifically
private data, is removing personal identifiers that could contravene relevant
data privacy regulations or damage the trust of customers, users, and other
stakeholders. This is less of a problem for publicly-available datasets but
something to be mindful of when working with private data.

Removing Variables

Preparing the data for further processing generally starts with removing
variables that aren’t compatible with the chosen algorithm or variables that
are deemed less relevant to your target output. Determining which variables

to remove from the dataset is normally determined by exploratory data
analysis and domain knowledge.

In regards to exploratory data analysis, checking the data type of your
variables (i.e. string, Boolean, integer, etc.) and the correlation between
variables is a useful measure to eliminate variables.[11] Domain knowledge,
meanwhile, is useful for spotting duplicate variables such as country and
county code and eliminating less relevant variables like latitude and
longitude, for example.

In Python, variables can be removed from the dataframe using the del
command alongside the variable name of the dataframe and the title of the
column you wish to remove. The column title should be nested inside
quotation marks and parentheses as shown here.

del df['latitude']
del df['longitude’]

Note that this code example, in addition to other changes made inside your
notebook, won’t affect or alter the source data. You can even restore
variables removed from the development environment by deleting the
relevant line(s) of code. It’s common to reverse the removal of features when
retesting the model with different variable combinations.

One-hot Encoding

One of the common roadblocks in data science is a mismatch between the
data type of your variables and the algorithm. While the contents of the
variable might be relevant, the algorithm might not be able to read the data in
its default form. Text-based categorical values, for example, can’t be parsed
and mathematically modeled using general clustering and regression
algorithms.

One quick remedy involves re-expressing categorical variables as a numeric
categorizer. This can be performed using a common technique called one-hot
encoding that converts categorical variables into binary form, represented as
“1” Or “0”_ “True” OI' “False »

import pandas as pd
df = pd. read_csv('~/Downloads/listings.csv")

df = pd.get_dummies (df, columns = ['neighbourhood_group',

'neighbourhood'])
df. head ()
Run the code in Jupyter Notebook.

import pandas as pd

df = pd.read csv('~/Downloads/listings.csv')

df = pd.get dummies(df, columns = ['neighbourhood group', 'neighbourhood’])
df .head()

neighbourhood_West neighbourhood West neighbourhood_West

s . . neighbourhood_ Westend neighbourhood_Wiesbadener

Strafle

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

Figure 18: Example of one-hot encoding

One-hot encoding expands the dataframe horizontally with the addition of
new columns. While expanding the dataset isn’t a major issue, you can
streamline the dataframe and enjoy faster processing speed using a parameter
to remove expendable columns. Using the logic of deduction, this parameter
reduces one column for each original variable. To illustrate this concept,
consider the following example:

gender_male gender_female city_london city_mumbai city_tokyo

Sam 1 0 1 0 0
Rahul 1 0 0 1 0
Mariko 0 1 0 0 1

Table 3: Original dataframe

gender_male city_london city_mumbai

Sam 1 1 0
Rahul 1 0 1
Mariko O 0 0

Table 4: Streamlined dataframe with dropped columns

While it appears that information has been removed from the second
dataframe, the Python interpreter can deduct the true value of each variable
without referring to the expendable (removed) columns. In the case of
Mariko, the Python interpreter can deduct that the subject is from Tokyo
based on the false argument of the two other variables. In statistics, this
concept is known as multicollinearity and describes the ability to predict a
variable based on the value of other variables.

To remove expendable columns in Python we can add the parameter
drop_first=True, which removes the first column for each variable.

df = pd.get_dummies (df, columns = ['neighbourhood_group',
neighbourhood'], drop_first = True)

Drop Missing Values

Another common but more complicated data scrubbing task is deciding what
to do with missing data.

Missing data can be split into three overarching categories: missing
completely at random (MCAR), missing at random (MAR), and
nonignorable. Although less common, MCAR occurs when there’s no
relationship between a missing data point and other values in the dataset.

Missing at random means the missing value is not related to its own value but
to the values of other variables in the analysis, i.e. skipping an extended
response question because relevant information was inputted in a previous
question of the survey, or failure to complete a census due to low levels of
language proficiency as stated by the respondent elsewhere in the survey (i.e.
a question about respondent’s level of English fluency). In other words, the
reason why the value is missing is caused by another factor and not due
directly to the value itself. MAR is most common in data analysis.

Nonignorable missing data constitutes the absence of data due directly to its
own value or significance. Unlike MAR, the value is missing due to the
significance of the question or field. Tax evading citizens or respondents with
a criminal record may decline to supply information to certain questions due
to feelings of sensitivity towards that question.

The irony of these three categories is that because data is missing, it’s
difficult to classify missing data. Nevertheless, problem-solving skills and

awareness of these categories sometimes help to diagnose and correct the root
cause for missing values. This might include rewording surveys for second-
language speakers and adding translations of the questions to solve data
missing at random or through a redesign of data collection methods, such as
observing sensitive information rather than asking for this information
directly from participants, to find nonignorable missing values.

A rough understanding of why certain data is missing can also help to
influence how you manage and treat missing values. If male participants, for
example, are more willing to supply information about body weight than
women, this would eliminate using the sample mean (of largely male
respondents) from existing data to populate missing values for women.

Managing MCAR is relatively straightforward as the data values collected
can be considered a random sample and more easily aggregated or estimated.
We’ll discuss some of these methods for filling missing values in this
chapter, but first, let’s review the code in Python for inspecting missing data.

df. isnull (). sum ()

import pandas as pd
df = pd.read csv('~/Downloads/listings.csv')

df.isnull().sum()

id

name

host_id

host_name
neighbourhood_group
neighbourhood
latitude

longitude

room_type

price
minimum_nights
number of reviews
last_review
reviews_per month 3914
calculated host listings_count 0
availability 365 0
dtype: inté64

N w

OO0 0O OO O0ODODOOh OWO

w
\O
o
@

Figure 19: Inspecting missing values using isnull (). sum ()

Using this method, we can obtain a general overview of missing values for
each feature. From here, we can see that four variables contain missing
values, which is high in the case of last_review (3908) and
reviews_per_month (3914). While this won’t be necessary for use with all
algorithms, there are several options we can consider to patch up these
missing values. The first approach is to fill the missing values with the
average value for that variable using the fill.na method.

df['reviews_per_month']. fillna((df['reviews_per_month']. mean ()),
inplace=True)

This line of code replaces the missing values for the variable
reviews_per_month with the mean (average) value of that variable, which is
1.135525 for this variable. We can also use the fill.na method to approximate
missing values with the mode (the most common value in the dataset for that
variable type). The mode represents the single most common variable value

available in the dataset.

df['reviews_per_month']. fillna(df['reviews_per_month']. mode (),
inplace=True)

In the case of our dataset, the mode value for this variable is ‘NAN’ (Not a
Number), and there isn’t a reliable mode value we can use. This is common
when variable values are expressed as a floating-point number rather than an
integer (whole number).

Also, the mean method does not apply to non-numeric data such as strings—
as these values can’t be aggregated to the mean. One-hot encoded variables
and Boolean variables expressed as 0 or 1 should also not be filled using the
mean method. For variables expressed as O or 1, it’s not appropriate to
aggregate these values to say 0.5 or 0.75 as these values change the meaning
of the variable type.

To fill missing values with a customized value, such as ‘0’, we can specify
that target value inside the parentheses.

df['reviews_per_month']. fillna (0)

A more drastic measure is to drop rows (cases) or columns (variables) with
large amounts of missing data from the analysis. Removing missing values
becomes necessary when the mean and mode aren’t reliable and finding an
artificial value is not applicable. These actions are feasible when missing
values are confined to a small percentage of cases or the variable itself isn’t
central to your analysis.[12]

There are two primary methods for removing missing values. The first is to
manually remove columns afflicted by missing values using the del method
as demonstrated earlier. The second method is the dropna method which
automatically removes columns or rows that contain missing values.

df. dropna (axis = 0, how = 'any’, thresh = None, subset = None, inplace =
True)

As datasets typically have more rows than columns, it’s best to drop rows
rather than columns as this helps to retain more of the original data. A
detailed explanation of the parameters for this technique is described in Table
5.

Parameter Argument Explanation Default

axis 0 Drops rows with missing values 4
1 Drops columns with missing values
how any Drops rows or columns with any missing v
values
all Drops rows or columns with all values
missing
thresh integer Set an integer threshold to activate

column/row removal, i.e. "4” to remove
rows or columns with 4 or more missing

values.
None Select “"None” if you do not wish to set a
threshold.
subset variable Define which columns to search for missing
values, i.e. ‘genre’
None Select "None” if you do not wish to set a
subset.
inplace True If True, do operation inplace (update

rather than replace)
False v

Table 5: Dropna parameters

In summary, there isn’t always a simple solution to deal with missing values
and your response will often depend on the data type and the frequency of the
missing values. In the case of the Berlin Airbnb dataset, there is a high
number of missing values for the variables last_review and
reviews_per_month, which may warrant removing these variables.
Alternatively, we could use the mean to fill reviews_per_month given these
values are expressed numerically and can be easily aggregated. The other
variable last_review cannot be aggregated because it is expressed as a
timestamp rather than as an integer or floating-point number.

The other variables containing missing values, name and host_name, are also
problematic and cannot be filled with artificial values. Given these two
variables are discrete variables, they cannot be estimated based on central
tendency measures (mean and mode), and should perhaps be removed on a
row-by-row basis given the low presence of missing values for both these
two variables.

