

Sreten Milosavljević, Swayam Prabha Shankara

Revenue Accounting and Reporting

with SAP S/4HANA®

Imprint

This e-book is a publication many contributed to,

specifically:

Editor Megan Fuerst

Acquisitions Editor Emily Nicholls

Copyeditor Julie McNamee

Cover Design Graham Geary

Photo Credit iStockphoto.com: 527727557/©

Gregory_DUBUS

Production E-Book Kyrsten Coleman

Typesetting E-Book III-satz, Germany

We hope that you liked this e-book. Please share your

feedback with us and read the Service Pages to find out how

to contact us.

The Library of Congress Cataloging-in-Publication

Control Number for the printed edition is as follows:

2023033462

ISBN 978-1-4932-2434-0 (print)

ISBN 978-1-4932-2435-7 (e-book)

ISBN 978-1-4932-2436-4 (print and e-book)

© 2024 by Rheinwerk Publishing Inc., Boston (MA)

1st edition 2024

Notes on Usage

This e-book is protected by copyright. By purchasing this

e-book, you have agreed to accept and adhere to the

copyrights. You are entitled to use this e-book for personal

purposes. You may print and copy it, too, but also only for

personal use. Sharing an electronic or printed copy with

others, however, is not permitted, neither as a whole nor in

parts. Of course, making them available on the internet or in

a company network is illegal as well.

For detailed and legally binding usage conditions, please

refer to the section Legal Notes.

This e-book copy contains a digital watermark, a

signature that indicates which person may use this copy:

Notes on the Screen

Presentation

You are reading this e-book in a file format (EPUB or Mobi)

that makes the book content adaptable to the display

options of your reading device and to your personal needs.

That’s a great thing; but unfortunately not every device

displays the content in the same way and the rendering of

features such as pictures and tables or hyphenation can

lead to difficulties. This e-book was optimized for the

presentation on as many common reading devices as

possible.

If you want to zoom in on a figure (especially in iBooks on

the iPad), tap the respective figure once. By tapping once

again, you return to the previous screen. You can find more

recommendations on the customization of the screen layout

on the Service Pages.

Table of Contents

Notes on Usage

Table of Contents

Preface

1 Introduction to Revenue

Recognition

1.1 What Is Revenue Recognition?

1.2 Five-Step Model of IFRS 15

1.2.1 Step 1: Identify the Contract

1.2.2 Step 2: Identify Performance Obligations

1.2.3 Step 3: Determine the Transactional Price

1.2.4 Step 4: Allocate the Transactional Price

1.2.5 Step 5: Recognize Revenue

1.3 Industry Impact

1.3.1 Telecommunications

1.3.2 Life Sciences

1.3.3 Manufacturing

1.4 Revenue Recognition and SAP

1.4.1 Revenue Accounting and Reporting

1.4.2 Event-Based Revenue Recognition

1.5 Summary

2 Designing Your Revenue

Recognition Landscape

2.1 The SAP Landscape and Revenue

Recognition

2.1.1 SAP System Landscape

2.1.2 RAR in the SAP Landscape

2.2 Integration with Different SAP

Components

2.2.1 Sales and Distribution

2.2.2 Customer Relationship Management

2.2.3 Billing

2.2.4 Non-SAP Systems

2.3 Revenue Recognition Data Model

2.3.1 Sender Components

2.3.2 Structures

2.3.3 Tables

2.3.4 Relationships

2.3.5 Extensions and Transports

2.4 Choosing Your Revenue Recognition

Tool

2.4.1 RAR with SAP S/4HANA

2.4.2 RAR with SAP ERP

2.5 Summary

3 Configuring Inbound

Processing (Classic and

Optimized)

3.1 Setting Up Revenue Accounting

Integration

3.2 Inbound Processing

3.2.1 RAI Classes in Classic Inbound Processing

3.2.2 RAI Classes in Optimized Inbound Processing

3.3 Extending RAI Classes

3.3.1 Defining Extensions

3.3.2 Populating Extensions

3.4 Summary

4 Revenue Accounting Items

4.1 Processing Revenue Accounting

Items

4.1.1 Processing Methods

4.1.2 Parallel Processing Framework

4.1.3 Processing Order Items

4.1.4 Processing RAIs with a Predecessor

4.2 Managing Revenue Accounting Items

4.2.1 Changing Items

4.2.2 Exempting Items

4.3 Extending Transaction FARR_RAI_MON

4.4 Error Resolution While Creating

Revenue Accounting Items

4.4.1 Proactive and Reactive Measures

4.4.2 Inflight Errors

4.4.3 Data Validation Checks

4.4.4 Resolving Errors without Transaction

FARR_RAI_MON

4.5 Business Rules Framework Plus

4.5.1 Applications and Structures for RAR

Integration

4.5.2 BRFplus Setup in RAR

4.6 Creating Custom Revenue Accounting

Items

4.6.1 Custom RAI Structure

4.6.2 Custom RAI Content

4.6.3 Singleton Classes

4.6.4 Dynamic Processing Flow Controlled from

Table

4.7 Summary

5 Contract Management

5.1 Setting Up Contract Management

5.1.1 Optimized versus Classic Contract

Management

5.1.2 Accounting Principles

5.1.3 Presentation Methods

5.1.4 Calculation Methods for Local Currency

5.1.5 Contract Modifications

5.1.6 Cost Recognition

5.1.7 Contract Assets and Liabilities

5.1.8 Assign Company Codes, Number Ranges,

and Contract Categories

5.1.9 Condition Types

5.1.10 Posting Periods

5.2 Setting Up Performance Obligations

5.2.1 Create Performance Obligation Types

5.2.2 Determine POB Types in BRFplus

5.3 Managing Performance Obligations

and Event Types

5.3.1 Over Time Revenue Recognition

5.3.2 Point-in-Time Fulfillments

5.4 Modifying Contracts

5.4.1 Prospective or Retrospective

5.4.2 Contract Combination

5.4.3 Terminating Contracts

5.4.4 Contract Freeze

5.5 Handling Price Allocations

5.6 Summary

6 Revenue Posting and

Reporting

6.1 Basics of Reporting and Calculations

6.1.1 Posting Logic

6.1.2 Customization for Posting of Revenue

6.1.3 Table FARR_D_POSTING and Revenue

Categories

6.2 Posting with ABC

6.2.1 Transfer Revenue

6.2.2 Calculate Contract Liabilities and Contract

Assets

6.2.3 Revenue Posting Run

6.3 Integrating with Profitability Analysis

6.4 Reporting

6.4.1 SAP Fiori Applications

6.4.2 New Styles of Reporting and CDS Views

6.5 Summary

7 Administration and

Troubleshooting

7.1 Parallel Processing Framework and

Performance Issues

7.1.1 What Is Parallel Processing?

7.1.2 Application Server Instances

7.1.3 Job Server Group

7.1.4 Custom Parallel Processing Framework

7.1.5 Modularization

7.1.6 Packaging

7.2 Reclassification

7.2.1 Creation and Structure of ZFARR_D Tables

7.2.2 Populating the Custom Posting Table

7.2.3 Extending the Standard Posting Program

7.3 Data Cleanup

7.3.1 Data Checks

7.3.2 Customizing

7.3.3 Business Add-In FARR_BADI_RAI2

7.3.4 Message Capturing by Simulating

7.4 Helpful Tips and Tricks

7.4.1 Navigator

7.4.2 Additional Information

7.5 Summary

8 Migrating to Optimized

Contract Management

8.1 Business Case for Migration

8.2 Preparation Activities for Migration

8.2.1 Contract Management Activation

8.2.2 BRFplus Verification

8.2.3 Business Add-In Modifications

8.2.4 Process Changes

8.3 Performing the Migration

8.3.1 Migration Activities

8.3.2 Migration Errors

8.4 Post-Migration Cleanup

8.5 Summary

9 Event-Based Revenue

Recognition

9.1 Solution Background

9.2 Sell-from-Stock Scenario

9.3 Sales-Oriented Scenario for Customer

Projects

9.4 Revenue Recognition Keys

9.5 Summary

Important Business Add-Ins

The Authors

Index

Service Pages

Legal Notes

Preface

Revenue accounting and reporting (RAR) has been available

in the market for almost a decade, but it’s still considered as

a new module within a niche area. However, in the past

decade, we’ve seen a significant shift in how business is

run. There’s no company in the world that’s not talking

about digital transformation, and technology plays a

significant part.

More and more companies are implementing a service-

oriented business model, meaning that even traditional

manufacturing companies are trying to operate as service

providers. These changes are creating a need for

compliance with the International Financial Reporting

Standards (IFRS) 15 as a necessary reporting requirement

and as a tool that enables companies to properly assess

their results. All this being said, revenue management is

now a critical area for projects where the whole organization

is in focus.

Since the transition to IFRS 15, RAR has evolved in many

ways in SAP S/4HANA (now on release 2022 as of the time

of writing), which will be covered by this book. RAR has

embraced technological advancements since its appearance

on the market, and there are now many more business

cases where RAR can or must be applied.

In this book, we’ve aimed to provide information for

different types of readers. Our first target group consists of

decision makers who need to start a project where RAR

might be in focus. Decision makers need to feel confidence

that despite the complexity, SAP offers a tool that can

handle their business requirement with ease. We’ve also

written for consultants who want to grow in the area of

revenue recognition; even after a decade in the market,

there’s still a huge demand for good consultancy. Next is

developers. Since RAR is a complex area, it will benefit when

the newest techniques are used, so in this book we’ll get

developers up to speed and indicate some dos and don’ts.

Last but not least, we’ve written this book for end users,

with the goal of showcasing the look and feel of RAR, the

reporting options, and the overall user experience.

How This Book Is Organized

We’ve organized this book to follow the flow of an RAR

implementation project. We’ll start with an explanation of

the SAP standard and later we’ll follow the process to set up

RAR. To close the book, we’ll introduce the migration to

optimized contract management (OCM) and the new event-

based revenue recognition (EBRR) solution.

We recommend reading this book sequentially from

Chapter 1 onward; however, if you prefer, you can directly

go to any chapter and start reading about that topic. For

example, if you’re interested in learning about setting up

contract management, you can start reading Chapter 5

without reading previous chapters. Let’s review what is

covered in each chapter of this book:

Chapter 1: Introduction to Revenue Recognition

This chapter provides an overview of both IFRS 15 and

Accounting Standards Codification (ASC) 606. We’ll

provide examples from the most impacted industries and

explain the most common pitfalls during a project. Also,

we’ll showcase high-level design solutions that might

prove useful in understanding how business scenarios

specific to certain industries can be designed in RAR.

Chapter 2: Designing Your Revenue Recognition

Landscape

In this chapter, we’ll start our deep dive into RAR. First,

we’ll explain how RAR fits into the overall system

landscape (these decisions might be crucial in some

industries). Second, we’ll provide detailed information

about the data model and structure of tables in RAR. This

is important for both functional and technical consultants,

so we recommend reading this chapter carefully.

Chapter 3: Configuring Inbound Processing (Classic

and Optimized)

Inbound processing is the first step to perform when

setting up RAR, where we tell the system how to “talk”

with other components of the SAP landscape. Here, we

focus on both the functional and technical sides, and we

also bring in the topic of optimized inbound processing

(OIP), which is rather new and can be a solution for some

common problems.

Chapter 4: Revenue Accounting Items

RAIs and the usage of the RAI monitor are the focus of this

chapter. Here, you’ll be guided step by step through

proper use of the application for RAI processing. Also,

we’ll include technical details about how RAIs can be

extended.

Chapter 5: Contract Management

In this chapter, we review the necessary settings for

proper creation of contracts in the RAR system. We’ll

provide step-by-step instructions so that even

inexperienced readers can understand how setup is

organized and what needs to be done to enable a simple

flow.

Chapter 6: Revenue Posting and Reporting

This chapter introduces integration between RAR and

accounting. We’ll explain in detail how this integration can

be achieved and provide step-by-step guidance for the

results to expect from this integration. Last but not least,

in this chapter, we touch on reporting options. This area

benefited the most from the SAP HANA engine.

Chapter 7: Administration and Troubleshooting

In this chapter, we focus on the administration of the

overall RAR solution and how to troubleshoot the most

common problems. We also spend a significant portion of

this chapter on an important technical topic within RAR:

the parallel processing framework (PPF).

Chapter 8: Migrating to Optimized Contract

Management

OCM is a highlight of newer RAR versions. However, in

addition to explaining the benefits of OCM, we’ll also

provide examples of where it might not be the best fit. So,

in this chapter, we aim to broaden your knowledge in this

area so proper architectural decisions can be made.

Chapter 9: Event-Based Revenue Recognition

This chapter is dedicated to the newest tool in the SAP

portfolio for revenue management: EBRR. This chapter

provides a high-level introduction to the solution and

describes when it can be applied. We will not provide

detailed information about EBRR’s setup and use in this

book.

Acknowledgments

We feel that after a while on the market, a tool such as RAR

deserves an in-depth book. Through participation in many

projects, we witnessed that RAR was being approached in

the same way as always; however, there are new features

that enable users to execute tasks much more efficiently

than before. So, we took on the challenge to explain certain

RAR topics in detail, and also to shed light on new subjects

that would help in projects.

Writing this book was a tremendous effort: It took quite a

few sleepless nights and weekends. So, our first thank you

goes to our families, who had to sacrifice even more time so

this book would become a reality. Also, I would like to

mention our customers who were very kind in sharing their

knowledge about IFRS 15 and ASC 606, which helped

improve the quality of this publication, and also who were

very considerate about work which was happening in

parallel. Last but not least, thank you to the team at

Rheinwerk Publishing, namely Megan Fuerst, who guided

and helped this book reach its audience the right way.

—Sreten Milosavljević

I want to thank my coauthor Sreten for giving me the

opportunity to be a part of this book. He has a lot of

experience in RAR and is a major contributor in this book,

and I am very grateful for that. Writing this book was

challenging in terms of time and effort; we are definitely

thankful to our families and parents as they have been very

supportive. As much as writing this book took effort, it was a

very positive thing in my life.

—Swayam Prabha Shankara

Conclusion

We hope that reading this book will help readers become

knowledgeable on the subject of RAR and the

implementation effort. We also hope that developers will

find it useful in applying new techniques for enhancement.

Finally, we hope that end users will find this book useful in

order to widen their knowledge and gain understanding of

how to work with RAR.

1 Introduction to Revenue

Recognition

Everyone knows that cash doesn’t equal revenue. But

how and when can we recognize and report revenue?

In some cases, the answer to this question is still

relatively simple. What we invest in customers is

revenue to recognize, and when we issue an invoice,

we can recognize that revenue. However, there are

more complicated cases in which both amount and

time of recognition can be a challenge. In this chapter,

we’ll explain the basics of revenue recognition.

Revenue is an accounting process that gains even more

importance in a competing market. If a company operates in

the automotive, services, or telecommunications space, it’s

important to report revenue correctly and consistently as

the main measurement of its overall success.

In the past several years, there have been important,

tectonic changes in how entities recognize revenue (some

called these changes the “perfect storm in accounting” as

they came together with International Financial Reporting

Standards [IFRS] 9, 16, and 17). Now that the initial

adjustment is over, it’s a good moment to look back and see

how the initial implementation went, what challenges we’re

facing now half a decade after implementation, and where

we go from here.

As the market-leading enterprise resource planning (ERP)

provider, SAP has been providing tools for revenue

recognition for a while now. In the early SAP R/3 and SAP

ERP days, there were products for calculating accrued

revenue that were tightly integrated with the Sales and

Distribution (SD) module. With the latest versions of SAP

ERP, the standalone SAP Revenue Accounting and Reporting

solution came into light as a tool that will be used to fulfill

the latest requirements from the International Accounting

Standards (IAS) board.

Now, the revenue accounting and reporting (RAR)

functionality has evolved further. In SAP S/4HANA, we have

classic and optimized versions of RAR, which can be

integrated not only with sales and distribution but also with

new products such as SAP Billing and Revenue Innovation

Management and even with external systems. The tool went

through significant changes, resulting in several new added

functionalities over the years and changes to already

existing ones. RAR is becoming even more important with

migration to SAP S/4HANA because it’s a mandatory tool for

any kind of revenue recognition. In addition, SAP provides

additional products, such as event-based revenue

recognition (EBRR), which can be used to solve some

specific challenges.

In this chapter, we’ll introduce key revenue recognition

topics to lay the foundation for the rest of the book,

including basic concepts, the IFRS five-step model, the

impact of those standards on industries, and how SAP has

provided revenue recognition functionality to meet those

industry needs.

1.1 What Is Revenue Recognition?

Revenue is one of the key measurements of business

performance for every company. Having that in mind,

companies need to push whatever qualifies as revenue to its

limits. Examples of such activities are all around:

A construction company collects the payments in

advance, before the work is performed.

An audit company charges clients on time and material

basis, before the work is completed.

A manufacturing company gets invoices paid before the

goods reach the end customers.

In all these cases, at the heart of accrual accounting, there

is a revenue recognition concept as a set of rules for how

and when revenue can be recognized. In a simple scenario,

a product is delivered to the customer who immediately

pays for it. However, modern business is more complicated

than that. We’re facing situations where a company takes a

long time to produce a product, but gets paid in the

meantime. In that case, we can’t make any more links

between cash and revenue. In addition, competition pushed

businesses to improve time to market, which in return, gave

birth to bundles. Marketing departments are based on

consumer preference reports creating new products that

bundle different goods and services. These bundles also

contain hidden discounts that aren’t visible at first sight. For

example, you subscribe to the newest service offering from

your telecommunications service provider (telco), and, in

return, you get selected services, cloud space, and other

goodies for free. All these items are in fact a discount given

by your vendor to either retain you as a customer or as a

reward for switching to them.

All these situations make the world of revenue recognition

both complex and exciting. However, they aren’t new, so

the question is, what actually changed? Why was there a

need to introduce IFRS 15 in the first place? If you ask audit

companies this question, the answer is usually that a new

model was needed to improve comparability between

companies and across industries. IAS 18 also contains a set

of rules and principles, but these were written quite broadly

and gave a lot of freedom to companies to interpret them

for specific situations.

Example: Impact of IFRS 15 Changes

A telco company is selling a device and service bundle.

Because the company is new to the market, expensive

devices are added to packages without charge to get

consumers’ attention.

In the old IAS 18 world, all the revenue paid by the

consumer would be treated as service revenue, while

devices would get nothing (because the consumer wasn’t

paying for them). When you compare this company with

others, it would be difficult to differentiate if their service

revenue was boosted by service quality or improvements

in network equipment, for example, or simply because

they grabbed a lot of clients based on offering the newest

device for free.

Here, IFRS 15 (or Accounting Standards Codification [ASC]

606) comes into the picture by introducing tools and

measurements that make this kind of comparison easier.

In our example, the introduction of the standalone selling

price (SSP) forced companies to allocate some portion of

the revenue to the device too, even if its sales price is

zero.

IFRS 15 has already been in place for a while, with the first

pilot companies adopting it five years ago. From January 1,

2018, IFRS 15 has been mandatory for all entities listed on

any stock exchange. Currently, IFRS 15 is mandatory in 168

countries worldwide. Having said that, an entity that doesn’t

comply with IFRS 15 might find that attracting investors or

sourcing credit lines is more difficult because it sends the

message that the company’s financial statements aren’t

comparable with others and can’t be trusted. These facts

reveal why revenue recognition should be the centerpiece in

every company’s digital transformation journey.

IFRS 15 and ASC 606

Often, you’ll see ASC 606 and IFRS 15 used as synonyms.

Indeed, being jointly developed by FASB and IASB, they

are very similar, although not really the same. For

example, regarding license renewal scenarios, ASC 606

lets you start revenue recognition only once the period of

renewal starts, whereas IFRS 15 doesn’t have such a

limitation. If your customer decides to renew a license on

January 1, starting from January 7, IFRS 15 lets you

recognize that revenue immediately, while ASC 606

requires recognition to start only on January 7. The impact

of these different treatments needs to be considered

before choosing an application.

1.2 Five-Step Model of IFRS 15

When looking at revenue coming from contracts, many of the revenue transactions are

rather straightforward and simple. However, some can be highly complex and challenging

to understand, such as contracts with multiple elements, agreements with milestone

payments, or software arrangements. In all of these cases, it might be difficult to

understand what entity committed to deliver, how much revenue should be recognized,

and when revenue can be recognized.

To help users apply the standard, the IFRS board developed a five-step model, as shown in

Figure 1.1. We’ll walk through each of the five steps in the following sections.

Figure 1.1 Five-Step Model of Revenue Recognition

1.2.1 Step 1: Identify the Contract

The first step looks like the easiest one: a contract is a document (where the standard

doesn’t apply is for written, oral, or common business practice), which defines the rights

and responsibilities of contractual parties. However, in practice, this one might be more

challenging. Imagine an entity that is selling goods and services to customers over a

certain period of time, which could be over several years. Here, various discounts are

applied to some goods, there are free goods and services provided, and so on. In parallel,

vendors can have several other contracts for the same goods that are part of different

deals. It gets more complicated if our customer isn’t a real end customer, but we’re directly

delivering goods to the end user.

To properly identify contracts, it’s essential to define at what level a deal is being

negotiated and what discounts are being applied. In addition, it’s not uncommon to

establish a certain time frame in this logic. For example, if orders are being created with

the same customer within a certain time frame, they need to be combined in one contract.

Changes of Contracts

Contract modification has a significant impact on system performance. In practice, it’s

not uncommon to see companies from the same line of business with big differences in

contracts structure: in one case, there is a large number of smaller contracts, and in

another, a small number of huge contracts. These situations will be discussed in later

sections.

Maybe the most important step in identifying a contract is that it must represent a binding

arrangement between two parties. There are two main options when it comes to identifying

a contract:

Contract-by-contract basis

The contract-by-contract approach refers to identifying all separate contracts that

represent separate deals with the customers.

Portfolio approach

The portfolio approach refers to making a group of similar contracts that will be looked at

on a higher level. The portfolio approach was tempting to organizations, especially in the

early days, because it didn’t require a deep dive into data and distinguishing all relevant

information, which is required to properly apply the standard (this was particularly visible

in telco companies). The portfolio approach does, however, come with its own set of

challenges, but it won’t be covered in this book.

In this activity, that is, identifying the contract, the first task for a business is to identify

IFRS 15 as the standard that should be applied or determine if there is some other standard

available for specified contracts. For example, leasing contracts are part of IFRS 16, and

although IFRS 15 might be responsible for providing some data, contract creation and

management belong to a standard that isn’t part of this book. Even though no entity is

completely excluded from revenue standards, the following transactions aren’t part of IFRS

15/ASC 606:

Leases (covered by IFRS 16)

Contracts part of financial services—insurance (covered in IFRS 17/ASC 944)

Guarantees

Nonmonetary exchanges to enable future sales

Credit card fees

Gaming contracts

In addition, there are certain transactions that might end up in revenue postings and

recognition but aren’t part of IFRS 15, such as dividends, which should be clearly excluded

and not mixed with regular revenue coming from contracts with customers.

The next challenge an entity might face is how to identify a customer. This problem is more

visible if we have multiple parties involved in one contract.

Example: Identifying the Customer

Let’s consider an example. A pharmaceutical company is selling different diagnostic

instruments and reagents that are being used to perform different tests. These items are

being sold through a distributor, but to the same chain of hospitals and delivered to

different locations. With the same hospital chain, the entity has additional agreements

that are discussed and agreed upon separately. In addition, the entity might use different

distributors for deliveries and distribution to the hospital chain.

To differentiate the customer, it’s necessary to look at which level of terms and

conditions are being agreed upon. If terms are agreed with the hospital chain, then the

chain should be the customer. All contracts that might result from the same agreement

need to be combined under the same IFRS 15 contract.

To conclude, there is no out-of-the-box answer to the question of how a customer should be

identified, which is why it’s essential that the entity looks at each contract individually to

make sure contracts, customers, and rules are applied correctly when contracts are

combined.

Once we identify the customer, the next step is enforceability. In this activity, it’s essential

to establish if there is legal and binding enforceability of the contract with clear terms and

conditions. Sometimes, contracts represent the simple purchase of products, and

sometimes they represent a complex multiyear project to build a power plant. In both

cases, there must be enforceability for both parties to define the contract.

Enforceability is one more area in which its meaning can vary from simple cases where the

contract is within a single area of jurisdiction to more complex cases when contracts are

spread over several countries in which different jurisdictions apply. In the latter case, it

might be more challenging to determine enforceability. Complexity is increased further

when parties enter into contract amendments and modifications by changing terms and

conditions, applying discounts, or even changing the substance of the contract itself. Either

way, the critical task is to determine that there are rights and obligations for both parties

and enforceability of the contract. Only in those cases can we safely say that a document

can be treated as a contract under IFRS 15.

Example: Enforceability

Let’s consider another example. A vendor supplied a customer with goods prior to

contract signing. The customer received the goods and started using them. Can this kind

of contract be considered an IFRS 15 contract?

Here we need to verify the enforceability. The standard is open about how a contract is

concluded, so it can be based on a verbal agreement. Therefore, if there is enough

evidence that an agreement existed even without a signed contract, those arrangements

can be considered contracts.

Let’s look at an alternative scenario. A telco company is providing a free trial period

during which the customer is using the service without any payment. After that period

has expired, the customer can decide whether to enter into a long-term agreement. Can

this transaction be considered a contract?

In this case, the answer is clearly no. During and after, the customer is free to simply

walk out of the contract, so there is no enforceability. Because the document wasn’t

binding for both parties, it can’t be considered an IFRS 15–relevant contract. This

example can be particularly handy even in cases where we have long-term agreements

between parties in which the customer is being supplied with goods over a period of

time. If there is an option for a customer to stop using our services and thus suffer no

legal consequence, that kind of agreement isn’t enforceable and can’t be considered an

IFRS 15 contract.

In addition to enforceability, there is also the idea of probability. Before the agreement can

be considered an IFRS 15 contract, an assessment has to be made to determine the

probability of collecting the amount stated in the agreement. In IFRS 15, probable is

defined as “more likely to occur,” and the general rule is that more than 75% is considered

probable.

When we’re talking about probability, we must understand price concessions because it’s

very important to determine the impact of future price concessions on the entity’s ability to

fulfill payment obligations. If it’s “highly unlikely” that payment is going to be made, there

is probability that the agreement can’t be considered an IFRS 15 contract. Howeve ir,f we

only know that the amount to be collected can be less than agreed with the agreement

remaining collectable, then we’re talking about variable consideration, which will be

discussed in Section 1.2.3 when we cover how to determine the transactional price.

To conclude, the determination of contracts is a particularly sensitive area that has a big

impact on the IT side of providing data for IFRS 15 reporting. The number of agreements

considered IFRS 15 contracts overall is having a direct impact on complexity, performance,

and data requirements. Therefore, it’s worth spending time to have a clear idea of what

should be identified as an IFRS 15 contract.

1.2.2 Step 2: Identify Performance Obligations

Performance obligations (POBs) represent a promise in a contract to deliver goods or

services to a customer. The most important topic when identifying POBs is distinction: a

good is treated as distinct if a customer can benefit from the good on its own. In addition,

in practice, if an entity sells this good on its own, it can be treated as distinct.

Why is this important? In practice, companies often ask themselves whether some service,

which is usually bundled, should be represented as a separate POB. Let’s take the case of

warranties: When a customer buys some goods, in most cases, the customer has been

offered some sort of guarantee that the sold item will work properly for a certain time

frame. However, the customer must also be offered an extended warranty—adding periods

in which a company guarantees that the product will work without malfunctions. So, the

question companies ask is whether they should treat warranties as separate POBs or not.

To answer this, we need to take a look at the company’s product catalog: if they offer a

warranty as a separate product, then we can treat it as a separate POB. However, if it’s not

sold separately, it needs to be bundled with the original product with proper impact on the

transactional price and the SSP. So, in this case, the usual answer is that a standard

warranty is treated as part of the original product, and any additional warranty that the

customer opts for is a separate POB.

Activation Fees

One common case is the different fees charged to customers when buying some good or

service. The company will simply charge a certain fee as a cost to the customer for mere

activation of the service.

The answer in this case is very similar: if they can buy that product separately—it’s a

separate POB. If not, then it needs to be bundled with the main POB that is being

activated.

As mentioned earlier, distinction is an important activity when determining POBs. Each

distinct good or service that entity provides is a separate POB. If it’s not distinct, it’s

bundled with other nondistinct goods until a distinct bundle is created. If we look at our

previous example, it’s clear that any kind of fee the customer purchases (or is obliged to

purchase) can’t be treated as a separate POB because it isn’t clear how the customer can

benefit from it.

Once it’s clear that the POB is capable of being distinct, we need to assess it as separately

identifiable from other promises in the contract.

Let’s walk through another example. A software company is entering into a contract with a

customer to provide a customized SAP S/4HANA solution. Because the customer is working

in a niche area, besides licenses, significant work is needed to provide a solution that fits

the customer’s request. Besides this, three years of support service are provided and one

year of extended support for future rollouts. How many separate POBs should this contract

have?

In this case, we’re talking about three distinct POBs:

SAP S/4HANA software

Rollout support

Regular service support

Even though the customer purchased two separate items (software license and

customization service), the customer can’t benefit from the license itself and needs a

custom solution, so these two need to be bundled into one POB. Because rollout support is

different from regular support, those two items need to be created as separate POBs.

The conclusion of this example is that proper POB identification is critical for proper

revenue recognition under IFRS 15. Even the concept of POBs came only with IFRS 15; it’s

essential not only for proper revenue recognition in terms of amounts but also for timing of

proper recognition. Again, besides clear business reasoning, there is also an impact on IT

systems: the bundling and unbundling concept might require additional investments in the

infrastructure.

1.2.3 Step 3: Determine the Transactional Price

The transactional price is the amount of funds the entity is expecting to get in exchange for

transferring the promised goods or services. The entity allocates the transactional price to

POBs to recognize revenue. As such, the transactional price is considered a net amount,

meaning without any other amounts being transferred to third parties such as taxes.

As described, determining the transactional price can be very simple and straightforward,

but there are some complex cases. In practice, complexities mainly come from one of the

following groups:

Variable consideration

In some cases, how much an entity can expect to get in exchange for goods and services

isn’t straightforward. If we’re giving invoice discounts such as volume rebates, at the

time when sales are made, we don’t know if the customer will reach the volume needed

to get the discount. When quantifying variable considerations, it’s necessary to rely on

the probability that a certain event will occur. So, if the history with certain customers

shows that, in most cases, they reach a threshold to achieve some discount, it’s safe to

say the same is probable and build it in the transactional price. Estimated probability

isn’t required, meaning an entity can use different considerations on a case-by-case

basis.

Significant financing component

Contracts do contain a significant financing component if payment from a customer

happens much before or much after performance. This timing difference can benefit

either the customer (if the vendor is financing the customer’s purchase) or vendor (if the

vendor is making payment before performance is fulfilled). If any of these cases occur,

the entity needs to present its revenue recognized by fulfilling performance separately

from revenue coming from interest.

Significant Financing Component or Time Value of Money

A significant financing component is often also called the time value of money. Time

value of money is calculated if a contract has a significant financing component.

Noncash consideration

Any consideration, even if not monetary, needs to be included when determining the

transactional price. However, the key word in this case is control. If, for example, a

company enters a steel-processing agreement where it needs to provide the service of

making steel from iron, but it doesn’t take control over the ore, the price of the ore can’t

be included in the transactional price. In this same example, if the vendor has control

over the ore, the price of the ore (measured by fair value) needs to be included in the

transactional price.

Consideration payable to customer

These examples contain any amounts (cash or noncash) that the entity might pay to the

customer in the form of incentive or rebate, which need to be considered when

determining the transactional price.

To conclude, experience shows that even if determining the transactional price seems

straightforward, there are often extremely difficult challenges. For instance, in the variable

consideration example, it’s necessary for IT and business teams to work together to

establish feasible rules that can be fulfilled by the data in various systems.

1.2.4 Step 4: Allocate the Transactional Price

The next step is the allocation of the transactional price. Once the entity establishes the

transactional price (considering all discounts and considerations), the same needs to be

allocated to different POBs in the contract.

When determining how much of the transactional price needs to be allocated to POBs, the

SSP must be consulted. The SSP is a key element of the IFRS 15/ASC 606 standard because

it’s used as a factor regarding which transactional price is allocated to POBs:

What is allocated is determined by the transactional price.

How much is allocated is determined by the SSP.

To put it simply, the SSP represents the value an entity can get for selling the same product

or service without applying any hidden discounts to the customer for buying a bundle of

products.

To understand the importance of the SSP, let’s look at the example shown in Table 5.14.

POB Quantity Transactional

Price

SSP Allocated

Transactional

Price

Allocated

Transactional

Price per

Unit

Allocation

Effect

POB

1

1,000 2,000.00 1,200.00 1,621.62 1.62 (378.38)

POB

2

1 - 500.00 675.68 675.68 675.68

POB

3

1 3,000.00 2,000.00 2,702.70 2,702.70 (297.30)

Total (5,000.00) (3,700.00) (5,000.00)

Table 5.14 Allocation of Transactional Price through the SSP

So, in this case, we have a contract with three different POBs. POB 1 has an agreed

quantity of 1,000 pieces selling at 2,000, and the SSP is 1,200. POB 2 is being given to the

customer for free, but its SSP is 500, which means that it’s regularly sold for 500. POB 3 is

sold at 3,000 units with a regular price of 2,000.

Here, we can see the main difference between IAS 18 and IFRS 15 revenue recognition. In

the old standard, POB 1 would have been recognized by the amount it’s billed: 2,000.

However, this amount is adjusted by the ratio of the SSP for the specific POB to the total

SSP for the contract, so it’s getting 378.38 less revenue than before.

The opposite case occurs with POB 1 because it’s given to the customer free; according to

IAS 18, there wouldn’t be any revenue to be recognized there. However, because IFRS 15

places importance on the value given to the customer by providing this product for free,

revenue must be recognized there. Therefore, revenue is proportionally weighted and

adjusted, so this POB is getting 675.68 units more.

Here, we can see the main difference between the old and new standards: the amount of

revenue that is recognized is the same as always, which absolutely makes sense—you

can’t have more revenue than you’re actually billing from the customer. But how much and

where revenue is being allocated is completely different and is primarily determined by the

SSP of each product and its ratio in all the POBs. This activity had a huge impact on certain

industries.

Similar to elements discussed in these steps, determining the SSP can be straightforward

and simple. When pricing is stable and clear, an entity can make a direct link between the

costs of producing/procuring goods that are later sold, so determination of the SSP requires

little to no effort. However, more often than not, you’ll face different challenges in this

area:

The entity is selling the same product with a variety of different prices.

There is no clear link between producing goods and their later sale.

Goods sold are unique and don’t have similar examples on the market.

In general, there are three possible ways to determine the SSP:

Cost-plus method

This method is also known from the transfer pricing determination process, and it’s

based on determining the SSP as a sum of all costs related to production/procurement

(manufacturing, labor, related costs) and adding some fixed margin on top. For example,

a company is producing material X. The cost-plus method means that we take the

material, labor, and common costs to come up with the costs of goods manufactured

(COGM). To that, we can apply a fixed margin of 10% to get the SSP for product X.

Table 5.15 shows an example breakdown using the cost-plus method.

Direct Costs

Material costs 1,000.00

Depreciation 300.00

Labor costs 400.00

Sum of Direct Costs 1,700.00

Indirect costs 100.00

Cost of goods 1,800.00

Fixed margin 10%

Total SSP 1,980.00

Table 5.15 Calculation of the SSP with the Cost-Plus Method

The cost-plus method is arguably the most popular way to determine the SSP, mainly

due to its simplicity. However, this method has its own set of challenges. For example, an

entity might have a case in which the same product can be sold to different customers

with different margins (e.g., charging a higher margin to higher risk customers). In other

scenarios, the method is very clear and fits entities that sell goods with no challenge to

determine costs associated with production. In some other cases, that might not be the

situation, such as companies where production is associated with R&D costs, so making a

clear link between production costs and the SSP might be a challenging subject.

Market observable price

In this method, we determine the SSP as the amount the customer would need to buy

the product if they were to purchase it on the market. For example, a vendor is bundling

routers a customer needs to use for their streaming service. Because the routers are

being purchased from the supplier as part of some broader contract, we can’t use the

cost-plus method because costs can’t be determined properly. In this case, we must look

at the market to determine how much the customer should pay to obtain that router.

Different criteria need to be considered such as position in the market, customer group

(retail or wholesale), distribution channel, and so on. In this method of determining the

SSP, a major challenge occurs when there is no similar product on the market to compare

with to determine the SSP. In those cases, adjustments that need to be made might

result in providing a wrong or false SSP.

An example of the market observable price can be in industries where there is

competition with the same or comparable products. In that case, a valid approach is to

estimate the SSP by comparing the product with competing products.

Residual approach

In this approach, the entity would deduct determined SSPs from the total transactional

price, resulting in the SSP for the remaining POB. Table 5.17 shows an example

breakdown using the residual approach.

SSP Transactional Price

Bundle 500.00

POB 1 100.00

POB 2 250.00

POB 3 500.00 – (250.00 + 100.00) = 150.00

Table 5.17 Calculation with the Residual Approach

In this example, we can see that the SSPs for the first two POBs are known and already

determined. However, for POB 3, there is no clear method for how the SSP can be

determined, so the entity applies the residual approach. From the total transactional

price, the sum of already determined SSPs has been deducted. That result (residual) is

the SSP for POB 3. Cases in which the residual approach makes sense are when there is

high volatility in pricing (i.e., uncertain pricing), price interdependence when the SSP of

one POB influences the SSP of another POB, or when there is a lack of data needed to

determine the SSP. But it’s important to mention that the residual approach is least

favorable among others and should be applied only if there is no other way to determine

the SSP of a product.

Besides determining the SSP, in practice, an entity might face more challenges when it

comes to allocating the transactional price. One of these issues is discounts. Discounts are

usually applied to certain items that belong to a bundle, but when it comes to IFRS 15, the

standard is clear: even if a discount is applied to a certain item, the effect should be

allocated to all POBs that belong to the contract.

To conclude, the determination of SSPs is crucial and possibly the most important activity

when it comes to IFRS 15/ASC 606 compliance reporting. There are two aspects that need

to be considered. First, businesses need to work out the preferred method for determining

the SSP, as well as where and how it will be applied. Second, it’s essential that this method

is agreed upon with the IT team as well because it’s crucial that data necessary for proper

determination is available.

1.2.5 Step 5: Recognize Revenue

In this section, we’ll elaborate on the last step, revenue recognition, which is when and

how revenue can be recognized. Revenue can be recognized when a POB is satisfied, which

happens when control over promised goods and services is being transferred to the

customer. Transfer of control can happen as one of the following:

Point in time

A certain event triggers revenue recognition fully or partially.

Over time

A simple passage of time serves as a trigger for revenue recognition.

The most critical part of revenue recognition is determining when control has been

transferred to the customer. The concept of control transfer is applicable for both goods

and services; control is considered to be passed for services too even if they are being

consumed instantly.

Control is considered to be passed if the customer has the ability to use and get substantial

benefits from all or the remaining assets. For example, if a customer makes a prepayment,

control isn’t passed because the customer doesn’t actually have control over the product.

It’s always advisable when evaluating control to look at it from the customer’s perspective;

this reduces the risk of recognizing revenue prematurely.

At the moment of contract inception, the entity must determine whether the POB will be

satisfied at a point in time or over time. Application of over time revenue recognition isn’t

limited to services (which are usually considered) but also applies to some delivery or

production of complex equipment or assets. In other words, it’s important to look at terms

and conditions of the contract to be able to clearly judge whether revenue should be

recognized over time or at a point in time.

In general, for revenue to be recognized over time, one of the following three criteria needs

to be met:

The customer simultaneously receives and consumes benefits of a product.

The seller performance significantly enhances the asset owned by the customer.

The seller performance creates an asset that can’t be used alternatively, and the seller

has an enforceable right to receive payment for performance to date.

The first example is straightforward and is applicable for most of the services performed

over time: The seller and customer are entering into contracts where the seller needs to

provide a continuous service in a defined period of time. In that case, irrespective of

payment terms, revenue needs to be recognized over time.

The second case is applicable for activities that are performed for a customer for

enrichment or enhancement, but that are always owned by the customer. An example is

when the seller receives a product from a customer that needs to be enhanced so it can be

consumed by the customer. In this case, the seller only provides an enrichment service,

and the asset itself never changes ownership. Essentially, this case isn’t much different

from the first one, so revenue can be recognized over time.

The third case is when a seller builds, for example, some asset that is made specifically

according to a customer’s specification and that can’t have another purpose. The

important part here is that the seller has an enforceable right for payment for work

completed by that date. For example, say the seller entered a contract to build a specific

asset exactly according to a customer’s specification, and this asset can’t fulfill any other

need. If the seller has an enforceable right for payment done by the date (meaning if the

customer cancels the contract along the way, the customer will still need to pay for work

done)—revenue can be recognized over time. If such a clause doesn’t exist, then revenue

needs to be recognized at a point in time.

Special over time revenue recognition cases are the percentage of completion (POC; i.e.,

measures of progress) scenarios. These cases are very important for some lines of business

—such as construction, where satisfying performance happens over time, but depends on

the percentage of work completed. The point of this revenue recognition method is that the

amount of revenue being recognized fits the pattern that reflects the transfer of control of

goods promised to the customer.

Methods for measuring progress can be grouped in the following two areas:

Output methods

These methods measure revenue in correlation to value that has been transferred to the

customer.

Input methods

These methods measure revenue according to effort to satisfy a POB.

Point-in-time revenue recognition can be used if none of the criteria for over time

recognition have been met. There aren’t clear rules, but rather indications when point in

time recognition can be used, and they are related to control: if the customer has control

over the POB, the obligation has been satisfied, and revenue can be recognized.

In practice, different challenges might make determining when revenue can be recognized

a bit less obvious. It’s no surprise that those cases are related to ways in which it can be

proved that the customer has control over goods. For example, say a customer is making a

contract with the seller to buy certain goods. The seller is paying in advance, and there is a

certain time period needed for goods to reach the client’s warehouse. When can sellers

recognize the revenue?

The answer is that it depends. When selling goods that require transportation to reach the

customer, the contract specifies terms—called incoterms—regarding the responsibilities of

the seller and buyer. If the incoterm used is, for example, Delivered at Place (DAP), the

customer becomes the owner of the goods at the moment of delivery to their storage

location. So, control hasn’t been passed until goods reach their final destination, and

revenue can’t be recognized prior to that.

In conclusion, when the new standard was first published, the five-step model was fresh

and required a lot of studying to be fully understood. Some areas, such as transactional

price determination, weren’t really new, and companies could adjust to it without a huge

effort. Some other areas were different, and it required adjustments both to be understood

and to be applied. After years of having the standard around, all these terms should now be

known. However, it needs to be repeated that the way they are applied might be different

depending on the scenario, so deciding how contracts will be created or the method behind

the SSP determination is still of utmost importance.

Now, maybe more than ever, it’s important that both business and IT teams work hand in

hand and do their best to help each other. IT needs clear rules about what needs to be

provided, and business teams needs IT’s help to find the data for use in satisfying

requirements.

1.3 Industry Impact

The introduction of IFRS 15 meant significant change in

terms of how revenue is recognized for almost all entities

operating and presenting financial statements. However,

the impact varies and is highly dependent on the industry in

which an entity operates.

As we can see in Figure 1.2, the impact might be small to

none for industries where invoice-driven revenue

recognition is the norm. For example, in the retail industry, a

customer purchases a product, pays for it, and leaves. In

general, revenue recognition for those cases is very

straightforward.

On the other end of the spectrum, some industries have

arrangements with multiple elements (bundles) and with

that, the structure and number of bundles becomes even

more complex (e.g., telecommunications). In addition, some

industries have complex contract structures with multiple

customers and multilevel discounts where arrangements

last a long time. These industries are heavily impacted by

IFRS 15 changes, primarily because to achieve correct

revenue recognition, unbundling POBs needs to happen. The

second reason is that here we’re talking about industries

with a massive number of transactions, and, besides

unbundling, these rules need to be applied automatically.

And, of course, there are industries with a complex product

structure, such as professional services or software

companies where there is a mix of products where revenue

needs to be recognized both over time and at a point in

time.

Figure 1.2 Industry Impact of the IFRS 15 Implementation

In the following sections, we’ll explore the impact of IFRS 15

changes on different industries with specific attention on

those with the biggest challenges. This information will be

useful for you whether you’re trying to solve some specific

scenarios from the mentioned industries or are just starting

by setting the landscape.

1.3.1 Telecommunications

Telecommunications has always been one of the most fast-

paced industries. Operating in a highly volatile environment

surrounded by constant technological changes, government

regulations, and frequent industry disruptors, companies

were always forced to innovate to survive—from landline to

mobile and from voice to data focus. So, what changed

recently?

Today, telco companies are experiencing the perfect storm.

First, there’s technological pressure that makes it difficult to

keep the pace: 5G is slowly becoming a standard, and there

is a whole bag of technology advances that need to be used

to stay relevant in constantly competing markets

(blockchain and artificial intelligence [AI], to name a few).

Second, government pressure isn’t decreasing; on the

contrary, lists of standards and regulations that companies

must fulfill are growing every day (data privacy, to name

one). So, companies need to invest in both infrastructure

and develop new processes and standards to adhere to

those regulations. And, third, there are completely new kids

on the block—internet companies—acting as disruptors.

In only five years, the market share between internet

companies and classic telco operators completely changed

(see http://s-prs.co/v570003 for a detailed breakdown).

Eight years ago, telcos were still key players. They looked

down from above at all the companies operating on the

same playground, but saw them as necessities, not

competition.

However, in just five years, the picture was completely

turned upside down. Now telco operators seem like

followers to internet companies, which are in turn called

giants. In addition, there is a completely new set of

competitors now operating in the internet space and

increasing this pressure even further.

So, what is the issue here? Well, none of the growth of

internet companies would be possible without the

infrastructure provided by telco operators. In return,

however, the telco operators didn’t gain much. Plus, internet

https://s-prs.co/v570003

companies started entering areas that were historically

telco services, such as voice.

Don’t forget, this occurred before the COVID-19 pandemic.

COVID-19 created the need for jobs and homes to integrate

seamlessly. So, it’s to be expected that telecom operators

today are under more pressure than ever before.

This situation was a call for action. Many operators started

digital transformation journeys that resulted in an overall

decrease in costs. Overall, the shift in business model also

required investments in improving customer experience and

improving time to market for new products. All these

changes in the business model triggered changes in

reporting.

We’ll look into a few key ways that the telecommunications

industry is managing this new landscape, as well as the IFRS

15 requirements, in the following sections.

Integration and Data Volume

The main issue that requires attention when working with

telecom operators is integration with different systems.

Historically, telcos started as providers of fixed line

telephony; with the development of mobile services, they

merged with mobile providers.

In addition, telco products are becoming more and more

complex. In the beginning, it was simple; customers were

paying for services offered through cable telephony. Later,

mobile business brought additional complexity by combining

devices (mobile phones, routers, etc.) with service. At the

end, with the expansion of the internet, we got products

based around data, such as internet services and broadband

networks. Therefore, customers now expect one bill that

contains everything, even possibly within a single line.

Convergence in Telecommunication Companies

Convergence in the telecommunications industry means

that eventually all voice and data services will belong to a

single data stream. There are a few factors pushing for

convergence, but most important is competition from new

companies. The first example of convergent products was

the merging of data and voice into a single revenue

stream. Later, we might see new products in addition to

voice and data that will include buying digital products or

subscriptions to streaming services—all bundled in one.

To support such a business model, information systems of

telco operators became very complex. On one hand, you

have different customer relationship management (CRM)

(often handling different business streams), billing, and

charging systems. On the other hand, it’s required that they

all work together to provide data for proper IFRS 15

reporting.

Figure 1.3 shows a very simplified view of systems that are

involved in regular business operations in any telecom

provider. Multiply these for mobile and fixed telephony, as

well as involve convergent products, and the complexity

becomes clear.

Figure 1.3 Landscape of Business Support Systems in the Telco Industry

Business Support Systems

Business support systems (BSS) are the components that

a telco company uses to run its business operations for

customers. Together with operations support systems

(OSS), they are used to support various end-to-end

telecommunication services. BSS systems usually consist

of a product catalog, CRM system (which focuses on

customer and partner management), revenue

management system (often called billing), and order

management system.

Integration is key when it comes to IFRS 15 reporting in any

telco company. It’s necessary to identify all data points

needed to satisfy all five steps of the IFRS 15 model.

However, more often than not, you’ll find that some data

doesn’t exist or the data requires multiple sources to be

created/compiled. In those cases, it’s very useful to have a

tool that will be placed between the source systems and the

revenue accounting engine to prepare data later used to

satisfy the five-step model in IFRS 15. This kind of tool is

usually called a data hub, and it refers to an extract,

transform, load (ETL) product that’s used to transform and

enrich data before it’s loaded for IFRS 15 calculation.

What Is ETL?

In a nutshell, ETL tools are used when there is a need to

enrich or transform data before it’s loaded into its final

source. Both extraction and transformation are multistep

processes where data is retrieved from external sources,

cleaned, and transformed into the needed format. ETL

software typically runs automatically on the basis of

scheduled jobs, but there are more and more tools that

can run in real time.

Among the many ETL products on the market is SAP Data

Services. It comes with plug-ins that make it possible to

work with most data sources used.

This kind of setup enables a significant reduction of risk

when it comes to transforming data coming from different

sources. Keep in mind that even basic data needed for

fulfilling IFRS 15 requirements might be scattered in

different data sources and require significant time to

compile so that it can be used for allocation calculation.

This problem becomes even bigger and clearer when it’s

compared with the fact that the necessary data isn’t usually

ready before month end (billing runs are done once or, in

the best case, a few times a month) and that the team

preparing IFRS 15 reporting has limited time to prepare.

Bringing an ETL tool into the picture also makes sense when

used on top of an SAP HANA database.

Contracts and Performance Obligations

As mentioned in the previous section, one of the biggest

challenges in the telco line of business is data volume,

which is a determining factor on whether an entity will be

able to successfully perform tasks for IFRS 15 reporting.

Data volume should also be a considering factor on how

contracts will be created and how granular POBs will be

created in contracts. In the earlier days of RAR, it was

strongly recommended that a certain number of POBs

shouldn’t be exceeded for the tool to work properly.

Figure 1.4 shows a simple telco contract with just three

POBs: one for the device that will be recognized as point-in-

time revenue, one for the service that is going over time,

and one for a one-time installation fee.

Figure 1.4 Example of a Simple Telco Contract

This simplified method makes data that is loaded for IFRS 15

calculation lightweight so that RAR is being kept very lean,

which results in give good processing time.

On the flip side, there might be a need for using additional

analytical tools for detailed reporting on a more granular

level, as shown in Figure 1.5.

Figure 1.5 Example of an Expanded Telco Contract

In this case, we’re creating POBs on a more granular level.

We’re splitting the data service being provided to the

customer into the following:

Streaming service provided to the customer

Software as a service (SaaS; e.g., Microsoft 365

subscription)

Data storage on the cloud

Remember, if we can sell these services separately to the

customer and the customer is clearly benefiting from them,

these can be created as separate POBs according to step 2

of the revenue recognition model (refer to Figure 1.1). So, in

this case, the same contract has seven POBs instead of

three (and, if we include an installation fee, that makes

eight POBs). This multiplies the process by almost 3, and if

it’s then multiplied by several million contracts (which isn’t

uncommon in telco companies), it’s clear that data

processing time will definitely increase. Of course, this is

then multiplied by the number of jobs that need to run to

fetch the data from sources, and so on.

The last point to mention here is related to contract

modifications. Remember, a contract isn’t a document

carved in stone: customers will often come asking for

additional services, prolongation, additional devices, and so

on. So, the number of contracts processed every month will

increase as well for the number of contract modifications

that need to be processed.

Note

Whether a service is being charged or not doesn’t

determine its creation as a POB. Telco companies often

bundle products such as streaming services or cloud

space, which aren’t separately charged to customers.

However, they do have a certain value, thus they can’t be

simply skipped from either creation as POB or including

them as part of the service (thereby increasing its SSP).

Prepaid or Not Prepaid

In the telco industry, you’ll find two major types of contracts

(especially in the Global System for Mobile Communications

[GSM] market): prepaid and postpaid. Prepaid contracts or

“pay-as-you-go” are contracts for telco services where the

customer pays for credit and later consumes it as different

telco services (voice, data, SMS). Once the credit is

consumed, the continuing services of outgoing calls,

sending messages, or accessing data are denied.

Postpaid contracts are the opposite: the customer consumes

a service and pays for it at the month end. As the fight for

the market became more and more fierce, companies were

trying to get more consumers and make them loyal. To do

so, they focused on the postpaid market and created

bundles that included devices and different free items, just

to bind the consumer to a longer contract period. When we

talk about IFRS 15’s impact on telco companies, the

postpaid contract is a classic example.

However, the prepaid contract had an evolution of its own.

In the beginning, you simply paid a credit and used it for

any service. At the month end, the credit would either

simply disappear or would be rolled to the next period. But

in the modern telco environment, even prepaid contracts

are becoming more complex: they also include freebies,

special packages that favor one type of service, loyalty

points, and so on.

So, should prepaid contracts be considered in an IFRS 15

project? The answer is yes. However, how and to what

extent depends on the specific case. If a company is doing a

majority of its business in the postpaid world, it would make

sense that the prepaid market is treated with the portfolio

approach. In that case, the market will be sliced into several

typical contract types, and it will have a portfolio created for

each.

In other cases, if the prepaid market is a major part of the

total telco services sales and many different products are

included, it would make sense to consider the contract-by-

contract approach. Similar to postpaid contracts, the

company would need to identify data points that are needed

for creation of contracts, POBs, and all relevant data needed

for proper revenue recognition. Here’s the first challenge:

data sources for the prepaid and postpaid market are often

not the same. Postpaid cases are focused on CRM and billing

systems as the main sources to identify the customer,

products, and prices. In prepaid cases, data coming directly

from the network often needs analyzing, which means a

much larger data volume to work with. In those cases, the

ETL tool approach used for data cleansing is becoming a

must, rather than just a recommended approach.

In conclusion, for the prepaid scenario, the business and IT

departments need to work together to determine how

requirements are going to be fulfilled.

Additional Complexities

Complexities in the telco space also appear in other areas

that are worthy of mention. Let’s walk through them:

Time value of money

As mentioned before, in cases where a customer pays

significantly before or after goods or services are

provided, we’re talking about a significant financing

component, or the contract has the time value of money.

An example in telco is the sale of devices on installments.

Customers often get a device and pay for it in

installments. This process fits the description because the

user gets goods immediately and pays for them over a

specific period of time.

However, the economic climate was such that interest

rates were very low and the financing impact was

minimal. But changes are happening because interest

rates are increasing, and the impact of the financing

component might become significant again. Therefore, it’s

recommended that the entity reevaluates if there is a

change in impact of the financing component and then

goes on to implementation if necessary.

Variable consideration

In terms of IFRS 15, under variable consideration, we

include all future discounts or rebates, incentives, or

returns that are highly probable to occur under validity of

contract. In terms of the telco line of business, variable

considerations are all future changes that might influence

the transactional price. In other words, if the company

expects that some part of the transactional price agreed

upon by the customer might need to be returned, it will

need to recognize the liability for the very same amount.

The key word here is highly probable, meaning the

company will need to assess how likely are events to

occur that might influence consideration from the

customer.

An example of variable consideration is if a company is

selling its services to different customer groups, and some

of these groups are at more risk than others for its

receivables to become nonpayable. In those cases, the

company would need to assess that probability and adjust

the transactional price accordingly.

Once more, it’s essential that IT and business teams work

together in finding a proper solution. To make such an

assessment, data would need to be available and given to

the business so a proper solution could be found.

Loyalty points

Let’s assume that our telco company has a loyalty

program that gives 1 loyalty point for every $100 worth of

service used. This point can be redeemed for the

purchase of different services, and 1 point is worth $0.1.

Based on analysis, we expect that 90% of loyalty points

are redeemed and total sales of services within the period

is $100,000.

First, we need to calculate the SSP of loyalty points:

$100,000 × 0.1 × 0.9 = $9,000. In the total transactional

price of the contract, now we need to include the value of

loyalty points: 100,000 + 9,000 = $109,000. Now, we can

calculate the allocation:

Loyalty allocation: 100,000 × (9,000/109,000) = $8.257

Service allocation: 100,000 × (100,000/109,000) =

$91.743

This very simple case shows us the impact of loyalty

points on total revenue allocation. In addition, data

analysis is needed to set up proper rules to provide

results that fit reality. Here, we need to estimate the

redeemed rate of loyalty points and the relationship

between goods or services and points given to the

customer. More detailed analysis would potentially give

different results: for example, if customers are using

points to buy goods and not services, then allocation

might be linked to event-based revenue and not time-

based revenue.

1.3.2 Life Sciences

The life sciences industry sector comprises companies that

operate in the research, development, and manufacturing of

pharmaceuticals, biotech medicines, medical devices, and

other areas that aim to improve the lives of living beings.

Medical device companies work on the development of

medical devices (e.g., instruments, machines, software, or a

combination of these) used to diagnose, prevent, and treat

different medical conditions.

When we’re talking about the diagnostics sector, there are

two major areas of diagnostics:

In vivo diagnostics

In vivo diagnostics is a type of diagnostics where tests are

performed on the body itself rather than on isolated parts

of it. Examples of in vivo diagnostics are different types of

scanners or imagery devices that can diagnose without

taking any samples from the body.

In vitro diagnostics

In vitro diagnostics are tests that can diagnose conditions

and infections based on samples taken from the body.

Contrary to in vivo tests, in vitro tests are performed in

the laboratory based on samples taken from the patient.

When talking about diagnostics, they include a variety of

products, starting from the instruments to the reagents

that are needed to compile the results of testing or a

diagnosis.

Processes in diagnostics companies are usually about

bundles. One bundle will include instruments (used to get

analysis results), reagents (used to perform analysis), and

services (installation, maintenance, extended warranties,

etc.), as shown in Figure 1.6.

Figure 1.6 Process in the Diagnostics Industry

Usually, purchases that the customer makes are bundled in

the contract together. One contract for a medical device

usually includes an instrument, different reagents that are

needed for that instrument to operate, and services for

installation of that device. In addition, it’s possible that the

contract includes additional services such as ongoing

maintenance or warranty, call center assistance, and so on.

Contracts usually have a duration, but it’s not uncommon

that a company has perpetual agreements with the

customer. Perpetual contracts, though not uncommon or

wrong, are an additional complexity in this industry because

it’s difficult to identify clear rights and obligations in those

cases.

In practice, we see two different types of contracts:

Capital sales contracts

In these contracts, the customer buys goods and then

owns them. The instrument is delivered and installed to

the customer premises, and once it’s activated, the

customer can start using it.

Lease contracts

In these contracts, the instrument isn’t owned by the

customer but remains owned by the seller. In those cases,

goods usually stay in some sort of consignment stock and

are never owned by the customer. Here, the customer is

using the benefits of the instrument over a period of time

—usually equal to the duration of the contract.

Reagents are also goods needed to operate instruments.

Medical devices are able to perform analysis and deliver

diagnoses by using these reagents. Reagents are sold or

given for free depending on the nature of the deal. Usually,

if a customer leases an instrument through a lease contract,

the price of the instrument is represented through reagents.

This is also true the other way around: if an instrument is

bought as a capital sale, reagents are sold with a discount.

However, the most common way of billing the customer is

through a number of tests. The customer uses both the

instrument and reagents to perform tests, and the company

charges the customer for the number of tests they run. At

month end, the number of tests run is reported, and the bill

is sent to the customer.

Therefore, it’s clear that the main challenge when

implementing IFRS 15 in diagnostics companies is process

complexity. Even in this most basic example, we can see

that the process is complex with many potential variations.

Therefore, it’s essential that the company performs proper

analysis of its processes and standardizes them as much as

possible across different subsidiaries. Each process variation

during a project can be another problem requiring special

attention to be solved.

In the following sections, we’ll walk through how the life

sciences industry handles IFRS 15 requirements with

specific examples.

Identification of Contracts and Customers

Contract identification might turn out to be easier said than

done for diagnostics companies. Often there are multiple

parties involved: distributors, chains of hospitals, and

hospitals to which instruments are actually being delivered.

Additional complexity can appear if there are multiple

parties involved in research and development of the device

itself.

In addition, options are often provided to the customer

regarding canceling part of or the whole agreement,

different discounts given, right of return, or other provisions.

These options can really change the sense of the

agreement, so it’s crucial to look at all amendments that are

part of the original contract to draw a proper accounting

conclusion.

Again, one of the implications to consider is the IT impact. If

a contract is set on a very high level—meaning it will

contain a large number of POBs—the natural implication is

that the same contract will go through a number of

modifications during its lifetime. Modifications will always

trigger recalculation of the whole contract, which might

yield unexpected results.

Identification of the SSP and Transactional Prices

As we clarified at the beginning, the SSP is the price an

entity could get for its product if the product was sold

without bundling it with some other products. We already

mentioned ways the SSP can be determined, but all of them

have additional complexities once applied to the diagnostics

industry. Because diagnostics companies are often global,

applying the standard cost-plus method might not be that

straightforward.

In the example shown in Figure 1.7, the company is

operating in different regions and applying different margins

per region to cost of goods sold (COGS) to arrive at the

regular price for the customer. For example, in the Asia-

Pacific (APAC) region, because there is fierce competition,

the company decided to apply a lower margin to its product

to improve its position in the marketplace.

Figure 1.7 Different Margins in the Regions

In this case, it’s important to evaluate first whether the cost-

plus method is most suitable for determining the SSP of a

product. But again, there may be no similar product on the

market, so the market price can’t be used, or some other

complexities may make determination of the SSP even more

difficult.

Either way, the only answer to this question is that the

company aligns with its audit company on time and resolves

this question before adoption of IFRS 15 starts. As

mentioned before, it’s essential to align with the IT team to

evaluate what data is available so it can support the

selected method.

Leasing Process and Integration with IFRS 15

As mentioned previously, one very common way of selling in

the diagnostics industry is to lease medical instruments

rather than sell them to customers. In this case, two

separate issues appear.

The first problem is the complexity of the process. Figure 1.8

shows an example of how goods can be transferred between

different storage locations when performing lease sales.

Figure 1.8 Process of Lease Sales of an Instrument

You can see that the first process is that we need to perform

goods issue from stock. Because goods are being

transferred to a different storage location, we need to create

a sales order first with a consignment pickup document.

Based on this document, the goods movement is performed.

After that, once the instrument is ready for the customer,

we’re creating one more sales order to represent issue from

consignment, which will be followed by one more goods

movement to a storage location that represents the

instrument is actually located at the customer premises.

This process is rather complicated because, in terms of IFRS

15, the first question is when do we consider that control

over goods is transferred to the customer so revenue can

start to be recognized? Most likely, that would be the last

step, which is the moment of transfer to the customer

location, but because there is a whole chain of documents

prior to that step, it’s a challenge to identify the exact

moment revenue recognition is triggered.

The second challenge is billing: Based on which document is

billing actually created? Is it in the last order, or can billing

be created in some other document? Remember that this

process can be covered in multiple documents—separate

orders for the instrument, for services, and for reagents—

and all of them are bundled in one IFRS 15 contract.

Therefore, a proper document for billing needs to be

identified as well.

Because this is a lease contract too, the company also

needs to identify the fair value of an instrument. Again, it’s

not uncommon that the instrument itself is given for free, so

the entity would need to make sure the lease value is

represented as the fair value of the product. In addition,

when both operating leases and financing leases are in play,

these need to be integrated with the fixed assets register.

In all of these cases, it’s clear that the process for

instrument sales is often very complex. It’s essential that

besides unifying the processes as much as possible, the

entity has all the right tools in place to represent them in

their information system so proper accounting treatment

can occur.

1.3.3 Manufacturing

IFRS 15 also has a huge impact on contracts in

manufacturing industries. The main issues for this industry

are as follows:

Definition of POBs

The manufacturing industry now has new POBs that all

will need to be accounted for separately. It’s not always

easy and straightforward to define POBs as separate

obligations, especially with bundles.

Recognizing revenue

In the classic manufacturing industry process, once goods

were delivered, revenue was recognized. However, as

mentioned before, IFRS 15 enforces a rule of control:

revenue can be recognized only at the moment the

customer actually controls the product. This also goes

together with cost recognition because costs need to be

recognized at the same period as revenue.

Contract combination

The practice of combining contracts didn’t exist in the

past as it is now with IFRS 15.

All of these issues (and more) require that special attention

is paid once the IFRS 15 adoption project is in place. As

usual, we’re talking about whether revenue can be

recognized at a point in time or needs to be recognized over

time. To provide proper accounting treatment, we need to

look at each particular contract. If, for example, a company

is making a specific product that can be used by this

customer and the company has the enforceable right to be

paid for it, we’re talking about over time revenue

recognition.

Over time recognition comes with its own set of challenges.

Revenue often can’t be recognized in a linear fashion; thus,

progress or POC needs to be calculated. In IFRS 15, there

are two accepted methods:

Input costs method

In this method, we’re recognizing revenue based on the

costs incurred such as resources, machine hours, labor,

and so on. For example, in Table 5.22, we’re working on a

project where we evaluated total costs to be $100,000

and billing price to be $150,000.

Costs ($) Revenue ($)

Total 100,000.00 150,000.00

Up to Date 35,000.00 52,500.00

Table 5.22 Calculation of Revenue Recognition Based on the Input Method

Here, revenue is recognized proportionally based on costs

incurred. So, because we have 35% of costs, we’re

recognizing 35% of the revenue.

Output costs method

Opposite to the input method, the output method is based

on measuring the outputs of the process. For the same

example shown in Table 5.22, if we agreed to produce

1,000 pieces for $150 each, and so far, we’ve delivered

300 pieces, the revenue calculation would look like

Table 1.5.

Quantity ($) Revenue ($)

Total 1,000.00 150,000.00

Up to Date 300.00 45,000.00

Table 1.5 Calculation of Revenue Recognition Based on the Output Method

Regarding point-in-time revenue recognition, it also has its

fair share of challenges. The main problem is the proof of

delivery process.

As mentioned earlier in the chapter, incoterms are rules

defined by the International Chamber of Commerce (ICC)

that are used to define obligations and rights between the

seller and buyer. Incoterms define how the costs and risks

are allocated between parties in the contract.

Most illustrative in our case are the following incoterms:

Ex Works (EXW)

The customer becomes an owner of goods. once they are

produced. The customer bears all the risks from the place

of production to the final destination.

Delivery at Place (DAP)

DAP means the buyer becomes the owner of the goods

only once those goods are delivered at their location.

Different incoterms influence ownership over goods (for a

complete illustration, see http://s-prs.co/v570002). In a

simple case, ownership is passed when goods leave the

warehouse, whereas in some others, it’s when the customer

receives them. This can play a significant role, especially in

cases where the location of the customer and vendor are far

apart.

The challenge for proof of delivery is clear: depending on

the incoterm selected, the revenue will be recognized in a

completely different time compared to the invoice issue and

goods issue process. In addition, costs related to revenue

need to be recognized in the same period as revenue.

To solve this problem, we need to include incoterms used

while deciding when revenue is actually going to be

recognized. If we’re using an incoterm which states that

even after invoicing and delivery, risks and benefits still

aren’t transferred to the customer, we’ll need to have both

revenue coming from the invoice and COGS coming from

delivery to be deferred. Once we get proof or confirmation

that risks are transferred to the customer, we’ll reverse that

deferral and post it to recognized costs and revenues.

The previous examples show that although revenue

recognition is probably simpler in manufacturing than the

diagnostics or telco industries, complexity also exists in the

manufacturing industries. It’s important to perform proper

processes and contract analysis to determine the most

suitable and correct accounting treatment of revenue

recognition.

http://s-prs.co/v570002

1.4 Revenue Recognition and SAP

As mentioned at the beginning of this chapter, revenue

recognition tools have been available in SAP for a while.

Prior to IFRS 15, the tool for performing revenue recognition

processes was also called revenue recognition in SAP ERP,

but it was placed directly under SD as part of the SD-BIL-RR

component. This solution was aimed at solving the main

issues of timing of billing and revenue recognition before

the introduction of IFRS 15. For that purpose, in SD-RR (i.e.,

revenue recognition), we had the following main methods

for how revenue should be recognized:

Revenue recognition at the same as billing

Time-related revenue recognition (revenue recognition

between a set of dates)

Service-related revenue recognition (revenue is

recognized based on some specific event)

Credit/debit memo with reference to a preceding

document

SAP for Media–specific method related to service revenue

recognition, but with more of a focus on royalties, for

example

The setup of SD-RR was straightforward and because all

data would be taken from SD; it was embedded in the

standard SD setup, especially when considering the

accounting impact.

However, with the introduction of IFRS 15, the concept of

SD-RR was abandoned, and a new tool was introduced to

meet the requirements from the new standard—SAP

Revenue Accounting and Reporting. This new tool was

designed to not only solve challenges that came with the

new standard but also make significant improvements to the

old solution:

The order/invoice processing and revenue recognition

processes were decoupled. This approach alone brought

significant flexibility in environments where order

management and billing processes are natively in non-

SAP environments (e.g., refer to the telco example).

The second improvement came directly from the first one:

SAP Revenue Accounting and Reporting is much easier to

integrate with external systems.

Native support for multiple reporting standards (IFRS/ASC

606/GAAP) was included.

It was built around the five-step model of IFRS 15. This

means that allocation was introduced as a concept

because it didn’t exist in the old revenue recognition

solution.

The functionality of the standalone SAP Revenue Accounting

and Reporting solution has been included in SAP’s latest ERP

suite, SAP S/4HANA. We’ll refer to it as RAR throughout this

book.

However, SAP now positions two solutions in the market:

RAR with classic and optimized contract management

(CCM and OCM)

Event-based revenue recognition (EBRR)

Although this book is based on RAR as the primary tool for

revenue recognition, we’ll discuss both of the preceding

solutions at a high level to shed light on which solution is

most appropriate for certain business cases.

1.4.1 Revenue Accounting and Reporting

RAR is the main tool for revenue recognition in both SAP

S/4HANA and SAP ERP to satisfy IFRS 15/ASC 606

requirements. There was no single product available that

would comprehensively deal with revenue reporting prior to

RAR. When integrated with sales and distribution, SD-RR

was the go-to solution, but mainly when companies needed

to differentiate the timing of revenue recognition. Results

analysis was a solution for calculating revenue recognition

in complex project environments. As a solution, results

analysis has been available on the market since mid-2014; it

went through several iterations of changes to become ready

to support customers moving to IFRS 15:

SAP Revenue Accounting and Reporting 1.1 came with

solutions that had full integration with sales and

distribution. The Adapter Reuse Layer (ARL) concept was

introduced together with the split between time-based

revenue recognition and EBRR.

SAP Revenue Accounting and Reporting 1.2 was briefly on

the market and was quickly upgraded with the next

versions. This version brought improvements in terms of

account assignment options and integration with cost

object controlling.

SAP Revenue Accounting and Reporting 1.3 is the latest

solution available for implementation. Further

development is being done through support packs (SPs);

at the moment, SP 15 is available. With different SPs,

many additional features were introduced, such as new

fulfillment types (proof of delivery, drop shipments, call-

off orders), but the main advance was in terms of stability

and an error correction capability.

As of SAP S/4HANA version 1809, RAR became an integral

part of the SAP HANA foundation, which also includes

software component version REVREC. Changes between the

1.3 version and the one on the SAP HANA foundation were

significant in terms of additional features and improvements

to the code, but the functionality itself remained mainly the

same. The exception was the introduction of OCM and

optimized inbound processing (OIP; with version 1909).

Although some people are calling SAP HANA version 1.4 or

even RAR 2.0, this naming convention is colloquial, not

official from SAP.

NUMC to CHAR

One very important change that came with versions

available for SAP S/4HANA is the change of data type for

POB ID. Basically, until SAP HANA, the data type for POBs

(FARR_D_POB-POB) was numerical. Due to performance

improvements, this was changed to characters. No

additional migration considerations are needed except to

revise any custom code that might relate to the old data

type. Details are given in SAP Note 2672794.

Figure 1.9 shows the high-level architecture of RAR.

Figure 1.9 RAR Architecture

As already mentioned, RAR is a flexible tool that can easily

be integrated with different systems used as data sources.

Native integration for RAR is available with some SAP

products such as sales and distribution, SAP Billing and

Revenue Innovation Management, and SAP Customer

Relationship Management (SAP CRM). All these systems are

used as a source for getting data which is later grouped into

three categories: order items, fulfillment items, and

invoices.

Order items will have all the information needed for contract

creation:

Basic data such as customer, start/end date of contract,

and so on

Conditions used to determine both the transactional price

and the SSP, which will be used to allocate the

transactional price

RFC Integration

To integrate with sales and distribution and other

components, RAR uses the remote function call (RFC)

functionality as part of the inbound processing

configuration (see Chapter 3). For proper integration,

there are two options: either defining and using proper

logical systems, or using logical destination NONE only after

implementing SAP Note 2957643.

In addition to SAP tools, there is an option to integrate with

third-party solutions. The requirements are the same as with

SAP solutions, but special attention needs to be paid

regarding data quality. The data coming to RAR must be in

the same format and quality as if it was coming from an SAP

solution.

Once data is sent from the source system, it reaches the

ARL. However, once received, it’s not used immediately to

create contracts and POBs. Instead, data is used to create

revenue accounting items (RAIs), which are used as

placeholders for data before the data can be used further.

The reason for this is simple: once a contract is created,

many of the standard RAR data tables are updated, and a

revenue schedule is generated. In total, we’re talking about

potentially more than a dozen tables being updated, and,

for time-based POBs, potentially many lines being created

for the revenue schedule. Not to mention that if the contract

needs to be combined with some already existing contract,

the modification process is also triggered. All of these

reasons and more led SAP to this RAI approach, where an

initial data quality check is performed before contracts can

be created. Here, SAP offers different statuses that should

enable even more control over data quality.

Once data is processed in ARL, it’s checked against rules in

Business Rules Framework plus (BRFplus).

Business Rules Framework Plus

BRFplus is a tool used to define rules without needing to

write ABAP code. It’s not a new tool and was first available

with SAP S/4HANA release 1610. For example, if you think

about writing validations or substitutions in finance, more

often than not, you need to invite your ABAP programmer

to write some code, followed by the whole substitution

needing to be regenerated, which requires special

transport methods. The idea of BRFplus is that the same

can be achieved without writing a line of code by just

using decision tables. Usage of BRFplus is gaining traction

recently with the move to BRFplus for configuring output

management in sales and distribution.

BRFplus comes with different applications that are used to

do the following:

Determine POBs and POB types

Determine rules for changes in POB statuses

Perform account determination

RAR comes with predelivered applications that are

dependent on the type of integration the customer is

performing (SAP Billing and Revenue Innovation

Management, sales and distribution, or third party). To use

these applications, they should be copied to the customer’s

namespace and adjusted to fit the customer’s specific

needs.

Once RAIs are processed, the main RAR objects are created

or updated—depending on the RAI type.

If the order is created in sales and distribution and

processed as an equivalent RAI type, a result contract and

corresponding POBs are created. If we processed a

fulfillment item or an invoice, tables maintaining such

values will be updated together with tables maintaining

data for revenue calculation.

So, we have contracts created/updated and that means

we’re ready for the month-end closing process. In RAR, that

refers to running ABC programs. There are three programs

(explained in detail in Chapter 6, Section 6.2) that need to

be run so the results of RAR processing can be seen in

financial accounting.

Running ABC Programs

Customers often have questions about how often

programs for calculating and posting revenues should be

run. Of course, if reporting of revenue needs to be made

more often, then ABC programs should be run more often

because data in finance will land only once and be

calculated by RAR. Some customers are happy with

running the programs once a month, but others opt for

running more often. Month-end closing in RAR isn’t

possible if contracts are in error (without moving them to

the next period). So, running ABC programs once a month

may not provide enough time for solving potential issues.

On the other hand, running ABC programs in extremely

short intervals can cause deadlocks between programs.

So, each customer is unique (it’s not the same if contracts

are made primarily of event-based or time-based POBs)

and needs to determine the best option while considering

the potential problems that come from running programs

too often or not often enough.

Optimized Contract Management

As mentioned, RAR as a tool has been on the market for

close to 10 years. Its flexibility and performance were really

tested during the introduction of IFRS 15. For example, it

was the first tool in SAP ERP that could be used for

integration with external systems to perform revenue

recognition. This caused a situation where the design of the

solution needed to be adapted to fit new, changed

requirements.

SAP S/4HANA brought improvements to RAR in two phases:

With release 1909, optimized contract management

(OCM) was introduced

With release 2020, optimized inbound processing (OIP)

was introduced

Both improvements are optional, meaning that the customer

isn’t required to use them. This was done mainly to reduce

the risk for customers who are already using RAR and have

a significant number of enhancements.

As mentioned before, both OCM and OIP were primarily

oriented toward solving different technical and performance

issues noted by customers while using RAR.

The following main improvements came with OCM:

Day-based contract modifications

In classic contract management (CCM), there is complex

logic between the nominator/denominator that was used

both for time-based and event-based POBs. In OCM, the

system works with days for time-based POBs, allowing

more precise calculation of modifications and proper

triggering of prospective instead of retrospective

modifications.

Contract termination or impairment calculation

One of the biggest pain points in CCM occurs when the

contract is terminated. In those cases, everything that

was a contract asset should be reposted to profit and loss

(P&L). However, SAP didn’t come up with a solution for

this business scenario mainly due to the different

variations of the process, which would need a lot of

custom logic to be handled properly. In OCM, terminations

are standard functionality.

Contract acquisition costs at the contract level

In OCM, RAR supports recognition of acquisition costs as

an asset and amortization of those costs to fit revenue

recognition rules.

The following main improvements came with OIP:

No batch processing for RAIs

This was the main improvement that came with OIP. In

classic inbound processing, you needed to either schedule

a job or run Transaction FARR_RAI_MON to process RAIs.

This often caused deadlocks and errors that would leave

RAIs in error. In OIP, there is an option to process RAIs in

real time and avoid this problem.

Redesigned and optimized technical architecture of

tables

In classic inbound processing, tables and application

programming interfaces (APIs) would be dynamically

created depending on the structure and options the user

activates. For example, if the user adds profitability

analysis as an integration with RAR, characteristics would

be added to table FARR_D_POB. In addition, /1RA tables would

get generated once RAI classes were activated. In OIP,

these activities aren’t needed anymore: RAR comes with a

static set of tables that fit their defined purpose.

However, the introduction of OCM and OIP has a few

limitations. For example, some functionalities that existed

before aren’t available anymore, and a few business add-ins

(BAdIs) that were available are replaced with new ones. This

information is especially handy if the user is planning to

upgrade from classic to optimized versions and considering

inbound processing as well. In addition, when it comes to

integration with the Project System module for project

management, this can only be done with CCM. More details

will be discussed in the following chapters.

1.4.2 Event-Based Revenue Recognition

With EBRR, costs and revenues are posted as they occur,

meaning they are immediately matched and posted. EBRR

is integrated with the general ledger in real time, meaning

revenues are posted and can be found in the income

statement and margin analysis (margin analysis is the new

version of account-based profitability analysis). In reality,

this means that unlike RAR, in EBRR, information about

recognized revenue is available as soon as the revenue is

posted. There are no jobs to be started or batch jobs to be

run: revenue is posted and can be reported.

EBRR is focused on solving revenue reporting issues that are

built around different scenarios. When published, EBRR was

available only on the cloud, without options to perform

allocation of revenue and no parallel reporting capabilities

(thus the name event-based). However, with release 2022,

the tool was made more advanced and comprehensive to

fulfill complete IFRS 15/ASC 606 requirements. If companies

have scenarios that are compatible with standard SAP

delivery, EBRR can be seriously considered as the choice for

tracking and recognizing revenue. For more information

about EBRR, see Chapter 9.

1.5 Summary

In this chapter, we explained the complexity of the revenue

recognition processes. The introduction of IFRS 15 required

businesses to provide much more data to have a correct

revenue recognition process. This chapter also covered the

impact on specific industries, such as telco and

manufacturing. In some cases, such as telco or high tech,

IFRS 15 is becoming even more important than previous

revenue reporting because now revenue is spread to

different components of the bundle, which wasn’t the case

in the past. In addition, the standard now requires

customers to disclose any hidden discount, which might be

applied to the contract. Before IFRS 15, if a customer was

given some device or a service for free, the revenue

recognition process was very simple: revenue equals zero.

However, IFRS 15 rules brought a completely new set of

requirements, and these complexities are in each of the five

steps needed for applying IFRS 15, starting from identifying

contract and POBs, determining the exact transactional

price, and the new kid on the block—determining the SSP.

All these things are putting additional pressure on

businesses to provide the proper data needed.

The aim of this chapter was also to bring revenue

recognition to the attention of IT as well. Being IFRS 15

compliant doesn’t mean just implementing rules and

following the five steps. It also means providing data and

executing processes in a way that those five steps can be

followed. Sometimes, that requires big changes in IT

landscapes, infrastructure, and so on. Therefore, IT is

experiencing complexity as well from IFRS 15 enablement.

It’s necessary that this complexity is understood as soon as

possible and that the project is executed with it in mind. The

only way an IFRS 15 implementation can be successful is if

the IT and business teams are working together toward the

same goal.

With this foundation in mind, we’ll further explore revenue

recognition landscapes with SAP in the next chapter.

2 Designing Your Revenue

Recognition Landscape

The design of the overall landscape each time a new

SAP product is introduced is the most important step

when starting an implementation. It requires a vision of

not only what is needed at the moment but also what’s

required for the future as well. Some of the mistakes

made at this step are very difficult to correct

afterward, especially in current cloud-oriented

environments.

In this chapter, we’ll discuss how an organization can

incorporate revenue recognition solutions into their overall

SAP landscape. We’ll start with an overview of the typical

landscape and how revenue accounting and reporting (RAR)

fits in, and then we’ll explain how RAR shares data with

different SAP components. We’ll follow with an explanation

of the data model for RAR, and a comparison of the classic

and optimized versions of RAR with SAP S/4HANA.

2.1 The SAP Landscape and

Revenue Recognition

To get started with RAR, you need an understanding of its

place in the broader SAP landscape. We’ll break down a

typical landscape in the following sections and explain how

RAR fits in.

2.1.1 SAP System Landscape

Let’s start with the basics: an SAP system is an installation

of SAP products. The classic SAP landscape is usually seen

as a three-tier landscape identified with a system ID (SID).

Most basic setups look something like the example shown in

Figure 2.1.

There are three systems representing the different activities

being done in them. In the development system, users are

performing initial configurations and developments. Those

will be moved to the quality or test system, which, by

definition, is owned by the business users. Once changes

and customizations are tested and confirmed, they can

move to production. In the production system, configured

applications and developments are used in daily work. Each

time a new change or adjustment is required, the same flow

must be followed.

Figure 2.1 Standard SAP Landscape

Data in systems is organized by clients. By definition, a

client is a self-contained organizational and technical unit.

It’s somewhere between being part of the business

organizational structure (because it sits on the top of each

organizational element) and technical (because all data in

one system is being organized on the client level). On each

client, user accounts are created and application data is set

(both transactional and master data). Customizing can be

either client dependent (when the customized application is

within a single client) or cross-client (when the customized

application is spread across several clients). However, on

the system level, the repository objects are organized, such

as tables, classes, programs, and other technical elements.

In other words, the table is a cross-client object, and client

identification occurs in the first column.

One of the first questions that comes up is how many clients

you need to have. SAP has only two prerequisites: there

must be client 000, which is used as the baseline client for

language installations, for instance, and client 066, which is

used by SAP when a login to the system is needed.

Everything else is left to the customer.

In the development system, users often create one client

called the master, golden, or clean client, in which only

customizing is done without creating transactional data and

with a minimum of master data. Developers also create one

more client, called the sandbox client, where initial testing

of customizations and developments will be created.

However, this setup can be more complex depending on the

size of the teams and differences in activities. It’s not

uncommon for the sandbox client to be separated as a

system to provide a safer environment where repository

objects are separated, but this would require integration in

the transport route and usually some workaround

integration.

A similar situation occurs with a quality client where,

depending on activities, more clients can be created. For

instance, if both testing activities and data migration testing

are being done, it makes sense that these are separated

into two clients. If the customer is running maintenance of

the system (business as usual [BAU]) activities and projects

in parallel, this could be separated by the clients on the

quality system. However, if we’re talking about major

transformation projects, it’s not uncommon to have

separated landscapes (a set of complexities that isn’t

covered in this book). Production is the only system where

it’s most common to have only one client.

This simple setup isn’t often seen in current SAP

environments. Users are always trying to keep landscapes

as lean and simple as possible, but some complexities from

businesses they operate are very difficult to avoid. Think

about an organization running different lines of business

where each is operating with certain levels of specific

needs. In those situations, it can be a good idea to keep

those systems separate to minimize risks for development

overlap and later regression testing and downtimes.

Examples include the following:

Pharma

Manufacturing

Diagnostics

Human resources (not a separate line of business, but

kept as a separate system due to regulations)

We’re already dealing with 12 separate systems (each being

multiplied with development, quality, and production

environments).

But let’s not forget regions. Centralization is always a key

topic when designing a landscape: On what level can we

centralize data? Again, complexity comes from the business:

a few decades back, being a global organization was an

exception, not a rule. Since then, the world became smaller,

and to be a global organization isn’t uncommon. So, in a

project for such an organization when planning the initial

design, the same question arises: Should we aim for one

central system or many separate systems? Both options

have pros and cons (which again won’t be discussed in

detail here), but it’s important to mention the complex

impact on the overall landscape. Consider the split

landscape shown in Figure 2.2.

You can see that now, instead of three systems, there are

nine. Now, imagine this scenario together with a system

split per line of business. If these two are combined, the

landscape can easily grow to 36 systems in total where

some global consolidation system would be needed at the

top.

Let’s not forget that we’re operating in a cloud world, where

more and more companies are going with options to host

applications on a cloud hyperscaler. This brings obvious

benefits such as lower maintenance and infrastructure

costs. The company can focus on their core business

activities, while someone else can take care of the

infrastructure, security, and bringing systems to the latest

patch levels.

Figure 2.2 Landscape with Regional Split

But this shows even more how important it is to pay

attention to how the system should be designed. The

relationship between the company that is managing our

application and its data and the user is precisely defined

and determines how many systems should be hosted and at

what performance level. Any change to that can lead to a

process that is both costly and time-consuming.

2.1.2 RAR in the SAP Landscape

So, how does revenue recognition fit into the picture? There

are many options for how RAR can be plugged into an

existing landscape. Keep in mind that International Financial

Reporting Standards (IFRS) 15 is a global standard, and, if a

company is implementing it, it needs to be done on a global

level. By that alone, at least part of the question is

answered. But some questions remain: Are you going to

implement RAR as a standalone component or as part of an

existing instance? Which version of RAR are you going to

use? What kind of sizing should be done to ensure proper

performance? All these questions will be answered in this

section.

We already have a landscape in which our system is

operating. The next task is to find the right place to fit RAR

into it. There are two main options for how RAR can be

placed into the landscape:

Implementing RAR as an add-on package on an

existing SAP instance

In this case, as shown in Figure 2.3, we’ll implement RAR

as an add-on on an already existing SAP ERP or SAP

S/4HANA instance. Depending on the version of SAP

you’re running, that will be an embedded module (from

SAP S/4HANA version 1809 onward) or a separate add-on

that needs to be activated to work.

Because all the modules will be in one place, integration

provides a main benefit. For example, if a user is running

integration with sales and distribution, revenue

accounting items (RAIs) will be created as soon as

documents are saved in it (this is valid for orders and

fulfillment events equally), and once RAIs are processed, a

contract will be created in the same system where the

original item was created.

After running the posting program, the resulting finance

and controlling documents are created automatically.

Users can easily establish the document flow by using

standard transactions and functions in both RAR and sales

and distribution.

However, these benefits come with a price. To install or

upgrade the RAR version, there might be prerequisites

that need to be met by the main system. Therefore, an

upgrade of RAR might trigger an upgrade of the whole

instance, which might not be an easy task in there are a

number of customized applications.

Figure 2.3 Landscape with the Revenue Accounting Add-On

Implementing RAR on a separate instance (sidecar

approach)

A sidecar approach means that RAR will be implemented

on a separate instance (see Figure 2.4), which will be used

primarily as a calculation engine for IFRS 15 revenue. It

can be integrated with external systems via various

techniques, and data will be fed first to the Adapter Reuse

Layer (ARL) from where it will be processed in contracts.

