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Preface

The idea to write this book, related to engineering applications of the new virtual
element method, occurred to us when the lock-down during the Coronavirus
pandemic started. There was suddenly time to concentrate at home on an aggre-
gation of work that we had done together with my group and colleagues. It all
started in 2016 after having heard several inspiring talks by Franco Brezzi, his wife
Donatella Marini and Lourenco Beirão da Veiga on the new virtual element method.
It was immediately clear that this methodology might have advantages for numerical
solution schemes in different applications, especially in the nonlinear range.

In 2016, we had first discussions on the basis of the virtual element method and
how to implement it with Daya Reddy who stayed at the institute with an award
from the Alexander von Humboldt Foundation. The idea was to use virtual elements
for contact with the advantage that even for non-matching meshes a node to node
formulationof contactwas possible. TogetherwithWilhelmRustwederived a contact
discretization and algorithm based on virtual elements, first for frictionless and later
for frictional contact in large strain applications. A work to be continued with our
colleagues from Italy, Lourenco Beirão da Veiga and Edoardo Artioli for curved
virtual elements. A contribution to three-dimensional contact is due toMertcanCihan
who has developed in his dissertation the complex projection procedures needed
in contact discretizations for three-dimensions when using virtual elements. Also
Alfredo Gay Neto from the University of Sao Paulo, a former Humboldt fellow in
our institute, contributed to contact formulations within the virtual element method
by integrating three-dimensional virtual elements for finite elastic strains as single
flexible particles into his discrete element code.

With Daya we tried to understand finite strain problems in 2017 and got some new
ideas about the stabilization of the method for low order approximations. After that
we worked on a quite general implementation that could be applied using two- and
three-dimensional meshes with virtual elements of arbitrary shape. With these tools
at hand it was only a small step to apply the new virtual element scheme also to finite
strain plasticity problems and extend the application range to anisotropic materials
which resulted in joint work with Jörg Schröder. The virtual element method was
further extended to large strain dynamical problems by Mertcan Cihan who applied
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his developments to vibration problems in elasticity and impact problems undergoing
finite elasto-plastic deformations.

Fracture mechanics is another application where the virtual element method
offers some advantages. To cover different possible approaches, we tried the phase
field method for brittle and ductile fracture with Fadi Aldakheel. But also a new
cutting scheme, based on linear fracturemechanics, was introducedwithin the virtual
element method in the Ph.D. thesis of Ali Hussein. Additionally, phase field (for frac-
ture detection) and the cutting scheme were put together in this thesis with adaptivity
and provided a new efficient tool for crack propagation problems.

When Maria Laura de Bellis came to our institute as a Humboldt fellow, we
continued our work on the virtual element method in the area of damage mechanics.
Here virtual elements were used in a non-local form. Additionally, Laura worked on
a serendipity formulation of virtual elements for finite strain problems.

With another Humboldian, Michele Marino, we tackled homogenization prob-
lems where the vitual element method has big advantages due to the possibility to
define elements with arbitrary shape. Here, metals and ceramics are described using
a direct discretization of a real microstructure by one virtual element per grains with
non-convex polyhedral shape. This provides a very efficient tool for homogeniza-
tion, especially since only averages have to be computed. This is also demonstrated
in the Ph.D. work by Christoph Böhm for crystalline microstructures of steel and
magnetoelectro-mechanical materials.

Lately, we applied the virtual element method to Kirchhoff plates where C1-
continuous ansatz functions are needed. Based on the pioneering work of Franco
Brezzi and Donatella Marini we were able to construct together with Olivier Allix,
who visited our institute as a Humboldt laureate, virtual plate elements that provide
stable solutions for thin plates with isotropic and anisotropic material.

This book is a combined effort of the three of us to allow graduate students and
engineers working in industry to familiarize themselves with the new virtual element
method. Due to that examples are included in the text for deeper understanding of the
formulations and associated algorithms. Additionally, a simplified code that allows to
solve two-dimensional elastic problemswith the software toolsAceGen andAceFEM
was created and can be found in the shared library AceShare of AceGen.

We are very grateful to all Ph.D. students, post-docs and colleagues mentioned
above with whom we had extremely fruitful discussions and collaborations. But we
also have tomention and thank Jože Korelc, Professor in Ljubljana, who provided his
symbolic software tool AceGen and the related analysis code AceFEM and changed
it during the last five years considerably in order to accommodate the need for more
flexibility when using a discretization scheme like the virtual element method with
arbitrary and different number of nodes within elements and meshes.
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Last but not least, we like to thank Volker Meine for drawing many of the figures
in the book.

Hannover, Germany
March 2023

Peter Wriggers
Fadi Aldakheel

Blaž Hudobivnik
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Chapter 1
Introduction

Many different approaches exist for the approximate solution of problems involving
partial differential equations. These includefinite difference schemes, finite elements,
finite volume techniques, boundary elements, and particle methods, just to name
some of the most prominent discretization techniques. Within these methods there
exist various significant developments. As an example, in the finite element method,
see e.g. Hughes (1987), Zienkiewicz and Taylor (2000), Wriggers (2008) and Oñate
(2009),mixed, enhanced and reduced ordermethods and discretization schemeswere
designed for different types of partial differential equations using low and high order
ansatz spaces. A relative new variant is connected to isogeometric approaches with
high order of continuity, see Cottrell et al. (2009). Research on numerical solution
methods continues to be motivated by the goal of developing stable, efficient and
robust discretization schemes for finite deformation applications in solid mechanics.

While the finite element method is well established as a tool to handle problems
in nonlinear solid mechanics, see for example the texts by Bathe (1996), Belytschko
et al. (2000), Wriggers (2008) and the encyclopedia (Stein et al. 2004), it is nev-
ertheless of interest to explore new methods that have potential advantages such as
flexibility with regard to mesh generation and choice of element shapes. The dis-
continuous Galerkin method provides flexibility in the sense that meshing does not
have to take into account hanging nodes: this can be an advantage in adaptive mesh
procedures, see the works by ten Eyck and Lew (2006) and Noels and Radovitzky
(2006) for applications to nonlinear elasticity.

There is a wide literature on polygonal and polyhedral elements, with applica-
tions to several important fields in engineering since there are situations in which it
is advantageous not to be restricted in the choice of element shapes. In this regard
there exist interesting developments in the use of polygonal or polyhedral elements.
Representative work in this area can be found in Kuznetsov and Repin (2003),
Sukumar (2004), Sukumar and Malsch (2006), Martin et al. (2008), Milbradt and
Pick (2008), Bishop (2014) and Manzini et al. (2014); for finite deformation prob-
lems including contact, see Biabanaki and Khoei (2012), Biabanaki et al. (2014) and

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
P. Wriggers et al., Virtual Element Methods in Engineering Sciences,
https://doi.org/10.1007/978-3-031-39255-9_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39255-9_1&domain=pdf
https://doi.org/10.1007/978-3-031-39255-9_1


2 1 Introduction

Chi et al. (2015). This list is not complete, but underlines the importance and need
to use elements with more general shapes.

Finite difference methods are seldom applied in solid mechanics and associated
engineering applications. However, they have a long history in physics, magneto-
dynamics and computational fluid dynamics. A generalization, the mimetic finite
differences, allows discretizations with general decompositions and thus attracted a
lot of attention. Some recent papers were contributed by Brezzi et al. (2005, 2009),
Beirão da Veiga and Manzini (2008), Beirão da Veiga et al. (2011, 2013c), Beirão
da Veiga (2010) and Droniou et al. (2010). However this methodology is not based
on the framework of the Galerkin method, like the finite element method.

1.1 History and Recent Developments of Virtual Elements

An evolution of the mimetic finite difference methods led to the virtual element
methods (VEM). Virtual elements maintain the generality related to element shapes
which can have arbitrary geometrical forms. Thus virtual elements allow very com-
plex meshes within a Galerkin type approximation, see Fig. 1.1. Meshes like this
open up a high flexibility for the discretization and also the design of algorithms for
low and higher order ansatz spaces.

The virtual element method was introduced in the seminal work Beirão da Veiga
et al. (2013b). Some early contributions in the area of mathematical analysis and

Fig. 1.1 A virtual element
mesh with arbitrary shaped
objects, from Aldakheel
et al. (2019)
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engineering can be found in Ahmad et al. (2013), Beirão da Veiga et al. (2013a,
2014), Brezzi and Marini (2013), Gain (2013) and Gain et al. (2014).

The above mentioned contributions describe the mathematical background of the
recently virtual element method. The method permits the use of polygonal elements
for problems in two dimensions and polyhedral elements in three dimensions. Fur-
thermore, there is no need for a restriction to convex elements, nor is it necessary to
avoid degeneracies such as element sides having an interior angle close to π radians,
see the mesh in Fig. 1.1, which consists of elements of different shapes from convex
to non-convex forms. All kind of shapes are possible for a discretization using vir-
tual elements, e.g. all animals are just single virtual elements. Despite this variety
of different element geometries the mesh provides a continuous C0 discretization.
Thus the method permits the direct use of Voronoi meshing tools, and as an example,
crystals can be represented by single elements in a polycrystalline material.

Key examples of the method in elasticity can be found in Beirão da Veiga et al.
(2013a), Gain et al. (2014) and Artioli et al. (2017). Extensions to contact and frac-
ture mechanics can be found in Wriggers et al. (2016), Benedetto et al. (2018) and
Aldakheel et al. (2018). Kirchhoff plates withC1-continuous ansatz spaces were dis-
cussed in Brezzi and Marini (2013) and Chinosi and Marini (2016) while Reissner–
Mindlin plates were treated in e.g. Beirão da Veiga et al. (2019). Applications to
engineering problems, where solids undergo finite strains, are presented in Beirão
da Veiga et al. (2015), Chi et al. (2017), Wriggers et al. (2017), Wriggers and Hudo-
bivnik (2017), Hudobivnik et al. (2018) and De Bellis et al. (2019). Optimization
problems were treated as well by employing the virtual element method. Develop-
ments in this direction are due to Antonietti et al. (2017), Chi et al. (2020) and Zhang
et al. (2020). Applications of the virtual element method, besides solid mechanics,
can be found in the area of Navier–Stokes flow, see e.g. Beirão da Veiga et al. (2018),
of parabolic problems in Vacca and Beirão da Veiga (2015) and of magneto statics
in Beirão da Veiga et al. (2018), to name just a few.

Despite being less than a decade under development, the range of virtual elements
in engineering has been quickly widened to a bunch of applications. The following
cases highlight some of the advantages of the virtual element method when applied
to specific problems:

• Many applications in engineering include a combination of different materials or
different layers. The mathematical modeling leads to interfaces between the layers
or materials. In a discretization, parts related to one material or layer might be
meshed in various ways and with dissimilar methods. This leads to non-matching
meshes at the interface, see Fig. 1.2a. Virtual elements allow arbitrary number
of nodes and thus coupling can be done in a continuous manner, even for non-
matching meshes. It was shown that such coupling fulfills the patch test and thus
yields a stable discretization scheme.
It is of course possible to couple the virtual element discretization in a continuous
way when the finite element method has the same ansatz order, see Fig. 1.2b. The
reason for this is that the shape functions of the finite element method are matched
at the boundary by the virtual element method. Thus the virtual element method
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(a) (b)

Fig. 1.2 Interface: a non-matching mesh, b coupling of virtual and finite element meshes

Fig. 1.3 Insertion of a crack within a virtual element

can be employed in combination with the finite element method where virtual
elements have an advantage with respect to geometry and flexibility while finite
elements are employed for the remaining discretization. More details regarding
the ansatz functions for the virtual element method are provided in Chap. 3.

• In crack propagation problems, it is possible to insert directly a crack into a virtual
element, see Fig. 1.3. The crack starts at the ending of the previous crack (in red)
on the left side and proceeds to the middle of the element, see right side of the
figure. This insertion produces a virtual element that has additional vertices (in this
case three). Such adding of nodes is not permitted in the finite element method but
does not provide any problem within the virtual element technology. The idea and
algorithmic aspects of this method is presented in Sect. 10.2, see also Hussein et al.
(2019) for the treatment of crack-propagation for 2D elastic solids at small strains.
As depicted in Fig. 1.4 it is also possible to split virtual elements (here �1) into
two elements while maintaining the mesh structure of the existing discretization.
This cutting technique for virtual elements can be combined with a phase field
approach, see Aldakheel et al. (2018) and Hussein et al. (2019, 2020).

• Discretizations of contact problems lead generally to non-matching meshes at the
interface, see e.g. Fig. 1.5a. Due to that, numerous investigations and formulations
were designed within finite element methodologies. Among them are node-to-
segment, segment-to-segment or mortar methods, see e.g. early works of Hallquist
(1984), Wriggers and Simo (1985), Simo et al. (1985), Belgacem et al. (1997) and
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Fig. 1.4 Splitting of a virtual element

Wohlmuth (2000). Node-to-segment approaches are simple, but usually do not
fulfill the contact patch test. Mortar methods fulfill the contact patch test, but have
a high complexity with regard to coding.
The virtual element allows to have arbitrary number of nodes within an element.
This feature can be exploited to introduce additional nodes in a contact area, see
Fig. 1.5b. Here nodes k̂, î and ˆk + 1 are inserted depending on a projection of
nodes k, i and k + 1 onto the opposite surface, respectively. Hence a very simple
node-to-node contact formulation is achieved, even for non-matching meshes.
Node-to-node contact simplifies on one hand the coding and on the other hand
fulfills the contact patch test. Applications of the virtual element method in the
area of contact mechanics can be found in Wriggers et al. (2016) for small, in
Wriggers and Rust (2019) for large strains, and in Aldakheel et al. (2020) for
virtual elements with curved boundaries. More details related to the use of virtual
elements in contact mechanics are provided in Chap.11.

• An advantage of the virtual element methods comes into play when microstruc-
tures of certain materials have to be modeled. This is the case in homogenization
problems of crystalline anisotropic materials or polycrystals in metal plasticity.
As an example, Fig. 1.6 shows cuts through polycrystalline microstructures. The
left microstructure is modeled directly by a finite element mesh inside each of the
grains, see Fig. 1.6a. Such discretization leads to a huge number of elements and
thus needs considerable computing power for its numerical solution. Contrary, in
Fig. 1.6b, a three-dimensional polycrystal is discretized using virtual elements, see
e.g. Marino et al. (2019) and Böhm et al. (2021). Here only one virtual element per
grain is needed, having arbitrary number of nodes and faces. This approach reduces
the number of elements drastically and with this the total number of unknowns.
Meshes for polycrystals can either be directly obtained from CT-scans, see Proud-
hon et al. (2018), or can be generated using special Voronoi tessellation techniques,
see e.g. Falco et al. (2017). Details of the related homogenization approach are
provided in Chap.12 and illustrate the efficiency of a discretization using virtual
elements.

• Fourth order partial differential equations describe e.g.Kirchhoff plate bending and
gradient elasticity. C1-continuous ansatz functions have to be introduced for such
problems. The development of associated functions—especially for finite element
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Fig. 1.5 Contact interface: a non-matching mesh, b insertion of additional nodes

(a) 3D finite element mesh (b) 3D virtual element mesh

Fig. 1.6 Polycrystalline microstructures

analysis—is nontrivial and often leads to degrees of freedom that have no direct
physical interpretation, see e.g. Argyris et al. (1968) and Bell (1969). The virtual
element method which only defines the approximation functions at the element
edges allows a straightforward and simple construction of even Cn-continuous
ansatz functions, see e. g. Brezzi and Marini (2013), Chinosi and Marini (2016)
and Wriggers et al. (2021). Further details are provided in Chap.13.

All these applications demonstrate the high flexibility of the virtual element
method in terms of discretization and algorithmic treatment for special applications
like contact or crack propagation.

In general, the structure of the VEM typically comprises a term in the weak for-
mulation or energy functional in which the quantity uh being sought is replaced by
its projection uπ = �uh onto a polynomial space. Thus the shape functions of the
virtual element method cannot be formulated directly, unlike in the finite element
method. They depend via the projection on the nodal variables at the vertices along
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with some moments. Those have to be computed for each of the elements individ-
ually since the number of vertices for an element varies in a discretization. Details
will be discussed in Chap.3. Insertion of this projected ansatz space into the weak
form results in a rank-deficient structure for arbitrary virtual elements. Hence it is
necessary to add a stabilization term to the formulation. The stabilization term is
generally a function of the difference uh − uπ between the original variable and its
projection. In order to adhere to a fundamental aspect of the virtual element method
in which all integrations take place on element boundaries, the stabilization term
proposed, for example, in Beirão da Veiga et al. (2013a, b) takes the form of a sum of
a function of nodal variables. Chi et al. (2017) adopted this approach and modified
it for nonlinear problems such that the scalar stabilization parameter depends on
the deformation. Another stabilization for the virtual element method uses a differ-
ent technique which approximates the difference uh − uπ by an internal mesh, see
Wriggers et al. (2017) for the two-dimensional case and Hudobivnik et al. (2018)
for three-dimensional problems, see also Chap.5. Other stabilization procedures for
the virtual element method that are using hour-glass stabilization, well known from
the work of Belytschko et al. (1984), are described in Cangiani et al. (2015) for lin-
ear Poisson problems. Lately some new enhanced scheme have been introduced to
overcome stabilization issues, see e.g. D’ Altri et al. (2021) and Chen and Sukumar
(2023).

1.2 Introductory Examples

Of course, the virtual element method is a discretization scheme for two- and three-
dimensional problems and not meant for one-dimensional problems. But to convey
the general idea, a virtual element formulations for a truss with linear and quadratic
ansatz functions will be considered and compared to finite truss elements.

1.2.1 Virtual Element Formulation of a Truss Using a Linear
Ansatz

The truss or bar is depicted in Fig. 1.7. Its behaviour is mathematically modeled by
the ordinary differential equation, written here for a constant cross section A,

E A u′′(x) = − f (x) (1.1)

where u(x) is the longitudinal displacement of the bar, E A the stiffness, f (x) the
loading along the bar and x the coordinate. This differential equation can be recast
in the weak form
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Fig. 1.7 Simple bar problem, geometry, data and discretization

Fig. 1.8 Element in initial and reference configuration

l∫

0

E A u′(x) η′(x)dx −
l∫

0

f (x) η(x)dx = 0 . (1.2)

where η(x) is a test function which usually is discretized with the same ansatz as
u(x).

Equivalently a potential can be formulated

1

2

l∫

0

E A[u′(x)]2dx −
l∫

0

f (x) u(x)dx −→ MI N . (1.3)

To solve the bar problem (1.1) with a discretization scheme1 the bar of length l will
be subdivided in ne elements of length le such that

∑ne
i=1 le = l, see Fig. 1.7. Either

the weak form (1.2) or the potential (1.3) can be starting point for a discretization
scheme. Here we will employ the potential (1.3) for linear ansatz functions.

• Finite element method. The ansatz functions are classically defined on the basis
of an isoparametric mapping such that for an element �e a linear ansatz is defined
in a reference space −1 ≤ ξ ≤ 1, see Fig. 1.8,

uh(ξ) =
2∑

k=1

Nk(ξ)uk with N1 = 1

2
(1 − ξ) and N2 = 1

2
(1 + ξ) . (1.4)

1 In this simple example the finite element and the virtual element method yield the same matrices
and hence produce the same results. However the mathematical framework to obtain the related
stiffness matrices is different.
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This ansatz approximates the displacement field in the element �e and thus can
be inserted e.g. in (1.3) for all ne elements leading to

ne

A
e=1

⎡
⎣1

2

1∫

−1

E A [u′
h(ξ)]2 Je dξ −

1∫

−1

f (ξ) uh(ξ) Je dξ

⎤
⎦ −→ MI N (1.5)

where Je is the Jacobianof the isoparametricmapping Je = dx
dξ

= le
2 .Both integrals

can be evaluated using numerical integration. In the special case of a linear ansatz
the first integral is with

u′
h(ξ) = duh(ξ)

dx
= duh(ξ)

dξ

dξ

dx
= duh(ξ)

dξ

2

le
= u2 − u1

le
(1.6)

simply given by a constant term for an element e

Ue(ui ) = 1

2

1∫

−1

E A [u′
h(ξ)]2 Je dξ = E A

2

[
u2 − u1

le

]2

le . (1.7)

By introducing the vector of unknowns ue = 〈u1 , u2〉T , the term in the square
bracket can be written as (u2 − u1)/ le = 1

le
〈−1 , 1〉ue = Bue which yields the

matrix form of (1.7)

Ue(ue) = 1

2

1∫

−1

E A [u′
h(ξ)]2 Je dξ = E A

2
uT
e B

TBue le (1.8)

and the element stiffness matrix for the linear ansatz

KFEM
l = ∂2Ue(ue)

∂ue∂ue
= E A

le

[
1 −1

−1 1

]
. (1.9)

The second integral in (1.5) which relates to the potential of the distributed load
f can be evaluated at element level using numerical integration, like the Gauss
quadrature. Thenumber of integrationpoint depends thenon the polynomial degree
of f (ξ), taking into account that u(ξ) is a linear function.

• Virtual element method. This methodology relies on an ansatz space in which
the displacements are known at the nodal points and on the element edges (which
do not exist in a one-dimensional problem). But the approximation uh is not known
within the domain �e. This is totally different from the finite element method, see
above, where the ansatz for the displacement field (1.4) is defined in the entire
domain �e.
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The question is now: how can we derive an ansatz for the displacement field? The
idea is to use a projection �(uh) of the displacement uh onto a polynomial space.
The projected part will be called uπ = �(uh). With this definition one can write
uh = �(uh) + (uh − �(uh))which splits the approximation uh into the projected
part �(uh) and a remainder (uh − �(uh)).
With a linear ansatz2 uπ = a1 + a2x one can compute the gradient of the pro-
jected part, here the derivative u′

π = a2, from the orthogonality condition within
an element

le∫

0

p′ ( u′
h − u′

π ) dx = 0 →
le∫

0

p′ u′
π dx =

le∫

0

p′ u′
h dx (1.10)

where p is a weighting function that has the same polynomial degree as the ansatz
uπ . Since uh is not known within the element, the integral on the right side of
(1.10) cannot be computed. However, based on the identity (p′ uh)′ = p′ u′

h +
p′′ uh (integration by parts) (1.10) can be reformulated

le∫

0

p′ u′
π dx = (p′ uh)

∣∣le
0 −

le∫

0

p′′ uh dx . (1.11)

For the chosen linear ansatz p′ is constant as well as u′
π , thus it follows that p

′′ = 0.
With uh(0) = u1 and uh(le) = u2, see Fig. 1.8, we obtain the projected gradient
from (1.11)

a2 = u′
π = u2 − u1

le
(1.12)

which is now a function of the nodal displacements u1 and u2.
Thus it is possible to compute the gradient u′

π without knowing the function uh
inside the element�e. In this simple case, the resultu′

π matches exactlyu′
h provided

by the finite element method and hence the remainder is zero: u′
h − u′

π = 0. But
in general the results are different which will be shown in the subsequent chapters
and virtual elements allow a more general discretization as has been demonstrated
in Sect. 1.1. Finally, u′

π can be inserted in (1.3) which provides the same result as
given in (1.7). Thus the stiffness matrix of the virtual element KV EM is exactly
the same as KFEM in (1.9).
A problem is now to compute the loading term in (1.3) since uh is not known inside
the element. A possibility is to compute an approximation of uh by the projected
displacement uπ using the linear ansatz.3 This approximation follows from the

2 In the standard isoparametric formulation used in the finite element method an additional coor-
dinate system is employed in the reference configuration, see (1.4). Contrary the virtual element
method is formulated directly with respect to the coordinate system in the initial configuration.
3 Mathematically it can be shown that this approximation of uh by uπ in the loading term is
appropriate and will even result in optimal error error estimates, see e.g. Ahmad et al. (2013).
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assumption that the average displacement uπ is equal to the average displacement
uh at the vertices of the element. In more detail we obtain for the two nodes of the
bar element with x1 = 0 and x2 = le

2∑
n=1

uπ (xn) =
2∑

n=1

uh(xn) → (a1 + a1 + a2le) = (u1 + u2) (1.13)

and together with (1.12) a1 = u1. Thus uπ = u1 + u2−u1
le

x . This function can be
employed to evaluate the integral associated with the loading potential in (1.3). As
an example we compute the potential energy U f

e of the loading term for f (x) =
fc = const.

U f
e =

le∫

0

fc uπ (x) dx =
le∫

0

fc(u1 + u2 − u1
le

x) dx = fc le
2

(u1 + u2) (1.14)

which yields with the definition ue = 〈u1 , u2〉T the matrix form

f = ∂U f
e

∂ue
= fc le

2

{
1
1

}
. (1.15)

This loading term is exactly the same as the one for the finite element formulation
in (1.5).

1.2.2 Quadratic Ansatz for a One-Dimensional Virtual Truss
Element

To demonstrate the difference between the virtual element and finite element method
a higher order ansatz function will now be used to derive a virtual element for the
bar. For this purpose we discuss a quadratic ansatz for the differential equation
E Au′′(x) = − f (x), see Fig. 1.8.

Analogous to the case of the linear projection we select a quadratic function
(ansatz order n = 2)

uπ = a1 + a2 x + a3 x
2 (1.16)

This projection function has three unknown parameters and the question is: how will
it be possible to derive a virtual element since we have only two points at the edges
of the element with nodal displacements u2 and u1?
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The solution follows by looking at the least square projection (1.11)

le∫

0

p′ u′
π dx = (p′ uh)

∣∣le
0 −

le∫

0

p′′ uh dx , (1.17)

where again p has the same polynomial degree as uπ in (1.16) and thus is a quadratic
polynomial with p′′ = const. Hence the last integral

∫
uh dx does not vanish. But

it is also not computable since uh is not known inside the element. The way out is to
define a new (internal) variable4

m0 = 1

le

∫ le

0
uh dx (1.18)

which is scaled by the element length such that m0 has the same dimensions as u1
and u2. With this new variable the projection in (1.17) is computable, as we will see
next.

It is convenient to introduce a matrix formulation in order to shorten notation.
This leads to the derivative of uπ

u′
π = a2 + 2a3 x = 〈1 2x〉

{
a2
a3

}
. (1.19)

With the matrix form p′ = 〈1 2x〉T the left hand side of (1.17) yields

le∫

0

p′ u′
π dx =

le∫

0

{
1
2x

}
〈1 2x〉 dx

{
a2
a3

}
=

le∫

0

[
1 2x
2x 4x2

]
dx

{
a2
a3

}
. (1.20)

The polynomials can be integrated exactly leading to

le∫

0

p′ u′
π dx =

[
le l2e
l2e

4
3 l

3
e

] {
a2
a3

}
= Ga . (1.21)

The right hand side in (1.17) can be evaluated with p′′ = 〈0 2〉T resulting in

(p′ uh)
∣∣le
0 −

le∫

0

p′′ uh dx =
[{

1
2x

}
uh

]le

0

−
{
0
2

} le∫

0

uh dx . (1.22)

4 This variable is not associated with any node and is called moment in the virtual element literature
since for higher order ansatz functions (n ≥ 2) integrals

∫
xn−2 uh dx up to the order n − 2 appear.

These can be associated with moments in mechanics.
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With the unknown defined in (1.18) the right hand side of (1.17) follows as

(p′ uh)
∣∣le
0 −

le∫

0

p′′ uh dx =
{
u2 − u1
2 leu2

}
−

{
0

2 lem0

}
= r(ui ,m0) (1.23)

The projection Eq. (1.17) can now be solved for the unknowns a by combining (1.21)
and (1.23)

Ga = r(ui ,m0) →
{
a2
a3

}
=

{
− 2

le
(2u1 + u2 − 3m0)

3
l2e

(u1 + u2 − 2m0)

}
. (1.24)

Furthermore the constant a1 can be obtained by the condition that the average of
the projection uπ is equal to the average of the ansatz uh over the element

le∫

0

uπdx =
le∫

0

uhdx . (1.25)

This leads with the definition of the unknown m0, the ansatz (1.16) and the result
(1.24) after some algebra to

a1le + 1

2
a2 l

2
e + 1

3
a3 l

3
e = le m0 → a1 = u1 (1.26)

Equations (1.24) and (1.26) determine the projection and its first derivative in terms
of the unknowns u1 , u2 and m0

uπ = 〈1 x x2〉

⎧⎪⎨
⎪⎩

u1
− 2

le
(2u1 + u2 − 3m0)

3
l2e

(u1 + u2 − 2m0)

⎫⎪⎬
⎪⎭ and u′

π = 〈1 2x〉
{− 2

le
(2u1 + u2 − 3m0)

3
l2e

(u1 + u2 − 2m0)

}

(1.27)
This result can be written in a more compact matrix form by introducing the matrices

Nπ (x) = 〈1 x x2〉 and ∇Nπ (x) = 〈1 2x〉 (1.28)

together with the vector of unknowns ue = 〈u1 , u2 ,m0〉T and the projection opera-
tors

P = 1

l2e

⎡
⎣ l2e 0 0

−4le −2le 6le
3 3 −6

⎤
⎦ and B = 1

l2e

[−4le −2le 6le
3 3 −6

]
, (1.29)

leading to
uπ = Nπ (x)Pue and u′

π = ∇Nπ (x)Bue . (1.30)
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The derivative u′
π from (1.30) can now be inserted into the potential energy and

integrated using the result from (1.21)

Ue = 1

2

le∫

0

E A (u′
π )2 dx = 1

2
uT
e B

T

le∫

0

[∇Nπ (x)]T∇Nπ (x) dx Bue = 1

2
uT
e B

TGBue .

(1.31)
Now the stiffness matrix of the virtual truss/bar element follows for the quadratic
ansatz by differentiation with respect to ue as

KV EM
q = ∂2Ue

∂ue∂ue
= B

TGB = 2 E A

le

⎡
⎣ 2 1 −3

1 2 −3
−3 −3 6

⎤
⎦ (1.32)

It is interesting to note that the VEM stiffness matrix is not equivalent to the FEM
matrix for a quadratic element which can be computed from the potential (1.5) using
the ansatz functions in (3.6)

KFEM
q = 2 E A

le

⎡
⎣

7
6

1
6 − 4

3
1
6

7
6 − 4

3− 4
3 − 4

3
8
3

⎤
⎦ . (1.33)

However, when looking at the eigenvalues ω of both stiffness matrices we obtain
ωV EM
q = 2 E A

le
{0 , 1 , 9} and ωFEM

q = 2 E A
le

{0 , 1 , 4}. These have the same subset
2 E A
le

{0 , 1} which are actually the two eigenvalues of the stiffness matrix, see (1.9),
for the virtual and the finite truss element with linear ansatz function. Hence both
stiffness matrices have the correct rank. The zero eigenvalue is associated with the
rigid body translation. Again, a stabilization for the quadratic virtual element is not
necessary since the eigenvalues ωV EM

q depict no rank-deficiency of the stiffness
matrix.

The loading term follows from the potential, see (1.14),

U f =
le∫

0

f (x) uh dx . (1.34)

Interestingly, for the case of f (x) = fc = const. the integral
∫
uh dx can be approx-

imated directly by the variable m0 introduced in (1.18) leading to

U f = fc

le∫

0

uh dx = fc m0 le . (1.35)
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Thus the matrix form of the loading term is

fV EM
q = ∂U f

∂ue
= fcle

⎧⎨
⎩
0
0
1

⎫⎬
⎭ (1.36)

which is counterintuitive since no load term is assigned to the nodal degrees of
freedom u1 and u2. The loading term for finite elements is given for a constant load
by

f FEM
q = fcle

6

⎧⎨
⎩
1
1
4

⎫⎬
⎭ (1.37)

which is clearly different from (1.36).
In order to verify the correctness of the virtual element formulation leading to

(1.32) and (1.36), a simple example of a bar under constant load fc is considered
that is fixed at the left end (u1 = 0), see Fig. 1.7. Using only one virtual element for
the discretization yields with (1.32) and (1.36)

2 E A

le

[
2 −3

−3 6

] {
u2
m0

}
= fcle

{
0
1

}
→

{
u2
m0

}
= fcL2

e

6 E A

{
3
2

}
. (1.38)

This result can be introduced in (1.30) to compute the displacement uπ and normal
force N = E Au′

π which leads after some simple algebra to

uπ = fc
2 E A

(2le − x)x and N = fc(le − x) . (1.39)

These results are equivalent to the exact analytical solution of the differential equation
E Au′′ = − fc. Thus the projected displacement uπ of the quadratic virtual truss
element delivers an exact solution in this special case. Actually, the exact analytical
solution is also recovered when using the finite element formulation in (1.33) with
the load vector in (1.37). But we observe that stiffness matrix and load vector of the
virtual element are different from the finite element formulation.

The basic differences between finite element and virtual element formulations
were shown in this simple example. They are related to the different methodologies,
which for virtual elements are based on the real geometry and on projections uh ≈
�uh = uπ where uh is not known in the element�e. The virtual element formulation
can lead to the same matrices as obtained using the finite element method. However
the second example reveiled that this is only true for special cases.5

5 Even for problems in solidmechanics the equivalence between FEMandVEM is true for triangular
elements with three vertices in two dimensions and in three dimensions for tetrahedral elements
with four vertices.
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1.3 Contents of the Book

The book is subdivided in twelves further chapters which include the following
subject areas:

• Chapter2 contains an introduction to continuum mechanics which provides the
theoretical basis in solidmechanics for all formulations in the subsequent chapters.

• Ansatz spaces and functions are discussed for the virtual element method when
applied to solid mechanics problems in Chap.3. This establishes a basis for an
unified treatment of virtual element formulations and includes the computations
of projections uπ = �uh onto a polynomial space that replace the sought approx-
imation uh of the solution.

• The same ansatz functions can be applied to problems related to the Poisson
equation which is discussed in Chap. 4.

• Chapter5 discusses the general construction of a virtual element method based on
a weak form or a potential including methodologies for stabilization of a virtual
element formulation. The chapter closes with an example of the virtual element
method when applied to solve the Poisson equation.

• Chapter6 describes the applicationfield of themethod to elasticity in solidmechan-
ics. Linear and finite strain deformations of elastic solids are considered. The treat-
ment includes compressible and incompressible deformations as well as applica-
tions for anisotropic materials.

• Explicit and implicit algorithms for time dependent problems are described in
Chap.7. Here different ways of generating mass matrices are investigated. The
application to nonlinear problems demonstrates that virtual elements can be suc-
cessfully used in nonlinear dynamics. The presented algorithms can be applied to
problems with small and large strains.

• The treatment of finite strain plasticity problems is subject of Chap.8. Here two-
and three-dimensional applications are presented.

• An extension of finite strain plasticity to the analysis of coupled problems is
provided in Chap.9. Thermo-mechanical coupling is formulated on the basis of
the virtual element method. Examples depict that the two-field analysis can be
successful treated with the virtual element method.

• Advantages of using virtual elements were exemplarily demonstrated in Sect. 1.1.
Among them is the treatment of fracture problems which is subject of Chap. 10.
Different methods are presented and discussed, among them are approaches based
on stress intensity factors, phase-field concepts, damage mechanics, cutting tech-
nologies and combinations of different techniques.

• Contact mechanics is another field where virtual element technologies can be
applied profitably. The description of the related formulation and algorithms for
small and finite deformations is contained in Chap. 11.

• Chapter12 discusses the use of virtual elements in the area of homogenization.
Here the advantages of a direct discretization of grains with only one virtual ele-
ment are investigated and compared to finite element approaches.
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• Chapter13 presents virtual elements for beams and plates. Advantages of the vir-
tual element method enable a simple Kirchhoff formulation of C1-continuous
ansatz functions. This possibility is explored, leading to virtual elements with arbi-
trary number of nodes and shape. The resulting elements can then be specialized
to triangular and quadrilateral elements and provide a new class of C1-continuous
elements for engineering analysis.

The book is written as a textbook for the virtual element method as a tool to solve
engineering problems in solid mechanics. Due to that a study of Chaps. 3–5, contain-
ing the general background of virtual element formulation, might be advantageous
before reading Chaps. 6–13 on applications in engineering.

Several software packages are available that include virtual element formulations
for the two- and three-dimensional analysis of the Laplace equation as well as elas-
ticity and plate problems using C0- and C1-continuous ansatz spaces. The packages
are based on MATLAB, see e.g. Sutton (2017), Yu (2022) and Herrera et al. (2023),
and on the other hand on the multi-language and multi-environment numerical code
generation package AceGen that is an extension ofMathematica, see Korelc (2000)
and Korelc and Wriggers (2016). The related software for virtual elements can be
found in Korelc (2023).
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Chapter 2
Continuum Mechanics Background

This chapter summarizes the basic relation needed to formulate the deformation of
solids in the linear and nonlinear range. It is subdivided into the sections kinematics,
balance laws, variational formulations and constitutive equations. This part of the
book is not meant for studying continuummechanics, it only summarizes results that
provide essential background and notation for understanding the discretization tech-
niques related to the virtual elementmethod in the following chapters. For an in depth
background on continuum mechanics, we refer to e.g. Truesdell and Toupin (1960),
Truesdell and Noll (1965), Eringen (1967), Malvern (1969), Gurtin et al. (2010),
Chadwick (2012), Tadmor et al. (2012), Shabana (2018) and Holzapfel (2000).

2.1 Basic Equations

All basic equations are written in terms of a direct notation of tensors and vectors.
For more classical notation using indices we refer to Eringen (1967). In general a
vector v can be written as v = vi Ei where Ei are the unit basis vectors in a Cartesian
coordinate system. In the same way a tensor T can be written as T = Tik Ei ⊗ Ek .
The tensor maps between to vector spaces v = T w which is in index notation

vi Ei = (Tik Ei ⊗ Ek)wm Em = Tik wm Ei (Ek · Em) = Tik wm Ei δkm = Tim wmEi .

Note that this multiplication between a tensor and a vector or between a tensor and
a tensor is written without ′′·′′ in this book. The ′′·′′ is only used for a scalar product
between vectors and tensors, e.g. v · w = viwi and T · U = TikUik .
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Fig. 2.1 Deformation states
of a solid

2.1.1 Kinematics

Consider a body that occupies the bounded domain � ⊂ R
n with n = 2 , 3. It can

undergo finite motions which deform the body from its initial configuration � into
a current configuration ϕ(�). The following relations define deformation and strain
states under unconstraint and constraint motions (Fig. 2.1).

The position x of a material point in the current configuration ϕ(�), initially at
X in �, is given by the motion

x = ϕ(X, t) = X + u(X, t) (2.1)

where u is the displacement and t denotes the time.1 We define the deformation
gradient F by

F = Gradϕ = 1 + Grad u (2.2)

being evaluated with respect to X .2 It links line elements in the current and initial
configuration: dx = F dX . The determinant of F, known as the Jacobian,

J = det F (2.3)

defines a measure for the change in volume: dv = J dV where v is the volume in the
current and V the volume in the initial configuration. Additionally one can compute
the change of the surface elements a in the current and A in the initial configuration
by Nansons’s formula

n da = J F−T NdA (2.4)

1 In the following the argument of the introduced physical fields, like the displacement field is
omitted to shorten notation. Thus instead of u(X, t) only u is used.
2 Generally, operatores, like Grad (•) and Div (•), which start with a capital letter denote differen-
tiation with respect to the coordinates X in the reference configuration. Contrary, operators, , like
grad (•) and div (•), denote differentiation with respect to the current coordinates x.
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where n is the outward normal vector of the surface element in the current con-
figuration and N the outward normal vector of the surface element in the initial
configuration.

As a strain measure one can introduce the right Cauchy-Green tensor C(u)which
is defined as

C = FT F (2.5)

and acts with respect to the initial configuration. Its counterpart is the left Cauchy-
Green tensor

b = FFT . (2.6)

which is related to the current configuration. Based on (2.5) the Green-Lagrange
strain tensor can be defined

E = 1

2
(C − 1) = 1

2
(FT F − 1) (2.7)

where 1 = δikEi ⊗ Ek is the second order identity tensor.With the right part of (2.2)
the Green-Lagrange strains can be written in terms of the displacement field

E = 1

2
(Grad u + Grad uT + Grad uTGrad u) . (2.8)

This nonlinear strain measure can be simplified for the case of geometrically linear
problems leading to the linear strain tensor

ε = 1

2
(Grad u + Grad uT ) = ∇su (2.9)

where ∇s(•) = 1
2 (∇(•) + [∇(•)]T ) is a symmetric gradient operator.

A deformation can be subjected to constraints. These are mostly volume con-
straints, leading to the notion of incompressibility, and directional constraints that
are related to fiber reinforced materials when the fiber stiffnees is much larger than
the matrix material. Both cases are discussed and formulated next.

• Incompressibility.Deformations that preserve the volume of a solid are associated
with special materials that prevent volumetric extensions or contractions. If we
recall the change of volume equation dv = J dV then the volume constraint can
be formulated by dv = dV leading with (2.3) to

J − 1 = det F − 1 = 0 (2.10)

for finite deformations. This constraint can often only be introduced in an approx-
imative way. Then it is meaningful to split the deformation gradient in a multi-
plicative way: F = J

1
3 F̂, where due to construction det F̂ = 1. This result can

be employed to define an isochoric strain tensor based on (2.5)
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Ĉ = J− 2
3 C = (det C)−

1
3 C . (2.11)

In case of small strains the volume change is given by the trace of the linear strain
tensor ε which has to be zero

tr ε = Divu = 0 . (2.12)

Also here it is possible to split the strain tensor in a volume preserving part εD ,
called the deviatoric part, and a part that is associated with the volume change
1
3 trε 1

ε = 1

3
trε 1 + εD = 1

3
Divu 1 + εD . (2.13)

• Directional constraint. For the description of anisotropic materials the direction
of fibers can be introduced by the unit vector aa which can point in arbitrary
directions. The strain in fiber direction follows from the Green-Lagrange strain
tensor (2.7): Ea = aa · Eaa . This is equivalent with

Ea = 1

2
(tr[C Ma] − 1) (2.14)

with the structure tensor Ma = aa ⊗ aa . For an inextensible fiber in direction a
the strain Ea has to vanish: Ea = 0. Thus the constraint in fiber direction a is given
by

tr[C Ma] − 1 = 0 . (2.15)

In case of small strains this constraint can be formulated as

εa = aa · εaa = tr[ε Ma] = 0 (2.16)

where the strain tensor (2.9) has been used.

2.1.2 Balance Laws

There are several balance equations that govern the motion of a solid. Relevant for
problems in solidmechanics are the balance ofmass, the balance of linear and angular
momentum and the first and second law of thermodynamics.

2.1.2.1 Mass Balance

The first balance equation is themass balance that states a conservation of themassm
of a solid during the motion and can be expressed as ṁ = 0 which implies �0 d V =
� d v. With dv = J dV the mass balance in the initial configuration yields
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Fig. 2.2 Boundary and
loading condition of body �

�0 = � J . (2.17)

The equivalent form with respect to the spatial configuration is provided by

�̇ + � div v = 0 (2.18)

where v is the velocity.

2.1.2.2 Balance of Momentum

The body� has a boundary� which comprises non-overlapping sections�D and�N

such that �D ∪ �N = � (Fig. 2.2). The body satisfies in � the momentum equation

Div P + �0 b̄ = �0 ẍ , (2.19)

with the body force b̄, the first Piola-Kirchhoff stress P and the inertia term �0 ẍ with
the density �0. All quantities in this equation are related to the initial configuration
and the divergence is evaluated with respect to X .

The Dirichlet and Neumann boundary conditions are, respectively,

u = ū on �D, (2.20)

PN = t̄ on �N . (2.21)

with N being the outward unit normal vector with respect to the initial configuration,
ū the prescribed displacement, and t̄ the surface traction on �N .

The momentum equation can be defined as well in the current configuration ϕ(�)

div σ + � b̄ = � ẍ , (2.22)

with density �, the Cauchy stress σ and the inertia term � ẍ, being all related to the
current configuration. In this case the Dirichlet and Neumann boundary conditions
are given by
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u = ū on ϕ(�D), (2.23)

σn = t̄ on ϕ(�N ). (2.24)

with n being the outward unit normal vector with respect to the current configuration,
ū the prescribed displacement, and t̄ the surface traction on ϕ(�N ) in the current
configuration.

It is possible to express the Cauchy stresses in terms of the first Piola-Kirchhoff
stresses via

σ = 1

J
PFT . (2.25)

Furthermore, for later reference, we introduce the second Piola-Kirchhoff stress
tensor

S = F−1P (2.26)

and the Kirchoff stress tensor

τ = Jσ = PFT = FSFT . (2.27)

The balance of angular momentum yields the symmetry of the Cauchy stress
tensor as well as of the Kirchhoff and second Piola-Kirchhoff tensor

σ = σ T τ = τ T S = ST . (2.28)

For the first Piola-Kirchhoff tensor one obtains the condition

PFT = FPT . (2.29)

2.1.2.3 First Law of Thermodynamics

The first law of thermodynamics postulates the conservation of energy in a thermo-
dynamical process

Ė = P + Q . (2.30)

The mechanical power due to volume and surface loads is given by

P =
∫

ϕ(�)

� b̄ẋ dv +
∫

ϕ(�)

t · ẋ da . (2.31)

where ẋ is the velocity. The heat supply

Q = −
∫

ϕ(�)

q · n da +
∫

ϕ(�)

� r dv (2.32)
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consists of a conduction through the surface of the body which is described by the
heat flux vector q and the surface normal n and a distributed inner heat source r
(specific heat supply).

The total energy E is composed of the kinetic energy

K =
∫

ϕ(�)

1

2
�ẋ · ẋ dv (2.33)

and the internal energy

U =
∫

ϕ(�)

�u dv . (2.34)

where u is the specific internal energy. Inserting all these relations into equation
Ė = P + Q yields after several manipulations the local form of the first law of
thermodynamics

� u̇ = σ · d + � r − div q . (2.35)

The term σ · d is called specific stress power where d = 1
2

[
gradẋ + (gradẋ)T

]
is

the symmetric velocity gradient.
In the framework of constitutive theory the free Helmholtz energy ψ is often

introduced by the relation
ψ = u − η θ . (2.36)

Here η denotes the entropy of the system and θ is the absolute temperature. With
this definition the first law of thermodynamics can be recast as

� ψ̇ = σ · d + � r − div q − η̇ θ − η θ̇ . (2.37)

The transformation of the first law of thermodynamics to the initial configuration
leads to

�0 u̇ = S · Ė − Div Q + �0 R . (2.38)

Here the heat source R and the heat flux vector Q are referred to the initial configu-
ration. The stress power in (2.35) can be written with (2.7) and (2.27) as

S · Ė = 1

2
S · Ċ = P · Ḟ = τ · d . (2.39)

In this equivalence, the first three terms are related to the initial configurationwhereas
the last term is referred to the current configuration.

Some special cases of thermodynamical processes can now be stated:

1. Supply of heat energy is excluded as well in the interior as over the surface of the
body (r = 0 , q = 0) such process is called adiabatic.
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2. A process in which the temperature in the body is kept constant (θ = const.) is
known as isothermal process.

3. A process where neither heat is supplied to an elastic body nor external forces act
on the body leads to conservation of total energy

Ė = K̇ + U̇ = 0 ⇔ E = K +U ≡ const. . (2.40)

On the other hand, if we assume a rigid body with S · Ė = 0 and a stationary
process with �0 u̇ = 0 then (2.38) reduces to the energy equation for stationary heat
conduction

− Div Q + �0 R = 0 . (2.41)

With Fourier’s law, stating Q = −k Grad θ , the partial differential equation for the
temperature θ follows as

Div (k Grad θ) + �0 R = 0 . (2.42)

2.2 Constitutive Equations

There exist many constitutive relations for different engineering materials like e.g.
steel, concrete, aluminum and composites. Purely elastic material behaviour is dis-
cussed in this section which is related to the name hyper elasticity, see e.g. Ogden
(1984). This description is valid for many materials—like e.g. foam or rubbers—
which undergo finite deformations. In case of small strains these constitutive equa-
tions reduce to the classical law of Hooke. Furthermore elasto-plastic material
behaviour is summarized. To discuss constitutive relations in depth is not possible in
this book. Thus only the most frequently used constitutive equations are introduced
in this section. More specific details can be found in the chapters where the virtual
element method is applied to different engineering problems.

2.2.1 Linear Elasticity

In linear elasticity the constitutive response of a material is governed by the so called
Hooke’s law. It can be obtained by using the strain energy function

Ψ = �

2
[tr(ε)]2 + μ tr(ε ε) (2.43)

where � and μ are the Lamé constants which can be expressed in terms of the
Young’s modulus E and the Poisson ratio ν
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� = E ν

(1 − 2ν)(1 + ν)
μ = E

2(1 + ν)
. (2.44)

The second Lamé constant μ is equivalent to the shear modulus. From the strain
energy (2.43) the stress tensor σ follows by differentiation with respect to the strains

σ = ∂Ψ

∂ε
= � tr(ε)1 + 2μ ε (2.45)

where 1 is the second order unit tensor. The stress strain relation is often written
in matrix form using the Voigt notation. In that case the second order tensors like
stresses and strains reduce to vectors and the fourth order tensor that denotes the
constitutive matrix becomes a matrix. For the plane strain case in two-dimensions
this leads to

σ = Cplε ε̂ ⇐⇒
⎧⎨
⎩

σxx

σyy

σxy

⎫⎬
⎭ =

⎡
⎣� + 2μ � 0

� � + 2μ 0
0 0 μ

⎤
⎦
⎧⎨
⎩

ux,x

uy,y

ux,y + uy,x

⎫⎬
⎭ (2.46)

which is equivalent to (2.45). In the same way the stress strain relation for the plane
stress case follows as

σ = Cplσ ε̂ ⇐⇒
⎧⎨
⎩

σxx

σyy

σxy

⎫⎬
⎭ = E

1 − ν2

⎡
⎣1 ν 0

ν 1 0
0 0 1−ν

2

⎤
⎦
⎧⎨
⎩

ux,x

uy,y

ux,y + uy,x

⎫⎬
⎭ . (2.47)

The three-dimensional case leads to

σ = C ε ⇐⇒

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σxx

σyy

σzz

σxy

σyz

σxz

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎣

� + 2μ � � 0 0 0
� � + 2μ � 0 0 0
� � � + 2μ 0 0 0
0 0 0 μ 0 0
0 0 0 0 μ 0
0 0 0 0 0 μ

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ux,x

uy,y

uz,z

ux,y + uy,x

uy,z + uz,y

ux,z + uz,x

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

.

(2.48)
In case of nearly incompressible elastic material it is advantageous to split the

stress tensor in a hydrostatic 1
3 trσ 1 and deviatoric stress s by

σ = 1

3
tr σ 1 + s (2.49)

then (2.45) can be recast in the form

tr σ = 3 K tr ε s = 2με (2.50)

where K ist the modulus of compression or bulk modulus
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K = � + 2

3
μ = E

3(1 − 2 ν)
. (2.51)

Note that the modulus of compression approaches for the case of an incompressible
material (ν → 0.5) infinity. Since the hydrostatic stress is constant the volumetric
strain tr ε has to go to zero. In this case it might be advantageous to introduce as
hydrostatic pressure the variable p which leads instead of (2.49) to

σ = p 1 + s . (2.52)

In that case the pressure is a Lagrangian parameter that can be computed using the
potential or weak form. When employing the potential, the constraint (2.12) is then
added as

∫
�

pDivu d� to (2.82).

2.2.2 Finite Elasticity

By introducing a strain energy function Ψ (F) for elastic problems the first Piola-
Kirchhoff stresses follow from differentiation with respect to the deformation gradi-
ent F

P(F) = ∂Ψ (F)

∂F
. (2.53)

Due to the equivalence of the work conjugate stress strain relations, see (2.39), the
second Piola-Kirchhoff and the Kirchhoff stresses follow with (2.5), (2.6) and (2.7)
as

S = ∂Ψ (E)

∂E
, S = 2

∂Ψ (C)

∂C
and τ = 2b

∂Ψ (b)
∂b

. (2.54)

Different forms of the strain energy Ψ can be used. A few of them, which are
employed in the following chapters are summarized in the next sections.

2.2.2.1 Compressible Materials

Many different strain energies have been proposed to model the finite strain response
of elastic solids, see e.g. Ogden (1984), Holzapfel (2000). Here we just use the most
simple relations knowing that the accurate prediction of the response of rubber or
foam materials requires often a more sophisticated approach.

For a homogeneous compressible isotropic hyperelastic material we adopt the
neo-Hookean strain energy function for the three-dimensional case

Ψ (C) = �

4
(J 2 − 1 − 2 ln J ) + μ

2
(trC − 3 − 2 ln J ) (2.55)
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in which � and μ are the Lamé constants. The right Cauchy-Green tensor C is
defined in (2.5) and the Jacobian J of the deformation in (2.3). Note that the right
Cauchy-Green tensor as well as the Jacobian depend on the deformation and with
that on the displacement field u.

For a homogeneous compressible isotropic elastic material, the Neo-Hookean
strain energy function can also be defined in terms of variables that act in the current
configuration. This leads for example with (2.6) to

Ψb(b) = �

4
[det b − 1 − ln (det b)] + μ

2
[tr b − 3 − ln (det b)] . (2.56)

which is equivalent to (2.55) In Eq. (2.56) μ and � are the Lamé constants.
Further constitutive relations to model large strain elastic deformations are given

by the Mooney-Rivlin model, see Mooney (1940),

Ψ (C) = c1 (trC − 3) + c2(tr [cofC] − 3) (2.57)

where c1 and c2 are constitutive parameters and the cofactor of the right Cauchy-
Green tensor is given by cofC = det C C−T . This model predicts the behaviour of
rubber materials up to 50% strain well.

Often the Ogdenmodel is used to fit complex stress-strain relations in finite defor-
mation elasticity. This material is formulated in the eigenvalues λi of the deformation
gradient. These eigenvalues are associated with the principal stretches of the defor-
mation. The material model depends usually on three parameter sets (μi , αi ) which
have to be selected carefully in order to fulfill the second law of thermodynamics,
see e.g. Ogden (1984),

Ψ (u) =
3∑

i=1

μi

αi

(
λ

αi
1 (u) + λ

αi
2 (u) + λ

αi
3 (u) − 3

)
. (2.58)

The principal stretches λi follow from the eigenvalue problem (C − λ21)m = 0
where ,mi are the directions of the principal stretches.3

Amore general material model can be formulated by including all three invariants
I1C = trC , I2C = tr (cofC) and I3C = det C of the strain tensor

Ψ (C) = c1
2

(trC)2 + c2
2

[tr (cofC)]2 + c3 g(det C) . (2.59)

This general constitutive equation fulfils the polyconvexity conditions, see e.g.Mars-
den and Hughes (1983), Schröder (2009), needed to establish existence of solutions.

3 The eigenvalues in (2.58) need to be computed within numerical simulations. Problems occur
when eigenvalues are repeated. This can be overcome by a smooth and accurate approximation
around singularities related to repeated eigenvalues. The key idea is that the sum of eigenvalues can
be replaced by a closed form solution of the sum, see Hudobivnik (2016).
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Note that the last term in (2.59) has to be defined in a way that the strain energy is
zero for the initial deformation state u = 0.

2.2.2.2 Incompressible Materials

Nearly incompressible material behaviour can be analysed using the constitutive
equations provided in the last section. However, when the incompressible behaviour
is introduced via the constraint J − 1 = 0 then a special strain energy has to be
employed since the first Laméparameter� and the bulkmodulus K approach infinity,
see (2.51) and (2.44). By neglecting these terms and by using only the isochoric part
of the right Cauchy-Green strain, see (2.11), the strain energies for Neo-Hooke,
Mooney-Rivlin and Ogden materials reduce to

• Neo-Hookean material

Ψ i (u) = μ

2

(
tr [Ĉ(u)] − 3

)
, (2.60)

• Mooney-Rivlin material

Ψ i (u) = c1
(
tr [Ĉ(ue)] − 3

) + c2

[
1

2

(
tr [Ĉ(u)]2 − tr [Ĉ(u) · Ĉ(u)]) − 3

]
,

(2.61)
• Ogden material

Ψ i (u) =
3∑

i=1

μi

αi

(
λ̂

αi
1 (u) + λ̂

αi
2 (u) + λ̂

αi
3 (u) − 3

)
(2.62)

with λ̂i = det F− 1
3 λi .

When using these formulations the constraint J − 1 = 0 has to be added via a
Lagrangian multiplier p leading to p(J − 1).

2.2.2.3 Anisotropic Materials

A material in which a certain direction has a different constitutive behaviour than in
other directions is called anisotropic. Generalizations of polyconvex strain energy
functions to the anisotropic range can be found in Schröder andNeff (2003), Schröder
(2009).

Here a transversely isotropic strain energy function is introduced that has to be
added to an isotropic strain energy. The strain energy function is based on the intro-
duction of a structural tensor Ma , see (2.14), that defines a preferred direction aa ,
see Fig. 2.3.
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Fig. 2.3 Boundary and
loading condition of body �

With that the transversely isotropic strain energy part Ψ ti can be formulated for
a general polyconvex case with one preferred direction as

Ψ t i (C, cofC, det C) =
C

[
1

α + 1
[tr(C M)]α+1+ 1

β + 1
[tr(cofC M)]β+1+ 1

γ
(det C)−γ

]
.

(2.63)

The constitutive parameters C , α , β and γ have to be selected such that C > 0,
α ≥ 0, β ≥ 0 and γ ≥ −1 / 2, see Schröder and Neff (2003). In that case Ψ ti is
polyconvex and stress free in the initial configuration.

Note that the total strain energy will in general consist of an isotropic and an
anisotropic part

Ψ total = Ψ iso + Ψ ti (2.64)

where the isotropic part Ψ iso can be selected from Sect. 2.2.2.1 , for more details see
e.g. Schröder and Neff (2003), Schröder (2009).

However, it is also possible to introduce the inextensibility constraint (2.15) for a
preferred direction a directly. In that case the strain energy function can be written
for two directional constraints, see Wriggers et al. (2016b),

Ψ total = Ψ iso +
2∑

k=1

stik (tr[C Mk] − 1) . (2.65)

where stik are Lagrangian parameters that can be interpreted as the stresses in the
fiber due to the constraints. Relaxed formulations of these constraints are possible.
This yields

Ψ total = Ψ iso +
2∑

k=1

[
stik (tr[C Mk] − 1) − 1

2Ck
(stik )2

]
(2.66)

where Ck are constitutive parameters that represent the stiffness of the fibers.
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2.2.3 Elasto-Plasticity

The von Mises plasticity models are summarized in this section for small and finite
strains. More details regarding the modeling of plastic processes and the derivation
of the underlying set of equations can be found in e.g. Simo and Hughes (1998),
de Souza Neto et al. (2008).

2.2.3.1 Small Strain Elasto-Plasticity

The elasto-plastic behaviour of metals is in many cases governed by a von Mises
model that describes ductile plasticity response. The following equations summarize
this model for the case of linear isotropic hardening behaviour.

The strain tensor is additively split into an elastic εe and plastic part ε p

εe = ε − ε p . (2.67)

The elastic constitutive relation (2.43) can be used to compute the strains, nowwritten
in terms of the elastic strains and the stresses are computed via differentiation with
respect to εe

Ψ = �

2
[tr(εe)]2 + μ tr(εe · εe) , σ = ∂Ψ

∂εe
. (2.68)

The plastic part of the strain is computed from the evolution equation

ε̇ p = γ̇
∂ f

∂s
= γ̇ n (2.69)

in which f is the yield function that restricts the elastic domain of the material
response. Here s = σ − 1

3 tr(σ )1 is the stress deviator, introduced in (2.49). For linear
isotropic hardening it is given by the inequality

f (s) = ‖s‖ −
√
2

3
(Y0 + H α) ≤ 0 with ‖s‖ = √

s · s . (2.70)

The deviatoric stresses are used since the von Mises model assumes incompressible
plastic flow. The value Y0 describes the yield limit, H is the hardening modulus and
α the hardening variable for which the evolution equation

α̇ =
√
2

3
γ̇ (2.71)

holds.
Within this plasticity model the variables ε p and α define the plastic state of

the material. The latter variable is also known as equivalent plastic strain. These
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unknowns have to be computed from the above set of equations using a time inte-
gration scheme which will be discussed in more detail in Chap. 8.

2.2.3.2 Finite Strain Elasto-Plasticity

In forming and other technical operations metals can undergo finite strain states.
These have to be considered in predictions using numerical methods. Thus the small
strain von Mises plasticity model has to be extended to finite strains. Our description
includes now isotropic nonlinear hardening behaviour.

The basic kinematical quantities were already defined in Sect. 2.1.1. These rela-
tions have to be extended for the modeling of finite strain plasticity. In finite defor-
mation plasticity the deformation gradient (2.2) is split into an elastic—labeled as
�e—and plastic part—labeled as �p—

F = Fe F p . (2.72)

The right Cauchy-Green tensor is defined in (2.5) and the Jacobian of the deformation
mapgiven in (2.3). They are now rewritten using themultiplicative split (2.72). In case
of von Mises plasticity the deformation is restricted by the plastic incompressibility
condition Jp = det F p = 1. With this constraint the determinant J = Je Jp from
(2.72) can be written as J = Je = det Fe. Inserting the split in (2.72) into (2.5) the
elastic part of the right Cauchy-Green tensor yields

C = FT
p F

T
e Fe F p = FT

pCe F p −→ Ce = F−T
p C F−1

p . (2.73)

In the same way, the elastic part of the left Cauchy-Green tensor, see (2.6), be =
FeFT

e can be expressed by the total deformation gradient and the inverse of the plastic
part of the right Cauchy-Green tensor C p = FT

p F p. This leads to the expression

be = F C−1
p FT . (2.74)

From (2.74) the elastic part of the Jacobian can be computed: Je = √
det be.

Using a strain energy function, like the one in (2.55), for the elastic part of the
deformation the Kirchhoff stress follow by differentiation. For isotropic material
response the Kirchhoff stresses can be computed using (2.54)

τ = 2be
∂Ψb

∂be
(2.75)

where Ψb is defined in (2.56).
The elasto-plastic model requires additionally the formulation of a yield function,

a hardening law and an evolution equation for the plastic variables. The elastic region
of the deformation is restricted by the yield function. For J2-plasticity with isotropic



36 2 Continuum Mechanics Background

linear harding and nonlinear saturation hardening the yield function can be written
as

f (s, α) = σV M − [ Y0 + (Y∞ − Y0)e
−δ α + H α ] ≤ 0, (2.76)

where the variable Y0 denotes the initial yield limit, H is the hardening modulus
for linear hardening, Y∞ and δ define nonlinear saturation hardening and α is the

hardening variable. The von Mises stress σV M is defined as σV M =
√

3
2 ‖s‖ with the

deviatoric part

s = τ − 1

3
tr(τ ) 1 (2.77)

of the Kirchhoff stress, see e.g. (2.54).
The evolution equations for the plastic variables are, see e.g. Simo and Miehe

(1992); Wriggers et al. (1992), Wriggers (2008),

−1

2
Lvbe = γ̇ n be with n = ∂ f

∂s
, (2.78)

α̇ = γ̇ , (2.79)

where Lv denotes the Lie derivative in time in the first equation and the second
equation is the evolution equation for the hardening variable. The evolution equation
(2.78) can be recastwith (2.74) in an alternative form, see e.g.Korelc andStupkiewicz
(2014),

Ċ
−1
p = −2 γ̇ F−1 n F C−1

p (2.80)

which will be used later for the algorithmic treatment of plasticity within the numer-
ical solution algorithm. The Karush-Kuhn-Tucker conditions (KKT) for the elasto-
plastic model are

f ≤ 0 , γ̇ ≥ 0 and f γ̇ = 0 . (2.81)

2.3 Variational Formulation

The development of a discretization scheme, like the finite or virtual elementmethod,
generally relies on the weak form of equilibrium. It is also possible to use as a starting
point the potential energy function. The latter is classically restricted to elasticity
problems that are path independent. However, it is possible to construct for many
problems a pseudo-potential which first variation yields the relevant weak form.
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2.3.1 Potential and Weak Form

The potential energy of a solid can be written as

U (u) =
∫

�

[
Ψ (u) − f̄ · u ]

d� −
∫

�N

t̄ · u d� . (2.82)

Here Ψ (u) is the elastic strain energy of the solid, f̄ · u is the work of the body
forces and t̄ · u the work of the applied surface tractions. Here and in the following
we use instead of �0 b̄ that appears in the momentum balance (2.19) the abbreviation
f̄ for the body force.
The first variation of (2.82) yields the weak form of equilibrium

δU (u) =
∫

�

[
∂Ψ (u)

∂F
· δF − f̄ · δu

]
d� −

∫

�N

t̄ · δu d� . (2.83)

Note that the space of test functions (variations) V which is given by v = δu on �

has to satisfy v = 0 on �D . From thermodynamic considerations one can deduce that
by introducing a strain energy function Ψ (u) for elastic problems the first Piola-
Kirchhoff stresses follow from

P(u) = ∂Ψ (u)

∂F
. (2.84)

Using this relation now in (2.83), the weak form can be rewritten as4

a(u , v) = f (v) (2.85)

with

a(u , v) =
∫

�

P(u) · F(v) d�, (2.86)

f (v) =
∫

�

f̄ · v d� +
∫

�N

t̄ · v d� . (2.87)

With the introduction of the second Piola-Kirchhoff stress, see (2.26), S(u) =
F−1(u)P(u), it follows P(u) · F(v) = F(u)S(u) · F(v) = S(u) · F(u)T F(v).
Thus the term a(u , v) can be equivalently formulated as

4 This result can also be obtained by multiplying (2.19) with the test function v, then integrating
over the solid � and by using Gauss integral theorem. Note however that relation (2.85) is then
obtained without using a constitutive equations and thus (2.85) can be applied to arbitrary materials.
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a(u , v) =
∫

�

1

2
S(u) · C(u , v) d� (2.88)

where the variation of the right Cauchy-Green tensor is computed from (2.5) as

C(u , v) = F(u)T F(v) + F(v)T F(u) .

2.3.2 Incompressibility

In case of an incompressible material the potential energy is given by

Ui (u) =
∫

�

[
Ψ i (u) − f̄ · u ]

d� +
∫

�

p [ J (u) − 1 ] d� −
∫

�N

t̄ · u d� (2.89)

where the incompressibility constraint J (u) − 1 = 0 is added via a Lagrangian
parameter p which can be interpreted as the pressure.

A different formulation is based on a Hu-Washizu variational formulation for the
incompressibility constraint. It can be used for nearly incompressible materials

Ui
HW (u , p ,�) =

∫

�

[
Ψ i (u) − f̄ · u ]

d�

+
∫

�

{
p [ J (u) − � ] + K

2
(� − 1)2

}
d� −

∫

�N

t̄ · u d�
(2.90)

where p again is the pressure and � associated with the volume dilatation. Once
the bulk modulus K approaches infinity for a Poisson ratio ν → 0.5 incompressible
behaviour is recovered. Formulation (2.89) was applied in Simo et al. (1985a) to
construct special finite elements for finite deformation elasticity. It is now possible
to use different ansatz orders for the variables (u , p ,�).

2.3.3 Plasticity

For finite strain elasto-plasticity classically the weak form of equilibrium is used
as a starting point for the development of a discretization method. However, it is
computationally more efficient to start the development of the elasto-plastic virtual
element from a pseudo potential energy function directly instead of using the weak
form, see Korelc and Stupkiewicz (2014). This is especially advantageous when
the code is automatically generated using the software tool AceGen, see Korelc
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and Wriggers (2016). The pseudo-potential energy depends on elastic variables, see
Sect. 2.2.3.2, and includes the plastic history variables (h = {C−1

p , γ })

U (u,h) =
∫

�

[
Ψ (u,h) − f · u

]
d� −

∫

�N

t̄ · u d� . (2.91)

During the first variation of the potential with respect to the displacement field, the
plastic part of the deformation is kept constant5 which yields

δU (u,h) = ∂U

∂u

∣∣∣∣
h=const.

· δu (2.92)

where δu denotes the variation of u.

2.3.4 Heat Conduction

The weak form related to pure heat conduction in the stationary case follows from
(2.42) by multiplying this partial differential equation by a test function ϑ and inte-
grating over the volume. Together with the application of the theorem of Gauss and
Fourier’s law one obtains

∫

�

[
Gradϑ · Kθ Grad θ − ϑ �0R

]
d� +

∫

�N

ϑ Q̄ · n d� = 0 (2.93)

where Kθ is the thermal conductivity, �0R a volume source and Q the heat flux
through the boundary with the outward normal n.

In this special case one can formulate a potential function

Q(θ) =
∫

�

[
Kθ

2
(Grad θ · Grad θ) − (�0R) θ

]
d� +

∫

�N

( Q̄ · n) θ d� (2.94)

from which the weak (2.93) follows by minimization.

Remark 2.1 The heat conduction equation (2.42) actually is also well known as
Poisson equation and has many applications in applied engineering and physics.
Among these applications are torsion problems, potential flow, electro statics, mem-
branes and many more. The only thing that changes is the interpretation of the

5 This formulation is equivalent to using the weak form directly since the variation of (2.91) with
frozen history variables h yields exactly the classical weak form (2.85).
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constants. E.g. for a membrane θ → w is the deflection, Kθ → σ0 becomes the pre-
stress of the membrane, �0R → f is then associated with a transverse load and
Q̄ · n → ∇w · n is the slope of w at the boundary in normal direction which is zero
for a support w = 0 at the entire boundary �. �
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Chapter 3
VEM Ansatz Functions and Projection
for Solids

Virtual elements have so far been formulated for different problems in applied engi-
neering and physics. One of the first papers was on the general mathematical for-
mulation of the method, see Beirão da Veiga et al. (2013a). Then the method was
subsequently applied to problems related to elliptic, hyperbolic and parabolic partial
differential equations. Starting with the Laplace equation, see Beirão da Veiga et al.
(2014), and virtual element formulations for elliptical equations, like elasticity, see
e.g Beirão da Veiga et al. (2018). In the sequence problems related to diffusion, see
Beirão da Veiga et al. (2014), or Cahn-Hillard equations, see Antonietti et al. (2016),
were developed.

A large amount of work was related to solid mechanics. Here problems of elastic-
ity for small and finite strain, see Beirão da Veiga et al. (2013b), Beirão da Veiga et al.
(2015), Artioli et al. (2017a) andWriggers et al. (2017) as well as inelastic responses,
see e.g. Artioli et al. (2017b), Wriggers and Hudobivnik (2017) and Aldakheel et al.
(2019b) were solved. But also contact problems Wriggers et al. (2016a), Kirchhoff
and Reissner-Mindlin plate problems, see Brezzi and Marini (2013), Chinosi and
Marini (2016), Beirão da Veiga et al. (2019c) and Wriggers et al. (2022), and prob-
lems regarding damage and fracture Aldakheel et al. (2018a), De Bellis et al. (2018)
and Hussein et al. (2019) were considered. The beauty of the virtual element method
is related to the possibility to use arbitrary element shapes which can be even non
convex. In addition to that elements can be defined by an arbitrary number of nodes.
Both properties ensure an extreme flexibility for applying virtual elements in engi-
neering. In this chapter we will focus on ansatz spaces that need to be constructed
for applications of virtual elements in the classical area of solid mechanics including
small and large deformations.

The space of ansatz function for the virtual element method (VEM) is different
from the finite element method (FEM). However it leads in the end to a virtual
element that has the same nodal degrees of freedom as a finite element which actually
enables a consistent and immediate coupling of virtual and finite elements within
one mesh. Due to the possibility to formulate virtual elements for arbitrarily shaped
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Fig. 3.1 Virtual element mesh with arbitrarily shaped elements

geometries, see e.g. the animals in Fig. 3.1, the space of ansatz function has to be
selected in a special way. It contains polynomials and a other functions that need
not to be computed explicitly. The main ingredient of the virtual element method
is a projection operator which has to be constructed by a projection of the ansatz
space onto a space of polynomials. In this chapter we will outline how this operator
is computed for linear and quadratic polynomial ansatz spaces.

3.1 Two-Dimensional Case

The domain � is partitioned into non-overlapping polygonal elements �v with a
boundary �v consisting of straight edges. The elements need not to be convex.

In Fig. 3.2 nE , represents the number of edges of a polygon �v. An edge, with
length le, is denoted within the polygon by �e where e is an index 1 ≤ e ≤ nE . A

Fig. 3.2 Virtual element and
boundary discretization
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normal Ne is related to each of the straight edges. A sample element is depicted in
Fig. 3.2 together with its vertices k (1 ≤ k ≤ nV ).

3.1.1 General Ansatz Space

As in the finite element method, the ansatz space Vh will be defined at the element
level �v. For that a local space Vh|�v is introduced which is associated with the
degrees of freedom at the nodes and within the element, like in the finite element
methodology. However contrary to the finite element method, the local space for
virtual elements cannot be written explicitly. The finite dimensional space Vh|�v is
given for dimension d = 2 by

Vh|�v = {
uh ∈ [H 1(�v)]2 : uh |�e

∈ Pn(�e)∀�e ∈ �v ,�uh ∈ Pn−2(�v)
}

(3.1)

following Beirão da Veiga et al. (2013b).
The ansatz function for the displacement field uh in two dimensions should have

the properties

(a0): uh is known at the vertices k of the polygon �v,
(a1): uh is a polynomial Pn of degree n at each edge �e ∈ �v with values of uh at

n − 1 equally spaced points,
(a2): uh is continuous at all edges �e ∈ �v of the polygon �v,
(a3): Div(Grad uh) = �uh is a polynomial of degree Pn−2 on the polygon �v.

With these definitions the ansatz for the displacement field uh is a harmonic
function inside �v which is only known at the edges �e of �v, but the ansatz is not
known inside of the polygon�v. This is why the resulting elements are called virtual.
Additionally we have [Pn]2 ⊆ Vh . All these properties guarantee the convergence
of the virtual element method. For mathematical details see Beirão da Veiga et al.
(2013b).

In the two dimensional case of elasticity the total number of unknowns for a virtual
element is given by the above relations:

(a0): → 2 nV unknowns related to the nV vertices of the polynomial,
(a1): → 2 nE (n − 1) unknowns are related to nodes at each edge �e,
(a3): → 2 n (n−1)

2 unknown variables result from the polynomial space Pn−2, these
unknowns are called moments in virtual element technologies and represent a
field in �v in an integral sense.

The latter unknowns are not related to a specific location in�v and the introduction
is not obvious, but will become clear in the next steps of the construction of the ansatz
functions for the virtual element method.
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Fig. 3.3 VEM elements with different order of polynomial ansatz

Since nV = nE the total number of unknowns is given by

2 nV n + n (n − 1) (3.2)

where the last summand stands for the degree of freedoms associated with the
moments. For the special cases of linear (n = 1), quadratic (n = 2) and cubic (n = 3)
polynomials Pn the number of unknowns within a virtual element �v are

n = 1 : 2 nV

n = 2 : 4 nV + 2

n = 3 : 6 nV + 6

Moments do not appear in a virtual element space that is linear since with n = 1
it follows P−1(�v) = {0}. Figure3.3 shows the nodes and moments for a linear
(n = 1), quadratic (n = 2), and cubic (n = 3) ansatz. The nodes at the boundary are
depicted as “©” and the moments in the interior as “�” for a virtual element �v.

Ansatz functions In general one can define an ansatz function which is directly
formulated in the coordinates that describe the real geometry of the domain. This is
different from classical finite element methods where in most cases isoparametric
ansatz spaces are introduced that are defined on a reference element and thenmapped
to the real geometry of the domain. Hence a possible ansatz for Vh|�v is provided by

1

Nn
π = 〈

1 X Y Z X2 XY Y 2 Y Z Z2 Z X . . . Zn
〉

(3.3)

1 In the mathematical literature, see e.g. Beirão da Veiga et al. (2013b), the polynomial (3.3) is often
defined in terms of scaled polynomials

X̄ = X − Xc

l�
Ȳ = Y − Yc

l�
Z̄ = Z − Zc

l�

where Xc , Yc and Zc are the coordinates of the barycentre of the element and l� is a length parameter
related to the element size. This approach can have some advantages when evaluating the element
matrices and eventually leads to tangent matrices with smaller condition numbers.



3.1 Two-Dimensional Case 45

which is a complete polynomial of ordern andhas a length ln = length(Nn
π ). However

the ansatz uh is only knownat the edges. Thus a specific approach has to be considered
to find a connection between the nodal displacements uk at the vertices and edges at
boundary �v and the strain field inside the virtual element �v.

To introduce an explicit ansatz for the part (a1) we split the total boundary �v of
the virtual element into straight edges �e. On each of these edges we can introduce
the displacement field as

uh|�e =
n+1∑

i=1

Mi (ξ)ui on �e ∈ �v (3.4)

where Mi is the interpolation function for the displacements along the edge, ξ is a
local coordinate defined at the edge �e, see Fig. 3.2, and n is the polynomial degree
of the ansatz. Explicit function for Mi (ξ) can be found in many textbooks on finite
elements, see e.g. Wriggers (2008) and Oñate (2009). Examples for n = 1, 2 are
given below

n = 1 : M1 = 1 − ξ , M2 = ξ (3.5)

n = 2 : M1 = 2ξ 2 − 3ξ + 1 , M2 = (2ξ − 1)ξ , M3 = 4ξ(1 − ξ) (3.6)

for 0 ≤ ξ ≤ 1, see Fig. 3.2. These ansatz functions have the delta property: Mi (ξk) =
δik , where ξk ist the nodal coordinate.

By using the same ansatz for an edge in all of the virtual elements used to discretize
a engineering problem (a2) is fulfilled automatically.

Next we introduce moments m(α,β) in accordance with (a3). These moments
appear only for n > 1 and are integrals of the single terms of a complete polynomial
of degree n − 2. Thus we obtain the unknowns

n = 2 : m(0,0) = m1 = 1

�v

∫

�v

uh d�

(3.7)

n = 3 : m(1,0) = m2 = 1

�v

∫

�v

X uh d� m(0,1) = m3 = 1

�v

∫

�v

Y uh d�

(3.8)

and so forth where n is the order of the ansatz polynomial. Note that the complete
ansatz for the moments for n = 3 contains the three terms m(0,0), m(1,0) and m(0,1).
The need to introduce the moments m(α,β), respectively mγ , will become clear in
Sects. 3.1.2 and 3.1.6. Ansatz (3.4) together with the momentsm(α,β) is now used in
the next section to compute an approximation of the gradient needed for the formu-
lation of the weak form.
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Approximation of uh Neither the function uh nor its gradient ∇uh can be
obtained explicitly from the definition of the space Vh|�v . Thus it is not possible
to evaluate the weak form (2.85) of a solid in a standard way, like in a finite element
environment. To connect the ansatz defined in (a0) to (a3) to the strains (depending
on the gradient of the displacement field) in the virtual element �v a special projec-
tion onto the polynomial ansatz space has to be designed, see Beirão da Veiga et al.
(2013b). The projection

� : Vh|�v −→ [
Pn(�v)

]2

uh 	→ �(uh) = uπ

(3.9)

approximates uh by uπ . It is based on the orthogonality relation of the gradients

∫

�v

∇uπ · ∇Nn
πd� =

∫

�v

∇uh · ∇Nn
πd� (3.10)

using the polynomial (3.3) of ansatz order n. Since this projection excludes the
constant terms the computation of the average values

∫

�v

uπd� =
∫

�v

uhd� (3.11)

completes the projection which has the property: �(Nn
π ) = Nn

π ∀Nn
π ∈ [Pn(�v)

]2
,

see also Beirão da Veiga et al. (2014).
For the explicit computation of the projection we will introduce different possi-

bilities2 throughout the next sections.
With the above the projection uπ can be approximated by

uπ = ANn T
π (3.12)

where Nn
π is a polynomial of the ansatz order n and A are the unknown coefficients

that will be determined from (3.10) and (3.11). The gradient ∇uπ follows from

∇uπ = Â∇Nn T
π (3.13)

where Â contains now the non zero parameters of the ansatz (3.12). It is obvious that
with this ansatz the left hand side of (3.10) is computable. However the right hand

2 Such projection can also be performed directly for the strains (2.9), see e.g. Gain et al. (2014).
However selecting the displacement gradient instead of a strain measure is more general, especially
in view of finite deformations where the deformation gradient depends directly on the displacement
gradient: Fπ = 1 + ∇uπ . This allows to compute any strain measure needed in the continuum
formulation, see Sect. 2.1.1.
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side cannot be determined because ∇uh is not known within the element. Using the
Gaussian theorem we obtain with Div[∇Nn

π ] = �Nn
π for the right hand side

∫

�v

∇uh · ∇Nn
πd� = −

∫

�v

�Nn
π · uhd� +

∫

�v

(uh ⊗ Nv) · ∇Nn
πd� . (3.14)

This form is now computable. The first term on the right hand side yields with
�Nn

π ∈ [Pn−2(�v)
]2

the moments defined in (3.7). With (a0) and (a1) uh is defined
at the boundary �v which allows the evaluation of the second term on the right hand
side. Thus the right hand side of (3.14) is a function of the unknowns ui , see (3.4),
and the moments m j , see (3.7).

The projection (3.10) yields an equation system for the unknown coefficients Â
depending on the nodal unknowns ui and the momentsm j of the virtual element �v.
The constant part of the ansatz (3.12) follows from inserting this ansatz into (3.11).

Now the ansatz for the virtual element is complete and can formally be written
as uπ = M(X,Y ) (uv,m j ) where M(X,Y ) is an operator that emerges from the
solution of the linear system resulting from (3.10) and (3.11) and (ui ,m j ) contains
all nodal unknowns and moments.

The next section provides details for the determination of the operator M(X,Y )

which can be viewed like a shape function in the finite element methodology.

