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The release of ChatGPT has kicked off an arms race in Machine Learning
(ML), however, ML has also been described as a black box and very hard to
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and summarizes the learning process in three words: initialize, adjust and
repeat. This is illustrated step by step with animation to show how
machines learn: from initial parameter values to adjusting each step, to the
final converged parameters and predictions.

This book teaches readers to create their own neural networks with dense and convolutional layers,
and use them to make binary and multi-category classifications. Readers will learn how to build deep
learning game strategies and combine this with reinforcement learning, witnessing AI achieve super-
human performance in Atari games such as Breakout, Space Invaders, Seaquest and Beam Rider.

Written in a clear and concise style, illustrated with animations and images, this book is particularly
appealing to readers with no background in computer science, mathematics or statistics.

Dr. Mark Liu is a tenured finance professor and founding director of the Master of Science in
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Preface

Artificial Intelligence, deep learning, machine learning — whatever you're
doing if you don't understand it — learn it. Because otherwise you're going

to be a dinosaur within 3 years.
–Mark Cuban, 2021

Machine learning (ML) is redefining the way we live nowadays: it's
integrated into an increasing number of products and services in the
economy, from recommender systems to language translations, from voice
assistants, medical imaging, to self-driving cars… ML, especially deep
learning, has made great strides in the last couple of decades, largely due to
the advancements in computing power (such as graphics processing unit
(GPU) training and distributed computing) and the exploding amount of
data available to train deep neural networks.

The recent release of ChatGPT by OpenAI has upped the ante in the game,
forcing Google and other competitors to release large language models of
their own [5]. Different organizations and institutions have realized that an
arms race in the field of ML and artificial intelligence (AI) is on. Everyone
in every profession must adapt or face the risk of becoming a dinosaur and
getting left behind. A case in point is a recent announcement by the
Chartered Financial Analyst (CFA) Institute on March 17, 2023, to add ML
and AI in CFA exams to prepare candidates in these fields [26]. The change
comes after the CFA Institute “speaking with employers who were
bemoaning that while what's in the program was very practical, when they
hire new charterholders, they're not quite job ready.” [11]

The need to incorporate ML into the college curriculum was clear long
before the release of ChatGPT. In the Master of Science in Finance (MSF)
program at the University of Kentucky, we have kept a close eye on the



market demand for skill sets in these fields so as to keep our graduates
competitive on the job market. I created and taught a Python Predictive
Analytics course for our finance master students, involving state-of-the-art
ML models such as deep neural networks, random forests, gradient
boosting machines, and so on. While students are generally amazed by what
ML can accomplish, they complain that the learning process in ML is like a
black box and hard to understand. To help explain the inner workings of
ML algorithms, I have simplified the learning process into three words:
initialize, adjust, and repeat.

Step 1: A machine learning model assigns values to the model
parameters (initialize).
Step 2: It makes predictions based on the current parameters and
compares predictions with the actual values; it changes the parameters
so that the predictions in the next iteration will move closer to the
actual values (adjust).
Step 3: It repeats step 2 until the parameters converge (repeat).

The teaching experience has sowed the seed for this book. In the early part
of the book, I'll discuss the building blocks of ML such as loss functions,
activation functions, the gradient descent optimization algorithm, the
learning rate… Better yet, the book will use animations to show step by
step how machines learn: the initial parameter values, the adjustment in
each step, and the final converged parameters and predictions. I attempt to
fill the void in the market for an ML book for college students and young
professionals with no background in computer science, mathematics, or
statistics. As such, the book takes a practical rather than technical approach
to ML. The book provides an intuitive explanation of concepts such as deep
learning, Q-learning, or the policy-gradient algorithm. You'll learn how to
implement these algorithms by following the examples and how to apply
them to your own field, be that business, biology, medicine, or something
else entirely. While most models are built by using the TensorFlow Keras
API, you also learn to create ML models from scratch on your own, without
resorting to any API. Along the way, you'll know how ML models are
constructed, how the parameter values are initialized and then gradually
adjusted during the training process, how parameters converge, and how the
trained models make accurate predictions.



This book is divided into six parts. Part I discusses how to install Python
and how to create animations with Python libraries. Part II introduces you
to ML basics such as the gradient descent optimization algorithm, the
learning rate, loss functions, and activation functions. Part III covers binary
and multi-category classifications and introduces you to neural networks. In
Part IV, we build deep learning game strategies in OpenAI Gym games as
well as in multi-player games such as Tic Tac Toe and Connect Four. Part V
introduces you to the basics of reinforcement learning. In Part VI, we
combine deep learning with reinforcement learning to create deep
reinforcement learning game strategies, so you can create a double deep Q-
network to train all Atari games (Breakout, Space Invaders, Seaquest, and
so on).

Here's an overview of the book:

Part I: Installing Python and Learning Animations
Chapter 1: Installing Anaconda and Jupyter Notebook
This chapter guides you through installing the Python software based on
your operating system, whether that's Windows, Mac, or Linux. You'll
create a virtual environment just for projects in this book and install Jupyter
Notebook as the integrated development environment (IDE). You'll set up a
directory to manage files in this book.

Chapter 2: Creating Animations
You learn to create graphics and animations in Python. This prepares you to
create graphic representations and animations of the intermediate stages of
the ML process later in this book.

Part II: Machine Learning Basics
Chapter 3: Machine Learning: An Overview
You'll learn what ML is and how it's different from the traditional
algorithms in artificial intelligence (AI). We'll discuss three types of ML:
supervised learning, unsupervised learning, and reinforcement learning. The
three types also differ in terms of data, methodologies, and applications.

Chapter 4: Gradient Descent – Where Magic Happens



You'll use animations to show step by step how the parameter values in ML
models change based on the gradient descent algorithm so that the ML
models make predictions with the lowest forecasting error possible. The
forecasting errors are measured by a loss function. Training an ML model is
finding parameter values that minimize the loss function. The optimization
process is achieved through gradient descent or some variant of it. You'll
also know what the learning rate is and how it affects the training process.

Chapter 5: Introduction to Neural Networks
This chapter discusses how neural networks learn from the data and make
predictions. You learn to construct a simple neural network from scratch to
learn the relation between ten pairs of input and output variables. You use
the three steps that we have outlined in ML: initialize, adjust, and repeat.
You'll animate the learning process by extracting the parameter values and
predictions in each step of the training process in this simple neural
network.

Chapter 6: Activation Functions
You'll use the rectified linear unit (ReLU) activation function in a neural
network to approximate a nonlinear relationship. The Sigmoid activation
function squashes a number to the range between 0 and 1 so that it can be
interpreted as the probability of an outcome. The Softmax activation
function squeezes a group of numbers into the range [0, 1] so they can be
interpreted as the probability distribution of multiple outcomes.

Part III: Binary and Multi-Category Classifications
Chapter 7: Binary Classifications
Binary classification is an ML algorithm to classify samples into one of two
categories. In this chapter, you learn binary classifications by classifying
images into horses and deer using a neural network. You create an
animation to demonstrate how the model weights and the predicted
probabilities change in different stages of training.

Chapter 8: Convolutional Neural Networks
A convolutional layer treats an image as a two-dimensional object and finds
patterns on the image. It then associates these patterns with the image
labels. This significantly improves the predictive power of the model. In



this chapter, you learn the basic concepts related to a convolutional layer
such as the number of filters, kernel size, zero-padding, strides… Better yet,
you learn to create animations to show step by step how to apply a filter on
an image and how the convolution operations are conducted.

Chapter 9: Multi-Category Image Classifications
When the target label is a multi-category variable with more than two
possible values, we call the machine learning algorithm a multi-category
classification problem. In this chapter, you learn to classify images in
CIFAR-10 into one of the ten labels using a deep neural network with
augmentations and convolutional layers.

Part IV: Developing Deep Learning Game Strategies
Chapter 10: Deep Learning Game Strategies
You learn to use deep learning to train intelligent game strategies in the
Frozen Lake game in OpenAI Gym. You first generate game data for
training purposes. You then create a deep neural network to train game
strategies. The agent picks the action with the highest probability of
winning based on the trained model.

Chapter 11: Apply Deep Learning to the Cart Pole Game
You learn to train deep learning game strategies to play the Cart Pole game
in OpenAI Gym. You learn to creatively redefine what's considered
“winning” in a game so that there are roughly evenly distributed numbers of
winning and losing games in the simulated data. You feed the re-labelled
data into a deep neural network to train the model. The trained model wins
the Cart Pole game 100% of the time.

Chapter 12: Deep Learning in Multi-Player Games
You learn to create a game environment for Tic Tac Toe. You then apply
deep learning to Tic Tac Toe with the aim of developing intelligent game
strategies. We'll also animate the decision-making process of the agent so
we can look under the hood at how deep learning game strategies work.

Chapter 13: Deep Learning in Connect Four
You create a game environment for Connect Four and use simulated games
to train a deep neural network. At each step of the game, the deep learning



agent iterates through all possible next moves and selects the move with the
highest probability of winning. You animate the decision-making process
by showing all possible next moves and the associated probabilities of
winning in each step of the game.

Part V: Reinforcement Learning
Chapter 14: Introduction to Reinforcement Learning
In reinforcement learning, an agent interacts with an environment through
trial and error. The agent learns to achieve the optimal outcome by
receiving feedback from the environment in the form of rewards and
punishments. In this chapter, you'll train the Q-table in the Frozen Lake
game. You create an animation to demonstrate how tabular Q-learning
works. In each state, you put the game board on the left and the Q-table on
the right. You highlight the row corresponding to the state and compare the
Q-values under the four actions. The best action is highlighted in red. The
animation repeats this process until the game ends.

Chapter 15: Q-Learning with Continuous States
Tabular Q-learning can solve problems in which both the number of actions
and the number of states are finite. In the Mountain Car game, the state
variable is continuous so the number of states is infinite. You use a finite
number of discrete values to represent the state space and train the Q-table
for the game effectively.

Chapter 16: Solving Real-World Problems with Machine Learning
You learn to solve an Amazon Delivery Route problem by using tabular Q-
learning. You first find the shortest route between any two households in
town by training a Q-table. You need to deliver eight packages a day. You
consider all permutations and calculate the total distance traveled with each
permutation. You select the one with the shortest total distance.

Part VI: Deep Reinforcement Learning
Chapter 17: Deep Q-Learning
You learn to use a neural network to approximate a Q-table. A deep Q-
learning agent chooses an action in a given state by feeding the current
game state into a deep Q-network. The network returns Q-values associated



with different actions. The agent selects the action with the highest Q-value.
You learn to successfully apply deep Q-learning to the Cart Pole game.

Chapter 18: Policy-Based Deep Reinforcement Learning
You learn policy-based reinforcement learning in this chapter: instead of
estimating the value functions associated with different actions, you directly
train a policy that tells the agent which action to take in a given state. You
use the policy gradient method to play the Atari Pong game, earning a
perfect score of 21 to 0.

Chapter 19: The Policy Gradient Method in Breakout
You generalize the policy gradient method you learned in Chapter 18 to
another Atari game: Breakout. You animate how the agent learns to dig a
tunnel on the side of the wall to send the ball to the back of the wall to score
more efficiently.

Chapter 20: Double Deep Q-Learning
Q-learning has a well-known problem of overestimating Q-values. To
overcome this problem, you learn to use the double Q-learning method in
which one deep Q-network is used for training (the training network) and
another for prediction (the target network). You animate how the trained
agent in Breakout sends the ball to the back of the wall multiple times.

Chapter 21: Space Invaders with Double Deep Q-Learning
You tweak the Q-network you used in Chapter 20 and apply it to another
Atari game, Space Invaders. Even though the agent does not know the rules
of the Space Invaders game, it can eliminate all invaders on the screen, just
by learning from the rewards via repeated interactions with the game
environment.

Chapter 22: Scaling Up Double Deep Q-Learning
You scale up the double deep Q-network to play any Atari game. A model
with the same network architecture, same hyperparameters, and same
training procedure is created that can be applied to any Atari game. You
apply the model on two new Atari games: Seaquest and Beam Rider. With
these skills, you are ready to train and test any Atari game by using the
same model.



All Python programs, along with answers to some end-of-the-chapter
questions, are provided in the GitHub repository
https://github.com/markhliu/MLA.

https://github.com/
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The mechanic, who wishes to do his work well, must first sharpen his tools.
–Ancient Chinese Proverb

THIS CHAPTER, you'll first learn why Python is a great tool for
machine learning (ML). After that, I'll guide you through installing the
Python software you need to start running Python programs for this

book. There are different ways of installing Python and managing packages
on your computer. We'll be using Anaconda as our Python distribution and
development environment for this book. I'll guide you through the
installation process based on your operating system, whether that's
Windows, Mac, or Linux. I'll also discuss the advantages of choosing
Anaconda over other ways of installing Python.

You'll learn to create a virtual environment just for projects in this book.
After that, you'll install Jupyter Notebook as your integrated development
environment (IDE) and start coding in it. At the end of the chapter, you'll
set up a directory to manage files in this book.

New Skills in This Chapter

https://doi.org/10.1201/b23383-1


Setting up Python on your computer by installing Anaconda
Creating a virtual environment for projects in this book
Starting coding in Python by using Jupyter Notebook
Setting up a file system for this book

1.1 WHY PYTHON FOR MACHINE LEARNING?

In this section, I'll briefly discuss why Python is popular as a programming
language in general and why it's the preferred language for ML nowadays
in particular.

1.1.1 The Rise of Python

Python has been the world's most popular programming language since late
2018, according to The Economist [25]. Once you start to code in Python,
it's easy to see why. Python is a user-friendly, open-source, and cross-
platform programming language. Python code is relatively close to plain
English, so with only a little experience, you can often guess what a block
of code is trying to accomplish.

Python is open source, meaning not only that the software is free to use for
everyone but also that other users can create and alter libraries. In fact,
Python has a vast ecosystem from which you can get resources and help
from members in the community. Python programmers can share their code
with one another, so instead of building everything from scratch, you can
import modules designed by others, as well as share your modules with
others in the Python community.

Python is a cross-platform programming language, meaning you can code
in Python whether you use Windows, Mac, or Linux. However, the
installation of software and libraries can be slightly different depending on
your operating system. I'll show you how to install various libraries in your
operating system. Once these are properly installed, Python code works the
same in different operating systems.

Python is a high-level interpreted language. It allows users to abstract away
from details of the computer such as data type, memory management, and



pointers. As a result, the execution of Python code is slower than lower-
level compiled languages such as C, C++, or Java. However, nowadays,
with the advancements in computer hardware, you'll hardly notice the
difference.

Ways to Learn Python Basics

This book assumes you have some basic understanding of the Python
programming language. If not, a great place to start is the free online
Python tutorial provided by W3Schools. Go to
https://www.w3schools.com/python/ and follow the examples and
exercises in the tutorial. They also provide a “Try it Yourself” editor and
online compiler for you to run the Python code without installing Python
on your computer. Alternatively, you can pick up a Python basics book
and go over it. The Michigan State University's Professor Charles
Severance has a book called Python for Everyone [22], and there is a
printed version as well as a free online version https://www.py4e.com/.

1.1.2 Python for Machine Learning

All the ML algorithms in this book are in Python. We choose Python for
several reasons.

First, as we mentioned above, Python is an expressive high-level language
for general application development. Python's syntax structure is easy to
follow. It is easy for ML enthusiasts to understand and process what the
code is trying to accomplish. As a result, Python users can focus on solving
ML problems without spending too much time and effort on the coding
part. The simplicity of Python also allows programmers to collaborate with
each other easily because understanding each other's code is not as difficult.

Second, you can easily get support from the Python ML community. There
is a large online community with various groups and forums where
programmers post their errors or other types of problems and help each
other out. You can get resources and help from members in the Python ML
community. If you encounter issues for the ML libraries in this book, you
can search the forums for the Python packages you are using, or go to sites

https://www.w3schools.com/
https://www.py4e.com/


such as Stack Overflow to look for answers. In the rare case that you
couldn't find an answer, feel free to reach out to me for help.

Third, Python is one of the most popular languages for ML. This is mainly
because the Python ML ecosystem provides a wide collection of libraries
that enable users to create ML models easily. In particular, you'll use
extensively the following three libraries in this book: NumPy, TensorFlow,
and Keras. Below, I'll briefly discuss what these libraries can accomplish. In
a later chapter, we'll go into more details when we use these libraries to
create various ML models.

NumPy stands for numerical Python. The NumPy library provides efficient
data structures to represent numerical vectors and matrices, which allows
Python to handle high-dimensional array objects and perform efficient
mathematical operations. It is the bedrock of many of Python's numerical
computing libraries such as pandas, matplotlib, and TensorFlow. For
example, as you'll see later in this book, pictures are represented as three-
dimensional NumPy arrays in Python: the first dimension is the width of the
picture, the second the height, and the third the color channels. Even though
NumPy is a Python library, most of the code in it is written in C or C++,
and this allows for faster execution of the code.

Keras is a deep learning application programming interface (API)
developed by Google. It makes the implementations of deep neural
networks easy. Specifically, it provides the building blocks for developing
state-of-the-art deep neural networks. It provides a convenient way for you
to specify neural networks. You can easily add or remove a layer of neurons
from the network as you tune your model. When you add a new layer of
neurons, you can specify how many neurons to include in the layer, what
activation function to use, and so on. You can also choose different types of
layers of neurons such as dense layers or convolutional layers. Later
chapters cover more details.

TensorFlow is an ML library developed by Google. It uses data flow and
differentiable programming to perform different tasks. It allows users to
pre-process data. The library takes input data as high-dimensional arrays
known as tensors. The TensorFlow library allows you to perform
mathematical operations such as matrix multiplications, convolutional
operations, and so on. For example, we'll use TensorFlow to calculate the



gradients of a function at the current parameter values so that we know how
much to adjust the parameters based on the rule of gradient descent. We'll
discuss how to implement all these (along with the terminologies I
mentioned here) in later chapters.

1.2 INSTALLING ANACONDA

There are different ways of running Python programs and managing
packages on your computer. This book uses Anaconda. Anaconda is an
open-source Python distribution, package, and environment manager. It is
user-friendly and provides for the easy installation of many useful Python
libraries and packages that otherwise can be quite a pain (or downright
impossible) to compile and install yourself. Specifically, Anaconda allows
users to conda install packages in addition to pip installing packages (if you
don't know the difference between the two, don't panic; I'll explain later in
this chapter). As a matter of fact, many packages and libraries used in this
book will be conda installed. Some of them cannot be pip installed.
Therefore, if you don't install Anaconda on your computer, many projects in
this book won't work. I urge you to follow the instructions in this chapter
and install Anaconda so that you can enjoy all projects in this book.

Below, I'll guide you through the process of installing Anaconda on your
computer based on your operating system.

1.2.1 Installing Anaconda in Windows

To install Anaconda in Windows, go to
https://www.anaconda.com/products/individual/. Scroll down to the section
Anaconda Installers. Download the latest version of Python 3 graphical
installer for Windows. Make sure you download the appropriate 32- or 64-
bit package for your machine. Run the installer and follow the instructions
all the way through.

To check if Anaconda is properly installed on your computer, search for the
Anaconda Navigator app on your computer. If you can open the app,
Anaconda is successfully installed on your computer. The Anaconda
Navigator app looks like what you see in Figure 1.1.

https://www.anaconda.com/


Figure 1.1  The Anaconda Navigator app

1.2.2 Installing Anaconda in macOS

To install Anaconda in macOS, go to
https://www.anaconda.com/products/individual/. Scroll down to the section
Anaconda Installers. Download the latest version of Python 3 graphical
installer for Mac. There is a command line installer option as well. I
recommend using the graphical installer instead of the command line
installer, especially for beginners, to avoid mistakes. Run the installer and
follow the instructions all the way through.

To check if Anaconda is properly installed on your computer, search for the
Anaconda Navigator app on your computer. If you can open the app,
Anaconda is successfully installed on your computer. The Anaconda
Navigator app looks like what you see in Figure 1.1.

1.2.3 Installing Anaconda in Linux

The installation of Anaconda in Linux involves more steps than for other
operating systems: there is no graphical installer for Linux. First, go to
https://www.anaconda.com/products/individual/, scroll down, and find the
latest Linux version. Choose the appropriate x86 or Power8 and Power9

https://www.anaconda.com/
https://www.anaconda.com/


package. Click and download the latest installer bash script. For example,
the installer bash script during my installation was
https://repo.anaconda.com/archive/Anaconda3-2022.05-Linux-x86_64.sh.
This link will change over time, but we'll use this version as our example.

Open a terminal on your computer. By default, the installer bash script is
downloaded and saved to the Downloads folder on your computer. You
should then install Anaconda by issuing the following command in the
terminal (use the path for your bash script if it is different):

bash /Downloads/Anaconda3-2022.05-Linux-x86_64.sh

After pressing the ENTER key on your keyboard, you'll be prompted to
review and approve the license agreement. The last question in the
installation process is this:

installation finished. Do you wish the installer to prepend the

Anaconda3 install location to PATH in your /home/mark/.bashrc?

[yes|no] [no] > > >

You should type yes and press ENTER in order to use the conda command
to open Anaconda in a terminal.

Now you need to activate the installation by executing this command:

source /.bashrc

To open Anaconda navigator, enter the following command in the terminal:

anaconda-navigator

You should see the Anaconda navigator on your machine, similar to Figure
1.1.

1.2.4 Difference between Conda-install and Pip-install

Many people think pip install and conda install are the same, but they're not.
Pip is the Python packaging authority's recommended tool for installing
packages from the Python packaging index. Pip can be used to install only
Python software. In contrast, Conda is a cross-platform package and
environment manager that installs not only Python software but also
packages in C or C++ libraries, R packages, or other software. One case in

https://repo.anaconda.com/


point is that the portaudio package is a C package, which cannot be
installed using Pip, but can be installed using Conda. In order to make
Python connect to your computer microphone, you need the portaudio
package. Installing Anaconda is the only way to make speech recognition
work in Python. See my book Make Python Talk for details if you are
interested [14].

1.3 VIRTUAL ENVIRONMENT FOR THIS BOOK

As you build more and more projects in Python, you'll install many
libraries. Some libraries may interfere with other libraries, and different
projects may use different versions of the same library. To avoid problems
of clashing libraries, I recommend you build a virtual environment for each
project. A virtual environment is a way to isolate projects from each other.

1.3.1 Create the Virtual Environment MLA

We'll create a virtual environment to contain all projects in this book. Let's
name the virtual environment MLA, as in Machine Learning, Animated.

How to Open the Anaconda Prompt in Windows

Don't confuse the Anaconda prompt in the Windows operating system
with the command prompt. To open Anaconda prompt in Windows,
search for the Anaconda prompt app and click on the app to open it.

To create a virtual environment, open the Anaconda prompt (in Windows)
or a terminal (in Mac or Linux). Enter the following command:

conda create -n MLA python==3.9.12

After pressing ENTER, follow the instructions onscreen and press y when
the prompt asks you y/n. Once you have created the virtual environment on
your machine, you need to activate it.

1.3.2 Activate the Virtual Environment



To activate the virtual environment MLA, open the Anaconda prompt (in
Windows) or a terminal (in Mac or Linux). Execute the following
command:

conda activate MLA

In Windows, you'll see the following on your Anaconda prompt:

(MLA) C:∖>

You can see the (MLA) prompt, which indicates that the command line is
now in the virtual environment MLA that you've just created.

On a Mac, you should see something similar to the following in the
terminal (the username will be different):

(MLA) Macs-MacBook-Pro:∼ macuser$

In Linux, you should see something similar to this on your terminal (the
username will be different):

(MLA) mark@mark-OptiPlex-9020:∼$

1.3.3 De-activate the Virtual Environment

When the command line is in the virtual environment MLA, there are two
ways you can deactivate it.

The first way is to issue the following command:

conda deactivate

Note that you don't need to put the environment name MLA in the
command. Conda automatically goes to the base environment after
deactivation. In Windows, you'll see the following on your Anaconda
prompt:

(base) C:∖>

You can see the (base) prompt, which indicates that the command line is in
the default Python environment.

On a Mac, you should see something similar to the following in the
terminal:



(base) Macs-MacBook-Pro:∼ macuser$

In Linux, you should see something similar to this in your terminal:

(base) mark@mark-OptiPlex-9020:∼$

The second way is to issue the following command:

conda activate base

The above command activates the base environment, which is the default
Python environment. This effectively deactivates the virtual environment
MLA the command line was in before.



1.4 SET UP JUPYTER NOTEBOOK IN THE VIRTUAL
ENVIRONMENT

Now we need to set up Jupyter Notebook in the newly created virtual
environment on your computer. First, activate the virtual environment MLA
by running the following line of code in the Anaconda prompt (in
Windows) or a terminal (in Mac or Linux):

conda activate MLA

To install Jupyter Notebook in the virtual environment, run the command:

conda install notebook==6.4.8

To launch Jupyter Notebook, execute the following command in the same
terminal with the virtual environment activated:

jupyter notebook

Jupyter Notebook should open in your default browser. If not, open a
browser and put http://localhost:8888 in the address bar, and you should
open the Jupyter Notebook.

The Jupyter Notebook app is shown in Figure 1.2.

Figure 1.2  The Jupyter Notebook app



1.4.1 Write Python in Jupyter Notebook

To get you up and running, I'll show you how to run Python programs in
Jupyter Notebook.

How to Download an. ipynb or. py file from GitHub

To download an individual file from GitHub with. ipynb or. py extension,
first go to the file's url using your browser. Click on the Raw button and
you'll be redirected to a new url that shows the raw code of file. Press
CTRL and S simultaneously on your keyboard and a dialog box pops up.
Select All Files (*.*) from the Save as type drop-down menu and save
the file on your computer.

Download the template file tmp.ipynb from the book's GitHub repository
https://github.com/markhliu/MLA/blob/main/files/tmp.ipynb. Save it in the
folder /mla in your computer's /Desktop folder. Go back to the Jupyter
Notebook in your browser, click on Desktop, then the mla folder, then the
file tmp.ipynb. You should see a cell with the following lines of code in it:

Put your mouse cursor inside the cell and click on the Run button at the top
menu (the icon with a black triangle and the word Run in it). You should
see a message below the cell as the output. The message says, “I love
Python!”

Two Ways to Run the Code in a Cell in Jupyter Notebook

There are two ways you can run the code in a cell in Jupyter Notebook:
press the Run button, or press the ENTER and SHIFT keys
simultaneously.

1.4.2 Issue Commands in Jupyter Notebook

https://github.com/


You can issue certain commands in Jupyter Notebook without going to the
Anaconda prompt (in Windows) or a terminal (in Mac or Linux).

For example, if you want to pip install the matplotlib library in the virtual
environment MLA, you can do it in two different ways. The first way is to
open the Anaconda prompt (in Windows) or a terminal (in Mac or Linux)
and issuing the following two lines of commands:

conda activate MLA

pip install matplotlib==3.5.2

The second way, a shortcut, is to enter the following line of code in a cell:

Run the above cell will install the matplotlib library on your computer. Note
that since you have opened the Jupyter Notebook in the MLA virtual
environment, you have installed the matplotlib library in the MLA virtual
environment, not in the base Python environment.

Make sure you put an exclamation mark (!) in front of the code in the cell.
This tells Python to use the cell as a shortcut to the command line.

Not All Commands Can Be Executed in a Jupyter Notebook Cell

Not all commands can be executed in a Jupyter Notebook cell. For
example, you cannot conda install a package by issuing commands in a
Jupyter Notebook cell. As a matter of fact, you cannot execute any
Conda command in a Jupyter Notebook cell.

1.5 FILE SYSTEM FOR THE BOOK

First, make sure that you have a subfolder /mla in your computer's /Desktop
folder. We'll use the folder /mla to contain all files for this book. We'll use a
subfolder /utils within the /mla folder for all local packages that we use for
this book. We'll use another subfolder /files to contain other files such as
graphs and videos. Within the /files directory, we create a sub-directory for
each chapter such as /ch01, /ch02, and so on.



Python Modules, Packages, and Libraries

Python modules, packages, and libraries differ slightly. A Python module
is a single file with the. py extension. In contrast, a Python package is a
collection of Python modules contained in a single directory. The
directory must have a file named _ _ init_ _.py to distinguish it from a
directory that happens to have. py extension files in it. A Python library
is a collection of Python packages. We'll use the terms modules,
packages, and libraries loosely and sometimes interchangeably.

Next, open a Jupyter notebook in the MLA virtual environment by
following instructions earlier in this chapter. Save it as ch01.ipynb in the
folder /Desktop/mla/. Enter the following lines of code in it and run the cell:

The makedirs() method in the os library creates a directory on your
computer. The exist_ok=True option tells Python not to return an error
message if such a directory already exists. Download the file _ _ init_ _.py
from the book's GitHub repository https://github.com/markhliu/MLA and
save it in the folder /Desktop/mla/utils/ on your computer.

With that, you are all set up. You'll learn how to create pictures and
animations in Python in the next chapter.

1.6 GLOSSARY

• Activate A Virtual Environment:
Go into the subdirectory for a virtual environment so that you can
write programs using packages within the virtual environment.

• Anaconda:
An open-source software distribution, package, and environment
manager.

• Anaconda Navigator:

https://github.com/


An app in Windows, Mac, or Linux that you can install on your
computer to manage virtual environments, packages, and programs
using a user interface.

• Anaconda Prompt:
An app for the Windows operating system that you can install on
your computer to manage virtual environments, packages, and
programs via command lines.

• Conda Install:
Installing packages for Python on your computer. The packages are
provided by Anaconda and can be written in either Python, C, C++,
or R.

• IDE:
An integrated development environment. A comprehensive
application for computer programming software development. It
usually provides a source code editor, a complier, and a debugger.

• Pip Install:
Installing packages on your computer from the Python Package
Index. Only packages written in Python can be installed.

• Virtual Environment:
An isolated environment on your computer to contain all needed
files for a project.

1.7 EXERCISES

1.1 Install Anaconda on your computer. Open the Anaconda Navigator
app on your computer.

1.2 Create a new virtual environment and name it MLA.

1.3 Activate the virtual environment MLA you just created in Exercise 2.
Then deactivate the virtual environment and go to the base
environment using the two methods discussed in this chapter.

1.4 Install Jupyter Notebook in the virtual environment MLA.

1.5 Download the file tmp.ipynb from the book's GitHub repository
https://github.com/markhliu/MLA/blob/main/files/tmp.ipynb. Open

https://github.com/


the Jupyter Notebook app on your computer, and open the file
tmp.ipynb in the Jupyter Notebook app.

1.6 Continue the previous exercise, in a new cell in Jupyter Notebook,
write a line of Python code so that the output is a message “Machine
Learning is fun!”

1.7 Continue the previous exercise, put the command !pip install
matplotlib==3.5.2 in a new cell in Jupyter Notebook, run the code in
the cell and see what happens.

1.8 Continue the previous exercise, put the command !conda install yt in a
new cell in Jupyter Notebook, run the code in the cell and see what
happens. Hint: you should get an error message because you cannot
run any Conda command in a Jupyter Notebook cell.

1.9 Use the makedirs() method from the os library to create a folder
named mla on your computer's desktop. Then create two subfolders
utils and files inside the mla folder. Make sure you put the
exist_ok=True option in the makedirs() method so that Python won't
return an error message if such a directory already exists.
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If a picture is worth a thousand words, what is a video worth?
The Huffington Post
–Scott MacFarland

LEARNING (ML) is redefining the way we live by
integrating into an increasing number of products
and services in the economy: from recommendation

algorithms to language translation, from voice assistants, medical imaging,
to self-driving cars… ML has made great strides in the last couple of
decades, largely due to the invention of convolutional neural networks and
the advancements in computing power (such as GPU training and
distributed computing). However, ML algorithms are like black boxes and
hard to understand. Explaining how ML works can be a challenge. As the
old saying goes: a picture is worth a thousand words. Using graphics to
explain ML is appealing because pictures provide a visual representation of
the complex inner workings of the learning process. With just a glance,
readers grasp the essence of what's going on at the heart of the matter.

Better still, in the spirit of the opening quote of this chapter from The
Huffington Post by Scott MacFarland [15], this book takes the idea one step
further. You'll see a graphic representation in multiple stages of the ML
process, which forms an animation as the training algorithm progresses.

https://doi.org/10.1201/b23383-2


Therefore, you'll not only get to the bottom of what's happening at each
stage of the constructed ML model, but you'll also visualize how the model
parameters and predictions change over the course of training.

To that end, in this chapter, you'll learn how to create graphics and
animations with Python. We'll use the gross domestic product (GDP) data
over time for five countries (US, China, Japan, Germany, and UK) as our
example. The graphics and animations are generated with the powerful
Python matplotlib library. After this chapter, you'll know how to create
different types of graphs such as line plots, bar charts, and pie charts. You'll
also know how to combine multiple graphs into one file and use the Python
imageio library to convert them into an animation. Further, you'll learn to
put multiple figures side by side in each frame of an animation to achieve
more informative visual representations.

New Skills in This Chapter

Creating line plots, bar charts, and pie charts in Python
Putting multiple graphs in a figure as subplots
Creating animations by combining multiple graphs into gif files
Combining two animations into one so frames are shown side by
side

2.1 CREATE PLOTS WITH MATPLOTLIB

An animation is the displaying of a sequence of still images. Therefore, to
create animations, you'll first learn how to create still graphics. We'll use the
matplotlib Python library to generate images. You'll then use the imageio
library to combine still images into animations in the format of gif files.
Let's first install these libraries.

Here I assume you have followed the instructions in Section 1.3 and created
the virtual environment MLA. If not, refer back to Section 1.3 for details on
how to do so. Activate the virtual environment MLA by running the
following line of code in the Anaconda prompt (in Windows) or a terminal
(in Mac or Linux):



conda activate MLA

Install the three libraries by running the following lines of commands in the
same Anaconda prompt or terminal with the virtual environment activated:

pip install matplotlib==3.5.2

pip install pandas==1.4.2

pip install imageio==2.16.2

To launch Jupyter Notebook you installed in the virtual environment MLA
in Section 1.4, execute the following command in the same Anaconda
prompt or terminal with the virtual environment activated:

jupyter notebook

Before you start, open a blank Jupyter notebook and save it as ch02.ipynb in
the directory /Desktop/mla/ on your computer. Next, we'll create a
subdirectory /files/ch02/ to store files for this chapter.

Start a new cell in ch02.ipynb and enter the following lines of code in it and
run the cell:

2.1.1 A Single Line Plot

We'll use the annual gross domestic product (GDP) data from the World
Bank (the Appendix of this chapter provides details on how to download
and clean up the data). Download the file GDPs.csv from the book's GitHub
repository and place it in the folder /Desktop/mla/files/ch02/ on your
computer.

To create a line plot, you can use the plot() method and put the x-axis and y-
axis values as the first two arguments. Use the title() method to put a figure
title on top of the line plot so that people know what the figure is about.
Similarly, you can label the x- and y-axis using the methods xlabel() and
ylabel() so that people know what variables you use as the x- and y-values.



In the cell above, we first load the file GDPs.csv using the read_csv()
method from the pandas library. We then create a figure using the figure()
method in matplotlib.pyplot. The dpi=100 argument makes the output 100
pixels per inch. The figsize=(5,4) argument sets the plot five inches wide
and four inches tall. As a result, this creates a picture with a resolution of
500 by 400 pixels.

If you run the cell above, you'll see a line plot of the U.S. GDP values over
time. The x-axis is the year, from 1970 to 2020. The y-axis is the GDP
value in trillion dollars. The title says, “U.S. GDP Over Time.” You can
also see the line plot under /files/ch02/plot.png in the book's GitHub
repository https://github.com/markhliu/MLA.

Use Nicknames When Importing Modules

In Python, it's common to create a short nickname for a
module/package/library with a long name. In the cell above, we import
the pandas library and give it a nickname pd. That way, every time we
use the library in the program, we only have to write pd instead of the
longer full name pandas. Similarly, we import the pyplot package from
the matplotlib library and give it a nickname plt. This way, we can use
the short alias plt instead of the longer full name matplotlib.pyplot.

2.1.2 Multiple Lines in the Same Plot

You can also plot multiple lines in the same figure. We'll add the GDP of
China to the previous plot. The plot() method has several optional

https://github.com/


arguments: the color argument specifies the color of the line, which can
take values such as blue, red, or green. The linestyle argument can be solid,
dashed, dotted, and so on. The linewidth argument determines how thick the
line is.

Make sure you use the show() method only after you plot all the lines you
intend to include in the figure. If you use the show() method after each
plot() method, you'll get multiple one-line plots instead of one plot with
multiple lines in it.

The legend() method adds a legend to the figure, and the labels for the two
lines are U.S.A. and China, respectively. The grid() method makes the grid
lines visible on the figure, which makes it easier for us to estimate the GDP
values each year based on the height of the line plots.

We first plot U.S. GDP values over time. We use arguments color=‘blue’,
linestyle=‘solid’, and linewidth=2 in the plot() method. As a result, the line
plot for U.S. GDP values is a solid blue line with a thickness of 2. We then
plot Chinese GDP values over time, using arguments color=‘red’,
linestyle=‘dashed’, and linewidth=1 in the plot() method. This leads to a
dashed red line with a thickness of 1.

If you run the cell above, you'll see a plot with two lines in it. There is a
legend box at the top left corner indicating that the thick blue solid line is
for U.S.A. while the thin red dashed line is for China. The plot is also
available under /files/ch02/lines.png in the book's GitHub repository.

2.2 CREATE SUBPLOTS



While it's easy to show animations on electronic devices, it's hard to show
them in a book. We'll refer you to the book's GitHub repository for
animations in the format of gif files.

In this book, you'll learn to create the next best thing to an animation: a
sequence of graphs. Specifically, you'll learn to create a sequence of graphs
of the intermediate steps of the ML process. After that, you'll place them in
a single picture on a grid to illustrate how ML works.

In this section, you'll learn how to create a single image using a group of
subplots. Specifically, you'll generate nine individual plots by using years
1972, 1978, …, 2020, as the ending years. You then place them on a three
by three grid in a single picture.

2.2.1 Create Individual Plots

We'll first generate nine individual plots. In each plot, we'll use year 1970 as
the starting year. The ending years are 1972, 1978, …, and 2020,
respectively.

In the cell below, we'll iterate through the nine ending years. In each
iteration, we'll plot the GDPs of the five countries (U.S., China, Japan,
Germany, and U.K.) over time. The starting year is always 1970. You'll also
save the figure on your computer in each iteration.



Note that we use plt.xlim(1968,2022) and plt.ylim(-1,25) to fix the range of
the x-axis to years 1968–2022 and the values of the y-axis to -1 to 25.
Without these two lines of commands, the ranges of x and y will change in
each picture. We omitted the x-label, y-label, and the picture title so that it's
easy to organize individual plots on a grid. Otherwise, we need to leave
extra space between plots to accommodate labels and titles. Finally, you use
the savefig() method to save plots as pictures on your computer.

Run the above cell. After that, if you go to the folder
/Desktop/mla/files/ch02/ on your computer, you'll see nine pictures named
p1972.png, p1978.png,…, and p2020.png, respectively. Examine them and
make sure they look correct.

Next, we'll organize the nine plots in a single picture so that you can
visualize the change in GDPs of the five countries over time.



2.2.2 Create Subplots

We'll use the PIL library to convert the pictures we just generated into
NumPy arrays. Note that the PIL library is one of the dependencies for the
imageio library. When you install the latter, the former is automatically
installed. Therefore, you don't need to install the PIL library separately.
We'll then use the subplot() method in matplotlib.pyplot to organize the nine
plots we just generated.

We first create a figure using the figure() method in matplotlib.pyplot. We
use the dpi=200 argument to make the output 200 pixels per inch. The
figure size is 9 inches wide and 9 inches tall, and this creates a picture with
a resolution of 1800 by 1800 pixels. The higher resolution is necessary
because we'll place nine plots in one picture. If the resolution is too low,
individual plots look grainy.

We iterate through three rows and three columns. The command
plt.subplot(3,3,1) creates a subplot at the top left corner of the three by three
grid, which forms the whole picture. The command plt.subplot(3,3,2)
creates a subplot at the top middle, and so on. By the same token, the
command plt.subplot(3,3,9) creates a subplot at the bottom right corner of
the figure.

We use the open() method in PIL.Image to open the png files we saved on
our computer. The files are opened as NumPy arrays. We then use the
imshow() method in matplotlib.pyplot to convert the NumPy arrays into
pictures and place them in the appropriate places on the three by three grid.



Run the above cell, and you'll see an output as in Figure 2.1. The figure is
also available under /files/ch02/fig2.1.png in the book's GitHub repository.

Figure 2.1  A figure with nine subplots

Adjusting Space between Subplots

The subplots_adjust() method in matplotlib.pyplot can be used to adjust
the horizontal and vertical space between subplots. Specifically, the
argument hspace adjusts the height space (i.e., the vertical space)
between subplots while the wspace argument adjusts the width space
(i.e., the horizontal space).

2.3 CREATE ANIMATED PLOTS



Next, we'll create an animation of the GDP values of the five countries over
time. We'll first generate 50 graphs. In each graph, the starting year is
always 1970, while the ending year ranges from 1971 to 2020. We'll then
combine the graphs in a single gif file so that the graphs will appear
sequentially. As a result, you'll see the animation effect.

2.3.1 Generate Annual Line Plots

We'll iterate through the ending years from 1971 to 2020. In each iteration,
we'll plot the GDPs of the five countries (U.S., China, Japan, Germany, and
U.K.) over time. You'll also save the figure on your computer in each
iteration. This creates a total of 50 figures.

We set the range of the x-axis from 1968 to 2022 by using the xlim()
method. Similarly, we set the range of the y-axis from -1 to 25 trillion
dollars by using the ylim() method. We iterate the value i through years
1971–2020. In each iteration, we extract the GDP values from 1970 to year
i. Each country is plotted with a different color and line style. The values b,
r, m, k, and g are aliases for the colors blue, red, magenta, black, and green,
respectively. We do not include the line width option in the plot() method so
the line width has a default value of 1.



For each iteration, we dynamically set the figure title to reflect the end year.
Finally, the plot in each iteration is saved as a picture in the jpg format in
the subfolder /Desktop/mla/files/ch02/. If you open the subfolder, you'll see
the 50 pictures.

2.3.2 Animate the Plots

We'll use the PIL library to convert the pictures we just generated into
NumPy arrays. We'll then use the imageio library to combine the sequence
of arrays into an animation in the gif format.

We create an empty list frames to store all pictures. We iterate through all
50 photos we generated in the last subsection and open each using the PIL
library. We convert the pictures to NumPy arrays and add them to the list
frames. Once done, we use the mimsave() method to convert the images to
the gif format. The fps=5 argument generates animation with five frames
per second. You can set the value higher or lower based on how fast you
want the animation to be: a higher value of fps results in a faster animation.

After you run the above cell, the file GDPs.gif is generated and saved in
your local folder. To view the animation, you have two options. You can
click on the file on your computer to view it. Alternatively, you can view it
at the book's GitHub repository in the folder /files/ch02/.

Frames per Second in Animations

The fps argument in the mimsave() method controls how fast the
animation is. A higher value of fps leads to faster movements in the
animation. Most motion pictures we watch have 24 frames per second.



2.4 CREATE ANIMATED BAR CHARTS

Besides line plots, the matplotlib library can generated other graphs such as
scatter plots, bar charts, pie charts, histograms, and so on. Our purpose here
is not to introduce you to all types of figures in the matplotlib library.
Instead, you are here to learn how to create animations so that you can use
the skills to animate the intermediate steps of machine learning algorithms.
You can use the same logic to create animations of other graph types.

Nonetheless, in this chapter we'll discuss two more graph types: bar charts
and pie charts. In this section, you'll learn how to create animated bar
charts. Further, you'll learn how to put different types of charts side by side
and create one single animation with multiple types of graphs in each frame
of the animation.

2.4.1 Create a Horizontal Bar Chart

We'll look at the GDPs of the five countries in year 2009, sort the values,
and then create a horizontal bar chart.

The set_index() method in the pandas library changes the index value of a
DataFrame from numerical values 0, 1, 2, … to the values in a column (in
this case, the “year” column). We then retrieve the GDP values of the five
countries in 2009 and save it as a series yr2009. The values are sorted based
on the GDP values of that year. We select five different colors for the five
countries.



The barh() method creates a horizontal bar chart. The y-axis are the names
of the five countries, and the width of the horizontal bar is the GDP value of
the country.

2.4.2 Generate Annual Bar Charts

You'll iterate through years 1970–2020. In each iteration, you'll generate a
horizontal bar chart of the GDPs of the five countries, with the highest GDP
value on top. You'll also save the chart on your computer in each iteration.
This creates a total of 51 charts.

To get a sense of the data, you can use the head() method in pandas to see
the first five observations of the DataFrame df. Run the following cell:

The dataset contains five columns, representing five countries. The rows are
indexed by years: 1970, 1971, and so on.



We use the loc[i] method to extract year i's values from the dataset df, and
save it as a data series yri. We define y as the index values, which are the
names of the five countries. The width variable is defined as the values in
the series, which are the five GDP values. The plt.barh() method creates a
horizontal bar chart for the year. The charts are saved on your computer.
Finally, we use plt.close(fig) to close each figure after the chart is saved.
Doing so saves the memory space on your computer.

After running the cell, if you go to the folder /files/ch02, you'll see all 51
charts, saved as bar1970.png, bar1971.png, and so on.

The above cell prints out the pandas series yri. As you can see, it has five
values, with country names as its indexes.

2.4.3 Animate the Bar Charts

The process of converting bar charts into animation is similar to what we
have done before for the line plots. We'll use the PIL library to convert the
charts into NumPy arrays. We'll then use the imageio library to combine the
sequence of arrays into an animation in the gif format.

After you run the above cell, the file bar.gif is generated and saved in your
local folder. To view the animation, you can click on the file on your
computer. Alternatively, you can view it under /files/ch02/ in the book's
GitHub repository.



2.5 PUT BAR CHARTS AND PLOTS SIDE BY SIDE

In this section, you'll learn how to put a bar chart and a line plot side by side
and create a single picture. After that, you'll create a combined picture each
year and then an animation over time.

2.5.1 Combine a Bar Chart and a Plot

First, you'll learn how to put a bar chart and a line plot side by side and
combine them into a single picture. We'll use year 2009 as an example. The
bar chart for 2009 is saved as bar2009.png while the line plot for year 2009
is saved as year2009.png. In the cell below, we'll combine them into a
picture called combine.png.

We first use the plt.figure() method to create a figure, which is 11 by 4
inches in size. We set the dpi to 200. We then use the add_subplot() method
to add two subplots to the original figure. The line
ax0=plt.add_subplot(121) tells Python to divide the original figure into one
row and two columns and put the first picture in position 1 (i.e., on the left).
Similarly, the line ax1=plt.add_subplot(122) divides the original figure into



one row and two columns and puts the second picture in position 2 (i.e., on
the right).

How plt.add_subplot() Works

There are three numbers inside the plt.add_subplot() method. The first
one is the number of rows, the second the number of columns, and the
last number the position of the current subplot. For example,
plt.add_subplot(234) means you divide the original figure into two rows
and three columns and put the subplot in position 4 (i.e., middle row
right column). The subplot positions on the grid are numbered from top
to bottom and from left to right.

If you run the above cell, the file combine.png is generated and saved in
your local folder. You can click on the file on your computer to view it.
Alternatively, you can view it under /files/ch02/ in the book's GitHub
repository.

2.5.2 Create an Animation of the Combined Pictures

Next, we'll combine the bar chart and the line plot for every year from 1971
to 2020. We then form an animation based on the combined pictures.

We first create an empty list frames to store all combined pictures. We then
iterate through years 1971–2020. Each year, we open the bar chart and the
line plot and name them frame1 and frame2, respectively. We use the
concatenate() method to combine the two pictures. We then append the
combined picture in the list frames. After that, we create an animation of



the pictures over time using the imageio.mimsave() method and name it
barsplots.gif.
If you run the above cell, the file barsplots.gif is generated and saved in
your local folder. To view the animation, you can click on the file on your
computer. Alternatively, you can view it under /files/ch02/ in the book's
GitHub repository.

Concatenate NumPy Arrays

The axis=1 argument in the concatenate() method in NumPy tells Python
to combine the two arrays side by side instead of on top of each other. If
you change the argument to axis=0, you'll create an animation with the
bar chart on top and the line plot at the bottom.

2.6 ANIMATED PIE CHARTS

In this section, you'll first learn how to create a pie chart. You'll then create
a pie chart each year from 1970 to 2000. After that, you'll create an
animation of pie charts over time. Finally, you'll create an animation with
pie charts and line plots side by side.

2.6.1 Create a Pie Chart

We'll look at the GDPs of the five countries in year 2009, sort the values,
and then create a pie chart.



The pie() method in the matplotlib library creates a pie chart based on a
collection of values. It calculates the percentage of each country's GDP in
the combined sum automatically. The labels are the names of the five
countries, while the explode argument dictates how much each wedge will
be plotted away from the center. Finally, the startangle argument dictates
how many degrees to rotate the pie chart.

2.6.2 Generate Annual Pie Charts

You'll iterate through years 1970–2020. In each iteration, you'll generate a
pie chart of the GDPs of the five countries. You'll also save the chart on
your computer in each iteration. This creates a total of 51 pie charts.



Note, we have set the dpi to 100 and the size to 12 by 8. This way, later
when we put the pie chart and the line plot side by side, their heights are the
same (both are 800 pixels). So we can use the concatenate() method to
combine the two pictures. If the heights of the two pictures are not the
same, we cannot directly concatenate them together.

If you run the above cell, 51 pie charts will be generated and saved in your
local folder. You can click on the files on your computer to view them.

2.6.3 Animate the Combined Pie Charts and Plots

The process for converting bar charts into animation is similar to what we
have done before for the line plots. We'll use the PIL library to convert the
charts into NumPy arrays. We'll then use the imageio library to combine the
sequence of arrays into an animation in the gif format.



After you run the above cell, the file pieplot.gif is generated and saved in
your local folder. To view the animation, you can click on the file on your
computer. Alternatively, you can view it in the book's GitHub repository.

2.7 APPENDIX: DOWNLOAD AND CLEAN UP THE GDP DATA

Below, you'll learn how to download and clean up the GDP values of the
five countries and save it in a CSV file. The raw dataset is downloaded
from the World Bank website
https://data.worldbank.org/indicator/NY.GDP.MKTP.CD. The dataset is
then cleaned up and I only kept data for the five countries (U.S.A., China,
Japan, Germany, and UK) from 1970 to 2020. The cleaned-up data is placed
under /files/ch02/ in the book's GitHub repository
https://github.com/markhliu/MLA. Below is the Python code used to extract
the data.

https://data.worldbank.org/
https://github.com/


This creates the file GDPs.csv that we have used earlier in this chapter.

2.8 GLOSSARY

• Bar Chart:
Also called a bar graph. It is a type of chart representing categorical
data in the form of rectangular bars. In a horizontal (vertical) bar
chart, the lengths (heights) of the bars are proportional to the values
they represent.

• GDP:



Gross domestic product. The total amount of final goods and
services that are produced and sold by a country in a specific period
of time (usually in a year).

• Line Plot:
Also called a line graph. It is a type of chart displaying the relation
between variables in the form of straight line segments.

• Pie Chart:
Also called a circle chart. A circle is divided into slices to represent
the numerical proportion.

2.9 EXERCISES

2.1 Install the matplotlib, pandas, and imagio libraries in the MLA virtual
environment on your computer.

2.2 Create a subfolder /Desktop/mla/file/ch02/ on your computer to store
files for this chapter.

2.3 Add grid lines and a legend box to the single line plot in Section 2.1.1.
Also change the dpi to 128 and the figure size to eight by six inches.

2.4 Add a show() method after the first plot() method in Section 2.1.2. See
what output you get.

2.5 Add a third line to the plot in Section 2.1.2 using the GDP data for
Germany. Make the new line dotted black with a line width of 2.

2.6 Change the range of x-axis to years 1969–2021 and the range of y-
axis to -0.5 to 24.5 in the individual plots in Section 2.2.1.

2.7 Change the height space to -0.3 and width space to -0.22 between
subplots in Section 2.2. Re-run the program and see how the new
figure looks compared to Figure 2.1.

2.8 Change the frame per second to 8 in the animation in Section 2.3.2.
Name the new animation GPDs_fast.gif. Compare the new animation
to the original animation GDPs.gif. Is the new animation faster or
slower?

2.9 How to move the bar chart to the right and the line chart to the left in
the combined graph in Section 2.5.1?



2.10 How to make the pie chart display two digits after decimal in the
percentage numbers in Section 2.6.1?
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[Machine Learning is]… a field of study that gives computers the ability to
learn without being explicitly programmed.

–Arthur Samuel, in 1959

MAY 11, 1997, the IBM supercomputer Chess engine, Deep Blue,
beat the world Chess champion, Gary Kasparov [7]. It was the first
time a machine has triumphed over humans in a Chess tournament.

The news garnered much media attention. However, the artificial
intelligence (AI) algorithm behind Deep Blue, though impressive and
powerful, was the traditional rule-based techniques, not machine learning
(ML) models.

Fast forward 19 years to May 9, 2016, Google DeepMind's AlphaGo beat
the world Go champion Lee Sedol [4]. AI has again stolen the spotlight and
generated a media frenzy. This time, a new type of AI algorithm, namely
machine learning (more specifically, deep reinforcement learning) was the
driving force behind the game strategies. You may wonder: What exactly is
ML? How is it related to AI? Why is it so popular these days?

https://doi.org/10.1201/b23383-3


In this chapter, you'll learn what ML is and how it's different from the
traditional algorithms in AI. We'll discuss three different types of ML,
namely supervised learning, unsupervised learning, and reinforcement
learning. The three types of ML use different types of data, different
methodologies, and have applications on different types of problems.

You'll also have an overview of what will be covered in later chapters and
how they fit into the three different types of ML. Finally, we'll lay out a real
world example as a motivation on what ML can achieve and how you can
apply ML to real-world problem solving.

New Skills in This Chapter

Learning the difference between rule-based AI and machine
learning
Understanding three different types of machine learning
Getting to know the learning process, common algorithms, and
main applications of supervised learning, unsupervised learning,
and reinforcement learning
Understanding deep learning and deep reinforcement learning

Before you start, open the Jupyter Notebook app in the virtual environment
MLA on your computer. After that, open a blank Jupyter notebook and save
it as ch03.ipynb in the directory /Desktop/mla/ on your computer. Next,
we'll create a subdirectory /files/ch03/ to store files in this chapter.

Start a new cell in ch03.ipynb and execute the following lines of code in it:

You should see the new folder /Desktop/mla/files/ch03/ on your computer.