Chapter 4: Data Mining Categories

Business analyzes vary greatly in complexity. The simplest and most
common form of reporting is predefined and structured reports. They are easy
to manufacture or even automatically generated and most reminiscent of
presentations. They do not require a great deal of IT knowledge from the
user. Their biggest drawback is that they are not flexible.

Flexibility is partially eliminated by ad hoc reports, which represent more
complex and interactive queries. These reports require a savvier user.

The next level of analysis is OnLine Analytical Processing (OLAP) analysis.
This technique is the most interactive and exploratory of the three techniques
listed. It requires a skilled user and a lot of specific knowledge.

Data mining is the most proactive and exploratory analysis technique we
know of in terms of analysis. It requires highly trained users.

OLAP and DM define the boundaries of predictive analysis, which is
currently one of the hottest software development areas. Companies are
trying to build tools that fit between OLAP and DM.

Data mining has evolved into an independent field of science in a short
period, which can be used in a variety of fields. Digitization and
computerization of all areas of our lives mean that the range of them is only
expanding.

In the field of the manufacturing process, we often encounter a flood of data
from many measuring devices embedded in the production process. Data
mining is used to detect the relationship between parameters in the
production process and the desired product property, such as steel quality.

In medicine, data mining is used to predict disease development and
diagnosis.

The boom of digital image capture has flooded photos stored on computers
and the World Wide Web. Data mining techniques are used for the search,
classification, recognition, and grouping of images.

The improvement and discovery of new active substances is the main
research activity of the pharmaceutical industry. Data mining is used to
predict the properties of active substances concerning their chemical

structure, which speeds up and cheap the research process.

Non-trivial computer game makers such as chess, go, and the like rely on
data mining techniques to equalize or sometimes even surpass the capabilities
of a human player. In 1997, a computer called Deep Blue defeated chess
grandmaster Kasparov in chess.

Following are the seven most typical uses of data in enterprises:

e Finding Profitable Customers - DM allows businesses to
identify the customer that is profitable for them, and also
discover the reasons why.

e Understanding Customer / Employee Needs - DM is
depicted for understanding every entity that expresses any
behavior. This can mean examining a web visitor and how
they "stroll" through a web site, as well as finding out why
they never open a particular part of a page that is otherwise
interesting.

e (Customer Transition Management - This is a very specific
use of DM. It is an attempt to identify the user who is about
to replace the service provider and, of course, later to
prevent this change. Discovering such users is important in
today's saturated developed markets, with virtually no new
mobile users. They are the only ones who change the
operator.

e Sales and Inventory Forecasting - Sales and inventory
forecasting are two of the oldest predictive analytics
applications. Here we are trying to predict how much and
what will be sold, whether there will be enough space in the
warehouse, how much will be my income.

e Creating Effective Marketing Campaigns - Probably, no
organization has enough resources to target just about
everyone with their marketing campaigns. The ultimate goal
of using predictive analytics is to respond to the action
because many people are.

e Fraud detection and prevention is one of the most

demanding areas of data mining. It allows us to detect
illegal transactions or transactions that will lead to criminal
activity. This area is still in its infancy and has not yet met
all the possibilities. The ultimate goal, however, is to be able
to watch live the adequacy of the transaction.

ETL Data Correction - ETL is an abbreviation of the
Extract, Transform, and Load commands used in data
warehouses. When we stream data from different systems
and fill the data warehouse with them, there are often
records that lack an attribute, e.g., SPOL. DM techniques
allow us to predict, in real-time, the missing attribute and
write it down.

Data mining is divided into two main categories:

Predictive tasks. The goal here is to predict the value of the
selected attribute based on other attributes whose values are
known to us. The latter attributes are usually called
independent variables. The dependent variable, however, is
the attribute we are looking for.

Descriptive tasks. This category of data mining seeks
primarily to describe or find patterns in data sets. Usually,
descriptive techniques are used to explore the data and are
often combined with other techniques to explain the results
at all. A good example of this is clustering, which is often
used as the first step in data exploration. If we are tasked
with exploring a large database, it can be divided into
homogeneous groups by grouping, which can then be easier
to analyze.

Within these two main groups, there are four major tasks of data mining,
which are outlined below.

Predictive Modeling

Predictive modeling refers to the creation of a model that predicts the value
of a predictive variable as a function of independent variables. There are two
types of predictive modeling.

Classification is the process of finding a model functions that can
differentiate between data classes to sort objects without a class. The
resulting model is the result of an analysis of a training data set containing
objects of a known class.

The resulting model can be presented in various forms, such as:
e C(lassification rules (if-then),
e Decision tree,
e Mathematical formulas,
e Naive bayesian classification,
e Support vector machines (from now on referred to as svm),

e Nearest neighbor.

Classification is typically used to predict discrete variables. An example is
predicting whether or not a web user will make an online purchase. In this
case, the predictive variable can only be in two states (0 or 1), and therefore,
it is a classification. Classification is one of the most common techniques and
one of the most popular techniques in data mining. At first glance, it seems
that it is almost essential for humans, as we are more and more faced with the
problem of classification, categorization, and evaluation. The main task of
sorting is to study the characteristics of an object (problem) and assign it to
which one of the predefined classes belongs. There are several different
methods we call classifiers in this technique. Attributes are independent
continuous, or discrete variables by which we describe objects (problem).
The dependent discrete variable, however, is a class that is determined by the
value of the independent variables. The most common use of the
classification is to detect fraud, use it in production, select content in targeted
marketing and to diagnose healthcare. The classification technique is
considered as supervised learning.

Prediction (forecasting, evaluation) can be shown in the case of a share value
forecast, in which the predictive variable is continuous. The techniques used
for forecasting are:

e Linear regression

e Nonlinear regression

e Neural network

The evaluation technique deals with the continuous evaluation of results.
Data entry is unknown; the method classifies this unknown data concerning
previous entries in a specific field. Fill it with the same function of other
fields in the record. The approach itself is based on the ranking of individual
records, which according to the rating, sorts it to a specific place. Examples
of assessment tasks include estimating the number of children in a family, the
total household income of a family, and the value of life.

The prediction technique is very similar to the rating technique and
classification. It differs in that the data are sorted differently, based on
predictive future behavior or estimated future value. Historical data is used to
build a model that explains the current observation of patterns that are mostly
repeated. We can predict from sample observation. Predictive examples
include predicting where customers will go to buy in the next six months or
forecasting the size of the balance sheet.

The goal of both types of predictive modeling is to produce a model that has
the smallest predictive error, that is, the smallest difference between the
predicted and the actual values. Predictive modeling can be used, among
other things, to predict whether a customer will respond to a marketing
campaign, to predict disruption to the Earth's ecosystem, or to judge a
patient's disease based on findings.

Analysis of Associations

Association analysis is used to identify and describe strong associations or
links in the data. The detected links between the data are typically given in
the form of implicit rules. Since there can be many links between the data
under consideration, we are only interested in those who have the highest
support. Examples of using associations are the discovery of genes with
similar effects, the discovery of related websites, or to understand the links
between different elements of the terrestrial ecosystem. The most famous
example of using associations is a market basket analysis, which aims to link
different products that have been purchased together.

Group Analysis

Cluster analysis compares objects into groups without predictive classes or
their number, compared to predictive modeling. It is an example of

undirected data mining. Groups are formed based on the rule that inward
groups of elements should be as homogeneous as possible and externally as
heterogeneous as possible.

Group analysis techniques have been applied to a wide range of research
problems. Generally, group analysis is a very useful technique when we have
a pile of data and would like to break it down into smaller meaningful units.

Anomaly Detection

Detecting records that have significantly different properties from most is
called anomaly detection. When looking for anomalies, we must do our best
not to identify normal records as anomalies. A good anomaly search system
should have a high level of detection and a low degree of misidentification of
records as anomalies. This is especially important when such a system is used
to prevent credit card fraud. Failure to detect the abuse system causes great
harm, but if it detects a legitimate transaction as fraudulent, it causes a lot of
headaches for the user.

Chapter 5: Difference Between Machine Learning and Al

One thing that we need to spend some time working on and
understanding before we move on is the difference between Artificial
Intelligence and Machine learning. Machine learning is going to do a lot of
different tasks when we look at the field of data science, and it also fits into
the category of artificial intelligence at the same time. But we have to
understand that data science is a pretty broad term, and there are going to be
many concepts that will fit into it. One of these concepts that fit under the
umbrella of data science is machine learning, but we will also see other terms
that include big data, data mining, and artificial intelligence. Data science is a
newer field that is growing more as people find more uses for computers and
use these more often.

Another thing that you can focus on when you bring out data science is the
field of statistics, and it is going to be put together often in machine learning.
You can work with the focus on classical statistics, even when you are at the
higher levels, sot that the data set will always stay consistent throughout the
whole thing. Of course, the different methods that you use to make this
happen will depend on the type of data that is put into this and how complex
the information that you are using gets as well.

This brings up the question here about the differences that show up between
machine learning and artificial intelligence and why they are not the same
thing. There are a lot of similarities that come with these two options, but the
major differences are what sets them apart, and any programmer who wants
to work with machine learning has to understand some of the differences that
show up. Let’s take some time here to explore the different parts of artificial
intelligence and machine learning so we can see how these are the same and
how they are different.

