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Foreword

Computing has evolved from its humble roots in the 1940s, with an initial focus on the fundamentals 
of mathematical problems; to the 60s and 70s, where it was centered on symbolic systems, wherein the 
field first began to confront issues of complexity; to the 80s, with the rise of personal computing and 
the problems of human/computer interaction; then on to the 90s and our present century, addressing 
distributed and connected systems at scale. While these kinds of systems tend to dominate the narrative 
of computing, not every system is a Google, a Facebook, or an X, representing systems with soft edges 
and demanding elastic computing infrastructures at a global scale. There is another class of systems 
important to humanity; systems that touch and interact with the real world. Mind you, these kinds of 
systems have been present since the 40s with the advent of computers such as Whirlwind, but what 
is different is that now we see the intersection of cloud computing and the Internet of Things (IoT), 
with millions upon millions of sensors and actuators interfacing with the physical world.

This book is a comprehensive guide to building, deploying, and evolving software-intensive systems 
for IoT. You will find here solid, pragmatic advice on how to design such systems, how to evaluate 
them, and how to deliver them. Three things in particular delight me about this book: there is a clear 
emphasis on design patterns; broad coverage across problem domains, from manufacturing and 
agriculture to cities and beyond; and coverage of the connection of IoT systems to contemporary 
developments in artificial intelligence.

I found this to be a compelling, well-written, and very approachable book from which I learned some 
new things, and I hope you will too.

Grady Booch

ACM Fellow, IBM Fellow, IEEE Fellow, and IEEE Computing Pioneer
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Preface

The book helps you to apply modern architectural patterns and techniques to achieve scalability, 
resilience, and security in intelligent IoT solutions built for diverse domains such as manufacturing 
and industry, consumer goods, agriculture, and smart city applications.

Who this book is for
This book is for IoT systems and solutions architects, as well as other IoT practitioners such as 
developers, technical program and pre-sales managers, and so on, who are interested in understanding 
how various IoT architectural patterns and techniques can be applied for developing unique and 
diverse IoT applications.

What this book covers
Chapter 1, Introduction to IoT Patterns, provides basic knowledge about IoT concepts that will help 
in understanding the architectural patterns and use cases detailed in subsequent chapters.

Chapter 2, IoT Patterns for Field Devices, lists the architectural patterns that are relevant to field devices, 
including device gateways, digital twins, and device management.

Chapter 3, IoT Patterns for the Central Server, discusses the architectural patterns that are relevant to a 
central server, such as AI/ML integration, rule engines, file upload, and enterprise system integration.

Chapter 4, Pattern Implementation in the Consumer Domain, explores how the patterns covered in 
the previous chapters can be combined to realize use cases (home automation and smart egg boilers) 
in the consumer domain.

Chapter 5, Pattern Implementation in the Smart City Domain, offers insights into how architectural 
patterns can help in realizing use cases in the smart city domain, including smart speakers, condition 
monitoring for perishable goods, driver behavior monitoring, and the automatic replenishment 
of consumables.

Chapter 6, Pattern Implementation in the Retail Domain, explains how the patterns learned in the 
previous chapters can help in realizing use cases (real-time tracking in retail outlets) that are relevant 
to the retail domain. Also, the chapter lists the retail domain-specific concepts that are related to 
IoT solutions.
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Chapter 7, Pattern Implementation in the Manufacturing Domain, starts with the required know-how 
about smart manufacturing and then details the implementation of a use case (the automatic inspection 
of finished goods) using IoT architectural patterns.

Chapter 8, Pattern Implementation in the Agriculture Domain, describes the benefits of integrating 
IoT with the agricultural domain and also provides details about the implementation of a specific use 
case – a land consolidation platform.

Chapter 9, Sensor and Actuator Selection Guidelines, provides details about key concepts related to 
sensors and actuators and outlines the guidelines for selecting the most appropriate sensor or actuator 
depending on the use case requirements and related constraints.

Chapter 10, Analytics in the IoT Context, presents details about how the ingested IoT data can be used 
to generate insights. The chapter focuses on analytics as it relates to IoT implementations.

Chapter 11, Security in the IoT Context, discusses the specific considerations that need to be taken to 
ensure that IoT solutions are completely secure.

Chapter 12, Exploring Synergies with Emerging Technologies, explores the potential of combining IoT 
with other emerging technologies (such as blockchain, generative AI, 3D printing, and AR/VR) to 
create more powerful applications/use cases.

Chapter 13, Epilogue, identifies the practical challenges that are typically encountered while implementing 
IoT solutions as well as specific tips for mitigating those challenges. It also lists the key learnings that 
the author had while working on IoT projects.

To get the most out of this book
Before reading this book, the reader should acquire basic know-how about IoT. Prior knowledge of 
IoT’s fundamental concepts and its application areas is good to have before reading this book but is 
not mandatory.

Image credits
Several images in Chapters 4, 6 to 10, 12, and 13 have been created using assets from freepik.com 
and flaticon.com.

Conventions used
There are a number of text conventions used throughout this book.

Bold: Indicates a new term, an important word, or words that you see onscreen. Here is an example: 
“Devices such as video cameras send the data to a Device Gateway (DG) over protocols such as Wi-Fi.”

http://freepik.com
http://flaticon.com
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Tips or important notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at customercare@
packtpub.com and mention the book title in the subject of your message. You can also contact 
the author on LinkedIn (https://www.linkedin.com/in/jasbir-singh-dhaliwal-
617a193) or via email (jas_singh14@yahoo.com).

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. 
If you have found a mistake in this book, we would be grateful if you would report this to us. Please 
visit www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would 
be grateful if you would provide us with the location address or website name. Please contact us at 
copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you 
are interested in either writing or contributing to a book, please visit authors.packtpub.com.

mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
https://www.linkedin.com/in/jasbir-singh-dhaliwal-617a193
https://www.linkedin.com/in/jasbir-singh-dhaliwal-617a193
mailto:jas_singh14@yahoo.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com
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Share Your Thoughts
Once you’ve read Architectural Patterns and Techniques to Develop IoT Solutions, we’d love to hear 
your thoughts! Please click here to go straight to the Amazon review page for this book and share 
your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering 
excellent quality content.

https://packt.link/r/1803245492
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Part 1:  
Understanding IoT Patterns

Readers will be made aware of the fundamental IoT patterns that they can use when architecting IoT 
solutions. Each chapter will start with details about a pattern, its significance, and the type of scenarios 
under which the pattern would be usable.

This part comprises the following chapters:

•	 Chapter 1, Introduction to IoT Patterns

•	 Chapter 2, IoT Patterns for Field Devices

•	 Chapter 3, IoT Patterns for the Central Server





1
Introduction to IoT Patterns

The Internet of Things (IoT) has gained significant traction in the recent past and this field is poised 
for exponential growth in the coming years. This growth will span all the major domains/industry 
verticals, including consumer, home, manufacturing, health, travel, and transportation. This book 
will provide a novel perspective to those who want to understand the fundamental IoT patterns and 
how these patterns can be mixed and matched to implement unique and diverse IoT applications.

This introductory chapter details the architectural considerations that you must bear in mind while 
designing IoT solutions. Architecting IoT solutions is challenging as there are additional complexities due 
to the physical hardware selection, complex integrations, and connectivity requirements involved. This 
chapter also serves as a foundation for the patterns that will be introduced in the subsequent chapters.

In this chapter, we will cover the following topics:

•	 An overview of IoT

•	 IoT reference architecture

•	 Unique requirements of IoT use cases

•	 Recommended architecture principles and considerations

An overview of IoT
IoT has generated a lot of interest recently and has moved from a purely academic pursuit to the point 
where real use cases are being realized. IoT implementation is inherently complex due to multiple 
and diverse technologies (embedded, cloud, edge, big data, artificial intelligence (AI), machine 
learning (ML), and so on) being involved and due to the range of deployment options that are available 
(constraint devices in the field to the almost unlimited availablity of compute and other resources in 
the cloud). IoT enables diverse use cases and spans multiple domains (home automation, healthcare, 
track-and-trace, connected vehicles, autonomous driving, and more).
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The relevance of IoT is only going to increase in the coming years because of the following reasons:

•	 IoT use cases encompass physical and virtual worlds and as a result, interesting and rich use 
cases can be developed (compared to purely virtual/software systems such as word processors, 
ERP systems, and more). It can be said that the scope and variety of IoT use cases is only limited 
by a person’s imagination.

•	 The immense potential of IoT has been validated by both academics and implementors. This 
can be attributed to the following reasons:

	� The increased capability and efficiency of hardware components with a continous decrease in 
cost (and size) in line with Moore’s law. Efficient battery utilization by the current generation 
of hardware components has also reduced the hassles of frequent battery replacement.

	� The rise of commercial cloud providers (hyperscalers), which enables unlimited scalability 
in terms of compute, storage, complex analytics, high-speed data ingestion, and more. These 
characteristics are very well suited to the needs of IoT applications. The following are some 
of the services that are provided by public cloud providers/hyperscalers and that can be 
leveraged while developing IoT use cases:

	� Device management

	� Firmware updates

	� Edge management/analytics

	� Device/data security

	� Digital twins

	� IoT analytics

	� Data ingestion

	� Data visualizations

	� Data storage

	� Video analytics

	� Notifications

	� Ubiquitous and low-cost connectivity in the form of traditional connectivity options (for 
example, Wi-Fi, 3G, and 4G) as well as connectivity options such as LoRaWAN and NB-IoT. 
Technologies such as NB-IoT are especially useful for IoT as they support long-range 
connectivity and provide long battery life. The advent of 5G has further enlarged the scope 
of IoT use cases by providing high bandwidth and minimal latency.

	� The increased maturity of related technologies such as blockchain, robotics, AI/ML, energy 
harvesting, AR/VR, drones, social media, and more. These technologies enable IoT practitioners 
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to augment IoT capabilities with the capabilities provided by these technologies to push the 
boundaries of innovation further and envisage non-conventional ideas.

	� The increased adoption of mobile and wearable devices. These devices enable anytime access 
to IoT data and help control and monitor IoT devices in real time.

•	 Increased market competition, which forces enterprises to treat data as the fulcrum for decision-
making as well as monetization opportunities. IoT also acts as the foundation for operationalizing 
additional revenue models such as service revenue over and above product sale revenue.

It is important to understand how IoT systems are different from non-IoT systems. A few of the key 
differentiators are as follows:

•	 Humans play a vital role in operating and managing most non-IoT (traditional IT/OT 
systems) systems, whereas IoT systems are designed to operate on their own or with minimal 
human intervention.

•	 IoT devices are constrained in terms of the compute, storage, or both, whereas most non-IoT 
applications are deployed on standard workstations where an ample amount of storage and 
compute is available.

•	 IoT applications, once deployed, are expected to last for years (10 to 15 years is the norm in the 
manufacturing industry) compared to non-IoT applications, where the shelf life is less (typical 
refresh cycles range between 3 to 5 years). Accordingly, IoT systems must be architected by 
balancing both current and long term needs.

•	 Considerable heterogeneity is observed in the selection of the hardware/software components 
as well as connectivity protocols. This is because there are different technologies to choose from, 
and for each technology choice, there are multiple implementations and offerings available 
from vendors. In comparison, there are fewer technology options possible in non-IoT systems.

•	 There are differences in the characteristics of the data that is generated in IoT and non-IoT 
systems. All the seven V’s of big data (velocity, variety, variability, volume, veracity, visualization, 
and value) are high in IoT systems compared to non-IoT systems.

•	 Very few IoT systems operate in isolation and are generally integrated with other enterprise 
systems. In IoT systems, there is a need to integrate Information Technology (IT) and 
Operational Technology (OT), as well as hardware devices. This presents an entirely new level 
of integration complexity that is rarely seen in traditional systems.

•	 Security is important in any connected system, but it becomes much more important in IoT as 
the attacks can result in physical harm (industrial robots gone rogue) in addition to reputation/
financial loss. Additionally, most IoT field devices are installed in vulnerable environments 
where they can easily be tampered with. Therefore, the attack surface in an IoT use case is 
much larger than that of a non-IoT use case.
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These unique characteristics of IoT systems can be visualized in the following diagram:

Figure 1.1 – Unique characteristics of an IoT system

This complexity can be quite daunting to anyone who has just ventured into the IoT domain. Although 
a rich variety of IoT use cases (or solution domains) is possible, there is also a certain degree of 
commonality that is present in most of the IoT use cases and related architectures. We have mentioned 
these similarities so that anyone who is new to this domain can understand the existing architectures 
and use cases.

IoT reference architecture
The IoT reference architecture follows a layered model, as shown in the following diagram:
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Figure 1.2 – Layered IoT reference architecture

Let’s look at these layers in more detail:

•	 Perception/actuation layer: This layer indicates the physical layer where sensors (pressure, 
temperature, and so on) gather information about the environment. In turn, the environment 
is affected by the actuators (electric motor, thermostat control, and so on).

•	 Connectivity layer: This layer provides the connectivity required to send data (perception 
data from sensors and control commands to actuators, and so on) to/from the aggregation/
processing layer. This layer is realized by leveraging connectivity options (5G, Wi-Fi, NB-IoT, 
LoRA, and so on). The decision to choose a specific connectivity option depends on various 
factors such as range and bandwidth.

•	 Processing layer: The processing layer ingests, analyzes, and stores data received from the 
connectivity layer. The processing can be performed either near the data source (edge computing) 
or in a private/public cloud. Data processing and storage elements, such as databases, data 
streaming engines, and AI/ML algorithms, form part of this layer.

•	 Services layer: This layer connects the processing layer to the application layer. Another way of 
looking at this layer is considering it as a set of APIs that can be consumed by the application layer to 
develop IoT applications such as smart homes, precision agriculture, smart manufacturing, and more.

•	 Application layer: This layer represents the applications that are to be used by end users. These 
applications are typically hosted at the edge or in the cloud (central server) and are consumed 
using mobile devices as mobile apps. Alternatively, they can be deployed on a web server and 
accessed using browsers.

The IoT patterns listed in subsequent chapters will align with the IoT reference architecture that we 
just discussed. Additionally, other important IoT topics listed in the latter part of the book (such as 
data analytics and IoT security) will also build upon the understanding of this concept.

The layered reference architecture provides various benefits, such as independent scalability of different 
layers and enhanced maintainability as change is restricted to specific layers. The IoT patterns will 
help you develop the required functionality at the specific layer in less time and in a reproducible 
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fashion. The architectural patterns (detailed in subsequent chapters) that are relevant to the different 
layers of the reference architecture are shown in the following diagram:

Figure 1.3 – IoT patterns realized at different layers of the reference architecture

Next, we will look at the unique requirements that we should be aware of while implementing IoT 
use cases.

Unique requirements of IoT use cases
IoT use cases tend to have very unique requirements concerning power consumption, bandwidth, 
analytics, and more. Additionally, the inherent complexity of IoT implementations (computationally 
challenged field devices on one end of the spectrum vis-à-vis almost infinite capacity of the cloud on 
the other) forces architects to make difficult architectural decisions and implementation choices. The 
diversity of the available implementation technologies and the absence of well-established standards 
are additional challenges that makes architecture decisions difficult.

This book attempts to alleviate some of the challenges associated with architecting IoT use cases 
by identifying the commonalities between the architectures that can support these use cases. It is 
important not to get blindsided by the diversity of the use cases and recognize the fact that diversity 
exists at the superficial level and under the hood. This book intends to bridge this gap in the current 
understanding by demonstrating how the implementation of diverse IoT use cases can be traced back 
to a handful of architectural patterns.
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Before presenting the various IoT patterns, it is worth mentioning the unique expectations from IoT 
architectures that are different from non-IoT architectures:

•	 Sensing events and actuation commands have a wide range of latency expectations – from 
real-time to fire and forget.

•	 Data analysis results need to be reported/visualized/consumed on a variety of consumer devices 
– mobiles, desktops, tablets, and more. Similarly, data consumers have diverse backgrounds, 
data needs, and application roles (personas).

•	 One is often forced to integrate with legacy as well as cutting-edge devices and/or external 
systems – very few trivial use cases have isolated/standalone architectures. There is a considerable 
difference in the way the data is extracted from legacy versus non-legacy systems – legacy systems 
may internally collate the data and then push it to the external port (file transfer), whereas 
newer systems may push the data in a continuous stream (time-series data). This variability is 
one of the critical considerations when choosing a particular IoT architectural pattern.

•	 Varied deployment requirements – edge, on-premise, hybrid, the cloud, and more.

•	 Adherence to strict regulatory compliances, especially in medical and aeronautical domains.

•	 There are expectations considering immediate payback, return on investment (ROI), business 
outcomes, and new service business models.

•	 Continuous innovation, which results in new services or offerings (especially by cloud vendors), 
forcing IoT architectures to be in continuous sync mode with these new offerings or services.

•	 The scarcity of skilled architects who can formulate end-to-end IoT solutions – although people 
with specific skills sets might be available (device architects, connectivity architects, and cloud 
architects); however, there are very few end-to-end IoT architects.

•	 No common standard  for devices, device connectivity, IoT protocols, or the message transport 
layer leads to complex device management.

•	 Typically, IoT stacks don’t operate in isolation and any non-trivial deployed IoT solution 
would need to integrate with other external systems (ERPs, AMDBs, MESs, and so on). Even 
here, there is no standard for how to integrate these systems seamlessly. The external systems 
typically predate IoT deployments by decades and are heavily customized with no consideration 
for integration needs.

•	 From one perspective, IoT implementation is a process automation initiative. In general, the 
process  exists but is performed manually and IoT is expected to automate the process either 
partially or fully. Generally, these existing workflows are not documented and exist as part of 
tribal knowledge of the process practitioners, which poses challenges for IoT architects as they 
don’t have clarity regarding the processes and workflows. Hence, they face a dilemma regarding 
which subprocesses should be automated to maximize their ROI – they have to decide if they are 
content with minor improvements (local optimization) and forgo benefits that can be accrued 
by considering global optimizations.
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•	 Device life cycle management is a challenge in domains such as cardio medical devices as they 
can’t afford downtime but still need a timely firmware update (especially patches related to 
security fixes, which can’t be deferred beyond a certain point).

•	 The need to calibrate field sensors at regular intervals poses a challenge. The rate of drift varies 
from sensor to sensor and from one environment to another. There is a tendency to compensate 
for this drift by applying AI/ML models at the edge or in the cloud, but these steps are far from 
ideal as they lack accuracy and may not fully consider local or ambient conditions.

•	 Use cases that rely on positional information tend to have limited acceptance as all the locational 
sensors (indoor or outdoor) have limited accuracy.

•	 The migration of massive amounts of edge-processed historical data (accumulated over decades) 
to the cloud is another key architectural challenge that is observed in many Machine-to-Machine 
(M2M) to IoT transformation initiatives.

•	 The desired non-functional requirement (NFR) (scalability, availability, security, data residency/
privacy, and so on) values vary from use case to use case and add another layer of complexity.

•	 Consumers of IoT data have diverse backgrounds (for example, the information needs of a 
home automation user would differ widely from an industrial user who wants to monitor plant 
uptime, which, in turn, would be different from the needs of paramedical staff using IoT for 
automated clinical trials), so they have different ways of operating and leveraging IoT systems. 
Although this may seem to have more bearing on device UI design, it can impact the solution 
architecture in subtle ways as well.

In the next section, we will list the architectural principles or considerations that will help you address 
the unique requirements of implementing IoT solutions.

Recommended architecture principles and considerations
Certain principles, which ensure that architectures, once realized, are scalable, modifiable, robust, and 
fault-tolerant are especially relevant for IoT architectures. Let’s take a look at some of these:

•	 Built on open communication protocols to support diverse device communication needs: As 
IoT is an amalgamation of real (hardware) and virtual (software) realms, each of which evolves 
at its own independent pace. Robust IoT architectures should be flexible enough to support 
current and possible future enhancements in both these realms – for example, on the one hand, 
continual advancements are made for connectivity/power capabilities on the device/hardware 
side, while on the other hand, there are central server side advances regarding analytics and 
AI/ML capabilities. Hence, there is an inherent impedance mismatch between real and virtual 
worlds (concerning the rate as well as nature of these enhancements). IoT architects should 
not only be aware of this mismatch but should also incorporate the required considerations to 
support the use case requirements for a longer time frame. These requirements are partially 
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handled by adhering to a layered architecture whereby the components in a specific layer can 
be plugged in or plugged out with minimal impact on the overall architecture.

•	 Designed for “end-to-end” security: Security is an important consideration for any software 
system, especially in cases where data or commands are communicated over public communication 
channels. However, in terms of IoT, security requires deeper consideration, primarily due to 
two reasons:

	� Actions initiated in the real/physical world can’t be rescinded, unlike the actions in the 
virtual/software world: An irrigation pump that is instructed (maliciously) to start pumping 
water in an agriculture field would have pumped considerable water before someone detects 
the anomaly and initiates corrective action. This contrasts with the scenario in the software 
world, where a simple update instruction is sufficient to undo/roll back database changes. 
Scenarios can be even more disastrous in domains such as healthcare, where IoT systems 
often control human life (for example, an oxygen ventilator controlled by an IoT system).

	� The attack vector is considerably broader compared to pure software systems: This is 
because the complete data pipeline (end device > gateway > communication channel > 
central server > application) needs to be secured and each entity in the data pipeline has 
diverse applicable security requirements – end devices (with their inherently constrained 
compute/storage capabilities) can’t support the security rigor that the central server can 
support, so each component’s security vulnerabilities and the relevant security guardrails 
need to be independently analyzed. Similarly, data should be protected in transit as well as 
at rest at all times.

•	 Enterprise integration enabled by the “API-first” approach: Any production-grade IoT 
system will typically be integrated with other external systems to deliver full value. Real-world 
data collated by IoT systems is fed (data push) into external systems to enable richer use cases. 
Similarly, data from the external systems (data pull) is used to enrich the collated data. This type 
of integration is not possible unless the IoT system has been architected with API-first as one 
of the core architectural tenants whereby IoT data can be consumed by enterprise applications. 
These APIs also enable workflows that span both IoT and non-IoT (that is, external systems).

•	 Satisfy diverse data needs: IoT systems are leveraged by a diverse set of users, each with 
different backgrounds and information needs. Accordingly, it is important to capture the raw 
data needs of all the (current and future) stakeholders and to present the data in a way that is 
easily assimilable by a diverse set of stakeholders (personas). Role-based access control (RBAC) 
is one mechanism that shows the required information to stakeholders while at the same time 
obscuring non-relevant information. Also, some of the stakeholders will have real-time data 
needs (operators who want real-time notifications for emergency alarms), whereas others will 
want insights from consolidated data (batch processing). Decoupling data ingestion from data 
processing is one such principle that enables us to accomplish this need. Some of the other data 
collation/manipulation requirements are listed as follows:
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	� Diverse (structured, semi-structured, and unstructured) operational data from sources such 
as Manufacturing Execution Systems (MESs) and Laboratory Information Management 
Systems (LIMSs) should be consolidated in a common data store (data lake) either at the 
edge, the cloud, or both.

	� Separating streaming, batch, and right-time data pipelines for scalability, efficiency, and 
cost optimization considerations. De-coupling data producers from consumers ensures 
a robust architecture as well as the flexibility of technology and implementation choices.

•	 Technology-neutral architecture providing deployment flexibility: IoT systems can be 
deployed in different configurations, such as on-premise, public cloud, private cloud, and/or 
hybrid multi-cloud configurations, depending on the customer’s sensitivity to security as well as 
governance and regulatory needs. Considering this, the architecture should be generic enough 
that it can cater to diverse deployment needs and can be supported by multiple technology 
stacks. This is generally achieved by creating an IoT reference architecture (devoid of specific 
technology choices) and then transitioning to a technical architecture (where generic architectural 
components are replaced by specific technology components).

•	 Design for high availability: Although the need for high availability varies widely from one 
IoT use case to another, some use cases are categorized as mission-critical with almost zero 
downtime expectations, whereas others can accommodate a considerable downtime period. The 
central server architecture should mimic the uptime expectations as typically, less downtime 
translates into higher costs. In the context of IoT, high availability must be considered from an 
overall system perspective. For example, in scenarios where longer central server downtime is 
acceptable, end devices need to have higher data buffering capabilities (that is, greater storage 
space) to minimize data loss.

•	 Support for “unlimited scalability”: IoT deployments start small with a few end devices but 
tend to scale to a large number in a short duration. As a result, generally, in IoT solutions, 
horizontal scalability is preferred over vertical scalability.

•	 Device communication considerations: Data is communicated over a bi-directional 
communication channel between the gateway and central server. This channel can be supported 
by multiple communication technologies (with some of the common ones being cellular, Wi-Fi, 
LoRa, and SigFox). Considerations such as range (physical distance from the central server), 
payload size, battery life, and ambient noise play a role in finalizing the ideal communication 
technology for a particular IoT implementation. Some of the other considerations from the 
device side include the ability to store/buffer data in case of connectivity loss to central server, 
sleep/wakeup logic for conserving battery power, and data aggregation/filtering needs.

The following diagram summarizes the key architectural principles/considerations discussed in 
this section:



Summary 13

Figure 1.4 – Architectural considerations for developing IoT solutions

Summary
This introductory chapter helped you understand the architectural considerations need to be considered 
while developing or deploying IoT solutions. Additionally, the chapter provided contextual knowledge 
that will help you understand the patterns listed in this book. The characteristics that make IoT 
solutions different from other traditional software systems or IT solutions were discussed, along with 
information about the different layers of the IoT reference architecture. In the next two chapters, we 
will dive deep into the IoT architectural patterns.





2
IoT Patterns  

for Field Devices

This chapter lists the key patterns that are relevant to field devices or Things. After reading this chapter, 
you will be able to identify the existence of these patterns in IoT architectures. It provides details 
regarding the scenarios in which the patterns are suitable or applicable, along with the constraints 
that need to be considered. This will help you understand existing IoT architectures with relative ease.

This chapter covers the following three key patterns:

•	 Device gateway (DG): A DG serves as a bridge between field devices (sensors, actuators, and 
so on) and the central server. In a standalone deployment (without the central server), DG 
coordinates actions between local devices (sensors and actuators).

•	 Digital twin (DT): DT is used to maintain a virtual state of the field devices on the central 
server, thereby allowing for remote monitoring and control operations. By performing the 
required processing on the accumulated data, DT makes it possible to predict the future state 
of the field devices. In addition, DT helps to overcome intermittent connectivity isues.

•	 Device management: Device management helps configure, update, and manage the field 
devices and is hosted on the central server.

Let’s look at these patterns in further detail.
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Device gateway
DG is an important pattern as it helps link physical and virtual worlds. The physical world is monitored 
by sensors and actions are initiated by actuators, as per the commands that are sent by a DG. The 
notation that is used for the DG in this book is shown in the following diagram:

Figure 2.1 – Notation for the DG pattern

Important Note
The DG is also referred to as the Field Gateway in the IoT literature.

In addition to its role in enabling edge/local intelligence by hosting a Local Rule Engine (LRE) and 
performing latency-sensitive decisions, DG enables data communication with the central server, 
where more complex decisions (those requiring a global context) must be made. The need for DG 
arises because most sensors/actuators are constrained in terms of compute, memory, storage, or 
power, so they can’t establish connectivity with the central server. A good practical example of DG is 
a smartphone as it connects to multiple devices (for example, headphones, lights over BLE, and so on) 
and sends the data over HTTP/MQTT to the central server. DG is functionally superior to routers as 
it can execute business logic at the edge rather than just routing traffic.

Another perspective is that the DG pattern encapsulates the different protocols or data formats in which 
sensors/actuators typically communicate. As there is no standardization of either the communication 
protocol (BLE, Wi-Fi, ZigBee, OPC UA, and so on) or data format across different sensors/actuators, 
DG fills the role of the protocol translator; it communicates on different communication protocols 
with sensors/actuators on one side and communicates over uniform data or communication protocols 
with the central server on the other, as shown in the following diagram:
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Figure 2.2 – A DG is capable of supporting multiple protocols; a comparison with a smart device

Important Note
DG acts as a connectivity enabler and protocol translator, and provides data-buffering 
capabilities. However, it may not be needed in scenarios where devices are smart enough to 
provide these capabilities.

At the top-right of the preceding diagram, the key functionality of the DG pattern is highlighted. As you 
can see, sensors, actuators, and other devices can interact with DG using a myriad of communication 
technologies/protocols (both wired and wireless, such as Wi-Fi, ZigBee, BACnet, Modbus, Bluetooth/
BLE, RFID, NFC, and more; these are marked as 1 in the diagram). However, the interface between 
DG and the central server is of a single type (the diagram shows the interface as JSON over HTTPS, 
though other interfaces, such as AMQP and MQTT, are also used in the IoT ecosystem; they are marked 
as 2). Another key distinguishing factor between 1 and 2 is that 1 is non-IP-based communication, 
whereas 2 is IP-based communication.

If the devices are smart (they have an adequate amount of compute, memory, and storage and can 
establish connectivity with the central server), DG is not required as the devices themselves are capable 
of connectivity and managing how data is transferred.

In addition to allowing dumb devices to send/receive data to/from the central server and acting as 
a protocol translator, DG provides additional functionalities as described in the following points:

•	 Data aggregation/filtering: In some scenarios, it is not required to send all the data that’s been 
captured by the sensors to the central server (due to bandwidth constraints or the application 
not requiring data to be pushed at a high frequency). In this case, DG will accumulate data 
and send summarized data to the central server (from the past hour, sending data only if it is 
different from when it was read prior, and so on).



IoT Patterns for Field Devices18

•	 Data security at rest and in motion: DG not only ensures that data that is stored locally is secured 
(that is, encrypted) but also that the data sent to the central server is secured by leveraging all 
the best practices related to Authentication, Authorization, and Accounting (AAA).

•	 Support local data access requirements: DG allows you to access data locally (to remove 
dependencies from the central server for critical data access requirements) via APIs. In 
some scenarios, DG also hosts Human Machine Interfaces (HMIs) for visualization and 
reporting purposes.

•	 LRE Support: DG can enable LRE (the LRE pattern will be covered in Chapter 3, IoT Patterns 
for the Central Server), where generated events (for example, from sensors) are observed and 
suitable actions are triggered.

•	 Firmware/configuration upgrades of connected devices: Firmware upgrades for connected 
devices (or for DG itself) are pushed by the central server as needed. Similarly, configuration 
settings (for example, changes in the data capture frequency) are sent by the central server to 
DG. Commands may also to sent to DG for troubleshooting/diagnostics purposes.

•	 Data buffering: In the case of intermittent connectivity with the central server, DG can buffer 
data (depending upon the limit imposed by the available local storage) and send it once 
connectivity has been established, thus avoiding loss of data.

•	 Application middleware for DG-hosted applications: DG exposes APIs to report local analytics 
results (based on historical data), as well as current data that’s been captured by sensors. Also, 
in certain critical scenarios, commands for actuators may be issued locally rather than you 
having to wait for the central server to make decisions. Again, this is made possible by the 
exposed APIs that are leveraged by applications hosted on DG.

Pattern summary

Let's take a look at the pattern summary for a DG:

•	 Problem solved:

	� Business:

	� Interoperability of diverse sensors/actuators that have different connectivity protocols 
with the central server

	� Ensuring the security of data at rest as well as during transmission

	� Enables real-time decision-making at the edge while avoiding a long (and non-deterministic) 
round trip to the central server

	� Prevents the loss of data in case of intermittent connectivity with the backend server by 
buffering data at the edge

	� Provides support for local/edge applications
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	� Reduces code duplicity as common functionalities (such as connectivity, data buffering, 
data encryption, and so on) are handled by one entity, such as DG, rather than by all the 
end devices (that is, sensors and actuators)

	� Facilitates remote firmware upgrades as well as remote configuration updates of end devices, 
thus providing cost and effort efficiencies

	� Enables connectivity for legacy end devices

	� Enables efficient utilization of bandwidth by mechanisms such as data aggregation and 
data filtering

	� Technical:

	� Provides separation of concerns as common functionalities (such as connectivity, data 
buffering, data encryption, and so on) are handled by the DG; the sensors and actuators 
handle interaction with the physical environment

	� Discourages tight coupling between DG and the central server, ensuring parallel development/
enhancement of DG and the central server

•	 Usage context:

	� To provide connectivity to constrained/legacy devices

•	 Example/usage scenarios:

	� A smartphone acts as a DG to send data from end devices (for example, smartwatches and 
home automation controls such as thermostats, blinds, and so on) to the central server for 
complex analytics

	� In the manufacturing or industrial context, DG acts as a connectivity enabler to connect 
legacy machines to the central server for complex analytics (predictive maintenance, OEE 
calculations, and more)

•	 Pattern rationale:

	� To implement a functionality (such as central server connectivity, data buffering, data 
security, and so on) that is common for all the end devices, thus eliminating redundancy 
and complexity of the code/logic

	� To provide a uniform communication channel or protocol between diverse end devices  
(that have a variety of communication patterns and protocols) and the central server

	� To ease the development of local or edge level applications

	� To enable local and faster decision-making, especially in scenarios where network latency 
makes a round trip to the central server impractical
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	� To enable firmware or configuration updates for end (constrained) devices

•	 Related patterns:

	� Rule engine

•	 Assumptions:

	� The DG, like any other embedded system, will adhere to the best practices related to embedded 
systems security (for example, secure boot, data encryption, least privilege, role-based access 
control, and more)

	� The central server’s connectivity endpoint would be preconfigured in the DG to enable 
connectivity at bootup time

	� To ease the development of applications on top of DG, the underlying (core) functionality 
of DGs (data buffering, data communication, and so on) should be exposed via a well-
documented set of APIs

•	 Considerations:

	� Depending on the requirements of the use case, DG can be powered by a mains supply, or 
it can be battery-powered

	� To remove the dependency that DG applications have on underlying operating systems, 
applications can be deployed using container frameworks

	� To ease integrations with diverse end devices, it is recommended that DG implement a 
Hardware Abstraction Layer (HAL) to abstract hardware-specific nuances from other 
DG modules

	� To support local HMIs, DG generally provides one of the output interfaces as a video interface 
(VGA, HDMI, and so on). Similarly, a debugging port is provided to emit debugging/log 
messaging for local troubleshooting

	� In some specific scenarios, DG doesn’t always need to be powered and needs to be wakened 
by special commands from the central server or local devices

	� As inbuilt storage for DGs is generally limited, DGs are typically equipped with external 
storage (an SD card, external hard drive, and so on) to accomodate extended periods of 
connectivity loss

	� Depending on the operating conditions (for example, extreme climatic conditions and/or 
dusty environments) in which DG must be deployed, it is housed in a rugged enclosure

	� In some domains, regulatory requirements may require that DG is compliant with standards 
such as the GDPR, CE/FCC/IC, and others
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•	 Anti-pattern scenarios:

	� Not applicable in scenarios where end devices are capable (smart enough) of communicating 
directly with a backend server over IP communication (for example, a smartwatch with 
cellular connectivity to another smartwatch where it needs to latch onto a smartphone (DG) 
to send data to the backend server)

	� Not required in scenarios where functionalities such as protocol conversion, data aggregation, 
filtering, and buffering are not required and can be handled by the central server (in scenarios 
where bandwidth constraints are not present, for example)

This section covered the detailed specifications of the DG pattern. Now, let’s look at another interesting 
device pattern, that is, DT.

Digital twin
A DT is a virtual copy of an IoT device that’s deployed in the field. The concept is very similar to the 
process of creating a model (simulation) of a physical entity or process to understand its exhibited 
behavior. The notation for DT used in this book is shown in the following figure:

Figure 2.3 – Notation for the DT pattern

DT is an important pattern in the context of IoT as data may be transferred between the central 
server and field devices over unreliable communication channels (intermittent connectivity). Also, 
field devices may choose to sleep and only wake up during specific times to conserve energy. So, DT 
is also used to abstract users from the current state of field devices (wake up, sleep, and so on) and 
the communication channel’s nuances.

DT also provides an encapsulation mechanism whereby users can view and set the state without 
being concerned with the actual state of the field devices and/or connectivity constraints. Seen in this 
manner, DT decouples the device’s actual state from its virtual representation.
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One way of defining DT is by considering it as a living model of a physical entity. This definition, in 
fact, lists two separate characteristics:

•	 Living: This characteristic indicates that the model of the physical entity is constantly replenished 
with changes that correspond to the physical/actual properties of the physical entities. As a 
result, the scenario where physical entities are not updating their states in a timely fashion 
(this can be due to multiple reasons, including to conserve the battery power of field devices) 
shouldn’t be considered true DT.

•	 Model: This characteristic is DT’s ability to effectively model a physical entity. DT can help 
you understand the physical entity (or physical phenomenon) in its entirety. As is the case for 
any software system, there is no perfect architecture; whatever model (or diagram) helps us 
understand the nuances of the physical process or environment can be termed as the model 
of the software system.

DT shows how the device under consideration behaves to its external stimulus, as well as how the 
device’s internal parts interact with each other to exhibit the observed behavior. To cater to this 
expectation, the device must communicate its current state to the DT without significant time delays 
to the central server. From this perspective, DT is a mechanism to view and update an IoT device’s 
state from a remote location. DT mirrors the device state on one hand and allows you to remotely 
control the device on the other.

However, when the device and its twin are separated in space by a reasonable physical distance, some 
amount of lag is unavoidable. Considering the reference architecture and the fact that DT is generally 
hosted in the cloud (or in private data centers) these delays are observed in the communication layer.

Different architectures can be envisaged to realize this pattern and their suitability can be measured/
compared based on how timely and accurately DT can project the state of the device(s). The time 
it takes for DT to process this should ideally be minimal and deterministic. Additionally, the more 
parameters that are being synced between the device and DT, the more closely it will replicate the 
device’s status and behavior.

Any input data from the entity that’s being monitored is sent to DT. After processing the data, DT 
sends back a command control, as shown in the following diagram, where data from a conveyor belt 
in a manufacturing plant is being fed into DT:
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Figure 2.4 – Data/control command interplay between the device and DT

As shown in the preceding diagram, the input data can be further classified as follows:

1.	 Data related to the entity being monitored – that is, the video feed of the part being manufactured. 
To avoid hogging the communication channel’s bandwidth, the video feed is analyzed on the 
edge and only relevant notifications (events of interest) are sent to DT.

2.	 Sensor metadata (the condition of the camera, usage/operational characteristics, and so on).

3.	 The plant’s ambient conditions (temperature, humidity values indicating the operating conditions 
where the part is being manufactured, and so on).

4.	 After analyzing the input data, DT sends a control/actuation command to the conveyor belt 
(used to start/stop the conveyor belt or to alter ambient conditions) to bring the manufacturing 
output within the desired tolerance levels.

As you can see, the device itself can be a complex state machine with numerous subcomponents that 
have diverse inter and intra-relationships between them. These subcomponents and their relationships 
need to be replicated in DT to visualize the device in its entirety. One benefit of DT is that it allows you 
to view the device’s state at various levels of abstraction by zooming in and zooming out on the device 
properties, subcomponents, relationships, and more. The relationships between the subcomponents 
may change based on environmental factors and the same needs to be reflected in the DT. As a result, 
the device, in addition to posting the state to DT regularly, may need to post metadata related to the 
entity’s topology/relationships.

In addition to the abstraction scale, DT should also incorporate a time scale, which allows the user 
to go back (to a past state) and forth (to a predicted or extrapolated state) as per the user’s needs. 
Depending on the device’s complexity and the desired level of accuracy, this may require simple 
regression/extrapolation or complex AI/ML models to be built.
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Organizations can have different maturity levels of DT implementation. DT implementation is a 
journey and organizations can start small with a basic implementation; with time, DT can evolve into 
a full implementation. The following diagram provides a practical roadmap that organizations can 
use to evaluate their current and target DT maturity levels:

Figure 2.5 – DT’s implementation maturity level for defining/tracking current/target maturity levels

There are additional expectations that all DTs should fulfill:

•	 Device data transmission might be interrupted due to connectivity failure with DT. In this case, 
DT should be able to simulate data for the period when data is not received (with an indication 
that the data is simulated and not real). Similarly, once connectivity has been established and 
data transmission resumes, the simulated data needs to be replaced with actual data.

•	 DT should be intelligent enough to understand whether the actuation command needs to be 
pushed to the device once connectivity has been re-established. This is because the situational 
context will have changed during the period connectivity was not available. Similarly, actuation 
commands will need to be merged or coalesced to remove redundant actuation (there’s no need 
to push the same button multiple times, for example).

•	 Typically, DT won’t exist in isolation and will be augmented with data from other auxiliary or 
external systems. Typically, data that’s fetched from these devices are related to the metadata 
of field devices (for example, the installation date, aging data, performance characteristics, 
and so on). Another set of data can be obtained from other external systems to correlate and/
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or validate the data that’s been reported by field devices. For example, data from the weather 
website (external system) can be used to predict whether there is a need for fields to be irrigated, 
even though the fields’ soil sensors report humidity levels that are lower than normal.

•	 DT should help visualize not only the current state of the monitored devices but also their past 
(historical) state and the future expected (extrapolated) state. Accordingly, the DT user should be 
able to perform a past or future time travel in terms of device condition or status. Similarly, the 
user should be able to scale up and scale down the abstraction level at which they want to monitor 
the state of the device. Scaling up would involve more aggregated or coarse readings/values/
statuses while scaling down would indicate the need to get more raw or fine-grained readings.

•	 As in real life, the relationships between different entities can vary; for example, hierarchical, 
one-to-one, one-to-many, and so on. Taking the manufacturing industry as an example, machines 
are part of a department, such as the one responsible for painting, and these departments are 
part of the larger organization. Generally, policies that are applied at a higher level are expected 
to be automatically applied at lower levels, thus reducing management and compliance efforts. 
Similarly, the statuses or conditional metrics of the lower levels are automatically rolled up to 
the higher levels.

•	 In some scenarios, DT can also initiate ad hoc/need-based queries to understand and correlate 
observed data from physical entities. This would entail a complex sequence of sensing and 
actuation commands. An example is the DT of an oil rig, where some anomaly has been observed 
in oil production. Here, DT would initiate a visual inspection (using a fleet of camera-equipped 
drones) of the pipelines to understand and report the actual cause of the anomaly. Reducing 
false alarms is one benefit that justifies the extra processing and infrastructure.

By leveraging technologies such as AI/ML and in addition to traditional mathematical tools/
methodologies such as interpolation, extrapolation, regression, and others, DT can be taken to the 
next level, as shown in the following examples:

•	 In precision agriculture/smart agriculture, the growth of the crops can be monitored more 
effectively by comparing them to the expected growth rate (real growth versus the expected 
growth). Another scenario could be comparing the growth rates of the crops of different farmers 
that are grown under similar environmental conditions.

•	 DT can play a crucial factor in monitoring and augmenting human wellbeing by tracking 
leading indicators such as blood sugar level, blood pressure, and others. Advanced analytical 
and heuristics techniques can provide valuable insights related to aging, future health, expected 
life span, and more.

•	 DT can help create self-healing systems where the appropriate instructions are sent to machinery 
to correct faults that have already happened or are expected to happen in the future.
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Important Note
The functionality provided by DT will depend on factors such as the envisaged use case, 
hardware/software capabilities, expected latency, and available bandwidth.

Pattern summary

The pattern summary for a DT is as follows:

•	 Problem solved:

	� Business:

	� Accurately plan, with simulated or live sensor data, scenarios based on digital assets 
and operations

	� Understand the behavior of assets and operations by simulating stress conditions on DTs

	� Predict downtimes and breakdowns ahead of time

	� Control the functionality of assets and processes remotely with the desired state of assets 
and processes

	� Support semi- and fully autonomous operations

	� Provide a platform for analyzing data from field devices and initiating device actions

	� View historical states of field devices, as well as possible future or predicted states

	� Provide an abstraction of the device’s status and a uniform interface for setting the state 
of the devices

	� View and set the values of the field devices from a central location

	� Simulate the behavior of a system to understand the potential gains and performance or 
efficiency issues before investing in the actual system implementation

	� Analyze a product, along with its operational context, to identify product refinement  
opportunities

	� Monitor the current and/or historical state of field devices in a consolidated view

	� Technical:

	� Advanced (3D) visualization of assets and processes

	� Extendable DT data model to cover multiple assets and processes

	� Extend the DT to a digital thread that spans beyond the organization

	� Provide context to IoT sensor data and consume the data to understand the behavior of 
the assets and processes
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	� Agile response to the changing current/reported state of assets and processes with a 
conditional simulation of the DT

	� Eliminate the need to have continuous connectivity between devices and the central server

	� Provide remote configuration of field devices and push firmware updates

•	 Usage context:

	� Understand and predict the behavior of the assets and machines

	� Control assets and processes remotely by sychronizing desired state and reported state.
Typically, DT would be hosted/deployed on the central server

	� Integration with an AI/ML component to determine predictive values

	� Integration with external systems for data enrichment and to respond to what-if queries

	� DT would need to support additional devices and scenarios as the system evolves. Following 
a microservices-based architecture is advisable for circumventing potential scalability issues

	� Use DT to expose the functionality in the form of APIs as diverse consumers (VR headsets, 
mobile devices, web applications, and more) need to access information

	� Authentication, authorization, and role-based access control (RBAC) are required to support 
multiple consumer roles that have varied information needs

•	 Example/usage scenarios:

	� Understand the behavior of the building/facility before construction is complete, including 
space utilization, occupancy management, HVAC controls, and energy management

•	 Pattern rationale:

	� Understand the behavior and control the assets and processes remotely, making them more 
predictable in the future

	� Provide a virtual representation of field devices

	� Avoid the need to have continuous data communication available between the central server 
and field devices

	� Provide a uniform interface for accessing information regarding a diverse set of 
information consumers

•	 Related patterns:

	� Rule engine
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•	 Assumptions:

	� The usage of IoT sensor data and 3D visualization along with domain knowledge related to 
assets, processes and operations is required for effective DT implementation.

	� Devices are provisioned and relationships are defined between those devices. Additionally, 
the path/route for connecting to DT is preconfigured on the field devices when the device 
is installed or configured.

	� DT will have data-buffering mechanisms implemented and data will be normalized, filtered, 
and primed before being leveraged for data analysis/visualization purposes. Buffering is 
required both on the input side (data needs to be staged from multiple devices before being 
processed) as well as on the output side (data needs to be staged until the device can accept 
commands or connectivity is restored).

	� Data communicated by field devices is sent on standard protocols to DT. In the case of 
proprietary data formats/protocols, a field gateway is expected to perform the required 
protocol translations.

	� Data being transmitted follows regulatory/privacy norms, such as the GDPR.

	� The central server should have sufficient compute and storage capabilities to support the 
DT’s functional needs.

•	 Considerations:

	� You should select a current and target DT maturity level for implementation and a roadmap 
for transitioning from the current to the target DT maturity level

	� The type of data selected and the rate of data capture will help simulate the device’s behavior 
accurately, with related sensors helping to capture the required data

•	 Anti-pattern scenarios:

	� Scenarios where latency is considerable

	� Scenarios where data production, analysis, and consumption are to be done locally

Device management
The roles of the devices and how they are managed is the key differentiator between IoT and non-IoT 
deployments. The stages of device life cycle management include device provisioning (registration, 
activation, and commissioning) to de-provisioning. The notation used for device management in this 
book is shown in the following diagram:
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Figure 2.6 – Notation for the device management pattern

Device management includes firmware updates for the field devices, either on an ad hoc basis (for 
example, patching security vulnerabilities) or in a planned manner (pushing the latest configuration 
and/or firmware with the updated feature set). Due to the constrained nature of IoT devices, special 
considerations are required while updating firmware:

•	 The device shouldn’t be in the middle of a critical operation. Accordingly, the device’s current 
state (busy, idle, and so on) should be shared with the central server at regular intervals.

•	 In some scenarios, the channel bandwidth is limited, so it is prudent to send a new version of 
the firmware in the form of packets or chunks. This will eliminate the need to send the complete 
firmware if there is a transmission error/data loss for a specific chunk.

Typically, the number of deployed field devices demonstrates a hockey stick style of growth once the 
pilot phase of the implementation of the IoT solution is complete. As a result, it is important to ensure 
that the device management module that’s running on the central server is designed to be fully scalable. 
Additionally, to effectively manage a large number of field devices, it is prudent to segregate devices 
into device families. Segregation/categorization can be done based on physical location (mimicking 
the actual physical topology of the device, such as its country, county, village, and so on) or time (for 
example, the year the device was onboarded).

In addition to several devices, another challenge is that the diverse set of devices needs to be managed. 
Typical IoT deployments are done in a brownfield type of scenario, where new devices coexist with 
legacy devices. Legacy devices need to be managed and carefully planned as most of them won’t 
support all the device management operations (such as firmware updates).
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The device registration process typically follows the following sequence:

 

Figure 2.7 – Device provisioning flow

The following are the main functionalities that are expected from a device management solution:

•	 Life cycle management: The device management component is expected to manage the field 
devices, from initial provisioning to final decommissioning. Also, all communication between 
the devices and the central server should happen securely – only authenticated devices with 
proper authorization should be able to send data to the central server and receive commands. 
The timely rotation of security keys, certificates, and more, also needs to be ensured.
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•	 Configuration management: The need to modify the behavior of deployed devices by 
pushing the relevant configurations from the backend is another key need as it helps make the 
required changes remotely and avoid unncessary and expensive truck rolls. Typical examples 
of configuration include changing the frequency of data reporting to the central server to 
optimize battery and/or channel bandwidth, requesting additional device state information 
for diagnostics purposes, and toggling features/functionalities on/off to conserve battery life.

If changing the configuration parameter results in the device’s state becoming unpredictable 
(for example, the device becomes unresponsive), the device should have built-in mechanisms 
to restart itself (using watchdog timers, for example) or roll back to the previous configurations.

•	 Device state visibility: Device management should present the state of the devices (the 
connectivity status, such as connected/not connected, the last connection or data transfer time, 
the battery status, and more), along with device metadata (for example, the date and time of 
device installation, physical location, current firmware version, and so on) in the form of a 
dashboard. In scenarios where very low device downtime is acceptable, device management 
should send timely alerts or notifications to the relevant team.

Important Note
Device management spans the complete life cycle of field devices (registration, activation, and 
commissioning) and also supports regular (feature releases) and ad hoc (security vulnerability 
patching) firmware releases.

Pattern summary

The patter summary for device management is as follows:

•	 Problem solved:

	� Business:

	� Streamline device onboarding, resulting in shorter deployment timelines

	� Bulk device onboarding to accelerate device rollouts

	� Third-party device onboarding will enable new business opportunities

	� Reduce the cost of field operations for devices via remote configuration/firmware updates

	� Optimize device diagnosis and troubleshooting with reduced cost of operations

	� Secure firmware/patch updates, leading to uninterrupted operations (avoiding 
security breaches)

	� Visualize the customer device topology and understand the physical and logical placement 
of one device in relation to others
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	� Technical:

	� Remote and secure over-the-air (OTA) services accessible to the remote operator

	� Better control and co-ordination due to reusable device management services

	� Built-in scalability to ensure future workloads are handled correctly

	� Abstraction of device-related nuances and capabilities

•	 Usage context:

	� Device onboarding and connectivity

	� Heterogeneity of devices and/or number of devices

	� Firmware update management

	� Applying device security scenarios

	� Troubleshooting devices with remote access

	� Manage device connectivity and inventory

•	 Example/usage scenarios:

	� DG management is a key requirement for the success of the IoT program, which involves 
multiple stakeholders, field operations, and software running on edge devices

	� To manage device life cycle operations and to differentiate them from device data management 
operations (data ingestion, data storage, and so on)

•	 Pattern rationale:

	� A centralized mechanism to ensure the life cycle management of field devices is required

•	 Related patterns:

	� DG

	� DT

•	 Assumptions:

	� None

•	 Considerations:

	� Device scale and diversity

	� Firmware upgrade frequency trade-off with available device battery life
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	� Remote access to devices (device tunneling to connect the device behind a firewall)

	� Device topology and grouping to help manage devices at scale

	� Firmware update of the DG, as well the end devices

	� Event-based or periodic firmware updates

•	 Anti-pattern scenarios:

	� Infrequent updates of firmware and/or configuration

	� A very small number of field devices not justifying the overhead of device management

	� Scenarios where manual updates are feasible

Summary
This chapter introduced the core device-related patterns (DG, DT, and device management). These 
patterns will help you develop end-to-end IoT architectures (that is, scenarios where data is sent by the 
devices and commands are then sent back to devices so that the required action can be taken). At this 
point, you should be able to make decisions regarding what functionalities need to be implemented 
in the DG and what functionalities need to be implemented at the central server.