3.1 ML: A NEW PARADIGM FOR AI

The advancements of AI are quicker than most scientists have imagined. AI
has generated much media fanfare and it's redefining the way we live. But



exactly what is AI?

In the section, you'll learn what AI is and how ML has emerged as a new
paradigm in AI.

3.1.1 What is AI?

It's widely believed that the term AI is coined by John McCarthy in 1955.
The word artificial in AI means that it's man-made, instead of naturally
occurring in the world. AI is intelligence generated by human-engineered
machines. It's different from natural intelligence demonstrated by humans
and other animals.

When people hear about AI, the first thing comes to their mind is usually a
robot. In reality, AI is much more than that. Nowadays, AI is integrated into
every aspect of our lives: examples include recommendations systems,
voice assistants, foreign language translators… AI is based on the idea that
human intelligence can be replicated by machines. Shortly after the
computer was invented, scientists have been working on simulating human
intelligence in machines to solve complicated problems.

What is AI?

According to Merriam Webster, AI is “a branch of computer science
dealing with the simulation of intelligent behavior in computers.”

3.1.2 Rule-Based AI

Broadly speaking, there are two ways to make a machine mimic human
intelligence: to program it or to teach it to learn. To program a computer to
mimic human intelligence is to lay out the rules and tell the computer what
to do in each situation. This is rule-based AI.

Rule-based AI is a the traditional AI technique. It is the AI algorithm
behind Deep Blue, for example. To achieve rule-based AI, humans code all
the rules into a machine and tell the machine what to do in each situation
based on the rules. In the case of Deep Blue, the machine calculates



hundreds of billions of Chess board positions in the three minutes allotted
for a player to make a move, and makes a decision based on which next
move has the best chance of winning the game. In other words, in rule-
based AI models, we feed the algorithms the rules and the input variables
and the machine tells us what the output should be.

Rule-based AI achieved great feats in the late 20th century by automating
mundane jobs and increasing productivity. According to Forbes, by 1985,
corporations spent $1 billion a year on AI systems [16]. Deep Blue brought
AI to headline news when it beat then world Chess champion Gary
Gasparov in 1997.

However, rule-based AI has its limitations. In many situations, rules are not
known to humans. In other situations, rules are known to humans, but they
are hard or even impossible to be programmed onto a computer. For
example, humans can tell a dog from a cat at a quick glance. However, if
you ask humans to describe all the features that distinguish a dog from a
cat, most people will fail. Even if they can articulate a list of features to tell
the two apart, it's hard to write a computer program to classify dog and cat
images.

This brings us to the new approach in AI, which we'll discuss below.

3.1.3 What is ML? Why ML Matters?

Machine learning (ML) is a new paradigm in AI. The method is very
different from the traditional rule-based AI. Instead of programming all the
rules onto a computer and telling the computer what to do in each situation,
we feed the computer many different examples and let the computer learn
what the rules are.

Arthur Samuel, a pioneer in AI, first coined the term ML in 1959. ML takes
a diametrically different approach to AI. Instead of coding in a set of rules
and telling the machine what to do, humans give the machine a large
number of examples and ask the machine what the rules are. It's a process
for machines to infer rules from example data.

This new approach to AI is appealing in situations where coding in rules is
either too difficult or downright impossible. In some situations, the rules are



clear and relatively easy to code in a computer program, such as in a Tic
Tac Toe game. Humans can use a MiniMax algorithm (which is rule-based
AI) to find a perfect solution to the game. However, in many other
situations, the rules are too complicated or even impossible to code in a
computer program. For example, in the game of Go, players usually make a
move without explicitly knowing why it's a good move. They only know
intuitively it makes sense. This makes it difficult to use rule-based AI to
program a Go-player.

Rule-Based AI versus ML

In rule-based AI, we hard code the rules into the algorithm and ask the
algorithm to tell us what the decision should be. In contrast, in ML, we
feed the model with example data and ask the model to learn from the
data and tell us what the rules are.

3.1.4 Why is ML so Popular?

If scientists started research in ML since 1950s, why is it becoming so
popular only in the last couple of decades? Several factors contributed to
the recent rise of ML: advancements in computing power, availability of big
data, and breakthroughs in ML research. I'll elaborate below.

Advancements in computing power: As you'll see later in this book, ML
algorithms are computationally costly and time-consuming. For example,
OpenAI's GPT-3 model has 175 billion parameters. A model with so many
parameters was impossible to train a couple of decades ago. The recent
advancements in computing power make the training of many complicated
ML systems possible. In particular, nowadays deep learning models can be
trained using graphics processing units (GPUs) instead of central processing
units (CPUs). Since GPUs devote more transistors to arithmetic units than
CPUs, they have greatly reduced the training time. Further, distributed deep
learning combines the computing power of multiple machines, which has
greatly accelerated the ML research and development.

Availability of data: An article in The Economist in 2017 says that “the
worlds' most valuable resource is no longer oil, but data” [13]. ML models



require a large amount of quality data to train the parameters. In the last
couple of decades, the rise of big data has generated a need for ML models
to analyze them. At the same time, the availability of big data makes the
training of ever more advanced ML models possible.

Breakthroughs in ML research: ML research has seen many
breakthroughs in the last few decades. In particular, the invention of
Convolutional Neural Networks (CNNs) has greatly improved the power of
deep neural networks (DNNs). CNNs have put deep learning at the cutting
edge of artificial intelligence. Because of CNNs, deep learning is now the
most promising field in machine learning. CNNs use a different type of
layers than the regular fully-connected layers of neurons. A convolutional
layer treats an image as a two-dimensional object and finds patterns on the
image. It then associates these patterns with the image labels. This greatly
improves the predictive power of the model. Deep learning is also applied
to other types of ML models such as reinforcement learning, which further
accelerated the power of ML. Deep reinforcement learning (which is a
combination of deep neural networks and reinforcement learning) was the
brain behind DeepMind's algorithm that beat the world Go champion Lee
Sedol in 2016.

3.2 DIFFERENT TYPES OF ML

There are different types of algorithms used in the field of ML to solve
complicated problems. Broadly speaking, ML can be classified into three
different types: supervised learning, unsupervised learning, and
reinforcement learning. Below, we'll discuss their main characteristics, how
the learning process works, different algorithms in each type, and their main
applications.

3.2.1 Supervised Learning

Supervised learning uses labeled data to train ML models. Labeled data
mean that the output is already known to you. For example, we may have
thousands of pictures of dogs and cats. Labeled data tell us whether each
picture is a dog or a cat. A supervised learning model learns from labeled
data and extracts patterns in the input data. Based on these patterns, the



trained model then maps inputs (dog or cat images) to outputs (i.e., labels:
whether the picture is a dog or a cat). After learning from thousands of
picture-label pairs, the trained model then takes an input, and makes a
prediction on what the output should be.

In this book, you'll use supervised learning to classify images into a horse
or a deer in a binary classification problem. You'll then extend the technique
to a multiple classification problem in which you classify images into one
of the ten groups (planes, trucks, frogs, and so on).

The name supervised training reflects the fact that the training process
needs human supervision: human curated data (input-output pairs) need to
be prepared before the training process.

Classification and Regression Problems in Supervised Learning

Depending on whether the label is a continuous variable or a categorical
variable, supervised learning can be grouped into regression problems or
classification problems. When the label is a continuous variable, such as
the housing price or the temperature, it's a regression problem. On the
other hand, when the label is a categorical value such as Yes or No in
loan application approval decisions, it is a classification problem.

Below, we summarize the learning process, the common algorithms used,
and the applications of supervised learning.

Learning Process: The learning process for supervised learning is as
follows. The starting point is the human-curated data. The data contain
many pairs of input variables and output variables. We then choose a
supervised ML model to learn from the input-output pairs. After the
training, we feed the model with inputs and the model tells us what the
output should be.

Common Algorithms: There are different algorithms people can use in
supervised learning. Some examples include:

Linear regressions
Logistic regressions
Random forests



Gradient boosting machines
Neural networks

In this book, we'll focus mainly on neural networks as our supervised
learning model. But you'll also see some examples of linear regressions and
logistic regressions.

Applications: Supervised learning is used when the human-curated data is
relatively easy to obtain. It's widely used in computer vision, image
classifications, natural language processing, and genomics.

3.2.2 Unsupervised Learning

Unsupervised learning doesn't use labeled data. Instead, it uses unlabeled
data that have no output variable for each observation. An unsupervised
learning model uses the input data to identify patterns and features for the
purpose of generating the output variable.

The unsupervised learning doesn't need external supervision in the sense
that the model doesn't need human curated and labeled data to train the
model. While in supervised learning, the data we use to train the model are
input-output pairs, in reality, we don't know the labels of the data in many
situations. For example, you may have thousands of news articles and you
want to sort them into different categories such as sports news, weather
news, entertainment news, and so on. Further, we can use unsupervised
learning to generate labels for the input data so that the new dataset can be
used in supervised learning.

Because there are no pre-assigned target variables for the input data,
unsupervised learning models must find naturally-occurring similarities,
differences, and other patterns from the input data. Examples of
unsupervised learning methods include clustering, principal component
analysis, and data visualization (plotting, graphing, and so on). The
unsupervised learning has attracted far less attention than the other two
types of ML. In this book, we don't cover unsupervised learning in detail.

Below, I summarize the learning process, the common algorithms used, and
the applications of unsupervised learning.



Learning Process: The learning process for unsupervised learning is as
follows. The starting point is the unstructured, unlabeled data. The data
contain many observations of input variables, but each observation has no
target variable. We then choose an unsupervised model to learn from the
naturally occurring patterns in the input data and generate a label for each
observation.

Common Algorithms: Some common algorithms used in unsupervised
learning include:

K-means clustering
Hierarchical clustering
Principal component analysis

In this book, we'll not cover any specific unsupervised learning algorithm.

Applications: Unsupervised learning is used when the input variables are
easy to obtain but it's hard to generate labels for each observation. It's
commonly used in data visualization, dimension reduction, and
recommendation systems.

3.2.3 Reinforcement Learning

Reinforcement learning (RL) deals with how intelligent agents should take
optimal actions in an environment to maximize cumulative rewards. RL
differs from supervised learning in the sense that no labeled input/output
pairs are needed for the purpose of training. The training approach is by
using trial and error. The agent explores different actions and gets either
rewards or penalties for the action taken.

In both supervised and unsupervised learning, we need plenty of data to
feed into the model. However, in many situations, the data is hard to come
by. All we can observe is the outcome of the actions. In such cases, we need
to rely on reinforcement leaning.

In reinforcement learning, an agent operates in an environment through trial
and error. The agent learns to achieve the optimal outcome by receiving
feedback from the environment in the form of rewards. In Parts V and VI of
the book, we'll discuss various types of reinforcement learning methods.



Below, I summarize the learning process, the common algorithms used, and
the applications of reinforcement learning.

Learning Process: In RL, we need an environment to train the agent. The
agent can choose different actions in each step. The outcome can be
observed in the form of a reward or a penalty, and the agent learns from the
outcome to maximize the expected cumulative payoff from a sequence of
actions.

Common Algorithms: Some common algorithms used in RL include

Q-learning
Policy gradients
Deep Q-learning

In this book, we'll cover all the above three algorithms.

Applications: RL is widely used in the gaming industry to train intelligent
game strategies. It's also used to train robots and to develop self driving
cars.

3.3 DEEP REINFORCEMENT LEARNING

Deep Learning and Deep Reinforcement Learning are the coolest buzz
words these days in the AI world. Exactly what are deep learning and deep
reinforcement learning?

In this section, I'll briefly discuss what they are and where you'll learn them
in this book.

3.3.1 Deep Learning

Deep learning is a special case of the neural networks algorithm we just
mentioned above when we discuss supervised learning. As you'll see later
in this book, a neural network has an input layer, an output layer, and any
number of hidden layers. When the number of hidden layers in the neural
network is small, say, with just 1 or 2 hidden layers, it's called a shallow
neural network. On the other hand, if the number of hidden layers is large,



say, 5 or 10, we call it a deep neural network. Deep learning is ML with
deep neural networks.

3.3.2 Combine Deep Learning and Reinforcement Learning

We discussed that there are different algorithms in RL, such as Q-learning
and policy gradients. When we combine deep neural networks with
reinforcement learning, we have deep reinforcement learning.

In particular, one type of deep reinforcement learning is deep Q-learning. In
many machine learning problems, the number of states is discrete and finite,
but huge. Examples include the Chess or Go game, in which the number of
possible scenarios is astronomical. It's impractical to create a Q-table for
these types of games for two reasons: First, the computer will not have
enough memory to save and update a Q-table with so many different states;
Second, it will be too computationally costly to explore all possible states to
calculate and update the correct Q values. Instead, we'll combine Q-learning
and deep learning and use a deep neural network to approximate the Q
values. That's the idea behind deep Q-learning.

3.4 APPLY ML IN THE REAL WORLD

In recent years, many companies have greatly improved their products and
services using machine learning. These companies become market winners.
We'll show in this book that you can apply ML in real-world problem-
solving as well. Further, it's actually easy and fun to apply ML in the real
world.

3.4.1 The Delivery Route Problem

You can apply machine learning to your daily life.

Here we use a real-world example to illustrate the point. Imagine you live
in a small town and deliver packages for Amazon for a living. Residents in
your town live on a 10 by 10 grid as shown in Figure 3.1. Each residence is
marked by coordinates (x, y). The Amazon Hub is located in H=(x=6, y=6).
The green area in the town is a park so there are no households inside. The



town has a total of 90 households: There are a total of 10×10=100
coordinates, but nine coordinates fall inside the park ((x=3, y=3), (x=3,
y=4), (x=3, y=5), (x=4, y=3), (x=4, y=4), (x=4, y=5), (x=5, y=3), (x=5,
y=4), (x=5, y=5)), and the Amazon Hub occupies one. Therefore, we have a
total of 100-9-1=90 households. Each day, you'll deliver 8 packages to 8
different households. The 8 households are different each day. You want to
use machine learning to find out the shortest route for you each day, no
matter what the 8 households are. At the end of the book, you'll be able to
use machine learning to solve the problem. Along the way, you'll learn how
MLs work.



Figure 3.1  The map for the delivery route problem

3.4.2 Try the Problem before You Know the Answer

Later in Chapter 16, we'll provide an answer to the problem using RL. The
solution will give you the shortest route no matter what the eight
households are. You'll get the answer in one minute or so from an ML
model on your computer.



To appreciate the power of ML, I'll let you try it before you know the
answer. Suppose the 8 households you have to deliver to are: (x=1, y=2),
(x=5, y=0), (x=3, y=2), (x=9, y=9), (x=7, y=2), (x=0, y=7), (x=1, y=5),
(x=1, y=3). Remember, you'll start at the Amazon Hub (x=6, y=6) and
finish at the Amazon hub as well.

Spend a few minutes and map out the shortest route. Also calculate how
many blocks you have to travel in total. Write your answer in a file called
MyAnswer.txt and save it in the folder /Desktop/mla/files/ch03/ for
comparison with the answer in Chapter 16.

3.5 GLOSSARY

• Artificial Intelligence (AI):
A branch of computer science dealing with the simulation of
intelligent behavior in computers. It is different from natural
intelligence from humans and other animals.

• Machine Learning (ML):
A branch of artificial intelligence (AI) in which humans give
computers the ability to learn without being explicitly programmed.

• Reinforcement Learning (RL):
A type of ML in which agents interact with an environment to
explore different actions. Agents learn to choose actions to
maximize the cumulative rewards through trial and error.

• Rule-Based AI:
A branch of artificial intelligence (AI) in which humans give
computers the rules and ask the computers what to do in certain
situations.

• Supervised Learning:
A type of ML in which the model uses labeled data to learn the
relation between the input variables and the output variables.

• Unsupervised Learning:
A type of ML in which the model uses unlabeled data to learn the
similarities, differences, and other patterns among the input
variables to generate the output variables.



3.6 EXERCISES

3.1 What is artificial intelligence (AI)?

3.2 What is rule-based AI?

3.3 What is machine learning (ML)? How is it different from rule-based
AI?

3.4 What are the three types of ML?

3.5 What is supervised learning? What are the learning process, common
algorithms, and applications of supervised learning?

3.6 What is the difference between classification problems and regression
problems? Find an example for each type of problems.

3.7 What is unsupervised learning? What are the learning process,
common algorithms, and applications of unsupervised learning?

3.8 What is reinforcement learning? What are the learning process,
common algorithms, and applications of reinforcement learning?

3.9 What are deep learning and deep reinforcement learning?

3.10 Create an answer for the delivery route problem in this chapter. Save
your answers (the shortest route and the number of blocks to be
traveled) in a file MyAnswer.txt in /Desktop/mla/files/ch03/.
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Gradient Descent – Where
Magic Happens
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In view of all that we have said in the foregoing sections, the many
obstacles we appear to have surmounted, what casts the pall over our

victory celebration? It is the curse of dimensionality, a malediction that has
plagued the scientist from the earliest days.

Adaptive Control Processes: A Guided Tour
–Richard Bellman, 1961

BOOK SUMMARIZES supervised learning in three words:
initialize, adjust, and repeat.

The idea behind supervised learning is surprisingly simple. In essence,
supervised learning consists of three steps:

Step 1 (Initialize): Random values are assigned to the model
parameters;
Step 2 (Adjust): The model makes predictions based on the current
parameters; the model then compares the predictions with the actual
values (i.e., labels); the model adjusts parameters accordingly: if the
prediction is too large (small), the model adjusts the parameters so that
the prediction will be smaller (larger) in the next iteration;

https://doi.org/10.1201/b23383-4


Step 3 (Repeat): The model repeats Step 2 thousands or millions of
times until the parameters converge.

Such a simple idea leads to amazing results, including beating the world
Champion in the Go game, recognizing images, voice assistants, self-
driving cars…

Step 2 or the word “adjust” is where the magic of ML happens. It's achieved
through gradient descent or some variant of it. This chapter uses animations
to show step by step how the parameter values change based on gradient
descent so that a certain goal is achieved. Specifically, ML is the process of
finding a way to make predictions with the lowest forecasting error. In
mathematical terms, machine learning is trying to find parameter values that
minimize the loss function.

This chapter will show you how gradient descent helps us find the right
parameter values quickly and efficiently. You'll learn exactly how ML
algorithms make gradual changes to the parameter values: the change is
proportional to the negative value of the first derivative of the loss function
with respect to the parameters. You'll also know what the learning rate is
and how it affects the training process.

New Skills in This Chapter

Optimization through grid search
Finding the optimal value through the gradient descent algorithm
Choosing the right learning rate in gradient descent
Using the GradientTape API in TensorFlow to calculate gradients

Before you start, open the Jupyter Notebook app in the virtual environment
MLA on your computer. After that, open a blank Jupyter notebook and save
it as ch04.ipynb in the directory /Desktop/mla/ on your computer. Next,
we'll create a subdirectory /files/ch04/ to store files in this chapter.

Start a new cell in ch04.ipynb and execute the following lines of code in it:



4.1 OPTIMIZATION THROUGH GRID SEARCH

This section discusses how to find the best parameter values though grid
search, a brute force method.

4.1.1 How Grid Search Achieves Optimization

Suppose you want to find the value of x to minimize the value of 
y = (x − 10)2. A brute force approach is to look at many different values
of x and see which one leads to the lowest value of y. The method is called
grid search. The idea is to look at different values in each parameter, and
see which combination of parameters leads to the best result.

The Loss Function in ML

The loss function in ML is the objective function in the mathematical
optimization process. Intuitively, the loss function measures the
forecasting error of the ML model. By minimizing the loss function, the
ML model finds parameter values that lead to the best predictions. In the
example above, we can think of y = (x − 10)2 as the loss function, and
the objective is to find a value of x that leads to the best prediction for
the true value 10.

In our example, we have only one parameter, x. So we look at 2000
different values of x between 0 and 20 and see which value leads to the
lowest value of y = (x − 10)2.

This can be easily done in Python as follows:



We use the linspace() method in NumPy to create 2000 different values of x
between 0 and 20. For each value of x, we calculate the value of 
y = (x − 10)2. The min() method returns the lowest value of y and we call
the value min_y. The argmin() method returns the index value of the lowest
y. The output from the above cell tells us that the 1000th y has the lowest
value. We can also find out the optimal x by using the index. The results
show that when x = 10.005, the minimum value of y is achieved, at 
y = 0.000025, which is very close to the true minimum value of y = 0.

Next, you'll create a graph showing the relation between the value of x and
the function y = (x − 10)2. The graph will also show the lowest value of y
and the optimal value of x found through the grid search algorithm above.



We create a figure that is 8 inches wide and 6 inches tall with dpi=100. We
use the grid() method to include gridlines in the picture. We then plot the
values of y against the values of x. To put mathematical equations in the
label, you can use the dollar sign ($) around the equation. We use the
scatter() method to create a large red dot as the solution to the grid search;
as a result, a red dot is shown at (x=10.005, y=0.000025). The label for the
y-axis is value of y = (x − 10)2, with an equation in it. Again, simply put
dollar signs around the equation for it to appear in the graph anywhere
(title, x-label, y-label, or the legend).

We use the annotate() function to create a text box inside the figure. The
first argument is the message you want to display in the text box. The xy
argument in annotate() tells the arrow where to point to. The xytext=()
argument in annotate() defines the position of the text box in the figure. The
textcoords=‘axes fraction’ argument says that the coordinates in the xytext=
(0.2, 0.5) argument uses axes fraction system, which means that (0, 0) is



lower left of the axes and (1, 1) is upper right of the axes. We also specify
that the arrow should be green with a line width of 1, and the font size
inside the text box should be 15. You can change the parameters in the
annotate() function to see how they change the figure.

Two Ways of Importing A Sub-Package

When you import a subpackage from a package, you can use one of the
two ways:

from package import subpackage
import package.subpackage

For example, when you import the pyplot subpackage from matplotlib
and give it a short name plt, you can use one of the two ways:

from matplotlib import pyplot as plt
import matplotlib.pyplot as plt

After that, you can call the subpakcage pyplot in the program using the
short name plt.

Run the above cell, and you'll see an output as in Figure 4.1. The figure is
also available under /files/ch04/fig4.1.png in the book's GitHub repository.



Figure 4.1  Finding minimum y = (x − 10)2 through grid search

4.1.2 Curse of Dimensionality and Directional Grid Search

Grid search works only if the number of parameters is small. In the above
example, we only need to find out the value of one parameter, x. Many
machine learning models, such as neural networks, have thousands or even
millions of parameters (OpenAI's third generation generative pre-trained
transformer, GPT-3, has about 175 billion parameters). It's infeasible to
conduct a grid search with so many parameters.

Curse of Dimensionality

The term curse of dimensionality was coined by mathematician Richard
Bellman when considering problems in dynamic programming. See the
opening quote of this chapter by Richard Bellman in his 1961 book
“Adaptive Control Processes: A Guided Tour” [2]. The curse of



dimensionality refers to various problems and complications when
dealing with high-dimensional space. In our setting of grid search, it
means when the number of parameters increases, the number of searches
we have to perform in order to find the optimal parameters grows
exponentially.

It is difficult to optimize a function of many variables by searching on a
discrete multidimensional grid. The number of possible combinations
increases exponentially with dimensionality. To illustrate the point, suppose
you want to find the values of 10 parameters, x1, x2,…x10, to minimize the
value of y = (x1 − 1)2 + (x2 − 2)2+. . . +(x10 − 10)2. If we search 2000
values for each parameter as we did in the above example, the total number
of possibilities is 200010, an astronomical number. This is the so-called
curse of dimensionality problem with grid search.

One solution to speed up grid search is to use the gradients to guide us as to
which direction to go.

Why Move in the Opposite Direction of the Gradient?

By definition, the first derivative of a function f(x) with respect to x is

It tells us when the value of x changes by a small amount, how much will
the value of f(x) change. In particular, f ′(x) > 0 means that when x
increases, the value of f(x) increases. In contrast, if f ′(x) < 0, this
means when x increases, the value of f(x) decreases.

Therefore, in order to minimize the value of y, we should move in the
opposite direction of the first derivative dy

dx
. Why? If dy

dx
> 0, this tells

us that when we increase x, the value of y will also increase. But since
we want to minimize the value of y, by reducing the value of x (i.e., the
opposite direction of dy

dx
> 0), we'll reduce the value of y to achieve our

f ′(x) =lim
h→0

f(x + h) − f(x)

(x + h) − x



goal. Similarly, if dy
dx

< 0, this tells us that when we increase x, the value
of y will decrease. Hence we should move in the opposite direction of 
dy

dx
< 0, that is, by increasing the value of x to minimize y.

Next, we'll implement the idea of directional grid search. Suppose when the
incremental change of y is less than 0.0001, we consider the value to be
converged and the minimum is found. If the value of y doesn't converge
after 2000 iterations, we consider the directional grid search a failure.

A critical hyper-parameter to choose is how much to change the value of x
in each iteration. If we make too small a change to x, it takes too long to
converge and it's computationally costly. On the other hand, if we make too
large a change to x in each iteration, the value of y will oscillate back and
forth around the value of the true minimum. As a result, it may take too
long for the values of x and y to converge or they never converge.

We need to consider a moderate value of incremental change. Specifically,
we increase the value of x by 0.01 in each iteration.





The results show that after 877 steps, the value of y converges. The
minimum value of y, 2.025e-5, is even smaller than the one we find using
grid search, 2.5e-5.

In the cell below, we draw a picture of the searching process. We plot the
value of the function y = (x − 10)2 against the value of x. We also show
the result of the optimization process. We use the green arrows to show the
process of the search (how the values of x and y change in each step).



Note here we are using the subplots() method to create a figure with a
subplot ax. Since there is only one subplot in the figure, this is equivalent to
creating a figure without subplots. You can look at Section 4.1.1 and find
out how to create the same figure without using the subplots() method. I'll
leave that as an exercise.

4.2 GRADIENT DESCENT

The directional grid search approach cuts the searching iterations by more
than half, from 2000 to 877. However, when the number of parameters is
large, even directional grid search is prohibitively costly in computational
power. Therefore, we'll use the gradient descent algorithm to further reduce
the computational needs. The idea is that in each iteration, we'll adjust the
value of x so that:

We change the value of x in the opposite direction of the gradient that
is, when the gradient is positive, decrease the value of x; when the
gradient is negative, increase the value of x;
We adjust the value of x proportional to the magnitude (i.e., the
absolute value) of the gradient.

When the magnitude of the gradient dy
dx

 is large, the point (x, y) is far away
from the minimum point. Making a large adjustment will not overshoot.
The large adjustment will speed up the optimization process. When the
magnitude of the gradient dy

dx
 is small, the point (x, y) is close to the

minimum point. Making a large change may lead to over-adjustment. The
small adjustment will make sure that the value of x doesn't overshoot to the
other side of the minimum point.

In the cell below, we find the lowest value of y by using the gradient
descent approach.

In particular, we calculate the gradient at each step, and change the value of
x based on the gradient descent rule: change in the opposite direction, also
make sure that the change is proportional to the magnitude of the first
derivative of the loss function with respect to the parameter. In our example
here, the gradient is easy to calculate:



Therefore, it's easy for us to determine how much we should adjust x in
each step.

dy

dx
=

d(x − 10)2

dx
= 2(x − 10)



The results show that in just 30 steps, the value of y converges. The green
arrows in the graph below illustrate the path of (x, y) in each iteration
throughout the learning process.

At the end of the above cell, we start a for loop to iterate through every step
in the learning process. In each step, we draw a green arrow. The end of the
green arrow is (x,y) before adjustment, and the head of arrow points to (x,y)
after adjustment. We set the text box to empty at each iteration so only the
arrows are shown, without any actual text in the figure.



Run the above cell, and you'll see a figure in the output cell. The figure is
also available under /files/ch04/gd.png in the book's GitHub repository.

4.3 USE TENSORFLOW TO CALCULATE GRADIENTS

While it's easy to calculate the gradient in the above example when 
y = (x − 10)2, it's extremely complicated to calculate gradients in most
machine learning models such as deep neural networks. Luckily, you can
use the TensorFlow library for that purpose.

In this section, you'll first install the TensorFlow library. You'll then learn
how to calculate gradients using the library. Finally, you'll solve the
optimization problem of finding the lowest y value when y = (x − 10)2.
You'll use this skill quite often later in this book because you are required to
calculate gradients in many machine learning models (deep neural
networks, deep Q-learning, policy gradients, and so on).

4.3.1 Install TensorFlow

To install the TensorFlow library, run the following line of command in the
Anaconda prompt (Windows) or a terminal (Mac or Linux), with your
virtual environment MLA activated:

pip install - -user tensorflow==2.12.0

Or as a shortcut, you can pip install Python libraries in a cell in your Jupyter
notebook ch04.ipynb directly. Remember to put the exclamation mark (!) in
front of the command, as follows:

!pip install - -user tensorflow==2.12.0

Make sure you restart the Jupyter Notebook app on your computer after
installation for the library to take effect.

4.3.2 Calculate Gradients Using TensorFlow

The gradient() method can be used to calculate the gradient of a function at
any point. The cell below calculates the gradient of y = (x − 10)2 when 



x = 2.

As a custom, we usually import the TensorFlow library and give it a short
name tf. We import the Markdown() method from Ipython.display in order
to display mathematical equations in the output cell of the Jupyter
Notebook app. If you run the above cell, the result shows that the gradient
of the function y = (x − 10)2 at x = 2 is -16, which is the correct answer
since

TensorFlow Gradient Tapes

The TensorFlow library provides the GradientTape API for calculating
the gradient of a function at any point. Specifically, the GradientTape
API keeps a record of relevant operations executed inside the context of
the API as a tape. The API then uses the tape to compute the gradients
using reverse mode differentiation. See the documentation here
https://www.tensorflow.org/guide/autodiff for details.

Next, you can calculate the gradient of the function y = (x − 10)2 at
various point x = 2, x = 4, … x = 18.

dy

dx
= 2(x − 10) = 2(2 − 10) = −16.

https://www.tensorflow.org/


4.3.3 Gradient Descent Optimization with TensorFlow

We'll revisit the problem of finding the minimum value for y = (x − 10)2.
This time, we'll use the TensorFlow library to calculate gradients.

Since we'll do this several times with different learning rates, creating a
function is more efficient and reduces the amount of coding.



Here we have defined a function GD() that takes an argument lr, which is
the learning rate. The function uses the TensorFlow library to calculate
gradients at the current value of x. At each iteration, it adjusts the value of x
by −lr × gradient.

To find the lowest value of y using gradient descent with a learning rate of
0.1, we simply call the function GD() using a learning rate of 0.1 as its
argument, like so.



We find exactly the same results as before. Here the only difference is that
we have used a different way of calculating gradients: in Section 4.2, we
calculate the gradient using the closed-form solution dy

dx
= 2(x − 10); here

we use the TensorFlow library to calculate the gradient.

4.3.4 Animate the Optimization Process

Next, we'll create an animation of the intermediate steps of the gradient
descent optimization algorithm we just used in Section 4.3.3.

First, we define a draw() function to create a sequence of pictures. The
draw() function takes four arguments: prefix is used to put a prefix in each
picture; lr is the learning rate; xs and ys are the intermediate x- and y-values
in each iteration during the gradient descent optimization process.



Note here we use only the first 30 interactions to create 30 pictures. If we
create instead all 2000 pictures when there are 2000 iterations, it takes



several hours to generate the data. Further, having so many pictures saved
on your computer will take up too much space on your hard drive.

We use a text box to show what the learning rate is. Another text box shows
which step the learning process is in and the x- and y-values in that step. At
the end, we create a green arrow for each step to go from the before-
adjustment (x, y) to after-adjustment (x, y).

Run the above cell and nothing will happen because we just define the
draw() function here. Next, we call the draw() function, and put the prefix
as “lr_medium”. As a result, all the pictures saved will have a prefix of
“lr_medium”. The learning rate is 0.1, and the x- and y-values are xs and
ys.

Run the above cell, and you'll see 30 pictures in the folder
/Desktop/mla/ch04/files/: lr_medium0.png, lr_medium1.png, …, and
lr_medium29.png. Next, we'll combine the png files into an animation.

Here we define a gif() function to combine pictures into an animation. The
prefix argument specifies the prefix used in each of the 30 pictures we use
to create the animation. We use the PIL library to open the 30 pictures and
convert them into NumPy arrays. The 30 arrays are put in a list frames.
Finally, we use the mimsave() method in imageio to convert the list of
NumPy arrays into an animation, with five frames per second.

Run the above cell so the gif() function is defined. Next, call the gif()
function and put lr_medium as the argument, like so:



Run the above cell, and you'll see an output lr_medium.gif in the folder
/Desktop/mla/ch04/files/. You can click on the file to see the animation.
Alternatively, you can see the animation under /files/ch04/ in the book's
GitHub repository.

4.4 CHOOSE THE RIGHT LEARNING RATE

In the above example, we choose a learning rate of 0.1. That is, in each
step, we reduce the parameter by the product of 0.1 and the first derivative
of the function at that point. However, how do we know to choose a
learning rate of 0.1? In general, it comes from experience or trial and error.

Below, I'll show you what happens if the learning rate is too large or too
small.

4.4.1 When the Learning Rate is Too Large

If the learning rate is too large, we make large changes to the parameter
values in each iteration. This leads to wild swings in the parameter values.
As a result, the parameter values may not converge. The code in the cell
below shows what happens if we choose a learning rate of 0.95.

Here we simply call the GD() function and put a learning rate of 0.95 as the
argument. Results show that it takes 58 steps to find the minimum, about
twice as many steps as when you choose a learning rate of 0.1.

Next, we call the draw() function to generate pictures based on a learning
rate of 0.95.

If you run the above cell, you'll see 30 pictures in the folder
/Desktop/mla/ch04/files/: lr_large0.png, lr_large1.png, …, and



lr_large29.png. Next, we'll combine the png files into an animation by
calling the gif() function, like so:

If you run the above cell, you'll see an animation lr_large.gif in the folder
/Desktop/mla/ch04/files/. You can click on the file to see the animation. The
animation shows that the value of x swings back and forth wildly, especially
in the early stages of the learning process.

4.4.2 When the Learning Rate is Too Small

In contrast, if the learning rate is too small, we make very small changes to
the parameters in each iteration. As a result, it may take a long time for the
parameter values to converge. If we require the training process to stop after
a fixed number of iterations, the parameters may not converge at all. The
code in the cell below shows what happens if we choose a learning rate of
0.001.

The above output shows that at a learning rate of 0.001, the algorithm fails
to find the minimum within 2000 iterations. This is because the change the
algorithm makes at each step is too small and it takes more than 2000 steps
to converge.

For comparison purpose, we create 30 pictures of the learning process at the
beginning by calling the draw() function below:

If you run the above cell, you'll see 30 pictures in the folder
/Desktop/mla/ch04/files/: lr_small0.png, lr_small1.png, …, and
lr_small29.png. Next, we'll combine the png files into an animation by
calling the gif() function, like so:



If you run the above cell, you'll see an animation lr_small.gif in the folder
/Desktop/mla/ch04/files/. You can click on the file to see the animation. The
animation shows that the value of x changes very slowly.

4.5 COMPARE LEARNING RATES

For comparison purpose, you'll combine the three animations into one. In
each frame, you put the three scenarios side by side: on the left is when the
learning rate is too large; in the middle, the learning rate is optimal; on the
right, the learning rate is too small.

Since you cannot see animations in the book, you'll also create a figure with
multiple subplots to show various stages of the gradient descent algorithm
with different learning rates.

4.5.1 Combine Animations

To combine three animations into one, we use the concatenate() method in
NumPy. The argument axis=1 in the method places the three frames side by
side horizontally.

First, we open the 30 pictures when the learning rate is small. We then store
the pictures as NumPy arrays in a list called smalls, like so:

Next, we open the 30 pictures when the learning rate is medium. We store
the pictures as NumPy arrays in a list called mediums. Similarly, the 30
pictures when the learning rate is large are stored in a list called larges, like
so:



In each of the 30 stages of training, we use the concatenate() method in
NumPy to combine the three frames side by side horizontally. The
combined frames are stored in a list frames. The following cell
accomplishes that:

Finally, we use the minsave() method in imageio to convert the 30 frames
into an animation in gif format, like so:

If you run the above cell, you'll see an animation lrs.gif in the folder
/Desktop/mla/ch04/files/ on your computer. The animation shows the three
scenarios side by side: the case with a large learning rate is on the left, and
the case with a small learning rate is on the right. In the middle is the case
when the learning rate is moderate.

4.5.2 Subplots of Different Stages

Even though we cannot show animations in the book, we can create a figure
with multiple subplots to show various stages of the gradient descent
algorithm with different learning rates.



For that purpose, we illustrate vertically four stages of the learning process:
stages 1, 10, 20, and 30. In each stage, we'll show three different learning
rates horizontally. We can use the list frames we just created in the last
subsection as follows:

The list stacked now has 12 pictures in it, with three different learning rates
and four different stages.

Next, we'll use matplotlib.pyplot to create a figure with the 12 pictures as
subplots, like so:



Figure 4.2  How learning rates affect the gradient descent algorithm

At the end of the above cell, we start a for loop to iterate through the first
30 steps in the learning process. In each step, we draw a green arrow. The
end of the green arrow is (x, y) before adjustment, and the head of arrow
points to (x, y) after adjustment. Note we set the text message to an empty
string in the text boxes so only the arrows are shown, without any actual
text in the text boxes.

Run the above cell, and you'll see an output as in Figure 4.2. The figure is
also available under /files/ch04/fig4.2.png in the book's GitHub repository.



4.6 GLOSSARY

• Curse of Dimensionality:
The curse of dimensionality refers to various problems and
complications when dealing with high-dimensional space. In the
setting of grid search, it means when the number of parameters
increases, the number of searches we have to perform in order to
find the optimal parameters grows exponentially.

• Directional Grid Search:
A method to find optimal parameter values by adjusting values in
the opposite direction of the first derivative of the loss function with
respect to the parameters.

• Gradient Descent:
An optimization algorithm used to minimize the loss function. The
method adjusts parameter values proportional to the negative of the
first derivative of the loss function with respect to the parameters.

• Grid Search:
A method to find optimal parameter values by searching over the
space of all possible combinations of different parameters.

• Learning Rate:
A hyperparameter in ML models to control how fast to adjust the
parameters in each step. The learning rate is usually a value between
0 and 1.

• Loss Function:
Also called the cost function. It measures the error between the
forecasts from ML models and the actual values. Some commonly
used loss functions include mean square error, mean absolute error,
and cross entropy.

4.7 EXERCISES

4.1 Explain how grid search works?

4.2 Modify the program in Section 4.1.1 to find the lowest value of 
y = cos(x) by searching 1000 different values in the range of 
0 ≤ x ≤ 8.



4.3 What is curse of dimensionality? What is directional grid search?

4.4 What is gradient descent? Why should the parameters move in the
opposite direction of the gradient?

4.5 Modify the second program in Section 4.1.2 to plot the directional
grid search process by using figure() instead of the subplots() method.
To start, you should change fig, ax=plt.subplots(figsize=(8,6),
dpi=100) to fig=plt.figure(figsize=(8,6), dpi=100). Modify the rest of
the program so that it produces exactly the same graph.

4.6 Use gradient descent to find the lowest value of y = cos(x) in the
range of 0 ≤ x ≤ 8 without the help of the TensorFlow library. Set
the initial value of x to 1 and the learning rate to 0.1. Consider the
value of y converged if the incremental change from one iteration to
the next is less than 0.001. If the value of y doesn't converge after
2000 iterations, consider the search failed.

4.7 Redo the previous question, but use the TensorFlow library to
calculate gradients this time.
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The human brain is estimated to have about a hundred billion nerve cells,
two million miles of axons, and a million billion synapses, making it the

most complex structure, natural or artificial, on earth.
–T. Green, S.F. Heinemann, and J.F. Gusella (Neuron, 1998)

MOST SUCCESSFUL new development in the field of machine
learning is neural networks. Since the 1990s, training a deep
neural network was considered impossible and most researchers

had abandoned the idea. Until in 2006, a paper in the journal Neural
Computation by Geoffrey Hinton, Simon Osindero, and Yee-Whye Teh
demonstrates how to train a deep neural network capable of recognizing
handwritten digits with high accuracy [9]. The authors call their technique
“deep learning.” The 2006 paper opened the floodgate for research in neural
networks. Now deep learning is the most powerful tool in the field of
Machine Learning.

This chapter discusses how neural networks learn from data and make
predictions. You'll learn to construct a simple neural network from scratch
to learn the relation between ten pairs of input and output variables. You'll
use the three steps that we have outlined in Chapter 4: initialize, adjust, and
repeat. You'll see the parameter values and predictions in action in every
step of the training process in this simple neural network.

https://doi.org/10.1201/b23383-5


While you can explicitly calculate the gradients in each step and adjust
parameters accordingly in this simple example, the calculation of gradients
becomes more complex in neural networks with multiple hidden layers.
You'll learn how to use TensorFlow and Keras to construct a neural network
and calculate the gradients automatically. You'll also learn the skills to
manage situations where you have to customize the loss function in the
training process to prepare you for deep Q-learning in later chapters.

Specifically, the ten pairs of inputs and outputs that we use to train the
model have the following values:

When X = −40, Y = −40
When X = −30, Y = −22
When X = −10, Y = 14
When X = 0, Y = 32
When X = 5, Y = 41
When X = 10, Y = 50
When X = 20, Y = 68
When X = 40, Y = 104
When X = 60, Y = 140
When X = 100, Y = 212

You may have noticed a linear relation between Xs and Ys that corresponds
to the relation between Celsius and Fahrenheit Y = 1.8X + 32. At the end
of the chapter, you'll animate exactly how the neural network that you build
from scratch “initializes, adjusts, and repeats.” The model initializes
parameters w and b in a linear model Y = wX + b; it makes predictions
and adjusts w and b step by step, based on the gradient descent algorithm
you learned in Chapter 4. As the training progresses, the model will find the
correct relation Y = 1.8X + 32. You'll create an animation to show the
values of w and b in each step.

New Skills in This Chapter

Creating a neural network in NumPy to learn the relation between
inputs and outputs
Adjusting parameters in a neural network based on partial
derivatives and the gradient descent algorithm



Creating a neural network using Keras APIs
Using the Keras API to train a neural network and make predictions
Customizing training a neural network using the GradientTape API
in TensorFlow

Before you start, open the Jupyter Notebook app in the virtual environment
MLA on your computer. After that, open a blank Jupyter notebook and save
it as ch05.ipynb in the directory /Desktop/mla/ on your computer. Next,
we'll create a subdirectory /files/ch05/ to store files in this chapter.

Start a new cell in ch05.ipynb and execute the following lines of code in it:

You should see a new directory /Desktop/mla/files/ch05/ on your computer.

5.1 ANATOMY OF A NEURAL NETWORK

Despite their widespread use, one common criticism for neural networks (or
most ML models, for that matter) is that they are like black boxes and hard
to understand. Indeed, nowadays, when building a neural network, you can
simply use APIs from the Keras library without fully understanding what's
going on within the model.

To look under the hood and have a better understanding of the logic behind
a neural network without using any APIs, you'll create one from scratch and
dissect its components with the NumPy library only.

A neural network is trying to mimic how human brains work. According to
a paper in 1998 in the journal Neuron by Tim Green, Stephen F.
Heinemann, and Jim F. Gusella, the human brain consists of billions of
neurons that are connected by synapses [24]. Neural networks try to model
this process by creating a machine learning model on a computer. A neural
network consists of an input layer, an output layer, and some hidden layers
in between. The powerful neural networks usually have many hidden
layers, hence the name “deep neural networks.” We'll start with a shallow
one with no hidden layers, just one input layer and one output layer.



5.1.1 Elements of a Neural Network

The problem we're trying to solve is as follows. Suppose you have ten pairs
of Xs and Ys, and their values are as follows: (X = −40, Y = −40), (
X = −30, Y = −22), …, (X = 100, Y = 212). You may have noticed a
linear relationship between the values of X and Y that corresponds to the
relation between Celsius and Fahrenheit

The question is: can you create a machine learning model to learn the
relationship between the two variables? Further, after training the model,
what's the model's prediction of Y when the input value is X = 50?

In this section, you'll construct a neural network from scratch for that
purpose. Along the way, you'll learn all the basics of a neural network.

Specifically, we'll construct a neural network with one input layer, one
output layer, and no hidden layers by using the NumPy library only. In
general, each layer in a neural network has one or more neurons. We'll
include two neurons in the input layer and one neuron in the output layer in
our simple model. We'll draw a diagram of the neural network we have
constructed. The Python code in the cell below creates the diagram using
the matplotlib library.

Y = 1.8 ∗ X + 32



We create a figure that is 12 inches wide and 6 inches tall with dpi=200. We
use the add_subplot() method to add a subplot in the figure. The argument



111 in the add_subplot() method means that the original figure is divided
into one row and one column, with the subplot in position 1. We use the
add_subplot() method so that we can use the add_artist() method later to
add circles and other art shapes in the subplot. We use three circles of radius
0.8 to denote the two input neurons and the one output neuron. We draw
blue arrows to show that the neurons are connected.

The values for the two input neurons are a constant (i.e., the bias) and the
variable X. The two input neurons are connected to the output neuron and
this process generates a value Y = w ∗ X + b, where b is the bias term and
w the weight on the variable X. Here w and b are model parameters. The job
of the model is to learn what the correct values of w and b should be based
on the input-output pairs.

We use the annotate() function to create a text box inside the figure. The
first argument of the annotate() function is the message you want to display
in the text box. The xy argument in annotate() tells the arrow where to point
to. The xytext=(0.2, 0.5) argument in annotate() defines the position of the
textbox in the figure. The textcoords=‘axes fraction’ argument says that the
coordinates in the xytext=(0.2, 0.5) argument use the axes fraction system.
We also specify that the arrow should be green with a line width of 1, and
the font size inside the text box should be 15. You can change the
parameters in the annotate() function to see how they change the figure.

If you run the above cell, you'll see an output as in Figure 5.1. The figure is
also available under /files/ch05/ in the book's GitHub repository.



Figure 5.1  The diagram of a simple neural network

Next, we'll use this simple neural network to solve the problem of figuring
out the relation between Xs and Ys in the example above, based on the ten
pairs of values.

5.1.2 How Does a Neural Network Learn?

A neural network takes in input-output pairs and finds out the relation
between the input and output variables. Since the relation between the input
and output variables is governed by parameter values of the model, training
a neural network boils down to estimating the model parameter values. In
the example above, the model takes in the values of X and Y. It also takes in
a bias term (that is, a constant value) through the other neuron in the input
layer. Both neurons in the input layer are connected to the output neuron.
The model learns the relation between X and Y by finding out the correct
values of w and b in the following formula:

To solve the problem in the above example, the neural network model
follows the steps below:

1. Randomly assigns values to the weight w and the bias term b;
2. Takes the input data Xs and generates predictions for Ys based on the

formula Ŷ = w ∗ X + b;
3. Compares the predictions Ŷ  with the actual values of Y and calculates

the forecasting error based on the loss function (more on this later);
4. Calculates the gradients of the loss function with respect to w and b at

the current values;
5. Adjusts the parameters w and b based on the gradient descent

algorithm (or a variant of it) that we learned in Chapter 4;
6. Repeats Steps 2 to 5 above for many iterations till the value of w and b

converge.

Y = w ∗ X + b



After the above steps, the model is considered trained. To make a prediction
using the trained model for any value of X, simply use the values of w and b
in the trained model, and the prediction is Ŷ = w ∗ X + b.

The Mean Squared Error Loss Function

The loss function is a measure of how good the prediction is. The mean
squared error (MSE) is one of the most widely used loss functions in
ML. MSE is defined as

where Yn is the actual value of the target variable (i.e., the label) and Ŷn

is the predicted value of the target variable. To calculate MSE, we look at
the forecasting error: the difference between the model's predictions and
the actual values. We then square the forecasting error for each
observation, and average it across all observations. In short, it is the
average squared forecasting error in each observation.

We'll modify the code we used in Chapter 4 and apply a similar algorithm
of gradient descent to find out the values of w and b that minimize the loss
function. We'll then use the trained model to make predictions.

First, run the Python code in the cell below to train the model:

MSE =
1

N

N

∑
i=1

(Yn − Ŷn)2





Note that everything is done with the NumPy library. We didn't use the
TensorFlow or the Keras library. This way, you can create a neural network
from scratch and have a better understanding of how it works.

We define the values of Xs and Ys. We also create a vector of ones with the
tile() method in NumPy. To train the model, we follow the three steps
outlined at the beginning of Chapter 4: initialize, adjust, and repeat.
Specifically, we first initialize the parameters w and b with some random
values: we set w=1 and b=1. Setting them to other values leads to almost
identical results. As an exercise, you can change the initial values to w=0
and b=0 and see what the outcome is.

We then adjust the values of w and b each iteration based on the rule of
gradient descent. We set the learning rate to lr=0.0005. We calculate the
gradients explicitly in each iteration, and change w and b based on the
following formula:

and

Δw = −lr ×
∂L(w, b)

∂w

Δb = −lr ×
∂L(w, b)

∂b



Note here we explicitly calculate the first derivatives of the loss function
with respect to the parameters w and b. To simplify notation, we use the
matrix operations when adjusting the parameter values. Note here that when
you multiple two matrices, you can use either np.matmul() or @: they
produce identical results.

After 10000 epochs of training, the values of w and b converge to around
1.8 and 32, their true values.

Calculate Gradients in the Example

Training the neural network in this case boils down to finding the values
of w and b that minimize the loss function MSE = 1

N
∑N

i=1(Yn − Ŷn)2

. Based on what we learned in Chapter 4, we can adjust the parameter
values explicitly by using the gradient descent algorithm. In particular,
we can calculate the gradients of the loss function at any given point.
Since the loss function is:

The gradients are:

and

L(w, b) = MSE =
1

N

N

∑
i=1

(Yn − Ŷn)2 =
1

N

N

∑
i=1

(Yn − b − w ∗ Xn)2

∂L(w, b)

∂w
=

1

N

N

∑
i=1

−2Xn(Yn − b − w ∗ Xn)

∂L(w, b)

∂b
=

1

N

N

∑
i=1

−2(Yn − b − w ∗ Xn)



In the Python code above, the gradients are represented in matrix form.

5.1.3 Make Predictions

Now that the model is trained, we can print out the final, converged, values
of the parameters w and b. As a result, we also know the exact relation
between X and Y, as follows:

Results show that the neural network learns from the data that the
parameters should be w=1.80 and b=31.99.

Round Floating Numbers

In the cell above, we use :.2f after the variables w and b to round the
float numbers to two digits after the decimal point. If you want to round
them to, say, 3 digits after decimal, use :.3f. Alternatively, you can use
the Python built-in function round() for that purpose. For example,
replacing w:.2f with round(w,2) leads to the same result.

To make a prediction on what's the value of Y when X=50, we can plug in
the values of w and b into the linear model Y = wX + b and use the
formula to make predictions, like so:

The result above shows that the prediction is 122.00, a perfect prediction
for the true value of 122 degrees Fahrenheit.



5.2 ANIMATE THE LEARNING PROCESS

Next, we'll create an animation of the intermediate steps of the ML process
we just implemented in the last section. First, we create a sequence of
pictures. In each picture, we'll show the values of w and b, as well as the
predicted values of Y and the squared forecasting error. We then combine
the sequence of pictures into an animation.

5.2.1 Generate Graphs

The following cell creates a graph every 200 epochs, and this creates a total
of 51 pictures since we include the first epoch as well. Specifically, we
show the values of the parameters w and b in each epoch, as well as the
predicted Y value.





First, we create a list of indexes to represent the epochs in which we want to
create the pictures. The 51 indexes are stored in a list called steps. We then
use a for loop to iterate through the 51 steps. In each step, we extract the
values of the parameter values w and b, the predicted value of Y, as well as
the value of the loss function. We draw a diagram of the simple neural
network we created. The values of w and b are placed close to the
connections between the neurons so that you understand the concept of
forward propagation.

Forward Propagation and Backward Propagation



In neural networks, forward propagation is when input data are fed in the
forward direction through the network, starting from the input layer, then
hidden layers, and finally the output layer. Backward propagation is
when the weights in each layer are adjusted based on gradient descent (or
a variant of it).

We also create a shaded box to show the values of the ten predicted Y
values, as well as the squared forecasting error. The value of the MSE loss
function is shown at the top center of the picture, along with the epoch
number.

If you run the above code cell, you'll see 51 pictures on your computer in
the folder /Desktop/mla/files/ch05/: they are named as nn0.png,
nn199.png…, and nn9999.png.

5.2.2 Create Animation Based on Graphs

Next, we'll create an animation of the training process using the 51 pictures
we just generated.

We create an empty list frames to store all pictures. We iterate through the
51 pictures we generated in the last subsection and open each one using the
PIL library. We convert the pictures to NumPy arrays and add them to the
list frames. Once done, we use the mimsave() method in the imageio library
to convert the images to the gif format. The fps=6 argument generates
animation with six frames per second.

After you run the above cell, the file nn.gif is generated and saved in your
local folder. To view the animation, you can click on the file on your



computer. Alternatively, you can view it at the book's GitHub repository
under the folder /files/ch05/.

5.2.3 Subplots of Different Stages

Even though we cannot show animations in the hard copy of the book, we
can create a figure with multiple subplots to show various stages of the
training process. For that purpose, we showcase four pictures in four stages:
1, 4000, 7000, and 10000. The Python code in the cell below creates the
subplots.

We first create an empty list frames to store the four pictures we want to
show. We use the PIL library to open the four pictures and add them to the
list frames. We use the plt.figure() method to create a figure, which is 12 by
24 inches in size. We set the dpi to 200. We then use the subplot() method
to add four subplots to the original figure, organized vertically to form a
four by one grid. We adjust the vertical space between the four pictures so
they line up with proper amount of spaces in between.

Run the above cell, and you'll see an output as in Figure 5.2. The figure is
also available under /files/ch05/ in the book's GitHub repository.



Figure 5.2  How parameters change during the training process



5.3 CREATE A NEURAL NETWORK WITH KERAS

The example we have shown above is relatively simple. In particular, there
is a closed-form solution to the gradients so we can implement the gradient
descent algorithm by calculating the gradients ourselves in the Python code.

However, to solve more complicated problems, we need to construct neural
networks with more layers. Calculating the gradients is too complicated and
time-consuming. Therefore, for the rest of the book, we'll rely on the Keras
library to implement all optimizations.

In this section, you'll learn how to use Keras to solve the same problem we
just solved in the last section. As we discussed in Chapter 1, Keras is a
Python library for developing and evaluating neural networks. The newest
version of the TensorFlow library has already integrated Keras in it.
Therefore, no separate installation of Keras is needed.