What is artificial intelligence?
The first thing we are going to take a look at is artificial intelligence or Al
This is a term that was first brought about by a computer scientist named
John McCarthy in the 1950s. Al was first described as a method that you
would use for manufactured devices to learn how to copy the capabilities of
humans regarding mental tasks.

However, the term has changed a bit in modern times, but you will find that

the basic idea is the same. When you implement Al, you are enabling
machines, such as computers, to operate and think just like the human brain
can. This is a benefit that means that these Al devices are going to be more
efficient at completing some tasks than the human brain.

At first glance, this may seem like Al is the same as machine learning, but
they are not the same. Some people who don’t understand how these two
terms work can think that they are the same, but the way that you use them in
programming is going to make a big difference.

How is machine learning different?

Now that we have an idea of what artificial intelligence is all about, it is time
to take a look at machine learning and how this is the same as artificial
intelligence, and how this is different. When we look at machine learning, we
are going to see that this is a bit newer than a few of the other options that
come with data science as it is only about 20 years old. Even though it has
been around for a few decades so far, it has been in the past few years that
our technology and the machines that we have are finally able to catch up to
this, and machine learning is being used more.

Machine learning is unique because it is a part of data science that can focus
just on having the program learn from the input, as well as the data that the
user gives to it. This is useful because the algorithm will be able to take that
information and make some good predictions. Let’s look at an example of
using a search engine. For this to work, you would just need to put in a term
to a search query, and then the search engine would be able to look through
the information that is there to see what matches up with that and returns
some results.

The first few times that you do these search queries, it is likely that the results
will have something of interest, but you may have to go down the page a bit
to find the information that you want. But as you keep doing this, the
computer will take that information and learn from it to provide you with
choices that are better in the future. The first time, you may click on like the
sixth result, but over time, you may click on the first or second result because
the computer has learned what you find valuable.

With traditional programming, this is not something that your computer can
do on its own. Each person is going to do searches differently, and there are
millions of pages to sort through. Plus, each person who is doing their

searches online will have their preferences for what they want to show up.
Conventional programming is going to run into issues when you try to do this
kind of task because there are just too many variables. Machine learning has
the capabilities to make it happen though.

Of course, this is just one example of how you can use machine learning.
Machine learning can help you do some of these complex problems that you
want the computer to solve. Sometimes, you can solve these issues with the
human brain, but you will often find that machine learning is more efficient
and faster than what the human brain can do.

Of course, it is possible to have someone manually go through and do this for
you as well, but you can imagine that this would take too much time and be
an enormous undertaking. There is too much information, they may have no
idea where even to get started when it comes to sorting through it, the
information can confuse them, and by the time they get through it all, too
much time has passed and the information, as well as the predictions that
come out of it, are no longer relevant to the company at all.

Machine learning changes the game because it can keep up. The algorithms
that you can use with it can handle all of the work while getting the results
back that you need, in almost real-time. This is one of the big reasons that
businesses find that it is one of the best options to go with to help them make
good and sound decisions, to help them predict the future, and it is a welcome
addition to their business model.

Chapter 6: K-Means Clustering

Clustering falls under the category of unsupervised machine learning
algorithms. It is often applied when the data is not labeled. The goal of the
algorithm is to identify clusters or groups within the data.

The idea behind the clusters is that the objects contained one cluster is more
related to one another than the objects in the other clusters. The similarity is a
metric reflecting the strength of the relationship between two data objects.
Clustering is highly applied in exploratory data mining. In have many uses in
diverse fields such as pattern recognition, machine learning, information
retrieval, image analysis, data compression, bio-informatics, and computer
graphics.

The algorithm forms clusters of data based on the similarity between data
values. You are required to specify the value of K, which is the number of
clusters that you expect the algorithm to make from the data. The
algorithm first selects a centroid value for every cluster. After that, it
iteratively performs three steps:

1. Calculate the FEuclidian distance between every data
instance and the centroids for all clusters.

2. Assign the instances of data to the cluster of centroids with
the nearest distance.

3. Calculate the new centroid values depending on the mean
values of the coordinates of the data instances from the
corresponding cluster.

Let us manually demonstrate how this algorithm works before implementing
it on Scikit-Learn:

Suppose we have two-dimensional data instances given below and by the
name D:

D ={(5,3), (10,15), (15,12), (24,10), (30,45), (85,70), (71,80), (60,78),

(55,52), (80,91)}

Our goal is to divide the data into two clusters, namely C1 and C2 depending
on the similarity between the data points.

We should first initialize the values for the centroids of both clusters, and this
should be done randomly. The centroids will be named c1 and c2 for
clusters C1 and C2 respectively, and we will initialize them with the
values for the first two data points, that is, (5,3) and (10,15). It is after this
that you should begin the iterations.

Anytime that you calculate the Euclidean distance, the data point should be
assigned to the cluster with the shortest Euclidean distance. Let us take the
example of the data point (5,3):

Euclidean Distance from the Cluster Centroid c1 = (5,3) =0

Euclidean Distance from the Cluster Centroid c2 = (10,15) = 13

The Euclidean distance for the data point from point centroid c1 is shorter
compared to the distance of the same data point from centroid C2. This
means that this data point will be assigned to the cluster C1.

Let us take another data point, (15,12):

Euclidean Distance from the Cluster Centroid c1 = (5,3) is 13.45
Euclidean Distance from the Cluster Centroid c2 = (10,15) is 5.83

The distance from the data point to the centroid c2 is shorter; hence it will be
assigned to the cluster C2.

Now that the data points have been assigned to the right clusters, the next
step should involve the calculation of the new centroid values. The values
should be calculated by determining the means of the coordinates for the data
points belonging to a certain cluster.

If for example for C1 we had allocated the following two data points to the
cluster:

(5, 3) and (24, 10).

The new value for x coordinate will be the mean of the two:

x=(5+24)/2

x =14.5

The new value for y will be:
y=(3+10)/2

y =13/2

y =6.5
The new centroid value for the c1 will be (14.5, 6.5).

This should be done for c2 and the entire process be repeated. The iterations
should be repeated until when the centroid values do not update anymore.
This means if for example, you do three iterations, you may find that the
updated values for centroids c1 and c2 in the fourth iterations are equal to
what we had in iteration 3. This means that your data cannot be clustered any
further.

You are now familiar with how the K-Means algorithm works. Let us discuss
how you can implement it in the Scikit-Learn library.

Let us first import all the libraries that we need to use:

import matplotlib. pilot as plt
import numpy as np

from sklearn. cluster import KMeans

Data Preparation

We should now prepare the data that is to be used. We will be creating a
numpy array with a total of 10 rows and 2 columns. So, why have we chosen
to work with a numpy array? It is because Scikit-Learn library can work with
the numpy array data inputs without the need for preprocessing. Let us create
it:

X =np. array ([[5,3], [10,15], [15,12], [24,10], [30,45], [85,70], [71,80],
[60,78], [55,52], [80,91],1)
Visualizing the Data

Now that we have the data, we can create a plot and see how the data points
are distributed. We will then be able to tell whether there are any clusters at
the moment:

plt. scatter (X [:0], X [:1], label="True Position")
plt. show ()

The code gives the following plot:

@
80 - " ®
@
60 -
54
G
40 -
20 -
&
¢]
]
0 -
L] T T T T T Ll T
10 20 30 40 50 60 70 80

If we use our eyes, we will probably make two clusters from the above data,
one at the bottom with five points and another one at the top with five points.
We now need to investigate whether this is what the K-Means clustering
algorithm will do.

Creating Clusters

We have seen that we can form two clusters from the data points, hence the
value of K is now 2. These two clusters can be created by running the
following code:

kmeans_clusters = KMeans(n_clusters=2)
kmeans_clusters.fit(X)

We have created an object named kmeans_clusters and 2 have been used as
the value for the parameter n_clusters. We have then called the fit () method
on this object and passed the data we have in our numpy array as the

parameter to the method.

We can now have a look at the centroid values that the algorithm has created
for the final clusters:

print (kmeans_clusters. cluster centers_)

This returns the following:

[[16.8

-~

I
-

K (D
) =
Y .
hJ

~~s

Y.
The first row above gives us the coordinates for the first centroid, which is,

(16.8, 17). The second row gives us the coordinates of the second centroid,

which is, (70.2, 74.2). If you followed the manual process of calculating the
values of these, they should be the same. This will be an indication that the

K-Means algorithm worked well.

The following script will help us see the data point labels:

print (kmeans_clusters. labels_)

This returns the following:
[0 0O OO0 01 1111)]

The above output shows a one-dimensional array of 10 elements that
correspond to the clusters that are assigned to the 10 data points. You see that
we first have a sequence of zeroes which shows that the first 5 points have
been clustered together while the last five points have been clustered
together. Note that the 0 and 1 have no mathematical significance but they
have simply been used to represent the cluster IDs. If we had three clusters,
then the last one would have been represented using 2’s.

We can now plot the data points and see how they have been clustered. We
need to plot the data points alongside their assigned labels to be able to
distinguish the clusters. Just execute the script given below:

plt. scatter (X [:0], X [:1], c=kmeans_clusters. labels_, cmap="rainbow")
plt. show ()

The script returns the following plot:

80 4 2

60

40 4

20 4

T T T T T T T T

10 20 30 40 50 60 70 80

We have simply plotted the first column of the array named X against the
second column. At the same time, we have passed kmeans_labels_ as the
value for parameter ¢ which corresponds to the labels. Note the use of the
parameter cmap="rainbow'. This parameter helps us to choose the color type
for the different data points.