3.1.2 Computation of the Projection

There exist several methods to obtain the parameters âi and with that the gradient
∇uπ in terms of the unknown nodal values of a virtual element �v. Here we want to
discuss two of them. The basis is on one hand the equivalence of weak forms written
in terms of the projection uπ and the ansatz uh and on the other hand a Galerkin
projection for ∇uπ which yields in a least square sense the best approximation of
∇uh .

• Projection using the weak form. In the first approach the equivalence of the left
side of the weak form (2.85) when using the projection ∇uπ and the gradient of
the ansatz ∇uh

a(uπ , vh) = a(uh , vh) (3.15)

is the basis to determine the parameters of the projection Â in (3.13). Only the
gradients of the projection play a role in this equation, since as well the stresses as
the strains depend on gradients. Thus this equivalence only allows to compute the
parameters âi ∈ Â of (3.13) that are related to terms which appear in the gradients.
The part (3.15) of the weak form can be stated more explicity as
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∫

�

ε(vh) · Cε(uπ ) d� =
∫

�

ε(vh) · Cε(uh) d� (3.16)

where ε(vh) = 1
2 (∇vh + ∇T vh) is the symmetric tensor for small strains, see (2.9),

and C is the constitutive matrix for linear elasticity. The other strains — ε(uπ )

and ε(uh) — are computed in the same way.
In equation (3.16) the test function vh is approximated by a polynomial of degree n
leading to∇vh = Bv c where Bv = Bπ is a matrix3 that contains the derivatives of
the ansatz (3.12). The vector c contains unknown coefficients of the test function.
In the end the coefficients c cancel out when solving (3.16) like the parameters of
the virtual displacements in a weak form. Thus the solution is independent of c.
Let us remark:

– The computation of the parameter â can be performed in a straight forward
manner in case that the weak form (2.85) is related to small strains and a lin-
ear elastic material. In that case it is advantageous to directly approximate the
symmetric linear strains by

επ =
⎧
⎨

⎩

εxx
εyy
εxy

⎫
⎬

⎭
= Bε

π (X,Y ) ā . (3.17)

For more details, see e.g. Wriggers et al. (2016a) and Artioli et al. (2017a).
– In case of a finite strain problem the 1st Piola-Kirchhoff stress P in the weak
form (2.85) depends in a nonlinear fashion on the ∇u. Using then (3.15) yields
a nonlinear equation system for the unknown parameters â which is computa-
tionally extremely inefficient. Hence the use of (3.15) is not advisable for finite
strain problems.

• Galerkinprojectionof thedisplacementgradients.The secondapproach employs
a Galerkin projection of the gradients, see also (3.10), to obtain the parameters â
for the computation of ∇uπ

∫

�v

∇Nπ · (∇uh − ∇uπ ) d� = 0 . (3.18)

This formulation does not rely on the weak form a(u, v) and thus avoids nonlinear
kinematics and nonlinear constitutive relations.4 Hence this formulation provides
a manageable way to compute the projection for ∇uπ in the general case. Thus
(3.18) will be used as the standard projection in the following chapters.

3 MatrixBv is introduced analogous to the B-matrix used in finite element environments to generate
a matrix formulation of the projection. Details will be provided in Sects. 3.1.4 and 3.1.6.
4 This projection as well as the projection based on theweak form (3.15) lead to identical parameters
â for the linear elasticity problems at small strains.
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A polynomial that has the same degree as uπ is selected to compute the gradient
∇Nπ which is applied as weighting function. Equation (3.18) leads to

∫

�v

∇Nπ · ∇uπ d� =
∫

�v

∇Nπ · ∇uh d� (3.19)

The left hand side of the above equation can be rewritten by using the Gauss
theorem

∫

�v

∇Nπ · ∇uh d� =
∫

�

∇Nπ · (uh ⊗ N) d�

︸ ︷︷ ︸
b�

−
∫

�v

÷[∇Nπ ] · uh d�

︸ ︷︷ ︸
bdiv

(3.20)

where N is the outward normal related to �, see Fig. 3.2.

When using the second approach, ansatz (3.4) for uh and ansatz (3.13) for∇uπ have
to be inserted into (3.19) and (3.20).

The integral on the left hand side of (3.19) depends only on the polynomials and
can be evaluated directly. Since ∇Nπ has the same polynomial order as ∇uπ we can
write ∇Nπ = Bπ (X,Y ) c with unknown coefficients c. This leads to

∫

�v

∇Nπ · ∇uπ d� = cT
∫

�v

[Bπ (X,Y )]T Bπ (X,Y ) d� â . (3.21)

The integral in (3.21) depends only on X and Y and can be computed exactly for any
polygon using the relations in Appendix A which follow from Green’s theorem.

The integral of the right hand side of (3.19) was split in two terms, b� and bdiv.
The integral b� can be computed using (3.4) as a sum of integrals over each edge �e,
see Fig. 3.2,

∫

�

∇Nπ · (uh ⊗ N) d� = cT
nE∑

e=1

∫

�e

[Bπ (X,Y )]T
n+1∑

i=1

Mi (ξ)

⎧
⎪⎪⎨

⎪⎪⎩

uxi Nxe

uxi Nye

uyi Nxe

uyi Nye

⎫
⎪⎪⎬

⎪⎪⎭
d�

(3.22)
where the column vector in (3.22) represents the tensor product uh ⊗ Ne with
(Nye, Nye) being the components of the outward normal Ne at the edge �e, see
Fig. 3.2. Furthermore we note that the variable ξ defining the local shape functions
of order n at the boundary can be expressed in terms of the coordinates X = (X,Y )

by a linear mapping

X = (1 − ξ) X1 + ξ X2 −→ ξ = 1

l2e
(X − X1) · (X2 − X1) (3.23)
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since the edges are assumed to be straight. HereX1 andX2 are the nodal coordinates
of the vertices and le is the length of the edge �e.

We note that the polynomial degree to be integrated is a product of polynomials
of order n − 1 related to matrix Bπ in (3.22), and of order n for the ansatz functions
Mi at the edge. In total one has to integrate over polynomials of degree n + (n − 1).
In the linear case, n = 1, only linear terms appear in (3.22). For a quadratic ansatz,
n = 2, polynomials up to third order have to be integrated. Both of these cases can
most simply, but accurately, integrated with the trapezoidal and the Gauss-Lobatto
rule, respectively. Due to the delta property of Mi and location of the integration
points at the nodes only the values (uxi , uyi ) at the vertices have to be considered in
the numerical integration for n = 1, 2 and the mapping in (3.23) is not needed.5

The second integral bdiv in (3.20) needs special considerations. It is zero for
linear ansatz functions since then ∇Nπ is constant and hence its divergence is zero.
However for n > 1 bdiv has to be evaluated. This yields

∫

�v

Div[∇Nπ ] · uh d� =
∫

�v

{
Nπx,xx + Nπx,yy

Nπy,xx + Nπy,yy

}
· uh d� = cT

nm∑

j=1

[B j
π div]T m j

(3.24)
where nm = ∑n

i=1(i − 1) is the number of themoments nm = 0 , 1 , 3 , 6 , . . . for n =
1 , 2 , 3 , 4 , . . . that have to be introduced depending on the order n of the polynomial.
The matrix B j

π div is constant and distributes the moments to the correct location in
the matrix equation.

Now the left and right hand sides of (3.19) are explicitly expressed in terms of
the unknowns of the virtual element formulation introduced in Sect. 3.1.1. With the
positive definite symmetric matrix

Gπ =
∫

�v

Bπ (X,Y )T Bπ (X,Y ) d� (3.25)

and a vector that contains the unknown nodal values and moments of the virtual
element

bπ (ui ,m j ) =
nE∑

e=1

∫

�e

BT
π

n+1∑

i=1

Mi (ξ)

⎧
⎪⎪⎨

⎪⎪⎩

uxi Nxe

uxi Nye

uyi Nxe

uyi Nye

⎫
⎪⎪⎬

⎪⎪⎭
d� +

nm∑

j=1

[B j
π div]T m j (3.26)

the projection (3.19) provides an equation system for the unknowns

Gπ â = bπ (ui ,m j ) −→ â = [Gπ ]−1 bπ (ui ,m j ) . (3.27)

5 It is of course possible to use any other numerical integration rule, like the classical Gauss inte-
gration that is mainly applied in finite element analysis. However due to the special structure of the
integral in (3.22) such rules are not optimal.
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This equation has to be solved at element level and yields the unknown parameters
â in terms of the nodal displacements ui and the moments m j . With this result the
displacement gradient can be expressed for a virtual element �v as

∇uπ = Bπ (X,Y ) â = Bπ (X,Y ) [Gπ ]−1 bπ (ui ,m j ) (3.28)

and can be used in the weak form to compute strains and stresses, see Chap.5.
For a more detailed notation we introduce B(d,n)

u π (X,Y ) for Bπ (X,Y ). Here d is
the dimension of the problem (in this section we have d = 2), n denotes the ansatz
order and the subscript u of B refers to its relation to the displacement field. Now the
last equation can be written in a more general form for the two-dimensional case

∇uπ = B(2,n)
u π (X,Y ) â = B(2,n)

u π (X,Y ) [G(n)
u π ]−1 b(n)

u π (ui ,m j ) . (3.29)

Generally it is possible to construct a projectionmatrixP∇ that combines matrices
Gπ and bπ in a form that the unknowns of the virtual element

uv = {u1 ,u2 , . . . ,unV ,m1 ,m2 , . . . ,mnm }

are explicitly extracted. This leads to the general form

∇uπ = B(2,n)
u π (X,Y ) [G(n)

u π ]−1 b(n)
u π (ui ,m j ) = B(2,n)

u π (X,Y )P
(2,n)
∇ uv (3.30)

which will be specified in detail in the next sections.
So far the approximation for the projection uπ is not completely determined. The

constant parts of the projected displacement field are missing since only the gradient
∇uπ was considered. In order to determine the parameters that are related to the
constant part of the ansatz Nπ , see (3.3), an additional equation is needed. The idea
is to equate the average of the ansatz uh and the projection uπ over the virtual element
�v. For n = 1 this yields

nV∑

I=1

uπ (XI ) =
nV∑

I=1

uh(XI ) =
nV∑

I=1

uI (3.31)

where uI are the nodal degrees of freedom at node XI . For n ≥ 2 the average is
computed as ∫

�v

uπd� =
∫

�v

uhd� (3.32)

which leads with
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uπ = H(2,n)
u (X,Y ) a =

[
1 0 X 0 Y 0 X2 0 XY . . . Y n 0
0 1 0 X 0 Y 0 X2 0 . . . 0 Y n

]

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a1
a2
...

...

anc

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(3.33)

to ∫

�v

H(2,n)
u (X,Y ) d� a = m1 . (3.34)

This equation can be used to determine the parameters a1 and a2 in terms of the
element unknowns uv. We note that the parameters a3 to anc are already known since
they are equivalent to â in (3.29). To this end, we can introduce a projection matrix
Pu that connects the ansatz uπ with the element unknowns uv

uπ = H(2,n)
u (X,Y )P(2,n)

u uv . (3.35)

The projection matrix Puwill be explicitly computed in the next sections for specific
ansatz spaces.

3.1.3 Equivalent Projector

In general the virtual element discretization relies on the definitions (a0) to (a3),
see Sect. 3.1.1. As seen in this section the projected gradient can be constructed
depending on the degrees of freedom of any polygonal element �v. However, there
are some limitation of the space Vh since we do not know the ansatz uh inside the
element. This is not necessary as long as we have to deal with gradients as in the
first term in the weak form (2.85). Once the computation of the volume loading term∫
�v

f̄ · uh d� in (2.82) has to be carried out or a mass matrix has to be computed
we see limitations since uh is not defined in �v. For this reason Ahmad et al. (2013)
have introduced a new projector u0

π based on an L2-projection. It is called equivalent
projector and defined by ∫

�v

NT
π (u0

π − uh) d� = 0 (3.36)

Here the first term can be evaluated exactly since u0
π is assumed to be a polynomial

in X,Y . But the second term is not computable within the space Vh . This is why a
new relaxed space Wh is introduced and instead of (a3) in Sect. 3.1.1 the following
properties are assumed

• (a3)’ Div(Grad uh) is a polynomial of degree n on the polygon �v and
• (a3)” The following relation holds:
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∫

�v

Xα
i u

0
π d� =

∫

�v

Xα
i uh d� (3.37)

with |α| = n − 1 , n, X1 ≡ X and X2 ≡ Y .

It was shown in Ahmad et al. (2013) that the projection defined inWh is equivalent
for n = 1 and n = 2 to the projection using the spaceVh , thus u0

π = uπ , but yields a
different result for n > 2. Condition (a3)” allows now to compute the loading term
using the new projector as

∫

�v

f̄ · uh d� =
∫

�v

f̄ · u0
π d� =

∫

�v

f̄ · uπ d� for n = 1, 2 (3.38)

which is a polynomial in X,Y when f̄ is a polynomial in �v. This looks like an
approximation, but it was shown in Ahmad et al. (2013) that using the space Wh

provides the same approximation order than usingVh . For higher order ansatz spaces
n > 2 one has to compute u0

π explicitly, for details see Ahmad et al. (2013) or Beirão
da Veiga et al. (2014).

3.1.4 Projection for a Linear Ansatz

In the case of a linear ansatz element nodes are placed only at the vertices of the
polygonal elements, see Fig. 3.4.

Let us define a general linear ansatz function for uπ

H(2,1)
u (X,Y ) =

[
1 0 X 0 Y 0
0 1 0 X 0 Y

]
(3.39)

This yields a constant displacement gradient grad uπ = ∇uπ = const . InVoigt nota-
tion we can write for (3.13) explicitly

∇uπ =

⎧
⎪⎪⎨

⎪⎪⎩

ux,x

ux,y

uy,x

uy,y

⎫
⎪⎪⎬

⎪⎪⎭
= B(2,1)

u π â =

⎡

⎢⎢
⎣

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎤

⎥⎥
⎦

⎧
⎪⎪⎨

⎪⎪⎩

â1
â2
â3
â4

⎫
⎪⎪⎬

⎪⎪⎭
. (3.40)

The ansatz for uh is definedwith (3.4) at the edge�e, see Fig. 3.4. This ansatz is of the
same order as the ansatz for Hu and hence a linear ansatz for the deformation along
the element edge can be defined for a boundary segment k of the virtual element,
defined by the local nodes (1)–(2) by, see right side of Fig. 3.4, using (3.5)
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Fig. 3.4 Virtual element
with nV nodes and local
boundary segment of the
element

(uh)e = (1 − ξe)u1 + ξe u2 = Me 1 u1 + Me 2 u2 with ξe = Xe

le
(3.41)

where, for example, Mk 1 is the ansatz function along a segment k related to node
(1), ξk is the local dimensionless coordinate and u1 is the nodal value at that node,
see Fig. 3.4.

Based on (3.25) we compute with (3.40)

G(1)
π =

∫

�v

[B(2,1)
u π ]T B(2,1)

u π d� = �v [B(2,1)
u π ]T B(2,1)

u π = �v I . (3.42)

The ansatz functions for ∇uπ and (uh)k can now be inserted in (3.26). This yields
together with the trapezoidal rule

bπ =
nE∑

e=1

[B(2,1)
u π ]T

∫

�e

2∑

i=1

M(ξ)

⎧
⎪⎪⎨

⎪⎪⎩

uxi Nx

uxi Ny

uyi Nx

uyi Ny

⎫
⎪⎪⎬

⎪⎪⎭
d� =

nE∑

e=1

B(2,1)
u π

⎧
⎪⎪⎨

⎪⎪⎩

(uxk + uxk+1)Nxe

(uxk + uxk+1)Nye

(uyk + uyk+1)Nxe

(uyk + uyk+1)Nye

⎫
⎪⎪⎬

⎪⎪⎭

le
2

(3.43)
where index k denotes kth polygon vertex, for 1 ≤ k ≤ nV . Additionally, the nodal
displacements (ux nV +1, uy nV +1) are assumed to be equal to the displacements of the
first vertex, i.e., ux nV +1 = ux 1. The parameters â follow from (3.27) as

â = [G(1)
π ]−1 bπ = 1

2�v

nE∑

e=1

⎧
⎪⎪⎨

⎪⎪⎩

(uxk + uxk+1)Nxe

(uyk + uyk+1)Nxe

(uxk + uxk+1)Nye

(uyk + uyk+1)Nye

⎫
⎪⎪⎬

⎪⎪⎭
le (3.44)

Finally, the gradient operator in (3.13) can be expressed in terms of the nodal
unknowns uxk and uyk , leading with the normal vector Ne for a segment e

Ne = 1

le

{
Nx

Ny

}

e

= 1

le

{−(Y2 − Y1)
X2 − X1

}

e

(3.45)
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to

∇uπ =

⎧
⎪⎪⎨

⎪⎪⎩

uπx,x

uπx,y

uπy,x

uπy,y

⎫
⎪⎪⎬

⎪⎪⎭
= B(2,1)

u π â = 1

2�v

nE∑

e=1

⎧
⎪⎪⎨

⎪⎪⎩

(uxk + uxk+1)(Y1 − Y2)e
(uxk + uxk+1)(X2 − X1)e
(uyk + uyk+1)(Y1 − Y2)e
(uyk + uyk+1)(X2 − X1)e

⎫
⎪⎪⎬

⎪⎪⎭
. (3.46)

Thus, no equation system has to be solved in for a linear ansatz.
The projected gradient ∇uπ in (3.46) can be directly expressed by the nodal

unknowns of the virtual element. This is the reasonwhy this discretization techniques
are called virtual. In short notation we can write

â = P
(2,1)
∇ uv (3.47)

where â are the parameters of the virtual element ansatz, P2,1
∇ is a projection function

which relates the vector uv, containing the nodal degrees of freedom of all vertices
of the virtual element �v, to the parameters â. The nodal displacements uv of the
virtual element can be cast in a vector

uv = 〈ux1 uy1 ux2 uy2 . . . uxnV
uynV

〉T . (3.48)

With some algebra the projection tensor can be specified in matrix form. By intro-
ducing the matrices

LT
x = 1

2�v

[
LT
x1

LT
x2

]
= 1

2�v

[
Px1 0 Px2 0 . . . PxnV 0
0 Px1 0 Px2 . . . 0 PxnV

]
(3.49)

and

LT
y = 1

2�v

[
LT

y1

LT
y2

]
= 1

2�v

[
Py1 0 Py2 0 . . . PynV 0
0 Py1 0 Py2 . . . 0 PynV

]
(3.50)

with the abbreviations Pxk = (Yk−1 − Yk+1) and Pyk = (Xk+1 − Xk−1)
6 the param-

eters â1 to â4, see (3.46), can be expressed in terms of the nodal unknowns of the
virtual element, see (3.48). Thus, the projection of the gradient can be simply written
as

∇uπ = B(2,1)
u π â = P

(2,1)
∇ uv with P

(2,1)
∇ =

[
LT
x

LT
y

]
. (3.51)

where the projection tensor is constant and depends only on the coordinates of the
vertices and the element area �v which itself can be expressed by a sum over the
vertices, see Appendix A.

6 With the special cases Px1 = (YnV − Y2), PxnV = (YnV −1 − Y1), Py1 = (X2 − XnV ) and Pynv =
(X1 − XnV −1).
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One can use the result in (3.46) to construct an approximation of the displacement
field in �v. This can be achieved by using the linear ansatz (3.39) for displacement
field

uπ = H(2,1)
u (X,Y ) a =

[
1 0 X 0 Y 0
0 1 0 X 0 Y

]
⎧
⎪⎪⎨

⎪⎪⎩

a1
a2
. . .

a6

⎫
⎪⎪⎬

⎪⎪⎭
(3.52)

which has the unknown parameters ai . Computing the gradient of (3.52) yields the
ansatz (3.40). Thus the parameters a3 to a6 are already known, see (3.46): ai+2 = âi
for 1 ≤ i ≤ 4. Now the parameters a1 and α2, related to the constant parts in (3.52),
have to be computed. This is performed in a different way by using the average
displacement in the virtual element, see (3.31), which yields for every virtual element
�v

nV∑

k=1

uπ (Xk) =
nV∑

k=1

uh(Xk) , (3.53)

where Xk are the coordinates of a vertex k. Equation (3.53) is valid for both com-
ponents of the displacement field and hence yields two equations that determine the
constants a1 and a2. With the already computed unknowns â1 to â4, see (3.46), we
obtain after some algebra

a1 =
nV∑

k=1

[ ux k − â1 Xk − â3 Yk ] / nV

a2 =
nV∑

k=1

[ uy k − â2 Xk − â4 Yk ] / nV

(3.54)

Now the approximate ansatz function uπ of the virtual element is completely defined
in �v.7

Remark 3.1 Since all parameters ai (i = 1 . . . 6) are determined by (3.51) and
(3.54) in terms of the nodal values uk (with a3 = â1 to a6 = â4) it is not neces-
sary to use the parameters ai within the discretization. A projection P

(2,1)
u provides,

analogous to (3.47), a form of (3.52) that depends only on the nodal degrees of the
vertices of the virtual element �v. By defining

XS =
nV∑

k=1

Xk and Y S =
nV∑

k=1

Yk and IT =
[
1 0 1 0 . . . 1 0
0 1 0 1 . . . 0 1

]
(3.55)

7 Note again that the constant gradient ∇uπ can be computed directly using (3.46) and (3.51). Thus
for the computation of the strain energy it is not necessary to evaluate equation (3.54).
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the parameters a1 and a2 follow according to (3.54)

{
a1
a2

}
= 1

nV

[
IT − XS LT

x − Y S LT
y

]
uv (3.56)

which finally leads to the explicit form of the projection matrix

P
(2,1)
u =

⎡

⎣
(IT − XS LT

x − Y S LT
y )/nV

LT
x

LT
y

⎤

⎦ . (3.57)

With this short notation we have an explicit form that describes an approximation of
the displacement field uπ within �v in terms of the nodal values using (3.52)

uπ = H(2,1)
u (X,Y )P(2,1)

u uv (3.58)

which is a linear function in X and Y . �

3.1.5 Computation of the Projection Using Symbolic Software

In case of a linear ansatz function the polynomial projection function for 1st order
VEM is given by

Nπ = 〈1 X Y 〉 .

In this case the gradients that have to evaluated using the ansatz functions are constant

∇Nπ = const. and ∇uπ = const.

which simplifies equation (3.20) since the integral bdiv is zero and (3.19) can be
written as ∫

�v

∇uh d� − ∇uπ �v = 0 . (3.59)

Again, the Gauss theorem provides a simple way to compute the parameters â which
in this case is equivalent to compute the gradient ∇uπ

â = ∇uπ = 1

�v

∫

�v

∇ uh d� = 1

�v

∫

�v

uh ⊗ N d� (3.60)

where N is the outward normal at the boundary �v of the domain �v, see Fig. 3.2.
Using now the Lobattto rule to integrate over the boundary �v in (3.60), the gradient
∇uπ can be written in tensor notation
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∇uπ = 1

2�v

nE∑

e=1

{
uxk + uxk+1

uyk + uyk+1

} {
(Y1 − Y2)e
(X2 − X1)e

}T

(3.61)

which is convenient when a symbolic algebra tool like AceGen is employed, see
Korelc and Wriggers (2016).

Since â is equivalent to the gradient ∇uπ the constants a1 and a2 in (3.54) follow
from {

a1
a2

}
=

nV∑

k=1

[{
uxk

uyk

}
− ∇uπ

{
Xk

Yk

}]
=

nV∑

k=1

[uk − ∇uπ Xk] (3.62)

Within the software tool AceGen equations (3.61) and (3.62) are the basis for
the generation of the code associated with the projection which links the nodal
displacements to the parameters ai . A sample code for the computation of the
parameters ai , (i = 1, 6) is provided in Fig. 3.5. Here a sum over all nodes of a

Fig. 3.5 Sample code for the determination of ai as a function of uv
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virtual element provides the gradient, as in (3.61) as ∇uπ = (u1 + u2)/2 ⊗ n =
Outer[Times, (u1 + u2)/2, n] where u1 ≡ uk and u2 ≡ uk+1 and n is the out-
ward normal. Once the sum is performed over all nodes the projection tensor Aπ ,
equivalent to the matrix a, follows from (3.61) and (3.62) by joining all parameters
ai , see last line in the code in Fig. 3.5.

3.1.6 Projection for a Quadratic Ansatz

A complete ansatz using the quadratic polynomial N(2)
π = (1 , X ,Y , X2 , XY ,Y 2)

is basis for the second order virtual element. This yields an approximation of the
gradient ∇uπ containing linear functions in X and Y

∇uπ =

⎧
⎪⎪⎨

⎪⎪⎩

ux,x

ux,y

uy,x

uy,y

⎫
⎪⎪⎬

⎪⎪⎭
= B(2,2)

u π (X,Y ) â =

⎡

⎢⎢
⎣

1 0 0 0 2X 0 Y 0 0 0
0 0 1 0 0 0 X 0 2Y 0
0 1 0 0 0 2X 0 Y 0 0
0 0 0 1 0 0 0 X 0 2Y

⎤

⎥⎥
⎦

⎧
⎪⎪⎨

⎪⎪⎩

â1
â1
. . .

â10

⎫
⎪⎪⎬

⎪⎪⎭
.

(3.63)
The ansatz uh at the edge �e, see Fig. 3.6 is defined by (3.4).

This ansatz is of the same order as the ansatz for N(2)
π and thus we have to select

the shape functions in (3.6). The element edge is assumed to be straight. Thus a
boundary segment k of the virtual element is defined by the local nodes (2k − 1) –
(2k) – (2k + 1)

uh = M1(ξ)u2k−1 + M3(ξ)u2k + M2(ξ)u2k+1 (3.64)

with ξ = 1

l2e
(X − X2k−1) · (X2k+1 − X2k−1)

where Mi (ξ), (i = 1, 2, 3), are the ansatz functions at segment k related to local
nodes, ξ is the local dimensionless coordinate and ui are the nodal value at the
nodes, see Fig. 3.6. The outward normal vector related to the edge �e is denoted by
Ne.

Fig. 3.6 Description of VEM elements for linear and quadratic ansatz spaces
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The matrices G(2)
π and b(2)

π can be computed for the quadratic ansatz based on
(3.63). The matrix G(2)

π for quadratic ansatz functions follows by inserting (3.63)
into (3.25)

G(2)
π =

∫

�v

[B(2,2)
u π (X,Y )]TB(2,2)

u π (X,Y )d� . (3.65)

It has the size of (10 × 10). Since B(2,2)
u π (X,Y ) is a linear function of X and Y the

integral in (3.65) contains the terms 1 , X ,Y , X2 , XY and Y 2. This integral can be
evaluated exactly for arbitrary polygonal virtual elements by using the integration
formulae in Appendix A.

The vector b(2)
π follows with (3.64) and (3.7) from (3.26) as

b(2)
π (ui ,m1) =

nE∑

e=1

∫

�e

[B(2,2)
u π (X,Y )]T

3∑

i=1

Mi (ξ)

⎧
⎪⎪⎨

⎪⎪⎩

uxi Nxe

uxi Nye

uyi Nxe

uyi Nye

⎫
⎪⎪⎬

⎪⎪⎭
d� + [B(1)

π div]T m1 .

(3.66)
The first term in this integral contains a linear function of X and Y in B(2,2)

u π (X,Y ).
Furthermore the ansatz functionsMi are quadratic functions of ξ and since the edge is
straight, also of X and Y . Such integrals containing up to cubic polynomial orders can
be evaluated exactly byusing 2pointGauss quadrature.However in this case it ismore
advantageous to use the Gauss-Lobatto rule since this needs only evaluations at the
nodel points. By using additionally the property of the shape functions MiMj = δi j
and setting locally (2k − 1) → 1, (2k) → 3 and (2k + 1) → 2 the explicit form of
the first integral is given by

nE∑

e=1

le

3∑

i=1

wi [B(2,2)
u π (Xi ,Yi )]T

⎧
⎪⎪⎨

⎪⎪⎩

uxi Nxe

uxi Nye

uyi Nxe

uyi Nye

⎫
⎪⎪⎬

⎪⎪⎭
(3.67)

with the weighting factors of the Gauss-Lobatto rule: w1 = w2 = 1
6 and w3 = 2

3 .
The second term in (3.66) can be obtained from (3.24).We note that the divergence

of ∇Nπ is constant. This leads to

B(1)
π div = 2

[
0 0 0 0 �v 0 0 0 �v 0
0 0 0 0 0 �v 0 0 0 �v

]
(3.68)

and withm1 = (mx1,my1) the evaluations of the integrals in equation (3.66) yield

b(2)
π (ui ,m1) =

nE∑

e=1

le

3∑

i=1

wi [B(2,2)
u π (Xi ,Yi )]T

⎧
⎪⎪⎨

⎪⎪⎩

uxi Nxe

uxi Nye

uyi Nxe

uyi Nye

⎫
⎪⎪⎬

⎪⎪⎭
+ [B(1)

π div]T
{
mx1

my1

}
.

(3.69)
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With the explicit forms ofG2
π in (3.65) and b(2)

π in (3.69) the equations system (3.27)
can be solved for the unknown parameters â leading to

∇uπ = B(2,2)
u π (X,Y ) â = B(2,2)

u π (X,Y ) [G(2)
π ]−1 b(2)

π (ui ,m1) (3.70)

which yields a displacement gradient that is a linear function in X and Y depending
on the nodal values ui and the moment m1.

As for the linear ansatz it is possible to express (3.70) by an explicit function of the
degrees of freedom of the virtual element �v. The vector contains the displacements
at the vertices and the moments

uv = 〈ux1 uy1 ux2 uy2 . . . ux2nV
uy2nV

mx1 my1〉T = 〈u1 u2 . . . u2nV m1〉T . (3.71)

With the abbreviation B(2,2)
u π (Xi ,Yi ) = Bi and the introduction

Ne =

⎡

⎢⎢
⎣

Nxe 0
Nye 0
0 Nxe

0 Nye

⎤

⎥⎥
⎦ = 1

le

⎡

⎢⎢
⎣

(Y1 − Y2)e 0
(X2 − X1)e 0

0 (Y1 − Y2)e
0 (X2 − X1)e

⎤

⎥⎥
⎦ = 1

le
N̄e (3.72)

Equation (3.69) can be written as

b(2)
π (ui ,m1) =

nE∑

e=1

le

[
1

6
BT
2k−1Neu2k−1 + 2

3
BT
2kNeu2k + 1

6
BT
2k+1Neu2k+1

]

+ [B(1)
π div]Tm1

(3.73)

where the dependence on the degrees of freedom is more obvious than in (3.70). In
order to derive a form like in (3.51) one has to assemble all contributions related to
a node within the virtual element �v. This yields a matrix of size (10 × 4nV + 2)

B(2)
v = [

PT
1 PT

2 . . . PT
2k−1 P

T
2k P

T
2k+1 . . .PT

2nV B1 T
π div

]
(3.74)

with submatrices PT
i of size (10 × 2)

PT
2k−1 = 1

6
BT
2k−1(leNe + le−1Ne−1) = 1

6
BT
2k−1(N̄e + N̄e−1)

PT
2k = 2

3
BT
2kleNe = 2

3
BT
2kN̄e

PT
2k+1 = 1

6
BT
2k+1(leNe + le+1Ne+1) = 1

6
BT
2k+1(N̄e + N̄e+1)
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and the special case PT
1 = 1

6B
T
1 (l1N1 + lnENnE ) = 1

6B
T
1 (N̄1 + N̄nE ). In analogy to

the abbreviations used in (3.49) and (3.50) the sums of the relations above can be
further simplified.

With (3.74) and (3.71) it is now possible to write b(2)
π (ui ,m1) = B(2)

v uv and
equation (3.70) as

∇uπ = B(2,2)
u π (X,Y ) [G(2)

π ]−1 B(2)
v uv = B(2,2)

u π (X,Y )P
(2,2)
∇ uv (3.75)

where P(2,2)
∇ = [G(2)

π ]−1 B(2)
v . Now the projected gradient ∇uπ depends directly on

the unknown uv related to the virtual element �v.

Remark 3.2 In case that a virtual element is formulated for linear elasticity and
small strains it is sufficient to directly approximate the symmetric strain tensor ε̂ in
(2.46) with (3.17). Here we can use the result from (3.75) since the first two terms
ε̂ are equivalent with ∇uπ . The shear strain part is a sum from the third and fourth
term in ∇uπ . Thus only a new matrix Bε

π has to be defined. This yields the ansatz
for the strains

επ =
⎧
⎨

⎩

ux,x

uy,y

ux,y + uy,x

⎫
⎬

⎭
= Bε

π (X,Y ) â =
⎡

⎣
1 0 0 0 2X 0 Y 0 0 0
0 0 0 1 0 0 0 X 0 2Y
0 1 1 0 0 2X X Y 2Y 0

⎤

⎦

⎧
⎪⎪⎨

⎪⎪⎩

â1
â2
. . .

â10

⎫
⎪⎪⎬

⎪⎪⎭
.

(3.76)
which again is linear in X and Y . Thus all equations – from (3.64) to (3.75) – can be
utilized, by exchanging B(2,2)

u π (X,Y ) with Bε
π (X,Y ), to compute the relation

επ = Bε
π (X,Y ) â = Bε

π (X,Y ) [G(2)
π ]−1 B(2)

v uv = Bε
π (X,Y )P(2,2)

u uv (3.77)

where the matrix G(2)
π has again size (10 × 10) as in (3.65). �

Remark 3.3 Following the arguments leading to (3.62) an approximate function for
the displacement field in �v can be computed for the quadratic ansatz. We introduce
a complete polynomial of second order as

uπ = H(2,2)
u (X,Y ) a =

[
1 0 X 0 Y 0 X2 0 XY 0 Y 2 0
0 1 0 X 0 Y 0 X2 0 XY 0 Y 2

]

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a1
a2
...

...

a12

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

. (3.78)

The following equivalence holds for (n ≥ 2), see Beirão da Veiga et al. (2013b),

∫

�v

uπ d� =
∫

�v

uh d� . (3.79)
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It can be reformulated with (3.7) and (3.78) as

1

�v

∫

�v

H(2,2)
u (X,Y ) a d� = m1 . (3.80)

Here the right hand side is the moment which is a degree of freedom in the vector uv,
see (3.71). From the 12 unknowns ai in (3.80) 10 unknowns were already computed
in (3.70). An obvious split of (3.78) into the known parameters â, see (3.75), and the
two unknown parameters ā is

uπ = H(2,2)
u (X,Y ) a = 1 ā + Ĥ(2,2)

u (X,Y ) â with ā =
{
a1
a2

}
(3.81)

where 1 is a (2 × 2) unit matrix. The parameters a1 and a2 followwith (3.75) directly
from

ā = m1 − 1

�v

∫

�v

Ĥ(2,2)
u (X, Y ) d� â = m1 − 1

�v

∫

�v

Ĥ(2,2)
u (X, Y ) d� [G(2)

π ]−1 B(2)
v uv .

(3.82)

Since Ĥ
(2,2)
u (X,Y ) only contains polynomials of order 2 the integral in (3.82) is

exactly computable for any shape of �v, see Appendix A. By introducing a matrix
Im = [0 , 0 , . . . 0 , 1]with the length (2 × nv + 1), the momentm1 can be expressed
bym1 = Im uv. Thus (3.82) can be rewritten with (3.75) as

ā =
⎡

⎣ Im − 1

�v

∫

�v

Ĥ(2,2)
u (X,Y ) d�P

(2,2)
∇

⎤

⎦ uv = Q̄
(2)
u uv . (3.83)

Now the projected displacement field in �v follows from (3.81)

uπ =
[
Q̄

(2)
u + Ĥ(2,2)

u (X,Y )P
(2,2)
∇

]
uv = P

(2,2)
u (X,Y )uv (3.84)

which is a quadratic polynomial in X and Y . �

3.1.7 Serendipity Virtual Element for a Quadratic Ansatz

Serendipity elements are well known in finite elementmethods. They have the advan-
tage that no interior nodes appear for quadratic ansatz functions. Within virtual ele-
ment ansatz function using a quadratic ansatz, like in the last section, not only nodal
displacements but also moments m1 appear, see (3.71). Analogous to serendipity
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Fig. 3.7 Quadratic and cubic serendipity virtual elements

formulations within finite element analysis, it would be advantageous to condense
these moments out such that the virtual element ansatz is based purely on the nodal
displacement. Following ideas in Beirão da Veiga et al. (2017) and De Bellis et al.
(2019) this can be achieved, see Fig. 3.7 for quadratic and cubic virtual elements.

Necessary amendments to the ansatz for a quadratic virtual element with arbitrary
number of nodes, see (3.75), are discussed which yield a virtual element without
internal degrees of freedom.

The independent vector variable, introduced as the moment m1, see (3.71), is
replaced by an explicitly defined function, only depending on the nodal displacement
vector ūv

ūv = 〈ux1 uy1 ux2 uy2 . . . ux2nV
uy2nV

〉T = 〈u1 u2 . . . u2nV 〉T . (3.85)

This leads to

m1(ūv) =
∫

�e

F (ūv) d�, (3.86)

whereF (ūv) is assumed to be a second order polynomial, i.e.F (ūv) can be expressed
with (3.78) as

F (ūv) = H(2,2)
u (X,Y ) c (3.87)

with the unknowns c = {c1 , c2 , . . . , c12}T . In doing so, the moment m1 depends
on the remaining nodal degrees of freedom ūv and the resulting virtual element is
characterized by a reduced number of degrees of freedom.

Now the operator F (ūv) has to be defined explicitly which is equivalent to deter-
mine c. Following the same procedure as was used for the computation of the pro-
jection for the gradient we introduce a projection including all nodes of the element

uT
p

[
F (ūv) − ūv

] = 0 (3.88)

which is a projection in the least square sense and yields an equation system for the
unknown c. Here up is a quadratic function with up = H(2,2)

u (X,Y )α. By summing
up all nodal contributions and with the abbreviation Xk = (Xk,Yk) Eq. (3.88) yields



3.1 Two-Dimensional Case 65

nV∑

k=1

[H(2,2)
u (Xk)]T

[
H(2,2)

u (Xk) c − ūv
] = 0 . (3.89)

This equation system can be written in short notation as

G(2) c = b(2)(ūv), (3.90)

whereG(2) is a (12×12)matrix that includes the sumover all outer products appearing
in the sum of equation system (3.89). The matrix G(2) is invertible and b(2)(ūv) is
a vector which depends on the unknowns ūv. In particular, the matrix G(2) and the
vector b(2) have the block structure

G(2) =

⎡

⎢⎢
⎣

H(2,2)
u (X1)

H(2,2)
u (X2)

...

H(2,2)
u (XnV )

⎤

⎥⎥
⎦

T ⎡

⎢⎢
⎣

H(2,2)
u (X1)

H(2,2)
u (X2)

...

H(2,2)
u (XnV )

⎤

⎥⎥
⎦ , (3.91)

b(2) (ūv) =

⎡

⎢⎢
⎣

H(2,2)
u (X1)

H(2,2)
u (X2)

...

H(2,2)
u (XnV )

⎤

⎥⎥
⎦

T

ūv = [H̄(2)]T ūv . (3.92)

ThematricesH(2,2) and H̄(2) are evaluated at the coordinates of thenV boundary nodes
of the virtual element. The vector b(2)(ūv) has length (12×1). Once the unknowns c
are found from solving (3.90) the moment m1 can be replaced using (3.86)

m1(ūv) =
∫

�v

H(2,2)
u (X,Y ) d� [G(2)]−1 [H̄(2)]T ūv (3.93)

The integral on the right hand side of (3.93) contains only polynomials of second
order and thus can be exactly evaluated using the formulae in Appendix A. With
(3.93) the moment m1 is expressed in terms of the displacement unknowns and
by plugging this result into (3.70) the ansatz for a quadratic serendipity element is
provided analogous to (3.84) and (3.75)

uπ = P
(2,2)
uS (X,Y ) ūv and ∇uπ = B(2,2)

u π (X,Y )P
(2,2)
∇S ūv (3.94)

where the index S indicates the ansatz for the serendipity element.

Remark 3.4 A fundamental issue distinguishes serendipity isoparametric finite ele-
ments from serendipity virtual elements in the case of distorted meshes. It is related
to the polynomial completeness of the ansatz functions considered. More precisely,
it is well-established for 8-noded serendipity finite elements that the second order
polynomial is complete in the reference space (ξ , η) of the isoparametric mapping.
It loses its completeness during the transformation into the Cartesian coordinates
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(X , Y ) once a distorted quadrilateral element is mapped. The order of accuracy of
the serendipity finite element is thus reduced to first order. On the other hand, the
serendipity virtual elements are directly defined on the actual element geometry,
without resorting to any parametric mapping, and consequently the second order
polynomial completeness is not altered even in the case of distorted elements, hence
the approximation order is not changed. Within the finite element methodology the
polynomial completeness can be kept by using a 9-node isoparametric element which
is complete in the reference space (ξ , η) and the Cartesian space (X , Y ) for straight
edges. By condensing the unknowns of the 9th-middle node out, also a serendipity
type of element can be created for FEM. �

3.1.8 Computation of the Second Order Projection Using
Automatic Differentiation

A general way to compute the Galerkin projection in (3.18) introduces the gradients
together with the L2-projection for the displacements (3.34). This yields all unknown
parameters A = ai j in one step in terms of the unknown nodal values uv. The L2-
projection of the vector uπ and theGalerkin projection and its gradient∇uπ is carried
out in the virtual element �v

∫

�v

[
up
0 · (uh − uπ ) + ∇up · (∇uh − ∇uπ )

]
d� = 0. (3.95)

The quadratic test function up = Ap[N(2)
π ]T , see (3.12), is defined in the same space

as uπ = A[N(2)
π ]T i.e. up ∈ P2 with

N(2)
π = 〈 1 X Y X2 XY Y 2 〉 (3.96)

With these definitions the gradient ∇up and the constant part8 up
0 = [

a p
11 a

p
21

]T
can

be introduced. In the two-dimensional case Ap is a matrix of coefficients a p
i j , i ∈

{1, 2} ∧ j ∈ {1, 2, ..., 6}, as well as A, for the quadratic ansatz and

Ap =
2⋃

i=1

6⋃

j=1

a p
i j =

[
. . . a p

i j . . .
]

A =
2⋃

i=1

6⋃

j=1

ai j = [
. . . ai j . . .

]
(3.97)

8 As defined, the test function up is a quadratic polynomial, but since all the constants a p
i j related

to the polynomial terms with X and Y are contained in ∇up it is sufficient to use in the first term
of (3.95) only the constant part.
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are vector of all coefficient a p
i j and ai j , respectively. By automatic differentiation

with respect to the unknowns Ap and A the vector b(2)
π and the matrix G(2)

π can be
obtained without going through the matrix calculus of the previous section.

Since it is not possible to integrate over the element volume �v Eq. (3.95) has to
be reformulated on the left- and right-hand side, where the part g corresponds to the
projection uπ and the part b to the approximation uh

∫

�v

(
up
0 · uπ + ∇up · ∇uπ

)
d�

︸ ︷︷ ︸
g

=
∫

�v

(
up
0 · uh + ∇up · ∇uh

)
d�

︸ ︷︷ ︸
b

. (3.98)

As in (3.20) the integrals of the gradients (3.98) are transformed to the boundary by
utilizing the divergence or Gauss theorem

∫

�v

∇up · ∇uπd� =
∫

�v

∇upN · uπd� −
∫

�v

�up · uπd� (3.99)

∫

�v

∇up · ∇uhd� =
∫

�v

∇upN · uhd� −
∫

�v

�up · uhd� . (3.100)

Gradient ∇up, given in tensor notation, and Laplacian �up have the explicit form

∇up =
[

(a p
12 + a p

14Y + 2a p
15X) (a p

13 + a p
14X + 2a p

16Y )

(a p
22 + a p

24Y + 2a p
25X) (a p

23 + a p
24X + 2a p

26Y )

]
(3.101)

and �up = ∇ · ∇up = 2
[
(a p

15 + a p
16) (a p

25 + a p
26)
]T

(3.102)

with N = [
NX NY

]T
being the outward unit normal at �v. The Laplacian �up, is

equivalent to the divergence of the gradient of up and has a constant value within the
element domain �v. Since the terms up

0 and �up in (3.95), (3.99) and (3.100) are
constant, g and b can be written as

g =
∫

�v

∇upN · uπd� − (�up − up
0 ) ·

∫

�v

uπd�, (3.103)

b =
∫

�v

∇upN · uhd� − (�up − up
0 ) ·

∫

�v

uhd� . (3.104)

Here only the integrals
∫
�v

uπ and
∫
�v

uh require special treatment. The area integral
of the polynomial projection uπ = {uπ1 , uπ2}T can be evaluated over the edge �v

by using the divergence theorem component-wise (i = 1, 2)
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∫

�v

uπ id� = 1

2

∫

�v

[ ∫
uπ i d X∫
uπ i dY

]
· Nd� = 1

2

∫

�v

∫
uπ i · N d� . (3.105)

The analytical integration of
∫
uπ i can be performed directly by integrating each

term of the polynomial projection function Nπ , see (3.12),

∫
uπ i = ai Iπ =

[
ai1X + ai2

X2

2 + ai3XY + ai4
X2Y
2 + ai5

X3

3 + ai6XY 2

ai1Y + ai2XY + ai3
Y 2

2 + ai4
XY 2

2 + ai5X2Y + ai6
X3

3

]T

,

(3.106)

Iπ =
[
IπX

IπY

]T
=
[ ∫

Nπ dX∫
Nπ dY

]T
=
[
X X2

2 XY X2Y
2

X3

3 XY 2

Y XY Y 2

2
XY 2

2 X2Y Y 3

3

]T

. (3.107)

The integral of uh cannot be evaluated, thus it will be treated as an internal
unknown and replaced by the internal moments m1 = 1

�v

∫
�
uh d�, see also (3.70).

However at this point the serendipity concept of Sect. 3.1.7 is utilized, thus m1 can
be eliminated at element level. This leads to a substitution of the internal moment
m1 = {m1x ,m1y}T by a function uc = {ucx , ucy}T which depends only on the nodal
degrees of freedom

m1i =
∫

�v

uci d� = 1

2

∫

�v

[ ∫
uci dX∫
uci dY

]
· N d� = 1

2

∫

�v

∫
uci · N . d� (3.108)

The integral
∫
uci can be evaluated in the same manner as

∫
uπ i in (3.106). Note that

only the scalars g and b have to be computed. Thematrices that are needed to compute
the projection follow by differentiation with respect to the coefficients A and Ap.
This avoids the extensive matrix algebra considered in the previous sections.

Based on this approach the unknownsA in (3.97), related to the projection, can be
obtained by solving two linear systems of equations since differentiation of g leads
to a matrix that can be efficiently formulated by a block structure. By defining the
coefficient matrices

A =
[
a1
a2

]
and Ap =

[
ap
1
ap
2

]
(3.109)

the equation system

g = b −→ G ja j = b j → a j = G−1
j b j , for j = 1, 2 (3.110)

results from differentiation. The left-hand side is defined as
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G j = ∂2 g

∂ap
j ∂a j

(3.111)

withG j =
∫

�

[
(∇N(2)

π N) [N(2)
π ]T + 1

2
Cp

j (IπN)T
]
d�, (3.112)

where G1 and G2 are (6 × 6) matrices. Explicit expressions of the terms in (3.112)
are provided by

∇Nπ =
[
0 1 0 Y 2X 0
0 0 1 X 0 2Y

]T
,

∇NπN0 = [
0 NX NY NXY + NY X 2NX X 2NYY

]T
,

IπN = NXIπX + NYIπY ,

and Cp
j =

∂
(
up
0 − �up

)
j

∂ap
j

= [
1 0 0 0 −2 −2

]T
.

(3.113)

The right-hand is given by

b j = ∂b

∂ap
i

(3.114)

with

b j =
∫

�

[
(∇N(2)

π N)u j + 1

2
Cp

j

∫
ucj · N

]
d�

∫
ucj · N = ac1NXIπX + ac2NYIπY

(3.115)

where in u j the components of the nodal displacement vector in X and Y direction
are contained in a suitable manner. The parameters ac1 and ac2 are computed below.
These parameters depend directly on the nodal displacements of the virtual element.

Elimination of internal moment m1. In a quadratic serendipity virtual element the
internal degrees of freedom,momentsm1 are eliminated. This results fromexpressing
m1 explicitly by a function uc in terms of the element nodal degrees of freedom ûv

m1 =
∫

�v

uc(ûv) d�, (3.116)

According to Beirão da Veiga et al. (2016), De Bellis et al. (2019) this function, see
also (3.86), can be written as

uc(ûv) = Ac N(2)
π (3.117)

where uc(ûv) is assumed to be a second order polynomial, with N(2)
π being defined

in (3.96). The matrix Ac contains the unknown coefficients ci j , i ∈ {1, 2} ∧ j ∈
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{1, 2, .., 6} and ac = [
. . . ci j . . .

]
is a vector of length 12 with all unknown coef-

ficients, see (3.97).
To obtain the coefficients Ac = {ac1 , ac2}T the following Galerkin type projection

is performed with uπ as a test function and ui as nodal displacements

nen∑

i=1

uπ (Xi ) · (uc(Xi ) − ui
) = 0 −→ gc = bc (3.118)

with

gc =
nen∑

i=1

uc(Xi ) · uπ (Xi ) and bc =
nen∑

i=1

uπ (Xi ) · ui (3.119)

The coefficients acj can be obtained by solving the linear system of equation

Gc
ja

c
j = bcj → acj = (Gc

j )
−1bcj (3.120)

where the matrix on the left-hand side is given by

Gc
j = ∂2 gc

∂acj∂a j
with Gc

j =
nen∑

i=1

[N(2)
π (Xi )]TN(2)

π (Xi ) (3.121)

and the right-hand by

bcj = ∂bc

∂a j
=

2nv∑

i=1

N(2)
π (Xi ) ui j . (3.122)

where ui j are the components of the nodal degrees of freedom with 1 ≤ i ≤ nv and
1 ≤ j ≤ 2. Note again that only the scalars gc and bc have to be formed and the
matrices follow from differentiation.

3.1.9 Higher Order Ansatz for Virtual Elements

One can now utilize the formulations provided so far to design virtual elements
with cubic or even higher ansatz order (n > 2). Here the derivation for the quadratic
ansatz, see Sect. 3.1.6, can be used by just inserting the higher order ansatz functions.
The general formulation does not change and was proposed in many papers for
different applications. For elasticity we refer to e.g. Beirão da Veiga et al. (2013b),
Artioli et al. (2017a) and for Poisson equations to Dassi and Mascotto (2018). Some
of these include nonlinear applications, see e.g. Beirão da Veiga et al. (2015), and
others include error estimation and adaptivity, see e.g. Beirão da Veiga et al. (2019b).
Most of the papers that address virtual element methods are from the mathematical
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community. Hence the application range is often limited to test cases which illustrate
the performance of the method so far VEM was not used in large real life problems.

Generally, in engineering the scope is large. Many applications, like metal form-
ing, frictional contact and crack propagation result in non smooth solutions that have
either to be tackled by special approaches or robust low order methods. This is the
reason why we restrict ourselves in this book to ansatz spaces that are of polynomial
order (n ≤ 2). There are, of course, several applications in engineering, like rubber
elasticity, where solutions are very smooth and thus higher order ansatz functions can
be applied successfully, see e.g.Düster et al. (2003, 2001). Furthermore, inmost engi-
neering applications a methodology based quadratic ansatz functions yields results
that have an accuracy which is sufficient with respect to other approximations and
assumptions made during the modeling of a problem, e.g. material parameters and
loading conditions.

A good overview with respect to the formulation of higher order virtual element
methods can be found for the two-dimensional problems in elasticity in Artioli et al.
(2017a). For three-dimensional cases of the Poisson equation general formulations
are reported in Ahmad et al. (2013), Dassi and Mascotto (2018), for elasticity prob-
lems in Gain et al. (2014) and for magnetostatic problems in Beirão da Veiga et al.
(2018).

3.1.10 Virtual Elements Ansatz Functions for Curved
Surfaces

In the last section it was assumed that the virtual elements have straight edges which
allows a simple integration. For general applications it might be preferable to intro-
duce virtual elements with curved faces which are e.g. advantageous when complex
geometries with curved boundaries are present.

First developments can be found in Beirão da Veiga et al. (2019a, d) for elliptic
problems. Higher order ansatz spaces were discussed in Bertoluzza et al. (2019)
where a Nitsche method was employed to incorporate curved boundaries. Some
enhancements of the formulation for virtual elements with curved edges were pro-
vided by Beirão da Veiga et al. (2020) who introduced a polynomial preserving
formulation.

Applications to solid mechanics can be found in Artioli et al. (2020a) for small
strains and inWriggers et al. (2020) for finite strains where in the latter a specific for-
mulation was developed which is based on three configurations. The idea is to define
virtual elements with straight edges in a reference configuration and then map from
this reference configuration to an initial configuration with curved edges. Loading is
then applied in the initial configuration which allows to compute the deformed con-
figuration. This method was further developed in Wriggers et al. (2021b) to include
NURBS based mappings from the reference to the initial configuration.
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A mixed formulation for virtual elements using curved elements can be found
in Dassi et al. (2021). Homogenization with circular inclusions that are modeled by
curved edges is discussed in Artioli et al. (2020b). The ansatz functions developed
in Beirão da Veiga et al. (2019d, 2020a) have also been applied in Aldakheel et al.
(2020) to solve contact problems.

Most of these formulations need special quadrature rules for the integration of
ansatz functions over the curved edges and elements. Associated integrationmethods
can be found in e.g. Chin and Sukumar (2020).

3.2 Three-Dimensional Case

Virtual elements for three-dimensional problems in engineering are generally con-
structed in the sameway as virtual elements in two dimensions. However their geom-
etry is more rich since the elements have polyhedral shape with faces and edges as
depicted in the discretization of a mesh with virtual elements in Fig. 3.8.

As polygons in two dimensions polyhedra can have an arbitrary number of vertices
and their shape can be convex and non-convex. Thus, these elements are ideally suited
for a direct meshing of solids with a polycrystalline microstructures.

In a three-dimensional setting the domain � is partitioned into non-overlapping
polyhedral elements �v. In the following it will be assumed that the polyhedral
elements �v consist of plane faces and straight edges. Besides that, the element can
assume an arbitrary shape. An example of a polyhedral virtual element is depicted
in Fig. 3.9.

A face in the polyhedral element is denoted by � f where f is an index 1 ≤
f ≤ nF . The entire surface � of a polyhedral element is covered by nF faces. The
element is assumed to have nV vertices denoted by the index k, related to the nodes
with 1 ≤ k ≤ nV . Each of the faces has edges γe which are shared by two faces. The
virtual element consists of nE edges with 1 ≤ e ≤ nE .

Fig. 3.8 Mesh with three-dimensional virtual elements
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Fig. 3.9 Polyhedral VEM
element

3.2.1 General Ansatz Space in Three Dimensions

As in the two-dimensional case, the ansatz function for the displacement field uh

within a virtual element �v has specific properties

• (a0): uh is known at the vertices k of the polyhedron �v,
• (a1): uh is a polynomial Pn of degree n at each edge γe of the face � f ,
• (a2): uh is continuous at all edges γe ∈ � f of the polyhedron �v,
• (a3): Div(Grad uh) = �uh is a polynomial of degree < n − 2 on the face � f ,
• (a4): Div(Grad uh) = �uh is a polynomial of degree < n − 2 in the element �v.

Following this definition the ansatz for the displacement field uh is known at the edges
γe of �v, but the ansatz is not known inside the faces � f nor inside the polyhedron
�v. Additionally we have [Pn]3 ⊆ Vh . However, as shown in Beirão da Veiga et al.
(2014), the restriction of the ansatz uh on all faces � f belongs to the space Wk

defined in Sect. 3.1.3. This assumption is needed for the evaluation of the integrals.
All these properties guarantee the convergence of the virtual element method and
the computability of the projector uπ . For mathematical details see Beirão da Veiga
et al. (2013b). We note, that with the result in (3.69) one can exchange (a1) by the
statement that uh is known at the Gauss-Lobatto points on the edge, related to the
ansatz order n, see also Dassi and Mascotto (2018).

In the three dimensional case we have in solid mechanics 3 unknowns per node.
Thus 3 nV unknowns are related to the nV vertices of the polynomial, 3 nE (n −
1) unknowns to the additional nodes (Gauss-Lobatto points) at each edge γe and
3 nF

n (n−1)
2 unknown moments at the faces � f and 3

n (n−1)
2 moments in �v. For the

special cases of linear (n = 1) and quadratic (n = 2) polynomials Pn the number of
unknowns within a virtual element �v are
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n = 1 : 3 nV

n = 2 : 3 nV + 3 nE + 3 nF + 3

It is obvious that moments do not appear in a virtual element space that is linear,
(n = 1).

The ansatz function is directly formulated in the coordinates (X,Y, Z) related
to the initial geometry of the solid. The displacement in �v is approximated by an
ansatz using a complete polynomial of order nwith length ln = length(Nπ ). Since the
ansatz uh is only known at the edges the displacement gradient will be approximated
by a projection as in the two-dimensional case.

An explicit ansatz for (a1) can be formulated at each edge γe of a polyhedron
by the interpolation defined in (3.4) with the special shape functions provided for
(n = 1) in (3.5) and for (n = 2) in (3.6).

By using the same ansatz for an edge in all of the virtual elements used to discretize
an engineering problem, (a2) is fulfilled automatically. As in the two-dimensional
case this ansatz has to be connected to the displacement gradient in the virtual element
�v. For that we introduce a gradient projector in Voigt notation of size (9 × 1)

∇uπ =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

uπx,x

uπx,y

uπx,z

uπy,x

. . .

uπ z,z

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

= B(3,n)
u π (X,Y, Z) â (3.123)

where the matrix B(3,n)
u π (X,Y, Z) includes complete polynomials in all coordinate

directions of order (n − 1) and â are unknown parameters.
Next we introduce moments m(α,β) in accordance with (a3) and (a4). These

moments appear only for (n > 1) and are integrals of the single terms of a com-
plete polynomial of degree (n − 2), see e.g (3.7). This leads to additional unknowns
(moments), which are only reported here for (n = 2)

face : m�
1 = 1

� f

∫

� f

uh d� (3.124)

volume : m�
1 = 1

�v

∫

�v

uh d� (3.125)

where m�
1 is the moment related to the faces and m�

1 is the moment related to the
volumetric part of the polyhedron. As already shown in Sects. 3.1.2 and 3.1.6, these
moments are needed to compute the projection ∇uπ .
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3.2.2 Computation of the Projection in Three Dimensions

Again a Galerkin projection of the gradients is employed to obtain the parameters â
for the computation of ∇uπ as in in (3.18)

∫

�v

∇Nπ · (∇uh − ∇uπ ) d� = 0 (3.126)

The polynomial function Nπ has the same order as uπ . Its gradient ∇Nπ is applied
as weighting function. Equation (3.126) leads with (3.19) to

∫

�v

∇Nπ · ∇uπ d� =
∫

�v

∇Nπ · (uh ⊗ N) d�

︸ ︷︷ ︸
b�

−
∫

�v

÷[∇Nπ ] · uh d�

︸ ︷︷ ︸
bdiv

(3.127)

where N is the outward normal related to the faces �, see Fig. 3.9. The difference
to the two-dimensional case is that the surface integral has now to be evaluated with
respect to the faces.

Using the same approach as in the two-dimensional case, we introduce for the
gradient of the polynomial ∇Nπ = B(3,n)

u π (X,Y, Z) c. With this choice the term on
the left side of (3.127) can be written as

∫

�v

∇Nπ · ∇uπ d� = cT
∫

�v

[B(3,n)
u π (X,Y, Z)]TB(3,n)

u π (X,Y, Z) d� â = cT G(n)
π â

(3.128)
MatrixG(n)

π is a unit matrix for (n = 1) and includes polynomials in X , Y and Z up to
second order for (n = 2). The integral can be evaluated exactly, see e.g. Bernardini
(1999) and De Loera et al. (2013).

The last term on the right hand side of (3.127) cannot simply be computed as in
the two-dimensional case. This is due to the fact that uh only is known along the
edges, but not on the faces defining �v. The first term on the right hand side can be
discretized as

b� =
∫

�v

∇Nπ · (uh ⊗ N) d� =
nF∑

f =1

cT
∫

� f

[B(3,n)
u π (X,Y, Z)]T N̂ f uh f d� (3.129)

where the dyadic product uh ⊗ N is written inmatrix form as N̂ f uh f with the (9 × 3)
matrix N̂ f and the (3 × 1) matrix uh f
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N̂ f =
⎡

⎣
N f 0 0
0 N f 0
0 0 N f

⎤

⎦ with N f =
⎧
⎨

⎩

Nx

Ny

Nz

⎫
⎬

⎭

f

, 0 =
⎧
⎨

⎩

0
0
0

⎫
⎬

⎭
, and uh f =

⎧
⎨

⎩

ux

uy

uz

⎫
⎬

⎭

f

h
(3.130)

leading to a (9 × 1) vector that correspond to the matrix B(3,n)
u π . The normal N f to

the face � f is defined in equation (3.130).
In Eq. (3.129) uh f is not known in � f . It has to be computed for each face � f in

terms of the nodal vertices at the edges of the face � f which are the unknowns, see
(a0). This computation can be performed in different ways. By using the space Wh

with assumption (a3)”, see Sect. 3.1.2 we can replace uh f by u0
π which is equivalent

to uπ for ansatz order n = 1 and n = 2.
The last term on the right hand side

bdiv = cT [B(3)
π div]T

⎧
⎨

⎩

mx1

my1

mz1

⎫
⎬

⎭

�

= cT [B(3)
π div]T m�

1 (3.131)

appears only for n = 2 where B(3)
π div is constructed in the same way as in (3.69).

Once both terms in (3.127) are computed and the dependency on the nodal degrees
of freedomand themoments is established, like in the two-dimensional case in (3.27),
the unknown parameters â follow from an equation systemwith the coefficientmatrix
(3.128) and the right hand sides (3.131) and (3.129). These depend on the unknowns
uv, m� and m� . The procedure to compute the projection using u0

π in the three-
dimensional case will be worked out for a linear ansatz order in the next section. For
higher order virtual element formulations, see e.g. Dassi and Mascotto (2018) and
Beirão da Veiga et al. (2018).

3.2.3 Projection for Linear Ansatz in Three Dimensions

The computation of the projection uπ for three-dimensional virtual elements is
described in many papers, see e.g. Beirão da Veiga et al. (2014); Dassi and Mas-
cotto (2018) for linear problems. For finite strain applications in solid mechanics we
refer to Hudobivnik et al. (2018). First we employ the anatz discussed in the previous
section and describe two evaluations of the surface integral in (3.129) including the
one used in Hudobivnik et al. (2018).

The projection uπ is defined at element level by the linear ansatz in three dimen-
sions

uπ = H(3,1)
u (X,Y, Z) a =

⎡

⎣
1 0 0 X 0 0 Y 0 0 Z 0 0
0 1 0 0 X 0 0 Y 0 0 Z 0
0 0 1 0 0 X 0 0 Y 0 0 Z

⎤

⎦

⎧
⎪⎪⎨

⎪⎪⎩

a1
a2
. . .

a12

⎫
⎪⎪⎬

⎪⎪⎭
(3.132)
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The direct computation of the projected gradient yieldswith (3.132) a constantmatrix
B(3,1)
u π of size (9 × 9) when the gradient is formulated in Voigt notation. This leads

to the displacement gradient

∇uπ =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ux,x

ux,y

ux,z

uy,x

. . .

uz,z

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

= B(3,1)
u π â =

⎡

⎢⎢⎢⎢⎢⎢
⎣

1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0
.. .. .. .. .. .. .. .. ..

0 0 0 0 0 0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥
⎦

⎧
⎪⎪⎨

⎪⎪⎩

â1
â2
. . .

â9

⎫
⎪⎪⎬

⎪⎪⎭
(3.133)

The displacement field at the edge γe of a face � f is interpolated according to (a1).
Here we assume a linear ansatz, see (3.4), which yields

uh|γe =
2∑

i=1

Mi (ξ)ui (3.134)

where the ansatz functions Mi (ξ) are defined in (3.5).
Next the integral in (3.128) has to be evaluated. It follows for the constant gradient

immediately that matrixG is a (9 × 9) unit matrix multiplied with the volume of the
virtual element

G(1) = �v I . (3.135)

The right hand side (3.131) is zero for a constant gradient ∇uπ . Thus it remains to
compute the integral (3.129)

nF∑

f =1

∫

� f

[B(3,1)
u π (X,Y, Z)]T N̂ f uh d� = [B(3,1)

u π ]T
nF∑

f =1

N̂ f

∫

� f

uh d� (3.136)

We can now think of replacing uh by uπ by using the fact that uh on � f ∈ Wk , see
also (3.37).

Remark 3.5 Often it is simpler to use the tensor notation as a starting point, espe-
cially when applying automatic differentiation procedures, like provided in AceGen,
see Korelc and Wriggers (2016). Then the projected gradient is provided for a linear
ansatz by, see (3.60),

∇uπ = 1

�v

∫

�v

uh ⊗ N d� (3.137)

with the explicit form of the projected gradient in tensor notation
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∇uπ =
⎡

⎣
uπx,x uπx,y uπx,z

uπy,x uπy,y uπy,z

uπ z,x uπ z,y uπ z,z

⎤

⎦ =
⎡

⎣
â1 â2 â3
â4 â5 â6
â6 â8 â9

⎤

⎦ = Â . (3.138)

With the assumption of flat faces the outward normal N is constant at each face and
thus we arrive with the normal N f related to face � f at

∇uπ = 1

�v

nF∑

f =1

∫

� f

uh d� ⊗ N f (3.139)

which has to be evaluated using (3.134). �

Equation (3.53) can be applied to determine the remaining parameters (a1, a2, a3)
related to the constant part of the ansatz function, see (3.132). This leads with (3.138)
and (3.152) after some manipulations to

⎧
⎨

⎩

a1
a2
a3

⎫
⎬

⎭
= 1

nV

nv∑

k=1

(uk − ∇uπ Xk) = 1

nV

nv∑

k=1

(
uk − [P(3,1)

∇ uv]Xk

)
(3.140)

where Xk are the initial coordinates of the nodal point k and the sum includes all nV

vertices of the polygon.

In the literature exist exact evaluations and several approximations for the com-
putation of the surface integral in (3.136) and (3.139). Appropriate strategies that are
straight forward can be employed for the integration on the faces. These are:

• Integration over the edges of a face.An exact integration of the right hand side of
(3.138) can be performed directly on the edges. The general idea is pointed out in
Fig. 3.10 where the surface �v of the virtual element�v can be split in nF faces � f

with �v = ⋃nF
f =1 � f . The volume integral is then transformed via the divergence

theorem to a surface integral. For each of the surfaces a local coordinate system
{e f

X ,e f
Y } canbedefined and thenby employingGreens theorem the surface integral

Fig. 3.10 From volume via face to edge integral
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can be evaluated at the edge γ f = ⋃ne
e=1 γe of the surface � f , by computing each

contribution of the straight parts γe of γ f to the integral.
For such formulation first the divergence theorem is applied on an arbitrary element
face � f ∈ R

3

∫

� f

φ d� = 1

2

∫

γ f

[∫
φdX f

∫
φdY f

]
·
[
e f T
X

e f T
Y

]

Ne dγ

= 1

2

∫

γ f

(∫
φdX f e f T

X Ne +
∫

φdY f e f T
Y Ne

)
dγ

(3.141)

The integrand φ(X,Y, Z) ← φ f (X f ,Y f ) has to be expressed by the local coor-
dinate system of a face X f = (X f ,Y f ) = R f (X − Xm) with R f = {e f

X , e f
Y }T

being a (2 × 3) transformation matrix. The local coordinate system is defined by
the base vectors, see Fig. 3.11

e f
X = X2 − X1

‖X2 − X1‖ , e f
Y = N f × e f

X (3.142)

where N f is the unit normal of the face that follows from

n f = (X1 − Xm) × (X2 − Xm),=⇒ N f = n f

‖n f ‖ (3.143)

Fig. 3.11 Virtual element
face � f and local coordinate
system
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where Xm is the center of the face given by the sum over all n f
V vertices attached

to the face:Xm = 1
n f
V

∑n f
V
I=1 XI . Furthermore the normal to the edge γe is given by

Ne = Xk+1 − Xk

‖Xk+1 − Xk‖ × N f (3.144)

Due to the definition of the virtual element method the faces have to be planar.
Hence the normal N f is constant within the face leading to the projection in
(3.139). The integral over all nF faces can be evaluated over the edges. For one
face � f in the sum we obtain using (3.141)

∫

� f

uh d� = 1

2

nE∑

e=1

∫

γe

[∫
uh dX f

∫
uh dY f

]
·
[
e f
X

e f
Y

]

Ne dγ (3.145)

The problem is now that we do not know uh . A way out is to approximate uh by
uπ in

∫
� f

uh d� = ∫
� f

uπ d�, see (3.37), which follows from the equivalence of
the functions for (n = 1), see Ahmad et al. (2013)

∫

� f

uh d� = 1

2

nE∑

e=1

∫

γe

(∫
u f

π dX f (e f
X )T Ne +

∫
u f

π dY f (e f
Y )T Ne

)
dγ .

(3.146)
The displacements u f

π are related to the local coordinate system (X f ,Y f ) attached
to the face � f . The projection follows now which follows from

⎡

⎢
⎣
a f
1 2 a

f
1 3

a f
2 2 a

f
2 3

a f
3 2 a

f
3 3

⎤

⎥
⎦ = ∇u f

π = 1

� f

∫

� f

R f ∇u f
h d� = 1

� f

∫

γ f

u f
h ⊗ R f Nγ dγ

= 1

� f

nE∑

e=1

∫

γe

u f
h dγ (R f Ne)

T = 1

� f

nE∑

e=1

le
2

(uk + uk+1) (R f Ne)
T

(3.147)
where uk and uk+1 are the nodal values at the edge e with length le, see Fig. 3.11.
Note that the trapezoidal rule yields an exact integration for the linear ansatz of
u f
h at the edge.9

Additionally equation (3.140) provides the missing constants a f
1i

9 The transformation of the volume to line integrals can be performed in a different way, seeMirtich
(1996). It depends on the specific geometry of the virtual element which way is more efficient.
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⎧
⎪⎨

⎪⎩

a f
1 1

a f
1 2

a f
1 3

⎫
⎪⎬

⎪⎭
= 1

n f
V

n f
V∑

I=1

(
uI − ∇u f

π X f
I

)
= 1

n f
V

n f
V∑

I=1

uI . (3.148)

Due to the choice of the origin Xm of the local coordinate system the second term

in (3.148) vanishes:
∑n f

V
I=1 X

f
I = 0. The projected quantity u f

π is then given at any
point in the face � f by the ansatz

u f
π =

(
N f

π a f
i

)
ei with

N f
π = 〈1 X f Y f 〉 and a f

i = 〈a f
i 1 a

f
i 2 a

f
i 3〉T

(3.149)

in terms of the nodal unknowns uv, see (3.147) and (3.148). The ansatz in (3.149)
can now be applied in (3.146) to compute the integral which finally leads to the
projection (3.139).

• Split into quadrilaterals. A simple integration scheme is presented in Gain et al.
(2014). In this work the faces are split into quadrilaterals where one corner lies at
the face node, two corners lie in center of adjacent edges and the fourth corner lies
in face centroid. Integration is then performed over the quadrilaterals.

• Gauss integration using triangles. A further alternative is to split the polygonal
faces� f , see Fig. 3.12, into triangles τi and to integrate over each triangle by using
standard linear ansatz function and Gauss integration. The ansatz for each triangle
is given by

Nτ = {N1, N2, N3} = {ξ, η, 1 − ξ − η} (3.150)

uτ
h =

3∑

I=1

NI (ξ, η)uI . (3.151)

Here uτ
h is the linear approximation of the displacements at each triangle T within

a polygonal face f . In (3.150) ξ and η are the local dimensionless coordinates and
(uI )∀I∈T is a list containing the three nodal displacement vectors, one at each node
of the triangle T . The local nodes of T are vertices of the face under consideration
as depicted in Fig. 3.12.
The right hand side of (3.60) yields for nτ triangles describing a polygonal face
� f = ∪nτ

τ=1�τ of the virtual element

∇uπ = 1

�v

∫

�v

uτ
h ⊗ N d� = 1

�v

nF∑

f =1

nτ∑

τ=1

∫

�τ

uτ
h ⊗ N f d�

= 1

�v

nF∑

f =1

nτ∑

τ=1

ng∑

g=1

wguτ
h(ξ g)N

T
f = P

(3,1)
∇ uv .

(3.152)
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Fig. 3.12 Virtual element faces split into multiple triangles

For the chosen linear shape function (3.150) a one point quadrature rule ng = 1
is sufficient with Gauss point weight wg = 1/2. All quantities are evaluated at the
Gauss point ξ g = (ξg, ηg) with ξg = 1/3 and ηg = 1/3. The normal vector N f is
computed using the convective base vectors Gξ and Gη related to the surface of
the triangle

Xτ =
3∑

I=1

NI (ξ, η)XI , (3.153)

Gξ = Xτ
,ξ , Gη = Xτ

,η, Nk = Gξ × Gη . (3.154)

The vector Nk needs not to be normalized since the term ‖Gξ × Gη‖ cancels out
when the second integral in (3.152) is transformed to the reference coordinates ξ

and η within a triangle T . This yields a more efficient formulation. All quantities
are related to the initial configuration. By comparing (3.133) and the right hand
side of (3.152) the unknown parameters âi (i = 1, 2, . . . , 9) follow by inspection
as in the two-dimensional case.

With equations (3.152) and (3.132) the ansatz function uπ of the virtual element can
be completely defined in terms of the nodal displacements uv that are given by

uv = 〈
ux1 uy1 uz1 ux2 uy2 . . . uynV

uznV

〉T = 〈
u1 u2 . . . unV

〉T
. (3.155)

Again we can use the short notation to write

a = P
(3,1)
u uv (3.156)

where a are the parameters related to the virtual element ansatz, P(3,1)
u is a projection

function which relates the vector uv, containing the nodal degrees of freedom of all
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vertices of the virtual element �v, to the parameters a. This projection matrix can
be constructed using (3.140) and (3.133). With that the projected displacement uπ

in the virtual element �v can be recast, using (3.132), as

uπ = H(3,1)
u (X,Y, Z)P(3,1)

u uv . (3.157)
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Chapter 4
VEM Ansatz Functions and Projection
for the Poisson Equation

The formulation of virtual elements for heat conduction problems, see (2.42), or
more general for the Poisson equation (−�θ = f ) was one of the starting points
of this method, see Beirão da Veiga et al. (2013), Beirão da Veiga et al. (2014).
Since Laplace, Poisson and the elasticity equations are of elliptical nature, the ansatz
functions defined in the previous chapter can be employed for these scalar valued
problems as well.

4.1 Two-Dimensional Case

The definition of the ansatz space for the virtual element method in Sect. 3.1.1 holds
directly for the case of a scalar field, like the temperature θ in the heat conduction
Eq. (2.42) and the associated weak form (2.93). Thus the projection in dimension
d = 2 onto a polynomial space of order n can be based on the ansatz

θπ = 〈1 X Y X2 XY Y 2 . . . XYn−1 Y n
〉
aθ = H(2,n)

θ (X,Y ) aθ (4.1)

with the constants aTθ = 〈a1 a2 a3 a4 . . . anV 〉, where nV is the number of vertices of
the virtual element �v . This ansatz has to be completed for ansatz functions with
order n > 1 by the moments which are scalar values

n = 2 : m(0,0) = m1 = 1

�v

∫

�v

θh d� (4.2)

n = 3 : m(1,0) = m2 = 1

�v

∫

�v

X θh d� m(0,1) = m3 = 1

�v

∫

�v

Y θh d� (4.3)

and so forth for higher polynomial ansatz orders n > 3.
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The gradient projector for the temperature is generally given by

∇θπ =
{
θπ,x

θπ,y

}
= B(2,n)

θ π (X,Y ) âθ . (4.4)

where âθ relates to the unknown parameters a2 , a3 , a4 , . . . , anV .

4.1.1 Computation of the Projection

The Galerkin projection defined in (3.19) will now be computed to link the unknown
parameters aθ to the nodal degrees of freedom θi at the vertices of the virtual element
with i = 1 , . . . , nV .

For the projection based on a scalar field θ all equations from Sect. 3.1.2 hold in
a similar fashion. Thus from (3.19) follows

∫

�v

∇Nπ · ∇θπ d� =
∫

�v

∇Nπ · ∇θh d� (4.5)

and the right hand side is

∫

�v

∇Nπ · ∇θh d� =
∫

�v

∇Nπ · (θh N) d�

︸ ︷︷ ︸
b�

−
∫

�v

div[∇Nπ ] θh d�

︸ ︷︷ ︸
bdiv

. (4.6)

This leads with the ansatz (4.4) to the matrix

G(n)
θ π =

∫

�v

[
B(2,n)

θ π (X,Y )
]T

B(2,n)
θ π (X,Y ) d� (4.7)

and with the ansatz along the edges Mi (ξ), see (3.5) and (3.6), to

b(n)
π (θi ,m j ) =

nE∑

e=1

∫

�e

[
B(2,n)

θ π (X, Y )
]T n+1∑

i=1

Mi (ξ) θi

{
Nxe
Nye

}
d� +

nm∑

j=1

[B j
θ π div]T m j .

(4.8)
The last two relations enter the equation system already defined in (3.27) and yield

∇θπ = B(2,n)
θ π (X,Y ) â = B(2,n)

θ π (X,Y ) [G(n)
θ π ]−1 b(n)

π (θi ,m j ) (4.9)
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4.1.2 Projection for a Linear Ansatz

In case of a linear ansatz (n = 1) element nodes are placed only at the vertices of
the polygonal elements, see Fig. 3.4. One can use the result in (4.9) to construct an
approximation of the temperature field gradient in�v by introducing an approximate
linear displacement field.

For the ansatz based on a scalar field, see (4.4), and following the steps in
Sect. 3.1.4 Eq. (3.46) simplifies with (4.9) to

∇θπ =
{
θπ,x

θπ,y

}
= B(2,1)

θ π (X,Y ) â = 1

2�v

nE∑

e=1

(θk + θk+1)

{
(Y1 − Y2)e
(X2 − X1)e

}
(4.10)

where the last term relates to the normal vector at the edge and θk are the nodal
degrees of freedom. Again, no equation system has to be solved in for the linear
ansatz. Furthermore, by introducing the vector of nodal unknowns of the virtual
element �v

θv = 〈θ1 θ2 . . . θnV
〉T

(4.11)

the projection tensor, provided in (3.49), can be used adequately with the same
definitions as in (3.49) for the components Pxk and Pyk . This leads to

P
(2,1)
∇θ = 1

2�v

[
Px1 Px2 . . . PxnV
Py1 Py2 . . . PynV

]
=
[
Lh T
x

Lh T
y

]
(4.12)

Now a direct connection between the projected gradient and the nodel degrees of
freedom θv of the virtual element can be formulated

∇θπ = P
(2,1)
∇θ θv . (4.13)

With the ansatz for the temperature

θπ = H(2,1)
θ (X,Y ) a = 〈1 X Y

〉
⎧
⎨

⎩

a1
a2
a3

⎫
⎬

⎭
(4.14)

it is possible to compute, as in Sect. 3.1.4, the first constant a1. The constants a2 = â1
and a3 = â2 are known from (4.12) and thus a1 follows according to (3.54) as

a1 =
nV∑

k=1

[ θk − â1 Xk − â2 Yk ] / nV (4.15)

which can be written in vector form using the definition of θv in (3.48) and (3.55) as
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a1 = 1

nV

[
1T − XS Lh T

x − YS Lh T
y

]
θv (4.16)

with the vector 1T = {1, 1, . . . , 1} of length nV . The approximation θπ can now be
obtained by combining the last equation with (4.12) leading to

θπ = H(2,1)
θ (X,Y )P

(2,1)
θ θv with P

(2,1)
θ =

⎡

⎣
(1T − XS Lh T

x − YS Lh T
y )/nV

Lh T
x

Lh T
y

⎤

⎦ .

(4.17)
with P(2,1)

θ being a (3 × nV ) matrix.

4.1.3 Projection for a Quadratic Ansatz

The Poisson equation has a scalar valued function as unknown. Here we refer to the
temperature θ that appears in the heat conduction equation. Also for the quadratic
ansatz we can explore the analogy to elasticity and write the projected gradient as

∇θπ =
{

θ,x

θ,y

}
= B(2,2)

θ π (X,Y ) â =
[
1 0 2X Y 0
0 1 0 X 2Y

]
⎧
⎪⎪⎨

⎪⎪⎩

â1
â2
. . .

â5

⎫
⎪⎪⎬

⎪⎪⎭
. (4.18)

Again the ansatz (3.64) at the straight edge �e is introduced and the outward normal
vector related to the edge is denoted by Ne.

