
Reverse Engineering 
with Terraform

An Introduction to Infrastructure  
Automation, Integration, and  
Scalability using Terraform
—
Sumit Bhatia
Chetan Gabhane



Reverse Engineering 
with Terraform

An Introduction 
to Infrastructure Automation, 
Integration, and Scalability 

using Terraform

Sumit Bhatia
Chetan Gabhane



Reverse Engineering with Terraform: An Introduction to Infrastructure 

Automation, Integration, and Scalability using Terraform

ISBN-13 (pbk): 979-8-8688-0073-3  ISBN-13 (electronic): 979-8-8688-0074-0
https://doi.org/10.1007/979-8-8688-0074-0

Copyright © 2024 by Sumit Bhatia, Chetan Gabhane 
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of 
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, 
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or 
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar 
methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark 
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, 
and images only in an editorial fashion and to the benefit of the trademark owner, with no 
intention of infringement of the trademark. 

The use in this publication of trade names, trademarks, service marks, and similar terms, even if 
they are not identified as such, is not to be taken as an expression of opinion as to whether or not 
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of 
publication, neither the authors nor the editors nor the publisher can accept any legal 
responsibility for any errors or omissions that may be made. The publisher makes no warranty, 
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: James Robinson-Prior
Development Editor: James Markham
Editorial Assistant: Gryffin Winkler

Cover designed by eStudioCalamar

Cover image by 5598375 on pixabay.com

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1 
New York Plaza, Suite 4600, New York, NY 10004-1562, USA. Phone 1-800-SPRINGER, fax (201) 
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, 
LLC is a California LLC and the sole member (owner) is Springer Science + Business Media 
Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for 
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook 
versions and licenses are also available for most titles. For more information, reference our Print 
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is 
available to readers on GitHub. For more detailed information, please visit https://www.apress.
com/gp/services/source-code.

Paper in this product is recyclable

Sumit Bhatia
Houston, TX, USA

Chetan Gabhane
Pune, Maharashtra, India

https://doi.org/10.1007/979-8-8688-0074-0


“The price of success is hard work, dedication to the job at 
hand, and the determination that whether we win or lose, 
we have applied the best of ourselves to the task at hand.”

—Vince Lombardi

This book is dedicated to everyone who has ever been told 
THEY CAN’T.



v

About the Authors ������������������������������������������������������������������������������xiii

About the Technical Reviewer ������������������������������������������������������������xv

Acknowledgments ����������������������������������������������������������������������������xvii

Introduction ���������������������������������������������������������������������������������������xix

Chapter 1:   Terraform: Infrastructure as Code ���������������������������������������1

Infrastructure as Code: A Key Enabler for Today’s Technology Landscape �����������2

Revolutionizing IT Infrastructure with the Power of Terraform �����������������������������6

From Silos to Harmony ������������������������������������������������������������������������������������8

Embarking Diverse Infrastructure Platforms at Scale �������������������������������������8

Navigating Different Technologies �������������������������������������������������������������������9

Operational Costs ��������������������������������������������������������������������������������������������9

Ensuring Robust Security ��������������������������������������������������������������������������������9

Imperative vs� Declarative Approaches to IaC �����������������������������������������������������10

Unleashing the Power of Terraform Providers and Provisioners �������������������������13

Terraform Provider �����������������������������������������������������������������������������������������13

Terraform Provisioners ����������������������������������������������������������������������������������14

Terraform Open Source vs� HashiCorp’s Version of Terraform ����������������������������15

Scope of Terraform Automation ��������������������������������������������������������������������������18

Harnessing the Power of Terraform ��������������������������������������������������������������������21

Mutable vs� Immutable Infrastructure �����������������������������������������������������������22

Mutable Infrastructure �����������������������������������������������������������������������������������22

Immutable Infrastructure �������������������������������������������������������������������������������23

Table of Contents



vi

Bridging the Gap �������������������������������������������������������������������������������������������������26

Provisioning IaaS Resources with Terraform �������������������������������������������������27

Virtual Machine Provisioning �������������������������������������������������������������������������27

Storage and Networking Configuration ���������������������������������������������������������27

Provisioning PaaS Resources with Terraform ������������������������������������������������27

Managed Databases ��������������������������������������������������������������������������������������28

Serverless Functions and Event-Driven Architectures ����������������������������������28

Benefits of Utilizing Terraform for Managing Infrastructure  
Across Service Models ����������������������������������������������������������������������������������28

Infrastructure as Code Consistency ���������������������������������������������������������������29

Automation and Efficiency �����������������������������������������������������������������������������29

Scalability and Flexibility �������������������������������������������������������������������������������30

Hybrid Cloud and Multicloud Support ������������������������������������������������������������30

Hands-On Exercise: Setting Up Terraform Open Source for VMware  
Infrastructure on Ubuntu �������������������������������������������������������������������������������������30

Summary�������������������������������������������������������������������������������������������������������������35

Chapter 2:   Deep Dive into Terraform ��������������������������������������������������37

Terraform and Its Presence in the IT Infrastructure Ecosystem ��������������������������38

Cloud Infrastructure ���������������������������������������������������������������������������������������38

Network Infrastructure ����������������������������������������������������������������������������������38

Application Infrastructure ������������������������������������������������������������������������������39

Security Infrastructure �����������������������������������������������������������������������������������39

Terraform Files Deep Dive �����������������������������������������������������������������������������������40

Configuration Files �����������������������������������������������������������������������������������������40

Providers �������������������������������������������������������������������������������������������������������41

State File �������������������������������������������������������������������������������������������������������41

Config File and Its Different Sections ������������������������������������������������������������������44

Provider Section ��������������������������������������������������������������������������������������������45

Table of ConTenTs



vii

Data Section ��������������������������������������������������������������������������������������������������46

Resource Section �������������������������������������������������������������������������������������������46

Variable Section ���������������������������������������������������������������������������������������������49

Terraform Provisioners ����������������������������������������������������������������������������������53

Set Up Variables and Resources ��������������������������������������������������������������������55

Use an External Provisioner ���������������������������������������������������������������������������55

Create the External Script �����������������������������������������������������������������������������56

Depend on Script Execution ��������������������������������������������������������������������������56

Apply the Configuration ���������������������������������������������������������������������������������56

Output Section �����������������������������������������������������������������������������������������������57

Backup Strategy for Config File ���������������������������������������������������������������������57

Mastering Control: Utilizing Terraform Variables as Powerful Module 
Parameters����������������������������������������������������������������������������������������������������������59

Variables ��������������������������������������������������������������������������������������������������������60

Maps ��������������������������������������������������������������������������������������������������������������63

Lists ���������������������������������������������������������������������������������������������������������������65

Variable Defaults �������������������������������������������������������������������������������������������66

Populating Variables ��������������������������������������������������������������������������������������68

Interactive Prompts ���������������������������������������������������������������������������������������70

Example Usage in VMware Configuration ������������������������������������������������������70

Leveraging Modularization in Terraform �������������������������������������������������������������71

Introduction to Modules ���������������������������������������������������������������������������������71

Module Structure �������������������������������������������������������������������������������������������72

Using a Module ����������������������������������������������������������������������������������������������73

Streamlining Infrastructure Provisioning with Terraform ������������������������������������74

Committing the Configuration File �����������������������������������������������������������������74

Initializing Terraform ��������������������������������������������������������������������������������������75

terraform plan �����������������������������������������������������������������������������������������������75

Table of ConTenTs



viii

terraform apply ����������������������������������������������������������������������������������������������76

Hands-On Exercise: Generation of Config and State Files to Create a  
VMware VM via vCenter (Using Templates) ���������������������������������������������������76

Summary�������������������������������������������������������������������������������������������������������������87

Chapter 3:   The Basics of Reverse Engineering �����������������������������������89

Terraform Workflow Overview �����������������������������������������������������������������������������89

Terraform and Its Shortcomings �������������������������������������������������������������������������93

Terraform Dependence on Point-in-Time Config Files for  
Import Operations ������������������������������������������������������������������������������������������93

Terraform Dependence on State File for Life- Cycle Management �����������������94

Mitigating These Shortcomings ��������������������������������������������������������������������������96

What Is Reverse Engineering? ����������������������������������������������������������������������������97

Reverse-Engineering Process for IT Infrastructure Tools ������������������������������������98

Reverse Engineering with Terraform and Its Benefits ���������������������������������������101

Benefits of Autogenerating Configuration Files �������������������������������������������103

Sample Use Case: Reverse Engineering a VMware VM �������������������������������������106

Hands-On Exercise: Managed Object Browser in VMware (vCenter) as a  
Source of Reverse Engineering �������������������������������������������������������������������������107

Prerequisites for Python Code ���������������������������������������������������������������������111

Summary�����������������������������������������������������������������������������������������������������������115

Chapter 4:   Terraform and Reverse Engineering ��������������������������������117

Information Extraction���������������������������������������������������������������������������������������118

Terraform Core���������������������������������������������������������������������������������������������120

Terraform Plugins ����������������������������������������������������������������������������������������121

Client Library �����������������������������������������������������������������������������������������������123

Modeling �����������������������������������������������������������������������������������������������������������124

Sample Model ����������������������������������������������������������������������������������������������124

Object Identification ������������������������������������������������������������������������������������125

Table of ConTenTs



ix

Review ��������������������������������������������������������������������������������������������������������������126

Understand a Sample Reverse-Engineering Model with Terraform ������������������128

Terraform Provider Version ��������������������������������������������������������������������������130

Infrastructure Platform Revisions ����������������������������������������������������������������130

Automated Creation of a Point-in-Time Config File �������������������������������������������132

Provider �������������������������������������������������������������������������������������������������������132

Provider Details to Connect to the Platform ������������������������������������������������133

Data Section ������������������������������������������������������������������������������������������������133

Resource Section �����������������������������������������������������������������������������������������135

Importing of a Resource with Terraform �����������������������������������������������������������137

Validating a Successful Import �������������������������������������������������������������������������140

Hands-On Exercise: Import Script to Demonstrate Successful  
Autogeneration of a Config File �������������������������������������������������������������������������141

Summary�����������������������������������������������������������������������������������������������������������155

Chapter 5:   Debugging for Import Issues and Best Practices ������������157

Potential Error Scope with Reverse Engineering ����������������������������������������������158

The Challenge of Evolving Features ������������������������������������������������������������158

Importance of Testing Import Logic �������������������������������������������������������������159

Clean Imports: A Guide to Ensuring Accurate Configurations����������������������������160

Understanding the Challenge ����������������������������������������������������������������������161

Importance of Clean Imports �����������������������������������������������������������������������161

Achieving Clean Imports with Terraform �����������������������������������������������������162

Understanding the Configuration File ����������������������������������������������������������164

Importing the Existing VM ����������������������������������������������������������������������������165

Verifying the Imported Configuration �����������������������������������������������������������166

Provider Version Compatibility for Successful Reverse Engineering ����������������168

Table of ConTenTs



x

Debugging and Troubleshooting Steps with Terraform �������������������������������������170

Best Practice for Debugging and Troubleshooting While Performing  
Reverse Engineering������������������������������������������������������������������������������������173

Terraform Issues and Support ���������������������������������������������������������������������175

Example Bug Report ������������������������������������������������������������������������������������175

Summarizing How Import Issues Can Be Avoided ��������������������������������������������177

Best Practices for Terraform State Management ����������������������������������������������180

Backups, Versioning, and Encryption �����������������������������������������������������������180

Do Not Edit Manually �����������������������������������������������������������������������������������181

Main Keys in the Terraform State File ���������������������������������������������������������181

Utilizing the terraform state Command �������������������������������������������������������182

Hands-On Exercise ��������������������������������������������������������������������������������������������183

Summary�����������������������������������������������������������������������������������������������������������187

Chapter 6:   Life-Cycle Management After Import ������������������������������189

Terraform Integrations ��������������������������������������������������������������������������������������190

Workflow Partners ���������������������������������������������������������������������������������������190

Infrastructure Partners ��������������������������������������������������������������������������������196

Terraform Provisioners for Integrations ������������������������������������������������������������198

Local-exec Provisioner ��������������������������������������������������������������������������������198

File Provisioners ������������������������������������������������������������������������������������������199

Remote-exec Provisioners ���������������������������������������������������������������������������199

Typical Terraform Integration with Infrastructure Ecosystem for Automation �����200

Self-Service �������������������������������������������������������������������������������������������������200

ZeroOps �������������������������������������������������������������������������������������������������������202

Terraform Use Cases �����������������������������������������������������������������������������������������204

Multicloud Deployment ��������������������������������������������������������������������������������205

Application Infrastructure Orchestration, Scaling, and Monitoring ��������������205

Self-Service Model ��������������������������������������������������������������������������������������206

Table of ConTenTs



xi

Policy Compliance and Management ����������������������������������������������������������207

Software-Defined Networking ���������������������������������������������������������������������207

Terraform Integration with Configuration Management Tools ���������������������������208

Agent Installation with Terraform VM Creation ��������������������������������������������209

Operational Uses Cases for VM Management ���������������������������������������������������212

Virtual Server: Create ����������������������������������������������������������������������������������213

Virtual Server: Decommission ���������������������������������������������������������������������216

Virtual Server: Change ���������������������������������������������������������������������������������219

Terraform Integration with DevOps �������������������������������������������������������������������222

Step 1: Generate a Config File ���������������������������������������������������������������������224

Step 2: Check-In the Configuration File to Azure Repository �����������������������225

Step 3: Continuous Delivery Pipeline - For Safe Storing State File �������������225

Steps 4 and 5: Integrate Azure Pipelines and Azure Storage  ����������������������225

Step 6: Install Terraform, Initiate the Azure Suite, and Run a  
Terraform Plan ���������������������������������������������������������������������������������������������226

Step 7: Run terraform apply in the Pipeline �������������������������������������������������226

Hands-On Exercise: Terraform Integration with SaltStack and Invocation of  
SaltStack Install After Terraform Completes VM Provisioning ���������������������������227

Summary�����������������������������������������������������������������������������������������������������������239

Chapter 7:   Terraform and Import Support on Other Platforms ���������241

Overview of Challenges with a Public Cloud �����������������������������������������������������242

Learning Curve ��������������������������������������������������������������������������������������������242

Already Provisioned Resources Outside Terraform ��������������������������������������243

Cloud Preview Functionality ������������������������������������������������������������������������243

Escape Hatch �����������������������������������������������������������������������������������������������244

Removal of Escape Hatches ������������������������������������������������������������������������244

Google Cloud Utility for Terraform Import ����������������������������������������������������������245

Table of ConTenTs



xii

Microsoft Azure Cloud Utility for Terraform Import ��������������������������������������������248

Amazon AWS Cloud Utility for Terraform Import ������������������������������������������������251

Word of Caution�������������������������������������������������������������������������������������������������253

Hands-On Exercise: Using Azure Export for Terraform to Autogenerate a 
Configuration File and Import an Azure VM �������������������������������������������������������254

Summary�����������������������������������������������������������������������������������������������������������266

 Index �������������������������������������������������������������������������������������������������267

Table of ConTenTs



xiii

About the Authors

Lead author Sumit Bhatia is a global 

infrastructure solutions architect with a focus 

on addressing difficult business challenges 

and encouraging green IT through intelligent 

hybrid cloud strategies, advanced automation, 

and cost savings in IT operations to support 

the global oil and gas industry. With more than 

15 years in the tech industry, Sumit is driving 

technology innovations by employing his deep 

knowledge of automation tactics, DevOps 

practices, multicloud, and edge computing 

solutions engineering. With the help of his world-class inventions with 

Terraform, the introduction of capacity management as service (CMaaS) 

in hybrid deployments, and cost reductions with cutting-edge on/off 

solutions, his firm was able to cut their yearly spending by hundreds of 

thousands of dollars. He received the highest honor from his organization, 

an award for being a pioneer in the field of energy innovation. 

Sumit is also a well-known author and reviewer for leading oil and 

gas industry journals and publications. His steadfast drive to share 

information and best practices has aided many professionals in navigating 

the complicated realm of sustainability and solutions engineering.



xiv

Chetan Gabhane is a seasoned expert with 

more than 15 years of experience as a solution 

architect and senior technical consultant in 

the field of hybrid and multicloud computing. 

His major focus is on developing resilient 

and efficient hybrid cloud architectures that 

combine the best of on-premises and cloud-

based technologies. Chetan has extensive 

experience adopting cutting-edge DevOps 

approaches to improve the agility and 

scalability of cloud infrastructures. Chetan actively contributes to the 

creation of cloud solutions’ reference architecture, white papers, and tech 

blogs. His commitment to sharing information and best practices has 

assisted numerous professionals in navigating the complex world of cloud 

computing with an unwavering dedication to excellence.  

abouT The auThors



xv

Simon Mansbridge has over 35 years of 

IT experience in the development and 

deployment of large enterprise systems, 

often supporting over 100,000 users. He 

has worked on a range of IT technologies 

from high-performance computing to 

core infrastructures, SAP R/3, Microsoft 

enterprise communication and collaboration 

systems, cloud, security tooling, and service 

management. As a technical manager, 

one of his focuses has always been on 

efficient optimized solutions delivered via 

combinations of commercial and in-house developed monitoring and 

automation tools. His technical insights and innovations have led to some 

being implemented as, or incorporated into, commercial products.

With his broad and deep knowledge, Simon now acts as Chief Architect, 

ensuring alignment across the broad range of technologies in the 

organization he currently works for.  

About the Technical Reviewer



xvii

Acknowledgments

This book is the brainchild of two enthusiastic individuals who have had 

the privilege of growing and thriving as engineers for more than a decade. 

We started our journey together, and so far, it has been well enriched by 

the guidance of wonderful world-class leaders, managers, and technology 

enthusiasts. It is with a deep sense of responsibility that we offer this book 

to give back to our community of technology and automation enthusiasts 

who are working hard every day. It is our hope that the knowledge 

contained within this book can contribute, in some measure, to the 

collective growth and advancement of our ever-evolving industry. These 

acknowledgments are a small tribute to the community that has nurtured 

our passion and allowed us to realize the potential of engineering in all 

its facets.

We would like to express our gratitude and love to all our family and 

friends who appreciate and encourage us always.

We would also like to thank Apress for their unwavering belief in our 

proposal and working with us so diligently in completing and presenting 

this book.

Finally, we would like to thank all our cherished readers for taking the 

time to read this book.



xix

Introduction

The idea of writing this book hit us when we were discussing how we 

should give back to the DevOps community. This book focuses on 

the need of ZeroOps and how Terraform can enable IT infrastructure 

architects, infrastructure solutions experts, administrators, and technical 

managers to achieve the ZeroOps goal.

What is ZeroOps? ZeroOps (or “zero operations”) is a concept in 

IT where the day-to-day operations are so automated and abstracted 

that there is no need for a dedicated team to manage the infrastructure 

in-house. The concept of ZeroOps demands synergy across diverse 

technologies and platforms employed in any typical IT environment. Most 

important, it requires the use of a common platform that can support 

diverse integrations, implement security, and ease development, adoption, 

and management.

With advancements in infrastructure and automation technologies, 

there has been increasing demand to automate core infrastructure 

operations. Modern-day DevOps enthusiasts do not necessarily automate 

every single infrastructure-related job they do, but they do automate most 

of their level 1 (L1) and level 2 (L2) tasks. Basically, ZeroOps shifts the 

focus of the core operation teams, moving from doing the monotonous, 

boring, and repetitive work of handling L1 and L2 tickets to doing more 

advanced activities where they are involved in writing code and defining 

and managing their infrastructure as code (IaC). In essence, ZeroOps 

provides self-service to the end users so they can do basic L1 and L2 tasks 

themselves.



xx

In a traditional scenario, IT users have infrastructure requirements for 

which they approach the specialized administrator, who then works on the 

request and provides the needed support to the end user. In the process of 

fulfilling the user’s request, the back-end IT teams are required to run a set 

of repetitive steps, which can be boring and tedious to the administrator. 

To modernize this scenario, power is given directly to the end user (called 

self-service) to fulfil their own needs.

There are numerous benefits to empowering end users and making 

them responsible for basic infrastructure tasks and in turn less dependent 

on the back-end operations team. These are the main benefits:

• Saved time: End users are not bound by ticketing 

service-level agreements and can get the desired 

outcomes almost immediately.

• Lower costs: Organizations now need fewer employees 

to do the redundant, manual activities.

• Improved security: Least privilege access and role- 

based access control have enabled DevOps practices to 

be more secure than anybody doing it manually.

• Fewer errors: There is less opportunity for manual 

human errors.

These are areas where Terraform has a unique presence in 

infrastructure automation practices. Terraform has enabled infrastructure 

admins to define their key infrastructure entities as code that is easy to 

write and manage. Terraform has built-in integrations with numerous 

popular public cloud platforms such as AWS, Azure, and GCP, as well 

as on-prem technologies such as VMware, Hyper-V, etc. With help from 

Terraform, infrastructure admins can now easily provision and manage 

their infrastructure.

InTroduCTIon



xxi

Terraform provides great integration and infrastructure automation 

facilities for the resources that started their life cycles with Terraform. 

However, it poses challenges to IT administrators because they have legacy 

infrastructure entities that were not provisioned with Terraform and that 

sometimes comprise a majority of their infrastructure footprints. For 

example, because of how Terraform operates, it needs to have a “state file,” 

which is created when IT administrators provision the resources first with 

Terraform. However, when the infrastructure was not provisioned with 

Terraform first, the tool does not know the current state of the resource. 

Terraform has provided ways to import the current state of a resource, but 

it is a manual process where IT admins must write a “config file” for each 

resource and then import the files into Terraform. Manually importing 

each resource is a cumbersome job for IT administrators, and it is made 

more complex when there are thousands of infrastructure resources. The 

legacy resources that are deployed and running are not going anywhere 

in the near term. In those scenarios, using Terraform is challenging, 

especially with objectives such as ZeroOps.

We were in this situation some time ago with our VMware 

infrastructure, where we were looking for opportunities to implement 

automation to manage thousands of workloads already running in 

our data centers with a centralized tool (Terraform). This is where the 

idea of Reverse Engineering with Terraform originated. We were able to 

automatically import existing resources into Terraform and import them 

at scale. The reverse engineering piece that was written did the job on 

most of our already provisioned resources. Once the current infrastructure 

was imported, it was easy to manage the life cycle of the resources via 

Terraform.

There is another challenge with Terraform where if a resource is 

provisioned with it, then the entire life cycle can be managed with 

Terraform only. If an admin changes the resource directly on the platform, 

then that will invalidate the existing state that Terraform has in its record, 

InTroduCTIon



xxii

thus making it more complex for administrators who want to manage their 

infrastructure automatically. With the reverse engineering that we cover 

in this book, you are able to eliminate the need for a persistent state file 

for each resource. The logic creates a fresh state every time for operations 

that we want Terraform to perform automatically. For example, if any 

administrator is doing any changes on the infrastructure manually and 

directly on the platform, our reverse engineering automation enables you 

to just scrap the old state file and do a fresh and reliable import of the state 

every time you need to do L1 or L2 tasks with the infrastructure.

Throughout this book, we will use VMware as a reference and 

show how reverse engineering has helped overcome the limitations of 

Terraform. In addition, we incorporate a hands-on lab in the book to 

provide better illustrations of the content. The book focuses on how 

Terraform is employed in our case as a common platform for achieving 

ZeroOps on diverse platform we manage (cloud and on-prem). The good 

news is that the practices that we have discovered can be easily transferred 

to other platforms where Terraform has built-in integration.

We welcome you on this journey and hope this book helps you to meet 

your organizational objectives.

InTroduCTIon



1

CHAPTER 1

Terraform: 
Infrastructure as Code
In this chapter, we embark on a journey through the realm of modern 

IT and infrastructure as code (IaC). We will discover the tremendous 

importance of IaC in today’s technology landscape. Terraform, the 

powerful instrument that is transforming the face of IT infrastructure 

management, will be the focus of our attention. We will delve into the core 

aspects that set Terraform apart and make it an industry game-changer. We 

will begin by exploring the tangible use cases that demonstrate Terraform’s 

power in orchestrating IT environments with unparalleled agility and 

efficiency.

We will also take a closer look at the two fundamental approaches to 

IaC: declarative and imperative. Understanding the differences between 

these methods is key to harnessing Terraform’s full potential. One of 

the cornerstones of Terraform’s capabilities lies in its providers and 

provisioners. We will demystify these concepts, shedding light on how 

they empower you to interact with diverse infrastructure platforms and 

fine-tune resources to your exact specifications. We will also compare the 

open-source version of Terraform with HashiCorp’s version, helping you 

navigate the choices available.

© Sumit Bhatia, Chetan Gabhane 2024 
S. Bhatia and C. Gabhane, Reverse Engineering with Terraform,  
https://doi.org/10.1007/979-8-8688-0074-0_1

https://doi.org/10.1007/979-8-8688-0074-0_1


2

Additionally, we’ll uncover how Terraform acts as a bridge connecting 

infrastructure as a service (IaaS) and platform as a service (PaaS), adapting 

to the unique resource provisioning requirements that organizations 

encounter in both on-premises and cloud deployments.

Our exploration culminates in a hands-on exercise that guides you 

through the installation of the open-source version of Terraform on 

Ubuntu, specifically tailored for VMware infrastructure. This practical 

exercise is designed to provide you with the tools and skills you need to 

embark on your own Terraform journey.

Prepare to embrace the power of Terraform and elevate your 

infrastructure management to new heights.

 Infrastructure as Code: A Key Enabler for  
Today’s Technology Landscape
Traditional approaches to infrastructure management fall short in 

today’s dynamic world of modern technologies, where agility, scalability, 

and dependability are critical. As organizations strive to meet the ever-

changing needs of software development and operations, IaC has 

emerged. In this chapter, we’ll look at what IaC is and why it has become 

such an important tool in today’s fast-paced environment.

IaC has evolved from a paradigm shift in the management and 

deployment of infrastructure resources. Traditionally, infrastructure 

setup and maintenance were manual operations that were time-

consuming, error-prone, and difficult to repeat reliably across settings. 

However, by treating infrastructure as software, IaC allows organizations 

to take advantage of the potential of automation, version control, and 

repeatability. So, IaC is a way of deploying your infrastructure in an 

automated way using code instead of manual processes.

Chapter 1  terraform: InfrastruCture as Code



3

Since many components of the infrastructure may now be specified as 

code, IaC abstracts away all of the infrastructure’s intricacies. It may also 

be thought of as a layer that sits between the DevOps world and the IT 

infrastructure, abstracting all the underlying intricacies and surfacing just 

those components that are absolutely necessary for effective infrastructure 

management.

At its core, IaC involves setting up and provisioning infrastructure 

resources using machine-readable configuration files. These files, which 

are often composed in a domain-specific language (DSL) or using 

declarative syntax, serve as blueprints for the creation and management 

of infrastructure components such as servers, networks, storage, and other 

resources. It further allows teams to utilize existing software development 

practices and tools by modeling infrastructure as code, resulting in a more 

efficient and scalable infrastructure management process.

IaC’s transformational strength stems from its ability to apply standard 

software development practices to infrastructure management. Let’s look 

at some of the important features that make IaC such a game-changer:

• Standardization and consistency: IaC defines and 

provisions infrastructure using configuration files 

that may be versioned and saved in a version control 

system. This approach ensures that infrastructure 

configuration is standardized and consistent across 

environments, decreasing the risk of configuration 

drift and making infrastructure management and 

maintenance easier at scale.

• Reproducibility: IaC enables organizations to reliably 

re-create infrastructure configurations because 

infrastructure is described in code. It is feasible to 

spin up similar environments with a few instructions, 

removing the need for manual procedures and 

lowering the likelihood of human mistake. This 

Chapter 1  terraform: InfrastruCture as Code



4

repeatability is especially useful in circumstances such 

as testing, development, and disaster recovery, where 

consistent and repeatable infrastructure settings are 

essential.

• Automation and efficiency: IaC enables infrastructure 

provisioning and administration processes to be 

automated. Programmatic provisioning, configuration, 

and deployment of infrastructure reduce the need 

for manual operations. This automation improves 

efficiency by saving time and effort while reducing the 

possibility of human mistakes that might arise while 

performing repetitive operations.

• Collaboration and DevOps culture: The siloed 

nature of traditional infrastructure management often 

slows down collaboration between development and 

operations teams. IaC breaks down those barriers 

and encourages the collaborative DevOps culture. 

Teams may efficiently cooperate on infrastructure 

settings by utilizing version control systems. Multiple 

team members may work on various elements of the 

infrastructure codebase at the same time, making it 

simpler to manage changes, monitor modifications, 

and revert to earlier settings if necessary. This strategy 

increases team cooperation, improves code reviews, 

and assists team members in exchanging information 

and deploying the code effortlessly in all three stages of 

development, testing, and production.

• Testing and continuous integration: IaC encourages 

the use of automated testing practices for infrastructure 

code. Infrastructure code, like software code, may 

be tested using unit tests, integration tests, and 

Chapter 1  terraform: InfrastruCture as Code



5

acceptance tests. This helps teams to detect faults 

and misconfigurations early in the development 

cycle, boosting overall infrastructure quality and 

dependability. Furthermore, IaC seamlessly interfaces 

with continuous integration and continuous 

deployment (CI/CD) pipelines, allowing for the 

automated testing and deployment of infrastructure 

modifications.

• Tools and technologies: To implement IaC, 

organizations can leverage a range of tools and 

technologies such as Terraform, AWS CloudFormation, 

Azure Resource Manager, or Google Cloud Deployment 

Manager. These tools provide the means to define 

infrastructure configurations in a declarative manner, 

enabling automation and orchestrations.

• Scalability and flexibility: The capacity to scale 

infrastructure resources up and down fast becomes 

critical as organizations embrace cloud computing 

and dynamic infrastructure settings. IaC makes 

this scalability possible by allowing teams to create 

infrastructure in a modular and flexible manner. 

Infrastructure code is readily adjusted and expanded 

to fit changing requirements, making it easier to 

adapt and grow infrastructure settings as business 

demands change.

• Auditing and compliance: Regulatory requirements 

and security concerns are continuously growing in 

importance. IaC offers the advantage of traceability 

and auditability. Infrastructure configurations, 

including security and compliance standards, can 

Chapter 1  terraform: InfrastruCture as Code



6

be documented and reviewed over time, supporting 

compliance with the regulatory framework. Figure 1-1 

shows the infrastructure as code paradigm. 

 Revolutionizing IT Infrastructure 
with the Power of Terraform
IT infrastructure is the IT world’s backbone, allowing any industry to be 

digitized. It is composed of numerous layers, starting with storage and 

then networking, computing, operating systems, databases, and lastly 

applications. Figure 1-2 shows the pyramid structure that distinguishes IT 

infrastructure.

Figure 1-1. The infrastructure as code paradigm

Chapter 1  terraform: InfrastruCture as Code



7

Applications

Databases

Containers

Compute

Networking

Storage, Backup

Terraform capability to define 
and manage 
Infrastructure as a code 
(IaC)

Figure 1-2. IT infrastructure pyramid

If organizations are using traditional ways of managing the 

infrastructure, they will face numerous issues. These issues include 

inconsistent environments, manual and error-prone processes, lack 

of workflow automation and reusability, lack of collaboration and 

documentation, lack of scalability with speed and accuracy, and high price 

of deployment.

In most situations, these are common infrastructure difficulties 

encountered by organizations that use a variety of products offered 

by various technology vendors. These challenges are faced by many 

organizations regardless of size or sector. Infrastructure management can 

be a difficult and time-consuming process that frequently necessitates 

substantial resources and experience. However, with the rise of cloud 

computing and DevOps practices, new tools and technologies have evolved 

to assist organizations in more efficiently managing their infrastructure.

Let’s look at some of the most crucial infrastructure difficulties that 

organizations are experiencing nowadays and how Terraform might assist 

in addressing these challenges.

Chapter 1  terraform: InfrastruCture as Code



8

From Silos to Harmony
One of the biggest infrastructure challenges faced by organizations is 

the siloed nature of their legacy infrastructure. Few companies are still 

using a legacy infrastructure despite its outdated nature. Reasons could 

include cost, risk and stability, regulatory and compliance requirements, 

business continuity, etc. Companies should carefully evaluate the benefits 

and drawbacks of maintaining legacy systems and consider a long-term 

strategy for modernization when feasible.

They should also consider that the siloed structure can make it difficult 

to collaborate and share resources across teams, leading to inefficiencies 

and higher costs.

Terraform can help address this challenge by providing a single, 

unified platform for managing infrastructure across teams and platforms. 

Using the Terraform platform, teams can collaborate on infrastructure 

code and share resources across departments, improving efficiency and 

reducing costs.

Embarking Diverse Infrastructure Platforms at Scale
In this modern business landscape, a major infrastructure challenge is 

managing diverse infrastructure platforms at scale. As organizations adopt 

multiple cloud providers, embarking on multiple cloud journeys with 

some on-premises infrastructure platforms, it can be difficult to manage 

and maintain consistency across all platforms.

Here as well, Terraform provides a common technique for governing 

diverse infrastructure platforms at scale. With Terraform, organizations 

can use a single codebase to manage their infrastructure, regardless of the 

underlying platform. This simplifies management and reduces the risk of 

errors and inconsistencies in your code.

Chapter 1  terraform: InfrastruCture as Code



9

Navigating Different Technologies
Organizations often use a variety of technologies in different spaces 

(for example compute, storage, networking, databases) to manage their 

infrastructure efficiently, which often can be challenging to maintain and 

integrate with the existing legacy infrastructure.

Terraform provides a solution to this challenge by supporting a 

wide range of technologies and infrastructure platforms, including 

public and private clouds, containers, and on-premises infrastructure. 

With Terraform, organizations can use a single tool to manage all their 

infrastructure, regardless of the underlying technology.

Operational Costs
The cost of managing infrastructure can be a significant challenge as 

well for organizations. As infrastructure becomes more complex and 

distributed, the cost of managing it can quickly spiral out of control, which 

we refer to as the operational cost for your infrastructure. Companies 

should also consider this factor while managing the infrastructure for a 

longer duration.

Terraform can help address this challenge by providing a single 

platform for managing infrastructure. With Terraform, organizations can 

use a single codebase to manage their infrastructure, reducing the time 

and cost required to manage it.

Ensuring Robust Security
Security is a paramount concern for organizations managing 

infrastructure. As infrastructure becomes more distributed, the risk of 

security breaches and vulnerabilities are on rise. To address the security 

concern, one should implement the robust security measures in place to 

avoid potential risk associated.

Chapter 1  terraform: InfrastruCture as Code



10

Terraform provides an answer to this problem by providing a secure 

infrastructure management platform. Terraform gives organizations a safe 

and auditable way of managing their infrastructure code so that it reduces 

the risk of security breaches or vulnerabilities.

Organizations may handle some of their biggest infrastructure 

concerns by utilizing Terraform and its key capabilities. For example, 

it can help organizations to reduce the complexity of infrastructure 

management by allowing organizations to describe their infrastructure in 

a consistent and repeatable manner, decreasing the chance of errors and 

ensuring that the infrastructure is always in a known steady and stable 

state. Terraform also automates many of the processes associated with 

infrastructure management, decreasing the time and resources necessary 

to maintain infrastructure. Furthermore, Terraform enables organizations 

to effortlessly scale up or down their infrastructure to meet changing 

business demands. This is particularly essential in today’s fast-changing 

technological landscape, and every organization must at least attempt it.

 Imperative vs. Declarative 
Approaches to IaC
A framework for IaC can be created and deployed using one of two DevOps 

paradigms: declarative or imperative. Let’s understand how they differ. 

The user is responsible under the imperative method for identifying the 

specific actions required to reach an end objective. This implies that the 

user must specify the software installation instructions, database setup, 

and configuration, among other things. While the execution of these 

phases is totally automated, the outcomes of an operation are decided by 

the user-specified specification and execution order. Figures 1-3 and 1-4 

show the imperative versus declarative approach.

Chapter 1  terraform: InfrastruCture as Code



11

Figure 1-3. Imperative approach

Chapter 1  terraform: InfrastruCture as Code



12

Figure 1-4. Declarative approach (source: https://techcommunity.
microsoft.com/)

In contrast, a declarative method concentrates on specifying the 

eventual state rather than the specific stages. A user specifies—or 

declares—the number of workloads to be containerized or virtualized, the 

applications and machines that must be deployed, and the configuration 

of each. However, you do not need to be concerned with the specific 

actions required to accomplish these operations. A code is performed to 

complete the actions required to attain the user-specified end state. To 

gain a clear understanding of the imperative versus declarative approach,  

I recommend referring to Table 1-1 for a comprehensive comparison.

Chapter 1  terraform: InfrastruCture as Code

https://techcommunity.microsoft.com/
https://techcommunity.microsoft.com/


13

Table 1-1. Imperative vs. Declarative

Topic Imperative Declarative

Coding skill requires extensive expertise 

in programming

requires minimal coding skills

repeatability Idempotent highly repeatable

error-prone prone to errors due to its 

explicit nature

effectively accommodates changes 

in configuration over time

Control Complete control over each 

stage of the process

Less control over the process

task 

execution

Ideal for simple tasks Can over-complicate simple tasks

approach adhere to a familiar 

sequential methodology

does not follow step-by-step 

approach

 Unleashing the Power of Terraform 
Providers and Provisioners
Now that we know the fundamentals of Terraform and IaC, we’ll provide 

an overview of Terraform providers and provisioners. These serve as a 

foundation of Terraform’s current and extensive offerings.

 Terraform Provider
Terraform relies on different plugins for its interactions using an API for 

different IT infrastructure platforms. These plugins are called Terraform 

providers. Terraform providers serve as the bridge between Terraform and 

the underlying infrastructure. They act as plugins that enable Terraform 

to communicate with and manage resources in different cloud providers, 

Chapter 1  terraform: InfrastruCture as Code



14

on-premises systems, or third-party services. Providers define a set 

of resources, data sources, and configurations specific to a particular 

platform or service.

There are hundreds of providers currently available that can be used 

with Terraform, making it a hugely versatile tool. Today Terraform’s 

popularity stems from the fact that it is platform agnostic and can be used 

so widely, as opposed to languages and tools that are platform specific. 

Examples of such platform-specific tools are Microsoft Azure ARM 

templates that work only with the Microsoft Azure public cloud.

Each provider is released independently from Terraform itself, and 

each version offers additional features and bug fixes. Terraform providers 

are usually managed by HashiCorp, by third-party companies that release 

the plugins, or by community groups, users, and volunteers with an 

interest in the product or platform the provider utilizes.

Here is the list of providers currently offered by HashiCorp:

https://registry.Terraform.io/browse/providers

 Terraform Provisioners
Terraform provisioners are powerful features that allow you to perform 

additional actions on resources during or after their creation. They enable 

you to execute scripts or commands on the provisioned resources to 

perform tasks such as configuration management, software installation, or 

any custom actions required to set up the infrastructure. While providers 

focus on resource creation and management, provisioners handle the 

post-creation tasks.

Provisioners can be used, for example, to update the package 

repository, install the nginx web server, and start the nginx service on the 

newly created VM. These commands are executed remotely on the virtual 

machine using SSH.

Chapter 1  terraform: InfrastruCture as Code

https://registry.terraform.io/browse/providers


15

Terraform provisioners support various types, including local-exec 

(run on the machine running Terraform), remote-exec (run on the 

resource being provisioned), and file (upload files to the resource). They 

provide flexibility in configuring and customizing resources to meet 

specific requirements. It’s important to note that while provisioners 

offer convenient ways to execute additional actions, they should be used 

judiciously. It’s recommended to leverage configuration management 

tools such as Salt Stack, Ansible, or Chef for complex and idempotent 

configurations, rather than relying solely on provisioners.

We are going to provide more detailed explanations about Terraform 

providers and provisioners in subsequent chapters.

 Terraform Open Source vs. HashiCorp’s 
Version of Terraform
HashiCorp’s Terraform is an open-source IaC software solution. It enables 

administrators to build infrastructure using a declarative configuration 

language known as the HashiCorp Configuration Language (HCL), or 

alternatively JSON, and manage their infrastructure primarily through APIs 

and automation.

Several organizations are turning to Terraform as their go-to tool for 

managing their cloud infrastructure as the need for IaC grows. However, 

with two unique versions of Terraform available—open-source and 

HashiCorp—the question remains: which best matches your organization? 

Let’s consider both the urgency of the task and the cost.

On one hand, the Terraform open-source version provides a lot of 

freedom and customizability. It is incredibly extendable as an open-source 

application, allowing users to develop their own plugins and modules to 

meet their individual needs. Moreover, a vast community of volunteers are 

regularly updating the open-source version, promising that it is up-to-date 

with the latest platform provider APIs and features.

Chapter 1  terraform: InfrastruCture as Code



16

The HashiCorp version of Terraform, on the other hand, offers a 

more streamlined user experience. It eliminates the need of consumers 

to come up with adaptations of their own with a complete collection of 

built-in capabilities, making it a compelling choice for those who prefer 

a more out-of-the-box solution. Furthermore, the HashiCorp version has 

enterprise-level capabilities such as role-based access control (RBAC) 

and support for dozens of workspaces, making it a better match for bigger 

organizations with challenging infrastructure needs.

Refer to Table 1-2 to see the differences between Terraform’s open- 

source and HashiCorp versions.

Table 1-2. Open Source vs. HashiCorp

Topic Open-Source Terraform HashiCorp Version of Terraform

remotely 

managed

run your terraform files locally 

with a remote back end or 

your central server to manage 

your terraform runs.

nothing to manage; the terraform 

managed infrastructure is used to 

run your terraform scripts.

team 

management

use active directory to 

provide teams and users with 

credentials to access the 

centralized server.

the access control model is split 

into three units: users, teams, and 

organizations.

Workspace 

management

You can reuse the same code 

across multiple environments.

It gives a dashboard with the run 

statuses, when the terraform files 

were last changed, and which repo 

it is connected to.

Version control 

system

still, you must use your 

repositories and manual way 

of handling it to pull the latest 

code to production.

the setup for Github, GitLab, and 

Bitbucket is automated.