The next chapter will expand on this list of IoT patterns and include patterns that are implemented 
on the central server.





3
IoT Patterns for  

the Central Server

This chapter lists the architectural patterns that are deployed on a central server due to storage and/
or computational requirements and deployed on the edge (on-premises) or a cloud. These patterns 
provide insights based on the data generated by field devices, analyzing and enriching the existing 
data using additional data (from additional systems, such as enterprise systems).

These patterns help to extract insights, as well as automate certain actions (switching on the irrigation 
pump if the soil moisture goes beyond a defined threshold, as an example). Simple decisions (if X, then 
do Y) can be built into the business logic, but typically, any complex decision requires the evaluation 
of multiple input parameters and certain prior experience, which is where artificial intelligence (AI) 
and machine learning (ML) play a significant role. This chapter details how the data obtained from 
field devices is preprocessed to enable data-driven decision-making.

In this chapter, we will cover the following patterns:

•	 AI/ML integration

•	 The rule engine

•	 File upload

•	 Enterprise system integration
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AI/ML integration
In IoT solutions, AI/ML technologies enable machines and field devices to simulate intelligent behavior 
and help make informed decisions with little to no human involvement. The notation that we will use 
in this book for AI/ML integration is as follows:

Figure 3.1 – The notation for an AI/ML integration pattern

AI/ML provides each IoT device with a distinct personality or identity that helps us to understand the 
overall context and allows it to act on behalf of the end user. In other words, another layer of abstraction 
is provided for both field-generated insights (data from sensors) and commands (to actuators), as 
shown in the following figure:

Figure 3.2 – AI/ML as an abstraction layer between the IoT system and end user
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This pattern has multiple application scenarios, which are as follows:

•	 Cleaning dirty (as in incorrect, out-of-context) data and interpolating/extrapolating missing data.

•	 Making sense of the huge amount of data accumulated by sensors and eliminating false alarms. 
Considering the typical scale at which IoT operates, manual and separate monitoring of each 
device is not practical.

•	 Generating recommendations/actionable insights considering both real-time data streams 
and historical data.

•	 Measuring the calibration drift of sensors/actuators and automating associated rectifications.

•	 Determining the optimum place to perform analytics (or evaluate a rule/decision), whether 
at the edge or in the central server, balancing factors such as urgency, complexity, volume, 
latency, and battery/power status.

•	 Generating meaningful insights from accumulated data, instead of carrying out simple data 
reporting. For example, sourcing raw material from vendor X in place of vendor Y would help 
in improving the Overall Equipment Effectiveness (OEE) – detailed in Chapter 7 – of a plant.

•	 Predicting performance bottlenecks and operational failures while eliminating/minimizing 
false alarms.

•	 Enabling use cases such as object detection at the edge and the monitoring and remediation of 
security threats in the central server.

•	 Automizing the detection of security threats, such as Distributed Denial of Service (DDoS), 
and their remediation.

The preceding points can be handled by using simple rule-based algorithms (such as, if event or data 
X, do Y). However, the integration of AI/ML enhances both the breadth, which refers to the scope 
of analysis, and the depth of analysis, which refers to scenarios or events that were not considered 
during system design.

AI/ML model creation is typically done in a central server, owing to the high computational complexity 
involved, and then deployed at the edge or to a field device. Data received from the edge or this field 
device is continuously analyzed to further refine the model’s accuracy. This virtuous cycle of model 
refinement can be better understood with the help of the following figure:
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Figure 3.3 – Continuous refinement of the AI/ML model based on 

the data/feedback received from field devices

Different types of AI/ML techniques relevant in an IoT context are summarized in the following diagram:
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Figure 3.4 – AI/ML techniques relevant in an IoT context

The given variants of AI/ML all have different computing power requirements. Accordingly, not all 
the variants can run on IoT infrastructure. The following figure indicates how AI/ML variants are 
deployed in a typical IoT deployment:

Figure 3.5 – A typical IoT deployment of different AI/ML variants
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There are multiple AI/ML methodologies that can be used to fulfill different requirements. However, 
one family of ML deep learning techniques in particular (that of zero-shot learning and few-shot 
learning) is particularly well suited to IoT deployments. These deep learning techniques don’t require 
a large dataset for training (or model creation) and rely on heuristics or metadata for arriving at a 
decision. Zero-shot learning indicates that this technique doesn’t require any prior dataset (that is, 
no training data) for it to arrive at a decision (to identify a particular image, for example, there is 
no need to feed a set of images; an explanation of what an object of interest looks like is sufficient). 
Similarly, few-shot learning indicates that the technique requires minimal datasets (the dataset count 
typically ranges from one to five) and is primarily complemented by heuristics or resemblance data 
for it to come to a conclusion.

At first glance, zero-shot learning and few-shot learning may appear to be impractical given it is common 
to feed a large number of datasets to generate any practical ML model. However, zero-shot learning 
and few-shot learning mimic the way the human brain learns about concepts in the physical world.

Information such as a dog is a four-legged animal whose skull and feet are smaller than a typical wolf – 
however, it has eyes larger than a wolf, if fed to a child, can help them to identify a dog, assuming they 
have some understanding of what a wolf looks like. There is no need to give the child a large number 
of images of different dogs for them to recognize a dog. Zero-shot learning and few-shot learning 
work on a similar level.

Zero-shot learning and few-shot learning have relevance in IoT because field devices and device 
gateways are typically constrained from a computation and storage standpoint. As such, it is impractical 
to store and use a large number of datasets for training and subsequent model deployments.

Another example of few-shot learning would be the case where field devices are expected to recognize 
digits (0 to 9) within images. Here, traditional ML would involve feeding all the variants of the 
ways that digits can be typed or written to the model – samples can easily run into thousands, if not 
millions, which makes it impractical to execute the model on an edge or field device. However, making 
use of relative semblance can remove the need for requiring such a large dataset. In the case of digit 
identification, it is sufficient to feed heuristic or empirical information such as digit 3 is roughly half 
of digit 8 and one-third of digit 5 for the edge or field devices to identify a digit.

A few IoT scenarios where zero-shot learning and few-shot learning can be used are as follows:

•	 Scene identification

•	 Edge analytics

•	 Object recognition

•	 Natural language processing

•	 Video analytics

Now let’s take a look at the pattern summary.
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Pattern summary

Let's take a look at the pattern summary for AI/ML integration:

•	 Problem solved:

	� Business:

	� Decision automation at the edge or in the central server

	� Use of data in planning and for increasing operational efficiency

	� Reduction and elimination of downtime

	� Enablement of mass customization and personalization

	� Creation of a person-independent recommendation system

	� Need for continuous refinement of the model

	� Technical:

	� Enablement of digital twins and digital threads

	� Service of data to the AI/ML engineers with the right data model

	� Validation of schema in the stream processing of IoT data

	� Application of the data model on the IoT edge devices

	� Model creation and deployment for constrained field devices or edge gateways

	� Need for actionable insights at the edge

•	 Example usage scenarios:

	� Capturing tags (data points) from the assets in the plant operations

	� Sending commands back to the devices based on the behavior of the assets

	� Serving analytics models for the data science teams

•	 Pattern rationale:

	� Creating or refining the AI/ML model in a central server (with relatively high computation 
and storage requirements) and deploying it to the edge (having constrained compute, power, 
and storage capabilities) for local decision-making and timely action

	� Periodic/event-based deployment of models at the edge, resulting in continuously maturing 
AI/ML models

•	 Related patterns:

	� Digital twin
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•	 Assumptions:

	� Manual analysis of the IoT-generated data is not feasible due to the data’s volume, velocity, 
veracity, and so on

	� Availability of data for model training and creation (except in the case of zero-shot learning 
and few-shot learning techniques, as described in earlier sections)

•	 Considerations:

	� A time series database for storing real-time telemetry information

	� An IoT broker to get the data transported from sensors to gateways to the central server

	� Usage of the in-memory cache to serve urgent data queries

	� Microservices-based architecture for supporting future scalability needs

	� Customizing models to compensate for computational and storage limitations of edge 
devices (typically, by reducing model accuracy and/or speed), as in zero-shot learning and 
few-shot learning techniques

	� Capability for scheduled model deployment (and rollback), especially in the case of a large 
number of field or edge devices

•	 Anti-pattern scenarios:

	� Rudimentary decision-making (if this, then do that)

	� Limited input or raw data

	� Batch or offline data analysis

The rule engine
The rule engine is essentially mapping between IoT events and actions that need to be associated with 
those events. In the IoT context, events are typically generated using sensors, and required actions are 
taken by an actuator. The notation used for this pattern in this book is shown in the following figure:

Figure 3.6 – The notation for a “rule engine” pattern
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An interesting analogy is to compare the rule engine to the human mind, where the use of the five 
senses can be compared to the activation of sensors, and then corresponding actions are taken by 
body parts (hands or legs, for example), as shown in the following figure:

Figure 3.7 – A rule engine decoupling sensors and actuators and 

its comparison with the human body/mind

Additionally, the cause-and-effect relationships in the IoT context are dynamic as well as complex, 
which can only be made possible by having an entity such as the rule engine in place. This is illustrated 
by the following examples:

•	 In an industrial context, the need may be for a buzzer to sound when an incorrectly assembled 
part is detected by installed video cameras (the events). However, eventually, the requirement 
may change to incorporate flashing lights on the assembly line and alerting the plant supervisor, 
in addition to (or instead of) simply sounding a buzzer.

•	 Currently, a home automation system is set to close the blinds and switch on the lights when 
darkness is detected outside the home. However, after some time, the user might want to only 
switch on the lights and leave the blinds as they are.

•	 In the healthcare space, a digital health platform might be supporting a weighing scale and 
glucometer only. However, with advancement in technologies, there might be a requirement to 
plug in additional devices, such as a defibrillator or an ECG. Having a rule engine would allow 
the easy configuration of rules as new devices are onboarded to the digital platform.

The information flow between sensors, actuators, and the rule engine typically consists of complex 
relationships. For example, the output from the rule engine can be a specific recommendation. 
Based on these recommendations, the rule engine may initiate further action either automatically or  
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semi-automatically (depending on whether consent is required from a human party, as in human-in-
the-loop scenarios). This is illustrated in the following figure:

Figure 3.8 – The typical implementation of a rule engine will involve loops and complex interactions

From a deployment standpoint, the rule engine can be deployed at two levels, either local rule engine 
(LRE) deployment or global rule engine (GRE) deployment. LRE deployment (also referred to as 
edge deployment) helps in making quick and local decisions and is especially useful in scenarios 
where latency is a concern or connectivity is not completely reliable. LRE can also be seen as a data 
feeder to GRE.

GRE typically requires higher computational power, and hence, the ability to perform advanced 
analytics. Additionally, as multiple LREs feed into a single GRE, GREs can operate in a wider and 
more higher or global context compared to LREs. Typically, an LRE is hosted on the device itself or 
on a gateway. A GRE can be hosted on public or private data centers or the cloud. The relationships 
between GREs and LREs are illustrated in the following figure:

Figure 3.9 – Implementation of a rule engine will involve loops and complex interactions
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The rule engine would need to be implemented at the edge or locally or on the central server/globally 
depending upon factors such as latency considerations, data volume requirements, and the current 
power/battery level of the edge devices. The configuration of these rules can be done via a central 
server or global interface, or it can be done via the edge or local interface (for example, if the edge or 
field device supports a human-machine interface (HMI for rule configuration).

At its core, a rule engine can be described as the following programmatic construct:

If ((sensor1 comparison1 threshold1) joining condition1 (sensor2 
comparison2 threshold2) ... then
  Set Acutuator1 state as X
  ...

  End if

We can adapt the preceding generic construct to a more specific example. In a home automation 
context, it could consist of the following:

If((Thermostat1.CurrentValue > 20) and (Window1.CurrentState = 
Closed)) Then
AirConditioning.CurrentState = ON
          AirConditioning.DesiredTemperature = 20
EndIf

As can be inferred from the preceding example, events can be correlated with actions as well as 
recommendations. Seen from one perspective, the rule engine helps to decouple sensors and actuators, 
very similar to the well-known publisher/subscriber broker pattern.

Providing recommendations rather than directly initiating actions is especially relevant in human-in-
the-loop scenarios where it is desirable for a person to make a final decision as the impact of an action 
can be considerably higher – for example, where the safety and wellbeing of other people are involved, 
as in the healthcare domain. In the case of severe illness, it would be worthwhile for a rule engine to 
provide recommendations that can be reviewed by a medical specialist who has the final authority 
to make the call on the type of medication to be used and the required dosage. Recommendations 
can be provided using interfaces such as desktop or mobile interfaces or smart speakers (which are 
a form of actuators).

A rule engine can refer to historical data to arrive at a decision or it can be completely stateless – 
depending upon the use case scenario and, more importantly, on whether prior experience has any 
influence on the final decision. Any non-trivial decision-making process would require the integration 
of AI/ML models into the rule engine. Any decision that can’t be taken based on simple if X, then do 
Y logic can be considered as a example of a non-trivial decision. AI/ML can be further refined where 
past decisions are monitored for any unintentional biases.
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Rule engines of the future will act as trusted advisors who not only provide meaningful answers but 
also turn the question around so as to provide more engaging and meaningful conversation. Another 
related example could be a scenario where the rule engine results are curated to keep the interests of 
the user in mind. Essentially, the recommendations of the rule engine should not only be correct and 
accurate but also fit into an individual’s belief system to be perceived as relevant and be more likely to 
be accepted. Hence, having a reasonably accurate estimation of digital personality plays a crucial role.

It is imperative that the final recommendations delivered can be adjusted for the specificity level; for 
example, in the case that a pointed answer is best suited to the context, recommendations should be 
filtered to provide minimal results (ideally, one). However, if the context in question demands a broad 
set (or range) of responses, then the response can be relatively more generic.

Related to the previous point, it can be noticed that the need for specificity may not be easy to deduce, 
as it involves objectively estimating the situational context (the culture and background, for example) 
of a user. Evidently, the situational context is inherently a complex thing to determine, as it depends 
on a diverse set of non-deterministic factors. One relatively easy (and highly effective) factor is taking 
instant feedback from the person for whom the recommendations are being formulated and feeding 
that input back into the rule engine, thereby continuously refining its effectiveness. This results in 
an interesting paradigm where the consumer of the rule engine output and the rule engine itself are 
continuously switching roles, in turn, lending credibility and maturity to the process of providing 
ever more personalized and relevant recommendations.

The availability of an optimized but relevant set of search results has a direct bearing on end user 
experience. Hence, rule engines will graduate from just being text pattern-matching machines to smart, 
knowledgeable experts that provide the most relevant recommendations.

To summarize, instead of spitting results out mindlessly, performing intelligent filtering (based on 
an individual’s emotional state and overall situational context) would go a long way in devising next-
generation rule engines. It would be desirable to intelligently massage and filter results before presenting 
them to users. Let’s take a look at the pattern summary in the next section.

Pattern summary
The pattern summary for a rule engine is as follows:

•	 Problem solved:

	� Business:

	� Flexibility to add or update rules on a needed basis

	� Ability to configure rules for field devices on a central server and push it to field devices

	� Ability to define rules as mathematical and/or logical expressions for easy comprehension, 
therefore allowing non-technical users to make rule modifications

	� Admission of the rules to be used (with required modifications) across different domains 
and/or IoT use cases
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	� Ability to integrate more advanced technologies such as AI/ML for rule evaluation

	� Technical:

	� The presence of an abstraction layer for sensors and actuators minimizes the effort 
involved in the integration of new sensors and actuators, as code changes are localized in 
abstraction layers only.

•	 Usage context:

	� It is used where the behavior of events or actions individually or in relation to one other is 
expected to change.

	� A rule engine is primarily deployed in two ways:

	� Fully automated: The rule engine can make decisions and execute those decisions 
independently. This generally requires AI/ML integration.

	� Semi-automated (human-in-the-loop): Here, the responsibility of the rule engine is limited 
to analyzing input data and then providing recommendations to the user, who ultimately 
decides on the action to be taken. The generated recommendations can be sent in the form 
of push notifications on the user’s mobile device for timely action.

	� The rule engine can be implemented either on the edge or in the central server, depending 
upon the complexity of the rules, as well as the compute and storage capabilities of field 
devices. Another consideration would be the case where data from field devices spread across 
vast geographical regions needs to be aggregated before a decision can be made, in which 
case, execution at the central server would also be required.

	� In scenarios where a specific rule needs to be selected from a set of available rules.

	� Typically, a rule engine would be implemented on a DG, which acts as a mediator between 
IoT sensors and actuators.

•	 Example usage scenarios:

	� Hosting or deploying at a central server and/or DG for configuring or executing rules in a 
structured manner

	� Decoupling IoT events and associated actions and commands, allowing extensibility for 
accommodating future events, actions, and commands

•	 Pattern rationale:

	� Provides a structured mechanism for decoupling events and actions on field devices and/
or at the central server, eliminating the need for custom plumbing logic that needs to be 
added to accommodate every new event and/or action, thus improving the maintainability 
of the system
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	� Helps to transform complex events into mathematical/logical expressions for ease of 
comprehension and modifiability

	� Provides the ability to select a particular or optimum rule to be applied (from a set of potential 
rules) by integrating AI/ML technologies

•	 Related patterns:

	� None

•	 Assumptions:

	� Data is preprocessed and/or normalized before being fed to the rule engine (input-side data 
massaging). Similarly, data is converted into the form required by the actuators (output-side 
data massaging).

	� The rule engine would have the ability to maintain state information and wait for a state 
change in scenarios where a human is expected to provide final authorization on the 
recommended actions.

	� Time synchronization is required between the central server and field devices, especially in 
scenarios where evaluation defines time as one of the parameters.

•	 Considerations:

	� A rule would be deployed on a device gateway (field devices) or the central server based on 
the following factors:

	� The compute capabilities of field devices versus central server vis-à-vis compute requirements 
(compute or storage or both) for executing rules.

	� The time required for obtaining the rule engine results. It is important to understand that, 
in addition to the time required for rule execution at the central server, the delay introduced 
during data transfer needs to be considered, as per the following equation:

Total = TDS (the data transfer time between the device gateway and central server)

+

TR (the actual rule evaluation time)

+

TSD (the data (rule results) transfer time starting from the central server and going back to 
the field device)

	� Depending on whether rule selection would be required in addition to rule execution or not, 
suitable AI/ML models need to be invoked at the device gateway or central server.
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	� The rule engine may integrate logging of the rules evaluated to provide an audit trail and 
for troubleshooting purposes.

•	 Anti-pattern scenarios:

	� Use cases where the list of sensors/actuators is relatively static

	� Use cases where relationships between events and actions are simple and/or static and can 
be hardcoded in the overall logic

File upload
The file upload pattern is relevant where real-time telemetry is not required or in cases where data 
needs to be fetched from legacy and non-connected devices. This pattern is also used to push the 
firmware to the field devices. The notation used for this pattern is shown in the following figure:

Figure 3.10 – The notation for a file upload pattern

Some scenarios where this pattern can be used are as follows:

•	 Video stream processing is to be done in a central server.

•	 Legacy systems in industrial, healthcare, or energy domains output data in a physical file and 
it is not possible to parse or interpret the generated file on the device due to computation and/
or storage constraints.

•	 Certificates and keys are required for secure connection to the central server.

•	 Scheduled or ad hoc firmware update of devices.

File upload is generally done via packetizing the file content to optimize bandwidth usage. A typical 
algorithm for this is shown in the following diagram:
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Figure 3.11 – Typical sequence followed for file upload from device to central server

Although the preceding diagram shows file upload from the device to the central server, a similar 
sequence would be required for the central server to send the file to the device. Also, for simplicity’s 
sake, the scenario of a bad cyclic redundancy check (CRC) error is not depicted. In such cases, the 
device would attempt to resend the packet until a successful acknowledgment was returned by the 
central server. Let’s look at the detailed pattern summary next.

Pattern summary

Let's look at the pattern summary for file upload:

•	 Problem solved:

	� Business:

	� Scenarios in which sending regular/real-time telemetry data is not required
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	� Scheduled (addition of new features and capabilities) or ad hoc (to fix a critical bug fix or 
to plug a security vulnerability) release of firmware

	� Audio or video feeds such as surveillance of factory activities, sports feeds, less frequently 
compressed/ZIP files such as patient treatment files, or drone data ingestion

	� Large payload data, such as smart city scenarios for traffic data

	� Controlling bandwidth usage by controlling the packet size

	� Accumulating and sending data during off-peak hours

	� Technical:

	� Overcoming the payload size limitations for file transfers

	� Rotating compromised or obsolete certificates of field devices for ensuring secure 
communication with central server at all times

	� Delivery assurance with checksum at the packet level

	� Using less chatty protocols (FTP over HTTP) to optimize bandwidth usage

•	 Usage context:

	� Scenarios where real-time telemetry data collection is not a requirement.

	� Scenarios where network bandwidth is at a premium and chattiness of the telemetry protocol 
(HTTP, for example) is not acceptable.

	� High-speed data is captured in binary mode and is decoded and processed at the central server.

	� Real-time data processing is not a requirement.

	� Scenarios where large payload data is required to be sent in packets or batches.

•	 Example usage scenarios:

	� Surveillance camera feeds in factories, buildings, or retail shops

	� Audio acoustics analysis for leak detection in utility pipes

	� Patient treatment files and machine configuration upload in the healthcare domain

	� Autonomous vehicles where sensor fusion can result in a large binary unstructured payload 
that needs to be uploaded

	� Certificate rotation in case of mutual authentication

•	 Pattern rationale:

	� Less frequent but large payload size



IoT Patterns for the Central Server52

	� Optimum usage of network bandwidth

	� Offline/batch processing

	� Decoupling of data ingestion and processing

	� Decoupling of data collation and transfer

•	 Related patterns:

	� Digital twin

•	 Assumptions:

	� Existence of data storage space to store an intermediate file(s).

	� File data format agreement between the device and central server.

	� A file transfer trigger, either periodic or event-based (when a predetermined file size is 
reached, for example), has been configured.

•	 Considerations:

	� Data processing can be done at the edge or on the field device without requiring a file transfer.

•	 Anti-pattern scenarios:

	� Large binary payloads (video feeds, for example) can be processed at the edge and only 
events need to be sent to the central server.

	� Real-time data processing and event generation.

Enterprise system integration
To derive maximum value from IoT implementation, the IoT system needs to integrate with existing 
software systems in an enterprise. In fact, integration with external systems allows for the interaction 
between the cyber and physical worlds – IoT systems representing the physical world and external systems 
residing in the cyber/virtual world. The notation used for this pattern is shown in the following figure:

Figure 3.12 – Notation for an external system integration pattern
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As is the case with any general integration, integration of an IoT system with another enterprise or 
legacy system results in benefits that far exceed what we would have if these systems were operating 
in isolation (the whole being greater than the sum of its parts). Integration can enable automation 
of end-to-end workflows, remove data duplicity, enhance decision-making quality, or eliminate the 
possibility of relying on stale data.

Data synchronization between IoT and other enterprise systems may be enabled by either a data push or 
a data pull or both. The nature and level of this integration will vary from domain to domain and from 
one use case to another. For example, home automation use cases tend to have less need for integration 
with other systems compared to industrial use cases. As IoT implementation enables automation and 
hence tends to replace or augment existing workflows, processes, and the like, it is only natural that 
the IoT data needs to plug into existing workflows and processes. Since existing workflows are built 
on top of existing or legacy systems, the need for enterprise integration becomes urgent.

The frequency at which integration logic is invoked will depend on multiple factors, such as use 
case requirements and overheads introduced by the data synchronization operation. Depending on 
the requirements, synchronization can be done in synchronous mode (real-time sync), or it can be 
enabled in batch mode, where an operation runs at a scheduled frequency and time. Generally, such 
integrations are enabled without any direct involvement of the end user.

IoT systems are typically integrated with the following types of external systems:

•	 Customer relationship management (CRM) systems

•	 Supply chain management (SCM) systems

•	 Business intelligence and analytics

•	 Human resources data

•	 Systems storing device or user metadata

•	 Enterprise resource planning (ERP) systems

•	 Systems providing auxiliary information (such as weather information or satellite imagery), 
which can augment or refine insights generated by IoT data

Integration requirements are realized by invoking the APIs exposed by enterprise systems. In a scenario 
where such integration APIs are not available, a wrapper on the legacy system is created, which can 
then encapsulate the nuances of the legacy systems.
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External systems can complement both local and global rule engines, as shown in the following figure:

Figure 3.13 – The need to integrate with external systems can 

exist at both a local and global rule engine level

An IoT system can integrate with other external systems in a variety of ways (depending upon the 
application and use case needs).

Although the following figure shows integration with respect to the global rule engine, similar 
integrations are possible at the local rule engine level as well:
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Figure 3.14 – Types of integrations possible with external systems

Now let’s look at the pattern summary.

Pattern summary

The pattern summary for enterprise system integration is as follows:

•	 Problem solved:

	� Business:

	� Integrating IoT data with existing enterprise applications, with benefits as follows:

a) Better insight and decision-making abilities

b) More accurate business insights

c) Cost or effort reduction due to reduction of data reconciliation efforts
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	� Conceptualizing and developing richer and more innovative use cases

	� Accelerating an enterprise’s digital transformation journey by automating existing workflows 
and processes vis-à-vis force-fitting entirely new tools, processes, and workflows

	� Enabling data cleaning and data massaging by using device metadata (from enterprise systems)

	� Technical:

	� Synchronizing data between systems

	� Choice of multiple integration options, such as synchronous, scheduled, broker-based, 
and so on

	� Enabling both data- and application-level integration

	� Scheduling integration for handling compute-intensive workloads during off-peak hours

	� Flexibility to implement real-time as well as batch integrations

	� Decoupling the evolution of core IoT system from downstream external systems using 
broker-based integration

	� Flagging and remediating data gaps between different systems as soon as possible

•	 Usage context:

	� IoT data needs to be pushed to existing external, enterprise, or legacy systems.

	� IoT data needs to be enriched with metadata by pulling data from external systems.

	� The transition of the external system’s workflow from stage to stage is based on the information 
from sensors as reported by the IoT system.

	� Offline data integration (as in data exported from one system, followed by importing it into 
another system using a two-step process) is not practical or suitable.

•	 Example usage scenarios:

	� Worker safety use case: An employee’s personal data is pulled from an employee database 
(for example, an HRM external system) to notify the supervisor if a worker had a fall (as 
detected by a fall sensor).

	� Smart manufacturing use case: The count of available parts falls below a defined threshold; 
an order for fresh supply needs to be initiated by getting vendor information from a vendor 
management system (VMS).
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•	 Pattern rationale:

	� IoT data has limited value unless it is enriched or integrated with other sources of enterprise data.

	� An IoT system senses an environment (and/or the condition of an entity within that 
environment) and generates events, which are fed into external systems to trigger workflow 
stage transitions (for example, a Goods Received Note (GRN) is initiated in the case that a 
shipment is detected at the entry gate).

•	 Related patterns:

	� Rule engine (to trigger enterprise workflows)

	� AI/ML integration, to predict events and trends (for example, supply and demand trends) 
and to trigger proactive as opposed to reactive actions

•	 Assumptions:

	� The system hosting the rule engine is capable of handling the additional load for supporting 
integration requirements.

	� External systems expose interfaces (APIs, for example) for data integration needs.

•	 Considerations:

	� Needing to select the optimum integration type based on current and future needs

	� Selecting the ideal synchronization frequency based on factors such as data concurrency, 
end user expectations, and the off-peak load window

	� Minimizing the impact on the as is operation of external systems

•	 Anti-pattern scenarios:

	� Scenarios where organizations can tolerate siloed data collection/analysis

Summary
This chapter introduced architectural patterns (AI/ML integration, the rule engine, file upload, and 
enterprise system integration) that are typically deployed on a central server. The patterns in this 
chapter, as well as those detailed in previous chapters, will empower you to architect any IoT application. 
Subsequent chapters will show us examples of how these patterns are combined to solve complex 
problems in different domains, starting with the next chapter, where we will discuss two specific use 
cases in the consumer domain – home automation and a smart egg boiler – and understand how the 
architectural patterns we’ve previously learned about can be applied to develop interesting use cases.





Part 2:  
IoT Patterns in Action

The patterns detailed in the previous part can be mixed and matched to realize IoT use cases. This part 
provides proof of efficacy for these patterns to satisfy unique needs and implement use cases in diverse 
domains, including consumer goods and home automation, retail, transportation, manufacturing, 
and agriculture.

This part comprises the following chapters:

•	 Chapter 4, Pattern Implementation in the Consumer Domain 

•	 Chapter 5, Pattern Implementation in the Smart City Domain 

•	 Chapter 6, Pattern Implementation in the Retail Domain 

•	 Chapter 7, Pattern Implementation in the Manufacturing Domain

•	 Chapter 8, Pattern Implementation in the Agriculture Domain





4
Pattern Implementation  

in the Consumer Domain

We learned important architectural patterns in previous chapters; this chapter introduces use cases 
for these patterns that are relevant to the consumer domain. Although numerous use cases exist in 
the consumer space (e-health, elderly care, pet tracking, energy management, safety and security, 
robot vacuum cleaners, etc.), the current chapter will detail just two use cases – home automation 
and a smart egg boiler – to give perspective on the nuances that are involved while implementing 
consumer IoT use cases. Home automation is an existing use case, whereas the smart egg boiler is an 
innovative use case – giving credence to the fact that known use cases can not only be implemented 
by leveraging IoT patterns but can also be used to implement hitherto unknown solutions.

Use case – deploying home automation
Typical home automation deployments provide a combination of the following feature sets:

•	 Controlling and monitoring appliances, such as air conditioners, refrigerators, or heaters

•	 The controlling of lights (on/off, a change of color or brightness, or on/off based on a 
person’s presence)

•	 An action based on a detected event (for example, an alarm/buzzer sounding when smoke 
is detected)

•	 The remote operation of doors and windows

•	 The detection of an intruder that triggers an alarm

•	 Conversations with smart speakers
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The following figure gives a representational view of home automation implementation:

Figure 4.1 – Sensors/actuators in a home automation use case

As you can see, devices that are battery-operated and have low bandwidth requirements typically 
transfer data on an energy-efficient protocol (for example, Zigbee), whereas devices such as a video 
camera send the data to a Device Gateway (DG) over protocols such as Wi-Fi.

Figure 4.1 also shows a mobile phone as a primary interface to control and monitor smart home devices; 
new interfaces (for example, smart speakers) are also emerging on the market – for example, the latest 
trend is the use of a smartwatch to control or monitor smart devices and appliances in addition to 
the mobile phone. However, due to the smartwatch’s smaller interface, only a subset of mobile app 
functionality (e.g., critical alarms or notification events and turning main appliances on and off) can 
be made available on a smartwatch.

In general, the adoption of home automation use cases has been at a slower pace compared to other 
IoT use cases (for example, data-driven manufacturing). Some of the reasons include installation 
complexity (especially for non-tech-savvy users), limited interoperability between smart home devices 
from different manufacturers (although there are initiatives such as Matter from the Connectivity 
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Standards Alliance (CSA) that are expected to bring a desired standardization to various smart home 
devices), and the perception of home automation as good to have rather than a must-have requirement.

The benefits of installing smart home devices include the following:

•	 Energy savings:

	� You can monitor the consumption at a granular (appliance) level and replace/repair a 
power-hogging appliance.

	� Turning off appliances after leaving home.

	� In addition to raising alerts if energy consumption goes beyond a threshold, you can provide 
recommendations regarding how energy consumption can be optimized by leveraging 
AI/ML capabilities (for example, scheduling the operation of energy-hogging appliances 
during off-peak hours to benefit from demand-based pricing plans, or alerting a user if the 
temperature is not changing at a desired rate after switching on the air conditioner, which 
possibly indicates an open window or door).

•	 Convenience:

	� The opening of a garage door from a distance

	� Automatic control of ambient temperature/light

	� Storing and adhering to the user’s preference with regard to temperature, light, and other 
ambient conditions

	� Scheduling routine tasks (for example, starting and stopping garden sprinklers)

•	 Security:

	� The 24/7 monitoring of kids and pets.

	� The user receives a notification on their mobile phone regarding possible intrusion attempts.

A detailed description of the use case

It can be seen from Figure 4.2 that monitoring and control are possible from both inside as well as 
outside the home; however (in some cases), users don’t want data to be transmitted outside their home 
boundaries, due to privacy and security concerns (a smart home can be maliciously used to identify 
and exploit the user’s absence and gain unauthorized access). In these cases, DG acts at a local level 
only, and there is no connectivity with a central server. In order to cater to safety and security as well 
as the privacy concerns of users, this use case can be implemented in two deployment formats:
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Figure 4.2 – The realization of a home automation use case by leveraging IoT patterns

These two types of deployment are as follows:

•	 Deployment without a central server (standalone deployment): This deployment is relevant 
for users who have security/privacy concerns and are not comfortable sending data outside 
a local/home network, although this deployment can provide only a subset of possible home 
automation features/functionalities. In this case, it is not possible to obtain refined AI/ML 
models in a continuous fashion from a central server; hence, the models deployed are static in 
nature (or a model is only updated when a device is shipped for repair to the manufacturer). 
This deployment model is shown in the bottom portion of the preceding figure.

•	 Deployment with a central server: This refers to the implementation where a DG installed in 
different homes sends data to a central server for collation, aggregation, analytics, and so on. 
This will support additional features (over and above what is possible with only standalone 
deployment) – for example, a recommendation engine (leveraging AI/ML technologies) that 
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suggests ways and means to reduce energy consumption, automatic DG firmware updates, and 
comparing energy consumption with fellow users that have similar appliance usage.

As a user’s private data is transferred over public networks, end-to-end security becomes a paramount 
requirement. Security considerations are also critical here, as a malicious actor might tap into a 
communication channel to force actions such as unlocking a door.

The main components of home automation as shown in Figure 4.2 are as follows:

1.	 Sensor: Typical sensors used for home automation include fire/smoke/CO2, water leak/moisture, 
water overflow, and window/door open/closed detectors, a video camera (internal or at the 
main entrance, integrated in a doorbell), motion, light, air quality, energy meter, and sound. 
These sensors generally communicate their status to the DG over protocols such as Wi-Fi, 
Zigbee, Z-Wave, and BLE/Bluetooth.

2.	 Device Gateway: In home automation deployment scenarios, a DG may or may not be connected 
to a central server, as shown in Figure 4.2. In the case of local deployment (without central 
server connectivity), the DG generally acts as a bridge between the sensors and actuators and 
executes a set of rules (for example, in case of a fire, sounding an alarm). It would also expose 
the internal state as well as receive commands via a set of predefined APIs that would be 
leveraged by mobile applications.

In the case of connectivity with a central server, additional features can be enabled – for 
example, a user can compare energy usage with other residents in the locality, the DG would 
be updated with the latest firmware, and AI/ML components on the central server would help 
predict energy usage and provide recommendations about how to conserve energy and reduce 
energy-related charges.

3.	 Local Rule Engine (LRE): If DG functionality is consumed via a browser, content related to 
web pages (for example, HTML and CSS) is also hosted in the local DG only. Additionally, 
there is a provision to configure and store a set of instructions that would be invoked by a user 
on a regular basis – for example, instead of starting air conditioning at a desired temperature 
and closing the windows, both commands can be stored as one mood or scene and invoked as 
a combo command, rather than sending separate commands. Since there is no connectivity 
with the external world, typically the firmware in DG is updated via alternative means (for 
example, using a USB).

4.	 Central server: A central server will aggregate data from multiple smart homes and host 
components such as the digital twin, GRE, AI/ML model creation, and deployment logic. 
The central server will also host functionality to deploy firmware upgrades/patches onto the 
gateways installed in individual homes and manage security requirements – for example, 
certificate rotation.

5.	 Digital Twin (DT): A DT will act as a virtual representation of every home. The user can view 
the current state of their home sensors and is able to initiate required actions (for example, 
turning off the air conditioning if it was inadvertently kept on). To preserve privacy and ensure 



Pattern Implementation in the Consumer Domain66

security and safety, DT access will be enabled only for authorized end users, and anonymization 
techniques will be leveraged to ensure that data is not used maliciously.

6.	 File upload: In this use case, a file upload pattern would be used to enable firmware upgrade 
to a DG and (in some cases, such as downloading security patches or providing new features 
and functionality) to end devices (sensors and actuators) and to enable certificate rotation.

7.	 Device management: This pattern is used to perform the following functions:

	� Onboard and deboard DGs and associated end devices

	� Monitor the connectivity status of individual DGs

	� Fetch the system state and issue troubleshooting commands

8.	 AI/ML integration: AI/ML models created on a central server and deployed on the DG will help 
to analyze the usage habits of occupants, predict future usage trends, provide recommendations 
with regard to appliance usage, and automate control of devices such as a thermostat to reduce 
energy bills.

This component would also automate the setting of home appliances (brightness levels, 
temperature settings, and so on) as per the user’s past preferences. For richer use cases, this 
component would interface with an external system integration pattern – for example, knowing 
local weather conditions by fetching data from a weather service will help to determine the 
ideal duration/time for which home garden sprinklers need to be turned on (i.e., there is no 
need to water the garden in the morning if rainfall is expected in the afternoon). Similarly, 
room heating can be reduced if a sudden warm climate is expected.

As a user’s physical activity, as well as sleep quality/duration, is tracked via a smartwatch, AI/
ML integration can help nudge them to adopt a more active/healthy lifestyle.

9.	 External system integration: A central server can be integrated with external systems such 
as a weather information service and an energy utility company billing/charging system to 
realize richer end-to-end use cases. Similarly, integration is possible with external blockchain 
systems (the usage of blockchain in an IoT context is discussed in greater detail in Chapter 12) 
to ensure secure billing transactions.

Integration with a weather information service would be required to know future weather 
conditions to optimize when a garden is watered, as mentioned earlier. Integration with an 
energy utility company’s system would help to understand charging patterns and schedule the 
operation of non-critical equipment (for example, a washing machine) during off-peak/low 
charge periods.

10.	 Actuator: An actuator will help to execute (actuate) commands such as turning on a coffee pot, 
setting a target temperature for air conditioning equipment, and locking or unlocking a door. 
Generally, these commands are issued locally by an LRE. In very specific cases, the actuator 
state can be set by a central server (for example, when scheduling the operation of a washing 
machine), after taking due authorization from the user.



Use case – a smart egg boiler 67

This section detailed a home automation use case and how it can be implemented using patterns learned 
in previous chapters. In the next section, we will explore how a smart, innovative, and connected 
product can be developed using IoT patterns.

Use case – a smart egg boiler
There are numerous egg boilers on the market; however, all of them suffer from one basic limitation 
– they treat all eggs in a batch the same (using the same quantity of water, boiling duration, and so 
on). However, even eggs from the same hen can have different characteristics. But for the best taste 
and texture of a boiled egg, each one needs to be treated differently, and boiling conditions need to 
be customized as per the unique internal and external characteristics of the egg:

•	 External characteristics include the size, shape, shell color (indicating the hen pedigree), and 
altitude at which the egg is boiled.

•	 Internal characteristics include the texture/density/viscosity of the yolk and albumen, egg 
age (the time difference between the hatching of the egg and the time of the egg being boiled), 
shell thickness, and proportion of egg white versus egg yolk.

This use case suggests an innovative boiling process for each egg by positioning it in its individual 
compartment, thereby providing a unique boiling environment/condition(s). We customize the 
boiling operation of each egg by having an isolated and insulated compartment and by subjecting 
each one to its unique boiling conditions. This is achieved by first scanning each egg for its unique 
characteristics – internal as well as external.

The solution mentioned in this section will measure internal characteristics by inserting a minuscule 
camera within the egg body (refer to Figure 4.3). This camera will serve two purposes:

•	 Help to gauge ideal boiling parameters (boiling time and water quantity required) for each cell by 
analyzing the internal characteristics (for example, the proportion of egg white versus egg yolk).

•	 Provide a real-time view (video feed) of egg internals during the boiling operation. This will 
help a user to monitor the egg’s internal state and (if required) pre-emptively cancel the boiling 
operation. Similarly, it will enable the smart boiler circuitry (by leveraging video analytics) to 
perform real-time condition monitoring and stop the boiling operation once the desired/ideal 
state is reached.

Although there might be some similarities between egg boilers available in the market, the smart egg 
boiler detailed in this section has the following unique characteristics:

•	 The proposed solution is a completely independent/standalone operational unit.

•	 The proposed solution customizes the boiling operation with the specific boiling requirements 
of each egg, considering the unique characteristics of each individual egg.
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Important note
The smart egg boiler is a futuristic use case that demonstrates the art of the possible by using 
patterns listed in the previous chapters. However, this use case might not be immediately viable 
from a business or commercial standpoint due to cost, maintenance requirements, market 
acceptability, and other similar reasons.

Now that we’ve discussed the basics, let’s look at this use case in further detail.

A detailed description of the use case

The key components of this innovative use case are illustrated in the following figure:

Figure 4.3 – An operational diagram of the smart egg boiler use case

The details of the components of the operational diagram are as follows:

1.	 An egg placed in an individual compartment.

2.	 A minuscule video camera inserted into the egg. A pH sensor to determine the egg age is also 
attached to the minuscule camera.
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3.	 Water present in the individual compartment to generate steam. The quantity of water for 
a particular boiling session is adjusted by checking the current water level, by using a water 
level sensor (component 11) and sending instructions to the controlling valve (component 6).

4.	 The heating element used to boil the water and generate steam.

5.	 The mechanical spring that is used to prick the eggshell using a pin and then insert a video 
camera (refer to Figure 4.5).

6.	 The lever to control the flow of water/steam.

7.	 The weight sensor to measure the weight of the egg. The weight and dimensions as determined 
by a camera (component 8) are used to determine the egg density. Weight, dimensions, and 
density are used to gauge the egg’s ideal boiling conditions. This requires past historical data 
as well as deploying an ML model onto the boiler’s firmware.

8.	 A video camera is used to determine the external characteristics of the egg (the shape, size, and 
pigmentation). The input from this camera as well as the minuscule camera (component 2) are 
used to accurately determine the internal and external characteristics of the egg. This video 
camera constitutes two cameras (one 2D camera to determine the shape and pigmentation and 
another 3D camera to determine the egg size).

9.	 These are the switches and the Light Emitting Diodes (LEDs) provided to indicate the status 
of the boiling operation for the individual compartment.

10.	 The outer casing of the smart boiler within which individual compartments are placed. The 
number of individual compartments (in Figure 4.3) will vary, based on the number of eggs to 
be boiled in one batch.

11.	 This is a sensor hub that has a water level sensor to determine the current water level and 
remove the possibility of underflow or overflow, a temperature sensor to determine the 
current temperature of the compartment, and a pressure sensor to determine the current 
pressure conditions.

12.	 This is the instrument panel located on the main unit to indicate the operation of the overall 
unit and provide other controls, such as the ON/OFF switch.

The water level in each of the compartments is controlled by a combination of a water level sensor 
(component 11) and the water flow regulator (component 6). The boiling of water is performed 
by a heating element (component 4). The complete assembly is contained in the egg boiler body 
(component 10).
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A high-level context diagram of the solution is shown in the following figure:

Figure 4.4 – A high-level diagram of a smart egg boiler

The following diagram details the step-by-step process regarding how an egg is pricked:
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Figure 4.5 – The operation of the pricking tool and the minuscule camera

Ideal boiling conditions are initially configured by the egg boiler manufacturer. However, as video 
analytics forms a key part of the solution, these boiling conditions are continuously refined, based 
on the actual usage by end users (using mobile devices). The end users rate the output quality of each 
boiled egg, and this feedback is used to further refine the boiling operations. The training of these ML 
models is done on a central server and then deployed to the egg boiler device.
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This smart egg boiler serves multiple benefits over traditional egg boilers:

•	 It gives a more holistic view of the egg-boiling process.

•	 It prevents eggs from breaking and spoiling the compartment.

•	 It provides an ideal boiling operation as per the egg’s characteristics, resulting in better-quality 
boiled eggs.

•	 It optimizes water as well as energy consumption – you boil each egg as per its unique 
requirements, rather than subjecting all eggs to a similar boiling cycle (condition-based boiling 
rather than time-based boiling).

Realizing the use case

The implementation of the smart egg boiler is detailed in the following figure:

Figure 4.6 – The realization of the smart egg boiler use case by leveraging IoT patterns
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The main components of the smart egg boiler solution (as depicted by the numbers in the preceding 
figure) are elaborated here:

1.	 Sensor: The unique requirements of the current use case can be met by using a diverse set 
of sensors:

	� A water-level sensor will determine the current water level in the boiling compartment 
and avoid water overflow or underflow. There is a variety of water level sensors available on 
the market that communicate using diverse communication technologies (Wi-Fi, Zigbee, 
analog, Inter-Integrated Circuit (I2C), and so on). However, in the current context, a 
water-level sensor communicating with the DG over a wired channel (analog or I2C) is the 
most appropriate.

	� A minuscule 2D camera is used to determine the shell thickness, the internal characteristics 
(for example, yolk texture), and whether the desired state of the egg has been reached or 
not. This camera is inserted via a spring action (refer to Figure 4.5). An additional function 
supported by this camera is to provide a real-time video feed to the user so that they can 
see the boiling state in real time and (if required) preemptively cancel the ongoing boiling 
operation. This camera sends the video feed to the DG over a wired (Ethernet) or wireless 
(Wi-Fi) channel.

	� One additional 2D camera is required to determine the external characteristics of the egg 
(the shape and pigmentation). To determine the size, a 3D camera is required. Both cameras 
will send the feed to the DG over a wired (Ethernet) or wireless (Wi-Fi) channel.

	� A pH sensor is required to estimate the egg’s age and is attached to the minuscule camera. 
Normally, the output of this sensor is fed into the DG using a wired channel, and the data 
can be sent in analog format or by using a digital interface (for example, the I2C protocol).

	� A weight sensor will help to determine the egg’s weight, which will be used to estimate 
the egg’s density. Like the water level sensor, the weight sensor is available in a rich set of 
connectivity options (Bluetooth Low Energy (BLE), Wi-Fi, Zigbee, analog, I2C, and so on); 
however, to optimize cost and power usage, the BLE protocol is suitable here.

	� The presence of a temperature and pressure sensor ensures that the egg boiler maintains 
temperatures within a defined threshold and reduces the possibility of egg breakage during 
boiling operation. Typically, both these sensors are housed in a single sensor assembly. 
Temperature and pressure sensors are supported on multiple communication protocols 
such as BLE, Wi-Fi, Zigbee, analog, and I2C. In the current use case, a wired connection to 
the DG with the I2C communication protocol is the most suitable.

2.	 Device Gateway: The DG here handles multiple functionalities such as the following:

	� Receiving and analyzing data from attached sensors. As the sensors interact with the DG 
over multiple protocols, they should support all those protocols.
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	� Enabling local and remote connectivity Local connectivity is required to communicate 
with locally paired devices (mobile phones, tablets, a smartwatch, and so on). This pairing, 
using the BLE communication protocol, helps users to monitor the operation of the smart 
boiler, set preferences or settings (soft/medium/hard-boiled, setting the water level, enabling 
a child lock, and so on), and configure the settings.

	� Additionally, the DG is equipped with Wi-Fi or a cellular module to enable connectivity 
with a central server. Central server connectivity is required to receive firmware updates, 
download the latest ML models to ensure the best boiling conditions, send feedback from 
the user regarding boiling results, and so on.

	� Sending control instructions to actuators to regulate the operation of sensors such as the 
heating element, pricking assembly, and water-level controller.

	� Storing data locally if there is connectivity loss with the central server, and data synchronization 
with it once connectivity is reestablished.

3.	 Local Rule Engine: The LRE will host ML models that enable ideal boiling conditions and 
perform analytics on the video feed, received from connected video cameras to determine the 
egg characteristics as well as the current boiling state. This also helps enforce defined rules 
(for example, allowing/disallowing the entry of water into the compartment depending on the 
level indicated by the level sensor, stopping the heating elements if the temperature goes above 
the allowable threshold, and determining the egg characteristics by combining data from the 
2D/3D video cameras and the weight sensor). Almost all the video analytics are done locally 
to minimize latency and optimize the available bandwidth. The LRE is also responsible for 
indicating the current boiling status using the attached LEDs.

4.	 Central server: The central server aggregates data from multiple egg boilers and host components 
such as DT, GRE, AI/ML model creation, and deployment logic. The central server also 
hosts functionality to deploy firmware upgrades/patches onto the DGs and manage security 
requirements – for example, certificate rotation. The feedback from users regarding the quality of 
boiled eggs is analyzed by the central server, and this information is used for model refinement.

5.	 Digital twin: The DT acts as a virtual representation of every egg boiler. The user is able to view 
the current state of the egg boiler and initiate required actions if they are outside the premises. 
If there is an egg boiler malfunction, the DT is used to send troubleshooting instructions to 
the egg boiler.

6.	 File upload: In this example, the file upload pattern is used to enable firmware upgrades to the 
DG and (in some cases) end devices (sensors and actuators) and to enable certificate rotation.

7.	 Device management: This pattern is used to onboard and deboard DGs and associated end 
devices, monitor the connectivity status of individual DGs, fetch the system state, and issue 
troubleshooting commands.
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8.	 AI/ML integration: AI/ML models created on the central server and deployed on the DG will 
help to analyze the boiling conditions that result in the best boiling output. In other words, 
this component is instrumental in mapping an egg’s unique characteristics to its ideal boiling 
conditions. This is also used to predict any malfunction of the egg boiler by analyzing the 
operating conditions.

9.	 External system integration(s): The central server can be integrated with external systems 
such as payment, Customer Relationship Management (CRM), and Enterprise Resource 
Planning (ERP) systems.

Integration with a payment system will allow a device manufacturer to enforce the payment 
conditions/plans with the end user. For example, a basic plan will only allow a fixed boiling 
pattern, whereas a premium plan will enable model refinement. This integration will also ensure 
that the service is provided to only those users who don’t have outstanding dues.

As user feedback is a critical component for the success of the current use case, integration with 
CRM systems will ensure that feedback is provided by authentic users only; also, it will help to 
correlate the feedback with historical data to eliminate extraneous feedback. Additional analytics 
can be done to map feedback to a person’s demographics – for example, age, gender, and region.

An ERP system will provide additional device (boiler) metadata that can be used to determine 
information such as device location and warranty information.

At the DG level, there can be local integrations with other smart home devices (an announcement 
on a smart speaker once the boiling operation is over). Similarly, operational and diagnostics 
APIs exposed by the smart egg boiler can be consumed by a smart home mobile app (to provide 
local monitoring/control) that interfaces with other similar smart devices in the home/kitchen, 
avoiding the need to have a separate app for egg boiler.

10.	 Actuator: This use case relies on multiple actuators to complete its operation:

	� A water-level controller is connected over the I2C channel with the DG and controls the 
amount of water that is available for the boiling operation.

	� A heating element controller controls the temperature inside the boiler and is connected 
over the I2C protocol with the DG.