Once the posting run is performed, financial documents

will be collected and transferred to the main instance

(which again can be either SAP ERP or SAP S/4HANA). In

the RAR instance, you still need to do some work to make

it fully usable. The organizational structure that is needed

for RAR needs to be created (company codes, profit

centers, cost centers, etc.), and a certain number of

accounts required exclusively for RAR need to be created.

We don’t need a full chart of accounts, but only ones that

RAR requires (contract asset, liability, revenue, cost

adjustments, etc.). Between the two systems, an

Application Link Enabling (ALE) link is required, which

belongs to a standard setup of distributed systems.

You’ll reap some benefits if you’re working in an

environment where the source of transactions required for

IFRS 15 calculations is not an SAP system. Let’s walk

through a few examples:

As a first example, say you’re integrating with an

external customer relationship management (CRM)

system that is used to raise orders or a system that is

used exclusively for billing. Such situations usually

mean that you don’t even need to synchronize master

data for customers or materials because operative

systems are their main source. In those cases, using

separate instances has major benefits.

A second example is when the data volume is huge. If

you need to import hundreds of thousands of orders per

month together with fulfillment events and invoices,

and then we load them to our main ERP system, it could

become an overhead.

A third example could be something we mentioned as a

limitation factor in an integrated environment: the

system version. In a sidecar approach, the user is much

more flexible in keeping system versions aligned.

Obviously, there are some drawbacks to this approach.

The main one is the additional investment in

infrastructure; however, because it’s only a one-time cost,

it might not be the deciding factor for a user to choose

not to go with a distributed environment. The second

drawback is synchronization: all common master data

between systems must be kept in sync. In addition,

additional attention needs to be paid if profitability

analysis is in scope, and you plan to use a distributed

environment. This is because a profitability segment will

be created in one environment, and the numbering must

be consistent compared to the system where the

profitability analysis will be used.

To conclude, whether to go with one or another approach

depends on many factors, and both approaches have their

own benefits and costs. Usually, when the source system is

sales and distribution for orders and fulfillments, clients

choose the add-on (embedded) approach because the

benefits of integration are clear. Others might think about

the costs versus the flexibility of the sidecar approach.

Figure 2.4 Sidecar Approach

2.2 Integration with Different SAP

Components

Revenue recognition represents the central piece in every

company’s reporting. Therefore, RAR needs to fulfill a list of

requirements to be able to successfully fulfill that role. In

complex IT environments, it’s not uncommon to have a

heterogenous landscape with different systems that are

providing data used for revenue reporting. That is why it’s

essential for RAR to connect with a variety of those systems.

Overall, the architecture of RAR provides that kind of

flexibility, but on other hand, SAP, being an integrated

system, provides the benefits of such integration. In the

following sections, we’ll discuss in detail how such

integration can be achieved inside and outside of common

SAP environments.

2.2.1 Sales and Distribution

The sales and distribution functionality has been natively

integrated with RAR since its first delivery. One of the ideas

for introducing RAR as the preferred solution for revenue

accounting was to be a successor of Transaction VF44, the

legacy tool for revenue recognition in SAP. As RAR,

Transaction VF44 was natively integrated with sales and

distribution.

If we look at Figure 2.5, displaying the old (Transaction

VF44) revenue recognition solution, we can see that the

level of integration was very high.

In revenue recognition, revenue wasn’t posted to revenue

but to the deferred revenue or unbilled receivable

(depending on the previous balance of deferred revenue

and invoicing). After that, based on specific, predefined

events, the revenue recognition process and reposting from

deferred revenue or unbilled receivables occurred. In

addition, over time, revenue recognition was possible, and it

was decoupled from the billing plan.

Figure 2.5 Transaction VF44 Processes

Transaction VF44 was retired for the following reasons:

No allocation

There was no possibility for allocation of transactional

price. In the old revenue recognition solution, one of the

main requirements of IFRS 15 wasn’t possible: allocation

of the transactional price based on the standalone selling

price (SSP).

No support for multiple accounting principles

Sales and distribution revenue recognition didn’t support

multiple accounting principles. Results would always be

posted to the ledger group blank, meaning the same

amount to the same ledgers.

No cost recognition

One of the basic requirements—revenue and costs should

be recognized in the same period—wasn’t supported

because sales and distribution revenue recognition didn’t

cover that requirement.

No integration

Because Transaction VF44 was so tightly integrated with

sales and distribution, it wasn’t possible to integrate it

with external applications in a feasible way.

All of these were reasons why RAR was built from scratch to

fulfill mainly IFRS 15 requests but also to fill in the gaps

from the old solution. Figure 2.6 shows how integration

between sales and distribution and RAR works: it’s a direct

connection in which sales orders and all subsequent events

are sent straight to RAR.

Figure 2.6 RAR Integrated with Sales and Distribution

Although RAR is still natively integrated with sales and

distribution, it also can be integrated with different sources

of data. In addition, RAR provides features to fulfill the five

steps of IFRS 15:

The contract is identified by the data transfer of the sales

document (sales order or sales contract). In addition, RAR

comes with predefined options to perform contract

combinations and with extensions if custom rules for

contract combinations need to be performed.

Performance obligations (POBs) are identified from sales

document items. It also supports compound and bill of

materials (BOM) POBs to reflect complex structures in

sales and distribution.

Different condition types are passed from sales and

distribution to perform allocation. An allocation engine

was developed to calculate and spread allocated values to

different POBs.

Parallel accounting comes natively with RAR: different

accounting principles can be defined and assigned to

different ledger groups.

When it comes to the approach, technically even with sales

and distribution integration, users can choose between the

integrated or sidecar approaches for their RAR landscape. In

those cases, RAR would be implemented on a system with

sales and distribution (either as an add-on or natively in SAP

S/4HANA) and integrated with the system running finance.

However, in practice, this is very rare. Usually, in sales and

distribution environments, RAR utilizes its strengths from

integration and runs on the same platform.

2.2.2 Customer Relationship Management

SAP Customer Relationship Management (SAP CRM) (or SAP

S/4HANA Service in the SAP S/4HANA environment) consists

of various components that allow you to integrate CRM with

other SAP and non-SAP modules, internet, mobile devices

(e.g., smartphones and tablets), and enterprise portals. In

the center, it has an SAP CRM server that includes the

following subcomponents:

CRM enterprise functions

CRM middleware

Then, there are adapters to communicate with handheld

devices and the internet. The SAP system is used as the

backend, SAP BusinessObjects Business Intelligence is used

for analytical reporting, and SAP CRM is used to enhance the

capabilities of CRM.

You can also see the SAP CRM architecture and all its listed

key components in Figure 2.7.

Figure 2.7 SAP CRM Architecture

The main features that we use in SAP S/4HANA Service are

service contracts, service orders, and service notifications.

All of these documents are transferred to sales and

distribution and later to RAR.

Sender component CRM service (also called CRS) and sales

and distribution are provided by SAP for integration with

revenue accounting. Once the CRS contract is created and

released, the billing plan is created in sales and distribution

through which billing will be done. In this setup, an SSP is

created and maintained through BRFplus rules in RAR.

Sender component CRS uses sender component CS01 (CRM

service contract item) and SDII for billing item (sales

document invoice item). For integration to be set,

customization settings need to be followed, which we’ll

discuss in detail in the upcoming chapters.

Once RAI classes are set, the next step is to set up the

sender component. Here, the user needs to connect

document item types as the source with the sender

component and assign a logical system name if necessary.

SAP provides the following standard components: CRS (for

CRM service) and SD (for sales and distribution) with links to

SD01 and SDII RAI classes. The technical names are set by

SAP to ensure that the system automatically provides the

required settings for each class when it’s created.

The RAI class CS01 defines the technical characteristics of

the order items, and the class SD03 defines those of the

invoice items of sales and distribution billing.

2.2.3 Billing

SAP Billing and Revenue Innovation Management is an SAP

tool that targets customers with high-volume consumption

businesses. Figure 2.8 shows a breakdown of the core

components that make up the solution.

Figure 2.8 SAP Billing and Revenue Innovation Management Architecture

SAP Billing and Revenue Innovation Management consists of

several products bundled together to make a single solution

for all high-volume businesses:

Subscription order management

Subscription order management is the first step when it

comes to working with SAP Billing and Revenue

Innovation Management. It’s used to capture orders,

quotations, or any other documents that represent the

beginning of the sales process. SAP CRM is the main

backbone of subscription order management. To perform

its main task, it uses product and customer catalogues.

The first step of subscription order management is

creating the order that is later passed to SAP Convergent

Charging for rating and charging activities.

SAP Convergent Charging

SAP Convergent Charging is used to determine the

amount to be charged to the customer by using two main

components: charging and rating. Charging is used to

determine the customer account against which a charge

should be applied, and rating relies on a mechanism to

determine the amount to apply against the customer. The

rating is based on complex mechanisms that are used to

determine one-off, recurring charges, limits, discounts,

and so on.

Convergent invoicing

Once the amount to be billed is calculated, information is

passed to convergent invoicing. SAP Convergent Charging

passes billable items that should be consumed by

convergent invoicing. All data is being used to produce

billing data, and convergent invoicing has many features

such as pre-billing, summarized bills, and so on. Unlike

SAP Convergent Charging, which is a separate application,

convergent invoicing is part of the SAP S/4HANA stack.

SAP Customer Financial Management

SAP Customer Financial Management’s main component

is contract accounting, which represents a subledger that

is specifically designed to accommodate the needs of a

sector with a huge number of customers. It offers many

features such as multiple accounting principles reporting,

tax reporting, detailed information on the customer level,

and so on.

There are many additional features that can be used

together with SAP Billing and Revenue Innovation

Management, but which are separately licensed. Some of

them are subscription management and SAP Subscription

Billing, which are aimed mainly at companies running

businesses that rely on recurring charges; SAP Convergent

Mediation by DigitalRoute, which is used when data needs

to be transformed between sources and SAP systems; and

payment gateways, which offer different adapters to

communicate with PayPal, Swift, and so on.

SAP Billing and Revenue Innovation Management has gone

through transformations in the past several years. Since SAP

S/4HANA release 1909, subscription order management and

contract accounting have been integrated into SAP

S/4HANA, which makes integration simpler.

If we look at Figure 2.9, there are two integration points

between RAR and SAP Billing and Revenue Innovation

Management. The first one is data that is needed to capture

the order, which will be represented as a contract in RAR.

Then, we need to retrieve the data, which is used for

invoicing, called billable items.

From an architecture point of view, the main question is how

to organize the landscape when SAP Billing and Revenue

Innovation Management is in place. From Figure 2.9, we can

see that subscription order management and contract

accounting being integrated into SAP S/4HANA provides a

lot of benefits from being integrated within the same system

as RAR. However, note that SAP Billing and Revenue

Innovation Management is put in place for high-volume

businesses, so the data that will be processed in it is already

significant.

Figure 2.9 SAP Billing and Revenue Innovation Management: Integration

Points

In addition, it’s worth mentioning that some companies only

use parts of SAP Billing and Revenue Innovation

Management rather than the whole suite (e.g., convergent

invoicing and subscription order management, without SAP

Convergent Charging, or subscription order management

and sales and distribution billing). That also needs to be

taken into account while deciding between keeping

integration on a high level (meaning installing RAR on the

same system) or moving to a distributed landscape.

2.2.4 Non-SAP Systems

So, what happens if you have a landscape that isn’t purely

SAP? Depending on the industry, this option isn’t so

uncommon. Think about telco companies: for legacy

reasons, systems used for billing and even more for

charging are linked to equipment that is delivered. All major

providers of telco equipment have their own systems for

billing and charging.

In those environments, it’s to be expected that companies

will have a lot of different systems that will be source

systems for a tool such as RAR. The first question is, should

we go with the sidecar approach, or a single instance that

will include both the ERP system and the RAR data? This

question was already covered in previous sections, but it’s

worth mentioning that this decision depends primarily on

the data volume: if we expect to have significant amount of

data coming from source systems, then the sidecar

approach is worth considering.

But there is also a second question that might be important.

Companies with multiple systems used for different

purposes usually have developed them on different

platforms. This means that data structures from those

systems will be different, and, consequently, RAR won’t

have a single, unique data source. So naturally this data

would need to be transformed before it can come to RAR.

The simple solution can be that RAR performs data

transformation too. As will be covered in detail, the ARL

staging area of RAR already consists of rules and error

management procedures that can be applied on data to

prepare it for RAR processing. In addition, different statuses

of RAIs can be applied to manage data quality.

So, is this enough? The answer is no. A landscape in these

kinds of environments is very complex, and any kind of

reprocessing and data correcting requires considerable time.

Imagine if RAR throws some of the common errors; the user

would have an option to either correct the errors manually

or maybe update BRFplus rules for those contracts to be

processed. All of these activities take considerable time, and

in the month-end closing process, for example, will also add

complexity that is difficult to resolve.

The solution to this problem is implementing one more layer

that is responsible for providing data in the exact format

RAR requires, plus implementing business rules that make

sure data from source systems is properly transformed.

These are called extract, transform, load (ETL) tools.

Figure 2.10 shows that before data comes to RAR, it needs

to pass through a transformation layer. In this layer, you

define rules that should perform transformation of the data

into the required format that RAR can read (often called

creation of data points). Only when the data is ready can

loading into RAR start.

Figure 2.10 RAR Landscape with ETL

If you decide to go with ETL as the tool to transform your

data, this tool needs to be connected with source systems

and have data loaded into it. The connection between

systems can be made via different techniques and depends

on the tools available and processing requirements. Most

ETL tools on the market support all major databases (Oracle,

MS SQL, DB2, SAP HANA) and main connection options (Java

Database Connectivity [JDBC], Open Database Connectivity

[ODBC], File Transfer Protocol [FTP]).

Once data is in the ETL tool, there must be business rules

that will be used for transformation. These rules can be

simple, such as concatenating or adding different strings

and filtering data, or these rules can be very complex, such

as creating SQL scripts of several hundred lines. The

complexity of rules will depend on the diversity of source

systems and on the quantity of data.

Example: Calculating the SSP

As mentioned before, the SSP is paramount in IFRS 15

calculations. In some cases, it’s easy and straightforward

where businesses decide to apply very simple solutions,

such as the cost-plus method or list-price method as

practically expedient. However, in other cases, calculating

the SSP can be very complex. Let’s take a telco company

as an example and SMS as a service they provide. If we

apply a simple approach such as cost-plus, we sum up all

costs that are related to providing this service. But these

costs are the same as those needed to provide voice or

data services. So, applying a simple cost-plus method

might lead to an SSP for the SMS service that would cause

very high revenue to be allocated to it, which is contrary

to how business is evolving.

As a practical expedient, businesses are allowed to

consider the percentage of usage also when calculating

the SSP. So, you need to compare such calculated costs

with how much SMS was used from packages on average

and compute the SSP that way. However, to do this, you

would need information not only from billing and CRM

systems but also from charging. Charging systems create

call detail record (CDR) files with volumes that easily

reach terabytes in size on a monthly level (depending on

the number of contracts). So, to calculate the SSP, the ETL

tool needs to be optimized and sized properly.

Once data is calculated, it’s then sent to RAR, which again

uses the ARL as a staging area to perform technical

correctness of data received. When completed, the data will

be sent to contract management and later posted.

In the market, there are plenty of tools for ETL processing.

For simple transformations, even SAP middleware

connectors can be used (e.g., SAP Process Integration or

SAP Process Orchestration), but if you need to perform more

complex calculations, you should consider tools that are

more suitable for ETL activities.

This setup can evolve further. Often customers realize the

power of the collected data and instead of using it only for

ETL purposes, they build data lakes and put ETL on top,

creating data hubs. The SAP HANA database provides a

performance level that can help you maximize performance

and usage of your data.

2.3 Revenue Recognition Data

Model

Data is the foundation for any system. Along with huge data

comes the challenges of accessibility, storage, and

processing. The same data is available, but the smartness of

the system and the software is the key to meeting the

requirements of the mandates. Mandates differ depending

on requirements and countries/regions; when it comes to

RAR, we’re talking about IFRS 15 and ASC 606 mandates

specifically, as covered in Chapter 1. Data needs to be

processed and presented in the format that is expected by

these mandates. Huge businesses have huge amounts of

data, and the big task for them is to be compliant with the

mandates to run their business smoothly and manage their

data smartly. Data needs to be converted to the language of

business. We need to understand the data that is available

and transform it into a form that is accepted by the system.

In the previous section, we discussed ETL and the data

transformation that must be done before data is sent to

RAR. Once the data is received from any source of

integration, it’s saved in the ARL and processed. Storing the

data to be accessed correctly is the prime concern. This is

where structures, tables, and formats of data storage come

in. Understanding the technical objects that are available

and the relationship between them leads us to understand

the system better and provides easy access to data. Let’s

explore how it’s done in RAR.

Organizing data is important for easy access, and easy

access is important for program design and flow,

configuration, and testing. Understanding the organized

format leads to a better understanding of the component

and that’s what gives functional or technical consultants an

upper hand in any given SAP module. The configuration

details will be explained in Chapter 3. In this section, we

focus on the technical output of some configuration steps.

Configurations such as RAI class creation and generation

result in the creation of some technical objects. So, this

section is more focused on the technical details and will be

more relevant for a developer. In general, it’s important to

have exposure to these technical objects, as well as their

structure and uses. We also focus here on the tables that

are available in RAR and most importantly the table

relationships to recall the optimized way to access data. In

this section, we’ll mostly focus on classic inbound

processing. Optimized inbound processing (OIP) is discussed

in detail in Chapter 3. A core understanding of classic

inbound processing is required to get a clear picture of OIP.

Optimized Inbound Processing

OIP is the simplified version of classic inbound processing.

Some of the concepts in this section are applicable to both

classic inbound processing and OIP. The difference is that

OIP offers a fixed database model (based on basic and

sender component-specific information). This means that

structures, application programming interfaces (APIs), and

runtime working structures previously generated under

classic inbound processing are now available as

predefined fixed structures, APIs, and runtime working

structures with OIP. With OIP, RAIs are created, and

revenue accounting contracts are created from them.

Data flows from different sources. For RAR, the data sources

are shown in Figure 2.11.

Figure 2.11 Data from Sources to RAR

You can see that there are multiple sources, called sender

components. The integration component needs to create

the RAIs and send them to revenue accounting through the

ARL. Once RAIs are created, they need to be processed to

create/update revenue accounting contracts and POBs. The

source applications are defined as sender components.

Revenue recognition-related transactions result in the

creation of RAIs, which are like packets of information. Each

RAI belongs to a class that will determine its technical

definition and technical properties. There are two item (or

record) types: main and condition. The main and condition

records are related as 1 and 0 to N relations. The main item

or record type contains the most basic data, and a condition

item can’t exist without the main item. Condition items

contain amounts and account-related information.

RAIs have three possible statuses:

Raw

The initial status of the RAI when it’s first created.

Processable

The raw RAIs when transferred.

Processed

The final status of RAIs.

There are two additional statuses: Raw – Exempted and

Processable – Exempted. RAIs with these two statuses

are no longer considered for further processing steps and

are removed from the processing flow. Exempted items can

be restored when the settings of the selected exemption

reason allow restoration, for example, when the error is

resolved. An exemption history is created for each

exempted and restored RAI.

2.3.1 Sender Components

Because we spoke about the sender component at the start

of this section, let’s look at the basic configuration related to

the sender component. The details of each step of the

configuration are discussed in Chapter 3; here we’re

considering only the technically relevant steps to show the

technical objects or results that are relevant. Follow these

steps to configure the sender components:

1. Define the sender components by executing Transaction

FARR_IMG and following menu path Revenue

Accounting • Inbound Processing (Classic) •

Revenue Accounting Item Management • Define

Sender Components.

This sender component is the sending system, which

can be the SAP CRM system, sales and distribution

system, and others. CA, CRS, and SD are the standard

sender components provided by SAP, as shown in

Figure 2.12. If you have a third-party or external system

sending data, you can add it by clicking on New Entries

and entering “ZX” in the Send. Comp field. Then, enter

the Sender Component Description as “Third-Party

System”.

Figure 2.12 Sender Components Screen

2. The sender component is assigned to a logical system.

You first need to define the logical system by executing

Transaction FARR_IMG and following menu path

Revenue Accounting • Inbound Processing •

Revenue Accounting Item Management • Define

Logical Systems to open the Logical Systems:

Overview page, as shown in Figure 2.13.

Figure 2.13 Define Logical Systems

3. You assign the logical system to the sender component

by executing Transaction FARR_IMG and following menu

path Revenue Accounting • Inbound Processing

(Classic) • Revenue Accounting Item Management

• Define Sender Components.

4. Select the sender component, and double-click on

Assigned Logical Systems. In the screen that

appears, click on New Entries, and select the required

logical system, as shown in Figure 2.14.

Figure 2.14 Assign Logical Systems

5. The sender component information is complete when we

define the source item types, which are the orders,

fulfillments, and invoices for a contract that flow from

source applications. To define them, execute Transaction

FARR_IMG, and go to menu path Revenue Accounting

• Inbound Processing (Classic) • Revenue

Accounting Item Management • Source Document

Item Types. SAP provides a list of source item types

that correspond to order, fulfillments, and invoices for

the specific sender components, as shown in

Figure 2.15, for example, CA0I, which is class type

Order Item for provider contracts. If you want to define

a custom source item type for an external sender

component, click on New Entries, and add the required

custom source item type.

Figure 2.15 Source Item Types for Order, Fulfillment, and Invoice

6. The source item types are assigned to the sender

component by executing Transaction FARR_IMG and

following menu path Revenue Accounting • Inbound

Processing (Classic) • Revenue Accounting Item

Management • Define Sender Components. Select

the required sender component, and double-click on

Assigned Source Item Types as shown in Figure 2.16.

Figure 2.16 Assign Source Item Type to Sender Component

7. When the screen shown in Figure 2.17 appears, click on

New Entries. Then, select SrcItmType, and press (F4)
to get the list of options. Select the required source item

types for your sender component. You can select the

source item type for order, fulfillment, and invoice from

here.

Figure 2.17 Assign Source Item Type to Sender Component (Cont.)

You’ve now prepared the sender component and logical

system details and defined the source item types.

2.3.2 Structures

Structures are data objects with components of any data

type that are saved in sequence in the memory. The data

type of a structure is a structured type, or a structure

defined in the ABAP Dictionary. Type and sequence are the

important terms here: the type for a programmer helps plan

the memory, and the declarations and the sequence are

crucial for data access. In the following sections, we’ll

explore the structures that are a result of the RAR

configuration.

Interface Components

Interface components are part of the ARL. This is basically a

collection of structures for extracting the information from

various SAP components. Interface components contain the

structures of all the fields that are available for main items,

condition items, and various sender component-specific

structures. For example, if the sender component is sales

and distribution, then we have sales and distribution-

specific structures (SD) and profitability analysis-related

structures (COPA), as shown in Figure 2.18.

Figure 2.18 Interface Components

As an example, let’s take a closer look at interface

component BASIC_MI. This forms the basis for the RAI

Main Item fields and contains the most important data for

the RAIs such as the header ID and others. Figure 2.19

shows a snapshot of the BASIC_MI fields.

Figure 2.19 Fields Available in Interface Component BASIC_MI

To check the details of the field structure of interface

components, go to Transaction FARR_IMG, and follow menu

path Revenue Accounting • Inbound Processing

(Classic) • Maintain Revenue Accounting Item Class.

You’ll arrive at the screen shown in Figure 2.20.

Figure 2.20 Revenue Accounting Item Class Screen

Here, click the Interface button to see the screen shown in

Figure 2.21.

Figure 2.21 Screen to Select Interface Components

Select the Basic Fields for Main Items interface

component, and click on the Field icon.

When the screen shown in Figure 2.22 appears, you can

choose the status of the RAI under Status Selection. You

can select any one of the statuses such as Raw, Raw -

Exempted, Processable, Processable - Exempted, and

Processed. Then under Field Display, you see the default

Main Item or Condition radio buttons. Depending on the

interface component that you’ve selected, if you choose

Main Item, then the main item is defaulted, and the same

thing is true for Condition and condition items. You can also

choose to display only the key fields by selecting the Key

Fields checkbox; if you don’t select that checkbox, all fields

are displayed. When finished, click OK. As shown in

Figure 2.22, Basic Fields for Main Items is selected with

the status set to Raw and the field display set to Main

Items without checking the Key Fields checkbox (refer to

Figure 2.19).

Figure 2.22 Navigating to the Field Details of the Interface Component

RAI Classes and Class Types

The classes for RAIs demonstrate the technical properties of

each RAI. RAI classes can be created by selecting the

appropriate interface components (discussed in the previous

section) and can also be enhanced by adding customer-

specific fields. We’ll discuss adding customer-specific fields

in detail in the coming sections.

RAI classes determine technical attributes related to RAIs

such as the following:

The database tables for storing the RAIs (the set of tables

are created as part of RAI class generation, as we’ll

discuss in Section 2.3.3; these tables carry the name of

the RAI class)

Function modules for processing and saving RAIs

Structure of RAIs, which is determined by your choice of

interface components and customer fields

The RAI class type tells you if it’s of type order, fulfillment,

or invoice. These are the only three possible types. Even if

you choose a standard class type or create a custom class

type, it will belong to one of these three types. You need to

define the class type when you maintain the RAI class.

It’s very important to understand the class type before you

select the interface components. As for the order type, you

need to select interface components that are related to

orders. For invoice, you need to select the invoice class

type, as you have to further set whether the record type is a

main or condition record.

Let’s walk through the class types in the system, as listed in

Table 2.1.

Class Type Description

01 Order items

02 Fulfillment items

03 Invoice items

Table 2.1 Class Types

In general, the three class types indicate the following:

Order items

These are used to store data that will be used to create or

update contracts. These RAIs contain data needed for

contract creation such as duration, derivation POBs, and

contract modification or combination. Besides basic data

for contracts (created as main items), there is a section

with data that contains values represented as conditions.

One main item can have multiple condition items

depending on your setup.

Fulfillment items

These are used when fulfillments are being passed to RAR

that are usually represented as goods issue.

Invoice items

These are created once the invoice is entered and passed

to the system. It contains the main item section with the

predecessor item to which the invoice is related and

condition items that only have price conditions and not

statistical conditions (e.g., SSP). Invoice items are created

for regular invoices, credit/debit memos, and planned

items for the billing plan.

The RAI classes have different names to represent the

operational source. The technical names are preset by SAP

because it’s important that the system knows the basic

setting that needs to be provided for each class. For

example, if the class for the sales and distribution

integration is called SD01, then “SD” stands for sales and

distribution and “01” stands for order type; similarly, SD02

is for fulfillment. All the item classes are listed in Table 2.2.

Integration Source Class Relevant

Type

Sales and distribution SD01 Order

SD02 Fulfillment

SD03 Invoice

SAP Billing and Revenue Innovation CA01 Order

Integration Source Class Relevant

Type

Management

CA02 Fulfillment

CA03 Invoice

SAP CRM or SAP S/4HANA Service CS01 Order

CS03 Invoice

Third-party or external systems

(custom item class)

Z*01 Order

Y*01 Order

Table 2.2 Item Classes by Source

The RAI class is created by selecting the relevant interface

components and adding the customer-specific fields. We’ve

already discussed the interface components in the previous

section, and now we’ll focus on adding the customer fields.

The configuration steps for creating a class are discussed in

Chapter 3, so here we’ll demonstrate just the basic steps:

1. Go to Transaction FARR_IMG and follow menu path

Revenue Accounting • Inbound Processing

(Classic) • Maintain Revenue Accounting Item

Classes. Custom class YA01 for order type will be

created in this example.

2. Click the Create button, and enter the following details,

as shown in Figure 2.23:

Rev. Acc. Itm Class: Enter “YA01” for this example.

Name: Provide a suitable description, which is “Order

Item Class”, for this example.

Class Type: Choose 01 to create an order item class.

Figure 2.23 Custom Order Item Class Creation

3. Click the green checkmark to proceed further to the

next step to select the interface components.

4. Click the Interface button, and the popup shown in

Figure 2.24 will appear. Check the boxes under the

Active column for the interface components you’d like

to select.

Figure 2.24 Select the Interface Component for YA01

5. There are some default interface components that are

provided for each class type. If required, you can add

more by selecting them and then clicking on the green

checkmark to confirm the selection of interface

components.

Customer Fields and Append Structures to the Class

Now, let’s add custom fields to the class. You can click the

Customer Fields button during the class creation to add

additional custom fields. In RAR, data is planned based on

where the field is needed. There are certain fields that you

might need only for a contract, only during processing, and

so on. This categorization is based on the extensibility

concept of the Easy Enhancement Workbench (EEW), which

uses extension include structures. This helps the architect

plan and add the required fields per the requirement to

provide easy and efficient field extensibility. These include

structures are then included in all relevant tables and

internal structures.

There are fields that you might need in contracts but not in

reporting, just like there are fields necessary for processing

that aren’t required in contracts. This helps get rid of

redundant data, optimize performance, and limit the data

volume, as typically huge amounts of data are being

handled.

So, before you click that button, you need to add the fields

to the following extension include structures:

INCL_EEW_FARR_ARL

This structure is for fields only used in RAI processing.

These fields are needed to define rules for contract

combinations or contract composition in BRFplus. They

only extend the RAI tables, which we’ll discuss in

Section 2.3.3.

INCL_EEW_FARR_POB

This structure is for fields also used in revenue accounting

contracts. When you need fields at the POB level, you add

them to this structure. Fields added here are available in

BRFplus rules and the POB table.

INCL_EEW_FARR_REP

This structure is for fields also used in reporting. This is a

huge section, and the fields that you add here are

available on a broader spectrum such as RAI tables, POB

tables, posting tables, and BRFplus rules. The fields added

here can also be passed to general ledger documents.

INCL_EEW_FARR_CONTRACT

This structure is for fields on the contract header level.

Now that you know about these four structures, you need to

decide where the fields need to go and add them in those

respective structures.

As an example, let’s look at how you can add an additional

field as an extension to INCL_EEW_FARR_POB:

1. From Transaction SE11, display the include

INCL_EEW_FARR_POB, and then click the Append

Structure button. A popup appears, as shown in

Figure 2.25.

Figure 2.25 Creating an Append Structure for INCL_EEW_FARR_POB

2. Enter the new append structure name in the Append

Name field (for this example, “ZZPOB_FIELDS”), and

click on the green checkmark. Two fields—ZZPOB_CUR

and ZZBPOB_STATUS—will be added to the append

structure along with a suitable description, as shown in

Figure 2.26. Note that the data element and domains

were already created previously using Transaction SE11.

Figure 2.26 Custom Fields Added to the Append Structure

3. Click the Activate icon in the menu or press (Ctrl+F3) to
save and activate append structure ZZPOB_FIELDS.

4. Once activated, you can go back to structure

INCL_EEW_FARR_POB. The final structure is shown in

Figure 2.27.

5. Click the Activate icon in the menu or press (Ctrl+F3) to
activate structure INCL_EEW_FARR_POB. Upon

activation of the structure, you can go back to table

FARR_D_POB in Transaction SE11 to see that the two fields

are now available, as shown in Figure 2.28. For more

information on tables, see Section 2.3.3.

Figure 2.27 Structure INCL_EEW_FARR_POB with Additional Custom

Fields

Figure 2.28 Table FARR_D_POB with the New Additional Custom Fields

6. Similarly, let’s add another a new field called

ZZPOB_DESC for the additional POB description to the

structure for reporting INCL_EEW_FARR_REP following the

same steps. After adding the new field, the structure

INCL_EEW_FARR_REP looks like Figure 2.29.

Figure 2.29 Structure INCL_EEW_FARR_REP with Additional Fields

Now let’s go back to completing the class creation screen by

following these steps:

1. Execute Transaction FARR_IMG and follow menu path

Revenue Accounting • Inbound Processing

(Classic) • Maintain Revenue Accounting Item

Classes.

2. Select the class for this example, YA01, and then click

the Customer Fields button.

All the fields that are added to any of the structures

(INCL_EEW_FARR_ARL, INCL_EEW_FARR_POB, INCL_EEW_FARR_REP,

and INCL_EEW_FARR_CONTRACT) are now available in the

dropdown when you use the (F4) help in Figure 2.30 for

choosing the customer fields. The newly added fields

won’t be here unless they are added to the structures.

Here you also have the option to choose if those fields

are to be available for raw or processable/processed

statuses.

Figure 2.30 Customer Fields for Addition

3. Now add the additional fields, and choose the

appropriate checkboxes for availability of those fields in

Raw Items and/or processable and processed items

(Proc Items). You can even choose that they be

available for all three statuses by ticking the

checkboxes, as shown in Figure 2.31.

Figure 2.31 Customer Fields Selected for Class YA01

Ideally, instead of directly adding to structure

INCL_EEW_FARR_POB, you can create a group of custom fields

that you want to add and create each group as different

append structures. This way, you can create multiple

append structures for different categories of fields. Finally,

you just add these structures to INCL_EEW_FARR_POB. This

improves modularity and reusability. To elaborate, let’s say

there is a set of fields that are required for POB reporting

such as the description of POB status and other

descriptions. You can add them as an append structure

ZZPOB_DISP, and this structure can then be directly used in

INCL_EEW_FARR_REP if required for reporting purposes.

Consider the following fields that will be added:

ZZPOB_CUR

ZZPOB_STATUS

ZZPOB_BUNDLE

ZZPOB_DESC

ZZPOB_STATU_DESC

This list can be divided into two sets as ZZPOB_MAIN and

ZZPOB_DESC, as shown in Table 2.3.

Append Structure

ZZPOB_MAIN

Append Structure

ZZPOB_DESC

ZZPOB_CUR ZZPOB_DESC

ZZPOB_STATUS ZZPOB_STATU_DESC

ZZPOB_BUNDLE

Table 2.3 Append Structure Sets

To structure INCL_EEW_FARR_POB, you can add both append

structures: ZZPOB_MAIN (which carried the essential processing

data) and ZZPOB_DESC (description and other texts). Now for

reporting, if you need to add fields ZZPOB_DESC and

ZZPOB_STATUS_DESC, then you could simply add the append

structure ZZPOB_DESC to structure INCL_EEW_FARR_REP.

This way, you can segregate the fields and create

structures. These structures are then reused to add them to

any of the four structures.

2.3.3 Tables

Tables that are created during the generation of RAI classes

and the standard tables that are most commonly used in

RAR are discussed in this section. We’ll also explain how to

add indexes and how to view the table structures.

Generated Results

The RAI class is activated by clicking on the Activate option

from the Configuration menu, as shown in Figure 2.32.

Once the class is active, you need to generate it by

executing Transaction FARR_IMG and following menu path

Revenue Accounting • Inbound Processing (Classic) •

Generate Interfaces for Revenue Accounting Item

Classes.

Figure 2.32 Class YA01 Activation

There, you select the class to generate, which is YA01 in

this example, and then click on Generate. The screen

shown in Figure 2.33 will appear.

Figure 2.33 Generation of Class YA01

The interfaces are generated for RAI classes, so now what?

There are numerous objects created, activated, and ready

for you to use post generation. You can see a list by clicking

the Display Log button. We’ve listed them categorically for

ease of understanding in Table 2.4.

Function Group /1RA/YA01

Function modules
/1RA/YA01_RAI_CREATE_API

/1RA/YA01_RAI0_INSERT

/1RA/YA01_RAI2_INSERT

/1RA/YA01_RAI3_INSERT

/1RA/YA01_RAI4_INSERT

/1RA/YA01_RAI0_UPDATE

/1RA/YA01_RAI1_UPDATE

/1RA/YA01_RAI2_UPDATE

/1RA/YA01_RAI3_UPDATE

/1RA/YA01_RAI4_UPDATE

Function Group /1RA/YA01

Table types
/1RA/0YA010MI_TAB

/1RA/1YA010MI_API_TAB

/1RA/0YA011MI_TAB

/1RA/0YA012MI_TAB

/1RA/0YA013MI_TAB

/1RA/0YA014MI_TAB

/1RA/0YA010CO_TAB

/1RA/1YA010CO_API_TAB

/1RA/0YA011CO_TAB

/1RA/0YA012CO_TAB

/1RA/0YA013CO_TAB

/1RA/0YA014CO_TAB

Table index
/1RA/0YA010MI 001

/1RA/0YA010MI 002

/1RA/0YA012MI 001

/1RA/0YA012MI 002

/1RA/0YA014MI 001

/1RA/0YA014MI 002

Table 2.4 List of Generated Objects

Now we start with the tables that will be created after the

generation of the RAI classes. With the generation of the

classes, the created tables store the RAIs in various

statuses. Each status of the RAIs of an RAI class has two

database tables created: one for the main item (MI) and one

for the condition item (CO). Table 2.5 lists the important RAI

tables that were created along with their status

descriptions.

Tables

Created

Description

/1RA/0YA010MI Main items – Raw

/1RA/1YA010MI_API Class YA01 structure type API – main

items

/1RA/0YA011MI Main items – Exempt Raw

/1RA/0YA012MI Main items – Processable

/1RA/0YA013MI Main items – Exempt Processable

/1RA/0YA014MI Main items – Processed

/1RA/0YA010CO Condition items – Raw

/1RA/1YA010CO_API Class YA01 structure type API – condition

items

/1RA/0YA011CO Condition items – Exempt Raw

/1RA/0YA012CO Condition items – Processable

/1RA/0YA013CO Condition items – Exempt Processable

/1RA/0YA014CO Condition items – Processed

Table 2.5 Important RAI Tables

Let’s understand what the tables are stored with, their

attributes, and their structure, as well as how it matches

with what we’ve configured. The table names are

automatically created by the system, and they follow a

particular convention: “/1RA” is common throughout all the

tables and then follows “/0” or “/1”, and then the class

name. In our case, it’s “YA01” for the order. Similarly, the

RAI class for fulfillment would be “YA02” and for invoice

would be “YA03”. Then, the statuses are used as follows:

“0” for Raw, “1” for Exempt Raw, “2” for Processable,

“3” for Exempt Processable, and “4” for Processed. The

final letters are “MI” for main items and “CO” for condition

items. This forms the core of RAR tables; of course, we have

a lot more tables to discuss in this section going forward.

Using Transaction FARR_RAI_MON, you can see the RAIs in

all statuses. This is a very powerful utility that lets you

display, test, transfer, exempt, restore, and process the

RAIs. We’ll investigate some details next.

Raw Items: 0MI and 0CO

The main items for raw belonging to order, fulfillment, and

invoice classes are stored in the tables ending with

/1RA/0****0MI, as shown in Figure 2.34 under the Fields tab.

Similarly, the condition items are stored in the tables with

naming convention /1RA/0****0CO, as shown in Figure 2.35.

Figure 2.34 Raw Items Main Records: /1RA/0YA010MI

Figure 2.35 Raw Items Condition Records: /1RA/0YA010CO

Under the Attributes tab for these tables, you can see that

they are all created as $TMP or local objects. They are all

available only after the classes are generated. So, when the

configuration is transported to the next system, such as the

test system and then the production system, the RAI classes

are created and generated in each system, and then the

tables are created in the system.

As we know, the first status of the RAI is the Raw status. To

further process the RAIs and create contracts and POBs, you

need to transfer the RAIs to the Processable status in one

of two ways:

Mass transfer

If you have a huge number of RAI items to be transferred,

then go to Transaction FARR_RAI_TRANS (Transfer

Revenue Accounting Items) or program

RFARR_RAI_PP_TRANS_START. The key fields for mass

transfer are shown in Figure 2.36: the RAI class (Rev. Acc.

Itm Class) and Sender Component.

Figure 2.36 Transfer Revenue Accounting Items

You can also provide the Header ID if you’re running it

for a specific header ID, but because this is for mass

selection, you generally wouldn’t provide any restricting

inputs. Number of Intervals determines the number of

jobs for the transfer and usually is defaulted to 2, but you

can change it per your requirement. The Block Size For

Mass Selection will determine the package size for mass

processing.

You can execute in the background by following menu

path Program • Execute in Background, as shown in

Figure 2.37. Alternatively, depending on the volume of

data, you can run it in the foreground via Transaction

FARR_RAI_TRANS by clicking on the Execute button or

pressing (Ctrl+F8) to transfer the RAIs matching the

selection from the status Raw to the status Processable.

Figure 2.37 Transaction FARR_RAI_TRANS Executing in the Background

Selected RAIs transfer or dialog transfer

Alternatively, you can call Transaction FARR_RAI_MON and

provide the selection that is specific for your

requirements, as shown in Figure 2.38.

Figure 2.38 Transaction FARR_RAI_MON for Transferring of RAIs from Raw

to Processable

You can choose All Items Related to Order Items or All

Items Related to Invoice Items, or you can provide the

Header ID for which you want the RAIs to be selected.

Click on Execute, and you’ll be prompted with a list of

items that are available in Raw status. Then, from the list

shown in Figure 2.39, choose the RAIs you want to

transfer, and click the Transfer button that is provided.

This way, you choose the specific items that you want to

transfer to Processable status. We’ll talk about

Transaction FARR_RAI_MON in detail in later sections.

Figure 2.39 Choosing the RAIs to Transfer in Transaction FARR_RAI_MON

Processable Items: 2MI and 2CO

The main processable items belonging to order, fulfillment,

and invoice classes are stored in the tables ending with

/1RA/0****2MI, as shown in Figure 2.40. Similarly, the

condition items are stored in the tables with naming

convention /1RA/0****2CO, as shown in Figure 2.41.

Figure 2.40 Processable Items Main Records: Table /1RA/0YA012MI

Figure 2.41 Processable Items Condition Records: Table /1RA/0YA012CO

The data from Processable status is transferred to the

Processed status in two ways, similar to the previous

section:

Mass process

If you have a huge number of RAI items to be processed,

then go to Transaction FARR_RAI_PROC (Process Revenue

Accounting Items) or program

RFARR_RAI_PP_PROC_START. Provide the selection criteria

as required (see Figure 2.42), and then execute. Again,

you can choose whether to run in the background or

foreground by following the same steps described in the

previous section.

Figure 2.42 Process RAIs

The system processes the items matching the selection

from the status Processable to the status Processed.

Selected RAIs processing or dialog processing

You can call Transaction FARR_RAI_MON and provide the

selection that is specific for your requirement or choose

from the provided list and then click on the Execute

button that is provided. This way, you can choose the

specific items that you want to transfer from

Processable to Processed status.

Processed Items: 4MI and 4CO

The main processed items belonging to order, fulfillment,

and invoice classes are stored in the tables ending with

/1RA/0****4MI, as shown in Figure 2.43. Similarly, the

condition items are stored in the tables with naming

convention /1RA/0****4CO, as shown in Figure 2.44. This is the

final status, and the RAIs here are final as well. Successfully

processed RAIs will create/update revenue accounting

contracts and POBs based on rules set in BRFplus.

Figure 2.43 Processed Items Main Records: Table /1RA/0YA014MI

Figure 2.44 Processed Items Condition Records: Table /1RA/0YA014CO

Note that the preceding activities have all been shown for

the order class, which in this case is YA01. The steps would

be the same for fulfilment classes and invoice classes, and

the same objects would be created. The only difference is

that the class name would vary based on the fulfillment

class or invoice class.

Standard Tables

In addition to the tables that are generated with the

creation of RAI classes, there are many standard tables that

are related to RAR. There is a huge list of important tables

related to RAR, and we’ve listed the core tables in the

Table 2.6.

Table Name Description

FARR_D_ACCRRUN Accrual Run Table

FARR_D_ATTACH SDOK: Table for Document Contents

(Import/Export)

FARR_D_BIZ_RECON Business Reconciliation Table

FARR_D_CATCHUP Revenue Catch-Up

Table Name Description

FARR_D_CHECK_STA Data Consistency Check Selection Run

Status

FARR_D_CHG_MIG Change Type Migration Table

FARR_D_CHG_TYPE Table of Change Type

FARR_D_COLOGFLD Changed Fields of RAR, Database

Changes

FARR_D_COLOGHDR Header Entries of DB Changes

FARR_D_COLOGITM Logs of Item DB Changes

FARR_D_COLOGTEC Technical Table

FARR_D_CONS RA - Consistency Check/Contract Data

FARR_D_CONT_ERR Log Messages of Contract Errors

FARR_D_CONTR_D Draft Table for Revenue Accounting

Contract

FARR_D_CONTRACT Contracts

FARR_D_COOBJNR CO Object Number Table for Migration

FARR_D_COST_CO Processed Cost RAIs - Condition Items

FARR_D_COST_MI Processed Cost RAIs - Main Items

FARR_D_DEFERRAL Deferrals

FARR_D_DEFITEM Deferral Items

FARR_D_DELDEFITM Deletion Update for Deferral Item

(Memorized for BI)

Table Name Description

FARR_D_DPP_SORTC DPP EoP: Information on Customer

Retention

FARR_D_DPP_SORTP DPP EoP: Information on Bus. Partner

Retention

FARR_D_EV_CONTR Events That Occurred for Contracts

FARR_D_FLFMT_MI Processed Fulfillment RAIs - Main Item

FARR_D_FREEZ_IDX Freeze Period Index Table for AIF Bulk

Handling

FARR_D_FRZ_C_IDX Freeze Period by Contract Index Table for

AIF Bulk Handling

FARR_D_FULFILLMT Fulfillments

FARR_D_FX2_EXPL Data for Revenue Exchange Rate

Explanation

FARR_D_INB_CO Postponed RAIs - Condition Items

FARR_D_INB_COPA Postponed RAIs - COPA Data

FARR_D_INB_MI Postponed RAIs - Main Items

FARR_D_INV_CO Processed Invoice RAIs - Condition Items

FARR_D_INV_FX_ED Distributed Invoice and Exchange Rate

Difference

FARR_D_INV_MI Processed Invoice RAIs - Main Items

FARR_D_INVOICE Invoice Entries

Table Name Description

FARR_D_ITEM_PROC Inbound Processing: Item Proc. Status for

Account Principle

FARR_D_JOB Accrual Run in Background Job

FARR_D_KEYPP_ENQ Table Is Used Only by ENQUEUE-Object

EFKK_KEYPP

FARR_D_MAPPING Mapping Table to Map Source Document

to POBs of RA-Contracts

FARR_D_MAPPING_D Draft Table for RA Mapping Operational

Document

FARR_D_MAPPING_F Mapping Table for Fulfillment

FARR_D_MAPPING_I Mapping Table for Invoices

FARR_D_MAPPING_M Mapping of Manual POBs between

Accounting Principles

FARR_D_MNL_CHG Manual Changes of Performance

Obligations

FARR_D_NOTES Table for Farr Notes

FARR_D_OBJKEYS Data Consistency Check Object Keys

(New)

FARR_D_OBJKEYS_E Data Consistency Check Object Keys with

Errors

FARR_D_ORD_CO Processed Order RAIs - Condition Items

FARR_D_ORD_MI Processed Order RAIs - Main Items

Table Name Description

FARR_D_PAOBJMAP Profitability Segment Hashing

FARR_D_POB Performance Obligations

FARR_D_POB_CORRT Correct Performance Obligations before

Contract Turns to Err

FARR_D_POB_CTYPE Performance Obligation Change Type

FARR_D_POB_D Draft Table for RA Performance Obligation

FARR_D_POB_FRZ Freeze Periods of Performance Obligations

FARR_D_POB_HIS History of POB/Contract Structure

Changes

FARR_D_POSTING Postings

FARR_D_POSTING_C Detailed Postings from Cross-Period

Aggregation

FARR_D_POSTING_P Detailed Postings from Inner-Period

Aggregation

FARR_D_POSTING_S Postings (Shadow Table)

FARR_D_PP_LOCK Revenue Accounting: Locked RAIs per

Mass Run

FARR_D_PP_LOCKED Obsolete

FARR_D_PP_PACK Package-Related Parameters for Parallel

Processing

FARR_D_PP_UNITS Unit Related Parameters for Parallel

Processing

Table Name Description

FARR_D_PPND_REV Postponed Revenue and Cost Recognition

Items

FARR_D_PRODDEL Productive Cleanup: Deletion Log for

Order Item Header IDs

FARR_D_RAI_CH Change Sequence of Changed Items

FARR_D_RAI_DELH History Table for Deletion of Exempted

Items

FARR_D_RAI_HIST History Table for Revenue Accounting

Item Exemptions

FARR_D_RAI_LOG Log of Data Storage of RAIC Items

FARR_D_RAI2_ERR RAI2 Processing Inconsistencies

FARR_D_RAI2_PROC Acct. Principles RAI2 Was Successfully

Processed For

FARR_D_RECKEY_S Reconciliation Keys (Shadow Table)

FARR_D_RECON_ERR History Table for Reconciliation between

Logistics and RA

FARR_D_RECON_HIS History Table for Reconciliation between

Logistics and RA

FARR_D_RECON_KEY Reconciliation Keys

FARR_D_RVS_RUNID Run ID Reverse History

FARR_D_SHIFT_HIS Error Contract Shift History

Table 2.6 List of RAR Tables

We’d like to provide some insight on the main tables used

extensively in most of our developments, as listed in

Table 2.7. These tables are basic building blocks of RAR and

the relationships between them will be explained in

Section 2.3.4. We consider these tables as some of the most

important standard tables in RAR.

Tables Description

FARR_C_BUKRS Company Code Relate

FARR_C_CLOSE Revenue Accounting Period Close

FARR_D_CONTRACT Contracts

FARR_D_DEFERRAL Deferrals

FARR_D_DEFITEM Deferral Item

FARR_D_INVOICE Invoice Entries

FARR_D_MAPPING Mapping Table to Map Source Document

to POBs of Results Analysis Contracts

FARR_D_MAPPING_D Draft Table for Results Analysis Mapping

Operational Document

FARR_D_POB Performance Obligations

FARR_D_POSTING Postings

FARR_D_RECON_KEY Reconciliation Keys

Table 2.7 List of Very Important and Frequently Used RAR Tables

Adding Indexes to the Tables

As we all know, indexes are created for faster access to the

data records of tables. Some indexes are created by the

system and provided by default to the raw, raw exempted,

processable, processable exempted, and processed tables.

You can even create additional indexes to the tables per

your requirement to make data access faster. However,

keep in mind that creating a lot of indexes on the huge

tables isn’t a good idea because that will put an additional

load on the database. Because the system creates the

indexes on the RAR tables, you can add any fields from the

standard fields or even include the custom fields as part of

the fields in an index.

As they are the custom indexes, the naming should be in

the customer namespace. This is done during the RAI class

creation.

To create a table index, follow these steps:

1. Execute Transaction FARR_IMG, and follow menu path

Revenue Accounting • Inbound Processing

(Classic) • Maintain Revenue Accounting Item

Classes.

2. Select the class that you want to create the indexes. In

this case, the class will be YA01.

3. Click on Indexes, and the screen shown in Figure 2.45

appears.

Figure 2.45 Creating Indexes on RAI Tables

4. You can only select the MI tables or the table for main

records. Under Status Selection, select any of the

statuses for the selected class:

Raw

Raw - Exempted

Processable

Processable - Exempted

Processed

5. Click the green checkmark. If you’ve selected to create

an index on the Raw table, then Figure 2.46 appears

where you can click on the Create Index button and

create an index with the desired fields selected and then

click on the green checkmark. You can see that there are

already two primary indexes existing in the system: 001

and 002. The new index must be created in the

customer namespace starting with Y or Z.

The custom fields are also available for index creation.

Figure 2.46 Creating the Index

View the Structure

You can view the table structure from the RAI class creation

screen. Execute Transaction FARR_IMG, and follow menu

path Revenue Accounting • Inbound Processing

(Classic) • Maintain Revenue Accounting Item

Classes. Select the class that you want to view the table

structures for; in this case, YA01. Once the class is selected,

choose More • Display Table Structure to view the table

structure of the desired table, as shown in Figure 2.47.

Figure 2.47 Display Table Structure

You can change the status and accordingly view the fields

that are available by clicking Other Status, as shown in

Figure 2.48. You can see the structure of different tables of

main or condition items in Raw, Processable, Processed,

Raw - Exempted, and Processable - Exempted statuses.

Figure 2.48 Display Table Structure

As in the earlier section, where we added the custom fields,

we marked those customer fields to be available only in

processable and processed items so we can see that the

raw items don’t have those custom fields included; instead,

they are available only in the processable and processed

items. The custom fields missing in the Raw status main

table are shown in Figure 2.49, and those available in the

Processable table for main records are shown in

Figure 2.50. The custom fields are also marked in

Figure 2.50: ZZPOB_CUR, ZZPOB_DESC, and

ZZPOB_STATUS.

Figure 2.49 Custom Fields Missing in the Raw Table for Main Records

Figure 2.50 Custom Fields Available in the Processable Status Table for Main

Records

2.3.4 Relationships

Retrieval of data depends on the relationship between the

tables. When we need to get data in our custom programs,

or during the BAdI implementation, the data will have to be

pulled from various different tables by connecting the tables

with key fields. Sometimes, the key fields aren’t connected,

but they are connected through the other fields in the

database table. There will be multiple tables involved in

building the necessary data for our programs and reports.

Generally, functional consultants help with the data

relationship model or with the list of tables that we need to

access and the relation between the tables. As we work in

any SAP module, we start to understand the table relations

by experience. In this section, we’re focusing on table

relationships and the internal hierarchy that exists in the

RAR system between the data that is available in the Raw,

Processable, and Processed statuses and the other RAR

tables.

Figure 2.51 shows a graphical depiction of hierarchies and

relationships in RAR. The topmost of the data hierarchy is

the header ID that heads the chain. Under each header ID,

there can be multiple contracts. Each contract will have a

set of POBs that again have different types in them. The

POBs can have multiple orders under them, which are

identified by the key fields SRCDOC_COMP,

SRCDOC_LOGSYS, SRCDOC_TYPE, and SRCDOC_ID, and then

are stored in the order item tables (/1RA/0**010MI,

/1RA/0**012MI, and /1RA/0**014MI under normal cases with no

exemptions). We’re not looking at fulfillments here.

Figure 2.51 Hierarchies and Relationships

Each of these orders can have multiple invoices. Invoices

are identified by the key fields SRCDOC_COMP,

SRCDOC_LOGSYS, SRCDOC_TYPE, and SRCDOC_ID, and then

are stored in the invoice item tables (/1RA/0**030MI,

/1RA/0**032MI, and /1RA/0**034MI under normal cases with no

exemptions).

Understanding the relationship between the tables is crucial

for designing the data-fetching logic. During knowledge-

transfer sessions that we’ve experienced in previous

projects, we saw developers who tried to make changes to

existing RAR custom programs and found it difficult to

understand the hierarchical flow of data in RAR. If you’re

new to RAR, don’t worry, we’ll discuss some examples next

that should help you understand how to connect tables the

right way. Figure 2.51 shows the header ID at the top and

then the contracts and the POB. Then you can see that the

RAIs can be in the Raw, Processable, and Processed

statuses. Each of the orders can have one or more invoices

associated to them. We’ll discuss some sample cases to

demonstrate the relationships. Important note: The

following examples assume there is no fulfillment class

created. We are using the order class and invoice class for

these examples. The next example helps us with data

retrieval for specific cases when we have a certain input

provided on the selection screen, for example, and we have

to get order or invoice RAIs.

Case 1: Get the Processed Invoice RAIs for a Header

ID and Specific Source Document ID (Processed Order

RAIs)

In this case, say we have a custom program. From the

selection screen of the program, we get the header ID and

source document IDs of the order in Processed status, and

we have to fetch the processed invoice items.

Select SRCDOC_COMP, SRCDOC_LOGSYS, SRCDOC_TYPE,

SRCDOC_ID, and HEADER_ID from the processed order items

(in our case, the table name will be /1RA/0YA014MI) based on

the HEADER_ID and the specific SRCDOC_ID on the selection

screen.

Now we need to fetch the processed invoices for these

SRCDOC_IDs from the processed invoice items (table

/1RA/0YA034MI). The processed invoice item table also has

SRCDOC_ID, but it’s not the same as the processed order

items. We have to pass the order item’s SRCDOC_ID along

with SRCDOC_COMP, SRCDOC_LOGSYS, and SRCDOC_TYPE

to the processed invoice items (table /1RA/0YA034MI) as

ORIGDOC_ID along with other fields (ORIGDOC_LOGSYS,

ORIGDOC_TYPE, and ORIGDOC_I) being mapped, as shown

in Figure 2.52.

Figure 2.52 Orders to Invoice Relationship

Case 2: Get Processed Invoice RAIs for the Range of

POB IDs

Consider a case where you have to develop a program for

which the user has provided the POB ID on the selection

screen, and then you have to pull all the processed invoice

items for that particular POB ID or for a range of POB IDs. To

do this, you have to first validate the POB_ID or the range of

POB_IDs from the selection screen with table FARR_D_POB,

which is a POB master table.

Now you need to get the SRCDOC_ID of the orders, for which

you need to go mapping table FARR_D_MAPPING, which will

provide the mapping between POB and SRCDOC_ID of

orders only. Table FARR_D_MAPPING’s SRCDOC_ID maps with

orders and not with invoices.

Now collect order SRCDOC_ID along with SRCDOC_COMP,

SRCDOC_LOGSYS, and SRCDOC_TYPE, followed by pulling

the invoices for the retrieved orders.

You have to pass order SRCDOC_ID, along with

SRCDOC_COMP, SRCDOC_LOGSYS, and SRCDOC_TYPE to the

processed invoice items (table /1RA/0YA034MI) as ORIGDOC_ID

along with other fields (ORIGDOC_LOGSYS, ORIGDOC_TYPE,

and ORIGDOC_ID), as shown in Figure 2.53.

Figure 2.53 POB_ID to Processed Invoice RAIs

Case 3: Get Processed Invoice RAIs for a Contract or

Range of Contracts

Consider a case where you’ve been provided with the

contract ID, and you have to retrieve the processed invoices

items. They may also have filtering based on POB_IDs. So

now you have to start building the table relationship from

contract to processed invoice RAIs.

The first step is to validate the CONTRACT_ID or the range of

CONTRACT_IDs, which is on the selection screen with

contract master table FARR_D_CONTRACT.

Because the contracts are linked to SRCDOC_ID of the

orders through the POB_IDs, you need to build a link

between CONTRACT_ID and POB_ID and then to SRCDOC_ID

(orders).

You now go to table FARR_D_MAPPING table with the

CONTRACT_ID. Table FARR_D_MAPPING always comes to the

rescue when you need to build the relationships. Use the

existing primary index on CONTRACT_ID for performance

optimization and get all the POB_IDs for all contracts. You

will also have to select the order SRCDOC_ID, and

SRCDOC_COMP, SRCDOC_LOGSYS, and SRCDOC_TYPE from

table FARR_D_MAPPING.

Now that you have order SRCDOC_IDs, along with

SRCDOC_COMP, SRCDOC_LOGSYS, and SRCDOC_TYPE, you

can pull the invoices for the retrieved orders. To do so, you

have to pass order SRCDOC_ID along with SRCDOC_COMP,

SRCDOC_LOGSYS, and SRCDOC_TYPE to the processed

invoice items (table /1RA/0YA034MI) as ORIGDOC_ID along

with other fields (ORIGDOC_LOGSYS, ORIGDOC_TYPE, and

ORIGDOC_ID), as shown in Figure 2.54.

If there is a condition provided for restricting the selection to

specific POB IDs, then you can filter the data by deleting the

other POB IDs that aren’t required with a delete statement

on the internal table with conditions.

Figure 2.54 Contracts to Processed Invoice RAIs

2.3.5 Extensions and Transports

As part of extensions, we’ll look at additional topics related

to changing and processing data. We’ll also discuss the

transport-related issues that you might face when moving

table changes across systems. The transport issues aren’t

specific to RAR, but we have encountered them in a past

RAR project and felt it would be useful to include.

Transaction FARR_RAI_MON

Transaction FARR_RAI_MON is where you can see the RAIs in

all statuses. This is an amazing utility that lets you display,

test, transfer, exempt, restore, and process the RAIs, as well

as modify the field contents of RAIs that are configured to

be modifiable.

In the Kind of Selection dropdown, as shown in

Figure 2.55, you can choose to display items from orders,

fulfillment, invoices, or all of them.

Figure 2.55 Transaction FARR_RAI_MON Screen for Selection

Additionally, you can add the Item Status in your selection

criteria. Under the Source Documents section of the

selection screen, you can filter your selection by passing

values such as the sender Component, Logical System,

Type, Header ID (Orders), Item ID (Orders), and other

selections.

Click the Execute icon to get the output shown in

Figure 2.56. You can switch between the Main Item and

Condition Item tabs on this very user-friendly screen. Note

that this isn’t for mass processing and is only for dialog and

limited data processing.

Figure 2.56 List of Items Available for Transfer, Process, Exempt, and Restore

in Transaction FARR_RAI_MON

Here, you can select the following buttons:

Refresh

On clicking the Refresh button, all the database

selections are performed again, and the latest data is

displayed from database.

Statistics

This button opens the screen shown in Figure 2.57, which

summarizes the RAIs available in different statuses and

gives a count of the same.

Figure 2.57 Statistics as in Transaction FARR_RAI_MON

Simulate Transfer

You can simulate the transfer the of RAIs that are in

statuses from Raw to Processable. Because it’s in

simulation mode, you can’t commit to the database, but

you can see the feasibility or error.

Transfer

This button is for the actual transfer of raw RAIs to

processable RAIs by committing to the database.

Process

The processable RAIs are processed. Contract creation

happens at this stage.

Change

In the configuration, there is a provision to set some fields

as modifiable. Execute Transaction FARR_IMG, and follow

menu path Revenue Accounting • Inbound

Processing (Classic) • Define Modifiable Fields for

Revenue Accounting Items. You can choose the fields

that you want to modify by entering them in the screen

shown in Figure 2.58.

Figure 2.58 Define Modifiable Fields for Revenue Accounting Items

You can modify the content of the fields listed in the

preceding configuration using Transaction FARR_RAI_MON.

In our example, the field PRCTR is listed as modifiable, so

in Transaction FARR_RAI_MON, when you select an RAI and

click on Change, you can see that the Profit Center field

(corresponding to PRCTR) is editable and others aren’t,

as shown in Figure 2.59.

Figure 2.59 Modifiable Fields in RAI in Transaction FARR_RAI_MON

Exempt

RAIs that aren’t processed further can be exempted.

Restore

RAIs that are exempted can be restored and processed

further.

Custom Tables Creation and Conversion during

Transports

RAR has a huge number of tables, but still there will be

business requirements that call for additional custom tables

to be created. It’s best to minimize the creation of additional

custom tables when possible because it adds a maintenance

task, increases the number of deliverables to the client, and

puts an additional load on the database. However, there will

be situations where you can’t avoid it.

You can create custom tables using Transaction SE11, but

this section isn’t actually about how to create custom

tables; rather, it’s about a specific scenario. Generally, as

part of every project’s naming convention, there will be

project- or client-specific internal agreement or conventions

for naming the custom tables and other technical objects. In

one of our particular projects, for example, they had the

table naming convention of table /ABCD/ORA_0001, with each

table incremented to the next number until finally we

reached some with two digits, for example, table

/ABCD/ORA_0025. The project went live, and all the objects

successfully made it to the production system. During

support, there was a bug, and some changes were made to

table /ABCD/ORA_0031; specifically, there were some field type

changes that triggered table conversion. The table changes

were captured in a transport request and moved

successfully to the production system. During the next

phase of the project, we had additional changes to existing

objects, and there was a change to table /ABCD/ORA_0021. Note

that these changes also had field type changes to existing

fields and additional fields being added. The changes were

saved in a transport request and moved to the test system,

and it was successful with no errors.

As part of the project test cycles during final testing stages,

one of the test environments was copied from the

production system. The transport request with the changes

to table /ABCD/ORA_0021 was now moved to the new test

environment, which was a production copy. When the

transport request was moved to the system, it resulted in an

error, and it was unclear why the transport request carrying

the table changes resulted in an error in the test

environment (which is a copy of the production system)

while the same transport request was moved successfully to

the other test environment, which isn’t a production copy.

The target table data was crucial, and there were millions of

records saved in it, so we couldn’t risk moving that

transport request to production. After analyzing this issue in

detail, we found that the problem was in the table

conversion that gets triggered during the transport of

transport requests to production and nonproduction

systems.

Let’s discuss what it means when we say that the transport

request carrying changes to any table triggers table

conversion. If the ABAP Dictionary definition is changed by a

transport request or has been changed, the database

structure of the table is adjusted to the change in the ABAP

Dictionary during activation. The database structure of a

table can be adjusted to its changed ABAP Dictionary

definition in three ways:

By deleting and recreating the database table

This is when there is no data in the table. The existing

table is deleted in the database and recreated.

By changing the database catalog (ALTER TABLE)

If there is data in the table, this specific step is called the

alter table as it tries to change the structure of the table.

By converting the table

If the structural change isn’t possible with ALTER TABLE, then

the table is converted. So, when there is data in the table,

and ALTER TABLE can’t be executed by the database system,

the table conversion is triggered. In this case, there is a

change in table structure, field length, field types, and so

on.

The conversion process includes specific steps in the system

when the conversion of table is triggered when the transport

requests are moved to the next systems. The following

changes are all part of standard SAP:

1. Lock the table

Locks the table from any further changes. The table lock

ensures that there are no table updates, new entries, or

modifications on this table until this activity is complete.

2. Rename the table

You can rename the table or change the name of the

table to a new temporary table name. The system

renames the table in the database, and all indexes on

the table are deleted. Let’s call the table in action table

TAB. The temporary table that will be created for table

TAB (in our case, the table name is /ABCD/ORA_0021) is thus

table QCMTAB (in our case, the table name is

QCM/ABCD/ORA_00) The 15-character limitation leads to the

truncated name. If a table named QCM/ABCD/ORA_00 already

exists in the database (e.g., from a previous conversion

attempt), this table is deleted before the table is

renamed (didn’t happen in our case).

3. Activate the table

The next step is the activation of the new version of the

table in the ABAP Dictionary. The system creates table

TAB (table /ABCD/ORA_0021) in the database with its new

structure under the name table QCM8TAB (table

QCM8/ABCD/ORA_0). In addition, the system creates the

primary index of the table in the database. The structure

of database table QCM8TAB (table QCM8/ABCD/ORA_0) thus

corresponds to the structure of table TAB (table

/ABCD/ORA_0021) in the ABAP Dictionary after this step.

4. Reload the data

The data is copied from table QCMTAB (table

QCM/ABCD/ORA_00) to table QCM8TAB (table QCM8/ABCD/ORA_0)

(with the ABAP command MOVE-CORRESPONDING). After this

step, the data is present in both tables, requiring

additional space.

5. Delete the QCM table

The data in table QCMTAB (table QCM/ABCD/ORA_00) is no

longer required at the end of the conversion. The table

is deleted if all records could be copied from table QCMTAB

into table QCM8TAB.

6. Rename the table and create secondary indexes

Table QCM8TAB is renamed table TAB. The system recreates

the secondary indexes for the table defined in the ABAP

Dictionary in the database. The system also creates the

views on the table that were deleted in the first step

again in the database.

7. Unlock the lock

The lock set on the table is released. The table is now

unlocked.

In our example, basically, we changed table /ABCD/ORA_0021,

and FIELDX was changed from NUMC2 to NUMC4. When this

change moved to the test system, which isn’t a copy from

production, it worked fine. But when the same changes

moved to the test environment, which is a production copy,

we could not activate the table. The dump was thrown by

the system as shown in Figure 2.60.

Here’s what happened: During the support phase of the

project, a different table named /ABCD/ORA_0031 was changed

and moved to production. This transport request triggered a

conversion, and the QCM table was created and named

table QCM/ABCD/ORA_00. This was left in the system without

being deleted.

Now the transport request carrying our main concerned

table named /ABCD/ORA_0021 is moved to the test system,

which is a copy of the production system. It triggers the

conversion process and now tries to create the QCM table

with the name QCM/ABCD/ORA_00 (as the name of the table

differs only in two characters).

Figure 2.60 Issue Log

This is now a duplicate table. The system doesn’t allow its

creation, saying that the QCM table already exists and a

restart log for the table is already there in the system—but

it’s actually for the first table /ABCD/ORA_0031.

This confusion was created due to the following reasons:

The temporary tables had to be deleted in production as

well as in the test systems, which were created as a copy

from production.

The 15-character limit for naming a table leads to the

creation of table QCMTAB with truncated names (table

QCM/ABCD/ORA_00).

When the naming conventions in the projects are followed

as table /ABCD/ORA_0041 and table /ABCD/ORA_0021. Then,

during conversion creation of table QCMTAB, their names will

change to QCM/ABCD/ORA_00 for both tables. Due to the

limitation of 15 characters, this results in duplicate tables,

although technically they are different tables.

How did we resolve the issue? We can see the temporary

tables that are created during table conversion in

Transaction SE17. When we checked Transaction SE17 in the

test system, which isn’t a copy of the production system, we

found that there were no temporary tables in there. But,

when we checked Transaction SE17 in the other test system,

which is a copy of the production system, we found

temporary table QCM/ABCD/ORA_00 already existing there, which

was shown in the log when the table activation failed. SAP

doesn’t allow another table with the same name to be

created, regardless of whether it’s a dictionary table,

temporary conversion tables, or QCM tables.

We asked the Basis team to delete all the temporary tables

in the test environment, which is a production copy, and

then tried activating the table—it was successfully

activated.

The temporary tables can be deleted from Transaction SE14,

as shown in Figure 2.61, under the right authorization and

approvals. You should also validate the impact of the

deletion, but be careful when doing so. To delete temporary

objects, go to Transaction SE14, and select the option for

Tables (see Figure 2.61).

Figure 2.61 Transaction SE14 for Deleting QCM Tables

Select Invalid Temporary Table from the Extras menu, as

shown in Figure 2.62.

Figure 2.62 Select Invalid Temporary Tables

You’ll see a list of temporary tables, as shown in Figure 2.63.

But because this a development system, it doesn’t show

any tables here. However, in actual systems, you can see

the temporary tables if there are any. Then, you can select

the table that you want to delete and click on the Delete

Selected button as highlighted here to delete the

temporary table.

Figure 2.63 Temporary Tables Display and Deletion

2.4 Choosing Your Revenue

Recognition Tool

As of the time of writing, there are two main options when it

comes to selecting a RAR tool, and it mainly depends on

whether you’re using an older SAP ERP system or SAP

S/4HANA. For SAP S/4HANA, if you’re on version 1809 or

later, RAR will come integrated with the system, whereas for

older SAP S/4HANA users, the same rules as for SAP ERP

apply. So, for SAP S/4HANA users, the decision comes down

to which features of RAR they will use (will they activate

optimized contract management [OCM] and optimized

inbound processing [OIP] or not?), while for SAP ERP users,

the decision might be more complicated, and they would

need to look at feature packs and decide which one best

suits their needs.

In the following sections, we’ll give a detailed overview of

which features come with which versions so you can make

an appropriate decision.

2.4.1 RAR with SAP S/4HANA

As of SAP S/4HANA 1809, the former SAP Revenue

Accounting and Reporting add-on has become an embedded

part of SAP S/4HANA. This relates to product version SAP

Revenue Accounting, including software component version

REVREC. The RAR functionality still needs to be integrated

into operational components that send order and billing

information to revenue accounting. Since SAP S/4HANA

1809, the following operational components, or products,

support integration with RAR:

Sales and distribution

SAP Billing and Revenue Innovation Management

SAP CRM

SAP S/4HANA Service

External sender components

For the integration with sales and distribution, the

integration functionality previously deployed through the

software component SAP Sales and Distribution Integration

with SAP Revenue Accounting and Reporting 1.0 (SAP SALES

INTEGR SAP RAR 1.0) has also been added to the SAP

S/4HANA 1809 stack and the SAP S/4HANA releases that

followed.

Starting from SAP S/4HANA release 1909, customers can

use an optimized version of the revenue accounting

contract management. In SAP S/4HANA 2020, SAP added an

optimized version of inbound processing. Optimized contract

management (OCM) focuses on performance optimizations

and additional features, such as day-based contract

modifications. Optimized inbound processing (OIP) allows for

real-time processing of operational documents. The

Customizing for OCM and OIP can be found underRevenue

Accounting • Revenue Accounting Contracts and

Revenue Accounting • Inbound Processing.

Note

For new implementations, SAP recommends considering

the optimized SAP S/4HANA capabilities of contract

management and inbound processing, as future

investments will mainly focus on these new capabilities.

Since offering the optimized versions, the existing contract

management as known under SAP Revenue Accounting and

Reporting 1.3 and SAP S/4HANA is now referred to as

contract management (classic; or classic contract

management [CCM]). The inbound processing will be

referred to as inbound processing (classic). In Customizing,

you can find the settings for CCM and inbound processing

(classic) under Revenue Accounting • Revenue

Accounting Contracts (Classic) and Revenue

Accounting • Inbound Processing (Classic).

Starting with SAP S/4HANA release 2021, customers can use

the direct posting feature for posting management. Direct

posting offers closer integration with the Universal Journal

by posting directly into the Universal Journal without the

revenue accounting subledger and smaller posting

granularity due to posting by revenue accounting contract.

Starting with SAP S/4HANA release 2021, the parallel

processing framework (PPF) used by program

FARR_REV_TRANSFER (Transaction FARR_REV_TRANSFER)

and program FARR_CONTRACT_LIABILITY (Transaction

FARR_LIABILITY_CALC) has been adapted to the new SAP

S/4HANA PPF (Transaction SHDB PFW). The old PPF based on

the banking service is still used by other RAR programs such

as RAR posting (Transaction FARR_REVENUE_POSTING), RAI

transfer (Transaction FARR_RAI_TRANS), and RAI processing

(Transaction FARR_RAI_PROC).

As the new Transaction SHDB parallelization framework

(PFW) uses a different log mechanism than the old PPF, the

job logs of Transaction FARR_REV_TRANSFER and

Transaction FARR_LIABILITY_CALC are no longer available in

Transaction BANK_PP_MONITOR. Using Transaction SHDB

PFW, you can use report SHDB_PFW_SUPPORT to export the

monitor information of a given instance. The application logs

generated by those programs aren’t changed. You can still

view the application logs using Transactions SLG1 or SLGD.

In addition to these changes, there was a significant rework

of the predelivered SAP Fiori apps and analytical reports.

Users who used (or evaluated) are aware that in version 1.3

of SAP Revenue Accounting and Reporting, SAP delivered

only a few reports called sample reports that had been

developed using Web Dynpro technology. With SAP

S/4HANA, the design of reports has changed, they are

developed with SAP Fiori technology, and a substantial

number of reports was added to the standard library.

When coming to SAP S/4HANA, the most important point is

that RAR is an integral part of the SAP S/4HANA stack, which

means that RAR is the main tool for revenue recognition;

users can’t rely on Transaction VF44 anymore. In addition,

the main decision that needs to be made is whether to use

OCM or CCM and inbound processing (depending on their

version of SAP S/4HANA). Here, the decision is individual

and despite the fact that optimized versions will be

developed in the future, there are still limitations in using

them (we’ll discuss this in Chapter 5). An even stronger case

for keeping the classic functionality is if the customer

migrates from SAP ERP with SAP Revenue Accounting and

Recognition to RAR in SAP S/4HANA. The impact on

enhancements and developments done in the classic

environment can be considerable and even lead to a

complete reimplementation of RAR.

2.4.2 RAR with SAP ERP

RAR is delivered on SAP ERP as an add-on component called

SAP Revenue Accounting 130 (REVREC 130). The minimum

system requirement for this add-on to be implemented is

SAP ERP enhancement package (EHP) 5. Similar to SAP ERP,

RAR is delivered as an add-on component on SAP S/4HANA

on versions up to release 1709.

Additional versions of RAR were called support packs (SPs)

until version 03, where the naming was changed to feature

pack (FP) to version 07. Later, naming was changed back to

support pack on which the current new versions are

delivered (version 16 was the latest at time of writing).

The initial SP was mainly used when upgrading from

versions 1.1 or 1.2. The first standalone version issued for

the standalone use of RAR was version SP03 in August 2017.

In this version, several program corrections were issued

related to integration with results analysis and the now

retired Hybris billing. The main change implemented was

related to the contract modification process and enforcing

the change of estimates instead of the prospective change

for POBs, which were value relevant, and event type CI

(customer invoice). This correction was done mainly for

technical reasons while computing the remaining SSP.

Another major correction with SP03 was related to how

database updates are done. It had been noticed in previous

versions that data inconsistency can occur due to different

triggers for database updates. This was solved by

performing only one COMMIT once all processes in the ARL are

completed. This is the main reason customers are strongly

recommended to go to this SP.

Feature pack 04 (FP04) was issued in December 2017, and

was the first to use the FP name. The FP is very similar to

the SP, but it also contains nonmandatory and nondisruptive

deliveries. The most important feature that came with this

FP is the ability to do customized logic for calculating

contract assets and contract liabilities (CA/CL). The default

is that CA/CL is calculated on the contract level, but the

option to calculate it on the POB level is also available. SAP

Note 2560937 was issued with a description and information

related to calculating CA/CL on the POB level. Besides this

option, a BAdI to perform custom calculation of CA/CL was

delivered and can be implemented by the user.

FP05 was delivered March 2018 based on customer

requests. The main focus was on migration and transition

topics, plus performance improvement when needing to

process millions of contracts with many POBs. With this FP,

for the first time, there were recommendations on the

number of POBs per contract (see SAP Note 2551667) and

items in BRFplus. In addition, the following features were

introduced:

Reprocessing contracts and account determination

Calculate and post exchange rate differences for the fixed

rate method

Detailed inflight and data validation checks

Improved flexibility for the contract modifications process

Navigation from a financial accounting document to a RAR

contract

FP06 came in July 2018, and was published with main

corrections in the integration area with sales and

distribution. Processes that were covered include the

intercompany sales process, which came as an option in

Customizing; the drop shipment process; and reconciling

operational data with RAR.

The following additional functionalities were enabled as well:

Enabling change documents for account assignments

Allowing POB cancellation of a compound structure

separately

POB cancellation and conflict management

BAdI: Log POB Data

Additional contract shift scenarios

Overfulfillment during returns processing

Applying contract change to earliest open period

Improving the remaining SSP calculation flexibility

Improving the remaining amount calculation formula for

allocation to difference condition types

Performing SSP range validation during contract

modification

FP07 was delivered in November 2018, and it represents a

major step forward in terms of added functionalities. The

most important features are new fulfillment types: call-off

order, proof of delivery, and goods in transit. Beside these,

flexibility is added to existing processes in contract

management such as allowing a negative allocated price,

allowing one POB in compound to be nondistinct, and so on.

FP08 and FP09 were mainly issued to cover program bugs

and improve overall stability of the solution. No major new

functionalities were delivered.

SP10 was delivered in September 2019, and besides overall

program corrections, it contained a few new features that

might become useful to customers:

BRFplus trace tool

This development is used to visualize the full decision

path of the BRFplus function calls during creation of a POB

from source RAI data. The BRFplus trace can be used by

customers to explain their own customization as well as a

support engineer during problem analysis. Note that this

trace is only available for BRFplus usage in inbound

processing.

RAI monitor enhanced view

A new selection criterion has been added to Transaction

FARR_RAI_MON that allows you to display partially

processed RAIs or processed and partially processed RAIs

together.

SP11 and SP12 again mainly referred to program corrections

and improvements.

Next, SP13 was delivered in November 2020, with new

features and program corrections:

New functionality to manage migration

This new functionality provides a guided procedure for

migrating legacy data to RAR with a special focus on

migrating data from sales and distribution revenue

recognition. While leveraging the existing migration

programs, it streamlines and safeguards the execution of

this critical process.

Performance improvements for processing large

contracts

There are certain limitations for running SAP Revenue

Accounting and Reporting 1.3 with contracts of very large

sizes. These limitations are described in SAP Notes

2616387 and 2551667. This can often lead to timeouts

when performing basic tasks, such as opening the

contracts in the SAP GUI or combining them. Within SP13,

certain technical changes have been introduced to

improve performance to allow users to process larger

contracts.

Allow condition types with negative values

RAR provides the functionality to check whether a

condition type of a particular POB has the same +/- sign.

If the sign is different, an error message is raised. This

functionality was introduced to prevent errors during a

posting run in case a customer was using cost-based or

combined profitability analysis. For certain custom

processes (e.g., managing rounding differences), this

could cause an issue. SAP now delivers functionality to

allow configuration to specify which condition types can

have both +/- signs for the same POB.

SP14, 15, and 16, which were delivered up to October 2022,

brought upgrades of existing programs and minor features.

What we can see is that RAR was evolving in terms of new

features mainly up to deadline for IFRS 15 adoption. After

that, new features were coming to fill gaps that hadn’t been

addressed previously. But mainly, program improvements

and dealing with performance issues were constantly

improved, which continues today.

For new users, it’s very much recommended to go straight

to the latest version. However, existing users need to

carefully evaluate which version to upgrade to. Here, going

to the latest version needs to be carefully considered, and a

decision should be made based on the number and type of

custom developments the customer might have. Programs

are constantly evolving, and possible upgrades might have

an impact on existing developments. So before deciding

which version to upgrade, users need to verify changes to

programs beside checking features that are coming with the

new version.

2.5 Summary

Despite the fact that RAR is a relatively new tool, it offers a

variety of options for integration. This gives a certain level

of flexibility to users so they can select the most optimal

path while designing their system landscape. On the other

hand, RAR is a very robust solution if used with natively

integrated modules such as sales and distribution. It

provides an opportunity for users to focus on solving issues

related to business processes.

However, the downside of being a new solution is that RAR

is still evolving. That is why it’s very important to carefully

evaluate which version will be implemented in your

landscape. This becomes even more crucial when deciding

whether you’ll opt for optimized or classic inbound

processing and contract management.

In RAR, maybe more than in other SAP modules, it’s

essential to be familiar with data structures and understand

how the solution runs under the hood. That’s why we also

focused on presenting table structures and data models for

RAR in this chapter. All this should improve your awareness

before landscape and architectural decisions are made.

With this foundation in mind, we’ll move on to the step-by-

step configuration for inbound processing in the next

chapter.

3 Configuring Inbound

Processing (Classic and

Optimized)

Configuring inbound processing is the starting point in

any revenue accounting and reporting (RAR)

implementation. We’ll explain how RAR and

components with source data communicate with each

other via two options: classic and optimized inbound

processing (OIP).

Documents in RAR are always created as the result of

documents created in either other SAP components (sales

and distribution, customer relationship management [CRM],

contract accounting) or as a result of loading data from

external systems. Before data reaches the revenue

accounting engine, RAR has a staging layer that needs to be

passed called the Adapter Reuse Layer (ARL).

We discussed the architecture of the ARL in Chapter 2. To

review, when data is created in an operational application,

it’s sent to ARL for processing. Data is created as a

temporary item, a revenue accounting item (RAI), which

contains all needed information for contract and

performance obligation (POB) creation in revenue

accounting.

When creating RAR data, it needs to pass through a few

checks:

Revenue accounting configuration defines how RAIs will

be processed.

BRFplus rules are checked against information sent so the

system knows which POBs need to be created, which

fulfillment types to use, and so on. These rules are

covered in detail in Chapter 5 when we discuss contract

management.

Once data passes ARL, we know what contract and POBs

should be created. In addition, depending on the type of RAI

sent to the results analysis engine, different modules will be

involved in processing the data.

Not all data creates the same type of RAI. The system will

create different RAIs depending on whether you’re sending

order data (which is needed to create or update

contract/POBs) or whether you’re sending data related to

fulfillments (e.g., invoices or delivery). At the top, RAIs are

created with different levels of detail (e.g., cost conditions)

or a specific business process is used (e.g., SDPI [SD

planned items] or planned RAIs for billing plans).

Once data comes to the ARL for processing and the RAI gets

created, it will have one of the following statuses, as

discussed in Chapter 2, Section 2.3.1:

Raw status is used when the user needs to preprocess

data before the RAR contract can be created. RAIs will be

created in this status if basic data checks are

unsuccessful.

Processable status means that RAIs are ready to be

transformed into POBs and contracts.

Now, let’s dive into the detailed configuration instructions

for setting up inbound processing in SAP S/4HANA. We’ll

start with setting up the RAR integration with sales and

distribution, and then we’ll walk through setting up RAI

classes for both optimized and classic inbound processing.

To close, we’ll explain how to extend RAI classes by defining

and populating extensions.

3.1 Setting Up Revenue Accounting

Integration

The first step in activating RAR is enabling integration

between RAR and sender components. When integrating

with sales and distribution, follow IMG menu path Sales

and Distribution • Revenue Accounting and Reporting

• Integrate with Revenue Accounting and Reporting.

You’ll arrive at the screen shown in Figure 3.1, which is used

to enable integration by selecting the Revenue Account

checkbox. In the Destination field, you can enter the

logical system if RAR is operating on a different instance

than the rest of your ERP system. If they are on same

instance, you can enter “NONE”.

Figure 3.1 Enabling Integration between Sales and Distribution and RAR

Click the Execute button, and then the next step is to enter

whether additional functionalities are to be used by RAR in

integration with sales and distribution in the Activate

Functions to Integrate with Revenue Accounting, as

shown in Figure 3.2.

Figure 3.2 Integration with Additional Functions

Click the Change button to enable editing the fields. Here,

you can enable the usage of additional fulfillment events, as

follows:

MBP x PI

If this milestone billing plan integration functionality is

activated, you’ll get SDPI (planned items) generated once

you save the sales document that contains the billing

plan.

SvcFulfill

Settings in the SvcFulfill column are related to the

system creating fulfillment entries for orders that contain

nonstockable materials (type DIEN). This section usage

needs to be thought through due to the decision

regarding how services need to be treated in RAR: if they

are consumed equally to billing, they need to be

maintained as time-based POBs, so this setting isn’t

necessary. However, if services are managed in service

contracts and are used by service orders (or

corresponding documents coming from the customer

service module), this setting might be needed.

IB Fulfill

For intercompany processes, the intercompany invoice is

sent to be used as a fulfillment trigger.

PI Fulfill

The purchase invoice can be used as a trigger for revenue

recognition when you’re working with drop shipment

scenarios (also called subcontracting). In this case, the

company making the sale doesn’t hold the stock of goods,

so the goods are delivered by a third-party vendor without

coming to the seller’s warehouse first. The vendor invoice

can be treated as a fulfillment trigger.

POD Fulf

Proof of delivery is a document which shows that goods

are now owned by the buyer. It can be used when

incoterms are used to show that the buyer becomes the

owner of the goods only when those goods arrive at their

location.

AD Fulfill

This fulfillment type relies on the Customer Acceptance

Date field on the sales order, which allows us to

recognize revenue only once the customer accepts

delivery.

The settings are made per sales organization, which

increases system flexibility. In addition, you can make some

default entries by leaving the setting blank. You also can

control when items will be created by providing specific

dates in the Date fields (meaning that before that date, the

functionality wouldn’t be executed).

The next step is actually setting up how integration between

RAR and sales and distribution will be done. You’re deciding

which item to integrate with RAR and how. This setup needs

to be accessed through Transaction SPRO by following menu

path Sales and Distribution • Revenue Accounting and

Reporting • Maintain Revenue Accounting Item

Settings to arrive at the screen shown in Figure 3.3. Click

on the Change button to enter settings.

Figure 3.3 Integration between Sales Documents and RAR

On the sales organization level, you need to define which

sales document types and item categories will be integrated

with RAR and which won’t. The first three columns are

reserved for sales organization/document type/item

category type, which need to be linked with RAR. The values

in the Type column can vary as they define what kind of

integration is done:

Relevant for Revenue Accounting

This means that if the user enters a combination of sales

document and item category, that combination will be

sent to ARL for processing and creation of contracts/POBs.

Not Relevant for Revenue Accounting

This option is the opposite: the combination won’t be sent

to RAR.

Credit/Debit Memos with reference to predecessor

This is used when the user enters a document that should

just increase or decrease the transactional price. The

credit memo is a document with which you want to

subsequently change the agreed price with the customer

(due to some extraordinary circumstances or additional

negotiations). Note that if the mentioned combination is

used, it must have a predecessor—either an order or an

invoice—because a credit/debit memo without a reference

isn’t supported.

Other options will be used in specific processes that are

covered in other chapters (e.g., call-off order functionality).

Should All Sales Documents Be Maintained as RAR

Relevant?

As in other areas, the answer to this question depends on

the exact business case and how customer plans to utilize

RAR. One clear benefit can be that RAR becomes the

single point for complete revenue reporting for an

organization. All information regarding revenue would be

in FARR_D* tables, so standard apps for reporting (e.g.,

disaggregation of revenue or contract assets/contract

liabilities (CA/CL) movements) can be used. In addition,

any kind of additional custom reports would be easier to

deliver because data would be found in a single place.