(continued)

Chapter 1  terraform: InfrastruCture as Code



17

Table 1-2. (continued)

Topic Open-Source Terraform HashiCorp Version of Terraform

secure 

variable 

management

there is no secure variable 

management out of the box 

with open source.

In the workspace’s variable section 

you can choose what variable 

is sensitive and what isn’t. they 

manage everything for you.

remote runs 

and state

You store your state file in your 

common storage repository 

and run your terraform plan 

and apply commands.

You are provided with a dedicated 

page with a history and queue of 

plans run by a specific user.

private module 

registry

It’s up to you how you want 

to organize your modules. 

You can create a dedicated 

repository for modules, which 

is the better option, or have 

unorganized modules in 

different repositories.

Its private module registry is 

extremely effective, with the 

ability to share it across your 

organization. It supports module 

versioning and searching and 

filtering of available modules 

similar to terraform’s own public 

terraform registry.

Configuration 

designer

manually add modules and 

components to your terraform 

main.tf file.

using the configuration designer, 

you are able to spin up an entire 

workspace using your private 

module registry.

dashboard apI not supported. You can access items on the 

dashboard with the help of an apI.

support the terraform community is 

the best support here.

the hashiCorp sLa works on a 

severity basis such as urgent, 

high, normal, and Low.

Chapter 1  terraform: InfrastruCture as Code



18

To summarize, both the open-source and HashiCorp Terraform 

implementations have significant advantages and downsides. Consider 

your organization’s specific requirements, such as extensibility, enterprise- 

level capabilities, and release cycle frequency, while picking between 

the two. The choice between the two comes down to determining which 

solution best meets your organization’s infrastructure management needs.

 Scope of Terraform Automation
Terraform is a powerful tool with extensive automation features. Its 

automated features extend to infrastructure provisioning, configuration 

management, and application deployment. Organizations can use it to 

describe and manage their infrastructure as code, allowing standard and 

repeatable infrastructure management practices. Because Terraform is 

an IaC tool and has a wide range of supported providers, it is platform 

agnostic and abstracts away the complexity of infrastructure management. 

Terraform may serve as a single intermediate layer that can communicate 

with many infrastructure components in the same language (for example, 

HCL) while totally hiding from consumers the other complexity related to 

a variety of infrastructure tools and technologies. Terraform may therefore 

be used in every area where infrastructure automation is conceivable.

Terraform automation covers a broad variety of infrastructure 

management functions. One area where Terraform automation does well 

is infrastructure provisioning. It enables businesses to automate the 

development of infrastructure resources on a variety of cloud providers, 

including AWS, Azure, VMware, and Google Cloud. This indicates that 

organizations can offer resources quickly and easily in a consistent and 

repeatable manner, ensuring that their infrastructure is always in a known 

condition.

Chapter 1  terraform: InfrastruCture as Code



19

Configuration management is another place where Terraform 

automation shines. Terraform enables businesses to design and manage 

infrastructure settings declaratively. As a result, organizations may 

simply enforce configuration standards, lowering the risk of mistakes 

and boosting infrastructure security. Infrastructure configuration 

changes can be pushed out in a controlled and repeatable manner with 

Terraform, decreasing the risk of service interruptions and ensuring that 

infrastructure is constantly up-to-date.

Another area where Terraform automation can possibly be leveraged 

is application deployment. Terraform provides a flexible and scalable 

solution to deploy applications across many environments, allowing 

organizations to migrate applications from development to testing to 

production swiftly and simply. This can help organizations focus on 

delivering value to their consumers by reducing the time and effort 

necessary to deploy apps.

Terraform automation has an extensive scope that includes multiple 

aspects of infrastructure management in addition to the categories 

described earlier. Terraform, for example, can be used to automate 
network and security setups. It implies organizations may automate the 

development and administration of virtual networks, subnets, firewall 

rules, and other network-related resources, saving time and effort in 

managing network infrastructure.

Terraform can additionally be used to automate the administration 

of containerized environments. Firms are increasingly using container 

orchestration technologies such as Kubernetes as containerization and 

microservices architectures gain traction. Terraform can be used to 

automate Kubernetes cluster construction and administration, lowering 

the complexity of managing containerized environments.

Compliance management is another area where Terraform 

automation can be used. Most organizations are now subject to regulatory 

regulations and industry standards that need certain security and 

Chapter 1  terraform: InfrastruCture as Code



20

compliance practices. Terraform can assist organizations in automating 

compliance standard enforcement, ensuring that infrastructure is always 

set up in a compliant manner.

Finally, one can use Terraform to automate disaster recovery and 

business continuity planning. Terraform can be used by organizations 

to create and manage disaster recovery sites and configurations, ensuring 

that infrastructure is always available in the event of outages or disasters.

Overall, the scope of Terraform automation is broad and covers 

many aspects of infrastructure management. Organizations can employ 

Terraform to automate the building of infrastructure resources, enforce 
configuration standards, and streamline application deployment. As 

such, it is an effective tool for aiding organizations in enhancing their 

infrastructure management practices, reducing the chance of mistakes, 

and increasing overall efficiency.

Finally, the scope of Terraform automation is broad and covers many 

aspects of infrastructure management. Organizations can use Terraform 

to automate infrastructure resource generation and maintenance, enforce 

configuration and compliance requirements, streamline application 

deployment, and manage containerized environments, among other 

things. As a result, Terraforming is a must-have solution for companies 

trying to improve their infrastructure management practices and 

incorporate DevOps ideas. To grasp the extent of Terraform automation 

within organizations, refer to Figure 1-5, which provides insight into 

its scope.

Chapter 1  terraform: InfrastruCture as Code



21

Figure 1-5. Scope of Terraform automation

 Harnessing the Power of Terraform
Infrastructure automation has become a critical component in attaining 

agility, scalability, and dependability in the current fast-paced and 

changing technological ecosystem. Terraform, an open-source IaC tool, 

has emerged as an effective option for managing infrastructure across 

Chapter 1  terraform: InfrastruCture as Code



22

several cloud providers and platforms. Its adaptable features and solid 

ecosystem have made it a popular choice for organizations seeking to 

streamline infrastructure setup, testing, and operations. In this section, we 

will go through some common Terraform use cases and how it is changing 

the way we build and manage infrastructure.

 Mutable vs. Immutable Infrastructure
In the realm of infrastructure management, two contrasting infrastructure 

approaches have emerged: mutable and immutable. While mutable 

infrastructure involves modifying existing resources, immutable 

infrastructure follows a “build and replace” philosophy, where new 

instances are provisioned for each configuration change. In this section, 

we will explore the differences between mutable and immutable 

infrastructure, and how Terraform, an infrastructure as code tool, 

can empower organizations to leverage the benefits of immutable 

infrastructure.

Mutable Infrastructure
Mutable infrastructure refers to the traditional approach of modifying 

existing resources in response to configuration changes. It involves making 

in-place modifications to running servers, such as updating software 

packages, changing configurations, or applying patches. This approach 

allows for incremental updates and adaptability, as changes can be applied 

directly to the existing infrastructure.

For example, let’s say an organization wants to update the version 

of a web server software on their production servers. With mutable 

infrastructure, they would log into each server individually, manually 

update the software, and restart the server to apply the changes.

Chapter 1  terraform: InfrastruCture as Code



23

These are the challenges of mutable infrastructure:

• Configuration drift: Frequent modifications to 

running servers can lead to configuration drift, where 

the actual configuration deviates from the desired 

state. This can result in inconsistencies and potential 

vulnerabilities across the infrastructure.

• Complexity and risk: Modifying running servers 

introduces complexity and increases the risk of errors. 

Manual changes may differ between servers, making 

it difficult to maintain consistency and reproduce the 

infrastructure environment.

Immutable Infrastructure
The concept of immutable infrastructure is one of the fundamental 

notions offered by Terraform. Rather than manually changing current 

infrastructure, Terraform enables the predictable and reproducible 

construction of new, disposable infrastructure. Organizations can preserve 

consistency and minimize configuration drift by accepting immutable 

infrastructure, which leads to more stable and reliable systems. Terraform 

declarative syntax and infrastructure state management make it easy to 

define infrastructure as code, allowing teams to rapidly provision and 

destroy environments effortlessly.

Immutable infrastructure takes a different approach by emphasizing 

the creation of new instances for every configuration change. Instead 

of modifying existing resources, new instances are provisioned with the 

updated configurations, while old instances are decommissioned. This 

approach ensures that infrastructure remains consistent and reproducible 

and eliminates configuration drift.

Chapter 1  terraform: InfrastruCture as Code



24

For example, using Terraform, an organization can define 

infrastructure configurations in code and create new instances with the 

desired changes. For the web server software update mentioned earlier, 

Terraform would provision new instances with the updated software 

version and seamlessly switch traffic to the new instances.

Immutable infrastructure with Terraform offers a number of 

advantages:

• Consistency and reproducibility: Immutable 

infrastructure provides a consistent and reproducible 

environment as every deployment involves creating 

new instances with known configurations defined in 

Terraform code. This ensures that each deployment is 

predictable and eliminates configuration drift.

• Resilience and scalability: With immutable 

infrastructure, failures and scalability challenges can 

be addressed by provisioning new instances. The 

Terraform IaC approach allows organizations to easily 

scale up or down their infrastructure by provisioning 

new resources and decommissioning old ones 

as needed.

• Rollbacks and roll forwards: Immutable infrastructure 

simplifies rollbacks and roll forwards. If an issue 

occurs, organizations can roll back by redirecting traffic 

to the previous instances. Similarly, rolling forward 

involves provisioning new instances with updated 

configurations and updating routing to the new 

instances, ensuring seamless transitions.

Chapter 1  terraform: InfrastruCture as Code



25

• Infrastructure configuration as code: Terraform 

enables organizations to define infrastructure 

configurations in code, facilitating collaboration, 

version control, and automated deployments. 

Infrastructure code can be reviewed, tested, and 

deployed as part of a CI/CD pipeline, ensuring 

consistent and reliable infrastructure changes. 

Figure 1-6 and Table 1-3 give insights into the 

mechanics of mutable and immutable updates, which 

will help you understand how they work along and the 

architectural differences between the two.  

Figure 1-6. Mutable versus immutable infrastructure

Chapter 1  terraform: InfrastruCture as Code



26

Table 1-3. Mutable vs. Immutable

Topic Mutable Immutable

Consistency requires reviews to ensure 

configuration consistency 

across nodes

streamlines operations

software 

updates

requires ongoing configuration 

changes of the underlying 

infrastructure to support 

application updates

supports continuous deployment of 

a software application by matching 

infrastructure version to an 

application version

security exposes risk of configuration 

inconsistency across instances

mitigates manual errors that may 

result in security threats

scaling offers less control in 

rapidly replicating an exact 

configuration

supports scaling of infrastructure 

by adding and removing nodes as 

needed

operational 

Cost

Increases operational overhead reduces operational costs

 Bridging the Gap
As more businesses utilize cloud computing, the necessity for fast 

infrastructure provisioning becomes critical. Terraform enables 

enterprises to manage infrastructure across many service models, bridging 

the gap between traditional infrastructure and cloud-native platforms. 

In this section, we will look at how Terraform can be used to supply IaaS 

resources such as virtual machines, storage, and networking, as well as 

PaaS resources such as managed databases and serverless services. In 

addition, we will discuss the advantages of using Terraform to manage 

infrastructure across various service models.

Chapter 1  terraform: InfrastruCture as Code



27

 Provisioning IaaS Resources with Terraform
Terraform enables organizations to provision IaaS resources by defining 

infrastructure configurations as code. With its extensive provider 

ecosystem, Terraform supports leading cloud providers such as AWS, 

Azure, and Google Cloud Platform, among others. The following are some 

key use cases for Terraform in IaaS provisioning.

Virtual Machine Provisioning
Terraform allows the definition and deployment of virtual machines with 

desired configurations, sizes, and operating systems.

Infrastructure can be scaled up or down effortlessly, ensuring efficient 

resource utilization and cost management.

Storage and Networking Configuration
Terraform enables the provisioning of storage resources such as disks, 

object storage, and file shares, along with networking components such as 

virtual networks, subnets, and load balancers.

Network security groups, firewall rules, and routing configurations can 

be defined and managed through Terraform code, ensuring consistent and 

secure network setups.

 Provisioning PaaS Resources with Terraform
Terraform versatility extends beyond IaaS provisioning; it also facilitates 

the provisioning of PaaS resources, empowering organizations to leverage 

cloud-native services efficiently. The following are some examples of PaaS 

resources that can be provisioned using Terraform.

Chapter 1  terraform: InfrastruCture as Code



28

Managed Databases
Terraform allows the creation and configuration of managed databases 

such as Amazon RDS, Azure SQL Database, and Google Cloud Spanner.

Database specifications, performance settings, and security 

configurations can be defined using Terraform code, enabling consistent 

and reproducible database deployments.

Serverless Functions and Event-Driven Architectures
Apart from the VMware platform, Terraform integrates with public cloud 

serverless platforms such as AWS Lambda, Azure Functions, and Google 

Cloud Functions.

With Terraform, organizations can define serverless functions, 

configure triggers, and manage event-driven architectures, enabling 

efficient and scalable application development and deployment.

 Benefits of Utilizing Terraform for Managing 
Infrastructure Across Service Models
The use of Terraform for managing both IaaS and PaaS resources brings 

numerous benefits to organizations, as shown in Figure 1-7.

Chapter 1  terraform: InfrastruCture as Code



29

Figure 1-7. Benefits of using Terraform for managing infrastructure 
across service models

Infrastructure as Code Consistency
By treating infrastructure as code, Terraform ensures consistent and 

reproducible deployments across different service models. Infrastructure 

configurations are version-controlled, enabling easy collaboration, change 

tracking, and auditing.

Automation and Efficiency
Terraform enables the automation of infrastructure provisioning, reducing 

manual effort and minimizing the risk of human error. With Terraform 

declarative approach, infrastructure changes are efficiently applied, 

ensuring desired state and accelerating deployment cycles.

Chapter 1  terraform: InfrastruCture as Code



30

Scalability and Flexibility
Terraform’s ability to manage infrastructure across service models allows 

organizations to scale resources up or down based on demand.

The flexibility of provisioning both IaaS and PaaS resources through 

a unified approach enables organizations to adopt and leverage the most 

suitable services for their applications.

Hybrid Cloud and Multicloud Support
Terraform’s multicloud support allows organizations to manage 

infrastructure across various cloud providers, on-premises environments, 

and hybrid cloud configurations. Organizations can avoid vendor lock-in 

and optimize costs.

 Hands-On Exercise: Setting Up Terraform 
Open Source for VMware Infrastructure 
on Ubuntu
As we go deeper into the complexity of infrastructure management, 

the concept of a Terraform provider evolves. A Terraform provider is 

a plugin that allows Terraform to interface with the API of a specific 

service provider. Terraform can now deploy and manage resources on the 

corresponding platform in a timely and efficient manner.

Terraform, as described previously in the chapter, comes with a 

plethora of built-in providers, including VMware, AWS, Azure, Google 

Cloud Platform, and a slew of others. Custom providers can also be built to 

communicate with proprietary or specialized infrastructure. Terraform will 

connect with the underlying infrastructure using the provider you provide 

in your configuration file to add, edit, or remove resources as needed. In 

this regard, the VMware provider is an excellent example of how Terraform 

Chapter 1  terraform: InfrastruCture as Code



31

providers perform in practice. The VMware provider is a plugin for VMware’s 

infrastructure platform that facilitates the deployment and management 

of virtual machines, networks, and storage resources. Terraform can easily 

provision, update, and delete these resources with a single configuration 

file by communicating with the VMware API. Furthermore, the VMware 

partner offers several features that enhance the infrastructure administration 

experience. Support for a wide range of VMware products is provided. 

Likewise, the service offers various configuration choices, including 

customized needs, remote console access, and guest customization. In 

a nutshell, the VMware supplier emphasizes the power and simplicity of 

Terraform providers. Terraform abstracts the complexities of infrastructure 

management and offers a simple, declarative language for specifying 

desired state, resulting in efficient and scalable resource deployment 

and maintenance. The VMware provider illustrates Terraform providers’ 

capabilities and features in action. Before we begin, it is important to note 

that the process of establishing Terraform for VMware infrastructure may 

vary depending on your specific environment and infrastructure setup. As 

a result, this exercise is intended to give you a basic overview of the process; 

you may need to adjust it to match your specific needs.

You will need an Ubuntu system as well as access to a VMware vSphere 

environment to get started.

Step 1
Terraform requires you to install the necessary packages. This may be 

accomplished with the apt package manager. Open a terminal window and 

run sudo apt-get update to update the package list. Then, run sudo apt- 

get install unzip to install the unzip package.

Step 2:
You may now download the most recent version of Terraform from the 

official website (https://www.Terraform.io/downloads.html) using your 

web browser. When the download is finished, use the command unzip 

Terraform_*_linux_amd64.zip to extract the archive, replacing the * with 

the version number.

Chapter 1  terraform: InfrastruCture as Code

https://www.terraform.io/downloads.html


32

Here’s the simple command:

wget https://releases.hashicorp.com/terraform/1.0.7/

terraform_1.0.7_linux_amd64.zip

Step 3
Extract the downloaded file archive.

Here’s the simple command:

unzip terraform_1.0.7_linux_amd64.zip

Step 4
Move the unzipped executable into a directory searched for 

executables. For Ubuntu it is usually /usr/local/bin.

sudo mv terraform /usr/local/bin/

Finally, change the PATH environment variable to include the 

Terraform binary directory. You can do this by editing the bashrc file in 

your home directory and adding the line export PATH=$PATH:/path/to/

Terraform at the end, replacing /path/to/Terraform with the actual path 

to the Terraform binary.

You can run the following:

terraform --version

Here’s some sample output:

root@ubantu:/home# terraform –version

terraform v1.3.9

on linux_amd64

This will provide you with the needed Terraform core product, which 

is now installed on your Ubuntu computer. Now you have two options 

for installing the vSphere provider after you have Terraform installed on 

your system.

Chapter 1  terraform: InfrastruCture as Code



33

• Automated installation of the vSphere provider:

 To get the Terraform provider for vSphere, create a 

main.tf file in the current directory from where you 

can access the Terraform executable.

 Put the following sample contents in the main.tf file:

Terraform {

  required_providers {

    vsphere = {

      source = "hashicorp/vsphere"

      version = "2.3.1"

    }

  }

required_version = ">=0.13" #This is if you have 

Terraform Version13 installed in previous step

}

 Navigate to your working directory where you 

have Terraform main.tf file created and run 

Terraform init.

 Example: Initialize and download the provider.

$ terraform init

Initializing the backend...

Initializing provider plugins...

- Finding hashicorp/vsphere versions matching ">= 

x.y.z" ...

- Installing hashicorp/vsphere x.y.z ...

- Installed hashicorp/vsphere x.y.z (signed by 

HashiCorp, key ID *************)

...terraform has been successfully initialized!

Chapter 1  terraform: InfrastruCture as Code



34

• Manual installation of the vSphere provider:

 The latest release of the provider can be found on 

releases.hashicorp.com. You can download the 

appropriate version of the provider for your operating 

system using a command-line shell or a browser.

The following example uses Bash on Linux (x64):

 a. On a Linux operating system with Internet 

access, download the plugin from GitHub.

RELEASE=x.y.z

wget -q https://releases.hashicorp.com/terraform-

provider- vsphere/${RELEASE}/terraform-provider-

vsphere_${RELEASE}_linux_amd64.zip

Note You can check the latest version of the vsphere provider on 
the terraform provider registry website.

 https://registry.terraform.io/providers/hashicorp/
vsphere/latest/docs

 b. Extract the plugin.

tar xvf terraform-provider-vsphere_${RELEASE}_

linux_amd64.zip

 c. Create a directory for the provider.

mkdir -p ~/.terraform.d/plugins/local/hashicorp/

vsphere/${RELEASE}/linux_amd64

Chapter 1  terraform: InfrastruCture as Code

https://releases.hashicorp.com/terraform-provider-vsphere/
https://registry.terraform.io/providers/hashicorp/vsphere/latest/docs
https://registry.terraform.io/providers/hashicorp/vsphere/latest/docs


35

 d. Copy the extracted plugin to a target system 

and move to the Terraform plugins directory.

mv terraform-provider-vsphere_v${RELEASE} 

~/.terraform.d/plugins/local/hashicorp/

vsphere/${RELEASE}/linux_amd64

 e. Verify the presence of the plugin in the 

Terraform plugins directory.

cd ~/.terraform.d/plugins/local/hashicorp/

vsphere/${RELEASE}/linux_amd64

ls

Once Terraform and the vSphere provider are installed, you can use 

the Terraform –version tool to validate all your installations.

root@ubantu:/home/user# terraform - -version

terraform v1.3.9

on linux_amd64

+provider local/hashicorp/vsphere v2..3.1

root@ubantu:/home/user#

 Summary
This chapter covered the transformative impact of infrastructure as code 

on IT infrastructure management. We explored Terraform’s declarative 

model and its integration with providers and provisioners for diverse 

platforms. We compared the open-source and HashiCorp versions 

and highlighted Terraform’s automation capabilities for immutable 

infrastructure and standardized deployments.

Chapter 1  terraform: InfrastruCture as Code



36

Additionally, we emphasized Terraform’s ability to bridge IaaS and 

PaaS provisioning and concluded with a hands-on exercise for setting 

up Terraform on Ubuntu for VMware infrastructure. Overall, the chapter 

provided a comprehensive understanding of IaC and Terraform’s potential 

for efficient infrastructure management.

Chapter 1  terraform: InfrastruCture as Code



37

CHAPTER 2

Deep Dive into 
Terraform
In the previous chapter, we delved into the world of infrastructure as 

code (IaC) and explored fundamental concepts related to Terraform. 

We discussed Terraform’s widespread application across various IT 

infrastructure domains and highlighted the significant advantages of 

automating infrastructure using Terraform.

In this chapter, we will take a deeper dive into the practical aspects of 

using Terraform and its related concepts. We will commence by examining 

Terraform’s role in diverse infrastructure landscapes. Furthermore, we will 

introduce you to the pivotal components of Terraform operations, namely, 

the configuration file and state file. We’ll closely scrutinize these Terraform 

files and their associated sections and elucidate how they enable us to 

define and manage resources using IaC.

Our exploration will also encompass essential concepts that empower 

Terraform, such as providers, modules, variables, and more. To provide 

a hands-on experience, we will walk you through a practical exercise 

demonstrating how to provision a VMware virtual machine using 

Terraform.

© Sumit Bhatia, Chetan Gabhane 2024 
S. Bhatia and C. Gabhane, Reverse Engineering with Terraform,  
https://doi.org/10.1007/979-8-8688-0074-0_2

https://doi.org/10.1007/979-8-8688-0074-0_2


38

 Terraform and Its Presence in the IT 
Infrastructure Ecosystem
As infrastructure continues to evolve, it can be helpful to categorize it into 

broad groups based on its purpose and function. We are going to explore 

some of the most common infrastructure domains and how Terraform fits 

into each of them.

 Cloud Infrastructure
Cloud infrastructure is a type of infrastructure that is hosted in the 

infrastructure space managed by a third-party provider, rather than 

on-premises. That third-party provider offers IT infra and services to a 

variety of organizations from its common platform. Examples of cloud 

infrastructure providers include Amazon Web Services (AWS), Microsoft 

Azure, and Google Cloud Platform (GCP). Terraform has a strong presence 

in the cloud infrastructure market, with support for all the major cloud 

providers. With Terraform, organizations can use a single codebase to 

manage their infrastructure across multiple cloud providers, simplifying 

management and reducing costs.

 Network Infrastructure
Network infrastructure refers to the hardware and software components 

that make up a network, including routers, switches, and firewalls. 

Especially with the origin of virtualization in the network domain that 

relates to software-defined networking (SDN), the demand of automated 

management in this domain has grown significantly. Terraform has 

a presence in the network infrastructure market, with support for 

provisioning and managing network infrastructure. With Terraform, 

organizations can use a single codebase to manage their network 

infrastructure, reducing management costs and improving efficiency.

Chapter 2  Deep Dive into terraform



39

 Application Infrastructure
Application infrastructure refers to the software and hardware components 

that make up an application, including web servers, databases, and load 

balancers. Terraform has a presence in the application infrastructure 

market, with support for provisioning and managing application 

infrastructure. With Terraform, organizations can use a single codebase to 

manage their application infrastructure, reducing management costs and 

improving efficiency.

 Security Infrastructure
Security infrastructure refers to the hardware and software components 

that are used to secure an organization’s IT infrastructure, including 

firewalls, intrusion detection systems, and encryption tools. Terraform 

has a presence in the security infrastructure market, with support for 

managing security infrastructure. With Terraform, organizations can 

use a single codebase to manage their security infrastructure, improving 

efficiency and reducing the risk of errors.

According to the 2021 State of DevOps report by Puppet, Terraform 

was reported as the most popular IaC tool among respondents, with 

40 percent of organizations using it for infrastructure management. In 

addition, the report found that Terraform is the second most popular tool 

for provisioning and configuration management, after Ansible.

Terraform’s popularity is further reflected in its vibrant and growing 

community of users and contributors, who have developed and shared 

thousands of open-source modules and plugins for the tool. The 

Terraform registry, which provides a central repository for modules, 

currently contains more than 15,000 modules, covering a wide range of 

infrastructure resources.

Chapter 2  Deep Dive into terraform



40

 Terraform Files Deep Dive
Understanding the essential ideas of Terraform files, particularly its 

state and configuration files, is critical. These files are the foundation of 

Terraform’s infrastructure-as-code paradigm, and understanding how they 

operate is critical to working effectively with Terraform. Let us jump into 

each of the file types in detail. Please refer to Figure 2-1.

Config files

Terraform.state

Terraform-provider.tf

User

Different platforms integration with 
Terraform

Figure 2-1. Terraform files deep dive

 Configuration Files
The Terraform configuration file is a plain-text file written in HashiCorp 

Configuration Language (HCL), or JSON, that describes the desired state 

of your infrastructure. This file typically contains resource definitions, 

variables, and data sources, which are used to define and provision 

the infrastructure resources that make up your system. The Terraform 

configuration file is used to define the desired state of your infrastructure 

and what resources need to be created, modified, or deleted to reach 

that state.

Chapter 2  Deep Dive into terraform



41

 Providers
As we covered in Chapter 1, a Terraform provider is a plugin that enables 

the communication between Terraform and the API of a particular 

service provider. This allows Terraform to deploy and manage resources 

on the respective platform with ease and efficiency. A provider in 

Terraform is a plugin that allows Terraform to interact with a specific 

type of infrastructure, such as a cloud provider, a database service, or a 

networking device. Every platform has a unique provider that needs to be 

deployed and integrated with the Terraform configuration files to manage 

the platform using Terraform.

 State File
Terraform generates the Terraform state file to keep track of the current 

condition of your infrastructure. The user has no influence over this file; 

it is automatically generated by the provider and retrieved straight from 

the platform. This state file describes the real status of the Terraform 

infrastructure. This file includes details on the resources that have been 

generated, their present status, and their relationships. Terraform uses 

the state file to identify what modifications need to be done to your 

infrastructure to get it to the desired state. Terraform examines the state 

file and compares it to the configuration file to determine what changes 

need to be done when you run Terraform apply.

It is important to note that the Terraform state file is critical to the 

operation of Terraform, as it is used to track the state of your infrastructure 

and maintain consistency between your configuration and your actual 

infrastructure. The state file is also used to store sensitive information 

such as passwords and access keys, so it should be stored securely and not 

shared between team members.

Chapter 2  Deep Dive into terraform



42

In addition, it is important to keep the Terraform state file up-to-date 

and consistent with your infrastructure. This can be achieved by using 

version control to track changes to the configuration file and state file 

and by regularly running “Terraform plan” to preview the changes that 

Terraform will make.

In nutshell, the Terraform configuration and state files are essential 

components of the infrastructure-as-code paradigm that Terraform 

follows. The configuration file describes the desired state of your 

infrastructure, while the state file tracks the current state and changes that 

need to be made. By understanding these files and keeping them up-to- 

date and secure, you can work effectively with Terraform and maintain the 

desired state of your infrastructure.

As a tool for infrastructure automation, Terraform provides a powerful 

means of defining and managing infrastructure as code. However, as with 

any complex system, it is critical to maintain a proper backup strategy to 

ensure the availability and integrity of your data. In the case of Terraform, 

this means backing up the state file.

The state file is a crucial component of the Terraform workflow, as 

it records the current state of the infrastructure being managed. This 

includes information such as the resources that have been created, their 

current configuration, and any dependencies or relationships between 

them. The state file is used by Terraform to determine the changes that 

need to be made to the infrastructure to bring it into the desired state and 

is therefore a fundamental aspect of the tool’s functionality. Given the 

importance of the state file, it is critical to have a reliable backup strategy in 

place. This can be accomplished by following a few simple steps.

Determine the location of the state file. By default, Terraform stores 

the state file locally in a file named Terraform.tfstate. However, it is also 

possible to store the state remotely using services such as Amazon S3 or 

HashiCorp console. Figure 2-2 shows the suggested backup steps.

Chapter 2  Deep Dive into terraform



43

Figure 2-2. Backup steps for state file

By following these steps, you can ensure that your Terraform state 

file is properly backed up and can be reliably restored in the event of a 

disaster. This can provide peace of mind and help to minimize the impact 

of unexpected events on your infrastructure.

Additionally, it is important to consider the security of the state file 

backups. The state file may contain sensitive information such as access 

keys or passwords, and as such, it should be stored in a secure location 

with appropriate access controls in place. Encryption can also be used to 

further protect the state file from unauthorized access.

Another important consideration is the versioning of state file backups. 

As changes are made to the infrastructure, the state file will be updated 

accordingly. However, it may be necessary to revert to a previous version of 

the state file in the event of an issue. To enable this, it is recommended to 

keep a version history of the state file backups, allowing for easy retrieval of 

previous versions.

Chapter 2  Deep Dive into terraform



44

In addition to manual backups, Terraform also provides a built- 

in feature for backing up the state file automatically. This can be 

accomplished by configuring the back end to automatically store state 

snapshots at regular intervals. This feature can help to further improve the 

reliability and ease of state file backups and can be configured to meet the 

needs of your specific environment.

To summarize, the state file is a fundamental component of the 

Terraform operation, and as such, a dependable backup solution is 

required. You may verify that your Terraform state file is properly backed 

up and can be reliably restored in the case of a disaster by following the 

procedures mentioned and considering additional security and versioning 

issues. This can assist to reduce the effect of unforeseen occurrences on 

your infrastructure and offer you and your staff peace of mind.

 Config File and Its Different Sections
The configuration file, which is the heart of Terraform workflow, defines 

the desired state of the infrastructure being managed by Terraform. This 

includes information such as the resources that need to be created, their 

configuration settings, and any dependencies or relationships between 

them. The configuration file is used by Terraform to determine the changes 

that need to be made to the infrastructure to bring it into the desired state.

It is important to understand the different files and sections in the 

Terraform configuration file, which is the key to describing the desired 

state of your infrastructure. The configuration file is written in HashiCorp 

Configuration Language and contains resource definitions, variables, and 

data sources, among other things. Each section of the configuration file has 

its own purpose and importance in the infrastructure-as-code paradigm 

that Terraform follows. The following is a brief explanation of different 

sections of the configuration file. While explaining different sections, we 

would provide certain sample code for you to refer to for a typical config 

file taking example of VMware VM deployment.

Chapter 2  Deep Dive into terraform



45

 Provider Section
The provider section of the configuration file is used to define the 

infrastructure provider that will be used to provision the resources. 

This section contains information such as the provider’s name, version, 

and configuration options. Providers can include cloud providers such 

as VMware, AWS, Azure, and Google Cloud Platform, as well as other 

infrastructure providers.

The following is the reference provider section for a VMware VM 

deployment via Terraform:

terraform {

  required_providers {

    vsphere = {

      source = "local/hashicorp/vsphere"

      version = "2.3.1"  ## Check for latest provider available

    }

  }

}

provider "vsphere" {

vsphere_server = "<Fully qualified domain name or IP of Vsphere 

server>"

user = "administrator@vsphere.local"

password = "XXXX"

#if you have a self-signed cert

allow_unverified_ssl = true

}

Chapter 2  Deep Dive into terraform



46

 Data Section
The data section is used to define data sources, which provide read-only 

access to external data that can be used to inform the configuration of 

resources. Terraform providers are employed to bring the values referred 

to in the data section. The values identified are unique for that platform. 

We will explain more about the variables and referencing in the later 

part of this chapter. Here we just want to bring the attention to the “data” 

section required to write a configuration file.

data "vsphere_datacenter" "dc" {

  name = var.datacenter

}

data "vsphere_resource_pool" "pool" {

  name          = var.resource_pool

  datacenter_id = "${data.vsphere_datacenter.dc.id}"

}

data "vsphere_tag" "tag2" {

  name        = var.environment_tag

  category_id = "${data.vsphere_tag_category.category2.id}"

}

data "vsphere_folder" "folder" {

  path = var.vcentre_folder

}

... so on.

 Resource Section
The resource section is used to define the resources that make up your 

infrastructure. This section contains information such as the resource type, 

name, and configuration options. Resources can include virtual machines, 

Chapter 2  Deep Dive into terraform



47

networks, storage accounts, and more. Each resource definition in the 

configuration file corresponds to a resource that Terraform will create, 

modify, or delete in your infrastructure.

The following is a sample resource section. You can modify the values 

based on your need.

resource "vsphere_virtual_machine" "XXXXX" {

name             = var.vm_name

resource_pool_id = "${data.vsphere_resource_pool.pool.id}"

#resource_pool_id =  "${data.vsphere_compute_cluster.cluster.

resource_pool_id}"

datastore_id = "${data.vsphere_datastore.datastore1.id}"

folder     =  "${data.vsphere_datacenter.dc.name}/vm/${data.

vsphere_folder.folder.path}"

num_cpus                   = var.vm_cpu

cpu_hot_add_enabled        = "true"

  memory                     = var.vm_memory

  memory_hot_add_enabled     = "true"

  wait_for_guest_net_timeout = 0

  wait_for_guest_ip_timeout  = 0

   firmware                   =  "${data.vsphere_virtual_machine.

template.firmware}"

   tags                       =  ["${data.vsphere_tag.tag1.id}", 

"${data.vsphere_tag.tag2.id}"]

   guest_id                   =  "${data.vsphere_virtual_machine.

template.guest_id}"

  network_interface {

 network_id   = "${data.vsphere_network.network_vlan.id}"

  adapter_type=  "${data.vsphere_virtual_machine.template.

network_interface_types[0]}"

  }

Chapter 2  Deep Dive into terraform



48

  disk {

    label            = "disk0.vmdk"

    size             = var.disk_size

  eagerly_scrub    =  "${data.vsphere_virtual_machine.template.

disks.0.eagerly_scrub}"

  thin_provisioned= "${data.vsphere_virtual_machine.template.

disks.0.thin_provisioned}"

  }

  clone {

     template_uuid =  "${data.vsphere_virtual_machine.

template.id}"

    customize {

      windows_options {

        computer_name         = var.computer_name

        admin_password        = var.vm_admin_password

        auto_logon            = true

        auto_logon_count      = 4

        full_name             = "Administrator"

        run_once_command_list = var.skip_post_deploy ? local.

start_up_nocmd : local.start_up_command

      }

      network_interface {

        ipv4_address = var.network_address

        ipv4_netmask = var.network_address_subnetmask

      }

      ipv4_gateway = var.network_address_gateway

    }

  }

}

Chapter 2  Deep Dive into terraform



49

The objects defined in this resource section are important and 

need to be used as is. The name of the objects are fixed and unique 

per provider; however, the value of these objects are specific to your 

environment. We see in the resource section that there are different 

subsections. For example, in the code snippet of the resource section, 

we can see for a VMware VM deployment, we have separate definitions 

to define the general settings of a VM, then network configurations, disk 

configurations, etc.

 Variable Section
The variable section is used to define variables that can be used 

throughout the configuration file. Variables can include strings, 

numbers, and Booleans, and can be used to pass in values to resource 

configurations. Variables are an important way to make your Terraform 

configuration more flexible and reusable. Variables play a crucial role 

when we want to manage the environment with the help of Terraform 

modules. The Terraform modules are the repeatable configuration 

requirements written where users can just enter desired values without 

going into the background writing of a detailed configuration file. We will 

touch upon variables and modules in detail during the later part of this 

chapter. Here are sample Terraform variables.tf and module files for 

reference:

Vaiables.tf file:

variable "datacenter" {

  description = "VMware Vsphere datacenter name"

}

Chapter 2  Deep Dive into terraform



50

variable "resource_pool" {

   description =  "Specify cluster present inside datacentre, 

example: <ClusterName>/Resources"

}

variable "vm_name" {

  description = "Name of the VM to be assigned in Vcentre"

}

variable "vm_cpu" {

   description =  "Count of CPU's to be assigned to VM eg. 1 or 4 

or 8 etc."

}

variable "vm_memory" {

   description =  "Amount of memory to be assigned in MB for 

example 12288 MB == 12 GB of RAM"

}

variable "datastore" {

   description =  "Vsphere datastore name where VM is to be 

deployed"

}

variable "disk_size" {

  description = "Size of the disk we need to deploy in GB"

}

variable "network" {

  description = "Network name where assignment is required"

}

variable "network_address" {

  description = "Static IP address that needs to be assigned"

}

Chapter 2  Deep Dive into terraform



51

variable "network_address_subnetmask" {

   description =  "Subnet Mask in CIDR notation eg. 23 or 

24 etc."

}

variable "network_address_gateway" {

  description = "Gateway for the subnet specified"

}

variable "template_name" {

   description =  "Name of the VM Template through which VM will 

be cloned"

}

variable "computer_name" {

  description = "Name of the computer that is to be assigned"

}

variable "skip_post_deploy" {

  type        = bool

   description =  "Flag to enable/disable post deployment task 

like Salt bootstrap, DNS"

  default     = false

}

variable "environment_tag" {

  description = "Resource tags"

  #Possible values:  "Development", "Production", 

"Qualification", "Test"

}

variable "vcentre_folder" {

  description = "Vsphere folder to deploy a VM"

}

Chapter 2  Deep Dive into terraform



52

The following are some sample module inputs for ease in deployment. 

If you notice, we can define a variable for each input required to play 

in a module. Users just need to provide sample values in the following 

variables and can just play the following file for the VM deployment. They 

do not need to write a detailed configuration file for a VM deployment 

each time. Just specify the required values in a module. Thus, you can 

create repeatable code.

module "vmware_windows_vm" {

  source        = "./../"

  datacenter    = "LabXXXX"

  resource_pool = "x.x.x.x/Resources"

  instance_count             = 1

  vm_name                    = "Ubantu"

  vm_cpu                     = 4

  vm_memory                  = 12288

  datastore                  = "Local_Disk_800GB"

  disk_size                  = 120

  network                    = "VM Network"

  network_address            = "x.x.x.x"

  network_address_subnetmask = 24

  network_address_gateway    = "x.x.x.x"

  template_name              = "Win2K16"

  computer_name              = "Terraform-test"

  skip_post_deploy           = true

  catg_enironment            = "Environment"

  vcentre_folder             = "TerraformDeployments"

}

We are going to touch upon modules again in the later part of this 

chapter.

Chapter 2  Deep Dive into terraform



53

 Terraform Provisioners
Terraform provisioners come to the rescue by enabling the execution 

of scripts and commands on target machines before or after resource 

creation. In this section, we will explore the fundamentals of Terraform 

provisioners and their use cases, and we will provide a code example 

illustrating their usage in VMware infrastructure.

 Understanding Terraform Provisioners

Terraform provisioners are a powerful feature that allows you to run scripts 

or execute commands on remote machines during the infrastructure 

provisioning process. They facilitate various automation tasks such as 

configuring software, installing dependencies, initializing databases, 

and more.

Terraform supports two types of provisioners.

• Inline provisioners: Inline provisioners are defined 

directly within the Terraform configuration file.

• External provisioners: External provisioners are 

separate scripts or commands executed by Terraform.

 Example Use of Inline Provisioners in VMware 
VM Deployment

Let’s consider an example where we want to provision a virtual machine 

on VMware and configure a custom script to run after the VM creation.

Here’s the main.tf file:

provider "vsphere" {

  user             = var.vsphere_username

  password         = var.vsphere_password

  vsphere_server   = var.vsphere_server

Chapter 2  Deep Dive into terraform



54

  allow_unverified_ssl = true

}

resource "vsphere_virtual_machine" "example_vm" {

  name             = "my-vm"

  resource_pool_id = data.vsphere_resource_pool.pool.id

  datastore_id     = data.vsphere_datastore.datastore.id

  template_uuid    = data.vsphere_virtual_machine.template.id

  num_cpus         = 2

  memory           = 4096

  network_interface {

    network_id = data.vsphere_network.network.id

  }

  provisioner "remote-exec" {

    inline = [

      "echo 'Hello, Provisioner!'",

      "echo 'This is an example of an inline provisioner.'",

      "echo 'You can run custom scripts or commands here.'",

    ]

  }

}

In this example, we provision a VMware virtual machine using the 

vsphere_virtual_machine resource. Additionally, we define an inline 

provisioner of type remote-exec. The inline provisioner executes a series 

of commands or scripts on the newly created virtual machine.

 Example Use of External Provisioners

External provisioners allow you to execute custom scripts or actions during 

the provisioning process. Here’s an example use case of using external 

provisioners with VMware VM deployment.

Chapter 2  Deep Dive into terraform



55

Let’s say you need to deploy VMware virtual machines and configure 

them to join an Active Directory domain as part of your infrastructure 

setup. You can achieve this by using external provisioners in Terraform. 

Here’s how you might structure your Terraform configuration:

Set Up Variables and Resources
First, you would define your variables and resources, including the 

VMware virtual machine:

Here is the HCL code:

variable "vm_name" {

  type    = string

  default = "my-vm"

}

resource "vsphere_virtual_machine" "my_vm" {

  name              = var.vm_name

  guest_id          = "windows9Server64Guest"

  ...