	� A pricking assembly, as shown in Figure 4.5, is another form of actuator that is connected 
with the DG over I2C.

	� LEDs that show the status of the boiler operation are connected over the I2C channel.

The section introduced an innovative idea of the smart egg boiler and how it can be realized using 
IoT patterns.
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Summary
This chapter demonstrated how the IoT patterns introduced in previous chapters can be used to 
realize interesting use cases in the consumer domain, thereby demonstrating the efficacy of the 
patterns. This chapter offered a glimpse of the type of sensors and actuators that we need for our use 
case implementation. Additionally, this chapter looked at the type of architectural decisions we need 
to make (for example, the type of logic that must be executed at the edge or DG versus the logic that 
needs to be implemented or hosted in the central server).

The next chapter will continue our journey, where we will see the type of use cases that are relevant 
in the retail domain and how they can be implemented using the architectural patterns introduced 
in previous chapters.



5
Pattern Implementation in the  

Smart City Domain

There is a huge focus on enhancing the infrastructure of existing cities to make it smarter and more 
efficient. Adding sensing and actuation capabilities to parts of a city’s infrastructure, such as utilities 
(lower wastage and minimal disruptions), power plants (safer operations and predictive behavior), 
traffic systems (for controlling congestion), law enforcement (crime prevention), educational institutions 
(enhanced engagement for students and automation of regular tasks for teachers), and healthcare 
services (timely emergency response), and integrating the required communication technologies 
will make cities safer, more intelligent, environmentally sustainable, and energy-efficient, resulting 
in improvement in living conditions of city dwellers.

The chapter introduces a few use cases that are relevant to a smart city and how these can be implemented 
by leveraging the IoT patterns described in earlier chapters. Specifically, this chapter provides details 
about four use cases:

•	 A smart speaker for modernizing education

•	 Monitoring the condition of perishable goods

•	 Driver behavior monitoring

•	 Automatic replenishment of consumables and raw materials

•	 Additional use cases

The first use case is innovative and the remaining three are relatively well-known use cases in a smart 
city context. After going through the chapter, the reader will be able to conceptualize, architect, and 
implement additional use cases in this domain.
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A smart speaker for modernizing education
The capability of smart speakers to recognize voices and their ability to process information at the edge 
and integrate with central server services can be a potent combination for revolutionizing education 
and providing a level playing field for all students.

In addition to smart speakers and central server services, a mini solar plant is required to power smart 
speakers and the related hardware (such as routers) on the school premises, as the electricity supply 
is generally choppy in developing countries.

This use case can be further subdivided into the following two sub-use cases:

•	 Transforming education by providing benefits to students and teachers: Students gain by 
improving their verbal communication skills, resulting in enhanced confidence, and teachers 
stand to gain by automating mundane educational tasks:

	� Improvement in pronunciation for non-vernacular languages: An example of this is English 
in the Indian context. Input to the smart speaker is subjected to a central server-hosted AI/
ML engine to compare the received input with reference audio files (converting audio into 
text and regenerating audio using a text-to-speech engine). The smart speaker then provides 
a list of wrongly pronounced words.

	� Filler word reduction: Text is obtained from the received audio input and filler words (such 
as um, aah etc.) in the output text are counted. The smart speaker then lists the filler words, 
along with their occurrence. This would be a three-step process as given here:

i.	 Listening to students’ articulation

ii.	 Comparing the expected pronunciation with the recorded speech (central server services 
for converting audio into text and text into audio would be leveraged)

iii.	 Providing feedback regarding mispronounced words and a list or count of filler words 
at the end of the recording session

	� Automating attendance administration/viva voce: The smart speaker would be used to 
ask questions from a predetermined set and record the responses. The responses can then 
be analyzed by generating text from the received responses and comparing it with correct 
answers. Similarly, the attendance process can be automated by recording response from 
each student.

•	 Scene articulation for visually challenged students: This involves students who are visually 
impaired requesting specific video content; smart speakers and central server services then work 
in tandem to generate scene information as metadata. Scene metadata sequenced with audio 
already present provides vivid scene imagery. The required metadata can be recorded manually 
using a smart speaker by volunteers by pausing the video, articulating the scene information, 
and then resuming the video to record the original audio, or in an automated fashion by using 
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central server services specifically designed for voice recognition. In a way, the smart speaker 
can act as eyes for visually impaired students by opening access to educational/edutainment 
videos that would otherwise have limited utility.

A Local Rule Engine (LRE) deployed on a smart speaker and a Global Rule Engine (GRE) deployed 
on a central server would contribute significantly to the education sector in developing countries by 
doing the following:

•	 Democratizing the availability of video content for visually impaired students

•	 Acting as a language learning aid for students

•	 Putting effective tools in the hands of teachers – enabling them to focus on learning innovative 
teaching skills, as the amount of time spent on mundane activities is considerably reduced

The features related to the current use case can be implemented by following a platform-centric 
approach whereby the platform provides the basic capabilities of voice recognition (audio-to-text) 
and voice synthesis (text-to-audio).

 Another point worth noting is that the platform should be able to process information at the edge as 
well as in the central server (the LRE and GRE as stated in the Rule Engine pattern (refer to Chapter 3 
for more details). The LRE would be used to process wake-up phrases, as well as to handle simple 
queries. Complex queries would be sent to the GRE for processing and the results would be sent back 
to the LRE and would be ultimately communicated to the end user.

An AI/ML pattern would also play a critical role here – primarily for processing audio commands 
and determining the appropriate response. The system must be self-learning as well as self-correcting 
since the level of queries is expected to increase both in complexity as well as diversity with each 
passing day. The GRE would create ML models at regular intervals and push them to the LRE (hosted 
in the smart speaker) so that the smart speaker could answer the maximum number of queries even 
without network connectivity.

An implementation of the smart speaker use case and the segregation of responsibilities between the 
GRE and the LRE are shown in the following figure:
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Figure 5.1 – Realization of the smart speaker use case by leveraging 

patterns at the edge/local and central server

Important note
The figure merely illustrates how the LRE and GRE can be used in complementary roles. It 
does not intend to list all the possible architectural patterns that can be used.

This section described the smart speaker use case and its implementation. In the next section, we will 
look at another use case involving real-time condition monitoring for perishable goods.

Monitoring the condition of perishable goods
In this use case, a fleet of trucks carries perishable goods from one location to another and the state 
of the goods being ferried is continuously monitored.
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For tracking the state of goods being transported in near real time, a set of sensors (e.g., for temperature, 
moisture, gas, etc.) will be installed/placed near the goods and will send the current state to the central 
server along with the current location (the truck’s GPS location). The data received is analyzed at the 
central server and suitable action(s) are relayed back to the specific truck (or to the complete fleet in 
special scenarios) so that appropriate action can be taken.

Some amount of analysis (and action) needs to be performed locally, especially in scenarios where 
connectivity with the backend is erratic. For example, if the condition of goods has deteriorated 
beyond an acceptable limit, it would be prudent to discard the shipment rather than complete the 
journey to the end destination. Typically, this type of analysis would be performed at the central server; 
however, as connectivity might not be available throughout the shipment route, these analytics need 
to be performed at a local/edge server (i.e., at the individual truck level).

There would also be a need by the IoT subsystem to update dependent external systems (part of the 
supply chain data pipeline) about the current shipment details (delayed/timely delivery, the current 
condition of goods, etc.) so that downstream workflows can be triggered (for example, ordering a 
shipment from an alternate vendor if the shipment condition is not good).

Data from the fleet needs to be aggregated at the central server for more extensive analysis and to trigger 
actions from the insights generated, which necessitates provisioning a rule engine at the central server.

As the connectivity of the fleet to the central server can’t be always guaranteed, the state of each 
truck (including the shipment state) needs to be saved onto the digital twin (DT) hosted on a central 
server. The DT would also be used for storing instructions to be passed on to the individual trucks; for 
example, “Due to an order change, shipment X needs to be delivered to location Y instead of location Z.”

The key components within this use case are illustrated in the following figure:

Figure 5.2 – Realization of the condition monitoring use case by leveraging IoT patterns
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This use case can be realized by leveraging the patterns mentioned in previous chapters – some of 
the patterns need to be implemented at the edge (at the individual truck level) and some will be 
implemented at the central server, as shown in the preceding figure. Details about the patterns leveraged 
in implementing the use case are elaborated here:

1.	 Sensor: Sensors will monitor physical conditions such as temperature, humidity, pressure, 
vibration, CO2 levels, ammonia levels, and so on. The choice of sensors will depend on the material 
being shipped. Similarly, a GPS sensor will be present to send locational information. These 
sensors will send the current parameter values to the device gateway via supported interfaces.

2.	 Device Gateway (DG): The DG receives data from sensors and sends it to the central server. 
It is also responsible for buffering data in case of loss of connectivity with the central server. 
Similarly, it will receive commands/notifications from the central server (e.g., a changing 
thermostat value, a changed shipment route, etc.). Also, in some cases, the DG will act as a 
protocol (or data format) translator if sensor/actuator data needs to be converted into a standard 
format before being sent to the central server.

3.	 Local Rule Engine (LRE): The LRE hosted on a DG will evaluate basic rules and analytics, 
especially in scenarios when the connectivity with the backend is not available (e.g., setting 
the thermostat to a given value based on the observed ambient temperature). Similarly, some 
of the rules that need to be evaluated on an almost real-time basis (and hence can’t afford the 
latency involved in a round trip to the GRE/central server) will also be evaluated on the LRE.

4.	 Central server: All the trucks in the fleet will connect to the central server to push data, as well 
as receive commands. Central server hosting will provide adequate scalability/elasticity in case 
the number of trucks increases or decreases. As complex analytics are expected to run on this 
server, generally, compute and storage requirements are much higher here than for the DG.

5.	 Digital twin (DT): The DT will act as a virtual representation of each truck in the fleet. Queries 
raised by the end user to understand the state or condition of an individual truck will be resolved 
by the DT. Also, any command sent to an individual truck (e.g., to change the route) will again 
be sent via the DT only. In this manner, the DT acts as an information buffer between trucks 
and higher-level applications that are hosted within the central server. This will also remove 
tight coupling between higher-level applications with lower-level concerns (e.g., whether a 
particular truck is within the connectivity range or not).

6.	 Global Rule Engine (GRE): The GRE will execute rules based on events received from the 
complete fleet. Rule execution will be similar to that done at the LRE but differ in terms of the 
data volume and algorithmic complexity. In fact, some of the event processing will fall in the 
domain of complex event processing (CPE).

7.	 AI/ML integration: AI/ML will help automate some of the decisions that need to be made, such 
as monitoring calibration drift for sensors/actuators and automating the associated remediation 
steps, predicting performance bottlenecks and operational failures while eliminating/minimizing 
false alarms, and so on. The level to which AI/ML is leveraged will primarily depend on the 
specific implementation and the level of automation that is required.
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8.	 Enterprise/legacy system integration(s): An IoT system will act as a data conduit with existing 
external systems for sharing fleet data and triggering the required enterprise workflows. In this 
case, the data that is shared with external systems and invoked workflows will largely depend 
on the enterprise context. In some scenarios, the IoT system will communicate with external 
systems to order fresh supplies in case the current shipment is no longer usable. Another 
possible scenario is in case some organizations monitor the condition of trucks in addition to 
monitoring the condition of shipments. Additional data (e.g., CAN data) will be sent along 
with data related to shipment conditions. Events from the IoT system indicating that some of 
the truck parts need replacement/repair will trigger downstream workflows such as notifying 
vendors to arrange for defective parts, scheduling an appointment with the nearest service 
station for truck repairs, and so on.

9.	 Actuator: The actuator will carry out the commands sent by the LRE or GRE. In this case, the 
actuator will be in the form of a thermostat and the commands will be to set the temperature 
to a particular value. Again, as can be seen, the actuator can take different forms (depending 
on the application scenario) but its main function is to convert the virtual decision (taken by 
the LRE or GRE) into a real-world manifestation.

After understanding how monitoring the condition of perishable goods can be implemented, we 
will explore another interesting use case about monitoring driver behavior in an automated fashion.

Driver behavior monitoring
A significant number of road fatalities could be averted if a driver’s overt/covert behavior is monitored 
in real time. Overt abnormal behavior such as that related to drowsiness (or driving in an intoxicated 
state) can be detected by a camera with the ability to analyze video feeds locally at a DG installed in 
the vehicle. Trained ML models for analyzing video feeds are pushed periodically from a central server. 
These models gauge and report driver behavior, along with a confidence level. Analysis of behavioral 
patterns can be further augmented by obtaining additional data from the driver’s wearable device 
(such as pulse rate and last night’s sleep quality).

Processing needs to be done locally (at the edge) as video feeds can’t be sent to the central server 
as it would hog the communication channel’s bandwidth, as well as the response not being within 
expected time limits.

Along with the video feed, other crucial parameters (sharp turns, sudden brakes, acceleration patterns, 
and so on) need to be analyzed and correlated with video analytics to arrive at a more holistic and 
accurate understanding of a driver’s behavior. This additional data would be obtained from an Engine 
Control Unit (ECU) and On-Board Diagnostics (OBD) port, which come pre-installed in almost 
all modern vehicles.

Once the driver’s behavior is accurately determined and is co-related with vehicle key operational 
parameters (e.g., speed, braking/turning patterns, etc.), interesting use cases can be realized by an 
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LRE, where events will be analyzed to determine whether a preconfigured rule is violated, and if they 
are, an associated action can be triggered. Some of the possible actions are listed here:

•	 Dynamic monitoring and control over the allowed speed limit – as in, the speed of the car can 
be restricted if divergent driver behavior is observed

•	 Sending alerts to law enforcement agencies

•	 Curbing vehicle speed beyond an upper limit

•	 Blocking entertainment systems to reduce distractions

•	 Notification to insurance companies for adjusting an insurance premium based on driving history

The key components of this use case are illustrated in the following figure:

Figure 5.3 – Realization of a driver monitoring use case by 

leveraging a DT, LRE/GRE, DG, and AI/ML patterns
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This section went through the implementation of a driver behavior monitoring use case and its 
implementation. The next section will detail a scenario in which consumables can be ordered 
automatically once the available quantity reaches a defined threshold.

Automatic replenishment of consumables and raw 
materials
Consumer devices and appliances are getting smarter and more connected and we are not far off 
from the day when they will be able to detect and order the required consumables or raw materials by 
themselves. These appliances will detect whether they are running low on raw materials/consumables 
and then notify the user about the consumables that need to be replenished and leave the final 
purchasing decision to the owner. Over time, the system can learn someone’s behavior/preferences 
and even make the purchasing decision on their own. Appliances will have their own processing logic 
and will connect to a mobile device (using Bluetooth Low Energy (BLE) or a similar protocol) to 
send their statuses to a central server.

The key components of this use case are illustrated in the following figure:

Figure 5.4 – Realization of an automatic consumable ordering use case by leveraging IoT patterns
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The main components of an automatic ordering use case are elaborated here:

1.	 Consumer appliances: Various consumer appliances (a coffee maker, blender, toaster, microwave, 
pressure cooker, kettle, water purifier, vacuum cleaner, air conditioner, oven, dishwasher, printer, 
and refrigerator) can publish their current consumables/raw material statuses to the user as 
notifications on their mobile device. The three representative appliances are detailed here:

A.	 Refrigerator: The refrigerator is equipped with sensors such as liquid level detectors (which 
detect the amount of milk/water/juice left), and can also use video cameras to determine 
the amount of remaining fruits and vegetables.

B.	 Printer: The printer’s ink cartridge level can be communicated to a central server via a mobile 
device so that it can be replaced on time. The printer can also communicate its operational 
status to a central server, which, in turn, can send repair recommendations to the user.

C.	 Air conditioner: The air conditioner can either send operational (the filters requiring 
cleaning) or maintenance (the probability of the compressor malfunctioning in forthcoming 
weeks) information to the user.

2.	 Local connectivity: Using Wi-Fi or BLE pairing, the smart appliances will connect to the DG 
and this will enable bi-directional communication with the DG.

3.	 Mobile device: The mobile device here will perform the role of DG and serves two main purposes:

	� Display the notifications generated by appliances and allow the user to accept the 
recommendations regarding ordering supplies and authorizing payments

	� Enable connectivity with the backend server and perform local analytics/process local 
rule actions

4.	 Long-range connectivity: Long-range connectivity such as Wi-Fi/cellular connectivity is 
required for a mobile device/DG to connect to the central server.

5.	 Digital twin: The DT will act as a virtual representation of every home. Users will be able 
to view the current state of their home appliances. A DT for the home can be designed in a 
hierarchical fashion, where DTs of individual rooms, garages, washrooms, and so on are part of 
the overall house’s DT. The need to have this hierarchical DT, as well as the number of hierarchy 
levels, will depend on the complexity and scale of the individual house. As mentioned earlier, 
both the operational as well as maintenance-related information will be available for all the 
connected devices. Even the connectivity status (connected, not connected, last connectivity 
status, etc.) will be available.
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6.	 File upload: This pattern will be used to enable firmware upgrades to the DG (updating the 
version of a mobile app, for instance) and (in some cases) to end devices (appliances) and for 
enabling certificate rotation.

7.	 Device management: This pattern is used to onboard and deboard DGs and associated end 
devices and monitor the connectivity status of individual DGs. This would also be used to fetch 
the system state and issue troubleshooting commands.

8.	 AI/ML integration: This pattern can help in predicting the need for maintenance of appliances 
by analyzing the operational data and comparing it with known failure models. It can also 
determine the right vendor to purchase supplies given the different combinations of price and 
delivery timelines offered by vendors. Similarly, it can analyze the customer feedback available 
on social media channels to avoid purchasing from non-reputable vendors.

9.	 External system integration(s): This integration will enable the system to determine vendors 
who can provide supplies within the expected budget and delivery timelines. Similarly, integration 
will also help to find the right skilled person who can perform preventive maintenance. The 
system can also determine whether the appliance is within warranty and initiate a service 
request to prevent appliance malfunction. Integration can leverage users’ historical health data 
and suggest supplies that are conducive to somebody’s overall health and vitality.

These sections covered various use cases that can transform a city into a smart city. Let’s look at some 
additional use cases in the next section.

Additional use cases
Some of the additional use cases that can be implemented in a smart city are shown in the 
following diagram:
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Figure 5.5 – Possible smart city use cases

These applications can be developed to make life of the city dweller more meaningful and interesting.

Summary
The scope of the smart city is much wider than what is covered in this chapter and will touch the lives 
of city residents in multiple ways.

This chapter demonstrated how IoT patterns can be used to realize some of the use cases. Additionally, 
the chapter provided details related to implementation nuances (sensors, actuators, connectivity, etc.) 
and how these change from one use case to another. The list of use cases provided is by no means 
exhaustive and the reader is encouraged to use the knowledge gained in this chapter to devise solutions 
that would solve particular problems/issues that are prevalent in their city.

In the next chapter, we will continue this journey and examine some use cases that are relevant in the 
retail domain and how they can be implemented using architectural patterns.
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Pattern Implementation  

in the Retail Domain

The chapter provides an overview of the retail domain and how IoT is set to transform this domain 
by enabling innovative use cases and applications. This chapter will help the reader in understanding 
the retail domain from a historical perspective and how IoT, along with other technologies, is expected 
to catapult it to another level.

The chapter also lists the challenges faced by retailers and how these challenges can be effectively 
mitigated by IoT. The information gained in this chapter is then used to show how a next-generation 
retail store can be realized, where the store, the shopper, and the merchandise are continuously 
monitored to gather useful insights and improve store operation.

An overview of the retail domain
The term retail transactions refers to the transactions where a product is sold directly to an end 
consumer for their own consumption. The retail industry is one of the fastest-growing industries and 
is marked by intense competition among existing players. Also, shoppers have high bargaining power 
due to the non-differentiated nature of the goods and the presence of multiple suppliers. All of this 
makes it extremely difficult for retailers to attract and retain a loyal customer base.

Another interesting aspect is the huge difference of scale at which retailers operate – ranging from 
tiny neighborhood mom-and-pop stores to all the way to mega stores. Another key feature of this 
domain is that shopper behavior doesn’t change drastically in short term, and this makes it easier for 
retailers to run analytics on the purchase history and provide more reasonable recommendations.

The domain has seen several transformations since its inception and these changes can be broadly 
categorized into four major transitions, as shown in the following diagram:
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Figure 6.1 – Stages of the retail industry’s maturity

The key characteristics of the transitions shown in the previous figure are as follows:

•	 Retail 1.0:

	� Physical (brick-and-mortar) stores

	� Single-channel

	� Self-service

	� Cash transactions

•	 Retail 2.0:

	� Departmental stores and hypermarkets

	� Suburban plazas

	� Credit card transactions

	� Loyalty programs

	� Minimal customer purchase analytics

Retail 3.0:

	� E-commerce

	� Global supply chains

	� Predictive delivery timelines (days)

	� Extensive purchase analytics

	� Basic recommendations

	� Online payments



An overview of the retail domain 91

Retail 4.0:

	� Multi- and omni-channel

	� IoT, robotics, AI, and Augmented Reality/Virtual Reality (AR/VR)

	� Social media reviews

	� Self-checkout and buy online, pick up in-store (BOPIS)

	� Showrooming and web-rooming

	� Real-time and end-to-end tracking of merchandise

	� Recommendations based on customer segmentation and related purchases

	� Automated replenishments

	� Predictive delivery (hours)

	� Hypercustomization of orders

Retailers face a diverse set of challenges, which includes the following:

•	 Increased complexity in the supply chain, diverse sourcing patterns, and increased variety 
in sales and distribution channels. This is further exacerbated by intense competition and 
reduced margins.

•	 Expectations of omni-channel presence and hyper-personalization on the part of shoppers and 
the related challenge of keeping inventory levels synchronized between online and physical stores.

•	 Shoppers expect a seamless transition between channels – for example, online shopping 
loyalty programs should be automatically carried forward when somebody visits a physical 
store. Similarly, retailers should be aware of an online purchase that a shopper made few hours 
earlier and shouldn’t recommend the same or similar products but rather complementary or 
related products.

•	 A reduced product life cycle and the corresponding pressure of continuous inventory replenishment.

•	 When cameras based on technologies such as light detection and ranging (LiDAR) or Infrared 
(IR) are used to track shopper movement/behavior, the data gathered may be incorrect as these 
technologies are unable to account for movement of retail staff within the retail store. Although, 
data can be corrected out of the band by excluding staff movement through the provision of 
unique tags, however, this makes the overall implementation complex. Luxury stores are typically 
more impacted by this, as the ratio of consumers to staff is quite low.

•	 With the convenience offered by e-commerce sites, offline/brick-and-mortar stores are facing 
difficulties in attracting and retaining shopper footfall.

•	 The inability to gain real-time visibility of key metrics such as inventory levels results in 
stockouts/overstocking situations.
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•	 There is a need to ensure efficient utilization of energy and packaging materials and adherence 
to overall sustainability goals. There is influence from governmental agencies here, as well as 
from youngsters/millennials who want to purchase from environmentally conscious brands.

•	 Retailers are quite well versed in the nuances of the industry; however, they find it difficult to 
hire and retain skilled personnel who can integrate diverse technologies such as IoT, Big data, 
AI, ML, and so on, which are required to implement advanced retail solutions.

This chapter covers IoT applications that are relevant within a retail store. However, it is worth 
noting that IoT plays a vital role not only within a retail store but also has an impact throughout the 
supply chain – for example, a retailer can provide a shopper with the accurate availability time of an 
out-of-stock item by checking the item’s inventory levels at the manufacturer site and then factoring 
in additional variables such as transportation time. Estimation can be further refined by considering 
external factors such as weather, road conditions, social disturbances, and so on.

Retail goods change multiple hands before they reach a retail store, and the related stages are shown 
in the following figure:

Figure 6.2 – Transfer of retail goods from supplier to shopper

It is beneficial to track the location and condition of an item throughout the supply chain rather than 
tracking it only when it reaches retail store. This makes delivery timelines more predictable, eliminates 
waste, and helps in ensuring that the received item is of the expected quality.

Omni-channel presence is the de facto expectation from shoppers. Retailers obtain insights into 
shopper purchasing behavior by leveraging data from both e-commerce sites and physical stores. 
Shopper touchpoints can be analyzed for optimizing the shopping experience by tracking metrics 
and Key Performance Indicators (KPIs) such as the following:

•	 Footfall count

•	 Dwell time

•	 Conversion rates

•	 Inventory turnover
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•	 Physical versus digital traffic

•	 Customer segmentation

•	 Product segmentation

•	 Shopper lifetime sales

•	 Cross-selling and upselling opportunities

•	 Demand forecasting

•	 Shelf and space utilization heatmaps

•	 Planogram metrics

•	 Brand/product loyalty

•	 Customer churn

•	 Customer decision trees

•	 Arrival time prediction

Now that we have good background on the retail domain, let us understand how real-time data 
ingestion can be done and how the data ingested can be leveraged.

Using real-time IoT data
Real time IoT data (clickstream data from websites and footfall data from physical stores) is integrated 
with other systems, such as ERP, CRM, and Point-of-Sale (PoS) systems. This helps generate deeper 
and broader insights such as the following:

•	 The number of items on shelves can be determined to ensure automated inventory replenishment, 
and related systems (financial management, invoicing, taxation, and so on) are kept synchronized 
for increased efficiency and error reduction.

In addition to determining the number of products, this monitoring capability can be integrated 
with a pricing engine to recommend discounts on old products.

•	 Operational (energy consumption) and diagnostics data from retail store equipment (e.g., 
refrigeration, air conditioning, and lighting equipment) can be used to perform predictive 
maintenance, ensuring 24/7 operation.

•	 Sales trends and their correlation with factors such as seasonality help in redefining existing 
business models and predicting demand patterns and supply fluctuations, and this can be used 
in determining the effectiveness of past promotions.
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•	 Personalized and targeted promotions, product recommendations, and loyalty programs are 
achieved by analyzing purchase history and performing detailed customer segmentation. An 
example of advanced personalized prediction would be a case in which the retailer anticipates 
the need for a product even before the shopper goes to buy something (by deducing intent 
from social media comments, for example).

•	 Product recommendations are arrived at by analyzing both the shopper’s own data as well the 
data of people in similar demographics:

	� Recommendations based on a shopper’s purchasing history: Here, systems analyze the 
purchasing history of the shopper to understand product preferences, and products that fit 
with past purchases are provided as recommendations

	� Recommendations based on the purchasing history of other shoppers who belong to 
the same demographic group: Here, past purchases of other shoppers are analyzed, and 
products are recommended based on similarity in demographics – for example, age group, 
gender, ethnic background, economic status, and so on

•	 By analyzing the time spent by shoppers in various store locations, the optimum physical store 
layout and staff requirements can be determined, reducing operational costs. This will also help 
in placing low-visibility items in areas with more footfall. Similarly, the ideal product placement 
can be determined, which can aid in designing planograms, shopper journeys, and so on.

•	 Wait times at cashier counters can be predicted and managed, including by providing options 
for self-service, self-checkout, self-search, and self-support, as well as faster whole basket/whole 
trolley checkouts, ultimately moving toward a cashier-free vision.

•	 Optimal pricing strategies are determined by leveraging AI/ML technologies that consider 
deterministic and non-deterministic factors such as supply chain vulnerabilities, seasonal 
trends, and competitor pricing.

•	 A geo-fence is created by using technologies such as RFID and Wi-Fi to help prevent retail 
shrinkage by flagging shoplifting incidents. These technologies can also be used to flag products 
that are placed in non-designated locations.

•	 Retail processes (e.g., return processing) are automated by making the process faster and 
error-free. Unique identifiers (bar codes, QR codes, or RFID tags) attached to inventory items 
help update the current store’s inventory levels in case of product returns and simultaneously 
update the systems such as ERP systems. This ensures that physical and virtual inventory levels 
are accurate and are in sync.

•	 These tags will enable the tracking of inventory items during their entire life cycles – from the 
time item is received at the store gates to when it is finally handed over to the shopper:
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	� Item receiving: As RFID tags don’t have line-of-sight requirements, individual scanning of 
items is not needed and they can be read in groups – making the process fast and devoid of 
any manual/oversight errors.

	� Locating items: A combination of RFID tags and readers are used to locate items within a 
store by using the RFID readers to measure the signal strength emitted by tags – the closer 
the item is from the reader, the higher the detected signal strength is, and vice versa. The 
same concept can be used to define geo-fencing to ensure that a particular item does not 
leave the designated area. This use case can be further extended to automatically ordering 
items if the count is below the threshold.

	� Checkout processing: As multiple items can be scanned in one go, this makes the checkout 
process efficient.

•	 The attendance of store employees can be automated by adding additional biometric systems 
such as fingerprint sensors and facial recognition cameras. The attendance data can be further 
integrated with payroll systems for accurate payment to employees.

•	 Customer support is made more efficient by ensuring quicker responses to shopper queries 
and an improved shopping experience.

•	 By attaching unique identification tags to the inventory items and comparing the available 
count with the data shown in ERP systems, inventory reconciliation process is automated and 
performed in a real-time fashion.

•	 Technologies such as AR/VR can provide immersive and enriching shopping experiences. 
Some of the possibilities are as follows:

	� Helping shoppers to try various options before purchasing, increasing the store’s footfall 
and customer engagement and reducing the return rate

	� Superimposing additional information (price, availability, reviews, color options, etc.) onto 
the product view

	� Guiding the shopper to the relevant product and its placement within the store
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The following figure summarizes the business benefits of implementing IoT in retail stores:

Figure 6.3 – Business benefits of implementing IoT in retail stores

Data from different sources (clickstream data, social media feeds, etc.) can be integrated with 
other enterprise systems such as ERP and CRM systems to derive useful insights, as shown in the 
following figure:

Figure 6.4 – Raw data ingested from multiple sources turning into useful insights

Now that we’ve gathered a high-level understanding of the retail domain, we can shift our attention 
to the type of sensors and actuators that are deployed in retail stores to support IoT use cases.
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Implementing sensors and actuators in retail stores

The typical kinds of sensors and actuators deployed in retail stores are shown in the following figure:

Figure 6.5 – Typical sensors and actuators used in retail stores

Let’s look at each of the elements shown in the preceding figure:

•	 Video camera: This discerns shoppers’ attributes (demographics, age group, and gender) and 
relates them to shopping behavior patterns. This helps generate more targeted promotional 
content and determine the efficacy of previous promotions. It also eliminates theft prevention. 
However, it can be used only if shoppers don’t have privacy concerns.

•	 Bluetooth beacons: This allows you to send context-sensitive push notifications (such as 
discounts on groceries) to registered shoppers via a store app.

•	 Wi-Fi: Wi-Fi routers detect a shopper’s location (using smartphone Wi-Fi) inside the store and 
this location information is used to optimize inventory management, calculate dwell times, 
and display customized or personalized messages, signage, and promotions.

•	 RFID: This is used to uniquely identify products in store and the technology doesn’t require 
line of sight (in contrast with other technologies such as bar codes). Moreover, multiple RFID 
tags can be read with a single scan. Another advantage is that additional information can be 
written into RFID tags, such as expiry dates, prices, and so on. These tags are typically used 
to prevent shoplifting by placing RFID readers near the store exits, which are integrated with 
an alarm system.
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•	 IR/LiDAR cameras: These cameras provide similar functionality to video cameras; however, 
they help protect the shopper’s privacy.

•	 Digital signage: This displays targeted promotions and product information (applicable 
discounts, alternate designs, available sizes, accessories, and so on)

•	 Temperature/humidity sensor and air quality sensor: These are used to ensure that the right 
products are stored in optimum ambient conditions.

•	 Bar code readers: Used at PoS terminals and cashier counters for billing.

Now, let’s take a look at this use case in greater detail.

Use case – real-time tracking in retail outlets
Tracking shoppers within a retail outlet helps to understand shopper’s objects of interest and distribute 
the inventory and staff accordingly. Without real-time tracking of shoppers using cameras, it would 
be difficult to analyze the store pathways preferred by shoppers. Determining the queue length at cash 
counters and leveraging past data to predict waiting times helps avoid checkout delays and improves 
shoppers’ experiences.

Privacy concerns

Tracking shoppers can be done by performing video analytics at the edge (using a DG); however, 
this might result in privacy concerns. Retailers need to tread a fine line between gathering data for 
understanding shopper behavior/preferences and alleviating privacy concerns. Some of the mechanisms 
that retailers use to ensure this balance are as follows:

•	 Explicitly informing (and taking consent from) shoppers about the type of data being collated 
and its intended purpose. Additionally, shoppers should have the option to revoke their consent 
at any time.

•	 Consumer tracking can be done by leveraging alternate technologies such as IR, LiDAR, or 
BLE, which provides (out of the box) shopper de-identification/anonymization. A related 
technique uses invasive sensor technologies (such as video cameras) but apply de-identification/
anonymization algorithms (e.g., data hashing) before data processing/usage.

•	 Leveraging IoT security capabilities (as detailed in Chapter 11) to ensure that the captured data 
is not inadvertently or maliciously used.

•	 Educating/training store employees regarding the importance of protecting shopper privacy 
and the implications of not adhering to it, as well as specific regulations such as the General 
Data Protection Regulation (GDPR).

Now, let’s take a look at how this use case can be realized.
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Leveraging IoT patterns

Like shopper tracking, tracking RFID/BLE-tagged merchandise provides benefits such as real-time 
inventory updates and pilferage reduction and can help you locate missing/misplaced items. This 
also enables automation of inbound processes (receiving orders, unloading and storing items, and 
the general management of incoming supplies).

The key components of this use case are illustrated in the following figure:

Figure 6.6 – Realization of a shopper/merchandise tracking use case by leveraging IoT patterns

Let’s look at these components of the use case in greater detail:

1.	 Shopper: Shoppers’ movements can be monitored by analyzing the pathways traversed and 
the related dwell times (the time spent at certain touch points) using a variety of technology:

A.	 Presence in a particular store area can be determined by analyzing a video feed or footage 
from LiDAR cameras (to mitigate privacy concerns). Video feeds can provide additional 
demographic data about the gender, age group, and so on of the shopper.
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B.	 The shopper can be tracked using a mobile application downloaded by shopper. The 
application uses Wi-Fi or BLE technology to determine the location of the shopper’s 
mobile phone and, by extension, the shopper’s location. The current location of a mobile 
phone is calculated by determining the signal strength between the mobile device and a 
fixed Wi-Fi/BLE source (e.g., a router). For better accuracy, three sources are required to 
do this, which is known as the triangulation technique.

2.	 RFID-tagged shopping trolley or cart: Trolleys or carts are affixed with RFID tags to determine 
their current location (for asset tracking purposes) or to determine the path taken by a shopper 
if a camera is not available, as their movement closely mimics the shopper’s movement.

Once special case that needs to be considered is a scenario in which store employees are 
moving carts/trolleys for cleaning or consolidation purposes. This can be corrected by using 
the fingerprint/handprint sensor to exclude store employee-initiated movements.

3.	 Store employees: With LiDAR and IR cameras, shopper movement data is skewed by the movement 
of store employees. As a result, there is a need to find an alternate mechanism to segregate 
shopper and employee movement data. One possible implementation is a mechanism by which 
store employees carry RFID tags (attached to their identification cards, for example). Camera 
data then needs to be time-synchronized with RFID reader data to generate correct analytics.

Time synchronization between multiple devices or sensors is required in many IoT solutions 
to enable proper ordering of events and accurate coordination of processes and workflows 
across multiple devices and for non-operational or diagnostics purposes, such as determining 
the exact flow of events from available logs. Techniques such as periodic synchronization with 
a Network Time Protocol (NTP) server and generating timestamps from a common source 
are used to maintain time synchronization across multiple devices.

4.	 RFID/bar code-tagged merchandise: Affixing RFID tags/bar codes to merchandise helps in 
two ways:

A.	 Pilferage elimination: RFID readers placed at the store exit gates generate an alarm if 
unauthorized merchandise is taken outside of the store premises.

B.	 Faster checkout: Tagged merchandize is invoiced quickly and this is especially relevant 
for RFID-tagged merchandise as multiple items are read in a single scan.

C.	 Self-service/self-support: The shopper brings the item of interest near to the reader and 
detailed product information is displayed on digital signage.

5.	 Video/LiDAR/IR cameras: In addition to serving the conventional need for surveillance, these 
cameras can be used to determine shopper store journeys/paths. By determining the dwell time 
in different store areas, the layout that ensures higher footfall is determined.

6.	 RFID readers: These are used to detect the presence of RFID tags in the vicinity. The relative 
signal strength of the detected tag gives an indication of the distance between the reader and 
the tag, thereby indicating the location of RFID tagged asset.
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7.	 Device Gateway: The DG acts as a bridge between sensors and actuators and executes a static 
set of rules (e.g., if theft is detected, a buzzer is sounded and/or flashing lights are turned on). 
The feed from cameras will be analyzed at the DG and the analysis results will be sent to the 
central server for detailed/complex analytics. The sensors and actuators that are attached to 
the DG in the current use case are shown in the following figure:

Figure 6.7 – Sensors and actuators attached to DG

8.	 Speaker: This would be used to sound an alarm in case of emergency as well as when theft is 
detected using RFID readers.

9.	 Flashlights: These would be used in conjunction with a speaker to visually highlight any 
emergency or theft.

10.	 Digital signage: Digital signage serves multiple functions within a retail store:

A.	 Guides shoppers within the store

B.	 Increases shoppers’ engagement by displaying relevant and context-dependent information, 
such as product reviews, approximate waiting times, product catalogs, discounts, and so on

11.	 Wi-Fi/cellular connectivity: This is required for a mobile device/DG to connect to the 
central server.

12.	 Digital twin (DT): A DT acts as a virtual representation of every store. The retailer will be able 
to determine the ambient and storage conditions.

The DT also maintains a reflection of other aspects of the store, such as shopper journeys, 
employee presence, queue length, and so on. This information is helpful in simulating various 
what-if scenarios – whether the placement of items on a particular shelf increases store footfall 
and for correlating the impact of discounts on an increase in sales.

Additionally, the DT holds the current state of all sensors and actuators. Although the content 
displayed on digital signage is controlled locally, however, in some cases, content can be pushed 
from a central server by first configuring it in the DT.
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13.	 File upload: The file upload pattern is used to enable firmware upgrades to the DG and to end 
devices (sensors and actuators) and for enabling certificate rotation. Certificates are installed 
in field devices for authentication purposes and certificate rotation (replacing an old certificate 
with a new certificate) is required for reasons such as expiry, changes in a device’s permissions 
or authorization, the occurrence of a security breach, and older certificates no longer being 
trustworthy. This is further discussed in Chapter 11.

14.	 Device management: This pattern is used to onboard and deboard DGs and associated end 
devices and monitor the connectivity status of individual DGs. This is also used to fetch the 
system state and issue troubleshooting commands. For identification of RFID, QR, or bar 
codes, these codes are initially mapped to specific items where a unique identification number 
is associated with an item’s metadata.

15.	 AI/ML integration: This pattern helps in predicting the need to maintain various equipment 
used in store by analyzing the operational data and comparing it with known failure models. 
It also determines the right vendor to purchase supplies from given the different combinations 
of price and delivery timelines offered. It also analyzes the shopper feedback available on social 
media channels to avoid purchasing from non-reputable vendors. The integration also aids in 
deciding various pricing/discounting strategies.

This integration helps in analyzing shopper paths/journeys within a store and suggest optimal 
layouts (or planograms) to maximize a shopper’s experience and sales.

Although the feed from store cameras will be analyzed locally (on a DG), the corresponding 
model, however, will be created initially by leveraging AI/ML technologies at the central server, 
and the created model deployed on a DG.

16.	 External system integration(s): This integration enables systems to determine vendors who 
can provide supplies within the expected budget and delivery timelines. This also helps to 
find the person with the right skills who can perform preventive maintenance and determine 
whether store equipment is within its warranty and initiate a service request to prevent 
equipment malfunctioning.

External systems such as HR systems are integrated to automate payroll processing based on 
the actual time spent by store employees in store. HR system integration helps in keeping RFID 
tag database in sync and avoids discrepancy due to employees joining/leaving. Integration is 
also required with third-party advertising companies for displaying promotional content on 
digital signage.

Integration with systems such as ERP systems helps to determine whether the inventory level 
of an item is below threshold to generate a timely purchase order. Integration with an external 
system is required to gauge the price offered by competitors in real time so that the appropriate 
price adjustments are made on time.

The section provided details about how some retail domain use cases are implemented using IoT 
patterns; this brings us to the end of this chapter.
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Summary
This chapter provided an overview of retail domain, the challenges faced by retailers, and how IoT 
can be used to transform this domain. By affixing sensors to humans and equipment, important 
actionable insights can be generated. Implementing data-driven recommendations enhances the 
customer experience and helps boost sales.

The chapter also illustrated how IoT technologies help track shopper journeys and understand 
purchasing behavior that is used by retailers to fine-tune marketing campaigns, resulting in an overall 
positive experience for the shopper.

The next chapter will start with an overview of the manufacturing domain and then discuss the role 
of IoT in realizing the vision of smart manufacturing.
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Manufacturing Domain

One of the domains where IoT has contributed (and is expected to contribute further) significantly to 
digitalization efforts is the manufacturing domain. The prime reason is that this domain stands to gain 
the most from obtaining real-time visibility into manufacturing operations, identifying optimization 
opportunities, and automating the existing manual processes (e.g., automating the inspection of goods 
by analyzing the video feed as it moves over the assembly), resulting in increased operational efficiency.

Most manufacturing plants already deploy automation to a certain extent (e.g., Computer Numerical 
Control or CNC). Machines are used to perform repetitive tasks such as welding, milling, cutting, 
and so on by programming a series of predefined instructions. However, there is still huge potential 
that can be tapped into by deploying IoT technologies end to end (aggregating/analyzing data from 
all plants and the complete supply chain). Manufacturers view IoT and related technologies as a tool 
that will enable them to sell not only finished goods but also associated services. Another key reason 
that the momentum of the adoption of digital transformation initiatives (and IoT technologies) has 
increased is the risk of complete business disruption caused by low-cost manufacturing hubs.

This chapter aims to provide a historical perspective of the manufacturing domain and explore how IoT 
is expected to transform it by offering multiple use cases and services. Leveraging IoT in manufacturing 
is known by different names, whether that be smart manufacturing, Industrial Internet of Things 
(IIoT), connected factories, smart factories, Industry 4.0, digital manufacturing, and so on. We will 
be using the term smart manufacturing. The chapter covers the following main topics:

•	 An overview of smart manufacturing (including the key definitions used in this domain)

•	 Exploring the evolution of the domain

•	 Realization of a smart manufacturing use case – the automatic inspection of finished goods
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An overview of smart manufacturing
IoT plays a foundational role in enabling smart manufacturing; however, there are a few additional 
or complementary technologies (which we will discuss later in this chapter) that play an equally 
significant role, as shown in the following figure:

 

Figure 7.1 – IoT and related technologies that are smart-manufacturing enablers

Readers must be aware of certain terms that are used frequently in traditional and smart manufacturing. 
Let’s discuss these in detail.
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Key terms/definitions

In this section, we’ll discuss some of the key concepts in the smart manufacturing domain:

•	 Digital threads: Digital threads connect disparate manufacturing processes or systems and 
provide an integrated view as they traverse through the different stages of their life cycles 
(conceptualization, production, usage, service, repair, and decommission). A digital thread 
is enabled by installing sensors across the manufacturing line, as well as within the smart or 
connected product itself. Digital threads are the foundational components that enable the DT 
pattern and some of the benefits of realizing digital threads are as follows:

	� Improves quality and yield by comparing the production lots against the specifications

	� Reduces material wastage and optimizes production timelines

	� Increases customer satisfaction through timely resolution of service issues

	� Continuously refines products by analyzing usage patterns

	� Enables collaboration and eliminates information silos

	� Empowers manufacturers to generate additional revenue streams by establishing innovative 
business models (services along with products)

Digital threads and their association with the full life cycle of a product can be understood 
more thoroughly through reference to the following figure:

Figure 7.2 – A digital thread encompassing different stages of manufacturing



Pattern Implementation in the Manufacturing Domain108

•	 Overall Equipment Effectiveness (OEE): OEE helps to measure the current/actual productivity/
utilization of the manufacturing plant in relation to its full potential. It is expressed in % and 
indicates the amount of time for which the manufacturing plant was productive. One of the 
aspects that makes this metric indispensable in a smart manufacturing context is that it can be 
measured and reported at any level (at the assembly line, in a department, in a manufacturing plant, 
and so on) and can be used to objectively compare the performance of, say, one manufacturing 
plant with another. The formula used to calculate OEE is as follows:

OEE = A * P * Q

where A is availability (the ratio of the actual production time to the planned production time), 
P is performance (the ratio of the actual work speed to the planned work speed) and Q is quality 
(the ratio of the number of actual units produced to the total number planned).

•	 Operational Technology (OT): OT refers to the automation technology used in manufacturing 
facilities for monitoring and controlling manufacturing processes. OT refers to a bouquet of 
technology such as Programmable Logic Controllers (PLC), Supervisory Control And 
Data Acquisition Systems (SCADA), CNC systems, Distributed Control Systems (DCS), 
and so on. The term is used to differentiate OT from the Information Technology (IT) that 
is typically used to process data generated by OT systems. OT systems are generally deployed 
on a distinct network and rely on different technologies than those used for IT systems. As a 
result, the mechanisms of protecting assets from security attacks are significantly different for 
OT than for IT systems.

•	 Discrete manufacturing: Discrete manufacturing involves the production of distinct items 
or individual parts of a product (examples include the manufacturing of toys, machine parts, 
nuts, bolts, smartphones, and furniture) and its key characteristic is that both the raw material 
and the finished product are countable. Due to the distinctive nature of the output units, these 
can be tracked during their entire life cycle (provided they are equipped with the required 
sensors enabled for connectivity) – from the moment they leave a manufacturing facility to 
final disposal/decommissioning.

•	 Process manufacturing: Process manufacturing, in contrast to discrete manufacturing, 
involves processing raw materials that can’t be uniquely identified/counted and is characterized 
by the fact that the finished product is manufactured by combining raw materials (or, more 
appropriately, ingredients) by using specific formulae or recipes. The process may include 
material transformations induced by a combination of thermal, chemical, and electrical 
processes. Another key characteristic that differentiates process manufacturing from discrete 
manufacturing is that in the case of process manufacturing, it is not possible to recycle the 
finished products or break them down into raw materials. Examples of process manufacturing 
include the production of petrochemicals and paints. The difference between discrete and 
process manufacturing is illustrated in the following figure:
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Figure 7.3 – Difference between discrete manufacturing and process manufacturing

•	 Manufacturing Execution System (MES): An MES is a software system that monitors, tracks, 
controls, and synchronizes the execution of the manufacturing process, helps to schedule the 
plant personnel tasks with the objective of providing end-to-end visibility, and provides benefits 
such as production optimization and supplier/inventory management. Although, there is 
some functional overlap between an MES and IoT-enabled smart manufacturing (which is the 
major focus of this chapter), they have significant differences. An MES typically represents a 
monolithic, rigid, legacy system that contrasts with modular, scalable, and functionally superior 
smart manufacturing systems. Most manufacturing industries have either transitioned their 
old MES systems into IoT-enabled smart manufacturing processes and solutions or are in the 
process of doing so.

•	 SCADA: SCADA is the system used to monitor and control industrial processes primarily 
from local and sometimes remote locations as well. A user interface, called an HMI in industry 
parlance, is generally provided for visualizing the operations in real time or near real time and 
initiating any corrective/preventive measures.

There is a functional overlap between SCADA and smart manufacturing; however, the latter 
is more evolved in terms of the technologies used (e.g., Augmented Reality/Virtual Reality 
(AR/VR) and cloud computing), its high reliance on data analytics for generating data-driven 
insights, and its ability to enrich data by integrating with other enterprise systems (such as 
Enterprise Resource Planning or ERP systems, Human Resource Management Systems 
or HRMSes, and Supply Chain Management or SCM systems). In general, SCADA can be 
considered as a subset of smart manufacturing from a capability standpoint as well as in terms 
of the value that can be accrued from it.

•	 3D printing/additive manufacturing: 3D printing/additive manufacturing involves the creation 
of physical or 3D products by progressively adding layers of raw material. It is in direct contrast 
to traditional subtractive manufacturing, where parts are produced by removing unwanted 
material from metal blocks through operations such as cutting, boring, and grinding. 3D 
printing, along with other technologies such as AR/VR, complements IoT in realizing the smart 
manufacturing vision. It also helps to create quick and cheaper prototypes and personalized 
products and reduce overall wastage.
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•	 Product life cycle management (PLM): This is the process of managing a product’s life cycle 
through conceptualization, design, manufacturing, sales, service, and final decommissioning. 
Although the definition of PLM may sound similar to that of a digital thread, a digital thread 
is more refined and broader in scope. In fact, digital threads can be considered the next stage 
of PLM’s evolution.

•	 AR/VR: AR is normally enabled by smart glasses and helps to augment the live view of the 
equipment or assembly line with additional information – for example, a worker can see the 
operations of and diagnostics information for a particular machine superimposed onto the 
actual view of the machine. AR also speeds up maintenance work, as service personnel can 
view the repair instructions along with an actual view of a machine.

VR differs from AR in the sense that it completely immerses the viewer into an alternate view and 
doesn’t include the live feed component. It is normally used to train service personnel by simulating 
the actual operations or to generate a simulated view of the product being designed. Both AR and 
VR can be considered immersive visualization data on top of the data accumulated by IoT sensors 
and are an interesting way of presenting data compared to traditional paper-based reports. These 
technologies also enable industrial workers to collaborate remotely while designing new products or 
iterating over existing designs.

       

Figure 7.4 – AR and VR in smart manufacturing

Having understood the key terms used in the manufacturing domain, let us understand how the 
domain has evolved over the years and what advancements can be expected in the future.

Exploring the evolution of the manufacturing domain
The evolution of manufacturing to smart manufacturing and beyond is categorized into five industrial 
revolutions, as shown in the following figure:
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Figure 7.5 – Evolution of smart manufacturing

These revolutions represent significant leaps in terms of productivity and working conditions and 
are also characterized by the usage of different core technologies. The different stages of evolution 
are detailed as follows:

•	 Industry 1.0: The first industrial revolution ushered in an era of mechanization and steam 
engines whereby activities that were earlier performed using human labor started to be 
performed using machines.

•	 Industry 2.0: The second revolution involved the usage of electricity to power industrial machines.

•	 Industry 3.0: The third industrial revolution relied on using electronics and computers for the 
automation of production tasks.

•	 Industry 4.0: Currently, we are in the Industry 4.0 era, where technologies such as sensors, 
robotics, AI, and the cloud provide additional benefits over Industry 3.0. This stage is detailed 
later in this chapter.

Industry 5.0: After Industry 4.0 was conceptualized, it was felt that it focused primarily on 
optimization and efficiency improvements; however, larger issues related to personal, societal, 
and environmental needs were not given adequate importance. As a result, Industry 5.0 proposes 
a more human-centric approach where the focus shifts from serving customers to serving 
employees and includes concepts such as corporate responsibility, sustainability, leveraging 
human creativity and potential, human-machine collaboration, and hyper-personalized products. 
Hyper-personalized products not only include products such as automobiles that are specifically 
customized to meet the end user’s preferences but include products from industries such as 
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pharmaceuticals where the products (e.g., pills, vials, etc.) need to be tailored to the specific 
biological, physical, and psychological needs of the patient.

Another societal phenomenon that makes Industry 5.0 important is the fact that excessive 
automation is expected to result in unemployment, along with other undesirable socioeconomic 
effects. The core idea of Industry 5.0 is that both machines and humans possess complementary 
skills (e.g., machines can perform repetitive or routine tasks efficiently while humans excel in 
skills such as emotional intelligence, creativity, and empathy) and both can work collaboratively 
to solve complex problems.