With this ansatz the matrices G(2)
θ π and b(2)

π (θi ,m1) can be computed. The matrix
G(2)

θ π follows directly from (3.65). The only difference is that G(2)
θ π has only the size

of (5 × 5). Again, the integral definingG(2)
θ π contains only polynomials up to second

order and can be evaluated exactly.
The vector bhπ follows from (3.66) and can be expressed with (4.2) as

b(2)
π (θi ,m1) =

nE∑

e=1

le

3∑

i=1

wi [B(2,2)
θ π (X,Y )]T θi

{
Nxe

Nye

}
+ [B1

θ π div]T m1 (4.19)

with the weighting factors of the Gauss-Lobatto rule: w1 = w2 = 1
6 and w3 = 2

3 .
The second term in (4.19) can be obtained from (4.6) as Nπ,xx + Nπ,yy which is

constant in the quadratic case and leads to

B1
θ π div = 2

〈
0 0 �v 0 �v

〉
. (4.20)

With the explicit forms of G(2)
θ π and bhπ in (4.19) the equations system (3.27) can

be solved for the unknown parameters â
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∇θπ = B(2,2)
θ π (X,Y ) â = B(2,2)

θ π (X,Y ) [G(2)
θ π ]−1 b(2)

π (θi ,m1) (4.21)

An explicit dependency of the projected gradient on the unknown vector of the virtual
element �v

θv = 〈θ1 θ2 . . . θnV m1〉T

can be constructed easily in the same manner as in (3.75). With normal vector at the
edge �e

N̄θ
e =

{
(Y1 − Y2)e
(X2 − X1)e

}
(4.22)

and by applying the Gauss-Lobatto rule to integrate (4.19)

Pθ T
2k−1 = 1

6
Bθ T
2k−1(N̄

θ
e + N̄θ

e−1)

Pθ T
2k = 2

3
Bθ T
2k N̄

θ
e

Pθ T
2k+1 = 1

6
Bθ T
2k+1(N̄

θ
e + N̄θ

e+1) ,

with the special case Pθ T
1 = 1

6B
θ T
1 (N̄θ

1 + N̄θ
nE

), this yields the matrix of size (5 ×
2nV + 1)

B(2)
θ = [Ph T

1 Pθ T
2 . . . Pθ T

2k−1 P
θ T
2k Pθ T

2k+1 . . .Pθ T
2nV B1 T

θ π div

]
. (4.23)

Again the projected gradient ∇θπ depends on the unknowns θv and is given by

∇θπ = B(2,2)
θ π (X,Y ) [G(2)

θ π ]−1 B(2)
θ θv = B(2,2)

θ π (X,Y )P
(2,2)
∇θ θv . (4.24)

where P(2,2)
∇θ = [G(2)

θ π ]−1 B(2)
θ is a constant matrix of size 5 × 2nV + 1.

As in the solid mechanics case it is possible to introduce the ansatz

θπ = 〈 1 X Y X2 XY Y 2
〉

⎧
⎪⎪⎨

⎪⎪⎩

a1
a2
. . .

a6

⎫
⎪⎪⎬

⎪⎪⎭
= H(2,2)

θ (X,Y ) a (4.25)

where the constants a2 to a6 are already known from the gradient projection. For the
determination of a1 the condition

1

�v

∫

�v

θπd� = 1

�v

∫

�v

θhd� (4.26)
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is used, see also (3.34). Observe that the right hand side is equivalent to the moment
m1 and by introducing the ansatz (4.25) one obtains

1

�v

∫

�v

H(2,2)
θ (X,Y )d� a = m1 . (4.27)

Splitting now the ansatz (4.25) by taking out the constant term

θπ = a1 + Ĥ(2,2)
θ (X,Y ) â

it follows

a1 = m1 − 1

�v

⎛

⎝
∫

�v

Ĥ(2,2)
θ (X,Y )d�

⎞

⎠ P
(2,2)
∇θ θv (4.28)

With the abbreviation Ĥint = 1
�v

∫
�v

Ĥ(2,2)
θ (X,Y )d� the projected variable follows

as

θπ = H(2,2)
θ (X,Y )P

(2,2)
θ θv with P

(2,2)
θ =

{
Im − Ĥint

P
(2,2)
∇θ

P
(2,2)
∇θ

}
(4.29)

where Im = 〈0 0 . . . 1〉T takes care of m1 having the size (1 × 2nV + 1) and P
(2,2)
θ

is a constant matrix within �v .

4.2 Three-Dimensional Case

The derivation of the ansatz functions in three-dimensions follows along the lines
of the two-dimensional case. Compared to three-dimensional solids it is simpler,
especially for a linear ansatz which will be discussed next.

The linear ansatz for the temperature

θπ = H(3,1)
θ (X,Y, Z) a = 〈1 X Y Z

〉

⎧
⎪⎪⎨

⎪⎪⎩

a1
a2
a3
a4

⎫
⎪⎪⎬

⎪⎪⎭
(4.30)
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yields a constant gradient

∇θπ =
⎧
⎨

⎩

θ,x

θ,y

θ,z

⎫
⎬

⎭
=
⎧
⎨

⎩

a2
a3
a4

⎫
⎬

⎭
= B(3,1)

θ π â (4.31)

where in this special case B(3,1)
θ π = 1. Since the gradient is constant we can use (3.60)

in Remark 3.1 which yields for scalar functions

∇θπ = 1

�v

∫

�v

∇θh d� = 1

�v

∫

�v

θh N d� (4.32)

The integral over the surface �v of the virtual element has to be evaluated over all
its faces γ f

∫

�v

θh N d� =
nF∑

f =1

∫

� f

θh N f d� =
nF∑

f =1

∫

� f

θπ d� N f (4.33)

where the normal vector N f is constant at each face � f . As observed in the case of
solids, θh is not known within the face, but defined along the edges γe of the face.
Hence the right hand side is not directly computable. As for solids, the way out is
to use the equivalent projector θ0

π , defined in Sect. 3.1.3, which for the ansatz order
n = 1, 2 is equivalent to θπ . This leads to the last term in (4.33).

Alternatively, one can approximate the variable θh by a linear function using a
triangularization on each face with a linear ansatz, see e.g. (3.151).

Here we use the first approach and transform the temperature θπ to a local coor-
dinate system (X f ,Y f ). An exact integration of the right hand side of (3.138) can
be performed directly on the edges. In this case triangulation of the face � f is not
needed and thus eliminates a possible bias with respect to the choice of the triangular
mesh. For such formulation the divergence theorem can be applied on an arbitrary
element face � f ∈ R

3

∫

� f

θπ d� = 1

2

∫

γ f

[∫
θπdX f
∫

θπdY f

]
·
[
e f T
X

e f T
Y

]

Ne dγ (4.34)

The integrand θπ(X,Y, Z) has to be expressed by the local coordinate system of a
face X f = (X f ,Y f ) = R f (X − Xm) with R f = {e f

X , e f
Y }T being a (2 × 3) trans-

formation matrix. The local coordinate system is defined by (3.142), see also Fig.
3.11 in Sect. 3.2.2. The unit normal N f is related to the face and defined by (3.143)
while the normal at the edges is given by (3.144).
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Analogous to the projection for the solid the projection related to each face yields

{
a f
2

a f
3

}

= ∇θ f
π = 1

� f

∫

� f

Rr∇θ
f
h d� = 1

� f

∫

γ f

θ
f
h R f Nγ

= 1

� f

nE∑

e=1

∫

γe

θ
f
h dγ R f Ne = 1

� f

nE∑

e=1

le
2

(θk + θk+1)R f Ne

(4.35)

where θk are the nodal values at the edge γe and

a f
1 = 1

n f
V

n f
V∑

k=1

(
θk − [∇θ f

π ]T X f
k

)
= 1

n f
V

n f
V∑

k=1

θk (4.36)

Due to the choice of the origin Xm of the local coordinate system the second term in

(3.148) vanishes:
∑n f

V
k=1 X

f
k = 0. The projected quantity θπ is then given at any point

in the face by the ansatz

θ f
π = N f

π a f with

N f
π = 〈1 X f Y f 〉 and a f = 〈 a f

1 a f
2 a f

3 〉T (4.37)

which can now be applied in (4.33) to compute the integral which leads to

∇θπ = 1

�v

nF∑

f =1

∫

� f

θ f
π d� N f . (4.38)

The first constant a1 can be determined as in the two-dimensional case, see
Sect. 3.2.2. This completes the ansatz for the temperature (4.30). With the known
constants a2, a3 and a4 from (4.38) the constant a1 follows according to (3.140) as

a1 = 1

nV

nV∑

k=1

[
θk − [∇θπ ]TXk

]
. (4.39)

With this result the projection is complete for the virtual element �v . It depends on
the nodal variables θv = 〈θ1 θ2 . . . θnV 〉T and can be generally written as

θπ = H(3,1)
θ (X,Y, Z)P

(3,1)
θ θv . (4.40)
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Chapter 5
Construction of the Virtual Element

So far we have formulated ways to compute the projection of an ansatz function uh

onto apolynomial spaceuπ for the virtual elementmethodusing a linear or a quadratic
order interpolation. These projections provide the basis for the discretization of linear
and nonlinear partial differential equations related to the Poisson equations andmany
applications in solid mechanics. Once the approximate field is known its gradients
can be computed and with this all equations can be discretized using the ansatz
functions derived in Chap.3 for solids and in Chap.4 for the Poisson equation.

Classically a discretization technique is based on a weak form or potential of the
underlying partial differential equation. In this line of argument,wewill employweak
forms, potentials and pseudo-potentials as starting point of the different applications.
For generality, we will use a vector valued function uh next, but the equations hold
in a similar way for scalar valued functions.

Before we insert uh in the weak form, we recall that the approximate solution and
the test function can be split into the projected part uπ = �uh and a remainder

uh = uπ + (uh − uπ ) . (5.1)

With the arguments related to the projection we can now state the weak form and a
potential:

• Aweak form can be presented in an abstract way, see (2.85) or (2.93), by including
the projection uπ = �uh and the test functions vπ . With (5.1) one can write

a(uπ , vπ ) + a(uh − uπ , vh − vπ ) = f (vπ ) . (5.2)

We note that the mixed term a(uπ , vh − vπ ) = a(uh − uπ , vπ ) is zero due to the
orthogonality of the projection, see (3.19).

• In the same way the potential U , see (2.82) or (2.94), can be expressed in terms
of the projection uπ
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U (uπ ) +U (uh − uπ ) −→ EXT R. (5.3)

In the following we will denote the first terms a(uπ , vπ ) and U (uπ ) in the weak
form and the potential consistency term while the second part in the above equations
is called stability term.

A construction of a virtual element which is based only on the consistency term
leads to a rank deficient element once the number of vertices nV is> 3 for two dimen-
sions and exceeds nV > 4 for three dimensions for a linear ansatz. This means that
e.g. a two-dimensional solid virtual element of linear ansatz order with nV nodes has
2 nV − 3 zero eigenvalues—off which 3 zero eigenvalues are related to the rigid body
modes—and thus the formulation has to be stabilized.1 This requirement is equiva-
lent to the case of finite elements when a one-point integration (under integration) is
applied. Such underintegrated elements were developed by Flanagan and Belytschko
(1981), Belytschko and Bindeman (1991) and many variants were constructed, see
e.g. Reese et al. (1999), Reese andWriggers (2000), Nadler and Rubin (2003), Reese
(2003),Mueller-Hoeppe et al. (2009), Korelc et al. (2010), Krysl (2015b). All of these
formulations are in one or another way stabilized.

The stabilization is naturally present in (5.2) and (5.3) by the remainder which
can be formulated in a generic way where Sstab and Ustab denote the stability term.
This leads to

a(uπ , vπ ) + Sstab(uh − uπ , vh − vπ ) = f (vπ ) . (5.4)

and
U (uπ ) +Ustab(uh − uπ ) −→ EXT R. (5.5)

Due to the use of the difference uh − uπ in Sstab andUstab it is guaranteed that for a
very finemesh the influence of the stabilization on the results vanishes. For a rigorous
mathematical description in the case of small strains, see e.g. Beirão da Veiga et al.
(2013) and Beirão da Veiga et al. (2014).

Next we will discuss the formulation of the consistency part of the virtual element
that stems from the weak form a(uπ , vπ ) or potential U (uπ ). After that, different
possibilities for stabilizing the virtual element method will be introduced.

5.1 Consistency Part

This section is based on the most simple case—the Poisson equation for heat con-
duction, see (2.42),—to illustrate the discretization scheme for virtual elements. The
derivation is based on the weak form (2.93) and the potential form (2.94). Both

1 Higher order ansatz function lead to consistency termswithmore non-zero eigenvalues, e.g. a two-
dimensional quadratic virtual solid element has 12 − 3 = 9 non-zero eigenvalues. Nevertheless the
elements become rank deficient once they have more vertices than a triangle or in three dimensions
than a tetrahedra.
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approaches yield, of course, identical results. However implementation might lead
for one of these forms to more efficient computing code and thus both possibilities
are stated here.

5.1.1 Weak Form

Let us recall the weak form for the heat conduction equation that was stated in (2.93)
over the region �

∫

�

[
Gradϑ · k Grad θ − ϑ �0R

]
d� +

∫

�N

ϑ Q̄ · n d� = 0 (5.6)

where the scalar variable θ is the temperature and ϑ the test function, both function
depend in the two-dimensional case on the coordinates X,Y . The thermal conduc-
tivity k is assumed to be constant as well as the source term �0R.

Generally when writing this weak form as a(ϑ, θ) − f (ϑ) = 0 the discretization
leads to a process where all contributions of the elements �v that are employed to
discretize the region have to be assembled

a(ϑh, θh) − f (ϑh) =
nv

A
v=1

[av(ϑh, θh) − fv(ϑh)] = 0 (5.7)

where av(ϑh, θh) and fv(ϑh) are the contribution of each virtual element �v and nv

is the total number of elements.
The gradients in (5.6) can now be discretized by using the ansatz functions result-

ing from the projections in Sect. 3.1.2. This will be detailed next for a linear and
a quadratic ansatz leading to the matrix form of one element �v . For this task the
projected gradients are approximated for the variable and the test function, ∇θπ and
∇ϑπ , respectively.

• Linear ansatz. For a linear ansatz the projected gradient is given by (4.13) as
∇θπ = P

(2,1)
∇θ θv which can also be utilized for the test function ∇ϑπ = P

(2,1)
∇θ ϑv .

This yields for the first term in the above equation

∫

�v

Gradϑπ · k Grad θπ d� = �v ϑT
v [P(2,1)

∇θ ]TP(2,1)
∇θ θv = ϑT

v K
(2,1)
v θv (5.8)

since the projection matrix P(2,1)
∇θ is constant. Due to the fact that the nodal contri-

butions of the test functions cancel out in the assembly process, the vector ϑvcan
be neglected in the final equation system. The size of the element matrix K(2,1)

v

is in this case of the size of the nodal values at the element (nV × nV ). We note,
that no integration has to be performed and thus the computation of the element
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matrix of the virtual element is very fast and can be performed component wise
by exploiting the structure of P(2,1)

∇θ , see (4.12).
The volumetric part of the right hand side in (5.7) is given by

∫

�v

ϑh �0R d� . (5.9)

Since the test function is not know it will be replaced by its projection (4.17), see
the arguments related to (3.37), which then leads to

∫

�v

ϑπ �0R d� = ϑT
v [P(2,1)

θ ]T
∫

�v

[H(2,1)
θ (X,Y )]T�0R d� = ϑT

v f
(2,1)
v . (5.10)

The remaining integral can now be evaluated exactly using the relations in
Appendix A for any polynomial order. This leads to the loading vector f (2,1)

v of
size (nV × 1) for an element.
Note, that the surface integral in (2.93) can be easily evaluated over the edges of
elements where the flux is prescribed since the ansatz for ϑh is known at the edges.

• Quadratic ansatz. In Remark 3.8 in Sect. 3.1.6 the quadratic ansatz and its pro-
jection was considered for the heat conduction equation. This ansatz can now be
inserted into (2.93). Using Eq. (4.24) the first term of the weak form follows

∫

�v

Gradϑπ · k Grad θπ d�

= ϑT
v [P(2,2)

∇θ ]T
∫

�v

k [B(2,2)
θ π (X,Y )]T B(2,2)

θ π (X,Y ) d�P
(2,2)
∇θ θv = ϑT

v K
(2,2)
v θv .

(5.11)

The integral in this equation includes polynomials up to second order inside and
can be evaluated exactly by the formulae provided in Appendix A. The resulting
stiffness matrix K(2,2)

v of the virtual element has the size (2nV + 1 × 2nV + 1).
The volumetric loading in (5.7) can bewritten by using the arguments for the linear
ansatz. Since the test function is not know itwill be replaced by its projection (4.29)
leading to

∫

�v

ϑπ �0R d� = ϑT
v [P(2,2)

θ ]T
∫

�v

[H(2,2)
θ (X,Y )]T�0R d� = ϑT

v f
(2,2)
v . (5.12)

The integral contains the second order polynomialH(2,2)
θ (X,Y ), additionally poly-

nomials that are used to describe �0R have to be considered which might enlarge
the polynomial order. The evaluation is possible for any order polynomials using
(A.8) in Appendix A.
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5.1.2 Potential

Instead of using the weak form, the virtual element formulation can be based on the
potential function (2.94). Thus we have, by summing up (assembling) all element
contributions for the nv virtual elements,

U (u) =
nv

A
v=1

[
U v

c (θπ ) +U v
stab(θh − θπ)

]
. (5.13)

where the first term is the consistency part and the second term is the potential
energy for the stabilization of the virtual element. The element contributions for the
consistency part can be formulated as

U v
c (θπ ) = 1

2

∫

�v

Grad θπ · k Grad θπ d� . (5.14)

The discretization of this integral only needs the introduction of the projected gradient
for the linear and quadratic ansatz.

• Linear ansatz. From (5.8) one derives immediately

1

2

∫

�v

Grad θπ · k Grad θπ d� = k

2
θT

v �v [P(2,1)
∇θ ]TP(2,1)

∇θ θv = 1

2
θT

v K
(2,1)
v θv

(5.15)
since the projection matrix P

(2,1)
∇θ is constant.

The volumetric part of the right hand side in (5.7) is given by

∫

�v

θπ �0R d� = θT
v [P(2,1)

θ ]T
∫

�v

[H(2,1)
θ (X,Y )]T�0R d� = θT

v f (2,1)
v . (5.16)

• Quadratic ansatz. Following (5.11) we obtain analogously

1

2

∫

�v

Grad θπ · k Grad θπ d�

= 1

2
θT

v [P(2,2)
∇θ ]T

∫

�v

k [B(2,2)
θ π (X,Y )]T B(2,2)

θ π (X,Y ) d� P
(2,2)
∇θ θv

= 1

2
θT

v K(2,2)
v θv . (5.17)

The polynomial order in the integral is up to second order. In the same way as in
(5.12) the volumetric loading term follows, only ϑπ has to be replaced by θπ . This
yields
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∫

�v

θπ �0R d� = θT
v [P(2,2)

θ ]T
∫

�v

[H(2,2)
θ (X,Y )]T�0R d� = θT

v f (2,2)
v . (5.18)

Again, the evaluation of these integrals is possible for any order of the polynomial,
see Appendix A.

5.2 Stabilization Techniques for Virtual Elements

It is clear from the construction of the virtual element, that a stabilization is neces-
sary. Stabilization is known in many other discretization techniques for a long time.
Several approaches were introduced within finite element methodologies to stabi-
lize formulations. Among them are hour-glass stabilization techniques and mixed
approaches, like enhanced and assumed strain methods.

The latter formulations do not need to introduced stability parameters but have
not been explored in depth in virtual element methods, for first attempts see Lamperti
et al. (2023). Other approaches that yield stabilization free formulations of the virtual
element method can be found in e.g. D’Altri et al. (2021) and Chen and Sukumar
(2023a, b). These methods require an increased computational effort on element
level because an enriched ansatz space is used to obtain the proper rank for a virtual
element. However they circumvent the need to select a stabilization parameter which
eventually can spoil the accuracy of the analysis.

Several techniques for the stabilization of virtual elements that are appropriate for
different applications, especially for solid mechanics, were developed in e.g. Beirão
da Veiga et al. (2013), Beirão da Veiga et al. (2015), Chi et al. (2017), Artioli et al.
(2017) and Wriggers et al. (2017). As already mentioned in the beginning of this
chapter, the methodologies can be basically split into two approaches. These are a
stabilization by

• a bi-linear form

Sstab = α|�v

2

∫

�v

[(uh − uπ ) · S (vh − vπ )] d� (5.19)

and variants depending on the choice of α|�v
and the matrix S, see e.g. Beirão da

Veiga et al. (2013), Beirão da Veiga et al. (2017) and Artioli et al. (2017).
• A difference between a new potential energy Û , evaluated for uh and uπ

Ustab = Û (uh) − Û (uπ ) , (5.20)

see e.g. Wriggers et al. (2017). The potential energy Û can be freely chosen. An
obvious choice would be to pick the same form as Uc, however with different
material constants, which can be selected such that the response of the virtual
element is enhanced.
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Stabilization methods depend usually on one or more parameters that have to be
selected by the user. Good techniques provide for different types of applications cor-
rect solutions for one parameter set. Thus a stabilization technique has to be designed
on the basis that it is independent of the problem to be solved. Additionally, in non-
linear formulations, the stabilization term has to be linearized such that quadratic
convergence of a Newton type solution algorithm is achieved. In the following both
approaches are discussed in more detail.

5.2.1 Stabilization by a Discrete Bi-Linear Form

The first possibility to formulate the stabilization part Sstab is based on the split in
Eq. (5.4), see Beirão da Veiga et al. (2013). The stabilization term (5.19) is then
approximated as a sum over all vertex nodes nV of the virtual element �v

Sstab = γ (�v)

nV∑
k=1

[uk − uπ (Xk)] · [vk − vπ (Xk)] . (5.21)

This stabilization depends on the nodal degrees of freedom (d.o.f.) and thus it is
called sometimes DOFI-stabilization. in (5.21), γ is a stabilization parameter, uπ is
the ansatz function for the projection evaluated at the vertex Xk , see Chap.3 for the
computation of the projection in the two-and three-dimensional case.2 The vector v
denotes the test function. Since all terms are given as functions of the unknown nodal
displacements the element residual and tangent stiffness can be computed directly
without any numerical integration.

A different approach to formulate the stability term can be found in Artioli et al.
(2017). They use the fact that a linear relation exists between the nodal variables at
the vertices �v and the parameters a that define the gradient and the projection uπ

in terms of the ansatz functionH(X,Y ), see e.g. for the two-dimensional linear case
(3.52). Thus this equation can be evaluated at each vertex and be written in general
for any order of ansatz (here for the case of two-dimensional solid mechanics)

uv =

⎧⎪⎪⎨
⎪⎪⎩

u1
u2
. . .

unV

⎫⎪⎪⎬
⎪⎪⎭

=

⎡
⎢⎢⎣
H(X1)

H(X2)

. . .

H(XnV )

⎤
⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

a1
a2
. . .

a2np

⎫⎪⎪⎬
⎪⎪⎭

→ uv = Da (5.22)

leading to a (2nV × 2np) matrix where np depends on the degree n of the ansatz
polynomial. In general np follows from np = ∑n+1

i=1 i . In Eq. (5.22) uk is the dis-
placement at vertex k and H(Xk) the ansatz evaluated at the vertex Xk . Now the
stabilization matrix for a virtual element �v is defined directly as

2 Note, that there is an alternative way of writing H by using the different deformation modes. For
details of this approach, see Gain et al. (2014) and Wriggers et al. (2016a).
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KsD
v = γ (�v)

[
I − D (DT D)−1 DT

]
(5.23)

and has the size (2nV × 2nV ) in the two-dimensional case.
What remains is the choice of the stabilization parameter γ for an element �v in

(5.21) and (5.23). Good choices were proposed in Beirão da Veiga et al. (2013) and
Artioli et al. (2017) for two-dimensional situations. The stabilization parameter can
generally be written as

γ (�v) = α|�v

h2v
tr [H(Xk)TH(Xk)] (5.24)

and depends in nonlinear situations on the primal variable. The ansatz function for
the projectionH(Xk) is evaluated at the vertexH(Xk), hv is a characteristic element
diameter and α|�v

is a parameter that can be picked as follows:

• Constant parameter: α|�v
= α0 tr [C] where C is the constant constitutive tensor

related to the problem and α0 is a constant to be selected by the user. In many
cases it can be chosen as α0 = 1. This approach works well in a wide range of
applications.

• Distributed parameters: In some applications it makes sense to adjust the sta-
bilization parameter related to the entries of the stiffness matrix which leads to
a distribution of parameter values within on element. This can be achieved by
introducing a digonal matrix Sd

Sdstab =
nV∑
k=1

[uk − uπ (Xk)] · Sd i [vk − vπ (Xk)] . (5.25)

where now the entries of Sd i are given by max{α|�v
, Kv i i } with Kv i i being the

diagonal entries of the stiffness matrix Kv stemming from the projection within a
virtual element. As discussed in Beirão da Veiga et al. (2017), this approach yields
better accuracy and has advantages for higher order ansatz spaces.

• Variable parameter: The parameter α|�v
depends on the primal variable u if the

problem at hand is nonlinear. A good choice is to make it dependent on the trace
of the constitutive tensor leading to e.g. α|�v

(u) = α0 tr [C(C(u))] where C(u) is
the right Cauchy-Green tensor.

• Stiffness related parameter: Another possibility is to use the trace of the tangent
matrix for the stabilization parameter. With N being the total number of unknowns
of the global equation system the parameter is given by the norm of the diagonal
of the stiffness matrix

α|�v
= 1

2N

√√√√ N∑
i=1

(Ki i )2 = 1

2N
||KD|| . (5.26)

This type of stabilization works well for linear problems. Instead of N also
√
N

can be used in (5.26). In nonlinear problems K depends on the primal variable u
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and it is not easily possible to linearize this term in a consistent manner. In such
case it is advisable to use the tangent matrix of the last loading step.

Still, all choices for the stabilization parameter present a challenge when linearizing
in a Newton procedure, even with the use of the symbolic tool AceGen, see Korelc
and Wriggers (2016), which automatically provides the code for the residual vector
and tangent stiffness matrix. If linearization is not possible, like in (5.26), then the
parameter has to be computed at the last converged load step and kept constant during
the iteration within the load step. This leads often to incremental load stepping, even
if the physical problem allows the computation of the solution in one step.

Another drawback in using the form (5.21) in nonlinear computations, without
keeping the parameter α|�v

constant within a load step, is related to the fact that the
linearization of Sstab yields a non-symmetric tangent matrix. A remedy is to write
the bi-linear forms Sstab in (5.21) and (5.25) as potentials which yields

Ustab = γ (�v)

2

nV∑
k=1

[uk − uπ (Xk)] · [uk − uπ (Xk)] (5.27)

and

Ud
stab = 1

2

nV∑
k=1

[uk − uπ (Xk)] · Sd [uk − uπ (Xk)] . (5.28)

and linearizations produce symmetric tangent matrices.
In problems that involve inelastic or other history depending deformations one

has to take care of the change in stiffness due to the non-linear constitutive behaviour
in a virtual element when selecting the stabilization parameter. Details are provided
in Chap.8.

5.2.2 Energy Stabilization

A different stabilization technique was proposed in Wriggers et al. (2017) for prob-
lems in solid mechanics. The essence of the approach is to introduce for stabilization
a new, positive definite strain energy �̂. The total energy is then the sum of Uc(uπ ),
the original energy in the consistency part, and the stabilization termUstab(uh − uπ )

constructed from the strain energy �̂

Ustab = Û (uh) − Û (uπ ) . (5.29)

The second term on the right side ensures the consistency of the total potential energy,
which is now given by

U (uh) = Uc(uπ ) + Û (uh) − Û (uπ ) . (5.30)
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Fig. 5.1 Internal triangular mesh

The potential Û is defined by the elastic strain energy as

Û (uh) =
nv∑

v=1

∫

�v

�̂(uh) d� and Û (uπ ) =
nv∑

v=1

∫

�v

�̂(uπ ) d� . (5.31)

The terms involving uπ can be integrated for the linear case as in (5.15) and analo-
gously for higher order ansatz spaces. However, the term involving the displacement
uh is not computable since uh is not known within the element.

The integration of Û (uh) can be approximated by inscribing a triangular mesh
in the virtual element with nodal points being equivalent to the nodal points of
the original virtual element �v , see Fig. 5.1. It consists of nint linear three-noded
triangles that are connected to the nodes of the virtual element. By this construction
the displacement field uh in (5.30) can be approximated in each triangle�i

m by a finite
element ansatz uh = ∑3

i=1 Ni (ξ, η)ui with local coordinates of a triangle (ξ , η) and
shape functions N1 = ξ , N2 = η and N3 = 1 − ξ − η. With this interpolation of uh

the stabilization energy can be computed. The specific choice of the mesh does not
introduce extra degrees of freedom since it just uses the vertices describing the virtual
element.

Note that the subtraction of the piecewise-constant part Û (uπ ) in (5.30) is neces-
sary to ensure that the stabilization energy does not influence the convergence with
respect to the mesh size. Once the element size is very small, the strain tends to be
constant in each virtual element. In that case Û (uh) will approach Û (uπ ) and thus
vanish in the limit for small virtual elements. Hence stabilization does not influence
the final result.

It remains to define the strain energy �̂. This has to be done in relation to the
problem that has to be analysed. Thus the strain energy �̂ will be introduced in the
later chapters that are devoted to specific applications. In this respect it is interesting
that the stabilization energy has not to be the same as the strain energy of the original
problem defining the physical behaviour. Also the constitutive parameters can be
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different and, actually, have to be selected in a specific way to obtain an efficient and
accurate performance of the formulation.

Remark 5.1 Let us assume a very special case where the stabilization energy Û
has the same form as the energy Uc that describes the physics in the consistency
part. Furthermore we assume that the choice of the constitutive parameters in Û is
such, that we can write Û = γ Uc with γ being a constant parameter. This leads with
(5.30) to

U = (1 − γ )Uc(uπ ) + γ Uc(uh) . (5.32)

In this special case we have a sum of parts stemming from the virtual element method
(consistency part Uc(uπ )) and from the finite element method (stabilization energy
Uc(uh)). Thus the energy stabilization leads to a mixture of virtual and finite element
discretization with the extreme cases

• γ = 1: pure finite element solution, using just the internal mesh. It can be shown
that these results are not as good as the ones when using a mixture of VEM and
FEM, see the subsection ”VEM versus FEM” in an example in Sect. 6.2.5.1.

• γ = 0: pure virtual element solution. This however yields a rank deficient tangent
matrix and thus solutions cannot be computed.

Hence the coupling of both energies is necessary to solve a problem in solid mechan-
ics correctly with the virtual element method. �

Remark 5.2 The energy stabilization can also be used for heat conduction. The
potential form (2.94) yields

Q̂ =
∫

�

k̂

2
(∇ θh · ∇ θh) d� . (5.33)

As before—with k̂ = γ k—the virtual element formulation for the heat conduction
problem is a sum of virtual and finite element parts

Q = (1 − γ ) Qc(θπ ) + γ Qc(θh) . (5.34)

Here a linear ansatz is formulated to approximate the temperature field θh within
each triangle �i

m of the inscribed mesh, see Fig. 5.1. The gradient in (5.33) can be
easily computed based on an isoparametric formulation for the three noded triangle.
The latter yields with the ansatz

θh =
3∑

I=1

NI (ξ , η) θI −→ ∇θh =
3∑

I=1

∇x NI (ξ , η) θI (5.35)

with N1 = ξ , N2 = η and N3 = 1 − ξ − η. Using this interpolation in (5.34) for
the second term we can compute the stabilization energy for the virtual element.
Note that the gradient ∇ θh is constant over each inscribed triangle �i

m which yields
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in the linear case a very efficient code. Let us denote the resulting stabilization
matrix stemming from Qc(θh) by Ks

v . This matrix follows from the assembly of all
contributions of the triangles �i

m , see Fig. 5.1. �
Remark 5.3 When the energy stabilization is employed for higher order ansatz
functions with n ≥ 2 then internal nodes have to be defined for the internal trian-
gularization. This yields a formulation with additional unknowns which is not as
efficient, see De Bellis et al. (2019). �

5.3 Assembly to the Global Equation System

All element contributions have now to be assembled for a specific discretization with
nv virtual elements. Either the first variation of Q is performed, see (5.15), (5.18) and
(5.34), or the discretized weak form is used directly based on (5.8) or (5.11) for linear
and quadratic ansatz functions, respectively. Naturally, variation of the potential and
weak form lead to the same result.

In the previous sections the element stiffness matrices for virtual elements were
derived for linear or quadratic ansatz functions (n = 1, 2). For these ansatz orders
we can assemble all element matrices

nv

A
v=1

ϑT
v

[{
(1 − γ )K(2,n)

v + γ Ks
v

}
θv − f (2,n)

e

] = 0 (5.36)

to obtain a global matrix system that has to be solved in a heat conduction problem

[
(1 − γ )K(2,n)

c + γ Ks
]
θ = f (2,n)

c (5.37)

where θ is the global unknown vector and

K(2,n)
c =

nv

A
v=1

K(2,n)
v , Ks =

nv

A
e=1

Ks
v and f (2,n)

c =
nv

A
v=1

f (2,n)
v (5.38)

are the global matrices and global loading vector, respectively.

5.4 Numerical Example for the Poisson Equation

The use of the virtual element method will be illustrated by a numerical example in
which we employ the Poisson equation to compute the deflectionw of a membrane.3

For the membrane the conductivity coefficient k of the thermal equation has the

3 The residuals and matrices for this example were obtained with AceGen and the computations are
performed with AceFEM, see e.g. Korelc (2002) and Korelc and Wriggers (2016). However, we
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Fig. 5.2 Pre-stressed,
simply supported membrane
under a load q

meaning of a pre-stress σ0 acting in the plane of the membrane. Furthermore the
source term ρ0 R in (5.9) has to be replaced by the scaled load q̄ = q / t where t is
the thickness of the membrane. The structure of the membrane is depicted in Fig. 5.2
which shows the uniform pre-stress σ0, the load q on a square of length and width
L . The membrane is simply supported at the entire boundary.

Within the computations the variables are set to σ0 = 5, L = 2 and q̄ = 1.
The deflection w is approximated by a linear ansatz within the virtual element.

Thus, the virtual element is based on the potential formulation provided in Eqs. (5.15)
and (5.16) which now are written with the constants and variables related to the
membrane

1

2

∫

�v

Gradwπ · σ0 Gradwπ d� = σ0

2
wT

v �v [P(2,1)
∇w ]TP(2,1)

∇w wv = 1

2
wT

v K
(2,1)
m v wv

(5.39)
where K(2,1)

m v is the element stiffness of the membrane element which is constant
since the projection matrix P

(2,1)
∇w ≡ P

(2,1)
∇θ is constant.

The volumetric part of the right hand side in (5.16) is given with P
(2,1)
w ≡ P

(2,1)
θ

by

∫

�v

wπ

q

t
d� = wT

v [P(2,1)
w ]T

∫

�v

[H(2,1)
w (X,Y )]T q

t
d� = wT

v f (2,1)
m v . (5.40)

In case of a constant load q the load vector can be computed with the linear ansatz
H(2,1)

w = {1 , X ,Y } and making use of (4.14) and with (A.10) it follows

f (2,1)
m v = [P(2,1)

w ]T
⎧⎪⎪⎨
⎪⎪⎩

�v∫
�v

X d�
∫
�v

Y d�

⎫⎪⎪⎬
⎪⎪⎭

= [P(2,1)
w ]T

⎧⎨
⎩

1
Xb

Yb

⎫⎬
⎭

q �v

t
. (5.41)

note that MATLAB codes related to the virtual element method are freely available for the Poisson
equation, see e.g. Sutton (2017) and Yu (2022).
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Fig. 5.3 A typical virtual
element with 8 vertices and
an internal mesh for
stabilization

The integrals can equivalently be evaluated as a sum over the vertices of the virtual
element using A.3 and A.4 but it may be more efficient to use the evaluation at the
barycenter (Xb,Yb).

The stabilization is performed according to Sects. 5.2.1 and 5.2.2. For the stabi-
lization with the bi-linear form the specific ansatz described in (5.21) was applied
with a stabilization parameter γ = trK(2,1)

m v . For the energy stabilization, which is
based on the potential, an internal triangular mesh is constructed in every virtual
element. In the examples, a virtual element with linear ansatz is employed for all
computations. It consists of 8 vertices, as depicted in Fig. 5.3. The internal mesh
that is inscribed for the energy stabilization according to (5.35) can be defined by 6
triangles as shown in Fig. 5.3. This internal triangular mesh can be set up in a form
that optimizes the element shape.4

5.4.1 Quadratic Membrane

The analysis is performed for different meshes, see Fig. 5.4. A uniform mesh with
equal spacing is depicted on the left side and a mesh where the virtual elements
have randomly generated shape is shown on the right side. Both meshes have the
same number of elements and nodes using Q2S elements with eight nodes, for the
definition of Q2S see Fig. B.1 inAppendix B. The randomly generatedmesh includes
elements that have a non-convex shape which is generally not possible within a finite
element analysis.

Since the problem is linear the load can be applied in one step. This leads to a
deflection in the membrane as depicted in Fig. 5.5 for the numerical simulation using
the bi-linear stabilization. Also the energy stabilization with the inscribed triangular
mesh yields the same deflection. Hence only one result is shown for the two mesh
types.

4 It is well known in finite element theory that acute triangular elements lead to a high constant in
the error estimate and influence the convergence behaviour negatively. These degenerated triangles
can occur in an internal mesh depending on the shape of the virtual element. However since the
elements are only used as stabilization they do not affect the overall convergence properties of the
virtual element mesh.
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Fig. 5.4 Uniform mesh (16 × 16), Random mesh (16 × 16)

Fig. 5.5 Deflection of the membrane. On the left: uniform mesh (16 × 16), on the right: random
mesh (16 × 16)

The solution is the same for the uniform and the random mesh, see Fig. 5.5.
Thus the distortion of the elements on the right side of Fig. 5.4 does not influence
the solution behaviour. This can also be seen in a convergence study with different
number of elements ranging from a (2 × 2) mesh with 8 elements to a (128 × 128)
mesh with 16384 elements. The results were compared with an analytical solution5

that is denoted by wex and has the value wex = 0.0589371. Figure 5.6 shows a log-
log plot of the scaled maximum norm of the deflection at the center of the membrane
(|w − wex |)/wex versus the number of elements. The uniform mesh depicts a linear

5 For this example it is possible to compute an exact solution, see Timoshenko and Goodier (1970).
The deflection follows from the series

wex = 16q̄ L2

σ0π3

∞∑
n=1,3,5,...

1

n3
(−1)(n−1)/2

[
1 − cosh(nπy/2L)

cosh(1/2nπ)

]
cos

nπx

2L
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Fig. 5.6 Convergence
Study: VEM element with
stabilization γ = trKm,l

v for
the uniform and random
mesh

101 102 103 104
10−5

10−4

10−3

10−2

10−1

Number of elements

(|
|)
/

uniform: = trK

random: = trK

convergence behaviour while the random mesh deviates from the straight line. Due
to the randomness of the mesh there is no node in the center of the membrane and
the deflection at that point was approximated by an interpolation which contributed
to the deviation.

Next the results of the energy stabilized version of the virtual element are reported
for three different values of the stabilization parameter γ = 1

5 , γ = 2
5 and γ = 3

5 .
These results are compared with the solution using triangular finite elements with
linear shape functions denoted by T1. The mesh consists of the inscribed elements,
see Fig. 5.3 and thus uses the same points as the virtual element mesh. Besides some
deviations for very coarse meshes (2 × 2) and (4 × 4) all formulations depict linear
convergence, see Fig. 5.7. The influence of the parameter γ is negligible. Actually, a
more detailed study shows that γ can be selected from the wide range (1 > γ > 1

10 )
and still yields stable solutions for all meshes.

5.4.2 L-shaped Membrane

Amore complex mesh of an L-shaped membrane, see Fig. 5.8, with mixed boundary
conditions is provided in Fig. 5.9. The problem is discretized using 8 noded Q2S
elementswith linear ansatz (for the definition of such elements seeAppendixB). This
choice leads to a discretization of 1024 virtual elements. The length parameter of the
membrane is set as L = 5 . Furthermore a pre-stress of σ0 = 5 acts in the membrane

Summation up to n = 101 yields results that have a sufficient precision and were used as reference
solution in the convergence analysis. The deflection in the mid point of the membrane follows by
evaluation of this formula at x = y = 0.
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Fig. 5.7 Convergence
Study: VEM element with
energy stabilization
γ = { 15 , 2

5 , 3
5 } and T1 finite

element for the random mesh
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= 3/ 5
T1

Fig. 5.8 L-shaped
membrane

which is loaded by q̄ = 1. The boundary conditions are depicted by turquoise points
in Fig. 5.9. At X = 0 and Y = 2L as well as within X = L and L ≤ Y ≤ 2L a free
boundary is introduced where no gradient of the deflection in normal direction is
prescribed. Note that in normal direction the deflection has a horizontal tangent at
the free boundary.

The numerical simulation is computed with virtual elements using the energy
stabilization with γ = 2

5 . The deflection of the membrane is shown in the contour
plot in Fig. 5.10. The maximal deflection of w = 1.245 occurs at the free boundary
at (X = 7.8 ,Y = 5).
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Fig. 5.9 Mesh of the L-shaped membrane using virtual elements with 8 nodes

Fig. 5.10 Contour plot of the deflection w in the L-shaped membrane
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Chapter 6
Virtual Elements for Elasticity Problems

Oneof thefirst applications of virtual elements in engineeringwas related to elasticity.
It had the aim to construct a general methodology that could be applied to problems
involving two-dimensional linear elastic solids under general loading conditions,
see Beirão da Veiga et al. (2013). After these first developments and formulations
of the new method many follow up contributions appeared. An extension to three-
dimensional problemswas then provided inGain et al. (2014). A paper that explained
the application of the virtual element method in elasticity in more details is due to
Artioli et al. (2017a). In this line of work fits the paper by Mengolini et al. (2019)
who discussed implementation issues and compared virtual and finite elements. A
mixed approach based on the Hellinger-Reissner functional was presented in Artioli
et al. (2017c, 2020c) for linear elasticity in two dimensions and in Dassi et al. (2020)
for three dimensional applications. A mixed-enhanced virtual element formulation
was developed in D’Altri et al. (2021). Chen and Sukumar (2023a, b) designed a
stabilization free formulation of a two-dimensional linear virtual element for linear
elasticity. In the same line is the paper of Lamperti et al. (2023) who used the
Hu-Washizu variational approach to design sel-stabilized virtual elements for linear
elastic solids.

Non-conforming elements for linear elasticity were developed in Kwak and Park
(2022) which are on one hand related to a discontinuous Galerkin approach, see
Hansbo and Larson (2003), and on the other hand to the approach in Kouhia and
Stenberg (1995). A non-conforming formulation of virtual elements for incompress-
ible elasticity can be found in Zhang et al. (2019). Comparison of virtual element
with finite element solutions are provided in e.g. Berbatov et al. (2021). This list is
incomplete and focusses more on the engineering side of the development of virtual
element methods in elasticity, however there is substantial mathematical work for
two- and three-dimensional applications in compressible and incompressible elastic-
ity, like e.g. Beirão da Veiga et al. (2013), Brezzi et al. (2014), Brenner et al. (2017),
Mora and Rivera (2020), Li et al. (2022), Lovadina and Visinoni (2022) and Frerichs
and Merdon (2022), which is essential for understanding convergence, stability and
performance of virtual element discretizations.
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First nonlinear formulations in elasticity and plasticity where discussed in the
mathematical paper by Beirão da Veiga et al. (2015) and in Chi et al. (2017), Botti
et al. (2017) and applications to engineering problems with compressible and incom-
pressible response were considered in Wriggers et al. (2017) who also introduced
the energy stabilization for low order ansatz functions. After that, numerous papers
followed in which virtual elements were applied to hyperelastic materials, see e.g.
De Bellis et al. (2019) for a serendipity formulation with quadratic ansatz, van
Huyssteen and Reddy (2020) for a variant of the energy stabilization and Wriggers
et al. (2021a) for a Taylor-Hood-type mixed method for incompressible behaviour.

This chapter provides the background for the development of virtual elements for
boundary value problems assuming linear and nonlinear elastic response of solids and
structures. The basic theoretical background of elasticity can be found in Chap. 2.
First we will discuss the two-dimensional formulation for small and finite strain
and later the three-dimensional case using the ansatz spaces that were developed in
Chap.3.

6.1 Linear Elastic Response of Two-Dimensional Solids

The linear elastic response of a two-dimensional solid is governed by the kinematical
relation (2.9), the momentum equation (2.22) and the constitutive equation (2.43)
which can be replaced by the weak form (2.85) or the potential (2.82). Again the
virtual element scheme needs the discretization of the consistency term and a stabi-
lization term.

Here we start with the consistency term. There are basically two ways that can be
followed to construct the consistency part of a virtual element:

1. Start from the weak form or potential written in matrix form, here we use the
potential Uc, see e.g. (5.14),

Uc = 1

2

∫

�

ε̂
T
πC ε̂π d� −

∫

�

uT
π f̄ d� −

∫

�σ

uT
π t̄ d� (6.1)

where Voigt notation, like in the stress strain relation (2.46) is used. The strain ε̂

is defined as

ε̂π =
⎧⎨
⎩

uπx,x

uπy,y

uπx,y + uπy,x

⎫⎬
⎭ (6.2)

which deviates from the tensorial strain by a factor of 2 in the shear part. This
approach is in close relationship to the way classical finite elements are derived.

2. Use the weak form or potential in tensor notation. This yields with (2.82) and
(2.43)
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Fig. 6.1 Part of AceGen code for the elastic strain energy and stresses undergoing small deforma-
tions

Uc =
∫

�

[
�

2
[tr(επ )]2 + μ tr(επ επ )

]

︸ ︷︷ ︸
W

d� −
∫

�

uπ · f̄ d� −
∫

�σ

uπ · t̄ d� .

(6.3)
The related AceGen code1 that defines the strain energy Uc and also the stress,
see (2.45), is depicted in Fig. 6.1.

When using the first formulation then an ansatz for uπ and ε̂π has to be inserted
into (6.1). In case of the tensor notation the displacement gradient ∇uπ is used to
compute επ which the is inserted in (6.3). Depending on the interpolation order we
obtain different matrix forms.

6.1.1 Consistency Term Using Voigt Notation

The virtual element part related to the consistency term is here given for the case of
linear and quadratic polynomial interpolations.

• In case of the linear interpolation one can use the results for the projection in
Sect. 3.1.4. The components of the gradients needed in (6.2) can be computed

1 All examples that are shown in this book are computed using the software tools AceGen and
AceFEM, developed by Korelc (2000), see also Korelc andWriggers (2016) and the web-site www.
http://symech.fgg.uni-lj.si.

www.http://symech.fgg.uni-lj.si
www.http://symech.fgg.uni-lj.si
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Fig. 6.2 Loading of a VEM
element with linear ansatz

with the projection matrices (3.49) and (3.50) together with the unknown vector
(3.48) at element level as

⎧⎨
⎩

uπx,x

uπy,y

uπx,y + uπy,x

⎫⎬
⎭ =

⎧⎨
⎩

LT
x1

LT
y2

LT
x2 + LT

y1

⎫⎬
⎭ uv = P

(2,1)
∇ε uv (6.4)

where the vectors Lxα and Lyα (α = 1, 2) are constants and only depend on the
element geometry. Now the strain energy part Ucs in the potential (6.1) can be
written for an element �v as

Uv
cs = �v

2
uT
v [P(2,1)

∇ε ]TCP
(2,1)
∇ε uv = 1

2
uT
v K

(2,1)
v uv . (6.5)

where K(2,1)
v is the element stiffness matrix.

As depicted in Fig. 6.2 the virtual element �v is loaded by a volume load f̄ and a
traction load t̄ at the edge γe. The part of the potential related to the volume load
can be discretized using (3.58) which leads at element level to

∫

�v

uT
π f̄ d� = uT

v [P(2,1)
u ]T

∫

�v

[H(2,1)
u (X,Y )]T f̄ d� . (6.6)

HereH(2,1)
u (X,Y ) is a linear function. If the volume load is constant or a polynomial

function the integral can be evaluated over the edges of the virtual element with
the formulae provided in Appendix A.
The part of the potential that includes the surface loads can be directly integrated
by employing the linear ansatz (3.5) that was introduced along the edges of the
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virtual element. The integral can then be evaluated directly at an edge γe with the
vertices k and k + 1 and edge length le that is loaded by the traction t̄

∫

�σe

uh · t̄ d� =
∫

γe

[(1 − ξ)uT
k + ξ ,uT

k+1] t̄(ξ) dγ (6.7)

where ξ is the local coordinate along the edge 0 ≤ ξ ≤ 1. For a constant or linear
traction load the computation of the integral can be performed simply with a two-
point Gauss-Lobatto rule leading to

∫

γe

[(1 − ξ)uT
k + ξ ,uT

k+1] t̄(ξ) dγ = {uk ,uk+1}T le
2

{
t̄k
t̄k+1

}
= {uk ,uk+1}T Pe .

(6.8)
For more complex dependencies of the distribution of the loading, like sine-loads,
Gauss integration can be employed.
Differentiation of the terms (6.5), (6.6) and (6.8) with respect to the unknown
nodal displacements uv yields the residual

R(2,1)
v = ∂Uv

c

∂uv
= �v [P(2,1)

∇ε ]Tv C [P(2,1)
∇ε ]v uv

− [P(2,1)
u ]Tv

∫

�v

[H(2,1)
u (X,Y )]T f̄ d� −

nt∑
e=1

Pe

(6.9)

where Pewas defined in (6.8). It contains the traction load components t̄k and t̄k+1

at the locations that are related to the loaded vertices at the edge γe. The sum
goes over all edges nt loaded by surface traction. In case of linear analysis we
can assemble all virtual elements that are used to discretize the domain � of a
problem. Then (6.9) leads to the equation for the unknown displacements

R = 0 ⇔ Ku = F (6.10)

with

K =
nv

A
v=1

�v [P(2,1)
∇ε ]Tv C [P(2,1)

∇ε ]v and (6.11)

F =
nv

A
v=1

[P(2,1)
u ]Tv

∫

�v

[H(2,1)
u (X,Y )]T f̄ d� +

nv

A
e=1

Pe (6.12)

where nv are the number of elements and nt the number of all edges with traction
loading.
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Due to the fact that the strains in (6.4) are constant the stresses within the linear
virtual element v are constant as well. They can be recovered at element level in
a postprocessing step by using relation (2.46) together with (6.4)

σ v = C [P(2,1)
∇ε ]v uv . (6.13)

• For a virtual element formulation with a quadratic ansatz the projection operators
stated in Sect. 3.1.6 can be employed. Now one has to write the strains in (6.4) in
matrix form which can already be found in (3.76) and (3.77), see Remark3.3 in
Sect. 3.1.6. Based on Eq. (3.77) the potential (6.1) can be written for the virtual
element �v

Uv
cs = 1

2
uT
v [P(2,2)

∇ ]Tv
∫

�v

[B(2,2)
u π (X,Y )]TCB(2,2)

u π (X,Y ) d� [P(2,2)
∇ ]vuv

= 1

2
uT
v K(2,2)

v uv

(6.14)

which includes in the integral only polynomials up to second order. The element
stiffness matrixK(2,2)

v can be obtained by integration over the edges, see Appendix
A. Figure6.3 shows the volume loading by f̄ and the loading by surface traction
t̄ at the edge γe. The volume loading term is computed by inserting the projected
displacement field from (3.84)

∫

�v

uT
π f̄ d� = uT

v

∫

�v

[P(2,2)
u (X,Y )]T f̄ d� . (6.15)

Again the integral can be evaluated for any polynomial, see Appendix A.
The term related to the surface load follows in the same way as the term in the
linear case, see (6.7). Here again we can evaluate the integral over the edge γe

∫

�σe

uh · t̄ d� =
∫

γe

[
3∑

i=1

Mi (ξ)uT
i

]
t̄(ξ) dγ . (6.16)

Using the Gauss-Lobatto rule for the straight edge yields

∫

γe

[
3∑

i=1

Mi (ξ)uT
i

]
t̄(ξ) dγ = le

6
[uT

2k−1 t̄2k−1 + 4uT
2k t̄2k + uT

2k+1 t̄2k+1] (6.17)

which is exact for a constant and a linear distribution of the traction loads.
Residual and the equation system for the unknown displacements follow in the
same way as (6.9) and (6.10).
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Fig. 6.3 Loading of a VEM
element with quadratic
ansatz

6.1.2 Consistency Term Using Tensor Notation

There are different ways to formulate the virtual elements. The choice which formu-
lation is most convenient depends on the software tool that is employed to obtain the
virtual element residual and stiffness matrix. For tools that are able to automatically
differentiate weak forms or potentials like AceGen, see e.g. Korelc and Wriggers
(2016), it is advantageous to stay within the tensor notation of continuummechanics.
As an example, the virtual element with linear ansatz is discussed.

The projected gradient ∇uπ was already stated in (3.61) in tensor notation for the
linear ansatz. This (2 × 2) tensor can be more explicitly written as

∇uπ = 1

�v

nE∑
e=1

[
(uxk + uxk+1)(Y1 − Y2)e (uxk + uxk+1)(X2 − X1)e
(uyk + uyk+1)(Y1 − Y2)e (uyk + uyk+1)(X2 − X1)e

]
(6.18)

where k and k + 1 denote the vertices of an edge e and nE is the number of edges
of the virtual element with area �v. Now the strain is simply given by, see also the
code in Fig. 6.1,

επ = 1

2
(∇uπ + ∇uT

π ) . (6.19)

This can be inserted in the potential (6.3) and evaluated for an element �v, note that
(6.18) is constant with respect to X and Y ,

Uv
cs =

∫

�v

[
�

2
[tr(επ )]2 + μ tr(επ επ )

]
d� = �v

[
�

2
[tr(επ )]2 + μ tr(επ επ )

]
.

(6.20)
The residual related to the strain energy Uv

cs is obtained for the virtual element by
simply differenciating Uv

cs with respect to the unknowns uk at the vertices (1 ≤ k ≤
nV ). Thus the residual follows with (3.48) as
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Fig. 6.4 Part of AceGen
code for the derivation of the
residual and stiffness matrix

R(2,1)
v = ∂Uv

cs

∂uv
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂Uv
cs

∂u1
∂Uv

cs
∂u2
. . .
∂Uv

cs
∂unV

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(6.21)

withuT
k = {uxk , uyk}. Since the sum in (6.18) includes all vertices this differentiation

will automatically pick up the associated displacements and allocate these correctly
in the residual vector R(2,1)

v . The element stiffness matrix follows then by a second
differentiation

K(2,1)
v = ∂R(2,1)

v

∂uv
. (6.22)

The AceGen code, related to the computation of residual and stiffness matrix, is
illustrated in Fig. 6.4. This code is the third ingredient for the generation of a virtual
element with linear shape functions. The first part that defines the projection onto
the polynomial space and thus the ansatz uπ is provided in Fig. 3.5 in Sect. 3.1.5.
This ansatz is then, in the second part of the code, inserted in the strain measure
επ and the potential as shown in Fig. 6.1. Based on this potential Fig. 6.4 shows the
derivation of R(2,1)

v and K(2,1)
v .

6.1.3 Stabilization

The consistency part for linear elasticity yields a stiffness matrix that has only 3
non-zero eigenvalues, reflecting the constant strain state. Thus for a virtual element
with more than 3 nodes the consistency part has zero energy modes, like a one-point
integrated finite element. To avoid these zero energy modes the element has to be sta-
bilized. Of course, this observation applies also to elements with higher order ansatz
and was discussed in general in Sect. 5.2. Here we will employ both approaches for
stabilzation of virtual elements, the discrete bi-linear form (5.19) and the energy
stabilization (5.20).
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Fig. 6.5 Part of AceGen code for the derivation of the bi-linear form of the stabilization energy

Discrete bi-linear form. The bi-linear form of the stabilization energy2 is used

Ustab = γ (uv)
2

nV∑
k=1

[uk − uπ (Xk)] · [uk − uπ (Xk)] (6.23)

with γ (uv) = trKv. The nodal displacementsuk are given at the vertices of the virtual
element and uπ (Xk) is the projected displacement field, evaluated at the verticesXk .
The essential part of the AceGen code, related to this stabilization method is shown
in Fig. 6.5 which is the fourth code part needed to generate a virtual element. For the
linear ansatz we can formulate (6.23) more explicit as

Ustab = ||KD||
2
√
N

nV∑
k=1

uT
v

(
IT − [P(2,1)

u ]T [H(2,1)
u (Xk)]T

) (
I − H(2,1)

u (Xk)P
(2,1)
u

)
uv

(6.24)
where the (2 × 6) matrix H(X) and the (6 × 2nV ) matrix P

(2,1)
u are known from

(3.58) and N = 2 nv is the total number of unknowns used to scale the norm of the
diagonal matrix KD of Kv, see also (5.26) and the code in Fig. 6.6. The matrix I is
given by

I =
[
1 0 1 0 . . . 1 0
0 1 0 1 . . . 0 1

]

which has the size (2 × 2nV ). The symbolic code for the computation of trKv in
(6.24) is provided in Fig. 6.6.

In case of the quadratic ansatz function the stabilization energy is the same as in
(6.23) only the explicit form changes with (3.78) and (3.84) to

2 In a way this stabilization potenrial can be viewed as a penalty term that tries to minimize the
distance between the solution at the vertices and the projected displacement field uπ .
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Fig. 6.6 Part of AceGen code for the computation of the scaled norm 1√
N

||KD ||

Uq
stab = ||KD||

2
√
N

nV∑
k=1

uT
v

[
IT − P

(2,2)
u (Xk)

T
] [

I − P
(2,2)
u (Xk)

]
uv (6.25)

where I and P
(2,2)
u are now a (2 × 4nV ) matrices.

Energy stabilization. For this stabilization one has to introduce a stabilization energy
Û , see (5.30), which is added to the consistency partUc(uπ ), see e.g. Wriggers et al.
(2017). This yields the total potential energy

U (uh) = Uc(uπ ) + Û (uh) − Û (uπ ) , (6.26)

where Û is related to a selected strain energy. The terms involving uπ can be inte-
grated in the same way as the consistency term, see e.g. (6.20).

For the linear elastic case the form of the potential strain energy Û is chosen to
be the same as for Ucs leading for a virtual element �v to

Û (u) =
∫

�v

[
�̂

2
[tr(ε(u))]2 + μ̂ tr[ε(u) ε(u)]

]
d� . (6.27)

where u can stand for either uπ or for uh . In case of elasticity it makes sense to
use extra knowledge for the determination of the constitutive parameters �̂ and
μ̂. The idea is to find a parameter set that will enhance the bending behaviour for
virtual elements with linear ansatz which is discussed below. Once the parameters
are determined, the part Û (uπ ) is easily computed using the same evaluation as for
Uc(uπ ).

Hence it remains to compute the term involving Û (uh). This is achieved by con-
structing an internal mesh in the element with nodal points being equivalent to the
nodal points of the original element to approximate the displacement field uh in
(5.30) by an inscribed triangular finite element mesh, see Fig. 6.7. It consists of nint
linear three-noded triangles that are connected to the nodes of the virtual element.
This mesh can then be employed to compute the stabilization energy. The specific
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Fig. 6.7 Internal triangular
mesh of a virtual element �v

choice of the mesh does not introduce extra degrees of freedom since it just uses
the vertices describing the virtual element. The stabilization energy has now to be
computed as a sum over all internal triangles

Û (uh) =
nint∑
m=1

∫

�i
m

[
�̂

2
[tr(ε(um

h ))]2 + μ̂ tr[ε(um
h ) ε(um

h )]
]
d� . (6.28)

A linear ansatz is formulated to approximate the displacement field within each
triangle �i

m of the inscribed mesh, denoted by um
h . The gradient ∇um

h and with this
the strain ε(um

h ) can be easily computed using an isoparametric formulation for the
three noded triangle

um
h =

3∑
I=1

NI (ξ , η)uI , (6.29)

with
N1 = 1 − ξ − η , N2 = ξ and N3 = η .

Now the stabilization energy Û (uh) can be computed for the virtual element by
employing this ansatz in (6.28). Note that the gradient ∇um

h is constant over each
inscribed element. Hence the strain ε is constant as well within each element �i

m
that is needed to evaluate (6.28).

The displacement gradient ∇um
h can be computed using a direct evaluation of the

ansatz functions for a triangular element �i
m which yields with

{
ux

uy

}
m

=
{
d1
d4

}
m

+
{
d2
d5

}
m

Xm +
{
d3
d6

}
m

Ym (6.30)

an explicit expression for the displacement gradient in the reference configuration

∇ um
h =

[
d2 d3
d5 d6

]
m

. (6.31)
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The values d2, d3, d5 and d6 depend on the nodal displacements of the triangle. The
strain tensor in each sub triangle �i

m follows now as

εm
h = 1

2
(∇ um

h + ∇T um
h ) . (6.32)

Hence the stabilization energy can be computed using (6.28)

Û (uh) =
nint∑
m=1

∫

�i
m

[
�̂

2
[tr(εm

h )]2 + μ̂ tr(εm
h εm

h )

]
d� (6.33)

which is a linear function of the nodal displacements related to the interior triangular
mesh. The symbolic code for the computation of the energy stabilization is depicted
in Fig. 6.8 which consists of a loop over all internal elements and another loop
regarding theGauss integration of each internal elementwhere a one point integration
is sufficient, see also (6.31).

Next we have to find a procedure to select the constitutive parameters �̂ and
μ̂. There exist different approaches to choose the parameters in order to not only
stabilize the element but also to obtain optimal response for specific applications.
Since solids are often subjected to bending deformations it is preferable to have a
parameter choice that enhances bending performance, especially for elements with
linear ansatz functions. Enhanced bending properties can be obtained by integrating
analytical solutions of specific deformations modes into the stabilization, see Nadler
and Rubin (2003) or using enhanced modes, see Mueller-Hoeppe et al. (2009), or
simplified variants, see e.g. Krysl (2016), who suggested a procedure that compares
the strain energy of a bending mode for a hexahedra with the analytical solution.
This yields the Lamé parameters �̂ and μ̂ for the stabilization energy Û that depend
on the geometrical shape of the elements. Since the above mentioned procedures
are usually based on rectangular or cuboid element shapes they are not directly
applicable to arbitrary virtual elements. It was suggested in Wriggers et al. (2017) to
derive the parameters from the basic geometric data of the virtual element, as shown
in Fig. 6.9.3

For each virtual element the Lamé parameters � and μ are converted to Young’s
modulus E and Poisson ratio ν. The Young’s modulus for the stabilization potential
can now be obtained based on the length to height ratio of the individual element by
comparing the bending energy of a rectangular block with that of a beam in order to
enhance the bending behaviour of the element, see e.g. Krysl (2015a). This yields
the correction

Ê = α

1 + α
E = β E (6.34)

3 van Huyssteen and Reddy (2020) suggested to use instead of the outer and inner circles in Fig. 6.9
ellipses which are closer to the actual shape of the virtual element. However, as will be seen in the
numerical simulations, the energy stabilzation of the virtual element method is not very sensitive
with respect to the stabilization parameter and hence we choose the simpler computation described
in Fig. 6.9.
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Fig. 6.8 Part of AceGen code for the computation of the energy stabilization

for the Young’s modulus. The Poisson ratio is not changed since it does not influence
the convergence behaviour leading to ν̂ = ν. Only for ν > 0.3Krysl (2015a) suggests
to use ν̂ = 1

2 (ν + 0.3) to avoid locking for the case of incompressibility when ν →
0.5.

The factor α depends on the height to length ratio of the virtual element. Due to the
arbitrary shape this ratio depends on the inner and outer radii, R2

i , R2
a respectively,

see Fig. 6.9

α = 2
√
2 (1 + ν)

R2
i

R2
a − R2

i

. (6.35)
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Fig. 6.9 Inner and outer
radius of a virtual element

The inner radius is computed by using the distance from the baricenter to the convex
hull of the virtual element while the outer radius is defined by the maximum distance
between nodes defining the virtual element. The computation of α takes into account
that for a square shaped element the ratio of length to height is 1.

Once Ê and ν̂ are known the Lamé parameters for the stabilization energy follow
from

�̂ = Ê ν̂

(1 + ν̂ )(1 − 2̂ν )
μ̂ = Ê

2(1 + ν̂ )
. (6.36)

Remark 6.1 In linear elasticity we have a very special case where the stabilization
energy Ustab has the same form as the energy Uc that describes the physics in the
consistency part. Assuming furthermore that the Poisson ratio ν is the same in both
energies, ν̂ = ν, one can define a relation between the Youngs’s moduli in the con-
sistency and stabilization part Ê = β E , see (6.34). It follows that Û (uπ ) = β Uc.
This leads with (5.30) to

U = Uc + β Û = (1 − β)U (uπ ) + β Û (uh) . (6.37)

In this special case we have a sum of parts stemming from the virtual element
method (consistency part U (uπ )) and from the finite element method (stabilization
energy Û (uh) which is computed in the code depicted in Fig. 6.8). Thus the energy
stabilization leads to a mixture of virtual and finite element discretization with the
extreme cases

• β = 1: pure finite element solution, using just the internal mesh. It can be shown
that these results are not as good as the ones using a mixture of VEM and FEM.
This was investigated for the nonlinear case, see the results in “VEM versus FEM”
in Sect. 6.2.5.1.

• β = 0: pure solution based on the consistency term. This however yields a rank
deficient tangent matrix and thus solutions cannot be computed.

Hence the coupling of both energies is necessary to solve a problem in solid mechan-
ics correctly.
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6.1.4 Numerical Example

Many test cases are known for elasticity problems in solid mechanics that can be
applied to evaluate the quality of a discretization scheme. An often employed test,
well known from finite element analysis, is the Cook’s membrane problem, see e.g.
Cook et al. (1989). It includes in-plane and bending behaviour and is used here
to compare the virtual element formulation with standard finite elements for linear
elasticity. Different discretizations are employed which are defined in Appendix B.

A tapered beam is subjected to an end load q0 = 1 N/mm, see Fig. 6.10, which
also includes the geometrical data. The Young’s modulus is chosen to be E = 100
N/mm2 and the Poisson ratio is ν = 0.3.

Two different Voronoi meshes with uniformly and spatially distributed element
sizes and regularmesheswith four and eight nodes per virtual elementwere employed
within the numerical solution. The deformed configurations for different Voronoi
meshes are depicted in Fig. 6.11 together with the stress contours of the von Mises
stress σV M . The mesh on the left hand side has a uniform element size while on
the right hand side a mesh with different, spatially distributed sizes of the virtual
elements was used. The Cook’s membrane problem has a weak singularity at the
optuse-angled corner (X = 0 ,Y = 44 mm) which leads to a high normal stress σV M

at this point.
Due to this singularity one cannot expectmore than linear asymptotic convergence

in the displacement field when using a regular mesh. This is revealed by the conver-
gence study depicted in Fig. 6.12. Here the results of linear triangular (FE-T1) and
quadrilateral (FE-Q1) as well as a quadratic serendipity (FE-Q2S) finite elements
are compared with the results of virtual elements with linear ansatz having four

Fig. 6.10 Cook’s
membrane problem
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Fig. 6.11 Stress distribution of σV M using two different Voronoi meshes

Fig. 6.12 Convergence Study: VEM element with internal triangular stabilization for uniform
meshes

nodes (VE-Q1), eight nodes (VE-Q2S) and using Voronoi meshes with uniformly
(VE-VOU) and randomly (VE-VOR) distributed element sizes.

Figure6.12 depicts the same convergence behaviour for all elements. An overkill
solution with linear Pian-Sumihara finite elements, see e.g. Pian and Sumihara
(1984), with 19 Mio unknowns is used as reference solution, which yields a ver-
tical displacement uY re f = 3.5111916 mm at the middle node (X = 48 ,Y = 52)
mm of the right side, see Fig. 6.10. We observe a sub linear convergence for finite
and virtual elements with basically the same convergence rate. Interestingly, the
linear virtual element (VE-Q2S) has almost the same convergence behaviour as the
quadratic serendiptiy finite element (FE-Q2S). Furthermore, the graph illustrates that
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Fig. 6.13 Convergence
Study: VE-Q2S, T1, Q1, Q2
and Pian-Sumihara (PiSu)
elements
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the coarse mesh accuracy of the linear virtual elements for all mesh types is superior
to that one of the linear finite elements. In detail it can be seen in Fig. 6.12 that the
same accuracy of 10−2 is achieved for a mesh of about 8 102 unknowns for VE-Q1
as with a mesh of about 2.5 103 unknowns using FE-Q1 finite elements. Thus, virtual
elements seem more efficient when compared to standard finite elements.

It is well know that there exist special finite element formulations, like enhanced
finite elements, see e.g. Simo and Rifai (1990), or the mixed Pian-Sumihara element
that have a far better coarse mesh accuracy and very good bending behaviour, but
it is not easy to compare these formulations with a pure displacement based virtual
element since associated mixed formulations do not exist so far for virtual elements.
Nevertheless a comparion is made and the results are shown in Fig. 6.13 which
demonstrates the good convergence behaviour of the linear virtual element (VE-
Q2S). For comparison, the results of four different finite elements are depicted. These
are the linear (FE-T1, FE-Q1) and quadratic (FE-Q2) isoparametric elements as well
as themixed Pian-Sumihara (PiSu) element, see Pian and Sumihara (1984). The latter
two elements exhibit excellent bending behaviour, that is related for the element FE-
Q2 to the quadratic ansatz and for the Pian-Sumihara element to the special mixed
formulation. Figure6.13 reveals that the VE-Q2S element is the second best linear
element behind the mixed Pian-Sumihara finite element, while both cannot reach
the coarse grid accuracy of the FE-Q2 element for predicting the displacement uY at
the mid node (X = 48 ,Y = 52) mm. The reason for that behaviour is related to the
Cook’s membrane problem which results basically in a bending response of a thick
tapered beam and FE-Q2 has superior bending behaviour. Since the construction of
the mixed Pian-Sumihara finite element and the stabilization of the VE-Q2S take
bending effects into account, for the latter see (6.34), both outperfom the FE-Q1
and FE-T1 finite elements. We note that he quadratic ansatz of FE-Q2 includes the
bending modes used in the construction of the PiSu and VE-Q2S elements.
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The complete AceGen code related to the numerical examples can be obtained
form the associated software package, see Korelc (2023), using the function Ace-
Share. However it is also possible to use other implementations, like the one provided
in Yu (2022) for theMATLAB environment.

6.2 Finite Strain: Compressible Elasticity

The formulation of virtual elements for finite deformations of hyperelastic materials
is straightforward. We can apply the projections from Sects. 3.1.2 and 3.2.2 with no
changes. Again, the computation of the displacement gradient ∇uπ which is needed
for the consistency part of the elements can be performed in a straightforwardmanner
as in the linear case. An especially simple formulation follows for low order virtual
elements since the consistency part then yields a constant strain and stress field at
element level. Higher order formulations need a special treatment of the volume
integrals related to the nonlinear strain energy. We will start with a virtual element
formulation with a linear ansatz. As in the previous section, we provide details of the
source code used together with AceGen to generate the associated virtual element.

6.2.1 Consistency Term

The consistency part is based on the potential U that was formulated in (2.82).
Together with the strain energy function (2.55) the discrete form of the potential
yields

Uc(uπ ) =
∫

�v

[
�c(∇uπ ) − f̄ · uπ

]
d� −

∫

�σ
e

t̄ · uπ d� . (6.38)

Note, that arbitrary strain energy functions can be used in Uc. The below strain
energy function �c(∇uπ ) for compressible materials (2.55) is only specified as an
illustrative example. The strain energy function

�c(∇uπ ) = λ

4
[J (uπ )2 − 1 − 2 ln J (uπ )] + μ

2
[trC(uπ ) − 3 − 2 ln J (uπ )]

(6.39)
depends with Fπ = 1 + ∇uπ , J = det Fπ and Cπ = FT

π Fπ on the gradient of uπ .
The part of the AceGen code that defines the nonlinear hyperelastic potential and
computes 1st Piola-Kirchoff, Kirchhoff and Cauchy stresses and Green-Lagrange
strains is provided in Fig. 6.14.

The first part in (6.38) has to be integrated. This integration depends on the ansatz
order n and the spatial dimension d. In general one can use a Gauss integration with
weights wg , ng Gauss points ξ g and d� = det J e(ξ) dξ leading to
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Fig. 6.14 Part of the code for the definition of the hyperelastic potential for finite strains

∫

�v

�c(∇uπ ) d� =
ng∑
g=1

�c
[∇uπ (ξ g)

]
det J e(ξ g) = �(d,n)

c (uv) . (6.40)

where �(d,n)
c (uv) depends in a non-linear way on the unknown variables uv. Details

that show how this integration is performed for specific cases are discussed next for
two-dimensional applications.

Linear ansatz. In this case the gradient ∇uπ is constant which yields a constant
deformation gradient Fπ = 1 + P

(d,1)
∇ uv, the Jacobian J = det Fπ and the right

Cauchy–Green tensor Cπ = FT
π Fπ as functions of the nodal displacements. Hence

the strain energy in (6.39) is constant as well within the virtual element with respect
to the coordinatesX. It is however a nonlinear function of the projected displacement
uπ .
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Thus the first part in integral in (6.38) that is related to the strain energy can be
simplified with (3.51) as

∫

�v

[
�c(∇uπ )

]
d� = �c(∇uπ )�v = �c(P

d,1
∇ uv)�v (6.41)

where �v is the area of the virtual element. Note, that the strain energy �c(P
d,1
∇ uv)

is a nonlinear function with respect to the displacement nodal degrees of freedom.
The loading terms are the same as in the case of linear elasticity and follow from

(6.6) and (6.7) in case of two-dimensional deformations.
The residual and the tangent matrix for the consistency part Uc

c , related to the
element �v, are computed by differentiation of the potential Uc

v with respect to the
nodal displacements uv using (3.58) or (3.157) for the two- or three-dimensional
case, respectively,

Rc
v = ∂Uc

v (uv)
∂uv

and Kc
T v = ∂Rc

v(uv)
∂uv

. (6.42)

All derivations can be easily executed with the symbolic tool AceGen, see Korelc
and Wriggers (2016).

Quadratic ansatz, serendipity element. The derivation of the projection for the
ansatz of a serendipity element was described in Sect. 3.1.7 for a quadratic interpola-
tion. In Eq. (3.93) the internalmomentm1 was expressed in term of the displacements
ūv, see (3.85), at the nodes of the virtual element �v

m1(ūv) =
∫

�v

H(2,2)
u (X,Y ) d� [G(2)]−1 [H̄(2)]T ūv (6.43)

which yields a constant dependency of the internal moment on the nodal displace-
ments. It can be evaluated at element level since Xk are the known coordinates of
the nodal points and the integral in (6.43) can be computed using the formulae in
Appendix A. Thus the projection follows in short notation as

m1(ūv) = Pm1 ūv with Pm1 =
∫

�v

H(X,Y ) d� G−1 [H̄(2)]T . (6.44)

Based on this result the projection matrix Bq
e in (3.74) can be adjusted with (3.68)

for the serendipity element

B(2)
s v = [

PT
1 PT

2 . . . PT
2k−1 P

T
2k P

T
2k+1 . . .PT

2nV

]+ B1 T
π divPm1 . (6.45)

It has now the size (10 × 4nV ). This leads with (3.75) to the expression for the
projected gradient, see also (3.94),
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∇uπ = B(2,2)
u π (X,Y ) [G(2)

π ]−1 B(2)
s v ūv = B(2,2)

u π (X,Y )P
(2,2)
∇ S ūv (6.46)

which is a linear function ofXwithin the serendipity element.We note that thematrix
Bq

π (X,Y ) has the size (4 × 10) while the projector P(2,2)
∇ S is of size (10 × 4nV ). The

gradient∇uπ in the equation above is given in Voigt notation. For the formulation of
finite deformations it ismore convenient to express the gradient in tensor notation, e.g.
in the 2d case by a 2 × 2-matrix. This can be achieved by assembling the components
of the displacement gradient in a matrix

∇uπ =

⎧⎪⎪⎨
⎪⎪⎩

ux,x

ux,y

uy,x

uy,y

⎫⎪⎪⎬
⎪⎪⎭

=⇒ ∇uπ =
[
ux,x ux,y

uy,x uy,y

]
(6.47)

where the components uα,β follow by evaluating the matrix B(2,2)
u π , see (3.63), row

wise. For example

ux,x = 〈
1 0 0 0 X 0 Y 0 0 0

〉
P

(2,2)
∇ S ūv .

Hence the components uα,β of the displacement gradient ∇uπ depend on the nodal
degrees of freedom ūv and the coordinates X = (X,Y ) inside the virtual element
�v. To simplify notation we introduce for the tensor notation the projectorGS(X,Y )

such that
∇uπ = GS(X,Y ) ūv . (6.48)

Now the deformation gradient Fπ = 1 + ∇uπ can be computed and with that
the right Cauchy Green tensor Cπ and the Jacobian Jπ = det Fπ . Based on these
quantities the first part in the integral in (6.38) can be evaluated for the serendipity
virtual element. It is related to the strain energy (6.39) and thus will be a nonlinear
function of ūv and the coordinates X.

In the geometrically linear case it was possible to compute the integral on the
left side of (6.41) exactly by using integration formulae that only needed to be
evaluated at the edges of the virtual element. Due to the nonlinearities of the finite
strain formulation this is no longer possible. Hence numerical integration has to be
applied.4 This can be performed by subdividing the virtual element into nint internal
triangles �i

m , see Fig. 6.15

∫

�v

[
�c(∇uπ )

]
d� =

nint∑
m=1

∫

�i
m

[
�c(∇uπ )

]
d� . (6.49)

4 The approximation uh is in general not known in the virtual element, see assumption (a0) to (a3)
in Sect. 3.1.1 for the space Vh . However the ansatz uπ can be employed in the virtual element by
using the equivalent projector of the relaxed space Wh based on (a3)’ and (a3)” in Sect. 3.1.2.
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Fig. 6.15 Internal triangular mesh for integration of the consistency part

Once the sub-triangularization is finalised each integral over �i
m is evaluated by a

Gauss point integration. For the efficient implementation of the numerical integration
a coordinate transformation is performed using a linear isoparametric map,5 see
(6.29), X = ∑3

i=1 NI (ξ , η)XI where XI are the vertices of the virtual element,
black points in Fig. 6.15. This yields

∫

�i
m

�c[∇uπ (X, Y )]d� =
ξ=1∫

ξ=0

η=1−ξ∫

η=0

�c[∇uπ (ξ, η)] det Je(ξ, η) dη dξ

=
ng∑
g=1

wg �c[∇uπ (ξg, ηg)] det Je(ξg, ηg) (6.50)

where det Je(ξg, ηg) is the Jacobian of the isoparametric mapping from the triangle
�i

m to the reference triangle�R in the ξ, η reference space, see Fig. 6.15. Theweights

5 It is not necessary to use a quadratic map based on the vertex and edge nodes of an internal triangle
since the edge nodes are midpoints between the vertices and thus a coordinate transformation using
a quadratic ansatz function will actually reduce to the linear ansatz provided above.
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of theGauss integration are denoted bywg and ξg , ηg are theGauss point coordinates.
Usually ng = 3 Gauss points are sufficient for the integration.

Expression (6.50) is a nonlinear function of the nodal displacements ūv. The
residual and tangent matrix for the consistency part of the serendipity virtual element
can now be obtained by applying Eq. (6.42).

6.2.2 Stability Term

For the quadratic serendipity virtual element we will use only the bi-linear stabiliza-
tion. Energy stabilization looses for higher order ansatz functions its advantages for
two reasons:

• The order of the internal triangles has to be the same as for the virtual element
ansatz. Otherwise the order of convergence is reduced. This leads to internal tri-
angles with extra nodes and thus reduces the efficiency of the element due to the
corresponding additional degrees of freedom.

• The bending behaviour of quadratic elements is already very good, see e.g. the
example Fig. 6.13, thus there is no need to improve the element by such stabiliza-
tion.

Hence for higher order virtual elements it only makes sense to use the discrete bi-
linear form (6.23). The bi-linear stabilization can be employed without changes as
well for virtual elements with linear as with quadratic ansatz spaces. Since the stiff-
ness of the solid can change in nonlinear analysis due to the deformation state, the
parameters of the stabilization term have to be adjusted accordingly. Some sugges-
tions for deformation depending changes of the stabiity parameters for the bi-linear
discrete form in (6.23) can be found below.

The stabilization parameter in (6.23) can be written for a problem of spatial
dimension d as

γ (uv) = α(uv)
hdv

tr
[
[H(d,n)

u (Xk)]TH(d,n)
u (Xk)

] (6.51)

which depends in nonlinear situations on the deformation uv. The ansatz function
(order n) for the projection H(d,n)

u (Xk) is evaluated at the vertex Xk , he is a charac-
teristic element diameter and α(uv) is a parameter. Two different possibilities exist
for the selection of the parameter α(uv):

• In Beirão da Veiga et al. (2015) the parameter α(uv) is chosen as α(uv) =
‖ ∂ P

∂F (Fπ )‖, where P is the first Piola-Kirchhoff stress tensor related to the consis-
tency term.
An alternative stabilization parameterα(uv) = 1

4 tr[ ∂ P
∂F (Fπ )], referred to as a trace-

based stabilization, was proposed in Chi et al. (2017). Both stabilization param-
eters take into account the deformation state of the solid and thus are a far better
approximations than a constant parameter as selected in the geometrical linear
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analysis. For the special case of the strain energy function, like (6.39), the trace of
constitutive tangent can be obtained explicitly

α(uv) = 1

4
tr[ ∂2�

∂C∂C
] = 1

4
{2μ + λ[J 2

π [tr(C−1
π )]2 − (J 2

π − 1)tr(C−1
π · C−1

π )]} .

(6.52)
• Another possibility is to use the trace of the global tangent matrix KT for the
stabilization parameter. With N being the total number of unknowns of the global
equation system the parameter is given by

α(uv) = 1

4 N

(
N∑
i=1

(Kc
T ii )

2

) 1
2

or α(uv) = 1

4 N
trKc

T = 1

N

N∑
i=1

Kc
T ii .