}

Use an External Provisioner
Now, you can use an external provisioner to run a script on the deployed 

VM. In this case, we’re using the local-exec provisioner, which runs a 

script on the machine running Terraform. You can use an appropriate 

provisioner based on your use case.

resource "null_resource" "configure_vm" {

  triggers = {

    vm_id = vsphere_virtual_machine.my_vm.id

  }

Chapter 2  Deep Dive into terraform



56

  provisioner "local-exec" {

    command = "powershell -Command \".\\join_domain.ps1\""

  }

}

Create the External Script
You would also need to create the join_domain.ps1 script in the same 

directory as your Terraform configuration. This script would contain the 

logic to join the VM to the Active Directory domain.

# PowerShell script to join a Windows VM to a domain

$domain = "example.com"

$username = "admin"

$password = "password"

Add-Computer -DomainName $domain -Credential (Get-Credential  

 -UserName $username -Password $password)

Depend on Script Execution
To ensure that the script is executed after the VM is deployed, set up a 

dependency between the null_resource and the VMware VM.

depends_on = [vsphere_virtual_machine.my_vm]

Apply the Configuration
Finally, apply your Terraform configuration, and Terraform will deploy 

the VMware VM and then execute the script to join it to the Active 

Directory domain.

Chapter 2  Deep Dive into terraform



57

This example demonstrates how you can use external provisioners to 

perform custom actions during VMware VM deployment. Depending on 

your specific use case, you can adapt the script and provisioner to perform 

other tasks such as software installation, configuration, or system updates 

as needed.

 Output Section
The output section is used to define the outputs that will be generated 

by the Terraform configuration. Outputs can include resource IDs, IP 

addresses, and other information that may be needed by other parts of 

your infrastructure provisioning/management. Outputs can be used to 

pass information between different parts of your Terraform configuration 

or to other systems.

 Backup Strategy for Config File
Given the importance of the configuration file, it is critical to have a 

reliable backup strategy in place. This can be accomplished by following a 

few simple steps, as shown in Figure 2-3.

Chapter 2  Deep Dive into terraform



58

Figure 2-3. Steps for backing up config files

By following these steps, you can ensure that your Terraform 

configuration file is properly backed up and can be reliably restored in the 

event of a disaster. This can provide peace of mind and help to minimize 

the impact of unexpected events on your infrastructure.

In addition to the configuration file, it is also important to consider 

the security of any sensitive data that may be included in the file. This 

can include access keys or passwords, which should be stored securely 

and encrypted if possible. Additionally, it is recommended to use version 

control to manage changes to the configuration file, allowing for easy 

retrieval of previous versions if needed.

Another important consideration when dealing with Terraform 

configuration files is the use of variables. Variables provide a means of 

passing values to your configuration file, which can help to make your 

infrastructure more flexible and easier to manage. However, it is important 

to ensure that these variables are properly managed and secured, 

especially when dealing with sensitive data.

Chapter 2  Deep Dive into terraform



59

To ensure the security of your variables, it is recommended to use a 

separate file to store them, rather than including them directly in your 

configuration file. This file can then be encrypted and stored in a secure 

location, with appropriate access controls in place. Additionally, it is 

important to ensure that any variables passed to your configuration file 

are properly validated, to prevent unauthorized access or malicious 

modifications.

In addition to variables, it is also important to consider the use 

of Terraform modules. Modules provide a means of encapsulating 

infrastructure components and making them reusable, which can help 

to simplify your configuration file and reduce duplication. However, it is 

important to ensure that modules are properly managed and versioned, to 

ensure the integrity of your infrastructure.

To manage your Terraform modules, it is recommended to use a 

version control system such as Git, which can help to track changes and 

enable collaboration. Additionally, it is important to ensure that modules 

are properly tested before deployment, to prevent issues or conflicts with 

other components of your infrastructure.

 Mastering Control: Utilizing Terraform 
Variables as Powerful Module Parameters
To streamline the deployment process and promote reusability, it’s 

essential to parameterize our Terraform configuration. Here, we will 

explore how we can leverage variables, maps, and lists in Terraform, 

along with variable defaults and populating variables, to enhance our 

configuration management. We will also discuss specific examples of using 

these features in the context of deploying infrastructure on VMware.

Chapter 2  Deep Dive into terraform



60

 Variables
Variables in Terraform provide a way to dynamically set and manage 

values within our configuration. By using variables, we can make our 

Terraform modules more flexible, allowing for customization and 

adaptability. For example, let’s say we are deploying a VMware virtual 

machine (VM) using Terraform, and we want to specify the VM size as a 

variable. We can define a variable named vm_size and assign it a default 

value or let the user input a value during runtime. This way, we can easily 

change the VM size based on specific requirements or environmental 

constraints.

In the context of VMware infrastructure provisioning with Terraform, 

variables can be utilized to define and customize various aspects of the 

infrastructure. Let’s talk about how variables can be leveraged.

 Defining Variables

In your Terraform configuration file (typically with a .tf extension), you 

can declare variables in the variable block. For example, you can define 

variables such as vm_name, cpu_count, memory_size, and disk_size 

to specify the characteristics of virtual machines to be provisioned 

in VMware.

 Assigning Variable Values

Variable values can be assigned directly in the configuration file or through 

other mechanisms such as environment variables or command-line 

arguments. Assigning variable values is at the user discretion and their 

strategy for adopting Terraform in their environment.

For instance, you can set the value of vm_name to web-server and cpu_

count to 2, either in the configuration file or by passing them as command- 

line arguments when executing Terraform commands. These variable 

assignments are of different types including string, numbers, Boolean, etc.

Chapter 2  Deep Dive into terraform



61

 Input Validation and Type Constraints

Terraform allows you to enforce constraints on variable values, such 

as required fields, allowed value ranges, or specific data types. You can 

specify validation rules using attributes such as default, description, type, 

validation, and more in the variable block.

For example, you can enforce that the cpu_count variable must be an 

integer greater than or equal to 1.

 Variable Interpolation

Variables can be interpolated within your Terraform configuration to 

dynamically populate values in resource definitions. For instance, you can 

use the vm_name variable as part of the virtual machine resource block to 

create unique virtual machine names based on the provided input.

 Variable Overrides

When executing Terraform commands, you can override variable values to 

accommodate different environments or specific use cases. This flexibility 

allows you to reuse the same Terraform configuration with different input 

values, making it adaptable to varying infrastructure requirements.

# Define variables

variable "vm_name" {

  description = "Name of the virtual machine"

  type        = string

}

variable "cpu_count" {

  description = "Number of CPUs for the virtual machine"

  type        = number

  default     = 2

}

Chapter 2  Deep Dive into terraform



62

variable "memory_size" {

   description =  "Amount of memory in MB for the virtual 

machine"

  type        = number

  default     = 4096

}

variable "disk_size" {

  description = "Size of the virtual disk in GB"

  type        = number

  default     = 20

}

# VMware virtual machine resource

resource "vsphere_virtual_machine" "example_vm" {

  name             = var.vm_name

  cpu_number       = var.cpu_count

  memory           = var.memory_size

  # ... other configuration options for the virtual machine

}

In the previous example, we define four variables: vm_name, cpu_count, 

memory_size, and disk_size. Each variable has a description to provide 

clarity on its purpose. The type attribute specifies the data type of the 

variable, such as string or number.

The default attribute sets default values for the variables. If no value 

is provided when executing Terraform commands, these default values 

will be used. For example, if no value is passed for cpu_count, it will 

default to 2.

Within the vsphere_virtual_machine resource block, we reference 

the variables using the var prefix. This allows the values provided for the 

variables to be interpolated dynamically when provisioning the virtual 

machine. To use this configuration, you can execute Terraform commands 

and provide values for the variables. For example:

Chapter 2  Deep Dive into terraform



63

terraform plan -var="vm_name=web-server" -var="cpu_count=4"

In the previous command, we override the vm_name variable with the 

value web-server and the cpu_count variable with the value 4. This way, 

you can customize the virtual machine’s attributes based on your specific 

needs. By utilizing variables in this manner, you can create flexible and 

reusable Terraform configurations for provisioning VMware infrastructure.

 Maps
Maps in Terraform allow you to define a collection of key-value pairs, 

where each key is unique. Maps are useful for organizing and managing 

data in a structured manner. Let’s explore how maps can be utilized in a 

Terraform configuration for VMware.

In the context of VMware infrastructure provisioning with Terraform, 

maps can be employed to define and manage various properties of virtual 

machines or other resources. Let’s talk about how maps can be leveraged.

 Defining a Map

In your Terraform configuration file, you can declare a map variable using 

the variable block.

For example, you can define a map called vm_config to hold the 

configuration details of VMware virtual machines:

variable "vm_config" {

   description =  "Configuration details of VMware virtual 

machines"

  type        = map

}

Chapter 2  Deep Dive into terraform



64

 Assigning Values to the Map

Map values can be assigned directly in the configuration file or through 

other mechanisms such as command-line arguments or environment 

variables.

For instance, you can define the map values for vm_config as follows:

vm_config = {

"web-server" = {

cpu_count   = 2

memory_size = 4096

disk_size   = 20

}

"database-server" = {

cpu_count   = 4

memory_size = 8192

disk_size   = 100

}

}

 Accessing Map Values

You can access specific values within the map using the key associated 

with each value. For example, to access the cpu_count value for the web- 

server virtual machine, use this:

resource "vsphere_virtual_machine" "example_vm" {

  name             = "web-server"

  cpu_number       = var.vm_config["web-server"]["cpu_count"]

  memory           = var.vm_config["web-server"]["memory_size"]

  disk_size        = var.vm_config["web-server"]["disk_size"]

  # ... other configuration options

}

Chapter 2  Deep Dive into terraform



65

 Dynamically Populating Maps

Maps can be dynamically populated using interpolation and other 

Terraform features. For instance, you can use a loop to iterate over a list 

and generate a map with dynamic values based on specific criteria or 

conditions.

 Lists
Lists in Terraform allow you to define ordered collections of values. 

Unlike maps, lists do not have associated keys and are primarily used 

to store multiple related values. In the context of VMware infrastructure 

provisioning with Terraform, lists can be useful for defining arrays of 

properties or configurations for virtual machines or other resources. Let us 

explore how lists can be utilized.

 Defining a List

In your Terraform configuration file, you can declare a list variable using 

the variable block.

For example, you can define a list called datastore_clusters to store 

the names of VMware datastore clusters.

variable "datastore_clusters" {

  description = "Names of VMware datastore clusters"

  type        = list(string)

}

Chapter 2  Deep Dive into terraform



66

 Assigning Values to the List

List values can be assigned directly in the configuration file or through 

other mechanisms such as command-line arguments or environment 

variables. For instance, you can define the list values for datastore_

clusters as follows:

datastore_clusters = ["cluster1", "cluster2", "cluster3"]

 Accessing List Values

You can access specific values within the list using the index position. For 

example, to access the second element in the datastore_clusters list, 

use this:

resource "vsphere_virtual_machine" "example_vm" {

  name             = "web-server"

  datastore_cluster = var.datastore_clusters[1]

  # ... other configuration options

}

 Dynamically Generating Lists

Lists can be dynamically generated using interpolation and other 

Terraform features. For example, you can use a loop to iterate over a map 

and extract specific values to populate a list.

 Variable Defaults
In Terraform, we can assign default values to variables, ensuring that our 

configuration works even if a user does not explicitly provide a value. For 

example, consider a scenario where we are deploying VMware virtual 

machines and want to set a default network interface. By assigning a 

Chapter 2  Deep Dive into terraform



67

default value to the variable representing the network interface, we ensure 

that the configuration remains functional even if the user does not specify 

a custom value.

To assign a default value to a variable, we can use the default 

parameter in the variable declaration. If a user provides a value for that 

variable during runtime, the user-defined value takes precedence over the 

default value.

 Defining a Variable with Default

In your Terraform configuration file, you can define a variable with a 

default value using the variable block. For example, you can define a 

variable called vm_cpu_count with a default value of 2.

variable "vm_cpu_count" {

  description = "Number of CPUs for virtual machine"

  type        = number

  default     = 2

}

 Using the Default Value

If a value is not explicitly provided for the variable at runtime, Terraform 

will use the default value. For instance, if the vm_cpu_count variable is 

not set during execution, Terraform will automatically use the default 

value of 2.

 Overriding the Default Value

Users can override the default value by explicitly providing a value for the 

variable during runtime.

Chapter 2  Deep Dive into terraform



68

For example, when executing Terraform commands, users can set 

the value of vm_cpu_count to a different number, which will override the 

default value. Here’s an example of using variable defaults in a VMware 

configuration:

variable "vm_cpu_count" {

  description = "Number of CPUs for virtual machine"

  type        = number

  default     = 2

}

resource "vsphere_virtual_machine" "example_vm" {

  name       = "web-server"

  cpu_count  = var.vm_cpu_count

  # ... other configuration options

}

In the previous example, if the vm_cpu_count variable is not provided 

during runtime, Terraform will use the default value of 2. However, if a 

value is provided explicitly, it will override the default value.

 Populating Variables
When working with Terraform for VMware infrastructure provisioning, 

you can populate variables in multiple ways. This flexibility allows you 

to customize and configure your Terraform configuration based on 

different scenarios and requirements. Let’s explore the various methods of 

populating variables in Terraform with a VMware example.

Chapter 2  Deep Dive into terraform



69

 Command-Line Flags

You can populate variables by passing values directly through command- 

line flags when executing Terraform commands. For example, to set the 

value of a variable named datastore during runtime, you can use the  

 -var flag:

terraform apply -var="datastore=example_datastore"

 Environment Variables

Another approach is to populate variables using environment variables. 

Terraform automatically reads environment variables with a specific 

naming convention (TF_VAR_variable_name).

For example, you can set the value of a variable named network using 

an environment variable.

export TF_VAR_network="example_network"

 Variable Files

Terraform allows you to store variable values in separate files, known 

as variable files. These files typically have a .tfvars or .tfvars.json 

extension. You can populate variables by creating a variable file and 

specifying its location when executing Terraform commands. For example, 

create a file named variables.tfvars with the following content:

datastore = "example_datastore"

network   = "example_network"

Then, when executing Terraform commands, specify the variable file 

using the -var-file flag.

Chapter 2  Deep Dive into terraform



70

 Interactive Prompts
Terraform can prompt you to enter variable values interactively during 

runtime if a variable is not populated by any of the previous methods. For 

example, if the variable cluster is not populated, Terraform will prompt 

you to enter its value. These are some common methods of populating 

variables in Terraform for VMware infrastructure provisioning. You can 

choose the approach that best suits your workflow and requirements. 

Additionally, you can also combine these methods to handle complex 

configurations and provide flexibility in managing your variables.

Example Usage in VMware Configuration
Here’s an example of populating variables using a combination of 

command-line flags and a variable file:

terraform apply -var="datastore=example_datastore"

export TF_VAR_network="example_network"

datastore = "example_datastore"

network   = "example_network"

variable "datastore" {

  description = "Name of the VMware datastore"

  type        = string

}

variable "network" {

  description = "Name of the VMware network"

  type        = string

}

Chapter 2  Deep Dive into terraform



71

resource "vsphere_virtual_machine" "example_vm" {

  name       = "web-server"

  datastore  = var.datastore

  network    = var.network

  # ... other configuration options}

When executing Terraform commands, you can populate the variables 

using the methods described earlier to customize the configuration for 

your specific VMware environment.

 Leveraging Modularization in Terraform
One of the key features with Terraform is the ability to organize and reuse 

configurations using modules. In this blog, we will delve into the concept 

of modules in Terraform, exploring how they can improve the efficiency 

and scalability of infrastructure provisioning.

 Introduction to Modules
Modules in Terraform allow you to encapsulate reusable infrastructure 

configurations. They provide a way to organize and package resources, 

variables, and other elements together, enabling efficient reuse across 

different environments and projects.

To create a module in Terraform, you need to create a separate 

directory with a specific structure. Let us create a module for provisioning 

VMware virtual machines:

• Create a directory named vm_module.

• Inside the vm_module directory, create a file named 

main.tf with the following content:

Chapter 2  Deep Dive into terraform



72

resource "vsphere_virtual_machine" "example_vm" {

  name             = var.vm_name

   resource_pool_id = data.vsphere_resource_pool.pool.id

   datastore_id     = data.vsphere_datastore.

datastore.id

   template_uuid    = data.vsphere_virtual_machine.

template.id

  num_cpus         = var.num_cpus

  memory           = var.memory

  network_interface {

     network_id = data.vsphere_network.network.id

  }

}

In this example, we define a module that provisions a VMware virtual 

machine. The module has input variables vm_name, num_cpus, and memory 

that allow customization for each instance of the module. The module 

uses the vsphere_virtual_machine resource to create the VM, with the 

specified variable values.

 Module Structure
A Terraform module is essentially a directory containing one or more 

Terraform configuration files. The module directory should have a specific 

structure, including main.tf, variables.tf, and outputs.tf files, among 

others. The main.tf file defines the resources and configurations for 

the module, while variables.tf defines the input variables that can be 

customized for each module instance. The outputs.tf file specifies the 

values that will be exposed by the module for use in other configurations.

The structure of the module directory should resemble the following:

vm_module/

├── main.tf

Chapter 2  Deep Dive into terraform



73

This is a basic structure for a module, and you can add other files like 

variables.tf or outputs.tf based on your requirements.

 Using a Module
To use the module we defined in the previous section, follow these steps: 

first, create a new Terraform configuration file (e.g., main.tf).

In the new configuration file, reference the module by providing the 

module source and any required input variables.

Here’s an example:

module "my_vm" {

source  = "./vm_module"

vm_name = "my-vm"

num_cpus = 2

memory   = 4096

}

In this example, we use the module vm_module located in the local 

directory. We provide values for the input variables vm_name, num_cpus, 

and memory. Terraform will use the module configuration to provision the 

VMware virtual machine.

The previous was some brief insight into modules with Terraform. It 

should give you an idea about how the back-end complexity of defining 

each and every parameter in the configuration file (main.tf ) can be 

masked and end users can simply assign the required variable values and 

exercise the code reusability that come from Terraform modules.

Chapter 2  Deep Dive into terraform



74

 Streamlining Infrastructure Provisioning 
with Terraform
Here, we will focus on the steps involved in committing a configuration 

file, initializing Terraform, and applying the configuration to provision 

resources. We will take an example of a VMware resource provisioning.

 Committing the Configuration File
To get started with Terraform and VMware, you need to create a configuration 

file that defines the desired state of your infrastructure. Let us assume we 

want to provision a virtual machine (VM) on VMware using Terraform.

Here’s an example of main.tf:

provider "vsphere" {

  user             = var.vsphere_username

  password         = var.vsphere_password

  vsphere_server   = var.vsphere_server

  allow_unverified_ssl = true

}

resource "vsphere_virtual_machine" "example_vm" {

  name             = "my-vm"

  resource_pool_id = data.vsphere_resource_pool.pool.id

  datastore_id     = data.vsphere_datastore.datastore.id

  template_uuid    = data.vsphere_virtual_machine.template.id

  num_cpus         = 2

  memory           = 4096

  network_interface {

    network_id = data.vsphere_network.network.id

  }

}

Chapter 2  Deep Dive into terraform



75

In this example, we define a VMware provider configuration and a 

virtual machine resource using the vsphere_virtual_machine resource 

type. We provide the necessary details such as the VM name, resource 

pool, datastore, template, CPU, memory, and network configuration.

 Initializing Terraform
Once you have your configuration file ready, the next step is to initialize 

Terraform. This step ensures that Terraform downloads the necessary 

provider plugins and sets up the working directory.

Here is the command:

 terraform init

Running the Terraform init command initializes the Terraform 

working directory, fetching the required provider plugins based on the 

providers defined in your configuration file.

 terraform plan
After Terraform initializes, the next step is to run a Terraform plan, which 

identifies the changes that Terraform is planning to incorporate in the 

infrastructure resource. You need to carefully look at the plan, and if any 

changes that are not desired, then you would need to adopt those changes 

accordingly in your configuration file and run terraform plan again.

Here’s the command:

terraform plan

terraform plan does not affect the resources; it just shows you the 

changes that terraform plan brings to the infrastructure.

Chapter 2  Deep Dive into terraform



76

 terraform apply
Once you approve the changes displayed by terraform plan, you can 

apply those changes, and Terraform with the help of the provider will start 

bringing in the desired changes in the destination platform.

Here’s the command:

 terraform apply

Once the changes are successfully applied on the destination platform, 

the Terraform state file is automatically updated to reflect the current point 

in time for future changes that the user may apply on the resource.

 Hands-On Exercise: Generation of Config 
and State Files to Create a VMware VM via 
vCenter (Using Templates)
Here’s a step-by-step guide with examples for creating a VMware VM via 

vCenter using templates with Terraform. This hands-on exercise assumes 

that the steps to install Terraform executables and VMware providers are 

already executed, as explained in the hands-on exercise of Chapter 1.

 1. Define the configuration file (main.tf) with different 

sections like provider, data, resource, etc. You can 

define other files as well such as variables.tf and 

output.tf; however, for simplicity, we just define 

one complete file (main.tf). The following is the 

complete config file sample for reference.

For an exercise, this file can be downloaded from the 

following GitHub repository:

https://github.com/sumitbhatia1986/

Terraform-VMware-ReverseEngineering/blob/

main/Sample_Config_File

Chapter 2  Deep Dive into terraform

https://github.com/sumitbhatia1986/Terraform-VMware-ReverseEngineering/blob/main/Sample_Config_File
https://github.com/sumitbhatia1986/Terraform-VMware-ReverseEngineering/blob/main/Sample_Config_File
https://github.com/sumitbhatia1986/Terraform-VMware-ReverseEngineering/blob/main/Sample_Config_File


77

terraform {

  required_providers {

    vsphere = {

      source = "local/hashicorp/vsphere"

      version = "2.3.1"

    }

  }

}

provider "vsphere" {

vsphere_server = "x.x.x.x"

user = "administrator@vsphere.local"

password = "xxxxxxx"

#if you have a self-signed cert

allow_unverified_ssl = true

}

data "vsphere_datacenter" "dc" {

  name = "Your DC Name"

}

data "vsphere_compute_cluster" "cluster" {

  name          = "Your cluster name"

  datacenter_id = "${data.vsphere_datacenter.dc.id}"

}

data "vsphere_datastore" "datastore" {

name = "Datastore name needed for VM deployment"

datacenter_id = "${data.vsphere_datacenter.dc.id}"}

data "vsphere_network" "network" {

name = "VM Network"

datacenter_id = "${data.vsphere_datacenter.dc.id}"

}

Chapter 2  Deep Dive into terraform



78

data "vsphere_virtual_machine" "template" {

  name          = "Ubantu" #Your template name

  datacenter_id = "${data.vsphere_datacenter.dc.id}"

}

resource "vsphere_virtual_machine" "Ubantu"{

  name             =  "UbantuTest"   #VMname for 

deployment

   resource_pool_id =  "${data.vsphere_compute_cluster.

cluster.resource_pool_id}"

  datastore_id     =  "${data.vsphere_datastore.

datastore.id}"

  num_cpus = 4

  cpu_hot_add_enabled = "true"

  memory   = 12288

  memory_hot_add_enabled = "true"

  wait_for_guest_net_timeout = 0

  wait_for_guest_ip_timeout = 0

   guest_id =  "${data.vsphere_virtual_machine.template.

guest_id}"

   scsi_type =  "${data.vsphere_virtual_machine.template.

scsi_type}"

  network_interface {

     network_id = "${data.vsphere_network.network.id}"

  adapter_type =  "${data.vsphere_virtual_machine.

template.network_interface_types[0]}"

  }

  disk {

    label            = "disk0.vmdk"

    size             =  " ${data.vsphere_virtual_machine.

template.disks.0.size}"

Chapter 2  Deep Dive into terraform



79

  eagerly_scrub =  ${data.vsphere_virtual_machine.

template.disks.0.eagerly_scrub}"

  thin_provisioned =  "${data.vsphere_virtual_

machine.template.disks.0.thin_

provisioned}"}

  clone {

     template_uuid =  "${data.vsphere_virtual_machine.

template.id}"

    customize {

      linux_options {

        host_name = "Terraform-test"

        domain = "test.internal"

      }

      network_interface {

        ipv4_address = "x.x.x.x" #IP you want to assign

        ipv4_netmask = 24

      }

    ipv4_gateway = "x.x.x.x"

}}}

 2. Install Terraform and the VMware vSphere provider.

Download and install the latest version of Terraform 

from the official website. https://www.Terraform.

io/downloads.html

Install the VMware vSphere provider plugin for 

Terraform by running the following command:

terraform init

The init command initializes the Terraform project 

and downloads the necessary plugins.

Chapter 2  Deep Dive into terraform

https://www.terraform.io/downloads.html
https://www.terraform.io/downloads.html
https://www.terraform.io/downloads.html
https://www.terraform.io/downloads.html


80

 3. Run a Terraform plan to identify the configuration 

that is going to be deployed. The plan command 

shows a preview of the changes that Terraform will 

make to the infrastructure.

root@ubantu:/home/user/te# terraform plan

data.vsphere_datacenter.dc: Reading...

data.vsphere_datacenter.dc: Read complete after 0s 

[id=datacenter-1001]

data.vsphere_network.network: Reading...

data.vsphere_datastore.datastore: Reading...

data.vsphere_compute_cluster.cluster: Reading...

data.vsphere_virtual_machine.template: Reading...

data.vsphere_network.network: Read complete after 0s 

[id=network-1035]

data.vsphere_datastore.datastore: Read complete after 

0s [id=datastore-1029]

data.vsphere_compute_cluster.cluster: Read complete 

after 0s [id=domain-c1006]

data.vsphere_virtual_machine.template: Read complete 

after 0s [id=4215b623-df65-ae56-72f6-4f7001ae46a3]

terraform used the selected providers to generate 

the following execution plan. Resource actions are 

indicated with the following symbols:

  + create

terraform will perform the following actions:

  # vsphere_virtual_machine.Ubantu will be created

  + reso urce "vsphere_virtual_machine" "Ubantu" {

      + annotation                              =  (known  

after  

apply)

      + boot_retry_delay                        = 10000

Chapter 2  Deep Dive into terraform



81

      +  change_version                          =  (known  

after  

apply)

      + cpu_hot_add_enabled                     = true

      + cpu_limit                               = -1

      +  cpu_share_count                         =  (known  

after  

apply)

      + cpu_share_level                         = "normal"

      +  datastore_id                            = "

 datastore- 

1029"

      +  default_ip_address                      =  (known  

after  

apply)

      + ept_rvi_mode                            =  

"automatic"

      + extra_config_reboot_required            = true

      + firmware                                = "bios"

      + folder                                  = "vm"

      + force_power_off                         = true

      +  guest_id                                =  

" ubuntu64Guest"

      +  guest_ip_addresses                      =  (known  

after  

apply)

      +  hardware_version                        =  (known  

after  

apply)

Chapter 2  Deep Dive into terraform



82

      +  host_system_id                          =  (known  

after  

apply)

      + hv_mode                                 = "hvAuto"

      +  id                                      =  (known  

after  

apply)

      + ide_controller_count                    = 2

      +  imported                                =  (known  

after  

apply)

      + latency_sensitivity                     = "normal"

      + memory                                  = 12288

      + memory_hot_add_enabled                  = true

      + memory_limit                            = -1

      +  memory_share_count                      =  (known  

after  

apply)

      + memory_share_level                      = "normal"

      + migrate_wait_timeout                    = 30

      +  moid                                    =  (known  

after  

apply)

      + name                                    =  

"UbantuTest"

      + num_cores_per_socket                    = 1

      + num_cpus                                = 4

      +  power_state                             =  (known  

after  

apply)

      + poweron_timeout                         = 300

Chapter 2  Deep Dive into terraform



83

      +  reboot_required                         =  (known  

after  

apply)

      +  resource_pool_id                        =  

"resgroup-1007"

      + run_tools_scripts_after_power_on        = true

      + run_tools_scripts_after_resume          = true

      + run_tools_scripts_before_guest_shutdown = true

      + run_tools_scripts_before_guest_standby  = true

      + sata_controller_count                   = 0

      + scsi_bus_sharing                        = "noSharing"

      + scsi_controller_count                   = 1

      + scsi_type                               =  

"lsilogic"

      + shutdown_wait_timeout                   = 3

      +  storage_policy_id                       =  (known  

after  

apply)

      + swap_placement_policy                   = "inherit"

      + tools_upgrade_policy                    = "manual"

      +  uuid                                    =  (known  

after  

apply)

      +  vapp_transport                          =  (known  

after  

apply)

      +  vmware_tools_status                     =  (known  

after  

apply)

Chapter 2  Deep Dive into terraform



84

      +  vmx_path                                =  (known  

after  

apply)

      + wait_for_guest_ip_timeout               = 0

      + wait_for_guest_net_routable             = true

      + wait_for_guest_net_timeout              = 0

      + clone {

          +  template_uuid = "

 4215b623-df65- ae56-72f6- 

4f7001ae46a3"

          + timeout       = 30

          + customize {

              + ipv4_gateway = "x.x.x.x"

              + timeout      = 10

              + linux_options {

                  + domain       = "test.internal"

                  + host_name    = "Terraform-test"

                  + hw_clock_utc = true

                }

              + network_interface {

                  + ipv4_address = "x.x.x.x"

                  + ipv4_netmask = 24

                }

            }

        }

      + disk {

          + attach            = false

          + controller_type   = "scsi"

          + datastore_id      = "<computed>"

          + device_address    = (known after apply)

          + disk_mode         = "persistent"

Chapter 2  Deep Dive into terraform



85

          + disk_sharing      = "sharingNone"

          + eagerly_scrub     = false

          + io_limit          = -1

          + io_reservation    = 0

          + io_share_count    = 0

          + io_share_level    = "normal"

          + keep_on_remove    = false

          + key               = 0

          + label             = "disk0.vmdk"

          + path              = (known after apply)

          + size              = 16

          + storage_policy_id = (known after apply)

          + thin_provisioned  = false

          + unit_number       = 0

          + uuid              = (known after apply)

          + write_through     = false

        }

      + network_interface {

          + adapter_type          = "vmxnet3"

          + bandwidth_limit       = -1

          + bandwidth_reservation = 0

          + bandwidth_share_count = (known after apply)

          + bandwidth_share_level = "normal"

          + device_address        = (known after apply)

          + key                   = (known after apply)

          + mac_address           = (known after apply)

          + network_id            = "network-1035"

        }

    }

Plan: 1 to add, 0 to change, 0 to destroy.

Chapter 2  Deep Dive into terraform



86

 4. Validate the Terraform plan output and see if it is as 

per the desired configuration; you are looking for a 

VM deployment. After validation, you can perform 

terraform apply.

The apply command applies the changes and 

creates the virtual machine in the specified VMware 

vSphere environment.

You would need to confirm and type Yes to the 

deployment question asked.

Plan: 1 to add, 0 to change, 0 to destroy.

Do you want to perform these actions?

Terraform will perform the actions described above.

Only 'yes' will be accepted to approve.

Enter a value: Yes

Plan: 1 to add, 0 to change, 0 to destroy.

Do you want to perform these actions?

  Terraform will perform the actions described above.

  Only 'yes' will be accepted to approve.

  Enter a value: yes

vsphere_virtual_machine.Ubantu: Creating...

vsphere_virtual_machine.Ubantu: Still creating...  

[10s elapsed]

vsphere_virtual_machine.Ubantu: Still creating...  

[20s elapsed]

vsphere_virtual_machine.Ubantu: Still creating...  

[30s elapsed]

vsphere_virtual_machine.Ubantu: Still creating...  

[40s elapsed]

vsphere_virtual_machine.Ubantu: Still creating...  

[50s elapsed]

Chapter 2  Deep Dive into terraform



87

vsphere_virtual_machine.Ubantu: Creation complete after 

53s [id=4215dd8a-20f6-3d0b-d350-c1376f9621cc]

Apply complete! Resources: 1 added, 0 changed, 0 

destroyed.

root@ubantu:/home/user/te#

 5. Verify the virtual machine.

Log in to the VMware vSphere environment to verify 

that the virtual machine was created successfully.

You can also use the terraform show command to 

view the current state of the infrastructure in the 

Terraform state file.

 Summary
In this chapter, we embarked on a comprehensive exploration of 

Terraform, delving into its core functionalities and advanced capabilities. 

We began by reinforcing the significance of infrastructure as code and 

the key concepts related to Terraform. Building upon this foundation, we 

ventured into the heart of Terraform, uncovering its configuration syntax 

and resource management capabilities.

The chapter further expanded its scope by addressing critical aspects such 

as dependencies, provisioners, and state management, crucial elements that 

ensure the successful orchestration of complex infrastructure deployments. 

We also delved into the versatility of Terraform modules, enabling readers 

to efficiently organize and reuse configurations, thereby streamlining their 

workflow. Moreover, we shed light on the importance of variables and data 

sources, providing the means to create dynamic and flexible configurations 

tailored to specific requirements. Understanding the intricacies of remote 

state management and various Terraform back ends facilitated collaboration 

and scalability, essential elements in modern IT environments.

Chapter 2  Deep Dive into terraform



89© Sumit Bhatia, Chetan Gabhane 2024 
S. Bhatia and C. Gabhane, Reverse Engineering with Terraform,  
https://doi.org/10.1007/979-8-8688-0074-0_3

CHAPTER 3

The Basics of Reverse 
Engineering
In the preceding chapters, we introduced infrastructure as code (IaC) and 

Terraform. Additionally, we covered related fundamental ideas, such as 

state files, configuration files, and Terraform plans. In this chapter, we will 

first discuss the Terraform workflow and its associated challenges. Then, 

we will focus on understanding reverse-engineering practices and how 

these practices can help you mitigate some common Terraform challenges.

To further strengthen your understanding of reverse engineering, 

we will introduce you to a sample use case in which we will build a 

sample model to work with existing VMware virtual machines. Finally, 

in the hands-on exercise, we will present some sample Python logic to 

programmatically fetch point-in-time VMware VM object values, which 

lays the foundation for reverse engineering.

 Terraform Workflow Overview
Terraform offers powerful automation capabilities for almost every 

infrastructure technology available in the market. Say components are 

present in a compute technology space such as VMware, the public cloud, 

or a containerization technology space such as Kubernetes, etc. Terraform 

can enable IT administrators to define their IaC. In fact, organizations 

https://doi.org/10.1007/979-8-8688-0074-0_3


90

are increasingly relying on Terraform and using it as a common platform 

to ease their infrastructure management. Using a single platform for 

infrastructure management comes with the following benefits:

• Ease of management

• Easy to train the IT workforce because they need to 

learn only one technology

• Cost savings as organizations have to invest in only one 

technology

• Centralized administration saves time and effort

Let’s understand the Terraform functionality for infrastructure 

automation at a very high level. Figure 3-1 shows how Terraform operates 

in different deployments and its interactions for infrastructure automation. 

This is followed by a more detailed analysis.

1 Main.tf

Terraform provider

2

3

Terraform. State

4

6

5

7

8

Config file

Figure 3-1. Overview of Terraform workflow

 1. Config file modification: Users first need to 

define their infrastructure as code in HashiCorp 

Configuration Language (HCL) or in JSON format. 

This file is called a configuration file (or config 

Chapter 3  the BasiCs of reverse engineering



91

file). It is a file that is accessible to end users, and 

they usually play with this file to attain the desired 

configuration change on the resources respective 

to a platform. There are required mandatory and 

optional parameters that need to be populated 

in this config file. It is this configuration file that 

enables IT admins to define IaC. Changes in this 

config file determine the future state of the resource 

after terraform apply.

 2. Terraform provider: This is an integral part of 

Terraform functioning that enables the Terraform 

core to operate with different infrastructure 

technologies. For example, the Google Cloud 

Platform (GCP) has a separate provider for VMware 

and so on. For interaction with the desired platform, 

the Terraform provider has built-in logic to facilitate 

the interaction of the source code. These providers 

are built by either open-source communities, OEM 

vendors, or HashiCorp.

 3. Terraform plan: Users bring in changes to the 

infrastructure that provide a config file to the 

Terraform core. If the state file is not already there, 

then it’s considered a new provisioning. This plan 

lists the user’s proposed changes on the desired 

resource running on the destination platform.

 4. Delta with Terraform state file and input Config 
file: If a state file is present, then the delta changes 

are identified by finding the difference in the 

current config file that is defined by the user and 

the old known state of the workload. These delta 

Chapter 3  the BasiCs of reverse engineering



92

changes identify the specific modification that is 

to be invoked on the workload respective to the 

destination infrastructure platform.

 5. Terraform apply: Once a user approves the 

changes identified between the config and state 

file, the changes are submitted to the destination 

infrastructure platform. Destination platforms are 

the Terraform-supported platforms such as AWS, 

Azure, Google, VMware, etc.

 6. Tracking of changes: The Terraform core keeps 

track of the changes that are invoked on the 

infrastructure platform. It is engaged until the given 

operation either succeeds or fails.

 7. State file updating: If the changes are successful, 

the Terraform core updates the state file to reflect 

the current state of the resource. This is required 

to record the last known good state of the resource. 

The state file is ideally not to be accessed by the 

end users. This is an integral part of Terraform 

operations.

 8. User acknowledgement: Once the changes 

are successfully implemented on the platform 

and the state file is updated, the Terraform 

core acknowledges to the end user that it was a 

successful operation.

Note that where there are no changes found between the config file 

and state file, then the Terraform plan shows no changes required to the 

platform; in that scenario, the workflow described is different because no 

changes are done on the infrastructure. The previous workflow is for when 

there are changes to be applied on the destination platform.

Chapter 3  the BasiCs of reverse engineering



93

With an understanding of this basic workflow, you can see how 

Terraform depends on the state file to record the last known good state 

of the resource it manages. In the next section, we are going to introduce 

certain shortcomings associated with the fact that Terraform needs to 

maintain a state file for it to function.

 Terraform and Its Shortcomings
Keeping Terraform as a single platform for all the infrastructure 

automation needs is considered valuable, but it comes with different 

challenges as well. Let’s discuss some of these challenges in brief that are 

associated with the tool.

 Terraform Dependence on Point-in-Time Config 
Files for Import Operations
The way Terraform operates is that the user first writes a config file in 

HCL or JSON that the Terraform tool understands. When we start with 

a workload life cycle, there is no state file present in the Terraform 

inventory already; it can provision a resource and maintain a state file 

in its inventory, which represents the last known state of a resource that 

Terraform deployed. This is the ideal scenario and usually occurs when 

we want to start the life cycle of a resource from scratch. However, a 

real problem is when we want to make use of Terraform with an already 

provisioned resource that has been running in our infrastructure for so 

long, even before Terraform was introduced. This is because Terraform 

does not know the current state of the resource. For Terraform to know the 

current state of a resource, we need to import a resource into Terraform, 

whereas the import operation is not a straightforward task. For you to 

import a resource into Terraform to manage its life cycle, you need to have 

an equivalent (to the current state and in HCL or JSON format)  

Chapter 3  the BasiCs of reverse engineering



94

well-defined config file, so a successful import operation can be 

performed. Generating a config file that matches the current state is a 

tedious job. If we must do this manually, it would be a nightmare for many 

of the IT administrators because there are several required parameters 

that they need to prepopulate in this config file and in defined format 

(HCL or Json) for a successful import of that resource. This is even more 

complicated when it is required to be done at scale.

This import operation makes it difficult to manage an existing resource 

with Terraform automation. There are requirements where existing 

applications and resources are required to be managed via automation.

Definition terraform import is a command that allows you to 
bring existing resources under terraform management. it requires 
a config file as a parameter to help import a resource cleanly into 
terraform automation.

 Terraform Dependence on State File 
for Life- Cycle Management
Another challenge that was noticed in doing infrastructure operations with 

Terraform is that it is heavily dependent on the state file for managing the 

life cycle of a resource. When terraform plan is run, it basically identifies 

the delta between the user end file, i.e., the config file, and the last known 

state of the resource present in the Terraform inventory called the state file. 

The Terraform action wants to bring the state of a resource in accordance 

with the definitions present in a user-defined config file. If there is a 

difference between the config and state files, Terraform presents that as an 

actionable point that is to be executed on the platform.

Chapter 3  the BasiCs of reverse engineering



95

This way of working is best when we want to have an immutable 

infrastructure and every aspect of the operations is handled by Terraform. 

However, in the real infrastructure operations world, it is imperative that 

administrators need log in to the platform for debugging and making direct 

changes on the platform that are necessary at times to fix priority issues. 

An example is when a VMware VM life cycle is managed by Terraform and 

an administrator logs into vCenter directly and changes the configuration 

of the VM. This action directly on the platform would invalidate the 

existing state file present in the Terraform inventory. As a result, when 

there is another change driven by a change in the config file, users would 

find changes that were done by the administrator, and they are forced to 

revert them because neither the state file nor the config file is aware of 

the changes that the administrator performed on the platform directly. 

Therefore, the state file that was maintained so far is invalidated.

To fix this, one solution is to revert the changes done by administrators 

directly on the platform. This is the least desired solution because changes 

made by administrators are for a purpose; reverting these changes is risky 

and can potentially reintroduce the problems fixed by administrators.

The best solution is to manually adopt the config file in such a way that 

it reflects the changes done by the administrator directly on the platform, 

so when terraform plan is run, the changes performed already on the 

platform do not reflect in the delta changes to be performed by terraform 

apply. This solution comes with a price of manually adjusting the config 

file every time a direct change is performed on the platform.

The challenges highlighted here may inhibit the adoption of Terraform 

in automating infrastructure operations with the tool.

Chapter 3  the BasiCs of reverse engineering



96

 Mitigating These Shortcomings
The solution is the reliable and automated import of the existing resource, 

which requires a consistent, point-in-time configuration file. If we can 

autogenerate a configuration file that is clean and consistent with the 

platform, we can then reliably import an existing resource and bring that 

infrastructure item under Terraform management.