As you expected, the first five points have been clustered together at the
bottom left and assigned a similar color. The remaining five points have been
clustered together at the top right and assigned one unique color.

We can choose to plot the points together with the centroid coordinates for
every cluster to see how the positioning of the centroid affects clustering. Let
us use three clusters to see how they affect the centroids. The following script
will help you to create the plot:

plt. scatter (X [:0], X [:1], c=kmeans_clusters. labels_, cmap="rainbow")

plt. scatter (kmeans_clusters. cluster centers_ [:0], kmeans_clusters. cluster
centers_ [:1], color="black’)

plt. show ()

The script returns the following plot:

o
80 A ® ®
&
60
L3
@
40 -
20 A
‘ .
® L
@
0 -
10 20 30 40 50 60 70 80

We have chosen to plot the centroid points in black color.

Chapter 7: Linear Regression with Python

The first part of linear regression that we are going to focus on is
when we just have one variable. This is going to make things a bit easier to
work with and will ensure that we can get some of the basics down before we
try some of the things that are a bit harder. We are going to focus on
problems that have just one independent and one dependent variable on
them.

To help us get started with this one, we are going to use the set of data for
car_price.csv so that we can learn what the price of the care is going to be.
We will have the price of the car be our dependent variable and then the year
of the car is going to be the independent variable. You can find this
information in the folders for Data sets that we talked about before. To help
us make a good prediction on the price of the cars, we will need to use the
Scikit Learn library from Python to help us get the right algorithm for linear
regression. When we have all of this setup, we need to use the following
steps to help out.

Importing the right libraries

First, we need to make sure that we have the right libraries to get this going.
The codes that you need to get the libraries for this section include:

import pandas as pd

import numpy as np

import matplotlib. pilot as plt
%matplotlib inline

You can implement this script into the Jupyter notebook the final line needs
to be there if you are using the Jupyter notebook, but if you are using Spyder,
you can remove the last line because it will go through and do this part
without your help.

Importing the Dataset

Once the libraries have been imported using the codes that you had before,
the next step is going to be importing the data sets that you want to use for
this training algorithm. We are going to work with the “car_price.csv”

dataset. You can execute the following script to help you get the data set in

the right place:

car data = pd. read_csv(‘D:\Datasets\car_price.csv’)

Analyzing the data

Before you use the data to help with training, it is always best to practice and
analyze the data for any scaling or any values that are missing. First, we need
to take a look at the data. The head function is going to return the first five
rows of the data set you want to bring up. You can use the following script to
help make this one work:

car_data. head ()

In addition, the described function can be used in order to return to you all of
the statistical details of the dataset.

car_data. describe ()

finally, let’s take a look to see if the linear regression algorithm is going to be
suitable for this kind of task. We are going to take the data points and plot
them on the graph. This will help us to see if there is a relationship between
the year and the price. To see if this will work out, use the following script:

plt. scatter (car data[“Year’], car data[‘Price’])
plt. Title (“Year vs Price”)

pitlane(“Year”)

polysyllable(“Price”)

plt. show ()

When we use the above script, we are trying to work with a scatterplot that
we can then find on the library Matplotlib. This is going to be useful because
this scatter plot is going to have the year on the x-axis and then the price is
going to be over on our y-axis. From the figure for the output, we can see that
when there is an increase in the year, then the price of the car is going to go
up as well. This shows us the linear relationship that is present between the
year and the price. This is a good way to see how this kind of algorithm can
be used to solve this problem.

Going back to data pre-processing

Remember in the last chapter we looked at some of the steps that you need to

follow in order to do some data preprocessing. This is done to help us to
divide up the data and label it to get the test and the training set that we need.
Now we need to use that information and have these two tasks come up for
us. To divide the data into features and labels, you will need to use the script
below to get it started:

features = car_data. bloc [: 0:1]. values
labels = car_data. bloc [:1]. values

Since we only have two columns here, the Oth column is going to contain the
feature set and then the first column is going to contain the label. We will
then be able to divide up the data so that there are 20 percent to the test set
and 80 percent to the training. Use the following scripts to help you get this
done:

from sklearn. model selection import train_test_split

train features, test features, train labels, test labels = train_test_split (features,
labels, test size = 0.2, random state = Q)

From this part, we can go back and look at the set of data again. And when
we do this, it is easy to see that there is not going to be a huge difference
between the values of the years and the values of the prices. Both of these
will end up being in the thousands each. What this means is that you don't
need to do any scaling because you can just use the data as you have it here.
That saves you some time and effort in the long run.

How to train the algorithm and get it to make some predictions

Now it is time to do a bit of training with the algorithm and ensure that it can
make the right predictions for you. This is where the Linear Regression class
is going to be helpful because it has all of the labels and other training
features that you need to input and train your models. This is simple to do
and you just need to work with the script below to help you to get started:

from sklearn. linear model imports LinearRegresison
line-reg = Linear Regression ()
lin_reg.fit (train_features, train_labels)

Using the same example of the car prices and the years from before, we are
going to look and see what the coefficient is for only the independent
variable. We need to use the following script to help us do that:

print (lin_reg. coef_)

The result of this process is going to be 204.815. This shows that for each
unit change in the year, the car price is going to increase by 204.815 (at least
in this example).

Once you have taken the time to train this model, the final step to use is to
predict the new instance that you are going to work with. The predicted
method is going to be used with this kind of class to help see this happen. The
method is going to take the test features that you choose and add them in as
the input, and then it can predict the output that would correspond with it the
best. The script that you can use to make this happen will be the following:

predictions = lin_reg. predict(test_features)

When you use this script, you will find that it is going to give us a good
prediction of what we are going to see in the future. We can guess how much
a car is going to be worth based on the year it is produced in the future, going
off the information that we have right now. There could be some things that
can change with the future, and it does seem to matter based on the features
that come with the car. But this is a good way to get a look at the cars and get
an average of what they cost each year, and how much they will cost in the
future.

So, let’s see how this would work. We now want to look at this linear
regression and figure out how much a car is going to cost us in the year 2025.
Maybe you would like to save up for a vehicle and you want to estimate how
much it is going to cost you by the time you save that money. You would be
able to use the information that we have and add in the new year that you
want it to be based on, and then figure out an average value for a new car in
that year.

Of course, remember that this is not going to be 100 percent accurate.
Inflation could change prices, the manufacturer may change some things up,
and more. Sometimes the price is going to be lower, and sometimes higher.
But it at least gives you a good way to predict the price of the vehicle that
you have and how much it is going to cost you in the future.

This chapter spent some time looking at an example of how the linear
regression algorithm is going to work if you are just working with one
dependent and one independent variable. You can take this out and add in
more variables if you want, using the same kinds of ideas that we discussed

in this chapter as well.

Chapter 8: Feature Engineering

Feature engineering is, without a doubt, a crucial part of machine
learning. In this chapter, we are going to work with different kinds of data,
namely categorical data, that we assemble from real applications. This kind
of data is extremely common. You’ve undoubtedly dealt with some kind of
application that benefits from it. For example, this data type is often needed
to capture information from any kind of sensor or game console. Even the
most sophisticated data like the kind that is gathered through complex
geological surveys use categorical data. No matter the application, we need to
apply the exact same techniques. The main point of this chapter is to learn
how to inspect the data and remove all quality problems, or at the very least,
reduce the amount of impact they have on the data.

With that being said, let’s first start by exploring some general ideas. There
are several methods of creating feature sets and understanding the limits of
feature engineering is vital.

You’ll need to know how to deal with a large number of techniques to
improve the quality of the initial dataset. Testing individual features, as well
as any combination of them, is also an important step because you should
only hold onto what is relevant.

Now let’s learn how to create a feature set!

Creating Feature Sets

As you may already know, the most important factor that determines the
success of our machine learning algorithms is the quality of the data. Even if
we have data prepared by the book, an inaccurate dataset without informative
data will not lead to a successful result. When you possess the proper skills
and knowledge of the data, however, you can create powerful feature sets.
Knowing how to build a feature is necessary because you will need to
perform audits to assess a dataset. Without assessing the situation, you might
miss opportunities and create a feature set that lacks performance and
accuracy.

We are going to start exploring some of the most powerful techniques that
can interpret already existing features that will help us implement new
parameters that can improve our model. We will also focus on the limitations

of feature engineering methods

Rescaling Techniques

One of the biggest issues we encounter in machine learning models is that if
we introduce unprepared data directly, the algorithm may become too
unstable relative to the variables. For example, you might encounter a dataset
with differing parameters. In this case, there’s a risk of our algorithm dealing
with the variables that have a larger variance, as if there’s an indication that
there’s a more powerful change. At the same time, the algorithms with a
smaller variance and values will be treated with less importance.

To solve the problem in the scenario above, we need to implement a process
called rescaling. In this process, we have parameter values whose size is
corrected based on maintaining the initial order of values within every single
parameter (this aspect is known as a monotonic translation). Keep in mind
that the gradient descent algorithms are far more powerful if we scale the
input data before we perform the training process. If every parameter is a
different scale, we will encounter an extremely complex parameter space that
can also become distorted when undergoing the training stage. The more
complex this space is, the more difficult it is to train a model inside it. Let’s
attempt to illustrate this metaphorically to stimulate the imagination. Imagine
that our gradient descent models are acting like balls rolling down a ramp.
These balls might encounter hurdles where they can get stuck, or perhaps a
modification in the ramp’s geometry. However, if we work with scaled data,
we are reducing the chance of having a distorted geometry. If our training
surface is evenly shaped, the training process becomes extremely effective.