(6.53)
The number of unknowns (degrees of freedom) follow with the dimension d of a
solid mechanics problem as N = d nN for an element with nN nodes . This type
of stabilization can be very good since it is direcly related to the current stiffness
matrix, but it is not feasible to linearize this term in a consistent manner.

Still, all choices for the stabilization parameter present a challenge when lineariz-
ing in a Newton procedure, even with the use of the symbolic tool AceGen, see
Korelc and Wriggers (2016), which automatically provides the code for the residual
vector and tangent stiffness matrix, see e.g. De Bellis et al. (2019) where (6.52) was
consistently linearized. If linearization is not possible then the parameter has to be
computed at the last converged load step and then kept constant during the iteration
within the load step. This leads eventually to incremental load stepping, even if the
physical problem allows the computation of the solution in one step.

Again, as in the consistency part, the stabilization energy is a nonlinear function
of the nodal displacements. All further derivations leading to the residual vector Rv

and the tangent matrix KT v were performed with the symbolic tool AceGen, see
Korelc and Wriggers (2016). This yields for (6.23)

Rs
v = ∂Ustab(uv)

∂uv
and Ks

T v = ∂Rs
v(uv)
∂uv

. (6.54)

Thus the total residual and tangent matrix of the virtual element are given by the sum
of expressions (6.110) and (8.14):

Rv = Rc
v + Rs

v and KT v = Kc
T v + Ks

T v .
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6.2.3 Virtual Elements for Three-Dimensional Problems
in Nonlinear Elasticity

Here we discuss the construction of a three-dimensional solid element for a lin-
ear ansatz. Basically the derivatiion of residual and tangent stiffness matrix follow
along the same lines as in the two-dimensional case. Differences are discussed below.

Consistency term. In the three dimensional case the strain energy part of the
consistency term is computed for a linear ansatzv exactly in the same way as (6.41).
This is due to the fact that the projected gradient ∇uπ is constant, see (3.156)

Uc(uπ ) =
∫

�v

[
�c(uπ )

]
d� = �c(uπ )�v . (6.55)

Hence the only remaining task is the computation of the volume �v of the three-
dimensional virtual element. Using the divergence theorem the integral over the nF

faces � f

�v = 1

3

nF∑
f =1

∫

� f

Xe · N f d� = 1

3

nF∑
f =1

NT
f

∫

� f

Xe d� (6.56)

has to be evaluated with N f being the normal vector of a face that is constant and
Xe are the coordinates describing the face.

Loading term. Another difference to the two-dimensional element is related to
the loading terms where the volume load has now to be computed over the volume of
the element and the surface tractions have to be evaluated at the faces. The volume
load is given by

U f =
∫

�v

uπ · f̄ d� = uT
v [P(3,1)

u ]T
∫

�v

[H(3,1)
u (X,Y, Z)]T f̄ d� (6.57)

where P
(3,1)
u and H(3,1)

u (X,Y, Z) can be found in (3.157). The volume integral can
be evaluated for any polynomial function of the volume load f̄ using (A.25) or the
algortihm in Mirtich (1996). For the specific case of a constant volume load (A.35)
can be applied.

The load related to the surface tractions t̄ is given by

U σ =
∫

�σe

uh · t̄ d� =
nFt∑
f =1

∫

� f

uh · t̄ d� . (6.58)
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Here the evaluation follows over the nFt faces that are loaded by the traction t̄ . The
integration is carried out by approximating

∫
� f

uh = ∫
� f

uπ and then transforming
the ansatz for uπ to the local coordinate system of the face � f , see (3.142), with u f

unknowns at its vertices. Then we have two possibilities

1. Perform a computation over the face using (3.146). We note that this yields an
exact integration for loads that can be described by polynomials, see (3.141),

U σ
F =

∫

� f

uπ · t̄ d� = 1

2

∫

γ f

(∫
uπ · t̄ dX f e f T

X Ne +
∫

uπ · t̄ dY f e f T
Y Ne

)
dγ

(6.59)
where uπ (X f ,Y f ) · t̄(X f ,Y f ) has to be expressed by the local coordinate system
(3.142) (X f ,Y f ) and Ne is given by (3.144), see Fig. 3.11.

2. Approximate uπ at the face by a triangularization � f = ∪nτ

τ=1�τ using the ansatz
(3.151) for each of the triangles�τ with the ansatz uτ

h ∈ u f , see also (3.152). This
integration works for general loadings, that are described by arbitrary functions,
and yields

U σ
τ =

∫

� f

uπ · t̄ d� =
nF∑
f =1

nτ∑
τ=1

∫

�τ

uτ
h · t̄ d� =

nF∑
f =1

nτ∑
τ=1

ng∑
g=1

wguτ
h(ξ g) · t̄(ξ g)

(6.60)
where uτ

h is given in (3.151), see Fig. 3.12, and ξ g are the Gauss points used to
integrate over each of the triangles �τ .

Stability term. The energy stabilization technique was presented in Hudobivnik
et al. (2018) for three-dimensional virtual elements undergoing finite elasto-plastic
deformations.6 This procedure can, of course, also be applied for hyperelastic
response. It is based on the split (6.37) into the consistency and stabilization part
of the energy where the stabilization energy (5.31) can be introduced. The only dif-
ference to the two-dimensional case is the way how to compute the stabilization
integral

Û (uh) =
ne

A
e=1

∫

�v

�̂(uh)d� . (6.61)

In the previous section the integral (6.61)was evaluated using an internal triangular
mesh. This idea is now applied to the 3D problem in a similar way. In order to
approximate the displacement field uh in (6.61) an inscribed tetrahedral finite element
mesh is introduced, seeFig. 6.16. It consists ofnP linear four-noded tetrahedra that are
only connected to the nodes of the virtual element. Again, as in the two-dimensional
case, no additional degrees of freedom are introduced. In Hudobivnik et al. (2018)

6 The discrete bi-linear form (6.23) can be employed for the stabilization of the three-dimensional
element as well. Following Sect. 6.2.2, the stabilization parameter depends in the nonlinear case on
the solution uπ and can be selected in the same manner as in (6.51).
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Fig. 6.16 Internal tetrahedral mesh

it was shown that such a mesh is sufficient to compute the stabilization energy in
(6.61). The same function as in (6.55) is chosen as stabilization energy. By using a
linear ansatz for the displacement field an approximation can be computed for the
strains within each tetrahedron �i

m of the inscribed mesh.
Based on this internal mesh the displacement gradient ∇ um

h can be computed in
each tetrahedral element. It is constant within the element due to the linear ansatz
for the four-noded thetrahedron. Hence the discrete deformation gradient Fi

m =
1 + ∇ um

h is constant as well within each element �i
m which leads to a very simple

integration scheme for the tetrahedra �i
m defining the inscribed mesh.7

With the above approximations the pseudo potential Û (uh) within a virtual ele-
ment v is a result of the assembly of all internal tetrahedral elements

Û (uh) =
nm

A
i=1

∫

�i
m

�̂(∇ um
h ) d� . (6.62)

where nm is the total number of internal tetrahedral elements within a virtual element
�v and ∇ um

h the part of the nodal displacements in a virtual element that is related
to the specific tetrahedral element �i

m .
The values of the Lamé parameters in the pseudo potential (6.62) have to be

different from the original ones. The same procedure as in the two-dimensional case
can be employed to compute the constitutive parameters �̂ and μ̂ for the stabilization
energy based on (6.37). The only difference is the computation of the parameter β

related to the shape of the virtual element. In the three-dimensional case this geometry
parameter follows from the inner and outer radii, R2

i , R2
a respectively, see Fig. 6.17,

7 The shape of the triangles is not optimal for a finite element discretization. Since we only want to
compute a stabilization and thus the classical shape restrictions are not relevant. However, to fulfil
the patch test the discretization has to be the same for elements at shared faces.
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Fig. 6.17 Inner and outer
radius of a virtual element

β = 2
√
2 (1 + ν)

R2
i

R2
a − 2 R2

i

. (6.63)

The inner radius is computed by using the distance from the geometrical centre to the
convex hull of the virtual element while the outer radius is defined by the maximum
distance of nodes related to the virtual element, see Fig. 6.17. Again the for a cube

the ratio R2
i

R2
a−2 R2

i
is one.

Influence of integration and stabilization on the loading term It should be
noted that stabilization, either using the energy form (6.62) or the bi-linear form
(6.23), and the way the integration over the faces is performed leads to different
nodal values for the traction loading term. These have to be selected with care in
order to fulfil the patch test. In general we have four different cases

1. Bi-linear form of the stabilization and edge integration to obtain ∇uπ for the
consistency part, see (3.146) and (3.147). Here one has to use U σ

F , see (6.59).
2. Bi-linear form of the stabilization and integration of the consistency part to obtain

∇uπ using triangularization of the faces � f , see (3.152). In this case U σ
τ has to

be applied, see (6.60).
3. Energy stabilization and and edge integration to obtain ∇uπ for the consistency

part, see see (3.146) and (3.147). Here the weighted term (1 − β)U σ
τ + βU σ

F
has to be employed where β is the reduction parameter for the Lamé constants,
computed in (6.63).
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Fig. 6.18 Patch test using a VE-H2S and a Voronoi mesh (VE-VOR)

4. Energy stabilization and integration of the consistency part to obtain ∇uπ using
triangularization of the faces � f , see (3.152). This requires the loading term U σ

τ ,
see (6.60).

The patch test is fulfilled in all cases where the integration is performed according
to the above list. This is demonstrated for two meshes (VE-H2S and VE-VOR) in
Fig. 6.18 for a block undergoing finite deformations under constant pressure.

Residual and tangent. All further computations leading to the residual vector Rv

and the tangent matrix Kv of the element can be performed with the symbolic tool
AceGen, see Korelc andWriggers (2016). This yields for all energy contributions the
total residual and tangent matrix of the virtual element U = Uc +U f +U σ + Û

Rv = ∂U (uv)
∂uv

and KTv = ∂Rv(uv)
∂uv

. (6.64)

Note that the loading terms U f and U σ only contribute to the residuum.8

6.2.4 General Solution for Nonlinear Equations

Assembling all element contributions within a discretization yields the global matrix
system that is related to the weak form or potential. First the residual vectors in (6.54)
for the two-dimensional case or (6.64) for the three-dimensional case lead together
with the loading terms to

8 Contributions to the tangentmatrix appear for displacement dependent loading, like follower loads
due to fluid pressure, see e.g. Wriggers (2008).
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Fig. 6.19 Sketch of a load
stepping procedure

nv

A
v=1

[
Rv(uv) − λ f̄v

] = 0 =⇒ R(u) − λ f̄ = G(u , λ) = 0 (6.65)

where u are the nodal unknowns of the global discrete problem and λ is a load
multiplier which will be increased in steps up to a final value λnsteps in a load stepping
procedure, see Fig. 6.19. Load stepping can be necessary for the solution of highly
nonlinear problems.

The nonlinear algebraic equation (6.65) can be solved by different methods, see
e.g. Zienkiewicz and Taylor (2000b) andWriggers (2008). For problems undergoing
finite elastic deformations the Newton-Raphsonmethod is the most efficient choice.9

It leads to an iterationwithin each load step that has quadratic convergence properties,
see Algorithm 1.

The quantity u0 is the displacement field at the beginning of the load stepping
procedure. The tolerance ε is usually set to ε = 10−8 since the Newton Raphson
algorithm depicts a quadratic convergence. In most applications 4 to 6 iterations per

Algorithm 1: Newton-Raphson algorithm for finite deformations

Given: u0 , λ1 Find: un+1 ;

for n = 0 to (nsteps − 1) do
u0n+1 = un ;
for i = 0 to niter do

KT (uin+1)�ui+1
n+1 = −G(uin+1 , λn+1);

ui+1
n+1 = uin+1 + �ui+1

n+1;

‖G(ui+1
n+1)‖ ≤ ε −→ STOP

end

un+1 = ui+1
n+1;

end

9 Depending on the nonlinearity of the problem, more sofisticated schemes, like line search or arc-
length procedures, can be applied to stabilize the convergence behaviour, for more details, see e.g.
Wriggers (2008).
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load step are necessary to reach convergence. to be on the safe side, niter can be set
to 15. If more than niter iterations are needed, it is advisable to reduce the load factor,
e.g. λk+1 = 1

2 (λk+1 + λk).
Within the Algorithm 1 the matrices and vectors

G =
nv

A
v=1

Rv − λn

nv

A
v=1

f̄v and KT =
nv

A
v=1

KT v (6.66)

are the global residual and the global tangent, respectively.

6.2.5 Numerical Examples, Compressible Case

Several examples are considered to compare the low order virtual element formula-
tion and for some cases also the quadratic serendipity virtual element with existing
state-of-the-art finite elements. All examples are subjected to loads that lead to finite
deformation strain states and thus the depicted deformation states are not scaled. All
formulations employ the potential (6.38) when the compressible case is considered.
Within the virtual element method it is possible to use different meshes. The general
definition of the type of meshes applied in the numerical examples can be found in
Sect.B. If a finer distinction between mesh types or virtual elements is needed it will
be defined within the sections describing the examples.

The computations are performed using the Newton-Rapson algorithm described
above. When necessary a load stepping procedure will be applied. All formulations
are linearized in a consistent manner using AceGen, hence quadratic convergence is
achieved. In the first example, some basic features of the virtual element technology
regarding comparisons to FEM and selection of the stabilization parameters are
discussed in detail. This example and the next one are related to the work Wriggers
et al. (2017).

6.2.5.1 Cook’s Membrane Problem

Cook’s membrane problem described in Sect. 6.1.4, see Fig. 6.10, is also used to
discuss the behaviour of virtual elements in the nonlinear range. The membrane is
again loaded at the right end by a constant load q0 distributed in vertical direction,
as depicted in Fig. 6.10.

The selected constitutive parameters for the Lamé constants are μ = 40 and � =
100 which results in a compressible material. The distributed load is given as q0 = 4.

The mesh, used to discretize the membrane, was automatically generated by the
meshing tools inMathematica. Different mesh types are employed (a regular mesh,
a distorted mesh and a Voronoi mesh) to illustrate the performance of the low order
virtual element with energy stabilization.
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Fig. 6.20 Internal mesh for a regular shaped virtual element with 8 nodes (VE-Q2S)

Fig. 6.21 Distorted mesh d1 and d2 (VE-Q2S) and Voronoi mesh (VE-VOR)

The regular mesh is based on the VE-Q2S element, see left side of Fig. 6.21, that
has an internal triangular mesh with six triangles �i

m as depicted in Fig. 6.20. The
internal mesh is an arbitrary choice, it could have been constructed in a different way.

A selection of the different meshes can be found in Fig. 6.21 where the undistorted
and two types of distorted meshes are depicted. The mesh in the middle is a mesh
that can be obtained form the standard mesh on the left side by randomly changing
the nodal placements of the corner and side nodes of the element. Note that this leads
to a mesh with convex and non-convex shaped elements. A Voronoi mesh is shown
on the right side of Fig. 6.21 which includes elements with arbitrary number of nodes
and element sizes in a random manner. In all distorted cases a special optimization
procedure, provided inMathematica, has been applied to generate the internal mesh
for the energy stabilization.

Different mesh densities were employed to compute the solution for all generated
types of meshes. The mesh refinement is uniform in the sense that the finer meshes
are included in the coarser meshes for the regular and the distorted mesh types of
type d1 and d2. This enables convergence studies that illustrate differences of the
formulations. The number 2N denotes the mesh division: for example, in the left part
of Fig. 6.21, a mesh with division of 23 = 8 is depicted. The sequence of 2N that was
used in this study is N ∈ {1 , 2 , 3 , 4 , 5 , 6 , 7 , 8}. Note that the final mesh density
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Fig. 6.22 Deformed configuration of the cantilever beam for a regular (VE-Q2S), a distorted
(VE-Q2S) and a Voronoi mesh (VE-VOR)

Table 6.1 Convergence rate, load applied in one load step

Iteration 3 4 5 6 7

‖R(u)‖ 3.59 · 10−1 7, 21 · 10−2 9.46 · 10−4 3.84 · 10−7 1.19 · 10−12

leads to roughly 4 · 105 degrees of freedom. The Voronoi meshes are generated
using randomly distributed nodes at each refinement step thus the finer meshes are
not embedded in the coarser meshes.

In order to test the robustness of the virtual element formulation the load was
applied in only one load step. Due to the consistent linearization of the element resid-
ual quadratic convergence is achieved. The deformation state, depicted in Fig. 6.22
for a mesh with subdivision N = 3, is computed for all other mesh divisions. All
of them need 7 iterations to converge. The convergence rate of the Newton-Rapson
method is depicted in Table6.1 for a Cook’s membrane problem with 32 × 32 ele-
ments.

Mesh convergence is investigated using the vertical displacement of the upper
node, uY (48, 60) at the right end of Cook’s membrane. The study is performed for
the virtual element formulation VE-Q2S. The Lamé parameters for the stabiliza-
tion term in the strain energy function were computed using the formulation leading
to (6.34) and (6.36), which resulted in �̂ = 25 and μ̂ = 17 for the regular mesh.
The virtual element VE-Q2S is compared for the compressible case with a standard
biquadratic FE-Q2 finite element that has a theoretical higher convergence rate, see
Fig. 6.23. It is obvious that the FE-Q2 element has a superior performance, however
the VE-Q2S element for a mesh with N = 4, leading to a 16 × 16 element mesh, is
already very close to the solution of the FE-Q2 element. For a mesh with N > 4 the
solution of the VE-Q2S element is almost not distinguishable from the Q2-element
and thus performs almost as well. It can be observed that the VE-Q2S formulation
converges from below like classical displacement finite elements.
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Fig. 6.23 Convergence
Study: VE-Q2S and FE-Q2
element
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VEM versus FEM using the internal mesh. One could argue that the construction
of an element consisting only of the internal triangular mesh, employed for the sta-
bilization, will lead to the same result as the virtual element since it has the same
number of nodes but more elements, see Fig. 6.20. To show that the VE-Q2S is supe-
rior to such an element, here called FE-T6 element, the FE-T6 element was coded
as a macro-element with the shape of the virtual element, but consisting only of the
internal triangles. The internalmesh thatwas used to create the FE-T6macro-element
is shown in Fig. 6.20. With this FE-T6 macro-element Cook’s membrane problem is
solved for the compressible case based on the potential (6.38). The results stemming
from the FE-T6 element are presented in Fig. 6.24 together with the response of the
VE-Q2S virtual element. Again the convergence behaviour of the vertical displace-
ment at point (48, 60) is depicted. Clearly the VE-Q2S element is superior to the
FE-T6 element. This can be explained by the fact that the consistency term relaxes
the response—like a one point (under) integrated finite element—and the constitutive
parameter of the stabilization term are derived from the equivalent bending energy,
see (6.34). This together leads to a superior bending performance of the VE-Q2S
element. A similar performance can also be observed in case of small strains.

Sensitivity of the solutionwith respect to the stabilizationparameterAsensitivity
study with respect to the choice of the constitutive parameters of the stabilization
energy (5.31) is performed next. This study was conducted for 32 × 32 (N = 5) and
64 × 64 (N = 6) meshes.

The outcome is shown in Fig. 6.25 where the results of the VE-Q2S element are
compared for different values of α = �̂ /�with the solution obtained by the FE-Q2
element. The value of the shear modulus μ̂ is given by μ̂ = α μ. In a range of the
parameter 0.1 ≤ α ≤ 1 the deviations from the solutions obtained with the FE-Q2
finite element are acceptable, being less than 1%. Note that the parameters �̂ and μ̂
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Fig. 6.24 Convergence
Study: VE-Q2S and Fe-T6
element
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Fig. 6.25 Sensitivity Study
for a mesh with N = 5 and
N = 6: VE-Q2S and FE-Q2
element
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obtained using the formula (6.34), are different for each element, but are in the range
of the smallest deviation from the FE-Q2 results, thus they seem to be optimal.

It should be noted that for α < 0.1 the solution is no longer stable, showing light
hour-glass modes that become distinct at α < 0.05.

6.2.5.2 Thin Beam

In this example virtual element response is investigated for bending situations. Clas-
sically, discretization schemes with linear ansatz functions exhibit shear locking and
thus provide solutions that are too stiff. However, due to the special choice of the con-
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Py

L
H

Fig. 6.26 Beam under a point load PY ; geometry and boundary conditions

stitutive parameters �̂ and μ̂ within the energy stabilization it is possible to generate
a low order virtual element with good convergence properties in bending dominated
structural response. Here the finite elements FE-Q1 and FE-Q2S and the VE-Q2S
element are compared.

A beam undergoing large deflections is considered. The beam, depicted in
Fig. 6.26, is thin, having a height to length ratio of H / L = 1 / 100. It is loaded
at the right end by a point load PY and clamped at the left end. The constitutive data
are selected to be E = 107 for the Young’s modulus and ν = 0.3 for the Poisson ratio
which is equivalent to Lamé constants � = 5769231 and μ = 384615. The applied
load has the magnitude PY = 48.

The analysis is performed with virtual elements using a mesh with rectangular
shaped elements. Here the 8-node virtual element VE-Q2S is selected which has
been already applied in Cook’s membrane problem. The results obtained with the
virtual element are compared to solutions generated with FE-Q1 and FE-Q2S finite
elements. The latter uses a quadratic interpolation for the displacement field and
thus has a convergence rate which is one order higher than the convergence rate of
the virtual element VE-Q2S. The meshes are selected such that the elements have a
length to height ratio larger than 10 in order to demonstrate the applicability of the
new virtual element formulation for severe bending situations.

Figure6.27 reports a mesh convergence study on the basis of a series of meshes
with 10 × 1, 20 × 2, 40 × 4, 80 × 6, 160 × 8 and 320 × 10 elements The graphs in
Fig. 6.27 depict a convergence behaviour of the VE-Q2S element that is nearly as
good as the oneof the quadratic FE-Q2Selement, despite that it only uses linear ansatz
functions. Even for the coarse mesh with only 10 elements the VE-Q2S element
deviates only by 3 % from the converged solution. The FE-Q1 element depicts the
classical bending locking. Only for a very fine mesh, with 1280 × 14 elements, it
converges to the solution.

For the given load the total deflection is computed within one load step using
7Newton iterations. This leads to the deformation state depicted on the left side of
Fig. 6.28. On the right side side of Fig. 6.28 the deflection of the beam is shown for
a load that is 10 times larger. In that case 3 load steps with a total of 22Newton
iterations are needed to obtain the final state with the VE-Q2S element. The vertical
displacement u10×1

Y = 66.3 at the beam end deviates for a coarse mesh about 10%
from the converged solution uconvY = 72.17, while a solution u20×2

Y = 70.66 with a
20 × 2 mesh is only 2% away from the converged solution.
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Fig. 6.27 Convergence study for the beam: VE-Q2S-, FE-Q1-, FE-Q2S-element

Fig. 6.28 Deflection of the beam for the coarse discretization

6.2.5.3 Block Under Partial Constant Load in Three Dimensions

A cube is subjected to a constant vertical load q on a part of its upper surface, see
Fig. 6.29. The geometrical data are given as height h = 50, width and depth a = 100
and loading surface a / 2 = 50. The Young’s modulus is selected to be E = 10 and
the Poisson ratio is set to ν = 1 /3 .

Theboundary conditions restrict the displacements at the bottomof the block (Z =
0 → uZ = 0) at the top of the block (z = h → uX = uY = 0). Due to symmetry it
is sufficient to model only one quarter of the block. This requires the additional
boundary conditions (X = a / 2 → uX = 0 and Y = a / 2 → uY = 0).

The cube is discretized using finite and virtual elements. The finite element solu-
tions is obtained with linear and quadratic hexahedral (FE-H1, FE-H2S). Regular
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Fig. 6.29 Block under partially constant load q

Fig. 6.30 Regular (VE-H1) andVoronoi (VE-VOU) meshes

(VE-H1) and Voronoi meshes (VE-VOU) are employed for the virtual element solu-
tions. The regular and Voronoi meshes are depicted in Fig. 6.30.

The results of the virtual element formulation are computed using the energy sta-
bilization, see Sect. 6.2.3, with a parameter of β = 1 / 3 for the regular and Voronoi
meshes. The load was applied in 5 steps for finite and virtual elements. The Newton
algorithm required 6 iteration steps per load step. In total, 30 iterations were needed
for both discretizations showing the robustness of the virtual element method. The
final deformed configurations using a regular mesh for the finite element discretiza-
tion (FE-H1) and the virtual element discretization (VE-H1) are depicted in Fig. 6.31.
One can observe that both discretizations yield a stable solution despite a very high
mesh distortion in the vicinity of the load. Thus the virtual element scheme is able to
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Fig. 6.31 Finite element solutions using finite (FE-H1) and virtual (VE-H1) elements

Fig. 6.32 Virtual element
solutions (VE-VOU) using a
Voronoi mesh

compute numerical solutions as well as finite element schemes for three-dimensional
problems undergoing finite deformations. This is also true for a virtual element solu-
tion using Voronoi meshes, as depicted in Fig. 6.32. Also here, the elements allow
for large distortions and the robustness with respect to the total number of iterations
is the same as for the regular meshes. However this is only achieved with the energy
stabilization. When using the bi-linear form (6.23), more iterations and load steps
are necessary.

Finally the convergence behaviour of the three-dimensional virtual element is
demonstrated in Fig. 6.33 inwhich the results of a FE-H1 finite element are compared
with virtual element (VE-H1) solution are compared for a regular H1 mesh. The
“converged” solutionwas computedwith a finite elementmesh of N = 6with around
8 · 105 unknowns. Both formulations converge smoothly.
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Fig. 6.33 Deformation
uZ (50, 50, 50) of the block
under constant load q .
Convergence study: VE-H1,
FE-H1
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6.3 Incompressible Elasticity

Materials that do not allow volume change are called incompressible. The formula-
tion of a solid is then based on the inclusion of the volume constraint J − 1 = 0, see
Sect. 2.3. This can be achieved by

• introduction of a Lagrangianmultiplier, the pressure p, that enforces the constraint
by the additional term

∫
�
p [ J (u) − 1 ]dV in the potential exactly, see (2.89), or

• by using an approximation method, like the penalty approach where the term∫
�

ε
2 [ J (u) − 1 ]2 dV is added to the potential. This formulation enforces the

incompressibility constraint in a weak sense and leads to a nearly incompress-
ible response, see also (2.90).

Problems with constraints are generally of a mixed nature. Related mixed formu-
lations were discussed in Brezzi et al. (2014) for virtual elements based on the
geometrically linear theory of elasticity, in Beirão da Veiga et al. (2018) for Navier-
Stokes equations and in Wriggers et al. (2017) for two-dimensional finite strain
elasticity problems. The first two articles introduce H(div)-spaces to account for the
incompressibility constraint Div u = 0. Further investigations regarding robustness
of divergence free approximations can be found in Frerichs and Merdon (2022). We
note that the use of divergence free ansatz spaces is not straightforward in case of the
nonlinear constraint J (u) − 1 = 0. Thus the following formulations for finite strain
elasticity will be based on the use of the spaces L2 for the pressure field and H 1 for
the displacements when enforcing the constraint exactly. This yields Taylor-Hood
type elements which are known to be stable for certain ansatz spaces in linear elas-
ticity, see e.g. Brezzi and Fortin (1991).
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Strong enforcement of the incompressibility constraint For an exact formulation
of the incompressibility constraint the potential (2.89) has to be employed. The first
part in this potential can be computed by using the results obtained in the last section.
Evaluating the incompressibility constraint by the projection uπ leads to

Uc
v (uπ , p) =

∫

�v

[
� i (uπ ) − f̄ · uπ

]
d� +

∫

�v

p [J (uπ ) − 1 ] d� −
∫

�σ
e

t̄ · uπ d� .

(6.67)
Here we can use the strain energy (2.60) for the incompressible strain case10

� i (uπ ) = μ

2
[tr C̄(uπ ) − 3] (6.68)

which includes the isochoric Cauchy-Green strain and is free of volume changes.
The isochoric right Cauchy-Green strain follows from (2.11) and can be expressed
by the projected quantities for the Cauchy-Green strain and the volume change as
C̄(uπ ) = J−2 / 3

π Cπ . Thus we have for a virtual element with linear ansatz functions

∫

�v

[
� i (uπ )

]
d� = μ

2

[
tr[ J−2 / 3

π Cπ ] − 3
]

�v . (6.69)

Note that the right hand side of (6.69) is still a nonlinear function with respect to the
nodal degrees of freedom uv. In case of higher order ansatz functions the integration
of the strain energy (6.68) over the element

∫

�v

μ

2

[
tr[ J−2 / 3

π Cπ ] − 3
]
d� (6.70)

has to be performed in the same way as described in Sect. 6.2.1 for the quadratic
ansatz.

6.3.1 Linear Virtual Element with Constant Pressure

When a linear ansatz space is applied to approximate the displacement field uh it is
best to use a constant pressure p within the virtual element to obtain a locking free
behaviour for incompressible problems in solid mechanics. This choice has a long
tradition in finite element methods leading to the well known FE-Q1-P0 elements,
see e.g. Wriggers (2008). The related virtual element will be derived next.

10 It is also possible to use a strain energy for a compressiblematerial, like (2.55), since the constraint
J − 1 = 0 will eliminate in any case the compressible part from the response.
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The Jacobian Jπ occurswithin the incompressibility constraint. It canbe computed
as Jπ = det Fπ . Here we follow a different approach, which was introduced in Chi
et al. (2017). For a linear ansatz Jπ is constant in �v. Thus, in the two-dimensional
case we can use the mass balance analogous to (2.17) and write Jπ = ωv /�v where
ωv is the area of the element in the deformed configuration and �v the area with
respect to the undeformed configuration. In the spirit of the virtual elementmethod the
deformed and undeformed areas are computed using an integral over the boundaries
�v and γv, respectively:

�v = 1

2

∫

�v

Xv · Nv d� = 1

2

nE∑
e=1

∫

�e

Xe · Ne d�

ωv = 1

2

∫

γv

xv · nv dγ = 1

2

nE∑
e=1

∫

γe

xe · ne dγ .

(6.71)

Here �e denotes a straight part of the edge between two vertices, see e.g. Fig. 3.4, of
the undeformed element edgewhile γe is the same edge in the deformed configuration
of the virtual element. The normal vector Ne is computed using (3.45) for an edge
of the virtual element. In the same way the deformed normal ne can be computed by
inserting in (3.45) the deformed configuration xe = Xe + ue where Xe is the vector
pointing to the boundary in the undeformed configuration.11

As a result, the incompressibility constraint (6.67) can be written

∫

�v

p [J (uπ ) − 1 ] d� = pv [ωv(uπ ) − �v ] (6.72)

for a constant approximation pressure pv in each element. The related virtual element,
which was described for finite strain hyperelastic material response inWriggers et al.
(2017), fulfills incompressibility at element level andwill be calledVE-“ET”-Iwhere
“ET” is defined in AppendixB.

11 The same procedure also holds in three dimensions. Only the factor in front of (6.71) changes
and the integration has to be carried out over the faces � f . This yields

�v = 1

3

∫

�v

Xv · Nv d� = 1

3

nF∑
e=1

∫

� f

X f · N f d� .

The same formula can be used for the deformed configuration ωv , see (6.71)2.
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6.3.2 Quadratic Serendipity Virtual Element with Linear
Pressure

A special mixed serendipity element with a linear ansatz of the pressure can be
constructed for incompressible problems. The equivalent finite element is known as
Taylor-Hood element (T2-P1), see e.g. Zienkiewicz and Taylor (2000b) and Boffi
et al. (2013). This formulation is known to be efficient and robust. It fulfils in the
geometrically linear case the Babauska-Brezzi condition which guarantees stability
of the element formulation. To meet the Babuska-Brezzi condition a linear ansatz
for the pressure p has to be used for virtual elements as well. Analogously to the
procedure employed for the approximations of the displacement in a virtual element
�v which lead to uπ = � uh , a projection of the pressure pπ = � ph will be applied
to project the approximation ph on a polynomial space. For that the ansatz

pπ = Hp(X,Y ) p̄ with Hp(X,Y ) = 〈 1 X Y 〉 and p̄ = 〈 a1 a2 a3 〉T (6.73)

is introduced. The serendipity element formulation, see Sect. 6.2, and the above
approximation for the pressure yields a virtual element with three nodes for the
displacement field at each edge γk and pressure variables at the vertices, see Fig. 6.34.

Since the pressures are linear the projection described in Sect. 3.1.2 yields the
coefficients ai in terms of the values of the pressure at the vertices X2k−1

∫

�v

∇ pπ d� =
∫

�v

∇ ph d� −→
∫

�v

∇ pπ d� =
∫

�v

ph n d�, (6.74)

and
nE∑
k=1

pπ (X2k−1) =
nE∑
k=1

ph(X2k−1). (6.75)

Fig. 6.34 Mixed virtual
serendipity T2-P1 element.
Displacement and pressure
degrees of freedom
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By inserting the ansatz (6.73) into (6.74) the gradient and its integral follows as

∇ pπ =
{
a2
a3

}
,

∫

�v

∇ pπ d� = �v

{
a2
a3

}
. (6.76)

Let us now introduce a linear ansatz for the pressure field ph = (1 − ξ) pk +
ξ pk+1 along the edge γk where pk are the nodal pressures at the vertices. We further
note that the construction of virtual elements is based on straight edges, hence the
normal vector nk at each edge k is constant, see Fig. 6.34. Insertion of the ansatz in
the right hand side of (6.74) yields

∫

�v

phn d� =
nE∑
k=1

∫

γk

[(1 − ξ) pk + ξ pk+1] lk dξ nk (6.77)

where ξ ∈ [0, 1] is the coordinate along the edge and lk the length of edge γk . The
evaluation of (6.77) and insertion into (6.74) leads together with (6.76) to

{
a2
a3

}
= 1

2�v

nE∑
k=1

(pk + pk+1) lk nk = Gp pv . (6.78)

This equation provides a linear map between the nodal pressures pk and the param-
eters a2 and a3. The associated matrix form on the right side follows by introducing
a vector that contains all nE nodal presures pv = 〈p1 p2 . . . pnV 〉T and the matrix

Gp = 1

2�v

〈
(lnEnnV + l1n1) (l1n1 + l2n2) . . . (lnV −1nnV −1 + lnV nnV )

〉
. (6.79)

Now (6.75) has to evaluated to obtain the coefficient a1

nV∑
k=1

〈 1 X2k−1 Y2k−1 〉
⎧⎨
⎩
a1
a2
a3

⎫⎬
⎭ =

nV∑
k=1

pk, (6.80)

after some algebra and by defining the vector Is = 〈 1 1 1 . . . 1 〉 the sum∑nE
k=1 pk

can be abbreviated by Is pe.With Xs = ∑nV
k=1 X2k−1 and Ys = ∑nV

k=1 Y2k−1 we finally
write

a1 = 1

nV

(
Is − 〈Xs Ys〉Gp

)
pv . (6.81)

Combination of the last equation with (6.78) yields the matrix form that determines
the coefficients ai as a function of the nodal pressure values pk
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⎧⎨
⎩
a1
a2
a3

⎫⎬
⎭ =

[ 1
nV

(
Is − 〈Xs Ys〉Gp

)
Gp

]
pv = Ap pv . (6.82)

With this map the projected pressure pπ in (6.73) can be linked directly to the nodal
pressures pv

pπ = {1 , X ,Y }Ap pv = Hp(X,Y )Ap pv . (6.83)

This result can be inserted into the incompressibility constraint (6.72)

∫

�v

pπ [J (uπ ) − 1] d� = pT
v A

T
p

∫

�v

[Hp(X,Y )]T (det[1 + GS(X,Y )uv] − 1) d�

(6.84)
where we have used (6.48) leading to the discrete form of the deformation gradi-
ent of the serendipity element Fπ = 1 + GS(X,Y )uv, which is linear function of
X at the element level and the Jacobian Jπ = det Fπ = det[1 + GS(X,Y )uv]. The
enforcement of incompressibility by this Lagrangian multiplier term leads to a non-
linear function of X ,Y and uv, but can be integrated with Gauss quadrature. It is
also possible to use a constant ansatz for ph along the edge in (6.87). Further details
and comparison of the different approaches can be found in Wriggers et al. (2021a).

Remark 6.2 A different discrete form of the incompressibility constraint (6.72) can
be developed based on a Taylor series expansion of the pressure at the barycenter Xb

of the virtual element �v

pπ (Xb + �X) = pπ (Xb) + ∇ pπ (Xb) · �Xb. (6.85)

Due the linear ansatz for pπ the gradient ∇ pπ is constant in the element and
pπ (Xb) = pπ0 is a constant value. Thus we can write with �Xb = X − Xb

pπ (X) = pπ0 + ∇ pπ · (X − Xb) . (6.86)

Again, a Galerkin projection can be applied to compute ∇ pπ

∫

�v

∇ pπ d� =
∫

�v

∇ ph d� =⇒ ∇ pπ = 1

�v

∫

�v

phn d� . (6.87)

The pressure ph is linear at the edge of the element which leads with (6.77) to

{
pπ,x

pπ,y

}
= 1

2�e

nE∑
k=1

(pk + pk+1) lk nk . (6.88)
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Thus the pressure field to be inserted in (6.72) follows with (6.78) as

pπ (X) = pπ0 + (X − Xb)
T
Gp pv. (6.89)

Similar to (6.84) the Lagrange multiplier term in the potential can be written as

∫

�v

pπ [J (uπ ) − 1 ] d� = pπ0

∫

�e

(det[1 + GS(X,Y )uv] − 1) d�

+ pT
v G

T
p

∫

�v

(X − Xb) (det[1 + GS(X,Y )uv] − 1) d�
(6.90)

which is different from (6.84). �

6.3.2.1 Construction of the Quadratic Serendipity Virtual Element
with Linear Pressure

For the mixed virtual element a quadratic ansatz is employed for the displacements
and a linear ansatz approximates the pressure. The gradient of the displacement field
is approximated by a linear part, as discussed in Sect. 6.2 for the serendipity element,
and the pressure approximation was introduced above.

The finite deformation formulations of the virtual element method for hyperel-
stic response of solids has been addressed in the framework of pure displacement
elements in Beirão da Veiga et al. (2015), Wriggers et al. (2017) using different
stabilizations and for serendipity elements in De Bellis et al. (2019), Wriggers et al.
(2021a, b). The mixed potential U in (2.89) is split into the consistency part and a
stabilization term. In this contribution we employ the hyperelastic potential func-
tions (2.60)–(2.62) for incompressible elastic material as basis for the constitutive
modeling.The potential form for the mixed element is given by

U (u, p) =
nv

A
v=1

[
Uc

v (uπ , pπ ) +Us
v (uh − uπ , ph − pπ )

]
(6.91)

for a discretization with nv virtual elements. In the following we will first discuss
the formulation of the consistency part Uc

v (uπ , pπ ) that stems from the projection,
see last section. Furthermore, a formulation for the stabilization Us

v of the virtual
element method will be considered that was developed in Wriggers et al. (2021a).

6.3.2.2 Consistency Part Due to Projection

The consistency part in the potential (6.91) can be evaluated by inserting the results
obtained in Sect. 6.2 and in the last section into the potential (2.89). This yields for
a virtual element �v
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Uc
v (uπ , pπ ) =

∫

�v

[
� i (uπ ) + pπ [J (uπ ) − 1] − f̄ · uπ

]
d� −

∫

�v

t̄ · uπd� .

(6.92)
Here the term related to the pressure pπ can be expressed by (6.72), (6.84) or (6.90).
Due to the fact that we are able to compute the projection of the gradient ∇uπ in
the initial configuration directly (6.48), we obtain the deformation gradient Fπ (uv)
and the Jacobian Jπ (uv). This leads to the deviatoric part of the right Cauchy-Green

tensor Ĉπ = J
− 2

3
π FT

π Fπ which enters the strain energy

Ĉπ (uv) = det[1 + GS(X,Y )uv]− 2
3 [(1 + GS(X,Y )uv)]T [1 + GS(X,Y )uv].

(6.93)
Strain energy functions of hyperelastic materials, like (2.60), (2.61) and (2.62)

can now be used. They have to be computed in terms of the projected deformation
measure (6.93) and the projection part of displacements (6.48). All quantities in
(6.92) depend only on the projection ∇uπ and the pressure pπ . Note however that
(6.92) is a non-linear functionwith respect to the nodal displacements. Hence the first
integral in (6.92) cannot simply be shifted to the boundary and has to be integrated
over the area. The integration has to be performed by numerical schemes. As in
Sect. 6.2 Gauss quadrature is selected, which means that contributions of energy
have to be evaluated at appropriate integration points. This can be done analogous
to the compressible case, for details see (6.50). Due to the non-linearity of the strain
energy � i and the Jacobian J , an integration scheme with 12 Gauss points was
used for the incompressible case. This number was found to be sufficient in an error
analysis related to the integration scheme, see Wriggers et al. (2021b).

The two loading terms in (6.92) have to be considered next. For a constant or
polynomial volumetric load f̄ the associated integral in (6.92) can be transformed
to a boundary integral by using a divergence theorem, see (A.22). The last inte-
gral in (6.92) is related to the traction load. The associated surface integral can be
directly evaluated at the edges γk of the virtual element by transferring it to the local
coordinate ξ , ∫

�v

t̄ · uh d� =
nE∑
k=1

1∫

0

t̄k(ξ) · uh(ξ) lk dξ . (6.94)

Once the integration of all terms in (6.92) is finalized, the derivations of the
potential with respect to the 2 nN unknown nodal displacements at the vertices of the
virtual element uv and the nE pressures pv can be carried out leading to the residual
vector and tangent matrix. Such approach exploits the fact that∇uπ depends directly
on the nodal displacements, see the mapping (6.48) and that pπ is given explicitly as
a function of the nodal values pv in (6.83) and (6.89). The displacement and pressure
variables are combined in one vector of unknowns qv = {uv ,pv}.
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All derivations, leading to the residual vector Rc
e and the tangent matrix Kc

e , can
be carried out using the symbolic tool AceGen. This yields for (6.92) the residual
and tangent

Rc
v = ∂Uc

v (∇uπ (uv) , uπ (uv), pπ (pv))
∂qv

and Kc
v = ∂Rc

v(qv)
∂qv

. (6.95)

6.3.2.3 Stabilization Techniques for Quadratic Serendipity Virtual
Element with Linear Pressure

Here the stabilization by a discrete bi-linear form is employed, as introduced in
Sect. 5.2.1, which is directly based on the degrees of freedom. It introduces a point
wise error measure, see (6.23), between the nodal values uk and the approximation
function uπ evaluated at the vertices Xk , see e.g. Beirão da Veiga et al. (2013, 2015)
and Chi et al. (2017).

Note that not only the displacement term, but also the mixed term related to the
incompressibility have to be stabilized.

Us
v (uh − uπ , ph − pπ ) = Uu

v (uh − uπ ) +U pu
v (uh − uπ , ph − pπ ) (6.96)

The stabilization Uu
v (uh − uπ ) of the serendipity virtual element is based on (6.23)

where the stabilization parameter is computed according to (6.53). For details, see
Sect. 6.2.

The stabilization for the mixed form U pu
s (uh − uπ , ph − pπ ) has to correct rank

deficiencies in order to fulfill the Babuška-Brezzi condition. Since we are free in
choosing the stabilization term, we can introduce the constraint term pDivu from
the geometrically linear theory instead of p(J − 1). This choice leads to

U pu
v (uh − uπ , ph − pπ ) =

∫
�v

(ph − pπ )Div(uh − uπ ) d� (6.97)

However the term Div[uh] in �v is not computable and hence an approximation by
using the divergence theorem

∫
�v

(ph − pπ )Div(uh − uπ ) d� = (6.98)

∫
�v

(ph − pπ ) (uh − uπ ) · n d� −
∫

�v

(∇ ph − ∇ pπ ) · (uh − uπ ) d�

follows by neglecting the last term which should be small due to the similarity
with (6.74). With the nodal degrees of freedom qv = {pv ,uv}, the mappings for the
displacement (3.94) and the pressures (6.83) and (6.89) one can write
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U pu
v (pv ,uv) = βp

nE∑
k=1

[pk − pπ (Xk)]
[
uk − P

(2,2)
uS (Xk)uv

]
· nk (6.99)

where nk is the outward normal of edge k of the virtual element and the scalar value
βp acts as a scaling factor. In Wriggers et al. (2021a) βp = 1/nP was introduced,
with nP being the number of pressure degrees of freedom of an element. The correct
choice of this factor is essential to avoid checkerboard modes for the pressure.

Again the derivations leading to the residual vector Rpu
v and the tangent matrix

Kpu
v were performed in the samemanner as in (6.95) with the symbolic tool AceGen.

This leads for (6.99) to the mixed residual and tangent

Rs
v = ∂Us

v (uv,pv)
∂qv

and Ks
v = ∂Rs

v(qv)
∂qv

. (6.100)

The final residual and tangent matrix of the virtual element are given by the sum of
expressions (6.95) and (6.100):

Rv = Rc
v + Rs

v and Kv = Kc
v + Ks

v . (6.101)

6.3.3 Nearly Incompressible Behaviour

If nearly incompressiblematerials are considered the classical FE-Q1-P0 formulation
from the finite element method can be employed leading to a virtual element with
linear ansatz for the displacement, as discussed in Sect. 6.2, and constant ansatz for
the pressure, see (6.72).

The general formulation is based on the Hu-Washizu principle for the pressure
part only, see Simo et al. (1985a). For such formulation two additional unknowns
the pressure p and the volume dilatation � have to be introduced which relaxes
incompressibility constraint J − 1 = 0. The constraint term is then given by

∫

�v

p [J (uπ ) − 1 ] d� =⇒
∫

�v

(
p [J (uπ ) − � ] + K

2
(� − 1)2

)
d� (6.102)

where K is the bulk modulus. This formulation is classically used in conjunction
with low order elements with linear ansatz functions. Here it will be the linear VE-
“ET” element. By choosing a constant ansatz �v for the dilatation � and a constant
pressure pv the integrals can be evaluated directly, by employing (6.71)

∫

�v

(
p [J (uπ ) − � ] + K

2
(� − 1)2

)
d� = pv [ωv(uπ ) − �v�v ] + K

2
(�v − 1)2 �v .

(6.103)
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This formulation allows an elimination of the variables pv and �v at element level
and thus does not introduce additional unknowns at the global level of the solution.
The element residual vector and tangent matrix are computed as described in (6.100)
and (6.101).

Virtual elements that are based on Eq. (6.103) are often used in the analysis of
rubber or in J2-elasto-plasticity where the plastic deformation is assumed to be
incompressible Jp = det F p = 1, see Chap.8. They will be denoted by VE-ET-P0
in the next chapters.

6.3.4 Numerical Examples, Incompressible Case

The following element types are used for the solution of incompressible and nearly
incompressible problems:

• The two-dimensional mixed virtual element with linear ansatz, see (6.67), is
denoted as VE-ET-I where ET defines the mesh type as described in AppendixB.

• For nearly incompressible materials the Hu Washizu formulation for the pressure
part is used, see (6.103). The associated two-dimensional virtual element is denoted
by VE-ET-P0.

• The quadratic Taylor-Hood type virtual element with quadratic ansatz function
for the displacements and linear ansatz for the pressure has two variants. Variant
(6.84) is named VE-ET-P1c and variant (6.90) VE-ET-P1t, respectively.

• TheclassicalTaylor-Hoodmixed triangular finite elementFE-T2-P1with quadratic
ansatz for the displacements and linear ansatz for the pressure is used for compar-
ison.

All element abbreviations are supplemented by different indices ET that denote
the type of meshes used in an analysis. These will be defined within the sections
describing the examples.

Again, all computations are performed by using a Newton-Rapson algorithmwith
load stepping when necessary. Due to the fact that all formulations are linearized in
a consistent manner, using AceGen, quadratic convergence is achieved.

6.3.4.1 Cook’s Membrane

Cook’s membrane problem that was described in Sect. 6.2.5.1, see Fig. 6.20, is inves-
tigated now for incompressible response using the potential energy (6.67). The geom-
etry and data are shown on the left side of Fig. 6.35. Two types of meshes are inves-
tigated, a regular (Q2S) mesh with eight nodes, see mid part of Fig. 6.35, and an
uniform (VOU) Voronoi mesh, see right side of Fig. 6.35. The magnitude of the load
is py = 4. The regular mesh consists of quadrilateral virtual elements with eight
nodes. The number of nodes that describe an element varies in the Voronoi mesh
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py

L

H1

H2

Fig. 6.35 Cook’s membrane and different meshes

Fig. 6.36 Incompressible
case, convergence study:
VE-Q2S-I, VE-Q2S-P1 and
FE-T2-P1 elements

1 2 3 4 5 6 7

7

7.5

8

8.5

Element division 2

VE-Q2S-I
VE-Q2S-P1t
VE-Q2S-P1c
FE-T2-P1

from 6 to 16. Due to the incompressible formulation only the shear modulus has to
be defined which has the value μ = 40.

Stabilization for the quadratic serendipity mixed virtual elements is based on
(6.99) while for the linear element with constant pressure the energy stabilization is
employed. The constitutive parameters �̂ and μ̂ for the stabilization energy (6.33)
were kept as in the examples for the compressible case, see Sect. 6.2.5.1, and com-
puted from (6.34).

The results of the different formulations of mixed virtual elements were com-
pared for differentmesh densitieswith the FE-T2-P1Taylor-Hood triangular element,
see Fig. 6.36. It can be observed that the virtual element VE-Q2S-I can handle the
incompressible case almost as well as the FE-T2-P1 element12 while the VE-Q2S-P1

12 It shoud be noted that the standardVE-Q2S formulation used in Sect. 6.2.5.1 can be used for nearly
incompressible material behaviour with the constitutive parameter � → ∞. Thus it is locking free.
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Fig. 6.37 Convergence
Study for distorted meshes
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VE-VOR-I

VE-VOR-P1c

elements have a superior coarse mesh accuracy. The FE-T2-P1 element is able to
produce the final deformation in just one load step with 5 iterations, independent of
the mesh size. Also the VE-Q2S-I and VE-Q2S-P1 elements are able to compute the
solution in one load step with 5 iterations, and thus have the same robustness as the
FE-T2-P1 element.

Convergence for distorted meshes The effect of irregular Voronoi discretizations
has to be investigated in order to see whether the virtual element formulation is
robust. For the Cook’s membrane problem the Voronoi mesh depicted on the right
side of Fig. 6.35 is applied for the analysis using a series of mesh refinements.

This sequence of Voronoi meshes, 2N with N ∈ {1 , 2 , 3 , 4 , 5 , 6 , 7} is investi-
gated for a incompressiblematerial using the same constitutive parameters as selected
above. Figure6.37 depicts the convergence for different discretizations. The regular
elements VE-Q2S-I andVE-Q2S-P1 are comparedwith the solutions withVE-VOR-
I and VE-VOR-P1 based on Voronoi meshes. A very good coarse mesh accuracy can
be observed especially for the VE-VOR-P1c element, even in comparison with the
solutions based on a regular grid. However for meshes with N > 4 all solutions
basically lead to the same displacement.

In a final step the load was increased by a factor of 4. A Voronoi mesh with 1017
elements was selected for this application. The loadwas applied in four steps, leading
to a total number of 24 iterations to obtain the deformed state depicted in Fig. 6.38.
The displacement related to the total load has the magnitude ux = −13.23 and uy =

However VE-Q2S is in comparison with VE-Q2S-I not as robust as it needs that load steps to obtain
the final result. For the Cook’s membrane problem this would mean that four load steps, using
VE-Q2S, instead of only one load step, using VE-Q2S-I, are needed to obtain the results presented
in Fig. 6.36.
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Fig. 6.38 Deformed state and Kirchhoff stresses τxx and τxy for a total load of q0 = 16

26.94 at the point (40, 60). Figure6.38 shows thedistributionof theKirchhoff stresses
τxx and τxy in the deformed membrane (real scale).

6.3.4.2 Punch Problem, Incompressible

A solid is considered which is loaded by a line load at half of the upper surface, as
shown in Fig. 6.39. The applied load leads to severe deformations that are constraint
by incompressible behaviour. The finite deformation response can be used to test the
robustness of the virtual element formulation.

The geometrical data are H = L = 1. The displacements are set to zero along the
bottom of the solid, the left and right sides of the solid are fixed in the X -direction,
while the top surface is fixed in the X -direction, see alsoWulfinghoff et al. (2017). A
vertical load of py = 800 is applied. The Lamé parameter μ = 80 was selected for
the linear and quadratic incompressible virtual elements. The punch is discretized by
regular (Q2S), see left side of Fig. 6.40, and Voronoi meshes (VOR), see right side
of Fig. 6.40.

For a discretization with VE-VOR-I virtual elements the configuration related
to the final loading py = 800 is depicted in Fig. 6.41 for two Voronoi meshes with
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py

L L

H

Fig. 6.39 Punch problem—Geometry and boundary conditions

Fig. 6.40 Punch problem—Regular mesh (Q2S) and Voronoi mesh (VOR)

Fig. 6.41 Deformed configuration of the punch problem, incompressible case

different mesh densities N = 3 and N = 5. The analysis using virtual elements is
robust since finer meshes do not influence the overall convergence characteristics
and lead to the same number of load steps and iterations.

For theVE-Q2S-I andVE-VOR-I an energy stabilizationwasutilizedwith parame-
ter selection based on (6.34). The VE-Q2S-P1 and VE-VOR-P1 elements were sta-
bilized using the bi-linear discrete form according to (6.99).

A convergence study is performed for incompressible deformations of the punch
problem using regular, see left side of Fig. 6.40, and Voronoi meshes, see right side of
Fig. 6.40. Here the linear and quadratic virtual elements and the classical triangular
Taylor-Hood finite element FE-T2-P1 are compared. The regular mesh consists of
rectangular 8 node virtual elements here denoted by VE-Q2S-I and VE-Q2S-P1t.
The Voronoi mesh is denoted by VE-VOR-I and VE-VOR-P1t.

It can be seen in Fig. 6.42 that the convergence of the virtual element using
the Voronoi mesh is not completely smooth for VE-VOR-I. This effect can also
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Fig. 6.42 Deformation at the left upper point of the punch, convergence study: VE-Q2S-I, VE-
VOR-I, VE-Q2S-P1t, VE-VOR-P1t and FE-T2-P1 elements
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Fig. 6.43 Punch problem: contour plot of the nodal and element averaged pressures for a Voronoi
mesh (N = 5) using VE-VOR-P1t

be observed for VE-VOR-P1t, however not as pronounced. Such behaviour can
be associated with the random nature of the Voronoi meshes. However all results
converge to the solution generated with the Taylor-Hood FE-T2-P1 element once
the mesh division is N = 6. Again the quadratic virtual element demonstrates a very
good coarse grid accuracy. For a mesh with (N = 3) the solution deviates less than
2% from the converged solution. Thus the VE-P0 and Taylor-Hood type versions of
the virtual element can handle incompressible deformations well, while fulfilling the
constraint J = 1.

For the virtual element VE-VOR-P1t, the pressure distribution is depicted in
Fig. 6.43 for aVoronoimesh of 512 elements. The pressure on the left side of Fig. 6.43
shows the pressure which is plotted directly from the nodal pressure degrees of
freedom. The plot exhibits some peaks and irregularities, but no checkerboardmodes.
The averaged pressure plot on the right side of Fig. 6.43 is smooth. This is also the
case for the regular mesh. These results underline that the virtual element method can
handle large strain incompressible problems for arbitrary meshes. Further numerical
examples that illustrate this behaviour can be found in Wriggers et al. (2021a).
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6.3.4.3 Quasi Incompressible Deformation of a Cube

The example discussed in Sect. 6.2.5.3, see Fig. 6.29, is considered for quasi incom-
pressible material with a Poisson ratio of ν = 0.4983. This leads to the Lamé con-
stants � = 499.92568 MPa and μ = 1.61148 Mpa. In addition to the complexity
having almost incompressible behaviour, two line singularities arisewhich are related
to the jump in the Neumann boundary conditions at the end of the constant load q,
see Fig. 6.29 and the discussion in Schröder et al. (2021).

The convergence of the vertical displacement in Z -direction at the midpoint of
the block, uZ (50, 50, 50), versus the degrees of freedom (DOF) of the discretiza-
tion was investigated for different finite elements in Schröder et al. (2021). Regular
discretizations with (4 × 4 × 4), (8 × 8 × 8), (16 × 16 × 16) and (32 × 32 × 32)
elements were employed in this benchmark for linear and quadratic displacement as
well as mixed elements.

To see how the virtual element based on the mixed principle (6.103) performs
in this benchmark, the same mesh structure was used. The results can be found
in Table6.2 where the number of degrees of freedom, ndof , is given for the mesh
sequence of H1-elements having 8 nodes. The results for H2 (27 nodes) and H2S (20
nodes) meshes are computed on uniform meshes with the same number of nodes as
the corresponding H1-mesh which leads roughly to the same number of unknowns.

The virtual element solutions were compared with the classical hexahedral dis-
placement element FE-H1 with linear ansatz and a hexahedral displacement element
FE-H2 with quadratic ansatz. A hexahedral mixed element FE-H1P0 with linear
ansatz for the displacement field and discontinuous constant pressure field at element
level using the mixed form (6.103) and a sophisticated enhanced element FE-TSCG
of mixed type and includes 12 assumed enhanced strain fields and linear displace-
ments, see Korelc et al. (2010), were employed as well.

The results are presented in Table6.2. Since all the elements were developed using
AceGen, see Korelc andWriggers (2016), they exhibit quadratic convergence within
the Newton-Raphson solution algorithm. The enhanced strain element FE-TSCG
and the FE-H1P0 element are softer than the FE-H2 element. Compared to the finite
element responses the virtual elements perform well and converge. It is evident from
Table6.2 that the displacement elements converge frombelowwhile this is not always
the case for mixed elements, e.g. the FE-TCSG element converges from above. It can
be clearly stated that this sophisticated enhanced element has superior performance.

Table 6.2 Mid displacement uz(50, 50, 50) for different element types

ndof s VE-H1-I VE-H2S-I FE-H1 FE-H2 FE-H1P0 FE-TSCG

260 18.71 23.56 7.78 18.32 19.87 20.14

1800 19.61 21.29 13.17 19.54 20.02 20.10

13328 19.85 20.50 17.54 19.98 20.01 20.03

102432 19.93 20.13 19.52 20.01 20.00 20.01
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Fig. 6.44 Incompressible punch problem: contour plot of the von Mises stress for a regular H1-
mesh (32 × 32) using the virtual element VE-H1-I

However the virtual elements performaswell as theFE-H1P0 element13 whichmeans
that virtual elements using the energy stabilization are a good alternative. This can
also be observed for Voronoi meshes.

The von Mises stresses are depicted in Fig. 6.44. Observe that the virtual element
VE-H1-Iwith linear ansatz functions is able, despite only producing constant stresses
within the element, to pick up the line singularity at the jump of the applied load
from q to zero. This is demonstrated by the high von Mises stress at the end of the
load q.

6.4 Anisotropic Elastic Behaviour

Anisotropy has to be considered in many engineering applictions. Anisotropic mate-
rials span the range from crystals via composite to biological tissues. Depending
on the material class the anisotropic models are different, for an overview, see e.g.
Schröder (2009). Here we concentrate on composites that demonstrate transversly
isotropic material behaviour. Composites are solids that consists of two different

13 In many commercial finite element codes the FE-H1P0 is the “work horse”, meaning it will be
employed for various problems regarding incompressible finite strains and J2 plasticity.
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material phases. One is the matrix phase which is toughened up by fibers that have
a specific direction.

The modeling of transversly isotropic materials is based on a split of the strain
energy � = � iso + � ti into an isotropic part � iso, see e.g. Sect. 2.2.2.1, and a part
� ti that introduces the transversly isotropic constitutive behaviour. Two possibilities
are considered in Sect. 2.2.2.3. Transversly isotropic material can be either modeled
by a general polyconvex strain energy, see (2.63), or by an inextensibility constraint,
see (2.65), which was relaxed in (2.66) by a perturbed Lagrangian form. The latter
approach is adequate for numerical simulation of materials with a very high fiber
stiffness in comparison with the matrix material, like a rubber tire with steel cords.
The two possibilities lead to:

• Polyconvex strain energy. The formulation for the virtual element method, based
on the transversly isotropic strain energy (2.63), is written for γ = 1 and for one
preferred direction a as

� t i = C

[
1

α + 1
[tr(C M)]α+1+ 1

β + 1
[tr(J 2 C−1M)]β+1 + J−2

]
(6.104)

with the structure tensor M = a ⊗ a.
The essential physical behaviour of a solid is associated with the consistency part
of the strain energy within the virtual element method. Due to that � ti is not
considered in the stability part. Based on this observation we can write for the
potential, in analogy to (6.38),

Ua
c (uπ ) =

∫

�v

[
� iso(∇uπ ) + � ti (∇uπ ) − f̄ · uπ

]
d� −

∫

�σ
e

t̄ · uπ d� . (6.105)

For a linear ansatz the first integral can be evaluated according to (6.41)

∫

�v

[
� iso(∇uπ )+ � ti (∇uπ )

]
d� = [

� iso(∇uπ ) + � ti (∇uπ )
]

�v

=
[
� iso(P

d,1
∇ uv) + � ti (P

d,1
∇ uv)

]
�v

(6.106)

which yields a constant term that, however, is highly nonlinear with respect to
the nodal displacement uv. Residual and tangent matrix for the consistency part
follow according to (6.42).
For a quadratic element, like the serendipity element, relations (6.46) and (6.50)
have to be applied and integration over the interior of an element �v is necessary.
The stabilization is exactly the same for linear and quadratc ansatz function, as
discussed in Sect. 6.2.2.

• Inextensibility constraint. For very stiff fibers in a composite a virtual element
formulation can be developed as well. The following perturbed Lagrangian poten-
tial describes transversly isotropic responses for stiff fibers, see (2.66)
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Ua
c (uπ , stia ) = Uiso

c (uπ ) +
2∑

a=1

∫

�

(
stia (tr[C(uπ ) Ma] − 1) − 1

2Cca
[stia ]2

)
d� .

(6.107)
where Ea = tr[C(uπ ) Ma] − 1) is the directional strain, see (2.14) andCa the fiber
stiffness. The value stia relates to the fiber stress and Uiso

c represents the isotropic
consistency part of the strain energy, see (2.64). The twofiber directions are defined
by the structural tensor Ma = aa ⊗ aa , see also (2.14). For a low order ansatz with
linear displacements and constant fiber stresses stia at element level stia = s̄ t ia the
integration of the last two terms is trivial leading to

Ua
c ((uπ , s̄ t ia ) = Uiso

c (uπ ) +
2∑

a=1

(
s̄ t ia (tr[C(uπ ) Ma] − 1) − 1

2Cca
[s̄ t ia ]2

)
�v

(6.108)
This formulation introduces two additional variables s̄ t ia which can be elimniated
at element level. In the above equation the right Cauchy-Green tensor is given by
C(uπ ) = [F(uπ )]T F(uπ ) with F(uπ ) = 1 + ∇uπ . Within the virtual element
discretization the deformation gradient can be expressed as

F(uπ ) = 1 + P
d,1
∇ uv

using (3.51) and (3.152) in the two- and three-dimensional case, respectively.
Again it is clear that (6.108) is constant over the element but depends in a nonlinear
way on the nodal unknowns uv.
The formulation in (6.108) relates to a perturbed Lagrangian approach which is a
variant of the penalty method for enforcing constraints. Thus in case of rigid fibers
the stiffness parameter Cca can be viewed as a penalty parameter. With Cca → ∞
the case of inextensible fibers is recovered. This interpretation can be used to
model the stiff fibers as a directional material constraint. However an introduction
of such constraints can lead to locking behaviour as observed for incompressible
materials. Due to the fact that the anisotropic material model imposes constraints,
it is advisable to use within a discretization with a linear ansatz of the displacement
field a constant approximation of the fiber stress,which is analogous to theVE-ET-I
formulation for incompressible materials, see Sect. 6.3.

• Mixed form.Another possibility for the formulation of nearly rigid fibers is related
to a mixed Hu-Washizu principle. Here the fiber stiffnesses can be included in the
form

UHW
c (uπ ,stia , δa) = Uc

c (uπ )

+
2∑

a=1

∫

�

(
stia

1

2
(tr[C(uπ ) Ma] − δa) + Kca

2
(δa − 1)2

)
d�

(6.109)
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where δa corresponds to stretches in fiber direction and Kca is the stiffness of the
fiber.Again a constant ansatz δ̄a is selected for this newvariablewhich results at ele-
ment level to four additional variables, stia = s̄ t ia and δa = δ̄a for each anisotropic
direction aa . These four variables can be eliminated at the level of the virtual
element �v. Since all variables are constant for a linear ansatz the integrals in
(6.109) can be evaluated directly without using numerical integration. Implemen-
tation within the virtual element method is the same as in the formulation above
employing for the discretization of ∇uπ (3.51) and (3.152) in the two- and three-
dimensional case, respectively.

All derivations with respect to the unknown displacements leading to the residual
vectorRc

v and the tangentmatrixKc
T v were performedwith the symbolic tool AceGen,

see Korelc and Wriggers (2016). This yields for (6.38)

Rc
v = ∂Ua

c (uv)
∂uv

and Kc
T v = ∂Rc

v(uv)
∂uv

(6.110)

where uv are the nodal displacements of the virtual element �v. The residual and
tangent for the incompressible case are evaluated similarly.

6.4.1 Numerical Examples, Anisotropic Case

Two examples are considered in this section to illustrate the performance of the low
order virtual element formulation when compared with existing finite elements. The
examples are subjected to loads that lead to finite deformation strain states and thus
the depicted deformation states are not scaled. Solutions based on (6.105) are labelled
VE-ET-A and the ones based on (6.108) are denoted by VE-ET-C.

6.4.1.1 Cook’s Membrane with Anisotropy

The Cook’s membrane is solved as a three-dimensional solid. The membrane is
depicted in Fig. 6.45 togetherwith the geometric data. The thickness of themembrane
is t = 10. It is subjected to a constant load on the right side of magnitude p0 and
clamped at the left end: X = 0 → uX = uY = uZ = 0.

The material behaviour is transversely isotropic with one preferred direction a =
{ 1√

3
, 1√

3
, 1√

3
}. For the isotropic strain energy we use in this example (2.59) with

c3 g(det C) = ε1
([det C]ε2 + [det C]−ε2 − 2

)− (6c1 + 12c2) log
√
det C

while the transversely isotropic part is given by (6.104). The parameters for the
isotropic part are selected as c1 = 42, c2 = 84, ε1 = 100 and ε2 = 10. The material
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Fig. 6.45 Cook’s membrane problem for anisotropic material

Fig. 6.46 Regular (VE-H1-A) and Voronoi (VE-VOR-A) meshes

parameters for the transversely isotropic strain energy are given byC = 3000, α = 4
and β = 8.

Two different meshes are used to compute the response of Cook’s membrane with
three-dimensional virtual elements using a linear ansatz. These consist of a regular
mesh with eight noded hexahedra (H1) shown on the left side of Fig. 6.46 and a
Voronoi mesh made of cells with randomly distributed size on the right hand side.
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Fig. 6.47 Cook’s membrane von Mises stresses for the VE-H1-A and VE-VOR-A elements

The load is applied in 10 steps up to p0 = 103 which yields finite deformations and
a twisting of the structure can be observed. The deformations are depicted together
with the von Mises stress contours in Fig. 6.47. The regular discretization yields
smoothed stresses, as expected. Since the stresses are constant within each element
the irregularVoronoimeshdemonstrates larger deviations.However the general stress
distribution is quite similar as well as the deformed shape of both discretizations.
Again the virtual element is robust and allows the prediction of complex deformation
states for structures with anisotropic response.

6.4.1.2 Bias-Extension Test, Anisotropic Behaviour

Tension locking related to anisotropic behaviour can occur in structures where stiff
fibers are embedded in a very soft matrix. This can be illustrated by considering a
rectangular specimen under tension loading, see Fig. 6.48. The fibers are oriented in
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Fig. 6.48 Bias extension test of a woven composite

±45◦ in the initial configuration. This bias-extension test was used in ten Thjie and
Akkerman (2008) and Hamila and Boisse (2013) to investigate behaviour of standard
finite element formulations and special interpolation techniques to avoid locking.

Fig. 6.49 Regular (VE-H1-C) and Voronoi (VE-VOR-C) virtual element mesh
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Fig. 6.50 Von Mises stresses for both meshes

The length of the specimen is L = 300, its width is H = 100 and the thickness of
the specimen is T = 1. The specimen is clamped at both ends and pulled using a
constant displacement ūx = 65. The material properties of the matrix material are
described by the Lamé constants � = 1 and μ = 1. The stiffness for both fibers is
Cc1 = Cc2 = 4000.

The numerical solution of the bias-extension test was obtained with a three-
dimensional formulation. The load was applied in one step and the Newton-Raphson
method was used to obtain the solution of this nonlinear problem.

The mesh for the three-dimensional numerical simulation can be found in
Fig. 6.49. The Voronoi mesh is generated with randomly distributed element sizes.

The deformed state of the specimen after loading can be observed in Fig. 6.50
which cleary shows that the specimen undergoes finite deformations for the applied
stretch. The results in Fig. 6.50 depict also the von Mises stresses within the spec-
imen. It can be observed that the stress concentration shown by the red color is
less prominent in the VE-VOR-C mesh when compared with the regular VE-H1-C
result. Also the results using the VE-VOR-C mesh are nonsymmetric which is due
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to the randomly distributed Voronoi cells. Hence a refinement is needed to recover a
symmetric stress state and a more distinct stress concentration.

Generally it can be concluded that the virtual element formulation for anisotropic
materials is locking free and thus can even be applied to problems with a large ratio
in the matrix and fiber stiffness for finite deformations.
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Chapter 7
Virtual Elements for Problems
in Dynamics

Many discretization schemes—like finite differences, finite element and boundary
element methods—can be applied to solve problems related to linear and nonlinear
dynamics. Here, the major additional challenge, when compared to static analysis, is
themodeling of a solution in timewhich needs related discretizations and algorithms,
see e.g. Hughes (1987), Bathe (2006), Wriggers (2008) for finite element analysis.
So far the applications of virtual elements in dynamics are limited. The computation
of mass matrices was discussed in Beirão da Veiga et al. (2014). Some early work
related to engineering can be found in Park et al. (2019) who used explicit integra-
tions schemes. In Mazzia et al. (2020) the virtual element method was applied to
solve transient processes in the environment related to the dynamics of transitional
landforms. In Adak et al. (2022) the dynamics of nonlocal plate was investigated.
Cihan et al. (2021a, b) employed virtual elements for nonlinear dynamic problems
including finite strains and plasticity. Eigenvalue problems were treated with the
virtual element method in Boffi et al. (2022). Furthermore, virtual elements were
applied within the discrete element method to analyse granular media with flexible
particles, see Gay Neto et al. (2021).

This chapter discusses details of the extension of the virtual element method to
dynamics for small and finite strain response in solid mechanics.

7.1 Continuum Formulation

The theoretical background for applications in elasto-dynamics can be found in
Chap.2 which leads to a set of equations that can be classified as hyperbolic partial
differential equations. We recall that all data are functions of time. For a well-posed
initial-boundary value problem initial conditions must be specified for the displace-
ment u(X, t) and the velocity u̇(X, t). Together with the balance of momentum
(2.19), the Dirichlet and von Neuman boundary conditions (2.20), (2.21) and the
initial conditions the strong form of the initial-boundary value problem can be stated
with respect to the initial configuration �
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�0 ü(X, t) = Div P(X, t) + �0 b̄(X, t) in �

u(X, t) = ū(X, t) on �D

P(X, t)N(X, t) = t̄(X, t) on �N (7.1)

u(X, 0) = u0(X) in �

u̇(X, 0) = u̇0(X) in �

where the first Piola-Kirchhoff stress tensor is given as a function of the strains via
the constitutive relations in Sect. 2.2. For the given data (�0 b̄ , ū , t̄ , u0 , u̇0) one has
to find the displacement u(X, t) as a solution of the above set of equations.

The corresponding weak form of the stationary case, see Sect. 2.3, has to be
complemented by the inertia contribution leading to

(�0 ü , v) + a(u , v) = f (v) (7.2)

where a(u , v) and f (v) are defined in (2.85) and the inertia term is given by

(�0 ü , v) =
∫

�

�0 ü · v d� . (7.3)

Equation (7.2) is the basis for the formulation of the virtual element discretization.
All virtual element formulations regarding the stationary case a(u , v) = f (v) can
be used, see e.g. Sect. 6 for elasticity. The only additional quantity which has to be
addressed is the inertia term together with a proper time integration scheme.

When using automatic differentiation to derive the discretization schemes and
associated software, see Korelc and Wriggers (2016), it is often more efficient to
start from a potential. This of course is not always possible, like in this case or in
plasticity. A way out is to use a the pseudo-potential formulation which was already
discussed in Sect. 2.3.3 for plasticity. Such potential can be constructed for the inertia
term

U (u, ü) =
∫

�

[
�0 ü · u + �(∇u) − f̄ · u ]

d� −
∫

�N

t̄ · u d� . (7.4)

The pseudo-potential includes a real potential related to the elastic variables in the
strain energy � and the loading terms. The inertia term is designed in a pseudo-
potential fashion: during the first variation of the potential with respect to the dis-
placement field, the acceleration has to be kept constant

dU

du

∣∣∣∣
ü=const.

· δu =
∫

�

[
�0 ü · δu + P(∇u) · δF − f̄ · δu

]
d� −

∫

�N

t̄ · δu d� .

(7.5)
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Here the variation of the strain energy function was derived using

δ� = ∂�

∂F
· δF = P · δF

with δF = ∇δu and P being the fist Piola-Kirchhoff stress tensor. Due to the equiv-
alence of the variation δu and the test function v the result of the first variation in
(7.5) is equal to the weak form (7.2).1

Since the displacement u(X, t) is a function of space and time a discretization
scheme is needed that takes into account as well a spatial discretization as a dis-
cretization in time. Classically, first a spatial discretization is performed, which can
be derived for virtual elements based on the results of Sect. 5 leading to a linear or
nonlinear matrix formulation, still depending on time. The resulting set of ordinary
differential equations can be solved by time-stepping algorithms of different order
and type, see e.g. Hughes (1987), Bathe (2006), Wriggers (2008).

7.2 Mass Matrix

Since the virtual element formulation, based on the potential� and the loading terms,
is already described in Chaps. 5 and 6 for linear and nonlinear elastic problems, the
only remaining task is to discretize the inertia term (�0 ü , v) in the weak form (7.2)
or the pseudo-potential (�0 ü , u) in (7.5).

The ansatz space that was discussed e.g. in Sect. 3.1 has to be written in a form
that separates the variables with respect to space and time. The inertia term does not
depend on a gradient in (7.4), but directly on the displacement and the acceleration.
Hence the ansatz based on the assumption of the relaxed space fromSect. 3.1.2 should
be used, see (3.37) and Beirão da Veiga et al. (2014). With that we can approximate
the function uh by uπ and a remainder leading to

uh = uπ + (uh − uπ ) and üh = üπ + (üh − üπ ) . (7.6)

Insertion of this ansatz into the inertia term in (7.4) yields for a virtual element �v

∫

�v

�0 ü · u d� =
∫

�v

�0 [üπ + (üh − üπ )] · [uπ + (uh − uπ )] d� . (7.7)

1 Of course, it is possible to start from the Hamilton principle
∫ t2
t1

(T −Ue + W ) dt → ST AT

to arrive at Eq. (7.5) by its variation. In that case T = 1
2

∫
�

�0 u̇ · u̇ dt is the kinetic energy,
Ue = ∫

�
�(u) d� the strain energy and W = ∫

�
f̄ · δu d� + ∫

�N
t̄ · δu d� is the potential of

the external forces. However the pseudo-potential (7.4) leads to the same weak form and yields
from the numerical point of view a more efficient implementation.
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By using the definition of the relaxed space it follows from (3.37)

∫

�v

Xn
i (uπ − uh) d� = 0 (7.8)

for polynomials Xn
i up to order n ≤ 2. Since uπ has the same ansatz order as Xn

i , see
e.g. the derivation of (3.35), and the projected displacement uπ = Hd,n

u (X,Y )uv(t)
has same ansatz function as the projected acceleration üπ = Hd,n

u (X,Y ) üv(t) the
mixed terms in the scalar product in (7.7) vanish which leads to the simplification

∫

�v

�0 ü · u d� =
∫

�v

�0 [üπ · uπ + (üh − üπ ) · (uh − uπ )] d� . (7.9)

As in the stationary case, the inertia term consists of two integrals. The first part is
related to the consistency term and the second part can be viewed as the stabilization
term. Beirão da Veiga et al. (2014) noted that the inertia term in (7.9) only needs to
be stabilized when the initial-boundary values problem is reaction dominated. Such
cases were discussed in e.g. Ahmad et al. (2013) in the context of the virtual element
method. However using only the consistency parts leads to rank deficient element
massmatriceswhich e.g. cannot be appliedwithin explicit integration schemeswhere
the mass matrix has to be inverted.

By introducing the ansatz functions, constructed in Sect. 3, in (7.9) it is possible
to compute the consistency part of the mass matrix for different ansatz orders n. This
is illustrated below for linear and quadratic ansatz functions.

Two-dimensional case. The virtual element ansatz for the two-dimensional case was
provided in detail in (3.58) for the linear interpolations and in (3.84) for the quadratic
case. The results yield linear and quadratic ansatz functions which depend on the
nodal degrees of freedom uv of the virtual element

uπ (X, t) = H(2,1)
u (X,Y )P(2,1)

u uv(t) , (7.10)

uπ (X, t) = P
(2,2)
u (X,Y )uv(t) . (7.11)

Here a separation of variables was introduced which split the ansatz in a spatial
part, represented by the ansatz functionsH(2,1)

u (X,Y ) and P(2,2)
u (X,Y ), which do not

depend on time, and a time depending part that is related to the nodal unknowns
uv(t).

By inserting these functions into the consistency part of (7.9) we obtain for the
linear case the matrix form

∫

�v

�0 üπ · uπ d� = uT
v [P(2,1)

u ]T
⎛
⎝

∫

�v

�0 [H(2,1)
u (X,Y )]T H(2,1)

u (X,Y ) d�

⎞
⎠P

(2,1)
u üv

(7.12)
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leading to the mass matrix

M(2,1)
π = [P(2,1)

u ]T
⎛
⎝

∫

�v

�0 [H(2,1)
u (X,Y )]T H(2,1)

u (X,Y ) d�

⎞
⎠ P

(2,1)
u . (7.13)

In the same way we obtain for the quadratic case

∫

�v

�0 üπ · uπ d� = uT
v

⎛
⎝

∫

�v

�0 [P(2,2)
u (X,Y )]TP(2,2)

u (X,Y ) d�

⎞
⎠ üv (7.14)

with the mass matrix

M(2,2)
π =

∫

�v

�0 [P(2,2)
u (X,Y )]TP(2,2)

u (X,Y ) d� . (7.15)

Note that in the quadratic case the vector of nodal displacements uv also contains
the internal degrees of freedom related to the moments. The integrals are functions
of X and Y and can be evaluated exactly using a transformation to the boundary �v ,
see Appendix A.

As an example, the explicit form of the integral (7.13), representing the linear
ansatz, is presented

∫

�v

�0 [H(2,1)
u (X,Y )]T H(2,1)

u (X,Y ) d� =
∫

�v

�0

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 X 0 Y 0
0 1 0 X 0 Y
X 0 X2 0 XY 0
0 X 0 X2 0 XY
Y 0 XY 0 Y 2 0
0 Y 0 XY 0 Y 2

⎤
⎥⎥⎥⎥⎥⎥⎦

d� .

(7.16)
The integration can be easily performed for an arbitrary polygon by using the formu-
lae (A.2) to (A.7) in Appendix A. The rank of this matrix is 6 which will not change
for the complete element mass matrix in (7.13) where the transformation with the
projection matrix P

(2,1)
u corrects the dimensions and relates the mass matrix to the

nodal degrees of freedom but does not change the number of non-zero eigenvalues
ofM(2,1)

π . As a result the linear mass matrix (7.13) has the size (2nV × 2nV ) but the
rank 6, where nV is the number of vertices of the virtual element.

In the same way the quadratic ansatz yields a mass matrix with rank 12 while it
has the size of (4nV × 4nV + 2), see also Sect. 3.1.1. Here polynomials up to fourth
order have to be integrated. An exact evaluation can be based on (A.24) or by using
(A.8).
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Three-dimensional case. Ansatz function for linear three-dimensional virtual ele-
ments were derived Sect. 3.2 and are summarized in (3.157) as a function of the nodal
unknowns

uπ (X, t) = H(3,1)
u (X,Y, Z)P(3,1)

u uv(t) . (7.17)

This yields the matrix formulations

∫

�v

�0 üπ · uπ d� (7.18)

= uT
v [P(3,1)

u ]T
⎛
⎝

∫

�v

�0 [H(3,1)
u (X,Y, Z)]T H(3,1)

u (X,Y, Z) d�

⎞
⎠ P

(3,1)
u üv

with the mass matrix

M(3,1)
π = [P(3,1)

u ]T
⎛
⎝

∫

�v

�0 [H(3,1)
u (X,Y, Z)]T H(3,1)

u (X,Y, Z) d�

⎞
⎠ P

(3,1)
u (7.19)

where now the volume integral for polynomials up to second order, see (7.16)
has to be evaluated over arbitrary polyhedra. Since the ansatz uses the polynomial
(1 , X ,Y , Z) in three coordinate directions the matrix in the integral has the size
12 × 12 which leads to a matrix of rank 12. Hence the linear three-dimensional vir-
tual element has a mass matrix with 12 non-zero eigenvalues while its total size is
(3nV × 3nV ). It is easy to note that the special case of a tetrahedronwith four vertices
will have a full rank mass matrix.