However, additional complexity accompanies this

approach. For example, if we want to integrate quantity

contracts with RAR, what would that mean? The nature of

such a contract is that the customer is unsure how many

goods will be delivered, so we could argue that step 1

from IFRS 15 isn’t being fulfilled because there is no

enforceability. So, each time a customer decides to get

some goods, a sales order would have to be created

based on which delivery and invoicing occur. In terms of

RAR, this would make use of the call-off order functionality

(when sales orders are created on the basis of a sales

contract). But this would mean additional overhead on

business users who would need to monitor RAIs creation

and processing. In addition, standard RAR demands would

still need to be followed.

To conclude, there are clear benefits to using RAR for all

sales documents, but it’s not mandated. Customers might

opt to use RAR only for documents with clear contractual

obligation, and that approach is also valid. The decision

mainly depends on the internal capacity to handle the

additional workload that would come with RAR.

Sometimes, you need to change items that are usually

relevant for RAR to not relevant. For this to work, the

standard solution is to create separate item categories, but

because this typically isn’t possible (usually to avoid giving

extra tasks to the sales team), you can try to do so with

enhancement by using business add-in (BAdI)

FARRIC_BADI_ORDER.

To do so, execute Transaction SE18. For the BAdI’s

Interface field, enter “IF_FARRIC_ORDER”, and for the

Implementing Class field, enter

“ZRCLFI_FARRIC_BADI_ORDER”, as shown in Figure 3.4.

Figure 3.4 Clearing of Relevancy Flag

A method is available where you can enter logic based on

that criterion’s relevancy flag needing to be removed

(IF_FARRIC_ORDER~CLEAR_RELTYPE_FLAG).

In addition, if you’re using this method, be aware that

relevancy can be moved only in one direction: from relevant

to nonrelevant. In other words, you can’t make an item

relevant if setup was done in the opposite direction. In this

BAdI, you also have multiple methods that might help if

data manipulation is required between the order and RAR

contract, before the ARL is reached.

Reconciliation between Sales and Distribution and

RAR

If any of these methods are used, special attention needs

to be paid to reconciliation topics. Changing data based

on some criteria that aren’t entered in the standard setup

will cause differences between sales and distribution and

RAR. In some cases, this can be overlooked (when the

modification is very strict and controllable), but, in others,

it can represent an issue.

The second point is related to the contract lifecycle: unlike

other documents in finance, RAR contracts are often

changed, so if you decide to use this BAdI, you also need

to make sure that process will work if there are contract

modifications.

An example of the effect of reconciliation can be found

when you want to set a threshold for items not being

relevant for RAR (e.g., only contracts where the

contractual value is greater than $100,000 are relevant).

In this case, it wouldn’t be optimal to create a separate

item category type, but one option would be to use the

mentioned BAdI. You must be careful in those cases that,

for example, the sales order can’t be combined with

another in a single RAR contract.

3.2 Inbound Processing

As mentioned in the previous section and Chapter 2,

Section 2.3, the RAI class determines technical aspects of

the RAI item that need to be created:

Database tables in which the system will store RAIs

depending on their status and type

Functional modules that will process RAIs

Function modules that will save RAIs

Custom fields that users might add to an RAI class

RAI classes are stored in three different types: 01 for order

items, 02 for fulfillment items, and 03 for invoices. For more

details, see Chapter 2, Section 2.3.2.

Behind this setup, there is a list of interfaces that are used

when integrated with proper data sources and in specified

cases (see Table 3.1).

Interface

Component

Description Data Element

BASIC_CO Basic fields for

conditions

FARR_IC_BASIC_CO

BASIC_CO01 Basic fields for order

items (conditions)

FARR_IC_BASIC_CO01

BASIC_MI Basic fields for main

items

FARR_IC_BASIC_MI

Interface

Component

Description Data Element

BASIC_MI01 Basic fields for order

items

FARR_IC_BASIC_MI01

BASIC_MI02 Basic fields for

fulfillment items

FARR_IC_BASIC_MI02

BASIC_MI03 Basic fields for invoice

items

FARR_IC_BASIC_MI03

CA_BASIC_MI CA basic fields for

main items

FARR_IC_CA_BASIC_MI

CA_MI01 CA fields for main

items

FARR_IC_CA_MI

COPA_MI01 Structure COPACRIT FARR_IC_COPA_MI

CRM_MI01 CRM fields for order

items

FARR_IC_CRM_MI

SD_MI01 Sales and distribution

fields for order items

FARR_IC_SD01_MI

Table 3.1 ARL Interface Components

Which components will be active depends on what kind of

integration is needed: CA components are used if the

integration point is with contract accounting, CRM if you’re

integrating with customer relationship management, and SD

if the integration point is sales and distribution. The COPA

structure will be used if you’re using controlling and it’s

inheriting all characteristics defined in profitability/margin

analysis.

With the basics covered, we’ll explain how to set up RAI

classes in both classic and optimized inbound processing

(OIP) in the following sections.

3.2.1 RAI Classes in Classic Inbound

Processing

Once you determine the integration type between

operational applications and RAR, the first step is to set up

ARL for inbound processing. This is done through

configuration of RAI classes, which we’ll explain in the

following sections.

Interface Components

For the classic environment, go to Transaction FARR_IMG,

and follow menu path Revenue Accounting • Inbound

Processing • Revenue Accounting Items. You’ll arrive at

the screen shown in Figure 3.5, which shows the available

interface components.

SAP provides preconfigured interface components that you

can use immediately. These include basic components,

which are mandatory for each record type, as well as other

optional components that you can add to a class. Note that

you can’t create your own customer-specific interface

components.

Figure 3.5 Interface Components

After making your selection in the Interface Compo…

column (SD_MI01, in our example), the following settings in

the Dialog Structure define an interface component:

Assigned Structures

The assignment of structures (see Figure 3.6) depends on

the record type and the status (for details, see Chapter 2,

Section 2.3). For entries that don’t belong to the Main

Item record type, you can specify that these entries are

only conditionally active by selecting the Condit. Active

checkbox.

Figure 3.6 Assigned Structures

Prerequisite Components

This setting indicates which interface components are

prerequisites. Prerequisite components get activated

automatically when the current component is used in the

RAI class.

Program Enhancements

Program enhancements can be defined as shown in

Figure 3.7. The following program enhancements are

available:

Enrich Raw Items: In this case, additional information

needs to be added to RAI items created in Raw status.

Enrich Processable Items: This is similar to the

previous item, but items are created in Processable

status.

Final Check Before Saving Processable Items: In

this case, you need to perform an additional check at

the last moment before data is saved in the database.

Figure 3.7 Enhancement of Data Method

These enhancements are realized using methods of class

CL_FARR_RAI_IFCOMP.

One example of using this BAdI and method ENRICH is when

you need to determine the customer for an IFRS 15

contract. We’ll discuss this problem in Chapter 5: one of the

crucial steps in creating a contract is to define the

customer, which can’t always be picked up from the specific

partner function in the sales document (default is PAYER).

So, in this case, you have a master contract to which all

follow-on documents belong if they are members of a

bundle. In this document, you have a customer defined with

the proper partner function. You want to make sure that

irrespective of the customer in the sales contracts/sales

orders, you’re always picking the customer defined in the

master contract.

To achieve this, you need to implement the BAdI with

specific code for fetching the proper customer and using it

in RAR documents, as shown in Listing 3.1. Implementation

will be done by running Transaction SE18 and selecting BAdI

FARR_BADI_RAI2 and method ENRICH.

SELECT vbeln,

 kunnr

 FROM vbak

 INTO TABLE @DATA(lt_vbak)

 FOR ALL ENTRIES IN @ct_rai2_mi

 WHERE vbeln = @ct_rai2_mi-wwmct .

 IF sy-subrc IS INITIAL.

 SORT lt_vbak BY kunnr.

 lv_flag = abap_true.

 EXPORT lv_flag FROM lv_flag TO MEMORY ID 'FLAG'.

 ENDIF.

 READ TABLE ct_rai2_mi ASSIGNING FIELD-SYMBOL(<ls_mi>) INDEX 1.

 IF sy-subrc IS INITIAL.

 lv_wwmct = <ls_mi>-wwmct.

 EXPORT lv_wwmct FROM lv_wwmct TO MEMORY ID 'WWMCT'.

 ENDIF.

 "Taking data to temporary internal table

 DATA(lt_rai2_tmp) = ct_rai2_mi.

 CLEAR lv_vbeln.

 LOOP AT lt_rai2_tmp ASSIGNING FIELD-SYMBOL(<ls_rai2_mi>).

 IF <ls_rai2_mi>-raic = lc_raic.

 <ls_rai2_mi>-due_date = <ls_rai2_mi>-posting_date.

 ENDIF.

 READ TABLE lt_vbak ASSIGNING FIELD-SYMBOL(<ls_vbak>) WITH KEY

 vbeln = <ls_rai2_mi>-wwmct.

 IF sy-subrc IS INITIAL.

 <ls_rai2_mi>-kunnr = <ls_vbak>-kunnr.

 ENDIF.

 ENDLOOP.

 ct_rai2_mi = CORRESPONDING #(lt_rai2_tmp MAPPING kunnr = kunnr

 due_date = due_date) .

 UNASSIGN <ls_rai2_mi>.

 CLEAR: lv_vbeln.

 FREE : lt_rai2_tmp.

ENDMETHOD.

 ENDIF.

Listing 3.1 Example of Changing Partner Type Determination for Customer in

RAR

RAI Class Configuration and Activation

The next step in inbound processing configuration is to set

up RAI classes. SAP doesn’t supply any RAI classes, but

there are predefined class names for certain components.

You need to define the classes to satisfy your technical

requirements. The settings you make here influence the

appearance of the database tables, as well as the interfaces

for the data transfer.

To set up RAI classes, you need to execute three steps

(Figure 3.8):

1. Set up the interfaces.

2. Add customer fields.

3. Add database indexes.

Figure 3.8 Steps for Creation of RAI Classes

You can maintain RAI classes in Transaction FARR_RAI_CONF.

Figure 3.9 shows the setup screen, where you can access

the Interface, Customer Fields, and Indexes buttons.

More information about these options was provided in

Chapter 2, Section 2.3.

Figure 3.9 Setup of RAI Classes

Once you define an RAI class, you need to select the Class

Type. As we’ve discussed, there are three types available:

Order Item, Fulfillment Item, or Invoice Item.

The next step is to define whether the class is transportable

or not under the Configuration Status column. Table 3.2

shows the activities that are available based on the

configuration status.

Status Changes? Transport

In Processing No constraints No

Transportable No constraints Yes

Released as

Productive
Additional interface

components

Additional customer

fields

Indexes

Yes

Table 3.2 Transport Statuses

You need to consider these before the status is set or

changed because not all changes are possible once a

certain status is reached.

After creation, the class has an In Processing configuration

status. You can change a class with this status as you like. If

you activate the class, the system doesn’t include it in a

transport order. The system is only able to include the class

in a transport request if you’ve set the status to

Transportable. You can also make as many changes as you

like in this status.

When you set the configuration status to Released as

Productive, you can only make the following compatible

changes:

Select additional interface components that aren’t yet

active.

Select additional customer fields that aren’t yet active.

By selecting the Generatn Trgt System option, the RAI

class will be automatically generated in the target system.

This specifies that when you transport the RAI class, it’s

automatically generated in the target system by the after-

import method FARR_RAIC_GEN_AFTER_IMP. To set the indicator,

add the class to a transport request using the Activate

Configuration function (a small matchstick icon, not

shown). In the dialog that appears, confirm that you want

the class to be generated automatically in the target

system.

You can only transport classes that have the configuration

status Transportable or Released as Productive. When

you transport the configuration of a class, the Customizing

includes CI_FARR_S_* and CI_FARR_S_*_ALL must already be

present in the target system containing the required fields.

When you activate the configuration, the system checks the

completeness of the work structures for RAIs that are used

in the processing programs. If necessary, it then

automatically adds the fields of the class that aren’t yet

contained in the work structures. The fields are added in the

related Customizing include CI_FARR_S_*_ALL.

Once the class is activated in the target system, you can

either delete all items in Transaction FARR_RAI_MON during

generation or leave it as is.

While setting up interface components, you also can

activate specific interfaces. By selecting an RAI class (SD01,

in our example) and the Interface button, you’ll arrive at

the screen shown in Figure 3.10. Here, you can add or

remove any additional interface components by selecting or

deselecting the Active checkboxes based on your

requirements.

Figure 3.10 Interface Component Selection

Once this is done, SAP will automatically generate interfaces

that will enable linking to specific applications and data

transfer.

Before RAI classes can be used, they must be activated. The

activation option is available only if the user has proper

authorization in the system. It’s good practice to verify

whether a class has any issues or inconsistencies before it

can be used. You can do that by performing an activation

check.

With the Perform Consistency Check for Configuration

icon at the top of the screen (see Figure 3.11), you can

check a selected RAI class. When you call this transaction,

the system only checks the generation status based on the

entries made in maintenance for the class. The check

focuses on changes and additions to the following items:

Interface components

Customer fields

Indexes

Figure 3.11 Perform Consistency Check

If you explicitly check a class, the system performs detailed

comparisons, which focus on changes that affect the

generated function modules.

When you choose Activate Configuration, the system

checks the completeness of the work structures for RAIs

used in the processing programs. The system can then

automatically add fields of the classes that aren’t already

contained in the work structures. These fields are added in

the related customer includes of the work structures.

Interface Generation

Before classes can be used, you need to generate

interfaces. Execute Transaction FARR_IMG, and navigate to

Inbound Processing • Revenue Accounting Items •

Generate Interfaces for Item Classes. For interfaces to

be generated, the screen must look like Figure 3.12.

Figure 3.12 Generation of Interfaces Option

The following options are available at the top of the

interface generation screen:

Generation check

The system compares configuration with interface

components, indexes, and customer fields. Once the

check is completed, a list of inconsistencies can be

displayed.

Delete generated object

If an object isn’t set as productive, it can be deleted.

Comparison of configuration with active version

The system will try to find any differences between the

current configuration in the system and the last active

version.

Release and lock for use

Once setup is completed, it can be released and made

ready for productive usage.

After you generate interfaces, all related methods, classes,

and needed data objects are generated. The system will

write all changes to the log to maintain the history.

Sometimes, a class becomes inactive, so it’s useful to check

its status after this activity by running the same process

over again (status must be green after activation).

However, if you selected that automatic generation should

be performed after transport (via the Generatn Trgt

System option discussed previously), this activity isn’t

needed.

Once generation occurs, the system will generate a

separate RFC function module in the background for each

RAI class. This will later enable data transfer between the

ARL and the contract management engine.

To define upload rules, follow menu path Revenue

Accounting • Inbound Processing • Revenue

Accounting Items • Assign Upload Rules. As shown in

Figure 3.13, you’re defining how items will be created once

they are pushed from the source application to the ARL. You

have two options: create the RAI as a raw item or create the

RAI as a processable item. If the item is created in Raw

status, you’ll need to transport it to Processable status

before it can be passed to the revenue accounting engine. If

the item is created as Processable, as in our example, it

can be processed straight after creation.

Figure 3.13 Upload Rules

The last step while creating RAI classes is to verify what

fields will be available for modification once the RAI is

created. This step is optional but can be useful when data

requires modification before being processed by the ARL.

However, in other cases, it might not be advisable to modify

data because that would cause inconsistency between the

source application and RAR contract that is created as a

result.

3.2.2 RAI Classes in Optimized Inbound

Processing

OIP offers a fixed database model (based on basic plus

sender component–specific information). This means that

structures, application programming interfaces (APIs), and

runtime working structures previously generated under the

classic inbound processing are now available as predefined

fixed structures, APIs, and runtime working structures,

respectively. The predefined fixed structure, APIs, and

runtime working structures are provided for the following

sender components:

Sales and distribution (SAP)

Contract accounting (SAP)

SAP CRM or SAP S/4HANA Service

External third-party sender components

In Figure 3.14, you can see a high-level picture of OIP. Here,

it’s clear that RAIs are still coming to the processing engine

in a similar way as in classic inbound processing. The

system also works in a very similar way in respect to

integrations: source data can originate in sales and

distribution, SAP Billing and Revenue Innovation

Management, or external applications. Once data is

processed, results will be saved directly in the Universal

Journal.

Figure 3.14 Architecture of Optimized Inbound Processing

To avoid batch job processing that is present in classic

inbound processing, OIP processes RAIs in real time (no

mass/batch processing required), based on the inbound

processing APIs. This means the background jobs to transfer

and process RAIs are no longer required. If an error occurs

during processing, postponed RAIs are created and stored in

a specified table.

Note

For integration with SAP Billing and Revenue Innovation

Management, you’re still required to execute job

FP_RAI_TRANSF in SAP Billing and Revenue Innovation

Management. This program creates the RAI structures that

are then immediately processed from revenue accounting

using OIP. In contrast to using the classic inbound

processing, you save the processing of RAIs in revenue

accounting through a batch job.

OIP is based on static database tables. Successfully

processed RAIs are saved in corresponding database tables,

as shown in Table 3.3. They are transformed into revenue

contracts with POBs and are used to update the

corresponding contract with fulfillments and with cost and

invoice data.

Table Description

Processed RAIs

FARR_D_ORD_MI Processed Order RAIs - Main Items

FARR_D_ORD_CO Processed Order RAIs - Condition Items

FARR_D_FULFILLMT Processed Fulfillment RAIs

FARR_D_INV_MI Processed Invoice RAIs - Main Items

FARR_D_INV_CO Processed Invoice RAIs - Condition Items

FARR_D_COST_MI Processed Cost RAIs - Main Items

FARR_D_COST_CO Processed Cost RAIs - Condition Items

Partially Processed RAIs

FARR_D_ITEM_PROC Partially Processed Data

Postponed RAIs

FARR_D_INB_MI Postponed RAIs - Main Items Table

Table Description

FARR_D_INB_CO Postponed RAIs - Condition Items Table

Table 3.3 Database Tables

In the following sections, we’ll explain how to activate OIP

and then how RAIs are processed and postponed.

Activation of Optimized Inbound Processing

By default, in on-premise SAP S/4HANA, OIP isn’t activated

(note that it’s activated by default in SAP S/4HANA Cloud,

public edition). To activate it, you must create an

implementation for BAdI IF_FARR_BADI_DETN_IP_VERSION

(Determination of Inbound Processing Version) in

Transaction SE18, as shown in Figure 3.15.

Figure 3.15 BAdI IF_FARR_BADI_DETN_IP_VERSION

Here, you can see interface

IF_FARR_BADI_DETN_IP_VERSION and method

DETERMINE_VERSIONS, which need to be implemented.

This method has two parameters: ITS_ORDER_ITEM and

CTS_SRCDOC_VERSION, as shown in Figure 3.16.

Figure 3.16 Method DETERMINE_VERSIONS

Once you double-click on the method, you’ll see the

available parameters, as shown in Figure 3.17.

Following are the parameters that can be used to determine

the usage of inbound processing:

Sender component of source item

Logical system of the source item

Source document item type

Source item ID

Company code

Sales organization

Customer

Business partner

Customer group

Customer fields (provided by the extension include of the

contract items)

Figure 3.17 Parameters of Method DETERMINE_VERSIONS

To receive the data in the form of order, fulfillment, cost,

and invoice RAIs in the RAR system from operational

systems, inbound processing needs to have an API for a

transaction or RAI type, which is the first substantial

difference when comparing to classic inbound processing.

After the BAdI is implemented, the API is automatically

activated.

The integration component embedded in the operational

system is responsible for collecting documents relevant to

revenue accounting and securing their transfer to the RAR

via the APIs for revenue accounting. Inbound processing

receives data in the form of RAIs. After being processed by

inbound processing, these RAIs are passed over to contract

management for revenue recognition.

Besides the internal APIs, which are used for standard

integration with other SAP products, inbound processing

offers remote-enabled function modules. These function

modules should be used for integration with operational

systems without standard integration with RAR. For

instance, if you need to integrate with external components

used for order or fulfillments creation, these APIs should be

implemented.

Classic or Optimized?

OIP and classic inbound processing can be used at the

same time. The determination of which version to use for

inbound processing is based on the source document item

and how it was sent from the sender component. This

means operational document item A in the sender

component can create a revenue contract using OIP while

another operation document B item from the same sender

component can create a revenue contract using classic

inbound processing.

For example, using the BAdI FARR_DETERMINE_IP_VERSION, you

can decide that the operational documents with sales

organization 0001 and order type OR use OIP, whereas

operational documents in other sales organizations or

other order types use classic inbound processing.

In addition, in contrast to classic inbound processing, if an

external sender component is used, you don’t need to

configure any customizing or generate

structures/interfaces. You can directly use the following

function modules:

FARR_INBOUND_ORDER_API

FARR_INBOUND_INVOICE_API

FARR_INBOUND_FLFMT_API

FARR_INBOUND_COST_API

RAI Processing

RAIs are created when transactions relevant to revenue and

cost recognition are received from operational systems. RAIs

contain source information about such transactions, and this

data is used to create or update revenue accounting

contracts and POBs in RAR. RAIs received from sender

systems are processed by the system in the following order:

1. Validation of key fields

2. Enrichments

3. Checks

4. Determination of additional attributes using BRFplus

5. Contract management

RAI statuses include Processed, Partially Processed, or

Postponed. Once an RAI has been processed in all these

steps without any errors, then it will acquire the status

Processed. If an RAI that is relevant for more than one

accounting principle is processed successfully for only a

subset of the accounting principles, it acquires the status

Partially Processed. If processing fails in any of these

steps, the RAI acquires the status Postponed.

With inbound processing, you can process return order RAIs.

Return order RAIs must refer to their predecessor order RAIs,

and they usually contain negative quantities and amounts.

After going to the RAI monitor (Transaction FARR_RAI_MON),

reference to predecessor order RAIs must be documented

by the operational system by filling in the following fields:

Predecessor Item Sender Component

This is the sender component of the item that is the

parent to the item getting reversed (for sales and

distribution integration, the value will be SD).

Logical System of the Predecessor Item

This is the logical system that is defined in inbound

processing.

Predecessor Item Type

This is the type of the parent item. In most cases, the

value will be SDOI.

Predecessor Item ID

This the ID of the item that is the predecessor.

When inbound processing receives a return order item, the

order item isn’t treated as a separate and independent item.

Return order items with their predecessor order item make

up the predecessor document chain. Whenever inbound

processing receives a return order item or a predecessor

item, it internally builds the whole predecessor document

chain from all relevant order items. These order items are

then aggregated to produce one POB per accounting

principle. The aggregation is applied to quantities and

amounts. Predecessor items can’t refer to other predecessor

items because multiple layer hierarchies of return order RAIs

aren’t supported.

For the system to be able to match predecessor order items

with return order items, some prerequisites must be fulfilled.

The following must be the same in the predecessor order

item and the return order item:

Company code

Transaction currency

Units of measure

POB category

Value relevance flag

The aggregated quantity and amount must not be negative

after all the items are aggregated. You can cancel return

orders created on an existing sales order at any time. When

the cancellation is issued on a return order from the sender

component, the aggregation is triggered in inbound

processing with the cancellation request. During this

aggregation, the quantity and amount declared on the

goods receipt of the return order isn’t considered.

When the deletion flag is set for a return order item, the

final date is set, or the RAI is value-relevant, these items

aren’t considered for the aggregation of quantities and the

recalculation of amounts for the predecessor order item.

The quantity unit isn’t checked for return order items.

When the predecessor document and the related return

order items are fully invoiced, the Final Invoice indicator is

set in contract management on the POB of a contract of a

related sales order. For more information about contract

management, see Chapter 5.

Data received from sender systems is processed in inbound

processing by the system doing the following:

Technical validations

Checks

Enrichments

If any issues occur during the technical validations, the RAIs

are rejected, and processing of these RAIs isn’t postponed. A

GENERAL_FAULT exception is triggered with an error message

by the APIs in inbound processing.

Postponed Items

For some errors during enrichments or checks, processing of

the corresponding RAIs is interrupted, and these RAIs aren’t

processed further (e.g., because the RAIs are linked to a

revenue accounting contract that is locked). Further, if an

error occurs during processing in contract management, the

corresponding RAIs are considered postponed items or

partially processed items. Consequently, these RAIs are

moved to the database tables for postponed items to be

processed later with one of these options:

With the Manage Revenue Accounting Items app (SAP

Fiori)

With Transaction FARR_REPR_PPRAI (report

FARR_REPROCESS_POSTPONED_RAI)

Postponed RAIs are always stored with a postponement

reason. The following postponement reasons can be used to

specify which postponed items are selected for processing:

Locking error (L)

RAI processing failed to lock the corresponding revenue

accounting contract. Consequently, the RAI is saved as a

postponed RAI and must be processed again.

Missing original document (M)

The fulfillment or invoice RAIs that have failed to be

processed before the initial order RAI is processed are

saved as postponed RAIs and must be processed again

manually.

Persistent error (blank)

This is used for any other undefined errors.

Failed assertion (X)

If a serious error occurs during the processing of RAIs,

processing is stopped completely, and all received RAIs

are postponed.

Assumed invoice (A)

Invoice items that are considered assumed invoices are

saved as postponed RAIs until the posting date is reached,

once the posting date is greater than or equal to the

system date. The postponed invoice items must be

processed using the application job for processing RAIs to

convert them into real invoices, which are then sent to

contract management. Finally, these invoice items result

in postings.

If multiple postponement reasons apply for a postponed RAI,

the priority of the postponement reasons—as defined

previously—is applied.

If there are multiple postponed items relating to the same

source document item, only the latest one is selected for

processing, and the others are ignored. Postponed items are

also ignored when a new RAI related to the same source

document item is received. Postponed items are deleted

only when an RAI related to the same source document item

has been processed successfully for all available accounting

principles.

When reprocessing items, the technical validation of

postponed items is skipped because such items were

already validated before being added to the postponed

items table.

Postponed items are reprocessed in the following sequence:

1. Orders

2. Fulfillments

3. Costs

4. Invoices

3.3 Extending RAI Classes

The system that you’re configuring could be integrated with

any third-party system, SAP Billing and Revenue Innovation

Management, SAP CRM, or sales and distribution. RAIs are

provided with a set of standard fields that are relevant for

integration and can pass the relevant information from the

operational document to RAR. For example, when you have

the sales order that you created in sales and distribution,

the information from this document can be passed to RAR

with the help of the standard fields provided as part of the

RAR–sales and distribution integration and can be used for

further processing. The fields that are already part of

standard SAP are generally sufficient, but there could be

cases where you need additional fields to be added to the

RAI structure. This is precisely when you can add customer

fields to RAIs. If you enhance RAIs, the interface for creating

RAIs is enhanced. In addition, the database tables that store

RAIs are enhanced.

To extend the RAI structure, you need to go to Transaction

FARR_RAI_CONF, and choose the RAI class. You need to

understand the business requirement clearly and look at the

additional functionalities or extensions that you need to add

to the standard fields to meet the business requirement. In

addition, you’ll need to list all the custom fields and finalize

what data or part of data is processed and passed to the

new custom fields that are added. Once you have the list,

you need to understand the visibility, or where exactly the

new custom fields will be needed, based on how you group

them. The grouping is made more systematic by the

concept of the Easy Enhancement Workbench (EEW), which

clearly defines four different includes. The details are given

in the following sections.

3.3.1 Defining Extensions

When it comes to defining extensions in RAR, it follows the

concept of the EEW, which means that SAP provides

structures that can take additional fields, and these

structures are attached to tables. So when you need to add

a field, you’ll add it in a structure, and the field will

automatically be visible in all relevant components.

There are specific includes that are used to add the

customer fields. The technical details of how to add to an

include are given in this section, and the exact steps needed

to add the custom fields to the RAI structure is explained in

Chapter 2, Section 2.3.2. In that section, we’ve included

screenshots to demonstrate how you can achieve this

technically, explained a few custom fields, and shown how

the new added fields will be available during the RAI class

configuration.

When deciding which include to add the customer fields to,

consider the following categories:

Fields required during RAI processing

Fields required in revenue accounting contracts at the

POB level

Fields required in reporting

Fields required in the revenue accounting contract at the

header level

Depending on these categories, each field needs to be

added to one of the following extension include structures

(refer to Chapter 2, Section 2.3.2, where we’ve explained

this with an example):

INCL_EEW_FARR_ARL

Fields only used in RAI processing.

INCL_EEW_FARR_POB

Fields also used in revenue accounting contracts.

INCL_EEW_FARR_REP

Fields also used in reporting.

INCL_EEW_FARR_CONTRACT

Fields on the contract header level.

The custom fields are added to the include structures by

appending to these structures. Once the structures are

enhanced with the new custom fields, these fields will be

available for you during RAI class configurations, as shown

in Figure 3.18.

Figure 3.18 Adding Customer Fields to the RAI Class

Once you click on the Customer Fields button in

Figure 3.18, you see the screen shown in Figure 3.19 for

adding the desired custom fields. You’re also provided with

the option of choosing the right status (Raw, Processable,

or Processed), as to when the custom fields should be

available in the RAI.

Figure 3.19 Choosing the Custom Fields

3.3.2 Populating Extensions

The previous section helped you understand how to extend

the RAI structure and also how to control the visibility of the

newly added fields at different Raw, Processable, and

Processed statuses of the RAIs. With the addition of the

custom fields, you need to add the custom logic to validate,

enhance, or process the custom fields. However, standard

SAP has already provided class CL_FARR_RAI_IFCOMP for

validating the standard fields, and this class has the

standard validations on the standard fields. Every business

has its own unique requirements, which leads to adding

custom fields. These fields have to be validated, and there

are also requirements where you’ll need additional

validation, processing, or enhancing on standard fields apart

from what is already being done in class CL_FARR_RAI_IFCOMP.

To meet all these requirements, enhancement spot FARR_ARL

includes four BAdIs you can use. Refer to Chapter 4,

Section 4.6, for complete details.

3.4 Summary

In this chapter, we explained the initial setup that needs to

be done when configuring RAR: inbound processing. You

learned about the differences between classic and optimized

inbound processing, as well as some experiences that could

come in handy when resolving the most common issues and

problems.

In the next chapter, we’ll discuss the next step: What

happens with RAIs once they get created, and how do we

turn RAIs into contracts and POBs?

4 Revenue Accounting

Items

Revenue accounting items (RAIs) are sent from the

source system (SAP or non-SAP) ready to be processed

by revenue accounting and reporting (RAR) to create

contracts, perform contract modifications, or perform

fulfillments in a contract. In this chapter, we’ll explain

RAIs in detail and provide more information from a

user perspective regarding processing and some basic

error handling.

RAIs are integral to the RAR functionality in SAP S/4HANA,

impacting everything from performance obligations (POBs)

to contract management. We’ll begin our discussion in this

chapter with a walkthrough of RAI processing, before diving

into RAI management, extensibility, and error handling.

Next, we’ll cover the usage of Business Rules Framework

plus (BRFplus) for RAI integration with adjacent processes.

To close, we’ll provide instructions to create custom RAIs.

4.1 Processing Revenue Accounting

Items

As mentioned in earlier chapters, RAIs come from external

systems to the Adapter Reuse Layer (ARL) and are ready for

processing. The ARL is part of RAR, which is the first stop for

data sent from source systems. The ARL also performs data

quality checks and uses BRFplus rules to transform data to

structures that will represent contracts, POBs, and revenue

schedules. Let’s review the high-level design of the ARL, as

shown in Figure 4.1.

Figure 4.1 ARL Design

Once data is sent from operational systems via the standard

RAR interface, it reaches the ARL. In the ARL, all data items

are represented as RAIs, which are just data received and

ready to be processed once it passes basic data quality

checks.

All the items can be split into two categories:

Order items

These items are used to perform basic contract

operations: either contract creation or contract

modification. If you’re working with the sales and

distribution interface, a sales order or sales contract will

be usually represented as an order item. If you’re working

with external systems, it’s usually data coming from

customer relationship management (CRM) or order

management systems. The important thing is that order

items don’t have a predecessor to be created.

Items with predecessor

When it comes to processing fulfillments or invoices, it’s

essential that you know to which order item this activity

refers. For example, if there is a goods issue as a

fulfillment event, you need to know to which order and

item this fulfillment refers.

In the following sections, we’ll explain processing for both

RAI categories. First, let’s walk through the available

methods for processing that are relevant for both

categories.

4.1.1 Processing Methods

All items created as RAIs have two categories: main items

and condition items. Figure 4.2 shows the RAI monitor

(accessed via Transaction FARR_RAI_MON) with a split on

main and condition items.

Figure 4.2 Main and Condition Items in Transaction FARR_RAI_MON

Main items have information that is needed for identifying or

creating IFRS 15 contracts. In the main items, you’ll find

customer, reference to document (source of RAI creation), or

all dates relevant and needed for contract creation or

fulfillment update, for example. Condition items contain

values relevant for contracts. For order items, you’ll find at

least two items: condition representing transactional price

and condition representing standalone selling price (SSP).

For fulfillment items, there can be one item (if you’re having

proof of concept [POC] fulfillment) or none; for invoice

items, you can have one or several items depending on

whether discounts are represented in RAR or not.

Irrespective of the RAI type, there are several ways to

process RAIs. We’ll discuss them in the next sections.

Manual Processing

The first option is manual processing: we’ll approach this

activity through Transaction FARR_RAI_MON, which is usually

the first stop for all RAR users. Once you run the

transaction, a screen like Figure 4.3 will appear.

Figure 4.3 Transaction FARR_RAI_MON: Initial Screen

You first need to select which items you want to see from

the Kind of Selection dropdown:

Order Items

The system will show only items that are used to create or

update contract/POB data in RAR.

Invoice/Fulfillment

Invoice/fulfillment are items that are made as successor

items. An important thing to have in mind is that the

Header ID field controls the document number that

needs to be processed. If you select Invoice/Fulfillment,

you need to enter the invoice number or number of the

post goods issue (PGI) document.

All Items Related to Order Items

Opposite to the previous option, entering the number of

the order and the system will display all items related to

that order, including invoices and fulfillments, if any.

All Items

The system displays all items relevant to the mentioned

Header ID.

In general, the best option to select here is All Items

Related to Order Items because it allows you to enter just

the order number and search based on that number. This

option ensures that all invoices and fulfillments will be

displayed together with the order.

The next option is related to Item Status. RAIs can change

into a total of three statuses before and after being

transferred to RAR:

01: Processable

This means the item is ready to be processed into

contracts/POBs.

02: Processed

Once an item gets processed, it’s stored in a separate

table and changes to the Processed status.

03: Raw and Processable Items

Raw is an optional status, and the system can be

configured to create items in this status that aren’t yet

ready to be processed. So, in this case, data checks are

performed before the item even reaches the Processable

status.

Once you save a document that is then replicated as an RAI,

some items are created as raw and some as processable.

The system understands the processable item as the item

that is completed and ready to be processed into the

POB/fulfillment event/invoice. If this isn’t the case, it means

the item didn’t pass all consistency checks and can’t be

processed further. However, RAR differentiates the level of

issues we might have, and the following rules apply:

If an item has some error in any key field, the item won’t

be created at all.

If an item has an error, but not in key fields, it will be

created as a raw RAI.

If an item doesn’t have any errors, it will be created as a

processable RAI.

Raw Status and When to Use It

Whether to use Raw status or go straight to Processable

status is a common question. As usual, there is no answer

to suit all customers, but the following needs to be

considered: If items are initially created as raw, we’re

clearly adding one more step for users to execute before

they can finish processing RAIs (RAI first needs to be

transferred, and only after that, can it be processed in

RAR). On the other hand, we’re enforcing one more level

of data check before the item is created. Now, the real

question is whether we need this extra data consistency

check. If we’re using integration with sales and

distribution, this most likely isn’t needed because any

data error would need to be corrected in the document

we’re trying to process. However, if we’re integrating with

an external system, it’s highly likely that the error couldn’t

be corrected in the source system, so it would make sense

to have Raw status items before they get into

Processable status. But if there is a system doing data

consistency checks before items are sent to RAR, using an

additional status might not be necessary. So, before

making a decision about using an extra status, all these

things need to be considered.

In the Source Documents section, you can make all the

additional selections to pinpoint the exact items requested

to be displayed:

Component

Represents the system to which RAR is being integrated

and which will be used as the source for displaying data.

Possible entries here are a result of your definition of

sender components in inbound processing, as discussed

in Chapter 3, Section 3.2.

Logical System

Specifies the logical definition of the system that is the

source for RAIs you need to process. The source item’s

logical system, component, type, and ID constitute the

link to the source item (e.g., a sales and distribution order

item) that the RAI (e.g., a sales and distribution return

order) relates to.

Header ID (Orders)

Reference to the original document that you try to find.

This field will have different meanings depending on what

was entered in Kind of Selection: if you select Order

Items or All Items Related to Order, then the order

number needs to be entered here, whereas if the Invoice

/Fulfillment item is selected, the invoice of the PGI

document number needs to be entered here.

Options in the Master Data section give more ways to limit

data that will be displayed. For example, you can enter a

Customer number or Business Partner Number to fetch

the exact records you need.

Sometimes, you may need to reprocess items that are

already in the error. You can select those items in the

Further Attributes section using the Error Status field,

as shown in Figure 4.4.

Figure 4.4 Error Status Display

As already mentioned, before being transferred to RAR,

items can be in error status, which is further split into when

the error actually appeared. There are in total three different

statuses being triggered in different points of the RAI

lifecycle, which can be used to filter RAIs further that need

to be displayed. At the bottom of the screen under the

Technical Criteria section, the technical details can be

found, as shown in Figure 4.5.

Figure 4.5 Technical Criteria for Display

Sometimes, even if you limit the selection criteria, the

number of items to be displayed is too high. Because this

activity can be time-consuming, by default, SAP limits the

maximum number of hits to 100 main items. That can be

overridden by either entering some other number in the

Maximum No. of Hits field or simply selecting that no

restriction of number of hits should be applied (No

restriction of No. of Hits).

Further Selections

At the top of the initial screen of Transaction

FARR_RAI_MON, you can see the Further Selections

button, which you can use to access all fields in the main

item structure that can be used as selection criteria. This

option becomes particularly useful if you’ve introduced

some custom fields that could be used to filter the RAI

display. We’ll discuss this in more detail in Section 4.3.

Once items are selected, click the Execute icon, and the

system will display entries that fit the selections made, as

shown in Figure 4.6.

In the first column, ItemStatus, the system will display

raw, processable, or processed items depending on your

selection criterion. The next important column is Error

status. Here, the system uses a simple traffic light system to

display the proper status of the RAI: no errors equals a

green light, and error equals a red light. If there is an item

with an error, you can click on the item to go to the log

where you’ll see what caused the error while processing the

RAI.

Figure 4.6 Transaction FARR_RAI_MON: Results

For the results just shown, you can see what error is behind

the item that wasn’t processed, as shown in Figure 4.7. In

our example, you can see that error C01 was raised after

processing our RAI.

Figure 4.7 Transaction FARR_RAI_MON: Error

The same results can be observed if you access Transaction

SLG1 for displaying system logs.

In addition, you need to understand when this error

occurred, which can be checked by looking at the results

table (refer to Figure 4.6) and column Err… on the right.

Here, you can see numbers 1–3, which fit to numbers that

you can enter on the initial screen and that represent the

type of error as due to creation of item, change of status, or

processing.

Also in the results table, you can click on the values in the

Header ID field to go directly to the document that was

used to create this RAI item. However, this functionality

works only when integrating with sales and distribution.

A special explanation is needed for the Subarea column

(refer to Figure 4.6). When we say subareas in RAR, it’s the

KEYPP field. The KEYPP field is used for the parallel processing

framework (PPF). For more information, see Section 4.1.2.

The last two columns in the results table are reserved for

the date (Creation Date) and time (Create Time) when

the item was created. This data can’t be found in the table

that stores the main and condition items, but it’s being

decoded from the Timestamp field. This concept deserves

additional explanation. As mentioned before, RAIs belong to

the ARL, which is the integration layer between the external

component and RAR. In practice, this means that an item

can be created in an external component, then multiple

changes can happen before the items get processed in the

ARL and RAR data gets updated. All of these items will be

created as separate RAIs with different timestamps, but

while processing them, only the last item will be processed.

This approach sometimes can create issues.

Example of Issue with Latest Timestamp

Let’s say a user created a sales order with an item that

needs to create a time-based POB, and there is a contract

with a start and end date. After saving, an RAI was

created, but it wasn’t processed. Then, the user decided

that the item needed to be rejected, so the rejection

reason was used in the sales order, which was again

saved. Now, in Transaction FARR_RAI_MON, there are two

items, but the item with the rejection reason will have the

latest timestamp and so is the only item processed.

However, once the user sets a rejection reason in the

sales document, this automatically triggers the population

of the Finalization Date field with the current date.

Therefore, the system tries to create a new POB, which

needs to be created as terminated. This isn’t possible, and

it will throw an error while processing.

The solution for this exact challenge is in process

organization: once created, the RAI needs to be

processed. Once that has happened, then the item can be

processed with the rejection reason. If the process were

executed in such an order, the issue wouldn’t appear

because the POB would be created and then terminated.

In other words, the system wouldn’t try to create

terminated items.

Now, when the list contains all items based on your

selections, you need to perform some activities. Possible

options are displayed at the top of the screen, as shown in

Figure 4.8.

Figure 4.8 Transaction FARR_RAI_MON: Options

Let’s walk through a few of the available buttons:

Refresh

This button’s usage is the same as in other applications in

SAP: if there was some change in the external application

that is used to create RAIs, this change will be displayed

by clicking this button.

Statistics

When this button is selected, the system will display a

breakdown of all RAIs that fit the selection made on the

first screen of Transaction FARR_RAI_MON, as shown in

Figure 4.9.

Figure 4.9 Transaction FARR_RAI_MON: Statistics Display

Process

This button processes RAIs, that is, moves them from

status Processable to status Processed. Before you can

click this button, you must select items in the table that

need to be processed. The important thing here is that if

you have multiple items that belong to the same Header

ID and select only one of them, all will be processed if

they belong to the same source document type. The

reason for this is that revenue allocation occurs on the

contract level, so it’s essential that all items belonging to

the same contract (represented by Header ID) get

processed.

Once items are being processed, the system will issue a

message about the results of the processing. These

results (irrespective of whether they are errors or

successes) are written in the system log. In the bottom of

the message screen, you can use the Display Log icon to

display the log, which contains useful information about

what was created/updated (or for an error, information

about what issue occurred), as shown in Figure 4.10. This

functionality is useful when it comes to either

troubleshooting or further analysis.

In the background, the system is transferring data

between processable and processed tables.

Figure 4.10 Transaction FARR_RAI_MON: Processing Results

We’ll discuss two more key buttons, Change and Exempt,

in Section 4.2 during our coverage of RAI management.

Automatic Processing

Often, the number of RAIs being created is substantial, and

running Transaction FARR_RAI_MON can become a technical

challenge. Another possible problem is that the process of

calculating revenue needs to be performed in an orderly

manner, meaning that processing RAIs needs to be

executed prior to calculating results, so we get accurate

calculated revenue. This is particularly relevant for

companies that are often going through contract

modification processes.

All of this means that processing RAIs manually might not

be the most optimal solution. To perform RAI processing in

an automated way, SAP delivers programs that might help

in organizing the most streamlined processes of RAI

transformation into contracts and POBs.

SAP delivers two transactions that can be run in the

background to get contracts created/updated or any other

items successfully processed: Transaction FARR_RAI_TRANS

and Transaction FARR_RAI_PROC. After running these

transactions sequentially, you’ll use the monitor

(Transaction FARR_RAI_MON) to complete processing and

arrive at a contract.

Let’s dig a little deeper. Transaction FARR_RAI_TRANS is used

to transfer items from the Raw status to the Processable

status. When the program is run, you can see the selections,

as shown in Figure 4.11.

Selection data is very similar to the selection data in

Transaction FARR_RAI_MON, and here you can limit

Selection Data based on item class (Rev. Acc. Itm

Class), Sender Component, and Header ID, which

represent the exact items we need processed.

Figure 4.11 Transaction FARR_RAI_TRANS

If you have multiple item classes to be processed, it’s

important to know the order of items and how they are

processed. Using sales and distribution as an example, the

program transfers RAIs in the following order of source

document types:

1. Order items without predecessor (SDOI)

2. Order items with predecessor (SDOI)

3. Fulfillment items (SDFI)

4. Planned invoice items (SDPI)

5. Invoice items (SDII)

Irrespective of which items are available, these five steps

will be always executed.

Two more options (technical parameters) are important to

understand. Block Size For Mass Selection determines

the number of subareas that are used for processing. For

example, an entry of 1,000 there means that all RAIs will be

assigned to those 1,000 subareas. Which subarea an item is

assigned to is determined based on the Header ID and RAI

source document type (all RAIs with the same source

document and Header ID will belong to the same subarea).

For more information on subarea determination, see

Section 4.1.2.

Next is the Number of Intervals that will run concurrently

to process those RAIs. This number depends on the

technical capabilities of the system; however, it should be

clear that the locking mechanism is activated in that case—

each item assigned to the same subarea is locked for

processing.

In addition, there is also a setting named Synchronous

Call, which causes the results of the running application to

be written in the system log and can be accessed by

Transaction SLG1. At the bottom of the screen, under

Settings for Application Log, you have options for how

detailed this log should be. If you don’t select Synchronous

Call, the batch monitor will be displayed after running the

application.

When you’re done filling in the key fields, click the Execute

button or Schedule to schedule it as a job from the menu in

the top-left corner.

Next, Transaction FARR_RAI_PROC moves items from the

Processable status to the Processed status. Figure 4.12

shows how the transaction looks and which options are

available.

Figure 4.12 Transaction FARR_RAI_PROC

As is visible from the screen, this transaction has the same

options as Transaction FARR_RAI_TRANS. The main and most

important difference is technical: while Transaction

FARR_RAI_TRANS is used to transfer items from status 0 to 2

(Raw to Processable), Transaction FARR_RAI_PROC is

processing items and moving them from status 2 to 4

(Processable to Processed).

So, you might be asking the following question: If you’re not

using Raw status, do you need to also schedule Transaction

FARR_RAI_TRANS? The answer is yes. The reason was

mentioned at the beginning of this chapter: RAIs will be

created if basic data checks are passed, so they will be

created in Raw status as ready to be processed.

The process of sending data to create an RAR contract ends

with Transaction FARR_RAI_MON, which, in this case, serves

as an error correction tool: you can run it to verify how

many items ended in error, what kind of errors are present,

and how they can be resolved before new RAIs are created.

So, to have a proper picture of the processed and remaining

items in error, ideally, you should schedule Transaction

FARR_RAI_TRANS before Transaction FARR_RAI_PROC and

then run Transaction FARR_RAI_MON.

4.1.2 Parallel Processing Framework

A key functionality to highlight is the use of the parallel

processing framework (PPF) to create subareas, as we’ve

touched upon in previous sections. The RAIs are grouped on

specific areas and assigned the same KEYPP value, and then

the packages are created. The packages are then

distributed to jobs. The number of parallel jobs that can be

created is again dependant on configuration and is

determined by your Basis team. The creation of parallel jobs

is sensitive as the packages must be grouped in a way that

the locking is effective. The technical attributes of the KEYPP

field are shown in Figure 4.13.

Figure 4.13 KEYPP Field Technical Description

The KEYPP field can have values from 000 to 999. In RAR, we

generally must deal with huge volumes of data. The PPF has

been designed to speed up the processing by dividing the

data into packages, and the packages are passed on to

parallel jobs or child jobs that run in parallel to save time.

When defining the packages, you must consider the data

locking and data grouping. To group the data into packages,

the KEYPP field is used.

Lock object EFARR_KEYPPBUKRS is used during the ENQUEUE

process of locking the KEYPP fields for processing, as shown

in Figure 4.14.

Figure 4.14 KEYPP Lock Object

Most of the RAI mass processing activities can be done in

parallel. The overall workload (the RAIs to be processed for

the specified selection criteria) is split into intervals based

on field KEYPP. There are 1,000 possible different KEYPPs (000–

999). If you start the RAI processing for 100 intervals, 10

KEYPPs will be assigned per interval (10 x 100 = 1.000).

The parallel processing runs are currently supported for the

following:

RAI transfer (Transaction FARR_RAI_TRANS)

RAI processing (Transaction FARR_RAI_PROC)

The usual number of intervals should be 3–5 times higher

than the number of parallel jobs (e.g., 30–50 intervals for 10

parallel processes). The number of parallel processes may

be restricted by Basis configuration.

Figure 4.15 Parallel Processing Model

KEYPP will be assigned based on the same references, for

example, all the header IDs belonging to a certain

operational document or order will be assigned the same

KEYPP, and then they will all be grouped in the same package

for parallel processing. So, all the RAIs belonging to the

same header ID and the header IDs belonging to the same

operational document are packed in a single package, as

shown in Figure 4.15. KEYPP is also heavily used in contract

accounting and SAP Billing and Revenue Innovation

Management.

4.1.3 Processing Order Items

Order items are the starting point for RAR contract creation

or modification of existing contracts whenever there is an

initial creation of RAR contracts or subsequent changes.

Definition of the order item class is done in inbound

processing (see Chapter 3, Section 3.2). Here, we’ll focus on

the instructions for processing order RAI classes.

In our example, we’re creating one RAR contract based on a

sales and distribution order. Once we populate the order

with needed data (customer, condition items, duration,

etc.), we save it and get its number, which we’ll use in

Transaction FARR_RAI_MON while searching for the order. It’s

important to mention that only complete documents will be

transferred to RAR; if you get a message that a document is

incomplete, but you can still save it, such a document won’t

be transferred.

After entering the sales order number in the Header ID

(Orders) field and slicking Execute, we’ll see the result

shown in Figure 4.16.

Figure 4.16 Processing Order Items in Transaction FARR_RAI_MON

The first two columns are empty, which means that these

RAIs are coming for the first time in Transaction

FARR_RAI_MON so the contract and POB number aren’t yet

assigned. The ItemStatus column and the green square in

the Error column tell us that the item is in Processable

status and was created without any errors, meaning it’s

ready for processing. After columns of information about the

data in the sales order, the date and time when the item

was created are shown.

We also can see SDPI items in the source item type

(SrcItmType) column, which means that billing of this sales

order is to be done on a regular basis, so the order has

planned items representing these future billings.

Once we process the data by clicking the Execute button,

we’ll get information about what contract was created, as

shown in Figure 4.17.

Figure 4.17 Contract Created in Transaction FARR_RAI_MON

Now, as the next step, we’ll have our sales team make some

changes. Let’s assume they perform two types of changes:

1. They will change some text in the order.

2. They will change the standalone selling price (SSP).

In addition, it’s important to mention that these two

changes are to be performed at two separate moments in

time, but no additional Transaction FARR_RAI_MON

processing occurs in the meantime.

So, once we run Transaction FARR_RAI_MON, we’ll see that

two items are there, as shown in Figure 4.18.

Figure 4.18 Changes in FARR_RAI_MON

Now, the contract and POB number are populated in the first

two columns, which tells us that these RAIs represent a

contract modification. It’s possible to click on the Contract

number to go straight to the contract in the respective SAP

Fiori app or SAP Business Client program.

To verify that the SSP change was transferred, we can select

the Condition Item tab, as shown in Figure 4.19.

Here, we see four conditions: each change produced two

condition entries. One condition represents a pricing

condition (ZPR0) with a P/L Account assignment. This

condition is marked as the main condition type (Main

Cond.). The SSP is a statistical condition type (ZSSP), so

the Main Cond. checkbox remains empty.

Figure 4.19 Transaction FARR_RAI_MON: Conditions

By looking at these items, we see that an item with a later

timestamp is an SSP with the amount 96,000.00, which

means this is the item entered as last (highest timestamp).

Now we go with processing RAIs. The important thing is in

the last two columns where these two items are created

with different timestamps. The question is, do we need to

only select the item we want to process? The answer is no

because the system will automatically select only the last

item and delete the rest.

There's one important point to mention regarding

conditions. In order items, the order always passes at least

two items: one is the main item, which represents the

transactional price, and the other one is the statistical item,

which represents the SSP. There can be specific situations,

but this one is the most basic one. If you’re considering

integration with sales and distribution, a pricing procedure is

in place that determines the pricing condition to be

translated as the transaction price. Figure 4.20 shows what

the pricing procedure assigned to a sales document looks

like. All condition types appear on the lefthand side with

their assigned values. On the right side, the condition value

is price multiplied per quantity, which represents the value

that will be passed to RAR.

Figure 4.20 Pricing Procedure

Here, the condition type (CnTy) represents price ZPR0.

Once we save document, it will create RAIs that are ready

for processing, as shown in Figure 4.21.

Once items get processed, an RAR contract is created with

all the corresponding POBs.

Figure 4.21 Condition Items in Transaction FARR_RAI_MON

Now, let’s assume that during invoicing, there is a change in

the condition type. This isn’t uncommon because often

companies give some discounts at the moment of invoicing.

Figure 4.22 shows that the condition type changed between

the order and the invoice (instead of ZPR0, we get ZPRG).

This situation more often occurs in the case of credit/debit

memos when users want to change the value of the debit

memo, and there is a specific condition type only for manual

pricing.

Figure 4.22 Changed Condition Type during Invoicing

Because there is a standard integration between sales and

distribution and RAR, you’ll get an RAI ready for processing

where now we see condition type ZPRG instead of ZPR0.

However, RAR won’t allow such an item to be processed due

to the difference in the main condition type in the order

(defined while creating the contract) and the invoice items

(defined during invoicing).

4.1.4 Processing RAIs with a Predecessor

In terms of process chain dependency, all RAIs can be

divided into those created with a predecessor and those

created without a predecessor. In the previous section, we

described processing RAIs without predecessors, which are

used to create or change RAR contracts. When it comes to

RAIs with predecessors, there are multiple RAI types that are

created depending on the fulfillment type of an RAI, with the

exception of planned items (created as a result of a billing

plan) and invoice items (created as a result of invoicing). In

other words, fulfillment items have several different types

depending on the type of fulfillment expected, while invoice

items are always the result of invoicing only.

When you need to process an RAI item with predecessor,

the best method is to select the option in Transaction

FARR_RAI_MON for processing All Items Related to Order

Items, as shown in Figure 4.23. By that, you’re ensuring

that the system will pick up all items related to an order

irrespective of whether they are fulfillment or invoice items.

Figure 4.23 Transaction FARR_RAI_MON with Order Number

For example, if you just enter an order number (41007138),

in the result table, the system will display all items related

to this order number, as shown in Figure 4.24. Here, you can

see, based on the source item type (SrcItmTy), that it

picked up all fulfillments and invoices created based on this

order that can be processed.

Note that in the Original Item ID field (not shown), the

system stores the order item, which is the main source

(predecessor) for the follow-up item.

A few things should be kept in mind when processing follow-

up items related to the original item. Sometimes, the follow-

up item is created before the original item is processed. In

this case, the follow-up items won’t be processed before the

original item is processed without an error. In such cases,

you’ll receive an error, as shown in Figure 4.25.

Figure 4.24 Results for Items with Predecessors

Figure 4.25 Error for Invoice Processing and POB Determination

In this case, the system is notifying you that the

predecessor item for the mentioned invoice couldn’t be

found. There can be different reasons for this, but all are

related to process design and its execution. In addition,

credit/debit memos without reference can’t be processed.

The second issue that often arises is that a change was

made to the order and RAIs were created before the invoice

was processed. This means the order item to which the

invoice relates already exists as unprocessed in Transaction

FARR_RAI_MON with an older timestamp than the one with

invoice. This potentially could cause an inconsistency

because the RAR engine isn’t aware of the type of change in

the order item. To prevent this, the ARL won’t allow such an

RAI to be processed. It will produce an error, as shown in

Figure 4.26.

Figure 4.26 Invoice Error Due to an Unprocessed Order RAI

In addition, RAR doesn’t support the change of condition

types between invoice and order items. Often users use

different condition types in a credit memo (which is also an

invoice item) than they do in an order. RAR won’t let such

items be processed and will throw an error about condition

types inconsistency between the order and invoice item.

These kinds of situations should be resolved during process

design.

4.2 Managing Revenue Accounting

Items

Along with processing RAIs, there is often a need to do some

other activities with RAIs before, during, or after processing.

These activities can be split into either changing items after

they are created in the ARL or removing them from the list

for processing.

Despite RAR being a tool with high automation (meaning

that data usually isn’t created in RAR itself, but rather is

sent from external applications), sometimes there is a need

to manipulate the data before it’s sent for processing. These

options are enabled to ensure that once data reaches RAR,

it’s of the highest possible quality. But these options come

with offsets as well, and you need to understand what effect

using these options can have on the overall system and

data integrity. In the following sections, we’ll explain in

detail the changing and exempting of data options that are

to be processed in RAR.

4.2.1 Changing Items

You should now have a basic understanding of how RAR is

structured: contracts and POBs are always created based on

data that is sourced in some other application, which can be

either SAP or non-SAP based. Before data can be stored in

RAR, it needs to pass staging in the ARL.

So, what happens if some data needs a change or

correction? In most cases, you need to fix the data in the

source system where it appeared. There are two reasons for

that:

The aim always should be to maintain consistency

between systems. In some cases, this requirement is

strongly recommended (e.g., integration with sales and

distribution where there are reports available to detect

these kinds of issues), but in some others, it’s not that

strong.

Data correction can be a tedious task. You may not always

know what can and should be changed to bypass some

problem and why.

However, the reality is that not all data has the same

importance (e.g., changing the SSP of an item isn’t the

same as changing a description field), and it’s not always

straightforward and possible to correct data. For example,

you could import data in RAR from an external CRM system

where two systems have different timelines for closing. So,

when you notice that some correction needs to be made, it’s

no longer possible to create a correction in the external

system.

All of this led to the ability to manually perform changes in

RAIs. To activate such an option, you need to customize

which RAI fields are changeable. You can access this

functionality by following menu path Revenue Accounting

• Inbound Processing • Revenue Accounting Items •

Define Modifiable Fields for Revenue Accounting

Items.

You first need to define which fields aren’t available for

change. This information can be found in structure

FARR_S_RAI2_MI_FIX for processable main items via Transaction

SE11. Similarly, you can see which items aren’t available for

changing for condition items or items in Raw status. Now,

once you know that the field can be changed, you can

access this activity to get to the screen shown in

Figure 4.27.

Figure 4.27 Changeable Fields for RAIs

The first thing you need to define is to which RAI class this

change will be used in the RevAccCl field: you can define

fields that will be changed on order items, fulfillment items,

or invoice items. Then, the next step is about record types

(Rec. Type field) and whether you want to change data in

main items, condition items, or both (All Record Types).

After you define which Status the data can be in to be

changed (Raw, Processable, or All Statuses), you define

which field needs to be changed in the Field Name column.

In the last column, FieldAttr, you need to define whether

the field will be visible to the user or only displayed without

the ability to change. In this example, the QUANTITY field

was made changeable during processing in All Statuses.

Once setup is complete, when running Transaction

FARR_RAI_MON, you’ll be able to use the Change button, as

shown in Figure 4.28.

By selecting Change and specifying an item, a separate

screen will appear in which you can change data that was

previously customized as changeable.

The customization for changing items is completed.

However, the recommendation is to avoid making manual

changes to RAIs. The best way to keep the system

consistent is to correct data in the source system in which it

was created in the first place. However, if you feel that

manual intervention over RAIs is unavoidable, extra caution

should be paid when selecting the data that can be

changed.

Figure 4.28 Change Option in Transaction FARR_RAI_MON

4.2.2 Exempting Items

Exemption of items is a process when, for some reason, an

item needs to be excluded from processing in Transaction

FARR_RAI_MON. Usually this refers to items being corrupted

in terms of data quality, which can’t be fixed in the source

system. If not exempted, these items stay in Transaction

FARR_RAI_MON (and in the processable table), consuming

table space and making item processing items.

In addition, by leaving corrupted items in the processable

table, you can keep complete contracts from processing. For

example, if you have item 20 from a sales order with an

error, the whole order won’t be processed unless the item is

exempted. For classic inbound processing, the table

structure for exempted items looks like Figure 4.29.

Figure 4.29 Exempted Items Table Structure

Exempted items are kept in separate tables both for main

and condition items. In other words, the table structure for

exempted RAIs mimics the table structure for raw and

processable items. The naming convention is that tables for

exempted items have a 1 or 3 after the name of the RAI

class. For example, for integration with sales and

distribution, the name of the RAI class for order items is

SD01, so tables generated for them are as follows:

Table /1RA/SD012MI for main items

Table /1RA/SD012CO for main items

For these RAI classes, the corresponding tables for

exempted items are generated:

Table /1RA/SD013MI for exempted main items

Table /1RA/SD013CO for exempted condition items

If you’re using raw data in processing and have three RAI

classes (order, fulfillment, and invoice items), then in total

you’ll have 12 tables related to exempted items: two tables

for main and condition items, multiplied by one set for raw

and processable, and multiplied by the number of RAI

classes.

Tables for exempted items are almost the same as those for

processable or raw items. The difference is in the fields

giving information about when the exemption occurred and

by whom. In the Exemption History shown in Figure 4.30,

it’s clear which user performed the exemption and when.

This information is useful for audit requirements.

Figure 4.30 Exemption Items Fields

For optimized inbound processing (OIP), the table structure

is significantly changed. Instead of dynamic generation of

tables and APIs, in OIP, the system works with static,

predefined tables. In addition, the process of exemption is

replaced by postponing.

Caution

A shift in tables structures is one of the reasons customers

need to be extra careful before deciding which option to

adopt when either implementing RAR for the first time or

deciding about upgrading to a newer version of RAR.

Before the process of exemption can be used, you need to

perform certain customizing tasks in RAI management while

setting up inbound processing. Follow menu path

FARR_IMG • Inbound Processing • Revenue

Accounting Item Management. When this area for

customizing appears, fill in the following fields (see

Figure 4.31):

ExempRsn

First, you need to define the exemption reason with this

two-digit code. If there is a specific logic for exempting

items, you might have multiple reasons; otherwise, one is

enough.

Exemption Reason

You can enter text explaining the reason for exemption.

StatusGrp

You can define for which items you’re creating exempted

items: just for processable, just for raw, or for all.

ExempType

Exemption type tells the system whether there will be an

option to restore an item that was exempted once. This

again depends on the process. If the reason for exemption

is data issues, you can either fix the data in the source

system or recreate it, in which case, it might be a good

option not to restore the item that was exempted.

Alternatively, the process might be that data will be

corrected while in the exempt table. In that case, defining

a restore reason is a good option.

Figure 4.31 Defining the Exemption Reason

The option to define restoration reasons can be found just

below the menu path for exemption (Define Restoration

Reasons for RAI Items), and setup is the same as for

exempt reasons except that ExempType doesn’t need to be

defined.

Once you set an exemption reason, it’s ready to be used.

Run Transaction FARR_RAI_MON, and enter the header ID

that needs to be processed. In the list shown in Figure 4.32,

you can see that the Exempt button is available.

Figure 4.32 Exemption in Transaction FARR_RAI_MON

Click the Exempt button to see exemption reasons in the

Exempt Processable Item popup, as shown in Figure 4.33.

Select your exemption reason (EX Exempt, in our

example), and click the green checkmark.

Figure 4.33 Selecting the Exempt Reason

In Transaction FARR_RAI_MON, you can see which items are

exempt by choosing 07 Exempted Items in the Item

Status dropdown, as shown in Figure 4.34.

Figure 4.34 Exempted Items in Transaction FARR_RAI_MON

In the list shown in Figure 4.35, you can see all the items

being exempted. In addition, the option for restoring an item

is available (the Restore button), which can be used to

transfer items back to the processable table.

Figure 4.35 Exempted Items List in Transaction FARR_RAI_MON

4.3 Extending Transaction

FARR_RAI_MON

The RAI monitor is the main tool used for data transfer

between the ARL and RAR database tables. The standard

program contains most of the options to search and filter

items that need to be processed or analyzed further.

However, you can extend some of the standard options

without the need for additional programming.

In the upper part of the screen in Transaction

FARR_RAI_MON, you’ll find the option to further enhance

selection parameters (Further Selections), as shown in

Figure 4.36.

Figure 4.36 Further Selections in Transaction FARR_RAI_MON

By selecting this option, you can see all the fields that are

part of structures assigned to standard RAI structures, as

shown in Figure 4.37. All fields here can be used as selection

parameters when you want to see only data that is relevant

for processing. On the left-hand side are all the fields in the

structure for the main items. In our example, we’ve selected

Channel partner, as you can see under the Dynamic

selections screen on the right-hand side.

Figure 4.37 Data Selection for Further Options

Once additional data has been selected, click the Save

button, and the Further Selections Exist checkbox will be

selected in the Further Attributes section (refer to

Figure 4.3).

Use Case for Additional Selection

It’s not uncommon that one RAR contract is created as a

combination of different documents that also can have

different sources. For example, one RAR contract is

created as a combination of sales contract, sales order,

and service order. Here, to make the necessary links

between them, we often use separate, custom fields. So,

to ensure that in one shot all documents are being taken

into consideration, a good idea is to extend the search in

Transaction FARR_RAI_MON with that special custom field.

4.4 Error Resolution While Creating

Revenue Accounting Items

As mentioned in previous chapters, data quality is one of

the prerequisites for RAR to perform. When thinking about

how to ensure that data is is able to be processed by RAR,

it's worth mentioning that RAR is much more integrated with

external systems than plain finance. In other words, the old

paradigm that operations and finance need to integrate at

the moment of account determination isn’t the case with

RAR.

Due to the nature of IFRS 15, RAR represents processes in

sales operations that are copied in finance. So that is why

implementation of RAR requires a whole different level of

understanding for finance consultants about SAP Billing and

Revenue Innovation Management and sales and distribution.

The same applies to sales and distribution consultants: it’s

not enough just to have a high-level understanding of

accounting and controlling (if any). Now, people involved in

the sales process need to understand from the very

beginning the financial implications of decisions made very

early in the process.

All this being said, if these recommendations are followed,

the data coming to RAR as RAIs should be of sufficient

quality. However, it’s safe to assume that even with the

most rigid rules, some errors will appear in the RAI monitor

requiring both proactive and reactive measures. We’ll

discuss both proactive and reactive measures next, and

then explain a few error handling techniques.

4.4.1 Proactive and Reactive Measures

Proactive measures are checks put in place so the item will

be verified before it comes to RAR. Figure 4.38 represents

one way of preventing errors from happening.

Figure 4.38 Statuses While Processing RAIs

The process starts in the sales department by creating the

sales document. This document can be a sales order,

contract, or even service order. Once data has been saved,

it will have an assigned status that review is needed

(Pending Review status), which is the finance team’s

responsibility. The finance team will check data that is

needed for RAI creation such as the following:

SSP existence/correctness

Contract duration

Item type correctness

Some custom rules that companies might have

implemented in their processes

As a result of the finance team check, the document may be

sent back to the sales team to complete it/correct it if errors

are found. The other result may be that the finance team

determines that document is in proper quality and decides

to set the status to Approved, which would trigger creation

of RAIs.

Of course, this process can be extended in many ways. For

example, a company might opt for making some kind of

workflow: there might be more statuses representing

readiness for processing (document might be initially

entered and not yet be processed until created), there might

be routing between different departments based on

statuses, and so on. But the main point remains—let only

correct data come to RAR.

The main benefit of such a process is that the data coming

as an RAI is the quality needed for successful processing

and contract creation. This part can’t be emphasized

enough—as mentioned, the logic on which revenue

recognition works according to IFRS 15 is completely

different than before. Here, revenue recognition happens

based on triggers, and sometimes these triggers are

automatic and something you have no influence on (e.g.,

time-based POBs). So, error fixing is much harder or even

impossible if an issue is noticed after the error recognition

process has already kicked in. So, the main goal of the

setting statuses process is preventing such issues from

happening.

There are some drawbacks to the process. In Figure 4.38,

you can see that the finance team is expected to be familiar

with applications that aren’t strictly from the finance

domain, such as checking the sales document and change

log, document flow, and so on. The second point isn’t a

limitation as such, but needs consideration: Such a process

is very suitable for organizations that have a revenue

recognition process as part of shared service processes. In

that case, it would be enough to train one group of people

who could perform such controls and checks. Usually, IFRS

15 is a global policy for reporting, so making the process

organized in the form of a shared service center would make

sense.

Now, let’s discuss reactive measures. Not all errors can be

caught before they reach the ARL: Even in environments

where most of errors would be caught before they reach the

ARL, some will come through. When they come to the table

for transfer or processing (depending on whether raw items

are included or not), those items will appear in Transaction

FARR_RAI_MON for processing. When you open the

transaction, all items with an error will have a red dot in the

Error column, as show in Figure 4.39.

To see what the error type is, click an item and see what

message is. As shown in Figure 4.40, the system will display

all information needed for you to recognize the root cause

and correct the problem.

Figure 4.39 Errors in Transaction FARR_RAI_MON

Figure 4.40 Details of Error in Transaction FARR_RAI_MON

You can see what errors were thrown before data could be

saved to the database. The first error you can see is that

SAP has thrown an inflight check error. These checks are

proactive checks that SAP makes before data is saved in

tables in order not to cause inconsistencies. In other words,

inflight check errors will appear so that data inconsistency

doesn’t appear at all. Data validation checks will appear

before data is written permanently to database. Both of

these checks will be covered in detail next.

In total, there are 26 types of errors that can appear, and all

of them are a threat to data integrity. All errors are split into

two categories:

C errors represent inflight checks.

E errors represent data consistency checks that are

performed before data is written in tables.

C and E Errors

The list of errors that can be issued isn’t final and can be

updated by SAP to include more of them. This means that

more issues are being discovered and classified, and this

issue list can grow with time.

4.4.2 Inflight Errors

Inflight errors are introduced as standard functionality in

RAR to give more information about the root cause of

erroneous items that might appear as a result of processing.

The inflight check functionality is shown in Figure 4.41.

Figure 4.41 Inflight Error Logic

As mentioned, this error check sits in the RAR engine itself

and is triggered each time there is some change coming

from any user activity, which is either creating new RAIs,

updating existing data, or reprocessing contracts, which is

an activity that runs directly on a contract when it’s already

created. When such an activity is performed, data is kept in

a buffer and not saved to the database yet, and all checks

are performed over that buffer. The database commit is

executed only after all errors are cleared.

Not all activities will trigger inflight error checks, however. If

invoice items are processed that don’t lead to price

reallocation or running ABC programs, these activities won’t

trigger inflight error checks. This was done on purpose

because the idea of error checking is to avoid data

inconsistency without stopping business-related activities

such as the month-end closing process.

Inflight error checks can be further extended. SAP created a

BAdI called Extended Checks before Saving to Database

where you can opt to implement your own logic by using

subclass CL_FARR_DATA_EXTENDED_CHECK.

Once an inflight error occurs, in most situations, the best

option is to fix the problem where it occurred (in the source

system) and trigger recreation of RAIs again. Another option

is to fix the data in the RAI table if proper customization is

made. However, this option should be used only as a last

resort because it would mean there is a difference between

data in the source system and RAR.

But let’s look at our example error shown previously in

Figure 4.40. In the first line, the system reported its C01

error for a contract that already exists. So, the RAI is

modifying the existing contract, which is triggering

reallocation.

In short, the C01 error means that if a change coming from

an RAI sent by the source system is saved in the database,

it will create an inconsistency in the balance of the

allocation effect. For all POBs in a contract, the total

allocation effect must be zero. For example, a calculation

that would throw an error as described previously can be

represented as shown in Table 4.1.

POB_ID Transactional

Price

Allocated

Price

Allocation

Effect

POB A 1,000.00 1,200.00 +200

POB B 2,000.00 1,900.00 –100

Total 3,000.00 3,100.00 +100

Table 4.1 Allocation Effect

In our case, we have a new RAI that can’t be used to create

a POB, but if the transaction price were created, it would

create an inconsistency with the allocated price.

In other words, looking simply at the C01 error, it won’t

always give you a clear place where the issue occurred and

what to do to solve it. It will show more about what kind of

problem could be caused if the error isn’t solved.

In the third line shown previously in Figure 4.40, you can see

all the necessary information about where and why the error

actually occurred. The system is saying that the start date

of item $000000000001 is missing. First, now you’re clear

what caused an error: the POB affected is actually a time-

based POB missing its start date, which is preventing the

POB from being created. The second thing you can see from

the message is that the system is trying to create a new

POB. So, if you’re integrating with sales and distribution in

this case, you can look at a new sales document item, which

is newly added in the sales document where the start/end

date is missing and resolve it there. Once that is done, a

new POB with a later timestamp is created that you can

process, and this error would be resolved.

4.4.3 Data Validation Checks

Unlike the inflight errors functionality, data validation

checks are issued after the database update is executed to

validate data once the data reaches tables in RAR. There are

currently 21 error categories that can be issued once data is

validated, and, unlike inflight errors, data validation checks

start with prefix E.

The purpose of using data validation checks is different from

inflight errors. We mentioned that inflight error checks don’t

prevent the business part of contract management, even if

errors are detected. So even if some C errors are raised,

contracts will still be posted and revenue will be recognized

if any. The purpose of E errors, on the other hand, is to

protect you from submitting potentially erroneous results to

revenue reporting. Therefore, contracts with E errors won’t

be processed further.

The root cause of errors coming from data validation checks

can vary from errors coming from ARL data processing,

wrong BRFplus rules, or even mistakes in different BAdI

implementations. However, there are situations where data

validation checks can’t be of help. These are different errors

caused by user actions (e.g., wrong revenue suspension), no

end-to-end reconciliation (between sender component and

contracts), compounding POBs issues, and so on.

Data validation checks are performed in two steps:

1. Consistency check

This activity is performed by running Transaction

FARR_CONTR_CHECK, where the system runs all 21

checks and writes results to table FARR_D_CONS.

2. Consistency monitor

This activity reads entries in table FARR_D_CONS and

displays results to the user.

When you execute Transaction FARR_CONTR_CHECK, the

screen shown in Figure 4.42 is displayed.

Figure 4.42 Transaction FARR_CONTR_CHECK

Here, you need to specify Accounting Principle,

Company Code, Dialog Mode (i.e., running the

application in foreground or background), and Problem

class (i.e., level of log details). In addition, it’s a good idea

to schedule and run this program in regular intervals. In

those cases, you should pay attention to which company

code is included in the run because only that company will

be refreshed.

Once the program is run by clicking the Execute icon, data

is entered in table FARR_D_CONS and read with Transaction

FARR_CONTR_MON, as shown in Figure 4.43.

Besides the standard fields of Accounting Principle,

Company Code, and Revenue Accounting Contract (i.e.,

range of contracts) that are optional, the most important

setting is in the Processing section. If you select Read

data from error table, you’re reading entries previously

created by Transaction FARR_CONTR_CHECK. If you select

Read data online, the system reads the contract

management tables and executes checks online. This option

makes running Transaction FARR_CONTR_CHECK obsolete.

However, it should be taken into consideration that

executing checks online takes significant time and can

cause memory dumps even in the case of a moderate

number of contracts. The recommended method is using

Transaction FARR_CONTR_CHECK to fill the error table with

contracts that have errors, and then run the monitor to

display them. After the errors are corrected, the results are

written to the database.

Figure 4.43 Transaction FARR_CONTR_MON

When you’re done, click the Execute button. The result of

Transaction FARR_CONTR_MON is shown in Figure 4.44 and

can be split into three sections.

Figure 4.44 Error Monitor Results

In the first part, you see information about the POB that was

checked and the liability posting level. In addition, on the

right side, you can see fulfillment information with

compounding information, if any. When you scroll to the

right, you’ll see which checks were performed successfully

and which have errors, as shown in Figure 4.45.

Figure 4.45 Errors Found While Processing Consistency Check

Note

You can find PDF versions of Figure 4.44 and Figure 4.45

available for download at sap-press.com/5700 under the

Product supplements section.

In this case, POB number 200077 has failed data validation

check E11. If you read the documentation about data

validation errors, you’ll find that E11 represents errors

related to calculation of contract liability if the option of

calculation on the contract but posting on the POB level is

used. So, to determine the reason for the error, you need to

compare values in the columns for planned liability versus

posted liability. It’s possible that running program B was

skipped or there's some other problem to be investigated

further. But depending on the impact on reporting, the

decision might simply be to exclude the contract from

processing or to fix a problem in the current month.

https://sap-press.com/5700

4.4.4 Resolving Errors without Transaction

FARR_RAI_MON

In certain cases, organizations have thousands of RAIs being

created on a daily or weekly basis, and often in such

situations, Transaction FARR_RAI_MON can’t be used as the

main tool for error reporting/issues resolution. So, what

should you do in such cases?

The first step is to check how many items have an error in

the processable table. Run Transaction SE16N over the

processable order RAI table (table /IRA/0SD012MI), for

example (most problems will be with order items). Here, you

need to filter the Error column, as shown in Figure 4.46.

In the popup that appears after you click Error, select value

3 because it represents processing data moving from the

Processable to Processed status. Options 1 and 2 are

related to checks performed in which the item is either

saved in the Raw status or moved to the Processable

status, respectively. So, these statuses will be used only

when the Raw status is set. The system will provide the

total number of data items in error. You can further limit the

date to get a list that only shows items that failed while

processing at a specific time.

Figure 4.46 Errors in Processable Table

Now, you have a list of items that are in error, which caused

them not to be processed. The next step is to look at the

log. Each processing of RAIs is saved in the log with a

different level of information, and you can check that

information further. Run Transaction SLG1, as shown in

Figure 4.47.

Figure 4.47 Transaction SLG1

In the Object field, you’ll enter “FARR”, which causes a list

of possible entries to appear in the Subobject column. In

this case, it can be either CONTR_MGMT if you’re searching

for errors during processing of contracts, or RAI_PROCESS

(not shown) if you’re searching for errors during RAI

processing. Once you execute the transaction, you’ll arrive

at the screen shown in Figure 4.48.

Figure 4.48 List of Errors in Transaction SLG1

You can see that the information in Transaction SLG1 is very

similar to the information in Transaction FARR_RAI_MON.

The conclusion on error management related to RAIs is that

unverified data coming to the ARL should be avoided as

much as possible in the first place. Different proactive error

management approaches can be taken: either by

implementing logic in applications that create orders or by

implementing layers that will be used to clean data before it

reaches the ARL.

Once data is in the ARL, standard mechanisms are triggered

to protect data integrity in RAR itself. You can extend these

checks with available methods, or you can create a custom

error management module before data is passed further.

All of this emphasizes the key message: data quality is

crucial for RAR to fulfill its main purpose as an engine to

calculate IFRS 15 revenue.

4.5 Business Rules Framework Plus

Business Rules Framework plus (BRFplus) is an SAP tool that

is used to reduce complexity when it comes to defining

business rules. Rules that are generated by BRFplus can be

easily incorporated in different applications used in SAP.

Think, for example, about validations or substitutions in

which you define rules once that you can later reuse across

different applications. Compare that with the old methods

where you needed to define rules based on an application

area, and the number of areas determined the number of

rules.

BRFplus isn’t related to SAP HANA nor is it that new, but

with newer releases of SAP S/4HANA, it’s getting more and

more attention. The overall BRFplus architecture is shown in

Figure 4.49.

Figure 4.49 BRFplus Architecture

Let’s walk through each part of the BRFplus architecture:

Application

The application is a simple container in BRFplus for other

BRFplus objects. It’s classified highest in the hierarchy,

and you can create as many applications as needed.

There are three types of applications:

System applications

Master data applications

Customizing applications

The main difference is in transports: system and

customizing applications are always transportable,

whereas master data applications are created locally.

Function

This is the rule interface and behaves as a link between

application code and BRFplus code. Function has a

context and a result. Context is an import parameter when

an application is being called, and Result is the return of

its execution.

Rule set

Rule set is nothing but a collection of rules that will be

executed for a specific business case. It’s an entry point

for tasks to be executed. The rule object is a technical

representation of a simple business rule to be applied on

a specific object. Rules have to be assigned to the rule

set; they can’t be executed as standalone rules.

Expressions

Expressions make up the computational power of BRFplus

where each contains a logical formula that needs to be

executed. There is a predefined number of expression

types, and BRFplus is enhanced each time with a new set

of expression types.

Decision tables

Decision tables belong to a catalog within each BRFplus

application. It’s a crucial part because it holds all rules

based on which the derivations of target values are

determined.

With this architecture in mind, we’ll explore BRFplus in the

context of RAR in the following sections. We’ll start with the

available applications and structures, and then explain how

to set up BRFplus and relevant extensions.

4.5.1 Applications and Structures for RAR

Integration

SAP delivers different BRFplus template applications that

are integrated with RAR. Applications delivered are to be

used for separate functions:

Integration with sender components

Account determination

Determination of POB status

To access delivered applications, run Transaction BRFPLUS.

You’ll arrive at the screen shown in Figure 4.50.

Figure 4.50 Transaction BRFPLUS

To find the application that you need, you can perform a

search on the left part of the screen. Here, you can see all

the information about the application selected. Click the

Search button in the Repository section.

BRFplus Expert Mode

It’s a good idea when working on development of BRFplus

application to be in expert mode. By default, the

transaction is running in Simple mode, which can be

changed. In the top right corner, select the Personalize

button (not shown), and a further list of options will

appear. On the left part of the window, a selection named

User mode will appear. Select Expert from the dropdown

list. Once this is done, you’ll see technical names instead

of descriptions and a few more features that are helpful

when it comes to the development of applications.

The Search screen shown in Figure 4.51 will appear. To find

the RAR applications required, enter “FARR*” in the

Application area, which will display all standard

applications for RAR. Click Ok.

Figure 4.51 BRFplus Application Selection

The first step in the process is to select which applications

are needed. To work with the ARL, the first needed

application is one used for processing data and creating RAR

contracts and POBs. Here, you’ll select applications based

on the type of integration used:

FARR_AP_CA_PROCESS_TEMPLATE for integration with SAP Billing

and Revenue Innovation Management

FARR_AP_SD_PROCESS_TEMPLATE for integration with sales and

distribution

FARR_AP_CRM_PROCESS_TEMPLATE for integration with SAP CRM

FARR_AP_PROCESS_TEMPLATE for integration with external non-

SAP components

Once you select an application that is proper for integration

in a specific case, it’s highly recommended to copy it to the

new application in a specific namespace. In addition, be

sure to also select the Contained Objects option when

copying the application. This option will move all

corresponding objects to the target application too, so no

object will be missed.

Important Note

Special attention should be paid to changes and

transporting of changes in BRFplus. When creating an

application, you need to assign a transport request to

which changes will be saved. All BRFplus applications for

RAR are of type system, which means they can’t be

maintained in production directly, but they can be

maintained on the quality assurance system. Situations

where applications are maintained in separate systems

should be avoided. Because each application has its own

unique ID, maintenance in different systems would cause

transport to become impossible. The aim should be to

maintain applications in one system and move changes by

a regular transport route.

Once you’ve copied the necessary application, you can

maintain it, which means you’re maintaining the decision

tables. Decision tables contain a set of rules or values that

represent the configuration according to which decisions are

made.

The next step is to configure these rules in the decision

table. On the left-hand side, under the Expression menu,

you can find all the decision tables that need maintenance.

All columns available can be split into two sections: (1) input

columns that represent input parameters for decisions and

(2) output columns that represent results. Input columns are

marked with gray, and output columns are marked in green.

First, you need to maintain the decision tables needed for

integration with sender components. There is an order in

which decision tables functions are executed, and their

descriptions follow:

DT_PROCESS_COMPOUND

Applied for no bill of materials (BOM) items and contains a

set of rules for how compounding will be performed.

DT_PROCESS_BOM

Contains members of BOM to be managed as distinct or

nondistinct POBs.

DT_PROCESS_POB

Main table that contains rules for how POB is determined,

including type, fulfillment type, deferral method, start and

end dates, and so on.

DT_PROCESS_POB_ADD

Contains links to implicit POBs.

DT_PROCESS_SSP

Used for SSP determination. SSPs can be determined in

two ways, either sent by sender component or

determined in BRFplus. If needed, the SSP can be entered

in this decision table together with tolerance limits and

calculation type.

DT_PROCESS_DEFERAL

Used for special condition types such as right of return

(ROR) to determine deferrals.

DT_PROCESS_HEADER

Used to determine contract header attributes such as

description and contract category.

Processing SSPs in BRFplus

As stated, a standard decision table in BRFplus is table

DT_PROCESS_SSP, which is used for determining the SSP for

the POB. However, there are limitations on how this

feature should be applied. A huge amount of data in

BRFplus can seriously hamper system performance, and

there is a limit of around 10,000 entries, which should be

respected. Regarding SSPs, there are other features, such

as validity period, which often are needed by the

customer (available in condition records maintenance)

and which could easily reach that limit even for a

moderate number of materials. So, using BRFplus as a

main source for SSP maintenance should be used only as

a last resort and only when following the limitations such

an approach can impose.

Maintenance of decision tables is simple and intuitive: you

need to enter criteria based on which target values are

being determined. For POB determination, for example,

you’ll enter material and/or document type and line-item

category as input parameters, and you’ll enter the POB type

being determined as the target.

Once decision tables for POB determination are maintained,

the next application that requires maintenance is

FARR_ACC_DETERMINE_TEMPLATE. The approach is similar, and this

template application needs to be copied to the customer

namespace where changes will be performed.

The following decision tables are available for setup:

FARR_ACCT_DETERMINE_DT_CORR

Used for revenue adjustment for allocated revenue with

posting category RV in table FARR_D_POSTING when running

program A.

FARR_ACCT_DETERMINE_DT_CORR_A

Used the same way, just for linked POBs.

FARR_ACCT_DETERMINE_DT_CT_AST

Used for postings of contract assets with category CA in

table FARR_D_POSTING while running program B.

FARR_ACCT_DETERMINE_DT_CT_LIB

Used for postings of contract liability with category CL in

table FARR_D_POSTING while running program B.

FARR_ACCT_DETERMINE_DT_DCOGS

Used for posting cost deferrals in scenarios where cost

recognition is used with category CJ in table FARR_D_POSTING.

FARR_ACCT_DETERMINE_DF_REV

Used for posting deferred revenue with posting category

DR in table FARR_D_POSTING.

FARR_ACCT_DETERMINE_DT_RADJ

Used for posting receivable adjustments with category RA

in table FARR_D_POSTING after running program A.

FARR_ACCT_DETERMINE_DT_RC_CST

Used for recognized costs in a cost deferral scenario with

category CO in table FARR_D_POSTING.

FARR_ACCT_DETERMINE_DT_RC_CST

Used for recognized revenue with category RA in table

FARR_D_POSTING.

FARR_ACCT_DETERMINE_DT_ROR

Used for ROR posting. It’s represented with a separate

condition type and not a posting category.

FARR_ACCT_DETERMINE_DT_UB_REC

Used for unbilled receivables with category UR in table

FARR_D_POSTING.

Besides these, if optimized contract management (OCM) is

used, you can also customize table

FARR_ACCT_DETERMINE_DT_ASST_IM for impairment postings by

posting category AI in table FARR_D_POSTING. Impairment is the

result of termination: it represents a balance of either the

contract asset or contract liability that is being moved later

to profit and loss (P&L).

To maintain BRFplus tables, you click the + button to add

new entries. The same approach is needed for all decision

tables: input parameters are marked in gray, and target (or

export) parameters are marked in green. You need to select

from the list of possible entries, which will depend on the

data element assigned to the table. Once entries are added,

the table needs to be saved and later activated.

Not all tables require maintenance for all business

scenarios. For example, if only one accounting principle is

used with the contract assets/contract liabilities (CA/CL)

calculation (see Chapter 5, Section 5.1.3), then

maintenance of unbilled receivables and deferred revenue

tables isn’t necessary. Similarly, if there is no cost

recognition process, then the table for cost deferral can be

left empty.

Once all tables have been maintained, rules are configured

(see Chapter 5, Section 5.2.2 for more information on

creating rules for POBs). To complete integration with RAR,

application assignments need to be performed, which we’ll

discuss next.

4.5.2 BRFplus Setup in RAR

Once tables have been maintained, you need to make

assignments to RAR by using Transaction FARR_IMG and

going to Revenue Accounting • Inbound Processing •

Revenue Accounting Item Management • Assign

BRFplus Applications to Revenue Accounting Item

Classes.

Once the transaction is run, you need to assign the

application that was customized in the previous step to

appropriate RAI classes. This step is only necessary for order

item classes.

The next step is assignment of the other two applications:

one for POBs and one for postings/account determination.