In particular, Keras provides built-in APIs for training, evaluating, and
utilizing neural network models. You can use the fit() method to pass data to
the built-in training loops of a model. Once the training is finished, you can
use the predict() method to make predictions. The evaluate() method allows
you to evaluate the performance of the model, either on the training data or
the testing data.

5.3.1 Construct the Model

The easiest way to construct a neural network in Keras is to use the
Sequential model. The Sequential model constructs a linear stack of layers
of neurons.

We first import the Sequential model and the Dense class from Keras, like
so:

As you'll see later in this book, there are different types of layers in neural
networks such as convolutional layers, dropout layers, fully-connected
layers, recurrent layers, and so on. Fully connected layers are also called
dense layers, and we'll use it below to construct our neural network.



Run the above cell to import the Sequential model and the Dense class.
Next, we construct the model using Keras as follows:

We first create a sequential model and call it first_nn. We then add a fully-
connected dense layer to the model. The first argument, 1, in Dense() says
that there is only one neuron in the output layer, because the prediction Y is
a scalar. The second argument, input_shape=[1], specifies the shape of the
input layer. Note that there is a default bias term in the input layer, so we
use input_shape=[1] instead of input_shape=[2]. It says that there is only
one input variable besides the bias term in the input layer.

5.3.2 Compile and Train the Model

Next, we'll compile the model. We need to specify what loss function to
use, and which optimizer to pick to adjust the parameters (it's usually a
variant of the gradient descent algorithm).

We use the compile() method to compile the model. We use MSE as our
loss function. We also choose the Adam optimizer. The Adam optimizer is a
variant of the gradient descent algorithm based on adaptive estimation of
first-order and second-order moments. See the documentation here
https://keras.io/api/optimizers/adam/ for details about the Adam optimizer.
Finally, we use MSE as our metrics of the performance of the model (that
is, how good the predictions are).

To train the model, we'll specify the values of X and Y. We'll also tell the
model how many iterations to run, and the batch size in the training process.
The batch size determines how many observations of data to consider

https://keras.io/


before the model weights are adjusted. The default batch size is 32. Since
we only have 10 observations, we set the batch size to 10.

Run the above cell to train the model. You'll not see any output from the
above cell because we set verbose to 0 in the fit() method. You can change
verbose to 1 and the output will show the training time length and the value
of the loss function in each epoch.

5.3.3 Make Predictions

Now that the model is trained, you can use the predict() method from Keras
to directly make predictions based on the value of X. In the cell below, we
predict the value of Y when X = 50. Make sure you put the value of X in
matrix form because the input data to the neural network must be two-
dimensional with a shape of (-1,1): the first value -1 in the shape means the
data can have any number of rows and the second value means the data
must have exactly one column. Here for simplicity, I use row and column to
denote the two dimensions of the input data, which is a NumPy array.

The output shows that the values of w and b are 1.8 and 32, respectively.
When the value of X is 50, the model's prediction of Y is 122, a perfect
prediction. Note here that the prediction is a two-dimensional NumPy array,
so we use [0,0] to extract the numerical value from the element in the first
row and first column.



Further, we can use the evaluate() method from Keras to measure the
performance of the trained model, like so:

The output shows that the model does an almost perfect job in making
predictions: the value of the loss function is zero.

Since we have saved the training history, we can plot the value of MSE over
the course of the training process, like so:

If you run the above cell, you'll see a plot of the value of the loss function
MSE during the training process. The value of MSE goes to zero after about
50 epochs of training. The figure is also available under
/files/ch05/MSE_plot.png in the book's GitHub repository.

5.4 CUSTOMIZE TRAINING WITH GRADIENTTAPE

While Keras built-in APIs make the training, evaluation, and utilization of
neural network models easy, there are limitations to these APIs. One
limitation of the Keras high-level APIs is the fact that it's very challenging
for us to write custom training loops in various situations.

For example, the loss functions provided by Keras APIs can only be used to
calculate the difference between the predicted target values and the actual
target values. In some situations, we need to construct our own custom loss
functions. A case in point is later in this book when we train deep Q-
learning models, the loss function is the difference between the current Q
value and the updated Q value. Therefore, we cannot use Keras APIs to
train deep Q-learning models. Instead, we need to use the GradientTape
function to write custom training loops.



In this section, you'll learn how to use the GradientTape function in
TensorFlow to calculate the gradients in each step of the training loop and
then use the optimizer to adjust parameters step by step. This way, you'll be
familiar with how to use the GradientTape function for training purposes
instead of relying on Keras built-in APIs. You'll use these skills later in the
book when you train deep Q-learning models.

5.4.1 Construct the Model

The model construction part is the same as in the last section. We create a
Sequential model with one input layer and one output layer, as follows:

Next, we specify the loss function and the optimizer. We still use the mean
squared error loss function, and the Adam optimizer with a learning rate of
0.1.

5.4.2 Train the Model

To train the model, we'll write a loop with 10000 iterations. In each
iteration, we calculate the prediction of the model based on the current
parameters. We then calculate the value of the loss function explicitly.
Specifically, we'll use the GradientTape function to record operations and
auto differentiate so that we can calculate the partial derivatives of the loss
function with respect to the parameters. We then use the Adam optimizer (a
variant of the gradient decent algorithm) to adjust the parameters, like so:



In the above cell, g_tape_nn.trainable_variables is a vector of parameters
that we need to train in the neural network. In our case, they are w and b in
the linear relation y = w ∗ X + b.

We calculate the partial derivatives of the loss function with respect to the
two parameters, and record them as gs. The adjustment of the parameter
values is done through the last line of code in the above cell

optimizer.apply_gradients(zip(gs,g_tape_nn.trainable_variables)

).

Specifically, the apply_gradients() method ajusts the values of the
parameters based on the learning rate and the gradients.

5.4.3 Make Predictions

You can make predictions using the trained model as before by replying on
the predict() function:

As you can see, the prediction of the model is Y = 122.0 when the input is 
X = 50. However, you cannot use the evaluate() method from Keras in this
case since the model is not compiled. Further, you may see a warning
message saying that the model is not compiled when you write custom
training loops.

5.5 GLOSSARY



• Backward Propagation:
Backward propagation is when the weights in each layer of a neural
network are updated based on the gradients and the optimizer.

• Deep Learning:
A machine learning method based on deep neural networks that are
characterized by many hidden layers of neurons, in addition to an
input layer and an output layer.

• Deep Neural Networks:
Neural networks consist of many hidden layers of connected
neurons, besides an input layer and an output layer.

• Forward Propagation:
Forward propagation is when input data are fed in the forward
direction through the neural network, from the input layer, to the
hidden layers, and finally the output layer.

• Hidden Layer:
The hidden layer is located between the input layer and the output
layer in a neural network. It receives processed data from the input
layer, further processes it, and passes them on to the output layer.

• Input Layer:
The input layer is the first layer of neurons in a neural network. It
brings the input data into the system for further processing by
hidden layers and the output layer.

• Mean Squared Error (MSE) Loss Function:
A commonly used loss function in machine learning. It is the
average squared value of the difference between the actual value and
the predicted value from the model.

• Neural Networks:
A type of machine learning models inspired by the biological neural
networks of human brains. They are also called artificial neural
networks or simply neural nets. Neural networks consist of multiple
layers of connected neurons: an input layer, an output layer, and in
most cases a number of hidden layers.

• Output Layer:
The output layer is the last layer of neurons in a neural network. It
produces the predictions from the model.



5.6 EXERCISES

5.1 What is an input layer? An output layer? A hidden layer?

5.2 What is the mean squared error (MSE) loss function?

5.3 Modify the program in Section 5.1.2 so that the initial parameter
values are w = 0, b = 0. Also make changes so that the values of the
loss function, w, and b are all three digits after the decimal point.

5.4 Modify the last code cell in Section 5.4.3 to predict the Y value when 
X = −40.
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Activation Functions

DOI: 10.1201/b23383-6

The number of possible “on-off” patterns of neuronal firing is immense,
estimated as a staggering ten times ten one million times (ten to the

millionth power). The brain is obviously capable of an imponderably huge
variety of activity; the fact that it is often organized and functional is quite

an accomplishment!
The Developing Mind: Toward a Neurobiology of Interpersonal Experience

–Daniel J. Siegel, 1999

ARTIFICIAL NEURAL network in ML is modeled after human
brains. A human brain consists of about 100 billion neurons,
which are connected by synapses. Biological neurons receive

stimuli (called action potentials) from the outside world or other neurons.
When a neuron receives a sufficiently large amount of stimuli in a short
amount of time, it turns on and fires its own chemical signals. The on-off
patterns of neurons in human brains are as important as the shear number of
neurons in them, as the opening quote of this chapter states [23].

In artificial neural networks, activation functions transform inputs into
outputs. As the name suggests, the activation functions activate the neuron
when the input reaches a certain threshold. Simply put, activation functions
are on-off switches in artificial neural networks. These on-off switches play
an important role in making artificial neural networks powerful. The

https://doi.org/10.1201/b23383-6


activation functions allow a network to learn more complex patterns in the
data. Without activation functions, neural networks can only learn linear
relationships in the data.

In Chapter 5, you have seen how a neural network makes accurate
predictions on a linear relation between the input and the output variables.
However, we could have done it with a linear regression and achieved
similar results. You may wonder, what's the advantage of neural networks?
Neural networks are function approximation algorithms. Feed a neural
network with enough data, it can figure out the relation between any input-
output pairs even if the relation is nonlinear and very complicated. Or even
if we human beings don't know the exact functional form between the
inputs and outputs.

You'll learn why we need activation functions to model a nonlinear
relationship in this chapter. You'll first try to create a neural network to
predict the relation between X and y = sin(X) without an activation
function. The neural network does a poor job because it can only predict a
linear relation between inputs and outputs without activation functions.
You'll then add the rectified linear unit (ReLU) activation function to the
neural network and show that the model can now approximate the nonlinear
relation between X and y = sin(X).

You'll also learn the sigmoid activation function and how it squashes a
number to the range between 0 and 1 so that it can be interpreted as the
probability of an outcome. Similarly, the softmax activation function
squeezes a group of numbers into the range [0, 1] with the property that the
numbers in the group add up to 100%. Therefore, the output from a softmax
function can be interpreted as the probability distribution of multiple
outcomes. Because of these properties, we use sigmoid and softmax
activation functions in binary and multi-category classifications,
respectively.

You'll create an animation to show how the ReLU activation function
creates a nonlinear relationship between the inputs and outputs. You'll also
create an animation to show how the sigmoid activation function takes a
number between −∞ and ∞ and squashes it so the output is between 0 and
1, which can in turn be interpreted as the probability of an outcome. You'll
then combine these two animations into one so that the two activation



functions are displayed side by side. Finally, you'll also learn what is a
softmax activation function and why the output from the softmax function
can be interpreted as the probability distribution of multiple outcomes.

New Skills in This Chapter

Understanding what is the ReLU activation function
Adding the ReLU activation function to a neural network to create a
nonlinear relation
Getting to know the sigmoid activation function and why it's used in
binary classifications
Getting to know the softmax activation function and why it's used in
multi-category classifications

Before you start, open the Jupyter Notebook app in the virtual environment
MLA on your computer. After that, open a blank Jupyter notebook and save
it as ch06.ipynb in the directory /Desktop/mla/ on your computer. Next,
we'll create a subdirectory /files/ch06/ to store files in this chapter. Start a
new cell in ch06.ipynb and execute the following lines of code in it:

You should see a new directory /Desktop/mla/files/ch06/ on your computer.

6.1 WHY DO WE NEED ACTIVATION FUNCTIONS?

Activation functions help us create a nonlinear relationship between the
inputs and outputs. Without them, we can only approximate linear relations.
No matter how many hidden layers we add to the neural network, we
cannot achieve a nonlinear relationship.

To illustrate the point, let's try to train a deep neural network to learn the
relationship between X and y = sin(X). The structure of the neural
network we use has two hidden layers, with 7 and 5 neurons, respectively.
We'll soon generate a diagram of the structure of this specific neural



network. You'll see that without activation functions, the neural network
cannot learn a nonlinear relationship: the linear transformation of a linear
relationship is still linear.

We then add in the ReLU activation function in the two hidden layers in the
neural network. The model successfully generates a nonlinear relationship
between the inputs and outputs that resembles a sine function.

6.1.1 Construct a Neural Network

To predict the relation between X and y = sin(X), we'll create a neural
network with four layers: an input layer with two neurons, two hidden
dense layers with seven and five neurons in them, respectively, and an
output layer with just one neuron.

First, we draw a diagram to visualize the structure of the above neural
network. Since this neural network has a total of 15 neurons, and neurons in
adjacent layers are fully connected, drawing all the neurons and connections
can be tedious and time-consuming work. Luckily, you can borrow from
online sources in the Python community. For example, Professor Colin
Raffel's post below discusses how to draw a neural network with different
numbers of layers with any number of neurons in each layer:

https://gist.github.com/craffel/2d727968c3aaebd10359

The Python code below is inspired by Professor Colin Raffel's post. It
draws the neural network that we'll use to predict the relation between X
and y = sin(X) (with four layers of neurons):

https://gist.github.com/


We first calculate the horizontal and vertical spaces between neurons, h and
v, respectively, based on the maximum number of neurons in a layer (in our



case, seven), and the number of layers (in our case, four). We then iterate
through the four layers. The enumerate() method in Python produces all
elements in a list with their corresponding indexes. Therefore, 
enumerate([2, 7, 5, 1]) gives us the indexes of the layers, (0, 1, 2, and 3),
as well as the number of neurons in each layer (2, 7, 5, and 1).

We then draw the neurons in each layer as circles. The two input lines and
the output line are drawn as arrows, using the annotate() method in the
matplotlib library. Finally, the connections between neurons are straight
lines, drawn using the Line2D() method.

The zip() Function in Python

The zip() function in Python combines items from multiple collections
and returns a series of tuples with items from each collection. In the code
cell above, we use zip([2, 7, 5], [7, 5, 1]) to produce three tuples (2, 7),
(7, 5), and (5, 1). The multiple collections in the zip() function must have
the same length.

If you run the Python code in the above cell, you'll see an output as in
Figure 6.1. The figure is also available under /files/ch06/ in the book's
GitHub repository.



Figure 6.1  A diagram of a neural network with two hidden layers

As an exercise, modify the above cell and change the number of neurons in
the two hidden layers to 8 and 4, respectively. Rerun the cell and see if the
diagram reflects the change.

Next, we'll use this neural network to approximate the relation between X
and y = sin(X).

6.1.2 Learn a Nonlinear Relation without Activation

First, we create a neural network using keras based on what we learned in
Chapter 5. We then create 1000 pairs of inputs and outputs that have a
nonlinear relationship of y = sin(X). We don't use any activation functions
in any of the layers in the neural network.



In the cell above, we first import the NumPy library. We then import the
Sequential model, the Dense layer, and the Adam optimizer from Keras
that's embedded in the TensorFlow library. We then create the neural
network using the Keras API as we did in Chapter 5. We use the mean
squared error as the loss function in the neural network when compiling the
model.

Upper Case and Lower Case (X, y) in ML

In machine learning models, it's customary to use a lower case y to
denote the output variable (i.e., the target) since the output is usually a
one-dimensional vector. In contrast, it's customary to use an upper case X
to denote the input variable since there are usually more than one feature.
Therefore, the input is a two-dimensional matrix. We'll follow this
custom for the rest of this book.

We create 1000 X values between -5 and 5 using the linspace() method in
NumPy. The 1000 corresponding y values are generated as y = sin(X). To
train the model, we use the fit() method and put the 1000 pairs of inputs and
outputs (X, y) we generated as the arguments. We train the model for 150



epochs. We save the training history in a Python callbacks history object
called hist.
Below, you can view the value of the loss function in the training process
by retrieving the information from the object hist we just created.

In the above cell, we use the matplotlib library to plot the values of the loss
function during the process of training. If you run the cell, you'll see a plot
as the output. Alternatively, you can view the loss during the training
process at the book's GitHub repository by looking for the picture
/files/ch06/loss1.png. The plot shows that the loss, as measured by mean
squared error, ranges from 0.5005 and 0.5035. The value of the loss didn't
come down significantly after 150 epochs of training. This indicates that the
model is not doing a good job of approximating the relationship between X
and y.

Next, we'll create an out of sample dataset to test the performance of the
trained model.

We use the linspace() method in NumPy to create 200 points between −π
and π. We use them as the values of X_test in the testing dataset. The true
value of y in the testing sample is y_test = sin(X _test). Next, we'll
predict the value of y based on the trained model, like so:

We use the predict() method to make predictions. The predicted values of y
are saved as y_pred.



The Python code in the cell below plots both the actual values of y and the
predicted values of y to show how good the predictions are.

We first create a figure that is 12 by 24 inches in size, with a dpi of 200. We
then create a scatter plot of y_test against X_test and label it Actual. In the
same figure, we plot the values of y_pred against X_test and label it
Prediction. We set the marker argument to D and the color argument to r.
As a result, the prediction plot appears as a string of red diamonds.

If you run the above cell, you'll see a figure comparing the predictions with
the actual values of y = sin(X). You can also view the figure at the book's
GitHub repository by looking for the picture /files/ch06/compare1.png. The
figure shows that the predictions (the red diamonds) form a straight line,
while the relation between y_test against X_test form a sine curve.

The above results show that the neural network is doing a poor job of
predicting the relation between X and y = sin(X).

Why the Predicted Relation Is Still Linear with Multiple Layers?

Without an activation function, the values in each layer of the neural
network are simply a linear transformation of the inputs from the
previous layer. We cannot generate a nonlinear relation even if we use
multiple layers. Why? Because the linear transformation of a linear
relation is still linear.

Here is an intuitive illustration of why a linear transformation of a linear
relation is still linear. Suppose y is a function of x, and z is a function of
y, like so

y = f(x)



If both f(. ) and g(. ) are linear, we have

where wf, bf, wg, and bg are all constants. Then we have

which shows that z is still a linear function of x.

Without an activation function, a neural network can only predict a linear
relationship between inputs and outputs. No matter how many hidden layers
we include in the neural network, we cannot generate a nonlinear
relationship between X and y. As an exercise, modify the Python code cells
in this subsection so that the neural network has three hidden layers with 8,
6, and 5 neurons, respectively. Rerun the cells and see if the neural network
can generate a nonlinear relationship.

Next, we'll talk about the ReLU activation function and how it can help
neural networks achieve nonlinear approximations.

6.2 THE RELU ACTIVATION FUNCTION

In this section, we'll first discuss what the ReLU activation function is. We
then show that with the ReLU activation function, we can successfully
approximate a nonlinear relation with a neural network.

z = g(y)

y = wf ∗ x + bf

z = wg ∗ y + bg

z = wg ∗ (wf ∗ x + bf) + bg = wgwf ∗ x + wgbf + bg



6.2.1 What is ReLU?

ReLU is short for rectified linear unit activation function. It returns the
original value if it's positive, and 0 otherwise. That is, the ReLU function is
defined as follows mathematically:

It's widely used in many neural networks, and you'll see it in this book more
often than any other type of activation function.

In essence, the ReLU activation function activates the neuron when the
value of x reaches the threshold value of zero. When the value of x is below
zero, the neuron is switched off. This simple on-off switch is able to create
a nonlinear relation between inputs and outputs.

The following program plots the ReLU activation function in the range of
-6 to 6.

ReLU(x) = {
x  for x > 0

0  for x ≤ 0



We create 31 values of x between -6 and 6. We then create the
corresponding 31 values of y = ReLU(x). The values of x and y are
plotted in blue in a figure created with the matplotlib library. The functional
form of the ReLU activation function appears in the legend box in the
graph. To use LaTex code to create mathematical equations, simply put
dollar signs ($) around the LaTex code.

If you run the above cell, the plot will be saved on your computer as
relu.png in the folder /Desktop/mla/files/ch06/. The figure is also available
under /files/ch06/ in the book's GitHub repository. The plot is piece-wise
linear: it's linear for values below zero; it's also linear for values greater
than zero. Since the two linear lines don't have the same slope, the overall
pattern is nonlinear.

6.2.2 Animate the ReLU Function



Better yet, you can create an animation of the ReLU activation function,
showing how the value of y = ReLU(x) changes as the value of x changes
from -6 to 6.

The Python code in the cell below creates a series of pictures of the ReLU
function when the value of x changes from left to the right on the horizontal
axis.

We iterate through the 31 points of (x, y) from the left to right of the
horizontal axis. In each iteration, we first plot the ReLU function as the
background. We plot the point (x, y) as a red dot in the graph. We create a
text box to show the values of X and y. The text box points to the red dot so
you know which point the graph is focusing on.

If you run the above code cell, you'll see 31 pictures on your computer in
the folder /Desktop/mla/files/ch06/: they are named as relu0.png,
relu1.png…, and relu30.png.



Next, we combine the 31 graphs we just created into an animation.

We create an empty list frames to store all pictures. We then iterate through
the 31 pictures we generated in the last code cell and open each one using
the PIL library. We convert the pictures to NumPy arrays and add them to
the list frames. Once done, we use the mimsave() method in the imageio
library to convert the images to the gif format.

After you run the above cell, the file relu.gif will be generated and saved in
your local folder. To view the animation, you can click on the file on your
computer. Alternatively, you can view it at the book's GitHub repository
under the folder /files/ch06/.

6.2.3 Use ReLU to Model Nonlinearity

Now that you understand what the ReLU function is, you'll put it to good
use by generating a nonlinear relation between the input and output
variables. Specifically, you'll use the same neural network you built in
Section 6.1.2 and add the ReLU activation function in the two hidden
layers, and retrain the model.



In particular, we add the argument activation=“relu” in the two hidden
dense layers. We then retrain the model and save the training history.

We can now make predictions using the newly trained model, like so.

We generate 200 points between −π and π as the values of X_test in the
testing sample. The true value of y in the testing sample is y_test = sin(X
_test). We predict the value of y based on the re-trained model.

If you run the above cell, you'll see a figure showing that the predictions
(the red diamonds) form a curve resembling a sine curve. You can also view
the figure at the book's GitHub repository by looking for the picture
/files/ch06/compare2.png. The predictions now match the true y values
pretty well. Most importantly, the shape of the prediction is now nonlinear.
The above results show that the neural network is doing a good job of



predicting the relation between X and y = sin(X), with the help of the
ReLU activation function.

Here you do have a lot of flexibility in how many hidden layers you want to
include in the neural network and how many neurons each hidden layer
should have. As an exercise, remove the second hidden layer from the
neural network. Make sure you keep the first hidden layer intact with the
ReLU activation function. Rerun the cells and see if the predictions match
the actual sine shape.

6.3 THE SIGMOID ACTIVATION FUNCTION

The second most-used activation function in this book is the sigmoid
function. It's widely used in many machine learning models. In particular,
it's a must-have in any binary classification problem.

The sigmoid function has the form

The sigmoid function has an S-shaped curve. It has this nice property: for
any value of input x between −∞ and ∞, the output value y is always
between 0 and 1. Because of this property, we use the sigmoid activation
function to model the probability of an outcome, which also falls between 0
and 1 (0 means there is no chance of the outcome occurring, while 1 the
outcome occurring with 100% certainty).

6.3.1 Plot the Sigmoid Function

We plot the sigmoid function when the value of x ranges from -6 to 6.

y =
1

1 + e−x



We create 31 different values of x between -6 and 6 using the linspace()
method in NumPy. We then define the sigmoid function and create 31
values of y = sigmoid(x). The values of x and y are plotted in blue in a
figure created with the matplotlib library. The mathematical formula of the
sigmoid activation function appears in the legend box in the graph by using
the LaTex code.

If you run the above cell, the plot will be saved on your computer as
sigmoid.png in the folder /Desktop/mla/files/ch06/. The figure is also
available under /files/ch06/ in the book's GitHub repository. As you can see,
the value of the sigmoid function is between 0 and 1, which can be
interpreted as the probability of an outcome.

6.3.2 Animate the Sigmoid Function

Next, we'll animation the sigmoid activation function, showing how the
value of y = sigmoid(x) changes as the value of x changes from -6 to 6.
We'll first generate a series of pictures and then combine them into an
animation.

The Python code in the following cell generates 31 pictures.



We iterate through the 31 points of (x, y) from the left to the right of the
horizontal axis. In each iteration, we first plot the sigmoid function as the
background. We then plot the point (x, y) as a red dot in the graph. We
create a text box to show the values of x and y. The text box points to the
red dot so you know which point the graph is focusing on.

If you run the above code cell, you'll see 31 pictures on your computer in
the folder /Desktop/mla/files/ch06/: they are named as sigmoid0.png,
sigmoid1.png…, and sigmoid30.png.

Next, we combine the 31 graphs we just created into an animation.



We iterate through the 31 pictures we just generated and open them using
the PIL library. We convert the pictures to NumPy arrays and use the
mimsave() method in the imageio library to convert the images to an
animation in the gif format.

After you run the above cell, the file sigmoid.gif will be generated and
saved in your local folder. To view the animation, you can click on the file
on your computer. Alternatively, you can view it at the book's GitHub
repository under the folder /files/ch06/.

6.3.3 Combine Animations

Next, let's combine the two animations in one so that you can see the ReLU
function and the sigmoid function side by side in the animation.

To combine two animations into one, we use the concatenate() method in
NumPy. The argument axis=1 in the method places the two frames side by
side horizontally, like so:

We start a for loop to iterate through different phases of the animation. In
each of the 31 iterations, we first open a picture of the ReLU function and
convert it into NumPy arrays. We then open a picture of the sigmoid
function and use the concatenate() method in NumPy to combine it with the
RuLU function picture horizontally. The combined frames are stored in a



list frames. We then use the imageio library to convert the combined frames
into an animation.

If you run the above cell, you'll see an animation relusig.gif in the folder
/Desktop/mla/ch06/files/ on your computer. The animation shows the two
activation functions side by side, when the value of x moves from the left to
the right of the horizontal axis.

6.3.4 A Picture with Subplots of Different Stages

Even though we cannot show animations in the book, we can create a figure
with multiple subplots to compare the two functions at different x values.

For that purpose, we showcase eight pictures to form a four by two grid.
The four pictures in the left column illustrates the ReLU function, while the
four in the right column the sigmoid function, like so:

The NumPy array stacked now has 8 pictures in it, with 2 different
functions and four different stages. Note that in the above cell, we use the
argument axis=0 in the concatenate() method in NumPy so that the four
frames are organized vertically.

Next, we'll use matplotlib.pyplot to create a figure with eight pictures in it,
like so:

Here we create a figure that is 24 inches wide and 32 inches tall. We set the
dpi as high as 300 so that the picture is clear with high resolutions. Since
the NumPy array stacked is a combination of eight pictures, all we need is
to use the imshow() method in mapplotlib to generate the graph.

Run the above cell, and you'll see an output as in Figure 6.2. The figure is
also available under /files/ch06/ in the book's GitHub repository.



Figure 6.2  Compare the ReLU and sigmoid functions

6.4 THE SOFTMAX ACTIVATION FUNCTION



The third most-used activation function in this book is the softmax function.
It's a must-have in any multi-category classification problem.

6.4.1 What is the Softmax Function?

The softmax function has the form

where x = [x1,x2, . . . ,xK] and y = [y1, y2, . . . , yK] are K-element lists.
The i-th element of y is

The softmax function has the following properties:

The softmax function can take a K-element vector x as the input; each
element in the vector x can be any value between −∞ and ∞.
The softmax function generates a K-element vector y as the output;
each element in the vector y has a value between 0 and 1.
The elements in the output vector y add up to 1 (i.e., 100%).

Because of these properties, we use the softmax activation function to
model the probability distribution of a multiple-category outcome. You'll
notice later in this book that the activation function in the output layer is
always the softmax function when we model multi-category classification
problems.

To illustrate the above three properties of the softmax function, we next
show how the softmax function converts x = [−1.3, 7.9, −0.8, 5.1] into the
probability distribution of four possible outcomes.

y(x) =
ex

∑K
k=1 e

xk

yi(x) =
exi

∑K
k=1 e

xk



In the above cell, we first define the vector x with the four input values. We
then define the softmax function and use it to generate a vector y with four
output values. Finally, we check each of the four elements in y to see if they
are between 0 and 1. The above results show True four times, indicating
that all four values in y are indeed between 0 and 1.

Next, we check if the values of the elements in y add up to 1, i.e., 100%.

In the above cell, we use ys. sum() to calculate the sum of the four values
in the NumPy array ys. The output shows that the sum of the four values is
1.0. That is, the four values in the output vector of the softmax activation
function add up to 100%.

6.4.2 A Diagram of the Softmax Function

Next, we'll draw a diagram of the softmax activation function. In particular,
we'll draw the four values in the input vector x on the left of the diagram.
The mathematical formula of the softmax activation function will be placed
in the middle of the diagram. Finally, we'll put the four values in the output
vector y on the right of the diagram, like so:



We first create a figure that is 12 inches wide and 4 inches tall with
dpi=200. The Rectangle class in matplotlib creates a shaded rectangle in the
figure. The first argument in the Rectangle class is the lower left corner co-
ordinates, the second and third arguments are the width and height of the



rectangle, respectively. For example, 
Rectangle((−6, −2), 3, 4, edgecolor =′ r′, apha = 0.2) creates a
rectangle that is 3 inches wide and 4 inches tall, with the point (−6, −2) as
left lower corner. The edgecolor =′ r′ argument means the edge color is
red, and alpha = 0.2 dictates the transparency of the face color.

We put two blue arrows in the graph. The first arrow points from the input
values x to the softmax activation function. The second arrow points from
the softmax function to the output values y. We also show on the diagram
that the values in the output vector y add up to 100%.

Run the above cell, you'll see a diagram with three rectangle boxes. The
first contains the four values in the input vector x, the second the
mathematical formula of the softmax function, and the third the four values
in the output vector y. Alternatively, you can see it under
/files/ch06/softmax.png in the book's GitHub repository.

6.5 GLOSSARY

• Activation Functions:
Functions in neural networks that are used to determine the output
of neurons in the network. Commonly used activation functions
include ReLU, sigmoid, and softmax.

• ReLU Activation Function:
ReLU is short for rectified linear unit activation function. It returns
the original value if the input is positive, and 0 otherwise.

• Sigmoid Activation Function:
The sigmoid function has the form

It has this nice property: for any value of input x between −∞ and
∞, the output value y is always between 0 and 1. Because of this
property, it is used to model the probability of an outcome.

• Softmax Activation Function:
The softmax function has the form

y =
1

1 + e−x



where x = [x1,x2, . . . ,xK] and y = [y1, y2, . . . , yK] are K-element
lists. Each element in the output vector has a value between 0 and 1.
The elements in the output vector add up to 1. Because of these
properties, we use the softmax activation function to model the
probability distribution of a multiple-category outcome.

6.6 EXERCISES

6.1 Explain what an activation function is. Give three examples of
commonly used activation functions.

6.2 Modify the program in Section 6.1.1 so that the numbers of neurons in
the neural network are [2, 8, 4, 1] instead of [2, 7, 5, 1].

6.3 Modify the cells in Section 6.1.2 so that the neural network contains
three hidden layers with 8, 6, and 5 neurons, respectively. Don't add
an activation function in any layer. See if the predictions form a
nonlinear relationship and explain why the predicted relationship is
still linear even with more hidden layers.

6.4 What is the ReLU activation function?

6.5 Modify the programs in Section 6.2.3 to remove the second hidden
layer in the neural network. Make sure you keep the ReLU activation
function in the first hidden layer. Rerun the Python code in the cells
and see if the predicted relationship is nonlinear.

6.6 What is the sigmoid activation function? Why do we use it as the
activation function when we model binary classification problems?

6.7 What is the softmax activation function? Why do we use it as the
activation function when we model multi-category classification
problems?

y(x) =
ex

∑K
k=1 e

xk
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To be, or not to be: that is the question.
Hamlet

–William Shakespeare

CLASSIFICATION IS one of most important and most
common types of supervised learning problems.
Examples of binary classifications include whether an

email is a spam, whether a credit card transaction is fraudulent, whether a
customer will buy a certain product, or whether a loan application will be
approved…

In this chapter, you'll learn binary classification by classifying images into
two categories: a horse or a deer. You'll build a simple neural network from
scratch for the task. In Chapter 4, we summarized ML in three words:
initialize, adjust, and repeat. You'll follow the three steps to train the neural
network for your binary classification task in this chapter. Specifically,
you'll build a neural network and retrieve the initialized weights in the
model. As you start to train the model using images and their corresponding
labels, the model weights are adjusted to fit the data. You'll see how the
weights and the predictions change as the training progresses.

https://doi.org/10.1201/b23383-7


In the early stages of training, if you feed a picture of a horse into the
model, the predicted probability is about 35%. As the training progresses,
the probability increases steadily since the model gradually learns from the
data. After training, the predicted probability is more than 88%. Similarly,
in the early stages of training, if you feed a picture of a deer into the model,
the predicted probability of it being a deer is around 60%. This probability
increases over the course of training. After training, the predicted
probability is 94%. You'll create an animation to demonstrate how the
model weights and the predicted probabilities change in different stages of
training.

New Skills in This Chapter

Downloading and processing the CIFAR-10 image data
Using a logistic regression for binary classification
Creating and training a neural network for binary classification
Retrieving model weights and predictions from different stages of
training
Creating graphs and animations to show model weights and
predictions
Evaluating binary classification models using accuracy and
confusion matrix

Before you start, open the Jupyter Notebook app in the virtual environment
MLA on your computer. After that, open a blank Jupyter notebook and save
it as ch07.ipynb in the directory /Desktop/mla/ on your computer. Next,
we'll create a subdirectory /files/ch07/ to store files in this chapter. Start a
new cell in ch07.ipynb and execute the following lines of code in it:

You should see a new directory /Desktop/mla/files/ch07/ on your computer.

In addition, you'll need to install the scikit-learn library on your computer to
run logistic regressions and to split data into train and test subsets. First



activate the virtual environment MLA. Run the following command in the
Anaconda prompt (Windows) or a terminal (Mac or Linux):

pip install scikit-learn==1.2.2

or simply run the following line of code in a new cell in ch07.ipynb:

!pip install scikit-learn==1.2.2

You need to restart the Jupyter Notebook app on your computer for the
installation to take effect.

7.1 WHAT IS A BINARY CLASSIFICATION PROBLEM

When the target label is a binary variable with two possible values (such as
0 or 1, yes or no), we call the ML algorithm a binary classification problem.
This is very common in the real-world, ranging from credit card fraud
prediction, two-class image classification, to disease detection. The ML
algorithm first learns the relationship between the input features and the
output label. The algorithm then makes predictions based on input features
and classifies each observation into one of the two categories.

7.1.1 Sigmoid Activation in Binary Classifications

In binary classifications, since the target label is 0 or 1, we predict the
probability that the target variable is of class 1. With complementary
probability, the target is of class 0. In this chapter, you'll use a neural
network to classify an image into either a horse (value 1) or a deer (value
0).

You'll use the sigmoid activation function to squash the output from the last
layer in the neural network (which can take values from −∞ to ∞) to the
range [0,1]. This way, the final output from the neural network can be
interpreted as the probability of the target being class 1 (in our example, the
probability that the image is a horse).

The idea can be illustrated in the graph below. Here we assume a linear
relationship between the input and the output before activation. The inputs
are the raw pixels of an image plus a bias term. The output is the probability



that the image is a horse. We use a neural network with no hidden layer as
our prediction model. We put the sigmoid activation function in the output
layer as explained above.

The Python code in the cell below creates a diagram for the neural network
that we'll use for the binary classification problem in this chapter.



The graph is generated using the matplotlib library. We draw two circles on
the left to represent the input neurons. The first is the bias term and the



second the vector of raw pixels of an image. The input data is then
propagated forward to the output layer based on the weights w and b: the
value in the output layer before activation is wX + b. Since we use sigmoid
activation, the output after activation is

which is a value between 0 and 1, the probability that the image is a horse.

If you run the above cell, you'll see an image binary.png in the folder
/Desktop/mla/ch07/files/ on your computer. The image shows the structure
of the neural network we'll use for binary classification in this chapter.

7.1.2 The Binary Cross-entropy Loss Function

In binary classification problems, the preferred loss function is the binary
cross-entropy function, which measures the average difference between the
predicted probabilities and the actual labels (1 or 0). If a model makes a
perfect prediction and assigns a 100% probability to all observations
labeled 1 and a 0% probability to all observations labeled 0, the binary
cross-entropy loss function will have a value of 0.

Mathematically, the binary cross-entropy loss function is defined as

where ŷn is the estimated probability of observation n being class 1, and yn
is the actual label of observation n (which is either 0 or 1).

Y =
1

1 + e−(wX+b)
,

Binary Cross Entropy =
N

∑
n=1

−[yn × log(ŷn) + (1 − yn) × log(1 − ŷn)]



7.2 PROCESS IMAGE DATA

You'll use CIFAR-10, a popular dataset to train ML and computer vision
algorithms, to learn how to make binary and multiple classification
predictions in this book. Note that TensorFlow now has included CIFAR-10
in its standard dataset so you can load it directly from TensorFlow. In the
Appendix at the end of this chapter, you'll learn how to do that.

However, it's a good idea to learn how to download data in a zip format
from the origin, process it, and visualize it. Along the way, you'll pick up
valuable skills in data science libraries such as NumPy, matplotlib, and
others.

Let's go to Alex Krizhevsky's home page at University of Toronto
https://www.cs.toronto.edu/~kriz/cifar.html to have a look at the dataset.
CIFAR-10 provides 60,000 images in ten different classes: planes, cars,
birds, cats, deer, dogs, frogs, horses, ship, and trucks.

You can manually download the data from the website and unzip it. But
we'll use Python to do all those steps so you can learn how to handle similar
problems in the future.

7.2.1 Download Data

The Python code in the cell below downloads the data and saves the data on
your computer.

We first import the requests library and use the get() method to retrieve the
content of the zip file from the website based on the url provided. We then
use the built-in Python function write() to save the data content to a file on
your computer.

https://www.cs.toronto.edu/


Run the above cell and then go to /Desktop/mla/files/ch07/ and you should
see the zip file cifar-10-python.tar.gz in the folder.

Next, we'll unzip the file and place the content in a local folder, like so:

We use the tarfile library to unzip the file and save the content in the
subfolder /cifar10. The library tarfile is in the Python Standard Library, so
no installation is needed. If you go to the subfolder /file/ch07/cifar10/cifar-
10-batches-py/, you'll see 8 files there. We'll discuss how to use these files
below.

7.2.2 Convert NumPy Arrays to Pictures and Back

Next, you'll learn to convert a group of integers such as 0, 2, 144, or 255
into pictures that you can see on your computer. In the process, you'll
understand how the RGB color model works to create images. You'll also
learn to convert a picture back into a group of numbers in the format of
NumPy arrays.

The Python code in the cell below loads up one batch of data and prints out
the number of pictures under each label.



The CIFAR-10 data we just downloaded are organized in five batches of
training data and one batch of test data, plus a file of meta data, and a
ReadMe file. We open only the first batch for the moment to save time.
However, we'll use all five batches in later chapters. Note that since the data
are bit literals, we need to put letter b in front of the column names when
we load them up. Each batch contains both the data (X) and labels (y), with
10000 pictures. There are ten different labels: 0, 1, …, 9. We count how
many pictures under each label. The results above show that about 1000
pictures are under each label.



Next, we reshape the NumPy arrays that represent these pictures and
visualize one of them.

The picture data, i.e., the Xs, are NumPy arrays in the shape of 3 by 32 by
32. There are three color channels (red, green, and blue), and each picture
has a resolution of 32 by 32 pixels. The data is in a channel-first format, so
we have switched the positions of the 2nd and the fourth axis in the original
data by using the transpose() method in NumPy.

We then use the imshow() method in matplotlib to convert NumPy arrays
into a picture. Run the above cell and you'll see the numbers that represent
the first picture, and they are numbers ranging from 0 to 255. We use the
imshow() method in the matplotlib library to show the first picture in the
dataset. The output shows a picture of a frog.

The RGB Color Model

The RGB color model has three color channels: red, green, and blue.
Hence the name RGB. The value in each color channel ranges from 0 to
255. For example, [0, 0, 0] results in the color black since it lacks any
color; [0, 0, 255] is blue; [255, 255, 0] is a mixture of red and green,



which results in yellow. For more details, see, e.g.,
https://en.wikipedia.org/wiki/RGB_color_model.

7.2.3 Match Pictures with Labels

The labels you just saw are ten numbers from 0 to 9. Next, you'll convert
these numbers into meaningful object names and match them with the
pictures.

Here we use the axis(′off ′) option to turn off the axis so you only see the
pictures. The subplot() method puts the 25 pictures in a 5 by 5 matrix. We
extract the name of each picture, and put it as the title of the picture, so you
can see it on top of each picture here.

If you run the above cell, you'll see a figure as in Figure 7.1. The figure
contains 25 pictures of trucks, frogs, horses, and so on. The figure is saved
on your computer as 25pics.png in the folder /Desktop/mla/files/ch07/.

https://en.wikipedia.org/


Figure 7.1  Sample pictures from the CIFAR-10 dataset

7.3 BINARY CLASSIFICATION WITH A LOGIT REGRESSION

In this section, we'll use a traditional logistic regression to classify images
into horses and deer.

7.3.1 Prepare the Data



A color picture uses three channels: red, green, and blue. Below, you'll
separate the three channels and see what the picture looks like if we use just
one channel instead of three.

The Python code in the above cell goes through the 1000 pictures in the
first batch and selects the ones that are labeled as 4 (deer) or 7 (horse). We
then change the label to 0 (deer) or 1 (horse) so that the target variable is
binary. We do this in order to create a data set to train a binary classification
model.

Next, we select a picture of a horse and a picture of a deer as our examples
to create subplots, like so:



The subplots have two rows and four columns of pictures. The first row are
four pictures of a horse. The first one has all three color channels so it looks
colorful. The last three are the same picture but with only one color
channel. The second row are four pictures of a deer. The first one has all
three color channels while the other three have one color channel each. As
you can see, not much information is lost with just one channel and you can
easily identify them as a horse and a deer. Therefore, we'll use only the first
channel to reduce the data size and training time. However, in later chapters
of this book, you'll use all three channels to train the model so as to have a
more accurate prediction.



Run the above cell and the image channels.png will be saved in the folder
/Desktop/mla/ch07/files/ on your computer.

7.3.2 Train the Logit Model

Next, we use the logistic regression in scikit-learn to train the model. To
avoid overfitting, it's customary to split the data into train and test subsets.
We then train the model using the train set and make the out-of-sample
predictions on the test set.

The Python code below splits the data (X, y) we generated in the last
section into the train set (x _train, y _train) and testing samples (x _
test, y _test). We then use the first color channel of the images in x_train
and x_test and reshape them to a size of (−1, 1024), meaning the NumPy
arrays can have any number of rows and 1024 columns. The processed
images are then saved as X_train and X_test and they are ready to be fed
into our neural network.

We use the train_test_split() method in scikit-learn to split the original
sample into train and test subsets. The argument test_size=0.2 means 80%



of the original sample goes to the train set and the remaining 20% to the test
set. We use the random_state=0 argument to fix the random generator seed
at 0 to make the results reproducible. Without the argument, the sample will
be split differently each time you run the program. We save the data as
train_test.p in the folder /files/ch07/ so that we can use the same data for
training and testing in later chapters.

The output above shows that there are 160 images in the train set and 41 in
the test set. Since we use only one color channel, each image has
32*32=1024 features and we use them to predict whether the image is a
horse or a deer.

Next, we train the logistic regression model by using the train subset we
just created, like so:

Make sure that you put the max_iter=5000 argument when you call the
LogisticRegression() class. This ensures that the model parameters
converge.

The Logit model is now trained. Next, we make predictions in the out-of-
sample test dataset.

7.3.3 Predict Using the Logit Model

Next, we use the trained logistic regression model to make out-of-sample
predictions. We also evaluate the performance of the model.



The predict() method generates a label of either 1 or 0 based on the
predicted probability, using 0.5 as the cutoff. The labels are 1 for horses and
0 for deer.

We use the accuracy score and the confusion matrix to evaluate the
performance of the predictions. The output above shows the confusion
matrix by comparing the predictions with the actual labels. The four values
in the confusion matrix indicate that there are 13 cases of true negatives
(TNs, the image is a deer and the prediction is a deer), 10 cases of true
positives (TPs, the image is a horse and the prediction is a horse), 11 cases
of false positives (FPs, the image is a deer and the prediction is a horse),
and 7 cases of false negatives (FNs, the image is a horse and the prediction
is a deer).

The accuracy is the total number of correct predictions (TPs + TNs) divided
by the total number of images (TPs + TNs + FPs + FNs). The trained Logit
model has an accuracy of around 56.10%.

Confusion Matrix and the Accuracy Score

Both the confusion matrix and the accuracy score are measures of the
performance of a classification model.

The confusion matrix in a binary classification is defined as



where True negatives (TNs) are cases when the label is 0 and the
prediction is also 0; True positives (TPs) are cases when the label is 1
and the prediction is also 1; False negatives (FNs) are cases when the
label is 1 and the prediction is 0; False positives (FPs) are cases when the
label is 0 and the prediction is 1.

The accuracy score is defined as

The numbers in the numerator are correct predictions (TPs+TNs), while
the denominator is the total number of cases.

An accuracy score of 56% is not very high. Since there are only two
classes, if one were to randomly predict, the accuracy score should be
around 50%.

There are at least three reasons for the low accuracy here:

The sample size is small: we use only 160 pictures to train the model.
Therefore, the amount of information for the model to learn from is
limited.
The model is not sophisticated enough. We assume a simple linear
relation between the image pixels and the output (before squashing the
output into the range of 0 and 1).
We use only one channel of the image, and some information is lost in
the process.

We'll address all three weaknesses in later chapters. The purpose of this
chapter is to introduce you to the basics of binary classifications.

Confusion Matrix = [ ],
TNs FPs

FNs TPs

Accuracy =
TPs + TNs

TPs + TNs + FPs + FNs



7.4 BINARY CLASSIFICATION WITH A SIMPLE NEURAL
NETWORK

Next, we'll use a neural network with no hidden layers to make predictions
on the same dataset. Theoretically, it works the same as a Logit regression.

After that, we'll create a diagram of the neural network, with weights and
biases, as well as the predicted probabilities on a picture of a horse, and on
a picture of a deer, separately.

Finally, we'll record the model weights during the training process, and
demonstrate how the predictions change as the training progresses.

7.4.1 Train and Test Using a Neural Network

The script below builds a simple neural network using the TensorFlow
library and trains the model using the train subset we just generated.

Here we fix the random seed generator in TensorFlow to state 0 so that the
results are reproducible. We use the sequential model in Keras to create the
simple neural network. We use the Aadm optiomizer and train the model for
125 epochs using the train set (X _train, y _train).

Run the above cell and wait till the training is finished. Next, we make
predictions based on the trained neural network.



We use the predict() method to make predictions on the test set (X _test).
Note that the prediction from the model is a continuous number between 0
and 1. We need to convert the prediction to a 1 or 0 based on a cutoff value
of 0.5 since there are roughly the same number of horses and deer in our
sample. The output above shows the confusion matrix and the accuracy
score from the predictions of the trained neural network.

The accuracy score is now 58.54%, better than that from the Logit
regression. The confusion matrix looks different. The neural network makes
13 TP predictions and 11 TN predictions. You may wonder, why the
differences in predictions between the Logit regression and the neural
network? There are at least two main reasons. The first is that each model
initializes parameters differently so the models may converge to different
values. Second, and more importantly, different variants of gradient descent
algorithms are used as optimizers in the Logit regression and in the neural
network above. The Logit regression in scikit-learn uses the L-BFGS
optimizer, while the neural network above uses the Adam optimizer.

7.4.2 Focus on Two Examples

Next, we'll focus on a horse and a deer in the test set and see how the
predicted probabilities on them change over the course of training.



The 10th picture in the test set is a horse, and the 3rd one is a deer. If you
run the above cell, you should see two pictures, one with a horse in it and
the other a deer.

7.4.3 Diagrams of the Network and Predictions

We now look under the hood and dive into the neural network and see how
the prediction model works. Specifically, we'll keep all the data in the
intermediate steps of the training process. We obtain the weights of the
model and the predicted probabilities on the above two pictures before
training. We then again obtain the information after 5 epochs, 10 epochs, …
and 125 epochs.



The Python code in the above cell first generates two lists ws and bs to store
the weights and bias terms during the training process. Similarly, the list
epochs is used to store the epoch number. The lists p_horse and p_deer will
store the predicted probabilities on the example horse and deer images.

We then re-create the neural network and retrieve the weights and
probabilities before training begins. We use model.layers[-1].get_weights()
to retrieve the weights in the last layer of the neural network.

Next, we train the model for five epochs at a time, and record information
at each stage.



After every five epochs of training, we retrieve five pieces of information:
the weights, the bias term, the epoch number, and the predicted probabilities
on the example horse and deer images. We store these five pieces of
information in the following five lists: ws, bs, epochs, p_horse, and p_deer.

Next, we'll generate 26 pictures of the intermediate stages of training. In
each picture, we'll draw the neural network, the weights and the bias term at
that stage, the epoch number, and the predictions.

The code to generate the 26 pictures is too long. To save space, we define a
function in the local utils package and call the function below to generate
the pictures. Specifically, we define a horse_pic() function in the file
ch07util.py inside the utils local package. Go to the book's GitHub
repository, download the file ch07util.py under /utils/ and save it in the
folder /Desktop/mla/utils/ on your computer. As we discussed in Chapter 1,
you should save an empty file _ _ ini_ _.py inside the folder /utils/ so that
Python knows that utils is a local Python package.

If you open the file ch07util.py, you'll see how the function horse_pic() is
defined in the file. The function draws 26 pictures at different stages of
training and saves a picture on your computer at each stage.

Run the following lines of code in the cell below:



We first import the horse_pic() function from the local ch07util module
inside the local utils package that we defined earlier. We then call the
horse_pic() function to generate the 26 pictures. The horse_pic() function
takes five arguments: the first four are from the five lists we generated
above, and the last argument is the example horse image x_test[9].

After running the above cell, if you go to the folder /files/ch07/ on your
computer, you'll see the 26 pictures generated by the program above. For
example, if you open the picture p_horse0.png, you'll see the weights of the
model, plus the model's prediction on the horse picture, before training
starts. The picture shows that before training, the model assigns a 34.74%
chance that it's a horse. In contrast, if you look at the p_horse25.png, you'll
see the weights of the model, plus the model's prediction on the horse
picture after 25 rounds (i.e., 125 epochs) of training. The probability has
increased to 88%, a fairly accurate prediction.

7.4.4 Animate the Training Process

Better yet, you can create an animation of the training process and see how
the weights and predicted probabilities change over the course of training.

The Python code below combines the 26 png files into a gif file using the
imageio library.

Run the above cell, and you'll see an animation p_horse.gif saved in the
folder /Desktop/mla/files/ch07/ on your computer. The animation is also
available under /files/ch07/ in the book's GitHub repository.

7.4.5 Animate the Predictions for the Deer



We can also animate how the predicted probability for the deer image
changes over the course of training.

First, we define a function deer_pic() and call it to generate 26 pictures. If
you open the file ch07util.py inside the utils local package, you'll see the
definition of the function. The function draws 26 pictures at different stages
of training and saves a picture on your computer at each stage. The pictures
focus on the predicted probabilities for the deer image instead of the horse
image.

Run the following lines of code in the cell below:

We first import the deer_pic() function from the local ch07util module
inside the local utils package that we defined earlier. We then call the
deer_pic() function to generate the 26 pictures. The last argument in the
deer_pic() function is the example deer image we have selected, x_test[2].

After running the above cell, if you go to the folder /files/ch07/ on your
computer, you'll see the 26 pictures generated by the cell above. For
example, if you open the picture p_deer0.png, you'll see that before
training, the model assigns a 39.76% chance that the picture is a horse. This
is equivalent to predicting that the picture is a deer with a 60.24%
probability. In contrast, if you look at the picture p_deer25.png, you'll see
that the model now places a 94.08% probability that the picture is a deer, a
very accurate prediction!

Next, we can create an animation to show the whole process

The cell above combines the 26 png files into a gif file using the imageio
library. Run the above cell, and you'll see an animation p_deer.gif in the



folder /Desktop/mla/files/ch07/ on your computer. The animation is also
available under /files/ch07/ in the book's GitHub repository.

7.5 COMBINE THE ANIMATIONS

Now we can combine the animations for the horse and for the deer, and put
them side by side for comparison. We'll also use subplots to compare the
two predictions.

7.5.1 Animate the Two Predictions

To combine two animations into one, we use the concatenate() method in
NumPy. The argument axis=1 in the method places the two frames side by
side horizontally at each stage of training, like so:

We start a for loop to iterate through different stages of training. In each of
the 26 iterations, we first open a picture of the prediction for the horse
image that we generated earlier and convert it into NumPy arrays. We then
open a picture of the prediction for the deer image and use the
concatenate() method in NumPy to combine the two pictures horizontally.
The combined frames are stored in a list frames. We then use the imageio
library to convert the combined frames into an animation.

If you run the above cell, you'll see an animation p_horse_deer.gif in the
folder /Desktop/mla/files/ch07/ on your computer. The animation is also
available in the book's GitHub repository under /files/ch07/.

7.5.2 Subplots



While it's easy to view animations on electronic devices, it's difficult to
view them in a hard copy of a book. Instead, we'll create a graph with
multiple subplots to illustrate different stages of training. Specifically, you'll
create a figure with eight subplots that form a four by two grid. The two
columns are for horse and deer image predictions, respectively. The four
rows represent four different stages of training.

The Python code in the above cell first creates a list rows to store the four
stages of training that we want to highlight. The list cols contains the two
prefixes that we'll use to retrieve the saved images: horse and deer. We then
iterate through the four rows and two columns to draw the eight subplots
one by one. We use the method subplots_adjust() to adjust the horizontal
and vertical spaces between subplots.

Run the above cell and go to the folder /Desktop/mla/files/ch07/ on your
computer, you'll see the subplots horsedeer.png, as shown in Figure 7.2.



Figure 7.2  How the predictions change during training process

7.6 BINARY CLASSIFICATION WITH A DEEP NEURAL
NETWORK



Next, we'll add two hidden layers to the neural network with ReLU
activations. We'll use the same train set to train the new network.

The Python code in the cell below creates the new neural network, trains
the model, and prints out the model summary.