The evaluation of the integrals for the mass matrix, e.g. (7.19) for the three-
dimensional case can be obtained in an exact manner by using an integration over
the faces similar to the way presented in Sect. 3.2.3 or by using (A.25). However, also
approximations are possible. Cihan et al. (2021a) demonstrated that the evaluation
of the integral in (7.19) at the centroid Xb of the virtual element yields sufficiently
accurate results. Clearly, such approximation needs less computational effort when
compared with other evaluation schemes. Based on this simplification the mass-
matrix (7.19) is given by

M(3,1)
π ,c = [P(3,1)

u ]T (
�0 [H(3,1)

u (Xb)]T H(3,1)
u (Xb)

)
P

(3,1)
u �v . (7.20)

Stabilization of the mass matrix: The stabilization term of the mass matrix is the
second term in (7.9). The integral can be approximated in the same manner as in e.g.
Sect. 6.1.3, see also Park et al. (2019),
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∫

�v

�0(üh − üπ ) · (uh − uπ )d� = �0 �v

nV∑
i=1

[ui − uπ (Xi )]
T [üi − üπ (Xi )]

(7.21)
where ui is the nodal displacement that is contained in the vector uv at element
level and the projection uπ has to be evaluated at the node i of the virtual element.
Furthermore,�v is the element area or volume in the two- or three-dimensional case,
respectively. By writing

∫

�v

�0(üh − üπ ) · (uh − uπ ) d� = uT
v M(d,n)

s üv (7.22)

where d stands for dimension and n for polynomial order, we can define the stabi-
lization matrix for different ansatz functions. Linear and quadratic ansatz functions
lead to:

• Two-dimensional linear ansatz:

M(2,1)
s = �0 �v

nV∑
i=1

[
I − H(2,1)

u (Xi )P
(2,1)
u

]T [
I − H(2,1)

u (Xi )P
(2,1)
u

]
(7.23)

where I is the identity matrix and (7.10) was used.
• Two-dimensional quadratic ansatz:

M(2,2)
s = �0 �v

2nV∑
i=1

[
I − P

(2,2)
u (Xi )

]T [
I − P

(2,2)
u (Xi )

]
(7.24)

where (7.11) was applied.
• Three-dimensional linear ansatz:

M(3,1)
s = �0 �v

nV∑
i=1

[
I − H(3,1)

u (Xi )P
(3,1)
u

]T [
I − H(3,1)

u (Xi )P
(3,1)
u

]
(7.25)

where (7.17) was employed.

Lumped Mass Matrix. In some cases it is more efficient to use a lumped mass
matrix instead of the consistent mass matrix which can be found in (7.13), (7.15) and
(7.19) for the consistency part of the virtual element formulation. Different lumping
schemes are available, for an overview see Hughes (1987). Here we apply the row
sampling technique that provides a diagonal matrix
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Mdiag =

⎡
⎢⎢⎢⎢⎣

m1

m2

m3

. . .

mn

⎤
⎥⎥⎥⎥⎦ with mi =

n∑
k=1

Mik (7.26)

whereMik are the components of themassmatrixM(d,n)
π which depend on the chosen

ansatz n. It is interesting to note, that, due to construction, the rank deficient consistent
mass matrix stemming from the consistency part, see e.g. (7.11), produces a lumped
mass matrix which is easily invertible.

7.3 Solution Algorithms for Small Strains

In the previous chapter we have discussed the application of virtual elements for
elastic solids. Now this formulation will be enlarged to elasto-dynamics. After dis-
cretization using the virtual element formulations in Chap.6 and Sect. 7.2 a system
of ordinary differential equations appears in matrix form, contrary to the static case,
where a linear system of equations has to be solved. In this section, first the matrix
formulation of elasto-dynamics is provided and second solution algorithms will be
discussed.

7.3.1 Matrix Formulation

In case of dynamics the system of Eqs. (7.1) which can be cast in the form of a pseudo
potential (7.4). For small strains the strain energy �(u) is provided by (2.43). By
inserting this form in the pseudo potential (7.4) we obtain

U (u, ü) =
∫

�

[
�0 ü · u + 1

2
ε̂
T
C ε̂ − f̄ · u

]
d� −

∫

�N

t̄ · u d� (7.27)

with the infinitesimal strains ε̂, see (2.9).
A matrix formulation for d-dimensional virtual elements with ansatz order n

yields with Voigt notation, see Sect. 6.1.1 and (6.14),

1

2
uT

v [P(d,n)
∇ ]Tv

∫

�v

[B(d,n)
u π (X,Y )]TCB(d,n)

u π (X,Y ) d� [P(d,n)
∇ ]vuv = 1

2
uT

v K(d,n)
v uv

for the strain energy in (7.27) within an element�v . By adding the mass contribution
(consistency and stabilization term) and the loading terms, f (d,n)

v for the body force
and P(d,n)

e for surface tractions, the matrix expression
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uT
v

[
M(d,n)

π + M(d,n)
s

]
üv + 1

2
uT

v K
(d,n)
v uv − uT

v

(
f (d,n)
v + P(d,n)

e

)
(7.28)

can be written for an element �v . The first variation of this pseudo potential with
respect to the nodal displacements, with fixed accelerations, and assembly over all
elements leads to, see Sect. 6.1.1 and (6.10),

Mü(t) + Ku(t) = F(t) . (7.29)

In this equationM is the mass matrix, see Sect. 7.2, andK the stiffness matrix of the
virtual element discretization. The accelerations ü and displacements u refer to the
global unknowns of the discretized solid. Both matrices, M and K, are independent
of time while the load vector F, containing body and traction forces, as well as the
acceleration ü and the displacement u depend on time. Thus the discretization using
virtual elements leads to a set of second order linear ordinary differential equations
in time which can be solved in different ways.2

7.3.2 Numerical Integration in Time, Time Stepping Schemes

Different options exist to solve the second order linear ordinary differential equation
system in time, provided by (7.29). Especially in the linear case very efficient time
stepping schemes can be developed. In the following we will neglect the damping
part to simplify the presentation.

Possible solution schemes are presented next.

• Modal analysis is based on the computation of eigenvalues and -vectors of the
dynamical system (7.29). The displacement can then be written as u(X, t) =
ϕ(X) sinωt . The eigenvalue system

(K − ω2 M)ϕ = 0 (7.30)

yields the eigenvalues ωi and eigenvectors ϕi . By defining a matrix containing all
eigenvectors � = [

ϕ1|ϕ2| . . . |ϕi | . . . |ϕN

]
it is possible to transform the matrix

equation (7.29) to a diagonal form. With the orthogonality conditions for the
eigenvectors (note ϕT

i ϕk = 0, for i �= k) it yields

�TK� = ω2
d , �TM� = I (7.31)

2 For dynamical applications in engineering often damping due to material, frictional forces in
connections and other structural components has to be considered. By adding the term C u̇ to the
left hand side of (7.29) damping can be introduced where C is the damping matrix. Often the
damping matrix is formulated as so called modal or Rayleigh damping by a combination of mass
and stiffness matrix: C = α1 M + α2 K, for more details see e.g. Bathe (1996), Hughes (1987),
Zienkiewicz and Taylor (2000a).
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where ω2
d is a diagonal matrix that contains all eigenvalues ωi , (1 ≤ i ≤ N ).

Furthermore, the eigenvectors are scaled such that the transformation with the
mass matrix yields the identity matrix I.
By using the orthogonality of the eigenvectors, the displacement u can be written
as

u(X, t) = �(X)q(t) (7.32)

where the components qi in q(t) state the influence of each eigenvector ϕi . This
modal amplitude qi is a function of time. Note that no approximation is introduced
when all eigenvectors N of the system (7.30) are included. The transformation
(7.32) can now be inserted into the differential system of Eqs. (7.29) and by pre-
multiplication with � a diagonal form follows

q̈(t) + ω2
d q(t) = F̂(t) with �TF(t) = F̂(t) (7.33)

where the orthogonality relations (7.31)were employed. Equivalentlywe canwrite

q̈i (t) + ω2
i qi (t) = F̂i with F̂i = ϕT

i F̂(t) . (7.34)

There are as many ordinary differential equations (7.34) as degrees of freedom.
The initial values of the system (7.1) for the displacements and the velocities
(u(0) = u0) and (u̇(0) = v0) can be transformed aswell by using (7.32) and (7.31).
It follows

q(0) = �TMu0 and q̇(0) = �TMv0 . (7.35)

Solving all N ordinary equations is not efficient. However, it is possible to reduce
the work considerably by only using as many eigenvalues and -vectors as needed
to obtain a good approximation of the solution of (7.33). In this case, the solution
u is approximated by using only a subset of the eigenvectors

u = �̄ q (7.36)

where �̄ = [
ϕ1|ϕ2| . . . |ϕM

]
with M < N , see e.g. Cook et al. (1989), Bathe

(1996). The needed eigenvalues and -vectors can be selected such that the sub-
space of the chosen eigenvectors reproduces a desired amount of the total energy.
A measure for the error can be defined as, see e.g. Cook et al. (1989),

ε(t) = ‖F(t) − M �̄ q̈ − K �̄ q‖
‖F(t)‖ (7.37)

where it is assumed that F �= 0 when ε(t) is computed for a specific time. The
error has to be monitored during the analysis and to be kept within a specified
tolerance, e.g. 1% .
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• Explicit time integration. For a time stepping method that is explicit the dynamic
equation (7.29) has to be evaluated at time tn

Mün + Kun = Fn (7.38)

where the subscript n denoted the value of the displacement and acceleration at
time step tn . Many different time stepping schemes can be applied to solve (7.38),
for an overview see e.g. Wood (1990). Here we use a very common method which
is based on the central difference quotient for derivatives at time tn . This difference
scheme leads to the approximation

ün = 1

(�t)2
[un+1 − 2 un + un−1 ] (7.39)

for the acceleration which can be inserted into (7.38) leading to

Mun+1 = (�t)2 Fn + [
2M − (�t)2 K

]
un − Mun−1 . (7.40)

For the computation of un+1 the mass matrix has to be inverted. While in a finite
element analysis the mass matrix has full rank, this is not the case for virtual
elements when only the consistency part of the mass matrix is used, see Sect. 7.2.
Hence stabilization has to be introduced, see (7.21), or a lumpedmassmatrix needs
to be employed, see (7.26). In any case, explicit time stepping is only efficientwhen
a lumped mass matrix is employed. Then no equation system needs to be solved
and the evaluation of (7.40) is trivial and fast. The accuracy of the central difference
scheme is of second order.
In (7.40) the displacement un−1 at time tn−1 is needed. This poses a problem at the
start of the time stepping (t0 = 0). By using a backward Taylor series expansion
of second order at t0 = 0 the displacement u0−1 can be computed from initial
conditions for displacements and velocities u0 und u̇0 = v0

u0−1 = u0 − �t v0 + 1

2
(�t)2ü0 with ü0 = M−1 [F0 − Ku0] . (7.41)

The central difference method is unstable for large time steps. The stability limit
of the method is given by the Courant number �t ≤ 2 /ωmax where ωmax is the
largest eigenvalue. This value depends on the element with smallest size in the
discretization. The critical time step can be estimated by �t ≈ h / cL where h is a
characteristic (smallest) element length and cL the velocity of a longitudinal wave,
depending on the constitutive parameters. Since this limitation yields often very
small time steps, the method is best suited for problems with short term loading
like e.g. shocks, impact or wave propagation.

• Implicit time integration. Contrary to the explicit scheme, implicit integration
methods are based on the discretized dynamic equation at time tn+1
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Mün+1 + Kun+1 = Fn+1 (7.42)

Several time stepping schemes exist for the implicit integration of the equations of
motion, see e.g.Wood (1990), Bathe (1996). An often used variant is the Newmark
scheme which leads to the following difference equations for displacements and
velocities at time tn+1

un+1 = un + �t u̇n + (�t)2

2
[ (1 − 2β) ün + 2β ün+1 ]

u̇n+1 = u̇n + �t [ (1 − γ ) ün + γ ün+1 ]
(7.43)

with two parameters γ and β. By inserting these approximations into the dis-
cretized dynamic equation (7.42) we obtain an equation system for the
accelerations

M̂ ün+1 = Fn+1 − K ûn (7.44)

with

M̂ = M + β (�t)2 K and

ûn = un + �t u̇n + (
1

2
− β)(�t)2 ün .

The method is implicit since the equation system (7.44) has to be solved to obtain
the accelerations.3 Once the accelerations are known Eqs. (7.43) yield displace-
ments and velocities at time tn+1.
The selection of the parameters γ undβ determines the accuracy and stability of the
method.TheNewmarkmethod is unconditionally stable for 1

2 ≤ γ ≤ 2 β,meaning
an arbitrary large time step�t can be employed. The method is thus preferable for
responseswith periodic loading, like vibration problems ofmachines and buildings
in structural dynamics. For β = 1

4 and γ = 1
2 the method is equivalent to the

trapezoidal rule and hence of second order accuracy. For β = 0 and γ = 1
2 one

recovers the explicit central difference scheme.

7.4 Solution Algorithms for Finite Strains

For large deformations the systemof Eqs. (7.1) can be formulated in terms of a pseudo
potential (7.4) with the strain energy �(∇u). By inserting this form in the pseudo
potential (7.4) we obtain

3 It is straightforward to reformulate the above equation system in such a way that an equivalent
equation to (7.44) yields the displacements at time tn+1. Such formulation of Newmark’s method
can be found in many papers, but of course, both formulations are equivalent.
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U (u, ü) =
∫

�

[
�0 ü · u + �(∇u) − f̄ · u ]

d� −
∫

�N

t̄ · u d� . (7.45)

Except for the term of the nonlinear strain energy all other integrals regarding loading
and inertia terms are the same as in linear case, see (7.28). It remains to formulate the
term associated with the strain energy. This has to be performed for the consistency
and the stabilization part. For the latter we choose the energy stabilization discussed
in Sect. 6.2.2.

The discretization of the consistency term can be based on a generalization of
(3.94) for d dimensions and polynomial ansatz order of n leading to the discretization
of the displacement gradient for the consistency part, see e.g. Sect. 6.2.1,

∇uπ = B(d,n)
u π (X)P

(d,n)
∇ uv . (7.46)

This approximation can be applied in
∫
�v

�(∇u)d�. Since �(∇u) is a nonlinear
function with respect to ∇u the integration cannot be computed via boundary inte-
grals. Thus the area of the virtual element �v has to be subdivided into nint triangles
�i

m with ∪nint
m=1 = �v in the two-dimensional case, as discussed in Sect. 6.2.1, or in

nint tetrahedra in the three-dimensional case. Now the integral including the strain
energy can reformulated as

∫

�v

�(∇uπ )d� =
nint∑
m=1

∫

�i
m

�(∇uπ )d� . (7.47)

The integration is performed by applying a Gauss point scheme with weighting
points wg and integration points ξ g for each �i

m . For an efficient implementation the
numerical integration is based on a coordinate transformation using an isoparametric
mapX = ∑nm

i=1 NI (ξ)XI whereXI are the vertices of the virtual element. This yields
for the general case

∫

�i
m

�[∇uπ (X)]d� =
∫

ξ

�[B(d,n)
u π (ξ)P

(d,n)
∇ uv] det Jv(ξ) dξ

=
ng∑
g=1

wg �[B(d,n)
u π (ξ g)P

(d,n)
∇ uv] det Jv(ξ g) .

(7.48)

where ξ = {ξ , η} for the two-dimensional and ξ = {ξ , η , ζ } for the three-
dimensional case. In short we can write for the sum over all subtriangles or tetrahedra
related to the potential energy of the consistency term

U (d,n)
c (uv) =

nint∑
m=1

⎡
⎣

ng∑
g=1

wg �[B(d,n)
u π (ξ g)P

(d,n)
∇ uv] det Jv(ξ g)

⎤
⎦

m

. (7.49)
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Note that for the linear ansatz this expression is a lot simpler

U (d,1)
c (uv) =

∫

�v

�(∇uπ )d� = �(P
(d,1)
∇ uv)�v (7.50)

which still is a nonlinear relation with respect to the nodal displacements uv .
Now the matrix form of the pseudo-potential follows from (7.45) with respect to

an element �v as in (7.28)

uT
v

[
M(d,n)

π + M(d,n)
s

]
üv + [

U (d,n)
c (uv) +U (d,n)

s (uv)
] − uT

v (fd,n
v + Pd,n

e ). (7.51)

where U (d,n)
s (uv) is the energy related to the stabilization. The residual for the con-

sistency term of one virtual element follows from

R(d,n)
c v (uv) = ∂U (d,n)

c (uv)

∂uv

(7.52)

The residual, using the energy formulation, can be obtained for the two-dimensional
case by (6.54) and for the three-dimensional case by (6.64) leading to Rs

v(uv) for an
element �v .

Differentiation of (7.51)with respect to the nodal displacementsuv , while keeping
üv fixed, yields

[
M(d,n)

π + M(d,n)
s

]
üv + [

R(d,n)
c v (uv) + Rs

v(uv)
] − (fd,n

v + Pd,n
e ) . (7.53)

Assembly over all elements leads to, see Sect. 6.1.1 and (6.10),

Mü(t) + R[u(t)] = F(t) . (7.54)

For the solution of the time dependent nonlinear problem the implicit Newmark
scheme is applied. By rewriting (7.43)1 as

ün+1 = 1

β(�t)2
(un+1 − un) − 1

β(�t)
u̇n − 1 − 2β

2β
ün (7.55)

and inserting into the (7.54) at time tn+1 a nonlinear equation system follows

G(un+1) = 1

β(�t)2
Mun+1 + R(un+1) − Fn+1 − M̂̈un = 0 (7.56)

with
̂̈un = 1

β(�t)2
un + 1

β(�t)
u̇n + 1 − 2β

2β
ün . (7.57)
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Algorithm 1: Newmark algorithm for finite strain dynamics

Given: u0 = u(t0) , u̇0 = u̇(t0) , ü0 = ü(t0) = 0 ,Fn+1 Find: un+1 , u̇n+1 , ün+1 ;

for n = 0 to nsteps do
u0n+1 = un ;
for i = 0 to niter do

Ke f f
T (uin+1)�ui+1

n+1 = −G(uin+1);

ui+1
n+1 = uin+1 + �ui+1

n+1;

‖G(ui+1
n+1)‖ ≤ ε −→ STOP

end

un+1 = ui+1
n+1;

ün+1 = 1
β(�t)2

(un+1 − un) − 1
β(�t) u̇n − 1−2β

2β ün ;

u̇n+1 = u̇n + �t [ (1 − γ ) ün + γ ün+1];
end

The equation system (7.56) is usually solved within a time step by the Newton-
Raphson scheme. With

Ke f f
T (un+1) = ∂G(un+1)

∂un+1
= 1

β(�t)2
M + KT (un+1) (7.58)

the Algorithm 1 can be formulated, where KT (un+1) is the tangent stiffness matrix
resulting from the residual R(un+1).

The algorithm provides displacements, velocities and accelerations at the new
time tn+1 = tn + �t where �t has to be selected by the user with respect to the
characteristics of the physical problem. Within the algorithm ε is a tolerance that
is usually set to ε = 10−10, niter is the maximum number of steps in the algorithm
which is set to niter = 20. Since the Newton algorithm has quadratic convergence
properties, 4 to 6 iterations are usually sufficient to find the solution within a time
step. If the problem is highly nonlinear it can happen that no convergence is achieved
within the niter steps. In such cases the time step has to be reduced and the Newton
iteration has to start again with the initial values at tn . Classically the reduction is
given by�tnew = �told / 2. Once the displacements, velocities and accelerations are
determined they will be applied as initial data for the next time step and so forth until
the maximum number of time steps nsteps is reached.

7.5 Numerical Examples

In this section the performance of different virtual element formulations will be
investigated. For comparison purposes results of the standard finite element method
(FEM) are also included. The material parameters used in this book are the same for
all examples and are provided in Table 7.1, unless it is otherwise specified.
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Table 7.1 Material parameters used for the numerical examples

No. Parameter Label Value Unit

1 Elastic modulus E 210 kN/mm2

2 Poisson ratio ν {0.3, 0.499999} –

3 Density ρ 0.0027 g/mm3

The virtual element discretization is based on a first order pure displacement
formulation, see (6.41) with the stabilization (6.61) using the standard mesh types
VEM-H1 and VEM-VO types, see Appendix B. Additionally, the formulations and
mesh types are employed:

• VEM H1-JP0: A regular shaped 3D virtual element with 8 nodes. This element is
using aHu-Washizu formulationwith a linear ansatz for the displacement, constant
pressure p and constant dilatation θ as additional degrees of freedom, see (6.103)
with the stabilization (6.61).

• VEM VO-JP0: A 3D voronoi shaped virtual element with arbitrary number of
nodes. This element is using a Hu-Washizu formulation with a linear ansatz for the
displacement, constant pressure p and constant dilatation θ as additional degrees
of freedom (6.103) with the stabilization (6.61).

For a representative comparison, the standard finite element formulations FE-H1with
linear ansatz andFE-H2with quadratic ansatz and 27 nodes are selected.Additionally
a regular shaped 3D finite element FE-H1-JP0 with 8 nodes is used. This element
is based on a Hu-Washizu formulation with a linear ansatz for the displacement,
constant pressure p and constant dilatation θ as additional degrees of freedom, see
Simo et al. (1985a).

The stabilization parameter of the static part βstat is chosen in all the simulations
using (6.63), unless it is otherwise specified. For the dynamic part the mass-matrix
is computed according to (7.20) without any stabilization.

7.5.1 Transversal Beam Vibration

Transversal vibrations in beams are a classical application of dynamics and will be
used to compare virtual element to finite element solutions. A cantilever beam with
an end load is considered. Its geometry and the time dependent load are depicted in
Fig. 7.1a. The material parameters are the Young’s modulus E = 210kN/mm2, Pois-
son ratio ν = 0.3 and density � = 0.0027g/mm3. The beam length is � = 30 mm,
the height is h = 5mm and the depth b = 1mm.A point load P(t) acts in transversal
direction at the upper corner at X = � as shown in Fig. 7.1a. The load depends on
the time, see Fig. 7.1b, with a peak of the load Pmax = 100 kN. The period T of
the applied load is adjusted to the bending stiffness of the beam and defined by the
analytical solution related to the first eigenfrequency of a clamped beam



7.5 Numerical Examples 201

Fig. 7.1 2D Example—Transversal beam vibration. Boundary value problem in (a) and applied
force in (b)

Fig. 7.2 2D Example—Transversal Beam Vibration. a VE-Q2S Mesh, b VEM Animal-Mesh and
c C-Mesh

T = 3.5156

2π�2

√
12ρ

Ebh3
(7.59)

In order to analyze the position effect of the element centroid on evaluating the
integral of the dynamic part, we used different types of meshes as illustrated in
Fig. 7.2. The “animal” mesh (Fig. 7.2b) includes concave elements. To investigate
the effect of using concave elements where the centroid of the element is outside of
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Fig. 7.3 Displacement over time response at X = � for 2D Example—Transversal BeamVibration

the element domain, we introduce a special mesh with elements like C’s, where the
centroid of the element is outside of the element domain (Fig. 7.2c).

Figure 7.3 depicts the displacement over time response at the end of the beam
(X = �). The finite element solution is computed for 1000 FE-Q2 elements, whereas
VEM results are obtained with the meshes depicted in Fig. 7.2. A comparison of
response of the virtual elements VO and VO-BI illustrates that different evaluations
of the integral (mass matrix) in Eq. (6.38) yield the same displacement results either
using the centroid (VO) of the element or an exact evaluation (VO-BI). Furthermore,
we observe that the displacements in the center of the beam are slightly larger than
the finite element results. The period fits very well compared with FEM results. In
general the virtual element results are in a good agreement even, as in this case, when
compared with finite element FE-Q2 results which approximate the displacement
field with a quadratic ansatz. The linear virtual elements VE-Q2S and VE-Q2S-
Stab reproduce nearly the same response. Thus a very good approximation of the
dynamical behaviour of the beam is provided by the virtual element method, even
without stabilizing the mass matrix.

The influence of the different meshes shows, that the C-mesh yields a larger
deflection when compared with the results of the other mesh types. Nevertheless
qualitatively the shape of the displacement over time response fits very well the
finite element FE-Q2 results and the virtual element VE-Q2S results. Hence we can
conclude that the evaluation of the integral for the mass matrix at the centroid of the
element does not affect the results.

7.5.2 Cook’s Membrane Problem

In the two-dimensional Cook’s membrane problem the virtual element performance
will be compared with finite element results. The geometrical setup and boundary
conditions are provided in Fig. 7.4b. In this test a force of Pmax = 10000 kN/mm is
applied at the right edge as a line load, as depicted in Fig. 7.4b. The VE-VO mesh
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Fig. 7.4 2D Example—Cook’s membrane. a VE-VO Mesh, b boundary value problem and c
VE-Q2S Mesh

Fig. 7.5 2D Example—Cook’s membrane. Von Mises stress distribution at time t = 0.035 ms for
different elements at same scale

and regular VE-Q2Smesh are also depicted in Fig. 7.4a, c, respectively. The material
data are provided in Table 7.1.

The contour plots of the von Mises stress distribution for different elements at
the time t = 0.035 ms are sketched in Fig. 7.5. Both elements VE-Q2S and VE-Q2S
Stab, which use the non stabilized and the stabilized mass matrix, produce nearly the
same von Mises stress distribution. The nonlinear behaviour is clearly observed by
large deformations interacting with dynamic effects at finite strains.

Figure 7.6 shows a mesh refinement study for different mesh types with the ele-
ment division of 2N with N ∈ {1, 2, 3, 4}. For N = 3 and higher the solutions of
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Fig. 7.6 Convergence Study—Displacement over time response for 2D Example—Cook’s mem-
brane. Element division 2N , where N increases from (a) to (d)

all mesh types converge. Furthermore, a comparison with the finite element method
shows a very good agreement.

This study underlines again, that the evaluation of the mass matrix at the element
centroid, using (7.20), is sufficient for a successful analysis of a dynamical problem
with VEM. Interestingly, different evaluations of the integral related to the mass
matrix can yield a rank deficient mass matrix or a mass matrix with full rank, but
both approaches reproduce almost identical responses.

7.5.3 3D Beam

A clamped three-dimensional beam is dynamically loaded by a surface load p(t)
at the free end, as illustrated in Fig. 7.7. The load is applied as a half sine function,
see Fig. 7.1b, with the time period T0 = 0.0008 and an amplitude of 45 N/mm2.
Thereafter, the force is released and the beam is oscillating freely. The time increment
for the numerical time stepping procedure is set to �t = 1µs.

The essential aspect of this investigation is to demonstrate the performance of
the Hu-Washizu formulation for compressible and nearly incompressible material
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Fig. 7.7 3D
Beam—Geometry and
boundary conditions

behaviour in dynamics. Different Poisson’s ratio are chosen:

ν ∈ {0.3, 0.45, 0.49, 0.499, 0.4999, 0.49999, 0.499999} .

The material parameters used in the simulations are listed in Table 7.1.
Figure 7.8 shows the time history of the displacement at the tip of the beam. The

response for a compressible material with ν = 0.3 is outlined in Fig. 7.8a—c. The
maximal vertical displacement of the beam converges with increasing node number
to nearly u = 70 mm, see Fig. 7.8c.

Nevertheless, the finite and virtual elements, which are based on a pure displace-
ment formulation FE-H1 and VE-H1/VO, tend to provide stiffer responses. Such an
observation is in line with the artificial stiffening due to shear locking which can
occur in bending dominated situations, like in this example. The response for in
increased value of Poisson’s ratio, which is set nearly up to the incompressible limit
(i.e. ν = 0.499999), is outlined in Fig. 7.8d–f. A strongly stiffer response is observed
for the pure displacement elements FE-H1 and VE-H1/VO when compared with the
stable and robust mixed finite and virtual element formulations FE-H1-JP0 and VE-
H1/VO-JP0. Thus the Hu-Washizu based finite and virtual elements produce a much
softer response and can handle incompressible material and bending behaviour well.

For a representative comparison between all elements, the relative error of thema-
ximum displacement, shown in Fig. 7.8, is plotted in Fig. 7.9 for different element
types and Poisson ratios. The error is computed with respect to an overkill solution,
that is obtained from the mixed finite element FE-H1-JP0 using 100000 elements.
The results in Fig. 7.9a depict for the compressible case (ν = 0.3) that the error is
remarkably reduced by increasing the number of elements for all types. The pure
displacement elements FE-H1 and VE-H1/VO demonstrate in this example a high
error in comparisonwithmixedFEMandVEMformulations, especially in the case of
coarsemeshes.When increasing thePoisson’s ratio, the error of the pure displacement
elements is further increased, reaching its maximum for ν = 0.499999. The mixed
finite and virtual elements stay nearly constant and are not effected by any kind of
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Fig. 7.8 3D Beam—Displacement over time response for different element types and mesh dis-
cretization in (a) to (c) with ν=0.3 and (d) to (f) with ν=0.499999

Fig. 7.9 3D Beam—error of the maximum displacement over time for different element types and
various Poisson’s ratio in (a) to (c)

locking phenomena. This illustrates the importance of using a mixed formulation for
virtual element modeling incompressible materials.
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Chapter 8
Virtual Element Formulation for Finite
Plasticity

The application of virtual elements covers a wide range in solid mechanics. Besides
pure elastic behaviour, material models can be introduced that include path depen-
dency and thus history variables. The treatment of such constitutive models needs
a special approach with respect to algorithms and the formulation of the virtual
element method. The details will be discussed in the following for the case of
three-dimensional von Mises plasticity at finite strains. This chapter follows the
approach provided inWriggers andHudobivnik (2017) andHudobivnik et al. (2018).
Application of virtual element discretizations for rolling processes involving plastic
behaviour can be found in Böhm et al. (2020). Extensions to applications involving
anisotropic crystal-plasticity are discussed in Böhm et al. (2023).

8.1 Formulation of the Virtual Element

The formulation of a finite deformation virtual element for elasto-plasticity is based
on the theoretical background provided in Sects. 2.2.3 and 2.3.3. For finite strains
the deformation gradient F is split in an elastic, Fe, and a plastic part, F p, in a
multiplicative way: F = Fe F p, see (2.72). The kinematical relation (2.74),

be = F C−1
p FT with C p = FT

p F p ,

the flow rule (2.76)

f (s, α) = σV M − [ Y0 + (Y∞ − Y0)e
−δ α + H α ] ≤ 0

and the evolution of the plastic strain (2.80)
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Ċ
−1
p = −2 γ̇ F−1 n F C−1

p with n = ∂ f

∂s

describe the plastic flow where s is the deviatoric Kirchhoff stress, see (2.77). These
equations are employed together with the elastic strain energy Ψ , see e.g. (2.56) to
locally characterize the constitutive behaviour.

Additionally, the pseudo potential (2.91), describing the global deformation and
stress state,

U (u,h) =
∫

�

[
Ψ (u,h) − f̄ · u ]

d� −
∫

	N

t̄ · u d	

is used as starting point for the discretizations with virtual elements. Alternatively,
the weak form (2.83) can be employed.

The virtual element is based on a split into the consistency part, which for a
linear ansatz results in a constant part of the deformation gradient, and an associated
stabilization term, see Sect. 5. As in the hyperelastic case we split the potential in
a consistency part Uc and a stabilization part Ustab. By summing up all element
contributions for nv virtual elements we obtain

U (u ,h) =
nv

A
v=1

[Uc(uπ ,hv) +Ustab(uh − uπ ,hv) ] , (8.1)

where v denotes a single virtual element within the discretization. The associated
element area/volume is then �v . In the presented formulation the plastic variables
hv are computed from the consistency term of the virtual element �v for finite strain
elasto-plasticity. These plastic variables are kept constant when included as history
variables in the stabilization procedure.

8.1.1 Consistency Part Due to Projection

The first part in (8.1) is the consistency part. It can be computed for each virtual
element

Uc(uπ ,hv) =
∫

�v

[
�(∇uπ ,hv) − f̄ · uπ

]
d� −

∫

	σ
v

t̄ · uπ d	 (8.2)

and includes the volume and traction loading.
With the projection for the displacement uπ = H(d,n)

u π (X)uv and the gradient
∇uπ = B(d,n)

u π (X)P
(d,n)
∇ uv the above equation leads to
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Uc(uv ,hv) =
∫

�v

�(B(d,n)
u π (X)P

(d,n)
∇ uv,hv) d�

− uT
v

∫

�v

[H(d,n)
u π (X)]T f̄ d� − uT

v

∫

	σ
v

[H(d,n)
u π (X)]T t̄ d	.

(8.3)

The discretization of the deformation gradient F allows to compute the kinematical
relation (2.74) for the virtual element �v

be = F C−1
p FT with F = 1 + ∇uπ = 1 + B(d,n)

u π (X)P
(d,n)
∇ uv . (8.4)

As in the elastic case, ∇ uπ is constant for the linear ansatz ∇uπ = B(d,1)
u π P

(d,1)
∇ uv .

Hence, all kinematical quantities F, be and the history variables C−1
p and γ are

constant as well. Thus the integration of the potential function can be simplified,
leading to the efficient form

∫

�v

�(be,hv) d� = �(be,hv)�v (8.5)

where�v is the area/volume of the virtual element. Note that the pseudo strain energy
�(be,hv) is still a nonlinear function with respect to the displacement nodal degrees
of freedom and the plastic history variables hv .

8.1.2 Algorithmic Treatment of Finite Strain Elasto-plasticity

The evolution equation in (2.80) can be integrated by using an exponential map, see
e.g. Korelc and Stupkiewicz (2014), which is the most accurate and efficient way.
This leads with the evolution of the hardening variable �α = �γ , see (2.79), to the
incremental form of (2.80)

C−1
p = F−1 exp[2�α n] F C−1

p n (8.6)

where the time integration is performed within the time step �t = t − tn . In the fol-
lowing, quantities without an index represent the current time (t = tn+1) and quan-
tities with index n are related to the last time step tn . The relation (8.6) returns the
plastic variables exactly due to the use of the exponential map. Consequently the
plastic incompressibility of the J2 plasticity model is exactly satisfied.

The equations in Algorithm 1 have now to be solved locally at element level. Since
all kinematical variables are constant at element level for the low order discretization
the following set of equations has to be solved at the current time t = tn+1
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Algorithm 1: Return map algorithm for finite strain elasto-plasticity

Given: F, C−1
p n, αn Find: C−1

p , α ;

be = F C−1
p n FT ;

I1 = tr be , I3 = det be;

W = μ
2 (I1 − 3 − ln I3) + λ

4 (I3 − 1 − ln I3);

τ e = 2 be
∂W

∂be
;

se = τ e − 1

3
tr τ e;

f (se, α) =
√

3
2 ‖ se ‖ − [ Y0 + (Y∞ − Y0) e−δ α + Hα ];

n = ∂ f (se, α)

∂se
;

Q̂v = F C−1
p − exp[2(α − αn) n] F C−1

p n ;
Result: Evolution equation, flow rule and history variables

Qv =
{
Q̂v , f

}
= {Q11, Q22, Q33, Q12, Q13, Q23, f }T ;

hv = {C−1
p , α} = {C−1

p11 − 1,C−1
p22 − 1,C−1

p33 − 1,C−1
p12,C

−1
p13,C

−1
p23, α}T

R(u,h,hn) = 0

Qv(Fv ,hv,hvn) = 0 v = 1, 2, . . . , nv .
(8.7)

HereR is the residual stemming from the first variation of the pseudo-potential which
is equivalent to the weak form. It contains the total number of unknowns u of the
problem, and with h all sets of history variables related to the nv virtual elements of
a discretization. The equation set Qv includes nh local equation systems, as defined
in Algorithm 3. These have to be solved for the update of the plastic variables.
Classically the equations Qv have to be evaluated at Gauss point level within an
element. Since the discretization of the three-dimensional virtual element is based
on a linear polynomial ansatz leading to a constant gradient in�v only one evaluation
per virtual element v is necessary. The nh equations ofQv return the history variables
hv . The system of nonlinear equations is classically solved using a nested algorithm
where u and h are the unknown variables. In this algorithm the local Eq. (8.7)2 are
solved for fixed u displacements using a Newton-Raphson scheme as described in
Algorithm 1. The Newton-Raphson method is again applied to solve the set of global
Eq. (8.7)1 freezing now the history variables, for details see Simo andHughes (1998),
Korelc and Wriggers (2016).

The element residual Rv of the consistency part of a virtual element follows from
(8.5)

Rc
v = �v

∂�(uv ,hv)

∂uv

∣∣∣∣
Dhv
DFv

=0
(8.8)

where the history variables are treated as fixed variables and � depends on uv , see
(8.3) and (8.4). The explicit form of the residual was derived with the symbolic tool
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AceGen, details can be found in Korelc and Wriggers (2016). The nested algorithm
requires the solution of the local Algorithm 1 which results in the nonlinear equation
system (8.7)2 and has to be solved using a Newton iteration. For this task the local
tangent matrix Av , related to the constitutive equation, has to be computed

Av = ∂Qv(b,hv,hvn)

∂hv

. (8.9)

Based on this result, the global tangent matrix for the virtual element can be derived
from (8.7)1 and (8.8)

Kc
T v = ∂Rc

v(uv,hv,hvn)

∂uv

∣∣∣∣
Dhv
DFv

=−A−1
v

∂Qv
∂Fv

(8.10)

where uv are the nodal displacements of the virtual element �v , see (3.58) and
(3.157). The introduction of the special constraint Dhv

DFv
= −A−1

v
∂Qv

∂Fv
in (8.10) is

necessary within the tool AceGen to ensure a consistent linearization for the global
algorithm that takes into account the local iteration, for details see Simo and Hughes
(1998), de Souza Neto et al. (2008), Korelc and Stupkiewicz (2014), Korelc and
Wriggers (2016).

8.1.3 Energy Stabilization of the Virtual Element for Finite
Plasticity

A difference between two potential energies can be introduced to formulate the
stabilizations, like in the case of hyperelastic materials. The pseudo potential energy
related to stabilization is given for a virtual element v by

Ustab(uh ,hv) = Û (uh ,hv) − Û (uπ ,hv) . (8.11)

As for the computation of (6.61) an internal mesh can be created for the evaluation
of Û (uh ,hv), see Fig. 6.16. Based on this internal mesh, the displacement gradient
Grad um is computed in each internal tetrahedral element �i

m . It is constant, as well
as the deformation gradient Fi

m , due to the linear ansatz.
In case of plastic deformations the left Cauchy Green tensor be|m has to be intro-

duced in the stabilization part of the pseudo energy (8.11). This is achieved in an
approximative way using the constant plastic strains C−1

p (hv) from the consistency
part, see Algorithm 3. The kinematic Eq. (2.74) yields

be|m = Fm C−1
p (hv) FT

m (8.12)
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which then can be utilized together with the strain energy (2.56) to compute the
stabilization part.

With the above approximations the expression Û (uh ,hv), defining part of the
stabilization potential in (8.11), is obtained for the virtual element v by including all
nm internal tetrahedral elements

Û (uh ,hv) =
nv

A
v=1

∫

�i
m

�̂(uh |m ,hv) d� . (8.13)

Here uh |m are the nodal displacements that are related to the specific tetrahedral
element �i

m . For more details see Sect. 6.2.3.
Once the potential is evaluated the residual vector Rs

e and the tangent matrixKs
T v

of the stabilization part can be obtained

Rs
v = ∂Ûstab(uv ,hv)

∂uv

∣∣∣∣∣
Dhv
DFv

=0

and Ks
T v = ∂Rs

v(uv,hv)

∂uv

. (8.14)

The total residual and tangent matrix of the virtual element for finite plasticity are
given by the sum of expressions (8.8), (8.10) and (8.14)

Rv = Rc
v + Rs

v and KT v = Kc
T v + Ks

T v .

Note that the approximation in (8.12) yields a non-symmetric tangent matrix for the
stabilization part, since the plastic strains C−1

p from the consistency part are used.
The values of the Lamé parameters in the pseudo potential (8.11) have to be

different from the ones that describe the physical problem. A procedure for a proper
selection of these constitutive parameterswas described in Sect. 6.2.3. This procedure
can be applied for plasticity in the same way. One only has to take care that, in case
of a plastic deformation in a virtual element, the modulus of elasticity Ê has to be
reduced to account for the decreased stiffness due to hardening. A possible reduction
is based on the von Mises stress σV M , see (2.76), and the equivalent plastic strain α

Ê = min

{
E

β

1 + β
,max

(σV M

α
, η2 E

)}
, (8.15)

providing an approximation for the tangent of the hardening curve. The parameter
η2 = 10−3 is a safeguard ensuring that the influence of the stability term does not dis-
appear for very large plastic deformations where the hardening modulus approaches
zero. The value of η2 has to be sufficiently low in order not to influence the results
of the numerical simulation, see Böhm et al. (2023).
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8.2 Numerical Examples

The application of virtual elements for inelastic problems undergoing finite defor-
mations is demonstrated in this section. To account for the plastic incompressible
behaviour in J2-theory the Hu-Washizu mixed element formulation from Sect. 6.3.3
is employed, leading to VE-P0 elements. However, it will be shown that pure virtual
elements also perform well when the incompressiblity constraint is present, see e.g.
the first example in Sect. 6.3.4. Two classical tests related to the statical and the
dynamical behaviour are discussed. First, a tension test is considered which leads to
necking of a bar. This is followed by the Taylor-Anvil test which is commonly used
to measure dynamical material constants.

8.2.1 Necking of Cylindrical Bar

Necking is generally observed when a bar is subjected to tension loading. Its physical
model has to include finite elasto-plasticity. In this numerical example necking in a
cylindrical bar is considered, see e.g. Hudobivnik et al. (2018), which is classically
observed in a tension test of steel bars, see Fig. 8.1.

Experimental observations show that such bars tend to neck when large plastic
deformations occur. It is a standard benchmark problem of finite plasticity and has
been analyzed by many authors, see e.g. Simo et al. (1993). In order to compute
the localization of plastic strains in the necking area one needs a robust and reliable
discretization method. Hence this example can be used to test the robustness of the
virtual element formulation. The geometrical setup and the boundary conditions of
the cylindrical bar with diameter d = 1 mm and length L = 10 mm are depicted in
Fig. 8.1.

To trigger localization and necking in the center of the bar, a geometrical imper-
fection was introduced in the central zone. In detail, the specimen’s net cross section
is reduced by choosing the diameter at the center to be dc = 0.99 d. However, also
other imperfections can be applied as well as a pure stability analysis, see e.g. Wrig-
gers et al. (1992). At the left cross section of the bar a Dirichlet boundary condition
of ū = 0 is applied.

Fig. 8.1 Necking of cylindrical bar. Geometry and boundary conditions
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Fig. 8.2 Voronoi mesh for N = 1 (8 × 80 elements)

Fig. 8.3 Regular H2 and H1 mesh for N = 1 (8 × 20 × 2 × 2 elements)

The loading is provided by a prescribed displacement ū in axial direction at the
right side. It has in total the magnitude of 50 % of the bar length L leading to
ū = 0.5L .

Different mesh types are employed within the necking analysis. These are regular
meshes using as basis 8 noded hexahedra (H1) and 26 noded hexahedra (H2) for the
linear VEM element. Additionally three-dimensional meshes consisting of Voronoi
cells were generated. The following elements were employed in this study: the linear
three-dimensional virtual element, discussed in Sect. 3.2.3, here denotedVE-H2with
26 nodes (4 faces per each block side) and a quadratic finite element (FE-H2) with 27
nodes, both use the samemesh, although theVE-H2has no nodal point at the centroid.
Additionally linear FE-H1 and FE-H1-P0 finite elements were used as a reference
involving regular and distorted meshes. Here the FE-H1-P0 is formulated with as the
mixed Hu-Washizu formulation (H1-P0), see e.g. Korelc and Wriggers (2016). The
Voronoi mesh was modeled with the virtual element formulation denoted by (VE-
VO). Voronoi, H2 and H1 meshes are depicted in Figs. 8.2, 8.3 and 8.4, respectively.
The regularmeshes usedwere automatically generated by themeshing tools provided
in AceFEM. With this tool the local coordinates ξ and η are mapped into a circle by
using the transformation function:

y = d
ξ

2

√
1 − η2

2
, z = d

η

2

√
1 − ξ 2

2
, ξ ∈ [−1, 1] , η ∈ [−1, 1] . (8.16)

The Voronoi meshes for this example were generated by the open-source software
package Neper, see Quey et al. (2011). Figure8.2 shows a Voronoi mesh generated
from random seeds which produce arbitrary number of nodes and element sizes.

Due to the symmetry of the boundary value problem, only one eights of the
cylinder was discretized and the boundary conditions were modified accordingly.
Different mesh densities were employed to compute the solution for all generated
mesh types. The mesh refinement is uniform in the sense that finer meshes are
included in the coarser meshes. This enables convergence studies that will depict
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Fig. 8.4 Distorted H1 mesh for N = 1 (8 × 20 × 2 × 2 elements)

Fig. 8.5 Load deflection curve of the necking problem for different types of elements at N = 3

differences of the formulations. The mesh was defined through a parameter N with
division 10 · 2N × 2N × 2N .

The load deflection curve for ameshwith 80 × 8 × 8 elements, N = 3, is depicted
in Fig. 8.5,where different elements andmesh types are compared. Figure8.5 shows a
typical necking responsewith initial hardening until 1.5mmdisplacement is reached.
All elements and meshes recover the constant strain part before the necking occurs.
They also, besides the FE-H1 element, recover the necking and associated localiza-
tion up to a displacement of 0.18 L properly. Note, that this is actually the point when
a real specimen will break apart in an experimental test. This means that the virtual
element method either using a regular H2 mesh or a Voronoi mesh provides good
solutions for engineering problems. Only for displacements ū > 0.18 L the results
are dependent on the discretization, which is most apparent when the FE-H1 element
is applied.

The virtual elements with regular meshes and the finite elements FE-H1-P0 and
FE-H2 almost yield the same result, showing the very good response for very large
strains. The irregularmeshes however lead to a stiffer response, seeVE-VO andH1 in
Fig. 8.4, and thus provide a solutionwhich does not capture the localization for severe
strains properly. Nevertheless the Voronoi mesh leads to a less stiff response than FE-
H1. A similar behaviour for Voronoi cells is also reported for two-dimensional virtual
element formulations for finite elasto-plastic strain in Wriggers and Hudobivnik
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Fig. 8.6 Convergence study of the maximum load values of the necking problem at around 0.14L
for different mesh densities N

Fig. 8.7 Necking of cylindrical bar: FE-H2 and VE-H2

(2017), while the regular VE-H2 and VE-H1 mesh produced comparable results to
FE-H2 and FE-H1-P0 formulations in the two-dimensional case.

Mesh convergence of the proposed 3D virtual element is investigated in Fig. 8.6
using themaximumhorizontal force at the right end of the cylinder (at around 0.14L).
Herein, all formulations converge for higher mesh density parameters N . Again we
note the very good convergence for the VE-H2 mesh.

Figures8.7, 8.8 and 8.9 show the distribution of the equivalent plastic strain α at
the final deformation state for all elements with mesh division N = 3. These figures
illustrate the good agreement between all discretizations in the necking area and
the capability of the virtual element to solve finite elasto-plastic strain problems.
Most meshes (except VE-VO and FE-H1) lead to a comparable distribution of the
equivalent plastic strains. The meshes with FE-H2 and VE-H2 produce more local-
ized shapes than the other meshes. The Voronoi (VE-VO) and especially the FE-H1
discretizations exhibit a stiffer response, which results in a larger necking diameter.
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Fig. 8.8 Necking of cylindrical bar: FE-H1-P0 and VE-H1

Fig. 8.9 Necking of cylindrical bar: FE-H1 and VE-VO

8.2.2 Taylor Anvil Test

The Taylor-Anvil test is widely employed to characterize the dynamical behaviour of
metals. Furthermore, it is used to validate discretization schemes that simulate elasto-
plastic finite strain states undergoing dynamic loading, see Simo (1992), Taylor
(1948). In the test setup, a rod impacts at high velocity a rigid plate. This is modelled
by fixing in longitudinal direction one side of the rod and by prescribing an initial
velocity to all other parts of the body, as depicted in Fig. 8.10a.

The material model described in Sect. 2.2.3.2 is applied in the associated finite
strain computations together with the flow rule (2.76). Material parameters for the
simulations are taken from the literature, see Kamoulakos (1990), Zhu and Cescotto
(1995), Camacho and Ortiz (1997), Li et al. (2010), Kumar et al. (2019), in order
to be able to compare the results of different discretization schemes with the virtual
element method. The elastic behaviour is governed by the two constants: the Youngs
modulus E = 117 kN/mm2 and the Poisson ratio of ν = 0.35. The density of the rod
is ρ = 8930 g/mm3. The yield stress is Y0 = 0.400 kN/mm2 and the linear hardening
coefficient has the value H = 0.100 kN/mm2. The saturation parameter is set to zero
(δ = 0) in the flow rule (2.76). Hence the exponential term disappears and the model
is reduced to linear hardening. The initial velocity is set to v0 = 227 m/s. The time
increment for the dynamic simulation is �t = 0.01μs. During the impact a plastic
front develops andmoves upwards leading to a deformed state as shown in Fig. 8.10b.

The accumulated equivalent plastic strain is depicted for all element formulations
in Fig. 8.11 at the final deformation state. The numerical solution is obtained with
10.000 elements. As expected, large plastic deformations are observed at the end
of the rod where the rod strikes the wall. This is well documented in the literature,
see Taylor (1948), Kumar et al. (2019), Taylor and Papadopoulos (1993) and clearly
demonstrates the influence of the kinetic energy, resulting in high stresses at the front
of the rod and a plastic wave traveling in the direction of the free end of the rod. The
wave stops travelling when a certain amount of energy is dissipated by the plastic
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process. Hence, the stresses in the upper part of the rod are not affected by the plastic
wave and stay in the elastic range and elastic energy is still stored in the upper part
of the rod, as depicted in Fig. 8.11 by zero accumulated plastic strain. Due to this
elastic oscillations are visible in Fig. 8.12, however, having a very small amplitude.
The oscillation starts at a time around 80 µs.

The contour plots show that all element yield similar results except the FE-H1
discretization. Figure8.12 demonstrates the length change over time for different ele-
ment formulations and two discretization with 640 and 10.000 elements. All element
types show nearly the same displacement curves over time. Locking effects for this
impact test occur only for the FE-H1 discretization. A small oscillation with high
frequency can be observed for all formulations. It is related to the elastic response of
the rod and more pronounced for the finer mesh. A good coarse mesh accuracy can
be attested to the virtual element formulations.

Figure8.13 depicts the development of the mushroom radius at the lower part
(z = 0). Good agreement between all element formulations—besides the locking
FE-H1—is observed. Again the mixed formulation converges for finite and virtual
elements (FE/VE-H1-P0) closest to the results which are available in the literature
for this problem, see Tables8.1 and 8.2. We note that the results using the OTM
method in Li et al. (2010) and Li et al. (2010) seems to depict minor locking as well
as the VE-H1 discretization. Figure8.13a demonstrates again the good coarse mesh
accuracy of the mixed FE/VE-H1-P0 formulation.

Fig. 8.10 Taylor Anvil test
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Fig. 8.11 Taylor Anvil test—deformation state for different elements, depicting the accumulated

plastic strain ε
p
acc =

√
2
3

∫ t
0 γ̇ dt
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Fig. 8.12 Taylor Anvil test—length change over time for different element numbers and
formulations

Fig. 8.13 Taylor Anvil test—evolution of the mushroom radius rm for different element numbers
and formulations

Table 8.1 Taylor Anvil test—comparison of different results obtained in the literature

Source Method Max. acc. plastic
strain

Final height (mm) Final mushroom
radius (mm)

Kamoulakos
(1990)

FEM 2.47–3.24 21.47–21.66 7.02–7.12

Zhu and Cescotto
(1995)

FEM 2.75–3.03 21.26–21.49 6.89–7.18

Camacho and
Ortiz (1997)

FEM 2.97–3.25 21.42–21.44 7.21–7.24

Li et al. (2010) OTM 3.0 21.43 6.8

Li et al. (2010) OTM 2.69 21.45 6.84
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Table 8.2 Taylor Anvil test—comparison of results for different element types

Element Max. acc. plastic strain Final height (mm) Final mushroom
radius (mm)

FE-H1 1.803 21.09–21.17 6.34–6.35

VE-H1 2.887 21.32–21.36 6.81–6.83

VE-VO 2.704 21.51–21.59 6.89–6.91

FE-H1-P0 3.04 21.41–21.5 7.04–7.05

VE-H1-P0 3.15 21.36–21.45 6.99–7.01

VE-VO-P0 4.063 21.56–21.65 7.17–7.18

It is obvious that the underlying discretization schemes produce slightly different
results, see Table8.1. When these results are compared with the values obtained with
the virtual element method, as depicted in Table8.2, it can be observed that good
agreement is achieved for all proposed virtual element formulations. But especially
the mixed VE-H1-P0 discretization yields superior results and it can be concluded
that the mixed formulation should be used for problems involving elasto-plastic
response.
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Chapter 9
Virtual Elements for Thermo-mechanical
Problems

Many engineering problems require an analysis that takes into account more than
one field. These are known as coupled problems which can be split in two distinct
categories. The first category relates to problems in which the physical domains
overlap and coupling occurs via the differential equations of the different physical
phenomena. In the second category problems are investigated in which coupling
occurs only at the domain interfaces, like in fluid-structure interaction. Here we
will concentrate on the first category. Examples are thermo-mechanical, phase field
and electro-mechanical problems, among others. The single fields are governed by
different physical models. In general, the behaviour of each field is influenced by the
other fields that are present in the model. Additional complexity arises for the proper
setup of numerical simulation procedures when the partial differential equations,
describing the single fields, are of different type. Hence, coupled multi-field and
multi-physics problems span on one side a vast area of applications and on the other
side they are demanding with respect to discretizations and algorithms.

Some applications using the virtual element method in the area of coupled prob-
lems can be found in Beirão daVeiga et al. (2021) andBerrone andBusetto (2022) for
flow in porous media, in Liu et al. (2019) for a Stokes–Darcy problem, in Böhm et al.
(2021) for electro-magneto-mechanical polycristalline materials and in Dhanush and
Natarajan (2019), Aldakheel et al. (2019) and Antonietti et al. (2022) for thermo-
mechanical applications.

Here we discuss as a specific modeling example thermo-mechanical coupling for
problems undergoing finite strains.

9.1 Introduction

Heat treatment processes relate to a field of research with various engineering appli-
cations which cover forming, machining and cutting of different components but also
heating of car tires due to rolling and additive manufacturing processes. For instance,
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heating of a steel bolt and crosswedge rolling are processes under thermo-mechanical
loading conditions. These processes exhibit complex coupling phenomena:

1. heat effects themechanical response by thermal expansion and temperature depen-
dent mechanical properties;

2. mechanical loading changes the geometry of the solid which influences thermal
fields, furthermore, inelastic processes—like plasticity and frictional contact—
lead to heat dissipation.

All applications significantly benefit from precise predictive computational tools to
model coupling phenomena during deformation and heating processes which are
based on models allowing for a complete coupling with regard to the two points
stated above.

Over the last 40 years research has been pursued in this area with relation to
numerical methods, especially finite element technologies. This research is based as
well on purely phenomenological as on micro-mechanically motivated continuum
formulations. In Argyris and Doltsinis (1981) several numerical concepts for the
coupled processes were developed that based on the so-called natural formulation of
finite elements. A more general formulation and algorithmic approach can be found
in Zienkiewicz and Chan (1989), but still in the region of small mechanical strains.
Later Simo andMiehe (1992),Wriggers et al. (1992) investigated coupled associative
thermo-plasticity at finite strains, addressing in detail the numerical analysis aspects.
A micro-mechanical approach for modeling coupled thermo-crystal-plasticity can
been found in Stainier et al. (2002), Chapuis and Driver (2011) and Cereceda et al.
(2016). A physical approach based on nonlinear rheological models was introduced
in Lion (2000) to describe finite thermoviscoplasticity. Anand et al. (2009) andMiehe
et al. (2011) outlined constitutive models for finite thermo-visco-plastic behaviour
of amorphous glassy polymers and considered details of the associated numerical
implementation. A variational formulation for the coupled multi-field problem was
introduced in Čana -dija and Mosler (2011) and Bartels et al. (2015) based on the
works Yang et al. (2006) and Stainier and Ortiz (2010).

Solution methods for thermo-mechanical problems, using the finite element
method as a discretization scheme, can be found in textbooks, see e.g. Zienkiewicz
and Taylor (2000) andWriggers (2008). In recent years different methods were intro-
duced which added new features to the numerical analysis of coupled problems in
solid mechanics. Here one can mention isogeometric analysis which is outlined in
Hughes et al. (2005) and Cottrell et al. (2009).

In this chapter the virtual element method will be presented as an alterna-
tive approach for finite strain thermo-plasticity problems. Low-order formulations
with linear ansatz will be considered for problems in two and three dimensions,
see e.g. Wriggers and Hudobivnik (2017) and Hudobivnik et al. (2018). The con-
tinuum formulation and the associated discretization scheme are based on a min-
imization of the pseudo energy which was already applied in Chap.8. Von Mises
J2-plasticity, see Sect. 2.2.3, is employed in the mechanical part including incom-
pressibility of the plastic deformation. Nonlinear isotropic hardening is introduced
as in Sect. 8.1.2, see also Simo (1988a, b). The thermal part is based on the work of
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Wriggers et al. (1989) and Simo and Miehe (1992) which includes the effect of tem-
perature on themechanical fields and results in a thermal expansion and the influence
of a change of geometry on heat conduction.

The virtual element formulation in this chapter is based on Wriggers and Hudo-
bivnik (2017), Hudobivnik et al. (2018) and Aldakheel et al. (2019).

9.2 Governing Equations

The basic equations for finite strain problems can be found in Sects. 2.1.1, 2.1.2 and
2.2.3. They describe the deformation and boundary conditions for the mechanical
phase of the coupled problem, see Fig. 9.1a.

For the thermal problem, we define the absolute temperature field θ(X, t) > 0 in
the reference configuration � of the solid along with the boundary conditions

θ = θ on �T and QN = h̄ on �h (9.1)

with the prescribed temperature field θ and the heat flux h̄, as shown in Fig. 9.1b. The
Lagrangian heat flux vectorQ is assumed to be governed by an isotropic Fourier-type
law

Q = −J Kθ F−1F−T∇θ (9.2)

where ∇θ is the material temperature gradient and Kθ is the thermal conductivity
which must be positive (Kθ > 0) in order to achieve thermodynamical consistency.
In this section, the gradient operator is computed with respect to the coordinates in
the initial configuration, i.e. ∇ ≡ ∇X .

Fig. 9.1 Solid with boundary conditions for the coupled problem



228 9 Virtual Elements for Thermo-mechanical Problems

The continuum framework for the mechanical part uses as basic variables the
displacement vector uwhile the thermal fields are described by the temperature θ . A
multi-field setting of thermo-mechanical finite strain plasticity is then characterized
by these two global primary fields which are combined in

U = {u, θ} . (9.3)

The subsequent constitutive approach that models the thermo-mechanical coupled
problem uses the set

C = {F(u), θ,∇θ,h} (9.4)

consisting of the deformation gradient F, the temperature θ and its gradient ∇θ and
includes the history variables

h = {C−1
p , α}, (9.5)

with the plastic strain C p and the hardening variable α, see Sects. 2.2.3 and 8.1.

9.2.1 Energetic and Dissipative Response Functions

Following the contributions of Simo and Miehe (1992), Wriggers et al. (1992),
Aldakheel and Miehe (2017) and Aldakheel (2017), the free energy function for
the coupled thermo-plasticity problem at finite strains takes for a multiplicative split
of the deformation gradient F = Fe F p in the elastic (e) and plastic part (p) the
form

̂�(C) = ψe,vol(Je) + ψe,iso(be) + ψe,th(Je, θ) + ψth(θ) + ψp(α, θ) (9.6)

in terms of the state variables introduced in (9.4). The volumetric part of the isotropic
energetic response function is assume to have the form

ψe,vol(Je) = κ

4
(J 2

e − 1 − 2 ln Je) (9.7)

with the elastic bulkmodulus κ and the elastic part of the Jacobian, computed as Je =√
det be where the left Cauchy Green tensor is defined as be = Fe FT

e = FC−1
p FT .

The isochoric elastic part of the free energy function is given by

ψe,iso(be) = μ

2
(tr be − 3) (9.8)

where be = J
− 2

3
e be is the isochoric part of the elastic part of the left Cauchy–Green

tensor, see also (2.74), and μ is the shear modulus.



9.2 Governing Equations 229

Following the Coleman–Noll procedure, the Kirchhoff stress tensor τ and the
first Piola–Kirchoff stress tensorP are obtained from the volumetric-isochoric elastic
parts of the free energy function ̂�(C) for isotropic material behaviour

τ = 2be
∂̂�

∂be
and P = τF−T . (9.9)

The coupled thermoelastic part is defined as

ψe,th(Je, θ) = −3αθ(θ − θ0)
∂ψe,vol

∂ Je
with

∂ψe,vol

∂ Je
= κ

2
(Je − 1

Je
) (9.10)

where θ0 is the reference temperature and αθ is the thermal expansion coefficient.
The pure thermal contribution of the free energy follows as

ψth(θ) = c

(

θ − θ0 − θ log
θ

θ0

)

(9.11)

with the heat capacity c. The absolute temperature field is strictly positive (θ > 0).
A formulation for the plastic potential can be found in Simo and Miehe (1992).

It has the form

ψp(α, θ) = Y0(θ) α + H(θ)

2
α2 + [Y∞(θ) − Y0(θ)][α + exp(−δα)/δ

]

(9.12)

in terms of the temperature dependent material parameters Y0(θ) > 0, Y∞(θ) ≥ Y0(θ)

and H(θ) ≥ 0. These can be defined as

Y0(θ) = Y0
[

1 − w0(θ − θ0)
]

,

Y∞(θ) = Y∞
[

1 − wh(θ − θ0)
]

,

H(θ) = H
[

1 − wh(θ − θ0)
]

(9.13)

where wh is the hardening/softening parameter, w0 is the softening parameter of the
flow stress and δ is the saturation parameter.

The yield function of von Mises-type finite thermo-plasticity f (s , α , θ) restricts
the elastic region and has the form

f (s , α , θ) =
√

3

2
‖s‖ − σy(α, θ) (9.14)

with the deviator of the Kirchhoff stress s and the yield limit σy

s = devτ = τ − 1

3
tr τ 1 and σy(α, θ) . (9.15)
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Rate dependent plastic deformations can be described by a Perzyna-type model with
the dual dissipation function for visco-plasticity

�∗(s, σy) = 1

2ηp

〈

f
〉2

(9.16)

where the yield function f (s , α , θ) is used. Note that 〈 f 〉 = 1
2 ( f + | f |) is the

Macauley bracket which only yields positive values of f . This formulations needs
an additional parameter, the viscosity ηp.

For completeness we recall the evolution equations for the plastic variables, see
(2.80),

Ċ
−1
p = −2 γ̇ F−1 nFC−1

p and α̇ = γ̇ = 1

ηp

〈

f
〉

, (9.17)

with the flow direction

n = ∂ f

∂s
. (9.18)

This set of equations will be used later for the algorithmic treatment of thermo-
plasticity.

The discretized form of the evolution Eq. (9.17) follows from Simo and Miehe
(1992) and Korelc and Stupkiewicz (2014). Together with the Karush–Kuhn–Tucker
conditions (2.81) the evolution (9.17) forms the local residual of the problem within
the time stepping scheme, see Algorithm1,

FC−1
p − exp[−2(α − αn)n]FC−1

p,n = 0 and f (s , α , θ) = 0 , (9.19)

where C−1
p,n and αn are the converged history values at the previous step. The system

of Eq. (9.19) has to be solved locally at the element level only when f > 0, see
Algorithm1 in Sect. 8.1.2. For further details on the algorithmic treatment of (9.19),
which includes the plastic history field array h, we refer to Simo and Miehe (1992)
and Wriggers (2008).

9.2.2 Global Constitutive Equations

The global governing equations describing the coupled problem are the balance of
linear momentum, see (2.19), and the absolute temperature evolution, see for the
stationary part (2.41),

Div[P] + f = 0

c θ̇ + Div[Q] − Dloc + H − R = 0
(9.20)
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along with the Neumann-type boundary conditions in (2.20), (2.21) and (9.1), the
prescribed body force f and heat source R. The reduced local dissipation density
function is given as

Dloc = ζ σy(α, θ) α̇ (9.21)

with the constant dissipation factor ζ ∈ [0, 1], see e.g. Zdebel and Lehmann (1987).
The heat capacity c and the latent heating H in (9.20) are defined as

c = −θ∂2
θθ
̂�(C) and H = −θ∂θ

[

P · Ḟ − Dloc

]

. (9.22)

9.2.3 Weak form and Pseudo-Potential Energy Function

Based on the set of constitutive equations, the coupled thermo-mechanical problem
can be formulated. Classically, the weak form of Eq. (9.20) is the starting point for
the development of a discretization method. In a thermo-mechanical analysis the
weak form is decomposed into mechanical M and thermal θ parts

G(u, θ) = GM(u, θ) + Gθ (u, θ) (9.23)

where the first part represents the weak form of the linear momentum, first equation
in (9.20),

GM(u, θ) =
∫

�

[

P(u,h) · F(v) − f · v
]

d� −
∫

�N

t̄ · v d� (9.24)

and the second part is the weak form of the temperature evolution, second equation
in (9.20),

Gθ (θ,u) =
∫

�

ϑ
[ c

�t
(θ − θn) + H − Dloc − R

]

d� −
∫

�

∇ϑ · Q d� −
∫

�h

h̄ϑ d�

(9.25)
where the time discretization α̇ = α−αn

�t is used in Dloc defined in (9.21).
In these weak forms the test functions for the displacement and the temperature

fields are given by v, ϑ , respectively. Note that weak form (9.24) depends on the
temperature through the temperature depending material parameters, see (9.12). The
weak form (9.25) depends on the contrary on the displacement field through the
dissipation, see (9.21), and the latent heat, see (9.22).

When using automatic differentiation tools, like the software tool AceGen, see
Korelc and Wriggers (2016), it can be computationally more efficient to base the
development of the thermo-elasto-plastic formulations on a pseudo-potential energy
function instead of using the weak form (9.23). The pseudo-potential energy depends
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only on the thermo-elastic parts and keeps the plastic history field array h constant
during the first variation, additionally certain contributions in the mechanical and
thermal parts related to the temperature have to be kept constant as well. The pseudo
potential can be formulated as

U (u, θ;h) =
∫

�

[

�(C;h) − f · u − R θ
]

d� −
∫

�N

t · u d� −
∫

�h

h θ d� (9.26)

with the thermo-mechanical energy function

�(C;h) = �M + �θ . (9.27)

In detail, the two parts are given by

�M = ψe,vol + ψe,iso − [

3αθ(θ − θ0)
]

ct ∂Jeψe,vol

�θ = c
2�t (θ − θn)

2 + θ
[H − Dloc

]

ct − ∇θ · [Q]ct .
(9.28)

The components inside the square bracket [−]ct have to be kept constant during
the variation of potential in the automatic differentiation procedure. For more infor-
mation about the construction of such a pseudo-potential, we refer the interested
reader to Korelc and Wriggers (2016). The variation of the pseudo potential (9.26)
with respect to the displacement and temperature field, while keeping the mentioned
terms [−]ct constant, leads to the weak forms (9.24) and (9.25).

The resulting global equation set depends on the displacement and the absolute
temperature. It can be solved either by a monolithic or by a staggered algorithm.
Classically, due to the complexity of the linearization for a coupled formulation the
staggered scheme was employed, see e.g. Simo and Miehe (1992), Cervera et al.
(1999) and Martins et al. (2017). By using the software tool AceGen, see Korelc and
Wriggers (2016), a robust and efficient monolithic scheme can be developed and
implemented. The latter computational approach is used for the numerical simula-
tions discussed in the chapter.

9.3 Virtual Element Discretization

The low order formulation, used in Sects. 8.1.1 and 8.1.3 for finite-strain plasticity,
has now to be amended such that coupled problems can be treated. For that the ansatz
space is enlarged by the temperature field. Again the virtual element method relies
on the split of the ansatz space into a part Uπ representing the projected primary
fields defined in (9.3) and a remainder

Uh = Uπ + (Uh − Uπ ) with Uπ = {uπ , θπ } . (9.29)
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The simplest form of a low order virtual element is provided by a linear ansatz, see
(3.130) for the pure mechanical case,

Uπ =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

uπ x

uπ y

uπ z

θπ

⎫

⎪

⎪

⎬

⎪

⎪

⎭

= a · Nπ =

⎡

⎢

⎢

⎣

a1 a5 a9 a13
a2 a6 a10 a14
a3 a7 a11 a15
a4 a8 a12 a16

⎤

⎥

⎥

⎦

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1
X
Y
Z

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(9.30)

with the sixteen unknowns a which have to be determined in terms of the nodal
degrees of freedom. Contrary to the form of the ansatz used in (3.130) equation
(9.30) has a very compact form, avoiding unnecessary zeros.

Here the same procedures as in Sect. 3.2.3, see Remark 3.5, and Sect. 4.2 will be
applied jointly to define the ansatz functions Uπ for the coupled virtual element. In
case of a linear polynomial ansatz function, the simplest and most efficient way is to
use (3.137) and (3.140) to compute the projection. This procedure is based on tensor
notation and determines the projection Uπ for a linear ansatz function for a virtual
element �v , see Sect. 3.1.5,

∇Uπ = 1

�v

∫

�v

∇ Uh d� = 1

�v

∫

�v

Uh ⊗ N � = D
(3,1)
∇ Uv . (9.31)

Here N is the normal at the face � f of the domain �v . Furthermore, D(3,1)
∇ , see

e.g. (3.152), is an operator that links the projected gradient to the nodal degrees of
freedom Uv .1 The set of nodal degrees of freedom of a virtual element�v are defined
as

Uv = 〈

U1 U2 . . .UnV

〉T
(9.32)

with the nodal degrees of freedom at node K given byUK = {

uKx , uKy , uKz , θK
}T

.
The projection in (9.31) does not determine the ansatz Uπ in (9.30) completely.

Thus a further condition has to be employed to obtain all constants a. For this purpose
we adopt the condition that equalizes the sum of the nodal values of Uh and the nodal
values of its projection Uπ . This condition yields for each element �v

nV
∑

K=1

Uπ (XK ) =
nV
∑

K=1

Uh(XK ) , (9.33)

where XK are the coordinates of the nodal point K and the sum includes all nV

boundary nodes. Using (3.140) it follows

1 The operator D(3,1)
∇ does not have to be computed explicitly when using automatic software

generation as in Sect. 3.1.5.
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⎧

⎪

⎪

⎨

⎪

⎪

⎩

a1
a2
a3
a4

⎫

⎪

⎪

⎬

⎪

⎪

⎭

=
nV
∑

K=1

[UK − ∇Uπ XK ] (9.34)

The two conditions (9.31) and (9.34) yield all unknowns a. Thus the projection Uπ

can be formulated in terms of the nodal values

Uπ = H(3,1)(X,Y )D
(3,1)
U Uv . (9.35)

Based on the split in (9.29), the pseudo-potential function defined in (9.26) can
be rewritten by summing up all element contributions for the nv virtual elements as

U (Uh,h) =
nv

A
v=1

U (Uh,hv) (9.36)

with
U (Uh,hv) = Uc(Uπ ,hv) +Ustab(Uh − Uπ ,hv) , (9.37)

with the consistency part Uc and an associated stabilization term Ustab. In this dis-
cretization scheme, the plastic history variables are determined based on the consis-
tency term, see e.g. Wriggers and Hudobivnik (2017) and Hudobivnik et al. (2018).
These variables are then used in the stabilization procedure and are frozen during
the evaluation of the stabilization term.

The pseudo-energy part related to � in (9.26) can be computed for the coupled
problem by neglecting the contributions of the body forces and tractions (these were
already provided in Chap.6). It yields for a virtual element �v

Uc(Uπ ,h) =
∫

�v

�(Cπ ) d� = �(Cπ ) �v with Cπ = {∇uπ , θπ ,∇θπ ,hv} (9.38)

where the primary fields Uπ are linear functions and their gradient ∇Uπ is constant
over the domain of the virtual element�v . As a consequence, the pseudo-energy� is
integrated by evaluating the function at the barycenter of the elementXc, see Fig. 9.2,
and by multiplying it with the element volume �v . This procedure is analogous to a
Gauss integration with one point. The history field array hv in (9.38) contains local
variables. These variables are updated locally at element level within the nested
Newton–Raphson procedure using the Algorithm1 provided in Sect. 8.1.2.

The energy stabilization of the virtual element formulation is also introduced
for coupled problems like it was done for finite-strain plasticity in Sect. 8.1.3. Here
a stabilization potential has to be constructed for the coupled problem. First the
virtual element domain �v is subdivided into an internal triangle (2D) / tetrahedral
(3D) mesh as depicted in Fig. 9.2. Then the potential is evaluated at the centroid
Xi

c of triangle i using a linear ansatz for the primary fields Uh , see Wriggers et al.
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Fig. 9.2 Virtual element ansatz. Internal tetrahedral mesh and virtual element faces split into
multiple triangles

(2017) and Hudobivnik et al. (2018). To obtain the triangularization of the virtual
element, specific triangulation algorithms are used that are providedby the commands
ToElementMesh orTriangulateMesh inMathematica. These are very robust,
furthermore the quality of the created triangulation can be controlled by the user.

Within the stabilization potential the contributions of the mechanical and thermal
parts are summed up for one virtual element �v . The assembly of all elements
yields the discretized form of the stabilization potential, based on the pseudo energy
functional (9.27),

Ustab(Uh − Uπ ,hv) =
∑

s∈{M,θ}
βs

(

nT
∑

i=1

�i
v �s(C)|c − �s(Cπ )|c �v

)

(9.39)

with �i
v being the area of the i th triangle/tetrahedron in the element e for the two-

respectively three-dimensional case. The number of internal triangles/tetrahedra is
nT . The potential �s(C)|c is evaluated by applying a one point integration for each
internal triangle.

For the coupled problem, two stabilization parameters are introduced

β =
{

βM , βθ

}

, (9.40)

one for the mechanical (elastic-plastic) part (M) and the other for thermal part (θ ).
For the thermal problem, we propose a constant value for βθ which has to be chosen
from the interval

0 < βθ ≤ 1 . (9.41)
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As in the puremechanical case, the thermal part of the potentialU (U,h) in (9.36)will
depend only on the projection partUc(Uπ ,h) for βθ → 0, leading to rank deficiency.
When βθ → 1 a pure FEM solution related to the internal mesh will be reproduced.
An optimal ratio extrapolated from various numerical examples lies in the range
βθ ∈ [0.2, 0.6] see e.g. Hudobivnik et al. (2018) and Aldakheel et al. (2019). In
the numerical example βθ = 0.4 is selected for all simulations. In case of a pure
elastic-plastic state, the stabilization parameter βM derives from the same procedure
introduced in Wriggers and Hudobivnik (2017) leading to

βM = min
{

0.4 ,
σV M

E α

}

, (9.42)

where σV M = √
3/2 ‖s‖ is the von Mises stress, E is the Young’s modulus and α

is the equivalent plastic strain providing an approximation for the tangent of the
hardening curve.

All further derivations were performedwith the software tool AceGen. This yields
the residual vector Rv and the consistent tangent matrix KT v of the virtual element
�v . Based on (9.36) along with the pseudo potentials (9.38) and (9.39) we obtain

Rv = ∂U (Uv;hv)

∂Uv

∣

∣

∣{hv,Dcoc,H}=const
and KT v = ∂Rv

∂Uv

. (9.43)

As in the case of finite plasticity, the history variables stemming from Algorithm1
are treated as fixed fields in (9.43) during the first variation, i.e. ∂Uv

hv = 0. Also the
dissipation densityDcoc and the latent heatH in (9.28) have to be kept constant. Ele-
ment residuals and tangent matrices are assembled to the global system of nonlinear
equations which then is solved with a Newton–Raphson scheme to obtain the global
primary field U.

9.4 Representative Numerical Example

The performance of the proposed virtual element formulation for modeling finite
strain thermo-elasto-plastic problems will be demonstrated by means of a repre-
sentative numerical example. For comparison purposes, results of standard finite
elements (FEM) are also included. The material parameters for metals, used in the
simulations, are obtained from Hallquist (1984), Simo (1988a) and Simo and Miehe
(1992) and outlined in Table9.1.

Differentmesh types are introduced for the computations using the virtual element
method, see AppendixB. Regular meshes are employed, we use Q1 and Q2S for this
two-dimensional problem. Furthermore Voronoi meshes with random size distribu-
tion, VOR, are applied. In the examples solutions obtained with the virtual element
method are denoted by VE-XX where XX stands for one of the mesh types defined
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Table 9.1 Material parameters used for the numerical examples

Parameter Symbol Value Unit

Young’s modulus E 206.9 kN/mm2

Poisson ratio ν 0.29 –

Initial yield stress Y0 0.45 kN/mm2

Infinite yield stress Y∞ 1.165 kN/mm2

Hardening coefficient H 0.129 kN/mm2

Saturation exponent δ 16.93 –

Flow stress softening ω0 0.002 1/K

Hardening softening ωh 0.002 1/K

Dissipation factor ζ 0.9 –

Thermal expansion coefficient αT 0.000012 1/K

Thermal conductivity Kθ 0.045 kN/(s K)

Heat capacity c 0.003588 kN/(mm2 K)

above. All meshes represent a first order virtual element discretization, however with
different number of nodes and geometry.

In order to test the robustness of VEM, several finite element formulations were
selected for comparison:

• FE-Q1/H1 denotes a standard first order quadrilateral/Hexahedral finite element
with linear interpolation for 2D/3D,

• FE-Q1P0 denotes a Hu-Washizu mixed finite element with two additional element
degrees of freedom: the pressure p and the volumedilatation�. This yields amixed
finite element which does not lock in case of plastic incompressibility, see Simo
et al. (1985) and Wriggers (2008).

• FE-CG4/CG9denotes amodified enhanced assumed strain, representing a standard
first order finite element with linear interpolation of the primary field and addition-
ally a modified displacement gradient with internal 4/9 enhanced modes leading
to F = 1 + ∇u + ˜H . The enhanced displacement gradient ˜H is condensed out at
element level, see Wriggers and Reese (1996), Wriggers and Korelc (1996) and
Korelc et al. (2010).

The applicability of the virtual element method to a thermo-mechanical problem
is illustrated using a steel bolt which is subjected to thermal and mechanical loading.
The underlying forming process was first considered in Argyris and Doltsinis (1981)
using finite element discretizations.

The thermo-mechanical response of the bolt is investigated for the two-
dimensional case, for an extension to three dimensions see Aldakheel et al. (2019).
The geometry of the specimen is depicted together with the Neumann boundary con-
ditions in Fig. 9.3a. The size of the bolt is chosen to be: H = 50mm and L = 20mm.
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Fig. 9.3 Forming of a steel bolt—a Geometry and boundary conditions, b Voronoi mesh and
c regular Q1/Q2S mesh

The simulation is performed under plane strain conditions. The vertical displacement
is constrained in the lower and upper parts of the specimen, as depicted in Fig. 9.3a. A
heat flux of h̄ = 5 kN/(mm s) is prescribed for 0 ≤ t < 1.667 s at the top face. Then
the heat flux is stopped (h̄ = 0) for 1.667 s ≤ t < 3.333 s, thus the specimen "rests"
without any loading for 1.667 s. After this time period a vertical displacement with
magnitude of ū = 0.125H is applied at the upper part of the specimen for 3.333 s
≤ t ≤ 4.167 s.

The evolutions of the absolute temperature field θ and the equivalent plastic strain
α are shown in Fig. 9.4 for different states of the forming process. The first applied
thermal loading results in a thermo-elastic deformation and increase of the temper-
ature, as depicted in Fig. 9.4a and f. At this stage, no plastic deformation occurs.
Plasticity is initiated once the applied load reaches a certain threshold, see Fig. 9.4c.
A cross shear localization starts to form later, as depicted in Fig. 9.4d. Thereafter
thermo-plastic deformation continues to evolve until the final stage of the defor-
mation in the bolt, see Fig. 9.4e and j. The corresponding thermo-mechanical load
versus time curves for different element formulations are shown in Fig. 9.5.All virtual
element meshes, VE-Q1, VE-Q2S andVE-VO yield the same result as themixed FE-
Q1P0 and CG4 finite elements. Figure9.6 illustrates a good agreement between all
element solutions—besides the locking FE-Q1 element—for this forming process.

The example demonstrates that the virtual element solutions have the same accu-
racy as specially designed mixed finite elements of the same order. It is interesting
to note that a discretization based on virtual elements does not need substepping
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Fig. 9.4 Forming of a steel bolt. Contour plots of the equivalent plastic strain in (a)–(e) and the
absolute temperature field in (f)–(j) at different deformation states using VE-Voronoi

Fig. 9.5 Forming of a steel bolt. a Force-time and b temperature-time curves for different types of
elements

underlining the robustness of this discretization scheme. As a result, larger load
increments can be applied which makes the virtual element method more efficient
when compared to mixed first order finite elements, especially in case of severe
element distortions.
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Fig. 9.6 Forming of a steel bolt. Distribution of the equivalent plastic strain α and the absolute
temperature field T at the final deformation state for all elements
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Chapter 10
Virtual Elements for Fracture Processes

Fracture processes occur in different environments and define the lifespan of many
engineering structures. To illustrate the effects of fracture in more detail one can
think of its negative implications like failure of large structures, e.g. bridges, ships
and vessels. Further instances are shattered glass, a broken leg, a ruptured aorta, a
torn sail, a broken car part, a cracked beam among many others. Fracture processes
can also be on purpose and useful as in chip forming during cutting, tearing open of
packages along precut lines and breaking off of chocolate pieces.