As shown in Figure 3-2, to import an existing resource into Terraform, 

when a correct, point-in-time configuration file is presented for Terraform 

import, we can then successfully import existing resources and leverage 

Terraform automation to further manage the life cycle of the resource.

Configuration file (HCL or JSON)
Terraform Import

Infrastructure automation/Management

Figure 3-2. Terraform import workflow

This configuration file can be generated manually as well, but it should 

be discouraged for large environments as it is complex and error prone. 

Administrators looking to import existing resources into Terraform then 

would need to manually present each parameter value, run terraform plan, 

and identify if it is not suggesting any changes. If terraform plan suggests 

changes, then it means the import operation is not clean. Any execution with 

terraform apply can alter the existing resource configuration.

If we can automate the process of generating the configuration file, we 

will be able to handle the situation better. The dependency on maintaining 

a state file can be eliminated because we can fresh import a resource every 

time we anticipate any corruption in the state file.

In the next section, we are going to introduce reverse-engineering 

practices that help in finding the best solution to address these 

shortcomings.

Chapter 3  the BasiCs of reverse engineering



97

 What Is Reverse Engineering?
Before we explain how reverse engineering can help us mitigate the 

challenges, let’s first understand more about this. Reverse engineering 

has been a common industry practice for a long time. Historically, it was 

used for analyzing hardware, for gaining military advantage, and even for 

learning about biological functions related to how genes work. Reverse 

engineering for software is typically for understanding the underlying 

source code for the maintenance and improvement of the current 

software.

The following are some popular definitions of reverse engineering:

“The reproduction of another manufacturer’s product follow-
ing detailed examination of its construction or composition.”

“Examine the construction or composition of another manu-
facturer’s product in order to create (a duplicate or similar 
product).”

—Oxford dictionary

“The act of copying the product of another company by look-
ing carefully at how it is made.”

—Cambridge dictionary

In short, reverse engineering is a practice that enables you to 

determine how a product was designed so you can understand its function 

and based on your requirements develop solutions around it. Reverse 

engineering in information technology is used to address compatibility 

issues and make the hardware or software work with other hardware, 

software, or operating systems that it was not originally compatible with. 

Another great advantage of reverse engineering is that it helps in the 

Chapter 3  the BasiCs of reverse engineering

https://dictionary.cambridge.org/us/dictionary/english/act
https://dictionary.cambridge.org/us/dictionary/english/copy
https://dictionary.cambridge.org/us/dictionary/english/product
https://dictionary.cambridge.org/us/dictionary/english/company
https://dictionary.cambridge.org/us/dictionary/english/looking
https://dictionary.cambridge.org/us/dictionary/english/looking
https://dictionary.cambridge.org/us/dictionary/english/carefully
https://www.techtarget.com/searchsoftwarequality/tip/Common-software-compatibility-issues-and-how-to-fix-them
https://www.techtarget.com/searchsoftwarequality/tip/Common-software-compatibility-issues-and-how-to-fix-them


98

adoption of technologies and tools. This is because it empowers us to 

understand the fine details of the technology and tools so it is absorbed 

well in the proposed solution and way of working in day-to-day life.

There are multiple examples of such tools in the market that have 

reverse-engineering practices at their core. The famous one is computer- 

aided design (CAD), which basically helps re-create a manufactured 

part when the original blueprint is not available. The key feature of CAD 

is its ability to produce 3D images of the desired part so it can easily be 

remanufactured.

With help from reverse engineering, we can understand how 

Terraform works for a respective platform, how Terraform identifies the 

state of the resource it manages on the platform, and what the source of 

truth for Terraform itself is with regard to a particular platform. Answers to 

all of that can provide us with valuable information, and the same source 

of truth can be leveraged to generate the point-of-time configuration file. 

Before we look more into this, let’s understand more about this reverse 

engineering process in the next section.

 Reverse-Engineering Process for IT 
Infrastructure Tools
The process employed in reverse engineering is specific for each product. 

However, at a high level, all reverse-engineering processes mainly consist 

of three basic steps, as shown in Figure 3-3.

Chapter 3  the BasiCs of reverse engineering



99

Information extraction

Modelling

Review

The original object or design is studied, and
information about it is extracted.

The information collected is abstracted into a
conceptual model.

The model is tested in different contexts to determine if it
was successfully reverse-engineered

01

02

03

Figure 3-3. Reverse-engineering process

The steps are as follows:

 1. Information extraction

This is the first step of the reverse-engineering 

process and is linked to the gathering of information 

on how the current product performs. Information 

about its design, its operations, and its interactions 

is studied thoroughly. In software reverse 

engineering, a specific focus is on generating the 

sample source code and the design documents. 

The information that is extracted is important in 

understanding how the product and tool works, 

what the boundaries of its function are, and how it is 

implemented with different installations.

Our case study later in this chapter will evaluate the 

following questions: What is the source of truth for 

the tool itself? How does it interact with VMware. 

How do config and state files play a critical role?

The outcome of this step is a comprehensive 

understanding of how the product functions.

Chapter 3  the BasiCs of reverse engineering



100

 2. Modeling

Now, the information that is extracted in the 

previous step needs to be depicted in such a way 

that it explains the function of the overall proposed 

structure. The essence of this step is to take the 

information specific to the original product and 

summarize it in a general model that can be used 

to design a new system that we conceptualize to fit 

into our big picture. In software reverse-engineering 

terms, this means making a data flow chart or just 

plain component interactions that explain the 

model you initially hypothesized.

With regard to our case study, this step is where the 

sample config file is modeled along with its required 

key parameters. Formalization on the process of 

fetching it with the source of truth (e.g., MOB for 

vSphere) and finally coming up with a model that 

interacts with the whole system to iterate the complete 

process programmatically and at large scale.

 3. Review

Once the final resultant model is designed, in this stage 

it is time to test it to ensure it is a realistic abstraction 

of our original aspirations. In software reverse-

engineering terms, repeating the suggested operations 

in a sample lab environment can ensure it can deal 

with the desired complex and unique scenarios.

In our sample case study of VMware, this step is to 

review the automated import operations of a diverse 

set of VMware VM workloads by autogenerating 

the config file and importing it into the Terraform 

Chapter 3  the BasiCs of reverse engineering



101

tool. For example, with diverse configuration of the 

VM workloads in terms of their operating system 

types, storage, network configuration, etc., all these 

specifics relevant to the VM should be fetched and 

tested for variety of different configurations present 

in your specific environment.

These steps depict the process of doing reverse engineering with 

a platform. To adopt Terraform automation to existing infrastructure 

resources, we can perform these steps and come up with our own logic 

script that enables us to import existing resources into the Terraform 

tool, and we can do this operation at scale. In the next section, we will 

specifically apply what we learned in this section to autogenerating a 

config file required for Terraform import.

 Reverse Engineering with Terraform 
and Its Benefits
Reverse engineering with Terraform includes employing the set of 

standard practices we discussed in the previous section to autogenerate 

a configuration file for the benefit of our use. Figure 3-4 is a high-level 

overview of the reverse-engineering practices that we can employ to write 

import logic to generate a clean and point-in-time configuration file.

Configuration file/resource (HCL or JSON)

Source-of-truth respective to a platform

Import logic

Database

Network

Backup

Virtual
machines(Compute)

Containers

Applica�on

Infrastructure
resources

Figure 3-4. Source of truth and Terraform import

Chapter 3  the BasiCs of reverse engineering



102

The focus of reverse engineering is to generate a configuration file by 

determining the “source of truth” relevant to a platform. Every platform, 

whether it’s a public cloud (e.g., Amazon, Google, Azure) or a private 

cloud (e.g., VMware) or Kubernetes containers, maintains a resource 

object inventory (metadata) that is true at any point in time and exposed 

over an application programming interface (API). This metadata can be 

programmatically fetched to generate a valid configuration file required for 

Terraform import.

Once the source of truth is known for the platform, a logic script can 

be written in any known language (e.g., Python, PowerShell) to fetch the 

required point-in-time parameter values for the automated generation of a 

configuration file. A script can be created with custom logic.

Here are some examples of resource object inventory databases, which 

are repositories of metadata for an IT resource that is maintained by every 

platform:

 1. VMware: For VMware infrastructure, the 

resource object inventory is called the managed 

object browser (MOB) and is accessible via 

https://<vcenterIP>/mob.

 2. Azure: Different resource APIs offered by the 

platform offer access to metadata objects inventory.

 3. Google Cloud: Resource-manager APIs and Cloud 

Asset inventory in Google Cloud offer access to 

resource object inventory.

 4. Amazon Web services (AWS): The AWS systems 

manager inventory provides access to metadata for 

the resources provisioned in the cloud.

Once the source of truth is known, a logic script can be written to fetch 

the values of desired objects required for the clean import of a resource 

into Terraform.

Chapter 3  the BasiCs of reverse engineering



103

As per reverse-engineering practices, once the source of truth is 

identified, we then need to identify the mandatory required object 

parameters along with optional parameters (that suits most of your 

deployment) for a typical resource configuration file. This can be done via 

a thorough study of the required Terraform provider. Take the example of a 

VMware vSphere Terraform provider; there are lists of mandatory objects 

that are required in a configuration file for typical vsphere_virtual_

machine management. For a list of parameters, please refer to more details 

about the example provider objects here:

https://registry.Terraform.io/providers/hashicorp/vsphere/

latest/docs/resources/virtual_machine

Examples of such mandatory parameters for a virtual machine are 

details such as name, num_cpus, and memory.

Optional parameters are extra_config, hardware_version, etc.

A list of these mandatory and optional parameters is essential to define 

the import logic and to fetch the values of these mandatory parameters 

automatically from the source of truth.

This is going to be a one-time exercise for the entire platform you 

want to manage with Terraform. Once these parameters are identified, 

you just need to run your import logic to fetch the values in the desired 

format (HCL or JSON). And you can use these files to auto-import existing 

resources into the Terraform automation.

In the next section, we will introduce the benefits of autogenerating 

configuration files.

 Benefits of Autogenerating Configuration Files
Identifying the list of mandatory and optional parameters that are 

applicable to most of the resources deployed in your environment is a 

one-time exercise. Fetching a few extra objects and having them in a 

configuration file that represents the point-in-time state of a resource 

Chapter 3  the BasiCs of reverse engineering

https://registry.terraform.io/providers/hashicorp/vsphere/latest/docs/resources/virtual_machine
https://registry.terraform.io/providers/hashicorp/vsphere/latest/docs/resources/virtual_machine


104

does not do any harm. You will have problems with importing when there 

are fewer parameters that do not completely represent the true state of a 

resource.

The reverse-engineering process offers tremendous benefits to enable 

automation for your infrastructure resources. Let us discuss these benefits 

in detail.

Reliably import existing resources into Terraform and at scale: The 

output configuration files can be used by the IT administrators to enable 

the DevOps way of handling any existing application and bringing any 

resource under Terraform management.

Using the reverse-engineering approach, you can automatically 

generate the point-in-time config files, which exactly represent the current 

state of the workloads. Once we have a config file generated, we can import 

any workload into Terraform without the infrastructure being provisioned 

with Terraform first. In fact, this allows us to discard the current state and 

generate a fresh state file every time we import resources into the tool.

Remove dependence on maintaining state: With the import logic, 

the point-in-time state of the resource needed for the Terraform operation 

can be easily regenerated. Therefore, administrators can benefit from both 

worlds, i.e., employ Terraform to automate their L1 and L2 operations. At 

the same time, they can work directly on the platform without impacting 

Terraform functionality for L3 activities that are required to be performed 

directly on the platform. The reverse-engineering practice is helpful 

because with this approach, you are not dependent on the state file at 

all. Administrators can make changes directly on the platform, and at the 

same time for any infrastructure automation needs, fresh imports can be 

performed to leverage automation capabilities with Terraform.

Skip the Terraform learning curve: Creating a configuration file 

manually is an iterative process where you define some configuration 

parameters, apply them, and then verify if it reflects the same desired state 

of the resource. But when a configuration file is automatically generated, 

IT administrators do not have to spend time trying to understand each 

Chapter 3  the BasiCs of reverse engineering



105

and every configuration parameter needed to manage a resource via 

Terraform. The reverse-engineering logic script can be written by a subset 

group of Terraform specialists, and that can be shared with a wide number 

of administrators and application experts to allow them to use Terraform 

automation capabilities. These administrators and application experts can 

focus on their core development and tasks without having to do tedious 

tasks to learn detailed Terraform objects and configuration files to manage 

their deployments.

Better adoption of Terraform: Considering Terraform capabilities 

to cover a variety of infrastructure landscapes, the automated generation 

of configuration files makes it easy for administrators to better adapt 

the tool for a variety of their infrastructure automation needs. Whether 

the platform is modern (like a public cloud) or legacy infrastructure 

(like VMware VMs), this reverse-engineering practice allows you to 

use Terraform on practically any resource whether it was created with 

Terraform or already exists.

Cost savings: It allows the use of a common tool to manage the 

diversity of the infrastructure landscape with a common team.

You now understand the benefits of automatically generating 

configuration files and empowering administrators to leverage the 

Terraform infrastructure automation capabilities, bringing any 

traditional resource into Terraform management. In the next section, 

we will introduce a sample use case that we want to build in subsequent 

chapters to strengthen your understanding of reverse engineering. The 

methodology we are developing here can be easily replayed in any other 

platform where you want to do automation with help from Terraform.

Chapter 3  the BasiCs of reverse engineering



106

 Sample Use Case: Reverse Engineering 
a VMware VM
To strengthen the concept of reverse engineering in the upcoming 

chapters of this book, we are going to demonstrate how to leverage 

reverse-engineering practices and perform an automated import of a 

virtual machine running on the VMware platform.

Our lab environment is running VMware vCenter version 7.0 update 1. 

We have an Ubuntu machine deployed in our environment, and Terraform 

is not aware of this as there is no state already known to Terraform for this 

lab machine.

The use case focuses on the following steps. These steps are going to be 

covered in the upcoming chapters of this book.

 1. Use the VMware MOB as a source of truth to 

get the point-in-time values of the VM object 

(https://<Vcenter FQDN>/mob).

 2. Identify the key mandatory and optional objects for 

a typical VMware environment. These are key for 

our reverse-engineering approach.

 3. Write an import logic script to programmatically 

fetch these object values from the MOB and create 

a file in a specified format (HCL or JSON) using 

these objects, which Terraform can understand. 

The file that is generated in this step is called a 

configuration file.

 4. Do a terraform import with the configuration file 

and validate if the import was successful.

Chapter 3  the BasiCs of reverse engineering



107

 5. After a successful import, perform a change on 

the VMware VM leveraging Terraform automation 

by changing one of the parameters in the 

configuration file.

The above points cover end-to-end scenarios where any existing 

VMware virtual machine can be imported to leverage the automation 

capabilities. In this chapter, with the hands-on exercise, we are going to 

cover the use of the MOB to fetch the desired objects from the VMware 

object repository. We will write some sample Python logic that facilitates 

the programmatic interaction with the VMware platform.

The following are some key prerequisites before diving into hands-on 

exercises:

• An intermediate-level understanding of the Python 

language and different libraries required to perform the 

required automation on a platform

• An intermediate-level understanding of VMware 

virtualization

• Understanding of Terraform

 Hands-On Exercise: Managed Object 
Browser in VMware (vCenter) as a Source 
of Reverse Engineering
To continue with our sample use case of reverse engineering a VMware VM 

into Terraform, we are going to discuss the MOB in this exercise and how it 

plays a key role.

Chapter 3  the BasiCs of reverse engineering



108

The MOB is a web-based server application available in all ESX/

ESXi and vCenter server systems. This vSphere utility allows you to view 

detailed information about metadata objects such as virtual machines, 

datastores, and resource pools.

Access to it is disabled by default. You need to enable MOB on the 

VMware system.

Access to MOB with the vCenter Server is typically via the 

following link:

https://<Vcenter FQDN>/mob

Figure 3-5 shows the landing page when we log in to the MOB.

Figure 3-5. MOB landing page

You can browse through the desired objects you are managing in 

vCenter. For example, to look for a sample VM object, the following is the 

typical sample location: Content ➤ rootFolder (Datacenters) ➤ childEntity 

(Cluster) ➤ vmFolder (VM) ➤ childEntity (Your VM).

For any sample VM, a managed object browser would look like 

Figure 3-6.

Chapter 3  the BasiCs of reverse engineering



109

Figure 3-6. Sample virtual machine metadata as seen via the MOB

We can go one level deep into “config” to see further object details of a 

sample VM that we want to import.

Figure 3-7 shows the VM configuration of our Ubuntu VM.

Chapter 3  the BasiCs of reverse engineering



110

Figure 3-7. Sample virtual machine configuration metadata as seen 
via the MOB

Similarly, we can go to any level deep to identify the point-in-time 

values of almost any object managed by vCenter.

If you carefully look at the properties in Figure 3-7, many of them 

are mandatory parameters in a typical config file required for Terraform 

VMware VM management.

The idea of reverse engineering is to programmatically pick up the 

required live values from the MOB every time we want Terraform to 

manage our VM. We are going to present some sample Python code with 

which we can pick up the values of the following sample objects through 

the object browser:

Chapter 3  the BasiCs of reverse engineering



111

• VM name: UbantuTest

• VM guestFullName: Ubuntu Linux (64-bit)

• VM guestID: ubuntu64Guest

Prerequisites for Python Code
The required libraries to talk to the managed object browsers of vSphere 

are pyVim and pyVmomi. If they are not already present, you can do a pip 

install of the required Python libraries.

sudo pip install pyvim

sudo pip install pyvmomi

Now, after installing the prerequisites, let’s look at some sample 

Python code.

The following code can be accessed from the GitHub repository 

as well (https://github.com/sumitbhatia1986/Terraform-VMware-

ReverseEngineering/blob/main/MOB_walkthrough.py):

# -*- coding: utf-8 -*-

"""

Created on Sat Feb 18 13:11:43 2023

@author: SBhatia3

"""

import requests

from requests.packages.urllib3.exceptions import 

InsecureRequestWarning

from pyVim import connect

import ssl

from pyVmomi import vim

Chapter 3  the BasiCs of reverse engineering

https://github.com/sumitbhatia1986/Terraform-VMware-ReverseEngineering/blob/main/MOB_walkthrough.py
https://github.com/sumitbhatia1986/Terraform-VMware-ReverseEngineering/blob/main/MOB_walkthrough.py


112

app_settings = {

    'api_pass': "xxxx",

    'api_user': "user@vsphere.local",

    'api_url': "https://<vCenterFQDN/rest/",

    'vcenter_ip': "vCenter IP",

    'VM_name':  "UbantuTest" ### Desired VM for which we need to 

find details

}

## Authenticate with Vcenter to find the VM ID

def auth_vcenter(username, password):

    resp = requests.post(

         '{}/com/vmware/cis/session'.format(app_

settings['api_url']),

         auth=(app_settings['api_user'], app_settings['api_

pass']),

        verify=False

    )

    if resp.status_code != 200:

         print('Error! API responded with: {}'.format(resp.

status_code))

        return

     return resp.json()['value']

def get_api_data(req_url):

     sid = auth_vcenter(app_settings['api_user'], app_

settings['api_pass'])

     resp = requests.get(req_url, verify=False, 

headers={'vmware-api-session-id': sid})

    if resp.status_code != 200:

         print('Error! API responded with: {}'.format(resp.

status_code))

        return

    return resp

Chapter 3  the BasiCs of reverse engineering



113

## Getting VM details including VM ID needed to browser 

through MOB

def get_vm(vm_name):

     resp = get_api_data('{}/vcenter/vm?filter.names={}'.

format(app_settings['api_url'], vm_name))

    j = resp.json()

    return (j)

#Fetching VM ID from REST API for the VM we want to import

requests.packages.urllib3.disable_warnings(InsecureReque

stWarning)

vmdetails = get_vm(app_settings['VM_name'])

vmid = vmdetails['value'][0]['vm']

s = ssl._create_unverified_context()

service_instance = connect.SmartConnect(

     host=app_settings['vcenter_ip'], user=app_settings 

['api_user'], pwd=app_settings['api_pass'], sslContext=s

)

content = service_instance.RetrieveContent()

container = content.rootFolder  # starting point to look into

viewType = [vim.VirtualMachine]  # object types to look for

recursive = True  # whether we should look into it recursively

containerView =  content.viewManager.CreateContainerView 

(container, viewType, recursive)  # create 

container view

children = containerView.view

for child in children:  # for each statement to iterate all 

names of VMs in the environment

    if (str(vmid) in str(child)):

         vm_summary =  child.summary  #Summary of the desired VM 

to import

Chapter 3  the BasiCs of reverse engineering



114

         vm_config =  child.config #Complete config data 

hiararchy and child item values loaded in 

the variable

         vm_resourcepool =  child.resourcePool #Resource 

pool details

        vm_network = child.network #Network details of the VM

        vm_datastore = child.datastore

        vm_parent = child.parent

        vm_name = child.name

print("VM name: ", vm_name)

print ("VM guestFullName: ", vm_config.guestFullName)

print("VM guestID: ", vm_config.guestId)

Here’s the output:

runfile('C:/Users/Mob_WalkThrough')

VM name:  UbantuTest

VM guestFullName:  Ubuntu Linux (64-bit)

VM guestID:  ubuntu64Guest

The previous Python code is the sample representation of the reverse- 

engineering principle and how we can employ the VMware managed 

object browser to fetch the required parameters to generate a sample 

config file for every VM.

Here we fetched values for VM name, VM guestFullName, and VM 

guestID. Similarly, we can fetch values for all other mandatory and 

optional objects required in a typical configuration file.

Chapter 3  the BasiCs of reverse engineering



115

 Summary
The core focus in this chapter was reverse engineering. It started by 

explaining why reverse engineering is needed. We explained the Terraform 

automation workflow where an end user adjusts the infrastructure 

definitions in the configuration file and how the whole system integrates 

to reflect the changes on the destination platform. This workflow is 

dependent on the Terraform operations maintaining the last known state 

of the resource.

Further, the chapter provided details about the Terraform 

shortcomings associated with its implementation of automation. To 

solve these challenges, the chapter focused on reverse engineering and 

the different phases of it such as information extraction, modeling, and 

then review.

Toward the end, chapter explained the benefits of doing reverse 

engineering and automatically generating configuration files that are 

required for a Terraform import. The hands-on exercise walked you 

through a sample Python script that can fetch configuration file objects 

from the source of truth for VMware, also called the managed object 

browser (MOB). This laid a foundation for the example of reverse- 

engineering a VMware virtual machine.

Chapter 3  the BasiCs of reverse engineering



117

CHAPTER 4

Terraform and  
Reverse Engineering
In the previous chapter, we studied the fundamentals of reverse 

engineering and its operation. Additionally, we discussed Terraform with 

you and the difficulties it presents when attempting to use it to automate 

infrastructure activities. In this chapter, we will cover every step required 

for using Terraform to accomplish this automation. We will examine each 

stage of the reverse-engineering process in detail, covering information 

extraction, modeling, and review. We’ll use an import of a pre-existing 

VMware virtual machine as an example. We will highlight the sample 

reverse-engineering model with Terraform and the importance of using a 

“hook” to fetch the point-in-time state parameters required for successful 

import of a resource. We will also look at a typical import operation and 

build the import logic for an automated import.

In the hands-on exercise, we will provide a sample import script 

written in the Python language that can autogenerate a configuration file 

required for the successful import of a VMware virtual machine. Let’s start 

this chapter with an explanation of the information extraction step, which 

is the initial stage of the reverse-engineering process.

© Sumit Bhatia, Chetan Gabhane 2024 
S. Bhatia and C. Gabhane, Reverse Engineering with Terraform,  
https://doi.org/10.1007/979-8-8688-0074-0_4

https://doi.org/10.1007/979-8-8688-0074-0_4


118

 Information Extraction
In Chapter 3, we looked at the three basic steps of reverse engineering. 

The first step is information extraction, where we are required to gather 

information on how the product is designed and operated. In this section, 

we will dive a little more into the Terraform architecture and explain how 

that architecture can help model the information we need to further build 

a reverse-engineering solution. The architecture that will be discussed is 

generic and explains how the Terraform core functions and interacts with 

different infrastructure platforms. The outcome of this section should 

give you an idea of how Terraform operates with the “source of truth” we 

discussed in earlier chapters. See Figure 4-1.

Providers

Provisioners

Plugins

Golang

Client Library
HTTP(S)

RPC

Terraform Core

Figure 4-1. Terraform architecture

Terraform today supports multiple providers and more than 

800 provider binaries. To manage these multiple provider binaries, 

HashiCorp would need to manage each of them. This would be difficult. 

Instead, HashiCorp has made the Terraform architecture an extensible 

architecture. This means the respective platforms provide support with 

Terraform core and maintain their own provider plugins and as well as life 

cycle of these provider plugins. Terraform offers the “provider SDK,” which 

Chapter 4  terraform and reverse engineering 



119

is a software development kit that defines how the Terraform core interacts 

with the plugins that are to be written by a specific platform that wants 

to support Terraform. Further, to support the writing of providers (which 

are specific to each platform), Terraform offers “Terraform-provider-

scaffolding,” which is a code repository that provides a template defining 

how a provider should be written. This template contains the following:

• A resource and a data source (internal/provider/)

• Examples (examples/) and generated 

documentation (docs/)

• Miscellaneous meta files

This template provided by HashiCorp contains boilerplate code that 

you will need to edit to create your own Terraform provider. Once the 

Terraform provider is written, the platform vendor needs to publish in 

the Terraform registry maintained by HashiCorp so that the provider is 

available to a wide audience.

Since Terraform is a plugin-based architecture, these Terraform 

plugins enable all developers to extend Terraform usage by writing new 

plugins or compiling modified versions of existing plugins to build a new 

one if required. As depicted in Figure 4-1, there are two main components 

of the Terraform architecture: the Terraform core and Terraform plugins. 

The Terraform core interacts with plugins over remote procedure calls 

(RPCs) and offers multiple ways to discover and load plugins for further 

interaction with the destination platform. It’s the Terraform plugins that 

enable Terraform to expose an implementation for a specific service such 

as support on Azure, VMware, GCP, etc.

Chapter 4  terraform and reverse engineering 



120

 Terraform Core
The Terraform core is open-source code and hosted at (https://github.

com/hashicorp/Terraform). It is a consistently compiled list of binary files 

written in the Go programming language. These compiled binary files are 

called the Terraform CLI. The CLI uses RPCs to communicate with the 

Terraform plugins and offers multiple ways to discover and load plugins 

for use. The following are the key functions of the Terraform core:

• It simulates infrastructure as a code (IaC). It enables 

the reading and interpolation of configuration files and 

Terraform modules.

• It manages the state of Terraform managed resources.

• It builds a dependency graph from the Terraform 

configuration and walks this graph to generate 

Terraform plans, refresh state, and more.

• It executes the Terraform plan.

• It communicates with plugins via RPCs.

As shown in Figure 4-2, a few reference key commands where the 

Terraform core interacts with the providers over RPCs include Diff(), 

Apply(), Refresh(), etc.

ProvidersCore

Plugins Upstream APIs

Figure 4-2. Terraform core and plugin interaction

Chapter 4  terraform and reverse engineering 

https://github.com/hashicorp/Terraform
https://github.com/hashicorp/Terraform


121

 Terraform Plugins
Terraform plugins contain key components known as providers and 

provisioners. Providers are code written by developers in the Go 

programming language. These are executable binaries that are invoked by 

the Terraform core using the RPCs. We discussed Terraform provisioners in 

Chapter 2; they allow the remote execution of custom code directly on the 

supported platform. Each plugin exposes an implementation of a specific 

service such as Azure, GCP, VMware, etc.

End users define the respective provider and provisioners in the 

configuration file they create, which further enables the interaction via 

the RPCs of the Terraform core to the destination platform. Terraform has 

many built-in provisioners, while providers are added dynamically as and 

when support is added by the respective platform developers. This is the 

beauty of the Terraform core SDK; it provides a high-level framework that 

abstracts away the details of plugin discovery and RPC communication.

The following are the key responsibilities of provider plugins:

• Initialization of any included client specific libraries 

that are used to make API calls to the Upstream API 

platform

• Authentication with the supported infrastructure 

platform

• The definition of managed resources that map to 

specific services

In Figure 4-2, we can see that a few of the important functions that 

enable interaction of providers with the upstream APIs are create(), 

Read(), Delete(), and Update().

The following is the key responsibility of the provisioners present in 

the plugins: executing commands or scripts on the designated resource 

following creation or destruction.

Chapter 4  terraform and reverse engineering 



122

When a user runs the terraform init command, the Terraform core 

looks for the plugins in the directories listed in Table 4-1. Please note that 

some of the directories’ paths are static, while some are relative to the 

current working directory.

Table 4-1. Terraform and Default Directories

Directory Uses

Location of terraform binary (e.g., /usr/

local/bin)

typical terraform installations

.terraform/plugins/<OS>_<ARCH> automatically downloaded 

providers

~/.terraform.d/plugins or 

%APPDATA%%

\terraform.d\plugins

the user plugins directory

Note OS and ARCH here use the go language standard os and 
architecture names, for example, ubuntu_amd64.

Third-party plugins should usually be installed in the user plugins 

directory, which is located at ~/.terraform.d/plugins on most operating 

systems and at %APPDATA%\terraform.d\plugins on Windows operating 

systems.

If you are running terraform init with the -plugin-dir=<PATH> 

option (with a nonempty <PATH>), this will override the default plugin 

locations and search only the path that you had specified.

After finding any installed plugins, terraform init compares them 

to the configuration’s version constraints and chooses a version for each 

plugin as defined here:

Chapter 4  terraform and reverse engineering 



123

• If there are any acceptable versions of the plugin that 

have already been installed, Terraform uses the newest 

installed version that meets the constraint (even if 

releases.hashicorp.com has a newer acceptable 

version).

• If no acceptable versions of plugins have been installed 

and the plugin is one of the providers distributed 

by HashiCorp, Terraform downloads the newest 

acceptable version from releases.hashicorp.com and 

saves it in .terraform/plugins/<OS>_<ARCH>.

This step is skipped if terraform init is run with the -plugin- 

dir=<PATH> or -get-plugins=false option.

We just explained the semantics of how Terraform will attempt to 

download the plugins, because without plugins, you will not be able to use 

Terraform on your respective platform.

 Client Library
Most platforms these days support a set of API libraries that allows 

programmatic interaction with the platform. Developers who write a 

specific provider leverage these client (platform) libraries for automated 

interaction and enable the Terraform core to leverage these libraries via 

the providers. These client libraries interact with the platform on the 

HTTP(s) protocol. This means that for any platform that has API-based 

management capabilities, developers of that platform can offer Terraform 

integration as well.

The responsibility of managing client libraries lies with the developers 

who wrote the provider support for a particular platform. Every time 

there is a revision in the client libraries, developers from the platform can 

revise the integration and offer a new provider version that may offer new 

features added in the client libraries.

Chapter 4  terraform and reverse engineering 

http://releases.hashicorp.com
http://releases.hashicorp.com


124

We covered the Terraform architecture in this section and learned 

about the core components including the Terraform core, Terraform 

plugins, and client libraries. In the next section, we will look at how we can 

build the next phase of reverse engineering, called modeling.

 Modeling
As you now know, Terraform is dependent on client libraries to interact 

with the destination platform. What if we in our reverse-engineering 

model use the same libraries to interact with the platform to create the 

configuration file for our import operations? We can essentially use the 

same “source of truth” as those client libraries that the Terraform core is 

leveraging and enable interactions with the given platform. In this section, 

we will discuss how we can use the source of truth and do modeling.

 Sample Model
Modeling in reverse engineering refers to the process of depicting the 

information extracted in the first step into a general model that can be 

used to design a new system.

Figure 4-3 shows the system we presented in Chapter 3.

Configuration file/resource (HCL or JSON)

Source-of-truth respective to a platform

Import logic

Database

Network

Backup

Virtual
machines(Compute)

Containers

Applica�on

Infrastructure
resources

Figure 4-3. Source of truth and Terraform import

Chapter 4  terraform and reverse engineering 



125

This represents the modeling aspect of reverse engineering with 

Terraform. When writing our import logic, if we can leverage the same 

“client library” we referred to in the previous section that is respective to a 

destination platform, then we can generate the point-in-time configuration 

file required for importing an existing resource into Terraform.

The import logic can be written in any language where there is 

support provided with the client library. Many vendor platforms offer their 

supported libraries in Python, Go, Ruby, etc. The idea is to leverage the 

capabilities of those libraries and generate the consistent configuration file 

that’s needed for Terraform import.

 Object Identification
Another important aspect when modeling the reverse engineering with 

Terraform is the definition of objects in the configuration file, meaning the 

list of objects that you like to fetch from the source of truth with help of 

those client libraries. As we described in earlier chapters, a configuration 

file is a user-managed file (in HCL or JSON) where users can define the 

infrastructure as code and do modifications to change the desired state of 

the resource.

Terraform experts can easily identify the common object parameters 

(mandatory and optional) that represent a large part of their infrastructure 

deployment. The import logic can be accordingly coded to fetch the 

values of these object parameters and can be written into a configuration 

file in the desired format needed for Terraform import (HCL or JSON). 

Every provider in Terraform offers the list of mandatory and optional 

objects that are to be defined in the configuration file that the user 

generates. The documentation published by Terraform corresponding to 

a provider usually has a list of objects in different sections such as “data,” 

“resource,” etc.

Chapter 4  terraform and reverse engineering 



126

You need to understand these objects and collect a sample list that 

usually is applicable to most of the infrastructure resources you want to 

manage. This should be a one-time exercise if you are looking to import 

and manage your infrastructure with Terraform. It is not a problem if 

you are collecting extra sets of object variables from the source of truth; 

usually the more the better because it allows for a successful import and 

less chance that Terraform is not imposing default values if that object 

parameter is not specified in the configuration file.

 Review
It is this stage of reverse engineering with Terraform where the resultant 

model is defined, the configuration file objects are identified, and an 

import script is written that can represent the configuration file parameters 

needed for a successful import of any existing resource into Terraform. 

This is an important step of the reverse-engineering process because it 

ensures the whole exercise is fruitful. The following are the steps in this 

phase of reverse engineering with Terraform:

 1. Perform comprehensive testing of a sample 

import of the varied resources you want to manage 

with Terraform and benefit from infrastructure 

automation.

 2. With every import that is automated, test using 

terraform plan and validate that the Terraform 

core is not suggesting any changes on the 

infrastructure. If Terraform suggests any changes, 

then that is not a successful import. Either there are 

missing object parameters that need to be coded 

and fetched in your configuration file or there is a 

possibility that after the automated configuration 

Chapter 4  terraform and reverse engineering 



127

file was generated that there were changes made on 

the resource directly on the destination platform. In 

that case, you would need to discard the existing file 

and generate a new configuration file automatically 

using your import logic.

 3. If your reverse-engineering process is part of 

another, bigger workflow, then you would want to 

verify the functioning of your defined process in 

a bigger context and fix any issues per the desired 

outcome.

The review process with reverse engineering can be integrated into 

the bigger workflow, and you can do complete end-to-end automation 

on the infrastructure resource. Figure 4-4 shows that there is an Azure 

DevOps (ADO) pipeline triggering the Terraform import and running the 

Terraform plan. If there are no changes suggested when running the plan, 

it is a successful import, and we can proceed and leverage further the 

infrastructure automation capabilities provided by Terraform.

Figure 4-4. Terraform sample workflow with ADO and incident 
management

Chapter 4  terraform and reverse engineering 



128

However, if there are changes suggested, you can create a workflow 

to create a ticket/incident for the Terraform experts to look at and fix the 

import logic to incorporate if anything that was newly added or is missing 

in the configuration file.

 Understand a Sample Reverse-Engineering 
Model with Terraform
So far, we have learned about the reverse engineering concepts and how 

they help in fulfilling our purpose. The knowledge we want to build in 

this section can be easily augmented and implied in a scenario where 

we are looking for the automated management of our infrastructure 

resources with Terraform. The skills we want to build are in a space where 

organizations have dependency on a tool (Terraform) to manage their 

automation across diverse infrastructure platforms. The sample case study 

uses VMware to do an automated import of a large number of VMs already 

present on a VMware farm.

In Chapter 3, we covered in brief the concept of the managed object 

browser (MOB) in VMware. That is a hook (source of truth) for doing 

reverse engineering in VMware. Similarly, with other platforms, there 

are similar hooks that enable doing reverse engineering on respective 

platforms. Over the last few months, native platform providers such as 

Microsoft Azure and GCP have been coming up with native command-line 

utilities to allow the creation of a Terraform configuration file for the easy 

import of existing resources. We are going to touch on those in Chapter 7.  

Regardless, the knowledge we are building through this book allows IT 

administrators to build their own reverse-engineered system that allows 

automated management via Terraform.

Now, to further our understanding of our sample use case that consists 

of an automated import of a VMware VM, let’s deep dive into the concepts 

further.

Chapter 4  terraform and reverse engineering 



129

The import logic we want to write should be such that it suits the 

majority of the workloads in our environment and should be easy to invoke 

and give us the desired results. Figure 4-5 shows the sample model of the 

VMware import.

Figure 4-5. Sample model for VMware VM import

In this model, we are presenting just the VM name and vCenter details 

to a Python script called the import script. This script is at the heart of this 

model and plays a key role. This script can be written in any language and 

fetches the desired parameter values from the vCenter MOB. The script 

has prebuilt logic where it collects data automatically and in a desired 

format via REST calls through the vCenter object browser. The data 

collected is a point-in-time and accurate representation of the VM objects 

present in the vCenter database. The output of this script can be a file in 

the HashiCorp Command Language (HCL) or in JSON format; this file acts 

as a config file for further imports you want to do in Terraform.

Chapter 4  terraform and reverse engineering 



130

The import script is considered small-logic software like any other 

script whose job is to fetch details from one platform and populate 

information in files as an output. Like any other automation logic, this 

import script has dependencies too. The configuration parameters for 

which we are fetching values from the MOB and are defined in the import 

script are in turn dependent on the following.

 Terraform Provider Version
The Terraform provider provides a medium for the Terraform core 

to interact with the desired infrastructure platform. The Terraform 

community continues to enhance their providers, which results in certain 

parameter values or names being added, modified, or removed from the 

list of parameters that Terraform manages for the environment. As the 

platform providers enhance their providers, the list of objects we need to 

fetch to generate configuration files evolves too. For a consistent reverse- 

engineering experience, it is advised to keep the provider version constant. 

In the case of updates needed to the provider, you should follow the 

“review” phase of reverse engineering to ensure your import logic is still 

consistent with the revised provider version.

 Infrastructure Platform Revisions
The source of truth is the entity that is the hook for getting the true 

information of the objects in that platform. In our case, the MOB is 

the source of truth for VMware. As with any other platform, VMware 

developers consistently revise/renew the objects they manage in their 

MOB inventory. Whenever we upgrade the vCenter version in our 

landscape, it potentially may affect the object and values that it stores in its 

database. In the case of an update with the platform (vCenter), you should 

follow the “review” phase steps of reverse engineering to ensure your 

import logic is still consistent with the revised platform upgrades.

Chapter 4  terraform and reverse engineering 



131

The dependencies mentioned for the import script, i.e., the Terraform 

provider version and source of truth version, are key, and they should be 

constant when we are operating our reverse-engineering solution with our 

production workload. Every time we are doing an upgrade of a Terraform 

provider or platform, the import logic should be evaluated in a test 

environment first with a diverse set of workloads and configuration. Once 

validated, the code is then good to use for production environments.

There can be several use cases around the import script to facilitate the 

usage of config files for importing into Terraform. These are some sample 

use cases:

• The output config file from this import script can be 

used for manual consumption by the IT administrators. 

They can in turn do this to allow and enable the 

DevOps way of handling an application via Terraform.

• The output config file from the import script can 

be submitted as a check-in to a DevOps or GitHub 

repository for direct end-user consumption. Of 

course, the DevOps repository can be linked with 

Terraform, and other operations can be handled via 

that same source repository for other VM management 

workflows.

• Another sample use case could be feeding the output 

of the import script to a DevOps pipeline directly 

where it is consumed for further automated import 

of the desired resources and for allowing automated 

configuration management via a DevOps system.

In short, the logic we want to write can be integrated with numerous 

schemes that allow for the automated management of our infrastructure 

platform.

Chapter 4  terraform and reverse engineering 



132

 Automated Creation of a Point-in-Time 
Config File
Now that we understand the model that allows for reverse engineering of a 

resource into Terraform, let’s take a look at what a typical configuration file 

looks like for a VMware VM, which has necessary and optional parameters 

required for import.

There are multiple sections of this configuration file required for 

VMware workloads. Let’s discuss them in brief again.

 Provider
As the name suggests, the provider is the section of the code block that 

specifies the infrastructure you are going to manage your resources. In our 

example of VMware, you can see the provider is vSphere.

Since Terraform continuously brings in revisions to the code that 

enables Terraform interaction with the infrastructure, it is mandatory 

to use the correct version of the provider. In the following example, the 

vSphere provider version is 2.3.1.

The following is a sample code snippet in JSON for reference:

{

    "terraform": {

        "required_providers": {

            "vsphere": {

                "source": "local/hashicorp/vsphere",

                "version": "2.3.1"

            }

        }

    },

Chapter 4  terraform and reverse engineering 



133

The statement "source": "local/hashicorp/vsphere" implies a local 

copy of the provider version (2.3.1 in our case) that is already installed on 

our local machine from where we are operating the Terraform core.

 Provider Details to Connect to the Platform
In the config file, details of the infrastructure platform are required so 

Terraform can make connections and manage the desired resource on 

the specified platform. There are different parameters that can be defined 

specific to the provider. Each provider needs to authenticate with your 

specific platform.

The following is a sample code snippet in JSON format for reference:

    "provider": {

        "vsphere": {

            "vsphere_server": "xx.xx.xx.xx",

            "user": "user@domain",

            "password": "xxxx",

            "allow_unverified_ssl": "true"

        }

    },

 Data Section
The data section of the code block defines the external additional 

resources on which our core resource would be built. For example, to 

create or modify a VM, this data code block would need the datastore 

details, VM network details, etc. The code block in the data section is 

referenced with parameters defined in the resource section.