It is also felt that focusing solely on optimization and improving the efficiency of manufacturing 
plants without giving due consideration to the environmental effects of this is fraught with 
danger. This, coupled with the fact that, in the future, scrutiny from regulatory bodies and 
environmental groups is going to increase, was another reason that sustainability was added 
as one of the essential pillars of Industry 5.0.

Now that we’ve learned about the evolution of this domain, let’s look at some of the benefits of this 
digital transformation.

The benefits of smart manufacturing

The manufacturing industry stands to gain a lot by embarking on a digital transformation journey 
supported by IoT and related technologies. Some of the key benefits include the following:

•	 Ability to sell services along with the products: Downward pressure on margins, along with 
the emergence of low-cost manufacturing hubs, is a major driver for manufacturers to find 
ways of generating additional revenue streams. This will benefit not only manufacturers but 
also consumers.

Manufacturers stand to gain an additional customer base, as well as retain the loyalty of existing 
customers and charge a premium on differentiated services. Consumers stand to gain as they can 
opt for a utility-based billing model as they pay for the availed service rather than purchasing 
discrete units (for example, “a temperature maintained at 25° C for the complete month in 
all the inspection areas” rather than “15 air conditioning units”) with the customer relieved 
of equipment maintenance and upkeep. The manufacturer supports this model by providing 
connectivity options within the products, which start emitting status/operational information 
once it leaves the manufacturing plant.

•	 Mitigate impacts of retiring or unskilled workforce and enhanced worker safety: The 
manufacturing industry is most impacted by an aging or retiring workforce not being replenished 
at the same rate. Also, this retiring workforce is taking most of its know-how along with it.

IoT (which can be considered a combination of IT and OT technologies) augmented by 
complementary technologies (robotics and AR) can help automate most of the manual 
processes and help minimize the impact of a retiring workforce and help perform almost real-
time monitoring of the conditions of manufacturing assets. For example, attaching a vibrating 
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sensor or a sound sensor to a motor and analyzing the data accumulated in near real time by 
the appropriate AI/ML algorithms gives the same (or even a better) result as that reported by 
experienced service personnel sensing equipment’s condition by sensing the sound/vibration 
emanating from the equipment. Enhanced worker safety is enabled by geo-fencing hazardous 
areas, an accelerated/automated emergency response is provided, and workers’ exertion levels 
are monitored in real time.

•	 Circular economy enabler: Like other industries, manufacturing companies are under 
tremendous pressure to comply with environmental/sustainability regulations. There is a 
need to optimize energy consumption, reduce operational waste, and design processes that 
are required by a circular economy.

•	 Efficiently respond to dynamically changing market needs: Going forward, there will be 
an increased demand for personalized products. This, along with other factors such as supply 
chain constraints, could make it difficult to accurately gauge the market demands. This type of 
scenario can be effectively addressed by making production processes more agile – leveraging 
smart manufacturing tools and techniques. Technologies such as 3D printing can match products 
to individual preferences and pivot faster to alternate product lines. Tracking of real-time 
inventory (both at rest and in transit) is enabled by tagging the material along a digital thread.

•	 Near real-time visibility into an end-to-end supply chain: IoT enables visibility into manufacturing 
operations by reporting metrics such as OEE. OEE, defined as the product of availability, 
performance, and quality, helps to determine whether a manufacturing plant is running with 
minimal downtime (availability), with minimal waste/discarded products (quality), and at 
full capacity (performance). IoT helps to calculate the value of OEE in real time and gives an 
important insight into a plant’s operations.

OEE provides insights into a plant’s yield/throughput. However, further benefits can be accrued 
by monitoring the complete supply chain (the supply of raw material, goods in transit, delivery 
to customers, etc.). Tracking the complete supply chain helps to determine any upstream supply 
chain issues and alter the production plans to mitigate adverse impacts on the plant’s output. 
Within the manufacturing plant, machine vision systems can assist in automated quality control. 
Additionally, shop floor workers can receive notifications on their mobile devices for possible 
operational bottlenecks.

•	 DTs enhancing product life cycle and production processes: DTs (refer to the Digital twins 
section in Chapter 2 for more details) play a vital role in optimizing the product life cycle (from 
design to decommissioning). DTs help in the design/prototype phase by evaluating different 
design options, understanding potential constraints/errors, simulating the operation of a product, 
and gauging the effects of different environmental conditions. All this helps to reduce the cost 
and timelines of product development, as multiple iterations of the product can be simulated 
without the need to create a physical product.
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The relationship between a physical asset and the corresponding DT is represented in the 
following figure:

Figure 7.6 – Data communication between a physical asset and DT

During the production stage, DTs help monitor and optimize production processes and 
determine the optimization opportunities. It monitors the process against the desired behavior, 
and in case of deviation, raises timely notifications and minimizes variations. This helps to 
answer questions such as “Is the available quantity of paint sufficient to complete the planned 
batches?”, “Are there any bottlenecks in the upstream processes that will impact the current 
production activity?”, and “Can production processes be altered to minimize the impact of the 
anticipated bottlenecks?” Essentially, the DT will help to compare the planned process with the 
actual results and assist plant supervisors to make timely interventions.

To simulate these production processes, data needs to be collated from production machines. This 
may include the number of units processed, the operational conditions (observed noise levels, 
vibrational patterns, etc.), as well as auxiliary systems such as Material Handling Equipment 
(MHE), including forklifts, conveyor systems, and cranes. Accordingly, the different sensors 
need to be installed at the desired production stages.

Data needs to be aggregated both locally (or at the plant level), as well as at the central or 
company level, as this allows for both local decision-making and optimization and global 
decision-making. Both these are required – local optimization will help optimize the operations 
of the plant, but central decision-making will ensure that such local optimization is not at the 
cost of degrading any global operation or sub-optimalization. This will also require employees 
on the shop floor to have some understanding of IT processes and technologies.

Even the workers working alongside robots can be a source of data that can be fed into the DT to 
create a more accurate model of industrial operations (for example, the presence of unexpected 
odors and sounds as detected and reported by industrial workers). Going forward, the DT will 
segregate responsibilities between humans and robots to take advantage of unique skills and 
competencies and reduce potential conflicts.

In fact, manufactured goods would continue to report their internal state to the DT even after 
leaving the manufacturing plant. Smart products leaving the manufacturing plants would be 



Exploring the evolution of the manufacturing domain 115

equipped with sensors, which would help to feed the required data (e.g., diagnostics data, 
operating conditions, etc.) to the DT. This would help to quickly service faulty products, as well as 
to understand the product usage characteristics that will in turn help refine future product lines.

Hence, DTs can help create a virtuous cycle where feedback from pre-production, production, 
and postproduction is continuously analyzed and is being used for both process and product 
refinement, as shown in the following figure:

Figure 7.7 – A DT empowering continuous product and process refinements

Despite the obvious benefits of this digital transformation, there have been several challenges in 
implementing this transition fully. Let’s look at these in detail in the next section.
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Challenges in transitioning from traditional to smart 
manufacturing

The transition from traditional to smart manufacturing is not a simple endeavor and involves multiple 
challenges, some of which are as follows:

•	 Inaccessible data: Legacy machines are not connected and there is no way to get operational 
data from these machines. Most of the software used in the industrial setup can’t send the data 
outside a plant’s parameters. Another prominent issue that hinders the ability to fetch data is 
the legacy communication protocols that are in use.

•	 Data diversity: Analysis of the unstructured (video or audio data), semi-structured (logs, 
historian data), and structured (sensor feeds) data generated in industrial plants is difficult. Data 
corruption, data loss, and data duplication are other factors that lead to complexity. Although 
these factors are not unique to the manufacturing domain, their effects are much more prominent 
in the manufacturing, domain as even a minor inaccuracy or anomaly gets amplified and can 
impact a large number of products before the issue is finally detected and/or rectified. In some 
cases, this may even require product recall, which is a logistical and operational nightmare for 
manufacturers and can also impact brand loyalty and reputation.

•	 Security: With data being communicated across a plant’s boundaries, the threat of data theft or 
manipulation increases considerably. The traditional approach of security by obscurity is no longer 
an option, as data needs to be aggregated across different plants for more holistic decision-making.

•	 High upfront cost: The use of sensing technologies, bolt-on connectivity for legacy machines, 
3D printers, robotics, and so on increases the manufacturing cost and can stall the smart 
manufacturing journey. Also, it is very difficult to convince the relevant stakeholders to approve 
the budget as the Return on Investment (RoI) is difficult to deduce. However, following a 
piecemeal approach where adoption is done as per a staggered implementation roadmap with 
well-defined milestones is a preferable approach – for example, retrofitting legacy machines 
with sensors rather than replacing them. Also, each milestone being accompanied by a clearly 
articulated value or RoI can help convince stakeholders regarding the investment need and 
help mitigate this challenge.

•	 Societal challenges: There is a perceived threat that intelligent automation enabled by 
Industry 4.0 is expected to make some manual jobs redundant. Another factor that risks the 
implementation of Industry 4.0 projects is resistance to adopting new ways of working, especially 
from experienced workers.

This section lists a few challenges that can impact the adoption of smart manufacturing; however, the 
benefits of adoption far outweigh the potential challenges. One of the main benefits is the automation 
of manual and routine manufacturing activities/jobs. A good example of eliminating manual steps in 
the manufacturing process is automatically quality-checking finished goods (the separation of faulty 
and non-faulty parts) by leveraging video analytics, which is the topic of our subsequent section.
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Automatic inspection of finished goods or parts
One interesting use case in the discrete manufacturing space is the automated inspection of finished 
goods or parts. Finished goods are inspected by analyzing video feeds from digital cameras; by 
deploying the required machine learning (visual inspection) models on the Device Gateway (DG), 
these models output a binary value indicating whether a part is defective or not.

Important note
The term sensing device is not limited to video feeds from digital cameras; alternate sensing 
technologies (such as infrared cameras and x-ray cameras) may very well be used to support 
specific operating conditions and use case requirements.

If a defective part is detected, a robotic arm will take that part from the conveyor belt and put it in a 
waste bin. These models are trained at a central server and refined models are pushed to a gateway 
from the central server. If the model is not able to identify the part with the required level of confidence 
(e.g., a new part being introduced), then those images are sent to a central server to further refine the 
model. In this way, there is a cycle of model refinement and deployment.

The use case along with the applicable patterns are shown in the following diagram:

Figure 7.8 – Realization of the automatic inspection use case by leveraging IoT patterns

Let’s look at this in further detail:

1.	 Video camera: A video camera would capture the images from the conveyor belt and this feed 
is sent to the DG. Communication between the video camera and DG would either be done 
using Wi-Fi or Ethernet.

2.	 Device Gateway: The DG receives the video stream from the video camera and identifies a 
part as good or defective based on the ML model that is deployed. If the model indicates the 
part is as fitting the specification, then that part is allowed to move further into the packaging 
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stage; otherwise, the DG instructs a robotic arm to pick up the defective piece and throw it 
into a waste bin. If the model is not able to identify a part with the required certainty, then that 
image is sent to the central server to be included in the training set.

This approach of part identification being done locally at the gateway has the advantages of 
bandwidth conservation (as not all the images are sent to the central server for analysis), as 
well as improved latency (avoiding the roundtrip to the central server for image processing/
analysis and then sending the analysis back to the DG). To realize this use case effectively, 
analysis must be done in near real time so that instructions to the robotic arm can be sent on 
a timely basis. This also eliminates the possibility of the use case being rendered ineffective due 
to losing connectivity with the central server.

Although, in the preceding diagram, only one DG is shown, typically multiple DGs will be 
connected to the central server at a time and one DG would monitor multiple assembly lines/
conveyor belts at the same time.

3.	 Local Rule Engine (LRE): An LRE will invoke the image recognition model for each of the 
incoming images supplied by the camera. Based on the output of the model, the LRE will issue 
commands to the robotic arm to pick the defective part up from the conveyor belt and throw 
that into the waste bin.

4.	 Robotic arm: The robotic arm receives specific commands from the DG/LRE to either pick 
the defective part up off the conveyor belt and throw it into the waste bin or do nothing and 
let the part pass on to the packaging stage. Generally, instructions from the DG to the robotic 
arm are sent using a PLC protocol.

5.	 Waste bin: This is for storing defective parts that shouldn’t be allowed to pass to the packaging stage.

6.	 Central server: This is the aggregation point for all the DGs. This can be hosted on the public 
cloud (as a cloud-native application) or it can be hosted in an on-premises data center as well. 
There are additional IoT patterns that can be deployed on the central server, with details as follows:

A.	 Digital twin: This will store the state of each of the conveyor belts with respect to its 
operational status (in operation, halted, under maintenance, etc.). It can also store metrics 
such as the percentage of defective parts per unit of time. This would also temporarily store 
the image-processing ML model before it is pushed to the DG.

B.	 File upload: This will be used for sending the captured images (not recognizable by the 
current image recognition model). The same pattern will also be used when pushing the 
updated ML model from the central server to the DGs.

C.	 Device management: This pattern helps manage numerous gateways that are connected 
to the central server along with establishing a hierarchical structure for easy manageability 
– for example, city > manufacturing plant > manufacturing area > assembly line/conveyor 
belt. Similarly, it can store other metadata related to the DG (e.g., the firmware version, 
certification rotation date, etc.).
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D.	 AI/ML integration: This pattern is needed to create an ML model used for classifying a 
part on the conveyor belt as good or defective. As parts on the conveyor belt can come in 
multiple orientations, the ML model should be able to sift through all such images and still 
be able to classify them. As mentioned earlier, the trained model will be deployed on the 
DG for faster recognition and this model will be continuously refined based on the images 
that were not recognized by the current model. In other words, there is a circular interplay 
between the output generated by this pattern and the ML model that is deployed on the 
DG. The existing model is pushed to the DG and the DG sends a new set of images to the 
central server for model refinement. Once the model is refined, it is again sent to the DG.

E.	 Enterprise system integration: Enterprise system integration would be required to 
automatically order fresh raw material if the existing inventory goes below a defined 
threshold. For this, the number of finished goods as well as the count of defective pieces 
needs to be continuously monitored.

F.	 Global Rule Engine (GRE): As mentioned in the previous point, a GRE will monitor events 
such as a low inventory of raw materials, the count of finished goods going beyond a defined 
threshold, and so on. Based on these events, the GRE will initiate relevant actions such as 
triggering supplier enterprise systems to order fresh raw material (in case of low inventory) 
or sending notification to the plant supervisor (in case of a low output of finished goods).

This section provided details regarding how IoT different patterns can be used to implement important 
use cases in the smart manufacturing domain and also brings us to the end of the chapter.

Summary
This chapter detailed the reasons why IoT is expected to play a vital role in making the manufacturing 
industry smarter. We started by defining a few concepts that are required for understanding the domain; 
outlined the key characteristics of five industrial revolutions; discussed the benefits expected from smart 
manufacturing; and, finally, covered how IoT patterns can be used to realize automatic inspection.

In this chapter, we highlighted the fact that in the future, manufacturing companies will act more 
like software companies by following agile manufacturing methodologies and data-driven decision-
making. All this entails more collaboration and necessitates a big cultural change. Therefore, unless 
manufacturing companies actively invest in training employees, as well as address the expected cultural 
nuances, the aspiration of being a truly smart manufacturing enterprise will fail. An example of cultural 
change is to move from experience-based decisions to decisions based on hard data. Another cultural 
change is to empower employees to think creatively/innovatively about continuous improvement rather 
than merely following instructions. Supervisors are also expected to have more tolerance for genuine 
mistakes. It is expected that in the factories of the future, the proportion of software will gradually 
increase. In fact, the machines of the future will be very similar to the current smartphones on which 
the software is continuously updated – bringing feature updates and defect fixes.

In the next chapter, we will cover the agriculture domain and how IoT provides solutions to problems 
that the agriculture domain has struggled with for a long time.
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Traditionally, farmers spent most of their time observing plant and/or soil conditions and guesstimating 
the weather conditions before acting – for example, performing irrigation and applying fertilizers. 
The application of tools and techniques for smart agriculture helps remove this burden from farmers’ 
shoulders, as decision-making can be performed by analytics engines.

Smart agriculture helps to reduce environmental impact through efficient irrigation and the optimal 
usage of fertilizer/pesticides. It helps to increase yield by obtaining accurate information about the 
soil and environmental conditions and then providing information regarding the optimum quantity 
of input (fertilizers, pesticides, water, etc.) and conditions. The problem with traditional farming is 
that farmers follow the same procedures regarding sowing, nourishing, irrigation, and harvesting 
without considering differences that exist in different areas of a field, resulting in unpredictability in 
farm yield and quality and resource wastage.

Agriculture has a unique set of challenges that are different from those in other domains such as 
manufacturing and retail, which underlines the need to understand this domain and how IoT and 
related technologies can be used to effectively mitigate those challenges. Some of these challenges that 
are agriculture-specific are as follows:

•	 High dependence on climatic conditions and an inability to determine/predict these conditions 
with the required accuracy.

•	 Farms are generally spread out over large areas and require a greater number of sensing and 
actuation mechanisms, which necessitates a high initial cost. Limited perimeter security also 
increases the chances of theft.

•	 Farm produce needs to be consumed within a short period of time and requires purpose-built 
storage and transportation facilities.

•	 Farming lands are normally located far from city centers and have limited connectivity
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•	 The perception of agriculture being a relatively less glamorous domain attracts less technical 
talent, and correspondingly, less automation/digitalization is visible in agriculture compared 
to other domains, such as industry.

•	 A very small margin of error is acceptable in the farming process – a wrong decision can wreak 
havoc with a complete season’s output. Also, there is no possibility of product repair/recall as 
there is with retail or industrial products.

Like other domains covered in this book, IoT works alongside other related technologies to provide 
interesting agriculture-related use cases.

Now, let’s dive deeper into some key concepts in this domain.

An overview of smart agriculture
This section covers the key terms/definitions that are used in the smart agriculture domain. Understanding 
these terms is crucial to design and develop smart agriculture-related solutions.

Key terms/definitions

In this section, we will discuss some key technologies associated with smart agriculture:

•	 Artificial Intelligence (AI): Accurate decision-making is the cornerstone of successful farming, 
and AI effectively complements/supplements a farmer’s ability to make sound judgments. AI 
can be used in all stages of crop cultivation – for example, if a crop is infected with a disease, 
AI provides recommendations to reduce crop wastage. AI is also used to estimate optimal 
farm input, forecast demand, predict price/yield, identify crops that fit the soil/environmental 
conditions, and determine the right time to harvest.

•	 Automation: Automation can be used to start/stop the watering of crops (often remotely), either 
automatically or based on a predefined schedule. In close loop automation, the soil moisture 
level is sensed in near real time, and watering is stopped once the moisture level reaches a 
predefined saturation level. In more advanced systems, the weather forecast is taken as one 
of the inputs when deciding on the watering needs. If the weather forecast predicts rain, the 
watering of crops can be deferred. Similarly, by using pressure sensors alongside water pipes, 
water leakage/pipe rupture can be detected promptly to avoid water wastage.

•	 Energy harvesting: The power supply is not consistent in most farms; hence, there is a need to 
source the energy for operating sensors and so on from renewable sources, such as solar, wind, 
and hydroelectric power. Sensors and other IoT hardware can operate using battery power, 
but they bring the complexity of bulky equipment and the need for continuous replacement.

•	 Blockchain: Blockchain is required in an agriculture context to establish transparency and 
traceability in the farm-to-fork supply chain (the sourcing of farm input as well as the sale of 
farm output). Other aspects covered by blockchain include determining the fair pricing of farm 
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output, the quick disbursal of crop insurance claims, and quick and easy credit. Blockchain 
can also secure field data from manipulation while in transit to the central server and while 
stored locally on the DG.

•	 Robotics: The vision of incorporating robotics in farm operations is to free the farmer from 
repetitive, monotonous, and mundane tasks. For example, an autonomous tractor can perform 
most farm activities, such as tilling, spraying, sowing, and harvesting. Robotics is also expected to 
increase the yield quality and quantity, as the operations are free from manual oversights/errors.

•	 Big data analytics: From a smart agriculture standpoint, this technology provides diverse 
benefits – for example, big data analytics is used for obstacle avoidance in autonomous vehicles, 
to predict yield quality and quantity and target prices, to suggest an optimal level of farm input, 
and to determine real-time operational decisions. In fact, it plays a vital role throughout the 
crop life cycle.

•	 Aerial imagery: Aerial imagery helps large-farm owners to monitor the state of farms (crop 
health, pest infection, irrigation problems, frost damage, and so on) in real time or to determine 
the changes in the farm state over a period. Aerial imagery can be acquired using satellites, 
drones, Unmanned Aerial Vehicles (UAVs), or small aircraft, and these are typically equipped 
with cameras that have capabilities such as Red, Green, and Blue (RGB) and Infrared (IR) 
detection, Light Detection and Ranging (LiDAR), and Radio Detection and Ranging 
(RADAR). For example, using the Normalized Difference Vegetation Index (NDVI) is one 
such technique that uses a normal optical (RGB) camera along with an IR camera to determine 
crop health by calculating the amount of visible and IR light reflected by the crops, with a 
higher NVDI indicating healthy crops and a lower NVDI indicating unhealthy (pale yellow 
or brown color) crops.

•	 Drones: Drones are used in relatively large farms to assess crop health and pest or insect 
infestation, perform an overall field assessment, undertake planting (seeding), spray pesticides, 
and so on. Some drones are equipped with thermal, optical (RGB), or multispectral cameras 
to determine crop health/growth, over/under-watering, as well as expected farm output. The 
combination of cameras and a sprayer on a drone, along with strong analytics, enables you to 
selectively target areas of a farm that require pesticide spray, similar to a manual spray. Input 
captured by drones is fed into an analytics engine, enabling a farmer to have a more accurate 
prediction of the quality and quantity of the farm output and plan for downstream activities, 
such as optimum sale price/market selection and storage requirements.
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Figure 8.1 – Aerial imagery captured by drones

•	 Remote sensing: Vegetation indices calculated by using multispectral cameras help to determine 
the onset of crop disease promptly and indicate the correct time for crop harvesting. For example, 
if a vegetation map of a field shows that leaf color is changing from green to yellow, this indicates 
that nutrients have been passed from leaves to fruit, and the fruit is ripe for harvesting. Different 
types of optical, electrochemical, and mechanical sensors are used to determine soil and crop 
conditions. Optical sensors interpret data based on crop or soil pigmentation, and electrochemical 
sensors help to determine soil’s electrical characteristics by measuring the concentration of 
elements such as potassium and phosphorus. In addition to measuring the direct soil moisture, 
there has been a recent trend to measure soil water tension (calculated as the water pressure of 
the soil), which gives a more accurate view of the water requirements, as the readings are not 
impacted by the soil type (i.e., factors such as soil texture, soil salinity, and organic composition).

•	 Agronomic data: Raw data accumulated from a farm and farm-related activities is referred 
to as agronomic data, examples of which include soil condition data, yield data, pesticide and 
fertilizer consumption data, and NVDI data. In an IoT context, this data can either be obtained 
directly using sensors or derived from systems that traditionally maintain this data (refer to 
the Enterprise system integration pattern in Chapter 2).

•	 Geospatial analytics: Geospatial analytics refers to the collection, transformation, aggregation, 
and visualization of imagery and locational data (Global Positioning System (GPS) coordinates) 
to determine insights, correlations (the impact of applying fertilizers in different parts of a 
farm or across farms), and trends (historical shifts as well as predictions) based on farming 
parameters. Geospatial data can be gathered from aerial imagery or connected farm equipment 
(tractors, combine harvesters, etc.) and can constitute both structured as well as unstructured 
data. Geospatial visualizations include overlaying current (as well as historical and predicted) 
sensor data over farm images.
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•	 Electronic Field Record (EFR): EFR refers to a data schema to store agronomic data. It 
describes the various entities (field and weather conditions, crop states, soil conditions including 
nutrient content and moisture level, and aerial imagery obtained from multiple sources) and 
the relationships between them. EFR is processed data (compared to raw data represented by 
agronomic data) and is used as input for analytics.

Figure 8.2 – A sample EFR

•	 Hydroponic system: A hydroponic system of cultivation involves growing crops with water 
as a key ingredient but without using soil. As oxygen is normally supplied via soil, an alternate 
mechanism of supplying oxygen is used – for example, the usage of air stones and air pumps is 
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quite common. Similarly, support given to plant roots by soil needs to be provided by alternative 
materials, such as vermiculite, perlite, gravel, peat moss, coconut fiber, and rockwool. Nutrients 
that are naturally available in the soil such as magnesium, phosphorus, and calcium need to be 
artificially injected into the water stream.

A hydroponic system allows farmers to grow plants all through the year and at any place, and 
the output is generally more nutritious. Since the crops are grown in controlled conditions, 
they mature faster; typically, they grow faster by approximately 25%. They use less water due 
to less evaporation, and water consumption is reduced by 90–95%. Common crops that are 
grown using this mechanism include lettuce, tomatoes, peppers, cucumbers, strawberries, 
peppers, and cannabis.

IoT sensors monitor critical inputs required for the effective functioning of hydroponic systems 
such as water level, pH, temperature, and lighting conditions. These inputs are continuously 
analyzed to determine whether there is a need to regulate supply by sending instructions to IoT 
actuators. After analysis of the data, alerts/notifications can be sent to farmers if a deficiency 
(or oversupply) of inputs has a negative impact on the overall yield. This analysis is carried out 
by the LRE deployed on DG.

Figure 8.3 – Mechanics of a hydroponic system

•	 Smart greenhouse: A smart greenhouse creates an isolated and self-regulating environment 
that is customized as per crop requirements. Furthermore, crops no longer are at the mercy of 
weather/climatic conditions (wind, hailstorm, extreme temperatures, and ultraviolet radiation) 
and are protected from attacks from pests, locusts, and so on. It is a well-known fact that although 
some level of moisture/humidity is required for plant growth, excess humidity can adversely 
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impact plant health as it encourages the growth of fungi and causes bacterial infections. Similarly, 
extreme temperature fluctuations can severely hamper overall production.

Smart greenhouses operate more in a closed-loop fashion, where data from sensors is continuously 
analyzed and the environment is regulated (by controlling spraying, irrigation, lighting, 
temperature, humidity, soil nutrients, etc.). This controlled environment helps save precious 
energy and is cost-effective in the long run. Typically, greenhouses are irrigated using drip 
irrigation (refer to the next bullet point), which also drastically reduces water consumption. Some 
of the more advanced greenhouses can open and close the enclosure based on environmental 
conditions (e.g., wind and rain).

Figure 8.4 – The key components of a smart greenhouse

•	 Micro irrigation/drip irrigation: Micro irrigation (or drip irrigation) involves supplying water 
slowly using mechanisms such as mini-streams and droplets. This optimizes the usage of water 
(water reduction in the range of 45–70 % is observed) compared to traditional methods of 
irrigation (flooding), as water is applied to targeted areas, eliminating water runoff. There are 
some additional benefits of using micro irrigation, including the following:
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	� It reduces weed propagation (weeds are unwanted plants that grow alongside crops and 
compete for water and nutrients with the main crops). Micro irrigation helps to reduce/
eliminate the propagation of weeds, as water is applied directly to the main crops’ roots, 
thus limiting water supply to weeds.

	� It reduces the need for fertilizers, herbicides, pesticides, and so on, as these are supplied in 
soluble form and applied to the target crops directly and in concentrated form.

IoT can help realize the benefits of micro irrigation by ensuring that the optimum water supply 
is released to the plants and also that plant growth is not impacted by a reduced supply of water 
and other nutrients.

Figure 8.5 – Micro irrigation/drip irrigation

•	 Site-Specific Crop Management (SSCM)/precision agriculture/internet of agriculture: 
SCCM or precision agriculture refers to the concept of using a scientific approach to observe, 
measure, visualize, and respond to conditions that play a role in crop growth. It helps to reduce 
the variability in farm output as well as the quality. The objective is to understand the reasons 
behind variability in the yield and/or quality of farm output and take action to reduce the 
observed variability. This contrasts with traditional methods where farming practices are applied 
in a wholesale manner without considering specific crop needs and environmental conditions 
(e.g., water, nutrient, and sunlight requirements). The moisture content of different segments 
of a farm can be different, and once the variability is determined, water can be supplied to 
relatively dry areas by using drip irrigation.
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Figure 8.6 – Sensors monitoring plant and soil conditions

IoT plays a vital role in precision agriculture, with observation and measurement requirements 
fulfilled by deploying sensors (e.g., moisture sensors, pH sensors, and sensors that detect air 
speed/direction, etc.) and actuators that respond accordingly (e.g., automatic irrigation pumps). 
Data from the farm sensors is analyzed at a central server to generate recommendations 
related to planting, fertilization, irrigation, and harvesting. This data-driven decision-making 
approach contrasts with traditional farming, where decisions were primarily based on intuition 
or experience.

Sensor data is normally seen in correlation to a field’s geospatial information, and as a result, 
GPS data needs to be captured alongside other variables. Accordingly, most of the stationary 
sensors used in SCCM have GPS capability built-in, or farm vehicles (tractors, combine 
harvesters) equipped with GPS capability can act as a sensor hub, where field data is obtained 
along with location data. A sensor hub helps to understand the farm’s condition from multiple 
perspectives – for example, identifying areas with a high concentration of pests and weeds, 
and the overuse of fertilizers.

Along with IoT, the maturity of AI/ML and, specifically, the increased accuracy of predictions 
has played a vital role in the acceptance of precision agriculture by the farming community. As 
mentioned previously, the accuracy of predictions (e.g., expected weather conditions) plays a 
vital role in ensuring a higher yield, the quality of farm output, and a smaller environmental 
impact, as well as optimizing the usage of farm inputs (e.g., fertilizers and water).
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Precision agriculture contrasts with traditional farming, where inputs were applied in fixed 
quantity/frequency and without considering the differences that exist in different parts of the same 
field. Similarly, the accurate estimation of a farm yield, along with the supply chain conditions, 
can help a farmer set an optimum price and estimate the amount of storage space required.

In fact, precision agriculture can be applied to all the life cycle stages of crop production, as 
shown in the following figure:

Figure 8.7 – Precision agriculture positively impacting different agricultural stages

•	 Variable Rate Technology (VRT): VRT refers to the process of varying or adjusting farm inputs 
(e.g., fertilizers, water, and herbicides) based on the actual requirements of a field. Variable 
Rate Application (VRA), Variable Rate Irrigation (VRI), and Variable Rate Seeding (VRS) 
specifically focus on different types of inputs. As an example, VRS drastically improves a yield 
by minimizing seed wastage. VRS enabled by smart seeding equipment controls the depth and 
spacing of seeds to match different soil conditions.

•	 Vegetation Index (VI): VIs are used to monitor crop health using multispectral techniques by 
measuring the amount of reflected/emitted electromagnetic radiation from crops. These indices 
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help to understand the spatial and temporal variances in crop health (by measuring attributes 
such as chlorophyll content, soil moisture, etc.). Different vegetation indices are available and 
selected based on factors such as the crop type, the crops’ development stages, crop density, 
field topology, or a specific plant attribute that needs to be measured. Some of the common 
vegetation indexes are NDVI (the most used vegetation index, as it can be used throughout 
the crop’s development life cycle), the Red-Edge Chlorophyll Vegetation Index (RECl), the 
Normalized Difference Red Edge Vegetation Index (NDRE), and the Modified Soil-Adjusted 
Vegetation Index (MSAVI). Calculation of these indices, as well as recommendations to 
consistently improve indices, are important applications of IoT in the agricultural domain.

As we are now aware of the key terms used in the smart agriculture domain, we are better equipped to 
understand how to implement these use cases in this domain. But before that, it will help to understand 
the reasons why it is currently gaining traction, which are described in the next section.

Factors influencing greater adoption of smart agriculture 
technologies

There has been increased adoption of smart agriculture practices recently. Let’s look at some of the 
factors responsible for this transition from traditional agriculture:

•	 High demand due to increased population and a change in dietary preferences: As per the 
United Nations report of 2019, by the year 2050, farm output must increase by at least 70% to 
meet the food needs of the increased population. This increase in farm production must be 
done using existing farmland only, since it is not environmentally or economically possible 
to bring more land under cultivation. Smart agriculture is poised to solve this challenge by 
increasing yield on the same amount of land and making agriculture processes more efficient. 
Also, governmental agencies may incentivize farmers (in the form of equipment subsidies, free 
technical know-how, etc.) to adopt smart agriculture practices.

•	 Data as an additional revenue stream for farmers: Each of the crop life cycle stages such as 
seeding and harvesting generates a huge amount of data that can be leveraged by the farmer 
to enhance future crops, and it can also be sold to companies that use it to determine the key 
factors that determine farm output. This is a win-win situation for both farmers and companies, 
as farmers typically have limited knowledge of how to organize and leverage this data. Smart 
agriculture companies can help farmers easily derive insights from data by providing visualization 
and/or analytics services. For example, these insights can help farmers to select the right crop 
to plant and decide how many seeds should be sown per unit area.

•	 Sustainability considerations/continuous depletion of water tables: Around 70% of the 
fresh water on the planet is used by agriculture, and 30% of greenhouse gases are emitted 
by farming operations. The adoption of smart agriculture practices will drastically cut down 
water consumption, as well as drastically reduce environmental pollution. Additional benefits 
include the usage of fewer fertilizers and pesticides, which, in addition to having a severe 
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environmental impact, also affect human health and well-being. In fact, the use of excessive 
pesticides is directly linked to conditions such as cancer and neurological diseases (refer to 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2231435/, https://
www.beyondpesticides.org/resources/pesticide-induced-diseases-
database/cancer).

After understanding the reasons for the adoption of smart agricultural practices, let us delve deeper 
into some use cases where the application of IoT can provide an immediate benefit.

Use cases of IoT in smart agriculture
IoT can be implemented in various ways in the smart agriculture domain. These include the following:

•	 Soil/crop health monitoring:

	� Measuring temperature, moisture, pH values, and lighting conditions in real time

	� Determining chemical (fertilizer) composition

	� Wind speed/direction sensing

	� Frost detection/avoidance

	� Pest control

	� Climate monitoring and forecasting

	� Comparing crop growth, leaf size, and crop pigmentation with similar crops and conditions

	� Preventing soil degradation

•	 Enhancing agricultural yield:

	� Predicting the optimum time to plant, irrigate, and harvest crops

	� Predictive maintenance of farm equipment

	� Reducing paperwork while making insurance claims (e.g., crop/livestock damage)

	� Farm asset monitoring

	� Automatic irrigation

	� Aligning irrigation cycles with predicted weather conditions

	� Reducing crop damage via a disease or adverse environmental condition by leveraging 
predictive analytics

	� Evaluating and neutralizing the effects of the previous season’s cultivation

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2231435/
https://www.beyondpesticides.org/resources/pesticide-induced-diseases-database/cancer
https://www.beyondpesticides.org/resources/pesticide-induced-diseases-database/cancer
https://www.beyondpesticides.org/resources/pesticide-induced-diseases-database/cancer
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•	 Optimizing production cost:

	� Optimizing energy consumption

	� Smart logistics and warehousing to help reduce grain spoilage in warehouses and grain elevators

	� Supply chain visibility and traceability

	� Demand and price prediction

	� Helping with decision-making – which crops to cultivate?

	� Leakage detection and reducing water wastage

	� Smart greenhouses to enable predator-free crop cultivation in a controlled environment

	� Vertical farming for space optimization

	� Drone monitoring

•	 Livestock management:

	� Disease detection and containment

	� Geofencing and location tracking

	� Livestock feed and produce statistics

	� Livestock theft prevention

	� Monitoring feeding/grazing patterns

	� Preventing consumption of non-edible (plastic) materials

	� Remote veterinary support

	� An automated feed supply to reduce the possibility of over- and under-feeding

	� Animal activity tracking and analysis

	� Monitoring milk and egg production

To understand this better, let’s discuss one specific case of the application of IoT in this domain.

Resolving agricultural challenges with a land 
consolidation platform
Developing countries face unique challenges in the agriculture sector compared to developed economies. 
Most of the issues stem from the fact that the average landholding is quite small compared to developed 
countries. For example, India is characterized by a large number of small farms, with the majority of 
the land dependent on natural rainfall for irrigation purposes. This situation is further compounded 
by the fact that more than half of the Indian population has farming as a main source of livelihood. 
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A relatively small profit with limited insurance options results in a major chunk of farmers being 
perennially in debt. Additionally, there is the issue of land fragmentation, as land gets passed from one 
generation to the next. All these factors result in (constantly) dwindling profits per unit of farmland.

With limited automation, farming demands hard labor. This has resulted in most farmers’ children 
quitting farming and choosing other (more glamorous) professions. However, the main stumbling block 
in the path toward mechanization/digitization is the capital expenditure required to adopt automation 
and the other smart agriculture practices mentioned in this chapter. Farm machinery required for 
automation is costly to the average farmer, and only rich farmers can afford such expenses. As the 
affordability of smart techniques is beyond the reach of the average farmer, improving the yield and 
quality of farm output seems difficult, resulting in a vicious cycle.

Apart from affordability, additional factors that block the smooth adoption of smart agriculture 
techniques are listed as follows:

•	 Erratic/intermittent network connectivity

•	 Unavailability of smart farm equipment and sensors for remote sensing

•	 Limited availability of trained experts that can guide farmers in their digitalization journey

Now, let’s look at how these challenges can be addressed.

Mitigating agricultural challenges

Mechanization, along with smart agriculture practices, can be made possible by leasing agencies or 
by government assistance. The mechanized equipment (e.g., drip irrigation systems or remote sensing 
equipment) can help even small farmers to reap the smart agriculture benefits. These governmental/
non-governmental agencies can also provide required training to farmers to run this equipment, as 
this will help to realize holistic benefits such as sustainability, hunger eradication, and a consistent 
food supply.

Another practical mechanism to reverse the vicious cycle discussed earlier is to implement a platform 
where small farmers can trade their holdings in return for land shares, similar to how shares get traded 
on the stock market. Corporates and/or bigger farmers can consolidate these holdings and apply 
automation and/or precision agriculture to enhance the yield, simultaneously reducing the cultivating 
cost per unit of land by leveraging economies of scale. In other words, the platform would facilitate 
farmers to lease or sell their holdings to third parties who can combine these small holdings to create 
a larger tract. This platform would enable farmers and third parties (which can be corporates or even 
farm bodies) to trade their land holdings for a set of land shares. Each small farmer would then receive 
returns proportional to the land shares they hold. A high-level architectural view of such a platform 
is depicted in the following figure:
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Figure 8.8 – A functional architecture of the land-holding platform

Although seemingly complex, this architecture can be realized by combining IoT patterns and generic 
software patterns. The key pattern that is relevant here is the DT pattern, as that would help a potential 
buyer gauge the fair market value of the land holding. Data in the digital twin (DT) would be provided 
by relevant sensors (e.g., temperature, humidity, pH, etc.). It would also help the buyer to understand 
the historical cost and profitability trends. Additionally, AI/ML would be required to make sense of 
the primitive data from sensors to estimate the potential yield from these holdings.

Additionally, a platform augmented by IoT technologies can help marginal farmers to get a fair price 
by growing crops that were hitherto considered not economically and/or environmentally feasible. 
Smart greenhouses allow farmers to cultivate crops that were grown in far-off places. Margins would 
improve, as there would be considerable savings on transportation costs.

The implementation of a land-holding platform using IoT architectural patterns and related technologies 
is illustrated in the following figure:

Figure 8.9 – A realization of the land holding platform by leveraging IoT patterns
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The solution shown in the preceding figure is further detailed in the following list, where the requirements 
of a land-holding platform are integrated with the requirements of general smart agriculture use cases, 
such as livestock management, a smart greenhouse, and the operation of drones:

1.	 Autonomous farm vehicles: Automation is highly desirable in farming operations, as a typical 
farming season lasts for a few months and operations need to be completed in a minimal 
time frame. Autonomous vehicles are used to increase the operation time (24x7 operations 
rather than operations during the daytime only). Autonomous farm vehicles operate using 
other autonomous equipment – for example, they can detect obstacles using LiDAR, IR, and 
optical sensors attached to their periphery. Farm vehicles are either completely autonomous 
or semi-autonomous (where their path is remotely controlled using mobile devices such as 
smartphones or tablets – refer to the Remote monitoring and control bullet point). Most data 
processing and analysis (e.g., obstacle detection and route planning) is done locally on the 
local DG (a ruggedized gateway fitted inside the vehicle). Although completely autonomous 
operations (that can independently handle all the farm operations) are still decades away, some 
specific and repetitive operations are currently automated. The DGs communicate the vehicle 
diagnostics to a central server, which is used to predict maintenance schedules for the vehicles. 
Additionally, the AI/ML models that are developed or refined at the central server level are 
downloaded to the DG for accurate and efficient path navigation.

2.	 Smart greenhouses: Smart greenhouses can be considered self-contained IoT systems with 
sensors (e.g., light, CO2, moisture/tension, pH, or temperature), DGs (for local processing), 
and actuators (sprinkler, air cooler, thermostat, lighting control, sprayer, or retractable roof/
windows sliders). Of particular interest is the actuator, which opens a greenhouse’s roof and 
windows if the environmental conditions are conducive to a plant’s growth and retracts it if 
the environment is detrimental (e.g., an attack from a pest). In fact, a smart greenhouse is an 
ideal implementation of precision/smart agriculture, since all the factors related to plant growth 
can be comprehensively controlled. Smart greenhouses interact with a central server for data 
aggregation purposes and to enable monitoring and control from remote locations.

3.	 Precision agriculture: The use case for precision agriculture is quite like a smart greenhouse, with 
the difference being that conditions are relatively less controlled. Typically, farms are in remote 
areas with very limited connectivity; hence, the DG needs to buffer data if there is connectivity 
loss. These conditions also result in inconsistent or incorrect data being received at the central 
server. Hence, appropriate data messaging techniques (e.g., data filtering or checksum) are 
used before data can be analyzed/processed at the central server. Another challenge concerns 
supplying power to sensors and actuators, as remote farms are devoid of a continuous power 
supply. Hence, most sensors and actuators are powered by renewable energy sources (generally, 
solar power). This again brings added complexity, since energy consumption (by sensors or 
gateways) should be highly optimized. Also, the output of solar panels is impacted by ambient 
dust and other weather conditions such as rain and clouds. Generally, both connectivity and 
energy constraints are resolved by switching to lightweight communication technologies (e.g., 
UDP instead of TCP or technologies such as Long Range ( LoRa)) and limiting the amount of 



Resolving agricultural challenges with a land consolidation platform 137

data (e.g., daily instead of hourly). Battery-powered field devices typically use aggressive power-
saving techniques or algorithms (e.g., a device wake-up only if the current value is different from 
the prior sensor reading; otherwise, it is kept in sleep mode to save power and avoid redundant 
data). Another point worth noting is that as farms are open spaces, deployed IoT hardware 
should be ruggedized to withstand the vagaries of nature. Since farms are spread over large 
areas, automation (by way of autonomous farm vehicles, robotics, etc.) is widely employed.

4.	 Livestock management: Locations of the livestock are tracked using sensors such as GPS and 
RFID. These sensors help to create a geofence, whereby livestock is restricted to move in a 
particular geographic area. Alerts/notifications are issued to the owners if movement beyond 
the designated areas is detected. Input from activity-based sensors (e.g., cameras, microphones, 
accelerometers, or thermal sensors) along with feeding pattern information is used to determine/
predict the health of farm animals and parturition conditions. AI/ML models for such predictions 
are developed/refined at the central server and deployed to local DGs.

5.	 Drones: Farm drones are used to observe crop and/or livestock conditions (e.g., over-fertilization, 
frost conditions, pests or diseases, irrigation issues, the calculation of VIs, or livestock movement) 
and aid in operations such as spraying and seeding. Most modern drones are equipped to 
monitor and take required action at the same time – for example, determining the areas infected 
with pests and selective application of a pesticide to reduce overuse, thereby optimizing costs. 
Route planning is normally done using customized software, and the route data is uploaded 
into drones at the launch site. Once drones are in flight, they can analyze the camera feed and 
send the analysis results (spatial coordinates of the farm areas with disease conditions) to a 
central server. One common approach is to downsample and send low-resolution images to 
the central server for real-time analysis, and higher-resolution images can be uploaded to the 
central server once the drone is back at the launch site where connectivity/bandwidth challenges 
are minimal. In general, real-time data (raw imagery or analysis results) is avoided to conserve 
the onboard battery.

6.	 Smart farming equipment: This refers to the general category of connected or smart farm 
equipment that is used for purposes such as automatic irrigation, the removal of previous 
crop residues, and the application of seeds, fertilizers, and pesticides. This equipment sends 
the operational and diagnostics data to a central server for fault detection and fault prediction 
purposes. As agriculture operations are seasonal and highly time-bound, any fault can adversely 
impact the yield and quality of the final produce, which makes it imperative that the equipment’s 
faults are detected and rectified promptly. The operation of this equipment can be controlled 
remotely, as detailed in the Remote monitoring and control bullet point.

7.	 External/third-party systems (law enforcement agencies): These are the external systems that 
are fundamental to implementing a land-holding system, as introduced in the prior section. 
A law enforcement agency’s systems are required to administer and comply with the contract 
between farmers and third parties. Enterprise integration patterns (shown in Figure 8.9 as 
part of the central server functionality) facilitate the interaction between central components 
and these external/third-party systems.
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8.	 Weather forecast companies: Agriculture output relies heavily on accurately predicting/
estimating climatic conditions, and weather forecasts play an even more important role in smart 
agriculture, as they help optimize various activities. A simple example would be to postpone 
a scheduled/planned irrigation if the forecast data indicates rain. Similarly, fertilization would 
fail if rainfall occurred immediately afterward. Weather forecast data would be channeled by 
the enterprise integration pattern into a central server and used by patterns such as AI/ML 
integration and the global rule engine (defined later in this section).

9.	 External/third-party systems (banking institution): Integration with banking systems is 
required to facilitate payments to farmers.

10.	 Remote monitoring and control: Farmers can use mobile devices to access insights generated 
by a central server. In scenarios where connectivity with the central server is erratic, mobile 
devices would connect directly with local DGs (e.g., to control the path traversed by drones 
or get a timely notification if an animal exits a defined geofence). The user interface design of 
mobile applications should be adapted to the needs and skill level of the farmers, and special 
consideration should be given to farmers who aren’t very tech-savvy.

11.	 Central server: A central server can act as an aggregation point and host the following IoT 
patterns as well:

A.	 Global Rule Engine (GRE): GRE will help to coordinate the execution of defined actions if 
required conditions are met (e.g., start sprinklers if soil moisture is low, or send a notification 
to the farm owner if any farm animal shows signs of distress).

B.	 Digital twin: The DT will store the current state and configuration related to each of the 
entities involved in a smart agriculture ecosystem (e.g., drones, farm equipment, farm 
animals, greenhouse, etc.). It would store this information along with the relationships 
of these entities in the real world – for example, a particular piece of farm equipment 
might be associated with one field, and that field can be part of larger farmland, and so 
on. As mentioned earlier in this chapter, connectivity is a challenge in remote farmlands, 
so the DT pattern becomes more important in this context, where the DT would store the 
configuration changes (done by the farmer, as mentioned in the Remote monitoring and 
control bullet point) and sync with the field devices once connectivity is reestablished.

C.	 AI/ML integration: The prime purpose of this pattern is to develop and refine models that 
would be deployed locally to realize various edge scenarios. Autonomous farm vehicles 
and drones require these models for obstacle detection and to determine the need for 
preventive maintenance of farm equipment.

D.	 Device management: This pattern helps to manage numerous gateways that are connected 
to a central server, along with establishing a hierarchical structure for easy manageability. 
Similarly, it can store other metadata related to the DG (e.g., a firmware version, a certification 
rotation date, etc.).
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E.	 File upload: As connectivity (and sometimes even electricity) is limited in remote farmlands, 
farm data (e.g., sensor data from fields or livestock) is aggregated locally in the DG in the 
form of a physical file and pushed to a central server when the connectivity is available. 
DG keeps track of the part of the data file that is already sent to the central server to avoid 
the possibility of duplicate data being pushed to it.

F.	 Enterprise system integration: Implementation of smart agriculture requires integration 
with various third-party or external systems, as detailed in the preceding bullet points. 
This pattern will ensure that data with these systems is synchronized at the optimum time 
intervals (the frequency of synchronization will vary from one system to another) without 
putting extra load on the central server.

This section detailed the possible smart agriculture use cases, as well as the architectural patterns that 
are required to implement these use cases. One point worth noting is that integration with enterprise/
third-party systems opens up possibilities of much richer use cases.

Summary
This chapter provided insights into how IoT plays a role in transforming the agriculture domain. Key 
challenges inherent in the agriculture sector were listed, and we discussed how IoT (along with other 
related technologies) can effectively tackle these challenges. Some of the key terms used in smart 
agriculture were explained. Lastly, a practical problem (smart farm holdings preventing the adoption 
of smart agriculture practices) prevalent in developing countries was highlighted and a practical 
solution was proposed.

This and the last few chapters focused on specific domains, and we illustrated how architectural patterns 
mentioned in the early chapters can be used effectively in these domains. The forthcoming chapters 
will cover some generic concepts, such as security, analytics, and edge computing. Accordingly, the 
next chapter will focus on the factors to be considered when selecting sensors and actuators for IoT 
use cases.





Part 3:  
Implementation Considerations

In this part, readers will understand the implementation challenges and table-stakes non-functional 
requirements, such as security, analytics, and the selection of sensors and actuators, that need to be 
considered while developing IoT solutions.

The intent is not to repeat what is already known about the non-functional requirements in question 
– the focus will be more on how these requirements need to be considered in an IoT context. For 
example, security is a well-documented subject with copious references available in the public 
domain; however, how security is applied in an IoT context (e.g., how security can be implemented 
for constrained devices) is rarely discussed.

This part comprises the following chapters:

•	 Chapter 9, Sensor and Actuator Selection Guidelines

•	 Chapter 10, Analytics in the IoT Context 

•	 Chapter 11, Security in the IoT Context





9
Sensor and Actuator Selection 

Guidelines
Sensors and actuators constitute a critical part of any IoT system. As was mentioned at the start of 
this book, sensors are akin to human body parts of perception (eyes, ears, touch, and so on), whereas 
actuators can be compared to human parts of action (hands and legs). Through sensors and actuators, 
the IoT system interacts with the physical realm, and it is the ability of the IoT system to effectively 
blend physical (data acquisition and action) and virtual (processing) worlds that make IoT systems 
so unique and powerful.

In this chapter, we will understand the different types of sensors and actuators (the intent here is not 
to provide an exhaustive list of sensors and actuators but a representative list). Elements from these 
lists can be mixed and matched to develop innovative and interesting use cases. As we will understand 
in the chapter, these lists can be used in two ways:

•	 Given a problem statement, which sensors and actuators are best suited for solving that problem?
•	 Looking at the list of sensors and actuators, we can think of real-world problems that can be 

solved by a combination of sensors and/or actuators. Used in this manner, the list serves to 
demonstrate what’s possible (the art of the possible).

This chapter provides guidelines/recommendations for selecting the right set of sensors and actuators. 
Toward the end of the chapter, we cover a brief introduction to the topic of wireless sensor and actuator 
networks (WSANs) as any non-trivial IoT use case would involve a network (or web) of sensors and 
actuators rather than individual sensors/actuators connected to the Device Gateway (DG). The section 
also lists a few techniques of how power consumption can be optimized when sensors and actuators 
are deployed as nodes of IoT networks.