It is common to differentiate between brittle and ductile fracture. Furthermore,
materials which are subjected to time-varying loads may fail at a stress level that
is significantly lower than yield stress or ultimate strength. This phenomenon is
known as fatigue failure which can cause fatal failure of a component. The engi-
neering analysis of such processes benefits significantly from a precisely predictive
computational tool that models fracture response during the design and manufac-
turing processes of products. This is especially true, when structural reliability has
to be improved. Hereby, different fracture parameters determine the fatigue life of
products under cyclic loading conditions, e.g. stress intensity factors, flaw sizes and
fracture toughness. In total, the analysis of failure due to fracture plays a significant
role for the safety of various engineering structures, but also for medical devices, in
biomechanics and many more applications related to our daily life.

An efficient low order virtual element method for damage mechanics and crack-
propagation in solids with elastic as well as elasto-plastic response is outlined in this
chapter. Novel aspects comprise new robust cutting techniques through elements for
crack propagation in two-dimensional solids using virtual elements, phase fieldmeth-
ods for the detection and path-following of fracture, and a combination of cutting
and phase field approaches for efficient solutions of engineering problems. Applica-
tions in fracture mechanics lead generally to problems which, from the mathematical
point of view, have a low regularity. This is related to the fact that sharp interfaces
are present in the model and additionally inelastic material response has to be taken
into account, especially when crack growth is considered. These type of problems
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need usually discretization schemes with low order since higher order schemes are
prone to oscillating response.

The theoretical background of discretization schemes for fracture using virtual
elements can be found in several publications togetherwith the associated algorithmic
treatment, see e.g. Nguyen-Thanh et al. (2018), Benedetto et al. (2018), Aldakheel
et al. (2018a, 2019),DeBellis et al. (2018),Hussein et al. (2019, 2020) andBenvenuti
et al. (2022).

10.1 Fracture Analysis Using Damage Mechanics

Aclassical possibility to predict fracturing processes is provided by damagemechan-
ics. This approach was developed over the last decades with focus on the formulation
of continuum damage models that can predict irreversible phenomena related to the
onset and evolution of micro-cracking, void formation and strain-softening in quasi-
brittle materials. The starting point for this development can be found in Kachanov
(1958), different phenomenological models have been proposed both accounting for
isotropic, see Lemaitre (1996), Lubliner et al. (1989) and Simo and Ju (1987), and
anisotropic, see Govindjee et al. (1995) and Lemaitre et al. (2001), damage response.

These damage models lead to mesh dependent solutions for discretization tech-
niques, like the finite element method, once softening evolves. This is due to the
fact that the governing differential equations loose ellipticity and thus resort to ill-
posed boundary value problems. There exist different strategies to overcome mesh
dependency. One possibility is to employ non-local continuum theories, see e.g.
de Borst (1991) and de Borst et al. (1993), which possess intrinsic regularization
properties due to the introduction of a characteristic length. Another one is viscous
regularization, see e.g. Needleman (1988). Further solutions to the pathological mesh
dependency in damagemodels are non-local constitutive models, see e.g. Bažant and
Jirasek (2002) for a comprehensive survey, or local models properly enriched by a
dependence of the material properties at the element level, as in Oliver (1989).

We focus here on an isotropic damage lawwhich is formulated in the framework of
linearized kinematics with different thresholds for tensions and compression states.
Additionally, we adopt as regularization techniques one of the last two mentioned
approaches to which we will refer as nonlocal and local.

In this section we will describe a local and non-local scalar isotropic damage
model that is employed together with the virtual element method for the prediction
of failure, more details can be found in De Bellis et al. (2018).

10.1.1 Governing Equations for Isotropic Damage Model

We assume for the solid small strains and linear elastic behaviour before damage
initiation. Thus the geometrically linear model discussed in Sect. 2.2.1 can be used
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together with the kinematical relation (2.9), defining the strain ε = ∇su, and the
weak form in Sect. 2.3.1.

For isotropic damage a scalar variable d is introduced, satisfying 0 ≤ d ≤ 1. This
variable describes the development of micro-cracks, microvoids and micro-cavities
in a material and reduces the strain energy function�0(ε)with respect to the damage
state

�(ε, d) = (1 − d)�0(ε). (10.1)

Note, that the reduced strain energy �(ε, d) approaches zero for increasing damage
d → 1. The initial undamaged elastic energy is defined as �0, see (2.43).

The energetic consistency of the constitutive model is ensured by the fulfillment
of the Clausius–Planck inequality, see e.g. Malvern (1969),

Ḋ =
(

σ − ∂�

∂ε

)T

ε̇ − ∂�

∂d
ḋ ≥ 0 (10.2)

where Ḋ is the rate of themechanical energydissipation defined for arbitrary infinites-
imal variations ε̇. The constitutive relations follow from, see Coleman and Noll
(1963),

σ = ∂�

∂ε
= (1 − d) [� tr(ε) I + 2με] = (1 − d) σ 0 (10.3)

and

Ḋ = −∂�

∂d
ḋ = −�0ḋ ≥ 0. (10.4)

with the stress, σ 0 = � tr(ε) I + 2με, for the initially undamaged isotropic elastic
material.

Following e. g. Simo and Ju (1987), an equivalent effective stress τ is defined
as a suitable energy norm of the undamaged stress tensor σ 0. This measure will be
applied to compare different material states. In this section we adopt a damagemodel
that allows for different thresholds in tension and compression leading to

τ =
(

ζ + 1 − ζ

n

)√
�0(ε), with ζ =

∑3
i=1〈σ 0

i 〉∑3
i=1 |σ 0

i | , (10.5)

where ζ is a weight factor depending on the elastic principal stresses σ 0
i , 〈•〉 is the

Macaulay bracket, and n = fc/ ft is the ratio between compressive fc and tensile ft
strength of the material.

The damage criterion is defined in terms of a limit damage surface, i.e. a func-
tion F(τ t , r t ), that divides the admissible stress space into an elastic domain (when
F < 0) and a damage domain (when F = 0). The damage surface depends on the
equivalent effective stress τ(t) and on a material parameter representing the damage
threshold r(t) at the current time t .
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The most general form of F(τ, r) among different possibilities is

F(τ, r) = G[τ(t)] − G[r(t)], ∀t ≥ 0, (10.6)

where G(•) is a suitable monotonic scalar function.
Damage is governed by the following evolution equations

ṙ = γ̇ , ḋ = γ̇
∂F

∂τ
. (10.7)

Here, equivalently to the plastic multiplier in rate independent plasticity, γ̇ is a
damage multiplier. The evolution equations of damage have to satisfy the following
Karush–Kuhn–Tucker relations (loading-unloading conditions)

F(τ, r) ≤ 0, γ̇ ≥ 0 and γ̇ F(τ, r) = 0. (10.8)

It is possible to directly integrate the evolution of the internal variables, as in Simo
and Ju (1987), and obtain

r(t) = max [r(0),max(τ (s))] , 0 ≤ s ≤ t d = G[r(t)], (10.9)

where r(0) is a characteristic parameter of the material, i.e. the initial damage thresh-
old for the virgin material and max(τ (s)) is the maximum equivalent effective stress
that occurs within the time span 0 ≤ s ≤ t .

Among different possible choices of explicit functions for the scalar damage d,
two options are frequently used, see e.g. Scotta et al. (2001):

1. A linear damage law

G1[r(t)] = 1

1 + H1

(
1 − ft

r(t)

)
, ft ≤ r(t) ≤ ∞, (10.10)

with E being the Young’s modulus, G f the fracture energy per unit area and H1

a constant defined by H1 = f 2c /(2n2G f E).
2. An exponential damage law

G2[r(t)] = 1 − ft
r(t)

exp

[
H2

(
1 − r(t)

ft

)]
, ft ≤ r(t) ≤ ∞, (10.11)

where H2 =
(
n2G f E

f 2c
− 1

2

)−1 ≥ 0.

The numerical response of strain softening materials is characterized by strain local-
ization and mesh dependency. The latter can be overcome by two alternative regu-
larization techniques:
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• The first approach introduces an explicit dependence of the constitutive model
on the size of the numerical discretization element. Following Oliver (1989) and
Scotta et al. (2001) among others, it is possible to modify the expressions of H1

in (10.10) and H2 in (10.11) as

H1 = f 2c l
i
c/(2n

2G f E) and H2 = (
n2G f E/( f 2c l

i
c) − 1/2

)−1 ≥ 0 (10.12)

with lic being the characteristic length that in 2D has been defined either as l1c =√
	v , (Scotta et al. 2001), or as l2c = 	v/

∫
A(∂φ/∂x) dA, (Oliver 1989), where	v

is the area of the element, φ is a non-dimensional, continuous and differentiable
function describing the displacement in the localization band and x is a local
coordinate, perpendicular to the localization band.

• The second approach introduces non-locality to the damage theory, as proposed by
Pijaudier-Cabot and Bažant (1987) and widely adopted in later works, see Bažant
and Jirasek (2002). The non-local damage theory relies on the non-local equivalent
stress τ that can be defined as the weighted average of the local equivalent effective
stress τ over a representative spherical volume surrounding each material point x

τ = 1

	r (x)

∫
	

ψ(x − s)τds (10.13)

where 	 is the area of the considered body, 	r (x) = ∫
	

ψ(x − s) ds is the repre-
sentative volume andψ(x − s) is a properly chosenweighting function that usually
takes the form, see Bažant and Pijaudier-Cabot (1989) and Scotta et al. (2001),

ψ(x − s) = exp

(
−||x − s||2

2(l3c )2

)
. (10.14)

The internal length l3c is a parameter that controls the localization zone. As pointed
out in Bažant and Pijaudier-Cabot (1989), its value depend on the material con-
sidered and, i.e. in the case of standard concrete this parameter can be taken as
3da , and thus is directly related to the maximum size da of aggregates.

The non-local equivalent stress τ replaces its local counterpart τ in the damage
laws (10.10), for the linear case, and (10.11), for the exponential case.

10.1.2 Virtual Element Formulation for Damage

As in the previous sections,we use an alternative to theweak form for the construction
of a virtual element for the analysis of isotropic damage. Again it is possible to
introduce a pseudo potential energy

U (u) =
∫

	

[
�(ε(u), d) − f̄ · u] d	 −

∫
�N

t̄ · u d� (10.15)
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where the damage variable d has to be frozen in the first variation. As discussed
in Chap.8, this form has advantages when the software codes are automatically
generated using AceGen, see Korelc and Wriggers (2016).

The virtual element is based on the geometrically linear model described in
Sect. 10.1.1. The associated virtual element formulation can be found in Chap. 6
for a two-dimensional analysis. The formulation for the linear ansatz in Sect. 6.1.1,
using Voigt notation, yields the projected constant strain ε̂π = P

(2,1)
∇ε uv , see (6.4),

and the projected displacement field uπ = H(2,1)
u (X,Y )P(2,1)

u uv , see (3.58). Here
H(2,1)

u contains the linear ansatz functions and P(2,1)
u and P(2,1)

∇ε are the projectors that
describe the projected fields in terms of the nodal displacements uv of the virtual
element. Since the details of the projection were already provided in Chap. 6 only
the changes related to the damage model are discussed in the following.

The pseudo potential energy in (10.15) can be written by summing up all the
element contributions for the nv virtual elements of area 	v . This results in

U (uh, d) =
nv∑

v=1

[Uc(uπ , d) +Ustab(uh − uπ , d)] (10.16)

whereUc is the consistency term related only to the projection of the displacements,
and thus in case of a linear ansatz involves only a constant strain field over the ele-
ments, andUstab is the stabilization term, required to avoid element rank deficiencies,
see Wriggers et al. (2017).

The consistency term in (10.16) has the form

Uc(uπ , d) =
∫

	v

(
�[ε(uπ ), d] − f̄ · uπ

)
d	 −

∫
�v

t̄ · uπd�. (10.17)

The pseudo strain energy can be defined in matrix form using the Voigt notation, see
(6.5),

�[ε̂, d] = (1 − d)�0[ε̂] = (1 − d)
1

2
uT

v [P(2,1)
∇ε ]TCP

(2,1)
∇ε uv. (10.18)

Both, the damage variable d and the components of the strain tensor ε̂, are constant
in each element 	v which allows the simple evaluation of the integral in (10.17)

Uc(uπ , d) = (1 − d)
	v

2
uT

v [P(2,1)
∇ε ]TCP

(2,1)
∇ε uv. (10.19)

Note that �[ε̂, d] is a non-linear function of uv and the damage variable d.
The stabilization term has now to be derived for the case of scalar damage. This

derivation is based on the energy stabilization procedure in Sect. 6.1.3
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Ustab(uh − uπ , d)) = Û (uh, d) − Û (uπ , d) (10.20)

where Û (uh, d) is computed using an internal mesh of triangles (T).
For damaged materials pseudo potential is modified

�̂(ε̂(•), d) = 1

2
ε(•)T Ĉ(d)ε̂(•) (10.21)

where the strain tensor (•) is in turn depending on uh |T or uπ , and Ĉ(d), see (2.46), is a
modified damaged isotropic constitutive tensor characterized by theLaméparameters
�̂ and μ̂, that are computed from the modified values of Young’s modulus Ê and
Poisson ratio ν̂

Ê = (1 − d)E ν̂ = 0.3 (10.22)

with E being the Young’s modulus of the actual material and d the damage vari-
able. The value of the Poisson ratio is kept constant since it does not influence the
convergence behaviour of the element.

A specific algorithmic treatment for damage models can be found in Oliver et al.
(1990). It is here extended to the virtual element method. The integration of the
evolution equation is performed within the time step �t = t − tn , the constitutive
equations, briefly summarized in Box 1, are solved at the element level. In what
follows quantities without an index represent the current time and quantities with
index n are related to the time tn .

In the particular case of nonlocal regularization, the value of τ is replaced by its
nonlocal counterpart τ̄ . It is evaluated, using Eqs. (10.13) and (10.14), by averaging
the stresses related to virtual elements that included in the representative circular
area surrounding the given element. The actual value of the element damage d is
evaluated in the same way. The damage laws (10.10) and (10.11) are used in Box 1
to compute the damage variable dv within the element 	v .

Given: ε̂v , dv n , rv n Find: dv , rv

σ v = C ε̂v = CP
(2,1)
∇ε uv

τv = (
ζ + 1−ζ

n

)√
�0[ε̂v]

r = max{rv n, τv}
dv = G(rv)

Box 1 Damage evaluation at the element level

Note that the current damage is used within an element in (10.16) for both, the
calculation of the consistency term and the calculation of the stabilization term.
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Global equilibrium follows from minimization of (10.16). For this a Newton–
Raphson algorithm is used. Thus the element residual R(uv, dv) = Rc(uv, dv) +
Rstab(uv, dv) and tangent matrixK(uv, dv) = Kc(uv, dv) + Kstab(uv, dv) have to be
computed. The residual vector and the tangent matrix are derived by applying the
symbolic tool AceGen.

The element residual vector for the consistency term follows as

Rc(uv, dv) = 	v

∂�(ε̂, dv)

∂uv

|dv=const. (10.23)

where the formalism dv = const. stands for a constant value of dv during the auto-
matic differentiation process while ε̂ depends on uv via the projection ε̂ = P

(2,1)
∇ε uv .

The stabilization term is evaluated in the same way

Rstab(uv, dv) = ∂Û (uv, dv)

∂uv

|dv=const. − 	v

∂�̂(ε̂, dv)

∂uv

|dv=const. (10.24)

where the pseudopotential Û (uv, dv) is computed using (10.20),while �̂(ε̂, dv) is the
modified positive definite pseudo energy directly evaluated for the virtual element.
Analogously, the contributions to the tangent matrix are given by

Kc(uv, dv) = ∂Rc(uv, dv)

∂uv

, Kstab(uv, dv) = ∂Rstab(uv, dv)

∂uv

. (10.25)

10.1.3 Numerical Examples

Several numerical examples illustrate the performances of the virtual elements for
isotropic damage, adopting either local or non-local regularization techniques. Com-
parison with existing finite element formulations highlight the specific features of
the virtual element method. All computations are based on a Newton–Raphson algo-
rithm with load stepping. The meshes were automatically generated by the meshing
tools inMathematica. Mesh refinements, unless otherwise specified, are uniform in
the sense that finer meshes are included in the coarser meshes, both for regular and
distorted meshes.

Tension specimen test. A classical test proposed by Oliver (1989) is considered.
The specimen is depicted in Fig. 10.1. Thematerial parameters are chosen as Young’s
modulus E = 200000 kp/cm2, Poisson ratio ν = 0.2, tensile strength ft = 10 kp/cm2

and fracture energyG f = 0.125kp/cm.The computation is performedbyprescribing
a displacement u in horizontal direction. Due to symmetry, on half of the plate
is discretized using meshes with different element types, including distorted eight
node quadrilaterals and Voronoi elements. We adopt both regularization techniques
presented in Sect. 10.1.1 in (10.10) and (10.11). Due to the specimen shape, damage
will start at the center of the plate.
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Fig. 10.1 Tension test: geometry and data

Fig. 10.2 8-node regular virtual element mesh: top left: B1, bottom left: B2, top right: B3, and
bottom right: B4

First, the linear damage law, see (10.10), will be employed with the regularization
(10.12) using l2c . In this case, the response computed in Oliver (1989) using finite
elements is matched perfectly with a discretization of virtual elements with 8 nodes.
The sequence of the regular meshes B1 (2 × 2), B2 (4 × 4), B3 (8 × 8) and B4 (16 ×
16), shown in Fig. 10.2, yields the force-displacement curves depicted in Fig. 10.3.
As reported in the paper by Oliver (1989), localization of damage occurs within the
first row of elements, close to the neck which is also recovered by the virtual element
computation.

The convergence trend of the global curves is perfectly matched and the finest
mesh reproduces the expected behaviour correctly, as reported in Fig. 10.3. In a
second step, the distorted meshes B5 and B6, depicted in Fig. 10.4, are employed,
including virtual elements with non convex shapes. The mesh density corresponds
to the meshes B3 and B4. The global curves are very close to the corresponding ones
in Fig. 10.3 and are almost undistinguishable in the plot.

The second regularization approach is based on non local damage, see (10.13) and
(10.14). Here the internal length l3c = 1 cm is introduced. In this case finermeshes are
required in order to exploit the nonlocal regularization technique. The discretization
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Fig. 10.3 Force-displacement curves for meshes B1, B2, B3 and B4

Fig. 10.4 Distorted meshes. 8-node VEM elements (left: B6 and right: B5)

is based on centroidal Voronoi tessellations, where the seeds coincide with centroids
of the resultingVoronoi cells. Figure10.5 shows the global curves which are obtained
by meshes of 2000 (mesh V1) and 8000 (mesh V2) virtual elements, respectively.
The two load-displacement curves match almost perfectly.

However, the load-displacement curves deviate from the curves obtained with
the local regularization, see Fig. 10.3. This can be attributed to the different damage
distributions within the specimen. In the second case, the damage emerges in the
central part of the specimen, as expected, and develops within a curved region, as
shown in Fig. 10.6. These damage plots, both for V1 and V2, correspond to the final
state of the loading process. The two damage distributions are spread in the same
region of the specimen, irrespective of the mesh density, confirming the effectiveness
of the regularization technique.

Brazilian Test. In the second example experimental results and predictions by
the virtual element method are compared. A splitting test of a cylindrical granite
specimen is considered, which is described in Rocco et al. (1999a, b, c). Figure10.7a
presents the geometry of the specimen. The material parameters stem from experi-
mental data which yield Young’s modulus E = 33900 MPa, Poisson ratio ν = 0.2,
tensile strength ft = 10.1MPa and fracture energy G f = 0.167 N/mm. The vertical
load is applied through two bearing strips and two strain gauges (L = 0.8D, with
D being the diameter of the specimen and L the gauge length of the extensometer)
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Fig. 10.5 Force-displacement curves for meshes V1 and V2 shown in Fig. 10.4

Fig. 10.6 Damage distributions using Voronoi meshes

Fig. 10.7 Brazilian test
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Fig. 10.8 Global curves
load versus transverse
deformation: comparison
between experimental and
numerical results

are fixed on the opposite faces of the cylinder to measure the diametric deformations
along the axis orthogonal to the loading direction. The diameter of the specimen is
D = 120 mm, the length of the bearing strips is w = 19.2 mm and the thickness of
the specimen is ts = 30 mm.

The results of the experimental work demonstrate that the cracking process starts
at the center of the specimen and a first single crack grows vertically in loading
direction. At the end of this first failure stage the specimen is split in two halves that
start to resist the load separately. A subsequent failure mechanism is then observed,
involving the formationof secondary cracks. In general this type of failuremechanism
can induce a nearly vertical crack development at both sides of the bearing strips.

In the actual experimental case, a single crack occurs at the right bottom side of the
bearing strips, propagating in sub-vertical direction. This is illustrated in Fig. 10.7b
where the observed cracks are highlighted in red. Two peak loads occur in the global
response curve as a direct consequence of this failure in two-steps.

The numerical tests are performed assumingplane strain conditions. The specimen
is discretized using 2000 centroidal Voronoi virtual elements. The non-local damage
model is adopted with a characteristic length l3c= 3 mm, this value is approximately
� 3dg with dg being the estimated maximum size of grains in granite.

The comparison between the experimental and the numerical curves of global
load versus the diametrical deformation in Fig. 10.8 illustrates that the highly fragile
behaviour of the granite is well predicted by the numerical simulations. The vertical
load F is normalized to the first peak load FMAX, as well as the relative horizontal
displacement �wT is normalized to the respective value �wT ( FMAX), as proposed
in Rocco et al. (1999a). The peak load predicted in the numerical analysis is FV EM

MAX =
64.5 kN. This prediction is in good agreement with the value obtained by the authors
of the experimental work

FEXP
MAX = ftπsD

2[1 − (b/D)2]3/2 � 65 kN. (10.26)
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Fig. 10.9 Damage
distribution in the specimen
corresponding to point A in
the global curve in Fig. 10.8

Also the post peak behaviour is predicted reasonably well since the magnitude of the
load drop is comparable with the experimental data.

Figure10.9 depicts the damage distributions corresponding to the point A of the
load-displacement curve in Fig. 10.8. It demonstrates a good agreement of the exper-
imental results in the left part of Fig. 10.7 with the numerical prediction. The central
crack localizes and spreads along the vertical diametrical axis. Since the Voronoi ele-
ments are randomly generated, the analysis has been repeated for different meshes,
characterized by about the same number of elements, to make sure that the dam-
age path and the associated global response are not affected by the mesh. The same
mechanism of rupture in the splitting test is recovered in all the simulations and only
differences of about 5% are found for the peak value.

10.2 Brittle Crack-Propagation

Another classical fracture approach is based on linear fracturemechanics LFMwhich
accounts for the singular behaviour of the stress field at the crack tip. Within the the-
oretical framework stress intensity factors (SIFs), introduced by Irwin (1956), are
regarded as the fundamental quantity in fracturemechanics tomeasure the strength of
the stress singularity in the vicinity of a crack tip. In the literature, several methods
have been proposed to calculate stress intensity factors, among them are the dis-
placement extrapolation method (Chan et al. 1970), the crack opening displacement
(COD) (Paris and Sih 1965), the virtual crack extension (Hellen 1975), the J -integral
(Eshelby 1974; Rice and Rosengren 1968) and the interaction integral method (Yau
et al. 1980). In Barsoum (1974), Henshell and Shaw (1975) special types of elements
were developed that base on the 8-nodes isoparametric formulation and use a specific
element topology to model a singularity. This approach allows to capture the r−1/2
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singularity when the mid-side nodes are moved to the quarter position near the crack
tip. A hybrid crack element was introduced in Tong et al. (1973), Kuna and Zwicke
(1990), Karihaloo and Xiao (2001), which leads to a direct and accurate computation
of the stress intensity factors as well as the coefficients of the higher order terms in
the elastic asymptotic crack tip field.

In this regard, computational methods for the prediction of fracture mechanism
are numerous. Those methods were explored that have potential advantages, such
as flexibility in mesh generation and the choice of element shapes. When it comes
to the modeling of moving discontinuities as in the case of crack propagation, finite
elements are limited due to the required conforming mesh topology to track the
crack path during the growth. Such limitation can be overcome by using re-meshing
techniques in the vicinity of crack tip, which, however, leads to time-consuming
simulations. Furthermore, the results can be mesh-dependent and difficult to vali-
date. Among others, Bittencourt et al. (1996) used a local re-meshing algorithm to
adjust the mesh after each step of propagation. Later, Bouchard et al. (2000) pro-
posed an advanced automatic re-meshing technique tomodel crack propagation using
the discrete crack approach. Despite the great success of these methods, the crack
propagates only along the edges of the elements, resulting in a loss of accuracy in
the crack path prediction. For an overview with regard to existing technologies for
fracture with the finite element method see e.g. Kuna (2013).

An alternative to thefinite elementmethodology aremeshlessmethodsBelytschko
et al. (1994, 1995), Belytschko and Tabbara (1996), Fleming et al. (1998) which do
not require the classical data structures of the mesh, which simplifies the application
of the method for arbitrary crack growth. Further approaches for the numerical sim-
ulation of fracture processes are the boundary element method (Ingraffea et al. 1983;
Portela et al. 1992) and the eXtended Finite Element Method (XFEM) (Belytschko
andBlack 1999;Moës et al. 1999; Pezeshki et al. 2018; Stolarska et al. 2001; Sukumar
and Prévost 2003). In XFEM the standard finite element approximation is enriched
by discontinuous functions and asymptotic fields to improve the singular solution
in the vicinity of the crack tip. For specific problems, a flexible choice of element
shapes is preferred. To this end, there have been interesting developments in the use
of polygonal or polyhedral elements. Several methods were proposed in the direc-
tion of polygonal finite element method, see Sukumar (2004), Sukumar and Malsch
(2006), Biabanaki et al. (2014) and Khoei et al. (2015). Another variant is the scaled
boundary finite element method, see e.g. Yang and Deeks (2007), Ooi and Yang
(2009), Ooi et al. (2012), Dai et al. (2015) and Song et al. (2018).

Each of these methods has its own specifications and thus needs experts for a
correct and efficient application. In this chapter the virtual element method proposed
in Beirão da Veiga et al. (2013) will be explored since it can bring some new features
to the numerical solution of fracture problems. These are related to the advantage
of the virtual element method to use arbitrary polygonal (2D) and polyhedral (3D)
element shapes with arbitrary number of nodes.

Due to the low regularity of the crack propagation problem a low order virtual
element formulation will be employed throughout this chapter. For most applications
the continuum basis is a small strain linear elastic model that will be enhanced by
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the specific amendments to model cracks. Once a crack has been initiated, the direc-
tion of growth can be predicted using different propagation criteria: the maximum
circumferential stress criterion, the maximum strain energy release rate criterion and
theminimal strain energy density criterion. Here themaximum circumferential stress
criterion, introduced in Erdogan and Sih (1963), will be considered. To determine
this stress criterion, the stress intensity factors for mixed-mode loading conditions
are calculated. The stress intensity factors are then numerically obtained by using
the interaction integral, (Yau et al. 1980), which accurately calculates these factors.
When the direction of crack growth is known, there are two possibilities to allow the
crack to propagate: either along the element interfaces, or within the elements. The
first one can be accomplished by the classical finite element method. The second
case can be implemented within the virtual element method. Here it is possible to
first introduce a crack within an element and later to split the corresponding ele-
ment in the direction of the crack propagation. This allows the crack to propagate
directly through elements. This cutting technique was developed for virtual elements
in Hussein et al. (2019) which provides the basis for the next section.

10.2.1 Equations of Brittle Crack Propagation

Consider an elastic body 	 ⊂ R
2 bounded by � undergoing small strains. As shown

in Fig. 10.10, the boundary � is subdivided into Neumann boundary conditions on
�N , Dirichlet boundary conditions on �D and a discontinuity interface on �c (crack
line in 2-D and crack surface in 3-D) such that� = �N ∪ �D ∪ �c. The discontinuity
�c is composed of the upper �+

c and the lower �−
c crack faces. The equilibrium

equation of the solid body 	 was provided in (2.22) for large strains. It has the same
form for the linearized theory used here

Div σ + f = 0 in 	, (10.27)

which contains the stress tensor σ and the body force f̄ . The crack face�c is assumed
to be traction-free

Fig. 10.10 Definition of
solid with a crack and
boundary conditions
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t+ = σ n+ = 0 on �+
c , (10.28)

t− = σ n− = 0 on �−
c , (10.29)

where n+ and n− are the outward unit normal vectors defined on �+
c and �−

c ,
respectively.

The infinitesimal strain tensor ε = 1
2 [∇u + (∇u)T ] appears in the linear elastic

constitutive relation that follows from the strain energy� = �/ 2 [tr(ε)]2 + μ tr(ε ·
ε), see (2.43),where� andμ are theLaméparameters. The stress tensorσ is obtained
from the strain energy� by differentiationwith respect to the strain tensor, see (2.45),
leading to σ = � tr(ε) 1 + 2με.

The equilibrium equation (10.27) together with the strains and the constitutive
Eq. (2.43) can be equivalently recast together with the boundary conditions on �c in
form of the principle of stationary elastic potential

U
(
u
) =

∫
�c

�u� · σ nc d� +
∫
	

[�(ε) − f̄ · u] d	 −
∫
�N

t̄ · u d�, (10.30)

where �u+� = u+ − u− is the displacement jump across the crack surface �c with
the unit normal vector nc. Due to the assumption of a traction-free crack face, the
first integral in (10.30) can be neglected, which simplifies the potential above for the
linear elastic case to

U
(
u
) =

∫
	

[�(ε(u)) − f̄ · u] d	 −
∫
�N

t̄ · u d�. (10.31)

10.2.2 Modeling Crack Propagation with Virtual Elements

The basis for the discretization of the crack propagation in brittle materials is a small
strain elastic virtual element with linear ansatz. This ansatz function can be found
in Sect. 3.1 in (3.5). The projection, see Sect. 3.1.4 in (3.40), yields the displace-
ment gradient ∇uπ = P

(2,1)
∇ uv , see (3.51), and hence the linear strain επ follows

as επ = 1
2 [∇uπ + (∇uπ )T ]. Together with the explicit form of the linear ansatz

uπ = H(2,1)
u (X,Y )P(2,1)

u uv , see (3.58), the contributions of a virtual element 	v to
the consistency part of the potential (10.31) can be computed, leading to

U v
c (uπ ) =

∫
	v

[
�(επ ) − f̄ · uπ

]
d	 −

∫
�v

t̄ · uhd�. (10.32)

The details of general virtual element formulation for small strain elastic materials
are provided in Sect. 6.1. For the discretization of crack propagation the energy stabi-
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lization with inscribed triangles is used, see Sect. 6.1.3 which needs the specification
of the stabilization parameter β.

The new ingredients regarding a virtual element formulation for the prediction of
crack propagation are based on three stages:

1. Computation of stress intensity factors
2. Check of a criterion which yields the onset of crack propagation and the propa-

gation direction
3. Introduction of a cutting algorithm in the virtual element scheme.

These three points will be discussed in detail below.

10.2.3 Computation of Stress Intensity Factors

The interaction integral method as a contour integral (I -integral) will be applied for
the computation of the stress intensity factors.1

The I -integral is a generalization of the J -integral, see Rice (1968), and calculated
as contour integral

I =
∫
�

(
W (1,aux)δ1 j − σ i j

∂u(aux)
i

∂x1
− σ

(aux)
i j

∂u(1)
i

∂x1

)
n j d�, (10.33)

with
W (1,aux) = σ i jε

(aux)
i j = σ

(aux)
i j εi j . (10.34)

where the auxiliary fields (u(aux)
i , σ

(aux)
i j , ε(aux)

i j ) are given by the analyticalWilliams’
solution, see Williams (1957). The actual fields (ui , εi j , σ i j ) are computed numeri-
cally, formore details see e.g. Hussein et al. (2019). It can be shown that the I -Integral
is equivalent to the stress intensity factors KI and KII

I = 2

E ′ (KIK
(aux)
I + KIIK

(aux)
II ). (10.35)

By setting e.g. K (aux)
I = 1 and K (aux)

II = 0 in (10.35) the stress intensity factor for
mode I can be determined as KI = E ′

2 I . In the same way the stress intensity factor
follows for mode II: KII = E ′

2 I .
The I -Integral is evaluated using virtual elements close to the crack tip which is

depicted by the end of the dashed line in the center of Fig. 10.11a. The following
procedure is applied:

1 When finite elements or XFEM are applied, the contour integral is most likely to be transformed
into an equivalent area integral, see Moës et al. (1999). This, however, does not lead to accurate
results since the low order virtual element formulation provides only constant stress and strain states
within an element.
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Fig. 10.11 Determination of the contour integral. Centered areas represent the crack tip elements
and gray areas depict the elements cut by a circle of radius rd

1. Find all elements included in a circle of radius rd around the crack tip

rd = α hlocal . (10.36)

They are plotted with gray color in Fig. 10.11a, b. The factor α is a scaling factor
and hlocal is a characteristic length given by

hlocal =
√√√√ ntip∑

i=1

Ai,t i p

ntip
, (10.37)

where ntip and Ai,ti p are the number and the area of the crack tip elements,
respectively. The elements (	1,tip,	2,tip,	3,tip,	4,tip), sketched in Fig. 10.12a
with yellow color, contain the crack tip node.

2. Select the set of elements for the computation of the I -integral. Here all edges
shared by two adjacent elements will be neglected, as illustrated in Fig. 10.12b.

3. Eliminate all edges located within the circle, see Fig. 10.12c.
4. Compute the I -integral based on the set-up in Fig. 10.12c over all remaining edges

as

I =
nedge∑
e=1

Ie, (10.38)

where nedge is the number of edges of the contour around the circle.

By using (10.35), the stress intensity factors KI (crack opening mode) and KII (crack
sliding mode) can be computed explicitly. The numerical integration of (10.33) can
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Fig. 10.12 Determination of the contour for edge integration

be performed by the trapezoidal or a Gaussian quadrature rule. In the numerical
examples, Gauss quadrature with three Gauss points per edge is employed.

10.2.4 Stress Intensity Factor Analysis Using Virtual
Elements

Two examples demonstrate the ability of the developed virtual element scheme to
compute the stress intensity factors (SIFs) on the basis of the above introduced
theoretical and algorithmic concept.

The double cantilever beamwith a crack is used to investigate the performance
of the virtual element formulation in bending dominated structural response with an
edge crack with a0 = 10 mm. The geometrical setup and the loading conditions of
the specimen are depicted in Fig. 10.13.

The beam is considered to be thin with length to height ratio of L / h = 20 where
L = 20 mm. Width and height of the cross section are t = 2 mm and h = 2 mm,

Fig. 10.13 Double cantilever beam with an edge crack. Geometry and boundary conditions
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Fig. 10.14 Double cantilever beam with an edge crack

respectively. The specimen is clamped at the right end and loaded at the left side by
a point load F = 1 N in y-direction. Young’s modulus and the Poisson’s ratio are
given by E = 103 MPa and ν = 0.3, respectively. Plane stress is assumed within this
example.

The computation is performedwith a linear virtual element definedby8nodes.The
discretization is based on a regular mesh with rectangular shaped elements. A series
of meshes with 10 · 2N × 2N elements in x and y-directions is used with the division
parameter N ∈ {2, 3, 4, 5, 6}. The VEM results are compared with the solution of
quadrilateral finite elements with 4-nodes (linear Q1 element) and 8-nodes (quadratic
Q2S serendipity element). The Q2S element uses a quadratic interpolation for the
displacement field and thus has superior convergence rates. The stress intensity factor
analysis is based on the interaction integral, provided in Sect. 10.2.3, see (10.35).

The convergence behaviour of the stress intensity factor KI is studied and illus-
trated in Fig. 10.14a for the different element formulations andmesh sizes.We notice
that, the convergence response of the linear virtual element is as good as the quadratic
Q2S element. However when using the Q1 element, due to its well known locking
behaviour in bending situations, one needs a very fine mesh to achieve a convergent
solution as shown in Fig. 10.14a.

The sensitive of the solution with respect to the stabilization parameter β is of
interest for engineering applications. The impact of the parameter β on result for the
stress intensity factor KI is illustrated in Fig. 10.14b. It is visible that the increase of
the mesh size N yields a better result which is close to the Q2S solution. However,
the difference related to the value of KI is small for all values of β > 0.4. Hence a
good choice for the stabilization parameter isβ ∈ [0.4 − 0.6]which thenwas applied
within the further numerical simulations.

A plate with an angled crack under tension is analyzed to compute mixed-
mode stress intensity factors for different crack orientations. The geometry (w =
10 mm, a0 = 0.5 mm) and the loading (σ = 2000MPa) of the specimen are given in
Fig. 10.15. Plane strain conditions are assumed in this investigation.Young’smodulus
and the Poisson’s ratio are given by E = 3 × 103 MPa and ν = 0.25, respectively.
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Fig. 10.15 Plate with
angled-crack under tension.
Geometry and boundary
conditions

The specimen is discretized by aVoronoimesh, as plotted in Fig. 10.16. Again, the
linear, low order virtual elements are applied for the numerical simulations. Different
crack orientations for the same spatial discretization are studied to illustrate the
robustness of the proposed virtual element scheme. To achieve accurate results with
the methodology described in Sect. 10.2.3, the mesh is refined around the cracked
zone, see Fig. 10.16.

The results for the stress intensity factors are depicted in Table10.1. The numerical
stress intensity factors are compared for different crack angles φ with analytical
results, see e.g. Sih et al. (1962). The analytical values follow from

KI,ex. = σ
√
a0π cos2(φ) and KII,ex. = σ

√
a0π sin(φ) cos(φ), (10.39)

in terms of the tensile stress σ , the half crack length a0 and the crack angle φ.
The numerical simulation with virtual elements agrees very well with the analytical
solution of Sih et al. (1962). This underlines the ability of the virtual element method
to predict stress intensity factors based on the procedure in Sect. 10.2.3.

10.2.5 Propagation Criteria: Maximum Circumferential
Stress Criterion

An equivalent stress intensity factor Kaq(KI, KII) has to be introduced in the mixed-
mode loading cases as a measure for crack initiation, see e.g. Nuismer (1975). When
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Fig. 10.16 Plate with angled-crack under tension. VEM mesh with different crack orientations:
Left: φ = 60◦, middle: φ = 0◦ and right: φ = 30◦

Table 10.1 Comparison between numerical and analytical solutions of SIFs for different crack
orientations φ

φ KI KI,ex. KI/KI,ex. KII KII,ex. KII/KII,ex.

0 2504.1 2506.6 0.9990 −0.9702 0.0000 –

10 2427.2 2431.0 0.9984 429.52 428.66 1.0020

20 2209.1 2213.4 0.9980 808.28 805.61 1.0033

30 1876.0 1878.0 0.9979 1089.8 1085.4 1.0041

40 1467.5 1471.0 0.9976 1239.5 1234.3 1.0042

50 1033.0 1035.7 0.9974 1240.5 1234.3 1.0050

60 624.84 626.66 0.9971 1091.9 1085.4 1.0060

70 291.92 293.22 0.9956 810.58 805.61 1.0062

80 74.830 75.584 0.9900 431.59 428.66 1.0068

90 0.0000 0.0000 – 0.0001 0.0000 –

the equivalent stress intensity factor Kaq exceeds a critical material parameter which
is typically the critical fracture toughness KIc

Kaq(KI, KII) ≥ KIc (10.40)

the crack starts to propagate. This leads usually to a dynamical problem where the
crack propagates with a certain velocity. Here we restrict the analysis to quasi-static
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crack growth where a certain crack length �a is prescribed incrementally and the
associated static problem is solved.

Once a crack has been initiated, the direction of growth can be predicted using
different propagation criteria. In this section the maximum circumferential stress
criterion is considered. Thus the stress state at a crack tip has to be evaluated. This
leads to the circumferential stress σθθ and the shear stress τrθ in the neighbourhood
of the crack tip which, in case of linear elasticity, follow from an analytically solution
with respect to the crack-tip field, see e.g. Gross and Seelig (2017),

σθθ = 1√
2πr

[
KI

4

(
3 cos

θ

3
+ cos

3θ

2

)
+ KII

4

(
−3 sin

θ

2
− 3 sin

3θ

2

)]
, (10.41)

τrθ = 1

2
√
2πr

cos
θ

2
[KI sin θ + KII(3 cos θ − 1)] (10.42)

It is assumed that the crack will propagate from the crack tip in the direction of the
maximum circumferential stress. The circumferential stress has its maximum for
vanishing shear stress. Hence the shear stress in (10.42) is set to zero and after some
re-arranging the propagation angle θc follows as a function of the stress intensity
factors KI and KII

θc,l = −2 arctan

⎡
⎣ 2KII

KI

(
1 +

√
1 + 8 (KII/KI)

2
)
⎤
⎦ . (10.43)

10.2.6 Cutting Technique and Crack Update Algorithm

Growth and propagation of a crack needs special algorithmic treatment in which the
crack path is constructed for a given loading situation. The main idea when using
virtual element discretizations is the splitting of elements aligned in the direction of
growth. In that way arbitrarily shaped elements with an arbitrary number of nodes
will be produced, see Fig. 10.17. Such situations can only be handled by the virtual
element method, being able to deal with any element shape.

The procedure of element splitting can be explained on the basis of the element
depicted in Fig. 10.18 and the geometrical description in Fig. 10.19.

To visualize the algorithmic structure of the splitting procedure, a single virtual
element 	2 is considered. It consists of the counter-clockwise ordered nodes and
associated segments as shown in Fig. 10.18.

nodes
{
N4, N5, N6, N9, N10, N11

}
	2

and (10.44)

segments
{
S4,5, S5,6, S6,9, S9,10, S10,11, S11,4

}
	2

. (10.45)
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Fig. 10.17 Path of a crack
through a virtual element
discretization

Fig. 10.18 a A virtual
element 	2 composed of 6
nodes and b 6 element
segments

{
S4,5, . . . ,

S11,4
}
	2

along with theirs
position pS = 1, . . . , 6

As an example, the segment S5,6 is composed of the second and the third local node
{N5, N6}	2

.
Next we consider the whole domain, see Fig. 10.19. Here, the solid blue line on

the left of Fig. 10.19a indicates a pre-existing crack. Furthermore the dashed red line
represents a crack path. This crack path has to be inserted in the mesh. The crack
path is defined by

1. the coordinates X1,ti p , X2,ti p and X3,ti p,
2. a given crack length �a and
3. the angel θc,I between the crack extension and the local coordinate system x1

which is predicted by (10.43).

At the beginning of the simulation, only the coordinates of the previous crack tip
X1,t i p (node N1) and the incremental length�a of crack propagation are known.Now
the coordinates of the new crack tip X2,ti p have to be determined. This is achieved
by computing the stress intensity factors KI, KII and by evaluating Eq. (10.43) which
yields the propagation angle θc,l . Note that the angle θc,l is measured with respect
to the local coordinate system x1, x2. Thus, a transformation to the global system
X,Y is needed. The following expression defines the coordinates of the new crack
tip X2,t i p

X2,ti p = X1,ti p + �a
{
cos θc,g , sin θc,g

}T
. (10.46)
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Fig. 10.19 A prescribed crack evolution using the introduced cutting technique procedure

with the global propagation angle θc,g . This angle is computed from the previous
crack angle θprev,g as

θc,g = θc,l + θprev,g (10.47)

Knowledge of the quantity X1,ti p (node N1), allows access to the information of
element 	1 in terms of:

nodes
{
N1, N2, N3, N4, N11, N12, N13

}
	1

and (10.48)

segments
{
S1,2, S2,3, S3,4, S4,11, S11,12, S12,13, S13,1

}
	1

. (10.49)

From this information, the intersection between the segments of element 	1 and the
new crack tip X2,t i p can be determined by looping over all segments of the element
	1. Once the intercept segment S4,11 is found, the position of the new node N14 (the
new crack tip) in the set {N1, . . . , N13}	1

is known, see Fig. 10.19a and b. With this
information the data structure of the element 	1 has to be updated:
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nodes
{
N1, N2, N3, N4, N14, N11, N12, N13

}
	1

and (10.50)

segments
{
S1,2, S2,3, S3,4, S4,14, S14,11, S11,12, S12,13, S13,1

}
	1

. (10.51)

For the crack propagation within the element 	1, the information of this element
has to be spread in two groups. The first group belongs to the upper crack face,
the second one is assigned to the lower crack face. The split of the information is
obtained by executing two separate loops over the set of the nodes

{
N1, . . . , N13

}
	1
.

Hence the first group will be assigned to the newly introduced element 	1′ . Start-
ing with the new crack tip (N14), a loop over all nodes will be executed counter-
clockwise. It stops when the node N1 of the previous crack tip is reached. Simul-
taneously, node N1 is duplicated and replaced by N1′ . According to the new set{
N14, N11, N12, N13, N1′

}
	1′

, the segments are changed to
{
S14,11, S11,12, S12,13,

S13,1′
}

	1′
, see Fig. 10.19b.

The information of the second group determines the remaining nodes of 	1.
Starting with the previous crack tip (N1) and ending with the new crack tip (N14), the
set

{
N1, N2, N3, N4, N14

}
	1

is obtained together with the segments
{
S1,2, S2,3, S3,4,

S4,14, S14,1
}

	1
, as depicted in Fig. 10.19b.

Finally the neighboring element to 	1 and 	1′ has to be found. A search is
needed for the element that shares the previous segment S4,11. Finding the shared
segment S11,4 yields on one hand the neighboring element 	2 and on the other hand
the position of the new node N14 (the new crack tip) within the set

{
N4, . . . , N11

}
	2
.

For example, the shared segment S11,4 has the position pS = 6 in the set of segments{
S4,5, . . . , S11,4

}
	2
. Hence the node N14 will be inserted into

{
N4, . . . , N11

}
	2

at the
position pN = pS + 1. This step finalizes the first propagation of the crack by �a in
the direction of θc,I . Further crack propagation steps are summarized in Fig. 10.19c
and d and in Table10.2, the latter provides a general description for the split
algorithms.

10.2.7 Crack Propagation Simulations Based on the Cutting
Technique

The efficiency and accuracy of the computational framework for crack propagation in
isotropic brittle materials discussed above with the novel feature of a robust cutting
technique will be demonstrated by means of some numerical examples. Hereby,
the virtual element method confirms its flexibility in dealing with complex element
shapes and arbitrary number of nodes in an element which are changed due to the
cutting process during the simulation.

Three-point bending test. The crack propagation analysis based on the cutting
algorithm described above can be investigated bymeans of a three point bending test,
see e.g. Miehe and Gürses (2010). The crack propagation is analyzed in a beam with
a pre-existing crack. The beam is simply supported and loaded in the middle on the
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Table 10.2 A general description for the split algorithms

1. Calculation of the new crack tip coordinates X3,ti p , see Fig. 10.19c

a. Obtain KI, KII using (10.35)
b. Compute θc,l using (10.43) and transform it to θc,g
c. Calculate X3,ti p similar to X2,ti p by using (10.46)

2. Treatment of the crack tip elements

a. Find the elements having the previous crack tip node N14: ⇒ {
	1′ , 	1, 	2

}
	ti p

b. Find from
{
	1′ , 	1, 	2

}
	ti p

the next element to be split : ⇒ 	2

i. Find the intercept segment with the prescribed crack path : ⇒ S6,9, pS = 3
ii. Create a new node N15 at pS + 1⇒ {

N4, N5, N6, N15, N9, N10, N11, N14
}
	2

3. Splitting the information of 	2 in two groups

a. Construction of the upper crack face group
i. Performing a loop over

{
N4, · · · , N14

}
	2

, starting with N15 and ending with

N14: ⇒ {
N15, N9, N10, N11, N14

}
� and assign it to a new element : ⇒ 	2′

b. Construction of the lower crack face group
i. Performing a loop over

{
N4, · · · , N14

}
	2

, starting with N14 and ending with

N15: ⇒ {
N14, N4, N5, N6, N15

}
� and assign nodes to an existing element:

⇒ 	2

4. Treatment of the neighbouring elements to 	2 and 	2′

a. Find the element that sharing the previous segment S6,9: ⇒ 	3, S9,6, pS = 4
b. Insert node N15 at pS + 1: ⇒ {

N6, N7, N8, N9, N15
}
	3

c. Since X3,ti p lies inside 	3, we create a new node N16 with coordinate X3,ti p .
d. Insert N16 and N15 at pS + 2 and pS + 3: ⇒ {

N6, N7, N8, N9, N15, N16, N15
}
	3

5. Cutting throught the mesh, as plotted in Fig. 10.19d

a. Find all top edges (including the previous top edge): Stip = {
S1′,14, S14,15, S15,16}

b. Duplicate nodes in the edges, excluding endpoints:
{
N14, N15

} ⇒ {
N14′ , N15′

}
c. Find all elements containing edges Stip :

{
	1′ , 	2′ , 	3

}
, and update the segments

in Stip with the new nodes
{
N14′ , N15′

}
e.g:

{
N15, N9, N10, N11, N14

}
	′
2

⇒ {
N15′ , N9, N10, N11, N14′

}
	′
2

upper flange. The geometry (L = 4 mm, aH = 0.4 mm, aL = 0.2 mm, H = 2 mm)
and the loading (ū = 0.04mm) of the specimen are provided in Fig. 10.20a.

The material parameters used in the simulation are the Young’s modulus and the
Poisson’s ratio given by E = 2.08 × 104 MPa and ν = 0.3, respectively. Plane strain
conditions are assumed. The specimen is discretized using a Voronoi mesh with 621
virtual elements, as sketched in Fig. 10.20b.
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Fig. 10.20 Three-point bending test

Figure10.21 demonstrates the crack path evolution along with the stress σ11 dis-
tribution for three different deformation stages up to final failure. Red and blue
contour-plots represent the maximum tensile and compressive stresses, respectively.
Tensile stresses are observed at the notch-tip when the beam is loaded. The crack is
initiated in this tensile area and propagates straight to the load since the maximum
tensile stress is in the middle of the beam. This results in a pure Mode-I failure.
Starting with the Voronoi mesh of 621 virtual elements, see Fig. 10.21a, the crack
path starts to develop with 632 elements. In Fig. 10.21b the crack starts to develop at
the given displacement ūc1. Due to the cutting procedure 650 elements are needed to
follow the crack propagation up to ūcm , Fig. 10.21c. At the final crack for the given
displacement ūc f a mesh with 673 elements models the crack, see Fig. 10.21d. Note
that only few additional virtual elements have to be generated within the cutting
algorithm. This is sufficient to track the crack path accurately during the simulation.

The tensile test with two notches and holes relates to a problem that is in a
more complex stress and strain state, see e.g. Miehe et al. (2007). It demonstrates
the capability of virtual elements with flexible number of nodes and shapes to solve
these type of crack problems. Some animal shaped elements are inserted in the mesh
to account for non-convexity of the virtual elements.
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Fig. 10.21 Three-point bending test—Contour plots of the stress σ11 during crack evolution

This tensile test illustrates crack-initiation and curved-crack-propagation. The
geometrical setup (h = 10 mm, R = 2 mm, a0 = 1 mm, A = 2.85 mm, B =
3 mm), the loading by a prescribed displacement (ū = 0.1mm) of the specimen,
see Fig. 10.22a. The discretization with Voronoi cells is sketched Fig. 10.22b. Again,
the low order virtual element formulation is employed. The mesh includes various
shaped Voronoi cells around the fractured zones including animal shaped elements in
order to demonstrate the capability of the cutting algorithm to deal with any shape of
virtual elements. The material parameters used in the simulation are Young’s mod-
ulus and the Poisson’s ratio given by E = 2 × 105 MPa and ν = 0.3, respectively.
Initial cracks are inserted at the lower left and upper right edge, see Fig. 10.22a. The
specimen is loaded by the prescribed vertical displacement ū at the upper edge while
the lower edge is fixed in vertical direction.

Figure10.23 depicts the crack path evolution and the distribution of the shear
stress σ12 for different deformation stages. The cracks initiate at the tip of the two
notches at time t0. Thereafter, the left and the right cracks tend to propagate towards
the holes as shown in Fig. 10.23b for t1. Once the cracks passed the holes at time
t2, see Fig. 10.23c, they continue to propagates horizontally until final failure in
Fig. 10.23d at time t3 when they reach the hole opposite to there starting position.
The final failure is related to mixed-mode fracture.
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Fig. 10.22 Tensile test with two notches and holes

All examples in this section demonstrate that the virtual element method is very
efficient and robust for applications in linear fracture mechanics. When inelastic
effects have to be considered the criteria based on the analytical solutions in (10.41)
and (10.43) are no longer valid. Then the approach described in Sect. 10.4 has to be
applied which allows to include inelastic effects and is very efficient as well.

10.3 Phase Field Methods for Brittle Fracture Using
Virtual Elements

Instead of sharp cracks, one can introduce a zone in the solid inwhich the resistance of
thematerial is very low such that a crack can be approximated.One of the possibilities
was discussed in Sect. 10.1 using damage mechanics. Here we formulate a smoothed
crack field by employing the phase field method to model crack propagation in the
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Fig. 10.23 Tensile test of the notched specimen with two holes—Crack trajectory for different
deformation stages

situation of brittle fracture. This methodology allows to capture the progression of
cracks in different materials which are prone to brittle failure, like concrete, glass
and ceramics.

10.3.1 Governing Equations for Elasticity

The response of the solid is described at a material point X ∈ 	 and time t ∈ T =
[0, T ] by the displacement field u(X, t), as shown in Fig. 2.2. Small deformations
are assumed which leads to the symmetric strain tensor ε = ∇su, see (2.9), where
the short notation u(X, t) = u was used.

In brittle fracture it is sufficient to describe the constitutive behaviour of the solid
under small strain conditions by a homogeneous isotropic linear elastic material.
The related strain energy density function � = �/ 2(tr(ε))2 + μ tr(ε · ε), with the
Lamé constants � and μ was provided in (2.43).

The variational formulation of the equilibrium equation (10.27) provides again
the basis for numerical solution schemes. The principle of stationary elastic potential
U (u) is chosen as basis for the development of the method. Here it is written for the
small strain case, using the above defined strain energy density function � with the
strain tensor ε
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U (u) =
∫
	

�(ε) d	 −
∫
	

f̄ · u d	 −
∫
�N

t̄ · u d�. (10.52)

By minimizing the potential U (u) the displacement u can be computed for a given
volume loading f̄ and traction loading t̄ .

10.3.2 Regularization of a Sharp Crack Topology

Contrary to the approach in Sects. 10.2.1 and 10.2.5 the crack is not modeled as a
sharp crack but regularized using the phase fieldmethod. Amodel problem illustrates
this approach where a sharp crack in the left image of Fig. 10.24 is described by a
new field variable d(X, t) ∈ [0, 1], where d(X, t) = 0 characterizes the unbroken
and d(X, t) = 1 the fully broken state of the material. This variable d is called the
crack phase field and can be linked to the continuum theory of damage, where a scalar
damage field describes the development of micro-cracks in a solid, see Sect. 10.1.

Following Miehe et al. (2010a) the non-smooth phase field can be approximated
over the crack surface by the exponential function

d(X) = e− |X |
l (10.53)

in terms of the local coordinate X , outlined in Fig. 10.24. As can be seen in the
right image, the regularization depends on the length scale parameter l and yields for
l → 0 the sharp crack topology shown in the left image of Fig. 10.24. The exponential
function in (10.53) is designed such that d(0) = 1 and d(±∞) = 0. It is the solution
of the ordinary differential equation

l2d ′′(X) − d(X) = 0 (10.54)

Fig. 10.24 Description of a crack—sharp crack topology (left), and regularized crack topology
(right) using different length parameters l = 0.1 and l = 0.01
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Fig. 10.25 Solid with a
regularized crack and
boundary conditions

subjected to the boundary conditions above. A variational functional can be associ-
ated with the above differential equation. It is defined as

�l(d) = 1

2l

∫
x

[
d2 + l2d ′2] dX. (10.55)

Like in damagemechanics the phase field can only grow: ḋ ≥ 0. This is equivalent
to the fact that a cracked body cannot be reversed under normal circumstances leading
to a body without cracks. The extension of this idea to a two- or three-dimensional
problem follows by introducing a regularization of the sharp crack topology�c → �l

by the a crack surface density function as outlined in Miehe et al. (2010a)

�l(d) =
∫
	

γ (d,∇d) d	 with γ (d,∇d) = 1

2l
(d2 + l2|∇d|2). (10.56)

Hence the crack is modeled by the crack surface density function γ per unit volume
of the solid and the fracture length scale parameter l that governs the width of the
diffuse crack, as shown in Fig. 10.25. Note, that the phase field has to be introduced
in addition to the displacement field u(X, t).

The regularization function γ in (10.56) was introduced first by Bourdin et al.
(2000). However, function γ already appears in the approximation by Ambrosio
and Tortorelli (1990) for the functional of image segmentation of Mumford and
Shah (1989). In addition, Borden et al. (2014) suggested the following higher order
approximation

γ (d,∇d) = 1

4l
[d2 + 2l2|∇d|2 + l4(�d)2]. (10.57)

Based upon the above arguments a given sharp crack topology �c can be modeled
by the regularized crack phase-field d which is obtained from the minimization
principle of the diffusive crack topology �l

d = min
d

{�l(d)} with d = 1 on �c ∈ 	, (10.58)
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Fig. 10.26 A purely geometric approach to phase-field fracture based on virtual element method.
Solutions or different fracture length scales lb > lc > ld are depicted in (b) to (d), according to
Aldakheel et al. (2018a)

yielding the Euler equation, which fulfills the Neumann-type boundary condition

d − l2�d = 0 in 	 and ∇d · N = 0 on ∂	, (10.59)

where � is the Laplacian and N the outward normal vector of the boundary �.
As an example, a rectangular area 	 with given letters “VEM” denoting a sharp

crack �c is investigated, see Fig. 10.26. The minimization problem (10.58) for the
phase field is solved on this domain with the prescribed Dirichlet boundary condition
d = 1 on �c ∈ 	. Geometry and discretization of the specimen using a Voronoi
mesh can be found in Fig. 10.26a. The formulation is based on a virtual element
discretization with linear ansatz. In the limit the above variational principle results
for l → 0 in a sharp crack surface �c, as plotted in Fig. 10.26d for the specimen
with a Voronoi mesh. The computational results with three different length scale
parameters l allow the following observations:

• The length scale l, which is user defined, has to be selected with care. A too large
value does not result in a sharp crack, see Fig. 10.26b. Hence, the correct fracture
behaviour of a specimen will not be captured.

• If a very small length l is selected then a very fine mesh is needed to resolve this
phase field, see Fig. 10.26d.

Thus, an efficient treatment of fracture with the phase field method needs a length
scale parameter l that on one hand approximates the solution correctly and on the
other hand is large enough such that the mesh density is minimal.
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10.3.3 Variational Formulation of Brittle Fracture

In the following, we outline a variational approach to brittle fracture in elastic solids
at small strains when using the phase field approach. Francfort and Marigo (1998)
have demonstrated that for a given crack set �c the total energy of the body can be
formulated as

�(ε, �c) = �s(ε) + �c(�c), (10.60)

with the elastic strain energy �s and the fracture energy �c. The latter is needed to
create the crack surface. According to the Griffith’s theory, the fracture energy can
be expressed in variational form as

�c(�c) =
∫
�c

Gc d�, (10.61)

with the critical fracture energy density Gc, also referred to as the critical energy
release rate or the fracture toughness in the context of cohesive zone models, as
outlined in the work by Borden et al. (2014). By using Eqs. (10.60)–(10.61), the total
potential energy of the body is given by

�(ε, �c) =
∫
	

ψ(ε) d	 +
∫
�c

Gc d�. (10.62)

This function contains the unknown sharp crack topology �c, which makes minimi-
zing this function very difficult. Bourdin et al. (2000) suggested the approximation
of the fracture energy �c(�c) by using a regularized formulation

�c(�c) =
∫
�c

Gc d� ≈
∫
	

Gcγ (d,∇d) d	, (10.63)

with the regularization function γ . This functionwas renamed byMiehe et al. (2010b)
as crack surface density function. It contains the phase field parameter d and the
fracture length scale l, as can be seen from Eq. (10.56). Due to the regularization of
the sharp crack �c, the stored strain energy ψ is now expressed as

�s(ε, d) =
∫
	

g(d) ψ(ε) d	, with g(d) = (1 − d)2, (10.64)

where g(d) is a degradation function that models the degradation of the stored elastic
energy of the solid due to fracture. It interpolates between the unbroken response for
d = 0 and the fully broken state at d = 1 by satisfying the constraints
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g(0) = 1 , g(1) = 0 , g′(1) = 0. (10.65)

Experimental observations show that brittle material cracks in tension states. In
order to enforce crack evolution only in tension, the strain energy density function
ψ of the solid is additively decomposed into a positive part ψ+ due to tension and a
negative part ψ− due to compression, see Miehe et al. (2010b),

ψ = g(d) ψ+ + ψ− with ψ± = �

2
〈tr(ε)〉2± + μtr((ε±)2). (10.66)

Here the bracket operators 〈•〉+ = (• + | • |)/2 and 〈•〉− = (• − | • |)/2 were intro-
duced. The strain tensor ε is divided into a positive ε+ and a negative ε− part

ε = ε+ + ε− with ε+ =
3∑

i=1

〈εi 〉+ N i ⊗ N i , ε− =
3∑

i=1

〈εi 〉− N i ⊗ N i , (10.67)

where εi are the principal strains and N i the associated principal strain directions
for i = 1..3. With these expressions at hand, the stress tensor σ can be obtained as

σ = g(d)
∂ψ(ε)

∂ε
= g(d)

∂ψ+

∂ε
+ ∂ψ−

∂ε
. (10.68)

With all above introduced equations, the total potentialψtot of the phase field problem
can be written as a sum of the elastic and the fracture energy

ψtot (ε, d,∇d) = ψelas(ε, d) + ψ f rac(d,∇d) = g(d)ψ+ + ψ−︸ ︷︷ ︸
elastic energy

+Gcγ (d,∇d)︸ ︷︷ ︸
fracture energy

.

(10.69)
To ensure crack irreversibility in the sense that the cracks can only grow (i.e. ḋ ≥ 0),
Miehe et al. (2010a) introduced a history-field variable H as a crack driving force,
which depends on the maximum positive strain energy ψ+

H(X, t) = max
s∈[0,t] ψ

+(ε(X, s)
)
. (10.70)

The evolution of the regularized crack surface functional (10.56) is driven by the
constitutive functions. This can be formulated by postulating a global evolution
equation of regularized crack surface as

d

dt
�l(d) =

∫
	

∂γl(d,∇d)

∂d
ḋ d	 = 1

l

∫
	

[ (1 − d)H − ηḋ ] ḋ d	 ≥ 0 (10.71)

where η ≥ 0 is a material parameter that characterizes the viscosity of the crack
propagation. This evolution statement provides the local equation for the evolution
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of the crack phase-field in the domain 	 along with its homogeneous Neumann
boundary condition as

ηḋ = (1 − d)H − [ d − l2�d ] with ∇d · N = 0 on � (10.72)

Based on this local form of the crack phase-field evolution the fracture energy can
be redefined as

ψ f rac(d,∇d,H) = Gcγl(d,∇d) + η

2�t
(d − dn)

2 + g(d)H, (10.73)

where a backward Euler scheme is introduced for the time discretization of ḋ leading
to ḋ = (d − dn) /�t with�t = t − tn > 0 being the time step which is employed to
solve the fracture problem. The material parameter η ≥ 0 characterizes the viscosity
of the crack propagation.

The above introduced variables characterize the brittle failure response of a solid.
The response is based on two global primary fields, the displacement field u and
the crack phase-field d, that are summarized as global primary field variables in
U = {u, d}. The subsequent modeling of the phase field approach for brittle fracture
is based on a set of constitutive state variables C = {ε, d,∇d,H}.

The development of virtual elements that handle phase field brittle fracture in
elastic solids can start from a pseudo potential density functional instead of using the
weak form. This has advantages when the code is automatically generated using the
software toolAceGen, see Korelc andWriggers (2016). The specific pseudo potential
density functional can then be written as

ψtot (C) = g(d)ψ+ + ψ− + Gcγl(d,∇d) + η

2�t
(d − dn)

2 + (1 − d)2H (10.74)

which leads to a total pseudo potential

�(U) =
∫

	

ψtot (C) d	 − �ex(u), (10.75)

with the external load �ext(u). We note, that the crack driving force H and the
degradation function g(d) have to be kept constant during the derivation procedure
of residual to obtain the correct weak form of the problem.

10.3.4 Formulation of the Virtual Element Method

This section provides a summary for the formulation of the virtual element method
including the crack phase field d. The virtual element method relies on the split of
the ansatz space Uh = {uh , dh} into a part Uπ representing the projected primary
fields and a remainder
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Uh = Uπ + (Uh − Uπ ). (10.76)

The projected primary field Uπ is approximated by using a linear ansatz function2

with respect to the coordinate X = {X,Y }. With this function, the nodal values
can be projected on to the element area, in the case of two-dimensional space. The
projection Uπ is defined at element level by a polynomial ansatz function Nπ as

Uπ =
⎧⎨
⎩
uπx

uπy

dπ

⎫⎬
⎭ = a · Nπ =

⎡
⎣a1 a4 a7a2 a5 a8
a3 a6 a9

⎤
⎦
⎧⎨
⎩
1
X
Y

⎫⎬
⎭ , (10.77)

with the projected variables for the displacements uπx , uπy and the phase-field dπ ,
the unknown parameter set a and the ansatz function Nπ .

The first step to construct the method is to obtain the unknown parameter set a in
(10.77). In case of a linear polynomial ansatz function, themost simplest and efficient
way is to use (3.60) and (3.62) to compute the projection. This procedure is based
on tensor notation and determines the projection Uπ for a linear ansatz function for
a virtual element 	v , see Sect. 3.1.5,

∇Uπ = 1

	v

∫
	v

∇ Uh d	 = 1

	v

∫
�v
Uh ⊗ N � = D

(2,1)
∇ Uv. (10.78)

Here N is the normal at the boundary �v of the domain 	v . Furthermore, D(2,1)
∇ , see

e.g. (3.51), is an operator that links the projected gradient to the nodal degrees of
freedom Uv .3 The set of nodal degrees of freedom of a virtual element	v are defined
as

Uv = 〈
U1 U2 . . . UnV

〉T
(10.79)

where the nodal degrees of freedom at node K are given by UK = 〈
uKx uKy dK

〉T
.

The projection in (10.78) does not determine the ansatz Uπ in (10.77) completely
and has to be supplemented by a further condition to obtain all constants a. For this
purpose we adopt the condition that equalizes the sum of the nodal values of Uh and
the nodal values of its projection Uπ . This condition yields for each element 	v

nV∑
K=1

Uπ (XK ) =
nV∑
K=1

Uh(XK ), (10.80)

where XK are the coordinates of the nodal point K and the sum includes all nV

boundary nodes. Using (3.62) it follows

2 Higher order polynomial degrees are possible and have to be developed along the lines presented
in Chap.5.
3 The operator D(2,1)

∇ does not have to be computed explicitly when using automatic software
generation as in Sect. 3.1.5, see also (3.51).
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⎧⎨
⎩
a1
a2
a3

⎫⎬
⎭ =

nV∑
K=1

[UK − ∇Uπ XK ] (10.81)

The two conditions (10.78) and (10.81) yield all unknowns a of the projection Uπ in
terms of the nodal values

Uπ = H(2,1)(X,Y )D
(2,1)
U Uv. (10.82)

The development of virtual elements that handle phase-field brittle fracture in elas-
tic solids can start from the pseudo potential density functional (10.75). The potential
function is split into a consistency term �c(Uπ ), that depends on the projection Uπ

and an associated stabilization term �stab(Uh − Uπ ) in terms of the reminder in
(10.76). By exploiting the split in (10.76), the pseudo potential function defined in
(10.75) can be rewritten by assembling all element contributions for the nv virtual
elements as

�(U) = nv

A
v=1

[�c(Uπ )|v + �stab(Uh − Uπ )|v] , (10.83)

where v denotes a single virtual element within the discretization and the label �|v
represents the quantities for an element v.

The primary field variables Uπ are linear functions and their gradient ∇Uπ is
constant over the domain of the virtual element 	v . As a consequence, the poten-
tial ψtot (Cπ ) is integrated by evaluating the function at the element centroid Xc and
multiplying it with domain size 	v . By neglecting the body and traction forces, the
consistency term �c(Uπ ) in (10.83) can be obtained for every virtual element as

�c(Uπ )|v =
∫

	v

ψtot (Cπ ) d	 = ψtot (Cπ )|v,c 	v, (10.84)

where	v refers to the element area. In this equation, the label�|v,c denotes element
quantities that are evaluated at the element centroid Xc.

It remains to provide away to compute the second part�stab(Uh − Uπ ) in (10.83).
Again, the energy stabilization, see e.g. Sect. 6.1.3, is applied, leading to an approxi-
mation of the primary fieldsU in (10.76) by subdividing every virtual element into nT
triangular linear finite elements. Thus, the stabilization term follows as

�stab(Uh − Uπ )|v = β

(
nT∑
i=1

	i
v ψtot (Ch)|v,c − ψtot (Cπ )|v,c 	v

)
, (10.85)

where ψtot (Ch)|v,c is the total potential function evaluated at the centroid Xi
c of one

triangular element and 	i
v is the area of the i th triangle in the element 	v . The
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quantity β can be taken from the interval 0 < β ≤ 1. Choices for β are discussed in
the next section.4

By using the software tool AceGen, the residual Rv and the stiffness matrix Kv

of the virtual element can be derived as

Rv = ∂�(U)|v
∂Uv

∣∣∣∣
g(d)=const. andH=const.

and Kv = ∂Rv

∂Uv

, (10.86)

where Uv are the unknown primary fields (degrees of freedom) of the virtual ele-
ment 	v , see (10.79). Finally, the global residual R and stiffness matrix K are for-
mulated by assembling all individual element contributions for all elements nv of the
domain

R = nv

A
v=1

Rv and K = nv

A
v=1

Kv. (10.87)

10.3.5 Numerical Examples for Brittle Fracture Using Phase
Field

The performance of the low order virtual element formulation for phase-field model-
ing of brittle fracture will be demonstrated by means of two representative numerical
examples.

The analysis of a crack in a Bi-Material plate models fracture phenomena of a
bi-material specimen under tensile loading. The aim is to demonstrate crack phase-
field initiation and branching within crack propagation. The geometrical setup and
the loading conditions of the specimen are depicted in Fig. 10.27b. The specimen
has a length and width of 2 L with L = 50 mm and the diameter of the notch is
D = 10 mm.

The right edge of the plate is fixed in x-direction and a vertical, increasing displace-
ment is applied at the top and bottom edges until final failure.Material B is stiffer than
material A.Material B is purely elastic andwill not fracture. Young’smodulus is cho-
sen for material A as E A = 100 kN/mm2 and for material B as EB = 200 kN/mm2,
Poisson’s ratio is set to ν = 0.2 for both materials. The viscosity of the crack propa-
gation is given by ηA = 10−6 kNs/mm2, the critical energy release rate for material
A has the value gA

c = 10−4 kN/mm and the stabilization parameter of the virtual
element formulation was set set to β = 0.4.

Different mesh types (triangular mesh with six nodes (VE-T2) and Voronoi mesh)
are studied to illustrate the robustness of the proposed virtual element scheme with
linear ansatz order. These are compared to results obtained with a quadratic T2
triangular finite element solution.Mesh refinement is applied in the expected fracture
zone, see Fig. 10.27a and c.

4 According to Remark 4.1 the potential �(Uh) in (10.83) depends for β approaching zero only on
the projection part �c(Uπ )|v , leading to rank deficiency. However when β = 1 pure FEM results
will be reproduced which are related to the internal mesh.
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Fig. 10.27 Bi-material specimen. Geometry and boundary conditions in (b) along with a virtual
element Voronoi mesh in (a) and a triangular finite element mesh in (c)

Figure10.28 shows the contour plot of the fracture phase-field d simulated using
the virtual element formulations with a Voronoi mesh. The analysis is performed for
two different length scales l1 = 1.25mmand l2 = 5.0mmwith the same length/mesh
ratio r = 8. The crack phase-field initiates at the notch-tip and propagates horizon-
tally up to the interface between the two materials A and B. Thereafter it branches
along the interfaces vertically until final failure. A sharp crack pattern is obtained
for the smaller length scale parameter l, as demonstrated in Fig. 10.28c.

Load-displacement curves for different length scales, using finite and virtual
elements formulations, are displayed in Fig. 10.29a. All simulations show similar
behaviour before crack initiation. Thereafter, the force drops sharply to a lower level
due to cracking. This load level represents the residual forces of the undamaged
material B of the specimen.

Next, the influence of the stabilization parameter β used in the virtual element
formulation is illustrated in Fig. 10.29b when employing the Voronoi mesh. It can
be observed that comparable load-displacement curves (F-ū curves) are obtained.
Hence, the simulation results are independent of the parameter β.

The tensile test with two notches or holes is concerned with the capability
and the flexible choice of the number of nodes in a virtual element. To this end, a
numerical tension test of two specimen is performed. The first one is a double edge
notched specimen and second the one is a specimen with two holes. The purpose of
this test is to illustrate the effects of the hole/notch shape on the crack-initiation and
curved-crack-propagation, representing a mixed-mode fracture.

The geometrical setup and the loading conditions of the notched specimen are
depicted in Fig. 10.30a and for the holes-specimen in Fig. 10.30b. The size of the
specimen is chosen to be: L = 20 mm, H = 10 mm, R = 2 mm, A = 3 mm and
B = 1 mm.

The plate is fixed at the bottom edge in x- and y-directions and the top edge in x-
direction. The shear modulus is chosen asμ = 8.0 kN/mm2, Poisson’s ratio ν = 0.3,
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Fig. 10.28 Bi-material specimen. Contour plots of the fracture phase-field d for two fracture
length scales l and three different deformation states up to final rupture. a–c l1 = 1.25 mm and e–g
l2 = 5.0 mm

Fig. 10.29 Load–displacement curves for the Bi-material test with two different fracture length
scales. a A comparison between different VEM and FEM discretizations and b numerical study of
the stabilization parameter influence β
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Fig. 10.30 Tensile test with two notches or holes. a and b Geometry and boundary conditions. c
and d VEM with Voronoi mesh

the viscosity of the crack propagation as η = 10−6 kNs/mm2, the critical energy
release rate as gc = 1.0 × 10−3 kN/mm, the stabilization parameter as β = 0.4 and
the fracture length scale parameter as l = 0.1 mm. The specimen is loaded until final
failure by an increasing vertical displacement which is prescribed at the top edge.

To show the flexibility and generality of the virtual element formulation, a mesh
with various animal-shaped, non-convex Voronoi cells (bird, horse, snake, frog,
koala, fish, kangaroo,…) is employed in the undamaged zones. A refined mesh
using a standard Voronoi cells is used in the expected fracture zone as outlined in
Fig. 10.30c, d.

The crack phase-field initiates at the two notch-tips, see Fig. 10.31a or at the
two holes, see Fig. 10.31e. Thereafter, the left crack propagates towards the bottom
surface while the right crack propagates towards the top surface, resulting in amixed-
mode fracture, see Fig. 10.31b–d for the notched specimen and Fig. 10.31f–h for the
specimen with holes. It is interesting to note, that the crack path in the middle of
the plate is almost the same for both specimen. The complex animal-shaped virtual
elements do not influence the solution which is related to the fact that all virtual
elements with straight edges pass the patch test by construction.
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Fig. 10.31 Contour plots of the fracture phase-field d for the double edge notched specimen in
(a)–(d) and for the two-holes specimen in (e)–(h)

10.4 Phase Field Methods for Ductile Fracture Using
Virtual Elements

The phase field approach for ductile fracture enables to capture the progression of
cracks in metals, like steel and alloys. Contrary to brittle fracture the solids undergo
finite deformation near cracks which will be described by a finite plasticity model
basedon apseudo-potential density functional as introduced inChap.8.This potential
contains a degrading elastic-plastic part and a contribution due to fracture described
by the phase field approach. The numerical simulation and prediction of the crack
growth is based on the virtual element method.
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10.4.1 Governing Equations for Phase Field Ductile Fracture

This section outlines the theory of ductile fracture in elastic-plastic solids at large
deformations. The basic relations for finite strain J2-plasticity can be found in
Sect. 2.2.3.2. They describe the inelastic response of a solid by the elastic left Cauchy-
Green tensor be = FeFT

e = FC−1
p FTC p, see (2.74),whereC p = FT

p F p is the plas-
tic part of the right Cauchy-Green tensor. The applied elasto-plastic model including
hardening is described in Eqs. (2.76) to (2.81).

The above introduced variables characterize the ductile failure response of a solid.
The general formulation is based on the global primary displacement field u and the
global phase field d in U. The constitutive state variables are summarized in C

U = {u, d} and C = {be, α,H, d,∇d}. (10.88)

Constitutive phase field modeling of ductile fracture is based on the definition of a
pseudo-energy density per unit volume. It consists of degrading elastic Welas and
plasticWplas energies as well as a contribution due to fractureW f rac, which together
describe the accumulated dissipative energy,

W (C) = Welas(be, d) + Wplas(α, d) + W f rac(H, d,∇d). (10.89)

The elastic contribution is provided by a Neo-Hookean strain energy function for a
homogeneous compressible isotropic elastic material

Welas(be, d) = g(d)
[
ψvol(be) + ψiso(be)

]
, (10.90)

with the volumetric and isochoric part

ψvol(be) = κ

4
(I3 − 1 − ln I3) and ψiso(be) = μ

2
(I−1/3

3 I1 − 3) , (10.91)

in terms of the bulkmodulus κ , the shearmodulusμ, the degradation function g(d) =
(1 − d)2 and the invariants: I1 = tr be and I3 = det be. The plastic contribution is
assumed to have the form

Wplas(α, d) = g(d) ψp(α) with ψp = Y0 α + H

2
α2 + (Y∞ − Y0)

(
α + exp[−δα]/δ)

(10.92)
with the initial yield stress Y0, infinite yield stress Y∞ ≥ Y0, the isotropic hardening
modulus H ≥ 0 and the saturation parameter δ.

In order to enforce a crack evolution only in tension, the volumetric elastic energy
is additively decomposed into a positive part ψ+

vol due to tension and a negative part
ψ−

vol due to compression5 as

5 There exist different possibilities to introduce the crack evolution due to tension, for an overview
see Ambati et al. (2015a).
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Welas = g(d)
[
ψ+

vol(be) + ψiso(be)
] + ψ−

vol(be) with ψ±
vol = κ

4
(I±

3 − 1 − ln I±
3 )

(10.93)
in terms of the positive I+

3 and the negative I−
3 third invariant, defined as

I+
3 = max{I3, 1} = 〈I3 − 1〉+ + 1 = 1

2

{(
I3 − 1

) + ∣∣I3 − 1
∣∣} + 1

I−
3 = min{I3, 1} = 〈I3 − 1〉− + 1 = 1

2

{(
I3 − 1

) − ∣∣I3 − 1
∣∣} + 1

(10.94)

Following the Coleman–Noll procedure, the Kirchhoff stresses tensor τ and the first
Piola–Kirchoff stress tensor P are obtained from the elastic strain energy function
Welas(be, d) in (10.93) for isotropic material as

τ = 2be
∂Welas

∂be
and P = τ F−T (10.95)

The fracture part of pseudo-energy density (10.89) takes the form

W f rac(H, d,∇d) = 2
ψc

ζ
l γl(d,∇d) + η f

2�t
(d − dn)

2 + g(d) H (10.96)

where �t = t − tn > 0 denotes the time step, ψc > 0 is a critical fracture energy
and ζ controls the post-critical range after crack initialization. The history field H
is defined by

H = max
s∈[0,t] D(be, α; s) ≥ 0 with D =

〈
ψ+

vol + ψiso + ψp − ψc

〉
+

(10.97)

with the Macaulay bracket 〈x〉+ = (x + |x |)/2 = max(x, 0), that ensures the irre-
versibility of the crack evolution.

The finite elasto-plastic model requires additionally the formulation of a yield
function, a hardening law and an evolution equation for the plastic variables. The
yield function restricts the elastic region. By assuming J2-plasticity with nonlinear
isotropic hardening the yield function has the form

χ = √
3/2 | f p| − r p with f p = dev[τ ] = τ − 1

3
tr[τ ]1 and r p = ∂Wplas

∂α
(10.98)

in terms of the deviatoric plastic driving force f p and the resistance force r p. With
the yield function at hand, we define the dual dissipation function for visco-plasticity
according to a Perzyna-type model as

�∗( f p, r p) = 1

2ηp

〈√
3/2 | f p| − r p

〉2
+

(10.99)

with ηp being the viscosity parameter of the rate dependent plastic deformation. The
evolution equations for the plastic variables are
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− 1

2
Lvbe = γ̇ n be with n = ∂χ

∂ f p and α̇ = γ̇ = 1

ηp

〈
χ
〉
+ , (10.100)

whereLv denotes the Lie derivative in time. The evolution Eq. (10.100) can be recast
with (2.74) in an alternative form

Ċ
−1
p = −2 γ̇ F−1 n F C−1

p (10.101)

which will be employed later within the algorithmic treatment of plasticity. The
Karush–Kuhn–Tucker conditions for the elasto-plastic model are

χ ≤ 0 , γ̇ ≥ 0 and χ γ̇ = 0. (10.102)

The pseudo potential density functional is used for thematerial modeling and compu-
tation within the AceGen coding environment. This functional depends on the elastic
and the fracture parts. Note that the plastic history variables and the crack driving
force have to be kept constant during the first variation

�(U, h) =
∫
	

W (C) d	 − �ext (u) with �ext (u) =
∫
	

f̄ · u d	 +
∫
�N

t̄ · u d�

(10.103)
where h = {C−1

p , α,H} contains the history field array for the plastic strainmeasures
and the crack driving force.