The following is a sample code snippet in JSON format for reference:

"data": {

Chapter 4  terraform and reverse engineering 



134

        "vsphere_datacenter": {

            "dc": {

                "name": "XXX-YourDatacentername-XXX"

            }

        },

        "vsphere_resource_pool": {

            "pool": {

                "name": "<Cluster>/Resources",

                " datacenter_id":  "${data.vsphere_

datacenter.dc.id}"

            }

        },

        "vsphere_datastore": {

            "datastore": {

                "name": "<Datastore name where VM resides>",

                " datacenter_id":  "${data.vsphere_

datacenter.dc.id}"

            }

        },

        "vsphere_network": {

            "network0": {

                "name": "VM Network",

                " datacenter_id":  "${data.vsphere_

datacenter.dc.id}"

            }

        }

    },

Chapter 4  terraform and reverse engineering 



135

 Resource Section
The resource section of code is the main section that defines the resource 

that we need to manage with Terraform. It has several mandatory and 

optional parameters that need to be defined. For example, to manage a 

VM, the resource code block consists of essential parameters such as the 

VM name, datastore details, CPU, memory details, network and storage 

details etc.

The following is a sample code snippet in JSON format for reference:

    "resource": {

        "vsphere_virtual_machine": {

            "VMresource": {

                "network_interface": {

                    "adapter_type": "vmxnet3",

                     "network_id":  "${data.vsphere_network.

network0.id}"

                },

                "name": "UbantuTest",

                 "resource_pool_id":  "${data.vsphere_resource_

pool.pool.id}",

                 "datastore_id":  "${data.vsphere_datastore.

datastore.id}",

                "boot_retry_enabled": false,

                "enable_disk_uuid": false,

                "enable_logging": false,

                "num_cores_per_socket": 1,

                "num_cpus": 3,

                "guest_id": "ubuntu64Guest",

                "memory": 12288,

                "cpu_hot_add_enabled": "true",

                "memory_hot_add_enabled": "true",

Chapter 4  terraform and reverse engineering 



136

                "firmware": "bios",

                 "scsi_type":  "${data.vsphere_virtual_machine.

template.scsi_type}",

                "lifecycle": {

                    "ignore_changes": [

                        "custom_attributes",

                        "tags"

                    ]

                },

                "disk": {

                    "label": "disk0",

                    "size": 16,

                    "unit_number": 0,

                    "thin_provisioned": "false",

                     "path":  "[Datastore name] UbantuTest/

UbantuTest.vmdk",

                    "keep_on_remove": "true"

                }

            }

        }

    }

}

Note that there are several other sections in a typical configuration 

file such as input variables, output variables, local variables, etc. But these 

are not explained here because our focus is mainly on the configuration 

file, which is essential for automated imports. You can combine all these 

sections in one configuration file (called main.tf). This represents a 

sample config file needed for a typical import of a VM ware VM. This 

config file can be augmented to match the needs of IT administrators.

Chapter 4  terraform and reverse engineering 



137

In the hands-on exercise with this chapter, we are going to provide a 

Python script (called an import script) that can be employed to generate 

this same config file with most of the required parameters from VMware 

vCenter.

 Importing of a Resource with Terraform
Terraform can import existing infrastructure. This allows users to take 

resources that are created outside of Terraform and bring them under 

Terraform management. Importing a resource also means that Terraform 

is made aware of the current state of the resource. Terraform provides a 

single command that helps in importing a resource. However, as described 

earlier, the clean importing of a resource needs a well-defined and 

populated configuration file. Let’s first understand the importing logic; see 

Figure 4-6.

Figure 4-6. Terraform import

From Figure 4-6, you can see we need to have a config file with the 

required parameters. This configuration file can be in JSON or HCL format. 

This configuration file then needs to be presented to the Terraform core, 

which helps to import the resource, and it then generates the Terraform 

state file.

To explain the import operation in a more practical way, we will use a 

lab virtual machine running Ubuntu.

Chapter 4  terraform and reverse engineering 



138

For a successful import, we need to place the fully populated 

configuration file as explained earlier in this chapter in the desired 

location. The following shows the config file named main.tf.json present 

in a folder named import.

 

The sample VM running in the lab setup is UbantuTest, which is to be 

imported with Terraform, as shown in Figure 4-7.

Figure 4-7. Pre-existing VM called UbantuTest in vCenter

The sample command for a Terraform import of a VMware VM is 

shown here:

Terraform import vsphere_virtual_machine.<ConfigFileResource 

Name>  /<Cluster>/vm/<VMName>

If the configuration file is properly populated, it would result 

in a successful import. Here’s an example of the output from a 

successful import:

Chapter 4  terraform and reverse engineering 



139

• VMresource is the name of a resource as defined in the 

configuration file (main.tf.json).

• ECM is the name of the sample datacenter in vCenter.

• UbantuTest is the VM name running in the datacenter 

that is imported.

 

After a successful import into Terraform, the following is the additional 

file that gets created. This is the state file that Terraform maintains for its 

records. This is the file against which our configuration file is differentiated 

when there are changes to be applied on the destination platform.

 

After a successful import, we should initialize Terraform with the 

terraform init command.

Chapter 4  terraform and reverse engineering 



140

 Validating a Successful Import
After a successful import, it is important to validate if it is correct. We 

define a successful import when we run terraform plan and it suggests 

no modification to our infrastructure. If terraform plan suggests 

modifications, there are certain parameters missing in the config file 

whose values are not fetched and Terraform has assumed the default value 

in the configuration file. If there are changes suggested by Terraform that 

are applied on the platform, then it would make changes to the resource, 

which may not be desired. Therefore, a successful import relies on a clean 

config file, which reflects the accurate, point-in-time state of a resource. 

To get to the stage of a clean config file, IT administrators might have to do 

a few iterations when building logic or fetching the values of the desired 

parameters. The config file generated should be tested for a variety of 

resources and complex configurations.

Now let’s run terraform plan for the sample VMware import we just 

performed.

As you can see, this import is clean because terraform plan suggested 

no changes to the infrastructure. With our development of import script, 

we were able to identify and define the required parameters that suit most 

of the VM workloads deployed in our environment. Any IT administrator 

should be able to use the same reverse-engineering concepts to define 

a config file and create or modify the “custom import” script to fetch 

the required parameters for a successful import that matches the VM 

deployments in their own environment.

Chapter 4  terraform and reverse engineering 



141

 Hands-On Exercise: Import Script to  
Demonstrate Successful Autogeneration of  
a Config File
In this hands-on exercise, we are going to demonstrate the reverse- 

engineering concepts we’ve discussed so far and do an automated 

import of a sample VM in a VMware environment. This import script is 

fetching details from the MOB and creating a config file, which allows 

for a successful import of a VMware virtual machine. The most updated 

import script written for an import of the VMware virtual machine can be 

accessed from the GitHub repository we maintain, available here:

https://github.com/sumitbhatia1986/Terraform-VMware-

ReverseEngineering

We are replicating the sample code here to show you how a typical 

import script can be written in the Python language that interacts with the 

MOB and autogenerates a typical configuration file.

Please note that though this exercise demonstrates a VMware import, 

this import configuration suits most of the workloads in our environment. 

There may be certain additional parameters you need to fetch based on 

the VM workloads running in your specific environment. Also note that 

the same reverse-engineering logic can be easily used on other platforms 

where you want automation via Terraform.

# -*- coding: utf-8 -*-

"""

Created on Mon Dec  7 17:42:16 2022

@author: Sbhatia3

"""

import json

import requests

Chapter 4  terraform and reverse engineering 

https://github.com/sumitbhatia1986/Terraform-VMware-ReverseEngineering
https://github.com/sumitbhatia1986/Terraform-VMware-ReverseEngineering


142

import sys

from requests.packages.urllib3.exceptions import 

InsecureRequestWarning

from pyVim import connect  # client libraries to interact 

with MOB

import ssl

from pyVmomi import vim # client libraries to interact with MOB

import re

import collections

#Defining class for structural collection of Config file 

parameters.

class OrderedConfig(collections.OrderedDict):

    pass

app_settings = {

    'api_pass': "XXXX",

    'api_user': "administrator@vsphere.local",

    'api_url': "https://<vCenter FQDN>/rest/",

    'vcenter_ip': "xx.xx.xx.xx",

     'VM_name':  "UbantuTest", ### Desired VM for which we need 

to find details <Case sensitive>

    'vsphere_datacenter': "ECM"

}

## Authenticate with Vcenter to find the VM ID

def auth_vcenter(username, password):

    resp = requests.post(

         '{}/com/vmware/cis/session'.format(app_

settings['api_url']),

         auth=(app_settings['api_user'], app_settings['api_

pass']),

        verify=False

Chapter 4  terraform and reverse engineering 



143

    )

    if resp.status_code != 200:

         print('Error! API responded with:  {}'.format(resp.

status_code))

        return

    return resp.json()['value']

def get_api_data(req_url):

     sid =  auth_vcenter(app_settings['api_user'],  

app_settings['api_pass'])

     resp =  requests.get(req_url, verify=False, 

headers={'vmware-api-session-id': sid})

    if resp.status_code != 200:

         print('Error! API responded with:  {}'.format(resp.

status_code))

        return

    return resp

## Getting VM details including VM ID needed to browser 

through MOB

def get_vm(vm_name):

     resp =  get_api_data('{}/vcenter/vm?filter.names={}'.

format(app_settings['api_url'], vm_name))

    j = resp.json()

    return (j)

#Fetching VM ID from REST API for the VM we want to import

requests.packages.urllib3.disable_warnings(InsecureRequest 

Warning)

vmdetails = get_vm(app_settings['VM_name'])

vmid = vmdetails['value'][0]['vm']

s = ssl._create_unverified_context()

Chapter 4  terraform and reverse engineering 



144

service_instance = connect.SmartConnect(

     host=app_settings['vcenter_ip'], user=app_settings 

['api_user'], pwd=app_settings['api_pass'], sslContext=s

)

content = service_instance.RetrieveContent()

container = content.rootFolder  # starting point to look into

viewType = [vim.VirtualMachine]  # object types to look for

recursive = True  # whether we should look into it recursively

containerView =  content.viewManager.CreateContainerView 

(container, viewType, recursive)  # create 

container view

children = containerView.view

for child in children:  # for each statement to iterate all 

names of VMs in the environment

    if (str(vmid) in str(child)):

         vm_summary =  child.summary  #Summary of the desired VM 

to import

         vm_config =  child.config #Complete config data 

hiararchy and child item values loaded in 

the variable

         vm_resourcepool =  child.resourcePool #Resource 

pool details

        vm_network = child.network #Network details of the VM

        vm_datastore = child.datastore

        vm_parent = child.parent

# Config file structure and populating with corresponding values 

fetched with MOB

data = OrderedConfig()

data["provider"] = OrderedConfig()

data["provider"]["vsphere"] = OrderedConfig()

Chapter 4  terraform and reverse engineering 



145

data["provider"]["vsphere"]["user"] = "sampleuser"

data["provider"]["vsphere"]["password"] = "samplepassword"

data["provider"]["vsphere"]["allow_unverified_ssl"] = "true"

#Posting resource pool details

resourcepool_string = str(vm_resourcepool.owner.name) + '/' + 

str(vm_resourcepool.name)

data["data"] = OrderedConfig()

data["data"]["vsphere_datacenter"] = OrderedConfig()

data["data"]["vsphere_datacenter"]["dc"] = OrderedConfig()

data["data"]["vsphere_datacenter"]["dc"]["name"] = app_

settings['vsphere_datacenter']

data["data"]["vsphere_resource_pool"] = OrderedConfig()

data["data"]["vsphere_resource_pool"]["pool"] = OrderedConfig()

data["data"]["vsphere_resource_pool"]["pool"]["name"] = 

resourcepool_string

data["data"]["vsphere_resource_pool"]["pool"]["datacenter_id"] 

= "${data.vsphere_datacenter.dc.id}"

#Posting datastore details

datastore_string = str(vm_datastore[0].name)

data["data"]["vsphere_datastore"] = OrderedConfig()

data["data"]["vsphere_datastore"]["datastore"] = 

OrderedConfig()

data["data"]["vsphere_datastore"]["datastore"]["name"] = 

datastore_string

data["data"]["vsphere_datastore"]["datastore"]["datacenter_id"] 

= "${data.vsphere_datacenter.dc.id}"

Chapter 4  terraform and reverse engineering 



146

#Posting virtual machine details

datastore_string = str(vm_datastore[0].name)

data["data"]["vsphere_virtual_machine"] = OrderedConfig()

data["data"]["vsphere_virtual_machine"]["template"] = 

OrderedConfig()

data["data"]["vsphere_virtual_machine"]["template"]["name"] = 

str(vm_config.name)

data["data"]["vsphere_virtual_machine"]["template"]

["datacenter_id"] = "${data.vsphere_datacenter.dc.id}"

#For all network adapter, creating a stack, adapter details in order

network_adapter = []

for item_netadapter in vm_config.hardware.device:

     if (str("Network adapter") in str(item_netadapter.

deviceInfo.label)):

        vm_networkadapter = item_netadapter

        #Posting adapter type for Network interface details

        if (str("E1000e") in str(type(vm_networkadapter))):

            network_adapter.append("e1000e")

        if (str("Vmxnet3") in str(type(vm_networkadapter))):

            network_adapter.append("vmxnet3")

data["resource"] = OrderedConfig()

data["resource"]["vsphere_virtual_machine"] = OrderedConfig()

data["resource"]["vsphere_virtual_machine"]["jsontemplate"] = 

OrderedConfig()

#Posting network details and adding network interface details at 

same order

for index, nic in enumerate(vm_network):

Chapter 4  terraform and reverse engineering 



147

  network_string = str(nic.name)

  data["data"]["vsphere_network"+str(index)] = OrderedConfig()

   data["data"]["vsphere_network"+str(index)]

["network"+str(index)] = OrderedConfig()

   data["data"]["vsphere_network"+str(index)]

["network"+str(index)]["name"] = network_string

   data["data"]["vsphere_network"+str(index)]

["network"+str(index)]["datacenter_id"] = "${data.vsphere_

datacenter.dc.id}"

for index, nic in reversed(list(enumerate(vm_network))):

  #adding network interface details

   data["resource"]["vsphere_virtual_machine"]["jsontemplate"]

["network_interface"+str(index)] = { "adapter_type" : 

network_adapter.pop() }

   data["resource"]["vsphere_virtual_machine"]["jsontemplate"]

["network_interface"+str(index)]["network_id"] = str("${data.

vsphere_network."+"network"+str(index)+".id}")

###################Posting other VM generic details

#Posting Name of the Virtual machine

data["resource"]["vsphere_virtual_machine"]["jsontemplate"]

["name"] = str(vm_config.name)

data["resource"]["vsphere_virtual_machine"]["jsontemplate"]

["folder"] = vm_parent.name

data["resource"]["vsphere_virtual_machine"]["jsontemplate"]

["resource_pool_id"

                                                            ] = 

"${data.vsphere_resource_pool.pool.id}"

data["resource"]["vsphere_virtual_machine"]["jsontemplate"]

["datastore_id"] = "${data.vsphere_datastore.datastore.id}"

Chapter 4  terraform and reverse engineering 



148

 data["resource"]["vsphere_virtual_machine"]["jsontemplate"]

["boot_retry_enabled"

                                                             

] = vm_config.bootOptions.bootRetryEnabled

data["resource"]["vsphere_virtual_machine"]["jsontemplate"]

["enable_disk_uuid"] = vm_config.flags.diskUuidEnabled

data["resource"]["vsphere_virtual_machine"]["jsontemplate"]

["enable_logging"] = vm_config.flags.enableLogging

data["resource"]["vsphere_virtual_machine"]["jsontemplate"]

["num_cores_per_socket"

                                                             

] = vm_config.hardware.numCoresPerSocket

#Posting Number of CPU’s

data["resource"]["vsphere_virtual_machine"]["jsontemplate"]

["num_cpus"] = vm_config.hardware.numCPU

data["resource"]["vsphere_virtual_machine"]["jsontemplate"]

["guest_id"] = str(vm_config.guestId)

#Posting Memory

data["resource"]["vsphere_virtual_machine"]["jsontemplate"]

["memory"] = vm_config.hardware.memoryMB

#Posting guestid

data["resource"]["vsphere_virtual_machine"]["jsontemplate"]

["guest_id"] = str(vm_config.guestId)

#Posting CPU Hot add enabled flag info

data["resource"]["vsphere_virtual_machine"]

["jsontemplate"]["cpu_hot_add_enabled"] = str(vm_config.

cpuHotAddEnable).lower()

Chapter 4  terraform and reverse engineering 



149

#Posting Memory hot add enabled flag info

data["resource"]["vsphere_virtual_machine"]["jsontemplate"]

["memory_hot_add_enabled"] = str(vm_config.

memoryHotAddEnabled).lower()

#Posting firmware information

data["resource"]["vsphere_virtual_machine"]["jsontemplate"]

["firmware"] = str(vm_config.firmware).lower()

#Posting scsi type information

data["resource"]["vsphere_virtual_machine"]["jsontemplate"]

["scsi_type"] = "${data.vsphere_virtual_machine.template.

scsi_type}"

#Posting ignore tags and custom attribute changes

data["resource"]["vsphere_virtual_machine"]["jsontemplate"]

["lifecycle"] = { "ignore_changes": ["custom_attributes", 

"tags"]}

disk_starting_name = "disk"

no_of_disk = 0

#Posting disk information

for item_virtualdisk in vm_config.hardware.device:

    if (str("VirtualDisk") in str(type(item_virtualdisk))):

        diskname = disk_starting_name + str(no_of_disk)

         data["resource"]["vsphere_virtual_machine"]

["jsontemplate"][diskname] = OrderedConfig()

         data["resource"]["vsphere_virtual_machine"]

["jsontemplate"][diskname]["label"] = "disk" + str(

            item_virtualdisk.unitNumber

        )

Chapter 4  terraform and reverse engineering 



150

         data["resource"]["vsphere_virtual_machine"]

["jsontemplate"][diskname]["size"] = int(

            item_virtualdisk.capacityInKB / 1048576

        )

         data["resource"]["vsphere_virtual_machine"]

["jsontemplate"][diskname]["unit_number"] = item_

virtualdisk.unitNumber

         data["resource"]["vsphere_virtual_machine"]

["jsontemplate"][diskname]["thin_provisioned"] = str(

            item_virtualdisk.backing.thinProvisioned

        ).lower()

         data["resource"]["vsphere_virtual_machine"]

["jsontemplate"][diskname]["path"] = str(

            item_virtualdisk.backing.fileName

        )

         data["resource"]["vsphere_virtual_machine"]

["jsontemplate"][diskname]["keep_on_remove"] = "true"

        no_of_disk += 1

for key in data:

    if (key == 'resource'):

        for t in data[key]:

            if (t == 'vsphere_virtual_machine'):

                 data[key][t][str(vm_config.name)] = data[key]

[t].pop('jsontemplate')

#getting json string (Order changing issue)

json_string = json.dumps(data, indent = 4)

#replacing all different diskname(eg: disk0) to "disk" itself

for i in range(no_of_disk):

    replace_string = '"disk'+ str(i) +'": {'

Chapter 4  terraform and reverse engineering 



151

     json_string = re.sub(replace_string, '"disk": {', 

json_string)

#replacing all different diskname(eg: "vsphere_network0") to 

"vsphere_network" itself

for i in range(len(vm_network)):

    replace_string = '"vsphere_network'+ str(i) +'": {'

     json_string =  re.sub(replace_string, '"vsphere_network": 

{', json_string)

#replacing all different diskname(eg: "network_interface0") to 

"network_interface" itself

for i in range(len(vm_network)):

    replace_string = '"network_interface'+ str(i) +'": {'

     json_string = re.sub(replace_string, '"network_interface": 

{', json_string)

sys.stdout.write(json_string)

#output config JSON file

with open("main.tf.json", "w") as outfile:

    outfile.write(json_string)

The different sections of this script are self-explanatory and are 

built upon basic Python fundamentals, which are written to fetch a 

sample config file. For ease of understanding, the following is the sample 

execution and generation of the configuration file with this import script:

 

Executing the Python script fetches us the autogenerated configuration 

file in JSON format. The following is the sample config file for reference:

Chapter 4  terraform and reverse engineering 



152

 

The following is the sample configuration file generated with the 

import script we demonstrated in this hands-on exercise:

Content of main.tf.json

{

    "provider": {

        "vsphere": {

            "vsphere_server": "XX.XX.XX.XX",

            "user": "administrator@vsphere.local",

            "password": "xxxxxx",

            "allow_unverified_ssl": "true"

        }

    },

    "data": {

        "vsphere_datacenter": {

            "dc": {

                "name": "ECM"

            }

        },

        "vsphere_resource_pool": {

            "pool": {

                "name": "DR/Resources",

                 "datacenter_id":  "${data.vsphere_

datacenter.dc.id}"

            }

        },

        "vsphere_datastore": {

            "datastore": {

                "name": "aabbcc",

Chapter 4  terraform and reverse engineering 



153

                 "datacenter_id":  "${data.vsphere_

datacenter.dc.id}"

            }

        },

        "vsphere_virtual_machine": {

            "template": {

                "name": "UbantuTest",

                 "datacenter_id":  "${data.vsphere_

datacenter.dc.id}"

            }

        },

        "vsphere_network": {

            "network0": {

                "name": "VM Network",

                 "datacenter_id":  "${data.vsphere_

datacenter.dc.id}"

            }

        }

    },

    "resource": {

        "vsphere_virtual_machine": {

            "UbantuTest": {

                "network_interface": {

                    "adapter_type": "vmxnet3",

                     "network_id":  "${data.vsphere_network.

network0.id}"

                },

                "name": "UbantuTest",

                 "resource_pool_id":   "${data.vsphere_resource_

pool.pool.id}",

Chapter 4  terraform and reverse engineering 



154

                 "datastore_id":  "${data.vsphere_datastore.

datastore.id}",

                "boot_retry_enabled": false,

                "enable_disk_uuid": false,

                "enable_logging": false,

                "num_cores_per_socket": 1,

                "num_cpus": 3,

                "guest_id": "ubuntu64Guest",

                "memory": 12288,

                "cpu_hot_add_enabled": "true",

                "memory_hot_add_enabled": "true",

                "firmware": "bios",

                 "scsi_type":  "${data.vsphere_virtual_machine.

template.scsi_type}",

                "lifecycle": {

                    "ignore_changes": [

                        "custom_attributes",

                        "tags"

                    ]

                },

                "disk": {

                    "label": "disk0",

                    "size": 16,

                    "unit_number": 0,

                    "thin_provisioned": "false",

                     "path":  "[ aabbcc] UbantuTest/

UbantuTest.vmdk",

                    "keep_on_remove": "true"

                } } } } }

This is a typical configuration file that may suit the majority of the 

workloads present in a typical VMware farm.

Chapter 4  terraform and reverse engineering 



155

 Summary
This chapter talked about the reverse-engineering process and the three 

steps in more detail. Also, it explained how to create the model we want to 

build for Terraform using a VMware virtual machine as an example.

The chapter started by explaining the core functionality of Terraform 

and explained the architecture of Terraform and its interaction with 

providers, provisioners, and destination platforms. Further, the chapter 

explained the different sections of a configuration file, which is required 

for a sample VMware virtual machine import into Terraform. After the 

configuration file was generated, the chapter introduced the import 

operation of a sample VM into Terraform. The validation step is key to the 

success of the whole import operation. After importing, you run terraform 

plan, and the outcome should suggest “No Changes.” This confirms a 

successful import.

In the hands-on exercise, we provided an import script to help you 

generate the point-in-time configuration file for a sample VMware virtual 

machine. This script can be augmented to fetch any environment-specific 

object parameters required to be populated in the Terraform configuration 

file for a successful import.

Chapter 4  terraform and reverse engineering 



157© Sumit Bhatia, Chetan Gabhane 2024 
S. Bhatia and C. Gabhane, Reverse Engineering with Terraform,  
https://doi.org/10.1007/979-8-8688-0074-0_5

CHAPTER 5

Debugging for Import 
Issues and Best 
Practices
Terraform is a formidable tool in the world of modern infrastructure 

management, revolutionizing the way we handle IT infrastructure 

resources. It enables us to treat resources as code, ushering in a new era of 

control, transparency, and efficiency. This strategy has numerous benefits, 

most notably the use of version control and the certainty of repeatability in 

our infrastructure deployments.

Terraform serves as a critical component for the paradigm shift toward 

infrastructure as code (IaC). By encapsulating our infrastructure as code, 

we unlock the capacity to orchestrate and manage infrastructure resources 

in a systematic, programmatic fashion. This translates into the ability 

to define, provision, and maintain configurations just like we manage 

software source code, all the while granting us the power of predictability.

In this chapter, we embark on a journey where we delve into the nitty- 

gritty details of bringing an existing VM under the encompassing umbrella 

of Terraform’s control. This process involves a well-orchestrated sequence 

of steps that set the path for a seamless transition into the Terraform 

ecosystem.

https://doi.org/10.1007/979-8-8688-0074-0_5


158

However, it is crucial to remember that with great power comes great 

responsibility. Terraform is a formidable tool, but it is not without its 

potential pitfalls. In this chapter, we will not only explore the mechanics of 

VM integration with Terraform but also emphasize the utmost importance 

of precautionary measures. As we traverse this path, we will draw your 

attention to the safeguards and best practices you should adopt. This, in 

turn, ensures that your resources are not only efficiently managed but also 

well-protected from unintended consequences.

 Potential Error Scope with Reverse  
Engineering
There are potential challenges at every stage of the import process when 

importing existing virtual machines into Terraform. Let’s understand the 

import process and possible issues that can affect your import operation.

 The Challenge of Evolving Features
Destination platforms such as VMware and cloud providers are continually 

evolving and introducing enhancements and new functionalities. These 

features can enhance performance, security, and management, among 

other benefits. However, the introduction of these new features may lead 

to potential conflicts or discrepancies between existing infrastructure 

configurations and the revised feature set.

To effectively integrate the latest features into existing infrastructure, 

it is crucial to update both the Terraform core and relevant providers. The 

Terraform core handles the primary functionalities of the Terraform tool, 

while providers extend its capabilities to interact with specific destination 

platforms.

Chapter 5  Debugging for import issues anD best praCtiCes



159

It is suggested that whenever these specifics change for your 

environment, you should run an import test with a variety of your 

resources to reflect that the last import logic you had still is relevant. 

If the import test is failing, then make sure your import logic is 

adapted accordingly so as you are again making clean imports of your 

infrastructure resources with your import logic. In the next section, we will 

discuss the importance of continuously testing the Import logic.

 Importance of Testing Import Logic
Before updating the Terraform core and providers, it is essential to assess 

how these changes might impact the existing infrastructure. The “import 

logic” refers to the process by which existing resources are imported into 

Terraform’s state and configuration files. Any changes in the destination 

platform’s behavior might affect this import logic, leading to discrepancies 

during the import process.

To mitigate potential issues, thorough testing of the import logic is 

necessary. This involves evaluating how existing resources are imported, 

verifying that all required configuration parameters are fetched correctly, 

and confirming that the infrastructure remains consistent throughout the 

process.

To ensure clean imports, follow the suggested steps mentioned in 

Figure 5-1 when updating the destination platform, the Terraform core, 

and the providers involved in your reverse-engineering process.

Chapter 5  Debugging for import issues anD best praCtiCes



160

Step 1
Backup Existing Configuration: Before making any changes, create a backup of your existing Terraform

configuration and state files. This serves as a safety net in case any issues arise during the update process.

Step 2
Update Destination Platform and Providers: Update your destination platform (e.g., VMware or Cloud provider)

to the latest version, along with the relevant Terraform providers, using the appropriate versioning specified in the
Terraform configuration.

Step 3
Test Import Logic: Create a sample infrastructure that represents a subset of your actual production environment.

Perform the Terraform import process on this sample infrastructure, ensuring that all required configuration 
parameters are fetched correctly.

Step 4
Run Terraform Plan: After importing the sample infrastructure, execute terraform plan to validate that no changes 

are suggested. A successful clean import should result in "No changes" or "0 to add, 0 to change, 0 to destroy."

Step 5
Address Discrepancies: If Terraform plan suggests changes, review the discrepancies, and address them

accordingly. This may involve modifying the Terraform code or ensuring that the updated providers are compatible
with the sample infrastructure.

Step 6
Apply Changes to Production: Once the sample infrastructure achieves a clean import, proceed with confidence to

apply the changes to your production environment.

Figure 5-1. Testing clean imports with sample infrastructure

Remember that clean imports are not a one-time process but an 

ongoing practice. As infrastructure evolves, keep updating your Terraform 

code and fetching mechanisms to match any changes in the source of 

truth. With proper planning, testing, and adherence to best practices, 

Terraform empowers you to build a scalable, consistent, and reliable 

infrastructure that meets the needs of your organization.

 Clean Imports: A Guide to Ensuring 
Accurate Configurations
To streamline the infrastructure provisioning process, many IT 

professionals turn to Terraform for solutions. And, when performing 

reverse-engineering tasks, one often encounters challenges related to 

Chapter 5  Debugging for import issues anD best praCtiCes



161

fetching missing configuration file parameters from the source of truth. 

Let’s discuss the significance of “clean imports” and demonstrate how to 

ensure accurate configurations in VMware environments using Terraform.

 Understanding the Challenge
During reverse engineering, the process of creating infrastructure code 

from an existing environment, it is common to encounter incomplete or 

missing configuration parameters. These parameters could be vital for a 

successful infrastructure deployment, and without them, the provisioning 

process may lead to inconsistencies or errors.

When utilizing Terraform to import existing resources into a 

configuration, discrepancies between the imported state and the desired 

state specified in Terraform code can occur. These discrepancies might 

arise due to incomplete data or other inconsistencies in the imported 

resources.

The concept of “source of truth” is critical in ensuring the accuracy of 

configurations. The source of truth represents the most reliable and up-to- 

date information about the infrastructure, usually a central configuration 

management system. It is essential to fetch all relevant configuration 

parameters from the source of truth to achieve a clean import. And 

example of the “source of truth” for VMware infrastructure is the managed 

object browser (MOB) we discussed in earlier chapters.

 Importance of Clean Imports
A clean import refers to a successful Terraform import process where all 

the required configuration parameters are accurately fetched from the 

source of truth. When the import process results in no changes suggested 

by the Terraform plan, it indicates that the imported infrastructure is 

consistent with the desired state defined in the Terraform code. Clean 

imports play a pivotal role in the following aspects:

Chapter 5  Debugging for import issues anD best praCtiCes



162

• Consistency and stability: Clean imports ensure that 

the provisioned infrastructure is consistent with the 

expected state, reducing the chances of configuration 

drift and unexpected behavior.

• Reliability: Importing resources with all the 

necessary parameters enhances the reliability of the 

provisioning process, as there are fewer chances of 

misconfigurations.

• Collaboration: Clean imports promote smoother 

collaboration between team members, as everyone 

is working with a standardized and accurate 

infrastructure.

 Achieving Clean Imports with Terraform
Let’s walk through an example scenario to illustrate how to achieve clean 

imports in a VMware environment using Terraform.

Scenario: Importing a VMware Virtual Machine
Suppose we have an existing VMware virtual machine that we want to 

import into Terraform. The virtual machine’s configuration file contains 

vital parameters such as the VM name, CPU count, memory, disk size, and 

network configurations.

Step 1: Create the Terraform Configuration File Using Import logic
Start by creating a new Terraform configuration file (e.g., main.tf) and 

define the required VMware provider settings.

Step 2: Import the Virtual Machine
Next, execute the terraform import command to import the existing 

virtual machine into the Terraform state. Replace <vm-id> with the 

VMware-assigned ID for the virtual machine.

terraform import vsphere_virtual_machine.example <vm-id>

Chapter 5  Debugging for import issues anD best praCtiCes



163

Step 3: Initialize Terraform
After importing the virtual machine, initialize Terraform from your 

working directory so the latest providers are fetched for the Terraform 

operation.

You can run terraform init to initialize Terraform from the working 

directory.

Step 4: Run terraform plan
Now, run terraform plan to check for discrepancies between the 

imported state and the desired state defined in the Terraform resource.

terraform plan

Step 5: Identify and Fetch Missing Parameters
During the terraform plan execution, you might receive suggestions 

for changes due to missing or incomplete parameters fetched from the 

source of truth. Make sure to update your Terraform resource block with 

all the required configuration parameters. You can perform the necessary 

changes in your import logic to fetch and reflect the desired changes you 

need where terraform plan suggests no changes to the infrastructure 

after you import your resource.

Step 6: Verify a Clean Import
Rerun terraform plan after updating the Terraform resource. If 

the output shows “No changes” or “0 to add, 0 to change, 0 to destroy,” 

congratulations! You have achieved a clean import, and your VMware 

virtual machine is now accurately represented in Terraform.

Step 7: Dry Run and Testing on Different Resources
Before performing the actual import process, use the Terraform import 

command with the -target option to perform a dry run on a specific 

resource. This allows you to observe the expected changes and verify if 

all required parameters are fetched correctly. Additionally, create test 

environments to validate the imported infrastructure before applying 

changes to production environments.

Chapter 5  Debugging for import issues anD best praCtiCes



164

Achieving a clean import is a process, and when it is performed 

iteratively on a variety of resources present in your infrastructure, it leads 

to a stage where you can cleanly identify all the required parameters 

specific to your environment and fetch their values automatically from the 

source of truth of the destination platform. All this leads to a clean import 

and successful reverse engineering in your environment.

 Understanding the Configuration File
Before we first dive into the debugging of issues with the reverse- 

engineering process, let’s first re-emphasize the importance of configuration 

files. The configuration file plays a vital role as it defines the desired state of 

the VM. It typically includes settings such as the VM’s name, guest operating 

system, CPU and memory allocation, and network configurations.

As you begin reverse engineering a VM, it is crucial to pay close 

attention to the configuration file. Ensure that all the necessary parameters 

are correctly imported and captured within the file. A small oversight 

here can lead to involuntary consequences, such as incorrect resource 

allocation, misconfiguration of network settings, etc.

To demonstrate this, let’s look at an example of a Terraform 

configuration file for a VMware VM:

resource "vsphere_virtual_machine" "my_vm" {

 name             = "example-vm"

  guest_id         = "centos7_64Guest"

  num_cpus         = 2

  memory           = 4096

  network_interface {

    label          = "VM Network"

    ipv4_address   = "10.1.1.1"

  }

}

Chapter 5  Debugging for import issues anD best praCtiCes



165

In this example, we define a VM named example-vm with CentOS 7 

as the guest operating system. It is allocated two CPUs and 4096 MB of 

memory and is connected to the VM network with the IP address 10.1.1.1. 

Make sure these basic parameters along with the others that are required 

match your specific VM’s configuration. If they are different, then it can 

lead to an incorrect import of a VM. Make sure your configuration file is 

reflecting the true point-in-time state of the resource you intend to import.

 Importing the Existing VM
Once we have the configuration file ready, the next step is to import the 

existing VM into Terraform using the terraform import command. This 

command allows us to associate an existing resource into Terraform 

management.

The import command requires two arguments: the Terraform resource 

type and the ID of the resource to be imported. For VMware VMs, the 

resource type is vsphere_virtual_machine. However, before proceeding, 

we need to obtain the correct ID of the VM we want to reverse engineer.

To find the ID of a VM, you can use the VMware vSphere client or 

managed object browser (MOB) to view the VM’s properties. The ID is 

typically in the format of a universally unique identifier (UUID) and can be 

found within the VM’s properties.

It is crucial to double-check and ensure that you have the correct 

IDs for the VMs you intend to import. Using the wrong ID can lead to 

unintended consequences and may impact other VMs that are not 

supposed to be targeted.

To import the VM, execute the following command in your Terraform 

project directory:

Terraform import vsphere_virtual_machine.my_vm <vm_id>

Chapter 5  Debugging for import issues anD best praCtiCes



166

Replace <vm_id> with the actual ID of the VM you obtained earlier. 

This command associates the imported VM with the Terraform resource 

named my_vm.

 Verifying the Imported Configuration
After importing the VM, it’s essential to verify that the imported 

configuration aligns with your expectations. Compare the imported values 

to the original VM’s settings and ensure that all the parameters have been 

correctly captured in the Terraform configuration file.

For example, you can use the terraform show command to display the 

current state of the imported VM:

terraform show

This shows the current state of the imported VM, including its name, 

guest operating system, CPU and memory allocation, and network 

settings. Compare this output with the original VM’s properties to ensure 

that all the necessary information has been imported correctly.

If you notice any discrepancies or missing values, you can update the 

Terraform configuration file accordingly. Make the necessary adjustments 

to ensure that the imported VM aligns with the desired state.

Once you have verified the imported configuration, you can proceed 

with managing the VM using Terraform. Since the VM is now under 

Terraform management, you can leverage its capabilities to make 

changes, provision additional resources, or even destroy and re-create 

the VM if needed. Figure 5-2 shows the summary of the configuration file 

import steps.

Chapter 5  Debugging for import issues anD best praCtiCes



167

Understanding the 
Configuration File

Importing the 
Existing VM

Verifying the 
Imported 

Configuration

Managing the VM 
with Terraform

Leveraging Version 
Control for VM 
Infrastructure

Figure 5-2. Import steps for configuration file

Remember, Terraform provides the advantage of version control, 

allowing you to track and manage changes to your VM infrastructure over 

time. You can commit your configuration files to a version control system 

such as Git, enabling collaboration, reverting to previous states, and 

ensuring consistency across environments.

Chapter 5  Debugging for import issues anD best praCtiCes



168

 Provider Version Compatibility 
for Successful Reverse Engineering
When reverse engineering an existing infrastructure using Terraform, 

it is essential to ensure that the Terraform provider version matches 

the version of the destination infrastructure being targeted. A version 

mismatch between the provider and the infrastructure can result in import 

issues and other errors.

For example, with a VMware import, if the Terraform provider version 

is outdated, it may not support certain resources or configurations that are 

present in the newer version of VMware. In this case, Terraform may fail to 

import or create the required resources, resulting in errors.

On the other hand, if the Terraform provider version is newer than the 

VMware infrastructure version, it may introduce features or configurations 

that are not supported by the infrastructure. This can also result in errors 

during the import process or when applying changes to the infrastructure.

To mitigate these issues, it is important to carefully review and 

validate the Terraform configuration file and ensure that it accurately 

reflects the current state of the VMware infrastructure. Additionally, it is 

recommended to test the configuration on a nonproduction environment 

before applying changes to the production infrastructure.

Let’s explore another scenario in which we have a VMware 

infrastructure operating on version 6.7. It is important to highlight that 

version 6.7 has already reached its end of life (EOL). In this context, our 

objective is to reverse engineer the existing resources using Terraform.

If we use an outdated version of the Terraform provider that supports 

only VMware version 6.5, we may encounter import issues and other 

errors. For example, we may not be able to import or leverage certain 

features that are available only with VMware version 6.7. New features may 

relate to security, network configurations, advanced storage options, etc.

Chapter 5  Debugging for import issues anD best praCtiCes



169

On the other hand, if we use a newer version of the Terraform provider 

that supports VMware version 7.0, which may introduce features or 

configurations that are not supported by the older VMware infrastructure 

present in our landscape (VMware version 6.7 our example). New provider 

may demand a configuration item to be defined in the configuration file, 

but our platform may not support that because it is running on an older 

release. This can also result in errors during the import process or when 

applying changes to the infrastructure.

To avoid these issues, we need to ensure that the Terraform provider 

version matches the version of the VMware infrastructure that we are 

targeting.

# Terraform configuration file example in YAML format

terraform:

  required_providers:

    vsphere:

      source: "hashicorp/vsphere"

      version = "X.Y.Z"  # Use the latest version you found

In the previous example, we use a YAML representation of the 

Terraform configuration file to illustrate the version compatibility 

considerations. The required providers section specifies the version of the 

vSphere provider we want to use. It’s advisable to use the latest compatible 

version for your specific use case. You can check the latest version here:

https://registry.Terraform.io/providers/hashicorp/

vsphere/latest

The resources section defines the example_vm resource, which 

represents the virtual machine to be imported or created. It includes 

properties such as the name, resource pool, datastore, number of 

CPUs, memory, network configuration, and disk settings. By using the 

appropriate provider version, we ensure that these properties align with 

the capabilities of the targeted VMware infrastructure.

Chapter 5  Debugging for import issues anD best praCtiCes

https://registry.terraform.io/providers/hashicorp/vsphere/latest
https://registry.terraform.io/providers/hashicorp/vsphere/latest


170

The data section defines the necessary data sources (vsphere_

datastore, vsphere_network, vsphere_datacenter, and vsphere_

resource_pool) to fetch information about existing resources in the 

VMware infrastructure. These data sources help Terraform accurately 

reflect the current state of the infrastructure during the reverse- 

engineering process.

By carefully reviewing the Terraform configuration file and selecting 

the appropriate provider version, we can mitigate version mismatches, 

configuration issues, and import errors. Taking these precautions will 

help guarantee a smooth reverse-engineering process and maintain the 

integrity of the VMware infrastructure.

Remember, it is crucial to test the configuration on a nonproduction 

environment first to ensure the compatibility and accuracy of the reverse- 

engineering process.

Overall, ensuring compatibility and consistency between the 

Terraform provider and the VMware infrastructure version is crucial for a 

successful reverse-engineering and import process.

 Debugging and Troubleshooting Steps 
with Terraform
Debugging and troubleshooting are important steps when performing a 

reverse-engineering process using Terraform. In this section we’ll show an 

example of how to configure debugging and troubleshoot issues during the 

import process.