Intricate/internal working of different sensors/actuators are deliberately omitted in this chapter for 
three reasons:

•	 IoT solution architects are expected to leverage available sensors/actuators in the market rather 
than design/develop them from scratch

•	 Knowledge of the internal functioning of the sensor/actuator doesn’t help much in determining 
their actual applicability in solving real-world problems/challenges – it is more important to 
understand the purpose of these devices and the conditions under which they can be used
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•	 Underlying technologies of sensors/actuators are continuously changing/evolving as per the 
advancements in the fields of material sciences and instrumentation

The next section explains terms and concepts that are typically used in relation to sensors and actuators. 
A high-level understanding of these terms/concepts will help you to compare the available sensors/
actuators based on your specific characteristics.

Key terms/definitions
In this section, we define some key concepts associated with sensors and actuators:

•	 Accuracy: Accuracy refers to the ability of sensors to provide a result as close to real value 
as possible.

•	 Precision: Precision refers to the capability of the sensor to give the same readings for the same 
measurement over time and under similar conditions. Although accuracy and precision seem 
like similar terms, they differ in the sense that accuracy refers to how close the reading reported 
by the sensor is to the actual value, whereas precision refers to the ability of the sensor to detect 
even small changes. The difference between accuracy and precision can be better understood 
by the following figure:

Figure 9.1 – Difference between accuracy and precision
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•	 Repeatability: Repeatability indicates the ability of the sensor to sense a particular value and 
report it as the same value consistently (under similar environmental conditions) over a period 
– that is, repeatability refers to the consistency of the value reported by a particular sensor 
when the same value is read multiple times. Repeatability differs from accuracy, as shown in 
the following figure:

Figure 9.2 – Difference between accuracy and repeatability

More specifically, repeatability refers to the property of a single sensor and how it behaves 
over time, whereas precision is a relative property where one sensor’s output is compared with 
other (similar) sensors. If fact, all three properties (accuracy, precision, and repeatability) are 
complementary characteristics and should be considered in conjunction for a more holistic 
sensor selection.

•	 Range: Range indicates the lowest and highest value of the physical quantity that a sensor can 
measure. Typically, range and accuracy have a negative correlation – a higher range results in 
less accuracy.

•	 Resolution: This refers to the smallest change the sensor can register.

•	 Response time: This is the time taken for the sensor’s output to reach its final value.

•	 Sensitivity: Sensitivity is the ratio of the incremental change of the value of the sensor reading 
to the corresponding incremental change in the value being measured. In general, sensors with 
higher sensitivity should be preferred; however, very high sensitivity also results in readings 
getting impacted by ambient noise, for example.

•	 Static/dynamic load: This term refers to the load that an actuator can handle while static (static 
load) and while it is in motion (dynamic load).

•	 Deadband: This refers to the condition when there is no output from an actuator even though 
the actuator is provided with input excitation energy.
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Figure 9.3 – Deadband illustration

•	 Settling time: Actuators employ mechanical parts/assemblies and as a result, they don’t perform 
the action in one go and there is always an oscillation around the final/target position. Settling 
time refers to the time taken for this oscillation to stabilize.

•	 Calibration: Calibration refers to checking for the accuracy of sensors/actuators against a 
standard source and (if required) taking steps to rectify the deviation (drift) that typically sets 
in after continued use. Calibration is also required as a last stage in the production process as 
sensors/actuators produced using the same manufacturing process and equipment can differ 
in accuracy.

•	 Linearity: The graph between the value reported by the sensor and the actual value being 
measured should ideally be a straight line. Linearity refers to the extent of this variation from 
this ideal graph:

Figure 9.4 – Linearity resulting in differences between actual and observed sensor values
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•	 Drift: Drift refers to the phenomenon of a sensor reporting a different value for the same 
reading if the readings are taken after a certain period. Similarly, an actuator will gradually 
stop reaching its exact target position (or sometimes move beyond the target position) due to 
continuous exposure to frictional forces or due to mechanical wear and tear.

When selecting a sensor, it is recommended that we perform a comprehensive analysis with respect 
to the device characteristics of the shortlisted devices as well as the environment in which the sensor 
would be used before placing the procurement order. The following section will help us perform 
this analysis.

Usage scenarios of sensors
Different types of sensing technologies are used in a complementary manner to implement complex 
use cases. As an example, autonomous vehicles leverage different technologies to accurately determine 
the environment (current location and approaching obstacles) and make sense of the available 
information. An autonomous vehicle best illustrates this as it uses diverse technologies to understand 
its environment in real time, as is illustrated in the following figure:

Figure 9.5 – Autonomous vehicle leveraging multiple technologies for understanding the environment
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The following table compares the different sensing technologies used in autonomous vehicles and 
provides an example of how diverse sensing technologies can be used in a complementary way:

LiDAR Video cameras RADAR GPS
Light Detection 
and Ranging; 
a source emits 
light that gets 
reflected from the 
object of interest. 
The reflection is 
then sensed by 
a LiDAR sensor 
to determine the 
time taken, which 
is then used for 
calculating the 
distance from the 
object of interest.

Digital video cameras 
– not very different 
from the ones found in 
mobile phones

Radio Detection 
and Ranging; 
similar to LiDAR, 
it uses reflection 
from objects/
surroundings to 
determine the 
distance with the 
difference that, 
here, radio waves 
are used instead 
of light

Global Positioning 
System; a 
mechanism for 
determining the 
current location 
that relies on 
determining the 
distance between 
the GPS receiver 
and a set of four or 
more satellites

+ 3D mapping

+ Ability to see in 
the dark and detect 
small objects

+ Ability to differentiate 
colors, character/text/sign  
recognition

+ Less expensive

+ Excellent range 
event at high speed

+ Works well in 
the dark and is 
unimpacted by 
ambient conditions 
such as smoke, 
dust, rain, and 
so on

+ Requires less 
processing power

+ Works in all 
weather conditions
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LiDAR Video cameras RADAR GPS
- Performance 
impacted by 
ambient conditions 
such as smoke, 
dust, rain, and 
so on

- Expensive

- Inability to see in the 
dark and in conditions 
of smoke, dust, rain, and 
so on

- Requires higher 
processing power

- Lacks precision 
and resolution and 
ability to detect 
small objects

- Unable to 
differentiate colors, 
character/text and 
can’t recognize sign

- Limited utility 
indoors and in 
closed spaces 
such as tunnels 
as technology 
requires direct 
line of sight 
with satellites

- Less accurate 
and accuracy 
varies from region 
to region

Table 9.1 – Sensing techniques used in autonomous vehicles

Generalizing the example discussed, any IoT use case can be represented using the following equation:

IoT Use Case = (Sensor(Data Acquisition))+ + Data Processing +  
(Actuator(Data Processing-Based Action))*

Here, (Sensor)+ indicates one or more sensors (a representative list of sensors is provided in  
Table 9.1), Data Processing indicates processing locally (DG) or at the global (central server) level, and 
(Actuator)* indicates zero or more actuators (a representative list of actuators is provided in Table 9.3).

In other words, any IoT use case typically has at least one sensor, although it may or may not have 
an actuator.

For example, this equation, when adapted to the autonomous vehicle use case discussed earlier, would 
look like the following:

Autonomous/Connected Vehicle = (Sensors: Video Camera, GPS, LiDAR) + Data Processing + 
(Actuators: Braking system, Steering, Horn, Front)

The following table lists the commonly used sensors in IoT solutions. The table also mentions the typical 
use case/relevant domain for each of the sensor types. As mentioned earlier, this is a representative 
list and not an exhaustive one:
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Sensor Type Applicability Details
Motion sensor Detects unauthorized presence via detection motion; used in intruder 

detection systems
Retail: Helps to design retail outlet layouts by determining the areas frequented 
by shoppers; automatic door opener

Smart homes: Used for automatic door control, automated lighting control, 
automatic dispensing of water and soap

Smart agriculture: Alerts farmers in case of any unauthorized movement 
(human or animal)

Alcohol sensor Detects the concentration of alcohol (primarily ethanol) in the air

Smart city: Used in breath analyzers to measure the alcohol content in 
vehicle drivers

Industrial sector: Prevents accidents due to intoxication
Light sensor Detects light intensity

Industrial, Smart city: Used to adjust the brightness of the screen or other 
light sources as per the intensity of the ambient light

Smoke sensor Smart city: Detects the possibility of fire/smoke
Rain sensor Detects the amount of rainfall

Smart agriculture: Helps to turn on sprinklers to avoid under/over watering

Transportation: Used in high-end vehicles to automatically turn on wipers 
in the case of rain

Infrared sensor Detects the thermal radiation emitted by objects/humans
Smart city: Detects the presence of humans/animals and is part of night 
vision cameras

Chemical sensor Industrial: Detects the chemical composition of objects, liquids, or gases
Flow sensor Industrial: Detects movement of liquids and controls the flow of liquids in 

oil and gas industries
Gas sensor Measures the concentration of different gases

Industrial and Smart building: Detects the presence of hazardous gases and 
monitors indoor air quality

Gyroscope Detects object orientation in three-dimensional space, used extensively for 
controlling the motion of drones and robots
Athletics: Detects body posture and movement of athletes, which can be 
analyzed by coaches or guides to advise on bodily movements that would 
result in better performance
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Sensor Type Applicability Details
Water quality sensor Ensures the quality of drinking water or water used for showers and 

swimming pools
Smart city: Determines the quality and purity of the water, the concentration 
of undesired particles in the water, turbidity (suspended solid particles), 
and salinity

Accelerometer Measures the acceleration of the object/vehicle
Consumers: Used extensively in smartphones and for detecting free fall

Air quality sensor Smart city: Detects the overall quality of air (number of harmful gases such 
as CO2, sulfur dioxide, and so on) and particulate material

Magnetic sensor Determines the presence and/or strength of the magnetic field
Pressure sensor Used to measure gas pressure or atmospheric pressure
Humidity sensor Measures atmospheric humidity

Smart agriculture: Determines the need for irrigation

Consumers: Used in consumer appliances such as refrigerators to ensure the 
freshness of food materials. Used in heating, ventilation, and air conditioning 
(HVAC) to ensure a comfortable environment

Noise sensor Smart city: Measures ambient noise levels

Smart building: Ensures the comfort level of the occupants and controls 
noise pollution

Proximity sensor Helps to detect the presence of objects in the vicinity.
Smart city: Determines the number of parking slots available and other 
obstacle detection/avoidance applications

Home automation/assisted living: Detects unexpected movement. A blind 
stick is another application.

Temperature sensor Reports current temperature and has applicability in almost all domains
Smart agriculture: Ensures that crops are having optimal ambient conditions 
and alerts if the farm equipment is overheating

Smart building: Used in HVAC to ensure that the temperature is maintained 
within a specified range

Level sensor Detects level of liquids; typical applications include monitoring the level of 
water or water tank
Smart city: Detects flooding conditions
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Sensor Type Applicability Details
Ultrasonic sensor Used to measure the distance between two objects by using sound waves

Used where ambient lighting conditions don’t allow for image/optical sensors 
to be used
Smart manufacturing: As the reflective property of sound varies depending 
on the intervening medium, the ultrasonic sensor is used effectively to 
detect empty parts on a conveyor belt (for example, to segregate filled and 
unfilled bottles).

Location sensor Smart agriculture: Used to determine the altitude of the agricultural field 
along with latitude/longitude; geofencing for the livestock; aerial mapping 
of fields; and aids in the movement of autonomous farm vehicles

Optical/Image sensor Detects various properties of light such as frequency, wavelength, intensity, 
and polarization
Smart city: Detects water levels and helps in smart parking. Facial recognition 
determines a person’s emotional and physical state (happy, sad, drowsy, and 
so on), as well as demographic characteristics (age and gender). Also used 
for gesture detection

Smart agriculture: Determines crop health and helps in chlorophyll 
measurement and checking ripeness levels

Retail/Industrial: Reads barcode labels

Smart manufacturing: Detects malformed/defective parts on the assembly line
Mechanical sensor Smart agriculture: Helps to measure the resistance offered by the soil by 

applying forces
Dielectric 
soil moisture

Smart agriculture: Determines the soil’s water requirement

Electro-chemical  
sensor

Smart agriculture: Monitors the pH level of the soil, and helps to determine 
the level of minerals such as phosphorous, potassium, calcium, sodium, 
nitrogen, copper, and iron

Weather sensor Smart agriculture: Acts as a sensor hub and measures aspects such as 
temperature, humidity, rainfall, atmospheric pressure, wind direction, and 
solar radiation

Salinity sensor Smart agriculture: Used to measure the soil salinity
RFID (tag) sensor Used for asset monitoring and asset tracking in multiple domains
Energy meter Agriculture: Determines energy consumption for various farming operations

Smart city: Energy can be measured at the aggregate level (complete household) 
or at the per-appliance level (such as HVAC energy consumption)
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Sensor Type Applicability Details
Anemometer Smart agriculture: Measures wind speed and direction
Pluviometer Smart agriculture: Used to measure rainfall
Volatile organic 
compounds 
(VOC) sensor

Smart building, consumer, smart city, and industries: Detects the presence 
of harmful organic compounds emitted by commonly found products such 
as paints, wood products, upholstery, stored chemicals, and so on

Thermal sensor Retail, smart city, and industries: Determines the presence (position as well 
as count) of people/animals in a particular area by measuring body heat 
without violating privacy

Keypad Consumer and industries: Starts/stops an operation and provides textual input

Table 9.2 – Representative list of sensors

As an exercise, you are encouraged to think of innovative use cases and to select the appropriate 
sensors and actuators (from Tables 9.1 and 9.2) for realizing those use cases.

Operation and usage scenarios of actuators
An actuator is a device that, based on some trigger mechanism, will make something move, rotate, 
oscillate, or initiate some operation. Actuators can perform actions on themselves (turn water sprinklers 
on/off, change temperature settings in a thermostat, and so on) or on the sensors (starting/stopping a 
sensor or moving a sensor from one location to another, for example). Generally, actuation requires more 
energy than sensing; accordingly, actuators are supplied with stronger batteries or are mains-powered. 
However, in a typical deployment, the count of sensors would far exceed the number of actuators.

For a completely automated and/or remote operation, sensors and actuator work in a complementary 
fashion to monitor and change the environmental state, as shown in the following diagram:

Figure 9.6 – Sensor and actuator working in a complementary fashion
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Actuators can be broadly categorized into three categories based on the movement/action that is generated: 
linear (moves target in a straight line), rotary (generates a circular motion), and oscillatory (back 
and forth/pendulum type of movement). These different actions are depicted in the following figure:

Figure 9.7 – Different types of actuator motions

Typically, an actuator converts electrical energy into force, motion, heat, voice, torque, and so on. 
To operate an actuator, two of the main inputs required are a control signal (trigger) and an energy 
source. An actuator can also be viewed as an energy convert/transformation agent where it converts 
electrical, mechanical, hydraulic, and pneumatic energy into mechanical energy (or mechanical 
movement), as depicted in the following figure:

Figure 9.8 – Actuator converts different types of energy into mechanical energy

Each of these input energies has unique characteristics (trade-offs), which play a crucial role in deciding 
the right actuator. The pros and cons of each of these input energies are detailed in the following section.
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Key characteristics of actuator types

This section lists different types of actuators that are available on the market. Each of the actuator 
types listed in this section has vastly different characteristics and understanding these characteristics 
is crucial for us to determine the suitability of these actuator types for a particular use case and/or 
operating context:

•	 Electrical Actuators: These convert electrical energy into mechanical energy. These electrical 
actuators can be further categorized depending upon the type of technology/mechanism used 
for generating required action (for example, Brushless Direct Current Motor (BLDC) and 
Permanent Magnet Synchronous Motor (PMSM) are two common types of electrical motors 
used for generating rotary motion). The pros of using such actuators are as follows:

	� Higher precision and better control

	� Require less maintenance and provides easy installation and operation

	� Less pollution

	� Less noise and highly efficient

	� No leakage risks

However, the cons are as follows:

	� Can’t work in harsh conditions or explosive environments

	� Expensive

	� Low speed

	� Can’t support heavy loads

	� Occupy more space

	� Can’t operate without an active power source

•	 Hydraulic Actuators: These convert hydraulic energy (fluid such as oil) to mechanical energy. 
Some of their benefits are as follows:

	� Durable and rugged – can work in harsh conditions

	� High power – can carry heavy loads

	� Provide high speed and precision

	� Can operate in harsh conditions and/or explosive environments

	� Can operate without an active power source

	� Self-lubricating
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Some of the disadvantages are as follows:

	� Prone to leakage and requires regular maintenance

	� Limited acceleration

	� Difficult to operate

	� Pose a fire risk

	� Expensive

	� Noisy operation

	� Can’t work in cold/freezing environments

•	 Pneumatic Actuators: These convert pneumatic energy (vacuum or pressurized gas) into 
mechanical energy. Their advantageous characteristics include the following:

	� Durable and rugged, and can work in harsh conditions/explosive environments

	� Quick response

	� Lightweight, low cost, and require less maintenance

	� Produce large output force from relatively small input

	� Easy to install and have a long life

	� Can operate without an active power source

	� No leakage risks

The disadvantages include the following:

	� Difficult to operate and require regular maintenance

	� Less precise/accurate

	� Noisy operation along with high vibration

	� Can’t support heavy loads

•	 Magnetic/Thermal Actuators: These convert thermal (temperature changes or magnetic energy) 
into mechanical energy. They are particularly useful due to the following:

	� Lightweight and compact

	� High power

	� Operate without an active power source

	� No leakage risks
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However, they do have certain negative characteristics, which include the following:

	� Slow response

	� Less precise/accurate

	� Can’t support heavy loads

Now that we’ve learned about all the different types of actuators, let’s look at some of their use cases.

Use cases for actuators

Similar to Table 9.2, which provided a list of sensors, the following table is the representative list of 
actuators along with applicable domains and use cases.

Actuator Use Case Applicability Details
Ventilation systems Smart agriculture: Ensure that crops (and livestock) are provided with 

favorable environmental conditions and allow fresh air into greenhouses
Fertilizers/pesticides/ 
seed spreaders

Smart agriculture: Useful in large farms for uniform application of 
fertilizers, pesticides, herbicides, and so on

Sprinklers Home automation and smart building: Used to control fire by 
releasing water

Smart agriculture: Irrigate agricultural crops in a manner that mimics 
actual rainfall

Automatic milking systems Smart agriculture: Used for extracting milk from cattle
Automatic door openers Smart city and retail: Automatically open the door when human presence 

is detected
Seat movements Smart city: Seat adjustments in automobiles
LEDs/lights Smart manufacturing: Indicate assembly line status
Buzzers/speakers Smart manufacturing and smart city: Sound an alarm
Robotic arms Smart city: Enable pan, tilt, and zoom functionality for surveillance cameras
Cooling fans Consumer and industries: Provide cooling air to persons or to 

industrial machinery
IR blasters Consumer: Used to send infrared (IR) commands from a remote control 

and simulate the remote control functionality

Can be extended to control any appliance via gesture/voice commands
Relays Consumer: An electrically operated switch used to trigger ON/OFF actions
Vibrations Consumer: Provide vibrations in mobile and other electronic devices
Brake pedals Transportation: Regulate vehicle speed by enabling the braking mechanism
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Actuator Use Case Applicability Details
Heaters Consumer and industries: Used to heat target objects or supply heat 

to the environment

Table 9.3 – Representative list of actuators

To better understand the interplay of sensors, actuators, and data processing inherent in any IoT use 
case, let’s delve deeper into the connected coffee vending machine use case in the next section.

Use case – connected coffee vending machine
The following figure shows the overall functionality of the connected coffee vending machine and the 
high-level interaction between the user and the coffee machine:

Figure 9.9 – Coffee vending machine operation and user interaction

For the coffee machine to provide the functionality specified in the preceding figure, various sensors 
and actuators need to be integrated and housed in assembly. In addition to the core data processing 
engine, diverse sensors and actuators would be required, which are shown in the following figure:
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Figure 9.10 – Sensors and actuators present in the coffee vending machine

Let’s look at the elements shown in the figure in greater detail:

1.	 Keypad: The keypad serves as a primary input mechanism for selecting the specific coffee 
types and quantity of ingredients such as milk and sugar. Also, users can schedule the brewing 
process to start at a later/predefined time. These inputs can be provided directly using the 
keypad/touchscreen provided on the coffee vending machine, or they can be specified using 
an application running on mobile devices (as depicted in Figure 9.10).

2.	 Mic: This is used for receiving voice commands/instructions from the user – as an alternative 
to the keypad.

3.	 Temperature sensor: This is used to measure the water temperature.

4.	 Presence sensor: This is used to determine the presence or absence of a cup to avoid coffee spillage.

5.	 Water level sensor: This ensures the right amount of water or milk is poured into the cup and 
helps to avoid conditions of overflow or underflow. Although not shown in the figure, similar 
sensors would be required to determine the level of other ingredients, such as milk, sugar, 
and coffee.

6.	 Screen: The results of the user selection as well as the progress of the brewing operation and 
notifications such as sugar quantity running low are shown on the display screen 
attached to the coffee machine. In the case of remote operation, similar information would be 
displayed using the mobile application UI and/or using push notifications.
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7.	 Speaker: Users can be updated on the status of the brewing process as an alternative to the screen.

8.	 Heating element/coil: This is used to boil the water to the desired temperature.

9.	 Mixer: This is required to mix/shake the ingredients.

10.	 Motor: This is used for dispensing the ingredients into a mixer container.

Now let’s look at the important considerations that you should keep in mind while selecting a sensor 
or actuator.

Factors to be considered while selecting a sensor or 
actuator
Selecting a sensor and/or actuator is one of the most important design considerations as it involves 
balancing diverse (and often conflicting) requirements. As the number of sensors/actuators deployed 
in real/practical use cases is large, it is almost impossible to replace deployed field devices if they are 
found to be unsuitable later. Hence it is better to perform the required due diligence during the initial 
selection stage. Accordingly, this section provides guidance regarding the key factors that should be 
kept in mind while shortlisting the field devices:

•	 Data and usage considerations: This covers the type of data required and its purpose and it 
will cover aspects such as the type and size of the sample. Most of the applications perform the 
following collectively or in isolation:

	� Object recognition

	� Object presence/absence

	� Level/quantity monitoring

	� Distance ranging

	� Initiating movement either linear, rotary, or oscillatory

Even in the same use case, attention should be given to the specific application area – for example, 
in smart agriculture, a sensor can be used to determine the level of water (depth of water table) 
or it can be used to determine the moisture at the soil surface. Latency is an important factor 
that should be considered – for example, fire or intrusion detection requires very low latency, 
whereas some applications such as moisture detection can work with higher latency.

The same characteristic can be measured with different sensors (the weight of the farm 
animal can be measured using a weight sensor and can also be determined by running image 
recognition algorithms on the image captured by image/optical sensors). For actuators, the use 
case/problem domain would dictate the type of movement/action an actuator should trigger 
(linear, rotatory, and so on).
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•	 Desired properties/attributes: It is important to list the requirements related to the accuracy, 
precision, range, and other attributes required in a sensor to select a right fit sensor for the use 
case – for example, having more accuracy/precision than is required might not serve any purpose 
other than increasing the cost. Sensors monitoring health parameters would be expected to have 
much higher accuracy/precision than (say) sensors deployed in the manufacturing domain. 
Other important characteristics worth considering are the sensor’s frequency response and the 
overall size/form factor of the sensor/actuator.

•	 Operational environment/regulatory requirements: The usage of sensors/actuators within 
a particular environment (ambient temperature/humidity, vibration/lighting conditions, 
and surrounding noise levels) governs factors such as enclosure design, mounting options, 
waterproofing, and so on. Environmental factors also govern the right International Protection 
(IP) rating – for example, IP55 (protection from dirt, dust, and water jets but can’t sustain 
submerging in water) and IP67 (sensor/actuator protected from dirt and dust and can sustain 
being submerged in water up to one meter). For some of the domains (such as healthcare), 
sensors/actuators also need to comply with specific safety/regulatory standards such as National 
Electrical Manufacturers Association (NEMA), International Electrotechnical Commission 
(IEC), and so on.

•	 Power requirements: Whether the sensor or actuator would be operating from a mains power 
supply or battery operated or using an energy harvesting (such as solar energy) mechanism 
is an important consideration. Battery-powered sensors and actuators are easier to install but 
have the inherent issue of replacement after a few years. The operational environment also 
plays an important role in determining the right type of power source. For example, long-
lasting batteries would be preferred for remote or harsh areas (such as underwater) to reduce 
the replacement hassles.

•	 Connectivity requirements: The connectivity technology (cellular, Wi-Fi, satellite, wired, and 
so on) used to transfer data from the sensor to the DG or directly to the central server is an 
important consideration. Connectivity technology selection depends on a number of factors, 
such as the number of nodes to be supported, the power or energy budget, and whether the 
processing is required to be done locally (DG) or remotely (central server). Another factor 
worth considering is whether the connectivity protocol follows an open standard or is a custom/
vendor-specific protocol. In the case of the latter, vendor lock-in is an inherent risk.

•	 Coverage considerations: Some sensors require full coverage (such as image sensors or 
surveillance cameras), whereas others can make do with partial coverage (such as temperature 
or humidity monitoring in smart agriculture). In the case of partial coverage, care should be 
taken to place the sensor at a location that is a good representative of the general case. Also, 
the data retrieval frequency should be set so that adequate data is available for analysis.
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•	 Supplier/procurement considerations: Some non-technical aspects such as supplier’s lead 
time, type, and length of post-sales support (accuracy of sensors/actuators tend to drift and 
they require regular calibration), availability of alternate vendors providing similar devices, 
and commercial considerations (one-time versus recurring payment terms) also need to be 
considered. Some vendors operate in close ecosystems (data from/to the sensors/actuators 
flows not to the user’s central server but to the vendor’s central server from where data needs 
to be fetched), which not only results in inefficiency but also in security or data privacy issues. 
Additionally, in the case that both a sensor and an actuator need to be procured, preference 
should be given to the vendor who can provide both to reduce incompatibility issues.

Another important point to consider is that the value reported by a sensor varies with different 
environmental conditions (such as ambient temperature, humidity, and noise levels) and hence 
it is crucial that these conditions closely mimic operating conditions specified or recommended 
by vendors.

•	 Convenience/utility considerations: This includes factors such as whether sensing or actuation 
information can be fed directly to the central server, or whether some manual intervention is 
required (download data from the sensor and then upload to the central server, for example). 
Similarly, sensors and actuators that can be configured or calibrated (smart sensors) remotely 
are generally preferred.

After understanding the factors that need to be considered while selecting sensors/actuators for 
implementing desired use cases, let us understand how they can be connected to each other through 
diverse network topologies.

Introducing wireless sensor and actuator networks
WSANs are generally controlled by a DG (also referred to as sinks or base stations). Mostly, WSANs 
are deployed in remote or obscure locations where they aren’t mains powered, which necessitates the 
need to employ aggressive energy optimization techniques (inducing regular sleeping/waking cycles 
and minimizing the data communication) so that batteries can last for a longer duration (unless energy 
is harvested from the environment, such as solar/vibrational energy).

Another desired property from WSANs is the ability to add or remove nodes (sensors or actuators) 
without impacting the overall performance of the WSAN. To achieve this, nodes need to be designed 
intelligently whereby they can dynamically route data packets with any change in network topology. 
Typically, this is achieved by following a distributed architecture whereby each node acts independently 
and maintains the information about its nearest neighboring node. WSANs are typically deployed in 
the topologies that are shown in the following figure:
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Figure 9.11 – Different types of sensor and actuator networks

As detailed in earlier chapters, the DG is primarily responsible for aggregating and analyzing data 
received from sensor nodes, providing connectivity to the central server (in some cases), making 
decisions, providing a controlling and monitoring interface to users or the external world, and 
implementing those decisions via actuators.

Another strategy used for optimizing power, especially in networks that are implemented in a large 
geographical area, is to add mobility to either sensor/actuator nodes or sink nodes. This is especially 
relevant in cases where these nodes can piggyback on some other entity. A DG placed on a tractor 
reading the data from the nearby sensors by forming an ad hoc network is an example of a dynamic 
sink node, whereas sensors placed on farm animals that get read when these animals return to the 
barn can be a good example of mobile sensor/actuator nodes. Adding mobility also solves another 
problem inherent in WSANs – non-uniform power required by different nodes in the network. Node 
mobility helps to determine the optimum coverage and power consumption by placing nodes at 
different physical locations and comparing the overall coverage/power consumption (a hit-and-miss 
approach). Sensor/actuator nodes as well as sink nodes can either be stationary or they can be mobile 
(as per use case requirements). The possible scenarios with one example application are shown in the 
following figure:
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Figure 9.12 – Mobility scenarios of sink and other nodes

As can be seen in the preceding image, the energy requirements of nodes nearer to the sink are much 
higher than nodes that are far from the sink, as nodes near the sink are required to transfer more data.

One optimization strategy that is used by WSANs is to perform filtering and/or data aggregation at 
intermediate nodes (such as aggregation or filtering done at the sink node). For example, if neighboring 
nodes are sensing similar values, then instead of sending similar (and redundant data) to the sink, only 
filtered and aggregated data can be forwarded, reducing data traffic, and correspondingly, reducing 
power consumption. Another mechanism used is called change of value (CoV), where instead of 
polling for a network node value repeatedly, the sink node sends a subscription request to the network 
nodes. This allows the network node to send an updated value only if it changes by a specific amount 
(delta value, where the delta value is sent initially as part of the subscription request); all other changes 
(where change value < delta) are ignored, thereby conserving precious energy and bandwidth.

Data compression is another technique used to optimize data traffic within the network. Another 
technique that is used to reduce the traffic between the sensor and sink node is to predict and use 
future values rather than sending them over the air/wire. One such technique is illustrated in the 
following figure:
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Figure 9.13 – Optimizing the data transfer by predicting future values

As can be seen from the preceding figure, WSAN design involves a trade-off between coverage, data 
accuracy, and energy consumption. Nodes other than sink nodes are constrained in terms of compute, 
connectivity, storage/memory, and power/energy availability. These constraints not only make 
designing an energy-efficient network challenging but also severely limits the ability to implement 
non-functional requirements such as security, as most of the security algorithms are resource intensive. 
As a result, nodes often transfer unencrypted data, directly exposing it to be exploited by bad actors. 
These challenges (specifically related to security) and their mitigations are detailed in Chapter 11, 
Security in the IoT Context.

WSANs are generally placed at desired locations and are expected to auto-configure once they are 
powered on. To conserve power, these nodes are designed to have a very short transmission range 
and are capable of single-hop communication (sending data to the nearest neighbor) only. However, 
after being configured as part of the network, these nodes can send data to any node (making an 
arbitrary number of hops). As mentioned earlier in this section, transmission normally terminates 
at the sink node.
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Summary
This chapter covered the sensors and actuators that form crucial elements (similar to the eyes and 
ears) of any IoT network. A representative list of sensors/actuators was also provided as an aid that 
can help you while developing an IoT solution for novel use cases that can be implemented using a 
combination of the suggested sensors/actuators. Two specific examples (one related to a connected 
coffee vending machine and another to autonomous vehicles) were provided to illustrate how a diverse 
set of sensors and actuators are needed for implementing real-life IoT use cases. By now, you should be 
able to grasp key characteristics that need to be considered while selecting a sensor and/or actuators 
for the envisaged IoT use case.

You were also introduced to the different topologies in which sensors and actuators can be arranged 
(WSAN topologies) to serve diverse operating needs. Insights were shared regarding techniques or 
tactics used to optimize the data transfer in WSAN with an overall objective of reducing bandwidth 
and/or power requirements.

This chapter covered sensors and actuators that are primarily involved in data acquisition and act in 
the physical world, but that action can only be taken based on insights gleaned from the accumulated 
data. These insights are generated by running analytics on top of gathered data; this is what we will 
focus on in the next chapter.
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Analytics in the IoT Context

In any non-trivial IoT use case, a huge volume of data is generated at a high speed. This high-volume 
data needs to be analyzed at similar speeds so that meaningful insights can be deduced, and the 
required actions can be triggered quickly. Most of the advancements in (generic) analytics can be 
applied directly to IoT use cases, but two key characteristics of data ingestion (that is, high volume 
and high frequency) necessitate that some special considerations are taken while reusing generic 
learnings/algorithms in the context of IoT. For example, IoT visualizations (dashboards) need to be 
displayed at reasonable granularity while not missing out on crucial/anomalous data points.

In addition to data volume and data velocity, IoT data is different as it can be a combination of 
structured (sensed values in time series format, such as temperature values captured at intervals of 1 
second, and inventory data), semi-structured (operator comments), and unstructured data (video/
image data). This chapter will start by covering the key terms and definitions that are relevant to IoT 
analytics and then cover IoT-specific nuances that you should be aware of while applying analytics.

Often, data that’s captured by resource constraint devices/sensors is inconsistent and/or inaccurate 
(the sensor is running on a low battery and is reporting an inaccurate reading, for example), so this 
data needs adequate massaging before it can be used for analysis. This is why data cleaning is a 
major requirement in IoT use cases. A high volume and/or velocity of data ingestion necessitates that 
these cleaning activities are automated. Due to this, data cleanup activities are assigned to artificial 
intelligence/machine learning (AI/ML) algorithms. We will cover this aspect of ensuring data 
quality in reasonable detail.

Some use cases require data to be processed/analyzed locally rather than at a central server due to 
requirements such as low latency, data security/privacy, and more. Processing data near its point of 
ingestion rather than processing it at the central server is referred to as edge analytics and is something 
else we will cover in this chapter. Lastly, we will cover specific points that need to be considered while 
presenting analysis results to the user – that is, IoT visualizations.
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Key terms/definitions
In this section, we’ll look at some key concepts that are relevant to IoT analytics:

•	 AI: AI intends to replicate human intelligence by using systems that can learn from past 
decisions, predict future scenarios, and continuously improve decision-making capabilities. AI 
has special relevance in the IoT context as the data that needs to be processed is high in volume, 
velocity, and variety, as discussed in the An overview of IoT section in Chapter 1 (the seven Vs of  
IoT data). This can’t be processed by traditional computing systems that are strictly rule-based 
(if X happens, do Y) and can only serve a very narrow purpose. Complex decisions need to 
be made based on the values in the data stream that are beyond the capabilities of traditional 
computing/programming systems. Chapter 12, Exploring Synergies with Emerging Technologies, 
describes in detail how AI and IoT act as complementary technologies to solve real-world 
challenges such as the following:

	� Autonomous vehicles use a combination of IoT and AI to make real-time routing decisions

	� Data gathered by sensors in the manufacturing industry domain can be analyzed by AI 
algorithms to generate process optimization recommendations

	� In the retail domain, AI can analyze shopper movements to provide predictions such as 
checkout waiting times, footfall-to-sales ratios, and more

•	 ML: ML works on the principle that a computer program can autonomously improve its 
performance by learning from available data. This is different from procedural/rule-based 
programs (if X, then Y).

IoT data corresponds to real-life events, which have inherent unpredictability (not all the 
events can be known beforehand), and traditional procedural/rule-based programs, which 
have limited applicability in the IoT context. ML can effectively fill this gap and differs from 
traditional analytics in the following ways:

	� ML can consistently learn and unlearn new trends/outcomes. It can be used to compensate 
for the limitations imposed by the constrained nature of field devices by enhancing their 
computing power, optimizing their power consumption, and more.

	� ML techniques can be used to provide important situational and/or behavioral contexts, 
which are required for more comprehensive decision-making and automated realization 
of those decisions. ML works by using the available dataset for model creation purposes; 
then, the trained model is applied to real data. Whereas traditional analytics builds a model 
based on past data and expert opinion, ML starts with an outcome or goals (such as energy 
conservation) and then works backward to determine factors that influence the outcomes and 
their relationships. In other words, it learns from the data factors that have more influence 
in achieving the defined goals.



Key terms/definitions 169

	� The performance of traditional analytics doesn’t vary with time, whereas ML algorithms can 
enhance their performance (and accuracy) as more data is made available. For example, ML 
algorithms can make predictions based on the available data, compare those predictions 
against the actual results, and then adjust the algorithm’s parameters so that they’re more 
accurate while making future predictions.

The following figure shows a clear distinction between AI, ML, and deep learning:

Figure 10.1 – Relationship between AI, ML, and deep learning

•	 Supervised and unsupervised learning: Supervised learning is used in AI/ML in scenarios 
where labeled data is available for training models. Its objective is to develop a function that 
can map an arbitrary input value to an output value after the algorithm is fed with the required 
set of input and output value pairs.

In the case of unsupervised learning, there is no need for labeled data. This contrasts with 
supervised learning because, in unsupervised learning, only input data is provided and algorithms 
must determine patterns from this input data.

Both supervised and unsupervised learning are used in IoT use cases, with the availability of 
the labeled data as the key selection criteria – monitoring industrial products on the assembly 
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line for defects would require supervised learning (verification is required against a finite/
known set of defects/anomalies), whereas navigating an autonomous tractor would require 
unsupervised learning. Essentially, supervised learning focuses on learning concepts and/or 
predicting values based on historical data, whereas unsupervised learning is concerned more 
with determining structure and/or data clustering autonomously.

Another related term is semi-supervised learning, which falls somewhere between supervised 
and unsupervised learning and is where partially labeled data is used.

•	 Batch processing: Batch processing is used to analyze high-volume and repetitive data. This 
type of processing can be executed without user involvement and is typically scheduled to run at 
a specific time/frequency (when resources are relatively free). Batch processing works on static 
accumulated data and works by processing large sets of data in a parallel and distributed fashion. 
Batch processing contrasts with streaming analytics, where data is processed as it is being 
received. Long-running analytics where instantaneous results/decisions are not needed (sales 
predictions, shopper sentiment analysis, and so on) are good candidates for batch processing.

•	 Cluster analysis: The objective of cluster analysis is to group similar entities in a group (cluster) 
and hence can be differentiated from other entities that are dissimilar in some respect. The 
count and composition of groups are normally not pre-decided and depend on the received 
data. As a result, unsupervised learning (mentioned earlier) is best suited for performing 
cluster analysis. This concept has applications in areas such as pattern recognition and image 
analysis. Cluster analysis is required in IoT to categorize diverse data generated by field devices. 
Similarly, cluster analysis is required to associate operational tasks (such as anomaly detection, 
which refers to finding and flagging any sensor data that is outside of the expected range) and 
security issues with diverse device types.

•	 Data lake: A data lake stores data in its original format and can process structured, semi-
structured, and unstructured data. With attributes such as centralized storage (of raw as 
well as refined/analyzed data), scalability, affordability, manageability, and security, it helps 
ingest data from diverse sources (social media feeds, sensor data, and data from enterprise 
systems) continuously and train ML models that serve the needs of data scientists, domain 
experts, operational/non-technical users, and others. Generally, a data lake is implemented 
in inexpensive storage and realized by creating data pipeline references that use raw data and 
generate pre-processed, semi-processed data, and processed data. Since most IoT use cases 
have a requirement to process historical as well as real-time data, using a data lake becomes 
a natural choice.

•	 Data lineage: Data lineage provides the visibility/traceability of the data as it moves from one 
stage to another in the data pipeline. It stores information such as the source of the data, the 
benefits of capturing/storing data, the different transformations that have been applied, and 
the intended consumers of the transformed data. In addition to providing visibility at the 
organizational level, often, data traceability is required to comply with regulatory guidelines. 
With strict guidelines from regulatory bodies for monitoring private/personal data, data lineage 
gains special importance as a robust mechanism that provides traceability of all data changes 
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as it moves from one stage to another – especially when it comes to highlighting the stages 
where data is aggregated, anonymized/masked, and so on.

•	 Data warehouse: A data warehouse is a data repository that is designed to handle reporting and 
business intelligence needs and primarily stores/processes structured data. The key difference 
between a data warehouse and a data lake is that whereas a data lake stores both unprocessed 
(raw) as well as processed data, a data warehouse stores only structured and processed data. 
Another difference is that in the case of a data lake, the focus is on data storage, whereas in 
the case of a data warehouse, the focus is on how data is retrieved for analytics and decision-
making purposes. In general, a data lake provides more flexibility as it maintains a copy of the 
raw data, which can be subjected to different analytics algorithms.

•	 Deep learning: Deep learning can be considered a subset of ML and works by mimicking the 
functioning of the human brain, where it continuously learns and refines the results with time. 
Deep learning algorithms are characterized by the presence of multi-layer architectures, where 
knowledge (learning) is progressively developed with each transition from one layer to another. 
For example, in the case of image recognition, the initial layer would only recognize pixels, the 
subsequent layer would focus on leveraging this understanding of pixels to develop concepts 
such as edges, contours, and more, and subsequent layers would augment this understanding 
of edges and contours to deduce higher-level features such as faces, hands, and so on.

The concept of deep learning, where learning is split across layers, is shown in the following figure:

Figure 10.2 – Deep learning mimics the functionality of the human brain by processing data in layers
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Deep learning algorithms analyze the available data to generate patterns that can be used for 
complex decision-making. Deep learning can continuously evaluate the accuracy of predictions, 
thereby reducing the probability of false alarms. Some of the possible applications of deep learning 
are speech recognition, computer vision, natural language processing, language translation, 
designing intrusion detection/prevention systems to guard against malicious actions, and 
more. For more details about deep learning, please refer to https://aws.amazon.com/
what-is/deep-learning/.

•	 Recurrent neural networks (RNNs): These are neural networks that are based on algorithms 
that make use of sequential (or time series) information to make predictions. Most generic 
neural networks work under the assumption that the input and output are not co-related; 
however, RNNs work by considering the insights gained from prior data while analyzing the 
current data stream.

RNNs are used for various applications, such as video analytics, predicting the remaining 
useful life (RUL) of the manufacturing asset, determining the possibility of an intrusion or 
security breach (detecting/preventing DDoS attacks), validating/rectifying data from field 
devices, and more. Similarly, RNNs can be used to generate more holistic insights as they can 
combine data from different sensors.

•	 Regression analysis: Regression analysis helps determine the correlation between two or more 
variables (how a dependent variable is influenced by a change in the value of the independent 
variable(s)). Multiple independent variables may be responsible for changing the value of the 
dependent variable and regression analysis helps determine which variables have more influence 
than others. Regression analysis helps predict future data points by extrapolating known 
correlations and can be used to optimize the overall production processes by controlling the 
inputs (independent variables) that are known to influence the production rate and/or quality. 
In IoT systems, regression analysis can be used to determine the relationship between different 
sensor values (how the density of vehicles impacts the value of air quality, for example).

•	 Reinforcement learning (RL): In an RL system, there is no defined output or goals, and the 
system continuously learns from the environment. An RL system understands the current 
context/environmental conditions and determines what actions/steps would help maximize 
the reward (desired objective). Often, an RL system is intelligent enough to sacrifice short-term 
rewards to maximize long-term rewards. RL can be contrasted with supervised and unsupervised 
learning, which are used for analytics purposes; RL, on the other hand, is used for determining 
short-term or long-term goals and objectives. In other words, RL learns to act independently 
instead of just learning concepts or finding patterns in the input data. RL is used in multiple 
ways in IoT, such as automatically routing forklifts in warehouses and autonomously moving 
drones in the agriculture domain. As we will see in Chapter 11, Security in the IoT context, RL 
can be used to monitor traffic patterns to determine and flag any malicious activity.

•	 Federated learning (FL): FL is an ML technique that trains an algorithm by distributing the 
learning logic (and associated dataset) over multiple field devices. Intermediate training results 
are sent to the central server and distributed analytics is performed until a result with the desired 

https://aws.amazon.com/what-is/deep-learning/
https://aws.amazon.com/what-is/deep-learning/
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accuracy is achieved. FL has benefits over centralized ML (all the data is analyzed at a central 
server), such as enhanced security/privacy, reduced storage costs, improved performance, and 
better scalability. FL has applicability in IoT since training loads can be distributed over a large 
number of field devices.

•	 Sensor fusion: Sensor fusion refers to the process of implementing analytics where data from 
different sensors is combined to understand the situational context more accurately. For example, 
in the case of indoor location tracking use cases, data feeds from Wi-Fi and RFID sensors can 
be combined to provide more accurate location information.

The main idea behind sensor fusion is to compensate for the weakness of one sensor type with 
the strength of another sensor type so that combined (fused) sensor readings are more accurate 
and useful for diverse operating conditions. Autonomous vehicles leverage data from different 
sensors (LiDAR, video cameras, and radar) to determine a more accurate understanding of the 
environmental context (as was detailed in the Usage scenarios of sensors section of Chapter 9).

•	 Streaming analytics: This refers to analyzing data as it is being ingested – that is, processing 
the events as they are being generated (in real time). Streaming analytics is required in use 
cases where accumulating data before analysis is not possible (the quality of the parts on the 
assembly line need to be analyzed using video feeds in real time to avoid faulty parts being 
accumulated). Another use case for streaming analytics is generating real-time alerts/notifications 
to stakeholders in case any sensor value goes beyond the expected range.

•	 Tiny ML: Tiny ML refers to the ML technologies, algorithms, and libraries that are specifically 
developed to run on constraint devices (for example, battery-operated devices with extremely 
low power requirements). This can be considered an implementation of edge analytics (refer to 
the Edge analytics section later in this chapter). In addition to conserving energy, implementing 
Tiny ML on a device helps overcome challenges regarding latency, bandwidth utilization, 
privacy/data security, and more.

•	 Transfer learning: Transfer learning is a variant of ML where a model that’s trained for one 
problem is used as a starting point in another (but similar) problem. As an example, in image 
recognition of animals, the model, which has been trained to identify dogs, can be used as a 
starting point to identify wolves as there are a lot of similarities in terms of the appearance 
of both animals. This has advantages such as reduced training times and the ability to tackle 
situations where training data is not available for the target problem. In the IoT context, a model 
that’s been developed to detect malicious traffic from one set of field devices (for example, a 
temperature sensor) can be used to detect the existence of malicious traffic from another set 
of field devices (for example, air quality sensors).

Important note
The zero-shot learning and few-shot learning techniques, which were introduced in Chapter 3 
(as part of the AI/ML integration section), are especially relevant in the context of IoT analytics.
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Now that we understand the key terms that are used in analytics, let’s delve deeper into how analytics 
can be leveraged in IoT deployments.

Implementing IoT analytics
Although this section specifies the characteristics/considerations of IoT analytics from a technical 
standpoint, it is worth noting that when implementing an IoT use case, domain know-how is equally 
important. This know-how varies vastly from one domain to another – for example, the mechanism 
for detecting anomalies in the agriculture domain would be quite different from the one used for 
detecting anomalies in the manufacturing domain. Some of the typical scenarios/use cases for which 
IoT analytics is used are shown in the following figure:

Figure 10.3 – Application scenarios for IoT analytics
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IoT analytics is categorized into four different areas, depending on the insights that are generated:

•	 Descriptive analytics: In this type of analytics, stored historical data is analyzed to provide 
a view of historical performance, anomalies, and more. Even the real-time data stream can 
be analyzed, but the focus remains on the points of interest that appeared in the data stream. 
Descriptive analytics presents the data as-is (what happened and when it happened) and triggers 
alarms (if the data points are outside the expected range), but it does not provide reasons for 
data deviation/variations.

•	 Diagnostic analytics: Diagnostic analytics goes a step further than descriptive analytics and tries 
to understand why anomalies have been reported by field devices, observed deviation in device 
behavior, causes of erroneous data reported by the device, and so on. Essentially, diagnostic 
analytics uses data exploration techniques to establish hidden patterns and relationships 
between different data sources.

•	 Predictive analytics: Here, the focus is to analyze the data to provide insights into possible future 
outcomes. Predictive analytics helps us understand how a device will behave in the future. This 
is of immense value as proactive maintenance can be requested (avoiding equipment downtime) 
if it is known that a device will fail in the coming days. Predictive analytics applies techniques 
such as statistical modeling, forecasting, and ML to the output generated by descriptive and 
diagnostic analytics to determine possible outcomes in the future.

•	 Prescriptive analytics: This is the most advanced type of analytics, where the focus is not 
only on determining events of interest but also providing recommendations on how positive 
outcomes can be maximized and negative outcomes can be minimized. Additionally, some 
of the algorithms are self-learning in nature, where they can analyze the results of past 
recommendations to further refine future recommendations. For prescriptive as well as predictive 
analytics, the overall context (situational and/or temporal) becomes an important input. The 
system can act on the recommendations on its own or can leave the implementation of these 
recommendations to humans (human-in-the-loop). If multiple actions can result in achieving 
the same goal, prescriptive analytics can evaluate each of these mechanisms and advise on the 
optimum action path.



Analytics in the IoT Context176

These four types of analytics have been exemplified using smart agriculture in the following figure:

Figure 10.4 – Types of analytics in the smart agriculture context

In addition to batch analytics, where data is analyzed post factum for long-term trends/insights, in 
IoT use cases, you need to analyze data in real time (streaming analytics) so that timely corrective 
actions can be taken. For example, detecting and resolving a quality issue on the assembly line in 
real time is much more beneficial than being aware of the issue at the end of the shift. Also, as data 
is being analyzed in real time, resending erroneous/faulty data after corrections from field devices to 
the central server is not practical.

For a holistic analysis, the data from sensors needs to be combined with additional data sources. 
Examples of this include enterprise resource planning (ERP) and a human resource management 
system (HRMS). For details, refer to the Enterprise system integration pattern section in Chapter 3. 
Data may need to be merged from multiple sensors with specified enterprise systems to arrive at 
more accurate decisions/comparisons. Consider the case of a retail store where sensors are placed to 
determine the areas that are frequented by shoppers. Richer insights can be obtained if this data is 
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correlated with sales data to determine areas that are resulting in actual sales and if the recent changes 
in the store’s layout resulted in an increase in sales. Also, combining feeds from multiple sensors, such 
as video cameras (for identifying the shoppers) as well as RFID readers (for identifying items in people’s 
shopping carts) will give more accurate insights into shoppers’ purchasing behavior.

IoT sensors are often installed under extreme conditions (high temperature/humidity, subject to 
dust/vibrations, and so on), which can result in random data losses or issues regarding incorrect/
duplicate data. Since these devices are constrained, it is difficult to perform operations such as data 
sanitization and data deduplication on the source device and shift the implementation of these data 
cleanup activities to the central server.

Analytics can be performed on both operational and diagnostics data sent by the sensors. Operational 
data is related to the actual data that’s captured by the sensor (ambient conditions), whereas diagnostics 
data is used to determine the current (or predict the future) health of the device/sensor. Due to the 
constraints mentioned earlier, one type of data may be prioritized over the other – being able to 
transmit operational data is suspended until the device’s health is back to normal (for example, worn-
out batteries have been replaced).

Analytics can also be used for promptly detecting and mitigating security incidents. The analytics 
algorithm learns the normal/usual data traffic patterns and then monitors the traffic patterns for any 
anomaly indicating a potential security incident. Analytics can be used to inspect individual packets 
to determine whether the contents of the packet have been modified during transit or to determine 
and remediate the possibility of malware or device misconfiguration(s).

In the next section, we’ll look at the key stages involved in IoT analytics.

Stages of implementing IoT analytics

IoT analytics workloads generally go through a series of steps, which include aggregation, pre-processing, 
transformation, and processing, with the final stage being to present the analytics results to the user, 
as shown in the following figure:

Figure 10.5 – Different stages of IoT analytics
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Let’s look at these stages in more detail:

1.	 Defining the analytics objective: This stage includes understanding the business imperatives 
and business processes and defining the information needs of the users, and the goals/objectives 
that the analytics program seeks to accomplish. Stating the business problem clearly helps align 
everyone on the expected result/benefits of the analytics initiative. Some examples of the goals/
objectives that can be possible outputs at this stage are listed here:

	� Is it possible to increase production output without compromising on quality?

	� In the agricultural domain, what agricultural inputs should be modified to increase yield?

	� In terms of our retail store example, how should the layout of the retail store be modified to 
improve shopper footfall or sales per square foot?