The output above shows that the new neural network has three dense layers
in it, with 1024, 42, and 1 neurons in them, respectively. Since the input
shape is 32*32=1024 and the first layer has 1024 neurons in it, there are a
total of 1024*(1024+1)=1049600 parameters in the first layer (the +1 part
represents the bias term in the first layer). The second layer has
(1024+1)*32=32800 parameters. The third layer has 32+1=33 parameters.
The model has a total of 1082433 trainable parameters.

We'll make predictions using the new model on the test set X_test, like so:



The above results show that the new model has an accuracy of 60.98%, a
small increase from the 58.54% accuracy we had earlier when we don't use
hidden layers. The results show that using more hidden layers to generate
non-linear relations between inputs and outputs helps the prediction in this
case.

7.7 APPENDIX: LOAD CIFAR10 FROM TENSORFLOW
DIRECTLY

You can also choose to load up the CIFAR10 dataset directly from
TensorFlow. Here is how.

The dataset has four parts. We use the assert command above to make sure
that the train subset has 60000 images in it and the test subset has 10000
images in it.

Next, we look at the first two images, like so:



The output shows that the first picture is a frog and the second a truck.

7.8 GLOSSARY

• Accuracy Score:
In binary classification, the accuracy score is the percentage of
correct predictions among all cases.

• Binary Classification:
Binary classification is the machine learning algorithm with the task
of classifying samples into one of the two categories.

• Binary Cross Entropy:
A loss function used to measure average difference between the
predicted probabilities of an outcome and the actual labels (1 or 0).
It's the preferred loss function in binary classifications.

• Binary Variable:
A variable with two possible values, such as 1 or 0, or Yes or No.

• Confusion Matrix:
In binary classification, the confusion matrix is a two by two matrix
with the numbers of true negatives, true positives, false positives,
and false negatives in the four positions, respectively.

• False Negatives:
False negatives (FNs) are cases when the label is 1 and the
prediction is 0.

• False Positives:
False positives (FPs) are cases when the label is 0 and the prediction
is 1.

• Logistic Regression:
A binary classification method that uses regression analysis. It
assumes a linear relation between features X and the label y before



activation. It then uses the logistic function to transform the value to
a probability, as follows:

• The RGB Color Model:
The color model with three color channels: red, green, and blue. The
value in each channel ranges from 0 to 255.

• True Negatives:
True negatives (TNs) are cases when the label is 0 and the
prediction is also 0.

• True Positives:
True positives (TPs) are cases when the label is 1 and the prediction
is also 1.

7.9 EXERCISES

7.1 What is binary classification? Give two examples.

7.2 What is the binary cross entropy loss function? What's the formula to
calculate it?

7.3 Modify the code in the second cell in Section 7.2.2 to print out the
NumPy array that represents the tenth picture in the dataset X. Also
use matplotlib to show the picture in a graph.

7.4 Modify the code cell in Section 7.2.3 to show the 26th to the 50th
picture in the dataset X.

7.5 Explain what the confusion matrix is in binary classification.

7.6 What are true negatives, true positives, false negatives, and false
positives?

7.7 Explain what the accuracy score is in binary classification.

7.8 Add a third hidden layer with 16 neurons to the deep neural network
just before the output layer in Section 7.6. Rerun the code cells in the
section and see if there is any improvement in predictions.

y =
1

1 + e−(wX+b)
.
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The pooling operation used in convolutional neural networks is a big
mistake, and the fact that it works so well is a disaster.

–Geoffrey Hinton

USE OF Convolutional Neural Networks (CNNs) has greatly
improved the power of deep neural networks (DNNs). CNNs have
put deep learning at the cutting edge of artificial intelligence.

Because of CNNs, deep learning is now the most promising field in
machine learning.

CNNs use a different type of layers than dense layers. A convolutional layer
treats an image as a two-dimensional object and finds patterns on the image.
It then associates these patterns with the image labels. This significantly
improves the predictive power of the model. Even though CNNs are mainly
used for image classification and computer vision, they are also widely used
in other tasks such as speech recognition, video classification, and other
data analysis problems.

In this chapter, you'll learn the basic concepts related to a convolutional
layer such as the number of filters, kernel size, zero-padding, strides…
Better yet, you'll learn to create animations to show step by step how to
apply a three by three filter on a three by three image with zero-padding and

https://doi.org/10.1201/b23383-8


a stride of one. Similarly, you'll also apply a two by two filter on a six by
six image without zero-padding and with a stride of two. Along the way,
you'll have a deep understanding of how CNNs work and learn to use them
for pattern recognition and feature extraction. Later in this book, you'll use
these skills to design intelligent game strategies by treating game boards as
a two-dimensional image and extra spatial features from them.

New Skills in This Chapter

Applying filters on images and performing convolution operations
Understanding kernel size, zero-padding, and strides
Creating and training neural networks with convoluational layers
Getting to know the max pooling layer
Applying convolutional and max pooling layers in image
classifications

Before you start, open the Jupyter Notebook app in the virtual environment
MLA on your computer. After that, open a blank Jupyter notebook and save
it as ch08.ipynb in the directory /Desktop/mla/ on your computer. Next,
we'll create a subdirectory /files/ch08/ to store files in this chapter. Start a
new cell in ch08.ipynb and execute the following lines of code in it:

8.1 WHAT ARE CONVOLUTIONAL NEURAL NETWORKS
(CNNS)?

Convolutional layers use filters (also called kernels) to find patterns on the
input data. A convolutional layer can automatically detect a large number of
patterns and associate certain patterns with the target label. This is useful in
both image classifications and game strategy developments in this book.

For simplicity, we'll use game boards as examples to explain how
convolutional layers work. Game boards have relatively fewer pixels
compared to images. Therefore, it's easier for us to apply filters on them and



perform convoluation operations. In particular, we'll use the Tic Tac Toe
game board, something everyone knows, as our example in this chapter. We
can focus on certain patterns on a game board that we know are associated
with game outcomes (vertical, horizontal, or diagonal lines in Tic Tac Toe
and Connect Four games, for example). Later in this book, we'll design
intelligent game strategies for Tic Tac Toe and Connect Four by using
CNNs to extract spatial features on game boards. You'll also use CNNs to
detect patterns on the screenshots of Atari games such as Breakout and
Space Invaders and design deep Q-learning game strategies.

8.1.1 Our Running Example

Let's say that the input data is a Tic Tac Toe game board. For simplicity,
let's assume the board has three Xs in the top row while the other six
squares are all empty. Of course, in a real Tic Tac Toe game, Player O takes
turns too so you won't see such a board in a real game. But let's simplify
things to make the calculations simple. We need to encode the game board
into numbers so that the Python program can process it. We use 1 to denote
a square on the board with an X in it, -1 a square with an O in it, and 0 an
empty square.

Run the code in the cell below.

We represent the board with a three by three matrix: the first row has three
ones in it since they are occupied by Xs. The remaining positions are all
zeros since they are all empty.

We use reshape(-1,3,3,1) to reshape the matrix to a four dimensional array:
the first dimension represents how many images we have; the second and
third dimensions are the width and height of the image. The last dimension
is the color channel. For a color picture, there are three channels (RGB, i.e.,
red, green, and blue), but here we put the number of channels as one for
simplicity.



8.1.2 A Horizontal Filter

Below, we'll create a horizontal filter with a size of three by three. The
middle row has values one, while the other two rows have zeros in them.
Run the Python code in the cell below to create a horizontal filter:

A horizontal filter highlights the horizontal features in the image and blurs
the rest. We'll apply the three by three horizontal filter on the Tic Tac Toe
game board as follows by using the conv2d() function from TensorFlow:

In the output, the values are large in the first row. The values are all 0 in the
other two rows. So the horizontal filter has correctly detected the horizontal
pattern in the first row of the game board.

But how exactly does the conv2d layer generate the output through the
filter? We'll explain in detail below.

The game board is a three by three matrix. The padding=“SAME” argument
in the conv2d() function adds 0s around the input image so the padded
image now is a five by five matrix. To draw the padded image in matplotlib,
we'll first define a few helper functions.

The first helper function, sqr(), draws squares at a given location in a figure
that's generated by matplotlib. The definition is as follows:



The sqr() function takes seven arguments. The first argument, ax, is the
subplot in which to place the square. The second and third arguments are
the x- and y-coordinates of the bottom left corner of the square. The size
argument is the side length of the square, with a default value of 1. The last
three arguments are line style, color, and line width of the square, with
default values of a dash, gray, and one, respectively.

The next helper function, padded_board(), draws the five by five padded
board. The definition of the function is as follows:

The padded_board() function uses the sqr() function we just defined. It first
draws a three by three grid with solid black lines. It then draws a five by
five dotted gray grid on top of the original board. Finally, it places numbers
1 or 0 inside each of the 25 squares.



With the two helper functions defined, we can now draw the padded board
as follows:

If you run the above cell, you'll see a five by five table, with the edge
squares all in gray. The inside three by three squares have solid lines. The
outside squares of the padded image all have zeros in them, hence the name
zero-padding.

Terminology in Convolutional Layers

Filters are also called kernels, and they come in different sizes. We'll use
filters of sizes 3 by 3 and 2 by 2 in this chapter. Zero-padding means we
put 0s around the edges of the image. Stride in CNN indicates how many
pixels we move the filter in each step when we scan the filter over an
image. A stride of 1 means the filter shifts one pixel to the right or down
at a time on the image. You'll see examples of stride=1 and stride=2 in
this chapter.

With zero-padding, the 3 by 3 image now becomes a 5 by 5 image. We then
apply the 3 by 3 filter on the image. With a stride of 1, the filter will scan
cover the image 9 times. We can create an animation to show how it works.

The Python code in the cell below first defines a scan() function to generate
an image in once location. We then call the function nine times to cover
nine different areas on the padded image, like so:



The scan() function first draws the padded board. It then focuses on one
particular area, (h,v), on the padded board, where h is the number of times
the filter moved to the right and v the number of times the filter moved
down. For example, (h=0,v=0) is the top left corner, while (h=2,v=2) the
bottom right corner. The function then applies the filter on the area by
drawing a red 3 by 3 table over the area.

Once the function scan() is defined, we iterate different values of h and v
and call the function nine times to cover all nine areas on the padded board.
If you run the code in the above cell, nine pictures scan00.png, scan01.png,
…, scan22.png will be saved in the folder /Desktop/mla/files/ch08/ on your
computer.

Next, we'll combine the nine pictures into an animation as follows:



If you open the file filter.gif in your local folder, you'll see an animation of
the red 3 by 3 filter scanning on different areas of the padded board.

8.2 CONVOLUTION OPERATIONS

Exactly what is a convolutional operation? What is the output when we
apply a filter on an image? We'll answer these questions in this section.

8.2.1 Calculations in A Convolution Operation

In the running example above, we use a 3 by 3 horizontal filter, which has
values

We apply the filter on the game board, which has values

0 0 0

1 1 1

0 0 0

1 1 1

0 0 0

0 0 0



Since we use zero-padding, the padded board is a five by five matrix with
the following values:

We end up with an output of

When the filter scans the top left corner of the padded board, the covered
area represents a 3 by 3 matrix with values

The convolution operation finds the tensor dot of the two tensors (in this
case, one tensor is the filter, and the other is the covered area). Specifically,
the convolution operation performs element-wise multiplication in each of
the nine cells, then adds up the values in the nine cells, like so:

0 0 0 0 0

0 1 1 1 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

2 3 2

0 0 0

0 0 0

0 0 0

0 1 1

0 0 0

tensor_dot( , ) = = 2

0 0 0

1 1 1

0 0 0

0 0 0

0 1 1

0 0 0

0 × 0+ 0 × 0+ 0 × 0+

0 × 1+ 1 × 1+ 1 × 1+

0 × 0+ 0 × 0+ 0 × 0



To verify the above result, we can use the tensordot() function in numpy to
calculate the output, like so:

The result is also 2; this is why the value at the top left corner of the output
matrix is 2.

Next, we use the same method to calculate the value in all nine cells of the
output matrix. First, we generate a padded board



We then move the filter over the padded board from left to right and from
top to bottom to cover the nine areas. In each area, we conduct the
convolution operation by calculating the tensordot value, like so:

As you can see, the output matrix generated using NumPy is the same as the
output matrix generated from the conv2d() function in TenforFlow.

Next, we'll create an animation on how the output matrix is generated step
by step.

8.2.2 Animate the Convolution Operations

We'll create an animation of the convolution operations when the 3 by 3
horizontal filter is applied on the padded board.

First, we'll create several functions to draw different features on a figure to
illustrate how the convolution operations work.

The first function draw_text(), draws text in the figure to state that we are
applying a 3 by 3 filter on a 3 by 3 image with zero padding and a stride of
1. Run the Python code in the cell below so that the function can be called
later when we create figures.



The second function, draw_output_matrix(), creates a three by three table at
the lower right corner of the figure. The values in the table are from the
output matrix we generated above in the last subsection.

The third function, draw_filter(), creates a three by three table at the top
right corner of the figure. The values in the table are from the horizontal
filter we used above.

The fourth function, apply_filter(ax, h, v), applies the horizontal filter to an
area on the padded board. It draws a 3 by 3 red table to represent the filter
in a certain area on the board. The function apply_filter(ax, h, v) takes three
arguments. The first argument, ax, is which axis of the figure to apply the



filter. The second and third arguments, h and v, determine where on the
padded board to apply the filter. For example, when h=0 and v=0, we apply
the filter to the top left corner; when h=1 and v=1, we apply the filter to the
middle center area.

Next, we define the main function, slide(h,v). The function slides over the
padded board from left to right and from top to bottom to scan nine areas.
In each area, it creates three pictures. In the first picture, with the suffix
step1, it draws how the filter is applied to an area on the padded board. In
the second picture, with the suffix step2, it draws two arrows pointing to the
corresponding cell in the output matrix. In the third picture, with the suffix
step3, it highlights the corresponding value in the output matrix.

The function slide(h,v) is defined as follows:



Make sure you have run all the preceding Python cells so that the functions
sqr(), draw_text(), draw_output_matrix(), draw_filter(), apply_filter(), and
slide() are all defined.

Next, we'll call the slide(h,v) function with different values of h, v to cover
nine areas on the padded board to generated 27 pictures, like so:

Run the above cell, and you'll see 27 pictures, slide00step1.png,
slide00step2.png,…, slide22step3.png, saved in the folder



/Desktop/mla/files/ch08/ on your computer.

Next, we'll combine the 27 pictures into a gif file so that we can create an
animation.

Run the above cell and you'll see the animation slidefilter.gif in the folder
/Desktop/mla/files/ch08/ on your computer. It has 27 frames and illustrates
how the filter slides over the padded board to cover 9 different areas and
generates the nine values in the output matrix.

8.2.3 Subplots

We also create a figure with eight subplots to include in the hard copy of the
book. Specifically, we focus on step 3 of the above 27 pictures. We omit the
central area so that we have eight pictures to form a four by two grid in the
figure.



Figure 8.1 has eight subplots in it. The first one illustrates the value in the
top left corner of the output matrix. The rest seven subplots illustrate how
the values in the other seven cells in the output matrix are generated. Again,
we omit the middle center value in order to form a four by two grid in the
figure.



Figure 8.1  A horizontal filter applies on a padded image of three by three

8.3 STRIDE AND PADDING

In the example we just saw, we use zero-padding and a stride of one. Next,
we'll discuss what happens if we don't use zero-padding and change the
stride size to a value greater than one.

8.3.1 A Filter without Padding and a Stride of 2

We'll apply a two by two diagonal filter on a six by six image without zero-
padding. We'll set the stride size to 2.

The code cell above defines the diagonal filter and the six by six image. A
diagonal filter finds out and highlights the diagonal features in the image.
We'll apply it on the 6 by 6 image as follows:

The argument stride=2 in the conv2d() function means the filter moves two
pixels each step. The padding=”VALID” argument means there is no zero-



padding around the image. Therefore, there will be nine covered areas when
the two by two diagonal filter is applied on the image. We can create an
animation to show how it works.

8.3.2 Animate the Diagonal Filter

First, we define the function stride(h,v) to show how the two by two filter
scans over nine different areas (h,v) on the image. The arguments h and v
indicate how many steps the filter has moved to the right and to the bottom,
respectively, from the top left corner. The function stride(h,v) is defined as
follows:

Next, we'll call the stride(h,v) function with different values of h, v to cover
nine areas on the six by six image to generated nine pictures, like so:

Run the above cell, and you'll see nine pictures, stride00.png,
stride01.png,…, stride22.png, in the folder /Desktop/mla/files/ch08/ on



your computer.

We can combine the pictures into an animation as follows:

If you open the file stride.gif in your local folder, you'll see an animation of
the two by two diagonal filter moving through nine areas on a six by six
image. The filter moves two pixels to the right or to the bottom each time it
moves.

8.3.3 Animate the Diagonal Filter Convolution Operation

Next, we'll create an animation on how the output matrix is generated step
by step when the two by two diagonal filter is applied on the six by six
image.

Specifically, we first define a function stride_steps(), which is similar to the
slide() function we defined previously in this chapter. The function is called
to cover nine areas on the six by six image. In each area, the function
creates three pictures. In the first picture, with the suffix step1, it draws how
the filter is applied to an area. In the second picture, with the suffix step2, it
draws two arrows pointing to the corresponding cell in the output matrix. In
the third picture, with the suffix step3, it highlights the corresponding value
in the output matrix.

To save space, we define the function stride_steps() in the local utils
package. Go to the book's GitHub repository, download the file ch08util.py
under /utils/ and save it in the folder /Desktop/mla/utils/ on your computer.
If you open the file ch08util.py, you'll see the exact definition of the
function stride_steps().
Next, we call the stride_steps() function with different values of h, v to
cover nine areas on the six by six image to generate 27 pictures:



Run the above cell, and you'll see 27 pictures, stride00step1.png,
stride00step2.png,…, stride22step3.png, saved in the folder
/Desktop/mla/files/ch08/ on your computer.

Next, we'll combine the 27 pictures into a gif file so that we can create an
animation.

After running the above cell, you'll see the animation stridesteps.gif in the
folder /Desktop/mla/files/ch08/ on your computer. It has 27 frames and
illustrates how the two by two filter scans over the six by six image to cover
9 different areas and generates the nine values in the output matrix.

8.3.4 Subplots for Strides

We also create a figure with eight subplots to include in the hard copy of the
book. Specifically, we focus on step 3 of the above 27 pictures. We omit the
central area so that we have eight pictures to form a four by two grid in the
figure.



Figure 8.2 has eight subplots in it. The first one illustrates the value in the
top left corner of the output matrix. The rest seven subplots illustrate how
the values in the other seven cells in the output matrix are generated.



Figure 8.2  How a diagonal filter applies on an image

8.4 COMBINE THE TWO ANIMATIONS



Next, you'll put the two animations, slidefilter.gif and stridesteps.gif, side by
side in one single animation. We'll use the concatenate() function from
NumPy to combine two frames into one in each of the 27 stages of the two
animations.

8.4.1 Combine the Animations

If you run the above code cell and open the file slide_stride.gif in your local
folder, you'll see an animation of the two different filters scanning over two
images side by side in each frame.

8.5 MAX POOLING

After we process the images with convolutional layers, we can also use the
MaxPooling2D layer to further highlight patterns by taking the maximum
value over an input window.

Recall that in the last section, after we apply a 2 by 2 diagonal filter on a 6
by 6 image, the output is a 3 by 3 matrix. We can apply a max_pool2d layer
on the output and see what the output looks like:



After we apply the two by two max pooling filter on the three by three input
matrix, the outcome is a two by two matrix. Here is how it works:

The two by two max pooling filter first scans the top left corner of the
matrix outputs, which has four numbers [[1, 0], [1, 0]]. The maximum
number among the four cells is 1, hence the value 1 in the top left
corner of the pooled_outputs matrix.
The max pooling filter then scans the top right corner of outputs,
which has four numbers [[0, 2], [0, 1]]. The maximum number among
the four cells is 2, hence the value 2 in the top right corner of the
pooled_outputs matrix.
The max pooling filter scans the bottom left corner of outputs, which
has four numbers [[1, 0], [2, 1]]. The maximum number is 2, hence the
value 2 in the bottom left corner of the pooled_outputs matrix.
The max pooling filter finally scans the bottom right corner of outputs,
which has four numbers [[0, 1], [1, 0]]. The maximum number is 1,
hence the value 1 in the bottom right corner of the matrix after max
pooling.

In the opening quote of this chapter, Professor Geoffrey Hinton thinks that
the max pooling is a disaster because valuable information is lost in the
process of max pooling. While it is true that only a fraction of the
information is used after max pooling, it helps the model to see the big



picture and abstract away from unnecessary details. Otherwise, the model
gets lost in the jungle of too much information. A good analogy is how a
map works. A map intentionally leaves out details in the landscape so users
can focus on the larger picture of the landscape and find their way.
Similarly, by ignoring small details in the images, the deep learning
algorithm can detect big picture patterns and identify the objects in the
image.

8.6 BINARY CLASSIFICATIONS WITH CONVOLUTIONAL
LAYERS

Now that you know how convolutional layers work, we'll apply them (along
with max pooling layers) to the binary classification problem outlined in
Chapter 7.

To compare apples with apples, we'll use the same input data to train the
model and to make predictions. We'll then compare the confusion matrix as
well as the accuracy scores in the out-of-sample testing.

First, we load up the data set we generated in Chapter 7:

We use the Keras API to create a new deep neural network to train the
model. The neural network has two CNN layers and two max pooling
layers. After that, we flatten the output from a two-dimensional matrix to a
one-dimensional vector and feed the data into a dense layer with 128
neurons.



We train the model for 125 epochs and save the model in an h5 file in case
you want to make predictions later using the trained model.

Now that the model is trained, we can look at the accuracy of the model
during the training process.

If you run the above code cell, you'll see a graph of the accuracy of the
model predictions on the in-sample data (X_train) and the out-of-sample
data (X_test). The graph shows that the accuracy in the in-sample
predictions reaches 100% after about 50 epochs, possibly due to overfitting.
The accuracy in the out-of-sample predictions is close to 70% after about
70 epochs.



Below, we print out the confusion matrix and the accuracy score of the out-
of-sample predictions.

The confusion matrix shows that the new model now predicts 17 true
negative, 11 true positives, 7 false positives, and 6 false negatives. The
accuracy score is 68.29%.

This is quite an improvement over the predictions in Chapter 7, when we
used only dense layers in the neural network. If you recall, the accuracy
score with only dense layers is 60.98%. The results show that convolutional
layers and max pooling layers help improve the performance of the ML
model.

8.7 GLOSSARY

• Convolutional Neural Network (CNN):
A class of neural networks with at least one convolutional layer. The
network is able to detect spatial patterns in the input data.

• Convolution Operation:
A mathematical operation between two matrices to show how the
shape of one matrix is modified by the other.



• Convolutional Layer:
A layer of neurons that forms the main building block of a
convolutional neural network. The convolutional layer uses filters to
scan over different parts of the input data to detect patterns.

• Filter:
Also called a kernel. A matrix with a certain size that moves over
the input data to extract features.

• Max Pooling:
An operation to calculate the maximum value for patches of a
feature map.

• Stride:
Number of pixels to move in each step when the filter moves over
the input data.

• Zero-Padding:
The process of adding zeros around the edges of the input matrix.

8.8 EXERCISES

8.1 Explain what a convolutional neural network is.

8.2 What is a filter? Explain the filter size, zero-padding, and stride.

8.3 Modify the code in Section 8.1.2 so that you apply a three by three
vertical filter with values

to the same three by three padded game board. Write down the output
matrix before running the code cells. Then check if your answer is the
same as the results from running the code cells.

8.4 Continue with the previous question. Modify the code cell in Section
8.2.1 to calculate the output matrix using the tensordot() function in

0 1 0

0 1 0

0 1 0



NumPy. Verify that the result is the same as that from the previous
question when you use the conv2d() function from TensorFlow.

8.5 Modify the second code cell in Section 8.3.1 so that you use zero
padding and a stride of 1. Write down the output matrix before
running the code cell. Then check if your answer is the same as the
output from running the code cell.
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Learning to choose is hard. Learning to choose well is harder. And learning
to choose well in a world of unlimited possibilities is harder still, perhaps

too hard.
The Paradox of Choice: Why More Is Less

–Barry Schwartz

IS QUITE often that we need to classify instances into more than two
categories in our lives. After you bought something from Amazon, you
rate your purchase as one star, two stars,… and all the way to five stars.

Financial analysts typically make a recommendation of buy, sell, or hold to
investors on a particular stock. A book review can be positive, negative, or
neutral… In ML, these are called multi-category classifications.

When the target label is a multi-category variable with more than two
possible values (such as 0, 1, or 2, buy, sell, or hold), we call the ML
algorithm a multi-category classification problem. In this chapter, you'll
learn to classify images in CIFAR-10 into one of the ten labels. To do that,
you'll first learn different image augmentation techniques such as rotations,
width and height shifts, horizontal flips, and so on. You'll also learn the

https://doi.org/10.1201/b23383-9


preferred loss function and activation function to use in multi-category
classifications. You'll use a deep neural network with augmentations and
convolutional layers to make accurate predictions of the images.

You'll use multi-category classifications often in this book. For example,
you'll predict the game outcome (which can be either a win, a loss, or a tie)
of Tic Tac Toe or Connect Four based on board positions. You'll also predict
the best move in Atari games (moving left, moving right, firing…). Relative
to binary classifications, multi-category classifications are more difficult in
the sense that the chance of making a correct prediction is smaller. While
the unconditional probability of making the right prediction is 50% in
binary classifications, that probability decreases to just 10% in a
classification with ten different types of target labels. The opening quote of
this chapter by Barry Schwartz summarizes the difficulty of making the
right predictions when the number of choices is large [20].

After you finish this chapter, you'll be able to create an animation to show
how the predictions of the model change when the training progresses. On
the left of the animation, you'll see that before training, the deep neural
network assigns a 12.17% probability to a truck image that it is a truck.
After 125 epochs of training, the prediction from the model changes to
98.76%. On the right, you see that the model's predictions on a frog image
are 8.78% and 99.86% that it is a frog before and after training,
respectively.

New Skills in This Chapter

Augmenting images through rotations, shifts, and flips
One-hot encoding labels
Choosing activation and loss functions in multi-category
classifications
Training, testing, and evaluating a deep neural network for multi-
category classifications

Before you start, open the Jupyter Notebook app in the virtual environment
MLA on your computer. After that, open a blank Jupyter notebook and save
it as ch09.ipynb in the directory /Desktop/mla/ on your computer. Next,



we'll create a subdirectory /files/ch09/ to store files in this chapter. Start a
new cell in ch09.ipynb and execute the following lines of code in it:

9.1 IMAGE AUGMENTATIONS

Image augmentations work by modifying the original training data in order
to have better predictions. For example, if you perform a horizontal flip on
a picture of a horse, it's a mirror image of the original picture but it's still a
horse. Similarly, if you tilt a picture of a cat 45 degrees clockwise or
counterclockwise, it is still a cat. Image augmentations therefore provide
more training data for the model to learn from. This, in turn, improves the
performance of the ML model.

The Keras API in TensorFlow has several built-in image augmentation
techniques that we can readily use to improve the prediction accuracy.
You'll learn a few examples here.

9.1.1 The Keras Image Generator

The Keras API documentation site, https://bit.ly/3OWB6S4, provides
details on the ImageDataGenerator() method, which generates batches of
tensor image data with augmentations. The site provides the following
sample code on how to generate augmented image data

https://bit.ly/3OWB6S4


The above code uses four different augmentation methods: rotation, width
shift, height shift, and horizontal flip. If you rotate a picture of a horse 20 or
30 degrees clockwise or counter clockwise, it's still a horse. By doing this,
you feed more pictures to the model and this improves the model's ability to
identify an object. You can also shift the image vertically up or down, or
horizontally to the left or to the right, to augment the image. A horizontal
flip means that you flip a picture horizontally to create a mirror image of
the original picture.

9.1.2 Visualize Image Augmentations

You can go to the book's GitHub repository to download a sample image of
a horse in the folder /files/ch09/. Save the image as horse.jpg in the folder
/Desktop/mla/files/ch09/ on your computer. We'll use this image as our
example in the section. It's a high resolution picture of a horse. The high
resolution helps magnify the augmentation effects so that we understand
what augmentations do to the original picture.

The following script rotates the original picture up to 20 degrees, conducts
horizontal and vertical shifts of the image, and randomly flips the image
horizontally. It creates 20 augmented images.



We use the ImageDataGenerator() method 20 times on the original horse
picture. As a result, we created 20 augmented pictures of the horse. You can
use the matplotlib library to plot four randomly picked pictures in a two by
two grid, as follows:

Run the above code cell multiple times. Each time you'll see four
augmented horse pictures. Some pictures are rotated clockwise and others



counter-clockwise, add - and change sise to wise, due to the argument
rotation_range=20 in the ImageDataGenerator() method. Similarly, some
pictures are shifted left and some shifted right horizontally due to the
width_shift_range=0.1 argument. The augmented pictures are also shifted
up or down due to the height_shift_range=0.1 argument. Finally, some
horses face left and others face right because of the horizontal_flip=True
argument. Note that the ImageDataGenerator() method above performs the
four techniques on the same image simultaneously and randomly. As a
result, some images are rotated ten degrees clockwise, shifted slightly to the
left and up.

9.2 WHAT IS MULTI-CATEGORY CLASSIFICATION?

When the target label is a multi-category variable with more than two
possible values (such as 0, 1, or 2, buy, sell, or hold), we call the ML
algorithm a multi-category classification problem.

The CIFAR-10 data set contains ten classes of objects: Planes, cars, birds,
cats, deer, dogs, frogs, horses, ship, and trucks. We'll create a neural
network to predict which category an image belongs to. Since an image in
the data set can belong to any one of the ten categories of objects, we are
dealing with a multi-category classification problem.

Compared to binary classifications, we need to change a few things in the
neural network when making multi-category classifications. Specifically,
we need to change the label, the activation function, and the loss function.
We'll discuss them one by one below.

9.2.1 One-Hot Encoder for Labels

In binary classification problems, we use a dummy variable to differentiate
the targets: the variable takes value 1 for the positive class and 0 for the
negative class. For example, in Chapter 7, we use 1 to denote a horse and 0
a deer.

Once we have more than two classes of objects, one single variable isn't
enough: a frog has a value of 6 while a dog has a value of 5 in the labels
provided by CIFAR-10. However, the magnitude of the variable may cause



confusion: a frog is not greater than a dog in any sense. The label here is an
ordinal number instead of a cardinal one. If we feed the variable to the
computer, the model will mistakenly think that there is a meaning
associated with the magnitude of the target variable and make wrong
conclusions.

The solution is to create one variable for each object (one-hot encoders).
The script below shows us how to do that.

In the example above, we have three labels: 0, 4, and 9. They represent a
plane, a deer, and a truck in the CIFAR-10 data set.

We can use the to_categorical() method in TensorFlow to change them into
one-hot variables (i.e., categorical variables). The second argument in the
to_categorical() method, 10, indicates the depth of the categorical variable.
This means each categorical variable will be a vector with a length of 10,
with value 1 in one position and 0 in all others.

A plane, which has an initial label of 0, now has a one-hot encoder label: a
10-value vector

The first value (i.e., index 0) is turned on as 1, and all the rest are turned off
as 0. Similarly, a deer, which has a label of 4 originally, now has a one-hot
encoder label of

[1, 0, 0, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 0, 1, 0, 0, 0, 0, 0]



The fifth value (i.e., index 4) is turned on as 1, and all the rest are turned off
as 0. By the same logic, a truck, with a label of 9, is now represented by

9.2.2 The Activation and Loss Functions

In binary classification problems, we use sigmoid as our activation
function. For multi-category classification problems, we'll change it to the
softmax activation function.

We have discussed the softmax activation function in Chapter 6. If you
recall, the softmax function has the form

where x = [x1, x2, . . . , xK] and y = [y1, y2, . . . , yK] are K-element
vectors. The i-th element of y is

The softmax function has a nice property: each element in the output vector
y is always between 0 and 1. Further, elements in the output vector y sum
up to 100%. Because of this property, we can interpret the output vector y
as the probability distribution of an outcome with K possible values. Hence,
we'll use the softmax activation function to model the probability
distribution of a multi-category outcome. As a result, the activation function
in the output layer is always the softmax function when we model multi-
category classification problems.

[0, 0, 0, 0, 0, 0, 0, 0, 0, 1]

y(x) =
ex

∑K
k=1 exk

yi(x) =
exi

∑K
k=1 exk



The preferred loss function to use in multi-category classifications is the
categorical cross-entropy function. It measures the average difference
between the predicted distribution and the actual distribution.

Mathematically, the categorical cross-entropy loss function is defined as

where ŷn,k is the predicted probability of observation n being class k, and 
yn,k is the actual label of observation n belonging to category k (which can
only take values 0 or 1).

9.3 TRAIN THE MULTI-CATEGORY CLASSIFICATION MODEL

We'll train a DNN model with convolutional layers and image
augmentations. We'll use the whole CIFAR-10 train data set. Further, we'll
use all three channels of the image, instead of just one, to improve
prediction accuracy.

9.3.1 Load the Full Data Set

We'll use all five train batches in CIFAR-10 as our train data set. We'll use
the test batch in CIFAR-10 as our test set.

The script in the cell below loads up all the data from CIFAR-10.

Categorical Cross Entropy =
N

∑
n=1

K

∑
k=1

−yn,k × log(ŷn,k)



The output above shows that there are 5000 training images and 1000
testing images. Let's visualize some images from both the train and the test
data set.



Run the code in the above cell and you'll see four images. The first two are
from the train set: one is a car and the other a truck. The last two are from
the test set: one deer and one plane.

9.3.2 Convert Labels to One-Hot Variables

Next, we'll one-hot encode the labels so that the neural network can process
them.

Let's have a look at the shapes of the new y_train and y_test data sets and
print out the first five observations from each set.



The shape of the new y_train data set is now (50000, 10). The first
dimension, 50000, means that there are 50000 image labels in the data set.
The second dimension, 10, means that each label is a ten-value array. The
first five observations look correct. They are all one-hot variables: a ten
value vector with value 1 in one place and 0 in all others. The shape of the
new y_test dataset is now (10000,10). The first five observations are also all
confirmed to be one-hot variables.

Now we are ready to feed the data into the DNN model for training.

9.3.3 Train the Model

First, we create a deep neural network with convolutional layers and max
pooling as we did in Chapter 8. We make a few changes to adapt to the new
situation.



Four things are worth mentioning here. First, the input shape is now (32, 32,
3) instead of (32, 32, 1) because we use all three color channels of the
images. Second, the output layer now has 10 neurons instead of just one
because the y variable is now one-hot encoded as a ten-value vector. Third,
the activation function in the output layer is now softmax instead of
sigmoid since the output now is a variable with a depth of ten. Lastly, the
loss function now is categorical_crossentropy instead of
binary_crossentropy since we are conducting multi-category classifications
instead of binary classifications here.

Next, we add image augmentations before training. We also train five
epochs at a time and save the intermediate models so that we can see the
predictions as the training progresses. We do this for animation purposes.



The above model takes about an hour to train because the Keras API creates
augmented images for training just in time. This reduces memory usage but
it takes longer to train the model. Once the training is finished, you'll find
26 trained models, multi_epoch0.h5, multi_epoch5.h5,…,
multi_epoch125.h5, in the folder /Desktop/mla/file/ch09/ on your computer.

9.3.4 Evaluate the Model

Now that the model is trained, we can evaluate the performance of the
model during the training process.

The above results show that the accuracy scores in the train and test data
sets are 79.83% and 76.53%, respectively. Even though we fixed the
random state generator in TensorFlow, the Dropout layer in Keras still
generates randomness in results. Therefore, you may get a slightly different
result from above.



The high accuracy of the model, relative to the model in Chapter 7, comes
from several factors. First, we have used the whole data set instead of just
160 observations to train the model. Second, we have used three color
channels of the image instead of just one channel to train the model. Third,
we have used convolutional layers, max pooling layers, and image
augmentations to improve the performance of the model.

We can also calculate the accuracy of the model during the training process
as follows.

Run the above code cell and you'll see a plot of the prediction accuracy
against the epochs. The accuracy score is above 70% for both the training
and testing data sets after about 10 epochs of training.

9.4 ANIMATE THE LEARNING PROCESS

We'll create animations to show the learning process of the DNN model we
have created above.

Specifically, we find a picture of a truck and a picture of a frog from the test
data set. We then look at the predicted probabilities on these two pictures



during the training process. We create a graph to show the model's
predictions after every five epochs of training. We then combine the graphs
to form an animation.

9.4.1 Select Example Pictures

We'll select two example pictures from the test data set.

We have selected a picture of a truck and a picture of a frog as our
examples. If you run the above cell, you'll see an image of a truck and an
image of a frog.

Next, we'll save the two pictures on the computer for later use, as follows:

9.4.2 Animate Prediction Changes

Next, we'll create a graph of the model prediction on the truck picture after
every five epochs of training.

Specifically, we first define a function p_truck(), which generates 26
pictures of the predictions in various stages of training. In each picture, we
place the example truck image on the left, the deep neural network in the
middle, and the ten output values on the right. The ten output values are the
predicted probabilities of the truck image being one of the ten items (a
plane, a car, a cat…).



To save space, we place the function p_truck() in the local utils package. Go
to the book's GitHub repository, download the file ch09util.py under /utils/
and save it in the folder /Desktop/mla/utils/ on your computer. If you open
the file ch09util.py, you'll see the exact definition of the function p_truck().
Next, we call the p_truck() function to generated 26 pictures:

If you go to the local folder /Desktop/mla/files/ch09/ and open the file
p_truck0.png, you'll see a picture showing that before training starts, the
model assigns a 12.17% probability that the example image is a truck. In
contrast, if you open the file p_truck25.png, the picture shows that after 125
epochs of training, the model assigns a 98.76% probability that the example
image is a truck.

Next, you'll create an animation of the changing predictions over the course
of training.

If you go to the local folder /Desktop/mla/files/ch09/ and open p_truck.gif,
you'll see an animation of the model's prediction on the truck image over
the course of training. The predicted probability changes gradually from
12.17% to 98.76%. It's worth noting that after five epochs of training, the
model assigns a high probability (at 54.37%) that the image is a car. Given
that trucks and cars do look alike, we can understand why the model makes
such a prediction. The probability of being a car then gradually decreases
after further training: after 35 epochs, the model assigns only a 7.93%
probability that the image is a car.



9.4.3 Subplots of the Predictions on the Truck Image

We also create a figure with eight subplots to include in the hard copy of the
book. Specifically, we select eight images out of the above 26 pictures we
just created and put them in a four by two matrix to form a single picture.

Figure 9.1 has eight subplots in it. The first one, at the top left, illustrates
the model prediction on the truck image before training begins. The second
one, at top right, shows the model prediction after 15 epochs of training.
The last one, at bottom right, shows the model prediction after 125 epochs
of training. The figure of subplots, therefore, provides a sense of how the
model predictions gradually change as the training progresses.



Figure 9.1  Model predictions on a truck image over the course of training

9.4.4 Animate Predictions on the Frog Image



Similarly, you can create an animation of the changing predictions on the
frog image during the training process. To do that, we first define a function
p_frog() to generate 26 pictures of the model predictions on the frog image
in different stages of training. We then combine the 26 pictures into an
animation in the format of a gif file.

To save space, we place the function p_frog() in the local utils package. It is
in the same file ch09util.py you just downloaded from the book's GitHub
page. The function p_frog() is similar to the function p_truck() except that
we put the frog image in the picture and highlight the probability that the
image is a frog.

To generate the 26 pictures, we call the p_frog() function after importing it
from the local package, like so:

Run the above cell to generate the 26 pictures. The file p_frog0.png in the
folder /Desktop/mla/files/ch09/ on your computer shows that before
training starts, the model assigns a 8.78% probability that the image is a
frog. After 125 epochs of training, the picture p_frog25 shows that the
model assigns a 99.86% probability that it's a frog.

We can combine the 26 pictures into an animation of the changing
predictions over the course of training, as follows:

After running the above code cell, if you go to the local folder on your
computer and open the file p_frog.gif, you'll see an animation of the model's
predictions on the frog image over the course of training. The predicted
probability changes gradually from 8.78% to 99.86%.

9.4.5 Subplots of the Predictions on the Frog Image



We select eight images out of the 26 pictures we just created and put them
in a four by two matrix to form a single picture, like so:

Figure 9.2 has eight subplots in it. The first one, at the top left, shows the
model prediction on the frog image before training. The top right subplot
illustrates the model prediction after 15 epochs of training. The bottom right
one shows the model prediction after 125 epochs of training. The subplots
show that as training progresses, the model assigns a higher and higher
probability that the image is a frog.



Figure 9.2  Model predictions on a frog image over the course of training

9.4.6 Combine the Animations



We can now combine the two animations into one so that we can see the
changing predictions for the two pictures side by side.

In each of the 26 stages of training, we concatenate the graph for the
prediction on the truck image and the graph for the prediction on the frog
image and combine them into one single frame. We then use the imageio
library to convert the 26 combined frames into an animation in the gif
format.

Run the above code cell and go to the folder /Desktop/mla/files/ch09/ on
your computer. You'll see the file p_truck_frog.gif in the folder. Open the
file to see the animation. It shows the model's prediction on the truck image
on the left and prediction on the frog image on the right. As the training
progresses, the model makes more and more accurate predictions on the
two images.

9.5 GLOSSARY

• Categorical Cross-Entropy:
The loss function used in multi-category classifications. It measures
the average difference between the predicted distribution and the
actual distribution.

• Height Shift:
An image augmentation method by moving the image up or down
vertically.

• Horizontal Flip:
A image augmentation method by creating a mirror image of the
original picture horizontally.

• Image Augmentation:



A process of artificially generating training images through methods
such as random rotations, width shifts, height shifts, horizontal flips,
and so on.

• Multi-Category Classification:
A machine learning algorithm to classify instances into one of
multiple categories. The number of categories is three or more.

• One-Hot Encoding:
The process of changing a categorical variable into a vector, the
values of which are 1 in one place and 0 in all other places.

• Rotation:
An image augmentation method by randomly rotating the image
clockwise or counterclockwise a certain number of degrees.

• Width Shift:
An image augmentation method by moving the image to the left or
to the right horizontally.

9.6 EXERCISES

9.1 Explain what a multi-category classification is. Give two examples.

9.2 What is image augmentation? Explain random rotations, width shifts,
height shifts, and horizontal flips.

9.3 Explain what the categorical cross-entropy loss function is.

9.4 Modify the first code box in Section 9.1.2 so that you generate 30
augmented images. Further, change the rotation range to 30 degrees
and the width shift range to 0.15.

9.5 Suppose you have three labels in a list three_labels=[1, 5, 7]. Change
them to one-hot variables using the to_categorical() method from
TensorFlow.
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Play is the highest form of research.
–Albert Einstein

THE NEXT few chapters, you'll learn to creatively apply deep neural
networks to various situations. In particular, you'll use deep learning to
train intelligent game strategies in different games. You'll learn from A

to Z on how to train a game strategy using neural networks. You'll learn to
play games in OpenAI Gym. Even though games in the OpenAI Gym
environment are designed for reinforcement learning, you'll learn to
creatively design deep learning game strategies and win the games. Along
the way, you'll have a better understanding of the inner workings of deep
learning.

In this chapter, we'll use the Frozen Lake game as an example. You'll learn
how to generate game data for training purposes. Once you have a trained
model, you'll learn to use the model to design a best-move strategy and play
in the OpenAI Gym environment. Finally, you'll test the effectiveness of the
strategy. You'll see that the deep learning game strategy works perfectly and
wins every game.
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At the end of this chapter, you'll create an animation to show how the agent
uses the trained model to make decisions on what's the best next move.
You'll first draw a game board with the current position of the agent. The
agent then hypothetically plays all four next moves, and lets the trained
model predict the probability of winning if the agent were to take that
action. The agent then picks the action with the highest probability of
winning. We'll highlight the best action in the animation in each stage of the
game.

New Skills in This Chapter

Setting up the OpenAI Gym game environment
Generating training data by simulating games
Designing game strategies using deep neural networks
Testing the efficacy of game strategies

Before you start, open the Jupyter Notebook app in the virtual environment
MLA on your computer. After that, open a blank Jupyter notebook and save
it as ch10.ipynb in the directory /Desktop/mla/ on your computer. Next,
we'll create a subdirectory /files/ch10/ to store files in this chapter. Start a
new cell in ch10.ipynb and execute the following lines of code in it:

10.1 GET STARTED WITH THE OPENAI GYM ENVIRONMENT

OpenAI Gym provides the needed working environment for various games.
Many machine learning enthusiasts use games in OpenAI Gym to test their
algorithms. In this section, you'll learn how to install the libraries needed in
order to access games that we'll use in this book. After that, you'll learn how
to play a simple game, the Frozen Lake, in this environment.

Before you get started, install the OpenAI Gym library as follows with your
virtual environment activated:



pip install gym==0.15.7

Or you can simply use the shortcut and run the following line of code in a
new cell in this notebook:

You need to restart the Jupyter Notebook app for the installation to take
effect.

Python Package Version Control

There are newer versions of the OpenAI gym library, but they are not
compatible with Baselines, a library that we need to train Breakout and
other Atari games (such as Space Invaders, Seaquest, Beam Rider).
Therefore, you need to install version 0.15.7 of the OpenAI Gym library.
In case you accidentally installed a different version, run the following
lines of code to correct it, with your virtual environment activated.

pip uninstall gym

pip install gym==0.15.7

10.1.1 Basic Elements of a Game Environment

The OpenAI Gym game environments are designed mainly for testing
reinforcement learning (RL) algorithms. Later in this book, you'll test
various RL algorithms in OpenAI Gym. But for now, we'll use them to test
deep learning game strategies.

Let's first discuss a few basic concepts related to a game environment:

Environment: the world in which agent(s) live and interact with each
other or nature. More importantly, an environment is where agent(s)
explore and learn the best strategies. Examples of game environments
include the Frozen Lake game we'll discuss in this chapter, or the
popular Breakout Atari game, or a real-world problem that we need to
solve. You'll mostly use game environments from OpenAI Gym, but



you'll also learn to create your own game environments later in this
book.
Agent: the player of the game. In most games, there is one player and
the opponent is embedded into the environment. But we'll also discuss
two-player games such as Tic Tac Toe and Connect Four later in this
book.
State: the current situation of the game. The current game board in the
Connect Four game, for example, is the current state of the game. We'll
explain more as we go along.
Action: what the player decides to do given the current game situation.
In a Tic Tac Toe game, your action is to choose which cell to place
your game piece, for example.
Reward: the payoff from the game. You can assign a numerical value
to each game outcome. For example, in a Tic Tac Toe game, we can
assign a reward of 0 to all situations except when the game ends, at
which point you can assign a reward of 1 if you win, -1 if you lose the
game.

If these concepts sound too abstract at the moment, don't worry. They will
become clearer as we move along. Below, you'll see a concrete example of
a game environment and the above concepts in this environment.

10.1.2 The Frozen Lake Game

Let's start with the Frozen Lake game environment in OpenAI Gym. In
short, an agent moves on the surface of a frozen lake, which is simplified as
a four by four grid. The agent starts at the top left corner and tries to get to
the lower right corner without falling into one of the four holes on the lake
surface. The condition of the lake surface is illustrated in the picture
lake_surface.png under /files/ch10/ in the book's GitHub repository. If you
open the picture, you'll see four gray circles, which are the four holes on the
lake surface.

The code in the cell below will get you started:



The make() method creates the game environment for us. We set the
is_slippery argument to False so that the game is deterministic, meaning the
game will always use the action that you choose. The default setting is
is_slippery=True and this means that you may not go to your intended
location since the frozen lake surface is slippery. For example, when you
choose to go left on the surface, you may end up going to the right. The
reset() method starts the game and puts the player at the starting position.
The render() method shows the current game state.

If you run the above cell, you'll see an output with 16 letters in the form of a
four by four grid, which represents the lake surface. The letters have the
following meanings:

S: the starting position.
H: a hole; the player will fall into the hole and lose the game at this
position.
F: frozen, meaning it's safe to ski on.
G: goal, the player wins the game if reaching this point.

The current position of the agent is highlighted in red. The above output
shows that the player is at the top left corner of the lake, which is the
starting position of the agent at the beginning of the game.

We can also print out all possible actions and states of the game as follows:



The action space in the Frozen Lake game has four values: 0, 1, 2, and 3,
where 0 means going left, 1 going down, 2 going right, and 3 going up. The
state space has 16 values: 0, 1, 2, …, 15. The top left square is state 0, the
top right is state 3,…, and the bottom right corner is state 15, as shown in
the picture game_states.png under /files/ch10/ in the book's GitHub
repository.

You can play a complete game as follows:

The code cell above uses several methods in the game environment. The
sample() method randomly selects an action from the action space. That is,
it returns one of the values among {0, 1, 2, 3}. The step() method is where
the agent interacts with the environment, and it takes the agent's action as
input. The output from the step() method has four values: the new state, the



reward, a variable done indicating whether the game has ended, and a
variable info with some description about the game state. In this case, it
provides the probability that the agent reaches the intended state. Since we
are using the nonslippery version of the game, the probability is always
100%. The render() method shows a diagram of the resulting state.

The game loop is an infinite while loop. If the done variable returns a value
True, the game ends, and we stop the infinite while loop.

Note that since the actions are chosen randomly, when you run the above
cell, you'll most likely get a different result.

10.1.3 Play the Frozen Lake Game Manually

Next, you'll learn how to manually interact with the Frozen Lake game, so
that you have a better understanding of the game environment. This will
prepare you to design winning strategies for the Frozen Lake game.

The following lines of code show you how.



Use your keyboard to play the game a couple of times. After that, play a
game by choosing the following actions: 1, 1, 2, 1, 2, 2 (meaning down,
down, right, down, right, right sequentially). As a result, you'll reach the
destination without falling into one of the holes and win the game. This is
one of the shortest paths that you can take to win the game.

Now, the question is: can you train your computer to win the game by
itself?

The answer is yes, and you'll learn how to do that by using the deep
learning method via deep neural networks.

10.2 DEEP LEARNING GAME STRATEGIES: GENERATING
DATA

In the next few sections, you'll learn to use deep neural networks to train
intelligent game strategies.

You'll learn from A to Z on how to train a game strategy using the Frozen
Lake game as an example. You'll apply the strategies to other games later in
the book.

First, you'll learn to generate simulated game data for training purposes.
Once you have a trained model, you'll use the model to design a best-move
game strategy and win the game. Finally, you'll test the effectiveness of the
strategy.

10.2.1 Summary of the Game Strategy

How to use a neural network to train a game strategy in this case? Here is a
summary of what we'll do to train the game strategy:

We'll let the player randomly choose actions and complete a full game.
We'll record the whole game history, which contains all the
intermediate states and actions from the beginning to the end of the
game.
We associate each state-action pair with a game outcome (winning or
losing). The state-action pair is similar to X (i.e., image pixels) in our
image classification problem and the outcome, winning or losing, is



similar to y (i.e., image labels such as horse, deer, airplane, and so on)
in the image classification problem.
We'll simulate a large number of games, say, 10000 of them. Use the
histories of the games and the corresponding outcomes as (X, y) pairs
to feed into a Deep Neural Network. After training is done, we have a
trained model.
At each move of the game, we look at all possible next moves, and
feed the hypothetical state-action pair into the pre-trained model. The
model will tell you the probability of winning the game if the
particular state-action pair were chosen.
You select the move with the highest chance of winning based on the
model's predictions.

Essentially, we convert the problem into a binary classification problem. In
each state, we look at each potential action and use the model to classify it
into two possible outcomes: winning or losing. We select the action with the
highest probability of winning.

10.2.2 Simulate One Game

First, we'll simulate one game and record the whole game history and the
game outcome. The script below accomplishes that:



In the cell above, we first define the one_game() function, which simulates
one full Frozen Lake game. The function returns the game history and the
game outcome. For example, the output above shows that the agent made
two moves and lost the game. So the game outcome has a value of 0 in it
(meaning the agent has lost the game). If the player wins, the value is 1.
The game history is a list of lists that records all intermediate steps. In each
step, we have values of current state, action taken, next state, reward, and
whether the game is over. For example, [0, 2, 1, 0.0, False] means that the
current state is 0 (i.e., the top left corner), the agent takes an action of 2



(going right), the next state is 1 (the second square in the top row), the
reward is 0, and the variable done has value False (game is not ended).

10.2.3 Simulate Many Games

Next, we'll simulate 10,000 games and record all the intermediate steps and
outcomes.

We called the function one_game() 10,000 times. The intermediate steps of
all games are stored in the list histories. The game results (winning or
losing) are stored in the list outcomes.

Next, we'll save the simulated data on the computer for later use.
Specifically, we save the data in the file frozen_games.pickle under
/Desktop/mla/files/ch10/ on your computer.

You can load up the saved simulation data from your computer, and print
out the first five games.



The output shows all the intermediate steps as well as the outcomes of the
first five games. In particular, the five zeros indicate that the agent has
failed in the first five games. Note that since the games are generated
randomly, your output is likely to be different.

Next we'll train the deep neural network using the simulated data.

10.3 TRAIN THE DEEP NEURAL NETWORK

We'll train the deep neural network so that it can learn from the simulated
data. To do that, we'll first prepare the data so that we can feed them into
the neural network.

10.3.1 Preprocess the Data

Next, you'll learn how to convert the game history and outcome data into a
form that the computer understands before you feed them into the deep
neural network.

We'll associate each state-action pair with the final game outcome so that
the model can predict the probability of winning for each state-action
combination. We'll use the first game above as an example. In the first
game, the outcome is 0, meaning the player lost the game. There are 16
steps in game 1 (the number of steps in your data is likely to be different),
so we'll create 16 values of X and y, as follows.



The output above shows that the player started at state 0 (top left corner),
and chose action 3 (going up), ended up in the same position (state 0)… In
the last round, the player started at state 4, and chose action 2, ended up in
state 5, which is a hole, so the game ended as a result. We'll create variables
X and y for game 1 as follows:

The above output reflects the 16 steps in game 1. X shows state-action pairs,
while y contains the eventual game outcome.

However, if we feed the data into a neural network, the algorithm will
mistakenly think that state 14 is greater than 13. Action 3 is greater than
action 2. To avoid such confusions, we need to use the one-hot encoder to
convert them into a vector of 1s and 0s.



We convert the state into a 16-value vector and the action a 4-value vector.
We then concatenate the two one-hots into a 20-value vector of state-action
pair. We'll use this as the input of the deep neural network.

Next, we convert the 10,000 simulated games to the above format, like so:

Now that the dataset is preprocessed, we are ready to train our deep neural
network.