Suppose we have a Terraform configuration file that imports an 

existing VMware virtual machine. We are encountering an error during the 

import process and want to troubleshoot the issue. Here are some of the 

ways defined to help you find more details about the issue you may want 

to debug:

Chapter 5  Debugging for import issues anD best praCtiCes



171

 1. Set the debug log level: We can configure the 

Terraform log level to debug by setting the TF_LOG 

environment variable to DEBUG. This will enable 

detailed logging and help us identify the source 

of the issue. For example, we can set the TF_LOG 

environment variable to debug using the following 

command:

$ export TF_LOG=DEBUG

Prevent a fork: When working on Terraform 

projects collaboratively, ensuring consistency 

across environments becomes crucial. The TF_FORK 

environment variable comes to your rescue in 

such situations. By setting TF_FORK=0, you prevent 

Terraform from forking and executing multiple 

copies of itself in parallel, ensuring a single process 

for the entire configuration. This helps in avoiding 

race conditions and enhances predictability when 

dealing with shared state or resources.

Here is a Bash command example:

export TF_FORK=0

terraform apply

Define logs verbosity: There are ways to define 

the different logging levels that help in debugging. 

Terraform provides detailed logging to aid 

developers in understanding the execution flow 

and identifying potential issues. The TF_LOG 

environment variable allows you to control the 

logging verbosity, with five possible levels: TRACE, 

DEBUG, INFO, WARN, or ERROR.

Chapter 5  Debugging for import issues anD best praCtiCes



172

Here is a Bash command example:

export TF_LOG=DEBUG

terraform plan

Save logs at custom location: While the default logs 

are displayed on the console, you might want to save 

them for later analysis or debugging purposes. With 

TF_LOG_PATH, you can specify a custom file path to 

save Terraform logs.

Here is a Bash command example:

export TF_LOG=DEBUG

export TF_LOG_PATH="/path/to/Terraform.log"

terraform apply

 2. Run the Terraform import command: We can 

use the Terraform import command to import 

the VMware virtual machine resource into our 

Terraform state file. For example, we can use the 

following command to import the resource:

Code:

$ terraform import vsphere_virtual_machine.my_vm /

datacenter/vm/my_vm

 3. Review the debug logs: After running the import 

command, we can review the debug logs to identify any 

errors or issues. The debug logs will provide detailed 

information about the import process, including the 

resource being imported, any dependencies, and 

any errors encountered. For example, we can use the 

following command to view the debug logs:

$ terraform show -debug

Chapter 5  Debugging for import issues anD best praCtiCes



173

 4. Troubleshoot the issue: Based on the debug 

logs, we can troubleshoot the issue and make any 

necessary changes to the Terraform configuration 

file. For example, if we find that the import 

command failed due to a version mismatch 

between the Terraform provider and the VMware 

infrastructure, we can update the provider version 

to resolve the issue.

Through configuring, debugging, and troubleshooting with some of 

the ways defined earlier, we can identify and resolve issues during the 

import process and successfully reverse engineer the existing VMware 

infrastructure using Terraform.

When dealing with errors or issues, it is essential to protect sensitive 

information that might be present in your logs. Always ensure that any 

personally identifiable information (PII), access credentials, or sensitive 

data are obfuscated or removed from crash logs before sharing them 

with others.

 Best Practice for Debugging and Troubleshooting 
While Performing Reverse Engineering
In addition to the previously mentioned ways of debugging, there are 

some useful tips and best practices that can help with your debugging and 

troubleshooting when performing a reverse-engineering process using 

Terraform.

 1. Check the Terraform logs:

In addition to setting the TF_LOG environment 

variable to DEBUG, we can also review the Terraform 

default logs to identify any errors or issues during 

the import process. The logs provide detailed 

Chapter 5  Debugging for import issues anD best praCtiCes



174

information about the import process, including any 

resources that were successfully imported and any 

errors encountered.

 2. Use the terraform plan command:

The terraform plan command can be used to 

preview the changes that will be made to the 

infrastructure before applying them. This can help 

to identify any potential issues or errors before they 

occur. For an ideal import, terraform plan should 

suggest no changes to the infrastructure when it is 

run first time after the import.

 3. Use the terraform refresh command:

The terraform refresh command can be used to 

update the state file with the latest information from 

the infrastructure. This can help to ensure that the 

state file accurately reflects the current state of the 

infrastructure and avoid any import issues due to 

outdated information.

 4. Check the destination platform API logs:

In some cases, the issue may be related to the 

destination platform (e.g., VMware) API itself. In 

such cases, reviewing the API logs can provide 

additional information about the issue.

 5. Check the Terraform provider documentation:

If the issue persists, it may be helpful to review the 

Terraform provider documentation for the specific 

resource being imported. The documentation may 

provide additional information about any known 

issues or specific configuration requirements.

Chapter 5  Debugging for import issues anD best praCtiCes



175

 Terraform Issues and Support
If you encounter a bug while working with Terraform, here are some 

references to help deal with it:

• Check GitHub:

 Before reporting a bug, search the GitHub repositories 

(https://github.com/hashicorp/Terraform for core 

issues and https://github.com/Terraform-providers 

for provider plugins). It is possible that someone has 

already reported it, and there might be an ongoing 

discussion or even a solution. This helps a lot to know 

the available workaround of the problems that others 

have noticed too.

 If you do not find a reference, you can report the issue 

here on GitHub:

 https://github.com/hashicorp/Terraform/issues

• Check the provider documentation:

 Sometimes, an issue might be specific to a particular 

provider’s implementation. Always check the respective 

provider’s documentation for any known limitations or 

bugs. The issue you are facing may already be a known 

limitation with the provider you are working with.

 Example Bug Report
If you are required to submit a bug report with the Terraform community, 

here is an example bug report for your reference that includes the key 

areas you should cover when reporting bugs and seeking help with the 

community:

Chapter 5  Debugging for import issues anD best praCtiCes

https://github.com/hashicorp/Terraform
https://github.com/Terraform-providers
https://github.com/hashicorp/terraform/issues


176

Title:

Description:

Steps to reproduce:

Expected behavior:

Actual behavior:

Additional information:

Here is one complete sample bug report we are pasting for your 

reference where the user is not able to create an AWS EC2 instance using 

Terraform:

Title: Unable to create AWS EC2 instance using Terraform 1.0.2

Description:

I'm facing an issue while trying to create an EC2 instance 

using the latest version of Terraform (v1.0.2). The error 

message I receive is: "Error: Error launching source instance: 

InvalidSubnetID.NotFound: The subnet ID 'subnet-12345678' does 

not exist."

Steps to Reproduce:

1. Set up AWS credentials in Terraform.

2. Use the following Terraform code snippet:

resource "aws_instance" "example" {

ami = "ami-0c55b159cbfafe1f0"

instance_type = "t2.micro"

subnet_id = "subnet-12345678"

}

3.  Run `terraform init`, `terraform plan`, and 

`terraform apply`.

Expected Behaviour:

Chapter 5  Debugging for import issues anD best praCtiCes



177

Terraform should create an EC2 instance in the specified subnet 

without any errors.

Actual Behaviour:

Terraform throws an error indicating that the specified subnet 

ID does not exist, even though it does.

Additional Information:

- Terraform Version: v1.0.2

- AWS Provider Version: v3.0.0

- Operating System: macOS Big Sur 11.4

Note: I've confirmed that the subnet ID 'subnet-12345678' is 

valid and exists in the region I'm using.

Thank you for your attention to this matter.

 Summarizing How Import Issues Can 
Be Avoided
Here is short summary of what we have discussed so far in this chapter to 

avoid import issues when reverse engineering an existing infrastructure 

using Terraform:

• Ensure that the Terraform provider version matches 

the version of the platform (in our case the VMware 

infrastructure) that you are targeting.

• Validate the Terraform configuration file to ensure that 

it accurately reflects the current state of the resource.

• Check for any missing or outdated resources and 

objects in the Terraform configuration file and update 

them accordingly.

Chapter 5  Debugging for import issues anD best praCtiCes



178

• Use the terraform plan command to preview any 

changes that will be made to the infrastructure before 

applying them.

• Stay up-to-date with the latest releases and updates 

for both the Terraform provider and destination 

infrastructure to ensure that you are using the most 

current and compatible versions.

• When importing resources using Terraform, it is 

important to use specific resource identifiers such as 

resource IDs, resource names, and path names. This 

helps Terraform to accurately identify and import the 

correct resources.

• It is important to validate resource dependencies when 

importing resources using Terraform. Terraform may 

not be able to import a resource if its dependencies are 

not met.

• Avoid circular dependencies that occur when two 

or more resources depend on each other. This can 

result in import issues and errors. To avoid circular 

dependencies in Terraform and vSphere, you should 

carefully define resource dependencies. Here’s a 

small Terraform code snippet as a symbolic example 

illustrating resource dependencies using vSphere 

virtual machines (VMs) and datastores:

resource "vsphere_datastore" "example_datastore" {

  name = "my_datastore"

  # Other attributes for defining the datastore

}

Chapter 5  Debugging for import issues anD best praCtiCes



179

resource "vsphere_virtual_machine" "example_vm" {

  name         = "my_vm"

  datastore_id = vsphere_datastore.example_datastore.id

  # Other attributes for defining the VM

}

 In this symbolic code, we are creating a VM 

resource that depends on a datastore resource. The 

datastore_id attribute of the VM is set to the ID of the 

datastore, establishing a clear dependency. This is an 

example of how you should structure your Terraform 

configurations to avoid circular dependencies. Ensure 

that resources rely on other resources in a logical 

and linear manner so that they don’t create circular 

relationships.

• Test the Terraform configuration on a nonproduction 

environment before applying changes to the 

production environment. This helps to identify and 

resolve any import issues or errors before they affect 

the production environment.

• It is important to document the process of reverse 

engineering using Terraform. This helps to keep track 

of the changes made to the infrastructure and to 

troubleshoot any issues that may arise.

By following these best practices, you can avoid import issues and 

ensure a successful reverse-engineering process using Terraform.

Chapter 5  Debugging for import issues anD best praCtiCes



180

 Best Practices for Terraform 
State Management
Terraform state is the file that is required by Terraform for its management 

and for core operations on your infrastructure. It is not meant to be altered 

by Terraform users. Here, we will explore essential practices to manage 

your Terraform state effectively, along with practical examples of using the 

terraform state command, which will come handy for your day-to-day 

management.

 Backups, Versioning, and Encryption
Backing up your Terraform state files is a fundamental step in protecting 

your infrastructure configurations. State files contain sensitive information 

and are critical for your infrastructure’s integrity. Regularly backup these 

files and consider versioning to maintain historical states in case of 

rollbacks or auditing requirements.

Additionally, apply encryption to safeguard sensitive data within your 

state files.

Example (Linux shell script using AWS S3 for state backup):

# Backup the Terraform state file to an S3 bucket with 

versioning enabled

aws s3 cp Terraform.tfstate s3://your-state-bucket/

Terraform.tfstate

# Enable versioning on the S3 bucket

aws s3api put-bucket-versioning --bucket your-state-bucket -- 

versioning-configuration Status=Enabled

Chapter 5  Debugging for import issues anD best praCtiCes



181

 Do Not Edit Manually
It is crucial to avoid manually modifying your Terraform state files. Instead, 

rely on Terraform commands to manage your infrastructure to prevent 

inconsistencies and potential issues. Directly editing state files can lead 

to a mismatch between the actual infrastructure and the state, causing 

problems during future Terraform operations.

 Main Keys in the Terraform State File
Understanding the main keys present in the Terraform state file provides 

insight into how Terraform manages your infrastructure. Use the jq 

command (a lightweight JSON processor) to extract and analyze the 

main keys.

Here’s an example (using jq to extract main keys from the Terraform 

state file):

cat terraform.tfstate.backup | jq 'keys'

Here’s how it breaks down:

• “lineage”: A unique identifier for the state file that 

persists after initialization. It helps in tracking the 

provenance of the state file, aiding in auditing, and 

debugging.

• “modules”: The main section that holds information 

about the configured modules and their resources.

• “serial”: An incrementing number representing the 

version of the state. Terraform uses this to handle 

concurrent state updates and avoid conflicts.

• “Terraform_version”: An implicit constraint specifying 

the minimum Terraform version required to read and 

apply the state.

Chapter 5  Debugging for import issues anD best praCtiCes



182

• “version”: The state format version. Different 

Terraform versions use different state formats, and this 

key indicates the format being used.

 Utilizing the terraform state Command
The terraform state command provides a set of subcommands that 

allow you to interact with the Terraform state in various ways.

 a) Move/rename modules:

Use terraform state mv to move or rename 

modules within your state file. This is helpful when 

refactoring your infrastructure without losing 

existing state data.

Here’s an example of moving a resource within the 

state file:

terraform state mv aws_instance.example aws_instance.

new_example

 b) Safely remove resources from the state:

The terraform state rm command is useful for 

safely removing resources from the state file without 

destroying them in the actual infrastructure. This 

can help when you need to remove a resource from 

management by Terraform.

Here’s an example of removing a resource from 

the state:

terraform state rm aws_security_group.example

Chapter 5  Debugging for import issues anD best praCtiCes



183

 c) Pull remote state:

The terraform state pull command allows you 

to observe the current remote state without making 

any changes. It is useful for retrieving the state data 

stored in remote backends like S3.

Here’s an example of pulling the remote state:

terraform state pull

 d) List and show resources:

The terraform state list and terraform state 

show commands provide detailed information 

about the resources managed by Terraform. These 

commands help in debugging and understanding 

your infrastructure state.

Here’s an example of listing resources and showing 

details:

terraform state list

terraform state show aws_instance.example

 Hands-On Exercise
In this exercise we are going to demonstrate how a change in configuration 

file affects the resource you are importing from a VMware VM farm.

Let’s say we have an existing VM named web-server running on 

a VMware vSphere infrastructure. We want to manage this VM using 

Terraform, so we need to reverse engineer it by importing it into Terraform.

To do this, we first need to create a Terraform configuration file that 

describes the web-server VM’s configuration. The resource section of the 

configuration file could look something like this:

Chapter 5  Debugging for import issues anD best praCtiCes



184

resource "vsphere_virtual_machine" "web-server" {

  name             = "web-server"

  datastore        = "datastore1"

  guest_id         = "ubuntu64Guest"

  memory           = 4096

  num_cpus         = 2

  network_interface {

    network_id = "network1"

  }

}

This configuration file specifies the VM’s name, datastore, guest 

operating system, memory and CPU allocation, and network settings.

Next, we need to use the terraform import command to bring the 

web-server VM under Terraform management. If we have already set up 

the vSphere provider and authenticated with our vSphere infrastructure, 

we can run the following command:

terraform import vsphere_virtual_machine.web-server <web- 

server- UUID>

Here, <web-server-UUID> is the UUID of the web-server VM as 

obtained from the vSphere client or vSphere Web Client.

Once we run this command, Terraform will import the web-server VM 

into its state file, allowing us to manage it using Terraform.

Now, suppose we want to modify the web-server VM’s configuration 

to increase its memory allocation to 8192 MB. We can simply update the 

configuration file as follows:

resource "vsphere_virtual_machine" "web-server" {

  name             = "web-server"

  datastore        = "datastore1"

  guest_id         = "ubuntu64Guest"

  memory           = 8192

Chapter 5  Debugging for import issues anD best praCtiCes



185

  num_cpus         = 2

  network_interface {

    network_id = "network1"

  }

}

Finally, we can apply these changes using the terraform apply 

command:

terraform apply

This will update the web-server VM’s configuration in the vSphere 

infrastructure based on the new configuration file.

In this way, we have successfully reverse engineered the web-server 

VM using Terraform and can now manage it as code.

How do you use the terraform plan command in the previous 

example to cross check that things went well?

The terraform plan command can be used to generate an execution 

plan that shows what changes Terraform will make to the infrastructure 

when the apply command is run. This can be a useful tool for cross- 

checking that our Terraform configuration is correct and that the changes 

we intend to make to the infrastructure match our expectations.

In the example I provided earlier, we reverse engineered a VMware 

virtual machine (VM) named web-server using terraform import 

and a configuration file. To use the plan command to cross-check that 

everything is working correctly, navigate to the directory where the 

Terraform configuration file is stored.

Run the terraform plan command. This will generate a plan that 

shows the changes that Terraform will make to the infrastructure based on 

the current state of the configuration.

In our example, if we run terraform plan after importing the web- 

server VM, Terraform should show us a plan that includes only the 

modification we made to the VM’s memory allocation. The output of the 

plan command might look something like this:

Chapter 5  Debugging for import issues anD best praCtiCes



186

# vsphere_virtual_machine.web-server will be updated in-place

  ~ resource "vsphere_virtual_machine" "web-server" {

        cpu_hot_add_enabled    = false

        cpu_hot_remove_enabled = false

        guest_id               = "ubuntu64Guest"

        memory                 = 4096 -> 8192

        name                   = "web-server"

        num_cpus               = 2

        num_cores_per_socket   = 1

        scsi_type              = "pvscsi"

        wait_for_guest_net     = true

        wait_for_guest_net_timeout = 0

        network_interface {

            network_id = "network1"

        }

    }

Plan: 0 to add, 1 to change, 0 to destroy.

Here, we can see that Terraform will modify the memory allocation of 

the web-server VM from 4096 MB to 8192 MB.

By reviewing the output of the plan command, we can ensure that 

Terraform will make the changes we expect before running the apply 

command. This helps us catch errors or unexpected changes before 

they are applied to the infrastructure, reducing the risk of mistakes and 

minimizing downtime.

In addition to showing what changes Terraform will make to the 

infrastructure, the plan command can also be used to validate the 

Terraform configuration file and ensure that all required resources and 

dependencies are defined correctly.

Chapter 5  Debugging for import issues anD best praCtiCes



187

For example, if we were to introduce an error in our Terraform 

configuration file, such as referencing a nonexistent datastore or network, 

the plan command would show us an error message indicating that the 

resource could not be created. This allows us to catch errors early in the 

development process, before applying changes to the infrastructure.

Furthermore, the plan command can be used to perform a “dry run” 

of changes before applying them to the infrastructure. This can be useful 

for testing changes to the Terraform configuration file without making any 

changes to the infrastructure. By running terraform plan -detailed- 

exitcode, we can receive a detailed exit code that will tell us whether any 

changes would be made to the infrastructure. This allows us to validate the 

correctness of our changes without applying them and risking unintended 

consequences.

Overall, the terraform plan command is an essential tool and can be 

used as debugging and troubleshooting tool for the Terraform workflow, 

allowing us to validate and test our Terraform configuration files, catch 

errors early, and ensure that our infrastructure changes are aligned with 

our expectations.

 Summary
In this chapter, we explored the complexities of integrating current 

VM configurations into Terraform. We discussed the importance of 

the configuration file in reverse engineering and walked through the 

process of correctly understanding and importing configurations. The 

importance of provider version compatibility was highlighted, ensuring 

a successful reverse engineering experience. We explored debugging and 

troubleshooting steps to pre-emptively address potential errors and offer a 

comprehensive summary of how import issues can be effectively avoided. 

The chapter’s highlight was a deep dive into obtaining clean imports in 

VMware using Terraform. You now have the expertise to confidently tackle 

import issues with real solutions and thorough testing.

Chapter 5  Debugging for import issues anD best praCtiCes



189© Sumit Bhatia, Chetan Gabhane 2024 
S. Bhatia and C. Gabhane, Reverse Engineering with Terraform,  
https://doi.org/10.1007/979-8-8688-0074-0_6

CHAPTER 6

Life-Cycle 
Management After 
Import
In the previous chapter, we discussed some of the common import issues 

and best practices with Terraform. This chapter will cover potential 

Terraform integrations and resource life-cycle management following the 

import process. Terraform integrations allows us to explore the possible 

workflows for reverse engineering and to leverage the infrastructure 

automation capabilities to help solve complex business challenges. 

Considering that you are well versed at this point with the concepts of 

reverse engineering and the import operation with Terraform, now it is 

time to understand further use cases that apply after the import operation 

to implement infrastructure automation in routine IT activities.

This chapter starts with introducing different Terraform integrations 

in diverse IT infrastructure domains. Next, we will outline the most 

typical use cases for IT automation and offer standard procedures that 

can implement them. The integration of Terraform with DevOps and 

configuration management tools is explained in the second half of the 

chapter. Lastly, we will show how to integrate Terraform with SaltStack in a 

hands-on exercise.

https://doi.org/10.1007/979-8-8688-0074-0_6


190

 Terraform Integrations
The Terraform ecosystem offers a wide range of integration opportunities 

with diverse infrastructure use cases and environments. After importing an 

existing resource, the next step is to make use of the powerful automation 

capabilities provided by Terraform. Considering the Terraform capabilities, 

there are a variety of partners offering solutions to use Terraform in 

different ways. Broadly, the Terraform integrations are categorized into 

two subcategories, namely, workflow partners and infrastructure partners. 

Let’s learn more about them.

 Workflow Partners
HashiCorp’s Terraform is available in several variants.

• The Terraform cloud version is a hosted service 

capable of providing Terraform runs in a consistent 

and reliable environment including easy access to 

the shared state and secret data, access controls for 

approving changes to infrastructure, capabilities 

to define policy controls governing the contents of 

Terraform configurations, etc.

• The Terraform enterprise version provides a private 

instance to enterprises that they can deploy on- 

premises, and it mostly includes all the advanced 

features available in the Terraform cloud.

• The Terraform core includes the open-source binaries, 

which are the backbone of Terraform’s infrastructure 

as code. All other advanced features such as role-based 

access, policy controls, and REST API support are not 

available with the Terraform core.

Chapter 6  Life-CyCLe ManageMent after iMport



191

The workflow partners offer integrations with the Terraform 

enterprise or SaaS offering of Terraform, i.e., the Terraform cloud. These 

workflow partners allow customers to use their existing platform within a 

Terraform run.

Let’s discuss some of these workflow use cases where Terraform 

has integrations and supports workflows in collaboration with different 

industry partners.

• Cost management:

 There are partners that offer integrations with 

Terraform to analyze the impact of new infrastructure 

cost and apply cost governance. Using the Terraform 

configuration files as a standard definition of how 

an application/workload’s cost is estimated, you 

can use the Terraform cloud and enterprise APIs to 

automatically analyze estimated cloud financial data 

or use Terraform’s user interface to provide direct 

access to finance information to review costs. By doing 

this, you can help eliminate many slower oversight 

processes. The Terraform cloud estimates costs for 

many resources found in your Terraform configuration. 

It displays an hourly and monthly cost for each 

resource, as well as the monthly delta. Once enabled, 

when a Terraform plan is run, Terraform will reach out 

to the AWS, Azure, and/or GCP cost estimation APIs to 

present the estimated cost for that plan, which can be 

used accordingly within your financial workflow. You 

can also export this estimation report as JSON.

 Terraform can also play a role in the cost optimization 

after the resources are deployed. Terraform can be 

integrated with tools such as IBM Turbonomic, where 

Chapter 6  Life-CyCLe ManageMent after iMport

https://www.terraform.io/docs/cloud/api/cost-estimates.html


192

the tool provides optimization recommendations for 

resources running already in the public cloud. Users 

can integrate the tool with Terraform and/or your 

CI/CD pipeline. Further updates of the Terraform 

configuration are performed with the revised 

recommended configuration; then when the terraform 

run, plan, and apply commands are run, a newly 

optimized and compliant resource is provisioned on 

the platform.

 There is a detailed blog from HashiCorp on the cost 

management workflows and potential use cases that 

Terraform offers. You can find it here:

 https://www.hashicorp.com/blog/a-guide-to-

cloud-cost-optimization-with-hashicorp-

Terraform

• Security:

 There are vendors such as Prisma Cloud by Palo 

Alto Networks that offer integrations to detect 

Terraform configuration errors that do not align with 

the organization-defined security and compliance 

requirements. These vendors offer support for 

scanning resource configuration files before they are 

deployed. This is called preplan support. It enables 

you to scan the code before the plan files are even 

generated. This feature streamlines and accelerates 

development because you no longer wait to scan the 

plan file to identify security issues. These vendor tools 

allow you to assess runtime environments and IaC on a 

single policy, rather than correlating policy definitions 

across different tools. This reduces the overhead of 

Chapter 6  Life-CyCLe ManageMent after iMport

https://www.hashicorp.com/blog/a-guide-to-cloud-cost-optimization-with-hashicorp-terraform
https://www.hashicorp.com/blog/a-guide-to-cloud-cost-optimization-with-hashicorp-terraform
https://www.hashicorp.com/blog/a-guide-to-cloud-cost-optimization-with-hashicorp-terraform


193

maintaining multiple policies and the associated 

rules across different tools and languages, which can 

easily drift apart. They offer “one policy” to meet the 

security and compliance requirements of the entire 

organization.

• Observability and monitoring:

 Partners that offer this integration focus on detecting 

infrastructure changes and ensuring optimal 

observability is in place. Different vendors such 

as Datadog offer observability as code (OaC) with 

help from Terraform. This means configuring the 

observability of any application deployment using the 

definitions and configurations through files. Similar 

to infrastructure as code, observability as code uses 

code to promote automation and repeatability within 

observability workflows, aiming to give developer 

teams visibility into the entire software stack. OaC helps 

developers drive real-time action via live insight—to 

ensure that teams achieve service-level objectives 

and optimize critical business metrics with enhanced 

efficiency.

• Continuous integration/continuous deployment:

 There are partners that focus on providing support with 

Terraform for continuous integration and continuous 

deployment. Running Terraform with CI/CD can boost 

your organization’s performance and ensure consistent 

deployments. Partners that have built-in integrations 

with Terraform are GitLab and Visual Studio.

Chapter 6  Life-CyCLe ManageMent after iMport

https://www.techtarget.com/searchitoperations/definition/Infrastructure-as-Code-IAC
https://www.techtarget.com/searchitoperations/tip/Tips-for-reaching-full-stack-observability


194

• Single sign-on (SSO):

 Partners in this space focus on providing authentication 

to end users for single sign-on. Organizations can 

utilize the Terraform cloud to set up SAML SSO, an 

alternative to conventional user management. SSO 

provides administrators with greater control over 

securing access to the projects, workspaces, and 

managed resources of your company. SSO enables your 

company to consolidate user management for software-

as-a-service (SaaS) providers like the Terraform cloud, 

enhancing security and accountability for user and 

identity management inside an organization. Some 

SSO providers include Microsoft Azure AD, Okta, and 

SAML. Given the power of Terraform, integrating 

multifactor authentication (MFA) along with SSO is a 

best practice when implementing SSO.

• Low code/no code:

 Partners focus on implementing, deploying, and 

delivering IT, supply chain, operations management, 

business, and other workflows. Tools such as 

ServiceNow offer integration with Terraform and 

enable the automated management of complete 

industrial workflows.

Most workflow partners create “run tasks” that let them integrate 

their services directly into a Terraform workflow. The Terraform cloud 

offers custom integrations in the form of these run tasks with different 

technology partners where they have access to plan details in between the 

plan and apply phases and can display custom messages within the run 

pipeline as well as prevent a run from continuing to the apply phase. Run 

tasks let the Terraform cloud execute tasks in external systems at certain 

Chapter 6  Life-CyCLe ManageMent after iMport

https://developer.hashicorp.com/terraform/cloud-docs/integrations/run-tasks
https://developer.hashicorp.com/terraform/cloud-docs/integrations/run-tasks


195

points in the Terraform cloud’s run life cycle. Specifically, Terraform cloud 

users can configure run tasks to execute during the pre-plan, post-plan, 

and pre-apply run stages. Run tasks allow the Terraform cloud to execute 

tasks in external systems at specific points in the Terraform cloud’s run 

life cycle. This integration offers much more extensibility to Terraform 

cloud customers, enabling them to integrate third-party services into the 

Terraform cloud workflow. This feature allows users to add and execute 

these tasks during the pre-plan, post-plan, and pre-apply stages. Figure 6-1 

highlights the Terraform workflow and infrastructure partners that offer 

diverse integration possibilities with Terraform.

Figure 6-1. Terraform partners and integration possibilities (source: 
https://developer.hashicorp.com/terraform/docs/partnership)

Chapter 6  Life-CyCLe ManageMent after iMport

https://developer.hashicorp.com/terraform/docs/partnership


196

 Infrastructure Partners
These partners build Terraform providers and enable customers to 

leverage Terraform to manage resources exposed by their platform APIs. 

These providers are accessible to users of all Terraform editions such 

as the Terraform core, the enterprise version, or the Terraform cloud. 

Partners in the infrastructure space offer support for most of the variants 

available with Terraform. As depicted in Figure 6-1, there are different use 

cases offered by these infrastructure partners. Let us discuss some of them 

briefly.

• Public cloud:

 A large number of infrastructure partners including 

Google, Amazon, Microsoft, IBM, etc., offer a range of 

services on their platforms with Terraform including 

IaaS, SaaS, and PaaS management. This integration 

with a diverse set of services offered with different 

public cloud providers make Terraform a cloud- 

agnostic tool.

• Container orchestration:

 With the wide adoption of microservices, there are 

different infrastructure partners that offer support for 

container provisioning and deployment. This makes 

infrastructure automation possible with container 

platforms as well.

• Infrastructure as a service (IaaS):

 Typically for platforms hosted on-premises, there are 

infrastructure partners that offer support and solutions 

for the management of platforms such as storage, 

networking, and virtualization.

Chapter 6  Life-CyCLe ManageMent after iMport



197

• Asset management:

 Asset management is an important service in 

the infrastructure, where the partners offer asset 

management of key organization and IT resources, 

including software licenses, hardware assets, and cloud 

resources.

• Data management:

 Partners in this space offer capabilities to manage data 

center storage, backup, and recovery solutions with 

Terraform automation.

• Comms and messaging:

 For notification via emails and alerting, there are 

partners offering integration with email and messaging 

platforms with Terraform.

• Version control systems (VCS):

 These partners focus on controlling versions of the 

code for projects, teams, and repositories within 

Terraform.

All these infrastructure partners offer integration by building and 

publishing a plugin called a Terraform provider. As you learned, these are 

binaries written in the Go language that communicate with the Terraform 

core over an RPC interface. These providers act as an intermediate layer 

for transactions of external APIs offered by the destination platforms and 

services we briefly highlighted in this section.

Chapter 6  Life-CyCLe ManageMent after iMport



198

 Terraform Provisioners for Integrations
Chapter 2 introduced Terraform provisioners. In this section, we will 

introduce how provisioners can be leveraged and integrated into the direct 

configuration management of a resource that we want to manage with 

Terraform. As part of infrastructure operations, you are at times required 

to directly access the resource you are managing with Terraform. For 

example, you might want to perform some configuration management 

operations inside the resource or pass some data to complete the 

provisioning of a resource. For that you need to interact with the remote 

servers over SSH or WinRM. Or you can push some controls during the 

boot of that resource. All this is possible with help from provisioners that 

can pass data by logging into the server and executing instructions directly 

on the server.

Provisioners mainly deal with configuration activities that happen 

after the resource is created. The operations involve interacting with 

files, executing CLI commands, or even executing a script on the 

resource. Once Terraform is successfully initialized, it is ready to accept 

connections. These connections are important because then Terraform 

can log into these instances and perform the required operations. Let’s 

discuss different types and how they can be leveraged for integrations. 

Please note that provisioners are part of the resource code block in the 

configuration file.

 Local-exec Provisioner
This is the simplest provisioner as it executes on the machine that hosts 

and executes Terraform commands. If Terraform is installed in the local 

machine, then local-exec provisioners would run from the same machine. 

For local-exec provisioners to run and do configuration management 

on the destination platform, the resource that is being provisioned or 

modified, the Terraform host should be able to reach that resource. When 

Chapter 6  Life-CyCLe ManageMent after iMport



199

Terraform configuration is applied, local-exec can run any shell script or 

command and execute that on the local host where Terraform is running. 

Figure 6-2 explains the different types of provisioners and their actions.

Local Machine Terraform host

Local-exec
provisioners

Remote-exec
provisioners

Destination platform

File
provisioners

Terraform provisioning

Provisioner action

User

Figure 6-2. Terraform provisioners in action

 File Provisioners
File provisioners provide a way to copy required files or artifacts from 

the host machine where Terraform is running to the target resources that 

Terraform is creating or modifying. File provisioners come in handy when 

you want to transport certain script files, configuration files, artifacts, etc., 

in the form of JAR files or binaries. These file provisioners can talk to the 

destination resource when the resource is created or boots for the first 

time. File provisioners create a connection block between the Terraform 

host and destination resource to transfer the required files or scripts.

 Remote-exec Provisioners
Remote-exec provisioners are like local-exec provisioners except 

the commands or scripts are executed on the target resource on the 

destination platform instead of the Terraform host or local host. This is 

Chapter 6  Life-CyCLe ManageMent after iMport



200

accomplished by using the same connection block that a file provisioner 

uses to transfer files to the destination resource. We can use remote-exec 

provisioners to run single or multiple commands at the same time.

Therefore, provisioners extend into the space of configuration 

management and enable us to execute any command or script on 

the target resource. This means a lot of capabilities for infrastructure 

automation. It opens up great abilities and allows infrastructure admins to 

perform automated actions on the OS and application layers.

 Typical Terraform Integration with  
Infrastructure Ecosystem for Automation
For the IT operations world, the real power of Terraform is mined when it is 

helping with the day-to-day repeatable tasks, which otherwise take quality 

time to complete. However, not every environment is the same. The IT 

ecosystem, tools, and business processes are unique for every environment. 

With careful designing and planning, Terraform can be integrated into 

your IT infrastructure and can be easily adopted. In this section, we will 

talk about a sample integration that was once merely a dream for many 

infrastructure administrators but is now possible because of Terraform. But 

let’s first discuss in detail the self-service and ZeroOps concepts.

 Self-Service
This is an approach where users are given the desired access on the 

platform and given resource access to enable them to perform the basic 

operations themselves without requiring assistance from IT support 

personnel. In the IT operations world, self-service is changing the way 

organizations assist their end users, taking the control for most common 

tasks from IT admins and giving it directly to end users. This has several 

advantages if implemented successfully.

Chapter 6  Life-CyCLe ManageMent after iMport



201

• Improved SLA for service requests:

 With self-service, the service level agreement (SLA), 

i.e., the commitment by IT admins to complete a task in 

a specific amount of time, is considerably reduced. This 

is because self-service empowers the end users, and 

thus IT tickets are not going into traditional operations 

queue where they need to be worked on by experts. 

With self-service, users can use the ticketing portal 

(like ServiceNow, Remedy, etc.) to fill in the required 

details in a service request and submit the request. The 

control then automatically is passed to the underlying 

infrastructure automation receiver, and the full request 

is orchestrated from end to end. Once a request is 

fully completed with automation, control is then given 

back to the ticketing tool confirming the status of 

task execution. Therefore, when manual intervention 

is removed, the turnaround time is improved for 

the tasks.

• Enhanced customer experience:

 All services are mostly designed considering the 

end customers’ experience. For IT operations, their 

customers are the application teams, which need 

resources from the infrastructure. With self-service 

schemes, it enhances their experience because control 

is in their hands, and they decide the urgency and 

execution needs of the task. They are not required to 

follow up with respective individuals in operation to get 

the required task done in time.

Chapter 6  Life-CyCLe ManageMent after iMport



202

Therefore, we say that self-service provides businesses with a unique 

opportunity to improve customer service while reducing the cost and 

strain on IT support teams.

 ZeroOps
ZeroOps is also called NoOps or no operations. This is the concept in an 

IT environment when it becomes so automated and extracted from the 

underlying infrastructure that there is no need for dedicated teams to 

provide the IT services in-house. This is possible in IT infrastructure when 

there is a set of practices defined in an environment focusing primarily 

on automation and defining their infrastructure as code. Infrastructure 

automation tools such as Terraform, SaltStack, Ansible, Chef, etc., have 

made the goal of ZeroOps practically possible.

Though it may be too ambitious for certain organizations to 

completely isolate the need of an IT operations team, the presence of 

these automation tools is a step in the right direction to bring needed 

automation to the IT infrastructure. These tools are a win-win for both the 

IT administrators and the organization. This is because IT administrators 

no longer would need to keep doing repetitive and redundant tasks but 

could spend time on managing the infrastructure as code and handling 

instances at scale. And for organizations, it helps in saving cost and 

improving employee productivity.

Now that you understand the core concepts, let’s look at the possible 

integration that facilitates self-service and ZeroOps. Here we are using the 

example of VMware on-prem, but this is possible for any environment that 

has support for Terraform. See Figure 6-3.

Chapter 6  Life-CyCLe ManageMent after iMport



203

Figure 6-3. Terraform and integration with the infrastructure 
ecosystem

From Figure 6-3, you can see that Terraform is a tool that allows 

you to define infrastructure as code, does infrastructure automation, 

and provides the right interaction of different infrastructure ecosystem 

components. It has rich capabilities where it can be integrated with 

different platforms such as Microsoft Azure, Google Cloud, or VMware.

SaltStack is a configuration management tool and provides automation 

at the operating system and application levels. SaltStack works in a master-

minion pair, where minions are the agents that get deployed on the 

individual servers, and they talk to a specified master over a specified TCP/

IP port. The master can instruct minions to perform a series of commands 

and actions based on the state defined on the master.

Chapter 6  Life-CyCLe ManageMent after iMport



204

ServiceNow allows administrators to offer self-service catalogs. These 

catalogs are defined based on each task that is desired to be automated. 

Once the catalog is defined and mapped with the user requirements and 

with requirements to invoke automation on the Terraform (usually inputs 

needed to invoke Terraform modules), users then just need to log in to the 

ServiceNow ticketing tool. Then they can perform defined tasks in their 

back-end infrastructure landscape automatically. ServiceNow offers direct 

integration with Terraform; it interacts with the Terraform core, enterprise, 

or cloud version in the background and works as an orchestrator to 

get the task finished. Once the task is completed, it then sends an 

acknowledgment to the users.

For example, consider that the user has a requirement to expand 

an existing disk. With Terraform and SaltStack integration, this job can 

be done automatically. Users can raise requests in the service catalog. 

Service now (or a ticketing tool) can then pass the control to Terraform 

and increase the disk size from the back end. Once the required disk size is 

increased from the platform, Terraform can then pass control to SaltStack 

to expand the disk at the operating system level. Finally, once the task 

is complete, SaltStack can notify ServiceNow and complete the entire 

workflow. Therefore, a complete workflow can be orchestrated.

 Terraform Use Cases
We discussed Terraform integrations in the previous sections of this 

chapter. A discussion of Terraform integrations is not complete without 

discussing the most common use cases of Terraform, including where 

Terraform can define our infrastructure as code. This empowers and 

enables the smart management of our infrastructure resources. Terraform 

allows the use of a consistent workflow to safely and efficiently provision 

and manage your infrastructure throughout its life cycle. Let’s understand 

some of the prime use cases where Terraform shines.

Chapter 6  Life-CyCLe ManageMent after iMport



205

 Multicloud Deployment
Organizations are increasingly moving to the public cloud. One 

common trend among organizations moving to the cloud is to leverage 

offerings from more than one public cloud. This is especially true when 

organizations want to avoid vendor lock-in situations, leverage offerings 

that suit their applications, and get cost advantages when they split 

their footprint among different public cloud providers. Provisioning 

infrastructure across multiple clouds also increases the fault tolerance, 

allowing for more graceful recovery from the cloud provider outages.

This trend imposes challenges as well. This is because each cloud 

provider has its own interface, tools, and workflows. To fully adapt to 

cloud services, leveraging automation is especially important. Therefore, 

a Terraform presence allows the use of the same workflows to manage 

multiple cloud providers and handle their cross-cloud dependencies. 

The use of a common language (HCL) simplifies management and 

orchestration for large-scale, multicloud infrastructures.

The Terraform registry offers support for thousands of publicly 

available providers. It has support for all major public cloud platforms. 

And the list keeps growing. You can find a full list of the latest available 

supported providers here:

https://registry.Terraform.io/browse/providers

This ever-growing list of providers makes Terraform even more 

popular, and it is increasingly making sense for many organizations to 

adopt Terraform capabilities in their infrastructure management.

 Application Infrastructure Orchestration, 
Scaling, and Monitoring
When we talk about applications, it is the tiering of applications that 

separates them from the other infrastructure deployments. The installation 

and deployment of applications needs to be sequentially arranged. For 

Chapter 6  Life-CyCLe ManageMent after iMport

https://registry.terraform.io/browse/providers
https://registry.terraform.io/browse/providers
https://registry.terraform.io/browse/providers


206

example, when we are deploying applications, the first database tier 

should be deployed, then the web servers, then caching server, and so on. 

Terraform can handle these dependencies automatically. So, it can deploy 

a database tier before provisioning a web server that depends on it. Also, 

Terraform can efficiently release, scale, and monitor the infrastructure of 

multitier applications. A multitier application lets you scale application 

components independently and provides a separation of concern.

Terraform has support to automate the monitoring of the application 

infrastructure with the Datadog provider. When you want to deploy Nginx 

applications to a Kubernetes cluster, with help from Terraform, you can 

also orchestrate the installation of a Datadog agent across the cluster 

resources. This Datadog agent reports the cluster health to the Datadog 

dashboard.

The Terraform capabilities can also be leveraged for blue-green and 

canary deployments. For blue-green deployments, for feature toggles, you 

can define a Terraform configuration with a list of potential deployment 

strategies and in parallel conduct canary tests and incrementally promote 

the green environment. Hence, the orchestration is made a lot simpler 

with the presence of infrastructure as a code.

 Self-Service Model
As we discussed in previous sections, large organizations have a central 

operations team where they may be working on repetitive infrastructure 

service requests. With help from Terraform, they can build a self- 

serving infrastructure model that lets their customers manage their own 

infrastructure independently. Terraform allows the creation of modules 

to replicate the same standards across the different deployments, thus 

allowing different teams to effectively deploy services in compliance with 

the respective organization’s standards. One such integration we discussed 

in the previous section is the integration with ServiceNow, i.e., a ticket 

Chapter 6  Life-CyCLe ManageMent after iMport



207

tool that can act as a self-service interface for organizations looking to 

implement automation and offload the repetitive tasks to Terraform and 

make their support group more productive.