The most basic example of rescaling is that of linear rescaling, which is
between zero and one. This means that our most sizeable parameter will have
a rescaled value of one, while the smallest one will have a rescaled value of
zero. There will also be intermediate parameters that fall somewhere in-
between the two values. Let’s take a vector as an example. When performing
this transformation on [0, 10, 25, 20, 18], the values change to [0, 0.4, 1, 0.8,
0.72]. This illustrates one of the advantages of this transformation because
our raw data is extremely diverse; however if we rescale it, we will end up
with an even range. What this means for us is that our training algorithms
will perform much better on a more meaningful set of data.

While this rescaling technique is considered to be the classic one, there are

other alternatives. Under different circumstances, we can apply nonlinear
scaling methods. Some of the most common ones are square scaling, log
scaling, and square root scaling. The log-scaling method is often
implemented in physics and in datasets that are affected by exponential
growth. Log scaling doesn’t work in the same way as linear scaling does
because it focuses on making adjustments to space between cases. This
makes log scaling a powerful option when dealing with outlying cases.

Creating Derived Variables

The preprocessing phase in most machine learning applications, especially
neural networks, involves the use of rescaling. In addition to this step,
however, we have other data preparation methods that are implemented to
boost the performance of the model with tactical parameter reductions. An
example of this technique is the derived measure, which uses several existing
data points and represents them inside one single measure.

These derived measures are very common because all derived scores or
measures are, in fact, combinations that form a score from several elements.
For instance, acceleration is a function of velocity values from 2 points in
time. Another example is the body mass index, which can be considered as a
simple function of height, weight, and age.

Keep in mind that if we have datasets with familiar information, any of these
scores or measures will be known. However, even in this case, finding new
transformations by implementing our knowledge mixed with existing
information can positively affect our performance. Here are some of the
concepts you should be aware of when you think about derived measures:

Making combinations of two variables: This concept involves the division,
multiplication, or normalization of an n parameter as the function of an m
parameter.

Change over time: A common example of this is acceleration in a more
complicated context. For instance, instead of directly handling current and
past values, we can work with the slope of an underlying time series
function.

Baseline subtraction: This concept involves the use of a base expectation to
modify a parameter concerning that baseline. This method can be an
improved way of observing the same variable because it is more informative.
For instance, if we have a baseline churn rate (a measure of objects moving

out of a group over a certain amount of time), we can create a parameter that
describes the churn in terms of deviation from expectation. Another simple
example would be looking at stock trading. With this concept in mind, the
closing price can be looked at as the opening price instead.

Normalization: This concept is about parameter value normalization based on
another parameter’s value. A perfect example of this is the failed transaction
rate.

All of these elements provide improved results. Keep in mind that you can
also combine them to maximize effectiveness. For example, imagine we have
a parameter that says the declining or increasing slope of the customer
engagement needs to be trained to express whether a certain customer was
barely engaged or well engaged. Why? Simply because of context variety and
a small decline in engagement can suggest many things depending on each
situation. From this, we can conclude that one of the data scientist’s
responsibilities is to think of such details when creating a said feature. Each
domain has its subtleties that can make a difference when it comes to the
results we get. For now, we mostly focused on examples of numerical data,
however, most of the time, there are categorical parameters such as codes
involved, and we need the right technique to work with them.

Next up, we are going to focus on the interpretation of non-numeric features
and learn the right techniques for turning those features into parameters that
we can use.

Non-Numeric Features

You will often encounter the problem of interpreting non-numeric features. It
is often a challenging matter because precious data can be encoded inside
non-numerical values. For example, if we look at stock trades, the identity of
buyers and sellers is also valuable. Let’s take this further. This may appear as
subtle information, maybe even worthless, however, imagine that a certain
stock buyer might trade in a certain manner with a particular seller. Even at a
company level, we can spot differences that depend on a particular context.
Working with such scenarios is sometimes challenging. However, we can
implement a series of aggregations to count the number of occurrences with
the chance of developing extended measures.

Keep in mind that if we create summary statistics, and we lower the number
of dataset rows, we create the possibility of reducing the quantity of

information that our model has access to for learning purposes. This aspect
also increases the risk of overfitting. This means that reducing input data and
introducing extensive aggregations is not always a good idea, especially
when we’re working with deep learning algorithms.

There’s an alternative to aggregation. We can use encoding to translate string
values into numerical data. A common approach to encoding is called ‘one-
hot encoding.” This process involves the transformation of a group of
categorical answers, such as age groups, into sets of binary values. This
method presents us with an advantage. We can gain access to valuable tag
data within certain datasets where aggregation would introduce the risk of
losing information. On top of that, one-hot encoding gives us the ability to
break apart certain response codes and split them into independent features
that can be used to identify both relevant and less meaningful code for a
certain variable. This aspect enables us to save only the values that matter to
our goals.

Another alternative technique is mainly used on text codes. This is often
called the “hash trick.” What’s a hash, you ask? In this case, this is a function
that is used to translate textual data into a numeric version. Hashes are often
used to build a summary of extensive data or to encode various parameters
that are considered to be delicate.

Chapter 9: How Do Convolutional Neural Networks Work?

In this chapter, I will explain the theory related to Convolutional
Neural Networks, which is the algorithm used in Machine Learning to give
the ability to "see" the computer. Since 1998 we have been able to teach
autonomous vehicles driving skills, and carry out image classification and
tumor detection, along with other applications.

The subject is quite complex/complicated, and I will try to explain it as
clearly as possible. Here, I assume that you have basic knowledge of how a
feedforward multilayer artificial neural network works (fully connected).

A CNN is an ANN or an artificial neural network that processes the layers in
it using supervised learning. It imitates the human eye and brain in the way
that it identifies traits and characteristics to identify specific objects.
Typically, a CNN has several hidden layers, all in a specific hierarchy. The
first layer can detect curves, lines, and other basic shapes. The deeper layers
can recognize silhouettes, faces, and other more complex shapes.

We will need:

Remember that the neural network must learn by itself to recognize a variety
of objects within images, and for this, we will need a large number of images
- more than 10,000 images of cats, another 10,000 of dogs, so that the
network can capture its unique characteristics - of each object - and in turn, to
be able to generalize it - this is so that it can recognize both a black

06|06

0.6 0.6
06|06|06|0.6
0.6 0.6

cat, a white cat, a front cat, a profile
cat, a jumping cat, etc.

Pixels and Neurons

To begin, the network takes as input the pixels of an image. If we have an
image with just 28 x 28 pixels high and wide, that is equivalent to 784
neurons. And that is if we only have one color (grayscale). If we had a color
image, we would need three channels (red, green, blue), and then we would
use 28x28x3 = 2352 input neurons. That is our input layer. To continue with
the example, we will assume that we use the image with one color only.

The Pre-Processing
Before feeding the network, remember that, as input, we should normalize
the values. The colors of the pixels have values ranging from 0 to 255, we
will transform each pixel: "value/255," and we will always have a value
between 0 and 1.

0.2)0.2
02 02
02|02(02|02
02 02

04 (04
04 04
04(04|04 (04
04 04

02]02
02 02
02(02)0.2(0.2
02 02

Convolutions

Now begins the "distinctive processing" of the CNN. We will make the so-
called "convolutions," which means groups of close pixels are taken from the
input image and mathematically operated against the kernel, which is a small
matrix. The kernel, for example 3 x 3 pixels, runs the input neurons from left
to right a and top to bottom, generating another output matrix, and this will
become the next hidden neuron layer.

NOTE: if the image were in color, the kernel would really be 3x3x3: a filter
with 3 3 x 3 kernels; then those three filters are added (and a bias unit is
added) and will form 1 output (as if it were one channel only).

06|06
0.6 086
06(06)|06(06
0.6 06

The kernel will initially take random values (1) and will be adjusted by
backpropagation. (1) An improvement is to make it follow a normal
distribution following symmetry, but its values are random.

Filter: Kernel Set

ONE DETAIL: Actually, we will not apply only one kernel, but we will have
many kernels (its set is called filters). For example, in this first convolution,
we could have 32 filters, with which we will really get 32 output matrices
(this set is known as “feature mapping”), each of 28x28x1, giving a total of
25,088 neurons for our FIRST HIDDEN LAYER of neurons. Imagine how
many more they would be if we took an input image of 224x224x3 (which is
still considered a small size).

....... R 5
10, 06
10.60.6[{0.5/06 I { |

. S |
5 |

Here we see the kernel making the matrix product with the input image and
moving from 1 pixel from left to right and from top to bottom and generating
a new matrix that makes up the features map.

As we move the kernel and we get a "new image" filtered by the kernel. In

this first convolution and following the previous example, it is as if we
obtained 32 "new filtered images." These new images that they are "drawing"
are certain characteristics of the original image. This will help in the future to
distinguish one object from another (e.g., cat or dog).

0,6(0,8 WEHE 11,240,6/0,6]1,2 o| 0/06[1.2
06 06 2|0]-2 _> 11,2/0,6}0,6(1,2 E> olos| of1,2
0,6/0,6(0,6(0,6 1|o]- 11,2(1,241,2]1,2 0[1,2| ol1,2
0.6 0.6 L0,6[1,211,2]06 0[1,2| olo6

The image performs a convolution with a kernel and applies the activation
function, in this case, ReLu.