2.	 Identifying the data to be collected: This step involves identifying the type of data to be 
collected. This includes primary data that may be collated from various sensors/devices and 
secondary data that can be derived from primary data by applying a set of mathematical and 
statistical operations on the primary data. In addition, secondary data can be obtained from 
enterprise systems or open datasets available in the public domain. This step might reveal the 
need to install additional sensors to capture the required data. If real sensors can’t be deployed 
for any reason, how the data stream would be simulated/fabricated (virtual sensors) is also 
finalized in this step.

The type, frequency, and amount of data that’s collected varies depending on factors such as 
the desired accuracy of the analytics results, the time criticality of the data being collated (any 
reading beyond the defined delay threshold is not relevant and is discarded), and the energy 
budget of devices/sensors (collating and transmitting data consumes energy – the higher the 
frequency of data capture/transmission, the higher the energy consumption is).

3.	 Collecting/ingesting the data: This step also involves obtaining data from identified sources, 
as well as developing connectors to fetch data from internal/external data sources. Data from 
enterprise/external systems is normally collected using change data capture (CDC) technology, 
where source systems are continuously monitored and any changed data is immediately 
transferred to the destination (via an event-triggered data transfer). In other cases, data transfer 
is done at a scheduled time/frequency (a time-triggered data transfer). Often, data is encrypted/
anonymized at this stage before it’s transmitted to its destination to avoid privacy/security issues.

4.	 Storing the data: Data is stored at a common location for immediate processing or future usage. 
Analytics is applied to a multitude of data sources, so data from these diverse sources needs to 
be accumulated in a native/raw format at a common location before further processing can be 
done. One consideration here is the duration for which raw data needs to be preserved in active 
storage before being moved to archival (less costly) storage. Often, the process of moving old/
stale data is carried out in an automated fashion based on the configured rules.
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5.	 Enriching the data: Here, data from different sources is combined to obtain a more holistic 
dataset. Combining dynamic (telemetry data from a sensor) data with static data (device 
metadata such as device location or serial number) is a typical enrichment in the IoT context. 
Sensor data received from field devices would be enriched by data available in enterprise systems 
(ERPs, CRMs, and so on) or external/third-party data sources (weather data).

Data generated by field devices is typically spatiotemporal and needs to be combined with additional 
context/metadata so that it can support analytics use cases. Consider a retail store scenario – RFID 
readers/sensors would point to the current location of a grocery item, but to pinpoint the items 
that are past their usage/expiry date, data from additional systems would be needed.

6.	 Preparing/pre-processing the data: This step involves removing outdated, noisy, and duplicate/
redundant data, checking for and reformatting incompatible data types, and filling in missing 
data. Missing values are replaced with probable values by using adjacent readings and/or by 
understanding the overall context. This step also includes dividing the data into two sets – one 
for training the ML/deep learning model and another for verifying the accuracy and robustness 
of the developed model.

This step can include data anonymization if data privacy is a requirement and may also involve 
transforming standard data formats. While performing these transformations, a copy of the 
raw data is also stored for future needs.

The data preparation/pre-processing step is essential for improving the quality of ingested data 
as insights provided by any analytics algorithm would be determined largely by the quality of 
the data that’s fed into the analytics algorithm.

Important note
Data preparation is a crucial task and may consume up to 70-80% of the time required to 
execute the complete data pipeline.

7.	 Performing data processing/analytics: Data is subjected to selected analytics algorithms 
generating the required insights, decisions, or predictions. The type of analytics algorithm that’s 
employed will depend on the type of analytics (descriptive, diagnostic, predictive, or prescriptive) 
that is required. This step also involves using data mining tools for ML model training and 
deployment, clustering/classifying pre-processed data, and generating results in the form of 
trends, data summaries, anomalies, predictions, recommendations, and more. In the case of 
streaming analytics, automated actions are also triggered at this step, as per configured rules.

8.	 Visualizating/presenting the data: This step involves presenting the analysis results in the 
form of dashboards or reports so that information can be consumed by both technical and 
business users. This step also allows users to compare datasets, observe relationships, and arrive 
at conclusions. The output of this step will determine whether the goals/objectives that were set 
for the data analytics initiative have been met or not. This is the stage where the real benefits/
value of implementing an IoT use case are realized by stakeholders such as the project/product 
team, project sponsors, and end users so that they can derive actionable insights.
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Advancements in AI and natural language processing have enabled users to state their information 
or analytics needs in everyday language and get the results in conversational format (this will 
be covered in detail in the Large language models and Generative AI sections in Chapter 12).

Visualizations that use augmented reality (AR) technology, where analytics results are overlaid 
on a field view in real time, are another useful advancement in recent times:

Figure 10.6 – Displaying analytics results using augmented reality

This step is important as it decides what results need to be displayed and hidden (to avoid 
information overload). Based on the information presented in this step, decisions can be made 
and actions can be initiated. One possible decision can be to execute further/deeper analysis by 
executing more analytics cycles – that is, restarting the analytics process from Step 1 onward.

Now that we know about the various stages involved in IoT analytics, let’s look at how these processes 
can be enhanced.

Integrating ML capabilities into IoT analytics

ML is a subset of analytics that allows systems to automatically learn from past data without being 
explicitly programmed. Adding ML capabilities allows IoT systems to automatically detect patterns 
and anomalies. One challenge in developing ML models for IoT use cases is the non-availability of 
training datasets. Most of the data that’s generated is specific to the particular use case and is highly 
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dependent on the sensor and its operating conditions. Since these conditions are extremely difficult 
to simulate, getting a standard dataset for IoT use cases is difficult. Also, the data would be labeled (in 
the case of supervised learning) by a person who has deep domain knowledge. Such domain experts 
are not easily available or are expensive to hire.

As a result, transfer learning is typically used for developing models. Here, a pre-trained model is 
used as a base and then fine-tuned using application-specific data. Tiny ML can also be used, which 
refers to techniques that are used to run ML algorithms on constraint devices, especially low-power 
and battery-operated devices.

The purpose of analytics is to highlight outliers/anomalies and find correlations between data generated 
by multiple sensors and data sources. In addition to application use cases such as predictive maintenance 
and automatic anomaly detection and correction, IoT analytics (and specifically ML) can also play a 
key role in designing self-calibrating and self-healing field devices.

Domain experts need to be involved when designing ML models; however, domain expertise is 
required continuously for model validation and refinement. This results in a continuous interplay 
between humans and machines, as shown in the following figure:

Figure 10.7 – Interplay of human feedback and ML model refinement

Another reason why domain expertise needs to be codified in ML algorithms is related to societal 
changes – for example, a considerable number of employees with domain expertise are in the process of 
being retired with very few replacements (this situation is particularly alarming in the manufacturing 
sector). In some scenarios, the human mind might not be able to make sound rational decisions or 
judgments due to preconceived notions or inherent cognitive biases (confirmation bias, attribution 
bias, availability bias, and so on). Here, AI/ML algorithms can be used to neutralize such biases – 
provided the training process/training data has been closely monitored/scrutinized to ensure it can’t 
be impacted by possible biases.

To effectively implement analytics, organizational process flows (workflows) need to be examined, with 
a special focus on decision-making steps. Some of these steps can be automated using IoT analytics. 
Analytics can identify and recommend how you can automate the steps that are causing performance 
bottlenecks and hence expose system-level inefficiencies.
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This section covered the different types of analytics that are relevant in the IoT context. However, the 
results that are generated by analytics are only accurate if the input data is correct and high-quality. 
In the next section, we will talk about the factors that impact the quality of data and the mechanisms 
that can be used to improve it.

Understanding the importance of data quality
The different types of data quality issues that are generally found in IoT use cases can be seen in the 
following figure:

Figure 10.8 – Typical data quality issues
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The source of these data quality issues can be traced to different layers of the IoT reference stack, as 
shown in the following figure:

Figure 10.9 – Data quality issues at different layers of the IoT stack

The scale of IoT deployments (for example, a large number of field devices generating humongous 
data) tends to amplify even minor quality issues. The tolerance for data quality issues varies across 
organizations and use cases, and accordingly, the rigor of data quality mechanisms will also vary.

Applicable data quality initiatives will depend on factors such as the nature of the data collected and 
the purpose for which the data is being collected.

Closely related to the concept of data quality is the concept of data lineage, where the traceability of 
data is maintained as it moves from one stage to another in the data pipeline – that is, it captures the 
flow of data from its source to its destination, as well as any changes that are introduced as it moves 
from one stage to the next. Data lineage ensures data quality as it provides visibility into the stage at 
which change (or a quality issue) was introduced and the nature of that change. This information is 
crucial in developing data quality workflows where automation tools can detect and fix quality issues 
without manual intervention.

This section covered the different types of data quality issues that are encountered in IoT cases and 
the factors that result in data quality issues. The next section will introduce edge analytics, where data 
processing is done closer to the point of data generation.
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Relevance of edge analytics
IoT devices are not permanently connected to a central server, so some amount of processing/analytics 
needs to be done locally so that these devices can function independently if they’re not connected 
to a central server. This is one scenario where edge analytics is required. Essentially, edge analytics 
refers to processing IoT data near the point at which it is generated. In other words, edge analytics 
refers to the scenario where analytics data is sent to the point of data generation rather than being 
sent to the point where analytics and algorithms are hosted or deployed. This definition points to the 
fact that edge analytics can be implemented on a variety of physical infrastructures (device gateways, 
on-premises servers, or data centers physically located close to field devices).

Distributing data processing workloads between edge and central server depends on use case requirements 
– most IoT use cases rely on a hybrid approach. Usually, latency-sensitive data is processed at the edge 
and data that requires heavy compute/storage is processed at the central server. A connected car is a 
good example of this hybrid approach.

Edge analytics is also required in scenarios where data security and/or privacy is a concern. Privacy/
security concerns limit the possibility of sending data to the central server over public communication 
channels (the internet). Pre-processing data (filtering, aggregation, downsampling, and so on) at the 
edge helps conserve the communication bandwidth, improve data quality (by reducing noisy/redundant 
data) at the source, and optimize the power consumption of field devices (data transmission is a major 
source of power consumption).

Field devices may generate huge amounts of data, but very few data points are of relevance – that is, 
data points that indicate anomalous/erroneous conditions. Therefore, it is important to filter out the 
redundant data using edge analytics rather than first transmitting data and discarding it at the central 
server level. One use case that shows the relevance of edge analytics is video analytics as there is no 
need to send the (bandwidth-hogging) video streams to the central server when these can be analyzed 
at the edge, where the result (presence or absence of the object of interest) is sent to the central server.

As mentioned earlier, the proportion of processing that’s done at the edge or at the central server will 
vary based on use case requirements, as well as the technical capabilities of physical infrastructure. 
Distributing processing between the edge (local) and central server (global) can be visualized as a 
continuous scale, with complete processing at the edge on one end and complete processing at the 
central server on another end, as shown in the following figure:
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Figure 10.10 – Data quality enhancements at different stages of the data pipeline

Traditionally, analytics was done centrally at the central server as limited intelligence (and compute) 
was available for field devices. Limited intelligence helped keep the architecture of the field devices 
simple, thus improving their reliability/longevity. Reliability is the prime requirement as devices 
are normally deployed at remote locations where any repair/replacement is difficult. Adding more 
intelligence to the field devices resulted in a corresponding increase in complexity and reduced reliability 
(more code logic at the edge, thus increasing the probability of more defects). It was much easier and 
more efficient to fix defects at the central server rather than releasing patches to devices spread out 
in the field. As a result, most of the analytics was performed on the central server. However, with 
the increase in hardware/software capabilities (Moore’s law), the edge can execute relatively complex 
algorithms. This explains the transition to move processing from the central server to the edge. Edge 
processing also increases the system’s overall scalability as the central server’s load is spread among 
a large number of edge devices.

The nature of the analytics that’s performed at the edge should be carefully considered as performing 
more analysis results in less raw data being available for future analysis. Some applications circumvent 
this limitation by storing a copy of the raw data at the edge and then transferring it to the central 
server after a specific event occurs. An example of this is when a field device comes physically close 
to the central server and the mobile device gateway enters the connectivity range of the central server. 
Data stored on the central server should be carefully curated to avoid the possibility of a data swamp, 
where data is dumped without any clear purpose.

As edge analytics is performed in constrained environments (field devices have limitations regarding 
power/compute/storage and communication/connectivity challenges), generic algorithms need to be 
adapted to work in such environments. In summary, edge analytics should be composed of lightweight, 
purpose-built, modular, and resilient components.
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This section defined edge analytics, how it differs from analytics performed at the central server, and 
the scenarios where it can be leveraged effectively. Analysis results need to be displayed to the user so 
that they can take the required actions. We will look at this in more detail in the next section.

Considerations for IoT visualization
The main objective of IoT visualization is to make it easier for information consumers to understand 
data trends and obtain insights by highlighting patterns, relationships, trends, and outliers. Visualization 
should also help disseminate insights to non-technical users. The rationale regarding the decisions or 
actions taken by AI/ML algorithms is generally hidden from the user. Effective visualization can also 
help fill this gap by providing transparency into how AI/ML algorithms have arrived at a decision. 
Similarly, data lineage can be better understood if it is represented in the form of visualizations.

IoT data and insights are consumed on a diverse set of devices. In addition to traditional devices such 
as desktops and mobile devices, information is consumed on human-machine interface (HMI) devices 
(such as industrial control panels with buttons and indicator lights). This requires entirely different 
layout considerations than those that are relevant to designing a desktop application:

Figure 10.11 – IoT data being monitored via an HMI device
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Here are some factors that determine the type of visualization that’s used:

•	 Charts/dashboard elements: Some of the representative options include the following:

	� Scatterplots (show relationships)

	� Interactive maps (provide geospatial information)

	� Bar charts (show a comparison between two or more data types)

	� Pie charts (show distributions)

	� Line graphs (display changes over a date/time range, time series data)

•	 Need for displaying real-time data updates: The number of data points that correspond to 
the parameter(s) shown in real time would be large. This necessitates the need to highlight 
anomalies (or points of interest) with different colors, markers, and so on. Similarly, alerts/
notifications where action is needed from the user should be made visible via popups.

•	 The information needs of the users: Highly technical data with a minimal business context 
might not be appreciated by business users. One way to design a visualization interface is to 
start with objectives-based design – what decisions/conclusions does the user need to make 
based on the data being displayed?

•	 The type of customizations that are allowed: Some dashboards allow users to control the type 
and amount of data that is transmitted by field devices. Visualizations also provide a self-service 
capability, where users can configure the displayed content (level of detail) and layout (data/
insights ordered by importance) as per their preferences.

•	 Data filtering: Options for data sorting/data filtering to help users sift through large amounts 
of data.

•	 Level of granularity that is allowed: Most dashboards provide information at a high level and 
an option to drill deeper into trends of interest.

•	 Priority of information messages: Higher priority messages/notifications shouldn’t be hidden 
by lower priority messages. To do this, you can visually segregate normal events from anomalies 
by using different colors.

This section covered the relevance of visualization in IoT use cases and factors that need to be considered 
while designing visualization for IoT use cases. Now, let’s summarize what we’ve learned so far.
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Summary
This chapter covered the importance of analytics in the context of IoT. This process converts raw data 
that’s received from diverse sources (static data sources such as enterprise systems, as well as dynamic 
data sources – for example, data received in real time from sensors) into meaningful insights, which 
is a prerequisite for effective/efficient decision making. We covered specific considerations that you 
need to be aware of while tailoring generic analytics for IoT applications. Then, we covered the steps 
that are normally followed in any analytics data pipeline. We also looked at the benefits and nuances 
of edge analytics, where data is processed close to the data source.

After that, we introduced edge analytics; we will cover this in more detail in Chapter 12, Exploring 
Synergies with Emerging Technologies. We looked at the importance of data quality and how it can be 
ensured at the different layers of the IoT stack, as well as the importance of IoT visualizations.

This chapter should have helped you understand general analytics concepts and how they relate to 
IoT use cases. You were also introduced to some techniques/concepts that are especially relevant to 
IoT, including sensor fusion and HMI. Equipped with this knowledge, you should be able to develop 
IoT solutions by selecting the right analytics techniques for the problem at hand.

In the next chapter, we will cover an important topic known as IoT security. The decentralized nature 
of IoT deployments and the constrained nature of field devices results in a unique set of challenges 
for providing end-to-end security to IoT workloads. We will look at how these challenges/constraints 
are handled, as well as possible security vulnerabilities (and their mitigations).
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Security in the IoT Context

Previous chapters provided examples of how IoT can be used to provide solutions to achieve various 
business targets within diverse problem domains. As a solution scales and graduates from the proof 
of concept stage to the production deployment stage, one crucial barrier that needs to be crossed is 
making these solutions secure from the acts of malicious actors. Security generally has the highest 
priority among non-functional requirements (NFRs) in any solution; however, in the case of IoT 
solutions, this requirement becomes non-negotiable due to the potential risk of material and/or 
human loss. It is no surprise, then, that security is cited as one of the topmost factors that can limit 
the adoption of IoT solutions at a large scale.

Non-existent and patchy regulatory security norms are among the reasons why consumers often make 
do with solutions released with security vulnerabilities that are exploited by malicious actors on the 
first day of solution deployment (zero-day vulnerabilities). The attack surface of IoT solutions is much 
broader (a large number of field devices as well as traditional IT systems such as a central server) and 
deeper (vulnerabilities exist at all layers of the IoT stack), so traditional approaches to IT security 
aren’t sufficient. However, it is important to mention here that several countries are actively working 
to formulate cybersecurity guidelines (e.g., the Cyber Resilience Act – applicable to European Union 
countries) to contain potential vulnerabilities/threats. Going forward, it is likely that the implementation 
of these guidelines will be made mandatory for products to be launched in the respective geographies.

To implement a robust security posture, IoT architects build upon the knowledge gained in securing 
traditional IT systems and add additional safeguards/guardrails that are relevant to IoT/OT solutions:

Figure 11.1 – IoT security combines elements from IT as well as OT security
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This chapter presents the security vulnerabilities that are observed at different layers of the IoT stack 
as well as their mitigations. Although the focus of the chapter is listing the vulnerabilities (and their 
mitigations) inherent in field devices (perception/actuation layer of the IoT stack), this is not to say 
that vulnerabilities aren’t present at other layers of the IoT stack. The reason for focusing on securing 
field devices in this chapter is that the remaining layers are well covered in generic IT security literature.

Before delving deeper into the vulnerabilities present in IoT solutions and their mitigations, let us first 
understand the key terms and definitions that are frequently used in IoT security literature.

Key terms/definitions
In this section, we’ll discuss some of the key concepts in the field of IoT security:

•	 Air-gapped systems: Having an air-gapped system means not connecting two or more networks 
unless there is a specific need for connection and it is implemented primarily to reduce the 
probability of security attacks – a threat actor can’t use the vulnerability in one network to 
target other connected networks.

•	 Asymmetric encryption: Asymmetric encryption uses a public key for encryption and a 
private key for decryption, unlike symmetric encryption, where the same key is used for both 
encryption and decryption. Asymmetric encryption requires more computational power than 
symmetric encryption but provides more robust security.

•	 Attack vector: Attack vector refers to the method and/or mechanism used by threat actors to 
compromise the security of the system.

•	 Authentication: Authentication refers to the ability of the receiver to verify whether the data 
sent by the sender originated from a trusted/known source. Without the ability to authenticate 
the data, threat actors can insert spoofed data (sensor reading, control commands, configuration 
data, firmware packets, and so on) into the communication channel.

•	 Blast radius: Blast radius refers to the extent or impact of the adverse security event. For example, 
in the IoT context, we can say that the blast radius of the field device getting compromised is 
much smaller than the scenario where the central server is compromised.

•	 Botnet: A botnet attack is orchestrated by infecting malware in a group of IoT devices and 
then instructing them to send simultaneous requests to the target server. IoT devices serve as 
a good launchpad for botnet attacks due to their weak security, large scale, and similar traffic 
patterns from most of the field devices.

•	 Command injection: Command injection implies a vulnerability where a remote authenticated 
user can execute desired commands on the field devices or the central server. Oftentimes, the 
malicious commands are disguised as valid system commands. Providing strong end-to-end 
encryption and integrity checks can help mitigate this vulnerability.

•	 Certificate Authority (CA): A CA is a trusted entity that issues and validates certificates and 
is trusted by both the certificate owner and the party using the certificate.
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•	 Certificate rotation: Certificate rotation refers to the process of replacing expired, invalid, or 
compromised certificates with newer and valid certificates. In normal circumstances, certificates 
should be rotated at regular intervals and well before the certificate’s expiry date.

•	 Credential bootstrapping: This refers to the initial exchange of credentials to set up communication 
between devices or between the device and the central server.

•	 Confidentiality, Integrity, and Availability (CIA): CIA (often referred to as the CIA triad) 
refers to the fundamental tenets of confidentiality, integrity, and availability upon which all 
the security mitigation approaches are based:

	� Confidentiality refers to the protection of sensitive information (data providing a competitive 
advantage, device certificates, passwords, and security keys) from unauthorized access both 
at the time of storage as well as while data is in transit. Also, the data should be accessible 
only to authorized persons.

	� Integrity means protection against the illegitimate modification of data, indicating the 
capability of the central server to receive accurate/correct data from the sensor, send desired/
required commands to actuators, or securely transfer firmware updates to field devices 
without them being tampered with. Integrity is ensured by using checksums, hashing, 
and digest algorithms. These integrity checks are performed before accepting data over a 
communication channel as well as during the device’s boot-up sequence. Depending upon the 
level of sophistication required, some field devices might check the validity of the firmware/
software during actual execution as well.

	� Availability refers to the requirement that data should always be available to authorized users 
and if it isn’t available, interested parties should be notified beforehand. The availability of 
IoT services or devices can be disrupted by flooding them with high traffic – much more 
than the intended load. The unavailability of IoT services typically results in financial loss 
to the service providers and functional loss to the users.

The importance of each tenet of CIA differs from one use case to another and an understanding 
of the trade-off involved in prioritizing one over the other is the basis of designing mature 
security solutions. In general, IoT use cases tend to prioritize integrity and availability over 
confidentiality. This contrasts with traditional IT systems where confidentiality is prioritized 
over integrity and availability as IoT systems tend to operate in and impact the real/physical 
world – loss of confidential information in a financial application (credit card details) can cause 
considerable financial loss, whereas a hacker can cause more collateral damage by manipulating 
commands in a nuclear facility (e.g., a command to initiate an uncontrolled chain reaction) – 
although knowledge of an actual command, per se, won’t result in any major impact.

•	 Cryptojacking: Cryptojacking involves leveraging hardware resources to mine online currencies. 
This attack can target both the central server as well as field devices. Although individual field 
devices are not computationally powerful, threat actors typically distribute the load across a large 
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number of devices for effective mining. In addition to the direct impact on performance, this 
might increase infrastructure costs (e.g., cost escalation due to higher bandwidth consumption).

•	 Distributed Denial of Service (DDoS): This attack involves forcing the IoT application to either 
stop functioning or function with degraded performance levels and is achieved by flooding 
the central server with a huge amount of traffic. In this kind of attack, the objective is not to 
corrupt/misuse the data but to render the IoT system non-operational by denying response to 
legitimate requests, e.g., denying system availability.

Another variant of DDoS involves flooding the battery-operated field devices with data/command 
requests, thereby draining the battery. Monitoring the network traffic for abnormalities, using 
firewalls to block suspicious traffic, allowing devices to send/receive specific commands/
instructions, and quarantining infected devices are some of the mechanisms for containing 
DDoS attacks.

•	 Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS): TLS is the 
transport security protocol for TCP traffic and DTLS is the protocol for UDP traffic.

•	 Eavesdropping: An eavesdropping attack occurs when a threat actor intercepts and/or 
modifies data transmitted between two devices or between field devices and the central server. 
Eavesdropping can be mitigated by making the data transmission secure/encrypted and by 
verifying the integrity of the received data.

•	 General Data Protection Regulation (GDPR) mandates that the user is aware of what 
personal information is collected, the purpose of data collation, and where (and for how long) 
data would be stored and processed. The regulation also allows users to request to delete their 
personal data at any time. In addition to obvious personal data (such as age, name, and gender), 
GDPR also covers operational data gathered by IoT devices, such as audio/video recordings, 
biometrics, and location.

•	 Ransomware: Ransomware refers to the malicious attempt to lock (encrypt) the user’s data 
unless the demand (generally fund transfer) is met. In IoT applications, in addition to blocking 
the data, tactics such as disabling/reducing the device functionality and stealing personal data 
from devices are also used to force the user to agree to the unjust demands of the threat actor.

•	 Least privilege access: Least privilege access refers to the practice of granting the least (or just 
enough) access for the requested asset/resource. If followed consistently throughout the system, 
this can help to reduce the blast radius and limit the damage that a threat actor can inflict.

•	 Man in the middle (MITM): In this type of attack, the threat actor stealthily intercepts the 
transmitted data or commands and then replays them (often replacing the valid messages with 
malicious messages).

•	 Mutual authentication: Mutual authentication refers to the process where entities that want to 
communicate are required to verify the origin and integrity of each other before sharing data. 
In IoT systems, the device needs to authenticate the central server and vice versa.
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•	 Nonrepudiation: Nonrepudiation indicates that the entity generating the data shouldn’t be able 
to deny that they were the source of data – that is, they are not able to repudiate the data origin 
(this is similar to the case where the presence of a valid signature can’t be later repudiated/
denied by the signatory). Nonrepudiation can be achieved by ensuring that every logged event 
can be individually traced to the source and independently validated.

•	 Public Key Infrastructure (PKI): PKI was regarded as a gold standard for implementing IT 
security in the past and provides protection against possible CIA vulnerabilities with features 
such as mutual authentication, firmware validation, data encryption, and integrity assurance. PKI 
eliminates the need for passwords by using digital certificates (based on asymmetric encryption).

•	 Role-Based Access Control (RBAC): An IoT application should be designed to only allow 
those features/functionalities that are relevant/required for a particular role. This aligns with 
the principle of least privilege. A simple example can be that a person should be able to view 
data related to devices for which they are responsible and not others. However, the solution 
provider should be able to view data from all the devices (in anonymized form) for product 
refinement and/or troubleshooting purposes.

•	 Root of trust: The root of trust is a component on a device and is made up of highly reliable 
hardware, firmware, and software components that are involved in executing critical security 
functions. Typically, it is implemented using immutable hardware. The root of trust on a device 
determines the level of confidence in the authenticity of the device credentials.

•	 Trusted Execution Environment (TEE): The TEE allows for code execution in a trusted 
environment and trust is achieved by providing robust isolation and restricted access to the 
execution environment.

•	 Trusted Platform Module (TPM): TPM is a hardware chip that executes cryptographic 
algorithms and stores cryptographic keys.

•	 Threat modeling/analysis: Threat modeling is the process of determining the possible 
vulnerabilities in an IoT system and how they can be exploited. Threat modeling generally 
starts at the solution design/architecture phase and continues throughout the life cycle of the 
product. Threat modeling helps to identify and prioritize security-related risks and is typically 
done in three steps:

	� Identification and documentation of assets, components and their interfaces, actors, and 
privilege levels for all the workloads under consideration

	� Developing a prioritized list of possible threats (generally with the associated impact and 
probability of occurrence) for each of the identified asset, component, and actor combinations

	� These threats are identified using the STRIDE model, where STRIDE stands for Spoofing, 
Tampering, Repudiation, Information Disclosure, Denial of Service, and Elevation 
of Privilege

	� Listing possible mitigation and control strategies for each of the identified threats
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•	 Secure boot/measured boot: Secure boot refers to tools and techniques used to integrate security 
into a field device’s boot sequence by validating every stage of the boot sequence (transition 
to the next stage is possible only if the previous stage has been successfully validated). This 
ensures that the device only boots if the boot image is trusted by OEM. If there is an error at 
any stage of the boot sequence, a graceful transition is made to the previous secure state with all 
the residual data/code removed. This prevents threat actors from installing malware or making 
any other firmware changes to the field devices and is accomplished by using techniques such 
as image checksums and signature verification to ensure that the boot image is received from 
a trusted source. This requires the presence of TPM on the field device.

Measured boot refers to the process of storing unique hash values during the boot process in 
TPM. These values can later be used to validate the execution sequence of the boot process 
and to flag any possibilities of tampering with the boot process.

•	 Side-channel attacks: Side-channel attacks allow for the extraction of sensitive information 
(e.g., encryption keys and configuration data) by indirect means, such as by monitoring network 
communication, the device’s power consumption levels, changes in the device’s operating 
temperature, or changes in electromagnetic radiations emitted by the device. Often, side-
channel attacks are triggered by operating the system outside its normal state/behavior (where 
it isn’t sufficiently tested by the manufacturer) through tactics such as placing the device in 
an environment with high electromagnetic radiations or operating it in a non-recommended 
environment (extreme temperature/humidity conditions). Some mechanisms that can be 
used against side-channel attacks include thorough testing of the system (especially abnormal 
operating conditions), obfuscating the device’s electric signals by introducing dummy operations, 
housing devices in a protective electromagnetic shield/enclosure, and ensuring that the device 
circuitry fails gracefully if operated outside its normal operating conditions.

•	 Security Information and Event Management (SIEM): SIEM helps with the real-time 
monitoring and logging of security events. It helps to proactively identify and mitigate possible 
system vulnerabilities by finding and correlating patterns. SIEM uses artificial intelligence/
machine learning (AI/ML) techniques to flag anomalies and generate notifications/alarms to 
the relevant stakeholders. Data/insights generated by SIEM can also be used for auditing or 
regulatory compliance purposes.

•	 Zero-day vulnerability: Zero-day vulnerabilities refer to the potential vulnerabilities or flaws 
that are present on the day of solution release/deployment (zero day) and are not known to 
the solution providers but can be exploited by threat actors.

•	 Zero-trust network: As the name suggests, this refers to fully securing each component in the 
IoT system without making any assumptions about the security capabilities of the individual 
components. Traditional security approaches rely on network segmentation as the prime defense 
against security exploits where devices within a network are considered trustworthy. However, 
zero trust requires that entities always prove their trustworthiness via secure authentication.
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•	 Intrusion Detection System (IDS)/Intrusion Prevention System (IPS): An IDS monitors the 
observed events against a set of known vulnerabilities/intrusions and/or by determining the 
normal/baseline behavior and then flagging anomalous/outlier events. The key difference between 
an IDS and IPS is that an IDS is limited to sending alerts/notifications if anomalous behavior 
is detected, whereas an IPS is capable of initiating required remedial actions as well. The agent 
for collating event data is installed on field devices, but the analysis/processing required for 
an IDS/IPS is generally done at the central server due to complex computation requirements.

•	 Vulnerability assessment: A vulnerability assessment should be done at the start of the 
deployment and then at regular intervals to ensure that the system is able to identify and 
mitigate any new security vulnerabilities.

Now that we have a reasonable understanding of security terms, let us understand how implementing 
IoT security is quite different from traditional cybersecurity (or IT security).

Comparing IoT security and IT security
IoT security aims to provide different tools, techniques/mechanisms, and strategies for identifying, 
monitoring, and controlling IoT vulnerabilities. It is difficult to provide security to IoT solutions 
compared with IT solutions due to the following reasons:

•	 The number of devices that are connected to a network is much higher in IoT networks than 
in IT networks. Also, since a large number of devices needs to be deployed, devices that are 
chosen for deployment are inexpensive to keep the overall cost low. This results in devices that 
have low compute, storage, and power capabilities that can’t execute complex (albeit robust) 
security algorithms. Field devices are often deployed in remote locations with intermittent 
connectivity, which hinders the ability of these devices to receive timely security updates/patches.

•	 Another related aspect worth considering is the fact that traditional IT systems are well protected 
by physical/perimeter security. However, the same is not true for IoT field devices. Threat 
actors can gain physical access to these devices and understand the internal functioning and/
or communication protocols used by these devices. The knowledge gained from one device 
can then be used to exploit vulnerabilities of other similar devices.

•	 IoT solutions are designed to operate independently and without human involvement. As a 
result, they rely on security mechanisms that differ from normal IT systems (certificate-based 
authentication used in IoT solutions compared with username/password mechanisms in 
IT systems).

•	 The impact of security attacks in an IoT space is more severe than IT security attacks as human 
life and/or critical infrastructure are the target. Vulnerabilities in IT security pose a financial 
or reputational risk, whereas risks associated with IoT security are much graver as they can 
impact human life and well-being. In addition, chinks in IoT security posture can impact the 
availability of essential services and critical infrastructure for power, water supply, healthcare, 
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transportation, and so on. This provides sufficient motivation for threat actors to plan for a 
sustained attack strategy.

The impact of the IoT vulnerability can be gauged from the use case described in Chapter 5, 
in the Monitoring the condition of perishable goods section, where a threat actor can play with 
the ambient conditions of the goods being transported by setting arbitrary thermostat values. 
Depending on the nature of the goods, even slight variations in ambient conditions (e.g., 
temperature changes) even for a short duration can render the complete shipment useless 
(transportation of vaccines is highly sensitive and temperature changes beyond the allowed 
thresholds for even an hour can irreversibly damage the shipment).

•	 Field devices are procured from third parties who may be unaware (or choose to ignore 
guidelines to keep costs lower) of the secure development practices. Also, field devices need 
to go through multiple stages in the supply chain (manufacturing to deployment) and may 
get compromised at any stage. Adding further complexity is the fact that IoT-specific security 
standards (e.g., EN303645) were developed quite recently and are yet to be fully enforced.

The key differences between IoT security and general/IT security discussed in this section are 
summarized in the following table:

IoT Security IT Security
Attacks result in physical/material loss Attacks result in financial and personal data loss
Hardware infrastructure (field devices) deployed 
in hostile/unprotected areas

Hardware infrastructure deployed within 
well-guarded/protected areas

Solutions managed by people with a limited 
understanding of security practices

Solutions are generally managed by IT experts with 
in-depth knowledge of cybersecurity concepts

Oftentimes, field devices are constrained in terms 
of processing/storage capabilities, making it 
difficult to execute complex security algorithms 
and/or manage certificates

Hardware with strong processing and 
storage capabilities

Diversity in field devices adding to the complexity Limited variety of physical hardware used
Security practices are still evolving/emerging Well-honed/mature security practices
Long hardware refresh cycle along with 
legacy devices

Shorter hardware refresh/upgrade cycle with no 
legacy devices

Difficult to provide physical security to all 
field devices

Easy to provide physical/perimeter security, less 
chance of theft

Table 11.1 – Differences between IT and IoT security

The attack surface of IoT solutions is both broader and deeper – deeper in the sense that each layer 
of the IoT stack can act as a potential attack surface, as shown in the following figure:
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Figure 11.2 – Security vulnerabilities at different layers of IoT stack and possible mitigation

Challenges in securing IoT solutions
No one can deny the fact that for all IoT solutions, security should be considered a foundational 
requirement. However, some practical challenges result in suboptimal security implementations:

•	 Market forces demanding faster releases and the cost of adding security features: IoT solution 
architects/designers need to balance the release of a fully secure solution with a delayed product 
release. Oftentimes, this results in good enough security implementation but with timelines that 
are acceptable to the marketing/product team.

However, with regulations/laws being formulated (and enforced), the general view is that the 
release of such a secure solution that is merely good enough won’t be a possibility in the future. 
It is also important that internal stakeholders are aligned on the view that security is not a 
negotiable feature but a foundational service, without which a product may not reach the 
desired market acceptance. Releasing a product without this foundational service may allow 
threat actors to reverse-engineer the product’s features, resulting in the erosion of market share, 
thereby putting the rationale of faster release cycles under question.

There is a related perception that releasing a secure product results in an increase in development 
costs. This is a pure myth as any incremental increase in development cost is offset (many times over) 
by the broader market reach and longer shelf life. Additionally, most of the security libraries are 
free/open source and this further proves that adding security results in minimal incremental costs.
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Solution providers and solution users often differ on who should bear the cost of adding 
security. Users believe that security is inherently a solution’s property and hence should be 
provided at no extra cost, whereas solution providers feel that users should be willing to pay 
extra for a secure product.

•	 Lack of awareness of IoT security: IoT security is a relatively new topic and still evolving. As 
a result, there is a dearth of IoT security experts who can review/audit an IoT solution from 
end to end and help identify potential vulnerabilities. A person(s) operating IoT solutions may 
have domain understanding but isn’t generally aware of the practices that are needed to protect 
the solution from security attacks.
Another related issue is the unavailability of documentation for legacy devices, which makes it 
harder to design/implement a strong end-to-end security posture. The availability of hacking 
tool kits on the dark web makes the launching of security attacks even simpler. Announcing 
bounty programs (e.g., cash rewards) to the person(s) identifying security weaknesses is one 
strategy that is being effectively used by manufacturers/solution providers to tackle the challenge 
of attacks that are continuously increasing in stealth, complexity, and impact.

•	 Non-existent or difficult-to-understand standards/laws: Standards are almost non-existent 
in the IoT space and as a result, it is difficult to formulate strict policies regarding security 
requirements/expectations. Thus, the solution providers/manufacturers are free to implement 
their version of security. Another related issue is that regulations are fragmented, whereby 
each country is defining its own standards without any consideration for uniform standards. 
Moreover, although standards exist (refer to the section of this chapter on applicable standards), 
strict enforcement is still lacking. Like IoT standards, laws for enforcing security in the IoT 
space are evolving and far from being comprehensive. Also, these laws are enforceable only to 
vendors who supply solutions to government agencies.

Laws should be formulated so that there is very little ambiguity on the accountability if a security 
breach happens – was the breach due to the manufacturer not providing security features or was 
the user at fault for not using strong credentials? Till strict laws are formulated and enforced, 
self-regulation by following security best practices is the most viable and practical solution.

•	 Scale and diversity of IoT deployments and lack of physical security: These factors make it 
difficult to provide end-to-end security. IoT devices have diverse hardware/software capabilities, 
functionalities, communication protocols, proprietary operating systems, and security requirements. 
This makes it difficult to have a consistent/uniform security strategy and implementation for 
all field devices. Additionally, the processing capabilities of the IoT field devices are limited 
and it is not suitable to execute complex security algorithms.

Field devices are deployed in remote locations with minimal perimeter security, which provides 
the opportunity to carry on their malicious activities for a long time before being detected. 
This contrasts with a normal IT scenario where the loss of a server would immediately be 
reported. Additionally, the field devices are in operation for many years (sometimes even after 
a vendor has stopped giving support and security updates). These conditions put field devices 
in a precarious situation with regard to security threats.
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Now that we understand the challenges that are inherent in securing IoT solutions, let us understand 
the security vulnerabilities that are peculiar to IoT solutions.

IoT security vulnerabilities
In this section, we will list some of the risks/vulnerabilities inherent in IoT deployments:

•	 Weak, easily guessable, and hardcoded passwords: This allows malicious/threat actors to gain 
unauthorized access to IoT data and systems. Similarly, the usage of default configurations is 
another major reason for IoT systems getting compromised. Oftentimes, the configurations are 
related to the features that are not used in the solution (e.g., unused TCP/UDP ports or serial 
ports). Using encryption keys and hash algorithms with inadequate cryptographic strength is 
another vulnerability that is often exploited by threat actors.

•	 Vulnerabilities related to connectivity services: Sometimes, the implementation of connectivity 
services is done without considering security measures (such as data encryption and secure 
connectivity protocols), resulting in a vulnerability that can be intercepted by threat actors to 
gain unauthorized access to information such as device credentials and payment information.

•	 Usage of third-party libraries and/or software/hardware components: This is another common 
source of security vulnerability. As an IoT solution is assembled using components from multiple 
hardware and software vendors/partners, there exists an inherent vulnerability as providing 
secure component/library vendors might not be a vendor’s top priority. IoT solutions also have 
a higher dependency on open source libraries than traditional IT solutions, and oftentimes 
hackers use these libraries as testing grounds for introducing malicious logic. A good example 
is a critical vulnerability that was found in an open source library called Log4j that was used for 
logging purposes in almost all applications. The vulnerability, which was found in December 
2021, put most internet-facing applications at grave risk.

The usage of deprecated versions of third-party libraries is another factor that makes the solution 
vulnerable to security attacks. Sometimes, the solution provider is a source of introducing 
vulnerabilities by not updating the solution with the latest releases of software/hardware components.

Having a legal contract detailing the explicit responsibility of each vendor can help in mitigating 
the issue – the contract should fix the responsibility of providing security updates, providing 
regular reports on security (vulnerability assessment/penetration testing) testing.

•	 Inability to update the firmware in a secure and timely manner: Firmware needs to be 
updated regularly in field devices to provide new features and/or fix known bugs/vulnerabilities. 
However, this can introduce vulnerabilities (e.g., firmware can be compromised during the 
update process). Sometimes, security patches are not released by the device manufacturer on 
time, and in other cases, users are reluctant to update the firmware in a timely manner (often, 
users avoid firmware upgrades as it involves a device restart as well). Firmware is compromised 
by undesirable partial or complete modification of firmware, reverse engineering of the firmware 
image to steal confidential information or proprietary algorithms, loading firmware onto 
unauthorized devices, and so on.
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Some devices (especially legacy devices) lack the capability to install upgrades and/or may not 
support connectivity capabilities to receive updates. IoT deployments differ from traditional IT 
solutions in the sense that most traditional IT systems can be patched by giving users advance 
notice regarding pending updates. However, since IoT systems typically support critical 
operations and provided services are expected to run 24/7, there is a tendency to postpone the 
application of security patches.

Firmware upgrades carry the additional challenge where devices are expected to provide 
consistent performance levels, whereas parallel update processes tend to degrade performance 
(especially in resource-constrained devices). Ensuring the update process runs at a lower 
priority (at a slower rate) than the main operation is one option that can be used to overcome 
this challenge. Devices with sporadic connectivity should be provisioned with the flexibility 
to pause partial updates and resume once connectivity is reestablished. Field devices are also 
expected to have the ability to validate received firmware and to roll back and generate alerts/
notifications if the received firmware has failed integrity validation checks.

•	 Insecure data transfer and storage: Field devices should be protected against data theft as well 
as the theft of firmware source code. Business-critical Intellectual Property (IP) is present in the 
devices in the form of algorithms and edge analytics, the theft of which can threaten competitive 
advantage. Some examples of critical IP include the logic for determining sleep quality in a 
fitness tracker and the logic of verifying the house owner for keyless entry a the smart door 
lock. As a result, in addition to encrypting data, the source code and related configurations 
should also be well protected by encryption.

•	 Lack of physical security of field devices: This results in device theft with the intention of reverse 
engineering device communications. Devices in the traditional IT enterprise are well protected 
(within a data center, for example). However, IoT devices are deployed in the field where they 
are susceptible to theft and/or misuse. Threat actors use the unauthorized access gained from 
field devices to launch broader attacks, such as unauthorized access to a corporate network.

Ensuring that devices are housed in tamper-evident and/or tamper-proof enclosures along with 
protective mounting or casing options can go a long way in ensuring the physical safety of field 
devices. An example of a tamper-evident enclosure is when the device has a mechanism to 
ensure that any unauthorized attempt to tamper with or open it leaves evidence of the attempt 
– such as a paper strip around a device’s enclosure that tears when the enclosure is opened by 
brute force. An example of a tamper-proof enclosure is one that is designed in a manner to 
eliminate the possibility of physical tampering or opening – a device that won’t open without 
damage to the enclosure or is manufactured using screws/fasteners that require specialized tools 
to open. Motion sensors can also be used to detect any unexpected movement, and shielding 
is an effective counter-measure against side-channel attacks.

•	 Lack of control or awareness about the nature of devices (or systems) that are connected 
to the network: Organizations don’t have an accurate inventory of the devices and software 
systems that are connected to the network by the employees or users and hence can’t enforce 
security standards for these devices.
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Major IoT security breaches
In this section, we’ll list some of the major security breaches that have occurred in the IoT domain 
in the recent past:

•	 Stuxnet: This attack occurred in 2010 when a virus named Stuxnet caused damage to a 
nuclear centrifuge in Iran. Virus-modified commands were sent to the Programmable Logic 
Controller (PLC) and targeted industrial machines running the Supervisory Control and 
Data Acquisition (SCADA) protocol.

•	 Vehicle hacking: This attack happened in 2015 when two security researchers hacked a 
jeep and played with the controls by changing radio channels and turning on wipers and air 
conditioners. This forced the jeep manufacturer to recall 1.4 million vehicles to patch the 
exploited vulnerability. In a similar attack, one hacker was able to demonstrate how easy it is 
to drain the vehicle’s battery by using its Vehicle Identification Number (VIN).

•	 Mirai botnet: This is one of the biggest IoT attacks to date and occurred in 2016 when it 
attacked Dyn (one of the largest DNS providers), resulting in the disruption of the operation 
of the biggest companies, such as Twitter, Amazon, and Netflix. The attackers used IoT devices 
such as routers and IP surveillance cameras to launch a DDoS attack.

•	 St. Jude cardiac device attack: This attack occurred in 2017 when the Food and Drug 
Administration (FDA) declared that cardiac devices (such as pacemakers) manufactured 
by St. Jude Medical had a vulnerability where hackers could remotely stop their operation. 
Similarly, in 2015, an internet-connected drug infusion pump was found to be vulnerable to 
remote control with a hacker being able to increase or decrease the dose level with direct risk 
to a patient’s health.

•	 IP-based video cameras: Attackers have targeted IP-based video cameras to capture the video 
feed and, in some cases, tweak the capture settings. In 2021, a major attack was launched on 
a start-up in Silicon Valley (Verkada) where threat actors executed malicious code by gaining 
privileged access. This was done to launch an all-out attack on the enterprise network, thereby 
exposing confidential and business-critical data. Additionally, they were able to access live 
(and archived) video streams from 150,000-odd cameras that were managed by the start-up.

•	 Connected HVAC: This vulnerability was exploited by hackers to sneak into Target’s (a major 
retail chain’s) financial system. The hacker’s modus operandi was to steal network credentials 
from the HVAC vendor.

After understanding the nature and impact of IoT security breaches that have occurred in the past, 
let us understand how following a set of best practices/guidelines in a consistent manner could have 
prevented the stated (and similar) breaches/attacks.
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Mitigating IoT security vulnerabilities
Providing a robust security posture is a complex endeavor and requires the active involvement 
of different parties throughout the solution life cycle. Following the guidelines (or preferably a 
combination thereof) mentioned in this section would help to provide a credible defense against 
potential threats/vulnerabilities:

•	 Using AI/ML techniques: These are effective deterrents against increasingly sophisticated security 
attacks. AI/ML techniques can monitor network traffic as well as device data to flag suspicious 
behavior. Manual monitoring is no longer an option due to the ever-increasing list of attack vectors.

These techniques rely on using context-aware access controls at all layers of the IoT stack to allow 
only the expected actions and behaviors. The system behavior is monitored for a reasonable 
period to establish a baseline of expected behaviors and anomaly thresholds and the accumulated 
baseline data is used to flag malicious and/or unauthorized activities.

In other cases, the process involves collecting, correlating, and analyzing data from multiple 
IoT data sources and combining it with a threat intelligence knowledge base. Prebuilt AI/ML 
models then analyze the data for possible vulnerabilities and provide recommendations for 
fixing the identified vulnerabilities. If multiple vulnerabilities are detected, they are prioritized 
by these models. It is ideal for all the identified vulnerabilities to be resolved; however, this is 
seldom possible due to effort and cost considerations. With the increase in the maturity of AI/
ML models, recommendations can also be implemented in an automated fashion.

AI/ML techniques are effectively used in an IDS where they continuously monitor the network 
for suspicious traffic patterns (an alarm should be raised if a device that is designed to send data 
once a day starts sending data multiple times a day) and leverage data from previous attacks 
to predict the occurrence of a security attack and recommend steps to contain the damage.

•	 Developing a toolkit of security implementations: Solution providers can do this and then 
customize the toolkit to suit specific domain or device family requirements. This will overcome 
the complexity of IoT solutions due to the scale and diversity of IoT devices and will allow the 
solution provider to tailor the rigor of security implementation as per the customer’s needs. 
Additional steps that a solution provider can take to ensure a secure product are as follows:

	� Leveraging security best practices for solution development: This includes assigning 
unique identities to all the devices/components, performing design and source code 
reviews (specially focusing on memory leaks, buffer overflows, backdoors, and validating or 
sanitizing data inputs), and using the latest operating systems, toolchains, libraries, and so 
on. Periodic reviews and audits of device, server, or network logs, assigned privilege levels, 
and configurations and maintaining a detailed incident response plan are equally important 
for establishing a strong security posture.

	� Unique identities are required for device management features (remote access, patch management, 
and so on) and help prevent unauthorized operations such as device cloning. In general, 
devices are provided with minimal permissions during the device manufacturing process and 
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full identity and permissions during the field installation (refer to the Device management 
architecture pattern covered in Chapter 2 for more details). This approach is especially useful 
if the intended usage of the device is not known at the manufacturing stage. The device identity 
is created from multiple device-specific attributes, as shown in the following figure:

Figure 11.3 – Key attributes of device identity

	� Providing regular firmware updates for field devices and backend systems: Users should 
be encouraged to update the firmware at first use as firmware would have been updated 
between the time it was manufactured and the time the product reaches the customer site. 
Enabling the device’s auto-update firmware upgrade feature is another good practice that 
can be followed. An alarm should be raised if any device is skipping the upgrade requests.

	� A strong password and authentication mechanism (such as multi-factor authentication 
or biometrics) should be used. A manufacturer can also set up policies that enforce strong 
passwords and require the user to change passwords at regular intervals. The usage of a 
certificate issued by a public CA that is based on asymmetric encryption makes security 
implementation completely scalable (by eliminating the need to have a dedicated private 
server for authentication purposes).
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	� Rotating passwords and certificates: Providing unique identities to each of the devices in the 
form of device certificates – certificates are loaded into the device during the manufacturing 
stage and are activated later. An important point to consider here is that not all field devices 
would be capable of authenticating certificates (due to limits in terms of processing power 
and storage capabilities) where alternate authentication mechanisms such as keys and 
passwords need to be used.

	� Securing critical data: TPMs and TEEs can be used to secure critical data (e.g., encryption 
keys) along with disabling unused ports (e.g., debugging ports) and solution features. As 
most field devices are manufactured to serve very specific functions, most of the ports remain 
unutilized and hence should be disabled. Similarly, functionalities that are not relevant for 
a particular deployment should be disabled (principle of least functionality) and allowed 
functionalities should be executed at the least privilege level with access to only those resources 
that are required to complete the functionality. Maintaining a whitelist of devices that can 
connect to the network is another effective mechanism to minimize the attack surface.

	� Encrypting data at rest and in motion and network isolating the device: This results in a 
reduced attack vector as well as a reduced blast radius. To avoid data misuse, it is prudent 
to meticulously identify/review data storage and transmission requirements as unused data 
results in an increased attack surface. Deleting or transferring data to a secured location after 
a predefined interval is another effective approach for reducing the attack area. Ensuring 
that field devices can connect to the internet via firewalls, proxies, and so on, along with the 
usage of access control lists, results in an enhanced security posture.

	� Maintaining an updated inventory of field devices: Such an inventory would include, 
among other information, manufacturer details, device ID, serial number, location, hardware/
software configurations, and software/firmware versions. This information can be part of the 
Asset Management Database (AMDB) that is already maintained by solution providers. 
Devices that can’t support modern security mechanisms should be separately identified and 
placed within a separate network. Additionally, a plan to replace/retire these legacy devices 
in due course should be formulated.

	� Using newer technologies: Technologies such as blockchain can be leveraged to help improve 
the security posture as these technologies provide secure, decentralized, and tamperproof 
data storage and transmission. Similarly, it is prudent to avoid using legacy (non-secure) 
protocols such as Modbus and the usage of protocol converters should be explored to convert 
unsecure protocols to secure protocols, such as HTTPS, TLS, and Secure File Transfer 
Protocol (SFTP).