10.3.2 Train Deep Learning Game Strategies

Here we are essentially performing a binary classification. We classify each
state-action pair into winning or losing. The output layer has one neuron



with sigmoid activation. So we can think of the output as the probability of
winning the game.

To create a deep neural network, we use four hidden layers, with 128, 64,
32, and 16 neurons in them, respectively. But fewer layers with different
numbers of neurons in each layer will generate similar results.

Later, we'll use the trained model to play the Frozen Lake game. When
playing, at each state, we'll ask the following question: if I were to choose
action 0 (i.e., move left), what's the probability of winning the game? We'll
combine the current state and action 0 and feed this state-action pair to the
trained deep neural network. The model returns a probability and let's call it
p(win s, a0). Similarly, if we were to choose actions 1, 2, or 3, the
predicted probabilities are p(win s, a1), p(win s, a2), and p(win s, a3),
respectively. We then compare the four probabilities and pick the action that
leads to the highest probability of winning the game.

Next, we create the neural network using Keras and train the model using
the data from the 10,000 simulated games.

After 50 epochs of training, we save the model in the local folder on the
computer. Next, we'll use the trained model to play the Frozen Lake game.



10.4 PLAY GAMES WITH THE TRAINED MODEL

To play the game with the trained model, we'll look at the current state
when deciding each move. We hypothetically take actions 0, 1, 2, and 3,
respectively, and use the trained model to predict the probability of winning
with each of the four state-action pairs. We'll pick the action that leads to
the highest probability of winning. We repeat this process at each step of the
game until the game ends.

10.4.1 Test One Game

Below we test one game using the trained model:



The player wins the game with the shortest possible path: 1, 1, 2, 1, 2, and 2
(meaning down, down, right, down, right, and right sequentially). As a



result, the agent reaches the destination without falling into one of the
holes. So the deep learning game strategy works!!!

But how, you might ask, was the agent making decisions at each step of the
game? We'll look under the hood and see how the model makes predictions
for the agent. For that purpose, we save the predictions in each stage of the
game for later use. We'll use these probabilities to create an animation in the
next section.

The predictions are saved as a pickle file frozen_predictions.p on your
computer. Note that pickle files can have either. p or. pickle extensions.

10.4.2 Test the Efficacy of the Game Strategy

Winning one game can be a coincidence. We need a scientific way of
testing the efficacy of our deep learning game strategy. For that, we'll let the
trained model play the game 1000 times, and record how many times the
model wins and how many times the model loses.

To save space, we defined a test_one_game() function in the local utils
package. Download the file ch10util.py from the book's GitHub repository
and save it in the folder /Desktop/mla/utils/ on your computer. The code cell
below imports the test_one_game() function from the local utils package
and calls the function 1000 times to test the efficacy of the deep learning
game strategy, like so:



We record the outcome of each game. If the deep learning game strategy
wins, we record an outcome of 1; otherwise, we record an outcome of 0.
The output above shows that the deep learning game strategy has won all
1000 games. This shows that our game strategy design works extremely
well in this simple game.

10.5 ANIMATE THE DECISION-MAKING PROCESS

We'll create an animation to show how the agent uses the trained model to
make decisions on what's the best next move in each stage of the Frozen
Lake game.

10.5.1 Generate Figures

We'll first draw a game board with the current position of the agent. We'll
then hypothetically play all four next moves, and let the trained DNN model
tell us the probability of winning with each hypothetical action. The agent
will pick the action with the highest probability of winning. We'll highlight
the best action in the animation in each stage of the game.

To save space, we place the function froze_lake_steps() in the local utils
package. It is in the same file ch10util.py you just downloaded from the
book's GitHub repository.

The following code cell imports the frozen_lake_steps() function from the
local utils package and calls the function to generate 19 pictures.

After running the above code cell, if you open the file
frozen_stage0step1.png, you'll see the starting position of the game. The file
frozen_stage0step2.png adds the four probabilities to the right of the
picture. You can see that the probability of winning for the agent are



0.0145, 0.0214, 0.0139, and 0.0187, respectively if the agent were to go
left, down, right, and up. The file frozen_stage0step3.png highlights the
highest probability of winning for the agent, which is associated with the
action of going down. This is why the agent chooses to go down in the first
step.

Figure 10.1 is the same as the picture frozen_stage0step3.png we just
discussed. It shows why the agent chooses to go down from the starting
position: doing so has the highest probability of winning the game.

Figure 10.1  Winning probabilities in the first stage of the game

The file frozen_stage1step3.png, frozen_stage2step3.png,… highlight the
highest probability of winning for the agent in later stages of the game.

We can combine the above pictures into an animation.

10.5.2 Create the Animation

We combine the above 19 pictures into an animation in the form of a gif file
by using the imageio library, like so:



After running the above code cell, if you go to the local folder on your
computer and open the file frozen_stages.gif, you'll see an animation of the
model's predictions on the winning probabilities of taking different actions.
Specifically, in each stage, we first show the current state of the game. We
then show the model's predictions of winning if the agent were to take one
of the four actions. We then highlight the action with the highest probability
of winning.

10.5.3 Create a Figure with Subplots

When playing the game, the agent uses the trained model to make
predictions in six different states: states 0, 4, 8, 9, 13, and 14. We'll select
six pictures out of the 19 pictures we just created and put them in a three by
two matrix to form a single picture. These six pictures illustrate the
decision-making process of the whole game.





Figure 10.2  Winning probabilities in the six stages of the game

Figure 10.2 has six subplots in it. The first one, at the top left, shows the
model's predictions of winning the game if the agent were to take each of
the four actions in the first stage of the game. The top right subplot shows
the probabilities in the second stage of the game, and so on. Each subplot
highlights the highest probability, hence the optimal action the agent should
take. As you can see from the six subplots, the optimal actions are down,
down, right, down, right, and right, respectively. Those were the actions
taken by the agent to win the game in Section 10.4.1.

10.6 GLOSSARY

• Action:
What the player decides to do given the current game situation.

• Agent:
The player of the game. In most games, there is one player and the
opponent is embedded into the environment. But there can be more
than one agent in a game environment.

• Environment:
The world in which agent(s) live and interact with each other or
nature, and explore and learn the best strategies.

• Reward:
The payoff to the agent from the game. This is a numerical value
based on the game outcome.

• State:
The current situation of the game.

10.7 EXERCISES

10.1 Install OpenAI Gym in the virtual environment MLA on your
computer. Make sure you install version 0.15.7. If you have installed a
different version, uninstall it first and then install version 0.15.7.

10.2 What is a game environment? Explain the terms agent, action, state,
and reward in a game environment.



10.3 Play a complete Frozen Lake game using your keyboard. What is the
minimum number of steps you have to take to win the game?

10.4 Modify the last code box in Section 10.3.2 so that the deep neural
network has three hidden layers with 100, 50, and 25 neurons in them,
respectively. Retrain the model and save the trained model as
trained_frozen2.h5 on your computer.

10.5 Modify the first code box in Section 10.4.1 to use the newly trained
neural network from the previous exercise to play a game.
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My powers are ordinary. Only my application brings me success.
–Isaac Newton

NEURAL NETWORKS (DNNs) are function approximators.
If you feed DNNs with enough data, they can figure out the
relation between any inputs and outputs no matter how

complicated the relation is. Or even if we human beings don't know the
exact functional form between the two. Because of this property, DNNs
have become ubiquitous in all fields of machine learning: from image
classifications, natural language processing, to speech recognition. Later in
this book, we'll combine DNNs with reinforcement learning to create deep
reinforcement learning models that can solve complicated Atari games.

In Chapter 10, you have applied deep learning to the Frozen Lake game. In
essence, you designed a deep learning game strategy based on a binary
classification: you associate state-action pairs with the game outcome: a
win or a loss. Based on the trained model, you predict the probability of a
win with different next moves. You then choose the move with the highest
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probability of winning. This leads to a perfect game strategy and you win
the game 100% of the time.

In the Frozen Lake game, the definition of a win or a loss is clear: if you
reach the bottom right corner without falling into one of the holes, it's a
win; otherwise, it's a loss. However, in many situations, the definition of a
win or a loss is not so black and white. We need to creatively generate the
proper labels so that we can convert the problem into binary or multi-
category classifications to design game strategies.

The Cart Pole game in OpenAI Gym is such a case. Winning a game is
defined as making the Cart Pole stand upright for at least 195 consecutive
time steps. However, without random moves, the game will never reach a
winning state. Therefore, we cannot use simulated data to train our game
strategy. In such cases, we need to creatively redefine what's considered
“winning.” Specifically, in this chapter, you'll redefine the last ten steps of
each game as “losing” and others as “winning” steps. You can think of
winning as the ability to keep the cart pole upright for at least another ten
steps.

After that, you'll feed the relabeled data into a deep neural network to train
the model. Once the model is trained, the agent uses the model to predict
the probability of winning with each possible next move. The agent will
pick the action with the higher probability of winning. Such a strategy will
help the agent win the game 100% of the time. That is, the agent can make
the cart pole stay upright for at least 195 steps in every game.

New Skills in This Chapter

Re-labeling game outcomes as winning and losing
Simulating games and preprocessing the data for training
Training game strategies based on simulated games
Designing best moves based on trained deep neural networks

Before you start, open the Jupyter Notebook app in the virtual environment
MLA on your computer. After that, open a blank Jupyter notebook and save
it as ch11.ipynb in the directory /Desktop/mla/ on your computer. Next,



we'll create a subdirectory /files/ch11/ to store files in this chapter. Start a
new cell in ch11.ipynb and execute the following lines of code in it:

11.1 PLAY THE CART POLE GAME IN OPENAI GYM

As we discussed in Chapter 10, you need to install the gym library first.
Further, we'll use version 0.15.7 of the library because newer versions are
not compatible with the Baselines package, which we'll use later in this
book to play the Atari games. If you haven't already done so, refer back to
Chapter 10 on how to install the right version of gym.

11.1.1 Features of the Cart Pole Game

We'll first learn the basic features of the Cart Pole game so we know how to
design the proper game strategies to win the game.

The code in the cell below creates the Cart Pole game environment:

The render() method generates a graphical rendering of the game window.
You should see a separate game window with a cart and a pole in it.

To figure out how many possible actions the agent can take, we print out the
action_space attribute of the game environment. Similarly, the
observation_space attribute tells us what variables represent the game state.
Run the Python code in the cell below:



The action space in the Cart Pole game is discrete with two values: 0 and 1,
with the following meanings:

0: moving left
1: moving right

The state in the Cart Pole game is a collection of four values, with the
following meanings:

The position of the cart, represented by a value between -4.8 and 4.8;
The velocity of the cart, represented by a value between -4 and 4;
The angle of the pole, represented by a value between -0.42 and 0.42;
The angular velocity of the pole, represented by a value between -4
and 4;

The agent earns a reward of 1 for every time step that the pole stays upright.
If the pole is more than 15 degrees away from being vertical or the cart
moves more than 2.4 units from the center, the agent loses the game. To win
the game, the agent needs to keep the cart pole upright for at least 195
consecutive time steps.

To close the game environment, you can use the close() method as follows:

If you run the above cell, the graphical rendering of the game window
disappears.

11.1.2 Play a Full Game



To familiarize yourself with the game, you can choose random actions and
play a complete game as follows:

The above code cell uses a couple of methods in the game environment.
The sample() method randomly selects an action from the action space.
That is, it randomly returns one of the values among {0, 1}. The step()
method is where the agent interacts with the environment, and it takes the
agent's action as the input. The output has four values: the new state, the
reward, a variable done indicating whether the game has ended, and the info
variable providing some information about the game. Finally, the render()
method shows an image of the game window.

The game loop is an infinite while loop. If the done variable returns a value
True, the game ends and we stop the infinite while loop by using the loop
command break.

Note that since the actions are chosen randomly, when you run the code
cell, you'll most likely get different results.

11.2 GENERATE DATA TO TRAIN THE MODEL



In the next few sections, you'll learn how to use deep neural networks to
train intelligent strategies for the Cart Pole game.

First, you'll generate simulated game data for training purposes. However, if
the agent chooses random moves, the cart pole can never stay upright for
anywhere close to 195 consecutive steps. As a result, we'll have all games
labeled as losing (i.e., a value of 0). We cannot train game strategies
without winning labels. Therefore, we need to creatively redefine what's
considered winning. That is, we need to recreate our own labels for the
binary classification.

11.2.1 How to Define Winning and Losing?

In the Frozen Lake game in Chapter 10, winning and losing are clearly
defined: if the agent reaches the goal without falling into one of the holes,
it's a win. On the other hand, if the agent falls into one of the holes before
reaching the bottom right corner, it's a loss.

In the Cart Pole game, however, winning is defined as staying upright for at
least 195 consecutive steps. If we use random plays to generate training
data, the agent will lose all games. None of the games will be classified as
winning. Therefore, we need to redefine the label so that some of the
observations are defined as winning and others as losing.

Instead of labeling the whole game, we'll label each game state as a win or a
loss. We'll define a time step as a win if the cart pole stays upright for at
least another ten steps. Otherwise, the time step is defined as losing.

11.2.2 Prepare Data for the Neural Network

How to use a deep neural network to train a game strategy in this case?
Here is a summary of what we'll do:

We'll let the agent randomly choose actions and complete a full game.
We'll record the whole game history. The game history will contain all
the intermediate states and actions from the very first time step to the
very last time step.



We then associate each state-action pair with a game outcome (a win
or a loss). The state-action pairs are similar to image pixels in our
image classification problem, and the outcome variables are similar to
image labels (such as horses, deer, airplanes and so on).
We'll simulate a large number of games, say, 10,000 of them. We'll use
the histories of the games and the corresponding outcomes as (X, y)
pairs to feed into a Deep Neural Network to train the model.
We then use the trained model to design game strategies. Specifically,
at each step in a game, we look at all possible next moves, and feed the
hypothetical state-action pairs into the trained model. The model will
tell us the probability of winning the game if a certain state-action pair
were chosen.
You select the move with the highest chance of winning based on the
model's predictions.

First, we'll simulate one game and record the whole game history plus the
game outcome. The Python code in the cell below accomplishes that:



Before the game ends, we don't know if a step is a win or a loss. After the
game is ended, we'll retroactively label the last ten steps as losing steps
(with a label of 0). The remaining steps are classified as winning steps (with
a label of 1).

The Python code below reclassifies the last ten steps of the game as losing.
As a result, we change the last ten values in the list winlose to 0.

The results above show that the last ten values of the win/loss history of
game steps are all 0. The first seven steps are labeled as 1. When you run



the above code cell on your computer, the number of time steps in the game
is likely to be different since the game is generated randomly.

In a way, the data set tells us what state-action combinations are likely to
survive another ten steps and what combinations are likely to fail in the next
ten steps. If we feed the data set into a neural network, the model will learn
the pattern. We can later use the pattern to choose the best actions based on
the state so that the cart pole stays upright as long as possible.

Next, we'll simulate 10,000 games and record all the intermediate steps and
outcomes.

We then save the simulated data on the computer for later use.

The data set is saved as a pickle file in the folder /Desktop/mla/files/ch11/
on your computer.

You can load up the saved simulation data from your computer, and print
out the first game, like so:



Next we'll train the deep neural network using the simulated data.

11.3 TRAIN THE DEEP NEURAL NETWORK

We'll train the deep neural network so that it can learn from the simulated
data to predict game outcomes. To do that, we'll first need to preprocess the
data so that we can later feed them into the neural network.

11.3.1 Preprocess the Data

We'll create Xs and ys for each game step and put them together for training.
Since the outcome variable is either 1 or 0, this is essentially a binary
classification problem.

We associate each state and action combination (s, a) with the outcome 1 or
0.



The output above shows that the average value of y is about 0.556. This
means 55.6% of steps are wins and the rest are losses. Because games are
generated randomly, your numbers are likely to be different.

Finally we save the processed data for later use:

The data set is now ready to be fed into a deep neural network.

11.3.2 Train the Deep Neural Network with Data

Next, we use the preprocessed data set to train our deep neural network.



We classify each state-action pair into a win or a loss. The output layer has
one neuron with the sigmoid activation. So we can think of the output as the
probability of winning.

There are two hidden layers in the model, with 64 and 16 neurons,
respectively. More layers with various numbers of neurons will generate
similar results.

Later, we'll use the trained model to play the Cart Pole game. When
playing, at each time step, we'll ask the following questions:

If I were to choose action 0 (i.e., move left), what would be the
probability of winning the game? We'll combine the current state and
action 0 and feed this state-action pair to the trained deep neural
network and get a probability; let's call it p(win s, a0).
If I were to choose action 1 (i.e., move right), what would be the
probability of winning the game? We'll use the trained neural network
and get p(win s, a1).
Which action leads to a higher probability of winning? We compare 
p(win s, a0) with p(win s, a1) and pick the action that leads to the
higher p(win s, a).



We use Keras to create a sequential model with two hidden layers. Since it's
a binary classification problem, we use sigmoid as the activation function in
the output layer and binary cross entropy as the loss function. We train the
model for 50 epochs and save the trained model in the folder /files/ch11/.

Now that the model is trained, we can use it to play the Cart Pole game.

11.4 PLAY THE GAME WITH THE TRAINED MODEL

To play the game with the trained model, we'll look at the current state and
all possible next moves. For each state-action combination, we use the
trained model to predict the probability of winning. The action that leads to
the highest probability of winning is selected.

Based on this logic, we define a best_move() function.

11.4.1 A Best_move() Function



The following function best_move() takes the game environment and the
pre-trained model as the two arguments. It then returns the best action in the
current game state.

The input to the trained model is a state-action combination. Since the state
is a vector with four values and the action is a scalar, the state-action
combination is a vector with five values. There are two possible actions at
each step: action 0 (moving left) and action 1 (moving right). We
hypothetically take one action at a time and use the trained model to predict
the hypothetical probability of winning if a certain action were taken. The
best_move() function returns the best action in this step: the action with
higher probability of winning.

11.4.2 Play One Cart Pole Game with the Trained Model

Next, we play a full game using the best_move() function to select moves
at each step. Further, we record the graphical rendering of the game window
at each step, like so:



When we put mode=‘rgb_array’ in the render() method, it returns the game
window as a NumPy array. We record the game window in each step and
put them in a list frames. Later, we'll use these NumPy arrays to create an
animation.

The output above shows that the cart pole stays upright for all 200 steps. So
the deep learning game strategy works really well!

Next, we'll create an animation to compare two games: one with random
moves, and the other with deep learning game strategies.

11.5 COMPARE TWO GAMES

We have already recorded all the frames in a game with deep learning
strategies. Next, we'll record all the frames in a game with random moves.
We'll then put the frames from the two games side by side so that we can
compare the difference in the game outcome.

11.5.1 Record a Game with Random Moves



We'll select random moves and play the Cart Pole game for 200 time steps.
We then record all game windows in a list called random_frames, like so:

If you run the above cell, the list random_frames records 200 windows in a
random-move game.

11.5.2 Combine Frames

We now have two lists: frames and random_frames. Each list has 200 game
windows/frames. We want to combine the frames from the two lists in each
step, with the left frame from the random-move game and the right frame
from the game with deep learning strategies.

For that purpose, we defined a combine_frames() function in the local
utils package. You can download the file ch11util.py from the book's
GitHub repository and save it in the folder /Desktop/mla/utils/ on your
computer. Open the file and take a look. In particular, we have used the 
frombuffer() method in NumPy to save data to your computer's memory.
If we instead save each combined frame on your computer's hard drive, it's
time-consuming. Further, it takes up too much space on your computer.
Therefore, we combine the two frames and save them on your computer's
memory, using the frombuffer() method.

The code cell below imports the combine_frames() function from the
local utils package and calls the function to combine frames, like so:



Next, we use the imageio library to convert the 200 combined frames into
an animation, as follows:

After running the above code cell, if you open the file
compare_cartpole.gif, you'll see an animation with 200 combined frames.
In each frame, the left side shows the Cart Pole game with random moves
while the right side shows the game with deep learning game strategies. The
pole falls down after about 20 time steps in the random-move game. In
contrast, in the game with deep learning game strategies, the pole stays
upright for all 200 consecutive time steps.

11.5.3 Subplots of the Cart Pole Game Stages

We'll create subplots to show the game window in different stages of the
game when random moves are used. Since there are a total of 200 time
steps in each game, we select eight stages of the game with roughly equal
spaces between them. Specifically, we select time steps 1, 30, 60, 90, 120,
150, 176, and 200 to create eight subplots in a four by two matrix.

To save space, in the utils.ch11util.py file, we define a gen_subplots()
function to select eight frames for subplots. The code cell below imports the
gen_subplots() function from the local utils package and calls the function
to generate the eight frames. After that, we use the matplotlib library to
create a picture with eight subplots in it, like so:



Figure 11.1 has eight subplots in it. The first one, at the top left, shows the
game window at the first time step of the Cart Pole game with random
moves. The top right subplot shows the game window at time step 30 and
the pole is already falling down. Other subplots show that the pole swings
up and down multiple times in the 200 time steps. The picture shows that
with random moves, the cart pole is not able to stay upright for long.



Figure 11.1  Different stages of the Cart Pole game with random moves

For comparison, we also create subplots to show the game window in
different stages when the deep learning game strategies are used to play the
game. We use the same eight time steps 1, 30, 60, 90, 120, 150, 176, and
200 to create subplots in a four by two matrix.



In the utils.ch11util.py file, we define a subplots() function to generate
eight frames for subplots. We then import the subplots() function from the
local utils package and call the function to create eight frames. Similarly,
we create a picture with eight subplots in it as follows:



Figure 11.2  Different stages of the Cart Pole game with deep learning



Figure 11.2 also has eight subplots in it. The cart pole stays upright in all
eight subplots. The picture shows that with deep learning game strategies,
the cart pole can successfully stay upright for more than 195 consecutive
time steps.

11.6 GLOSSARY

• Action Space:
The collection of all actions that can be taken by the agent in a game
environment.

• Observation Space:
The collection of all states that can occur in a game environment.

11.7 EXERCISES

11.1 What is the action space in a game environment? How many values
are there in the action space in the Cart Pole game?

11.2 What is the observation space in a game environment? How many
values are there in the observation space in the Cart Pole game?

11.3 Modify the code box in Section 11.1.2 so that the cart moves to the
left in every time step. Run the code cell and see what happens.

11.4 Modify the second code box in Section 11.2.2 so that the last twelve
time steps in a game are labeled as 0 and the remaining time steps as
1.

11.5 Modify the first code box in Section 11.3.2 so that the deep neural
network has three hidden layers with 64, 32, and 16 neurons in them,
respectively. Retrain the deep neural network.

11.6 Continue the previous question. Retrain the deep neural network with
three hidden layers you just created. Modify the first code box in
Section 11.4.2 so that you play a full game with the new deep neural
network.
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Oh, well, this would be one of those circumstances that people unfamiliar
with the law of large numbers would call a coincidence.

–Sheldon Cooper, in The Big Bang Theory

FAR, YOU have applied deep learning to two games in OpenAI
Gym, namely the Frozen Lake and the Cart Pole games. In this
chapter, you'll learn how to create your own game environments so

that you can use deep learning to develop game strategies in them. More
important, by creating your own game environment, you learn how to
convert a real-world problem into a game and provide a solution as if you
are playing a game. A case in point is the Amazon delivery route problem
we discussed in Chapter 3: later in the book, we'll convert the problem into
a game and provide a solution to the problem in a self-made game
environment.

To get your started, you'll learn in this chapter how to create your own game
environment for a simple everyday game, Tic Tac Toe. We'll create all
attributes and methods that game environments in OpenAI Gym have.
Better yet, you'll add a graphical game window using the turtle library so

https://doi.org/10.1201/b23383-12


that you can visualize the game board as the game progresses. Along the
way, you'll learn the necessary skills to create a game environment, an
agent, and how the agent interacts with the opponent and the environment.
You'll code in how to change from one state to another based on agent's
actions, how to determine rewards, and how to determine if the game has
ended. Later in this book, you'll use these skills to create game
environments for Connect Four and the Amazon delivery route problem.

Once the game environment is created, you'll apply deep learning to Tic Tac
Toe with the aim of developing intelligent game strategies. You'll use
simulated games as input data to feed into a deep neural network. After the
model is trained, you'll use the trained model to play games. At each step of
the game, you'll look at all possible next moves. You'll use the model to
predict the probability of winning the game with each hypothetical next
move. You'll pick the move with the highest probability of winning the
game for the agent.

Finally, you'll animate the decision making process. You'll use the deep
learning game strategy to play a full game. At each step, the animation will
show the game board on the left, and the probability of winning with each
hypothetical next move on the right. The best move will be highlighted.

New Skills in This Chapter

Creating your own game environment
Adding attributes and methods to a game environment
Making moves and determining wins and losses in a game
Training game strategies in self-made environments
Designing deep learning game strategies in multi-player games

Before you start, open the Jupyter Notebook app in the virtual environment
MLA on your computer. After that, open a blank Jupyter notebook and save
it as ch12.ipynb in the directory /Desktop/mla/ on your computer. Next,
we'll create a subdirectory /files/ch12/ to store files in this chapter. Start a
new cell in ch12.ipynb and execute the following lines of code in it:



To convert a ps file to a png file, you need to conda install Ghostscript.
We'll use it in this chapter and other chapters in this book.

Run the following line of command in the Anaconda prompt (Windows) or
a terminal (MAC/Linux) with your virtual environment activated:

conda install -c conda-forge ghostscript==9.54.0

Follow the on-screen instructions to finish the installation.

After that, restart you Jupyter Notebook for it to take effect.

12.1 CREATE THE TIC TAC TOE GAME ENVIRONMENT

We'll create a Tic Tac Toe game environment, using the turtle library to
generate graphical game windows. We'll create all the features and methods
that a typical OpenAI Gym environment has.

12.1.1 Use a Python Class to Represent the Environment

We'll create a Python class to represent the Tic Tac Toe game environment.
The class will have various attributes and methods to replicate those in a
typical OpenAI Gym game environment.

Specifically, our self-made Tic Tac Toe game environment will have the
following attributes:

action_space: an attribute that provides the space of all actions that can
be taken by the agent. The action space in Tic Tac Toe will have nine
values, 1 to 9. We use 1 to 9 instead of 0 to 8 to avoid confusion.
observation_space: an attribute that provides the list of all possible
states in the environment. We'll use a NumPy array with 9 values to
represent the nine cells on the game board.
state: an attribute indicating which state the agent is currently in. Each
of the nine cells can take values -1 (occupied by Player O), 0 (empty),
or 1 (occupied by Player X).



action: an attribute indicating the action taken by the agent. The action
is a number between 1 and 9.
reward: an attribute indicating the reward to the agent because of the
action taken by the agent. The reward is 0 in each step, unless a player
has won the game, in which case the winner has a reward of 1 and the
loser a reward of -1.
done: an attribute indicating whether the game has ended. This
happens when one player wins or if the game is tied.
info: an attribute that provides information about the game. We'll set it
as an empty string.

Our self-made Tic Tac Toe game environment has a few methods as well:

reset() is a method to set the game environment to the initial (that is,
the starting) state. All cells on the board will be empty.
render() is a method to show the current state of the game environment
graphically.
step() is a method that returns the new state, the reward, the value of
the done variable, and the variable info based on the action taken by
the agent.
sample() is a method to randomly choose an action from the action
space.
close() is a method to close the game environment.

12.1.2 Create a Local Module for the Tic Tac Toe Game

We'll create a local module for the Tic Tac Toe game and place it inside the
local package for this book: the package utils that we have created in
Chapter 1.

Now let's code in a self-made Tic Tac Toe game environment using a
Python class. To save space, we place the code in the file ttt_env.py in the
folder utils you created in Chapter 1. Download the file from the book's
GitHub repository and place it in the folder /Desktop/mla/utils/ on your
computer.

Open the file ttt_env.py to familiarize yourself with the module. We outline
the main structure of the module below:



First, we use two helper classes action_space and observation_space to
create the action space and observation space for the Tic Tac Toe game. The
main Python class is ttt, which generates an instance of the Tic Tac Toe
game. The ttt class has several methods such as reset(), step(), render(), and
close().
Next, we'll learn how to access the attributes and methods of this game
environment.

12.1.3 Verify the Custom-Made Game Environment



You can check the attributes and methods of the self-made game
environment and make sure it has all the elements provided by a typical
OpenAI Gym game environment.

First we'll initiate the game environment and show the game board.

We import the ttt class from the local package. We then create an instance
of the game and call it env. The reset() method sets the game board to the
initial state. The render() method generates a graphical game window using
the turtle library.

If you run the above cell, you should see a separate turtle window, with a
game board in it.

If you want to close the game window, use the close() method, like so:

Next, we'll check the attributes of the game environment such as the
observation space and the action space.



Results above show that there are nine possible actions that can be taken by
the agent. The meanings of the actions in this game are as follows:

1: Placing a game piece in cell 1
2: Placing a game piece in cell 2
…
9: Placing a game piece in cell 9

The sample() method returns an action from the action space randomly. The
state space is a vector with 9 values. Each value can be either -1, 0, or 1,
with the following meanings:

0 means the cell is empty
-1 means the cell is occupied by Player O
1 means the cell is occupied by Player X.

12.1.4 Play a Game in the Tic Tac Toe Environment

Let's play a game in the custom-made environment, by randomly choosing
an action from the action space each step.





We use the render() method to show the turtle game window. At the same
time, we print out the game board as a NumPy array. We reshape the game
board into a three by three matrix. We also use [::-1] to switch the top and
bottom rows in the matrix so that the cell numbers match those appear in
the turtle game window.

Note that the outcome is different each time you run it because the actions
are randomly chosen.

12.2 TRAIN A DEEP LEARNING GAME STRATEGY

In this section, you'll learn how to use a deep neural network to train
intelligent game strategies for Tic Tac Toe. In particular, you'll use the
convolutional neural network that you used in image classifications to train
the model. By treating the game board as a two-dimensional image instead
of a one-dimensional vector, you'll greatly improve the effectiveness of
your game strategies.

You'll learn how to prepare data to train the model, how to interpret the
prediction from the model. How to use the prediction to play games, and
how to check the efficacy of your strategies.



12.2.1 A Blueprint of the Deep Learning Game Strategy

Here is a summary of what we'll do to train the game strategy:

1. We'll let two computer players play a game with random moves, and
record the whole game history. The game history will contain all the
game board positions from the very first move to the very last move.

2. We then associate each board position with a game outcome (a win, a
tie, or a loss). The game board position is similar to image pixels in
our image classification problem, and the outcome is similar to the
labels.

3. We'll simulate 100,000 games. By using the game boards and
outcomes as Xs and ys, we feed the data into a deep neural network to
train the model.

4. We use the trained model to play a game. At each step of the game, we
look at all possible next moves and feed the hypothetical game board
into the pre-trained model. The model will tell you the probabilities of
a win, a loss, and a tie.

5. We select the action with the highest chance of winning for the agent
who has the turn to make a move.

12.2.2 Simulate Tic Tac Toe Games

You'll learn how to generate data to train the deep neural network. We'll
generate 100,000 games in which both players use random moves. We'll
then record the board positions of all intermediate steps and the eventual
outcomes of each board position.

First, let's simulate one game. The code in the cell below accomplishes that.



The simulated game has five steps with the following moves by the two
players: 5, 7, 8, 3, and 2. Player X has won the game by connecting cells 2,
5, and 8. The game outcome is 1, meaning Player X has won.

Now let's simulate 100,000 games and save the data.



There is an outcome associated with each game: 1 means Player X has won,
-1 means Player O has won, and 0 means the game is tied. After each game
is finished, we retroactively associate the game outcome with each board
position in the game. By doing this, we train the model to predict the game
outcome based on game board positions.

Now let's save the data on your computer for later use:

The first nine observations are from the first game in which Player X won.
Therefore, you see the outcome 1 as the first element of the first nine
observations. The tenth observation starts the second game. The first
element in the tenth observation is 0, and this tells us that the second game
is tied.

Next, you'll learn how to train a deep neural network based on the data you
just generated.

The Law of Large Numbers

Even though the moves by both players are random, we repeat the game
many times. The randomness in all these games is washed out by the law
of large numbers. As a result, the outcome data is useful to predict the
outcome of a move. In statistics, the law of large numbers says that if
you perform the same experiment many times, the average outcome
should be close to the expected value. In our setting, if the average
outcome from playing move A is better than the average outcome from



playing move B over a large number of trials, move A should be chosen
over move B.

12.2.3 Train Your Tic Tac Toe Game Strategy

We create a deep neural network to train our game strategy. In particular,
we include a convolutional layer in the model so that we can detect the
spatial features on the game board and associate these features (such as
three game pieces in a row) with game outcomes.

The following neural network trains the game strategy using the data you
just created.

We use Keras to create a deep neural network to train game strategies in Tic
Tac Toe. Compared to the neural networks we used in Chapters 10 and 11,
there are several changes. Specifically, the differences are 1) Instead of
using just dense layers, we have added in a convolutional layer with a
kernel size of three by three; 2) Since there are three possible game
outcomes, instead of just two, we treat this as a multi-category classification
instead of a binary classification problem. Therefore, we have three neurons
in the output layer instead of just one. We use softmax as our activation
function in the output layer; 3) The loss function is categorical cross
entropy now instead of the binary cross entropy that we used in Chapters 10
and 11.



The outcome data is a variable with three possible values: -1, 0, and 1. We'll
convert them into one-hot variables so that the deep neural network can
process. We also convert the board position into a three by three matrix
instead of a one-dimensional vector before we feed it into the deep neural
network.

We train the model for 100 epochs, as follows:

It takes several hours to train the model since we have close to a million
observations. The trained model is saved on your computer. Alternatively,
you can download the trained model from the book's GitHub repository.

12.3 USE THE TRAINED MODEL TO PLAY GAMES

Next, we'll use the trained model to design game strategies to play a game.

12.3.1 Best Moves Based on the Trained Model

First, we'll define a best_move_X() function for Player X. The function will
go over each possible next move hypothetically, and use the trained deep
neural network to predict the probability of Player X winning the game if



the move were chosen. The function returns the move with the highest
chance of Player X winning.

Specifically, the best_move_X() function works as follows: 1) It retrieves
the current game board; 2) It retrieves all possible next moves, and adds a
move to the current game board to form a hypothetical game board; 3) It
uses the pre-trained model to predict the chance of Player X winning the
game based on the hypothetical board; 4) It chooses the move with the
highest probability of Player X winning the game.

The function best_move_X() returns the move to maximize the value of
prob(X wins) - prob(O wins). Note that the value of prob(X wins) - prob(O
wins) and prob(X wins) are highly correlated, the results are almost
identical no matter whether the function best_move_X() returns the move to
maximize the value of prob(X wins) - prob(O wins) or the value of prob(X
wins). Here we are using the former, but you can easily change it to the
latter case and verify.



Similarly, we'll define a best_move_O() function for Player O. The function
will go over each move hypothetically, and use the trained deep neural
network to predict the probability of Player O winning the game. The
function returns the move with the highest chance of winning for Player O.

The function best_move_O() is similar to the function best_move_X() we
defined earlier. The key difference is that in the function best_move_O(),
we choose the move to maximize the value of prob(O wins) - prob(X wins).
In contrast, in the function best_move_X(), we choose the move to
maximize the value of prob(X wins) - prob(O wins).

12.3.2 Test a Game Using the Trained Model

Now let's use the best_move_X() function to choose moves for Player X and
play a game. We'll randomly choose moves for Player O.



The best strategy looks at each possible next move, and add that move to
the current board to form a hypothetical board. We feed the hypothetical
board to the trained model to make predictions. The prediction will have
three values: the probability of tying, Player X winning, and Player O
winning. The best strategy chooses the move with the highest probability of
Player X winning the game.

In one example output, Player X uses the best moves recommended by the
trained model and wins the game by occupying cells 4, 5, and 6, as shown
in Figure 12.1.



Figure 12.1  A Tic Tac Toe game with the deep learning game strategy

You can also test the best strategy for Player O by using the best_move_O()
function, assuming Player X chooses random moves. I leave that as an
exercise for you.

12.3.3 Test the Efficacy of the Trained Model



Next, we'll test how often the deep learning game strategy wins against a
player who makes random moves. The following code cell does that:

In Tic Tac Toe, Player X has a huge first-mover's advantage. Therefore, we
test 1000 games and in 500 of them, we let the random-move agent go first.
In the other 500 games, the deep learning agent moves first. We record
game outcomes in a list results. If the deep learning agent wins, we record
an outcome of 1 in the list results. If the deep learning agent loses, we
record an outcome of -1. If the game is tied, we record an outcome of 0.

Next, we check how many times the deep learning agent has won:



Whenever it's Player X's turn, the deep learning agent uses the
best_move_X() function to select a move. Whenever it's Player O's turn, the
deep learning agent uses the best_move_O() function to select a move. The
opponent of the deep learning agent is the random-move agent. Results
show that the deep learning agent has won 994 out of 1000 games. The
remaining six games are tied. The deep learning agent didn't lose even one
game. So the deep learning game strategy works really well!

12.4 ANIMATE THE DEEP LEARNING PROCESS

In this section, we'll create an animation to show how the agent makes a
decision based on the trained deep neural network in each step of the game.

12.4.1 Probabilities of Winning for Each Hypothetical Move

In each stage of the game, we'll first draw the game board on the left of the
screen. Player X, who uses deep learning game strategies here onwards,
will look at all possible next moves and use the trained model to predict the
probability of winning with each hypothetical next move. We'll draw the
probabilities on the right. Finally, we'll highlight the action with the highest
probability of winning. The action is Player X's next move. We'll repeat this
step by step until the game ends.

This animation will let us look under the hood and understand how deep
learning can help us design intelligent game strategies.



In the code cell below, we play a full game and record the game board and
the winning probabilities in each step of the game. To save space, we
defined a record_ttt() function in the local utils package. Download the file
ch12util.py from the book's GitHub repository and save it in the folder
/Desktop/mla/utils/ on your computer. The code cell below imports the
record_ttt() function from the local utils package and calls the function to
record the game board and winning probabilities, like so:

The record_ttt() function returns a list history that contains various
information in each stage of the game. In particular, the second element in
each stage has the probabilities of Player X winning the game with different
hypothetical next moves. For illustration purposes, we require that Player X
wins the game in three steps. If not, we start another game until Player X
does win in three steps. The record_ttt() function also creates several ps
files on your computer that we'll use later: ttt_step0.ps, ttt_step1.ps, and so
on.

Before making the first move, Player X has nine hypothetical next moves: 1
to 9. The trained neural network tells us what's the probability of winning
the game with each hypothetical move. We can print out the nine
probabilities as follows:



The above results show that the probability of Player X winning the game is
the highest, at 73.45%, if action 5 is taken. That's why Player X occupies
cell 5 in the first move.

Player O chooses cell 2 after that. Now it's Player X's turn again. When
making the second move, Player X faces seven choices. We can also print
out the probability of winning with each hypothetical next move as follows:

The above results show that the probability of Player X winning the game is
the highest, at 79.51%, if action 9 is taken. That's why Player X occupies
cell 9 in the second move.

You can also print out the probability of Player X winning the game when
making the third move, but I'll leave that for you to finish as an exercise.

Let's save the game history data for later use. Run the code in the following
cell:

12.4.2 Animate the Whole Game

Next, you'll combine the pictures created in the last subsection into an
animation. As a result, you'll see the game board step by step for the whole



game.

If you open the file ttt_steps.gif on your computer, you'll see an animation
showing the game board at each stage of the game.

12.4.3 Animate the Decision Making

Next, we'll animate the decision making process of Player X in each stage
of the game. We'll draw the probabilities of Player X winning the game
with each hypothetical next move. We'll then highlight the move with the
highest probability of winning the game. We'll animate this step by step
until the game ends.

The gen_images() function in the local utils package creates three images in
each stage of the game: the game board before Player X makes a move, the
probabilities of Player X winning the game with different hypothetical next
moves, and the best move for Player X based on the highest probability.

The above code cell creates images to demonstrate the decision making
process of Player X. For example, if you open the file ttt_stage4step3.png,
you'll see a picture showing the probabilities of Player X winning the game
with each hypothetical next move. In particular, the probability is 100% if
Player X chooses Cell 1 in the fourth stage of the game. The cell is
highlighted in blue, and that is also the move made by Player X as a result.

Next, we'll combine the pictures into an animation to show the decision-
making process of Player X.



If you open the file ttt_DL_probs.gif, you'll see the animation of the
decision making process of Player X during the whole game.

12.4.4 Animate Board Positions and the Decision Making

You can combine the game board positions and the decision making process
of Player X in each stage of the game. On the left of the screen, we'll draw
the game board. On the right of the screen, we'll draw the probabilities of
Player X winning the game with each hypothetical next move. We'll
animate this step by step until the game ends.

If you open the file ttt_DL_steps.gif, you'll see an animation with two
frames in each step. The left frame shows the board position while the right
frame shows the probabilities of Player X winning the game with each
hypothetical next move. The best action is then highlighted in blue so that
we know what's the best move for Player X at that stage of the game.

12.4.5 Subplots of the Decision-Making Process

We also create a figure with three subplots to include in the hard copy of the
book. Specifically, we focus on the decision-making process of Player X
when making the three moves. In each move, we'll display the current board
position faced by Player X on the left. On the right, we'll display the



probability of Player X winning the game with each hypothetical next
move. The move with the highest probability of winning is then
highlighted.

To do that, we obtain every third image from the list frames, like so:

There are three images in the newly-created list subplot_frames. We plot the
images in a three by one matrix as follows:



Figure 12.2  Deep learning game strategies in Tic Tac Toe



Figure 12.2 shows the resulting subplots. The top graph shows that Player
X faces nine choices at the beginning of the game. Choosing cell 5 has the
highest probability of winning for Player X and this explains why Player
X's first move is 5. The middle graph shows that after Player O occupies
cell 2, Player X has seven choices, and cell 9 leads to the highest
probability of Player X winning. The bottom graph shows that after Player
O occupies cell 3, Player X should choose cell 1 since doing so leads to a
100% probability of Player X winning the game.

12.5 GLOSSARY

• Law of Large Numbers:
In statistics, the law of large numbers says that when you perform
the same experiment many times, the average outcome should be
close to the expected value.

• Multi-Player Games:
Game environments in which there are more than one agent who can
choose actions to interact with the environment and each other.

12.6 EXERCISES

12.1 Rerun the three code boxes in Section 12.1.3 to familiarize yourself
with the Tic Tac Toe game environment.

12.2 Modify the first code box in Section 12.1.4 so that Player X chooses
random moves, but you choose moves for Player O using your
keyboard (hint, use the input() function).

12.3 Modify the first code box in Section 12.3.2 so that Player X chooses
random moves while Player O selects moves using the best_move()
function.

12.4 In Section 12.4.1, print out the probabilities of Player X winning the
game when making the third move with different hypothetical next
moves.



IN

C H A P T E R  13

Deep Learning in Connect Four

DOI: 10.1201/b23383-13

Predicting better than pure guesswork, even if not accurately, delivers real
value. A hazy view of what's to come outperforms complete darkness by a

landslide.
Predictive Analytics: The Power to Predict Who Will Click, Buy, Lie, or

Die
–Eric Seigel

THIS CHAPTER, you'll combine what you have learned in Chapters
10 to 12 and design deep learning game strategies for the Connect
Four game. You'll first create a game environment for Connect Four

with all the attributes and methods of a typical OpenAI Gym game
environment. The game environment also has a graphical interface.

You'll use simulated games as input data to feed into a deep neural network.
After the model is trained, you'll use it to play Connect Four games. At each
step of the game, you'll look at all possible next moves. The model predicts
the probability of winning the game for the deep learning agent with each
hypothetical next move. You'll pick the move with the highest probability of
winning.

Finally, you'll animate the decision-making process. You'll use the deep
learning game strategy to play a full game. At each step, the animation will

https://doi.org/10.1201/b23383-13


show the game board on the left, and all possible next moves and the
associated probabilities of winning on the right. The best next move is
highlighted.

New Skills in This Chapter

Creating a Connect Four game environment
Coding in complicated Connect Four game rules
Simulating game data to train a deep neural network
Designing deep learning game strategies for different players

Before you start, open the Jupyter Notebook app in the virtual environment
MLA on your computer. After that, open a blank Jupyter notebook and save
it as ch13.ipynb in the directory /Desktop/mla/ on your computer. Next,
we'll create a subdirectory /files/ch13/ to store files in this chapter. Start a
new cell in ch13.ipynb and execute the following lines of code in it:

13.1 CREATE A CONNECT FOUR GAME ENVIRONMENT

Connect Four is a well-known board game. I'll go over the rules to clarify
the logic in the upcoming code. In Connect Four, two players take turns
dropping discs into one of seven columns, from the top. One player has red
discs and the other yellow. The seven columns are on a six-row, vertically
suspended grid. When a disc is dropped into a column, it will fall to the
lowest available space in that column. Discs cannot move from one column
to another. The first player who forms a direct line—either horizontally,
vertically, or diagonally—with four of their game pieces wins. If all 42 slots
have been filled and nobody has won, the game is tied.

We'll create a Connect Four game environment, using the turtle library to
draw game boards. We'll create all the attributes and methods that a typical
OpenAI Gym environment has.



13.1.1 A Connect Four Game Environment

We'll create a Python class to represent the Connect Four game
environment. The class will have various attributes and methods to replicate
those in a typical OpenAI Gym game environment.

Specifically, our self-made Connect Four game environment has the
following attributes:

action_space: an attribute representing all actions that can be taken by
the agent. The action space has seven values, 1 to 7, representing the
seven columns a player can drop discs in.
observation_space: an attribute including all possible states in the
environment. We'll use a NumPy array with seven rows and six
columns to represent the 42 cells on a game board.
state: an attribute indicating which state the agent is currently in. Each
of the 42 cells can take values -1 (occupied by the yellow player), 0
(empty), or 1 (occupied by the red player).
action: an attribute indicating the action taken by an agent. The action
is an integer between 1 and 7.
reward: an attribute indicating the reward to the agent because of the
action taken by the agent. The reward is 0 in each step, unless a player
has won the game, in which case the winner has a reward of 1 and the
loser a reward of -1.
done: an attribute indicating whether the game has ended. This
happens when one player wins or if the game is tied.
info: an attribute to provide information about the game. We'll set it as
an empty string.

Our self-made Connect Four game environment has a few methods as well:

reset() is a method to set the game environment to the initial (that is,
the starting) state. All cells on the board will be empty.
render() is a method to show the current state of the environment
graphically.
step() is a method that returns the new state, the reward, the value of
the done variable, and the variable info based on the action taken by
the agent.
close() is a method to close the game environment.



We'll create a local module for the Connect Four game and place it inside
the local package for this book: the package utils that we have created in
Chapter 1.

Open the file conn_env.py to familiarize yourself with the module. The
main Python class is conn, which generates an instance of the Connect Four
game. The conn class has several methods such as reset(), step(), render(),
and close().
Next, we'll learn how to access the attributes and methods of the Connect
Four game environment.

13.1.2 Verify the Connect Four Game Environment

To get acquainted with the game environment, you'll learn to access
different attributes and methods of the self-made Connect Four game
environment. First we'll initiate the game environment and show the game
board, like so:

We import the conn class from the local package and create an instance of
the Connect Four game named env. The reset() method sets the game board
to the initial state. The render() method creates a graphical game window.
As a result, you should see a separate turtle window, with a Connect Four
game board in it.

You can close the game window using the close() method, as follows:

The code cell below prints out the observation space and action space of the
game environment.



There are seven possible actions that each agent can take: numbers 1 to 7.
The meanings of the actions are as follows: 1 means placing a game piece
in column 1; 2 means placing a game piece in column 2, and so on. The
state space is a matrix with 7 columns and 6 rows. Each cell can take one of
the three values: 0, meaning the cell is empty; -1, meaning the cell is
occupied by the yellow player; 1, meaning the cell is occupied by the red
player.

13.1.3 Play a Connect Four Game

Next, you'll learn how to manually interact with the Connect Four game.
You'll use the keyboard to enter a number between 1 and 7 each step of the
game until the game ends. The following lines of code show you how.





I am the red player and move first. The opponent makes random moves.
The above output shows an example game in which I have won by
connecting four pieces horizontally in columns 1 to 4.

13.2 TRAIN A DEEP NEURAL NETWORK

In this section, you'll use a deep neural network to train intelligent game
strategies for Connect Four. In particular, you'll use a convolutional neural
network to train the model. By treating the game board as a two-
dimensional image instead of a one-dimensional vector, you'll greatly
improve the intelligence of your game strategies.

You'll learn how to prepare data to train the model; how to interpret the
predictions from the model; how to use the prediction to play games; and
how to check the efficacy of your deep learning Connect Four game
strategies.

13.2.1 The Game Plan



The steps involved in training a game strategy for Connect Four is similar
to what we have done in Chapter 12 for Tic Tac Toe. Specifically, here is a
summary of what we'll do to train the game strategy:

1. We'll let two computer players play a game with random moves, and
record the whole game history. The game history will contain all the
game board positions from the very first move to the very last move.

2. We then associate each board position with a game outcome (a win, a
tie, or a loss). The game board position is similar to image pixels in
our image classification problems earlier in this book, and the game
outcome is similar to the image labels. Essentially we conduct a multi-
category classification: classifying each board position into a win, a
tie, or a loss.

3. We'll simulate 100,000 games. We then feed the board positions and
the corresponding game outcomes into a deep neural network to train
the model.

4. We can now use the trained model to play games. At each step of the
game, we look at all possible next moves, and feed the hypothetical
game board into the pre-trained model. The model will tell us the
probabilities of a win, a tie, or a loss for the current player.

5. You select the move with the highest probability of the current player
winning the game.

13.2.2 Simulate Connect Four Games

You'll learn how to generate data to train the deep neural network.
Specifically, you'll generate 100,000 games in which both players use
random moves. You'll then record the board positions of all intermediate
steps and the eventual outcomes of each board position.

First, let's simulate one Connect Four game. The code in the cell below
accomplishes that:



The one_game() function generates a full game, with both players choosing
random moves. The function returns a list history, which contains all the
board positions of the game, from the first step to the last step. The function
also returns a variable reward, which indicates the game outcome: 1 means
red won, -1 means yellow won, and 0 means a tie game.

We'll simulate 100,000 games and save the data so that we can later use the
data to train our model.

Each game has multiple board positions and a game outcome. After a game
is finished, we retroactively associate the game outcome with each board
position in the game. By doing this, we train the model to predict the game
outcome based on game board positions early in the game.



Each element in the saved file games_conn100K.p has two values: the first
is the outcome associated with a board position, in the form of -1, 0, or 1;
the second value is the board position, in the form of a 7 by 6 NumPy array.

As in Chapter 12 when we train game strategies for Tic Tac Toe, the moves
by both players in simulated Connect Four games are random. Since we
repeat the game many times, the randomness in all these games is washed
out by the law of large numbers. As a result, the outcome data is useful to
predict the outcome of a move. Of course, the predictions are not perfect.
But if the predictions are better than random guesses, the game strategy will
be relatively intelligent, as stated by the opening quote of this chapter by
Eric Siegel [21].

Next, we'll feed the data into a deep neural network to train the model.

13.2.3 Train the Connect Four Game Strategy

The following neural network trains the Connect Four deep learning game
strategy using the data you just created.



We use the Keras API to create a deep neural network to train our game
strategy. The network includes a convolutional layer so that we can detect
the spatial features on the game board and associate these features (such as
four game pieces in a row horizontally, vertically, or diagonally) with game
outcomes. Unlike the convolutional layer in Chapter 12, the kernel size we
use here is four by four instead of three by three. Similar to Chapter 12, we
use softmax as our activation function in the output layer and the loss
function is categorical cross entropy.

The outcome data is a variable with three possible values: -1, 0, and 1. We'll
convert them into one-hot variables so that the deep neural network can
process. We convert the board position into a seven by six matrix instead of
a one-dimensional vector before we feed it into the deep neural network.



We train the model for 100 epochs. It takes about 24 hours to train the
model since we have several million observations. The trained model is
saved on your computer. Alternatively, you can download the trained model
from the book's GitHub repository. Now that we have a trained model, let's
use it to design deep learning Connect Four game strategies.

13.3 USE THE TRAINED MODEL TO PLAY CONNECT FOUR

Next, we'll use the trained model to play a game. The red player will use the
best move from the trained model. The yellow player will randomly select a
move.

13.3.1 Best Moves

First, we'll define a best_move_red() function for the red player. The
function takes the game environment as its argument and goes over each
possible next move hypothetically. It then uses the trained deep neural
network to predict the probability of the red player winning the game. The
function returns the move with the highest chance of winning.

Specifically, the function works as follows:

1. Look at the current board.



2. Iterate through all possible next moves; at each iteration, it adds a
move to the current board to form a hypothetical board.

3. Use the pretrained model to predict the chance of the red player
winning.

4. Choose the move with the highest chance of the red player winning.

The best_move_red() function is defined as follows:

Similarly, we define a best_move_yellow() function for the second player.
The function goes over all possible next moves and hypothetically adds the
move to the current board. It uses the trained deep neural network to predict
the probability of the yellow player winning the game. The function returns
the move with the highest chance of the yellow player winning the game.



Next, we'll test how often our deep learning game strategy wins against a
player who makes random moves.

13.3.2 Test Connect Four Deep Learning Game Strategies

Now let's use the best_move_red() and best_move_yellow() functions to
choose moves for the red and yellow players, respectively. To level the
playing field so that no agent has a first-mover's advantage, we simulate
100 games and let the deep learning agent move first in 50 games. In the
other 50 games, the random-move agent goes first.



We record game outcomes in a list results. If the deep learning agent wins,
we record an outcome of 1 in the list results. If the deep learning agent
loses, we record an outcome of -1. If the game is tied, we record an
outcome of 0.

Next, we check how many times the deep learning agent has won:



Results show that the deep learning agent has won all 100 games. The
indicates that the deep learning game strategy works well!

13.4 ANIMATE DEEP LEARNING IN CONNECT FOUR

In this section, we'll create an animation to show how the agent makes a
decision by using the best moves derived from the trained deep neural
network. For simplicity, we assume the deep-learning agent moves first and
the random-move agent moves second. As an exercise, you can animate the
decision-making process if the deep-learning agent moves second instead.

13.4.1 Print Out Probabilities of Winning for Each Next Move

In each stage of the game, we'll first draw the game board on the left of the
screen. The red player will look at all possible next moves and use the
trained deep neural network to predict the probability of winning with each
hypothetical next move. We'll draw the probabilities on the right. Finally,
we'll highlight the action with the highest probability of winning. The
action is red player's next move. We'll repeat this step by step until the game
ends.