Activation Function

The most commonly used activation function for this type of neural network
is called ReLu by Rectifier Linear Unit and consists of f (x) = max (0, x).

Subsampling

Now comes a step in which we will reduce the number of neurons before
making a new convolution. Why? As we saw, from our 28x28px black and
white image, we have a first input layer of 784 neurons, and after the first
convolution, we get a hidden layer of 25,088 neurons - which really are our
32 feature maps of 28 x 28.

If we made a new convolution from this layer, the number of neurons in the
next layer would go through the clouds (and that implies more processing)!
To reduce the size of the next layer of neurons, we will make a subsampling
process in which we will reduce the size of our filter. There are a few types of
subsampling methods available we will see the "mostly used": Max-Pooling.

Subsampling with Max-Pooling

Let's try to explain it with an example: suppose we will do Max-pooling of
size 2 x 2. This means that we will go through each of our 32 images of
features previously obtained from 28x28px from left-right, up-down BUT
instead of taking 1 pixel, we will take «2 x 2» (2 high by 2 wide = 4 pixels)
and we will preserve the "highest" value among those 4 pixels (so "Max"). In

this case, using 2 x 2, the resulting image is reduced "in half" and will be 14
x 14 pixels. After this subsampling process, we will have 32 images of 14 X
14, going from having had 25,088 neurons to 6272, they are much less and -
in theory - they continue to store the most important information to detect
desired characteristics.

Now, More Convolutions!
Because that has been the first convolution: it consists of an input, a set of
filters, we generate a map of characteristics, and we do a subsampling. In the
example of images of only one color we will have:

1) Input: 2) I apply 3) I get 4) I apply 5) I get «Exit»
Image Kernel Feature Max- from the
Mapping Pooling Convolution
28x28x1 323 %3 28x28x32 2 %2 14x14x32
filters

The first convolution can detect primitive characteristics such as lines or
curves. As we make more layers with convolutions, feature maps will be able
to recognize more complex forms, and the total set of convolution layers will
be able to "see."

Well now we must make a second convolution that will be:

1) Input: 2) I apply 3) I get 4) I apply 5) I get «Exit»
Image Kernel Feature Max- from the
Mapping Pooling Convolution
14x14x32 | 643 x 3 14x14x64 2 %2 7x7x64
filters

The 3rd convolution will begin in size 7 x 7 pixels, and after the max-
pooling, it will remain in 3 x 3 with which we could do only one more
convolution. In this example, we started with a 28x28px image and made
three convolutions. If the initial image had been larger (224x224px), we
would still have been able to continue making convolutions.

‘ 1) Input: ‘ 2) I apply ‘ 3) I get 4) I apply 5) I get «Exit»

Image Kernel Feature Max-Pooling | from the
Mapping Convolution

7xX7x64 1283 x 3 7x7x128 2x2 3x3x128
filters

We reach the last convolution, and we have the outcome

Connect With a "Traditional" Neural Network

Finally, we will take the last hidden layer to which we did subsampling,
which is said to be "three-dimensional” by taking the form - in our example -
3x3x128 (height, width, maps) and the "flatten," that is, it stops to be three-
dimensional, and it becomes a layer of "traditional" neurons, of which we
already knew. For example, we could flatten (and connect) to a new hidden
layer of 100 feedforward neurons.

Then, to this new "traditional" hidden layer, we apply a function called
SoftMax that connects against the final output layer that will have the
corresponding number of neurons with the classes we are classifying. If it is
dogs and cats, there will be two neurons but, with the numerical MNIST
dataset, it will be ten; if we classify cars, airplanes, or boats, it will be 3, etc.

Exits at the time of training will have the format known as " one-hot-
encoding " in which for dogs and cats it will be: [1,0] and [0,1], for cars,
airplanes or ships it will be [1,0, 0]; [0,1,0]; [0,0,1].

And the SoftMax function is responsible for passing probability (between 0
and 1) to the output neurons. For example, an exit [0.2 0.8] indicates a 20%
probability of being a dog and 80% of being a cat.

How Did CNN Learn to "See"?
Backpropagation

The process is similar to that of traditional networks in which we have an
expected input and output (that's why supervised learning), and through
backpropagation, we improve the value of the weights of the interconnections
between layers of neurons and as we iterate those weights adjust Until
optimal.

In the case of CNN, we must adjust the value of the weights of the different
kernels. This is a great advantage at the time of learning because as we saw

each kernel is of small size, in our example in the first convolution, it is 3 x
3, that is just nine parameters that we must adjust in 32 filters give a total of
288 parameters Compared to the weights between two layers of "traditional"
neurons: one of 748 and another of 6272 where they are ALL interconnected
with ALL, and that would be equivalent to having to train and adjust more
than 4.5 million values (I repeat: only for one layer).

Chapter 10: Top AI Frameworks and Machine Learning
Libraries

TensorFlow
“An open source machine learning framework for everyone”

TensorFlow is Google’s open source Al framework for machine learning and
high performance numerical computation.

TensorFlow is a Python library that invokes C++ to construct and execute
dataflow graphs. It supports many classifications and regression algorithms,
and more generally, deep learning and neural networks.

One of the more popular Al libraries, TensorFlow services clients like
AirBnB, eBay, Dropbox, and Coca-Cola.

Plus, being backed by Google has its perks. TensorFlow can be learned and
used on Colaboratory, a Jupyter notebook environment that runs in the cloud,
requires no set-up, and is designed to democratize machine learning
education and research.

Some of TensorFlow’s biggest benefits are its simplifications and
abstractions, which keeps code lean and development efficient.

TensorFlow is Al framework designed to help everyone with machine
learning.

Scikit-learn

Scikit-learn is an open source, commercially usable Al library. Another
Python library, scikit-learn supports both supervised and unsupervised
machine learning. Specifically, it supports classification, regression, and
clustering algorithms, as well as dimensionality reduction, model selection,
and preprocessing.

It’s built on the NumPY, matplotlib, and SciPy libraries, and in fact, the name
“scikit-learn” is a play on “SciPy Toolkit.”

Scikit-learn markets itself as “simple and efficient tools for data mining and
data analysis” that is “accessible to everybody, and reusable in various
contexts.”

To support these claims, scikit-learn offers an extensive user guide so that
data scientists can q uickly access resources on anything from multiclass and

multilabel algorithms to covariance estimation.

Al as a Data Analyst

Al, and specifically machine learning, has advanced to a point where it can
perform the day-to-day analysis that most business people require. Does this
mean that data scientists and analysts should fear for their jobs?

We don’t think so. With self-service analytics, machine learning algorithms
can handle the reporting grunt work so that analysts and data scientists can
focus their time on the advanced tasks that leverage their degrees and
skillsets. Plus, business people won’t need to wait around for the answers
they need.

Theano

“A Python library that allows you to define, optimize, and evaluate
mathematical expressions involving multi-dimensional arrays efficiently”

Theano is a Python library and optimizing compiler designed for
manipulating and evaluating expressions. In particular, Theano evaluates
matrix-valued expressions.

Speed is one of Theano’s strongest suits. It can compete toe-to-toe with the
speed of hand-crafted C language implementations that involve a lot of data.
By taking advantage of recent GPUs, Theano has also been able to top C on a
CPU by a significant degree.

By pairing elements of a computer algebra system (CAS) with elements of an
optimizing compiler, Theano provides an ideal environment for tasks where
complicated mathematical expressions re q uire repeated, fast evaluation. It
can minimize extraneous compilation and analysis while providing important
symbolic features.

Even though new development has ceased for Theano, it’s still a powerful
and efficient platform for deep learning.

Theano is a machine learning library that can help you define and optimize
mathematical expressions with ease.

Caffe
Caffe is an open deep learning framework developed by Berkeley Al
Research in collaboration with community contributors, and it offers both
models and worked examples for deep learning.

Caffe prioritizes expression, speed, and modularity in its framework. In fact,
its architecture supports configuration-defined models and optimization
without hard coding, as well as the ability to switch between CPU and GPU.

Plus, Caffe is highly adaptive to research experiments and industry
deployments because it can process over 60M images per day with a single
NVIDIA K40 GPU— one of the fastest convnet implementations available,
according to Caffe.

Caffe’s language is C++ and CUDA with Command line, Python, and
MATLAB interfaces. Caffe’s Berkeley Vision and Learning Center models
are licensed for unrestricted use, and their Model Zoo offers an open
collection of deep models designed to share innovation and research.

Caffe is an open deep learning framework and Al library developed by
Berkeley.

Keras

Keras is a high-level neural network API that can run on top of TensorFlow,
Microsoft Cognitive Toolkit, or Theano. This Python deep learning library
facilitates fast experimentation and claims that “being able to go from idea to
result with the least possible delay is key to doing good research.”

Instead of an end-to-end machine learning framework, Keras operates as a
user-friendly, easily extensible interface that supports modularity and total
expressiveness. Standalone modules — such as neural layers, cost functions,
and more — can be combined with few restrictions, and new modules are
easy to add.

With consistent and simple APIs, user actions are minimized for common use
cases. It can run in both CPU and GPU as well.

Keras is a python deep learning library that runs on top of other prominent
machine learning libraries.

Microsoft Cognitive Toolkit

“A free, easy-to-use, open-source, commercial-grade toolkit that trains deep
learning algorithms to learn like the human brain.”