 Policy Compliance and Management
Policies are the guidelines that the Terraform cloud applies to Terraform 

runs. Policies may be used to ensure that the Terraform plan conforms 

with security guidelines and best practices. Terraform can assist you in 

enforcing regulations around the resources that teams can provide and 

utilize. Ticket-based review processes can be a barrier in development. 

Sentinel, a policy-as-code framework, can be used instead to automatically 

enforce compliance and governance requirements before Terraform 

performs infrastructure modifications. Terraform enterprise and Terraform 

cloud versions both support Sentinel policies.

Sentinel and Open Policy Agent (OPA) are two policy-as-code 

frameworks you can use to create logic-based, fine-grained policies. 

Policies might be advisory notices or strict restrictions that stop Terraform 

from provisioning infrastructure, depending on the settings.

 Software-Defined Networking
Software-defined networks (SDNs) and Terraform can work together to 

autonomously configure the network to meet the requirements of the 

applications using it. By doing this, you may switch from a ticket-based 

approach to an automated one and speed up deployment.

These use cases show the rich capabilities of the technology that 

when leveraged smartly can bring in significant benefits for infrastructure 

management.

Chapter 6  Life-CyCLe ManageMent after iMport



208

 Terraform Integration with Configuration 
Management Tools
Configuration management tools help administrators maintain system 

consistency. They ensure that new machines, software packages, and 

updates are installed and configured according to the desired state. This 

helps to maintain consistency across various IT systems and sites. Popular 

configuration management tools include SaltStack, Chef, Puppet, and 

Ansible.

Most configuration management tools support popular operating 

systems like Linux and Windows where the system is controlled by the 

remote server centrally. In the case of SaltStack, there are different minions 

that get installed on respective systems and are centrally controlled by 

the master server. IT administrators can configure the desired state on the 

SaltStack master, which can enforce the configuration on the minions. See 

Figure 6-4.

Master

Slave Slave Slave

REST API

Figure 6-4. Sample model with configuration management tools

In Figure 6-4, slaves are agents (minions) that get installed in different 

systems running on Linux, Windows, etc. These slaves register themselves 

with a central server (called as master) responsible for configuring and 

running the same desired state on the respective slaves. Modern-day 

Chapter 6  Life-CyCLe ManageMent after iMport



209

 master configurations support REST APIs, where configuration and 

management can be done through a RESTful API, which makes it easy to 

programmatically manage the master-slave integration.

SaltStack integration with Terraform is a value-add for IT administrators 

because they can automate infrastructure operations from end to end. 

Terraform controlling the automation at the platform infrastructure and 

SaltStack controlling automation at the systems level create the complete 

combination needed for typical infrastructure automation use cases. Their 

integration provides real value-add in doing end-to-end automation.

Terraform has different integration options for such configuration 

tools. We can employ Terraform to install these configuration agents 

every time we are creating a new VM. Furthermore, to complete the 

integration, we can also define ways to register the newly installed agents 

(minions) and accept it automatically on the master side to complete the 

registration process of these agents. Let’s look at some sample code for 

such integration; the following are a few examples for your reference.

 Agent Installation with Terraform VM Creation
Terraform offers a section called locals where you can define the 

start_up_command to run after the new resource deployment. To install 

SaltStack minions, you need to supply the deployment executable at the 

time of the VM deployment process. There are multiple ways to provide 

the executable for the minion installation. Two such examples in the 

Terraform configuration file as shown here:

• The agent executable is already present at a specified 

location in the VM template image, and we can invoke 

the executable from that specified location present 

locally on the VM image template. This is the most 

common method of invoking the installation of any 

agent with Terraform. The following is the sample code 

in the Terraform main.tf file for such an install:

Chapter 6  Life-CyCLe ManageMent after iMport



210

...

...

Locals {

        Start_up_command = [

                                 "powershell.exe  

 -command \"<File 

drive location>\

sample.exe\""]

Resource "vsphere_virtual_machine" "xxx" {

...

...

...

Customize {

        Windows_options {

                        Computer_name = "xyz"

                        ...

                        ...

                         Run_once_command_list = local.

start_up_command

                        }

                }

        }

Chapter 6  Life-CyCLe ManageMent after iMport



211

• The second method could be that the agent executables 

are placed in a central repository. The location should 

be easily accessible from the resource we are deploying. 

Then the desired agent executables are downloaded 

after IP assignment to the new VM under consideration. 

This implementation is a little complicated because here 

we would need to write the logic to first download the 

agent executable and then invoke the agent installation. 

The following is the sample code for reference:

...

...

locals {

  start_up_command = [

     “powershell.exe -command \”’$webclient.

DownloadFile(\\\”https://<repo>/sample.exe\\\”, 

\\\”$env:TEMP\\minion.exe\\\”)’ \””,

  “powershell.exe -command \”$env:TEMP\\minion.exe\””]

}

Resource “vsphere_virtual_machine” “xxx” {

...

...

...

Customize {

        Windows_options {

                        Computer_name = “xyz”

                        ...

                        ...

                         Run_once_command_list = local.

start_up_command

                        }

                }

        }

Chapter 6  Life-CyCLe ManageMent after iMport



212

Please note that the SaltStack minion requires the master IP to be 

present when we invoke the minion installation. The previous examples 

are sample representations of invoking an executable file with different 

methods. For SaltStack minion installation particularly, we can always 

tweak the method; for example, instead of an executable download, we 

can have a script created to first download the minion and then install it by 

presenting the master IP in the previous code.

 Operational Uses Cases 
for VM Management
When we talk about IT operations, there are many tasks that are repetitive 

in nature. IT infrastructure administrators who support compute, storage, 

and applications get the following sample requests on a day-to-day basis:

• Create a virtual server

• Decommission a virtual server

• Change the size of a virtual server

• Add a new disk to a virtual server

• Expand an existing disk on a virtual server

• Add a network interface to a virtual server

There are several infrastructure aspects where there are routine 

requests related to network, storage, compute, application, etc. Here 

we are keeping the focus simple and going to discuss only compute-

related use cases so you can understand how Terraform can help bring 

automation to these common use cases.

Let’s understand these use cases a bit more in detail.

Chapter 6  Life-CyCLe ManageMent after iMport



213

 Virtual Server: Create
This is the most common task that administrators must deal with on a 

daily basis. The creation of a virtual machine is at times very complex 

because administrators have to deal with multiple dependencies, follow a 

lot of post-provisioning processes, install some tools, configure machines, 

etc. However, with help from infrastructure automation tools such as 

Terraform and configuration management tools (e.g., SaltStack), end-to- 

end provisioning can be automated without manual intervention from 

infrastructure admins. Figure 6-5 shows a sample workflow.

Service now 
Request

Des�na�on
pla�orm

- Monitoring
- Security
- Backup
- Tools

End user

Infrastructure
admins

Ap
pr

ov
al

Invoke terraform
module

Re
so

ur
ce

de
pl

oy
m

en
t 

M
in

io
n

in
st

al
la

�o
n

Minion 
registra�on

SALT master

Acknowledgement once state applied

Figure 6-5. VM provisioning sample automated workflow

Chapter 6  Life-CyCLe ManageMent after iMport



214

In Figure 6-5, the VM provisioning workflow has the following 

main steps:

 1. Users who need a VM for their application can 

invoke a catalog in ServiceNow to create a VM. A 

catalog provides self-service to the end users. They 

just need to provide detailed information as per 

their VM requirements. These requirements can 

be environment specific, but typically they are VM 

size, storage, and network requirements. Users can 

also select a backup and monitoring policy that they 

need to configure. Also, they can select security and 

firewall ports that need to be allowed on the new 

resource for its interaction with other infrastructure 

deployments they may have. All such requirements 

are gathered and submitted by end users into the 

service request.

 2. Once the requirements are submitted, they can 

then be mapped to the Terraform module for the 

resource deployment on the destination platform. 

These platforms can be any that are supported by 

Terraform.

 3. Terraform can run plans and seek approvals from 

the infrastructure administrators. Administrators 

can verify the desired capacity, cost, and VM 

requirements and can approve the provisioning with 

Terraform. The Terraform enterprise and Terraform 

cloud versions offer the approval workflows 

integration by infrastructure admins. Please note 

this is an optional step, because we can configure 

requests in Terraform to “auto-approve,” and in that 

Chapter 6  Life-CyCLe ManageMent after iMport



215

case Terraform would directly deploy the resource 

on the destination platform. Approvals can be 

performed in ServiceNow as well.

 4. Terraform can invoke the SaltStack minion installation 

on the VM. This installation can be done via Terraform 

provisioners. SaltStack is required for the configuration 

management of the VM. Please note that there can be 

multiple ways for doing the configuration management 

such as applying VM policies in the cloud, etc. Having 

a dedicated configuration management tool such as 

SaltStack can make life easier for administrators to 

manage the complete life cycle of the resource.

 5. Terraform can register the minion with the SaltStack 

master by passing the minion keys and invoking the 

accept request for that minion on the master server. 

We will explain this in more detail during the hands-

on exercise of this chapter.

 6. Once the SaltStack minion is accepted, the SaltStack 

master can trigger the state file for the VM. Meaning, 

administrators can define the SaltStack state to 

apply common organization policies to all the 

resources deployed in their environment. An 

example of such a state configuration could be 

that all VMs require a domain join; other examples 

include applying the latest patches, imposing 

security standards, using a backup agent, etc. 

SaltStack state can make sure such tools are properly 

installed on the new VM and are deployed and are 

configured correctly.

Chapter 6  Life-CyCLe ManageMent after iMport



216

 7. Once the SaltStack state is successfully applied, 

the SaltStack master can provide acknowledgment 

to ServiceNow that the VM is now complying 

with the desired state and is ready for end-user 

consumption.

 8. ServiceNow then can confirm to the end user and 

can complete the VM provision request workflow.

This workflow can help automate the day-to-day VM provision 

requests by end users. It offloads quite a lot of burden from the 

administrators, and they can focus on other improvements in their 

infrastructure rather than doing the same tasks every day.

 Virtual Server: Decommission
Decommissioning a virtual machine is another daunting task that at times 

is very time-consuming and redundant. This is because administrators 

need to follow the proper process to decommission a VM. The following 

are sample tasks needed in any typical IT environment:

 1. Remove the server from monitoring.

 2. Take a final backup of the server as per the desired 

retention period.

 3. Delete the firewall rules that may be associated with 

the VM IP address when it was running.

 4. Free up the IP address.

 5. Delete all the associated resources with that virtual 

machine.

Decommissioning is an important part of the life-cycle management 

of a resource. This process can be automated from end to end using 

Terraform and Terraform provisioners. If the VM is not already under 

Chapter 6  Life-CyCLe ManageMent after iMport



217

Terraform management, with the help of reverse engineering, we can 

bring the VM under Terraform management first and then leverage the 

automation and integration capabilities of Terraform.

Once a VM is under Terraform management, then Terraform 

provisioners can be invoked with “decommission” requests and can play 

the associated scripts to perform activities such as removing servers from 

monitoring, invoking a final backup, etc. Terraform can deal with the 

infrastructure portion of it to make sure all the resources associated with 

the VM are removed completely once the provisioners complete their job. 

Figure 6-6 shows the sample VM decommission workflow.

Service now 
Request

Des�na�on
pla�orm

- Monitoring
- Security
- Backup
- Tools

End user

Infrastructure
admins

Ap
pr

ov
al

Invoke terraform
Module for decommission

Re
so

ur
ce

 
De

co
m

m
iss

io
n

Minion 
De-registra�on

SALT master

Decommission Acknowledgement

Invoke
Import logic

Source of
truth

Config file for 
import

Figure 6-6. VM decommission sample automated workflow

Let’s discuss the sample decommission workflow.

 1. The end user is required to raise a request in their 

ticketing tool (ServiceNow in our example). The 

service catalog needs to capture all the required 

information needed for a decommission job to 

run. Information includes VM details, final backup 

retention of the resource, etc.

Chapter 6  Life-CyCLe ManageMent after iMport



218

 2. If a VM is not already under Terraform 

management, then in the workflow you can place 

the import logic to first neatly import the existing 

resources into Terraform management. With the 

import logic, we have built the capabilities to 

generate the point-in-time configuration files, thus 

removing the dependency on the Terraform state. 

Fresh imports allow consistency and efficiency 

with the Terraform-managed automation. After 

the successful import, the VM is under Terraform 

control.

 3. After the VM import, the VM decommission module 

is invoked, taking information from the ServiceNow 

catalog.

 4. Terraform can run plans and seek approvals 

from the infrastructure administrators, where 

administrators can verify the decommission request 

and further approve the decommissioning with 

Terraform. The Terraform enterprise and Terraform 

cloud versions offer the approval workflows 

integration by infrastructure admins. Note that 

this is an optional step because we can configure 

requests in Terraform to “auto-approve” as well, and 

in that case Terraform would directly decommission 

the resource on the destination platform.

 5. Before Terraform can start the actual decommission 

on the platform, provisioners can be invoked first as 

per the organization process defined. An example 

provisioner workflow is as follows:

Chapter 6  Life-CyCLe ManageMent after iMport



219

 a. Provisioners can invoke individual scripts to remove the 

desired VM from the central monitoring tool.

 b. Take a final backup via the REST API supported by the backup 

platform.

 c. Release the firewall ports previously configured centrally at 

the firewall.

 6. Once provisioners complete their respective 

tasks, Terraform decommissions and removes 

all the associated VM resources and fully deletes 

them from the destination platform. Finally, after 

decommissioning, the provisioners can invoke 

commands to release the IP addresses associated 

with the VM from the IP management tool.

 7. Terraform acknowledges the service request about 

the status of the decommission request.

 8. ServiceNow provides information to the end user, 

and upon successful completion of the request, it 

closes the service request raised by the end user.

This workflow can help automate the day-to-day VM decommission 

requests by end users. It relieves the administrators of a significant amount 

of work, allowing them to concentrate on other infrastructure upgrades 

rather than doing the same activities every day.

 Virtual Server: Change
If you need to make a change in a virtual server, you need to make 

changes on a live running server. These changes could be related to VM 

configuration, adding new resources such as disks or network cards or 

modifying existing resources such as increasing the existing disk size, 

Chapter 6  Life-CyCLe ManageMent after iMport



220

adding more vCPUs or memory, etc. These types of requests are another 

set of repetitive tasks frequently asked by end users to be performed on the 

virtual servers. Once again, Terraform provides infrastructure automation 

capabilities and allows for the full end-to-end automation of such 

tasks too.

With help from reverse engineering, any existing resource can be 

imported into the Terraform automation, and thus administrators need 

not maintain a state with them. Administrators can get the benefit of 

working directly on the destination platform and can employ Terraform 

to automate the redundant tasks. Refer to Figure 6-7 for the sample 

automated workflow.

Service now 
Request

Des�na�on
pla�orm

End user

Infrastructure
admins

Ap
pr

ov
al

Invoke terraform
Module for modifica�on

Re
so

ur
ce

 
m

od
ifi

ca
�o

n

Control flow
SALT Master

SALT master

Request acknowledgement

Invoke
Import logic

Source of
truth

Config file for 
import

Figure 6-7. VM modification sample automated workflow

Let’s discuss the sample VM modification workflow.

 1. Users who need a VM modification invoke the 

desired catalog in ServiceNow. The catalog provides 

self-service to the end users. Here, they need to 

provide detailed information as per their VM 

modification requirements. These requirements can 

Chapter 6  Life-CyCLe ManageMent after iMport



221

be environment specific, but typically they are VM 

size, additional storage, and network requirements. 

All such requirements are gathered and submitted 

by end users into the service request.

 2. If a VM is not already under Terraform 

management, then in the workflow we can place the 

import logic to first import the existing resources 

into Terraform management. With import logic we 

have built the capabilities to generate the point-

in-time configuration files, thus removing the 

dependency on the Terraform state. Fresh imports 

allow consistency and efficiency with the Terraform 

managed automation. After a successful import, the 

VM is not brought under Terraform control.

 3. Once the requirements are submitted, they can then 

be mapped to the desired Terraform module for the 

existing resource modification on the destination 

platform. These platforms can be any that are 

supported by Terraform.

 4. Terraform can run plans and seek approvals 

from the infrastructure administrators, and 

administrators can verify the desired capacity, cost, 

and VM modifications planned and can approve the 

changes with Terraform. The Terraform enterprise 

and Terraform cloud versions offer the approval 

workflows integration by infrastructure admins. 

Please note that this is an optional step, because 

we can configure requests in Terraform to “auto-

approve” as well, and in that case Terraform would 

directly deploy the resource on the destination 

platform.

Chapter 6  Life-CyCLe ManageMent after iMport



222

 5. Once the desired modifications are completed 

by Terraform directly on the infrastructure, then 

control can be given to the SaltStack master 

to further the process and make the desired 

amendments (if needed) directly on the VM host 

operating system. Since SaltStack is a configuration 

management tool, it has better control over the 

changes that are to be performed inside the virtual 

machines and on the operating system as well as on 

the applications deployed on the virtual machine.

 6. Once the SaltStack master completes the changes 

desired by the end user, an acknowledgment 

can be given back by the SaltStack master to the 

ServiceNow catalog that is keeping track of the 

entire workflow.

 7. ServiceNow confirms the process has completed, 

and the VM modification request workflow ends.

With help from reverse engineering, the most common use cases can 

be simply automated. Once the Terraform state is imported, the life-cycle 

management of the VM can be easily automated with just a small tweak 

in the configuration file, and dedicated Terraform modules can be created 

mapped to the ServiceNow catalog to better handle this entire workflow 

automation.

 Terraform Integration with DevOps
DevOps stands for development (Dev) plus operations (Ops). It is a 

methodology in the IT industry that uses a set of practices and tools 

to automate the work of software development and in turn shortens 

the software development life cycle. DevOps complements the agile 

Chapter 6  Life-CyCLe ManageMent after iMport



223

methodology of software development where the focus is to produce 

a functional prototype quickly and add features to the software in an 

iterative fashion.

The reverse-engineering process we introduced in this book is not 

complete without explaining the possible integration of Terraform with a 

popular DevOps tool. In this section, we will briefly explain the possible 

integration of Terraform with Azure DevOps. See Figure 6-8.

Main.�

CI CD

Plan Apply

Import/
New config

1

2 3

4

7

Terraform.�stateAzure storage 
account

5

6

Figure 6-8. Terraform integration with DevOps

Before we explain the integration process, let’s understand the new 

terms we are introducing here.

• Azure Repos

 For DevOps practices, you need to keep track of 

changes in the code that are made by different 

developers working on the software development. 

Azure Repos is a version control tool that is used to 

track the changes any developer makes in the code 

over time. As developers edit the code, you can have 

the version control system take snapshots of your files, 

Chapter 6  Life-CyCLe ManageMent after iMport



224

and these snapshots are saved permanently so you can 

recall them later if needed. This helps coordinate code 

changes across the development teams.

 For example, the Terraform configuration file (main.

tf) can reside in Azure Repos, and any changes to this 

file can be tracked through the version control practices 

implemented with Azure Repos.

• Azure Pipelines

 Azure Pipelines combines continuous delivery and 

continuous integration to carry out testing on the build 

of the code and ship that same code onto a specified 

target. Pipelines has agents running that are capable 

of executing some code and offers integration with 

different platforms such as Azure or GCP or VMware. 

Pipelines support almost all languages including 

Python, PHP, C/C++, etc.

 With some basic understanding on the terminologies, 

let us look more closely at what that integration of 

Terraform and Azure DevOps looks like. Refer to 

Figure 6-8 to understand the following steps of the 

DevOps integration. 

 Step 1: Generate a Config File
The first step of the integration requires a config file to be present. We 

can generate this config file because of our reverse-engineering process 

or generate it fresh every time from the user. If we are doing reverse 

engineering to generate a configuration file, the import logic of reverse 

engineering can be integrated into the pipeline at this stage, which can 

run the desired logic (import script) of generating a config file. Since Azure 

Chapter 6  Life-CyCLe ManageMent after iMport



225

Pipelines allows integration with different platforms, the import logic can 

fetch the desired parameters from the platform and populate them into a 

Terraform configuration file. In the case of a fresh resource creation using 

Terraform, users can simply use Visual Studio or any other editor to check 

in the configuration file to the Azure DevOps repository.

 Step 2: Check-In the Configuration File 
to Azure Repository
After our reverse engineering, Azure Pipelines can post the config file 

generated to an Azure repository. This is the native integration that 

is offered by Microsoft Azure DevOps. This is also called continuous 

integration (CI) because it enables the automated check-in of 

configuration files to the Azure DevOps repository.

 Step 3: Continuous Delivery Pipeline - For Safe 
Storing State File
This is the most critical part of the whole DevOps integration process. The 

Terraform configuration file is pulled from the Azure DevOps repository 

for continuous deployment. However, we need to store the Terraform 

state file in a safe place. In this model, we are storing the state file in an 

Azure storage account. Therefore, the Pipelines code can provide the 

logic for integrating with the Azure storage account and for uploading the 

Terraform state file.

 Steps 4 and 5: Integrate Azure Pipelines 
and Azure Storage 
Terraform needs to refer to a state file every time it needs to bring in 

changes to the infrastructure. Azure Pipelines code can refer to the Azure 

storage account keys, which allows easy access of the storage account 

Chapter 6  Life-CyCLe ManageMent after iMport



226

resources. When we want to import an existing resource, Azure Pipelines 

can import a resource, and the state file that is generated can be uploaded 

to the storage account for future references.

 Step 6: Install Terraform, Initiate the Azure Suite, 
and Run a Terraform Plan
Azure Pipelines are introduced in step 3. A requirement needs to be 

defined to install the Terraform executables to the pipeline agents and 

initiate the SDK for integration with the desired destination platform. In 

our example, the pipeline agents need to install an Azure kit for the Azure 

subscription and resource group, i.e., where the resource is to be created 

or modified. This is an important step because CD agents in the pipeline 

need to have Terraform executables installed, which can then be employed 

to run further automated deployment and management of the destination 

resource. After the successful installation of Azure Pipelines and initiation 

on the pipeline agents, Azure Pipelines can run a Terraform plan, which 

refers to a state file stored in the Azure storage account. The plan can find 

the changes that are required on the infrastructure.

 Step 7: Run terraform apply in the Pipeline
The execution steps in the pipeline can apply the delta changes identified 

in step 6 and post them on the desired resource in the Azure platform. 

Please note that step 3 to step 7 are the coding or programs written 

in Azure Pipelines to carry out the desired integration and do the job 

automatically from end to end. After terraform apply, the desired 

configuration changes can be achieved on the resource.

Thus, the DevOps pipelines and repositories provide a lot of 

convenience to orchestrate the entire automation workflow with 

Terraform.

Chapter 6  Life-CyCLe ManageMent after iMport



227

 Hands-On Exercise: Terraform Integration 
with SaltStack and Invocation of SaltStack 
Install After Terraform Completes 
VM Provisioning
In this hands-on exercise, we will provide sample code that can be employed 

for integration with SaltStack. We are installing SaltStack on a Windows virtual 

machine that we are going to create with Terraform on the VMware platform.

We will use the open-source SaltStack master and manually log in to it 

to accept the keys for the SaltStack minion we are deploying. Please note 

that the SaltStack enterprise provides integration support via RESTful 

APIs, thus making integrations a lot simpler when we want to accept keys 

without logging in to the SaltStack master.

The following PowerShell script (Install_Minion.ps1) is transported 

to the new VMware VM (via the local-exec Terraform provisioner) that we 

are creating with Terraform. This script downloads the respective minion 

executables from the SaltStack website and registers with the SaltStack master.

Here is the SaltStack website to download the Windows minion 

executables:

https://docs.saltproject.io/salt/install-guide/en/latest/

topics/install-by-operating-system/windows.html

If needed, you can refer to Install_Minion.ps1 from the GitHub 

repository here:

https://github.com/sumitbhatia1986/Terraform-VMware-

ReverseEngineering/blob/main/Install_Minion.ps1

Please note the following:

• The assumption for running the Install_Minion.ps1 

script is that your new VMWare VM has connectivity 

to the Internet. Immediately after the deployment via 

Terraform, the VM can download the SaltStack minion 

executables from the SaltStack website.

Chapter 6  Life-CyCLe ManageMent after iMport

https://docs.saltproject.io/salt/install-guide/en/latest/topics/install-by-operating-system/windows.html
https://docs.saltproject.io/salt/install-guide/en/latest/topics/install-by-operating-system/windows.html
https://github.com/sumitbhatia1986/Terraform-VMware-ReverseEngineering/blob/main/Install_Minion.ps1
https://github.com/sumitbhatia1986/Terraform-VMware-ReverseEngineering/blob/main/Install_Minion.ps1


228

• Your new VMware VM can talk to the SaltStack master 

on the required ports. The default ports for connectivity 

with the SaltStack master are 4505 and 4506.

Let’s look at some sample scripts. Please note that these scripts are 

available on our GitHub repository as well.

https://github.com/sumitbhatia1986/Terraform-VMware-

ReverseEngineering

Here is Install_Minion.ps1 script:

$SALTMASTER = 'x.x.x.x' #Required field

$MINIONNAME = $env:COMPUTERNAME

echo $MINIONNAME

# Do not Deploy if Salt is already on the system

if ([System.IO.File]::Exists("c:\salt\bin\python.exe")) {

    Write-output "nothing to do: Salt is already installed"

    #exit 0

}

Write-output "Salt is not installed, Starting Salt 

Deployment script"

#This downloads the Salt install to Temp

[Net.ServicePointManager]::SecurityProtocol = [Net.

SecurityProtocolType]::Tls12

[System.Net.ServicePointManager]::ServerCertificateValidation 

Callback = { $true }

$webclient = New-Object system.net.webclient

$tempfolder = $env:TEMP

Write-output "Downloading Salt Minion to $tempfolder"

$webclient.DownloadFile("https://repo.saltproject.io/salt/

py3/windows/latest/Salt-Minion-3006.3-Py3-AMD64-Setup.exe", 

Chapter 6  Life-CyCLe ManageMent after iMport

https://github.com/sumitbhatia1986/Terraform-VMware-ReverseEngineering
https://github.com/sumitbhatia1986/Terraform-VMware-ReverseEngineering


229

"$tempfolder\saltminion.exe") #Downloading minion from SALT 

website.

if (![System.IO.File]::Exists("$tempfolder\saltminion.exe")) {

     Write-output "FAILED - Failed to find $tempfolder\

saltminion.exe , was supposed to download from https://

repo.saltproject.io/salt/py3/windows/latest/Salt-

Minion-3006.3-Py3- AMD64-Setup.exe, please investigate, 

exiting script."

    exit 1

}

if ([System.IO.File]::Exists("$tempfolder\saltminion.exe")) {

    Write-output " SALT executable download successful "

}

$MINIONCONF = @"

id: $MINIONNAME

master: $SALTMASTER

tcp_keepalive: True

tcp_keepalive_idle: 60

"@

new-item -Path "C:\ProgramData\Salt Project\Salt\conf" 

-itemtype directory

new-item -Path "C:\ProgramData\Salt Project\Salt\conf\minion.d" 

-itemtype directory

Set-Content "C:\ProgramData\Salt Project\Salt\conf\minion.d\

minion.conf" $MINIONCONF

Start-Process -FilePath $tempfolder'\saltminion.

exe' -ArgumentList "/S /master=$SALTMASTER /minion- 

name=$MINIONNAME", /install-dir="C:\salt" -Wait  #Minion 

installation

Chapter 6  Life-CyCLe ManageMent after iMport



230

New-Item -ItemType SymbolicLink -Path "C:\salt\conf" -Target 

"C:\ProgramData\Salt Project\Salt\conf"

New-Item -ItemType SymbolicLink -Path "C:\salt\var" -Target 

"C:\ProgramData\Salt Project\Salt\var"

sleep 5

if (-not (Get-Service 'salt-minion'  -ErrorAction 

SilentlyContinue)) {

     Write-output "Did not find salt-minion service , sleeping 

30 seonds and retrying."

    sleep 30

     if (-not (Get-Service 'salt-minion'  -ErrorAction 

SilentlyContinue)) {

         Write-output "FAILED - Did not find salt-minion 

service."

         Write-output "removing c:\salt because salt 

installed failed"

        Remove-Item -Path c:\salt -Force -Recurse

         Write-output "FAILED - Salt Minion Failed to Install, 

please investigate, exiting script."

        exit 1

    }

}

if( Get-Service 'salt-minion') {

        write-output "Salt Service is running"

}

Write-output "-------------------------------------------"

Write-output "Installation of SaltMinion was successful!"

Write-output "-------------------------------------------"

exit 0

Chapter 6  Life-CyCLe ManageMent after iMport



231

With an understanding of the Install_Minion.ps1 script, you will now 

learn how to integrate the Terraform core and SaltStack.

The following is a snippet of the configuration file (main.tf) that 

is required to invoke the Install_Minion.ps1 script in Terraform 

provisioners.

We are assuming the Install_Minion script is present in the local 

machine directory from where you are running the Terraform code.

The following code can be accessed from the GitHub repository with 

the filename VMCreationWithTerraformProvisioner.tf:

https://github.com/sumitbhatia1986/Terraform-VMware- 

ReverseEngineering/blob/main/VMCreationWithTerraformProvisioner.tf

Here is the code:

provider "vsphere" {

vsphere_server = "vcslab01.dc.com"

user = "administrator@vsphere.local"

password = "XXXXX"

#if youn have a self-signed cert

allow_unverified_ssl = true

}

data "vsphere_datacenter" "dc" {

  name = "Lab"

}

data "vsphere_resource_pool" "pool" {

  name          = "vcslab01.dc.com/Resources"

  datacenter_id = "${data.vsphere_datacenter.dc.id}"

}

data "vsphere_datastore" "datastore" {

name = "XYZ"

datacenter_id = "${data.vsphere_datacenter.dc.id}"

}

Chapter 6  Life-CyCLe ManageMent after iMport

https://github.com/sumitbhatia1986/Terraform-VMware-ReverseEngineering/blob/main/VMCreationWithTerraformProvisioner.tf
https://github.com/sumitbhatia1986/Terraform-VMware-ReverseEngineering/blob/main/VMCreationWithTerraformProvisioner.tf


232

data "vsphere_network" "network" {

name = "VM Network"

datacenter_id = "${data.vsphere_datacenter.dc.id}"

}

data "vsphere_virtual_machine" "template" {

  name          = "Win2K16"

  datacenter_id = "${data.vsphere_datacenter.dc.id}"

}

resource "vsphere_virtual_machine" "vm"{

  name             = "Windows2016_terraform"

  resource_pool_id = "${data.vsphere_resource_pool.pool.id}"

  datastore_id     = "${data.vsphere_datastore.datastore1.id}"

  num_cpus = 4

  cpu_hot_add_enabled = "true"

  memory   = 12288

  memory_hot_add_enabled = "true"

  wait_for_guest_net_timeout = 0

  wait_for_guest_ip_timeout = 0

  firmware = "efi"

   guest_id =  "${data.vsphere_virtual_machine.template.

guest_id}"

   scsi_type =  "${data.vsphere_virtual_machine.template.

scsi_type}"

  network_interface {

    network_id = "${data.vsphere_network.network.id}"

     adapter_type =  "${data.vsphere_virtual_machine.template.

network_interface_types[0]}"

  }

  disk {

Chapter 6  Life-CyCLe ManageMent after iMport



233

    label            = "disk0.vmdk"

    size             = 120

     eagerly_scrub    =  "${data.vsphere_virtual_machine.

template.disks.0.eagerly_scrub}"

     thin_provisioned =  "${data.vsphere_virtual_machine.

template.disks.0.thin_provisioned}"

  }

  clone {

     template_uuid =  "${data.vsphere_virtual_machine.

template.id}"

    customize {

      windows_options {

        computer_name = "terraform-test"

        admin_password = "XXXX"

        auto_logon = true

        auto_logon_count = 1

        full_name = "Administrator"

      }

      network_interface {

         ipv4_address =  "x.x.x.x" #IP of the new VM we are 

deploying

        ipv4_netmask = 24

      }

    ipv4_gateway = "x.x.x.x"

}

}

Chapter 6  Life-CyCLe ManageMent after iMport



234

  provisioner "local-exec" {

     command =  "copy-item C:\\terraform\\Test\\Install_Minion.ps1  

 -destination C:\\ -ToSession (New-PSSession  

 -ComputerName x.x.x.x -Credential (new-object  

 -typename System.Management.Automation.PSCredential  

 -argumentlist local\\Administrator, (convertto-

securestring -AsPlainText -Force -String XXXX)))"

    interpreter = ["PowerShell", "-Command"]

  }

  provisioner "local-exec" {

     command =  "Invoke-Command -ComputerName x.x.x.x -Credential 

(new-object -typename System.Management.

Automation.PSCredential -argumentlist local\\

Administrator, (convertto-securestring  

 -AsPlainText -Force -String XXXX)) -ScriptBlock 

{ C:\\Install_Minion.ps1 }" ## Copying and 

installing from the C drive of new VM we deploying

    interpreter = ["PowerShell", "-Command"]

  }

}

When we run terraform apply, the execution logs show the following:

• The logs show the VM deployment and assignment 

of the IP address as specified in the previous 

configuration file.

• The logs show the execution of the Terraform 

provisioner (local-exec) to copy the script Install_

Minion.ps1 to the new VM that is deployed. The copying 

of files happens over the WINRM as the Terraform 

host first creates a session on the new IP address that is 

assigned on the Windows VM that is deployed.

Chapter 6  Life-CyCLe ManageMent after iMport



235

• Then this Install_Minion.ps1 script is executed on 

the VM (the same PowerShell session ID) deployed by 

the Terraform provisioner (local-exec) via the WINRM 

session.

• The execution of Install_Minion.ps1 on the new 

Windows VM installs and downloads the SaltStack 

minion executable from the SaltStack website 

and points it to the desired master present in the 

infrastructure.

• Finally, once the installation of a minion is successful, 

we will go to the SaltStack master to accept the minion 

manually and complete the registration.

This completes the workflow for the SaltStack and Terraform 

integration. Once the SaltStack minion is installed and registered, the 

SaltStack master has full control over the new Windows VM to perform 

any configuration management required by administrators on this newly 

deployed virtual machine.

The following are the logs captured for the Terraform and SaltStack 

integration deployment for your reference:

Do you want to perform these actions?

  Terraform will perform the actions described above.

  Only 'yes' will be accepted to approve.

  Enter a value: yes

vsphere_virtual_machine.vm: Creating...

vsphere_virtual_machine.vm: Still creating... [9m51s elapsed]

vsphere_virtual_machine.vm: Still creating... [10m1s elapsed]

vsphere_virtual_machine.vm: Provisioning with 'local-exec'...

vsphere_virtual_machine.vm (local-exec): Executing: 

["PowerShell" "-Command" "copy-item C:\\terraform\\Test\\

Chapter 6  Life-CyCLe ManageMent after iMport



236

Install_Minion.ps1 -destination C:\\ -ToSession (New-PSSession  

 -ComputerName x.x.x.x -Cr

edential (new-object -typename System.Management.Automation.

PSCredential -argumentlist local\\Administrator, (convertto- 

securestring -AsPlainText -Force -String XXXX)))"]

vsphere_virtual_machine.vm: Still creating... [10m21s elapsed]

vsphere_virtual_machine.vm: Provisioning with 'local-exec'...

vsphere_virtual_machine.vm (local-exec): Executing: 

["PowerShell" "-Command" "Invoke-Command -ComputerName 

x.x.x.x -Credential (new-object -typename System.Management.

Automation.PSCrede

ntial -argumentlist local\\Administrator, (convertto- 

securestring -AsPlainText -Force -String XXXX)) -ScriptBlock { 

C:\\Install_Minion.ps1 }"]

vsphere_virtual_machine.vm: Still creating... [10m31s elapsed]

vsphere_virtual_machine.vm (local-exec):     Directory: C:\

Users\Public\Documents

vsphere_virtual_machine.vm (local-exec): 

Mode                LastWriteTime         Length Name                                                                    

PSComputerName

vsphere_virtual_machine.vm (local-exec):  

 ----                -------------         ------ ----                                                                     

 --------------

vsphere_virtual_machine.vm (local-exec): terraform-test

vsphere_virtual_machine.vm (local-exec): Salt is not installed, 

Starting Salt Deployment script

vsphere_virtual_machine.vm (local-exec): Downloading Salt 

Minion to C:\Users\AZUREU~1\AppData\Local\Temp\2 vsphere_

virtual_machine.vm (local-exec): SALT executable download 

successful

Chapter 6  Life-CyCLe ManageMent after iMport



237

vsphere_virtual_machine.vm: Still creating... [10m41s elapsed]

vsphere_virtual_machine.vm (local-exec):     C:\ProgramData\

Salt Project\Salt

vsphere_virtual_machine.vm (local-exec): 

Mode                LastWriteTime         Length Name                                                                    

PSComputerName

vsphere_virtual_machine.vm (local-exec):  

----                -------------         ------ ----

vsphere_virtual_machine.vm (local-exec): d 

-----         7/9/2020   6:30 AM                conf

vsphere_virtual_machine.vm (local-exec):     Directory: C:\

ProgramData\Salt Project\Salt\conf

vsphere_virtual_machine.vm (local-exec): 

Mode                LastWriteTime         Length Name                                                                    

PSComputerName

vsphere_virtual_machine.vm (local-exec):  

----                -------------         ------ ---- 

                                                                    --

vsphere_virtual_machine.vm (local-exec): d 

-----         7/9/2020   6:30 AM                minion.d

vsphere_virtual_machine.vm: Still creating... [10m51s elapsed]

vsphere_virtual_machine.vm: Still creating... [11m1s elapsed]

vsphere_virtual_machine.vm: Still creating... [11m11s elapsed]

vsphere_virtual_machine.vm (local-exec): Salt Service 

is running

vsphere_virtual_machine.vm (local-exec):   

-------------------------------------------

vsphere_virtual_machine.vm (local-exec): Installation of 

SaltMinion was successful!

Chapter 6  Life-CyCLe ManageMent after iMport



238

vsphere_virtual_machine.vm (local-exec):   

-------------------------------------------

Apply complete! Resources: 1 added, 0 changed, 0 destroyed.

PS C:\terraform>

You can see that SaltStack is successful after the VM deployment by 

Terraform.

We can SSH to the SaltStack master. Here is the command to list the 

respective minions:

root@SALTMasterLab:/# salt-key

Accepted Keys:

Web1

Web2

Denied Keys:

Unaccepted Keys:

Terraform-test    <--- This is the new VM we just deployed.

Rejected Keys:

To accept the keys on the SaltStack master, you can run the following 

command:

root@SALTMasterLab:/# salt-key -a Terraform-test

The following keys are going to be accepted:

Unaccepted Keys:

Terraform-test

Proceed? [n/Y] Y

Key for minion Terraform-test accepted.

This completes the demonstration of integrating Terraform with 

SaltStack.

Chapter 6  Life-CyCLe ManageMent after iMport



239

 Summary
This chapter on life-cycle management after import explained the key 

use cases of Terraform for infrastructure automation when used in IT 

operations. Once we have the import capability built with help from 

reverse engineering, we want to implement Terraform and automate the 

monotonous day-to-day infrastructure tasks.

This chapter started by explaining the Terraform integrations where 

automation support is offered in a variety of IT infrastructure spaces 

such as security, monitoring, cost management, etc. The chapter then 

introduced the Terraform provisioners, which are an excellent method for 

the configuration management of resources using Terraform. The most 

popular buzzword these days is “ZeroOps,” which is now possible with the 

Terraform IaC and reverse engineering.

The chapter also focused on the most common operational use cases 

such as VM deployment, VM modifications, and VM decommission. 

 Terraform integration with SaltStack and DevOps was also briefly 

explained in this chapter since SaltStack and DevOps are of growing 

interest in today’s infrastructure management field. We also explained how 

to embed the reverse-engineering logic in these operational use cases to 

make IT administrators’ lives easier.

The chapter concluded with the hands-on exercise that demonstrated 

how to integrate SaltStack (a configuration management tool) and was a 

complete virtual machine post-provisioning exercise.

Chapter 6  Life-CyCLe ManageMent after iMport



241

CHAPTER 7

Terraform and Import 
Support on Other 
Platforms
Our main focus up until this point has been to understand Terraform, 

reverse engineer it, and effectively import an existing VMware virtual 

machine into Terraform. Because Terraform is a single platform that can 

assist in defining our infrastructure as code (IaC) and manage numerous 

platforms, it is becoming more and more popular.

As an illustration, consider Terraform’s automation capabilities across 

a variety of platforms such as Google Cloud and Microsoft Azure. These 

platforms encounter the difficulties that we have previously covered; 

for example, when managing resources that were developed outside of 

Terraform, Terraform will not know the state of the resources. Manually 

importing each cloud resource into Terraform is another challenge. 

Because of the growing popularity of Terraform, developers have been 

creating solutions in the DevOps world to automatically import existing 

infrastructure resources into Terraform.

In this chapter, we will talk about tools that are currently under 

development and show how they can help you leverage Terraform 

capabilities to set up automation in your infrastructure.

© Sumit Bhatia, Chetan Gabhane 2024 
S. Bhatia and C. Gabhane, Reverse Engineering with Terraform,  
https://doi.org/10.1007/979-8-8688-0074-0_7

https://doi.org/10.1007/979-8-8688-0074-0_7


242

We will start the chapter by explaining the challenges of adopting IaC 

in the public cloud and how you can mitigate those challenges. Next, we 

will go over the beta feature that Google currently offers, which allows 

you to import resources that are already running on GCP projects into 

Terraform. We will also suggest a few more solutions for the Amazon 

AWS and Microsoft Azure platforms. During the hands-on exercise, we 

will showcase a tool named aztfexport that facilitates the creation of 

Terraform configuration files for resources that are currently operating on 

the Microsoft Azure platform.

While this chapter contains references to a number of different import 

tools, please be aware that some of these tools are still under development. 

We hope they are made formally available for use in production soon. Still, 

the ideas in this chapter should enable automatic Terraform imports and 

assist you in reverse engineering across a variety of supported platforms.