The application for POB statuses is optional, but for postings

and account determination, it’s mandatory. However, these

steps can be found in Chapter 5. You execute the process by

accessing Transaction FARR_IMG and going to Revenue

Accounting Contracts • Assign BRF+ Application to

Revenue Accounting Processes. As shown in Figure 4.52,

you need to select which application is needed for which

process. There are two processes available that can be

selected depending on your needs: AD Account

Determination and PS Performance Obligation Status.

Figure 4.52 Posting Application Assignment

Now, to change some entries in decision tables, the most

common method is via Microsoft Excel. BRFplus comes with

an embedded Microsoft Excel download/upload functionality

so you can easily download all entries from the decision

table, quickly make updates, and then upload again. The

template fits the structure of the decision table, making it

simple to share among different people and upload back to

BRFplus without any additional adjustments. Every decision

table in the application has this option available.

You also have additional options that make maintenance of

BRFplus decision tables easier. In the menu at the top of the

screen, you have the option of defining which BRFplus

decision table can be maintained using the simplified

BRFplus user interface (UI).

The next step is to assign specific decision tables to be

maintained by the simplified UI. Navigate to ID for

Decision Table UI in the dialog structure, as shown in

Figure 4.53. Once you select this option, there will be a link

between tables used for customizing and the BRFplus

application they belong to.

Figure 4.53 Assignment of BRFplus Applications to the Simplified GUI

Once you select the decision table in Figure 4.53, it can be

maintained with the simplified GUI, as shown in Figure 4.54.

The main (right-hand) part of the simplified GUI shows

which application is selected and which decision tables are

created in the application. Once you select the needed table

decision table, maintenance will begin.

Figure 4.54 Simplified GUI

The simplified UI option enables you to quickly change data

required for POB determination of, for example, the SSP.

However, you should be very careful regarding

maintenance. As previously mentioned, maintenance of RAR

BRFplus data is an activity that should be taken with extra

caution. Settings made here can have multiple impacts, and

the recommendation is to always respect the transport

route for changing anything in decision tables.

4.6 Creating Custom Revenue

Accounting Items

We’ve already discussed the creation of RAIs in previous

sections. The RAIs that are created all adhere to the

configurations and the rules defined. There are several

instances when you need to validate, manipulate, delete,

enhance, or perform a lot of other things on RAIs. The

custom fields that you add need to be filled or validated and

that can be achieved here. So, customizing the RAIs and

controlling the further processing of RAIs is the main

discussion of this section.

The RAIs that are created in RAR are dependent on the

information that is sent from the source system. The source

systems are called the sender component, as discussed in

Chapter 2, Section 2.3.1. The data that is sent is converted

to RAIs. It’s very important for the data to be right to create

correct RAIs.

With data, there are always issues, so keep the following in

mind:

The data can’t be assumed to be right always, so you

need to validate it.

The data can’t always be in the expected format, so you

need to check the data format.

The number of characters that is expected for a field may

be exceeded, so you need to check that.

There will be some fields that need to be populated based

on the values of the other fields within the same

structure.

Data needs to be enriched and prepopulated with some

default values.

A lot of data handling needs to be done here before the RAIs

are created and also during the various statuses of RAIs. In

the following sections, we’ll explore the option to check for

data correctness, as well as which technical objects (e.g.,

BAdIs, classes, and methods) are available from SAP. In

addition, we’ll discuss the generic or the dynamic way these

objects can be coded or developed.

4.6.1 Custom RAI Structure

Customizing RAIs is tailoring an RAI by structure and/or

content (prepopulating or manipulating the data in the

RAIs). The structure of an RAI is determined by the following

components, as shown in Figure 4.55:

Standard fields

There is a standard set of predefined fields for RAIs.

Status of RAI

States whether the RAI is in Raw, Processable, or

Processed status.

Interface components

You can choose what interface components to include in

the RAI structure (see Chapter 2, Section 2.3.2). This

includes the components for sales and distribution,

profitability analysis, and more.

Customer fields

Adding the custom fields is explained in detail in

Chapter 2, Section 2.3. The extension include structures,

such as INCL_EEW_FARR_ARL, INCL_EEW_FARR_POB,

INCL_EEW_FARR_REP, and INCL_EEW_FARR_CONTRACT, have to be

extended.

You can customize the RAI structure by selecting the

required interface component and also via customer fields.

Figure 4.55 RAI Structure

4.6.2 Custom RAI Content

When we say content here, we’re referring to the data in the

RAI. Customization in the content means validating,

modifying, adding default values to, and changing the

format or type of the data; prepopulating the values by

validating other fields; and many such data-related

operations. As you know, some of this can be achieved via

configuration, but most of this can be achieved by code,

resulting in the question of where all this coding is done.

We’ll walk through different options in the following

sections.

Let’s consider an example where we are customizing the

content of an RAI based on values of the other fields in the

RAI. Say we have a case related to the field SERVICE_TYPE,

which is a standard field in the RAI structure available in all

RAI statuses. Per our requirement, this particular field in the

RAI is allowed a set of values from a custom table. In

standard SAP, the service type is allowed to be blank, so the

RAI will be created in the raw status with blank SERVICE_TYPE.

Now, we have to write the code where we can select the

right SERVICE_TYPE from the custom table based on other

fields like the company code, customer number, partner,

and other conditions in the RAI. To achieve this, we need to

write code at the point where the raw RAIs are being

transferred to the processable status.

Similarly, we might want to change the content of some

fields in the RAI when it’s in the processable status and is

being moved to processed. To achieve all this and more, SAP

provides a list of BAdIs that we’ll explore in this section.

These BAdIs also add validations and enrichment to the

customer fields; even standard fields can be enriched and

validated, apart from the standard built-in validations.

Standard Approach

SAP has provided a standard class called CL_FARR_RAI_IFCOMP

for validating the standard fields. This class is called at

various stages and has a set of methods that are called for

during the RAI creation and for various interface component

validations. There are also methods that are called during

the transfer of RAIs and during the processing of RAIs. All

the necessary standard validations and enrichment happens

in the methods of the class, which are listed in Table 4.2.

Methods Description

RAI0_ENRICH_BASIC_CO Enrich raw data basic condition

item fields

RAI0_ENRICH_BASIC_MI Enrich raw data basic main item

fields

RAI0_ENRICH_BASIC_MI01 Enrich raw data order main item

fields

RAI0_ENRICH_BASIC_MI03 Enrich raw data invoice main

item fields

RAI2_CHECK_BASIC_CO Final check before saving

processable conditions

RAI2_CHECK_BASIC_CO01 Final check before saving

processable order conditions

RAI2_CHECK_BASIC_MI Final check before saving

processable main items

RAI2_CHECK_BASIC_MI01 Final check before saving

processable order items

RAI2_CHECK_BASIC_MI02 Final check before saving

processable fulfillment items

RAI2_CHECK_BASIC_MI03 Final check before saving

processable invoice items

RAI2_CHECK_SD_MI01 Final check before saving

processable SD order items

Methods Description

RAI2_ENRICH_BASIC_CO01 Enrich raw data basic condition

item fields

RAI2_ENRICH_BASIC_MI Enrich processable basic main

item fields

RAI2_ENRICH_BASIC_MI01 Enrich processable order main

item fields

RAI2_ENRICH_BASIC_MI02 Enrich processable basic main

item fields

RAI2_ENRICH_BASIC_MI03 Enrich processable basic main

item fields

GET_CURRENCIES_COMP_CODE Get currency codes of company

code

ADD_MESSAGE_TO_TABLE Add message to table

CHECK_CURRENCY_CODES_EQUAL Check currency code between

main and condition items

CHECK_ORIGDOC Check fields of original

document

CHECK_ORIGDOC_WAERS Check transaction currency of

original document

CHECK_PAOBJNR Check if PAOBJNR is filled

CHECK_PINVDOC Check fields of planned invoice

item

GET_CURRENCIES Get local currency values

Methods Description

SWITCH_CURRENCIES Switch transaction currency if

different from order

GET_DATA_FROM_ORDER Get values from order item

GET_MAPPING Get reference and contract from

the mapping table

GET_MAPPING_TAB Get mapping table for source

documents

GET_RAI_MI_TAB Get RAI table for source

documents

GET_REFERENCE_FROM_MAPPING Get reference from mapping

table

GET_REFERENCE_FROM_ORDER Get reference from order item

GET_REFERENCE_FROM_PREDOC Get reference from predecessor

document

SET_RAI0_KEYPP Set subarea for parallelization

SET_RAI2_KEYPP Set subarea for parallelization

CALCULATE_EXCHANGE_RATE Calculate exchange rate for

currency conversion

Table 4.2 Methods of Class CL_FARR_RAI_IFCOMP

These methods have various validations, checks, and

enrichments for standard fields, even the methods to

calculate the exchange rate and methods for copying the

KEYPP field between main records and condition records. This

is the standard provided by SAP. Some of the methods here

are triggered based on the configuration and the interface

components that we selected for our RAI class.

Class CL_FARR_RAI_IFCOMP is for validating the standard fields.

Now when you have to validate, check, enrich, or use

default values in the custom fields or even the standard

fields, this can be done in enhancement spot FARR_ARL along

with the provided BAdIs, which we’ll discuss next.

Custom Approach: Signature and Implementation

Model

There are a lot of projects that require customer fields to be

added to the RAI structure. The customer fields are needed

because each business has unique requirements that call for

customization. So, for storing their business-specific

requirements, we add customer fields to the RAI structure

(adding customer fields is discussed in detail in Chapter 2,

Section 2.3, where ZZPOB_CUR, ZZPOB_STATUS, and ZZPOB_DESC

were added in a step-by-step demonstration).

There are cases where you also need customer fields to be

validated, enriched, and prepopulated with default values.

In the standard class mentioned in the previous section,

CL_FARR_RAI_IFCOMP, the standard fields will be taken care of.

So, for customer fields, SAP has provided enhancement spot

FARR_ARL. In addition, you can also add validations or

enrichments on standard fields; it’s not just limited to

customer fields.

To get started, go to Transaction SE18, and enter the

Enhancement Spot as “FARR_ARL”, as shown in

Figure 4.56.

Figure 4.56 Enhancement Spot FARR_ARL

Click on Display to arrive at the screen shown in

Figure 4.57.

Figure 4.57 BAdI Definition of FARR_ARL

In FARR_ARL, there are four BAdI definitions of which only

three are of concern for us now, as shown in Table 4.3. The

BAdI for contract combination will be discussed in another

section.

BAdI Name Description When It’s Called

FARR_BADI_RAI0 Creation of

raw RAIs

Before the raw items are

saved to the database

BAdI Name Description When It’s Called

FARR_BADI_RAI2 Creation of

processable

RAIs

Before the processable

items are saved to the

database

FARR_BADI_RAI4 Creation of

processed

RAIs

Before the processed items

are saved to the database

Table 4.3 BAdIs for RAR

In this section, we’ll discuss the BAdIs in detail, including

details about their signature and implementation.

Business Add-In: FARR_BADI_RAI0

The first BAdI, FARR_BADI_RAI0, is triggered during the creation

of custom raw RAIs. This one is triggered or called before

the RAIs are created in the raw state and saved to database,

so you can add any logic or changes/validations required to

the standard or the custom fields even before the raw RAIs

are saved to the database. The changes or the logic that

you apply here will be done to the RAIs before they hit

tables /1RA/0**010MI and /1RA/0**010CO, as shown Figure 4.58.

Figure 4.58 FARR_BADI_RAI0 Triggered during RAI Creation

You can see that the ENRICH method is called first, then the

class CL_FARR_RAI_IFCOMP is called, and finally the

CHECK_BEFORE_SAVE method.

Now let’s explore the methods and the signatures of the

methods to understand what structures are available.

Returning to the screen shown in Figure 4.57, double-click

on BAdI definition FARR_BADI_RAI0, and then double-click

on interface IF_FARR_BADI_RAI0. Then, you can see the

methods available in the interface, as shown in Figure 4.59.

Figure 4.59 Methods in Interface IF_FARR_BADI_RAI0

As you can see, interface IF_FARR_BADI_RAI0 has two

methods: ENRICH and CHECK_BEFORE_SAVE. Double-

click on ENRICH to see the details of its parameters, as

shown in Figure 4.60.

Figure 4.60 FARR_BADI_RAI0: ENRICH Method

The ENRICH method is executed before the SAP-delivered

enrichment functionality for each interface component is

executed. This method is called even before the RAIs are

saved to the database or during the creation of the RAIs in

Raw status. So, you can set any default values to any fields

(custom or standard), and you can write code to select data

from the database table and populate it in any of the RAI

fields (custom or standard). You can also perform

validations, throw error messages, and collect them in

changing parameter CT_MESSAGES, as shown in

Figure 4.60.

The standard check and enrichments are done in class

CL_FARR_RAI_IFCOMP. In addition, if you need to add further

checks, enrichment, and validation, you can do so here in

this BAdI. The BAdI has one Importing parameter and three

Changing parameters. Importing parameter IV_RAIC is of

type FARR_RAIC, which refers to the RAI class. You must

pass the class you’ve configured in Transaction FARR_IMG

under the defined RAI class, for example, SD01, SD03, and

so on.

Next, we have the three changing parameters, which allow

the data content to be changed. This is where you can

change, enrich, or validate the field values. Let’s take a

quick look at each, as shown in Figure 4.60:

CT_RAI0_MI

This will have the main item of the RAI data. The structure

of the parameter is of type FARR_S_RAI0_MI_ALL, which

you can view in Transaction SE11 by giving the structure

name in DATA TYPE. As multiple RAIs will be passed to

the method, it’s a table referring to the table type of

FARR_TT_RAI0_MI_ALL.

CT_RAI0_CO

This will have the condition items of the RAI data. It will

carry multiple records of condition items, so it’s a table of

table type FARR_TT_RAI0_CO_ALL with the structure of

the table of type FARR_S_RAI0_MI_ALL.

CT_MESSAGES

This is of table type FARR_TT_RAI_MSG, which is a type

of work structure of FARR_S_RAI_MSG.

If there are any errors in the RAIs, then changing parameter

CT_MESSAGES is updated with the key field values of the

RAI. It also has the attribute of the message structure to

pass the message details. The RAIs with errors will be

captured here and won’t be moved further.

The CHECK_BEFORE_SAVE method is executed before raw

RAIs (RAI0) are saved to the database. This is another

method for adding changes just before you save the final

call and before saving all the RAIs created in the Raw status

to the database.

This BAdI has the same importing and changing parameters,

as shown in Figure 4.61.

Figure 4.61 BAdI FARR_BADI_RAI0: CHECK_BEFORE_SAVE Method

Business Add-In: FARR_BADI_RAI2

The raw RAIs that don’t have any errors are then transferred

to the Processable status. You will need some validations

or enrichments at this stage. So, this BAdI, FARR_BADI_RAI2, is

used for adding checks, validations, or enrichments to raw

RAIs that are being transferred to the Processable status.

This BAdI is triggered or called before the RAIs are

transferred to the Processable status and saved to the

database, so you can add any logic or changes/validations

that you need to add to the standard or the custom fields of

the raw RAIs that are being transferred. The changes or the

logic that you apply here will be done to the RAIs before

they hit tables /1RA/0**012MI and /1RA/0**012CO, as shown in

Figure 4.62.

From Transaction FARR_RAI_MON, you can select RAIs in

Raw status and then debug the transfer of RAIs by clicking

the Transfer button. During a mass transfer of RAIs, you

call program RFARR_RAI_PP_TRANS_START. In both cases,

the BAdI is called.

There are also two methods in this interface: ENRICH and

CHECK_BEFORE_SAVE. ENRICH is called before the raw RAIs are

moved to the status Processable and are saved to the

database, that is, during the transfer of the RAIs.

Figure 4.62 BAdI FARR_BADI_RAI2: Triggered during RAI Transfer

You can set default values to any fields (standard or custom)

and write code to perform database selects for populating

certain fields based on conditions. You can also write code

to populate certain RAI fields based on the values of other

RAI fields, or by writing database selects to fetch the value

of certain RAI fields that are based on the conditions of

other RAI fields. Finally, you can perform validations, throw

error messages, and collect them in changing parameter

CT_MESSAGES, as shown in Figure 4.63.

Figure 4.63 BAdI FARR_BADI_RAI2: ENRICH Method

The standard check and enrichments are done in class

CL_FARR_RAI_IFCOMP. If you need to add further checks,

enrichments, and validations, you can do so in this BAdI.

There is an enrichment functionality for each interface

component provided by SAP, which will be called after the

ENRICH method is called.

The BAdI has one importing parameter and three changing

parameters. The importing parameter is IV_RAIC, which is

of type FARR_RAIC and refers to the RAI class. You have to

pass the class configured in Transaction FARR_IMG under the

defined RAI class, for example, SD01, SD03, and so on.

Then, you have three changing parameters, which, as you

know, allow the data content to be changed. This is where

you can change, enrich, or validate the field values. The

changing parameters shown earlier in Figure 4.63 are

described here:

CT_RAI2_MI

This will have the main item of the RAI data. The structure

of the parameter is of type FARR_S_RAI2_MI_ALL, which

you can view in Transaction SE11 by giving the structure

name in DATA TYPE. As multiple RAIs will be passed to

the method, it’s a table referring to the table type of

FARR_TT_RAI2_MI_ALL.

CT_RAI2_CO

This will have the condition items of the RAI data. It will

carry multiple records of condition items, so it’s a table of

table type FARR_TT_RAI2_CO_ALL with the structure of

the table of type FARR_S_RAI2_MI_ALL.

CT_MESSAGES

This is of table type FARR_TT_RAI_MSG, which is a type

of the work structure of FARR_S_RAI_MSG.

If there are any errors in the RAIs, then changing parameter

CT_MESSAGES is updated with the key field values of the

RAI. It also has the attribute of the message structure to

pass the message details. The RAIs with errors will be

captured here and won’t be moved on further.

The CHECK_BEFORE_SAVE method is executed before

processable RAIs are saved to the database. This is another

method for adding changes just before you save to the

database for all the RAIs.

This BAdI has the same importing and changing parameters,

as shown in Figure 4.64.

Figure 4.64 BAdI FARR_BADI_RAI2: CHECK_BEFORE_SAVE Method

Business Add-In: FARR_BADI_RAI4

This one is triggered or called before the RAIs are processed

and moved to the Processed status and saved to the

database, so you can add any logic or changes/validations

to the standard or custom fields. The changes or the logic

that you apply here will be done to the RAIs before they hit

tables /1RA/0**014MI and /1RA/0**014CO, as shown in

Figure 4.65.

Figure 4.65 BAdI FARR_BADI_RAI4: Triggered during the RAI Process

Returning to the screen shown previously in Figure 4.57,

double-click on BAdI definition FARR_BADI_RAI4, and then

double-click on interface IF_FARR_BADI_RAI4. Then, you

can see the methods available in the interface, as shown in

Figure 4.66.

Figure 4.66 Interface IF_FARR_BADI_RAI4 Methods

This BAdI has a few different methods to discuss:

EXCLUDE_COMPANY_CODES

This method, as shown in Figure 4.67, is called when the

RAIs are being moved to the Processed status and

before they are saved to the database. This method is

called mainly for company code checks. If there are some

company codes that you may want to exclude, then you

can implement this method in BAdI FARR_BADI_RAI4.

For mass Transactions FARR_RAI_PROC (Process Revenue

Accounting Items), FARR_RAI_PROC_LOAD (Initial Load

Process Revenue Accounting Items) used during the

migration and initial load processing, and

FARR_RAI_PROC_NEWACP (Reprocess Revenue Accounting

Items for New Accounting Principle), this method is

executed before the RAIs are selected from the database.

RAIs that belong to one of the listed company codes

provided in exporting parameter ET_EXCLUDED_COMPANY_CODE

aren’t selected for processing.

If RAI processing is started from the RAI monitor

(Transaction FARR_RAI_MON), the method is executed at

the beginning of the RAI processing.

The method has one importing parameter,

IV_PROCESSING_MODE, which is of type FARR_PROCESSING_MODE

(processing mode includes processing, initial load,

transition). To importing parameter IV_PROCESSING_MODE, you

have the option to provide three possible values as input:

Space: For normal processing.

1: For initial load processing.

2: For new accounting principle during reprocessing.

The method has one exporting parameter called

ET_EXCLUDED_COMPANY_CODE. This will save the list of company

codes that have to be excluded during processing. The

structure of this exporting parameter is

FARR_S_COMPANY_CODE_MSG. This exporting parameter will store

multiple values and has to be of type table. The table type

is FARR_TT_COMPANY_CODE_MSG, which includes a standard

messaging structure and the company code to be

excluded.

Figure 4.67 EXCLUDE_COMPANY_CODES Method

EXCLUDE_RAIS_AT_PROC_START

This method, as shown in Figure 4.68, is executed at the

beginning of processing, initial load processing, or

reprocessing for a new accounting principle. It’s basically

like making an exclusion list of RAIs that should be

excluded and not processed. The reason for exclusion

could be something like the validations that are done on

RAIs; in this case, the RAIs failing the validation are all

grouped together in the exclusion list.

The importing parameters are IV_PROCESSING_MODE, IT_RAI_MI,

and IT_RAI_CO. Parameters, IT_RAI_MI and IT_RAI_CO contain

all revenue accounting main items and conditions that are

selected for processing and aren’t locked by other

processes.

The exporting parameters in the BAdI implementation are

ET_EXCLUDED_RAI and EV_EXCLD_MODE. By using exporting

parameter ET_EXCLUDED_RAI, you can define RAIs that should

not be processed. All RAIs listed in ET_EXCLUDED_RAI aren’t

processed.

Figure 4.68 EXCLUDE_RAIS_AT_PROC_START Method

MODIFY_PREDOC_DATA

This method is executed for revenue accounting order

items during processing, initial load processing, and

reprocessing for a new accounting principle. This is

triggered when an RAI belonging to the predecessor chain

is processed. Figure 4.69 shows the parameters of the

method.

Importing parameters IT_RAI_MI_PREDOC_CHAIN and

IT_RAI_CO_PREDOC_CHAIN contain all revenue accounting main

items and conditions in the Processable and Processed

statuses that have been used for aggregation during

predecessor handling.

Importing parameters IS_RAW_POB_AGGREGATED and

IT_RAW_POB_CO_AGGREGATED contain the data of the raw POB

that resulted from the aggregation of the RAIs.

In the BAdI implementation, it’s possible to change those

fields of the raw POB that are defined in structure

FARR_S_PREDOC_CHANGE_MI and hand them over using

exporting parameter ES_RAW_POB_AGGREGATED.

Figure 4.69 MODIFY_PREDOC_DATA Method

HANDLE_ASSUMED_INVOICE

This method, as shown in Figure 4.70, is executed at the

beginning of processing. This is basically used for invoice

processing and has the following parameters:

Importing parameter IV_RAW_INV of type FARR_S_RAW_POB:

This will carry the key fields to identify the invoice RAIs.

Returning parameter RV_PROCESSABLE of type XFELD: This

flag allows you to return whether the invoices are to be

processed or not.

Figure 4.70 HANDLE_ASSUMED_INVOICE Method

HANDLE_FINAL_DATE_CHANGE

This method, as shown in Figure 4.71, is used to avoid

automatic creation of cancellation of assumed invoice.

This method has a single returning parameter RV_OWN_LOGIC

of type XFELD. The parameter name includes “own logic” to

convey that you could design the returning parameters

per your own requirements and base further processing

on the returning parameters as well.

Figure 4.71 HANDLE_FINAL_DATE_CHANGE Method

We’ve now shown the possible objects available for bringing

in validation on customer fields and standard fields. It’s

important to have the data in the right format and ensure

that it’s correct, which can be done using these methods.

4.6.3 Singleton Classes

In this section, we’ll briefly introduce singleton classes. We’ll

explain how to create a singleton class with a step-by-step

approach, and then we’ll show you how to instantiate and

use a singleton class.

Before we move further, let’s first discuss why we’re talking

about singleton classes here and how this was used in a

particular scenario in one of our projects. In one of our

previous projects, we had implemented BAdI FARR_BADI_RAI2

and had to do a lot of validation before the raw RAIs were

transferred to the Processable status. In particular, we had

a lot of enrichments, validations, and checks to do in

method ENRICH. The most important concern in that project

was the huge volume of data and the future rollouts that

would add to the volume of data. It was crucial for us to

develop code that was performance optimized, keeping the

number of database accesses to a minimum, and with no

redundant code pieces.

So, the design was centered around optimizing the

performance. The standard validations weren’t enough as

there were two systems or sources of information for the

same POB, which weren’t in sync. Because every third-party

source system is different, the standard data validations

aren’t sufficient. There were a lot of custom fields added as

the requirements were complex and couldn’t be addressed

just with the standard fields. Even those custom fields had a

lot of validation, setting of default values, and various

checks to perform on the custom fields, as well as

enrichments of the standard fields and custom fields. This

required us to implement BAdI FARR_BADI_RAI2 and specifically

method ENRICH to address the preceding concern.

As part of our design, we had to develop two custom tables

for the dynamic design that we had planned. One of the

tables to be designed was called the flow determination

table, ZRAR_FLOW, and the other one was for validation rules

maintenance, ZRAR_VALID_RULE.

The data in table ZRAR_FLOW will be like a dynamic flow control

table, and table ZRAR_VALID_RULE will have a set of validation

rules maintained for processing the RAIs. The entries in

these tables will have the same set of entries for all the

headers of a given company code.

Consider a case where you’re transferring 100,000 entries,

as shown in Figure 4.72. When method ENRICH is designed, it

will have a SELECT statement to select data from table

ZRAR_FLOW and another SELECT statement to fetch data from

table ZRAR_VALID_RULE. Because there are 10,000 HeaderIDs,

the SELECT statements will be called 10,000 times for select

data on table ZRAR_FLOW and 10,000 times for select data on

ZRAR_VALID_RULE. Both SELECT statements will have the same

data for all the header IDs because the RAI transfer is being

done for one company code. This means that the same data

will be pulled again and again 20,000 times. Because our

target here is to reduce the number of redundant database

selects, we could just select the data once during the entire

processing and save the data somewhere to reuse it instead

of having to select it 20,000 times. This is when we came up

with the singleton approach.

Figure 4.72 Singleton Class in ENRICH: FARR_BADI_RAI2

The data from tables ZRAR_FLOW and ZRAR_VALID_RULE will be

collected only once in the singleton class, which will be

instantiated only once during the entire cycle of mass

transfer for thousands of header IDs in the singleton class to

avoid a lot of database calls. With that example under our

belt, we’ll now discuss the singleton class and how to create

it.

Singleton classes are different from static classes. A class

that only contains static components and no instance

components is referred to as a static class. A global static

class is loaded once with its class pool into the current

internal session. Like every ABAP program, it can’t be

explicitly deleted from the session. The static methods

(declared using CLASS-METHODS) of a class can’t be redefined in

subclasses.

A singleton is a design pattern where the class has the task

of creating objects. The class ensures that only one object

exists for every internal session that is made available to

consumers.

The difference between static classes and singleton classes

is shown in Table 4.4.

Singleton Class Static Class

This class contains

static components and

instance components as

well.

This class contains static

components and no instance

components.

This class can have at

the most one instance.

This class contains only static

methods and attributes, so it

doesn’t require instantiation.

From a memory

consumption

perspective, this class

gives you control over

when to instantiate.

From a memory consumption

perspective, there is no way to

explicitly free up the memory

space occupied by static

classes.

Objects are created only

from within the class.

Objects can be created from

outside the class.

Table 4.4 Difference between Static Classes and Singleton Classes

Let’s dive into creating a singleton class. Go to Transaction

SE24, enter a class name per the naming conventions used

in the project, and click on the Create button. As in our

case, let’s call the class “ZCL_RAR_MEMLOAD”, as shown in

Figure 4.73.

Figure 4.73 Creating a Singleton Class

After you click on Create, the screen shown in Figure 4.74

appears, where you have to enter an appropriate

Description.

Check the Final flag. All other details can stay as the

default entries. It’s important to make the class Final

because you can’t allow inheritance on this class.

Figure 4.74 Singleton Class

Click on Save, and on the next screen, select the

appropriate package and save in an appropriate transport

request. The class is created and activated as shown in

Figure 4.75.

Figure 4.75 Singleton Class Creation

Now you can start creating the types and method for the

class. First, you need to create a private static attribute of

the type of reference to the same class, as shown in

Figure 4.76. Go to the Attributes tab of the class, and enter

the name of the Attribute as “GO_INSTANCE”. Set Level to

Static Attribute, and then enter Private under Visibility.

Most important is to enter Type Ref To under Typing, and

the Associated Type should be the same class name,

which, in this case, is ZCL_RAR_MEMLOAD.

You next need to create another attribute by following

almost the same steps in Figure 4.76. This will be a global

table GT_ZRARC_FLOW_MGMT to store the data from

table ZRAR_FLOW. The associated type in this case will be

ZRAR_FLOW_TT, which is a table type for the table.

Figure 4.76 Singleton Class Attributes

Next, go to the Methods tab of the class, and create two

methods. The first one is the constructor, which will have

the SELECT statement to the dynamic flow table ZRAR_FLOW.

Enter the Method name as “CONSTRUCTOR”, enter

Instance Method under Level, enter Private under

Visibility, and enter the description as “constructor” or any

description you like.

Double-click on the method CONSTRUCTOR, and then you can

use the editor to enter the code. Enter the code for selecting

data from table ZRAR_FLOW and store it in the global internal

table, as shown in the sample code in Figure 4.77. Of

course, you could add your own additional logic and filters

to the code.

Figure 4.77 Example of a Constructor of Singleton Class

We now have to create the second method GET_INSTANCE.

Follow the same steps as for the previous method, but set

the Visibility to Public, and enter Static Method under

Level. Then double-click on the GET_INSTANCE method to

get into the editor and enter the code. Enter the code to

create an instance of the class, as shown in Figure 4.78. The

sample code is provided, but you could add any additional

logic to the code. This particular piece of code focuses on

the fact that this will be the only place where you can create

an object of the class.

Figure 4.78 Singleton Class Instance Method

Save and activate the class, and the class is ready for

instantiating and for use. The two methods in the class will

look like Figure 4.79.

Figure 4.79 Two Methods of the Sample Singleton Class

Now this singleton class will be called inside method ENRICH

for BAdI FARR_BADI_RAI2 to further explain the way this

singleton class will be called.

You create a global object called GO_OBJECT that will be of the

type of class ZCL_RAR_MEMLOAD. Note that ZCL_RAR_MEMLOAD is the

singleton class that you created. Then, in ENRICH, the

following happens, as shown in Figure 4.80:

1. During the mass transfer, the loop starts off with the

first header_id. During the processing of the first

header_id, method ENRICH from BAdI FARR_BADI_RAI2 will be

called. In the method, instantiation of the singleton class

will happen, and object GO_OBJECT will be created for

singleton class ZCL_RAR_MEMLOAD from method GET_INSTANCE

of the class.

2. The constructor will be called, and the SELECT statement

for table ZRAR_FLOW will be executed. Global table

GT_ZRARC_FLOW_MGMT will be populated with the data from

flow table ZRAR_FLOW.

3. Using the object GO_OBJECT and the global internal table

GT_ZRARC_FLOW_MGMT in the singleton class, which will have

the data from the flow table, you’ll populate the global

internal table in method ENRICH. The global internal table

in ENRICH is also called GT_RARC_FLOW_MGMT, which will also

be populated with the flow table data and will be

available in the BAdI FARR_BADI_RAI2 in the ENRICH method.

4. In the loop for the next header_id, object go_object is

checked if it’s bound; then it won’t be created again,

and the SELECT statement isn’t executed. However,

GT_ZRARC_FLOW_MGMT in ENRICH will be populated by using the

object reference, as you can see in Figure 4.80. This is a

way of reducing database accesses.

5. The singleton design pattern ensures that only one

instance of the class is created. The class contains its

own constructor, which will fetch the data from the

database only once, and the method to create the

instance. In that method, logic is placed that ensures the

creation of only one instance.

Figure 4.80 Singleton Class

This stays active during full processing, and you can access

the necessary data.

4.6.4 Dynamic Processing Flow Controlled

from Table

At times, users expect flexibility in customization. Even the

coding standards expect that there should not be any

hardcoding in the code because we always want it to be

flexible. It would be nice if we could make the code

configurable, like plug and play, but that would be inflexible

and, as a result, too difficult to implement. We’ve seen

cases where we have requirements for different company

codes within the same program. Here, we want to

demonstrate a technical approach or a programming

technique that will enable us to develop a dynamic program

which will help us control the calls to classes, methods, or

performs based on the input values or other variables. The

programs will control the processing blocks as plug-and-play

services. This is the level of flexibility that we want to

discuss.

Let’s consider a case where we have a requirement that a

set of activities are to be performed for each company code.

From Transaction SE24, let’s create class ZCLRAR_BADIRAI2,

which will have all the validations and enrichment

developed as methods. Then, we’ll create a method that will

drive the sequence of calls to different methods based on

the requirements for the company code. If the company

code = 1000, then the method to be called is PROCESS_1000;

inside PROCESS_1000, we’ll have calls to more methods specific

to company code 1000. Similarly, if the company code =

2000, then the method to be called is PROCESS_2000. Now the

decision to call method PROCESS_1000 or PROCESS_2000 in normal

programming will have the block of code shown in

Listing 4.1.

If company code = 1000

 Call method process_1000.

Elseif company code = 2000

 call method process_2000.

Elseif …….

Listing 4.1 Normal Programming Coding Block

What if instead of code with IF conditions, we could have a

table that will control the flow, where we don’t have to

hardcode the value of the company code in the code? This is

where we need the flow control table. The diagrammatic

representation explains the entire concept as shown in

Figure 4.81.

Figure 4.81 Dynamic Flow Determination at Runtime Based on Company

Code

We’ve tried to focus on the important components of this

design. We need the following:

Flow control table

Switch methods

Allow methods

Let’s explore each of the components in detail.

Flow Control Table

We’re familiar with the creation of a table using Transaction

SE11. In our example, we’ve designed the flow control table

ZRARC_FLOW_MGMT, as shown in Figure 4.82. The table has the

following key fields as listed in the Fields tab:

BUKRS

This will have the specific company code that we want the

customization for.

SRCDOC_COMP

This is the identifier of the sender system and helps us

form primary key combinations.

SRCDOC_TYPE

This will help us identify the RAI’s document type: order,

fulfillment, or invoice.

CONTRACT_CAT

This is for the contract details and will be specific to each

project.

FLOW

This has the values as Allow or Switch. Allow basically is

like an IF condition to proceed with the execution of the

method. Switch is like an option to choose which method

to execute.

CALLING_CLS_PRG

This the name of the method or the program that has the

code.

Figure 4.82 Flow Table

We need to create a table maintenance generator for table

ZRARC_FLOW_MGMT. Creation of a table maintenance generator

through Transaction SE11 is an essential ABAP skill that is

beyond the scope of this book.

Once the table maintenance generator is created, we need

to go to Transaction SM30 and enter the table name as

“ZRARC_FLOW_MGMT”. Then the flow table needs to be

populated with the details of the company code, source

document component, flow, and calling program, as shown

in Figure 4.83.

Figure 4.83 Flow Table Entries

In these table entries, we have company code, sender

component, source document type, and contract category

because our example is based on RAR. If it’s for any other

module, you can define your set of fields for determining the

flow.

Switch Method

As we previously mentioned, calling method PROCESS_1000 or

method PROCESS_2000 is dependent on the value of the

company code. In general, if the call to methods is

dependent on the input data or based on the input value,

those methods will be called the switch methods. The call to

the method switches to the corresponding method per what

is maintained in the flow table. This is called the switch

method.

If we look at our example, the call to method PROCESS_1000 or

PROCESS_2000 is based on the company code value, so those

methods are called switch methods in our case. The Flow

column in the table shown in Figure 4.83 shows the

SWITCH value accordingly. We’ll provide the sample code to

implement the logic next. This code can be used along with

the flow table to dynamically call the methods from a

particular class based on the input value. The sample is

from the ENRICH method in BAdI RAI2.

Additionally, if we add another company code 3000 in the

future, then we can enhance the design by adding a new

method PROCESS_3000 in class ZCLRAR_BAdIRAI2 and calling the

necessary methods inside it. Note that we won’t have to

make any changes to method ENRICH of BAdI RAI2. Instead,

we just add an entry to the flow table for company code

3000 with the Flow value as SWITCH, and the method to

be called is PROCESS_3000.

Let’s take a look at the sample code. In Figure 4.84, you can

see that there is a SELECT statement that will get the data

from the flow table matching the company code (bukrs) if

the value of company code is 1000, Flow is set to SWITCH, and

the calling program is IF_FARR_BADI_RAI2~ENRICH.

Figure 4.84 Dynamic Call of Methods

Then, the SELECT statement will get the entry from table

ZRARC_FLOW_MGMT, as shown in Figure 4.85.

Figure 4.85 Switch Method Entry

The remaining part of the code shown in Figure 4.86 is the

syntax for the dynamic call. The code has the class name

coming from table ZRARC_FLOW_MGMT and also the subsequent

method name. They are passed in dynamic format, making

the call generic. We just need to make sure that we follow

the syntax along with the parameter as shown.

Figure 4.86 Dynamic Call of Methods

Allow Methods

Allow methods have the value as ALLOW in the flow table.

Refer to Figure 4.81: when the company code equals 1000,

then method PROCESS_1000 will be called. Method PROCESS_1000

will in turn call methods VALIDATE_A, PROCESS_B, and ENRICH_C.

During some point in the project, if the third party sending

data will take care of validations, then we may have to

remove method VALIDATE_A in the code. Then, the developer

will be asked to comment the call to VALIDATE_A. If we could

control this through the table rather than having to ask the

developer, that would occur through the ALLOW method

concept of the flow table. To achieve this, we have to

remove the entry from the flow table for method VALIDATE_A

for company code 1000. Every method should have the

code shown in Listing 4.2 to check if the current method is

allowed to be executed.

Call Method PROCESS_1000

 Read entry from GT_ZRARC_FLOW_MGMT with company code = incoming company code

 FLOW = ’ALLOW’

 CALLING_CLS_PRG = ’ZCLRAR_BAdIRAI2’

 CLSNAME = ’ZCLRAR_BAdIRAI2’

 CPDNAME = ’VALIDATE_A’.

 Check sy-subrc eq 0.

 Logic of the methods

 EndMethod.

Listing 4.2 Sample Code for ALLOW Methods

In Listing 4.2, you can see that there is a READ statement

trying to fetch the entry for method VALIDATE_A from the flow

table for company code 1000. Because it has been deleted,

the sy-subrc that carries the result of the READ statement will

have a value not equal to 0. This means the READ statement

failed, as we’ve deleted the entry from the table for

VALIDATE_A. The check statement will fail, and the code for

VALIDATE_A won’t be executed. This way, we exclude the

execution of VALIDATE_A through the table.

We can control the calls to methods from the table this way

without having to change the code, which is what we meant

by “configuring the code.” The processing of methods will

be controlled like a plug-and-play device. This is a

demonstration of dynamic and flexible ways of achieving

the required functionality through code. For the purposes of

this book, we’ve focused on a specific RAR example, but this

type of coding isn’t just limited to RAR and can be extended

to any module.

4.7 Summary

As repeated many times in this book, the quality of results

produced by RAR directly and fully depends on the quality of

data submitted for processing. That is one of the reasons

why SAP built architecture with the ARL as a staging area for

both error handling and data transformation before it can

reach RAR.

In addition, the BRFplus tool stores all business rules needed

for both creation of RAR-relevant data and further

processing and posting processes.

Both structures that are part of the ARL and BRFplus are

made extensible and can be adapted to fit exact business

requirements by the users. Whether you need to include

some column in a process for POB determination or custom

fields from a sales order in your RAI structures, these

activities are achievable and can be done in a

straightforward way. This once came with a cost. Instead of

maintaining transparent tables, now users can learn how to

use new tools such as BRFplus.

The RAIs that are created in the system are based on the

data that is being sent from the sending system. But we

need to tailor the RAIs per our requirements by

prepopulating and validating. We explored the options that

are available and how best to use them to meet the

requirements. Ultimately, we want our contracts to be

created correctly.

Once inbound processing is configured, we’re ready to start

working on contract management setup. So, let’s move on

to the next chapter where we’re exploring contract

configuration, creation, modification, and more.

5 Contract Management

This chapter gives detailed, step-by-step instructions for how to set up a key

area of revenue accounting and reporting (RAR): contract management.

We’ll explain how certain settings can influence the overall process and what

needs to be considered before certain decisions are made. In addition, we’ll

discuss common problems with contract management.

In this chapter, we’ll explain how to configure contract management with

instructions that are applicable to both classic contract management (CCM) and

optimized contract management (OCM). We’ll start by providing the general

configuration steps for contracts and performance obligations (POBs). Then, we’ll

explain how to manage POBs and events, followed by walking through the

contract modification process. To close, we’ll discuss price allocation handling.

5.1 Setting Up Contract Management

After setting up inbound processing, the next step is setting up contract

management. Similar to inbound processing, you must decide whether to go with

OCM or CCM.

5.1.1 Optimized versus Classic Contract Management

OCM is the recommended solution because it represents the place where all

future developments will be made. In addition, it has been significantly reworked

and improved when compared to CCM. It has a set of features that weren’t

available in CCM, such as the following:

Day-based contract modifications

Freeze periods for time-based POBs

Early termination of contracts

Improved SAP Fiori apps and reporting based on core data services (CDS)

Certain limitations have been covered since SAP S/4HANA release 2021:

Intercompany billing as fulfillment event

Drop shipment as fulfillment event

Manual price allocation with spreading

Suspend revenue

Important Note

Results analysis still only works with CCM as of SAP S/4HANA release 2022.

When we say improved SAP Fiori apps, besides improvements that are visible as

in better user experience apps, two very important apps were added that can

make everyday work easier for end users: the Revenue Explanation app and

Change History Display app. These two are particularly important because they

help in an area that can be very time-consuming: determining the root cause of

changes in revenue allocation for POBs.

To sum up, determining the way to set up contract management is one of the

most important decisions for new RAR users on SAP S/4HANA. The option chosen

depends mainly on the type of business scenario that needs to be covered. In

some cases, users are bound to the classic version (e.g., in the professional

services segment, where revenue needs to be calculated as a percentage of

completion [POC]). In other cases, OCM offers many features that are very useful

in most cases and can lower costs of potential developments (e.g., new event

types).

When you start the configuration of revenue accounting by running Transaction

FARR_IMG, if you’re running a system on SAP S/4HANA after version 1709, you’ll

see the screen shown in Figure 5.1.

Figure 5.1 Configuration of Contract Management

If opting for CCM, select the Revenue Accounting Contracts (Classic) node;

otherwise, you’ll use OCM. Only one step is needed when determining whether to

go with OCM or CCM. In the node for Revenue Accounting Contracts, there is

one node extra named Set Contract Management for Contract Categories.

Once you define the contract categories (Section 5.1.8), you’ll go to that node and

select what type of contract management will be used. As shown in Figure 5.2,

you can select the checkboxes under Contract With CM Instead of CM Classic

to indicate contract categories that are using OCM. Leave these checkboxes

unselected if you want to use CCM.

Figure 5.2 Selection of Contract Management Type

Technically, when you’re using OCM, you’ll see that contracts created in table

FARR_D_CONTRACT have the RAR version code field populated with X, as shown in

Figure 5.3.

Figure 5.3 Table FARR_D_CONTRACT with Values for Optimized Contract Management

Table FARR_D_MAPPING will also have the version indicated in the same field. The

system isn’t stopping users from having multiple categories with different

versions of contract management; this can be especially useful when it comes to

migration, which gives a clear picture on which contracts are created under which

approach (classic or optimized).

Note

Both options have the same nodes, so there is no difference in configuration

steps that we’ll discuss in this chapter. However, we’ll use OCM in our example

because that’s the latest functionality from SAP.

OCM supports only the actual exchange rate method. The reason for this is that

the focus for further product development has been shifted to the actual method

due to increasing demand from customers.

You might wonder if you need to change the setup in the accounting principle. The

answer is no. The first reason is that you can have contracts in both CCM and

OCM active at the same time. This situation isn’t so common with new, greenfield

implementations, but it can occur with migrated environments. Second, the

contract category setup is separate with no exchange rate method setting. So, if

you select OCM as the preferred method for contract management, the actual

exchange rate method will be used, irrespective of the accounting principle

settings.

5.1.2 Accounting Principles

This brings us to the first step in setting up contracts after selecting OCM in

contract categories: setting up accounting principles. In this section, the following

entries need to be made before contracts are created. Before we start explaining

different settings, note that the settings are the same irrespective of whether

we’re talking about OCM or CCM. The only difference is that OCM is working only

with actual exchange rate settings, so if you use OCM and make an entry for fixed

rate in the accounting principle definition, that rate will be ignored, and the actual

rate will be used instead.

To configure accounting principles, navigate to Transaction FARR_IMG, and follow

menu path Revenue Accounting Contracts • Configure Accounting

Principle-Specific Settings. The first setting you need to make is how many

accounting principles you need. RAR supports reporting according to different

accounting principles (e.g., International Financial Reporting Standards [IFRS] and

local Generally Accepted Accounting Principles [GAAP]). In this case, if you need

two reporting principles, you’ll need to make two entries in this table: IFRS and

LG (i.e., local GAAP). As a result, RAR will create two RAR contracts each time a

document is saved from the source application.

In this case, there are parallel reporting requirements, so the setting looks like

Figure 5.4.

Figure 5.4 Setup of Parallel Accounting Principles

You see that for one accounting principle, 2 Contract Liability/Contract Asset

is used as the presentation, and, for another, 1 Unbilled Receivable/Deferred

Revenue is used. This kind of setup can be used in cases where revenue split

(allocation) is needed for global reporting, but, for local reporting, the entity only

requires presentation of deferred revenue. This kind of setup is common in

multicountry scenarios.

As mentioned before, the impact of such a setting is that two RAR contracts are

created each time a document from the source system is saved. This will be

clearly visible in table FARR_D_MAPPING where you’ll see two RAR contracts assigned

for each source document, 30030824 and 300308099 (see Figure 5.5).

Figure 5.5 Multiple Contracts Created for One Sales Order

Parallel Accounting Principles

If the entity needs to meet parallel reporting requirements, setting up additional

accounting principles isn’t the only activity that needs to be done. You can split

the setup into two main areas: setup needed in RAR and setup needed in

finance.

Before accounting principles can be used, they need to be defined in finance.

You’ll find the setting by following menu path Parallel Accounting •

Accounting Principles and Ledgers • Defined Accounting Principle. Once

the accounting principle is created, it can be used in RAR. Before setting it up,

it’s important to repeat that for each document, two contracts will be created,

which means in all RAR-related tables, there will be two entries instead of one.

Besides the impact on data space required by such a setup (only in high-volume

environments), developments that potentially will use data from RAR tables are

also impacted in that it’s necessary to specify whether the source of information

for the contract created is for IFRS or local GAAP.

In addition to this setting, there is an impact on settings needed for ledger

groups so financial documents can be posted in the general ledger. Once an

accounting principle is defined, it’s necessary that one is assigned to the ledger

group. Before it’s assigned to the ledger group, you need to make sure that

needed ledgers will be assigned to the ledger group. In other words, you define

the accounting principle and assign it to ledger groups, which need to contain

all ledgers to which posting needs to be made.

The last step is maintenance of BRFplus tables. In both account and POB

determination applications, you need to set up decision tables. These tables

have accounting principle as one of the input parameters. This setup is done

once; however, keep in mind that any future maintenance of the new account

assignment objects or new POB types need to be done for both accounting

principles.

To recap, parallel reporting is a standard feature of RAR that enables an entity

to report at the same time both for global and local purposes. Before you opt for

this feature, keep in mind that additional effort will be needed: potential impact

on developments, increased volume (because RAR will create two contracts for

each operational document entered), and any ongoing maintenance that will

need to include both accounting principles.

5.1.3 Presentation Methods

The next setting is one of the most important things that needs to be done when

setting up RAR: choosing the presentation level. As you saw in Figure 5.4, under

the Present. column, the system has two options available: 1 Unbilled

Receivable/Deferred Revenue, which we’ll refer to as UR/DR, and 2 Contract

Liability/Contract Asset, which we’ll refer to as CA/CL. To explain this, we need

to look at the definition of these terms by IFRS 15. According to the definition in

IFRS 15, a contract asset becomes receivable at the moment when the entity’s

right to receive consideration becomes unconditional. So, the question is, when

does the right to receive consideration become unconditional? The corresponding

term in the old revenue recognition process, unbilled receivable, didn’t having

such a limitation: unbilled receivable is recognized revenue for which the entity

still didn’t send an invoice. Here, you can see that the main difference is the

statement about unconditionality from the IFRS standard. In SAP, this difference is

implemented in presentation methods: CA/CL will treat receivable as becoming

unconditional at the moment of the invoice becomes due, whereas UR/DR will

look only at the invoice posting date as relevant.

We’ll discuss the details around both presentation methods in the following

sections.

Contract Assets/Contract Liabilities

Let’s consider an example of the CA/CL presentation method with the following

details:

Contract: Selling goods where trigger for fulfillment is issuing of invoice

POB 1: Event based; total allocated revenue of $1,200

Invoice: At month end; due date of 30 days net

At the end of the month, because this is a time-based POB, you’ll need to

recognize the appropriate revenue amount, which is allocated revenue/12 = $100.

The posting will look like Figure 5.6.

RAR uses temporary accounts to balance posting of revenue to be recognized.

The meaning of this account is similar to the meaning of the bank clearing or

goods receipt/goods issue accounts used commonly in other SAP-related

processes. The balance of this account can be a debit (if revenue is recognized,

but invoice is issued that isn’t due) and, in that case, should be reported under

assets. Or, the balance on the account can be a credit (if an invoice is issued that

is still not due, but revenue isn’t recognized) and, in that case, should be reported

under liabilities.

Figure 5.6 Recognized Revenue with the CA/CL Presentation Method

Once the invoice is due, only at that moment is the contract liability recorded, as

shown in Figure 5.7.

Figure 5.7 Posting of Contract Liability in the CA/CL Presentation Method

So once the invoice is due, the receivable adjustment account will be cleared

against the contract liability. By using a reference to the due date in the invoice,

consideration becomes unconditional and can be represented as a contract

liability, thus it can be properly reported.

Unbilled Receivable/Deferred Revenue

When using UR/DR as the presentation method, deferred revenue simply

represents a difference between the revenue recognized amount and what was

billed to the customer. In this specific case, there is no timing difference between

the moment when you recognized revenue (month end) and when you issued the

invoice (also month end), so there is no deferred revenue posting happening at

all. The posting is equal to the posting coming from billing the customer.

To make the difference clear between UR/DR and CA/CL, you need to repeat the

key term—unconditionality—once more. Once an invoice satisfies all conditions to

be treated as unconditional, it can be presented in the balance sheet as a

contract asset or contract liability. In RAR, this unconditionality is determined by

the due date value being filled in on an invoice.

Note

Neither Accounting Standards Codification (ASC) 606 or IFRS 15 mandates the

usage of the terms contract asset and contract liability. Entities may use

alternative descriptions if they provide sufficient information to distinguish

those contracts where rights to receive consideration from the customer are

conditional (contract assets) from those where the right to receive the

consideration is unconditional (receivables), and whether an entity receives

consideration from its customer or has the unconditional right to receive

consideration in advance of performance (contract liability). However, a good

practice is to adapt to new terms to avoid any confusion when comparing to the

old reporting standard (this becomes especially important if an entity is using

parallel reporting where CA/CL is leading and UR/DR is done for local reporting).

However, the situation which often happens in projects is that the entity can’t (or

doesn’t need) to use the due date as a trigger for when a receivable becomes

unconditional. An example of this situation is if a client has some guarantees that

would make invoice payment certain even if the due date isn’t reached. Or,

simply using specific payment terms would make the due date field too confusing

to be used as a criterion for recognizing contract assets. Even in that case, using

UR/DR as the presentation method might not be suitable for two reasons:

There are differences in calculation of UR/DR comparing to CA/CL (we’ll cover

these later in the text).

If a customer has parallel reporting requirements and is using UR/DR for local

reporting, the same method can’t be assigned in two accounting principles due

to system limitations.

In those cases, the best solution is to implement an enhancement so that the due

date in the RAI is replaced with the invoice posting date, for example. For this

enhancement, the best business add-ins (BAdIs) to use are FARR_BADI_RAI2 (if you’re

not using the Raw status) or FARR_BADI_RAI0 (if you're using Raw status). Run

Transaction SE18, and select the proper BAdI in the BAdI Name field to be

implemented (FARR_BADI_RAI2, in this case), as shown in Figure 5.8.

Before you create an implementation, you first must create an implementation

class that contains interface IF_FARR_BADI_RAI2. The most important method from

this BAdI is method ENRICH, which is used to change data between the sender

component and Adapter Reuse Layer (ARL). Here, you can introduce various

checks or changes of data before they are processed in the ARL. However, there is

a list of fields that can’t be changed by this method, which can be found in

structures FARR_S_RAI2_MI_FIX and FARR_S_RAI2_CO_FIX.

Figure 5.8 BAdI to Be Implemented

So, the first thing to do is create an implementation class and, within it, the

method that you’re going to use, as shown in Figure 5.9.

Figure 5.9 Implementing Class with Methods to Be Used

Now, you need to write the logic in method ENRICH. The first thing to do is limit the

logic to invoice items that will be created. So, for integration with sales and

distribution, limit it to revenue accounting item (RAI) class SD03. The second part

of the logic is to change the due date to be equal to the posting date, which is

provided by the invoice, thereby bypassing the standard behavior of the CA/CL

presentation method. Once this is done, the code should look like Listing 5.1.

CONSTANTS : lc_raic TYPE FARR_RAIC VALUE 'SD03'.

 DATA: ltr_header_id TYPE RANGE OF vbeln,

 lv_vbeln TYPE vbeln,

 "Taking data to temporary internal table

 DATA(lt_rai2_tmp) = ct_rai2_mi.

 CLEAR lv_vbeln.

 LOOP AT lt_rai2_tmp ASSIGNING FIELD-SYMBOL(<ls_rai2_mi>).

 IF <ls_rai2_mi>-raic = lc_raic.

 <ls_rai2_mi>-due_date = <ls_rai2_mi>-posting_date.

 ENDIF.

 IF sy-subrc IS INITIAL.

 <ls_rai2_mi>-kunnr = <ls_vbak>-kunnr.

 ENDIF.

 ENDLOOP.

 ct_rai2_mi = CORRESPONDING #(lt_rai2_tmp MAPPING kunnr = kunnr

 due_date = due_date) .

 UNASSIGN <ls_rai2_mi>.

 CLEAR: lv_vbeln.

 FREE : lt_rai2_tmp.

ENDMETHOD.

Listing 5.1 Code for Bypassing the Due Date

Once you activate this code by clicking the Activate button, you’ll see the screen

shown in Figure 5.10, which displays that RAIs for invoice items have a due date

equal to the posting date, enabling even the CA/CL presentation method to work

based on some other criterion and not based on the due date.

Figure 5.10 Due Date Updated with Posting Date

Note

The example given is related to customers with classic inbound processing

implemented. If you’re using optimized inbound processing (OIP), the logic is

different: data in RAR is created straight from source documents, bypassing the

ARL. As mentioned, in OIP, there is no creation of application programming

interfaces (APIs), tables, and classes depending on the source selected: all of

these objects are predefined, meaning that a fixed database model is used,

rather than a dynamically created one. Structures for sales and distribution,

contract accounting, SAP Customer Relationship Management (SAP CRM), and

third-party integration are all predefined.

Calculations

It’s important to know how CA/CL is calculated, as well as the differences between

UR/DR and CA/CL calculation. First, we need to note the formulas used to

calculate CA/CL and UR/DR:

CA/CL

Contract liability = MAX {(Payment due – Fulfilled revenue), 0}

Contract asset = MAX {(Fulfilled revenue – Receivable), 0}

Receivable = MAX {Billable amount, Invoice due amount}

Billable amount = Original amount × Fulfillment revenue ÷ Total allocated

revenue

UR/DR

Unbilled revenue per performance obligation = MAX {(Recognized revenue –

Invoiced amount), 0}

Deferred revenue per performance obligation = MAX {(Invoiced amount –

Recognized revenue), 0}

Let’s take the following example, starting with a CA/CL calculation. For simplicity,

we’ll exclude allocation, and there will be only one event-based POB:

Revenue to be recognized: 48,608.13

Invoiced to customer: 80,424.21, where due date = invoice date

According to the formula, you first need to calculate the billable amount:

Billable amount = 80,424.21 × 48,608.13 / ÷ 48,608.13 = 80,424.21

Receivable = MAX {80,424.21, 80,424.21} = 80,424.21

Contract asset = MAX {(48,608.13 – 80,424.21), 0} = 0

Contract liability = MAX {(80,424.21 – 48,608.13), 0} = 31,816.08

You can see that our billable amount is equal to the amount we’re invoicing, which

again leads to calculating the same amount as receivable. When we put that

information in the formula for contract asset, we get 0 because when we deduct

receivable from fulfilled revenue, we get a value that is below 0, and the formula

will return 0 in that case. Because the same amount is invoiced and due, the

formula for contract liability will give us the difference between invoiced and

recognized revenue as the contract liability.

To see how the contract liability is calculated, go to the table overview by running

Transaction SE16/SE16n/SE11, and enter table “FARR_D_POSTING”. You’ll arrive at

the screen shown in Figure 5.11.

Figure 5.11 Contract Liability Calculation

Now, if we use same data to calculate UR/DR, we get the following results:

Unbilled revenue per POB = MAX {(48,608.13 – 80,424.21), 0} = 0

Deferred revenue per POB = MAX {(80,424.21 – 48,608.21), 0} = 31,816.08

Unbilled receivable returns 0, as expected: we billed more than the revenue we’re

recognizing, so there is no unbilled part. The balance in this case is 31,816.08 as

deferred revenue.

From this example, you could conclude that CA/CL and UR/DR would give the

same results if you set the invoice date to be equal to the due date. However,

that conclusion would be wrong. To analyze it further, we would need to look at

additional example:

Revenue to be recognized: 48,608.13

Billing amount: 20,106.05

For simplicity, we’ll again consider billing amount = due amount, a single POB

contract, and no allocation. Let’s take the preceding figures and put them into a

UR/DR calculation:

Unbilled revenue per POB = MAX {(48.608.13 – 20.106.05), 0} = 28.508.02

Deferred revenue per POB = MAX {(20.106.05 – 48.608.13), 0} = 0

These results are as expected: Because we invoiced less than we’re recognizing

as revenue, we’ll need to report that amount as an asset – which in this case is

unbilled receivable – and this amount can be reported as such. Again, for the

same reasons, we don’t have any revenue to defer, which is exactly what our

formula is giving us as a result.

Let’s see what will be result of running same example with CA/CL method:

Billable amount = 48,608.13 × 48,608.13/48,608.13 = 48,608.13

Receivable = Max {48,608.13, 20,106.05} = 48,608.13

Contract asset = Max {(48,608.13 – 48,608.13), 0} = 0

Contract liability = Max {(20,106.05 – 48,608.13), 0} = 0

This is exactly the same as what you can see as a posting in RAR, as shown in

Figure 5.12.

Figure 5.12 Contract Asset Calculation

The billable amount is the amount that that can be billed. Now, there might be a

difference between billed amount and billable amount. If, for example, by billing

plan, you can bill $1,000, but you actually bill only $800, the first one is

considered the billable amount and the latter the billed amount.

The billable amount is equal to the revenue that can be recognized, which is why

both receivable and billable amounts are the same. However, when you put them

into the formula for contract assets, you see that amount becomes zero. The

reason for this is that according to the concept of conservatism (all probable

losses are recorded when they are discovered, while gains can only be registered

when they are fully realized), you’re still not registering that receivable as a

contract asset.

CA/CL versus UR/DR

This example was brought up because organizations need to be very clear in

what they expect from the calculation engine regarding both methods of

revenue recognition, as well as how balance sheet postings will be made. In our

example, we wanted to illustrate how (based on exact cases) amounts given by

both UR/DR and CA/CL can be the same, but in another case, using a very

similar business scenario, they are dramatically different.

Therefore, we strongly recommend that business scenarios are created and

verified with an auditor before the implementation of RAR. By doing so, you can

avoid making expensive and lengthy changes on an already set system.

5.1.4 Calculation Methods for Local Currency

The next step is to choose a calculation method for local currency. In the

accounting principle settings, to the right of the Present. column, you can find

the LC Calc. Methods column. The system supports two main approaches

regarding contracts in foreign currency, which need to be translated:

Fixed exchange rate method

The revenue in local currencies is recognized at a fixed rate when the first event

comes for the whole contract.

Actual exchange rate method

The revenue accounting contract has a deferred revenue or contract liability

balance, and revenue is recognized at the average rate of historical liability; if

the revenue contract has no liability balance, revenue will be recognized at the

spot rate when you execute the Transfer Revenue program (program A).

Note that if you select OCM, the actual exchange rate method for calculation will

be applied irrespective of the selection made.

When revenue accounting creates a contract, it specifies a company code

currency or transaction currency, which is typically a document currency of the

operational document such as a sales order. The transaction currency is used to

allocate the transaction price to POBs, recognize revenues, and post revenues to

the general ledger.

In a foreign currency contract, the contract currency is different from the company

code currency. When transferring revenue postings to the general ledger, revenue

accounting supports multiple currencies that are predefined for the company code

as local currencies. For each company code, you can define a maximum of three

parallel currencies:

The first local currency, which is also the company code currency, is defined in

the company code master data.

The second and third local currencies are defined in the additional local

currencies data of the company code using Transaction OB22.

By default, revenue accounting calculates the amount in transaction currency and

the first local currency (company code currency) and generates financial

accounting documents accordingly. However, you need to decide whether the

second and third local currencies will be calculated in revenue accounting through

the following steps:

1. Define the second and third local currencies in Transaction OB22.

2. Exclude additional currencies by following menu path Revenue Accounting

• Revenue Accounting Contracts • Exclude Local Currency from

Calculation. If you’re using multiple currencies in the system (e.g., multiple

local currencies or group currencies), those will be excluded from foreign

exchange (FX) calculations.

As a requirement to use contracts in foreign currency, you need to make two

settings. First is setting which condition type will be used for FX differences in

table FARR_D_POSTING. Follow menu path Revenue Accounting • Revenue

Accounting Contracts • Condition Types • Define Reserved Condition

Types. In Figure 5.13, you can see different cases that need to have reserved

condition types assigned for allocation difference, right of return (ROR), exchange

rate difference, and—in the case of OCM—early termination. The prerequisite for

this activity is the creation of condition types, and, in this transaction, you can

assign them per your requirements.

Figure 5.13 Reserved Condition Types

The second setting that needs to be done is account assignment. For FX rate

differences account assignment, there is no separate setting in RAR nor BRFplus

decision tables; rather, RAR uses standard settings from SAP S/4HANA. So, you’d

need to go to make necessary settings together with other general ledger

accounts that are relevant for calculation of FX differences, which is part of

standard SAP S/4HANA and beyond the scope of this book.

Once the contract has exchange rate differences, you’ll see them on the contract

level as a separate item in table FARR_D_POSTING with posting category ED, as

shown in Figure 5.14.

Figure 5.14 Contract with FX Differences

Now, when it comes to the actual exchange rate method, it’s a good idea to look

at the formula to understand fully the results that SAP will give.

Revenue accounting handles the historical rate as a weighted average rate. It’s

calculated by the following formula:

Weighted average rate = Sum of historical amounts in local currency ÷ Sum of

historical amounts in transaction currency

Now let’s take an example, as shown in Table 5.1.

Date FX Rate Transaction Currency Amount Local Currency Amount

01.01 1.15 1,000.00 EUR 1,150.00 USD

01.02 1.25 2,000.00 EUR 2,500.00 USD

01.03 1.30 3,000.00 EUR 3,900.00 USD

Table 5.1 Example of Different Exchange Rates

Applying the preceding formula, you get the following:

Weighted average rate = (1,150.00 + 2,500.00 + 3,900.00) ÷ (1,000.00 +

2,000.00 + 3,000.00) = 7,550.00 ÷ 6,000.00 = 1.2583

The Transfer Revenue program calculates a foreign currency into local currencies

as follows:

If the cumulative invoiced amount or invoice due amount exceeds recognized

revenue up to the execution of this program, then the revenue will be

recognized by using the average exchange rate of the exceeding part of the

cumulative invoice (invoice due amount).

If the cumulative recognized revenue exceeds the cumulative invoice (invoice

due amount) up to the execution of this program, then the exceeding part of

revenue will be recognized using the exchange rate of the current date in this

period when the program is executed. If the period you specify is in the past,

then the last day of the period is used to determine the exchange rate.

The Transfer Revenue program is covered in detail in Chapter 6, Section 6.2.1.

5.1.5 Contract Modifications

The next setting is related to contract modifications. According to IFRS 15

Revenue from Contracts with Customers, a contract modification is a change in

the scope or price (or both) of a contract that is approved by the parties to the

contract. When the system performs contract modification, the modification only

applies to partially fulfilled POBs. We’ll cover modification scenarios in detail in

Section 5.4. If a customer is expecting to get contracts that will be modified, it’s

important to make the appropriate setting in the accounting principle to enable

them by selecting the Enable Contract Modification checkbox.

5.1.6 Cost Recognition

The Cost Recognition checkbox is a setting that enables cost recognition in

addition to revenue recognition. Once a contract quantity has been executed,

canceled, or settled, expenses or revenue related to the quantity must be

recognized in the financial accounts of the firm. According to the matching

principle of revenue accounting, costs of goods sold (COGS) must be posted at the

same time as the corresponding revenue. We’ll talk about cost recognition when

we cover POB settings and corresponding event types in Section 5.3.

5.1.7 Contract Assets and Liabilities

The last two settings in the accounting principle are reserved for additional setup

related to calculation of CA/CL (refer to Section 5.1.3). The first setting is related

to calculation of contract assets on the POB or contract level, and the second

setting is related to how the calculated amount will be netted, as shown in

Figure 5.15.

Figure 5.15 CA/CL on the Performance Obligations Level

When the system uses calculation of CA/CL on the POB level, the formula used is

slightly different:

Contract liability = Max {(Payment due – Fulfilled revenue), 0}

Contract asset = Max {(Fulfilled revenue – Receivable), 0}

Receivable = Max {Billable amount, Invoice due amount}

Billable amount = Original amount × Fulfillment revenue ÷ Total allocated

revenue

For our example, as shown in Table 5.2, we’ll use a more complicated case with

multiple POBs and allocation.

POB Type POBs Transactional

Price

SSP Allocated Quantity Per

Piece

Reagent 118940 632.24 166.54 33.1 2 16.66

Reagent 118941 2,179.98 856.47 171.31 3 57.10

Reagent 118942 295.60 75.64 15.13 4 3.78

Reagent 118943 369.50 95.00 19.00 5 3.80

Reagent 118944 1,798.50 654.54 130.92 6 21.82

Instrument 118945 0 24,528.30 4,906.15 1 204.42

Total 5,275.82 26,376.49 5,275.82

Table 5.2 Example for CA/CL on POB Level Calculation

We have five different reagents and one instrument (see Chapter 1 for more

information on these terms). Based on the quantity of reagents, you also have an

amount calculated of allocated revenue per piece. The instrument is leased, and

the duration is 24 months (meaning the instrument is a time-based POB).

In this case, we’re billing just reagents, and billing is done as follows:

118940 1 pc: 316.12

118941 2 pcs: 1,453.32

118944 3 pcs: 899.25

To evaluate how CA/CL is calculated, you need to go through every step of the

process:

1. Processing of fulfillment RAIs

This step doesn’t cause any change in table FARR_D_POSTING, so no additional

explanation is needed. These fulfilments are later the source for revenue that

will be recognized.

2. Processing of invoice RAIs

We’re getting reversal of invoicing (IC posting category) and as offset account

results analysis posting category, as shown in Figure 5.16. Both postings are

done with condition type (ZP01), which was used as a condition type in sales

order.

After processing invoice RAIs, all amounts which came from billing are

summed up to zero (invoice revenue and accounts receivable is zero).

Figure 5.16 Posting after Processing of Invoice RAIs

3. Running a revenue transfer (program A)

The Revenue Transfer program calculates revenue that should be recognized

(based on fulfillment events, either goods issue or time) and posts it against

the results analysis account. The results analysis account serves as a clearing

account for recognized revenue. It’s posted on the condition type level.

4. Calculate CA/CL on the POB level

The calculation of CA/CL is done on the POB level through several steps, as

shown in Table 5.3:

Calculate billable amount for each POB

Calculate invoiced due amount (in our case = invoiced amount)

Calculate the contract liability with the following formula:

Contract liability = MAX ((Invoiced amount – Fulfilled revenue), 0)

Calculate the contract asset with the following formula:

Contract asset = MAX ((Fulfilled revenue – Billable), 0)

POBs Billable

Amount

Recognized

Revenue

Due CL CA

118940 316.20 16.66 316.12 299.46 0.00

118941 1,453.32 114.21 1,453.32 1,339.11 0.00

118942 0.00 0.00 0 0.00 0.00

118943 0.00 0.00 0 0.00 0.00

118944 899.25 65.46 899.25 833.79 0.00

118945 0.00 408.85 0 0.00 408.85

Total 2,668.77 605.17 2,668.69 2,472.36 408.85

Table 5.3 Results of Calculating CA/CL on the POB Level

Here you can see that we’re getting results that are going in different

directions: POBs that were billed are in the contract liability, whereas the POB

that isn’t invoiced is in the contract asset. This makes perfect sense because

that POB (instrument) has revenue allocation but isn’t invoiced. So, in this

step, in the moment before the calculation is finished, you see that some

POBs are in CL status, and one is in CA status.

5. CL netting

According to IFRS 15, contracts can have either a contract asset or contract

liability. Therefore, it makes perfect sense to net the amount on the contract

level but have only contract liability or contract asset. Again, that is done in

several steps:

Calculate total CA/CL on the contract level.

Spread it to POBs according to their standalone selling price (SSP) ratio,

which is calculated automatically by comparing the total SSP with the SSP of

each POB.

In this case, the balance is on the CL side, with 2,472.36 – 408.85 = 2,063.51.

Spreading will be done as shown in Table 5.4.

POBs SSP SSP Ratio Total CL CL on the POB Level

118940 166.54 0.63 13.03

118941 856.47 3.25 67.00

118942 75.64 0.29 5.92

118943 95.00 0.36 7.43

118944 654.54 2.48 51.21

118945 24,528.30 92.99 1,918.92

Total 26,376.49 100.00 2,063.51

Table 5.4 Calculation of CL on the POB Level

Because the total result on the contract level was contract liability, portions of it

were being assigned to all the POBs. So, the calculation of CA/CL on the POB level

can lead sometimes to unexpected results: here you see that the POB, which you

would expect to have contract asset (revenue without billing), actually has CA

calculated in one of the steps and therefore ends with its own portion of contract

liability.

CA/CL on the Contract Level versus the POB Level

We wanted to illustrate in this section the implications if you choose the POB

level over calculation on the contract level. Calculation on the contract level is

much easier because it’s more predictable in the sense of verifying results

against some external engine or calculation tool. However, there are some valid

reasons that still might push an organization in the direction of calculating

CA/CL on the POB level. There might be a requirement to also present the

balance sheet side on the POB level type (disaggregation of CA/CL in the same

way as in revenue) or provide some additional account assignments on the

balance sheet too (e.g., a work breakdown structure [WBS] element that

wouldn’t be available otherwise).

Taking this into consideration, an organization should be clear why it’s opting for

presentation on the POB level before it makes such a choice so they’ll know

what to expect as the result of the run and avoid future expenses related to

changing the presentation level.

After completing the setup of the presentation level of CA/CL, you’re done with

the accounting principle settings.

5.1.8 Assign Company Codes, Number Ranges, and Contract

Categories

Next, you need to assign company codes to the accounting principle. You can

access the Supported Company Codes per Accounting Principle activity

below the creation of accounting principle activity, as shown in Figure 5.17.

Depending on reporting requirements, the company code (CoCd) can be assigned

to one or two accounting principles (if parallel reporting is needed). To use the

company code productively, Status has to be set to PO Productive. Other

statuses are used for migration purposes. To set the status to be PO, it has to first

be saved as migration. Statuses can be set back (from productive to migration),

which can help with deletion of faulty data.

Figure 5.17 Assignment of Company Codes

It’s also important is to set the number ranges for the contracts, POBs, and run

IDs. This is done in Revenue Accounting • Revenue Accounting Contracts •

Number Ranges. In theory, you can choose between external and internal

numbering. External numbering is when a number needs to be provided to the

system manually or from an external system, and internal numbering is when a

number gets determined and assigned by the system itself (internally). While

external numbering might be appealing, especially in situations of integration

with external systems, this way of numbering brings a lot of challenges and, in

some cases, can’t be used.

When starting this setup, as shown in Figure 5.18, select the Change Intervals

button (with the pencil), and then create the number range (two-digit identifier).

The from–to number range is then assigned.

Figure 5.18 Setup of Numbering Objects

The system uses three different number range objects that need to be

maintained. Once you enter the maintenance screen shown in Figure 5.19 by

selecting the Maintain option, you need to enter numbers from and to (From

No. and To Number), which is very similar to setting the numbering in any other

area of finance. In our example, you can see that values are maintained as

internal and see the current value for the first number range.

Figure 5.19 Number Ranges for Contracts and POBs

Run IDs are reference numbers that the system uses to track background jobs

created for revenue postings. Numbering of run IDs is used for creating new

revenue posting jobs (run IDs). You can define only one number range for run IDs

and must use an ID of 01. The system doesn’t use number ranges other than 01.

Run IDs are set in the context of individual company codes, and each run ID is

unique in the scope of a company code.

When creating a run ID, if the system doesn’t find number range 01, it

automatically creates a number range 01 that spans from 00000001 to

99999999. If you’ve defined other number ranges that overlap the system default

range, the system can’t create the default number range, and no new POBs can

be created.

Once you set up the number ranges, you need to set up the contract categories.

You can define contract categories in the Contr. Cat field and assign number

ranges to them in the No. Range field (see Figure 5.20). Each contract category

is associated with a number range that is used for creating new contracts of that

category.

Figure 5.20 Contract Categories

Once the contract category is set, you need to assign it to the company code (as

described in Section 5.1.1) and decide whether to use CCM or OCM.

5.1.9 Condition Types

To access data properly, you need to define reserved condition types for RAR only.

To do so, navigate to Revenue Accounting • Revenue Accounting Contracts

• Condition Types.

Important Note

Condition type definition comes from the sales and distribution system, but

settings there play no role in RAR.

Once you access this activity, the following groups are available and can be

maintained:

Allocation effect

This condition type carries differentials that result from price allocation. When

allocating transaction prices for a contract, the system aggregates all pricing

conditions and then allocates the total amount among the POBs in the contract.

The system then represents the allocated prices on a differential basis. Without

changing the original pricing conditions, the system adds a special condition

type that carries the differential resulting from the allocation. For example, if a

POB with an original price of EUR 15 is allocated EUR 20, the system represents

the allocation result as an original price of EUR 15 and an allocation effect of

EUR 5.

ROR revenue adjustment

This condition type carries the amount of revenue that must be deferred to be

recognized due to a ROR held by the customer.

ROR cost adjustment

This condition type carries the amount of cost that must be deferred to be

recognized due to a ROR held by the customer.

Early termination expense (only in case of OCM)

This condition type carries the balance amount of all related assets and

liabilities such as receivables, CA/CL, or UR/DR if a contract was terminated

early.

5.1.10 Posting Periods

Once all setup is completed, you can make periods open for processing. The

starting period must be an open posting period as defined in the Open and

Close Posting Periods setting in Customizing for financial accounting. However,

depending on the message control Customizing, you can control whether violation

of this requirement is disallowed or only triggers a warning message. The revenue

accounting period that you try to open or close can’t be earlier than the latest

transition period (the period that includes the legacy data transfer date). The

reconciliation keys for the current and previous revenue accounting periods must

be closed, and all contract liabilities and assets must be calculated and posted.

Accountants can open or close an accounting period for revenue accounting.

Alternatively, when accountants perform revenue postings, they can choose to

close the revenue accounting period for which the postings are performed.

There isn’t an option for setting the status to Closed in Customizing. If you want

to set a period to Closed, you need to set the status to Open from the next

period. For example, if you want to set period 4 to Closed for fiscal year 2023,

you need to open the period from period 5.2023.

To access this setting (see Figure 5.21), you can search for the maintenance view

of table FARR_C_CLOSE; run Transaction FARR_IMG and follow menu path Revenue

Accounting Contracts • Open and Close Revenue Accounting Periods, or

run Transaction FARR_PERIOD_IN_CLOSING.

Figure 5.21 Periods Management in RAR

The following statuses are available:

Open

All transactions can generate reconciliation keys in the current period. This

refers to transfer revenue, contract liability calculation, and reconciliation keys

coming from new transactions.

In Closing

New transactions will be posted in the new period, but running ABC programs

still can be done for the “old” period.

Closed

Period is closed for any changes, and all changes must be done in the new

period.

5.2 Setting Up Performance

Obligations

Let’s start from the beginning: What is a POB? For a definition,

you need to look at ASC 606 or IFRS 15. As defined in IFRS 15,

paragraph 22:

“A performance obligation is a promise to provide a distinct

good or service or a series of distinct goods or services as

defined by the revenue standard. At contract inception, an

entity shall assess the goods or services promised in a

contract with a customer and shall identify as a performance

obligation each promise to transfer to the customer either:

A good or service (or a bundle of goods or services) that is

distinct.

A series of distinct goods or services that are substantially the

same and that have the same pattern of transfer to the

customer.”

Here, you already see some very important points: POBs need

to be defined already at the moment of contract inception, and

POBs must be distinct. The point about defining POBs at the

moment of contract inception is clear—when you sign the

contract with the customer, POBs are what’s in the contract,

goods, or services the customer is buying. This is also the first

watchpoint for you: you need to take a detailed look at

documents such as framework agreements or quantity/value

contracts to determine if they are relevant for IFRS 15 or, in this

particular case, whether you can identify POBs at this stage. In

general, the answer is that the contract needs to have a clear

definition of not only enforceability but also about what the

customer is buying if you want to say it’s relevant as an IFRS 15

contract.

Regarding treating POB as distinct, paragraph 26 of IFRS 15

reads, “Goods and services that aren’t distinct are bundled with

other goods or services in the contract until a bundle of goods

or services that is distinct is created.” The bundle of goods or

services in that case is a single POB. Essentially, if goods and

services are bundled to create one deliverable to the customer,

components are treated as nondistinct POBs because the

customer can’t benefit from them separately. In that case, they

can be bundled into one POB, which will be included as a POB in

a contract.

Let’s consider an example that is commonly used in

organizations whose line of business is project delivery

(software and system integration companies). Here, you deliver

services to customers, for example, in software development,

consulting, extended maintenance, or managed services,

together with some hardware such as computers, data centers,

and so on. In addition, there might be some spare parts and

even some additional costs (e.g., traveling) included as part of

the project.

In this case, it’s questionable whether the customer benefits

from buying each of these items separately because the

customer signed a contract related to delivery of the whole

project, not just parts of it. So according to statements from the

IFRS 15 standard, each separate POB (service, hardware, and

spare parts) would be treated as nondistinct POBs that are

bundled in one distinct POB. This bundle would be later treated

as a unique item, which would need to be presented as a

compound POB.

If items in a contract with your customer aren’t distinct items,

they can’t be posted separately for revenue recognition. These

items must be combined with other nondistinct items to form a

distinct POB. The POB that results from this combination is

called a compound POB, and the entire structure is called a

compound structure.

In the following sections, we’ll explain how to set up POBs. We’ll

begin with the basic creation of POB types.

5.2.1 Create Performance Obligation Types

Let’s first see what kind of customizing is needed to create

POBs. The first step is to define POB types in Transaction

FARR_IMG by following path Revenue Accounting Contracts

• Define Performance Obligation Types. Once you select

this option, the screen shown in Figure 5.22 will appear. We’ll

discuss the different POB type options in more detail in

Section 5.3.

Figure 5.22 POB Types Definition Initial Screen

Here you need to enter data by clicking either the New Entries

or Copy buttons. If you’re creating new POB types, you’ll arrive

at the screen shown in Figure 5.23. In this example, we selected

POB type EVNT_MAN and clicked the Copy button to create a

new one.

Figure 5.23 POB Types Entering Details

The screen for creating POB types is split into three subscreens:

General Data, Fulfillment Data, and Allocation Data. In the

General Data screen, you define the POB name in the

Perf.Obligat.Name field. This data can be very useful as an

additional revenue reporting dimension.

Usage of POB Type and POB Name

Companies usually need to perform revenue reporting on

different levels. For example, the first level comprises main

revenue groups for reporting (e.g., device sales, service

sales), and the next level can be the detailed level where the

first one is further broken down (e.g., main devices,

peripherals, support services, maintenance services, etc.).

The classic approach is to create it as separate general ledger

account and thus separate POB types; however, that would

make the number of POBs large and therefore hard to

manage.

One alternative is to have major groups created as POB types

and lower levels as POB names. This enables a leaner

structure of POBs, fewer general ledger accounts, and still

detailed reporting. The only difference you need to have in

mind depending on whether you’re working on some older or

newer SAP S/4HANA versions of RAR: Newer versions use new

SAP Fiori apps where all that needs to be done is adding new

fields and CDS views pick them up automatically as

dimensions in revenue reports. In older versions, you need to

work with extension of table FARR_D_POSTING to get proper fields

available. See Chapter 6 for more information on reporting.

Besides defining the POB name, there’s also the option to select

the No Cost Recognition checkbox. This setting needs to be

used in accordance with the setting on the accounting principle

level: if you set that cost recognition is possible, it makes sense

to control on the POB type whether cost recognition is allowed

or not through this checkbox. In addition, it also applies the

other way around: if you choose that cost recognition won’t be

allowed, it makes sense not to change the value of this field.

The next section, Fulfillment Data, is about determining the

fulfillment type of the POB and fulfillment trigger for event-

based POBs. The system provides several standard types for

fulfillment, or you can create new ones if necessary. If you

select that the Fulfillment Type is T Time-Based, the screen

will look like Figure 5.24.

Figure 5.24 Time-Based POB Type

Details about different fulfillment and event types will be

covered in Section 5.3.

In the Allocation Data section, you define how the POB will be

processed with the allocation engine. The first step is to

determine the relevancy of POBs on allocation. If the Excl. from

Alloc. checkbox isn’t selected, the allocated price of the POB is

always brought over from the conditions that are specified in

the corresponding operational item. No additional value is

allocated to or taken away from this POB.

Let’s look at examples of allocation if the POB is and isn’t

excluded from allocation. In Table 5.5, both POBs are included in

allocation, which means that revenue will be spread to all of

them according to the provided SSP. Here, you see that because

the SSP of both POBs is equal, they will take the same portion of

the revenue even if their transactional prices are different.

POB Transactional

Price

SSP Allocation

Percentage

Allocation

Amount

POB

A

1,000 2,000 50% 1,500

POB

B

2,000 2,000 50% 1,500

Total 3,000 4,000

Table 5.5 Allocation Example

In our next example shown in Table 5.6, there’s one POB

excluded from allocation. The effect of excluding it from

allocation is the same as providing SSP = 0. This means its

allocation percentage will be 0, which means the allocated

revenue was also zero. However, the total revenue allocated to

the first POB is equal to the amount included in both POBs. In

other words, if the POB is excluded from allocation, any

transactional price given to this POB will still be included in the

total contract transactional price, but POB being excluded from

allocation won’t carry any revenue for itself.

POB Transactional

Price

SSP Allocation

Percentage

Allocated

Amount

POB Transactional

Price

SSP Allocation

Percentage

Allocated

Amount

POB

A

1,000 2,000 100% 3,000

POB

B

2,000 0 0% 0

Total 3,000 2,000

Table 5.6 Excluded from Allocation Example

Excluded from Allocation: Practical Usage

When do you use these POBs? The easiest way to explain this

is the example of any kind of fee that the customer might pay

but for which the customer isn’t getting any benefit. For

example, activation fees for mobile contracts are one-time

fees that don’t represent any specific service the customer

uses and can be represented as a POB excluded from

allocation (there are cases when this is bundled together with

a basic service, but that’s not the question here).

Some goods or services that the customer is paying for and

using, but for which there is no contractual obligation, is

another example. Because they are part of the contract itself,

you need to include them, but not in allocation because there

is no obligation to use them.

Let’s return to the POB type settings shown previously in

Figure 5.23. The Residual option is used when you want to

apply the residual calculation method of SSP for a particular

POB. Again, it would be useful to look at the IFRS 15 standard

about the residual method to be applied.

The residual approach involves deducting from the total

transaction price the sum of the estimated SSPs of other goods

and services in the contract to estimate the SSP for the

remaining goods or services. Use of a residual approach to

estimate the SSP is permitted in certain circumstances. A

residual approach should only be used when the reporting entity

sells the same good or service to different customers for a

broad range of prices, making them highly variable, or when the

reporting entity hasn’t yet established a price for a good or

service because it hasn’t been previously sold. This might be

more common for sales of intellectual property or other

intangible assets than for sales of tangible goods or services.

The circumstances where the residual approach can be used are

intentionally limited. Management should consider whether

another method provides a reasonable estimate of the SSP

before using the residual approach.

As you can see, situations when the residual approach might be

used are extremely limited, but it can be useful. First, let’s

check the prerequisites for using the residual approach:

Out of all the POBs in a contract, only one can be set as

residual.

No SSP should be defined for that residual POB.

SSPs must be defined for all other POBs.

If the sum of SSPs is higher than the allocatable amount, that

POB will get SSP = 0. This situation should be always well

thought through because the business scenario in which the

residual approach is used isn’t valid in that case (SSP >

transactional price).

Let’s check the residual method through an example where a

company sells a bundle product for 1,000 EUR, as shown in

Table 5.7.

POB Sales Order

Item

SSP Quantity Allocated Amount

POB

1

Product A 10

EUR

20 10 × 20 = 200 EUR

POB

2

Product B 20

EUR

30 20 × 30 = 600 EUR

POB

3

Product C None 1 1,000 – (200 + 600)

= 200 EUR

Table 5.7 Residual Method Calculation

You can see that the SSP (and therefore allocation too) assigned

to a POB will be calculated as a difference between the total

allocated price and allocated price assigned to other POBs from

the contract. As mentioned, if this method is used, the POB

needs to be properly marked with the Residual checkbox, but

more importantly, the entity should check whether they have

the business case for this method of SSP determination.

When can you use this residual approach? In the telco industry,

it’s not so uncommon to sell premium phone numbers. In those

cases, the customer is paying extra just to have a number that

is simple or that has some meaning to the client. In those cases,

if you’re bundling service and device with this premium number,

you’ll get a total transactional price much higher than the SSP

of items that are known (service and device). However, the

premium number doesn’t have a specific SSP, so the residual

approach provides the SSP to the number by the difference

between the total transactional price and the sum of SSPs given

to the device and service.

In some rare cases, you can define the SSP already on the POB

type level because POB types usually are defined on some

higher level than materials, for example. In addition, materials

are so different that a single SSP wouldn’t really be correct. If

this is the case, you can use the fields available in Figure 5.23,

shown earlier.

What deserves special attention is the SSP Tolerance field.

Tolerance defines how much the transaction price can deviate

from its SSP before triggering a price allocation. Sometimes, the

transaction prices of your sold items aren’t exactly the same as,

but are very close to, their SSPs. In this case, your items are

sold almost at fair value, and therefore you don’t want to

perform price allocation on this contract. The SSP tolerance

allows you to specify a range, instead of a single value, of SSP.

The system performs price allocation only when at least one of

the items in the contract is sold at a price beyond its specified

price range.

There are two fields to define tolerances: one defines the

tolerance in amount (SSP Tolerance), and one defines the

tolerance in percentage (SSP Tol. Perc.).

In the example shown in Table 5.8, you see that for POB 2 and

POB 3, price is within the specified range, but for POB 1, it’s

outside the range. This means that allocation will be performed

on this contract.

POB Transaction

Price

SSP SSP

Tolerance

SSP

Tolerance

Percentage

Price

within

Specified

Range?

POB

1

17 EUR 20

EUR

2 EUR N/A No

POB

2

20 EUR 20

EUR

2 EUR N/A Yes

POB Transaction

Price

SSP SSP

Tolerance

SSP

Tolerance

Percentage

Price

within

Specified

Range?

POB

3

32 EUR 30

EUR

3 EUR N/A Yes

Table 5.8 SSP Tolerances

Once these settings are filled in, click the Execute button to

complete the basic setup of POB types.