Previously known as Microsoft CNTK, Microsoft Cognitive Toolkit is an
open source deep learning library designed to support robust, commercial-
grade datasets and algorithms.

With big-name clients like Skype, Cortana, and Bing, Microsoft Cognitive
Toolkit offers efficient scalability from a single CPU to GPUs to multiple
machines— without sacrificing a g uality degree of speed and accuracy.

Microsoft Cognitive Toolkit supports C++, Python, C#, and BrainScript. It
offers pre-built algorithms for training, all of which can be customized,
though you can use always use your own. Customization opportunities extend
to parameters, algorithms, and networks.

Microsoft Cognitive Toolkit is a free and open-source Al library that's
designed to train deep learning algorithms like the human brain.

PyTorch

“An open source deep learning platform that provides a seamless path from
research prototyping to production deployment.”

PyTorch is an open source machine learning library for Python that was
developed mainly by Facebook’s Al research group.

PyTorch supports both CPU and GPU computations and offers scalable
distributed training and performance optimization in research and production.
It’s two high-level features include tensor computation (similar to NumPy)
with GPU acceleration and deep neural networks built on a tape-based
autodiff system.

With extensive tools and libraries, PyTorch provides plenty of resources to
support development, including:

AllenNLP, an open source research library designed to evaluate deep learning
models for natural language processing.

ELF, a game research platform that allows developers to train and test
algorithms in different game environments.

Glow, a machine learning compiler that enhances performance for deep
learning frameworks on various hardware platforms.

PyTorch is a deep learning platform and Al library for research prototyping
and production deployment.

Torch

Similar to PyTorch, Torch is a Tensor library that’s similar to NumPy and
also supports GPU (in fact, Torch proclaims that they put GPUs “first™).
Unlike PyTorch, Torch is wrapped in LuaJIT, with an underlying C/CUDA

implementation.

A scientific computing framework, Torch prioritizes speed, flexibility, and
simplicity when it comes to building algorithms.

With popular neural networks and optimization libraries, Torch provides
users with libraries that are easy to use while enabling flexible
implementation of complex neural network topologies. Torch is an Al
framework for computing with LuaJIT.

Chapter 11: The Future of Machine Learning

In today’s economy, all business is becoming data business. In a study
conducted by Forrester Consulting, 98 percent of organizations said that
analytics are important to driving business priorities, yet fewer than 40
percent of workloads are leveraging advanced analytics or artificial
intelligence. Machine learning offers a way companies can extract greater
value from their data to increase revenue, gain competitive advantage and cut
Costs.

Machine learning is a form of predictive analytics that advances
organizations up the business intelligence (BI) maturity curve, moving from
exclusive reliance on descriptive analytics focused on the past to include
forward-looking, autonomous decision support. The technology has been
around for decades, but the excitement around new approaches and products
is spurring many companies to look at it anew.

Analytic solutions based on machine learning often operate in real time,
adding a new dimension to BI. While old models will continue to supply key
reports and analysis to senior decision-makers, real-time analytics brings
information to employees “on the front lines” to improve performance hour-
by-hour.

In machine learning—a branch of artificial intelligence—systems are
“trained” to use specialized algorithms to study, learn and make predictions
and recommendations from huge data troves. Predictive models exposed to
new data can adapt without human intervention, learning from previous
iterations to produce ever more reliable and repeatable decisions and results.

Over time, this iteration makes systems “smarter”, increasingly able to
uncover hidden insights, historical relationships and trends, and reveal new
opportunities in everything from shopper preferences to supply chain
optimization to oil discovery. Most importantly, machine learning enables
companies to do more with Big Data and incorporate new capabilities such as
IoT analytics.

Machine learning is a powerful analytics technology that’s available right
now. Many new commercial and open-source solutions for machine learning
are available, along with a rich ecosystem for developers. Chances are good
your organization is already using the approach somewhere, such as for spam

filtering. Applying machine learning and analytics more widely lets you
respond more q uickly to dynamic situations and get greater value from your
fast-growing troves of data.

Predictive Analytics is Everywhere

A big reason for the growing popularity of advanced analytics based on
machine learning is that it can deliver business benefits in virtually every
industry. Wherever large amounts of data and predictive models need regular
adjustment, machine learning makes sense.

Providing recommendations for books, films, clothing and dozens of other
categories is a familiar example of machine learning in action. But there are
many more.

In retail, machine learning and RFID tagging enable greatly improved
inventory management. Simply keeping track of an item’s location items is a
big challenge, as is matching physical inventory with book inventory. With
machine learning, the data used to solve these problems can also improve
product placement and influence customer behavior. For example, the
system could scan the physical store for out-of-place inventory in order to
relocate it, or identify items that are selling well and move them to a more
visible spot in the store.

When machine learning is combined with linguistic rules, companies can
scan social media to determine what customers are saying about their brand
and their products. It can even find hidden, underlying patterns that might
indicate excitement or frustration with a particular product.

The technology is already playing a crucial role in applications that involve
sensors. Machine learning also is essential for self-driving vehicles, where
data from multiple sensors must be coordinated in real time in order to ensure
safe decisions.

Machine learning can help analyze geographical data to uncover patterns that
can more accurately predict the likelihood that a particular site would be the
right location for generating wind or solar

These are a few of many examples of machine learning in action. It is a
proven techni q ue that is delivering valuable results right now.

Distinct Competitive Advantage

Machine learning can provide companies with a competitive edge by solving
problems and uncovering insights faster and more easily than conventional
analytics. It is especially good at delivering value in three types of situations.

The solution to a problem changes over time: Tracking a brand’s reputation
via social media is a good example. Demographics of individual platforms
shift; new platforms appear. Changes like these create havoc and force
constant revisions for marketers using rules-based analytics to hit the right
targets with the right messages. In contrast, machine learning models adapt
easily, delivering reliable results over time and freeing resources to solve
other problems.

The solution varies from situation to situation: In medicine, for instance. a
patient’s personal or family history, age, sex, lifestyle, allergies to certain
medications and many other factors make every case different. Machine
learning can take all these into account to deliver personalized diagnosis and
treatment, while optimizing healthcare resources.

The solution exceeds human ability: People can recognize many things, like
voices, friend’s faces, certain objects, etc. voices, but may not be able to
explain why. The problem? Too many variables. By sifting and categorizing
many examples, machine learning can objectively learn to recognize and
identify specific external variables that, for example, give a voice its
character. (pitch, volume, harmonic overtones, etc.)

The competitive advantage comes from developing machines that don't rely
on human sensing, description, intervention, or interaction to solve a new
class of decisions. This capability opens up new opportunity many fields,
including medicine (cancer screening), manufacturing (defect assessment),
and transportation (using sound as an additional cue for driving safety).

Faster and Less Expensive

Compared with other analytic approaches, machine learning offers several
advantages to IT, data scientists, various line of business groups and their
organizations.

Machine learning is nimble and flexible with new data. Rules-based systems
do well in static situations, but machine learning excels when data is
constantly changing or being added. That’s because it eliminates the need to
constantly tweak a system or add rules to get the desired results. This saves
development time, and greatly reduces the need for major changes.

Personnel costs for machine learning typically are lower over the long run
than conventional analytics. At the beginning, of course, companies must hire
highly skilled specialists in probability, statistics, machine learning
algorithms, Al training methods, among others. But once machine learning is
up and running, predictive models can adjust themselves, meaning fewer
humans are needed to tweak for accuracy and reliability.

Another advantage is scalability. Machine learning algorithms are built with
parallelism in mind and therefore scale better, which ultimately means faster
answers to business problems. Systems that rely on human interaction also
don’t scale as well. Machine learning minimizes the need to constantly go
back to people for decisions.

Finally, machine learning applications can cost less to run than other types of
advanced analytics. Many machine learning techniques easily scale to
multiple machines instead of a single, expensive high-end platform.

Getting Started with Machine Learning

Success in stepping up to machine learning begins with identifying a business
problem where the technology can have a clear, measurable impact. Once a
suitable project is identified, organizations must deploy specialists and
choose an appropriate technique to teach systems how to think and act. These
include:

Supervised learning: The system is given example inputs and outputs, then
tasked to form general rules of behavior. Example: The recommendation
systems of most major brands use supervised learning to boost the relevance
of suggestions and increase sales.

Semi-supervised learning: The system is typically given a small amount of
labeled data (with the “right answer”) and a much larger amount of unlabeled
data. This mode has the same use cases as supervised learning but is less
costly due to lower data costs. It is usually the best choice when the input
data is expected to change over time, such as with commodity trading, social
media or weather-related situations, for example.

Unsupervised learning: Here, the system simply examines the data looking
for structure and patterns. This mode can be used to discover patterns that
would otherwise go undiscovered, such as in-store buying behavior that could
drive changes in product placement to increase sales.

Reinforcement learning: In this approach, the system is placed in an
interactive, changing environment, given a task and provided with feedback
in the form of “punishments” and “rewards.” This technique has been used
with great success to train factory robots to identify objects.

Regardless of your project, an organization’s advancement to effectively
leveraging machine learning in analytics depends on mastering these
foundational practices.

Powerful Processors Are Only the Beginning

Intel helps companies put machine learning to work in real-world
applications that demand high-speed performance. It does so with a systems
approach that includes processors, optimized software and support for
developers and a huge ecosystem of industry partners.