	� Monitoring vulnerabilities: It is important to ensure that the constant monitoring of 
vulnerabilities reported for the devices in the public domain and timely patching are done. This 
relates to the Device management architectural pattern explained earlier in Chapter 2, which 
is used to manage the life cycle of the field devices. The security recommendations need to 
be followed for all life cycle stages (registration, activation, commissioning, de-provisioning, 
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and patch management). Specifically, at the time of de-commissioning, all the sensitive data 
needs to be deleted.

	� Anonymizing data: Before storing data on the DG or the central server for long-term 
processing, care should be taken that personal/sensitive data is adequately anonymized and/
or redacted. Implementing security logic (network segmentation, encryption/decryption, 
certificate rotation, and maintaining device whitelists) on the DG is generally preferred, 
especially in cases where devices attached to the DG can’t implement these mechanisms.

	� Logging of operational and security events: Components of the IoT system should support 
this feature and logs needs to be analyzed at periodic intervals to detect/respond to security 
incidents in a timely manner. These logs are also useful for doing post-facto analysis of a 
security incident. Wherever possible, the system should be configured to not perform any 
operation in case event logging is not possible. Often, the mentioned log analysis is done by 
a dedicated system (SIEM) outside of the main IoT data and operational flows.

•	 Implementing standard guidelines and rating mechanisms: Doing this (preferably through a 
trusted third party) will help consumers to easily understand the level of security implementation. 
This will not require consumers to understand the security nuances in detail, but they will still 
be able to gauge the suitability of the product as per their risk appetite. This would be very 
similar to the ratings used by automobile manufacturers to indicate the level of pollution emitted 
by a particular vehicle. In fact, these ratings would indicate the rigor of security testing done 
by the manufacturer and would involve measures such as penetration testing, vulnerability 
assessments, and security compliance/certifications.

•	 Maintaining a security-first mindset: Such a mindset, where security is considered a crucial 
part of the development and release processes and not as an activity that must be bolted on as 
part of the final release (also referred to as the Secure Development Lifecycle (SDL) where 
security measures are embedded in each phase of solution development life cycle), is crucial. This 
starts with security assessment/threat modeling, which identifies risks, gaps, and vulnerabilities 
in field devices and communication channels. Security assessment helps to identify actors who 
stand to gain by exploiting the vulnerabilities, their motives, and the sophistication of tools/
tactics that they may use. The assessment also helps to identify the high-sensitivity/high-impact 
components so that security mitigation efforts can be suitably prioritized.

Based on the identified risks, organizations can then formulate an appropriate security model 
and related policies. After the security model and policies are defined, the next step is to define 
the security architecture. The security architecture helps to translate abstract security needs (as 
expressed by the security model and policies) to actual mitigation procedures. What type of 
anti-tampering mechanism should be employed to prevent device misuse? What level of security 
is required for the device and central server? As can be seen, these mitigation steps need to be 
developed for all the assets that were identified as part of the assessment exercise.

•	 Providing network segmentation for IoT devices: Network segmentation is done to enable 
granular control over data traffic between devices and the central server. This is done to reduce 
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the blast radius in case the threat actor infiltrates the network. Network segmentation is provided 
by using virtual local area network (VLAN) configurations or firewalls. Another possibility is 
to maintain islands of small networks within a single network that communicate only with each 
other. Segmentation is done based on the connectivity and security requirements of each field 
device (internal connectivity, connectivity to one destination, or public network connectivity). 
Firewalls can also be configured with specific rules to accept connection/data requests from 
specific device IP addresses or geographical regions only.

Creating and maintaining an updated version of the network architecture showing how field 
devices are connected to each other and the device gateway/central server is a good practice 
that provides multiple benefits. This architecture is generally part of the playbook that lists the 
known security incidents and their mitigations.

•	 Responsibility segregation: Clearly segregating the responsibilities of the solution provider/
manufacturer and solution user helps to clarify the activities each party has to perform to 
mitigate security risks. In general, the user needs to shoulder responsibility if the breach is due 
to wrong usage (or inadequate adherence to precautions) and the manufacturer is liable if the 
issue is due to wrong design, manufacturing, or inadequate security validation/verification. 
The manufacturer is also required to provide a security guidelines/best practices document 
(normally a part of the solution instruction manual) to avoid the inadvertent exposure of the 
product to security threats and vulnerabilities. Similarly, companies that host data on behalf 
of their customers would be held accountable if data is lost or exposed.

Possible approaches for mitigating security vulnerabilities discussed in this section are summarized 
in the following figure:

Figure 11.4 – Approaches for mitigating security vulnerabilities



Domain-specific security considerations 207

Domain-specific security considerations
The data sensitivity and hardware or software capabilities of both the backend system and field 
devices may vary from one domain to another (connector consumer devices such as smart fridges 
typically run on constrained hardware, whereas the autonomous car would typically have powerful 
processing capabilities). The importance attached to the three pillars of security (CIA) varies from 
one domain to another or one use case to another – the video feed from a camera installed in a public 
place (traffic intersection) might not be confidential but the data feed from a person’s living room 
would be confidential. Although the fundamental principles of providing IoT security are similar 
across domains, there are certain implementation nuances that you should be aware of, which are 
described in this section:

•	 Difference in data sensitivity across different domains: The volume and level of sensitivity of 
the transmitted data varies from domain to domain and accordingly, the rigor of the security 
implementation will vary from domain to domain – consumer devices (such as a smart thermostat) 
will have a different set of security requirements than medical devices (connected pacemaker). 
Accordingly, the laws governing data security/privacy will vary from one domain to another.

•	 Difference in profile and objectives of threat actors: Consumer devices (such as thermostats, 
smart speakers, smoke alarms, and doorbells) are less prone to organized and/or state-sponsored 
attacks. However, they can be targeted for ransomware attacks (such as a doorbell ringing at 
odd times unless the user concedes to threat actor demands).

Due to the differences in the potential impact of vulnerabilities, security approaches vary across domains, 
for example, privacy is more important in the consumer than the agriculture and manufacturing 
domains. To illustrate this more clearly, we’ll discuss the security challenges for two domains in the 
following list:

•	 Manufacturing: This domain has challenges of legacy machines with long life cycles (average 
life cycle time of 10 to 30 years) with a mix of brownfield and greenfield deployments. Robust 
security implementation is almost a mandate in the manufacturing domain as attackers use 
vulnerabilities in the OT infrastructure (where protection is generally weak) to launch an attack 
on the IT infrastructure. This increased attack surface can have grave consequences and result 
in financial loss and/or pose a threat to workers’ lives.

•	 Consumer: There have been quite a few security incidents (mainly privacy related) with the 
prime reason being that users are not aware of the potential risks of not updating firmware and 
security patches on time. Users tend to value simplicity and ease of usage much more and expect 
security concerns to be handled by the manufacturer without their explicit involvement. Also, 
users tend to replace/upgrade their devices quite often (the average life cycle is 2 to 5 years), 
which provides an opportunity for manufacturers to pass on the latest security implementations 
with each new product iteration. As users in the consumer market are always interested in the 
latest and newest offerings, the solution provider needs to deliver in shorter cycle times and 
security becomes an unintended casualty.
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Although domain-specific applications can be exploited by attackers, data from applications from 
different domains can be combined to misuse the information at a larger scale. In fact, data collated 
by different domains is different and can be combined to create a complete profile of a user and 
their behavioral characteristics. As an example, IoT applications in consumer space can determine a 
person’s habits and behavioral patterns, whereas autonomous vehicles can provide details regarding 
the routes preferred by the user. Data gathered by retail domain applications can be further exploited 
to gain knowledge regarding product/brand preferences. Similarly, IoT applications in the healthcare 
domain can provide information about illnesses, treatments, and so on. The accumulation of such 
holistic data by threat actors can be quite lethal.

We’ve learned about domain-specific considerations for designing secure IoT solutions. The knowledge 
gained in this chapter can be further supplemented by going through the security standards that are 
listed in the next section.

Applicable security standards and best practices
As mentioned earlier in the chapter, there are a few standards that specifically cover IoT security-
related compliance requirements. Here are some references to some of the prominent standards and 
best practices:

•	 The ETSI EN 303 645 V2.1.1 standard: https://www.etsi.org/deliver/etsi_en/3
03600_303699/303645/02.01.01_60/en_303645v020101p.pdf

•	 NIST Cybersecurity for IoT Programs: https://www.nist.gov/itl/applied-
cybersecurity/nist-cybersecurity-iot-program

•	 IoT Security Best Practics: https://www.iotsecurityfoundation.org/

•	 Best practices for threat modeling: https://owasp.org/www-community/Threat_
Modeling_Process

•	 IoT cyber security regulations across the world: https://cetome.com/panorama

Summary
This chapter provided insights into why security is important in IoT solutions and how the implementation 
of security measures is different in IoT compared with general IT solutions. Also, it is prudent to 
leverage the existing knowledge base of generic IT security and tailor/enhance that to suit the needs 
of IoT security. Some IoT vulnerabilities that were exploited by threat actors in the recent past were 
also discussed to give a perspective of how vulnerabilities differ in IT vis-à-vis the IoT space.

One key takeaway from this chapter is that there is no single solution that can be used to mitigate 
IoT security risks and a combination of technical, operational, and organizational measures can 
help in mitigating potential vulnerabilities. IoT security can be best accomplished if the mitigation 
strategies use a combination of both the defense in-depth (analyze possible risks and their mitigations 

https://www.etsi.org/deliver/etsi_en/303600_303699/303645/02.01.01_60/en_303645v020101p.pdf
https://www.etsi.org/deliver/etsi_en/303600_303699/303645/02.01.01_60/en_303645v020101p.pdf
https://www.nist.gov/itl/applied-cybersecurity/nist-cybersecurity-iot-program
https://www.nist.gov/itl/applied-cybersecurity/nist-cybersecurity-iot-program
https://www.iotsecurityfoundation.org/
https://owasp.org/www-community/Threat_Modeling_Process
https://owasp.org/www-community/Threat_Modeling_Process
https://cetome.com/panorama
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at all layers of the IoT stack) and defense in-breadth (consider multiple mitigation strategies for each 
layer) approaches.

Protecting IoT solutions is a continuous journey as a solution that is fully secure may become unsecure 
tomorrow due to the increased usage of sophisticated tools and tactics. Although there is no such 
thing as foolproof security, what is required is to provide security against known risks and perform 
regular threat modeling/audits so that it becomes increasingly difficult for threat actors to exploit 
vulnerabilities that exist in the system. Equally important is to have an incident/response plan ready to 
be executed in case any security vulnerability/threat is detected. IoT architects are expected to balance 
the requirement of releasing a fully secure solution with a delayed product release or release it with 
good enough security with timelines that are acceptable to the marketing/product team.

As with any other technology, the field of IoT security is constantly evolving. With increased sophistication 
provided by AI/ML algorithms, future IoT systems will be able to not only detect security gaps but 
also execute require mitigation steps with no (or minimal) impact on system operations, resulting in 
truly self-healing systems.

So far, we have focused on architecting and implementing IoT solutions. However, in the next chapter, 
we will be taking a slight diversion to explore how emerging technologies, such as Web 3.0, 3D printing, 
5G, and social media, can augment IoT for the development of more compelling solutions.





Part 4:  
Extending IoT Solutions

This part provides details about how IoT solutions fit into the overall ecosystem – for example, how 
combining IoT with related technologies such as blockchain and AR/VR can result in innovative 
and rich use cases. The last chapter of the book focuses on providing guidance on how to handle the 
practical challenges encountered when building IoT solutions.

This part comprises the following chapters:

•	 Chapter 12, Exploring Synergies with Emerging Technologies

•	 Chapter 13, Epilogue





12
Exploring Synergies with 

Emerging Technologies

In the previous chapters, we saw that IoT technology helps merge real and virtual worlds, where data 
from the real world is aggregated or processed at a central location, and generated insights are used 
to trigger actions back in the real world. This capability allows us to develop very rich, diverse, and 
useful applications. However, this capability is enhanced multifold if we combine IoT with other related 
technologies (such as blockchain, metaverse, generative AI, and others) – the sum is more than its parts.

The chapter covers the main technologies that can effectively complement IoT, but the list of 
technologies is not exhaustive; listing all the technologies is not practically possible as new technologies 
are continuously emerging. Additionally, this chapter intends to provide you with a glimpse of the 
possibilities that exist when we combine IoT with other technologies (art of the possible). However, 
like any other technology, the technologies listed in this chapter may have inherent limitations, 
vulnerabilities, and/or risks associated with them (as an example, AI/ML technology may suffer from 
different biases and there is a concern regarding large language models being used from a privacy 
standpoint). Hence, it is recommended that you study the pros and cons associated with a specific 
technology in detail before you plan to build the required application or use case.

The main objective of this chapter is to introduce you to additional technologies that can complement 
IoT capabilities and will help solve problems that can’t be solved by leveraging IoT technology alone.

In this chapter, we will provide an overview of various technologies, explore the benefits of combining 
those technologies with IoT, and finally discuss some concrete examples of how a combination of 
technologies can help solve real-world problems. For clarity, the technologies mentioned in the chapter 
relate to different layers of the IoT reference architecture’s layers, as is shown in the following figure:
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Figure 12.1 – Emerging technologies mapped to the IoT reference architecture

Let’s start with a brief overview of blockchain.

Blockchain
Blockchain is a decentralized digital ledger that stores all transactions in a distributed fashion (that 
is, each node in the network gets a transaction copy). Every transaction in the blockchain (that is, 
every block) is stored alongside a timestamp that is validated and approved by all the entities or 
nodes in the network. Once approved, the transaction is aggregated as a block and replicated on each 
node in the network. As a result, transactions maintained by blockchain technology are considered 
immutable and tamperproof. These capabilities enable blockchain to solve one challenge – that is, 
integrity. Here, there are three key security challenges that any IoT solution is expected to mitigate, 
which form the Confidentiality, Integrity, and Availability (CIA) triad. In Figure 12.1, blockchain 
is represented using this image:

Figure 12.2 – Blockchain
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Benefits of combining IoT and blockchain

As we saw in Chapter 11, field devices aren’t capable of implementing strong security or cryptographic 
algorithms. Blockchain helps provide robust and scalable security because of the following reasons:

•	 Blockchain’s decentralized nature eliminates the possibility of a system being compromised 
due to a single security vulnerability point.

•	 The participation of field devices in blockchain transactions without the involvement of a central 
server improves overall fault tolerance by eliminating a single point of failure.

•	 Leveraging blockchain makes the solution horizontally scalable as one entity (that is, a central 
server) isn’t loaded with extra processing when a new field device (a node) is added to the 
network – security-related processing (encryption, authentication, and so on) gets distributed 
evenly among all the existing nodes.

•	 Blockchain provides strong integrity (eliminating the possibility of data being tampered 
with while in transit or at rest) as all the events (data transfer, device states, and others) are 
maintained in an immutable ledger – it is almost impossible for the threat actors to cause post 
facto modification of data.

•	 The integration between IoT and blockchain would result in the development of efficient and 
secure payment transactions. Most of the current payment mechanisms (credit cards and so 
on) are reasonably secure, but transactions that are enabled by blockchain are point-to-point 
and don’t involve intermediaries (for example, banks).

Important note
Integrating blockchain with IoT comes at a cost as it involves extra processing (and therefore 
higher power consumption) by field devices, and it also consumes extra bandwidth to support 
additional data communications. Also, extra storage capacity is needed by field devices as the 
blockchain ledger needs to be replicated at each device.

Possible use cases

Blockchain technology enhances the security posture of IoT use cases. Accordingly, it can be applied 
to any of the use cases detailed in Chapters 4 to 8 to provide security in a decentralized manner.

As an example, adding blockchain security to a condition monitoring use case (detailed in Chapter 5) 
would reduce the possibility of man in the middle (MITM) attacks and eliminate the possibility of 
tampering with inflight sensor data due to strong authentication and integrity safeguards built into 
blockchain technology. This would also ensure the shipment’s accurate traceability during its entire 
journey from producer to consumer and enable the consumer to reject the shipment if there is any 
indication of data tampering or if the desired storage conditions were not maintained at any point 
during transit.
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Generative AI
Generative AI has received considerable attention in the recent past. It is a form of AI that can generate 
unique content (images, video, audio, tests, and even code or logic) based on the provided keywords, 
where the content’s quality closely mimics the content a human would have created.

This aspect of generating unique content differentiates generative AI from traditional AI, which relied 
primarily on a predefined set of patterns, rules, formulas, and more. Additionally, generative AI is 
trained on a considerable volume and variety of input data/content (images, sound, video, programming 
patterns, and more) and it can self-learn or adapt to insert novel/unique elements into the generated 
content rather than simply combine content from multiple input sources. In addition to being trained 
on a huge corpus of content, generative AI leverages deep learning techniques to continuously fine-
tune parameters, resulting in more and more authentic output with time.

We represent it in Figure 12.1 using the following image:

Figure 12.3 – Generative AI

Some popular current (that is, in 2023) examples of generative AI implementations are listed here:

•	 ChatGPT/Google Bard: A natural language processing (NLP) chatbot that can understand 
complex queries and generates human-like responses.

•	 DALL-E/Midjourney: The user provides a detailed description of the type of image required 
via prompts. Then, these tools generate realistic images.

•	 resemble.ai: Generates audio samples.

•	 Amazon CodeWhisperer/Copilot: A tool for generating source code fragments.

•	 Adobe Firefly: A tool for intelligent image editing and content/image creation.

Now that you understand what generative AI is, let’s look at the benefits of integrating it with IoT.
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Benefits of combining IoT and generative AI

IoT augmented with generative AI capabilities can help create intelligent and creative systems where 
they can interpret natural languages and generate responses that are indistinguishable from human 
responses. However, this requires significant investment in terms of model training, retraining, and 
finetuning to get the desired results. Normally, a base or generic model is taken as a starting point 
and is further fine-tuned for a specific use case or problem domain.

A good example is the healthcare domain, where structured, semi-structured, and unstructured data 
related to patients, symptoms, and clinical tests (vital parameters, MRIs, X-Rays, CT scans, and so on) is 
analyzed to predict disease onset and provide tailored diagnostics recommendations. Additionally, the 
information related to treatment (precautionary measures and medicine doses) can be communicated 
in a personalized manner considering individual preferences and acceptability.

Combining IoT with generative AI has the potential to drastically improve the interaction between 
IoT systems and humans. At the time of writing, most of the commands are taken either from mobile 
phones or HMI (as mentioned in Chapter 10) and output is displayed on screen or sounded on a 
speaker. Generative AI can help us understand the commands that are passed in natural language 
and generate more human-like voice responses (for example, “Which of the rooms in a building have 
temperatures above 25⁰ C?”).

Possible use cases

Generative AI can be used to design 3D enclosures for IoT field devices without the need to specify 
intricate design details. The design details can be provided in plain English and generative AI can produce 
detailed instructions that can directly be fed into a 3D/4D printer. A combination of IoT, generative 
AI, and 3D printing can be used to create hyper-personalized products where product features and 
their design (that is, the look and feel of the enclosures) are customized to suit an individual’s tastes.

Generative AI can be used to design visual interfaces (dashboards) for consuming IoT data/insights. 
Similarly, the technology can be used to customize dashboards that have been created for one customer 
so that they suit the requirements of other customers (change in logos, relative placement of trend 
charts, and other visual elements). Generative AI technology can help generate automated reports by 
anonymizing private data so that it complies with regulatory norms.

In more advanced applications, generative AI can be used to dynamically alter the processing flow (or 
workflow) based on the observed sensor data – this would involve further training of the generative 
AI model. Consider a scenario where static event/action rules executed by LRE or GRE are replaced 
with dynamically generated rules (rules that are created on the fly based on real-time data, as well as 
the overall spatial and temporal context).
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Large language models
Large language models (LLMs) are extensions of deep neural networks that are trained on large datasets 
and tuned for a vast number of parameters (billions of parameters) and are capable of understanding 
and generating human-like content. We represent it as follows:

Figure 12.4 – LLMs

Although LLMs can understand other media types as well (such as audio, video, and images), their 
focus is primarily on understanding textual input and generating textual output. The key difference 
between LLMs and other query resolvers/chatbots is that LLMs can build an understanding of the 
overall context by correlating a set of queries (and responses) and can answer complex queries in a 
more nuanced manner. This enables it to perform tasks such as computer vision (CV) and NLP with 
a precision that is close to human-generated output.

Training over a large dataset enables these technologies to generate natural (human-like) responses 
rather than canned or superficial responses (for example, these models can consume a large chunk of 
text and provide a summarization that isn’t a simple repetition of selected portions of the main text 
but closely mimics the way a human would articulate the summary). LLMs can be put to other uses, 
such as scanning an image and providing a text summary and/or providing a relevant caption/title. 
This technology provides capabilities such as sentiment analysis, more natural and nuanced language 
translations, and attribution or causal analysis, and helps generate creative and unique content on 
demand. These capabilities equip the technology to be used for text translation, text summarization, 
generating congruent groups of sentences (for example, generating a complete story by inputting a 
partial story), natural query responses, and more.

Both generative AI and LLMs are based on deep learning techniques and leverage foundational models 
as a core technology. However, generative AI is a more generic term and LLM can be considered a 
specific implementation of generative AI, where the focus is primarily on understanding and generating 
textual content.

Benefits of combining IoT and LLM

IoT can be combined with LLM to analyze user feedback on social media regarding product quality. 
These comments can be analyzed and data from the IoT sensor data from the product can be used to 
verify the feedback’s veracity (whether the user providing feedback has used the product or not); then, 
the authentic feedback can be used to generate future product enhancements. These enhancements 
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and recommendations would be like the requirement analysis or user stories documentation that is 
currently prepared by product managers.

Possible use cases

Since LLMs can interpret images/videos, this technology can be used to interpret IoT data visualizations 
(for example, dashboards) in the absence of the equipment or machine operator. For example, if any 
anomaly is detected in an assembly line, an LLM can work in conjunction with generative AI to generate 
a detailed alarm message and send the same to the operators or workers on the shop floor (using 
speakers or flashing it on the available video terminals), along with specific instructions to resolve the 
anomaly. Operator and LLM implementation can work in tandem in monitoring the assembly line 
situation – with LLM providing routine monitoring and the human operator applying their intuition 
on top of the LLM-generated data or insights to identify complex patterns.

LLMs can also be used to provide automated (and more natural) technical support for operational 
and diagnostics issues reported by IoT device owners. In a more practical scenario, the LLM would 
already exist for generic use cases and would need to be customized/fine-tuned to fulfill the needs of 
IoT use cases – refer to the Transfer learning section of Chapter 10.

AI/ML
AI/ML is a general term that encompasses a lot of other technologies, such as deep learning, LLMs, 
and generative AI. Here, it is represented as follows:

Figure 12.5 – AI/ML

AI/ML integration was described in detail as part of the AI/ML integration pattern in Chapter 3.

Benefits of combining IoT and AI/ML

One benefit of combining AI/ML with IoT is that you can ingest and process high-volume and velocity 
data produced by IoT sensors in almost real time to derive timely/actionable insights. In addition to 
efficiency and performance gains, integrating AI/ML with IoT will free decision-making from biases 
inherent in human thinking. As a result, the combination of these technologies would result in more 
efficient, timely, and accurate analysis, which is a major advancement over traditional static rules  
(if X, do Y) or algorithms.



Exploring Synergies with Emerging Technologies220

AI/ML integration helps in improving the quality and accuracy of the raw data obtained from sensors 
by removing inconsistent data (such as outliers) and/or imputing or inserting missing data. The role of 
AI/ML in improving the security posture by analyzing the possible threats and implementing automated 
responses was covered in Chapter 11 – performing penetration testing and vulnerability assessments in an 
automated manner is another example of using AI/ML for enhancing the security posture of IoT solutions.

AI/ML can help in correlating the data from different sensors with external data sources (for example, 
weather station) to generate more relevant or holistic insights (a sudden increase in a heartbeat but 
without a corresponding increase in motion may indicate the possibility of a heart attack, for example). 
AI/ML is also a key enabler of sensor fusion (as mentioned in Chapter 10). The role of AI/ML in enabling 
more complex simulations (what-if scenarios) in the context of digital twins is also worth noting.

AI/ML helps generate and discern a product’s usage analytics (product features that are frequently 
used vis-à-vis the features that are rarely used) and that’s a vital input for future product revisions or 
to tailor products based on customer demographics, geographic locations, and more.

Possible use cases

One interesting use case is to dynamically determine whether a particular data processing requirement 
should be performed locally (that is, at the edge) or at a central server. This would involve making drastic 
improvements from the current implementations where there is no such flexibility and processing 
data or rules in either the cloud or the edge in a fixed and predefined manner.

Other general uses of AI/ML in IoT use cases such as data quality improvement, automated security 
monitoring, and others were also described in previous chapters. Essentially, AI/ML enables automated 
decision-making, which can be leveraged in multiple use cases and diverse domains, as illustrated in 
the following figure:

Figure 12.6 – Use cases enabled by IoT and AI/ML integration
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Immersive technologies
Immersive technologies, including augmented reality (AR), virtual reality (VR), and the metaverse, 
provide an immersive and engaging mechanism for consuming IoT data and insights. Here, it is 
represented using the following image:

Figure 12.7 – Immersive technologies

Traditionally, content or data is consumed using desktop or mobile screens, but these immersive 
technologies offer an enriching experience to the user, as described here:

•	 AR: As mentioned in Chapter 10, AR helps overlay IoT content (analytics results, sensor 
operational or metadata, and so on) with the user’s current view – that is, AR allows you 
to augment the real-time view of the user with context-sensitive IoT data and information. 
To consume AR data, an additional device (wearable glasses, a mobile device, and so on) is 
required that superimposes IoT data on the real-time video feed obtained from the device’s 
inbuilt camera. As an example, a person can see the house plan along with the actual version 
for faster troubleshooting, as shown in the following figure:

Figure 12.8 – AR blending real and virtual content
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•	 VR: VR differs from AR because, in VR, the view is completely replaced with alternate content 
(or alternate/different reality) via a headset. VR also provides a higher immersion level compared 
to AR by replacing the complete view. Also, content changes as per the direction of the headset, 
giving the user the illusion that they are present at the place of action. Typical use cases of VR 
include training, entertainment, virtual sightseeing, and remote meetings.

•	 Metaverse: The metaverse is an extension of VR where an alternate world is created that is 
inhabited by virtual identities (avatars) of the inhabitants, along with related material objects and 
processes. It is predicted that a person would be able to perform most of their daily activities, 
such as work, shopping, socializing, and leisure/play in the metaverse.

The main difference between VR and the metaverse is that of scale and complexity. Considering 
a manufacturing plant as an example, VR would cover one or more assembly lines, whereas the 
metaverse would cover the complete plant and may even include upstream and downstream 
entities or processes involved in the supply chain. Another difference between VR and the 
metaverse is that VR loses its current state at the end of the session, whereas the metaverse 
maintains the state or environment while users enter and exit the metaverse at their convenience.

Now, let’s take a look at the benefits of combining these technologies with IoT.

Benefits of combining IoT with immersive technologies

AR, VR, and the metaverse primarily differ in the level of immersivity provided. Accordingly, these 
technologies can be used in IoT use cases to present the IoT output (data, analytics, and so on) with 
varied levels of immersivity. IoT can be considered as an agent that keeps the data synchronized 
between real and virtual worlds (the world of AR, VR, or the metaverse).

The relationship between IoT and immersive technologies can be understood using the following 
figure, which shows one of the possible deployment options:
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Figure 12.9 – IoT acting as a bridge between real and virtual worlds

Possible use cases

The need to consume information in an immersive manner is common in different domains (industrial, 
manufacturing, retail, consumer, and others). IoT can be combined with AR/VR/the metaverse to 
cater to the requirements of different domains, as explained here:

•	 The digital twin implementations of architectural patterns (detailed in Chapter 2) can add AR/
VR/the metaverse as a visualization mechanism. As described, data from the field devices needs 
to be constantly fed into the digital twin so that it can represent the true state of the actual 
real system. Similarly, actions initiated on the digital twin by the user need to be implemented 
(actuated) in the real world. IoT enables these two aspects (sensing and actuation), whereas 
the state of the digital twin (and by extension, the real world) can be effectively displayed/
visualized using AR, VR, or the metaverse.

As an example, avatars in the metaverse can more closely mimic reality if their attributes 
(facial expressions, bodily movements, and so on) are captured alongside other parameters. 
Likewise, elevated heart and breath rates from a person in the real world can be used to show 
the metaverse avatar in a fatigued state. Some of the static attributes such as a person’s height, 
weight, or the color of their eyes can be configured as avatar metadata, but dynamic attributes 
(heart rate, blood pressure, and more) need to be captured in real time by IoT sensors for 
more holistic rendering. In generic terms, IoT sensor data provides contextual and situational 
awareness of the virtual world and takes sensory inputs (triggers in the form of button presses, 
body or head movement, hand gestures, and so on) and replicate the same in the real world.



Exploring Synergies with Emerging Technologies224

Important note
To effectively simulate the real world, immersive technologies need to combine data from 
multiple sources (field data, person data, haptic data from headsets, and so on) and present it 
in a unified view. Sensor fusion (outlined in Chapter 10) plays a vital role here.

•	 Immersive technologies help you experience the real world from a remote location. As an 
example, consider a metaverse scenario where automobiles such as cars are exhibited and 
users can experience the aesthetics of the car remotely and have the almost real experience of 
driving the car. For this to work, IoT and immersive technologies need to work in conjunction 
to synchronize data between real and virtual worlds – users would receive sound, tactile, and 
other sensory experiences (driving on a bumpy or smooth road) and would also be able to 
control the car’s functions.

•	 Immersive technologies also help in remotely monitoring and controlling a machine or piece of 
equipment. Technicians can get a real-time view and feel (vibration, thermal behavior, and so 
on) of the equipment’s or machine’s state and initiate troubleshooting steps remotely. Similarly, 
supplementing immersive technologies with ambient data gathered by IoT sensors can make 
virtual events, visits to shopping malls, or conferences realistic, livelier, and wholesome.

•	 AR is specifically suited to maintenance activities as the internal structure/mechanisms of the 
machine can be known even without opening the machine’s enclosure. IoT sensors can provide 
situational or locational awareness that can help you present the data at the required granularity 
level – it can provide a summarized view in case a person is far from a machine and provide 
more detailed information as the person moves closer to the machine. Also, a person at the 
remote site can communicate their observations to the technical expert stationed at the main 
office and seek their guidance or opinion regarding the correct maintenance steps.

Visual cues provided by AR technology can also be used to locate a misplaced part of a machine 
or equipment where IoT would supply locational information (using sensing technologies 
such as GPS, RFID, and so on) and AR would help guide the worker to the relevant location 
in the factory.

AR and IoT can also augment human capabilities, enabling people to perform their tasks in an 
efficient and foolproof manner – visually inspecting finished parts can be done by the worker 
while the image of the correct product is projected using an AR headset, which results in them 
not needing to switch their attention between the product and the parts on the assembly line.

Next, let’s take a look at the role that IoT can potentially play in 3D and 4D printing.

3D and 4D printing
3D/4D printing creates customized parts by depositing layers of molten substance. We represent it 
as follows:
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Figure 12.10 – 3D printing

Before understanding how this innovative technology can augment IoT use cases, let’s understand 
these two technologies a bit more:

•	 3D printing/additive manufacturing: 3D printing involves creating a 3D object by adding/
depositing raw material in a layer-by-layer manner – 2D raw material is layered one over the 
other, thereby creating a third dimension. This contrasts with traditional manufacturing, where 
products are created by removing the unnecessary parts (subtractive manufacturing) from a 
block of metal, for example, by processes such as milling, grinding, drilling, and others.

3D printing brings advantages such as the ability to create complex objects that were not 
possible with traditional methods and no wastage of raw material (with cascading benefits of 
cost reduction, alignment with sustainability objectives, and so on). On the flip side, 3D printed 
products aren’t very robust as the various layers are glued on top of one another and stickiness 
will primarily depend on the adhesive properties of the raw material that is used.

•	 4D printing: 4D printing is an extension of 3D printing where, in addition to three physical 
dimensions, a fourth dimension of time is also added, which means that the structure of 
the 3D printed object can change with time (often under the influence of external forces or 
energies such as heat, electricity, light, moisture, magnetic field, and mechanical pressure). A 
4D-printed object will revert to its original shape once the forces or energies are no longer 
acting on the product.

Shape dynamism is achieved by using special raw materials, such as magnetic materials such 
as ferrofluids, Hydrogel, Shape Memory Polymers (SMPs), and Liquid Crystalline Elastomer 
(LCE), which have the propensity to alter their shape when some external force is applied. 4D 
printing is done by 3D printers but using specialized raw materials whose shape changes with 
the application of external forces.

Let’s explore the benefits of including such technologies in IoT solutions.

Benefits of combining IoT with 3D and 4D printing

One advantage of 3D printing having direct relevance for IoT solutions is that it can be used to print 
a very small number of products cost-effectively. This is especially useful during the IoT solution’s 
prototype (or proof of concept) stage as the number of devices required is small, which doesn’t justify 
the usage of traditional manufacturing techniques.
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3D printing also allows you to experiment with multiple prototype designs and select the one that is 
functionally and aesthetically most appropriate for the use case under consideration. In typical IoT 
solutions, electronic circuitry such as the Printed Circuit Board (PCB), of the field device is directly 
sourced from an Original Equipment Manufacturer (OEM), and 3D printing is used to quickly 
create enclosures for cost-effectively housing the electronic circuitry.

IoT and 3D or 4D printing can be used cyclically for successive product refinements. Consider the 
case of a 3D/4D printed smart glove that is sending the user’s usage/comfort data to the central server. 
Based on the analysis of the data reported, the glove can be further refined to suit the comfort of the 
user. The refined design is manufactured using the 3D/4D printer, resulting in a virtuous cycle, as 
shown in the following figure:

Figure 12.11 – Continuous refinement of a smart product using IoT and 3D/4D printing

Next, we’ll discuss some use cases in which this combination can be used.

Possible use cases

As mentioned in Chapter 7, 3D printing plays a crucial role in the smart manufacturing domain and 
especially for manufacturing hyper-personalized products. 3D printing helps us realize the vision of 
batch size 1, where each product can be manufactured in a different shape or size as per the user’s 
preferences. 3D printing allows for just-in-time manufacturing and hence avoids the need to keep a 
large inventory of products.
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IoT can be used to monitor the condition as well as output of the 3D or 4D printer. Printer monitoring 
would ensure that all the printing conditions such as temperature and ink availability are in the desired 
range. Notifications can be generated in case of product deformity while printing or can be used to 
notify the successful completion of the print job.

Although 4D printing is still to see widespread adoption, the technology does hold considerable 
potential. As an example, consider that the material that’s used for the foundation of a house is 4D 
printed and acts as a safeguard against earthquake shocks. The 4D printed material would be able to 
absorb these shocks by changing shape and then reverting to its original shape.

The ability of 4D printed material to change shape or dimensions when subjected to changes in ambient 
temperature, heat, and more can be used to design IoT actuators that are self-powered (refer to the 
Energy harvesting section later in this chapter). Similarly, a 4D-printed actuator can be designed to 
perform an operation once an ambient temperature reaches a specific threshold (open a valve at a 
predefined temperature, for example) with the added benefit that there is no need to deploy a separate 
temperature sensor or a power source.

5G and 6G technology
Although 6G technology is still in the works and 5G deployments exist, the two technologies will 
be used interchangeably in this section. The main intent here is not to elaborate on the technical 
differences between these technologies but to understand how these two technologies would help in 
implementing new use cases (or enhance existing use cases). Here, it is represented as follows:

Figure 12.12 – 5G/6G technology

The reason for focusing on these two technologies compared to previous generations (2G, 3G, or 4G) 
is that 5G and 6G have some major improvements related to providing connectivity for IoT use cases. 
These improvements are summarized in the following figure:
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Figure 12.13 – Advantages of 5G/6G technologies over prior generations

Benefits of combining IoT with 5G and 6G technologies

One way of understanding the benefits of combining these two technologies with IoT is to consider 
the connectivity between the DG and the central server as a data pipe that will become bigger (more 
bandwidth), shorter (reduced latency – low packet transfer rate), and stronger (increased data 
reliability), as shown in the following figure:
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Figure 12.14 – Comparison between 5G/6G and prior generations

Another important benefit of moving to 5G/6G deployments is support for dynamic network slices 
that allows you to create multiple logical networks within a single physical infrastructure. Each of 
these logical networks can be designed with specific characteristics. In other words, we can choose 
from a combination of characteristics that are most relevant for the use case under consideration. For 
example, 5G/6G allows tunable Quality of Service (QoS) levels for characteristics such as latency, 
throughput, bandwidth, data reliability, and others, as indicated in the following table:

Massive IoT Broadband IoT Time-sensitive IoT
Low data volume/rate High data volume/rate Moderate data volume/rate
High coverage Moderate coverage Moderate coverage
High density Low density Moderate density
Moderate latency Low latency Very low latency, but it provides 

bounded/deterministic latencies, 
irrespective of the data volume, along 
with ultra-high reliable delivery
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Massive IoT Broadband IoT Time-sensitive IoT
Example use cases: 
smart agriculture, 
automated meter 
reading in utilities

Example use cases: 
autonomous vehicles, 
surveillance, entertainment, 
AR/VR applications, visual/
automated inspection 
by drones

Example use cases: autonomous 
vehicles, remote surgical operations, 
real-time visual/audio analytics, 
smart manufacturing, digital twins

Table 12.1 – 5G/6G technologies can be customized to serve diverse IoT use cases

Another interesting aspect is that these characteristics can be changed on periodic time intervals or 
on an event basis to conserve power – surveillance cameras may share video feeds at high resolution 
(consuming higher bandwidth) in the night compared to the day and can be part of different logical 
networks in day and night.

Possible use cases

Some of the additional scenarios where 5G/6G can be effectively used in IoT deployments are as follows:

•	 Ability to monitor and control network status or network statistics/analytics by providing a set 
of application programming interfaces (APIs). Specifically, the provided APIs can be used for 
device management functions such as device provisioning, connectivity management, and more.

•	 The ability to configure network characteristics programmatically is useful for dynamically 
configuring the network slices, along with their characteristics (temporarily decreasing 
(improving) the latency of one network and offsetting that by increasing (deteriorating) the 
latency of some other network).

•	 Proactive monitoring and mitigation of security threats by promptly detecting abnormal 
traffic patterns.

•	 Dynamic switching of traffic to local DG or a central server, depending on the current 
network behavior.

•	 Some 5G variants (specifically NB-IoT) are designed for field devices that are required to 
consume a lot of power – the actual battery life depends on the use case and data traffic 
patterns. However, NB-IoT devices are typically able to run for 2 to 10 years without the need 
for a battery recharge or replacement.

•	 Before 5G solutions were available, providers relied on providing a mix of technologies to support 
diverse network requirements (wired connectivity for high-speed connectivity and cellular 
for low/moderate speed connectivity). 5G would transform these heterogeneous networks by 
providing a single network that would serve different needs at the same time.

Next, we’ll discuss the use of drones.
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Drones
For details on the features/functionalities of drones, as well as the benefit of combining them with 
IoT, you can refer to Chapter 8, in which this topic has been covered extensively. In Figure 12.1, it is 
represented using the following image:

Figure 12.15 - Drones

Possible use cases

Some of the possible ways in which IoT can be combined with drone technology to help develop 
richer/stronger use cases are as follows:

•	 As indicated in Chapter 8, drones play a crucial role in enabling smart agriculture by aiding in 
activities such as aerial imagery (special relevance for large farms) for monitoring crop health, 
planting (seeding), applying pesticides, and more to increase yield volume and quality. Drones 
are replacing expensive helicopters that were used for similar operations.

•	 IoT-enabled drones can be used to transport condition-sensitive materials such as medicines 
and other perishable foods/consumables while performing continuous monitoring. Drones 
are expected to maintain the required storage conditions of the payload and in case of any 
deviations/excursions, notifications are sent to the stakeholders. This scenario is similar to 
that of conditionally monitoring perishable goods, as detailed in Chapter 5. It is important to 
mention that condition monitoring can be done for both the drone’s payload as well as the 
drone’s operating parameters (for example, the battery’s current status).

•	 Drones equipped with IoT capabilities can be used to inspect the assets in different domains 
such as utilities (inspection of substations and transmission lines over large swathes of land 
and hard-to-reach places). A related use case is the creation of 3D imagery using drones, where 
the obtained imagery can be further used for digital twin visualization.

•	 Drones can be used to sense connectivity challenges in an environment (no/sporadic connectivity). 
Field devices might be in a sleep state to conserve power and may not have long-range connectivity 
to transfer data over long distances. Drones can help in these scenarios by waking up the devices 
that are in proximity and receiving data using short-range connectivity options. Seen from this 
perspective, a drone can be considered a mobile DG that can collect data from remote/hard-
to-reach locations with minimal to no connectivity and bring it back to the base station from 
where data can be synchronized with the central server.
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Thus, integrating IoT with drones presents a range of benefits, paving the way for advanced automation, 
precision, and decision-making. Next, let’s discuss how IoT can be used in social media.

Social media
Social media allows us to share thoughts, ideas, and information within virtual communities using 
applications such as Facebook, Twitter, WhatsApp, YouTube, Instagram, LinkedIn, and others. 
Social media differs from traditional sources of information as most of the content (blogs, videos, 
and comments) is generated by the users instead of being provided by the website owner. Also, the 
technology allows like-minded users to form a network (or a closed group) where they can comment, 
appreciate, or acknowledge each other’s generated content. Here, it is represented as follows:

Figure 12.16 – Social media

Benefits of combining IoT and social media

Social media feeds can be used to obtain feedback regarding product launches, although the product 
usage metrics (which features are seldom used and which are frequently used, which time of the day 
the product is used, and so on) can be directly obtained from integrating required sensors into the 
product. The social media feeds complement these data points and provide a more holistic evaluation 
and future refinements of the product.

Social media can be used to determine the connections of a person who has similar preferences, 
profiles, nature, propensity to buy, and more and then push the related product promotions to the 
identified connections. Consider a scenario where a group of like-minded people are discussing the 
latest gadget in the market. This information can be used to send advertising or promotional messages 
about the related products to the group (except for the person(s) who is already using the product). 
Promotional messages can be further tailored as per the physical, psychological, social, locational, 
and economic profile of the person. This targeted marketing would be a win-win for both users as 
well as product providers.

Possible use cases

Social media handles can display a selected list of physiological and psychological parameters or statuses 
in real time that have been obtained from body sensors or wearables, providing a more holistic view 
of a person’s condition rather than just showing just the online/offline status.
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This dynamic physiological or psychological profile would complement the static social profile and 
result in much deeper engagement within social media communities/networks, giving rise to social 
IoT, where smart devices will have their own social media identities (just like humans) and they 
can converse with each other and with humans. As an example, one possible conversation between 
a connected coffee machine (as detailed in Chapter 9), a virtual barista, and a user via social media’s 
messaging functionality is shown in the following figure:

Figure 12.17 – Human-machine interaction over social media

This conversation can be between two machines, as shown in the following figure:

Figure 12.18 – Machine-to-machine chat over social media

As we can see, social IoT can help usher in a future where technology becomes more intuitive, 
interactive, and integrated into our daily lives.
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Cloud computing
The cloud provides a secure, scalable, reliable, and cost-effective mechanism for providing central 
server functionalities, as listed in Chapters 2 and 3. We represent it using the following:

Figure 12.19 – Cloud computing

Cloud computing can be considered a realization of a central server, as shown in the following figure:

Figure 12.20 – Cloud computing can be considered as a realization of a “central server”

Another benefit provided by cloud computing is that routine infrastructure activities such as hardware 
provisioning, infrastructure management, and software patching/upgrades are taken care of by the 
cloud vendor. Also, the cloud provides Disaster Recovery/Business Continuity (DR/BC) features as 
cloud infrastructure is spread globally – if the infrastructure in one geographical region goes down, 
it results in (almost instantaneous) automatic failover to another region.

All the central server patterns listed in the initial chapters (AI/ML integration, rule engine, file upload, 
enterprise system integration, device management, and digital twins) are provided as consumable 
services by cloud vendors. Additionally, basic infrastructure elements such as computing resources, 
databases, virtual machines, and more are provided as consumable services, further simplifying the 
process of infrastructure provisioning, which results in a considerable reduction in overall time to market.
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The cloud also provides additional plumbing services (queuing, notifications, data buffering, and so 
on) that can be used to combine multiple patterns to develop end-to-end use cases. Additionally, 
some utility services are provided, fulfilling requirements related to caching, data transformation, 
device simulators, analytics, reporting, alerts and notifications, security, image or video recognition, 
visualization engines, continuous integration/continuous delivery (CI/CD) pipelines, developer 
toolchains, short- or long-term data storage, and more.

For most services, public cloud providers offer both cloud-agnostic as well as cloud/vendor-native 
versions. Solutions developed using cloud-agnostic features and services can be easily migrated/ported 
from one cloud provider to another cloud provider’s infrastructure and can also be deployed on the 
solution provider’s own data center (on-premises deployment). On the other hand, the solutions 
developed using cloud/vendor-native services would require considerable effort in being migrated to 
another provider infrastructure (or to on-premises) – often, the migration effort won’t be any different 
from developing the solution from scratch. Like any architectural decision, selecting cloud-agnostic 
or cloud-native services involves tradeoffs. For example, although cloud-native services provide a lot 
of advantages, on the flip side, they will also bind the user to a particular cloud provider (for example, 
in the case of vendor lock-in). So, detailed analysis is required before deciding on whether to go for 
cloud-native services or cloud-agnostic services. An article written by the author of this book that 
provides a detailed comparison of both approaches might be a good starting point: https://www.
linkedin.com/pulse/cloud-neutral-vs-native-architects-cant-remain-
fence-sitters-singh/.

Benefits of combining IoT and cloud computing

IoT use cases generate huge amounts of data that can be effectively stored in the cloud as it provides 
virtually unlimited storage. One fundamental paradigm shift that cloud computing has brought 
compared to traditional computing is that services are charged on a usage or consumption basis and 
there is no requirement to make upfront payments. This is especially useful for implementing IoT 
use cases as most of the IoT use cases are initially developed as experimental projects or proof of 
concepts (PoCs) with minimal infrastructure and later scaled.

As the charging model is usage-driven, IoT solution providers can experiment with different 
functionalities/features, even with a small budget. In the case of increased market adoption, solutions 
can be scaled with a proportional increase in cost. This contrasts with the traditional approach of 
procuring and deploying hardware in-house/on-premises where inaccurately predicting steady-state 
demand results in hardware infrastructure being either underutilized or over-utilized.

https://www.linkedin.com/pulse/cloud-neutral-vs-native-architects-cant-remain-fence-sitters-singh/
https://www.linkedin.com/pulse/cloud-neutral-vs-native-architects-cant-remain-fence-sitters-singh/
https://www.linkedin.com/pulse/cloud-neutral-vs-native-architects-cant-remain-fence-sitters-singh/
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Possible use cases

The seven data characteristics that are unique to IoT use cases (as mentioned in Chapter 1) are 
supported perfectly by cloud infrastructure, as shown in the following table:

IoT Data  
Characteristics

Supported by Cloud Capabilities

Velocity •	 Scalable infrastructure to ingest high velocity/frequency data

•	 Services designed specifically to connect with a large number of IoT devices

•	 Buffering mechanisms in the form of queues and data/video streams to 
decouple ingestion from subsequent data usage

•	 Glean real-time insights from data in transit and streaming data
Variety •	 Purpose-built services to ingest and process structured, semi-structured, 

and unstructured data

•	 Integration services to integrate with diverse data sources, such as 
enterprise systems

•	 Support for real-time analytics as well as batch/offline analytics
Volume •	 Fulfils diverse storage needs (frequently accessed data or infrequently 

accessed data) with corresponding cost structures

•	 Provision to store virtually unlimited structured as well as unstructured data

•	 Specialized databases to support IoT-specific data needs such as time 
series sensor data, geospatial data, and more

•	 Services designed specifically to connect with a large number of IoT 
devices sending high-volume data

Variability •	 AI/ML services for driving context-sensitive insights

•	 Image recognition services for detecting “objects of interest” from audio, 
image, or video data

•	 Security services provide robust authentication and encryption, eliminating 
the possibility of analyzing tampered/incorrect data

Veracity •	 AI/ML services to automatically filter noisy/duplicate data or detect and 
remediate unusual traffic patterns

•	 Certificate-based mutual authentication ensures that data is received 
from trusted field devices

•	 Ensures cloud systems comply with regulatory norms (for example, 
GDPR, PCI-DSS, HIPAA, and NIST) to give further assurance of the 
data’s sanctity
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IoT Data  
Characteristics

Supported by Cloud Capabilities

Visualization •	 Provides visualization services for displaying IoT data using intuitive 
user interfaces (for example, rolling time series data plots for sensor data)

•	 Provides tools to develop mobile and desktop applications for consuming 
IoT data, insights, alarms, notifications, and more

•	 Helps develop VR/AR applications to superimpose IoT data/insights on 
real-world assets/entities

Value •	 The cloud provider provides sample AI/ML models related to common IoT 
use cases (such as predictive maintenance anomaly detection) and these 
can be further customized to glean insights from the accumulated data

•	 Guidance/reference architectures specifically curated for IoT use accelerate 
the use case adoption and benefits realization

Table 12.2 – IoT’s unique data characteristics supported by cloud services

Thus, it is evident that combining IoT with cloud computing can lead to increased scalability and security, 
enhanced innovation, faster time to market (TTM), as well as an overall improved user experience.

Energy harvesting
One of the main challenges in architecting IoT solutions involves optimizing the usage of power 
consumption in field devices. However, this challenge can be mitigated by enabling field devices to 
operate perpetually by leveraging perennial sources of energy (such as solar energy). Harvesting 
energy from natural sources not only helps in avoiding the hassle of replacing batteries and related 
maintenance issues (such as battery leakage) but is also more aligned with sustainability guidelines.

Energy harvesting is achieved by tapping into different energy sources such as light, vibration, motion, 
thermal, electromagnetic, solar, wind, and more. Some of the more novel mechanisms of harvesting 
energy include converting human body heat or human motion into electricity so that it can be used 
to power sensors attached to a human’s body. Here, we represent it using the following image:

Figure 12.21 – Energy harvesting
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Benefits of combining IoT and energy harvesting

Often, the combination of traditional battery and energy harvesting techniques is used to get a 
consistent or steady power supply. Typically, the energy produced by the energy harvesting technologies 
mentioned is of a small magnitude. However, this amount is sufficient for constraint devices/field 
devices due to their lower energy requirements.

As with all the technology choices, the right energy harvesting technique will depend on the use case 
or application needs (frequency of data collation, transmission by field sensors, transmission range, 
the device’s active and sleep cycles, the mobile or stationary nature of field device, and so on), cost 
considerations, and ambient or environmental conditions.

Possible use cases

Energy harvesting can be used to deploy IoT field devices in places where normal power sources (such 
as electricity) are not available and battery replacement is also not an option. Energy harvesting can 
be used in remote locations to provide continuous power to field devices (for example, conditionally 
monitoring crops in remote agricultural land).

Quantum computing
Quantum computing provides a drastic improvement in computing power compared to the current 
generation of hardware. Quantum computing technology operates by encoding the data in the form 
of qubits (quantum bits) and can store non-binary data (states other than 0s and 1s). Traditional 
computing infrastructure could store and process binary data only. Information stored in qubits 
allows quantum computers to solve extremely complex mathematical/statistical problems in a very 
short time. For example, in 2019, Google announced that its quantum computer was able to solve 
a complex problem in 200 seconds, which would have taken a traditional computer infrastructure 
about 10,000 years to solve.