This animation will let us look under the hood and understand how deep
learning helps us design intelligent game strategies in Connect Four.



In the code cell below, we play a full game and record the game board and
the winning probabilities in each step of the game, with the deep learning
agent moves first and the random-move agent moves second. To save space,
we have defined a record_conn() function in the local utils package.
Download the file ch13util.py from the book's GitHub repository and save it
in the folder /Desktop/mla/utils/ on your computer. The code cell below
imports the record_conn() function from the local utils package and calls
the function to record the game board and winning probabilities, like so:

The record_conn() function returns a list history that contains various
information in each stage of the game. In particular, the second element in
each stage is the probabilities of the red player winning the game with
different hypothetical next moves. For illustration purposes, we require the
red player to win the game in four steps. If not, we start another game until
the red player does win in four steps. The record_conn() function also
creates several ps files on your computer that we'll use later: conn_step0.ps,
conn_step1.ps, and so on.

Figure 13.1 shows the final screenshot of the game. The deep learning
agent, which is the red player, wins the game by connecting four red discs
horizontally in columns 2 to 5.



Figure 13.1  Deep learning agent wins a game in Connect Four

Before making the first move, the red player has seven hypothetical next
moves: 1 to 7. The trained neural network tells us what's the probability of
winning the game with each hypothetical move. We can print out the seven
probabilities by using the code below.



The above results show that the probability of the red player winning the
game is the highest, at 47.93%, if action 4 is taken. That's why the red
player chooses Column 4 in the first move.

You can also print out the probability of the red player winning the game in
the next rounds, but I'll leave that for you to finish.

Let's save the game history data for later use. Run the code in the following
cell:

13.4.2 Animate a Complete Connect Four Game

Next, you'll combine the pictures created in the last subsection into an
animation. As a result, you'll see the game board step by step for the whole
game.

We first use the PIL library to open the eight images created in the last
subsection. We put the eight images in a list frames and use the imageio



library to convert the images to an animation in gif format. If you open the
file conn_steps.gif, you'll see the game board at each stage of the game.

13.4.3 Animate the Decision-Making Process

Next, we'll animate the decision-making process of the red player in each
stage of the game. We'll draw the probabilities of the red player winning the
game with each hypothetical next move and highlight the move with the
highest probability of winning. We'll animate this process step by step until
the game ends.

The stage_pics() function in the local utils package creates three images in
each stage of the game: the game board before the red player makes a
move, the probabilities of the red player winning the game with different
hypothetical next moves, and the best move for the red player based on the
highest probability.

Run the above code cell and twelve images will be saved on your computer.
For example, if you open the file conn_stage6step3.png, you'll see the
probabilities of the red player winning the game with each hypothetical
move. In particular, the probability is 100% if the red player chooses
Column 2 or Column 6. The highest probability, along with the best action
(Column 2 in this case), is highlighted in blue.

Next, we'll combine the pictures into an animation to show the decision-
making process of the red player.



If you open the file conn_DL_probs.gif, you'll see the animation illustrating
the decision-making process of the deep learning agent based on the
predicted probabilities from the trained model.

13.4.4 Combine Board Positions and Decision Making

Next, we'll combine the game board positions and the decision making
process of the red player in each stage of the game. On the left of the
screen, we'll draw the game board. On the right of the screen, we'll draw the
probabilities of the red player winning the game with each hypothetical next
move. We'll animate this step by step until the game ends.

At each stage of the game, the DL_steps() function in the local utils
package places the game board on the left and the probabilities of winning
on the right and creates a combined image. After that, it creates an
animation based on these images.

The above code cell first imports the DL_steps() function from the local
utils package and then calls the function to create the images and animation.
Further, the function returns a list frames with all the combined images.

If you open the file conn_DL_steps.gif, you'll see an animation with two
frames in each step. The left frame shows the board position while the right
frame shows the probabilities of the red player winning the game with each



hypothetical next move. The best action is then highlighted in blue so that
we know what's the best move for the red player.

13.4.5 Create Subplots of Deep Learning

We also create a figure with four subplots to include in the hard copy of the
book. Specifically, we focus on the decision making process of the red
player when making the four moves. In each move, we'll display the current
board position faced by the red player on the left. On the right, we'll display
the probability of the red player winning the game with each hypothetical
next move. The move with the highest probability of winning is then
highlighted.

To do that, we obtain every third image from the list frames, like so:

There are four images in the newly-created list frames_subplots. We plot
the images in a four by one matrix as follows:





Figure 13.2  Decision-making process of the deep learning agent in Connect
Four

Figure 13.2 shows the resulting subplots. The top graph shows that the red
player faces seven choices at the beginning of the game. Choosing Column
4 has the highest probability of winning for the red player and this explains
why the red player's first move is 4. The second graph shows that after the
yellow player places a disc in Column 4, the red player has seven choices,
and Column 3 leads to the highest probability of winning. The third graph
shows that after the yellow player places a disc in Column 1, the red player
should choose Column 5, which leads to a 65.91% probability of winning.
The bottom graph shows that the red player should choose Column 2 since
doing so leads to a 100% probability of winning the game.

13.5 GLOSSARY

• Connect Four:
A board game in which two players take turns dropping discs into
one of seven columns, from the top. One player has red discs and
the other yellow. The seven columns are on a six-row, vertically
suspended grid. When a disc is dropped into a column, it will fall to
the lowest available space in that column. Discs cannot move from
one column to another. The first player who forms a direct line—
either horizontally, vertically, or diagonally—with four of their
game pieces wins. If all 42 slots have been filled and nobody has
won, the game is tied.

13.6 EXERCISES

13.1 Rerun the three code boxes in Section 13.1.2 to familiarize yourself
with the Connect Four game environment.

13.2 Modify the first code box in Section 13.1.3 so that the red player
chooses random moves and you choose moves for the yellow player
using your keyboard.



13.3 In Section 13.4.1, print out the probabilities of the red player winning
the game with each hypothetical next move in the second, third, and
fourth stage of the game.
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Like a human, our agents learn for themselves to achieve successful
strategies that lead to the greatest long-term rewards. This paradigm of

learning by trial-and-error, solely from rewards or punishments, is known as
reinforcement learning (RL).

–DeepMind, 2016

WE DISCUSSED in Chapter 3, there are three different types of
machine learning (ML): Supervised learning, unsupervised learning,
and reinforcement learning. In supervised learning, we show a model

many examples of input-output pairs. The model extracts features from the
input data (e.g., images) and associate them with the output (e.g., image
labels such as horses, deer, cats, or dogs). We then apply the trained model
on new examples and make predictions on what the output should be (is the
image a horse or a deer?). The deep neural networks we discussed in
Chapters 5 to 12 are examples of supervised learning. In contrast,
unsupervised learning models find naturally-occurring patterns from the
data by using methods such as clustering, principal component analysis, and
data visualization.
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In reinforcement learning (RL), an agent operates in an environment
through trial and error. The agent learns to achieve the optimal outcome by
receiving feedback from the environment in the form of rewards and
punishments. The opening quote of this chapter from DeepMind
summarizes the idea behind RL [6]. For the rest of the book, we'll discuss
various types of reinforcement learning methods, which include tabular Q-
learning, deep Q-learning, policy gradients, and double deep Q-learning.

In this chapter, you'll learn how RL works. We'll use the Frozen Lake game
in OpenAI Gym to illustrate the concept of dynamic programming and
Bellman equation. Your'll learn to train the Q-table by trial and error.
Specifically, the agent plays the game many times and adjusts the values in
the Q-table based on the rewards: increase the Q-value if an action leads to
a positive reward and decrease the Q-value otherwise. You'll also learn to
use the trained Q-table to solve the Frozen Lake game.

Additionally, you'll create an animation to demonstrate how tabular Q-
learning works in each step of the Frozen Lake game. In particular, in each
state, you'll put the game board on the left and the Q-table on the right.
You'll highlight the row corresponding to the state and compare the Q-
values under the four actions. You'll then highlight the best action in red.
You'll repeat this process until the game ends.

New Skills in This Chapter

Understanding how reinforcement learning works
Implementing tabular Q-learning in Frozen Lake
Creating a game environment for Frozen Lake
Training a Q-table from scratch
Using the trained Q-table to win a game

Before you start, open the Jupyter Notebook app in the virtual environment
MLA on your computer. After that, open a blank Jupyter notebook and save
it as ch14.ipynb in the directory /Desktop/mla/ on your computer. Next,
we'll create a subdirectory /files/ch14/ to store files in this chapter. Start a
new cell in ch14.ipynb and execute the following lines of code in it:



14.1 BASICS OF REINFORCEMENT LEARNING

Reinforcement Learning (RL) is one type of Machine Learning (ML). In a
typical RL problem, an agent decides how to choose among a list of actions
step by step in an environment to maximize the cumulative payoff.

RL is widely used in many different fields, from control theory, operations
research, to statistics. The optimal actions are solved by using a Markov
Decision Process (MDP). The agent uses trial and error to interact with the
environment to see what rewards from those actions are. The agent then
adjusts the decision based on the outcome: rewarding good choices and
penalizing bad ones. Hence the name reinforcement learning.

14.1.1 Basic Concepts

Let's first discuss a few basic concepts related to RL: environment, agent,
state, action, and reward.

Environment: the world in which agent(s) live and interact with each
other or with nature. More importantly, an environment is where the
agent(s) can explore and learn the best strategies. Examples include the
Frozen Lake game, the popular Breakout Atari game, or a real-world
problem that we need to solve.
Agent: the player of the game. In most games, there is one player and
the opponent is embedded into the environment. But you have seen
two-player games such as Tic Tac Toe or Connect Four earlier in this
book.
State: the current situation of the game. The current game board in the
Connect Four game, for example, is the current state of the game.
Action: what the player decides to do given the current game situation.
Reward: the payoff to the agent from taking a certain action in a given
state. Positive values are rewards and negative values penalties.

Next, we discuss the idea behind one type of RL: tabular Q-learning.



14.1.2 The Bellman Equation and Q-Learning

Q-learning is one way to solve the optimization problem in RL. It is a
value-based approach. RL problems can also be solved by policy-based
approaches such as policy gradients, which we'll discuss later in this book.

In RL, the agent is trying to learn the best strategy to maximize the
expected payoff over time. A strategy (also called a policy) maps a certain
state to a certain action. A strategy is basically a decision rule that tells the
agent what to do in a given situation.

The Q-value, Q(s, a), is the expected cumulative payoff based on the
current state s and the action a. It measures how good a strategy is. You can
interpret the letter Q as quality. The better the strategy, the higher the payoff
to the agent, and the higher the Q-value. The agent is trying to find the best
strategy that maximizes the Q-value.

An agent's action in time step t not only affects the reward in this period,
but also rewards in future periods, t + 1, t + 2, and so on. Therefore,
finding the best strategy can be complicated and involves dynamic
programming.

In the setting of Q-learning, the Bellman equation is as follows:

where Q(s, a) is the Q value to the agent in the current state s when an
action a is taken. Reward is the payoff to the agent as a result of the action
in the current state. Discount_factor is a constant between 0 and 1 that
measures how much the agent discounts future rewards as opposed to the
current reward. Lastly, max_Q(s′, a′) is the maximum future cumulative
payoff, assuming optimal strategies will be applied in the future as well.

In order to find out the Q-values, we'll try different actions in each state
multiple times. We'll adjust the Q-values based on the outcome: increase the
Q-value if the reward is high and decrease the Q-value if the reward is low
or even negative. We'll use a simple example, the Frozen Lake game, to
demonstrate how Q-learning works.

Q(s, a) = Reward + Discount_Factor ∗ max_Q(s′, a′)



14.2 USE Q-VALUES TO PLAY THE FROZEN LAKE GAME

You have learned how to play the Frozen Lake game using deep learning in
Chapter 10. So I assume you know how the game works. If not, check
Chapter 10 for details.

The OpenAI Gym environment is designed for training RL game strategies.
In particular, in this chapter, you'll learn how to train a tabular Q-learning
game strategy to win the Frozen Lake game.

14.2.1 The Logic Behind Q-Learning

What if you have a Q-table to guide you to successfully play the Frozen
Lake game? The Q-table is a 16 by 4 matrix, with the rows representing the
16 states: 0 means the top left corner (that is, the starting position), 3 means
the top right corner,…, and 15 means the bottom right corner (i.e., the
winning position). The four columns represent the four actions that the
agent can take in any state: 0 means going left, 1 going down, 2 going right,
and 3 going up.

It turns out we do have such a table. Download the file Qtable.csv from the
folder /files/ch14/ in the book's GitHub repository. Save it in the folder
/Desktop/mla/files/ch14/ on your computer. Open the file and take a look so
that you know the values in the 16 by 4 matrix.

With the guidance of the Q-table, reaching the destination (i.e., state 15, the
lower right corner) safely is easy for the agent. Here are the steps:

1. The agent starts at state 0.
2. It looks at the above Q-table and consults the row corresponding to

state 0 (in this case, the first row), which has four values: 0.531, 0.59,
0.59, and 0.531. The four values are the expected cumulative payoff to
the agent from taking the four actions in state 0.

3. The agent chooses the action that leads to the highest Q-value: taking
actions 1 or 2 both have a payoff of 0.59, higher than those from taking
actions 0 or 3. We have a tie here, so the agent chooses action 1 (that
is, going down) in this case (the first in the two tied actions, 1 and 2).

4. Since the agent has chosen going down in state 0, the new state is now
the first column in the second row based on the map of the frozen lake.



Therefore, the new state is state 4.
5. The agent now chooses the best action in state 4 based on the above Q-

table, following the same reasoning as above. This means the agent
takes action 1 again.

6. The agent repeats the above steps until the game ends (that is, either
the agent falls into a hole or reaches the destination).

Based on the numbers in the Q-table and the logic in the above steps, the
agent will take the following actions sequentially: down, down, right, down,
right, and right. It will pass the following states: 0, 4, 8, 9, 13, 14, and
finally 15.

As you can see, the agent has successfully reached the goal (state 15)
without falling into one of the four holes (states 5, 7, 11, and 12).

We'll use a Python program to code in the above steps.

14.2.2 A Q-Table to Win the Frozen Lake Game

First, we load the Q-table into Python by using the loadtxt() method in
NumPy, as follows:

The delimiter option in the loadtxt() method indicates what separates
elements in the CSV file. The Q-table is loaded up in Python as a 16 by 4
NumPy array.

Next, we define a play_game() function to play the Frozen Lake game
using the Q-table. In each step, the agent goes to the row corresponding to
the state in the Q-table. The action with the largest Q in the row is selected.



We use a while loop to iterate through different steps in the game. In each
iteration, the agent chooses the action that leads to the highest Q-value in
that state. The command Q[state,:] obtains the row in the Q-table
corresponding to the current state. We then use the argmax() method in
NumPy to obtain the index value of the largest Q in the row. We can now
use the play_game() function to play a complete game, like so:



The agent has successfully reached state 15, taking the shortest possible
path. You can run the above code cell multiple times, and the output will be
the same every time, because the agent is using a deterministic game
strategy and there is no randomness involved.

You may wonder: where did the numbers in the Q-table come from? That's
what we'll discuss next: how to train a Q-table with tabular Q-learning.

14.3 TRAIN THE Q-VALUES

In this section, we'll first discuss what is Q-learning and the logic behind it.
We then code in the logic and use a program to generate the Q-values that
we have just used in the last section.

14.3.1 What is Q-Learning?

Let's use S to denote the number of possible states and A the number of
possible actions. The Q-values form a table of S rows and A columns, and
we call it the Q-table. We need to find out the Q-values in each cell in the
table so that the agent can use these values to figure out the optimal
strategies in every situation.



Before Q-learning starts, we set all the values in the Q-table to 0. At each
iteration, we'll update Q-values as follows:

Here the learning rate, which has a value between 0 and 1, determines how
fast we update the Q-values. The updated Q(s, a) is a weighted average of
the new Q-value and the previous Q(s, a). This is when updating (i.e.,
learning) happens. The new Q value is calculated as follows:

The discount factor is a constant between 0 and 1 that measures how much
the agent discounts future rewards as opposed to the current reward. Lastly, 
max_Q(s′, a′) is the maximum future cumulative payoff, assuming optimal
strategies will be applied in the future as well.

After many rounds of trial and error, the updates in each iteration will be
minimal, which means the Q-values converge to the equilibrium (i.e., the
steady-state) values.

If you look at the above equations, when

there is no update in the Q-table, and we have

And those are the equilibrium Q-values we are looking for.

Q(s, a) ⇐ learning_rate ∗ New_Q(s, a) + (1 − learning_rate) ∗ Q(s,

New Q(s, a) = Reward + discount_factor ∗ max_Q(s′, a′)

Q(s, a) = Reward + discount_factor ∗ max_Q(s′, a′),

New_Q(s, a) = Q(s, a).



14.3.2 Let the Learning Begin

We'll write a Python program and let the agent randomly select moves to
play the game for many episodes. Unavoidably, there will be many mistakes
along the way. But we'll assign a low reward if the agent fails so that it
assigns a low Q-value to the actions taken in the states along the failing
path. On the other hand, if the agent makes the right choices and
successfully reaches the destination, we'll assign a high reward to the
actions that lead to this outcome so that the agent will choose these actions
in the future. It's through such repeated rewards and punishments that the
agent learns the correct Q-values.

The Credit Assignment Problem in RL

In reinforcement learning, agents learn the best actions through the
feedback from rewards and punishments. However, rewards and
punishments are sparse and delayed and the agent needs to figure out
how to assign proper credits to a sequence of actions that lead to a good
or a bad outcome. The discounted rewards are the solution. For example,
in the above game, the sequence of moves are the following: 1 (down), 1
(down), 2 (right), 1 (down), 2 (right), and 2 (right). After these six
moves, the agent has reached the destination and won the game. The
rewards for the six steps made by the agent are 0, 0, 0, 0, 0, and 1,
respectively. However, the sixth step alone didn't win the game, so we
should give credits to the first five moves as well by discounting
rewards. Assuming the discount rate is 0.9, the discounted rewards to the
six steps made by agent are 0.59, 0.66, 0.73, 0.81, 0.9, and 1,
respectively.

We define an update_Q() function to update the Q-table based on the
moves made by the agent and the rewards, as follows:



The update_Q() function lets the agent play a complete game. After each
step, the agent updates the Q-table based on actions taken and the rewards:
if an action leads to a high reward, the agent increases the Q-value
associated with the action; if an action leads to a punishment, the agent
decreases the corresponding Q-value. The agent balances exploitation
versus exploration when choosing an action. With exploitation, the agent
chooses the action based on the values in the current Q-table. With
exploration, the agent randomly selects an action to explore different
actions in case there is a better strategy than what's recommended by the
current Q-table.

Exploitation versus Exploration in RL

An important hyper-parameter in the process of training a Q-table is the
exploration rate. Exploration means that the agent randomly selects an
action. This is important for training the Q-values because without it, the



Q-values may get stuck in the wrong equilibrium. Exploration gives the
agent the chance to explore new strategies and see if they lead to higher
Q-values. Exploitation is the opposite of exploration: the agent chooses
the action based on the values in the current Q-table. This increases the
chance that a Q-table converges.

We set the learning rate to 0.6 and the discount factor to 0.9. We allow a
maximum of 50 steps in each game and train the Q-table for 10,000
episodes, like so:



When training the Q-table, we set the cutoff value for exploitation to 
min_exp = 0.3 in the first episode of training. If a randomly distributed
variable between 0 and 1 is greater than this cutoff value, the agent uses
exploration; otherwise, the agent uses exploitation. This means with 30%
probability, the agent chooses actions based on values in the Q-table; with
the complementary probability of 70%, the agent randomly selects moves to
explore different strategies. The cutoff value then gradually increases as
training progresses. At the last episode of training, the cutoff value
increases to max_exp = 0.7.

After 10,000 episodes of training, we print out the trained Q-table. You'll
notice that the Q-values are exactly the same as those in the file Qtable.csv
that we used earlier. This answers our earlier question of where the Q-
values came from. You can play the Frozen Lake game using the newly
trained Q-table trained_Q. csv. You should get exactly the same outcome
as earlier when you used the file Qtable.csv. I'll leave that as an exercise for
you.

14.4 Q-LEARNING IN A SELF-MADE GAME ENVIRONMENT



Since there is no graphical window in the Frozen Lake game in OpenAI
Gym, we'll create our own Frozen Lake game environment and add a
graphical game window using the turtle library. After that, we test the
trained Q-table from the last section and see if works in the self-made game
environment.

14.4.1 A Self-Made Frozen Lake Game Environment

We represent a self-made Frozen Lake game environment using a Python
class. Download the file frozenlake_env.py from the book's GitHub
repository and save it in the folder /Desktop/mla/utils/ on your computer.

Next, we'll check the attributes and methods of the self-made game
environment and make sure it has all the attributes and methods that are
provided by OpenAI Gym. The code cell below imports the game
environment and initializes the starting game state:

You should see a separate turtle window with 16 cells in it. There is a red
dot in the top left corner, representing the starting position of the agent.
Four gray circles represent holes in four cells. The right bottom cell is
marked as goal. The game window is a graphical representation of the
starting game state in Frozen Lake.

If you want to close the game window, use the close() method, like so:

Next, we'll check the attributes of the environment such as the observation
space and action space.



The meanings of the four actions are exactly the same as those in OpenAI
Gym: 0 means going left, 1 going down, 2 going right, and 3 going up. The
16 states are marked as 0 to 15.

14.4.2 Use the Q-Table in the Self-Made Game Environment

Next, we test our trained Q-table in the self-made Frozen Lake game
environment and see if the agent can win the game.



The trained Q-table has guided the agent to choose the following actions: 1,
1, 2, 1, 2, 2 (down, down, right, down, right, right) and successfully reached
the destination. This is one of the shortest paths that one can take to win the
game. You can also see the game window changing in each step with the
location of the agent. At the end of the game, the graphical rendering shows
that the agent has successfully reached the goal, the bottom right corner,
without falling into one of the holes.

Figure 14.1 shows the final game window when the agent has reached the
bottom right corner. This demonstrates that our trained Q-table works in the



self-made Frozen Lake game environment.

Figure 14.1  Solving the Frozen Lake game with tabular Q-learning

14.5 ANIMATE THE Q-LEARNING PROCESS

In this section, we'll create an animation to show how the agent makes a
decision by consulting the Q-table at each step in the Frozen Lake game.

14.5.1 Highlight Values and Actions in the Q-Table



We'll first draw a Q-table at each step of the game to highlight in blue the
row corresponding to the current state. We'll then highlight in red the action
with the highest Q-value in that row, and use it as the best action. We'll
repeat this step by step until the game ends.

We create a list states to contain all the states that the agent has visited
along the winning path. We also create a list actions to contain all actions
taken by the agent, as follows:

In each state, we draw three pictures: the first one is the Q-table without any
highlights; the second one is the Q-table with the row corresponding to the
current state highlighted in blue; the third picture is the Q-table with the
action corresponding to the highest Q-value highlighted in red.

To save space, we define a Q_steps() function in the local package.
Download the file ch14util.py from the book's GitHub repository and place
it in the folder /Desktop/mla/utils/ on your computer. The function iterates
through the six steps along the path of the agent's successful route. In each
step, it first draws the Q-table. It then looks up the game state in the list
states and highlights the corresponding row in the Q-table. Finally, it looks
up the best action in the list actions and highlights it in red. Three graphs
are saved on your computer in each step. The code cell below imports the
Q_steps() function from the local package and calls the function to generate
a total of 18 graphs on your computer, like so:

After running the above code cell, if you open, for example, the picture 
plt_Qs_stepc2.png, you'll see that the agent is in state 8. Therefore, the
row corresponding to state 8 in the Q-table is highlighted in light blue. The
agent compares the four Q-values under the four actions. The values are
0.656, 0.000, 0.729, 0.590, respectively. Obviously, the Q-value under
action=2 is the largest among the four numbers. Therefore, the agent
chooses action 2 in this state. You can see that the number 0.729 is
highlighted in red in the picture.



14.5.2 Animate the Use of the Q-Table

Next, you'll combine the pictures created in the last subsection into an
animation. As a result, you'll see how the agent takes the best action step by
step with the guidance of the Q-table.

We use the PIL library to open the 18 images we just created and put them
in a list frames. We then use the imageio library to combine them into an
animation in gif format. If you open the file plt_Qs_steps. gif, you'll see
an animation of the decision-making process of the agent with the help of
the Q-table. In each state, you see three frames: the Q-table, the Q-table
with the row corresponding to the current state highlighted in blue, and Q-
table with the best action highlighted in red.

14.5.3 Game Board Positions and Best Actions

We'll add the game board positions in each step to the above animation, and
put them side by side with the Q-table. This way, we can visualize not only
the use of the Q-table, but also the movement of the agent. The animation
improves our understanding of how the Q-table guides the agent from one
state to the next.

First, we'll record all the game positions. We define a record_boards()
function, which is placed in the file ch14util.py you just downloaded. The
function records the game board in each step of the game and saves them as
ps files on your computer. The code cell below imports the function from
the local package and calls it to generate the files.



Next, we'll convert the game board position files from the ps format to the
png format and combine them with the Q-table images. Specifically, we'll
put the game board on the left and the Q-table on the right to form one
frame. We'll repeat the frame three times per step. Finally, we'll combine
them into an animation. All these are done in the board_Q_table() function
in the file ch14util.py you just downloaded. The following cell imports the
function and calls it to generate the animation:

The board_Q_table() function generates the animation. It also returns a list
frames that contains all the images used to create the animation. If you open
the file frozen_Q_steps.gif, you'll see an animation with both the game
board and the Q-table in each frame. The game board shows the position of
the agent in a red dot, while the Q-table highlights the row corresponding to
the current state and the best action in that state.

14.5.4 Subplots of the Q-Learning Process

The agent has consulted the Q-table six times and taken six different actions
to win the game. To illustrate how the Q-table has guided the agent step by
step, we create two figures, each with three subplots in it. The first figure
shows the decision-making process of the agent in the first three steps.

To do that, we obtain every third image from the list frames that was
generated by the board_Q_table() function earlier, like so:

We take the first three images from the list frames and plot them into a
picture in the format of a three by one matrix, as follows:



Figure 14.2 has three subplots. The top graph shows that the agent at the
starting position (state 0). The first row (i.e., state 0) of the Q-table on the
right is highlighted in blue. The action 1 (going down) in the first row has
the greatest value among the four Q-values in the row. Action 1 is therefore
highlighted in red and this explains why the agent's first move is to go
down. The second and the third graphs work similarly and they explain why
the agent chooses actions 1 and 2 subsequently.



Figure 14.2  Q-learning in the Frozen Lake game, part I



We also take the last three images from the list frames and plot them into a
picture, as follows:



Figure 14.3  Q-learning in the Frozen Lake game, part II



The three subplots in Figure 14.3 explain why the agent takes actions 1, 2,
and 2 in the last three steps, respectively. For example, the top graph shows
that the agent is in state 9 and the tenth row of the Q-table on the right is
highlighted in blue. Action 1 (going down) has the greatest value, 0.810,
among the four Q-values in the row. Action 1 is therefore highlighted in red
and this explains why the agent's fourth move is to go down.

14.6 GLOSSARY

• Dynamic Programming:
A method to optimize the cumulative payoff by choosing a sequence
of actions through recursion.

• Exploitation:
In RL, exploitation is when the agent selects a move based on Q-
values in the current Q-table. It's the opposite of exploration. It's
necessary in Q-learning to make the Q-table converge.

• Exploration:
In RL, exploration is when the agent randomly selects a move to
explore new strategies and see if they lead to higher Q values. It's
the opposite of exploitation. It's necessary in Q-learning to make
sure that the Q-values don't get stuck in the wrong equilibrium.

• Q-Learning:
A value-based reinforcement learning algorithm. The agent learns
the value of an action a in a state s, Q(s, a), through trial and error.

14.7 EXERCISES

14.1 Modify the code cell(s) in Section 14.2.2 to use the file 
trained_Q. csv to play the Frozen Lake game.

14.2 Modify the code cell(s) in Section 14.3.2 so that the learning rate is
0.7 and the discount factor is 0.95. Train the Q-table and save it as 
new_trained_Q. csv on your computer.

14.3 Follow the previous question and modify code cell(s) in Section
14.4.2 to use the Q-table new_trained_Q. csv to play the Frozen



Lake game. See if the outcome is the same as before.
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All exact science is dominated by the idea of approximation.
–Bertrand Russell

FROZEN LAKE game we solved with Q-learning in the last
chapter has 16 different states and four possible actions in each
state. Therefore, it is easy to create a Q-table with 16 × 4 = 64

values. However, in many real-world problems, the number of state-action
combinations is either infinite or very large. In such cases, it is infeasible to
create and train a Q-table.

To solve this problem, we can use a finite number of discrete states to
approximate for the infinite number of states. The finite number of states
cannot be too small, or else the true state cannot be accurately represented
and the Q-learning fails. The finite number of states cannot be too large
either, or else it's prohibitively costly or time-consuming to train the Q-
values.

The Mountain Car game in OpenAI Gym is such an example. The game
state is represented by two variables: the position of the car and the speed of
the car. Both variables are continuous and can take an infinite number of

https://doi.org/10.1201/b23383-15


values. You'll learn how to create a finite state space in Q-learning when the
number of states is infinite. Specifically, you'll use 190 discrete values to
represent the position of the car and 150 discrete values to represent the car
speed. As a result, there are a total of 190 × 150 = 28500 different discrete
state-action combinations. After 100,000 rounds of training, the trained Q-
table wins the game 100% of the time.

At the end of this chapter, you'll create an animation to compare the
Mountain Car game before and after Q-learning. In each frame in the
animation, you can see the car position without Q-learning on the left and
the car position with Q-learning on the right. With Q-learning, the agent
drives the car to the mountain top in every episode. The animation shows
Q-learning at work.

New Skills in This Chapter

Discretizing a continuous state
Implementing tabular Q-learning in Mountain Car
Training a Q-table from scratch for Mountain Car
Using the trained Q-table to win the Mountain Car game
Increasing the resolution of an image or animation

Before you start, open the Jupyter Notebook app in the virtual environment
MLA on your computer. After that, open a blank Jupyter notebook and save
it as ch15.ipynb in the directory /Desktop/mla/ on your computer. Next,
we'll create a subdirectory /files/ch15/ to store files in this chapter. Start a
new cell in ch15.ipynb and execute the following lines of code in it:

15.1 THE MOUNTAIN CAR GAME ENVIRONMENT

You'll first learn how to control the Mountain Car game in the OpenAI Gym
environment. You'll learn the parameter values, how to interact with the



environment so that later you can train the model to learn the Q-table for
the game.

15.1.1 The Mountain Car Game

If you go to the Mountain Car game site provided by OpenAI Gym via the
link bit.ly/3J6JScj, you'll see the description for the game environment.

The agent tries to drive a car up to the mountain top on the right. There is a
flag at the mountain top in the game window and the agent wins the game if
the car reaches the mountain top within 200 attempts. The car starts at the
bottom of the valley, and the agent needs to accelerate the car in either
direction. The goal is to swing the car back and forth to build up enough
momentum to reach the goal.

We'll write a Python program to access the Mountain Car game
environment and learn its features.

http://bit.ly/3J6JScj


There are three possible actions in this game: 0, 1, and 2, with the following
meanings:

0: moving the car to the left
1: no movement
2: moving the car to the right

There are two state variables:

the position of the car, which is a continuous variable with values
between -1.2 and 0.6;
the speed of the car, which is a continuous variable with values from
-0.7 to 0.7. A negative value means the car is moving to the left, while
a positive value means the car is moving to the right.

To win the game, the agent needs to reach the top of the mountain within
200 attempts: that is, the position of the car needs to be greater or equal to
0.5.

In the program in the code cell below, the agent tries to reach the mountain
top in 200 attempts, by randomly selecting actions. The graphical rendering
will show you the game windows.



This is a difficult game. With random actions, the car stays at the bottom of
the valley without much movement, let alone reaching the mountain top.

Next, you'll print out the state variables of the game, and learn how to
convert them into discrete numbers to build a Q-table.

15.1.2 Convert a Continuous State into Discrete Values

Let's first have a look at the values of the state variables. The following
code cell takes a random action and prints out the values of the state
variables.

At the start of the game, the state variables are approximately -0.419 and 0,
respectively: the position of the car is -0.419, and the speed of the car is 0.
After a random action is taken, the state variables are approximately -0.420
and -0.0008, respectively: the position of the car is about the same and the
car is moving slowly to the left.

Next, we define a variable state, which has discrete values. We multiply the
first element in the observation, the car position, by 100, and take the



integer value. The value is roughly between -120 and 60. We add 125 to it
so that it becomes positive and can be used as an index value in the Q-table.

We then multiply the second element in the observation, the car speed, by
1000, and take the integer value as well. We add 75 to it so that it becomes
positive and can be used as an index value in the Q-table as well.

The code cell below prints out ten examples of the variable state.

The function obs_to_state() converts the continuous state variables into
discrete ones. The variable state, which is a list, now has two integers in it.
The variable state can take roughly a maximum of 180 × 140 = 25200
different values. We create a Q-table with dimensions 190 by 150 by 3. The
first dimension of the Q-table corresponds to the 180 or so discrete car
positions; the second dimension corresponds to the 140 or so discrete car
speeds; the third dimension corresponds to the three possible actions: 0, 1,
and 2. We use 190 and 150 instead of 180 and 140 to have some margin of
safety to avoid possible index errors.

15.1.3 The Reward Structure of the Game

Next, we'll play a game until it's finished and print out all the rewards, as
well as the variables done and info.



Each episode of the Mountain Car game has a maximum of 200 time steps.
An episode is considered finished when the mountain car reaches the
mountain top or when the number of attempts reaches 200, whichever
comes first.

In each time step, the reward is -1, unless the car reaches the mountain top,
in which case the reward is 1.

15.2 Q-LEARNING IN THE MOUNTAIN CAR GAME

In this section, you'll learn to train the Q-table for the Mountain Car game.

15.2.1 How to Train the Q-Table

We first populate a 190 by 150 by 3 Q-table with zeros. In each step, unless
the mountain car reaches the top, we use Q-learning to update the Q-values
as follows:



where lr is the learning rate and γ the discount factor. If the car reaches the
mountain top in a time step, we update the Q-value as follows.

After many rounds of trial and error, the updates will be minimal, which
means the Q-values converge to the equilibrium values. At that point, the
Q-table is considered trained and the Q-learning process is complete.

First, we set up some hyperparameters like this:

The learning rate is set to 0.2 and the discount factor 0.99. The exploration
rate is set between 0.01 and 0.9. We'll train the model for 100,000 episodes.
The Q-table is a 190 by 150 by 3 NumPy array with values 0 before training
starts.

15.2.2 Update the Q-Table

Next, we define a update_Q() function to update the Q-table based on trial
and error, as follows:

New_Q(s, a) = lr ∗ [Reward + γ ∗ max_Q(s′, a′)] + (1 − lr) ∗ Old_Q(

New_Q(s, a) = 1



In this function, we play a full episode of the Mountain Car game, allowing
a maximum of 200 time steps. After each time step, the agent receives a
reward based on the current state s and the action taken a. The Q-value, 
Q(s, a), in the Q-table is updated accordingly.

15.2.3 Train the Q-Table via Trial and Error

We can now go ahead and train the Q-table by letting the agent interact with
the game environment, like this:



We create a list outcome to record the final result of each game episode: a
value of 1 means the agent has successfully driven the car to the mountain
top and a value of 0 indicates the agent has failed in the episode.

The training takes about 30 minutes. The exact amount of time depends on
your computer hardware. We print out a short message after every 1000
episodes to keep track of the progress.

Once the training is over, we save the Q-table for later use:

The trained Q-table is saved as a pickle file on your computer. You can also
download the file from the book's GitHub repository. Once the trained Q-
table is saved on your computer, you can load up the model whenever you
need to use it, like this:



The above output shows that the dimension of the Q-table is (190, 150, 3)
and there are 100,000 values in the list outcome, with an average value of
0.12124. This indicates that in 12.124% of the episodes during training, the
agent has successfully driven the car to the mountain top.

15.3 TEST THE TRAINED Q-TABLE

Now that we have a trained Q-table, we'll test if the Q-table can
successfully guide the agent to drive the car to the mountain top. For that
purpose, we first define a test_Q() function. The function tests one episode
of the game, with or without graphical rendering.

15.3.1 Define the Test_Q() Function

We define a test_Q() function to play one episode of the game using the
trained Q-table. The function has an argument rendering, which takes a
default value of False.



The function plays the game for a maximum of 200 time steps. In each time
step, the agent obtains the best action from the trained Q-table. If the agent
reaches the mountain top, the game stops and the function returns a value of
1. If the agent fails to reach the mountain top in 200 attempts, the function
returns a value of 0.

15.3.2 The Effectiveness of the Trained Q-Table

Below, we play one game with the trained Q-table. We turn on the graphical
rendering of the game so that you can see how the Q-table helps the agent
drive the car to the mountain top.

The above output shows that the agent has driven the car to the mountain
top in 111 attempts. Separately, there is a game window showing that the
car reaches the top of the mountain. This indicates that the trained Q-table
can indeed help the agent win the game.

To test the average performance of the trained Q-table, we test ten games
and see what's the average performance.



The Q-table has helped the agent drive the car to the mountain top in all ten
games. It took the agent anywhere between 83 to 158 attempts to win the
game each time.

15.4 ANIMATE THE GAME BEFORE AND AFTER Q-LEARNING

We'll first animate the mountain car game before Q-learning. You'll see that
the mountain car stays in the valley without much movement. After Q-
learning, the mountain car made to the top in every episode. We'll put the
animation before and after the Q-learning side by side to show what a
difference the Q-learning makes.

15.4.1 The Mountain Car Game without Q-Learning

First, let's animate the game before Q-learning. We'll play five games and
record all game windows in a list called frames.



Since each game has a maximum of 200 time steps, the list frames has a
total of 1000 game windows, in the form of NumPy arrays.

Next, we combine the game windows into an animation, as follows:

To reduce the number of frames, we take every fourth game window so that
the total number of frames is 250 instead of 1000. The command [::4] takes
every fourth element from a list.

Each game window is a picture with a resolution of 400 by 600 pixels. We
use the repeat() method in NumPy to repeat the values in a certain
dimension. For example, the command repeat(2,axis=0) repeats all rows in
the NumPy array twice, and the command repeat(2,axis=1) repeats all
columns in the NumPy array twice. As a result, we increase the resolution
of the image from 400 by 600 pixels to 800 by 1200 pixels.

Finally, we combine the images into an animation in gif format. If you open
the file beforeQ.gif on your computer, you should see an animation of the
Mountain Car game without the help of the trained Q-table. The car gets
stuck at the bottom of the valley, not able to reach the mountain top.

15.4.2 The Mountain Car Game with Q-Learning

Now, let's create an animation of the mountain car with the help of Q-
learning. Below, we play the game ten times and record all game windows
in a list called Qframes.



We have seen in the last section that with the help of the trained Q-table, it
takes the agent anywhere between 83 to 158 attempts to win a game. Since
we recorded ten games, the list Qframes should have around 1000 game
windows, in the form of NumPy arrays.

Next, we combine the game windows into an animation, as follows:

Here we double the height and width of each frame so we have four times
the resolution as before, using the repeat() method in NumPy.

If you open the file afterQ.gif on your computer, you should see an
animation in which the mountain car reaches the mountain top in every
episode without much effort.

15.4.3 The Mountain Car Game with and without Q-learning

Next, we'll put the frames before Q-learning and after Q-learning side by
side. As a result, you can compare the Mountain Car game in the same
animation with and without Q-learning.



If you open the file mountain_car.gif on your computer, you'll see an
animation of the mountain car game with and without Q-learning. In each
frame, the left side shows the car without Q-learning. The car gets stuck at
the bottom of the valley without much movement. On the right side of each
frame, you can see the movement of the mountain car with Q-learning. The
car reaches the mountain top several times. The animation shows how Q-
learning helps the agent drive the car to the mountain top.

We also create a picture with eight subplots before Q-learning. We select
every 30-th frame from the list frames4 and keep eight of them to form
subplots, like this:

The new list is called subplots and it has eight NumPy arrays in it. We'll use
the matplotlib library to create a picture and put the eight images in it to
form a four by two matrix, like this:

Figure 15.1 shows that the mountain car is at the bottom of the valley in all
eight subplots, even though the positions are slightly different from one



subplot to the other. This shows that without the help of the Q-table, the
agent cannot drive the car to the mountain top.



Figure 15.1  The Mountain Car game before Q-learning

Similarly, we create a picture with eight subplots to show the Mountain Car
game with Q-learning. We select every 30-th frame from the list Qframes4
and keep eight of them to form subplots, like this:

The list Qsubplots has eight NumPy arrays in it. We create a picture and put
the eight images in it to form a four by two matrix, like so:



Figure 15.2  The Mountain Car game after Q-learning



In Figure 15.2, the car is in very different positions in the eight subplots. In
some subplots, the car is to the left of frame high in the downward slope in
order to build up momentum. In others, the car is close to the mountain top.
This shows that with the help of the Q-table, the agent learns to drive to the
left to build up momentum to reach the mountain top.

15.5 GLOSSARY

• Continuous State:
A state in a game environment in which the variable representing
the state is continuous. Hence the total number of states is infinite.

• Discrete State:
A state in a game environment in which the variable representing
the state is discrete. Hence the total number of states is finite.

15.6 EXERCISES

15.1 Modify the second code cell in Section 15.1.1 so that the agent uses
action 0 in time steps 0, 3, 6, 9…, action 1 in time steps 1, 4, 7, 10, …,
and action 2 in time steps 2, 5, 8, 11,… That is, the action is the
remainder of the time step value divided by three.

15.2 Modify the code cell in Section 15.3.1 to redefine the test_Q()
function so that the agent selects the best action from the Q-table with
95% probability and selects a random move with 5% probability.
Define the new function new_test_Q().

15.3 Follow the previous question and modify code cell in Section 15.3.2
to use the new_test_Q() to play the Mountain Car game ten times.
See what's the average performance of the agent.
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The most obvious characteristic of science is its application, the fact that as
a consequence of science one has a power to do things. And the effect this
power has had need hardly be mentioned. The whole industrial revolution

would almost have been impossible without the development of science.
The Meaning of It All: Thoughts of a Citizen-Scientist

– Richard P. Feynman

SKILLS YOU have acquired in Chapters 4 to 15, you are
ready to solve the Amazon Delivery Route problem that we
laid out in Chapter 3. Specifically, you'll create your own game

environment with the goal of finding the shortest route between any two
households in town. This is similar to the Frozen Lake game that you
solved in Chapter 14. You'll create a Q-table and use trial and error to find
the steady-state Q-values. You'll then use the Q-table as a guide to go from
one stop to the next by using the shortest route.

Once you have the solution to the shortest route between any two
households in town, you'll use brute force to find the shortest route to
deliver to any eight households each day. Let's call the eight

https://doi.org/10.1201/b23383-16


houses/destinations D1, D2, …, D8. You'll consider all possible routes,
starting with the hub H. You deliver packages to the eight households one
by one. Finally, you return to the hub and finish the day's work. You'll
consider all possible routes such as
H→D2→D8→D1→D7→D6→D3→D5→D4→H, or
H→D7→D4→D1→D3→D6→D8→D5→D2→H… You'll calculate the
total distance of each possibility and select the route with the shortest total
distance as your delivery route of the day.

Now, instead of starting your day scratching your head to figure out the
shortest route to go, you'll just enter the locations of the eight households
into your Python program. After 30 seconds, the machine learning model
tells you the shortest route, along with detailed instructions on which street
to go first, which one second, and so on, till you finish your job for the day.
You'll also create an animated instruction on the map: a blue dot lets you
know which street to go next. The blue dot stops briefly at each intersection
so that you can see the whole process in motion.

With this, the circle is complete: you started with a challenging real-world
problem, knowing nothing about machine learning. You then learned how
reinforcement learning works and how to create your own game
environment to train your model. You converted the real-world problem
into a game environment and used machine learning to solve it. You used
the solution to guide the real-world problem and knew exactly what to do in
the real-world situation. The opening quote of this book by Richard
Feynman highlights the power of science in solving real-world problems
[8]. That's exactly the purpose of this book: to master ML so that you can
apply it in your daily lives.

New Skills in This Chapter

Converting a real-world problem into a game
Solving a real-world problem using machine learning
Creating and using a multi-dimensional Q-table
Finding out all possible permutations of a given list



Before you start, open the Jupyter Notebook app in the virtual environment
MLA on your computer. After that, open a blank Jupyter notebook and save
it as ch16.ipynb in the directory /Desktop/mla/ on your computer. Next,
we'll create a subdirectory /files/ch16/ to store files for this chapter.

Start a new cell in ch16.ipynb and execute the following lines of code in it:

You should see the new folder /Desktop/mla/files/ch16/ on your computer.

16.1 CREATE A DELIVERY ROUTE GAME ENVIRONMENT

In earlier chapters of this book, you have created your own environments
for three different games: Frozen Lake, Tic Tac Toe, and Connect Four. In
this section, you'll use the same skills to create an environment for the
Amazon Delivery Route problem from scratch. The game environment will
have all the attributes and methods of a typical game environment in
OpenAI Gym. We then use reinforcement learning to solve the delivery
route problem and find out the shortest route to deliver to the eight
households.

16.1.1 Draw Delivery Routes

First, you'll draw a map of the town with streets and a park in it. We'll use
the turtle library for this purpose.

Go to the book's GitHub repository, download the file ch16util.py, and
place the file in /Desktop/mla/utils/ on your computer. In the file, we have
defined the function delivery_map() to draw the map of streets and the park
in town. In the code cell below, we import the function from the local
package and call the function to draw the map, like this:



The function delivery_map() creates a 10 by 10 grid to represent the streets
in town. The households live on the street intersections. There are a total of
100 intersections. We also have a park in the city, which occupies a squared
area with corner coordinates (2, 6), (6, 6), (6, 2), and (2, 2). There are
households on the park border such as (2, 3), (5, 6) and so on. However,
there is no household at the nine coordinates inside the park: (3, 3), (3, 4),
(3, 5), (4, 3), (4, 4), (4, 5), (5, 3), (5, 4), and (5, 5).

The Amazon Hub is located in H=(x=6, y=6). There are a total of 90
households that you can potentially deliver packages to: there are a total of
10×10=100 intersections; nine intersections fall inside the park and the
Amazon Hub occupies one. Therefore, you have a total of 100−9− 1=90
households as your potential destinations.

After you run the above code cell, you should see a game window with the
town map, which is the same as Figure 3.1 that you have seen in Chapter 3.

Next, we'll create a game environment so that you can use tabular Q-
learning to find the shortest route between any two households in town.

16.1.2 Create a Game Environment

We'll create a Python class to represent the Delivery Route environment.
The class has various attributes and methods so that we can train the tabular
Q-learning agent in it. Similar to the game environments that we have
created before in this book and to those in OpenAI Gym, we code in several
attributes. Specifically:

action_space is the collection of all actions that can be taken by the
agent. In this case, the action space has four values: 0, 1, 2, and 3,
corresponding to going left, going down, moving right, and moving
up, respectively.
observation_space contains all possible states in the environment. In
this case, the action space has 91 values: the 90 households plus the
Amazon Hub.
state is an attribute indicating which state the environment is currently
in. In this case, the state is an integer between 0 and 90.
action is the agent's move, which can take values 0, 1, 2, or 3.



done is an attribute indicating whether the game has ended. In this
case, it means that the agent has reached the intended destination.

The game environment has a few methods as well:

reset() is a method to set the environment to the initial (that is, the
starting) state.
render() is a method showing the current state of the game
environment in a graphical game window.
step() is a method that returns the new state, the reward, and the value
of the done variable based on the action taken by the agent.
close() is a method to end the game environment, including the
graphical game window.

We use a Python class Route() in the local package utils to represent the
game environment. Open the file ch16util.py that you downloaded earlier
and familiarize yourself with the class Route() in it. To initiate the game
environment, you call the Python class and put in two arguments: start and
end, the coordinates of the starting point and the end point.

Next, we test the Delivery Route game environment we just created.

16.1.3 Use the Delivery Route Game Environment

Next, you'll learn to initiate a Delivery Route game using the custom-made
local module so that you have a better understanding of the game
environment. This will prepare you for training the tabular Q-learning agent
to find the shortest route between any two positions on the map.

As an example, let's say that the agent wants to go from the starting point
(x=5, y=6) to the end point (x=1, y=3). In the code cell below, the agent
randomly selects moves to play the game. The game stops when the agent
reaches the end point or when the agent has made 20 moves, whichever
comes first.



We first import the Route() class that you just created. It sets (5, 6) as the
starting point, and (1, 3) as the end point. The agent tries 20 random moves.
We have turned on the render() method so that you can see the game
window changes from step to step. The route traveled by the agent is
highlighted in red. If you run the above code cell, you'll see a result similar
to Figure 16.1. Your result is likely to be different since the actions are
random.



Figure 16.1  The Delivery Route problem before Q-learning

As you can see from the figure, the traveled route is highlighted in red.
Note that the agent didn't reach the intended destination (1, 3) since the
actions are chosen randomly. Also, you see less than 20 red segments
because the agent traveled on the same segments of streets more than once
due to the random nature of movements. You may wonder: how can we
train the agent to go to the intended destination? We'll train a Q-table for
that purpose by using tabular Q-learning.



16.2 TRAIN A Q-TABLE BETWEEN ANY TWO POSITIONS

The delivery route has many possible starting and end points. Further, when
you have to drive to eight households and back to the Amazon Hub, you
effectively have nine different pairs of starting and end points.

In this section, we'll learn how to train a Q-table when you have a given
starting and end point. You'll then test if the Q-table indeed works as
intended.

16.2.1 Create and Train A Q-table

Suppose you have a starting point (3, 9) and an end point (5, 0). You want
to use tabular Q-learning to find the shortest route. We'll use the methods
we learned in Chapter 14 to create and train a Q-table, similar to what we
have done for the Frozen Lake game.

We'll let the agent randomly select moves to play the game many times. We
allow a maximum of 1000 steps in each game. We'll assign a reward of -1 at
each time step, unless the agent reaches the end point, in which case the
reward is 100. After each time step, we'll adjust the Q-values based on the
reward, the state, and the action taken by the agent. Through repeated
rewards and punishments, the agent learns the correct Q-values and hence
how to find the shortest route.

First, we define an update_Q() function to update the Q-table after each
time step, as follows:



The update_Q() function lets the agent play a complete game. After each
step, the agent updates the Q-table based on the action taken and the
reward: if an action leads to a high reward, the agent increases the Q-value
associated with the action; if an action leads to a punishment, the agent
decreases the corresponding Q-value. The agent balances exploitation
versus exploration when choosing an action. With exploitation, the agent
chooses the action based on the values in the current Q-table. With
exploration, the agent randomly selects an action to explore different
actions in case there is a better strategy than what's recommended by the
current Q-table.

We set the learning rate to 0.6 and the discount factor to 0.9. We allow a
maximum of 1000 steps in each game and train the Q-table for 500
episodes, like so:



When training the Q-table, we set the cutoff value of the epsilon, which
governs exploration versus exploitation, to min_exp = 0.0 in the first
episode of training. If a uniformly distributed variable between 0 and 1 is
greater than this cutoff value, the agent uses exploration; otherwise, the
agent uses exploitation. The cutoff value then gradually increases as
training progresses. At the last episode of training, the cutoff value
increases to max_exp = 0.7.

After 500 episodes of training, we print out the trained Q-table, which is a
91 by 4 NumPy array. Next, you'll use the trained Q table to guide the agent
to successfully reach the goal in the Delivery Route game environment.

16.2.2 Test the Trained Tabular Q-Values



The trained Q-table is a 91 by 4 NumPy array, saved as Qs.pickle on your
computer. Next, you'll use this trained Q-table to test if the agent can
successfully reach the goal in our game environment.

The following code cell calls the Route() class from the local module and
sets the starting and end points as (3, 9) and (5, 0). In each time step, the
agent consults the trained Q-table and selects the action with the highest Q-
value corresponding to the current game state. The game ends if the agent
reaches the destination or when the number of time steps reaches 1000,
whichever comes first.

If you run the above code cell, you'll see that the agent goes from the
starting point to the end point using the shortest route possible. The game
window also shows the route traveled in red step by step.

Figure 16.2 shows the route used by the agent in red. There is a blue dot at
each stop as well. The route is the shortest possible from point (3, 9) to
point (5, 0).



Figure 16.2  The Delivery Route Problem with Q-learning

16.3 TRAIN THE Q-TABLE FOR ALL POSSIBLE ROUTES

Next, you'll train a large Q-table that gives you directions to any
combination of starting and end points: now matter where you start on the
map, and no matter where your destination is, you can use the Q table to
find the directions and figure out the shortest route. To do that, we'll create
a Q-table with a size of 10 by 10 by 10 by 10 by 91 by 4, which has



3,640,000 elements in it. The reason we need such a large Q-table is the
starting position (start_x, start_y) can take 10 by 10 = 100 values. The
end position (end_x, end_y) can also take 10 by 10 = 100 values. For each
pair of starting and end points, we have a Q-table with 91 different states
and four different actions; hence the dimension (10, 10, 10, 10, 91, 4).

16.3.1 Train the Large Q-Table

We define a function calculate_Q(), which is similar to the update_Q()
function we defined before, to update the values in the large Q-table.
Instead of updating the Q-values for a specific pair of starting and end
points, the function calculate_Q() trains the Q-values for any given pair of
starting and end points:



Next, we create a new Q-table, which has a dimension of
(10,10,10,10,91,4), as follows:

We populate the Q-table with zeros to start with. We also put the
coordinates of the 91 positions in town in a list grid, like this:

The list park contains the coordinates of the intersections occupied by the
park in the middle of the town. We then iterate the x-value from 0 to 9 and
the y-value from 0 to 9. Any (x, y) pair that's not inside the park is added to
the list grid. As a result, there are 91 (x, y) pairs in the list grid.

Next, we train the Q-table for any combination of starting and end points in
the list grid, as follows:

The above code cell takes a couple of hours to run. However, once you have
the table, you can use it every day after you know the eight destinations for
the day, and you don't need to retrain it ever again.

16.3.2 Test the Large Q-Table

Next, we test the trained large Q-table that's saved in the file allQs.pickle on
your computer. You can randomly pick two points on the map and test the



Q-table. Below, we use the two points (8,9) and (3,1) as the starting and end
points, respectively.

Run the above code cell and you'll see a separate game window showing
that the agent goes from the starting point (8,9) to the end point (3,1) using
the shortest route possible. The route traveled is highlighted in red.