5.2.2 Determine POB Types in BRFplus

Now, let’s move on to the next step: determination of POBs

based on certain rules. This determination is done in BRFplus,

and you first need to define which applications will be used. In

this case, applications are being assigned to item classes

without a predecessor (meaning no additional setup is needed

for fulfillment or invoice items).

Execute Transaction FARR_IMG, and follow menu path Inbound

Processing • Revenue Accounting Item Management •

Assign BRFplus Applications to Revenue Accounting Item

Classes. You’ll arrive at the screen shown in Figure 5.25, where

you can assign the BRF Application that will be used for

integration between the integration component and RAR.

Figure 5.25 BRFplus Assignment of Application

SAP delivers the following BRFplus application templates:

FARR_AP_SD_PROCESS_TEMPLATE

For RAI classes used for integration with sales and

distribution.

FARR_AP_CRM_PROCESS_TEMPLATE

For RAI classes used for the CRM service integration.

FARR_AP_CA_PROCESS_TEMPLATE

For RAI classes used for the integration with contract accounts

receivable and payable.

FARR_AP_PROCESS_TEMPLATE

For RAI classes used for the integration with any other sender

component.

Before assigning the application, you first need to copy the

template application into the customer one and maintain

decision tables. In this case, we’ll focus on sales and distribution

integration, but the process doesn’t differ compared to other

integrations.

Warning

There is one generic input structure maintained per RAI class

for accounting principle-independent and accounting

principle-dependent functions. This generic input structure

contains certain accounting principle-dependent attributes

that aren’t filled when the BRFplus functions that are

accounting principle-independent are executed (e.g., change

indicator, controlling object number for results analysis

integration, integration type with controlling results analysis,

and the accounting principle itself). Including these listed

attributes, which are accounting principle dependent, into the

ruleset of BRFplus functions that are executed more than once

per accounting principle will either have no effect on the

result data or even lead to unexpected results data of the

BRFplus function.

You can access BRFplus by executing Transaction BRFPLUS via

the screen shown in Figure 5.26.

Figure 5.26 BRFplus Initial Screen

On the left side, the Repository appears where you’ll perform

all your selections. Before you do so, it’s highly recommended

to change to expert mode in BRFplus. To do so, select the

Personalize option in upper-right part of the screen, and the

screen shown in Figure 5.27 will appear.

Figure 5.27 Expert Mode Selected

Basically, Simple mode won’t allow you to do some additional

operations (and you won’t see technical details of decision

tables), and Expert mode will allow you to perform all the

available operations. You can see the difference between the

modes by working on both modes.

Now you can select the application. On the left-hand side, click

on the Search button near the My Applications dropdown list

(refer to Figure 5.26). The screen shown in Figure 5.28 will pop

up.

Figure 5.28 BRFplus Selection

Enter “FARR*” (or it can be Z*, Y*, or some customer

namespace if selected) for Application. The important thing is

to select Application for Object Type before you press (Enter).
Once done, you can click the Search button, and the system

lists all applications that fit your selection, as shown in

Figure 5.29. Here you can see the date of the last change, the

transport status, and whether the document is in active status

or needs to be activated.

Figure 5.29 BRFplus Applications

The next step is that you open the application you need to

modify and find the decision table, which is needed for POB type

determination. To find the decision table, go to Expression •

Decision Table folder, as shown in Figure 5.30. For POB type

determination, you search for table DT_PROCESS_POB. Click

on the central part of the screen to see how POB type

determination is done. Gray columns are used as input

parameters, and green are result columns showing successful

selection.

Figure 5.30 BRFplus Decision Table

To make new entries, there are two main methods. The first is

manually creating entries, where you must make the table

editable by clicking the Edit button, as shown in Figure 5.31.

The table will become editable, and you can enter, copy, or

change all entries inside. As an example, we added new

material that will be used as source material for POB type

determination.

Figure 5.31 Editing a Decision Table

However, manual editing isn’t the best case if you have many

entries to be made. In those situations, you might look at the

mass option, which is done as an integration with Microsoft

Excel. You’ll see an option to Export to Excel for each decision

table. Once you click it, the system will give you a table in

Microsoft Excel format, as shown in Figure 5.32.

Figure 5.32 Export to Microsoft Excel from BRFplus

Once data is in Microsoft Excel, it can be modified en masse and

saved. As an example, you could deliver this Microsoft Excel file

as a template to populate new materials determination. When

the changes are complete, you can upload the same Microsoft

Excel file back to BRFplus by clicking the Upload button.

When you make a change, it’s always good to check whether it

does what you intended it to do. For this kind of check, click the

Simulate option, and the system will ask for input parameters.

When finished, click Execute to get results to verify. In the

example shown in Figure 5.33, before you load the Microsoft

Excel file, make sure derivation will work as expected. Populate

the data in the screen (in our example, update the Simulation

Data with the new material [MATNR], and click the Execute

and Display Processing Steps button for the simulation to

run).

Figure 5.33 Execution of Simulation

After simulation, you can check the results, as shown in

Figure 5.34. Here you can see that we’re getting the POB type

with a specific name as a result, which is a time-based POB

without any specifics defined further. This functionality of

BRFplus is widely used to limit efforts when it comes to testing

new changes.

Figure 5.34 Results of Simulation

Once you’re happy with the testing and changes, you need to

activate the application by clicking the Activate button and

transport it by clicking Transport Application.

BRFplus Transport

Be very careful when transporting BRFplus applications.

Similar to any other ABAP object, applications can be created

as local, so users might think that maintaining them

separately on each system is a quick way to finish setup.

However, each application has a unique identifier, and

maintenance in different systems would make further

transport impossible. Therefore, the only valid approach is to

have BRFplus maintained on one master client and transport

it further.

In addition, when maintaining BRFplus, you might notice that

input columns don’t fit our needs. For example, in integration

with sales and distribution, the default application is to have the

POB type determined based on the material number or material

group. Materials might not be most convenient because each

time you create a new material, the decision table needs to be

maintained. However, for some clients, determination of POB

types can’t be done on the level of material group, or, for

example, you want to have another criterion to determine POB

names.

To enable this, it’s very easy to add additional columns as

selection parameters and make determinations based on them.

However, because you usually need some columns that aren’t

available by standard, the first step is to add the element you

want to make available as a selection. For this to happen, you

need to make sure that the structure used by the application

contains that field.

After running Transaction BRFPLUS and choosing the correct

application, you can navigate to Data Object • Structure, as

shown in Figure 5.35. Here, select the structure behind the

decision table in which you need to see changes.

Figure 5.35 Adding a Field to the Structure

Because you’re working with sales and distribution integration,

the structure you need to edit is IS_SD01_BRF. Open it in edit

mode, and add the needed field (ZZ_R_ACC_ASS_GRP, in our

example). Once you have the structure ready, the next step is

to make the field available in the decision table. Go to the

needed decision table (table DT_PROCESS_POB in our example), and

make sure that your table is opened in Edit mode. In the

general view, select the Table Settings button, as shown in

Figure 5.36.

Figure 5.36 Table Settings for BRFplus

After that, the system will show you a list of already selected

items in columns, as shown in Figure 5.37. You can add new

columns by clicking the Add Column button in table settings.

A new field has now been added as a selection, so you can use

the account assignment group from sales and distribution (VBAP-

KTGRM) for selection of POBs. In general, adding new columns in

the selection is a very elegant way of getting what you need

from the system—and this is done with minimal knowledge of

ABAP programming.

Figure 5.37 New Field as Selection Criterion

When you look at applications for processing RAIs, you’ll notice

that several more decision tables exist, as shown in Figure 5.38.

This is because the application is used for processing all data

needed for the creation of contracts and the creation of POBs

with all needed details.

Figure 5.38 Decision Tables Used in Contract and POB Creation

Following is list of a few tables and what they are used for:

Table DT_PROCESS_BOM

Bill of materials (BOM) is a term that appears both in sales

and production processes. A sales BOM is used for sales

documents where the parent item is listed as a sales item, not

an inventory item. When the parent is selected in the sales

document, all the children appear as subitems automatically.

For example, a company is selling a computer that consists of

a tower, keyboard, monitor, mouse, and some other items. On

the sales order, you want to show only Computer X, while for

inventory, you need to make sure all components are

selected. For this to work, we’ll create a BOM where the

header will be the computer and the components will be the

subitems. In RAR, a distinct BOM structure can consist of

multiple levels, and there is no restriction on the number of

low-level POBs. Costs are always recognized on the lowest

POB level.

When you look at table FARR_D_POB, you can recognize

members of the BOM with the Is Part of a BOM field

selected; Composition shows Distinct; and Root POB in

BOM shows the POB ID of the high-level POB. SSPs are

required for low-level POBs, except those that are defined as

residual allocation or exclude from allocation.

In this decision table, you’ll find all the information needed for

the creation of BOM POBs in RAR. Note that BOM structures

aren’t supported in OCM. If a customer uses BOMs, they

would need to look at either the option of creating all POBs as

distinct or creating a compound group (a hierarchical list of

POBs) instead.

Table DT_PROCESS_COMPOUND

This application is used when defining a group is needed. The

functionality is very similar to a BOM with having one header

item and nondistinct POBs but with one difference: compound

POBs can use only time-based or POC as methods for

fulfillment. If the customer requires some other method of

fulfillment, BAdI FARR_BADI_COMPOUND_FULFILLMENT can be used in

CCM to adjust fulfillment to fit the customer’s needs.

Table DT_PROCESS_SSP

If you want to maintain SSPs as a form of price list, this

decision table can be used. Here, customers can identify

parameters based on which SSP will be retrieved for a

particular combination of material/sales

organization/customer/and so on. Besides doing this, it’s also

possible to use this decision table as a safety point: if an SSP

isn’t being sent by a sender application, the SSP can be

retrieved from here. However, if you’re thinking to use

BRFplus as a main source from where SSPs will be retrieved,

there are certain limitations related to the number of

expected entries in this table. In practice, we saw situations

where customers used this decision table as a main source for

SSP retrieval, and the number of entries grew with time

(common situation if validity dates are introduced). There is a

technical limitation that will cause performance issues if the

number of rows in this table is more than 10,000. In those

cases, think about either using some other option for SSP

determination or stepping away from BRFplus as a tool for

keeping them.

Table DT_PROCESS_POB_ADD

This table is used to link POBs to be defined. Linked POBs are

implicit POBs that aren’t stated directly in the sales order, but

it’s understood by parties that they will be delivered. For

example, if a customer purchases equipment, it’s understood

that they will get a warranty with it too. These additional

POBs can be defined as linked.

5.3 Managing Performance Obligations and Event

Types

Once you define POB types, you need to look into details about fulfillment and event types.

By definition, all POBs can be grouped into three categories when it comes to their

fulfillment type:

Time-based POBs

POBs whose revenue is recognized over a period of time.

Event-based POBs

POBs whose revenue is recognized at a specific point in time.

Percentage of completion (POC) POBs

This is a special category of POB. Whereas there’s usually a specific event or simple time

passage that triggers revenue recognition, for a POC POB, RAR fully relies on the

percentage calculated by results analysis and applies it as fulfillment.

To understand what needs to be configured, you need to look at the standard again to see

how revenue can be recognized.

To clarify that POBs can be satisfied at a point in time, certain criteria need to be met. The

first is that revenue can’t be recognized over time, and the second is that the customer

actually took control over an asset. Other indicators are as follows:

Customer presented right to payment

Customer has legal title over POB

Customer is in physical possession

Customer has risks and benefits over ownership of goods

Customer accepted the asset

The preceding are actually indicators, not criteria, which means that the company needs to

assess them to determine if the customer accepted control over an asset.

Here you see that revenue recognition is done at one point in time when one or more of

those indicators are met. These events are represented as different event types when you

define a POB type as event based.

Another type of recognition is time based (or over time). One of the most critical decisions

for revenue recognition is the determination of whether revenue will be recognized over

time because this decision influences how revenue will be reported for the future. In this

case, however, there’s a set of criteria where if just one of them is met, revenue can be

recognized over time:

Customer receives benefits and consumes them at the same time. Examples for this

criterion fulfill most of the services that are delivered during a fixed amount of time.

Vendor is making enhancements over an asset the customer controls while it’s being

enhanced. For example, there is a contract to make improvements to a product during a

fixed period during which the customer is using an asset.

Vendor performance doesn’t create an asset with alternative use, and the vendor has the

enforceable right to payment for performance completed to date.

What you can see here is that the entity needs to go with over time revenue recognition if

the customer receives and consumes POBs. This would suit entities operating in service

industries where the customer subscribes and consumes service over a certain period of

time. In addition, the option to recognize revenue over time would fit different POC

methods because time isn’t the main criterion in those cases; instead, it’s the ways you

measure progress of POB usage and transfer of control.

Deciding how revenue will be recognized is one of the most important tasks and thus needs

to be looked at in detail because differences between IAS 18/ASC 605 and IFRS 15/ASC 606

can be significant in terms of how revenue is treated and recognized.

We’ll explain how to manage time-based POBs in the over time revenue recognition

process and event-based POBs in the point-in-time revenue recognition process in the

following sections.

5.3.1 Over Time Revenue Recognition

In this section, we’ll look into the details of how revenue is recognized over time, or the

effect of setting POBs to be time based. Let’s look at a classic example of a bundle that

contains one device and service, as shown in Table 5.9. The device will be recognized as

point-in-time revenue, and the service will be defined as a time-based POB because the

customer can consume it over a certain period of time.

POB Transaction

Price

SSP Duration Allocated

Revenue

Recognized Monthly

Device 1 500 413.97 413.97

Service 2,400 2,400 12 1,987.03 165.59 165.59

Table 5.9 Time-Based Revenue Recognition

In this case, you see that the device is being given to the customer almost for free to sell

the service to the customer. The device is heavily discounted, so the customer signs a

contract with obligation to use the service. Because customers will simultaneously

consume and pay for this service, criteria are met for it to be recognized as over time

revenue. So, the monthly revenue that will be recognized is equal to 165.59. If billing the

customer monthly in equal amounts, the revenue that will be recognized is less than the

amount billed to the customer (200.00 compared to 165.59). This will be discussed in detail

in Section 5.5. Month by month, the revenue getting recognized will look like Table 5.10.

Jan. Feb. March April May June July Aug. Sept. Oct. Nov.

165.59 165.59 165.59 165.59 165.59 165.59 165.59 165.59 165.59 165.59 165.59

Table 5.10 Revenue Schedule for Time-Based Revenue

Now if you want to compare this to the old standard, you see that there are significant

differences. In this case, we are recognizing the device as 413.97, which is more than the 1

amount that is billed and would be recognized based on IAS 18. On the other hand, service

will be recognized month by month with an amount that is less than what is being billed.

We already mentioned that defining the POB types would need to be done in two steps:

1. Define the POB type in Transaction FARR_IMG.

2. Define how the POB type will be determined in BRFplus decision table DT_PROCESS_POB.

In both cases, you need to look at several key settings, which we’ll describe next, followed

by the resulting revenue schedule.

Time-Based POB Settings

Let’s start with creating a POB type (refer to Section 5.2.1). In the Fulfillment Data

section of the screen, as shown in Figure 5.39, select T Time-Based in the Fulfillment

Type field for a time-based POB.

Figure 5.39 Time-Based POB Settings

Because you’re creating a time-based POB type, the Event Type field needs to remain

blank.

Let’s turn our attention to the Deferral Method field. Deferral methods indicate how the

fulfillment of the POB is distributed over the specified period of time and is relevant only to

POBs with a time-based fulfillment type.

If you select the field, you’ll see a list of available methods, as shown in Figure 5.40.

Figure 5.40 Deferral Methods Available

Deferral method 1 is evenly distributing revenue over the number of days in the duration.

Therefore, the revenue or cost recognized for each accounting period is in proportion to the

number of days that fall in that accounting period. When you use this deferral method, the

total number of days is calculated at 365 or 366 days per year, depending on whether it’s a

leap year. Our previous example would look like Table 5.11.

Jan. Feb. March April May June July Aug. Sept. Oct. Nov.

168.76 152.43 168.76 163.32 168.76 163.32 168.76 168.76 163.32 168.76 163.32

Table 5.11 Revenue Schedule with Deferral Method 1

You can see that most revenue will go to months with 31 days and the least to February.

Different calculations will be used if the year in which revenue is to be recognized is a leap

year (February has 29 days and year 366).

Deferral method 2 represents the linear distribution on a basis of 360 days. The fulfillment

of the POB is evenly distributed over the number of days in the duration. Therefore, the

revenue or cost recognized for each accounting period is in proportion to the number of

days that fall in that accounting period.

The difference between methods 2 and 3 is in how rounding will be treated. The normal

situation is that contracts don’t always start on the first day of the period. Therefore, even

if you’re splitting it equally, some differences can arise. These deferral methods force

differences to be put into either the first or last period, respectively.

With deferral method S, the fulfillment of the POB is distributed over the number of

accounting periods in the duration, regardless of the number of days that fall in each

period. When you use this deferral method, the total number of days is calculated at 360

days per year, with 30 days per accounting period. If the duration isn’t aligned with the

accounting periods, then the following applies:

If the part that falls in the first period is less than the entire period, the period is also

recognized as having 30 days.

If the part that falls in the last period is less than the entire period, nothing is distributed

to the last period.

Using this method, only one fulfillment per period can be created, so if there is a

prospective split, then a fulfillment with the same event date as the effective date of the

prospective split is generated for the period when the prospective split took place.

In our scenario, using deferral method S, you would get 12 fulfillments created once you

create the POB, where the deferral method would act in a similar way as method 2.

However, let’s assume you go into contract modification with an effective date of January

25th. Instead of creating additional fulfillments, fulfillment for the month of January would

be adjusted with an effective date January 25th and a quantity of 30. With method S, if the

duration is less than a full month, fulfillment calculating 30 days would be created

irrespective of the duration of the POB within a month.

Choosing Deferral Methods

Many discussions often arise when choosing a deferral method. The choice often comes

down to simple and predictable deferral (methods 2 and 3) or accuracy (method 1).

Although the final decision belongs to the user, there are two questions to guide the way:

How is billing done?

If billing is done equally every month irrespective of the number of days, you should try

to keep the deferral method the same. If not, there might be differences between

billing and revenue recognized due to different amounts billed and recognized that

aren’t always wanted.

How is planning carried out?

Normally, the planning process is done in advance in every organization. So how do

you spread your planned revenue: according to the number of days or equally? It

makes sense to keep planning and actual values coming in the same way.

If you’re not happy with standard deferral methods, there is an option for creating custom

methods and applying your own logic in it. BAdI FARR_BADI_DEFERRAL_METHOD_V2 (Handling of

Deferral Methods on Performance Obligations) allows you to develop your own deferral

methods. You can find this BAdI in Customizing for Revenue Accounting under Revenue

Accounting • Revenue Accounting • Contracts • Business Add-Ins.

Returning to the POB type creation (refer to Figure 5.39), the next setting is the Start Date

Type option, which determines how you want to treat the start date of the POB that is

created, as shown in Figure 5.41.

Figure 5.41 Start Date Options When Creating Time-Based POB

The start date indicates when revenue recognition calculation will start for time-based

POBs. That is why it’s important to understand options and compare them with data

available in source systems so proper revenue calculation can occur:

1 Available on Creation of Performance Obligation

The start date has to be provided once the POB is created. If not, the system will issue an

error message.

2 Available After Creation of Performance Obligation

The start date can be missing at the moment of creation of the POB and be specified

later.

3 Is Always the Event Date

Revenue won’t be recognized until a certain event occurs. This can be useful when

dealing with linked POBs with different fulfilment types on leading and not leading levels.

For this example, choose option 1 Available on Creation of Performance Obligation.

Regarding how dates are extracted, in the case of integration with sales and distribution,

these are usually retrieved from the billing plan, which is normally used to specify how

billing will be done. Figure 5.42 shows the Billing plan that you’ll receive, where you can

see the contract Start date and contract End date.

Figure 5.42 Billing Plan Dates

These dates are represented in table FPLA with fields FPLA-BEDAT and FPLA-ENDAT.

Once you have time-based POB, it’s worth mentioning how revenue will be recognized. This

will be done by using the following formula:

Remaining revenue to be recognized up to the period (Remaining revenue) =

Contractual price of the POB – Revenue already recognized before this period

Remaining days to be fulfilled up to the period (Remaining days) = Total days of the POB

– Days already fulfilled before this period

Revenue recognized of the period = Days to be fulfilled in the period × Remaining

revenue ÷ Remaining days

Understanding this calculation is key when it comes to contract modifications and results

from RAR.

Revenue Schedule

When you create a time-based POB, the Contract Search app will show you the revenue

schedule that represents how much revenue was to be recognized until now and how much

will be recognized until the end of the contract.

In the SAP Fiori launchpad, once you click on the app and select a contract, first, you see

totals, as shown in Figure 5.43.

Figure 5.43 Revenue in a Contract Based on Time

You can see that all POBs included in the contract are displayed in the report. You’ll

recognize time-based POBs based on the Fulfillment Type that is entered on the right. For

time-based POBs, there will always be calculated how much of revenue is due to be

recognized in percentages, which is displayed in the Quantity Fulfillment Progress

column.

If you want to see details on time-based revenue, you need to select the Revenue

Schedule option at the top of the table, and month-by-month calculations will be

displayed, as shown in Figure 5.44.

Figure 5.44 Revenue Schedule

You can see that POB 203643 is time based and thus has revenue scheduled. In the

Status column, you can check the current status of revenue that needs to be recognized in

that period. If you see a square dot, it means that revenue is due for recognition and that

invoicing is already performed, so the system is ready to post revenue. However, for some

reason, this one wasn’t done, and once it’s done, the dot will turn green. A yellow triangle

means that revenue for that month isn’t yet due. Once the process is completed, you’ll

notice that line will go through the same process as the preceding lines. In this specific

case, you see that revenue allocated is with same values and this is due to the deferral

method selected.

Now, technically behind the revenue schedule is a table that holds the central spot in RAR:

table FARR_D_DEFITEM. In this table, as shown in Figure 5.45, you can see the schedule for

revenue recognition for all POBs (not only time based) from inception until the end of the

contract.

Figure 5.45 Table FARR_D_DEFITEM

Note

You can find PDF versions of Figure 5.43, Figure 5.44, and Figure 5.45 available for

download at sap-press.com/5700 under the Product supplements section.

Table FARR_D_DEFITEM or, the deferral table, will store the revenue forecast. Deferred revenue

is recognized as earned revenue on the income statement as the goods or service is

delivered to the customer. As you know, RAR follows the basic five-step method. One of the

steps is to allocate the contractual prices, and this allocation for the duration of the

contract is calculated and saved in this table. For time-based POBs, there is a start date

based on which the revenue is recognized, and the revenue forecast is created in standard

RAR and stored in table FARR_D_DEFITEM. Table FARR_D_DEFITEM will have details for all the POBs

and the condition types.

Let’s walk through the key fields in table FARR_D_DEFITEM (refer to Figure 5.45):

Reconcil. Key

A reconciliation key (Reconcil. Key) will be created for the duration of the contract

based on the monthly or whatever the requirement is. The start and end date will be

used for calculating the number of months and for each month there will be a

reconciliation key created.

POB

For every POB, there will be entries in table FARR_D_DEFITEM. For event-based POBs, there

will only be one entry in table FARR_D_DEFITEM as there won’t be any forecast required for

this. Even in the revenue schedule, they’re displayed as Unscheduled, meaning there’s

no forecast or scheduling by period required for event-based POBs. For time-based POBs,

it’s important that they have the start_date and end_date, using which the forecast will be

calculated. For example, let’s say the start date and end date for the POB is for a

duration of three months, from 06.15.2023 to 09.14.2023. Then we would see the

following four lines in table FARR_D_DEFITEM for this particular POB (one line for each

month):

https://sap-press.com/5700

20230060000101 for the 15 days in June

20230070000101 for the complete month of July

20230080000101 for the complete month of August

20230090000101 for the remaining days in September

CnTy

There will be entries for all the condition types (CnTy) of the POB.

Defer. Cat.

The deferral category for time-based revenue forecasts will generally be MA. There are

deferral categories for returns as well. To check the possible values for deferral

categories, double-click on data element FARR_DEFERRAL_CATEGORY, check domain

FARR_DEFERRAL_CATEGORY, and click on the value range. A screen appears that will

show you the possible values for deferral category (see Figure 5.46 and Figure 5.47).

Figure 5.46 Deferral Categories

Figure 5.47 Category Descriptions

FullfilType

Fulfillment type will give you the details of the fulfillment type, such as if it’s time based

(T), event based (E), POC (O), and no fulfillment (N). You can see the Fulfillment Type

field in the table in Figure 5.48.

Figure 5.48 Fulfillment Types

Src A/c No. and Target A/c

The source account and target account store the account-related details and are used

during the execution of program C, which is the posting program that creates the

accounting document.

Category

This will have the value of either P or C, which is the indicator of price or cost items,

respectively.

Spec_Indicator

The deferral item special indicator can be set as follows:

P: Main price

C: Main cost

D: Allocation difference

F: Free face value

’ ’: Normal entry

There are also amount fields for storing the calculated amount, as shown in Figure 5.49:

DOC_AMT_CUMULATE has the allocated amount of each POB that was valid with

reconciliation key.

REV_AMT_DELTA has the amount that will be posted and calculated. In other words, this

field provides the amount, which needs to be posted as the delta between recognized

revenue and IFRS 15 revenue.

Figure 5.49 Revenue Amount

Let’s walk through an example of REV_AMT_DELTA, as shown in Table 5.12. If there is a case

where the user needs to pay an amount of $50 per month, the amount received from the

customer is $200, and the contract is for a period of four months.

POB ID Reconciliation Key Start Date End Date REV_AMT_DELTA

1001 20230010000010 01.01.2023 31.01.2023 50.00

1001 20230020000010 01.02.2023 28.02.2023 50.00

1001 20230030000010 01.03.2023 31.03.2023 50.00

1001 20230040000010 01.04.2023 30.04.2023 50.00

Table 5.12 Sample of FARR_D_DEFITEM

This is the sample of data in table FARR_D_DEFITEM and its value after subtotaling based on

condition types and the reconciliation key. The calculation isn’t as simple as it looks. We’ve

taken a very simple case to understand and to show what table FARR_D_DEFITEM stores. The

start date is the key for calculating the duration of the contract. The start_date marks the

first date of the contract, and the first reconciliation key will be created for the period in

which the start_date starts. The end date marks the end of the contract period, and the

difference between the start date and end date is the duration of the contract.

The REV_AMT_DELTA is calculated by using these fields. For demonstration purposes, we’ve

highlighted the exact point in the debugger screen where the calculation of REV_AMT_DELTA

happened, as shown in Figure 5.50.

Figure 5.50 Calculation of REV_AMT_DELTA

Table FARR_D_DEFITEM: What to Expect

As explained previously, this table not only contains the revenue schedule for current

contract values, but also keeps the schedule for the status at each point in time. This is

done based on reconciliation keys: each time the user reprocesses contract or performs

contract modification, a new reconciliation key will be assigned to the POB, and table

FARR_D_DEFITEM will be rebuilt. You can also see that all condition types used in the contract

are on a separate line. Now, imagine that you have two time-based POBs with a duration

of 24 months while using only two condition types: one for the main price and one for the

SSP. Only for that contract, this table will have 24 × 2 = 48 lines for each reconciliation

key. For 24 months, if the contract is reprocessed or modified 10 times, the number of

entries will be 480. This can become a bottleneck if the user has contracts with a very

long duration (some users even have indefinite contracts) and/or uses a lot of contract

combinations. That is why it’s recommended to think about on what level contracts will

be combined and what should be simplified in the duration for contracts with a very long

time period.

5.3.2 Point-in-Time Fulfillments

When revenue will be recognized at a point in time, a trigger needs to happen first. In POB

types, there is a list of indicators used to conclude that the party which purchased an asset

has de facto control over that asset—a key indicator for revenue recognition.

For example, physical possession of an asset typically gives the holder the ability to direct

the use of and obtain benefits from that asset and is therefore an indicator of which party

controls the asset. However, physical possession doesn’t determine which party has control

on its own. As an example, a publisher sends a book to a reseller but doesn’t give the

reseller the right to resell it for a few more weeks to ensure that the same date of sales

start across all the resellers. In this case, it’s arguable whether the reseller has control over

the books, even if they are in their possession.

In addition, in some cases, the option of acceptance can appear. A customer acceptance

clause provides protection to a customer by allowing the customer to either cancel a

contract or force a seller to take corrective action if goods or services don’t meet the

requirements in the contract. Judgment can be required to determine when control of a

good or service transfers if a contract includes a customer acceptance clause.

Customer acceptance that is only a formality doesn’t affect the assessment of whether

control has transferred. The acceptance clause might not be a formality if the product

being shipped is unique, as there is no history to rely upon. An acceptance clause that

relates primarily to subjective specifications isn’t likely a formality because the reporting

entity can’t ensure the specifications are met prior to shipment.

All of these cases make it particularly important for an entity to assess when actual events

can trigger revenue recognition to occur.

Let’s revisit our POB type creation screen, as shown in Figure 5.51. POBs that should be

recognized as point in time are represented as E Event-Based POB types with different

options for the Event Type field.

Figure 5.51 Event Types for POB Fulfillments

In the following sections, we’ll look at the most important of these event types.

Goods Issue Fulfillment

By choosing GI (Goods Issue), you’re indicating to the system that the trigger for revenue

recognition can be a pure issue of goods from stock. If you look at a standard sales and

distribution use case, it can be represented by a simple diagram, as shown in Figure 5.52.

Figure 5.52 Sales and Distribution Process

This sales process starts with the sales order in which the customer, kind of goods

purchased, prices (transactional price and SSP), and all additional details are defined that

might be needed to specify the relationship between seller and customer (discounts,

different partner functions defining where to ship, who will pay, terms of payments, etc.).

Based on this sales order, you’ll create a delivery. Delivery itself can be done in many

different ways (including with warehouse management [WM] or without, separate pick and

pack processes, etc.), but, essentially, goods are moved from stock to the customer. Based

on this delivery, an invoice is issued, which is the main document for customers indicating

that the sales process is complete.

Now, this is a very simplified example that can be more complicated if it includes down

payments, pro forma invoices, or some documents that might be predecessors for sales

orders. The accounting impact comes after issuing goods where stock is credited, and,

COGS is as an offset account, or in the case of services, a cost of sales (CoS) account. Once

an invoice is issued, there’s a post to accounts receivable—which goes to the balance

sheet and revenue—that impacts profit and loss (P&L) and when compared with COGS

represents a profit.

However, once you introduce goods issue as the fulfillment event (see Figure 5.53), you no

longer need to wait for billing to recognize revenue; revenue can be posted at the moment

of sending goods to the customer.

Figure 5.53 Goods Issue as Fulfillment Event

In RAR, contracts are created at the moment of sales order creation because that

document proves the contractual relationship between customer and seller. At the moment

of delivery, revenue is recognized and the receivable adjustment will be used as the offset

account. At the same moment, COGS will be recognized, which is also one of the control

mechanisms that revenue and costs fall into the same period.

Once the invoice is issued, the billing amount will be reversed and posted against the

receivable adjustment account. This ensures that there aren’t multiple documents posting

revenue, and that only goods issue is used as the trigger for revenue recognition.

Now if we look at RAR in detail, the first step when integration will occur is when the user

creates a sales order. In Figure 5.54, we created one order that contains 1,200 PCs of

material CD994563. From the prerequisite BRFplus settings, we set that fulfillment for this

material is GI (goods issue; refer to Figure 5.51). We don’t need to specify anything else

because pricing will be determined automatically—meaning that the system will retrieve

both the transactional price and SSP based on the maintained conditions in the system.

Figure 5.54 Sales Order Created

Once you save the document, you need to go to Transaction FARR_RAI_MON to see the

created RAI. In the selection screen, enter just the sales order number, and the system will

display created and unprocessed RAIs (if you select statuses Raw and Processable). The

resulting screen shown in Figure 5.55 displays basic information for the RAI, which is

retrieved from the sales order, such a Customer, Reference ID, and so on.

Figure 5.55 SDOI RAI Created

Two condition items are also created. Switch to the Condition Item tab to show the screen

in Figure 5.56.

One condition type is for the transactional price (ZP01) and that item is marked as the

main so the P/L Account is identified. The second item is for the SSP (ZSSP), and this item

is created as statistical. If BRFplus settings mean that the SSP amount for the item is 0 (or

the item is excluded from allocation), the total SSP on the contract level must be <> 0.

Figure 5.56 Condition Types Created

The next step is processing these RAIs (see Chapter 4, Section 4.1, for details). Once

performed, you’ll get the messages shown in Figure 5.57.

Figure 5.57 Processing of RAIs

The system is informing you that both POBs and contracts are created. In this case, parallel

accounting is in use, which means the local ledger is parallel to IFRS, so two contracts with

separate POBs will be created.

Technically, at this point, the system is moving processable RAIs to the processed table

(table /1RA/SD014MI and /1RA/SD014CO, in this case) and populating all tables that are relevant

for contract management. These are tables that begin with FARR_D, and the most relevant

that are populated now are table FARR_D_MAPPING (showing linking between source document

and POBs created), table FARR_D_CONTRACT (contract definition), and table FARR_D_POB

(definition of POBs). In addition, the system will perform allocation if needed but no

postings are made up to this point.

By running the Contract Search app, you can see the RAR contracts created by processing

the sales order. As shown in Figure 5.58, you need to enter the company code and

accounting principle, and all contracts resulting from processing RAIs will be created. As

highlighted, the Operational Document field represents the link between the document

that was entered in the operational application and caused creation of the RAR contract (in

this example, the sales order from sales and distribution).

If you select the Comprehensive View option, you can see details of the contract such as

prices, event type, and how much you invoiced/recognized until now. In this case, as shown

in Figure 5.59, you see that Duration is 0, which is as expected because you created an

event-based POB, and that the current Fulfilled Progress is also 0, which is again OK

because there were no goods delivered to the customer yet.

Figure 5.58 Contracts Created

Figure 5.59 Details of the Contract

Now you can execute the next step, which is goods delivery. As mentioned, this can be

done in multiple ways, but once post goods issue (PGI) is executed, you’ll see RAIs created

once more in Transaction FARR_RAI_MON, as shown in Figure 5.60. Again, you’re not

changing any selection criteria. By using the sales order number as Header ID, the system

will show you all the dependent RAIs created.

Figure 5.60 Fulfillment Process

Now you see that an item with only one main item was created with the event type (Event

Ty…) set as GI and the source item type (SrcItmTy…) as SDFI. Fulfillment items don’t

have conditions, and, in this case, they are used just to indicate what quantity is delivered

to the customer, meaning how much revenue you can recognize. In this case, we delivered

250 pieces compared to 1,200 in the sales order.

Once RAI for fulfillment is processed, the item is moved from table /1RA/SD02MI to processed

RAI table /1RA/SD04MI, and data tables updates are performed—most importantly for table

FARR_D_FULFILLMNT, as shown in Figure 5.61.

Figure 5.61 Contract with Fulfillment

This is now represented as fulfillment progress, as you see that these 250 pieces are

represented as 20.83 percent under Fulfilled Progress. Again, the system didn’t post

anything, and this will stay as is until you run posting programs.

The last step in this case is issuing an invoice: you’re billing the customer. Similarly, as in

previous cases, an invoice RAI will be created in table FARR_RAI_MON, as shown in Figure 5.62.

Figure 5.62 Invoice RAI

Similar to the order case, this item has condition items, which makes perfect sense,

because you need to know if you invoiced more or less to customer. In this case, a discount

is given to the customer, and multiple condition types are available (each discount will get

a separate condition type). Once this item is processed, the item is moved from table

/1RA/0SD032MI to processed table /1RA/0SD034MI.

With the last step executed, you can go to the Contract Search app and check the contract,

as shown in Figure 5.63.

Figure 5.63 Contract Search after Invoicing

Now the system is showing the populated columns of Fulfilled Quantity and Invoiced

Quantity. These values are retrieved from the invoice, which was processed as SDII RAI.

Again, before running ABC programs, no postings will occur.

Customer Invoice Fulfillment

Next, let’s choose CI (Customer Invoice) as our event type (refer to Figure 5.51). Let’s

say you have a customer who walks into a shop to buy a phone and a service. Once he

selects a plan and a device, he signs a contract with a mobile provider. As a result, he is

given an invoice that he pays at the same time. The process flow is depicted in Figure 5.64.

Figure 5.64 Customer Invoice as a Fulfillment Event

Now, we discussed time-based fulfillment in Section 5.3.1, and it’s clear that the service

will be recognized over time, but what about the device? Again, it’s a good idea to look at

the IFRS 15 standard. Paragraph 31 of IFRS 15 states: “An entity shall recognize revenue

when the entity satisfies the POB by transferring a promised good or service (i.e., an asset)

to a customer. An asset is transferred when the customer obtains control of that asset.”

This means that the key word in recognizing revenue is "transfer of control" of the

promised asset.

Paragraph 33 of IFRS 15 states the following:

“Control of an asset refers to the ability to direct the use of, and obtain substantially all

of the remaining benefits from, the asset. Control includes the ability to prevent other

entities from directing the use of, and obtaining the benefits from, an asset. The benefits

of an asset are the potential cash flows (inflows or savings in outflows) that can be

obtained directly or indirectly in many ways.”

In other words, the customer also can benefit from having control over the asset.

So, in this case, you see that once the customer signs a contract, he can start using his

phone, has a physical possession, and is presented with an obligation to pay for the device

at the moment of receipt of the phone. All of these are clear indicators that revenue can be

recognized at that moment.

In this case, once you create a contract, you’ll get an order item in RAR that when

processed creates a contract. At the same time, an invoice item will be created to

represent both fulfillment and invoicing of the POB. So, in this case, all the events occur

simultaneously.

Telco Example

Our previous description is a classic postpaid example of bundles. You can see that here

we skipped providing the SDFI item to the system to do revenue recognition by

fulfillment, but went to invoice as the only event triggering it. Be careful if this example

fits the process you’re establishing: if for the device to function some additional time

must pass or some installment is pending, then the conclusion that the customer took

control over the asset needs to be looked at more closely. In that specific case, providing

fulfillment events that aren’t invoicing might be an additional challenge.

Proof of Delivery Fulfillment

Let’s move on to selecting PD (Proof of Delivery) as the Event Type (refer to

Figure 5.51). This fulfillment event is very similar to the goods issue fulfillment event. In

this case, you’re delivering goods to the customer, but, based on contractual terms, the

customer gets control over goods only at the moment when goods arrive at the warehouse,

as shown in Figure 5.65.

Figure 5.65 Proof of Delivery Process

You’re delivering goods, but because the customer still hasn’t taken control over the goods,

you can’t recognize revenue. Consequently, based on the principle that both revenue and

costs related to that revenue need to be recognized in the same period, you can’t

recognize COGS too and need to defer it (for this to work, cost recognition needs to be

enabled on the accounting principle and POB type levels). You’re also issuing invoices, and

revenue from the invoice will be reversed until you don’t get a document from the

customer of the logistics service provider (LSP) confirming that the customer took control

over goods, that is, proof of delivery. In that moment, you can reverse all deferrals and

recognize revenue and cost, respectively.

SAP follows this process to handle a proof of delivery:

The customers need to be marked as a proof of delivery relevant (in the Shipping

section for sales data in the sales order).

The item category to be used needs to be marked as a proof of delivery relevant.

In BRFplus, you need to set the POB type as valid for a proof of delivery: fulfillment type

needs to be event based, and event type is PD (Proof of Delivery).

Once the seller receives a proof of delivery from the LSP, it will be entered by Transaction

VLPOD, and fulfillment can occur. This process has many limitations, but there are two that

are most important: (1) You can’t perform invoicing until a proof of delivery is received, so

a pro forma invoice is sent for the customer to be able to pay or for goods to be transferred

over the border if there is an export process involved; and (2) you can handle logistic

process using different LSPs where some of them might send a proof of delivery, while

others might not. If a proof of delivery isn’t sent by the LSP, you need to go through the

enhancement process to determine or estimate the actual delivery date.

Percentage of Completion Event

Next, let’s select event type POC. This fulfillment type is used when revenue needs to be

recognized based on the progress of the project. The percentage of completion (POC)

method falls in line with IFRS 15, which indicates that revenue from POBs recognized over a

period of time should be based on the POC. The method recognizes revenues and expenses

in proportion to the completeness of the contracted project. It’s commonly measured

through the cost-to-cost method, which uses the following formula:

Percentage of completion (POC) = Costs incurred until date ÷ Total estimated costs

For example, if you estimate that your total costs to execute one project will be 100,000

and until today 15,000 has been incurred, POC is calculated as 15%.

POC as a fulfillment event works when you need to transfer an amount calculated for

revenue to be recognized to RAR from cost object controlling. The first important thing to

mention is that RAR itself doesn’t calculate anything; instead, it’s taking amounts

calculated from results analysis, which is represented by the results analysis key assigned

to the cost object (either a WBS element or an internal order), as shown in Figure 5.66.

Results analysis is working with planned costs and revenues that are posted to cost objects

for which you want to calculate POC. The results of calculation with results analysis keys

are work in progress (WIP) CoS, valuated revenue, and a few more different categories.

Once the calculation is done, settlement is performed to send these values to controlling

receivers (profitability analysis segments or sales orders).

There are two different scenarios when it comes to integration between RAR and results

analysis:

Perform results analysis that will transfer POC to RAR. In this case, WIP, CoS, and

valuated revenues are calculated and posted, which can be identified by business

transaction KABG in table COSB.

Perform a posting run in RAR. The actual adjustment will be posted in RAR and

automatically update valued revenue for RA. These line items can be identified with

business transaction KABE.

Figure 5.66 Percentage of Completion Method

A revenue-based valuation method (see Figure 5.67) is used in results analysis, as follows:

Perform a posting run in revenue accounting. This will post actual revenue adjustments

in controlling.

Perform the results analysis. All actual revenues, that is, standard invoices and revenue

adjustments from revenue accounting, are considered for the valuated revenues. All

valuated revenues are posted. You can identify each line item by business transaction

KABG.

Perform a settlement.

Figure 5.67 Revenue Method

RAR manages only revenue and revenue postings to financial accounting, while results

analysis is still managing costs, WIP, reserves, and postings to profitability analysis. For

posting to profitability analysis to occur, a proper version needs to be selected.

Depending on the business scenario, results analysis can be performed for a sales order,

WBS element, or internal order as a cost object. RAR supports two integration scenarios for

results analysis:

Cost-based

In the cost-based scenario, you’re comparing actual costs with plan costs and coming to

the POC.

Revenue-based

This method, unlike the previous one, is looking at revenues: planned revenue (which in

this case is equal to sales order value) needs to be compared to actual revenue (which is

equal to billing) and represents POC.

The results analysis method controls which formula is used to calculate the results analysis

data for the cost objects (sales document, project, and internal order). The results analysis

key will be part of the WBS element where POC is calculated. Setup can be found by

running Transaction OKG3 to arrive at the screen shown in Figure 5.68. By clicking the

Results Analysis Method field, you can see details about the results analysis key that is

defined and how values are calculated.

Figure 5.68 Maintenance of the Results Analysis Key

Let’s take a closer look at the underlying calculations for three key methods:

Method 03

Cost-based results analysis (results analysis method 03) will calculate costs and revenue

as follows:

POC = Actual costs ÷ Planned costs

Calculated revenue = POC × Planned revenue

Calculated costs = POC × Planned costs

Method 01

Revenue-based results analysis (results analysis method 01) will calculate costs and

revenue as follows:

POC = Actual revenues ÷ Planned revenues

Calculated revenue = POC × Planned revenue

Method 09

Completed contract method (results analysis method 09) will calculate costs and revenue

as follows:

Calculated costs = POC × Planned costs

Until the contract is completed (status TECO), the project won’t settle the costs and

revenues. When it comes to setup, POB Type needs to be defined as POC relevant (see

Figure 5.69).

Figure 5.69 Definition of the POB Type

The next step is to perform integration between results analysis and revenue accounting by

executing Transaction FARR_IMG and going to menu path Revenue Accounting •

Integration with Cost Object Controlling.

In project-related business processes, it’s common that planning is performed in several

versions before it’s finalized. The same goes for currencies: a company can have multiple

currency types in which it’s working (local, group, and so on). In this step, it’s necessary to

indicate which version and currency type will be used for integration with RAR.

To access that Customizing step, there is no Customizing node, but you need to access the

table where these values are kept. To do so, execute Transaction SM30 and enter view

V_TKKA_RR_AC. In this view, as shown in Figure 5.70, select New Entries, and maintain all

company codes (CoCd) with versions (RAVn), controlling area (COAr), and currency types

(CC) to be considered.

Figure 5.70 Customizing Results Analysis: Version Relevancy

The next step to maintain is the integration of results analysis keys and RAR; you’ll

approach that in a similar way by maintaining view V_TKKA_RR_ME. Once the view is entered,

as shown in Figure 5.71, you need to link the different results analysis keys and how they

integrate with RAR. In the integration method (IntMeth) dropdown, select option 1 PoC-

Based Integration, which means the cost method is used with the calculation of the RAR

POC. In addition, option 3 means revenue method.

Figure 5.71 Customizing Results Analysis: Key Relevancy

Other Fulfillment Events

RAR provides many additional event types we could look at to determine how they fit

customer requirements. Referring back to Figure 5.51, we’ll highlight a few of the most

important additional types in this section:

RO Contract Release Order – Call Off

Used in cases when a customer signs a contract that specifies only the total quantity that

will be delivered, but details are missing. In this case, an additional sales order will be

created to specify the exact quantity delivered. Another option when the RO fulfillment

type might be useful is when you’re dealing with the consignment process. For this

delivery to work, specific customizing needs to be integrated with sales and distribution

(see Figure 5.72), which is beyond the scope of this book.

Figure 5.72 Setup for Event Type RO

Once this is set, you need to maintain the proper fulfillment type (RO) in BRFplus POB

type determination tables. Note that the RO fulfillment type works only for quantity-

relevant materials—services can’t be recognized with it.

AD Acceptance Date

In some cases, the customer needs to separately confirm that the goods delivered fit

their expectations. In this case, a separate update to the sales order will be provided

with this date. Similar to previous cases, revenue and cost, if necessary, will be deferred

until this date is provided.

MA Manual Fulfillment

In some cases, there is no possibility to use any trigger for revenue recognition except

manually determining the amount of revenue to be recognized. Fulfillment can be done

in total or as delta fulfillment. In addition, manual fulfillment can be useful as a source for

any custom fulfillment event the customer might create.

5.4 Modifying Contracts

Contract modification refers to the changes made to a contract during its lifetime. Contract

modifications are covered in detail in the standard, where two main contract modification

options are included: (1) contract modification that comes as a change in scope and/or

price (or both), and (2) change of estimates when any subsequent change in the

transactional price will be allocated to the contract in the same way as at contract

inception. According to article 18 of IFRS 15, a contract modification is a change in the

scope or price (or both) of a contract that is approved by the parties to the contract.

A contract modification exists when the parties to a contract approve a modification that

either creates new or changes the existing enforceable rights and obligations of the parties

to the contract. To enable contract modifications in the system, you need to enable it on

the accounting principle level (Section 5.1.2). As shown in Figure 5.73, you can select the

Cont. Mod. checkbox.

Figure 5.73 Enabling Contract Change

In the following sections, we’ll discuss your options for modifying contracts, including a few

important scenarios.

5.4.1 Prospective or Retrospective

There are three types of contract modifications:

Contract modification – prospective change

Modification that is accounted for same way as an entity would terminate a contract and

create a new one with the remaining distinct goods and services.

Contract modification – retrospective change

Modification is accounted for as change to an already recognized revenue (increase or

reduction) at the moment of contract modification in the form of a cumulative catchup.

Contract modification – mixed change

Modification represents reallocation between remaining unit-distinct and non-unit-distinct

parts.

One of the most important things to do while determining the change type is to determine

whether the POB is unit distinct or not. This can be determined by BRFplus decision table

DT_PROCESS_POB, and you can change this directly while managing a contract.

Contract change will be automatically triggered only if some of the data gets changed in

the contract:

Price of any element is changed.

POBs are deleted or added.

Quantity of event-based POBs is changed.

Start/end date of time-based POBs is changed.

This means that only modifications that trigger contract reallocation are considered as

contract changes. For example, changing a POB name won’t trigger the modification

process.

Each time a contract change should be executed, the system goes through the following

steps:

1. Checks if the modification option is allowed for the accounting principle

2. Checks if the change type is specified in the UI (e.g., the data you’ve supplied

supersedes that provided by a BAdI)

3. Checks what change type was supplied by the BAdI

We’ll explain the process flow for prospective changes and retrospective changes in the

following sections.

Prospective Changes

Prospective change is where the system is trying to apply change only to remaining periods

when the contract is active—it doesn’t change the past. Before the change is applied, the

system calculates the remaining SSP and remaining transaction price using the following

formula:

Remaining SSP = SSP × (1 – Fulfillment percentage)

OR

Remaining SSP = SSP × (1 – Fulfilled period/Duration)

Remaining transactional price = Total contractual price – Recognized revenue of unit-

distinct POB

Let’s apply this formula in an example, as shown in Table 5.13.

POB POB

Name

Contractual

Price

SSP

(Total)

Start

Date

End Date Allocation

Percentage

Allocation

Amount

18047 Device - 500.00 29% 352.94

18048 Service 1,200.00 1,200.00 1/24/2017 1/23/2018 71% 847.06

Total 1,700.00 1,200.00

Table 5.13 Contract with Two POBs

Here, there are two POBs in one contract. One POB is event based, and the other one is to

be recognized over time. Based on SSP ratios, the system calculates the allocation ratio,

which provides in return the amount of revenue given to each POB. Device revenue will be

recognized as point in time while service revenue will be recognized over time.

Now, the customer is changing service on February 13 without a contract extension.

Calculation of revenue to be recognized is shown in Table 5.14.

POB 18047 18048 10849 Total

POB Name Device Service Service

Original Contractual Price – 1200.00 2266.67 3466.67

Original Allocation Amount 352.94 847.06

Recognized Revenue 352.94 16.47 369.41

Balance Contractual Price – 830.59

Incremental Transactional Price (1,133.33) (1,133.33)

Revised Transactional Price 66.67 2,266.67 2,333.34

Revised Transactional Price Minus

Posted Revenue (for Allocation)

(352.94) 50.20 2,266.67 1,963.92

SSP (Total) 500.00 66.67 2,266.67 2,833.34

Number of Days N/A 20 340 360

Table 5.14 Contract after Modification

Let’s look at each item separately:

Recognized revenue

This has been recognized as of the last posting period and is determined by two POBs:

18047: Device (event-based), all revenue is recognized as event fulfilled.

18048: Service (time-based), following this formula:

(Service allocation revenue ÷ Days of contract) × Days revenue recognized in the

month = Recognized revenue

So, for this example, (847.06 ÷ 360) × 7 = 16.47.

The contract term is 360 days, and the contract start date is January 24, 2017. The

business has chosen to calculate on a 360-day fiscal year as the deferral method.

Balance contractual price

The balance contractual price is the result of the original allocation amount – the

recognized revenue.

Incremental transactional price

The incremental transactional price is the result of the original contractual price – the

revised transactional price.

Revised transactional price

The revised transactional price is the result of the (original contractual price ÷ 360) × 20,

where

360 = days in contract

20 = 7 days of January recognized and 13 days of February (last day of modification)

Revised transactional price less posted revenue for allocation

This is the result of the revised transactional price – the recognized revenue.

SSP

For the service POB, you need both prices—original and updated—for time that the

service was used and for the device POB original amount only.

Number of days

Number of days from the contract start date till the date of modification. For our

example, this looks like the following:

Old service = (7 days of January) + (13 days of February) = 20 days

New service = 360 days – 20 days = 340 days

In Table 5.15, you can see how the system calculates prorated amounts once the service

gets modified.

Service Service

(Used)

Service

(New)

Total

SSP (Total) 500.00 66.67 2,266.67 2,833.34

Number of Days N/A 20 340 360

Revised SSP/Day 3.33 6.67

SSP for Period of Posted Revenue 500.00 23.33 –

Balance Revised SSP – 43.33 2,266.67 2,310.00

Total Revised SSP 500.00 66.67 2,266.67

Revised Allocation Transactional Price

(without Recognized Revenue)

– 36.84 1,927.08 1,963.92

Recognized Revenue 352.94 16.47

Revised Allocated Transactional Price 352.94 53.31 1,927.08 2,333.34

Table 5.15 Contract after Modification: Final

Let’s go through these items as well:

Revised SSP/day = 66.67 ÷ 20 = 3.33. Device isn’t part of this calculation as it has been

fully fulfilled.

SSP for the period of posted revenue:

Device = Full SSP

Old service = Revised SSP/day × 7 = 3.33

New service = Not posted yet, hence blank

Balance revised SSP = SSP (total) – SSP for period of posted revenue

Total revised SSP:

Device = Full as is recognized already

Old service POB = 66.67 (Revised SSP total)

New service POB = 2,266.67 (Revised SSP total)

Revised allocated transactional price without recognized revenue:

Old service POB = (43.33 ÷ 2266.67) × 1963.62 × (Total of revised transactional price

less posted revenue column)

New service POB = (2266.67 ÷ 2310) × 1963.62

Recognized revenue:

352.94 = Original allocated revenue for Jan for device

16.47 = Prorated allocated revenue for Jan for old service

Revised allocated transactional price = revised allocation transactional price (without

recognized revenue) + recognized revenue

Figure 5.74 shows the numbers RAR provides in return after modification is processed.

Figure 5.74 RAR Computation after Modification

Retrospective Changes

Opposite to prospective change, retrospective change occurs on partially fulfilled POBs of

which fulfillments aren’t unit distinct. When there are no POBs with unit-distinct fulfillment

or all POBs with unit-distinct fulfillment are fully fulfilled, the system applies retrospective

changes to the contract. When applying a retrospective change, the system will perform

the following calculations:

Remaining standalone selling price = SSP

Remaining price = Total contractual price

Catchup = (Allocated price – Allocated remaining price) × Fulfillment percentage

Here you see that for retrospective changes, the system calculates cumulative catchup,

which represents correction to revenue that is already reported. You can see how

calculation works in the example shown in Table 5.16.

Contractual

Price

SSP Allocation Fulfillment

Percentage

Recognized

Revenue

POB

1

2,000.00 2,000.00 2,000.00 100% 2,000.00

POB

2

200.00 200.00 200.00 20% 40.00

POB

3

500.00 500.00 500.00 30% 150.00

Total 2,700.00 2,700.00 2,700.00 2,190.00

Table 5.16 Retrospective Change Example

Here you have three POBs in a contract where the first POB is completely fulfilled and the

other two only partially. Then, the contractual price and SSP of POB 3 are raised to EUR 600

and EUR 600. The system applies a retrospective change by calculating the remaining SSPs

and uses them to reallocate prices of the remaining contractual price. The remaining SSPs

are calculated in the following way:

Remaining SSPs = SSP

The remaining price is the contractual price of all partially fulfilled POBs of which fulfillment

isn’t unit distinct. The system redistributes the remaining price to POBs in proportion to

their remaining SSPs. The catchup is calculated in the following way:

Catchup = (Allocated price – Allocated remaining price) × Fulfillment percentage

The result of how catchup is calculated is showed in Table 5.17.

POB 1 POB 2 POB 3 Total

Calculated Price 2,000.00 200.00 600.00 2,700.00

SSP 2,000.00 200.00 600.00 2,700.00

Allocation 2,000.00 200.00 600.00 2,700.00

Fulfillment Percentage 100% 20% 30%

Recognized Revenue 2,000.00 40.00 150.00 2,190.00

Remaining Price 800.00

Remaining SSP 0 200.00 600.00 800.00

Allocated Remaining Price 200.00 600.00 800.00

Catchup 30.00 300.00

Table 5.17 Retrospective Change with Catchup

Standard versus Modification

RAR has a list of changes that are automatically used to trigger either prospective or

retrospective change. Depending on the version, this list might differ but, for example,

change of the SSP or start date of time-based POBs will always trigger retrospective

change, while adding a quantity or extending a duration of POBs will trigger prospective

modification.

You may be tempted to modify this behavior simply because of the accounting treatment

of retrospective change: all effects will be cumulated in the currently open period with

catchup. SAP provides BAdI FARR_CHANGE_MODE_DETERMINATION for you to use if you feel that

the standard needs to be enhanced. However, be very careful before using this BAdI

because results might be unpredictable. For example, adding a POB with a big SSP in a

contract with a very small amount of remaining SSP will trigger reallocation of that big

portion of revenue to the remaining POBs, whereas retrospective change in this case

would give more reasonable results.

5.4.2 Contract Combination

Contract combination is a process where you merge several contracts to create a single

contract. Before looking at options from SAP, let’s discuss how contract combination needs

to be performed. The contract combination process is tightly tied to the process of

identifying a deal. Different sales documents need to be combined, and arrangement needs

to be looked at as a whole if one or more of the following are met:

Different contracts are negotiated with a single commercial objective.

Payment in one contract depends on performance defined in another one.

Goods or services promised in contracts are single POBs.

To add to the preceding criteria, there is also the time component: the decision regarding

whether contracts will be combined under the same IFRS 15 contract is made at contract

inception, and contracts need to be created in nearly same time, which can vary from days

to months depending on the company.

There are several points that need to be addressed:

Contracts that are part of the same deal and addressing the same customer

Contracts entered in almost the same time

Contracts that have a single POB spread across them

In RAR, you can get many documents that represent sales or agreements about sales with

customers. You can have framework agreements, master contracts, sales orders, and so

on. Each of them can represent a deal at a different point in time. Let’s look at one simple

example in Figure 5.75.

You have one framework agreement with a customer where you agreed on the total value

or quantity of goods that need to be delivered in a certain time. However, in each sales

order, you’re applying different discounts: the first one applies only a 10% discount

because the customer purchased product A, but in the second order, a 20% discount is

applied because the customer also bought product B with product A.

Figure 5.75 Contract Combination Rules

So, does this case suffice to be treated as a contract combination? The answer is no. Even

if you have a framework agreement that binds together sales orders, it’s clear that

negotiation happens on the level of each sales order separately. All of these contracts,

even if they have the same framework agreement behind them, need to be accounted for

as separate contracts.

Figure 5.76 depicts a very similar situation. We’re signing an agreement on the level of the

group of hospitals, and, based on that agreement, we’re agreeing on certain terms and

conditions. In this example, because an agreement has been signed for all hospitals that

are members of groups XYZ, we agreed that unified discounts will be applied across all

orders. In this case, the answer to whether should these contracts be combined is yes

because it’s clear that terms and conditions are applied on the framework agreement level

(or some other document), and all documents that will be created with reference to this

agreement need to belong to the same IFRS 15 contract.

The next question is about the customer. The previous example might be used to explain

complexity that can happen around even something that is considered relatively simple.

So, who is our customer?

A customer is usually retrieved from a specific partner as defined in the sales document.

There are a few standard parties (e.g., sold to, ship to, payer), but it also isn’t uncommon

to have custom partner functions defined too.

We’re signing an agreement (or deal) with the hospital group, which is represented as

business partner XYZ. Each sales order (or sales contract) sent to each hospital can have a

different customer given, and you can even have a third, such as a partner to whom you’re

shipping. To complicate it further, all these invoices can be paid by different parties: they

can be paid centrally by the hospital group or by the hospital itself.

Figure 5.76 Contract Combination Group Level

RAR is rather straightforward here because a customer in the IFRS 15 contract system will

pick up the customer with business function payer. One more limitation is that one contract

can have only one customer, so there are no partner functions in RAR.

The third topic to mention is the timing of contract creation. The standard states that

contracts created at nearly the same time need to be combined. Nearly the same time can

be understood by different companies in different ways, ranging from the same day to

several months.

As an example, the company enters into two contracts, A and B, with the same customer

within 15 days of each other. Company policy considers 30 days as “near the same time,”

so these two contracts will form a contract combination and will need to be accounted for

(allocations made) as a single contract. Now 90 days later, another contract, C, is sold to

the same customer, which adds more products to contract A. This isn’t within the 30-day

policy so it doesn’t need to be combined; however, if contract C isn’t sold at SSP, then it

forms a contract modification. This modification must be accounted for along with the prior

two combined contracts, and allocations must be changed accordingly. This would not have

been the case prior to IFRS 15, so there is a clear impact on revenue recognized.

All of these things need to be assessed and accounted for before implementing RAR. Clear

rules should exist about when contracts will be combined and when contract modification

will be applied.

SAP provides you with options to do manual and automated contract combinations. When it

comes to automated combination, all contracts that have the same customer and

reference ID populated will be automatically combined. The Cust. Reference field usually

contains the customer purchase order number (see Figure 5.77).

If we’re talking about integration with sales and distribution, the reference ID will be

retrieved from the customer reference field in the sales document (table field BSTKD).

However, usage of the Cust. Reference field is sometimes not enough, so you need to

perform contract combination manually. To do this, you can use the Run Revenue Search

app.

Figure 5.77 Combination Rules

There are two options available for a contract combination: Perform Contract

Combination and Quick Combine. Let’s start with the Perform Contract Combination

option. You’ll first need to select the contracts you’d like to combine on the following

screen, as shown in Figure 5.78. Enter the contracts in the Revenue Accounting

Contract field and press (Enter) to view them in the Result List.

Figure 5.78 Selection of Contracts

After clicking Perform Contract Combination, the Set Parameters popup will appear,

as shown in Figure 5.79. Change Type determines whether the contract combination will

be treated as a retrospective (Contract Modification) or prospective (Change of

Estimates) change. If prospective, you need to enter the Effective Date when it’s

becoming active.

Figure 5.79 Change Type Selection

After making your selections, press (Enter), and you’ll get list of POBs to be combined, as

shown in Figure 5.80. Click the Combine Contracts button to create one contract.

Figure 5.80 Selection of POBs for Combination

For the Quick Combine method, you only have one option: what you’re creating as a new

contract, and the system will take all POBs from both into one. The difference between

quick combine and regular combination is that in quick combine, all POBs from one

contract will be merged into another, so you can’t choose partial combination.

Figure 5.81 shows the screen for selecting your target contract for a quick combination,

which can either be the top contract or a new contract that you create.

Figure 5.81 Quick Combine

However, if you want to automatize contract combinations, you need to do some

development. There is a standard solution for this which SAP has provided in standard class

CL_FARR_RAI2_BADI_IMPL, called automatic contract combination.

Run Transaction SE18, and search for the BAdI. The standard class has method

COMBINE_CONTRACT, as shown in Figure 5.82 with its parameters.

Figure 5.82 Standard Class for Contract Combination

The parameters have importing table IT_RAW_POB, which is of type FARR_TT_RAW_POB,

which is the table type for structure type FARR_S_RAW_POB.

The reference ID and reference type fields from the importing parameter IT_RAW_POB are

the crucial fields for contract combination. The RAIs that have the same reference ID and

reference type are combined into a single revenue accounting contract and processed

together. There is logic for combing the contracts based on this factor in the

COMBINE_CONTRACT method. The method is called for both the initial load during migration and

for the productive run. You can view the source code by double-clicking on the method, as

shown in Figure 5.83.

Figure 5.83 Combine Contract Method

Figure 5.84 shows the logic behind this method. You see that there are two methods called

inside method IF_FARR_RAI2_CONTR_COMB~COMBINE_CONTRACT: COMBINE_INITIAL_LOAD and COMBINE. We’ll

discuss the details of that next.

Figure 5.84 Logic for Contract Combination

Details of the methods called are explained as follows:

Method COMBINE_INITIAL_LOAD: Initial load during migration

Method COMBINE_INITIAL_LOAD combines all the entries in the IT_RAW_POB that have the same

value in fields REFERENCEID, REFERENCE TYPE, and MIGRATION PACKAGE. They are grouped together

in the single revenue accounting contract. As a new combination of these three fields is

found, then a new revenue accounting contract number is generated, and they are

combined. In this method, there is no selection from table FARR_D_MAPPING because this is

the migration run.

Method COMBINE: Productive run combination

In the productive run for method COMBINE, all the items of importing parameter IT_RAW_POB

are grouped together and have the same value for fields REFERENCEID, REFERENCE TYPE, and

ACCOUNTING PRINCIPLE. This set is then checked to see if there are already corresponding

entries in table FARR_D_MAPPING for the field combination. If there are entries in the

mapping table, then those entries are assigned the same revenue accounting contract

number. If there are no entries found in table FARR_D_MAPPING, then for this new

combination of fields REFERENCEID, REFERENCE TYPE, and ACCOUNTING PRINCIPLE, a new revenue

accounting ContractId is created and assigned.

These methods use the reference ID, reference type, and accounting principle for grouping

the RAIs for contract combination. There will be situations where you’ll need to group RAIs

based on different fields. That is when you have to perform contract combinations based

on other standard fields or even customer fields other than the reference ID, reference

type, and accounting principle. To handle this requirement, you have the option of using

enhancement spot FARR_ARL in which you have BAdI definition FARR_BADI_CONTRACT_COMBINATION.

Enhancement spot FARR_ARL has four BAdI definitions of which three have already been

discussed in Chapter 4, Section 4.6, so we’ll discuss the one we missed here. We’ll look into

the details of that BAdI in Table 5.18.

BAdI Definition Enhancement

Spot

Interface Description Point

Which

It’s

Called

FARR_BADI_CONTRACT_COMBINATION FARR_ARL IF_FARR_RAI2_CONTR_COMB Determine

contract ID

per RAI

Execut

during

proces

of RAIs

Table 5.18 Details of the BAdI Definition

Enhancement spot FARR_ARL and BAdI FARR_BADI_CONTRACT_COMBINATION can be implemented

using the general implementation steps. This BAdI is executed during processing of RAIs.

It’s only called for order item RAIs and only as long as no POB exists in the results analysis

engine that represents this order item.

Go to Transaction SE18, enter the enhancement spot as “FARR_ARL”, and then click on

Display to see this BAdI definition. When you double-click on BAdI interface

IF_FARR_RAI2_CONTR_COMB (not shown), you can see that there is only one method:

COMBINE_CONTRACT with signature and import/export parameters, as shown in

Figure 5.85.

Figure 5.85 Method COMBINE_CONTRACT

This method is executed before RAIs of the order item type are processed.

You can see that it matches with parameters of the standard method for contract

combination as explained previously. Importing table IT_RAW_POB has structure type

FARR_S_RAW_POB.

Custom fields are also available for you to use in your combining logic. You can implement

any required logic to combine the RAIs per your requirement to have the same revenue

accounting contract ID. The IT_MAPPING parameter has all table FARR_D_MAPPING entries relevant

for this set of entries, so you can validate the new combination with the mapping table

entries and assign the same revenue accounting contract ID if available; otherwise, you can

create a new one and use it further.

5.4.3 Terminating Contracts

To define a contract, it needs to be enforceable. In many cases that means the party who

decides to leave the contract before its expiry will suffer some kind of consequences. When

one of the parties decides to cancel the contract before its time, this is a special case of

contract modification called contract termination.

If the customer decides to do this, there must be some consequences, which depend on

the type of contract (did it include only goods or a combination of goods and services?) and

the type of process that will follow after the contract is terminated (e.g., will there be

returns if goods are involved, is there some kind of termination fee to be paid, etc.).

In the standard itself, contract termination isn’t covered separately because of the different

nature or different terms and conditions that each contract might have. It’s mentioned in

part with the enforceability of payments and in general in parts of contract modifications.

In addition, the standard is more or less silent when it comes to financial presentations of

P&L effects that might occur after the contract is terminated.

Overall, in case of early termination, the entity needs any kind of P&L effect that exists for

the future (either contract asset or contract liability) to transfer as a current P&L effect,

which is then called an impairment effect. The same rules apply for both revenue and cost.

To understand what impairment is and how it’s calculated, let’s look at one simple

example: a customer enters into a contract with a Telco company for 24 months for a

service and a device. The calculation of revenue recognized looks like Table 5.19.

POB Transactional

Price

SSP Allocation

%

Allocated

Amount

Point in

Time

Monthly

Revenue

Contrac

Asset

Device 1.00 2,000.00 50% 1,000.50 1,000.50 958.81

Service 2,000.00 2,000.00 50% 1,000.50 41.69

Total 2,001.00 4,000.00 100% 2,001.00

Table 5.19 Contract Termination Calculation

In this simplified case, you see that because both device and service have SSPs that are

equal, the amount of revenue allocated to them will be same. Because we’re recognizing

revenue that is allocated to the POB immediately (as a point in time), the whole amount

will be represented as a contract asset. However, revenue that is allocated to service will

be recognized as over time, equally for the whole duration of the contract. Accounting

wise, this means that this revenue will offset contract assets until the end of the contract

when assets will be zero. In essence, contract assets in this case represent future service

revenue that will be recognized.

What happens when a customer can’t honor their contract? In this case, you need to

balance contract assets to zero because you’re not expecting any more future revenue.

The correct thing to do here is to repost whatever the outstanding balance is on the

contract asset side to P&L as an impairment cost.

What about Termination Fees?

From the previous example, it’s clear that if a customer decides to walk away from the

contract, there will be a P&L impact for a service provider. Usually, in the contract, there

is a term regarding the fee the customer needs to pay if he decides to cancel the

contract early. Now the question is should you include those fees as part of the contract

or as a separate POB. Though this would be technically possible (still, technical

integration for fulfilling that POB might be challenging), the business feasibility of doing it

would be questioned. Remember that the standard doesn’t give any clear guidance when

it comes to recording termination fees, so the best solution is to not complicate the

design further by including it in the contract.

Early termination in RAR starts by configuring proper BRFplus decision tables. Open

application for account assignment (YFARR_ACC_DETERMINE), as shown in Figure 5.86.

Figure 5.86 Early Termination Account Determination

Scroll to decision table FARR_ACCT_DETERMINE_DT_ASST_IM. Here you need to make a

mapping between the company code (COMPANY_CODE) and general ledger account

(GL_ACCOUNT) that will be used as a termination impairment account.

Once you’re done with account determination, you need to look at the process. If the client

is using integration with sales and distribution, the event for termination will come from the

sales document. Here, you need to use the cancellation procedure in the Termination tab

of the sales document, together with the cancellation date to represent that the whole

document is terminated.

When such a document is processed, you’ll receive RAIs created with populated data that

includes the early termination (Early Term) flag, as shown in Figure 5.87, and the

termination date.

Figure 5.87 Transaction FARR_RAI_MON with Terminated Items

Once you process these RAIs, the terminated contract in RAR will be updated. However,

there will be no additional postings happening until you run program B—calculate contract

liability (see Chapter 6). At that moment you run that program, table FARR_D_POSTING will get

updated with the necessary information, and the finance document is ready to be created.

Figure 5.88 shows the content of table FARR_D_POSTING after the ABC programs are run. CA

and CL were balanced to zero, and there is a new category, AI, which contains the

impairment value.

Following is list of things to have in mind while executing early termination:

All RAIs will have the same value for the Early Term flag, which means either all or none

are marked as early terminated.

All RAIs with the Early Term flag will have the same effective date. This effective date is

used to determine the end date of the revenue contract.

The effective date can’t fall within a closed period.

The effective date is taken as the early termination date.

When the early termination occurs on a revenue contract, revenue is recognized up to

the effective date of the early termination. If there has been revenue recognized after

(including) the early termination date, the revenue recognition is reversed.

Figure 5.88 Termination Postings

Afterward, the revenue contract information is updated as follows:

The contractual price of the POB is adjusted to the recognized revenue on the pricing

conditions of the POB (except the allocation difference condition).

The allocated amount is the cumulative recognized revenue of the POB (all price

conditions, including allocation difference).

For time-based POBs, the end date is updated to the effective date minus 1.

An entry is recorded in table FARR_D_POB_CTYPE for all POBs with the prospective change type.

5.4.4 Contract Freeze

Freezing a contract is one of the options that often exists between seller and customer,

especially in subscription-based businesses. For example, users are often given an option

to suspend or freeze a contract for a certain period of time during the contract duration.

This process has different names depending on the line of business: contract freeze or

contract suspension. This process can be, but isn’t necessarily, followed by contract

extension for the same time that the contract was suspended (see Figure 5.89).

Telco Example

Often in some countries, especially where expats represent a large number of total users

of services, there is an option that one or more times during the contract duration,

services are suspended, meaning that the subscription is put on hold. This process is

then resumed by extending the same number of months for the existing contract.

However, if a customer is unable to pay, then for a certain period, their services will be

suspended, but the contract won’t be extended for that period. So, the extension of the

contract is an option, not a regular case, when it comes to contract suspensions.

Once the user signs the contract establishing that the service they subscribe to will be

delivered over time where they pay for and consume the service simultaneously, this again

means revenue will be recognized as time based. Now, after six months of using a service,

the customer is opting for a contract suspension for two months because they have no

need for it in the mentioned period. The company decides to extend their contract for the

same time, and during the period of suspension, the customer is unable to use their

service, meaning that revenue can’t be recognized for that time.

Figure 5.89 Contract Freeze Process with Extension

If the SAP freeze/unfreeze functionality is used, then no contract changes will be created.

The Simple Object Access Protocol (SOAP) service called Finance Freeze Period – Apply only

adjusts the fulfillments of the time-based POBs and doesn’t change the contractual price of

the POB-related or allocation-related fields. After freeze periods have been applied, the

number of fulfillment days is recalculated considering the freeze periods, and the revenue

is updated accordingly.

Before we go into how the freeze/unfreeze functionality is implemented, there are certain

rules that need to be followed:

Deferral method

It’s strongly recommended to use deferral method 1 due to differences in calculation that

can occur, as shown in Table 5.20.

Here you have a period that got frozen on 02.20. Because every month is calculated as

the real number of days, you have days calculated as frozen, which exactly matches the

number of days the contract wasn’t used (in this case, 9 because on 03.01, service was

resumed).

Start Date 01.01.2023

End Date 12.31.2023

Freeze Date 02.20.2023

Unfreeze Date 03.01.2023

Number of Days Frozen 02.28 – 02.20 = 9 (20th included)

Table 5.20 Freeze Periods with Deferral Method 1

Now, in Table 5.21, using deferral method 2, you treat all months as 30 days (equally).

Therefore, what you get when you implement the same freeze as in the previous case is

two extra days because those days were when service wasn’t used. This is due to the

fact that every month is treated as 30 days, so you get 11 as a result.

Start Date 01.01.2023

End Date 12.31.2023

Freeze Date 02.20.2023

Unfreeze Date 03.01.2023

Number of Days Frozen 02.30 – 02.20 = 11 (every month = 30)

Table 5.21 Freeze with Deferral Method 2

Start date

The POB start date must not be empty (important to remember when you define the

time-based POB type).

Overlapping periods

Freeze periods for the same POB must not overlap. For example, it’s not allowed to have

freeze and unfreeze in the same period.

Prospective changes

If a new freeze period is created, it must be after any date of prospective change.

Processing

The API for processing freeze dates must be run after all RAIs are processed because

contract modification can be triggered by them.

To implement the freeze/unfreeze functionality, you need to implement SOAP service

RevenueAccountingContractSetFreezePeriodsIn. To do so, the first step is to run Transaction

SOAMANAGER, which takes you to the screen shown in Figure 5.90.

Figure 5.90 Transaction SOAMANAGER for the Freeze Service

If you switch to the Internal View tab, as shown in Figure 5.91, you’ll find all the details

that need to be sent from the source system so the service can be used.

Figure 5.91 Services Available

Most important is that the source system also manages identification of POBs and is able to

send data in the needed format by web service. Once the freeze data is processed, it will

be saved in table FARR_D_POB_FRZ.

Freeze in Classic Contract Management

The freeze functionality was introduced and came with OCM, so it’s not available in

classic environments. The question is, what do you do when you need to handle freeze

periods in CCM? You have two options. The first is that it will work with contract

modification options (e.g., when the service is on suspend mode, it will have an end date,

and later the new POB will be created with the new start date that will be equal to the

unsuspend date). Revenue recognition won’t be executed for that time, but it will happen

by triggering prospective contract modification.

Another option that is much more complicated is the creation of a customer deferral

method to handle freeze periods. Here, you need to be extremely careful because

creation of custom deferral methods is one of the most sensitive enhancements that can

be performed in RAR.

5.5 Handling Price Allocations

Once you introduce the SSP into the engine, there will be a

change of revenue given to each POB, which is referred to

as allocation. In this section, we’ll describe how the

allocation engine works because it’s one of the most

important areas of RAR as a tool for satisfying IFRS 15/ASC

606 requirements.

The allocation engine is the core of RAR’s method for

allocating the transaction price to the POBs. The engine

provides proper amounts calculated to the POBs and plans

how these POBs are fulfilled. The result of the allocation

engine’s work is shown in Table 5.22.

Device Service Total

Transactional Price 100 2,400 2,500

SSP 1,000 2,400 3,400

Allocated Percentage 29.41 70.59 100

Allocated Revenue 735.29 70.59 100

Allocation Effect 635.29 –635.29 0.00

Point in Time 735.29

Monthly Revenue 73.53

Start Date 05.01.2023

End Date 04.01.2025

Device Service Total

Revenue First Month 735.29 63.73 799.02

Billing Amount 100 100 200

IFRS 15 Correction -635.29 36.27 -599.02

Table 5.22 Allocation of Transactional Price to POBs

The system first compares SSPs and gives a portion of the

transactional price that should be given to each POB.

Besides this, the ratio is calculated of what portion of total

revenue is given to each POB. This amount is compared to

the transactional price to calculate the allocation effect,

which represents how much or how little revenue POBs will

get compared to what you’ll bill the customer. The allocation

effect must be zero at the end because you can recognize

more than the transactional price.

The last step in allocation is calculation of spreading, that is,

how revenue will be recognized over time. In this case, the

system separates event-based POBs from time-based POBs.

With event-based POBs, revenue will be recognized at the

point in time, and time-based POBs will have a revenue

schedule.

POBs can be excluded from allocation in two ways:

SSP of a POB is equal to 0. In this case, the formula for

allocating revenue gives 0 as a result (SSP ÷ Total SSP ×

Total transactional price).

POBs can be excluded from allocation either manually or

by setup. See Section 5.2.1 for details.

In Figure 5.92, you can see the results after allocation. The

system will show you Contractual Price (the amount that

is allocated), Allocated Amount to specific POBs (amount

according to SSP), and Allocation Effect (the difference

between these two).

Figure 5.92 Allocation Results

5.6 Summary

In this chapter, we covered topics spanning the complete

lifecycle of a contract: starting from configuration, real-life

examples, and examples with developments that are

commonly used. This idea was to present the complexity of

setting up RAR in an environment where IFRS 15 needs to

be reported. The key message here is that all the topics

need to be looked at first from a business point of view to

determine how the contract should be defined, whether

contract modification is necessary, and what the POB types

and fulfillment events are. Later we put it together with

what kind of setup is needed to be performed for these

requirements to be met and, if necessary, examples of

developments.

All of this gives a comprehensive picture of how basic things

such as setting up contracts and POBs are key points in your

IFRS 15 project. It can’t be done in a silo where the business

team is giving a requirement, and IT will simply execute a

configuration. It requires business understanding from IT,

but also understanding of how the engine works from the

business side. This is the only way you can ensure that

results are according to expectations and the setup isn’t too

complex.

A key part is the use of enhancements in the standard

setup. SAP provides a lot of options to extend how the

engine works, but special attention is needed before you

decide to use them. We gave an example wherever

possible, along with warnings about when these

enhancement options should be used with extra care.

In the next chapter, we’ll continue by covering RAR posting

and reporting options.

6 Revenue Posting and Reporting

So far, we’ve covered revenue recognition topics from the beginning: forming

contracts, determining performance obligations (POBs), and calculating

allocated revenue. Now that these activities are completed, we’re ready to

take the final steps: creating the documents that will represent the postings

of our calculated revenue.

In this chapter, we’ll focus on the revenue accounting and reporting (RAR)

functionality in SAP S/4HANA from the end user perspective. We’ll start by walking

through key reporting concepts for revenue recognition. Then, we’ll provide step-

by-step guidance for posting using ABC programs, reconciliation with the Universal

Journal, and integration with profitability analysis. We’ll round out this chapter with

information on revenue recognition reporting with SAP S/4HANA, including the

latest tools such as SAP Fiori apps and core data services (CDS) views.

6.1 Basics of Reporting and Calculations

Before explaining revenue recognition posting logic in detail, it’s important to start

with the basic setup. Posting logic is determined in two places:

BRFplus for account determination

Additional specifications needed for making postings in some specific situations

But first, you need to understand how posting logic works and which settings are

made at what step to make posting successful. Several sets of accounts are used

to come up with International Financial Reporting Standards (IFRS) 15 revenue. We

can start by explaining the basics of how posting works, which will be covered by a

detailed walk-through in the following sections.

6.1.1 Posting Logic

RAR is primarily focused on calculating results: once data is calculated, it’s stored

in table FARR_D_POSTING, which is the staging area for data before it’s sent to the

general ledger in the form of financial accounting documents. Data enters this

table as a result of three activities:

Reversal of invoice coming from sales and distribution or another source

application

Running program for revenue transfer (program A; see Section 6.2.1)

Running program for liability calculation (program B, used both for contract

assets/contract liabilities [CA/CL] and unbilled receivable/deferred revenue

[UR/DR] methods; see Section 6.2.2)

Let’s look at the example shown in Table 6.1 to see how postings are made in RAR.

The contract has two performance obligations (POBs), with an allocation effect

where one POB will be recognized as point in time and one as over time.

POB Transactional

Price

SSP Ratio Allocated

Amount

Adjustment Duration

Device 100.00 500.00 29.41 382.35 282.35 N/A

Service 1,200.00 1,200.00 70.59 917.65 -282.35 12

months

Total 1,300.00 1,700.00 100.00 1,300.00 0.00

Table 6.1 Basic IFRS 15 Calculation

In this case, we have two POBs that are part of one contract, so we have a total

contractual price being allocated among them. The contractual price of 1,300 is

split between them according to the standalone selling price (SSP), which is 500

and 1,200, respectively. The company is giving a device discount but no discount

for service. In addition, revenue for device is recognized as point in time, while

service is recognized as over time for a duration of 12 months (in further

explanations, we’ll assume 360 days duration of a year for simplicity).

Because we’re invoicing the device POB at the moment of contract inception, we’ll

have an invoice of 100 posted immediately. Together with that invoice, the first

month of the service POB will be invoiced, which is 1,200 ÷ 12 = 100, making the

total invoice to the customer equal 200.

Now, the adjustment column tells us how revenue should be adjusted per each

POB: device revenue needs to be increased by 282.35, which happens immediately

because revenue is being recognized as point in time. The service POB revenue will

be decreased by the same amount, but that is going to happen over a period of 12

months, meaning that revenue for each month needs to be decreased by 282.35 ÷

12 = 23.53.

As mentioned, when the contract is created, no postings will occur, and the first

posting comes with invoicing to the customer, which will be reversed in RAR. For

this reversal, RAR will use the receivable adjustment account (for balance sheet

reversal) and revenue allocation account for profit and loss (P&L) reversal. After

processing, postings (which are stored in table FARR_D_POSTING) will be as shown in

Figure 6.1.

Figure 6.1 Postings after Invoice Reversal

If we look at results of postings on financial statement level, we have balance

sheet part reversed and P&L is also balanced to zero.

Now, the next step is to perform calculation of revenue amount that should be

recognized. RAR will make do this by posting recognized revenue amounts and

revenue adjustment. These postings can be done on separate or same accounts. To

cover the end-to-end scenario, we’ll illustrate the case of separate accounts. The

first step is posting revenue that is coming from the billing, and then adjusting it

with the amount to come to IFRS 15 revenue. All postings will be balanced with the

receivable adjustment account. In addition, it’s worth of mentioning that these

postings will be made by running the Transfer Revenue program (program A; see

Section 6.2.1).

Revenue transfer takes into consideration any fulfillment event that might occur in

the meantime and enters data in table FARR_D_POSTING as revenue recognized. As

shown in Figure 6.2, the balancing amount will be entered against the receivable

adjustment account.

Figure 6.2 Revenue Transfer Calculation

Looking at the balance sheet and P&L, we see that total revenue recognized fits

the IFRS 15 calculation: device revenue was increased by 282.35, and service

revenue was decreased by 1/12 of same amount. Now, we can see and evaluate

the effect of IFRS 15: the total amount of revenue isn’t changing; it will again

correspond to the total price, which is agreed upon with the customer. However,

there was a significant shift of the revenue between device and service, and now

it’s a visible effect on the hidden discount given to customers, so the customer

subscribes to the service.

But the process isn't over. The balance of these postings is done against the

receivable adjustment account, which, in this case, serves as a placeholder, a

temporary account until it’s verified whether it can be represented as a contract

asset or a contract liability.

In this case, we’ll be able to see the difference between calculation based on CA/CL

and UR/DR. If we use the UR/DR method, it’s enough that the invoice is posted, and

the balance on the receivable adjustment account will be moved to an unbilled

receivable. If we’re using the CA/CL method, we need to wait until that invoice

becomes due, and only then it will be represented as CA or CL.

Technically, we need to run program B (liability calculation, as it’s used for UR/DR

as well; see Section 6.2.2) so that this balance is moved to the proper category.

After running this job, we see the effect of a complete cycle in RAR.

As shown in Figure 6.3, the receivable adjustment account has a balance that is

different from billing, which was reversed, and revenue that was recognized by

running the revenue transfer program. This balance is reposted as a contract asset

or contract liability.

Figure 6.3 Contract Liability Calculation

In this example, the amount is due, and it was represented as a contract asset.

From next month, the only correction that will be posted is a service adjustment

that will result in a decrease in contract assets, which will be balanced to zero if

there are no changes to the contract in the next 11 months.

The company needs to understand that the preceding activity is the complete

effect of implementing IFRS 15. In comparison to IAS 18, there will be a reallocation

of revenue between point in time and over time revenue; however, the total

amount of revenue won’t be changed.

6.1.2 Customization for Posting of Revenue

As mentioned, customization required for postings is done in two areas: first, as

general customizations in Transaction FARR_IMG, and, second, as an application in

BRFplus later to come up with proper accounting entries.

We can start with setting up general customizations once we’re done with general

RAR settings (accounting principle, POB types, etc.; see Chapter 4). As for other

dependencies, there is a dependency on general settings in financial accounting

that need to be done, such as creation of a document type, general ledger

accounts, and so on. We’ll walk through the settings for postings and account

assignment in the following sections.

General Posting Settings

You’ll see all the settings needed for posting under Revenue Accounting •

Revenue Accounting Postings, as shown in Figure 6.4.

Figure 6.4 Setup of Posting Specification

The first step needed is the setup of document types and posting keys, which can

be different per company code defined in RAR. Choose the Define Posting

Specifications for General Ledger Transfer node, and you’ll arrive at the

screen shown in Figure 6.5. Here, click the Change button, and, for each company

code, enter a posting key (two separate columns, first for credit [C…] and after for

debit [D…]), document Type, and G/L Account with the account assignment

object to be used.

Figure 6.5 Details of the Posting Specification

Besides document types and posting keys, you also need to define a clearing

account that will be used if the number of items is more than 1,000. The number of

items that can be included in a general ledger document is limited. If the number

of items to be posted during the transfer of totals records to the general ledger

exceeds this number, it’s necessary to split the documents. Typically, the general

ledger documents created by a document split don’t have a balance of zero. You

reach a balance of zero for these documents by posting to a transfer account that

you specify here.

In addition to the account number, you can enter other account assignment data

for the transfer account, such as Segment, Business Area, and Profit Center in

this Customizing activity. SAP suggests you manage the transfer account as a

balance sheet account.

The next step is the definition of reasons why contracts might be moved to the

next period. Choose the Define Reasons for Shifting Contracts to Next

Period activity, and you’ll arrive at the screen shown in Figure 6.6.

Figure 6.6 Shifting Reasons

In this Customizing activity, you can define reasons for shifting contracts to other

revenue accounting periods. When the accountant runs revenue postings at the

end of an accounting period, some issues may prevent the postings from being

successfully transferred to the corresponding ledgers. If the issues can’t be solved,

the accountant can choose to shift unfinished postings into the next accounting

period. When performing such shifting, the accountant must specify a reason that

explains why the shift in postings is necessary.

The Customizing activity maintains a list of predefined reasons, each identified

with a Reason code and labeled with a Description. When the accountant

specifies the shifting reason, you can choose one from this predefined list. To

define the shift reason, it’s enough for you to define the number and description.

Once done, click Save, and the reason is ready to be used.