We represent it using the following figure:

Figure 12.22 – Quantum computing
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Like any other technology, quantum computing can be exploited for malicious intents and the one 
possible threat is that it can be used to break currently used passwords and cryptographic keys owing 
to its immense computing power (it would take a key break algorithm hundreds of years to break a 
decent length cryptographic key on a traditional computer, but this can be broken in minutes if the 
same algorithm is executed on a quantum computer).

At the time of writing, quantum computers are very expensive and used for very specific purposes only. 
Quantum computers also need to be housed in extremely cold temperatures, which increases the cost 
and complexity of their deployment. However, quantum services can be rented from cloud providers 
by following their pay-as-go billing model (refer to the Cloud computing section of this chapter), at 
which point they can be used to execute computationally complex applications and algorithms.

Benefits of combining IoT and quantum computing

Quantum computing doesn’t have much of a role to play in the case of field devices (complex computing 
is not required on the field/constraint devices and it is almost impossible to replicate the specialized 
environment that is needed for quantum computers to operate). However, quantum computing can be 
used to implement very special use cases at the central server that require tremendous computing power 
(digital twin simulations, complex analytics, process optimizations, complicated AI/ML models, and more).

Possible use cases

With time, the amount of data that can be generated by field devices will increase exponentially (as 
more and more diverse devices get connected) that can be easily processed/analyzed by the computing 
power provided by computers that use quantum technology.

Web 3.0
Web 3.0 is the third stage of the evolution of the World Wide Web or the internet and has been 
designed to overcome the limitations of prior stages – that is, Web 1.0 and Web 2.0. In Figure 12.1, it 
is represented as follows:

Figure 12.23 – Web 3.0

Before we understand Web 3.0 and how it can be combined with IoT, let’s first understand the web’s 
evolution from Web 1.0 to Web 3.0, as depicted in the following figure:
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Figure 12.24 – Evolution of the web – from Web 1.0 to Web 3.0

Let’s look at this evolution in greater detail:

Parameter Web 1.0 Web 2.0 Web 3.0
Content source Static content 

accessed via 
the internet

User-generated content Content generation, 
moderation, filtration 
(identification of fake 
data), and curation 
powered by technologies 
such as blockchain, 
non-fungible tokens (NFTs), 
cryptocurrency, and more. 
Additional attributes include 
permissionless (no user can be 
banned or restricted), trustless 
(two or more users can trust 
each other without relying on 
a third party), and support for 
data monetization.

Type of access User access 
allowed: read-only

User access allowed: 
read and write

User access allowed: read, 
write, and own.
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Parameter Web 1.0 Web 2.0 Web 3.0
Content type Simple web pages Dynamic web pages, 

social media
Dynamic content consumed 
using immersive technologies 
and real-time data ingestion 
from IoT sensors.

Key purpose Information sharing Interaction Consume immersive content.

Type of client  
consuming  
content

Desktop browsers Mobile phones, touch 
screen HMIs

Immersive technologies such 
as AR/VR, the metaverse, 
and others.

Type of 
storage used

Dedicated 
infrastructure/
data centers 
with limited 
scalability options

Distributed data centers 
(cloud infrastructure) 
with full scalability

Distributed data centers 
(cloud infrastructure) with 
full scalability, along with 
edge locations.

Content  
moderation

Performed manually Performed manually Performed using AI/ML tools.

Data  
ownership

Content provider Content/application  
provider

(End) user.

Typical  
examples

Internet 
Explorer, MSN

Facebook, Twitter, 
Netflix, YouTube

Brave (browser), Decentraland 
(gaming), STEPN (health 
and wellbeing), ySign 
(chat messenger).

Table 12.3 – Key differences between Web 1.0, 2.0, and 3.0

As detailed in the preceding table, Web 3.0 is the latest stage of the web/internet’s evolution and is 
differentiated from the earlier stages in the following manner:

•	 Decentralized/distributed: Content isn’t owned and/or controlled by a few organizations but 
ownership is with the content creators and users. In Web 1.0 and Web 2.0, a user’s account was 
owned by the entities providing the online platform (for example, email, online gaming, and so 
on) and they could suspend or even terminate the account (or restrict specific content) as per 
their needs and requirements (for example, to comply with regulatory or legal directives). Also, 
the data in Web 1.0 and Web 2.0 was managed in a central location, which posed a security risk 
as bad actors could steal the data of all the users by exploiting a single vulnerability.
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Web 3.0, however, allows you to purchase part of the platform (virtual real estate) using 
non-fungible tokens (NFTs). Once purchased, the user is free to use, sell, or rent in the open 
market as per their wishes. In other words, once purchased, the user would own part of the 
platform, not very different from owning shares in a publicly listed company. Powered by 
blockchain technology, Web 3.0 provides a level playing field for content creators where they 
are not bound by enforced censorship and arbitrary rules.

•	 Cryptocurrency as a mode of payment: Payment for any online purchases on Web 3.0 is done 
using cryptocurrency in contrast to traditional payment methods such as credit cards, a bank’s 
online payment gateway, and so on.

•	 Limited or no trust boundaries: Trust is not guaranteed by trusted third parties but is enforced 
indirectly by other economic incentives or penalties.

•	 Permissionless: Anyone can participate in content generation and consumption without the 
need to enter legal contracts.

•	 Democratized: The feature enhancements that have been made to Web 3.0 apps are decided 
by all the participants by a majority vote. This contrasts with Web 1.0 and Web 2.0, where 
application providers determined the features to be implemented based on their understanding 
and preferences.

Web 3.0 can also be considered a combination of technologies, where IoT is responsible for gathering 
real-world data, as shown in the following figure:

Figure 12.25 – Web 3.0 leveraging additional technologies

Benefits of combining IoT and Web 3.0

Users can monetize the data and insights generated by IoT applications securely as the financial 
transactions are secured by NFTs and cryptocurrencies. Like other technologies listed in this chapter, 
IoT and Web 3.0 complement each other’s functionality, where IoT is responsible for gathering 
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data from the real world and deriving meaningful insights, whereas Web 3.0 helps democratize the 
accumulated data and insights and enables users to consume data and insights immersively, along 
with the required safeguards and controls.

Normally, IoT deployments are architected in a centralized manner, whereby multiple field devices 
push data to a central server where it gets aggregated and required insights are generated. Accordingly, 
the decentralized nature of Web 3.0 can be used to experiment with additional architectures where field 
devices can communicate with each other by using smart contracts (enable by blockchain) without 
the need for a central server (provided that the field devices are capable enough to run processing, 
such as blockchain operations).

Combining both technologies would also enable the owners of IoT data to monetize their data in the 
marketplace without involving any intermediary (considering the use case of land consolidation from 
Chapter 8, agriculture landowners would be able to trade data and insights without any third-party 
involvement). Also, the payments for such transactions can be made securely using cryptocurrencies.

Another benefit that Web 3.0 can bring is that it can provide immersive visualization, using which 
users can understand the data, insights, and the related context intuitively (refer to the Immersive 
technologies section in this chapter). Also, the decentralized nature of Web 3.0 can be used to share data 
and insights between field devices rather than aggregating all the data to a central server. Blockchain 
(which is one of the foundational technologies of Web 3.0) can provide authentication between these 
field devices, as mentioned earlier.

Web 3.0 helps democratize the consumption of data and related insights by developing immersive 
applications over the internet, whereas IoT helps transfer that data over the internet from field devices 
to a common aggregation point.

Possible use cases

Combining Web 3.0 with IoT would allow ownership as well as monetization of data and insights. 
Consider the case of smart homes, where individual homeowners have smart energy meters, which 
they can use to track the consumption of different appliances or equipment in their homes. Web 3.0 
allows the ownership of not only hardware (that is, smart meters, home automation devices, and so 
on) but also the data generated by these devices (end-to-end ownership model).

Homeowners can then sell their data to interested parties (possibly to the highest bidder). Additionally, 
owners can visualize the energy consumption-related data and insights for their homes (along with 
recommendations for saving energy) immersively (data overlaid on the actual equipment or appliance).

Homeowners may also opt to give back the energy generated using harvesting technologies such as 
solar to the grid and receive payments securely. This use case can be further extended whereby a large 
(and expensive) asset (such as a windmill) is jointly owned by multiple homeowners. Here, Web 3.0 
allows homeowners to securely manage ownership records, as well as fairly distribute generated income.
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Edge computing
Edge computing refers to the deployment architecture where data processing is done near the point 
where data is being generated. In the context of IoT, the processing done at DG (instead of sending the 
data to the central server) is a good example of edge computing in action. This is primarily required in 
scenarios where quick data analysis and action are required (the best example would be autonomous 
driving, where even a split-second delay could have serious implications). Edge computing also aids 
in ensuring privacy and security since data is stored and analyzed locally – a good example of security 
by obscurity. We represent it using the following:

Figure 12.26 – Edge computing

An important point to note here is that having edge computing doesn’t imply that no data is flowing 
into the central server. Extending on the autonomous vehicle example, although most of the processing/
decision-making (analyzing the feed from multiple onboard sensors to determine whether to accelerate 
or to slow down) would happen at the edge, the consolidated/summarized data about these decisions 
can be sent to the central server for aggregation, data storage, and model refinement.

Some additional applications where edge computing plays an important role are as follows:

•	 Video analytics

•	 Automated quality control on an assembly line

•	 Driver behavior monitoring and control

•	 Health monitoring and dosage control systems

Important note
You are encouraged to review the DG pattern (elaborated in Chapter 2) to better understand 
how DG implements edge computing and scenarios where edge computing is relevant. Edge 
analytics was also covered in detail in Chapter 10.
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Benefits of combining IoT and edge computing

Edge computing is not separate from IoT technology (DG being responsible for edge computing is a 
crucial element of the IoT reference architecture) and there are numerous advantages of processing 
the data at the edge rather than at the central server. Some of those scenarios are listed here:

•	 Edge computing is expected to generate data insights with minimal latency by avoiding a round 
trip to the central server. Although internet speeds are increasing with time, most long-range 
data transfers happen over fiber networks, where signal transfer is limited by the speed of light.

•	 In some cases, local processing also helps conserve the precious battery power of the constraint 
devices as there is no need to establish and maintain connectivity with the central server. Also, 
often, pre-processing or formatting data or protocol translations is required to make the data 
compatible with central server requirements. This extra processing also consumes decent battery 
power. In some remote locations, connectivity to the central server may be intermittent or even 
nonexistent. This also necessitates processing the data at the edge.

•	 Another reason for performing edge computing is to conserve channel bandwidth (as we have 
seen in past chapters, normally, video analytics is done locally (that is, at DG) and the processed 
results (local video analytics can determine if there is any action or movement in the video feed 
in real time) are sent to the central server for aggregation or to trigger additional business rules).

•	 In some scenarios, not sending the data to the central server and relying on edge computing 
can be due to governmental regulations that restrict the movement of data outside the physical 
boundaries of the specific geography or country. Some organizations prefer local processing/
edge computing to mitigate their concerns about data security. Normally, the central server (for 
example, a cloud server) is hosted on the vendor’s premises, which can result in data security 
breaches. Also, as seen in Chapter 11, data transmission to the central server and back results in 
an additional set of security risks. Additionally, as data is aggregated in the central server from 
multiple DGs, the potential impact of a security breach at the central server is much higher 
than at the individual DG level. These concerns, coupled with the desire to protect sensitive/
private customer data, often force organizations to rely on edge computing.
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The benefits of edge computing are summarized in the following figure:

Figure 12.27 – Benefits of edge computing

The distinction between local and remote processing is subjective and there can be intermediate hops 
(Intermediate server) for data processing/aggregation before it finally reaches the ultimate aggregation 
point (central server), as shown in the following figure:

Figure 12.28 – The interpretation of edge computing varies depending on the deployment context
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As stated earlier, edge computing refers to the scenario where data processing is done near the point 
of data generation. Considering this, processing done at DG should be considered edge computing. 
However, if the physical distance between DG and the intermediate server (marked as 1) is much 
smaller compared to the distance between the intermediate server and the central server (marked as 
2), even the computing done at the intermediate server can be considered edge computing.

Important note
Processing done at the intermediate server is also referred to as fog computing.

In addition to these benefits of edge computing, another benefit that deserves special mention is 
that field devices (smart sensors and DGs) can transfer the local processing needs to the edge or 
intermediate server, thereby reducing the hardware complexity, cost, and power requirements of a 
large number of field devices.

Important note
Due to the physical proximity of 5G base stations to the field devices, these base stations are 
also often used as intermediate/edge servers.

Possible use cases

IoT solutions and applications where processing is done near the point where data is generated are 
all examples of edge computing. This includes autonomous vehicles, video surveillance, in-hospital 
patient monitoring, and faster content delivery (for example, video streaming applications). In addition, 
common IoT features that require local processing such as image identification (for example, facial 
recognition), gesture or voice recognition, motion detection, and more can be effectively performed 
at the edge or on an intermediate server.

For in-home automation use cases, edge processing can be used to detect the presence of an intruder 
and send an alarm to the homeowner.

The processing that’s required to provide sensor fusion (inputs from multiple sensors are combined to 
generate firmer sensing information) is also generally performed at the edge or on an intermediate server.

This was the last example demonstrating IoT technology being used in conjunction with complementary 
technologies to reap additional benefits. As mentioned earlier, the idea here is not to provide an 
exhaustive list of technologies but to emphasize the need to continuously scan the market for emerging 
technologies and evaluate their relevance in the context of IoT. Before closing this chapter, let’s quickly 
recap what we learned.
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Summary
This chapter provided a representative list of technologies that can either complement (provide additional 
features or functionalities, such as 3D/4D printing) or supplement (provide nonfunctional capabilities, 
such as performance enhancement using quantum computing) IoT technology. This chapter should help 
you, the solution designer, to evaluate the problem at hand in a more holistic manner and determine 
what parts of the problem IoT can solve and where there is a need to include additional technology.

Some of the technologies described in this chapter are relatively new, whereas others are evolved/mature 
technologies. One important takeaway from this chapter is that when solving a complex problem, it is 
better to focus on the capabilities needed to solve the problem and then map the identified capability 
to the technology (which can be either a new or matured technology) – often, the latest technology 
might not be the ideal fit for the problem at hand. You are encouraged to look out for and spot other 
technologies that are not listed in this chapter but can be effectively combined with IoT (for example, 
robotics) to provide more comprehensive solutions.

Although this chapter showed how combining a specific technology helps augment IoT capabilities, 
it does bring one important additional point – the technologies listed in this chapter are building 
blocks (akin to Lego blocks) that can be mixed and matched with IoT in any manner to create richer 
solutions that help solve complex problems. As an example, IoT, 5G and 6G, edge computing, and 
AR/VR can be combined to develop a more holistic solution where requirements such as faster local 
processing, low latency complex computations on the central server, and generated insights need to 
be consumed immersively using an AR/VR headset in a single solution.

The final chapter of this book focuses on offering practical guidance for implementing IoT solutions, 
while also sharing some insights gained from hands-on experience in this field.
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Epilogue

As I begin to write the final chapter of the book, I am experiencing mixed feelings – satisfaction about 
this book soon hitting the stands and anxiety about whether it will reach its intended audience. As we 
wrap up this book, the most obvious way forward in this chapter was to summarize the key points of 
what has been covered. However, as this might have limited benefit for you, I ultimately decided to 
jot down the key takeaways I have gathered while working on IoT solutions and projects for nearly a 
decade. Providing practical tips drawn from actual project experiences will also help to balance the 
relative abstractness of a few of the prior chapters. Accordingly, this chapter lists a few nuggets of 
knowledge that might help you to avoid common pitfalls or mistakes in IoT implementation.

Most of the software engineering principles and best practices that ensure the successful completion 
of a project are applicable to IoT projects as well. However, IoT solutions are unique as (by definition) 
they span both physical and virtual worlds, resulting in additional (technical as well as project 
management) nuances that should be carefully considered to deliver a successful IoT project. As a 
result, the chapter also lists a few project management considerations.

As we all know, a project/solution can’t be labeled as successful if it meets the functional requirements 
while ignoring performance or other similar non-functional requirements (NFRs). Again, this is not 
specific to IoT solutions but the impact of ignoring NFRs is relatively high for IoT implementation – as 
an example, consider the simple case of the delay of a water sprinkler when a fire sensor has already 
detected fire. Accordingly, we will discuss IoT-specific NFRs in the NFR considerations section.

Finally, no book can be complete without listing the possible connectivity options/protocols (along 
with their associated trade-offs) needed to connect field devices with the central server. So, the last 
section lists the possible connectivity options/protocols along with recommendations for which option 
is suitable under what circumstances.

Let’s start by exploring some key considerations for effective project management.

Project implementation considerations
The points listed in this section may appear to be more relevant to a project/program manager; 
however, they would be useful for architects as well, since architects are expected to remain part of the 
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implementation team even after the completion of the architecture. The expectation stems from the 
fact that the architect bears the responsibility of ensuring that the implementation is always aligned 
with the approved architecture. So, the following project management/implementation considerations 
for IoT projects would benefit people belonging to technical and project management roles:

•	 Component procurement considerations: Field devices (sensors, gateways, and actuators) and 
components providing connectivity (such as SIM cards) form a key part of any IoT solution, 
and the timely procurement of these components is crucial. However, the procurement and 
deployment of these third-party components pose a challenge, as multiple parties (such as 
system integrators, device vendors, device compliance vendors, and security experts) are 
involved. Moreover, the solution provider/system integrator has limited control over these 
component vendors. In fact, each vendor or third party has its own lead times or Service-
Level Agreements (SLAs), which make the delivery of the overall IoT project quite unwieldy. 
In other words, hardware components (a physical entity) must go through a complex supply 
chain before they reach the hands of the solution provider or system integrator.

These are a few examples of complex interdependencies that make the tracking and management 
of project schedules quite difficult and cumbersome. Project or program managers can mitigate 
this risk effectively by clearly identifying dependencies upfront and then monitoring those 
dependencies at regular intervals.

It is also equally important that a detailed analysis of the vendor’s ability to deliver parts on time 
is done in a timely manner (preferably at the start of the project) to avoid unpleasant surprises 
later. A detailed review of short-listed vendor contracts (especially terms and conditions related to 
liability clauses, compliance/validation mechanisms, SLAs, and so on) should be done alongside 
the organization’s legal teams. As compliance/regulatory norms vary from one geographic 
region to another, the vendor should be willing to provide the compliance certifications for all 
the regions where the solution is expected to be deployed.

Quality- and performance-related risks can be further mitigated by requesting sample hardware 
pieces from the vendor and by testing them in-house before placing bulk orders. Another point 
that deserves scrutiny is the ability of the vendor to fulfill bulk orders (volumes in the range of 
tens of thousands to millions) and that too within required timelines.

In my experience, I have seen vendors that can easily deliver a small number of devices/
components but struggle to fulfill bulk orders. In fact, in one of our asset tracking projects, we 
realized very late in the project life cycle that the vendor wasn’t equipped to provide the number 
of RFID tags that were needed to tag all the parts that were required to be tracked as part of the 
contract, although the vendor consistently made claims to the contrary. This forced the team 
to look for an alternate vendor, which wasted crucial time. One effective strategy to prevent 
this type of situation is to onboard multiple vendors or partners to supply crucial components, 
thus avoiding single-vendor dependency.

•	 Verification/validation considerations: There are some unique points to consider while 
performing validation or verification activities for IoT projects:
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	� Some verification/validation steps are needed only for hardware components, and as such, 
the team may not consider those while finalizing the verification/validation scope. As an 
example, hardware components (especially sensors) show a gradual drift in their operation 
and require constant validation/recalibration.

	� It is almost impossible to replicate real-world scenarios in the lab (for example, battery 
characteristics, connectivity issues such as limited or erratic connectivity, and load scenarios 
such as 10,000 sensors sending data to a central server) and the verification engineers need 
to rely on field testing, which is only possible near the go-live date.

These examples indicate that a structured testing approach tailored to IoT-specific use cases 
needs to be considered. Some of the key elements of such a structured approach (different 
testing/verification types that are relevant for IoT use cases) are shown in the following figure:

Figure 13.1 – Types of recommended IoT testing techniques
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•	 Simulator-specific considerations: Often, the requirements can’t be met with off-the-shelf 
hardware and the hardware components need to be custom developed, and that too needs to 
be in parallel to the other solution components (for example, DG communication with the 
central server needs to be validated even when the DG is being developed or validated). Software 
simulators can help in filling this gap; however, this results in additional complexities of build 
versus buy decisions – whether to build simulators in-house (more control and protection of 
intellectual property) or procure them from the market (less control over delivery timelines 
along with risk to proprietary information) – or the simulator’s functional scope (whether the 
simulator is intended to only replicate the device behavior or it is required to simulate internal 
logic as well). Also, spending too much time on developing or validating the simulator may 
not be advisable as it would be a stop-gap arrangement until the actual hardware was available 
unless it is to be used during the validation/verification phase to perform load tests.

As can be seen, the usage of simulators brings forth additional complexities/dependencies that 
need to be carefully analyzed. The capability and accuracy/sophistication of simulators need 
to be given due importance during the requirements elicitation phase. As an example, for each 
simulator, the following needs to be mandatorily considered:

	� Type of functionality to be simulated: Whether the simulator is required to simulate 
only the communication with other components or it will be required to simulate internal 
characteristics (for example, power/battery consumption, consistent/intermittent connectivity, 
and/or latency scenarios). Similarly, whether the simulator would be testing only the happy 
scenarios or the erroneous scenarios as well.

	� Level of intelligence inbuilt into simulator: Will the simulator’s internal logic be based 
on a simple set of rules (if the input is X, return Y) or will it involve complex intelligence 
(considering prior temporal context, calibration drifts, and so on)? In the latter case, additional 
AI/ML capabilities need to be considered (as detailed in the AI/ML integration pattern listed 
in Chapter 3 and Chapter 10).

The section listed some IoT-specific project management considerations and guidelines. In the next 
section, I will share some lessons learned from my past IoT projects.

Lessons learned from IoT projects
There are a few lessons that I’ve learned from my experience of working in the IoT domain. Keeping 
in mind the list of miscellaneous points mentioned in this section may help you avoid unnecessary 
hassles/issues. The list of the key lessons (in no particular order) is as follows:

•	 Scoping a project with unclear objectives or an unclear end state: There are cases where the 
scope of the IoT solution is clearly defined and there is clarity on the overall business objective. 
However, there are other scenarios where practitioners struggle to find the right-fit or optimum 
solution for the stated business problem. A limited-scope proof of concept (PoC) or pilot is 
typically executed to reduce the ambiguity and number of unknowns. As the budget for the 
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PoC/pilot is limited, there is a need to optimize scope/cost but still obtain crucial inputs that 
can help to move in the right direction.

In addition to technical/architectural skills, all this requires the ability to think creatively and 
bring to bear an innovation mindset to generate the right set of implementable ideas. One 
technique that is really useful in this regard is the Theory of Inventive Problem Solving (TRIZ) 
as it can help improve the odds of success in a systematic manner rather than relying on the 
trial-and-error approach (for more information, refer to https://www.mindtools.com/
amtcc5f/triz and https://www.ee.iitb.ac.in/~apte/CV_PRA_TRIZ_INTRO.
htm). In general, TRIZ is useful for finding a creative solution to any engineering problem; 
however, it’s more relevant in the IoT context as the problem (and solution) space transcends 
both physical and virtual realms. Going into more detail about the technique is beyond the 
scope of this chapter; however, you are highly encouraged to explore this useful technique 
whenever there is a need to explore innovative solutions for the stated problem.

•	 Understanding the explicit and implicit requirements: As IoT is an emerging technology, not 
all users may be aware of the capabilities and benefits that this technology can provide. As a 
result, it becomes important for the solution providers to fully understand the stated and unstated 
(implicit) needs. It is possible to gauge these requirements from the provided documentation 
or by doing customer interviews. However, a better approach to understanding the customer’s 
operating context and their problem domain is by making physical site visits to their premises. 
These visits provide the opportunity to understand the constraints under which the solution 
would be expected to operate – for example, constraints such as limited connectivity, reliance 
on non-conventional power sources (solar), and so on. These onsite visits can be made more 
efficient when the solution provider visits the site fully equipped with a set of questions and/
or assumptions. These visits can also be used to test the actual operation conditions by asking 
questions such as, “Is the SIM provided by the connectivity provider able to connect with the 
central server from different geographical regions?”

•	 Early and continuous feedback from stakeholders: Often, it is difficult to clearly articulate 
the final or desired outcome due to factors such as hardware/software integration, connectivity 
challenges, power availability for field devices, and so on. Sometimes, there are even doubts about 
the viability or feasibility of the solution. Both these challenges can be effectively handled by 
executing the IoT projects using an Agile methodology (in contrast to the traditional Waterfall 
model) as it is better suited to handling the risks, ambiguity, and uncertainties mentioned. Agile 
methodologies such as Scrum, Kanban, and the Dynamic System Development Method (DSDM) 
also force continuous interaction between the solution provider and consumers, which gives the 
consumers an opportunity to provide early feedback while the solution is still being developed, 
resulting in fewer surprises later. Continuous feedback also ensures that the overall solution is 
not overly complicated or over-engineered while still meeting all the requirements. Although 
early and continuous feedback (one of the key features of Agile methodologies) is a crucial 
factor that helps in managing expectations in any project, its relevance is even more important 
for IoT projects because of its broader and varied scope, as it includes hardware and software 

https://www.mindtools.com/amtcc5f/triz
https://www.mindtools.com/amtcc5f/triz
https://www.ee.iitb.ac.in/~apte/CV_PRA_TRIZ_INTRO.htm
https://www.ee.iitb.ac.in/~apte/CV_PRA_TRIZ_INTRO.htm
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elements. In fact, feedback needs to be taken regarding software requirements – including the 
look and feel of the user interface (UI) and dashboard elements, the type of data to be collated 
and analyzed, and business process flows – and consumers need to be aligned on hardware 
requirements, such as dimensions, ruggedness, and aesthetics of physical components (for 
example, field devices or gateways). Hardware components are much less malleable (adaptable) 
to changes (especially those requested toward the end of the project life cycle) compared to 
software components. Here are some examples from my personal experience:

	� I recollect an incident where during the User Acceptance Test (UAT) phase, a customer 
raised the concern that affixing the IoT tracking tags to their assets would impact the overall 
aesthetics and they wanted the tags to be replaced with more compact tags. This was the 
case even when the customer was shown the pictures and the dimensional specifications 
of the tags were also shared. Obviously, it was difficult to replace tags toward the end of the 
project life cycle. In hindsight, it would have been better to share actual (sample) tags along 
with specifications/documents, as people have different perceptions when having a tag/
device in their hands (touch and feel factor) vis-à-vis just looking at pictures/specifications.

	� In another project, a customer refused to accept the project delivery as the RFID tags that 
were used to track their IT assets were not aesthetically appealing.

	� In another case, a customer wasn’t satisfied with the DG’s overall dimensions, although the 
gateway was satisfying all the other functional/non-functional requirements.

•	 Early identification and tracking of business objectives: IoT projects are conceptualized and 
implemented to achieve certain business objectives or to solve a particular business problem. 
Some of the common business objectives that are relevant to IoT projects are listed in the 
following figure:
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Figure 13.2 – Representative list of IoT solution’s business objectives

It is important to document such objectives as success criteria against which the project’s 
performance would be evaluated. One point you will have realized is that these business 
objectives are different from the solution’s features and functionalities that are recorded 
during the requirement/scope finalization phase. It is possible that a solution implements all 
the requirements (features/functionalities) and is still not able to meet any of the business 
objectives. Hence, it is important to keep an eye on the overall objectives during the entire 
project life cycle in the context of requirement analysis, architecture, design, implementation, 
verification/validation, and deployment.

•	 Agreement on the parameters to define solution value: One important framework that can 
be used to elucidate value to the customer is Bain’s framework (https://media.bain.
com/elements-of-value/#, https://hbr.org/2016/09/the-elements-
of-value). This framework helps to articulate value from diverse perspectives such as 

https://media.bain.com/elements-of-value/#
https://media.bain.com/elements-of-value/#
https://hbr.org/2016/09/the-elements-of-value
https://hbr.org/2016/09/the-elements-of-value
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emotional, social, and other similar needs. It is recommended to use this framework to list 
all the possible benefits that the customer is expected to gain once the product is released and 
then cross-validate them with the customer. Another similar and equally powerful framework 
to determine/articulate the value across a complete supply chain is Porter’s Value Chain 
analysis (https://www.smartsheet.com/value-chain-model).

•	 Following a change management process to address cultural/personal sensitivities: The 
deployment of the IoT solution will bring about changes in existing ways of working and hence 
like any other change management initiative, the IoT solution implementation will involve 
human/cultural sensitivities that need to be suitably addressed or managed. Although delving 
deeper into the point would be outside the scope of the chapter, it is important to mention 
that the whole IoT initiative may get derailed if adequate focus is not given to people directly 
impacted by the change. Resistance to moving away from current ways of working is one of 
the main reasons for people not accepting or adapting to them. This can be circumvented 
by taking measures such as clear articulation of need as well as benefits of change, involving 
people impacted by the change in the change management process, and avoiding the trap of 
change for the sake of change.

•	 Data as a decision enabler: It is important to ensure that data collected by using IoT solutions 
is being used for decision-making and is not collated just for compliance purposes. Also, IoT 
solutions provide a unique opportunity where solutions can be suitably instrumented, resulting 
in the capture and analysis of product usage data. This allows for determining how (or whether) 
the product is being used in the field, and the collated product insights can be used for future 
product refinements.

•	 Validation of architecture and architectural decisions at regular intervals: Key architectural 
decisions should be made as early as possible so that there are minimum changes to the 
downstream project activities. This may sound obvious, but most IoT projects start as PoCs or 
proofs of value (PoVs), which are limited in both scope and scale, and the focus is to ensure 
the use case’s feasibility.

Ideally, the architecture for the PoC/PoV should be revalidated before implementing the full 
scale-out (production-ready) solution. In fact, some consummate architects suggest discarding 
all the deliverables that are created during PoC/PoV stages (as they are created with minimal 
focus on quality as well as solution longevity) and developing the deliverables (architecture, 
source code, and so on) from scratch once the project is approved for full-scale implementation.

As an example, in one of our projects, the team started with a monolith architecture for 
implementing central server logic (at the PoC stage) as there was much less confidence in the 
project outcome and the team wanted to keep the architecture simple for the initial phase. 
However, once the PoC’s results turned out to be positive, the team had to change the architecture 
to a microservices-based architecture, resulting in considerable refactoring effort.

https://www.smartsheet.com/value-chain-model
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•	 Alignment with an API first strategy: This strategy allows crucial functionality to be exposed 
via a set of APIs. It enables users to consume IoT data/insights from a diverse set of clients 
(mobile, wearables, desktop, and so on). In the IoT context, following the API-first approach has 
an additional benefit as it allows for easier integration with enterprise systems (as mentioned 
in the Enterprise system integration section in Chapter 3).

•	 Data lake architecture for ingestion/analysis of diverse data types: Most of the use cases 
discussed in this book (Chapters 4 to 8) have provided details about how architectural patterns 
can be used to realize mentioned use cases, and most of the use cases target one specific 
requirement/problem statement. However, for the implementation of complex use cases  
(one example can be a land trading platform, as detailed in Chapter 8), where diverse data 
needs to be aggregated and analyzed (including unstructured data such as video imagery, 
semi-structured data such as data files from enterprise systems, and structured data such as 
sensor data), a data-lake-based, platform-centric approach would be preferable. Although 
covering data lakes in detail is beyond the scope of this chapter, the point here is that for some 
of the complex use cases where data is expected, the data lake architecture is one of the good 
options to consider.

•	 Choosing between cloud-native and cloud-agnostic IoT services: One of the key architectural 
decisions that needs to be taken upfront when we intend to leverage the public cloud for central 
server implementation is regarding whether architecture should leverage vendor-specific services 
(often called cloud-native services) or rely on open source components/services (known as 
cloud-agnostic services). This decision is important as it has a long-term bearing. A few pointers 
that can help in reaching optimum decisions are as follows:

	� Is the solution expected to be portable – that is, migrated from one cloud provider to another 
in the short or medium term?

	� How do the IoT-related services (such as services related to data ingestion, stream processing, 
device management, analytics, and so on) of the selected vendor compare with other vendors? 
I worked on a project where one service provider used all services from one vendor except 
the analytics service, where he was relying on another vendor – a situation that resulted in 
a complex multi-cloud deployment.

	� How do the development or deployment time costs of IoT and related services compare 
between different vendors? Typically, the price of the cloud-native services is kept lower to 
prevent users from moving to other cloud providers’ ecosystems.

	� The complexity of the architecture when deployed using open source services compared 
to deployed using cloud-native services. The architectural complexity is less profound in 
cloud-native solutions compared to cloud-agnostic solutions. Additionally, steady-state 
development and/or enhancements can be easily done in cloud-native environments as 
most of the cloud provider tools are well integrated.
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•	 Solution deployment/installation considerations: One often overlooked but crucial phase 
requiring detailed planning (and close monitoring) is the field deployment phase, where field 
devices are deployed/installed in the field. To avoid unpleasant surprises (also toward the 
project completion when time is really of the essence), it is recommended that the customer 
is adequately informed regarding various deployment-related requirements (such as power 
and/or connectivity requirements) so that they can make relevant arrangements in advance. 
Here are some examples:

	� If the solution relies on Power over Ethernet (PoE), the customer would stand to benefit 
from or prefer prior intimation so that they can start the required cabling/masonry work 
well in advance.

	� Similarly, sensor (or any other field device) installation at a crowded/public place can be 
efficiently and effectively done during off-peak hours (such as during the night). As this might 
involve multi-party support (device vendor, solution provider, customer, local authority, and so 
on), close coordination, as well as planning, would be needed among all the involved parties.

The section listed quite a few guidelines and recommendations that can enhance the chances of 
successful IoT deployments and help us to reap the desired benefits/business objectives. Like any other 
solution development endeavor, implementing functional requirements is just one part of the story 
and doesn’t necessarily guarantee satisfied stakeholders, and it is equally important to give sufficient 
attention to NFRs as well, which we will cover in the next section.

NFR considerations
Most of the previous chapters focused on implementing functional requirements; however, NFRs 
(especially the ones that are related to the solution’s efficiency or performance) are equally important. 
Not giving required importance or priority to non-functional aspects (such as battery life, data transfer 
latency, and compatibility with different connectivity providers) can adversely impact the customer’s 
experience, jeopardizing the realization of business objectives.

All the components of the IoT system should be optimized individually to provide overall (end-to-end) 
efficiency; however, performance expectations are generally more stringent for field devices than for 
central servers (for example, frequent replacement of batteries in remote or large geographical areas 
is difficult from a cost as well as an operational standpoint). Accordingly, some of the key NFRs that 
should be considered while conceptualizing/developing IoT solutions are listed in the following figure:
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Figure 13.3 – Representative list of IoT NFRs

To realize each of the NFRs listed in the previous figure, due consideration should be given during the 
architecture phase. As an example, if bandwidth optimization is one of the expected NFRs, it would 
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impact architectural decisions as well as technology choices. For example, using less chatty protocols 
such as Constrained Application Protocol (CoAP) over User Datagram Protocol (UDP) is much 
more efficient than using HTTP over Transmission Control Protocol (TCP) and helps to optimize 
bandwidth consumption. Providing details about every NFR listed in the previous figure would be 
beyond the scope of this chapter; however, this section does list some tips/techniques that can be 
used for optimizing two representative NFRs – battery optimization or power optimization and 
cost optimization of the solution development.

Battery or power optimization

The amount of battery or power a field device can consume (known as the power budget) has a direct 
bearing on a host of other architectural decisions/choices, including the following:

•	 Type of connectivity protocol

•	 Type (raw or processed data) and frequency of data transfer

•	 Payload size

•	 Processor selection

•	 Type of enclosure (battery consumption is impacted by ambient conditions such as temperature 
and humidity – higher ambient temperatures reduce the battery discharge rate and can power 
the device for a longer duration, and the presence of electromagnetic interferences has the 
opposite impact on battery life)

•	 Physical dimensions of the field device (in general, batteries with bigger sizes can support 
longer operation)

•	 Level of security hardening (type/rigor of security algorithms supported)

Increased public awareness and focus of regulatory bodies on aspects such as sustainability and reducing 
e-waste in the recent past ensures that power optimization is no longer an option (or afterthought) 
for field devices but a key requirement that needs to be monitored and evaluated during all phases of 
the development life cycle. Some of the possible options that can be considered while designing for 
optimum power consumption are provided in the following list:

•	 Selection of optimum connectivity protocols: Connectivity with the backend server is one of 
the major factors draining battery power. Fortunately, there are multiple connectivity protocols 
that are available, and each offers a choice of power consumption along with other trade-offs 
(such as supported bandwidth, range, and so on). The IoT connectivity protocols section later 
in the chapter provides a list of connectivity protocols along with other parameters that can 
be used to select the right-fit connectivity protocol as per the available power budget while 
accommodating other requirements such as coverage, bandwidth, price sensitivity, and security.

•	 Relegating the (heavy) processing responsibility to the central server: Relegating the complex 
processing (video analytics, complex AI/ML processing, and so on) to the central server rather 
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than performing it at the edge (local processing) is another option for conserving the power of 
field devices. However, there is a trade-off involved, as more power (and bandwidth) would then 
be required for data transmission (sending input data to the central server as well as receiving 
processed data). The volume of data transmitted can be optimized by using compression 
techniques; however, it would again result in increased power consumption.

•	 Reducing data transmission overheads: One technique (especially relevant for non-time 
sensitive workloads) is to club multiple data transmission packets into a single payload/
packet. This is effective as both connectivity establishment and connectivity severance are 
expensive operations from a power consumption standpoint. Similarly, sending Time to Live 
(TTL) guidance/instruction along with a timestamp in the payload helps the device to ignore 
stale messages and is another common technique for conserving power. Sending data on the 
trigger of an event (for example, a change of sensor value) rather than sending data at a set 
periodicity is another mechanism that can help in conserving both transmission bandwidth 
as well as power consumption.

•	 Optimizing the amount of data transferred: Optimizing the amount of data transferred would 
also have a direct bearing on the power consumption. The simplest example would be sending 
a mnemonic to the central server (C, F) instead of full-length strings (Centigrade, Fahrenheit). 
Understanding the level of precision required for a particular use case can help optimize the 
volume of data sent to the central server. For example, a smart home use case seldom requires 
temperature/humidity data to be sent to the central server with more than one digit after the 
decimal point.

•	 Leveraging multiple power modes: Implementing hardware sleep cycles during idle times 
is also a common strategy for conserving the power of the battery-operated field devices. 
Most IoT devices provide three power modes that can be effectively used for minimizing 
battery consumption:

	� Normal/no sleep mode: This mode consumes maximum power and is used in case full 
functionality (or maximum performance) is needed

	� Light sleep: This mode consumes less power than normal mode and is normally achieved 
by suspending the operation of the processor/MCU and internal clock

	� Deep sleep: This mode consumes the least amount of battery power as all the components 
other than the real-time clock (RTC) are in a suspended (hibernation) state

•	 Selection of right-fit hardware components: Selecting hardware, primarily the processor 
or microcontroller unit (MCU), is a major factor that governs power consumption. Hence, 
due diligence should be exercised while selecting processors for field devices. Processors that 
consume less energy and support low-power/energy-efficient modes can provide direct power 
savings and should be preferred.

•	 Source code optimizations: General source code optimizations (such as the optimization of 
database queries), minimizing the number of data/status polling operations (operations that 



Epilogue262

are interrupt-driven are normally more efficient than polling operations), configuration-based 
enabling/disabling of features/functionalities, and other generic techniques such as minimizing 
the frequency of firmware updates ensure optimum power consumption and longer battery life.

•	 Rigorous evaluation of battery performance: Rigorous testing of the battery during development 
or QA cycles under different loads or ambient conditions and determining the battery life/
efficiency after repeated charge and discharge cycles provides a good prediction of the battery’s 
performance in the field.

•	 Perpetual energy availability using energy harvesting techniques: As mentioned in Chapter 12, 
energy harvesting (energy derived from vibration, solar, motion, and so on) techniques can 
provide perpetual battery life. Often, energy harvesting is used to augment the power budget 
by supplementing the power from a normal battery.

It is evident that multiple approaches that include both theoretical (understanding the vendor’s data 
sheet to determine the battery suitability) as well as practical (laboratory experiments) aspects are 
needed to find the right balance between power consumption and other requirements (for example, 
processing speed). In fact, it is quite possible that data sheets may not point out the limitations and 
challenges that the battery may encounter while deployed in the field. Hence, it is important to pose 
the right set of questions to the vendor about the different conditions under which the battery would 
operate. The battery vendor should ideally replicate the field environmental conditions within the lab 
and should be willing to share the test reports and/or related compliance certifications.

Cost optimization

The best cost optimization technique is the one that costs nothing; before embarking on the 
implementation of any IoT project, it is critical to determine whether the envisaged solution would 
really solve the business problem or would provide the envisaged business benefits. Having the right 
balance of technical and business minds in the team would certainly help to flag the cases with low 
to no business value rather than waiting for market acceptability, thus saving crucial investments.

Similarly, having a business mindset (along with technical know-how) would also help teams in other 
crucial decisions. As an example, it would help teams to make correct build versus buy decisions 
by considering all the technical/commercial implications (in some cases, it is prudent to integrate 
readymade components available on the market rather than developing them in-house).

One way of looking at IoT use cases is implementing process automation solutions, whereby some 
process element or workflow that was previously handled/performed by a human is augmented or 
enhanced by a combination of technologies spanning the digital and physical worlds. As a result, most 
of the considerations that are applicable to process automation solutions/projects are applicable to IoT 
projects as well – for example, first documenting the existing workflows in the form of process flows for 
a better understanding of existing flows and then marking parts of the workflow that can be automated 
using IoT technologies. Documented workflows should also clearly highlight the process elements 
that would be performed manually even after solution deployment (such as battery replacement).
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An example (from a purely commercial standpoint) would be to compare the cost of an operation 
currently performed by a human and the cost of the same operation (in the long term) if it is planned 
to be replaced by IoT and related technologies (process automation). An important point is to 
consider the fact that the cost of human effort varies from one geography to another, indicating that 
the automation of the same operation may make commercial sense in one geography but may not 
make financial sense in another geography.

Cost optimization opportunities are scattered during each phase of solution development and deployment. 
As an example, if a solution is deployed on the cloud, architects need to keep an eye on all the new 
services/functionalities that cloud providers are launching on a continuous basis. It is quite possible 
that replacing custom-built service/logic can be swapped for a cloud provider’s equivalent service, 
which simplifies the overall architecture while, at the same time, providing operational cost benefits.

This concludes this section where we have covered two representative NFRs (cost and battery 
optimization) in detail. The next section covers another important topic, connectivity protocols, and 
will provide a view of the connectivity options that are available at different layers of the network stack 
along with their specific usage scenarios.

IoT connectivity protocols
When finalizing the architecture for IoT solutions, there are multiple protocol options (at each layer 
of the network/connectivity stack) to choose from, as shown in the following figure:

Figure 13.4 – IoT connectivity protocols mapped to different layers of the networking stack

Important note
The preceding figure provides a representative list of commonly used protocols and in no way 
should be considered an exhaustive listing.
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The multiplicity of connectivity protocols at each layer does result in some amount of ambiguity or 
perplexity. However, this diverse set of protocols also provides us with a certain degree of flexibility 
in choosing the protocol that best matches the specific solution requirements such as bandwidth 
available, allowed range, power consumption, and so on. In general, protocols at each layer can be 
distinguished based on one or more of the following listed parameters:

•	 Number of Quality-of-Service (QoS) levels supported

•	 Type of topology supported (mesh, star, point-to-point, bus, tree, and so on)

•	 Data transfer rate

•	 Supported frequency bands

•	 Cost (upfront and recurring)

•	 Power requirements

•	 Proprietary/open source

•	 Range

•	 Messaging pattern (publish-subscribe, request-response)

•	 Type and level of security provided

•	 Compute and memory footprint requirements

There is extensive documentation available in the public domain for all the protocols listed in Figure 13.4 
and it wouldn’t be prudent to replicate the same information in this section. Detailed comparisons 
of protocols based on criteria such as bandwidth and power consumption are also similarly available 
in the public domain. Before we summarize these, please refer to the hierarchical nature of the layers 
in the network stack, as shown in Figure 13.4. Most of the decisions related to connectivity while 
architecting IoT solutions relate to the application and data link/physical layer. Accordingly, the 
options for these two layers are explained in detail in this section.

Now, let’s take a look at the applicability considerations for commonly used protocols at the 
application layer:

Connectivity Protocol Applicability considerations
Constrained 
Application 
Protocol (CoAP)

•	 Lightweight UDP-based protocol, especially suitable for 
battery-constrained devices as well as for networks with 
intermittent connectivity

•	 Some similarities to HTTP (for example, methods such as GET, 
PUT, DELETE, and POST), resulting in a shorter learning curve

•	 Not suitable for cases where delivery confirmation is needed

•	 Typical use cases: smart metering, smart building, and 
smart energy
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Connectivity Protocol Applicability considerations
Message Queuing 
Telemetry 
Transport (MQTT)

•	 Lightweight protocol, especially suitable for 
battery-constrained devices

•	 Essentially a broker that helps to decouple data ingestion 
(publishers) from data processing (subscribers)

•	 Provides scalability and consumes very little 
bandwidth (non-chatty)

•	 Low footprint, making the protocol suitable for 
memory-constraint devices

Extensible Messaging 
and Presence 
Protocol (XMPP)

•	 Allows for real-time data exchange of structured data between 
two nodes

•	 Not suitable for constraint networks/devices owing to its chatty nature

Advanced 
Message Queuing 
Protocol (AMQP)

•	 Not suitable for constraint devices but can be used with systems 
with strong compute/memory and mains supply

•	 Reliability and interoperability are key benefits

•	 The asynchronous nature (using queuing mechanism) helps to 
buffer traffic spikes as well as handle intermittent connectivity issues

Lightweight Machine 
to Machine (LwM2M)

•	 Built over CoAP and designed specifically for 
resource-constrained devices

•	 Developed specifically to support remote management of field 
devices as well as providing strong support for device telemetry

•	 Lacks widespread adoption
Hyper Text Transfer 
Protocol (HTTP)

•	 Chatty protocol; not suitable for resource-constraint devices as it 
consumes a lot of bandwidth as well as power

•	 The requirement of synchronous connection establishment makes 
this protocol unsuitable for IoT use cases, especially the ones where 
field devices face intermittent connectivity

•	 No learning curve is involved, as skills developed for web applications 
can be leveraged

WebSocket •	 Capable of sending the data in both directions (device to central 
server, and vice versa)

•	 Allows for data to be transmitted with minimal latency, ideal for 
real-time visualizations

Table 13.1 – Applicability considerations for application-layer connectivity protocols
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After understanding the pros and cons of common protocols at the application layer, let us focus on 
the data link/physical layer and understand the suitability of protocols at this layer under different 
operating conditions/environments:

Connectivity Protocol Applicability considerations
Wi-Fi •	 Ubiquitous nature

•	 Consumes high power and is generally preferred for devices with 
mains supply

•	 Supports high bandwidth and is suitable for streaming videos, 
audio, large datasets, and so on

ZigBee •	 Useful in cases where transmission requires low power and low 
data rates

•	 Self-configuring and self-healing (mesh topology allows faulty 
nodes to be bypassed for uninterrupted communication) properties 
result in resilient architectures

•	 Supports multiple network topologies – mesh, multi-point, 
and point-to-point

•	 Node-to-node communication range is smaller; however, can 
support long distances using a mesh topology, which also provides 
high scalability

•	 Typical use cases: home automation and building 
management systems

Z-Wave •	 Proprietary standard providing capabilities of self-configuration 
and self-healing (like ZigBee)

•	 Provides ultra-low latency

•	 Typical use cases: home automation
Bluetooth Low 
Energy (BLE)

•	 Extremely power-efficient and so suitable for power or 
battery-constrained devices

•	 Used for connecting wireless electronic devices (keyboard, mouse, 
headset, printer, external speakers, and so on)

•	 Is generally used in cases where cell phones can be used as DG as 
cell phones invariably support Bluetooth

•	 Not suitable for sending large amounts of data and over 
large distances

•	 Supports both point-to-point as well as mesh topology

•	 Typical use cases: fitness trackers, smart wearables, and so on
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Cellular, Long-term 
evolution (LTE)

•	 Provides low latency, good coverage, high bandwidth, and long range

•	 Protocol consumes considerable power so may not be suitable for 
power-sensitive devices

•	 Better at penetrating closes spaces such as indoor walls

•	 Involves a recurring charge
Narrow Band-Internet 
of Things (NB-IoT)

•	 Cellular network specially designed for IoT use cases

•	 Draws very little power; however, coverage is limited

•	 Suitable for stationary field devices
Near-Field 
Communication (NFC)

•	 Allows for communication between devices that are in proximity 
(distance not more than 4 cm)

R a d i o  Fr e q u e n c y 
Identification (RFID)

•	 Encodes a unique value into a tag or label

•	 Similar to bar codes (or other paper-based tags) but is much more 
robust and doesn’t require line of sight for detection

•	 Multiple tags can be read at a time

•	 Typical use cases: asset tracking and automatic vehicle toll collection
Long-Range Wide Area 
Network (LoRaWAN)

•	 Consumes very little power and can support a large number of 
field devices (~50,000 per cell), making it useful in high-density 
deployments (such as large cities)

•	 Reasonably good coverage and supports both outdoor as well as 
indoor operation

•	 Has limited bandwidth making firmware updates difficult; suitable 
primarily for low data rate applications

•	 Typical use cases: smart city applications such as smart lighting, 
smart garbage collection, and so on

Table 13.2 – Applicability considerations for data link/physical layer connectivity protocols

This brief discussion on the connectivity protocols was the last section in this chapter so now, let’s 
summarize what we have learned in this chapter.
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Summary
In this final chapter, we covered practical issues and challenges that are typically encountered while 
implementing IoT solutions/use cases. It listed key lessons learned from my past IoT projects. Specific 
references were made to two frameworks (Bain’s and Porter’s) as these can help to gauge as well as 
articulate the benefits/value of the envisaged IoT solution(s). It also listed the key NFRs and emphasized 
the importance of focusing on them during the complete project life cycle and covered two examples 
(power and cost optimization) in detail. Finally, it provided a representative list of IoT connectivity 
protocols, along with the scenarios in which they are most appropriate.

The IoT ecosystem, in general, is very dynamic, new techniques/technologies are continuously 
being discovered, and existing ones getting refined/evolved. Going forward, the trend is expected 
to continue with advancements expected at all layers of the IoT reference architecture. Some of the 
future possibilities are as follows:

•	 Sensors or field devices continuing their miniaturization journey with smaller batteries leading 
the pack.

•	 There would be more focus on making the field devices operate perpetually by leveraging 
energy harvesting techniques.

•	 With stringent sustainability requirements, ensuring that the entire solution (field devices, 
central server, and other connectivity devices such as routers and switches) is energy-efficient 
would be a mandate rather than an option.

•	 New connectivity/network technologies would keep on pushing the boundaries of network 
bandwidth, device density, and latency, providing more flexibility to solution designers for 
implementing processing logic at the edge or central server, or a combination of both.

•	 Enhanced compute capabilities both at the edge/DG (improved microprocessors/microcontrollers) 
as well as at the central server (quantum technology) would provide grounds for developing 
more powerful and innovative compute-intensive solutions.

The book started with the premise of providing guidance for developing innovative solutions using 
IoT technology and capabilities. I sincerely hope that prior chapters and this chapter were able to 
fulfill that objective in a concise yet effective manner.

Finally, I would like to thank you for spending your time, energy, and money on this book. Wishing 
you all the success on your journey of implementing innovative IoT solutions!
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