16.4 THE SHORTEST DELIVERY ROUTE TO EIGHT
HOUSEHOLDS

Now that you have the solution to the shortest route between any two points
on the map, you'll use brute force to find the shortest route to deliver to
eight households each day. You'll first learn to find out all possible
permutations of eight households. You'll calculate the total distance for each
permutation and select the route with the shortest distance: that's your
delivery route of the day.

16.4.1 Find All Possible Permutations in Python



First, you'll learn how to find all possible permutations if you have eight
households. You can use the itertools library to do that. The code cell below
finds all permutations of four elements when each element is a number
from 0 to 4.

Here we are trying to find out how many possible permutations of four
numbers if you can choose each number from 0 to 4 without replacement.
The output above prints out 120 possibilities. The first number has 5
possible values: 0, 1, 2, 3, and 4. The second number has 4 possible values
since there is no replacement. The third and fourth numbers have 3 and 2
possible values, respectively. So there are a total of 5×4×3×2=120
possibilities.

16.4.2 The Total Distance to Deliver to Eight Households

First, we calculate the total number of blocks the agent has to travel through
for any given order of eight households. This is to prepare us for the next
subsection when we consider all possible permutations. For now, assume
you have to deliver to households D1, D2, …, D8 and in that order. You'll
start from the hub H, go to the first household H1, and then H2, and so on.
After H8, you'll come back to H. So the sequence of destinations is
H→D1→D2→D3→D4→D5→D6→D7→D8→H. You'll use the Q-table



you generated in the last section to find the shortest route to deliver to the
eight households.

Below we define the cal_dis() function to calculate the shortest distance
between any two points:

The function uses the trained large Q-table to go from the starting position
to the end position. The function returns the distance traveled as well as the
sequence of intersections along the route. The distance is the number of
blocks the agent needs to travel to go from the starting position to the end
position.

Next, we randomly select eight households and use the cal_dis() function to
calculate the total distance the agent needs to travel to deliver to these eight
households, like this:



We randomly select eight households on the map. We then add the hub H as
the starting point as well as the end point to the list so there are a total of ten
positions in the list destinations. Next, we define a total_dis function to
calculate the total distance the agent needs to travel to deliver to the eight
households, in a particular order:



The total_dis() function first calculates the shortest distance between any
two destinations in the list using the cal_dis() function we defined earlier.
The function then iterates through the nine pairs of starting and end points
and adds up the total distances traveled as well as the sequence of
intersections along the way.

For the selected eight households, the output above shows that the agent
needs to travel 70 blocks to deliver the eight packages. Note here that the
agent takes the ordering of the eight households as given. There could be a
different ordering of the households that can reduce the total distance the
agent needs to travel. We'll find out the best ordering of the eight
households next.

16.4.3 The Shortest Route

We'll consider all possible orderings/permutations of the eight households.
We then calculate the total distance the agent needs to travel for each
permutation and select the permutation with the shortest distance.

First, we find out all permutations of the eight households and save them in
a list perms:

We then add the Amazon Hub as the starting and end positions of the day.
With each permutation, there are ten destinations, as follows:



We calculate the total distance traveled for each permutation and the
corresponding route using the total_dis() function we defined earlier, like
so:

The collection of all possible routes are stored in a list destination_perms,
which has 8×7×6×5×4×3×2×1=40,320 possibilities. For each permutation,
we calculate the total distance by counting the total blocks the agent needs
to drive through. The above cell takes less than one minute to run. Once
done, we see which permutation has the shortest distance to travel:



We use the argmin() method in NumPy to find out the index of the
permutation with the shortest distance in the list of dislist. We print out the
total number of blocks the agent needs to travel along the shortest route. We
also print out the detailed instructions on which intersection to go to first,
which one second, and so on.

16.5 ANIMATE THE DELIVERY ROUTE

We'll animate the entire route the agent takes to deliver to the eight
households. Each frame will show the position of the agent at an
intersection in town. The animation shows how the agent travels from one
intersection to the next, starting at the Hub, then to each of eight
households, finally returning to the hub.

First, we create a graph showing the agent at each intersection.

16.5.1 Create a Graph at Each Stop

To save space, we define a function gen_ps() in the local package. Open the
file ch16util.py on your computer and take a look at the function. It saves an
image of the town's map with the agent's position in a blue dot each time
the agent travels to a different intersection. Further, each time the agent
arrives at a household, it saves an image as well, so that we can create a
subplot later.



The function gen_ps() generates 39 ps files, each representing the agent at a
different intersection of the town. If you open the file route1.ps after
running the above code cell, for example, you'll see an image showing that
the agent traveled from (6, 6) to (7, 6). Additionally, the function generates
eight files s0.ps, s1.ps … to show the map when the agent delivers to each
of the eight households.

16.5.2 Animate the Shortest Route

We combine the 39 images route0.ps, route1.ps, …, route38.ps into an
animation and in that order, like this:

After running the above code cell, if you open the file route.gif, you'll see
an animation with the town map and agent's traveling route. The agent starts
at the hub (6, 6), travels to the intersection (7, 6) next, then intersection (8,
6), …, intersection (5, 6), and finally back to the hub (6, 6). The route
traveled is highlighted in red.

16.5.3 Subplots of the Eight Deliveries

We also create a picture with eight subplots to show the delivery to the eight
households, by using the eight files s0.ps, s1.ps … we generated earlier. The
code cell below loads up the eight images, converts them to NumPy arrays,
and places them in a list subplots:



Finally, we use the matplotlib library to create a picture and put the eight
images in it to form a four by two matrix, like this:



Figure 16.3  The deliveries to the eight households



Figure 16.3 shows the position of the agent when it delivers to each of the
eight households. For example, the top left subplot shows that the agent has
traveled to the household (9, 9), with the route traveled in red. The top right
subplot shows that the agent then goes to the household (7, 2)… The
bottom right subplot shows that the agent has delivered to the last
household (0, 7).

16.6 GLOSSARY

• Permutation:
An arrangement of objects in a certain order.

16.7 EXERCISES

16.1 Modify the first code cell in Section 16.1.3 so that the agent goes from
the starting point (7, 7) to the end point (2, 1).

16.2 Modify the second code cell in Section 16.2.1 to train a Q-table to
guide the agent to go from the starting point (7, 7) to the end point 
(2, 1). Save the trained Q-table as newQs.pickle.

16.3 Follow the previous question. Modify the code cell in Section 16.2.2
to use the newQs.pickle to guide the agent to go from the starting
point to the end point.

16.4 Modify the code cell in Section 16.3.2 to use allQs.pickle to guide the
agent to go from the starting point (7, 7) to the end point (2, 1).
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It is best to think of feedforward networks as function approximation
machines that are designed to achieve statistical generalization…

– Goodfellow, Bengio, and Courville (2016)

TABULAR Q-LEARNING, we create and train a Q-table with S rows
and A columns, where S and A are the number of states and the
number of actions, respectively. A tabular Q-learning agent chooses an

action in a given state by consulting the Q-table: it looks at the Q-values
corresponding to the current state and selects the action with the highest Q-
value. In Chapters 13 and 14, you have used tabular Q-learning to
successfully train game strategies for the Frozen Lake and Mountain Car
games.

In many situations, however, the number of possible states is too large.
Examples include Chess or the Go game: the number of possible board
positions is astronomical. For example, there are roughly 10170 different
board positions in Go [19]. It's impractical to create and train a Q-table for
these types of games. None of the computer in the world can create a Q-
table with so many different rows (each row represents a different game
state), let alone calculating and updating values in it.

https://doi.org/10.1201/b23383-17


That's when deep neural networks can help. Neural networks are function
approximating algorithms, as the opening quote of this chapter states [3].
We'll use a deep neural network to approximate the Q-table. The number of
neurons in the input layer of the network is the dimension of the game state,
not the number of all possible game states. A deep Q-learning agent
chooses an action in a given state by feeding the current game state into the
deep Q-network. The network returns A values, each representing a Q-value
associated with an action. The agent selects the action with the highest Q-
value. That's the idea behind deep Q-learning.

This chapter will apply deep Q-learning to a game that you have played
before in Chapter 11: the Cart Pole game. You'll learn how to create a deep
Q-network for the game, how to train the network by letting the agent take
actions and interact with the game environment. We update the weights in
the deep Q-network by minimizing the difference between the current Q-
values and the updated Q-values. You'll use the trained model to
successfully win the game by keeping the cart pole upright for more than
195 consecutive time steps. Later in this book, you'll use deep Q-learning to
tackle more complicated games such as Breakout, Space Invaders, and
other Atari games.

At the end of this chapter, you'll create an animation to illustrate how deep
Q-learning works. Specifically, at each time step, you'll put the image of the
cart pole on the left. You'll draw on the right the current state of the game:
the cart position, cart velocity, pole angle, and pole angular velocity. You'll
feed the information to the trained deep Q-network to estimate the Q-values
of moving the cart left and moving the cart right, respectively. The move
with the higher Q-value is then highlighted in red on the graph, and that's
the action taken by the agent. You'll repeat this in each of the 200 time steps
in the game.

New Skills in This Chapter

Creating a neural network to approximate a Q-table
Training a deep Q-network
Creating a replay buffer to store experience data
Retrieving a batch of data from a replay buffer
Using a trained Q-network to win the Cart Pole game



Before you start, open the Jupyter Notebook app in the virtual environment
MLA on your computer. After that, open a blank Jupyter notebook and save
it as ch17.ipynb in the directory /Desktop/mla/ on your computer. Next,
we'll create a subdirectory /files/ch17/ to store files for this chapter.

Start a new cell in ch17.ipynb and execute the following lines of code in it:

17.1 DEEP Q-LEARNING FOR THE CART POLE GAME

We'll create a neural network to approximate the Q-table. The dimension of
the input in the neural network is the same as the dimension of the game
state. In the Cart Pole game, the game state has four values, therefore, we'll
create a neural network with four neurons in the input layer. The dimension
of the output layer in the neural network is the same as the number of
possible actions that can be taken by the agent. In the Cart Pole game, there
are two possible actions: moving the cart to the left or moving the cart to
the right. Therefore, we'll create a neural network with two neurons in the
output layer. Generally speaking, the output from the neural network are the
Q-values associated with the A actions that can be taken by the agent.

17.1.1 Create a Deep Q-Network

When training deep Q-networks, we feed the current state of the game to
the model as the input. In Chapter 11, we learned that the game state in Cart
Pole has four values and the agent can take two possible actions: moving
the cart left and moving the cart right. Therefore, we create a neural
network with four neurons in the input layer and two neurons in the output
layer. We do have a lot of flexibility in terms of how many hidden layers to
add in the network and how many neurons in each hidden layer. We choose
two hidden layers with 32 neurons in each layer. Slightly changing the
number of hidden layers and the number of neurons in each layer won't
affect our results. I'll leave that as an exercise for you.



Therefore, we create a deep Q-network for the Cart Pole game as follows:

Note that we don't use any activation function in the output layer in deep Q-
networks because Q-values can potentially go from −∞ to ∞. Further, we
are using the Exponential Linear Unit (ELU) activation function instead of
the usual ReLU activation function. This is due to the fact that in the Cart
Pole game, all rewards are positive numbers. In such situations, ELU
activation functions return negative values for small values of inputs, and
this allows the function to push the mean values closer to zero.

17.1.2 Train the Deep Q-Network

Now that we have a deep Q-network for the Cart Pole game, we'll train the
model by playing the game many times so that the agent can interact with
the environment and receive feedback. We'll adjust the parameter values
(that is, the weights) in the deep Q-network based on the actions taken by
the agent and the resulting rewards.

Specifically, we'll train the model to minimize the difference between the
current Q-value, Q(s, a), and the updated Q-value, New_Q(s, a). We
calculate the updated Q-value as follows:



The discount factor is a constant between 0 and 1 that measures how much
the agent discounts future rewards as opposed to the current reward; 
max_Q(s′, a′) is the maximum future reward, assuming optimal strategies
will be applied in the future as well.

After many rounds of trial and error, the updates in each iteration will be
minimal, which means the Q-values converge to the equilibrium (i.e., the
steady-state) values and we have

We create a replay buffer to train the deep Q-network. The replay buffer
stores game histories from the agent's interactions with the environment.
When training the model, we randomly select a subset of past experience to
update model weights.

Below, we create a replay buffer with a maximum length of 2000 elements:

Instead of a list, we use a double ended queue (deque) in Python to store
game experience data. A deque is a more efficient way of handling storage
than a list when we need to constantly add and remove elements from the
container. By setting the maximum length of the deque memory to 2000, we
automatically delete the leftmost element whenever the length of the deque
exceeds 2000. Similarly, we have created a deque running_rewards with

New_Q(s, a) = Reward + discount_factor ∗ max_Q(s′, a′)

New_Q(s, a) = Q(s, a).



a maximum length of 100 to store the total rewards from different episodes
of the game. We use the deque running_rewards to keep track of the
progress of training and to determine if the training is complete.

To train the model, we select a batch of observations from the replay buffer
to update model parameters. The following function gen_batch() selects 32
observations and process them so that we can use the batch to update the
model:

Next, we define a function update_Q() to update model weights by
selecting a batch from the replay buffer:



We'll play the game many episodes so that the agent can interact with the
environment and try different actions. The deep Q-learning agent adjusts
the model weights based on the feedback from the environment in the form
of rewards.

The function play_episode() below plays a full game:



After each time step, we collect the experience data and put them in the
replay buffer memory. The experience data contains five pieces of
information: the old state, the new state, the action taken, the resulting
reward, and the variable done indicating whether the game has ended. To
help organize the data, we put the five pieces of information in a list and
add it to the replay buffer memory after each time step. If the number of
observations in the replay buffer is greater than 32, we update the model
weights.

We train the model till the running reward is greater than 195: this means
that in the past 100 games, the deep Q-learning agent keeps the cart pole



upright for an average of 195 consecutive time steps.

The model is considered trained if the average score in the past 100 games
is 195 or above, as stipulated by OpenAI Gym convention. That's the
criteria used in our training process. Once the goal is achieved, the training
stops.

The above program takes about an hour to run, depending on the speed of
your computer. Here is the output from my computer:

The model is trained after 866 episodes.

17.2 TEST THE TRAINED DEEP Q-NETWORK

Now that the model is trained, we can use it to play the OpenAI Gym Cart
Pole game and see if it works. We'll also record the game history for
animation in the next section.



17.2.1 Test and Record One Game

We first test one game, with the graphical rendering turned on.

The output above shows that the score is 200. Separately, you should have
seen a Cart Pole game window in which the cart pole stays upright in all
200 time steps. This means the trained deep Q-learning agent has kept the
cart pole upright in all 200 time steps. The trained deep Q-network works as
intended.

Note that we have recorded the game history in every time step, including
the game window, the state, the predicted Q-values from the trained model,
and the action taken by the agent. We'll need the recorded information later
when we create an animation of the deep Q-learning decision-making
process.



17.2.2 Test the Efficacy of the Deep Q-Network

Next, we play the game 100 times using the trained deep Q-network and see
how effective it is on average.

We first define a test_cartpole() function to test one complete game and
return the score in the game.

We create an empty list results to keep track of the scores from the games.
We call the function test_cartpole() we just defined 100 times and append
the score from each game to the list results. We then calculate and print out
the average score in the 100 games, like this:

the average score is 200.0

The output shows that the average score is 200. This means that the trained
deep Q-network keeps the cart pole upright for all 200 time steps in every
single game.



17.3 ANIMATE DEEP Q-LEARNING

Next, we'll animate how the agent uses the trained deep Q-network to select
a move in each time step to win the Cart Pole game.

Specifically, in each time step, the agent looks at the current game state,
which is a list of four values: the position of the cart, the velocity of the
cart, the angle of the pole, and the angular velocity of the pole. The agent
feeds the game state, which is represented by the four values, into the
trained deep Q-network and obtains two Q-values: the first is the Q-value
for taking action 0 (i.e., moving left), and the second is the Q-value for
taking action 1 (i.e., moving right). The agent compares the two values and
takes the action with the higher Q-value. The agent repeats the process until
the game ends.

To create an animation of the decision-making process of the deep Q-
learning agent, we'll first create a sequence of images. In each time step,
you'll draw a picture with the cart pole on the left. You'll draw on the right
the current state of the game: cart position, cart velocity, pole angle, and
pole angular velocity. You'll also draw the Q-values of moving the cart left
and moving the cart right, respectively. The move with a higher Q-value is
then highlighted in red, and that's the action taken by the agent.

Once you have a graph for each time step, you'll combine them into an
animation.

17.3.1 Draw the Current Game State and Q-Values

Each Cart Pole game has a maximum of 200 time steps. In each time step,
you'll draw a picture, with the cart pole on the left and the current game
state and the predicted Q-values from the trained model on the right.

To save space, we define a function save_graph() in the local module
ch17util. Download the file ch17util.py from the book's GitHub repository
and place it in the folder /Desktop/mla/utils/ on your computer. The
function takes five arguments: the first one, step, is the index of the time
step in the game. The value of the argument step ranges from 0 to 199 since
there are a maximum of 200 time steps in a Cart Pole game. The other four



arguments of the function save_graph() are four lists: frames, states,
actions, and predictions, which we create in the following code cell.

Recall that we have recorded the game history in every time step when the
agent plays a full game using the trained deep Q-network. The list history
contains four pieces of information in each time step: the game window in
the format of a NumPy array, the current game state, and the action taken by
the agent, and the predicted Q-values associated with the current state from
the trained model. In the above code cell, we unpack the four pieces of
information from each time step and store them in the four lists frames,
states, actions, and predictions, respectively.

We now import the function save_graph() from the local module and call it
to create and save five pictures on your computer, like this:

The five graphs correspond to time steps 1, 50, 100, 150, and 200 of the
Cart Pole game played by the deep Q-learning agent. The graphs are saved
in the folder /Desktop/mla/files/ch17/ as cartpole_DeepQ1.png,
cartpole_DeepQ50.png,…, on your computer. If you open the file
cartpole_DeepQ1.png, you'll see a picture as shown in Figure 17.1.



Figure 17.1  Decision-making process of the deep Q-learning agent

In Figure 17.1, the Cart Pole game window is on the left. The current state,
[-0.0356, 0.0492, 0.0424, -0.0058], is also shown on the graph. The Q-
values for moving up and moving down are 21.27932 and 22.46861,
respectively. Since the second Q-value is greater, it's highlighted in red. The
agent therefore takes action 1 (moving down) in the first step.

The other four pictures are similar but in different time steps. We'll use
them to create a picture with four subplots in the next section.

17.3.2 Create A Graph for Each Time Step

Next, we'll create a graph for each of the 200 time steps. Since we have so
many pictures, we'll save them on your computer's random access memory
(RAM) instead of on your computer's hard drive. This helps you save space
on your computer.

We define a function memory_graphs() in the local module ch17util that
you just downloaded from the book's GitHub repository. The function first
creates an empty list graphs. In each time step, it places the game window
on the left and the current state of the game on the right. It also draws the
Q-values of moving the cart left and moving the cart right, respectively. The
move with higher Q-value is highlighted in red. The function then adds the
picture for the time step to the list graphs. It does this for all 200 time steps.

Below, we import the function memory_graphs() from the local module and
call the function to create the 200 graphs, like so:



The function returns the list graphs, which contains 200 pictures in the
format of NumPy arrays. Each array is a picture in one of the 200 time
steps.

17.4 AN ANIMATION AND A PICTURE WITH SUBPLOTS

We'll use the imageio library to convert the 200 graphs into an animation,
like so:

The animation is saved as cartpole_deepQ.gif on your computer. If you
open the file, you'll see how the trained deep Q-learning agent decides
whether to move the cart to the left or to the right in each time step. In the
middle of each frame are the four values in the current game state. On the
right are the Q-values associated with moving left and moving right,
respectively. The higher of the two Q-values is highlighted in red.

We'll also create a picture with four subplots in it to illustrate the decision-
making process of the deep Q-learning agent in four different time steps:
50, 100, 150, and 200. The four subplots form a four by one matrix in the
picture. We first extract the four corresponding NumPy arrays from the list
graphs we created earlier, like so:

The NumPy arrays associated with the four time steps are stored in a new
list subplot_frames. We then use the matplotlib library to create a picture
with four subplots, like this:



We take the four images from the list subplot_frames and plot them into a
picture in the format of a four by one matrix. The picture is saved on your
computer. If you open the file subplot_deepQ.png, you should see an image
as shown in Figure 17.2.



Figure 17.2  Subplots of deep Q-learning in the Cart Pole game



The top subplot in Figure 17.2 shows the decision-making process of the
deep Q-learning agent in time step 50. The game state, [-0.0140, -0.1316,
-0.0184, -0.0291], is in the middle of the subplot. The Q-values for moving
up and moving down are 22.70042 and 22.66498, respectively. Since the
first Q-value is greater, it's highlighted in red. The agent therefore takes
action 0 (i.e., moving left) in the 50-th time step. The second subplot
illustrates the decision-making process at time step 100: the agent moves
the cart pole to the left since the Q-value associated with moving left is
greater. The last two subplots show that in time steps 150 and 200, the agent
moves the cart to the left and to the right, respectively, based on the two Q-
values from the trained deep Q-network.

17.5 GLOSSARY

• Deep Q-Network:
A neural network with hidden layers to approximate Q-values in
value-based reinforcement learning.

• ELU Activation Function:
ELU is short for exponential linear unit activation function. It has
the form

It returns negative values when the value of x is small.
• Replay Buffer:

A collection of game experience in reinforcement learning. When
training the model, a subset of observations is retrieved from the
replay buffer to update model weights.

17.6 EXERCISES

17.1 Modify the code cell in Section 17.1.1 so that the deep Q-network has
just one hidden layer with 24 neurons in it.

ELU(x) = {
x  for x > 0

α(exp(x) − 1)  for x ≤ 0



17.2 Follow the previous question. Rerun all code cells in Section 17.1.2
and save the newly trained model as new_deepQ.h5 on your computer.

17.3 Follow the previous questions. Modify the code cell in Section 17.2.1
to use the newly trained model new_deepQ.h5 to test and record one
Cart Pole game.

17.4 Follow the previous questions. Modify the code cells in Section 17.2.2
to play 100 Cart Pole games and print out the average score.
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The idea behind reinforcement learning is you don't necessarily know the
actions you might take, so you explore the sequence of actions you should

take by taking one that you think is a good idea and then observing how the
world reacts. Like in a board game where you can react to how your

opponent plays.
– Jeff Dean, Head of Google AI

TRAINING REINFORCEMENT learning (RL) algorithms,
we have focused exclusively on value-based approaches so
far (such as tabular Q-learning and deep Q-learning). There

is another branch of RL that takes a different approach in training an RL
agent: instead of estimating the value functions associated with different
actions, we can directly train a policy that tells the agent which action to
take in a given state. We call such approaches policy-based RL. The policy-
based approach can be a fast, direct, and effective way to train RL
algorithms in many situations. In this chapter, you'll learn the policy
gradient method, one type of policy-based RL. You'll use the policy
gradient method to play the Atari Pong game.

https://doi.org/10.1201/b23383-18


The idea behind the policy gradient method is different from Q-learning
that we discussed in the last few chapters: the agent selects actions to
interact with the environment and tweaks the policy directly based on the
rewards to reach the optimum. Specifically, if the prediction from the policy
model is smaller than the desired outcome, the agent adjusts the model
parameters so that the prediction will increase the next time the agent
encounters a similar situation. Conversely, if the prediction from the policy
model is greater than the desired outcome, the agent tweaks the model so
that the prediction will decrease. Further, the magnitude of the adjustment is
directly proportional to the rewards: the greater the reward, the greater the
adjustment.

In this chapter, you'll first learn how to install and play the Atari Pong game
in Python. You'll then implement the policy gradient method in the Pong
game. Specifically, you'll create a deep neural network as the policy for the
agent. The agent selects actions based on the policy to interact with the
game environment. The agent tweaks the model weights after observing
rewards until the policy can guide the agent to win the game. Instead of
using the Keras API from TensorFlow, you'll create a neural network using
only the NumPy library to represent the policy. This way, you'll have a
much deeper understanding of how the deep RL model works.

At the end of the chapter, you'll create an animation to show that the agent
learns to play the Pong game perfectly, beating the opponent 21-0 in every
game, the best possible score. The left frame shows what happens if there is
no training. The right frame shows how the agent plays after training.

New Skills in This Chapter

Creating a neural network to represent a policy
Preprocessing raw pixels from the Atari Pong game
Selecting actions based on recommendations from the policy
network
Training the policy network based on observed rewards
Playing the Pong game using the trained policy network



Before you start, open the Jupyter Notebook app in the virtual environment
MLA on your computer. After that, open a blank Jupyter notebook and save
it as ch18.ipynb in the directory /Desktop/mla/ on your computer. Next,
we'll create a subdirectory /files/ch18/ to store files for this chapter.

Start a new cell in ch18.ipynb and execute the following lines of code in it:

18.1 POLICY-BASED REINFORCEMENT LEARNING

This section introduces you to policy-based RL. In particular, we'll explain
the intuition behind the policy gradient method with some simple
mathematical equations. The Python code used in this chapter is largely
based on Stanford University computer science professor Andrej Karpathy's
bog [1] and the companion GitHub repository. I strongly encourage you to
read through Andrej's blog to understand the intuition behind the idea of the
policy gradient method.

18.1.1 What is a Policy?

A policy can be any algorithm that tells the agent what action to choose in a
given situation. Let's use the Atari Pong game as an example: we'll create a
deep neural network that takes the current state as the input. We'll put one
single neuron in the output layer so the output from the deep neural network
is a single number. Further, we'll use the Sigmoid activation in the output
layer so the output is a number between 0 and 1. As you'll see later, for all
practical purposes, the agent only needs to decide whether to move the
paddle up (action 2) or down (action 3) to win the game. So we can treat the
Pong game as a binary classification problem.

One policy could be: if the output from the neural network is greater than or
equal to 0.5, we'll move the paddle up (i.e., take action 2); otherwise, we'll
move the paddle down (i.e., take action 3). This is called a deterministic
policy in the sense that the action is determined once we know the output
from the policy neural network. A policy can be stochastic as well: since



the output from the neural network, p, is a number between 0 and 1, we can
have a stochastic policy as follows:

Move the paddle up with probability p;
Move the paddle down with probability 1-p.

The advantage of a stochastic policy is that it naturally allows for both
exploitation and exploration. It allows for exploitation in the sense that the
probability of action=2 is high when the value of p is high. It also allows
for exploration in the sense that the action is random. There is a chance that
the recommended action is not taken. So this allows the agent to explore
different game strategies.

18.1.2 What is the Policy Gradient Method?

Policy gradient method is an algorithm to adjust the model parameters to
train the optimal policy in RL.

Imagine in a game environment, an agent is trying to learn the best strategy
to maximize its expected payoff over time. A strategy (also called a policy)
maps a certain state to a certain action. A policy is basically a decision rule
that tells the agent what to do in a certain situation.

Let's say that the policy we are considering is πθ(at|st, θ). That is, the agent
chooses an action at in time step t in the current state st, based on model
parameters θ. Suppose the agent needs to choose a sequence of actions 
(a0, a1, … , aT−1) to maximize its expected cumulative rewards. In time
step t, after observing the state st, the agent takes an action at and receives a
reward of r(at, st) as a result. If the discount factor is γ, the expected
cumulative reward to the agent is

where sT is the terminal state.

R(s0, a0, … , aT−1, sT ) =
T−1

∑
t=0

γ tr(st, at) + γ T r(sT )



The objective of the agent is to find the parameter values θ to maximize the
expected cumulative reward

The above maximization problem can be solved by using a gradient ascent
algorithm. That is, we can update the model parameters θ by using the
following formula until the parameters converge:

where Learning Rate is the learning rate hyperparameter that controls
how fast we update the model weights. This boils down to training the
model to predict the probability of the correct action based on the state. The
solution is

Interested readers can find the proof provided by OpenAI [18].

18.2 GET STARTED WITH ATARI GAMES

In this section, you'll start to play the Atari Pong game in the OpenAI Gym
environment and learn its features.

First, you need to install Atari games in OpenAI Gym in Python. Activate
the virtual environment MLA on your computer and enter the following
command in the Anaconda prompt (Windows) or a terminal (MAC or
Linux):

conda install -c conda-forge atari_py==0.2.9

max
θ

E[R(s0, a0, … , aT−1, sT )|πθ]

θ ← θ + Learning Rate ∗ ∇θE[R|πθ]

θ ← θ + Learning Rate × E[
T−1

∑
t=0

∇θlogπθ(at|st)R|πθ]



After conda installing Atari games, you need to install ROMS on your
computer as well. Go to the link below

http://www.atarimania.com/rom_collection_archive_atari_2600_roms.html

and download the file Roms.rar to your computer. Extract the two folders,
ROMS and HC Roms, and place them in a folder on your computer. For
example, I place them in C:∖temp on my computer.

After that, run the following command in the Anaconda prompt (Windows)
or a terminal (MAC or Linux) with the virtual environment MLA activated:

python -m atari_py.import_roms < path to folder >

Since I saved the files in C:∖temp on my computer, I ran:

python -m atari_py.import_roms C:∖temp

to install ROMS.

Also make sure that the version of gym installed on your computer is
0.15.7. See Chapter 10 on how to install the correct version of gym.

Finally, you need to restart the Jupyter Notebook on your computer for the
installed packages to take effect.

18.2.1 The Pong Game

The following lines of code will get you started on the Pong game:

You should see a Pong game frame in a separate window.

You can check the action space and observation space of the game as
follows:

http://www.atarimania.com/


There are six possible actions the agent can take. But for all practical
purposes, we only need to decide whether the paddle should go up (action
2) or down (action 3). So we can treat this as a binary classification
problem.

Each observation is a color picture of 210 pixels tall and 160 pixels wide.
The following cell displays an observation.

18.2.2 Preprocess the Game Pictures

The input size of the game picture is too large, we'll preprocess the image to
reduce the size while retaining vital information to train the model to win
the game.

Specifically, we'll perform cropping, downsizing, and differencing before
we feed the data into the model to train the agent.

We'll remove the top and bottom of the game frame (cropping) to reduce
input size as follows:



The size of the picture is now reduced from 210 by 160 by 3 to 160 by 160
by 3. We need to further reduce the size of the picture.

We'll use every other row and every other column so that the input size is
75% smaller. Further, we'll use just one of the three color channels to
reduce size. After that, we remove the background colors and change the
raw pixels to 1s and 0s only, like so:

The size of the preprocessed picture is now 80 by 80 by 1, a small fraction
of the original size. However, the picture doesn't tell us the movement of
the Pong ball. We can potentially use two consecutive pictures, but a more
efficient way is to use the difference between two consecutive frames. This
way, the input size is 6400 instead of 128000 and the training of the model
will be faster.

To visualize how we preprocess the game pictures, we define a preprocess()
function in the local module ch18util. Download the file ch18util.py from
the book's GitHub repository and save it under /Desktop/mla/utils/ on your
computer. The function randomly selects four game frames and creates a
picture with 12 subplots of the original, cropped, and downsized game
windows. We import the function from the local module and call it to
generate a picture and save it on your computer.

After running the above code cell, the picture preprocess.png is saved on
your computer. If you open the file, you should see a picture similar to
Figure 18.1. The four subplots in the top row are the four original game



windows. The middle row shows the cropped game windows. The bottom
row shows the downsized images but you can clearly see the paddles on
each side and the Pong ball in each frame.

Figure 18.1  Preprocessing Atari Pong game pictures

18.2.3 Use the Difference of Game Windows

The preprocessed game windows don't tell us which direction the Pong ball
is moving to. To let the agent know the movement of the Pong ball, we'll
get the difference of the two consecutive game windows after
preprocessing. We'll use the difference as the input to the deep RL model
later when training the policy gradient agent.



In the code cell above, we generate the next game window by choosing
action=2. We then use the prepro() function defined in the local module
ch18util to preprocess it so that it also has a size of 80 by 80 pixels. The
difference between the two consecutive game windows is then shown as the
output.

We define a difference() function in the local module ch18util. The function
selects four game frames and creates a picture with 12 subplots in it. The
top row shows the preprocessed pictures of four game windows. The
middle row shows the processed pictures of the next time step of the four
game windows. The bottom row shows the difference between the first two
rows. Next, we import the difference() function from the local module and
call it to generate the picture.

If you open the file difference.png on your computer, you'll see a picture
similar to Figure 18.2. The first two rows are preprocessed game windows
in time steps t and t+1, respectively. The bottom row shows the difference
of the first two rows. If you look at the first column, for example, you can
tell that the Pong ball is moving towards the bottom left corner. In the
second column, in contrast, the Pong ball is moving away from the bottom
left corner and moving towards the top right corner of the screen.



Figure 18.2  Obtaining the difference of two consecutive game windows

18.3 TRAIN THE POLICY GRADIENT AGENT

We'll use the policy gradient method to train the agent. To save space, we'll
place most of the code in the local module ch18util that you just
downloaded. In this section, we'll explain the logic behind the training
process.

18.3.1 Create a Policy Network

We'll create a policy neural network using the NumPy library. We'll feed the
difference of preprocessed images from two consecutive time steps into the
neural network. The input layer of the network has 6400 neurons in it



because the preprocessed images have a size of 80 by 80 pixels. There is
one hidden layer with 200 neurons in it. The output layer has just one
neuron in it with Sigmoid activation. Below, we define some
hyperparameters for the model:

This is essentially a binary classification problem: the agent needs to decide
to move the paddle up or down. We can interpret the output from the neural
network, p, as the probability that the agent moves the paddle up. The agent
moves the paddle down with probability 1-p.

During training, the policy network generates a value p to guide the agent's
action by passing the input image forward using the following
policy_forward() function:

The agent tweaks the model parameters periodically based on the rewards
and actions taken, using the following policy_backward() function:

In reinforcement learning, actions affect not only current period rewards,
but also future rewards. We therefore use discounted rewards to assign
credits properly. The rewards are discounted so that a sequence of actions,



not a single action, get the credit/blame for the game outcome in the form of
rewards. This is done through the discount_rewards() function below:

We let the agent interact with the game environment for one episode and
collect data for training. The details are defined in the training() function in
the local module ch18util. We calculate the gradients as well as the episode
reward after each episode of the game. To make the training more table, we
update model parameters after every ten games instead of after each game.
The details are defined in the create_batch() function in the local module
ch18util.

18.3.2 Train the Model

We define the policy_pong() function in the local module ch18util for both
training and testing of the model. The function is defined as follows:



For games in the OpenAI Gym environment, there are different versions:

v0: there is a 25% chance that the previous action will be repeated
instead of the issued action;
v4: 0% probability of repeating the previous action; but skip 2-5
frames randomly;
Deterministic-v4: 0% probability of repeating the previous action; skip
a fixed 4 frames.

When we train the model, we use version v0 to allow for exploration. Later,
we'll use the version Deterministic-v4 when testing the trained model.

After every 100 episodes, the model is saved on your computer. You can
stop training and resume training later by turning on the resume=True



argument in the function. If you want to see the graphical renderings of the
game windows, simply turn on the render=True argument in the function.

Let's first import the policy_pong() function from the local module and train
the model for one batch (ten games) with the graphical rendering turned on,
as follows:

By turning on the render=True argument in policy_pong(), you can see the
graphical renderings of the game windows. By setting cutoff=-21 in the
function, the training stops after one batch because the lowest possible
score is -21.

Next, you can turn off the graphical rendering of the game windows and
train the model until the average score reaches -14, like so:

The training takes about 24 hours, or you can download the trained model
from the book's GitHub repository. If the agent can have an average score
of -14 when playing in the v0 version of the game, it can have a perfect
score when playing the Deterministic-v4 version.

18.4 TEST THE POLICY GRADIENT AGENT

We can now test the trained policy gradient agent. We'll first test three
games to see the scores of the agent in these games. After that, we'll record
the game windows to prepare for the animation in the next section.

First, we test three games by calling the policy_pong() function and setting
the test argument to True:



The results show that the trained policy gradient agent has scored 21 points,
the highest possible score, in each of the three games.

Next, we'll test one game and record the game windows so that we can
animate the whole game in the next section:

We have played a full game using the trained model. All the game windows
are saved as NumPy arrays in the list frames. The agent has scored 21
points again.

18.5 ANIMATE THE PONG GAMES

Next, we'll animate how the agent performs before and after training. We'll
put the two games side by side so that you can compare them.



18.5.1 Record Games with Random Moves

We'll record game frames when the agent makes random moves. We'll use
them for comparison later in the animation.

By using the command

we ensure that we get the same number of frames here as in the game with
the trained agent. Later when we combine the frames, we don't have to
worry about matching the number of frames in the two scenarios.

18.5.2 Combine the Animations

We'll combine the two games and form one single animation. The game
windows with random moves are on the left of the combined frames, and
those with the trained policy gradient agent are on the right.

Run the above code cell and open the file pong_compare.gif on your
computer. You'll see an animation of the Pong games. On the left of the
screen, you should see the untrained agent (with the green paddle) loses to



the opponent (with the orange paddle) 0-21, the worst possible score. On
the right of the screen, you should see the trained policy gradient agent beat
the opponent 21-0, the best possible score. The animation demonstrates that
the policy gradient method is effective in training the agent.

18.5.3 Subplots of the Policy Gradient Agent

We also create a figure with 25 subplots to include in the hard copy of the
book. Specifically, we select 25 images out of the thousands of NumPy
arrays in the list frames we just created and put them in a five by five
matrix to form a single picture.

First we take one image out of every 100 images in the list frames and put
them in a new list plots, like so:

There are roughly 26 images in the list plots, and we take images 2 to 26 to
form a five by five matrix in a picture using the matplotlib library, like this:



Figure 18.3  A Pong game with the trained policy gradient agent



If you open the file trained_pg.png on your computer, you'll see a picture
similar to Figure 18.3. It has 25 subplots in it. In each subplot, you can see
the score of the two players at the top of the screen. While the score of the
opponent remains at 0 at all 25 subplots, the score of the trained policy
gradient agent increases gradually from 1 to 2,…, then to 20 in the last
image. The picture shows that the trained policy gradient agent plays the
game perfectly, which demonstrates the effectiveness of the policy-based
deep RL algorithm.

18.6 GLOSSARY

• Policy:
In reinforcement learning, a policy is a decision rule to guide the
agent which action to take in a given state.

• Policy-Based RL:
A branch of reinforcement learning in which the algorithm directly
trains a policy to guide the agent to take an action in a given state,
rather than estimating the value functions associated with different
actions.

• Policy Gradient Method:
A reinforcement learning method in which the parameterized policy
guides the agent to take actions in a given state. During the learning
process, the agent tweaks the parameters in the policy model based
on actions and observed rewards.

18.7 EXERCISES

18.1 Modify the third code cell in Section 18.2.1 so that the agent chooses
30 random moves. Draw a picture of the last game window using the
matplotlib library.

18.2 Follow the previous question. Rerun the first two code cells in Section
18.2.2 and show the cropped and downsized game window.

18.3 Modify the last code cell in Section 18.3.2 and change the resume
argument to True and rerun the cell.
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An idea is always a generalization, and generalization is a property of
thinking. To generalize means to think.

– Georg Wilhelm Friedrich Hegel

THAT YOU understand how the policy gradient method works
from the last chapter, you'll generalize the method to other Atari
games such as Breakout. You'll modify the algorithm based on

the differences between Pong and Breakout to make the policy gradient
method work in the Breakout game.

Specifically, in the Atari Pong game, the agent only needs to choose
between one of the two actions: moving the paddle up or down. Therefore,
the agent essentially faces a binary classification problem. In contrast, in
Breakout, there are four possible actions that the agent can take in each time
step. You'll modify the policy neural network so that the output layer has
four neurons, one for each possible action.

You also need to modify the rewards in Breakout to train the policy gradient
agent effectively. Specifically, in the Pong game, the reward is already
structured correctly for you: the agent has a reward of 1 every time it scores
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a point and a reward of -1 every time it loses a point; otherwise, the reward
is 0 in a time step. In contrast, in Breakout, the agent has five lives in each
episode of the game. The reward is 0 in all time steps except when the agent
loses all five lives, in which case the reward is -1. You'll count the number
of lives the agent has in each time step. You'll change the reward from 0 to
-1 every time the agent loses a life (i.e., fails to catch the ball with the
paddle at the bottom of the screen).

After about 500,000 episodes of training, the agent learns to dig a tunnel on
the side to send the ball to the back of the wall to score more efficiently.
You'll capture such episodes and create an animation of the tunnel-digging
process. Further, you'll also learn the limitations of the policy gradient
method in training the Breakout game agent: when taking the difference of
two consecutive frames, the layers of bricks disappear and this means the
agent cannot remove all bricks in the game.

New Skills in This Chapter

Creating a policy neural network with multiple outputs
Modify the rewards in the Atari Breakout game
Training and testing a policy network for Breakout
Zeroing in on certain time steps of a game episode

Before you start, open the Jupyter Notebook app in the virtual environment
MLA on your computer. After that, open a blank Jupyter notebook and save
it as ch19.ipynb in the directory /Desktop/mla/ on your computer. Next,
we'll create a subdirectory /files/ch19/ to store files for this chapter.

Start a new cell in ch19.ipynb and execute the following lines of code in it:

19.1 GET STARTED WITH THE BREAKOUT GAME



In this section, you'll learn the special features of the Atari Breakout game.
We'll focus on the features that are different from those in the Pong game.

19.1.1 The Breakout Game

Run the lines of code below to start the Breakout game:

You should see a Breakout game frame in a separate game window. On the
top of the screen, the current score and the number of lives left are
displayed.

You can check the action space and observation space of the game as
follows:

There are four possible actions the agent can take:

action 0: doing nothing
action 1: firing the ball
action 2: moving the paddle to the right
action 3: moving the paddle to the left

In the Pong game, the ball is automatically fired. In Breakout, the agent
needs to trigger the firing action. So we have to treat this as a multi-
category classification problem.

Similar to the Pong game, each observation is a color picture of 210 pixels
tall and 160 pixels wide. The following cell displays a game window:



If you don't see a ball in the picture, rerun the above cell until you see one.

19.1.2 Preprocess the Game Frames

The input size of the game frame is too large, we'll process the image like
we did for the Pong game in the last chapter to reduce the size while
retaining vital information to train the model to win the game.

Specifically, we'll perform cropping, downsizing, and differencing before
we feed the raw pixels into the model to train the agent.

Cropping means we remove the top and the bottom of the game frame to
reduce the input size, like so:

The size of the picture is now 160 by 160 pixels with three color channels.
To further reduce the size of the picture, we'll use every other row and every
other column. Additionally, we'll use just one of the three color channels to
reduce the image size. We also remove the background colors and change
the raw pixels to 1s and 0s only, like this:



The processed picture now has a size of 80 by 80 pixels. To let the agent
know the direction of the movement of the Breakout ball, we'll use the
difference between two consecutive frames, like we did in Chapter 18.

19.1.3 Obtain the Difference of Two Game Windows

We'll obtain the difference of two consecutive time steps after processing.
Similar to what we have done in the last chapter, we define a prepro()
function in the local module ch19util. Download the file ch19util.py from
the book's GitHub repository and save it under /Desktop/mla/utils/ on your
computer. The function prepro() preprocesses the Breakout game frame so
that the size decreases from 210 by 160 pixels with three color channels to
80 by 80 pixels with one color channel.

We import the function from the local module and call it to preprocess the
game window. We'll obtain the difference of two consecutive game
windows and use it as the input to the policy network later when training
the policy gradient agent.

In the code cell above, we generate the next game window by choosing
action=3. We then use the prepro() function defined in the local module
ch19util to preprocess it so that it also has a size of 80 by 80 pixels. The
difference between the two consecutive game windows is then shown as the
output.

Note the limitations in processing the game windows by differencing two
consecutive time steps. The layers of the bricks disappear from the picture.
This is not a problem in early stages of the game since as long as the ball is
caught by the paddle at the bottom, it will bounce up and hit a brick on the
way up and you'll score no matter what. But in later stages of the game



when many bricks are gone, the agent doesn't know where the remaining
bricks are. It's impossible for the agent to aim at the bricks and score points.
We'll address this limitation in Chapter 20 by using the Baselines game
wrapper.

We define a dif_breakout() function in the local module ch19util. The
function selects four game frames and creates a picture with 12 subplots in
it. The top row shows the preprocessed pictures of the four game windows.
The middle row shows the processed pictures of the next time step of the
four game windows. The bottom row shows the difference between the first
two rows. In the code cell below, we import the dif_breakout() function
from the local module and call it to generate the picture, like this:

After running the above code cell, the picture dif_breakout.jpg is saved on
your computer. If you open the file, you should see a picture similar to
Figure 19.1. In the last row, you can tell the movement of the ball: it moves
from the black spot to the white spot. For example, in the first column, the
ball is moving from the top right corner to the bottom left corner. In the
second column, the ball is moving from the top left corner to the bottom
right corner. The agent, therefore, is able to see the ball movement from the
images from the third row alone.



Figure 19.1  Differences of two time steps in Breakout

Again, you'll notice that the brick walls have disappeared in the difference
images. But this is not a concern for early stages of the game since the ball
can hit a brick and score points when most of the bricks are in place.

19.2 TRAIN THE POLICY GRADIENT MODEL IN BREAKOUT

We'll use the policy gradient method to train the agent in the Breakout
game.

19.2.1 Changes Needed



The first thing we need to change is how the actions are determined. In the
Pong game, we used the following line of code:

We choose action 2 if the predicted probability is greater than a random
number; otherwise, we choose action 3.

In contrast, in the Breakout game, the agent has four actions to choose
from. The model will make a prediction with four values, corresponding to
the probabilities of the four actions. Therefore, we'll use this line of code:

We choose the four actions randomly, but the probability of each action is
proportional to the predicted probability. For example, if the prediction
probabilities are [0.2, 0.3, 0.1, 0.4], we'll pick action 0 with a probability of
20%, action 1 with a probability of 30%, action 2 with a probability of 10%,
and action 3 with a probability of 40%.

In the Pong game, there are three possible rewards: -1, 0, and 1. Every time
the agent fails to catch the Pong, the agent gets a reward of -1. On the other
hand, every time the opponent fails to catch the Pong, the agent has a
reward of 1. Otherwise, the reward is 0 in each time step.

In contrast, in the Breakout game, there are only two possible rewards: 0
and 1. Further, the agent has five lives, and each time the agent fails to
catch the ball at the bottom of the screen, the number of lives decreases by
one, but the reward is still 0. The agent gets a reward of -1 only when it
loses all five lives.

Run the code cell below to see the reward structure in Breakout:



You should see from the game window that the paddle just missed the ball.
However, the reward is still 0 in the last time step. The number of lives
changed from 5 to 4. We therefore will hard code in a reward of -1
whenever the number of lives decreases by 1.

19.2.2 Create a Policy Network

We'll create a policy neural network using the NumPy library without the
help of the Keras API. We'll feed the difference of preprocessed images
from two consecutive time steps into the neural network. The input layer of
the network has 6400 neurons in it because the preprocessed images have a
size of 80 by 80 pixels. There is one hidden layer with 200 neurons in it.
The output layer has four neurons in it with softmax activation. Below, we
define some hyperparameters for the model:

This is essentially a multi-category classification problem: the agent needs
to decide which one of the four actions to take. We'll define a softmax
function as the activation function in the model. Further, we'll define a one-
hot encoder to compare the output from the policy model with the action
taken:



During training, the policy network generates a vector p to guide the agent's
action by using the following policy_forward() function:

The agent tweaks the model parameters periodically based on the rewards
and actions taken, using the following policy_backward() function:

We use discounted rewards to assign credits properly. The rewards are
discounted so that a sequence of actions, not a single action, get the
credit/blame for the game outcome in the form of rewards. This is done
through the discount_rewards() function below:



We let the agent interact with the game environment for one episode and
collect data for training. The details are defined in the training() function in
the local module ch19util. We calculate the gradients as well as the episode
reward after each episode of game. To make the training more table, we
update model parameters after every ten games instead of after each game.
The details are defined in the create_batch() function in the local module
ch19util.

19.2.3 Train the Policy Gradient Agent in Breakout

We define the policy_breakout() function in the local module ch19util for
both training and testing of the model. The function is defined as follows:



After every 100 episodes, the model is saved on your computer. You can
stop training and resume training later by turning on the resume=True
argument in the function. If you want to see the graphical renderings of the
game windows, simply turn on the render=True argument in the function.

Let's first import the policy_breakout() function from the local module and
train the model for one batch (ten games) with the graphical rendering
turned on, as follows:



By turning on the render=True argument in policy_pong(), you can see the
graphical renderings of the game windows. By setting cutoff=− 5 in the
function, the training stops after one batch because the lowest possible
score is -5.

Next, you can turn off graphical renderings of the game windows and train
the model until the averge score is 40, like so:

The training takes about about 24 hours and 500,000 episodes, or you can
download the trained model pg_breakout.p from the book's GitHub
repository. If the agent can have an average score of 40, you can capture an
episode of the game in which the agent digs a tunnel at the side of the wall.

19.3 TEST THE POLICY GRADIENT AGENT IN BREAKOUT

We can now test the trained policy gradient agent in Breakout. If the agent
sends the ball to the back of the wall, the ball can remove multiple bricks
and have a high score in the episode. We therefore look for an episode with
total rewards above, say, 100. In such episodes, you are likely to capture an
incidence of tunnel digging.

We'll first test three games to see the scores of the agent in these games.
After that, we'll search for an episode in which the total reward is above
100.

19.3.1 Test the Trained Policy Gradient Agent

First, we test three games by calling the policy_breakout() function and
setting the test argument to True:



The results show that the trained policy gradient agent has scored 17, 36.5,
and 37.33 points in the three games, respectively.

19.3.2 Search for Successful Episodes

Next, we start an infinite while loop. In each iteration, we play a complete
game and record all game windows. If the score from an episode exceeds
100, we stop the while loop and save the frames in the episode on your
computer as above100.p, like this:

It usually takes a couple of minutes for you to have an episode with rewards
above 100. You can also change the criteria and keep only an episode with
rewards above, say, 300. I'll leave that as an exercise for you.



In the next section, we'll zero in on the time steps in which the agent digs a
tunnel on the side and sends the ball to the back of the wall. Since each
episode of the game is different, we'll use the two episodes that I have
generated as examples in the next section. You must modify the code cells
in the next section if you want to use the episode that you created yourself.

19.4 ZERO IN ON INTERESTING TIME STEPS

Next, we'll zero in on the time steps of the game when the agent sends the
ball to the back of the wall. We'll first use two episodes that I have
recorded: download the file above100.zip from the book's GitHub
repository. Unzip it and you'll see two files: above100a.p and above100b.p.

19.4.1 Animate Interesting Time Steps

To find out which frames contain images of the ball going to the back of the
wall, we'll first convert all NumPy arrays into individual images, as
follows:

This generates hundreds of individual images on your computer, and you
can browse through these images to find out which time steps you should
keep to highlight how the agent digs a tunnel on the side to send the ball to
the back of the wall.

For frames in above100a.p, we remove the first 800 frames and the last ten
frames, and convert the remaining frames into an animation, like this:

Run the above code cell and open the file tunnel_a.gif on your computer.
You'll see an animation of the policy gradient agent digging a tunnel on the



side of the wall and sending the ball to the back through the tunnel. On the
top of the screen, you can see the score increasing as the ball removes many
bricks at the back of the wall. At the beginning of the animation, the score
is 41. At the end, the score is 216. The animation demonstrates that the
policy gradient agent has scored 175 points with one single return of the
ball.

You can use the same method on the file above100b.p and keep only the
interesting frames and convert them into an animation, like so:

The resulting animation tunnel_b.gif is saved on your computer. In the
animation, the trained policy gradient agent manages to send the ball to the
back of the wall twice.

19.4.2 Subplots of the Interesting Time Steps

Even though we cannot show animations in the hard copy of the book, we
can create a figure with multiple subplots to show how the policy gradient
agent sends the ball to the back of the wall. For that purpose, we showcase
25 pictures in different stages.

First we zero in on the frames that we want to use as subplots, like so:

Starting from the 881th frame, we select every other image from the list
frames and put them in a new list plots. We then select 25 images and plot
them in a five by five matrix, as follows:



Figure 19.2  Subplots of game windows in Breakout

After running the above code cell, the picture tunnel.jpg is saved on your
computer. If you open the file, you should see a picture similar to Figure



19.2. The five images in the first row show that the ball moves closer and
closer to the tunnel at the left side of the wall. In the second row, the ball
goes through the tunnel and moves to the back of the wall. In the last three
rows, the ball gradually removes bricks at the back of the wall, and the
score has increased from 41 to 83 as a result.

19.5 EXERCISES

19.1 Rerun the code cells in Section 19.1.1 to familiarize yourself with the
Atari Breakout game.

19.2 Rerun the last code cell in Section 19.1.3. Go to your computer and
open the file dif_breakout.jpg and figure out which direction the ball
is moving to in each of the four columns.

19.3 Modify the code cell in Section 19.3.2 and capture a game episode in
which the policy gradient agent has scored at least 300 points. Save
the game windows in the episode as above300.p.

19.4 Continue the previous question. Modify the first two code cells in
Section 19.4.1 and create an animation to highlight the time steps in
which the agent sends the ball to the back of the wall.
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These overestimations result from a positive bias that is introduced because
Q-learning uses the maximum action value as an approximation for the

maximum expected action value.
Double Q-learing

– Hado van Hasselt, 2010, NeurIPS Proceedings

Q-LEARNING has a well-known problem of overestimating Q
values, as stated by the opening quote of this chapter [10]. In
most cases, the overestimation bias is not a serious issue since

the agent only cares about the relative magnitude of the Q-values for
different actions. However, in complicated situations such as Atari games,
this poses a problem and leads to wrong actions in certain scenarios.

To overcome this problem, we'll use the double Q-learning method
proposed by Hado van Hasselt [10]. Specifically, we'll use one deep Q-
network for training (the training network) and another deep Q-network for
prediction (the target network), and periodically update the weights in the
target network with the weights from the training network.

The double deep Q-learning algorithm can train the agent to play Atari
Games very effectively. You'll learn to create a deep neural network with
convolutional layers to extra features from the Atari gameplay screenshots.
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We'll use the Atari Breakout game as the example in this chapter. The
trained agent can eliminate almost all bricks on the screen.

More importantly, the trained agent sends the ball to the back of the wall
multiple times once there is at least one tunnel on either side of the screen.
The agent has “learned” that it's more efficient to earn points that way than
directly aiming at the bricks.

Furthermore, the model is highly scalable, and you can tweak the model
slightly and apply it to other Atari games such as Space Invaders, Seaquest,
and Beam Rider, as you'll see in the next two chapters.