 Overview of Challenges with a Public Cloud
Microsoft Azure, Amazon AWS, Google GCP, etc., are the major public 

cloud providers. These cloud providers offer tools to define IaC. IaC tooling 

allows business infrastructure to be repeatable, understandable, and 

programmatic. Examples of such IaC-supported tools for the cloud are 

ARM templates, Ansible, Terraform, etc.

As covered in this book, Terraform can integrate with different 

platforms, has an easy-to-understand configuration file, and can help with 

management. But as Terraform has challenges, there are challenges with 

the cloud platforms. Let’s discuss them briefly now.

 Learning Curve
Even if you are familiar with Terraform and also on the public cloud 

platform, it is still challenging to determine how to author a Terraform 

Chapter 7  terraform and Import Support on other platformS



243

configuration file manually that reflects the exact infrastructure you want 

to manage. Creating a configuration file is an iterative process where you 

define some configuration parameters, apply them, and then verify them 

to see that they are producing the desired configuration on the public 

cloud portal. Overall, the process of generating a configuration file is time- 

consuming and complex. It would be great if we could just create resources 

on the platform directly and then these cloud platforms would allow us 

to import them into Terraform. That way, administrators do not have to 

spend time understanding each configuration parameter that they want to 

implement.

 Already Provisioned Resources 
Outside Terraform
Another challenge for VMware that we discussed is when a resource was 

provisioned outside of Terraform and administrators do not have a record 

of the exact settings of the resource. When organizations adopt IaC tools, 

they want to implement IaC automation across infrastructures, and even 

for minor changes, the infrastructure requires a fully-fledged configuration 

file. Without a clean configuration file, changing the infrastructure is risky. 

Therefore, without importing a resource into Terraform, managing a cloud 

resource is difficult if it is created outside Terraform.

 Cloud Preview Functionality
Cloud providers are continually adding new features to make the life of 

cloud administrators easier. These new features are released in phases, 

starting with private, then public preview, and, finally, general availability 

(GA). Terraform does not usually support these cloud features until the 

final GA stage. With the automated generation of configuration files, 

whenever a new feature makes it to the GA stage, administrators can 

Chapter 7  terraform and Import Support on other platformS



244

easily adapt the feature to their configuration file if they are able to import 

existing resources. Thus, this allows administrators to implement IaC 

workarounds and make full use of the tools without worrying about new 

features and respective continuous adoptions they would need to do with 

the tool.

 Escape Hatch
Cloud providers have a vast offering of services and features that are 

continually expanding and changing. Terraform supports the majority of 

these services and features. However, when you need to manage a feature 

or service that is not yet supported, administrators end up having to fall 

back to imperfect workarounds, or “escape hatches,” that do not take 

advantage of all the good features you expect from Terraform. This is not 

desired, but there are mechanisms available that allow the generation of 

configuration files that match the infrastructure feature. With automated 

import support for cloud platforms, community developers take care of 

offering import support for these escape hatches.

 Removal of Escape Hatches
Escape hatches allow temporary workarounds. But when the “official” 

support is added to Terraform, administrators want to remove these escape 

hatches in the implementation. Without the presence of a mechanism 

that generates the configuration file automatically, administrators would 

have to destroy the infrastructure and redeploy it. This is not an efficient 

way to manage things; having a tool that allows for an automated import is 

appreciated by infrastructure admins.

Now that you understand the challenges with the public cloud and 

how reverse engineering can help mitigate them, we will explain some 

of the recent releases by the major cloud providers or open-source 

communities that allow the automated generation of the Terraform 

Chapter 7  terraform and Import Support on other platformS



245

supported configuration file through a small utility. In other words, the 

following utilities mitigate all the challenges previously discussed. These 

support utilities are very helpful in properly adopting Terraform in any 

environment.

 Google Cloud Utility for Terraform Import
With the increasing attractiveness of Terraform in the DevOps world, there 

has been increase in Terraform adoption as well on Google. At the same 

time, different platforms including the Google Cloud are coming up with 

native tools that support the automated import of an existing resource into 

Terraform. One such utility recently announced by Google is called gcloud 

beta resource-config. This readymade tool already has reverse- 

engineering logic built in, which in turn talks to the Google Cloud Platform 

and fetches the required Terraform configuration of the resources running 

inside a GCP project. This allows IT administrators to use Terraform in 

their day-to-day IT automation.

Here is a link to the detailed GCP documentation:

https://cloud.google.com/sdk/gcloud/reference/beta/

resource-config

Note that this utility is currently in beta and can be changed by Google 

without prior notice.

The utility allows you to bulk export project resources into a *.tf 

file, which can be readily used for further import via the Terraform tool. 

Figure 7-1 shows a sample import workflow with GCP projects.

Chapter 7  terraform and Import Support on other platformS

https://cloud.google.com/sdk/gcloud/reference/beta/resource-config
https://cloud.google.com/sdk/gcloud/reference/beta/resource-config


246

Figure 7-1. Sample Terraform import workflow with GCP

The following are the high-level steps of importing an existing GCP 

resource with Terraform.

These are the prerequisites:

 1. Get the service account key and activate it in the 

SDK for a project in the GCP.

 2. Make sure the service account has a Cloud Asset 

Viewer role.

 3. Enable the following APIs with your GCP project:

cloud asset api

service usage api

Chapter 7  terraform and Import Support on other platformS



247

Here are the importing steps:

 1. Define the execution environment and set the GCP 

project, region, and zone.

 2. Here is the command for the bulk export of the Terraform 

configuration files for resources in a GCP project:

gcloud beta resource-config bulk-export  

 --project=<Project Name> --path=./instances  

 --resource-format=Terraform --resource-

types=storage.cnrm.cloud.google.com/

ComputeInstance -q

 3. In this bulk export, copy the required resource 

*.tf file to another directory where you want to 

run import.

 4. Run terraform init.

 5. Import your required resource with this command:

terraform import google_compute_instance. 

<VMname> <ProjectName>/<Region>/<VMName>

 6. Run terraform plan and verify that no changes are 

suggested. If no changes are suggested, that signifies 

a successful import.

The steps defined here are a brief representation of the import logic. 

Obviously, the tool supports different command-line options, which can 

be referred to by visiting the link we provided.

As you learned with the VMware import in earlier chapters, a 

successful import facilitates the automation of many redundant tasks and 

completes the dots of the infrastructure automation. After a successful 

import of a GCP resource, all other common use cases and infrastructure 

integrations can be similarly leveraged, which reduces the manual effort of 

IT administrators.

Chapter 7  terraform and Import Support on other platformS



248

 Microsoft Azure Cloud Utility 
for Terraform Import
To allow the automated generation of Terraform configuration files, there 

is a community of developers working on doing reverse engineering 

with the Azure platform to create configuration files and import existing 

resources into Terraform. There are open-source and Microsoft-supported 

tools available that facilitate this job for administrators. The following are a 

few tools that allow the easy import of existing resources into Terraform:

• Azure Terrafy (aztfy)

 With Azure Terrafy, you can quickly and easily turn the 

existing Azure infrastructure into Terraform HCL and 

import it to a Terraform state. After you have completed 

importing your infrastructure, you can manage it with 

your standard IaC processes. Learn more here:

 https://techcommunity.microsoft.com/t5/azure-

tools-blog/announcing-azure-terrafy-and-azapi- 

Terraform-provider-previews/ba-p/3270937

 Here is the link to the GitHub source code link of the tools:

 https://github.com/Azure/Terraform

 Here is a sample CLI command that imports a resource 

by the resource ID:

aztfy resource <resource id>`

Test:~$ aztfy resource /subscriptions/XXXXX-XXXX-

XXXX-XXXX-XXXXXXX/resourcegroups/test_group/

providers/Microsoft.Compute/virtualMachines/test

Test:~$ ls

main.tf provider.tf Terraform.tfstate

Chapter 7  terraform and Import Support on other platformS

https://techcommunity.microsoft.com/t5/azure-tools-blog/announcing-azure-terrafy-and-azapi-Terraform-provider-previews/ba-p/3270937
https://techcommunity.microsoft.com/t5/azure-tools-blog/announcing-azure-terrafy-and-azapi-Terraform-provider-previews/ba-p/3270937
https://techcommunity.microsoft.com/t5/azure-tools-blog/announcing-azure-terrafy-and-azapi-Terraform-provider-previews/ba-p/3270937
https://github.com/Azure/Terraform


249

• Azure Export:

 Another tool that is offered by Microsoft is called Azure 

Export for Terraform. This tool is designed to help 

reduce friction when translating between Azure and 

Terraform concepts. For scenarios related to escape 

hatches or the removal of escape hatches, Azure Export 

for Terraform allows the use of Azure preview features 

with Terraform. To learn more about the tool, please 

visit the following link:

 https://learn.microsoft.com/en-us/azure/

developer/Terraform/azure-export-for-Terraform/

export-Terraform-overview

 Here is the Azure Export GitHub page:

 https://github.com/Azure/aztfexport/releases

Azure Export offers the following benefits:

Easy adoption of Terraform: Azure Export for 

Terraform allows users to easily import existing 

resources into Terraform using a single command. Users 

can first export the resource configuration file in HCL 

format and then can further import it into Terraform to 

generate a fresh Terraform state, thus making it easy to 

import any existing Azure resource into Terraform.

Export user-specified sets: Azure Export for 

Terraform allows the predetermined scope to export. 

Users can define scope that is granular as a single 

resource, a resource group, and its nested resources 

or an entire subscription. The export provides the 

configuration file in HCL format that can be readily 

used to import a resource with Terraform.

Chapter 7  terraform and Import Support on other platformS

https://learn.microsoft.com/en-us/azure/developer/Terraform/azure-export-for-Terraform/export-Terraform-overview
https://learn.microsoft.com/en-us/azure/developer/Terraform/azure-export-for-Terraform/export-Terraform-overview
https://learn.microsoft.com/en-us/azure/developer/Terraform/azure-export-for-Terraform/export-Terraform-overview
https://github.com/Azure/aztfexport/releases


250

Inspection of pre-existing infrastructure: The 

Azure Export utility offers a read-only export with 

the option to expose all the configurable resource 

properties. Thus, it is helpful for learning about a 

newly released Azure resource or investigating any 

issue in production.

The links given contain information about installing the binaries 

and making use of the source to help generate a Terraform-supported 

configuration file of a desired resource.

Here is a sample CLI command to import a resource by the resource ID:

aztfexport [command] [option] <scope>

The scope can change depending on the command the user wants to 

run. It depends on whether the user is trying to export a single resource or 

a resource group. See Table 7-1.

Table 7-1. AZTFEXPORT Command Options

Task Explanation Command

export 

a single 

resource.

to export a single resource, specify the 

azure resource Id associated with the 

resource.

aztfexport resource 

[option] <resource 

id>

export a 

resource 

group.

to export a resource group (and its 

nested resources), specify the resource 

group name, not the Id.

aztfexport 

resource-group 

[option] <resource 

group name>

export using a 

query.

the tool supports exporting with an 

azure resource Graph query.

aztfexport query 

[option] <ARG where 

predicate>

Chapter 7  terraform and Import Support on other platformS



251

By default, Azure Export for Terraform collects the telemetry data to 

improve the user experience. Azure Export for Terraform does not collect 

any private or personal data. However, you can still easily disable this 

process with the following command:

aztfexport config set telemetry_enabled false

We are going to show how to use Azure Export for Terraform in the 

hands-on exercise of this chapter.

 Amazon AWS Cloud Utility 
for Terraform Import
There are open-source tools available that allow reverse engineering on 

the AWS platform as well. One example of such a tool is Terraformer. This 

is a tool developed by Waze, a subsidiary of Google; however, it is not an 

official product of Google. Terraformer is an open-source tool that can be 

modified and used across all major platforms including Amazon, Google, 

AWS, IBM Cloud, and Alibaba Cloud.

Terraformer uses Terraform providers and is designed to easily support 

newly added resources. To upgrade resources with new fields, all you need 

to do is upgrade the relevant Terraform providers.

Here is the link to the GitHub source code for the tool:

https://github.com/GoogleCloudPlatform/Terraformer

Here are the steps:

 1. Install Terraformer following the instructions at the 

provided GitHub link.

 2. Clone the GitHub repository and go to Terraformer.

 3. Build the modules with the provider you choose.

 4. Run the import command to start importing.

Chapter 7  terraform and Import Support on other platformS

https://github.com/GoogleCloudPlatform/Terraformer


252

Here is the sample CLI command to import all EC2 instances in region 

us-east-1 for AWS:

Terraformer import aws --resources=ec2_instance --regions=ap- 

southeast- 2

Terraformer imports the existing AWS resource directly into Terraform 

and creates the state file.

Here are the capabilities of the Terraformer open-source tool:

• It can generate the TF/JSON + tfstate file from the 

existing infrastructure for the supported objects of each 

resource on the respective platform.

• The state file it generates can be uploaded to the cloud 

bucket directly.

• The import is supported by the resource name and 

its type.

• Users can save TF/JSON files using a custom folder tree 

pattern.

Note If you don’t specify the region, it will import the resources 
from the default region.

test: $ Terraformer import aws --resources=ec2_instance  

 --regions=ap-southeast-2

2022/09/20 16:56:26 aws importing region ap-southeast-2

2022/09/20 16:56:29 aws importing... ec2_instance

2022/09/20 16:56:30 aws done importing ec2_instance

2022/09/20 16:56:30 Number of resources for service ec2_

instance: 0

2022/09/20 16:56:30 aws Connecting....

Chapter 7  terraform and Import Support on other platformS



253

2022/09/20 16:56:30 aws save ec2_instance

2022/09/20 16:56:30 aws save tfstate for ec2_instance

test: $ cd generated/aws/ec2_instance/

test: $ ls

provider.tf Terraform.tfstate

After Terraformer imports the existing resource, you can run 

terraform plan to confirm that the tool is not suggesting any changes.

 Word of Caution
We have provided references to different open-source and native tools; 

however, please note that you need to pick the right tool for your situation 

and use a systematic approach to import cloud resources into a Terraform 

configuration. There may be tweaks needed based on your specific 

infrastructure needs. While all the tools provide an option to import, they 

may not necessarily be adequate for your specific needs. Performing 

terraform plan to ensure there are no changes in the infrastructure is an 

important step in doing the automated import. Although the tools do an 

impressive job at importing, they may not be mature enough to match the 

current practices of creating Terraform configuration files specific to your 

environment.

Following a well-structured approach, putting in some work to 

restructure configuration files as per best practices, and maintaining 

the accuracy of the state and configuration files will ensure a successful 

transition to using Terraform to maintain your cloud resources.

Chapter 7  terraform and Import Support on other platformS



254

 Hands-On Exercise: Using Azure 
Export for Terraform to Autogenerate 
a Configuration File and Import 
an Azure VM
In this hands-on exercise, we will demonstrate how to use Azure Export for 

Terraform to autogenerate a configuration file for an Azure VM and auto- 

import an Azure VM into Terraform. Furthermore, we will run terraform 

plan to demonstrate a clean import of an existing resource where 

Terraform suggests no changes on the platform.

As a prerequisite, you should have the Azure CLI installed and 

Terraform executables deployed on the %PATH% of your local machine 

where you are doing this exercise.

You can find detail information about Azure Export for Terraform here:

https://learn.microsoft.com/en-us/azure/developer/Terraform/

azure-export-for-Terraform/export-Terraform-overview

To demonstrate the functionality of Azure Export for Terraform, we 

have already created a resource group named Test_Terraform in an Azure 

subscription.

Also, we have created a Test virtual machine inside the resource group 

Test_Terraform.

Please refer to the following to see the resources present inside the 

resource group:

Chapter 7  terraform and Import Support on other platformS

https://learn.microsoft.com/en-us/azure/developer/Terraform/azure-export-for-Terraform/export-Terraform-overview
https://learn.microsoft.com/en-us/azure/developer/Terraform/azure-export-for-Terraform/export-Terraform-overview


255

 

The following is the outcome of the command:

Az resource list –name <VMname>

PS C:\Users\Desktop> az resource list --name Test

[

  {

     "id": "/subscriptions/XXXXXXXXX/resourceGroups/Test_

Terraform/providers/Microsoft.Compute/virtualMachines/Test",

    "identity": null,

    "kind": null,

    "location": "uksouth",

    "managedBy": null,

    "name": "Test",

    "plan": {

      "name": "servercore-2019",

      "product": "servercore-2019",

      "promotionCode": null,

      "publisher": "cloud-infrastructure-services",

      "version": null

    },

    "properties": null,

    "resourceGroup": "Test_Terraform",

Chapter 7  terraform and Import Support on other platformS



256

    "sku": null,

    "tags": null,

    "type": "Microsoft.Compute/virtualMachines",

    "zones": [

      "1"

    ]

  }

]

PS C:\Users\Desktop>

Here is the step-by-step flow of the process:

 1. Download the Azure Export for Terraform tool 

from the following link and extract the .exe file to a 

specified folder:

https://github.com/Azure/aztfexport/releases

In this case, we extracted it to the aztf folder on the 

desktop.

 

 2. Now from the same directory, you can run the 

following command:

.\aztfexport.exe resource-group  

<resource-group name>

Chapter 7  terraform and Import Support on other platformS

https://github.com/Azure/aztfexport/releases


257

Note Since we are running this command from powerShell and 
using az commands, you must already be logged in to the desired 
azure subscription. You can do so using the command az login and 
setting the subscription with az account set - -subscription 
<desired subscription>.

Make sure your AZ cli is also up-to-date on 

your desktop. You can install the latest version by 

downloading the executables from the following 

website:

https://learn.microsoft.com/en-us/cli/azure/

install-azure-cli-windows?tabs=azure-cli

 3. After running the previous command, you can select 

the desired option to proceed.

 

 4. It will then start to initialize Microsoft Azure Export 

for Terraform. It takes a while to initialize.

Chapter 7  terraform and Import Support on other platformS

https://learn.microsoft.com/en-us/cli/azure/install-azure-cli-windows?tabs=azure-cli
https://learn.microsoft.com/en-us/cli/azure/install-azure-cli-windows?tabs=azure-cli


258

 

 5. After initialization, a list of the resources to be 

exported is displayed. Each line has an Azure 

resource ID matched to the corresponding AzureRM 

resource type. The list of available commands 

displays at the bottom of the screen. Using one of 

the commands, scroll to the bottom and verify that 

the expected Azure resources are properly mapped 

to their respective Terraform resource types.

 

Chapter 7  terraform and Import Support on other platformS



259

 6. Press W to run the auto-import of the Azure 

resource into Terraform.

 

 

 

 7. After the Azure export of Terraform is completed, 

you will see that the folder is populated with the 

desired Terraform configuration files.

Chapter 7  terraform and Import Support on other platformS



260

 

Main.aztfexport.tf is the autogenerated 

configuration file from the tool, as shown here:

resource "azurerm_resource_group" "res-0" {

  location = "eastus"

  name     = "Test_Terraform"

}

resource "azurerm_windows_virtual_machine" 

"res-1s" {

  admin_password        = "ignored-as-imported"

  admin_username        = "cloudadmin"

  location              = "uksouth"

  name                  = "Test"

  network_interface_ids =  ["/subscriptions/

XXXXXX/resourceGroups/

Test_Terraform/providers/

Microsoft.Network/

networkInterfaces/

test431_z1"]

Chapter 7  terraform and Import Support on other platformS



261

  resource_group_name   = "Test_Terraform"

  size                  = "Standard_DS1_v2"

  zone                  = "1"

  boot_diagnostics {

  }

  os_disk {

    caching              = "ReadWrite"

    storage_account_type = "Premium_LRS"

  }

  plan {

    name      = "servercore-2019"

    product   = "servercore-2019"

    publisher = "cloud-infrastructure-services"

  }

  source_image_reference {

    offer     = "servercore-2019"

    publisher = "cloud-infrastructure-services"

    sku       = "servercore-2019"

    version   = "latest"

  }

  depends_on = [

    azurerm_network_interface.res-2,

  ]

}

resource "azurerm_network_interface" "res-2" {

  enable_accelerated_networking = true

  location                      = "uksouth"

  name                          = "test431_z1"

  resource_group_name           = "Test_Terraform"

  ip_configuration {

    name                          = "ipconfig1"

Chapter 7  terraform and Import Support on other platformS



262

    private_ip_address_allocation = "Dynamic"

    public_ip_address_id          =  "/subscriptions/

XXXXXX/

resourceGroups/

Test_Terraform/

providers/

Microsoft.Network/

publicIPAddresses/

Test-ip"

    subnet_id                     =  "/subscriptions/

XXXXXX/

resourceGroups/

Test_Terraform/

providers/

Microsoft.Network/

virtualNetworks/

Test-vnet/subnets/

default"

  }

  depends_on = [

    azurerm_public_ip.res-6,

    azurerm_subnet.res-8,

  ]

}

resource "azurerm_network_interface_security_group_

association" "res-3" {

  network_interface_id      =  "/subscriptions/XXXXXX/

resourceGroups/Test_

Terraform/providers/

Microsoft.Network/

networkInterfaces/

test431_z1"

Chapter 7  terraform and Import Support on other platformS



263

  network_security_group_id =  "/subscriptions/XXXXXX/

resourceGroups/Test_

Terraform/providers/

Microsoft.Network/

networkSecurityGroups/

Test-nsg"

  depends_on = [

    azurerm_network_interface.res-2,

    azurerm_network_security_group.res-4,

  ]

}

resource "azurerm_network_security_group" "res-4" {

  location            = "uksouth"

  name                = "Test-nsg"

  resource_group_name = "Test_Terraform"

  depends_on = [

    azurerm_resource_group.res-0,

  ]

}

resource "azurerm_network_security_rule" "res-5" {

  access                      = "Allow"

  destination_address_prefix  = "*"

  destination_port_range      = "3389"

  direction                   = "Inbound"

  name                        = "RDP"

  network_security_group_name = "Test-nsg"

  priority                    = 300

  protocol                    = "Tcp"

  resource_group_name         = "Test_Terraform"

  source_address_prefix       = "*"

  source_port_range           = "*"

  depends_on = [

Chapter 7  terraform and Import Support on other platformS



264

    azurerm_network_security_group.res-4,

  ]

}

resource "azurerm_public_ip" "res-6" {

  allocation_method   = "Static"

  location            = "uksouth"

  name                = "Test-ip"

  resource_group_name = "Test_Terraform"

  sku                 = "Standard"

  zones               = ["1"]

  depends_on = [

    azurerm_resource_group.res-0,

  ]

}

resource "azurerm_virtual_network" "res-7" {

  address_space       = ["10.0.0.0/16"]

  location            = "uksouth"

  name                = "Test-vnet"

  resource_group_name = "Test_Terraform"

  depends_on = [

    azurerm_resource_group.res-0,

  ]

}

resource "azurerm_subnet" "res-8" {

  address_prefixes     = ["10.0.0.0/24"]

  name                 = "default"

  resource_group_name  = "Test_Terraform"

  virtual_network_name = "Test-vnet"

  depends_on = [

    azurerm_virtual_network.res-7,

  ]

}

Chapter 7  terraform and Import Support on other platformS



265

This configuration file accurately defines the Azure VM in terms of 

Terraform IaC.

 8. To further validate whether your import is 

successful, run terraform init.

 

 9. Run terraform plan to verify that no changes are 

suggested by Terraform.

 

In the previous example, we demonstrated the autogeneration and 

import of configuration files into a Terraform state. However, Azure Export 

for Terraform also offers the generation of Terraform configuration files on 

its own. The following is a sample command to demonstrate that:

C:\Users\AzureUser\Desktop\test\aztfexport.exe resource-group  

- -non-interactive - -hcl-only <resource-group name>

Chapter 7  terraform and Import Support on other platformS



266

Users can use the configuration files generated from the previous 

command and can import the resource manually into Terraform.

 Summary
This chapter discussed the Terraform import support of different public 

cloud platforms. Development communities are increasingly working on 

developing utilities that offer Terraform import support of pre-existing 

resources on respective platforms. In this chapter, we mainly talked about 

the utilities offered by cloud providers such as Google Cloud Platform 

(GCP), Microsoft Azure, and Amazon AWS.

Also, in the hands-on exercise, we demonstrated how to use Azure 

Export for Terraform to import a pre-existing Azure virtual machine into 

Terraform automation. These tools are of tremendous help and make it 

possible to use Terraform in the popular cloud platforms.

Throughout this book we covered the reverse engineering process 

and how it provides tremendous benefits for adopting infrastructure 

automation with our IT infrastructure, which was at once merely a dream 

for many IT administrators. Reverse engineering a system is surely 

a challenging task. When practicing it in any deployment, it is worth 

considering the benefits versus effort in implementing the process. This 

assessment is important to justify the benefits of reverse engineering. 

Considering the variety of infrastructure technologies available these 

days, eventually administrators will need to look for solutions to enable 

automation in their respective infrastructure.

We hope you enjoyed reading this book as much as we loved writing 

it. We sincerely hope the explanations and examples provided in this book 

enable you to think out of the box and help you achieve your personal and 

professional goals.

Chapter 7  terraform and Import Support on other platformS



267

Index

A
Amazon Web services (AWS),  

18, 27, 38, 45, 92, 102, 191, 
242, 251–253, 266

Application infrastructure, 39, 206
Application programming interface 

(API), 13, 41, 102, 121, 123, 
174, 190, 209

aztfexport, 242
Azure DevOps (ADO) pipeline, 127
Azure Export, 249–251, 254–266
Azure Terrafy (aztfy), 248

B
Business continuity planning, 20

C
Client library, 123–125
Cloud infrastructure, 15, 38
Collaborative DevOps culture, 4
Computer-aided design (CAD), 98
Configuration file

access keys/passwords, 58
backup strategy, 57, 58

data section, 46
modules, 59
output section, 57
provider section, 45
resource section, 46, 47, 49
variables, 58
variable section, 49, 52

Configuration management 
tools, 208

sample model, 208, 209
VM deployment, 209–212

Continuous integration (CI), 
224, 225

D
Debugging, import issues

clean imports
challenge, 161
configuration file, 164–167
existing VM, 165
provider version, 168
VMware environment, 

162, 163
destination platforms, 158, 159
provider version, 169, 170
terraform state management

© Sumit Bhatia, Chetan Gabhane 2024 
S. Bhatia and C. Gabhane, Reverse Engineering with Terraform,  
https://doi.org/10.1007/979-8-8688-0074-0

https://doi.org/10.1007/979-8-8688-0074-0


268

avoid manually 
modifying, 181

backups/versioning/
encryption, 180

terraform state 
command, 182

terraform state file, 181
testing import logic, 159, 160
troubleshooting steps

avoid import issues, 177–179
bug report, 175–177
issues, 170–172
reverse-engineering process, 

173, 174
terraform issues/

support, 175
VM integration, 158
VM’s configuration, 

183–185, 187
Declarative method, 12
Decommissioning, 216, 218, 219
DevOps tool

Azure Pipelines, 224, 226
Azure Repos, 223
Azure repository, 225
Azure storage, 225
Azure Suite, 226
config file, 224
Delivery Pipeline, 225
GitHub repository, 228, 231, 

234, 237
Disaster recovery, 4, 20
Domain-specific language (DSL), 3

E
Environment variables, 32, 60, 64, 

66, 69, 171
Escape hatches, 244–245
External provisioners, 53–57

F
File provisioners, 199, 200

G
gcloud beta resource-config, 245
General availability (GA), 243
Google Cloud Platform (GCP), 38, 91

IT administrators, 245
resource, 246
workflow, 246

H
HashiCorp Command Language 

(HCL), 129
HashiCorp Configuration Language 

(HCL), 15, 40, 44, 90
HashiCorp’s Terraform, 15, 190
HashiCorp’s version, 1

I
IaaS provisioning

network security, 27
storage resources, 27
virtual machines, 27

Debugging, import issues (cont.)

INDEX



269

Immutable infrastructure, 23, 24
consistency and 

reproducibility, 24
infrastructure configuration as 

code, 25
resilience/scalability, 24
rollbacks and roll forwards, 24

Information extraction
client library, 123
HashiCorp, 118
source of truth, 118
terraform architecture, 118
terraform core, 120
terraform plugins, 121, 122

Infrastructure as a service (IaaS), 2, 
26–28, 36, 196

Infrastructure as code (IaC), 1, 89, 
120, 157

auditing and compliance, 5
automation and efficieny, 4
collaboration and DevOps 

culture, 4
declarative approach, 12
imperative approach, 11
imperative vs. declarative, 13
reproducibility, 3
scalability and flexibility, 5
standardization and 

consistency, 3
testing and continuous 

integration, 4
tools and technologies, 5

Infrastructure ecosystem
application infrastructure, 39

cloud infrastructure, 38
enhanced customer 

experience, 201
network infrastructure, 38
security infrastructure, 39
self-service, 200
ZeroOps, 202, 203

Infrastructure provisioning, 4, 18, 
26, 29, 53, 57, 60, 63, 65, 68, 
70, 71, 74

Inline provisioners, 53–54
Integration and continuous 

deployment (CI/CD) 
pipelines, 5, 25, 192, 193

Interactive prompts, 70, 71
IT infrastructure

challenges
choosing systems, 8
cost of managing, 9
diverse platform at scale, 8
robust security, 9
variety of technologies, 9

issues, 7
pyramid, 7

J, K
jq command, 181

L
Lists

accessing values, 66
assigning values, 66

INDEX



270

defining, 65
dynamically generated, 66

Local-exec provisioners, 55, 198–199

M
Managed object browser (MOB), 

100, 102, 106–110, 115, 
128–130, 141, 144, 161, 165

Maps
accessing value, 64
assigning values, 64
defining, 63
dynamically populated, 65

Microservices, 19, 196
Microsoft Azure, 14, 38, 128, 203, 

241, 242, 266
Microsoft Azure Cloud Utility

AZTFEXPORT, 250
aztfy, 248
Azure Export, 249
easy adoption, 249
export user-specified sets, 249
pre-existing infrastructure, 250
Terraform Import, 251–253

Modeling
client library, 125
object identification, 125

Modules, 59
structure, 72
using, 73
VMware virtual 

machines, 71, 72

Multifactor authentication 
(MFA), 194

Mutable infrastructure, 22
complexity/risk, 23
configuration drift, 23

Mutable vs. immutable 
infrastructure, 25

N
Network infrastructure, 19, 38
NoOps, 202

O
Observability as code (OaC), 193
Open Policy Agent (OPA), 207
Open Source vs. HashiCorp, 16
Open-source Salt master, 227
Operational cost, 9, 29

P, Q
PaaS resources

event-driven architectures, 28
managed databases, 28
serverless platforms, 28

PATH environment variable, 32
plan command, 80, 174, 185–187
Platform agnostic, 14, 18
Point-in-time config file

autogenerates configuration 
file, 141, 142, 
144–148, 150–154

Lists (cont.)

INDEX



271

data section, 133
importing resource, 137–139
provider, 132, 133
resource section, 135, 136
successful import, 140

Populate variables
command-line flags, 69
environment variables, 69
variable files, 69

Preplan support, 192
Provider SDK, 118
Public cloud platform

escape hatches, 244
learning curve, 242, 243
preview, 243
provisioned resources, 243

Public cloud providers, 196, 205, 242

R
Remote-exec provisioners, 199, 200
Reverse engineering

autogenerating configuration 
files, benefits, 103–105

biological functions, 97
definitions, 97
information technology, 97
IT infrastructure tool, 98–100
MOB, VMware, 107, 109, 

110, 112–114
parameters, 103
resource object inventory 

databases, 102
terraform, 98

terraform import, 101
VMware, 106, 107

Robust security, 9
Role-based access control 

(RBAC), 16

S
SaltStack, 189, 202–204, 208, 209, 

213, 227, 231, 239
Security infrastructure, 39
Service level agreement (SLA), 201
Service models, 26, 28–30
ServiceNow, 194, 201, 204, 206, 

214–220, 222
Single sign-on (SSO), 194
Software-as-a-service (SaaS), 191, 

194, 196
Software-defined networks 

(SDNs), 38, 207
State file

backup steps, 42, 43
information, 42, 43
location, 42
uses, 41
versioning, 44

T
Terraform, 89

automation and efficiency, 29
benefits, 90
challenges, 93–95
compute technology space, 89

INDEX



272

configuration file parameters, 126
hybrid cloud, 30
import workflow, 96
infrastructure as code, 29
multicloud, 30
process ADO/incident 

management, 127
process steps, 126
sample use cases, 131
scalability and flexibility, 30
workflow, 90–92

terraform apply command, 185
Terraform automation

application deployment, 19
automate network/security 

setups, 19
business continuity 

planning, 20
compliance management, 19
configuration management, 19
containerized environments, 19
disaster recovery, 20
infrastructure management, 20
infrastructure provisioning, 18
scope, 21

Terraform files
configuration file, 40
providers, 41
state file, 41–44

terraform import command, 162, 
163, 165, 172, 184

terraform init command, 75, 122, 
139, 265

Terraform integrations
asset management, 197
CI/CD, 193
cloud version, 190
comms and messaging, 197
container orchestration, 196
core, 190
cost management, 191, 192
data management, 197
enterprise version, 190
IaaS, 196
industry partners, 191
IT automation, 189
low code/no code, 194, 195
observability and monitoring, 193
public cloud, 196
reverse engineering, 189
security, 192, 193
SSO, 194
VCS, 197
workflow partners, 190

terraform plan command, 185, 253
Terraform providers, 13–14, 30, 31, 

41, 46, 91, 103, 119, 130, 
131, 168–170, 173, 177, 178, 
196, 197, 251

Terraform provisioners, 14, 15
in action, 199
external, 54–56
file, 199
local-exec, 198
remote-exec, 199, 200
types, 53
VM creation, 53, 54

Terraform (cont.)

INDEX



273

terraform show command, 87, 166
terraform state command, 

180, 182–183
terraform state pull command, 183

U
Ubuntu system, 31
Universally unique identifier 

(UUID), 165
Use cases

application infrastructure, 
205, 206

multicloud deployment, 205
policy compliance, 207
SDN, 207
self-service model, 206

V, W, X, Y
Variable defaults

using default value, 67
defining, 67
override default value, 67, 68

Variables, 58
assigning values, 60
default values, 62
defining, 60
files, 69
input validation, 61
interpolation, 61
overrides, 61, 63
type constraints, 61

vCenter version, 130

Version control systems (VCS), 197
Virtual machine provisioning, 27
Virtual Server

automated workflow, 
213, 220–222

change, 219
create, 213–216
decommissioning, 216–219

VMware
infrastructure, 2
provider, 31
supplier, 31
vSphere provider, 79

VMware resource provisioning
create configuration  

file, 74, 75
initialize Terraform, 75
Terraform apply, 76
Terraform plan, 75

VMware virtual machine, 115, 
117, 155

configuration, 56
external provisioner, 55
external script, 56
script execution, 56
variables/resources, 55

vSphere client, 165, 184
vSphere provider

automated installation, 33
manual installation, 34, 35

Z
ZeroOps, 200, 202–204, 239

INDEX


	Table of Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Terraform: Infrastructure as Code
	Infrastructure as Code: A Key Enabler for  Today’s Technology Landscape
	Revolutionizing IT Infrastructure with the Power of Terraform
	From Silos to Harmony
	Embarking Diverse Infrastructure Platforms at Scale
	Navigating Different Technologies
	Operational Costs
	Ensuring Robust Security

	Imperative vs. Declarative Approaches to IaC
	Unleashing the Power of Terraform Providers and Provisioners
	Terraform Provider
	Terraform Provisioners

	Terraform Open Source vs. HashiCorp’s Version of Terraform
	Scope of Terraform Automation
	Harnessing the Power of Terraform
	Mutable vs. Immutable Infrastructure
	Mutable Infrastructure
	Immutable Infrastructure

	Bridging the Gap
	Provisioning IaaS Resources with Terraform
	Virtual Machine Provisioning
	Storage and Networking Configuration
	Provisioning PaaS Resources with Terraform
	Managed Databases
	Serverless Functions and Event-Driven Architectures
	Benefits of Utilizing Terraform for Managing Infrastructure Across Service Models
	Infrastructure as Code Consistency
	Automation and Efficiency
	Scalability and Flexibility
	Hybrid Cloud and Multicloud Support

	Hands-On Exercise: Setting Up Terraform Open Source for VMware Infrastructure on Ubuntu
	Summary

	Chapter 2: Deep Dive into Terraform
	Terraform and Its Presence in the IT Infrastructure Ecosystem
	Cloud Infrastructure
	Network Infrastructure
	Application Infrastructure
	Security Infrastructure

	Terraform Files Deep Dive
	Configuration Files
	Providers
	State File

	Config File and Its Different Sections
	Provider Section
	Data Section
	Resource Section
	Variable Section
	Terraform Provisioners
	Understanding Terraform Provisioners
	Example Use of Inline Provisioners in VMware VM Deployment
	Example Use of External Provisioners

	Set Up Variables and Resources
	Use an External Provisioner
	Create the External Script
	Depend on Script Execution
	Apply the Configuration
	Output Section
	Backup Strategy for Config File

	Mastering Control: Utilizing Terraform Variables as Powerful Module Parameters
	Variables
	Defining Variables
	Assigning Variable Values
	Input Validation and Type Constraints
	Variable Interpolation
	Variable Overrides

	Maps
	Defining a Map
	Assigning Values to the Map
	Accessing Map Values
	Dynamically Populating Maps

	Lists
	Defining a List
	Assigning Values to the List
	Accessing List Values
	Dynamically Generating Lists

	Variable Defaults
	Defining a Variable with Default
	Using the Default Value
	Overriding the Default Value

	Populating Variables
	Command-Line Flags
	Environment Variables
	Variable Files

	Interactive Prompts
	Example Usage in VMware Configuration

	Leveraging Modularization in Terraform
	Introduction to Modules
	Module Structure
	Using a Module

	Streamlining Infrastructure Provisioning with Terraform
	Committing the Configuration File
	Initializing Terraform
	terraform plan
	terraform apply
	Hands-On Exercise: Generation of Config and State Files to Create a VMware VM via vCenter (Using Templates)

	Summary

	Chapter 3: The Basics of Reverse Engineering
	Terraform Workflow Overview
	Terraform and Its Shortcomings
	Terraform Dependence on Point-in-Time Config Files for Import Operations
	Terraform Dependence on State File for Life-Cycle Management

	Mitigating These Shortcomings
	What Is Reverse Engineering?
	Reverse-Engineering Process for IT Infrastructure Tools
	Reverse Engineering with Terraform and Its Benefits
	Benefits of Autogenerating Configuration Files

	Sample Use Case: Reverse Engineering a VMware VM
	Hands-On Exercise: Managed Object Browser in VMware (vCenter) as a Source of Reverse Engineering
	Prerequisites for Python Code

	Summary

	Chapter 4: Terraform and  Reverse Engineering
	Information Extraction
	Terraform Core
	Terraform Plugins
	Client Library

	Modeling
	Sample Model
	Object Identification

	Review
	Understand a Sample Reverse-Engineering Model with Terraform
	Terraform Provider Version
	Infrastructure Platform Revisions

	Automated Creation of a Point-in-Time Config File
	Provider
	Provider Details to Connect to the Platform
	Data Section
	Resource Section

	Importing of a Resource with Terraform
	Validating a Successful Import
	Hands-On Exercise: Import Script to  Demonstrate Successful Autogeneration of  a Config File
	Summary

	Chapter 5: Debugging for Import Issues and Best Practices
	Potential Error Scope with Reverse Engineering
	The Challenge of Evolving Features
	Importance of Testing Import Logic

	Clean Imports: A Guide to Ensuring Accurate Configurations
	Understanding the Challenge
	Importance of Clean Imports
	Achieving Clean Imports with Terraform
	Understanding the Configuration File
	Importing the Existing VM
	Verifying the Imported Configuration

	Provider Version Compatibility for Successful Reverse Engineering
	Debugging and Troubleshooting Steps with Terraform
	Best Practice for Debugging and Troubleshooting While Performing Reverse Engineering
	Terraform Issues and Support
	Example Bug Report

	Summarizing How Import Issues Can Be Avoided
	Best Practices for Terraform State Management
	Backups, Versioning, and Encryption
	Do Not Edit Manually
	Main Keys in the Terraform State File
	Utilizing the terraform state Command

	Hands-On Exercise
	Summary

	Chapter 6: Life-Cycle Management After Import
	Terraform Integrations
	Workflow Partners
	Infrastructure Partners

	Terraform Provisioners for Integrations
	Local-exec Provisioner
	File Provisioners
	Remote-exec Provisioners

	Typical Terraform Integration with  Infrastructure Ecosystem for Automation
	Self-Service
	ZeroOps

	Terraform Use Cases
	Multicloud Deployment
	Application Infrastructure Orchestration, Scaling, and Monitoring
	Self-Service Model
	Policy Compliance and Management
	Software-Defined Networking

	Terraform Integration with Configuration Management Tools
	Agent Installation with Terraform VM Creation

	Operational Uses Cases for VM Management
	Virtual Server: Create
	Virtual Server: Decommission
	Virtual Server: Change

	Terraform Integration with DevOps
	Step 1: Generate a Config File
	Step 2: Check-In the Configuration File to Azure Repository
	Step 3: Continuous Delivery Pipeline - For Safe Storing State File
	Steps 4 and 5: Integrate Azure Pipelines and Azure Storage
	Step 6: Install Terraform, Initiate the Azure Suite, and Run a Terraform Plan
	Step 7: Run terraform apply in the Pipeline

	Hands-On Exercise: Terraform Integration with SaltStack and Invocation of SaltStack Install After Terraform Completes VM Provisioning
	Summary

	Chapter 7: Terraform and Import Support on Other Platforms
	Overview of Challenges with a Public Cloud
	Learning Curve
	Already Provisioned Resources Outside Terraform
	Cloud Preview Functionality
	Escape Hatch
	Removal of Escape Hatches

	Google Cloud Utility for Terraform Import
	Microsoft Azure Cloud Utility for Terraform Import
	Amazon AWS Cloud Utility for Terraform Import
	Word of Caution
	Hands-On Exercise: Using Azure Export for Terraform to Autogenerate a Configuration File and Import an Azure VM
	Summary

	Index