10.4.2 Formulation of the Virtual Element Method

For the construction of the virtual element method for ductile fracture, we follow
the same formulations as in Chap.8 for the finite deformation virtual element with
elasto-plasticity along with the phase field formulation introduced in Sect. 10.3.4.
Thus for the simplest form of a two-dimensional low order virtual element a linear
ansatz, see (10.77) for the pure mechanical case,

Uπ =
⎧⎨
⎩
uπ x

uπ y

dπ

⎫⎬
⎭ = a · Nπ =

⎡
⎣a1 a4 a7
a2 a5 a8
a3 a6 a9

⎤
⎦
⎧⎨
⎩

1
X
Y

⎫⎬
⎭ (10.104)

yields the gradient of the projection as provided in (10.78)

∇Uπ = D
(2,1)
∇ Uv

and the projected function which follows from (10.80) as, see (10.82),
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Uπ = H(2,1)(X,Y )D
(2,1)
U Uv

where she set of nodal degrees of freedom of a virtual element 	v are defined as, see
(10.79),

Uv = 〈
U1 U2 . . . UnV

〉T

with the nodal degrees of freedom at node K given by UK = 〈
uKx uKy dK

〉T
.

The pseudo potential function (10.103) can now be approximated by assembling
all virtual element contributions

�(U, h) = nv

A
v=1

[�c(Uπ , hπ )|v + �stab(Uh − Uπ , hπ )|v] . (10.105)

More details related to the determination of the projection Uπ for the displacement
field and the computation of the history variables hπ as well as the computations
of the consistency term and the energy stabilization can be found in Sects. 10.3.4
and 8.1.

10.4.3 Numerical Ductile Fracture Simulations

The performance of the proposed virtual element formulation for ductile fracture
is demonstrated by means of two representative numerical examples. The results
are compered with numerical simulations employing the finite element method. The
material parameters used in this section are the same for both examples and provided
in Table10.3.

To illustrate the capability and the flexible choice of the number of nodes within
a virtual element, various animals-shaped Voronoi cells (bird, horse, snake, frog,
koala, fish, kangaroo,…) are employed in the undamaged as well as the damaged
zones (i.e. an area of interest) for the virtual element formulation in the following
examples.

The single-edge notched shear test is defined by a square plate with a horizontal
notch placed at the middle height from the left outer surface to the center of the
specimen. The geometrical setup and the loading conditions of the specimen are
depicted in Fig. 10.32. The size of the square specimen is chosen to be L = 0.5 mm.
The bottom edge of the plate is fixed and an increasing shear loading, by prescribing
the horizontal displacements, is applied at the top edge until the plate is fully broken.

The specimen is discretized with different virtual elements including animal
shaped Voronoi cells, see Fig. 10.32 (right) and finite elements (FEM), see Fig. 10.32
(left). A mesh refinement in the expected fracture zone is applied, it is based on the
ratio r = l/he between the mesh size he and the fracture length scale l, as sketched
in Fig. 10.32.

Virtual elements with a Voronoi mesh are denoted by VE-VO; virtual elements
with a mesh consisting of 6 noded triangles are described by VE-T2, representing a
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Table 10.3 Material parameters used in the numerical examples

Name Symbol Value Unit

Young’s modulus E 206.9 GPa

Poisson’s ratio ν 0.29 –

hardening parameter H 0.13 GPa

initial yield stress Y0 0.45 GPa

infinite yield stress Y∞ 0.45/1.165 GPa

saturation parameter δ 16.93 –

critical fracture energy ψc 0.025/2.0 GPa

plastic viscosity ηp 10−8 GPa.s

fracture viscosity η f 10−8 GPa.s

fracture length scale l 0.008/0.02 mm

fracture parameter ζ 8.0/1.0 –

Fig. 10.32 Single-edge notched shear test—Geometry and boundary conditions along with the
VEM Voronoi mesh and the triangular finite element mesh

first order virtual element.6 Triangular finite elements with linear ansatz are denoted
by FE-T1 while finite elements with a quadratic ansatz are described by FE-T2.
These different discretizations are employed to compare virtual and finite elements
and to test the robustness of the virtual element formulation.

The evolution of the crack phase field d in comparison with the evolution of the
equivalent plastic strain α is depicted in Fig. 10.33 for three different deformation
stages up to final rupture. The numerical simulation was performed by using the vir-
tual element formulation with various animals-shaped Voronoi cells, for the fracture
length scale l = 0.008 mm and the length/mesh ratio r = 4. The crack phase-field
initiates at the notch-tip, where the maximum equivalent plastic strain α is concen-
trated. Thereafter, the crack propagates horizontally until separation.

6 In this case T2 implies that the used trianglemesh is the same as for the second order finite element.
But VE-T2 does not mean a second order virtual element with quadratic ansatz. VE-T2 is a linear
element with just 6 nodes.
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Fig. 10.33 Single-edge notched shear test—Contour plots of the fracture phase-field d in (a)–(c)
and the equivalent plastic strain α in (e)–(g) for three different deformation states up to final rupture

Fig. 10.34 Single-edge notched shear test—a Load–displacement curves, b comparison between
the total number of iterations in each time step required to achieve convergence for different dis-
cretization. The fracture length scale is set to l = 4he = 0.008 mm

Load-displacement curves of the overall structural response are plotted for the
different finite and virtual elements in Fig. 10.34a. The virtual element results are in
a good agreement with the reference simulations using finite elements. Table10.4
compares the different finite and virtual element discretization, related to the F-
ū curves in Fig. 10.34a, with respect to robustness and efficiency. Figure10.34b
illustrates the convergence properties for the different element formulations plotted
in Fig. 10.34a at the final deformation state ū = 0.0048 mm. We observe that virtual
elements require fewer steps and less iterations for final convergence, even when
compared with finite element method of higher order. Thus within this application
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Table 10.4 A comparison between different FEM and VEM discretizations, related to F-U curves
in Fig. 10.34a

VE-VO VE-T2 FE-T2 FE-T1

Number of elements 12369 11109 11109 11109

Number of nodes 24744 22291 22290 5591

No. of equations 74195 66826 66826 16749

Number of steps 280 234 305 232

Total number of iterations 2372 1504 2610 1599

Average iterations/step 6.1134 5.76245 6.97861 6.07985

Fig. 10.35 Axial stretch of a bar—aGeometry and boundary conditions, b triangular element mesh
and c Voronoi mesh with non-convex elements

the virtual element scheme is more robust than the finite element method, however,
this comes with extra computational costs, due to the energy stabilization.

Axial stretch of a bar is discussed next. It is concerned with analyzing the ductile
failure behaviour of a bar due to a prescribed displacement ū in axial direction at
the right side. Experimental observation shows that necking takes place before final
ductile rupture. The localized plastic strains in the necking area and the subsequent
ductile failure response will be used to assess the robustness of the virtual element
formulation.

The geometrical setup and the boundary conditions of the bar with height
H = 2 mm and length L = 10 mm are illustrated in Fig. 10.35a. A geometrical
imperfection is introduced in the central zone to trigger localization and necking in
the center of the bar. For that, the net cross section of the specimen is reduced by
choosing the height at the center to be Hc = 0.99 H . A Dirichlet boundary condition
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Fig. 10.36 Axial stretch of a bar—Contour plots of the equivalent plastic strain α in (a)–(d) and
the fracture phase-field d in (g)–(j) for four different deformation states up to final rupture

ū = 0 is introduced at the left edge of the bar. A horizontal displacement is applied
at the right edge which has the magnitude of 20% of the bar length e.g. ū = 0.2L .
The mesh is refined in the expected fracture zone for all virtual and finite element
discretizations, see Fig. 10.35b, c.

Figure10.36 depicts the contour plots of the equivalent plastic strain α and the
fracture phase field d which stem from the simulationwith the virtual elementmethod
for a fracture length scale l = 0.02 mm and different deformation stages up to final
failure. Various animal-shaped Voronoi cells were considered in the discretization.
We observe large plastic deformations in the necking zone with a concentration of
hardening in Fig. 10.36b, c at the specimen center. Severe necking initiates the crack
at the center zone as demonstrated in Fig. 10.36i. Thereafter, the crack phase-field
propagates outward following the equivalent plastic strain path until complete failure
as shown in Fig. 10.36j.

Load-displacement curves are displayed in Fig. 10.37 for different element types
of the virtual and finite element formulation. All simulations show similar behaviour
before crack initiation as the results are indistinguishable up to ū = 0.7 mm. There-
after, during the necking process, the curves of virtual and finite elements almost
coincide, except the FE-T1 solution which exhibits a stiffer response. The latter is
related to the well known locking of linear finite elements in applications regarding
J2-plasticity. The capability of the virtual element with linear ansatz to compute
accurate results—even without special treatment of the plastic incompressibility—is
a clear advantage. Here, the linear virtual element is comparable to using finite ele-
ments of higher order, even if a mild locking occurs at very large strains starting at a
displacement of ū = 1.2 mm which is associated with a strain of 12%. It is possible
to avoid locking by using an element formulation as discussed in Sect. 6.3.3.
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Fig. 10.37 Axial stretch of a bar—Load–displacement curves for different VEM and FEM dis-
cretization. The fracture length scale is set to l = 4he = 0.02 mm

10.5 Adaptive VEM for Phase-Field Fracture

In the previous sections of this chapter, we demonstrated the efficiency of the virtual
element method for different fracture processes. Now, a robust and efficient adaptive
virtual element method is proposed which is based on the phase-field formulation
of fracture, see Sect. 10.3. Since a fine mesh is only needed at the fracture zone in
order to reproduce the physical behaviour correctly a mesh adaptivity reduces the
computation cost remarkably. The advantage of the virtual element method is its
flexibility to have as many nodes along an element edge, still fulfilling the patch test,
and thus meshes can be generated that include hanging-nodes at edges. Such nodes
can easily be included and do not destroy the convergence behaviour of the virtual
element approximation.

10.5.1 Governing Equations

The phase field formulation for brittle materials is here extended to finite elastic
strains for elastic solids in two dimensions (	 ∈ R2). The fracture response of the
solid at material points X and time t is described by the displacement field u(X, t)
and the crack phase-field d(X, t) with ḋ ≥ 0. Hereby, d(X, t) = 0 and d(X, t) = 1
depict the unbroken and fully broken state of the material, respectively, see also
Sect. 10.3.2. The deformation gradient F is defined with the displacement gradient
∇u as, see (2.2),

F = I + ∇u. (10.106)
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For the phase-field problem, the sharp-crack surface topology � → �l is regularized
by the crack surface functional, as in the geometrically linear case,

�l(d) =
∫

	

γl(d,∇d) d	 with γl(d,∇d) = d2

2l
+ l

2
|∇d|2 (10.107)

based on the crack surface density function γl per unit volume of the solid and
the fracture length scale parameter l that governs the regularization. Hence, the
combination of elasticity with the first-order gradient damage modeling focuses on
the set constitutive state variables

C = {F, d,∇d}. (10.108)

The constitutive work density functionW is assumed to depend on these constitutive
state variables C. It consists of the sum

W (C) = Wbulk(F, d) + Wfrac(d,∇d) (10.109)

of a degrading elastic bulk energyWbulk and a contribution due to fractureWfrac,which
contains the accumulated dissipative energy. The hyper-elastic bulk contribution in
Eq. (10.109) is assumed to be a non-linear function, given as

Wbulk(F, d) = g(d) (ψiso(F) + ψvol(JF+)) + ψvol(JF−) (10.110)

with the isochoric ψiso(F) and the volumetric part ψvol(JF )

ψiso(F) = μ

2

(
J

− 2
3

F tr(FFT) − 3
)

(10.111)

ψvol(JF ) = κ

4
(JF − 1 − 2 log(JF )) (10.112)

where JF± is given by JF± = 〈JF 〉± = (JF ± |JF |)/2 and 〈�〉± is the Macaulay
bracket. The constitutive parameters κ and μ represent the material bulk and shear
modulus, respectively, and JF = det(F) is the determinant of deformation gradient
F. The function g(d) = (1 − d)2 models the degradation of the stored elastic energy
of the solid due to fracture and it degrades the positive volumetric part and full shear
part. The fracture contribution in (10.109) is defined as

Wfrac(d,∇d) = Gc γl(d,∇d) (10.113)

where, Gc > 0 is the Griffith’s critical energy release rate.
The regularized crack surface functional evolution (10.107) can be driven by the

constitutive functions as outlined in Aldakheel et al. (2018a), postulating a global
evolution equation of the regularized crack surface as
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d

dt
�l(d) = 1

l

∫
	

[ (1 − d)H − ηḋ ] ḋ dV ≥ 0 , (10.114)

where η ≥ 0 is a material parameter that characterizes the artificial/numerical vis-
cosity of the crack propagation. Various criteria can be chosen, see Aldakheel et al.
(2018b, 2019, 2021a). In this case the crack driving force was selected to be either
only the volumetric partψvol(JF+) or the sum of volumetric and isochoric part which
leads to the introduction of

H = max
s∈[0,t] D(x, s) ≥ 0 with D = ψvol(JF+) + ψiso(F) (10.115)

as a local history variable that accounts for the irreversibility of the phase-field
evolution by filtering out a maximum value of what is known as the crack driving
state function D. Then (10.114) provides the local equation for the evolution of the
crack phase-field in the domain 	 along with its homogeneous Neumann boundary
condition ∇d · n = 0 on � as

(d − l2�d ) + ηḋ + (d − 1)H = 0. (10.116)

Here, n represents the outward normal on �. Finally, the fracture pseudo potential
can be defined as

W̃frac(d,∇d) = dḋη − g(d)H + Gcγl(d,∇d) (10.117)

which leads to specific potential

W (C) = Wbulk(F, d) + W̃frac(d,∇d). (10.118)

This formulation is very efficient when using automatic differentiation, like in the
software tool AceGen, see Korelc and Wriggers (2016).

10.5.2 Mesh Refinement with Virtual Elements

For the construction of a standard loworder virtual elementmethodwhich can be used
in phase field approaches, we follow the projection scheme introduced in Sect. 10.3.4.
The resulting ansatz functions are then used in the same manner for large strains as
outlined in Sect. 10.3 related to phase-field ductile fracture, however here restricted
to pure elastic deformations.

In this section, the phase fieldmethod is used to predict the crack growth direction.
For the accuracy of the phase field solution, the expected damage zone is locally
refined by mean of an adaptive refinement strategy. Here different error measures
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Fig. 10.38 Different refinement criteria that increase locally before the onset of crack growth.
Phase field variable d in (a) and positive strain energy ψ+ in (b)

or error indicators can be used, for an overview see e.g. Ramm et al. (2003). Two
different error indicators are depicted in Fig. 10.38. The first computes simply the
magnitude of the phase field d, see Fig. 10.38a, while the second error indicator uses
themagnitude of the positive part of the elastic strain energyψ+ that contributes to the
crack opening, see Fig. 10.38b. Note that the error indicator using ψ+ concentrates
verymuch around the crack tipwith a very steep gradient. This is due to the singularity
of the solution at this point. Amesh refinement scheme that is based on such localized
measure will lead to a very small area of mesh refinement around the tip. Due to that
the error indicator using just the phase field solution itself was selected. on one hand
it results in a larger area of mesh refinement and on the other hand it is very easy to
compute since d is a primary variable of the solution. Thus the criterion for mesh
refinement is provided by

d ≥ dc (10.119)

where dc is a given threshold. Depending on the considered problem, the threshold
value can be chosen between 0 < dc < 1. Each element that has at least one node K
with phase-field value dK ≥ dc, will be selected for the refinement.

A simple refining strategy is based on a refinement indicator function f (v).With a
loop over all virtual elements 	v it provides a check whether the phase field variable
dK is beyond the threshold in (10.119). The indicator function is provided by

f (v) =
{
1 , for dK ≥ dc ∈ 	v

0 , for dK < dc ∈ 	v
(10.120)

If the indicator function f (v) = 1, refinement is triggered at element 	v . In that
case, a new node is inserted on the position of the element centroid

XC |v = 1

|	v|
∫

	e

Xd	 (10.121)
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Fig. 10.39 Mesh refinement algorithm

and additional new nodes are inserted at each element edge e of the virtual element
	v as

XC |e = (X|e + X|e+1)/2. (10.122)

This step is only performed for new insertions. The algorithm checks if an edge has
already been refined previously from a neighboring element. Thus new insertion are
avoided.

Figure10.39 illustrates themesh refinement algorithm. Startingwith a 2 × 2mesh
in Fig. 10.39a and refining around a refinement line plotted in Fig. 10.39a for different
refinement depths in Fig. 10.39b–e.

10.5.3 Adaptive Numerical Simulations for Phase-Field
Fracture

The performance of the proposed refinement strategy will be demonstrated using
two boundary value problems that exhibit a fracturing process.

On the computational side, a robust and efficient staggered scheme is employed
using the software tool AceFEM in the numerical implementation to compute the
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Table 10.5 Material parameters

Description Symbol Value Unit

Young’s modulus E 2.1 × 104 kN
m2

Poisson ratio ν 0.2

Fracture length scale l 0.015 mm

Griffith’s critical energy release rate Gc 10 kN
mm

Crack viscosity η 0.01 kNs
mm2

Fig. 10.40 Adaptive mesh refinements for crack phase-field evolution shown at different deforma-
tion stages until final failure

unknowns (displacement u and crack phase-fieldd).Within each load step a quadratic
convergence is achieved, due to the fact that all formulations are linearized in a
consistent manner using AceGen. The benchmark tests consider a square block
(L = H = 1 mm) with a horizontal notch placed at the middle height. The material
parameters used in the simulation are shown in Table10.5.

The single-edge notched tension test is a standard example in fracture mechan-
ics. The bottom is fully clamped. At the top a vertical displacement is described
with a rate ūX = 1mm/s until final failure at time t = 0.1 s which is depicted in
Fig. 10.40.

The results show a good match between a fine (27 × 27 four noded Q1 elements)
and adaptively refined mesh in Fig. 10.41b and c as well as a good match between
VEM and FEMwhen looking at the peak load in Fig. 10.42. In fact, the FE-Q1 result
exhibits some locking behaviour. For VE-Q1 and VE-Adaptive, the adaptive and fine
meshes produce almost the same results when the virtual element method is applied
as outlined in Fig. 10.42. This holds for a driving force which depends on purely on
the volumetric part, see Fig. 10.42b as well as for a driving force that consists of the
sum of the volumetric and isochoric part, see Fig. 10.42a.

The single-edge notched shear test is using the same block as before which
is fixed at the bottom. Horizontal displacements are prescribed at the top at a rate
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Fig. 10.41 Final state: a adaptive refined mesh using VEM; b regular fine mesh using VEM and c
regular fine mesh using FEM

Fig. 10.42 Load displacement curve for fine FE-Q1 and VE-Q1 meshes and VEM with adaptive
re-meshing

Fig. 10.43 Different deformation stages until final failure using the adaptive VEM scheme

ūX = 1mm/s until final failure at time t = 0.2 s. A sequence of deformed meshes
until failure is outlined in Fig. 10.43.

Unlike in the tension problem, the deformation behaviour and damage states of
the shear example are much more unpredictable. The solution path depends highly
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Fig. 10.44 Final state: a adaptive refined mesh; b fine mesh using VEM and c fine mesh using
FEM

Fig. 10.45 The load displacement curve of FEM, VEM on Q1 fine mesh and VEM with adaptive
re-meshing for Shear example

on the chosen split of the driving force and fracture criteria, see for details (Aldakheel
et al. 2018a; Miehe et al. 2010b).

The results show a good match between the fine and adaptively refined meshes
as illustrated in Fig. 10.44b and c. Furthermore, a good match is observed between
virtual and finite element predictions. Similar to the first example, FE-Q1 exhibits
locking behaviour which however could be avoided by a higher order ansatz.

The key point here is to illustrate the efficiency of the adaptive scheme for virtual
elements in comparison with the standard uniform mesh refinements. This results in
a remarkable reduction of the computation time, while producing similar results, as
depicted in the load-displacement curves in Fig. 10.45. Furthermore, the refinement
procedure is very simple, as shown above, due to the specific feature of the virtual
element method to allow additional nodes in a consistent matter within an element,

Prediction results are completely different when employing the two different frac-
ture driving forcesH , namely the one with only the positive volumetric part and the
one with the sum of deviatoric and volumetric part. This is clearly visible when com-
paring the results depicted in Fig. 10.45a and b. In both cases, the developed adaptive
meshing scheme yields excellent results in comparison with the uniformly refined
meshes using the virtual or finite element method.
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10.6 An Adaptive Scheme to Follow Crack Paths
Combining Phase Field and Cutting Methods

An efficient strategy to model crack propagation can be developed by using a combi-
nation of different methods. The main idea is to employ a combination of the phase
field methodology introduced in Sects. 10.3 and 10.4 with the cutting technology
proposed in Sect. 10.2 and the mesh refinement in Sect. 10.5. The advantages are:

• A crack path can be easily predicted using the phase field method.
• Due to adaptivity, the necessary very fine mesh, resolving the crack, will only be
present locally.

• The robust cutting technique replaces the refined mesh by a discrete crack.

In total, this combination of different methods allows a very efficient and robust
solution of crack growth in solids.

10.6.1 General Idea

Different approaches to model crack propagation have been discussed in the last
sections using the virtual element method. All methods have advantages and disad-
vantages. In the cutting scheme (Sect. 10.2) one has to compute the stress intensity
factors and the direction of the crack. This is based on the linear elastic fracture
mechanics and thus cannot be easily extended to nonlinear material behaviour. The
phase field method (Sects. 10.3–10.4) is more general, but needs the regularization
of the sharp crack discontinuities which results in higher computational effort.

Regularized modeling of Griffith-type brittle fracture in elastic solids relies on
very fine meshes which are required to accurately capture the crack path. However,
a global refinement strategy leads an inefficient and time-consuming analysis. If the
crack path is known a priori, a local mesh pre-refinement can be used to overcome the
aforementioned computational costs. However, the expected direction of the crack
growth can be predicted only for some cases in advance. In this regard, various
approaches were proposed to use an adaptive mesh refinement technique in which
no a prior knowledge for the direction of the crack path is required, see e.g. Heister
et al. (2015), Badnava et al. (2018), Nagaraja et al. (2019) andNoii et al. (2020).Most
of these investigations use the phase field parameter to guide the adaptive procedure
for refining only elements which are affected by the state of damage. On the other
hand, Klinsmann et al. (2015) suggested to use a state variable as an indicator for
the refinement procedure, which depends on the maximum positive strain energy,
see also Sect. 10.5.2 for details. Both quantities are good candidates to be applied
as an indicator for the refinement since at the crack tip they increase significantly.
A predictor-corrector mesh refinement procedure for phase field modeling of brittle
and ductile fracture can be found in Aldakheel et al. (2021b) using the phase field d
as an indicator variable.
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As has been shown in Sect. 10.2, treatment of crack propagation has some advan-
tages when using the cutting technique together with virtual element formulations.
They allow exploration of features such as the flexibility in dealing with complex
element shapes and an arbitrary number of nodes within an element which can be
changed or nodes can be added easily during the computation. Here the treatment
of crack propagation is based on the phase field method to model brittle fractures in
isotropic elastic solids, see Sect. 10.3. Furthermore, the adaptive refinement strategy
developed in Sect. 10.5.2 is employed to obtain an accurate solution for the crack
path. Finally, the crack is introduced geometrically as a real crack by using the robust
cutting techniques, described in Sect. 10.2. The advantages of the approach followed
in this section can be summarized as

• Refinement is performed without a priori acknowledge of the crack growth direc-
tion,

• hanging nodes are easily treated without any additional constraints and
• replacing the refined zone by a discrete crack leads to a decrease of computational
simulation time.

10.6.2 Modeling Crack Propagation Using VEM

The modeling technique for crack propagation is based on three ingredients: the
phase field method, adaptive mesh refinement and a scheme that is able to cut virtual
elements when a crack was detected by the phase field method. These ingredients
were discussed in the last sections. In detail, the phase field approach, discussed
in Sect. 10.3, is coupled with an adaptive mesh refinement technique proposed in
Sect. 10.5 in order to predict the direction of the crack growth. Furthermore a robust
splitting algorithms to construct the crack path during the propagation is presented
in Sect. 10.2.2.

10.6.3 Discontinuous Crack Propagation Using Phase Field

The same error indicator formesh refinements, as discussed in Sect. 10.5.2, is selected
for the refinement around the crack tip. Then, based on the numerical analysis with
the refined mesh, the direction of the crack propagation can be estimated. VEM has
the advantage that it is simple to use hanging nodes in the mesh refinement, without
defining any additional constraints like in the finite element method. Once crack
length and direction are known, the crack is introduced geometrically in the original,
unrefined mesh by using the cutting technique, described in Sect. 10.2. Thus, after
cutting, the mesh along the real crack is de-refined and does not contain the refined
elements anymore, which leads to a decrease of the computation time.
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Fig. 10.46 Geometry and discretization of the specimen using Voronoi mesh

Fig. 10.47 A schematic visualization of the refinement procedure

We will represent the general technique visually by considering the domain,
depicted in Fig. 10.46. The domain is discretized by a coarse VEM-Voronoi mesh.
This mesh is used for the first phase field solution which is depicted in Fig. 10.47a at
time t = tn at the load level λ = λn . Let us assume that the phase field parameter d
has reached a predefined threshold value at time tn . In the next step a refinement is
performed by subdividing every selected element into nT triangular elements 	T , as
depicted in Fig. 10.47b.7

7 Here a mesh refinement can be employed that uses elements of any shape, see e.g. Fig. 10.39, to
refine the mesh around the crack tip adaptively.
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As a minimum requirement for the subdivision, the element size he of the largest
triangular element 	T

e has to be less than half of the length scale parameter l. The
subdivision can be based on different algorithms. One possibility are the refinement
algorithms provided by Mathematica using the command ToElementMesh with
the option MeshRefinementFunction, which is very robust. The density of the
created mesh can be controlled by the user. After the refinement is finished, a gener-
alized staggered algorithms is applied, as proposed by Hudobivnik (2016), to recover
the equilibrium state of the last load step λ = λn , see Fig. 10.47c. Once equilibrium is
established, the load is increased until the threshold value d = dc outside the already
refined area has been reached. In that case, the refinement procedure (Fig. 10.47a–c
is repeated again for every new selected element. Beside the threshold value, the
onset of crack growth within already refined elements is another stopping criterion
for the load at λ = λn+1, as depicted in Fig. 10.47d.

The area where the crack has already propagated is defined as the cracked zone.
The goal now is to construct a discrete crack path from the cracked zone computed
with the phase field approach. To this end, all N nodes with the phase field parame-
ter d > 0.9 will be employed to find the new crack tip. The coordinates of the new
crack tip are obtained by minimizing the distance problem

X2,tip =
N∑
i=1

s2i −→ min (10.123)

where si denotes the distance between the corresponding node X i and its projection
on the vector b = XStart − X2,tip, see Fig. 10.48a. The node with the coordinates
being farthest from the previous crack tip X1,tip will be used as starting vector XStart.
The minimization problem (10.123) is solved by the local optimization algorithm
FindMinimum, provided by Mathematica. Once the coordinates of the new crack
tip X2,tip is known, the refined elements from Fig. 10.47c are coarsened to restore the
original coarse mesh from Fig. 10.47a. As shown in Fig. 10.49b and c, the new path
is introduced as a discrete crack on the coarse mesh Fig. 10.49a by using the cutting
algorithms, described in Sect. 10.2. Once again, we have to employ the staggered
scheme to recover the equilibrium of the last load step λ = λn+1 on the coarse mesh.
Further crackpropagation steps canbeperformedby repeating the procedure depicted
in Fig. 10.47.

Fig. 10.48 A schematic representation for finding the new crack path by solving the minimization
problem in Eq. (10.123)
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Fig. 10.49 The crack evolution for different load steps

10.6.4 Numerical Examples

Some representative examples illustrate the combination of the phase field method,
adaptivity and cutting techniques for the prediction of crack paths.As outlined before,
when the phase field parameter d has reached a predefined threshold value, the
expected damaged zone is locally refined to improve the accuracy of the solution, see
Sect. 10.6.3. Once the direction of the propagation is known, the refined cracked zone
is replaced by a discrete crack on the coarse mesh by using the cutting techniques,
described in Sect. 10.2.

Investigation of single-edge notched tension test provides the first benchmark
example. It considers a square plate with a horizontal notch placed in the middle of
the specimen from the left outer surface to the centre. The geometrical setup and
the loading conditions of the specimen are depicted in Fig. 10.50a. The size of the
square specimen is chosen to be L = 0.5 mm. We fixed the bottom edge of the plate
in Y -direction and applied a vertical displacement at the top edge until the plate is
fully broken.

This problem was already discussed in Miehe et al. (2010b) and thus, material
parameters used in the simulation are the same as in this reference work. The Lamé
constants are λ = 121.1538 kN/mm2 and μ = 80.7692 kN/mm2, the viscosity of
the crack propagation is η = 10−6 kNs/mm2 and the critical energy release rate
is selected as Gc = 2.7 × 10−3 kN/mm. All simulations are performed with the
length scale parameter l = 0.0375 mm. The domain is discretized by using 364
VEM-Voronoi elements with the mesh size he ≈ 2l. A zoom around the crack is
depicted in Fig. 10.50b where elements meet the threshold value in the initial state.

The effect of the element size on the overall structural response is illustrated in
Fig. 10.51a by the load-displacement curves in Y -direction for two different mesh
sizes with and element size of he ≈ L/3.75 and he ≈ L/5. The results are compared
with the load-displacement curve, obtained by a local mesh pre-refinement in the
expected fracture zone.The refinement procedure is basedon the threshold valuedc =
0.2. We observe that the result converges to the pre-refinement curve for decreasing
element size he.



308 10 Virtual Elements for Fracture Processes

Fig. 10.50 Single-edge notched tension test

Fig. 10.51 Single-edge notched tension test—Load-displacement curves for different parameters

Next, the influence of the threshold value dc is illustrated in Fig. 10.51b. The
values chosen in this analysis are dc = 0.1, dc = 0.2 and dc = 0.6. The refinement
is performed with an effective element size of he ≈ l/3.75. The best results are
achieved with the threshold values dc = 0.1 and dc = 0.2. The small threshold value
ensures that more elements, next to the crack tip, will be refined. Thus, the crack will
propagate in the a priori refined zone. It is possible to use a high threshold value, but
in such case the predictor-corrector scheme proposed by Heister et al. (2015) should
be applied.

Figure10.52 depicts the contour plots of the fracture phase field d and the crack
trajectory for different deformation stages until final failure. The crack phase field
initiates at the notch-tip until reaching the threshold value dc = 0.2, as sketched
in Fig. 10.50b. Elements that have reached the threshold value were chosen for
the refinement. Then, the staggered scheme, proposed by Hudobivnik (2016), is
employed to recover the equilibrium state of the last load step λ = λn−1, see
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Fig. 10.52 Single-edge notched tension test—Contour plots of the fracture phase field d and the
crack trajectory for different deformation stages until final failure

Sect. 10.6.3. By solving the minimization problem (10.123) the discrete crack path
is constructed from the cracked zone. As shown in Fig. 10.52, the new path will be
introduced as a discrete crack on the original coarse mesh by employing the cutting
algorithms, described in Sect. 10.2.

The single-edge notched shear test deals with a single edge cracked plate, fixed
at the bottom. The plate is subjected to a pure shear loading, applied at the top edge,
using a prescribed displacement ū X , see Fig. 10.53a. The specimen contains a crack,
which is located at the middle height extending from the left outer surface to the
centre of the specimen. The size of the square plate is chosen to be L = 0.5. The
material parameters are the same as in the tension test, see the previous example.

The single-edge notched shear test is a popular benchmark test to investigate the
behaviour of the phase fieldmethod. For example, Ambati et al. (2015b) used this test
to examine the influence of isotropic and the anisotropic formulations of the strain
energy function. Furthermore, Ambati et al. (2015b) proposed a hybrid formulation
that reduces the computational cost of the phase field method. In this example, the
anisotropic model introduced by Miehe et al. (2010a, b) will be applied.

The domain is initially discretized with 364 Voronoi type virtual elements. Local
adaptivity around the crack tip is here performed on the basis of a threshold value
dc = 0.35 of the phase field parameter. This leads to results which are compared
with results computed by a local mesh pre-refinement in the expected fracture zone.
The simulations were performed with a length scale parameter l = 0.015 mm, and
a mesh size of he ≈ l/3, respectively.

Figure10.53b depicts the load-displacement curves FX -ū X which were simulated
using the virtual element formulations with a Voronoi mesh. Since the functional
of the potential in Eq. (10.75) is non-convex with respect to the phase field d and
the displacement u, the curves depict an oscillating behaviour. This can be clearly
observed once the prescribed displacement passes the value ū X = 0.01 mm.
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Fig. 10.53 Single-edge notched shear test

Fig. 10.54 Single-edge notched shear test—Contour plots of the fracture phase field d and the
crack path evolution at different loading steps

Within the adaptive method one has to transport the internal variables after every
refinement and cutting step to the new mesh. Furthermore, equilibrium has to be
established for the newmesh. This leads to a small deviation of the calculated residual
(force FX ) from the solution with the pre-refined fixed mesh, see the blue dashed
line in Fig. 10.53b.

One of the goals when using the adaptive procedure is to capture correctly the
direction of the crack propagation together with the crack growth. The capability
of the proposed formulation to capture the direction of growth along a curved path
can be demonstrated with this example. Figure10.54 depicts the contour plots of
the fracture phase field d and the crack path evolution at different loading steps. To
increase the accuracy of the results, the elements adjacent to the threshold elements
were included in the refinement procedure.The coarsening techniquediscussed above
was applied for the adjacent elements where the refinement indicator was beyond
the dc due to the mesh cutting. Thus the refinement follows the position of the crack
tip during the loading procedure and yields an efficient method that only refines the
mesh where d > dc. In total, 12 refinement and cutting steps were needed to predict
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and to construct the crack path from the centre of the specimen to the bottom edge,
as depicted in Fig. 10.54. This path is in good agreement with solutions reported in
the literature.

In this section we observed that the coupling of the phase field approach with the
capability of the virtual element methodology to cut elements and to use a “hanging”
node refinement techniques yields an efficient and accurate discretization technique
for crack growth.
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Chapter 11
Virtual Element Formulation for Contact

Almost all engineering applications include structural parts that act on other elements
through an area of contact. In many cases the behaviour at the contact interface has
an influence on the performance of machines, looking for example at friction and
wear, or on production processes like metal forming. Therefore it is necessary to
capture these effects in predictive numerical simulations during the design. Thus,
starting with the seminal work of Coulomb (1785) on frictional contact and the work
of Hertz (1882) and Mindlin (1949) on the analytical solution of contact, scientists
have developed numerous constitutive relations and analytical approaches for contact
problems, see e.g. Barber (2018).

In solid mechanics the finite element method (FEM) is mainly employed for
numerical simulations of contact problems. It has a history of about 50 years. Dif-
ferent approaches and discretization techniques where developed in this period by
many scientists. An overview can be found in the textbooks of Laursen (2002) and
Wriggers (2006).

Generally, contact falls in the category of unilateral problems, meaning that no
penetration can take place and thus the deformation is restricted. The related math-
ematical formulations have to be treated as constraint optimization problems since
the contact area is a priori unknown. Within this methodology one has to enforce
contact constraints. This means that the surfaces in contact have to be coupled and
contact tractions need to be transmitted at the interface.

In this chapter several formulations for the treatment of contact problems will be
developed in the light of the virtual element method and some specific features of
VEM will be explored that lead to simplification and enhancement of discretization
schemes for contact. The schemes related to the virtual element method are based on
the treatments in Wriggers et al. (2016), Wriggers and Rust (2019), Aldakheel et al.
(2020) and Cihan et al. (2022).
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11.1 Introduction

Many different approaches were developed over the last five decades to formulate
contact constraints for numerical simulation methods. In the finite element approach
discretizations schemes relied on so called node-to-node contact, node-to-segment
contact and segment-to-segment contact, see Fig. 11.1 which describe different pos-
sibilities to discretize contact constraints:

• Node-to-node contact. The first papers on contact discretizations were for prob-
lems with small elastic strains and deformations. Thus a contact formulation was
possible that introduced a pair of nodes at two contacting bodies which during
deformation could come in contact, see e.g. Wilson and Parsons (1970), Chan and
Tuba (1971) and Hughes et al. (1976).

• Node-to-segment contact. In order to discretize contact constraints for finite
deformations a node-to-segment contact was developed which allows large sliding
over several elements, see e.g. Hallquist (1984), Wriggers and Simo (1985) and
Hallquist et al. (1985). These formulations were enhanced by smooth interpola-
tions of contact surfaces that introduce an increased continuity, e.g. C1-continuity,
at the contacting surfaces, see e.g. Pietrzak and Curnier (1997), Padmanabhan
and Laursen (2001), Wriggers et al. (2001) and Krstulovic-Opara et al. (2002).
C1-continuous methods perform better during the solution of the contact problem,
especially for sliding, but do not increase the convergence rate that still is related
to the underlying finite element mesh.

• Segment-to-segment contact. Based on the early work by Simo et al. (1985)
segment-to-segment discretization schemes were developed for two-and three-
dimensional contact problems. These are now called mortar methods, see Bel-
gacem et al. (1997), who coined the name. Mortar methods have been favourised
for the discretization of contact constraints and can be found in e.g. Wohlmuth
(2000),McDevitt and Laursen (2000),Wohlmuth andKrause (2004), Puso (2004),
Puso and Laursen (2004), Flemisch et al. (2005), Fischer and Wriggers (2005,
2006), Tur et al. (2009), Popp et al. (2010) and Laursen et al. (2012). Mortar meth-
ods discretize the contact constraints in a weak sense and thus provide a stable
interpolation scheme for contact constraints.

• Higher order contact. Another approach to model contact is provided within the
isogeometric analysis (IGA), see Cottrell et al. (2009). Contact formulations using
IGA yield highly robust schemes but need considerable effort when implementing
these discretizations, see e.g. Temizer et al. (2011), De Lorenzis et al. (2011, 2012)

Fig. 11.1 Node-to-node, node-to-segment and segment-to-segment contact discretizations
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andTemizer et al. (2012).Collocationmethodsweredeveloped toovercome related
shortcomings, see e.g. De Lorenzis et al. (2015) and Kruse et al. (2015).

The virtual element method (VEM), described with its basic features in Chaps. 3
and 5, is a flexible polygonal method which allows arbitrary number of nodes at an
element, independent on the ansatz space. This feature is a key for a simple contact
formulation in which nodes are inserted at points that are necessary to enforce the
contact constraints correctly. In this way a node-to-node contact formulation can
be generated, even for non-matching meshes and large sliding situations. A rather
simple algorithm transforms the contacting VEMmeshes in matching meshes where
non-matching interfaces occur. Note that this scheme can be employed for virtual ele-
ments with higher order ansatz spaces resulting in a higher order approximation.The
associated contact formulations for the virtual element method will be discussed in
the following sections.

11.2 Theoretical Background for Contact of Solids

The contacting continua are chosen in a first step as elastic bodies. The domains �δ

(δ = 1, 2) of the contacting bodies are bounded by �δ in the initial configuration. In
addition to the balance of momentum, see (2.19) and the Dirichlet, see (2.20), and
Neumann boundary conditions, see (2.21), constraint conditions have to be defined
within the contact interface �c in the current configuration.

11.2.1 Local Contact Kinematics

All contact conditions are derived for the case of finite deformations to have the
most general description. Simplifications for small deformations are introducedwhen
necessary.

To set up local contact conditions we describe the surface of the bodies by con-
vective coordinates and define the surface of the contacting body, �1, as master or
reference surface. The surface of the other body is called slave surface.1 Figure11.2
shows the parameterization of the contact surface. The coordinates of the current
configuration xδ = ϕδ(Xδ) are written for body �δ (δ = 1, 2) in terms of the dis-
placements xδ = Xδ + uδ where the coordinates Xδ are related to the reference
configuration and uδ is the displacement field. The normal vector n1 is associated
with the master surface which is located within the possible contact surface ϕ1(�1).

1 This choice is arbitrary and completely interchangeable since in the final solution of the contact
problem all geometrical quantities of both surfaces (e.g., the normal and tangent vectors) coincide.
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Fig. 11.2 Definition of the gap for finite deformations

Normal Contact. Assuming that the contact boundary describes, at least locally,
a convex region we can relate to every point x2 on ϕ2(�2) a point x̄1 = x1(ξ̄) on
ϕ1(�1) via the minimal distance problem, see Fig. 11.2,

‖x2 − x̄1‖ = min
x1⊆ϕ1(�1)

‖x2 − x1(ξ)‖ , (11.1)

where ξ = (ξ 1 , ξ 2) are the convective coordinates that parameterize the boundary�1.
The minimization process yields the—generally nonlinear—conditions (α ∈ {1, 2})

[
x2 − x1(ξ̄)

] · ā1α = 0 (11.2)

from which ξ̄ and the associated normal n̄1 can be obtained.2 The bar denotes the
solution point for the minimum distance problem. The normal vector n̄1 can either
be defined by

n̄1 = x2 − x1(ξ̄)

‖x2 − x1(ξ̄)‖ or n̄1 = ā11 × ā12
‖ā11 × ā12‖

which is obvious from Fig. 11.2. However for computational purposes the second
definition has the advantage to bemore stable since for a vanishing gap the nominator
and denominator in the first definition approach zero.

Once the point x̄1 is known, we can write the geometrical constraint inequality
which prevents penetration of one body into the other

2 The normal and the coordinate ξ̄ change when a point x2 is sliding along the surface ϕ1(�1
c ). This

has to be taken into account for finite deformations when computing residuals and tangent matrices
of the dicretization scheme.
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gN = (x2 − x̄1) · n̄1 ≥ 0 (11.3)

where gN is the gap at the minimum distance point
For small deformations the projection (11.1) can be evaluated at the initial con-

figuration and the normal vector in the deformed state n̄1 can be expressed by the
normal vector in the undeformed state: N̄

1 = n̄1 evaluated at the a fixed projection
point ξ̄ . Furthermore, relations xδ = Xδ + uδ can be inserted in (11.3) which yields

gN = (u2 − ū1) · N̄1 + gNo ≥ 0 (11.4)

with the initial gap gNo = (X2 − X̄
1
) · N̄1

. Thus, once the projection is computed
using (11.2) for the coordinates in the initial configuration, the constraint inequality
can be expressed in terms of the displacements for a fixed normal N̄

1
.

Tangential Contact. In case of frictional sliding it is necessary to compute the
relative tangential displacement between the two contacting solids at the contact
interface. Starting from the orthogonality condition (11.2) time differentiation yields
for gN = 0 the change of the projection point ξ̄ in time due to the relative velocities
v2 and v̄1 at that point, see e.g. Wriggers (2006) and De Lorenzis et al. (2017),

˙̄ξβ = āαβ (v2 − v̄1) · ā1α (11.5)

where āαβ is the contravariant metric tensor of the contact surface ϕ1(�1
c ) at the

projection point.This tensor is related to the covariant metric tensor āαβ = ā1α · ā1β
by āαβ = (āαβ)−1.

Based on this preliminary definition it is possible to distinguish the stick and slip
case which can occur at the contact interface.

• Stick case. During stick there is no relative tangential motion at the contact inter-
face and hence the change of the convective coordinate of a projection point is
zero since both velocities v2 and v̄1 are the same. Thus the stick condition can be
simply stated as

ξ̇ β = 0 . (11.6)

• Slip case. Slip describes the relative motion of the two contacting bodies within
the contact interface and the projection point changes with time, see (11.5). The
tangential relative displacement, needed to compute the sliding path of point x2

on the contact surface ϕ1(�1
c ) can be defined by the increment

dgT = ā1α dξ
α = x̄1,α dξ

α = x̄1,α
˙̄ξα dt (11.7)

With the incremental path length dgT = ‖dgT ‖ the complete sliding path of a
point x2 in a given time interval (t0 , t) can be determined by
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gT =
t∫

t0

‖x̄1,α ˙̄ξα‖ dτ (11.8)

Note that ˙̄ξα is already given in (11.5) in terms of the velocities v2 = ẋ2 and
v̄1 = ˙̄x1. When inserting this expression in (11.8) it follows for the term in the
norm x̄1,α āαβ (v2 − v̄1) · ā1β = ā1α āαβ (v2 − v̄1) · ā1β which can be rewritten as

x̄1,α
˙̄ξα = PT (v2 − v̄1)

with the projector onto the tangent plane: PT = āαβ ā1α ⊗ ā1β . Thus (11.8) can also
be expressed by

gT =
t∫

t0

‖PT (v2 − v̄1)‖ dτ (11.9)

which states that the norm of the relative tangential velocity at the projection point
ξ̄ in the contact interface has to be integrated to obtain the sliding path.
The tangential relative velocity follows from (11.7)

ġT = ˙̄ξα x̄1,α = ˙̄ξα ā1α (11.10)

which yields with the identities above the equivalent form ġT = v2 − v̄1.
For small deformation (11.9) can be used without changes, only the projection
point has to be computed with respect to the initial configuration.

11.2.2 Constitutive Relations for Contact

Many constitutive equations exist at the contact interface. For normal contact these
span the arch from non-smooth unilateral conditions via micromechanically moti-
vated equations to approximate interface laws that are introduced for algorithmic
purposes, see e.g. Kikuchi and Oden (1988) and Wriggers (2006). Here we will
restrict ourselves to non-smooth contact and associated regularization methods.

For the tangential contact the number of constitutive relations is even broader due
to many possible material pairings in the contact area. Non-smooth and regularized
formulations are available to describe frictional behaviour as well as constitutive
relations that derive from micromechanical observations. Lately, multi-scale and
homogenization approaches were pursued in numerical schemes, see e.g. Bandeira
et al. (2004), Temizer andWriggers (2008),Wriggers and Reinelt (2009) andWagner
et al. (2015) for different material pairings.

Normal contact.The inequality contact constraint (11.3) has to be complemented
by a condition related to the contact pressure since classically adhesion is not con-
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sidered at the contact interface. Hence only compression occurs at the contact area.
This yields an inequality for the normal traction

tN ≤ 0 . (11.11)

Equations (11.3) and (11.11) describe the following states:

• contact: tN ≤ 0 and gN = 0 or
• gap: gN ≥ 0 and tN = 0.

Note, that the relation tN gN = 0 is fulfilled for both states. This leads to the so called
Karush–Kuhn–Tucker conditions3

gN ≥ 0 , tN ≤ 0 and tN gN = 0 (11.12)

that are the basis for the unilateral contact formulation. The contact case gN = 0
can be incorporated in the potential of a contact problem by a Lagrangian multiplier.
Other possibilities will be discussed in Sect. 11.2.3.

Tangential contact. In case of tangential contact one has to distinguish between
stick and slip. Stick is classically modelled by the constraint provided in (11.6). This
means that the projection ξ̄ does not change in time and hence the positions of the
contacting points x2 and x̄1 assume the same location at the contact interface leading
to the alternative constraint x2 − x̄1 = 0

˙̄ξ = 0 ⇐⇒ x2 − x̄1 = 0 (11.13)

Such a constraint is added to the potential energy of a contact problem via Lagrange
multipliers. Additional formulations that relax the above constraint can be found in
Sect. 11.2.3.

Sliding occurs at the interface once the tangential force bypasses a limit. The law
of Coulomb is mostly applied. It introduces the limit ‖tT ‖ > μ |tN | for sliding where
the friction coefficient μ is a constitutive parameter which depends on the material
pairing. Based on this assumption the stick-slip behaviour at the contact interface
can be described

• stick:
‖tT ‖ ≤ μ |tN | and ˙̄ξ = 0 (11.14)

• slip:

‖tT ‖ > μ |tN | , ˙̄ξ 
= 0 and tT = μ |tN | ġT

‖ ġT ‖ . (11.15)

Alternatively, a regularized form of the stick-slip behaviour was firstly intro-
duced in Wriggers (1987). It is based on the analogy of the friction model with

3 These conditions are known from the theory of optimization. In classical contact mechanics they
denoted by the name Hertz–Signorini–Moreau conditions, see e.g. Franke et al. (2010).
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non-associated plasticity. In this case a small elastic tangential motion is allowed,
regularizing the stick. The tangential motion is then split into an stick (elastic) and
sliding (plastic) part which leads to the kinematical relation

ge
T = gT − gs

T (11.16)

where the superscript e stands for elastic motion (stick) and s for plastic sliding.
The simplest possible model for the elastic part of the tangential contact is an

isotropic linear elastic relation which yields

tT = cT ge
T (11.17)

where cT is the elastic constant.
The plastic, frictional tangential slip gs

T is governed by a constitutive evolution
equation, seeWriggers (1987) orGiannokopoulos (1989). This relation can be stated,
like (2.69) in elasto-plasticity, as

ġs
T = γ̇

∂ fs

∂ tT
. (11.18)

The flow rule fs in (11.18) is for Coulomb friction given by

fs(tT ) = ‖ tT ‖ − μ |tN | ≤ 0 (11.19)

which defines the plastic slip criterion function. Additionally we have the loading-
unloading conditions in Karush–Kuhn–Tucker form

γ̇ ≥ 0 , fs(tT ) ≤ 0 , γ̇ fs(tT ) = 0 . (11.20)

which determine the plastic parameter γ̇ .

11.2.3 Potential form for Solids in Contact

If W δ is the strain energy function of the hyperelastic solid �δ then the potential
form follows as

U =
2∑

δ=1

⎡

⎢
⎣
∫

�δ

W δ(C) dV −
∫

�δ

f̄
δ · uδ dV

∫

�δ
N

t̄δ · uδ dA

⎤

⎥
⎦ (11.21)
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where the right Cauchy Green tensor C is given in (2.5), and examples of the strain
energy function can be found in Sect. 2.2.2.1. The loading terms are related to the
body force f̄ and the tractions t̄ at the Neumann boundary �N .

Contact constraints, as described above, have now to be considered within the
potential U . For this we assume for the moment that the contact surface is known.4

Different methods can be used to enforce the contact constraints, among them are
Lagrange multiplier, penalty and barrier approaches and many variants, see e.g.
Wriggers (2006). They lead generally from a variational inequality to the minimiza-
tion problem

U + Ucon = 0 (11.22)

where the part Ucon , regarding the contact constraints will be formulated for the
penalty and augmented Lagrangian method.

• Penalty method. A common approach to solve contact problems relies on the
penalty method, see e.g. Kikuchi and Oden (1988), Introducing a penalty term
to prevent indentations at contact in normal direction and tangential movement
(stick) in tangential direction leads for a known contact surface �1

c to

U pen
con = 1

2

∫

�c

( εN g2
N + εT ‖ gT ‖2 ) d� (11.23)

with the penalty parameters εN and εT for normal and tangential directions, respec-
tively. In case that stick occurs, the contact constraint can also be formulated with
(11.13) as

U pen
con = 1

2

∫

�c

ε ‖ x2 − x̄1‖2 d� (11.24)

where ε is now a penalty parameter for the constraint, for details seeWriggers and
Haraldsson (2003) and Wriggers and Krstulovic-Opara (2004).
The penalty method is well suited to handle stick-slip contact based on the re-
gularization discussed in the previous section. Once the threshold for sliding in
(11.15) is exceeded the constitutive Eqs. (11.17) to (11.20) are valid. Due to their
dissipative nature they have no potential. As in plasticity, a pseudo-potential can
be formulated with (11.16) and (11.17)

U ps
con = 1

2

∫

�c

( εN g2
N + cT ‖ ge

T ‖2) d� . (11.25)

where now in the first variation the tangential slip gs
T has to be held constant.

4 When solving variational inequalities it is common to introduce active sets that describe the contact
surface. These active sets are defined within the solution algorithms.
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• Augmented Lagrangian method. In contact mechanics, the augmented
Lagrangianmultiplier approach can have twomeanings. The first one is related to a
combination of Lagrangemultiplier and penaltymethodswhere the Lagrangemul-
tipliers are no additional unknowns, but determined within an Uzawa algorithm,
see e.g. Simo and Laursen (1992), Laursen and Simo (1993) andWriggers (2006).
The downside of this simple method is the linear convergence of the algorithm
which does not lead to an efficient numerical scheme.
The second option of the augmented Lagrangian method was proposed in Alart
and Curnier (1991), see also Pietrzak and Curnier (1999) and Lengiewicz et al.
(2011), it is also known as primal-dual active set strategy. This methodology is
closely related to a semismooth Newton method, see e.g. Christensen et al. (1998)
and Popp et al. (2009). The following potential form can be constructed for the
augmented Lagrangian scheme

U AL
con =

∫

�c

[LN (gN , λN ) + LT (gT ,λT , λN )
]
d� (11.26)

where the Lagrangian function LN for the normal direction is defined as, see De
Lorenzis et al. (2017),

LN (gN , λN ) =
{(

λN + ε
2gN

)
gN , λ̂N ≤ 0 (contact)

− 1
2ε λ

2
N , λ̂N > 0 (separation)

(11.27)

and LT related to the tangential direction is given for contact ( λ̂N ≤ 0) as

LT (gT ,λT , λN ) =
{(

λT + ε
2 gT

) · gT , ‖ λ̂T ‖≤ k̂ (stick)

− 1
2ε (‖ λT ‖2 −2k̂ ‖ λ̂T ‖ +k̂2),‖ λ̂T ‖> k̂ (slip)

(11.28)

and for separation (λ̂N > 0) as

LT (gT ,λT , λN ) = − 1

2ε
‖ λT ‖2 (11.29)

with the penalty parameter ε > 0. Themultiplier λ̂N = λN + εgN in normal direc-
tion is used to distinguish between contact (λ̂N ≤ 0) and separation (λ̂N > 0)
states. The multiplier λ̂T = λT + εgT in tangent direction differentiates between
stick (‖ λ̂T ‖≤ k̂) and slip (‖ λ̂T ‖> k̂) states. The quantity k̂ denotes the radius

of the Coulomb friction cone: k̂ = max
(
0,−μλ̂N

)
.

The essential advantage of this formulation over the penalty method and classical
Lagrange multiplier approaches is that U AL

c is C1-differentiable and thus provides
a smooth transition from stick to slip and from contact to gap states, and vice versa.
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The contact problem (11.22) can nowbe formulated as an unconstrained saddle-point
problem.

11.3 Contact Discretization Based on Node Insertion

The virtual element method includes elements with arbitrary number of nodes. Thus
it allows to add new nodes to existing discretizations and elements which can be
employed to enforcement contact constraints at nodal level. Hence the simplest pos-
sible contact formulation, the node-to-node contact can be established.

The advantage over other methods is that the changes made to the element calcu-
lation are minimal. Adding a node does not change the element ansatz or integration
procedure of the virtual element method, it just adds an additional term in the sum
of the projection, see e.g. (3.43) for a linear ansatz. For higher order elements it only
amounts to adding one step to the integration loop, see e.g. (3.69). Only the vector
of the number of unknowns and with this the residual vector and the stiffness matrix
have to be extended by the additional degrees of freedom. This procedure affects
elements with inserted nodes but leaves the surrounding elements unchanged.

Figure11.3 depicts the general procedure for node insertionwhen virtual elements
are employed to discretize a contact problem.Node insertion is based on the following
algorithm:

1. Check nodalwise for contact using standard search algorithms.
2. For nodes at master or slave surfaces that come into contact a matching new

node will be introduced at the element boundary. Arrows in Fig. 11.3 indicate

Fig. 11.3 Non-matching
mesh and additional new
contact nodes within a VEM
discretization
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Fig. 11.4 Insertion for elements with quadratic interpolation at the edge

the insertion of new nodes at the master and slave surface where contact was
established.

The inserted nodes provide the basis to formulate the contact constraints using penalty
or augmented Lagrangian multiplier discretization. Ansatz functions for the gap as
well as for Lagrange multipliers have to be formulated for the discretization. These
interpolations can be based on the ansatz functions at the edges of the virtual ele-
ments, see e.g. (3.5) and (3.6) in Sect. 3.1.1.

Remark 11.1 In general the virtual element method leads to elements that have
the same degrees of freedom as finite elements at the boundary. Thus VEM fits in
the standard FEM framework and hence the virtual element method can easily be
combined with standard finite elements. This fact can be explored to create a node-
to-node contact approach for contact situations with non-matching meshes within a
finite element discretization using a contact layer of virtual elements. �

Remark 11.2 For virtual elements with quadratic ansatz functions the insertion
algorithms has to be amended in such away that it maintains a quadratic interpolation
within the contact segments defined by the insertion procedure. Figure11.4 depicts
this special case. Starting from the coordinates of the contacting virtual elements
“•” the projection yields the nodes denoted by “◦”. However a matching quadratic
interpolation cannot be constructed from these points. Hence it is necessary to insert
intermediate points “�”. In this way each segment has a matching quadratic inter-
polation. Note that this procedure has also to be used at the end of contact zones as
demonstrated in the left upper slave element �s . �
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11.4 Two-Dimensional Treatment of Contact Using VEM

The above described insertion of nodes at the contact interface can be performed in
an efficient way in case of two-dimensional problems. This is described in the next
paragraphs in detail. Due to the fact that contact is only formulated at the boundary
the ansatz uh in (3.4) can be used directly in this section.

11.4.1 Inserted Node and Gap in the Two-Dimensional Case

A new node can be obtained within the node insertion algorithm by a closest point
projection. Virtual elements have per definition straight edges thus a closed form
solution can be derived.5 Based on the notation introduced in Fig. 3.2 we define a
projection, see Fig. 11.5, that denotes the closest distance gs

n of a slave node s to
the master edge lm

e . It is related to the positions of the slave body �2
n at time tn and

for �2
n+1 at tn+1 while the master body does not change its position. This projection

defines the location of nodes Pn and Pn+1 to be inserted and the related gaps gs
n and

gS
n+1, respectively. The orthogonal projection is computed from (11.2) which yields

in case of a straight edge for both positions6

am
e · [xs − x̂m

e (ξ̄ )] = 0 (11.30)

with the tangent vector am
e = (xk+1 − xk) / lm

e and the length of the master edge
lm
e = ‖xk+1 − xk‖. Note that all vectors are in the current configuration and thus
depend on the deformations. The position of the edge is given by xk+1 and xk . Since
x̂m

e (ξ) = xk + (xk+1 − xk) ξ with ξ ∈ (0, 1) we obtain from (11.30)

ξ̄ = 1

lm
e

am
e · (xs − xk) (11.31)

which defines the position P of a new node (insertion) at the edge of the virtual
element given by x̂m

e (ξ̄ ) = xk + (xk+1 − xk) ξ̄ , see Fig. 11.5. The equations above
hold for both time instances tn and tn+1 and thus yield ξ̄n and ξ̄n+1 when the associated
coordinates are inserted.

5 Lately virtual elements with curved edges were constructed, see e.g. Beirão da Veiga et al. (2019)
and Wriggers et al. (2020). In this case the projection has to be based on an iterative procedure, see
Aldakheel et al. (2020).
6 In the following, all quantities that are related to nodal values are denoted by “bold roman” letters
while quantities that are functions are provided as “bold italic” letters. Thus the slave node xs

is in “bold roman”, while the coordinates describing the master surface x̂m
e (ξ) are in “italics”.

Furthermore the tangent ae is defined by two nodes and thus “bold roman”. The same is true for the
normal ne.
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Fig. 11.5 Kinematics for projection slave to master

Once the projection is known the gap between the projected node x̂m(ξ̄ ) and the
slave node gs can be computed

gs = [xs − x̂m
e (ξ̄ )] · ne = [xs − xk] · nm

e (11.32)

and used to check for contact. The vector nm
e is normal to the master surface. In

the two-dimensional case it follows from nm
e = am

e × e3 where e3 is a unit vector
perpendicular to the two-dimensional plane.

If the projection is extended to nodes of the master surface, being projected onto
the slave surface, then the local coordinate - here we use η as surface coordinate on
the slave surface—is given by

η̄ = 1

ls
as

e · (xk − xs) (11.33)

with the tangent vector as
e = (xs+1 − xs) / ls and the length of the slave segment

ls
e = ‖xs+1 − xs‖ at the interface of the virtual element of body �2. The projection
point leading to a new surface node of the virtual element is then defined by

x̂s
e(η̄) = (1 − η̄) xs + η̄ xs+1 . (11.34)
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11.4.2 Discretization of the Contact Interface in 2d

Normal gap. Once the contact segments are established and the projections of slave
nodes onto the master segments have created new nodes the gap function within a
segment c (also called contact element) can be formulated using the interpolation for
the displacements within the segment. Based on the definitions of nodal gaps gN I n+1

at time tn+1

gN I n+1 = [
xs

I n+1 − x̂m
I e(ξ̄n+1)

] · nm
en+1 (11.35)

at each side of the contact segment c an interpolation can be introduced where na

is the number of nodal pairs in the segment depending on the interpolation order.
For linear virtual elements (na = 2) the ansatz function NI is given by (3.5) and
for a quadratic virtual element (na = 3) by (3.6). This ansatz leads to a continuous
definition of the gap

gN c(η) =
na∑

I=1

MI (η) gN I n+1 . (11.36)

where η ∈ (0, 1) is a non-dimensional coordinate describing the gap function within
the contact segment, see Fig. 11.6. Note that the current coordinates of the nodal pair
associated with the contact segment c in (11.35) can be expressed by the coordinates
in the initial configuration X and the displacements u:

xs
I n+1 = Xs

I + us
I n+1 and x̂m

I e(ξ̄n+1) = Xm
I e + ûm

I e(ξ̄n+1) .

In case of small deformations the projection is based on the initial coordinates,
leading to

ξ̄ = 1

lm
e

Am
e · (Xs − Xk) (11.37)

which then is kept constant during the simulation as well as the tangent vector Am
e

and the normal vector Nm
e . Hence the nodal normal gap in (11.35) can be simplified

glin
I n+1 = [

us
I n+1 − ûm

I e(ξ̄n+1)
] · Nm

e + g0
I (11.38)

Fig. 11.6 Linear and quadratic interpolation at a contact segment
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with the initial gap g0
I =

[
Xs

I n+1 − X̂m
I e(ξ̄n+1)

]
· Nm

e . This leads to the interpolations

gN c(η) =
na∑

I=1

MI (η) (glin
I n+1 + g0

I ) . (11.39)

Tangential gap.Based on Eq. (11.10) for the relative tangential velocity it is possible
to approximate the change of the convective coordinate within a time increment
�t = tn+1 − tn by the difference of the projection of a point of the slave surface onto
the master surface: ¯̇ξ ≈ (ξ̄n+1 − ξ̄n) /�t , see Sect. 11.2.1. This yields the relative
tangential displacement, see Fig. 11.5,

�gT n+1 = (ξ̄n+1 − ξ̄n) am
e n+1 with �gT n+1 = gT n+1 − gT n (11.40)

when an implicit Euler integration is used.7 Note that the slip path can be computed
with these approximations as

gT n+1 = gT n +
tn+1∫

tn

‖ ˙̄ξ am
e n+1‖dτ = gT n + (ξ̄n+1 − ξ̄n)l

m
e n+1 (11.41)

where am
e n+1 is defined as a unit vector in the current configuration as well as ξ̄ , see

(11.31).
The projection leading to the insertion of a new node is performed at the end

of the previous converged state tn . The coordinates of the new node in the current
configuration are given by x̂m

n = (1 − ξ̄n) xm
k n + ξ̄n xm

k+1 n . The relative tangential dis-
placement is zero at the beginning of the new time increment (ξ̄n = 0) for the new
nodal pair (xs

I , x̂m
I ). This construction allows to compute the relative tangential gap

at node I as

ξ̄I n+1 = [
xs

I n+1 − x̂m
I n+1

] · am
e n+1

1

lm
e n+1

(11.42)

Note that the nodal pair inherits the history of previous tangential deformations
related to stick and slip. Hence for such pair the tangential traction tT I n is known as
well as the tangential motion gT I n . Based on these nodal values the interpolation of
the relative tangential motion

�gT c(η) =
na∑

I=1

MI (η) ξ̄I n+1 (11.43)

is obtained for the contact segment c.

7 Other integration rules—like the trapezoidal or Gauss rule—can be applied to integrate (11.10)
which results in a more complex formulation. Since small time steps (load increments) have to be
employed for many engineering problems the approximation in (11.40) is usually sufficient.
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Equation (11.5) can be employed for small deformations to compute the change
in the projection point ξ̄

¯̇ξ = (v2 − v̄1) · Am
e

1

lm
e n+1

(11.44)

where Am
e is the tangent vector to the edge of a virtual element in the initial confi-

guration. By approximating the velocities

v2 = u2
n+1 − u2

n

�t
and v̄1 = ū1

n+1 − ū1
n

�t

the slip increment within a time step �t is given by

�gT n+1 = (ξ̄n+1 − ξ̄n)l
m
e n+1 = (u2

n+1 − ū1
n+1) · Am

e − �uT n (11.45)

with the initial relative gap at time tn: �uT n = (u2
n − ū1

n) · Am
e .

Since the projection points ξ̄ define the boundary of the segment, see Fig. 11.3 in
Sect. 11.3, the discretization is given by

�gT c(η) =
na∑

I=1

MI (η) (�gT I − �uT I n) (11.46)

where the subscript n + 1 in (11.45) has been omitted for the slip increment�gT I =
(u2

I − ū1
I ) · Am

e and the initial gap increment �uT I n at the node I , see Fig. 11.6.

Discretization of the friction law in time. The constitutive modeling of frictional
phenomena at the contact interface leads to a local differential equation in time,
see Sect. 11.2.2 which will be solved for a given time interval 0 ≤ t ≤ T . A time
increment is denoted by �t = tn+1 − tn . The underlying stick-slip behaviour can be
solved by a classical return mapping algorithm, seeWriggers (1987, 2006), which is
well known from elasto-plasticity. The background for the algorithm is depicted in
Fig. 11.7 and described in Algorithm11.1. Here it is designed for a two-dimensional
setting, details for the associated Euler backward integration within a return mapping
scheme can be found in Wriggers (2006). The algorithm has to be performed at each
integration point used to evaluate the contribution of the contact segment c.

The algorithm starts from a configuration in which a known tangential traction tT n

is given.8 This state is givenby the relative slip at time tn and the deformation related to
the stick (elastic) part which yields the tangential traction tT n = cT ge

T n = cT (gT n −
gs

T n). According to Fig. 11.7 the trial tangential traction follows from t tr
T n+1 = tT n +

cT �gT n+1 where cT is the constitutive constant (spring) that describes the magnitude
of the relative stick motion. The associated Algorithm11.1 is given below. Note that

8 Here one could also start from a pure slip state related to the tangential slip gs
T n . This however

is not possible when using the node insertion since the new node is obtained based on the local
coordinate ξ̄ that includes also the relative tangential motion due to stick.
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Fig. 11.7 Integration of the stick-slip motion in time

all tractions can be expressed in terms of the normal and relative tangential gapwhich
underlines that the algorithm is displacement driven.

Algorithm 11.1: Algorithmic update of the frictional force and slip
Input: �gT n+1 ,�gNn+1 , gs

T n
Output: tT n+1 ,�gs

T n+1
t tr
T n+1 == tT n + cT �gT n+1

tNn+1 = εN gNn+1
if Stick: |t tr

T n+1| ≤ μ |tNn+1| then
gs

T n+1 = gs
T n

tT n+1 = t tr
T n+1

else if Slip:|t tr
T n+1| > μ |tNn+1| then

gs
T n+1 = gs

T n + 1
cT

[
t tr
T n+1 − μ|tNn+1| sign(t tr

T n+1)
]

= gT n + �gT n+1 − μ
cT

|tNn+1| sign(t tr
T n+1)

tT n+1 = μ|tNn+1| sign(t tr
T n+1)

For the formulation of the different contact states the elastic relative displacement
is needed. It follows from the equations in Algorithm11.1

stick: �ge
T n+1 = (gT n − gs

T n) + �gT n+1 ,

slip: �ge
T n+1 = μ

εN

cT
|gNn+1| sign(t tr

T n+1)
(11.47)
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where �gT n+1 is provided by (11.45) which is the only quantity that depends upon
the current displacements. Interestingly, in case of slip, the elastic part of the relative
tangential displacement increment depends only on the normal gap and thus will lead
to a non-symmetric tangent matrix.

11.4.3 Penalty Formulation

The penalty method is based in the general case of frictional contact on the potential
(11.25). In the two-dimensional case we split the potential into a part that yields the
discretization of a contact interface with nc segments for normal contact

U gap
N = 1

2

nc∑

c=1

∫

(lc)

εN g2
Nc dγ (11.48)

where the normal gap gN c is given by (11.39) for the linear and by (11.36) for the
nonlinear case. The length of a segment c is lc, see Fig. 11.6. This form describes a
path independent potential that in the end will generate a symmetric contribution to
the overall tangent matrix.

For the tangential contact one has to distinguish between stick and slip. For stick a
path independent potential can be defined while the slip case needs the construction
of a pseudo potential. The latter is based on the results provided in Algorithm11.1
for the slip case. Both forms are combined below

U st−sl
T =

⎧
⎪⎨

⎪⎩

1
2

∑nc
c=1

∫

(lc)

cT �g2
T c dγ, |tT | ≤ μ|tN | (stick)

∑nc
c=1

∫

(lc)

�gT c μεN |gNc| sign(t tr
T n+1) dγ, |tT | > μ|tN | (slip)

(11.49)

where the relative tangential motion is given in (11.46) for small deformations and
in (11.43) for finite deformations, respectively. In case of slip, the variation of U pen

T
has to be computed by holding the variables gN c and sign(t tr

T n+1) constant.
The potential U pen

Nc can now be evaluated for segment c as

U gap
Nc = 1

2

∫

(lc)

εN g2
N c dγ = lc εN

2

1∫

0

[
na∑

I=1

MI (η) gN I n+1

]2

dη . (11.50)

This potential holds for the nonlinear case. For a linear problem gI n+1 has to be
replaced by (glin

N I n+1 + g0
I ). An analytical integration using the linear and quadratic

ansatz (3.5) and (3.6) yields
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U gap
N =

{
lc εN
6 (g2

1 + g1g2 + g2
2) na = 2

lc εN
30 (2g2

1 − g1g2 + 2g2
2 + 2g1g3 + 2g2g3 + 8g2

3) na = 3
(11.51)

where the subscript n + 1 denoting the current time step has been omitted to simplify
notation. The number of nodes of the segment are na = 2 for the linear and na = 3
for the quadratic ansatz and the nodal values gI of the normal gap depend generally
in a nonlinear way on the displacements, see (11.36).

For the stick-slip case the contact constraints in (11.49) have to be evaluated. This
yields for the segment c in case of stick

U st
T c = 1

2

∫

(lc)

cT �g2
T c dγ = l2c cT

2

1∫

0

[
na∑

I=1

MI (η) ξ̄I n+1

]2

dη . (11.52)

for nonlinear case. For a linear problem ξ̄I n+1 has to be replaced by (�glin
T I n+1 −

�uT I n). An analytical integration yields the same result as (11.51), only gI has to
be exchanged by ξ̄I n+1 and εN by cT .

In case of slip the pseudo potential

U sl
T =

∫

(lc)

�gT c μεN |gNc| sign(t tr
T n+1) dγ

= κ

1∫

0

[
na∑

I=1

MI (η) ξ̄I n+1

][

|
na∑

I=1

MI (η) gN I n+1| sign(t tr
T I n+1)

]

dη

(11.53)

needs to be solved which yields (omitting the subscript n + 1 and the signum func-
tion)

U sl
T =

{
κ
6 [g1(2ξ̄1 + ξ̄2) + g2(ξ̄1 + 2ξ̄2)]
κ
30 [g1(4ξ̄1 − ξ̄2 + 2ξ̄3) + g2(−ξ̄1 + 4ξ̄2 + 2ξ̄3) + 2g3(ξ̄1 + ξ̄2 + 8ξ̄3)]

(11.54)
for na = 2, 3 with κ = μεN l2c .
Geometrical linear case. The residual and tangent matrix will be derived next for
the case of linear virtual elements using the ansatz functions in (3.5). Let us define the
vector of unknowns uNc = 〈u1

n1 u1
n2 u2

n1 u2
n2〉T in normal contact direction with u A

nI =
uA

I · N1
c and uT c = 〈u1

t1 u1
t2 u2

t1 u2
t2〉T in tangential direction at the contact interface

with u A
t I = uA

I n+1 · A1
c . Furthermore, we introduce the vector gN0 = 〈 g1 g2 〉T for the

initial normal gap and the vector�uT n = 〈�uT 1n �uT 2n〉T describing the initial gap
increment. The analytically integration is given in (11.51) for the contact segment
where gI = u2

nI − u1
nI for I = 1, na for the normal contact and �glin

T I = u2
t I − u1

t I
for I = 1, na for the stick case. The result can now be differentiated with respect to
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the unknowns uNc and uT c which yields the residuals for the contact segment for the
normal and tangential direction

RNc = ∂U ps
c

∂uNc
= lc εN

6

[
KL

c uNc + GL gN0
]

RT c = ∂U ps
c

∂uT c
= lc cT

6

[
KL

c uT c − GL �uT n
]

(11.55)

with the matrices

KL
c =

⎡

⎢⎢
⎣

2 1 −2 −1
1 2 −1 −2

−2 −1 2 1
−1 −2 1 2

⎤

⎥⎥
⎦ and GL =

⎡

⎢⎢
⎣

−2 −1
−1 −2
2 1
1 2

⎤

⎥⎥
⎦ . (11.56)

The derivation of the residuals with respect to the unknowns yields the tangent
matrices

KL
Nc = ∂Rc

∂uNc
= lc εN

6
KL

c and KL
T c = ∂Rc

∂uT c
= lc cT

6
KL

c . (11.57)

The same derivations can be performed for quadratic virtual elements. In this
case the ansatz functions (3.6) have to be employed to generated the matrix for-
mulations for a contact segment c. This yields with the unknown vectors uQ

Nc =
〈u1

n1 u1
n2 u1

n3 u2
n1 u2

n2 u2
n3〉T and uQ

T c = 〈u1
t1 u1

t2 u1
t3 u2

t1 u2
t2 u2

t3〉T and the initial normal
and tangential gaps gQ

N0 = 〈 g1 g2 g3 〉T and �uQ
T n = 〈�uT 1n �uT 2n �uT 3n〉T

RQ
Nc = ∂U ps

c

∂uQ
Nc

= lc εN

30

[
KQ

c uQ
Nc + GQ gQ

N0

]

RT c = ∂U ps
c

∂uQ
T c

= lc cT

30

[
KQ

c uQ
T c − GQ �uQ

T n

] (11.58)

with the matrices

KQ
c =

⎡

⎢⎢⎢
⎢⎢⎢
⎣

4 −1 2 −4 1 −2
−1 4 2 1 −4 −2
2 2 16 −2 −2 −16

−4 1 −2 4 −1 2
1 −4 −2 −1 4 2

−2 −2 −16 2 2 16

⎤

⎥⎥⎥
⎥⎥⎥
⎦

and GQ =

⎡

⎢⎢⎢
⎢⎢⎢
⎣

−4 1 −2
1 −4 −2

−2 −2 −16
4 −1 2

−1 4 2
2 2 16

⎤

⎥⎥⎥
⎥⎥⎥
⎦

. (11.59)

Again the derivation of the residuals with respect to the unknowns yields the tangent
matrices

KQ
Nc = lc εN

30
KQ

c and KQ
T c = lc cT

30
KQ

c . (11.60)
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In case of frictional contact with slip motions the results provided in (11.54) have
to be employed to derive the matrix form. For the sliding case we define the vector
of the nodal degrees of freedom by including the normal and tangential components

uSc = 〈uNc uT c〉T = 〈 u1
n1 u1

n2 u2
n1 u2

n2 u1
t1 u1

t2 u2
t1 u2

t2 〉T

for the linear ansatz. The residual RL
S follows now from the integrated form (11.54)

by differentiating with respect to vector uSc while keeping the normal components
constant that govern the sliding motion

RL
Sc = ∂U ps

c

∂uSc

∣∣∣∣
�gN I =const.

= κ

6

([
0 0
KL

S 0

] {
uNc

uT c

}
+
[

0
GL

]
gN0

)
(11.61)

whereGL andKL
S = KL

c can be found in (11.56). The differentiation of the residual
with respect to uSc leads to the tangent matrix that has the form

KL
Sc =

[
0 0
KL

S 0

]
. (11.62)

Note that the differentiation of the signum function in (11.53) is zero since the latter
is constant.

11.4.4 Augmented Lagrangian Multiplier Formulation

Within the augmented Lagrangian formulation, see (11.27) and (11.28) , the normal
and tangential gaps as well as the Lagrangian multiplier have to be approximated
along the contact interface. While the discretization of the normal gap gN is already
defined in (11.39) and the relative tangential motion can by found in (11.43) the
Lagrangian multipliers λN and λT need to be interpolated within a contact segment
c. Here we use the same functions (3.5) and (3.6) as for the displacement variables
leading to the ansatz

λN =
na∑

A=1

L A(η) λA (11.63)

To enforce the contact constraints in normal directionby an augmentedLagrangian
multiplier the following part, see (11.27), has to be added to the global functional
describing the deformation of the body:

• Normal contact. In this case the amended Lagrange multiplier λ̂N = λN + εN gN

fulfils λ̂N ≤ 0 and the contact contribution is given for all nc contact segments by
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U AL
N =

nc∑

c=1

∫

(lc)

(
λN + εN

2
gN

)
gN dγ

=
nc∑

c=1

lc

1∫

0

[
na∑

A=1

L A(η) λN A + εN

2

na∑

I=1

MI (η) gN I

]
na∑

I=1

MI (η) gN I dη

(11.64)
and for λ̂N > 0 by

U AL
N =

nc∑

c=1

∫

(lc)

− 1

2εN
λ2

N dγ = −
nc∑

c=1

lc

2εN

1∫

0

[
na∑

A=1

L A(η) λN A

]2

dη (11.65)

which depend on the nodal gaps gN I (displacements) and the nodal Lagrange
multiplier λN A (contact pressure). Note that the subscript n + 1 has been omitted
to simplify notation. For a linear problem gN I has to be replaced by (glin

I + g0
I ).

• Stick-slip. For tangential contact the potential form is given for contact, λ̂N ≤ 0,
and stick, |λ̂T | ≤ k̂, as

U AL
T =

nc∑

c=1

∫

(lc)

(
λT + εT

2
gT

)
gT dγ

=
nc∑

c=1

l2c

1∫

0

[
na∑

A=1

L A(η) λT A + εT lc

2

na∑

I=1

MI (η) ξ̄I

]
na∑

I=1

MI (η) ξ̄I dη

(11.66)
and for slip |λ̂T | > k̂

U AL
T =

nc∑

c=1

∫

(lc)

− 1

2εT
(|λT |2 − 2k̂|λ̂T | + k̂2) dγ

= −
nc∑

c=1

lc

2εT

1∫

0

[

|
na∑

A=1

L A(η) λT I |2 − 2k̂ |
na∑

A=1

L A(η) (λT I + εN lcξ̄I )| + k̂2

]

dη

(11.67)

with λ̂T = λT + εT gT . For separation, λ̂N > 0, the tangential contribution is

U AL
T =

nc∑

c=1

∫

(lc)

− 1

2εT
|λT |2 dγ = −

nc∑

c=1

lc

2εT

1∫

0

[
na∑

A=1

L A(η) λT A

]2

dη (11.68)
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with the penalty parameters εN > 0 , εT > 0. The quantity k̂ has to be formulated
such that for no contact, see (11.68), sliding is impossible. This leads to the relation

k̂ = max
(
0,−μλ̂N

)
. For a linear problem ξ̄I lc has to be replaced by (�glin

T I −
�uT I n), see (11.52).

The integration of the contact contributions within a segment c can again be
performed analytically. It yields the same expressions as derived in (11.51) and
(11.54). Thus a detailed description is omitted.

11.5 Three-Dimensional Treatment of Contact Using VEM

In the case of three-dimensional contact problems it is also possible to use node
insertion and to establish node-to-node contact discretizations as discussed in
Sect. 11.4. The related formulation is more complex as will be discussed below.
In the following all displacement fields are given by the projection (3.157) uπ =
N(3,1)

u (X, Y, Z)P(3,1)
u uv for three-dimensional virtual elements with linear ansatz.

11.5.1 Node Insertion for Contact of Three-Dimensional
Solids

When using virtual elements for the spatial discretization, the surfaces are plane.
A simple strategy for the computation of the contact projection is provided by a
subdivision of a possible contact surface into non overlapping triangles, see also
Sect. 3.2.3 where this approach was used for the integration over the surfaces of
three-dimensional virtual elements. One of the triangles in the contact interface is
depicted in Fig. 11.8. A linear triangular finite elements with the shape functions

Nα
1 = 1 − ξα − ηα Nα

2 = ξα Nα
3 = ηα, (11.69)

is used where ξα and ηα denote the local coordinates in the parametric space for
body �α .