An article in the journal Nature in 2015 demonstrates that a deep Q-network
can train multiple Atari games to super human levels [17]. The model used
in this chapter is largely based on the article, as well as the modifications
made in the Keras example script by Jacob Chapman and Mathias Lechner
[12]. I strongly encourage you to read through the explanations provided by
these two sources to gain more intuition on double deep Q-learning.

At the end of the chapter, you'll create an animation of the time steps in the
Atari Breakout game in which the trained double deep Q-learning agent
sends the ball to the back of the wall five consecutive times. It's clear that
the agent has “learned” to do this on purpose because this is a more efficient
way of scoring points than aiming at the bricks directly.

New Skills in This Chapter

Creating a double deep Q-learning model
Obtaining the weights from a deep neural network
Assigning weights to a deep neural network
Training a double Q-network for Breakout
Playing Breakout with the trained double Q-network

Before you start, open the Jupyter Notebook app in the virtual environment
MLA on your computer. After that, open a blank Jupyter notebook and save
it as ch20.ipynb in the directory /Desktop/mla/ on your computer. Next,
we'll create a subdirectory /files/ch20/ to store files for this chapter.

Start a new cell in ch20.ipynb and execute the following lines of code in it:



We'll use the OpenAI Baselines library to train several Atari games from
this chapter onwards. The Baselines library provides an Atari Gym wrapper
for various games to make the training of RL models easier. For more
details, go to their GitHub repository https://github.com/openai/baselines.

To install Baselines, make sure that you have installed atari_py and ROMS
on your computer. If not, refer to Chapter 18 on how to install.

Also, make sure you are using version 0.15.7 of the OpenAI Gym
environment. In case you accidentally installed a different version, run the
following lines of code to correct it.

pip uninstall gym

pip install gym==0.15.7

Here are the steps to install Baselines:

Step 1: Make sure you have Git installed on your computer; if not, see
instructions via the link below https://git-scm.com/book/en/v2/Getting-
Started-Installing-Git.
Step 2: Open the Anaconda prompt (Windows) or a terminal (MAC or
Linux) and activate the virtual environment MLA. Clone the OpenAI
Baselines repository by running the following line of command:
git clone https://github.com/openai/baselines.git
Step 3: Go into the baselines directory by running the following line of
command:
cd baselines

Step 4: Install the Baselines library in the virtual environment by
running the following command:
pip install -e.

Make sure you don't miss the dot at the end of the above command.

After installation, restart your Jupyter Notebook for the library to take
effect.

20.1 GET STARTED WITH OPENAI BASELINES

https://github.com/
https://git-scm.com/
https://github.com/


In this section, you'll learn the special features of the Breakout game with
the Baselines game wrapper. I'll focus on the features that are different from
the Atari Breakout game without using the game wrapper.

20.1.1 The Breakout Game with OpenAI Baselines

If you recall, in Chapter 19 we need to reconfigure the rewards by counting
the number of lives remaining for the agent? Well, with the Baselines game
wrapper, the agent has one life in each episode. That is, each time the agent
loses a life (i.e., the paddle misses the ball at the bottom), the episode ends.
In the original Atari Breakout game, the agent starts with 5 lives and the
episode ends only when the agent loses all 5 lives.

This makes re-configuring the reward system much easier. Each time the
game ends (i.e., done==True), we set the Q-value to -1. This is crucial for
the success of the training. This is equivalent to setting the reward to -1
whenever the agent loses a life, as we did in Chapter 19.

To see how the variable done is related to the number of lives remaining,
run the code in the cell below.



As you can see from the output, the agent starts with five lives. Once the
agent loses one life, the variable done becomes True and the episode ends.
Note that the reward is still 0, but we can code it as -1 by using the
following line of code; you'll see it in the script for training later:

Run the following to close the game window.

20.1.2 Preprocessed Frames from Baselines

In Chapters 18 and 19, we need to preprocess raw images from the Pong
and Breakout games by cropping and downsizing the game windows. The
Baselines game wrapper does all those steps for us automatically. The game
wrapper returns four consecutive frames of preprocessed images, each with
a size of 84 by 84.

Let's visualize the preprocessed images from the library. Run the code in the
cell below:

You should see four consecutive game windows. The number of lives is five
in the first three frames and changes to four in the last frame. The four
consecutive game windows tell the agent the movement of the ball so we
don't need to use the difference of two consecutive game windows as we



did in Chapters 18 and 19. The wall of bricks is clearly visible in the four
preprocessed frames so the agent can aim at them and remove these bricks
to earn high scores.

20.1.3 Subplots of Preprocessed Frames

We define a four_frames() function in the local module ch20util. Download
the file ch20util.py from the book's GitHub repository and place it in the
folder /Desktop/mla/utils/ on your computer. The function selects three
game states. Since each game state has four consecutive game frames, we
have a total of 12 subplots in a picture. Each row has four consecutive game
windows so we can infer the movement of the ball. In the code cell below,
we import the four_frames() function from the local module and call it to
generate the picture with subplots.

If you run the above code cell and open the file four_frames.jpg on your
computer, you should see a picture similar to Figure 20.1. For example, the
top row in Figure 20.1 shows that the ball is moving from the bottom left
corner to the top right corner. In the middle and the bottom rows, however,
the ball is moving from the top left corner to the bottom right corner.



Figure 20.1  Four consecutive game windows by Baselines game wrapper

20.2 TRAIN THE DOUBLE DEEP Q AGENT

We'll train the agent to play the Atari Breakout game with a double deep Q-
network in this section. The network is based on the 2015 Nature article
[17]. However, Chapman and Lechner show that with an Adam optimizer
instead of the RMSProp optimizer, the training is faster [12]. We therefore
use the Adam optimizer as well.

20.2.1 Create a Double Deep Q-Network



Q-learning has a well-known problem of overestimating the Q values. To
overcome this, we use double deep Q-learning: we'll use one deep Q-
network for training and another for prediction. We call the latter the target
network and periodically update weights in the target network by using the
weights from the training network.

The deep Q-network we use has convolutional layers since the inputs are
two-dimensional pictures. We can use convolutional layers to extract spatial
features from the graphs and associate them with game strategies.

The input to the model is four consecutive game windows so the agent can
tell the movement of the ball. The output has four neurons in it, each
representing the Q-value associated with an action. To overcome the
overestimation problem in Q-learning, we create a training network and a
target network. The two networks have the same model structure but
different weights. We first initiate the two networks, as follows:

To train the model, we use the Adam optimizer and the Huber loss function:



20.2.2 Train the Deep Q Network

Now that we have a double deep-Q network for Breakout, we'll train the
model by letting the agent interact with the game environment. We'll adjust
the model weights in the deep Q-network based on the actions and the
resulting rewards, similar to what we did in Chapter 17 with the Cart Pole
game.

We create a replay buffer to train the deep Q-network. The replay buffer
stores game histories from the agent's interaction with the environment.
When training the model, we randomly select a batch of past experience to
update the model weights.

Below, we create a replay buffer with a maximum length of 50,000
elements:

We have also created a list running_rewards to store the total rewards from
each episode. The list has a maximum length of 100 and we'll use the
average value in the list to determine when the training is complete.

To train the model, we select 32 observations from the replay buffer to
update model parameters. The following function gen_batch() randomly
chooses 32 observations and processes them so that they are ready for
training:



Next, we define a function update_Q() to update model weights based on a
batch of game experience. Specifically, we'll adjust the weights so that the
difference between the current Q-value, Q(s, a), and the updated Q-value, 
New Q(s, a) is minimized. See Chapter 17 for the idea behind deep Q-
learning. The function update_Q() is defined as follows:



We'll play the game many episodes so that the agent can interact with the
environment and try different actions and observe the rewards. The deep Q-
learning agent adjusts the model weights based on the feedback from the
environment to maximize cumulative rewards.

We define some hyper-parameters below:

In the first 50,000 frames, the agent takes random actions before using
predictions from the trained Q-network to select actions. Since we use four
consecutive game windows as inputs, we'll train the model after every four
actions. Finally, after every 10,000 frames, we'll update the weights of the
target network.



The function play_episode() below plays a full episode of the Breakout
game:



After each time step, we collect the experience data and put them in the
replay buffer. The experience data contains five pieces of information: the
old state, the new state, action taken, reward, and the variable done
indicating whether the game has ended. To help organize the data, we put
the five pieces of information in a list and add to the replay buffer memory.
After every four time steps, if the number of observations in the replay
buffer memory is greater than 32, we update the model weights.

We train the model till the running reward is greater than 20: this means that
in the past 100 games, the double deep Q-learning agent has earned an
average reward of more than 20.

The above program takes two to three days to run on a regular computer.
Once done, the trained model is saved as DoubleQ_breakout.h5 on your
computer. Alternatively, you can download the trained model from the
book's GitHub repository.

20.3 TEST THE TRAINED BREAKOUT AGENT

In this section, you'll first play five episodes of Breakout using the trained
model, so that you can visualize the trained double deep Q-agent in action.



After that, you'll play 100 episodes of the game and see what the average
score is, without the graphical rendering of the game windows.

20.3.1 Testing One Original Episode

In each episode of the original Atari Breakout game, the agent has five
lives. But the Baselines game wrapper breaks it down to five smaller
episodes. In each new episode, the agent has one life.

Here you'll play five consecutive episodes of the game with the Baselines
game wrapper and that's equivalent to one full original episode of the game
without the game wrapper.

You'll turn on the graphical rendering of the game windows so that you can
visualize the game in action, like so:

The trained model is able to remove most, if not all, bricks in the game.
More importantly, the agent sends the ball to the back of the wall multiple
times once there is at least one opening to the back of the wall. The agent
has definitely “learned” that it's more efficient to earn points that way than
directly aiming at the bricks.



20.3.2 Play Multiple Games and Test the Average Score

We now play 100 games and turn off the graphical rendering. We'll see
what the average score is. To save space, we have defined a function
test_breakout() in the local module ch20util. You can see the definition of
the function in the file ch20util.py you just downloaded from the book's
GitHub repository. The function plays 100 episodes of the Breakout game
using the trained model. The agent takes the action with the highest Q-value
in each time step with a 99% probability; it takes a random action with a
1% probability. We use exploration here to avoid repetitive actions in
certain episodes: when there are very few bricks left on the wall, the
trajectory of the ball is exactly the same without hitting any brick in each
time step if we use only exploitation. This can go on for thousands of time
steps and it delays the testing process. Below, we import and call the
function test_breakout() to test 100 games:

The function prints out the score in each episode as well as the average
score. The output above shows that the average score is 16.62. Your output
is likely to be different.

20.4 ANIMATE INTERESTING TIME STEPS

We'll highlight time steps in an episode in which the agent purposefully
sends the ball to the back of the wall multiple times.

20.4.1 Collect a Successful Episode



We'll first record an episode with high scores. If the episode score is above,
say 125, you are likely to see time steps in which the agent sends the ball to
the back of the wall multiple times. Since each game is different, I'll use the
episode I collected as the example below. As an exercise, you can find your
own episode and zero in on the interesting time steps.

To save time, we have defined the function collect_episode() in the local
module ch20util. We import the function and call it to capture an episode
with a score of at least 125.

After running the above code cell, you'll see a file breakout_frames.p on
your computer. It contains all the game windows in the episode, in the form
of NumPy arrays. You can then zero in on the steps of the game when the
agent sends the ball to the back of the wall multiple times. To do that, you
can convert the game windows in the episode into individual pictures so
that you know which time steps to focus on.

Since each game is different, I'll use the episode I collected as the example.
Download the file breakout_frames1.zip from the book's GitHub repository
and unzip the file and place it in /Desktop/mla/files/ch20/ on your
computer. After that, run this code cell:

The above code cell takes about ten minutes to run. Once done, go to your
local folder to browse through the individual pictures. It seems that the
agent has sent the ball to the back of the wall from photos numbered 100 to
294. We therefore keep only those time steps and convert them into an
animation, like so.



If you run the above code cell and open the file breakout_highlight.gif on
your computer, you should see an animation of the double deep Q-learning
agent sends the ball to the back of the wall five consecutive times. At the
beginning of the animation, the score is 220. At the end, the score is 343.
The agent has scored 123 points without losing one single life. Further, the
agent never aims at any brick directly. All bricks are removed by the ball
bouncing off the wall at the top of the screen. It's clear that the agent has
“learned” to do this on purpose to earn points more efficiently.

20.4.2 A Picture with Subplots

Next, we create a figure with multiple subplots to show how the agent
purposefully sends the ball to the back of the wall multiple times. We first
select 25 game windows from the list frames, like so:

We have selected every eighth game window in the list frames and we have
exactly 25 images in the new list plots. Then we plot them into a five by
five matrix, as follows:



Figure 20.2  Time steps in which the agent sends the ball to the back of the
wall



Run the above code cell and open the picture DoubleQ_plots.jpg on your
computer. You should see a picture similar to Figure 20.2. The 25 images
show that the agent has sent the ball to the back of the wall multiple times.
The top left subplot shows that the agent has a score of 220 and three lives.
The bottom right subplot shows that the agent has a score of 343 and the
number of lives is still three. The number of bricks remaining has also
decreased significantly. The picture shows that the double deep Q-learning
agent has learned a way to earn points efficiently.

20.5 GLOSSARY

• Double Q-Learning:
A Q-learning algorithm in which one set of Q-values are used for
training and another set for prediction.

• Overestimation Bias:
In Q-learning, the estimated Q-values are generally greater than the
true Q-values because Q-learning uses the maximum action value as
the expected action value.

• Training Network:
The deep network for training in double deep Q-learning. The
weights in the training network are updated by using the game
experience.

• Target Network:
The deep network for prediction purpose in double deep Q-learning.
The weights in the target network are updated periodically by using
the weights in the training network.

20.6 EXERCISES

20.1 Install the Baselines library on your computer, by following
instructions at the beginning of this chapter.

20.2 Rerun the code cell in Section 20.1.2 to visualize the preprocessed
game windows from the OpenAI Baselines game wrapper. Determine
which direction the ball is moving in the game windows.



20.3 Rerun the code cells in Section 20.4.1 and capture a successful game
episode. Then zero in on time steps in which the agent sends the ball
to the back of the wall multiple times.

20.4 Continue the previous question. Use the imageio library to convert the
time steps your collected in the last question into an animation.
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Space Invaders with Double
Deep Q-Learning
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We demonstrate that the deep Q-network agent, receiving only the pixels
and the game score as inputs, was able to surpass the performance of all

previous algorithms and achieve a level comparable to that of a professional
human games tester across a set of 49 games, using the same algorithm,

network architecture and hyperparameters.
Human-level control through deep reinforcement learning

– Mnih et al, 2015, Nature

2015, THE DeepMind team published a paper on the journal Nature
demonstrating that a deep Q-network agent is capable of achieving
human-level control of 49 different Atari games such as Breakout,

Space Invaders, Seaquest, Boxing… [17]. The team achieved this by using
the same network structure and model hyperparameter values. The only
inputs to the model are raw pixels of gameplay screenshots and the scores
earned by the agent.

In Chapter 20, you have learned how to use a double deep Q-network to
train an agent in one of the Atari games, namely Breakout, to achieve
human-level control of the game. In fact, the deep Q-network agent has

https://doi.org/10.1201/b23383-21


learned a strategy that human players didn't know before: digging a tunnel
on the side of the wall and sending the ball to the back to score more
efficiently. In this chapter and the next, you'll learn to generalize the idea
and scale up the deep Q-network. Our ultimate goal is to create one single
algorithm and apply it to all Atari games, as the DeepMind team did. We'll
accomplish this goal in Chapter 22. In this chapter, you'll tweak the model
we used in Chapter 20 so that you can apply it to another Atari game, Space
Invaders. In each step, you'll learn how you can apply the same deep Q-
network to Space Invaders. You'll understand the changes we need to make
to the model and why. This way, you'll know which parts of the algorithm
can be applied to all Atari games and which parts are specific to individual
games. After this chapter, you'll be prepared to move on to Chapter 22, in
which you'll create a single function to train all Atari games and use the
name of the game as the only argument of the function.

Specifically, in this chapter, you'll learn the features of the Space Invaders
game that are different from Breakout and other Atari games so you know
how to tweak the training process. You then feed the raw pixels of the
gameplay screenshots to the double deep Q-network to train the agent. Even
though the agent does not know the rules of the Space Invaders game, it can
manage to eliminate all invaders (i.e., aliens) on the screen, just by learning
from the reward system (i.e., scores) via repeated interactions with the
game environment. At the end of the chapter, you'll learn how to capture an
episode of the game in which the trained agent eliminates all aliens and
create an animation to highlight interesting time steps in the game.

New Skills in This Chapter

Playing Space Invaders with and without the Baselines game
wrapper
Modifying an existing Q-network to apply to Space Invaders
Playing Space Invaders with the trained double Q-network
Capturing time steps that the agent eliminates all invaders

Before you start, open the Jupyter Notebook app in the virtual environment
MLA on your computer. After that, open a blank Jupyter notebook and save



it as ch21.ipynb in the directory /Desktop/mla/ on your computer. Next,
we'll create a subdirectory /files/ch21/ to store files for this chapter.

Start a new cell in ch21.ipynb and execute the following lines of code in it:

21.1 GETTING STARTED WITH SPACE INVADERS

In this section, you'll learn how to play the Space Invaders game, both with
and without the Baselines game wrapper. I'll focus on the features that are
important in terms of training game strategies and features that are specific
to Space Invaders.

21.1.1 Space Invaders in OpenAI Gym

You'll first learn to play the Space Invaders game in OpenAI Gym, without
the Baselines game wrapper.

The lines of code below will get you started.

You should see a Space Invaders game frame in a separate window. There
are different rows of invaders on the screen. There is a number three at the
bottom of the screen, indicating that the number of lives remaining for the
agent is three at the beginning of the game.

You can check the action space and observation space of the game as
follows:



There are six possible actions the agent can take. In the above code cell, we
use the get_action_meanings() method to print out the meanings of each
action. The meanings of actions 0 to 5 are the following:

action 0: doing nothing
action 1: firing bullets
action 2: moving to the right
action 3: moving to the left
action 4: moving to the right and firing bullets
action 5: moving to the left and firing bullets

Each observation is a color picture of 210 pixels tall and 160 pixels wide.
The following code cell generates an image of an observation by using the
matplotlib library.



The agent randomly selects a move in each time step. We repeat this for 200
time steps. The game state obs is represented as NumPy arrays and we use
the imshow() method in matplotlib to convert the game state into an image.
After running the above code cell, you should see a game window of Space
Invaders.

Next, we see how the reward system works in Space Invaders. Specifically,
we print out the rewards in each time step, along with the number of lives
left for the agent.

In the above code cell, we print out the reward, the value of the variable
done, as well as the number of lives left for the agent. We stop the game
when the agent loses a life. As you can see from the above output, the agent
has three lives at the beginning of the game. In the last time step, the
number of lives changes to two, which indicates that the agent has lost a
life. The reward to the agent is 0 in the last time step even though the agent



has lost a life. Further, the variable done is still False in the last time step
when the agent loses a life. You don't see it in the above output, but the
variable done turns True only after the agent loses all three lives.

Therefore, we need the help of the Baselines game wrapper to break an
episode into smaller episodes so that we can effectively train the agent.

21.1.2 Space Invaders with the Baselines Game Wrapper

With the Baselines game wrapper, the agent has one life in each episode.
That is, each time the agent loses a life, the episode ends and the variable
done turns True. This makes re-configuring the reward system much easier.
Each time the agent loses a life, we set the Q-value to -1. This is crucial for
the success of training: by punishing actions that lead to losing a life, the
model trains the agent to select actions to avoid being attacked by invaders.

Let's examine the game with the Baselines game wrapper and the modified
reward structure in the game, as follows:



As you can see, in the very last time step above, the number of lives
changes from 3 to 2 and the variable done becomes True. The episode ends
as a result. Note that the reward is still 0, but we can code it as -1 by using
this line of code during training later:

Run the following line of code to close the game window.

21.1.3 Preprocessed Space Invaders Game Windows

The Baselines game wrapper preprocesses the game windows for us and
returns four consecutive images of preprocessed game windows, each with
a size of 84 by 84 pixels.

Let's visualize the preprocessed game windows with the Baselines game
wrapper. Run the code in the cell below.



You should see four consecutive preprocessed Space Invaders game
windows. Together, they tell the agent the movement of the invaders so the
agent can select actions accordingly to avoid being attacked, eliminate
aliens on the screen, and earn high scores. To visualize the preprocessed
game windows, we define an invaders_windows() function in the local
module ch21util. Download the file ch21util.py from the book's GitHub
repository https://github.com/markhliu/MLA and place it in the folder
/Desktop/mla/utils/ on your computer. The function selects three game
states and creates a picture with three rows of subplots in it. Each row
shows the preprocessed images of four consecutive game windows. In the
code cell below, we first import the invaders_windows() function from the
local module and then call the function to create the picture with subplots,
like so:

If you run the above code cell and open the file invaders_windows.jpg on
your computer, you should see a picture similar to Figure 21.1. Each row
has four consecutive preprocessed Space Invaders game windows. The
agent in the game must avoid being hit by the bullets fired by the invaders.
The agent can fire bullets to eliminate invaders on the screen. The
preprocessed game windows show the positions of the aliens and bullets.
The agent can tell if a bullet is moving up or down by comparing the
positions of the bullets in the four consecutive game windows.

https://github.com/


Figure 21.1  Four consecutive preprocessed Space Invaders game windows

In the first row in Figure 21.1, for example, the first two game windows
show that a bullet is moving down and hits the shelter on the left. In the
second row, a bullet moves down between the left and the middle shelter. In
the bottom row, there are two bullets: one bullet moves up to the left of the
screen and the other moves down close to the left shelter.

21.2 TRAIN THE DOUBLE DEEP Q-NETWORK

We can use the same Double Deep Q-Network from Chapter 20 to train the
agent in the Space Invaders game, with a few modifications. In this chapter,
we'll go through the necessary changes so that we know how to apply the
same Q-network to all Atari games in Chapter 22.



21.2.1 The Same Double Deep Q-Network

In the local module ch21util, we first create a double deep Q-network that
has the same structure as the one we used in Chapter 20 when training the
double deep Q-learning agent for Breakout. The only difference is that we
change the value of the variable num_actions from 4 to 6 since the agent
must choose one of the six actions in each time step in Space Invaders.
Instead of hard-coding in the number of actions, we'll retrieve the number
of actions in Space Invaders from the action space by using the following
line of code:

In the next chapter, we'll define one single function to train all Atari games.
We'll use the above line of code to automatically retrieve the number of
actions in each game.

Next, we create the double deep Q-network in the local module ch21util.
The model structure and hyperparameter values are the same for all Atari
games, as we'll see in Chapter 22.

As in Breakout, the input to the double deep Q-network is four consecutive
preprocessed game windows. The number of neurons in the output layer is
equal to the number of actions that the agent can take in each time step.
Each value in the output layer represents the Q-value associated with one of
the actions. The trained agent will select the action with the highest Q-
value, as in any deep Q-learning model. To overcome the overestimation



bias in Q-learning, we create a training network and a target network (hence
the name double deep Q-learning), as follows:

We'll periodically update the weights on the target network by using the
weights from the training Q-network. To train the model, we use the Adam
optimizer and the Huber loss function as we did in Chapter 20:

We'll also use the same optimizer and loss function in Chapter 22 so we can
apply them to all Atari games.

21.2.2 The Same Training Process

The training process for Space Invaders is similar to that for Breakout. We'll
let the deep Q-learning agent choose different actions to interact with the
game environment. We'll adjust the model parameters in the deep Q-
network based on the actions and the feedback from the game environment,
in the form of rewards.

For that purpose, we create a replay buffer with a maximum length of
50,000 elements to train the deep Q-network. The replay buffer stores game
histories from the agent's interaction with the environment. When training
the model, we randomly select a batch of past experience to update the
model weights.

In the local module ch21util, we use the same hyperparameters that we used
in Chapter 20. We'll use these hyperparameters again for all Atari games in
Chapter 22:



The list running_rewards is created to record the total rewards from each of
the last 100 episodes of games. We use it to determine if the training is
complete. In Breakout, we stop training when the average score is at least
20. In Space Invaders, we'll do the same.

To train the model, we select 32 observations from the replay buffer to
update model parameters. The function gen_batch() defined in the local
module ch21util selects 32 observations and process them so that they are
ready for training. Further, we define a function update_Q() in the local
module to update model weights by using the output from the function
gen_batch(). Go to the file ch21util.py and you'll see the exact definition of
the functions. The two functions are the same as those we defined in
Chapter 20, and we'll use them again in Chapter 22.

In the local module ch21util, we also define a function play_episode() to
play a full episode of the Space Invaders game. We allow a maximum of
10,000 time steps in each episode. When selecting actions, the agent uses a
combination of exploitation and exploration. Specifically, in the first 50,000
frames, the agent takes random actions before using predictions from the
trained Q-network to select actions. Because the model uses four
consecutive game windows as inputs, model parameters are updated after
every four actions. To overcome the overestimation bias in Q-learning, we
update the weights in the target Q-network after every 10,000 frames by
using the weights from the training Q-network. The function play_episode()
is defined below and we'll use a similar version of the function in Chapter
22 when we generalize it to all Atari games:





The function collects gameplay experience data and store them in the replay
buffer memory we created earlier. In each time step, if the number of
observations in the replay buffer memory is greater than 32, we update the
model weights after every four actions (i.e., four gameplay screenshots).

To train the model, we define a function train_invaders() in the local
module ch21util. The function starts the training process until the average
score in the past 100 games exceeds 20. The definition of the function is as
follows:

We then import the function train_invaders() from the local module and
call the function to train the double deep Q-network agent in Space
Invaders, like so:

The model is considered trained if the average score exceeds 20. The above
code cell takes two to three days to run on a regular computer. The trained
model is saved as DoubleQ_Invaders.h5 on your computer. Alternatively,
you can download the trained model from the book's GitHub repository.

21.3 TEST THE TRAINED AGENT IN SPACE INVADERS



To test the trained model, you'll first play three episodes of the game so that
you can visualize the trained double deep-Q agent in action in Space
Invaders. Three episodes of the game with the Baselines game wrapper is
equivalent to one original episode in Space Invaders without the game
wrapper. The trained agent can potentially eliminate all space invaders on
the screen before losing all three lives.

We'll also test the average effectiveness of the trained model by playing 100
episodes of the game and print out the average score, without the graphical
rendering of game windows.

21.3.1 Testing One Full Original Episode

In the original Atari Space Invaders game, the agent has three lives in each
episode. To make sure that the reward is -1 every time the agent loses a life,
the Baselines game wrapper breaks it down to three small episodes.

Next, we define a function invaders_episode() in the local module ch21util.
The function plays the game for three consecutive episodes with the
Baselines game wrapper so we can test the trained agent in one full original
episode. Further, the function turns on the graphical rendering of game
windows so we can visualize the double deep Q-network in action.

The code cell below imports the function invaders_episode() from the local
module and calls the function to test the trained double deep Q-network
agent in Space Invaders for a full original episode, as follows:

When testing the trained model, we let the agent select actions randomly
with a 1% probability. With a 99% probability, the agent selects the action
with the highest Q-value predicted by the trained Q-network in each time
step. After you run the above code cell, you should see a separate game
window in which the agent eliminates most, if not all, invaders on the
screen before losing all three lives.

21.3.2 Average Performance of the Trained Model



We now play 100 games and turn off the graphical rendering of game
windows. We'll see what's the average score. To save space, we have
defined a function test_invaders() in the local module ch21util. Open the
file ch20util.py on your computer and take a look at the definition. The
function plays 100 episodes of the Space Invaders game with the Baselines
game wrapper using the trained model. The agent takes the action with the
highest Q-value in each time step with a 99% probability; it takes a random
action with a 1% probability. After each episode, the function prints out the
score and the episode number. At the end, the program calculates the
average score in the 100 episodes. Below, we import and call the function
test_invaders():

The output above shows that the average score is 13.37. Your output is
likely different since each game is different and there is randomness
involved in the action taken by the agent.

21.4 ANIMATE SPACE INVADERS

We'll highlight an episode of the Space Invaders game in which the trained
double deep Q-network agent manages to eliminate all invaders on the
screen.

21.4.1 Collect Space Invaders Episodes

To capture an episode in which the agent has eliminated all space invaders
on the screen, we'll collect three consecutive episodes of the game since one
original game episode is split into three smaller episodes with the Baselines



game wrapper. We put all game windows in a list invaders. We also use the
imageio library to animate each episode so that we can visualize the game
windows and determine if all space invaders are eliminated.

For that purpose, we have defined the function collect_invaders() in the
local module ch21util as follows:

We allow for a maximum of 10,000 time steps in each episode and we
collect a total of three consecutive episodes. Each individual episode is
converted to an animation and saved on your computer.

Next, we import the function collect_invaders() from the local module and
calls the function to collect a full original episode of the game:



Run the above code cell and then go to your local folder to see the
animations episode1.gif, episode2.gif, and episode3.gif. If there is no
episode in which all invaders are eliminated, rerun the above cell until you
collect at least one episode in which all space invaders are eliminated from
the screen.

21.4.2 Zero in on the Interesting Time Steps

Next, we'll zero in on the time steps of the game when the agent eliminates
all space invaders on the screen.

Since each game is different, I'll use the episode I collected as the example.
Download the file invaders1.zip from the book's GitHub repository and
unzip the file. Place the unzipped file invaders1.p in
/Desktop/mla/files/ch21/ on your computer.

First, let's create an animation of the three episodes, which corresponds to
one full episode of the Space Invaders game without the Baselines game
wrapper:

The file invaders1.p contains three lists. Each list contains the game
windows from an individual episode of Space Invaders. We first combine
the three lists into one single list fs. We then convert the NumPy arrays in
the list into an animation, invaders1.gif. To speed up the animation, we use
every fifth game window in the list fs.

To zero in on the time steps that the agent successfully eliminates all space
invaders on the screen, we use only game windows 800 to 1354. We
convert the highlighted part into a shorter animation highlight.gif as
follows:



Run the above code cell and open the animation on your computer. You can
see that the agent has successfully eliminated all space invaders on the
screen. The agent is also able to avoid attacks from the invaders and
manage to capture the moving red dot at the top of the screen to score more
points.

21.4.3 Subplots of Space Invaders

We also create a picture with subplots to visualize how the trained agent
eliminates all invaders, avoids being attacked, and earns high scores.

For that purpose, we select one picture from every 23 game windows in the
list highlights. The newly generated list plots contains 25 game windows:

Then we create a picture with 25 subplots in it, and the 25 game windows
form a five by five matrix in the picture, as follows:

Run the above code cell and open the picture invaders_plots.jpg on your
computer. You should see a picture similar to Figure 21.2. The 25 subplots
show that the agent has eliminated all invaders on the screen and earned
high scores. Specifically, the top left subplot shows that the score is 335 and
there are many aliens left on the screen. The top right subplot shows that the
number of aliens on the screen has decreased and the score is now 440. In
the five subplots in the second row, there is a red dot at the top of the
screen. The first subplot in the third row shows no red dot: the agent has
captured the red dot and earned high scores because of it.



Figure 21.2  Time steps in which the agent eliminates all aliens

The first subplot in the bottom row shows that there are three aliens left on
the screen. The number is reduced to two in the middle three subplots at the
bottom row. The bottom right subplot shows that all aliens have been
eliminated. The total score is 830 in the last subplot. The subplots in the
picture show that the trained agent is able to move to the left or right to
avoid being attacked by the bullets fired by aliens. It can also fire bullets to
eliminate aliens on the screen. It also has learned to capture the moving red



dot at the top of the screen to earn more points. The agent achieved all these
without knowing the rules of the game. Instead, the agent acquired all these
skills by interacting with the game environment and receiving feedback in
the form of rewards, and that's the miracle of deep reinforcement learning!

21.5 EXERCISES

21.1 Rerun code cells in Sections 21.1.1 and 21.1.2 to familiarize yourself
with the Space Invaders game with and without the Baselines game
wrapper.

21.2 Rerun the second code cell in Section 21.1.3 and open the newly
generated file invaders_windows.jpg on your computer to visualize
the preprocessed game windows. In each row, determine whether a
bullet is moving up or down in the game windows.

21.3 Rerun the second code cell in Section 21.4.1 until you capture an
episode in which the agent eliminates all aliens on the screen.
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At DeepMind we have pioneered the combination of these approaches -
deep reinforcement learning - to create the first artificial agents to achieve

human-level performance across many challenging domains.
– DeepMind, 2016

CHAPTER 20, you learned the basics of double deep Q-learning and
used it to play the Atari Breakout game. In Chapter 21, you tweaked
the same deep Q-network to play another Atari game, Space Invaders.

Along the way, you learned what changes you need to make in the deep Q-
network to apply it to a new Atari game. In this chapter, you'll learn to
generalize and scale up the same deep Q-network to play any Atari game.
To drive home the message, you'll define a function to apply to any Atari
game with the same deep Q-network, same hyperparameters, and same
training procedure. All you need is to put in the name of the Atari game as
the only argument in the function, and the trained network will play the
game at the super human level in any of the 49 Atari games.

Once the function is defined, you'll test it on two Atari games: Seaquest and
Beam Rider. You'll see that the defined function can train the two games
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successfully by just taking one piece of information, the name of the game,
as the input. Even though the agent does not know the rules of Seaquest or
Beam Rider, it manages to earn high scores, just by learning from repeated
interactions with the game environment and the rewards it receives as a
result. This shows that machine learning models are highly scalable in the
same domain. Better yet, as the opening quote of this chapter states [6], the
idea behind deep reinforcement learning can be (and has been) applied to
many other domains with great success. Indeed, DeepMind's AlphaGo
algorithm, which is also powered by deep reinforcement learning, beat the
World Go Champion Lee Sedol in March 2016. The news generated much
media attention and made deep reinforcement learning the most promising
field in ML.

At the end of this chapter, you'll also capture episodes of the Seaquest and
Beam Rider games in which the double deep Q-network agent earns high
scores. You'll create animations of the successful episodes to visualize the
trained agent in action. With these skills, you are ready to train and test any
Atari game by using deep reinforcement learning.

New Skills in This Chapter

Playing an Atari game with and without the Baselines game
wrapper
Creating a Q-network to train all Atari games
Defining A function to test any Atari game
Capturing a game episode with high scores in an Atari game

Before you start, open the Jupyter Notebook app in the virtual environment
MLA on your computer. After that, open a blank Jupyter notebook and save
it as ch22.ipynb in the directory /Desktop/mla/ on your computer. Next,
we'll create a subdirectory /files/ch22/ to store files for this chapter.

Start a new cell in ch22.ipynb and execute the following lines of code in it:



22.1 GET STARTED WITH THE SEAQUEST GAME

In this section, you'll learn how to play the Seaquest game, both with and
without the Baselines game wrapper.

22.1.1 The Seaquest Game in OpenAI Gym

You'll first learn to play the Seaquest game in OpenAI Gym without the
Baselines game wrapper.

To initiate the game, run these lines of code in the cell below:

You should see a Seaquest game frame in a separate window, in which a
submarine appears on the screen. The agent's score is at the top with a value
of 0 at the beginning. The oxygen level appears at the bottom of the screen.

You can check the action space and observation space of the game as
follows:



In Seaquest, there are 18 possible actions the agent can take. However, the
agent doesn't even need to understand the game rules to learn to play it at a
super-human level. All it needs is the right reward system. So we won't
discuss the meanings of above 18 actions in the output.

Each observation is a color picture that is 210 pixels tall and 160 pixels
wide, the same as that in any other Atari game. Run the following code cell
and the output displays an example of a game window:

Next, you'll print out the outputs from each time step in the game to
understand the reward system.



The agent starts with four lives in the game. When one life is lost, the
reward is still 0, not -1. Further, the variable done is still False after a life is
lost: the variable done turns True only after all four lives are lost.

Therefore, we need the help of the Baselines game wrapper to break an
original episode into four smaller episodes.

22.1.2 Seaquest with the Baselines Game Wrapper

With the Baselines game wrapper, the agent has one life in each episode.
That is, each time the agent loses a life, the episode ends and the variable
done turns True. This makes reconfiguring the reward system easy: each
time the agent loses a life, we set the Q-value to -1. This is crucial for the



success of the training process: the agent is punished for losing a life.
Therefore, the agent learns to avoid taking actions that lead to a loss of life.
The trained agent is, therefore, able to live for many time steps and earn
high scores.

Run the code in the cell below so you can see the reward structure with the
Baselines game wrapper:

As you can see, when the number of lives changes from 4 to 3, the variable
done becomes True and the episode ends. Note that the reward is still 0, not
-1, when a life is lost. But we can code it as -1 by using this line of code
later:



Run the following to close the game window:

22.1.3 Preprocessed Seaquest Game Windows

The Baselines game wrapper preprocesses the game windows for you. In
each time step, it returns four consecutive preprocessed game windows, all
with a size of 84 by 84 pixels.

Let's visualize the preprocessed game windows with the Baselines game
wrapper. Run the code in the cell below:

You should see four slightly different game windows as the output. In
particular, the first three windows should have three spare submarines at the
top of the screen, meaning that the agent has three extra lives in reserve
besides the life the agent currently has. In contrast, the fourth game window
has only two spare submarines at the top of the screen. This means that in
the very last time step, the agent has lost a life. The agent can infer
movements of objects from the four preprocessed game windows during the
training process.

22.1.4 Subplots of Seaquest Game Windows

We define a seaquest_pixels() function in the local module ch22util. The
function selects three trajectories of the preprocessed game windows and
creates a picture with 12 subplots in it. Each row represents a different
trajectory and each row shows the preprocessed images of four consecutive
game windows in the trajectory. Download the file ch22util.py from the
book's GitHub repository and place it in the folder /Desktop/mla/utils/ on
your computer, and take a look at the seaquest_pixels() function in the file.



The code cell below imports the seaquest_pixels() function from the local
module and calls it to generate the picture with 12 subplots, like so:

Run the above code cell and open the file seaquest_pixels.jpg on your
computer, you should see a picture similar to Figure 22.1. Each row has
four consecutive preprocessed Seaquest game windows. There are three
spare submarines at the top of the screen in the first three images of the first
row. There are only two spare submarines in the fourth image of the first
row. This indicates that the agent just lost a life in the last time step. The
middle and bottom rows show the same pattern: the fourth image in each
row has one less life compared to the first three images in the row.



Figure 22.1  Preprocessed Seaquest game windows

22.2 GET STARTED WITH BEAM RIDER

In this section, you'll learn how to play another Atari game, Beam Rider,
both with and without the Baselines game wrapper.

22.2.1 Beam Rider without the Game Wrapper

You'll first learn to play the Beam Rider game in OpenAI Gym without the
Baselines game wrapper.

The code cell below will initiate the game:

You should see a Beam Rider game frame in a separate window. The
following code cell checks the action space and observation space of the
game:

There are nine possible actions the agent can take. However, the agent
doesn't even need to understand the game rules to learn to play it perfectly.



All we need is the right reward system. So I won't discuss the meanings of
the nine possible actions.

Each observation is a color picture of size 210 by 160 pixels, the same as
that in other Atari games. The following cell displays an example of a game
window:

Next, you'll print out the outputs of the game to understand the reward
structure:



The agent has three lives in this game. When one life is lost, the reward is
still 0, not -1. Further, the variable done is still False after a life is lost. The
variable done turns True only after all three lives are lost.

In the next subsection, we'll use the Baselines game wrapper to break each
original episode into three smaller episodes.

22.2.2 Beam Rider with the Baselines Game Wrapper

With the Baselines game wrapper, the agent has one life in each episode.
That is, each time the agent loses a life, the episode ends and the variable
done turns True. Below, we look at the outputs from the game with the
Baselines game wrapper:

The above output shows that when the number of lives changes from 3 to 2
in the very last time step, the variable done becomes True and the episode



ends. However, the reward is still 0, not -1, when a life is lost. We'll code
the reward as -1 by using this line of code later:

Run the following code cell to close the game window:

22.2.3 Preprocessed Beam Rider Game Windows

As in the Atari games we have seen before, the Baselines game wrapper
preprocesses the game windows for us. The game wrapper returns four
consecutive preprocessed game windows, each with a size of 84 by 84
pixels.

Let's visualize the preprocessed images from the Baseline game wrapper.
Run the code in the cell below:

You should see the four consecutive preprocessed images of Beam Ridder
game windows. The four images look slightly different from each other.

22.2.4 Subplots of Beam Rider Game Windows

We define a beamrider_pixels() function in the local module ch22util. The
function selects three trajectories of the preprocessed game windows and
creates a picture with 12 subplots in it. Each row represents a different
trajectory and the four images in each row show the preprocessed images of
four consecutive game windows. Take a look at the definition of the
function in the file ch22util.py you just downloaded.

The code cell below imports the beamrider_pixels() function from the local
module and calls it to generate the picture with 12 subplots, like so:



If you run the above code cell and open the file beamrider_pixels.jpg on
your computer, you should see a picture similar to Figure 22.2. Each row
has four consecutive preprocessed game windows and they are different
from each other slightly. At the top of each subplot, you can see the agent's
score as well as the sector that the agent is currently in. The number in
green at the top left corner of the screen indicates how many more alien
spaceships the agent needs to destroy before upgrading to the next sector.
The agent needs to destroy a total of 15 spaceships in each sector to enter
the next sector. We'll feed four preprocessed images in each time step into
the deep Q-network during training, and the agent can infer movements of
objects by comparing their positions in the four consecutive game windows.



Figure 22.2  Preprocessed Beam Rider game windows

22.3 SCALING UP THE DOUBLE DEEP Q-NETWORK

Next, we'll scale up the double deep Q-network to train any Atari game.
Specifically, we'll define a function to train all games, and the only input
needed is the name of the game.

22.3.1 Differences among Atari Games

Our goal is to create a function to train a double deep Q-network agent in
any Atari game, with the same network architecture, same hyperparameter
values, and same training procedure. To that end, we first need to
understand the differences among various Atari games.

Obviously, the name of the game is different. But there is a pattern. For the
four games we have seen so far, Breakout, Space Invaders, Seaquest, and
Beam Rider, their environment names are the following:

BreakoutNoFrameskip-v4
SpaceInvadersNoFrameskip-v4
SeaquestNoFrameskip-v4
BeamRiderNoFrameskip-v4

Therefore, we can use this line of code

in the function to scale up the game environment.

The number of actions is different in different games. The numbers of
actions in the above four games are 4, 6, 18, and 9, respectively. However,
we can use the code:

in the function to retrieve the number of actions from each game
automatically.

22.3.2 A Generic Double Deep Q-Network



First, we create a double deep Q-network that can be applied to all Atari
games in the local module ch22util. The function create_model() creates a
deep Q-network. Since the number of actions the agent can take varies in
different games, we'll use the variable num_actions as an argument in the
function create_model(), like this:

Later, we'll retrieve the number of actions in each game based on the name
of the game. The model structure is the same as the one we used in
Chapters 20 and 21 except the number of neurons in the output layer. The
values in the output layer represent the Q-values associated with different
actions the agent can take. Once the model is trained, the double deep Q-
network agent selects the action with the highest Q-value as the best action
in each time step.

To train the model, we'll use the same optimizer and loss function, which
are the same as those we used in Chapters 20 and 21:

22.3.3 The Training Process for any Atari Game

To train the deep Q-learning agent in any Atari game, we'll use the same
training process that we used in Space Invaders and Breakout. Specifically,
we'll let the agent choose different actions to interact with the game



environment. We'll adjust the weights in the deep Q-network based on the
actions taken by the agent as well as the resulting rewards.

As in the paper published in the journal Nature by the DeepMind team,
we'll use the same hyperparameters to train all Atari games. For example,
we use the same discount rate of 0.99 and batch size of 32, as follows:

Similar to what we did in Chapters 20 and 21, we create a replay buffer
with a maximum length of 50,000 elements to store game histories from the
agent's interaction with the environment. When training the model, we
randomly select a batch of past experience to update the model weights.

We create the list running_rewards to determine when to stop training the
model. The list stores the total rewards from each of the last 100 episodes of
games. When the average score exceeds 20 in any Atari game, we consider
the model trained and stop the training process. We select 32 observations
from the replay buffer memory by using the function gen_batch() defined in
the local module ch22util. We then use the function update_Q() in the local
module to update model weights. Since the number of actions varies in
different Atari games, we'll use the variable num_actions as the input to the
function update_Q(), as follows:



Further, since different functions defined in the local module need access to
the double deep Q-networks, we make the Q-networks dnn and target_dnn
global objects by using the keyword global in the function above.

To let the agent interact with the game environment, we define a function
play_episode() to play a full episode of the game. As we did in Chapters 20
and 21, we allow a maximum of 10,000 time steps in each episode. The
agent uses a combination of exploitation and exploration when selecting
actions. Specifically, we define the function play_episode() in the local
module ch22util as follows:





To generalize the function to all Atari games, we use the name of the game,
name, as an argument in the function. The function play_episode() collects
gameplay experience data and stores them in the replay buffer memory. In
each time step, we call update_Q() to update the model weights. The
training stops if the running reward exceeds 20. After every 10,000 frames,
we update the weights in the target network by extracting the weights from
the training network. We periodically save the trained model in the local
folder. The name of the trained model is the same as the name of the Atari
game. For example, when we train the Seaquest game, the trained model is
saved as Seaquest.h5; when we train the Beam Rider game, the trained
model is saved as BeamRider.h5.

Finally, we define a function train_atari() in the local module to train an
Atari game. The function starts the training process until the average score
in the past 100 games exceeds 20. Here is the definition of the function:



The function train_atari() takes the name of the game, name, as the only
argument. It creates a game environment based on the argument name and
extracts the number of actions that the agent can take, num_actions,
accordingly. The function then initiates a training Q-network and a target Q-
network for the Atari game. The function starts an infinite while loop to
train the model, until the agent earns an average score of above 20 in the
past 100 games.

We are now ready to use this function to train any Atari game: all we need
to do is to import the function train_atari() from the local model and put
the name of the game as the only argument in the function.

22.4 TRY IT ON SEAQUEST

Next, you'll apply the scaled up double deep Q-network on the Seaquest
game. You'll use the function train_atari() we defined in the last section to
train the double deep Q-network agent. After that, you'll test how effective
the trained model is.

22.4.1 Train the Model in Seaquest

The following line of code will train the agent in the Seaquest game:

We import the function train_atari() from the local module ch22util and
call the function. We put the name of the game, Seaquest, as the argument
in the function. The training takes a couple of days. But you can use a pre-
trained model that I put on the book's GitHub repository, saved as
Seaquest.h5.

In the original Atari Seaquest game without the Baselines game wrapper,
the agent has four lives in each episode. The Baselines game wrapper
breaks it down to four smaller episodes: in each episode, the agent has one
life.



Here you'll play the game for four consecutive episodes with the Baselines
game wrapper. This is equivalent to one full original episode without the
game wrapper. You'll turn on the graphical rendering of game windows so
you can see the trained double deep Q-network agent in action.

As you can see, the trained model is able to have high scores in some
episodes. The output above shows that the agent has earned 3, 30, 29, and 0
points in the four episodes, respectively.

22.4.2 Test the Average Score in Seaquest

We define a function test_atari() in the local model ch22util to test any
Atari game by using a trained model. The function takes the name of the
game as the only argument. It plays 100 episodes of the game without the
graphical rendering of game windows. After each episode, the function



prints out the episode number and the score. After 100 episodes, the
function prints out the average score. The function test_atari() is defined as
follows:

To test the trained model in Seaquest, we import the function from the local
module and call it to test 100 episodes of the game, like so:



The output above shows the agent's score in each episode. Your output is
likely to be different. The average score in most cases is around 20.

22.4.3 Animate a Successful Episode

We'll highlight episodes where the agent performs well. To that end, we'll
first record 20 episodes of the game, and this is equivalent to five full
original Atari Seaquest games.

The code cell below accomplishes that:



You'll see 20 short animations in your local folder. If you display them as
extra large icons on your computer, you'll see the starting score in each
episode from the thumbnail picture of the animation. You can calculate the
points earned in most episodes by looking at the starting scores of this
episode and the next episode.

Next, we'll select a successful episode to further examine it. In my case, the
starting score of episode 2 is 600, and the starting score of episode 3 is
1200. Therefore, I can infer that the agent has earned 1200-600=600 points
in episode 2. I will zero in on episode 2, and the episode number for you
may be different.

How to select successful episodes

First, make sure you view the gif files as extra large icons in the local
folder on your computer. You'll see the starting score in each episode
from the thumbnail picture of the animation. You can calculate the points



earned in most episodes by looking at the starting scores of this episode
and the next episode. If the next episode has a much higher score than
the current episode, the agent has earned high scores in the current
episode.

Go to the book's GitHub repository and download the file Seaquest2.zip.
Unzip the file and save the unzipped file Seaquest2.p in the folder
/Desktop/mla/files/ch22/ on your computer. Then convert the game
windows in the episode into an animation as follows:

Run the above code cell and open the animation Seaquest2.gif on your
computer. You can see that the agent has successfully warded off attacks
from both left and right. At the beginning of the episode, the score on the
top of the screen is 600. At the end of the episode, the score increases to
1200, indicating the agent has scored a total of 600 points in this episode.

We can also create a picture with 25 subplots to show the effectiveness of
the trained double deep Q-network agent in Seaquest. For that purpose, we
first select 24 game windows throughout the episode. We then add in the
last game window and put the 25 images in a list Seaquest_plots, like this:

We then create a picture with 25 subplots in it, and the 25 game windows
form a five by five matrix in the picture, as follows:



Run the above code cell and open the picture Seaquest_plots.jpg on your
computer. You should see a picture similar to Figure 22.3. The 25 subplots
show that the agent has warded off attacks from the left and the right and
earned high scores. For example, in the third subplot in the first row, the
agent is trying to ward off attacks from the left; in the fourth subplot in the
first row, the agent is trying to ward off attacks from the right. The last
subplot in the first row shows that the agent's score has increased to 660. In
the second row, the agent's score increased from 660 to 780. After that, the
score keeps on increasing from one subplot to the next. The very last
subplot in the picture shows that the agent's score has increased to 1200.



Figure 22.3  An episode of the Seaquest game

22.5 TRY IT ON BEAM RIDER

Next, you'll apply the scaled up double deep Q-network on the Beam Rider
game. You'll use the function train_atari() we defined earlier to train the



agent. After that, you'll test how effective the trained model is.

22.5.1 Train the Model in Beam Rider

We have already imported the train_atari() from the local module in the last
section. Now we can call the function again and put “BeamRider” as the
argument in the function, like so:

The training takes a couple of days. Alternatively, you can download a pre-
trained model, BeamRider.h5, that I placed on the book's GitHub repository.

In the original Atari Beam Rider game without the Baselines game wrapper,
the agent has three lives in each episode. The Baselines game wrapper
breaks it down to three smaller episodes. Here you'll play three consecutive
episodes of the game with the Baselines game wrapper. This is equivalent to
one full original episode without the game wrapper. You'll turn on the
graphical rendering of game windows so you can see the trained double
deep Q-network agent in action.



The trained agent has scored 36, 15, and 8 points in the three episodes,
respectively.

22.5.2 The Average Score in Beam Rider

We have defined a test_atari() function in the local module in the last
section to test the average score in any Atari game. We'll use the same
function to test the performance of the trained double deep Q-network agent
in Beam Rider. Since we have already imported the test_atari() from the
local module in the last section, we can just call the function again and put
“BeamRider” as the argument in the function, like so:

The above output shows the agent's score in each of the 100 episodes, as
well as the average score.

22.5.3 A Successful Episode in Beam Rider

We'll highlight an episode in which the agent performs well. We'll first
record 15 episodes, and this is equivalent to five full original Atari Beam
Rider games.

The code cell below accomplishes that:



You'll see 15 short animations in your local folder. Make sure you view
them as extra large icons on your computer. You can see the score at the
beginning of the episode from the thumbnail picture of the video. If the next
episode has a much higher score than the current episode, the current
episode is successful.

For example, I will zero in on episode 4 because the agent earned a high
score. Go to the book's GitHub repository and download the file
BeamRider4.zip. Unzip the file and save the unzipped file BeamRider4.p in
the folder /Desktop/mla/files/ch22/ on your computer. Then convert the
game windows in the episode into an animation as follows:

Run the above code cell and open the animation BeamRider4.gif on your
computer. You can see that the agent has a score of 996 at the beginning and
3028 at the end. The agent has scored 3028-996=2032 points in the episode.

We can also create a picture with 25 subplots to show the effectiveness of
the trained agent in Beam Rider. We first select 24 game windows



throughout the episode. We then add in the last game window and put the
25 images in a list BeamRider_plots, like this:

We then create a picture with 25 subplots in it, and the 25 game windows
form a five by five matrix in the picture, as follows:



Figure 22.4  An episode of the Beam Rider game

Run the above code cell and open the picture BeamRider_plots.jpg on your
computer. You should see a picture similar to Figure 22.4. The 25 subplots
show that the agent has destroyed enemy spaceships and earned high
scores. The top left subplot shows that the agent has a score of 996. The



agent is currently in sector 2. The number 8 in green at the top left of the
screen indicates that the agent needs to destroy eight more alien spaceships
before the agent can enter into the next sector. In the first subplot in the
second row, the number of spaceships the agent needs to destroy is 1, and
the score has increased to 1332. The fourth subplot in the second row shows
that the agent has entered sector 3. The last subplot at the bottom right
corner shows that the agent has a score of 3028 and is currently in sector 4.

22.6 EXERCISES

22.1 Rerun code cells in Sections 22.1.1 and 22.1.2 to familiarize yourself
with the Seaquest game with and without the Baselines game wrapper.

22.2 Rerun the code cell in Section 22.1.4 and open the newly generated
file seaquest_pixels.jpg on your computer to visualize the
preprocessed game windows. In each subplot, determine how many
spare submarines the agent has.

22.3 Rerun code cells in Sections 22.2.1 and 22.2.2 to familiarize yourself
with the Beam Rider game with and without the Baselines game
wrapper.

22.4 Rerun the code cell in Section 22.2.4 and open the newly generated
file beamrider_pixels.jpg on your computer to visualize the
preprocessed game windows. In each subplot, determine the agent's
score, which sector the agent is in, and how many more alien
spaceships the agent needs to destroy for the agent to enter the next
sector.

22.5 Rerun the first code cell in Section 22.4.3. Go to the local folder to see
the 20 short animations and select the episode in which the agent has
scored the most points in Seaquest.

22.6 Rerun the first code cell in Section 22.5.3. Go to the local folder to see
the 15 short animations and select the episode in which the agent has
scored the most points in Beam Rider.
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