Now, navigate to the Switch on Posting Optimization Customizing table

configuration activity, as shown in Figure 6.7.

Figure 6.7 Switch on Posting Optimization Customizing Table

Posting optimization is one way the number of postings can be decreased per

finance document. To reduce the number of general ledger documents, RAR

aggregates posting items in the revenue accounting subledger as much as

possible. Posting items with the same account assignments are aggregated

together. As a result, the higher the aggregation level is, the fewer the posting

items are.

However, if there is any attribute that is specific for each contract in the posting

table, the revenue accounting subledger can barely be aggregated. For example,

the profitability segment contains sales order numbers that are different for each

contract. In such cases, we recommend you enable posting optimization. When this

function is switched on, general ledger documents are posted and created by

technical parameter KEYPP (0–999). Although the number of general ledger

documents may increase with this function, your memory consumption can be

reduced.

This function has a negative impact on the aggregation of posting items. Enable

posting optimization, and the number of general ledger documents will increase, so

we highly suggest you don’t enable this function unless your aggregation level is

very low. If you enable posting optimization when your aggregation level is high or

even medium, you can expect worse performance and increased general ledger

document numbers. For example, if posting optimization is enabled and each KEYPP

contains posting items, RAR splits the posting volume into 1,000 packages that can

be posted in parallel. As a result, at least 1,000 general ledger documents will be

posted, which could be much more than that without posting optimization.

To perform the posting check, select Simulation as the posting mode, and start a

revenue posting job. The system will check all selected contracts step by step and

then perform revenue postings. The contracts posted successfully are entered into

the general ledger, while the contracts with errors are skipped. In the case of

posting to the general ledger, depending on the accounting bases, all postings are

made to the relevant ledger group.

If you choose to aggregate the general ledger postings by debit/credit (Agg by

D/C ind), you’ll have the benefits of detailed posting records in the revenue

accounting subledger table. Post revenue adjustments and contract asset

amortization (or contract liability) in the general ledger.

In this case, you can aggregate the postings from the subledger table to the

general ledger when you use the Revenue Posting program (Section 6.2.3). This is

a Customizing option that allows you to decide whether you want to aggregate the

general ledger posting lines by debit/credit indicator. This Customizing is based on

the company code and accounting principle, and it should be kept the same.

If you trigger posting optimization, when some specific fields have the same value,

the general ledger posting lines will be aggregated. Even if they have a different

debit/credit indicator, the posting lines are still netted.

With this functionality on, you can still continue to use the revenue accounting

subledger (table FIRA_AGGREGATE_BY_DC_INDICATOR) to provide detailed posted data. If

you choose to enable posting optimization, we also suggest you enable parallel

buffering of accounting documents by taking the following steps:

Maintain object RF_BELEG in Transaction SNRO.

Select the Parallel Buffering checkbox. The buffer size is recommended to be

1.

The last setting in general settings is to define if there are any additional

dimensions that should be included in postings. To do so, go to the Assigning

Additional Revenue Posting Aggregation Dimensions activity. You can select

additional dimensions on the screen shown in Figure 6.8 and click Save.

You can generate additional data records by adding fields as aggregation

dimensions. Each new field that you add increases the data volume. This has a

negative effect on performance and takes up more memory. For this reason, you

shouldn’t include any more account assignments than you actually require. This is

especially true for those fields that can take a large number of values, such as

internal order, customer order, or work breakdown structure (WBS) element.

To include customer fields in the general ledger documents that RAR creates, you

must extend the RAR (INCL_EEW_FARR_REP) and general ledger (CI_COBL) structures with

the same set of fields (the field names must be the same). You can define

customer fields by following menu path Financial Accounting • Financial

Accounting Global Settings (New) • Ledgers • Fields • Customer Fields,

arriving at the screen shown in Figure 6.9.

Figure 6.8 Assign Additional Dimensions

Figure 6.9 Include Custom Dimensions

All fields included in both CI_COBL and INCL_EEW_FARR_REP will be automatically

transferred into general ledger documents. You can change the standard general

ledger document fields (fields that aren’t in the CI_COBL structure) via the following

steps:

1. Enhance structure INCL_EEW_FARR_POSTING.

2. Implement business add-in (BAdI) FARR_POSTING_ENHANCEMENT in enhancement spot

FARR_ES_POSTING.

Warning

If you add XBLNR to INCL_EEW_FARR_POSTING, don’t assign any value to XBLNR. Assigning

a value to XBLR will result in an error when posting to financial accounting.

BAdI FARR_POSTING_ENHANCEMENT provides method PROCESS_CUST_FIELDS, which can be

used to set noncustomer fields in general ledger documents. Standard field

changes might lead to incorrect general ledger documents, so always pay attention

that all changes are made at your own risk.

If you use the PROCESS_CUST_FIELDS method, there are two parameters:

IS_RR_LINE_ITEM

All information for a revenue accounting item (RAI; including customer fields

defined in INCL_EEW_FARR_REP).

CS_ACC_IT

All fields of the corresponding general ledger document item.

In structure INCL_EEW_FARR_REP, you’ve defined fields that are used in revenue

accounting. If you add a new entry that doesn’t exist in structure INCL_EEW_FARR_REP,

the system reports an error message.

The overlap fields between structure INCL_EEW_FARR_REP and structure CI_COBL are

default aggregation dimensions. If you still want to enhance INCL_EEW_FARR_POSTING

with the fields from CI_COBL, then you can overwrite the data from posting table in

BAdI FARR_POSTING_ENHANCEMENT. In normal cases, you should set the value to fields

that don’t exist in CI_COBL but exist in ACCIT.

Account Assignment Settings

With that, the general settings for postings are completed, and to finish integration

with the general ledger settings, you need to perform account assignment settings.

Similar to POB determination, you’ll do that through BRFplus settings.

SAP delivers standard application FARR_ACC_DETERMINE, which needs to be copied to

the customer namespace before it can be used. As shown in Figure 6.10, select the

application, and choose More • Copy.

Figure 6.10 Copying FARR_ACC_DETERMINE

This will make a copy of the existing application, which then serves as a template.

Figure 6.11 shows the copied YFARR_ACC_DETERMINE application in the

customer namespace.

Unlike POB determination applications, in account determination, there are no

differences depending on the integration method (sales and distribution, SAP

Billing and Revenue Innovation Management, or third party), and there is a unique

application that will serve to all posting determinations.

Figure 6.11 Posting Application Copied to the Customer Namespace

Once you open the application, you’ll find all the decision tables available there, as

shown in Figure 6.12. For more information on these tables, see Chapter 4,

Section 4.5.1.

Figure 6.12 Available Decision Tables

Now, the next question is which accounts need to be assigned here. SAP provides

many different options for this. We’ll explain further only a few additional options

that need to be considered in almost all cases.

When it comes to accounts that will be used for revenue reversal and posting

adjustments, you might choose to have separate accounts per POB types. In the

example shown in Figure 6.13, you can see decision tables used for revenue

adjustment postings. Reference account (REF_ACCOUNT) is an optional field and

can be skipped by entering just POB types (POB_TYPE) and company code

(COMPANY_CODE).

Figure 6.13 Revenue Adjustment Postings

However, this is a customer decision. Table FARR_D_POSTING in the RAR posting helps

reduce the historical data aggregation. Upon aggregation, detailed postings are

replaced with aggregates on an inner-period level or even on a cross-period level.

Detailed posting entries from table FARR_D_POSTING are moved from the in-memory

storage in this case to lower-cost storage offered with SAP HANA native storage

extension (NSE). Aggregations can also be reversed. In addition, you might choose

to make this account the same or different as the billing account, and both ways

have pros and cons. If you do a reversal on the same account, it’s easy to identify

whether all billing for the month was performed and whether some was missing (if

the balance is different from 0). However, it might impact reporting where you

need to look at the account balance only, and you need to include an additional

dimension if you need to see if the reversal is from RAR or billing itself.

A similar approach can be taken for adjustment accounts: if you need to see the

adjustment effect separately, it might be a good idea to split on a different

account; otherwise, the same can be used.

In the example shown in Figure 6.14, decision table FARR_ACCT_DETERMINE_DT_RADJ is

used to configure the receivable adjustment account. Under the Expression

section of the BRFplus application, find the Decision Tables section, and select

FARR_ACCT_DETERMINE_DT_RADJ. A more standard approach is for the client to

have only one receivable adjustment account (1121211100, in this example), and

to do so, all columns need to remain empty. In that case, all company codes and all

accounting principles will share one receivable adjustment account. Another option

is that if you enter a reference account (from the customer master record),

multiple receivable adjustment accounts can be used.

Figure 6.14 Receivable Adjustment

A similar rule is used for receivable adjustments. The balance, if any, on this

account needs to be reported separately. Therefore, it’s a good idea to keep it as a

different account from CA/CL.

One thing to remember is that the complexity of account determination depends a

lot on the accounting principles used (see Chapter 5, Section 5.1.2). If a company

isn’t focusing on revenue adjustments based on SSP, but rather makes only

revenue deferrals, account assignment might be very simple. However, scenarios

with parallel accounting principles, both cost and revenue deferrals, and

adjustment calculation can lead to very complicated account determination.

All these options should be taken into consideration before opting for splitting

many accounts versus grouping transactions in the same accounts.

It’s worth mentioning that besides performing account assignment by using the

BRFplus application, you can run an SAP Fiori app for simplified determination. In

the SAP Fiori launchpad, you can navigate to the Revenue Accounting

Configuration section, and choose the Account Determination – For Classic

Contract Management tile for the app of the same name.

Note

Receivable adjustment integration isn’t yet available for optimized contract

management (OCM).

The simplified user interface (UI) for account determination allows you to make

changes within the boundaries of the existing BRFplus structure for account

determination. But for changes in the structure of account determination itself

(e.g., adding a reference field), you have to go to BRFplus. The simplified UI

contains settings for most of the decision tables in BRFplus, for example,

Recognized Revenue, Receivables Adjustment, Contract Asset, Contract

Liability). It’s possible to use other attributes for finding the target accounts (e.g.,

for Performance Obligation Type).

6.1.3 Table FARR_D_POSTING and Revenue Categories

Table FARR_D_POSTING is the main source where all information needed for posting

RAR documents is stored. This table will be populated each time an event that is

relevant for creation of postings happens. So once the invoice is reversed in RAR,

or revenue to be recognized is calculated, entries will be made in this table.

Open table FARR_D_POSTING. Let’s first look at the keys in table FARR_D_POSTING, as

shown in Figure 6.15.

Figure 6.15 Table FARR_D_POSTING Keys

The first two entries are company code (CoCode) and accounting principle (AccP).

Company code doesn’t require additional explanation, but regarding accounting

principle, it’s important to repeat that if you opt for parallel reporting by using two

accounting principles, for each of them a separate set of entries is made in this

table. See Chapter 5, Section 5.1.2, for more information on accounting principles.

Reconciliation key (Reconcil. Key) is a way for RAR to distinguish separate events

that might occur: each time you perform some activity that might be fulfillment,

contract change, or posting an invoice, a new reconciliation key is created. This key

has a predefined format: YYYYMMMXXXXXXX. You can notice for the last three

digits that they begin with 101 and will continue incrementally for each change

that is performed over the contract. The first 100 digits are reserved for contracts

that are being shifted from the previous period.

The reconciliation key is determined in table FARR_D_RECON_KEY, and keys are used in

most important tables in RAR as part of the unique key, as shown in Figure 6.16.

Figure 6.16 Table FARR_D_RECON_KEY Relationship

Looking in this table, you can see who created the entry, when it was done, and its

status. Statuses have the following meaning:

O = Open

Events were recorded but no posting exists yet.

P = Transferred

A posting in revenue accounting exists after the revenue transfer run.

C = Closed

A posting in the general ledger exists after the revenue posting run.

F = Failed

Posting to the general ledger failed during the revenue posting run.

A = Aborted

General ledger posting has been reversed.

R = Replaced

Posting was shifted to the next period. The system has created a reconciliation

key in the new period that replaces the original one.

M = Migration

Posting was migrated from a legacy system. That means the company code was

in a migration phase, and the event date was before the legacy data transfer

date.

To close the period, the status of all entries in table FARR_D_RECON_KEY must be either

Closed, or they need to be shifted to the next period.

Impact on Performance and Reconciliation Keys

Now it’s becoming clearer how performance might be impacted by having overly

large contracts. We already elaborated in this chapter that whenever some event

happens in the contract, a new reconciliation key is created, and one of the

tables impacted is table FARR_D_DEFITEM. Now if you have a contract with 100 time-

based POBs and a duration of five years, for each POB, you’ll have at least 60 ×

2 (for each condition type) = 120 entries per each reconciliation key and per

accounting principle. So, if you summarize for one such contract, you would have

12,000 entries, and each time some change happens in the contract, the number

of entries will double. That is one of the reasons for the SAP recommendation to

keep the number of POBs lower than a certain amount; more importantly, it’s the

signal to the client to pay attention while designing contracts with the potential

for a large number of POBs.

After the reconciliation key, you’ll find the number of POBs (POB) to which posting

entries are related and condition types and posting categories that need to be

looked at together. Posting categories are created by either a specific trigger or a

transaction being executed. Table 6.2 shows a list of posting categories and how

they are created.

Posting

Category

Posting

Category

Name

How It’s Created

Posting

Category

Posting

Category

Name

How It’s Created

IC Invoice

correction

While reversing an invoice from the source system

RA Receivable

adjustment

As an offset account during the reversal of an

invoice and while transferring to CA/CL

RV Recognized

revenue

After running the transfer revenue program

CA Contract asset After running the calculate liability program

CL Contract

liability

After running the calculate liability program

ED Exchange rate

difference

After running the transfer revenue program

UR Unbilled

receivable

After running the calculate liability program (if

UR/DR is used)

DR Deferred

revenue

After running the calculate liability program (if

UR/DR is used)

AI Early

termination

After running the transfer revenue program, if the

contract is terminated

CC Cost correction After running the transfer revenue program

CJ Deferred cost After running the transfer revenue program

CO Recognized

cost

After processing the trigger for cost recognition

Table 6.2 Posting Categories

Some of these categories will be used only if a specific setup is made. For example,

CA and CL will appear only if a specific calculation method is selected in defining

the accounting principle, and the same goes for UR and DR. A similar case occurs

for the CC/CJ/CO combination: correction of cost of goods sold (COGS) and

recognition will appear only if you selected cost recognition as needed.

Some other posting categories will appear only when certain triggers occur. For

example, AI will happen only if all RAIs from the source system have a flag for

termination marked. Similarly, ED appears only when contracts are in a foreign

currency (irrespective of the method selected, actual or fixed).

Next, we can look at the condition type (CnTy) together with the posting category

(Category). As already mentioned, there is dependency involved regarding which

condition type can appear with which posting category. Let’s walk through the

posting categories to see how they relate to the condition types:

IC

The IC posting category will have only the condition type that comes as the main

pricing condition, and it will have debit/credit (D/C) indicator S only. If you think

about it, this makes perfect sense: IC represents the reversal of revenue coming

from the invoice, so it must have only the main pricing condition and will always

be a debit (to negate revenue coming from billing).

RA

The RA posting category is posted in two situations: as offset category during

invoice reversal and while calculating CA/CL. So, in the first case, it will be

posted with the main condition type and debit side, but the in second case, it will

be posted with the condition type showing the allocation effect and can have

both the debit and credit indicator depending on the final result of the

calculation: contract asset or contract liability.

RV

The RV posting category gets created once recognized revenue is calculated. So,

posting will have both condition types: posting with the main condition type and

posting for allocation difference. These can occur with both debit and credit

indicators because the allocated difference can be increased or decreased to the

transactional price (which gets posted with the main condition type).

CL and CA

CL and CA (or UR and DR) won’t have a condition type, which makes sense

because the condition type represents either the transactional price or allocation

effect. Contract asset is the final result, so it can’t be split into parts coming from

the transactional price and allocation effect, meaning the condition type will be

empty. In addition, the POB number will be there if you selected posting to the

POB level; if the posting level is contract, the POB number will be empty.

ED

The ED posting category has a predefined condition type that will always be

entered with the line containing the exchange rate difference.

The last key in table FARR_D_POSTING is Posting GUID. That data element is known

already from CRM systems where it was used as the unique key among the tables.

The globally unique identifier (GUID) number can be either a 32-bit or 16-bit

element. It’s generated based on hardware information from the host computer,

the system time, and a randomly generated number. This makes it unique even

between different computers/systems, so we can’t have two of the same numbers

in the world. GUID is a very useful feature that is widely used, especially in system-

to-system communication.

Scrolling further through the table, you’ll see additional entries, as shown in

Figure 6.17.

Figure 6.17 Table FARR_D_POSTING Entries

The remaining fields are amount fields (one transactional amount and two for local

currency 1 and 2 amounts). There are indicators on which contract postings belong

to, which general ledger account will be posted, and what POB type is used for

postings. If you check further left, you’ll see account assignment objects and

who/when created entries in this table.

Now we know all the steps and content in table FARR_D_POSTING, we can represent

activities and how entries are made in Figure 6.18.

To illustrate, let’s cover one very simple case in RAR end to end. We’ll create one

sales order, see how it gets processed in RAR, invoice it, and follow the entries in

table FARR_D_POSTING.

Figure 6.18 Relationship between Table FARR_D_POSTING and RAR Processes

In this example, you’ll be working with integration with sales and distribution. Start

by creating one sales order that will have a billing plan representing how billing

should be done for the contract duration. We won’t look at allocation effect, and

POBs are being excluded from allocation.

Once you create and save the contract (refer to Chapter 5, Section 5.1), you see

that the new item is visible in Transaction FARR_RAI_MON, as shown in Figure 6.19.

Figure 6.19 Item in Table FARR_RAI_MON

Process this item, and a contract is created. Because this is a time-based POB,

you’ll get the whole revenue schedule created for this item. We won’t go into detail

here about analyzing contract values (see Chapter 5 for that information), but

rather we’ll focus on preparing postings.

By processing the order item, you see the first entry in table FARR_D_RECON_KEY, as

shown in Figure 6.20.

This fits with previous explanations: the first change was made to the contract, and

entries are being created. If you check entries for this contract, they start with

2023001, which means, in this system, the first open period is 1 in fiscal year

2023. In addition, reconciliation keys are created for 12 periods, which corresponds

to the contract duration of 12 months. Because you didn’t do any activity in this

contract, the status is Open, and all other items are empty.

Figure 6.20 Table FARR_D_RECON_KEY Entries

If you check table FARR_D_POSTING, it will contain no entries, which again corresponds

with what was said before: that table isn’t updated by just creating contracts and

POBs. However, if you check table FARR_D_DEFITEM, you’ll see that entries are being

made there, as shown in Figure 6.21.

Figure 6.21 Table FARR_D_DEFITEM Entries

The first part of the key is the reconciliation key number, which comes from table

FARR_D_RECON_KEY. In addition, because this is a time-based POB, entries are created

at the end of the contract, and the posting amount and posting quantity

correspond to revenue, which should be calculated every month as revenue

(because, in this case, using deferral method 1, the amounts aren’t the same). In

addition, because there is no allocation effect in this case, there is only one entry

per item. However, if this contract had an allocation effect and a parallel reporting

requirement, there could have been 36 entries, which would be doubled each time

some change occurred in the contract.

The next step is to create an invoice for this sales order. Here, there are two

milestones for billing: (1) 30% at the end of period 1, and (2) 70% at the end of

period 2. Once you create the invoice in sales and distribution, you’ll get the SDII

item in Transaction FARR_RAI_MON, as shown in Figure 6.22.

Figure 6.22 Invoice in Table FARR_RAI_MON

While searching for this RAI, the best option is to search the item by sales order

number by selecting the order-relevant items option in the Kind of Selection

section. This will ensure that all subsequent items created on the basis of the sales

order will be displayed. Now, once you process this RAI, you can check table

FARR_D_POSTING, as shown in Figure 6.23.

Figure 6.23 Table FARR_D_POSTING after Invoice Processing

You can see the debit posting with posting category IC (invoice correction) and

credit posting with posting category RA (receivable adjustment). If you look at the

total postings up to this moment, including the invoice issued by sales and

distribution, you get the results shown in Figure 6.24.

Figure 6.24 Posting Explanation after Invoice Processing

What happened is that the invoice reversal negated postings made in sales and

distribution. Regarding the revenue side, depending on settings, postings can be

made on the same account as billing or on a different correction account. The

receivable adjustment account is a separate account that must be reported in the

receivable section of the balance sheet, and it’s used in a similar way to negate

balance sheet postings coming from sales and distribution invoice processing.

However, it’s worth repeating that postings are still not made in financial

accounting; they are just stored in table FARR_D_POSTING, which serves as preparation

for posting.

The next step is running the Transfer Revenue program (program A; see

Section 6.2.1). The task of this program is to calculate revenue that should be

recognized and post it on the receivable adjustment account as an offsetting entry.

Once the program is done, you can check the content of table FARR_D_POSTING to see

that new entries appeared, as shown in Figure 6.25.

Figure 6.25 Result of the Revenue Transfer

Now, if you check the amount, recognized revenue is posted with posting category

RV and amounts to 1,967.21. If you take the whole contract value, which is

24,000, and divide it by number of days (365), that equals 65.75 per day. Period 1

being April has 30 days, so the system will multiply daily revenue by the number of

days to come to the monthly revenue of 1,967.21. In this case, posting was done

with condition type ZPR0, which represents the main condition type. Because

items are excluded from allocation, there are no entries with the allocation

correction condition type and no postings need to be done on the adjustment

account. Figure 6.26 shows these postings in T-accounts.

After these postings, you get the balance on posting category RA, which represents

the difference between the billed amount (7,200) and recognized revenue

(1,967.21). Because more was billed than could be recognized, this amount should

be represented as a liability on the balance sheet. On the P&L side of the financial

statement, the total balance is 1,967.21, which is the exact revenue that can be

recognized according to IFRS 15.

The next step is done when you process the program for calculating CA/CL. Once

this program is run for period 1, the balance is transferred from the receivable

adjustment account to the respective account on the balance sheet side.

Once the program for liability is calculated, you can check how the entries look in

table FARR_D_POSTING, as shown in Figure 6.27.

Figure 6.26 Postings after Revenue Transfer

Figure 6.27 Table FARR_D_POSTING after Running of Liability Calculation Program

You can see that the balance to the RA posting category is moved to zero, and the

remaining is transferred to the contract liability. To get a complete picture, look at

the T-accounts, as shown in Figure 6.28.

Figure 6.28 Postings after Contract Liability

Now let’s provide an example of how postings in table FARR_D_POSTING are made.

Again, to get postings made in financial accounting (either tables ACDOCA or

BKPF/BSEG), you still need to run program C (Section 6.2.3). But to get the complete

picture of this process, take a look at table FARR_D_RECON_KEY, as shown in

Figure 6.29.

The Status of reconciliation key moved to P (Transferred), which means the

revenue for the period is being properly calculated. But before a period can be

closed, liability needs to be calculated, as you can see in the LiabAsset field: if it’s

marked with an X, liability is calculated and that period can be closed. However,

remember that in order for the period to be closed, all reconciliation keys for all

contracts must be in this status. If this isn’t the case, the system won’t allow

closure of the period, and you’ll be asked to either resolve the problem or move

contracts to the next period.

As we mentioned, the last step is to post actual revenue (Section 6.2.3). This is a

technical step that represents postings from table FARR_D_POSTING as financial

accounting documents. After the job is run, the table entry is updated with the Run

ID of the exact posting job.

Figure 6.29 Table FARR_D_RECON_KEY after Liability Calculation

6.2 Posting with ABC

To create postings from the RAR module, three programs are

designed for that purpose:

Program A: Transfer Revenue (Transaction

FARR_REV_TRANSFER (Transaction

FARR_REV_TRANSFER)

This program is used to calculate recognized revenue by

running the Transfer Revenue app or by scheduling a job

with Transaction FARR_REV_TRANSFER.

Program B: Calculate Contract Liabilities and

Contract Assets (Transaction

FARR_CONTRACT_LIABILITY)

This program calculates contract assets or contract

liabilities by running the Calculate Contract Assets and

Contract Liabilities app or using Transaction

FARR_CONTRACT_LIABILITY.

Program C: Revenue Posting Run (Transaction

FARR_REVENUE_POSTINGS (Transaction

FARR_REVENUE_POSTINGS)

This program makes appropriate postings in financial

accounting by running the Revenue Posting Run app or

using Transaction FARR_REVENUE_POSTINGS.

These programs need to be run for all contracts at least

once a month before the period can be successfully closed.

Because they are always run in this sequence, they are

commonly called the ABC programs.

Note that data won’t be visible in financial accounting nor in

reporting until the last program from the list (Transaction

FARR_REVENUE_POSTINGS) is run. So, the idea to use RAR

as the main tool for revenue reporting depends on properly

planning how the ABC programs are executed. RAR isn’t a

real-time engine (meaning that as soon as some change

happens in the sales order, you can see the effect in

reporting) and always needs to be scheduled before figures

will be visible in reports. So, the question is, how often is

good enough?

There is no strict rule about what isn’t often enough and

what is too often, rather just a statement that to close the

period, all contracts need to be processed successfully by

ABC programs. So, does that mean once is good enough?

There are a couple of reasons why this might not be the

best idea unless you’re facing a small number of contracts

or specific business scenarios.

If you process ABC programs once a month, the first

consequence is that reporting (in both finance and

profitability analysis) will be available only once a month. In

some cases, this isn’t a big limitation, but in some others,

expectations will be to see results more often than that. The

second consideration is that if you process programs once a

month, which is normally during the month-end closing

process, you’re already running in a tight time window.

As shown in Figure 6.30, RAR comes after you’ve performed

all activities in sales and distribution, meaning that all

orders are created, deliveries are made, and invoicing to the

customer is performed. For adjustments in terms of

credit/debit memos, these are done already, which makes

all things ready for closing from the financials side.

You need to run processing of created RAIs as preparation

for running ABC programs; after that, jobs can be scheduled,

and final results are sent to respective modules. Once this is

done, profitability analysis can proceed with its own

activities of allocating or settling that revenue to the final

receivers. For information on integration with profitability

analysis, see Section 6.3.

Figure 6.30 Closing Process with RAR

This is how month-end closing looks in more or less every

company in the world, so what’s the issue? All these

activities are always being done in a very limited time.

Businesses usually run processes in sales until the very last

minute in the month, meaning in RAR, you need to wait for

these to be completed. Once it’s done, there is a very short

time available for the finance team to complete activities,

and each of these tasks has only a fraction of time

dedicated to completing it. It’s not unusual that both

postings and processing of RAIs end in some kind of an

error, which, depending on its severity, needs to be resolved

or assessed before the month can be closed.

We can conclude from this that ABC programs need to be

run more than once a month. Some clients have tried to

match that by making RAR as close as possible to a real-

time reporting engine by scheduling ABC programs to run as

often as possible, even every 15 minutes. That proved not

to be the best approach because, depending on the number

of contracts and types of allocations, the duration of each

program was taking more time than expected, and

programs were often going into deadlock.

So, in terms of a recommendation, we can say that ABC

programs should be run more than once a month, but

detailed performance and resource evaluation is needed if

the business requirement is to run the programs more times

during business hours.

Business Example: Telecommunications

The telco line of business can be considered an exception.

Data is processed by source systems during a month (for

CRM or charging systems), and receivables are calculated

at month end only (depending on the company, there

might be more than one billing cycle during the month).

So, data for RAR calculations is available only at exact

month end. In this case, the client needs to ensure first of

all resource availability so time isn’t affected by the

performance of systems and that all systems used are

optimized to reach key performance indicators (KPIs),

which are put in front of the technical team as business

requirements.

Now, let’s dive into all three ABC programs in the following

sections.

6.2.1 Transfer Revenue

The first step in running ABC programs is to transfer

revenue. Revenue transfer is used to calculate time-based

revenue and prepare data for subsequent posting runs.

Fulfillments that are calculated will be staged in table

FARR_D_POSTING so they can be used in subsequent programs

and included in the posting run.

Open the Transfer Revenue app or Transaction

FARR_REV_TRANSFER. On the screen shown in Figure 6.31,

first of all select which Company Code and Accounting

Principle will be used. If you’re running multiple accounting

principles, you need to indicate all of them separately for

running the program. Next, select Fiscal Year and Posting

period for which calculation is to be done. If the fiscal year

isn’t equal to the calendar year, you need to enter the fiscal

year and period for which the calculation will be run. You

can also enter a Revenue Accounting Contract for which

calculation will be executed. Although this is useful if you

want to look at some specific changes in the contract, this

should be left blank usually so that all contracts can be

considered.

Figure 6.31 Revenue Transfer Options

Now, because running this program is scheduled in the

background for performance reasons, you need to enter a

name for the job in Job Name, when you want the job to

start under Schedule Data and Time, and how many

intervals to use in Number of Intervals. Once you’re

ready, click the Transfer button so the job can start

running.

Clicking the Job Monitor button schedules the job, and you

can see its progress as it’s being executed.

The status will show whether the job is just scheduled, is

currently running, or is completed. If the status is too long in

the scheduled status, but you asked for immediate start,

you need to check in Transaction SM37 to see the reason for

the delay. By refreshing the table, you’ll be able to verify if

the process is finished or some other change in the job run

has happened (see Figure 6.32).

Figure 6.32 Revenue Transfer Completed

Once the job process is over, you’ll be able to see the status

as green, as well as who scheduled this job and when, and

when it was completed. In case of errors, you’ll see a red

indicator under the Status column with a message and

information about the cause of the errors.

As soon as the revenue transfer job is completed, you can

move to the next process, which is running the liability

calculation.

6.2.2 Calculate Contract Liabilities and

Contract Assets

This program is run as a predecessor of the job for making

postings from RAR. This program will calculate the

difference between the billed amount and the recognized

revenue and then post it as either a contract asset or

liability. Again, entries will just be stored in table

FARR_D_POSTING and not posted yet; after running it, you’ll be

able to find entries with posting categories CA, CL, UR, and

DR in the table for analysis.

Open the Calculate Contract Liabilities and Contract Assets

app or run Transaction FARR_CONTRACT_LIABILITY to open

the screen shown in Figure 6.33.

Here, you choose Company Code, Accounting Principle,

and Posting period just like in the previous program. One

addition to this program is the Value Date field. As we

already explained, the invoice due date and posting date

have an impact on the period determination and calculation

of CA/CL and UR/DR. The invoice posting date has an impact

on which revenue accounting period will be determined, for

example, December 29, 2022, would usually determine

2022 – 012. The posting date is also used to calculate UR/DR,

while due date is used to calculate CA/CL. If the posting date

is less than or equal to the value date, those entries will be

fetched as invoice amounts to calculate UR/DR during

execution of report Calculate Contract Liability/Contract

Asset.

Figure 6.33 Liability Calculation Job

Value Date Problems

Customers often face issues while working with the value

date, especially during the testing phase. The most

common problems are that the value date isn’t modifiable

by the user in the currently open period, any kind of

manual entry in this field is ignored, and the system

presets it with the current date. These issues are a

problem during testing if the customer wants to test

calculations in subsequent months; in those cases, the

process for liability calculation should be executed

multiple times.

For the first problem, the solution is described in SAP Note

3263233 (there are manual activities that need to be

performed); for the second problem, the solution is given

in SAP Note 3271649 (which needs to be implemented).

Once the program is scheduled, you can run it in a very

similar way as revenue transfer (see Figure 6.34).

Figure 6.34 Liability Calculation Being Scheduled

Again, the system will provide information about who/when

started job and its current status (see Figure 6.35).

Figure 6.35 Job Details Display

You can see what selections were made and based on which

program is running, which is very useful if you need to

validate that the variant defined is proper and that the

results are as expected. It should also be the starting point

in analyzing errors.

One question often asked is can we somehow verify that the

job was executed properly. The standard way is to go in

Transaction SLG1 and evaluate contracts that were taken by

the program. However, you can get some basic information

already from the program by selecting option Application

Log (see Figure 6.36).

Figure 6.36 Application Log in Liability Calculation

In this case, you see that one contract was selected as

eligible for calculation, and updates were made in table

FARR_D_POSTING for another contract. Ideally, the number of

selected contracts and updated contracts should be the

same, but this can be slightly different in some cases: for

example, if there was no invoicing, the contract liability

program wouldn’t calculate anything to be updated to table

FARR_D_POSTING. The same will happen if a CA/CL method is

assigned to the accounting principle and an invoice was

created, but isn’t due. In those cases, you’ll see information

that the contract was considered, but updates weren’t

made.

6.2.3 Revenue Posting Run

The last step, which is actually creating postings of the

accounting document, is Transaction FARR_REV_POSTING.

By running this program, the system is picking up all values

from table FARR_D_POSTING, which has been calculated by

programs A and B, and posting them in the general ledger.

Open the Revenue Posting Run app or run Transaction

FARR_REVENUE_POSTINGS to open the screen shown in

Figure 6.37.

Figure 6.37 Program C Initial Screen

In this case, you see that the initial parameters for the

program are very similar to the previous programs: you

need to specify Company Code, Accounting Principle,

and Fiscal Year/Posting Period combination. Again, you

can execute postings specific for one contract (used mainly

for debugging or error resolution) or for all contracts, which

is appropriate for the month-end closing process.

Unique to this program is that you can run postings first in

simulation mode before you run the actual update run. To do

so, switch the Run Mode dropdown to Test Only, as shown

in Figure 6.38. This is specific only to this program in

contrast to programs B and C, which can be run only in

update mode. This is because program C is taking over

already calculated values, while programs A and B are

performing actual calculations.

When you’re ready to perform the posting, click the

Execute button.

Note that error handling is being performed already at this

stage. Once the program is executed, whether in test or

productive mode, checks will be performed, and the process

will finish only if errors aren’t being detected. Similar to the

previous cases, you can execute the program in dialog

mode, in which messages will be displayed, or in the

background, in which potential messages will be evaluated

by analyzing the log via Transaction SLG1, as shown in

Figure 6.39.

Figure 6.38 Running Posting in Test Mode

Figure 6.39 Error Message Due to a Closed Period

Now, when you finish the posting process, a financial

document is created. As explained in Section 6.1.2, the

number of entries in a document highly depends on the

optimization options selected. Either way, postings in RAR

will be grouped and not done on the contract level. Let’s

look at the posting document in detail. Start Transaction

FB03 or the Display Financial Document app, and enter

Document Number, Company Code, and Fiscal Year,

and the document will appear, as shown in Figure 6.40.

The first question is, how do we identify if the document is

from RAR? The main identifier is the document type, which

is reserved for RAR postings, but this isn’t a mandatory

requirement—only a recommendation. For RAR postings, the

reference transaction (Ref. Transactn) will be set as FARA,

and TCode will be marked as FARR_REV_POST. In addition,

the accounting principle (ActgPrinciple) field will be

populated with the principle for which we ran program (in

this case, IFRS), which leads us to conclude that for parallel

reporting requirements, two documents will be created.

Figure 6.40 Posting Document Coming from RAR

But the most important field in this document is Reference

Key. In this case, it’s populated with some values that look

like random numbers (00000272013003IFRS), but there is

a rule for how it’s populated. The meaning of this value is as

follows:

Characters 1–8 represent the posting run.

Characters 9–10 represent the period for which the run

was performed.

Characters 11–14 are reserved for the company code.

Characters 15–18 are dedicated to the accounting

principle.

The posting run is a unique identifier of a specific posting

job run, and it’s given to all contracts that belong to a

particular reconciliation key. Once the posting job is

completed, the same values can be found in table

FARR_D_RECON_KEY, as shown in Figure 6.41.

The next question is about reconciliation between RAR and

financial accounting. To perform those tasks, you can use

the Reconciliation – Subledger and G/L SAP Fiori app. By

running this app, you can enter a specific posting run, and

the system will display the posting structure from the

accounting document, as shown in Figure 6.42.

Figure 6.41 Posting Key in FARR_D_RECON_KEY

Figure 6.42 Reconciliation App Results

Note

You can find a PDF version of Figure 6.42 available for

download at sap-press.com/5700 under the Product

supplements section.

https://sap-press.com/5700

There are several more applications available that can

provide information about postings in financial accounting

and calculations made in table FARR_D_POSTING. See

Section 6.4.1 for more information.

6.3 Integrating with Profitability

Analysis

Profitability analysis enables the evaluation of market

segments (products, customers, orders, or any combination

of these, or strategic business units, such as sales

organizations or business areas) concerning the company’s

profit or contribution margin. The system aims to provide all

relevant segments and departments with information that

supports internal accounting and decision-making.

There are two forms of profitability analysis supported, and

both types can be used simultaneously:

Costing-based profitability analysis

This groups cost and revenues according to value fields

and costing-based valuation approaches, whereas both

can be defined, always assuring access to a complete,

short-term profitability report.

Margin analysis (formerly called account-based

profitability analysis)

This is organized in accounts and uses an account-based

valuation approach. The difference in this form is its use

of cost and revenue elements, providing a profitability

report permanently reconciled with financial accounting.

RAR integrates with profitability analysis using the sales and

distribution entry to profitability analysis, as it behaves like

sales and distribution billing documents. Therefore, the

actual value flow is defined by assigning condition types to

value fields, similar to sales and distribution billing

documents.

In the IMG, go to menu path Controlling • Profitability

Analysis • Flow of Actual Values • Transfer of Billing

Documents • Assign Value Fields • Maintain

Assignment of SD Conditions to CO-PA Value Field.

Profitability analysis integration with RAR is handled mainly

as controlling setup. If profitability analysis is active, the

interface component profitability analysis characteristics are

by default activated in the configuration of RAI classes for

order items (RAI class type 01; see top screen in

Figure 6.43). The activation of this interface component

can’t be deselected. The interface component contains all

the fields of structure COPACRIT, as shown in the bottom

screen in Figure 6.43. Fields from structure COPACRIT are

transferred to the profitability segment number by

transforming raw items into processable items.

Figure 6.44 shows different treatment of postings in costing-

based profitability analysis and margin analysis. The first

difference is that at the moment of goods issue, COGS are

posted in margin analysis, whereas in costing-based

profitability analysis, you need to wait for the invoice when

COGS are getting posted statistically. If you add RAR cost

corrections into the equation, reversal of COGS will be

posted in margin analysis, but not in costing-based

profitability analysis. At the end, the result of both

approaches is the same, but with different postings in

different steps.

Figure 6.43 Profitability Analysis Basic Setup

The following steps describe a typical business process for

cost recognition:

1. The order includes the COGS in a condition. This is the

main condition where subsequent accounts are derived

from, and there can only be one main cost condition.

Cost conditions other than the main cost condition are

ignored with the exception of capitalized cost. The order

creates a revenue accounting contract. There are no

financial accounting postings in this step. For external

components, the account assignment is done in

BRFplus.

Figure 6.44 RAR: Profitability Analysis Interface

2. The goods issue or delivery triggers a financial

accounting posting with cost of sales (CoS) in debit and

material in credit. Margin analysis is updated if active.

3. The goods issue forwards the COGS to RAR. A correction

posting is created with the posting run, which reverses

the financial accounting and profitability analysis

posting of step 2.

4. The invoice updates the costing-based profitability

analysis with COGS. As the invoice is forwarded to RAR,

a reverse posting is created with the posting run.

5. The fulfillment posts revenues and costs according to

the cost matching principle. The costs are posted to

financial accounting, costing-based profitability analysis,

and margin analysis. In the example, 40% of the

revenues have been fulfilled despite the delivery.

Therefore, 40% of the CoS are posted to financial

accounting and profitability analysis.

Cost is posted to profitability analysis when its

corresponding revenue is posted. You need to set up the

condition type for goods issue (e.g., VPRS). Ensure that the

cost element of the general ledger account derived from the

condition type has cost element category 12 (sales

deductions).

In costing-based profitability analysis, if you’re using VPRS

as the cost condition type, Transfer +/- must not be set.

The cost condition needs to be defined this way because

otherwise, the profitability analysis component would raise

an error message if it gets positive and negative values for

the same profitability segment during the posting run.

As RAR delivers positive and negative values to profitability

analysis, the Transfer +/- indicator must be set for

assigning the condition type to the value field, including the

following settings:

For the CoS (condition category G, e.g., VPRS), the

Transfer +/- flag must not be set.

In the right of returns (RORs), assign value fields for the

ROR cost, and revenue adjustments are needed.

6.4 Reporting

Reporting is critical for analytics and monitoring the business

process and status. As you already know, there is a classic and

optimized approach to RAR; we’ll explore the reporting supported in

both in this section.

In RAR, reporting is required for disclosures, there are also reports

that help in executing the operations and providing an

understanding of business activities. Reporting is also very important

for reconciliation because you have to reconcile data between the

sender system and with finance. Reconciliation reports help gather

the details of the financial accounting documents created and

understand the difference between RAR and the general ledger.

6.4.1 SAP Fiori Applications

The reports in RAR have basically been divided into three sections,

as shown in Table 6.3. You can access these reports through the SAP

Fiori launchpad with business role SAP_BR_REV_ACCOUNTANT assigned to

your ID. You can use the App Finder to search for required revenue

recognition apps and add them to your homepage. As an example,

we’ve created a folder called RAR and added all the reporting apps

under this folder, as shown in Figure 6.45.

Disclosures Operational

Reports

Reconciliation

Disclosures Operational

Reports

Reconciliation

Disaggregation of

Revenue: By

Multiple Dimensions

Disaggregation of

Revenue: By

Customer

Disaggregation of

Revenue: By

Customer Group

Disaggregation of

Revenue: By

Performance

Obligation Type

Contract Balances

Posted Amount:

By Performance

Obligation Type

Posted Amount:

By Contract

FI Documents:

By Contract

Pending Review

Worklist

Reconciliation

between Revenue

Accounting and

General Ledger

Initial Load Report

Transition

Comparative Report

Revenue Accounting

Data Validation

Table 6.3 Reporting in RAR

Figure 6.45 RAR Reports in SAP Fiori

To create a folder for RAR, follow these steps:

1. Launch the SAP Fiori launchpad.

2. Provide your login credentials, and you’ll get the screen shown in

Figure 6.46.

Figure 6.46 Initial Screen

3. Click on the user profile at the top-right corner (in this case, a

blue circle with SP in it).

4. In the menu that drops down, click on App Finder, as shown in

Figure 6.47.

Figure 6.47 App Finder

5. The App Finder screen shown in Figure 6.48 provides a list of

apps on the left side, app tiles in the center, and a search box in

the top right. In the search box, enter “REVENUE” (or anything

that you want to search), and you get the list of apps related to

the search word.

Figure 6.48 Apps Screen with the Search for “REVENUE”

6. Select an app, and click on the icon at the bottom right of the

app.

7. In the text back that appears, create a new group, and add the

app to it, as shown in Figure 6.49.

In our case, we created a group named “RAR” and added all the

required apps.

Classic Reporting

Previously, all the reports were available through SAP Business

Client. Now with SAP S/4HANA, all the reporting is shifted to SAP

Fiori apps.

Figure 6.49 Add App to the New Group

SAP recommends using core data services (CDS) views to create

analytical reports. Earlier, data sources were used, which aren’t

supported by SAP anymore. If you use data sources, you’ll have to

do manual activations. We’ll explain the key reports for disclosures,

operations, and reconciliation in the following sections.

Disclosures

Analytics and reporting revenue recognition are important for

monitoring, reviewing, and forecasting revenues and costs. Analytic

reports help in making strategic decisions and planning controls.

Basically, disclosure reports are created because part of IFRS 15 has

various disclosure paragraph requirements. Disclosures include a few

different reporting activities, as shown in Figure 6.50.

Figure 6.50 Disclosure Reports

Let’s walk through each:

Disaggregation of revenue

We’ll explain a basic case with paragraph 114 in IFRS 15, which

states the following:

“An entity shall disaggregate revenue recognized from contracts

with customers into categories that depict how the nature,

amount, timing and uncertainty of revenue and cashflows are

affected by economic factors. An entity shall apply the guidance in

paragraph B87–B89 when selecting the categories to use to

disaggregate revenue.”

This is just one paragraph of many, and we need reporting to help

disclose this data. So RAR comes to the rescue by giving us

multiple disclosure reports. Following are some sample reports:

Disaggregation of Revenue (by multiple dimensions): This report

helps you display revenue data for a particular accounting

period aggregated by multiple dimensions such as customer,

customer group, POB type, and so on.

Disaggregation of Posted Revenue: This report helps you analyze

posted revenue.

Disaggregation of Recognized Revenue: This report helps you

analyze the recognized revenue.

The Disaggregation of Revenue report is accessed through the SAP

Fiori launchpad, as shown in Figure 6.51.

Figure 6.51 Disaggregation of Revenue – By Customer Report

Contract balance

The Contract Balance report is designed to show the key figures

(opening balance, posted amount, and closing balance) according

to the company code, accounting principle, revenue contracts, and

multiple other dimensions per period. Basically, the focus lies

mainly on CA/CL or UR/DR to show the closing balance. In the

accounting principle configuration, you choose either UR/DR or

CA/CL, so this is where it comes from.

Remaining POBs

POBs can be of two types: event based and time based. For event-

based POBs, it’s clear that the trigger of the event is when the

revenue will be recognized. For time-based POBs, at a certain point

in the reporting cycle, some POBs are unsatisfied. According to

IFRS 15 paragraph 120, there are requirements to disclose the

aggregated amount of the transaction price allocated to the

unsatisfied POBs. It’s also expected to disclose when the company

or entity is expected to recognize the remaining revenue. For this,

you may need to mention different timelines. The Disaggregation

of Revenue report can also be used to meet this need.

Operational Reports

The operational reports are used for analytics to report the posted

amount on different dimensions and in different currencies. They

capture the transactional data and produce it in the format that is

needed and designed.

Operational reports will be used by people in the organization who

are responsible for day-to-day tasks related to tracking contract

creation and revenue recognition in the contracts. Usually, these

reports are based on the level of a single contract and contain basic

information coming from source applications and calculations done

by RAR.

Following are a few examples of operational reports:

Monitor Revenue Contract

This report will display details related to the revenue accounting

contracts. You can check the activities on the contract using this

report.

Revenue Contract Search (obsolete in SAP Fiori, but still

convenient)

This will display a list of contracts in the system, with hotspots on

the contract number. Once you click the contract, you can see the

details, such as the revenue schedule, fulfillment information,

invoice information, and so on, as shown in Figure 6.52.

Figure 6.52 Search Revenue Contracts

Manage Revenue Contracts

This will display the details of the contracts such as the Contract

Status, Business Partner, Contractual Price, and other

contract-level details, as shown in Figure 6.53.

Figure 6.53 Manage Revenue Contracts

Revenue Explanation

In this app, you can find the POBs of the contracts and other

details, as shown in Figure 6.54.

Figure 6.54 Revenue Explanation

Reconciliation

Posting financial documents from RAR comes as a result of

calculations that are done in table FARR_D_POSTING. Therefore, it isn’t

an unusual requirement for reconciliation between these two

modules.

When it comes to reconciliation between revenue accounting and the

general ledger, two separate activities are required:

Reconciliation between revenue postings and general ledger

Reconciliation of accounts between revenue accounting and

general ledger

In SAP S/4HANA, new reports enable this reconciliation to happen in

a more transparent and clear way:

Comparison of G/L Accounts – Revenue Accounting and G/L

Reconciliation – Subledger and G/L

The first thing we need to look at is running analysis of financial

accounting documents that came from RAR. To do this, use the

Comparison of G/L Accounts – Revenue Accounting and G/L app.

Documents in RAR that are posted come as a grouping on the

controlling object level. When you run the application, you need to

enter search criteria that are either a period/year combination or

based on Run ID or G/L Document number. Once you run it, the

screen shown in Figure 6.55 appears.

Here is the visible split of the documents from the RAR perspective:

by choosing Run ID, you’re controlling which contracts will appear in

the report. There’s also a list of the visible split for POB types,

condition types, and posting categories, making this report a mix

between tables FARR_D_POSTING and ACDOCA.

However, this report can’t tell you everything from RAR actually

posted in finance. We need to be very clear on the expectations

coming from this report: as mentioned, the period won’t be able to

be closed before posting is actually performed. Therefore,

differences between tables ACDOCA and FARR_D_POSTING can happen only

in some border cases.

Figure 6.55 Financial Postings from RAR

Once you run the Reconciliation – Subledger and G/L report, it

displays the results shown in Figure 6.56.

The report works in traffic light mode: if there are differences

between postings in RAR and table ACDOCA, they will appear with a red

light. If everything is OK, the traffic light will be green. Again, you

can make selections based on the general ledger account, and

reconciliation is possible because table FARR_D_POSTING also contains

general ledger account numbers for postings derived from BRFplus

settings.

Figure 6.56 Reconciliation Report between General Ledger and RAR

Note

You can find PDF versions of Figure 6.55 and Figure 6.56 available

for download at sap-press.com/5700 under the Product

supplements section.

A prerequisite for this report to be used is that the general ledger

accounts used for RAR postings aren’t being used for any kind of

different manual postings. If that is done, this report will show

differences.

There is another app for reconciliation that is frequently used:

Revenue Schedule. The Revenue Schedule app can be accessed from

the SAP Fiori home screen or through the Search Revenue Contract

app. Once you select a contract from the Search Revenue Contract

app, you have the option to click Revenue Schedule at the top of

the screen. After navigating to the Revenue Schedule app, filling in

the selection parameters, and clicking GO, you’ll arrive at the screen

shown in Figure 6.57, which provides the list of contracts for your

selection criteria.

Figure 6.57 Revenue Schedule Initial Screen with List of Contracts

https://sap-press.com/5700

The first column, Revenue Contract, is hotspot enabled. Once you

click the contract that you want to view the revenue schedule for,

you’ll see the screen shown in Figure 6.58.

Figure 6.58 Revenue Schedule: Display for Selected Contract

The columns shown in Figure 6.58 can be customized or changed per

your requirements by clicking the Settings icon in the top-right

corner. You’ll open the screen shown in Figure 6.59, where you can

do the following:

Select columns from Hidden Columns to display

Remove unwanted columns from the displayed columns

Move columns to your desired location (either to the top or

bottom) using the arrows

Save the layout and provide a name

Figure 6.59 Choose the Columns to Be Displayed or Hidden for Revenue Schedule

Now, let’s refer back to Figure 6.58 and walk through the columns:

Status

Shows a traffic light (red, in our example). The colors have the

following meanings:

No light: The revenue is just in the billing plan

Orange: Revenue is to be recognized in the future

Gray: Revenue is recognized, but not yet posted

Green: Revenue is recognized and fully posted

Red: Revenue is recognized, but not posted

Performance Obligation No.

The second column displays the numbers of the POBs; in this case,

there are two POBs (221 and 222).

Accounting Period

This is the accounting period for each of the time-based POBs;

there will be an item for each accounting period from the start

date to the end date of the POB. For event-based POBs, there will

be a single line, and it will have the accounting period value as

Unscheduled, since they will not have a duration and will instead

be recognized as a point in time.

Performance Obligation Name

Here you can find the name of the POB.

Allocated Amount

Here you can find the allocated amount per POB.

Effective Quantity

This is the quantity value for the contract.

Quantity

This shows the value of the quantity per POB per period.

Fulfillment Progress

This percentage indicates how far the POB has progressed in an

accounting period toward its completion.

Cumulated Percentage of Completion

This is an accumulated value of the fulfillment progress for the

particular POB for the specific accounting period.

Revenue

This column has the value of the allocation revenue for the POB for

that accounting period.

The Revenue Schedule app gets its data from table FARR_D_DEFITEM,

which we discussed in Chapter 5.

Reporting in Classic versus Optimized Contract Management

Classic contract management (CCM) has very limited reporting

options, whereas optimized contract management (OCM) offers

extended and enhanced reporting options (Section 6.4.2). Table 6.4

clearly outlines the reports that are available in CCM and OCM.

SAP

Fiori

ID

SAP Fiori App

Name

Type Supports

CCM

Obsolete

F4068 Disaggregation of

Revenue (Design

Studio)

Analytical, SAP

Business

Warehouse

(SAP BW)

query used

Yes Yes

F4269 Disaggregation of

Recognized

Revenue (Design

Studio)

Analytical, SAP

BW query

used

Yes

F4620 Contract Balance

(Design Studio)

Analytical, SAP

BW query

used

Yes Yes

SAP

Fiori

ID

SAP Fiori App

Name

Type Supports

CCM

Obsolete

F4702 Remaining

Performance

Obligation – with

Time Bands

(Design Studio)

Analytical, SAP

BW query

used

Yes Yes

F4703 Remaining

Performance

Obligation (Design

Studio)

Analytical, SAP

BW query

used

Yes Yes

F4956 Contract Balance

Movements

(Design Studio)

Analytical, SAP

BW query

used

Yes

W0154 Contract Balance

Movements

Analytical, SAP

BW query

used

W0155 Contract Balance Analytical, SAP

BW query

used

Yes

W0156 Disaggregation of

Recognized

Revenue

Analytical, SAP

BW query

used

W0157 Disaggregation of

Revenue

Analytical, SAP

BW query

used

Yes

W0158 Remaining

Performance

Obligation – with

Time Bands

Analytical, SAP

BW query

used

Yes

SAP

Fiori

ID

SAP Fiori App

Name

Type Supports

CCM

Obsolete

W0159 Remaining

Performance

Obligation

Analytical, SAP

BW query

used

Yes

W0169 Revenue Catch-Up Analytical, SAP

BW query

used

W0176 Contract Balance

Reclassification

Analytical, SAP

BW query

used

Yes

Table 6.4 Reporting Apps in SAP Fiori

Note that the Contract Balance Reclassification app works

exclusively with OCM and optimized inbound processing (OIP) only.

Some other standard reports that we want to mention here are

shown in Table 6.5.

Transaction Program Name Description

Transaction

FARR_BIZ_RECON

FARR_BIZ_RECON Reconcile

the

operational

data with

revenue

accounting

Transaction FARR_MIG FARR_MIGRATION_COCKPIT Migration

cockpit

Transaction

FARR_INI_LOAD_REPORT

FARR_INITIAL_LOAD_REPORT Initial load

report for

background

processing

Table 6.5 RAR Reports

6.4.2 New Styles of Reporting and CDS Views

In the previous section, we discussed standard reports and the

transition of reporting. In this section, we’ll discuss the reporting

styles that we adopted in the custom reports we developed during

our projects. Reporting is crucial to run a business, and it’s important

to optimize the reports’ execution time to provide users the data

they need in real time without making them wait for long periods.

With OCM and SAP S/4HANA, designing reports has been shifted

using CDS views. Reports using CDS views are one part of the

discussion, along with some other technical approaches to reporting.

Here, we’ll be discussing the technical approach that we used to

optimize our reports. During this time, we faced many challenges

when trying to develop custom reports, of which the most prominent

ones were memory management issues and performance

management issues.

The technical approach being explained here is more relevant for

technical consultants. It’s undeniable that there may be many more

optimized techniques, but these are the ones we used, and it could

be useful for you to try them as well.

Staging Tables for Reporting

Consider a situation where report execution is taking a long time,

and the user has to schedule it for background execution and then

come back after the job has been completed to check the output.

The output in the spool isn’t very user-friendly and isn’t so

convenient for formatting and creating the desired format for display.

So, we planned to make one place in the program where the

program itself schedules the job and fills the table, which is in the

output format. We created a database table to store the output data,

which is called a staging table, as mentioned previously. The report

program will have a two-step execution in which the first step is to

first fill the output table, and the second step will display the output

from the table. A flowchart to demonstrate the flow and the

execution is shown in Figure 6.60.

Figure 6.60 Flowchart for Reporting with Staging Tables

To demonstrate the usage of staging tables, let’s take a closer look

at an example flow, which is provided in a generic format as the

desired functionality and requirement could be added in the

processing per the project requirement. The high-level process

follows:

1. Say we have a requirement to design a custom reconciliation

report to reconcile the data between SAP Billing and Revenue

Innovation Management and RAR. The selection screen of the

program will be designed using Transaction SE38, as shown in

Figure 6.61.

Figure 6.61 Sample Selection Screen of Reconciliation Report

2. The mandatory things on the selection screen will be to include

two push buttons. One will be for filling the table, and the other

will be for the display of the output, as shown in Figure 6.62.

Figure 6.62 Push Buttons to Display the Data and Fill the Data to the Table

3. The Fill Orders button is designed to fill the table with the

output data. We need to create a database table where the data

from the program execution will be filled. Using Transaction

SE11, we’ll create a database table that will match the output

format requirement. For our requirement, we created the table,

and the data was filled, as shown in Figure 6.63.

4. When the user clicks on the Fill Orders button, the program will

trigger a job in the background. The job will pull the necessary

data from different RAR tables or CDS views that will be required

per the logic and then save it in the database table. The previous

entries will be overwritten. The scheduled job can be viewed

using Transaction SM37, as shown in Figure 6.64.

Figure 6.63 Data Stored in the Table by Jobs

Figure 6.64 Job Scheduled to Save Entries in the Table

5. When the user needs multiple different formats of output, you

can design the database table to include all the columns that will

be needed for all the output formats. The required output format

can be designed in the program to display it with the necessary

processing.

6. We need to check whether the job for filling the table is already

scheduled, and then we need to pop up a message informing the

user that the job is in progress already for filling the table, as

shown in Figure 6.65. If there is no job running or scheduled,

then we need to fetch the required data from the RAR tables,

perform the required processing per the design requirements,

and then populate the database table, which is designed for

output. The message informs the user that the job is already

scheduled.

Figure 6.65 Message to Inform User That a Job Is Scheduled to Fill the Table

7. We can further enhance the design for performance by creating

child jobs and adopt data packaging, which is discussed in

Chapter 7, Section 7.1, during our coverage of the custom

parallel processing framework.

8. The other option is to display the data (the Display Orders

button). There can be multiple formats, and they all should be

programmed as options on the selection screen. Then, the data

will have to be fetched from the output table, processed per the

output format required, and then displayed in the grid format. A

sample from our program is displayed in Figure 6.66.

Figure 6.66 Sample Report Output

CDS Views for Reporting

CDS views are considered an advanced feature introduced by SAP in

SAP NetWeaver AS for ABAP 7.40 SP05. CDS views are designed

using SQL data definition language (DDL) syntax. CDS views offer

optimal code pushdown as data model definitions are executed

directly in the database layer. You can perform complex operations

and calculations directly in the database. The CDS view is a changed

approach to the belief that we needed to give a lesser load to the

database and perform complex operations on data in the application

layer. Now, with the CDS views and the SAP HANA database, the rule

is to perform most of the calculations, aggregations, and other

complex operations in the database itself to optimize performance.

The data is definitely in the tables, as the name itself suggests that

it’s a view. CDS views are like coordinators that understand the

tables and their relationships and help you access data and perform

operations at a faster pace. Using CDS views is now common, and

SAP even suggests that you use CDS views for building reports for

OCM.

SAP has provided lot of CDS views in RAR that you can use for

reporting. Table 6.6 provides a list of standard CDS view provided by

SAP. These CDS views directly reflect the sample reports we

discussed in Section 6.4.1.

Technical Name SQL View

Name

Description

I_RADEFRLITEMFORDSPCRCYCUBE IRADEFRLITEMCUBE Revenue Schedule

Deferral Item –

Cube

C_RAYRTODTERECGDREVNQUERY CRAYTDRECOGDREVQ Disaggregation of

Recognizable

Revenue

I_RAPOSTINGITEMCUBE IRAPOSTITEMCUBE Posting Item – Cube

Technical Name SQL View

Name

Description

C_RAPOSTINGITEMQUERY CRAPOSTITEMQUERY Disaggregation of

Revenue

I_REVNACCTGFULFILLMENT IRAFULFILLMENT Revenue

Accounting

Fulfillment

I_REVNACCTGDEFERRALITEM IRADEFERRALITEM Revenue

Accounting Deferral

Item

I_REVNACCTGSCHEDULEITEM IRASCHEDITEM Composite Revenue

Accounting

Schedule Item

I_REVENUEACCOUNTINGPOSTING IRAPOSTING Revenue

Accounting Posting

I_REVENUEACCOUNTINGINVOICE IRAINVOICE Revenue

Accounting Invoice

I_RAPERFOBLGNCHANGETYPEITEM IRACHANGETYPEITM Performance

Obligation Change

Type Item

C_RATOTALOPENREVENUEQUERY CRATTOPNRVNQRY Remaining

Performance

Obligations

I_RATOTALOPENREVENUECUBE IRATTOPNRVNCB Remaining

Performance

Obligations – Cube

C_RAOPENREVENUEPERPERIODQUERY CRAOPNRVNPRDQRY Remaining

Performance

Obligations with

Time Bands – Query

Technical Name SQL View

Name

Description

I_RAOPENREVENUEPERPERIODCUBE IRAOPNRVNPRDCB Remaining

Performance

Obligations with

Time Bands – Cube

C_RACONTRACTBALANCEQUERY CRACONTRACTBALAQ Contract Balance

I_RACONTRACTBALANCECUBE IRACONTRBALCUBE 116A Contract

Balance: Cube View

C_RACONTRBALANCEMOVEMENTQUERY CRACONTRBALMVQ Contract Balance

Movements

I_RACONTRBALANCEMOVEMENTCUBE ICONTRBALCUBE Contract Balance

Movements Cube

View

C_RAANLYTSOVRLSSPRICETESTQUERY CRASACSSPTOQ Overall Result of

SSP Test – Query

C_RAANALYTICSSSPRICETESTQUERY CRASACSSPTSTQ Test of Standalone

Selling Price –

Query

Table 6.6 CDS Views Available for Reporting in RAR

You should also create CDS views on the basic RAR tables

FARR_D_DEFITEM and FARR_D_POB, which are huge tables with large

volumes of data. These CDS views can then be used in the program.

Along with these tables, you can use any other table or combination

of tables such as table FARR_D_MAPPING, FARR_D_POB, and FARR_D_CONTRACTS

that we want for our reports.

You can create CDS views using the Eclipse integrated development

environment (IDE) with the ABAP Development Tools (ADT) or using

SAP HANA Studio. However, the steps to create a CDS view are out

of the scope of this book. Once the CDS view is created, you can use

it in the program. The syntax for calling a CDS view to fetch data is

as follows:

Select * from ZCDS_VIEW into table @data(lt_itab).

Using AMDP in Reporting

Using ABAP-Managed Database Procedures (AMDPs), you can write

code inside AMDP by using SQLScript, which is a database language.

Similar to using SQL scripts, this language is easy to understand and

code. After coding the logic inside the AMDP method, you can

consume it in an ABAP report.

With AMDP, we can take advantage of new SAP HANA features (e.g.,

the code push-down technique), so all logic is still coded on the

application layer, and then this logic will be executed on the

database layer. AMDP is only supported in an ADT bundle or SAP

HANA Studio. However, an AMDP method needs to be defined with

standard interface IF_AMDP_MARKER_HDB to let the compiler know that

it’s an AMDP method; therefore, it’s like an instruction that the code

execution must be pushed to the database. AMDP needs to be

implemented in SQLScript, which is the native language for the SAP

HANA database.

As developers, it’s a common situation to see that our program is

taking much longer than we expected. For example, say that in the

general analysis of our code, there are no time-consuming SELECT

statements, but when we run Transaction ST05, we find in the

analysis that the ABAP part is taking a long time. With the

introduction of AMDP, we won’t be facing this scenario, as we can

write our complex logic or logic involving a lot of data traffic or data

processing in the AMDP method. Once we write the code in the

AMDP method, the code is pushed to the database and executed in

the database, reducing a lot of data transfer and processing time.

This helps us in designing performance-critical objects.

Further Resources

Note that complete technical instructions for using ABAP-related

tools are beyond the scope of this book. For more information, see

https://developers.sap.com/tutorials/abap-environment-amdp-

profiling.html.

To create AMDPs, follow these basic steps:

1. Create a class using ADT.

2. Inside the class, you must have the declaration shown in

Figure 6.67 to know that this is an AMDP method.

Figure 6.67 AMDP Method Declaration

3. Declare all the types and methods that you need, as shown in

Figure 6.68 and Figure 6.69, respectively. You can declare all the

required types (you could create the types using Transaction

SE11 and use them here as well). Make sure you use the MANDT

field, which carries the client number. This is mandatory as AMDP

doesn’t handle automatic detection of clients.

In our example for RAR, we developed a custom reconciliation

report in one of our projects and had to declare a TYPE with fields,

as shown in Figure 6.68.

Figure 6.68 Types Declaration in the AMDP Class

https://developers.sap.com/tutorials/abap-environment-amdp-profiling.html

4. For the same custom reconciliation report, we had to write

methods; a sample of the method syntax is shown in Figure 6.69.

In this method, we’re fetching the details of the contract and

processing it for reconciliation.

Figure 6.69 Method Declaration Sample

5. Now you implement the AMDP method in the required format

shown in Figure 6.70.

In the code snippet, you can see the particular format that is

adopted. The meaning of the syntax is as follows:

BY DATABASE PROCEDURE

Implements a database procedure. This is to inform your AMDP

method to automatically create a procedure in the SAP HANA

system.

FOR HDB

Indicates the SAP HANA database.

LANGUAGE SQLSCRIPT

Indicates the database-specific language in which AMDP is

implemented.

OPTION READ-ONLY

Indicates that you can only perform a read in the database

procedure.

USING <name of table/view>

Provides the name of the table if you use tables in this

procedure.

Figure 6.70 Implementing the AMDP Method

6. Next you consume the AMDP. In any of our reports, as already

mentioned for the custom reconciliation report, we needed to

create an AMDP, and we’ve mentioned the syntax for types and

methods in the preceding points. Once the AMDP is ready, you

can consume it. The syntax for calling an AMDP is very similar to

calling any other methods of a class, as shown in Figure 6.71.

Figure 6.71 Consuming AMDP in the ABAP Program

7. You can see filter fields called iv_filter = lv_filter. The filter is for

refining your selection by eliminating or including entries. This

depends on how the filter is coded. In our case, the filter was

used to provide the range of contracts that we wanted the AMDP

to consider and get the data for only those relevant contracts.

The filter needs to be coded in the syntax shown in Figure 6.72.

Figure 6.72 Filter in AMDP

6.5 Summary

Throughout this book so far, you’ve seen that postings

according to IFRS 15 bring changes to finance departments

both for amounts that are going to be posted and also the

number of entries done on different accounts. Before the

project of IFRS 15 compliancy is even started, an

organization needs to evaluate and estimate the expected

impact. Because there is a shift being made between

revenue that is recognized at a point in time and over time,

there might be an effect on different departments. All of

these parts of an organization need to be prepared for the

change ahead.

In addition, there is a list of additional activities that will be

done either during the month or at the month end. There is

an impact on change management to prepare teams for

these changes in the sense of defining additional roles and

providing additional training.

The last step is the posting itself, which we discussed in this

chapter, and RAR is flexible in this sense. One activity can

be done in multiple ways, and it will be up to the

organization to choose. For example, if you need to see

revenue split on different levels, this might be done by

postings on different accounts, or an organization might opt

for creating additional reporting either through RAR or via

profitability analysis.

Future maintenance needs must not be forgotten. The

number of accounts will also determine how support for

future changes will be provided. However, users should not

go with too lean of an approach. For example, a good idea is

to have a dedicated account for manual corrections at

month end. Once the balance of a certain account is looked

at, it’s cleaner to know that it comes from automatized

postings only. In addition, by making manual postings on the

same account that is used by RAR, usage of reconciliation

reports is heavily limited.

In the next chapter, we’ll move on to administration and

troubleshooting processes for RAR.

7 Administration and Troubleshooting

This chapter focuses on administering and troubleshooting revenue

accounting and reporting (RAR) implementations, particularly around

handling large volumes of data and the resulting performance issues. We’ll

also discuss some custom tools.

During many of our projects, we came to understand the working style of the

users and the system in depth. This led us to create some utilities as well as

some required deliverables in a better form or pattern that is adapted to the

users. There are times when one solution suits one customer, and the same isn’t

valid for others; each case is different, and so is each client and its users. The

one thing that was common and consistent throughout was the huge volume of

data and the challenge of managing that data. There are cases when the data

volumes aren’t that high, but still it’s better to have tools and objects designed to

handle large volumes of data as we all know that businesses do grow, and so

does the data volume. Additionally, the world is advancing at a fast pace, and

everybody expects instant results. In these days of quick solutions, we can’t

afford to have a long waiting period, and no one is ready to invest their precious

time in waiting, so it becomes very important for us to design our deliverables

while keeping this in mind.

Technical approaches that are used for achieving high performance will be

discussed in this chapter, starting with a walk-through of addressing performance

in your RAR system using the custom parallel processing framework (PPF). We’ll

also focus on some specific solutions that have been provided for reclassification,

tools for troubleshooting and navigation, utilities, and data cleanup, which you

can adapt per your project requirement.

Note on Technical Content

Most of this chapter is technically focused and is intended to help technical

consultants get comfortable with RAR. If you’re a beginner, this is the place for

you to look out for information and get details about a lot of technical topics

around RAR. However, we’re assuming reader familiarity with coding

fundamentals such as function modules, performs, includes, and more.

7.1 Parallel Processing Framework and

Performance Issues

The PPF and performance tuning are grouped together here as both address the

same issue. Let’s start with the PPF, specifically focusing on developing a custom

PPF. Then, we’ll discuss modularization and packaging techniques in the next

sections.

7.1.1 What Is Parallel Processing?

There are many PPF designs that are made and are being used in many projects.

There is also a standard PPF that is available in SAP. The very word says that the

processing is happening in parallel. So, to make it run in parallel, we need to

provide divided data to these parallel processes.

As an example, let’s say there is a requirement which says you have to write a

complex program that fetches entries from huge database tables and creates

accounting documents for each of them and then clears the database table for a

specific run ID. Then, the developer develops a custom program for it. The

program takes about 2 hours to create accounting documents for 90,000 entries.

The functional consultant then informs the developer that there is a sequence of

programs running in the production system, and this job has to be completed in

20 minutes because another job has to start immediately after this program

completes execution. As a result of this requirement, we must improve the

performance of this program and reduce its execution time to 20 minutes or less

so that they align with the designed sequence of the jobs. By using various

performance-tuning techniques, the developer managed to achieve 1 hour

execution time. At this point, where performance tuning can’t be enhanced

further, the best thing that we can try is to design the program using a PPF. The

parallel processing technique enables us to split the entries into parts and

execute each part asynchronously. In our example, we made each part contain

20,000 entries and calls to the program, which is now designed using a PPF for

each of these parts separately, and we noticed that the execution time was

reduced drastically. Figure 7.1 explains it further.

Standard PPF is used by most of the RAR standard programs. The standard PPF

program actually has two parts. The first part is the standard PPF, which acts as a

controller and takes over the task of making data ranges and calling the

necessary controls for executing the program. The second part is an application

program that has the logic to execute the business requirements. The basic

principle of the PPF is to divide up processing into individual processing steps or

events in which business-specific or application-specific logic is run. The

application is designed to prepare the core logic in function modules (called

callback modules). More information about the standard PPF can be found here:

http://s-prs.co/v570000.

We’ll now shift our focus to discuss the custom PPF designed for an example

project, as shown in Figure 7.1.

Figure 7.1 Parallel Processing Framework

In the top portion, a mass processing job is being executed without using a PPF.

It’s scheduled on a single application server and uses a single work process. It

requires X unit of time to complete the processing and to show the results.

The lower portion shows the same job executed using the custom PPF. The job

uses multiple application servers and multiple work processes. In our case, the

actual work is split up into three work processes on three different application

servers. The time taken for processing and to show the results is now significantly

reduced to X/3 units—one-third of the actual time taken. This is the core that we

need to understand. The execution process is split into parts and executed in

different work processes on different or the same servers based on availability of

work processes, and, as a result, the time taken for execution is significantly

reduced. This is the core of parallel processing: divide and execute. So, we need

to understand that we’ll deploy additional system resources and work toward

reducing the time taken. The important resources we use are the application

servers and work processes. When it comes to normal programs, we’ll use a

single server and single work process; here, it changes based on the volume of

data and the choice of the user to select the number of jobs to create by splitting

the data. The greater the number of jobs, the less time taken for processing.

In the following sections, we’ll explore these resources and how to view them in

the system.

7.1.2 Application Server Instances

http://s-prs.co/v570000

An SAP instance defines a group of resources such as memory, work processes,

and so on, usually in support of a single application server within a client/server

environment. Application servers share the same memory areas and are

controlled by the same dispatcher process. We’ve generally seen when we

provide the details in the SAP GUI that we give the system ID and then the

instance number. Generally, there will be one application server and many

application server instances.

In SAP, we have an application layer where the application programs are

executed. It serves as a communicator between the presentation and database

layers. The application server is where the dispatcher distributes the workload to

the different work processes. The application server is a physical server used to

handle and process the user request.

It’s possible to install more than one instance on a single server provided they

are differentiated by the instance number. So, we have a predefined set of

application server instances that are available for any given system. The instance

number is a two-digit number that varies between 00 and 97 (98 and 99 are

reserved for routing purposes).

You can look at the instances available in a system by going to Transaction SM51,

as shown in Figure 7.2.

Figure 7.2 Instances Available in a System

This transaction also shows you whether that instance is currently Active under

the State column. In the Active state, the application server receives and

processes requests and creates and sends requests to other application server

instances. The Instance Services column shows the type of services offered by

that instance. The following services (work processes) are available on the

application server instance:

Dialog

Dialog work processes are configured on the application server instance, which

means online processing is possible.

Enqueue

Enqueue work processes are configured on the application server instance and

administer the lock table in the shared memory; other locking functionalities

are handled here as well.

Update

There are two types of update work processes: V1 and V2. They are configured

on the application server instance, which means it can execute (time-critical)

V1 update tasks. V1 update jobs have higher priority than V2 jobs.

Upd2

V2 update work processes are configured on the application server instance,

which means it can execute (non-time-critical) V2 update tasks.

Batch

Batch work processes are configured on the application server instance, which

means background jobs can be run.

Spool

Spool work processes are configured on the application server instance, which

means print formatting can be run.

ICM

The Internet Communication Manager (ICM) is configured on the application

server instance, that is, connections from or to the internet can be made.

VMC

The Virtual Machine Container (VMC) is active on the application server

instance, which means both ABAP virtual machine and Java virtual machine

(JVM) are available in the work process.

J2EE

Java 2 Platform, Enterprise Edition (J2EE) is available on the application server

instance.

7.1.3 Job Server Group

You can group job servers on different computers into a logical SAP Data Services

component called a server group. A batch server group automatically measures

resource availability on each job server in the group and distributes scheduled

batch jobs to the job server with the lightest load at runtime. This means a server

group looks for job servers with a lesser load and then allocates jobs to it.

We’re talking about job server groups here because we’ll be creating a job server

group to be used in our custom PPF. A job server group is created using

Transaction SM61.

In Figure 7.3, you can see that in our example there are four different application

servers—AP1, AP2, AP3, and AP4—and each has its own set of work processes. To

create a job server group, we choose three out of the four servers to be included

in the group. This is like a system that will work to share the load among

themselves and allocate the work processes effectively when a group of jobs are

assigned to it. In this case, we grouped AP2, AP3, and AP4 and created the job

server group. So, when we schedule a job and use this job server group, then the

work processes across the application servers are used and allocated to complete

the task.

Figure 7.3 Job Server Group Illustration

Let’s now look at the steps to create a job server group:

1. Go to Transaction SM61 to arrive at the screen shown in Figure 7.4.

Figure 7.4 Job Server Group: Initial Screen

2. Click on the Job Server Groups button at the top of the screen. You’ll go to

the screen shown in Figure 7.5, where you click on the Create Group button

(left-most button at the top of the screen).

Figure 7.5 Job Server Group: Create Group

3. In the popup that appears, fill in the Group Name as shown in Figure 7.6.

Give the group name as “Job_server1”, and then click on Continue.

Figure 7.6 Job Server Group: Group Name

The group is now created, and you can see the group under the Server Groups

on the left-hand side of Figure 7.7. You then have to click on the Assignment

button, which opens the window where you can add the application server

instances (InstanceName) by choosing from the (F4) help and then clicking

Continue. In this case, as it’s a demo system, there is just one server instance,

but in most practical projects, there will be multiple server instances. While

selecting the servers, you have to make sure not to select all of them and leave a

few for other critical system processing. You create a group by choosing multiple

servers, clicking on Assignment as many times as the number of servers that

you want to add, and selecting the required servers.

Finally, you can see the Server Groups and the list of application server

instances added, as shown in Figure 7.8.

You can either add this server group to new jobs or edit the existing jobs to

include the job server group in them. The batch job group that is created will now

be available as an option in Transaction SM36, as shown in Figure 7.9, when you

click the Target (F4) option. So, it’s now ready for use to use in the custom PPF

program.

Figure 7.7 Job Server Group: Assign an Instance

Figure 7.8 Job Server Group: Added to List

Figure 7.9 Job Server Group: Entry Found

7.1.4 Custom Parallel Processing Framework

Having explained the application server instances, job server group, and creation

of job server groups and work processes, we’ll now start looking at the custom

PPF. The custom PPF is a framework that we designed to achieve faster

processing of huge data volumes. This design has three mandatory parts. The

first one is the parent job processing function module (which will have the core

processing logic) and then the child jobs. The parent program is like a driver

program that will provide the selection screen, identify the top node of

processing, divide the date and data ranges, and create child jobs.

Once the requirement or the functional design is with the developer, you need to

check the selection criteria and start with the parent program design. After

creating the initial input screen of the program (called the selection screen), you

need to analyze and identify the top node, which is the first-level data that will be

extracted and divided into part of ranges and then sent to the child jobs. In RAR,

the top node will generally be the HeaderID or ContractID—or anything else per the

requirement.

So, let’s start our deep dive into designing the PPF supported by snippets of code.

We recommend following the software development lifecycle and designing a

technical specification first, which is dependent on your specific requirements

and beyond the scope of this book, and then start with the coding. Here, we’ll

directly talk about coding blocks related to the custom PPF.

With the help of the selection screen details provided in the functional design

specification, we can decide the top node of processing. Let’s say we have a

requirement of reprocessing the revenue accounting items (RAIs) based on some

validation. The selection screen will have the items shown in Table 7.1.

Selection

Element

Technical Name Selection

Type

Mandatory Default

Values

Description

Selection

Element

Technical Name Selection

Type

Mandatory Default

Values

Description

P_BUKRS bukrs Parameter X 1000 Company

code

P_PRIN accounting_principle Parameter X IFRS Accounting

principle

S_HeaderID FARR_HEADER_ID Select-

option

Header ID

P_DATUM DATUM Parameter X Date

Table 7.1 Selection Screen Details for PPF Design

From Table 7.1, we understand that the S_HeaderID is the key, and we need to split

the processing into different jobs for ranges of HeaderID, as shown in Figure 7.10.

Figure 7.10 Parent and Child Jobs

Basically, we’ll design and develop three parts: function module, main program

as parent program, and main program as a child job. Let’s take a closer look at

each.

Function Module

You need to develop a function module, which will be the core of the design that

will carry the processing logic. The function module will have almost the same

importing parameters as the selection screen criteria, and the function module

will be RFC enabled. In this example, it will be the following: company code,

accounting principles, header ID range, and date. Additionally, you need to pass

the package size (packaging of data will be discussed in Section 7.1.6), which

could be any number per your requirement (generally, the default size is 1000).

This function module will then be called from each child job that the parent

program will call later. Let’s call this function module ZRAR_REPROCESS_CORE (you can

name the function module per your project naming convention). Bear in mind

that this is the core which has the entire processing logic, and each of the child

jobs will call this function module with the data range allocated to it from the

main program.

Package size on the selection screen will have a default value of 1000, which you

may change per your requirement. The package size will be used for grouping the

top node, which, in this case, is the HeaderID, into a group that is the size of the

package. The data and group are consolidated into the size of the package and

passed for processing together. Figure 7.11 shows the function module

pseudocode for our example. The pseudocode is a notation resembling a

simplified programming language used in program design, just for the purposes

of our example.

Let’s break down the key elements of this code:

Each child job will be called with a range of HeaderID (or the top node field), or

even multiple single values of HeaderIDs, and each child job will call the function

module.

If the HeaderID is passed as a range, then the selection of HeaderID (or the top

node field) from the database will have to be repeated in the function module

with the same logic as in the main program but with the limited range provided

in the importing parameter of the function module.

If the HeaderID is passed as multiple single values, then there’s no need to

select the HeaderID from the database again, as multiple single values indicate

they are not a range and have to be considered as is.

Internal table gt_headerid_global will have the entire HeaderID, which needs to be

split into the package size for processing.

GW_MAX and GW_MIN are the two variables created to keep track of the package

size of data to be passed to internal table gt_headerid_pack from internal table

gt_headerid_global.

Perform Processing is called for the package size number of HeaderIDs, and here

the logic specific to the requirement will be written.

Figure 7.11 Pseudocode for the Function Module of Custom PPF

Example: Package Size

For example, if the total number of HeaderID is 5,000, and the package size is

1,000, then the following occurs:

1. GW_MIN = 0, GW_MAX = 1000, and GW_TOTAL = total number of records in

GT_HEADERID_GLOBAL, while GW_MIN <= GW_TOTAL.

2. Records starting from GW_MIN to GW_MAX are appended to GT_HEADER_ID_PACK from

GT_HEADERID_GLOBAL.

3. Perform Processing is called for GT_HEADER_ID_PACK.

4. Then, GW_MIN = GW_MAX + 1, and GW_MAX = GW_MAX + PACKAGE. This gets the next

set of records per the package size.

5. ENDWHILE.

Main Program as Parent Program

The main program will have two roles: the first as the parent program and the

second as the child job. The parent program’s design should start with the

selection screen where you design the selection screen per the selection criteria

and then add the additional parameters on the selection screen that are specific

to the custom PPF. In the selection screen, you’ll add additional selection

parameters. Along with the selection screen elements in Table 7.1, Table 7.2

shows the additional screen elements to be included for the custom PPF.

Selection

Element

Type Description

Schedule Job Checkbox Checkbox to indicate scheduling of jobs in the

background when checked

Package Size Parameter Size of the package default value = 1000

No of Intervals Parameter No of child jobs to be scheduled

P_main Parameter

(No

display)

Parameter that helps to distinguish between

child jobs and main parent processing

Default value = X for initial parent processing

HeaderID(SO_HD_ID) Select-

option

(range)

(No

display)

Acts as the range for header ID for child jobs, as

the parent program will call the same program

when calling the child job but with different

parameters

Table 7.2 Selection Screen for Main Program with Additional Parameters for the Custom PPF

After the selection screen design is completed, it will look like Figure 7.12.

Figure 7.12 Selection Screen for the Example

Let’s explain the processing flow of the main program as parent. The select-

option SO_HD_ID isn’t visible on the selection screen as it’s made invisible through

screen processing (this will be explained later). You can see that parameter P_MAIN

also isn’t visible on the selection screen shown in Figure 7.12. This is like a secret

ingredient. P_MAIN is made invisible on the selection screen because it’s more for

us to handle this during processing. It basically has the job of letting the

processor know that the current execution of the main program is as the parent

program when P_MAIN = ’X’ and as the child job when P_MAIN = Space. So, it’s more

important to check the value of P_MAIN in the first place. The program flow starts

with the following check: If P_MAIN = ’X’. A positive result means this is the

processing for parent.

In the parent processing, it needs to first fetch the data by identifying the top

node, which is the HeaderID here. You select all the HeaderIDs per the selection

criteria and load them into an internal table. Then, you check if the Schedule

Jobs checkbox has been selected. If it has been checked, you need to schedule

child jobs. In the subroutine for scheduling the child jobs, you need to calculate

the number of child jobs required to schedule. This is done by the No of

Intervals parameter on the selection screen. This will tell you the number of

child jobs the user is expecting to schedule. Each interval will be a child job, and

the HeaderIDs need to be divided accordingly.

It’s very important to clear input parameter P_MAIN when you schedule the job by

submitting to the same program for the selected range of HeaderIDs. If P_MAIN isn’t

cleared, then you can see that the job will be considered as the main program

and not as the child program. It’s very clear from the following pseudocode that

the main program processing starts with the check for P_MAIN = ’X’. The

pseudocode for the main program as a parent is shown in Figure 7.13.

Figure 7.13 Pseudocode for the Main Program of the Custom PPF

Note

You can find PDF versions of Figure 7.11 and Figure 7.13 available for download

at www.sap-press.com/5700 under the Product supplements section.

Main Program as Child Job

The same program as a child job will be called from the SUBMIT statement in the

parent program. Each call to SUBMIT creates a new child job, and you already know

how the calculation for the number of child jobs is done.

Next, you need to be concerned with the difference in execution flow of the same

program as a child job when called through the SUBMIT statement from the parent

program. The important changes are in the selection screen elements, as follows:

Parameter P_MAIN = SPACE

Note P_MAIN needs to cleared for the main program to be executed as the child

job; otherwise, it will be considered as a parent program when P_MAIN = ’X’.

Select-option SO_HDID[]

The select-option SO_HDID[] is an invisible data carrier, as it’s hidden on the

selection screen. SO_HDID[] will be populated with the HeaderID range that is

allocated to the child job from the main parent program.

The pseudocode for the program as child job is shown in Listing 7.1.

Check if P_MAIN = SPACE, if yes It indicates it is a child job

Check if SO_HDID[] is not initial .

Move the HeaderID from SO_HDID to GT_HEADER_ID_GLOBAL[] internal table

Call the function module ’ZRAR_REPROCESS_CORE’.

From there the flow continues as explained above in the processing of the function module ’ZRAR_REPROCESS_CORE’.

Listing 7.1 Pseudocode for Child Job of the Custom PPF

Program Execution

http://www.sap-press.com/5700

Now we’re all set we with the code part and understand the concept of custom

parallel processing. Certainly, many developers design their own custom PPFs as

a result of individual preference and creativity, so it’s good to keep in mind that

there will be a lot of other ways to go about this process. For our example, we’ve

showcased what worked best in our experience. The important thing to note is

that this solution isn’t limited to RAR, and it could be extended to any other

modules. It doesn’t depend on KEYPP or any other module-specific parameters but

is more generic and extendable to any other modules.

Let’s look at the program execution and the results that you can expect. We

schedule the main parent program with the required input details, as shown in

Table 7.3.

Selection

Element

Selection

Type

Default Values

P_BUKRS Parameter 1000

P_PRIN Parameter IFRS

S_HeaderID Initial input range

P_DATUM Parameter Date of selection

P_JOBS Parameter X

P_PACKAGE_SIZE Parameter 1000

P_INTERVALS Parameter 20

P_MAIN Parameter X (this is set by default and isn’t available on the

selection screen)

SO_HDID Select-

option

Blank

Table 7.3 Input to the Selection Screen of Custom PPF

The program will be scheduled to run in the background, and you can see the

details of the job in Transaction SM36. There will be one parent program and 20

scheduled child jobs as we set the interval to 20, which determines the number of

child jobs. You can see that the parent job waits until all the child jobs are

completed, and then it’s completed. With this, we complete the custom PPF

design, implementation details, and testing details.

7.1.5 Modularization

If you’re someone who is into cooking, then you’ve experienced that it’s easier to

cook when things are arranged, organized, and modularized. Modularization

refers to things of the same category placed or grouped together. It’s also a

practice to label containers or store ingredients in transparent containers. That’s

the case with code as well—we need to design modular and organized code that

also has self-explanatory variables and names of functions and methods. The

code should be readable and communicate what is being done in each module.

Writing a big program must be planned by breaking it into smaller units or

processing blocks. Then each unit put together becomes the complete program

that we’re trying to build. It will add more clarity if the modular code blocks or

units are named per what is being done inside them or what the purpose of each

unit is. Further, we could also have meaningful names for the variables,

constants, and flags, so that we can know what is being stored in them or what

they are being used for (like the transparent or labeled containers).

Another important thing about modularization is there will be a drastic reduction

in redundant code. We could create a block of code that needs to be written at

multiple places and then just call the same block at all those places by changing

the necessary parameters; in addition, we can also call that block where we need

that functionality instead of having to write it multiple times.

All of this shows that modularization leads to clarity and reusability. Following are

the benefits of using modularizations:

The code becomes more readable.

It’s easier to maintain and change a modular code.

You can avoid redundant code.

Code is reusable.

Data can be encapsulated.

Code becomes structured.

There are multiple modularization techniques. In ABAP, the modular pieces are

called processing blocks. There are two kinds of processing blocks: those that are

called from outside a program by the ABAP runtime system (event blocks and

dialog modules), and those that can be called by ABAP statements in ABAP

programs (subroutines, function modules, methods).

With all this in mind, you now know you can modularize your code either by the

procedural approach or by defining a class and its method. For our example, we’ll

follow the approach shown in Figure 7.14. We recommend this approach to keep

the declarations and processing separate and to make locating the code easy.