Machine learning re q uires high computing horsepower. Intel® Xeon®
processors provide a scalable baseline, and the Intel® Xeon Phi™ processor
is specifically designed for the highly parallel workloads typical of machine
learning, as well as machine learning’s memory and fabric (networking)
needs. In one Intel test, this processor delivered a 50x reduction in system
training time.1 Intel hardware technology also incorporates programmable
and fixed accelerators, memory, storage, and networking capabilities.

In addition, Intel offers the software support that enables IT organizations to
move from business problem to solution effectively and efficiently. This
support includes:

Libraries and languages with building blocks optimized on Intel Xeon
processors. These include the Intel® Math Kernel Library (Intel® MKL) and
the Intel® Data Analytics Acceleration Library (Intel® DAAL), as well as
the Intel Distribution for Python*.

Optimized frameworks to simplify development, including Apache Spark*,
Caffe*, Torch* and TensorFlow*. Intel enables both open-source and
commercial software that lets companies take advantage of the latest
processors and system features as soon as they are commercially available.

Software development kits (SDKs), including Intel® Nervana™ technology,
TAP and the Intel® Deep Learning SDK. This provides a set of application
interfaces so the developer can immediately take advantage of the best
machine learning algorithms.

When it comes to to optimization, Intel takes multiple approaches. Including
coaching customers and vendor partners on ways to make their machine
learning code run faster on Intel hardware, as well as implementing some
learning functions in silicon, which is always faster.

Conclusion:

Now that we have come to the end of the book, I hope you have
gathered a basic understanding of what machine learning is and how you can
build a machine learning model in Python. One of the best ways to begin
building a machine learning model is to practice the code in the book, and
also try to write similar code to solve other problems. It is important to
remember that the more you practice, the better you will get. The best way to
go about this is to begin working on simple problem statements and solve
them using the different algorithms. You can also try to solve these problems
by identifying newer ways to solve the problem. Once you get a hang of the
basic problems, you can try using some advanced methods to solve those
problems.

Thanks for reading to the end!

Python Machine Learning may be the answer that you are looking for when it
comes to all of these needs and more. It is a simple process that can teach
your machine how to learn on its own, similar to what the human mind can
do, but much faster and more efficient. It has been a game-changer in many
industries, and this guidebook tried to show you the exact steps that you can
take to make this happen.

There is just so much that a programmer can do when it comes to using
Machine Learning in their coding, and when you add it together with the
Python coding language, you can take it even further, even as a beginner.

The next step is to start putting some of the knowledge that we discussed in
this guidebook to good use. There are a lot of great things that you can do
when it comes to Machine Learning, and when we can combine it with the
Python language, there is nothing that we can’t do when it comes to training
our machine or our computer.

This guidebook took some time to explore a lot of the different things that
you can do when it comes to Python Machine Learning. We looked at what
Machine Learning is all about, how to work with it, and even a crash course
on using the Python language for the first time. Once that was done, we
moved right into combining the two of these to work with a variety of Python
libraries to get the work done.

You should always work towards exploring different functions and features

in Python, and also try to learn more about the different libraries like SciPy,
NumPy, PyRobotics, and Graphical User Interface packages that you will be
using to build different models.

Python is a high-level language which is both interpreters based and object-
oriented. This makes it easy for anybody to understand how the language
works. You can also extend the programs that you build in Python onto other
platforms. Most of the inbuilt libraries in Python offer a variety of functions
that make it easier to work with large data sets.

You will now have gathered that machine learning is a complex concept that
can easily be understood. It is not a black box that has undecipherable terms,
incomprehensible graphs, or difficult concepts. Machine learning is easy to
understand, and I hope the book has helped you understand the basics of
machine learning. You can now begin working on programming and building
models in Python. Ensure that you diligently practice since that is the only
way you can improve your skills as a programmer.

If you have ever wanted to learn how to work with the Python coding
language, or you want to see what Machine Learning can do for you, then
this guidebook is the ultimate tool that you need! Take a chance to read
through it and see just how powerful Python Machine Learning can be for
you.

	Python for beginners
	Introduction
	Chapter 1: Installing Python
	Lосаl Envіrоnmеnt Sеtuр
	Gеttіng Pуthоn
	Inѕtаllіng Pуthоn
	Hеrе Is A Quick Оvеrvіеw Оf Installing Python Оn Various Platforms:
	Unіx And Lіnux Installation
	Wіndоwѕ Installation
	Macintosh Inѕtаllаtіоn
	Setting Uр PATH
	Sеttіng Path at Unіx/Lіnux
	Sеttіng Раth Аt Windows
	Pуthоn Environment Variables

	Runnіng Pуthоn
	Intеrасtіvе Interpreter
	Script from The Cоmmаnd-Lіnе
	Intеgrаtеd Dеvеlорmеnt Envіrоnmеnt
	IDLE
	A Fіlе Edіtоr
	Edіtіng A Fіlе
	How to Improve Yоur Wоrkflоw

	Chapter 2: Python Loops and Numbers
	Loops
	Numbers

	Chapter 3: Data Types
	String Manipulation
	String Formatting
	Type Casting
	Assignment and Formatting Exercise

	Chapter 4: Variable in Python
	Variable Vs. Constants
	Variables Vs. Literals
	Variables Vs. Arrays
	Classifications of Python Arrays Essential for Variables
	Naming Variables
	Learning Python Strings, Numbers and Tuple
	Types of Data Variables

	Chapter 5: Inputs, Printing, And Formatting Outputs
	Inputs
	Printing and Formatting Outputs
	Input and Formatting Exercise

	Chapter 6: Mathematical Notation, Basic Terminology, and Building Machine Learning Systems
	Mathematical Notation for Machine Learning
	Terminologies Used for Machine Learning

	Chapter 7: Lists and Sets Python
	Lists
	Sets

	Chapter 8: Conditions Statements
	“if” statements
	Else Statements
	Code Blocks
	While
	For Loop
	Break
	Infinite Loop
	Continue
	Practice Exercise

	Chapter 9: Iteration
	While Statement
	Definite and Indefinite Loops
	The for Statement

	Chapter 10: Functions and Control Flow Statements in Python
	What is a Function?
	Defining Functions
	Call Function
	Parameters of Function
	Default Parameters
	What is the control flow statements?
	break statement
	continue statement
	pass statement
	else statement

	Conclusion:
	Python for data science
	Introduction:
	Chapter 1: What is Data Analysis?
	Chapter 2: The Basics of the Python Language
	The Statements
	The Python Operators
	The Keywords
	Working with Comments
	The Python Class
	How to Name Your Identifiers
	Python Functions

	Chapter 3: Using Pandas
	Pandas

	Chapter 4: Working with Python for Data Science
	Why Python Is Important?
	What Is Python?
	Python's Position in Data Science
	Data Cleaning
	Data Visualization
	Feature Extraction
	Model Building
	Python Installation
	Installation Under Windows
	Conda
	Spyder
	Installation Under MAC
	Installation Under Linux
	Install Python

	Chapter 5: Indexing and Selecting Arrays
	Conditional selection
	NumPy Array Operations
	Array – Array Operations
	Array – Scalar operations

	Chapter 6: K-Nearest Neighbors Algorithm
	Splitting the Dataset
	Feature Scaling
	Training the Algorithm
	Evaluating the Accuracy
	K Means Clustering
	Data Preparation
	Visualizing the Data
	Creating Clusters

	Chapter 7: Big Data
	The Challenge
	Applications in the Real World

	Chapter 8: Reading Data in your Script
	Reading data from a file
	Dealing with corrupt data

	Chapter 9: The Basics of Machine Learning
	The Learning Framework
	PAC Learning Strategies
	The Generalization Models

	Chapter 10: Using Scikit-Learn
	Uses of Scikit-Learn
	Representing Data in Scikit-Learn
	Tabular Data
	Features Matrix
	Target Arrays
	Understanding the API

	Conclusion:
	Machine learning with Python
	Introduction:
	Chapter 1: Python Installation
	Anaconda Python Installation
	Jupyter Notebook
	Fundamentals of Python programming

	Chapter 2: Python for Machine Learning
	Chapter 3: Data Scrubbing
	What is Data Scrubbing?
	Removing Variables
	One-hot Encoding
	Drop Missing Values

	Chapter 4: Data Mining Categories
	Predictive Modeling
	Analysis of Associations
	Group Analysis
	Anomaly Detection

	Chapter 5: Difference Between Machine Learning and AI
	What is artificial intelligence?
	How is machine learning different?

	Chapter 6: K-Means Clustering
	Data Preparation
	Visualizing the Data
	Creating Clusters

	Chapter 7: Linear Regression with Python
	Chapter 8: Feature Engineering
	Rescaling Techniques
	Creating Derived Variables
	Non-Numeric Features

	Chapter 9: How Do Convolutional Neural Networks Work?
	Pixels and Neurons
	The Pre-Processing
	Convolutions
	Filter: Kernel Set
	Activation Function
	Subsampling
	Subsampling with Max-Pooling
	Now, More Convolutions!
	Connect With a "Traditional" Neural Network

	Chapter 10: Top AI Frameworks and Machine Learning Libraries
	TеnѕоrFlоw
	Ѕсikit-lеаrn
	AI as a Dаtа Analyst
	Thеаnо
	Caffe
	Keras
	Miсrоѕоft Cоgnitivе Tооlkit
	PyTorch
	Tоrсh

	Chapter 11: The Future of Machine Learning
	Conclusion:

