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1 Basic Concepts

1.1 INTRODUCTION
In the United States, the use of electrical energy increased quickly after 1882, and power plants
mushroomed across the entire country. The main reasons for such a rapid increase in demand for
electrical energy include the following: Electrical energy is, in many ways, the most convenient
energy form. It can be sent by power lines over great distances to the consumption point and can
be easily transformed into mechanical work, radiant energy, heat, light, or other forms of energy.
Electrical energy cannot be stored effectively, but its convenience has contributed to its growing use.
Further, by generating electrical energy in very large power plants, the benefits of economy of scale
can be achieved; that is, the unit cost of electrical energy goes down with increasing plant size. In
general, the use of electrical energy may include various kinds of conversion equipment in addition
to transmission lines and control devices.

An electrical power or energy1 system is very large and complicated. However, it can be repre-
sented basically by five main components. The energy source may be coal, natural gas, or oil burned
in a furnace to heat water and generate steam in a boiler; it may be water in a dam; it may be oil
or gas burned in a combustion turbine; or it may be fissionable material, which in a nuclear reactor
will heat water to produce steam. The generation system converts the energy source into electrical
energy. The transmission system transports this bulk electrical energy from the generation system
to principal load centers where it is distributed through (usually extra) high-voltage lines. The dis-
tribution system distributes such energy to consumers by using lower-voltage networks. Finally, the
last component, load, utilizes the electrical energy by converting it to a required form for lights,
motors, heaters, or other equipment.

Figure 1.1 shows a detailed view of an electrical power system that delivers energy from
the source to the load connected to it. Note that the first transformer in the system (the one
next to the power plant) is called a step-up transformer, and the second transformer (the one at
the end of the transmission line) is called a step-down transformer.

According to the energy conservation principle of thermodynamics, energy is never used; it is
simply converted to different forms. Presently available energy conversion methods can be cate-
gorized into four different groups. The first group includes the conventional methods that generate
the vast majority of today’s electrical energy. They convert thermal energy from fossil fuels or nu-
clear fission energy to mechanical energy via thermal energy and then to electrical energy, or they
convert hydro energy to electrical energy. The second group contains methods that are technically
possible but have low-energy conversion efficiency, such as the internal combustion engine and the
gas turbine. The third group covers the methods capable of supplying only small amounts of en-
ergy, for example, photovoltaic solar cells, fuel cells, and batteries. The last group includes methods
that are not technologically feasible but appear to have great potential, for example, fusion reactors,
magnetohydrodynamic (MHD) generators, and electrogas-dynamic generators.

1The term energy is being increasingly used in the electrical power industry to replace the conventional term power, depend-
ing on the context. Here, the terms are used interchangeably. However, note that strictly speaking and in engineering and
physics contexts, power is the rate of change (consumption or generation) of energy.
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2 Electrical Machines and Their Applications

Figure 1.1 A detailed view of an electric power system: (a) general fuel supply system and power plant; and
(b) transmission and distribution systems.

1.2 DISTRIBUTION SYSTEM
The part of the electric utility system that is between the distribution substation and the distribution
transformers is called the primary system. It is made of circuits known as primary feeders or primary
distribution feeders.

Figure 1.2 shows a one-line diagram of a typical primary distribution feeder. A feeder includes
a “main” or main feeder, which usually is a three-phase, four-wire circuit, and branches or later-
als, which usually are single-phase or three-phase circuits tapped off the main. Sublaterals may be
tapped off the laterals as necessary. In general, laterals and sublaterals located in residential and
rural areas are single phase and consist of one phase conductor and the neutral. The majority of the
distribution transformers are single phase and connected between the phase and the neutral through
fuse cutouts.
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Figure 1.2 One-line diagram of typical primary distribution feeders.

A given feeder is sectionalized by reclosing devices at various locations that are chosen to re-
move as little as possible of the faulted circuit to hinder service to as few consumers as possible. This
can be achieved through the coordination of the operation of all the fuses and reclosers. Due to the
growing emphasis on service reliability, the protection schemes are becoming more sophisticated
and complex, ranging from manually operated devices to remotely controlled automatic devices
based on supervisory-controlled or computer-controlled systems. The changing scenery of the dis-
tribution system, with more distributed generation (DG), is also changing how protection is done in
such networks.

Typically, a residential area served by a feeder, as illustrated in Figure 1.2, serves approximately
1000 homes per square mile. The feeder area is 1–4 square miles, depending on the load density of
the area. Usually, there are 15 single-phase laterals per feeder. Also, typically 150–500 short-circuit
MVA is available at the substation bus.

The congested and heavy-load locations in metropolitan areas are served by underground primary
feeders. They are usually radial three-conductor cables. The improved appearance and less-frequent
trouble expectancy are among the advantages of this method. However, it is more expensive, and
the repair time is longer than the overhead systems.
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The voltage conditions on distribution systems can be improved by using shunt capacitors which
are connected as near the loads as possible to derive greater benefit. The use of shunt capacitors
also improves the power factor involved, which in turn reduces the voltage drops and currents, and
therefore losses, in the portions of a distribution system between the capacitors and the bulk power
buses. The capacitor ratings should be selected carefully to prevent the occurrence of excessive
overvoltages at times of light loads because of the voltage rise produced by capacitor currents.

The overvoltages on distribution systems can also be improved using series capacitors, but the
application of series capacitors does not reduce the currents and therefore losses in the system.

1.3 IMPACT OF DISTRIBUTED STORAGE AND GENERATION
Following the oil embargo and the rising price of oil, the efforts toward the development of al-
ternative energy sources (preferably renewable resources) for generating electric energy have been
increased. Furthermore, opportunities for small power producers and cogenerators have been en-
hanced by legislative initiatives, for example, the Public Utility Regulatory Policies Act (PURPA) of
1978, and by the subsequent interpretations by the Federal Energy Regulatory Commission (FERC)
in 1980.

The following definitions of the criteria affecting facilities under PURPA are given in Section
201 of PURPA:

• A small power production facility is one which produces electric energy solely by the use of
primary fuels of biomass, waste, renewable resources, or any combination thereof. Further-
more, the capacity of such production sources together with other facilities located at the same
site must not exceed 80 MW.

• A cogeneration facility is one which produces electricity and steam or forms of useful energy
for industrial, commercial, heating, or cooling applications.

• A qualified facility is any small power production or cogeneration facility that conforms to the
previous definitions and is owned by an entity not primarily engaged in the generation or sale
of electric power.

In general, these generators are small (typically ranging in size from 100 kW to 10 MW and
connectable to either side of the meter) and can be economically connected only to the distribution
system. They are defined as dispersed (or distributed)-storage-and-generation (DSG) devices. This
term, in recent years, has been replaced by distributed energy resource (DER). If properly planned
and operated, DER may provide benefits to distribution systems by reducing capacity requirements,
improving reliability, and reducing losses. Examples of DER technologies include hydroelectric,
diesel generators, wind electric systems, solar electric systems, batteries, storage space and water
heaters, storage air conditioners, hydroelectric pumped storage, photovoltaics, and fuel cells.

As power distribution systems become increasingly complex due to the fact that they have more
DER systems, as shown in Figure 1.3, distribution automation will be indispensable for maintaining
a reliable electric supply and cutting operating costs.

In distribution systems with DER, the feeder or feeders will no longer be radial. Consequently,
a more complex set of operating conditions will prevail for both steady state and fault conditions.
If the distributed generator capacity is large relative to the feeder supply capacity, then it might
be considered as a backup for normal supply. This can improve service security in instances of
loss of supply. In a given fault, a more complex distribution of higher-magnitude fault currents will
occur due to multiple supply sources. Such systems require more sophisticated detection and isola-
tion techniques than those adequate for radial feeders. Therefore, distribution automation, with its
multiple-point monitoring and control capability, is well suited to the complexities of a distribution
system with DER.
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Figure 1.3 In the future, small, dispersed-energy-storage-and-generation (DSG or DER) units attached to a
customer’s home, a power-distribution feeder, or a substation would require an increasing amount of automa-
tion and control.

1.4 BRIEF OVERVIEW OF BASIC ELECTRICAL MACHINES
In general, an electrical machine can be defined as an apparatus that can be used either to convert
electrical energy into mechanical energy or to convert mechanical energy into electrical energy. If
such a machine is used to convert electrical energy into mechanical energy, it is called a motor; if it
is used to convert mechanical energy into electrical energy, it is called a generator.

Any given machine can convert energy in either direction and can therefore be used either as
a motor or as a generator. Such conversion is facilitated through the action of a magnetic field. A
generator has a rotary motion provided by a prime mover that supplies mechanical energy input. The
relative motion between the conductors and the magnetic field of a generator generates an electrical
energy output.

On the other hand, a motor has electrical energy supplied to its windings and a magnetic field
that generates an electromagnetic interaction to produce mechanical energy or torque. Figure 1.4
shows an installed 1300 MW cross-compound turbine generator.

In general, each machine has a nonmoving (i.e., stationary) part and a moving (i.e., nonstationary)
part. Depending on whether such a machine functions as a generator or a motor, the moving part
that is attached to a mechanical system receives mechanical input or provides mechanical output.
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Figure 1.4 An installed 1300 MW cross-compound turbine generator.

The motion of such a moving part can be linear (e.g., in linear motors), vibrating or reciprocating
(e.g., in electrical razors), or rotating.

In this book, only the rotating electrical machines are reviewed. They include (1) polyphase
synchronous machines, (2) polyphase induction (also called asynchronous) machines, and (3) dc
machines. However, there are other rotating and linear machines that are not included here. They
operate basically on the same principles. Examples include

• Reluctance machines, which are synchronous machines without the dc excitation are used in
timers, electrical clocks, and recording applications.

• Hysteresis machines, which are similar to reluctance machines with a solid cylinder rotor
made up of a permanent magnet material that needs only one electrical input. They are used
in phonograph turntables and in other constant-speed applications, such as electrical clocks.

• Rotating rectifiers, which have the same performance as regular synchronous machines except
that field excitation is provided by an ac auxiliary generator and by rectifiers that are stationed
on the rotor.

• Permanent magnet machines, which are ordinary synchronous machines with the field excita-
tion provided by a permanent magnet. They have a very high efficiency since there are no field
losses.

• Becky Robinson and Nadyne–Rice machines, which are brushless synchronous machines that
operate based on rotor magnetic structure with a changing reluctance. They are mainly used
in aerospace applications.

• Lundell machines, which are also brushless synchronous machines (but need slip rings to
supply a dc field) that operate based on rotor magnetic structures with a changing reluctance.
They are mainly used in automotive alternators.

• Inductor and flux-switch machines, which are inductor flux-switch configurations based on a
changeable-reluctance principle similar to the reluctance machines, and a function of rotor
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Table 1.1
Terminology Used to Describe the Windings of Basic Electrical Machines and Transformers

Apparatus Name of Location of Function of Type of Current in
Winding Winding Winding Winding

Synchronous Armature Stator Input/output ac
Synchronous Field Rotor Magnetizing dc
Induction machine Stator Stator Input ac
dc machine Armature Rotor Input/output ac in winding

Field Stator Magnetizing dc at brushes
Transformer Primary – Input ac

Secondary – Output ac

position accomplished by the rotor design. They can be used as brushless synchronous motors
and generators in aerospace and traction applications.

In addition to basic rotating electrical machines, transformers are also discussed in this book. Even
though a transformer involves the interchange of ac electrical energy from one voltage level to an-
other, some of its principles of operation constitute the foundation for the study of electromechanical
energy conversion. Thus, many of the relevant equations and conclusions of the transformer theory
are equally applicable to electromechanical energy conversion theory.

Rotating electrical machines have an outside (i.e., stationary) part that is called the stator and an
inner (i.e., rotating) part that is called the rotor. As shown in Figure 2.1a, the rotor is centered within
the stator, and the space that is located between the outside of the rotor and the inside of the stator
is called the air gap. The figure shows that the rotor is supported by a steel rod that is called a shaft.

In turn, the shaft is supported by bearings so that the rotor can turn freely. Both the rotor and
the stator of a rotating machine, as well as a transformer, have windings. The terminology that is
commonly used to describe the windings of basic electrical machines and transformers is given in
Table 1.1.

It is important to point out that in the study of any electromechanical apparatus, there is a need to
model its electric circuit, and one should be very familiar with the ac circuit analysis applicable to
power circuits. Each electric circuit concept is analogous to a corresponding magnetic circuit con-
cept.1 Thus, to understand electrical machines, one needs a good knowledge of the concepts of both
magnetic circuits and electrical power circuits. Therefore, a brief review of phasor representation
is included in Appendix A. Also, the concepts of real and reactive powers in single-phase ac cir-
cuits are briefly reviewed in the following section. In Chapters 2 and 3, the concepts associated with
three-phase circuits and magnetic circuits are reviewed. It is hoped that such reviews are sufficient
to provide a common base, in terms of notation and references, in order to be able to follow the
subsequent chapters.

1.5 REAL AND REACTIVE POWERS IN SINGLE-PHASE AC CIRCUITS
If the sinusoidal voltage across the terminals of a single-phase ac circuit is used as a reference and
designated by the phasor V= |V|∠0◦ and the phasor of the alternating current in the circuit is |I|∠θ ,

1In Table 1.1, “ac current” is grammatically a redundant statement. Nevertheless, ac and dc, originally used as abbreviations,
are now commonly used as adjectives in engineering vocabulary.
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Figure 1.5 For a lagging current: (a) current and voltage phasor diagram and (b) power triangle.

then the real power (i.e., average or active power) can be expressed as

P = |V||I|cosθ (1.1)

or
P =VrmsIrms cosθ (1.2)

and
Q = |V||I|sinθ (1.3)

or
Q =VrmsIrms sinθ (1.4)

Note that these equations are valid only when both the voltage and current are purely sinusoidal
(with no harmonics) and the circuit is in the steady state.

Since sinθ is dimensionless, Q has the dimension of a volt-ampere. However, to help distinguish
between real and reactive powers, Q is measured in var, which stands for volt-ampere reactive. The
relation of a voltage with respect to a lagging current can be observed in the phasor diagram shown
in Figure 1.5a. The term power factor is used for the factor cosθ , and sometimes, although very
rarely, the term reactive factor is used for the factor sinθ .

Apparent power S is the product of the phasor voltage magnitude and phasor current magnitude.
Therefore, it can be expressed as

S = |V||I| (1.5a)

or
S =V I (1.5b)

The relationship between the real, reactive, and apparent powers can be represented by a triangle,
known as the power triangle, as shown in Figure 1.5b. Figure 1.6 illustrates the evolution of the
power triangle. Notice that the angle θ increases with Q. Of course, when θ is greater the power
factor, that is, PF = cosθ is smaller. The power factor is defined as

PF = cosθ =
R
Z
=

P
S

(1.6)

Figure 1.6 Evolution of the power triangle: (a) impedance triangle, (b) voltage triangle, and (c) power trian-
gle.
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The power factor angle θ is a function of the power factor PF in a circuit so that

θ = arccos(PF) = cos−1 (PF) (1.7)

If the phasor voltage and phasor current are of a purely resistive network, the real power (i.e., average
or active power) can be expressed as

P =V I cosθ =
V 2

R
= I2R (1.8)

since cosθ = 1.
Similarly, the reactive power for a purely capacitive network can be expressed as

Q =V I sinθ =
V 2

X
= I2X (1.9)

since sinθ = 1.
In power system computations, it has been customary to define a complex power for single phase1

as
Sφ = Vφ I∗φ = Pφ + jQφ (1.10)

where

Sφ is the complex (or phasor) power for single phase

I∗φ is the conjugate of current phasor Iφ per phase

When the resultant Sφ single-phase complex (or phasor) power is in rectangular form, then the
related real and reactive power can be expressed as

Pφ = Re(VI∗φ ) =Vφ Iφ cosθ (1.11)

Qφ = Im(VI∗φ ) =Vφ Iφ sinθ (1.12)

Assume that a single-phase load is connected to a bus and being fed by current and power by the
bus and that bus voltage is V = V∠0◦ and the load current is I = I∠−θ or, in other words, the load
has a lagging power factor and as a result of it, it can also be said that it has a lagging current. Also
assume that in the lagging case, the current lags its voltage by the power factor angle of θ and in the
leading case, the current leads its voltage by the power factor angle of θ , as given in Table 1.2.

Notice that the angle θ depends on the impedance, or its components (specifically its inductance
or capacitance values).

Three-phase complex power S3φ can be found from

S3φ =
√

3VLI∗L = P3φ + jQ3φ (1.13)

where

VL is the line-to-line (or line) voltage

I∗L is the line current

1The algebraic sign of reactive power has been a subject of debate for many years. Finally, the convention defining S as
VI∗ was adapted by the American Institute of Electrical Engineers, approved by the American Standards Association, and
published in Electrical Engineering. Therefore, to obtain the proper sign for Q, it is necessary to calculate S as VI∗, which
would reverse the sign of Q.
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Table 1.2
Relationship between Lagging and Leading Currents and Loads in Single Phase

Lagging Leading

Current I = I∠−θ = I(cosθ − j sinθ) I = I∠θ = I(cosθ + j sinθ)
where I = V∠0◦

Z∠θ = V
Z ∠−θ = I∠−θ where I = V∠0◦

Z∠−θ = V
Z ∠+θ = I∠θ

Load SL = SL(cosθ + j sinθ) = PL + jQL SL = SL(cosθ − j sinθ) = PL − jQL
since S = P+ jQ = VI∗ since S = P− jQ = VI∗

where V =V∠0◦ where V =V∠0◦

and I = I∠−θ or I∗ = I∠θ and I = I∠θ or I∗ = I∠−θ

Note that IL =
√

3Iφ or IL/
√

3 for the balanced systems.
The three-phase apparent power is

S3φ =
√

3VLIL (1.14)

When the resultant S3φ three-phase complex (or phasor) power is in rectangular form, then the
related three-phase real and three-phase reactive power for a balanced system can be expressed as

P3φ = Re(
√

3VLI∗L)

=
√

3VLIL cosθ
= 3Vφ Iφ cosθ
= 3Sφ cosθ
= Sφ cosθ

(1.15)

Q3φ = Im(
√

3VLI∗L)

=
√

3VLIL sinθ
= 3Vφ Iφ sinθ
= 3Sφ sinθ
= Sφ sinθ

(1.16)

Assume that a balanced three-phase load is connected to a set of three-phase buses and is being
fed by currents and powers by each bus and that bus voltages are given as VL =VL∠0◦ and the load
currents are given as IL = IL∠−θ ◦ or, in other words, the balanced three-phase loads have lagging
power factors as a result of also having lagging currents. Also assume that in the lagging case, each
current lags its voltage by the power factor angle of θ on each phase and in the leading case, each
current leads its voltage by the power factor angle of θ , as given in Table 1.3.

Consider the circuit shown in Figure 1.7a which is made of an ideal single-phase source con-
nected to a single-phase load over a power line. Assume that there are two additional voltage sources
that have equal voltages that are 120◦ out of phase with respect to one another, as shown in Figure
1.7b. Notice that there are now three neutral wires in this setup. Since the neutral wire is going to
carry only the residual return current of phase currents, it can be reduced to only one wire, as shown
in Figure 1.3c. This approach clearly saves money. However, if the system is made up of balanced
loads, the residual current on the neutral wire becomes zero, thus the neutral wire, theoretically, can
totally be eliminated, as shown in Figure 1.8a. This will save even more money, but such a balanced
situation rarely ever exists in real life.
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Table 1.3
Relationship between Lagging and Leading Currents and Loads in Three Phase

Lagging Leading

Current IL = IL∠−θ = IL(cosθ − j sinθ) IL = IL∠θ = I(cosθ + j sinθ)
Load = S3φ (cosθ + j sinθ) = PL + jQL = S3φ (cosθ − j sinθ) = PL − jQL

since S3φ = P3φ + jQ3φ =
√

3VLI∗L since S3φ = P3φ − jQ3φ =
√

3VLI∗L
where VL = VL∠0◦ where VL = VL∠0◦

and IL = IL∠−θ or I∗L = IL∠θ and IL = IL∠θ or I∗L = IL∠−θ

Figure 1.7 Evolution of three-phase system: (a) a single-phase system, (b) three single-phase system, and (c)
a three-phase system.

The wye-connected load impedances can also be replaced by their equivalent delta-connected
impedances, as shown in Figure 1.8b, so that each of the delta-connected impedances is now equal
to three times the wye-connected impedances. In this case, the system in Figure 1.8b will still act
just like the system in Figure 1.8a. It is also possible to keep the load in a wye connection as before,
but instead connect the ideal three single-phase voltage sources in delta instead of wye, as shown in
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Figure 1.8 Various three-phase systems: (a) a wye-connected source connected to a wye-connected load, (b)
a wye-connected source connected to an equivalent delta-connected load, (c) an equivalent delta-connected
source connected to a wye-connected load, and (d) equivalent delta-connected source connected to an equiva-
lent delta-connected load.

Figure 1.8c. Furthermore, it is possible to connect the loads in the delta as well, as shown in Figure
1.8d. Such delta connection is only done in rare applications such as in the electrical power systems
of ships. Also, the three-phase generators are in general connected in wye so that impedance can be
inserted between their neutral point and the ground to reduce any future fault currents.

PROBLEMS
1.1. Assume that two load impedances Z1 and Z2 are connected in series with respect to each other

but Z1 and Z2 are connected in parallel with Z3 and that loads Z1, Z2, and Z3 require 5kVA
at 0.8 lagging power factor, 10 kVA at 0.9 lagging power factor, 5 kW at unity power factor,
respectively. Determine the kW required by the total load, if the frequency is 60 Hz.

1.2. A 10 kW 220 V single-phase ac motor is operating at 0.7 lagging power factor. Find the value
of the capacitor that needs to be connected in parallel with the motorif the power factor is to
be improved to 0.95 lagging.

1.3. Assume that a single-phase 2400∠0◦ V bus is connected to a single-phase 100 kW motor
operating at a lagging power factor of 0.9, a lighting load of 100 kW operating at a unity
power factor, and a static capacitor of 100 kvar. Determine the following:
(a) The total complex power supplied by the bus to the three loads.

(b) The total current supplied to the bus.

(c) The power factor of the total load connected to the bus.

1.4. A single-phase 4800∠0◦ V bus is connected to a single-phase 100 kW motor operating at a
lagging power factor of 0.8, a lighting load of 200 kW operating at a unity power factor, and
static capacitors of 150 kvar. Determine the following:
(a) The total complex power supplied by the bus to the three loads.
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(b) The total current supplied to the bus.

(c) The power factor of the total load connected to the bus.

1.5. Consider Problem 1.3 and use the bus voltage of 2400∠0◦ V as the reference phasor and
determine the following:
(a) The phasor current of the lighting load.

(b) The phasor current of the motor.

(c) The phasor current of the capacitor.

(d) The total phasor load current.

(e) Draw the phasor diagram of the voltage, all three load currents, and show how the three
load currents combine to become the total load current in terms of phasor addition.

1.6. Consider Problem 1.4 and use the bus voltage of 4800∠0◦ V as the reference phasor. Deter-
mine the following:
(a) The phasor current of the lighting load.

(b) The phasor current of the motor.

(c) The phasor current of the capacitor.

(d) The total phasor load current.

(e) Draw the phasor diagram of the voltage, all three load currents, and show how the three
load currents combine to become the total load current in terms of phasor addition.



2 Three-Phase Circuits

2.1 INTRODUCTION
In a single-phase ac circuit, instantaneous power to a load is of a pulsating nature. Even at the unity
power factor (i.e., when the voltage and the current are in phase with respect to each other), the
instantaneous power is less than unity (i.e., when the voltage and the current are not in phase). The
instantaneous power is not only zero four times in each cycle but it is also negative twice in each
cycle. Therefore, because of economy and performance, almost all electrical power is produced by
polyphase sources (i.e., by those generating voltages with more than one phase). A phase is one of
three branches making up a three-phase circuit. For example, in a wye connection, a phase is made
up of those circuit elements connected between one line and neutral; however, in a delta connection,
a phase consists of those circuit elements connected between two lines.

A polyphase generator has two or more single phases connected so that they provide loads with
voltages of equal magnitudes and equal phase differences.1 For example, in a balanced n-phase
system, there are n voltage sources connected together. Each phase voltage (or source) alternates
sinusoidally, has the same magnitudes, and has a phase difference of 360/n◦ (where n is the number
of phases) from its adjacent voltage phasors, except in the case of two-phase systems. In a two-phase
generator, the two equal voltages differ in phase by 90◦, but in a three-phase generator, the three
equal voltages have a phase-angle difference of 120◦. However, the use of two-phase systems is very
uncommon. Generators of 6, 12, or even 24 phases are sometimes used with polyphase rectifiers to
supply power with low levels of ripples in voltage on the do side in the range of kilowatts. Today,
virtually all the power generated in the world is three-phase power with a frequency of 50 or 60 Hz.
In the United States, 60 Hz is the standard frequency.

Six-phase power transmission lines have been proposed because of their ability to increase power
transfer over existing lines and reduce electrical environmental impact. In six-phase transmission
lines, the conductor potential gradients are lower, which reduces both audible noise and electrostatic
effects without requiring additional insulation.

2.2 THREE-PHASE SYSTEMS
As previously stated, even though other polyphase systems are feasible, the power utility industry
has adopted the use of three-phase systems as the standard. Consequently, most of the generation,
transmission, distribution, and heavy-power utilization of electrical energy are done using three-
phase systems. A three-phase system is supplied by a three-phase generator (i.e., alternator), which
consists essentially of three single-phase systems displaced in time phase from each other by one-
third of a period, or 120 electrical degrees. The advantages of three-phase systems over single-phase
systems are as follows:

• Less conductor material is required in the three-phase transmission of power, hence it is more
economical.

• Constant rotor torque and therefore steady machine output can be achieved.

1Therefore, a polyphase generator is somewhat analogous to a multicylinder automobile engine in that the power delivered
is steadier. Consequently, there is less vibration in the rotating machinery, which, in turn, performs more efficiently.
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• Three-phase machines (generators or motors) have higher efficiencies.

• Three-phase generators may be connected in parallel to supply greater power more easily than
single-phase generators.

Figure 2.1a shows the structure of an elementary three-phase and two-pole ac generator (also
called an alternator). Its structure has two parts: the stationary outside part which is called the
stator and the rotating inside part which is called the rotor. The field winding is located on the rotor
and is excited by a direct current source through slip rings located on the common shaft. Thus, an
alternator has a rotating electromagnetic field; however, its stator windings are stationary.

The elementary generator shown in Figure 2.1a has three identical stator coils (aa’, bb’, and cc’),
of one or more turns, displaced by 120◦ in space with respect to each other. If the rotor is driven
counterclockwise at a constant speed, voltages will be generated in the three phases according to
Faraday’s law, as shown in Figure 2.1b. Notice that the stator windings constitute the armature of
the generator (unlike dc machines where the armature is the rotor). Thus, the field rotates inside the
armature. Each of the three stator coils makes up one phase in this single generator. Figure 2.1b
shows the generated voltage waveforms in the time domain, and Figure 2.1c shows the correspond-
ing phasors of the three voltages.

The stator phase windings can be connected in either wye or delta, as shown in Figures 2.2a and
b, respectively. In wye configuration, if a neutral conductor is brought out, the system is defined as a
four-wire three-phase system; otherwise, it is a three-wire, three-phase system. In a delta connection,
no neutral exists and therefore it is a three-wire three-phase system.

2.2.1 IDEAL THREE-PHASE POWER SOURCES

An ideal and balanced three-phase voltage source has three equal voltages that are 120◦ out of phase
with respect to one another, as shown in Figure 2.4. Therefore, the balanced three-phase voltages
given in the abc phase sequence (or phase order) can be expressed as

Va =Vφ∠0◦ (2.1)

Vb =Vφ∠240◦ =Vφ∠−120◦ (2.2)

Vc =Vφ∠120◦ (2.3)

where Vφ is the magnitude of the phase voltage given in rms value. All phasors of a phasor diagram
are assumed to rotate counterclockwise. A simple way of defining the phase sequence is to locate
a point on any phasor in the system, for example, Va, and then move clockwise until the next two
phasors are met, that is, Vb and Vc. The phase sequence is then abc. In the United States, almost all
utility systems have the abc phase sequence.

Similarly, the balanced three-phase voltages given in the acb phase sequence can be expressed
as

Va =Vφ∠0◦ (2.4)

Vb =Vφ∠120◦ (2.5)

Vc =Vφ∠240◦ =Vφ∠−120◦ (2.6)

Furthermore, in balanced three-phase systems, each phase has equal impedance so that the re-
sulting phase currents are equal and phase-displaced from each other by 120◦. The term balanced
describes three-phase voltages or currents, which are equal in magnitude and are 120◦ out of phase
with respect to each other and form a symmetrical three-phase set. If the three-phase system is bal-
anced, then equal real and reactive power flow in each phase. On the other hand, if the three-phase
system is not balanced, it may lack some or all of the aforementioned characteristics.
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Figure 2.1 (a) Basic structure of an elementary three-phase, two-pole ac generator; (b) generated voltage
waveforms in time domain; and (c) corresponding voltage phasors.

Figure 2.2 Stator phase windings connected in (a) wye and (b) delta.



Three-Phase Circuits 17

Figure 2.3 Ideal three-phase source connected in (a) wye and (b) delta.

Figure 2.4 Phasor diagrams for balanced three-phase voltages, arranged in (a) positive (or abc) phase se-
quence and (b) negative (or acb) phase sequence.

Figure 2.3a and b shows a wye-connected and a delta-connected ideal three-phase source, re-
spectively. The corresponding voltage and current phasor diagrams are shown in Figure 2.4.1 The
use of double-subscript notation greatly simplifies the phasor analysis. In the case of voltages, the
subscripts indicate the points between which the voltage exists. Here, the first subscript is defined
as positive with respect to the second. Therefore, the order of subscripts indicates the direction in
which the voltage rise is defined. For example, Van =−Vna. Hence, switching the order of the sub-
script causes a 180◦ phase shift in the variable. Similarly, in the case of currents, the subscript order

1Since there is no neutral point in the delta-connected stator windings of a generator, this permits currents of both fundamen-
tal and higher frequencies, especially of the third harmonic, to circulate in the stator windings. This, in turn, causes greater
heating of the stator windings. Therefore, a wye-connected generator is usually preferable to a delta-connected generator.
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Figure 2.5 Phasor diagrams for three-phase sources: (a) phase and line voltages in a wye connection, (b) line
currents in a wye connection, (c) phase and line currents in a delta connection, and (d) line voltages in a delta
connection.

indicates the from–to direction. The nodes a, b, and c are called the terminals or lines, and the point
n is called the neutral. The branches a–n, b–n, and c–n are defined as the phases of the source.

The voltages Van, Vbn, and Vcn are defined as the line-to-neutral voltages or line-to-ground volt-
ages or simply phase voltages. The voltages Vab, Vbc, and Vca are defined as the line-to-line voltages
or phase-to-phase voltages or simply line voltages. In general, whenever a three-phase voltage level
is given, it is understood that it is a line voltage unless otherwise specified.

2.2.1.1 Wye-Connected Ideal Three-Phase Source
Figure 2.5a illustrates how to determine the line voltages graphically from the given balanced phase
voltages, if the source is connected in wye (or star). The line voltages can be determined mathemat-
ically as

Vab = Van +Vnb

= Van −Vbn

=Vφ∠0◦ −Vφ∠−120◦

=Vφ (1+ j0)−Vφ (−
1
2
−

√
3

2
)

=
√

3Vφ∠30◦

=VL∠30◦

(2.7)
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Figure 2.6 Alternative methods of drawing phasors: (a) voltage phasor diagram and (b) current phasor dia-
gram.

Similarly,

Vbc = Vbn +Vnc

= Vbn −Vcn

=
√

3Vφ∠−90◦

=VL∠−90◦

(2.8)

and

Vca = Vcn +Vna

= Vcn −Van

=
√

3Vφ∠150◦

=VL∠150◦

(2.9)

where

Vφ is the magnitude of the phase voltage

VL is the magnitude of the line voltage

VL =
√

3Vφ (2.10)

so that
Vφ = |Van|= |Vbn|= |Vcn| (2.11)

and
VL = |Vab|= |Vbc|= |Vca|=

√
3Vφ (2.12)

The line voltages are also 120◦ out of phase with respect to each other and form a symmetrical
three-phase set. Figure 2.5b shows that each current lags its phase voltage by an equal phase angle.
However, the phase and line currents are the same in a wye connection. Figure 2.6a and b shows
alternative ways of drawing the phasors given in Figure 2.5a and b, respectively. As can be seen in
those figures, the sum of the line voltages is zero for a balanced system, that is,

Va +Vb +Vc = 0 (2.13)
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and similarly,
Ia + Ib + Ic = 0 (2.14)

Therefore, the neutral conductor does not carry any current (i.e., In = 0) if the source and load are
both balanced. Otherwise,1

In =−(Ia + Ib + Ic) (2.15)

2.2.1.2 Delta-Connected Ideal Three-Phase Source
Figure 2.5c illustrates how to determine the line currents graphically from the given balanced phase
currents if the source is connected in delta (or mesh). The line currents can also be determined
mathematically. For example, if the balanced phase currents are given in abc phase sequence as

Iab = Iφ∠0◦ (2.16)

Ibc = Iφ∠240◦ = Iφ∠−120◦ (2.17)

Ica = Iφ∠120◦ (2.18)

as shown in Figure 2.5c. The corresponding line currents can be found from the KCL as

Ia = Iab − Ica

= Iφ∠0◦ − Iφ∠120◦
(2.19)

Ib = Ibc − Iab (2.20)

Ic = Ica − Ibc (2.21)

Since
IL =

√
3Iφ (2.22)

then
|Ia|= |Ib|= |Ic|= IL =

√
3Iφ (2.23)

where

Iφ is the magnitude of the phase current

IL is the magnitude of the line current

The line currents are also 120◦ out of phase with respect to each other and form a symmetrical
three-phase set. Figure 2.5c shows that the phase and line currents are not in phase with each other.
The phase and line voltages are the same in a delta connection, as shown in Figure 2.5d.

Furthermore, for easier calculation, it is possible to replace any balanced, three-phase delta-
connected ideal source with an equivalent three-phase, wye-connected ideal source. In this case,
the magnitudes of the wye voltages are 1/

√
3 times the magnitudes of the delta voltages. The wye

voltages are out of phase with the corresponding delta voltages by 30◦. Thus, if the phase sequence
is abc, the wye voltages lag the delta voltages by 30◦. Otherwise, the wye voltages lead to the delta
voltages by 30◦.

1Most commercial generators are wye-connected, with their neutral grounded through a resistor. Such a grounding resistor
(typically, 700 Ω) limits ground fault (i.e., short circuit) currents, and therefore substantially reduces the amount of possible
damage to the apparatus in the event of a ground fault.
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Figure 2.7 Balanced, three-phase loads: (a) wye-connected load and (b) delta-connected load.

2.2.2 BALANCED THREE-PHASE LOADS

Three-phase loads may be connected either in wye connections or delta connections, as shown
in Figure 2.7a and b, respectively. In a wye connection, the line voltages are 30◦ ahead of the
corresponding phase voltages. However, the line currents and the corresponding phase currents are
the same, as shown in Figure 2.5b. The magnitudes of line voltages are

√
3 times those for phase

voltages. In a delta connection, the line currents are 30◦ behind the corresponding phase currents, as
shown in Figure 2.5c. Here, the magnitudes of line currents lag the line-to-neutral voltages. The line
currents also lag the line-to-neutral voltages by the phase-impedance angle, regardless of whether
the circuit is wye or delta.

When the impedances in all three phases are identical, the load is said to be balanced. If a bal-
anced three-phase source is connected to a balanced load over an inherently balanced transmission
or distribution line, then the total system is balanced. If the balanced three-phase load is wye con-
nected,

Zan = Zbn = Zcn = ZY (2.24)

then

Ian =
Van

Zan
=

V
|ZY |

∠−θ (2.25)

Ibn =
Vbn

Zbn
=

V
|ZY |

∠240◦ −θ (2.26)

Icn =
Vcn

Zcn
=

V
|ZY |

∠120◦ −θ (2.27)

where
ZY = ZY∠θ (2.28)

By applying the KCL at point n,
In = Ian + Ibn + Icn = 0 (2.29)

and therefore the neutral conductor does not exist (from a theoretical point of view) and has no
effect on the system. Since

Vφ = Van = Vbn = Vcn (2.30)

and
Iφ = Ian = Ibn = Icn (2.31)

then the total three-phase real power of the load can be expressed as

P3φ = 3Vφ Iφ cosθ (2.32)
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where
Vφ =

VL√
3

(2.33)

and
Iφ = IL (2.34)

Therefore,
P3φ =

√
3VLIL cosθ (2.35)

Similarly, the total three-phase power of the load can be expressed as

Q3φ = 3Vφ Iφ cosθ (2.36)

or

Q3φ =
√

3VLIL cosθ (2.37)

Therefore, the total apparent power of the load can be found as

S3φ =
√

P2
3φ +Q2

3φ (2.38)

S3φ = 3S1φ (2.39)

or

S3φ = 3Vφ Iφ (2.40)

Substituting Equations 2.33 and 2.34 into Equation 2.40,

S3φ =
√

3VL IL∠θ (2.41)

where

VL is the magnitude of the line voltage

IL is the magnitude of the line current

θ is the power factor angle by which the line current lags or leads the line voltage (or the angle
of the impedance in each phase)

The power factor of the three-phase load is still cos θ . If the balanced three-phase load is delta
connected,

Zab = Zbc = Zca = Z∆ = Z∆∠θ (2.42)

then

Iab =
Vab

Zab
=

VL

Z∆
∠(−θ) (2.43)

Ibc =
Vbc

Zbc
=

VL

Z∆
∠(240◦ −θ) (2.44)

Ica =
Vca

Zca
=

VL

Z∆
∠(120◦ −θ) (2.45)
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Therefore, the line currents can be found from

Ia = Iab − Ica (2.46)

Ia = Iab − Ica (2.47)

Ia = Iab − Ica (2.48)

Since

IL = Ia = Ib = Ic =
√

3 Iφ (2.49)

VL =Vφ (2.50)

then the (total) three-phase real power of the load can be expressed as

P3φ = 3Vφ Iφ cosθ (2.51)

or

P3φ =
√

3VL IL cosθ (2.52)

which is identical to Equation 2.35. Similarly, the (total) three-phase reactive power of the load
connected in the delta can be found in Equations 2.36 or 2.37. The total apparent power of the load
can be found in Equations 2.40 or 2.41. The power expressions are independent of the type (i.e.,
wye or delta) of load connection, as long as

Z∆ = 3ZY (2.53)

and since
Z = Z∠θ

θ = arg |Z∆|= arg |ZY |
(2.54)

The complex power can be found directly from the real and reactive powers per phase as

S1φ = P1φ + jQ1φ = Vφ Iφ
∗ (2.55)

S1φ = P1φ + jQ1φ = Zφ
∗ |Iφ |2 (2.56)

or

S1φ = P1φ + jQ1φ = Yφ
∗ |Vφ |2 (2.57)

Thus, the three-phase complex, real, and reactive powers can be found from

S3φ = 3S1φ = 3P1φ + j3Q1φ (2.58)

or

S3φ = P3φ + jQ3φ =
√

3VL IL
∗ (2.59)

Table 2.1 provides a summary comparison of the basic variables of delta- and wye-connected, bal-
anced, three-phase loads. Notice that the connection type does not affect the power calculations.

The virtue of working with balanced systems is that they can be analyzed on a single-phase
basis. The current in any phase is always the phase-to-neutral voltage divided by the per-phase load
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Table 2.1
Comparison of Balanced, Three-Phase Loads Connected in Delta and Wye

Three-Phase Loads ∆-Connected Load Y-Connected Load

Load impedance Z∆ = 3ZY ZY = Z∆/3
Line current IL =

√
3Iφ IL = Iφ

Line-to-line voltage VL =Vφ VL =
√

3Vφ
Three-phase real power P3φ = 3Vφ Iφ cosθ P3φ =

√
3VLIL cosθ

Three-phase reactive power Q3φ = 3Vφ Iφ sinθ P3φ =
√

3VLIL sinθ
Three-phase apparent power S3φ = 3Vφ Iφ sin S3φ =

√
3VLIL

impedance. Therefore, it is not necessary to calculate the currents in the remaining phase separately.
Calculating the current, voltage, and power in only one phase is sufficient in an analysis because
of the complete symmetry that exists between the three phases. The knowledge of these variables
in one phase, which is referred to as the reference phase, directly provides information about all
phases. This type of analysis is called per-phase analysis. This characteristic of balanced three-
phase systems is the basis for the use of one-line diagrams. In these diagrams, a circuit composed
of three or more conductors is pictorially represented by a single line with standard symbols for
transformers, switchgear, and other system components.

Example 2.1:

Assume that the phase voltages of a wye-connected source (at its terminals) are given as Van =
277.13∠0◦ V, Vbn = 277.13∠240◦ V, and Vcn = 277.13∠120◦ V. Determine the following:

(a) The line voltages of Vab, Vbc, and Vca.

(b) If a balanced, wye-connected, three-phase load of Zan = Zbn = Zcn = 10∠30◦ Ω is connected
to the source, find all the phase and line currents.

Solution

(a) The line voltages are found as

Vab = Van −Vbn = 277.13∠0◦ −277.13∠240◦ = 480∠30◦ V

Vbc = Vbn −Vcn = 277.13∠240◦ −277.13∠120◦ = 480∠−90◦ V

Vca = Vcn −Van = 277.13∠120◦ −277.13∠0◦ = 480∠150◦ V

(b) Since in a wye-connected, three-phase load, the phase and line currents are the same,

Ia = Ian =
Van

Zan
=

277.13∠0◦V
10∠30◦ Ω

= 27.713∠−30◦ A

Ib = Ibn =
Vbn

Zbn
=

277.13∠240◦V
10∠30◦ Ω

= 27.713∠210◦ A

Ic = Icn =
Vcn

Zcn
=

277.13∠120◦V
10∠30◦ Ω

= 27.713∠90◦ A
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Example 2.2:

A balanced delta-connected, three-phase load withdraws 200 A per phase with a leading power
factor of 0.85 from a 12.47 kV line. Determine the following:

(a) The line current of the load.

(b) The phase voltage of the load.

(c) The three-phase apparent power.

(d) The three-phase real power.

(e) The three-phase reactive power.

(f) The three-phase complex power.

Solution

(a) Since the load is connected in delta, the line current of the load is

IL =
√

3Iφ =
√

3×200 = 346.41 A

(b) The phase voltage of the load is
Vφ =VL = 12,470 V

(c) The three-phase (or total) apparent power is

S3φ =
√

3VLIL =
√

3(12,470 V)(346.41 A) = 7,482 kVA

or
S3φ = 3Vφ Iφ = 3(12,470 V)(200 A) = 7,482 kVA

(d) The three-phase (or total) real power is

P3φ =
√

3VLIL cosθ =
√

3(12,470 V)(346.41 A)0.85 = 6,360 kW

or
P3φ = S3φ cosθ = (7,482 kVA)(0.85) = 6,360 kW

(e) The three-phase (or total) reactive power is

Q3φ =
√

3VLIL sinθ =
√

3(12,470 V)(346.41 A)0.5268 = 3,942 kvar

or
Q3φ = S3φ sinθ = (7,482 kVA)(0.5268) = 3,942 kvar

(f) The three-phase (or total) complex power is

S3φ =
√

3VLI∗L = P3φ − jQ3φ = (6,360 kW)− j(3,942 kvar)

= 7,482∠−31.79◦ kVA

Example 2.3:

A balanced three-phase load of 8000 kW with a lagging power factor of 0.90 is supplied by a
three-phase 34.5 kV line.1 If the line resistance and inductive reactance are 5 and 7 Ω per phase
(i.e., line to neutral), determine the following:

1Unless otherwise specified, it is customary to assume a phase-to-phase voltage or line-to-line (i.e., line) voltage.
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(a) The line current of the load.

(b) The power factor angle of the load.

(c) The line-to-neutral voltage of the line at the receiving end (i.e., the load side).

(d) The voltage drop due to line impedance.

(e) The line-to-line voltage of the line at the sending end.

(f) The power loss due to line impedance.

Solution

(a) From Equation 2.52, the line current of the load is

IL =
P3φ√

3VL cosθ
=

8,000 kW√
3(34.5 kV)0.90

= 148.75 A

(b) The power factor of the load is

θ = cos−1 0.90 = 25.8◦

(c) The line-to-neutral voltage of the line at the receiving end is

VR(L−N) =
VL√

3
=

34,500 V√
3

= 19,919 V

(d) The voltage drop in the line due to line impedance is

ILZL = [148.75(cos25.8◦ − j sin25.8◦)](5+ j7)

= 1,279∠28.6◦ V

or

ILZL = (148.75∠25.8◦)(8.6023∠54.46◦)

= 1,279∠28.6◦ V

(e) The line-to-neutral voltage at the sending end is

VS(L−N) = VR(L−N) + ILZ

= 19,919∠0◦+1,279∠28.6◦

= 21,207∠1.7◦V

Therefore, the line-to-line voltage is

VS(L) =
√

3VS(L−N)

=
√

3(21,207 V) = 36,731 V

(f) The power loss due to line resistance is

P3φ = 3 I2
L R = 3(148.75)2(5) = 332 kW
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Example 2.4:

A balanced, three-phase, delta-connected load is supplied by a balanced, wye-connected source
over a balanced three-phase line. The source voltage data are given in abc phase sequence in which
Van is 7.62∠0◦ kV and the line impedance is 1 + j7 Ω. If the balanced load consists of three equal
impedances of 15 + j10 Ω, determine the following:

(a) The line currents Ia, Ib, and Ic.

(b) The phase voltages Vab, Vbc, and Vca of the delta-connected load.

(c) The phase currents Iab, Ibc, and Ica of the delta-connected load.

(d) The phasor diagram of the phasors found in parts 1, 2, and 3.

Solution

(a) Converting the given delta-connected load to its equivalent wye-connected form,

ZY =
Z∆
3

=
15+ j10

3
= 5+ j3.33 Ωperphase

Therefore,

Ia =
7620∠0◦

6+ j10.33
= 637.7∠−59.9◦ A

Ib =
7620∠240◦

6+ j10.33
= 637.7∠−179.9◦ A

Ic =
7620∠120◦

6+ j10.33
= 637.7∠60.1◦ A

(b) The line-to-neutral voltages at the wye-connected load can be found as

Van = VaZa = (637.7∠−59.9◦)(6∠−33.7◦) = 3831∠−26.2◦ V

Vbn = VbZb = (637.7∠−179.9◦)(6∠−33.7◦) = 3831∠−146.2◦ V

Vcn = VcZc = (637.7∠60.1◦)(6∠−33.7◦) = 3831∠93.8◦ V

Therefore,

Vbc = Vbn −Vcn = Vab e− j120◦

= 6653∠−116.2◦ V

Vca = Vcn −Van = Vab e j120◦

= 6653∠123.8◦ V

Alternatively,

Vab =
√

3Van∠θan +30◦

=
√

3(3831∠−26.2◦+30◦) V = 6653∠3.8◦ V

Vbc =
√

3Vbn∠θbn +30◦

=
√

3(3831∠−146.2◦+30◦) V = 6653∠−116.2◦ V
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Figure 2.8 Phasor diagram for Example 2.4.

Vca =
√

3Vcn∠θcn +30◦

=
√

3(3831∠93.8◦+30◦) V = 6653∠123.8◦ V

(c) Thus,

Iab =
Vab

Z∆
=

6635.3∠3.8◦ V
18.03∠33.7◦ Ω

= 368∠−29.9◦ A

Ibc =
Vbc

Z∆
=

6635.3∠−116.2◦ V
18.03∠33.7◦ Ω

= 368∠−149.9◦ A

Ica =
Vca

Z∆
=

6635.3∠123.8◦ V
18.03∠33.7◦ Ω

= 368∠90.1◦ A

(d) The phasor diagram is shown in Figure 2.8.

2.3 UNBALANCED THREE-PHASE LOADS
If an unbalanced three-phase load connected in delta or wye is present in an otherwise balanced
three-phase system, the method of symmetrical components is normally used to analyze the system.1

However, in simple situations, the direct application of conventional circuit theory can be used
without much difficulty, as in the following example.

Example 2.5:

An unbalanced, three-phase, delta-connected load is supplied by a balanced three-phase source
through a power line. The load impedances Zab, Zbc, and Zca are given as 5+ j5 Ω, 5− j5 Ω,

1For the theory and applications of symmetrical components, see Electric Power Transmission System Engineering and
Modern Power System Analysis of Gönen (1988, 2000).
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Figure 2.9 Illustration for Example 2.5: (a) delta-connected load and (b) equivalent wye-connected load.

5+ j0 Ω, respectively. The power line impedance is given as 2+ j2 Ω per phase. In the event that
the line-to-line voltages Vd′b′ , Vb′c′ , and Vc′a′ are 110∠0◦, 110∠240◦, and 110∠120◦ V, respectively,
determine the following:

(a) The line currents Ia′a, Ib′b, and Ic′c.

(b) The line-to-line voltages Vab, Vbc, and Vca.

Solution

(a) First, convert the delta-connected load shown in Figure 2.9a to its equivalent wye connected
form, as shown in Figure 2.9b,

Za =
ZabZca

Zab +Zbc +Zca

=
(5+ j5)(5+ j0)

(5+ j5)+(5− j5)+(5+ j0)
=

5(5+ j5)
15

= 1.67+ j1.67 Ω

Zb =
ZabZbc

Zab +Zbc +Zca

=
(5+ j5)(5− j5)

15
= 3.33+ j0 Ω

Zc =
ZbcZca

Zab +Zbc +Zca

=
(5− j5)(5+ j0)

15
= 1.67− j1.67 Ω

From KVL,

Va′b′ = Va′a +Van +Vnb +Vbb′ = 110∠0◦

Vb′c′ = Vb′b +Vbn +Vnc +Vcc′ = 110∠240◦

where

Va′a +Van = Ia′a (ZL +Za)

Vb′b +Vbn = Ib′b (ZL +Za)

Vc′c +Vcn = Ic′c (ZL +Za)
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but
Ic′c =−(Ia′a + Ib′b)

Therefore, Ic′c can be eliminated so that
[
ZL +Za −ZL −Zb
ZL +Zc 2ZL +Zb +Zc

][
Ia′a
Ib′b

]
=

[
110∠0◦

110∠240◦

]

[
3.67+ j3.67 −5.33− j2
3.67+ j0.33 9+ j2.33

][
Ia′a
Ib′b

]
=

[
110∠0◦

110∠240◦

]

Using determinants and Cramer’s rule,

Ia′a =
∆1

∆
=

∣∣∣∣
110∠0◦ −5.33− j2

110∠240◦ 9+ j2.33

∣∣∣∣
∣∣∣∣
3.67+ j3.67 −5.33− j2
3.67+ j0.33 9+ j2.33

∣∣∣∣

=
(110∠0◦)(9.2967∠14.51◦)− (5.6929∠200.57◦)(110∠240◦)

(5.1902∠45◦)(9.2967∠14.51◦)− (5.6929∠200.57◦)(3.6848∠5.14◦)

= 13.85∠−6.87◦ A

Similarly,

Ib′b =
∆2

∆
=

∣∣∣∣
3.67+ j3.67 110∠0◦

3.67+ j0.33 110∠240◦

∣∣∣∣
69.178∠29.04◦

= 9.61∠−162.9◦ A

Therefore,
Ic′c =−(13.85∠−6.87◦+9.61∠−162.9◦) = 17.01∠74.18◦ A

As a check,

Ia′a + Ib′b + Ic′c = 13.85∠−6.87◦+9.61∠−162.9◦+17.01∠74.18◦ = 0

(b) The line-to-neutral voltages can be found as

Van = Ia′aZa = (13.85∠−6.87◦A)(2.36∠45◦) = 33∠−26◦ V

Vbn = Ib′bZb = (9.61∠−162.9◦A)(3.33∠0◦) = 32∠−162◦ V

Vcn = Ic′cZc = (17.01∠−74.18◦A)(2.36∠−45◦) = 40∠29◦ V

Therefore,

Vab = Van −Vbn = 33∠−26◦ −32∠−162◦ = 61∠−5.4◦ V

Vbc = Vbn −Vcn = 32∠−162◦ −40∠29◦ = 71.9∠−15.6◦ V

Vca = Vcn −Van = 40∠29◦ −33∠26◦ = 35.17∠81.98◦ V

Notice that the unbalanced loads destroy the symmetry between the phasors and cause the
resulting currents and voltages not to have the simplicity that is characteristic of a balanced
three-phase system.
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Figure 2.10 An unbalanced, three-phase, four-wire, wye-connected load.

Example 2.6:

An unbalanced, three-phase, four-wire, wye-connected load, as shown in Figure 2.10, is connected
to a balanced three-phase, four-wire source. The load impedances Za, Zb, and Zc are given as
100∠50◦, 150∠− 140◦, and 50∠− 100◦ Ω per phase, respectively. If the line voltage is 13.8 kV,
determine the following:

(a) The line and neutral currents.

(b) The total power delivered to the loads.

Solution

(a) Taking the line-to-line neutral voltages of phase-a voltage as the reference,

Vφ =
VL√

3
=

13,800V√
3

= 7,967.4 V

so that

Van = 7,967∠0◦ V

Vbn = 7,967∠−120◦ V

Vcn = 7,967∠120◦ V

Therefore, the line currents can be found as

Ia
Van

Za
=

7,967.4∠0◦V
100∠50◦ Ω

=−79.7∠−50◦ A

Ib
Vbn

Zb
=

7,967.4∠−120◦V
150∠−140◦ Ω

= 53.1∠20◦ A

Ic
Vcn

Zc
=

7,967.4∠120◦V
50∠−100◦ Ω

= 159.3∠220◦ A

Thus,

In = (Ia + Ib + Ic)

= (79.7∠−50◦+53.1∠20◦+159.3∠220◦) = 146.8∠81.8◦ A
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Figure 2.11 Connection diagram for the two-wattmeter method of measuring three-phase power.

(b) The power delivered by each phase is

Pa = VanIa cosθa = (7,967.4V)(79.7A)cos50◦ = 408,171 W

Pb = VbnIb cosθb = (7,967.4V)(53.1A)cos140◦ = 324,090 W

Pa = VanIa cosθa = (7,967.4V)(159.3A)cos100◦ = 220,396 W

Thus, the total power delivered is

P3φ = Pa +Pb +Pc = 952,656 W ∼= 953 kW

2.4 MEASUREMENT OF AVERAGE POWER IN THREE-PHASE CIRCUITS
A wattmeter is a device that has a potential coil and a current coil, which are designed and connected
in such a way that its pointer’s deflection is proportional to V I cosθ . Here, V is the rms value of
the voltage applied across the potential coil, I is the rms value of the current passing through the
current coil, and θ is the angle between the voltage and the current phasors involved. The direction
in which the pointer deflects depends on the instantaneous polarity of the current-coil current and
the potential-coil voltage. Thus, each coil has one terminal with a polarity mark ±, as shown in
Figure 2.11. The wattmeter deflects in the right direction when the polarity-marked terminal of the
potential coil is connected to the phase in which the current coil has been inserted.

If a separate wattmeter is used to measure the average (real) power in each phase, the total real
power in a three-phase system can be found by adding the three wattmeter readings. If the load
is delta-connected, each wattmeter has its current coil connected on one side of the delta and its
potential coil connected line to line. If the load is wye-connected and the neutral wire does exist, the
potential coil of each wattmeter is connected between each phase and the neutral wire. However, in
actual practice, it may not be possible to have access to either the neutral of the wye connection or
the individual phases of the delta connection in order to connect a wattmeter in each of the phases.
In these cases, three wattmeters can be connected as shown in Figure P2.7. The common point 0 is a
floating potential point. The total real power used by the load, whether it is delta- or wye-connected,
balanced or unbalanced, is the sum of the three-wattmeter readings. Therefore,

P3φ =Wa +Wb +Wc (2.60)

It is also possible in delta- and wye-connected loads to use only two wattmeters to measure the
total real power, as shown in Figure 2.11. This method is known as the two-wattmeter method of



Three-Phase Circuits 33

Figure 2.12 Phasor diagrams for the two-wattmeter method: (a) voltage-phasor diagram and (b) voltage and
current phasor diagram.

measuring three-phase power. The algebraic sum of the readings of the two wattmeters1 will give
the total average power consumed by the three-phase load. Thus,

P3φ =Wa +Wc (2.61)

where the wattmeter connected on phase a provides the reading of

Wa =VabIa cosθa (2.62)

where θa is the angle between phasors Vab and Ia. Similarly,

Wc =VcbIc cosθc (2.63)

where θc is the angle between phasors Vab and Ic. Notice that the reading of the wattmeter Wc
is determined by Vab and Ic. Even though the sum of the two readings depends only on the total
power of the load, the individual readings depend on the phase sequence. Now assume that the
phase sequence is abc and that the voltage Vab is the reference phasor, as shown in Figure 2.12b.
Also assume that the load is either balanced wye- or delta-connected with a lagging power factor
angle of θ . From Figure 2.12a, it can be observed that the angle between phasors Vab and Ia is
(30◦+ θ) and that between phasors Vcb and Ic is (30◦ − θ). As mentioned before, the angle θ is
the load power-factor angle or the angle associated with the load impedance. Therefore, Equations
2.62 and 2.63 can be expressed, respectively,2 as

Wa =VLIL cos(30◦+θ) (2.64)

Wc =VLIL cos(30◦ −θ) (2.65)

where

θa = 30◦+θ (2.66)

θc = 30◦ −θ (2.67)

1If one wattmeter reads backward, reverse its current coil and subtract its reading from the other wattmeter.
2If the phase sequence is acb,
Wa =VLIL cos(30◦ −θ)
and
Wc =VLIL cos(30◦+θ)
so that P3φ =Wa +Wc

and the total reactive power is Q3φ =
√

3(Wa −Wc)
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Figure 2.13 Circuit for Example 2.7.

and where VL and IL are magnitudes of the line-to-line voltage and line current, respectively. Thus,
the total average power can be determined as

P3φ = (Wa +Wc) =VLIL[cos(30◦+θ)+ cos(30◦ −θ)] =
√

3VLIL cosθ (2.68)

and the total reactive power can be determined as

Q3φ = (Wa −Wc) =VLIL[cos(30◦+θ)− cos(30◦ −θ)] =
√

3VLIL sinθ (2.69)

By observing Equations 2.64 and 2.65, the following conclusions can be reached for the two-
wattmeter method of measuring three-phase power in a balanced circuit:

• If the load power-factor equals 0.5, one of the wattmeters shows zero.

• If the load power-factor is less than 0.5, one of the wattmeters shows a negative value.

• If the load power-factor is greater than 0.5, both wattmeters show a positive value.

• Reversing the phase sequence will interchange the readings on the wattmeters.

Example 2.7:

An unbalanced, three-phase, delta-connected load, as shown in Figure 2.13, is supplied by a
balanced three-phase system given in abc phase sequence in which Vab is 220∠0◦ V. The load
impedances Zab, Zbc, and Zca are given as 10∠0◦, 5∠60◦, and 15∠−20◦, respectively.

(a) The phase currents Iab, Ibc, and Ibc.

(b) The line currents Ia, Ib, and Ic.

(c) The powers absorbed by the individual impedances of the load.

(d) The total power absorbed by the load.

(e) The power recorded on each wattmeter.

Solution

(a) The phase currents can be found as

Iab =
Vab

Zab
=

220∠0◦ V
10∠0◦ Ω

= 22∠0◦ A

Ibc =
Vbc

Zbc
=

220∠−120◦ V
5∠60◦ Ω

= 44∠−180◦ A

Ica =
Vca

Zca
=

220∠120◦ V
15∠−20◦ Ω

= 14.67∠140◦ A
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(b) Therefore, the line currents are

Ia = Iab − Ica = 22∠0◦ −14.67∠140◦ = 34.5∠−15.8◦ A

Ib = Ibc − Iab = 44∠−180◦ −22∠0◦ = 66∠−15.8◦ A

Ic = Ica − Ibc = 14.67∠140◦ −44∠−180◦ = 34.1∠16◦ A

(c) The powers absorbed by the individual impedances of the load can be found as

Pab = Re(Vab I∗ab) = Re [(220∠0◦)(22∠0◦)] = 4.84 kW

Pbc = Re(Vbc I∗bc) = Re [(220∠−120◦)(44∠180◦)] = 4.84 kW

Pca = Re(Vca I∗ca) = Re [(220∠120◦)(22∠−140◦)] = 3.02 kW

(d) The total power absorbed by the load is

P = Pab +Pbc +Pca = 12.7 kW

(e) The power recorded by the wattmeter a is

Wa = |Vab||Iab|cosθa

where θa is the angle between Vab and Ia. Therefore,

Wa = |220∠0◦||34.5∠15.8◦|cos16.8◦ = 7.3 kW

Or alternatively,

Wa = Re(Vab I∗a) = Re[(220∠0◦)(34.5∠15.8◦)] = 7.3 kW

Similarly,
Wc = Re(Vbc I∗c) = Re[(220∠−120◦)(34.1∠−16◦)] = 5.4 kW

Therefore, the total power read by the wattmeters is 12.7 kW.

2.5 POWER FACTOR CORRECTION
In general, loads on electric utility systems have two components: real (active) power (measured
in kilowatts) and reactive power (measured in kilovars). Real power has to be generated at power
plants, whereas reactive power can be supplied by either power plants or capacitors. If reactive
power is supplied only by power plants, each system component, including generators, transform-
ers, and transmission and distribution lines, has to be increased in size accordingly. However, by
using capacitors, the reactive power demand as well as line currents are reduced from the capacitor
locations all the way back to power plants.1 As a result, losses and loadings are reduced in distri-
bution lines, substation transformers, and transmission lines. The power factor correction generates
savings in capital expenditures and fuel expenses through a release of power capacity and a decrease
in power losses in all the equipment between the point of installation of the capacitors and the source
power plants.

The economic power factor is the power factor at which the economic benefits of using capacitors
equals the cost of capacitors. However, the correction of power factor to unity becomes more expen-
sive with respect to the marginal cost of the capacitors installed. It has been found in practice that
the economic power factor is about 0.95. In distribution systems, including industrial applications,

1For further information, see Chapter 8 of Electric Power Distribution System Engineering of Gönen (2022).



36 Electrical Machines and Their Applications

shunt capacitors are used and are connected in delta or wye. However, in transmission systems, the
capacitors are connected in series with the line involved.

Example 2.8:

Assume that a 2.4 kV, single-phase circuit supplies a load of 294 kW at lagging power factor and
that the load current is 175 A. To improve the power factor, determine the following:

(a) The uncorrected power factor and reactive load.

(b) The new corrected power factor after installing a shunt capacitor unit with a rating of 200
kvar.

Solution

(a) Before the power factor correction,

Sold = VI = (2.4kV)(175A) = 420kVA

Therefore, the uncorrected power factor can be found as

PFold = cosθ =
P

Sold

=
294kW

420
= 0.7

and the reactive load is

Qold = Sold × sin(cos−1 PFold)

= (420kVA)(0.7141) = 300 kvar

(b) After the installation of the 200 kvar capacitors,

Qnew = Qold −Qcap

= (300 kvar)− (200 kvar) = 100 kvar

and therefore the new (or corrected) power factor is

PFnew = cosθnew =
P√

P2 +Q2
new

=
294 kW√

(294 kW)2 +(100 kvar)2
= 0.95 or 95%

Example 2.9:

A three-phase, 400 hp, 60 Hz, 4.16 kV wye-connected induction motor has a full-load efficiency of
86% and a lagging power factor of 0.8. If it is necessary to correct the power factor of the load to a
lagging power factor of 0.95 by connecting three capacitors at the load, find the following:

(a) The rating of such a capacitor bank in kvar.

(b) The capacitance of each single-phase unit, if the capacitors are connected in delta, in µF.

(c) The capacitance of each single-phase unit, if the capacitors are connected in wye, in µF.
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Solution

(a) The input power of the induction motor is

P =
(400 hp)(0.7457 kW/hp)

0.86
= 346.84 kW

The reactive power of the motor at the uncorrected power factor is

Qold = P× tanθ

= (346.84 kW)× tan(cos−1 0.8)

= (346.84)×0.75

= 260.13 kvar

The reactive power of the motor at the corrected power factor is

Qnew = P× tanθnew

= (346.84 kW)× tan(cos−1 0.95)

= (346.84)×0.3287

= 114 kvar

Thus, the reactive power provided by the capacitor bank is

Qcap = Qold −Qnew

= (260.13 kvar)− (114 kvar)

= 146.13 kvar

Therefore, the rating of the capacitor bank is 146.13 kvar.

(b) If the capacitors are connected in delta, the line current is

IL =
Qcap√

3VL

=
146.13 kvar√

3(4.16 kV)
= 20.28 A

and thus, the current in each capacitance of the delta-connected capacitor bank is

Icap =
IL√

3

=
20.28 A√

3
= 11.71 A

Therefore, the reactance of each capacitor is

Xcap =
VL

Icap

=
4160 V
11.71 A

= 355.25 Ω
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and the capacitance of each unit is

C =
106

ωXcap
=

106

(2π f )Xcap

=
106

2π(60 Hz)(355.55 Ω)

= 7.47 µF

Note that

C =
1

ωXcap
in F

or

C =
106

ωXcap
in µF

Note that the aforementioned equation gives the capacitance in µF. This equation is modified
from the previous equation, which gives the answer in F, by dividing both sides by 106, as it
can be seen easily.

(c) If the capacitors are connected in wye in the capacitor bank,

Icap = IL = 20.28 A

and therefore,

Xcap =
VL−N

Icap
=

4160 V√
3(20.28 A)

= 118.43 Ω

Therefore, the capacitance of each unit is

C =
106

(2π f )Xcap

=
106

2π(60 Hz)(118.43 Ω)

= 22.4 µF

PROBLEMS

PROBLEM 2.1

A three-phase, wye-connected induction motor is supplied by a three-phase and four-wire system
with a line-to-line voltage of 220 V and the impedance of the motor is 6.3+ j3.05 Ω per phase.
Determine the following:

(a) The magnitude of the line current.

(b) The power factor of the motor.

(c) The three-phase average power consumed by the motor.

(d) The current in the neutral wire.
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Figure P2.6 Circuit of Problem 2.6.

PROBLEM 2.2

A balanced three-phase load of 15 MVA with a lagging load factor of 0.85 is supplied by a 115
kV subtransmission line. If the line impedance is 50+ j100 Ω per phase, determine the following:

(a) The line current of the load.

(b) The power loss due to the line impedance.

(c) The power factor angle of the load.

(d) The line-to-neutral voltage of the line at the receiving end.

(e) The voltage drop due to the line impedance.

(f) The line-to-line voltage of the line at the sending end.

PROBLEM 2.3

A balanced, three-phase, delta-connected load is supplied by a balanced, three-phase, wye-
connected source over a balanced three-phase line. The source voltages are in abc phase sequence
in which Van is 19.94∠0◦ kV and the line impedance is 10+ j80 Ω per phase. If the balanced
load consists of three equal impedances of 60+ j30 Ω, determine the following:

(a) The line currents Ia, Ib, and Ic.

(b) The phase voltages Vab, Vbc, and Vca of the load.

(c) The phase currents Iab, Ibc, and Ica of the load.

PROBLEM 2.4

Assume that the impedance of a power line connecting buses 1 and 2 is 50∠70◦ Ω, and that the
bus voltages are 7560∠−10◦ and 7200∠0◦ V per phase, respectively. Determine the following:

(a) The real power per phase that is being transmitted from bus 1 to bus 2.

(b) The reactive power per phase that is being transmitted from bus 1 to bus 2.

(c) The complex power per phase that is being transmitted.

PROBLEM 2.5

Solve Problem 2.4, assuming that the line impedance is 50∠26◦ Ω per phase.
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Figure P2.7 Circuit of Problem 2.7.

PROBLEM 2.6

An unbalanced three-phase, three-wire, wye-connected load is connected to a balanced, three-
phase, three-wire, wye-connected source, as shown in Figure P2.6. If the line-to-neutral source
voltages Va, Vb, and Vc are 220∠30◦, 220∠270◦, and 220∠150◦ V, respectively, and the load
impedances Za, Zb, and Zc are 4∠0◦, 5∠90◦, and 8∠30◦ Ω per phase, respectively. Determine
the following:

(a) The mesh currents I1 and I2 using determinants and Cramer’s rule.

(b) The line currents Ia, Ib, and Ic.

(c) The potential difference between the source neutral NS and the common node of the load,
that is, NL.

(d) Whether or not a neutral wire connecting the neutral point NS and NL is required.

PROBLEM 2.7

An unbalanced three-phase, three-wire, wye-connected load is connected to a balanced, three-
phase, three-wire, wye-connected source, as shown in Figure P2.6. If the line-to-neutral source
voltages Va, Vb, and Vc are 220∠30◦, 220∠270◦, and 220∠150◦ V, respectively, and the load
impedances Za, Zb, and Zc are 4∠0◦, 5∠90◦, and 8∠30◦ Ω per phase, respectively, as given in
Problem 2.6. Assume that three wattmeters are connected to measure the total power received
by the unbalanced three-phase load, as shown in Figure P2.7. Ignore the small impedance of the
current coils in the wattmeters and determine the following:

(a) The power recorded on each wattmeter.

(b) The total power absorbed by the load.

PROBLEM 2.8

An unbalanced three-phase, three-wire, wye-connected load is connected to a balanced, three-
phase, three-wire, wye-connected source, as shown in Figure P2.8. If the line-to-neutral source
voltages Va, Vb, and Vc are 220∠30◦, 220∠270◦, and 220∠150◦ V, respectively, and the load
impedances Za, Zb, and Zc are 4∠0◦, 5∠90◦, and 8∠30◦ Ω per phase, respectively, as given in
Problem 2.6. Ignore the small impedance of the current coils in the wattmeters and assume that
only two wattmeters are used and connected, as shown in Figure P2.8. Determine the following:

(a) The power recorded on each wattmeter.

(b) The total power absorbed by the load.
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Figure P2.8 Circuit of Problem 2.8.

PROBLEM 2.9

If the impedance of a transmission line connecting buses 1 and 2 is 50∠80◦ Ω, and the bus
voltages are 70∠215◦ and 68∠0◦ kV per phase, respectively, determine the following:

(a) The complex power per phase transmitted from bus 1 to bus 2.

(b) The real power per phase that is being transmitted.

(c) The reactive power per phase that is being transmitted.

PROBLEM 2.10

A three-phase motor is connected to a three-phase line that has an abc phase sequence and is
supplied by 15 A current at a 0.85 lagging power factor. If a single-phase motor withdrawing 5 A
current at a 0.707 lagging power factor is connected across lines a and b of the three-phase power
line, determine the total current in each line.

PROBLEM 2.11

Three loads are connected to a 208 V, three-phase power source that has an abc phase sequence.
The first load is a wye-connected, three-phase motor withdrawing a line current of 20 A at a 0.8
lagging power factor. The second load is a single-phase load between lines a and b and withdraws
a 10 A current at a 0.8 leading power factor. The third load is also a single-phase motor connected
between lines b and c and withdraws a 7 A current at a 0.707 lagging power factor. Use the voltage
Vab as the reference phasor and determine the following:

(a) All line and phase voltages.

(b) All line currents.

(c) The total input power in watts.

PROBLEM 2.12

A three-phase, 60 Hz, wye-connected synchronous generator is providing power to two balanced
three-phase loads. The first load is delta-connected and made up of three 12∠45◦ Ω impedances,
while the second load is wye connected and made up of three 5∠60◦ Ω impedances. Determine
the following:

(a) Total (i.e., equivalent) load impedance per phase (i.e., line to neutral).
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(b) The line current Ia at the generator terminal. Use Va = (208/
√

3)∠0◦ ∼= 120∠0◦ V.

(c) The total complex power provided by the generator.

PROBLEM 2.13

A three-phase, 60 Hz, wye-connected synchronous generator has balanced line-to-line voltages
of 480 V at its terminals. The generator is supplying power to two balanced and delta-connected,
three-phase loads. The first load is made up of three 15∠−30◦ Ω impedances, while the second
load is made up of three 18∠50◦ Ω impedances. Determine the following:

(a) Total (i.e., equivalent) load impedance per phase (i.e., line to neutral).

(b) The line current Ia at the generator terminal. Use a phase voltage of Va = 277.13∠0◦ V
(since 480/

√
3 V = 277.13 V).

(c) The total complex power provided by the generator.

PROBLEM 2.14

If a balanced, three-phase, 15 MW total load is fed by a 138 kV power line at a 0.85 lagging
power factor, determine the following:

(a) The line current.

(b) The value of the capacitor in µF per phase, if a wye-connected. capacitor bank is used to
correct the power factor to a 0.95 lagging power factor.

PROBLEM 2.15

If a balanced, three-phase, 20 MW total load is fed by a 138 kV (line-to-line) power source at a
0.8 lagging power factor, determine the following:

(a) The line current.

(b) The value of the capacitor in µF per phase, if a wye-connected capacitor bank is used to
correct the power factor to a 0.9 lagging power factor.

(c) If a delta-connected capacitor bank is used in part (b), the value of each capacitor in such a
bank. [Hint: Use the results of part (b).]

PROBLEM 2.16

Consider the balanced and delta-connected three-phase load that is shown in Figure P2.16. As-
sume that each impedance is 9+ j9 Ω and that the line-to-line voltage, with a magnitude of 4160
V, is supplied by a three-phase source where Vbc =Vbc∠0◦. In other words, assume that the volt-
age source phasors are aligned in the same fashion as the circuit symbols between nodes a, b, and
c. Determine the following:

(a) The line currents Ia, Ib, and Ic.

(b) The total (i.e., three-phase) average power in watts.
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Figure P2.16 Circuit of Problem 2.16.

Figure P2.18 Circuit of Problem 2.18.

PROBLEM 2.17

Consider the balanced and delta-connected three-phase load that is shown in Figure P2.16. As-
sume that each impedance is 3+ j6 Ω and that the load is supplied by a balanced three-phase
source where Vab = 12,470∠30◦ V so that Va = Van ∼= 7,200∠0◦ V. (In other words, line volt-
ages lead phase voltages by 30◦.) Determine the following:

(a) The line currents Ia, Ib, and Ic.

(b) The total (i.e., three-phase) average power in watts.

PROBLEM 2.18

Consider the delta-connected, three-phase load that is shown in Figure P2.18. Assume that the
delta-connected unbalanced load is supplied by the same three-phase source that is given in Prob-
lem 2.16. Determine the following:

(a) The line currents Ia, Ib, and Ic.

(b) The voltage Vde.

(c) The total (i.e., three-phase) average power in watts.

PROBLEM 2.19

Assume that the delta-connected load is an unbalanced three-phase load and is supplied by the
same balanced, three-phase power source that is given in Problem 2.17. If Zab = 5+ j5 Ω, Zbc =
5− j5 Ω, and Vab = 12,470∠30◦ V, determine the following:
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(a) The line currents Ia, Ib, and Ic.

(b) The total (i.e., three-phase) average power in watts.

PROBLEM 2.20

A three-phase, 60 Hz, 5 MVA synchronous generator has balanced line-to-line voltages of 8320
V at its terminals. If the generator is supplying power to a wye-connected, balanced load of 5
MVA at a 0.8 lagging power factor, determine the following:

(a) The total complex power absorbed by the wye-connected load.

(b) The load impedance per phase.

PROBLEM 2.21

A three-phase, 60 Hz, 5 MVA synchronous generator has balanced line-to-line voltages of 8320
V at its terminals. If the generator is supplying power to a delta-connected, balanced load of 5
MVA at a 0.8 lagging power factor, determine the following:

(a) The total complex power absorbed by the delta-connected load.

(b) The load impedance per phase.

PROBLEM 2.22

A three-phase, 60 Hz, 3000 kVA wye-connected synchronous generator has balanced line-to-line
voltages of 4160 V at its terminals. The internal impedance of the generator is Zs = j3.5 Ω per
phase. A delta-connected, balanced, three-phase load of 15+ j30 Ω per phase is connected to the
generator over an S switch. The line to-line voltage at the switch before it is closed is 4160 V. Use
phase-a voltage as the reference phasor and determine the following:

(a) The percent voltage drop of no-load voltage of the terminal voltage at the switch when the
load is connected.

(b) The total complex power delivered to the load.

PROBLEM 2.23

Assume that a balanced, three-phase, wye-connected source is connected to a balanced, three-
phase, wye-connected load and that a neutral conductor connects the neutral points of the source
and the load. Assume abc phase sequence and Va = 230∠0◦ V at the load terminal. If the load
impedances are Za = Zb = Zc = 2.3∠30◦ Ω, determine the following:

(a) The line currents Ia, Ib, and Ic.

(b) The current in the neutral conductor In.

PROBLEM 2.24

A balanced, three-phase, delta-connected load is connected to a balanced three-phase source of
abc sequence. If Vab = 460∠30◦ V and the load impedances Zab = Zbc = Zca = 4.6∠45◦ Ω,
determine the following:

(a) The line voltages of Vbc and Vca.
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(b) The currents Iab, Ibc, and Ica of the load.

(c) The line currents Ia, Ib, and Ic of the load.

PROBLEM 2.25

A three-phase, 60 Hz, 5 MVA, wye-connected synchronous generator has balanced line-to-line
voltages of 4160 V at its terminals. The internal impedance of the generator is Zs = j2 Ω per
phase. A delta-connected, balanced, three-phase load of 3+ j5 Ω per phase is connected to the
generator over an S switch. The line to-line voltage at the switch before it is closed is 4160 V. Use
the phase-a voltage of 2400∠0◦ V. Use phase-a voltage as the reference phasor and determine the
following:

(a) The percent voltage drop of no-load voltage of the terminal voltage at the switch when the
load is connected.

(b) The total complex power delivered to the load.

PROBLEM 2.26

A three-phase, 60 Hz, wye-connected synchronous generator has balanced line-to-line voltages
of 480 V at its terminals. The generator is supplying power to two balanced and delta-connected,
three-phase loads. The first load is made up of three 12∠40◦ Ω impedances, while the second load
is made up of three 18∠80◦ Ω impedances. Use a phase voltage of Va = 277.13∠0◦ V (since Va
= 480/

√
3 V = 277.13 V). Determine the following:

(a) Total (i.e., equivalent) load impedance per phase (i.e., line to neutral).

(b) The line current Ia at the generator terminal.

(c) The total complex power provided by the generator.

PROBLEM 2.27

A three-phase, 60 Hz, wye-connected synchronous generator is providing power to two balanced
three-phase loads. The first load is wye connected and made up of three 6∠45◦ Ω impedances,
while the second load is delta connected and made up of three 9∠75◦ Ω impedances. Use a phase
voltage of Va = 277.13∠0◦ V (since Va = 480/

√
3 V = 277.13 V). Determine the following:

(a) Total (i.e., equivalent) load impedance per phase (i.e., line to neutral).

(b) The line current Ia at the generator terminal.

(c) The total complex power provided by the generator.

PROBLEM 2.28

Two three-phase generators are supplying the same load bus, as shown in Figure P2.28. Both
generators produce balanced voltages of abc phase sequence. Use Va = 120∠0◦ V and V′

a =
115∠0◦ V as the reference voltages for the left and right generators in the figure, respectively. If a
balanced three-phase load is connected in the middle of the bus, as shown in the figure, determine
the following:

(a) The phasor currents Ia, I
′
a, and I

′′
a. (Hint: First convert the delta-connected load into its

equivalent wye-connected load and then apply the nodal analysis method using the line-to-
neutral approach since both the generators and the load are balanced.)
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Figure P2.28 Circuit of Problem 2.28.

Figure P2.30 Circuit of Problem 2.30.

(b) The total complex power supplied to the load.

(c) The line-to-line voltage at the terminals of the load.

(d) The complex power supplied by the left generator to the bus.

(e) The complex power supplied by the right generator to the bus.

PROBLEM 2.29

Solve Example 2.5, but use the following data. Let Zab = 6− j6 Ω, Zbc = 0+ j6 Ω, Zca = 6+ j6 Ω,
and use a line impedance ZL = 3+ j3 Ω per phase. Use Vab = 120∠0◦ V, Vb′c′ = 120∠240◦ V,
and Vc′a′ = 120∠120◦ V as the balanced source voltages.

PROBLEM 2.30

Consider Figure P2.30 and assume that the balanced delta-connected load is made up of three
impedances of Zφ = 27.71∠− 40◦ Ω per phase and that source voltages Va, Vb, and Vc are
277.1∠0◦, 277.1∠−120◦, and 277.1∠120◦ V, respectively. Determine the following:

(a) The load voltages V1, V2, and V3.

(b) The load (phase) currents I1, I2, and I3.

(c) The line currents IL1, IL2, and IL3.
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Figure P2.32 Circuit of Problem 2.32.

PROBLEM 2.31

Solve Example 2.7, but use the following data. Assume that Vab = 480∠0◦ V, and that the load
impedances Zab, Zbc, and Zca are given as 20∠30◦, 10∠−60◦, and 15∠45◦ Ω, respectively.

PROBLEM 2.32

A balanced and delta-connected, three-phase voltage source is supplying power to a balanced and
delta-connected, three-phase load, as shown in Figure P2.32. The source voltages Vab, Vbc, and
Vca are 208∠30◦, 208∠270◦, and 208∠150◦ V, respectively. The load impedances are Zab = Zbc
= Zca = 2+ j3 Ω. Determine the following:

(a) The load (phase) currents Iab, Ibc, and Ica.

(b) The line currents Ia, Ib, and Ic.

(c) The total real and reactive power supplied to the load.

(d) The total complex power supplied to the load.

PROBLEM 2.33

An unbalanced, three-phase, three-wire, wye-connected load is connected to a balanced, three-
phase, wye-connected source, and only two wattmeters are used and connected, as shown in
Figure P2.8. The line-to-neutral source voltages Va, Vb, and Vc are 220∠30◦, 220∠270◦, and
220∠150◦ V, respectively, and the line currents Ia, Ib, and Ic are 71.62∠− 11◦, 61.28∠16.2◦,
and 13.26∠133.6◦ A, respectively. Determine the following:

(a) The power recorded on each wattmeter.

(b) The total power absorbed by the load.

PROBLEM 2.34

Consider Figure P2.32 and assume that a delta-connected source is supplying power to a delta-
connected balanced load. If the generator has Vab = 480∠30◦ V, Vbc = 480∠270◦ V, Vca =
480∠150◦ V, and load impedances Zab = Zbc = Zca = 5+ j5 Ω, determine the following:

(a) The load (phase) currents Iab, Ibc, and Ica.

(b) The line currents Ia, Ib, and Ic.

(c) The total real and reactive power supplied to the load.
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(d) The total complex power supplied to the load.

(e) Draw the current and voltage diagrams.

PROBLEM 2.35

Consider Figure P2.32 and assume that a delta-connected source is supplying power to a delta-
connected balanced load. If the generator has Vab = 380∠30◦ V, Vbc = 380∠270◦ V, Vca =
380∠150◦ V, and load impedances Zab = Zbc = Zca = 2+ j3 Ω, determine the following:

(a) The load (phase) currents Iab, Ibc, and Ica.

(b) The line currents Ia, Ib, and Ic.

(c) The total real and reactive power supplied to the load.

(d) The total complex power supplied to the load.

(e) Draw the current and voltage diagrams.

PROBLEM 2.36

Assume that a three-phase, 480 V power line is supplying a delta-connected load and that Vab =
480∠30◦ V, Vbc = 480∠270◦ V, Vca = 480∠150◦ V. Also assume that the current in each phase
of the delta-connected load is 10 A at a 0.85 lagging power factor. If Van is used as a reference
phasor and the phase sequence is abc, determine the following:

(a) Draw the circuit.

(b) The line-to-line voltages of Vab, Vbc, and Vca.

(c) The line-to-neutral voltages of Van, Vbn, and Vcn.

(d) All phase and line currents.

(e) Draw the phasor diagram for the phase and line voltages.

(f) Draw the phasor diagram for the phase and line currents.

PROBLEM 2.37

Assume that a three-phase, 380 V power line is supplying a delta-connected load and that Vab =
380∠30◦ V, Vbc = 380∠270◦ V, Vca = 380∠150◦ V. Also assume that the current in each phase
of the delta-connected load is 5 A at a 0.75 lagging power factor. If Van is used as a reference
phasor and the phase sequence is abc, determine the following:

(a) Draw the circuit, as given.

(b) The line-to-line voltages of Vab, Vbc, and Vca.

(c) The line-to-neutral voltages of Van, Vbn, and Vcn.

(d) All phase and line currents.

(e) Draw the phasor diagram for the phase and line voltages.

(f) Draw the phasor diagram for the phase and line currents.
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PROBLEM 2.38

A 2.4 kV, single-phase circuit supplies a load of 250 kW at a lagging power factor, and the load
current is 160 A. If it is necessary to improve the power factor, determine the following:

(a) The uncorrected power factor and reactive load.

(b) The new corrected power factor after installing a shunt capacitor unit with a rating of 250
kvar.

PROBLEM 2.39

A three-phase, 50 hp, 60 Hz, 480 V, wye-connected induction motor has a full-load efficiency of
0.85%, and a lagging power factor of 0.75. If it is required to correct the power factor of the load
to a lagging power factor of 0.95 by connecting three capacitors, find the following:

(a) The rating of such a capacitor bank, in kVA.

(b) The capacitance of each single-phase unit, if the capacitors are connected in delta, in µF.

(c) The capacitance of each single-phase unit, if the capacitors are connected in wye, in µF.

PROBLEM 2.40

Redo Example 2.4 (except part c) by using MATLAB. Use the other given values and determine
the following:

(a) Write the MATLAB program script.

(b) Give the MATLAB program output.

PROBLEM 2.41

Redo Example 2.6 by using MATLAB. Use the other given values and determine the following:

(a) Write the MATLAB program script.

(b) Give the MATLAB program output.



3 Magnetic Circuits

3.1 INTRODUCTION
Today, the phenomenon of magnetism1 is used in the operation of a great number of electrical
apparatus including generators, motors, transformers, measuring instruments, televisions, radios,
telephones, tape recorders, computer memories, computer magnetic tapes, car ignition tapes, re-
frigerators, air conditioners, heating equipment, and power tools. A material that has the ability to
attract iron and steel is called a magnet. Magnets can be permanent or temporary, based on their
ability to retain magnetism. Figure 3.1a shows a permanent (bar) magnet and its magnetic field. The
magnetic flux (Φ) lines (i.e., the magnetic lines of force2) are continuous, and come from the north
pole and go toward the south pole. The direction of this field can be established using a compass
(which is simply a freely suspended magnetized steel needle) since the marked end3 of a compass
needle always points to the earth’s magnetic north pole. As shown in Figure 3.1b, when a perma-
nent magnet is placed near a metal, the magnetic lines go through the metal and magnetize it. If two
permanent magnets are located close together as shown in Figure 3.1c, the magnets are attracted
toward each other since the directions of the magnetic lines of force of both magnets are the same.
However, if the two magnets are located in the opposite direction as shown in Figure 3.1d, the two
magnets are repelled and forced apart since the magnetic lines of force go from north to south and
are opposing.

3.2 MAGNETIC FIELD OF CURRENT-CARRYING CONDUCTORS
As illustrated in Figure 3.2a, when a conductor carries an electric current I, a magnetic field is
created around the conductor.4 The direction of magnetic lines of force (or field) is determined
using Ampère’s right-hand rule, which is illustrated in Figure 3.2c. It shows that if the conductor is
held in the right hand with the thumb pointing in the direction of the current flow, the fingers then
point in the direction of the magnetic field around the conductor. Thus, the conversion of energy
between mechanical and electrical forms is achieved through magnetic fields.

Figure 3.2b shows the magnetic fields around a conductor carrying current toward the reader
and away from the reader, respectively. In the figure, the symbol “dot in a circle” denotes a cross-
sectional view of a conductor carrying current toward the reader, while the symbol “+ in a circle”
denotes the current flowing away from the reader. Figure 3.2d illustrates the magnetic field around
a coil made up of two parallel conductors. Similarly, Figure 3.2e and f shows the magnetic fields

1The phenomenon of magnetism has been recognized since 600 BC (by the ancient Greeks). However, the first experimental
work was performed in the sixteenth century by the English physician, Gilbert, who discovered the existence of a magnetic
field around Earth. Also, Oersted recognized that current-carrying conductors could have magnetic effects. Further studies,
done by Ampère, on the magnetic field around current-carrying loops, led to the theory of magnetism to a great extent.
This and other experiments that were performed by Henry and Faraday established the foundation for the development of
modern electrical machinery.

2It is interesting to note that the lines of force in reality do not exist, but the concept is sometimes beneficial in describing
the properties of magnetic fields.

3According to the rule of magnetic attraction and repulsion, unlike magnetic poles attract and like poles repel; therefore, the
marked end of the compass needle is really a south pole.

4Oersted discovered a definite relationship that exists between electricity and magnetism in 1819.

DOI: 10.1201/9781003129745-3 50

https://doi.org/10.1201/9781003129745-3


Magnetic Circuits 51

Figure 3.1 Magnetic field of (a) single permanent magnet, (b) metal in the vicinity of a permanent magnet,
(c) two permanent magnets with unlike poles, and (d) two permanent magnets with like poles.

Figure 3.2 Magnetic lines of field (a) around a current-carrying conductor, (b) around a current-carrying
conductor toward the reader and away from the reader, (c) determined by using Ampère’s right-hand rule, (d)
around two parallel conductors, (e) around four conductors all carrying current away from the reader, and (f)
around four conductors all carrying current toward the reader.
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Figure 3.3 Magnetic field of a current-carrying coil.

Figure 3.4 The magnetic circuit of a two-pole generator.

around a coil made up of four conductors all carrying current away from the reader and toward the
reader, respectively.

Figure 3.3 shows a current-carrying coil that is formed by wrapping a conductor (or wire) on a
hollow cardboard or fiber cylinder. The magnetic lines of force (i.e., flux) are concentrated within
the cylinder. Each turn of the wire develops a magnetic field in the same direction. Because the
direction of current flow is the same in all turns of the wire, the resultant magnetic fields generated
inside the coil are all in the same direction. The polarity of such a coil can be found using the right-
hand rule, as illustrated in Figure 3.3. If the coil is held in the right hand with the fingers pointing
in the direction of the current in the coil, the thumb then points toward the north pole of the coil. In
Figure 3.3, the end of the coil where the flux comes out is the north pole of the coil.

Figure 3.4 shows the magnetic circuit of a two-pole dc generator. A required strong magnetic
field is produced by the two field coils wound around the iron pole cores. As the armature, which is
located on the rotor, is rotating through the magnetic field, an electromotive force (emf) is generated
in the armature conductors. The measure of a coil’s ability to produce flux is called magnetomotive
force (mmf). The mmf of a magnetic circuit corresponds to the emf in an electric circuit. The mmf
of a coil depends on the amount of the current flowing in the coil and the number of turns in the
coil. The product of the current in amperes and the number of turns is called the ampère-turns of
the coil.
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Figure 3.5 Illustration of a magnetic field of (a) a current-carrying coil of N turns and (b) toroidal coil.

3.3 AMPERE’S MAGENTIC CIRCUITAL LAW
Figure 3.5a shows a ring-shaped coil of N turns supplied by a current I. The dotted circular line
represents an arbitrary closed path that has the same magnetic field intensity value H over an ele-
mentary length dl at any location on the path. In contrast, Figure 3.5b shows a magnetic circuit with
a ring-shaped magnetic core called a toroid with a coil wound around the entire core. If a current I
flows through a coil of N turns, a field is created in the toroid.

According to Ampère’s circuital law, the magnetic potential drop around a closed path is bal-
anced by the mmf, giving rise to the field (i.e., the mmf encircled by the closed path). For the aver-
age path at a mean radius r, the magnetic field intensity H is related to its source NI by Ampère’s
circuital law, ∮

H ·dl = F = N × I (3.1)

H × l = N × I (3.2)

H2πr = N × I (3.3)

from which
H =

N × I
2πr

(3.4)

The quantity NI is called the magnetomotive force, and its unit is ampere-turn (A·turn) or ampere
(A) since N has no dimensions.

F = H × l = N × I (3.5)

from which
H =

F
l

A · turns/m (3.6)

H =
NI
l

A · turns/m (3.7)

The magnetic field intensity H describes the field produced by the mmf, and its unit is ampere-turn
per meter. Also, the magnetic field intensity H produces a magnetic flux density B everywhere it
exists. They are related to each other by

B = µH Wb/m2 or T (3.8)
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The value of B depends not only on H (and thus the current) but also on the medium in which H is
located. The SI unit1 of B is weber/m2 (Wb/m2) or tesla (T). The effect of the medium is presented
by its permeability2 µ in henrys/m (H/m). Here, the µ represents the relative ease of establishing a
magnetic field in a given material. The permeability of free space is called µ0 and has a value of

µ0 = 4π ×10−7 H/m (3.9)

which is approximately the same for air. The permeability of any other material with respect to the
permeability of free space is called its relative permeability µr. Therefore,

µr =
µ
µ0

(3.10)

The relative permeability µr is dimensionless and equals 1.0 for free space. The permeability of any
material can be expressed as

µ = µr ×µ0 =
B
H

(3.11)

For materials used in electrical machines, the value of µr can be as high as several thousands.
The larger the value of µr, the smaller the current needed to produce a given flux density B in the
machine. By substituting Equation 3.7 into 3.8, the magnitude of the flux density can be expressed
as

B = µ ×H =
µNI

l
(3.12)

The total flux crossing of a given cross-sectional area A can be found from

Φ =
∫

A
B ·dA (3.13)

where dA is the differential unit of area. Therefore,

Φ = B×A Wb (3.14)

This equation is correct if the flux density vector is perpendicular to the place of area A, and if the
flux density is constant at each location in the given area. For the toroid shown in Figure 3.5b, the
average flux density may correspond to the path at the mean radius of the toroid. Thus, the total
flux3 in the core is

Φ = B×A =
µNIA

l
Wb (3.15)

Φ = Bnr2 =
µNIπr2

l
Wb (3.16)

The product of the winding turns N and the flux Φ that links them is called the flux linkage. Flux
linkage is usually denoted by the Greek letter λ (lambda) and expressed as

λ = N ×Φ Wb (3.17)

1Older units of magnetic flux density (i.e., the flux per unit area) that are still in use include lines/in.2, kilolines/in.2, and
gausses (G). Note that 1 G = 1 Mx/cm2 and 1 T = 10 kG = 104 G. Therefore, if a flux density is given in lines/in.2, it must
be multiplied by 1.55×10−5 to convert it to Wb/m2 or T.

2Permeability, based on Equation 3.8, can be defined as the ratio of change in magnetic flux density to the corresponding
change in magnetic field intensity. Therefore, in a sense, permeability is not a constant parameter but depends on the flux
density or on the applied mmf that is used to energize the magnetic circuit.

3The SI unit for magnetic flux is Webers (Wb). The older unit of flux was the line or Maxwell. Thus, 1 Wb = 108 Mx = 108

lines = 105 kilolines.
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Figure 3.6 (a) A simple magnetic core, (b) its electric circuit, and (c) its magnetic circuit analog.

3.4 MAGNETIC CIRCUITS
Consider the simple magnetic core shown in Figure 3.6a, by substituting Equation 3.5 into 3.15,

Φ = B×A =
µNIA

l

=
NI

l/µA
(3.18)

=
N × I

R

=
F
R

(3.19)

from which
F = Φ×R (3.20)

where R is the reluctance of the magnetic path, and therefore

R =
l

µA
(3.21)

for uniform permeability µ , cross-sectional area A, and mean path length l of the magnetic circuit.
The reluctance1 can also be expressed as

R =
F
Φ

(3.22)

1In the SI system, no specific name is given to the dimension of reluctance except to refer to it as so many units of reluctance.
One can observe from Equation 3.22 that its real dimensions are ampere-turns/weber. In some old literature, the word rels
has been used as the unit of reluctance.
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The reciprocal of the reluctance is called the permeance of the magnetic circuit and is expressed as

P =
1
R

(3.23)

Therefore, the flux given by Equation 3.19 can be expressed as

Φ = F ×R (3.24)

In many aspects, the electric and magnetic circuits are analogous. For example, notice the anal-
ogy between the electric circuit shown in Figure 3.6b and the magnetic circuit shown in Figure
3.6c. The flux in a magnetic circuit acts like the current in an electric circuit. The reluctance in
the magnetic circuit can be treated like the resistance1 in the electric circuit, and the mmf in the
magnetic circuit can be treated like the emf in the electric circuit. Equation 3.20 is often referred to
as Ohm’s law of the magnetic circuit. However, electric and magnetic circuits are not analogous in
all respects. For instance, energy must be continuously provided when a direct current is flowing in
an electric circuit, whereas in the case of a magnetic circuit, once the flux is established, it remains
constant. Similarly, there are no magnetic insulators, only electric insulators.

It is interesting that reluctances and permeances connected in series and parallel are treated in the
same manner as resistances and conductances, respectively. For example, the equivalent reluctance
of n reluctances connected in series with respect to each other is

Req = R1 +R2 +R3 + · · ·+Rn (3.25)

Similarly, the equivalent reluctance of n reluctances connected in parallel with respect to each other
is

1
Req

=
1

R1
+

1
R2

+
1

R3
+ · · ·+ 1

Rn
(3.26)

Alternatively, first the equivalent permeance can found as

Peq = P1 +P2 +P3 + · · ·+Pn (3.27)

and then the equivalent reluctance is determined as

Req =
1

Peq
(3.28)

Equation 3.15 can substituted into Equation 3.17

λ =
µN2IA

l
Wb (3.29)

to see flux linkage is directly proportional to the coil current.
The inductance L of a coil is defined as the flux linkage per ampere of current in the coil and

measured in Henries (H). Therefore,

L =
λ
I

H (3.30)

From Equations 3.21, 3.29, and 3.30, it can be shown that inductance can be related to reluctance as

L =
N2

R
H (3.31)

Alternatively, inductance can be expressed in terms of permeance as

L = N2 ×P H (3.32)

1The resistance of a wire of length e and cross-sectional area A is given by R = l/ρA where ρ is the conductivity of the
material in S/m.
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Example 3.1:

Consider the toroid that is shown in Figure 3.5b with outside and inside radiuses of 5 and 4 cm,
respectively. Assume that 500 turns are wound around the toroid of ferromagnetic material to
produce a total flux of 16.85856×10–5 Wb in the core. If the magnetic field intensity in the core is
1000 A · turns/m, determine the following:

(a) The length of the average flux path in the toroid and the cross-sectional area perpendicular to
the flux.

(b) The flux density in the core.

(c) The required mmf.

(d) The amount of current that must flow in the turns of the toroid.

Solution

1. Since the mean radius r is

r =
r1 + r2

2
=

4+5
2

= 4.5 cm or 4.5×10−2 m

the length of the average flux path is

l = 2πr = 2π(4.5×10−2) = 0.2827 m

Thus the cross-sectional area is

A = π
(

d
2

)2
= π

(
r2 − r1

2

)2
=

π
4
(r2 − r1)

2

=
π
4
(0.05−0.04)2

= 7.854×10−5 m2

2. The flux density in the core is

B =
Φ
A

=
16.85856×10−5 Wb

7.854×10−5 m2

= 21.465 Wb/m2 or 21.465 T

3. Since the magnetic field intensity is given as 1000 A · turns/m, the required mmf is

F = H × l

= (1000 A× turns/m)(0.2827m) = 282.7 A · turns

4. Since
F = N × I

therefore,
I =

F
N

=
282.7A · turns

500turns
= 0.5654A
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Example 3.2:

Resolve Example 3.1 but assume that the toroid is made of plastic. The permeability of plastic is
the same as that for free air. Assume that the total flux amount is the same as before but that the
magnetic field intensity is unknown.

Solution

(a) As before,
r = 4.5×10−2 m, l = 0.2527 m, and A = 7.854×10−5m2

(b) The flux density in the core is still

B = 21.4657 Wb/m2 or 21.4657 T

(c) Since
B = µ0 ×H

the magnetic field intensity in the plastic core is

H =
B
µ0

=
21.4657 Wb/m2

4π ×10−7 H/m
= 1.7081×107 A · turns/m

and since
F = H × l = N × I

or
F = H × l = (1.7081×107 A · turns/m(0.2827 m) = 4,828,870 A · turns

(d) Note
I =

F
N

=
4,828,870 A · turns

500 turns
= 9,658 A

Note that the current required to produce the same amount of flux has increased by almost
210.9 times from that what is required in Example 3.1, when the core is made of soft-steel
casting.

Example 3.3:

Consider the coil wound on the plastic toroidal of Example 3.2 and assume that the plastic ring has
a rectangular cross-section. The thickness of the core is 1 cm. Its outside diameter is 40 cm and the
inside diameter is 30 cm. The coil has 200 turns of round copper wire which has a 3 mm diameter.
Determine the following:

(a) For a current of 50 A, find the magnetic flux density at the mean diameter of the coil.

(b) The inductance of the coil, if the flux density within it is uniform and equal to the amount at
the average diameter.

(c) Assume that the practical equivalent circuit of the coil that is made of R and L of the coil that
is connected in series with each other. If the volume resistivity of copper is 17.2×10−9 Ωm,
find the values of the R and L in the equivalent circuit.

Solution

(a) At the average diameter of the toroid (where the average flux length is located), the magnetic
field intensity in the plastic core is
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H =
NI
2πr

=
(200 turns)× (50 A)

0.35r

= 9095 A/m

B = µ0H

= (4π ×10−7)(9095 A/m)

= 11.43×10−3 Wb/m2

(b) Assuming Bavg = 11.43×10−3 Wb/m2, the average flux is

φ = BA

= (11.43×10−3 Wb/m2[(0.5 m)(0.01 m)]

= 57.15×10−6 Wb

Since
L =

λ
I

=
11.43×10−3 Wb

50

= 0.2286×10−3 H

Alternatively,

R =
l

µ0A

=
2πr
µ0A

=
π(0.35 m)

(4π ×10−7)(0.01×0.05)

= 175×106 A/Wb

L =
N2

R

=
2002 turns

175×106 A/Wb

= 0.2286×10−3 H

(c) At radius r, where 0.15 m < r < 0.20 m, flux density is

B =
µ0NI
2πr

=
(4π ×10−7)(200 turns)I

2π
T

The flux is
φ =

∫ 0.20

0.16
B×0.1dr Wb

λ = Nφ
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=
0.1(4π ×10−7)(2002)

2π
ln
(

0.2
0.15

)

= 0.2301×10−3 H

Error =
0.2301−0.2286

0.2301
×100 = 0.651%

(d)
R =

ρIwire

awire

=
(17.2×10−9 Ωm)200×0.3

(π ×32 ×10−6/4)/4

= 0.1460 Ω

Therefore, the equivalent parameters of an approximate equivalent circuit are R = 0.1360 Ω and
L = 0.2286 mH.

3.5 MAGNETIC CIRCUIT WITH AIR GAP
Air gaps are fundamental in many magnetic circuits currently in use. As shown in Figure 3.4, ev-
ery electromechanical energy converter is made up of two parts: (1) the stator and (2) the rotor
embedded in the air gap of the stator.

As shown in Figure 3.7a, essentially the same flux is present in the magnetic core and the air gap.
To sustain the same flux density, the air gap must have much more mmf than the magnetic core. If
the flux density is high, the magnetic core section of the magnetic circuit may show the saturation
effect. However, the air gap section of the magnetic circuit will remain unsaturated due to the fact
that the B–H curve for the air medium is linear, with a constant permeability.1 In Figure 3.7a, lc
is the length of the magnetic core, and lg is the length of the air gap. Since there is more than one
material involved, such a magnetic circuit is said to be made of a composite structure. Figure 3.7b
shows the equivalent magnetic circuit that has the reluctance of the air gap Rg in series with the
reluctance of the core Rc. Applying Ampère’s law, the required mmf can be found from

F = Hc × lc +Hg × lg (3.33)

N × I = Hc × lc +Hg × lg (3.34)

The resulting flux can be found from

Φ =
N × I

Rc +Rg
(3.35)

where the reluctances for the core and air gap are

Rc =
lc

µ0Ac
=

lc
µ0µrAc

(3.36)

Rg =
lg

µ0Ag
(3.37)

where

1The flux density in the air gap can be easily measured using an instrument known as a Gauss meter. The principle of the
design of such an instrument is known as the Hall effect.



Magnetic Circuits 61

Figure 3.7 (a) A simple magnetic circuit with an air gap, (b) its magnetic circuit analogue, and (c) the fringing
effect of magnetic flux at an air gap.

lc is the mean length of the core

lg is the length of the air gap

Ac is the cross-sectional area of the core

Ag is the cross-sectional area of the air gap

The associated flux densities can be found by

Bc =
Φc

Ac
=

(
µc

lc

)
F (3.38)

and

Bg =
µg

Ag
=

(
µ0

lg

)
F (3.39)

The individual mmf drops in Figure 3.7b can be expressed as

Hc × lc = Φ×Rc (3.40)

Hg × lg = Φ×Rg (3.41)

Substituting Equations 3.40 and 3.41 into Equation 3.33 lead to

F = N × I = Φ(Rc +Rg) (3.42)

If there is an air gap in a magnetic circuit, there is a tendency for the flux to bulge outward (or
spread out) along the edges of the air gap, as shown in Figure 3.7c, rather than to flow straight
through the air gap parallel to the edges of the core. This phenomenon is called fringing and is taken
into account by assuming a larger (effective) air gap cross-sectional area. The common practice is
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Figure 3.8 (a) Magnetic domains oriented randomly, (b) magnetic domains becoming magnetized, and (c)
magnetic domains fully magnetized (lined up) by the magnetic field H.

to use an (effective) air gap area by adding the air gap length to each of the two dimensions that
make up the cross-sectional area. Thus, the new (effective) air gap area becomes

Ag = (a+ lg)(b+ lg) (3.43)

where a and b are the actual core dimensions of a given rectangular-shaped core. The corrected gap
area slightly reduces the gap reluctance. The relative effect of fringing increases with the length of
the air gap.

3.6 BRIEF REVIEW OF FERROMAGNETISM
Magnetic materials that include certain forms of iron and its alloys in combination with cobalt,
nickel, aluminum, and tungsten are called ferromagnetic materials.1 They are relatively easy to
magnetize since they have a high relative permeability µr. These ferromagnetic materials are clas-
sified as hard or soft materials. Soft ferromagnetic materials include most of the soft steels, iron,
nickel, cobalt, and one rare-earth element, as well as many alloys of the four elements. Hard ferro-
magnetic materials comprise the permanent magnetic materials such as alnico (which is iron alloyed
with aluminum, nickel, and cobalt), the alloys of cobalt with a rare-earth element such as samarium,
the copper-nickel alloys, the chromium steels, and other metal alloys.

The atoms of a ferromagnetic material tend to have their magnetic fields closely aligned. Within
the crystals of such materials, there are many tiny (usually of microscopic scale) regions called
domains. In any such given domain, all the atoms are aligned with their magnetic fields pointing in
the same direction. Each domain behaves like a small permanent magnet. However, if the material
is not magnetized, it will not have any flux within it, since each tiny domain is oriented randomly.
This is illustrated in Figure 3.8a where the arrows represent the magnetic-moment direction within
each domain. Notice that the domain alignments may be randomly distributed in three dimensions.
The size of the domains is such that a single crystal may have many domains, each aligned with an
axis of the crystal. If an electric field is applied to such a metal piece, the number of domains aligned
with the magnetic field will increase since the individual atoms within each domain will physically
switch orientation to align themselves with the magnetic field. This, in turn, increases the flux in
the iron as well as the strength of the magnetic field, causing more atoms to switch orientation, as
shown in Figure 3.8b. Figure 3.8c shows when all domains are aligned with the magnetic field, in

1There are also other magnetic materials that are in use: (1) ferromagnetic materials, (2) superparamagnetic materials, and
(3) ferrofluidic materials. The ferromagnetic materials are ferrites, and therefore are made up of iron oxides. They in-
clude permanent magnetic ferrites (e.g., strontium or barium ferrites), manganese–zinc ferrites, and nickel–zinc ferrites.
The superparamagnetic materials are made up of powdered iron (or other magnetic material) particles that are mixed in
a nonferrous epoxy or other plastic material. Permalloy is an example of such a material and is made up of molybde-
num–nickel–iron powder. Finally, the ferrofluidic materials are magnetic fluids that are made up of three components: a
carrier fluid, iron oxide particles suspended in the fluid, and a stabilizer.
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Figure 3.9 Typical magnetization curve showing the behavior of the three regions of domain behavior for a
ferromagnetic core.

which case any further increase in the strength of the field will not cause any change in orientation.
Thus, the material is referred to as saturated. If the material becomes saturated as the magnetizing
field intensity is increased, the flux density changes very little and eventually not at all.1 Figure 3.9
shows a typical dc magnetization curve2 of a ferromagnetic material. It shows the behavior of the
three regions of domain: the linear region, the knee region, and the saturation region. Figure 3.10
shows the magnetization curves of two typical ferromagnetic materials used in the manufacture of
power apparatus.

Consider the magnetic circuit shown in Figure 3.6 and assume that its magnetic core is initially
unmagnetized. Assume that, instead of applying a dc current to the coil, an ac current is applied.
Since the core is initially unmagnetized, the flux in the core is zero. As shown in Figure 3.11a, if
the current in the coil is increased, the flux in the core will increase. As a result, its magnetic field
intensity H will also increase and follow the initial magnetization curve (along Oa) until saturation
is reached. At the saturation point a, the flux density has reached its maximum value Bsat and the
magnetic material is fully saturated. The corresponding value of the magnetic field intensity is Hsat .
If the current is now decreased in the coil, thereby decreasing the magnetizing force (i.e., magnetic
field intensity) H, the initial curve will not be retraced. A different path (along the ab curve) will
be followed indicating that there is a lag or delay in the reversal of domains. (Note that B does not
decrease as quickly as it increased.) This irreversibility is called hysteresis,3 which simply means
that the flux density B lags behind the field intensity H.4 When the current in the coil is zero, that

1If the external magnetic field is removed, the orientation of individual domains will not become totally randomized again
since shifting back the orientation of atoms will need additional energy that may not be available. Therefore, the metal
piece will remain magnetized. Such energy requirement may be fulfilled by applying (1) mmf in the opposite direction,
(2) a large enough mechanical shock, or (3) heat. For example, a permanent magnet can easily be demagnetized if it is hit
by a hammer, dropped, or heated. Such additional energy can cause domains to lose their alignment. Note that at a very
high temperature known as the Curie point, magnetic moments cease to exist, and therefore, the magnetic material loses its
magnetic properties. For example, the Curie point for iron is about 775◦C.

2The terms magnetization curve and saturation curve are used interchangeably in practice.
3The term originates from the Greek word hysterein, meaning to be behind or to lag. It represents the failure to retrace the
initial magnetization curve.

4Since any change of B lags behind the change of magnetizing field intensity H which produces it, there will be an angular
displacement between the rotating mmf wave of the stator winding and the alternating field induced in the rotor iron. As a
result of this, there will be a hysteresis torque whenever the iron is moving relative to the inducing mmf wave. This is the
principle on which small hysteresis motor operation is based.
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Figure 3.10 Magnetization (or B–H) curves of two typical ferromagnetic materials.

is, H is equal to zero, there is still a residual value of magnetic flux density Bres in the core, the
magnitude of which depends on the material. This is called residual flux density or remanence and
in effect creates a permanent magnet. To decrease the flux density B to zero requires a coercive field
intensity (also called coercive force) Hc. Any further increase in H in the reverse direction causes the
magnetic core to be magnetized with the opposite polarity. This is achieved with a reversed current
flow in the coil. Increasing the current in the negative direction further will result in a saturation level
at which point (i.e., point d) it can be assumed that all domains in the magnetic core are aligned in
the opposite direction. As the current or the field intensity H is brought to zero, the magnetic flux
density B in the magnetic core will again be equal to its residual magnetism (at point e). Again, the
direction of the current in the coil has to be reversed to make the magnetic flux density in the core
equal to zero. Therefore, if the process continues in this manner, the hysteresis loop shown in Figure
3.11a will be traced out.

Figure 3.11 shows that for each maximum value of the ac magnetic field intensity cycle, there
is a separate steady-state loop. Therefore, the complete magnetization characteristic is made up of
a set (or family) of loops for different peak values of excitation. In Figure 3.11b, the dashed curve
that connects the tips of the loops is the dc magnetization curve of the magnetic material.

The shape of the hysteresis loop is a function of the type of magnetic material. As stated pre-
viously, magnetically soft materials have very low residual flux density and low coercive field
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Figure 3.11 Typical magnetization curve showing the behavior of the three regions of domain behavior for a
ferromagnetic core.

intensity. Therefore, these materials (such as silicon iron with 3% or 4% Si content) are used in
the manufacture of electric machines and transformers. In such materials, the magnetization can
be changed quickly without much friction. Thus, their hysteresis loops usually have a tall, narrow-
shaped small area. At 50 or 60 Hz, such hysteresis loops have a narrower shape than the ones for
higher frequencies. In other words, the higher the frequency is, the broader the associated hysteresis
loop will be. Therefore, in dc current, the hysteresis loop almost turns into a curve known as the
magnetization curve.

3.7 MAGNETIC CORE LOSSES
When a magnetic material is subjected to a time-varying flux, there is some energy loss in the
material in the form of magnetic losses. Such magnetic losses are also called iron or core losses.1

The cores of the armatures of dc and ac machines, transformers, and reactors are subject to these
core losses. In general, core losses are defined as the sum of hysteresis and eddy-current losses.

3.7.1 HYSTERESIS LOSS

The hysteresis loss is caused by continuous reversals in the alignment of the magnetic domains in
the magnetic core. Succinctly put, the energy that is required to cause these reversals is the hysteresis
loss. The area of the hysteresis loop represents the energy loss during one cycle in a unit cube of the
core material. According to Charles P. Steinmetz, the hysteresis loss can be determined empirically
from

Ph = v× f × kh ×Bn
mW (3.44)

where

v is the volume of ferromagnetic material, m3

f is the frequency, Hz

kh is the proportionality constant depending upon the core material (typically, soft iron, silicon
sheet steel, and permalloy are 0.025, 0.001, and 0.0001, respectively)

Bm is the maximum flux density

n is the Steinmetz exponent, which varies from 1.5 to 2.5 depending upon the core material,
varies from 1.5 to 2.5 (typically, a value of 2.0 is used for estimating purposes).

1No core losses take place in iron cores carrying flux that does not vary with time.
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Figure 3.12 Development of eddy currents in magnetic cores.

3.7.2 EDDY-CURRENT LOSS

Because iron is a conductor, time-varying magnetic fluxes induce opposing voltages and currents
called eddy currents that circulate within the iron core, as shown in Figure 3.12b.1 In the solid iron
core, these undesirable circulating currents flow around the flux and are relatively large because
they encounter very little resistance. Therefore, they produce power losses with associated heating
effects and cause demagnetization. As a result of this demagnetization, the flux distribution in the
core becomes nonuniform since most of the flux is pushed toward the outer surface of the magnetic
material. As shown in Figure 3.12a, the eddy currents always tend to flow perpendicular to the flux
and in a direction that opposes any change in the magnetic field due to Lenz’s law. In other words,
the induced eddy currents tend to establish a flux that opposes the original change imposed by the
source.

To significantly increase the resistance encountered by these eddy currents so that the associated
power losses can be minimized,2 the magnetic core is usually built up from stacking thin steel
sheet laminations, as shown in Figure 3.12c. The surface of such sheet laminations is coated with
an oxide or a very thin layer of electrical insulation (usually an insulating varnish or paper). As
a general rule, the thinner the laminations are, the lower the losses are, since the eddy current
losses are proportional to the square of the lamination thickness. In addition, as previously stated,
the resistivity of steel laminations is substantially increased by the addition of a small amount of
silicon.

1At very high frequencies, the interior of the magnetic core is practically unused because of the large (and circulating) eddy
currents induced and their inhibiting effect. This phenomenon that takes place in magnetic circuits is known as the magnetic
skin effect.

2However, there are devices that are built based on the use of such eddy currents, such as eddy-current brakes and automobile
speedometers (i.e., drag cup tachometers).
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Figure 3.13 Various shapes of steel laminations.

Figure 3.13 shows the various shapes of steel laminations that are in use. The use of laminated
cores makes the actual (or effective) cross-sectional area of the magnetic core being less than the
gross (or apparent) cross-sectional area of the core represented by the stack of laminations. In actual
calculations, this is taken into account by using the following stacking factor:

Stacking factor =
Actual magnetic cross−Sectional area
Gross magnetic cross−Sectional area

(3.45)

As the lamination thickness increases, the stacking factor approaches unity. For example, lamination
thickness ranges from 0.0127 to 0.36 mm with corresponding stacking factors (at 60 Hz) that range
from 0.50 to 0.95. Thus, the stacking factor approaches 1.0 as the lamination and the lamination
surface insulation thicknesses increase. According to Charles P. Steinmetz, the eddy-current loss
can be determined empirically from

Pe = ke × v( f × tl ×Bm)
2 W (3.46)

where

ke is the proportionality constant depending upon the core material

tl is the lamination thickness

The definitions of the other variables are the same as the ones given for Equation 3.44.

Example 3.4:

Consider the magnetic core shown in Figure 3.7a. Assume that it is made up of a square-shaped,
uniform cross-sectional area with an air gap and a core of soft-steel casting. The square-shaped
cross-sectional area of the core is equal to that of the air gap and is 1.4×10–3 m2. The mean length
of flux path through the steel core of the magnetic circuit is 0.4 m and the air-gap length lg is 2 mm
(or 0.002 m). If a flux of 2× 10–3 Wb is needed, determine the coil ampere-turns (i.e., coil mmf)
that are necessary to produce such flux. Neglect the flux fringing at the air gap.
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Solution
Since the fringing of the flux across the air gap is neglected, the cross-sectional areas of the core
and the gap are the same. Thus,

Ac = Ag = 1.4×10−3 m2

Thus, the needed mmf for the air gap is

Fg = Φ×Rg

= (2×10−3 Wb)(1,136,821 A · turns/Wb)

= 2,273.64 A · turns

The flux density in the steel core can be found from

Bc =
Φ
Ac

=
2×10−3 Wb

1.4×10−3 m2 = 1.4286 Wb/m2

From the magnetization curve1 for soft-steel casting shown in Figure 3.10, the corresponding
magnetizing intensity is found as

Hc = 2,200 A · turns/m

Therefore, the required mmf to overcome the reluctance of the core can be found as

F = Hc × lc

= (2,200 A · turns/m)(0.4 m)

= 800 A · turns

Hence, the total required mmf from the coil is

Fcoil = Fg +Fc

= 2,273.64+880

= 3,153.64 A · turns

Example 3.5:

Repeat Example 3.4 assuming that the core is made up of M-19 29 Gage sheets. Use a stacking
factor of 0.90 for the laminations to determine the actual (i.e., the effective) cross-sectional area of
the core. In the air gap, the cross-sectional area of flux is larger than in the iron core. To correct
this fringing in the air gap, add the gap length to each of the two dimensions that make up its area.

Solution
From Equation 3.45, the actual area is found as

Ac,acutal = (Ac,gross)( fstacking)

1In practice, it is also referred to as the B–H curve.
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Figure 3.14 Illustration for Example 3.6.

= (1.4×10−3 m2)(0.90)

= 1.26×10−3 m2

Thus, the flux density in the core is

Bc =
Φ

Ac,actual

=
2×10−3 Wb

1.26×10−3 m2

= 1.5873 Wb/m2

From the magnetism curve for M-19 Gage sheets shown in Figure 3.10, the corresponding magne-
tizing intensity is found as

Hc = 2700 A · turns/m

Thus, the required mmf to overcome the reluctance of the core is

Fc = Hc × lc

= (2700 A · turns/m)(0.4 m)

= 1080 A · turns

At the air gap, the cross-sectional area increases due to the flux fringing. Therefore, the new (i.e.,
effective) area in the air gap can be found by adding the air-gap length to each of the two dimensions
which make up the square-shaped cross-sectional area, as shown in Figure 3.14. Thus, the new
air-gap area is found from

Ag,new = (a+ lg)(b+ lg)

but a = b, since the area is a square. Therefore,

Ag,new = (a+ lg)2 (3.47)

where
a = (Ag,old)

1/2 = (Ac,gross)
1/2 (3.48)

Hence,

Ag,new =
[
(Ag,old)

1/2 + lg
]2

(3.49)
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Thus
Ag,new =

[
(1.4×10−3)1/2 +(0.002)

]2

Therefore, the resulting reluctance of the air gap is

Rg =
lg

µ0 ×Ag,new

=
2×10−3 m

(4π ×10−7)(1.7153×103 m2)

= 927,854.9 A · turns/Wb

Hence, the required mmf to overcome the reluctance of the air gap is

Fg = Φ×Rg

= (2×10−3 Wb)(927,854.9 A · turns/Wb)

= 1855.7 A · turns

Thus, the total mmf required from the coil is

Fcoil = Fg +Fc

= 1855.7+1080

= 2935.7 A · turns

Alternatively, the permeability of the core is calculated as

µc =
Bc

Hc

=
1.5873 Wb/m2

2,700 A · turns/m

= 58.7889×10−5 Wb/A · turns m (= H/m)

Thus, the reluctance of the core is

Rc =
lc

µc ×Ac,actual

=
0.4 m

(58.7889×10−5)(1.26×10−3 m2)

≈ 540,000.4 A · turns/Wb

Therefore, the total reluctance is
Rtot = Rc +Rg

= 540,000.4+927,854.9

= 1,467,855.3 A · turns/Wb

Hence, the total required mmf from the coil is

Fcoil = Rtot ×Φ

= (1,467,855.3)(2×10−3)

= 2935.71 A · turns
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Figure 3.15 (a) Magnetic core for Example 3.6 and (b) its equivalent circuit (analog).

Example 3.6:

Consider the solid ferromagnetic core shown in Figure 3.15a. The depth of the solid core is 5 cm.
Assume that the relative permeability of the core is 1000 and remains constant and that the current
value in the coil is 4 A. Ignore the fringing effects at the air gap and determine the following:

(a) The equivalent circuit of the given core shown in Figure 3.15a.

(b) The individual values of all reluctances.

(c) The value of the total reluctance of the core.

(d) The value of the total flux that exists in the core.

(e) The individual value of each flux that exists in each leg of the core.

(f) The value of flux density in each leg.

Solution

(a) The equivalent circuit is shown in Figure 3.15b.

(b) The reluctance values are
R1 =

l1
µ ×A1

=
l1

µr ×µ0 ×A1

=
2[(0.05/2)+0.15+0.05]+0.20
1,000(4π ×10−7)(0.10×0.05)

= 31,799.16 A · turns/Wb

R3 = R1 = 206,901.4 A · turns/Wb

R4 =
l4

µr ×µ0 ×A4

=
0.0002

1(4π ×10−7)(0.10×0.05)

= 31,830.99 A · turns/Wb

(c) The total reluctance of the core is

Rtot =
R3(R2 +R4)

R2 +R3 +R4

= 48,645.4 A · turns/Wb
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(d)
Φtot =

N × I
Rtot

=
100×4

48,645.4

= 8.2228×10−3 Wb

(e)
Φ1 = Φtot = 8.2228×10−3 Wb

Φ2 = Φtot

(
R3

R2 +R3 +R4

)

= 6.29×10−3 Wb

Φ3 = Φtot

(
R2

R2 +R3 +R4

)

= 9.67×10−4 Wb

(f)
B1 =

Φ1

A1

=
0.0082228
0.0025 m2

= 3.289 Wb/m2

B2 =
Φ2

A2

=
0.00629

0.005 m2

= 1.258 Wb/m2

B3 =
Φ3

A3

=
0.000967

0.0025 m2

= 0.387 Wb/m2

Example 3.7:

Figure 3.16a shows a cross section of the magnetic structure of a four-pole dc machine. On each of
the four stator poles, there is a coil with equal turns. Since the four coils are connected in series, all
carry the same current. The stator poles and rotor are made up of laminations of silicon steel sheets,
while the stator yoke is made up of cast steel. Based on the given information, do the following:

(a) Draw an equivalent magnetic circuit.

(b) Derive an equation to determine the mmf produced by each winding.

Solution

(a) The equivalent magnetic circuit of the dc machine is shown in Figure 3.16b. In the figure, the
subscripts r, s, p, and g denote rotor, stator yoke, stator pole, and air gap, respectively. Since
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Figure 3.16 (a) Magnetic structure of a four-pole dc machine and (b) its equivalent circuit.

the magnetic structure is symmetric, an analysis of one-quarter is sufficient. Therefore, the
mmf produced by each winding is F = NI and provides the required flux on a per-pole basis.
If the flux in the air-gap region is known, the flux densities in all sections of the machine can
be found.

(b) As can be observed in Figure 3.16a, the flux supplied by each pole is the same in the pole, the
pole face, and the air-gap area. Because the mmf drop in both halves of the yoke or rotor must
be the same, the flux is divided equally when it flows through the stator yoke or the rotor. The
equivalent magnetic circuit of the dc machine can be represented in terms of the reluctances,
as shown in Figure 3.16b. The required mmf per pole can be determined by using Ampere’s
law for any one of the flux paths shown in Figure 3.16b. Therefore,

2F = Φ(2Rp +2Rg)+
Φ
2
(Rr +Rs) (3.50)
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or
F = Φ[(Rp +Rg)+0.25(Rr +Rs)] (3.51)

where
Rp is the reluctance of the stator pole

Rg is the reluctance of the air gap

Rr is the reluctance of the rotor

Rs is the reluctance of the stator yoke

Thus, the flux Φ is known and the reluctance of the magnetic circuit can be calculated from
its physical dimensions and known permeability.

3.8 DETERMINING FLUX FOR A GIVEN MMF
In the previous examples, the problem was as follows: given a magnetic circuit, find the mmf re-
quired to produce a given flux. The nonlinearity of iron presents the following more difficult prob-
lem: given an applied mmf, find the flux in a magnetic circuit. This problem can be solved by the
following methods:

• The trial-and-error method

• The graphical method

• The magnetization curve method

3.8.1 TRIAL-AND-ERROR METHOD

In the trial-and-error method, a value for Φ is selected and the corresponding mmf is computed. It
is compared with NI, then a new value of Φ is selected and the corresponding new mmf value is
computed. This procedure is repeated until the determined mmf is equal (or almost equal) to NT .

3.8.2 GRAPHICAL METHOD

This procedure is also called the load line method. Consider the magnetic circuit shown in Figure
3.7a. For a magnetic circuit with a core length lc and an air-gap length lg, for a given value of mmf,

F = NI = HclC +Hglg (3.52)

since
Hg =

Bg

µ0
(3.53)

Substituting it into Equation 3.52,

NI = Hclc +
Ng

µ0
lg (3.54)

and rearranging Equation 3.54,

Bg = Bc =−µ0

(
lc
lg

)
Hc +

NIµ0

lg
(3.55)

Equation 3.52 represents a straight line since it is in the form of

y = mx+ c (3.56)
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The resulting straight line is called the loadline and can be plotted on the magnetization (i.e., the
B–H) curve of the core. The slope of such a line can be expressed as

m =−µ0

(
Ic

lg

)
(3.57)

The intersection of this line on the B ordinate is

c =
NIµ0

lg
(3.58)

Also, its intersection on the H axis is

H =
NI
lc

(3.59)

The intersection of the load line with the magnetization curve provides the value of Bc. Therefore,
the flux is found from

Φ = BcA (3.60)

An alternative method of developing the load line is based on two steps:

Step 1. Assume that all the mmf is in the air gap, that is, Hc = 0. Therefore, the air-gap flux density
can be expressed as

Bg =

(
NI
lg

)
µ0 (3.61)

The resulting value of Bg is the intersection of the load line on the B ordinate.

Step 2. Assume that all the mmf is in the core, that is, Bg = 0. Thus, the magnetizing intensity of
the core can be expressed as

Hc =
NI
lc

(3.62)

The resulting value of Hc is the intersection of the load line on the H axis.

3.8.3 MAGNETIZATION CURVE METHOD

In this method, various values of flux Φ are chosen and the corresponding values of mmf are de-
termined. The values of Φ versus mmf are plotted. The resulting curve is called the magnetization
curve of the apparatus. Finally, using the magnetization curve and the given value of current I, the
value of flux Φ corresponding to F = NI is determined.

Example 3.8:

Consider the magnetic core shown in Figure 3.7a. Assume that it is made up of a square-shaped,
uniform cross-sectional area with an air gap and that a core of soft-steel casting. The square-shaped
cross-sectional area of the core is equal to that of the air gap and is 1.5×10–3 m2. The mean length
of the flux path through the steel core of the magnetic circuit is 0.5 m, and the air-gap length is
3 mm (or 0.003 m). If the coil has 500 turns and the coil current is 7 A, find the flux density in the
air gap. Neglect the flux fringing at the air gap and use the trial-and-error method.

Solution
The following steps can be used:

• Step 1. Assume a flux density (since B = Φ/A).

• Step 2. Find He (from the B–H curve) and Hg (from Hg = Bg/µ0).
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Table 3.1
Table for Example 3.9

B Hc Hg Fc Fg F I

1.3 1630 1.0345×10–6 815 3103.5 3918.5 7.84
1.2 1280 0.9549×10–6 640 2864.8 3504.8 7.0

• Step 3. Find Fc (from Fc = Hclc), Fg (from Fg = Hglg), and F (from F = Fc +Fg).

• Step 4. Find I from I = F/N.

• Step 5. If the found I is different from the given current, select a new appropriate value for the flux
density. Continue this process until the calculated value of current is close to the given current
value of 7 A.

Note that if all the mmf were only in the air gap, the resulting flux density would be

B =
NIµ0

lg
= 1.4661 Wb/m2

However, since this is not the case, the actual flux density will be less than this value. This calculation
process is illustrated in Table 3.1. The value of the flux is found from

Φ = BgAg = BcAc = (1.2 Wb/m2)(1.5×10−3 m2) = 0.0018 Wb

Example 3.9:

Solve Example 3.9 using the graphical method.

Solution
The intersection of the load line on the B ordinate is found using Equation 3.58 as

cc =
NIµ0

lc

=
(500 turns)(7 A)(4π ×10−7)

0.003 m
= 1.4661 A · turns/m

The intersection of this line on the H axis is

Hc =
NI
lc

=
(500 turns)(7 A)

0.5 m
= 7000 A · turns/m

Its slope is

m =−µ0

(
lc
lg

)

or
m = (4π ×10−7)

(
0.5 m

0.003 m

)
= 2094×10−4
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Figure 3.17 B–H curves for the two materials.

As shown in Figure 3.17, the intersection of the load line with the magnetization curve gives the
value of flux density in the air gap as

Bg = Bc = 1.2 Wb/m2

Thus, the value of flux is found from

Φ = BcAc = BgAg

= (1.2 Wb/m2)(1.5×10−3 m2)

= 0.0018 Wb

3.9 PERMANENT MAGNETS
In general, after the removal of the excitation current, all ferromagnetic cores retain some flux den-
sity called the residual flux density Br. To return the magnetic core to its original state, it has to be
demagnetized by applying the magnetizing field intensity in the opposite direction. The value of
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the field intensity needed to decrease the residual flux density to zero is called the coercive force.
Materials suitable for permanent magnets are known as magnetically hard materials because they
are difficult to magnetize, but have high residual flux density and coercive force. The various cat-
egories of permanent magnet materials include (1) ductile metallic magnets, such as Cunife; (2)
ceramic magnets, such as Indox; (3) brittle metallic magnets, such as Alnico (cast and sintered); and
(4) rare-earth cobalt magnets, such as samarium-cobalt. Among the many applications of perma-
nent magnets are loudspeakers, small generators, magnetic clutches and couplings, measuring in-
struments, magnetrons, television-focusing units, video recording, and information storage in com-
puters.

In magnet design, the shape of a permanent magnet affects the amount of flux produced. Equal
volumes of magnetic core will provide different amounts of flux as a function of their shape. For
example, the most common shapes of Alnico magnets are rods, bars, and U shapes. However, since
these materials are difficult to machine, their shapes are usually made simple, and soft-iron parts are
added to the magnetic circuit in the more complex shapes, as shown in Figure 3.18a. It is interesting
to note that such a magnet would be excited by first placing a magnetically soft-iron part in the air
gap. This part, known as the keeper, is removed during use and is replaced afterward.

Figure 3.18b shows the demagnetization curve and corresponding energy-product curve (or B–H
curve) of the permanent magnet, for the magnetic circuit shown in Figure 3.18a. Ignoring the reluc-
tance of the soft-iron parts and applying Ampère’s law

Hclc +Hg + lg = 0 (3.63)

where Hc is the magnetizing force within the core. If fringing at the air gap is ignored, the flux
density inside the core is equal to that in the air gap. Therefore,

Bc = Bg = µ0Hg =−µ0H0

(
lc
lg

)
(3.64)

This is the equation of a straight line. Its intersection with the magnetization characteristic provides
the optimum operating point P,1 as shown in Figure 3.18b. It determines the values of Bc and Hc
for the permanent magnet. Here, having an air gap has the same effect as inserting a negative field
inserted into the magnetic circuit. From Equation 3.61, the magnetizing force of the magnet can be
expressed as

Hc =−Hg

(
lg
lc

)
(3.65)

which can also be expressed in terms of the flux density Bc of the magnet by

Hc =−
BcAclg
µ0Aglc

(3.66)

Because magnetic leakage is negligibly small, the flux has to be the same in all parts of the magnetic
circuit. Therefore,

Φ = BcAc = BgAg (3.67)

Furthermore, based on the assumption that the cross-sectional area of the magnet is uniform, the
volume is found from

Aclc = Ac

(
−lg

Hg

Hc

)
=−Aglg

Hg

Hc
(3.68)

1To establish the maximum energy in the air gap, the point of operation must correspond to the maximum energy product of
the magnet.
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Figure 3.18 (a) Typical configuration made up of a permanent magnet, soft-iron pole pieces and air gap; (b)
typical demagnetization and associated energy-product curves.

if fringing and leakage are ignored. Also note that the product of B and H represents the energy
density within the core. Thus, at the maximum energy density, the volume of the core is

Volc =

(
B2

g

µ0BcHc

)
(Volg) (3.69)

where Volg is the volume of the air gap.

PROBLEMS

PROBLEM 3.1

Consider the toroid shown in Figure 3.5b with inside and outside radii at 6 and 7 cm, respectively.
Assume that 250 turns are wound around the toroid of soft-steel casting to produce a total flux
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of 8.5609× 10–5 Wb in the core. If the magnetic field intensity in the core is 1000 Aturns/m,
determine the following:

(a) The length of the average flux path in the toroid and the cross-sectional area perpendicular
to the flux.

(b) The flux density in the core.

(c) The required mmf.

(d) The amount of current that must flow in the turns of the toroid.

PROBLEM 3.2

Consider the results of Problem 3.1 and determine the following:

(a) The flux linkage in the core.

(b) The inductance of the coil by using Equation 3.30.

(c) The inductance of the coil by using Equation 3.31.

(d) The permeance of the coil.

PROBLEM 3.3

Consider the magnetic core shown in Figure 3.7a. Assume that it is made up of a squareshaped,
uniform cross-sectional area with an air gap and a core of soft-steel casting. The square-shaped
cross-sectional area of the core is equal to that of the air gap and is 2×10–3 m2. The mean length
of the flux path through the steel core of the magnetic circuit is 0.6 m and the air-gap length lg is
3 mm (or 0.003 m). If a flux of 3×10–3 Wb is needed, determine the coil ampere-turns (i.e., coil
mmf) necessary to produce such flux. Neglect the flux fringing at the air gap.

PROBLEM 3.4

Solve Problem 3.3 but assume that the core is made up of M-19 29 Gage sheets. Therefore, use
a stacking factor of 0.95 for the laminations to determine the actual (i.e., the effective) cross-
sectional area of the core. The cross-sectional area of the flux in the air gap is larger than the
one in the iron core. To correct this fringing in the air gap, add the gap length to each of the two
dimensions which make up its area.

PROBLEM 3.5

Consider Example 3.4 but ignore the iron reluctance. Find the amount of flux that flows in the
magnetic circuit if the mmf of the coil is

(a) 2000 A·turns.

(b) 1000 A·turns.

PROBLEM 3.6

Assume that the magnetic core shown in Figure 3.6a is made up of soft-steel casting with a
cross-sectional area of 200 cm2 and an average flux length of 100 cm. If the coil has 500 turns,
determine the following:

(a) The amount of current required to produce 0.02 Wb of flux in the core.
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(b) The relative permeability of the core at the current level found in Part (a).

(c) The reluctance of the core.

PROBLEM 3.7

Solve Problem 3.6 but assume that the amount of flux in the core is 0.03 Wb.

PROBLEM 3.8

Solve Problem 3.6 but assume that the cross-sectional area of the core is 50 cm2 and that the
average flux length is 50 cm. Also assume that the amount of flux needed is 55× 10–4 Wb and
that the coil has 200 turns.

PROBLEM 3.9

Solve Problem 3.6 but assume that the magnetic core is made up of M-19 29 Gage sheets with an
actual cross-sectional core area of 25 cm2 and an average flux length of 60 cm. The amount of
flux that is needed in the core is 39×10–4 Wb and that the coil has 350 turns.

PROBLEM 3.10

Solve Problem 3.6 but assume that the cross-sectional area of the core is 100 cm2 and that the
average flux length is 70 cm. Also assume that the amount of flux needed is 125×10–4 Wb and
that the coil has 800 turns.

PROBLEM 3.11

Solve Problem 3.10 but assume that the magnetic core is made up of M-19 29 Gage sheets rather
than soft-steel casting. Use an actual cross-sectional core area of 100 cm2.

PROBLEM 3.12

Solve Problem 3.10 but assume that the coil has 200 turns rather than 800 turns.

PROBLEM 3.13

Solve Problem 3.6 but assume that the cross-sectional area of the core is 150 cm2 and that the
average flux length is 60 cm. Also assume that the amount of flux needed is 25× 10–3 Wb and
that the coil has 500 turns.

PROBLEM 3.14

Solve Problem 3.13 but assume that the magnetic core is made up of M-19 29 Gage sheets rather
than soft-steel casting. Use an actual cross-sectional area of 150 cm2.

PROBLEM 3.15

Solve Problem 3.13 but assume that the coil has 250 turns rather than 500 turns.

PROBLEM 3.16

Consider the magnetic core shown in Figure 3.7a. Assume that it is made up of M-19 29 Gage
steel laminations with a stacking factor of 0.9. Let the gross cross-sectional area of the core of
0.02 m2 be equal to the cross-sectional area at the air gap, ignoring the fringing of fluxes around
the gap. Also let the lengths of the gap and the average flux path in the iron be 0.001 in. and
0.4 m, respectively. Assume that the coil has 2000 turns and determine the following:
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(a) The current needed to produce a flux of 0.03 Wb in the air gap, ignoring iron reluctance.

(b) Repeat Part (a) without ignoring iron reluctance.

PROBLEM 3.17

Assume that a magnetic circuit made up of soft-steel casting has a uniform cross-sectional area
containing an air gap, as shown in Figure 3.7a. Let the cross-sectional areas of iron core and
air gap be 1.5× 10–3 m2, ignoring the fringing of fluxes across the air gap. If the lengths of the
average flux path in the iron and the gap are 0.4 and 0.002 m, respectively, determine the coil
mmf to produce a flux of 2.5×10–3 Wb.

PROBLEM 3.18

18 Assume that a magnetic circuit of uniform cross-sectional area of 1.75× 10–3 m2 has an air
gap, and that the cross-sectional areas of the core and the air gap are the same. Ignore any effects
of fringing around the gap. The magnetic core is made up of M-19 29 Gage sheets, the average
length of flux path through the steel part of the magnetic circuit is 0.6 in., and the air-gap length
is 2× 10–3 m. The permeability of air is 4π × 10–7 H/m. If a flux of 3× 10–3 Wb is needed,
determine the following:

(a) Air-gap reluctance.

(b) Air-gap mmf.

(c) Flux density in the air gap.

(d) Flux density in the iron.

(e) Field intensity in the iron.

(f) mmf in the iron.

(g) mmf in the coil.

(h) The required current in the coil, if the coil has 3000 turns.

PROBLEM 3.19

Consider Problem 3.18 and assume that the uniform cross-sectional area is 1.5× 10–3 m2, the
average length of flux path through the core is 0.4 m, and the air-gap length is 2.5× 10–3 m.
Assume that the core is made up of soft-steel casting and that the permeability of air is 4π ×10–7

H/m and that the coil has 3000 turns. If a flux of 2×10–3 Wb is needed, answer the questions in
Problem 3.18.

PROBLEM 3.20

Consider the magnetic core shown in Figure P3.20 and notice that three sides of the core are of
uniform width, whereas the fourth side is somewhat thinner. The depth of the core into the page
is 10 cm. The coil has 300 turns, and the relative permeability of the core is 2000. Find the flux
that will be produced in the core by a 5 A input current.

PROBLEM 3.21

Consider the magnetic core given in Problem 3.20 and assume that there is a small gap of 0.06 cm
at point A (i.e., at midpoint of l1 distance) shown in Figure P3.20. Assume that due to fringing,
the effective cross-sectional area of the air gap has increased by 6%. Use the given information
here and in Problem 3.20 and determine:
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Figure 3.19 Magnetic core for Problem 3.20.

Figure 3.20 Magnetic core for Problem 3.22.

(a) The total reluctance of the flux path (i.e., including the iron core and the air gap).

(b) The current necessary to produce a flux density of 1 Wb/m2 in the air gap.

PROBLEM 3.22

Consider the magnetic core shown in Figure 3.19 and notice that three sides of the core are of
uniform width, whereas the fourth side is somewhat thinner. The depth of the core into the page
is 15 cm. The coil has 250 turns and the relative permeability of the core is 2500. Find the amount
of flux that will be produced in the core by a 10 A input current.

PROBLEM 3.23

Consider the magnetic core given in Problem 3.22 and assume that there is a small gap of 0.04
cm at point A (i.e., at the midpoint of distance l1) shown in Figure 3.20. Assume that due to
fringing, the effective cross-sectional area of the air gap has increased by 4%. The core is made
up of soft-steel casting. Use the information given here and in Problem 3.22 and determine the
following:



84 Electrical Machines and Their Applications

Figure 3.21 (a) Magnetic core of elemental dc motor and (b) its equivalent circuit for Problem 3.24.

(a) The total reluctance of the flux path (i.e., including the iron core and the air gap).

(b) The current necessary to produce a flux density of 2 Wb/m2 in the air gap.

PROBLEM 3.24

Consider the magnetic core and its equivalent circuit shown in Figure 3.21 and b, respectively,
and assume that it represents an elemental stator and rotor setup of a dc motor. The stator has
a square-shaped cross-sectional area (A) of 25 cm2 and average path length (ls) of 100 cm. The
rotor has a cross-sectional area (Ar) of 25 cm2 and an average path length (i.e., the diameter of
the cylindrical rotor (lr)) of 5 cm. Each air gap (on each side of the rotor) is 0.03 cm wide. The
cross-sectional area of the air gap with fringing is 27.5625 cm2. The relative permeability of the
iron core used for both the stator and the rotor is 3000. The coil is located on the stator has 400
turns. If the current in the coil is 2 A, determine the resulting flux density in the air gaps.

PROBLEM 3.25

Solve Problem 3.24 but assume that the length of each air gap (lg) is 0.01 cm rather than 0.03 cm.

PROBLEM 3.26

Solve Problem 3.24 but assume that the length of each air gap (lg) is 0.06 cm rather than 0.03 cm.

PROBLEM 3.27

Solve Problem 3.24 but assume that the number of turns of the coil is 200 turns rather than 400.

PROBLEM 3.28

Consider the elemental stator and rotor setup of the dc motor given in Problem 3.24. Assume that
the stator has a square-shaped cross-sectional area (A) of 150 cm2 and an average path length (ls)
of 150 cm. The rotor has a cross-sectional area (Ar) of 150 cm2 and an average path length (i.e.,
the diameter of cylindrical rotor) (lr) of 15 cm. Each air gap (on each side of the rotor) is 0.02 cm
wide. The cross-sectional area of the air gap with fringing is 158 cm2. The relative permeability
of the iron core, used for both the stator and rotor, is 4000. The coil located on the stator has 600
turns. If the current in the coil is 4 A, determine the resulting flux density in the air gaps.

PROBLEM 3.29

Solve Problem 3.28 but assume that the length of each air gap is 0.01 cm rather than 0.02 cm.
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Figure 3.22 Magnetic core for Problem 3.32.

Figure 3.23 Magnetic core for Problem 3.33.

PROBLEM 3.30

Solve Problem 3.23 but assume that the length of each air gap (Qg) is 0.04 cm rather than 0.02
cm.

PROBLEM 3.31

Solve Problem 3.28 but assume that the number of turns of the coil is 300 turns rather than 600.

PROBLEM 3.32

Consider the magnetic core shown in Figure 3.22. Assume that the depth of the core is 10 cm and
that the relative permeability of the solid core is 2000. Determine the following:

(a) The value of the current that will produce a flux of 0.01 Wb in the core.

(b) The flux density at the bottom of the core if the current amount found in Part (a) is used.

(c) The flux density at the right side of the core, if the current amount found in Part (a) is used.

PROBLEM 3.33

Consider the magnetic core shown in Figure 3.23. Assume that the depth of the solid core is 5 cm
and that the relative permeability of the core is 1000. Also assume that the air gaps on the left and
right legs are 0.03 and 0.06 cm, respectively. Take the fringing effects at each gap into account by
calculating the effective area of each air gap as 5% greater than its actual physical size. If the coil
has 100 turns and 2 A current in it, determine the following:
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Figure 3.24 Magnetic core for Problem 3.34.

(a) The total reluctance of the core.

(b) The total flux in the core.

(c) The flux in the left leg of the core.

(d) The flux in the center leg of the core.

(e) The flux in the right leg of the core.

(f) The flux density in the left air gap.

(g) The flux density in the right air gap.

PROBLEM 3.34

Consider the magnetic core shown in Figure 3.24. Notice the way each coil is wound on each leg.
Use a relative permeability of 2000 for the solid core and assume that it remains constant. If the
value of current I1 = 1.0 A and current I2 = 1.5 A, find the total flux produced by them in the
core. Use a core depth of 5 cm.



4 Transformers

4.1 INTRODUCTION
In general, a transformer is a static electromagnetic machine (i.e., it has no moving parts).1 Trans-
formers are commonly used for changing the voltage and current levels in a given electrical system,
establishing electrical isolation, impedance matching, and measuring instruments. Power and dis-
tribution transformers are used extensively in electrical power systems to generate electrical power
at the most economical generator-voltage level, to transmit and distribute electrical power at the
most economical voltage level, and to utilize power at the most economical, suitable, and safe volt-
age level. Isolating transformers are used to electrically isolate electric circuits from each other or
to block dc signals while maintaining ac continuity between the circuits; they can also be used to
eliminate electromagnetic noise in many types of circuits.

Transformers are widely used in communication systems that vary in frequency from audio to
radio to video levels. They perform various tasks, such as impedance matching for improved power
transfer, and are used as input transformers, output transformers, insulation apparatus between elec-
tric circuits, and interstage transformers. Transformers are used in the whole frequency spectrum in
electrical circuits, from near dc to hundreds of megahertz, including both continuous sinusoidal and
phase waveforms. For example, they can be found in use at power-line frequencies (between 60 and
400 Hz), audio frequencies (20–20,000 Hz), ultrasonic frequencies (20,000–100,000 Hz), and radio
frequencies (over 300 kHz).2

Transformers are also used in measuring instruments. Instrument transformers are used to mea-
sure high voltages and large currents with standard small-range voltmeters (120 V), ammeters (5 A),
and wattmeters, and to transform voltages and currents to activate relays for control and protection.
Potential transformers (PT), also known as voltage transformers (VT), are single-phase transform-
ers that are used to step down the voltage to be measured to a safe value. Current transformers (CT)
are used to step down currents to measurable levels. The secondaries of PTs and CTs are normally
grounded.

A transformer consists of a primary winding and a secondary winding linked by a mutual mag-
netic field. Transformers may have an air core, an iron core, or a variable core, depending on their
operating frequency and application. Ferromagnetic cores are employed in an iron-core transformer
to develop tight magnetic coupling and high flux densities. When there is no ferromagnetic material
but only air present, such a transformer is called an air-core transformer or dry-type transformers.
These transformers have poor magnetic coupling and are usually used in lower-power applications
such as in electronic circuits. In this chapter, the focus is set exclusively on iron-core transformers.

Transformers come in very different sizes and shapes depending on the application. In power
system applications, the single- or three-phase transformers with ratings up to 500 kVA are defined

1However, there are some special transformers in which some motion takes place in components of the electromagnetic
structure. Examples include the variable autotransformer, which has a tap that moves between primary and secondary, as
well as some types of voltage regulators that are employed in distribution systems.

2In general, the size of a transformer can be significantly reduced by using it at higher frequencies. Because of this fact,
aircraft generators are designed to produce power at 400 Hz rather than at 50 or 60 Hz. Also, a transformer designed for use
at 50 or 60 Hz can always be used at higher frequencies, whereas a transformer designed for use at 400 Hz does not operate
properly at lower frequencies, because its core saturates and the secondary voltage is not similar to nor proportional to the
primary voltage.
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as distribution transformers, whereas those transformers with ratings over 500 kVA at voltage levels
of 69 kV and above are defined as power transformers.

Most distribution and power transformers are immersed in a tank of oil for better insulation and
cooling purposes. The leads of the windings are brought to the outside of the tank through insulating
bushings which are attached to the tank. Such transformers are used in high-power applications.1

The National Electric Manufacturers Association (NEMA) has grouped various types of insulation
into classes and assigned a maximum permissible hottest spot temperature to each class. Since the
hottest spot temperature is usually at some inaccessible spot within a coil, the maximum permissible
average temperature (determined by measuring the resistance of the coil) is somewhat lower. The
difference between the ambient temperature and the average temperature of the coil is its tempera-
ture rise. The sum of the ambient temperature plus the maximum temperature rise plus the hot-spot
allowance equals the maximum temperature rating of the insulation.

The American National Standards Institute (ANSI) ratings were revised in the year 2000 to make
them more consistent with IEC designations. This system has four-letter code that indicates the
cooling (IEEE C57.12.00–2000):

First letter—Internal cooling medium in contact with the windings:
O: Mineral oil or synthetic insulating liquid with fire point = 300◦C

K: Insulating liquid with fire point > 300◦C

L: Insulating liquid with no measurable fire point

Second letter—Circulation mechanism for internal cooling medium:
N: Natural convection flow through cooling equipment and in windings

F: Forced circulation through cooling equipment (i.e., coolant pumps); natural convection
flow in windings (also called nondirected flow)

D: Forced circulation through cooling equipment, directed from the cooling equipment into
at least the main windings

Third letter—External cooling medium:
A: Air

W: Water

Fourth letter—Circulation mechanism for external cooling medium:
N: Natural convection

F: Forced circulation—fans (air cooling), pumps (water cooling)

Therefore, OA/FA/FOA is equivalent to ONAA/ONAF/OFAF. Each cooling level typically pro-
vides an extra one-third capability: 21/28/35MVA. Table 4.1 shows equivalent cooling classes in
old and new naming schemes.

Utilities do not overload substation transformers as much as distribution transformers, but they
do not run them hot at times. As with distribution transformers, the trade-off is loss of life versus
the immediate replacement cost of the transformer.

Ambient conditions also affect loading. Summer peaks are much worse than winter peaks. IEEE
Std. C57.91–1995 provides detailed loading guidelines and also suggests an approximate adjustment
of 1% of the maximum nameplate rating for every degree Celsius above or below 30◦C.

The hottest-spot-conductor temperature is the critical point where insulation degrades. Above
the hot-spot-conductor temperature of 110◦C, life expectancy decreases exponentially. The life of a

1Today, it is technically possible to manufacture large power transformers having sheet-wound coils that are insulated by
compressed gas (e.g., SF6, i.e., sulfur hexafluoride) and cooled by forced circulation of liquid.
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Table 4.1
Equivalent Cooling Classes

Year 2000 Designations Designations prior to Year 2000

ONAN OA
ONAF FA
ONAN/ONAF/ONAF OA/FA/FA
ONAN/ONAF/OFAF OA/FA/FOA
OFAF FOA
OFWF FOW

Source: IEEE Std. C57.12.00–2000, IEEE Standard General Requirements

Figure 4.1 Transformer core construction: (a) core type and (b) shell type.

transformer halves for every 8◦C increase in operating temperature. Most of the time, the hottest
temperatures are nowhere near this. The impedance of substation transformers is normally about
7%–10%. This is the impedance on the base rating, i.e., the self-cooled rating (OA or ONAN).

4.2 TRANSFORMER CONSTRUCTION
The magnetic cores of transformers used in power systems are built either in core type or shell type,
as shown in Figure 4.1. In Bose cases, the magnetic cores are made up of stacks of laminations
cut from silicon-steel sheets. Silicon-steel sheets usually contain about 3% silicon and 97% steel.
The silicon content decreases the magnetizing losses, especially those due to hysteresis. The lami-
nations are coated with a nonconducting and insulating varnish on one side. Such a laminated core
substantially reduces the core loss due to eddy currents.

Most laminated materials are cold-rolled and often specially annealed to orient the grain or iron
crystals. This causes a very high permeability and low hysteresis to flux in the direction of rolling.
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Figure 4.2 Stepped transformer cores.

Thus, in turn, it requires a lower exciting current. The laminations for the core-type transformer,
shown in Figure 4.1a, may be made up of L-shaped, or U- and I-shaped laminations.

The core for the shell-type transformer, shown in Figure 4.1b, is usually made up of E- and I-
shaped laminations. It is necessary to clamp laminations and impregnate the coils because of the
cyclic magnetic forces and other forces that exist between parallel conductors carrying current.

The lack of clamping, or improper clamping, may cause an objectionable audible noise that can
be characterized as a humming sound. The source of the audible sound is the mechanical vibration
of the core, produced by a steel characteristic known as magnetostriction. Because the magnetostric-
tive motion grows with increased flux density, the audible sound can be minimized by decreasing
flux density. To minimize the use of copper and decrease copper loss, the magnetic cores of large
transformers are built in stepped cores, as shown in Figure 4.2.

Figure 4.1a shows a core-type construction that has all of the primary winding turns located on
one leg of the core and all of the secondary winding turns placed on the other leg. This design causes
large leakage flux and therefore results in a smaller mutual flux for a given primary voltage.

To keep the leakage flux within a few percent of the mutual flux, each winding may be divided
into two coils; the two half coils are then mounted on two sides of the rectangle. Such design is
especially beneficial for laboratory use because each pair of coils can be connected in series or
parallel, and therefore four different primary and secondary potential differences can be provided.
A larger reduction in leakage flux can be obtained by further subdividing and sandwiching the
primary and secondary turns, however, at considerable cost. Leakage flux can be greatly decreased
by using the shell-type construction shown in Figure 4.1b. However, the steel-to-copper weight ratio
is greater in the shell-type transformer. It is more efficient but more costly in material.

The coils employed in shell-type transformers are usually of a “pancake” form unlike the cylin-
drical forms used in the core-type transformer, where the coils are placed one on top of the other, the
low-voltage winding is placed closer to the core with the high-voltage winding on top. This design
simplifies the problem of insulating the high-voltage winding from the core and reduces the leakage
flux considerably.

4.3 BRIEF REVIEW OF FARADAY’S AND LENZ’S LAWS OF INDUCTION
According to Faraday’s law of induction, whenever a flux passes through a turn of a coil, a voltage
(i.e., an electromotive force [em]) is induced, in each turn of that coil, that is directly proportional
to the rate of change in the flux with respect to time. Therefore, induced voltage can be found from

eind =
dΦ
dt

(4.1)

where Φ is the flux that passes through the turn. If a coil has N turns, as shown in Figure 4.3a,
and the same flux passes through all of the turns, the resulting induced voltage between the two
terminals of the coil becomes

eind = N
dΦ
dt

(4.2)
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Figure 4.3 Illustration of Lenz’s law: (a) a flux Φ passing through a coil and (b) corresponding voltage
buildup in the coil.

However, according to Lenz’s law of induction, if the coil ends were connected together, the voltage
built-up would produce a current that would create a new flux opposing the original flux change.
Therefore, such a voltage buildup in the coil has to be in the proper direction to facilitate this, as
shown in Figure 4.3b. Thus, Equations 4.1 and 4.2 can be reexpressed as

eind =−dΦ
dt

(4.3)

and
eind =−N

dΦ
dt

(4.4)

where the negative sign in the equations signifies that the polarity of the induced voltage opposes
the change that produced it. Note that Lenz’s law can also help in determining the polarity of the
voltage induced in the secondary winding of a transformer.

Alternatively, the magnitude of the induced voltage can be determined using the flux linkage A
of a given coil. Thus,

eind =
dλ
dt

(4.5)

where

λ =
N

∑
i=1

Φi = Li (4.6)

Furthermore, because the induced voltage equals the rate of change of flux linkages, an applied
sinusoidal voltage has to produce a sinusoidally changing flux, provided that the resistive voltage
drop is negligible. Thus, if the flux as a function of time is given as

Φ = Φm sinωt (4.7)

where

Φm is the maximum value of the flux

ω is 2n f

f is the frequency in Hertz, then the induced voltage is given as

e(t) = N
dΦ
dt

=
d(Li)

dt
= ωNΦm cosωt (4.8)
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The induced emf leads the flux by 90◦. The rms value of the induced emf is given as

E =
2π√

2
f NΦm = 4.44 f NΦm (4.9)

If voltage drop due to the resistance of the winding is neglected, the counter-emf equals the applied
voltage. Therefore,

V = E = 4.44 f NΦm (4.10)

Φm =
V

4.44 f N
(4.11)

where V is the rms value of the applied voltage. Equation 4.10 is known as the emf equation of a
transformer or simply the general transformer equation.

The flux is determined solely by the applied voltage, the frequency of the applied voltage, and
the number of turns in the winding. The excitation (or exciting) current adjusts itself to produce the
maximum flux required. Therefore, if the maximum flux density takes place in a saturated core, the
current has to increase disproportionately during each half period to provide this flux density. For
this reason, inductors with ferromagnetic cores end up having nonsinusoidal excitation currents.

It is important to keep in mind that for a voltage to be induced across the secondary winding,
there must be a changing current in the primary winding. In the event that a dc source is connected
to the primary winding, the current becomes so large that the transformer would burn out. This is
because on dc (i.e., when f = 0 Hz), the primary winding acts like a low resistance due to the fact
that once the current reaches a steady-state value, the inductive reactance is equal to zero ohms.

If the core is unsaturated and the resistance of the coil is negligible, the maximum value of the
magnetizing current can be found from

Im =
NΦm

L
=

(
N
L

)(
V

4.44 f N

)
=

√
2V

ωL
(4.12)

In the phasor form, the magnetizing current that produces the mutual flux is

Im =
V

jωL
=

V
jXm

(4.13)

where Xm is the magnetizing reactance of the coil.

4.4 IDEAL TRANSFORMER
Consider a transformer with two windings, a primary winding of N1 turns and a secondary winding
of N2 turns, as shown in Figure 4.4a. The core is made up of a ferromagnetic material. Assume
that the transformer is an ideal transformer. The ideal transformer, although it is fictitious, is a
very useful device in power and communication systems analysis. An ideal transformer has the
following properties:

• The winding resistances are negligible.

• All magnetic flux is confined to the ferromagnetic core and links both windings, that is, leakage
fluxes do not exist.

• The core losses are negligible.

• The permeability of the core material is almost infinite so that negligible. The net mmf is
required to establish the flux in the core. In other words, the excitation current required to
establish flux in the core is negligible.
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Figure 4.4 Ideal transformer: (a) with no load and (b) with load.

• The magnetic core material does not saturate.

If the primary winding is connected to an energy source with a time-varying voltage v1, a time-
varying flux Φ and a flux linkage λ1 of winding N1 is established in the core. If v1 varies over time,
then i1, Φ, and λ1 will vary over time, and an emf e1 will be induced in winding N1.

v1 = e1 =
dλ1

dt
= N1

dΦ
dt

(4.14)

Because there is no leakage flux, the flux Φ must link all N2 turns of the secondary winding. Since
the resistance of the secondary winding is assumed to be zero in an ideal transformer, it induces a
voltage e2 which is the same as the terminal voltage v2. Thus,

v2 = e2 =
dλ2

dt
= N2

dΦ
dt

(4.15)

From Equations 4.14 and 4.15,
v1

v2
=

e1

e2
=

N1

N2
= a (4.16)

which may also be written in terms of rms values as

V1

V2
=

E1

E2
=

N1

N2
= a (4.17)

where a is known as the turns ratio.1 Note that the potential ratio is equal to the turns ratio. (Here,
lowercase letters are used for instantaneous values and uppercase letters are used for rms values.)
From Equation 4.17,

V1 =

(
N1

N2

)
V2 = aV2 (4.18)

Assume that a load (energy sink) with an impedance ZL is connected at the terminals of the
secondary winding, as shown in Figure 4.4b. Therefore, a load current (i.e., secondary current) will
flow in the secondary winding.

1It is also known as the ratio of transformation.
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Since the core of an ideal transformer is infinitely permeable, the net mmf will always be zero.
Thus,

Fnet = N1i1 −N2i2 = ΦR = 0 (4.19)

where R is the reluctance of the magnetic core. Since the reluctance of a magnetic core of a well-
designed modern transformer is very small (almost zero) before the core is saturated, then

N1i1 −N2i2 = 0 (4.20)

N1i1 = N2i2 (4.21)

That is, the primary and secondary mmfs are equal and opposite in direction.1 From Equation 4.21,

i1
i2

=
N2

N1
=

1
a

(4.22)

which may be written in terms of rms values as

I1

I2
=

N2

N1
=

1
a

(4.23)

Hence, the currents in the windings are inversely proportional to the turns of the windings. From
Equation 4.23,

I1 =

(
N2

N1

)
I2 =

I2

a
(4.24)

From Equations 4.16 and 4.22,

v1i1 = v2i2 (4.25)

or in terms of rms values

V1I1 =

(
N1

N2
V2

)(
N2

N1
I2

)
=V2I2 (4.26)

That is, in an ideal transformer, the input power (VA) is equal to the output power (VA). In other
words, the value of the apparent power remains the same.2 This is the power invariance principle
which means that the volt-amperes are conserved.

Furthermore, the complex power supplied to the primary is equal to the complex power delivered
by the secondary to the load. Thus,

VVV 1III∗1 =VVV 2III∗2 (4.27)

In the event that the primary and secondary turns are equal, these transformers are usually known
as the isolating transformers, as previously stated.

In power systems, if the number of turns of the secondary winding is greater than the number of
turns of the primary winding, the transformer is known as a step-up transformer.

On the other hand, if the number of turns of the primary winding is greater than those of the
secondary winding, the transformer is known as a step-down transformer.

Example 4.1:

Determine the number of turns of the primary and the secondary windings of a 60 Hz, 240/120 V
ideal transformer, if the flux in its magnetic core is no more than 5 mWb.

1The net mmf acting on the core is thus zero.
2This transfer of power happens without any direct electrical connection between the primary and secondary windings. Such
electrical isolation is, in certain applications, mandated for safety reasons. Examples include some medical apparatus and
instrumentation designs for systems operating at a very high voltage.
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Solution
From Equation 4.10, the number of turns that the primary winding must have is

N1 =
V1

4.44 f Φm

=
240 V

4.44(60 Hz)(5×10−3 Wb)
= 180 turns

and the number of turns that the secondary winding must have is

N2 =
V2

4.44 f Φm

=
120 V

4.44(60 Hz)(5×10−3 Wb)
= 90 turns

or simply,

N2 =
N1

a

=
180

2
= 90 turns

4.4.1 DOT CONVENTION IN TRANSFORMERS

The primary and secondary voltages that are shown in Figure 4.4a have the same polarities. The dots
near the upper end of each winding are known as the polarity marks. Such dots point out that the
upper or marked terminals have the same polarities, at a given instant of time when current enters
the primary terminal and leaves the secondary terminal.

In other words, the dot convention implies that (1) currents entering at the dotted terminals will
result in mmfs that will produce fluxes in the same direction, and (2) voltages from the dotted to
undotted terminals have the same sign. Once a dot is assigned arbitrarily to a terminal of a given
coil, the dotted terminals of all other coils coupled to it are found by Lenz’s law, and therefore
cannot be chosen randomly.

In Figure 4.4a, since the current i1 flows into the dotted end of the primary winding and the
current i2 flows out of the dotted end of the secondary winding, the mmfs will be subtracted from
each other. Thus, the transformer has a subtractive polarity. Here, current i2 is flowing in the
direction of the induced current, according to Lenz’s law.

As shown in Figure 4.5a, for single-phase transformer windings, the terminals on the high-
voltage side are labeled H1 and H2, while those on the low-voltage side are identified as X1 and X2.
The terminal with subscript 1 in this convention (known as the standard method of marking trans-
former terminals) is equivalent to the dotted terminal in the dot-polarity notation. A transformer in
which the H1 and X1 terminals are adjacent, as shown in Figure 4.5a, has subtractive polarity. If
terminals H1 and X1 are diagonally opposite, the transformer has additive polarity. These polari-
ties result from the relative directions in which the two windings are wound on the core. Having the
polarity markings in both dot convention as well as standard marking is an unnecessary duplication.

Transformer polarities can be found by performing a simple test in which two adjacent terminals
of high- and low-voltage windings are connected together and a small voltage is applied to the
high-voltage winding, as shown in Figure 4.5b. Then the voltage between the high- and low-voltage
winding terminals that are not connected together is measured. The polarity is subtractive if the
voltage V reading is less than the voltage V1 which is applied to the high voltage winding. The
polarity is additive1 if the voltage V reading is greater than the applied voltage V1.

1According to the ANSI, additive polarities are required in large (greater than 200 kVA) high-voltage (higher than 8660 V)
power transformers. To reduce voltage stress between adjacent leads, small transformers have subtractive polarities. For
further information, see Gönen (2008).
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Figure 4.5 Polarity determination: (a) polarity markings of a single-phase two-winding transformer and (b)
polarity test.

Figure 4.6 Illustration of impedance transfer across an ideal transformer: (a) an ideal transformer with a load
impedance, (b) after the transfer of the impedance to the source side, and (c) the resultant equivalent circuit.

4.4.2 IMPEDANCE TRANSFER THROUGH A TRANSFORMER

Consider Figure 4.6a which shows an ideal transformer with a load impedance ZL (of an apparatus
or a circuit element) connected to its secondary terminals. Assume that all variables involved are
given in phasors. Therefore, impedance ZL is defined as the ratio of the phasor voltage across it to
the phasor current flowing through it. Hence,

ZZZL =
VVV 2

III2
(4.28)

Here, currents III1 and III2 are in phase in addition to voltages VVV 1 and VVV 2 being in phase. As shown in
Figure 4.6b, the apparent impedance of the primary circuit of the transformer is

ZZZ
′
L =

VVV 1

III1
(4.29)
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where the primary voltage and current, respectively, are

VVV 1 = aVVV 2 (4.30)

III1 =
III2

a
(4.31)

Substituting Equations 4.18 and 4.24 into Equation 4.29, the apparent impedance of the primary
becomes

ZZZ
′
L =

VVV 1

III1
=

aVVV 2

III2/a
= a2 VVV 2

III2
(4.32)

or

ZZZ
′
L = a2ZZZL =

(
N1

N2

)2

ZZZL (4.33)

The resulting equivalent circuit is shown in Figure 4.6c. The factor a2 is known as the impedance
ratio of the transformer. Therefore, as far as the source is concerned, the three circuits shown in
Figure 4.6 are the same.

The impedance ZZZ
′
L is simply the result of the impedance transformation of the load impedance

ZL through the transformer. Transferring an impedance from one side of the transformer to the other
in this manner is known as referring the impedance to the other side. It is also known as reflecting,
transferring, or scaling the impedance. Thus, ZZZ

′
L is known as the load impedance referred to the

primary side. Using Equations 4.18 and 4.24, voltages and currents can also be referred to one side
or the other.

Similarly, an impedance located at the primary side of a transformer can also be referred to the
secondary side as

ZZZ
′
L =

ZZZ1

a2 =

(
N2

N1

)2

ZZZ1 (4.34)

Impedance transfer is very beneficial in calculations since it helps to get rid of a coupled circuit in
an electrical circuit and thus simplifies the circuit.

Furthermore, it can be used in impedance matching to determine the maximum power transfer
from a source with an internal impedance ZZZs, which in general can be complex, to a load impedance
ZZZL. Here, it is necessary to select the turns ratio so that

ZZZ
′
L =

(
N1

N2

)2

ZZZL = a2ZZZL = ZZZ∗
s (4.35)

where ZZZ∗
s is the conjugate of ZZZs.

4.4.3 RELATIONSHIP BETWEEN INPUT AND OUTPUT POWERS OF AN IDEAL
TRANSFORMER

The input power provided to a transformer by its primary circuit is

Pin =V1I1 cosθ1 (4.36)

where θ1 is the angle between the primary voltage and the primary current. The power output of a
transformer through its secondary circuit to its load is

Pout =V2I2 cosθ2 (4.37)
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where θ2 is the angle between the secondary voltage and the secondary current. In an ideal trans-
former,

θ1 = θ2 = 0

Therefore, the same power factor is seen by both the primary and secondary windings. Also, since
V2 =V1/a and I2 = aI1, substituting them into Equation 4.37,

Pout =V2I2 cosθ =

(
V1

a

)
(aI1)cosθ

or
Pout =V1I1 cosθ = Pin (4.38)

Therefore, in an ideal transformer, the output power is equal to its input power. This makes sense
because, by definition, an ideal transformer has no internal power losses. One can extend the same
argument to reactive and apparent powers. Therefore,

Qin =V1I1 sinθ =V2I2 sinθ = Qout (4.39)

Sin =V1I1 =V2I2 = Sout (4.40)

Example 4.2:

Assume that a 60 Hz, 250 kVA, 2400/240 V distribution transformer is an ideal transformer and
determine the following:

(a) Its turns ratio.

(b) The value of load current (i.e., I2), if a load impedance connected to its secondary (i.e.,
low-voltage side) terminals makes the transformer fully loaded.

(c) The value of the primary-side (i.e., high-voltage side) current.

(d) The value of the load impedance referred to the primary side of the transformer.

Solution

(a) The turns ratio of the transformer is

a =
N1

N2
=

V1

V2
=

2,400 V
240 V

= 10

(b) Since the transformer is an ideal transformer, it has no losses.

S =V1I1 =V2I2

from which

I2 =
S

V2
=

250,000 VA
240 V

= 1,041.67 A

(c) The corresponding primary current

I1 =
I2

a
=

1,041.67 A
10

= 104.167 A

or

I1 =
S

V1
=

250,000 VA
2,400 V

= 104.167 A
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Figure 4.7 One-line diagram of the power system given in Example 4.3: (a) without the step-up and step-
down transformers and (b) with the transformers.

(d) The value of the load impedance at the secondary side is

ZL =
V2

I2
=

240 V
1,041.67 A

= 0.2304 Ω

Example 4.3:

A single-phase, 60 Hz transformer is supplying power to a load of 3+ j5 Ω through a short power
line with an impedance of 0.2+ j0.6 Ω, as shown in Figure 4.7a. The voltage at the generator bus
(i.e., bus 1) is 277∠0◦ V. Determine the following:

(a) If the current at bus 1 is equal to the current at bus 2 (i.e., Iline = Iload), find the voltage at the
load bus and the power losses that take place in the power line.

(b) If two ideal transformers T1 and T2 are inserted at the beginning and end of the line, as shown
in Figure 4.7b, find the voltage at the load bus and the power losses in the line.

Solution

(a) Figure 4.8 shows the line-to-neutral diagram of the one-line diagram of the given system.
Using the generator terminal voltage as the reference phasor, the line current can be found as

IIIline =
VVV G

ZZZline +ZZZload
=

277∠0◦ V
3.2+ j5.6 Ω

= 42.947∠−60.26◦ A

Since Iline = Iload , the voltage at the load bus (i.e., bus 2) is

VVV load = IIIload ×ZZZload = (42.9471∠−60.26◦ A)(3+ j5 Ω) = 250.4245∠−1.22◦ V

Figure 4.8 The line-to-neutral diagram of the system given in Figure 4.7.
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and the line losses (i.e., the copper losses) are

Pline loss = I2
lineRline = (42.9471 A)2(0.2 Ω) = 368.8901 W

(b) Figure 4.7b shows the one-line diagram of the system with the step-up transformer T1 (with a
turns ratio1 of a1 = 1/10) and the step-down transformer T2 (with a turns ratio of a2 = 10/1).
The load impedance referred to the power-line side of transformer T2 is

ZZZ
′

load = a2
2 ZZZload =

(
N1

N2

)2
(3+ j5 Ω) = 300+ j500 Ω

The resulting equivalent impedance is

ZZZeq = ZZZline +ZZZload

= (0.2+ j0.6 Ω)+(300+ j500 Ω)

= 300.2+ j500.6 Ω

Referring this Zeq to the generator side of transformer T1, the new equivalent impedance is
found as

ZZZ
′
eq = a2

2 ZZZeq

=

(
N1

N2

)2
ZZZeq

=

(
1
10

)2
(300.2+ j500.6 Ω)

= 3.002+ j5.006 Ω

Thus, the generator current can be calculated from

IIIG =
VVV G

ZZZ
′
eq

=
277∠0◦ V

3.002+ j5.006 Ω
= 47.4549∠−59.05◦ A

Therefore, working back through transformer T1,

N1IG = N2Iline

and the line current can be found as

IIIline =
N1

N2
IIIG =

1
10

(47.4549∠−59.05◦ A

Hence, the voltage at the load bus is

VVV load = IIIloadZZZload = (47.455∠−59.05◦ A)(3+ j5 Ω) = 276.7093∠−0.01◦ V

The line losses are

Pline loss = I2
lineRline = (4.7455 A)2(0.2 Ω) = 4.5039 W

Notice that the percent reduction in the line losses, after adding the step-up and the step-down
transformers is

Reduction in Pline loss =
368.8901 W−4.5039 W

368.8901 W
×100 = 98.78%

1The given numbers in 10:1 and 1:10 simply represent the turns ratios, respectively, rather than representing the actual
number of turns in each winding.
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Figure 4.9 One-line diagram of the power system given in Example 4.4.

Example 4.4:

Assume that the impedances of the transformers T1 and T2, given in Part (b) of Example 4.3, are
not small enough to ignore, and that they are ZT1 = 0+ j0.15 Ω and ZT2 = 0+ j0.15 Ω, respectively.
Also assume that they are referred to the high-voltage sides of each transformer, respectively. Solve
Part (b) of Example 4.3, accordingly.

Solution
Figure 4.9a shows the one-line diagram of the given system that includes T1 the step-up and T2
the step-down transformer. Figure 4.9b shows the line-to-neutral diagram of the same system.
Figure 4.9c shows the load impedance referred to power-line side of transformer T2 as well as the
impedance of the transformer (which is given as already referred to its high-voltage side). Therefore,
the resulting equivalent impedance can be found as

ZZZeq = ZZZT1 +ZZZline +ZZZT2 +ZZZ
′

load

= ZZZT1 +ZZZline +ZZZT2 +a2
2 ZZZload

= j0.15+(0.2+ j0.6)+ j0.15+102(3+ j5)

= 300.2+ j500.9 Ω

Referring this Zeq to the generator side of transformer T1, as shown in Figure 4.9d, the new
equivalent impedance is found as

ZZZ
′
eq = a2

1 ZZZeq =

(
1
10

)2
(300.2+ j500.9) = 3.002+ j5.009 Ω
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Therefore, the generator current can be found from

IIIG =
VVV G

ZZZ
′
eq

=
277∠0◦ V

3.002+ j5.009 Ω
= 47.4339∠−59.06◦A

Thus, working back through transformer T1,

IIIline =
N1

N2
IIIG =

1
10

(47.4339∠−59.06◦) = 4.74339∠−59.06◦ A

Similarly, working back through transformer T2,

IIIload =
N1

N2
IIIline =

(
10
1

)
(4.74339∠−59.06◦) = 47.4339∠−59.06◦ A

Hence, the voltage at the load bus is

VVV load = IIIloadZZZload = (47.4339∠−59.06◦)(3+ j5) = 276.5873∠−0.02◦ V

The line losses are

Pline loss = I2
lineRline = (4.74339 A)2(0.2 Ω) = 4.4999 W

The percent reduction in line lsoses, after adding the step-up and the step-down transformer, is

Reduction in Pline loss =
368.8901 W−4.4999 W

368.8901 W
×100 = 98.78%

4.5 REAL TRANSFORMER
A real transformer differs from an ideal transformer in many respects. For example, as illustrated in
Figure 4.10a, (1) the primary and secondary winding resistances R1 and R2 are not negligible, (2)
the leakage fluxes and Φl1 and Φl2 exist, (3) the core losses are not negligible, (4) the permeability of
the core material is not infinite and therefore a considerable mmf is required to establish mutual flux
Φm in the core, and (5) the core material saturates. The resulting representation of this transformer
is shown in Figure 4.10b. Here, Xl1 and Xl2 are the leakage fluxes, respectively. Therefore,

Xl1 = ωLl1

= ω N2
1 Pl1

(4.41)

Xl2 = ωLl2

= ω N2
2 Pl2

(4.42)

where
ω = 2π f
Ll1 is the leakage inductance of the primary winding

Ll1 = N2
1 Pl1

=
N1Φl1

I1

(4.43)

Ll2 is the leakage inductance of the secondary winding

Ll2 = N2
2 Pl2

=
N2Φl2

I2

(4.44)
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Figure 4.10 Development of transformer-equivalent circuits.

Pl1 is the permeance of the leakage flux path of the primary winding, and

Pl2 is the permeance of the leakage flux path of the secondary winding.

In such a representation, the transformer windings are tightly coupled by a mutual flux and
represented as shown in Figure 4.10c.

As illustrated in Figure 4.11a, the primary current III1 must be large enough to compensate the
demagnetizing effect of the load current (i.e., the secondary current), but also provide for adequate
mmf to develop the resultant mutual flux. Note that III

′
2 is the load component in the primary and can

be expressed as

III
′
2 =

N2

N1
III2 =

I2

a
(4.45)

In other words, III
′
2 is the secondary current referred to the primary, as it is in the ideal transformer.

Therefore, the primary current can be expressed in terms of phasor summation as

III1 = III
′
2 + IIIe =

III2

a
+ IIIe (4.46)

where IIIe is the excitation current (i.e., the additional primary current) needed to develop the resultant
mutual flux. Such excitation current IIIe is nonsinusoidal and can be expressed as
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Figure 4.11 Transformer-equivalent circuits: (a) the real transformer, (b) referred to the primary, and (c)
referred to the primary (without showing the ideal transformer).

IIIe = IIIc + IIIm (4.47)

where

IIIc is the core-loss component of the excitation current supplying the hysteresis and eddy-current
losses in the core.

IIIm is the magnetizing component of the excitation current needed to magnetize the core.

Here, IIIc is in phase with the counter-emf EEE1 and IIIm lags EEE1 by 90◦. Therefore, the core-loss
component and the magnetizing component are modeled by a resistance Rc and an inductance Xm,
respectively, that are connected across the primary voltage source.

Even though Faraday’s law dictates the core flux to be very nearly sinusoidal for a sinusoidal
terminal voltage, saturation causes the excitation current to be very nonsinusoidal. Thus, in reality,
both IIIc and IIIm are nonlinear, and hence the resistance Rc and the reactance Xm are at best approxi-
mations.

The ideal transformer1 shown in Figure 4.11a can be eliminated by referring all secondary quan-
tities to the primary. Figure 4.11b and c shows the first and second steps of this process. Figure 4.11c

1Such a representation is known as the Steinmetz circuit model of a transformer. Steinmetz had the brilliant idea of separating
the linear phenomenon by which leakage-flux voltage is induced from the nonlinear phenomenon by which mutual-flux
voltage is induced in an iron-core transformer. His approach, based on linear circuit theory, provided an easy solution for
developing a circuit model for an iron-core transformer.
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Figure 4.12 Transformer-equivalent circuits: (a) referred to the secondary and (b) referred to the secondary
(without showing the ideal transformer).

shows the equivalent circuit of a transformer (model) referred to its primary. Figure 4.12a shows the
equivalent circuit of a transformer referred to its secondary. Figure 4.12b shows the transformer
equivalent circuit referred to its secondary without showing the ideal transformer. The physical
meaning of referring secondary quantities to the primary implies that the real and reactive powers
in an impedance ZZZL through which the secondary current III2 flows is the same when the primary
current III1 flows through an equivalent impedance ZZZL. Therefore, there cannot be any difference in
the performance of a transformer determined from an equivalent circuit referred to the primary or
the secondary.

4.6 APPROXIMATE EQUIVALENT-CIRCUIT OF A REAL TRANSFORMER
The transformer equivalent circuits developed in the previous section (and shown in Figures 4.11c
and 4.12b) are often more accurate than is necessary in practice. This is especially true in power
system applications.

The excitation branch has a very small current in comparison to the load current of the trans-
former. Of course, such a small excitation current IIIe causes a negligibly small voltage drop in
the primary winding impedance (R1 + jX1). Therefore, by moving the excitation admittance (i.e.,
the shunt branch) from the middle of the T-circuit to either the left (as shown in Figure 4.13a) or the
right, the primary and secondary impedances are left in series with each other so that they can be
added together as shown in Figure 4.13b.

The equivalent impedance of such an approximate equivalent circuit of the transformer depends
on whether its equivalent circuit is referred to the primary or secondary. As shown in Figure 4.13b,
if the equivalent impedance is referred to the primary,

ZZZeq1 = Req1 + jXeq1 (4.48)
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Figure 4.13 Approximate equivalent circuits referred to the primary of an iron-core transformer: (a) referred
to the primary, (b) referred to the primary (collecting Rs and Xs together), (c) after the elimination of the shunt
branches, and (d) after neglecting the resistance involved.

where

Req1 = R1 +a2R2 (4.49)

Xeq1 = X1 +a2X2 (4.50)

Here, the Req1 and Xeq1 are the equivalent resistance and reactance referred to the primary, respec-
tively. As shown in Figure 4.14b, if the equivalent impedance is referred to the secondary,

ZZZeq2 = Req2 + jXeq2 (4.51)

where

Req2 =
R1

a2 +R2 (4.52)

Xeq2 =
X1

a2 +X2 (4.53)

Here, the terms Req2 and Xeq2 represent the equivalent resistance and reactance values referred to
the secondary, respectively. Note that

Zeq1

Zeq2

=
Req1

Req2

=
Xeq1

Xeq2

= a2 (4.54)
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Figure 4.14 Approximate equivalent circuits referred to the secondary of an iron-core transformer: (a) re-
ferred to the secondary, (b) referred to the secondary (collecting Rs and Xs together), (c) after the elimination
of the shunt branches, and (d) after neglecting the resistance involved.

A further approximation of the equivalent circuit can be made by removing the excitation branch,
as shown in Figures 4.13c and 4.14c. The resultant error is very small since the excitation current IIIe
is very small in comparison to the rated current of the transformer.

Furthermore, in power transformers, the equivalent resistance Req is small in comparison to the
equivalent reactance Xeq. Therefore, the transformer can only be represented by its equivalent re-
actance Xeq, as shown in Figures 4.13d and 4.14d. Thus, the corresponding equivalent impedances
can be expressed as

ZZZeq1 = jXeq1 (4.55)

ZZZeq2 = jXeq2 (4.56)

Example 4.5:

Consider a 75 kVA, 2400/240 V, 60 Hz distribution transformer with ZZZ1 = 0.612+ j1.2 Ω and
ZZZ2 = 0.0061+ j0.0115 Ω for its high-voltage and low-voltage windings, respectively. Its excitation
admittance referred to the 240 V side is YYY e2 = 0.0191− j0.0852 Ω. The transformer delivers its
rated IIIL at 0.9 lagging PF.

(a) Draw the equivalent circuit with the excitation admittance referred to the primary side.

(b) Find the emfs of EEE1 and EEE2 induced by the equivalent mutual flux, IIIe, III111 at 0.9 lagging PF,
and the applied VVV 1 when the transformer delivers a rated load at rated VVV 2 voltage.
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Figure 4.15 Circuit for example 4.5.

Solution

(a) Figure 4.15 shows the equivalent circuit of the transformer, with the excitation admittance
referred to the primary side. Therefore,

YYY e1 =
YYY e2

a2 =
0.0191− j0.0852 S

102 = 1.91×10−4 − j8.52×10−4 S

(b) Here,

IL = I2 =
S

V2
=

75,000 VA
240 V

= 312.5 A

Let VVV 2 be the reference phasor so that

VVV 2 = 240∠0◦ V

Thus,

IIIL = III2 = 312.5(0.9− j0.4359) = 281.25− j136.2156 A

Hence,

EEE2 =VVV 2 + IIIL(R2 + jX2) = 240∠0◦+(281.25− j136.2156)(0.0061+ j0.0155)

= 243.294∠0.57◦ V

so that,

EEE1 = aEEE2 = 10 [240∠0◦+(281.25− j136.2156)(0.0061+ j0.0115)]

= (10)[243.294∠0.57◦ V]
= 2432.94∠0.57◦ V

Therefore, the load current referred to the primary side is

III
′
L =

IIIL

a

=
281.25− j.136.2156 A

10

= 28.125− j13.6216 A

Notice that
III1 = III

′
L + IIIe1
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where IIIe1 produces the mutual flux in the core. Since

IIIe1 = EEE1YYY e1

= (2432.94∠0.57◦)(1.91×10−4 − j8.52×10−4)

= 0.4851− j2.0682 A

also

III1 = III
′
LIIIe1

= (28.125− j13.6216)+(0.4851− j2.0682)

= 32.6299∠−28.74◦ A

Therefore,

VVV 1 = EEE1 + III1(R1 + jX1)

= 2432.94∠0.57◦+(32.6299∠−28.74◦)(0.612+ j1.2)

= 2469.6396∠1.13◦ V

4.7 DETERMINING EQUIVALENT-CIRCUIT PARAMETERS
The equivalent circuits of a given transformer can be used to predict and evaluate its performance.
If the complete design data of a transformer are available (such data are usually available only to
its designer), the necessary parameters can be computed from the dimensions and properties of the
materials used.

However, once the transformer is manufactured, it may be desirable to verify the accuracy of
the performance predictions. This can be achieved by means of two tests designed to determine
the parameters of the equivalent circuit. These two tests are known as the open-circuit test and the
short-circuit test. Each test can be done by exciting either winding. However, in large transformers
with high levels of both voltage and current, it may be a good idea to excite the low-voltage winding
for the open-circuit test and to excite the high-voltage winding for the short-circuit test.

4.7.1 OPEN-CIRCUIT TEST

The purpose of the open-circuit testis to determine the excitation admittance of the transformer-
equivalent circuit, the no-load loss, the no-load excitation current, and the no-load power factor.
This open-circuit test is performed by applying rated voltage to one of the windings, with the other
winding (or windings) open-circuited. This test is also known as the core-loss test, the iron-loss test,
the no-load test, the excitation test, or the magnetization test.

The input power, current, and voltage are measured, as shown in Figure 4.16a. (However, for
reasons of safety and convenience, usually the high-voltage winding is open-circuited and the test
is conducted by placing the instruments on the low-voltage side of the transformer.)

Once such information is collected, one can determine the magnitude and the angle of excitation
impedance after finding the open-circuit (i.e., no-load) power factor. Here, the voltage drop in the
leakage impedance of the winding (which is excited in the open-circuit test) caused by the normally
small excitation current is usually ignored.

This results in an approximate equivalent circuit, as shown in Figure 4.16b. Also ignored is
the (primary) power loss due to the excitation current. Therefore, the excitation admittance can be
expressed as

YYY e = YYY oc =
Ioc

Voc
∠−θoc (4.57)
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Figure 4.16 Open-circuit test: (a) wiring diagram for the open-circuit test, (b) equivalent circuit, and
(c) no-load phasor diagram.

where θoc is the angle of the admittance found from the open-circuit power factor PFoc as

PFoc = cosθoc =
Poc

VocIoc
(4.58)

so that

θoc = cos−1 Poc

VocIoc
(4.59)

or

θoc = cos−1 PFoc (4.60)

For a given transformer, Poc is always lagging. For this reason, there is a negative sign in front of
θoc in Equation 4.57. If the excitation admittance is expressed in rectangular coordinates,

YYY e = YYY oc = Gc − jBm (4.61)

YYY e = YYY oc =
1
Rc

− j
1

Xm
(4.62)

from which the Rc and Xm can be determined as

Rc =
1

Gc
(4.63)

and
Xm =

1
Bm

(4.64)

Alternatively, the core-loss conductance and the susceptance can be found, respectively, from

Gc ∼= Goc =
Poc

V 2
oc

(4.65)

Bm ∼= Boc =
√

Y 2
oc −G2

oc (4.66)

The values of Rc and Xm can be determined from Equations 4.63 and 4.64, respectively, as before.
The no-load phasor diagram can be drawn as shown in Figure 4.16c.
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Figure 4.17 Short-circuit test: (a) wiring diagram for the short-circuit test, (b) equivalent circuit, and (c)
phasor diagram.

4.7.2 SHORT-CIRCUIT TEST

The purpose of the short-circuit test is to determine the equivalent resistance and reactance of the
transformer under rated conditions. This test is performed by short-circuiting one winding (usually
the low-voltage winding) and applying a reduced voltage to the other winding, as shown in Figure
4.17a. This test is also known as the impedance test or the copper-loss test. Since the voltage ap-
plied under short-circuit conditions is small, the core losses are ignored and the wattmeter reading
represents the copper losses in the windings. Therefore, for all practical purposes Pcu = Psc.

The reduced input voltage is adjusted until the current in the shorted winding is equal to its rated
value. The input voltage, current, and power are measured as before. The applied voltage Vsc is only
a small percentage of the rated voltage and is sufficient to circulate the rated current in the windings
of the transformer. Usually, this voltage is about 2%–12% of the rated voltage.

Therefore, the excitation current is small enough to be ignored. If it is neglected, then one can
assume that all the voltage drop will take place in the transformer and is due to the series elements
in the circuit, as shown in Figure 4.19b. The shunt branch representing excitation admittance does
not appear in this equivalent circuit. The series impedance ZZZsc can be found from

ZZZsc = ZZZeq1 =
VVV sc

IIIsc
=

Vsc∠0◦

Isc∠−θsc
(4.67)

The short-circuit power factor is lagging and determined from

PFsc = cosθsc =
Psc

VscIsc
(4.68)

so that

θsc = cos−1 Psc

VscIsc
(4.69)

θsc = cos−1 PFsc (4.70)
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For a given transformer, the PFsc is always lagging. For this reason, there is a negative sign in front
of θsc in Equation 4.67. Equation 4.67 can be expressed as

ZZZeq1 =
Vsc

Isc
∠θsc

= Req1 + jXeq1

(4.71)

where

Req1 = R1 +a2R2 (4.72)

Xeq1 = X1 +a2X2 (4.73)

Alternatively, the equivalent circuit resistance and reactance can be found, respectively, from

Req1
∼= Rsc +

Psc

I2
sc

(4.74)

Xeq1 = Xsc =
√

Z2
eq −R2

eq (4.75)

where

Zeq1
∼= Zsc =

Vsc

Isc
(4.76)

Figure 4.17c shows the phasor diagram under short-circuit conditions. In a well-designed trans-
former, when all impedances are referred to the same side (in this case, to the primary side),

R1 = a2R2 = R
′
2
∼=

Req1

2
(4.77)

X1 = a2X2 = X
′
2
∼=

Xeq1

2
(4.78)

As mentioned before, it is possible to perform the open-circuit and short-circuit tests on the sec-
ondary side (i.e., the low-voltage side) of the transformer. However, the resultant equivalent circuit
impedances would be referred to the secondary side rather than to the primary side. Of course,
with large units, it may be preferable to excite the low-voltage winding on the open circuit and the
high-voltage winding on the short circuit.

4.8 TRANSFORMER NAMEPLATE RATING
Among the information provided by the nameplate of a transformer are its apparent power (in terms
of the kVA rating or the MVA rating), voltage ratings, and impedance.

For example, a typical transformer may have 25 kVA, 2400/120 V. Here, the voltage ratings point
out that the transformer has two windings: one rated for 2400 V and the other for 120 V. Since the
voltage ratio also represents the turns ratio, the turns ratio of the transformer is

a =
N1

N2
=

V1

V2
=

2400 V
120 V

= 20

Also, the given 25 kVA rating indicates that each winding is designed to carry 25 kVA. Thus, the
current rating for the high-voltage winding is 25,000 VA/2,400 V = 10.42 A, but for the low-voltage
winding is 25,000 VA/120 V = 208.33 A.
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When a current of 208.33 A flows through the secondary winding, there will be a current of
10.42 A in the primary winding, ignoring the additional small excitation current that flows through
the primary winding.

The kVA rating always refers to the output kVA measured at the secondary (load) terminals. The
input kVA will be slightly more due to the losses involved.

Transformer impedance is always provided on the nameplate in percentage. For example, 5%
means 0.05 per unit based on its nameplate ratings. In terms of percentage or per unit, the given
figure could be referred to the primary winding or secondary winding. Nevertheless, in either case,
it would still be 5%.

Example 4.6:

Consider a 15 kVA, 7500/480 V, 60 Hz distribution transformer. Assume that the open-circuit and
short-circuit tests were performed on the primary side of the transformer and that the following
data were obtained:

Open-Circuit Test (on Primary) Short-Circuit Test (on Primary)

Voltmeter Voc = 7600 V Vsc = 366 V
Ammeter Ioc = 0.2006 A Isc = 2 A
Wattmeter Poc = 180 W Psc = 300 W

Determine the impedance of the approximate equivalent circuit referred to the primary side, and
draw the corresponding simplified equivalent circuit.

Solution
The power factor during the open-circuit test is

PFoc = cosθoc =
Poc

VocIoc
=

180 W
(7500 V)(0.2006 A)

= 0.1196 lagging

The excitation admittance is

YYY e = YYY oc =
IIIoc

VVV oc
∠− cos−1 PFoc

=
0.2006 A
7500 V

∠− cos−1(0.1196)

= 0.0000267∠−83.129◦ S
= 0.0000032− j0.000265 S

=
1

Rc
− j

1
Xm

Therefore,

Rc =
1

0.0000032
= 312,500 Ω
∼= 312.5 k Ω

Xm =
1

0.000265
= 37,658.32 Ω
∼= 37.3 k Ω
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The power factor during the short-circuit test is

PFsc = cosθsc =
Psc

VscIsc

=
300 W

(366 V)(2 A)
= 0.41 lagging

The series (i.e., the equivalent) impedance is

Zeq1 = Zsc =
Vsc

Isc
∠cos−1 PFsc

=
366 V

2 A
∠cos−1 0.41

= 183∠65.81◦ Ω
= 75+ j166.93 Ω

Therefore, the equivalent resistance and reactance are

Req1 = 75 Ω and Xeq1 = 166.9352 Ω

The corresponding simplified equivalent circuit is shown in Figure 4.18a.
However, if an equivalent T-circuit is needed, the values of individual primary and secondary

resistances and leakage reactances, referred to the same side, are usually assumed to be equal.
Therefore,

R1 = a2R2 = R
′

2

∼=
Req1

2

=
75 Ω

2
= 37.5 Ω

and

X2 =
X

′

2
a2

=
83.46 Ω
15.6252

∼= 0.342 Ω

Therefore, as shown in Figure 4.19b,

R2 =
R

′

2
a2

=
37.5 Ω
15.6252

= 0.154 Ω

and

X2 =
X

′

2
a2

=
83.46 Ω
15.632

= 0.342 Ω
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Figure 4.18 Simplified equivalent circuit: (a) referred to the primary side and (b) its equivalent t-circuit
representation.

Figure 4.19 Phasor diagram of a transformer operating at (a) lagging power factor, (b) unity power factor,
and (c) leading power. All quantities are referred to the primary side of the transformer.

4.9 PERFORMANCE CHARACTERISTICS OF A TRANSFORMER
The main use of the equivalent circuit of a given transformer is to determine its performance char-
acteristics, which are basically its voltage regulation and its efficiency.
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4.9.1 VOLTAGE REGULATION OF A TRANSFORMER

The voltage regulation of a transformer is the change in the magnitude of secondary terminal
voltage from no load to full load when the primary voltage is constant. It is usually expressed as a
percentage of the full-load value1 as

%Voltage Regulation =
V2(no load) −V2(full load)

V2(full load)
×100 (4.79)

Here, the full load is the rated load of the secondary.
At no load, the secondary terminal voltage may change from the rated voltage (also called

nameplate voltage, nominal transformer voltage, or full-load voltage) value due to the effect of
the impedance of the transformer. Also, since at no load,

V2(no load) =
V1

a

then

%Voltage Regulation =
V1
a −V2(full load)

V2(full load)
×100 (4.80)

The voltage regulation is affected by the magnitude and power factor of the load as well as by the
internal impedance (i.e., the leakage impedance) of the transformer.

Even though in electric power engineering applications it is usually considered good practice to
have a small voltage regulation, under certain circumstances transformers with high impedance and
high-voltage regulation are used to decrease the fault currents in a circuit.

As shown in the phasor diagrams of Figure 4.19, depending on the power factor of the load,
the voltage regulation can be positive, zero, or negative. Here, all circuit parameters are referred to
the primary side of the transformer. At a lagging power factor, the voltage regulation is positive,
as shown in Figure 4.19a. With certain exceptions, as mentioned before, it is usually good practice
to minimize the voltage regulation. As shown in Figure 4.19a, the voltage regulation is positive at
lagging power factors, whereas it is negative at leading power factors, as shown in Figure 4.19c.

This means that the secondary terminal voltage is greater under full load than under no load.
Such a situation takes place when the power-factor-correction capacitor banks remain in the circuit
while the load is low. (This causes a partial resonance between the capacitance of the load and the
leakage inductance of the transformer.)

The solution is to adjust the capacitor sizes and/or to use some of them as switchable capacitors.2

As can be seen from Figure 4.19a, the primary voltage can be expressed as

VVV 1 = aVVV 2 + III1ZZZeq1 (4.81)
VVV 1 = aVVV 2 + III1Req1 + jIII1Xeq1 (4.82)

If all circuit parameters are referred to the secondary side of the transformer, then the phasor di-
agrams corresponding to lagging, unity, and leading power factors are shown in Figure 4.20. For
example, as can be seen from Figure 4.20a, the primary voltage can be expressed as

VVV 1

a
=VVV 2 + III2ZZZeq2 (4.83)

VVV 1

a
=VVV 2 + III2Req2 + jIII2Xeq2 (4.84)

1For further information, see Chapter 9 of Gönen (2008).
2For further information, see Chapter 8 of Gönen (2008).
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Figure 4.20 Phasor diagram of a transformer operating at (a) lagging power factor, (b) unity power factor,
and (c) leading power factor. All quantities are referred to the secondary side of the transformer.

It is possible to use an approximate value for the primary voltage by taking into account only the
horizontal components in the phasor diagram, as shown in Figure 4.21. Therefore, when all quan-
tities are referred to the secondary side of the transformer, the approximate value of the primary
voltage is

VVV 1

a
=VVV 2 + III2Req2 cosθ + III2Xeq2 sinθ (4.85)

Transformers used in power system applications are usually designed with taps on one winding
in order to change its turns ratio over a small range. Such tap changing is frequently achieved
automatically in large power transformers to maintain a reasonably constant secondary-side voltage1

as the magnitude and power factor of the load connected to the secondary side terminals change.

1Certain types of loads such as incandescent lamps and motors require rated voltage and frequency for their optimum op-
eration. Otherwise, at voltages above the rated voltage, the lives of the incandescent lamps are shortened. Similarly, when
providing a rated load at subnormal voltage, motors draw overcurrents, which in turn cause the motors to overheat. There-
fore, such loads must be served by transformers that have a small voltage regulation. However, arc-welding transformers
require a large voltage regulation so that they can operate at almost constant current.
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Figure 4.21 Phasor diagram showing the derivation of the approximate equation for V1/a.

Tap changing is also used to compensate for the deviations in primary-side voltage as a result of
feeder impedance. In distribution transformers, however, the tap changing is normally done manu-
ally.

Example 4.7:

A 75 kVA, 2400/240 V, 60 Hz distribution transformer has equivalent resistance and reactance of
0.009318 Ω and 0.058462 Ω, respectively, which are both referred to its secondary side. Use the
exact equation for V1 and determine the full-load voltage regulation:

(a) At 0.85 lagging power factor.

(b) At unity power factor.

(c) At 0.85 leading power factor.

(d) Also write the necessary codes to solve the problem in MATLAB®.

Solution

(a) At 0.85 lagging power factor,

I2 =
S

V2
=

75,000 V
240 V

= 312.5 A

and

θ = cos−1 PF = cos−1 0.85 = 31.79◦

Therefore,

III2 = 312.5∠−31.79◦ A

Using Equation 4.84

VVV 1

a
=VVV 2 + III2Req2 + jIII2Xeq2

= 240∠0◦+(312.5∠−31.79◦)(0.009318)+ j(312.5∠−31.79◦)(0.058462)

= 252.4873∠3.18◦ V
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Thus, the voltage regulation can be found using Equation 4.79 as

%V Reg =
V1/a−V2,FL

V2,FL
×100

=
252.4873−240

240
×100

= 5.2

or V Reg = 5.2%.

(b) At unity power factor,

PF = cosθ = 1.0 thus θ = 0◦

so that

III2 = 312.5∠0◦ A

Thus,

VVV 1

a
= 240+(312.5∠0◦)(0.0918)+ j(312.5∠0◦)(0.058462)

= 243.598∠4.3◦ V

Therefore, the voltage regulation is

%V Reg =
243.598−240

240
×100 = 1.5.

or V Reg = 1.5%

(c) At 0.85 leading power factor,

III2 = 312.5∠31.70◦ A

Hence,

VVV 1

a
= 240+(321.5∠31.79◦)(0.009318)+ j(312.5∠31.79◦)(0.058462)

= 233.4755∠4.19◦ V

Thus, the voltage regulation is

%V Reg =
233.4755−240

240
×100 =−2.72

or V Reg = −2.72%.

(d) Here is the MATLAB script

clc\\

clear\\

\%System Parameters\\

S = 75000; \% in VA\\

V1 = 2400; \% in Volts\\

V2 = 240; \% in Volts\\

n = V1/V2;\\

Req2 = 0.009318; \% in Ohms\\
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Xeq2 = 0.05 84 62; \% in Ohms\\

Zeq = Req2 + j*Xeq2; \% in Ohms\\

\% Solution for part a\\

PF = 0.8 5; \% lagging\\

I2\_mag = S/V2;\\

theta = acosd(PF)\\

I2 = I2\_mag*(PF - j*sind(theta))\\

\% NOTE: V1\_a represents V1/a\\

V1\_a = V2 + I2*Req2 + j*I2*Xeq2\\

Vreg = (abs(V1\_a) - V2)/V2 * 100\\

\% Solution for part b\\

PF = 1;\\

I2\_mag = S/V2;\\

theta = acosd(PF)\\

I2 = I2\_mag*(PF + j*sind(theta) )\\

\% NOTE: V1\_a represents V1/a\\

V1\_a = V2 + I2*Req2 + j*I2*Xeq2;\\

Vreg = (abs(V1\_a) - V2)/V2 * 100\\

\% Solution for part c\\

PF = 0.85\% leading\\

I2\_mag = S/V2;\\

theta = acosd(PF)\\

I2 = I2\_mag*(PF + j*sind(theta) )\\

\% NOTE: V1\_a represents V1/a\\

V1\_a = V2 + I2*Req2 + j*I2*Xeq2\\

Vreg = (abs(V1\_a) - V2)/V2 * 100\\

\\

Here is the MATLAB Output for Example 4.7\\

\\

theta=\\

31.7883\\

I2=\\

2.6563e + 0 02 - 1.6462e+002i\\

V1\_a=\\

2.5210e + 0 02 + 1.3995e+001i\\

Vreg=\\

5.2030\\

theta=\\

0\\

I2=\\

312.5000\\

Vreg=\\

1.4991\\

PF=\\

0.8500\\

theta=\\

31.7883\\

I2=\\

2.6563e + 0 02 + 1.6462e+002i\\

V1\_a=\\

2.3285e + 0 02 + 1.7063e+001i\\

Vreg=\\

-2.7186\\

>>\\
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4.9.2 TRANSFORMER EFFICIENCY

The efficiency of any equipment can be defined as the ratio of output power to input power. There-
fore, the efficiency η is

η =
Pout

Pin
=

Pout

Pout +Ploss
(4.86a)

or

η =
Pin −Ploss

Pin
= 1− Ploss

Pin
(4.86b)

The power losses in a given transformer are the core losses, which can be considered constant for a
given voltage and frequency, and the copper losses,1 caused by the resistance of the windings.

The core losses are the sum of hysteresis and eddy-current losses. Therefore, the input power can
be expressed as

Pin = Pout +Pcore +Pcu (4.87)

where

Pout =V2I2 cosθ = Sout cosθ (4.88)

Here, the cos θ is the load power factor. Therefore, the percent efficiency of the transformer is

η =
V2I2 cosθ

V2I2 cosθ +Pcore +Pcu
×100 (4.89)

where

Pcu = I2
1 R1 + I2

2 R2

= I2
1 Req1

= I2
2 Req2

∼= Psc

(4.90)

The current, voltage, and equivalent circuit parameters must be referred to the same side of the
transformer. The maximum efficiency is achieved when the core loss is equal to the copper loss, that
is,

Pcore = Pcu (4.91)

In general, the efficiency of transformers at a rated load is very high and increases with their ratings.
For example, transformers as small as 1 kVA may have an efficiency of 90%. Power transformer
efficiencies vary from 95% to 99%. In a well-designed transformer, both core losses and copper
losses are extremely small, so that efficiency is very high.2 For example, efficiency for very large
transformers is about 99%.

1The term copper loss is still used for the losses caused by the resistances of the windings, regardless of whether they are
copper or aluminum.

2The maximum allowable temperature that the transformer may be permitted to reach is imposed by the temperature rating of
the insulation used for the coils. Because of this, the losses in the transformer must not be permitted to remain at excessively
high temperatures for too long. The copper losses dictate a maximum allowable continuous current value and the iron losses
set a maximum voltage value. (Because of the saturation of the iron core, operating a transformer above the rated voltage
causes the no-load current to increase drastically. This also dictates a maximum allowable operating voltage.) The two
limitations are independent of each other and the load power factor. Because of this, transformers are rated in kVA rather
than kW.
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In contrast to power transformers, distribution transformers operate well below the rated power
output most of the time. Therefore, their efficiency performance is approximately evaluated based
on all-day (or energy) efficiency, which is defined as

ηAD =
Energy output over 24 h
Energy input over 24 h

×100 (4.92)

or

ηAD =
Energy output over 24 h

Energy output over 24 h + Losses over 24 h
×100 (4.93)

Hence, if the load cycle of the transformer is known, the all-day efficiency can easily be found.
Here, the load cycle is segmented into periods where the load is approximately constant, and the
energy and losses for each period are calculated.

Example 4.8:

Consider a 100 kVA, 7200/240 V, 60 Hz transformer. Assume that the open-circuit and short-circuit
tests were performed on the transformer and that the following data were obtained:

Open-Circuit Test (on Primary) Short-Circuit Test (on Primary)

Voltmeter Voc = 7200 V Vsc = 250 V
Ammeter Ioc = 0.65 A Isc = 13.889 A
Wattmeter Poc = 425 W Psc = 1420 W

Also assume that the transformer operates at full load with a 0.90 lagging power factor. If the
given power factor belongs to the load, not to the transformer, determine the following:

(a) The equivalent impedance, resistance, and reactance of the transformer all referred to the
primary side.

(b) Total losses, including the copper and core losses, at full load.

(c) The efficiency of the transformer.

(d) Percent voltage regulation of the transformer.

(e) The phasor diagram of the transformer.

Solution

(a) Referred to the primary side,

Zsc = Zeq1 =
Vsc

Isc
=

250 V
13.889 A

= 18 Ω

and

Req1 =
Psc

I2
sc

=
1.420 W

13.8892 A
= 7.36 Ω

Therefore,

Xeq1 =
√

Z2
eq1

−R2
eq1

=
√

182 −7.362 = 16.43 Ω
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(b) The full load current is

I1 =
S

V1
=

100,000 VA
7,200 V

= 13.89 A

thus,

Pcu = I2
1 Req1 = (13.89 A)2(7.36 Ω) = 1,1419.98 W

and

Pcore = Poc = 425 W

Hence, the total loss at full load is

Ploss = Pcu +Pcore = 1,419.98+425 = 1,844.98 W

(c) To find the input power, let us find the output power first, which is

Pout = Scosθ
= (100,000 VA)×0.90

= 90,000 W

then the input power can be found as

Pin = Pout +Ploss = 90,000+1,844.98 = 91,844.98 W

Hence, the efficiency of the transformer is

η = 1− Ploss

Pin
= 1− 1,844.98

91,844.98
= 0.9799 or 97.99%

(d) By using Equation 4.82,

VVV 1 = aVVV 2 + III1(Req1 + jXeq1) = 7,200∠0◦+(13.89∠−25.84◦)(7.36+ j16.43)

= 7,393.19∠1.25◦ V

Note that since PF = cosθ = 0.90 lagging, then

θ = arccos(PF) = cos−1(PF) = cos−1(0.90) =−25.84◦

Therefore, the percent voltage regulation is

%V Reg =
V1 −aV2

aV2
×100 =

7,393.19−7,200
7,200

×100 = 2.68

or

V Reg = 2.68%

(e) The phasor diagram of the transformer is as shown in Figure 4.19a. Note that θ = 25.84◦,

III1 = 13.89∠−25.84◦ A,aVVV 2 = 7,200∠0◦ V, and VVV 1 = 7,293.19∠1.25◦ V.
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Figure 4.22 Three-phase, two-winding transformer core construction: (a) core type and (b) shell type.

4.10 THREE-PHASE TRANSFORMERS
Today, for reasons of efficiency and economy, most electrical energy is generated, transmitted, and
distributed using a three-phase system rather than a single-phase system. Three-phase power may
be transformed either by the use of a single three-phase transformer or three single-phase trans-
formers, which are properly connected with each other for a three-phase operation. A three-phase
transformer, in comparison to a bank of three single-phase transformers, weighs less, costs less,
needs less floor space, and has a slightly higher efficiency. In the event of failure, however, the
entire three-phase transformer must be replaced.

On the other hand, if three separate single-phase units (i.e., a three-phase transformer bank)
are used, only one of them needs to be replaced.1 Also, a standby three-phase transformer is more
expensive than a single-phase spare transformer. Figure 4.22 shows the two versions of three-phase
core construction that are normally used: core type and shell type.

In the core-type design, both the primary and secondary windings of each phase are placed only
on one leg of each transformer, as shown in Figure 4.22a. For balanced, three-phase sinusoidal
voltages, the sum of the three-core fluxes at any given time must be zero. This is a requirement that
does not have to be met in the shell-type construction. In the core-type construction, the magnetic
reluctance of the flux path of the center phase is less than that of the outer two phases.

Therefore, there is some imbalance in the magnetic circuits of the three phases of the trans-
former. This in turn results in unequal magnetizing currents that affect their harmonic composition.
In essence, such a design prevents the existence of the third-harmonic flux, and thus pretty much
avoids third-harmonic voltages.

For example, third-harmonic flux components (which are in time phase in this design) of three-
phase core type-transformers are reduced to at least one-tenth of what shell-type or single-phase
transformer cores have. In the case of wye–wye connected windings with isolated neutrals, no third-
harmonic excitation current components are present.

A shell-type transformer is quite different in character from a core-type transformer. As shown
in Figure 4.22b, the flux in the outside paths of the core is reduced by 42% since in a shell-type
construction the center phase windings are wound in the opposite direction of the other two phases.

1However, it is not possible to use transformers to convert a single-phase system to a three-phase system for a large amount
of power. Relatively very small amounts of power can be developed from a single-phase system using R–C phase shift
networks (or an induction phase converter) to produce two-phase power which in turn can be transformed into three-phase
power.
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Since all yoke cross sections are equal, not only is the amount of core requirement reduced, but
also the manufacturing process involved is simplified. Furthermore, in a shell-type transformer, the
no-load losses are less than those in a core-type transformer.

4.11 THREE-PHASE TRANSFORMER CONNECTIONS
As previously stated, in a three-phase power system, it is often necessary to step up or step down the
voltage levels at various locations in the system. Such transformations can be achieved by means of
transformer banks that have three identical single-phase transformer units, one for each phase, or by
the use of three-phase transformer units. In either case, each phase has one primary and secondary
winding associated with it. These primary and secondary windings may be connected independently
in either delta (∆) or wye (Y) configurations.1 There are four possible connections for a three-phase
transformer, namely, wye–wye (Y–Y), delta–delta (∆–∆), wye–delta (Y–∆), and delta–wye (∆–Y),
as shown in Figure 4.23.

The primary benefit of using a wye-connected winding in a transformer is that it provides a
neutral point so that phase voltages are also available. In a wye–wye connection, there is no phase
displacement between the primary and secondary line-to-line voltages, even though it is possible to
shift the secondary voltages 180◦ by reversing all three secondary windings.

The use of a wye–wye connection creates no problem as long as it has solidly grounded neutrals
(especially the neutral for the primary side2). Here, the addition of a primary neutral connection
makes each transformer independent of the other two. Also, dissimilar transformers will not cause
voltage unbalance under no-load conditions. Due to the neutrals, the additive third-harmonic com-
ponents cause a current flow in the neutral rather than building up large voltages. If there is a delta-
connected tertiary winding, in addition to the primary and secondary windings, the third-harmonic
voltages are suppressed by trapping third-harmonic (circulating) currents within the delta tertiary
winding.

However, if such a neutral is not provided, the phase voltages become drastically unbalanced
when the load is unbalanced. This causes neutral instability that makes unbalanced loading im-
practical, even though the line-to-line voltages remain normal. There are also problems with third
harmonics. In summary, any attempt to operate a wye–wye connection of transformers without the
presence of a primary neutral connection will lead to difficulty and potential failure.

In fact, trouble occurs even under no-load conditions. Therefore, such a wye–wye connection is
seldom used in practice.3

In the delta–delta connection, under balanced conditions, the line currents are
√

3 times the
currents in the windings when the third harmonics in the excitation current are ignored. There is no
phase shift and no problem with unbalanced loads or harmonics. If a center tap is available on one

1The delta and wye configurations are also known as the mesh and star configurations, respectively.
2In the event that the neutral point of the primary windings is connected to the neutral point of the power source, there will
be no difference between the behavior of a wye–wye connected, core-type or shell-type, three-phase transformer and a
three-phase transformer bank.

3In general, all single-phase transformers when excited at rated voltage produce a third harmonic. This is due to the fact that
their cores saturate fast and, because of this, their magnetization currents become distorted. Therefore, when a perfectly
sinusoidal voltage (e.g., at 60 Hz) is applied to the primary of a transformer, it produces a magnetization current that has the
fundamental component. Luckily, in single-phase transformers, the magnetization current is small in comparison to the load
current. Therefore, the resulting distortion in the current waveform is negligible, whereas, in three-phase transformers, the
three fundamental magnetization currents are displaced by 120◦. The third harmonic currents, however, are in phase with
respect to each other (as are the 6th, 9th, 12th, etc. harmonics). Therefore, in an ungrounded wye–wye connection, such a
tripled third-harmonic component induces a secondary voltage waveform in each winding that has a large third-harmonic
voltage. Therefore, the output voltage waveforms are distorted. To prevent this, a neutral line to ground at either primary
or secondary (or both) must be provided. However, if the connection is wye–delta, delta–delta, or delta–wye, the third
harmonics circulate within the delta, and thus the harmonic voltage is suppressed and no secondary voltage distortion is
taking place.
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Figure 4.23 Basic three-phase transformer connections: (a) wye–wye, (b) delta–delta, (c) wye–delta, and (d)
delta–wye.

transformer secondary, the bank may be used to supply a three-phase, four-wire delta system.1 Also,
if one transformer fails in service, the remaining two transformers in the bank can be operated as an
open-delta (or V–V) connection at about 58% of the original capacity of the bank. However, in a
complete delta–delta bank, transformers tend to share the load inversely to their internal impedances,
and, therefore, identical transformers have to be used.

In the wye–delta connection, there is no problem with third-harmonic components in its voltages,
since they are absorbed in a circulating current on the delta side. This connection can be used with

1For further information, see Gönen (2008).
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unbalanced loads. In high-voltage transmission systems, the high-voltage side is connected in delta
and the low-voltage side is connected in wye. Due to the delta connection, the secondary voltage is
shifted 30◦ with respect to the primary voltage.

In the United States, it is standard practice to make the secondary voltage (i.e., the lower voltage)
lag the primary voltage (i.e., the higher voltage) by 30◦. This connection is basically used to step
down a high voltage to a lower voltage.

In the delta–wye connection, there is also no problem with third-harmonic components in its
voltages. It has the same advantages and the same phase shift as the wye–delta connection. The
secondary voltage lags the primary voltage by 30◦, as is the case for the wye–delta connection.
This connection is basically used to step up a low voltage to a high voltage. In general, when a
wye–delta or delta–wye connection is used, the wye is preferably on the high-voltage side, and
the neutral is grounded. Thus, the transformer insulation can be manufactured to withstand the line
voltage (or a factor thereof), instead of the total line voltage.

Example 4.9:

Consider a three-phase, 15 MVA, 138/13.8 kV distribution substation transformer that is being
used as a step-down transformer. Determine the ratings and turn ratios of the transformer, if it is
connected in

(a) Wye-delta.

(b) Delta-wye.

(c) Delta-delta.

(d) Wye-wye.

Solution
The rated primary line current is

IL1 =
S3φ√
3VL1

=
15×106 VA√
3(138,000 V)

= 62.7555 A

The rated secondary line current is

IL2 =
S3φ√
3VL2

=
15×106 VA√
3(13,800 V)

= 627.555 A

(a) If the transformer is connected in wye-delta:

Rated total kVA = S3φ =
15×106 VA

1,000
= 15,000 kVA

Rated kVA per phase =
S3φ
3

=
15,000 kVA

3
= 5,000 kVA

Rated I1 = IL1 = 62.7775 A
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Rated I2 =
IL2√

3
= 362.3188 A

Rated VL1 = 138 kV

Rated VL2 = 13.8 kV

Rated V1 =
VL1√

3
=

13,800 V√
3

= 79,674.3 V

Rated V2 =VL2 = 13,800 V

Turns ratio = a =
V1

V2
=

79,674.3 V
13,800 V

= 5.7735

(b) If the transformer is connected in delta-wye:

Rated total kVA =
S3φ

1,000
= 15,000 kVA

Rated kVA per phase = 5,000 kVA

Rated I1 =
IL1√

3
=

62.7775 A√
3

= 36.2319 A

Rated I2 = IL2 = 627.555 A

Rated VL1 = 138 kV and Rated VL2 = 13.8 kV

Rated V1 =VL1 = 138 kV

Rated V2 =
VL2√

3
=

13,800 V√
3

= 7,967.4337 V

Turns ratio = a =
V1

V2
=

138,000 V
7,967.4337 V

= 5.7735

(c) If the transformer is connected in delta-delta:

Rated total kVA =
S3φ

1,000
= 15,000 kVA

Rated kVA per phase = 5,000 kVA

Rated I1 =
IL1√

3
=

62.7775 A√
3

= 36.2319 A

Rated I2 =
IL2√

3
=

627.775 A√
3

= 362.319 A

Rated VL1 = 138 kV and Rated VL2 = 13.8 kV

Rated V1 =VL1 = 138 kV

Rated V2 =VL2 = 13.8 kV

Turns ratio = a =
V1

V2
=

138 kV
13.8 kV

= 10
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(d) If the transformer is connected in wye-wye:

Rated total kVA =
S3φ

1,000
= 15,000 kVA

Rated kVA per phase = 5,000 kVA

Rated I1 = IL1 = 62.7775 A

Rated I2 = IL2 = 627.555 A

Rated VL1 = 138 kV and Rated VL2 = 13.8 kV

Rated V1 =
138,000√

3
= 79,674.3 V

Rated V2 =
VL2√

3
=

13,800 V√
3

= 7,967.4337 V

a =
V1

V2
=

79.67 kV
7,967 kV

= 10

or

a =
VL1

VL2

=
138 kV
13.8 kV

= 10

4.12 AUTOTRANSFORMERS
The two windings in the usual two-winding transformer are not connected to each other; in other
words, they are electrically isolated from each other. Therefore, power is transferred inductively
from one side to the other. However, an autotransformer has a single winding, part of which is
common to both the primary and the secondary simultaneously.

Thus, in an autotransformer, there is no electrical isolation between the input side and the output
side. As a result, the power is transferred from the primary to the secondary through both induction
and conduction. As shown in Figure 4.24, an autotransformer can be used as a step-down or step-up
transformer. Consider the step-down connection shown in Figure 4.24a.

The common winding is the winding between the low-voltage terminals, while the remainder
of the winding belonging exclusively to the high-voltage circuit is called the series winding. This

Figure 4.24 Autotransformers used as (a) step-down or (b) step-up transformers.
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combined with the common winding forms the series-common winding between the high-voltage
terminals.

In a sense, an autotransformer is just a normal two-winding transformer connected in a special
way. The only structural difference is that the series winding must have extra insulation in order
to be just as strong as the one on the common winding. In a variable autotransformer, the tap is
movable.

Autotransformers are increasingly used to interconnect two high-voltage transmission lines op-
erating at different voltages, as shown in Figure 4.24. They can be used as step-down or step-up
transformers.

Consider the equivalent circuit of an ideal transformer (neglecting losses) shown in Figure 4.24a.
The output voltage V2 is related to the input voltage as it is in a two-winding transformer. Therefore,

V1

V2
=

N1

N2
= a (4.94)

where a > 1 for a step-down transformer, since N1 > N2. Also, since an ideal transformer is as-
sumed,

V1I1 =V2I2 (4.95)

V1

V2
=

I2

I1
= a (4.96)

Since the excitation current is neglected, then I1 and I2 are in phase, and the current in the common
section of the winding is

Ix = I2 − I1 (4.97)

Also, the mmfs of the two windings are equal. Thus, according to the mmf balance equation

N2Ix = (N1 −N2)I1 (4.98)

or

Ix =
N1 −N2

N2
= N(a−1)I1 = I2 − I1 (4.99)

Hence,

I1 =
I2

a
(4.100a)

=
N2

N1
I2 (4.100b)

or

I2

I1
= a (4.101)

Since

a =
N1

N2
=

Nc +Ns

Nc
(4.102)

then

I2

I1
=

Nc +Ns

Nc
(4.103)

where
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Nc is the number of turns in common winding = N2

Ns is the number of turns in series winding = N1 −N2

Similarly, it can be shown that

V2

V1
=

Nc

Nc +Ns
(4.104)

The apparent power delivered to the load is Sout and can be expressed as

Sout =V2I2 (4.105)

From Equation 4.97,

I2 = I1 + Ix = I1 +(I2 − I1) (4.106)

Substituting Equation 4.106 into Equation 4.105,

Sout =V2I1 +V2(I2 − I1) (4.107a)
= Scond +Sind (4.107b)

where

Scond is the conductively transferred power to the load through N2 winding

=V2I1 (4.108)

Sind is the inductively transferred power to the load through N1 −N2 winding

=V2(I2 − I1) (4.109)

Scond and Sind are related to Sout as

Sind

Sout
=

I2 − I1

I2
=

a−1
a

(4.110a)

=
Ns

Nc +Ns
(4.110b)

=
N1 −N2

N1
(4.110c)

and

Scond

Sout
=

I1

I2
=

1
a

(4.111a)

=
N2

N1
(4.111b)

where a > 1 for a step-down transformer.
Similarly, for a step-up transformer, as shown in Figure 4.24b, the current in the common section

of the winding is

Ix = I2 − I1 (4.112)

so that

I1 = I2 − Ix = I2 − (I2 − I1) = I2 +(I1 − I2) (4.113)
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Substituting Equation 4.113 into Equation 4.95

Sout =V2I2 =V1I1 = Sind (4.114a)

=V1I2 +V1(I1 − I2) (4.114b)

= Scond +Sind (4.114c)

where

Scond is the conductively transferred power to the load through N1 winding

=V1I2 (4.115)

Sind is the inductively transferred power to the load through N2 −N1 winding

=V1(I1 − I2) (4.116)

Scond and Sind are related to Sout by

Sind

Sout
=

I1 − I2

I1
= 1−a (4.117)

and

Scond

Sout
=

I2

I1
= a (4.118)

where

a =
Nc

Nc +Ns
(4.119)

and a < 1 for a step-up transformer.
The advantages of autotransformers include lower leakage reactances, lower losses, and smaller

excitation current requirements. Most of all, an autotransformer is cheaper than the equivalent two-
winding transformer (especially when the voltage ratio does not vary too greatly from 1:1).

The disadvantages of autotransformers are that there is no electrical isolation between the pri-
mary and secondary and that there is a greater short-circuit current than for the two-winding trans-
former.

Three-phase autotransformer banks generally have wye-connected main windings with the neu-
tral normally connected solidly to the ground. In addition, it is common practice to include a third
winding connected in the delta, called the tertiary winding.

Example 4.10:

Assume that a single-phase, 100 kVA, 2400/240 V two-winding transformer is connected as an
autotransformer to step down the voltage from 2640 to 2400 V. The transformer connection is
as shown in Figure 4.24a, with 240 and 2400 V windings for sections ab and bc, respectively.
Compare the kVA rating of the autotransformer with that of the original two-winding transformer,
and determine all three currents as well as Sout , Sind , and Scond .

Solution
The rated current in the 240V winding (or in the ab section) is

I1 =
100,000 VA

240 V
= 416.6667 A
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Similarly, the rated current in the 2,400V winding (or in the be section) is

Ix = I2 − I1

=
100,000 VA

2,400 V
= 41.6667 A

Therefore, the load current is

I2 = I1 + Ix

= 416.6667+41.6667 = 458.3334 A

Alternatively, by first calculating the turns ratio as

a =
2,640 V
2,400 V

= 1.10

then

I2 = aI1

=
2,640 V
2,400 V

(416.6667 A)

= 458.3334 A

as before. The kVA (or output) rating of the autotransformer is

Sauto =V1I1 =V2I2

=
2,640×416.6667 A

1,000
= 1,100 kVA

Notice that the two-winding transformer rating was 100 kVA. Therefore, the ratio of the autotrans-
former capacity to the two-winding transformer capacity is

Sauto

Stwo wing
=

1,100 kVA
1,000 kVA

= 11

In other words, the kVA capacity of the transformer increased 12.1 times when it was connected
as an autotransformer. Here, Sauto and Sout are at the same rating. Also, the inductively supplied
power to the load is

Sind =V2(I2 − I1)

= 2,400(458.3334−416.66667)

= 100 kVA

or

Sind =
a−1

a
Sauto

=
1.10−1

1.10
×1,100

= 100 kVA

The conductively supplied power to the load is

Scond =
Sauto

a

=
1,100 kVA

1.10
= 1,000 kVA
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Figure 4.25 A single-phase, three-winding transformer: (a) winding diagram and (b) equivalent circuit.

4.13 THREE-WINDING TRANSFORMERS
Figure 4.25a shows a single-phase, three-winding transformer. Three-winding transformers are usu-
ally used in bulk power (transmission) substations to lower the transmission voltage to the subtrans-
mission voltage level. They are also frequently used at distribution substations.

If excitation impedance is neglected, the equivalent circuit of a three-winding transformer can be
represented by a wye of impedances, as shown in Figure 4.25b, where the primary, secondary, and
tertiary windings are denoted by 1, 2, and 3, respectively. Note that the common point 0 is fictitious
and is not related to the neutrality of the system.

While the primaries and secondaries are usually connected in wye–wye, the tertiary windings of
a three-phase and three-winding transformer bank are connected in delta.

The tertiaries are used for (1) providing a path for the third harmonics and their multiples in
the excitation and the zero-sequence currents (the zero-sequence currents are trapped and circulate
in the delta connection), (2) in-plant power distribution, and (3) the application of power factor
correcting capacitors or reactors.

If the three-winding transformer can be considered an ideal transformer, then

V2

V1
=

N2

N1
(4.120)

V3

V1
=

N3

N1
(4.121)

N1I1 = N2I2 +N3I3 (4.122)

where V1, V2, and V3 are the primary, secondary, and tertiary terminal voltages, respectively, and
N1, N2, and N3 are the turns in the respective windings. I1, I2, and I3 are the currents in the three
windings.

The impedance of any of the branches shown in Figure 4.25b can be determined by considering
the short-circuit impedance between pairs of windings with the third winding open. Therefore,

Z12 = Z1 +Z2 (4.123)
Z13 = Z1 +Z3 (4.124)
Z23 = Z2 +Z3 (4.125)

If the leakage impedances Z1, Z2, and Z3 are referred to the primary, they are then expressed as

Z1 =
1
2 (Z12 +Z13 −Z23) (4.126)

Z2 =
1
2 (Z23 +Z12 −Z13) (4.127)

Z3 =
1
2 (Z13 +Z23 −Z12) (4.128)

where
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Z12 is the leakage impedance measured in primary with secondary short-circuited and tertiary
open

Z13 is the leakage impedance measured in primary with tertiary short-circuited and secondary
open

Z23 is the leakage impedance measured in secondary with tertiary short-circuited and primary
open

Z1 is the leakage impedance of primary winding

Z2 is the leakage impedance of secondary winding

Z3 is the leakage impedance of tertiary winding

In most large transformers, Z2 is very small and can even be negative.
In contrast to the situation with a two-winding transformer, the kVA ratings of the three-windings

of a three-winding transformer bank are not usually equal. Therefore, all impedances as defined
earlier should be expressed based on the same kVA base.

4.14 INSTRUMENT TRANSFORMERS
In general, instrument transformers are of two types: current transformers and voltage transform-
ers.1 They are used in ac power circuits to provide safety for the operator and equipment from high
voltage; they permit proper insulation levels and current-carrying capacity in relays, meters, and
other instruments. In the United States, the standard instruments and relays are rated at 5 A and/or
120 V, 60 Hz.

Regardless of the type of instrument transformer in use, the external load applied to its sec-
ondary is referred to as its burden. The burden usually describes the impedance connected to the
transformer’s secondary winding, but may specify the volt-amperes supplied to the load.2 For ex-
ample, a transformer supplying 5 A to a resistive burden of 0.5Ω may also be said to have a burden
of 12.5 VA at 5 A.

CTs are connected in series with the line, as shown in Figure 4.26a. They are used to step down
the current at a rated value of 5 A for ammeters, wattmeters, and relays. As shown in the figure,
frequently the primary is not an integral part of the transformer itself, but is part of the line in which
current is being measured.

It is very important to note that CTs can be very dangerous. During the operation of a CT, its
secondary terminals must never be open-circuited! Unlike other types of transformers, the number
of primary ampere-turns is constant for any given primary current.

When the secondary is open-circuited, the primary mmf is not balanced by a corresponding sec-
ondary mmf. (In other words, there will be no secondary mmf to oppose the primary mmf.) There-
fore, all of the primary current becomes excitation current. Consequently, a very high flux density
is produced in the core, causing a very high voltage to be induced in the secondary. In addition to
endangering the user, it may damage the transformer insulation and also cause overheating due to
excessive core losses.

Furthermore, if such high magnetizing forces are suddenly removed from the core, they may
leave behind substantial amounts of residual magnetism, causing the turns ratio to be different from
the one that existed before. As shown in Figure 4.26a, if the ammeter needs to be removed, the
proper procedure is to close the shorting switch first.

1VTs are also called potential transformers (PT).
2For further information, see Gönen (2008).
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Figure 4.26 Instrument transformer connections: (a) current transformer connection and (b) voltage trans-
former connection.

The VT primary is connected across the potential difference to be measured, as shown in Figure
4.26b. The secondary is connected to the voltmeter, wattmeter, or relay potential winding. The VTs
are specially designed to be very accurate step-down transformers.

The rated output of a VT seldom exceeds a few hundred volt-amperes. As shown in Figure 4.26b,
for safety reasons, the secondary side of a VT is always grounded and well insulated from the high-
voltage side.

4.15 INRUSH CURRENT
Occasionally, upon energizing a power transformer, a transient phenomenon (due to magnetizing
current characteristics) takes place even if there is no load connected to its secondary. As a result,
its magnetizing current peak may be several times (about 8–10 times) the rated transformer current,
or it may be practically unnoticeable.

Because of losses in the excited winding and magnetic circuit, this current ultimately decreases to
the normal value of the excitation current (i.e., to about 5% or less of the rated transformer current).
Such a transient event is known as the inrush current phenomenon.

It may cause (1) a momentary dip in the voltage if the impedance of the excitation source is
significant, (2) undue stress in the transformer windings, or (3) improper operation of protective
devices (e.g., tripping overload or common differential relays1).

The magnitude of such an inrush current depends on the magnitude, polarity, and rate of change
in applied voltage at the time of switching. For example, assume that the applied voltage, at t = 0,
happens to be

1For further information, see Blume et al. (1951).
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Figure 4.27 Inrush current phenomenon in a power transformer.

v(t) =
√

2V1 sinωt =
dλ1

dt
= N1

dΦ
dt

(4.129)

The resultant flux is

WΦ =

√
2V1

N1

∫ t

0
sinωtdt +Φ(0) (4.130)

where Φ(0) = Φr (i.e., the residual flux). Therefore,

Φ =

√
2V1

ωN1
(1− cosωt)+Φr (4.131)

or

Φ =−Φm cosωt +Φm +Φr (4.132)

Assuming that the dc component flux Φm +Φr is constant, at ωt = π , the instantaneous flux is

Φ = 2Φm +Φr (4.133)

That is, the maximum value of the flux may be more than twice the maximum of the normal flux,
since there is often residual magnetism in the core when it is initially energized.

Obviously, such a doubling of the maximum flux in the core causes a tremendously large magne-
tization current. As shown in Figure 4.27, as time progresses (i.e., in about a few cycles), there will
be a fast decay in the inrush current. Luckily, the probability of the occurrence of this theoretical
maximum inrush current is relatively small.

PROBLEMS

PROBLEM 4.1

Assume that an ideal transformer is used to step down 13.8 kV to 2.4 kV and that it is fully loaded
when it delivers 100 kVA. Determine the following:

(a) Its turns ratio.
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(b) The rated currents for each winding.

(c) The load impedance, referred to the high-voltage side, corresponding to full load.

(d) The load impedance referred to the low-voltage side, corresponding to full load.

PROBLEM 4.2

A single-phase, 2500/250 V, two-winding ideal transformer has a load of 10∠40◦ Ω connected
to its secondary. If the primary of the transformer is connected to a 2400 V line, determine the
following:

(a) The secondary current.

(b) The primary current.

(c) The input impedance as seen from the line.

(d) The output power of the transformer in kVA and in kW.

(e) The input power of the transformer in kVA and in kW.

PROBLEM 4.3

Assume that a three-phase, two-winding transformer is rated 50 MVA, 345/138 kV, and has 10%
impedance. When the transformer has a current of 0.8 per unit in its high-voltage winding, deter-
mine the following:

(a) The corresponding primary and secondary currents in per unit and in amperes.

(b) The internal impedance of the transformer, in ohms, referred to the high- and the low-
voltage windings, respectively.

(c) If the low-voltage terminals of the transformer are short-circuited and a 0.3 pu voltage is
applied to the high-voltage winding, the resulting high-voltage side and low-voltage side
currents in amperes and in per units.

(d) If a current of 1.0 pu flows in the high-voltage winding, the resultant (internal) IZ voltage
drop in the transformer in volts and in per units.

PROBLEM 4.4

A 60 Hz, 50 kVA, 2400/240 V, single-phase ideal transformer has 50 turns on its secondary
winding. Determine the following:

(a) The values of its primary and secondary currents.

(b) The number of turns on its primary windings.

(c) The maximum flux Φm in the core.

PROBLEM 4.5

A 60 Hz, 120/24 V, single-phase transformer has 300 turns in its primary winding, determine the
following:

(a) The number of turns in its secondary winding.
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(b) Its turns ratio.

(c) The value of the mutual flux in its core.

PROBLEM 4.6

A 60 Hz, 75 kVA, 2400/240 V, single-phase transformer is used to step down the voltage of a
distribution system. If the low voltage is to be kept constant at 240 V, determine the following:

(a) The value of the load impedance connected to the low-voltage side that will cause the
transformer to be fully loaded.

(b) The value of such a load impedance referred to the high-voltage side.

(c) The values of the load current referred to the low- and high-voltage sides.

PROBLEM 4.7

An audio frequency transformer is employed to couple a 100 Ω resistive load to an electronic
source that can be represented by a constant voltage of 6 V in series with an internal resistance of
4000 Ω. Assume that the transformer is an ideal transformer and determine the following:

(a) The turns ratio needed to provide maximum power transfer by matching the load and source
impedances.

(b) The values of the current, voltage, and power at the load under such. conditions

PROBLEM 4.8

Repeat Example 4.3 but assume that the impedance of the power line is 0.5+ j1.6 Ω and that the
impedance of the load is 4+ j7 Ω.

PROBLEM 4.9

Repeat Example 4.3 but assume that the impedances of the power line and the load are 4+ j9 and
3+ j10 Ω, respectively. Also assume that the generator bus voltage VG is 220∠0◦ V.

PROBLEM 4.10

Use the data given in Problem 4.8 and repeat Example 4.4. The impedances of the transformers
T1 and T2 are and ZT1 = j0.10 Ω and ZT2 = j0.10 Ω, respectively. Both of them are referred to the
high-voltage side of each transformer, respectively.

PROBLEM 4.11

Use the data given in Problem 4.9 and repeat Example 4.4. The impedances of the transformers
T1 and T2 are ZT1 = j0.10 Ω and, ZT2 = j0.10 Ω, respectively. Both of them are referred to the
high-voltage side of each transformer, respectively. The turns ratios of transformers 1 and 2 are
1/5 and 5/1, respectively.

PROBLEM 4.12

Repeat Example 4.3 but assume that the generator has an internal impedance as shown in Figure
4.28 and that ZG = jXd = j9.5 Ω.
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Figure 4.28 Figure for Problem 4.12.

PROBLEM 4.13

Repeat Example 4.4 but assume that the generator has an internal impedance of ZG = jXd =
j9.5 Ω.

PROBLEM 4.14

Repeat Example 4.3 but assume that the generator has an internal impedance of ZG = jXd =
j6.4 Ω. Also assume that the impedance of the power line is 0.5+ j1.6 Ω and that the impedance
of the load is 4+ j7 Ω.

PROBLEM 4.15

Repeat Example 4.4 but assume that the generator has an internal impedance of ZG = jXd =
j6.4 Ω. The impedance of the power line is 0.5+ j1.6 Ω and that the impedance of the load is
4+ j7 Ω. The impedances of the transformers T1 and T2 are ZT1 = j0.10 Ω and ZT2 = j0.10 Ω,
respectively. Both of them are referred to the high-voltage side of each transformer, respectively.

PROBLEM 4.16

Consider a 50 kVA, 2400/240 V, 60 Hz distribution transformer. Assume that the open-circuit and
short-circuit tests were performed on the primary side of the transformer and that the following
data were obtained:

Open-Circuit Test (on Primary) Short-Circuit Test (on Primary)
Voltmeter Voc = 2400 V Vsc = 52 V
Ammeter Ioc = 0.2083 A Isc = 20.8333 A
Wattmeter Poc = 185 W Psc = 615 W

Determine the impedances of the approximate equivalent circuit referred to the primary side.

PROBLEM 4.17

Consider a 100 kVA, 7200/240 V, 60 Hz distribution transformer. Assume that the open-circuit
and short-circuit tests were performed on the primary side of the transformer and that the follow-
ing data were obtained:
Determine the impedances of the approximate equivalent circuit referred to the primary side.
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Open-Circuit Test (on Primary) Short-Circuit Test (on Primary)

Voltmeter Voc = 7200 V Vsc = 250 V
Ammeter Ioc = 0.45 A Isc = 13.88889 A
Wattmeter Poc = 355 W Psc = 1275 W

PROBLEM 4.18

Consider a 75 kVA, 7500/480 V, 60 Hz distribution transformer. Resolve Example 4.6 using the
following data:

Open-Circuit Test (on Primary) Short-Circuit Test (on Primary)

Voltmeter Voc = 7500 V Vsc = 499 V
Ammeter Ioc = 0.35 A Isc = 10 A
Wattmeter Poc = 473 W Psc = 1050 W

PROBLEM 4.19

Consider a 25 kVA, 2400/240 V, 60 Hz distribution transformer. Resolve Example 4.6 using the
following data:

Open-Circuit Test (on Primary) Short-Circuit Test (on Primary)

Voltmeter Voc = 2400 V Vsc = 214 V
Ammeter Ioc = 0.125 A Isc = 10.417 A
Wattmeter Poc = 72 W Psc = 422 W

PROBLEM 4.20

Consider a 37.5 kVA, 7200/240 V, 60 Hz distribution transformer. Resolve Example 4.6 using the
following data:

PROBLEM 4.21

A 50 kVA, 2400/240 V, 60 Hz transformer is to be tested to find out its excitation branch compo-
nents and its series impedances. The following test data have been taken from the primary side of
the transformer:

(a) Find the values of Rc and Xm of the shunt (excitation) branch.

(b) Find the equivalent impedance of the transformer, referred to the primary side.

(c) Find the equivalent resistance and reactance of the transformer, referred to the primary side.

(d) Draw the equivalent circuit of the transformer, referred to the high-voltage side.
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Open-Circuit Test (on Primary) Short-Circuit Test (on Primary)

Voltmeter Voc = 7200 V Vsc = 255 V
Ammeter Ioc = 0.55 A Isc = 5.2083 A
Wattmeter Poc = 555 W Psc = 263 W

Open-Circuit Test (on Primary) Short-Circuit Test (on Primary)

Voltmeter Voc = 2400 V Vsc = 45 V
Ammeter Ioc = 0.65 A Isc = 20.8333 A
Wattmeter Poc = 65 W Psc = 300 W

PROBLEM 4.22

A 25 kVA, 2400/240 V, 60 Hz transformer is to be tested to find out its excitation branch compo-
nents and its series impedances. The following test data have been taken from the primary side of
the transformer:

Open-Circuit Test (on Primary) Short-Circuit Test (on Primary)

Voltmeter Voc = 2400 V Vsc = 70 V
Ammeter Ioc = 0.4 A Isc = 10.41 A
Wattmeter Poc = 65 W Psc = 250 W

(a) Find the values of Rc and Xm of the shunt (excitation) branch.

(b) Find the equivalent impedance of the transformer, referred to the primary side.

(c) Find the equivalent resistance and reactance of the transformer, referred to the primary side.

(d) Draw the equivalent circuit of the transformer, referred to the high-voltage side.

PROBLEM 4.23

A 75 kVA, 2400/240 V, 60 Hz transformer is to be tested to find out its excitation branch compo-
nents and its series impedances. The following test data have been taken from the primary side of
the transformer:

(a) Find the equivalent impedance of the transformer, referred to the high-voltage side.

(b) Find the equivalent circuit parameters of the transformer, referred to the low-voltage side.

PROBLEM 4.24

A 50 kVA, 2400/240 V, 60 Hz transformer is to be tested to find out its excitation branch compo-
nents and its series impedances. The following test data have been taken from the primary side of
the transformer:

(a) Find the equivalent impedance of the transformer, referred to the high-voltage side.

(b) Find the equivalent circuit parameters of the transformer, referred to the low-voltage side.
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Open-Circuit Test (on Primary) Short-Circuit Test (on Primary)

Voltmeter Voc = 2400 V Vsc = 185 V
Ammeter Ioc = 0.7 A Isc = 31.25 A
Wattmeter Poc = 285 W Psc = 910 W

Open-Circuit Test (on Primary) Short-Circuit Test (on Primary)

Voltmeter Voc = 2400 V Vsc = 195 V
Ammeter Ioc = 0.9 A Isc = 20.8333 A
Wattmeter Poc = 395 W Psc = 950 W

PROBLEM 4.25

Consider the power system given in Example 4.4 and determine the input impedance (i.e., the
Thévenin’s equivalent impedance) of the system looking into the system from bus 2. (Hint: Refer
all impedances to the bus 2 side and then find the equivalent impedance.)

PROBLEM 4.26

Consider the power system given in Example 4.10 and determine the input impedance (i.e., the
Thévenin’s equivalent impedance) of the system looking into the system from bus 2. (Hint: Refer
all impedances to the bus 2 side and then find the equivalent impedance.)

PROBLEM 4.27

Resolve Example 4.5 but assume that the transformer delivers the rated load current IIIL at 0.9
leading PF.

PROBLEM 4.28

Resolve Example 4.5 by using the following data: 100 kVA, 2400/240 V, 60 Hz distribution
transformer with Z1 = 0.595+ j1.150 Ω, Z2 = 0.0059+ j0.011 Ω, and Yel = 5.55×10−4∠−82◦

S. Assume that the transformer delivers rated IL at 0.85 lagging PF.

PROBLEM 4.29

Resolve Example 4.7 but use the approximate equation, that is, Equation 4.84, for VVV 1.

PROBLEM 4.30

A 50 kVA, 2400/240 V, 60 Hz distribution transformer has equivalent resistance and equivalent
reactance, both referred to its secondary side, of 0.021888 and 0.09101 Ω, respectively. Use the
exact equation for VVV 1 and determine the full-load voltage regulation:

(a) At a 0.8 lagging power factor.

(b) At unity power factor.

(c) At a 0.8 leading power factor.

PROBLEM 4.31

A 50 kVA, 2400/240 V, 60 Hz distribution transformer has equivalent resistance and equivalent
reactance, both referred to its secondary side, of 0.021888 and 0.09101 Ω, respectively. Use the
approximate equation for VVV 1 and determine the full-load voltage regulation:
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(a) At a 0.9 lagging power factor.

(b) At unity power factor.

(c) At a 0.9 leading power factor.

PROBLEM 4.32

Consider a 75 kVA, 2400/240 V, 60 Hz transformer. Assume that the open-circuit and short-circuit
tests were performed on the transformer and that the following data were obtained: Also assume

Open-Circuit Test (on Primary) Short-Circuit Test (on Primary)

Voltmeter Voc = 2400 V Vsc = 200 V
Ammeter Ioc = 0.50 A Isc = 31.25 A
Wattmeter Poc = 75 W Psc = 800 W

that the transformer operated at full load with a 0.92 lagging power factor. Note that the given
power factor belongs to the load, not to the transformer. Determine the following:

(a) The equivalent impedance, resistance, and reactance of the transformer, all referred to its
primary side.

(b) Total loss, including the copper and core losses, at full load.

(c) The efficiency of the transformer.

(d) The percent voltage regulation of the transformer.

PROBLEM 4.33

Assume that a single-phase, two-winding transformer has a core loss of 1500 W. The secondary
(i.e., output) voltage is 480 V and the output power is 40 kW at a 0.9 lagging power factor. The
current in the primary winding is 9.2593 A. If its secondary and primary winding resistances are
0.03 and 3 Ω, respectively, determine the following:

(a) The secondary current.

(b) The complex impedance of the load.

(c) The copper losses of the primary and secondary windings.

(d) The input power.

(e) The transformer efficiency.

PROBLEM 4.34

Consider the data given in Problem 4.24 and determine the following:

(a) The efficiency of the transformer at full load, operating at a 0.8 lagging power factor.

(b) The efficiency of the transformer at half load, operating at the same power factor.

(c) The amount of load at which the transformer operates at its maximum efficiency.
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PROBLEM 4.35

A 2400/2000 V autotransformer supplies a load of 100 kW at a power factor of 0.8. Find the
current in each winding section and the kVA rating of the autotransformer.

PROBLEM 4.36

A single-phase transformer has a core loss of 600 W. Its copper loss is 700 W, when the full-load
secondary current is 20 A.

(a) Determine the amount of the secondary current at which the transformer has its maximum
efficiency.

(b) If the transformer output is given in hp (Good grief!) as 20 hp, find its efficiency at full
load.

PROBLEM 4.37

Consider the data given in Problem 4.23 and the results of Example 4.7, and suppose that the
transformer has 0.009318 Ω equivalent resistance referred to its secondary side. Determine the
efficiency of the transformer at full load with these power factors:

(a) PF = 0.85 lagging.

(b) PF = unity.

(c) PF = 0.85 leading.

PROBLEM 4.38

Consider the data given in Problem 4.24 and determine the efficiency of the transformer at full
load with these power factors:

(a) PF = 0.90 lagging.

(b) PF = unity.

(c) PF = 0.90 leading.

PROBLEM 4.39

Consider a 100 kVA, 7200/240 V, 60 Hz transformer. Assume that the open-circuit and short-
circuit tests were performed on the transformer and that the following data were obtained. Also,
assume that the transformer operated at full load with a 0.85 lagging power factor. Note that the
given power factor belongs to the load, not to the transformer.

Open-Circuit Test (on Primary) Short-Circuit Test (on Primary)

Voltmeter Voc = 7200 V Vsc = 250 V
Ammeter Ioc = 0.45 A Isc = 13.889 A
Wattmeter Poc = 355 W Psc = 1275 W

Determine the following:

(a) The equivalent impedance, resistance, and reactance of the transformer, all referred to its
primary side.
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(b) Total loss, including the copper and core losses, at full load.

(c) The efficiency of the transformer.

(d) The percent voltage regulation of the transformer.

(e) The phasor diagram of the transformer.

PROBLEM 4.40

Consider a 75 kVA, 7200/240 V, 60 Hz transformer. Assume that the open-circuit and short-circuit
tests were performed on the transformer and that the following data were obtained: Also assume

Open-Circuit Test (on Primary) Short-Circuit Test (on Primary)

Voltmeter Voc = 7200 V Vsc = 250 V
Ammeter Ioc = 0.55 A Isc = 10.4167 A
Wattmeter Poc = 399 W Psc = 775 W

that the transformer operated at full load with a 0.90 lagging power factor. Note that the given
power factor belongs to the load, not to the transformer. Determine the following:

(a) The equivalent impedance, resistance, and reactance of the transformer, all referred to its
primary side.

(b) Total loss, including the copper and core losses, at full load.

(c) The efficiency of the transformer.

(d) Percent voltage regulation of the transformer.

PROBLEM 4.41

Consider a 25 kVA, 2400/240V, 60 Hz transformer with ZZZ1 = 2.533 + j2.995 Ω and ZZZ2 =
(2.5333+ j2.995)×10−2 Ω, referred to the primary and secondary sides, respectively.

(a) Find V1, aV2, I1, I2, Req1 , and Xeq1 .

(b) The transformer is connected at the receiving end of a feeder that has an impedance of
0.3+ j1.8 Ω. Let the sending end-voltage magnitude of the feeder be 2400 V. Also there is
a load connected to the secondary side of the transformer that draws rated current from the
transformer at a 0.85 lagging power factor. Neglect the excitation current of the transformer.
Determine the secondary-side voltage of the transformer under such conditions.

(c) Draw the associated phasor diagram.

PROBLEM 4.42

Consider a 75 kVA, 2400/240V, 60 Hz transformer with ZZZ1 = 0.52+ j3.85 Ω and ZZZ2 = (0.52+
j3.85)×10−2 Ω, referred to the primary and secondary sides, respectively.

(a) Find V1, aV2, I1, I2, Req1 , and Xeq1 .

(b) The transformer is connected at the receiving end of a feeder that has an impedance of
0.5+ j2.3 Ω. Let the sending end-voltage magnitude of the feeder be 2400 V. Also there is
a load connected to the secondary side of the transformer that draws rated current from the
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transformer at a 0.92 lagging power factor. Neglect the excitation current of the transformer.
Determine the secondary-side voltage of the transformer under such conditions.

(c) Draw the associated phasor diagram.

PROBLEM 4.43

Repeat Example 4.9 assuming that the three-phase transformer is rated 45 MVA, 345/34.5 kV.

PROBLEM 4.44

A three-phase, 150 kVA, 12,470/208 V distribution transformer bank supplies 150 kVA to a bal-
anced, three-phase load connected to its secondary-side terminals. Find the kVA rating and turns
ratio of each single-phase transformer unit as well as their primary- and secondary-side voltages
and currents, if the transformer bank is connected in

(a) Wye-wye.

(b) Delta-delta.

PROBLEM 4.45

A three-phase, 300 kVA, 480/4170 V distribution transformer bank supplies 300 kVA to a bal-
anced, three-phase load connected to its secondary-side terminals. Find the kVA rating and turns
ratio of each single-phase transformer unit as well as their primary- and secondary-side voltages
and currents, if the transformer bank is connected in

(a) Wye-wye.

(b) Delta-delta.

PROBLEM 4.46

Repeat Example 4.10 for a 2400/2640 V step-up connection, as shown in Figure 4.24b.

PROBLEM 4.47

Redo Example 4.7 by using MATLAB and determine the following:

(a) Write the MATLAB program script.

(b) Give the MATLAB program output.



5 Electromechanical Energy
Conversion Principles

5.1 INTRODUCTION
According to the energy conversion principle, energy is neither created nor destroyed: it is simply
changed in form. The role of electromagnetic (or electromechanical) machines is to transmit energy
or convert it from one type of energy to another. For example, the transformer transmits electrical
energy, changing only the potential difference and current at which it exists. However, it also con-
verts a small amount of electrical energy to heat. This is an unwanted result that is required to be
minimized at the design stage.

However, a rotational or translational electromagnetic machine converts energy from mechanical
to electrical form, or vice versa, that is, it operates as a generator or motor. In the process,1 it also
converts some electrical or mechanical energy to unwanted heat. In general, electric generators and
motors of all kinds can be defined as electromechanical energy converters. Their main components
are an electrical system, a mechanical system, and a coupling field, as shown in Figure 5.1.

5.2 FUNDAMENTAL CONCEPTS
In this section, some of the basic concepts involving electrical rotating machines are reviewed. Such
concepts include angular velocity, angular acceleration, mechanical work, power, and torque.

As explained in Chapter 1, most electrical machines rotate around an axis known as the shaft of
the machine. As can be seen in Figures 5.1 and 5.2, the input of a generator and the output of the
motor are mechanical in nature. If the shaft rotates in a counterclockwise (CCW) direction rather
than in a clockwise (CW) direction, the resultant rotational angle and direction are, by definition,
considered positive; otherwise, they are considered negative.

The angular position θ of the shaft is the angle at which it is positioned measured from some
arbitrarily selected reference point. The angular position concept conforms to the linear distance
concept along a line, and it is measured in radians or degrees. However, the angular velocity (or
speed) represents the rate of change in the angular position with respect to time. Thus, angular
velocity can be expressed as

ω =
dθ
dt

rad/s (5.1)

as long as the angular position θ is measured in radians. Usually, the rotational speed n is given in
revolutions per minute (rpm), so that

n =

(
60
2π

)
ω rev/min (5.2)

1Such a process occurs through the medium of the electric or magnetic field of the conversion device. In general, electrome-
chanical devices can be classified as follows: (1) transducers, which are the devices used for measurement and control, such
as torque motors, loudspeakers, and microphones; (2) force-producing devices, such as relays, electromagnets, and solenoid
actuators; and (3) continuous energy-conversion apparatus, such as generators and motors.
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Figure 5.1 A representation of electromechanical energy conversion.

Figure 5.2 Illustration of some of the fundamental concepts associated with the operation of an electrical
rotating machine: (a) motor action and (b) generator action.

The rate of change in angular velocity with respect to time is defined as the angular acceleration and
is expressed as

α =
dω
dt

rad/s2 (5.3)

In rotational mechanics, the torque T (or twisting action on the cylinder) is defined as the tangential
force times the radial distance at which it is applied, measured from the axis of rotation.

In other words, the torque is a function of the magnitude of the applied force F , and the distance
between the axis of rotation and the line of action of the force. Hence, as illustrated in Figure 5.3,
the rotational torque T can be expressed as

T = (applied force)(perpendicular distance)
= (F)(rsinθ)
= FRsinθ

(5.4)
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Figure 5.3 Illustration of the relationship between force and torque.

In the SI system1 of units, force is given in newtons (N) and distance is given in meters (m).
For linear motion, according to Isaac Newton, mechanical work W is defined as the integral of

force over distance. Therefore,

W = f
∫

dx J (5.5)

The units of work are joules (J) on the SI system and foot pounds in the English system. However,
for rotational motion, work is defined as the integral of torque through an angle. Thus,

W = T
∫

dθ J (5.6)

If the torque is constant,
W = T θ J (5.7)

Power is defined as the rate of doing work. Hence,

P =
dW
dt

= F
dx
dt

W (5.8)

However, for rotational motion having constant torque, power can be expressed as2

P =
dW
dt

= T
dθ
dt

W (5.9)

or
P = T ω W (5.10)

From Equation 5.10, torque can be found as

T =
P
ω

N ·m (5.11)

1It is interesting to note that since 1954, the metric system known as the International System of Units (or Système Interna-
tional) (SI) has been in use all over the world with the exception of the United States. Today, the SI system is used even in
England and Canada.

2In the SI system of units, the work is in joules (since 1 J = 1 W/s) if the force is in newtons and the distance x is in meters.
Thus, one watt equals one joule per second (i.e., 1 W = 1 J/s).
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Since in the United States the English system of units is still in use, knowing the following conver-
sion formulas may be useful:

T =
7.04P (watts [W])

n
lb · ft (5.12)

or
T =

5225P (horse power [hp])
n

lb · ft (5.13)

where

n =

(
60
2π

)
ω rev/min

P (horse power) =
P (watts)

746
(5.14)

T (lb · ft) = 0.738T (N ·m) (5.15)

Some of the fundamental concepts associated with the operation of an electrical rotating machine
are illustrated in Figure 5.2. The magnetic field in such a machine establishes the necessary link
between the electrical and mechanical systems, producing mechanical torque as well as inducing
voltages in the coils. The magnetic field itself is developed by the current flowing through these
coils.

Consider the motor action of the machine as illustrated in Figure 5.2a. The instantaneous power
input to the motor is

p = v× i (5.16)

where v and i are the terminal voltage and current, respectively, as shown in Figure 5.2a. The mag-
netic field develops the output torque and induces a countervoltage (also called counter-emf since
it opposes the current flow), which makes it possible for the machine to receive power from the
electrical source and convert it into mechanical output. Here, the torque and the angular velocity are
in the same direction.

In the generator action as shown in Figure 5.2b, the magnetic field induces the generated voltage
and develops a countertorque (since it opposes the torque of the mechanical source) which makes it
possible for the rotating machine to receive power from the mechanical source in order to convert
it into electrical output. Note that the countertorque and the angular velocity are in the opposite
direction.

Example 5.1:

The rotational speed of a motor (i.e., its shaft speed) is 1800 rev/min. Determine its angular velocity
(i.e., its shaft speed) in rad/s.

Solution
From Equation 5.2

n =

(
60
2π

)
ω rev/min

or
ω =

(
2π
60

)
n

=

(
2π
60

)
(1800 rev/min) = 188.5 rad/s
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Example 5.2:

Consider Figure 5.3 and assume that the rotational torque is 200 N ·m and the radius of the rotor
is 0.25 m. Determine the applied force in N:

(a) If the angle θ is 15◦.

(b) If the angle θ is 45◦.

(c) If the angle θ is 90◦.

(d) If the angle θ is 120◦.

Solution

(a) From Equation 5.4
T = Frsinθ

from which
F =

T
rsinθ

Thus, at θ = 15◦,

F =
200 N ·m

(0.25 m)sin15◦
= 3094 N

(b) At θ = 45◦,

F =
200 N ·m

(0.25 m)sin45◦
= 1131.4 N

(c) At θ = 90◦,

F =
200 N ·m

(0.25 m)sin90◦
= 800 N

(d) At θ = 120◦,

F =
200 N ·m

(0.25 m)sin120◦
= 923.8 N

Example 5.3:

A coil, having a sectional area of 0.3 m2 with N = 20 turns, is rotating around its horizontal axis
with a constant speed of 3600 rpm in a uniform and vertical magnetic field of flux density B = 0.8
T. If the total magnetic flux passing through the coil is given by Φ = ABcosωt in Wb, where A is
the sectional area of the coil, determine the maximum and effective values of the induced voltage
in the coil.

Solution
Since the total magnetic flux passing through the coil is given as

Φ = ABcosωt

According to Faraday’s law, the induced voltage is

v = N
dφ
dt

= N
d(ABcosωt)

dt
=−NωABsinωt
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Thus, its maximum voltage is
vmax = N ×ω ×A×B

where
ω =

(
2π
60

)
(60 rpm)

= 377 rad/s

Hence,
Vmax = (20 turns)(377 rad/s)(0.3 m2)(0.8 T)

= 1809.6 V

and its effective value is
vrms =

vmax√
2

=
1809.6 V√

2
= 1279.6 V

5.3 ELECTROMECHANICAL ENERGY CONVERSION
The energy conservation principle with regard to electromechanical systems can be expressed in
various forms. For example, as shown in Figure 5.1, for a sink of electrical energy such as an
electric motor, it can be expressed as

(Electrical energy input from source) = (Mechanical energy output to load)
+ (Increase in stored energy in coupling field ) + (Energy loss converted to heat)

(5.17)

The last term of Equation 5.17 can be expressed as

(Energy loss converted to heat) = (Resistance loss of winding)
+ (Friction and windage losses)+ (Field losses)

(5.18)

The resistance loss is the i2R loss in the resistance I of the winding. The friction and windage losses
are associated with motion. Since the coupling field is the magnetic field, the field losses1 are due
to hysteresis and eddy-current losses, that is, the core losses are due to the changing magnetic field
in the magnetic core.

If the energy losses2 that are given in Equation 5.18 are substituted into Equation 5.17, the energy
balance equation can be expressed as

(Electrical energy input from source minus resistance losses) =
(Mechanical energy output to load plus friction and windage losses)

+ (Increase in stored energy in coupling field plus core losses)
(5.19)

Assume a differential time interval dt during which an increment of electrical energy dWe (without
including the i2R loss) flows to the system. Then the net electrical input We can be equated to the
increase in energy Wm so that, in incremental form,

dWe = dWm +dWf J (5.20)

where

1They are also known as the iron losses, as previously stated.
2Furthermore, there are additional losses that arise from the nonuniform current distribution in the conductors and the core
losses generated in the iron due to the distortion of the magnetic flux distribution from the load currents. Such losses are
known as stray-load losses and are very hard to determine precisely. Because of this, estimates that are based on tests,
experience, and judgment are used. Typically, such stray losses range from 0.5% of the output in large machines to 5% of
the output in medium-sized machines. In machines, they are usually estimated to be about 1% of the output.
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dWe is the differential electrical energy input (also denoted by dWi).

dWm is the differential mechanical energy output (also called the differential developed energy
dWd).

dWf is the differential increase in energy stored in the magnetic field

Equation 5.20 is also known as the incremental (or differential) energy-balance equation. It pro-
vides a basis for the analysis of the operation of electromechanical machines. Since in time dt,

dWe = v× i×dt (5.21)

where v is the (reaction) voltage induced in the electric terminals by the changing magnetic stored
energy. Therefore,

dWe = v× i×dt = dWe +dWf (5.22)

According to Faraday’s law, the induced voltage v based on the flux linkages can be expressed as

v =
dλ
dt

(5.23)

Then the net differential electrical energy input in time dt can be expressed as

dWe = v× i×dt

=

(
dλ
dt

)
i×dt

= i×dλ

(5.24)

The differential mechanical energy output for a virtual displacement (i.e., linear motion) dx when
the force is Ff can be expressed as

dWm = Ff ×dx (5.25)

Substituting Equations 5.24 and 5.25 into Equation 5.22,

dWf = i×dλ −Ff ×dx (5.26)

If the differential mechanical energy output is for a rotary motion, the force Ff is replaced by torque
Tf (also known as the developed torque Td) and the linear (differential) displacement dx is replaced
by the angular (differential) displacement dθ so that

dWm = Tf ×dθ (5.27)

and therefore
dWf = i×dλ −Tf ×dθ (5.28)

5.3.1 FIELD ENERGY

Suppose that the electromechanical system shown in Figure 5.4 has a movable part (i.e., armature)
that can be kept in static equilibrium by a spring. If the movable part is kept stationary at some
air gap and the current is increased from zero to a value I, a flux Φ will be maintained in the
electromagnetic system. Since no mechanical output can be produced,

dWm = 0 (5.29)

and substituting Equation 5.29 into Equation 5.20,

dWe = dWf (5.30)
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Figure 5.4 A simple electromechanical system.

Figure 5.5 λ–i characteristic of (a) a magnetic system and (b) an idealized magnetic system.

Thus, if core loss is ignored, all the incremental electric energy input must be stored in the magnetic
field. Since, from Equation 5.24,

dWe = i×dλ (5.31)

then
dWf = i×dλ (5.32)

dWf = dWe = v× i×dt = i×dλ (5.33)

Figure 5.5a shows the relationship between coil flux linkage λ and current I for a particular air-
gap length. Since core loss is being ignored, the curve will be a single-valued curve passing through
the origin. The incremental field energy dWf is shown as the crosshatched area in Figure 5.5a. If
the applied terminal voltage v is increased, causing a change in current from i1 to i2, there will be
a matching change in flux linkage from λ1 to λ2. Therefore, the corresponding increase in stored
energy is

dWf =
∫ λ2

λ1

idλ (5.34)
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as shown in Figure 5.5a. When the coil current and flux linkage are zero, the field energy is zero.
Thus, if the flux linkage is increased from zero to l, the total energy stored in the field is

dWf =
∫ λ

0
idλ (5.35)

This integral represents the shaded area Wf between the A ordinate and the λ–i characteristic, as
shown in Figure 5.5a. Equation 5.35 can be used for any lossless electromagnetic system.

If the leakage flux is negligibly small, then all flux φ in the magnetic circuit links all N turns of
the coil. Therefore,

λ = nΦ (5.36)

so that from Equations 5.33 and 5.36,

dWf = i×dλ = N × i×dθ = F ×dθ (5.37)

where
F = N × i A · turns (5.38)

Thus, if the characteristic shown in Figure 5.5a is rescaled to show the relationship between Φ and
F (so that the ordinate represents the Φ rather than the λ and the axis represents the F rather than
the i), the shaded area again represents the stored energy.

If the reluctance of the air gap makes up a considerably larger portion of the total reluctance of
the magnetic circuit, then that of the magnetic material used may be ignored. The resultant λ–i char-
acteristic is represented by a straight line through the origin. Figure 5.5b shows such a characteristic
of an idealized magnetic circuit. Hence, for this idealized system,

λ = L× i (5.39)

where the inductance of the coil is given by L. By substituting Equation 5.23 into Equation 5.35, the
total energy stored in the field can be expressed as

Wf =
∫ λ

0

λ
L

dλ

=
λ 2

2L

=
L× i2

2

=
i×λ

2

(5.40)

On the other hand, if the reluctance of the magnetic system (i.e., of the air gap) as viewed from
the coil is R, then

F = R×Φ A · turns (5.41)

and from Equation 5.37, the total energy stored in the field can be expressed as

Wf =
∫ Φ

0
F ×dΦ = R

dΦ2

2
=

F2

2R
(5.42)
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Furthermore, if it is assumed that there is no fringing at the air gaps, and that the total field energy
is distributed uniformly, the total energy stored in the field can be expressed as

Wf =
i×λ

2

=
i(N ×Φ)

2

=
(N × i)Φ

2

= F
(

Φ
2

)

(5.43)

or

Wf =
H ×B× l ×A

2

=
B2(vol)

2µ0

(5.44)

where

l = 2g is the total length of the air gap in a flux path

vol = l ×A is the total air gap volume

A is the cross-sectional area of the core

B is the flux density in the air gaps

µ0 =
B
A

= permeability of free space H/m

= 4π ×10−7

Since l ×A is the total gap volume, the energy density Wf in the air gaps can be expressed as

Wf =
Wf

l ×A

=
B×H

2

=
µ0H2

2

=
B2

2µ0

(5.45)

The unit of the energy density is J/m3.

Example 5.4:

Consider Example 3.7 and determine the following:

(a) The mmf required by the air gap.

(b) The total mmf required.
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(c) The mmf required by the ferromagnetic core.

(d) The energy density in the air gap.

(e) The energy stored in the air gap.

(f) The total energy stored in the magnetic system.

(g) The energy stored in the ferromagnetic core.

(h) The energy density in the ferromagnetic core.

Solution

(a) The mmf required by the air gap is found from

Fg = Φg ×Rg = Φ4 ×R4 = Φ2 ×R4

or
Fg = (0.001197 Wb)(31,870.9886 A · turn/Wb)

= 38.1017 A · turns

(b) The total mmf required is
Ftot = Φtot ×Rtot

= (0.0015652 Wb)(255,565.4983 A · turns/Wb)

= 400 A · turns

(c) The mmf required by the ferromagnetic core is

Fcore = Ftot −Fg

= 400−38.1017 = 361.8983 A · turns

(d) Since
Bg = B2

= 0.2394 Wb/m2

From Equation 5.45, the energy density in the air gap is

wg =
B2

g

2µ0

=
(0.2394 Wb/m2)2

2(4π ×10−7)
= 0.0023×107 J/m3

(e) The total air gap volume is
volg = lg ×Ag

= (0.0002 m)(0.005 m2) = 1×10−6 m3

Thus, the energy stored in the air gap is

Wg =Wg(volg)

= (0.0023×107 J/m3)(1×10−6 m3 = 0.023 J)

Alternatively, using Equation 5.42,

Wg = Rg
Φ2/g

2

=
(31,830.9886 A · turns/Wb)(0.001197 Wb)2

2
= 0.023 J
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(f) The total energy stored in the magnetic system is

Wf = Ftot
Φtot

2

=
(400 A · turns/Wb)(0.0015652 Wb)2

2
= 0.313 J

(g) Since
Wf =Wcore +Wg

then the energy stored in the ferromagnetic core is

Wcore =Wf −Wg

= 0.313−0.023

= 0.29 J

(h) The volume of the ferromagnetic core is

volcore = 2(0.05×0.25)0.05+2(0.05×0.4)0.05+(0.15−0.0002)(0.10)0.05

= 4×10−3 m3

Since the energy stored in the ferromagnetic core is Wcore = wcore(volcore), then the
energy density in the ferromagnetic core is

Wcore =
Wcore

volcore

=
0.29 J

4×10−3 m3

72.5 J/m3

5.3.2 MAGNETIC FORCE

The magnetic flux that crosses an air gap in a magnetic material produces a force Ff of attraction
between the faces of the air gap, as shown in Figure 5.4. The core shown in the figure has an air
gap of variable length g as dictated by the position of the movable part (i.e., the armature), which
in turn is determined by the magnetic pulling force Ff and the spring. Note that, in Figure 5.4, the
differential displacement can also be expressed as

dx = dg (5.46)

Based on the symmetry involved (considering only one pole of the magnetic circuit), the differential
change in volume can be found from

d(vol) = Adg (5.47)

Ignoring leakage and fringing of the flux at the gaps

dWf =
BHd(vol)

2

=
BHAdg

2

=
B2Adg

2µ0

(5.48)
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Figure 5.6 A doubly excited electromechanical (translational) system.

From the definition of work,
dWm = Ff dx = Ff dg (5.49)

When a magnetic pulling force is applied to the movable part (i.e., the armature), an energy dW
equal to the magnetic energy dWf stored in the magnetic field is expended. Therefore, at equilibrium,

dWf = dWm (5.50)

or substituting Equations 5.48 and 5.49 into Equation 5.50

B2Adg
2µ0

= Ff dg (5.51)

from which the magnetic pulling force per pole on the movable part can be found as

Ff =
B2A
2µ0

N (5.52)

Thus, the total magnetic pulling force on the movable part can be expressed as

Ff ,total = 2
B2A
2µ0

=
B2A
µ0

N (5.53)

It is important to understand that since the electrical input makes no contribution to the energy in the
air gaps, due to the constant air-gap flux, the mechanical energy must be obtained from the stored
energy in the air-gap fields (i.e., idl = 0). In other words, the air gaps give off energy by virtue of
their decreased volume.

Example 5.5:

Consider the linear electromechanical system shown in Figure 5.6. Assume that only the coil shown
on the left is energized and that the core on the right acts as an armature (i.e., the movable part).
The cross-sectional area of each air gap is 25×10–6 m2. If the flux density is 1.1 Wb/m2, determine
the following:

(a) The magnetic pulling force per pole.

(b) The total magnetic pulling force.
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Solution

(a) The magnetic pulling force per pole can be found from Equation 5.52 as

Ff =
B2A
2µ0

=
(1.1 Wb/m2)2(25×10−6 m2)

2(4π ×10−7)
= 12.04 N

(b) The total magnetic pulling force can be found from Equation 5.53 as

Ff ,total =
B2A
2µ0

=
(1.1 Wb/m2)2(25×10−6 m2)

(4π ×10−7)
= 24.08 N

Alternatively,
Ff ,total = 2Ff = 2(12.04 N) = 24.08 N

5.3.3 ENERGY AND COENERGY

As previously stated, the shaded area in Figure 5.5a represents the total energy stored in a coil
(which magnetizes the field) from zero to i. Such energy can be determined by using Equation 5.35;
that is, from

Wf =
∫ λ

0
idλ

In Figure 5.5a, the area between the i-axis and λ–i characteristic is defined as the coenergy, and can
be determined from

W
′
f =

∫ λ

0
λdi (5.54)

Such a magnetic coenergy has no physical meaning. However, it can be useful in determining force
(or torque) developed in an electromagnetic system. From Figure 5.5a, for a coil current i and the
resultant flux linkage λ

Wf +W
′
f = λ × i (5.55)

energy+ coenergy = λ × i (5.56)

Notice that Wf is greater than Wf , if the λ–i characteristic is nonlinear and that Wf is equal to Wf , if
the λ–i characteristic is linear,1 as shown in Figure 5.5b.

5.3.4 MAGNETIC FORCE IN A SATURABLE SYSTEM

Consider the electromechanical system shown in Figure 5.4 and assume that it is made up of sat-
urable ferromagnetic material. It shows that when the air gap is large, the resultant λ–i characteristic
is almost a straight line; when the air gap is very small, the characteristic is almost a straight line for
small values of flux linkage. However, as flux linkage is increased, the curvature of the characteristic
starts to appear because of the saturation of the magnetic core.

Assume that λ is a function of x and i and that there is a differential movement of the operating
point corresponding to a differential displacement of dx of the armature (i.e., the movable part)
made at a low speed (i.e., at a constant current), as shown in Figure 5.7a.

In other words, the armature of Figure 5.4 moves from the operating point a (where x = x1) to
a new operating point b (where x = x2) so that at the end of the movement the air gap decreases.

1In other words, if the magnetic core has a constant permeability, for example, as in the air, the energy and coenergy are
equal.
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Figure 5.7 Energy balance in a saturable system: (a) constant current operation, (b) constant flux operation,
and (c) a general case.

If the armature has moved slowly, the current i has stayed constant during the motion, causing the
operating point to move upward from point a to b, as shown in Figure 5.7a. For this displacement,1

during which the flux linkage changes, neither the emf nor the dWe is zero. Therefore, from Equation
5.20,

dWm = dWe −dWf = d(We −Wf ) (5.57)

Hence, for the displacement,

Ff =
∂ (We −Wf )

∂x

∣∣∣∣
i=constant

(5.58)

Since the motion has taken place under constant-current conditions, the mechanical work performed
is depicted by the shaded area in Figure 5.7a. That area also represents the increase in the coenergy.
Thus,

dWm = dW
′
f (5.59)

Substituting Equation 5.25 into Equation 5.59,

Ff dx = dW
′
f (5.60)

1Notice the increase in coenergy during the move from position a to b, as shown in Figure 5.7a.
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The force on the armature is then

Ff =
∂W

′
f (i,x)

∂x

∣∣∣∣∣
i=constant

(5.61)

Since for any armature position,

W
′
f (i,x) =

∫ i

0
λdi (5.62)

and
λ = NΦ (5.63)

i =
F
N

(5.64)

Substituting Equations 5.63 and 5.64 into (5.62) gives the coenergy as a function of the mmf and
displacement as

W
′
f (i,x) =

∫ F

0
ΦdF (5.65)

and the force on the armature is then

Ff =
∂W

′
f (F,x)

∂x

∣∣∣∣∣
i=constant

(5.66)

Figure 5.7b illustrates a differential movement of the operating point in the λ–i diagram, corre-
sponding to a differential displacement dx of the armature made at high speed, that is, at constant
flux linkage. Here,

Wf =Wf (λ ,x) (5.67)

The electrical energy input for the movement is zero, since λ does not change and the emf is zero.
The mechanical work done during the motion is represented by the shaded area, which depicts the
decrease in the field energy. Since

dWm = dWf (λ ,x) (5.68)

and
Ff dx = dWm =−dWf (5.69)

Therefore,

Ff =
dWm

dx
=

∂Wf (λ ,x)
∂x

∣∣∣∣
i=constant

(5.70)

It is interesting to see that at high-speed motion the electrical input is zero (i.e., idλ = 0) because
the flux linkage has stayed constant and the mechanical output energy has been provided totally by
the field energy. In the discussions so far, either i or λ has been kept constant.

In reality, however, neither condition is true. It is more likely that the change from position a to
b follows a path such as the one shown in Figure 5.7c.

Also notice that for the linear case (i.e., when flux Φ is proportional to mmf F), the energy and
coenergy are equal. Thus,

W
′
f =Wf (5.71)

and

Ff =
∂W

′
f (i,x)

∂x

∣∣∣∣∣
i=constant

=
∂Wf (F,x)

∂x
(5.72)
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Figure 5.8 A singly excited rotating system.

It is easier to use the inductance L of the excitation coil because L is independent of the current.
Therefore,

Wf =
Li2

2
(5.73)

so that

Ff =
d
dx

(
Li2

2

)
=

i2

2
dL
dx

(5.74)

5.4 STUDY OF ROTATING MACHINES
In previous sections, the development of translation motion in an electromagnetic system has been
reviewed extensively. However, most of the energy converters, especially the ones with higher
power, develop rotational motion. Such a rotating electromagnetic system is made up of a fixed
part known as the stator and a moving part known as the rotor, as previously explained in Section
2.2. In the following sections, singly excited and multiply excited rotating systems will be studied.

5.5 SINGLY EXCITED ROTATING SYSTEMS
To illustrate the application of electromechanical energy conversion principles to rotating systems,
consider an elementary, singly excited two-pole rotating system, as shown in Figure 5.8. Such a
system represents an elementary reluctance machine. Note that the stator (pole) axis is called the
direct axis or simply the d-axis, and that its interpole axis is also called the quadrature axis or
simply the q-axis. Assume that a sinusoidal excitation is supplied to the stator winding, while the
rotor is free to rotate on its shaft.

The variables are torque T and angle θ , and the differential mechanical energy output is T dθ
when the torque and angle are assumed positive in the same direction (i.e., motor action). The
developed torque can be expressed as

Td = Tf =
dW

′
f

dθ
=

dW
′
f (i,θ)
dθ

(5.75)
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Figure 5.9 Variation of inductance with rotor angular position θ , as the rotor rotates in a reluctance machine.

For each revolution of the rotor, there are two cycles of reluctance, since the reluctance varies
sinusoidally. Figure 5.8 shows the variation of inductance with rotor angular position θ as the rotor
rotates with a uniform speed ωm in a reluctance machine. Because the inductance is a periodic
function of 2θ , it can be represented by a Fourier series as

L(θ) = L0 +L2 cos2θ (5.76)

ignoring the higher-order terms. The variables used are defined as in Figure 5.9. The stator excitation
current is

i = I sinωst (5.77)

which is a sinusoidal excitation whose angular frequency is ωs. Since the air-gap region is linear,
the coenergy in the magnetic field of the air-gap region can be expressed as

W
′
f =Wf =

1
2

L(θ)i2 (5.78)

and therefore the developed torque can be expressed as

Td =
∂W

′
f (i,θ)
dθ

=
1
2

i2
∂ (θ)
∂θ

(5.79)

which in terms of current and inductance variations can be reexpressed as

Td =−I2L2 sin2θ sin2 ωst (5.80)

Here, it is assumed that the rotor rotates at an angular velocity ωm; therefore, at any given time

θ = ωmt −δ (5.81)

Note that at t = 0 the current i is zero, thus the angular rotor position becomes

θ =−δ (5.82)

The instantaneous torque expression given by Equation 5.80 can be expressed in terms of ωm and
ωs by using the following trigonometric equations:

sin2 A =
1− cos2A

2
(5.83)
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sinAcosB =
1
2

sin(A+B)+
1
2

sin(A−B) (5.84)

Hence, the instantaneous (electromagnetic) developed torque becomes

Td =− I2L2

2

{
sin2(ωmt −δ )− 1

2
sin2[(ωm +ωs)t −δ ]− 1

2
sin2[(ωm −ωs)t −δ ]

}
(5.85)

As can be seen from Equation 5.85, the torque equation is made up of the sum of sinusoids of
various frequencies. Therefore, in most cases, the average torque over a period of time is zero, since
the value of each term integrated over a period is zero. Under such conditions, the machine cannot
operate as a motor to provide a load torque1 to its shaft. The only case in which the average (load)
torque2 is nonzero is when

ωm = ωs rad/s (5.86)

so that

Td(ave) =− I2L2

4
sin2δ (5.87)

Also, it can be seen in Figure 5.9 that

L2 =
Ld −Lq

2
(5.88)

where Ld and Lq are defined as the direct-axis inductance and quadrature-axis inductance, rep-
resenting the maximum and minimum values of inductance, respectively. Therefore, substituting
Equation 5.88 into Equation 5.87, the average developed torque3 can be expressed as

BTd(ave) =−
I2(Ld −Lq)

8
sin2δ (5.89)

Based on the previous review, the following summary and conclusions can be made:

1. Only at a certain speed, given by Equation 5.86, can such a machine develop an average torque
in either rotational direction. This speed is defined as the synchronous speed, at which the speed
of mechanical rotation in radians per second is equal to the angular frequency of the electrical
source.

2. Because the torque is a function of the reluctance variation with rotor position, such an ap-
paratus is called a synchronous reluctance machine. Therefore, if there is no inductance or
reluctance variation with rotor position (i.e., if Ld = Lq), the torque becomes zero. This can
easily be concluded from Equation 5.89.

3. As can be concluded from Equation 5.89, the developed torque is a function of the angle δ ,
which is called the torque angle. The torque varies sinusoidally with the angle δ . Therefore,
the angle δ can be used as a measure of the torque.

4. When δ < 0 and Td(ave) > 0, the developed torque is in the direction of rotation, and the ma-
chine operates as a motor, as can be seen in Figure 5.10. This torque maintains the speed of the
rotor against friction, windage, and any external load torque applied to the rotor shaft.

1Load torque is defined as a torque in opposition to the rotor motion. Therefore, the total torque is equal to the difference
between the magnetic torque and the load torque in the forward direction.

2It is also interesting to note that the total torque as a function of time has pulsating components even when ωm = ωs.
However, because of the typical heavy steel rotor of a synchronous machine, it cannot significantly react to such pulsating
components. Therefore, they cannot affect the average torque. Succinctly put the rotor’s mass functions as a low-pass filter.

3In general, the basic difference between various rotating machines is based on how the stator and rotor mmfs are kept
displaced with respect to each other at all times so that they incline to align continuously and develop an average torque.
This phenomenon is known as the alignment principle.
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Figure 5.10 Variation of developed torque by a synchronous reluctance machine.

5. Ignoring the effects of friction and windage, the load torque can determine the angle δ . For
example, a greater load torque can cause the rotor to operate at a larger negative δ . Since
power and torque are proportional to constant speed, there is definitely a power limit, and at
loads beyond the crest of the curve, shown in Figure 5.10, the motor will stall. The maximum
torque for motor operation takes place at δ = –π/4, and is called the pull-out torque. As
previously stated, any load that requires a torque greater than the maximum torque causes
an unstable operation of the machine; the machine pulls out of synchronism and comes to a
standstill.

6. If the shaft of the same machine is driven by a prime mover, the angle δ will advance and
the machine will absorb torque and power, and will supply electrical power as a generator. In
other words, when delta> 0 and Td(ave), the developed torque resists the rotation. Therefore, an
external driving torque has to be applied to the rotor shaft to maintain the rotor at a synchronous
speed. The mechanical energy supplied to the system after meeting the friction and windage
losses is converted into electrical energy, that is, the machine operates as a generator. But this
can happen only if the stator winding is already connected to an ac source, which acts as a sink
when the external driving torque is applied and the machine begins to generate. As shown in
Figure 5.10, the maximum torque for generator operation takes place at δ = π/4.

7. If the driving torque provided by the prime mover is greater than the sum of the developed
torque and that due to friction and windage, then the machine is driven above synchronous
speed. It may therefore run away unless the prime mover speed is controlled and the continuous
energy conversion process is stopped. In summary, a given machine can develop only a certain
maximum power and is limited to the rate of energy conversion.

8. It is interesting that a mechanical speed ωm =ωs will also provide a nonzero average developed
torque. Therefore, such a reluctance motor cannot start by itself, but will continue to run in the
direction in which it is started.

Because of the variation of reluctance with rotor position, the induced voltage in the stator coil
will have a third-harmonic component. Such an unwanted characteristic makes reluctance machines
useless as practical generators and restricts their size as motors.
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Figure 5.11 A doubly excited rotating system.

However, small reluctance motors, when they are designed to develop starting torque, can be
used to drive electric clocks, record players, and other devices, since they provide constant speed.

Example 5.6:

Suppose that a two-pole reluctance motor operates at 60 Hz and 6 A. If its direct-axis inductance
and quadrature-axis inductance are 0.8 H and 0.2 H, respectively, determine its maximum average
developed torque.

Solution
From Equation 5.89,

Td(ave) =−
I2(Ld −Lq)

8
sin2δ

=−36(0.8−0.2)
8

sin2δ

=−2.7sin2δ

Since sin2δ = 1 when δ = 45◦

Td(ave) =−2.7sin90◦ =−2.7 N ·m

5.6 MULTIPLY EXCITED ROTATING SYSTEMS
The general principles that were developed in the previous section also apply to multiply excited
(i.e., multicoil) rotating systems. As an example, consider the doubly excited rotating system shown
in Figure 5.11.

Notice that this system is the same as the one shown in Figure 5.8, except that the rotor also has
a coil which is connected to its electrical source through fixed (carbon) brushes and rotor-mounted
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slip rings (or collector rings). The flux linkages of the stator and rotor windings, respectively, can
be written as

λs = Lssis +Lsrir (5.90)

λr = Lrsis +Lrrir (5.91)

where

Lss is the self-inductance of the stator winding

Lrr is the self-inductance of the rotor winding

Lsr = Lrs is the mutual inductances between stator and rotor windings

Note that all these inductances depend on the position θ of the rotor (which is the angle between the
magnetic axes of the stator and the rotor windings). Since for a linear magnetic system Lsr = Lrs,
Equations 5.90 and 5.91 can be expressed in the matrix form as

[
λs
λr

]
=

[
Lss Lsr
Lsr Lrr

][
is
ir

]
(5.92)

If the system’s rotor is prevented from rotating so that there is no mechanical output from its shaft,
then the stored field energy WfW of the system can be found by establishing the currents is and ir in
its stator and rotor windings, respectively. Therefore,

dWf = vsisdt + vriidt

= isdλs + irdλr
(5.93)

Thus, for such a linear system, the differential field energy can be found by substituting Equations
5.90 and 5.91 into Equation 5.93 so that

dWf = isdλs + irdlr
= isd(Lssis +Lsrir)+ ird(Lsris +Lrrir)

= Lssisdis +Lsrd(isir)+Lrrirdir

(5.94)

The total (stored) field energy can be determined by integrating Equation 5.94 as

Wf = Lss

∫ is

0
isdis +Lsr

∫ is,ir

0
d(isir)+Lrr

∫ i

0
irdir

=
1
2

Lssi2s +Lsrisir +
1
2

Lrri2r

(5.95)

The developed torque can be determined from

Td =
∂W

′
f (i,θ)
∂θ

∣∣∣∣∣
i=constant

(5.96)

Since in a linear magnetic system, energy and coenergy are equal, that is

Wf =W
′
f

the instantaneous (electromagnetic) developed torque can be expressed as

Td =
i2s
2

dLss

dθ
+ irir

dLsr

dθ
+

i2r
2

dθrr

dθ
(5.97)



170 Electrical Machines and Their Applications

Note that the first and third terms on the right-hand side of Equation 5.97 depict torques developed
in the rotating machine due to variations of self-inductances as a function of rotor position. They
represent the reluctance torque components of the torque; however, the second term represents the
torque developed by the variations of the mutual inductance between the stator and rotor windings.
Furthermore, multiply excited rotating systems, having more than two coils, are treated in a similar
manner.

Consider the doubly excited rotating system shown in Figure 5.11 and assume that Rs and Rr are
the resistances of the stator and rotor windings, respectively. The voltage–current relationships for
the stator and rotor circuits can be written as

vs = isRs +
dλs

dt
(5.98)

vr = irRr +
dλr

dt
(5.99)

In general, the inductances Lss, Lrr, and Lsr are functions of the angular position θ of the rotor, and
the currents are time functions. Therefore, for the stator

dλs

dt
=

d
dt
[Lss(θ)is(t)+Lrs(θ)ie(t)]

dλs

dt
= Lss

dis
dt

+ is
dLss

dt
dθ
dt

Lrr
dir
dt

+ ir
dLrs

dθ
dθ
dt

(5.100)

Similarly, for the rotor

dλs

dt
= Lrs

dir
dt

+ is
dLrs

dt
dθ
dt

Lrr
dir
dt

+ ir
dLrr

dθ
dθ
dt

(5.101)

By substituting Equations 5.100 and 5.101 into Equations 5.98 and 5.99, respectively,

vs =

[
isRs +Lss

dis
dt

]
+

[(
is

dLss

dθ
+ ir

dLrs

dθ

)
dθ
dt

]
+

[
Lrs

dir
dt

]
(5.102)

vr =

[
irRr +Lrr

dir
dt

]
+

[(
is

dLrs

dθ
+ ir

dLrr

dθ

)
dθ
dt

]
+

[
Lrs

dir
dt

]
(5.103)

In Equations 5.102 and 5.103, the first terms on the right sides of the equations represent the self-
impedance voltage vz, the second terms represent the speed voltage or motional voltage vm, and the
third terms represent the transformer voltage vt .

Therefore, the voltage equations for the stator and rotor can be expressed in the form

v = vz + vm + vt (5.104)

Note that in many cases, the self-inductances Lss and Lrr are not dependent on the angular position
of the rotor. Thus, Equations 5.97, 5.102, and 5.103 reduce to

Td = isir
dLsr

dt
(5.105)

vs =

(
isRs +Lss

dis
dt

)
+

(
ir

dθ
dt

)
dLsr

dθ
+Lrs

dir
dt

(5.106)

vr =

(
irRr +Lrr

drs

dt

)
+

(
is

dθ
dt

)
dLsr

dθ
+Lrs

dis
dt

(5.107)
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If the resistances of the stator and rotor are negligible, then Equations 5.106 and 5.107 further reduce
to

vs = Lss
dis
dt

+

(
ir

dθ
dt

)
+

(
ir

dθ
dt

)
dLsr

dθ
+Lrs

dir
dt

(5.108)

vr = Lrr
dir
dt

+

(
is

dθ
dt

)
+

dLsr

dθ
+Lrs

dis
dt

(5.109)

In matrix notation, the total (stored) field energy, given by Equation 5.95 can be expressed as

Wf =
1
2
[i]t [L][i] (5.110)

where

[i] is the column matrix

[i]t is the transpose of matrix [i], that is, a row matrix

[L] is the inductance matrix of the system

Also, in matrix notation, the developed torque can be expressed as

Td =
1
2
[i]t

∂
∂θ

([L][i]) (5.111)

and the voltage can be expressed as

[v] = [i][R]+
d
dt
([L][i]) (5.112)

Example 5.7:

Consider the doubly excited rotating system shown in Figure 5.11. Assume that the selfinductances
of the stator and rotor windings are 9 H and 1 H, respectively, and that the mutual inductance
between its stator and rotor windings is 2 H. If its stator and rotor currents are 16 A and 8 A,
respectively, determine the total stored magnetic field energy in the system.

Solution
From Equation 5.95, the total stored magnetic field energy in the system can be found as

Wf =
1
2

Lssi2s +Lsrisir +
1
2

Lrri2r

=
1
2
(9 H)(16 A)2 +2(16 H)(8 A)+

1
2
(1 H)(8 A)2 = 1440 J

5.7 CYLINDRICAL MACHINES
Figure 5.12 shows a cross-sectional view of a single-phase, two-pole cylindrical rotating machine
with a uniform air gap. Such machines are also called smooth-air-gap machines, uniform-air-gap
machines, or round-rotor machines. Note that previous sections dealt with rotating machines with
salient poles.1

1The rotating machines can be classified based on their structures: (1) Those machines with salient stator but nonsalient rotor
(i.e., the rotor is round or cylindrical), for example, dc commutator machines. (2) Those machines with nonsalient stator
but salient rotor, for example, small reluctance machines and low-speed synchronous machines. (3) Those machines with
salient stator and salient rotor, for example, some special rotating machines. (4) Those machines with nonsalient stator and
nonsalient rotor, for example, induction motors and high-speed synchronous machines.
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Figure 5.12 Cross-sectional view of a single-phase, smooth-air-gap machine having a cylindrical rotor in a
cylindrical stator.

As shown in Figure 5.12, a cylindrical machine1 has a cylindrical rotor in its cylindrical stator.
The rotor is free to rotate, and its instantaneous angular position θ is defined as the displacement of
the rotor’s magnetic axis with respect to the stator’s magnetic axis.

In a real rotating machine, the windings are distributed over a number of slots so that their mmf
waves can be approximated by space sinusoids. The structure shown in Figure 5.12 is called a
smooth-air-gap machine, because it can be accurately modeled mathematically by assuming that
the reluctance of the magnetic path seen by each circuit is independent of rotor position. Also, such
a model ignores the effects of slots and teeth on the magnetic path as the angle is changed. Of
course, in an actual machine, the slots and teeth are relatively smaller than those shown in Figure
5.12.

Furthermore, special construction techniques, such as skewing the slots of one member slightly
with respect to a line parallel to the axis, substantially minimize these effects. As a result of such
construction, it can be assumed that the self-inductances Lss and Lrr are constant and no reluctance
torques are produced. The mutual inductance Lsr changes with the rotor position. Therefore,

Lsr = M cosθ (5.113)

where

θ is the angle between the magnetic axis of the stator and rotor windings

M is the peak value of the mutual inductance Lsr

1Most electrical machines are of the cylindrical type because they develop greater torques even though their construction is
more complex.
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Thus,
λs = Lssis +M cosθ ir (5.114)

λr = M cosθ is +Lrrir (5.115)

where
is = Is cosωst (5.116)

ir = Ir cos(ωrt +α) (5.117)

The torque developed in the cylindrical machine is

Td = isir
dLsr

dθ
(5.118)

The position of the rotor at any instant is given as

θ = ωmt +δ (5.119)

where

ωm is the angular velocity of the rotor in rad/s

δ is the rotor position at t = 0

Hence, by substituting Equations 5.113, 5.116, and 5.117 into Equation 5.118, the instantaneous
electromagnetic torque developed by the machine can be expressed as

Td = IsIrM cosωt cos(ωrt +α)sin(ωmt +δ ) (5.120)

Further, by using the trigonometric identities,

Td =− IsIrM
4

{sin{[ωm +(ωs +ωr)]t +α +δ}

+ sin{[ωm +(ωs +ωr)]t −α +δ}
+ sin{[ωm − (ωs −ωr)]t −α +δ}
+ sin{[ωm − (ωs −ωr)]t +α +δ}}

(5.121)

Thus, the torque changes sinusoidally with time. As a result, the average value of each of the si-
nusoidal terms in Equation 5.121 is zero, except when the coefficient t is zero. Hence, the average
developed torque will be nonzero if

ωm =±(ωs ±ωr) (5.122)

which may also be expressed as
|ωm|= |ωs ±ωr| (5.123)

In other words, the machine will develop average torque if it rotates in either direction, at a speed
that is equal to the sum or difference of the angular speeds of the stator and rotor currents.

5.7.1 SINGLE-PHASE SYNCHRONOUS MACHINE

Assume that ωr = 0, α = 0, and ωm = ωs. Here, the rotor excitation current is a direct current Ir and
the machine rotates at synchronous speed. Therefore, from Equation 5.121 the developed torque can
be expressed as

Td =− IsIrM
2

[sin(2ωst +δ )+ sinδ ] (5.124)
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This torque is a pulsating instantaneous torque. Thus, the average developed torque is

Td =− IsIrM
2

sinδ (5.125)

The machine operates as an idealized single-phase synchronous machine and has an average (uni-
directional) developed torque. It has dc excitation in the rotor and ac excitation in the stator. It is
important to point out that when ωm = 0, the machine cannot develop an average torque and hence
is not self-starting.

Note that the pulsating torque can cause noise, speed fluctuation, and vibration, and therefore
is waste of energy. Such pulsating torque can be avoided in a polyphase machine. All large syn-
chronous machines are polyphase machines.

5.7.2 SINGLE-PHASE INDUCTION MACHINE

Assume that ωm = ωs – ωr and that cos and ωr are two different angular frequencies. Therefore,
both stator and rotor windings have ac currents but at different frequencies. The motor operates at an
asynchronous speed (i.e., ωm ̸= ωs or ωr ̸= ωs). From Equation 5.121, the instantaneous developed
torque can be expressed as

Td = − IsIrM
4

[sin(2ωst +α −δ )+ sin(−2ωrt −α +δ )+ sin(2ωst −2ωrt −α +δ )

+ sin(α +δ )]
(5.126)

This instantaneous torque is a pulsating torque. The average developed torque is

Td =− IsIrM
4

sin(α +δ ) (5.127)

The machine operates as a single-phase induction machine. Its stator winding is excited by an ac
current, and an ac current is induced in the rotor winding. Such a single-phase induction machine
cannot self-start, since when ωm = 0 no average unidirectional torque is developed. The machine
has to be brought up to the speed of ωm = ωs – ωr to achieve an average developed torque. In order
to avoid pulsating torque, polyphase induction machines are used in most applications.

Example 5.8:

Consider a two-pole cylindrical rotating machine as shown in Figure 5.12. If it operates with a speed
of ωs = ωr = ωm = 0 and α = 0, determine the following:

(a) The instantaneous developed torque.

(b) The average developed torque.

Solution

(a) Since ωs =ωr =ωm = 0 and α = 0, the excitations are direct currents Is and Ir. Therefore,
from Equation 5.121, the instantaneous developed torque can be found as

Td =−IsIrM sinδ

which is a constant.

(b) Thus, the average developed torque is

Td(ave) =−IsIrM sinδ

Such a machine operates as a do rotary actuator, developing a constant torque against
any displacement δ caused by an external torque placed on the rotor shaft.
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Figure 5.13 A current-carrying straight conductor in a uniform magnetic field and (b) without a flux density
B, pointing into the page.

5.8 FORCE PRODUCED ON A CONDUCTOR
According to field theory, the force on a differential length of conductor dL, carrying i, and located
in a field B can be expressed as

dF = idL×B (5.128)

The direction of the force is determined from the cross product of the vectors dL and B. Assume
that a current-carrying conductor, having a length of L, is within a uniform magnetic field of flux
density B, as shown in Figure 5.13a and b. Figure 5.13b shows the flux density B, pointing into the
page. The developed force on the conductor will make the conductor move, and the induced force
can be expressed as

F = i(l ×B) N (5.129)

where

i is the magnitude of the current in the conductor

L is the length of the conductor, given as a vector and with the same direction as the current flow

B is the magnetic flux density vector

The direction of the force produced on the conductor is found by Flemming’s right-hand rule.
Therefore, if the index finger of the right-hand points in the direction of the vector L, and the middle
finger points in the direction of the flux density vector B, then the thumb will point in the direction
of the developed force on the conductor. The resulting electromechanical force1 can be expressed
as

F = B× i×L× sinθ (5.130)

where θ is the angle between the conductor and the flux density vector. It is important to note that
as the current-carrying conductor is placed in the field B, the field itself will change due to the effect
of current i. Therefore, the field B in the above equation is the magnetic field that exists before the
presence of the current i. The maximum value of the force takes place when θ = 90◦. Thus,

Fmax = B× i×L (5.131)

1According to the electromagnetic force law, the interaction between a magnetic field and a current-carrying conductor
produces a mechanical force.
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In summary, the induction of such a mechanical force caused by a current flowing through the
conductor in a magnetic field produces motor action.

Example 5.9:

Consider a current-carrying conductor that is within a uniform magnetic field, as shown in Figure
5.13a. Assume that the magnetic flux density is 0.3 Wb/m2, pointing into the page, and that the
current flowing through the 2m-long conductor is 3 A. Determine the magnitude and direction of
the developed force on the conductor.

Solution
Based on the right-hand rule, the direction of the force is to the right, as shown in Figure 5.13b. Its
magnitude is

F = B× i×L× sinθ

= (0.3 Wn/m2)(3 A)(2 m)sin90◦

= 1.8 N to the right

Thus,
F = 1.8 N to the right

5.9 INDUCED VOLTAGE ON A CONDUCTOR MOVING IN A MAGNETIC FIELD
Suppose that a straight conductor moves with velocity in a uniform magnetic field, as shown in
Figure 5.14a. There will be an induced voltage1 in the conductor that can be expressed as

eind = (v×B) ·L (5.132)

where

v is the velocity of the conductor

B is the magnetic flux density

L is the length of the conductor

Assume that the vector L is in the same direction as the conductor’s positive end.2 The voltage
induced in the conductor builds up so that the positive end is in the direction of the vector (v×B), as
shown in Figure 5.14a. In summary, the induction of voltages in a conductor moving in a magnetic
field causes generator action.

Note that mathematically the vector cross product v×B has a magnitude that is equal to the
product of the magnitudes of v and B and the sine of the angle between them. Its direction can
be found from the right-hand rule, which states that when the thumb of the right-hand points in
the direction of v and the index finger points in the direction of B, v×B will be parallel to L. If the
conductor is not oriented on a vertical line, the direction of L must be selected to make the smallest
possible angle with the direction of v×B.

Example 5.10:

Consider a 2m-long conductor that is moving with a velocity of 4 m/s to the right, within a uniform
magnetic field, as shown in Figure 5.14a. The magnetic field density is 0.3 Wb/m2, pointing into

1In 1831, Faraday called this voltage an induced voltage because it occurred only when there was relative motion between
the conductor and a magnetic field without any actual “physical” contact between them.

2The selection of the positive end is totally arbitrary, because if the selection is wrong, the resultant computed voltage value
will be negative, indicating that a wrong assumption has been made in selecting the positive end.
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Figure 5.14 (a) A straight and vertical conductor moving in a uniform magnetic field and (b) a non-vertical
conductor moving in a uniform field.

the page, and the conductor length is oriented from the bottom toward the top. Determine the
following:

(a) The magnitude of the resulting induced voltage.

(b) The polarity of the resulting induced voltage.

Solution

(a) The velocity vector v is perpendicular to the magnetic field density vector B, and
therefore v× B is parallel to the conductor length vector L. The magnitude of the
resulting induced voltage is

eind = (v×b) ·L

= (vBsin90◦) ·Lcos0◦

= v×B×L

= (4 m/s)(0.3 Wb/m2)(2 m)

= 2.4 V

(b) The polarity of the resulting induced voltage is positive at the top of the conductor and
negative at the bottom of the conductor, as shown in Figure 5.14a.

Example 5.11:

Consider a 1.5 m long conductor that is moving with a velocity of 5 m/s to the right within a uniform
magnetic field, as shown in Figure 5.14b. If the magnetic field density is 0.8 Wb/m2, pointing into
the page, and the conductor length is oriented from the bottom toward the top, determine the
following:

(a) The magnitude of the resulting induced voltage.

(b) The polarity of the resulting induced voltage.
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Solution

(a) The magnitude of the resulting induced voltage is

eind = (v×b) ·L

= (vBsin90◦) ·Lcos0◦

= v×B×L

= [(5 m/s)(0.8 Wb/m2)sin90◦](1.5 m)cos25◦

= 5.44 V

(b) The polarity of the resulting induced voltage is positive at the top of the conductor and
negative at the bottom of the conductor, as shown in Figure 5.14a.

PROBLEMS

PROBLEM 5.1

The rotational speed of a motor (i.e., its shaft speed) is 3600 rev/min. Determine its angular
velocity (i.e., its shaft speed) in rad/s.

PROBLEM 5.2

If the motor in Problem 5.1 is operating at 50 Hz frequency, instead of 60 Hz, determine its new
angular velocity in rad/s.

PROBLEM 5.3

A special-purpose motor is operating at 25 Hz frequency. Determine the following:

(a) Its angular velocity (i.e., its shaft speed) in rad/s.

(b) Its rotational speed (i.e., its shaft speed) in rev/min.

PROBLEM 5.4

If a motor is delivering 200 N·m of torque to its mechanical load at a shaft speed of 3600 rpm,
determine the following:

(a) The power supplied to the load in watts.

(b) The power supplied to the load in horsepower.

PROBLEM 5.5

Assume that a coil, having a sectional area of 0.25 m2 with N = 15 turns, is rotating around its
horizontal axis with a constant speed of 1800 rpm in a uniform and vertical magnetic field of flux
density B = 0.75 T. If the total magnetic flux passing through the coil is given by Φ = ABcosωt
Wb, where A is the sectional area of the coil, determine the maximum and effective values of the
induced voltage in the coil.
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PROBLEM 5.6

Consider the linear electromechanical system shown in Figure 5.6. Since the system is considered
to be linear, its core reluctance is negligibly small. The core depth is given as b. If the system is
excited by two identical current sources, determine the following:

(a) The force of attraction between the poles in terms of current i and the geometry involved.

(b) The force between the poles, if the current is reversed in one coil.

PROBLEM 5.7

Assume that there is a two-pole cylindrical rotating machine, as shown in Figure 5.12, and that it
operates with ωs = ωr and ωm = 0. Determine the following:

(a) The instantaneous developed torque.

(b) The average developed torque.

PROBLEM 5.8

Consider the current-carrying conductor that is within a uniform magnetic field, as shown in
Figure 5.13b. Assume that the magnetic field density is 0.25 Wb/m2, pointing out of the page,
and that the current flowing through the 0.3 m long conductor is 1.5 A. Determine the following:

(a) The magnitude of the developed force in N.

(b) The direction of the developed force, if the current is flowing from the top toward the
bottom.

(c) The direction of the developed force, if the current is flowing from the bottom toward the
top.

PROBLEM 5.9

Consider a current-carrying conductor that is within a uniform magnetic field, as shown in Figure
5.13b. Assume that the magnetic field density is 0. 5 Wb/m2 and that the current flowing through
the 0.6 in long conductor (in the direction as shown, i.e., from the top toward the bottom) is 2 A.
Determine the following:

(a) The magnitude of the developed force in N.

(b) The direction of the developed force, if the magnetic flux density vector is pointing into the
page.

(c) The direction of the developed force, if the magnetic flux density vector is pointing out of
the page.

(d) The direction of the developed force, if the magnetic flux density vector is pointing into the
page and the direction of the current flow is reversed (i.e., from the bottom toward the top).

(e) The direction of the developed force, if the magnetic flux density is pointing out of the page
and the direction of the current flow is reversed (i.e., from the bottom toward the top).

PROBLEM 5.10

Consider a 0.5 m long conductor that is moving with a velocity of 2 m/s to the right within a
uniform magnetic field, as shown in Figure 5.14a. Assume that the magnetic field density is 0.25
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Wb/m2, pointing into the page, and that the conductor length is oriented from the bottom toward
the top. Determine the following:

(a) The magnitude of the resulting induced voltage.

(b) The polarity of the resulting induced voltage.

(c) The polarity of the resulting induced voltage, if the conductor length is oriented from the
top toward the bottom.

PROBLEM 5.11

Consider a 0.5 m long conductor that is moving with a velocity of 4 m/s to the right within a
uniform magnetic field, as shown in Figure 5.14b. Assume that the magnetic field density is 0.75
Wb/m2, pointing into the page, and that the conductor length is oriented from the bottom toward
the top. Determine the following:

(a) The magnitude of the resulting induced voltage.

(b) The polarity of the resulting induced voltage.

(c) The polarity of the resulting induced voltage, if the magnetic flux density vector is pointing
out of the page.

(d) The polarity of the resulting induced voltage, if the magnetic flux density vector is pointing
into the page and the conductor length is oriented from the bottom toward the top.

(e) The polarity of the resulting induced voltage, if the magnetic flux density vector is pointing
out of the page, the conductor length is oriented from the top toward the bottom, and the
conductor is moving to the left.



6 Induction Machines

6.1 INTRODUCTION
Because of its relatively low cost, simple and rugged construction, minimal maintenance require-
ments, and good operating characteristics that satisfy a wide variety of loads, the induction motor is
the most commonly used type of ac motor. Induction motors range in size from a few watts to about
40,000 hp. Small fractional-horsepower motors are usually single-phase and are used extensively
for domestic appliances, such as refrigerators, washers, dryers, and blenders.

Large induction motors (usually above 5 hp) are always designed for three-phase operation to
achieve constant torque and balanced network loading. In particular, where very large machinery is
to be operated, the three-phase induction motor is the workhorse of the industry.1 In contrast to dc
motors, induction motors can operate from supplies in excess of 10 kV.

In typical induction motors, the stator winding (the field winding) is connected to the source,
and the rotor winding (the armature winding) is short-circuited for many applications or may be
closed through external resistances. In such a motor, alternating current passing through a fixed
stator winding sets up a rotating magnetic field. Thus, an induction motor is a singly excited motor
(as opposed to a doubly excited synchronous motor). In such a motor, alternating current passing
through a fixed stator winding sets up a rotating magnetic field. This moving field induces currents
in closed loops of the wire mounted on the rotor.2 These currents set up magnetic fields around the
wires and cause them to follow the main magnetic field as it rotates.

The operation of the induction motor depends on the rotating field passing through the loops on
the rotor, which must always turn more slowly than the rotating field. Since no current has to be
supplied to the rotor, the induction motor is simple to construct and reliable to operate. This class of
rotating machines derives its name from the fact that the rotor current results from induction, rather
than conduction.3 A given induction machine can be operated in the motor region, generator region,
or braking region, as shown in Figure 6.1.

In the motor mode of operation, the motor’s operating speed is slightly less than the synchronous
speed, but in the generator mode, the operating speed is slightly greater than the synchronous speed
and it needs magnetizing reactive power from the system to which it is connected in order to supply

1The whole concept of polyphase ac, including the induction motor, was developed by Nikola Tesla and patented in 1888.
In 1895, the Niagara Falls hydroplant, using the Tesla polyphase ac system concept, went into operation. This was the
first large-scale application of the polyphase ac system. However, the first paper written on the induction machine was
authored by Galileo Ferraris, an Italian, who also developed a new per-phase equivalent circuit for the new motor. The
circuit had a primary and a secondary in much the same manner as the present per-phase equivalent circuit for an induction
machine. Unfortunately, he did not recognize the need for slip s in the circuit, instead, he used R2 rather than R2/s as the
secondary resistor. After some mathematical analysis, Ferraris concluded that this new motor was not practical since from
the maximum power transfer theorem only a maximum efficiency of 50% can be attained when R2 = R1! Thus, Ferraris
promptly gave up the development of the motor as impractical and went on to become famous in other areas, but not in
electrical machines. Needless to say, Tesla, being an experimentalist, was never bothered with such niceties, but simply
proceeded directly from the concept to the implementation and physically demonstrated that it worked.

2An induction motor is so called because the driving force is provided by an electric current induced in a rotor due to its
interaction with a magnetic field.

3Since an induction motor runs below the synchronous speed, it is also known as an asynchronous (i.e., not synchronous)
machine.
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Figure 6.1 An induction machine’s torque–speed characteristic curve showing braking-, motor-, and genera-
tor regions.

power.1 The full-load speed of a three-phase induction motor is often within 7% of the synchronous
speed, even though a full-load speed of 1% below the synchronous speed is not uncommon.

In the braking mode of operation, a three-phase induction motor running at its steady-state speed
can be brought to a quick stop by interchanging two of its stator leads. This causes the phase se-
quence, and therefore the direction of rotation of the magnetic field, to be suddenly reversed; the
motor comes to a stop under the influence of torque and is immediately disconnected from the line
before it can start in the other direction. This is also known as the plugging operation.

Since the induction motor cannot produce its own excitation, it needs reactive power and draws
a lagging current from the source. It thus operates at a power factor less than unity (usually, above
0.85). However, it runs at lower lagging power factors when lightly loaded.

To limit the reactive power, the magnetizing reactance has to be high. Therefore, the air gap of
an induction motor is shorter than that of a synchronous motor of the same size and rating (with the
exception of small motors).

The starting current of an induction motor is usually five to seven times its full-load (i.e., rated)
current. In general, the speed of an induction motor is not easily controlled.

Even though the induction machine with a wound rotor, can be used as a generator, its perfor-
mance characteristics (especially in comparison to a synchronous generator) have not been found
satisfactory for most applications. However, induction generators are occasionally used at hydro-
electric power plants. For example, they are presently in use as generators at the Folsom Dam in
Northern California. An induction machine with a wound rotor can also be used as a frequency
changer.

1As the winding loops of the rotor turn faster they try to catch up to the rotating magnetic field, and the difference between
the two speeds gets smaller. The size of the induced currents, and therefore the size of the driving force, also gets smaller.
The rotor thus settles down to a steady speed, which is slower than that of the rotating magnetic field.
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Figure 6.2 (a) A cross-sectional view of the magnetic circuit of an induction motor with a wound rotor and
(b) the squirrel-cage winding of a cage rotor of an induction motor.

6.2 CONSTRUCTION OF INDUCTION MOTORS
In general, the stator construction of a three-phase induction machine is the same as that of a syn-
chronous machine.1 However, the same cannot be said for their rotors. In fact, the three-phase
induction motors are classified based on their rotor types as wound-rotor or squirrel-cage motors.

Figure 6.2a shows a cross-sectional view of the magnetic circuit of an induction motor that has a
wound rotor. The rotor iron is laminated and slotted to contain the insulated windings. The wound-
rotor motor has a three-phase symmetrical winding similar to that in the stator and is wound for the
same number of poles as the stator winding. These rotor phase windings are wye-connected with
the open end of each phase connected to a slip ring mounted on the rotor shaft. Figure 6.3 shows

1That is, the stator core is built of sheet-steel laminations that are supported in a stator frame of cast iron or fabricated steel
plate. Its windings, quite similar to those of the revolving-field synchronous machine, are spaced in the stator slots 120
electrical degrees apart. The stator-phase windings can be either wye- or delta-connected. The stator windings constitute
the armature windings.
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Figure 6.3 Illustration of a three-phase wound-rotor winding with slip rings.

Figure 6.4 Illustration of a three-phase induction motor with its wound-rotor windings connected to external
resistors.

that three equal external variable resistors used for speed control are connected to the slip rings by
carbon brushes.1

Note that the total rotor circuit is wye-connected, which provides an external neutral that is
usually grounded. Figure 6.4 also illustrates the concept of a three-phase induction motor that has
wound-rotor windings connected to external resistors. Wound-rotor motors are also called slip-ring
motors, for obvious reasons.

It is important to know that the rotor winding need not be identical to the stator winding; however,
the two have to be wound with an equal number of poles. The number of rotor and stator slots should
not be equal, otherwise, several slots may line up and cause a pulsating flux. Occasionally, if the
slots do line up, the rotor may even lock up on starting and not turn.

Figure 6.2b shows the squirrel-cage winding of a cage rotor of an induction motor. Instead of a
winding, the slots in the squirrel-cage2 rotor have bars of copper or aluminum, known as rotor bars,

1The rotor winding is not connected to a supply. The slip rings and brushes simply provide a means of connecting an external
variable-control resistance (called a slip-ring rheostat) to the rotor circuit.

2It is called this because of its appearance, since it resembles the exercise wheel used for hamsters and gerbils.
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Figure 6.5 Balanced, three-phase alternating currents applied to three-phase windings.

which are short-circuited with two end rings of the same material. There is one ring at each end of
the stack of rotor laminations. The solid rotor bars are placed parallel, or approximately parallel, to
the shaft and embedded in the surface of the core. The conductors are not insulated from the core,
since the rotor currents naturally flow the path of least resistance through the rotor conductors.

Squirrel-cage rotor bars are not always placed parallel to the motor shaft but are sometimes
skewed, as shown in Figure 6.2b. This provides a more uniform torque and also reduces the magnetic
humming noise and mechanical vibrations when the motor is running.

The induction motor is basically a fixed drive. Therefore, in order to function efficiently, its rotor
has to rotate at a speed near the synchronous speed. The synchronous speed itself is a function of
the frequency of the applied stator voltages and the number of poles of the motor.

Thus, efficient variable-speed operation basically requires changing the frequency of the power
supply. Recent developments in solid-state technology have resulted in more efficient variable-
frequency power sources and have therefore substantially increased the possible applications of
induction motors.

Squirrel-cage rotor bars are not always placed parallel to the motor shaft but are sometimes
skewed as shown in Figure 6.1b. This provides a more uniform torque and also reduces the magnetic
humming noise and mechanical vibrations when the motor is running.

The induction motor is basically a fixed drive. Therefore, in order to function efficiently, its rotor
has to rotate at a speed near the synchronous speed. The synchronous speed itself is a function of
the frequency of the applied stator voltages and the number of poles of the motor. Thus, efficient
variable-speed operation basically requires changing the frequency of the power supply. Recent
developments in solid-state technology have resulted in more efficient variable-frequency power
sources and have therefore substantially increased the possible applications of induction motors.

6.3 ROTATING MAGNETIC FIELD CONCEPT
When the three-phase stator windings of an induction motor are supplied by three-phase voltages,
currents will flow in each phase. These currents are time-displaced from each other by 120 electrical
degrees in a two-pole machine, as shown in Figure 6.5. An induction motor’s operation depends on
a rotating magnetic field established by the stator currents in the air gap of the motor.

Because of the spacing of the windings and the phase difference of the currents in the windings,
the pulsating (sinusoidally distributed) mmf wave produced by each phase combines to form a
resultant mmf F, which moves around the inner circumference of the stator surface (i.e., in the
air gap) at a constant speed. The resultant flux is called the rotating magnetic field. If balanced,
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three-phase excitation is applied with abc phase sequence and then the currents can be expressed as

ia = Imcosωt (6.1)
ib = Imcos(ωt −120◦) (6.2)
ib = Imcos(ωt −240◦) (6.3)

where Im is the maximum value of the current and the time origin is arbitrarily assumed to be the
instant when the phase-a current is at its positive maximum. Figure 6.5 shows such instantaneous
currents. The resultant mmf wave is a function of the three component mmf waves caused by these
currents. It can be determined either graphically or analytically.

6.3.1 GRAPHICAL METHOD

Since the rotating magnetic field is produced by the mmf contribution of space-displaced phase
windings with appropriate time-displaced currents, one has to take into account various instants of
time and determine the magnitude and direction of the resultant mmf wave. For example, consider
the instant of time (indicated in Figure 6.5) t = t0 and notice that the currents in the phase windings
a, b, and c, respectively, are

ia = Im (6.4)

ib =− Im

2
(6.5)

ib =− Ia

2
(6.6)

Note that each phase in Figure 6.6a, for the sake of convenience and simplicity, is represented by a
single coil. For example, coil a–a’ represents the entire phase a winding (normally distributed over
60 electrical degrees), with its mmf axis directed along the horizontal. The right-hand rule readily
confirms this statement. Similarly, the mmf axis of the phase b winding is 120 electrical degrees
apart from phase a, and that of phase c is 120 electrical degrees displaced from phase b. Obviously,
the unprimed and primed letters refer to the beginning and end terminals of each phase, respectively.
Also, notice that the current directions in the corresponding coils are indicated by dots and crosses,
as shown in Figure 6.6.

The current in the phase-a winding is at its maximum at t = t0, and is represented by a phasor
Fa = Fm along the axis of phase a, as shown in Figure 6.6a. The mmfs of phases b and c are
represented by phasors Fb and Fc, respectively, each with a magnitude of Fm/2 and located in the
negative direction along their corresponding axes. The sum of the three phasors is a phasor F =
1.5Fm affecting the positive direction along the phase a axis, as shown in Figure 6.6. Figure 6.7
shows the corresponding component mmf waves and the resultant mmf wave at the instant t = t0.

Now consider a later instant of time t1, as shown in Figure 6.6b. The currents and mmf associated
with the phase winding can be expressed as

ia and Fa = 0 (6.7)

ib =

√
3

2
Im and Fb =

√
3

2
Fmax (6.8)

ic =−
√

3
2

Im and Fc =−
√

3
2

Fmax (6.9)

Figure 6.7 shows the current directions, the component mmfs, and the resultant mmf at t = t1.
Note that the resultant mmf has now rotated counterclockwise 90 electrical degrees in space.

Similarly, Figure 6.6c and d shows the corresponding current directions, component mmfs, and
resultant mmfs at the other instants t = t2 and t = t3, respectively. It is obvious that as time passes,
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Figure 6.6 Representation of the rotating magnetic field of the stator at four different instants of time (indi-
cated in Figure 6.5): (a) time t = t0 = t4, (b) time t = t1, (c) time t = t2, and (d) time t = t3.

Figure 6.7 Component and resultant mmf field distributions corresponding to time t = t0 in Figure 6.6a.

the resultant mmf wave keeps its sinusoidal form and amplitude, but shifts forward around the air
gap. In one full cycle of the current variation, the resultant mmf wave comes back to the position
shown in Figure 6.6a. Thus, the resultant mmf wave completes one revolution per cycle of the
current variation in a two-pole machine. Hence, in a p-pole machine, the mmf wave rotates by 2/p
revolutions.
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Figure 6.8 Simplified two-pole, three-phase stator winding arrangement.

6.3.2 ANALYTICAL METHOD

Assume again that the two-pole machine has three-phase windings on its stator, so that the resultant
stator mmf at any given instant is composed of the contributions of each phase. Each phase winding
makes a contribution which changes with time along a fixed-space axis.

Figure 6.8 shows a simplified two-pole, three-phase stator winding arrangement. The resultant
mmf wave, at any point in the air gap, can be defined by an angle θ . Notice the origin of the axis of
phase a, as shown in Figure 6.8. The resultant mmf along θ can be expressed as

F(θ) = Fa(θ)+Fb(θ)+Fc(θ) (6.10)

where each term on the right side of equation 6.10 represents the instantaneous contributions of
the alternating mmfs of each phase. Hence, each phase winding produces a sinusoidally distributed
mmf wave with its peak along the axis of the phase winding and its amplitude proportional to the
instantaneous value of the phase current. For example, the contribution from phase a along θ can
be expressed as

Fa(θ) = Fmcosθ (6.11)

where Fm is the maximum instantaneous value of the phase a mmf wave. Therefore, Equation 6.11
can be rewritten as

Fa(θ) = Niacos(θ) (6.12)

where

N is the effective number of turns in the phase a winding

ia is the instantaneous value of the current in the phase a winding

Since the phase axes shown in Figure 6.8 are shifted from each other by 120◦ electrical degrees,
the mmf contributions from phase b and phase c can be expressed, respectively, as

Fb(θ) = Fmcos(θ −120◦) (6.13)
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Fc(θ) = Fmcos(θ −240◦) (6.14)

or
Fb(θ) = Nibcos(θ −120◦) (6.15)

Fc(θ) = Niccos(θ −240◦) (6.16)

Hence, the resultant mmf at point θ is

F(θ) = Fmcosθ +Fmcos(θ −120◦)+Fmcos(θ −240◦) (6.17)

or, alternatively,

F(θ) = Niacosθ +Nibcos(θ −120◦)+Niccos(θ −240◦) (6.18)

However, the instantaneous currents ia, ib, and ic are functions of time and are expressed as

ia = Imcosωt (6.19)

ib = Imcos(ωt −120◦) (6.20)

ic = Imcos(ωt −240◦) (6.21)

where Im is the maximum value of the current, and the time origin is arbitrarily taken as the instant
when the phase a current is at its positive maximum.

The quantity ω is the angular frequency of oscillation of the stator currents, which by definition
is

ω = 2π f electrical rad/s (6.22)

where f is the frequency of the stator currents in hertz. Therefore, Equation 6.18 can be expressed
as

F(θ , t) = NImcosωtcosθ
+NImcos(ωt −120◦)cos(θ −120◦)
+NImcos(ωt −240◦)cos(θ −240◦)

(6.23)

By the use of the identity

cos(x)cos(y) =
1
2

cos(x+ y)+
1
2

cos(x− y) (6.24)

each term on the right side of Equation 6.23 can be rewritten as the sum of two cosine functions,
one involving the difference and the other the sum of the two angles. The resultant mmf of the total
three-phase winding can be expressed as

F(θ , t) =
1
2

NImcos(ωt −θ)+
1
2

NImcos(ωt +θ)

+
1
2

NImcos(ωt −θ)+
1
2

NImcos(ωt +θ −240◦)

+
1
2

NImπcos(ωt −θ)+
1
2

NImcos(ωt +θ +240◦)

(6.25)

However, this expression defines a space field. Therefore, the second, fourth, and sixth terms, being
equal in amplitude and 120◦ apart, yield a net value of zero. Thus, Equation 6.25 simplifies to

F(θ , t) =
3
2

NImcos(ωt −θ) (6.26)
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or
F(θ , t) =

3
2

Fmcos(ωt −θ) (6.27)

which represents the resultant field mmf wave rotating counterclockwise with an angular velocity of
ω rad/s in the air gap. The speed of such a revolving field is usually denoted by ωs and is referred to
as synchronous speed (ωs =ω). Suppose that at a given time t1, the resultant mmf wave is distributed
sinusoidally around the air gap with its positive peak occurring along θ = ωt1. If, at a later time t2,
the positive peak of the sinusoidally distributed wave is along θ = ωt2, then the resultant mmf
wave has moved by ω(t2 – t1) around the air gap. Therefore, polyphase currents cause a rotating
magnetic field1 to develop in the air gap as if there were a physically rotating permanent magnet
present within the stator of the machine.

6.4 INDUCED VOLTAGES
Assume that the rotor winding is wound-type, wye-connected, and open-circuited. Since the rotor
winding is open-circuited, no torque can develop. This represents the standstill operation of a three-
phase induction motor. The application of a three-phase voltage to the three-phase stator winding
results in a rotating magnetic field that “cuts” both the stator and rotor windings at the supply
frequency f1. Hence, the rms value of the induced voltage per phase of the rotor winding can be
expressed as

E2 =
2π√

2
f1N2φkω2 (6.28)

E2 = 4.44 f1N2φkω2 (6.29)

where the subscripts 1 and 2 are used to denote stator- and rotor-winding quantities, respectively.
Since the rotor is at standstill, the stator frequency f1 is used in Equations 6.28 and 6.29. Here, the
flux Φ is the mutual flux per pole involving both the stator and rotor windings. Similarly, the rms
value of the induced voltage per phase of the stator winding can be expressed as

E1 = 4.44 f1N1φkω1 (6.30)

Thus, it can be shown that
E1

E2
=

N1kω1

N2kω2
(6.31)

where kω1 and kω2 are the winding factors for the stator and rotor windings, respectively. Since
usually they are the same, turns ratio a can be found from

E1

E2
=

N1

N2
= a (6.32)

Notice the similarities between the induction motor at standstill and a transformer. Also note that
the stator and rotor windings are represented by the primary and secondary, respectively.2

1It is interesting to note that a reversal of the phase sequence of the currents on the stator windings causes the rotating mmf
(as well as the shaft of the motor) to rotate in the opposite direction. For example, if current is flows through the phase a
winding as before, but the currents ib and i, now flow through the phase c and phase b windings, respectively, the rotating
mmf (as well as the shaft of the motor) will rotate in a clockwise direction. In summary, the direction of the rotation of a
three-phase motor may be reversed by interchanging any of the three motor supply lines.

2Because of such similarities, the induction motor has also been called a “rotating transformer.”
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6.5 CONCEPT OF ROTOR SLIP
In the event that the stator windings are connected to a three-phase supply and the rotor circuit is
closed, the induced voltages in the rotor windings produce three-phase rotor currents. These currents
in turn cause another rotating magnetic field to develop in the air gap. This induced rotor magnetic
field also rotates at the same synchronous speed, ns. In other words, the stator magnetic field and
the rotor magnetic field are stationary with respect to each other. As a result, the rotor develops a
torque according to the principle of alignment of magnetic fields.

Thus, the rotor starts to rotate in the direction of the rotating field of the stator, due to Lenz’s law.
Here, the stator magnetic field can be considered as dragging the rotor magnetic field. The torque
is maintained as long as the rotating magnetic field and the induced rotor currents exist. Also, the
voltage induced in the rotor windings depends on the speed of the rotor relative to the magnetic
fields. At steady-state operation, the rotor’s shaft speed1 nm is less than the synchronous speed ns
at which the stator rotating field rotates in the air gap. The synchronous speed is determined by the
applied stator frequency2 f1, in hertz, and the number of poles, p, of the stator winding. Therefore,

ns =
120 f1

p
rev/min (6.33)

Of course, at nm = ns, there would be no induced voltages or currents in the rotor windings and,
therefore, no torque. Thus, the shaft speed of the rotor can never be equal to the synchronous speed,
but has to be at some value below that speed.

The slip speed (also called the slip rpm) is defined as the difference between synchronous speed
and rotor speed and indicates how much the rotor slips3 behind the synchronous speed. Hence,

nslip = ns −nm (6.34)

where

nslip is the slip speed of motor in rpm

ns is the synchronous speed (i.e., speed of magnetic fields) in rpm

nm is the mechanical shaft speed of rotor in rpm

Therefore, the term slip describes this relative motion in per unit or in percent. Thus, the slip in
per unit is

s =
ns −nm

ns
(6.35)

and the slip in percent is

s =
ns −nm

ns
×100 (6.36)

Alternatively, the slip can be defined in terms of angular velocity ω (rad/s) as

s =
ωs −ωm

ωs
×100 (6.37)

By closely inspecting Equation 6.35 and Figure 6.1 and simply applying deductive reasoning,4 one
can observe the following:

1It is also called the mechanical shaft speed of the rotor.
2In other words, the frequency of the applied three-phase supply system.
3The term “slip” is used because it describes what an observer riding with the stator field sees when looking at the rotor; it
appears to be slipping backward.

4Thanks to Sherlock Holmes, who more than once said: “You see, but you do not observe!” See the Adventures of Sherlock
Holmes by Arthur Conan Doyle, 1891.
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Figure 6.9 Three operation modes of an induction machine: (a) motoring, (b) generating, and (c) plugging.

1. If s = 0, it means that nm = ns, that is, the rotor turns at synchronous speed. (In practice, it can
only occur if the direct current is injected into the rotor winding.)

2. If s = 1, it indicates that nm = 0, that is, the rotor is stationary. In other words, the rotor is at
standstill.

3. If 1 > s > 0, it signals that the rotor turns at a speed somewhere between standstill and syn-
chronous speed. In other words, the motor runs at an asynchronous speed as it should, as
illustrated in Figure 6.9a.

4. If s > 1, it signifies that the rotor rotates in a direction opposite of the stator rotating field, as
shown in Figure 6.9c. Therefore, in addition to electrical power, mechanical power (i.e., shaft
power) must be provided.
Since power comes in from both sides, the copper losses of the rotor increase tremendously.
The rotor develops a braking torque that forces the motor to stop. This mode of induction
machine operation is called braking (or plugging) mode.

5. If s < 0, it means that the machine operates as a generator with a shaft speed that is greater than
the synchronous speed, as shown in Figure 6.9b. This mode of operation is called generating
mode.

Also note that the mechanical shaft speed of the rotor can be obtained from the following two
equations, which involve only slip and synchronous speed:

nm = (1− s)ns rpm (6.38)

ωm = (1− s)ωs rad/s (6.39)

6.6 EFFECTS OF SLIP ON THE FREQUENCY AND MAGNITUDE OF INDUCED
VOLTAGE OF THE ROTOR

If the rotor of an induction motor is rotating, the frequency of the induced voltages (as well as the
induced currents) in the rotor circuit is no longer the same as the frequency of its stator. Under such
a running operation, the frequency of the induced voltages (and the currents) in the rotor is directly
related to the slip rpm (i.e., the relative speed between the rotating field and the shaft speed of the
rotor). Therefore,

f2 =
p×nslip

120
(6.40a)

f2 =
p×nslip

120
(6.40b)
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where f2 is the frequency of the voltage and current in the rotor winding. Using Equation 6.35,
Equation 6.40 can be expressed as

f2 =
p× s×ns

120
(6.41a)

or
f2 =

s× p×ns

120
(6.41b)

By substituting Equation 6.33 into Equation 6.41b,

f2 = s× f1 (6.42a)

or
fr = s× f1 (6.42b)

That is, the rotor frequency f2 or fr is found simply by multiplying the stator’s frequency f1 by the
per unit value of the slip. Because of this,1 f2 or fr is also called the slip frequency.

Therefore, the voltage induced in the rotor circuit at a given slip s can be found from Equation
6.29 simply by replacing f1 with f2 as

Er = 4.44 f2N2φkω2 (6.43a)

Er = 4.44 f1N2φkω2 (6.43b)

or
Er = sE2 (6.43c)

where E2 is the induced voltage in the rotor circuit at standstill, that is, at the stator frequency f1.
The induced currents in the three-phase rotor windings also develop a rotating field. The speed

of this rotating magnetic field of the rotor with respect to rotor itself can be found from

n2 =
120× f2

p
(6.44a)

or
nr = sns (6.44b)

n2 =
120× s× f1

p
n2 = s×ns

(6.44c)

or
nr = s×ns (6.44d)

where

nr is the speed of the rotating magnetic field of the rotor

ns is the speed of the rotating magnetic field of the stator

However, since the rotor itself is rotating at nm, the developed rotor field rotates in the air gap at a
speed of

nm +n2 = (1− s)ns + sns = ns (6.45)

Thus, one can prove that both the stator field and the rotor field rotate in the air gap at the same
synchronous speed ns. In other words, the stator and rotor fields are stationary with respect to each
other, producing a steady torque and maintaining rotation.

1An induction machine with a wound rotor can also be used as a frequency changer.
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Example 6.1:

A three-phase, 60 Hz, 25 hp, wye-connected induction motor operates at a shaft speed of almost
1800 rpm at no load and 1650 rpm at full load. Determine the following:

(a) The number of poles of the motor.

(b) The per-unit and percent slip at full load.

(c) The slip frequency of the motor.

(d) The speed of the rotor field with respect to the rotor itself.

(e) The speed of the rotor field with respect to the stator.

(f) The speed of the rotor field with respect to the stator field.

(g) The output torque of the motor at the full load.

Solution

(a) From Equation 6.33,

ns =
120 f1

p

from which
p =

120 f1
ns

=
120×60

1800
= 4 poles

(b) Since
nm = ns(1− s)

Then
s =

ns −nm

ns

=
1800−1650

1800
= 0.08333 pu or 8.33%

(c) The slip frequency is
f2 = s f1 = 0.08333×60 = 5 Hz

(d) The speed of the rotor field with respect to the rotor itself can be determined from

n2 =
120 f2

p

=
120×5

4
= 150 rpm

or
n2 = s×ns

= 0.08333×1800

= 150 rpm
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(e) The speed of the rotor field with respect to the stator can be found from

nm +n2 = 1650+150 = 1800 rpm

or
nm +n2 = ns = 1800 rpm

(f) The speed of the rotor field with respect to the stator field can be determined from

(nm +n2)−ns = 1800−1800 = 0

or since
nm +n2 = ns

then
ns −ns = 0

(g) The output torque of the motor at the full load can be determined from

Tout = Tsha f t =
Pout

ωm

=
(25 hp)(746 W/hp)

(1650 rev/min)(2π rad/rev)(1 min/60 s)

= 108 N ·m

or English Units

Tout = Tsha f t =
5252P

n

=
5252(25 hp)
1650 rev/min

= 79.6 lb · ft

6.7 EQUIVALENT CIRCUIT OF AN INDUCTION MOTOR
Assume that a three-phase, wound-rotor1 induction motor has a balanced wye connection, as shown
in Figure 6.4, so that the currents are always line values and the voltages are always line-to-neutral
values. If the currents flow in both the stator and rotor windings, there will be rotating magnetic
fields in the air gap. Since these magnetic fields rotate at the same speed in the air gap, they will
develop a resultant air-gap field rotating at synchronous speed.

Because of this air-gap field, voltages will be induced in the stator windings at the supply fre-
quency f1 and in the rotor windings at the slip frequency f2. As with a balanced polyphase trans-
former, only one phase of the circuit model need be considered.

6.7.1 STATOR CIRCUIT MODEL

Figure 6.10a shows the equivalent circuit of the stator. The stator terminal voltage differs from the
induced voltage (i.e., the counter-emf) in the stator winding because of the voltage drop in the stator
leakage impedance. Therefore,

V1 = E1 + I1(R1 + jX1) (6.46)

1In the case of a squirrel-cage rotor, the rotor circuit can be represented by an equivalent three-phase rotor winding.
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Figure 6.10 Development of the per-phase stator and rotor-equivalent circuits of an induction motor: (a)
stator-equivalent circuit, (b) actual rotor circuit, (c) rotor-equivalent circuit, and (d) modified equivalent rotor
circuit.

where

V1 is the per-phase stator terminal voltage

E1 is the per-phase induced voltage (counter-emf) in the stator winding

I1 is the stator current

R1 is the per-phase stator winding resistance

X1 is the per-phase stator leakage reactance

One can easily observe that the equivalent circuit of the stator winding is the same as the equiv-
alent circuit of the transformer winding. As is the case in the transformer model, the stator current
I1 can be separated into two components, that is, a load component I2 and an excitation component
Ie. Here, the load component I2 produces an mmf that exactly counteracts the mmf of the rotor
current. The excitation component Ie is the extra stator current needed to create the resultant air-gap
flux. In the shunt branch of the model, Rc and Xm represent per-phase stator core-loss resistance
and per-phase stator magnetizing reactance, respectively, as is the case in transformer theory. How-
ever, the magnitudes of the parameters are considerably different. For example, Ie is much larger in
the induction machine due to the air gap. It can be as high as 30%–50% of the rated current in an
induction machine versus 1%–5% in a transformer.

Due to the air gap, the value of magnetizing reactance Xm is relatively small in comparison to
that of a transformer; but the leakage reactance X1 is greater than the magnetizing reactance than in
transformers. Another reason for this is that the stator and rotor windings are distributed along the
periphery of the air gap instead of being stacked on a core as they are in transformers.

6.7.2 ROTOR-CIRCUIT MODEL

Figure 6.10b shows the actual rotor circuit of an induction motor operating under load at a slip s.
The rotor current per phase can be expressed as
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I2 =
sE2

R2 + jsX2
(6.47)

where

1. E2 is the per-phase induced voltage in the rotor at standstill (i.e., at stator frequency f1).

2. R2 is the per-phase rotor-circuit resistance.

3. X2 is the per-phase rotor leakage inductive reactance.

The figure illustrates that I2 is a slip-frequency current produced by the slip frequency-induced
emf sE2 acting in a rotor circuit with an impedance per phase of R2+ jsX2. Therefore, the total rotor
copper loss can be expressed as

P2,cu = 3I2
2 R2 (6.48)

which represents the amount of real power involved in the rotor circuit. Equation 6.47 can be rewrit-
ten by dividing both the numerator and the denominator by the slip s so that

I2 =
E2

(R2/s)+ jX2
(6.49)

This equation suggests the rotor-equivalent circuit shown in Figure 6.10c. Of course, the magnitude
and phase angle of I2 remain unchanged by this process, but there is a significant difference between
these two equations and the circuits they represent. The current I2 given by Equation 6.47 is at slip
frequency f2, whereas I2 given by Equation 6.49 is at line frequency f1.

Also in Equation 6.47, the rotor leakage reactance sX2 changes with speed, but the resistance
R2 remains unchanged; whereas in Equation 6.49, the resistance R2/s changes with speed, but the
leakage reactance X2 remains unchanged. The total rotor copper loss associated with the equivalent
rotor circuit shown in Figure 6.10c is

P = 3I2
2

(
R2

s

)

=
P2,cu

s

(6.50)

Since induction machines are run at low slips, the power associated with Figure 6.10c is substan-
tially greater. The equivalent circuit given in Figure 6.10c is at the stator frequency and therefore
is the rotor-equivalent circuit as seen from the stator. Thus, the power determined by using Equa-
tion 6.50 is the power transferred across the air gap (i.e., Pg) from the stator to the rotor which
includes the rotor copper loss as well as the developed mechanical power. Here, the equation can be
expressed in a manner that stresses this fact. Therefore,

P = Pg = 3I2
2

R2

2
= 3I2

[
R2 +

R2

s
(1− s)

]
(6.51)

The corresponding equivalent circuit is shown in Figure 6.10d. The speed-dependent resistance1

R2(1–s)/s represents the mechanical power developed by the induction machine to overcome the
mechanical shaft load. Therefore, the total developed mechanical power can be found from

Pd = Pmech = 3I2
2

R2

2
(1− s) (6.52a)

1It is known as the dynamic resistance or load resistance. Note that in the braking mode of the operation, this resistance is
negative and represents a source of energy.
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Figure 6.11 The per-phase equivalent circuit of an induction motor: (a) transformer model of an induction
motor, (b) exact equivalent circuit, and (c) alternative form of the equivalent circuit.

Pd = Pmech = (1− s)Pg (6.52b)

or
Pd = Pmech =

1− s
s

P2,cu (6.52c)

where
P2,cu = 3I2

2 R2 = sPg (6.53)

A small portion of the developed mechanical power is also lost due to windage and friction. The
rest of the mechanical power is defined as the output shaft power.

6.7.3 COMPLETE EQUIVALENT CIRCUIT

If the stator-equivalent circuit shown in Figure 6.10a and c and the rotor-equivalent circuit shown
in Figure 6.10d are at the same line frequency f1, they can be joined together. However, if the
turns in the stator winding and the rotor winding are different, then E1 and E2 can be different, as
shown in Figure 6.11a. Because of this, the turns ratio (a = N1/N2) needs to be taken into account.
Figure 6.11c shows the resultant equivalent circuit of the induction machine.
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Figure 6.12 Exact equivalent circuit with the core-loss resistor omitted.

Notice that such an equivalent circuit form is identical to that of the two-winding transformer.
Also note that the prime notation is used to denote stator-referred rotor quantities. Therefore,

I′2 =
I2

2
(6.54)

E1 = aE2 = E ′
2 (6.55)

R′
2 = a2R2 (6.56)

X ′
2 = a2X2 (6.57)

R′
2

(
1− s

s

)
= a2R2

(
1− s

s

)
(6.58)

Due to the presence of the air gap in the induct ion machine, the magnetizing impedance is low
and therefore the exciting current Ie is high (about 30%–50% of full-load current). The leakage
reactance X1 is also high.

The equivalent circuit of the induction machine can be simplified by omitting resistance Rc and
lumping the corresponding core loss with the friction and windage losses. The error involved is
negligible. Figure 6.12 shows the resultant equivalent circuit.1 Therefore, if core loss is assumed
to be constant, then such an equivalent circuit should be used. Note that all stator-referred rotor
quantities are shown without prime notation as is customary. However, from now on, it should be
understood that they are stator referred.

6.7.4 APPROXIMATE EQUIVALENT CIRCUIT

The computation can be simplified with very little loss of accuracy, by moving the magnetizing
(shunt) branch (i.e., Rc and Xm) to the machine terminals, as shown in Figure 6.13. This modification
is based mainly on the assumption that V1 = E1 = E2. A further simplification can be achieved by
also omitting the resistance Rc.

1It is recommended by IEEE and known as the Steinmetz model of one phase of a three-phase induction machine.
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Figure 6.13 Approximate equivalent circuit.

Figure 6.14 Power-flow diagram of an induction motor.

6.8 PERFORMANCE CALCULATIONS
Figure 6.14 shows the power-flow diagram of an induction motor. It is based on the equivalent
circuit shown in Figure 6.11c. The input power is the electrical power input to the stator of the
motor. Therefore,

Pin = P1 =
√

3VLIL cosθ (6.59)

The total stator copper losses are
P1,cu = 3I2

1 R1 (6.60)

The total core losses can be found from

Pcore = 3E2
1 Gc (6.61a)

or

Pcore =
3E2

1
Rc

(6.61b)

Therefore, the total air-gap power can be given as

Pg = Pin −P1,cu −Pcore (6.62a)

or
Pg = 3I2

2
R2

s
(6.62b)

The total rotor copper losses are
P2,cu = 3I2

2 R2 (6.63a)
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or
P2,cu = sPg (6.63b)

Thus, the total mechanical power developed can be found by

Pd = Pmech = Pg −P2,cu (6.64a)

or
Pd = Pmech = Pg(1− s) (6.64b)

or

Pd = Pmech =

(
1− s

s

)
P2,cu (6.64c)

If the friction and windage losses and the stray losses1 are known, the output power (or shaft power)
can be determined from

Pout = Psha f t = Pd −PFW −Pstray (6.65)

If the core losses are assumed to be constant, they can be lumped in with the friction and windage
losses, and the stray losses. Their sum is called the rotational losses. Thus, the rotational loss is given
as

Prot = Pcore +PFW +Pstray (6.66)

Therefore, the corresponding output power can be found from

Pout = Pd −Prot (6.67a)

Pout = Pd − (Pcore +PFW +Pstray) (6.67b)

The corresponding equivalent circuit is shown in Figure 6.12.
The developed torque is defined as the mechanical torque developed by the electromagnetic

energy conversion process. It can be found by dividing the developed power by the shaft speed.
Therefore, the developed torque2 can be expressed as

Td =
Pd

ωm
(6.68a)

or

Td =
Pg(1− s)
ωs(1− s)

(6.68b)

or
Td =

Pg

ωs
(6.68c)

Td =
3I2

2 R2

sωs
(6.68d)

The output torque (or shaft torque) is

Tout =
Pout

ωm
(6.69)

1Stray losses consist of all losses not otherwise included above, for example, the losses due to nonuniform current distribution
in the copper, and additional core losses developed in the iron core as a result of distortion in the magnetic flux by the load
current. They may also include losses due to harmonic fields. The stray losses are also called miscellaneous losses.

2Because the developed torque can be expressed by Equation 6.68c, the air-gap power is also called the torque in synchronous
watts.
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The efficiency of the induction motor can be determined from

η =
Pout

Pin
(6.70a)

η =
Pout

Pout +Ploss
(6.70b)

where Ploss represents the total losses.

Example 6.2:

A three-phase, 480V, 50 hp induction motor is supplied 70 A at a 0.8 lagging power factor. Its stator
and rotor copper losses are 4257.53 and 1000 W, respectively. Its core losses are 3000 W, the
friction and windage losses are 800 W, and the stray losses are 200 W. Determine the following:

(a) The air-gap power.

(b) The mechanical power developed.

(c) The shaft output power.

(d) The efficiency of the motor.

Solution

(a) Since

Pin = P1 =
√

3VLIL cosθ

=
√

3(480 V)(70 A)0.8 = 46,557.3 W

therefore, the air-gap power is

Pg = Pin −P1,cu −Pcore

= 46,557.53−4,257.53−3,000

= 39,300 W

(b) The developed mechanical power is the same as the developed power. Thus,

Pd = Pmech

= Pg −P2,cu

= 39,300−1,000

= 38,300 W

(c) The shaft output power can be found as

Pout = Pd −PFW −Pstray

= 38,300−800−200

= 37,300 W

or in horsepower,

Pout = (37,300 W)

(
1 hp

746 W

)
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(d) The efficiency of the motor is

η =
37,300 W

46,557.53 W
×100 = 80.1%

Example 6.3:

A three-phase, two-pole, 35 hp, 480 V, 60 Hz, wye-connected induction motor has the following
constants in ohms per phase referred to the stator:

R1 = 0.322 ΩR2 = 0.196 Ω

X1 = 0.675 ΩX2 = 0.510 Ω

Xm = 12.5 Ω

The total rotational losses are 1850 W and are assumed to be constant. The core loss is lumped in
with the rotational losses. For a rotor slip of 3% at the rated voltage and rated frequency, determine
the following:

(a) The speed in rpm and in rad/s.

(b) The stator current.

(c) The power factor.

(d) The developed power and output power.

(e) The developed torque and output torque.

(f) The efficiency.

Solution

(a) The synchronous speed is

ns =
120 f1

s

=
120(60 Hz)

2
= 3600 rev/min

or

ωs = (3600 rev/min)
(

2π
1 rev

)(
1 min
60 s

)

= 376.99 rad/s

Thus, the rotor’s mechanical shaft speed is

nm = (1− s)ns

= (1−0.03)3600

= 3492 rpm

or

ωm = (1− s)ωs

= (1−0.03)376.99

= 365.68 rad/s
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(b) Since the core loss is assumed to be constant, the appropriate equivalent circuit for the motor
is the one shown in Figure 6.12.
To determine the stator current, the equivalent impedance of the circuit has to be found.
Therefore, the referred rotor impedance is found from

Z2 =
R2

s
+ jX2s

=
0.196
0.03

+ j0.510

= 6.55∠4.46◦

(c) Since this rotor impedance is in parallel with the magnetization branch, the corresponding
impedance is

Zeq =
1

1
jXm

+ 1
Z2

=
1

1
j12.5 +

1
6.55∠4.46◦

= 5.63∠31.13◦

Therefore, the total impedance is

Ztot = (R1 + jX1)+Zeq

= (0.322+ j0.675)+5.63∠31.13◦

= 6.265∠34.89◦ Ω

Thus, the stator current is

I1 =
V1

Ztot

=
(580

√
3∠0◦

6.265∠34.89◦

= 55.25∠−34.89 A

The power factor of the motor is

PF = cos34.89◦ = 0.82 lagging

(d) The input power to the motor is

Pin = P1 = 3V1I1 cosθ

= 3
(480 V)√

3
(44.24 A)(0.82)

= 30,166.38 W

The stator copper losses are

P1,cu = 3I2
1 R1

= 3(44.24 A)2(0.322 Ω)

= 1890.27 W

The air-gap power is

Pg = Pin −P1,cu

= 30,166.38−1890.27

= 28,276.2 W



Induction Machines 205

Thus, the developed power is

Pd = (1− s)Pg

= (1−0.03)28,276.1

= 27,427.82 W

Therefore, the output power is

Pout = Pd −Prot

= 27,427.82−1850

= 25,577.82 W

(e) The developed torque is

Td =
Pg

ωs

=
28,276.1

376.99 rad/s
= 75 N ·m

The output torque is

Tout =
Pout

ωm

=
25,577.82 W
365.58 rad/s

= 69.96 N ·m

(f) The motor’s efficiency at this operating condition is

η =
Pout

Pin
×100

=
25,577.82 W
30,166.38 W

×100

= 84.79%

6.9 EQUIVALENT CIRCUIT AT START-UP
At start-up, the rotor is at standstill and therefore the slip of the motor is 1.0. The corresponding
equivalent circuit is the same as the one shown in Figure 6.12, except that all the values of slip are
set to a value of 1.0. All powers and torques can be found as shown before, except for the output
quantities. Since the motor is at standstill, there are no windage and friction losses.

Furthermore, since ωm is zero, Tout is undefined. Similarly, if Equation 6.68a is used, Td is also
undefined. However, Td can be found by using Equations 6.68c and d and by setting s equal to 1.0.
Therefore, the starting torque can be determined from

Td,start =
Pg

ωs
(6.71)

or

Td,start =
3I2

2 R2

ωs
(6.72)

Example 6.4:

Consider the induction motor given in Example 6.3 and assume that the rotor is at standstill.
Determine the following:
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(a) The speed at start-up.

(b) The stator current at start-up.

(c) The power factor at start-up.

(d) The developed power and output power at start-up.

(e) The developed torque and output torque at start-up.

Solution

(a) The synchronous speed is
ns = 3600 rev/min

or
ωs = 376.99 rad/s

However, the rotor’s mechanical shaft speed is

nm = (1− s)ns = (1−1)3600 = 0

(b) The referred rotor impedance is

Z2 =
R2

s
+ jX2

=
0.196
1.0

+ j0.510

= 0.5464∠68.98◦ Ω

Also,

Zeq =
1

1/ jXm +1/Z2

=
1

1/ j12.5+1/0.5464∠68.98◦

= 0.525∠69.84◦ Ω

Thus, the total impedance is

Ztot = (R1 + jX1)+Zeq

= (0.322+ j− .675)+0.525∠69.84◦

= 1.275∠66.29◦ Ω

Therefore, the stator current is

I1 =
V1

Ztot

=
(480/

√
3)∠0◦

1.275∠66.29◦

= 217.28∠−66.29◦ A

Notice that the starting current is almost five times the load current found in Example 6.3.
Such a starting current would blow the fuses.

(c) The power factor of the motor is

PF = cos66.29◦ = 0.4lagging
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(d) The input power to the motor is

Pin = P1 =
√

3V1I1 cosθ

= 3
(

480 V√
3

)
(217.28 A)0.4

=
√

3(480 V)(217.28 A)0.4
= 72,171.72 W

The stator copper losses are

P1,cu = 3I2
1 R1

= 3(217.28)2 ×0.322

= 45,605.44 W

The air-gap power is

Pg = Pin −P1,cu

= 72,171.72−45,605.44

= 26,566.28 W

Therefore, the developed power is

Pd = (1− s)Pg

= (1−1)26,566.28

= 0

Thus, the output power is

Pout = Pd −Prot

= 0

(e) The developed torque is

Td,start =
Pg

ωs

=
26,566.28

376.99
= 70.5 N ·m

Example 6.5:

A three-phase, two-pole, 60 Hz induction motor provides 25 hp to a load at a speed of 3420 rpm.
If the mechanical losses are zero, determine the following:

(a) The slip of the motor in percent.

(b) The developed torque.

(c) The shaft speed of the motor, if its torque is doubled.

(d) The output power of the motor, if its torque is doubled.
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Solution

(a) Since

ns =
120 f1

p

=
120×60

2
= 3600 rpm

the slip is

s =
ns −nm

ns
×100

=
3600−3420

3600
×100

= 5%

(b) Since the mechanical losses are zero,

Td = Tload = Tout

and
Pd = Pload = Pout

the developed torque is

Td =
Pd

ωm

=
(25 hp)(746 W/hp)

(3420 rpm)(2π rad/rev)(1 min/60 s)
= 52.70 N ·m

or in English units,

Td =
5252Pd

nm

=
5252(25 hp)

4320 rpm
= 38.4 lb · ft

Alternatively, the torque in lb · ft can be found directly from

Td =

(
550
746

)
(Td N ·m)

=

(
550
746

)
(52.07 N ·m)

= 38.4 lb · ft

(c) The developed torque is proportional to the slip. If the developed torque is doubled, then the
slip also doubles and the new slip is

s = 2×0.05 = 0.10

Hence, the shaft speed becomes

nm = (1− s)ns

= (1−0.10)3600

= 3240 rpm
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(d) Since
Pd = Td ×ωm

the power supplied by the motor is

Pd = (2×52.07)[(3420 rpm)(2π rad/rev)(1 min/60 s)]
= 35,333.9 W

or in English units,

Pd =
Td ×nm

5252

=
(2×38.4)(3,240 rpm)

5252
= 47.4 hp

6.10 DETERMINATION OF POWER AND TORQUE BY USE OF TH ’EVENIN’S
EQUIVALENT CIRCUIT

According to Thévenin’s theorem, a network of linear impedances and voltage sources can be rep-
resented by a single-voltage source and a single impedance as viewed from two terminals. The
equivalent voltage source is the voltage that appears across these terminals when the terminals are
open-circuited. The equivalent impedance is the impedance that can be found by looking into the
network from the terminals with all voltage sources short-circuited.

Therefore, to find the current I2 in Figure 6.15a, Thévenin’s theorem can be applied to the
induction-motor equivalent circuit. The Thévenin voltage can be found by separating the stator
circuit from the rotor circuit, as indicated in the figure. Thus, by voltage division,

Vth = V1

(
jXm

R1 + jX1 + jXm

)
(6.73)

The magnitude of the Thévenin voltage is

Vth = V1

(
Xm

[R2
1 +(X1 + jXm)2]1/2

)
(6.74)

However, since R2
1 << (X1 +Xm)

2, the voltage is approximately

Vth = V1

(
Xm

X1 +Xm

)
(6.75)

Zth = Rth + jXth

=
jXm(R1 + jX1)

R1 + j(X1 +Xm)

(6.76)

Since X1 << Xm and R2
1 << (X1 +X2

m), the Thévenin resistance and reactance are approximately

Rth ≈ R1

(
Xm

X1 +Xm

)2

(6.77)

and
Xth ≈ X1 (6.78)
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Figure 6.15 (a) Application of Thévenin’s theorem to the induction motor circuit model, (b) the stator circuit
used to determine the Thévenin-equivalent impedance of the stator circuit, and (c) the resultant induction-motor
equivalent circuit simplified by Thévenin’s theorem.

Figure 6.15c shows the resultant equivalent circuit of the induction motor. Here, the rotor current
can be found from

I2 =
Vth

Zth +Z2
(6.79a)

or
I2 =

Vth

Rth +R2/s+ j(Xth + jX2)
(6.79b)

The magnitude of the rotor current is

I2 =
Vth

[(Rth +R2/s)2 +(Xth +X2)2]1/2 (6.80)

Thus, the corresponding air-gap power is

Pg = 3I2
2

(
R2

s

)
(6.81a)

or

Pg =
3Vth(R2/s)

[(Rth +R2/s)2 +(Xth +X2)]2
(6.81b)
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Therefore, the developed torque is

Td =
Pg

ωs

=
3I2

2 (R2/s)
ωs

(6.82a)

or

Td =
3V 2

th(R2/s)
ωs[(Rth +R2/s)2 +(Xth +X2)2]

(6.82b)

Since at start-up the slip is unity, the developed starting torque is

Tstart =
3V 2

th(R2)

ωs[(Rth +R2)2 +(Xth +X2)2]
(6.83)

6.11 PERFORMANCE CHARACTERISTICS
The performance characteristics of the induction machine include starting torque, maximum (or
pull-out) torque,1 maximum power, current, power factor, and efficiency. The maximum torque can
be determined by using Thévenin’s equivalent circuit. Since

Td =
Pg

ωs
(6.84)

The developed torque will be maximum when the air-gap power is a maximum. The air-gap power
can be found from Equation 6.81. To find at what value of the variable R2/s is the maximum Pg takes
place, the derivative of the right side of Equation 6.81 with respect to R2/s must be determined and
set equal to zero. Thus,

3V 2
th[R

2
th − (R2/s)2 +(Xth +X2)

2]

[(Rth +R2/s)2 +(Xth +X2)2]2
= 0 (6.85)

by setting the numerator of this equation equal to zero,

R2
th −

(
R2

s

)2

+(Xth +X2)
2 = 0 (6.86)

from which
R2

s
= [R2

th +(Xth −X2)
2]1/2 (6.87)

That is, the maximum power is transferred to the air-gap power resistor R2/2 when this resistor is
equal to the impedance looking back into the source. Therefore, the slip smaxT at which the maxi-
mum (or pull-out) torque is developed is

smaxT =
R2

[R2
th +(Xth +X2)2]1/2 (6.88)

The slip at which maximum torque takes place is directly proportional to the rotor resistance and
may be increased by using a larger rotor resistance. Thus, the maximum or pull-out torque can be
found, by inserting Equation 6.88 into Equation 6.82, as

Tmax =
3V 2

th

2ωs{Rth +[R2
th +(Xth +X2)2]1/2}

(6.89)

1It is also known as the maximum internal or breakdown torque.
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Figure 6.16 Torque–speed or torque–slip characteristic curve of an induction motor.

Figure 6.17 Torque versus speed (or slip) characteristic curves of an induction motor at full and halved supply
voltage.

The maximum torque is proportional to the square of the supply voltage and is also inversely related
to the size of the stator resistance and reactance, and the rotor reactance.

Figure 6.16 shows the torque–speed or torque–slip characteristic curve of an induction motor.
As shown in the figure, the full-load torque of an induction motor is less than its starting torque. If
the value of the supply voltage is halved, both the starting torque and the maximum torque become
one-fourth of their respective full-voltage values. Figure 6.17 shows the torque versus speed (or slip)
characteristic curves of an induction motor at full and half of the supply voltage.
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Figure 6.18 The effect of increased rotor resistance on the torque–speed characteristics of a wound-rotor
induction motor.

According to Equation 6.89, the maximum torque developed by the induction motor is indepen-
dent of the rotor-winding resistance. Note that the value of the rotor-winding resistance R2 deter-
mines the speed at which the maximum torque will take place, as suggested by Equation 6.88.

In other words, increasing the rotor-winding resistance by inserting external resistance increases
the slip at which the maximum (or pull-out) torque occurs, but leaves its magnitude unchanged.
Figure 6.18 shows the effect of increasing the rotor resistance on the torque–speed characteristics
of a wound-rotor induction motor. Notice that as the rotor resistance increases, the curve becomes
flatter. Also notice that the starting torque and the maximum torque are the same at the given rotor
resistance value.

As can be observed in Figure 6.12, the input impedance of an induction motor is

Z1 = R1 + jX1 =
jXm(R2/s+ jX2)

R2/s+ j(Xm +X2)
(6.90a)

or
Z1 = Z1∠θ1 (6.90b)

Therefore, the stator current is

I1 =
V1

Z1

= Ie + I2

(6.91)

At synchronous speed (i.e., at s = 0), the resistance R2/s becomes infinite and therefore I2 is
zero. Thus, the stator current I1 becomes equal to the excitation current Ie. At greater values of
slip, R2/s+ jX2 is low and hence the resultant I2 and I1 are larger. For example, as illustrated in
Figure 6.19, the typical starting current (i.e., at s = 1) is 500%–700% of the rated (full-load) current.
At synchronous speed, the typical stator current is 25%–50% of the full-load current.

The power factor of an induction motor is cos θ1 where θ1 is the phase angle of the stator current
I1. This phase angle θ1 is the same as the input impedance angle of the equivalent circuit shown in
Figure 6.12 and given by Equation 6.90b. Figure 6.20 shows the typical power factor variation as a
function of output power and slip. Note that the figure is not drawn to scale.
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Figure 6.19 Stator and rotor currents as a function of output power and slip.

Figure 6.20 Power factor of a typical induction motor as a function of output power and slip.

Figure 6.21 shows the efficiency of a typical induction motor as a function of output power and
slip. The full-load efficiency of a large induction motor may be as high as 95%. As an induction
motor is loaded beyond its rated output power, its efficiency decreases considerably.

Example 6.6:

The induction motor given in Example 6.3 has a wound rotor. Determine the following:

(a) The slip at which the maximum torque is developed.

(b) The speed at which the maximum torque is developed.

(c) The maximum torque developed.
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Figure 6.21 The efficiency of a typical induction motor as a function of output power and slip.

(d) The starting torque developed.

(e) The speed at which the maximum torque is developed, if the rotor resistance is doubled.

(f) The maximum torque developed, if the rotor resistance is doubled.

(g) The starting torque developed, if the rotor resistance is doubled.

Solution
The Thevenin voltage of the motor is

Vth =V1

(
Xm

[R2
1 +(X1 +Xm)2]1/2

)

=
(480/

√
3)12.5

[0.3222 +(0.675+12.5)2]1/2

= 262.85 V

The Thevenin resistance is

Rth ≈ R1

(
Xm

X1 +Xm

)2

= 0.322
(

12.5
0.675+12.5

)2

= 0.29 Ω

The Thevenin reactance is
Xth ≈ X1 = 0.675 Ω

(a) The slip at which the maximum torque is developed is

smaxT =
R2

[R2
th +(Xth +X2)2]1/2

=
0.196

0.292 +[(0.675+0.51)2]1/2

= 0.1607
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(b) The speed at which the maximum torque is developed is

nm = (1− s)ns

= (1−0.1607)3600

= 3021.6 rpm

(c) The maximum torque developed is

Tmax =
3V 2

th

2ωs{Rth +[R2
th +(Xth +X2)2]1/2}

=
3(262.85)2

2(377 rad/s){0.29+[0.292 +(0.675+0.51)2]1/2}
= 182 N ·m

(d) The starting torque developed is

Tstart =
3V 2

thR2

ωs[(Rth +R2)2 +(Xth +X2)2]1/2

=
3(262.85)2 ×0.196

(377 rad/s)[(0.29+0.196)2 +(0.675+0.51)2]1/2

= 107.3 N ·m

(e) Since the rotor resistance is doubled, the slip at which the maximum torque occurs also
doubles. Thus,

smax = 2(0.1607) = 0.3214

and the speed at maximum torque is

nm = (1− s)ns

= (1−0.3214)3600

= 2443 rpm

(f) The maximum torque still remains at

Tmax = 182 N ·m

(g) If the rotor resistance is doubled, the developed starting torque becomes

Tmax =
3(262.85)20.392

377[(0.29+0.196)2 +(0.675+0.51)2]

= 131.29 N ·m

6.12 CONTROL OF MOTOR CHARACTERISTICS BY SQUIRREL-CAGE ROTOR
DESIGN

In principle, an increase in rotor resistance decreases the speed at which a given torque is found,
increases the starting torque, and lowers the motor efficiency. Also, it decreases the starting current
and increases the power factor. If the increase in the power factor is greater than the decrease in the
starting current, it results in a better starting torque.

In general, in a squirrel-cage rotor design, the rotor resistance value is determined by a compro-
mise between conflicting requirements of good speed regulation and good starting torque. Usually,
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Figure 6.22 Various slot shapes for squirrel-cage induction motor rotors which produce NEMA design-class
characteristics: (a) NEMA design class A, (b) NEMA design class B, (c) NEMA design class C, (d) NEMA
design class D, and (e) old NEMA design class F.

the resistance of a squirrel-cage motor, referred to the stator, is less than that of a wound-rotor ma-
chine of the same size. The rotor resistance of a squirrel-cage motor can be increased by decreasing
the cross-sectional area of the end rings. The resistance of the stator windings should be minimal to
reduce both the stator’s copper losses and its internal voltage drop. Also, an increase in the stator
resistance causes the maximum torque to decrease

The leakage reactances are affected by changes in the air gap and slot openings. As the air gap
is increased, these reactances decrease, causing a greater excitation current to flow at a lesser power
factor. Open slots cause the same thing. Also, an increase in reactance decreases the pull-out torque.
Therefore, induction motors are designed with as small an air gap as possible to reduce the excitation
current. The rotor frequency changes with speed and at standstill is the same as the stator frequency.
As the motor speeds up, the rotor frequency decreases in value to 1 or 3 Hz at full load in a typical
60 Hz motor.

By using suitable shapes and arrangements for rotor bars, it is possible to design squirrel-cage
rotors so that their effective resistance at 60 Hz is several times their resistance at 1 or 3 Hz. This
results from the inductive effect of the slot-leakage flux on the current distribution in the rotor bars.
The change in the resistance of the rotor bars is due to what is commonly known as the skin effect.

Various slot shapes for squirrel-cage induction motor rotors which produce the National Electri-
cal Manufacturers Association (NEMA) design characteristics1 are shown in Figure 6.22. The rotor
bars of the NEMA design class A motor shown in Figure 6.22a are quite large and located near
the surface of the rotor. They have low resistance (because of their large cross sections) and a low
leakage reactance X2 (because the bars are located near the stator). Such motors are also called class
A motors. They have low slip at full load, high running efficiency, and high pull-out torque (due to
the low rotor resistance). However, because R2 is small, the starting torque of the motor is small, but
its starting current is large. These motors are usually used in constant-speed drives to drive pumps,
fans, lathes, blowers, and other devices.

Figure 6.22b shows the deep-bar rotor slots of the NEMA design class B motor. Rotor bars em-
bedded in deep slots provide a high effective resistance and a large torque at start-up. Due to the

1These standard designs are commonly called design classes. Each of them provides different torque–speed curves. Recently,
the International Electrotechnical Commission (IEC) in Europe adopted similar design classes for motors.
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skin effect, the current has a tendency to concentrate at the top of the bars at start-up, when the
frequency of the rotor currents is high.

Under normal operating conditions with low slips (since the frequency of the rotor currents is
much smaller), the skin effect is negligible and the current tends to distribute almost uniformly
throughout the entire rotor-bar cross section. Thus, the rotor resistance decreases to a small value
causing a higher efficiency. Such motors are used in applications that are comparable to those for
design class A. Due to their lower starting current requirements, they are usually preferred to design
class A motors.

Figure 6.22c shows a NEMA design class C rotor slot shape, which is an alternative design for
the deep-bar rotor. Such a double-cage arrangement is used to attain greater starting torque and
better running efficiency. The squirrel-cage winding is made up of two layers of bars short-circuited
by end rings. The inner cage, consisting of low-resistance bottom bars, is deeply embedded in the
rotor’s iron core. However, the outer cage has relatively high-resistance bars located close to the
inner stator surface. At start-up, the frequency of the rotor currents is relatively high (almost equal
to stator frequency) and the leakage reactance of the cage made up of the larger (inner) rotor bars
is also high, suppressing the current in that cage. Therefore, the outer cage with the smaller bars,
because of its higher resistance and lower leakage inductance (because of skin effect), predominates
during start-up, producing high start-up torque. At the steady-state (i.e., normal) operation of the
motor, its speed is normal. Thus, the rotor frequency is so low that the leakage reactance of the
low-resistance cage is substantially lower than its resistance, and the current densities in the two
cages are practically equal. Therefore, during the normal running period, because of the negligible
skin effect, the current penetrates the full depth of the lower cage causing an efficient steady-state
operation.

In summary, such a design results in high rotor resistance on start-up and low resistance at normal
speed. These motors are more expensive than the others. They are used in applications involving
high-starting-torque loads, such as compressors and conveyors that are fully loaded when started,
and loaded pumps.

Figure 6.22d shows NEMA design class D rotor slot shapes. Class D motors are characterized
by high starting torque, low starting current, and high operating slip. The rotor cage bars are made
of higher-resistance material such as brass. The maximum torque takes place at a slip of 0.5 or
higher. Because of high rotor resistance, the full-load slip for theses motors is high (about 7%–17%
or more). Thus, the running efficiency is low. The high losses in the rotor circuit dictate that the
machine be large and is therefore expensive for a given power. They are ideal for loads with rapid
acceleration or high impact such as punch presses and shears.

In addition to the four design classes reviewed so far, NEMA used to also have design classes
E and F. They were called soft-start induction motors, with very low starting currents and torques,
but are no longer in use. Figure 6.22e shows old NEMA design class F. It was once used in large
motors designed for very easily started loads such as industrial fans. Figure 6.23 shows torque–speed
characteristics for the four design classes.

6.13 STARTING OF INDUCTION MOTORS
A wound-rotor induction motor can be connected directly to the line with its rotor open-circuited,
or with relatively high resistances connected to the slip-ring brushes. At full operating speed, the
brushes are shorted together so that there is zero external resistance in each phase. However, induc-
tion motors with squirrel-cage rotors can be started by a number of different methods, depending on
the size and type of the motor involved.

In general, the basic methods of starting can be classified as direct-on-line starting, reduced-
voltage starting, and current limiting by series resistance or impedance. Other methods of starting
include part-winding starting and multicircuit starting. In these methods, the motor is connected
asymmetrically during the starting period.
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Figure 6.23 Typical torque–speed characteristics of cage motors.

6.13.1 DIRECT-ON-LINE STARTING

In general, most induction motors are rugged enough so that they can be started across the line
without any resultant damage to the motor windings, even though about five to seven times the rated
current flows through the stator at rated voltage at standstill. However, such across-the-line starting
of large motors is not advisable for two reasons: (1) the lines supplying the induction motor may
not have enough capacity and (2) the large starting current may cause a large voltage dip,1 resulting
in reduced voltage across the motor. Since the torque changes approximately with the square of the
voltage, the starting torque can become so small at the reduced line voltage that the motor may not
even start on load.

To estimate the starting current, all squirrel-cage motors now have a starting code letter (not to
be mixed up with their design-class letter) on their nameplates. The code letter gives the maximum
limit of current for the motor at starting conditions. Table 6.1 gives the starting kVA per hp at
starting conditions for the machine. To find the starting current for an induction motor, its rated
voltage, horsepower, and code letter are read from its nameplate. Therefore, its starting apparent
power is

Sstart = (rated horsepower)(code letter factor)

and its starting current

IL =
Sstart√

3Vt

6.13.2 REDUCED-VOLTAGE STARTING

At the time of starting, a reduced voltage is supplied to the stator and slowly increased to the rated
value when the motor is within approximately 25% of its rated speed. Such reduced-voltage starting

1For further information, see Gönen (2008).
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Table 6.1
The NEMA Code Letters

Code Letter Locked Rotor

kVA/h
A 0−3.14
B 3.15−3.54
C 3.55−3.99
D 4.00−4.49
E 4.50−4.99
F 5.00−5.59
G 5.60−6.29
H 6.30−7.09
J 7.10−7.99
K 8.00−8.99

kVA/hp
L 9.00−9.99
M 10.00−11.19
N 11.20−12.49
P 12.50−13.99
R 14.00−15.99
S 16.00−17.99
T 18.00−19.99
U 20.00−22.39
V 22.40 and up

Source: Reproduced by permission from NEMA Motors and Generators Standards, NEMA Pub-
lications MG-1 1978, Copyright 1982 by NEMA, National Electrical Manufacturers Association,
New York.

can be achieved by means of wye–delta starting, autotransformer starting, and solid-state voltage
controller starting.

1. Wye-delta starting. In this starting, both ends of each phase of the stator winding must be
brought out to the terminals of a wye–delta switch so that at start the stator windings are
connected in wye. As the motor approaches full speed, the switch is operated and the stator
windings are connected in delta, and the motor runs at full speed. Here, the motor used has to
be designed for delta operation and is connected in wye only during the starting period. Since
the impedance between the line terminals for the wye connection is three times that of the delta
connection for the same line voltage, the line current is reduced to one-third of its value for
the delta connection. That is, when the motor is connected in wye, it takes one-third as much
starting current and develops one-third as much torque. A wye–delta starter is equivalent to an
autotransformer with a ratio of n = 1/

√
3.

2. Autotransformer starting. Here, the setting of the autotransformer can be predetermined to
limit the starting current to any given value. Therefore, an autotransformer, which reduces the
voltage applied to the motor to x times the normal voltage, will reduce the starting current in
the supply system as well as the starting torque of the motor to x2 times the normal values.
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Figure 6.24 An autotransformer starter for an induction motor.

Figure 6.25 Solid-state voltage controller starting.

Here, the x is known as the compensator turns ratio. When the motor reaches about 80% of
normal speed, the connections are changed so that the autotransformers are de-energized and
the motor is connected to full line voltage. Most compensators are provided with three sets of
standard taps in order to apply 80%, 65%, or 50% of the line voltage to the motor. To achieve
a satisfactory starting, the lowest tap is normally used. Figure 6.24 shows an autotransformer
starter for squirrel-cage motors. Such starters are also called starting compensators.

3. Solid-state voltage controller starting. In this starting, a solid-state voltage controller is used
as a reduced-voltage starter, as shown in Figure 6.25. The advantage of this method is that
the solid-state voltage controller provides a smooth starting and also controls the speed of the
induction motor during running.

6.13.3 CURRENT LIMITING BY SERIES RESISTANCE OR IMPEDANCE

Such a technique may be used if the starting torque requirement is not too great. In this method,
series resistances, or impedances, are inserted in the three lines to limit the starting current. These
resistors, or impedances, are shorted out when the motor gains speed. Because of the extra power
losses in the external resistances during start-up, it is an inefficient method.
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Example 6.7:

A 20 hp, 480V, three-phase induction motor has a code letter H on its nameplate. Determine its
starting current.

Solution
From Table 6.1, the maximum kVA per hp is 7.09. Thus, the maximum starting kVA of this motor is

Sstart = (20 hp)(7.09)

= 141.8 kVA

Therefore, the starting current is

IL =
Sstart√

3Vt

=
141,800 VA√

3(480 V)
= 170.6 A

Example 6.8:

A three-phase, eight-pole, 100 hp, 440 V, 60 Hz, wye-connected induction motor has the following
constant in ohms per phase referred to the stator: R1 = 0.085 Ω, X1 = 0.196 Ω, R2 = 0.067 Ω,
X2 = 0.161 Ω, and Xm = 6.65 Ω. The motor has a wound rotor with a turns ratio of 2.0. To produce
maximum torque at starting (i.e., Tstart = Tmax), the wound-rotor windings are connected to external
resistors. The Thevenin resistance and reactance of the motor are 0.0802 and 0.191 Ω, respectively.
Determine the value of the external rotor resistance under the following conditions:

(a) If they are referred to the stator and connected in wye.

(b) If they are referred to the rotor and connected in wye.

(c) If they are referred to the stator and connected in delta.

(d) If they are referred to the rotor and connected in delta.

Solution

(a) The external rotor-circuit resistance is adjusted until the motor produces its maximum torque
at start so that Tstart = Tmax. Since Tmax occurs at starting smaxT = 1.0, from Equation 6.88

R2,tot

smaxT
= [R2

th +(Xth +X2)
2]1/2

or

R2,tot

1.0
= [0.08022 +(0.191+0.161)2]1/2

= 0.361

Therefore, R2,tot = 0.361 Ω referred to the stator is found. Since this value represents the total
resistance in the rotor circuit, the value of the external rotor resistance referred to the stator
and connected in wye is
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R′
2,ext = R2,tot −R2

= 0.361−0.067

= 0.294 Ω per phase

(b) The value of the external resistance referred to the rotor (i.e., in terms of physical resistance)
and connected in wye is

R2,ext =
R′

2,ext

a2

=
0.294

22

= 0.0735 Ω per phase

(c) The value of the external rotor resistance referred to the stator and connected in delta is

R′
2,ext = 3(0.294 Ω)

= 0.882 Ω

(d) The value of the external rotor resistance referred to the rotor and connected in delta is

R2,ext = 3(0.0735 Ω)

= 0.2205 Ω

or

R2,ext =
R′

2,ext

a2 =
0.882

22

= 0.2205 Ω

Example 6.9:

Consider the induction motor given in Example 6.8 and assume that either its wound-rotor slip
rings have been short-circuited or its wound rotor has been replaced by an equivalent squirrel-cage
rotor. Investigate the line-voltage starting of the motor. Neglect jXm as a reasonable simplifying
assumption because of the large slip (i.e., sstart = 1.0) at starting. Determine the following:

(a) The stator current at starting.

(b) The rotor current at starting.

(c) The air-gap power at starting.

(d) The developed power at starting.

(e) The developed torque at starting.

Solution

(a) The stator current at starting is

I1,start =
V1

(R1 +R2/s)+ j(X1 +X2)

=
254∠0◦

(0.085+0.067/1.0)+ j(0.196+0.161)

= 655∠−66.9◦ A
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(b) Since
I2,start ≈ I1,start = 655∠−66.9◦ A

(c) The air-gap power at starting is

Pg,start = 3I2
2,start

(
R2

s

)

= 3(655)20.067

≈ 86 kW

(d) The developed power at starting is

Pd,start = 3I2
2,startR2

(
1− s

s

)

= 3(655)2
(

1−1
1

)
= 0

(e) The developed torque at starting is

Td,start =
Pd

ωs

=
86,139 W

94.24 rad/s
= 914 N ·m

where

ωs =
2π
60

(
120 f1

p

)

=
2π
60

(
120×60

8

)

= 94.24 rad/s

Since Pdstart = 0 and ωm = 0, the torque Equation 6.68a cannot be used to determine the
developed torque at starting.

Example 6.10:

Consider autotransformer-type reduced-voltage starting with either the squirrel-cage rotor or the
equivalent wound rotor given in Example 6.9, ignoring the shunt branch Xm. Apply ideal auto-
transformer theory, find and tabulate the motor’s stator current I1,start , the line current into the
autotransformer starter IL, and the developed starting torque. Determine the aforementioned values
as a function of the autotransformer taps, which are 50%, 65%, and 80% of the line voltage.

Solution
Figure 6.26 shows the application of the autotransformer-type reduced-voltage starting. The results
are given in Table 6.2 and are based on the results of Example 6.9. Note that such a starting
technique is the most suitable for centrifugal-type loads. However, it fails in applications such as
elevators where constant load torque is required.

Example 6.11:

Consider the induction motor given in Example 6.10 and replace the autotransformer-type reduced-
voltage starting either by primary resistor starting or by primary reactor starting, as shown in



Induction Machines 225

Figure 6.26 The autotransformer starting used for Example 6.9.

Table 6.2
Results of Example 6.10 (a From Example 6.8)

V1 N2/N1 (N2/N1)2 I1,start = 655(N2/N1) I1,start = 655(N2/N1)2 Td,start = 655(N2/N1)2

100a 1.0 1.0 655 655 914
80 0.80 0.64 524 419 585
65 0.65 0.4225 426 277 386
50 0.50 0.25 328 164 229

Figure 6.27 The primary resistor or primary reactor starting used for Example 6.10.

Figure 6.27. The existence of the resistor and the reactor are mutually exclusive, that is, there is
either R or X in the box shown but both cannot be present. It is required that the starting torque at
such reduced voltage be 25% of the starting torque at full voltage. Determine the following:

(a) The starting torque at such a reduced voltage.

(b) The primary voltage at starting.

(c) The stator current at starting.

(d) The total input impedance at starting.
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(e) The value of the resistor R in ohms.

(f) The value of the reactor X in ohms.

Solution

(a) In Example 6.10, the starting torque at full voltage was 914 N · m. Therefore, the new starting
torque will be

Tstarting =
914 N ·m

4
= 228.5 N ·m

(b) If the value of the supply voltage is halved, the starting torque becomes one-forth of its
full-voltage value. Therefore, the primary voltage at starting is

V1,starting =
1
2

(
440 V√

3

)
= 127 V

(c) Therefore, the stator current at starting is

I1,starting =
1
2
(655 A)

= 327.5 A

(d) Thus, the total input impedance at starting is

Zinput =
V1,starting

I1,starting
=

127 V
327.5 A

= 0.388 Ω

(e) Since the shunt branch jXm is neglected, the input impedance, for the primary resistor starting,
can be expressed as

|Zinput |= (R1 +R2 +R)+ j(X1 +X2)

Since the magnitude of this input impedance is 0.388 Ω, the value of R is about 0.4×10–4 Ω.

(f) Since the input impedance for the primary reactor starting can be expressed as

|Zinput |= (R1 +R2)+ j(X1 +X2 +X)

where the magnitude of this input impedance is 0.388 Ω, the value of X from the aforemen-
tioned equation can be approximately found as 0.196×10–4 Ω. This technique is often used
to reduce the acceleration torque Ta or the developed torque Td . However, it should not be
used to reduce the stator current I1.

6.14 SPEED CONTROL
An induction motor is basically a constant-speed motor when it is connected to a constant-voltage
and constant-frequency power supply. Even though a large number of industrial drives run at con-
stant speed, there are many applications in which variable speed is a requirement. Examples include
elevators, conveyors, and hoists. Traditionally, dc motors have been used in such adjustable-speed
drive systems.

However, dc motors are expensive, require frequent maintenance of commutators and brushes,
and should not be used in hazardous environments. The synchronous speed of an induction motor
can be changed by changing the number of poles or varying the line frequency. The operating slip
can be changed by varying the line voltage, varying the rotor resistance, or applying voltages with
appropriate frequency to the rotor circuits.
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1. Pole-changing method. In this method, the stator winding of the motor can be designed so that
by simple changes in coil connections the number of poles can be changed by the ratio of 2
to 1. In this way, two synchronous speeds can be obtained. This method is not suitable for
wound-rotor motors, since the rotor windings would also have to be reconnected to have the
same number of poles as the stator.
However, a squirrel-cage rotor automatically develops a number of magnetic poles equal to
those of the air-gap field. With two independent sets of stator windings, each arranged for
pole changing, as many as four synchronous speeds can be achieved in a squirrel-cage motor.
For example, 600, 1200, 1800, and 3600 rev/min can be attained for a 60 Hz operation. In
addition, the motor phases can be connected either in wye or delta, resulting in eight possible
combinations.

2. Variable-frequency method. The synchronous speed of an induction motor can be controlled
by changing the line frequency. The change in speed is continuous or discrete depending upon
whether or not supply frequency is continuous or discrete. To maintain approximately constant
flux density, the line voltage must also be changed with the frequency. Therefore, the maximum
torque remains nearly constant.
This type of control is known as constant volts per hertz and is possible only if a variable-
frequency supply is available. A wound-rotor induction machine can be used as a frequency
changer. The arrival of solid-state devices with relatively large power ratings has made it pos-
sible to use solid-state frequency converters.1

3. Variable line-voltage method. The torque developed by an induction motor is proportional to
the square of the applied voltage. Therefore, the speed of the motor can be controlled over a
limited range by changing the line voltage. If the voltage can be varied continuously from V1
to V2, the speed of the motor can also be varied continuously from speeds n1 to n2 for a given
load. This method is used for small squirrel-cage motors driving fans and pumps.

4. Variable rotor-resistance method. This method can only be used with wound-rotor motors. By
varying the external resistance connected to the rotor through the slip rings, the torque–speed
characteristics of a wound-rotor induction motor can be controlled. The high available torque
permits reduced starting voltage to be used while maintaining a sufficiently high starting
torque.
In addition, the maximum torque and the starting torque may be made the same. By contin-
uous variation of rotor-circuit resistance, continuous variation of speed can also be achieved.
The disadvantages of this method include low efficiency at reduced speeds and poor speed
regulation with respect to changes in the load.

5. Variable-slip method. Without sacrificing efficiency at low-speed operation or affecting the
speed with load variation, the induction motor speed can be controlled by using semiconductor
converters.

6. Speed control by solid-state switching. With the exception of the cycloconverter- or inverter-
driven motor, the speed of a wound-rotor motor is controlled by the inverter in the rotor circuit
or by regulating the stator voltage with solid-state switching devices such as power transistors
or silicon-controlled rectifiers (SCRs or thyristors). In general, SCR-based control provides a
wider range of operation and is more efficient than other slip-control methods.

1One such arrangement is a SCR supplying do voltage to a static inverter, with solid-state components which in turn supplies
the variable frequency to the motor. This arrangement is called a cycloconverter.
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6.15 TESTS TO DETERMINE EQUIVALENT-CIRCUIT PARAMETERS
The parameters of the equivalent circuit of the induction motor can be found from the no-load
and blocked-rotor tests.1 These tests correspond to the no-load and short-circuit tests done on the
transformer. The stator resistance can be determined from the dc test.

6.15.1 NO-LOAD TEST

Rated balanced voltage at rated frequency is applied to the stator, and the motor is permitted to run
without a load. The voltage, current, and power input to the stator are measured. At no load, R2
is very small with respect to R2(1–s)/s; therefore, the no-load rotor copper loss is negligible. The
noload input power is the sum of the stator copper loss and the rotational losses. Thus,

Pnl = P1,cu +Prot (6.92a)

Pnl = 3I2
1,nlR1 +Prot (6.92b)

where
Pnl = Pcore +PFW (6.93)

assuming that the stray losses are negligible. Hence, the rotational losses can be found from

Prot = Pnl −3I2
1,nlR1 (6.94)

where

Pnl is the total three-phase power input to the machine at rated voltage and frequency

Inl is the average of the three line currents

Under no load conditions, R1 is small with respect to Xm, and the overall input power factor is
very small, about 0.1. The equivalent input impedance is

|Zeq|= |Znl |=
Vnl√
3Inl

≈ X1 +Xm (6.95)

where Vnl is the line-to-line terminal voltage. Thus,

Xm =
Vnl√
3Inl

−X1 (6.96)

6.15.2 DC TEST

The stator resistance R1 can be considered equal to its dc value. Thus, it can be measured indepen-
dently of the rotor impedance. In such a test, a dc power supply is connected to two of the three
terminals of a wye-connected induction motor. The current in the stator windings is adjusted to the
rated value, and the voltage between the terminals is measured. Since the current flows through two
of the wye-connected windings, the total resistance in the path is 2R1. Hence,

2R1 =
Vdc

Idc
(6.97)

or
R1 =

Vdc

2Idc
(6.98)

1For further information, see IEEE, Std, 112–1978 (1984).
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This value of R1 may now be used in Equation 6.94 to determine the stator copper loss as well
as the rotational losses. Usually, the calculated R1 has to be corrected for the skin effect and the
temperature of the windings during the short-circuit test.1 Therefore, the ac resistance is found by
multiplying the dc resistance by a factor which varies from 1.2 to about 1.8, depending on the
frequency and other factors.

6.15.3 BLOCKED-ROTOR TEST

This test corresponds to the short-circuit test of a transformer and is also called the locked-rotor test.
Here, the rotor of the machine is blocked (s = 1.0) to prevent it from moving. A reduced voltage2 is
applied to the machine so that the rated current flows through the stator windings. This input power,
voltage, and current suggest a blocked-rotor test frequency of 25% of the rated frequency. The input
power to the motor is

Pbr =
√

3VbrIbr cosθ (6.99)

so that the blocked-rotor power factor can be expressed as

cosθ =
Pbr√

3VbrIbr
(6.100)

The magnitude of the total impedance in the motor can be expressed as

|Zbr|=
Vφ

I1
=

Vbr√
3VbrIbr

(6.101)

Since the impedance angle is θ ,
Zbr = Rbr + jXbr (6.102a)

Zbr = Zbr cosθ + jZbr sinθ (6.102b)

Since R1 is found by the dc test, the blocked-rotor resistance is

Rbr = R1 +R2 (6.103)

and the blocked-rotor reactance is
X ′

br = X ′
br +X ′

2 (6.104)

where X ′
1 and X ′

2 represent the stator and rotor reactances at the test frequency, respectively.
Alternatively, this blocked-rotor reactance can be expressed as

X ′
br = Zbr sinθ (6.105a)

or
X ′

br = (Z2
br −R2

br)
1/2 (6.105b)

or

X ′
br =

[(
Vbr√
3Ibr

)2

−
(

Pbr

3I2
br

)2
]1/2

(6.105c)

1For further information, see IEEE, Std, 112–1978 (1984).
2If full voltage at the rated frequency were applied, the current would be five to eight or more times the rated value. Because
of this, blocked-rotor tests are not done at full voltage except for small motors. Even then, such tests are made as rapidly as
possible to prevent overheating of the windings.
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Table 6.3
Determination of X1 and X2 from Blocked-Rotor Reactance at the Rated Frequency

Rotor Design X1 and X2 as Fractions of Xbr

– X1 X2
Wound rotor 0.5Xbr 0.5Xbr

Design A 0.5Xbr 0.5Xbr
Design B 0.4Xbr 0.6Xbr
Design C 0.3Xbr 0.7Xbr
Design D 0.5Xbr 0.5Xbr

The rotor resistance R2 can be found from

R2 = Rbr −R1 (6.106)

where R1 is found from the dc test. Therefore,

R2 =
Pbr

3I2
br
− Vdc

2Idc
(6.107)

Since the reactance is directly proportional to the frequency, the total equivalent reactance at the
normal operating frequency can be expressed as

Xbr =
frated

ftest
X ′

br = X1 +X2 (6.108)

Unfortunately, there is no simple way to determine the stator and rotor reactances. This information
is known only by the designer of the machine. Table 6.3 gives the approximate values of X1 and X2
as fractions of Xbr. In general, how Xbr is divided between X1 and X2 is not that important, but what
is important is the amount of Xbr since it affects the breakdown torque.

Also note that Design B and C rotors are designed so that their rotor resistances change with
frequency.

Example 6.12:

The following test data were taken on a three-phase, four-pole, 150 hp, 480 V, 60 Hz, Design B
wye-connected induction motor with a rated current of 101.3 A.
DC test

Vdc = 20.26Idc = 101.3 A

No-load Test
Vnl = 480 V f = 60 Hz

Ia = 34.8 APnl = 3617.5 W

Ib = 35 A

Ic = 35.2 A

Blocked-rotor test
Vbr = 51.3 V ftest = 15 Hz

Ia = 101.3 APbr = 5200 W
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Ib = 100.4 A

Ic = 102.5 A

Determine the following:

The R1 and R2 of the motor. Use a factor of 1.5 in computing the effective ac armature resistance per
phase.

The X1, X2, and Xm of the motor.

Solution

(a) From the dc test,

R1 =
Vdc

2Idc

=
20.26 V

2(101.3 A)
= 0.1 Ω

Thus, this resistance in ac is (0.1 Ω)1.5 = 0.15 Ω. From the no-load test,

I1,nl =
Ia + Ib + Ic

3

=
34.8+35+35.2

3
= 35 A

and since

|Znl |=
Vnl√

3(35 A)
≈ X1 +Xm

so that when Xl is known, Xm can be determined. The stator copper losses are

P1,cu = 3I2
1,nlR1

= 3(35 A)2(0.15 Ω)

= 551.25 W

Hence, the no-load rational losses are

Prot = Pnl −P1,cu

= 3617.5−551.25

= 3066.25 W

From the blocked-rotor test,

IL =
101.3+100.4+102.5

3
= 101.4 A

The blocked-rotor impedance can be found from

|Zbr|=
Vφ
I1

=
Vbr√
3Ibr
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as

|Zbr|=
51.3 V√

3(101.4 A)
= 0.292 Ω

and the impedance angle θ is

θ = cos−1
(

Pbr√
3VbrIbr

)

= cos−1
(

5200 W√
3(51.3 V)(101.4 A)

)

= 54.75◦

Thus,

Rbr = Zbr cosθ
= 0.292cos54.75◦

= 0.169 Ω

Since
Rbr = R1 +R2

then

R2 = Rbr −R1

= 0.169−0.15

= 0.019 Ω

(b) The reactance at 15 Hz is

X ′
br = Zbr sinθ
= 0.292sin54.75◦

= 0.239 Ω

The equivalent reactance at 60 Hz is

Xbr = fratedX ′
br

=

(
60 Hz
15 Hz

)
(0.239 Ω)

= 0.956 Ω

Since it is a design class B induction motor,

X1 = 0.4Xbr

= 0.4(0.956)

= 0.574 Ω

Also,

Xm = 7.92−X1

= 7.92−0.382

= 7.538 Ω
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PROBLEMS

PROBLEM 6.1

A 50 hp, three-phase, 60 Hz, wye-connected induction motor operates at a shaft speed of almost
900 rpm at no load and 873 rpm at full load. Determine the following:

(a) The number of poles of the motor.

(b) The per-unit and percent slip at full load.

(c) The slip frequency of the motor.

(d) The speed of the rotor field with respect to the rotor itself.

(e) The speed of the rotor field with respect to the stator.

(f) The speed of the rotor field with respect to the stator field.

(g) The shaft torque of the motor at full load.

PROBLEM 6.2

A three-phase, 60 Hz, wye-connected induction motor operates at a shaft speed of almost 3600
rpm at no load and 3420 rpm at full load. Determine the following:

(a) The number of poles of the motor.

(b) The per-unit and percent slip at full load.

(c) The slip frequency of the motor.

(d) The speed of the rotor field with respect to the rotor itself.

(e) The speed of the rotor field with respect to the stator.

(f) The speed of the rotor field with respect to the stator field.

PROBLEM 6.3

Solve Problem 6.1 but assume that the 10 hp motor runs at a shaft speed of almost 1800 rpm at
no load and 1761 rpm at full load.

PROBLEM 6.4

Solve Problem 6.2 but assume that the motor runs at a shaft speed of almost 120 rpm at no load
and 114 rpm at full load.

PROBLEM 6.5

A three-phase, 480 V, 25 hp, two-pole 60 Hz induction motor has a full-load slip of 5%. Determine
the following:

(a) The synchronous speed of the motor.

(b) The rotor speed at full load.

(c) The slip frequency at full load.

(d) The shaft torque at full load.
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PROBLEM 6.6

A three-phase, 480 V, 50 hp, four-pole, 60 Hz induction motor has a full-load slip of 3.5%.
Determine the following:

(a) The synchronous speed of the motor.

(b) The rotor speed at full load.

(c) The slip frequency at full load.

(d) The shaft torque at full load.

PROBLEM 6.7

A three-phase, 208 V, 25 hp induction motor is supplied with 75 A at a 0.85 PF lagging. Its stator
and rotor copper losses are 1867 and 650 W, respectively. Its core losses are 1500 W, the friction
and windage losses are 300 W, and the stray losses are negligible. Determine the following:

(a) The air-gap power.

(b) The mechanical power developed.

(c) The shaft output power.

(d) The efficiency of the motor.

PROBLEM 6.8

An induction motor draws 50 A from a 480 V, three-phase line at a lagging power factor of 0.85.
Its stator and rotor copper losses are 1000 and 500 W, respectively. Its core losses are 500 W, the
friction and windage losses are 250 W, and the stray losses are 250 W. Determine the following:

(a) The air-gap power.

(b) The mechanical power developed.

(c) The shaft output power in horsepower.

(d) The efficiency of the motor.

PROBLEM 6.9

Consider the data given in Problem 6.8. If the frequency of the power source is 60 Hz and the
induction motor has two poles, determine the following:

(a) The slip in percent.

(b) The operating speed in rad/s and in rpm.

(c) The developed torque.

(d) The output torque.

PROBLEM 6.10

Show (i.e., prove by derivation) that if rotor copper loss were the only loss in an induction motor,
the efficiency of the machine would be η = 1–s, where s represents per-unit slip (i.e., slip given
as a fraction).
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PROBLEM 6.11

An induction motor draws 50 A from a 380 V, three-phase line at a lagging power factor of 0.90.
Its stator and rotor copper losses are 1000 and 500 W, respectively. Its core losses are 650 W, the
friction and windage losses are 200 W, and the stray losses are 250 W. Determine the following:

(a) The air-gap power.

(b) The mechanical power developed.

(c) The shaft output power in W and hp.

(d) The efficiency of the motor.

PROBLEM 6.12

Consider the data given in Problem 6.11. If the frequency of the power source is 50 Hz, and the
machine has four poles, determine the following:

(a) The slip in percent.

(b) The operating speed in rad/s and rpm.

(c) The developed torque.

(d) The output torque.

PROBLEM 6.13

A two-pole, 60 Hz induction motor has its full-load torque at a speed of 3492 rpm. Determine the
following:

(a) Its speed at half rated torque.

(b) Its speed at half rated torque and half rated voltage, if rotor resistance per phase is doubled.

PROBLEM 6.14

Consider a 10 hp, 120 V, 60 Hz induction motor. If the motor is operated at 120 Hz, determine
the following:

(a) The amount of voltage that should be applied to the motor to maintain the normal degree
of iron saturation.

(b) The approximate value of the rated horsepower at such a frequency.

PROBLEM 6.15

The input to the rotor of a 208 V, three-phase, 60 Hz, 24-pole induction motor is 20 kW. Determine
the following:

(a) The developed (i.e., electromagnetic) torque in N·m and lb·ft.

(b) The speed in rpm and rad/s, and the hp output of the motor, if the rotor current is 63.25 A
per phase and the rotor resistance is 0.05 Ω per phase. Ignore the rotational losses.
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PROBLEM 6.16

A three-phase, four-pole, 100 hp, 480 V, 60 Hz, wye-connected induction motor has the following
constants in ohms per phase referred to the stator:

R1 = 0.1 ΩR2 = 0.079 Ω

X1 = 0.205 ΩX2 = 0.186 Ω

Xm = 7.15 Ω

The total rotational losses are 2950 W and are assumed to be constant. The core loss is lumped
in with the rotational losses. For a rotor slip of 3.33% at the rated voltage and rated frequency,
determine the following:

(a) The speed in rpm and in rad/s.

(b) The stator current.

(c) The power factor.

(d) The developed power and output power.

(e) The developed torque and output torque.

(f) The efficiency of the motor.

PROBLEM 6.17

A three-phase, two-pole, 25 hp, 380 V, 60 Hz, wye-connected induction motor has the following
constants in ohms per phase referred to the stator:

R1 = 0.525 ΩR2 = 0.295 Ω

X1 = 1.75 ΩX2 = 0.8 Ω

Xm = 20.5 Ω

The total rotational losses are 1850 W and are assumed to be constant. The core loss is lumped
in with the rotational losses. For a rotor slip of 3.33% at the rated voltage and rated frequency,
determine the following:

(a) The speed in rpm and in rad/s.

(b) The stator current.

(c) The power factor.

(d) The developed power and output power.

(e) The developed torque and output torque.

(f) The efficiency of the motor.

PROBLEM 6.18

A three-phase, four-pole, 150 hp, 480 V, 60 Hz, wye-connected induction motor has the following
constants in ohms per phase referred to the stator:

R1 = 0.1 ΩR2 = 0.085 Ω

X1 = 0.25 ΩX2 = 0.175 Ω

Xm = 6.25 Ω

The total rotational losses are 3250 W and are assumed to be constant. The core loss is lumped in
with the rotational losses. For a rotor slip of 3% at the rated voltage and rated frequency, determine
the following:
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(a) The speed in rpm and in rad/s.

(b) The stator current.

(c) The power factor.

(d) The developed power and output power.

(e) The developed torque and output torque.

(f) The efficiency of the motor.

PROBLEM 6.19

A three-phase, four-pole, 60 Hz induction motor supplies 50 hp to a load at a speed of 1701 rpm.
Assume that the mechanical losses are zero and determine the following:

(a) The slip of the motor in percent.

(b) The developed torque in N·m and lb·ft.

(c) The shaft speed of the motor, if its torque is doubled.

(d) The output power of the motor in W and hp, if its torque is doubled.

PROBLEM 6.20

A three-phase, 60-pole, 60 Hz induction motor supplies 30 hp to a load at a speed of 114 rpm.
Assume that the mechanical losses are zero and determine the following:

(a) The slip of the motor in percent.

(b) The developed torque in N·m and lb·ft.

(c) The shaft speed of the motor, if its torque is doubled.

(d) The output power of the motor in W and hp, if its torque is doubled.

PROBLEM 6.21

A three-phase, four-pole, 60 Hz induction motor supplies 100 hp to a load at a speed of 1701 rpm.
Assume that the mechanical losses are zero and determine the following:

(a) The slip of the motor in percent.

(b) The developed torque in N·m and lb·ft.

(c) The shaft speed of the motor, if its torque is doubled.

(d) The output power of the motor in W and hp, if its torque is doubled.

PROBLEM 6.22

A three-phase, 30-pole, 60 Hz induction motor supplies 50 hp to a load at a speed of 233 rpm.
Assume that the mechanical losses are zero and determine the following:

(a) The slip of the motor in percent.
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(b) The developed torque in N·m and lb·ft.

(c) The shaft speed of the motor, if its torque is doubled.

(d) The output power of the motor in W and hp, if its torque is doubled.

PROBLEM 6.23

Consider the induction motor given in Problem 6.16 and assume that it has a wound rotor. Deter-
mine the following:

(a) The slip at which the maximum torque is developed.

(b) The speed at which the maximum torque is developed.

(c) The maximum torque developed.

(d) The starting torque developed.

(e) The speed at which the maximum torque is developed, if the rotor resistance is doubled.

(f) The maximum torque developed, if the rotor resistance is doubled.

(g) The starting torque developed, if the rotor resistance is doubled.

PROBLEM 6.24

A three-phase, six-pole, 75 hp, 480 V, 60 Hz, wye-connected induction motor has the following
constants in ohms per phase referred to the stator:

R1 = 0.245 ΩR2 = 0.198 Ω

X1 = 0.975 ΩX2 = 0.72 Ω

Xm = 14.5 Ω

Determine the following:

(a) The slip at which the maximum torque is developed.

(b) The speed at which the maximum torque developed.

(c) The maximum torque developed.

(d) The starting torque developed.

(e) The speed at which the maximum torque is doubled, if the rotor resistance is doubled.

(f) The maximum torque developed, if the rotor resistance is doubled.

(g) The starting torque developed, if the rotor resistance is doubled.

PROBLEM 6.25

A three-phase, six-pole, 150 hp, 380 V, 50 Hz, wye-connected induction motor has the following
constants in ohms per phase referred to the stator:

R1 = 0.09 ΩR2 = 0.07 Ω

X1 = 0.195 ΩX2 = 0.172 Ω

Xm = 6.83 Ω

Determine the following:
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(a) The slip at which the maximum torque is developed.

(b) The speed at which the maximum torque is developed.

(c) The maximum torque developed.

(d) The starting torque developed.

(e) The speed at which the maximum torque is doubled, if the rotor resistance is doubled.

(f) The maximum torque developed, if the rotor resistance is doubled.

(g) The starting torque developed, if the rotor resistance is doubled.

PROBLEM 6.26

A three-phase, eight-pole, 100 hp, 440 V, 60 Hz, wye-connected induction motor has the follow-
ing constants in ohms per phase referred to the stator: R1 = 0.085 Ω, X1 = 0.196 Ω, R2 = 0.067 Ω,
X2 = 0.161 Ω, and Xm = 6.65 Ω. The total rotational losses are 3200 W and are assumed to be
constant. The core losses are lumped in with the rotational losses. For a rotor slip of 3.33% at the
rated voltage and rated frequency, determine the following:

(a) The equivalent (input) impedance of the motor.

(b) The stator (or starting) current.

(c) The power factor of the motor.

(d) The induced voltage in the stator winding.

(e) The rotor current.

(f) The developed torque in N·m and lb·ft.

(g) The total losses of the motor.

(h) The output power in W and hp.

(i) Efficiency.

PROBLEM 6.27

Consider the data given in Problem 6.26 and determine the following:

(a) The maximum torque and slip at which the maximum torque is developed.

(b) Neglect the jXm and determine the maximum torque and the slip at which the maximum
torque is developed. (Note that ignoring Xm at the maximum slip is reasonable because at
the maximum slip I2 is much greater than Ie.)

PROBLEM 6.28

Consider the induction motor given in Example 6.8 and assume that the motor is now supplied
from a power line that has an impedance of ZL = RL+ jXL = 0.02+ j0.05 Ω per phase and that
the constant voltage source connected at the sending end of the line has a voltage of Vφ = 440/

√
3

V. Determine the following:

(a) The slip at which the maximum torque is developed, if the jXm is neglected.

(b) The developed torque at starting.

(c) The developed torque at starting, if the jXm is not neglected.
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Figure 6.28 Figure for Problem 6.31.

PROBLEM 6.29

A wound-rotor induction motor is operating from a constant line voltage V1 and with vari-
able external rotor-circuit resistance R2,ext . The rotor-winding resistance per phase is R2 so that
R2,tot = R2 +R2,ext . If the motor is mechanically loaded with a constant torque load, that is, Td =
constant, then explain analytically the reasons why the following are true:

(a) Rotor current I2 is constant as R2,ext is varied.

(b) R2,tot/s is constant.

PROBLEM 6.30

Consider the induction motor given in Example 6.8 and assume that the motor is uncoupled from
its mechanical load and operated at the rated stator terminal voltage. Determine the following:

(a) The slip at which the motor is operating.

(b) The stator phasor current I1.

(c) The three-phase power input to the stator, that is, P1.

PROBLEM 6.31

Figure 6.28 shows a system that can be used to convert balanced, 60 Hz voltages to other Frequen-
cies. The synchronous motor has four poles and drives the interconnecting shaft in a clockwise
direction. The induction motor has eight poles, and its stator windings are connected to the lines
to produce a counterclockwise rotating field (i.e., in the opposite direction to the synchronous
motor). As shown in the figure, the induction machine has a wound rotor with terminals brought
out through slip rings. Determine the following:

(a) The speed at which the motor runs.

(b) The frequency of the rotor voltages in the induction machine.
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PROBLEM 6.32

The following test data were taken on a three-phase, four-pole, 100 hp, 480 V, 60 Hz, design A
wye-connected induction motor with a rated current of 116.3 A: Dc test

Vdc = 23.26 VIdc = 116.3 A

No-load test
Vnl = 480 VIa = 24.5 A

f = 60 HzIb = 24.1 A

Pnl = 4900 WIc = 24.7 A

Blocked-rotor test
Vbr = 42.2 VIa = 116.4 A

ftest = 15 HzIb = 116.4 A

Pbr = 6100 WIc = 116.2 A

Determine the following:

(a) The resistances R1 and R2 of the motor. Use a factor of 1.2 in computing the effective (ac)
armature resistance per phase.

(b) The reactances X1, X2, and Xm of the motor.



7 Synchronous Machines

7.1 INTRODUCTION
Almost all three-phase power is generated by three-phase synchronous machines operated as genera-
tors. Synchronous generators are also called alternators and are normally large machines producing
electrical power at hydro, nuclear, or thermal power plants. Efficiency and economy of scale dictate
the use of very large generators. Because of this, synchronous generators rated in excess of 1000
MVA (mega-volt-amperes) are quite commonly used in generating stations. Large synchronous gen-
erators have a high efficiency which at ratings greater than 50 MVA usually exceeds 98%. The term
synchronous refers to the fact that these machines operate at constant speeds and frequencies under
steady-state operations.

A given synchronous machine can operate as a generator or as a motor. Such machines are used
as motors in constant-speed drives in industrial applications and also for pumped-storage stations. In
small sizes with only fractional horsepower, they are used in electric clocks, timers, record players,
and in other applications which require constant speed.

Synchronous motors with frequency changers such as inverters or cycloconverters can also be
used in variable-speed drive applications. An overexcited synchronous motor with no load can be
used as a synchronous capacitor or synchronous condenser1 to correct power factors. A linear ver-
sion of a synchronous motor can develop linear or translational motion. Presently, such a linear
synchronous motor (LSM) is being developed for future high-speed public transportation systems in
Japan. However, in general, the LSM is not being used as much as the linear induction motor(LIM).

7.2 CONSTRUCTION OF SYNCHRONOUS MACHINES
In a synchronous machine, the armature2 winding is on the stator and the field winding is on the
rotor. In normal operation, the three-phase stator currents (in the three-phase distributed stator wind-
ing) set up a rotating magnetic field. The synchronous machine rotors are simply rotating electro-
magnets, which have the same number of poles as the stator winding. The rotor winding is supplied
from an external dc source through slip rings and brushes; therefore, it produces a rotor magnetic
field. Since the rotor rotates in synchronism with the stator magnetic field, the total magnetic field
is the result of these two fields.

A synchronous machine is a constant-speed (i.e., synchronous speed) machine. Its rotor structure
therefore depends on its speed rating. For this reason, high-speed machines have cylindrical (or
nonsalient pole) rotors, whereas low-speed machines have salient3-pole rotors. With a cylindrical
rotor, the reluctance of the magnetic circuit of the field is independent of its actual direction and
relative to the direct axis.

1Condenser is an old name for capacitor.
2In rotating machinery, the term armature refers to the machine part in which an alternating voltage is generated due to
relative motion with respect to a magnetic flux field.

3The word salient means “protruding” or “sticking out.” Thus, in a salient-pole rotor, a magnetic pole protrudes from the
surface of the rotor, whereas a non-salient pole is built flush with the surface of the rotor; and its winding laid in slots in the
rotor periphery.
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Figure 7.1 Conventional excitation systems for synchronous machines: (a) physical arrangement for a shaft-
mounted exciter and (b) physical arrangement for a shaft-mounted exciter and pilot exciter.

However, with salient poles, the reluctance is lowest when the field is along the direct axis where
the air gap is the minimum. It is highest when the field is directly halfway between the poles, that
is, along the quadrature axis.

Since the rotor field structure depends upon the speed rating of the synchronous machine, turbo-
generators (also known as turbo-alternators or turbine-generators), which are high-speed machines,
have cylindrical rotors with two or four poles. The stator of a synchronous machine is basically
similar to that of a three-phase induction machine. The stator winding is the source of voltage and
electric power when the machine is operating as a generator and the input winding when it is oper-
ating as a motor. It is usually made of preformed stator coils in a double-layer winding.

The winding itself is distributed and chorded to reduce the harmonic content of the output volt-
ages and currents. In salient-pole synchronous machines with laminated rotor construction, where
induced currents are not allowed to flow in the rotor body, heavy copper bars are installed in slots
in the pole faces. These bars are all shorted together at both ends of the rotor similar to the squirrel-
cage rotor of an induction motor. Such a winding is known as the amortisseur or damper winding.
Damper windings are installed in almost all synchronous machines that have salient poles.

When the load on a synchronous machine changes, the load angle also changes. As a result,
oscillations in the load angle and corresponding mechanical oscillations in the synchronous rotation
of the shaft take place. These rotor oscillations are known as the hunting. The damper windings
produce damping torques to eliminate these rotor oscillations caused by such transients and starting
torques in synchronous motors.

Cylindrical-rotor machines are formed from solid-steel forgings. Because transient rotor currents
can be induced in the solid-rotor body itself, there is no need for a damper winding in such a
machine.

7.3 FIELD EXCITATION OF SYNCHRONOUS MACHINES
In a synchronous machine, the rotor poles have constant polarity and must be supplied with direct
current. The current can be supplied by an external dc generator or by a rectifier. Figure 7.1a and
b shows physical arrangements for a shaft-mounted exciter, and for a shaft-mounted exciter and
a pilot exciter, respectively. The arrangement shown in Figure 7.1b is usually used in slow-speed
machines with large ratings, such as hydrogenerators.

Here, the exciter may not be self-excited; instead, a self-excited or permanent-magnet type pilot
exciter may be used to activate the exciter. Figure 7.2a shows a conventional shaft-mounted exciter
that is a self-excited dc generator mounted on the same shaft as the rotor of the synchronous ma-
chine. In such an arrangement, the generator is the exciter. Stationary contacts called brushes ride
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Figure 7.2 Circuit diagram for (a) conventional shaft-mounted exciter and (b) brushless exciter.

on the slip rings to provide current from the dc source to the rotating field windings. The slip rings
are metal rings that completely encircle the shaft of a machine, but are insulated from it. The brushes
are made of a carbon compound which provides good contact with low mechanical friction.

An alternative form of excitation is to mount the armature of a relatively small exciter alternator
on the shaft of a synchronous machine with a stationary field mounted on the stator. The three-phase
output of the exciter generator is rectified to direct current by a three-phase rectifier circuit mounted
on the shaft generator. It is then supplied to the main dc field circuit, as shown in Figure 7.2b. This
means of supplying field current to the rotor coils is called brushless excitation and is now used in
most large synchronous machines.

7.4 SYNCHRONOUS SPEED
A synchronous machine operates only at synchronous speed, a constant speed that can be deter-
mined by the number of poles and the frequency of alternation of the armature-winding voltage.
Synchronous machines are called synchronous because their speed is directly related to the stator
electrical frequency. Therefore, the synchronous speed can be expressed as

ωs =
ω

p/2
=

2π f
p/2

=
4π f

p
rad/s (7.1)

or
ns =

120 f
p

rpm (7.2)

where
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ωs is the angular speed of the magnetic field (which is equal to the angular rotor speed of the
synchronous machine)

ω is the angular frequency of the electrical system

f is the electrical frequency, Hz

p is the number of poles

Since the rotor rotates at the same speed as the magnetic field, the stator electrical frequency can be
expressed as

f =
p×ns

120
(7.3)

Note that the frequency in hertz for a two-pole machine is the same as the speed of the rotor in
revolutions per second; that is, the electrical frequency is synchronized with the mechanical speed of
rotation. Therefore, a two-pole synchronous machine must rotate at 60 rps or 3600 rpm to produce
a 60 Hz voltage. Alternatively, the radian frequency ω of the voltage wave in terms of ωm, the
mechanical speed in radians per second, is given as

ω =
( p

2

)
ωm (7.4)

θ =
( p

2

)
θm (7.5)

where

θ is in electrical measure

θ is in mechanical measure

7.5 SYNCHRONOUS GENERATOR OPERATION
Consider the elementary synchronous generator shown in Figure 2.1a. It has three identical stator
coils (aa′,bb′,cc′), of one or more turns, displaced by 120◦ in space with respect to each other. When
the field current I f flows through the rotor field winding, it establishes a sinusoidally distributed flux
in the air gap. If the rotor is now driven counterclockwise at a constant speed by the prime mover, a
revolving magnetic field is developed in the air gap. This magnetic field is called the excitation field
due to the fact that it is produced by the excitation current I f .

The rotating flux will vary the flux linkage of the armature windings aa′,bb′,cc′ and will induce
voltages in these stator windings. As shown in Figure 2.1b, these induced voltages have the same
magnitudes but are phase-shifted by 120 electrical degrees. Therefore, the resultant voltages in each
of the three coils can be expressed as

eaa′(t) = Emax sinωt (7.6a)

ebb′(t) = Emax sin(ωt −120◦) (7.6b)

ecc′(t) = Emax sin(ωt −240◦) (7.6c)

The peak voltage in any phase of a three-phase stator is

Emax = ω ×N ×Φ (7.7)

However, if the winding is distributed over several slots, the induced voltage is less and is given as

Emax = ω ×N ×Φ× kw (7.8)
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since ω = 2π f then
Emax = 2π × f ×N ×Φ× kw (7.9)

where

N is the number of turns in each phase winding

Φ is the flux per pole due to the excitation current I f

kw is the winding factor1

Thus, the rms voltage of any phase of this three-phase stator is

Emax =
2π√

2
f ×N ×Φ× kw (7.10)

Ea = 4.44 f ×N ×Φ× kw (7.11)

This voltage is a function of the frequency or speed of rotation, the flux that exists in the machine,
and, of course, the construction of the machine itself. Therefore, it is possible to rewrite Equation
7.10 as

Ea = K ×Φ×ω (7.12)

where K is a constant representing the construction of the machine. Thus,

K =
N × kw√

2
(7.13)

if ω is given in electrical radians per second. Alternatively,

K =
N × p× kw

2
√

2
(7.14)

if ω is given in mechanical radians per second. Note that Ea is the internal generated voltage2

or simply the generated voltage. Its value depends upon the flux and the speed of the machine.
However, the flux itself depends upon the current If flowing in the rotor field circuit. Therefore, for
a synchronous generator operating at a constant synchronous speed, Ea is a function of the field
current, as shown in Figure 7.5.

Such a curve is known as the open-circuit characteristic (OCC) or magnetization curve of the
synchronous machine. Contrary to the plot shown in Figure 7.3, at I f = 0 the internal generated
voltage (i.e., the induced voltage) is not zero due to the residual magnetism.

At the beginning, the voltage rises linearly with the field current. As the field current is increased
further, the flux Φ does not increase linearly with I f (as suggested by the air gap line) due to satu-
ration of the magnetic circuit and Ea levels off. If the machine terminals are kept open, the internal
generated voltage Ea is the same as the terminal voltage Vt and can be determined using a voltmeter.

Example 7.1:

An elementary two-pole three-phase 50 Hz alternator has a rotating flux of 0.0516 Wb. The number
of turns in each phase coil is 20. Its shaft speed is 3000rev/min and its stator winding factor is 0.96.
Determine the following:

1Its value is less than unity and depends on the winding arrangement.
2However, the internal generated voltage Ea is also known as the excitation voltage E f . Since the excitation voltage (some-
times called the field voltage) can be confused with the dc voltage across the field winding, it is preferable to use the
former.
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Figure 7.3 Open -circuit characteristic (OCC) or magnetization curve of a synchronous machine.

(a) The angular speed of the rotor.

(b) The three phase voltages as a function of time.

(c) The rms phase voltage of this generator if the stator windings are connected in delta.

(d) The rms terminal voltage if the stator windings are connected in wye.

Solution

(a) The angular speed of the rotor is

ω = (3000 rev/min)(2π rad/rev)(1 min/60 s)
= 314.16 rad/s

(b) The magnitudes of the peak phase voltages are

Emax = ω ×N ×Φ× kw

= (314.16 rad/s)(20)(0.0516 Wb)(0.96)

= 311.13 V

Thus, the three phase voltages are

eaa′(t) = 311.13sin314.16t V

ebb′(t) = 311.13sin(314.16t −120◦) V

ecc′(t) = 311.13sin(314.16t −240◦) V
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(c) If the stator windings are delta-connected, the rms phase voltage of the generator is

Ea =
Emax√

2
=

311.13 V√
2

= 220 V

(d) If the stator windings are wye-connected,

Vt =
√

3Ea =
√

3(220 V) = 380 V

Example 7.2:

Determine the value of the K constant of the generator given in Example 7.1.

(a) If ω is in electrical radians per second.

(b) If ω is in mechanical radians per second.

(c) Determine the value of the internal generated voltage Ea.

Solution

(a) If ω is in electrical radians per second, then

K =
N × kw√

2
=

(20)(0.96)√
2

= 13.58

(b) If ω is in mechanical radians per second, then

K =
N × p× kw

2
√

2
=

(20)(2)(0.96)
2
√

2
= 13.58

(c) The value of the internal generated voltage is

Ea = K ×Φ×ω
= (13.58)(0.0516 Wb)(314.16)

= 220 V

7.6 EQUIVALENT CIRCUITS
Figure 7.4 shows the complete equivalent circuit representation of a three-phase synchronous gener-
ator. A dc power source supplies the rotor field circuit. The field current I f is controlled by a rheostat
connected in series with the field winding. Each phase has an internal generated voltage with series
resistance Ra and series reactance Xs.

Assuming balanced operation of the machine, the rms phase currents are equal to each other and
120◦ apart in phase. The same thing is also true for the voltages. In other respects, the three phases
are identical to each other. Therefore, the armature (stator) winding can be analyzed on a per-phase
basis.

Figure 7.5a, b, and c shows the per-phase equivalent circuits of a synchronous generator. Even
though the internal generated voltage Ea is induced in the armature (stator) winding, the voltage that
exists at the terminal of the winding is VΦ.

The reasons for the difference are (1) the resistance of the armature winding, (2) the leakage
reactance of the armature winding, (3) the distortion of the air-gap magnetic field caused by the
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Figure 7.4 Equivalent circuit representation of a three-phase cylindrical-rotor synchronous generator.

Figure 7.5 The per-phase equivalent circuits of a cylindrical-rotor synchronous generator: (a) for phase a, (b)
for phase b, and (c) for phase c.

load current flowing in the armature winding, and (4) the effect of salient-pole rotor shapes if the
machine has a salient-pole rotor.

The resistance Ra is the effective resistance1 of the armature winding and is about 1.6 times the
dc resistance of the stator winding. It includes the effects of the operating temperature and the skin
effect caused by the alternating current flowing through the armature winding.

1It is also called the ac resistance.
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The leakage reactance Xa of the armature winding is caused by the leakage fluxes linking the
armature windings due to the currents in the windings. These fluxes do not link with the field wind-
ing. For easy calculations, the leakage reactance can be divided into (1) end-connection leakage
reactance, (2) slot-leakage reactance, (3) tooth-top and zigzag (or differential) leakage reactance,
and (4) belt-leakage reactance. However, in most large machines, the last two reactances are a small
portion of the total leakage reactance.

The air-gap magnetic field (caused by the rotor magnetic field) is distorted by the armature (sta-
tor) magnetic field because of the load current flowing in the stator. This effect is known as the
armature reaction, and the resultant reactance Xar is called the armature reactance1.

The two reactances Xar and Xa are combined into one reactance and called the synchronous
reactance2 Xs, which can be expressed as

Xs = Xa +Xar (7.15)

Therefore, as shown in Figure 7.5b, the synchronous impedance becomes

Zs = Ra + jXs (7.16)

In general, as the machine size increases, the per-unit resistance decreases but the per-unit syn-
chronous reactance increases. Thus, the magnitude of the synchronous impedance becomes

Zs = (R2
a +X2

s )≈ Xs (7.17)

Because of this, Ra is omitted3 from many analyses of synchronous machine operations.
Figures 7.6a and b and 7.7 show the phasor diagrams4 of a cylindrical-rotor synchronous gener-

ator operating at a lagging, leading, and unity power factor, respectively. Note that the dc current I f
in the field winding produces the mmf Fa in the air gap and that the ac load current flowing in the
stator produces the mmf Far due to the armature reaction.

The vector sum of the two mmfs gives the resultant mmf of Fr. The flux produced by an mmf is
in phase with the mmf and the voltage induced5 by a certain flux is behind the corresponding mmf
by 90◦. Thus, as shown in Figure 7.6a, the mmf Ff is ahead of Ea by 90◦ and the mmf Far is in
phase with Ia. The resultant mmf Fr is ahead of Eφ by 90◦. The armature reaction voltage Ear can
be determined from

Ear =− jXarIa (7.18)

From Figure 7.8a,
Eφ = Ea +Ear (7.19)

or
Ea = Eφ −Ear (7.20)

Thus,
Ea = Eφ + jXarIa (7.21)

The phase voltage VΦ is found from

Ia = Ea −RaIa − j(Xa +Xar)Ia (7.22a)

1It is also called as the magnetizing reactance.
2It is also called the direct-axis synchronous reactance and denoted by Xd .
3The magnitude of Ra is about 0.5%–2% of Xs, and therefore can be ignored except inefficiency computations.
4In the phasor diagrams, the length of the armature-resistance voltage drop phasor has been shown larger than it should be
in order to make it noticeable.

5According to Lenz’s Law, e = –N(dφ/dt).
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Figure 7.6 Phasor diagrams of a cylindrical-rotor synchronous generator operating at (a) lagging (overex-
cited) and (b) leading (underexcited) power factor. (The diagrams shown are not drawn to scale.)

Figure 7.7 Phasor diagram of a cylindrical-rotor synchronous generator operating at unity power factor. (The
diagram shown is not drawn to scale.)

= Ea −RaIa − jXsIa (7.22b)

= Ea − (Ra + jXs)Ia (7.22c)

= Ea −ZsIa (7.22d)

Alternatively, the air-gap voltage and the internal generated voltage1 can be expressed, respectively,
as

1It is interesting to note that even though synchronous motors, almost without exception, have salient poles, they are often
treated as cylindrical-rotor machines. Therefore, Equation 7.33 can also be used for motors as long as the sign of current Ia
is made negative to yield VΦ = Ea +(Ra + jXs)Ia.
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Figure 7.8 Phasor diagram of a synchronous motor operating at (a) unity, (b) leading (overexcited), and (c)
lagging (underexcited) power factor.

Eφ = Vφ +(Ra + jXa)Ia (7.23)

Ea = Vφ +(Ra + jXs)Ia (7.24)

In a synchronous machine, the internal generated voltage Ea takes into account the flux produced
by the field current, whereas the synchronous reactance takes into account all the flux produced by
the balanced three-phase armature currents.

For a given unsaturated cylindrical-rotor machine operating at a constant frequency, the syn-
chronous reactance is a constant and the internal generated voltage Ea is proportional to the field
current I f . As can be observed in Figure 7.6, for a given phase voltage Vf and armature current Ia, a
greater Ea is required for lagging loads than for leading loads. Since

Ea = K ×Φ×ω

then a greater field current (overexcitation) is required with lagging loads to keep the VΦ constant.
(Here, ω has to be constant to hold the frequency constant.)

However, for leading loads, a smaller Ea is needed, and, thus, a smaller field current (underexcita-
tion) is required. Succinctly put, the synchronous machine is said to be overexcited when voltage Ea
exceeds voltage VΦ; otherwise, if VΦ > Ea it is said to be underexcited. The angle δ between voltage
Ea and voltage VΦ is called the torque angle or the power angle of the synchronous machine.

The voltage regulation of a synchronous generator at full load, power factor, and rated speed is
defined as

V Reg =
Ea −VΦ

VΦ
(7.25)

It is often expressed as percent voltage regulation. Thus,

%V Reg =
Ea −VΦ

VΦ
×100 (7.26)

where

VΦ is the voltage at full load

Ea is the internal generated voltage (i.e., the VΦ voltage) at no load

The voltage regulation is a useful measure in comparing the voltage behavior of generators. It is
positive for an inductive load since the voltage rises when the load is removed, and is negative for a
capacitive load if the load angle is large enough for the voltage to drop.
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Example 7.3:

A three-phase, 13.2 kV, 60 Hz, 50 MVA, wye-connected cylindrical-rotor synchronous generator
has an armature reactance of 2.19Ω per phase. The leakage reactance is 0.137 times the armature
reactance. The armature resistance is small enough to be negligible. Also ignore the saturation.
Assume that the generator delivers full-load current at the rated voltage and 0.8 lagging power
factor. Determine the following:

(a) The synchronous reactance in ohms per phase.

(b) The rated load current.

(c) The air gap voltage.

(d) The internal generated voltage.

(e) The power angle.

(f) The voltage regulation.

Solution

(a) The leakage reactance per phase is

Xa = 0.137Xar

= 0.137(2.19Ω)

≈ 0.3Ω

Therefore, the synchronous reactance per phase is

Xs = Xa +Xar

= 0.3+2.19

≈ 2.49Ω

(b) The rated load (or full load) current is

Ia =
S√
3Vt

=
50×106

√
3(13,200)

= 2,186.93 A

and when expressed as a phasor,

Ia = Ia(cosθ − j sinθ)
= 2,186.93(0.8− j0.6)

= 1,749.55− j1,312.16

= 2,186.93∠−36.87◦ A

(c) The air-gap voltage (also known as the voltage behind the leakage reactance) is

Eφ = Vφ + jXaIa

= 13,200∠0◦+ j0.3(2,186.93∠−36.87◦)

= 8,031.84∠3.75◦ V
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(d) The internal generated voltage (also known as the voltage behind the synchronous reactance)
is

Ea = Vφ + jXsIa

= 13,200∠0◦+ j2.49(2,186.93∠−36.87◦)

= 11,727.44∠21.81◦

(e) The power angle (also called the torque angle) is

δ = 21.81◦

(f) The voltage regulation at full load is

V Reg =
Ea −Vφ

Vφ
=

11,727.44−7,621.02
7,621.02

×100 = 53.88%

7.7 SYNCHRONOUS MOTOR OPERATION
A given synchronous machine can also operate as a motor. However, when the synchronous machine
makes the transition from generator to motor action, reversal of power flow takes place. Instead of
current flowing out of the armature (stator) terminals, it flows into the armature terminals.

The speed of the synchronous motor is constant as long as the source frequency is constant.
Thus, the equivalent circuit of a synchronous motor is exactly the same as the equivalent circuit of
a synchronous generator (as shown in 7.5), with one exception: the direction of the current Ia is
reversed. The corresponding KVL equations for the motor are

Vφ = Ea +(Ra + jXs)Ia (7.27)

Vφ = Eφ +(Ra + jXa)Ia (7.28)

Ea =Vφ − (Ra + jXs)Ia (7.29)

Eφ = Vφ − (Ra + jXa)Ia (7.30)

The power output of a synchronous motor depends totally on the mechanical load on the shaft. As
previously stated, its speed depends on the source frequency. Since the speed does not vary as the
field current I f is changed, varying I f has no effect on the output power.

However, changing I f affects the Ea (i.e., Ea increases when I f increases) and the power factor
of the current Ia drawn from the three-phase source. Figure 7.8a, b, and c shows phasor diagrams of
a synchronous motor which is operating at unity, leading, and lagging power factors, respectively.

When the magnitude of Ea is equal to VΦ, this condition is referred to as 100% excitation (i.e.,
operating at unity power factor). When Ea >VΦ, it is called overexcitation (i.e., operating at leading
power factor). Finally, when Ea < VΦ, it is called underexcitation (i.e., operating at lagging power
factor).

7.8 POWER AND TORQUE CHARACTERISTICS
In a synchronous generator, the input power is provided by a prime mover in terms of shaft power.
The input mechanical power of the generator can be expressed as

Pin = Psha f t = Tin ×ωm (7.31)

where
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Tin represents the applied torque to the shaft by the prime mover

ωm denotes the mechanical speed of the shaft rotation

In contrast, the power internally developed from mechanical to electrical form can be expressed as

Pd = Td ×ωm (7.32)

or
Pd = 3EaIa cosΦ (7.33)

where Φ is the angle between Ea and Ia as shown in Figure 7.8a. Therefore,

Φ = θ +δ (7.34)

The difference between output power and input power gives the losses of the machine, whereas the
difference between the input power and the developed power gives the mechanical and core losses
of the generator. The electrical output power of the generator can be found in terms of line quantities
as

Pout =
√

3VtIL cosθ (7.35)

or in phase quantities as
Pout = 3Vφ Ia cosθ (7.36)

Similarly, the reactive power can be found in terms of line quantities as

Qout =
√

3VtIL sinθ (7.37)

or in phase quantities as
Qout = 3Vφ Ia sinθ (7.38)

The real and reactive power output of a synchronous generator can also be expressed as a function
of the terminal voltage, the internal generated voltage, the synchronous impedance, and the power
angle or torque angle δ .

This is also true for the real and reactive power received by a synchronous motor. Since Xs is
much greater than Ra, then it can be proven easily that

Ea sinδ = XsIa cosθ (7.39)

Thus,

Ia cosθ =
Ea sinδ

Xs
(7.40)

and substituting this equation into Equation 7.36,

P =

(
3EaVφ

Xs
sinδ

)
(7.41)

Because the stator losses are ignored (i.e., Ra is assumed to be zero), P represents both the developed
power Pd (or the air-gap power) and the output power Pout .

The power output of the synchronous generator depends on the angle between Ea and Vφ . If the
angle δ is increased gradually, the real power output increases, reaching a maximum when δ is 90◦.
Therefore, the maximum power becomes

Pmax =
3EaVφ

Xs
(7.42)
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Figure 7.9 Synchronous machine power or torque as a function of power angle, δ .

This is also known as the steady-state power limit or the static stability limit. From Equation 7.32,
the developed torque of the synchronous machine can be found as

Td =
P

ωm
(7.43a)

But since ωs = ωm

=
3EaVφ

ωmXs
sinδ (7.43b)

= Tmax sinδ (7.43c)

where the maximum torque is

Tmax =
Pmax

ωm
(7.44a)

=
3EaVφ

ωmXs
(7.44b)

Therefore, any increase in the mechanical power to the synchronous generator or in the mechanical
output of the synchronous motor1 after δ has reached 90◦ produces a decrease in real electrical
power. The generator accelerates while the motor decelerates, and either way the result is a loss of
synchronism.2 The maximum torque Tmax is also known as the pull-out torque.3

Figure 7.9 shows the steady-state power-angle or torque-angle characteristic of a synchronous
machine with negligible armature resistance. Note that when δ becomes negative, the power flow

1Even though the rotors of three-phase synchronous motors are salient-pole rather than cylindrical type, applying cylindrical-
rotor theory yields a good degree of approximation.

2It is also known as pulling out of step.
3More precisely, the pull-out torque is the maximum sustained torque that the motor will develop at synchronous speed for
1 min, with rated voltage applied at rated frequency and with normal excitation.
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Figure 7.10 The superimposed power and torque-angle characteristics of a synchronous generator.

reverses. In other words, when power flows into the electrical terminals, the machine starts acting
as a motor with a negative δ . In the generator mode, the power flows out of the electrical terminals
and the angle δ becomes positive. This behavior can be explained by Equation 7.42. Similarly, the
torque reverses direction (sign) when the machine goes from generator operation to motor operation
according to Equation 7.44b. In generator mode the torque is positive, that is, a counter torque, and
therefore the Td is opposite to ωm.

In motor mode, the torque is negative which means that it is in the same direction as ωm. Figure
7.10 shows the superimposed power and torque-angle characteristics of a synchronous machine
operating in generator mode.

Note that both the maximum power and the maximum torque take place when δ is 90◦. If the
prime mover tends to drive the generator to supersynchronous speed by excessive driving torque,
the field current can be increased to develop more counter torque to overcome such a tendency.

Similarly, if a synchronous motor is apt to pull out of synchronism due to excessive load torque,
the field current can be increased to produce greater torque and prevent a loss of synchronism.

The reactive power of a synchronous machine can be expressed as

Q =
3(EaVφ cosδ −V 2

φ )

Xs
(7.45)

Here, positive Q means supplying inductive vars in the generator mode or receiving inductive vars in
the motor mode, and negative Q means supplying capacitive vars in the generator mode or receiving
capacitive vars in the motor mode.

Example 7.4:

A three-phase, 100 hp, 60 Hz, 480V, four-pole, wye-connected, cylindrical-rotor synchronous mo-
tor has an armature resistance of 0.15Ω and a synchronous reactance of 2Ω per phase, respectively.
At the rated load and a leading power factor of 0.8, the motor efficiency is 0.95. Determine the
following:

(a) The internal generated voltage.

(b) The torque angle δ .

(c) The maximum torque.
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Solution

(a) The motor input power is

Pin =
(100 hp)(746 W/hp)

0.95
= 78,526.32 W

The rated load current is

Ia =
Pin√

3VL cosθ

=
78,526.32 W√

3(480 V)0.8
= 118.07 A

The voltage per phase is

Vφ =
480 V√

3
= 277.13 V

and θ = cos–1 0.8 = 36.87◦ leading

Ea = Vφ − (Ra + jXs)Ia

= 277.13∠0◦ − (0.15+ j2)(118.07∠36.87◦)

= 457.17∠−26.25◦ V

(b) The negative sign indicates that Ea lags Vφ (which is used as the reference phasor). The 26.25◦

also represents the torque angle δ . Alternatively, this torque angle can be found from

tan(θ +δ ) =
Vφ sinθ + IaXs

Vφ cosθ − IaRs

=
277.13sin36.87◦+(118.07)2

277.13cos36.87◦+(118.07)0.15
= 1.97

Thus,
θ +δ = tan−1(1.97) = 63.12◦

δ = 63.12◦ −36.87◦ = 26.25◦

(c) Since the machine has four poles, its speed is 1800 rpm or 188.495 rad/s. Thus, the maximum
torque is

Tmax =
Pmax

ωm
=

3EaVφ
ωmXs

=
3(451.17)277.13

(188.495)2
= 994.98 N ·m

7.9 STIFFNESS OF SYNCHRONOUS MACHINES
The ability of a synchronous machine to endure the forces that tend to pull it out of synchronism is
called stiffness. Stiffness, which represents the slope of the power-angle curve at a given operating
point, can be determined by taking the partial derivative of the power delivered with respect to the
torque angle. The unit of such a rate of power is W per radian. Since

P =
3EaVφ

Xs
sinδ (7.46)
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For small displacements of ∆δ , the change in power is ∆P. Also,

Ks =
∆P
∆δ

≈ dP
dδ

(7.47)

Thus, the stiffness can be expressed as

Ks =
3EaVφ

Xs
cosδ (7.48)

The maximum stiffness is referred to as synchronizing power. Of course, at pull-out, the stiffness of
the machine is zero.

Example 7.5:

Consider the synchronous generator given in Example 7.4 and assume that the machine has eight
poles. Determine the following:

(a) The synchronizing power in MW per electrical radian and in MW per electrical degree.

(b) The synchronizing power in MW per mechanical degree.

(c) The synchronizing torque in MW per mechanical degree.

Solution

(a) From Example 7.4, the synchronizing power is

Ps =
3EaVφ

Xs
cosδ

=

(
3(11,727)(7,621.02)

2.49

)
cos21.8◦

= 99,076 MW per electical radian

=
99,076 MW per electical radian

57.3
= 1.745 MW per electrical degree

(b) Since the machine has four pole pairs, there are four electrical cycles for each mechanical
revolution. Thus,

Ps = 4×1.745 = 6.98 MW per electrical degree

(c) Since the synchronous speed is

ns =
60
4

= 15 rev/s

the synchronizing torque is

Ts =
Ps

ωm
=

6,979,656.6 W
2π(15 rev/s)

= 74,056.4 N ·m per mechanical degree

7.10 EFFECT OF CHANGES IN EXCITATION
One of the important characteristics of the synchronous machine is that its power factor can be
controlled by the field current. In other words, the power factor of the stator (or line) current can
be controlled by changing the field excitation.

However, the behavior of a synchronous generator (alternator) connected to an infinite bus (large
system) is quite different from that of one operating alone.
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Figure 7.11 Phasor diagram of a synchronous machine operating as (a) an overexcited generator, (b) a nor-
mally excited generator, (c) an underexcited generator, (d) an overexcited motor, (e) a normally excited motor,
and (f) an underexcited motor.

7.10.1 SYNCHRONOUS MACHINE CONNECTED TO AN INFINITE BUS

Assume a constant-power operation of a synchronous machine connected to an infinite bus so that
it operates at constant frequency and terminal voltage. Under such circumstances, the power factor
is determined by the field current.

In the generator mode, the amount of power generated and the frequency (or speed) are deter-
mined by the prime mover. In the motor mode, the speed is determined by the line frequency, and
the output depends on the mechanical load on the shaft.

Figure 7.11a, b, and c shows the phasor diagrams of a synchronous machine operating as an
overexcited generator, a normal excited generator, and an underexcited motor, respectively. The
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figures show that the locus of the current Ia for constant real power is a vertical line, while the locus
of the internal generated voltage Ea is a horizontal line. Notice that the variation in the power-factor
angle θ is very significant, but the variation in the torque angle δ is almost insignificant.

As shown in Figure 7.11a, when the machine is operating as an overexcited generator, it has a
lagging power factor due to a high field current. The maximum power Pmax is large, and, therefore,
the machine operation is stable.

As shown in Figure 7.11b, when the machine is operating as a normal excited generator, it has
a unity power factor as a result of normal field current. Finally, as shown in Figure 7.11c, when
the machine is operating as an underexcited generator, it has leading power factor due to a low field
current. Therefore, the maximum power Pmax is small and hence the machine operation is less stable.

Figure 7.11d, e, and f shows the phasor diagrams of a synchronous machine operating as an
overexcited motor, normal excited motor, and underexcited motor, respectively. The figures show
that the locus of the current Ia for constant real power is a vertical line while the locus of the internal
generated voltage Ea is a horizontal line.

As shown in Figure 7.11d, when the machine is operating as an overexcited motor, it has lead-
ing power factor due to a high field current. Therefore, the maximum power Pmax is large and the
machine operation is stable.

As shown in Figure 7.11e when the machine is operating as a normal excited motor, it has a unity
power factor due to a normal field current. Under such conditions, the motor draws the minimum
stator current Ia.

Finally, as shown in Figure 7.11f, when the machine is operating as an underexcited motor, it has
lagging power factor due to a low field current. Here, the maximum power Pmax is small and hence
the machine operation is less stable.

From the phasor diagrams shown in Figure 7.11, one can observe that the voltage Ea leads the
voltage Vφ when the synchronous machine operates as a generator, and lags when it operates as a
motor. Also, note that the torque angle or the power angle δ is positive when generating and negative
when motoring.

Succinctly put, the power factor at which a synchronous machine operates and its stator (arma-
ture) current can be controlled by changing its field excitation.1

The curve showing the relationship between the stator current and the field current at a constant
terminal voltage with a constant real power is called a synchronous machine V curve because of
its shape. The V curves can be developed for synchronous generators as well as for synchronous
motors and will be almost identical.2

Figure 7.12a shows a family of V curves for a synchronous motor. Note that there are three V
curves in the figure corresponding to full load, half load, and no load. The dashed lines are loci for
constant power and are called compounding curves.

Notice that minimum armature (i.e., stator or line) current is always associated with a unity
power factor. The corresponding field current is indicated as normal excitation. Also notice that the
region to the right of the unity-power-factor compounding curve is associated with overexcitation
and a leading power factor and that the region to the left is associated with underexcitation and a
lagging power factor.

Figure 7.12b shows the correlation between the power factor and the field current. These curves
show that a synchronous motor can be overexcited and carry a substantial leading power factor.

Also notice that both curves, in Figure 7.12a and b, show that a slightly increased field current is
needed to produce normal excitation as the load increases.

1In the event that the synchronous machine is not transferring any power but is simply floating on the infinite bus, the machine
power factor is zero. In other words, the armature current either lags or leads the terminal voltage by 90◦.

2If it were not for the small effects of armature resistance.
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Figure 7.12 Synchronous-motor V curves: (a) stator current versus field current and (b) power factor versus
field current.

7.10.2 SYNCHRONOUS GENERATOR OPERATING ALONE

In general, synchronous machines operating in generator mode or in motor mode are connected to
an infinite bus. However, there are many applications in which synchronous generators may be used
to supply an isolated (independent) power system.

For such applications, the infinite bus theory (i.e., having constant voltage and constant fre-
quency) cannot be used, since there are no other generators connected in parallel to compensate
for changes in field excitation and prime-mover output in order to keep the terminal voltage and
frequency constant. Here, the prime mover is most likely a diesel or gasoline engine.

The frequency depends totally on the speed of the prime mover. Thus, a governor is needed
to maintain the constant frequency. The power factor is the load power factor and changes as the
load changes. Hence, the power factor and armature current cannot be controlled at the generator
site. In fact, the only control that can be used at the generator site is that of the field current. Thus,
at constant speed, if the field current is increased, the terminal voltage will increase, as shown in
Figure 7.13a.
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Figure 7.13 Characteristics of a generator operating alone: (a) compounding curves and (b) terminal voltage
versus load current at constant-field current.

Figure 7.14 The constant-field current volt-ampere characteristic curves of a synchronous generator operat-
ing alone.

Since the terminal voltage changes drastically as the load changes, an automatic voltage regulator
is required to control I f so that the terminal voltage can be kept constant with a changing load.
Otherwise, as shown in Figure 7.13b, as the load current Ia is increased, the terminal voltage drops
sharply with a drop in the load power factor.

From the study of characteristics of a synchronous generator, given in Figure 7.13, one can con-
clude that (1) the addition of inductive loads causes the terminal voltage to drop drastically, (2)
the addition of purely resistive loads causes the terminal voltage to drop very little (almost insignifi-
cantly), and (3) the addition of capacitive loads causes the terminal voltage to rise drastically. Figure
7.14 shows the constant-field current volt-ampere characteristic curves of a synchronous generator
operating alone. Note that the curves shown are for three different values of constant-field current
and power factors.

7.11 USE OF DAMPER WINDINGS TO OVERCOME MECHANICAL OSCILLATIONS
If the load on a synchronous machine varies, the load angle changes from one steady value to
another. During such transient phenomena, oscillations in the load angle and resultant mechanical
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oscillations1 of the rotor take place. To dampen out such oscillations, damper windings are used
in most salient-pole synchronous machines. The damper windings2 are made of copper or brass
bars located in pole-face slots on the pole shoes of a salient-pole rotor and their ends are connected
together.

When the rotor speed is different from the synchronous speed, currents are induced in the damper
windings. The damper windings behave like the squirrel-cage rotor of an induction motor, develop-
ing a torque to eliminate mechanical oscillations and restore the synchronous speed.

Note that cylindrical-rotor machines do not have damper windings because the eddy currents that
exist in the solid rotor during such transients play the same role as the currents in damper windings
in a salient-rotor machine.

The load angle and resultant mechanical oscillations3 of the rotor take place. To dampen out such
oscillations, damper windings are used in most salient-pole synchronous machines. The damper
windings4 are made of copper or brass bars located in pole-face slots on the pole shoes of a salient-
pole rotor and their ends are connected together.

7.12 STARTING OF SYNCHRONOUS MOTORS
A synchronous motor is not a self-starter. In other words, if its rotor winding is connected to a
dc source and its stator winding is supplied by an ac source, the motor will not start,5 but simply
vibrates. The methods that can be used to start a synchronous motor include the following: (1)
starting the motor as an induction motor, (2) starting it with a variable-frequency supply, and (3)
starting it with the help of a dc motor.

The first method is the most practical and is therefore the most popular. When the field windings
are disconnected from the dc source and the stator windings are connected to its ac source, the motor
acts like an induction motor because of its damper windings. Such an induction-motor start brings
the machine almost up to synchronous speed and when the dc field windings are excited, the rotor
falls into step, that is, starts to rotate at the synchronous speed. At synchronous speed, there is no
current induced in the damper windings and therefore there is no torque produced by them.

The second method involves starting the motor with low-frequency ac voltage by employing a
frequency converter. As a result, the armature field rotates slowly to make the rotor poles follow the
armature poles. Later, the motor can start operating at its synchronous speed by slowly increasing
the supply frequency to its nominal value. The third method involves bringing the motor to its
synchronous speed by using a dc motor before connecting the motor to the ac supply.

7.13 OPERATING A SYNCHRONOUS MOTORS AS A SYNCHRONOUS
CONDENSER

As previously stated, overexcited6 synchronous motors can generate reactive power. When syn-
chronous motors are used as synchronous condensers they are manufactured without a shaft

1In other words, any variance in load causes an oscillatory motion superimposed on the normal (i.e., synchronous) motion
of the machine shaft. This motion is also called hunting.

2They are also called the amortisseur (tiller) windings.
3In other words, any variance in load causes an oscillatory motion superimposed on the normal (i.e., synchronous) motion
of the machine shaft. This motion is also called hunting.

4They are also called the amortisseur (tiller) windings.
5To produce the required torque, the rotor must be rotating at the same speed as the armature (stator) field. Therefore, if
the rotor is turning (or not turning, in this case) at some other speed, the rotating armature-field poles will be moving past
the rotor poles first attracting, and then repelling them. Thus, the average torque is zero and the motor cannot start. Such a
synchronous motor has no starting torque.

6In fact, an overexcited synchronous machine produces reactive power whether or not it is operating as a motor or as a
generator.
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Figure 7.15 The constant-field current volt-ampere characteristic curves of a synchronous generator operat-
ing alone.

Figure 7.16 The use of the synchronous capacitor as a synchronous reactor for a transmission line: (a) under
maximum load, (b) under light load, (c) under excited motor becomes a synchronous reactor under full load,
and (d) under no-load conditions.

extension, since they are operated with no mechanical load. The ac input power supplied to such a
motor can only provide for its losses. These losses are very small and the power factor of the motor
is almost zero.

Therefore, the armature current leads the terminal voltage by close to 90◦, as shown in Figure
7.15a, and the power network perceives the motor as a capacitor bank. As can be seen in Figure
7.15b, when this motor is overexcited it behaves like a capacitor (i.e., synchronous condenser),
with Ea > Vφ , whereas when it is underexcited, it behaves like an inductor (i.e., a synchronous
reactor), with Ea <Vφ .

Synchronous condensers are used to correct power factors at load points, or to reduce line voltage
drops and thereby improve the voltages at these points, as well as to control reactive power flow.
Large synchronous condensers are usually more economical than static capacitors.

7.14 OPERATING A SYNCHRONOUS MOTOR AS A SYNCHRONOUS REACTOR
In general, it is not economical to correct the full-load power factor to unity. Therefore, a transmis-
sion line usually operates at a lagging power factor. Assume that an overexcited synchronous motor
is being used as a synchronous capacitor to correct the power factor of a transmission line which
is supplying a load with a lagging power factor. Figure 7.16a shows the phasor diagram of such a
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compensated transmission line, with a sending-end voltage of Vs and a receiving-end voltage of VR,
operating under peak-load conditions with Vs >VR.

However, under no-load or light-load conditions due to the reactive current Ir, the receiving-end
voltage VR becomes much greater than Vs, that is, Vs <VR as shown in Figure 7.16b. This condition
is known as the Ferranti effect.1

To prevent this, the dc field excitation of the synchronous motor can be controlled by a voltage
regulator and reduced as the load decreases and the VR increases. As shown in Figure 7.16d, when
the synchronous motor2 is underexcited, it becomes a synchronous reactor and starts to provide
an inductive voltage drop by means of the inductive current Ir to counteract the capacitive line
drop. Figure 7.16c and d shows the corresponding full-load and no-load corrections, respectively.
Observe that the relationship between the two receiving-end voltages is about the same. The use
of a synchronous condenser provides a constant voltage at the receiving end despite changes in the
load current and power factor.

Example 7.6:

A three-phase, 750 hp, 4160 V, wye-connected induction motor has a full-load efficiency of 90%,
a lagging power factor of 0.75, and is connected to a power line. To correct the power factor of
such a load to a lagging power factor of 0.85, a synchronous condenser is connected at the load.
Determine the reactive power provided by the synchronous capacitor.

Solution
The input power of the induction motor is

P = Pin(0.746 kW/hp)

=
Pout(0.746 kW/hp)

η

=
(750 hp)(0.746 kW/hp)

0.90
= 621.67 kW

The reactive power of the motor at the uncorrected power factor is

Q1 = P tanθ1

= 621.67tan(cos−1 0.75)

= 621.67tan(41.4096◦)

= 548.26 kvar

The reactive power of the motor at the corrected power factor is

Q2 = P tanθ2

= 621.67tan(cos−10.85)

= 621.67tan(31.788◦)

= 385.27 kvar

Thus, the reactive power provided by the synchronous capacitor is

Qc = Q1 −Q2 = 548.26−385.27 = 162.99 kvar

1See Gönen (1988) for further information.
2The synchronous motors used for this purpose are usually equipped with salient rotors, since a synchronous motor with a
cylindrical rotor may step out of synchronism and stop when it is operating with underexcitation. This is due to the fact that
decreasing the field current too far can cause the developed torque to be less than the rotational torque required.
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Figure 7.17 Open-circuit and short-circuit tests: (a) connection diagram for open-circuit test, (b) connection
diagram for short-circuit test, and (c) plots of open-circuit and short-circuit characteristics.

7.15 TESTS TO DETERMINE EQUIVALENT-CIRCUIT PARAMETERS
The equivalent-circuit parameters of a synchronous machine can be determined from three tests,1

namely, the open-circuit test, the short-circuit test, and the dc test.

7.15.1 OPEN-CIRCUIT TEST

As discussed in Section 7.5, the OCC of a synchronous machine can be developed based on the
open-circuit test. As shown in Figure 7.17a, the machine is driven at synchronous speed with its
armature terminals open and its field current set at zero. The open-circuit (line-to-line) terminal
voltage Voc is measured as the field current I f is increased.

Since the terminals are open Voc = Ea = Vt , assuming that the armature windings are connected
in wye. The plot of this voltage with respect to the field excitation current I f gives the OCC, as
shown in Figure 7.17c.

Therefore, the internal generated voltage Ea at any given field current I f can be found from the
OCC characteristic. Observe that as the field current is increased, the OCC starts to separate from the
air-gap line due to the saturation of the magnetic core. The no-load rotational losses (i.e., friction,
windage, and core losses) can be found by measuring the mechanical power input. While the friction
and windage losses remain constant, the core loss is proportional to the open-circuit voltage.

7.15.2 SHORT-CIRCUIT TEST

As shown in Figure 7.17b, the armature terminals are short-circuited through suitable ammeters2

and the field current is set at zero. While the synchronous machine is driven at synchronous speed,
its armature current Ia is measured as the field current gradually increases until the armature current
is about 150% of the rated current.

1It is applicable to both cylindrical-rotor and salient-rotor synchronous machines.
2If necessary, an instrument current transformer can be used with an ammeter in its secondary.
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The plot of the average armature current Ia versus the field current I f gives the short-circuit
characteristic (SCC) of the machine, as shown in Figure 7.17c. The SCC is a linear line since the
magnetic-circuit iron is unsaturated.1

7.15.3 DC TEST

If it is necessary, the resistance Ra of the armature winding can be found by applying a dc voltage
to two of the three terminals of a wye-connected synchronous machine while it is stationary. Since
current flows through two of the wye-connected armature windings, the total resistance of the path
is 2Ra. Thus,

2Ra =
Vdc

Idc
(7.49)

Ra =
Vdc

2Idc
(7.50)

Usually, the calculated Ra has to be corrected for the skin effect and the temperature of the wind-
ing during the short-circuit test. However, the resistance Ra of synchronous machines with ratings
greater than even a few hundred kVA is generally very small and is often ignored except in efficiency
computations.

7.15.4 UNSATURATED SYNCHRONOUS REACTANCE

As can be observed in Figure 7.18, if the synchronous machine is unsaturated, the open-circuit line
voltage will increase linearly with the field current along the air-gap line. As a result, the short-circuit
armature current is directly proportional to the field current. Therefore, the unsaturated synchronous
impedance for a specific value of the field current can be found from Figure 7.18 as

Zs,un =
Eac√
3Iab

= Ra + jXs.un (7.51)

If Ra is small enough to be ignored,

Xs,un ≈
Eac√
3Iab

(7.52)

7.15.5 SATURATED SYNCHRONOUS REACTANCE

Under normal operating conditions, the magnetic circuit is saturated. Therefore, if the field current
is changed, the internal generated voltage will vary along the modified air-gap line, as shown in
Figure 7.18. Thus, the saturated synchronous impedance at the rated voltage is given by

Zs =
Ed f√

Ide
= Ra + jXs (7.53)

If Ra is small enough to be ignored,

Xs =
Ed f√

Ide
(7.54)

However, the machine is unsaturated in the short-circuit test.
Therefore, the determination of the synchronous reactance based on short-circuit test data and

open-circuit test data is only an approximation2 at best. Figure 7.19 shows the variation of the
synchronous reactance due to saturation.

1When the short-circuit current is equal to the rated current, the voltage Ea will only be about 20% of its rated value.
Therefore, the magnetic-circuit iron is unsaturated.

2See McPherson (1981) for a more accurate determination of the saturated synchronous reactance.
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Figure 7.18 Open-circuit and short-circuit characteristics of a synchronous machine.

Figure 7.19 Variation of the synchronous reactance due to saturation.

7.15.6 SHORT-CIRCUIT RATIO

The short-circuit ratio (SCR) of a synchronous machine is the ratio of the field current required to
generate rated voltage at the rated speed at open circuit to the field current needed to produce rated
armature current at short circuit. Therefore, from Figure 7.18, the SCR of the synchronous machine
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is
SCR =

od
oh

(7.55)

where

od is the field current that produces rated voltage on the OCC

oh is the field current required for the rated short-circuit armature current

the SCR is the reciprocal of the per-unit value of the saturated synchronous reactance

Example 7.7:

The following data are taken from the open-circuit and short-circuit characteristics of a 100 kVA,
three-phase, wye-connected, 480 V, 60 Hz synchronous machine with negligible armature resis-
tance:

From the OCC

Line-to-line voltage = 480 V

Field current = 3.2 A

From the air-gap line

Line-to-line voltage = 480 V

Field current = 2.94 A

From the SCC Determine the following:

Armature current 90.35 A 120.28 A
Field current 3.2 A 4.26 A

(a) The unsaturated synchronous reactance.

(b) The saturated synchronous reactance at rated voltage.

(c) The SCR.

Solution

(a) The field current of 2.94 A needed for rated line-to-line voltage of 480 V on the air-gap
line produces a short-circuit armature current of 2.94(90.35/3.2) = 83.01 A. Therefore, the
unsaturated synchronous reactance is

Xs,un =
480 V√

3(31.01 A)
= 3.34Ω/phase

(b) The field current of 3.32 A produces the rated voltage on the OCC and a short-circuit armature
current of 90.35 A. Therefore, the saturated synchronous reactance at the rated voltage is

Xs =
480 V√

3(90.35 A)
= 3.07Ω/phase

(c) The SCR is
SCR =

3.2
4.26

= 0.75
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Figure 7.20 Capability curves of a synchronous machine: (a) construction of the capability curve and (b) the
capability curve of a synchronous generator.

7.16 CAPABILITY CURVE OF SYNCHRONOUS MACHINE
Figure 7.20a shows the capability curve of a synchronous machine. The rated MVA of the syn-
chronous machine is dictated by stator heating in terms of maximum allowable stator current. The
upper and lower portions of the area inside the circle, with a radius of maximum S, represent the
generator and motor operation, respectively. The maximum allowable field current is limited by the
rotor heating. The maximum permissible torque angle is dictated by the steady-state stability limits
that exist in the generator and motor modes of operation and further restricts the operation area of
the synchronous machine. In the generator mode, the power limit is determined by the prime-mover
rating.

Figure 7.20b shows the capability curve of a synchronous generator. Any point that lies within
the area is a safe operating point for the generator from the standpoint of heating and stability.
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Figure 7.21 Parallel operation of synchronous generators.

Assume that the operating point S is chosen as shown in Figure 7.20b, and that the corresponding
real and reactive powers are P and Q, respectively.

For this operation, the power-factor angle can be readily determined from the diagram as θ by
drawing a line from the operating point S to the origin. A line drawn from the operating point S to
the origin of the I f axis facilitates finding the power or torque angle δ from that axis.

7.17 PARALLEL OPERATION OF SYNCHRONOUS GENERATORS
The process of connecting a synchronous generator to an infinite bus is called paralleling with the
infinite bus. The generator to be added to the system is referred to as the one to be put on line.
As shown in Figure 7.21, to connect the incoming generator to the infinite bus, a definite procedure
called the synchronizing procedure must be followed before closing the circuit breaker CB to prevent
any damage to the generator or generators.

Accordingly, the following conditions must be met: (1) the rms voltages of the generator must
be the same as the rms voltages of the infinite bus, (2) the phase sequence of the voltages of the
generator must be the same as the phase sequence of the infinite bus, (3) the phase voltages of
the generator must be in phase with the phase voltages of the infinite bus, and (4) the frequency of
the generator must be almost equal to that of the infinite bus.

By using voltmeters, the field current of the incoming generator is increased to a level at which
the voltages of the generator are the same as the voltages of the infinite bus. The phase sequence of
the incoming generator has to be compared to the phase sequence of the infinite system. This can
be done in various ways. One method is to connect three light bulbs as shown in Figure 7.21. If the
phase sequence is correct, all three light bulbs will have the same brightness.

A second method is to connect a small induction motor first to the terminals of the infinite bus
and then to the terminals of the incoming generator. If the motor rotates in the same direction each
time, then the phase sequences are the same.

A third method is to use an instrument known as a phase-sequence indicator. In any case, if
the phase sequences are different, then two of the terminals of the incoming generator have to be
reversed. The two sets of voltages must be in phase and the three phase voltages have to be almost
equal to the voltages of the infinite bus.

The frequency of the incoming generator has to be a little higher than the frequency of the infi-
nite bus. The reason for this is that when it is connected, it will come on line providing power as a
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Figure 7.22 The face of a synchroscope.

generator rather than being used as a motor. The frequency (or speed) of the incoming generator can
also be compared to the frequency of the infinite bus by using an instrument known as a synchro-
scope. When the two frequencies are identical, the pointer of the synchroscope locks into a vertical
position, as shown in Figure 7.22.

On the other hand, if the radian frequency of the incoming generator is, for example, 381 rad/s
and that of the infinite bus is 377 rad/s, then the pointer rotates at 4 rad/s in the direction marked
FAST. If the radian frequency of the incoming generator is, for example, 372 rad/s, the pointer
rotates at 5 rad/s in the direction marked SLOW.

When all of the conditions are met, the incoming generator is connected to the infinite bus by
closing the circuit breaker (or switch). Once the breaker is closed, the incoming generator is on line.
At this moment, it is neither delivering nor receiving power. Having Ea = Vφ , Ia = 0, and δ = 0 in
each phase, it is simply floating as explained in Section 7.10.1.

After the generator is connected, the dispatcher determines how much power should be produced
by it. The power output of the prime mover is increased until the generator starts to produce the
required power. Note that in large generators this operation of putting a new generator on line is
done automatically by using computers.

PROBLEMS

PROBLEM 7.1

Compute the synchronous speeds in radians per second and revolutions per minute for poles of 2,
4, 8, 10, 12, and 120 and tabulate the results for the following frequencies:

(a) 60 Hz.

(b) 50 Hz.

PROBLEM 7.2

An elementary four-pole, three-phase, 60 Hz alternator has a rotating flux of 0.0875 Wb. The
number of turns in each phase coil is 25. Its shaft speed is 1800 rev/min. Let its stator winding
factor be 0.95 and find the following:

(a) The angular speed of the rotor.

(b) The three phase voltages as a function of time.

(c) The rms phase voltage of this generator if the stator windings are delta-connected.

(d) The rms terminal voltage if the stator windings are wye-connected.



274 Electrical Machines and Their Applications

PROBLEM 7.3

Determine by derivation the value of the K constant given in Equations 7.13 and 7.14.

(a) If ω is given in electrical radians per second.

(b) If ω is given in mechanical radians per second.

PROBLEM 7.4

Consider the synchronous generator given in Example 7.3 and assume that the generator delivers
full-load current at the rated voltage and 0.8 leading power factor. Determine the following:

(a) The rated load current.

(b) The air-gap voltage.

(c) The internal generated voltage.

(d) The power angle.

(e) The voltage regulation.

PROBLEM 7.5

A three-phase, 4.17 kV, 60 Hz, wye-connected, cylindrical-rotor synchronous generator has a
leakage reactance of 2.2ω per phase and a winding resistance of 0.15ω per phase. If the load
connected to the generator is 950 kVA at 0.85 lagging power factor, determine the air-gap voltage.

PROBLEM 7.6

A three-phase synchronous motor is supplied by 100 A at unity power factor from a bus. Deter-
mine the following:

(a) The current at a leading power factor of 0.85, if the bus voltage is constant.

(b) The current at a lagging power factor of 0.85, if the bus voltage is constant.

(c) What usually happens to the bus voltage as the power factor becomes more leading?

PROBLEM 7.7

A three-phase, wye-connected generator supplies a unity power factor load at 4.16 kV. If the
synchronous reactance voltage drop is 262 V per phase and the resistance voltage drop is 25 V
per phase, what is the percent regulation?

PROBLEM 7.8

A 25 hp synchronous motor has a full-load efficiency of 92% and operates at a leading power
factor of 0.8. Determine the following:

(a) The power input to the motor.

(b) The kVA input to the motor.
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PROBLEM 7.9

A three-phase, four-pole, 12 kV, 60 Hz, 40 MVA, wye-connected, cylindrical-rotor synchronous
generator has a synchronous reactance of 0.3 per unit. Ignore the armature resistance and the
effects of saturation. Also assume that the generator delivers full-load current at 0.85 lagging
power factor. Determine the following:

(a) The rated (full-load) current.

(b) The internal generated voltage.

(c) The torque angle.

(d) The synchronizing power in W per electrical radian and in W per electrical degree.

(e) The synchronizing power in W per mechanical degree.

(f) The synchronizing torque in W per mechanical degree.

PROBLEM 7.10

A three-phase, 100 kVA, 60 Hz, 480V, four-pole, wye-connected, cylindrical-rotor synchronous
motor has an armature resistance and a synchronous reactance of 0.09 and 1.5 Ω per phase, re-
spectively. Its combined friction and windage losses are 2.46 kW and its core losses are 1.941 kW.
Ignore its dc field losses. If the motor is operating at unity power factor, determine the following:

(a) The internal generated voltage Ea.

(b) The torque angle δ .

(c) The efficiency at full load.

(d) The output torque at full load.

PROBLEM 7.11

Solve Problem 7.10 but assume that the machine is operating at 0.85 leading power factor.

PROBLEM 7.12

Solve Problem 7.10 but assume that the machine is operating at 0.85 lagging power factor.

PROBLEM 7.13

Assume that the following data are obtained from the open-circuit and short-circuit characteristics
of a 500 kVA, three-phase, wye-connected, 480 V, 60 Hz synchronous machine with negligible
armature resistance:

From the OCC

Line-to-line voltage = 480 V

Field current = 16 A

From the air-gap line

Line-to-line voltage = 480 V

Field current = 14.7 A

From the SCC
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Determine the following:

(a) The unsaturated synchronous reactance.

(b) The saturated synchronous reactance at the rated voltage.

(c) The SCR.

PROBLEM 7.14

A three-phase, 60 Hz, 480 V, two-pole, delta-connected, cylindrical-rotor synchronous generator
has a synchronous reactance of 0.12 Ω and an armature resistance of 0.010 Ω. Its OCC is shown
in Figure 7.5. Its combined friction and windage losses are 30 kW and its core losses are 20 kW.
Neglect its dc field losses and determine the following:

(a) The amount of field current for the rated voltage of 480 V at no load.

(b) The amount of field current required for the rated terminal voltage of 480 V. when the rated
load current is 1000 A at a lagging power factor of 0.85.

(c) The efficiency of the generator under the rated load conditions.

(d) The terminal voltage if the load is suddenly disconnected.

(e) The amount of field current required to have the rated terminal voltage of 480 V when the
rated load current is 1000 A at a leading power factor of 0.85.

PROBLEM 7.15

A three-phase, 60 Hz, 480 V, four-pole, delta-connected, cylindrical-rotor synchronous generator
has an armature resistance and a synchronous reactance of 0.012 and 0.15 Ω, respectively. Its
OCC is shown in Figure 7.3. Its combined friction and windage losses are 35 kW and its core
losses are 25 kW. Neglect its dc field losses and determine the following:

(a) The field current for the rated terminal voltage of 480 V at no load.

(b) The field current for the rated terminal voltage of 480 V when the rated load current is 1100
A at a lagging power factor of 0.90.

(c) The efficiency of the generator under the rated load conditions.

(d) The terminal voltage if the load is suddenly disconnected.

(e) The field current for the rated terminal voltage of 480 V when the rated load current is 1100
A at a leading power factor of 0.90.

PROBLEM 7.16

Solve Problem 7.15 but assume that the generator is wye-connected and the rated load current is
500 A.

PROBLEM 7.17

A three-phase, 60 Hz, 480 V, two-pole, delta-connected, cylindrical-rotor synchronous generator
has an armature resistance and a synchronous reactance of 0.012 and 0.15 Ω, respectively. Its
OCC is shown in Figure 7.3. Its combined friction and windage losses are 25 kW and its core
losses are 25 kW. Neglect its dc field losses and determine the following:

(a) The field current for the rated terminal voltage of 480 V at no load.



Synchronous Machines 277

(b) The field current for the rated terminal voltage of 480 V when the rated load current is
1100A at a lagging power factor of 0.90.

(c) The efficiency of the generator under the rated load conditions.

(d) The terminal voltage if the load is suddenly disconnected.

(e) The field current for the rated terminal voltage of 480 V when the rated load current is 1100
A at a leading power factor of 0.90.

PROBLEM 7.18

A three-phase, 60 Hz, 480V, four-pole, delta-connected, cylindrical-rotor synchronous generator
has an armature resistance and a synchronous reactance of 0.012 and 0.15 Ω, respectively. Its
OCC is shown in Figure 7.3. Its combined friction and windage losses are 25 kW and its core
losses are 30 kW. The field current is constant at no load. Neglect its dc field losses and determine:

(a) The field current for the rated terminal voltage of 480 V at no load.

(b) The field current for the rated terminal voltage of 480 V when the rated load current is 1000
A at a lagging power factor of 0.85.

(c) The efficiency of the generator under the rated load conditions.

(d) The terminal voltage if the load is suddenly disconnected.

(e) The field current for the rated terminal voltage of 480 V when the rated load current is 1000
A at a leading power factor of 0.85.

PROBLEM 7.19

A three-phase, 60 Hz, 480 V, wye-connected, two-pole cylindrical-rotor synchronous generator
has a synchronous reactance of 1.2 Ω, per phase. Its armature resistance is small enough to be
neglected. Its full-load armature current is 75 A at 0.85 lagging power factor. Its combined friction
and windage losses are 1.8 kW and its core losses are 1.1 kW. The field current is constant at no
load. Neglect its dc field losses and determine the following:

(a) Its terminal voltage when it is loaded with the rated current having a power factor of (1)
0.85 lagging, (2) unity, and (3) 0.85 leading.

(b) Its efficiency when it is loaded with the rated current at a lagging power factor of 0.85.

(c) Its input torque and induced counter torque when it is operating at full load.

(d) Its voltage regulation when it is operating under full load with a power factor of (1) 0.85
lagging, (2) unity, and (3) 0.85 leading.

PROBLEM 7.20

A three-phase, 60 Hz, 480 V, Y-connected, two-pole cylindrical-rotor synchronous generator has
a synchronous reactance of 0.95 Ω per phase. Its armature resistance is negligible. Its combined
friction and windage losses are 1.3 kW and its core losses are 0.95 kW. Neglect its dc field losses.
The field current is constant at no load. Its full-load armature current is 55 A at 0.9 PF lagging.
Determine the following:

(a) Its terminal voltage when it is loaded with the rated current at a power factor of (1) 0.9
lagging, (2)unity, and (3) 0.9 leading.

(b) Its efficiency when it is loaded with the rated current at a power factor of 0.9.
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(c) Its input torque and induced counter torque when it is operating at full load.

(d) Its voltage regulation when it is operating under full load with a power facto of (1) 0.9
lagging, (2) unity, and (3) 0.9 leading.

PROBLEM 7.21

A three-phase, 60 Hz, 480 V, delta-connected, four-pole cylindrical-rotor synchronous generator
has a synchronous reactance of 1.5 Ω per phase. Its armature resistance is negligible. Its combined
friction and windage losses are 2.1 kW and its core losses are 1.2 kW. Neglect its dc field losses.
The field current I f is constant at no load. Its full-load armature current is 100 A at 0.80 PF
lagging. Determine the following:

(a) Its terminal voltage when it is loaded with the rated current at a power factor of (1) 0.80
lagging, (2) unity, and (3) 0.80 leading.

(b) Its efficiency when it is loaded with the rated current at a lagging power factor of 0.80.

(c) Its input torque and induced counter torque when it is operating at full load.

(d) Its voltage regulation when it is operating under full load with a power factor of (1) 0.80
lagging, (2) unity, and (3) 0.80 leading.

PROBLEM 7.22

Solve Problem 7.21 but assume that the generator is wye-connected.

PROBLEM 7.23

A three-phase, 60 Hz, 480 V, delta-connected, six-pole cylindrical-rotor synchronous generator
has a synchronous reactance of 0.95 Ω, per phase. Its armature resistance is negligible. Its com-
bined friction and windage losses are 1.5 kW and its core losses are 1.25 kW. Neglect its dc
field losses. The field current is constant at no load. Its full-load armature current is 55 A at 0.85
lagging PF. Determine the following:

(a) Its terminal voltage when it is delivering the rated current at a power factor of (1) 0.85
lagging, (2) unity, and (3) 0.85 leading.

(b) Its efficiency when it is loaded with the rated current at a lagging power factor of 0.85.

(c) Its input torque and induced counter torque when it is operating at full load.

(d) Its voltage regulation when it is operating under full load with a power factor of (1) 0.85
lagging, (2) unity, and (3) 0.85 leading.

PROBLEM 7.24

Solve Problem 7.23 but assume that the generator is wye-connected.

PROBLEM 7.25

A three-phase, 60 Hz, (480/
√

3) V, delta-connected, cylindrical-rotor synchronous motor has a
synchronous reactance of 3.5 Ω. Its armature resistance is negligible. Its combined friction and
windage losses are 2 kW and its core losses are 1.45 kW. The motor is connected to a 25 hp
mechanical load and is operating at a leading power factor of 0.85.

(a) Find the values of Ia, IL, and Ea of the motor and draw its phasor diagram.
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(b) If the mechanical load is increased to 50 hp, draw the new phasor diagram.

(c) Find the values of Ia, IL, and Ea and the PF of the motor in Part (b).

PROBLEM 7.26

A three-phase, 60 Hz, 277.1281-V, delta-connected, cylindrical-rotor synchronous motor has a
synchronous reactance of 4 Ω. Its armature resistance is negligible. Its combined friction and
windage losses are 2.5 kW and its core losses are 2.25 kW. The motor is connected to a 20 hp
mechanical load and is operating at a leading power factor of 0.80.

(a) Find the values of Ia, IL, and Ea of the motor and draw its phasor diagram.

(b) If the mechanical load is increased to 75 hp, draw the new phasor diagram.

(c) Find the values of Ia, IL, and Ea and the PF of the motor in Part (b).

PROBLEM 7.27

Assume that two three-phase induction motors and a three-phase synchronous motor are con-
nected to the same bus. The first induction motor is 150 kW and operating at 0.85 lagging power
factor. The second induction motor is 250 kW and operating at 0.70 lagging power factor. The
real power of the synchronous motor is 200 kW. If the bus voltage is 480 V and the synchronous
motor is operating at 0.90 lagging power factor, determine the following:

(a) The total real and reactive power at the bus.

(b) The total bus current and its power factor.

(c) If the synchronous motor is operating at 0.90 leading power factor, the new total bus current
and its power factor.

(d) Consider the results of Parts (b) and (c), and determine the percent reduction in the power
line losses.

PROBLEM 7.28

Suppose that two three-phase induction motors and a three-phase synchronous motor are con-
nected to the same bus. The first induction motor is 250 kW and operating at 0.90 lagging power
factor. The second induction motor is 350 kW and operating at 0.75 lagging power factor. The
real power of the synchronous motor is 300 kW. If the bus voltage is 480 V and the synchronous
motor is operating at 0.90 lagging power factor, determine the following:

(a) The total real and reactive power at the bus.

(b) The total bus current and its power factor.

(c) If the synchronous motor is operating at 0.90 leading power factor, the new total bus current
and its power factor.

(d) Consider the results of Parts (b) and (c), and determine the percent reduction in the power
line losses.

PROBLEM 7.29

A manufacturing plant has a load of 500 kW at 0.78 lagging power factor. If a 75 hp synchronous
motor is added and operated at 0.85 leading power factor, determine the new total load and new
power factor of the plant. Neglect the losses of the synchronous motor.
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PROBLEM 7.30

A 75 MVA, 20 kV, 60 Hz, wye-connected, three-phase synchronous generator has Xd = 2.1Ω and
Xq = 1.0Ω. Ignore its resistance. Assume that it operates at full load at 0.8 lagging power factor
and determine the following:

(a) The phase voltage and phase current at full load.

(b) The internal generated voltage Ea if it has a cylindrical rotor.

(c) The internal generated voltage Ea if it has a salient-pole rotor.

PROBLEM 7.31

Suppose that two three-phase induction motors and a three-phase synchronous motor are con-
nected to the same bus. The first induction motor is 275 kW and operating at 0.8 lagging power
factor. The second induction motor is 125 kW and operating at 0.8 lagging power factor. If the bus
voltage is 480 V and the 350 kW synchronous motor is operating at 0.95 lagging power factor,
determine the following:

(a) The total real and reactive power at the bus.

(b) The total bus current and its power factor.

(c) If the synchronous motor is operating at 0.95 leading power factor, the new total bus current
and its power factor.

PROBLEM 7.32

A three-phase, 60 Hz, 480 V, wye-connected, cylindrical-rotor synchronous motor has a syn-
chronous reactance of 3 Ω. Its armature resistance is negligible. Its friction and windage losses
are 4 kW and its core losses are 3 kW. The motor is connected to a 75 hp mechanical load and is
operating at a leading power factor of 0.85.

(a) Find the values of Ia, IL, and Ea of the motor and draw its phasor diagram.

(b) If the mechanical load is increased to 100 hp, draw the new phasor diagram.

(c) Find the values of Ia, IL, and Ea and the PF of the motor in Part (b).

PROBLEM 7.33

A three-phase, 50 Hz, 380 V, wye-connected, four-pole cylindrical-rotor synchronous generator
has a synchronous reactance of 0.9 Ω per phase. Its armature resistance is negligible. Its friction
and windage losses are 1.0 kW and its core losses are 1.0 kW. Neglect its armature resistance and
dc field losses. The field current is constant at no load. Its full-load armature current is 50 A at
0.9 PF lagging. Determine the following:

(a) Its terminal voltage when it is delivering the rated current at a unity power factor.

(b) Its efficiency when it is loaded with the rated current at a lagging power factor of 0.9.

(c) Its input torque and induced counter torque when it is operating at full load.

(d) Its voltage regulation when it is operating under full load at a unity power factor.



8 Direct-Current Machines

8.1 INTRODUCTION
A direct-current (dc) machine is a versatile machine, that is, the same machine can be used as a
generator to convert mechanical energy to dc electrical energy or as a motor to convert dc electrical
energy into mechanical energy. However, the use of dc machines as dc generators to produce bulk
power has rapidly disappeared due to the economic advantages involved in the use of alternating-
current generation, transmission, and distribution. This is partly due to the high efficiency and rela-
tive simplicity with which transformers convert voltages from one level to another.

Today, the need for dc power is often met by the use of solid state-controlled rectifiers. However,
dc motors are used extensively in many industrial applications because they provide constant me-
chanical power output or constant torque, adjustable motor speed over wide ranges, precise speed
or position control, efficient operation over a wide speed range, rapid acceleration and deceleration,
and responsiveness to feedback signals.

Such machines can vary in size from miniature permanent-magnet motors to machines rated for
continuous operation at several thousand horsepower. Examples of small dc motors include those
used for small control devices, windshield-wiper motors, fan motors, starter motors, and various
servomotors. Application examples for larger dc motors include industrial drive motors in convey-
ors, pumps, hoists, overhead cranes, forklifts, fans, steel and aluminum rolling mills, paper mills,
textile mills, various other rolling mills, golf carts, electrical cars, street cars or trolleys, electric
trains, electric elevators, and large earth-moving equipment.

Obviously, dc machine applications are very significant, but the advantages of the dc machine
must be weighed against its greater initial investment cost and the maintenance problems associated
with its brush-commutator system.

8.2 CONSTRUCTIONAL FEATURES
The schematic diagram of the construction of a dc machine is shown in Figure 8.1. The construction
has two basic parts, namely, the stator (which stands still) and the rotor (which rotates). The stator
has salient poles that are excited by one or more field windings. The armature winding of a dc
machine is located on the rotor with current flowing through it by carbon brushes making contact
with copper commutator segments.

Both the main poles and armature core are made up of laminated materials to reduce core losses.
With the exception of a few small machines, the dc machines also have commutating poles1 between
the main poles of the stator. Each commutating pole has its own winding which is known as the
commutating winding.

The main (or field) poles are located on the stator and are attached to the stator yoke (or frame).
The stator yoke also serves as a return path for the pole flux. Because of this, the yokes are being
built with laminations to decrease core losses in solid-state-driven motors. The ends of the poles are
called the pole shoes. The surface of the pole shoe opposite the rotor is called the pole face. The

1They are known as the interpoles or compoles.
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Figure 8.1 Schematic diagram of dc machine construction.

distance between the pole face and the rotor surface is called the air gap. As shown in the figure,
there is a special winding located in the slots of the pole faces called the compensating winding.1

The field windings are located around the pole cores and are connected in series and/or in shunt
(i.e., in parallel) with the armature circuit. The shunt winding is made up of many turns of relatively
thin wires, whereas the series winding has only a few turns and is made up of thicker wires. As
shown in the figure, if the field has both windings, the series winding is located on top of the shunt
winding. The two windings are separated by extra insulating material, which is usually paper. Figure
8.2 shows the schematic connection diagram for a dc machine with commutating and compensating
windings in addition to series and shunt windings. The series and shunt windings are located on
the d-axis. This axis is called the field axis, or direct axis, because the air-gap flux distribution
due to the field windings is symmetric at the center line of the field poles. Both the compensating
and commutating winding brushes are located on the q-axis. This axis is called the quadrature axis
because it is 90 electrical degrees from the d-axis and represents the neutral zone.

The commutator is located on the armature and consists of a number of radial segments assem-
bled into a cylinder which is attached to and insulated from the shaft. These segments are well
insulated from each other by mica. The leads of the armature coils are connected to these com-
mutator segments. Current is conducted to the armature coils by carbon brushes that ride on the
commutator segments. The brushes are fitted to the surface of the commutator and are held in brush
holders. These brush holders use springs to push the brushes against the commutator surface to
maintain constant pressure and problem-free riding. The connection between the brush and brush
holder is by a flexible copper cable called a pigtail. The rotor itself is mounted on a shaft that rides
in the bearings.

1Sometimes it is called the pole-face winding, for obvious reasons.
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Figure 8.2 Schematic connection diagram for a dc machine having commutating poles and compensating
winding in addition to series and shunt windings.

Figure 8.3 Basic armature winding types: (a) lap winding and (b) wave winding.

8.3 BRIEF REVIEW OF ARMATURE WINDINGS
As previously stated, the armature windings are the windings in which a voltage is induced in a dc
machine. The rotor of a dc machine is called an armature, because the armature windings are placed
in slots of the rotor. Since the armature winding is connected to the commutator, it is also known as
the commutator winding. This winding is usually built with full-pitch windings.

As shown in Figure 8.3, the armature windings are either the closed continuous type of double-
layer lap windings or wave windings. A winding is formed by connecting several coils in series,
and a coil is formed by connecting several turns (loops) in series. Each turn is made up of two con-
ductors connected to one end by an end connection. In other words, each side of a turn is called a
conductor.

In a lap winding, there are always as many paths in parallel through the armature winding as there
are a number of poles (or brushes). Each path is made up of a series connection between a number
of terminal coils that are approximately equal to the total number of armature coils divided by the
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Figure 8.4 Simple representation of a dc machine.

number of poles. In such a lap winding, the current in each armature coil is equal to the armature
terminal current divided by the number of poles.

In a wave winding, there are always two paths in parallel through the armature winding from one
terminal to the other. At any given time, each path is made up of a series connection of approximately
one-half of the total armature coils between the terminals. The current in each armature coil is one-
half of the armature terminal current.

The internal generated voltages in each of the parallel paths of a lap winding are equal if the
machine is geometrically and magnetically symmetrical. If complete symmetry does not exist, the
internal generated voltage of the different paths will not be exactly the same. Therefore, there will
be a circulating current flowing between brush sets of the same polarity. To prevent this, equalizers
are used. Equalizers are bars located on the rotor of a lap-wound dc machine that short together the
points in the winding at the same voltage level in different paths.

8.4 ELEMENTARY DC MACHINE
Figure 8.4 shows an elementary two-pole dc generator. The armature winding consists of a single
coil of N turns. The voltage induced in this rotating armature is alternating. However, by using a
commutator this voltage is rectified mechanically into dc voltage for the external circuit. Here, the
commutator has two half rings that are made up of two copper segments insulated from each other
and from the shaft.

Each end of the armature coil is connected to a segment. Stationary carbon brushes held against
the commutator surface connect the coil to the external armature terminals. Since the brushes remain
in the same position as the coil rotates, each fixed terminal is always connected to the side of the
coil where the relative motion between the coil side and the field is the same.

In other words, the action of the commutator is to reverse the armature coil connections to the
external circuit when the current reverses in the armature coil. Therefore, the commutator at all
times connects the coil side under the south pole to the positive brush and the one under the north
pole to the negative pole. Thus, the polarity of the voltage difference between the two fixed brushes
is always the same and the voltage is now unidirectional.

However, a pulsating dc, like the one produced by this type of single-coil generator, is not suitable
for most commercial uses. As shown in Figure 8.5, the total internal generated voltage between
brushes (i.e., simply the brush voltage) can be made practically constant by using a large number of
coils and commutator segments with the coils evenly distributed around the armature surface.
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Figure 8.5 The total internal generated voltage between brushes in a dc machine as a function of time.

8.5 ARMATURE VOLTAGE
In a dc machine, the armature voltage is the internal generated voltage. By applying Faraday’s law
of electromagnetic induction, the armature voltage1 can be expressed as

Ea =

(
Z × p
2π ×a

)
Φd ×ωm (8.1)

where

Z is the total number of conductors in the armature winding

p is the number of poles (of field or stator)

a is the number of parallel paths in the armature winding

Φd is the direct-axis air-gap flux per pole in webers

ωm is the angular velocity of the armature (or shaft) in mechanical radians per second

The armature voltage can also be expressed as

Ea = KaΦd ×ωm (8.2)

where
Ka =

Z × p
2π ×a

(8.3)

and is called the armature constant. The speed of the machine may be given in revolutions per
minute (rpm) rather than in radians per second. Since

ωm =

(
2π
60

)
nm (8.4)

the armature voltage can be expressed as

Ea = Ka1 ×Φd ×nm (8.5)

1It is also known as the speed voltage. Some authors define this voltage as the internal source voltage when the machine is
operating as a generator and as the countervoltage (or back emf when the machine is operating as a motor).
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Figure 8.6 Simple representation of a dc machine: (a) circuit representation of a dc generator and (b) circuit
representation of a dc motor.

where
Ka1 =

Z × p
60×a

(8.6)

Therefore, the armature voltage is a function of the flux in the machine, the speed of its rotor, and a
constant that depends on the machine.

The armature voltage, or more precisely the internal generated voltage, is not the terminal volt-
age. Consider the circuit representation of a separately excited dc generator and motor as shown in
Figure 8.6a and b, respectively. The armature voltage Ea can be expressed as

Ea =Vt ± IaRa (8.7)

where

the plus sign is used for a generator and the minus sign for a motor

Vt is the terminal voltage

Ra is the armature resistance1

Therefore, in the case of a generator, the armature voltage is always greater than the terminal
voltage. In a motor, the armature voltage is less than the terminal voltage. Regardless of whether the
machine is used as a generator or as a motor, a brush-contact voltage drop, usually assumed to be
2 V, exists due to the resistive voltage drop between the brushes and commutator.

Also, the term armature winding circuit resistance can include not only the resistance of the ar-
mature winding Ra, but also the resistances of the series-field winding Rse, commutating winding
Rcw, compensating winding Rcp, as well as the resistance of any external wires (used in laborato-
ries to make the necessary connections) Rat,ext . Therefore, the general expression for the armature
voltage becomes

Ea =Vt ± Ia(∑Ra)±2.0 (8.8)

where
∑Ra = Ra +Rse +Rcw +Rcp +Rat,ext (8.9)

and represents the total armature winding circuit resistance. In Equation 8.8, the plus sign is used
for a generator and the minus sign for a motor. Note that the voltage polarity of the brushes is a
function of the rotational direction and the magnetic polarity of the stator field poles.

1Even though the armature resistance Ra actually exists between the brushes in the armature, in some books it is not explic-
itly represented in the armature circuits. Such representation agrees with the dc machine panels of an electromechanical
laboratory since only armature terminals A1 and A2 can possibly be reached, as shown in Figure 8.7. However, in the rest
of the book, the armature resistance is explicitly represented to avoid confusing the beginner.
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Example 8.1:

Assume that a four-pole dc machine has an armature with a radius of 15 cm and an effective length
of 30 cm, and that the poles cover 70% of the armature periphery. The armature winding has 50
coils of five turns each and is wave-wound with a = 2 paths. Assume that the average flux density
in the air gap under the pole faces is 0.7 T and determine the following:

(a) The total number of conductors in the armature winding.

(b) The flux per pole.

(c) The armature constant Ka.

(d) The induced armature voltage if the speed of the armature is 900 rpm.

(e) The current in each coil if the armature current is 200 A.

Solution

(a) The total number of conductors in the armature winding is

(b) Since the pole area is

Ap =
2∗ pi∗ (0.15 m)(0.30 m)(0.7)

6
= 0.033 m2

the flux per pole is

Φd = Ap ×B

= (0.033 m2)(0.7 Wb/m2)

= 0.023 Wb

(c) The armature constant is

Ka =
Z × p
2π ×a

=
(500)(6)

2π(2)
= 238.73

(d) The speed of the armature is

ωm = nm

(
2π
60

)

= (900 rpm)

(
2π
60

)

= 94.25 rad/s

Therefore, the induced armature voltage is

Ea = Ka ×Φd ×ωm

= (238.73)(0.023 Wb)(94.25 rad/s)
= 517.5 V
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(e) The current in each coil is

Icoil =
Ia

2

=
200 A

2
= 100 A

Example 8.2:

Assume that a separately excited shunt dc machine has a rated terminal voltage of 230 V and a
rated armature current of 100 A. Its armature winding resistance, commutating winding resistance,
and compensating winding resistance are 0.08, 0.01, and 0.008 Ω, respectively. The resistance of
external wires (i.e., Ra,ext ) is 0.002 Ω. Determine the following:

(a) The induced armature voltage if the machine is operating as a generator at full load.

(b) The induced armature voltage if the machine is operating as a motor at full load.

Solution

(a) Since the total armature winding circuit resistance is

∑Ra = Ra +Rse +Rcw +Rcp +Ra,ext

= 0.08+0+0.01+0.008+0.002

= 0.10 Ω

When the machine is operating as a generator, its induced armature voltage is

Ea =Vt + Ia
(
∑Ra

)
+2.0

= 230+(100 A)(0.10 Ω)+2.0

= 242 V

(b) When the machine is operating as a motor, its induced armature voltage is

Ea =Vt − Ia
(
∑Ra

)
−2.0

= 230− (100 A)(0.10 Ω)−2.0

= 218 V

8.6 METHODS OF FIELD EXCITATION
The field circuit and the armature circuit of a dc machine can be interconnected in several different
ways to produce various operating characteristics. There are basically two types of field windings,
namely, shunt-field winding and series-field winding.

The shunt windings have a great many turns and are built from thinner wires. Therefore, the
required field current is a very small portion (less than 5%) of the rated armature current. On the
other hand, the series windings have relatively less number of turns and are built from thicker wires.
The series windings are connected in series with the armature and therefore its field current is the
armature current.

The shunt winding can be separately excited from a separate source. In a separately excited
machine, there is no electrical interconnection between the field and the armature windings, as
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Figure 8.7 Typical field-excitation methods for a dc machine: (a) separately excited, (b) shunt, (c) series,
(d) short-shunt connection for cumulative compound motor or differential compound generator, (e) short-shunt
connection for cumulative compound generator or differential compound motor, (f) long-shunt connection for
cumulative compound motor or differential compound generator, and (g) long-shunt connection for cumulative
compound generator or differential compound motor.

shown in Figure 8.7a. When the field is interconnected with the armature winding, the machine is
said to be self-excited.

The self-excited machines may be shunt, series, or compound, as shown in Figure 8.7b through
8.7g. Notice that a compound machine has both shunt- and series-field windings in addition to the
armature winding.

If the relative polarities of the shunt and series-field windings are additive, the machine is called
cumulative compound. If they oppose each other, the machine is called differential compound. A
compound machine may be connected short shunt with the shunt field in parallel with the armature
only or long shunt with the shunt field in parallel with both the armature and series field. The circuits
shown in Figure 8.7 are labeled according to the NEMA standards.1

8.7 ARMATURE REACTION
Armature reaction is defined as the effect of the armature mmf field upon the flux distribution of the
machine. Figure 8.8a shows the main field flux Φ f that is established by the mmf produced by the

1Notice that currents flowing into terminals F1 and S1 result in a cumulative compound effect; whereas currents flowing into
terminal F1 and out of terminal S1 result in a differential compound effect. Also notice that if F1 were connected to A1 in
each case, it would become a short-shunt connection.
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Figure 8.8 The effect of armature reaction in a dc machine: (a) the effect of the air gap on the pole flux
distribution, (b) the armature flux alone, and (c) resultant distortion of the field flux produced by the armature
flux.

field current when there is no current flowing in the armature. Figure 8.8b shows the armature flux
Φa that is established by the armature mmf produced by the current flowing in the armature when
there is no current flowing in the field winding of the machine.

The brushes are located on the magnetic neutral axis. Figure 8.8c shows the situation when both
the main field flux and the armature flux exist at the same time. It is clear that the armature flux
causes a distortion in the distribution of the main field flux. As shown in the figure, the phasor sum
of the two mmfs produces a resultant flux Φr.

Notice that the flux produced by the armature mmf opposes the flux under one-half of the pole
and aids under the other half of the pole. As a result, flux density under the pole increases in one-half
of the pole and decreases under the other half of the pole.

As shown in Figure 8.9d, the magnetic neutral axis is shifted from the geometric neutral axis.
The shift is forward in the direction of rotation for a generator and backward against rotation for
a motor. The magnitude of flux shift is a function of saturation in the pole tips and the amount of
armature (load) current.

If there is no saturation, the increase of flux in one pole tip is canceled by a corresponding
decrease in the others.1 With saturation, on the other hand, there is a net decrease in total flux,2

causing a decrease in the terminal voltage of the generator and an increase in the speed of the motor.

1It is called the cross-magnetizing armature reaction.
2It is called the demagnetizing effect of the cross-magnetizing armature reaction.
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Figure 8.9 Main field, armature, and resultant flux-density distributions with brushes on the geometric neutral
axes: (a) linear representation of stator and armature-magnetic circuits, (b) flux-density distribution due to main
field alone, (c) flux-density distribution due to armature mmf alone, and (d) resultant flux-density distribution.

8.8 COMMUTATION
Commutation is the process of reversing the direction of the current in an armature coil as the
commutator segments to which the coil is connected move from the magnetic field of one polarity
to the influence of the magnetic field of the opposite polarity, as shown in Figure 8.10. The time
interval required for this reversal is called the commutation period.

As the commutator sweeps past the brushes, any given coil connected to one of the segments
has current in a particular direction. The current in the coil is reversed as the commutator segment
approaches and passes the brush. Consider the coil b connected to commutator segments 2 and 3, as
shown at the top of Figure 8.10, and notice that the current in the coil is flowing from left to right.

The middle diagram of Figure 8.10 shows that there is no current flow in the coil since it is short-
circuited by the brush. The bottom of Figure 8.10 shows the moment at which brush contact with



292 Electrical Machines and Their Applications

Figure 8.10 The reversal of current flow in a coil undergoing commutation.

commutator segment 3 is interrupted. Notice that the direction of current flow in coil b is reversed
and that it is now flowing from right to left.

As shown in Figure 8.11, during the commutation period ∆t the commutator segments to which
a coil is connected are passing under the brush; the current I has to be totally reversed as the com-
mutator segments pass from under the brush to prevent the formation of an arc.

The reversal of the coil induces a self-inductance voltage which opposes the change of current
that can cause a spark to appear at the trailing edge of the brush. Figure 8.12 shows the ideal process
of commutation as well as under commutation1 due to the reactance voltage. If the reactance voltage
is large enough, it may cause sparking at the trailing edge of the brush. Excessive sparking burns
the brushes and the commutator surface, but sparking can be prevented by inducing a voltage in the
coil undergoing commutation.

This can be accomplished by the use of commutating poles, which are small poles placed between
the main (Figure 8.15 on pp. 387 of Electrical Machines by Gönen) poles of a dc machine. The
commutating windings are interconnected in such a way that they have the same polarity as the

1It is also called the incomplete or delayed commutation.
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Figure 8.11 Waveform of a current in an armature coil during linear commutation.

Figure 8.12 Coil current as a function of time during ideal commutation and under commutation (or delayed
commutation).

following main pole in the direction of rotation. Almost all dc machines of more than 1 hp are
furnished with commutating poles (or interpoles).

As previously stated, the commutating windings are permanently connected in series with the
armature and their leads are not brought out to the terminal box. In small machines (with 1 hp or
less), the commutation can be improved by shifting the brushes. As a result, the coils undergoing
commutation can have current reversals supported by flux from the main poles.

8.9 COMPENSATING WINDINGS
As the armature current increases due to the armature reaction, the corresponding flux density dis-
tortion also increases, which in turn causes the commutator flashover probability to increase. The
commutating windings located on the commutating poles can neutralize the effect of armature re-
action in the interpolar areas.

However, they cannot stop the flux distortions in the air gaps over the pole faces. These flux
distortions can be eliminated by placing compensating windings in slots distributed along the pole
faces, as shown in Figure 8.1. Each compensating winding has a polarity opposite that of the ad-
joining armature winding. By allowing armature current to flow through such a pole-face winding,
the armature reaction can be completely neutralized by a proper amount of ampere-turns.
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Figure 8.13 Magnetization curve: (a) explicitly showing the effect of hysteresis and (b) average magnetiza-
tion curve.

The only disadvantage of compensating windings is that they are very expensive. For this reason,
they are only used in large dc machines that handle heavy overloads, or suddenly changing loads,
or in motors subject to high acceleration and sudden reversals in rotational directions.

8.10 MAGNETIZATION CURVE
The magnetization curve of a dc machine can be obtained by running the machine as a generator
at its rated speed1 with no load and varying its field current. The internal generated voltage of the
machine is

Ea = Ka ×Φd ×ωm

and if the speed of the armature is kept constant, then Ea will be proportional to the flux setup by
the field winding. The magnetization curve (mc) is usually obtained by exciting the field winding
separately, regardless of whether the machine is normally used as a generator or as a motor. Note
that the armature (or load) current is zero since the machine is running without a load, and that the
terminal voltage is equal to the internal generated voltage Ea.

As the magnetizing flux per pole is increased by raising the current in the field winding, the
voltage Ea also increases. However, above a certain point called the saturation point, it becomes
increasingly difficult to further magnetize the core. Due to the saturation of the magnetic core above
the saturation point (i.e., the knee of the curve), the relationship between the voltage Ea and the field
current I f becomes nonlinear, as shown in Figures 8.13a and b. The resultant mc curve shows the
relationship between the voltage Ea and the field mmf or the field current I f .

However, the shape of the curve is determined mainly by the characteristics of the magnetic
circuit. Because of a small residual magnetism that exists in the field structure, the voltage does not
start from zero, except in a new machine.2

As shown in Figure 8.13a, if the field current is increased from zero to a value that yields an
armature voltage well above the rated voltage of the machine, the resultant curve is the ascending
curve. If the field current I f is progressively decreased to zero again, this curve is the descending

1The rated speed is the speed at which the machine is designed to operate to produce the rated voltage.
2Just as a new machine may not have residual magnetic flux, in any machine it may be lost as a result of conditions such as
mechanical jarring during transportation, excessive vibrations, inactivity for long periods of time, extreme heat, or having
its alternating current unintentionally connected across the field winding. In such cases, the field winding must receive an
initial do excitation to provide the machine with a suitable level of residual flux. This process is known as flashing the field.
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Figure 8.14 Magnetization curves developed at two separate speeds with the excitation held constant.

curve. The reason that the descending curve is above the ascending curve can be explained by
hysteresis. The magnetization curve1 shown in Figure 8.13b is the average of the two curves. Note
that ωm and nm represent the rated speed2 of the machine at which the magnetization curve is
developed given in rad/s and rpm, respectively.

Consider the magnetization curves shown in Figure 8.14. Assume that the top and the bottom
curves are obtained at constant speeds of ωm1 and ωm2, respectively. Therefore, the associated in-
ternal generated voltages are

Ea1 = Ka ×Φd ×ωm1 (8.10)

and
Ea2 = Ka ×Φd ×ωm2 (8.11)

Since
Ka ×Φd =

Ea1

ωm1
(8.12)

and
Ka ×Φd =

Ea2

ωm2
(8.13)

then

Ea2 =

(
ωm2

ωm1

)
Ea1 (8.14)

where Ea1 and Ea2 are generated at constant speeds ωm1 and ωm2, respectively. Alternatively, if the
constant speeds are given in rpm, then

Ea2 =

(
nm2

nm1

)
Ea1 (8.15)

Up to now, it has been assumed that the machine involved is a separately excited shunt machine.
However, it is possible to apply this approach to other types of dc machines. This can be accom-
plished by considering the direct-axis air-gap flux produced by the combined mmf.

1It is also called the saturation curve, the open-circuit characteristic, or the no-load characteristic.
2Hence, it is called the magnetization-curve speed.
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For example, suppose that the machine involved is a compound machine. Its net excitation per
pole on the d-axis (i.e., the total ampere turns per pole on the d-axis) can be expressed as

∑ ATd

p
= Nf If ±NseIa (8.16)

where

Nf is the number of turns per pole of the shunt-field winding

I f is the current in the shunt-field winding

Nse is the number of turns per pole of the series winding

Ia is the current in the series-field winding

This equation can be modified so that the effects of the armature reaction can be taken into
account. Thus,

∑ ATd

p
=

VtNf

∑R f
±NseIa −KdIa (8.17)

where the term KdIa is a simplified linear approximation to account for the demagnetization of the
d-axis (i.e., the armature reaction) caused by the armature mmf. In Equations 8.16 and 8.17, the
plus sign is used for a cumulative-compounded machine and the minus sign is used for a differential
compounded machine. The Kd is the armature reaction constant for the machine involved. Hence,
Equation 8.17 gives the total effective mmf per pole.

If the machine has a self-excited shunt field, the net excitation per pole on the d-axis can be
expressed as

∑ ATd

p
=

VtNf

∑R f
±NseIa −KdIa (8.18)

where the total shunt-field circuit resistance is

∑R f = R f +Rrheo (8.19)

where

Vt is the terminal voltage

R f is the resistance of the shunt-field winding

Rrheo is the resistance of the shunt-field rheostat1

However, if the machine has a separately excited shunt field, the net excitation per pole on the
d-axis can be expressed as

∑ATdIp =
Vf Nf

∑R f
±NseIa −KdIa (8.20)

where Vf is the voltage across the shunt-field winding.
If the magnetization curve is given in terms of Ea versus I f , it is necessary to define an equivalent

if that would produce the same voltage Ea as the combination of all the mmfs in the machine.2 Since

∑ ATd

p
= Nf If ,eq

1Usually, a rheostat is included in the circuit of the shunt winding to control the field current and to vary the shunt-field mmf.
2In other words, it is as if the machine were replaced by an equivalent machine with a shunt field in order to find the
corresponding equivalent I f current.
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Figure 8.15 The separately excited shunt generator or motor schematic diagram with current directions.

such equivalent shunt-field current can be found from

I f ,eq =
∑ATd/p

Nf
(8.21)

Once the equivalent shunt-field current is found, the corresponding voltage Ea can be found from
the magnetization curve. Some magnetization curves are plotted in terms of Ea versus ∑ATd/p or
I f ,eq, as shown in Figure 8.14. As can be observed from Equation 8.20, when the Ia is zero, the net
excitation per pole on the d-axis is produced only by the shunt-field winding. Since

∑ ATd

p
= Nf If (8.22)

then

I f =
∑ATd/p

Nf
(8.23)

8.11 DC GENERATORS
As stated in Section 8.1, dc generators are generally not used to produce bulk power today. Instead,
solid state-controlled rectifiers are preferred for many applications. However, there are still some
dc generators that are used to provide dc power to isolated loads and for special applications. In
such use, the dc machine operating as a generator is driven by a prime mover at a constant speed
with the armature terminals connected to the load. It can be used as a separately excited generator,
a selfexcited shunt generator, a series generator, or a compound generator.

8.12 SEPARATELY EXCITED GENERATOR
In the separately excited dc generator, the shunt-field winding is supplied by a separate external dc
power source, as shown in Figure 8.15. The external dc power source can be a small dc generator, a
solid-state dc power supply, or a battery.

In the equivalent circuit, Ea is the internal generated voltage, Vt is the terminal voltage, Ia is
the armature current, which is also the load current, I f is the field current, Ra is the resistance of
the armature winding, R f is the resistance of the field winding, Rrheo is the resistance of the shunt-
field rheostat, and Vf is the voltage of a separate source. According to Kirchhoff’s voltage law, the
terminal voltage is

Vt = Ea − IaRa −2.0 (8.24)
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Figure 8.16 Terminal and load characteristics of a separately excited generator.

and the field voltage is
Vf = I f R f (8.25)

Equation 8.24 represents the terminal characteristic1 of the separately excited dc generator as
shown in Figure 8.16. Notice that the terminal voltage differs from the no-load voltage by the three
voltage drops representing the armature resistance voltage drop, the brush-contact voltage drop, and
the armature reaction voltage drop. The load characteristic is determined by

Vt = IaRL

where RL represents the load resistance. As shown in Figure 8.16, the intersection of the terminal
characteristic and the load characteristic is the operating point for the generator. The operation of
the separately excited generator is stable with any field excitation. Therefore, a wide range of output
voltages are available.

8.13 SELF-EXCITED SHUNT GENERATOR
As shown in Figure 8.17a, in the self-excited shunt generator, the field winding is connected directly
across the armature winding. Therefore, the armature voltage can provide the field current. However,
any change in the armature current results in a change in the IaRa voltage drop.

Because of this, both the terminal voltage and the field current2 must vary. Thus, the internal
generated voltage Ea in a self-excited generator is a function of the armature current Ia. Accordingly,
the terminal voltage Vt changes as the Ia changes. Hence,

Vt = Ea − IaRa −2.0 (8.26)

and the field voltage is
Vt = I f R f (8.27)

1It is also called the external characteristic.
2Typically, the field current I f is about 5% of the rated armature current.
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Figure 8.17 Motor or generator connection diagram with current directions of a dc machine having (a) shunt
winding, (b) series winding, and (c) compound (long-shunt) winding.

The terminal characteristic of a self-excited generator is similar to that of the separately excited
generator except that its terminal voltage falls off faster as the load current IL increases. Notice that

Ia = IL + I f (8.28)

and
I f =

Vf

R f
(8.29)

The decrease in the terminal voltage, due to increased IaRa and armature reaction voltage drops,
also causes the field current I f to decrease and the terminal voltage to drop further.

The field current can be adjusted by using the shunt-field rheostat, which is connected in series
with the shunt-field winding. Under no-load conditions, the armature current is equal to the field
current.

The operation of the self-excited generator depends on the existence of some residual magnetism
in its magnetic circuit. As shown in Figure 8.18, when such a generator is brought up to its constant
speed because of the presence of a residual flux Φd,res in its field poles, there will be a small internal
generated voltage Ea,res even at zero field current since

Ea,res = Ka ×Φd ×ωm (8.30)

Once this voltage appears at the terminals, there will be a small amount of field current flowing in
the shunt-field winding since it is connected directly across the brushes. This field current produces
an mmf in the field, causing the flux to increase and inducing a higher Ea, which in turn causes more
current to flow through the field windings.

This voltage buildup is depicted on the mc curve in Figure 8.18. Notice that at no-load field
current I f ,nl , the corresponding no-load terminal voltage is Vt, nl. Also shown in this figure is the
field resistance line which is a plot of R f If versus I f . Field resistance is governed by

R f =
Vf

If
(8.31)
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Figure 8.18 Voltage built up in a self-excited shunt dc generator.

As long as there is some residual magnetism in the magnetic poles of the generator, the voltage
buildup will take place if the following conditions are satisfied: (1) there must be a residual flux in
the magnetic circuit and (2) the field winding mmf must act to aid this residual flux where (3) the
total field-circuit resistance must be less than the critical field-circuit resistance.

As shown in Figure 8.18, the critical field resistance is the value that makes the resistance line
coincides with the linear portion of the mc curve. In other words, it represents the resistance value
of the shunt-field circuit below which the voltage buildup takes place.

Therefore, the slope of the mc curve in the linear region is the critical resistance. Since a shunt
generator maintains approximately constant voltage on load, it is widely used as an exciter to provide
the field current for a large generator.

8.14 SERIES GENERATOR
The series generator is a self-excited generator that has its field winding connected in series with
its armature, as shown in Figure 8.17b. Therefore, its armature current Ia, field current Ise, and load
current IL are all equal to each other. Thus,

Ia = Ise = IL (8.32)

and
Vt = Ea − Ia(Ra +Rse) (8.33)

where Rse is the resistance of the series-field winding. Under no-load conditions, the internal gen-
erated voltage is due to the residual magnetism. As the load increases, so does the field current
(I f = Ia) and the voltage Ea, as shown in Figure 8.19.

The terminal voltage continues to increase until the magnetic circuit of the machine becomes
saturated. Series generators are used as voltage boosters and as constant-current generators in arc
welding.
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Figure 8.19 Terminal characteristic of a series dc generator.

8.15 COMPOUND GENERATOR
As shown in Figure 8.17c, a compound generator has both series and shunt field windings. If the
mmf of the series field aids the mmf of the shunt field, it is called a cumulative compound generator.
On the other hand, if the mmf of the series field opposes the mmf of the shunt field, it is called a
differential compound generator. If the shunt-field winding is connected across the armature, as
shown in Figures 8.7d and e, this type of compound generator is called a short-shunt generator. If
the shunt-field winding is connected across the series combination of armature and series windings,
as shown in Figure 8.7c, it is called a long-shunt generator. For the short-shunt compound generator,

Vt = Ea − IaRa − ILRse (8.34)

and
Ia = I f + IL (8.35)

where

Rse is the resistance of the series-field winding

IL is the load current

For the long-shunt compound generator,

Vt = Ea − Ia(Ra +Rse) (8.36)

Ia = I f + IL (8.37)

where
I f =

Vt

R f
(8.38)

or
I f =

Vt

Ra +Rse

As shown in Figure 8.20, a cumulatively compounded generator may be flat-compounded, overcom-
pounded, or undercompounded, depending on the strength of the series field.

If the terminal voltage at the rated load (i.e., full load) is equal to the rated voltage (i.e., no-load
voltage), the generator is called a flat-compounded generator. If the terminal voltage at the rated
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Figure 8.20 Terminal characteristics of compound generators operating at constant speed.

load is greater than the no-load voltage, the generator is called an overcompounded generator. In
the event that the terminal voltage at the rated load is less than the no-load voltage, the generator is
called an undercompounded generator.

Overcompounding can be used to compensate for line drop when the load served is located far
from the generator. It may also be used to counteract the effect of a drop in the prime-mover speed
as the load increases.

8.16 VOLTAGE REGULATION
The terminal voltage of a generator normally changes as the load current changes. This voltage
variation is described by voltage regulation. The percent voltage regulation (%V Reg) of a generator
is defined as

%V Reg =
Vt,nl −Vt, f l

Vt, f l
×100 (8.39)

where

Vt,nl is the no-load terminal voltage

Vt, f l is the full-load terminal voltage

Also,

%V Reg =
Ea −Vt, f l

Vt, f l
× (8.40)

since Ea is equal to Vt,nl .

Example 8.3:

A dc machine has a rated terminal voltage of 250 V and a rated (full-load) armature current of
100 A. Its armature-circuit resistance (i.e., armature winding resistance plus commutating field
resistance) is 0.10 Ω. Its shunt-field winding has a 100 Ω resistance and 1000 turns per pole. The
total brush-contact voltage drop is 2 V and the demagnetization of the d-axis by armature mmf is
neglected. The magnetization curve data of the dc machine for the rated speed nmc of 1200 rpm is
tabulated in Table 8.1 and the curve is plotted in Figure 8.21.

Assume that the machine is operated as a separately excited (dc) shunt generator and is driven
at a constant speed of 1200rev/min.
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Table 8.1
The Magnetization Curve Data for nme = 1200 rPm

Ea(mc)(V) 70 140 195 235 260 276
I f (A) 0.5 1.0 1.5 2.0 2.5 3.0

Figure 8.21 Magnetization curve for a dc machine at 1200 rev/min for Example 8.3.

(a) Determine the values of the terminal voltage at no load and full load as the field current is set
at 1.0, 1.5, and then 2.5 A, separately.

(b) Plot the found values of the terminal voltage Vt versus the armature current Ia.

(c) Determine the percent voltage regulation at each field current setting.
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Table 8.2
For the Results of Example 8.3

If At Ia = 0 Vt(0,A) = Ea(mc) = 0 At Ia = 100 A I
(
∑Ra

)
Vt(100 A)

1.0 A 140 V 10 V 128 V
1.5 195 10 183
2.5 260 10 248

Figure 8.22 The plot of terminal voltage at no load versus the field current I f .

Solution

(a) When the field current is set at 1.0 A at no load, the terminal voltage Vt(0A) is equal to the
internal generated voltage Ea(mc) found from the magnetization curve given in Table 8.1. Thus,

Vt(0A) = Ea(mc) = Ea = 140 V

At full load, the internal voltage drop due to the armature-circuit resistance is

Ia
(
∑Ra

)
= (100 A)(0.10 Ω) = 10 V

Hence, at full load, the terminal voltage of the generator is

Vt(100A) = Ea − Ia
(
∑Ra

)
−2.0

= 140− (100 A)(0.10 Ω)−2.0

= 128 V

Similarly, when the field current is set at 1.5 and then at 2.5 A, the corresponding full-load
terminal voltages can be found in the same way. The results are presented in Table 8.2. Figure
8.22 shows the plot of terminal voltage at no load versus the field current I f .
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Figure 8.23 The plot of terminal voltage versus the armature current.

(b) The plot of the terminal voltage Vt versus the armature current Ia is shown in Figure 8.23.

(c) At I f = 1.0 A:

%V Reg =
Vt,nl −Vt, f l

Vt, f l
×100

=
140−128

128
×100

= 9.4

At I f = 1.5 A:

%V Reg =
195−183

183
×100

= 6.6

At I f = 2.5 A:

%V Reg =
260−248

248
×100

= 4.8

8.17 DEVELOPED POWER
As previously stated, a dc machine is a versatile machine, which can be used as a generator or
a motor. In the generator mode, the input is the mechanical power provided by a prime mover (a
diesel engine, a gas turbine, or an electrical motor) and the output is the electrical power. Conversely,
in the motor mode, the input is the electrical power and the output is the mechanical power.

However, as illustrated in Figure 8.24, in both modes of operation, a dc excitation current must
be provided to establish the magnetic field. The developed power of a separately excited dc machine
is

Pd = EaIa (8.41)
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Figure 8.24 Block diagram of a dc machine operating in (a) generator mode and (b) motor mode.

The power at the armature terminals is

Pta =Vta × Ia (8.42)

where Vta is the voltage at the armature terminals. Thus, from Equation 8.8,

Vta = Ea ± Ia(∑Ra)±2.0 (8.43)

where the total armature winding circuit resistance is given by Equation 8.9 as

∑Ra = Ra +Rse +Rcw +Rcp +Rat,ext

Observe that in Equation 8.43, the minus sign is used for a generator and the plus sign for a motor. By
substituting Equation 8.43 into Equation 8.42, the power at the armature terminals can be expressed
as

Pta = [Ea ∓ Ia(∑Ra)∓2.0]Ia (8.44)

Pta = EaIa ∓ I2
a (∑Ra)∓2.0Ia (8.45)

or
Pta = Pd ∓Pcu ∓Pbrush (8.46)

where

Pd is the developed power

Pcu is the armature-circuit copper losses

Pbrush is the brush-contact loss

Therefore,
Pcu = Ia

2 (∑Ra) (8.47)

and
Pbrush = 2.0Ia (8.48)

The developed power Pd is greater than the armature terminal power Pta for a generator, but it is less
than Pta for a motor.

The shaft power1 can be expressed as

Psha f t = Pd ±Prot (8.49)

where Prot represents the rotational losses and is the sum of the friction and windage losses PFW and
the core losses Pcore. Thus,

Prot = PFW +Pcore (8.50)

1It is also called the mechanical power. It is the input power for a generator and the output power for a motor.
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In Equation 8.49, the plus sign is used for a generator and the minus sign for a motor because the
shaft power Psha f t is greater than the developed power Pd for a generator, but it is less than Pd for a
motor.

In addition to the rotational losses, there may be a stray-load loss Pstray for those losses that
cannot be easily accounted for. It is usually ignored in small machines, but in large machines above
100 hp it is generally assumed to be about 1% of the output power.

8.18 DEVELOPED TORQUE
Assume that a dc machine has an armature voltage of Ea and armature current of Ia. Its developed
power can be expressed as

Pd = EaIa (8.51)

and its developed torque1 is found from

Td =
Pd

ωm
(8.52)

or
Td =

EaIa

ωm
(8.53)

Using Equation 8.2,

Td =
(Ka ×Φd ×ωm)Ia

ωm
(8.54)

Td = Ka ×Φd × Im (8.55)

where
Ka =

Z × p
2π ×a

and is defined as the winding constant since it is fixed by the design of the winding. Hence, the
developed torque of a dc machine is a function of the flux in the machine, the armature current in
the rotor, and a constant that depends on the machine.

In the above equations, the torque is in Nm. If it is requested in English units, it must be multiplied
by 0.7373. Note that the developed torque can also be determined from

Td =
Pd

ωm
=

Ea × Ia

ωm

Since,

ωm =
2πnm

60
then

Td =
Ea × Ia

2πnm/60
(8.56)

where the speed nm is in rpm.

1Some authors prefer to call the torque of a dc motor the developed torque and the torque of a dc generator the countertorque
or the induced torque since it opposes the torque applied to the shaft by the prime mover.
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Figure 8.25 Power flow in a dc machine: (a) generator and (b) motor.

8.19 POWER FLOW AND EFFICIENCY
Consider the equivalent-circuit diagram of the self-excited compound machine shown in Figure
8.17c. Figure 8.25a shows the power flow of this type of dc generator. The input power is the
mechanical power or the shaft power.

Depending on the machine size, the rotational losses are between 3% and 15%, the stray-load
loss is about 1% for machines larger than 100 hp (otherwise, it is usually ignored), the armature-
circuit copper loss is between 3% and 6%, the shunt-field loss is between 1% and 5%, and the
brush-contact loss is about 2Ia as explained before.

If the shunt field is separately excited, its losses are not supplied by the prime mover through the
shaft and therefore, must be handled separately. Figure 8.25b shows the power flow of a self-excited
compound motor. Notice that here, the input is in electrical power and the output is in mechanical
power. The efficiency1 of a dc machine can be determined from

Efficiency =
Pout

Pin
(8.57)

but since
Pout = Pin −∑Ploss (8.58)

then
Efficiency = 1− ∑Ploss

Pin
(8.59)

Thus, the percent efficiency can be expressed as

%η =

(
1− ∑Ploss

Pin

)
×100 (8.60)

1The efficiency of a dc machine can be determined more accurately by a test using the Kapp-Hopkinson method. In such a
test, two similar machines are mechanically coupled and electrically connected back to back. For further information, see
Daniels (1968).
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The maximum efficiency at a given constant speed is obtained when the sum of the rotational loss
and the shunt-field copper loss is equal to the armature copper loss. The percent efficiency can also
be found from

%η =

(
1− Pout

Pout +∑Ploss

)
×100 (8.61)

Example 8.4:

Assume that a separately excited shunt motor operating at 1000 rev/min has a load current of 100 A
and a terminal voltage of 240V. If the armature winding resistance is 0.1 Ω, determine the following:

(a) The developed torque.

(b) The shaft speed and the load current if the torque is doubled at the same excitation.

Solution

(a) From Equation 8.8,

Ea =Vt − Ia(∑Ra)−2.0

= 240− (100)(0.1)−2.0

= 228 V

at a speed of

ωm = (1000 rev/min)
(

2π
60

)

= 104.72 rad/s

From Equation 8.2
Ea = Ka ×Φd ×ωm

or

Ka ×Φd =
Ea

ωm

=
228 V

104.72 rad/s
= 2.1772

Thus, the developed torque is

Td = Ka ×Φd × Ia

= (2.1772)(100)

= 217.72 N ·m

(b) When Td = 2(217.72) = 435.44 N · m

Ia =
Td

Ka ×Φd

=
435.44
2.1772

= 200 A
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Therefore, the corresponding speed is

ωm =
Ea

Ka ×Φd

=
Vt − IaRa

Ka ×Φd

=
240− (200)(0.1)

2.1772
= 101.05 rad/s

or

n = (101.05 rad/s)
(

60
2π

)

= 964.96 rev/min

Example 8.5:

Assume that a 25 hp, 250 V, self-excited shunt motor is supplied by a full-load line current of 83
A. The armature and field resistances are 0.1 and 108 Ω, respectively. If the total brush-contact
voltage drop is 2 V and the friction and core losses are 650 W, determine the following:

(a) The shunt-field winding loss.

(b) The armature winding loss.

(c) The total loss of the motor.

(d) The percent efficiency of the motor.

Solution
The input power is

Pin =VtIL

= (250 V)(83 A)
= 20,750 W

(a) The shunt-field winding loss is

Pf = I2
f R f

=Vf I f

=
V 2

f

R f

= 579 W

Thus, the field current is

I f =
Pf

I f

=
579 W
250 V

= 2.316 A
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(b) Since the full-load armature current is

Ia = IL − I f

= 83−2.316

= 80.684 A

the armature winding loss is

Pa = IaRa

= (80.684 A)2(0.10 Ω)

= 651 W

and the brush-contact loss is

Pbrush = 2Ia

= 2(80.684 A)
= 161.4 W

(c) Since the rotational loss is given as 650 W, the total power loss is

∑Ploss = P f +Pa +Pbrush +Prot

= 579+651+161.4+650

= 2,041.4 W

(d) The percent efficiency of the motor is

%η =

(
1− ∑Ploss

Pin

)
×100

=

(
1− 2,041.4 W

20,750 W

)
×100

= 90.16%

8.20 DC MOTOR CHARACTERISTICS
As previously stated, a dc machine can be used both as a generator and as a motor. In fact, in certain
applications, dc machines operate alternately as a motor and as a generator.

However, in general there are some design differences, depending on whether the dc machine is
intended for operation as a motor or as a generator. Unlike dc generators, dc motors are still very
much in use in many industrial applications because of their attractive performance characteristics.

8.20.1 SPEED REGULATION

The dc motors excel in speed control applications, where they are compared by their speed regula-
tions. The speed regulation (Speed Reg) of any motor is determined from

Speed Reg =
ωnl −ω f l

ω f l
(8.62)

Thus, the percent speed regulation is

%Speed Reg =

(
ωnl −ω f l

ω f l

)
×100 (8.63)

where
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omeganl is the no-load angular speed in rad/s

ω f l is the full-load angular speed in rad/s

Alternatively, if the speeds are given in rpm then the percent speed regulation of a motor is found
from

%Speed Reg =

(
nnl −n f l

n f l

)
×100 (8.64)

The magnitude of the speed regulation indicates the steepness of the slope of the torque–speed
characteristic.

8.20.2 SPEED-CURRENT CHARACTERISTIC

In general, motors are designed to provide a rated horsepower at a rated speed. Since the internal
generated voltage is a function of the angular velocity, then

Ea = Ka ×Φd ×ωm (8.65)

from which the angular velocity ωm can be expressed as

ωm =
Ea

Ka ×Φd
(8.66)

By substituting Equation 8.65 into Equation 8.66, the angular velocity or shaft speed can be found
as

ωm =
Vt − IaRa

Ka ×Φd
(8.67)

This equation is called the motor speed equation. Notice that the speed of a dc motor depends on
the applied terminal voltage Vt , the armature current Ia, the resistance Ra, and the field flux per pole
Φd . The Ka is a design constant and cannot be changed to control the speed. Equation 8.67 can be
expressed as

ωm =
Vt

Ka ×Φd
− IaRa

Ka ×Φd
(8.68)

Since at no load the second term becomes zero,1 the speed is

ωnl =
Vt

Ka ×Φd
(8.69)

For a given armature current, the speed of a dc motor will decrease as the armature-circuit re-
sistance increases. As can be observed in Equation 8.67, such a speed adjustment can be made by
weakening the field flux by inserting resistance in the field circuit using a field rheostat. Such speed
control is a smooth and efficient means of changing the motor speed from basic speed to maximum
speed.

However, if the field circuit is opened accidentally, the field flux will suddenly decrease to its rel-
atively small residual value. If the armature circuit is not opened immediately, the motor speed will
increase to dangerously high values and the motor will destroy itself in a few seconds either by the
windings being forced from the slots or the commutator segments being thrown out by centrifugal
force.

Since the sudden decrease in the field flux reduces the counter voltage to a very small amount,
the armature current of the motor will increase to a very high value. This will take place before the

1In reality, however, the armature current Ia at no load is not zero, but is about 5% of the full-load current due to rotational
losses.
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Figure 8.26 Speed–current characteristics.

Figure 8.27 Speed–torque characteristics.

motor starts to rotate at a high speed. A properly sized circuit breaker inserted into the armature
circuit can prevent such a disaster.

Succinctly put, the field circuit of a shunt motor must never be opened if the motor is running.
Otherwise, the motor will “run away” and will destroy itself in a few seconds!

Similarly, as the load is removed from a series motor, its field flux will decrease. If all the me-
chanical load is removed from its shaft, the field flux will decrease to almost zero, and the motor
speed will increase to a dangerously high level until it destroys itself.

Thus, a series motor must never be run without a load! Nor should it be connected to a mechan-
ical load by a belt since it can break or slip. Figure 8.26 shows the speed–current characteristics of
shunt, series, and cumulative compound motors.

8.20.3 SPEED-TORQUE CHARACTERISTIC

Figure 8.27 shows the speed–torque characteristics of shunt, series, and cumulative compound mo-
tors. Notice that the speed of a shunt motor changes very little (in fact, less than 5% in large motors
or less than 8% in small motors). Because of this, shunt motors are classified as constant-speed
motors.
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Figure 8.28 Torque–load current characteristics.

Figure 8.29 Internal generated voltage–armature current characteristics.

The speed of a series motor changes drastically as the load or the load torque changes. How-
ever, the cumulative compound motor combines the operating characteristics of the shunt and series
motors.

Unlike a series motor, a compound motor has a definite no-load speed and can be safely operated
at no load. As the load or load torque is increased, the growth in the field flux decreases the speed
more in a series motor than in a shunt motor.

8.20.4 TORQUE-CURRENT CHARACTERISTIC

Figure 8.28 shows the torque–load current characteristics of shunt, series, and cumulative compound
motors. Notice that except for lighter loads, the series motor has a much greater torque than the shunt
or the cumulative compound motor for a given armature current.

Since a series motor has a much greater starting torque, it is exceptionally well suited for staring
heavy loads at a reduced speed.

8.20.5 INTERNAL GENERATED VOLTAGE-CURRENT CHARACTERISTIC

Figure 8.29 shows the internal generated voltage–armature current characteristics of shunt, series,
and cumulative compound motors. In a motor, the internal generated voltage is called the counter-
voltage (i.e., the counter emf or back emf ).
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Notice that the generated voltage decreases as the load increases because of the increased voltage
drop Ia ∑Ra in the armature circuit. In series and compound motors, the armature-circuit resistance
∑Ra is the sum of the armature winding resistance Ra and the series-field winding resistance Rse.
Thus,

∑Ra = Ra +Rse (8.70)

However, in the shunt motor it is equal to the armature winding resistance Ra. That is,

∑Ra = Ra (8.71)

Example 8.6:

Assume that the separately excited dc machine given in Example 8.3 is being used as a shunt motor
to drive a mechanical load. Its field current is kept constant at 2 A. As before, the full-load current
of the machine is 100 A. The terminal voltage of the motor is kept variable at 150, 200, and 250 V
by using a control rectifier. Determine the following:

(a) The developed torque at full load of 100 A.

(b) The ideal no-load speed in rpm.

(c) The full-load speed in rpm.

(d) A sketch of the torque{current characteristic based on the results found in Part (a).

(e) A sketch of the speed{current characteristics based on the results found in Parts (b) and (c).

Solution

(a) Since the magnetization curve is drawn at the rated and constant speed of nmc = 1200 rpm at
I f = 2 A, the corresponding voltage from the magnetization curve given in Table 8.1 is found
as Ea(mc) = 235 V. However, at a different speed nm, the corresponding voltage would be Ea.
Therefore, from Equation 8.14,

Ea

Ea(mc)
=

ωm

ωmc

or
Ea

ωm
=

Ea(mc)

ωmc

The right side of this equation represents constant excitation on the d-axis. Since

Ea = Ka ×Φd ×ωm

from which
Ka ×Φd =

Ea

ωm

Therefore, the developed torque is

Td = Ka ×Φd × Ia

=

(
Ea

ωm

)
Ia

=

(Ea(mc)

ωmc

)
Ia

Hence, at full load

Td =
(235 V)(100 A)
(1200 rpm)( 2π

60 )

= 187 N ·m
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Table 8.3
Other Full-Load Voltages for Vt = 200 and 250 V

At Ia = 100 A
∑Ra = 0.10 Ω At Ia = 0 A At Ia = 100 A At It = 2.0 A At Ia = 0 A At Ia = 100 A

Vt ∑ IaRa Ea,nl Ea,fl Ea,(mc) nnl nfl

150 V 10 V 150 V 138 V 235 V 766 rpm 705 rpm
200 10 200 188 235 1021 960
250 10 250 238 235 1277 1215

(b) Since
Ea

Ea(mc)
=

ωm

ωmc

or
Ea

Ea(mc)
=

nm

nmc

then

nm =

(
Ea

Ea(mc)

)
= nmc

where nmc = 1200 rpm and Ea(mc) = 235 V from the me curve as long as I f = 2 A is kept
constant. Since at no load the terminal voltage Vt and the internal generated voltage Ea are
the same at Ea =Vt = 150 V, the ideal no-load speed is

nnl =

(
150 V
235 V

)
(1200 rpm) = 766 rpm

The other ideal no-load speeds that correspond to the terminal voltages of 200 and 250 V are
given in Table 8.3.

(c) Similarly, the speed at full load is

n f l =

(
Ea, f l

Ea(mc)

)
nmc

where the internal generated voltage is

Ea, f l =Vt −∑ IaRa −2.0

If the applied terminal voltage Vt is 150 V, then the internal generated voltage is

Ea, f l = (150 V)− (100 A)(0.10 Ω)−2.0

= 138 V

n f l =

(
138 V
235 V

)
(1200 rpm)

= 705 rpm

The other full-load speeds that correspond to the terminal voltages of 200 and 250 V are given
in Table 8.3.
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Figure 8.30 Torque-current characteristics.

Figure 8.31 Speed-current characteristics.

(d) Figure 8.30 shows the torque{current characteristic based on the results found in Part (a).
Note that if the excitation current is increased, the slope of the characteristic increases and
the motor provides more torque. Similarly, if the excitation current is decreased, the slope of
the characteristic decreases and the motor provides less torque.

(e) Figure 8.31 shows the speed{current characteristics based on the results found in Parts (b)
and (c).
For the sake of comparison, Figure 8.32 shows the magnetization curves corresponding to the
noload speed of 1277 rpm, the full-load speed of 1215 rpm, and also the mc curve drawn at
1200 rpm.

8.21 CONTROL OF DC MOTORS
The speed of a dc motor can be controlled with relative ease over a wide range above and below the
base (rated) speed.1 Speed control methods for dc motors are simpler and less expensive than those

1The base speed is the speed obtained with rated armature voltage, normal field flux, and normal armature resistance.
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Figure 8.32 Magnetization curves corresponding to the no-load speed of 1277 rpm, the full-load speed of
1215 rpm, and also the mc curve at 1200 rpm.

for ac motors. As can be observed from Equation 8.67, the speed of a dc motor can be changed by
using the following methods:

1. Field control method.

2. Armature resistance control method.

3. Armature voltage control method.

The field control method is the simplest, cheapest, and is most applicable to shunt motors. In this
method, the armature-circuit resistance Ra and the terminal voltage Vt are kept constant, and the
speed is controlled by changing the field current I f . As the value of the rheostat resistance in the
shunt-field circuit is increased, the flux Φd decreases and the speed increases.

Thus, the internal generated voltage does not change considerably as the speed is increased.
However, the torque of the motor decreases as the field flux decreases.1 This speed control method
is also called a constant-horsepower drive, and it is well suited for drives requiring increased torque
at low speeds.

If the motor has a series field, speed control above the base speed can be obtained by inserting a
diverter-resistance in parallel with the series winding to make the field current less than the armature
current.

If the shunt field is separately excited, a solid-state control can be used without a significant
change in motor losses.

In the armature resistance control method, the armature terminal voltage Vt and the field current
I f (and therefore, the field) are maintained constant at their rated values.

The speed of the motor is controlled by varying the resistance of the armature circuit by inserting
an external resistance in series with the armature.2 Even though it can also be applied to compound
and series motors, it is more easily applied to shunt motors.3

1The process of decreasing the field current is also known as the field weakening. By inserting external resistance in series
with the motor field, the speed of a motor can only be increased from a minimum speed, that is, the base speed.

2By inserting external resistance in series with the armature, the speed of a motor can only be decreased from a maximum
speed, that is, the base speed.

3In shunt and compound motors, the external resistor must be connected between the shunt-field winding and the armature,
not between the line and the motor.



Direct-Current Machines 319

Figure 8.33 Ward Leonard system for dc motor speed control.

The armature resistance control method is simple to perform and requires a small initial invest-
ment, but has the disadvantage of considerable power loss and low overall efficiency with the full
armature current passing through the external resistance connected in series.

Today, this speed control method is still used in various transit system vehicles. The same arma-
ture rheostat control can be used for both starting and speed control. The speed range begins at zero
speed.

In the armature voltage control method, the armature-circuit resistance Ra and the field current
if are kept constant,1 and the speed is controlled by varying the armature terminal voltage Vt . This is
the most flexible method of speed control and avoids the disadvantages of poor speed regulation and
low efficiency that are characteristic of the armature resistance method. It can be applied to shunt,
series, and compound motors.

The speed is easily controlled from zero to a maximum safe speed in either forward or backward
directions. The controlled-voltage source may be a dc machine or a solid state-controlled rectifier.
If a dc machine is used, the speed control system is called a Ward Leonard system.

Figure 8.33 shows a Ward Leonard system for dc motor speed control. In such a system, a three-
phase induction motor or a three-phase synchronous motor drives a separately excited dc generator,
with its armature connected directly to the armature of the separately excited dc motor that drives a
mechanical load. Note that the motor of the motor-generator set operates at a constant speed. The
armature voltage of the dc drive motor can be controlled by changing the field current of the dc
generator.

Thus, such control of the armature voltage allows for smooth control of the motor’s speed from
a very small value up to the base speed.2 The motor speed for speeds above the base speed can be
controlled by reducing the field current I f m in the motor.

Figure 8.34 shows the torque and power limits as a function of speed for a shunt motor that has
a combined armature voltage and field resistance control. Notice that the range below base speed
is a constant-torque drive since the flux and permissible armature current are almost constant. The
range above base speed represents a constant-horsepower drive. In the event that the field current f

1The field current is usually kept constant at its rated value.
2Here, the base speed is the rated speed of the motor. The rated speed is the speed that can be obtained when the motor is
operating at its rated terminal voltage, power, and field current.



320 Electrical Machines and Their Applications

Figure 8.34 (a) Torque and (b) power limits as a function of speed for a shunt motor having combined
armature voltage and field resistance control.

of the generator is reversed, the polarity of the generator armature voltage is also reversed and so is
the direction of rotation.

A Ward Leonard system is capable of providing a wide variation of speed in both forward and
reverse directions. Increasing the field resistance R f g of the generator decreases its field current f
and its internal generated voltage Eag. Hence, the speed of the dc drive motor will decrease. The
opposite will be true if the field resistance R f g of the generator is decreased. Increasing the field
resistance R f m of the motor will decrease its field current if M and increase the speed of the motor.
Decreasing the field resistance R f m of the motor will result in a decrease in speed.

Furthermore, the Ward Leonard system has the ability to “regenerate,” that is, to return stored
energy in the machine to the supply lines. For example, when a heavy load is first lifted and then
lowered by the dc drive motor of a Ward Leonard system, the dc motor starts to act as a generator as
the load is coming down, using its countertorque as a brake. Under these conditions, the “generator”
itself starts to operate in the motor mode, driving the synchronous machine as a generator and
supplying power back to the ac system. This process is known as regeneration.

While the dc drive motor is operating, if the voltage Vt is suddenly decreased to a value below
the counter emf of the motor, the armature current is reversed with the motor acting as a generator,
driving the dc generator as a motor. This establishes dynamic braking, which brings the motor to a
quick stop.

In summary, the main advantage of the Ward Leonard system is that the speed is adjustable over
a wide range without large power losses which results in high efficiency at all speeds. This system
is satisfactory for a maximum-to-minimum speed range of 40–1, but must be modified for greater
speed ranges.

The disadvantage is that a special motor-generator set is needed for each dc drive motor. Instead
of one machine, three machines of basically equal ratios must be purchased and therefore a greater
initial investment is required. If there are long periods when the motor is operating under light
load, the losses in the motor-generator set are high. It is relatively inefficient since several energy
transformations are involved.

In recent years, the application of silicon-controlled rectifiers (SCR) has resulted in solid-state
dc motor drives with precise speed control. However, they will not be presented here.

8.22 DC MOTOR STARTING
Only small dc motors of 1 hp or less can be connected directly to a line of rated voltage safely, but
they must have very small moments of inertia. Any dc motor larger than 1 hp requires a starting
device to protect the armature from excessive current during the starting operation.
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Typically, the armature resistance of a dc motor is about 0.05 per unit. If such a motor is con-
nected directly to a line of rated voltage Va,B the armature current on starting is

Ia,start =
Va

Ra

=
Va,B

Ra

(8.72)

Since
Ra,pu =

Ra

Ra,B
(8.73)

then
Ra = Ra,pu ×Ra,B (8.74)

Therefore,

Ia,start =
Va,B

Ra,pu ×Ra,B
(8.75)

or
Ia,start =

Ia,B

Ra,pu
(8.76)

where

Ia,B is the base or rated armature current

Ra,pu is the armature resistance per unit

Since the typical Ra,pu is about 0.05 per unit, then

Ia,start =
Ia,B

0.05
= 20× Ia,B (8.77)

In other words, the armature current of a dc motor on starting is about 20 times its base or rated
armature current! This is due to the fact that the motor is at a standstill on starting and the counter
emf is zero. Therefore, the armature starting is limited only by the resistance of the armature circuit.

All except very small dc motors are started with variable external resistance in series with their
armatures to limit the starting current to the value (about 1.5–2 times rated value) that the motor can
commutate without any damage. Such starting resistance is taken out of the circuit either manually
or automatically as the motor comes to speed.

To develop maximum starting torque, the shunt and compound motors are normally started with
full field excitation (i.e., full line voltages are applied across the field circuits with their field rheo-
stat resistances set at zero). Of course, the series motor is always started under load. Figure 8.35a
illustrates how to start a shunt motor with a dc motor starter. Figure 8.35b illustrates how to start a
dc motor with starting resistors and accelerating contactors.

Note that the starting resistor in each case consists of a series of pieces, each of which is cut out
from the circuit1 in succession as the speed of the motor increases. This limits the armature current
of the motor to a safe value, and for rapid acceleration it does not allow the current to decrease to a
value that is too low, as shown in Figure 8.36.

1If the motor starting is achieved by using a manual dc motor starter, the handle is moved to position 1 at start up so that all
the resistances, R1, R2, R3, R4, and R5, are in series with the armature to reduce the starting current. As the motor speed
increases, the handle is moved to positions 2, 3, 4, 5, and finally the “run” position. At the “run” position, all the resistances
in the starter are cut out of the armature circuit. If the motor starting is achieved by using starting resistors and accelerating
contactors, the individual segments of the resistor are cut out of the circuit by closing the 1A, 2A, and 3A contactors.
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Figure 8.35 Starting a shunt motor with (a) a manual dc motor starter and (b) starting resistors and acceler-
ating contactors.

Figure 8.36 (a) Armature current versus time and (b) speed versus time during the starting of a dc motor.
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Figure 8.37 Automatic starter using “counter-emf” relays for a dc motor.

As the armature resistance is reduced at each step the motor accelerates, but requires less time
to reach its asymptotic speed (zero acceleration) and reduces its current to approximately the rated
load. The number of acceleration steps is almost a function of the horsepower capacity of the motor.
Accordingly, larger motors with more inertia require more steps and a longer time interval to attain
a given asymptotic speed.

Figure 8.37 shows a simplified diagram of an automatic starter using “counter-emf” relays for
a dc motor. It is based on the principle that as the motor speeds up, its countervoltage Ea starts to
increase from an initial value of zero and causes a reduction in the armature current. The segments
of the starting resistor are then cut out in steps as the counter emf Ea increases. When the Ea has
increased to an adequately high value the starting resistor is short-circuited entirely, and the motor
is then connected directly to the line.

Figure 8.38 shows some typical symbols used in automatic starter circuits. An automatic starter
such as the one shown in Figure 8.37 is operated simply by pushing a button. Note that the field
circuit has a relay labeled FL known as the field loss relay. In the event that the field current is
lost, this field loss relay is de-energized and cuts off the power to the M relay by deactivating the
normally open FL contacts even after the start button is pushed. It also causes the normally open M
contacts in the armature circuit to open as well. The three relays that are located across the armature
are called the accelerating relays (AR). They are fast-acting relays with their contacts located in
control lines 2, 3, and 4, respectively, as shown in Figure 8.38.
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Figure 8.38 Typical symbols used in automatic starter diagrams: (a) a relay coil and its contacts, (b) a time
delay relay coil and its contacts, (c) normally open and normally closed push-button switches, and (d) a thermal
overload device and its normally closed contacts.

The control relays are labeled as 1A, 2A, and 3A and are located on control lines 2, 3, and 4.
They short out the segments of the starting resistance as the counter emf of the motor increases. If
the overload device OL that is located in the armature circuit heats up excessively due to excessive
power demands on the motor, its normally closed contact located on the control line 1 will open
and de-energize the main relay M. When the relay M is de-energized its contacts will open and
disconnect the motor from the line.

Figure 8.39 shows a simplified diagram of an automatic starter for a dc motor using time delay
relays. The operation is based on series time delay relays adjusted in a predetermined manner to
close their individual contacts and short out each section of the starting resistor at the proper time
intervals.

Example 8.7:

Assume that a 100 hp, 240 V dc motor has a full-load current of 343 A and an armature resistance
of 0.05 per unit. Determine the following:

(a) The base value of the armature resistance in ohms.

(b) The value of the armature resistance in ohms.

(c) The value of the armature current on starting in amps.

(d) The value of the external resistance required if twice the full-load current is permitted to flow
through the armature at the time of starting.
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Figure 8.39 Automatic starter for a dc motor using time delay relays.

Solution

(a) The base value of the armature resistance is

Ra,B =
Va,B

Ia,B

=
240 V
343 A

= 0.6997 Ω

(b) Since
Ra,pu =

Ra

Ra,B

then the value of the armature resistance in ohms is

Ra = Ra,pu ×Ra,B

= (0.05 pu)(0.6997 Ω)

= 0.035 A Ω

(c) The value of the armature current on starting is

Ia,start =
Vt −Ea

Ra

=
240−0 V
0.035 Ω

= 6,857.1 Ω
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or by using Equation 8.77 directly

Ia,start = 20× Ia,B

= 20(343 A)
= 6,860 A

(d) The value of the external resistance required is

Rext =
Vt

2Ia, f l

=
240 V

2(343 A)
−0.035

= 0.3149 Ω

8.23 DC MOTOR BRAKING
By using automatic motor starters, a number of additional control actions can be accomplished.
These actions may include dynamic braking, reversing, jogging, plugging, and regenerative
braking.1

When the stop button is pushed, the power supply of the motor is cut off and the motor coasts
to a stop. Since the only braking effect is mechanical friction, it will take some time for the motor
to come to rest. The time that it takes for the motor to stop completely is a function of the kinetic
energy that is stored in the motor armature and the attached mechanical load.

As briefly discussed in Section 8.22, a motor can be stopped quickly by the use of the dynamic
braking technique. In dynamic braking, the shunt field of the motor is left connected to the supply
after the armature is disconnected by the opening of the main (M) contactor.

When the M contactor opens, a resistor called a dynamic braking resistor is connected across
the armature terminals. With its shunt field energized, the dc machine behaves like a generator and
produces a countertorque that quickly slows the armature by releasing the stored kinetic energy in
the resistor as heat. During this braking operation, a current flows in the armature winding in a
direction opposite to that of the motor mode of operation.

A shunt motor operation can be smoothly converted from a motor mode to a generator mode
without changing the field winding connections. In a series machine, either the series winding con-
nections have to be reversed or it has to be connected to a separate voltage source to achieve good
braking.

In a compound machine, the series winding is left disconnected during the braking operation.
In dynamic braking, the amount of braking effort is a function of the motor speed, the motor-field
strength, and the value of the resistance. It is used extensively in the control of elevators and hoists
and in other applications in which motors have to be started, stopped, and reversed frequently.

In some motor applications, it may be necessary to quickly reverse the direction of rotation. This
can be achieved by using dynamic braking to stop the motor quickly and then reversing the voltage
applied to the armature. The operation of running a motor for only a fraction of a revolution or a
few revolutions without going through the starting sequence is called jogging. It is often used for
positioning applications.

Plugging is used when a motor has to be brought to a stop quickly or when a fast reversal of the
direction of rotation is needed. It can be used in some motor applications where there is a sudden

1In addition, eddy-current braking can be used. An eddy-current brake is a disc of conducting material affected by the
magnetic field of a coil. This disc rotates with the shaft of the motor. When the motor is turned off, the coil is energized. As
the shaft continues to rotate, the eddy currents produced in the disc develop torque in the opposite direction of the rotation
and stop the motor.



Direct-Current Machines 327

reversal in direction at full speed. This is done by reversing the armature connections by leaving the
field winding connections undisturbed to maintain the magnetic field direction the same. Because
the armature winding resistance is very small, the counter emf is almost equal and opposite to the
applied voltage.

However, the counter emf and the applied voltage are in the same direction at the time of plug-
ging. Therefore, the total voltage in the armature circuit is almost twice that of the applied voltage.

To protect the motor from the sudden increase in armature current, an external resistance (known
as the plugging resistance) must be inserted in the armature circuit. The armature current reverses
its direction and develops a force that tends to rotate the armature in a direction opposite to that of
its initial rotation and brings the motor to a stop. The kinetic energy of the armature and mechanical
load is hence being dissipated as heat in the plugging resistor.

In general, regenerative braking is used in motor applications where the motor speed is likely to
increase from its normal speed. Such applications include electric railway locomotives, elevators,
cranes, and hoists.

The speed of motors driving such loads can be reduced significantly without mechanical braking
by using regenerative braking to feed electrical energy back into the electrical system. Note that as
the speed increases, so does the counter emf in the motor.

When the counter emf becomes greater than the supply voltage, the current in the armature
winding reverses its direction, causing the motor to operate as a generator. Regenerative braking
can be used to maintain safe speeds but cannot be used to stop a mechanical load. For this action,
dynamic braking, plugging, or mechanical braking1 are required.

Example 8.8:

Assume that a 240V, self-excited shunt motor is supplied by a line current of 102.4 A when it is
loaded with a full load at a speed of 1000 rev/min. The armature-circuit resistance and the shunt-
field circuit resistance of the motor are 0.1 and 100 Ω, respectively. Assume that a braking resistor
of 1.05 Ω is used for dynamic braking and determine the following:

(a) The value of the counter emf.

(b) The value of the armature winding current at the time of initial braking.

(c) The full-load torque.

(d) The value of the initial dynamic braking torque.

Solution

(a) The field current of the motor is

I f =
Vf

R f

=
240 V
100 Ω

= 2.4 A

Therefore, the armature winding current is

Ia = IL − I f

= 102.4 A−2.4 A
= 100 A

1This mechanical braking may be operated by a magnetic solenoid.
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Hence, the value of the counter emf generated is

Ea =Vt − IaRa

= 240 V− (100 A)(0.1 Ω)

= 230 V

(b) At the time of the initial braking, since Ea, speed, and flux have not changed, then the value
of the armature winding current is

Ia,brake =
Ea

Ra +Rbrake

=
230 V

0.1 Ω+1.05 Ω
= 200 A

Note that during the braking, the value of the armature winding current has increased about
twice.

(c) The full-load torque of the motor is

Td =
EaIa

ωm

=
EaIa

2πnm/60

=
(230 V)(100 A)

2π(1000 rev/min)/60

= 219.6 N ·m

(d) Therefore, the value of the initial dynamic braking torque is

Td = 2(219.6 N ·m)

= 493.3 N ·m

PROBLEMS

PROBLEM 8.1

An eight-pole 500 V, 500 kW dc generator has a lap winding with 640 armature conductors. If
the generator has six commutating poles, determine the following:

(a) The number of turns in the commutating winding if the mmf of the commutating poles is
1.8 times that of the armature.

(b) The number of conductors for the compensating winding in each pole face if the generator
has a compensating winding and the pole face covers 80% of the pole span.

(c) The number of turns per pole in the commutating winding when the compensating winding
is in the circuit.

PROBLEM 8.2

Resolve Example 8.1 assuming that the winding of the armature is lap-wound.
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PROBLEM 8.3

Assume that the armature of a dc machine operating at 1800 rpm is lap-wound with 720 conduc-
tors and that the machine has four poles. If the flux per pole is 0.05 Wb, determine the following:

(a) The induced armature voltage

(b) The induced armature voltage if the armature is wave-wound

PROBLEM 8.4

Suppose that a separately excited shunt dc machine has a rated terminal voltage of 250 V and a
rated armature current of 100 A. Its armature winding, commutating winding, and compensating
winding resistances are 0.1, 0.02, and 0.009 Ω, respectively. Determine the following:

(a) The induced armature voltage if the machine is operating as a generator at full load.

(b) The induced armature voltage if the machine is operating as a motor at full load.

PROBLEM 8.5

Suppose that a four-pole wave-wound dc machine is operating at 1050 rpm at a terminal voltage of
250 V and that the resistance of the winding between terminals is 0.15 Ω. The armature winding
has 100 coils of three turns each. If the cross-sectional area of each pole face is 150 cm2 and the
average flux density in the air gap under the pole faces is 0.75 T, determine the following:

(a) The total number of conductors in the armature winding.

(b) The flux per pole.

(c) The armature constant Ka.

(d) The induced armature voltage.

(e) Is the machine operating as a motor or a generator?

(f) The armature current.

(g) The developed power.

(h) The developed torque and its direction with respect to the direction of rotation.

PROBLEM 8.6

A shunt motor operating at 1200 rev/min has an armature current of 38 A from a 240 V source
when providing 8398 W of mechanical power. If the armature winding resistance is 0.2 Ω, deter-
mine the following:

(a) The loss torque of the motor at the given speed.

(b) The required armature current to provide half the mechanical (shaft) power at the same
speed.

PROBLEM 8.7

Consider the shunt motor in Example 8.4 and determine the following:

(a) The developed torque if the load current is 125 A.
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(b) The developed torque if a 25% increase in full-load current results in a 12% increase in the
flux due to the demagnetizing effect of the armature reaction.

PROBLEM 8.8

A series motor operating at a full-load speed of 1200 rev/min has a terminal voltage of 240 V and a
rated load current of 74 A. The speed at which its magnetization curve has been developed is 1200
rev/min. From its magnetization curve, its no-load voltages (i.e., internal generated voltages) are
given as 230 and 263.5 V at the series-field currents of 74 and 100 A, respectively. The armature
winding and the series-field winding resistances of the motor are 0.085 and 0.05 Ω, respectively.
Ignore the effect of armature reaction and determine the torque, speed, and power output of the
motor when the line current is 100 A. The developed torque is 125.66 N m at the rated load
current of 74 A.

PROBLEM 8.9

Consider the shunt generator of Example 8.3. Assume that it is used as a separately excited cumu-
lative compound generator by the addition of a series winding of five turns per pole. The resistance
of the series winding is 0.03 Ω. The applied voltage at the terminals of the shunt field is 250 V
and the resistance of the shunt-field rheostat setting is 25 Ω. The generator is driven at a speed
of 1200 rpm at no load and at 1150 rpm at a full load of 100 A. As before, its armature-circuit
resistance is 0.1 Ω, and its shunt-field winding has a 100 Ω resistance and is made up of 1000
turns per pole. The total brush-contact voltage drop is 2 V and the demagnetization of the d-axis
by the armature mmf is neglected. Use the magnetization curve data given in Table 8.1 and the
magnetization curve plotted in Figure 8.21. Determine the following:

(a) The excitation current, the terminal voltage, and the developed torque at no load.

(b) The excitation current, the terminal voltage, and the developed torque at a full load of 100
A.

PROBLEM 8.10

Consider the speed–current characteristics developed in Example 8.6 and describe how and why
they would be altered if the demagnetization of the d-axis (i.e., the armature reaction) by the
armature mmf (due to the load current) were accounted for.

PROBLEM 8.11

Assume that a 100 kW, 250 V long-shunt compound generator is driven at its rated speed of 1800
rpm. Its armature winding resistance, the series winding resistance, and the interpole winding
resistance are given as 0.018, 0.006, and 0.006 Ω, respectively. Its shunt-field current is 3 A. Its
no-load rotational loss is 4500 W. Assume that its brush-contact voltage drop is 2 V and that its
stray-load loss is 1% of the machine output. Determine the following:

(a) The total armature-circuit resistance excluding the brush-contact resistance.

(b) The armature current.

(c) The total losses.

(d) The efficiency at the rated load.

PROBLEM 8.12

Assume that a 125 kW, 250 V long-shunt compound generator is driven at its rated speed of
1000 rpm. Its armature winding resistance, the series winding resistance, and the shunt winding
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resistance are given as 0.03, 0.01, and 35 Ω, respectively. Its stray-load loss at the rated voltage
and speed is 1250 W. Its rated field current is 4 A. If its rotational losses are 1250 W, determine
the following:

(a) The shunt-field copper loss.

(b) The series-field copper loss.

(c) The total losses.

(d) The percent efficiency of the machine.

(e) The maximum percent efficiency at its rated speed.

PROBLEM 8.13

Consider the results of Example 8.5 and determine the following for the shunt motor:

(a) The armature terminal power.

(b) The developed power.

(c) The shaft power.

PROBLEM 8.14

A 20 kW, 250 V, self-excited dc shunt generator is driven at its rated speed of 1200 rpm. Its
armature-circuit resistance is 0.15 Ω, and the field current is 2 A when the terminal voltage is 250
V at rated load. If its rotational loss is given as 1000 W, determine the following:

(a) The internal generated voltage.

(b) The developed torque.

(c) The percent efficiency of the generator.

PROBLEM 8.15

Assume that the separately excited dc machine given in Example 8.3 is being used as a separately
excited shunt motor to drive a mechanical load. Its terminal voltage is kept constant at 200V. The
full-load current of the machine is 100 A as before. Its field current is kept variable at 1.0, 1.5,
and 2.5 A by using the field rheostat. For each value of the field current, determine the following:

(a) The developed torque at a full load of 100 A.

(b) The developed power at a full load of 100 A.

(c) The ideal no-load speed in rpm.

(d) The full-load speed in rpm.

(e) Sketch the torque–current characteristic based on the results found in Part (a).

(f) Sketch the speed–current characteristic based on the results found in Parts (c) and (d).

PROBLEM 8.16

Assume that the dc machine given in Example 8.3 is being used as a self-excited cumulative com-
pound motor to drive a mechanical load. Its series winding has 5 turns per pole and a resistance of
0.03 Ω. Its shunt-field current is kept constant at 2 A by using a 25 Ω shunt-field rheostat setting.
If the applied terminal voltage is 250 V, determine the following:
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(a) The short-shunt connection diagram of the motor.

(b) The ideal no-load speed in rpm.

(c) The full-load speed in rpm.

(d) The developed torque at a full load of 100 A.

(e) Sketch the speed–current characteristic of the machine and compare it with the one given
in Example 8.3. Explain the difference in performance.

(f) Sketch the torque–current characteristic of the machine and compare it with the one given
in Example 8.3. Explain the difference in performance.

PROBLEM 8.17

Consider the solution of Problem 8.16 and account approximately for the demagnetization of the
d-axis by the armature mmf on the q-axis. This demagnetization is due to the nonlinearity of the
magnetization curve. Assume that the armature reaction constant Kd is 2.0 ampere-turns per pole
and that the machine in Problem 8.16 has no compensating winding. Determine the modified value
of the number of turns of the series winding Nse (i.e., Nse = 5 turns) that will give approximately
the same performance found in Problem 8.16 when the demagnetization due to the armature mmf
was ignored.

PROBLEM 8.18

Explain the effect that demagnetization due to armature mmf has on ideal (i.e., with no demagne-
tization) dc generator external characteristics.

PROBLEM 8.19

Explain the effect of demagnetization due to armature mmf on the developed torque and the speed
of the motor found in Problem 8.17.

PROBLEM 8.20

Assume that the dc machine given in Example 8.3 is being used as a series motor to drive a
mechanical load. Its series winding has 25 turns per pole and a resistance of 0.08 Ω. Its shunt
field is totally disconnected. If the applied terminal voltage is 250 V, determine the following:

(a) The speed in rpm when the load current is 20 A.

(b) The developed torque when the load current is 20 A.

PROBLEM 8.21

Consider the dc machine of Problem 8.20 and determine the following:

(a) The speed in rpm when the load current is 100 A.

(b) The developed torque when the load current is 100 A.

PROBLEM 8.22

Consider the solutions of Problems 8.20 and 8.21 and sketch the following characteristics:

(a) The torque–speed characteristic.
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(b) The speed–current characteristic.

(c) The torque–current characteristic.

PROBLEM 8.23

Assume that the dc machine given in Example 8.3 is being used as a self-excited shunt motor. The
machine is being considered for an application that requires the motor to have a developed torque
of 375 N·m at the start. The armature current at starting is desired to be as small as possible but not
to be greater than 200% of the rated full-load armature current. The motor starter to be designed
will have a connector to short-circuit the field rheostat at starting. The supply line voltage is
maintained at 250 V. Determine the following:

(a) The armature current at starting if there is no starting resistance connected.

(b) The value of the field current at starting.

(c) The value of KaΦd of the motor at starting.

(d) The armature current at starting if the 375 N·m starting torque is to be developed.

(e) The value of the starting resistance.

PROBLEM 8.24

Suppose that the dc machine given in Example 8.3 is being used as a self-excited shunt motor and
that its speed control is achieved by inserting an external armature-circuit resistance of 1.10 Ω into
its circuit. Assume that the supply line voltage is maintained at 250 V and that the field current is
2.0 A. Also assume that the core loss and the friction and windage losses of the machine are 1%
of the machine’s rating. Determine the following:

(a) The developed torque at full load.

(b) The ideal no-load speed in rpm.

(c) The full-load speed in rpm.

(d) The full-load (overall) efficiency of the motor.

(e) The conversion efficiency of the motor.

PROBLEM 8.25

Assume that the dc machine given in Example 8.3 is being used as a self-excited shunt motor and
that its speed control is achieved by using the variable voltage method. The thyristor equipment
used in such an application is made up of two solid state-controlled rectifiers. Both rectifiers
are continuously adjustable from 250 V terminal dc voltage: one of them has 3 A continuous
rating, the other 100 A. The current and the resistance of the shunt field are 2 A and 100 Ω,
respectively. Assume that the core loss and the friction and windage losses of the machine are
1% of the machine’s rating. To achieve the maximum efficiency and minimum losses, the field
rheostat resistance is set at zero. Determine the following:

(a) The voltages Vf and Vt to be set to duplicate the performance of Problem 8.24 at full load
of 100 A armature current and also to achieve the maximum possible efficiency.

(b) he full-load (overall) efficiency of the motor..

(c) The conversion efficiency of the motor
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PROBLEM 8.26

A 200 hp, 240 V dc motor has a full-load current of 675 A and an armature resistance of 0.05 per
unit. Determine the following:

(a) The base value of the armature resistance in ohms.

(b) The value of the armature resistance in ohms.

(c) The value of the armature current on starting in amps.

PROBLEM 8.27

A 50 hp, 240 V dc motor has a full-load current of 173 A and an armature resistance of 0.05 per
unit. Determine the following:

(a) The base value of the armature resistance in ohms.

(b) The value of the armature resistance in ohms.

(c) The value of the armature current on starting in amps.

(d) The value of the external resistance needed if twice the full-load current is permitted to flow
through the armature at the time of starting.

PROBLEM 8.28

A 250 V, self-excited dc shunt motor draws 102 A when it is loaded with a full load at a speed
of 15 rev/s. Its armature-circuit resistance is 0.15 Ω and the shunt-field current is 2 A when the
terminal voltage is 250 V at the rated load. An external plugging resistance is inserted into the
armature circuit so that the armature current does not exceed 150% of its rated load value when
the motor is plugged. Determine the following:

(a) The value of the plugging resistance.

(b) The braking torque at the instant of plugging.

(c) The braking torque when the motor reaches zero speed.

PROBLEM 8.29

A 250 V, self-excited shunt motor is supplied by a line current of 102.5 A when it is loaded with
a full load at a speed of 1200 rev/min. The armature-circuit resistance and the shunt-field circuit
resistance of the motor are 0.1 and 100 Ω, respectively. If a braking resistor of 1.1 Ω is used for
dynamic braking, determine the following:

(a) The value of the counter emf.

(b) The value of the armature winding current at the time of initial braking.

(c) The full-load torque of the motor.

(d) The value of the initial dynamic braking torque.

PROBLEM 8.30

A 20 kW, 250 V, self-excited generator supplying the rated load has an armature-circuit voltage
drop of 4% of the terminal voltage and a shunt-field current equal to 4% of rated load current.
Determine the resistance of the armature circuit and that of the field circuit.
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PROBLEM 8.31

Redo Example 8.5 by using MATLAB assuming that the new terminal voltage is 260 V and the
new rotational losses are 700 W. Use the other given values and determine the following:

(a) Write the MATLAB program script.

(b) Give the MATLAB program output.



9 Single-Phase and
Special-Purpose Motors

9.1 INTRODUCTION
Today it can be said without exaggeration that about 90% of all motors manufactured are the sin-
glephase type. They are used extensively in homes, businesses, farms, and small industries. Most
of them are built as fractional-horsepower (hp) or subfractional-horsepower motors (1 hp is equal
to 746 W). Standard ratings for fractional-horsepower motors range from 1/20 to 1 hp. The small
motors rated for less than 1/20 hp, called subfractional-horsepower motors, are rated in millihorse-
power (mhp) and range from 1 to 35 mhp.

The single-phase motors manufactured in standard integral horsepower sizes are in the 1.5, 2, 3,
5, 7.5–10 hp range. However, special integral horsepower sizes can range from several hundreds up
to a few thousands, for example, in locomotive service using single-phase ac series motors.

They can also be designed for very rugged use in cranes and hoists. Unlike integral horsepower
motors, small single-phase motors are manufactured in many different types of designs with differ-
ent characteristics. This is especially true of subfractional-horsepower motors. There are three basic
types of single-phase ac motors: single-phase induction motors, universal motors, and singlephase
synchronous motors.

9.2 SINGLE-PHASE INDUCTION MOTORS
Single-phase induction motors generally have a distributed stator winding and a squirrel-cage rotor.
Figure 9.1 shows a schematic diagram of a single-phase induction motor. The ac supply voltage is
applied to the stator winding, which in turn creates a nonrotating (i.e., stationary in position and
pulsating with time) magnetic field.1

As shown in Figure 9.1a, currents are induced in the squirrel-cage rotor windings by transformer
action. These currents produce an mmf opposing the stator mmf. Since the axis of the rotor-mmf
wave coincides with that of the stator field, the torque angle is zero and no starting torque develops.
At standstill, therefore, the motor behaves like a single-phase nonrotating transformer with a short-
circuited secondary.

Hence, a single-phase induction motor is not self-starting. However, if the rotor of a single-phase
induction motor is given a spin or started by auxiliary means, it will continue to run and develop
power.2 As shown in Figure 9.1a, the single-phase induction motor can develop torque when it is
running. This phenomenon can be explained by the double-revolving field theory.3

1This type of mmf field is sometimes referred to as a breathing field because it expands and contracts in the same place on
the stator. In other words, the stator winding does not provide a rotating mmf field for the rotor mmf to chase.

2Historically, the first single-phase induction motors were started by wrapping a rope or a strap around the shaft and pulling
to spin to rotor. Fortunately, today the necessity for manual starting can be overcome by various relatively simple methods.

3It can also be explained by the cross-field theory. For a discussion of the cross-field theory, see Chapman (1985) and Veinott
(1959).
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Figure 9.1 Single-phase motor: (a) at standstill and (b) during rotation.

According to the double-revolving field theory, a pulsating mmf (or flux) field can be replaced
by two rotating fields half the magnitude but rotating at the same speed in opposite directions. For a
sinusoidally distributed stator winding, the mmf along a position θ can be expressed as

F(θ) = Nicosθ (9.1)

where

N is the effective number of turns of the stator winding

i is the instantaneous value of the current in the stator winding

Thus,
i = Imax cosωt (9.2)

Hence, the mmf can be written as a function of space and time as

F(θ , t) = NImax cosθ cosωt (9.3a)

=
NImax

2
cos(ωt −θ)+

NImax

2
cos(ωt +θ) (9.3b)

F(θ , t) = Ff +Fb (9.3c)

In other words, the stator mmf is the sum of a positive- and a negative-traveling mmfs in the direction
of 9. (Ff is the rotating mmf in the direction of θ only it represents the forward-rotating field; Fb
is the rotating mmf in the opposite direction and represents the backward-rotating field.) Here, it
is assumed that the rotational direction of the forward-rotating field is the same as the rotational
direction of the rotor.1

As shown in Figure 9.2, the forward-rotating mmfs and backward-rotating mmfs both produce
induction motor action, that is, they both produce a torque on the rotor, though in opposite directions.

1Since by definition the forward direction is that direction in which the motor is initially started, it is also referred to as the
positive sequence. Similarly, the backward direction is also referred to as the negative sequence.
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Figure 9.2 Torque–speed characteristics of a single-phase induction motor based on the revolving field
theory.

Notice that at standstill, the torques that are caused by the fields are equal in magnitude and their
resultant starting torque is zero. At any other speed, however, the torques are not equal and therefore
the resultant torque causes the motor to rotate in the rotational direction of the motor.

Assume that the rotor is made to rotate at a speed of nm rpm in the forward direction and that the
synchronous speed is ns rpm. The slip with respect to the forward-rotating field is

S f = s =
ns −nm

ns
= 1− nm

ns
(9.4)

However, because the direction of rotation is opposite that of the backward-rotating field, the slip
with respect to the backward field is

Sb =
ns − (−nm)

ns
=

ns +nm

ns
= 1+

nm

ns
= 2− s (9.5)

or
Sb = 2− s f (9.6)

9.2.1 EQUIVALENT CIRCUIT

At standstill, a single-phase induction motor behaves like a transformer with its secondary short-
circuited. Figure 9.3a shows the corresponding equivalent circuit where R1 and X1 are the resistance
and reactance of the stator winding, respectively. Here, Xm is the magnetizing reactance, and R2 and
X2 are the standstill values of the rotor resistance and reactance referred to the stator winding by the
use of the appropriate turns ratio. The core losses of the motor are not shown but are included in the
rotational losses along with the mechanical and stray losses.

Based on the double-revolving field theory, the equivalent circuit can be modified to include
the effects of the two counterrotating fields of constant magnitude. At standstill, the magnitudes of
the forward and backward resultant mmf fields are both equal to half the magnitude of the pulsating
field. Therefore, the rotor-equivalent circuit can be split into equal sections. The equivalent circuit of
a single-phase induction motor, then, consists of the series connection of a forward- and a backward-
rotating field equivalent circuits, as shown in Figure 9.3b.

After the motor has been brought up to speed by the use of an auxiliary winding (which is
switched out again after obtaining the proper speed) and is running in the direction of the forward-
rotating field at a slip s, its equivalent circuit has to be modified, as shown in Figure 9.3c. Therefore,
the rotor resistance in the forward equivalent circuit is 0.5R

′
2/s.
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Figure 9.3 Equivalent circuit of a single-phase induction motor based on the revolving-field theory: (a) con-
ventional configuration at standstill, (b) modified configuration at standstill, and (c) typical torque–speed char-
acteristic.

Also, since the rotor is rotating at a speed that is s less than the forward-rotating field, the differ-
ence1 in speed between the rotor and the backward-rotating field is 2–s. Hence, the rotor resistance
in the equivalent backward circuit is represented by 0.5R

′
2/(2− s).

To simplify the calculations, the impedances shown in Figure 9.3c corresponding to the forward
and backward fields are defined, respectively, as

Z f = R f + jXf =
jXm(R

′
2/s+ jX

′
2)

jXm(R
′
2/s+ jX ′

2)
(9.7)

and

Zb = Rb + jXb =
jXm(R

′
2/(2− s)+ jX

′
2)

jXm(R
′
2/(2− s)+ jX ′

2)
(9.8)

These impedances that represent the reactions of the forward- and backward-rotating fields with
respect to the single-phase stator winding are 0.5Z f and 0.5Zb, respectively.

After the motor is started, the forward air-gap flux wave increases and the backward wave de-
creases. This is due to the fact that during normal operation, the slip is very small. Because of this,
the rotor resistance in the forward field, 0.5R

′
2/s, is much greater than its standstill value, whereas

the resistance in the backward field, 0.5R
′
2/(2− s), is smaller.

As a result of this, the forward-field impedance Z f is greater than its standstill value, while the
backward-field impedance Zb is smaller. This also means that Z f is much greater than Zb during

1The total difference in speed between the forward- and backward-rotating fields is 2.
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the normal operation of the motor. Consequently, since each of these impedances carries the same
current, the magnitude of the voltage E f is much greater than that of the voltage Eb. Therefore, the
magnitude of the forward field Φ f that produces E f is much greater than that of the backward field
Φb that produces Eb.

9.2.2 PERFORMANCE ANALYSIS

Based on the equivalent circuit shown in Figure 9.3c, the input current can be found from

I1 =
V1

R1 + jX1 +0.5Z f +0.5Zb
(9.9)

Therefore, the air-gap powers developed by the forward and backward fields, respectively, are

Pg, f = I2
1 (0.5R f ) (9.10)

and
Pg, f = I2

1 (0.5Rb) (9.11)

Hence, the total air-gap power is
Pg = Pg, f −Pg,b (9.12)

Thus, the developed torques due to the forward and backward fields, respectively, are

Td, f =
Pg, f

ωs
(9.13)

Td,b =
Pg,b

ωs
(9.14)

The total developed torque is

Td =
Pg

ωs
(9.15a)

=
Pg, f −Pg,b

ωs
(9.15b)

= Td, f −Td,b (9.15c)

Since the rotor currents produced by the two component air-gap fields are different frequencies, the
total rotor copper loss is the sum of the rotor copper losses caused by each field. These rotor copper
losses of the forward and backward fields, respectively, are

P2,Cu, f = sPg, f (9.16)

and
P2,Cu,b = (2− s)Pg,b (9.17)

Therefore, the total rotor copper loss is

P2,Cu = P2,Cu, f +P2,cu,b (9.18)

The mechanical power developed in the motor can be found from

Pd = Pmech = Td ×ωm (9.19a)

= Td ×ωg(1− s) (9.19b)

= (1− s)Pg (9.19c)
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= (1− s)(Pg, f −Pg,b) (9.19d)

= 0.5I2
1 (R f −Rb)(1− s) (9.19e)

Hence, the output power is
Pout = Pd −Prot (9.20a)

= Pd − (Pcore +PFW +Pstray) (9.20b)

Example 9.1:

A 1/4 hp, single-phase, 120 V, 60 Hz, two-pole induction motor has the following constants in
ohms referred to the stator:

R1 = 2.0 ΩR
′

2 = 4.1 Ω

X1 = 2.5 ΩX
′

1 = 2.2 Ω

Xm = 51 Ω

The core losses of the motor are 30 W; and the friction, windage, and stray losses are 15 W. The
motor is operating at the rated voltage and frequency with its starting winding open. For a slip of
5%, determine the following:

(a) The shaft speed in rpm.

(b) The forward and backward impedances of the motor.

(c) The input current.

(d) The power factor.

(e) The input power.

(f) The total air-gap power.

(g) The developed power.

(h) The output power.

(i) The developed torque.

(j) The output torque.

(k) The efficiency of the motor.

Solution

(a) The synchronous speed is

ns =
120 f1

p

=
120(60 Hz)

2
= 3600 rev/min

Thus, the rotor’s mechanical shaft speed is

nm = (1− s)ns

= (1−0.05)(3600 rev/min
= 3420 rev/min
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(b) The forward impedance of the motor is

Z f = R f + jXf

=
jXm(R

′

2/s+ jX
′

2)

jXm(R
′
2/s+ jX ′

2)

=
j51(4.1/0.05+ j2.2)
j51+4.1/0.05+ j2.2

= 42.8∠58.56◦

= 22.32+ j36.52 Ω

Similarly, the backward impedance of the motor is

Zb = Rb + jXb

=
jXm[R

′

2(2− s) jX
′

2]

jXm +[R′
2(2− s)+ jX ′

2]

=
j51[4.1/(2−0.05) j2.2]

j51+[4.1/(2−0.05)+ j2.2]

= 2.915∠48.56◦

= 1.929+ j2.185 Ω

(c) The stator input current of the motor is

I1 =
V1

R1 + jX1 +0.5Z f +0.5Zb

=
120∠0◦

2.0+ j2.5+0.5(22.32+ j36.51)+0.5(1.929+ j2.185)

=
120∠0◦

14.1245+ j21.8475

= 4.61∠−57.12◦ A

(d) The stator power factor of the motor is

PF = cos57.12◦

= 0.543 lagging

(e) The input power of the motor is

Pin =V I cosθ
= (120)(4.61)cos57.12◦

= 300.4 W

(f) The air-gap power due to the forward field is

Pg, f = I2
1 (0.5R f )

= (4.61)2(0.5)(22.32)

= 237.17 W

and the air-gap power due to the backward field is

Pg,b = I2
1 (0.5Rb)

= (4.61)2(0.5)(1.929)

= 20.5 W
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Therefore, the total air-gap power of the motor is

Pg = Pg, f −Pg,b

= 237.17−20.5

= 216.67 W

(g) The developed mechanical power is

Pd = Pmech = (1− s)Pg

= (−0.05)216.67

= 205.84 W

(h) The output (shaft) power is

Pout = Pd − (Pcore +PFW +Pstray)

= 205.84− (30+15)

= 160.84 W

(i) The developed torque is

Td =
Pg

ωs

=
216.67 W

(3600 rev/min)(1 min/60s)(2π rad/rev)
= 0.575 N ·m

(j) The output torque is

Tout = Tloud =
Pout

ωm

=
160.84 W

(3420 rev/min)(1 min/60s)(2π rad/rev)
= 0.45 N ·m

(k) The efficiency of the motor is

η =
Pout

Pin
×100

=
160.84 W
300.4 W

×100

= 53.5%

9.3 STARTING OF SINGLE-PHASE INDUCTION MOTORS
As stated previously, a single-phase induction motor cannot be started by its main winding alone, but
must be started by an auxiliary (starting) winding or some other means. The auxiliary winding may
be disconnected automatically by the operation of a centrifugal switch at about 75% of synchronous
speed. Once the motor is started, it continues to run in the same direction.

A single-phase motor is designed so that the current in its auxiliary winding leads that of the main
winding by 90 electrical degrees.1 Accordingly, the field of its auxiliary winding builds up first. The

1Therefore, the operation of a single-phase induction motor is very similar to that of two-phase motors. The two windings of
a single-phase induction motor are placed in the stator with their axes displaced 90 electrical degrees in space.
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Figure 9.4 Split-phase induction motor: (a) schematic diagram, (b) phasor diagram at starting, and (c) typical
torque–speed characteristic.

direction of rotation of the motor can be reversed by reversing the connections of the main or the
auxiliary winding. However, reversing the connections of both the main and auxiliary windings will
not reverse the direction of rotation.

Consider the phasor diagram of a motor at starting shown in Figure 9.4b. The phase angle α
between the two currents Im and Ia is about 30◦–45◦. Therefore, the starting torque can be expressed
as

Tstart ∝ Imla sinα (9.21)

Tstart ∝ KImla sinα (9.22)

where K is a constant. Thus, the starting torque is a function of the magnitudes of the currents in the
main and auxiliary windings and the phase difference between these two currents.

9.4 CLASSIFICATION OF SINGLE-PHASE INDUCTION MOTORS
Single-phase induction motors are categorized based on the methods used to start them. Each start-
ing method differs in cost and in the amount of starting torque it produces.

9.4.1 SPLIT-PHASE MOTORS

A split-phase motor is a single-phase induction motor with two stator windings: a main (stator)
winding, m, and an auxiliary (starting) winding, a, as shown in Figure 9.4a. The axes of these two
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windings are displaced 90 electrical degrees in space and somewhat less than 90◦ in time.1 As
shown in Figure 9.4b, the auxiliary winding has a higher resistance-to-reactance ratio than the main
winding, so that its current leads the current in the main winding.

The most common way to obtain this higher R/X ratio is to use smaller wire for the auxiliary
winding. This is acceptable since the auxiliary winding is in the circuit only during the starting
period. The auxiliary winding is disconnected by a centrifugal switch or relay when the speed of the
motor reaches about 75% of the synchronous speed.

The rotational direction of the motor can be reversed by switching the connections of the auxil-
iary winding, while the connections of the main winding remain the same.2

A typical torque–speed characteristic of the split-phase motor is shown in Figure 9.4c. A higher
starting torque can be obtained by inserting a series resistance in the auxiliary winding. Alterna-
tively, a series inductive reactance can be inserted into the main winding to achieve the same result.
Split-phase motors that are rated up to 1/2 hp are relatively less costly than other motors and are
used to drive easily started loads, such as fans, blowers, saws, pumps, and grinders.

When the motor is at standstill, the impedances of the main and the auxiliary windings, respec-
tively, are

Zm = Rm + jXm (9.23)

Za = Ra + jXa (9.24)

Thus, the magnitude of the auxiliary (starting) winding current can be determined from

Ia =
V1√

R2
a +X2

a
(9.25)

where
Ra =

Xa

Xm
(Rm +Zm) (9.26)

or

Ra =

(
Na

Nm

)2

Xm (9.27)

Hence, for design purposes, it is easier to assume a number of turns for the auxiliary winding Na
to determine the value of Ra for maximum starting torque and the current of the auxiliary winding.
If the optimum values of starting torque and current are not achieved, the process can be repeated
until the proper design is found.

9.4.2 CAPACITOR-START MOTORS

A capacitor-start motor is also a split-phase motor. As shown in Figure 9.5a, a capacitor is con-
nected in series with the auxiliary winding of the motor. By selecting the proper capacitor size, the
current in the auxiliary winding can be made to lead the voltage V1 and to bring about a 90◦ time
displacement between the phasors of currents Im and Ia, as shown in Figure 9.5b.

This produces a much greater starting torque than resistance split-phase starting, as shown in Fig-
ure 9.5c. The auxiliary winding is disconnected by a centrifugal switch when the speed of the motor

1Note that when two identical motor stator windings spaced 90 electrical degrees apart are connected in parallel to a single-
phase source, the currents through the two windings lag the applied voltage by the same angle. Connecting a resistance in
series with one winding causes the current in that winding to be more nearly in phase with the applied voltage. Since the
current in the first winding is not affected by the added resistance, the currents in the two windings are displaced in the time
phase. This is the required condition to produce a revolving field. A motor using this method of phase splitting is called a
resistance-start motor, a resistance split-phase motor, or simply a split-phase motor.

2However, such reversal (plugging) can never be done under running conditions even though it is sometimes done with
polyphase induction motors.
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Figure 9.5 Capacitor-start induction motor: (a) schematic diagram, (b) phasor diagram at starting, and (c)
typical torque–speed characteristic.

reaches about 75% of the synchronous speed. In contrast to the split-phase motor, the capacitor-start
motor is a reversible motor.

To reverse direction of the motor, it is temporarily disconnected and its speed is allowed to drop
to a slip of 20% (about four times the rated slip of 5%). At the same time, its centrifugal switch is
closed over a reversely connected (with respect to the main winding) auxiliary winding. These two
simultaneous actions reverse the rotational direction of the motor.

The cost of the capacitor is an added cost and makes these motors more expensive1 than split-
phase motors. They are used in applications that require high-starting torques, such as compressors,
pumps, air conditioners, conveyors, larger washing machines, and other hard-to-start loads.

For design purposes, the value of the capacitive reactance which is connected in series with the
auxiliary winding and provides the maximum starting torque can be expressed as

Xc = Xa +
RaRm

Xm +Zm
(9.28)

The value of this capacitance can be found from

C =
1

ωXc
(9.29)

C =
1

ω(Xa +RaRm/(Xm +Zm))
(9.30)

1However, since the capacitor is in the circuit only during the relatively short starting period, it can be an inexpensive ac
electrolytic type.
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Figure 9.6 Capacitor-run induction motor: (a) schematic diagram and (b) typical torque–speed characteristic.

However, as suggested by Sen (1989), the best design for the motor may be found by maximizing the
starting torque per ampere of starting current rather than by maximizing the starting torque alone.
The value of this capacitive reactance can be determined from

Xc =
Xa +−XmRa +[Ra(Ra +Rm)]

1/2Zm

Rm
(9.31)

The value of the capacitance is determined from

C =
1

ωXc

9.4.3 CAPACITOR-RUN MOTORS

The capacitor-split-capacitor motor is also called the permanent split-capacitor motor or simply the
capacitor motor, because it is designed to operate with its auxiliary winding and its series capacitor
permanently connected, as shown in Figure 9.6a. It is simpler than the capacitor-start motor since
there is no need for any centrifugal switch. Its torque,1 efficiency, and power factor are also better
since the motor runs effectively as a two-phase motor.

In this motor, the value of the capacitor is based on its optimum running rather than its starting
characteristic. Since at starting the current in the capacitive branch is very low, the capacitor motor
has a very low starting torque, as shown in Figure 9.6b. The reversible operation is not only possible,
but also more easily done than in other motors. Its speed can be controlled by varying its stator
voltage using various methods.

Capacitor-run motors are used for fans, air conditioners, and refrigerators. Since at starting, slip
s is unity and R f is equal to Rb, the starting torque of a capacitor-run induction motor is determined
from

Tstart =
2aIaIm(R f +Rb)

ωs
sin(θa +θm) (9.32)

Tstart = KImIa sinα (9.33)

as before. Here, a is the turns ratio of the auxiliary and main windings, and θa and θm are the
impedance angles of the auxiliary and main windings, respectively.

1It produces a constant torque, not a pulsating torque as in other single-phase motors. Therefore, its operation is smooth and
quiet.
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Figure 9.7 Capacitor-start capacitor-run induction motor: (a) schematic diagram and (b) typical torque–speed
characteristic.

Figure 9.8 Shaded-pole induction motor: (a) schematic diagram and (b) typical torque–speed characteristic.

9.4.4 CAPACITOR-START CAPACITOR-RUN MOTORS

The capacitor-start capacitor-run motor is also called the two-value capacitor motor. In this motor,
the high-starting torque of the capacitor-start motor is combined with the good running performance
of the capacitor-run motor, as shown in Figure 9.7b. This is achieved by using two capacitors, as
shown in Figure 9.7a. Both the auxiliary winding capacitor and the capacitor Crun are usually the
electrolytic type and are connected in parallel at starting. Since the running capacitor Crun must have
a continuous rating, this motor is expensive but provides the best performance.

9.4.5 SHADED-POLE MOTORS

The shaded-pole induction motor is used widely in applications that require 1/20 hp or less. As
shown in Figure 9.8a, the motor has a salient-pole construction, with one-coil-per-pole main wind-
ings, and a squirrel-cage rotor. One portion of each pole has a shading band or coil. The shading
band is simply a short-circuited copper strap (or single-turn solid copper ring) wound around the
smaller segment of the pole piece.

The purpose of the shading band is to retard, in time, the portion of the flux passing through it in
relation to the flux coming out of the rest of the pole face. In other words, the current induced in the
shading band causes the flux in the shaded portion of the pole to lag the flux in the unshaded portion
of the pole.

Therefore, the flux in the unshaded portion reaches its maximum before the flux in the shaded
portion. The result is like a rotating field moving from the unshaded to the shaded portion of the pole,
and causing the motor to produce a slow starting torque. The shaded-pole motor is rugged, cheap,
small in size, and needs minimum maintenance. It has very low starting torque, efficiency, and power
factor, and is used in turntables, motion-picture projectors, small fans, and vending machines.
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Example 9.2:

Assume that a single-phase, 120 V, 60 Hz, two-pole induction motor has the following standstill
impedances when tested at rated frequency:

Main winding: Zm = 1.6+ j4.2 Ω

Auxiliary winding: Za = 3.2+ j6.5 Ω

Determine the following:

(a) The value of external resistance that needs to be connected in series with the auxiliary winding
to have maximum starting torque, if the motor is operated as a resistance split-phase motor.

(b) The value of the capacitor to be connected in series with the auxiliary winding to have
maximum starting torque, if the motor is to be operated as a capacitor-start motor.

(c) The value of the capacitor that needs to be connected in series with the auxiliary winding to
have maximum starting torque per ampere of the starting current as a capacitor-start motor.

Solution

(a) The value of the external resistance that needs to be connected in series with the auxiliary
winding is found from Equation 9.26 as

Ra =
Xa

Xm
(Rm +Zm)

=
6.5
4.2

(1.6+4.495)

= 9.43 Ω

where

Zm = Zm∠θm

= 4.495∠69.15◦ Ω

Therefore, the value of external resistance is found as

Rext = 9.43−6.5

= 2.93 Ω

(b) The value of the capacitive reactance that needs to be connected in series with the auxiliary
winding is found from Equation 9.28 as

Xc = Xa +
RaRm

Xm +Zm

= 6.5+
(3.2)(1.6)

4.2+4.495
= 7.089 Ω

Thus, the value of the capacitance is found as

C =
1

ωXc

=
106

2π60(7.089)

= 374.18µF
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(c) To have maximum starting torque per ampere of the starting current, the value of the capacitive
reactance is found from Equation 9.31 as

Xc =
Xa +−XmRa +[Ra(Ra +Rm)]

1/2Zm

Rm

=
6.5+−4.2(3.2)+ [3.2(3.2+1.6)]1/24.4951

1.6
= 9.11 Ω

Hence, the value of the capacitance is found as

C =
1

ωXc

=
106

2π60(9.11)

= 291.17µF

9.5 UNIVERSAL MOTORS
A universal motor is a single-phase series motor that can operate on either alternating or direct
current with similar characteristics as long as both the stator and the rotor cores are completely
laminated. It is basically a series dc motor with laminated stator and rotor cores without laminated
cores, the core losses would be tremendous if the motor were supplied by an ac power source. Since
such a motor can run from either an ac (at any frequency up to design frequency) or a dc (zero
frequency) power source, it is often called a universal motor. Here, the main field and armature field
are in phase, because the same current flows through the field and armature.1

When it is supplied by an ac power source, both the main field and armature field will reverse
at the same time, but the torque and the rotational direction will always be in the same direction.
Like all series motors, the no-load speed of the universal motor is usually high, often in the range
of 1,500–20,000 rpm, and is limited by windage and friction.

It is typically used in fractional horsepower ratings (1/20 hp or less) in many commercial appli-
ances,2 such as electric shavers, portable tools, sewing machines, mixers, vacuum cleaners, small
hand-held hair dryers, drills, routers, and hand-held grinders. In such applications, it is always di-
rectly loaded with little danger of motor runaway.

The best way to control the speed and torque of the universal motor is to vary its input voltage
by using a solid-state device (an SCR or a TRIAC).

There are also large (in the range of 500 hp) single-phase series ac motors that are still extensively
used for traction applications such as electric locomotives.

Under dc excitation, the developed torque and induced voltage of a universal motor can be ex-
pressed, respectively, as

Td = Ka ×Φd(dc)× Ia (9.34)

Ea = Ka ×Φd(dc)×ωm(dc) (9.35)

1Therefore, a shunt dc motor cannot operate on an ac power source due to the fact that the shunt field is highly inductive, and
the armature is basically highly resistive. Hence, the armature and the field are not in phase. The high inductance of the field
winding causes the field current to lag the armature current by such a large angle that a very low net torque is produced.

2Such applications require a motor with relatively high starting torques and speeds that exceed the maximum synchronous
speed of 3600rpm at 60 Hz. They are built for voltages from 1.5 to 250 V. Therefore, universal motors are ideal for such
applications.
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If magnetic linearity can be assumed, then the developed torque and induced voltage can be ex-
pressed, respectively, as

Td = K × I2
a (9.36)

Ea = K × Ia ×ωm(dc) (9.37)

Under ac excitation, the average developed torque and the rms value of the induced voltage of a
universal motor can be expressed, respectively, as

Td = Ka ×Φd(ac)× Ia (9.38)

Ea = Ka ×Φd(ac)×ωm(ac) (9.39)

where

Φd(ac) is the rms value of the d-axis flux

Ia is the rms value of the motor current

If magnetic linearity can be assumed, then the average developed torque and the rms value of the
induced voltage can be expressed, respectively, as

Td = Ka × I2
a (9.40)

Ea = K × Ia ×ωm(ac) (9.41)

Since the developed mechanical power is

Pd = Pmech(ac)×Ea × Ia (9.42)

then
Td =

Pd

ωm(ac)
=

Ea × Ia

ωm(ac)
(9.43)

Notice that the terminal voltage (under ac excitation) is

V1 = Ea + IaZa + IaZse (9.44)

Za = Ra + jXa (9.45)

Zse = Rse + jXse (9.46)

Therefore, the input voltage is

V1 = Ea + Ia(Ra + jXa)+ Ia(Rse +Xse) (9.47)

V1 = Ea + Ia(Ra +Rse)+ jIa(Xa +Xse) (9.48)

Hence, the induced voltage can be expressed as

Ea = V1 + Ia(Ra +Rse)− jIa(Xa +Xse) (9.49)

Based on the assumption that the armature current under dc excitation and the rms value of the
armature current under ac excitation are the same, it can be shown that

Ea(dc)

Ea(ac)
=

Ka ×a Φd(dc)×ωm(dc)

Ka ×a Φd(dc)×ωm(ac)
≈

ωm(dc)

ωm(ac)
(9.50)
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Furthermore, if saturation takes place while the motor is under ac excitation, then the flux under
Φd(ac) is a little less than the flux under dc excitation Φd(dc). Thus, the ratio of the induced voltage
becomes

Ea(dc)

Ea(ac)
≈ 1

cosθ
(9.51)

which is greater than unity. When the terminal voltage, armature current, and torque are constant, the
speed of a universal motor is lower under ac excitation than under dc excitation. In summary, under
ac excitation, the universal motor produces a lower speed, a poorer power factor, and a pulsating
torque.

Example 9.3:

A single-phase, 120 V, 60 Hz universal motor is operating at 1800 rpm and its armature current
is 0.5 A when it is supplied by a 120 V dc source. Its resistance and reactance are 22 and 100 Ω,
respectively. If the motor is supplied by ac power, determine the following:

(a) The speed of the motor when it is connected to an ac source.

(b) The power factor of the motor when it is connected to an ac voltage source.

(c) The developed torque of the motor when it is connected to an ac voltage source.

Solution

(a) When the motor is supplied by the dc source:

Ea(dc) =V1 − IaRa

= (120 V− (0.5 A)(22 W)

= 109 V

When the motor is supplied by the ac source:

Ea(ac) + IaRa = [V 2
1 − (IaX)2]1/2

or

Ea(ac) = [V 2
1 − (IaX)2]1/2 − IaR

= [(120 V)− [(0.5 A)(100 Ω)]2]1/2 − (0.5 A)(22 Ω)

= 98.09 V

By assuming the same flux for the same current under the dc and ac operation from Equation
9.50,

Ea(dc)

Ea(ac)
=

ndc

nac

Thus, the speed of the motor when it is connected to an ac source is

nac =
ndcEa(ac)

Ea(dc)

=
(1800 rpm)(98.09 V)

109 V
= 1619.83 rpm
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(b) The power factor of the rotor is found as

cosθ =
Ea + IaRa

V1

=
(98.09 V)+(0.5 A)(22 Ω)

120 V
= 0.91 lagging

(c) The developed (mechanical) power of the motor is

Pd = Pmech = EaIa

= (98.09 V)(0.5 A)
= 49 W

Therefore, the developed torque of the motor is

Td =
Pd

ωm

=
Pd

nm(2π/60)

=
49 W

(1619.83 rpm)(2π/60)

= 0.289 N ·m

9.6 SINGLE-PHASE SYNCHRONOUS MOTORS
Single-phase synchronous motors are used for applications that require precise speed. They include
the reluctance motor, the hysteresis motor, and the stepper motor. Reluctance and hysteresis motors
are used in electrical clocks, timers, and turntables. Stepper motors are used in electrical typewriters,
printers, computer disk drives, VCRs, and other electronic equipment.

9.6.1 RELUCTANCE MOTORS

A reluctance motor1 is a salient-pole synchronous machine with no field excitation. The operation
of this type of motor depends on reluctance torque that tends to align the rotor under the nearest
pole of the stator and defines the direction of rotation. The torque applied to the rotor of the motor is
proportional to sin 2δ , where δ is defined as the electrical angle between the rotor and stator mag-
netic fields. Hence, the reluctance torque of the motor becomes maximum when the angle between
the rotor and stator magnetic fields is 45◦.

In general, any induction motor can be modified into a self-starting reluctance type synchronous
motor. This can be done by altering the rotor so that the laminations have salient rotor poles, as
shown in Figure 9.9a. Notice that the saliency is introduced by removing some rotor teeth from the
proper sections to make a four-pole rotor structure.

This rotor structure can then be used for a four-pole reluctance motor. The reluctance of the air-
gap flux path will be far greater at the places where there are no rotor teeth. Thus, the reluctance
motor can start as an induction motor as long as the squirrel-cage bars and end rings are left in place.

This motor, coming up to speed as an induction motor, will be pulled into synchronism by the
pulsating ac single-phase field due to a reluctance torque produced by the salient iron poles with
lower-reluctance air gaps.

1It is also referred to as a single-phase salient-pole synchronous-induction motor or simply as a synchronous motor.
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Figure 9.9 Reluctance motor: (a) rotor design and (b) typical torque–speed characteristic.

In summary, the torque develops because of the tendency of the rotor to align itself with the
rotating field so that a reluctance motor starts as an induction motor, but continues to operate as a
synchronous motor.

There are two stator windings, namely, a main winding and an auxiliary winding. When the motor
starts as an induction motor, it has both windings energized. At a speed of approximately 75% of the
synchronous speed, a centrifugal switch disconnects the auxiliary winding so that the speed of the
motor increases to almost the synchronous speed. At that time, as a result of the reluctance torque,
the rotor snaps into synchronism and continues to rotate at synchronous speed.1

Figure 9.9b shows the torque–speed characteristic of a typical single-phase reluctance motor.
Note that the value of the starting torque depends on the position of the unsymmetrical rotor with
respect to the field winding.

Also, since there is no dc excitation in the rotor of a reluctance motor, it develops less torque
than an excited synchronous motor of the same size. Since the volume of a machine is approximately
proportional to the torque, the reluctance motor is about three times larger than a synchronous motor
with the same torque and speed.

9.6.2 HYSTERESIS MOTORS

These motors use the phenomenon of hysteresis to develop a mechanical torque. The rotor of a
hysteresis motor is a smooth cylinder made up of a special magnetic material such as hard steel,
chrome, or cobalt, and has no teeth, laminations, or windings.

The stator windings are made up of distributed windings in order to have a sinusoidal space dis-
tribution of flux. The stator windings can be either single or three phase. In single-phase motors, the
stator windings are customarily permanent-split-capacitor type, as shown in Figure 9.6a. If the stator
windings are energized, a revolving magnetic field is developed, rotating at synchronous speed. This
rotating field magnetizes the metal of the rotor and induces eddy currents. Due to the hysteresis,
the magnetization of the rotor lags with respect to the inducing revolving field, as shown in Figure
9.10a.

The lag angle δ exists because the metal of the rotor has a large hysteresis loss. The angle by
which the rotor magnetic field lags the stator magnetic field depends on the hysteresis loss of the
rotor. At synchronous speed, the stator flux stops to sweep across the rotor, causing the eddy currents

1If the load of this type of reluctance motor increases significantly, the motor will slip out of synchronism. However, it will
continue to run with some slip just like an induction motor.
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Figure 9.10 Hysteresis motor: (a) stator and rotor field and (b) torque–speed characteristic.

to disappear, and the rotor behaves like a permanent magnet. At that time, the developed torque in
the motor is proportional to the angle δ between the rotor and stator magnetic fields, which is
dictated by the hysteresis of the motor. Consequently, a constant torque (indicated as the hysteresis
torque in Figure 9.10b) exists from zero up to and including synchronous speed.

As indicated in the figure, a hysteresis motor, whose rotor is round and not laminated, has an in-
duction torque which is added to the hysteresis torque until synchronous speed is reached. Hysteresis
motors are self-starting and are manufactured up to about 200 W for use in precise-speed drives.
The applications include clocks, record players, compact disk players, and servomechanisms.

9.6.3 STEPPER MOTORS

These motors are also referred to as stepping or step motors. Basically, a stepper motor is a type
of ac motor that is built to rotate a specific number of degrees in response to a digital input in the
form of a pulse. Step sizes typically vary from 1◦, 2◦, 2.5◦, 5◦, 7.5◦, 15◦, or more for each electrical
pulse.

Stepper motors are often used in digital control systems, where the motor is given open-loop
commands in the form of a train of pulses and the controller directs pulses sequentially to the motor
windings to turn a shaft or move an object a specified distance.

They are excellent devices for accurate speed control or precise position control without any
feedback. In such usage, the axis of the motor’s magnetic field steps around the air gap at a speed
that is based on the frequency of pulses. The rotor inclines to align itself with the axis of the magnetic
field. Therefore, the rotor steps in synchronism with the motion of the magnetic field. Because of
this, the motor is referred to as a stepper motor.

These motors are relatively simple in construction and can be controlled to step in equal in-
crements in either direction. They are increasingly used in digital electronic systems because they
do not need a position sensor or a feedback system to make the output response follow the input
command.

Figure 9.11 illustrates a primitive form of control implementation in a stepper motor. Notice
that a train of f pulses per second is furnished to the digital driver circuit and that the input of the
controller is divided so that the output is sent in sequence to one phase winding at a time. In the
event that 2p is the number of phases and k is the number of teeth, then the rotor angular motion per
pulse is a step of π/kp radians. Accordingly, the rotor moves n steps per second. Hence, the angular
speed is exactly πn/kp rad/s.

Stepper motors are classified according to the type of motor used. If a permanent-magnet motor
is used, it is called a permanent-magnet stepper motor.

If a variable-reluctance motor is used, it is called a variable-reluctance stepper motor.
Permanent-magnet stepper motors have a higher inertia and thus a slower acceleration than
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Figure 9.11 Driver for a stepper motor.

variable-reluctance stepper motors. For example, the maximum step rate for permanent-magnet
stepper motors is 300 pulses per second, but it can be as high as 1200 pulses per second for variable-
reluctance stepper motors.

The permanent-magnet stepper motor develops more torque per ampere stator current than the
variable-reluctance stepper motor. There is also a hybrid stepper motor that has a rotor with an axial
permanent magnet in the middle and ferromagnetic teeth at the outer sections.

The hybrid stepper motor combines the characteristics of the variable-reluctance and permanent-
magnet stepper motors. A variable-reluctance stepper motor can be the single-stack type or the
multiple-stack type. The latter one is used to provide smaller step sizes. Its motor is segmented
along its axial length into magnetically isolated sections which are called stacks which are excited
by a separate winding called a phase. Even though variable-reluctance stepper motors with up to
seven stacks and phases are used, three-phase arrangements are more often used.

Figure 9.12b shows a variable-reluctance stepper motor that has a rotor with eight poles and three
separate eight-pole stators arranged along the rotor. If phase-a poles of a stator are energized by a
set of series-connected coils with current ia, the rotor poles align with the stator poles of phase a.

As can be observed in Figure 9.12a, the phase-b stator is the same as the phase-a stator except
that its poles are displaced by 15◦ in a counterclockwise direction. Similarly, the phase-c stator is
displaced from the phase-b stator by 15◦ in the counterclockwise direction. When the flow of the
current is in phase a is interrupted and phase b is energized, the motor will develop a torque, rotating
its rotor by 15◦ in the counterclockwise direction. Similarly, when the flow of the current ib in phase
b is interrupted and phase c is energized, the motor will rotate another 15◦ in the counterclockwise
direction.

Finally, when the flow of the current ic in phase c is interrupted and phase a is energized, the
motor will rotate another 15◦ in the counterclockwise direction, completing a one-step (i.e., 45◦)
rotation in the counterclockwise direction. Therefore, additional current pulses in the abc sequence
will develop additional counterclockwise stepping motions. Reversing the current-pulse sequence
to abc will develop reversed rotation.

For an n-stack motor, the rotor or stator (but not both) on each stack is displaced by 1/n times
the pole-pitch angle. Permanent-magnet stepper motors require two phases and current polarity
is important. The hybrid stepper motor varies significantly from a multistack variable-reluctance
stepper motor in that the stator pole structure is continuous along the length of the rotor.

9.7 SUBSYNCHRONOUS MOTORS
A subsynchronous motor has a rotor with an overall cylindrical outline and yet it is as toothed as
a many-pole salient-pole rotor. For example, a typical motor may have 16 teeth or poles, and in
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Figure 9.12 A variable-reluctance stepper motor having a rotor with eight poles and three separate eight-pole
stators arranged along the rotor: (a) cross section of a stepper motor operation and (b) cut off view of the motor.

combination with a 16-pole stator will normally rotate at a synchronous speed of 450 rpm when
operated at 60 Hz.

The motor starts as a hysteresis motor. At synchronous speed, the rotor poles induced in a hys-
teresis rotor stay at fixed spots on the rotor surface as the rotor rotates into synchronism with the
rotating magnetic field of the stator. The hysteresis torque is in effect when the rotor rotates at less
than synchronous speed.

Subsynchronous motors, which are self-starters, start and accelerate with hysteresis torque just
as the hysteresis synchronous motor does. There is no equivalent induction-motor torque like the
one found in reluctance motors.

This type of motor has a higher starting torque but less synchronous speed torque than reluctance
torque. If such a motor operating at 450 rpm were temporarily overloaded, it would drop out of
synchronism. As the speed drops down toward the maximum torque point, the motor will again lock
into synchronism at a submultiple speed of 225 rpm. For this reason, it is called a subsynchronous
motor.

9.8 PERMANENT-MAGNET DC MOTORS
A permanent-magnet motor is a motor that has poles made up of permanent magnets. Even though
most permanent-magnet machines are used as dc machines, they are occasionally built to operate as
synchronous machines with the rotating field winding replaced by a permanent magnet.

The permanent-magnet ac-motor operation resembles that of the permanent-magnet stepper mo-
tor. Just as in the stepper motor, the frequency of the excitation dictates the motor speed, and the
angular position between the rotor magnetic axis and a particular phase when it is energized affects
the developed torque. Often, a permanent-magnet ac motor is called a brushless motor or brushless
dc motor.
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Permanent-magnet dc motors are widely used in automobiles to drive air conditioners, heater
blowers, windshield wipers and washers, power seats and power windows, tape decks, and radio
antennas.

They are used in the home to operate electric shavers, electric toothbrushes, carving knives,
vacuum cleaners, power tools, miniature motors in many toys, lawn mowers, and other equipment
that uses batteries. They are used as starter motors for outdoor motors. In computers, they are used
for capstan and tape drives.

They can also be used in control systems such as dc servomotors and tape drives. In these appli-
cations, they are often used as fractional-horsepower motors for economic reasons. However, they
can also be built in sizes greater than 200 hp.

Since there is no field winding in a permanent-magnet dc motor, it has a smooth stator structure
on which a cylindrical shell made up of a permanent magnet is mounted.

Hence, the magnetic field is produced by the permanent magnet. The rotor of this permanent-
magnet motor is a wound armature. The dc power supply is connected directly to the armature
conductors through a brush/commutator assembly.

In these motors, there are basically three types of permanent magnets, namely, alnico magnets,
ceramic (or ferrite) magnets, and rare-earth magnets (samarium-cobalt magnets). Ceramic magnets
are usually used for low-horsepower slow-speed motors. They are most economical in fractional
horsepower motors and are also less expensive than alnico in motors up to 10 hp.

The rare-earth magnets are very expensive; however, they have proven to be the most cost effec-
tive in very small motors. In general, alnico magnets are used in very large motors up to 200 hp. It
is also possible to use special combinations of magnets and ferromagnetic materials to achieve high
performance (i.e., high torque, high efficiency, and low volume) at a low cost.

A permanent-magnet dc motor is basically a shunt dc motor with its field circuit replaced by
permanent magnets. Since the flux of the permanent magnet cannot be changed, its speed can only
be controlled by varying its armature voltage and armature circuit resistance.

Therefore, the equivalent circuit of a permanent-magnet dc motor is made up of an armature
connected in series with the armature-circuit resistance Ra. Hence, the internal generated voltage
can be determined from

Ea = Ka ×Φd ×ωm (9.52)

where

Ka is the armature constant

Φd is the net flux per pole

In a permanent-magnet dc machine Φd is constant; thus,

Ea = K ×ωm (9.53)

where
K = K ×Φd (9.54)

and is called the torque constant of the motor. It is determined by the armature geometry and the
properties of the permanent magnet used. The developed torque of the motor is found from

Td =
Ea × Ia

ωm
= K × Ia (9.55)

Figure 9.13a and b shows typical current–torque and speed–torque characteristics of a permanent-
magnet dc motor, respectively. Varying terminal voltage Vt of the motor changes the no-load speed
of the motor, but the slope of the curves remains constant, as shown in Figure 9.14a.
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Figure 9.13 For a permanent-magnet dc motor: (a) typical current–torque characteristic and (b) typical
speed–torque characteristic.

Figure 9.14 For a permanent-magnet dc motor: (a) speed–torque characteristics for different supply voltages
and (b) speed–torque characteristics for different armature circuit resistances.

However, varying the armature-circuit resistance Ra changes the speed–torque characteristic, but
does not affect the no-load speed ωo of the motor, as shown in Figure 9.14b.

Example 9.4:

Assume that the armature resistance of a permanent-magnet dc motor is 1.2 Ω. When it is operated
from a dc source of 60 V, it has a no-load speed of 1950 rpm and is supplied by 1.5 A at no load.
Determine the following:

(a) The torque constant.

(b) The no-load rotational losses.

(c) The output in horsepower if it is operating at 1500 rpm from a 50 V source.

Solution

(a) The internal generated voltage of the motor is

Ea =Vt − IaRa

= (60− V)− (1.5 A)(1.2 Ω)

= 58.2 V

At speeds of 1950 rpm, its speed is

K =
Ea

ωm
=

58.2 V
204.2 rad/s

= 0.285 V/(rad/s)
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(b) Since all the power supplied at no load is used for rotational losses of the motor

Prot = EaIa

= (58.2 V)(1.5 A)
= 87.3 W

(c) At 1500 rpm,

ωm = 1500
(

2π
60

)
= 157.01 rad/s

hence,

Ea = Kωm

= (0.285 V/(rad/s))(157.01 rad/s)
= 44.75 V

Therefore, the input power is

Psha f t = Pd = EaIa

= (44.75 V)(4.38 A)
= 196 W

Since the rotational losses are approximately constant, the output power of the motor is

Pout = Psha f t −Prot

= 196−87.3

= 108.7 W

or in horsepower,

Pout =
108.7 W

746 W/hp
= 0.1475 hp

PROBLEMS

PROBLEM 9.1

A 1/2 hp, single-phase, 120 V, four-pole induction motor has the following constants in ohms
referred to the stator:

R1 = 1.95 Ω R2 = 3.5 Ω

X1 = 2.5 Ω X2 = 2.5 Ω

Xm = 62 Ω

The core losses of the motor are 35 W, and the friction, windage, and stray losses are 14 W. The
motor is operating at the rated voltage and frequency with its starting winding open. For a slip of
4%, determine the following:

(a) The shaft speed in rpm.

(b) The forward and backward impedances.

(c) The input current.

(d) The power factor.

(e) The input power.
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(f) The total air-gap power.

(g) The developed power.

(h) The output power.

(i) The developed torque.

(j) The output torque.

(k) The input power.

(l) The efficiency of the motor.

PROBLEM 9.2

A 1/4 hp, single-phase, 120 V, 60 Hz, four-pole induction motor has the following constants in
ohms referred to the stator:

R1 = 2.5 ΩR2 = 3.8 Ω

X1 = 2.2 ΩX2 = 1.9 Ω

Xm = 59 Ω

The core losses of the motor are 30 W, the friction and windage losses are 10 W, and the stray
losses are 4 W. The motor is operating at the rated voltage and frequency with its starting windings
open. For a slip of 5%, determine the following:

(a) The forward and backward impedances.

(b) The input current.

(c) The input power.

(d) The total air-gap power.

(e) The developed torque.

(f) The developed power.

(g) The output power in watts and horsepower.

(h) The output torque.

(i) The efficiency of the motor.

PROBLEM 9.3

Use the data given in Problem 9.1 and determine the following for the single-phase induction
motor:

(a) The air-gap power due to the forward field.

(b) The air-gap power due to the backward field.

(c) The rotor copper loss due to the forward field.

(d) The rotor copper loss due to the backward field.

(e) The total rotor copper loss.
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PROBLEM 9.4

Use the data given in Problem 9.2 and determine the following:

(a) The air-gap power due to the forward field.

(b) The air-gap power due to the backward field.

(c) The rotor copper loss due to the forward field.

(d) The rotor copper loss due to the backward field.

(e) The total rotor copper loss.

PROBLEM 9.5

Determine the developed torque given in Problem 9.1, if it is operating at 4% slip and its terminal
voltage is

(a) 208 V.

(b) 240 V.

PROBLEM 9.6

Determine the developed torque in the motor given in Problem 9.2, if it is operating at 5% slip
and its terminal voltage is

(a) 208 V.

(b) 240 V.

PROBLEM 9.7

Assume that the currents in the main and the auxiliary windings of a single-phase induction motor
are given, respectively, as

im =
√

2Im cosωt and ia =
√

2Ia cosωt +θa

and that the windings are located in quadrature with respect to each other. If the effective number
of turns for the main and auxiliary windings are Nm and Na, determine the following:

(a) A mathematical expression for the rotating mmf wave of the stator.

(b) The magnitude and the phase angle of the auxiliary winding current needed to produce a
balanced, two-phase system.

PROBLEM 9.8

Consider the solution of Example 9.2 and develop a table to compare the starting torques and
starting currents in part (a), (b), and (c) expressed as per unit of the starting torque without any
external element in the auxiliary circuit, when connected to a supply of 120 V at 60 Hz.

PROBLEM 9.9

Assume that the impedances of the main and auxiliary windings of a single-phase 120 V, 60 Hz,
capacitor-start induction motor are

Zm = 4.2+ j3.4 Ω and Za = 9+ j3 Ω



Single-Phase and Special-Purpose Motors 363

Determine the value of the starting capacitance that will cause the main and auxiliary winding
currents to be in quadrature at starting.

PROBLEM 9.10

Assume that the armature resistance of a permanent-magnet dc motor is 1.4 Ω. When it is oper-
ating from a dc source of 75 V, it has a no-load speed of 2200 rpm and is supplied by 1.7 A at no
load. Determine the following:

(a) The torque constant.

(b) The no-load rotational losses.

(c) The output in horsepower, if it is operating at 1800 rpm from a 70 V source.

PROBLEM 9.11

Determine the best motor selection for the following applications and explain the reasoning:

(a) Electric drill.

(b) Electric clock.

(c) Refrigerator.

(d) Vacuum cleaner.

(e) Air conditioner fan.

(f) Air conditioner compressor.

(g) Electric sewing machine.

(h) Electric shaver.

(i) Electric toothbrush.

PROBLEM 9.12

Assume that a permanent-magnet dc motor is operating with a magnetic flux of 5mWb, that its
armature resistance is 0.7 Ω and the supply voltage is 30 V. If the motor load is 2N·m and its
armature constant is 110, determine the following:

(a) The operating speed of the motor.

(b) The developed torque under a blocked-rotor condition.



10 Transients and Dynamics
of Electric Machines

10.1 INTRODUCTION
Steady-state operation and behavior of ac and dc electromechanical machines have been reviewed
in previous chapters. However, disturbances or sudden changes (e.g., faults, sudden load changes or
shifts, or sudden changes in network configurations or in supply voltages) can cause these machines
to behave quite differently. During such transient periods, it often becomes very important to have
a knowledge of machine behavior.

Here, the transient period is defined as the time period between the beginning of the disturbance
and the following steady-state operating conditions. In this chapter, a brief review of both the elec-
trical transient behavior and the mechanical transient behavior (dynamic response) of dc and ac
machines is presented. However, an in-depth study of this topic is outside the scope of this book.1

10.2 DC MACHINES
In this type of study, it is customary to simplify the problem by making various assumptions. For
example, it is assumed that the field mmf acts only along the d-axis and the armature mmf acts only
along the q-axis.

In other words, there is no mutual inductance between the field circuit and the armature circuit.
Therefore, the armature reaction has no demagnetizing effect. However, the effects of the armature
reaction may be added later as an additional field excitation requirement. It can also be assumed that
magnetic saturation does If.

A given dc machine can be represented by two coupled electrical circuits both with resistances
and inductances, as shown in Figure 10.1. These circuits, representing the field and the armature of
the dc machine, are coupled through the electromagnetic field.

Similarly, the electrical system is coupled to the mechanical system through the developed elec-
tromagnetic torque Td and external mechanical torque, which can be either an input torque Ts from
a prime mover or a load torque TL.

10.3 SEPARATELY EXCITED DC GENERATOR
A schematic representation of a separately excited dc generator is shown in Figure 10.1a. Notice that
the inductances of the armature winding and field winding are represented by La and Lf, respectively.
The developed torque is given by

Td = Ka ×Φd × Ia (10.1)

and the internal generated voltage is given by

Ea = Ka ×Φd ×ωm (10.2)

1For an excellent reference, see Power System Control and Stability, P. M. Anderson and A. A. Fouad, IEEE Press, New
York, 1994.
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Figure 10.1 Schematic representation of a separately excited dc machine: (a) generator and (b) motor.

Since magnetic linearity (i.e., the air-gap flux is directly proportional to the field current If) is as-
sumed,

Td = Kf × I f × Ia (10.3)
Ea = Kf × I f ×ωm (10.4)

where Kf is a constant.
Assume that the generator is driven at a constant speed of ωm by the prime mover. The voltage

equation for the field circuit can then be expressed as

Vf = I f R f +L f
dIf

dt
(10.5)

where If, Rf, and Lf are the current, resistance and self-inductance of the field circuit, respectively.
Therefore,

Vf
R f

= I f + τ f

(
dI f
dt

)
(10.6)

where τ f = Lf/Rf is the time constant of the field circuit. Assuming that the effect of saturation is
negligible, the internal generated voltage is

Ea = Kf × I f ×ωm = Kg × I f (10.7)

where Kg = Kf ×ωm is the slope of the linear section of the magnetization curve. For the armature
circuit, the voltage equation can be written in terms of the generator terminal voltage as

Ea −Vt = Ra × Ia +La

(
dIa
dt

)
(10.8)

or

Ea−Vt
Ra

= Ia × τa

(
dIa
dt

)
(10.9)

where τa = La/Ra is the time constant of the armature circuit. When the separately excited dc gener-
ator is providing an armature current Ia to an electrical load, the developed electromagnetic torque
is

Td =
Pd

ωm
=

Ea × Ia

ωm
(10.10)
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The dynamic equation of the dc machine is a function of the mechanical torque applied to its shaft
by the prime mover. Therefore,

Tsha f t = Td + J
(

dωm

dt

)
(10.11)

or

Tsha f t −Td = J
(

dωm

dt

)
(10.12)

where J is the moment of inertia of the rotor and the prime mover.
The electrical transient behavior of a dc generator involves both the transient behavior of its

field circuit and the transient behavior of its armature circuit. It is easier to study this behavior of
the machine by first finding the appropriate transfer function and then applying the techniques of
Laplace transform theory.

10.3.1 FIELD-CIRCUIT TRANSIENT

Assume that the generator is being run by a prime mover at a constant speed of ωm, with its armature
circuit open and its field circuit having just been closed, as shown in Figure 10.1a. The Laplace
transform of the voltage equation (10.5) for the field circuit with zero initial conditions can be given
as

Vf (s) = I f (s)R f +L f sI f (s) (10.13)
Vf (s) = I f (s)(R f + sL f ) (10.14)

where

If(s) is the Laplace transform of the time function If

Vf(s) is the Laplace transform of Vf

Thus, the transfer function relating the field current to the field voltage is given by

I f (s)
Vf (s)

=
1

R f + sL f
(10.15)

I f (s)
Vf (s)

=
1

R f (1+ sτ f )
(10.16)

where τ f = I f /R f as before. From Equation 10.7, the Laplace transform of the internal generated
voltage is

Ea(s) = KgIf (s) (10.17)

Therefore, the total transfer function relating the internal generated voltage to the field circuit volt-
age can be expressed as

Ea(s)
Vf (s)

=
Ea(s)
I f (s)

×
I f (s)
Vf (s)

=
Kg

R f (1+ sτ f )
(10.18)

The block diagram representation of this equation is shown in Figure 10.2. The time domain re-
sponse associated with this total transfer function can be expressed as

ea(t) =
KgVf

R f
(1− et/τ f ) (10.19)

Ea(t) = Ea(1− et/τ f ) (10.20)
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Figure 10.2 Block diagram of a separately excited dc generator: (a) with the armature circuit closed and (b)
with simplified diagram.

Therefore, in the steady-state, the internal generated voltage becomes

Ea =
KgVf

R f
= KgIf (10.21)

where the steady-state field current is

I f =
Vf

If
(10.22)

10.3.2 ARMATURE-CIRCUIT TRANSIENT

Assume that the armature circuit of the generator has just been closed over an electrical load and
that the armature speed and the field current are kept constant. Therefore, the internal generated
voltage of the generator can be expressed as

Ea = RaIa +La

(
dIa
dt

)
+RLIa +LL

(
dIa
dt

)
(10.23)

where RL and LL are the resistance and the inductance of the electrical load, respectively. Thus,

Ea = (Ra +RL)+(La +LL)
(

dIa
dt

)
(10.24)

Its Laplace transform is

Ea(s) = Ia(s)(Ra +RL)(1+ sτat) (10.25)

where τat is the armature-circuit time constant determined by

τat =
Lat

Rat
=

La +LL

Ra +RL
(10.26)

Therefore, the transfer function is

Ia(s)
Ea(s)

=
1

Rat(1+ sτat)
(10.27)

Hence, its time domain response is

ia(t) =
Ea

Rat
(1− et/τat ) (10.28)

Similarly, the total transfer function relating the armature current to the field voltage can be ex-
pressed as

Ia(s)
Vf (s)

=
Ia(s)
Ea(s)

× Ea(s)
Vf (s)

=
Kg

R f Rat(1+ sτ f )(1+ sτat)
(10.29)
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Figure 10.3 (a) Block diagram of a separately excited dc generator with the armature circuit closed and (b)
simplified diagram.

Figure 10.3 shows the corresponding block diagram. Since the Laplace transform of the field voltage
for a step change of voltage is

Vf (s) =
Vf

s
(10.30)

Ia(s) =
KgVf

R f Rats(1+ sτ f )(1+ sτat)
(10.31)

Example 10.1:

Assume that a separately excited dc generator has an armature-circuit resistance and inductance
of 0.2Ω and 0.2H, respectively. Its field winding resistance and inductance are 120Ω and 30H,
respectively. The generator constant Kg is 120 V per field ampere at rated speed. Assume that the
generator is driven by the prime mover at rated speed and that a 240 V dc supply is suddenly
connected to the field winding. Determine the following:

(a) The internal generated voltage of the generator.

(b) The internal generated voltage in the steady state.

(c) The time required for the internal generated voltage to rise 99% of its steady-state value.

Solution

(a) The time constant of the field circuit is

τ f =
L f

R f
=

30
120

= 0.25 s

From Equation 10.19,

Ea(t) =
KgVf

R f
(1− exp−t/τ f ) =

(120)(240)
120

(1− exp−t/0.25) = 240(1− exp−4t)

(b) The internal generated voltage in the steady state is

Ea(∞) = 240 V

(c) The time required for the internal generated voltage to rise to 99% of its steady-state value is
found from

0.99(240) = 240(1− e−4t) t = 1.15 s

Example 10.2:

Assume that the generator given in Example 10.1 is driven by the prime mover at rated speed and
is connected to a load made up of a resistance of 3Ω and inductance of 1.4 H that are connected in
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series with respect to each other. If a 240 V dc supply is suddenly connected to the field winding,
determine the armature current as a function of time.

Solution
From Equation 10.29, the transfer function relating the armature current to the field voltage is

Ia(s)
Vf (s)

=
Kg

R f Rat(1+ sτ f )(1+ sτat)

where

τ f =
L f

R f
=

30
120

= 0.25 s

and

τat =
Lat

Rat
=

La +LL

Ra +RL
=

0.2+1.4
0.2+3

= 0.5 s

Therefore,

Ia(s)
Vf (s)

=
120

(120)(3.2)(1+0.25 s)(1+0.5 s)

The Laplace transform of the field voltage for a step change of 240 V is

Vf (s) =
240

s

Thus,

Ia(s) =
240

s
× 120

384(1+0.25 s)(1+0.5 s
=

600
s(s+4)(s+2)

=
A0

s
× A1

(s+4)
× A2

(s+2)

where

A0 =
600

s(s+4)(s+2)|s=−4
= 75

A1 =
600

s(s+2)|s=−4
= 75

A2 =
600

s(s+4)|s=−2
=−150

Hence,

Ia(s) =
75
s
+

75
s+4

− 150
s+2

Therefore, taking the inverse Laplace transform, the armature as a function of time can be found as

Ia(s) = 75+75e−4t −150e−2t
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10.4 SEPARATELY EXCITED DC MOTOR
Assume that a separately excited dc motor is operating at a constant field current I f , as shown in
Figure 10.1b, and that its speed is controlled by changing its terminal voltage Vt . Ignoring the effects
of any saturation, the developed torque Td and the internal generated voltage Ea can be expressed as

Td = Kf × I f × Ia = Km × Ia (10.32)
Ea = Kf × I f ×ωm = Km ×ωm (10.33)

where Km = Kf If is a constant. This motor constant Km can also be found from the magnetization
curve as

Km =
Em

ωm
(10.34)

The Laplace transforms of Equations 10.32 and 10.33 are

Td(s) = Km × Ia(s) (10.35)
Ea(s) = Km ×ωm(s) (10.36)

When the armature circuit is just energized at t = 0, the terminal voltage of the motor is

Vt = Ea +RaIa +La
dIa

dt
(10.37)

By substituting Equation 10.32 into this equation,

Vt = Kmωm +RaIa +La
dIa

dt
(10.38)

Its Laplace transform then is

Vt(s) = Kmωm(s)+RaIa(s)+LasIa(s) (10.39)

or

Vt(s) = Kmωm(s)+ Ia(s)Ra(1+ sτa) (10.40)

where τa = La/Ra is the electrical time constant of the armature.
The developed torque of the motor must be equal to the sum of all opposing torques. Thus, the

dynamic equation of the motor can be expressed as

Td = Km × Ia = J
dωm

dt
(10.41)

where J is the moment of inertia including the load. If B is the equivalent viscous friction constant
of the motor including the load, and TL is the mechanical load torque. Here, Bωm is the rotational
loss torque of the system. The Laplace transform of Equation 10.41 is

Td(s) = K × Ja(s) = Jsωm(s)+Bωm(s)+TL(s) (10.42)

so that

ωm(s) =
Td(s)−TL(s)
B(1+ sJ/B)

(10.43)
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Figure 10.4 Block diagram of a separately excited dc motor with the armature circuit closed.

Figure 10.5 Block diagram of a separately excited dc motor with the mechanical damping neglected.

or

ωm(s) =
KmIa(s)−TL(s)

B(1+ sτm)
(10.44)

where τm = J/B is the mechanical time constant of the system. Therefore, the Laplace transform of
the armature current can be found from Equations 10.36 and 10.40 as

Ia(s) =
Vt(s)−Ea(s)
Ra(1+ sτa)

(10.45)

or

Ia(s) =
Vt(s)−Kmωm(s)

Ra(1+ sτa)
(10.46)

The corresponding block diagram is shown in Figure 10.4.
If mechanical damping B is ignored, the overall transfer function can be found as

ωm(s)
Vt(s)/Km

=
1

τis(1+ sτa)+1
(10.47)

ωm(s)
Vt(s)/Km

=
1/(τaτi)

s(1/τa + s)+1/(τaτi)
(10.48)

where τi = JRa/K2
m is the inertial time constant. The corresponding block diagram is shown in

Figure 10.5. From the overall transfer function, the characteristic equation of the speed response to
the voltage input is determined as

s
(

1
τa

+ s
)
+

1
τaτi

= s2 + s
(

1
τa

+ s
)
+

1
τaτi

= 0 (10.49)

The standard form of the characteristic equation of a second-order system is

s2 +2αs+ω2
n = 0 (10.50)
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Figure 10.6 Simplified block diagram of a dc motor.

By comparing Equations 10.49 and 10.50, the undamped natural frequency ωn can be expressed as

ωn =

(
1

τaτi

)1/2

(10.51)

and the damping factor α is

α =
1

2τa
(10.52)

Therefore, the damping ratio is

ζ =
α

ωm
=

(
τi

τa

)1/2

(10.53)

Note that to study the response of the motor to load changes, the block diagram shown in Figure
10.5 can be modified to the one shown in Figure 10.6.

The overall transfer function relating the speed response to a change in load torque with Vt = 0
can be determined from Figure 10.5 by eliminating the feedback path as

ωm (s)
TL (s)

=
1+ sτa

Js(1+ sτa)+(K2
m +Ra)

(10.54)

or

ωm (s)
TL (s)

=
1/τa + s

s(1/τa + s)+1/(τaτi)
(10.55)

Also notice that its characteristic equation has the same undamped natural frequency and damping
factor given in Equations 10.51 and 10.52.

For a given mechanical load torque TL, the required armature current can be found from the
dynamic equation of the motor. Therefore, dividing Equation 10.41 by Km and substituting ωm =
Ea/Km, the armature current is found as

Ia =
J

K2
m
× dEa

dt
+

BEa

K2
m

+
TL

Km
(10.56)

Example 10.3:

Assume that a 250 V separately excited dc motor has an armature-circuit resistance and inductance
of 0.10Ω and 14 mH, respectively. Its moment of inertia J is 20 kg/m2 and its motor constant Km
is 2.5 N m/A. The motor is supplied by a 250 V constant-voltage source. Assume that the motor
is initially operating at steady-state without a load. Its no-load armature current is 5 A. Ignore the
effects of saturation and armature reaction. If a constant load torque TL of 1000N m is suddenly
connected to the shaft of the motor, determine the following:
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(a) The undamped natural frequency of the speed response.

(b) The damping factor and damping ratio.

(c) The initial speed in rpm.

(d) The initial acceleration.

(e) The ultimate speed drop.

Solution

(a) The armature time constant of the motor is

ta =
La

Ra
=

0.014
0.1

= 0.14 s

and its inertial time constant is

τi =
JRa

K2
m

=
(20)(0.1)

2.52 = 0.32 s

Thus, the undamped natural frequency of the motor is

ωn =

(
1

τaτi

)1/2
=

(
1

(0.14)(0.32)

)1/2
= 4.72 rad/s

(b) The damping factor of the system is

α =
1

2τa
=

1
2(0.14)

= 3.571

and its damping ratio is

ζ =
α
ωn

=
0.3571
4.72

= 0.7567

(c) When the mechanical load is suddenly connected at t = 0, the internal generated voltage is

Ea =Vt − IaRa = 250− (5)(0.1) = 249.5 V

Hence, the corresponding initial speed of the motor is

ωm =
Ea

Km
=

249.5
2.5

= 99.8 rad

(d) Assuming that the losses are small enough to ignore, the initial acceleration of the motor can
be found from Equation 10.41 as

α =
dωm

dt
=

KmIa −TL

J
=

(2.5)5−1000
20

= 49.38 rad/s2

(e) By applying the final-value theorem of Laplace transforms to Equation 10.55, the ultimate drop
in speed of the motor can be found as

∆ωm = lim
s→∞

{
s[−(1/J)(1/τa + s)]

s(1/τa + s)+1/(τaτi)

}
=− τi∆TL

J
=− (0.32)1000

20
=−152.8 rpm
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Figure 10.7 Three-phase short-circuit armature currents and field current waves during a three-phase fault at
the terminals of a synchronous generator as a function of time.

10.5 SYNCHRONOUS GENERATOR TRANSIENTS
Whenever there is a sudden change in the shaft torque applied to a synchronous generator or in its
output load, there is always a transient that lasts for a very short time before the generator resumes
its steady-state operation. Such operation of a generator is defined as transient operation and can
be electrical or mechanical in nature. For example, a sudden three-phase short circuit at the stator
terminals is an electrical transient and a sudden load change may result in a mechanical transient.

10.6 SHORT-CIRCUIT TRANSIENTS
The most severe transient in a synchronous generator takes place when its three stator terminals are
suddenly shorted out while the generator is operating at synchronous speed with constant excitation
under no-load conditions. Such a short on a power system is called a fault.

Figure 10.7 represents a typical short-circuit oscillogram1 that shows the three-phase armature
current waves as well as the field current. Notice that the traces of the armature-phase currents are
not symmetrical at the zero-current axis, and clearly exhibit the dc components responsible for the
offset waves. In other words, each phase current can be represented by a dc transient component of
current added on top of a symmetrical ac component. The symmetrical ac component of current by
itself is shown in Figure 10.8. As shown in Figure 10.7, the dc component of the armature current is
different in each phase and depends on the point of the voltage wave at which the fault takes place.

1These oscillograms of short-circuit currents can be used to determine the values of some of the reactances and time con-
stants.
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Figure 10.8 The symmetrical ac component of a short-circuit armature current of a synchronous generator.

The initial value of the dc component1 of the fault current can be as large as the magnitude of the
steady-state current. The decay rate of this dc component is found from the resistance and equivalent
inductance seen at the stator terminals. The dc component plays a role here because the synchronous
generator is essentially inductive and in an inductive circuit a current cannot vary instantaneously.

As previously stated, Figure 10.8 shows the ac symmetrical component of the short-circuit ar-
mature current. This symmetrical trace can be found oscillographically if the short circuit takes
place at the instant when the prefault flux linkage of the phase is zero. The envelope of the short-
circuit current represents three different periods: the subtransient period, the transient period, and
the steady-state period. For the purpose of short-circuit current calculations, the variable reactance
of a synchronous machine can be represented by the following reactance values:

X ′′
s = subtransient reactance determines the short-circuit current during the first cycle or so after

the short circuit occurs. In about 0.05–0.1 s, this reactance increases to X ′
s .

X ′
s = transient reactance determines the short-circuit current after several cycles at 60 Hz. In

about 0.2–2 s, this reactance increases to Xs.

Xs = synchronous reactance determines the short-circuit current after a steady-state condition is
reached.

This representation of the synchronous machine reactance by three different reactances is due to
the fact that the flux across the air gap of the machine is much greater at the instant the short
circuit takes place than it is a few cycles later. When a short circuit occurs at the terminals of a
synchronous machine, it takes time for the flux to decrease across the air gap. As the flux lessens,
the armature current decreases since the voltage generated by the air gap flux regulates the current.
The subtransient reactance Xs includes the leakage reactances of the stator and rotor windings of the
generator and the influence of the damper windings.2 Therefore, the subtransient reactance can be
expressed as

X ′′
s = Xa +

XarXf Xd

Xf Xd +XarXd +XarXf
(10.57)

1Also note that the presence of the dc component in the stator phase coil induces an additional current component in the field
winding that assumes a damped sinusoidal character.

2They are located in the pole faces of generator and are used to reduce the effects of hunting.
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where

Xa is the leakage reactance of the stator winding per phase

≡ ωLa

Xf is the leakage reactance of the field winding

≡ ωL f

Xar is the reactance associated with the armature mmf acting in the mutual flux path

≡ ωLar

Xd is the leakage reactance of the damper winding

≡ ωLd

Ld is the leakage inductance of the damper winding

The transient reactance X ′′
d includes the leakage reactances of the stator and excitation windings

of the generator. It is usually larger than the subtransient reactance. The transient reactance can be
expressed as

X ′′
s = Xa +

Xf Xar

Xf +Xar
(10.58)

Alternatively, the three reactance values can be determined from

X ′′
s =

Ea

I′′a
(10.59)

X ′
s =

Ea

I′a
(10.60)

Xs =
Ea

Ia
(10.61)

where

Ea is the internal generated voltage

I′′a is the subtransient current

I′a is the transient current

Ia is the steady-state current

It is interesting to observe in Figure 10.8 that the ac component of the short-circuit current con-
sists of the steady-state value and the two components that decay with time constants T ′

s and T ′′
s .

Thus, the rms magnitude of the ac current1 at any time after a three-phase short circuit at the gener-
ator terminals can be determined from

Iac(t) = Ia +(I′a − Ia)exp
(
− t

T ′
s

)
+(I′′a − I′a)exp

(
− t

T ′′
s

)
(10.62)

where all quantities are in rms values and are equal but displaced 120 electrical degrees in the three
phases. However, the instantaneous value of the ac short-circuit current is

iac(t) =
√

2
[

Ia +(I′a − Ia)exp
(
− t

T ′
s

)
+(I′′a − I′a)exp

(
t

T ′′
s

)]
sinωt (10.63)

1If such a short circuit does not include all three phases, then the fault currents are determined by using symmetrical compo-
nents methods, which are beyond the scope of this book. For further information, see Gönen (1988).
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The dc (i.e., unidirectional) component of the short-circuit current is different in each phase, and its
maximum value is

Idc,max =
√

2I′′a (10.64)

Since it decays with the armature time constant Ta,1 it can be expressed as

Idc =
√

2I′′a exp
(
− t

Ta

)
(10.65)

Also, the maximum value of the dc component depends upon the point in the voltage cycle where
the short circuit takes place. Thus, the dc component of the short-circuit current can be determined
from

Idc =
√

2I′′a (cosα)exp
(
− t

Ta

)
(10.66)

where α is the switching angle. Therefore, the total short-circuit current with the dc offset can be
expressed as

itot =
√

2
[

Ia +(I′a − Ia)exp
(
− t

T ′
s

)
+(I′′a − I′a)exp

(
− t

T ′′
s

)]
sinωt+

√
2I′′a (cosα)exp

(
− 1

Ta

) (10.67)

Since dc components of current decay very fast, as a rule of thumb, the value of the ac component
of current should be multiplied by 1.6 to find the total initial current.

Now assume that the synchronous generator is supplying power to a bus before such a short
circuit takes place. Since the reactance of the generator changes from X to X ′′

s , the corresponding
internal generated voltages must also vary to maintain the initial condition of flux linkage constancy.
Therefore, the internal generated voltages can be expressed as

E ′′
a =Vt + jIaX ′′

a (10.68)
E ′

a =Vt + jIaX ′
s (10.69)

Ea =Vt + jIaXsIa (10.70)

where Ia is the prefault load current. Thus, the total short-circuit current with the dc offset can be
determined from

itot =
√

2
[

Ia +(I′a − Ia)exp
(
− t

T ′
d

)
+(I′′a − I′a)exp

(
− t

T ′′
d

)]
sinωt+

√
2I′′a (cosα)exp

(
− 1

Td

) (10.71)

where

T ′
d
∼=

X ′
s

Xs
T ′

s (10.72)

T ′′
d
∼=

X ′′
s

Xs
T ′′

s (10.73)

1Typically, it varies between 0.1 and 0.2s.
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Example 10.4:

Assume that a three-phase, 200 MVA, 13.2 kV, 60 Hz, wye-connected synchronous generator has
the following parameters:

Xs = 1.0 pu X ′
s = 0.23 pu X ′′

s = 0.12 pu
T ′

s = 1.1 s T ′′
s = 0.035 s Ta = 0.16 s

Assume that the machine is operating at no load when a three-phase short circuit takes place at
its terminals. If the initial dc component of the short-circuit current is about 60% of the initial ac
component of the short-circuit current, determine the following:

(a) The base current of the generator.

(b) The subtransient current in per unit and amps.

(c) The transient current in per unit and amps.

(d) The steady-state current in per unit and amps.

(e) The initial value of the ac short-circuit current in amps.

(f) The initial value of the total short-circuit current in amps.

(g) The value of the ac short-circuit current after two cycles.

(h) The values of the ac short-circuit current after 4, 6, and 8 s, respectively.

Solution

(a) From Equation B.60, the base current of the generator is

IB =
S3Φ,base√
3VL,base

=
200×106
√

3(13,200)
= 8,748 A

(b) The subtransient current is

I′′a = (8.333 pu)(8,748 A) = 72,897 A

(c) The transient current is

I′a =
Ea

X ′
s
=

1.0
0.23

= 0.438 pu

or

I′a = (4.348 pu)(8,748 A) = 38,036 A

(d) The initial value of the ac short-circuit current is

I′′a = 72,897 A

(e) The initial value of the total short-circuit current is

Itot = 1.6I′′a = 1.6(72,897 A) = 116,635 A

(f) From Equation 10.62, the rms value of the ac short-circuit current as a function of time is

Iac(t) = Ia +(I′a − Ia)e
− t

T ′s +(I′′a − I′a)exp
(
− 1

T ′′
s

)

= 8,748+29,288exp
(
− t

1.1

)
+34,861exp

(
− t

0.035

)
= 50,611.91 A
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Therefore, the value of the ac current after two cycles (i.e., t = 1/30 s) is

Iac(t) = 8,748+29,288exp
(
−1/30

1.1

)
+34,861exp

(
− 1/30

0.035

)
= 50,611.91 A

(g) The value of the ac current after 4 s is

Iac(t) = 8,748+772+0 = 9,520 A

After 6 s, it is

Iac(t) = 8,748+125+0 = 8,873 A

After 8 s, it is

Iac(t) = 8,748+20+0 = 8,768 A

10.7 TRANSIENT STABILITY
Power system stability can be defined as the ability of the numerous synchronous machines of a
given power system to remain in synchronism (i.e., in step) with each other following a disturbance.
In a stable power system, if synchronous machines are disturbed they will return to their original
operating state if there is no change of power, or they will attain a new operating state without a loss
of synchronism.

The disturbance often causes a transient that is oscillatory in nature, but if the system is stable
the oscillations will be damped. In a synchronous generator, the most severe disturbance is caused
by a short circuit across its terminals. In a synchronous motor, a disturbance may be caused by a
sudden application of load torque to the shaft.

Stability can be classified as either transient or dynamic stability.1 The definition of transient
stability includes stability after a sudden large disturbance such as a fault, loss of a generator, a
sudden load change, or a switching operation. Transient stability is a short-term problem.

Today, dynamic stability is defined as the ability of various machines to regain and maintain
synchronism after a small and slow disturbance, such as a gradual change in load. Dynamic sta-
bility is a long-term problem with time constants running into minutes. In this study, the effects
of regulators, governors, and modern exciters, as well as other factors that affect stability may be
included.

Assume that the power system is made up of two synchronous machines and that one of them
is operating as a generator and the other as a motor. Also assume that the two-machine system is
operating at steady state at point 1 on the power-angle curve, given in Figure 10.9a. Suppose that
the generator is supplying electrical power P1 at an angle delta1 to the motor and that the motor
is driving a mechanical load connected to its shaft. Consider the following specific cases of the
operation of this system:

Case 1. Assume that the shaft load of the motor is slowly increasing. The resulting net torque tends
to slow down the motor and decreases its speed, causing an increase in the power angle δ .
This, in turn, causes the input power to increase until an equilibrium is achieved at a new
operating point 2, which is higher than 1.

1Today, the IEEE does not recognize steady-state stability as a separate class of stability. In present practice, it is included in
the definition of dynamic stability. However, some authors still refer to the dynamic stability by using the ambiguous name
of “steady-state stability.”
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Figure 10.9 (a) Electric power input to a motor as a function of torque angle δ and (b) torque versus the
torque angle δ characteristic.

Case 2. Suppose that the load of the motor is increased suddenly by connecting a large load. The
resultant shortage in input power will be temporarily brought about by the decrease in
kinetic energy. Consequently, the speed of the motor will decrease, causing the power angle
δ and the input power to increase. As long as the new load is less than Pmax, the power angle
δ will increase to a new value so that the input power of the motor is equal to its load. At
this point the motor may still be running slowly, causing the power angle to increase beyond
its proper value. Also an accelerating torque that increases the speed of the motor develops.
However, it is possible that when the motor regains its normal speed, the power angle δ
may have gone beyond point 4 and the motor input will be less than the load. This causes
the motor to pull out.

Case 3. Assume that the load of the motor is increased slowly until point 5 of maximum power is
reached. Any additional load will increase the power angle δ beyond 90◦, causing the input
power to decrease further and the net retarding torque to increase again. This torque slows
the motor down even more until it pulls out of step.

Case 4. Suppose that the load of the motor is increased suddenly, but the additional load is not too
large. The motor will regain its normal speed before the power angle δ becomes too large.
The situation is illustrated in Figure 10.9b in terms of the resultant torque and δ . When the
torque angle δ reaches the value δL, the load torque is the same as the torque developed by
the motor. However, due to inertia, δ will increase beyond δL and the motor will develop
more torque than the load needs. The deceleration will decrease, causing the angle δ to
reach a maximum value δmax and then swing back. The angle δ will oscillate around δL.
Such oscillations will later die out because of damping in the system, and the motor will
settle down to stable operating conditions at point 3.

The transient stability limit can be defined as the upper limit to the sudden increment in load
that the rotor can have without pulling out of step. This limit is always less than the steady-state
limit discussed in Section 7.8. Furthermore, the transient stability limit may have different values
depending on the nature and magnitude of the disturbance involved.

10.8 SWING EQUATION
Without ignoring the torque that is due to friction, windage, and core losses, the net accelerating
torque of a synchronous machine can be expressed, based on Newton’s law of rotation, as

Ta = Tm −Td = Jα (10.74)
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or in terms of the angular position as

J
d2θm

dt2 = Ta = Tm −Td (10.75)

where

Ta is the net accelerating torque

Tm is the shaft torque corrected for rotational losses including friction, windage, and core losses

Td is the developed electromagnetic torque

J is the moment of inertia of the rotor α is the angular acceleration expressed in terms of the
angular position θ of the rotor

=
d2θ
dt2

It is customary to use the values of Tm and Td as positive for generator action and negative for motor
action. It is convenient to measure angular position and angular velocity with respect to a reference
axis rotating at synchronous speed. Hence, the rotor position can be expressed as

θm = ωsmt +αm (10.76)

Taking the derivatives of ωm with respect to t,

dθm

dt
= ωsm +

dδm

dt
(10.77)

d2θm

dt2 =
d2δm

dt2 (10.78)

By substituting Equation 10.78 into Equation 10.75,

J
(

d2δm

dt2

)
= Ta = Tm −Td (10.79)

and by multiplying both sides of this equation by the angular velocity

Jωm

(
d2δm

dt2

)
= ωmTa = Tm −Td (10.80)

Thus, the swing equation can be obtained as

M
(

d2δm

dt2

)
= Pa = Pm −Pd (10.81)

where

M = Jωm is the inertia constant

Pa = Pm −Pd is the net accelerating power

Pm = ωmTm is the shaft power input corrected for rotational losses

Pd = ωmTd is the electrical power output corrected for electrical losses
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The swing equation describes how the machine rotor moves (swings) with respect to the syn-
chronously rotating reference frame in a given disturbance (i.e., when the net accelerating power is
not zero). The inertia constant for the synchronous machine is expressed as

H =
Kinetic energy of all rotating parts at synchronous speed

Srated
(10.82a)

H =
Jω2

sm/2
Srated

(10.82b)

or

H =
1
2

Mωsm

Srated
(10.82c)

Equation 10.82 can be expressed in terms of per-unit quantities with respect to the rated (3Φ) power
of the synchronous generator as

2H
ωsm

d2δm

dt2 =
Pa

Srated
=

Pm −Pd

Srated
(10.83)

where the angle δm and angular velocity ωm are in mechanical radians and mechanical radians per
second, respectively. For a synchronous generator with p poles, the electrical power angle and radian
frequency are associated with the corresponding mechanical variables as

δ (t) = p
2 δm(t) (10.84)

ω(t) = p
2 ωm(t) (10.85)

Also the synchronous electrical radian frequency is related to the synchronous angular velocity as

ωs =
p
2 ωm (10.86)

Thus, the rated per-unit swing equation (10.83) can be expressed in electrical units as

2H
ωs

× d2δm

dt2 = Pa = Pm −Pd (10.87)

where δ is in electrical radians

2H
ωs

× d2δ
dt2 = Pa = Pm −Pd (10.88)

when δ is in electrical degrees

2H
180 f

× d2δ
dt2 = Pa = Pm −Pd (10.89)

The solution of this swing equation is called the swing curve δ (t).
If the synchronous machine is connected to an infinite bus through an external reactance, the

electrical power output of the synchronous generator can be expressed as

Pd = Pmax sinδ (10.90)

By substituting this equation into Equation 10.87, the swing equation can be found as

Pm =
2H
ωs

× d2δ
dt2 Pmax sinδ (10.91)
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Since the resulting equation is nonlinear, it is often necessary to use a numerical technique to solve
it.

Example 10.5:

Assume that a three-phase, 250 MVA, 15 kV, 60 Hz, six-pole generator is connected to an infinite
bus through a purely reactive network. Also assume that the inertia constant of the generator is
6 MJ/MVA and that it is supplying power of 1.0 per unit to the infinite bus at the steady state. The
maximum power that can be supplied is 2.4 per unit. If the output power of the generator becomes
zero at a three-phase fault, determine the following:

(a) The angular acceleration of the generator.

(b) The shaft speed of the generator at the end of 12 cycles.

(c) The change in the power angle δ at the end of 12 cycles.

Solution

(a) Since the generator is operating at steady state before the fault Pm = Pd = 1.0 pu Hence, from
Equation 10.89,

H
180 f

× d2δ
dt2 = Pm −Pd

from which the accelerating torque can be found as

α =
d2δ
dt2 =

180 f
H

(Pm −Pd) =
(180)(60)

6
(1.0−0) = 1800 electrical degree/s2

Since the machine has six poles,

α = 300
(

60 s/min
360◦/rev

)
= 50 rpm/s

(b) The synchronous speed of the machine is

ωsm =
120 f

p
=

120(60)
6

= 1200 rpm

and a 12-cycle interval is

t =
60
p

= 0.2 s

ωm = ωsm +αt = 1200+(50)(0.2) = 1210 rpm

(c) Since the generator is initially operating at the power angle δ from

P0 = Pmax sinδ0

the initial power angle can be found as

δ0 = sin−1
(

P0

Pmax

)
= 24.62◦

Therefore,

δ = δ0 +
1
2

αt2 = 24.62◦+2(1800)(0.2)2 = 60.62◦
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PROBLEMS

PROBLEM 10.1

Assume that a 250 V separately excited dc generator has an armature-circuit resistance and induc-
tance of 0.10Ω and 1.2 mH, respectively. Its field winding resistance and inductance are 10Ω and
52 H, respectively. The generator constant Kg is 104 V per field ampere at 1200 rpm. Assume that
the field and armature circuits are initially open and that the prime mover is driving the machine
at a constant speed of 1200 rpm. Derive a mathematical expression for the armature terminal volt-
age as a function of time in terms of the unit step function, if the field circuit is connected to a
constant-voltage source of 260 V at time t = 0.

PROBLEM 10.2

Consider Problem 10.1 and assume that after the field circuit has reached a steady state, the
armature circuit of the generator is suddenly connected to a load made up of a resistance and
inductance that are connected in series with respect to each other. If the values of the resistance
and inductance are 1.2Ω and 1.4 mH, respectively, determine the following in terms of unit step
functions:

(a) The armature current.

(b) The terminal voltage.

(c) The developed electromagnetic torque.

PROBLEM 10.3

Assume that a 250 V separately excited dc motor has an armature-circuit resistance and induc-
tance of 0.15Ω and 15 mH, respectively. Its moment of inertia J is 18 kg/m2 and its motor constant
Km is 2.0 N m/A. The motor is supplied by a constant-voltage source of 250 V. Assume that the
motor is initially operating at steady state without load. Its no-load armature current is 10 A.
Ignore the effects of saturation and armature reaction. If a constant load torque of 500 N m is
suddenly connected to the shaft of the motor, determine the following:

(a) The undamped natural frequency of the speed response.

(b) The damping factor and damping ratio.

(c) The initial speed in rpm.

(d) The initial acceleration.

(e) The ultimate speed drop.

PROBLEM 10.4

A separately excited dc generator has an armature-circuit resistance and inductance of 1Ω and
3 H, respectively. Its field winding resistance and inductance are 100Ω and 20 H, respectively.
The generator constant Kg is 100 V per field ampere at rated speed. Assume that the generator is
driven by the prime mover at rated speed and that a 250 V dc supply is suddenly connected to the
field winding. Determine the following:

(a) The internal generated voltage of the generator.

(b) The internal generated voltage in the steady state.

(c) The time required for the internal generated voltage to rise to 99% of its steady-state value.



Transients and Dynamics of Electric Machines 385

PROBLEM 10.5

Assume that the generator given in this problem is driven by the prime mover at rated speed and
is connected to a load made up of a resistance of 15Ω and inductance of 5 H that are connected in
series with respect to each other. If a 250 V dc supply is suddenly connected to the field winding,
determine the armature current as a function of time.

PROBLEM 10.6

Consider the synchronous generator given in Example 10.5 and determine the following:

(a) The instantaneous values of the ac short-circuit current for any given time t.

(b) The maximum value of the dc component of the short-circuit current.

(c) The dc component of the short-circuit current at t = 0.1 s, if the switching angle α is given
as 45◦.

(d) The total short-circuit current with the dc offset at t = 0.1 s, if the switching angle α is zero.

(e) The maximum rms value of the total short-circuit current.

PROBLEM 10.7

Redo Example 10.2 by using MATLAB, assuming that the new Vf is 150 V and the new Vstep is
150 V. Use the other given values and determine the following:

(a) Write the MATLAB program script.

(b) Give the MATLAB program output.



A Appendix A: A Brief Review
of Phasors

A.1 INTRODUCTION
The instantaneous value of a sinusoidally varying voltage can be expressed as

v(t) =Vm sinωt (A.1)

where

Vm represents amplitude (or maximum value) of the voltage

ωt represents argument

ω represents radian frequency (or angular frequency)

Since the sine wave is periodic, the function repeats itself every 2π radians. Its period T is 2π
radians and its frequency f is 1/T hertz. Thus, the radian frequency can be expressed as ω = 2π f .
The voltage given by Equation A.1 can be expressed as a cosine wave as

v(t) =Vm cos(ωt −90◦) (A.2)

A more general form of the sinusoid is

v(t) =Vm cos(ωt +φ) (A.3)

where φ is the phase angle.
Euler’s identity states that

e jφ = cosφ + j sinφ (A.4)

Therefore, Equation A.3 can be expressed as

v(t) =Re[Vm cos(ωt +φ)+ jVm sin(ωt +φ)]

=Re[Vme j(ωt+φ)]

=
√

2Re[Vme jωt ]

(A.5)

Also, by using the definition of the effective (i.e., root-mean-square [rms]) value of the voltage,

V =
Vm√

2
e jωt (A.6)

Therefore,

v(t) =
√

2Re[Ve jωt ] (A.7)
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Thus, the complex amplitude of the sinusoid given by Equation A.3 can be expressed in exponential
form as

VVV =Ve jφ (A.8)

or in polar form as

VVV = |VVV |∠φ (A.9)

or

VVV =V∠φ (A.10)

or in rectangular form as

VVV =V (cosφ + j sinφ) (A.11)

The complex quantity, given by Equation 1.10, is also called a phasor (or sometimes, erroneously
called a vector). Anderson (1993) defines a phasor as a complex number which is related to the time
domain sinusoidal quantity by the following expression:

a(t) =Re(
√

2Ae jωt) (A.12)

If we express AAA in terms of its magnitude |AAA| and angle α , we have

AAA = |AAA|e jα

and

α(t) =Re
(√

2|AAA|e j(ωt+α) =
√

2|AAA|cos(ωt +α)
)

(A.13)

Thus, Equations A.12 and A.13 convert the rms phasor (complex) quantity to the actual time domain
variable. For example, assume that a sinusoidal voltage of

v(t) =Vm cos(ωt +φ) (A.14)

is applied to a circuit with an impedance

ZZZ = |ZZZ|e jθ (A.15)

Therefore, the current can be expressed as

i(t) =
Vme j(ωt+φ)

|ZZZ|e jθ

=

(
Vm

|ZZZ|

)
e j(ωt+φ−θ)

= Ime j(ωt+φ−θ)

Ime j(ωt+φ−θ) =
Vme j(ωt+φ)

|ZZZ|e jθ (A.16)
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Table A.1
A Comparison of the Current and Voltage Relationships between the Time Domain and
Frequency Domain for R, L, and C

Time Domain Frequency Domain (Phasors)
v = iR V = RI

i = v
R I = V

R

v = L di
dt V = jωLI

i = 1
L
∫ t
−∞ vdt I = j V

ωL

v = 1
C
∫ t
−∞ idt V =− j 1

ωC I

i =C dv
dt I = jωCV

Since time appears in both the current and voltage expressions, the equation is given in time domain.
If the equality is multiplied by e– jωt to suppress e jωt and multiplied again by 1/

√
2 to give the

effective current and voltage values, then

e− jωt
√

2
Ime j(ωt+φ−θ) =

e− jωt
√

2
Vme j(ωt+φ)

|ZZZ|e jθ (A.17)

which gives

Im√
2

e j(φ−θ) =
Vm√

2
e jφ

|ZZZ|e jδ (A.18)

which becomes

|III|∠φ −θ =
|VVV |∠φ
|ZZZ|∠θ

(A.19)

or

III =
VVV
ZZZ

(A.20)

Equations A.18 through A.20 are in the frequency domain. Equation A.18 is a transformed equation.
I and V values without subscripts in Equation A.19 represent the effective current and voltage values.
Thus, the I, V, and Z in Equation A.20 are complex quantities. Table A.1 gives a comparison and
summary of the relationships between V and I in the time domain and V and I in the frequency
domain for the three basic passive ideal circuit elements, R, L, and C. Figure A.1a shows the voltage
and current functions in the time domain, while Figure A.1b shows the voltage and current phasors
in the frequency domain.

An impedance that has a resistance R in series with a reactance X can be represented by the
impedance operator

ZZZ = R+ jX (A.21)
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Figure A.1 Voltage and current functions given in: (a) the time domain and (b) the frequency domain.

which is a complex quantity. A sinusoidal current in an impedance ZZZ can be represented by a cur-
rent phasor III, as shown in Figure A.1b. Therefore, the voltage drop across the impedance can be
expressed as

VVV = IIIZZZ

= IR+ jIX
(A.22)

where

IR represents horizontal component of the phasor V

IX represents vertical component of the phasor V

θ represents phase angle

θ = tan−1 X/R

Neglecting the corresponding phase angles, the numerical values of the voltage drop and current
can be expressed as

|VVV |= |IIIZZZ|= I
√

R2 +X2 (A.23)

|III|= |VVV |
|ZZZ|

=
|VVV |√

R2 +X2
(A.24)

If the admittance of a network is already determined, the corresponding impedance can be expressed
as

ZZZ =
1
YYY

(A.25)

where ZZZ and YYY are complex quantities. Therefore,

ZZZ = R+ jX (A.26)

or

ZZZ =
1

G− jB
(A.27)
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On the other hand, an admittance that has a conductance G in parallel with a susceptance B can be
represented by the admittance operator

YYY = G− jB (A.28)

When inductive and capacitive susceptances are in parallel,

B =
1

ωL
−ωC (A.29)

When the voltage is represented by a phasor V, the total current can be expressed as

III =VVVYYY

=V G− jV B
(A.30)

When two branches of a network are connected in parallel, the complex quantities representing the
admittances are added as

G− jB = G1 − jB1 = G2 − jB2 (A.31)

Neglecting the corresponding phase angles, the numerical values of the current and voltage drop
can be expressed as

|III|= |VVVYYY |= |VVV |
√

G2 +B2 (A.32)

|VVV |= III
YYY

=
III√

G2 +B2
(A.33)

If the impedance is known, the corresponding admittance is found as

YYY =
1
ZZZ

(A.34)

Therefore,

Y = G− jB

=
1

R+ jX
(A.35)

YYY =
R

R2 +X2 − j
X

R2 +X2 (A.36)

However, as shown in Equations A.35 and A.36, G is not equal to 1/R and B is not equal to 1/X,
as is the case when there is only a single circuit element R or X for which G = 1/R and B = 1/X,
respectively.

But, it makes more sense to define the impedances due to resistor, inductance, and capacitance
as

ZZZR = R (A.37)
ZZZL = jωL = jXL (A.38)

ZZZC =− j
1

ωC
=− jXC (A.39)

and by using reduction techniques apply the rules of series and parallel combinations to impedances
to determine the equivalent impedance value. Therefore, the equivalent phasor impedance can be
defined as the ratio of the phasor voltage to phasor current as

ZZZ =
V
I

(A.40)
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The equivalent resistance and reactance values can be found as

R = Re|ZZZ| (A.41)
X = F e|ZZZ| (A.42)

where R and X are determined by taking only the real and imaginary portions of the impedance
ZZZ, respectively. As given in Table A.1, in a purely resistive circuit, current III is in phase with its
voltage VVV . However, in a purely inductive circuit, current III lags its voltage VVV by 90◦, but in a purely
capacitive circuit, current III leads its voltage VVV by 90◦.

PROBLEMS

PROBLEM A.1

The rms value of a sinusoidal ac current can be expressed as

Irms =

√
1
T

∫ T

0
i2(t)dt

where

i(t) = Im cos(ωt −θ)

ω =
2π
T

Verify that the rms value of the current is

Irms =
Im√

2

PROBLEM A.2

The voltage and current values are given in the time domain as

v(t) = 162.6346cos(10t −50◦)

and

i(t) = 14.142sin(5t +120◦)

Convert them to the corresponding phasor values expressed in polar forms.

PROBLEM A.3

A voltage value is given in the frequency domain as

VVV = 70.611∠−60◦ kV

Express this in a sine wave form.

PROBLEM A.4

Assume that only three currents i1(t), i2(t), and i3(t) enter a node and that the i1(t) and i2(t)
are given as 14.14cos(600t +30◦) A and 28.28sin(600t –50◦) A, respectively. Determine the III3
current in polar form.

PROBLEM A.5

Assume that only three currents enter a node and that the I1 and I3 are given as 19∠–70◦ and
24∠45◦ A, respectively. Determine the I2 current in the time domain.



B Appendix B: Per-Unit
System

B.1 INTRODUCTION
Because of various advantages involved, it is customary in power system analysis calculations to
use impedances, currents, voltages, and powers in per-unit values (which are scaled or normalized
values) rather than in physical values of ohms, amperes, kilovolts, and megavoltamperes (or mega-
vars, or megawatts).

A per-unit system is a means of expressing quantities for ease in comparing them. The per-unit
value of any quantity is defined as the ratio of the quantity to an “arbitrarily” chosen base (i.e.,
reference) value having the same dimensions. Therefore, the per-unit value of any quantity can be
defined as physical quantity:

Quantity in per unit =
Physical quantity

Base value of quantity
(B.1)

where “physical quantity” refers to the given value in ohms, amperes, volts, etc. The base value is
also called unit value since in the per-unit system it has a value of 1, or unity. Therefore, a base
current is also referred to as a unit current.

Since both the physical quantity and base quantity have the same dimensions, the resulting per-
unit value expressed as a decimal has no dimension and therefore is simply indicated by a subscript
pu. The base quantity is indicated by a subscript B. The symbol for per unit is pu, or 0/1. The percent
system is obtained by multiplying the per-unit value by 100. Hence,

Quantity in percent =
Physical quantity

Base value of quantity
×100 (B.2)

However, the percent system is somewhat more difficult to work with and more subject to possible
error since it must always be remembered that the quantities have been multiplied by 100.

Thus, the factor 100 has to be continually inserted or removed for reasons that may not be obvious
at the time. For example, 40% reactance times 100% current is equal to 4000% voltage, which, of
course, must be corrected to 40% voltage. Hence, the per-unit system is preferred in power system
calculations. The advantages of using the per unit include the following:

1. Network analysis is greatly simplified since all impedances of a given equivalent circuit can
directly be added together regardless of the system voltages.

2. It eliminates the
√

3 multiplications and divisions that are required when balanced three-phase
systems are represented by per-phase systems. Therefore, the factors

√
3 and 3 associated with

delta and wye quantities in a balanced three-phase system are directly taken into account by
the base quantities.

3. Usually, the impedance of an electrical apparatus is given in percent or per unit by its manu-
facturer based on its nameplate ratings (e.g., its rated voltamperes and rated voltage).
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4. Differences in operating characteristics of many electrical apparatus can be estimated by a
comparison of their constants expressed in per units.

5. Average machine constants can easily be obtained since the parameters of similar equipment
tend to fall in a relatively narrow range and therefore are comparable when expressed as per
units based on rated capacity.

6. The use of per-unit quantities is more convenient in calculations involving digital computers.

B.2 SINGLE-PHASE SYSTEM
In the event that any two of the four base quantities (i.e., base voltage, base current, base voltam-
peres, and base impedance) are “arbitrarily” specified, the other two can be determined immedi-
ately.

Here, the term arbitrarily is slightly misleading since in practice the base values are selected so
as to force the results to fall into specified ranges. For example, the base voltage is selected such
that the system voltage is normally close to unity.

Similarly, the base voltampere is usually selected as the kilovoltampere or megavoltampere rating
of one of the machines or transformers in the system, or a convenient round number such as 1,
10, 100, or 1000MVA, depending on system size. As aforementioned, on determining the base
voltamperes and base voltages, the other base values are fixed. For example, current base can be
determined as

IB =
SB

VB
=

VAB

VB
(B.3)

where

IB represents current base in amperes

SB represents selected voltampere base in voltamperes

VB represents selected voltage base in volts

Note that

SB =VAB = PB = QB =VBIB (B.4)

Similarly, the impedance base1 can be determined as

ZB =
VB

IB
(B.5)

where

ZB = XB = RB (B.6)

Note that by substituting Equation B.3 into Equation B.5, the impedance base can be expressed as

ZB =
VB

VAB/VB
=

V 2
B

VAB
(B.7)

or

ZB =
(kVB)

2

MVAB
(B.8)

where
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kVB is the voltage base in kilovolts

MVAB is the voltampere base in megavoltamperes

The per-unit value of any quantity can be found by the normalization process, that is, by divid-
ing the physical quantity by the base quantity of the same dimension. For example, the per-unit
impedance can be expressed as

Zpu =
Zphysical

ZB
(B.9a)

or

Zpu =
Zphysical

V 2
B/(kVAB ×1000)

(B.9b)

or

Zpu =
(Zphysical)(kVAB)(1000)

V 2
B

(B.10)

or

Zpu =
(Zphysical)(kVAB)

(kVB)2(1000)
(B.11)

or

Zpu =
(Zphysical

(kVB)2/MVAB
(B.12)

or

Zpu =
(Zphysical)(MVAB)

(kVB)2 (B.13)

Similarly, the others can be expressed as

Ipu =
Iphysical

IB
(B.14)

or

Vpu =
Vphysical

VB
(B.15)

or

kVpu =
kVphysical

kVB
(B.16)

or

VApu =
VAphysical

VAB
(B.17)

or

kVApu =
kVAphysical

kVAB
(B.18)
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or

MVApu =
MVAphysical

MVAB
(B.19)

Note that the base quantity is always a real number, whereas the physical quantity can be a complex
number. For example, if the actual impedance quantity is given as Z∠θ Ω, it can be expressed in
the per-unit system as

ZZZpu =
Z∠θ
ZB

= Zpu∠θ (B.20)

that is, it is the magnitude expressed in per-unit terms.
Alternatively, if the impedance has been given in rectangular form as

ZZZ = R+ jX (B.21)

then

ZZZpu = Rpu + jXpu (B.22)

where

Rpu =
Rphysical

ZB
(B.23)

and

Xpu =
Xphysical

ZB
(B.24)

Similarly, if the complex power has been given as

SSS = P+ jQ (B.25)

then

SSSpu = Ppu + jQpu (B.26)

where

Ppu =
Pphysical

SB
(B.27)

and

Qpu =
Qphysical

SB
(B.28)

If the actual voltage and current values are given as

VVV =V∠θv (B.29)

and

III = I∠θi (B.30)
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the complex power can be expressed as

SSS =VVV III∗ (B.31)

or

S∠θ = (V∠θv)(I∠−θi) (B.32)

Therefore, dividing through by SB,

S∠φ
SB

=
(V∠θv)(I∠θi)

SB
(B.33)

However,

SB =VBIB (B.34)

Thus,

S∠θ
SB

=
(V∠θv)(I∠−θi)

VBIB
(B.35)

or

Spu∠θ = (Vpu∠θv)(Ipu∠−θi) (B.36)

or

SSSpu =VVV puIII∗pu (B.37)

Example B.1:

A 240/120V single-phase transformer rated 5 kVA has a high-voltage winding impedance of
0.3603Ω. Use 240 V and 5 kVA as the base quantities and determine the following:

1. The high-voltage side base current.

2. The high-voltage side base impedance in ohms.

3. The transformer impedance referred to the high-voltage side in per unit.

4. The transformer impedance referred to the high-voltage side in percent.

5. The turns ratio of the transformer windings.

6. The low-voltage side base current.

7. The low-voltage side base impedance.

8. The transformer impedance referred to the low-voltage side in per unit.

Solution

1. The high-voltage side base current is

IB(HV ) =
SB

VB(HV )

=
5000 VA

240 V
= 20.8333 A
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2. The high-voltage side base impedance is

ZB(HV ) =
VB(HV )

IB(HV )

=
240 V

20.8333 A
= 11.52 Ω

3. The transformer impedance referred to the high-voltage side is

Zpu(HV ) =
ZHV

ZB(HV )

=
0.3603 Ω
11.51 Ω

= 0.0313 pu

4. The transformer impedance referred to the high-voltage side is percent

%ZHV = Zpu(HV )×100

= (0.0313 pu)×100

= 3.13 %

5. The turns ratio of the transformer windings is

n =
VHV

VLV

=
240 V
120 V

= 2

6. The low-voltage side base current is

IB(LV ) =
SB

VB(LV )

=
5000 VA

120 V
= 41.6667 A

or

IB(LV ) = nIB(HV )

= 2(20.8333 A)
= 41.6667 A

7. The low-voltage side base impedance is

ZB(LV ) =
VB(LV )

IB(LV )

=
120 V

41.667 A
= 2.88 Ω

or

ZB(HV ) =
ZB(LV )

n2

= 2.88 Ω
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8. The transformer impedance referred to the low-voltage side is

ZLV =
ZHV

n2

=
0.3603 Ω

22

= 0.0901 Ω

Therefore,

Zpu(LV ) =
ZLV

ZB(LV )

=
0.0901 Ω

2.88 Ω
= 0.0313 pu

or

Zpu(LV ) = Zpu(HV )

= 0.0313 pu

Notice that in terms of per units the impedance of the transformer is the same whether it is
referred to the high-voltage side or the low-voltage side.

B.3 CONVERTING FROM PER-UNIT VALUES TO PHYSICAL VALUES
The physical values (or system values) and per-unit values are related by the following relationships:

III = III pu × IB (B.38)
VVV =VVV pu ×VB (B.39)
ZZZ = ZZZpu ×ZB (B.40)
R = Rpu ×ZB (B.41)
X = Xpu ×ZB (B.42)

VA =VApu ×VAB (B.43)
P = Ppu ×VAB (B.44)
Q = Qpu ×VAB (B.45)

B.4 CHANGE OF BASE
In general, the per-unit impedance of a power apparatus is given based on its own voltampere and
voltage ratings and consequently based on its own impedance base. When such an apparatus is used
in a system that has its own bases, it becomes necessary to refer all the given per-unit values to
the system base values. Assume that the per-unit impedance of the apparatus is given based on its
nameplate ratings as

Zpu(given) =
(
Zphysical

) MVAB(given)

[kVB(given)]2
(B.46)

and that it is necessary to refer to the very same physical impedance to a new set of voltage and
voltampere bases such that

Zpu(new) =
(
Zphysical

) MVAB(new)

[kVB(new)]
2 (B.47)
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By dividing Equation B.46 by Equation B.47 side by side,

Zpu(new) = Zpu(old)

[
MVAB(old)

MVAB(given)

][
kVB(given)

kVB(old)

]2

(B.48)

In certain situations, it is more convenient to use subscripts 1 and 2 instead of subscripts “given”
and “new,” respectively. Then Equation B.48 can be expressed as

Zpu(2) = Zpu(1)

[
MVAB(2)

MVAB(1)

][
kVB(1)

kVB(2)

]2

(B.49)

In the event that the kV bases are the same but the MVA bases are different, from Equation B.48

Zpu(new) = Zpu(given)
MVAB(new)

MVAB(given)
(B.50)

Similarly, if the megavoltampere bases are the same but the kilovolt bases are different, from Equa-
tion B.48,

Zpu(new) = Zpu(given)

[
kVB(given)

kVB(new)

]2

(B.51)

Equations B.46 through B.51 must only be used to convert the given per-unit impedance from the
base to another but not for referring the physical value of an impedance from one side of the trans-
former to another.

Example B.2:

Consider Example B.1 and select 300/150 V as the base voltages for the high-voltage and the low-
voltage windings, respectively. Use a new base power of 10 kVA and determine the new per-unit,
base, and physical impedances of the transformer referred to the high-voltage side.

Solution
By using Equation B.46, the new per-unit impedance can be found as

Zpu(new) = Zpu(old)

[
MVAB(old)

MVAB(given)

][
kVB(given)

kVB(old)

]2

= (0.0313 pu)
(

10,000 VA
300 V

)(
240 V
300 V

)2

= 33.334 A

The new current base is

IB(HV )new =
SB

VB(HV )new

=
10,000 VA

300 V
= 33,334 A
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Thus,

ZB(HV )new =
VB(HV )new

IB(HV )new

=
300 V

33.334 A
= 9 Ω

Therefore, the physical impedance of the transformer is still

ZHV = Zpu,new ×ZB(HV )new

= (0.0401 pu)(9 Ω)

= 0.3609 Ω

B.5 THREE-PHASE SYSTEMS
The three-phase problems involving balanced systems can be solved on a per-phase basis. In that
case, the equations that are developed for single-phase systems can be used for three-phase systems
as long as per-phase values are used consistently. Therefore,

IB =
SB(1Φ)

VB(L−N)
(B.52)

or

IB =
VAB(1Φ)

VB(L−N)
(B.53)

and

ZB =
VB(L−N)

IB
(B.54)

or

ZB =
[kVB(L−N)]

2(1000)
kVAB(1Φ)

(B.55)

or

ZB =
[kVB(L−N)]

2

MVAB(1Φ)
(B.56)

where the subscripts 1Φ and L–N denote per phase and line to neutral, respectively. Note that, for a
balanced system,

VB(L−N) =
VB(L−L)√

3
(B.57)

and

SB(1Φ) =
SB(3Φ)

3
(B.58)
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However, it has been customary in three-phase system analysis to use line-to-line voltage and three-
phase voltamperes as the base values. Therefore,

IB =
SB(3Φ)√
3VB(L−L)

(B.59)

and

IB =
kVAB(3Φ)√
3kVB(L−L)

(B.60)

and

ZB =
VB(L−L)√

3IB
(B.61)

ZB =
[kVB(L−L)]

2(1000)
kVAB(3Φ)

(B.62)

or

ZB =
[kVB(L−L)]

2

MVAB(3Φ)
(B.63)

where the subscripts 3 Φ and L−L denote per three phase and line, respectively. Furthermore, base
admittance can be expressed as

YB =
1

ZB
(B.64)

or

YB =
MVAB(3Φ)

[kVB(L−L)]2
(B.65)

where

YB = BB = GB (B.66)

The data for transmission lines are usually given in terms of the line resistance R in ohms per mile
at a given temperature, the line inductive reactance XL in ohms per mile at 60 Hz, and the line shunt
capacitive reactance Xc in megohms per mile at 60 Hz. Therefore, the line impedance and shunt
susceptance in per units for 1 mile of line can be expressed as

ZZZpu = (ZZZ,Ω/mile)
MVAB(3Φ)

[kVB(L−L)]2
pu (B.67)

where
ZZZ = R+ jXL = Z∠θ Ω/mile

And

Bpu =
[kVB(L−L)]

2 ×10−6

[MVAB(3Φ)][Xc,MΩ/mile
(B.68)
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In the event that the admittance for a transmission line is given in microsiemens per mile, the per-
unit admittance can be expressed as

Ypu =
[kVB(L−L)]

2(Y,µS)
[MVAB(3Φ)]×106 (B.69)

Similarly, if it is given as reciprocal admittance in megohms per mile, the per-unit admittance can
be found as

Ypu =
[kVB(L−L)]

2 ×10−6

[MVAB(3Φ)][Z,MΩ/mile]
(B.70)

n =
N1

N2
=

V1

V2
=

I2

I1
(B.71)

where the subscripts 1 and 2 are used for the primary and secondary sides. Therefore, an impedance
Z2 in the secondary circuit can be referred to the primary circuit provided that

Z1 = n2Z2 (B.72)

ZY =
1
3

Z∆ (B.73)

The per-unit impedance of a transformer remains the same without taking into account whether it
is converted from physical impedance values that are found by referring to the high-voltage side
or low-voltage side of the transformer. This can be accomplished by choosing separate appropriate
bases for each side of the transformer (whether or not the transformer is connected in wye–wye,
delta–delta, delta–wye, or wye–delta since the transformation of voltages is the same as that made
by wye–wye transformers as long as the same line-to-line voltage ratings are used). In other words,
the designated per-unit impedance values of transformers are based on the coil ratings.

Since the ratings of coils cannot alter by a simple change in connection (e.g., from wye–wye
to delta–wye), the per-unit impedance remains the same regardless of the three-phase connection.
The line-to-line voltage for the transformer will differ. Because of the method of choosing the base
in various sections of the three-phase system, the per-unit impedances calculated in various sec-
tions can be put together on one impedance diagram without paying any attention to whether the
transformers are connected in wye–wye or delta–wye.

Example B.3:

Assume that a 19.5 kV 120 MVA three-phase generator has a synchronous reactance of 1.5 per-unit
ohms and is connected to a 150 MVA 18/230 kV delta{wye-connected three-phase transformer
with a 0.1 per-unit ohm reactance. The transformer is connected to a transmission line at the 230 kV
side. Use the new MVA base of 100 MVA and 240kV base for the line and determine the following:

Figure B.1 shows conventional three-phase transformer connections and associated relationships
between the high-voltage and low-voltage side voltages and currents. The given relationships are
correct for a three-phase transformer as well as for a three-phase bank of single-phase transformers.
Note that in the figure, n is the turns ratio, that is,

Thus, it can be observed from Figure B.1 that in an ideal transformer, voltages are transformed in
the direct ratio of turns, currents in the inverse ratio, and impedances in the direct ratio squared;
power and voltamperes are, of course, unchanged. Note that a balanced delta-connected circuit of
Z∆Ω/phase is equivalent to a balanced wye-connected circuit of ZY Ω/phase as long as
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Figure B.1 Basic three-phase transformer connections: (a) wye–wye, (b) delta–delta, (c) wye–delta, and
(d) delta–wye
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1. The new reactance value for the generator in per-unit ohms.

2. The new reactance value for the transformer in per-unit ohms.

Solution

1. Using Equation B.48, the new per-unit impedance of the generator is

Zpu(new) = Zpu(old)

[
MVAB(new)

MVAB(old)

][
kVB(old)

kVB(new)

]2

But, first determining the new kV base for the generator,

kV gen
B(new) = (240 kV)

(
18 kV

230 kV

)
= 18.783 kV

Thus, the new and adjusted synchronous reactance of the generator is

Xgen
pu(new) = Xgen

pu(old)

[
MVAB(new)

MVAB(old)

][
kVB(old)

kVB(new)

]2

= (1.5 pu)
[

100 MVA
120 MVA

][
19.5 kV

18.783 kV

]2

= 1.347 pu

2. The new reactance value for the transformer in per-unit ohms, referred to high-voltage side is

X tr f
pu(new) = (0.1 pu)

[
100 MVA
150 MVA

][
230 kV
240 kV

]2

= 0.061 pu

And referred to the low-voltage side is

X tr f
pu(new) = (0.1 pu)

[
100 MVA
150 MVA

][
18 kV

18.783 kV

]2

= 0.061 pu

Note that the transformer reactance referred to the high-voltage side or the low-voltage side
is the same, as it should be!

Example B.4:

A three-phase transformer has a nameplate rating of 20 MVA, 345Y/34.5Y kV with a leakage
reactance of 12% and the transformer connection is wye{wye. Select a base of 20 MVA and 345
kV on the high-voltage side and determine the following:

1. Reactance of transformer in per units.

2. High-voltage side base impedance.

3. Low-voltage side base impedance.

4. Transformer reactance referred to high-voltage side in ohms.

5. Transformer reactance referred to low-voltage side in ohms.
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Solution

1. The reactance of the transformer in per units is 12/100, or 0.12 pu. Note that it is the same
whether it is referred to the high-voltage or the low-voltage sides.

2. The high-voltage side base impedance is

ZB(HV ) =
[kVB(HV )]

2

MVAB(3Φ)

=
3452

20
= 5951.25 Ω

3. The low-voltage side base impedance is

ZB(LV ) =
[kVB(LV )]

2

MVAB(3Φ)

=
34.52

20
= 59.5125 Ω

4. The reactance referred to the high-voltage side is

X(HV ) = Xpu ×XB(HV )

= (0.12)(5951.25) = 714.15 Ω

5. The reactance referred to the low-voltage side is

X(LV ) = Xpu ×XB(LV )

= (0.12)(59.5125) = 7.1415 Ω

or

X(LV ) =
X(HV )

n2 =
714.15 Ω

(345/
√

3/34.5/
√

3)2
= 7.1415 Ω

where n is defined as the turns ratio of the windings.

Example B.5:

A three-phase transformer has a nameplate rating of 20 MVA, and the voltage ratings of 345Y/34.5∆

kV with a leakage reactance of 125 and the transformer connection is wye{delta. Select a base of
20 MVA and 345 kV on the high-voltage side and determine the following:

1. Turns ratio of windings.

2. Transformer reactance referred to low-voltage side in ohms.

3. Transformer reactance referred to low-voltage side in per units.

Solution

1. The turns ratio of the windings is

n =
345/

√
3

34.5
= 5.7735
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2. Since the high-voltage side impedance base is

ZB(HV ) =
[kVB(HV )]

2

MVAB(3Φ)

=
3452

20
= 5951.25 Ω

and

X(HV ) = Xpu ×XB(HV )

= (0.12)(5951.25) = 714.15 Ω

Thus, the transformer reactance referred to the delta-connected low-voltage side is

X(LV ) =
X(HV )

n2

=
714.14 Ω

5.77352 = 21.4245 Ω

3. The reactance of the equivalent wye connection is

ZY =
Z∆

3
21.4245 Ω

3
= 7.1415 Ω

Similarly,

ZB(LV ) =
[kVB(LV )]

2

MVAB(3Φ)

=
34.52

20
= 59.5125 Ω

Thus,

Xpu =
7.1415 Ω

ZB(LV )

=
7.1415 Ω

59.5125 Ω
= 0.12 pu

Alternatively, if the line-to-line voltages are used,

X(LV ) =
X(HV )

n2

=
714.14 Ω

(345/34.5)2 = 7.1415 Ω

and therefore,

Xpu =
X(LV )

ZB(LV )

=
7.1415 Ω

59.5125 Ω
= 0.12 pu

as before.



Appendix B: Per-Unit System 407

Example B.6:

Consider a three-phase system which has a generator connected to a 2.4/24 kV, wye{wye-
connected, three-phase step-up transformer T1. Suppose that the transformer is connected to
three-phase power line. The receiving end of the line is connected to a second, wye-wye-connected,
three-phase 24/12 kV step-down transformer T2. Assume that the line length between the two trans-
formers is negligible and the three-phase generator is rated 4160 kVA, 2.4 kV, and 1000 A and that
it supplies a purely inductive load of Ipu = 2.08∠–90◦ pu. The three-phase transformer T1 is rated
6000 kVA, 2.4Y{24Y kV, with leakage reactance of 0.04 pu. Transformer T2 is made up of three
single-phase transformers and is rated 4000 kVA, 24Y-12Y kV, with leakage reactance of 0.04 pu.
Determine the following for all three circuits, 2.4, 24, and 12 kV circuits:

1. Base kilovoltampere values.

2. Base line-to-line kilovolt values.

3. Base impedance values.

4. Base current values.

5. Physical current values (neglect magnetizing currents in transformers and charging currents
in lines).

6. Per-unit current values.

7. New transformer reactances based on their new bases.

8. Per-unit voltage values at buses 1, 2, and 4.

9. Per-unit apparent power values at buses 1, 2, and 4 (j) Summarize results in a table.

Solution

1. The kilovoltampere base for all three circuits is arbitrarily selected as 2080 kVA.

2. The base voltage for the 2.4 kV circuit is arbitrarily selected as 2.5 kV. Since the turns ratios
for transformers T1 and T2 are

N1

N2
= 10 or

N2

N1
= 0.10

and

N
′

1
N ′

2
= 2

The base voltages for the 24 and 12 kV circuits are determined to be 25 and 12.5 kV,
respectively.

3. The base impedance value can be found as

ZB =
[kVB(L−L)]

2(1000)

kVAB(3Φ)

=
[2.5 kV]21000

2080 kVA
= 3.005 Ω

and

ZB =
[25 kV]21000

2080 kVA
= 300.5 Ω
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and

ZB =
[12.5 kV]21000

2080 kVA
= 75.1 Ω

4. The base current valye can be determined as

IB =
kVAB(3Φ)√
3kVB(L−L)

=
2080 kVA√

3(2.5 kV
= 480 A

and

IB =
2080 kVA√
3(2.5 kV)

= 48 A

and

IB =
2080 kVA√
3(12.5 kV)

= 96 A

5. The physical current values can be found based on the turns ratios as

I = 1000 A

I =
(

N2

N1

)
(1000 A) = 100 A

I =

(
N

′

1
N ′

2

)
(100 A) = 200 A

6. The per-unit current values are the same, 2.08 pu, for all three circuits

7. The given transformer reactances can be converted based on their new bases using

Zpu(new) = Zpu(given)

[
MVAB(new)

MVAB(given)

][
kVB(given)

kVB(new)

]2

Therefore, the new reactances of the two transformers can be found as

Zpu(T1) = j0.04
[

2080 kVA
6000 kVA

][
2.4 kV
2.5 kV

]2
= j0.0128 pu

and

Zpu(T2) = j0.04
[

2080 kVA
4000 kVA

][
12 kV

12.5 kV

]2
= j0.0192 pu

8. Therefore, the per-unit voltage values at buses 1, 2, and 4 can be calculated as

VVV 1 =
2.4 kV∠0◦

2.5 kV
= 0.96∠0◦ pu

VVV 2 =VVV 1 − IIIpuZZZpu(T1)

= 0.96∠0◦− (2.08∠−90◦)(0.0128∠90◦) = 0.9334∠0◦ pu
VVV 4 =VVV 2 − IIIpuZZZpu(T2)

= 0.9334∠0◦− (2.08∠−90◦)(0.0192∠90◦) = 08935∠0◦ pu
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Table B.1
Results of Example B.6

Quantity 2.4 kV Circuit 24 kV Circuit 12 kV Circuit

kVAB(3Φ) 2080 kVA 2080 kVA 2080 kVA
kVB(L−L) 2.5 kV 25 kV 12.5 kV
ZB 3005 Ω 300.5 Ω 75.1 Ω

IB 480 A 48 A 96 A
Iphysical 1000 A 100 A 200 A
Ipu 2.08 pu 2.08 pu 2.08 pu
Vpu 0.96 pu 0.9334 pu 0.8935 pu
Spu 2.00 pu 1.9415 pu 1.8585 pu

9. Thus, the per-unit apparent power values at buses 1,2, and 4 are

S1 = 2.00 pu
S2 =V2Ipu = (0.9334)(2.08) = 1.9415 pu
S4 =V4Ipu = (0.8935)(2.08) = 1.8585 pu

10. The results are summarized in Table B.1.

PROBLEMS

PROBLEM B.1

Solve Example B.1 for a transformer rated 100 kVA and 2400/240 V that has a high-voltage
winding impedance of 0.911.

PROBLEM B.2

Consider the results of Problem B.1 and use 3000/300 V as new base voltages for the high-voltage
and low-voltage windings, respectively. Use a new base power of 200 kVA and determine the new
per-unit, base, and physical impedances of the transformer referred to the high-voltage side.

PROBLEM B.3

A 240/120 V single-phase transformer rated 25 kVA has a high-voltage winding impedance of
0.65 Q. If 240 V and 25 kVA are used as the base quantities, determine the following:

1. The high-voltage side base current.

2. The high-voltage side base impedance in Q.

3. The transformer impedance referred to the high-voltage side in per unit.

4. The transformer impedance referred to the high-voltage side in percent.

5. The turns ratio of the transformer windings.

6. The low-voltage side base current.
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7. The low-voltage side base impedance.

8. The transformer impedance referred to the low-voltage side in per unit.

PROBLEM B.4

A 240/120 V single-phase transformer is rated 25 kVA and has a high-voltage winding impedance
referred to its high-voltage side that is 0.2821 pu based on 240 V and 25 kVA. Select 230/115
V as the base voltages for the high-voltage and low-voltage windings, respectively. Use a new
base power of 50 kVA and determine the new per-unit base, and physical impedances of the
transformer referred to the high-voltage side.

PROBLEM B.5

After changing the S base from 5 to 10 MVA, redo the Example B.1 by using MATLAB.

1. Write the MATLAB program script.

2. Give the MATLAB program output.
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A
Abc phase sequence, 15, 17, 20, 27, 34, 186
Acb phase sequence, 15, 17
Accelerating relays (AR), 323
Air-core transformer, 87; see also transformers
Air gaps, 7, 60, 61, 68, 70, 160, 165, 195, 282

flux, 365
flux distribution, 282
power, 204, 211

Alignment principle, 166
All-day (or energy) efficiency, 122
Alnico magnet, 78
Alternators, 14–15; see also synchronous

generator
automotive, 6
defined, 14, 242
exciter, 244
turbo-alternators, 243

Ammeters, 87
Ampère’s circuital law, 53
Ampère’s right-hand rule, 50
Ampère-turns of coil, 52–53
Angle of admittance, 110
Angular acceleration, 148
Angular frequency, 165
Angular position, 148, 381
Angular rotor, 165

speed, 245
Angular velocity, 148, 151, 165, 312
Approximate equivalent circuits, 105–109,

106–107
AR, accelerating relays
Armature, 283

constant, 285, 287
current, 322
of generator, 15
reactance, 250
reaction, 250, 289–291
resistance control, 318
speed of, 287
time constant, 373
voltage, 285, 287

control, 319
winding, 181, 242

circuit resistance, 286
loss, 311

Ascending curve, 294
Asynchronous machines, 6
Asynchronous speed, 174
Automotive alternators, 6
Autotransformers, 129, 129–134

disadvantages, 132
starting, 220–221

Average torque, 165

B
Balanced three-phase load, 10, 21–28
Balanced three-phase voltages, 17
Base quantities/values, 392–393
Bearings, 7
Becky Robinson machines, 6
Blocked-rotor power factor, 229
Blocked-rotor resistance, 229
Blocked-rotor tests, 228
Braking mode of operation, 182, 192
Brush-contact

loss, 311
voltage drop, 286

Brushes, 243
Brushless

exciter, 244, 244
motor, 357

C
Capacitor-run motors, 347–348
Capacitors

bank, 36
ratings, 4

Capacitor-split-capacitor motor, 347
Capacitor-start capacitor-run

induction motor, 348
motors, 348

Capacitor-start induction motor, 346
Capacitor-start motors, 345–347
Carbon brushes, 284
Change of base, per-unit system, 398–400
Chromium steels, 62
Coenergy, 161; see also energy
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Coercive force, 64, 78
Cogeneration facility, 4
Commutating poles, 281
Commutating, 282, see also Winding,

commutating
Commutation, 291–293
Computer-controlled systems, 3
Conduction, 129, 181
Conductor, 283
Constant-current generators, 300
Constant-horsepower drive, 318
Constant volts per hertz, 227
Conversion of energy, 50
Cooling classes, 88, 89
Copper-nickel alloys, 62
Core-loss test, see open-circuit test
Core-type construction, 90
Counter torque, 257
Counter voltage (counter emf), 151, 314–315
Cramer’s rule, 30
Critical field resistance, 300
Cross-compound turbine generator, 6
Cross-field theory, 336
Cumulative compound, 289
Cunife magnet, 78
Curie point, 63
Current and voltage phasor diagram, 8
Current-coil current, 32
Current phasor diagram, 19
Current transformers (CT), 87, 135
Cylindrical machines, 171–173

single-phase induction machine, 174–175
single-phase synchronous machine,

173–174
Cylindrical-rotor synchronous generator, 251

D
Damping

factor, 372–373
ratio, 372

DC test, 228, 268
Deductive reasoning, 191
Delta-connected capacitor, 37
Delta-connected ideal three-phase source, 17,

20–21, 24
Delta-connected load, 21
Delta–delta connection, 125
Delta–wye connection, 127
Descending curve, 294–295
Design-class letter, 219

Developed torque, 154, 307–308
DG, see distributed generation
Differential compound, 289
Differential developed energy, 154
Differential electrical energy, 154
Direct-axis, 164, 282

inductance, 166
Direct-current (DC) machines, 6, 281, 284, 364

armature
reaction, 289–291
voltage, 285–288
windings, 283–284

commutation, 291–293
compensating windings, 293–294
compound generator, 301–302
connection diagram, 283
constructional features, 281–283, 282
DC generators, 297
DC motors

braking, 326–328
characteristics, 311–317
control of, 317–320
starting, 320–326

developed power, 305–307
developed torque, 307–308
dynamic equation, 366
elementary DC machine, 284–285
field excitation, 288–289
magnetization curve, 294–297
power flow and efficiency, 308–311
self-excited shunt generator, 298–300
separately excited generator, 297–298
series generator, 300–301
voltage regulation, 302–305

Dispersed (or distributed)-storage-and-
generation (DSG) devices, 4, 5

Distributed energy resource (DER), 4, 5
Distributed generation (DG), 3–4
Distributed storage, 4
Distribution system, 1–4

overvoltages on, 4
Distribution transformers, 88
Domains, 62
Dot convention in transformers, 95–96
Double-revolving field theory, 336
Doubly excited electromechanical

(translational) system, 160
Doubly excited rotating system, 168; see also

singly excited rotating systems
Dry-type transformers, 87



Index 413

Dynamic braking technique, 326
Dynamic equation, 366, 370, 372
Dynamic resistance, 197
Dynamic stability, 379

E
Economic power factor, 35
Eddy currents, 354

defined, 66
losses, 65–74
in magnetic cores., 66

Electrical power system, 1, 2
Electrical rotating machine, 149
Electric circuit, 55
Electric insulators, 56
Electrogas-dynamic generators, 1
Electromechanical energy conversion

principles, 148–154, 149
cylindrical machines, 171–173

single-phase induction machine,
174–175

single-phase synchronous machine,
173–174

energy and coenergy, 161
field energy, 154–159
force produced on conductor, 175–176
induced voltage on conductor moving in

magnetic field, 176–178
magnetic force, 159–161
magnetic force in saturable system,

161–164
multiply excited rotating systems, 168–171
rotating machines, 164
singly excited rotating systems, 164–168

Electromechanical energy converters, 60, 148
Electromechanical machines, 154, 155
Electromotive force (emf), 52, 90, 92; see also

magnetomotive force
Energy, 1, 161

balance, 162
losses, 153

Energy conservation principle, 1
Energy-conversion apparatus, 148
Energy conversion principles, 148; see also

electromechanical energy conversion
principles

Equalizers, 284
Equivalent-circuit parameters, 109, 249, 267

DC test, 268
open-circuit test, 109–111, 267

saturated synchronous reactance,
268–269

short-circuit ratio (SCR), 269–271
short-circuit test, 111–112, 267–268
unsaturated synchronous reactance,

268
Equivalent circuits, 248–254
Equivalent impedance, 105
Euler’s identity, 386–391
Excitation, 254

admittance, 113
impedance, 134
systems for synchronous machines,

243
test (see open-circuit test)

Exciter, 243
alternator, 244

F
Faraday’s law of induction, 15, 90–92, 104,

152, 154
Fault, 374
Federal Energy Regulatory Commission

(FERC), 4
Feeders, 4
Ferranti effect, 266
Ferromagnetic materials, 62
Field

axis, 282
control method, 318
current, 310
energy, 154–159
excitation, 243–244, 289
loss relay, 323
resistance, 299

Flat-compounded generator, 301
Flux, 90, 92–93, 287

density, 57, 69–70, 78
density vector, 54
lines, 50–52
linkage, 54, 56, 91, 155–156

Force produced on conductor, 175–176
Force-producing devices, 148
Four-wire three-phase system, 15
Fractional-horsepower motors, 336
Frequency changer, 182
Fringing effect of magnetic flux, 61, 61–62
Full-load armature current, 311
Full-load voltage, 116
Fusion reactors, 1
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G
General transformer equation, 92
Generated voltage waveforms, 16
Generating mode, 192
Generation system, 1
Generators, 5; see also synchronous generators

action, 176
armature of, 15
current, 100
electrogas-dynamic, 1
flat-compounded, 301
magnetohydrodynamic, 1
mode, 181
overcompounded, 302
overexcited, 260–261
parallel operation of synchronous, 272
polyphase, 14
self-excited shunt, 298–300
three-phase, 14
two-phase, 14
two-pole, 52
undercompounded, 302

H
Hard ferromagnetic materials, 62
Henries (H), 56
Hunting, 243
Hybrid stepper motor, 356
Hysteresis, 63, 65, 89

loop, 64
machines, 6
motors, 354–355, 355

I
Ideal three-phase power sources, 15–21, 17
Ideal transformer, 92–95, 93; see also real

transformer
dot convention, 95–96
impedance transfer, 96–97
input and output powers, 97–102

Impedance
matching, 97
ratio, 97
transfer, 96–97
transformation, 97

Incremental (or differential) energy-balance
equation, 154

Indox magnet, 78
Induced voltage on conductor moving in

magnetic field, 176–178

Inductance, 56
Induction, 129, 181
Induction machines, 181–183

construction, 183–185
equivalent circuit at start-up, 205–209
equivalent circuit of induction motor, 195

approximate equivalent circuit, 199–200
complete equivalent circuit, 198–199
rotor-circuit model, 196–198
stator circuit model, 195–196

equivalent-circuit parameters, 228
blocked-rotor test, 229–232
DC test, 228–229
no-load test, 228

frequency and magnitude of induced
voltage of rotor, effects of slip on,
192–195

induced voltages, 190
induction motors, starting of, 218

current limiting by series resistance or
impedance, 221–226

direct-on-line starting, 219
reduced-voltage starting, 219–221

performance calculations, 200–205
performance characteristics, 211–216
rotating magnetic field concept, 185–186

analytical method, 188–190
graphical method, 186–188

rotor slip, 191–192
speed control, 226–227
squirrel-cage rotor design, 216–218
Thévenin’s theorem, 209–211
torque–speed characteristic curve, 182

Induction motors, 181
magnetic circuit of, 183
power-flow diagram, 200

Inductor and flux-switch machines, 6
Inertia constant, 382
Inertial time constant, 373
Infinite bus theory, 262
In-plant power distribution, 134
Input and output powers, 97–102
Inrush current, 136–137
Instantaneous power, 14
Instantaneous value of sinusoidally varying

voltage, 386
Instrument transformers, 135–136
Integral horsepower motors, 336
Integral of force over distance, 150
Integral of torque through an angle, 150
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Internal generated voltage-current
characteristics, 314, 314–317

Interpole axis, 164
Inverse Laplace transform, 369
Iron-core transformer, 87
Iron losses, 153
Iron-loss test, see open-circuit test
Isolating transformers, 87, 94

J
Jogging, 326

K
Kapp-Hopkinson method, 308
Kirchhoff’s voltage law, 297

L
Lagging and leading currents and loads

in single phase, 10, 11
in three phase, 11, 11

Laplace transform, 366, 369–370
Lap winding, 283, 283
Leakage

fluxes, 90, 102
impedances, 116, 134–135
inductance, 102
reactance 217

Lenz’s laws of induction, 66, 90–92, 91, 95, 191
Linear induction motor (LIM), 242
Linear synchronous motor (LSM), 242
Line current, 25–27, 29, 31
Line-to-ground voltages, 18
Line-to-line neutral voltages, 30
Line-to-line voltages, 18, 25, 29
Line-to-neutral approach, 45
Line-to-neutral voltages, 18, 25, 30
Line voltages, 18, 24

magnitude of, 19
Load, 1

bus, 100
characteristic, 298
current, 93, 133
impedance, 97, 99
line, 74–75
power-factor, 34
power-factor angle, 33
torque, 166

Locked-rotor test, 229
Losses

brush-contact, 311

copper, 121
core, 65, 121
eddy currents, 65–74
energy, 153
hysteresis, 65–66
iron, 153
power, 25
shunt-field winding, 310
stray-load, 153
winding, 311

Low-energy conversion efficiency, 1
Low-voltage terminals, 129
Lundell machines, 6

M
Magnetically hard materials, 78
Magnetic circuits, 50, 55–60

with air gap, 60–62, 61
Ampere’s magnetic circuital law, 53–55
analog, 55
analogue, 61
ferromagnetism, 62–65
flux for MMF, 74

graphical method, 74–75
magnetization curve method, 75–77
trial-and-error method, 74

magnetic core losses, 65
eddy-current loss, 66–74
hysteresis loss, 65–66

magnetic field of current-carrying
conductors, 50–53

permanent magnets, 77–79
two-pole generator, 52

Magnetic core, 55
Magnetic domains, 62
Magnetic field, 5, 51

current-carrying coil, 52–53
intensity, 53, 57
toroidal coil, 53

Magnetic flux, 152, 159
density, 53

Magnetic force, 159–161
in saturable system, 161–164

Magnetic insulators, 56
Magnetic linearity, 365
Magnetic lines

of field, 51
of forces, 50

Magnetic losses, 65
Magnetic pulling force per pole, 160
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Magnetic structure of a four-pole dc machine,
73

Magnetism, 50
Magnetization curve, 63, 64–65, 75, 246, 294
Magnetization test, see open-circuit test
Magnetizing reactance of coil, 92
Magnetohydrodynamic (MHD) generators, 1
Magnetomotive force (mmf), 52–53, 57, 68, 70,

94; see also electromotive force
balance equation, 130
field distributions, 187
flux for, 74–77
graphical method, 74–75
magnetization curve method, 75–77
trial-and-error method, 74

Magnets, 50
Maximum efficiency, 121
Maximum power transfer, 97
Maximum torque, 211
Mechanical radians, 246
Mechanical transient, 373
Mechanical work, 148
Mmf, see magnetomotive force
Motional voltage, 170
Motors, 5, 166

action, 164, 176
mode, 181
speed equation, 312

Multiply (multicoil) excited rotating systems,
168–171

N
Nadyne-Rice machines, 6
Nameplate rating, 112–115
Nameplate voltage, 116
National Electric Manufacturers Association

(NEMA), 88
NEMA Code Letters, 220
NEMA design motors, 217–218
Network analysis, 392
Neutral point, 125
Newton’s law of rotation, 380
Nodal analysis method, 45
No-load test, see open-circuit test
Nominal transformer voltage, 116
Normalization process, 394
N-phase system, 14

O
Ohm’s law of magnetic circuit, 56

One-line diagrams, 24
Open-circuit test, 109–111, 110, 228, 267
Open-delta (or V–V) connection, 126
Output shaft power, 198
Overcompounded generator, 302
Overexcitation, 254
Overexcited generator, 260–261

P
Parallel operation of synchronous generators,

272, 272–273
Percent efficiency of motor, 311
Permanent magnet, 63, 79

DC motors, 357–360
machines, 6
stepper motors, 355

Permanent split-capacitor motor, 347
Permeability of core, 70
Permeability of free space, 53
Permeance, 56
Per-phase analysis, 24
Per-unit system, 392–393

change of base, 398–400
to physical values, 398
single-phase system, 393–398
three-phase systems, 400–409

Phase, 356
Phase-a voltage, 30
Phase currents, 27–28
Phase-to-phase voltages, 18
Phase voltages, 15, 18, 25, 27

magnitude, 19
Phasors, 386–391

of alternating current, 7
current magnitude, 8
defined, 387
diagrams

of phasors, 27–28
for three-phase sources, 18
for the two-wattmeter method, 33

frequency domain, 388
of phasor diagram, 15
summation, 103
time domain, 388
voltage magnitude, 8

Physical quantity, 392
Physical values, per-unit system to, 398
Pigtail, 282
Pilot exciter, 243
Plugging, 326
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operation, 182
resistance, 327

Polarity
additive 95
determination, 96

Pole-changing method, 227
Pole shoes, 281
Polyphase

AC, 181
generator, 14
induction machines, 6
machines, 174
rectifiers, 14
sources, 14
synchronous machines, 6
systems, 14

Potential-coil voltage, 32
Potential ratio, 93
Potential transformers (PT), 87
Power, 148, 150

angle, 252, 255
apparent, 8
average/active power, 8

Power-distribution feeder, 5
Power distribution systems, 4
Power factor, 8–9, 118–119

angle, 9, 23, 25
of motor, 204, 206–207

Power invariance principle, 94
Power loss, 25
Power measurement in three-phase circuits,

32–35
Power system stability, 379
Power transformers, 88
Power triangle, 8, 8
Primary distribution feeders, 2

one-line diagram, 3
voltage conditions on, 4

Primary feeders, 2
Primary system, 2
Public Utility Regulatory Policies Act

(PURPA), 4
Pull-out torque, 167, 211, 257
Pulsating torque, 174

Q
Quadrature axis, 164, 282

inductance, 166
Qualified facility, 4

R
Reactive factor, 8
Reactive power of motor, 35, 37
Real power, 35
Real transformer, 102–105; see also ideal

transformer
approximate equivalent-circuit,

105–109
Reference, 7

phase, 24
phasor, 44–45, 108

Regeneration, 320
Regenerative braking, 327
Relative permeability, 53
Reluctance, 70

of core, 71–72
machines, 6
of magnetic core, 94
motors, 353–354, 354
values, 71

Remanence, 63
Residual flux, 299
Residual flux density, 63, 77
Rotating electrical machines, 7
Rotating machines, 164
Rotating magnetic field, 185–186
Rotating rectifiers, 6
Rotational angle, 148
Rotational losses, 201, 311
Rotational motion, 150
Rotors, 7, 15, 60, 164, 242

impedance, 206
mechanical shaft speed, 203
slip, 190
torque, 14

Round-rotor machines, 171

S
Salient-pole rotors, 242
Samarium, 62
Samarium-cobalt, 78
Saturated materials, 63
Saturated synchronous reactance, 268–269
Saturation

curve, 63
point, 294

Secondary winding, 93–94
Self-excited shunt generator, 298–300
Self-impedance voltage, 170
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Separately excited DC generator, 364–366
armature-circuit transient, 367–369
field-circuit transient, 366–367

Separately excited DC motor, 370–374
Series-common winding, 130
Series-field winding, 288, 301
Shaded-pole motors, 348–350
Shading band, 348
Shaft, 7
Shaft-mounted exciter, 244
Shell-type transformer, 124
Short-circuit power factor, 111
Short-circuit ratio (SCR), 269–271
Short-circuit test, 111, 111–112, 267–268
Short-circuit transients, 374–379
Short shunt, 289
Shunt capacitors, 4, 36
Shunt-field winding, 288, 299

loss, 310
Shunt motor, 322
Silicon-controlled rectifiers (SCRs), 227, 320
Silicon-steel sheets, 89
Single-phase AC circuits, 7–12, 14
Single-phase complex power, 9
Single-phase induction machine, 174
Single-phase induction motors, 336–339

classification, 344
capacitor-run motors, 347–348
capacitor-start capacitor-run motors,

348
capacitor-start motors, 345–347
shaded-pole motors, 348–350
split-phase motors, 344–345

equivalent circuit, 338–340
performance analysis, 340–343
starting of, 343–344

Single-phase motors, 337, 354
Single-phase series motor, 350
Single-phase synchronous machine, 174
Single-phase synchronous motors, 353

hysteresis motors, 354–355
reluctance motors, 353–354
stepper motors, 355–356

Single-phase system, 393–398
Single-phase transformers, 87
Single-phase transformer windings, 95
Singly excited rotating systems, 164–168; see

also doubly excited rotating system
Six-phase power transmission lines, 14
Skin effect, 217, 249

Slip, 191
ring motors, 184
rings, 184
speed, 191

Small power production facility, 4
Smooth-air-gap machines, 171–172, 172
Soft ferromagnetic materials, 62
Soft-start induction motors, 218
Solid state-controlled rectifiers, 281
Solid-state voltage controller starting, 221
Speed

control by solid-state switching, 227
current characteristics, 312–313, 313, 317
regulation (Speed Reg), 311–312
of rotor, 191
torque characteristics, 313, 313–314
voltage, 170

Split-phase motors, 344–345
Squirrel-cage induction motor rotors, 217
Squirrel-cage motors, 183
Squirrel-cage rotor, 227, 264, 336, 348

bars, 184
design, 216–218

Squirrel-cage winding, 184
Stable power system, 379
Stacking factor, 67
Stacks, 356
Static electromagnetic machine, 87
Stationary stator windings, 15
Stators, 7, 15, 60, 164

copper losses, 204
current, 213
(pole) axis, 164
referred rotor, 199
winding, 190

Steady-state operation, 191
Steady-state period, 375
Steel laminations, 67, 67
Step-down transformer, 1, 94, 129–131
Stepped transformer cores, 90
Stepper motors, 353, 355–356
Step-up transformer, 1, 94, 129–131
Stiffness, 258–259
Stray-load losses, 153, 307
Subfractional-horsepower motors, 336
Subsynchronous motors, 356–357
Subtractive polarity, 95
Subtransient period, 375
Supersynchronous speed, 257
Swing equation, 380–383
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Switchable capacitors, 116
Synchronous capacitor, 242
Synchronous electrical radian frequency, 382
Synchronous generators, 254, 377, 382

operating alone, 262–263
transients, 374

Synchronous impedance, 250
Synchronous machines, 242, 257, 379

capability curve, 271–272
changes in excitation, 259–260

synchronous generator operating alone,
262–263

synchronous machine connected to an
infinite bus, 260–262

connected to an infinite bus, 260–262
construction of, 242–243
damper windings, 263–264
equivalent-circuit parameters, 267

DC test, 268
open-circuit test, 267
saturated synchronous reactance,

268–269
short-circuit ratio (SCR), 269–271
short-circuit test, 267–268
unsaturated synchronous reactance, 268

equivalent circuits, 248–254
field excitation of, 243–244
open-circuit characteristic (OCC), 246,

247
parallel operation of synchronous

generators, 272–273
phasor diagram, 260
power, 256
power and torque characteristics, 254–258
stiffness of synchronous machines,

258–259
synchronous generator operation, 245–248
synchronous motors

operation, 254
speed, 254
starting, 264
as synchronous condenser, 264–265
as synchronous reactors, 265–267

synchronous speed, 244–245
Synchronous motors, 243
Synchronous reactance, 250
Synchronous reluctance machine, 166
Synchronous speed, 166, 173, 181, 191, 203,

206, 244–245, 354
Synchroscope, 273

T
Tap changing, 117
Terminal voltage, 297
Tertiary winding, 132
Thévenin-equivalent impedance, 210
Thévenin’s theorem, 209–211
Third-harmonic flux components, 124
Three-phase, four-wire delta system, 126
Three-phase, two-pole ac generator, 16
Three-phase apparent power, 25
Three-phase circuits, 14

measurement of average power in, 32–35
phasor diagrams for, 18
power factor correction, 35–49
three-phase systems, 12, 14–15

balanced three-phase loads, 21–28
ideal three-phase power sources, 15–21

unbalanced three-phase loads, 28–32
Three-phase complex power, 9–10, 25
Three-phase generator, 14
Three-phase induction motors, 181, 184
Three-phase loads, 21–28
Three-phase reactive power, 25
Three-phase real power, 25
Three-phase systems, per-unit system, 400–409
Three-phase transformers, 124–125

bank, 124
connections, 125–129

Three-phase windings, 184
Three-phase wound-rotor winding, 184
Three-winding transformers, 134–135
Three-wire, three-phase system, 15
Toroid, 53
Torque, 148–149, 164–166, 174

angle, 166, 255, 258–259
constant of motor, 358

Torque-current characteristics, 314, 317
Torque–load current characteristics, 314
Torque–slip characteristic curve, 212
Torque–speed characteristic, 354
Total impedance, 204, 206
Total torque, 166
Transformer-equivalent circuits, 102, 105
Transformers, 87–89

autotransformers, 129–134
construction, 89–90
core construction, 89
core-type construction, 124
efficiency, 121–124
equivalent-circuit parameters, 109
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open-circuit test, 109–111
short-circuit test, 111–112

Faraday’s law of induction, 90–92
ideal transformer, 92–95

dot convention, 95–96
impedance transfer, 96–97
input and output powers, 97–102

impedance, 113
inrush current, 136–137
instrument transformers, 135–136
Lenz’s laws of induction, 90–92
nameplate rating, 112–115
performance characteristics, 115

transformer efficiency, 121–124
voltage regulation, 116–120

real transformer, 102–105
approximate equivalent-circuit, 105–109

secondary side, 116
shell-type construction, 124
three-phase, two-winding core

construction, 124
three-phase transformer connections,

125–129
three-phase transformers, 124–125
three-winding transformers, 134–135
use of, 87
voltage, 170

Transient operation, 374
Transient period, 364, 375
Transient stability, 379–380
Transmission system, 1
Turbo-alternators, 243
Turns ratio, 93
Two-phase generator, 14
Two-pole synchronous machine, 245
Two-value capacitor motor, 348
Two-wattmeter method, 32–33

U
Unbalanced three-phase loads, 28–32
Undercompounded generator, 302
Underexcitation, 254
Uniform-air-gap machines, 171
Uniform permeability, 55
Universal motors, 350–353
Unsaturated synchronous reactance, 268
Upper limit, 380

V
Variable autotransformer, 130

Variable-frequency method, 227
Variable line-voltage method, 227
Variable-reluctance stepper motor, 355
Variable rotor-resistance method, 227
Variable-slip method, 227
Virtual displacement (linear motion), 154
Voltage boosters, 300
Voltage dip, 219
Voltage drop, 25, 286
Voltage equation, 365
Voltage phasor diagram, 19
Voltage regulation, 116–120, 252
Voltage transformers (VT), 87, 135
Voltage waveforms, 15
Voltmeters, 87

W
Ward Leonard system, 319–320
Wattmeters, 32, 87
Wave winding, 283, 284
Windings, 5

amortisseur, 243
auxiliary, 345
common, 129
commutating, 281
commutator, 283
compensating, 282, 293–294
constant, 308
damper, 243, 263–264
of electrical machines and transformers, 7
lap, 283
losses, 311
squirrel-cage, 184
stators, 190

Wound rotors, 183
induction, 227
motors, 184

Wye-connected capacitor, 37
Wye-connected ideal three-phase source, 17,

18–20
Wye-connected induction motor, 36
Wye-connected load, 21, 24, 30
Wye–delta connection, 126
Wye–delta starting, 220
Wye–wye connection, 125

Z
Zero-current axis, 374
Zero-sequence currents, 134
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