Figure 7.14 Modularization in ABAP Programs

As shown in Figure 7.15, our program will be designed with includes. Each include

is used for a specific purpose, as follows:

Include for data declaration

This include will have all the declarations for the internal table types, structure

types, and all the type declarations. The data declarations, such for as the

internal tables, work areas, global data and global internal tables, and

constants, will also be defined and declared.

Include for selection screen

This include will have the selection screen details such as the parameters,

select-options, and other screen elements, along with their default values if

needed, and other screen attributes will be defined here.

Include for subroutines

All the forms will be implemented here.

Include for PBO/PAI/POV

If the object is a module pool object, then the process before output (PBO),

process after input (PAI), and process on value request (POV) modules will be

implemented here.

Include for classes

This include is for the local class if the program has one.

Figure 7.15 Modularization

Performs are modularizing blocks of code. The name of the perform should

actually convey what is being done in the block in short, and what it requires for

processing will also be passed to the perform as parameters such as using,

changing, and returning parameters. To make the code very legible and

understandable, you should use self-explanatory names for the performs and

pass the parameters with more meaningful names regarding what is being used

in the using parameters and what is being changed in the changing parameters.

Following is an example of how the perform should be structured:

“Perform select_pob using lt_contracts changing gt_pobs.”

This snippet will explain that the perform is selecting the POBs using the

contracts from internal table lt_contract and changing internal table gt_pob. Not

just the performs, even the variable names, should be self-explanatory. Let’s take

an example where we’re performing some validations and setting the

FINAL_INVOICE field in table FARR_D_POB as X. The check for final is where we try to

check if the POB is final or not final based on the invoices. In the code, if we’re

using a flag, then it would be more meaningful to call that flag GW_POB_FINAL

instead of just GW_FLAG because the variable will inform the person who is trying to

debug or understand the code that this flag is for POB and to check if it’s final.

7.1.6 Packaging

Packaging is the bundling of data records to be processed together or commit

together to enhance the performance. We designed our custom PPF in

Section 7.1.1 to improve performance. There is mention of package size in that

section, and we’ve also defined the same on the selection screen as Package

Size (refer to Figure 7.12). Don’t confuse this with the PACKAGE SIZE in ABAP SELECT

statements.

Let’s revisit our custom PPF to demonstrate how packaging has been

implemented in our example. In Figure 7.16, you can see a program that needs to

process 2,000 records.

Figure 7.16 Package and Commit

That program has a selection parameter for package size, and the user has

provided the value as 500. Therefore, the program starts by selecting the 2,000

entries and then moves the package size number of records, that is, 500 records,

into another temporary internal table and does all the processing except for

database commits. The complete processing and updating of the records (i.e.,

internal table processing) is done for all the package size number of records, and

then finally the commit is done at the end of every package processing and not

for every record. This help improve performance, as the commit takes time, and

instead of calling the commit for each record, we do it at the end of the package

at once for all the records in the package.

You can bring this packaging logic to any program and any internal table

processing, which will help speed up any slow-running program.

Packaging has many advantages. First, it helps optimize the performance of any

given program. Second, if there is a memory issue, even that can be handled by

packaging. For example, if we’re selecting data from a huge table for a huge

number of records, there may be memory allocation issues. If you incorporate

packaging logic, and instead of selecting data for the entire set of records, you

select for the package number of records, then the memory allocation issue can

be handled with no runtime dumps. This is called setting the package externally.

7.2 Reclassification

As you already know, RAR is about revenue recognition. Table FARR_D_POSTING is crucial

here, and it acts like a subledger before posting to the general ledger. Table FARR_D_POSTING

is populated after programs A and B are executed, and then we use the entries from table

FARR_D_POSTING to run program C, which is the posting program. For more information on the

ABC programs, see Chapter 6, Section 6.2.

In the context of RAR, reclassification is done to ensure posting is made to the correct

general ledger. After the posting program (program C) has been executed, the posting has

already been done to a particular general ledger, but there could be situations where you

need to make corrections to that and post them to different accounts. To correct this, you

need to create a custom posting program that will post entries from custom table

ZFARR_D_POSTING.

Why do we need custom table ZFARR_D_POSTING, and how do we perform the posting from

this custom table? To answer this question, we’ll provide some situations where creating

custom table ZFARR_D_POSTING is a necessity. Let’s rename the custom table as table

ZFARR_D_POSTING. Following are cases of requirements in the project team that might require

creating custom table ZFARR_D_POSTING (these are just a few cases; there could be many

more based on your business requirements):

The payer isn’t known during contract inception; there could be a dummy payer created

as a placeholder for the payer. So, the revenue and balance sheet may be posted to the

wrong accounts at contract inception.

The payer changes several times during the lifecycle of the contract. As the balance

sheet accounts are determined at contract inception based on the payer, RAR doesn’t

support changing the balance sheet accounts after the contract/POB is created.

Multiple payers are involved, due to which creating a separate contract and terminating

POBs every time a payer changes for each charge would result in an unmanageable

number of current and obsolete contracts.

In exceptional situations, a bundle charge may be split between several payers. Bundle

POBs cannot be split among several payers due to the residual approach used for the

revenue allocation within the bundle.

In standard SAP, the following shortcomings required developing custom table

ZFARR_D_POSTING:

RAR doesn’t support intercompany contracts (contracts where the revenue allocation is

performed among POBs that are fulfilled by various company codes).

Partial bills of lading created for the same POB could have various payers.

In the following sections, we’ll walk through the reclassification process. We’ll create the

structure of custom table ZFARR_D_POSTING and then explain how to populate and extend it.

7.2.1 Creation and Structure of ZFARR_D Tables

To begin our discussion of creating our custom ZFARR_D tables, it’s important to provide a

refresher of reconciliation keys. Then, we’ll discuss custom table ZFARR_D_POSTING, which is

called table ZFARR_D_POSTING, and then the custom reconciliation key table called table

ZFARR_D_RECONKEY.

All the actions that have accountability effects on a contract in any period of the given

year are tracked under a given reconciliation key. There is a reconciliation key created for

a contract for every period based on the activity, and there can be multiple reconciliation

keys for a contract for a single period. The reconciliation key is also called the ReconKey.

The basic structure of the reconciliation key is that the first four digits represent the fiscal

year, the next three digits represent the posting period, plus a seven-digit number, as you

can see in Table 7.4.

Fiscal Year: First Four

Digits

Posting Period: Three

Digits

Seven-Digit Number

2024 005 0000001

Table 7.4 Reconciliation Key

We explained how to access reconciliation keys through table FARR_D_RECON_KEY and the

different statuses in Chapter 6, Section 6.1.3. For the purposes of our discussion in this

chapter, the following are key points to keep in mind:

The reconciliation key is governed by the revenue account period being open or closed.

A reconciliation key for a contract will be created by different events for a given period

only if the revenue accounting period is open for that period. If the period is closed,

then a new reconciliation key will be created for the next period.

During the month-end closing, the status of the reconciliation key for the contracts

should be in status C for all the reconciliation keys in that period for all contracts.

Reconciliation key is one of the key fields in table FARR_D_POSTING and will be used during

program C, which is the posting program.

Reconciliation key is also part of the key fields in table FARR_D_DEFITEM (the revenue

forecast table).

The reconciliation key is created by a few methods of class CL_FARR_RECON_KEY_DB_ACCESS, as

shown in Figure 7.17. There are multiple methods in the class, and some are based on

how you need to create the reconciliation key: single or multiple.

Figure 7.17 Class for Reconciliation Key-Related Methods

Now let’s shift our focus to custom table ZFARR_D_POSTING that we designed for our

requirement. Note that we aren’t highlighting the functional requirement that led to the

creation of custom table ZFARR_D_POSTING; instead, we’ll elaborate on the technical approach

and how it can be achieved for any functional requirements.

Let’s walk through the main technical steps:

1. Create table ZFARR_D_POSTING

Table FARR_D_POSTING will be copied as is to table ZFARR_D_POSTING. You can add any

additional fields that you want to add. This table will have all the fields in table

FARR_D_POSTING, including the ones added during customization, such as the customer

fields and the field added to store the custom RECONKEY or ZRECONKEY that will be created.

There will be an indicator to check if you need to reverse or reclass entries.

To create table ZFARR_D_POSTING, go to Transaction SE11 as shown in Figure 7.18. Provide

the Database table name as “FARR_D_POSTING”, and then click on Copy to open the

Copy Table popup. Enter the Table name as “ZFARR_D_POSTING”, and click the

green checkmark.

Figure 7.18 Creating Table ZFARR_D_POSTING

Then, as shown in Figure 7.19, add the additional fields such as ZRECON_KEY, which is the

custom reconciliation key to be stored in custom table ZFARR_D_RECONKEY, and RECLASSIND,

which is the indicator for reclass to reverse or reclass with the values R or C,

respectively.

Figure 7.19 Additional Custom Fields in Table ZFARR_D_POSTING

Then, complete all the steps for the table creation and activate it. For more

information on adding fields and creating the table, see Chapter 2, Section 2.3.

2. Create table ZFARR_D_RECONKEY

As in the case of standard posting, the flow reconciliation key is created and updated

in table FARR_D_RECON_KEY. You have to take the same approach and create a new

reconciliation key, which again is a custom reconciliation key and isn’t connected to

the original reconciliation key. To save that, you have to create a custom table for the

custom reconciliation key, which, in this case, will be called ZFARR_D_RECONKEY, and that

will have the same structure as FARR_D_RECON_KEY. This table needs to be updated every

time you update or create entries in table ZFARR_D_POSTING.

To create table ZFARR_D_RECONKEY, go to Transaction SE11 once again. Provide the table

name as “FARR_RECON_KEY”, and click on Copy to open the Copy Table popup, as

shown in Figure 7.20. Enter the Table name as “ZFARR_D_RECONKEY”.

Figure 7.20 Creating Table ZFARR_D_RECONKEY

Then, complete all the steps for table creation and activate it.

3. Create the general ledger mapping table

There will be a custom table where the account mapping has to be maintained. Let’s

call that table ZFARR_GL_MAPPING. This table is needed to maintain the mapping so that

you can map to which account the postings are going to be made. This general ledger

mapping table will have the source account from table FARR_D_POSTING, and this account

will be mapped in the general ledger table to get the target account to which the

correction postings will be done. As you’re familiar with the steps required for table

creation using Transaction SE11, let’s focus on the table structure in Figure 7.21.

Figure 7.21 General Ledger Mapping Table Structure

4. Design the program with the logic per the requirement to create entries in

new table ZFARR_D_POSTING

The new program will use the custom PPF or have a design per the requirement. The

program should take care of the points in Section 7.2.2 to make sure it’s in sync with

the standard approach because you’ll be copying and extending the standard posting

program to post the entries from custom table ZFARR_D_POSTING. This will be elaborated

on in the next section.

You might wonder about identifying the entries to be reclassified. In our project, we

implemented the BAdI FARR_BADI_RAI2, and the ENRICH method was implemented with

the logic to identify the order RAIs that had to be reclassified based on certain custom

field values. The order RAIs were saved in a custom table. This custom table must be

used in the program to identify the POBs that were created by these order RAIs and

then the contracts created by them.

5. Make a copy of the standard posting program and then make changes

The standard program fetches entries from subledger table FARR_D_POSTING for creating

posting or for the posting program. It also fetches the reconciliation keys from

database table FARR_D_RECON_KEY for updating reconciliation keys. As we’re cloning the

standard program and making changes for it to fetch entries from custom table

ZFARR_D_POSTING and custom table ZFARR_D_RECONKEY for reconciliation keys, we should

ensure to make relevant changes to call these custom tables in the place of the

standard table. These changes should be focused on picking entries from new custom

reconciliation key table ZFARR_D_RECONKEY and custom posting table ZFARR_D_POSTING.

7.2.2 Populating the Custom Posting Table

In this section, we’ll focus on populating tables ZFARR_D_RECONKEY and ZFARR_D_POSTING in the

program designed to update them (i.e., step 4 in the previous section). The program will

have selection criteria per the requirement to pull all the necessary contracts. Further

database selections will depend on the selected set of contracts. Let’s walk through the

technical steps:

1. The program will have to select the relevant contracts from database table

FARR_D_CONTRACTS based on the selection contract range provided on the selection

screen.

2. Filter the selected contract per the requirement and populate it into internal table

GT_CONTRACTS_GLOBAL. In our case, these contracts will be identified as relevant for

reclassification by matching the POBs of the contracts with the order RAIs, and the

POBs stored in the custom table as marked for reclassification. Every project can have

specific requirements for filtering the contracts.

3. For all the contracts in internal table GT_CONTRACTS_GLOBAL, pull the table FARR_D_POSTING

entries and store them in internal table GT_FARR_D_POSTING.

4. Pull table ZFARR_D_POSTING entries matching the selection set of contracts.

5. Get the general ledger account details from table ZFARR_GL_MAPPING, which will have the

source account that will be matched from table FARR_D_POSTING’s account and will have

the target account to which you’ll have to do the correction posting.

6. Start your loop on the contracts. For each contract, get the maximum number of the

custom reconciliation key stored in table ZFARR_D_RECONKEY, and to that reconciliation

key, add 1 so that you get the next reconciliation key to be used and updated in table

ZFARR_D_RECONKEY for this execution.

7. To get the maximum of ZRECONKEY, first make a copy of class CL_FARR_RECON_KEY_DB_ACC to

ZCL_FARR_RECON_KEY_DB_ACC. In that class, use method GET_MAX_RECON_KEY_FOR_MULTIPLE, and

change from standard table FARR_D_RECONKEY to custom table ZFARR_D_RECONKEY. (The same

class has a lot of other methods for updating, creating, deleting, and saving the

RECONKEY. You need to analyze and change the table to the custom table for RECONKEY in

the copied class’s methods: FARR_D_RECON_KEY to ZFARR_D_RECONKEY.)

8. Have an inner loop on the POBs of the contracts. For each POB, get table FARR_D_POSTING

entries and process each of the entries in table FARR_D_POSTING for the POB and contract

in the current loop. Then, validate per the project-specific requirements and the kind

of correction posting requirements.

In our project, we had the requirement where we had to create a reversal and repost

to a different account for a particular table FARR_D_POSTING entry. This was captured as

entries and updated in the internal table to populate table ZFARR_D_POSTING.

9. The loop continues to validate the similar entries in custom table ZFARR_D_POSTING.

Accordingly, create the posting entries for reversing the existing entry and creating a

new posting entry.

10. The entries will then be inserted or updated in custom table ZFARR_D_POSTING.

11. The new custom reconciliation key will be updated in table ZFARR_D_RECONKEY.

These points highlight the general steps that will be required, which can also be visualized

in the flow diagram of the program shown in Figure 7.22.

Figure 7.22 Flow Diagram for the Reclassification Program

The validation and insertion/updating of entries in table ZFARR_D_POSTING will be based on

the project requirement. Generally, this table will be an additional subledger.

Figure 7.23 shows how the custom posting table ZFARR_D_POSTING fits into the process of the

posting flow.

Figure 7.23 Posting Flow with the Custom Posting Table

7.2.3 Extending the Standard Posting Program

The existing posting program FARR_REV_POST will be called to create postings using the

entries from table FARR_D_POSTING and to update the RECONKEY in standard table

FARR_D_RECONKEY.

Now to extend the posting program to post entries from custom table ZFARR_D_POSTING table

and the ZFARR_D_RECONKEY tables will require creating a copy of the FARR_REVENUE_POSTING

program to ZFARR_REVENUE_POSTING. You need to change the table references to custom

tables, which will require changes in multiple places. As it’s very difficult to explain the

whole of it here, we’ll highlight the objects that had to change and the classes that are

created by copying the original. You can analyze the code and change the table to

ZFARR_D_POSTING and ZFARR_D_RECONKEY wherever the standard tables FARR_D_POSTING and

FARR_D_RECONKEY are found.

Table 7.5 provides the list of objects that we made custom copies of from the standard

and the methods changed in the copied classes to reference custom tables ZFARR_D_POSTING

and ZFARR_D_RECONKEY to be called in the custom ZFARR_REVENUE_POSTING program.

Standard Class/

Program

To Be Copied to

Custom

Methods in

Custom to Be

Changed

Description

CL_FARR_AC_DOCUMENT_HAND ZCL_FARR_AC_DOCUMENT

_HAND

DO_HANDLE_POST Any changes to

the document

type for posting

can be done here.

CL_FARR_DB_UPDATE ZCL_FARR_DB_UPDATE UPDATE_SET_WHERE Bypass validation

or only allow table

names starting

with /1RA*.

CL_FARR_GRANULAR_POSTING ZCL_FARR_GRANULAR_

POSTING

POSTING_CHECK_IN

_KEYPP

Rename the

cursor object to

the custom table

cursor object.

CL_FARR_POSTING_FLOW ZCL_FARR_POSTING

_FLOW

CONSTRUCTOR Rename the RECON

KEY management

object to match

the custom object.

CL_FARR_POSTING_FLOW ZCL_FARR_POSTING

_FLOW

HANDLE_POSTING_ENTRIES Rename the

POSTING DOCUMENT

handler object to

the custom object.

CL_FARR_RECONKEY_CURSOR

_ACCESS

ZCL_FARR_RECONKEY

_CURSOR_ACCESS

READ_CONTRACT_ID_

BUKRS_PACKAGE

Read the

reconciliation key

from table

ZFARR_D_RECON_KEY.

CL_FARR_RECON_KEY_DB_

ACCESS

ZCL_FARR_RECON_KEY

_DB_ACCESS

SAVE_ALL_CONTRACTS_

TO_DB

Change the table

to update to

ZFARR_D_RECON_KEY.

CL_FARR_RECON_KEY_MGMT ZCL_FARR_RECON_KEY_

MGMT

QUERY_RECON_KEY_NEW Update to retrieve

a value from table

ZFARR_D_RECON_KEY.

CL_FARR_REV_COLLECT_DB

_ACCESS

ZCL_FARR_REV_COLLECT_DB

_ACCESS

SELECT_TABLE Change SQL to

select from tables

ZFARR_D_POSTING and

ZFARR_D_RECON_KEY.

Standard Class/

Program

To Be Copied to

Custom

Methods in

Custom to Be

Changed

Description

CL_FARR_REV_COLLECT_DB

_ACCESS

ZCL_FARR_REV_COLLECT_DB

_ACCESS

COLLECT_POSTING_DATA

_GRANULAR

Change SQL to

select from table

ZFARR_D_POSTING for

posting entries.

CL_FARR_UPDATE_SET_WHERE ZCL_FARR_UPDATE_SET

_WHERE

SET_HOST_VARIABLE Change SQL to

select from table

ZFARR_D_RECON_KEY.

CL_FARR_AC_DOCUMENT ZCL_FARR_AC_DOCUMENT CONVERT_TO_ACCIT_ACCCR Copy from

standard

CL_FARR_AC_DOCUMENT.

Table 7.5 List of Objects to Be Copied and Changed for Custom Posting Program

7.3 Data Cleanup

Data is the core of any process and it’s the feeder to the

processes and automations. Data needs to be correct and in

the right format for any process to work correctly. Reporting,

which is very crucial for any business, won’t be accurate if

the data has issues. In RAR or any other module, data is the

starting point and on which we build our designs and our

processes—most importantly, the RAIs are created from the

data. There are times when we invest a lot of time trying to

investigate or understand what went wrong in the program,

jobs, or process, and finally figure out that the issue was

with the data. So, the first thing that we should always do is

validate and clean up the data.

In classical inbound processing, we know that there are

three stages where the data moves from one status to

another. First, the data enters as raw, then transfers to

processable, and finally is processed when the contracts

and the POB are all created in the system. If there is some

issue in the system, and then, after a lot of analysis, we find

that the issue was in the data, it’s too late to catch the data

issue, resulting in a lot of back tracing and reworking to

make the correction. Therefore, we should scan and clean

up the data and then move it into the Adapter Reuse Layer

(ARL). It’s recommended to look at any errors in data

format, values, or data type before we even get the data in

the Raw status.

First, however, let’s look at how SAP has designed the data

checks in RAR. We’ll also explore the business add-in (BAdI)

that is provided and also the programs that you can use.

Finally, we’ll discuss the custom ways of introducing more

checks.

7.3.1 Data Checks

SAP has also incorporated a lot of checks in standard RAR to

check for data consistencies and data correctness. In

standard RAR, there are two types of checks:

Inflight checks

Inflight checks are designed to prevent data

inconsistencies from occurring at all. The inflight checks

use the prefix C.

Data validations

Data validation checks detect inconsistencies once they

are written permanently to the database. The data

validation checks use the prefix E.

Both in-flight checks and data validation checks may be

updated by SAP, as and when required. This means that

more error categories can be added by SAP depending on

whether further common patterns are discovered. SAP

recommends that you monitor these on a regular basis.

There is a certain number of category checks, but because

this number of checks will definitely change as SAP adds

more, we haven’t mentioned the numbers here.

We introduced these checks in Chapter 4, Section 4.4, from

a functional perspective; in the following sections, we’ll take

a look at them from a technical perspective.

Inflight Checks

Inflight checks are the checks performed on the data before

committing the data to the database and help prevent faulty

data from being saved in the database. If you’ve enabled

classical inbound processing, you know the journey that the

data takes from the raw tables to the processed tables, as

well as how tedious and time-consuming it would be to

correct the data issues at the end when the data is in

Processed status. Inflight checks are just the right thing to

track the errors early and get them corrected or resent by

the sending system. Letting the faulty data be saved and

committed to the database will only complicate things; it’s

much better to let inflight checks help identify faulty data so

you can keep it out of the system in the first place.

Data resulting from the creation or update process of the

RAIs or the contracts is first stored in a data buffer that can

be written permanently to the database at a later stage (if

no errors occurred). Inflight checks validate the constraints

between the data buffers. The inflight checks are completed

before the database commit, and the database commit is

only executed if no inconsistencies are found. Transactions

are stopped for contracts with errors. Other contracts

without errors can continue.

From Transaction SE91, you can view the message class that

stores all the standard messages for the inflight check, as

shown in Figure 7.24.

You use the message class for custom messages via

message number 100 as it has the options to pass the

message parameters, as shown in Figure 7.25.

Figure 7.24 Message Class for Inflight Checks

Figure 7.25 Message Class for Inflight Checks (Cont.)

If you want to make additions to the inflight checks or

customize the existing check, SAP recommends

implementing BAdI FARR_EXTENDED_CHECK. Then, you create a

new class as a subclass of CL_FARR_DATA_EXTENDED_CHECK, as

shown in Figure 7.26, and implement the redefinition of the

following method to suit your needs and add your logic.

Figure 7.26 Standard Class CL_FARR_DATA_EXTENDED_CHECK for Inflight

Checks

The BAdI for inflight checks gives you the flexibility to do the

following:

Switch inflight checks to on or off status.

Create an exceptions list that will have the list of

contracts you want to exclude from the preventative

checks.

Customize the existing checks or add new checks that are

specific to your requirement.

Go to Transaction SE18, and enter

“FARR_EXTENDED_CHECK” in the Enhancement Spot field

to arrive at the screen shown in Figure 7.27.

Figure 7.27 BAdI: FARR_EXTENDED_CHECKS

Figure 7.27 shows the details of FARR_EXTENDED_CHECK.

To see the methods, double-click on the implementation on

the left side, and you’ll be taken to the implementing class

CL_FARR_DATA_EXTENDED_CHECK, as shown in

Figure 7.28.

Figure 7.28 Methods of Class CL_FARR_DATA_EXTENDED_CHECK

For example, you could use method INIT_NO_CHECK_SETTING for

switching OFF or ON any particular error category checks.

There is existing code for method INIT_NO_CHECK_SETTING as

you can see from class CL_FARR_DATA_EXTENDED_CHECK. Select

and double-click on the method to arrive at its code, as

shown in Figure 7.29. You just need to set ABAP_TRUE for the

checks that you want to skip. This has to be done in the

implementing class’s method.

Figure 7.29 Switch On/Off Inflight Checks

Figure 7.30 Method IF_FARR_DATA_EXTENDED_CHECK~CHECK_CONTRACT

As already mentioned, to implement this BAdI, you have to

first create your own implementation class, inherit class

CL_FARR_DATA_EXTENDED_CHECK, and then override its required

methods. Then, in the implementation, you can make your

own custom logic. For example, let’s say you’re

implementing method CHECK_CONTRACT: you have to first call

the implementation of the superclass and then add the

requirement-specific logic to it. Existing code for method

IF_FARR_DATA_EXTENDED_CHECK~CHECK_CONTRACT is shown in

Figure 7.30.

Each of the C errors are very specific and are thoughtfully

well designed. They help you understand the error, and they

point to the exact issue with the data. The data is then

stopped from being processed further. The errors are all

categorized; in general, the categories check the following

in a specific way:

In a given contract, the total sum of allocation for all the

POBs plus the total allocated price equals the total

transaction price.

The allocated amount of POB equals the total amount of

all the periods for this POB in the deferral table.

For an event-based POB, the effective quantity equals the

total quantity of all fulfillments.

The effective quantity of a time-based POB equals the

scheduled quantity from the deferral and fulfillment

tables.

Check that the latest deferral item flag is set correctly.

The total number of posted revenue equals the scheduled

number in the deferral table.

The total number of posted invoice correction equals the

invoiced amount in the deferral item.

Check for the special indicator.

The allocation effect of the POB equals the difference

between the allocated amount and the transaction price.

The posted amount in the posting data buffer equals the

transferred invoice amount in the invoice data buffer.

Check that there should be no POBs without deferral

items.

The signs of the transaction currency and local currency

should be different.

The reconciliation keys are in sync with the modifications

in the deferral items.

Check for consistent situations during RAI processing for

contracts with fixed exchange rate methods.

For more information on the checks from SAP, see http://s-

prs.co/v570001.

http://s-prs.co/v570001

The error categories are listed in Table 7.6. They will be

better interpreted by functional consultants, but it’s always

good to have an idea and understanding of these even for a

developer to know where exactly the issue is.

Error

Category

Description

C01 There is an incorrect balance of allocation

effects.

C02 The allocated amount isn’t equal to the

revenue schedule of a POB.

C03 The POB quantity isn’t equal to the fulfilled

quantity for a fully fulfilled POB.

C04 The fulfilled, unsuspended quantity isn’t equal

to the fulfilled deferral item quantity for a

time-based POB.

C05 The latest entry flag for a deferral item is

incorrect or missing.

C0501 Some deferral items don’t have the latest

entry flag.

C0502 More than one or no deferral item has the

latest entry flag for each condition type.

C06 The scheduled revenue amount isn’t equal to

the posted revenue amount.

C07 The scheduled invoice amount isn’t equal to

the posted invoice amount.

Error

Category

Description

C08 The special indicator flag is incorrect or

missing.

C09 The transaction price, allocated amount, and

allocation effect of a POB are inconsistent.

C13 The transferred invoice amount isn’t equal to

the posted invoice amount in the transaction

currency.

C15 A POB doesn’t have a deferral item.

C17 When invoice correction and posted revenue

amounts are generated, they don’t display the

same sign in all currencies.

C18 The profitability segment of the posting entry

isn’t the same as that of the POB.

C19 Created, updated, or deleted deferral item has

an invalid reconciliation key.

C21 The posted amount in a local currency isn’t

consistent with the amount calculated using

the fixed exchange rate.

C22 POB attributes are inconsistent.

C23 The POB should not have a spreading conflict.

C24 The remaining SSP isn’t equal to zero for a

POB with the end date in a previous period

during a contract modification.

Error

Category

Description

C25 The source of price flag is incorrect or missing.

C26 An error occurred during contract modification.

C27 The total scheduled revenue isn’t equal to the

posted revenue on the latest deferral item.

Table 7.6 Inflight Checks: Error Categories

Data Validations

Data validation checks are post database commit checks,

which are implemented in RAR to validate data that is

already written to the database tables. Data validation

checks implement verifications of equivalent error

categories.

Updates

Both inflight checks and data validation checks may be

updated by SAP, as and when required. This means that

more error categories can be added by SAP, depending on

whether further common patterns are discovered. SAP

recommends that you monitor these on a regular basis.

Under this, there are two transactions you can use:

Data validation checks for revenue accounting contracts

Data validation monitor

Let’s start with data validation checks for revenue

accounting contracts. Data validation checks are done using

Transaction FARR_CONTR_CHECK or program

RFARR_PP_CONTRACT_CHECK_START.

When you execute the program, it updates table FARR_D_CONS,

which is the consistency check and has the primary key, as

shown in Figure 7.31. This can save data for multiple

company codes.

Figure 7.31 Consistency Check Log Table

The table saves the error category for data validation, as

you can see in Figure 7.32.

The selection screen of the program is shown in Figure 7.33.

The program is used for mass updates and updates the

entries in table FARR_D_CONS. The program is designed to use

the PPF, which is the standard framework.

Figure 7.32 Error Categories for Data Validation

Figure 7.33 Data Validation for Revenue Accounting Contracts

Next, let’s look at the data validation monitor. You can

access it using Transaction FARR_CONTR_MON or program

RFARR_CONS_MONITOR. The selection screen of the

program is shown in Figure 7.34.

As shown in Figure 7.34, there are fields for Accounting

Principle and Company Code, as well as the option to

give desired contract ranges. The processing can occur in

three ways:

Read data online

Reads the live data from the contract tables and other

relevant tables and gets the data.

Read data from error table

Reads table FARR_D_CONS and displays the result.

Save results to error table

Saves the results to the error table, which is table

FARR_D_CONS.

Figure 7.34 Data Validation Monitor Selection Screen

The results from the output screen list the error categories

with complete information about the contract, POBs, and

more. When you press (F1) for any of them and click on

More Information, you get detailed information about the

error (see Figure 7.35).

Figure 7.35 Error Category Details from the Consistency Check Monitor

Table 7.7 shows the list of error category details for data

validations.

Error

Category

Description

E01 There is an incorrect balance of allocation

effects.

Error

Category

Description

E02 The allocated amount isn’t equal to the

revenue schedule of a POB.

E03 The POB effective quantity isn’t equal to the

fulfilled quantity for a fully fulfilled POB.

E04 The fulfilled, unsuspended quantity isn’t equal

to the fulfilled deferral item quantity for a

time-based POB.

E05 The latest entry flag for a deferral item is

incorrect or missing.

E06 The scheduled revenue amount isn’t equal to

the posted revenue amount.

E07 The scheduled invoice amount isn’t equal to

the posted invoice amount.

E08 The special indicator flag is incorrect or

missing.

E09 The transaction price, allocated amount, and

allocation effect of a POB are inconsistent.

E10 There is an incorrect balance on the receivable

adjustment account in transaction currency.

E11 The deferred revenue/contract liability amount

calculated based on the deferral items isn’t

equal to the corresponding posted amounts.

Error

Category

Description

E12 The unbilled receivable/contract asset amount

calculated based on the deferral items isn’t

equal to the corresponding posted amounts.

E13 The transferred invoice amount isn’t equal to

the posted invoice amount in the transaction

currency.

E14 There is an incorrect balance on the receivable

adjustment account in local currencies.

E15 A POB doesn’t have a deferral item.

E16 The transferred invoice amount isn’t equal to

the posted invoice amount in the local

currencies.

E17 An incorrect cumulated quantity is posted in

the deferral items.

E18 There are inconsistent and invalid accounting

objects.

E19 Reconciliation keys are missing in the

reconciliation keys table.

E22 Inconsistent data appears in conflict

management between the contract/POB and

manual change data.

E25 The source of price flag is incorrect or missing.

Table 7.7 Data Validation Error Categories

7.3.2 Customizing

In the following sections, we’ll discuss a few different

customizing options for data cleanup activities.

Custom Program for Cleaning Up Raw RAIs

After looking at the standard data consistency checks and

data validations, there are times and situations when you

need to perform certain validations and checks, for

example, on the raw items, and you only want to transfer

the validated and nonfaulty data to Processable status.

You can design a program that can pull data from the raw

table, validate it, and then exempt any items that have

errors.

The CleanUp program that we’ll be explaining is relevant for

any technical or functional consultant to get an idea of how

to work on raw data before transferring the RAIs to the

Processable status. We’ll provide a flowchart and also

some guidelines for achieving the same. You can call the

CleanUp program before transferring the RAIs, as shown in

Figure 7.36. The CleanUp program can be designed in any

way as needed per the project requirement. The CleanUp

program will be required for achieving certain purposes such

as removing duplicate items, identifying duplicate invoices

based on some functional key, considering only the latest

invoices and eliminating the older invalid invoices, and

validating and checking custom fields before they can move

to the next status.

Figure 7.36 CleanUp Program

Figure 7.37 clearly outlines the main steps of the CleanUp

program, which will scan through the raw RAIs and perform

the necessary validations and checks per the requirement

and then exempt the raw RAIs from being moved to the

Processable status. The raw RAIs that are exempted will be

stored in tables /1RA/0XX011MI and /1RA/0XX011CO.

Figure 7.37 CleanUp Program Steps for Raw RAIs

We’ll discuss the major steps in the CleanUp program at a

very high level so that you can design your CleanUp

program using this as their base. A custom CleanUp

program should generally have all the following steps:

1. Design the selection screen of the program

You can design the selection screen per your

requirement, and, in most cases, you can have the

options to clean up order RAIs, invoice RAIs, or even

fulfillment RAIs. You can have company code as one of

the input fields and then provide the option to give the

HeaderIDs as mandatory or optional ranges.

2. Validate the selection screen input

You can validate the company code and then the

HeaderIDs if they are provided.

3. Fetch data from the database

You can filter and pull the RAIs from the raw tables for

both main items and condition items from tables

/1RA/0XX010MI and /1RA/0XX010CO based on the selection

criteria provided on the selection screen and then store

them in the internal table.

4. Packaging and child batch jobs

If the volume of data is high, you can even design the

data to be processed using the customized PPF as we’ve

already discussed in Section 7.1.1.

5. Process the data

You then need to apply the necessary checks and

validations that you want to check on standard or

custom fields and then create another internal table,

which will store the RAIs that you want to exempt from

processing further in the ARL.

6. Exempt the raw RAIs

When you exempt RAIs, you need to use the correct

function module for exemption. The raw RAIs are

exempted using the function module shown in

Figure 7.38.

Figure 7.38 Function Module to Exempt Raw RAIs

7. Find the exempted entries

The raw RAIs that are exempted will be found in tables

/1RA/0XX011MI for main items and table /1RA/0XX011CO for

condition items.

7.3.3 Business Add-In FARR_BADI_RAI2

The raw RAIs are transferred and moved from Raw status to

Processable status using Transaction FARR_RAI_MON or

Transaction FARR_RAI_TRANS. If you plan to incorporate data

cleanup or validate RAIs at this point, you can do so by

using enhancement spot FARR_ARL and BAdI FARR_BADI_RAI2,

which you can implement via the usual BAdI implementation

process.

In this BAdI, there are two methods: ENRICH and

CHECK_BEFORE_SAVE. You can use method ENRICH to apply

validations and check data consistency, compare and apply

any other processing requirements to the raw RAIs before

they are changed to processable RAIs, and ensure that the

contracts are created or updated with the right data. Along

with validation, you can also add the logic to assign values

to standard or custom fields to include default values for

custom or standard fields of the RAIs while they are moved

to Processable status. If you’re checking the RAIs or

validating the RAIs and find errors, the errored raw RAIs

won’t be processed further.

Go to Transaction SE18 to view the details of the BAdI;

Figure 7.39 shows the ENRICH method.

Figure 7.39 ENRICH Method Parameters

In case of errors, the changing parameter CT_MESSAGES

has to be filled for the RAIs that have errors during

validation. The message structure contains attributes for the

error message, as well as the key fields for the RAI. It’s

crucial for the correct processing of the erroneous RAIs that

these key fields are filled in the message structure.

Figure 7.40 shows a representation of BAdI FARR_BADI_RAI2

being called and its components.

Figure 7.40 BAdI FARR_BADI_RAI2

7.3.4 Message Capturing by Simulating

During one of our projects, we developed an object where

we captured the messages of the method that is used for

the transfer of mass RAIs in simulation mode. As a result, we

could capture all errors and corrected the data before it was

even transferred to Processable status, as we execute the

method in simulation mode. This is extremely helpful when

you have a lot of errors that are both standard errors and

custom errors or checks and validations. This can be

designed as a utility or simulating tool for error

management. The basic concept of error management is

first to detect the error, then understand the error, and

finally help the user correct the error.

The tool is focused on organizing and grouping errors while

in simulation mode. If we’re in execution mode of any

method call, we’ll be committing the data to the database,

so here, we call the method in the tool in simulation mode.

Specifically, in RAR, when the data load is huge, we try to

create the RAIs and move them from Raw status to

Processable using Transaction FARR_RAI_TRANS for the

transfer. If there are errors, all the errors are updated in the

log and can be seen in Transaction SLG1. However, the way

the errors appear in Transaction SLG1 isn’t really helpful for

us to group a particular type of messages and have a count

of it. So, this tool was designed, and it was very handy for

detecting errors of similar type, getting the count, and

identifying the errored data in groups.

We implemented the tool during the transfer of RAIs in Raw

status to Processable status and also during the process of

RAIs from the Processable to Processed status. Let’s

discuss the case when using the tool in the transfer.

First, we need to go to Transaction SE11 and create

database table ZTRANSFER_MSG to store the messages, as

shown in Table 7.8. Having a database table for storing the

messages helps in storing and formatting the display so we

can group similar kinds of errors.

Field Data

Element

Data

Type

Length Description

MANDT MANDT CLNT 3 Client

HEADER_ID FARR_HEADER_ID CHAR 20 Header ID of

source

document

for RAI

TIMESTAMP_UTC FARR_RAI_TMSTMP DEC 15 Timestamp

UTC for RAI

Field Data

Element

Data

Type

Length Description

MSGCOUNT ZZMSGCOUNTER INT4 10 Counter of

messages

for a header

ID

DOC_TYPE ZZORA_DOC_TYPE CHAR 10 Order or

invoice type

MSGID SYMSGID CHAR 20 Message

class

MSGTY SYMSGTY CHAR 1 Message

type

MSGNO SYMSGNO NUMC 3 Message

number

MSGV1 SYMSGV CHAR 50 Message

variable

MSGV2 SYMSGV CHAR 50 Message

variable

MSGV3 SYMSGV CHAR 50 Message

variable

MSGV4 SYMSGV CHAR 50 Message

variable

Field Data

Element

Data

Type

Length Description

MSGTX BALTMSG CHAR 255 Application

log:

formatted

message

text

CREATED_ON UDATUM DATS 8 Last

changed on

CREATED_AT UZEIT TIMS 6 Time

Table 7.8 Table for Error Management

After the table is created, we need to create a program

using Transaction SE38 called program

ZRAR_ERROR_MGMNT. The selection screen technical details

are shown in Table 7.9.

Name Type Data Type Description

P_BUKRS Parameter BUKRS Company code.

SO_HEAD Select_option FARR_HEADER_ID Header ID.

Name Type Data Type Description

P_DEL Parameter CHECKBOX Deletion indicator

for table content

deletion. Based on

this indicator, the

content of database

table ZTRANSFER_MSG

will be deleted if the

checkbox is

checked; otherwise,

it won’t be deleted.

P_DATE Parameter SY_DATUM Created on. This will

be used for deleting

the entries from

table ZTRANSFER_MSG

for the date

mentioned.

CREATED_ON >= P_DATE

P_TIME Parameter SY_UZEIT Created at. This will

be used for deleting

the entries from

table ZTRANSFER_MSG

for the time and

date combination

mentioned on the

selection screen.

CREATED_AT >= P_TIME

P_MSGID Parameter SYMSGID Message class.

Name Type Data Type Description

P_MSGNO Parameter SYMSGNO Message number.

Table 7.9 Error Management Tool’s Selection Screen Technical Details

Using these details, we can create the selection screen of

the program, which will look something like Figure 7.41.

Figure 7.41 Error Management Tool

We need to have logic for validating the selection screen

input and have the message handler and all other basic

code needed for all the programs. Here we’ll focus mainly

on the core logic, which is specific to the error management

tool.

The processing flow of the program is as follows:

1. P_DEL

If P_DEL is set, then perform Delete_DB. In this perform, we

delete entries from database table ZTRANSFER_MSG based

on the selection screen parameters Created on and Created

at, as well as delete the entries from table ZTRANSFER_MSG

using the following code lines:

(Delete FROM ZTRANSFER_MSG WHERE CREATED_ON >= p_date

 and CREATED_AT >= p_time.

Endif.

This deletes data from the previous execution of the

program based on the date and time provided on the

selection screen.

2. perform get_header changing gt_header_id.

Select distinct header IDs from the raw tables for orders

and invoices based on the selection screen header ID

values if it’s provided on the selection screen. Store in

internal table gt_header_id. The select statements are

shown in Listing 7.2.

select distinct header_id

 from /1RA/0CA010MI

 into table gt_header_id

 where header_id in so_head.

 if sy-subrc eq 0.

 sort cgt_header_id ascending.

 endif.

select distinct header_id

 from /1RA/0CA030MI

 appending table gt_header_id

 where header_id in so_head.

 if sy-subrc eq 0.

 sort cgt_header_id ascending.

 endif.

Listing 7.2 Select Statements for Fetching the Header IDs from Order

and Invoice Raw RAIs

3. If GT_HEADER_ID has values

perform get_timestamp changing gw_tims

In this perform, we get the current timestamp in UTC

format.

4. Perform call_rai_transfer

In perform call_rai_transfer, we have two calls: one for

order and the other for invoice. Because we have both

the orders and invoices, we need to separate them as

follows:

Perform transfer_order: Get all the SRCDOC_ID and other

details of the RAIs from the raw table for order

/1RA/0XX010MI and store the information in internal

table lt_rai0_pack.

Perform transfer_Invoice: Get all the SRCDOC_ID and other

details of the RAIs from the raw table for invoice

/1RA/0XX030MI and store the information in internal

table lt_rai0_pack.

Once we have the data in internal table lt_rai0_pack, we

have to call the following perform for the actual transfer of

RAIs:

perform call_header_transfer using gw_doc_type lt_rai0_pack.

In this perform, the GW_DOC_TYPE will have the value ORDER for

order RAIs and INVOICE for invoice RAIs. Method

IF_FARR_RAI~TRANSFER_TO_RAI2 is used for transfer of RAIs from

Raw to Processable status, and we call this method as

shown next. We call the method for both orders and invoices

using the details from internal table lt_rai0_pack.

The actual code lines of the perform call_header_transfer are

shown in Listing 7.3.

perform call_header_transfer using gw_doc_type lt_rai0_pack. For ORDER and Invoice

if lo_farr_rai is not bound.

 try.

 create object lo_farr_rai

 exporting

 IO_MSG_HANDLER = go_msg_handler

 iv_sub_obj = if_farrc_msg_handler_cons=>co_subobj_rai_transfer

 iv_max_probcl = if_farrc_msg_handler_cons=>co_probclass_low.

 catch cx_farr_message. "#EC NO_HANDLER

 endtry.

 try.

 lo_farr_rai->IF_FARR_RAI~TRANSFER_TO_RAI2(

 exporting

 iv_test = gc_x

 iv_no_commit = gc_x

 iv_no_results = gc_x

 iv_last = gc_x

 it_rai0_pack = lt_rai0_pack).

* importing

* et_messages = lt_messages).

 catch cx_farr_message.

 message id sy-msgid type sy-msgty number sy-msgno

 with sy-msgv1 sy-msgv2 sy-msgv3 sy-msgv4.

 endtry.

 CALL METHOD go_msg_handler->get_all_msgs

 IMPORTING

 ett_farr_msg = lt_messages.

 go_msg_handler->save_and_close_app_log().

 if lt_messages[] is not initial.

 read table lt_rai0_pack into data(ls_rai) index 1.

 clear : lw_MSGCOUNT, ls_found_error.

 loop at lt_messages into data(ls_messages) where MSGTY <> 'I'.

 ls_found_error = gc_x.

 ls_err_tab-HEADER_ID = ls_rai-HEADER_ID.

 lw_MSGCOUNT = lw_MSGCOUNT + 1.

 ls_err_tab-MSGCOUNT = lw_MSGCOUNT.

 ls_err_tab-DOC_TYPE = LGW_DOC_TYPE.

 ls_err_tab-TIMESTAMP_UTC = gw_tims.

 ls_err_tab-MSGID = ls_messages-MSGID.

 ls_err_tab-MSGTY = ls_messages-MSGTY.

 ls_err_tab-MSGNO = ls_messages-MSGNO.

 ls_err_tab-MSGV1 = ls_messages-MSGV1.

 ls_err_tab-MSGV2 = ls_messages-MSGV2.

 ls_err_tab-MSGV3 = ls_messages-MSGV3.

 ls_err_tab-MSGV4 = ls_messages-MSGV4.

 clear ls_msg_write.

 CALL FUNCTION 'WRITE_MESSAGE'

 EXPORTING

 msgid = ls_messages-MSGID

 msgno = ls_messages-MSGNO

 msgty = ls_messages-MSGTY

 msgv1 = ls_messages-MSGV1

 msgv2 = ls_messages-MSGV2

 MSGV3 = ls_messages-MSGV3

 MSGV4 = ls_messages-MSGV4

* MSGV5 = ' '

 IMPORTING

 messg = ls_msg_write.

 ls_err_tab-MSGTX = ls_msg_write-MSGTX.

 ls_err_tab-CREATED_ON = sy-datum.

 ls_err_tab-CREATED_AT = sy-uzeit.

 append ls_err_tab to gt_err_tab.

 clear ls_err_tab .

 endloop.

 if ls_found_error is initial.

 ls_err_tab-HEADER_ID = ls_rai-HEADER_ID.

 lw_MSGCOUNT = lw_MSGCOUNT + 1.

 ls_err_tab-MSGCOUNT = lw_MSGCOUNT.

 ls_err_tab-TIMESTAMP_UTC = gw_tims.

 ls_err_tab-MSGID = 'No Errors Found'.

 ls_err_tab-DOC_TYPE = LGW_DOC_TYPE.

 ls_err_tab-CREATED_ON = sy-datum.

 ls_err_tab-CREATED_AT = sy-uzeit.

 append ls_err_tab to gt_err_tab.

 clear ls_err_tab .

 endif.

 endif.

 endif.

Listing 7.3 Code for Perform CALL_HEADER_TRANSFER

If P_MSGID or P_MSGNO is populated on the selection screen,

then delete the entries from gt_err_tab[] which match the

input in either P_MSGID or p_MSGNO. We provided this in case

you want to ignore some specific messages. We delete them

from the table and store the ones that are of interest.

Update the entries of gt_err_tab[] to table ZTRANSFER_MSG, as

shown in Listing 7.4.

 if gt_err_tab[] is not initial.

 modify ZTRANSFER_MSG from table gt_err_tab.

 commit work.

endif.

Listing 7.4 Code to Update Database Table ZTRANSFER_MSG with the List of

Errors

Once the code is completed, we have to activate the code.

Once the code is activated, we can execute the program by

pressing (F8), and then we get the display of the ABAP List

Viewer (ALV) grid.

The error will be stored in database table ZTRANSFER_MSG. The

error messages are stored with all the information that we

need to analyze the error. This table is more organized when

compared to the way the errors are stored in Transaction

SLGI, where we can see pages of running messages. From

this table, we can analyze the errors by grouping and

segregating them. We can choose a particular message for

a specific header ID and then correct it. Then, we search for

the same message for all other header IDs and correct

them. This eases the work of error detection and correction.

All this can be done without having to commit to the

database in simulation mode. Then, after we’ve corrected

the issues, we can go Transaction FARR_RAI_TRANS to

transfer the RAIs.

A simple flowchart of the program is shown in Figure 7.42.

Figure 7.42 Error Management Tool Flowchart

This design has the following benefits:

The program will have simulation mode and commit

mode, so you can execute the transfer of RAIs in

simulation and store the messages without having to

commit to the database. This way, you can correct the

errors and then run again in commit mode.

The messages are stored in the table, which makes it easy

to organize, group, and correct them.

The selection screen can be designed to have additional

filtering options such as the header ID, which will help us

select the header ID that you want to execute and then

analyze the errors.

This also helps in testing as you can use one header ID in

simulation mode, and the errors will mostly be repetitive,

making it redundant to run all the data for the same type

of errors.

You also have options to segregate messages of a

particular class by giving the message class as one of the

selection parameters. Further, you could also add the

message numbers to be filtered. This way, you could even

look at only custom errors or maybe standard errors only

per your requirement.

The program will have a summarized ALV grid display

consolidating the messages by header ID, message class,

and message number.

7.4 Helpful Tips and Tricks

To conclude this chapter, we’d like to walk through a few

tips and tricks that have proven useful in our projects and

that are generally good to know if you’re working with RAR

administration. We’ll start with our custom navigator tool,

which helps guide you through the RAR system and objects.

We’ll then cover additional tricks to keep in mind when

working with custom RAIs.

7.4.1 Navigator

Navigator is a simple custom tool that we created during

most of our projects, as shown in Figure 7.43. It’s a very

handy tool or utility that will help you navigate around the

RAR objects and transactions. RAR is a step-by-step process

of RAI creation in Raw status, RAR transfer, and RAR

processing; this tool helps you sail through each step in the

process.

As a beginner, its tough to remember all the steps and the

transaction codes in RAR; in general that’s the case with any

module, so we made this navigator, which is just like a

process guide or a map with the steps to be followed for the

complete execution of RAR steps.

In the navigator tool, all the standard transactions, custom

programs, and other utilities related to RAR; the RAR-

specific tables; and custom tables can be connected in a

single place. It’s a very simple design and is very easy to

code and to enhance.

To call the navigator, we created Transaction

ZRAR_NAVIGATE.

Figure 7.43 Navigator

When you click on any of the radio buttons, you can see the

list of transaction codes available. In Figure 7.44, the RAR -

Standard radio button has been clicked, so you can see all

the standard RAR transaction codes that are frequently

used. They are arranged in the order of access so you won’t

miss any steps.

Figure 7.44 Standard RAR Transaction Codes

The ABC programs are also listed here along with other

required programs. You can design and group even custom

programs, as shown in Figure 7.44, such as the Adapter

layer - Custom and RAR custom tables radio buttons.

Follow these steps to set up your own navigator tool:

1. Go to Transaction SE38, and create a custom program

called ZNAVIGATOR. The program will have the logic for

calling the transaction codes in the At Selection

Screen Output block.

2. Create the selection screen in which the first block will

be for the main options, as shown in Listing 7.5.

SELECTION-SCREEN BEGIN OF BLOCK f1 WITH FRAME TITLE TEXT-001.

*Standard RAR programs

PARAMETER: p_ci type char01 RADIOBUTTON GROUP grp1 USER-COMMAND std, “CI

Interface

 p_adp type char01 RADIOBUTTON GROUP grp1“ Adapter Layer Custom

 p_eng type char01 RADIOBUTTON GROUP grp1,” RAR Engine Custom

 p_std type char01 RADIOBUTTON GROUP grp1,” RAR Standard

 p_uti type char01 RADIOBUTTON GROUP grp1,”UtlsUse in Exceptional Cases

 p_cus type char01 RADIOBUTTON GROUP grp1,” Custom Reports

 p_tab type char01 RADIOBUTTON GROUP grp1 DEFAULT 'X' .” Custom Tables

Listing 7.5 Selection Screen for the Main Radio Buttons

3. Add the code under each main radio button. Listing 7.6

shows the sample for RAR - Standard.

SELECTION-SCREEN BEGIN OF BLOCK s1 WITH FRAME TITLE text-s01.

parameters : p_std1 type c radiobutton group st1 USER-COMMAND r1 MODIF ID 001,

 p_std2 type c radiobutton group st1 MODIF ID 001,

 p_std3 type c radiobutton group st1 MODIF ID 001,

 p_std4 type c radiobutton group st1 MODIF ID 001,

 p_std5 type c radiobutton group st1 MODIF ID 001,

 p_std6 type c radiobutton group st1 MODIF ID 001,

 p_std7 type c radiobutton group st1 MODIF ID 001,

 p_std7A type c radiobutton group st1 MODIF ID 001,

 p_std7B type c radiobutton group st1 MODIF ID 001,

 p_std8 type c radiobutton group st1 MODIF ID 001,

 p_std9 type c radiobutton group st1 MODIF ID 001,

 P_STD10 type c radiobutton group st1 MODIF ID 001 DEFAULT 'X' .

SELECTION-SCREEN END OF BLOCK s1.

Listing 7.6 Code for RAR - Standard Block Expansion on Selection

Screen

4. Hide all the other radio buttons and display the options

only for the one that is selected by looping on the

screen, as shown in Listing 7.7.

AT SELECTION-SCREEN OUTPUT.

 LOOP AT SCREEN

 IF p_std IS NOT INITIAL.

 IF screen-group1 = '001'.

 screen-input = 1.

 screen-active = 1.

 MODIFY SCREEN.

 ENDIF.

 ELSE.

 IF screen-group1 = '001'.

 screen-input = 0.

 screen-active = 0.

 MODIFY SCREEN.

 ENDIF.

 ENDIF.

 endloop.

Listing 7.7 Code Block to Display the Details under the Selected Radio

Button and Hide the Others

5. You need to have a call transaction to each of the radio

buttons under the subblock. So, whenever a radio

button is selected, it will basically call a transaction

code. A sample code piece for the block RAR -

Standard is shown in Listing 7.8.

IF p_std IS NOT INITIAL.

 CASE 'X'.

 WHEN p_std1.

 CALL TRANSACTION 'FARR_RAI_MON'.

 WHEN p_std2.

 CALL TRANSACTION 'FARR_RAI_TRANS'.

 WHEN p_std3.

 CALL TRANSACTION 'FARR_RAI_PROC'.

 WHEN p_std4.

 CALL TRANSACTION 'FARR_REV_TRANSFER'.

 WHEN p_std5.

 CALL TRANSACTION 'FARR_LIABILITY_CALC'.

 WHEN p_std6.

 CALL TRANSACTION 'FARR_REV_POST'.

 WHEN p_std7.

 CALL TRANSACTION '/HSUD/ORA_MASS_UNSUS'.

 WHEN p_std7A.

 CALL TRANSACTION 'FARR_REPR_CNTR'.

 WHEN p_std7B.

 CALL TRANSACTION 'FARR_CONTR_HIS'.

 WHEN p_std8.

 CALL TRANSACTION 'FARR_CONTR_CHECK'.

 WHEN p_std9.

 CALL TRANSACTION 'FARR_CONTR_MON'.

 WHEN OTHERS.

 ENDCASE.

 ENDIF.

Listing 7.8 Code Block for Calling the Transaction for the RAR - Standard

Radio Button Option

6. The None radio button allows the user to choose the

others; while the default is always on None, this doesn’t

flow anywhere.

7. You can also design the radio button to take you to a link

using the code shown in Listing 7.9.

 when p_eng4r.

 call method cl_gui_frontend_services=>execute

 exporting

 document = 'https://fn.prod.erp.maersk.com/sap/bc/ui2/flp?sap-

client=400&sap-language=EN&sap-accessibility=X#AnalyticQuery-browse&/sap-iapp-

state=ASYWMLEQLL1Q70BL3S7Z7OWBAU59SH6RKZTF3KPD'

 exceptions

 others = 1.

Listing 7.9 Code Block for Navigation to Links

You can enhance it to use for anything you like that is

feasible from a technical perspective.

7.4.2 Additional Information

In this section, you can find more information about the

function modules, methods, and other technical objects that

you can use. These objects are already in the system in

RAR; we’re just listing them here so you know what these

objects are used for and how to access them.

Mass Creation of RAIs

Some requirements call for you to need to fetch data from

staging tables and create RAIs using this data. In such a

situation, you’ll need a function module or methods to pass

large amounts of data and create RAIs en masse. To create

RAIs en mass in your custom program, you can use sample

code calling the method.

Go to Transaction SE24, enter the class name as

“CL_FARR_RAI” in the Object Type field, and then click on

Display (see Figure 7.45).

Figure 7.45 Class CL_FARR_RAI

You’ll then see a list of methods, as shown in Figure 7.46.

Figure 7.46 Methods of Class CL_FARR_RAI,

From the list of methods, you use IF_FARR_RAI~CREATE

for creating RAIs. Figure 7.47 shows a sample piece of code

to demonstrate how to call the method for creating RAIs

from a custom program. In IV_RAIC = CA01, CA01 is the order

class and will create order RAIs; if you pass CA03, it will

create RAIs for invoices.

Figure 7.47 Creating RAIs

Transfer RAIs to the Processable Status

Generally, you transfer raw RAIs to processable using

Transaction FARR_RAI_MON. Alternatively, you can call

Transaction FARR_RAI_TRANS to transfer raw RAIs to the

Processable status in your custom code; you can use the

code sample shown in Figure 7.48.

Figure 7.48 Transfer Raw RAIs to the Processable Status

Exempt Raw RAIs

During the project, you may have requirements that call for

validating the RAIs that are in different statuses. If they

don’t satisfy your conditions, then you may have to exempt

them. Exempting RAIs is basically stopping the RAI from

being processed further. There are two types of RAI

exemptions:

Exempt raw RAIs

Exempted raw RAIs are stored in table /1RA/0XX011MI.

Exempt processable RAIs

Exempted processable RAIs are stored in table

/1RA/0XX013MI.

To exempt raw RAIs, go to Transaction FARR_RAI_MON, select

the required RAIs, and click on the Exempt button, as

shown in Figure 7.49.

Figure 7.49 Transaction FARR_RAI_MON and the Exempt Button

There will be requirements where you’ll have to exempt RAIs

from your programs; for that, you can use the function

module. Go to Transaction SE37, and display function

module FARR_RAI0_EXEMPT, which is used for exempting raw

RAIs (see Figure 7.50).

Figure 7.50 Exempt Raw Entries from Being Moved to Processable

Exempt Processable RAIs

To exempt processable RAIs from being moved to the

Processed status, you can use Transaction FARR_RAI_MON;

however, if you want to exempt them from your custom

program, you use function module FARR_RAI2_EXEMPT. To view

the function module, go to Transaction SE37, and enter

“FARR_RAI2_EXEMPT” in the Function module field, as

shown in Figure 7.51.

Figure 7.51 Exempt Processable Entries from Being Processed

Restore RAIs

The RAIs that are exempted can be restored via Transaction

FARR_RAI_MON. Again, when you restore RAIs, there are two

types:

Restore raw exempted RAIs

Restoring raw RAIs will move RAIs from table /1RA/0XX011MI

to raw table /1RA/0XX010MI.

Restore processable exempted RAIs

Restoring processable RAIs will move RAIs from table

/1RA/0XX013MI to processable table /1RA/0XX012MI.

To restore raw RAIs from a program, you need to use

function module FARR_RAI1_RESTORE. To display the function

module, go to Transaction SE37, and enter

“FARR_RAI1_RESTORE” in the Function module field, as

shown in Figure 7.52.

Figure 7.52 Function Module to Restore Exempted Raw RAIs

Similarly, to restore exempted processable RAIs, another

function module has to be called from the custom program.

To display the function module, go to Transaction SE37,

enter “FARR_RAI3_RESTORE” in the Function module field,

and click Display (see Figure 7.53).

Figure 7.53 Restore Exempted Processable RAIs

Display Useful Methods

There are lot of methods that can be very useful for any

custom designs and requirements. Go to Transaction SE24,

enter “CL_FARR_RAI” in the Class/Interface field, and then

click on Display to see the list of various methods, as

shown in Figure 7.54. A lot of methods in this class can be

used in your code to extract data, create raw RAIs, modify

RAIs, and so on. It’s always good to keep a note of such

useful classes and methods.

Figure 7.54 Class CL_FARR_RAI

7.5 Summary

In this chapter, we introduced a lot of technical objects that

were developed in our RAR projects. Technical details of

some of the objects were given with flowcharts,

pseudocode, or code lines to provide a high-level exposure

to the development of these objects. The various tools we

discussed were very useful in our experience, and we

recommend developing the navigator tool for all projects.

Being aware of the function modules, classes, and methods

in RAR is always an added advantage to the developer, so

we listed the most commonly used ones here in this

chapter. Data cleanup, data validation, and error

management were all major topics of this chapter.

The next chapter will focus on the migration from classic to

optimized contract management (OCM).

8 Migrating to Optimized

Contract Management

To adopt and begin using the latest innovations from

revenue accounting, you can migrate from classic

contract management (CCM) to optimized contract

management (OCM). This migration, as any other,

comes with many options and caveats; therefore, it

deserves a dedicated chapter to describe it in detail.

The first question that comes up is, why migration? For all

experienced users in SAP, it’s common knowledge that

migrations are usually painful processes followed by

technical challenges, data reconciliations, sleepless nights

due to the need for downtime, regression testing, and so on.

Whenever you’re considering migration from one version of

software to another, you should consider two main issues:

whether there is a business case for migration, and whether

you’re familiar with all the technical aspects of migration.

In this section, we’ll cover both. But still the question

remains: Why is there a need for migration? As mentioned

before, revenue accounting and reporting (RAR) went

through a certain evolution process since it was developed

until today. At first, it was thought of as a tool for fulfilling

International Financial Reporting Standards (IFRS) 15

requirements, and it ended up as a primary tool for revenue

recognition in the latest SAP S/4HANA versions. While going

through this evolution, certain features were incorporated in

the existing architecture, but at a certain point, it came to

its limits. To incorporate features that were required by the

market, a deep redesign of the basics was required.

Let’s take, for example, one of the main limitations of time-

based performance obligations (POBs), which was known by

most users: day-based contract modification. CCM relies on

fractions calculated by nominator/denominator logic in table

FARR_D_DEFITEM. To implement day-based contract

modification, the system needed to take into consideration

effective dates of fulfillments, invoices, and orders. That

shift in logic required much deeper changes both in table

structures and program code in which the RAR engine was

written.

This is the main reason that migrating from CCM to OCM is

considered a technical migration only. The balance of

unbilled receivable/deferred revenue (UR/DR) or contract

asset/contract liability (CA/CL) before and after migration

won’t change. In addition, none of the events, such as

fulfillments or invoices, will be reprocessed during

migration.

In this chapter, we’ll provide guidance from preparation to

performing migration to post-migration cleanup activities.

But first, let’s go further in establishing our business case.

8.1 Business Case for Migration

As mentioned, each migration represents a set of activities

that need to be executed in a certain order, so it’s often

looked at as a separate project. The complexity of migration

in the RAR space isn’t on the same level as other migrations

that you might experience (e.g., migration to the new

general ledger or to SAP S/4HANA), but it deserves special

attention. The first step in migration is to determine what

kind of benefits are coming with the new version, and

whether you need migration at all.

Figure 8.1 shows the RAR versions for SAP S/4HANA

releases.

Figure 8.1 Current Versions of RAR on SAP ERP and SAP S/4HANA

As of SAP S/4HANA version 1809, RAR was moved to be an

integral part of the SAP S/4HANA stack instead of being an

add-on like it was delivered for SAP ERP. It’s worth repeating

that OCM is a product that will be further improved and

extended with new features in RAR. However, it already

comes with some features that might be useful for clients

such as a new engine for processing contract modifications,

processing asset impairments, and performing early

termination of POBs.

All these features might be a rationale for you considering

the move to OCM because it would allow that custom logic

to be retired and replaced with standard. Let’s take, for

example, the calculation of impairment after contract

migration. A solution for this process was developed by

customers using different approaches, either as custom

programs running at month end or using functionalities as

contract deletions in the background. Either of these

approaches had limitations because either the activity

required manual work (which consequently had the

possibility of errors plus audit requirements) or it was very

limited as to which business processes would apply. With

OCM, you get contract termination as a standard

functionality.

Contract Termination: Limitations

The reason SAP hasn’t implemented a termination process

since the beginning is that there are very different ways

the process is implemented with different customers. In

some cases, goods return is done after termination, but in

some cases, it’s not; likewise, in some cases, there is a

termination fee that also needs to be considered; and so

on. It took time until SAP developed a process generic

enough so that it can be used by most customers: the

system simply takes the balance of CA/CL, and, according

to POBs, it will repost that balance to impairment accounts

defined in Business Rules Framework plus (BRFplus).

However, there are still some more complicated

applications that require enhancing the standard process

(e.g., the split of impairment costs to POBs according to

some custom rules).

In addition, if migration to OCM is bundled together with

migration to optimized inbound processing (OIP) instead of

using classic inbound processing, it could bring further

benefits such as automatic processing of revenue

accounting items (RAIs).

RAI Processing

Users often experienced errors such as “predecessor item

not found” when there were high volumes of orders and

fulfillment events coming into the system. This happens if

the number of RAIs is large, and they try to concurrently

access Adapter Reuse Layer (ARL) tables. With optimized

versions of inbound processing and contract

management, a new parallel processing framework (PPF)

was developed that offers many improvements in that

area (see Chapter 7, Section 7.1). For users, the most

visible one is that once the sales document is saved, RAI

is automatically processed into contract management,

bypassing the need for manual triggering of Transaction

FARR_RAI_MON and avoiding the errors just mentioned.

It’s also important to mention that you can’t reverse

migration back to the classic version once migration is

performed.

8.2 Preparation Activities for

Migration

Before migration can be started, it’s a good idea to prepare

both in the sense of activities that need to be executed and

how the system should look before migration can actually

start. By this, we refer to the setup you’ll need to do as well

as becoming familiar with which functionalities in OCM

replace those in CCM and which functionalities don’t exist

anymore.

We’ll walk through some key preparation activities in the

following sections.

8.2.1 Contract Management Activation

The first step in Customizing is setting up a separate

contract category for OCM because new contracts will need

to be created according to OCM. As already shown in

Chapter 4, there is a separate node in Transaction FARR_IMG

(follow menu path Revenue Accounting Contracts •

Select Contract Management for Contract Categories)

where the contract category can have OCM activated (see

Figure 8.2).

Figure 8.2 Contract Management with OCM

For each combination of company code and contract

category, you can configure how the system creates new

contracts. Setting the Contract With CM Instead CM

Classic indicator means that the system will create them

using contract management.

If this indicator isn’t set, or if a pair of company codes and

contract category isn’t on the list, these contracts will be

created by CCM.

8.2.2 BRFplus Verification

The next step is to verify the BRFplus settings. Before the

system uses the setup performed in Transaction FARR_IMG,

it will be validated against BRFplus. That is the reason why

you must check Customizing and create required updates.

Figure 8.3 Customizing in BRFplus

As we’ve discussed, contracts are migrated from CCM to

OCM, and inbound processing will create contracts using

OCM. However, inbound processing is still using derivation

as defined in BRFplus decision table DT_PROCESS_HEADER in

applications for definition of POBs, as shown in Figure 8.3. In

this decision table, you must verify that the contract

category (CONTRACT_CAT) is the same category that is

being customized for OCM.

You first define the contract category in Customizing to be

used with OCM, and then the same category is used in

decision table DT_PROCESS_HEADER. This will be of particular

importance if you’ll be using both CCM and OCM in your

system.

8.2.3 Business Add-In Modifications

Now, let’s look at technical limitations, which mainly refers

to business add-ins (BAdIs) that are replaced with new ones

or even that are retired, as shown in Table 8.1. This step is

extra important because it affects user developments, and

you need to know that there will be changes in the existing

development and maybe even updates of the business

process.

BAdIs for CCM BAdIs for OCM

FARR_BADI_ALLOCATION_ENGINE,

FARR_BADI_ALLOCATION_METHOD

FARR_BADI_PRICE_ALLOCATION

FARR_BADI_DEFERRAL_METHOD FARR_BADI_DEFERRAL_METHOD_V2

FARR_CHANGE_MODE_DETERMINATION FARR_BADI_CHANGE_TYPE_DETN

FARR_BADI_TM_REMAINING_PERC Obsolete

Table 8.1 BAdIs Changed in OCM

The first difference will be noticed by customers making

enhancements to the standard allocation engine using the

delivered BAdIs. In CCM, allocation BAdIs are executed as a

two-step process: first, price allocation is prepared, and

later, allocation is performed. Allocation starts by looking at

the change method: If a contract is created or the change

type of a contract is a change of estimates, attributes of all

POBs and pricing condition types are available for price

allocation. If the change type of a contract is a contract

modification, only attributes of open POBs, remaining

pricing condition types, and remaining allocation effects are

available for price allocation.

After that, the BAdI checks the total allocatable amount of

the standalone selling price (SSP) by verifying whether there

are POBs excluded from the allocation or where SSP would

be 0 (their transactional price is still included in the

allocation). Next, the BAdI checks what kind of POBs are

included in the allocation: linked, compound, or distinct.

They are then grouped so that POBs that aren’t members of

any group would receive an allocatable amount first, where

the allocable amount is the total of the allocable pricing

condition types and allocation effects. Once data is

prepared, it would call BAdI FARR_BADI_ALLOCATION_METHOD to

perform the actual allocation.

In OCM, this logic was completely redesigned with BAdI

FARR_BADI_PRICE_ALLOCATION and is performed in several steps:

1. Determine the allocated price of residual POBs via the

following formula:

Allocated price of residual POB = Max{(Total transaction

price – ∑ SSP of each POB,},0}

2. Determine the allocated price for each nonresidual POB

via the following formula:

Allocated price of each nonresidual POB = (Total

contract price – Allocated price of residual POB) × SSP of

this POB ÷ ∑ SSP of each POB

3. Revenue accounting performs price allocation based on

the SSP if no POB is defined as a residual POB.

4. Revenue accounting checks if each POB is SSP-

compliant based on the contractual price, SSP, and SSP

range amount:

If the POB doesn’t have an SSP range amount defined,

the SSP range amount is taken as 0.

A POB is SSP-compliant if the contractual price of the

POB is within the SSP +/- SSP range amount.

If all POBs are SSP-compliant, the allocated price of

each POB is equal to the contractual price of the POB.

If the total SSP is 0, the allocated price of each POB is equal

to the contractual price of the POB.

BAdI FARR_BADI_DEFERRAL_METHOD was used by those who

needed some custom logic when it comes to splitting

revenue in different periods for time-based POBs. It would

require that the user creates a new deferral key, and that

custom logic would be written in method

GENERATE_FULFILL_ENTRY. The main difference between the old

BAdI and the new BAdI, FARR_BADI_DEFERRAL_METHOD_V2, is how

they work with table FARR_D_DEFITEM.

One more example where new BAdI can become very useful

is working with suspension periods. Contract suspensions

are commonly used in some industries. For example, in

telecommunications (telco; especially in regions with a high

number of expats), customers have an option to simply

suspend a contract for a maximum defined time without

extension of the contract, and revenue for this period must

not be recognized.

By using the mentioned BAdI, that can be relatively easily

achieved. Let’s consider an example:

Original contract start: 01.01.2023

Original contract end: 12.31.2024

Suspension start: 06.01.2023

Suspension end: 06.30.2023

This contract now has two validity dates compared to the

one in the original case:

First: 01.01.2023 –05.31.2023

Second: 07.01.2023 –12.31.2024

Now, we’ll achieve this by sending two different calls to

method GENERATE_FULFILLMENTS: in both calls, we’ll work only

with DEFERRALPERIODSTARTDATE and DEFERRALPERIODENDDATE

parameters because there was no change in the POB end

date:

First call:

DEFERRALPERIODSTARTDATE = 01.01.2023

DEFERRALPERIODENDDATE = 05.31.2023

Second call:

DEFERRALPERIODSTARTDATE = 07.01.2023

DEFERRALPERIODENDDATE = 12.31.2024

In only a few lines of code using BAdI

FARR_BADI_DEFFERAL_METHOD_V2, you can implement the setting

for contract suspension. However, when implementing this

BAdI, be aware that detailed testing needs to happen before

using it.

One of the most commonly used BAdIs—BAdI

FARR_BADI_CHANGE_TYPE_DETN—was for determining whether the

contract was going through a change of estimates

(retrospective change) or contract modification (prospective

change). Because RAR was determined based on internal

rules regarding whether the system executed the first or

second type, users often implemented this BAdI to gain

more control over the process.

The main difference between CCM and OCM is what default

implementations would trigger, as shown in Table 8.2.

Change of Estimates Change of

Modifications

CCM
Update the POB exclude from

the allocation attribute from

true to false or from false to

true without any allocation

difference.

Change the estimated

quantity of the POB.

Update the residual

allocation of the POB.

Change the SSP, SSP

currency, or SSP tolerance

amount without any change

to the quantity, duration, or

price.

Change or

switch the

pricing condition

types without

total contractual

price changing.

Add a new POB

with an SSP

greater than 0,

an SSP tolerance

that isn’t equal

to 0, or with a

contractual price

Change of Estimates Change of

Modifications

Change the SSP tolerance

percentage.

Change the contractual price

of all allocation-relevant

POBs to 0.

that isn’t equal

to 0.

Delete a POB.

Change the SSP,

SSP currency, or

SSP tolerance

amount with a

quantity, price,

or duration

change.

Change the

contractual price

of a POB (unit-

distinct or non-

unit-distinct)

that’s from

operational

documents,

whereby there’s

at least one

open POB in the

contract.

Create an

invoice that

changes the

contractual price

where there is at

least one open

Change of Estimates Change of

Modifications

POB in the

contract.

OCM
A POB is deleted.

The start date of a time-

based POB is changed.

Deferral method of a time-

based POB is changed.

Transaction price of a POB is

changed to 0.

Transaction price, original

transaction price, start date,

end date, deferral method,

and quantity of a POB aren’t

changed, but any of the

following fields of the POB

are changed: SSP, SSP range

percentage, SSP range

amount, residual flag, and

prevent allocation flag.

All other scenarios

can be used.

Table 8.2 Treatment of Contract Modifications

Because, in the past, users would implement this BAdI to

enforce contract modification over change of estimates in

some scenarios, in OCM, this might become obsolete. With

OCM, the way RAR is determined was changed to be treated

as prospective or retrospective. For some business scenarios

where the user was enforcing the change type, it might be

covered by the standard.

You should carefully evaluate and analyze changes that

come with the mentioned BAdIs. The reason is that the

impact can be different: some BAdIs require

reimplementation (e.g., the allocation BAdI where instead of

two BAdIs, there’s only one), but some other

implementations might become completely obsolete, as in

the case of enforcing certain types of contract change.

8.2.4 Process Changes

Besides BAdI implementations, with OCM, there is also an

impact on business processes: some of them change how

they are processed, but some of them aren’t supported

anymore (see Table 8.3). More detailed information can be

found in OSS notes that describe specifics of migration from

CCM to OCM, so here we’ll focus only on limitations that can

be resolved before migration starts. However, it’s very

important that before migration starts, you get familiarized

with features that might not be available once migration to

OCM is finished.

Process Resolution

Contracts with errors The error must be resolved

before the contract can be

migrated.

Process Resolution

Contracts with In Review

status

The review must be resolved,

and the contract must be in

the In Process status.

Completed contracts Completed contracts aren’t

migrated before reopening.

Contracts with fixed

exchange rate method

This will be automatically

changed to the actual foreign

exchange (FX) method

POBs with finalization date

after the system’s current

date

The date of finalization will be

changed, or the POB will be

migrated at a later time.

Time-based POB with a

start date that’s

determined by a

fulfillment event

Migration is only supported if

the quantity is 1.

POBs with early

termination

Early termination is canceled.

Table 8.3 Process Change Coming with OCM Migration

The first thing you need to do is make sure there are no

contracts that are either in error or conflict resolution

processes because such contracts won’t be migrated.

Reasons for errors need to be found and resolved before the

process can continue. A similar activity needs to be

performed for POBs with termination and POBs where the

finalization date is at a later point in time than the date

when the actual migration is being performed.

In this phase, it becomes handy to use the data validation

check reports that SAP provides. It becomes very easy to

locate contracts with errors and if possible, resolve them, or

else exclude those contracts from the migration activities.

During the migration of contracts with a fixed exchange

rate, the system changes the local currency calculation

method to A (actual exchange rate method). The exchange

rate difference is calculated during the next execution of the

Transfer Revenue (Transaction FARR_REV_TRANS) report.

If time-based POBs have a start date of value 3 (start date

determined by fulfillment event), migration of such items

will be performed only if the quantity is 1 and the start date

type is going to be changed to 2 (available after creation of

POB).

Beside this, it’s important to mention that certain processes

aren’t supported:

Contracts with POBs that have manually calculated

allocation

POBs with simplified invoice handling

Contract acquisition costs POBs

POBs that are part of compound or bill of materials (BOM)

structures

All of these represent detailed information about all the

processes and enhancement points being changed or made

obsolete when it comes to migration to OCM. OCM is

undoubtedly a more advanced concept and brings a lot of

improvements to RAR, both process wise and technically.

However, before you decide that migration is the right

approach, be sure to carefully evaluate whether OCM is

compatible with your existing processes and what kind of

effort migration may represent.

8.3 Performing the Migration

Once all preparation activities are finished, you’re ready to

perform the actual migration activities. There are two

prerequisites that need to be performed before actual

migration can start. First is that no reconciliation keys can

be in the Open status at the moment migration starts.

Closing reconciliation keys will be done automatically by

executing the revenue transfer program (program A; see

Chapter 6). All reconciliation keys in future periods must

have status O (Open). If any reconciliation keys exist in a

future period, migration must be performed at a later point

in time.

The second prerequisite is related to processes that can’t

run during migration. Migration itself doesn’t require

downtime; however, depending on the selection parameters

and the data volume, a migration run can potentially take a

significant amount of time to complete. To avoid errors

during the migration of contracts, processing of RAIs for the

duration of the migration shouldn’t be performed.

Once you’re done, everything is ready to start to migrate

contracts from CCM to OCM. We’ll discuss the core activities

and some troubleshooting guidance in the following

sections.

8.3.1 Migration Activities

SAP delivers Transaction FARR_CCM_OCM_MIG_CON

(program name FARR_CCM_OCM_MIGRATION) to complete

migration activities, as shown in Figure 8.4.

First, select an Accounting Principle. Many customers

have parallel accounting in their RAR systems, so if both

contracts need to be selected, you’ll need to perform

migration twice. Usually, two accounting principles are

created but only one revenue split according to allocation is

used. You need to assess what the benefits would be if both

contracts were selected in migration, or if migration will be

related to one accounting principle.

The next entry that is mandatory is the Company Code

field for which you can select multiple companies for the

migration in one run.

If there are contracts that should be skipped, you can make

a list of contracts and enter a range in the next parameter,

Revenue Accounting Contract. This is done in the

standard way by using multiple entry features. If a range is

entered, it’s crosschecked against the entries in the

previous Accounting Principle and Company Code fields.

Figure 8.4 Program for Migrating from CCM to OCM

The checkboxes in the Additional Migration Parameters

section are used if you’re using special features in existing

contracts. The Mig. Fixed Rate RA Contract flag is used

to enable the migration of revenue accounting contracts

with a fixed local currency calculation. During the migration

of these contracts, the system changes the local currency

calculation method to A (actual exchange rate method). The

exchange rate difference is calculated during the next

execution of the Transfer Revenue (Transaction

FARR_REV_TRANS) report. The checkboxes are left

unselected by default.

Set the Mig. POB with Start Date Ty. 3 flag to enable the

migration of time-based POBs with start date type 3

(available after POB creation). The migration of these POBs

is only supported if the quantity is 1. If this POB is migrated,

the start date type is changed to 2 (available after POB

creation) by the system. The default value is No.

Set the Mig. POB with Manual Spread flag to enable the

migration of time-based POBs with a manual spreading of

the revenue schedule. The migration of these POBs supports

the functionality of freeze periods in OCM. To apply freeze

periods, insert the required information (POB ID, freeze

date, unfreeze date) into table FARR_D_POB_FRZ before you

start the migration report, as shown in Figure 8.5.

Figure 8.5 Freeze Periods Entry

During the migration, the system removes the manual

revenue schedule spreading and applies the freeze period.

The default value is No.

The next step is to set up Run Parameters, as shown in

Figure 8.6. These parameters have similar functions as while

running RAR programs: based on resources, you’ll define

how migration programs are going to run.

Figure 8.6 Run Parameters Setup

In the first field, Max Work Proc Usage in Percent, enter

what percentage of available processing power will be

dedicated to the migration program. In the next field, Block

Size for Mass Selection, you define the block size, and

these two settings in combination determine how fast

migration will be executed. There are two aspects to

consider:

What resources are available in the application server on

which RAR is running? The number of processes depends

on the number of CPUs and cores per CPU.

Block size determines the number of items that will be

assigned to each process.

In Chapter 7, Section 7.1, you can find more information

about the PPF setup. The last two options available in the

Run Parameters section are methods of running:

Simulation Mode is a test run, and selecting Dialog Mode

determines that the program will be run in the foreground

(rather than the background). Although migration doesn’t

require downtime, bearing in mind that very often the SAP

S/4HANA or SAP ERP instance is on the same system as

RAR, it’s always a good idea to run migration in the

background.

Once the setup is done, the program can be scheduled to

run using standard SAP transactions such as Transaction

SM37 and Transaction SM36, or by an external job

management tool if the same is being used. Migration will

be executed on the first day of an open RAR period. Steps

will be performed automatically by the system in the

following order for each revenue contract:

1. The RAR contract is locked.

2. Data validation checks are executed to make sure the

contract is consistent.

3. Data is converted to the OCM format. Most of the data

remains unchanged, aside from the following:

Local currency calculation method is changed to A.

Contract asset and contract liability accounts are

redetermined.

Attribute contract balance presentation is changed

according to Customizing settings.

If the POB is time-based, the attribute effective

quantity is filled with the number of days between the

start date and the end date according to the deferral

method.

The effective quantity unit is changed to days.

If the POB is based on percentage of completion

(POC), the attribute effective quantity is set to 100,

and the effective quantity unit is changed to %.

The Fulfillments Based on Values flag is selected if

the event type is CI, and the Indicates Whether

Quantity on the Invoice is Relevant or Not flag is

selected.

Entries in fulfillment table FARR_D_FULFILLMT and deferral item

table FARR_D_DEFITEM that belong to reconciliation keys with a

status other than O (Open) are marked as legacy data by

selecting the Legacy Entry flag. These lines will no longer

be loaded by OCM when an event is processed. Instead, new

lines are created to represent the total of the recognized

revenue, fulfilled quantity, and billed amount for each

condition type. Future fulfillments and deferral items of

time-based POBs are then recreated based on the new day-

based deferral methods.

All fields that hold a numerator or denominator (identified

by the suffix _NM and _DN) are cleared. These columns aren’t

used by OCM. Make sure that you adapt any reporting

solutions based on deferral item table FARR_D_DEFITEM if they

depend on the quantity and quantity unit when they

change. This is very important if you have reporting based

on those columns. Contracts that are now processed by

OCM have the RAR Version Code flag set to X.

8.3.2 Migration Errors

During the migration run, there are a few errors that can

occur, and most of them are related to limitations

mentioned at the beginning about what kind of contracts

can and can’t be migrated. However, some errors can

happen, most likely due to different stages of the system on

which migration is being performed.

It’s always a good idea to run migration with smaller

number of contracts and in foreground mode. That way, you

can see, evaluate, and correct errors before real, productive

migration is run. Let’s walk through a few examples of errors

you might encounter.

If you see the kinds of messages shown in Figure 8.7, it’s a

good idea to run a validation report and verify what kind of

error is behind the message. Remember, SAP won’t let any

contract be migrated that already has validation errors.

Figure 8.7 Validation Errors

Figure 8.8 shows the kind of error you’ll get if you try to

migrate contracts that are integrated with results analysis.

At the time of writing, integration with results analysis can

be done only by using CCM; OCM isn’t supported.

Figure 8.8 CO Object Error

In Figure 8.9, the system is warning that migrating contracts

with Fixed Local Calculation Method is not supported.

In this case, look again at the options in the program and

you’ll see that in the Additional Migration Parameters

section, the Mig. Fixed Rate RA Contract option needs to

be selected to avoid this error. After migration is completed,

all contracts will be translated according to the actual

exchange rate.

Figure 8.9 Fixed Currency Translation Error

In this case, as shown in Figure 8.10, errors occur because

there are open reconciliation keys in the migration period or

there are events in the future. It’s one of the preconditions

for running migration that all reconciliation keys in the

migration period are closed. However, if there are objects

with open reconciliation keys, you can either exclude those

contracts or opt for migrating them in the future when those

problems won’t be visible and will let migration complete.

Figure 8.10 Errors in Migration of Open Reconciliation Keys

Errors in account determination can also appear, as shown

in Figure 8.11. These errors must be solved before migration

of those contracts can be finished. The best way is to

analyze which contracts have such errors, fix the problems,

and reprocess the contracts before continuing the migration

process.

Figure 8.11 Account Determination Errors

8.4 Post-Migration Cleanup

Once migration is over, you’ll see the results: contracts in

table FARR_D_CONTRACT will have the proper values, and

changes in the database tables will be made. Before

business as usual can be continued, it’s good practice to

perform cleanup activities, which means running validation

reports after completing migration. Validations are related

mainly to performing data consistency checks by executing

activities as described in SAP Note 2567106.

In some cases, the migration itself will throw an error that

post-migration validation checks are in error, but it’s good

practice to run Transaction FARR_CONTR_CHECK once more

to be sure no contracts are in error after migration is over.

In addition, it’s a good idea to run a few simple scenarios

that can be reversed (called health check testing or smoke

testing) and verify that the system works according to

expectations after migration. To perform a health check, you

complete one cycle (or a few cycles) of the most often used

or simple scenarios that can either be ignored or reversed.

For example, you could create a simple sales order, try

passing it to RAR, and see if all the enhancements are

working like they were before migration and according to

expectations. This gives a quick indication that the

migration process was successful, and you can continue

with regular business as usual.

8.5 Summary

Migration from CCM to OCM is a rather simple and

straightforward type of migration because it’s mainly

technical and doesn’t involve changes in data that is

already in the contracts. However, to have a successful

migration and benefit from improvements that come with

OCM, it’s essential that migration is properly planned and

executed.

Key considerations for planning include the following:

Do you have developments that would be impacted by

technical changes (either by BAdIs that are made obsolete

or changes in table structures)? This is by far the most

important topic to be analyzed because it can be a driver

for migration not to be performed at all.

Can your business processes support OCM? If you’re

running POC scenarios or if your system has compound

structures, it’s not possible to include such contracts in

migration. It’s possible to have contracts running

according to CCM and OCM in parallel in the system, but

costs of maintenance for such a system are higher, so you

should compare them with the potential benefits of

having OCM.

Will downtime be necessary during migration? Downtime

isn’t needed, but you can’t process RAIs during the

migration execution.

Do you have events in the future that affect the best

moment for migration execution?

All these and more are important factors that can lead to a

successful migration to OCM if properly planned.

That wraps up our journey with the RAR functionality.

However, before we reach the end of this book, we’ll take a

first look into the new event-based revenue recognition

(EBRR) solution in the next chapter.

9 Event-Based Revenue

Recognition

When looking at the portfolio of products that SAP offers for

revenue recognition, it’s easy to get confused: you have

results analysis, revenue accounting and reporting (RAR), and

the newest tool, event-based revenue recognition (EBRR). In

this chapter, we’ll offer high-level information about EBRR

when it’s the preferred solution for revenue recognition.

One of the shortcomings of RAR in SAP S/4HANA is dealing with

certain business scenarios that don’t arise directly from

International Financial Reporting Standards (IFRS) 15 or Accounting

Standards Codification (ASC) 606 requirements, but rather from an

organization’s business model. SAP has released a new

functionality, event-based revenue recognition (EBRR), which is

better tailored to customer projects and sales orders. In this

chapter, we’ll introduce EBRR with a look at the background of the

solution, its use in the sell-from-stock and customer project

scenarios, and the role of revenue recognition keys.

9.1 Solution Background

As mentioned in Chapter 1, an entity might face different issues

when it comes to revenue recognition. Depending on the industry,

this can be regarding fulfilling matching principle requests

(reporting costs and revenue in the same period), allocating

revenue to proper performance obligations (POBs), dealing with

huge volumes of data, or constant contract modifications. In

addition, changes in business models are occurring where more

industries that were traditionally oriented to sales of goods are now

trying to sell their products as services to ensure revenue flow over

time.

We discussed in the previous eight chapters how the RAR solution

from SAP can help entities in fulfilling these requirements.

However, based on the recent SAP portfolio, RAR isn’t the only

solution that can be used for this purpose.

With EBRR, costs and revenues are posted as they occur and are

immediately matched and posted. Looking at the SAP portfolio in

Table 9.1 (current as of time of writing), you see that SAP offers

three main tools for revenue recognition. The oldest, classic tool is

results analysis, which has been on the market for a long time and

was built to measure the progress of project execution and make

appropriate financial postings. In that sense, it evolved over time,

and, even now, it’s the go-to tool when it comes to projects and

internal orders financial management of progress. Besides the

variety of features available, results analysis is also very

extendable: there are multiple enhancement points the customer

can use to tailor it to the company’s specific needs. Finally, being

on the market for a while means that a significant pool of people is

now proficient and possesses the knowledge to work with results

analysis.

Features Results

Analysis

RAR EBRR

Features Results

Analysis

RAR EBRR

Five-step model No. Results

analysis was

initially built

to track the

financial

progress of a

project’s

delivery.

There are no

contracts or

POBs.

Yes. This was

built fully

around IFRS

15 and ASC

606

requirements.

The model is

very

extendable in

terms of

providing

support for

different

business

scenarios.

Yes. The

latest

versions

support all

five steps,

including

allocation of

transactional

price.

However, it

might be a

challenge to

support IFRS

15

requirements

for specific

business

scenarios.

Features Results

Analysis

RAR EBRR

Parallel reporting No. The

purpose

wasn’t to

support

different

reporting

requirements.

Some

extensions

are possible

when it

comes to

projects

scenarios.

Yes. One of

the main

reasons the

tool was

developed

was to fill

missing

feature in old

revenue

recognition

tools related

to parallel

reporting.

Yes. The

latest

versions

support

parallel

reporting.

Projects/professional

services scenario

Yes. Results

analysis was

made

specifically

for this

purpose and

can be

extended in

different

ways to

match most

customer

scenarios.

Limited. RAR

needs

integration

with results

analysis and

supports

cost-based,

revenue-

based, and

classic

contract

management

(CCM)

methods for

revenue

recognition.

Yes.

However,

EBRR isn’t

extendable

like classic

results

analysis

because it’s

based on

scenarios

coming from

the cloud.

Features Results

Analysis

RAR EBRR

Over time revenue

recognition

Results

analysis can

be

customized

to fulfill this

requirement,

but only

when linked

with a work

breakdown

structure

(WBS) or

internal

order.

Yes. Native

support is

provided for

the time-

based

method with

different

deferral

methods.

Yes. Native

support is

provided for

the over

time revenue

recognition.

Over time cost

recognition

Results

analysis can

be

customized

to fulfill this

requirement,

but only

when linked

with a WBS or

internal

order.

No. RAR

requires

integration

with results

analysis.

Yes. Native

support is

provided.

Features Results

Analysis

RAR EBRR

Point-in-time

revenue/cost

recognition

Results

analysis can

be

customized

to fulfill this

requirement,

but only

when linked

with WBS or

internal

order.

Yes. Different

methods are

available to

support all

kind of

business

requirements.

Limited.

Some

features are

missing,

such as link

drop ship or

call off

orders

fulfillment.

Documents

bundling

No. Yes. Native

support is

provided for

contract

combination.

Limited. The

process

needs to be

designed

around

existing

features.

Integration with

external

components

This can be

built in

results

analysis.

Native

support is

provided and

is extendable.

Limited. The

process

needs to be

designed

around

existing

features.

Table 9.1 Tools Available with Features

However, the idea of results analysis was always to be a tool used

while integrated with Project System or internal orders. Of course,

if a customer decides to use WBS as the account assignment

object for all of their sales, it could be applied outside the classic

project systems environment. In reality, however, this would be too

limiting an approach, so it isn’t used in practice. Even if this would

be possible, when it comes to IFRS 15 and ASC 606, the results

analysis key wouldn’t be able to satisfy the five-step model with

creation of POBs or allocation of transaction price. In that sense,

the tool can’t be used for IFRS 15 reporting.

The next tool, RAR, is now close to a decade on the market, but it

still can’t be considered a veteran solution like results analysis.

RAR was built as a tool to enable IFRS 15 reporting, so that’s

definitely a strong point. In addition, irrespective of the industry

undergoing an IFRS 15 implementation, we can claim with

confidence that RAR can be used to provide valid IFRS 15 results.

There are also many implementations where RAR was positioned

as one segment in even non-SAP environments where the main

role was to do IFRS 15 reporting. To add to the point, RAR wasn’t

developed as a standalone tool, but as an upgrade to Transaction

VF44, which essentially means the experience accumulated in an

old revenue recognition tool was used in RAR and upgraded. Maybe

the biggest advantage of RAR is that extensibility makes it very

applicable in industries that are becoming more and more service

oriented. If a company is thinking about switching business models

where instead of selling machines as standalone units, they will

merge them with some services (e.g., maintenance, operations)

and bill them based on some measurements over a period of time,

RAR supports these scenarios natively (keeping in mind that some

modifications in business processes are performed to reflect

business change).

But there are business scenarios that aren’t so easily integrated

with RAR. When it comes to the professional services industry, RAR

isn’t calculating the percentage of completion (POC) by itself: it’s

being done by results analysis, and RAR is just taking over values.

Even in this case, it’s limited to three results analysis key methods

(cost-based method, revenue-based method, and CCM). Most

customers won’t find this limiting because POC is mainly calculated

on these methods, but there are business scenarios such as time

and material that require adjustments and tweaks to be enabled in

RAR. Even once they are enabled, there are limitations that

businesses would need to respect when working with RAR. In

addition, the extensibility that RAR offers is a burden in some

cases: for some businesses, it might turn out to be complex and

too lengthy of an implementation without providing tangible

benefits.

Last, we come to EBRR, the newest of all tools for revenue

recognition. As mentioned previously, natively, EBRR was

developed on SAP S/4HANA Cloud, public edition and later ported

to other versions of SAP S/4HANA. That makes it the most modern

solution, but at same time, it comes with a number of predefined

scenarios that reveal its main benefit: if the user can fit into those

scenarios, then implementation is rapid without too much difficulty.

In addition, some scenarios that are pain points to RAR are natively

supported by EBRR, hence limiting the number of necessary

extensions and enhancements. Being modern means EBRR also

makes full use of the latest features from SAP S/4HANA, such as

direct integration with the Universal Journal. This saves time used

for reconciliation and makes the overall closing process much

faster and transparent. With the implementation of EBRR,

customers can achieve further simplifications: results analysis keys

become obsolete. This means if the customer is able to fit into the

standard scenarios offered by EBRR, they might achieve further

reduction in total cost of ownership (TCO) by simplifying other

modules that are used.

The biggest advantage is at same time the biggest limitation of

EBRR. The solution isn’t (or better said, isn’t yet) extendable like

RAR or results analysis. So, if some extensions are needed by

nature of the business, it might turn out that without a specific

business process design, requirements simply can’t be fulfilled. In

addition, some areas are yet to be developed, such as support of

different contract combinations, modifications of contracts, or

integration with external systems. EBRR is simply not ready to take

over tasks that are normally done by RAR. Again, EBRR is a very

new tool, which means the number of people working with it isn’t

as high. All these factors need to be taken into consideration

before a company opts for this solution for revenue recognition

reporting.

EBRR is focused on solving revenue reporting issues that are built

around different scenarios, as we’ll discuss in the next sections.

9.2 Sell-from-Stock Scenario

The sell-from-stock scenario covers all steps from creation

of sales order to delivery of goods to billing based on

delivery. These steps are followed by EBRR and margin

reporting based on postings made. Figure 9.1 shows the

sell-from-stock scenario process flow alongside its

integration with EBRR.

Figure 9.1 Process of Sales Integrated with EBRR

The standard process of the sell-from-stock scenario, as

shown in Figure 9.2, starts with the creation of a sales order

based on which delivery and post goods issue (PGI) are

done. Like RAR, an EBRR key is determined already at the

moment of sales order creation.

Based on the method, either revenue will be recognized at

PGI or when the invoice is sent to the customer. In all cases,

costs and revenues are posted at the same time, ensuring

that the matching principle rule is fulfilled.

Figure 9.2 EBRR Based on Sell from Stock

In this scenario, when goods are posted from stock, revenue

is calculated based on the quantity delivered, and both

revenue and costs are accrued and posted. Reporting is

available here and in margin analysis, and there is no need

to take additional steps for settlement.

Revenue recognition is controlled by the revenue

recognition key assigned in Customizing (see Section 9.4 for

more information). These keys allow different scenarios to

be executed:

Recognize revenue based on invoices

Recognize costs and revenues at moment of final delivery,

until then, defer all (partial deliveries will be deferred)

Override EBRR logic: costs are recognized at PGI and

revenue invoicing

Recognize costs based on planned costs from the material

master, and recognize revenue based on conditions in

sales document

Recognize revenue based on invoicing, and reduce the

accrued revenue directly

It’s very important to mention that EBRR supports different

treatment of revenue and cost recognition based on the

ledger: it’s possible to implement different ways for different

local and global reporting requirements.

9.3 Sales-Oriented Scenario for

Customer Projects

Projects are structured forms of certain activities and tasks

to be performed to achieve certain outcomes. In SAP,

projects are maintained in a specific module called Project

System. There are many different kinds of projects, but two

types are the most dominant: projects as cost collectors

with or without capitalization and revenue-related projects.

The focus of EBRR is on customer projects.

Certain elements are common for all projects and need to

be fulfilled so that EBRR can be used as the tool for revenue

recognition:

WBS elements

The project has to be in a structured form, and each task

must be represented as a WBS element. This element is

used as an account assignment object and can have a

results analysis key assigned to it. This results analysis

key determines how POC will be calculated and how

revenue will be recognized at the end. Keep in mind that

WBS elements will either inherit the results analysis key

defined in WBS elements or the revenue recognition key

assigned in EBRR. Figure 9.3 shows an example of results

analysis keys created in one organization. Usually, they

are used for pure POC calculation, but, in some cases,

they can be also used instead of settlements. That’s the

reason many organizations try to standardize results

analysis keys as part of their SAP S/4HANA

transformation.

Figure 9.3 Example of Different Results Analysis Keys Available

Billing indicator

As mentioned, WBS elements can be used either as cost

collectors or as revenue objects. As revenue objects, this

revenue needs to be allowed to be posted to the WBS

element. This is enabled by applying the Billing Element

checkbox under Operative indicators in the WBS

definition, as shown in Figure 9.4.

Figure 9.4 Definition of Billing in WBS Element

Order assignment

Revenue usually comes through the sales process, which

starts with a sales order (there are other documents to be

used at the start, but for simplicity, let’s limit it to sales

orders). The WBS element needs to be assigned to the

sales order for revenue to be posted to it. Figure 9.5

shows an example WBS element added to the sales

order under the Account Assignment tab.

Figure 9.5 Assignment of a WBS Element to Sales Order

While creating WBS elements, you need to understand

which statuses are important for EBRR. WBS elements can

go through different statuses, but two are most important:

Completed (TECO status)

This means that all revenue and costs are recognized, and

no further calculation of POC and revenue recognition will

occur. However, invoicing and posting to the project are

still possible.

Closed

The prerequisite for this status is that there are no more

balance sheet items in the project posted. Once the

project is set to this status, no more postings can happen

with WBS as the account assignment object.

Once a project with a WBS structure is properly created, you

next execute steps that are valid for all sales-related

projects. The first step is the planning process. In some

cases, planning is a necessary step (when revenue to be

recognized is calculated as a comparison between planned

and actual values), but, in some cases, it might not be

necessary (time and material projects).

In this example, you’re creating sales orders and assigning a

WBS element as the account assignment object. Note that

the sales order–project relationship must be 1:1 as must the

sales order item–WBS element.

EBRR provides specific SAP Fiori apps to monitor revenue

recognition. In this case, you’ll access the Event-Based

Revenue Recognition – Sales Order app to analyze revenue

recognition postings. The main purpose for the app is to

provide an overview of all postings related to a specific

event; however, users can also trigger additional postings.

The sales order item category (which can be found in every

line item in a sales document) is called the contract type in

EBRR, and it determines how a project will be billed, which

has a direct connection to the revenue recognition method.

Three basic methods are used for billing, as defined already

in SAP S/4HANA Cloud, public edition:

Time and material billing

This is the standard approach when a customer is billed

based on consumption of that WBS element according to

an agreed price. The customer is charged for the costs

that might occur up front. In this case, revenue will be

recognized based on time spent, and sales price and

billed amount are deferred.

Fixed-price billing

In this scenario, the customer is billed based on a billing

plan defined in the sales document. Revenue can be

recognized in multiple ways, which usually is the cost-

based method where we’re comparing actual versus

planned costs, and then the calculated POC is applied to

revenue. The difference between billed amount and

recognized revenue is accrued.

Periodic service billing

This is widely used in cases where the customer is billed

in periods that are again defined in the billing plan

(quarterly/half yearly/yearly). Each billing plan item has a

period assigned (the main difference compared to fixed-

price billing), and revenue is recognized based on the

period and amount billed.

Figure 9.6 shows the high-level process of recognizing

revenue through projects. The first step is planning, in which

you’ll plan both costs and revenues. Now, depending on the

method for calculating POC, you’ll use either costs or

revenue as the basis for calculation.

Figure 9.6 Project-Related Process for Revenue Recognition

The next step is posting costs, which can come to the

project as either direct costs by, for example, material

issued to the project, or as different types of activity

allocation performed on a WBS element (this is often the

case in professional services projects where time is entered

and multiplied by unit cost).

At the milestone or period completion, billing is performed.

Billing can be done as regular billing or some sort of

resource-related billing. Once both steps are completed, the

WBS element will contain all elements so revenue

recognition can be calculated.

The process is finalized in EBRR with a separate app: Run

Revenue Recognition – Sales Orders. An overview of

postings will be displayed, and you can run simulation

before executing real postings.

9.4 Revenue Recognition Keys

Defining and assigning revenue recognition keys is a main

part of configuring how revenue will be recognized in EBRR.

The revenue recognition key defines the valuation of orders

during period-end closing and allows you to determine how

revenue is calculated during month-end closing. This step

comes after defining the sources that represent lists of cost

elements to be considered in calculating revenue

recognition. For project-related revenue recognition,

revenue recognition keys can be freely definable, but need

to be linked to one of the supported revenue recognition

methods.

Each recognition key needs to have an assignment rule

applied. These rules define how revenue and costs will be

recognized (e.g., cost-based POC, revenue-based POC). The

next step is assignment of sources and assigning to each

source how it will be used. For example, whether to

recognize cost of goods sold (COGS) as incurred or amortize

it over time is defined in the assignment of sources to the

recognition key. At the end, the revenue recognition method

is assigned to the ledger and company code, and then it’s

ready to be used.

9.5 Summary

In this chapter, we provided an introductory look at EBRR.

As the new kid on the block, EBRR brings its own set of

benefits and limitations when it comes to deciding whether

it will be used for revenue recognition processes.

Having that said, opting for EBRR or RAR depends on the

specific situation. It might not be so much related to the

industry, for example, but to the extent to which customers

can standardize their own processes and make them fit into

the standard EBRR brings. Remember, EBRR came from the

cloud, which makes it relatively fast for implementation.

However, that cloud-oriented mindset also means that the

customer expects to fit as much as possible to the standard,

which is brought about by scenarios. If that isn’t possible,

extensions of EBRR might become challenging, and fitting it

into existing business processes may even be impossible.

If business scenarios require customization or the client’s

process of selling goods/services to customers is very

diverse and complex, RAR might be the go-to solution. The

list of extensions that can be applied is significant, while at

same time, the tool remains able to be the main revenue

reporting source. Of course, the cost is obvious: the more

enhancements to the standard, the more complex

implementation becomes.

For these reasons, customers need to be aware of the

features and limitations that accompany all of these

solutions. For more details on EBRR, take a look at

Introducing Event-Based Revenue Recognition (EBRR) with

SAP S/4HANA (SAP PRESS, 2023; www.sap-press.com/5679).

http://www.sap-press.com/5679

Important Business Add-Ins

Table A.1 provides a list of business add-ins (BAdIs) that are relevant for revenue

accounting and reporting (RAR). While not all of these BAdIs may be necessary in

your project, we’ve provided this list in case any developer may need it.

Enhancement Spot BAdI Description

FARR_IC_SD FARRIC_BADI_ORDER Used to process

sales order

information and

transfer it to

revenue accounting

via its interface

structures. Also,

used to include

nonstandard fields

and modify values

of customer-specific

fields.

FARRIC_BADI_DELIVERY Used to process

delivery and goods

issue information

and transfer it to

RAR’s Adapter

Reuse Layer (ARL).

Also includes and

modifies customer

fields.

FARRIC_BADI_INVOICE Used to process

invoice information

and transfer it to

RAR’s ARL.

Enhancement Spot BAdI Description

FARR_ARL FARR_BADI_CONTRACT_COMBINATION Used to override

the standard

contract

combination logic

and design your

own logic for

contract

combination.

FARR_BADI_RAI0 Used to modify and

validate revenue

accounting items

(RAIs) with the raw

status.

FARR_BADI_RAI2 Used to modify and

validate the content

of RAIs in the raw

status before they

are transferred to

the processable

status.

FARR_BADI_RAI4 Used to modify and

validate the content

of RAIs in the

processable status

before they are

moved to the

processed status.

FARR_COAC_DERIVE_TM_ATTR FARR_BADI_COAC_DERIVE_TM_ATTR Used to apply your

own processing

logic when you

need to derive the

duration of the

performance

obligation (POB) for

capitalized costs.

The implementation

of this BAdI is

optional.

Enhancement Spot BAdI Description

FARR_CHANGE_MODE_DETERMINATION FARR_CHANGE_MODE_DETERMINATION Used to determine

the change type of

contract changes

for POBs. The

change type

includes change of

estimates, contract

modification, and

an attribute change

from the inception

date without price

reallocation.

FARR_DEFERRAL_METHOD FARR_BADI_DEFERRAL_METHOD Used to handle

fulfillment events

that are passed

from the

operational system.

When a fulfillment

event occurs, this

BAdI takes the

event date and

returns the

fulfillment items to

be created.

Implementation of

this BAdI will work

when the fulfillment

type of the

corresponding

deferral item is

“time”.

FARR_ES_POSTING FARR_POSTING_ENHANCEMENT Used to enable

changing the

standard fields

during posting to

financial

accounting.

Enhancement Spot BAdI Description

FARR_DISTRIBUTE_INVOICE FARR_BADI_DISTRIBUTE_INVOICE Used to support

posting contract

asset/contract

liability (CA/CL)

(unbilled receivable

and deferred

revenue).

FARR_DIST_NET_CLCA_AMT_TO_POB FARR_DIST_NET_CLCA_AMT_TO_POB If you’re using a

fixed rate, then this

BAdI distributes

contract CA/CL or

unbilled/deferred

revenue to the POB.

It also checks that

the distributed

values are the same

as the total value.

FARR_CHECK_ES FARR_BADI_CHECK Used to simulate

the operational

document in the

integration

component to

compare records.

Useful in

reconciliation with

RAR.

FARR_BADI_CHECK_RAI_PP_MON Used for application

log profile

enhancement in the

reconciliation report

FARR_CHECK_CONS.

FARR_BADI_CHECK_SELECTION Used to select the

operational

documents in the

integration

component. Useful

in reconciliation

with RAR.

Enhancement Spot BAdI Description

FARR_BADI_CHECK_SYMESSAGE Used for overwriting

of system

messages in the

reconciliation report

FARR_CHECK_CONS.

FARR_TM_REMAINING_PERCENTAGE FARR_BADI_TM_REMAINING_PERC Used to calculate

the remaining

percentage and the

change trend of the

remaining duration

of time-based POBs.

The remaining

percentage and the

remaining duration

change trend are

used when you

perform a contract

modification on a

contract with a

time-based POB.

FARR_COMPOUNG_GROUP_POB_ATTR FARR_BADI_COMPND_GRP_POB_ATTR Used for the

determination of

compound group

POB attributes.

FARR_DTMN_POB_4_DEF_METHD_BADI FARR_BADI_DTMN_POB_DEF_METHOD Used for the

determination of

POBs for the

deferral method to

adjust fulfillment.

FARR_LINKED_POB_ACCT_ASGT FARR_BADI_LINKED_POB_ACCT_ASGT Used to change the

account assignment

of the linked POB.

FARR_LOG_POB_DATA FARR_BADI_LOG_POB_DATA Used to log POB

data.

FARR_POB_CUST_VALIDATION FARR_BADI_POB_CUST_VALIDATION Used for POB

customizing

validation.

Enhancement Spot BAdI Description

FARR_CALC_LIAB_ASSET FARR_BADI_CALC_LIAB_ASSET Used to calculate

liabilities and

assets.

FARR_ENH_SPOT_BIZ_RECON FARR_BADI_BIZ_RECON Used to integrate

third-party sender

components for the

reconciliation of the

operational data

with RAR.

FARR_PRODUCTIVE_CLEANUP FARR_BADI_ PRODUCTIVE_CLEANUP Used in the cleanup

and reverse the

productive data

program of RAR.

ES_FARR_FOUNDATION FARR_ACPR_BUKR_CHECKS Used to define

custom specific

checks for

validating the

status switch for

company code and

accounting principle

validation.

FARR_WORKLIST_SET_REVIEW FARR_BADI_SET_REVIEW_WORKLIST Used to implement

custom logic when

the user clicks

Mark as

Reviewed on a

regular monitoring

worklist.

FARR_DS_CLEAR_DELDEFITM FARR_BADI_CLEAR_DELDEFITM Used to check if

table

FARR_D_DELDEFITEM

should be cleared.

Table A.1 List of BAdIs

The Authors

Sreten Milosavljević has worked as a senior SAP finance

consultant for more than 20 years. Thanks to the perfect

storm of International Financial Reporting Standards (IFRS)

9, IFRS 15, and IFRS 16, since 2016, his primary focus has

been on working with revenue accounting and reporting and

contract lifecycle management. During this time, he gained

experience with most of the industries that are impacted by

the implementation of either IFRS 15 or Accounting

Standards Codification (ASC) 606, including

telecommunications, healthcare, manufacturing, and high-

tech. Sreten is currently involved in solving complex topics

for a variety of customers, especially regarding integration

points between different systems.

Swayam Prabha Shankara has been a technical

consultant for more than 16 years. Over this period, she has

worked with different technologies to apply the latest

approaches. She has been working with revenue accounting

and reporting in the SAP space since 2017, beginning with a

project for a major telecommunications customer that had

complex issues related to data volume and performance.

She has continued working on different revenue accounting

and reporting projects, updating her skills for SAP HANA,

core data services (CDS) views, and system design and

development.

Index

↓A ↓B ↓C ↓D ↓E ↓F ↓G ↓H ↓I ↓J ↓K ↓L ↓M ↓N

 ↓O ↓P ↓R ↓S ↓T ↓U ↓V ↓W

A ⇑

ABAP Dictionary [→ Section 2.3]

ABAP-Managed Database Procedures (AMDPs)

[→ Section 6.4]

ABC programs [→ Section 1.4] [→ Section 6.2]

Acceptance date [→ Section 5.3]

Account assignment [→ Section 5.1] [→ Section 6.1]

Accounting principle [→ Section 5.1] [→ Section 6.1]

[→ Section 8.3]

company codes [→ Section 5.1]

number ranges [→ Section 5.1]

parallel [→ Section 5.1]

Accounting Standards Codification (ASC) 606

[→ Section 1.1]

Actual exchange rate method [→ Section 5.1]

Adapter Reuse Layer (ARL) [→ Section 1.4] [→ Section

2.3] [→ Section 3.1] [→ Section 4.1]

Administration [→ Chapter 7]

Allocation [→ Section 1.2] [→ Section 5.2] [→ Section

5.5] [→ Section 8.2]

effect [→ Section 5.1]

engine [→ Section 5.5]

Allow method [→ Section 4.6]

App Finder [→ Section 6.4]

Append structure [→ Section 2.3]

sets [→ Section 2.3]

Application [→ Section 4.5] [→ Section 4.5] [→ Section

5.2]

assign [→ Section 4.5]

Application log [→ Section 6.2]

Application server instance [→ Section 7.1]

B ⇑

Batch server group [→ Section 7.1]

Bill of materials (BOM) [→ Section 5.2]

Billable amount [→ Section 5.1]

Billing [→ Section 2.2]

indicator [→ Section 9.3]

Business add-in (BAdI) [→ Appendix A]

FARR_BADI_CONTRACT_COMBINATION [→ Section

5.4]

FARR_BADI_DEFERRAL_METHOD_V2 [→ Section

8.2]

FARR_BADI_PRICE_ALLOCATION [→ Section 8.2]

FARR_BADI_RAI0 [→ Section 4.6] [→ Section 5.1]

FARR_BADI_RAI2 [→ Section 4.6] [→ Section 5.1]

[→ Section 7.3]

FARR_BADI_RAI4 [→ Section 4.6]

FARR_EXTENDED_CHECK [→ Section 7.3]

FARR_POSTING_ENHANCEMENT [→ Section 6.1]

FARRIC_BADI_ORDER [→ Section 3.1]

IF_FARR_BADI_DETN_IP_VERSION [→ Section 3.2]

OCM [→ Section 8.2]

signature and implementation [→ Section 4.6]

Business Rules Framework plus (BRFplus) [→ Section

1.4] [→ Section 4.5]

account assignment [→ Section 6.1]

architecture [→ Section 4.5]

expert mode [→ Section 4.5]

OCM [→ Section 8.2]

POB types [→ Section 5.2]

RAR integration [→ Section 4.5]

setup [→ Section 4.5]

transport [→ Section 5.2]

Business support services (BSS) [→ Section 1.3]

C ⇑

Calculation method [→ Section 5.1]

Call-off order [→ Section 5.3]

Capital sales contract [→ Section 1.3]

Child job [→ Section 7.1] [→ Section 7.1]

Classic contract management (CCM) [→ Section 1.4]

[→ Section 2.4] [→ Section 5.1]

contract modifications [→ Section 8.2]

migrate to OCM [→ Section 8.1]

reports [→ Section 6.4]

Classic inbound processing [→ Section 3.2]

CleanUp program [→ Section 7.3]

Client [→ Section 2.1]

Cloud [→ Section 2.1]

Company code check [→ Section 4.6]

Compound structure [→ Section 5.2]

Condition item [→ Section 2.3] [→ Section 4.1]

[→ Section 5.3]

Condition type [→ Section 4.1] [→ Section 5.1]

[→ Section 5.3] [→ Section 6.1]

FX differences [→ Section 5.1]

Conservatism [→ Section 5.1]

Consideration payable to customer [→ Section 1.2]

Consistency check [→ Section 3.2] [→ Section 4.4]

Consistency monitor [→ Section 4.4]

Contract [→ Section 1.2] [→ Section 2.3]

balance report [→ Section 6.4]

contract ID [→ Section 2.3]

currency [→ Section 5.1]

freeze [→ Section 5.4]

identify [→ Section 1.2]

shift [→ Section 6.1]

suspensions [→ Section 8.2]

terminate [→ Section 1.4] [→ Section 5.4]

[→ Section 8.1]

type [→ Section 9.3]

Contract assets/contract liabilities (CA/CL) [→ Section

5.1] [→ Section 5.1] [→ Section 6.1] [→ Section 6.1]

calculation [→ Section 5.1] [→ Section 5.1]

[→ Section 6.2]

CL netting [→ Section 5.1]

contract level [→ Section 5.1]

POB level [→ Section 5.1] [→ Section 5.1]

Contract Balance Reclassification app [→ Section 6.4]

Contract combination [→ Section 1.3] [→ Section 5.4]

automated [→ Section 5.4]

perform [→ Section 5.4]

quick combine [→ Section 5.4]

Contract management [→ Section 5.1]

activate OCM [→ Section 8.2]

select type [→ Section 5.1]

Contract modification [→ Section 5.1] [→ Section 5.4]

[→ Section 5.4]

prospetive versus retrospective [→ Section 5.4]

Contract Search app [→ Section 5.3] [→ Section 5.3]

Contract-by-contract basis [→ Section 1.2]

Control transfer [→ Section 1.2]

Convergent invoicing [→ Section 2.2]

Core data services (CDS) view [→ Section 6.4]

Cost object controlling [→ Section 5.3]

Cost of goods sold (COGS) [→ Section 6.3]

Cost recognition [→ Section 5.1] [→ Section 5.2]

Costing-based profitability analysis [→ Section 6.3]

Cost-plus method [→ Section 1.2]

Credit posting [→ Section 6.1]

Customer [→ Section 1.2]

Customer acceptance clause [→ Section 5.3]

Customer field [→ Section 2.3] [→ Section 3.3]

[→ Section 4.6] [→ Section 4.6] [→ Section 6.1]

select [→ Section 2.3]

Customer invoice fulfillment [→ Section 5.3]

Customer projects [→ Section 9.3]

Customer relationship management (CRM) [→ Section

1.3] [→ Section 2.2]

D ⇑

Data cleanup [→ Section 7.3]

customizing [→ Section 7.3]

Data hub [→ Section 2.2]

Data model [→ Section 2.3]

Data validation [→ Section 7.3] [→ Section 7.3]

check [→ Section 4.4] [→ Section 4.4]

monitor [→ Section 7.3]

Day-based contract modification [→ Section 1.4]

Debit posting [→ Section 6.1]

Debit/credit indicator [→ Section 6.1]

Decision table [→ Section 4.5] [→ Section 4.5]

[→ Section 5.2]

change [→ Section 4.5]

revenue posting [→ Section 6.1]

settings [→ Section 5.2]

simplified GUI [→ Section 4.5]

Deferral category [→ Section 5.3]

Deferral method [→ Section 5.3]

custom [→ Section 5.3]

freeze periods [→ Section 5.4]

Deferral table [→ Section 5.3]

Direct posting [→ Section 2.4]

Disaggregation of revenue [→ Section 6.4]

Disclosure [→ Section 6.4] [→ Section 6.4]

Discount [→ Section 1.2]

Distinction [→ Section 1.2]

Due date [→ Section 5.1]

Dynamic processing flow [→ Section 4.6]

E ⇑

Easy Enhancement Workbench (EEW) [→ Section 2.3]

Enforceability [→ Section 1.2]

Enhancement spot [→ Appendix A]

Enrich method [→ Section 4.6] [→ Section 4.6]

[→ Section 5.1] [→ Section 7.3]

Error category [→ Section 7.3] [→ Section 7.3]

Error resolution [→ Section 4.4]

categories [→ Section 7.3] [→ Section 7.3]

error table [→ Section 7.3]

with Transaction FARR_CONTR_CHECK [→ Section

4.4]

without Transaction FARR_RAI_MON [→ Section 4.4]

Event type [→ Section 5.3] [→ Section 5.3] [→ Section

5.3]

Event-based POB [→ Section 5.3] [→ Section 5.3]

Event-based revenue recognition (EBRR) [→ Section

1.4] [→ Section 9.1] [→ Section 9.1]

comparison [→ Section 9.1]

revenue recognition keys [→ Section 9.4]

Event-Based Revenue Recognition – Sales Order app

[→ Section 9.3]

Exchange rate method [→ Section 5.1]

Exempted item [→ Section 4.2] [→ Section 7.3]

[→ Section 7.4]

Exemption type [→ Section 4.2]

Expression [→ Section 4.5] [→ Section 4.5] [→ Section

5.2] [→ Section 6.1]

Extension [→ Section 2.3]

define [→ Section 3.3]

FARR_RAI_MON [→ Section 4.3]

populate [→ Section 3.3]

Extension include [→ Section 2.3] [→ Section 3.3]

Extract, transform, load (ETL) [→ Section 1.3]

[→ Section 2.2]

F ⇑

Financial accounting [→ Section 6.2]

reconciliation [→ Section 6.4]

Financial document [→ Section 6.2]

analysis [→ Section 6.4]

Fixed exchange rate method [→ Section 5.1]

Fixed-price billing [→ Section 9.3]

Flow control table [→ Section 4.6]

Foreign currency [→ Section 5.1]

Fulfillment event [→ Section 3.1]

Fulfillment item [→ Section 2.3] [→ Section 4.1]

Fulfillment type [→ Section 5.3]

Function [→ Section 4.5]

Function module [→ Section 7.1] [→ Section 7.1]

G ⇑

General ledger account [→ Section 6.4]

General ledger mapping [→ Section 7.2]

Globally unique identifier (GUID) [→ Section 6.1]

Goods delivery [→ Section 5.3]

Goods issue fulfillment [→ Section 5.3]

H ⇑

Header ID [→ Section 2.3] [→ Section 4.1] [→ Section

7.1]

Hierarchy [→ Section 2.3]

I ⇑

Impairment effect [→ Section 5.4]

Implementation class [→ Section 5.1]

Inbound processing [→ Section 3.1] [→ Section 3.2]

usage parameters [→ Section 3.2]

Incoterm [→ Section 1.2] [→ Section 1.3]

Index [→ Section 2.3]

Inflight check [→ Section 4.4] [→ Section 7.3]

Input costs method [→ Section 1.3]

Input method [→ Section 1.2]

Instrument [→ Section 1.3]

Integration [→ Section 2.2]

billing [→ Section 2.2]

CRM [→ Section 2.2]

non-SAP systems [→ Section 2.2]

profitability analysis [→ Section 6.3]

results analysis [→ Section 5.3]

sales and distribution [→ Section 2.2]

Interface component [→ Section 2.3] [→ Section 3.2]

activate [→ Section 3.2]

list [→ Section 3.2]

Interface generation [→ Section 3.2]

International Financial Reporting Standards (IFRS)

[→ Section 1.1]

Five-step model [→ Section 1.2]

IFRS 15 [→ Section 1.1] [→ Section 1.2] [→ Section

1.4] [→ Section 2.1] [→ Section 6.1]

industry impact [→ Section 1.3]

Invoice [→ Section 6.1]

Invoice item [→ Section 2.3] [→ Section 4.1]

Invoice reversal [→ Section 6.1] [→ Section 6.1]

Item category [→ Section 3.1]

J ⇑

Job monitor [→ Section 6.2]

Job server group [→ Section 7.1]

create [→ Section 7.1]

K ⇑

KEYPP field [→ Section 4.1]

L ⇑

Lease contract [→ Section 1.3]

Leasing [→ Section 1.3]

Life sciences [→ Section 1.3]

Logical system [→ Section 2.3] [→ Section 4.1]

Loyalty points [→ Section 1.3]

M ⇑

Main item [→ Section 2.3] [→ Section 4.1]

Main program

child job [→ Section 7.1]

parent program [→ Section 7.1]

Manage Revenue Contracts app [→ Section 6.4]

Manual fulfillment [→ Section 5.3]

Manufacturing [→ Section 1.3]

Margin analysis [→ Section 1.4] [→ Section 6.3]

Market observable price [→ Section 1.2]

Mass process [→ Section 2.3]

Mass transfer [→ Section 2.3]

Matching principle [→ Section 9.2]

Message capturing [→ Section 7.3]

Message class [→ Section 7.3]

Microsoft Excel [→ Section 5.2]

Migration [→ Section 8.1]

activities [→ Section 8.3]

business case [→ Section 8.1]

cleanup [→ Section 8.4]

errors [→ Section 8.3]

perform [→ Section 8.3]

preparation [→ Section 8.2]

Modularization [→ Section 7.1]

Monitor Revenue Contract app [→ Section 6.4]

Month-end closing [→ Section 6.2]

N ⇑

Navigator [→ Section 7.4]

set up [→ Section 7.4]

Noncash consideration [→ Section 1.2]

Number range [→ Section 5.1]

O ⇑

Operational report [→ Section 6.4] [→ Section 6.4]

Operations support systems (OSS) [→ Section 1.3]

Optimized contract management (OCM) [→ Section

1.4] [→ Section 2.4] [→ Section 5.1]

BAdIs [→ Section 8.2]

contract modifications [→ Section 8.2]

migration [→ Section 8.1]

process changes [→ Section 8.2]

reports [→ Section 6.4]

Optimized inbound processing (OIP) [→ Section 1.4]

[→ Section 2.3] [→ Section 2.4] [→ Section 3.2]

activate [→ Section 3.2]

tables [→ Section 3.2]

Order assignment [→ Section 9.3]

Order item [→ Section 2.3] [→ Section 4.1] [→ Section

4.1]

process [→ Section 4.1]

Original item [→ Section 4.1]

Output cost method [→ Section 1.3]

Output method [→ Section 1.2]

Over time revenue recognition [→ Section 1.2]

[→ Section 1.3] [→ Section 5.3]

calculation [→ Section 5.3]

P ⇑

Package size [→ Section 7.1]

Packaging [→ Section 7.1]

Parallel accounting principle [→ Section 5.1]

Parallel buffering [→ Section 6.1]

Parallel processing [→ Section 7.1]

Parallel processing framework (PPF) [→ Section 2.4]

[→ Section 4.1] [→ Section 7.1]

custom [→ Section 7.1]

function module [→ Section 7.1]

packaging [→ Section 7.1]

program execution [→ Section 7.1]

selection screen [→ Section 7.1]

standard [→ Section 7.1]

Parent program [→ Section 7.1]

processing [→ Section 7.1]

Percentage of completion (POC) [→ Section 1.2]

[→ Section 1.3] [→ Section 5.3]

event [→ Section 5.3]

Perform [→ Section 7.1]

Performance [→ Section 6.1] [→ Section 7.1] [→ Section

7.1]

Performance obligation (POB) [→ Section 1.2]

[→ Section 1.3] [→ Section 5.2]

allocation data [→ Section 5.2]

BRFplus [→ Section 5.2]

compound [→ Section 5.2]

create time-based POB [→ Section 5.3]

define types [→ Section 5.2]

fulfillment data [→ Section 5.2]

fulfillment type [→ Section 5.3]

manage [→ Section 5.3]

POB ID [→ Section 2.3]

posting categories [→ Section 6.1]

remaining [→ Section 6.4]

table FARR_D_DEFITEM [→ Section 5.3]

time based [→ Section 1.4]

Periodic service billing [→ Section 9.3]

Perpetual contract [→ Section 1.3]

Point-in-time revenue recognition [→ Section 1.2]

[→ Section 5.3]

Portfolio approach [→ Section 1.2]

Posting [→ Section 6.1] [→ Section 7.2]

ABC programs [→ Section 6.2]

account assignment [→ Section 6.1]

categories [→ Section 6.1] [→ Section 6.1]

custom [→ Section 7.2]

extend program [→ Section 7.2]

GUID [→ Section 6.1]

keys [→ Section 6.1] [→ Section 6.1] [→ Section

6.2]

optimization [→ Section 6.1]

run [→ Section 6.2]

settings [→ Section 6.1]

Posting period [→ Section 5.1]

status [→ Section 5.1]

Postpaid contract [→ Section 1.3]

Postponed item [→ Section 3.2] [→ Section 4.2]

Predecessor item [→ Section 3.2] [→ Section 4.1]

process [→ Section 4.1]

Prepaid contract [→ Section 1.3]

Presentation method [→ Section 5.1]

calculations [→ Section 5.1]

Price allocation [→ Section 5.5]

Proactive measure [→ Section 4.4]

Probability [→ Section 1.2]

Processable item [→ Section 2.3] [→ Section 4.1]

custom [→ Section 4.6]

exempt [→ Section 7.4]

Processed item [→ Section 2.3]

custom [→ Section 4.6]

Processing block [→ Section 7.1]

Processing method [→ Section 4.1]

Profitability analysis [→ Section 6.3]

Program enhancement [→ Section 3.2]

Project System [→ Section 9.3]

Proof of delivery [→ Section 3.1]

fulfillment [→ Section 5.3]

Prospective change [→ Section 5.4]

R ⇑

Raw item [→ Section 2.3] [→ Section 4.1]

cleanup [→ Section 7.3]

custom [→ Section 4.6]

exempt [→ Section 7.4]

Reactive measure [→ Section 4.4]

Reagent [→ Section 1.3] [→ Section 5.1]

Receivable adjustment [→ Section 6.1]

Reclassification [→ Section 7.2]

Reconciliation [→ Section 3.1] [→ Section 6.2]

[→ Section 6.4]

reports [→ Section 6.4] [→ Section 6.4]

Reconciliation key [→ Section 5.3] [→ Section 6.1]

[→ Section 6.2] [→ Section 7.2]

custom [→ Section 7.2]

number [→ Section 6.1]

Reference key [→ Section 6.2]

Relationship [→ Section 2.3]

Remote function call (RFC) [→ Section 1.4]

Reporting [→ Section 6.1] [→ Section 6.4]

AMDP [→ Section 6.4]

CCM versus OCM [→ Section 6.4]

CDS views [→ Section 6.4]

disclosures [→ Section 6.4]

operational reports [→ Section 6.4]

staging tables [→ Section 6.4]

Residual approach [→ Section 1.2] [→ Section 5.2]

Restoration reason [→ Section 4.2]

Results analysis [→ Section 5.3] [→ Section 9.1]

calculations [→ Section 5.3]

comparison [→ Section 9.1]

keys [→ Section 5.3]

methods [→ Section 5.3]

Retrospective change [→ Section 5.4]

Return order item [→ Section 3.2]

Revenue [→ Section 1.1]

categories [→ Section 6.1]

Revenue accounting and reporting (RAR) [→ Section

1.1] [→ Section 1.4] [→ Section 2.1] [→ Section 2.4]

[→ Section 9.1]

add-on [→ Section 2.1]

architecture [→ Section 1.4]

closing [→ Section 6.2]

comparison [→ Section 9.1]

data model [→ Section 2.3]

data sources [→ Section 2.3]

integration [→ Section 2.2] [→ Section 3.1]

landscape [→ Section 2.1]

mark as relevant [→ Section 3.1]

posting [→ Section 6.1]

reconciliation [→ Section 6.2]

sidecar approach [→ Section 2.1]

tables [→ Section 2.3]

versions [→ Section 1.4] [→ Section 8.1]

Revenue accounting item (RAI) [→ Section 1.4]

[→ Section 2.3] [→ Section 4.1]

automatic processing [→ Section 4.1]

batch processing [→ Section 1.4]

change [→ Section 4.2]

custom [→ Section 4.6]

customize content [→ Section 4.6]

error resolution [→ Section 4.4]

error status [→ Section 4.1]

exempt [→ Section 4.2] [→ Section 7.4]

extend monitor [→ Section 4.3]

manage [→ Section 4.2]

manual processing [→ Section 4.1]

mass creation [→ Section 7.4]

mass processing [→ Section 4.1]

modifiable fields [→ Section 2.3] [→ Section 4.2]

monitor [→ Section 2.3]

postponed [→ Section 3.2]

predecessors [→ Section 4.1]

process [→ Section 2.3] [→ Section 3.2] [→ Section

4.1] [→ Section 4.1]

restore [→ Section 7.4]

status [→ Section 2.3] [→ Section 2.3] [→ Section

2.3] [→ Section 3.2] [→ Section 4.1]

tables [→ Section 2.3]

timestamps [→ Section 4.1]

transfer [→ Section 2.3] [→ Section 2.3] [→ Section

7.4]

Revenue accounting item (RAI) class [→ Section 2.3]

[→ Section 2.3]

activate [→ Section 2.3]

activate interfaces [→ Section 3.2]

configuration [→ Section 3.2]

custom fields [→ Section 2.3]

extend [→ Section 3.3]

generate interfaces [→ Section 2.3]

maintain [→ Section 2.3]

OIP [→ Section 3.2]

type [→ Section 2.3] [→ Section 3.2]

Revenue amount [→ Section 5.3] [→ Section 6.1]

Revenue Contract Search app [→ Section 6.4]

Revenue Explanation app [→ Section 6.4]

Revenue forecast [→ Section 5.3]

Revenue posting [→ Section 6.1] [→ Section 7.2]

ABC programs [→ Section 6.2]

account assignment [→ Section 6.1]

categories [→ Section 6.1]

custom [→ Section 7.2]

customize [→ Section 6.1]

extend program [→ Section 7.2]

keys [→ Section 6.1]

run [→ Section 6.2] [→ Section 6.2]

settings [→ Section 6.1]

Revenue recognition [→ Section 1.2] [→ Section 1.4]

calculation [→ Section 6.1]

choosing your tool [→ Section 2.4]

data model [→ Section 2.3]

design your landscape [→ Section 2.1]

reporting [→ Section 6.1] [→ Section 6.4]

Revenue schedule [→ Section 5.3]

Revenue Schedule app [→ Section 6.4]

Revenue transfer [→ Section 6.1]

Revenue Transfer program [→ Section 5.1]

Rule set [→ Section 4.5]

Run ID [→ Section 5.1]

S ⇑

Sales and distribution [→ Section 2.2] [→ Section 3.1]

Sales document type [→ Section 3.1]

SAP Billing and Revenue Innovation Management

[→ Section 2.2] [→ Section 3.2] [→ Section 6.4]

SAP Business Client [→ Section 6.4]

SAP Convergent Charging [→ Section 2.2]

SAP Convergent Mediation by DigitalRoute [→ Section

2.2]

SAP Customer Financial Management [→ Section 2.2]

SAP Customer Relationship Management (SAP CRM)

[→ Section 2.2]

SAP ERP [→ Section 1.4] [→ Section 2.4]

SAP Fiori app [→ Section 6.4]

CCM versus OCM [→ Section 6.4]

SAP Fiori launchpad [→ Section 6.4]

SAP HANA [→ Section 6.4]

SAP Revenue Accounting and Reporting [→ Section 1.4]

SAP S/4HANA [→ Section 1.4] [→ Section 2.4]

releases [→ Section 8.1]

SAP S/4HANA Cloud, public edition [→ Section 9.1]

SAP S/4HANA Service [→ Section 2.2]

SAP Subscription Billing [→ Section 2.2]

Selection screen [→ Section 7.1] [→ Section 7.3]

main program [→ Section 7.1]

Sell-from-stock scenario [→ Section 9.2]

Sender component [→ Section 2.3]

assign source item type [→ Section 2.3]

enable integration [→ Section 3.1]

Sequence [→ Section 2.3]

Server group [→ Section 7.1]

Significant financing component [→ Section 1.2]

Simulation mode [→ Section 7.3]

Singleton class [→ Section 4.6]

attributes [→ Section 4.6]

create [→ Section 4.6]

methods [→ Section 4.6]

Source item type [→ Section 2.3]

Staging table [→ Section 6.4]

Standalone selling price (SSP) [→ Section 1.2]

[→ Section 1.3] [→ Section 5.2] [→ Section 5.3]

BRFplus [→ Section 4.5]

change [→ Section 4.1]

determine [→ Section 1.2]

tolerance [→ Section 5.2]

Standard class [→ Section 4.6]

Start date type [→ Section 5.3]

Static class [→ Section 4.6]

Structure [→ Section 2.3]

Subscription order management [→ Section 2.2]

Suspension period [→ Section 8.2]

Switch method [→ Section 4.6]

System landscape [→ Section 2.1]

RAR [→ Section 2.1]

regional split [→ Section 2.1]

T ⇑

Table [→ Section 2.3]

/1RA [→ Section 1.4] [→ Section 2.3]

add index [→ Section 2.3]

BRFplus [→ Section 4.5]

conversion [→ Section 2.3]

custom [→ Section 2.3]

display structure [→ Section 2.3]

DT_PROCESS_BOM [→ Section 5.2]

DT_PROCESS_COMPOUND [→ Section 5.2]

DT_PROCESS_POB_ADD [→ Section 5.2]

DT_PROCESS_SSP [→ Section 5.2]

FARR_ACCT_DETERMINE_DT_ASST_IM [→ Section

5.4]

FARR_D_CONS [→ Section 4.4] [→ Section 7.3]

FARR_D_CONTRACT [→ Section 8.4]

FARR_D_DEFITEM [→ Section 5.3] [→ Section 5.3]

[→ Section 6.1]

FARR_D_FULFILLMNT [→ Section 5.3]

FARR_D_MAPPING [→ Section 5.1]

FARR_D_POB [→ Section 1.4] [→ Section 5.2]

FARR_D_POSTING [→ Section 5.1] [→ Section 6.1]

[→ Section 6.1] [→ Section 6.1] [→ Section 6.1]

[→ Section 6.1] [→ Section 6.1] [→ Section 7.2]

FARR_D_RECON_KEY [→ Section 6.1] [→ Section

6.1] [→ Section 6.2] [→ Section 7.2]

FARR_RAI_MON [→ Section 5.3]

OIP [→ Section 3.2]

populate custom [→ Section 7.2]

staging [→ Section 6.4]

standard [→ Section 2.3]

temporary [→ Section 2.3]

ZFARR_D [→ Section 7.2]

ZTRANSFER_MSG [→ Section 7.3]

Table maintenance generator [→ Section 4.6]

Telecommunications [→ Section 1.3] [→ Section 6.2]

Termination fee [→ Section 5.4]

Time and material billing [→ Section 9.3]

Time value of money [→ Section 1.3]

Time-based POB [→ Section 5.3] [→ Section 5.3]

[→ Section 6.1]

settings [→ Section 5.3]

Transaction

BRFPLUS [→ Section 4.5] [→ Section 5.2]

FARR_CCM_OCM_MIG_CON [→ Section 8.3]

FARR_CONTR_CHECK [→ Section 4.4] [→ Section

7.3] [→ Section 8.4]

FARR_CONTR_MON [→ Section 4.4] [→ Section 7.3]

FARR_CONTRACT_LIABILITY [→ Section 6.2]

[→ Section 6.2]

FARR_D_POSTING [→ Section 6.1]

FARR_IMG [→ Section 2.3] [→ Section 2.3]

[→ Section 2.3] [→ Section 3.2] [→ Section 4.5]

[→ Section 5.1] [→ Section 5.1] [→ Section 6.1]

FARR_LIABILITY_CALC [→ Section 2.4]

FARR_PERIOD_IN_CLOSING [→ Section 5.1]

FARR_RAI_CONF [→ Section 3.2] [→ Section 3.3]

FARR_RAI_MON [→ Section 1.4] [→ Section 2.3]

[→ Section 2.3] [→ Section 3.2] [→ Section 4.1]

[→ Section 4.1] [→ Section 4.3] [→ Section 5.3]

[→ Section 6.1]

FARR_RAI_PROC [→ Section 2.3] [→ Section 4.1]

FARR_RAI_TRANS [→ Section 2.3] [→ Section 4.1]

[→ Section 7.3] [→ Section 7.4]

FARR_REPR_PPRAI [→ Section 3.2]

FARR_REV_TRANSFER [→ Section 2.4] [→ Section

6.2] [→ Section 6.2]

FARR_REVENUE_POSTINGS [→ Section 6.2]

[→ Section 6.2]

FB03 [→ Section 6.2]

OB22 [→ Section 5.1]

OKG3 [→ Section 5.3]

SE11 [→ Section 2.3] [→ Section 4.2] [→ Section

4.6] [→ Section 6.4] [→ Section 7.2] [→ Section 7.3]

SE14 [→ Section 2.3]

SE16 [→ Section 5.1]

SE16N [→ Section 4.4]

SE17 [→ Section 2.3]

SE18 [→ Section 3.1] [→ Section 3.2] [→ Section

4.6] [→ Section 5.1] [→ Section 5.4] [→ Section 5.4]

[→ Section 7.3]

SE24 [→ Section 4.6] [→ Section 4.6] [→ Section

7.4] [→ Section 7.4]

SE37 [→ Section 7.4]

SE38 [→ Section 6.4] [→ Section 7.3] [→ Section

7.4]

SE91 [→ Section 7.3]

SHDB [→ Section 2.4]

SHDB PFW [→ Section 2.4]

SLG1 [→ Section 4.1] [→ Section 4.4] [→ Section

6.2] [→ Section 6.2] [→ Section 7.3]

SM30 [→ Section 4.6] [→ Section 5.3]

SM36 [→ Section 7.1]

SM37 [→ Section 6.2] [→ Section 6.4]

SM61 [→ Section 7.1]

SNRO [→ Section 6.1]

SOAMANAGER [→ Section 5.4]

SPRO [→ Section 3.1]

VF44 [→ Section 2.2] [→ Section 2.4]

VLPOD [→ Section 5.3]

ZRAR_NAVIGATE [→ Section 7.4]

Transactional price [→ Section 1.2] [→ Section 1.3]

[→ Section 5.3]

allocation [→ Section 1.2]

Transfer Revenue program [→ Section 5.1] [→ Section

6.1] [→ Section 6.1] [→ Section 6.2] [→ Section 6.2]

Transport [→ Section 2.3]

request [→ Section 2.3]

Troubleshooting [→ Section 7.1]

Type [→ Section 2.3]

U ⇑

Unbilled receivable/deferred revenue (UR/DR)

[→ Section 5.1]

calculation [→ Section 5.1]

Unconditionality [→ Section 5.1]

Upload rule [→ Section 3.2]

V ⇑

Variable consideration [→ Section 1.2] [→ Section 1.2]

[→ Section 1.3]

W ⇑

Weighted average rate [→ Section 5.1]

Work breakdown structure (WBS) element [→ Section

9.3]

Service Pages

The following sections contain notes on how you can contact

us. In addition, you are provided with further

recommendations on the customization of the screen layout

for your e-book.

Praise and Criticism

We hope that you enjoyed reading this book. If it met your

expectations, please do recommend it. If you think there is

room for improvement, please get in touch with the editor of

the book: Megan Fuerst. We welcome every suggestion for

improvement but, of course, also any praise! You can also

share your reading experience via Twitter, Facebook, or

email.

Supplements

If there are supplements available (sample code, exercise

materials, lists, and so on), they will be provided in your

online library and on the web catalog page for this book. You

can directly navigate to this page using the following link:

https://www.sap-press.com/5700. Should we learn about

typos that alter the meaning or content errors, we will

provide a list with corrections there, too.

mailto:meganf@rheinwerk-publishing.com
https://www.sap-press.com/5700

Technical Issues

If you experience technical issues with your e-book or e-

book account at SAP PRESS, please feel free to contact our

reader service: support@rheinwerk-publishing.com.

Please note, however, that issues regarding the screen

presentation of the book content are usually not caused by

errors in the e-book document. Because nearly every

reading device (computer, tablet, smartphone, e-book

reader) interprets the EPUB or Mobi file format differently, it

is unfortunately impossible to set up the e-book document

in such a way that meets the requirements of all use cases.

In addition, not all reading devices provide the same text

presentation functions and not all functions work properly.

Finally, you as the user also define with your settings how

the book content is displayed on the screen.

The EPUB format, as currently provided and handled by the

device manufacturers, is actually primarily suitable for the

display of mere text documents, such as novels. Difficulties

arise as soon as technical text contains figures, tables,

footnotes, marginal notes, or programming code. For more

information, please refer to the section Notes on the Screen

Presentation and the following section.

Should none of the recommended settings satisfy your

layout requirements, we recommend that you use the PDF

version of the book, which is available for download in your

online library.

mailto:support@rheinwerk-publishing.com

Recommendations for Screen

Presentation and Navigation

We recommend using a sans-serif font, such as Arial or

Seravek, and a low font size of approx. 30–40% in portrait

format and 20–30% in landscape format. The background

shouldn’t be too bright.

Make use of the hyphenation option. If it doesn't work

properly, align the text to the left margin. Otherwise, justify

the text.

To perform searches in the e-book, the index of the book

will reliably guide you to the really relevant pages of the

book. If the index doesn't help, you can use the search

function of your reading device.

Since it is available as a double-page spread in landscape

format, the table of contents we’ve included probably

gives a better overview of the content and the structure of

the book than the corresponding function of your reading

device. To enable you to easily open the table of contents

anytime, it has been included as a separate entry in the

device-generated table of contents.

If you want to zoom in on a figure, tap the respective

figure once. By tapping once again, you return to the

previous screen. If you tap twice (on the iPad), the figure is

displayed in the original size and then has to be zoomed in

to the desired size. If you tap once, the figure is directly

zoomed in and displayed with a higher resolution.

For books that contain programming code, please note

that the code lines may be wrapped incorrectly or displayed

incompletely as of a certain font size. In case of doubt,

please reduce the font size.

About Us and Our Program

The website https://www.sap-press.com provides detailed

and first-hand information on our current publishing

program. Here, you can also easily order all of our books

and e-books. Information on Rheinwerk Publishing Inc. and

additional contact options can also be found at

https://www.sap-press.com.

https://www.sap-press.com/
https://www.sap-press.com/

Legal Notes

This section contains the detailed and legally binding usage

conditions for this e-book.

Copyright Note

This publication is protected by copyright in its entirety. All

usage and exploitation rights are reserved by the author

and Rheinwerk Publishing; in particular the right of

reproduction and the right of distribution, be it in printed or

electronic form.

© 2024 by Rheinwerk Publishing Inc., Boston (MA)

Your Rights as a User

You are entitled to use this e-book for personal purposes

only. In particular, you may print the e-book for personal use

or copy it as long as you store this copy on a device that is

solely and personally used by yourself. You are not entitled

to any other usage or exploitation.

In particular, it is not permitted to forward electronic or

printed copies to third parties. Furthermore, it is not

permitted to distribute the e-book on the internet, in

intranets, or in any other way or make it available to third

parties. Any public exhibition, other publication, or any

reproduction of the e-book beyond personal use are

expressly prohibited. The aforementioned does not only

apply to the e-book in its entirety but also to parts thereof

(e.g., charts, pictures, tables, sections of text).

Copyright notes, brands, and other legal reservations as

well as the digital watermark may not be removed from the

e-book.

Digital Watermark

This e-book copy contains a digital watermark, a

signature that indicates which person may use this copy.

If you, dear reader, are not this person, you are violating the

copyright. So please refrain from using this e-book and

inform us about this violation. A brief email to

info@rheinwerk-publishing.com is sufficient. Thank you!

Trademarks

The common names, trade names, descriptions of goods,

and so on used in this publication may be trademarks

without special identification and subject to legal

regulations as such.

All of the screenshots and graphics reproduced in this book

are subject to copyright © SAP SE, Dietmar-Hopp-Allee 16,

69190 Walldorf, Germany. SAP, ABAP, ASAP, Concur

Hipmunk, Duet, Duet Enterprise, ExpenseIt, SAP

ActiveAttention, SAP Adaptive Server Enterprise, SAP

mailto:info@rheinwerk-publishing.com

Advantage Database Server, SAP ArchiveLink, SAP Ariba,

SAP Business ByDesign, SAP Business Explorer (SAP BEx),

SAP BusinessObjects, SAP BusinessObjects Explorer, SAP

BusinessObjects Web Intelligence, SAP Business One, SAP

Business Workflow, SAP BW/4HANA, SAP C/4HANA, SAP

Concur, SAP Crystal Reports, SAP EarlyWatch, SAP

Fieldglass, SAP Fiori, SAP Global Trade Services (SAP GTS),

SAP GoingLive, SAP HANA, SAP Jam, SAP Leonardo, SAP

Lumira, SAP MaxDB, SAP NetWeaver, SAP PartnerEdge,

SAPPHIRE NOW, SAP PowerBuilder, SAP PowerDesigner, SAP

R/2, SAP R/3, SAP Replication Server, SAP Roambi, SAP

S/4HANA, SAP S/4HANA Cloud, SAP SQL Anywhere, SAP

Strategic Enterprise Management (SAP SEM), SAP

SuccessFactors, SAP Vora, TripIt, and Qualtrics are registered

or unregistered trademarks of SAP SE, Walldorf, Germany.

Limitation of Liability

Regardless of the care that has been taken in creating texts,

figures, and programs, neither the publisher nor the author,

editor, or translator assume any legal responsibility or any

liability for possible errors and their consequences.

The Document Archive

The Document Archive contains all figures, tables, and

footnotes, if any, for your convenience.

Figure 1.1 Five-Step Model of Revenue Recognition

Figure 1.2 Industry Impact of the IFRS 15

Implementation

Figure 1.3 Landscape of Business Support

Systems in the Telco Industry

Figure 1.4 Example of a Simple Telco Contract

Figure 1.5 Example of an Expanded Telco Contract

Figure 1.6 Process in the Diagnostics Industry

Figure 1.7 Different Margins in the Regions

Figure 1.8 Process of Lease Sales of an Instrument

Figure 1.9 RAR Architecture

Figure 2.1 Standard SAP Landscape

Figure 2.2 Landscape with Regional Split

Figure 2.3 Landscape with the Revenue

Accounting Add-On

Figure 2.4 Sidecar Approach

Figure 2.5 Transaction VF44 Processes

Figure 2.6 RAR Integrated with Sales and

Distribution

Figure 2.7 SAP CRM Architecture

Figure 2.8 SAP Billing and Revenue Innovation

Management Architecture

Figure 2.9 SAP Billing and Revenue Innovation

Management: Integration Points

Figure 2.10 RAR Landscape with ETL

Figure 2.11 Data from Sources to RAR

Figure 2.12 Sender Components Screen

Figure 2.13 Define Logical Systems

Figure 2.14 Assign Logical Systems

Figure 2.15 Source Item Types for Order,

Fulfillment, and Invoice

Figure 2.16 Assign Source Item Type to Sender

Component

Figure 2.17 Assign Source Item Type to Sender

Component (Cont.)

Figure 2.18 Interface Components

Figure 2.19 Fields Available in Interface

Component BASIC_MI

Figure 2.20 Revenue Accounting Item Class

Screen

Figure 2.21 Screen to Select Interface

Components

Figure 2.22 Navigating to the Field Details of the

Interface Component

Figure 2.23 Custom Order Item Class Creation

Figure 2.24 Select the Interface Component for

YA01

Figure 2.25 Creating an Append Structure for

INCL_EEW_FARR_POB

Figure 2.26 Custom Fields Added to the Append

Structure

Figure 2.27 Structure INCL_EEW_FARR_POB with

Additional Custom Fields

Figure 2.28 Table FARR_D_POB with the New

Additional Custom Fields

Figure 2.29 Structure INCL_EEW_FARR_REP with

Additional Fields

Figure 2.30 Customer Fields for Addition

Figure 2.31 Customer Fields Selected for Class

YA01

Figure 2.32 Class YA01 Activation

Figure 2.33 Generation of Class YA01

Figure 2.34 Raw Items Main Records:

/1RA/0YA010MI

Figure 2.35 Raw Items Condition Records:

/1RA/0YA010CO

Figure 2.36 Transfer Revenue Accounting Items

Figure 2.37 Transaction FARR_RAI_TRANS

Executing in the Background

Figure 2.38 Transaction FARR_RAI_MON for

Transferring of RAIs from Raw to Processable

Figure 2.39 Choosing the RAIs to Transfer in

Transaction FARR_RAI_MON

Figure 2.40 Processable Items Main Records: Table

/1RA/0YA012MI

Figure 2.41 Processable Items Condition Records:

Table /1RA/0YA012CO

Figure 2.42 Process RAIs

Figure 2.43 Processed Items Main Records: Table

/1RA/0YA014MI

Figure 2.44 Processed Items Condition Records:

Table /1RA/0YA014CO

Figure 2.45 Creating Indexes on RAI Tables

Figure 2.46 Creating the Index

Figure 2.47 Display Table Structure

Figure 2.48 Display Table Structure

Figure 2.49 Custom Fields Missing in the Raw

Table for Main Records

Figure 2.50 Custom Fields Available in the

Processable Status Table for Main Records

Figure 2.51 Hierarchies and Relationships

Figure 2.52 Orders to Invoice Relationship

Figure 2.53 POB_ID to Processed Invoice RAIs

Figure 2.54 Contracts to Processed Invoice RAIs

Figure 2.55 Transaction FARR_RAI_MON Screen for

Selection

Figure 2.56 List of Items Available for Transfer,

Process, Exempt, and Restore in Transaction

FARR_RAI_MON

Figure 2.57 Statistics as in Transaction

FARR_RAI_MON

Figure 2.58 Define Modifiable Fields for Revenue

Accounting Items

Figure 2.59 Modifiable Fields in RAI in Transaction

FARR_RAI_MON

Figure 2.60 Issue Log

Figure 2.61 Transaction SE14 for Deleting QCM

Tables

Figure 2.62 Select Invalid Temporary Tables

Figure 2.63 Temporary Tables Display and

Deletion

Figure 3.1 Enabling Integration between Sales

and Distribution and RAR

Figure 3.2 Integration with Additional Functions

Figure 3.3 Integration between Sales Documents

and RAR

Figure 3.4 Clearing of Relevancy Flag

Figure 3.5 Interface Components

Figure 3.6 Assigned Structures

Figure 3.7 Enhancement of Data Method

Figure 3.8 Steps for Creation of RAI Classes

Figure 3.9 Setup of RAI Classes

Figure 3.10 Interface Component Selection

Figure 3.11 Perform Consistency Check

Figure 3.12 Generation of Interfaces Option

Figure 3.13 Upload Rules

Figure 3.14 Architecture of Optimized Inbound

Processing

Figure 3.15 BAdI IF_FARR_BADI_DETN_IP_VERSION

Figure 3.16 Method DETERMINE_VERSIONS

Figure 3.17 Parameters of Method

DETERMINE_VERSIONS

Figure 3.18 Adding Customer Fields to the RAI

Class

Figure 3.19 Choosing the Custom Fields

Figure 4.1 ARL Design

Figure 4.2 Main and Condition Items in Transaction

FARR_RAI_MON

Figure 4.3 Transaction FARR_RAI_MON: Initial

Screen

Figure 4.4 Error Status Display

Figure 4.5 Technical Criteria for Display

Figure 4.6 Transaction FARR_RAI_MON: Results

Figure 4.7 Transaction FARR_RAI_MON: Error

Figure 4.8 Transaction FARR_RAI_MON: Options

Figure 4.9 Transaction FARR_RAI_MON: Statistics

Display

Figure 4.10 Transaction FARR_RAI_MON:

Processing Results

Figure 4.11 Transaction FARR_RAI_TRANS

Figure 4.12 Transaction FARR_RAI_PROC

Figure 4.13 KEYPP Field Technical Description

Figure 4.14 KEYPP Lock Object

Figure 4.15 Parallel Processing Model

Figure 4.16 Processing Order Items in Transaction

FARR_RAI_MON

Figure 4.17 Contract Created in Transaction

FARR_RAI_MON

Figure 4.18 Changes in FARR_RAI_MON

Figure 4.19 Transaction FARR_RAI_MON:

Conditions

Figure 4.20 Pricing Procedure

Figure 4.21 Condition Items in Transaction

FARR_RAI_MON

Figure 4.22 Changed Condition Type during

Invoicing

Figure 4.23 Transaction FARR_RAI_MON with Order

Number

Figure 4.24 Results for Items with Predecessors

Figure 4.25 Error for Invoice Processing and POB

Determination

Figure 4.26 Invoice Error Due to an Unprocessed

Order RAI

Figure 4.27 Changeable Fields for RAIs

Figure 4.28 Change Option in Transaction

FARR_RAI_MON

Figure 4.29 Exempted Items Table Structure

Figure 4.30 Exemption Items Fields

Figure 4.31 Defining the Exemption Reason

Figure 4.32 Exemption in Transaction

FARR_RAI_MON

Figure 4.33 Selecting the Exempt Reason

Figure 4.34 Exempted Items in Transaction

FARR_RAI_MON

Figure 4.35 Exempted Items List in Transaction

FARR_RAI_MON

Figure 4.36 Further Selections in Transaction

FARR_RAI_MON

Figure 4.37 Data Selection for Further Options

Figure 4.38 Statuses While Processing RAIs

Figure 4.39 Errors in Transaction FARR_RAI_MON

Figure 4.40 Details of Error in Transaction

FARR_RAI_MON

Figure 4.41 Inflight Error Logic

Figure 4.42 Transaction FARR_CONTR_CHECK

Figure 4.43 Transaction FARR_CONTR_MON

Figure 4.44 Error Monitor Results

Figure 4.45 Errors Found While Processing

Consistency Check

Figure 4.46 Errors in Processable Table

Figure 4.47 Transaction SLG1

Figure 4.48 List of Errors in Transaction SLG1

Figure 4.49 BRFplus Architecture

Figure 4.50 Transaction BRFPLUS

Figure 4.51 BRFplus Application Selection

Figure 4.52 Posting Application Assignment

Figure 4.53 Assignment of BRFplus Applications to

the Simplified GUI

Figure 4.54 Simplified GUI

Figure 4.55 RAI Structure

Figure 4.56 Enhancement Spot FARR_ARL

Figure 4.57 BAdI Definition of FARR_ARL

Figure 4.58 FARR_BADI_RAI0 Triggered during RAI

Creation

Figure 4.59 Methods in Interface

IF_FARR_BADI_RAI0

Figure 4.60 FARR_BADI_RAI0: ENRICH Method

Figure 4.61 BAdI FARR_BADI_RAI0:

CHECK_BEFORE_SAVE Method

Figure 4.62 BAdI FARR_BADI_RAI2: Triggered

during RAI Transfer

Figure 4.63 BAdI FARR_BADI_RAI2: ENRICH Method

Figure 4.64 BAdI FARR_BADI_RAI2:

CHECK_BEFORE_SAVE Method

Figure 4.65 BAdI FARR_BADI_RAI4: Triggered

during the RAI Process

Figure 4.66 Interface IF_FARR_BADI_RAI4 Methods

Figure 4.67 EXCLUDE_COMPANY_CODES Method

Figure 4.68 EXCLUDE_RAIS_AT_PROC_START

Method

Figure 4.69 MODIFY_PREDOC_DATA Method

Figure 4.70 HANDLE_ASSUMED_INVOICE Method

Figure 4.71 HANDLE_FINAL_DATE_CHANGE

Method

Figure 4.72 Singleton Class in ENRICH:

FARR_BADI_RAI2

Figure 4.73 Creating a Singleton Class

Figure 4.74 Singleton Class

Figure 4.75 Singleton Class Creation

Figure 4.76 Singleton Class Attributes

Figure 4.77 Example of a Constructor of Singleton

Class

Figure 4.78 Singleton Class Instance Method

Figure 4.79 Two Methods of the Sample Singleton

Class

Figure 4.80 Singleton Class

Figure 4.81 Dynamic Flow Determination at

Runtime Based on Company Code

Figure 4.82 Flow Table

Figure 4.83 Flow Table Entries

Figure 4.84 Dynamic Call of Methods

Figure 4.85 Switch Method Entry

Figure 4.86 Dynamic Call of Methods

Figure 5.1 Configuration of Contract Management

Figure 5.2 Selection of Contract Management Type

Figure 5.3 Table FARR_D_CONTRACT with Values

for Optimized Contract Management

Figure 5.4 Setup of Parallel Accounting Principles

Figure 5.5 Multiple Contracts Created for One

Sales Order

Figure 5.6 Recognized Revenue with the CA/CL

Presentation Method

Figure 5.7 Posting of Contract Liability in the

CA/CL Presentation Method

Figure 5.8 BAdI to Be Implemented

Figure 5.9 Implementing Class with Methods to Be

Used

Figure 5.10 Due Date Updated with Posting Date

Figure 5.11 Contract Liability Calculation

Figure 5.12 Contract Asset Calculation

Figure 5.13 Reserved Condition Types

Figure 5.14 Contract with FX Differences

Figure 5.15 CA/CL on the Performance Obligations

Level

Figure 5.16 Posting after Processing of Invoice

RAIs

Figure 5.17 Assignment of Company Codes

Figure 5.18 Setup of Numbering Objects

Figure 5.19 Number Ranges for Contracts and

POBs

Figure 5.20 Contract Categories

Figure 5.21 Periods Management in RAR

Figure 5.22 POB Types Definition Initial Screen

Figure 5.23 POB Types Entering Details

Figure 5.24 Time-Based POB Type

Figure 5.25 BRFplus Assignment of Application

Figure 5.26 BRFplus Initial Screen

Figure 5.27 Expert Mode Selected

Figure 5.28 BRFplus Selection

Figure 5.29 BRFplus Applications

Figure 5.30 BRFplus Decision Table

Figure 5.31 Editing a Decision Table

Figure 5.32 Export to Microsoft Excel from BRFplus

Figure 5.33 Execution of Simulation

Figure 5.34 Results of Simulation

Figure 5.35 Adding a Field to the Structure

Figure 5.36 Table Settings for BRFplus

Figure 5.37 New Field as Selection Criterion

Figure 5.38 Decision Tables Used in Contract and

POB Creation

Figure 5.39 Time-Based POB Settings

Figure 5.40 Deferral Methods Available

Figure 5.41 Start Date Options When Creating

Time-Based POB

Figure 5.42 Billing Plan Dates

Figure 5.43 Revenue in a Contract Based on Time

Figure 5.44 Revenue Schedule

Figure 5.45 Table FARR_D_DEFITEM

Figure 5.46 Deferral Categories

Figure 5.47 Category Descriptions

Figure 5.48 Fulfillment Types

Figure 5.49 Revenue Amount

Figure 5.50 Calculation of REV_AMT_DELTA

Figure 5.51 Event Types for POB Fulfillments

Figure 5.52 Sales and Distribution Process

Figure 5.53 Goods Issue as Fulfillment Event

Figure 5.54 Sales Order Created

Figure 5.55 SDOI RAI Created

Figure 5.56 Condition Types Created

Figure 5.57 Processing of RAIs

Figure 5.58 Contracts Created

Figure 5.59 Details of the Contract

Figure 5.60 Fulfillment Process

Figure 5.61 Contract with Fulfillment

Figure 5.62 Invoice RAI

Figure 5.63 Contract Search after Invoicing

Figure 5.64 Customer Invoice as a Fulfillment

Event

Figure 5.65 Proof of Delivery Process

Figure 5.66 Percentage of Completion Method

Figure 5.67 Revenue Method

Figure 5.68 Maintenance of the Results Analysis

Key

Figure 5.69 Definition of the POB Type

Figure 5.70 Customizing Results Analysis: Version

Relevancy

Figure 5.71 Customizing Results Analysis: Key

Relevancy

Figure 5.72 Setup for Event Type RO

Figure 5.73 Enabling Contract Change

Figure 5.74 RAR Computation after Modification

Figure 5.75 Contract Combination Rules

Figure 5.76 Contract Combination Group Level

Figure 5.77 Combination Rules

Figure 5.78 Selection of Contracts

Figure 5.79 Change Type Selection

Figure 5.80 Selection of POBs for Combination

Figure 5.81 Quick Combine

Figure 5.82 Standard Class for Contract

Combination

Figure 5.83 Combine Contract Method

Figure 5.84 Logic for Contract Combination

Figure 5.85 Method COMBINE_CONTRACT

Figure 5.86 Early Termination Account

Determination

Figure 5.87 Transaction FARR_RAI_MON with

Terminated Items

Figure 5.88 Termination Postings

Figure 5.89 Contract Freeze Process with

Extension

Figure 5.90 Transaction SOAMANAGER for the

Freeze Service

Figure 5.91 Services Available

Figure 5.92 Allocation Results

Figure 6.1 Postings after Invoice Reversal

Figure 6.2 Revenue Transfer Calculation

Figure 6.3 Contract Liability Calculation

Figure 6.4 Setup of Posting Specification

Figure 6.5 Details of the Posting Specification

Figure 6.6 Shifting Reasons

Figure 6.7 Switch on Posting Optimization

Customizing Table

Figure 6.8 Assign Additional Dimensions

Figure 6.9 Include Custom Dimensions

Figure 6.10 Copying FARR_ACC_DETERMINE

Figure 6.11 Posting Application Copied to the

Customer Namespace

Figure 6.12 Available Decision Tables

Figure 6.13 Revenue Adjustment Postings

Figure 6.14 Receivable Adjustment

Figure 6.15 Table FARR_D_POSTING Keys

Figure 6.16 Table FARR_D_RECON_KEY

Relationship

Figure 6.17 Table FARR_D_POSTING Entries

Figure 6.18 Relationship between Table

FARR_D_POSTING and RAR Processes

Figure 6.19 Item in Table FARR_RAI_MON

Figure 6.20 Table FARR_D_RECON_KEY Entries

Figure 6.21 Table FARR_D_DEFITEM Entries

Figure 6.22 Invoice in Table FARR_RAI_MON

Figure 6.23 Table FARR_D_POSTING after Invoice

Processing

Figure 6.24 Posting Explanation after Invoice

Processing

Figure 6.25 Result of the Revenue Transfer

Figure 6.26 Postings after Revenue Transfer

Figure 6.27 Table FARR_D_POSTING after Running

of Liability Calculation Program

Figure 6.28 Postings after Contract Liability

Figure 6.29 Table FARR_D_RECON_KEY after

Liability Calculation

Figure 6.30 Closing Process with RAR

Figure 6.31 Revenue Transfer Options

Figure 6.32 Revenue Transfer Completed

Figure 6.33 Liability Calculation Job

Figure 6.34 Liability Calculation Being Scheduled

Figure 6.35 Job Details Display

Figure 6.36 Application Log in Liability Calculation

Figure 6.37 Program C Initial Screen

Figure 6.38 Running Posting in Test Mode

Figure 6.39 Error Message Due to a Closed Period

Figure 6.40 Posting Document Coming from RAR

Figure 6.41 Posting Key in FARR_D_RECON_KEY

Figure 6.42 Reconciliation App Results

Figure 6.43 Profitability Analysis Basic Setup

Figure 6.44 RAR: Profitability Analysis Interface

Figure 6.45 RAR Reports in SAP Fiori

Figure 6.46 Initial Screen

Figure 6.47 App Finder

Figure 6.48 Apps Screen with the Search for

“REVENUE”

Figure 6.49 Add App to the New Group

Figure 6.50 Disclosure Reports

Figure 6.51 Disaggregation of Revenue – By

Customer Report

Figure 6.52 Search Revenue Contracts

Figure 6.53 Manage Revenue Contracts

Figure 6.54 Revenue Explanation

Figure 6.55 Financial Postings from RAR

Figure 6.56 Reconciliation Report between

General Ledger and RAR

Figure 6.57 Revenue Schedule Initial Screen with

List of Contracts

Figure 6.58 Revenue Schedule: Display for

Selected Contract

Figure 6.59 Choose the Columns to Be Displayed

or Hidden for Revenue Schedule

Figure 6.60 Flowchart for Reporting with Staging

Tables

Figure 6.61 Sample Selection Screen of

Reconciliation Report

Figure 6.62 Push Buttons to Display the Data and

Fill the Data to the Table

Figure 6.63 Data Stored in the Table by Jobs

Figure 6.64 Job Scheduled to Save Entries in the

Table

Figure 6.65 Message to Inform User That a Job Is

Scheduled to Fill the Table

Figure 6.66 Sample Report Output

Figure 6.67 AMDP Method Declaration

Figure 6.68 Types Declaration in the AMDP Class

Figure 6.69 Method Declaration Sample

Figure 6.70 Implementing the AMDP Method

Figure 6.71 Consuming AMDP in the ABAP

Program

Figure 6.72 Filter in AMDP

Figure 7.1 Parallel Processing Framework

Figure 7.2 Instances Available in a System

Figure 7.3 Job Server Group Illustration

Figure 7.4 Job Server Group: Initial Screen

Figure 7.5 Job Server Group: Create Group

Figure 7.6 Job Server Group: Group Name

Figure 7.7 Job Server Group: Assign an Instance

Figure 7.8 Job Server Group: Added to List

Figure 7.9 Job Server Group: Entry Found

Figure 7.10 Parent and Child Jobs

Figure 7.11 Pseudocode for the Function Module

of Custom PPF

Figure 7.12 Selection Screen for the Example

Figure 7.13 Pseudocode for the Main Program of

the Custom PPF

Figure 7.14 Modularization in ABAP Programs

Figure 7.15 Modularization

Figure 7.16 Package and Commit

Figure 7.17 Class for Reconciliation Key-Related

Methods

Figure 7.18 Creating Table ZFARR_D_POSTING

Figure 7.19 Additional Custom Fields in Table

ZFARR_D_POSTING

Figure 7.20 Creating Table ZFARR_D_RECONKEY

Figure 7.21 General Ledger Mapping Table

Structure

Figure 7.22 Flow Diagram for the Reclassification

Program

Figure 7.23 Posting Flow with the Custom Posting

Table

Figure 7.24 Message Class for Inflight Checks

Figure 7.25 Message Class for Inflight Checks

(Cont.)

Figure 7.26 Standard Class

CL_FARR_DATA_EXTENDED_CHECK for Inflight Checks

Figure 7.27 BAdI: FARR_EXTENDED_CHECKS

Figure 7.28 Methods of Class

CL_FARR_DATA_EXTENDED_CHECK

Figure 7.29 Switch On/Off Inflight Checks

Figure 7.30 Method

IF_FARR_DATA_EXTENDED_CHECK~CHECK_CONTRACT

Figure 7.31 Consistency Check Log Table

Figure 7.32 Error Categories for Data Validation

Figure 7.33 Data Validation for Revenue

Accounting Contracts

Figure 7.34 Data Validation Monitor Selection

Screen

Figure 7.35 Error Category Details from the

Consistency Check Monitor

Figure 7.36 CleanUp Program

Figure 7.37 CleanUp Program Steps for Raw RAIs

Figure 7.38 Function Module to Exempt Raw RAIs

Figure 7.39 ENRICH Method Parameters

Figure 7.40 BAdI FARR_BADI_RAI2

Figure 7.41 Error Management Tool

Figure 7.42 Error Management Tool Flowchart

Figure 7.43 Navigator

Figure 7.44 Standard RAR Transaction Codes

Figure 7.45 Class CL_FARR_RAI

Figure 7.46 Methods of Class CL_FARR_RAI,

Figure 7.47 Creating RAIs

Figure 7.48 Transfer Raw RAIs to the Processable

Status

Figure 7.49 Transaction FARR_RAI_MON and the

Exempt Button

Figure 7.50 Exempt Raw Entries from Being

Moved to Processable

Figure 7.51 Exempt Processable Entries from

Being Processed

Figure 7.52 Function Module to Restore Exempted

Raw RAIs

Figure 7.53 Restore Exempted Processable RAIs

Figure 7.54 Class CL_FARR_RAI

Figure 8.1 Current Versions of RAR on SAP ERP

and SAP S/4HANA

Figure 8.2 Contract Management with OCM

Figure 8.3 Customizing in BRFplus

Figure 8.4 Program for Migrating from CCM to

OCM

Figure 8.5 Freeze Periods Entry

Figure 8.6 Run Parameters Setup

Figure 8.7 Validation Errors

Figure 8.8 CO Object Error

Figure 8.9 Fixed Currency Translation Error

Figure 8.10 Errors in Migration of Open

Reconciliation Keys

Figure 8.11 Account Determination Errors

Figure 9.1 Process of Sales Integrated with EBRR

Figure 9.2 EBRR Based on Sell from Stock

Figure 9.3 Example of Different Results Analysis

Keys Available

Figure 9.4 Definition of Billing in WBS Element

Figure 9.5 Assignment of a WBS Element to Sales

Order

Figure 9.6 Project-Related Process for Revenue

Recognition

	Notes on Usage
	Table of Contents
	Preface
	How This Book Is Organized
	Acknowledgments
	Conclusion

	1 Introduction to Revenue Recognition
	1.1 What Is Revenue Recognition?
	1.2 Five-Step Model of IFRS 15
	1.2.1 Step 1: Identify the Contract
	1.2.2 Step 2: Identify Performance Obligations
	1.2.3 Step 3: Determine the Transactional Price
	1.2.4 Step 4: Allocate the Transactional Price
	1.2.5 Step 5: Recognize Revenue

	1.3 Industry Impact
	1.3.1 Telecommunications
	1.3.2 Life Sciences
	1.3.3 Manufacturing

	1.4 Revenue Recognition and SAP
	1.4.1 Revenue Accounting and Reporting
	1.4.2 Event-Based Revenue Recognition

	1.5 Summary

	2 Designing Your Revenue Recognition Landscape
	2.1 The SAP Landscape and Revenue Recognition
	2.1.1 SAP System Landscape
	2.1.2 RAR in the SAP Landscape

	2.2 Integration with Different SAP Components
	2.2.1 Sales and Distribution
	2.2.2 Customer Relationship Management
	2.2.3 Billing
	2.2.4 Non-SAP Systems

	2.3 Revenue Recognition Data Model
	2.3.1 Sender Components
	2.3.2 Structures
	2.3.3 Tables
	2.3.4 Relationships
	2.3.5 Extensions and Transports

	2.4 Choosing Your Revenue Recognition Tool
	2.4.1 RAR with SAP S/4HANA
	2.4.2 RAR with SAP ERP

	2.5 Summary

	3 Configuring Inbound Processing (Classic and Optimized)
	3.1 Setting Up Revenue Accounting Integration
	3.2 Inbound Processing
	3.2.1 RAI Classes in Classic Inbound Processing
	3.2.2 RAI Classes in Optimized Inbound Processing

	3.3 Extending RAI Classes
	3.3.1 Defining Extensions
	3.3.2 Populating Extensions

	3.4 Summary

	4 Revenue Accounting Items
	4.1 Processing Revenue Accounting Items
	4.1.1 Processing Methods
	4.1.2 Parallel Processing Framework
	4.1.3 Processing Order Items
	4.1.4 Processing RAIs with a Predecessor

	4.2 Managing Revenue Accounting Items
	4.2.1 Changing Items
	4.2.2 Exempting Items

	4.3 Extending Transaction FARR_RAI_MON
	4.4 Error Resolution While Creating Revenue Accounting Items
	4.4.1 Proactive and Reactive Measures
	4.4.2 Inflight Errors
	4.4.3 Data Validation Checks
	4.4.4 Resolving Errors without Transaction FARR_RAI_MON

	4.5 Business Rules Framework Plus
	4.5.1 Applications and Structures for RAR Integration
	4.5.2 BRFplus Setup in RAR

	4.6 Creating Custom Revenue Accounting Items
	4.6.1 Custom RAI Structure
	4.6.2 Custom RAI Content
	4.6.3 Singleton Classes
	4.6.4 Dynamic Processing Flow Controlled from Table

	4.7 Summary

	5 Contract Management
	5.1 Setting Up Contract Management
	5.1.1 Optimized versus Classic Contract Management
	5.1.2 Accounting Principles
	5.1.3 Presentation Methods
	5.1.4 Calculation Methods for Local Currency
	5.1.5 Contract Modifications
	5.1.6 Cost Recognition
	5.1.7 Contract Assets and Liabilities
	5.1.8 Assign Company Codes, Number Ranges, and Contract Categories
	5.1.9 Condition Types
	5.1.10 Posting Periods

	5.2 Setting Up Performance Obligations
	5.2.1 Create Performance Obligation Types
	5.2.2 Determine POB Types in BRFplus

	5.3 Managing Performance Obligations and Event Types
	5.3.1 Over Time Revenue Recognition
	5.3.2 Point-in-Time Fulfillments

	5.4 Modifying Contracts
	5.4.1 Prospective or Retrospective
	5.4.2 Contract Combination
	5.4.3 Terminating Contracts
	5.4.4 Contract Freeze

	5.5 Handling Price Allocations
	5.6 Summary

	6 Revenue Posting and Reporting
	6.1 Basics of Reporting and Calculations
	6.1.1 Posting Logic
	6.1.2 Customization for Posting of Revenue
	6.1.3 Table FARR_D_POSTING and Revenue Categories

	6.2 Posting with ABC
	6.2.1 Transfer Revenue
	6.2.2 Calculate Contract Liabilities and Contract Assets
	6.2.3 Revenue Posting Run

	6.3 Integrating with Profitability Analysis
	6.4 Reporting
	6.4.1 SAP Fiori Applications
	6.4.2 New Styles of Reporting and CDS Views

	6.5 Summary

	7 Administration and Troubleshooting
	7.1 Parallel Processing Framework and Performance Issues
	7.1.1 What Is Parallel Processing?
	7.1.2 Application Server Instances
	7.1.3 Job Server Group
	7.1.4 Custom Parallel Processing Framework
	7.1.5 Modularization
	7.1.6 Packaging

	7.2 Reclassification
	7.2.1 Creation and Structure of ZFARR_D Tables
	7.2.2 Populating the Custom Posting Table
	7.2.3 Extending the Standard Posting Program

	7.3 Data Cleanup
	7.3.1 Data Checks
	7.3.2 Customizing
	7.3.3 Business Add-In FARR_BADI_RAI2
	7.3.4 Message Capturing by Simulating

	7.4 Helpful Tips and Tricks
	7.4.1 Navigator
	7.4.2 Additional Information

	7.5 Summary

	8 Migrating to Optimized Contract Management
	8.1 Business Case for Migration
	8.2 Preparation Activities for Migration
	8.2.1 Contract Management Activation
	8.2.2 BRFplus Verification
	8.2.3 Business Add-In Modifications
	8.2.4 Process Changes

	8.3 Performing the Migration
	8.3.1 Migration Activities
	8.3.2 Migration Errors

	8.4 Post-Migration Cleanup
	8.5 Summary

	9 Event-Based Revenue Recognition
	9.1 Solution Background
	9.2 Sell-from-Stock Scenario
	9.3 Sales-Oriented Scenario for Customer Projects
	9.4 Revenue Recognition Keys
	9.5 Summary

	Important Business Add-Ins
	The Authors
	Index
	Service Pages
	Legal Notes