The location of the projection of a point x2 = X2 + u2 at the surface of the
deformed body ϕ(�2) onto the surface of deformed body ϕ(�1) has now to be
determined which then allows to compute the gap gN in (11.3). This projection,
known as closest point projection, is based on (11.2)which leads for the configuration
shown in Fig. 11.8 to an additional set of equations to be solved for the unknown
local coordinates ξ 1 and η1

[

x2 −
3∑

I=1

N 1
I (ξ̄ 1, η̄1) x1I

]

· āα = 0 , (11.70)
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Fig. 11.8 Triangle in parametric space (left) and at contact interface in 3D Euclidian space (right)

with the nodal vectors x1I = X1
I + u1

I in the deformed configuration. The tangent
vectors āα are defined as

ā1 = x12 − x11 and ā2 = x13 − x11 . (11.71)

Equation (11.70) yields in case of a planar triangular surface the linear equation
system {

ξ̄ 1

η̄1

}
=
[
(ā1 · ā1) (ā1 · ā2)
(ā2 · ā1) (ā2 · ā2)

]−1 {
(x2 − x11) · ā1
(x2 − x11) · ā2

}
(11.72)

which can be solved directly for ξ̄ 1 and η̄1. Insertion of these points yields the gap gN

in (11.3): gN = (x2 − x̄1) · n̄1 which is the indicator for contact gN ≤ 0. The normal
vector n̄1 in Fig. 11.8 is given by

n̄1 = ā1 × ā2
‖ā1 × ā2‖ (11.73)

The projection point x̄1 in Fig. 11.8 is finally given by

x̄1 =
3∑

I=1

N 1
I (ξ̄ 1, η̄1) x1I (11.74)

where ξ̄ 1 and η̄1 follow from (11.72).
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Fig. 11.9 Possible contact pairs between two virtual elements

Remark 11.3 In the case of small deformations, the computation of the projection is
based on the initial configuration. Hence the tangent vectors are given byA1 = X1

2 −
X1

1 andA2 = X1
3 − X1

1 and the normal is defined as N̄1 = A1 × A2 / ‖A1 × A2‖. The
gap is then computed as gN = (x2 − x̄1) · N̄1. �

Once node insertion is performed for all possible contact nodes at the intersection
of two virtual elements �1 and �2 the gap can be evaluated for each matching nodal
pair at the contact interface, see Fig. 11.9. The set of contact pairs in one interface
includes

• nodes stemming from existing vertex nodes (black and red color in Fig. 11.9) and
• nodes related to edge-to-edge intersections of two bodies (blue color in Fig. 11.9).

For the node-to-face projection (like ī to i in Fig. 11.9), one can compute the projec-
tion with (11.72).

For an edge-to-edge intersection the projection of e.g. ȳ onto x̄ , see Fig. 11.9, is
computed via closest point projection of the two lines x1(ξ) = (1 − ξ) x1k+2 + ξ x1k+1
and x2(η) = (1 − η) x2i+2 + η x2i−1 that define the edges under the condition that
closest point has to be normal to themaster surface. The computation of theminimum
distance d = min ‖x2(η) − x1(ξ) − ζ n̄1‖ between the edge x2(η) and the plane
x1(ξ) − ζ n̄1 leads for straight edges with t1 = x1k+1 − x1k+2 and t

2 = x2i−1 − x2i+1 to
the orthogonality conditions

− [
x2(η) − x1(ξ)

] · t1 = 0
[
x2(η) − x1(ξ)

] · t2 = 0

− [
x2(η) − x1(ξ)

] · n̄1 = 0 .

(11.75)
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which yield an equation system for the local coordinates (ξ̄ , η̄ , ζ̄ ) that define the
intersection point

⎡

⎢⎢
⎢⎢
⎣

(t1 · t1) −(t1 · t2) 0

−(t1 · t2) (t2 · t2) −(n̄1 · t2)

0 −(n̄1 · t2) (n̄1 · n̄1)

⎤

⎥⎥
⎥⎥
⎦

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ξ̄

η̄

ζ̄

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(x2i+1 − x1k+2) · t1

−(x2i+1 − x1k+2) · t2

(x2i+1 − x1k+2) · n̄1

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

. (11.76)

Now the minimum distance at this point is an indicator for contact. When the gap
gN fulfills gN = [

x2(η̄) − x1(ξ̄ )
] · n̄1 = ζ̄ ≤ 0 contact is established. For the line

interaction the projection points are defined for each of the intersecting lines of body
�1 and �2. They are given by

x̄1 = (1 − ξ̄ ) x1k+2 + ξ̄ x1k+1 and x̄2 = (1 − η̄) x2i+2 + η̄ x2i−1 (11.77)

where ξ̄ and η̄ follow from (11.76).
Note, in case of small deformations the deformed coordinates of the nodal points

have to be replaced adequately by the coordinates related to the undeformed confi-
guration.

11.5.2 Algorithmic Treatment of Node-to-Node Intersection

Generally a two step approach has to be used for the treatment of contact problems.
The first step is related to a global search to find contacting bodies, elements and
surfaces. The global search algorithm is based on a description of the solids and
elements by specific geometrical objects that contain the solids or elements but have
a simple geometrical description. Then sorting algorithms are applied to provide a
list for the next step, the local search. Details related to global search can be found
in e.g. Laursen (2002) and Wriggers (2006).

Here we restrict ourselves to the second step, the local contact search, which is
related to the element level. The following algorithm describes the methodology
which is used for the local contact search using virtual elements. The focus lies on
node-to-node contact. The related algorithm is formulated for one specific edge and
surface, but can be applied for all intersecting edges and projections on surfaces in
the same way. The local search has to be performed at each simulation step. We
denote �1 as master body and its surface �1 as master surface which defines the
contact normals n̄1, see (11.73).
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Algorithm:

1. Find all faces F 1
i , of the surface of body �1, i.e.

⋃ns
i=1 F 1

i = �1 where ns is the
number of faces being in possible contact.

2. For each faceF 1
i find the closest subset of faces F̃ 2

1 from the other body�2 in the
deformed configuration which have an orientation towards F 1

i and are located in
the proximity of F 1

i within a given gap tolerance.
3. Project face F 1

i to F̃ 2
1 via the normal n̄1 to find a projection point x̄1 under the

assumption of flat faces. This point is either (a) an intersection of an edge of the
subset, see (11.77), or (b) a node within the interior of face F̃ 2

1 , see (11.74).
4. Since x̄1 is a point in the current configuration, with its location described by

the convective coordinates (ξ̄ , η̄), it has to be transformed back to the initial
configuration X̄1 for node insertion;

a. For the edge-to-edge intersection the position in the initial configuration X̄1

is defined by (11.77) with the local coordinate of the edge. Only the current
coordinates x have to be exchanged by the initial coordinates X. This yields
X̄1 = (1 − ξ̄ )X1

k+2 + ξ̄ X1
k+1 in the element �1 and to X̄2 = (1 − η̄)X2

i+2 +
η̄X2

i−1 in the intersecting element �2.
b. Node X̄1 in the node-to-face projection is found by evaluating (11.74) using the

coordinates in the initial configuration: X̄1 = ∑3
I=1 NI (ξ̄ 1, η̄1)X1

I . Insertion
of the point X2 on �2 is not required since this pairing node is already known.

5. A check is made for each projection point if a node already exists at the same
coordinate (intersection on edge end, or projecting on triangle corner). If not X̄1

and for intersecting edges also X̄2 have to be inserted within all elements that
contain the edge intersection or the triangle.

6. All node-to-node pairs are gathered containing indices of projection X̄1 and its
origin X2. The number of contact elements is modified to match the number of
pairs, furthermore the related node indices are updated. Thus the size of the global
tangent changes in every load/time step.9

7. In case of node to face projection, a face has to be triangulated based on new
included nodes, see Fig. 11.10. Nodes stemming from edge-to-edge insertion are
blue while nodes related to node-to-face insertion are colored red.

This algorithm was described for �1 being defined as master body. The same algo-
rithm can be performed for�2 being the master body, just by exchanging the indices
1 and 2.

Once contact is checked using the algorithm above and all nodes are inserted in the
updated mesh and the contact contributions have to be added to the potential. Here
the augmented Lagrangian from (11.26) will be used. Since only normal contact is
considered, the part LN (gN , λN ) is introduced, as defined in (11.27). The contact
contributions of a segment�s can be written as a sum over all triangles Ai with nodes
Xi , Xi+1 and Xi+2 which are defined by the above algorithm in each intersection of

9 Nodes which are not active in the current step are removed from the current mesh and thus are
deactivated. As a consequence, they have no contribution to the local/global tangent.
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two virtual elements �1
kand �2

m , see Fig. 11.10, leading to a set of ns segments. Each
segment �s consists of a nkm triangles Ai . The gap function is a linear function in
these triangles Ai when a virtual element with linear ansatz functions is used. The
gap function within a triangle Ai is defined as

gi
N (ξ, η) =

3∑

I=1

N 1
I (ξ 1, η1) gI (11.78)

with

gI =
[

x2I −
3∑

K=1

N 1
K (ξ̄I , η̄I ) x1K

]

· n̄1
I or

gI = [
x2(η̄I ) − x1(ξ̄I )

] · n̄1
I

(11.79)

where the index K defines a corner node of the triangle Ai . The computation of the
nodal gaps gI depends on the type of intersection: (11.79)1 for node-to-triangle and
(11.79)2 for edge-to-edge contact. These define the vertices of the contact triangle
Ai in Fig. 11.10.

All contact contributions stem from the sum over all segments �s defined by

U AL
con =

∫

�c

LN (gN , λN ) d� =
ns

A
s=1

∫

�s

LN (gN , λN ) d� (11.80)

where the integral is a sum over all triangles of a segment �s , see Fig. 11.10

∫

�s

LN (gN , λN ) d� =
nkm

A
i=1

∫

Ai

LN (gNi , λi
N ) dA (11.81)

Fig. 11.10 Triangularization
of a contact segment based
on the inserted points



346 11 Virtual Element Formulation for Contact

Note that the Lagangian multiplier λi
N in a triangle Ai can also be approximated by

a linear function in each triangle as λi
N (ξ, η) = ∑3

I=1 L A (ξ 1, η1) λA with the nodal
values λA.

In case of a penalty approachonly the gap function enters the contact contributions.
Based on (11.23) it follows

U pen
con = 1

2

∫

�c

εN g2
N d� = 1

2

ns

A
s=1

∫

�s

εN g2
N d� (11.82)

with the penalty parameter εN . Again the integral on the right hand side is a sum
over all triangles of a segment �s , see Fig. 11.10,

∫

�s

εN g2
N d� =

nkm

A
i=1

∫

Ai

εN [gi
N ]2 dA (11.83)

where the integral over the triangles Ai can be integrated with (11.78) using a Gauss
point integration with ng integration points

∫

Ai

εN [gi
N ]2 dA = εN

ng∑

g=1

[gi
N (ξg , ηg)]2 wg Ji (11.84)

where wg is the weighting parameter and (ξg , ηg) are the integration points. Fur-
thermore Ji is the determinant of the mapping between the reference and the initial
configuration, see Fig. 11.9. The integration in (11.84) is based on a quadratic func-
tion since the gap function in (11.78) is linear. Furthermore the triangles Ai , defined
in Fig. 11.10, have straight edges and a constant normal n̄1 which allows an exact
integration with three Gauss points, leading to

∫

Ai

εN [gi
N ]2 dA = εN Ai

6

[
g1(g1 + g2 + g3) + g2(g2 + g3) + g2

3

]
(11.85)

where g1, g2 and g3 are the gap values at the nodes of the triangle Ai , see (11.79).
This result can now be inserted in (11.82) and (11.83) together with the definitions
(11.79). Now the contact potential of the penalty formulation is a function of the
unknown displacements and thus the associated residuals and tangent matrices are
directly computable.

The same integration can be performed for the augmented Lagrangian formula-
tion. In that case, the Lagrangian multiplier is introduced as a linear function within
each triangle Ai which again allows an exact integration of the contact contributions.

Another possibility to evaluate the contact contribution in (11.80) and (11.82)
is based on the introduction of nodal forces at the vertices of the triangle being in
contact. This leads for the penalty formulation to
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U pen
con = 1

2

∫

�c

εN g2
N d� = 1

2

nc∑

k=1

εN g2
Nk

(11.86)

where gNk is the gap and εN gNk the nodal force associated with the contact node k.
The total number of nodes that are in contact is given by nc. Each node is treated
in the same way in this formulation. Thus the area of the triangles, e.g. Ai , being in
contact is not considered which might lead to numerical difficulties and erroneous
local stress distributions. Remedial action can be taken by weighting the different
contributions by the area of triangles Āk = ∑m

l=1 Al / 3 around each of the nodes k
that are in contact. The area Āk can be computed as one third of the area of the m
triangles that have the same vertex k.

11.6 Stabilization of VEM in Case of Contact

Generally all virtual elements derived so far can be used to discretize the solid part of
a contact problem. Stabilizationwas discussed for virtual solid elements in Sect. 6.1.3
for the case of elasticity. Two possibilities exist which are stabilizations using bi-
linear forms, see Beirão da Veiga et al. (2013), and using am additional energy term,
introduced inWriggers et al. (2017).Only the additions to the interface discretization,
derived above for contact, have to be added.

In case of the stabilizationwith a bilinear form, see e.g. Sect. 6.1.3, the formulation
has to be changed for elements that share a contact interface. This is due to the fact
that nodes can come very close to each other during the node insertion process and
due to large sliding, To ensure the smoothness of the displacement field near these
boundary points, the error uh − uπ is minimized at the boundary by introducing a
special stabilization term

SE = γ

nV∑

i=1

|d(Xi+1) − d(Xi )|2
|Xi+1 − Xi | = γ SE

∗ . (11.87)

This special form of the stabilization SE is a sum over the vertices of all nodes
being in contact. It penalizes nodes that are close to each other stronger than other
nodes. The penalty or stabilization parameter γ has to be selected according to the
problem. The distance d can be defined at every vertex Xi as a local interpolation
error computed from the difference between the nodal value and the interpolated
value using (3.58) for the linear ansatz

d(Xi ) = [ui − uπ (Xi )] = (
I − H(2,1)

u (Xi )P
(2,1)
u

)
uv . (11.88)

For the quadratic ansatz a similar relation holds, see (3.84) and (6.25).
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The energy stabilization, described in Sect. 5.2.2, can be applied without any
changes.

11.7 Numerical Examples

Numerical studies are presented in this section to demonstrate the robustness, con-
vergence and accuracy of the contact formulation for virtual elements. This includes
geometrical linear problems as well as contact of solids undergoing large deforma-
tions. All examples demonstrate that the node-insertion algorithms can be effectively
applied for contact problems.

11.7.1 Behaviour of Different Stabilization Methods

The different stabilization methods, defined in Sect. 5.2, are assessed by using the
test depicted in Fig. 11.11.

A regular mesh is connected to a Voronoi mesh in a way that creates irregular
spaced nodes at the interface. The displacements of both meshes are fixed at the
sides and the bottom. The system is loaded at the top as shown in Fig. 11.11. The

Fig. 11.11 Setup for testing
different stabilizations with a
quadrilateral and Voronoi
mesh
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Fig. 11.12 Plot of
x-displacement along the
interface of both meshes for
the DOFI stabilization, see
Sect. 5.2.1

Fig. 11.13 Plot of
x-displacement along the
interface of both meshes for
the edge stabilization in
(11.87)

Fig. 11.14 Plot of
x-displacement along the
interface of both meshes for
the energy stabilization, see
Sect. 5.2.2

linear basis

displacements at the interface of both meshes provide a measure for the quality of
the stabilization of the virtual element formulation when using a non-matching mesh
at the contact interface.

In Figs. 11.12, 11.13 and 11.14 the displacements in x-direction are plotted which
show the influence of the used stabilizations. Starting with the bi-linear (DOFI)
stabilization, see Sect. 5.2.1, it can well be observed that the displacements at the
interface of bothmeshes oscillate locally,while the overall result is correct. This effect
can be smoothed but not totally avoided by increasing the order of the polynomial
basis. Hence the stabilization is not sufficient as the oscillations will lead to wrong
gaps and thus incorrect contact stresses which yield erroneous contact or sliding
states.
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The edge stabilization in (11.87) exhibits a much smoother result for the surface
displacements as depicted in Fig. 11.12. Because of this it is well suited for the virtual
element formulation in contact computations. However the method still requires
a parameter fitting to perform well, making its application to non-linear contact
problems more difficult.

This is overcome by the energy stabilization, see Sect. 5.2.2. The results are shown
in Fig. 11.14 which demonstrate a smooth surface displacement already for the linear
basis.

11.7.2 Two-Dimensional Patch Test

A contact patch test, see Fig. 11.15, is introduced in order to show that the virtual
element method is able to produce constant stress states even for non-matching
meshes at the contact interface. In detail, two blocks with the same dimensions of
2 × 1, but non-matchingmeshes are considered. The bottom block is discretizedwith
a uniformmesh while for the block on the top a Voronoi mesh is chosen. Both blocks
have the same material parameters E = 1000 and ν = 0.3 plain strain is assumed
and linear elastic material behaviour. The upper block is loaded with a pressure of
pn = 2. The bottom is fixed in vertical direction while the displacements at left and
right side are constraint in horizontal direction.

By looking at the results in Fig. 11.15a, it can be seen that the VEM contact
passes the patch test when using the node insertion methodology introduced in the
previous sections. This is an advantage over the classical node-to-segment method,10

either using FEM or VEM, used here as a comparison in Fig. 11.15b. For the non-
uniform mesh the standard node-to-segment contact, see e.g. Wriggers (2006), does
not guarantee accurate transfer of the pressure, showing small deviations.

11.7.3 Three-Dimensional Patch Test

The three dimensional contact patch test is illustrated in Fig. 11.16a.Both solid blocks
�1 and �2 are fixed in x-direction at x = 0 and in y-direction at y = 0. The lower
block �2 is fixed in z-direction at z = 0. The solid �1 is loaded at the upper face by
the surface load p0 = 1 · 107. The Young’s modulus is set to E1 = E2 = 4 · 108 and
the Poisson ratio is given by ν1 = ν2 = 0.3. The two blocks are discretized using

10 For a finite element analysis there exist several formulations that also lead to a discretizationwhich
passes the patch test. Herewe canmention themortarmethod, see e.g.McDevitt andLaursen (2000),
and special treatments of the node-to-segment schemes as discussed in Zavarise and De Lorenzis
(2009).
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Fig. 11.15 Contact patch test—comparison of the stress distribution

Fig. 11.16 Three-dimensional contact patch-test with mesh at the contact interface on the right

an irregular shaped Voronoi mesh which does not match at the contact interface,
see the mesh of the contact interface for the contacting blocks on the right side of
Fig. 11.16b.

Figure11.17 depicts the stress σzz in the direction of the load. As in the two-
dimensional case in the previous section, the node insertion scheme, leading to a
node-to-node (NTN) discretization, reproduces a homogeneous stress state
(Fig. 11.17a and b). A node-to-surface contact (NTS) enforcement results in incor-
rect contact forces and thus yields a non homogeneous stress state both bodies, as
can be seen in Fig. 11.17c and d. This illustrates the advantage of the node insertion
strategy which can be applied easily in the virtual element method.
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Fig. 11.17 Patch-Test using node-to-node and node-to-surface contact

11.7.4 Hertzian Contact Problem, Two-Dimensional

This example was selected in order to test the accuracy of the solution for nonho-
mogeneous stress states. The Hertzian contact problem has an analytical solution for
linear elastic material, thus the results obtained by the virtual element method can be
compared to the analytical solution. Figure11.18 shows the geometry and different
discretizations. The disc �1 of radius R = 10 is in contact with a stiff block �2 of
length L = 20 and height H = 10 which is fixed at the bottom. The disc is loaded by
a force F = 500 that is applied as a pressure t̄ = 25 on one half of the disc. Young’s
moduli and Poisson’s ratio are chosen as E1 = 7000, ν1 = 0.3, E2 = 700000 and
ν2 = 0.3.

Following Johnson (1985), the analytical solution of the contact pressure pn in the
contact area is given by a function of the size of the contact area b and the effective
material parameter E∗
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Fig. 11.18 Hertzian contact problem: a geometry and boundary conditions, b Voronoi cell mesh
(VOU), c refined Voronoi cell mesh (VOU-ref), d structured 4 node quadrilateral discretization
(Q1) and e refined structured mesh (Q1-ref)

Fig. 11.19 Distribution of
the normal stress pn in the
contact area

pn = 4R t̄

πb2

√
b2 − x2 and b = 2

√
2R2 t̄

π E∗ with
1

E∗ = 1 − ν2
1

E1
+ 1 − ν2

2

E2
(11.89)

The contact pressure pn is used to compare with the numerical solution. For the given
parameters its maximum is pn,max = 333.61 and the contact area is b = 0.954.

The following possibilities to discretize the contacting surfaces will be discussed,
see also Sect. 11.4.2,

• N-S: Standard node-to-segment contact, both edges are assumed to be linear,
• N-N: Node-to node contact, resulting from the node insertion used within the
virtual element framework.

Figure11.19 depicts the normal stress pn at the contact interface for a discretization
with a refined Voronoi mesh (VE-VOU-ref). This demonstrates that the VE-VOU
formulation correctly reproduces the equivalence of the normal contact stress pn in
the disc and the block.
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Fig. 11.20 Hertzian contact problem—stress distribution σyy for a standard FE-Q1, b standard
VE-Q1, c coarse VE-VOU mesh, d fine FE-Q1 (overkill solution), e locally refined VE-Q1-ref and
f locally refined VE-VOU-ref mesh

Figure11.20 shows the distribution of the vertical stress σyy for different dis-
cretizations. These stresses were computed using the following mesh types:

• FE-Q1: finite element mesh with 4 noded quadrilateral elements,
• VE-Q1: virtual element mesh with 4 noded quadrilateral elements,
• VE-Q1-ref: locally refined VE-Q1 mesh,
• VE-VOU: uniform Voronoi cell mesh with arbitrary number of element nodes,
• VE-VOU-ref: locally refined VE-VOU mesh.

The structured meshes are refined locally within the predefined contact area nre f ∈
{1, 2, 3, 4} times. Whereas the locally-refined Voronoi mesh is based on the refine-
ment until an element has an area smaller than �̄v / n2

re f near the contact zone, where
�̄v is the average element size of the non-refinedVoronoimesh.As a referencemodel,
a very fine discretization is used which is based on the FE-Q1 mesh in Fig. 11.18d
and shown in Fig. 11.20d.

In order to investigate the performance of the virtual element method, the results
are compared with the analytical solution in (11.89). The relation between the con-
tact forces Fc / Fc,re f = ∫

�c
σyy d� /

∫
�c

pn d� is introduced as an errormeasure. The
convergence behaviour is depicted in Fig. 11.21 where various meshes and contact
schemes are compared. As expected, linear convergence is achieved in the simula-
tions when the meshes in Fig. 11.18b and c are employed. However, for the locally
refined meshes, see Fig. 11.18e and f, we observe an increase of the convergence
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Fig. 11.21 Hertzian contact problem—convergence study of the total contact force

Fig. 11.22 Hertzian contact problem—contact stresses

rate, see e.g. results of VE-Q1-ref, N-S and N-N in Fig. 11.21. Moreover, we observe
that all type of contact discretization schemes yield similar results as demonstrated
in Fig. 11.20d–f.

The distribution of the normal contact stresses at the contact zone is compared
for various virtual and finite element discretizations with the analytical solution in
(11.89). The stresses obtained from the actual stress at the surface as pn = (σ n) · n
are shown in Fig. 11.22a. The stresses obtained from the contact element residuals
at the nodes, normalized by the area related to each node as pn = (Rc / Ac) · n, are
shown in Fig. 11.22b. The results demonstrate a good agreement with the analytical
solutions for finer meshes. For finest discretization (ndiv = 6) the graphs coincide,
except for the finite element solutionwhich yields for the samemesh division slightly
overestimated stresses. Furthermore it can be observed that the computation from the
actual stresses at the surface, see Fig. 11.22a, yields a smoother stress distribution at
the contact interface.
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11.7.5 Hertz Contact for Large Deformations,
Two-Dimensional

The Hertzian contact problem, sketched in Fig. 11.18, is computed allowing large
deformations. In this example, the node adjustment algorithm is employed for the
node-to-node treatment with virtual elements. To achieve large deformations, the
Young’s modulus of the upper disc �1 is changed to E1 = 70000 and the Young’s
modulus of the block �2 is reduced to E2 = 7000. The Poisson ratio is the same
for both solids, ν1 = ν2 = 0.3. The top surface is loaded in 10 load steps with a
distributed pressure of pn = 5000. Frictionless contact is considered with using as
regularization parameter εN = 20000.

The numerical simulation is based on virtual elements with linear ansatz using
the node-to-node technique described in Sect. 11.3–11.4.2 together with a penalty
approach. The two solids are discretized with a mesh based on regular Voronoi cells
and a regular mesh. Both discretizations can be seen in Fig. 11.23a–c for the Voronoi
(VOU) and Fig. 11.23d–f for the regular (Q1) meshes. Figure11.23a and d depict the
deformation for 10% of the total applied load pa) = 0.1pn while Fig. 11.23b and e
show the deformation state at pb) = 0.25pn . The final deformation under the total
load is then provided in Fig. 11.23c and f. The contour plots demonstrate a correct
transmission of the stresses σyy .

The load-displacement curve of the applied load F = 2R pn versus the mid-
displacement uy of the disc in the contact zone illustrates the nonlinear behaviour for
this finite deformation contact problem. We observe that Voronoi as well as regular
discretizations yield the same global response curve (Fig.11.24).

Fig. 11.23 Large deformation Hertz contact—deformed configurations for a sequence of loading
steps from 10% over 25% to 100% of the applied load pn
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Fig. 11.24 Large
deformation Hertz
contact—load-displacement
curve

11.7.6 Hertzian Contact, Three-Dimensional

The Hertzian contact of a half sphere and a block is analyzed. The analytical result,
see e.g. Hertz (1882) and Johnson (1985), yields the normal contact pressure as a
function of the radius r

pn(r) = 2E∗

π R

√
a2 − r2 , (11.90)

where R is the radius of the sphere, a thewidth of the contact area and E∗ the effective
modulus. The width of the contact area a and the effective Young’s modulus E∗ are
given as

E∗ =
(
1 − ν2

1

E1
+ 1 − ν2

2

E2

)−1

and a =
(
3q0π R3

4E∗

) 1
3

(11.91)

where q0 is the load at the top of the half sphere.
Due to its symmetry, the problem can be reduced to a quarter, see Fig. 11.25a.

In that case, symmetry boundary conditions have to be introduced which constrain
the deformation in normal direction at the symmetry planes. Furthermore, the lower
face of the block fixed in z-direction.

A discretization is shown in Fig. 11.25b for the Voronoi type elements. These are
denoted by VO while regular shaped hexahedral elements are labeled by H1. Both
types of virtual elements are employed to discretize the three-dimensional Hertz
problem.

Figure11.26 depicts the normal stress distribution along the surface. The contact
stresses pn = σzz are obtained by projecting the actual stress σ onto the normal
direction σzz = (σn) · nwhere n coincides with the z-direction: n = ez . Figure11.26
reports the normal stress only for the H1mesh. It can be seen that the contact pressure
converges to the analytical solution for a mesh refinement ndiv = 3. The node-to-
node contact (NTN) based on node insertion, see Fig. 11.26a, leads to smoother
stress distributions than provided by the node-to-surface (NTS) formulation, see
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Fig. 11.25 Three-dimensional Hertzian contact problem

Fig. 11.26 Stress distributions σzz = (σn) · n for node-to-node in (a) and node-to-surface in (b)

Fig. 11.26b. Oscillations of the stresses are stronger for node-to-surface contact and
reduced for the node-to-node contact. More results details can be found in Cihan
et al. (2022).

ForVoronoimeshes, oscillations are reduced, but constant stresses in the segments
are obtained. This is in line with the linear virtual element ansatz, which leads to
constant stresses within each virtual element. Hence, the introduction of new nodes
during the projection scheme for contact does not result in an improved stress.Clearly,
a refinement of the mesh is needed to obtain more accurate results.

Figure11.27 depict the stress contours of the vertical stress component σzz using
virtual elements for two different meshes. Both meshes are pre-refined near the
contact zone. The results demonstrate a good coincidence between the regular VE-
H1, in Fig. 11.27a, and the VE-VO Voronoi mesh, see Fig. 11.27b.
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Fig. 11.27 Normal stress distribution σzz for node-to-node contact

11.7.7 Contacting Beams

Contact between two beams is studied to demonstrate the efficiency of the node-to-
node contact using the virtual element method. The two beams are clamped at the
right and left side and come into contact in the middle.

The associated boundary value problem is shown in Fig. 11.28 along with the
applied load. The specimen sizes are as follows: H1 = H2 = 1, L1 = L2 = 20 and
R = 2. A uniform line load is applied on top of the free end of the upper beam �1

with a magnitude of t̄ = 50, as shown in Fig. 11.28. The elastic material parameters
are selected as E1 = E2 = 70000 and ν1 = ν2 = 0.3.

Different virtual element mesh types similar to the Hertzian contact problem
are investigated to illustrate the performance of the virtual element method under
bending deformations and contact. The meshes consist of uniform Voronoi cells

Fig. 11.28 Beams in contact: Geometry and boundary conditions
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Fig. 11.29 Beams in contact: b Voronoi mesh (VOU); c locally refined Voronoi mesh (VOU-ref);
d structured (Q1) mesh; and e locally refined structured mesh (Q1-ref)

Fig. 11.30 Distribution of von Mises stresses σV M : a uniform FE-Q1; b local refined VE-Q1-ref;
c uniform VE-VOU and d local refined VE-VOU-ref

Fig. 11.31 Beams in contact: a load-displacement curve and b convergences study

and structured Q1 elements. All meshes are depicted in Fig. 11.29b–e. The virtual
element solutions are compared with a finite element analysis which is based on the
structured quadrilateral Q1 mesh shown in Fig. 11.29d.

Figure11.30 depicts the distribution of the Von Mises stress σV M for the four
different meshes in Fig. 11.29. We note, that the coarse discretizations in Fig. 11.30a
and c lead to a good approximation of the overall deformation state of the two
contacting beams. For a good resolution of the local stress field, a mesh refinement
in the contact area is necessary, see Fig. 11.30b and d which provide accurate von
Mises stresses in the contact zone.

The load displacement curve is shown in Fig. 11.31a for different discretizations.
Note, that even coarse discretizations recover the overall deformation behaviour
correctly. Figure11.31b illustrates a convergence study for the displacement at the top
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left corner point of beam �1 versus mesh refinements. Hereby, all schemes converge
to the reference solution uy,ref obtained with a very fine mesh (overkill solution).
Note however, that the node-to-segment discretization of the refined Voronoi mesh
does not converge smoothly while the VE-Q1 discretizations depict a high coarse
mesh accuracy in the beginning ( up to log10 = 2.5 elements) which then levels out
to the convergence behaviour of the finite element discretization.

No major difference between contact techniques (node-to-node and node-to-
segment) was observed in this example,

11.7.8 Wall Mounting of a Bolt

A wall mounting holds a bolt, see Fig. 11.32, and is subjected to loading via the bolt
up to fracture. The bolt is in contact with the mount, thus a combined contact and
fracture problem has to be solved. The fracture process is modeled using the phase
field approach discussed in Sect. 10.3.

A bolt of radius rb = 9.5 cm is attached to a mount that is fixed on its left side to
a wall, see Fig. 11.32. On this side all nodes are constraint in vertical direction and
the middle node is fixed in normal direction.

The mount has an external radius of ra = 20 cm and an inner radius of ri = 10
cm. The distance of the middle of the bolt from the wall is xb = 20 cm. The material
for the bolt is assumed to be elastic with a Young’s modulus of Eb = 70000 kN/cm2

and a Poisson ratio of νb = 0.3. The mount has a Young’s modulus of Em = 7000
kN/cm2 and a Poisson ratio of νm = 0.3. The material of the mount is brittle thus
the phase field approach for brittle fracture can be applied. The associated critical
energy release rate, see (10.61), is gm

c = 0.1 kN/cm and the viscosity of the crack
propagation is ηm = 10−5 kNs/cm2 for the mount. The fracture length scale l in
(10.56) is chosen as l = 0.015 cm.

The bolt just touches the inner radius of the mount in the beginning of the sim-
ulation. The focus of this simulations is the failure mechanism of the mount due to

Fig. 11.32 Wall mounting
of a bolt—loading, boundary
conditions, virtual element
mesh and a zoom-in of the
mesh
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loading. The contact analysis is necessary for a correct load transmission from the
bolt to the mount. For the contact analysis a node-to-segment contact discretization
is utilized based on the penalty formulation with a penalty parameter of εn = 20000
kN/cm. Since no tangent movement is expected friction can be neglected at the
contact interface. The load is applied as body force in the bolt. A structured mesh is
employed, see Fig. 11.32, for the discretization with virtual elements. The energy sta-
bilization is used within the virtual element analysis with the stabilization parameter
β = 0.4.

Mesh refinement in the expected fracture zone is applied in an adaptive manner.
First a fine mesh around the bolt is employed to find the location where the crack
starts. After crack initiation the mesh is refined in this area. Here another advantage
of the virtual element method becomes evident which is related to the possibility of
inserting arbitrary number of nodes at each edge of an element in a consistent way.
This yields a C0 continuous mesh, see the magnification in the red circle on the right
side of Fig. 11.32 and thus no hanging nodes occur when the mesh is refined, as it
would be the case in a finite element discretization.

With increasing load a crack develops which is demonstrated in Fig. 11.34 for
four different load stages showing the deformed configuration of the system. The
crack starts, as is shown in Fig. 11.34a and then increases to the wall with a new
crack developing, see Fig. 11.34b. The second crack grows further, see Fig. 11.34c
until the mount finally fails with a third crack developing as depicted in Fig. 11.34d.

The associated load displacement curve is depicted in Fig. 11.33 where the total
load is plotted versus the mid displacement of the bolt. Due to the small strain elastic
behaviour this curve increases almost linearly up to point ➀. Here, at a load of
around 900 kN, the first crack starts to develop, see Fig. 11.34a leading to a damaged
structure. However the system still has some residual stiffness and the load can be
increased further while the second crack develops. Points ➁ and ➂ are associated
with the plots in Fig. 11.34b and c. Note that the slope of the load deflection curve
has a lower gradient due to the softening of the mount by the first crack. At around
1650 kN, see point ➂, the final failure of the mount is initiated and leads with a
horizontal tangent of the load displacement curve to the state shown in Fig. 11.34d,
which is related to point ➃ in Fig. 11.33.

By combining the phase field method with the element cutting technology in
Sect. 10.2, see alsoHussein et al. (2020), it is possible to predict the cracked deformed
configuration, as shown in Fig. 11.35a. In this deformation stage the structure exhibits
two main cracks that lead to total failure of the mount. Additionally the von Mises
stress is plotted in Fig. 11.35b just before total failure. This plot depicts themaximum
stresses around the first crack on the left and the maximum stress at the tip of the
crack on the right.
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Fig. 11.33 Wall mounting of a bolt—load-deflection curve of the fracture process

Fig. 11.34 Wall mounting of a bolt—fracture process
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Fig. 11.35 Wall mounting of a bolt
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Chapter 12
Virtual Elements for Computational
Homogenization of Polycrystalline
Materials

Heterogeneous materials (such as composites, bones, wood, concrete and metallic-
polycrystallinematerials) consist of complicated constituents across scaleswith com-
plex material response. These materials, even with similar properties at macroscopic
level, can behave differently at micro-scale. The response of such materials is often
related to non-uniform and anisotropic behaviour at microscopic level.

For a predictive numerical simulation of the constitutive properties of heteroge-
neous materials at least two scales have to be considered, leading to a multi-scale
approach. From themodeling point of view, twomulti-scale approaches are of impor-
tance, namely concurrent and hierarchical multi-scale techniques. These can be clas-
sified by themacro characteristic length scale lmacro and itsmicro domain counterpart
lmicro. For an overview of different techniques, see the textbooks Zohdi andWriggers
(2005) and Fish (2014).

The concurrent multi-scale method assumes lmicro ≈ lmacro, as addressed in e.g.
Fish andWagiman (1993), Lloberas-Valls et al. (2012) and Aldakheel et al. (2021b).
For the hierarchical multi-scale method, the average size of the heterogeneous micro
domain is much smaller than the macro specimen size, such that lmicro � lmacro,
see e.g. Miehe et al. (1999a), Michel et al. (1999) and Hain and Wriggers (2008a).
The corresponding property is generally known as scale separation and the associ-
ated computational homogenization approaches are then based on the Hill-Mandel
principle, well documented in Hill (1965) and Michel et al. (1999). The aim of all
mentioned multi-scale simulation techniques is the reduction of uncertainties and
empirical assumptions while simultaneously increasing the accuracy of the material
response.

For a better understanding of the scale bridging, consider themulti-scale character
of hybrid bearing bush, illustrated in Fig. 12.1 which depicts the presence of the
crystalline microstructure of the different metals, steel and aluminum. We observe
that each polycrystalline material has a different structure with many crystals at the
micro-scale. The behaviour of the crystals at micro-scale determine the constitutive
response at macro-scale. High-end industrial applications in engineering, energy
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Fig. 12.1 Multi-scale design of a hybrid bearing bush, considering different length-scales, see
Behrens et al. (2020)

and medical technologies require consideration of microscopic material behaviour
in order to predict the required system-output at macro-scale accurately.

Different approaches exist for the determination of the effective-properties of
heterogeneous materials at micro-scale. For composites with recurrent microstruc-
ture and linear constitutive behaviour, those properties can be determined by solving
a sufficient number of unit cell problems along with the corresponding boundary
conditions. Furthermore, an asymptotic homogenization approach can be consid-
ered as has been documented in Bensoussan et al. (1978) and Sanchez-Palencia
(1980). In the case of an irregular microstructure, the effective-properties cannot
be computed exactly. The available methods in such situations are limited to the
computation of upper and lower bounds for the effective stiffness, as outlined in
Voigt (1887) and Reuss (1929). The analytical methods were further extended in the
work of Hashin and Shtrikman (1962), Hashin and Shtrikman (1963) by considering
variational principles, leading to improved estimations. Hill (1965) developed a self-
consistent method by embedding a single inclusion into an infinite domain of the
initially unknown effective matrix material. The variational principles of Ponte Cas-
tañeda (1991), Ponte Castañeda (1992), Suquet (1993) and Talbot and Willis (1992)
are concerned with general bounds for specific classes of nonlinear composites.
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The basic principles of the homogenization can also be employed within a numer-
ical simulation approach, leading to homogenization procedures based on represen-
tative volume elements (RVE). We refer to Hill (1972), Suquet (1987) and Nemat-
Nasser and Hori (1999) for fundamental homogenization principles of local mechan-
ical response. The applications of these principles to computational homogenization
can be found in e.g. Zohdi et al. (1996), Zohdi andWriggers (1999), Zohdi andWrig-
gers (2001b), Zohdi andWriggers (2005),Wriggers andMoftah (2006), Temizer and
Zohdi (2007), Temizer and Wriggers (2007), Zohdi (2008), Temizer and Wriggers
(2008b), Hain andWriggers (2008a), Wellmann et al. (2008), Temizer andWriggers
(2011) and citations therein. These contributions cover the theoretical background of
the numerical techniques and show applications to different heterogeneousmaterials.

Another important methodology is the two-scale computational homogenization
which treats an engineering problem at macro-level by determining the effective-
properties within a nested approach. It is also known under the synonym (FE2)
which should be written for virtual elements as (VE2). In more detail, two nested
boundary-value-problems are solved along with a corresponding scale transition
law, see for instance Smit et al. (1998), Miehe et al. (1999b), Miehe et al. (1999a),
Feyel and Chaboche (2000), Terada and Kikuchi (2001), Kouznetsova et al. (2002),
Miehe (2002), Hain and Wriggers (2008a), Geers et al. (2010), Schröder and Keip
(2012), Chatzigeorgiou et al. (2014) and Javili et al. (2013). The material behaviour
is analyzed in this approach at microscopic level by employing as homogenization
technique the concept of representative volume elements, which then is used to
compute the material response at macro-level.

In this chapter, the focus is on the computational homogenization approach with
application to polycrystalline materials. For materials like steel or aluminum scale
separation can be assumed since the characteristic length of the micro-scale is much
smaller than its macro counterpart, see Fig. 12.2. This fact is the general prerequisite
for the use of homogenization procedures.

Fig. 12.2 Micro- and macro-scale of polycrystalline materials
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The following challenges have to be considered for numerical simulation models
related to computational homogenization

• complex shape of grains in the microstructure,
• presence of strong anisotropy and
• random orientation of material symmetries.

Especially the first challenge can be overcome by the virtual element method which
allows to model the complex shape of polycrystals with just one element and thus is
an obvious choice for this class of materials, see e.g. Marino et al. (2019) and Böhm
et al. (2021).

12.1 Micro-to-Macro Transition Concept

The aim of this section is to provide an overview regarding two different micro-to-
macro transition concepts which are

• computational homogenization and
• two-scale modeling (FE2/VE2).

To this end, a material point x̄ within the solid �̄ is considered at the macro-level, see
Fig. 12.3. Kinematics and balance relations are given by the continuum mechanics
framework. Additionally, the constitutive behaviour is needed in order to solve a
boundary value problem in �̄.

12.1.1 The Concept of Representative Volume Elements

Thematerial behaviour at themacroscale is comprehensively described by themicro-
scopic geometry and constituents. When the material body consists of a heteroge-
neous microstructure that governs its response, a homogenization approach can be
necessary to determine the effective material properties at macro-level. The homog-
enization approach relies on the assumption that the two considered scales are well
separated, i.e. a typical size on the macro-scale is much larger than a typical size of
the underlying microstructure, lmacro � lmicro, as depicted in Fig. 12.2. This sepa-
ration of length scale assumption is a crucial requirement for the application of the
concept of representative volume elements. At the micro-scale, the representative
volume element RVE models the microstructure that corresponds to the macro-
scopic material point. By enforcing boundary conditions which are determined by
the macroscopic state of deformation, a boundary-value-problem is defined for the
representative volume element. At this level both, the governing balance equations
and the constitutive behaviour are known. The goal is to return the constitutive infor-
mation from a finer scale to the macro-level (coarser scale) which then can be either
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Fig. 12.3 Macroscopic
boundary-value-problem.
Mechanical displacement
field ū defined on the solid �̄

used point-wise within a FE2 approach or as effective properties in a macro compu-
tation of the problem.

The RVE acts as a statistically representative portion of the heterogeneous
microstructure (grains separated by grain boundary, voids, inclusion, crack, and other
similar defects), see Nemat-Nasser and Hori (1999). Its size must be chosen such
that it is large enough to be representative which implies that it sufficiently accounts
for the character and distribution of heterogeneities. Nevertheless, it should be much
smaller than the structure or specimen considered at macro-level to ensure on one
hand a scale separation, and to achieve on the other hand an increased efficiency. If
the material or geometric properties of the underlying microstructures vary spatially
within a macro specimen, as e.g. in functionally graded materials, the representative
volume element needs to be adjusted for different macro regions.

12.1.2 Macroscopic Boundary Value Problem

Let �̄ ⊂ Rδ denote a macroscopic body with dimension δ ∈ {2, 3}, as sketched in
Fig. 12.3. We study the mechanical deformation of the body under quasi-static load-
ing. In what follows, ∇̄(•) = ∂(•)

∂ x̄ denotes the gradient of the macroscopic field (•).
The primary variable field is the displacement field ū(x̄) of the material point x̄ ∈ �̄.
The kinematic relation arising from the geometrically linear framework is the strain
tensor ε̄ = ∇̄s ū = 1

2 (∇̄ ū + ∇̄T ū), see (2.9).
We assume the existence of a macroscopic potential energy Ū . Based on this

assumption, we can formulate a variational structure resulting in a minimization
problem for the determination of macroscopic primary variable

{ū} = Arg
{
inf
ū

Ū (ū)
}

, (12.1)
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where Ū is defined as

Ū (ū) =
∫

�̄

�̄(ε̄) d�̄ − P̄ext (ū) . (12.2)

The potential energy Ū will be fully determined by another variational formulation
using a RVE at the micro-scale. The mechanical loading contribution follows from

P̄ext (ū) =
∫

�̄

b̄ · ū d�̄ +
∫

�̄N̄

t̄N · ū d�̄ . (12.3)

The given macroscopic body force per unit volume is introduced as b̄, whereas the
tractions on the Neumann boundary �̄N̄ are depicted as t̄N . Furthermore, consider a
decomposition of the surface �̄ = �̄D̄ ∪ �̄N̄ into a part �̄D̄ where the displacements
are prescribed and a part �̄N̄ with given tractions, along with �̄D̄ ∩ �̄N̄ = ∅.

The Euler-Lagrange equations of (12.1) result in the equilibrium equations
describing themacroscopic problem for the quasi static case. They lead to the balance
of linear momentum divσ̄ + b̄ = 0 in �̄ , see (2.22), along with the Neumann-type
boundary conditions σ̄ · n̄ = t̄N , see (2.24), on �̄N̄ . The macroscopic stresses

σ̄ = ∂ �̄(ε̄)

∂ ε̄
, (12.4)

are governed by the macroscopic energy function �̄ obtained by a homogenization
using the RVE defined at the micro-scale.

12.1.3 Microscopic Boundary Value Problem

Let� ⊂ Rδ denote a periodicmicrostructure (RVE) as depicted in Fig. 12.4. Hereby,
∇(•) = ∂(•)

∂x denotes the gradient of the microscopic field (•). The primary variable
field is the displacement field u(x) of the material point x ∈ �. The microscopic
linear strain tensor ε is the symmetric part of the displacement gradient ε = ∇su =
1
2 (∇u + ∇T u). We now postulate a variational principle of homogenization that
determines the macroscopic energy �̄, introduced in (12.2), as follows

�̄(ε̄) = inf
u

1

�

∫

�

�(ε) d� . (12.5)

This definition is conceptually in line with the formulations outlined in Ponte Cas-
tañeda and Suquet (1997), Miehe (2002). At the micro-level, we identify the stresses
as

σ(ε) = ∂ �(ε)

∂ ε
, (12.6)
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Fig. 12.4 Periodic microstructure, where the surface of RVE is decomposed into � = �+ ∪ �−
in (a) along with periodic boundary conditions for the displacement field in (b)

that follow from the strain energy function � valid at the micro-scale and depending
at the local strains.With this stress-strain relation, the variation of the principle (12.5)
yields

1

�

∫

�

( − div[σ]) · δu d� + 1

�

∫

�

(
σ · n) · δu d� = 0 . (12.7)

The Euler-Lagrange equation for the variational principle (12.5) is div[σ] = 0 for
the microstructure �.

12.1.4 Homogenization and Macro-Homogeneity Conditions

Themicroscopic boundary-value-problem is linked to themacroscopic one by a scale
bridging approach accounting for homogenized quantities which are defined on the
boundary/volume of the representative volume element. The macroscopic strain ε̄
and the associated work-conjugate stress σ̄ characterize the effective strains and
stresses. They follow by averaging the microscopic strains ε and stresses σ over the
volume of the micro-structure �

ε̄ = 1

�

∫

�

ε d� = 〈ε〉 and σ̄ = 1

�

∫

�

σ d� = 〈σ〉 , (12.8)

where 〈(•)〉 = 1
�

∫
�
(•) d� denotes the volume average operator in �. The average

strain and stress theorem allows, for perfectly bonded materials and by neglecting of
body forces at the micro-scale, to shift the volume integrals to surface integrals, see
e.g. Zohdi and Wriggers (2005). With div(σ ⊗ x) = divσ ⊗ x + σ ∇x, σ = σT

and the local equilibrium divσ = 0 it follows from Gauss’ theorem
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〈ε〉 = 1

�

∫

�

ε d� = 1

�

∫

�

∇su d� = 1

�

∫

�

sym(u ⊗ n) d� and

〈σ〉 = 1

�

∫

�

σ d� = 1

�

∫

�

(σ ⊗ x) n d� = 1

�

∫

�

sym(tN ⊗ x) d� .

(12.9)

A link between themacro- andmicro-scale is provided by the Hill-Mandel macro-
homogeneity condition, proposed by Hill (1972). It states that the virtual work on
the macro-scale is equal to that in the micro-scale for the RVE

σ̄ · δε̄ = 〈σ · δε〉 = 1

�

∫

�

σ · δε d� = 1

�

∫

�

tN · δu d� . (12.10)

Let us nowassume thatwehave at themicro-scale sample of aggregate polycrystalline
material with a linear elastic but anisotropic material response at each grains which
can be described byσ = C ε. The effective constitutive relation is given by σ̄ = C̄ ε̄
where the effective constitutive tensor C̄ is defined via the heterogeneous properties
at the micro-scale, represented by C.

Appropriate boundary conditions have to be prescribed at the RVE-level for the
solution of the microscopic boundary-value-problem. For the micro-elastic model
under consideration we focus on three types of boundary constraints:

1. Dirichlet-type boundary conditions: linear displacements prescribed at the
boundary � lead to a homogeneous strain field, being imposed in the full
microstructure, i.e. ε = ε̄ in �. Hence, the microscopic strain is identical to
the macro-strain at any point x ∈ � of the microstructure. This is called Voigt-
(Taylor) assumption referring to Voigt (1887) and yields an upper bound of
the stiffness of the RVE. In more detail we obtain σ̄ = 〈σ〉 = 〈C ε〉 = 〈C〉 ε̄
leading to C̄ = 〈C〉.

2. Neumann-type boundary conditions: constant stress prescribed at the bound-
ary �, zero micro-tractions. The so-called Reuss-(Sachs) bound, Reuss (1929),
provides a lower bound of the stiffness of the microstructure. Here, a homo-
geneous stress σ = σ̄ is applied in the full domain � which gives ε̄ = 〈ε〉 =
〈C−1 σ〉 = 〈C−1〉 σ̄ leading to C̄ = 〈C−1〉−1.

3. Periodic boundary conditions: periodicity of all primary fields on opposite
surfaces �+ and �− of the microstructure.

The Dirichlet (see 1.) and Neumann (see 2.) boundary conditions can be applied for
computational homogenization and then yield upper Voigt and lower Reuss bounds.
They do not play a crucial role in our application of computational homogenization
using virtual elements were we use periodic boundary conditions, see Sect. 12.3.
Although the periodic constraints (see 3.) are only applicable for perfectly periodic
microstructures, it turns out formany cases that they yield better results than either the
Dirichlet-type constraints or the Neumann-type conditions. However, the advantage
of one boundary condition over the other diminishes for a large sample of material
(large RVE). For more details, we refer to the work of Zohdi and Wriggers (2005)
and the references cited therein.
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For the periodic boundary conditions, plotted in Fig. 12.4, the surface of theRVE
decomposes into two parts � = �+ ∪ �− with normals n+ and n− = −n+ at asso-
ciated points x+ ∈ �+ and x− ∈ �−. The deformation is extended by a fine scale
fluctuation field, marked with a tilde (•̃),

u = ε̄ · x + ũ , (12.11)

around the macro-modes. The Hill conditions

1

�

∫

�

tN · δũ d� = 0 (12.12)

provides an additional constraint for the fluctuation fields. This constraint can be sat-
isfied for periodic fluctuations and anti-periodic tractions at the boundary � resulting
in

ũ+ = ũ− and t+N = −t−N on � , (12.13)

at associated points x+ ∈ �+ and x− ∈ �−. Such boundary conditions are the most
reasonable choice for the homogenization analysis under consideration, even for
microstructures which are non-periodic, see for instance Terada et al. (2000) and
Segurado and Llorca (2002). Generally there exist further possibilities to enforce the
boundary constraints. One is the so called boxed method, see e.g. Hain andWriggers
(2008b) and Heinze et al. (2015), in which the RVE is embedded in a homogeneous
solid of a certain thickness which then is impinged by aDirichlet boundary condition.

12.1.5 Computational Homogenization Approach

The effective material properties are calculated using computational homogeniza-
tion, as well documented in the works of Zohdi and Wriggers (2001a), Zohdi and
Wriggers (2005). As discussed in Sect. 12.1.3, the representative volume elements
(RVE) define the micro-scale. Those RVEs are either artificially generated or taken
directly from filtered CT-data.

There exist two ways to determine the effective properties of the material response
at the macroscale using computational homogenization.

• The first method relies on a testing procedure on RVE level. It yields the com-
ponents of the effective constitutive tensor C̄ which is the mapping between the
averaged stresses and strains, and provides the constitutive properties of themicro-
heterogeneous material, see (12.9),

〈σ〉 = C̄ 〈ε〉 . (12.14)
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The effective constitutive tensor C̄ has generally 36 constitutive constants which
can be determined by specifying 6 independent loadings (note that stresses and
strains are symmetric and have only 6 components)1

u|� = �L x with L ∈ {1, . . . , 6} (12.15)

where �L are different constant strains, e.g.

�1 =
⎡
⎣
q 0 0
0 0 0
0 0 0

⎤
⎦ , �3 =

⎡
⎣
0 0 0
0 0 0
0 0 q

⎤
⎦ , �4 =

⎡
⎣
0 q 0
q 0 0
0 0 0

⎤
⎦ , �6 =

⎡
⎣
0 0 q
0 0 0
q 0 0

⎤
⎦

(12.16)
that just represent stretch and shear with a constant load parameter q.
By applying these loads at the boundary of the discretized RVE one can compute
the stress responseσ atmicroscale and by averaging obtains 〈σ〉. Each independent
loading yields 6 equations which are employed to determine the relation between
average strain and stress and thus determine all components of C̄. For further
details, see Zohdi and Wriggers (2005).

• The second approach is based on sensitivity analysiswhich evaluates the contribu-
tions of the representative volume elementRVEwith regard to loading conditions
at the RVE boundary �. Hereby, only one general loading condition has to be
applied which leads to micro-structural stresses and strains, as described in the
previous sections. The boundary conditions have to satisfy the Hill’s energy crite-
rion (12.12). Thereafter, homogenization is used to describe the averaged material
behaviour at macroscale.
The RVE, defined at the microscale, consists of g different grains. Each grain
g = 1, . . . ,G is assumed to respond like a linear elasticmaterial with strain energy
function

�g(ε;Pg) = 1

2
εTCgε . (12.17)

Here the strain energy is given in terms of the microscopic strains ε and the
elastic grain constitutive tensorCg . The constitutive tensor corresponds to a set of
parameters Pg characterizing the grain properties, namely material constants and
orientation of material symmetries. Generally, these properties vary from grain to
grain. The microscopic stress tensor follows by the derivation of the considered
micro-elasticity energetic response function (12.17) with respect to the strain field

σ = ∂ �g(ε;Pg)

∂ ε
= Cg ε . (12.18)

1 The loading conditions (12.15) define Dirichlet boundary conditions and thus will yield an upper
bound for the consitutive constants. Alternatively, Neumann or periodic boundary conditions can
be applied. The Neumann conditions, however, need special considerations since the RVE is then
spatially not fixed and thus can undergo rigid body motions, see e.g. Loehnert andWriggers (2008).
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Within the geometrically linear theory the homogenized tangent response is equiv-
alent to the macroscopic stress-strain relation. It relates the average microscopic
stress 〈σ〉 associated to a prescribed deformation, see e.g. (12.15), which is given
here for a general prescribed deformation by ε̄ = 1

2 (� + �T ),

C̄ = Dσ̄

Dε̄
= D〈σ〉

Dε̄
=

〈Dσ

Dε̄

〉
, (12.19)

with C̄ being the tangent homogenized constitutive tensor of the polycrystalline

material. Hereby,
〈
Dσ
Dε̄

〉
is the volume average of the sensitivity of the microscopic

stress with respect to the macroscopic strain. By using the chain rule we can
determine the constitutive tensor as

C̄ = 1

�

∫

�

∂σ

∂ε

∂ε

∂u
Du
Dε̄

d� (12.20)

where now the sensitivity of the displacement field with respect to themacroscopic
strain is needed. This however can be computed within the discretization scheme
using the nodal degrees of freedom of an element.

12.1.6 Multiscale Modeling Approach (FE2/VE2)

Another homogenization concept is based on the multiscale (two-scale) modeling
approach (FE2/VE2). Hereby, the construction of the multiscale method allows to
compute the macroscopic response of a solid without knowing the constitutive equa-
tion related to the macroscopic scale. This is achieved by considering the structure
and constitutive behaviour at microscale and leads to a two-scale micro-to-macro
scenario.

We define the macroscopic stresses σ̄ by homogenization of the micro stresses
σ, which we compute from the micro scale constitutive equation σ = C ε driven by
the macro strains ε̄. Figure12.5 demonstrates the individual steps of such multiscale
method2 as

• Localization: Prescribe the deformation at the boundary � of the microstructure
by the macro strain ε̄: u|� = ε̄ x.

• Micro model: Solve the weak form in � using the constitutive micro model
σ = C ε and compute the micro stresses σ in the RVE.

• Homogenization: Compute the macro stresses σ̄ by average of σ as: σ̄ = 〈σ〉.

2 Themethodology allows different discretization schemes such as FEMatmicro and FEMatmacro
scale or VEM at micro and FEM at macro scale etc.
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Fig. 12.5 Two-scale bridging scenario: multiscale modeling approach

• Sensitivity: To obtain an overall consistent Newton-Rahpson algorithm the sensi-
tivity of the macro stresses with respect to the macro strains has to be computed,
see (12.19) and (12.20)

This concept defines a material model on the macroscale by the constitutive response
on the microscale defined by the representative volume element. The general two-
scale computational framework leads to the following procedure:

1. Evaluate the macroscopic deformation at each material point.
2. Apply in this material point the boundary conditions resulting from the macro-

scopic deformation at the microscopic RVE.
3. Solve the microscopic boundary value problem under the macroscopic loading

from step 2.
4. Transfer the volumetric averaged microscopic quantities to the dedicated mate-

rial macroscopic points.
5. Solve the macroscopic boundary value problem while retaining by sensitiv-

ity analysis the quadratic convergence of the overall solution algorithm Korelc
(2009), Zupan and Korelc (2020).

In this way the knowledge of the material behaviour at micro-level is used for the
solution of the macroscopic boundary value problem.

12.2 The Virtual Element Method

The virtual element method is very useful for the homogenization of heterogeneous
materials due to its ability to treat elements with complex, non-convex shapes and
arbitrary number of nodes. This flexibility enables VEM to be employed formaterials
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with crystallinemicrostructures, as reviewed in e.g.Marino et al. (2019), Artioli et al.
(2020b), Cascio et al. (2020), Böhm et al. (2021) and Artioli (2022).

The construction of the virtual element method for linear elasticity is based on
the formulations which were developed in Sect. 6.1.1 for two-dimensional problems.
Together with the basic formulation of the projection in Chap. 3 and the construction
of virtual elements in Chap. 5 the two- and three-dimensional formulation can be
summarized.

Based on (6.4) the strains for a virtual element with linear ansatz are given by

επ = P
(n,1)
∇ε uv (12.21)

where n ∈ {2, 3} is the dimension of the problem, P(n,1)
∇ε is the projection operator

and uv = 〈u1 u2 . . . unV 〉T is the vector of the nodal degrees of freedom. This ansatz
leads to the consistency part of the internal elastic strain energy for an element �v

in the microstructure

Un
c = �v

2
uT

v [P(n,1)
∇ε ]TCP

(n,1)
∇ε uv (12.22)

with the constitutive matrix C.
It has been observed in large deformation applications of virtual elements for the

analysis of polycrystalline materials that the energy stabilization, see Sect. 6.1.3,
leads for virtual elements with linear ansatz to superior performance, see Böhm et al.
(2023). This stabilization relies on the same strain energy as the consistency part

Un
s =

nint∑
m=1

Un
s m with Un

s m =
∫

�m

β
�m

2
[um

h ]T [Bm
h ]TCBm

h um
h d� (12.23)

whereβ is the stabilizationparameter and�m is an element of the sub-triangularization
with nint linear triangles or tetrahedra, depending on the dimension of the problem.
As already mentioned in Section 6.1.3, the nodal degrees in (12.22) and (12.23) are
the identical since the sub-mesh uses exactly the same nodes as the discretization
with virtual elements. The strain within the internal element is given by εm

h = Bm
h um

h
with constant strain matrix Bm

h .
This formulation allows the combination of the consistency and stabilization part

as, see (6.37),

Un = Un
c + βUn

s = (1 − β)Un
c (uπ) + βUn

s (uh) . (12.24)

The residual and stiffness matrix of the element �v follow now by diffentiation
with respect to the nodal unknown uv as
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Rn
v = ∂Un

∂uv

= (1 − β)
∂Un

c

∂uv

+ β
nint

A
m=1

∂Un
s m

∂um
= (1 − β)Rn

cv + β
nint

A
m=1

Rn
m

Kn
v = ∂Rv

∂uv

= (1 − β)
∂Rn

cv

∂uv

+ β
nint

A
m=1

∂Rn
m

∂um

(12.25)

for dimension n. Note that um ∈ uv .

12.2.1 Homogenization Procedure: Sensitivity Analysis
for Virtual Elements

Sensitivity analysis in computational mechanics requires the computation of deriva-
tives of the response (e.g. stresses, strains, displacements) with respect to arbi-
trary design parameter. In case of computational homogenization, starting from Eq.
(12.20), it is evident that the sensitivity Du

Dε̄
is related to the unknowns u of the homog-

enization problem. Thus, the sensitivity parameters are the independent components
of ε̄. They can be introduced via the set, see e.g. Šolinc and Korelc (2015),

� =
{
ε̄11, ε̄12, ε̄13, ε̄21, ε̄22, ε̄23, ε̄31, ε̄32, ε̄33

}
. (12.26)

In what follows, uπ = uv and um
h ∈ uv refer to the vector of nodal unknowns for the

projection part and for a particular element �m of the sub-mesh for the stabilization
part, respectively. The sensitivity problem is solved once the convergence criterion
for the primal problem is reached and the current displacements are known. The
solution of the primal problem requires

Rv

(
uπ (�) ,um

h (�) ,uD (�)
) = 0, (12.27)

where the stabilization control parameter β (ε (uπ (�))) from (12.24) is a function
of the deformation. The function uD(�) relates to the micro level nodal unknowns
with prescribed essential boundary condition as a function of sensitivity parameters.

The application of the total derivative to the residual in (12.27) leads to

DRv

D�
= (1 − β)

∂Rn
cv

∂uπ

Duπ

D�
+

nint

A
m=1

β
∂Rn

m

∂um

Dum
D�

+ ∂Rv

∂uD

DuD

D�
+

(
nint

A
m=1

Rn
m (um) − Rn

cv (uπ)

)
Dβ

D�

(12.28)

where DuD
D�

denotes the sensitivity of the constrained nodes (i.e. derivatives of bound-
ary conditions with respect to sensitivity parameters) (12.11). In case that the Dirich-
let boundary conditions (12.15) are employed the differentiation is simply DuD

D�
= x.

The sensitivity of β with respect to � is obtained by
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Dβ

D�
= ∂β

∂ε̄

∂ε̄

∂ε

∂ε

∂uπ

Duπ

D�
(12.29)

Since the internal submesh for stabilization is non-overlapping it yields

�v =
nint∑
m=1

�m, uv = uπ =
nint

A
m=1

um ⇒ Duv

D�
= Duπ

D�
=

nint

A
m=1

Dum
D�

(12.30)

Insertion of (12.29) into (12.28) with application of (12.30) leads after a reordering
to a linear system of equations for the solution of the unknown sensitivities

Kv

Duv

D�
= −Rv where Rv = ∂Rv

∂uD

DuD

D�
(12.31)

the abbreviation Rv can be interpreted as a load and the element tangent matrix Kv

is defined as

Kv =
(

(1 − β)
∂Rv

∂uv

+ β
nint

A
m=1

∂Rv

∂um

)
+ �Rv

(
∂β

∂ε̄

∂ε̄

∂ε

)
∂ε

∂uv

with �Rv =
nint

A
m=1

Rv (um) − Rv (uπ) .

(12.32)

This presented approach to computational homogenization via a sensitivity analy-
sis returns the algorithmic consistent linearized element tangent contribution of the
micro-problem with regard to a macroscopic material point. For more details on
sensitivity analysis based multi-scale methods, the interested reader is referred to
Korelc (2009), Korelc and Wriggers (2016), Zupan and Korelc (2020).

In summary, the sensitivity analysis based computational homogenization relies
on the steps:

1. Apply boundary conditions representing specific macroscopic deformations
u|� = ε̄ x at themicroscopicRVEwhere ε̄ is the prescribedmacroscopic strain.

2. Solve the microscopic boundary value problem under the macroscopic loading
of step 1.

3. Compute the averaged (macroscopic) stresses and strains using (12.9).
4. Determine the homogenized constitutive tensor from the discretized form of

(12.20)

C̄h = 1

�

nv

A
v=1

∫

�v

∂σ

∂ε

∣∣∣∣
v

∂ε

∂uv

Duv

Dε̄
d� (12.33)

which accounts for the contributions of all virtual elements of themicrostructure.
The sensitivity Duv

Dε̄
= Duv

D�
follows from (12.31).

The sensitivity approach will be used in the remaining part of this chapter to compute
the effective material constants.
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Table 12.1 Material properties of three grains employed in the numerical examples (data taken
from Marino et al. (2019))

Grain
material

Anisotropy C′
g11

C′
g12

C′
g22

C′
g23

C′
g44

C′
g66

Ua
g

Iron Selenide
(FeSe)

HA 10 3 91 31 62 1 36.19

Lithium
Titanate
(LiTiO2)

MA 252 34 289 105 92 7 16.65

Tricalcium
Silicate
(Ca3SiO5)

QI 133 53 191 75 58 33 0.46

12.3 Representative Numerical Examples

The section presents the performance of the virtual element method when applied
to computational homogenization of polycrystalline materials. Different numerical
studies are investigated in two- and three-dimensional settings. These include the
stress response of two-dimensional microstructures for uniaxial and shear deforma-
tions as well as three-dimensional applications. In the latter the focus is put on the
computational error of macroscopic effective properties, furthermore the influence
of VEM stabilization on the quality of the results is discussed.

We denote by VE-VO a virtual element discretization with Voronoi cells and
energy-stabilization. By FE-O1/O2 we label results, computed with a finite element
approach using linear/quadratic tetrahedral 3D elements (in 2D: linear/quadratic
triangles FE-T1/T2). Furthermore, the addition -minimal (i.e. O1-minimal) describes
a finite element discretization with a minimal number of elements which is provided
by the sub-mesh of the energy stabilization used for a VEM analysis. The sub-mesh
has the same number of DOFs as the VEM discretization.

Themicrostructures are generated by Voronoi tessellation with a random distribu-
tion of seed points. This yields polycrystalline assemblies which do not describe real
microstructures. However for our numerical test this artificial generation of poly-
crystalline microstructures is sufficient. Note that only one virtual element will be
used per polycrystal.

In the two-dimensional case, geometries and meshes are created byMathematica
using the Mathematica function VoronoiMesh. In three dimensions, the open-
source code Neper has been used to generate Poisson Voronoi tessellations, see
Quey et al. (2011).

The simulations are performed with the material data set from Table12.1. This
table lists material constants of single grains, i.e. components of the constitutive
matrix Cg at the micro-scale. The material constants represent components of the
constitutive matrix C′

g expressed in a local coordinate system (e′
1, e

′
2, e

′
3). Material

properties Cg introduced in (12.17) with the global coordinate system (e1, e2, e3)
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are obtained from C′
g through classical transformation matrices Qg as

ei = Qg e′
i with i = {1, 2, 3} . (12.34)

The transformation matrices are defined on the basis of the three angles {θg, δg,φg}
between material preferred direction and coordinate axes which yields

Qg =
⎡
⎣

cos θg sin θg 0
− sin θg cos θg 0

0 0 1

⎤
⎦

⎡
⎣
1 0 0
0 cos δg sin δg
0 − sin δg cos δg

⎤
⎦

⎡
⎣

cosφg sin φg 0
− sin φg cosφg 0

0 0 1

⎤
⎦ (12.35)

as outlined in Kollar and Springer (2003).
The universal anisotropy index Ua

g In Table12.1 is a defined in Ranganathan and
Ostoja-Starzewski (2008) as

Ua
g = 5

μV

μR
+ κV

κR
− 6 (12.36)

where μR/V are the estimates of the effective shear moduli when using the Reuss and
Voigt bounds, respectively. in the same way, κR/V represents the Reuss and Voigt
estimates of the modulus of compression. For isotropic behaviour we obtainUa

g = 0
while the greater the value of Ua

g the greater the anisotropy.
In most of the numerical simulations, the stabilization parameter for VEM is set

to β = 0.1. This is based on numerical analysis of different values of β, see end of
Sect. 12.3.2.

12.3.1 Tensile and Shear Deformations in Two Dimensions

For different two-dimensional deformation states, the stress distributions obtained
with different computational approaches are depicted in Figs. 12.6 and 12.7. The
reference configurations (first row) and the deformed configuration (second row) are
plotted for two different first-order discretization schemes (FEM and VEM) and are
compared with benchmark results (using an overkill solution with 111788 DOFs).
Hereby, two loading cases are considered:

• Uniaxial deformation mode with given strain ε̄ = {ε̄xx ε̄yy ε̄xy}T = {0.25 0 0}T ,
see Fig. 12.6. The results are obtained with VE-VO and FE-T1-minimal discretiza-
tions and compared with the benchmark solution.

• Shear deformation mode with given strain ε̄ = {ε̄xx ε̄yy ε̄xy}T = {0 0 0.25}T , see
Fig. 12.7, using the same discretization as in the uniaxial case.

In both figures, the color in each VE-VO or FE-T1 element is associated with the
constant stress which is consistent with the low-order element formulation. For com-
parison purpose, the stress distribution obtained in the benchmark is also reported.
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Reference Configuration

1T-EFOV-EV Benchmark

Deformed Configuration

Fig. 12.6 Microscopic stress distribution σxx for different discretizations and tensile deformation
mode

Reference Configuration

1T-EFOV-EV Benchmark

Deformed Configuration

Fig. 12.7 Microscopic stress distribution σxy for different discretizations and shear deformation
mode
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(a) Virtual element mesh (b) Finite element sub mesh (c) Finite element mesh

Fig. 12.8 Artificially generated RVE with 200 grains

For FE-T1-minimal discretization, the values obtained in neighboring elements
are highly scattered and yield stress concentrations that are not visible in the bench-
mark solution. Thus, the stresses are unrealistic when compared with the benchmark
case. Specifically, there exists some highly distorted elements that are characterized
by high stresses. However those are located in regions distinguished by moderate
stresses in the benchmark distribution. On the other hand, the stress distribution from
the virtual element simulation shows results close to the benchmark solution. These
results prove the efficient performance of VEM, since the stress values correspond to
the real stresses which are the quantities of interest in the homogenization process.

In summary, the response of virtual element formulations in terms of average
stress distributions appears to be less sensitive than finite element schemes when
applied to distortedmesheswith strong and heterogeneous grain anisotropies. Further
comparisons of the virtual element method with higher order finite element methods
can be found in Marino et al. (2019).

12.3.2 Three Dimensional Homogenization

Amicrostructure consisting of 200 polyhedral grains is considered see Fig. 12.8a. It is
generated artificially by a Voronoi tessellation. Virtual and finite element approaches
will be compared in a parametric study. In the virtual element approach, each polyhe-
dral grain is discretized by one virtual element (VE-VO) as shown in Fig. 12.8a. By
employing a sub triangulation, a coarse FE-O1-minimal mesh with the same number
of nodes as the VE-VO mesh is constructed, see Fig. 12.8b. This corresponds to the
sub-mesh with which the stabilization term is computed for the energy stabiliza-
tion. The results of these two meshes are compared with a fine mesh, see Fig. 12.8c,
which resolves each of the grains by an inscribed mesh. Here two discretizations are
introduced based on linear (FE-O1) and quadratic (FE-O2) finite elements.



388 12 Virtual Elements for Computational Homogenization …

Different material properties of the grains are introduced and employed in the
3D parametric study. These are iron selenide (FeSe), lithium titanate (LiTiO2) and
tricalcium silicate (Ca3SiO5). Iron selenide is known to be highly anisotropic (HA)
while lithium titanate is mildly anisotropic (ML) and tricalcium silicate is quasi
isotropic (QI). This can be seen in Table12.1 by looking at the components of the
constitutive tensor at grain levelC′

g (in GPa) being expressed in the local coordinate
system (e′

1, e
′
2, e

′
3) that is aligned with material preferred directions. Furthermore the

universal anisotropy index Ua
g is used to highlight the degree of anisotropy.

Computational error of macroscopic effective properties. When applied to
homogenization, the performance of virtual and finite element approaches can be
evaluated by an estimator of the computational error EC . It is designed to describe
the deviation of the computed effective constitutive data from a reference solution
with a very fine mesh

EC = ||C̄D − C̄re f ||
||C̄re f || · 100% with D ∈ {

VE-VO, FE-O1, FE-O2
}
. (12.37)

Three different cases of anisotropy (highly/mildly anisotropic cases and quasi-
isotropic case) are investigated, with data from Table12.1. These are solved for the
different discretizations. C̄re f is the effective macroscopic constitutive matrix result-
ing from the solution of the FE-O2 discretization using a fine mesh with 1.4 · 106
DOFs. For VE-VO, we fix the stabilization constant to β = 0.1.

Table12.2 presents the computational error estimation EC for the effective
macroscopic constitutive matrix C̄ related to different discretization schemes and
three degrees of anisotropy (highly anisotropic case with trigonal unit cell, mildly
anisotropic with hexagonal unit, and quasi isotropic with orthorhombic unit cell). For
VE-VO and FE-O1-minimal the same number of DOF are considered (2.5k DOFs)
whereas more elements in FEM-O1 fine (161k DOFs) and FEM-O2 (22k DOFs)
are used. A good performance of the virtual element method is observed with the
smallest error EC for all cases when compared with linear and higher order finite
element methods. By increasing the degree of anisotropy as well as by varying mate-
rial symmetry classes, VE-VO demonstrates robust and accurate results with a small
error EC , as illustrated in Table12.2.

The computational homogenization based on VE-VO/FE-O1/FE-O2 of a RVE
yields the following effective macroscopic modulus for highly anisotropic grains:

Table 12.2 Computational error EC estimation (in percent) for different discretization schemes
and degrees of anisotropy

Discretization VE-VO FE-O1 FE-O1(fine) FE-O2

Number of equations 2.5k DOFs 2.5k DOFs 161k DOFs 22k DOFs

Highly anisotropic 6.32 40.14 9.13 14.27

Mildly anisotropic 1.58 13.09 2.85 4.40

Quasi isotropic 0.07 1.31 0.20 0.33
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• VE-VO with ≈ 2.5k DOF, β = 0.1 and 200 Grains:

C̄ =

⎡
⎢⎢⎢⎢⎢⎢⎣

31.655 10.700 11.833 −0.31151 −1.3472 0.23269
10.700 34.126 10.952 0.67085 0.39950 −0.84181
11.833 10.952 44.690 −0.09844 −0.95517 −0.39478

−0.31151 0.67085 −0.09844 13.445 −0.37312 0.12591
−1.3472 0.3995 −0.95514 −0.37312 14.442 0.17552
0.23269 −0.84181 −0.39478 0.12591 0.17552 10.053

⎤
⎥⎥⎥⎥⎥⎥⎦

• FE-O1 with ≈ 161k DOF and 200 Grains

C̄ =

⎡
⎢⎢⎢⎢⎢⎢⎣

32.829 10.345 11.713 −0.27974 −1.3182 0.30427
10.345 35.290 10.891 0.78866 0.24098 −0.80396
11.713 10.891 45.655 −0.04606 −0.99944 −0.37193

−0.27974 0.78866 −0.04606 14.128 −0.22852 −0.06552
−1.3182 0.24098 −0.99944 −0.22851 15.126 0.11165
0.30427 −0.80396 −0.37193 −0.06552 0.11165 10.480

⎤
⎥⎥⎥⎥⎥⎥⎦

• Reference: FE-O2 with ≈ 1.4M DOF and 200 Grains

C̄ =

⎡
⎢⎢⎢⎢⎢⎢⎣

29.967 9.8164 11.155 −0.27974 −1.3182 0.30427
9.8164 32.156 10.425 0.78866 0.24098 −0.80396
11.155 10.425 41.888 −0.04606 −0.99944 −0.37193

−0.27974 0.78866 −0.04606 12.540 −0.22852 −0.06552
−1.3182 0.24098 −0.99944 −0.22852 13.657 0.11165
0.30427 −0.80396 −0.37193 −0.06552 0.11165 9.3153

⎤
⎥⎥⎥⎥⎥⎥⎦

By comparing the obtained values it is clear that the results of VE-VO are closer
to the reference solution. This comes with a remarkable reduction of computational
costs of two orders of magnitude as demonstrated in Table12.3.
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Table 12.3 Comparison of the run times of different discretization schemes

Method No. of DOF Total time (s)

VE-VO (β=0.1) ≈ 2.5 · 103 1.127

FE-O1 (fine) ≈ 161 · 103 109.85

FE-O2 (fine, reference) ≈ 1.4 · 106 7967.7

Fig. 12.9 Investigations of Frobenius norm ||Ch || of the homogenized stiffness matrix using VEM
for different grain properties

In conclusion, the virtual element method produces with one element per grain for
practical purposes very good and accurate results for homogenization of anisotropic
materials.

Influence of the stabilization parameter. The computational errorEC was obtained
in the above study by employing a fixed value of the stabilization parameter β = 0.1
in VE-VO approach. The effect of this stabilization parameter on the final results
will be investigated next.

The solutions regarding the norm of the effective macroscopic constitutive tensor
Ch , illustrated in Fig. 12.9, depict that VE-VOmatches the finest solution for low val-
ues of the stabilization parameter β ∈ [0.075, 0.15] in the mild and high anisotropy
cases. The low optimal value of β suggests that the computational homogenization
application requires only a small stabilization of the virtual element. Thus the stabi-
lization term is only needed to eliminate the rank-deficiency of virtual elements, as
outlined in Marino et al. (2019), Böhm et al. (2021), Böhm et al. (2023).

On one hand it is unfortunate that the results depend on the stabilization parameter.
But on the other hand, all our experiences using virtual elements for homogenization
indicate that one can use β = 0.1 for a large range of homogenization problems
including isotropy and anisotropic elasticity but also crystal plasticity, see Böhm
et al. (2023).
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Temizer, İ, and T.I. Zohdi. 2007. A numerical method for homogenization in non-linear elasticity.
Computational Mechanics 40: 281–298.

Terada, K., and T. Kikuchi. 2001. A class of general algorithms for multi-scale analyses of hetero-
geneous media. Computer Methods in Applied Mechanics and Engineering 190: 5427–5464.

Terada, K., M. Hori, T. Kyoya, and N. Kikuchi. 2000. Simulation of the multi-scale convergence
in computational homogenization approaches. International Journal of Solids and Structures 37
(16): 2285–2311.

Voigt, W. 1887. Über die Beziehung zwischen den beiden Elastizitätskonstanten isotroper Körper.
Annalen der Physik 38: 573–587.

Wellmann, C., C. Lillie, and P. Wriggers. 2008. Homogenization of granular material modelled by
a three-dimensional discrete element method. Computers and Geotechnics 35: 394–405.

Wriggers, P., and S.O. Moftah. 2006. Mesoscale models for concrete: Homogenization and damage
behaviour. Finite Element Analysis and Design 42: 623–636.

Zohdi, T.I. and P.Wriggers. 2005. Introduction toComputationalMicromechanics, vol. 20,LNACM,
ed. F. Pfeiffer, and P. Wriggers. Berlin: Springer.

Zohdi, T.I. 2008. On the computation of the coupled thermo-electromagnetic response of continua
with particulate microstructure. International Journal for Numerical Methods in Engineering 76
(8): 1250–1279.

Zohdi, T., and P. Wriggers. 1999. Microstructural decomposition error estimates. Zeitschrift für
angewandte Mathematik und Mechanik 79: 155–158.

Zohdi, T.I., and P. Wriggers. 2001. Computational micro-macro material testing. Archives of Com-
putational Methods in Engineering 8: 131–228.

Zohdi, T., and P. Wriggers. 2001. Aspects of the computational testing of the mechanical proper-
ties of microheterogeneous material samples. International Journal for Numerical Methods in
Engineering 50: 2573–2599.

Zohdi, T.I., J.T. Oden, and G.J. Rodin. 1996. Hierarchical modeling of heterogeneous bodies.
Computer Methods in Applied Mechanics and Engineering 138 (1–4): 273–298.

Zupan, N., and J. Korelc. 2020. Sensitivity analysis based multi-scale methods of coupled path-
dependent problems. Computational Mechanics 65 (1): 229–248.



Chapter 13
Virtual Elements for Beams and Plates

Beams and plates serve as individual structures or structural members of many tech-
nical constructions such as buildings, airplanes, cars, or ships. Thus, many analytical
and numerical simulation schemes were developed over the last century that can
predict kinematical quantities, like deflections and rotations, and stress resultants,
like normal forces, shear forces and bending moments. Classical beam models are
described in any textbook on engineeringmechanics, platemodels and related analyt-
ical solutions can be found as well in many textbooks, for a broad range of analytical
solutions see e.g. Timoshenko andWoinowsky-Krieger (1959). The underlyingmath-
ematical models are based on kinematical assumptions which relate to the names of
Euler and Bernoulli for beams and Kirchhoff and Love for plates. They lead to fourth
order differential and partial differential equations. Numerical solutions schemes
were developed first within the finite difference method. About 60years ago finite
beam and plate elements were developed starting with the work of Melosh (1961),
Clough and Tocher (1965), Bazeley et al. (1965) for plates.

The Euler Bernoulli theory requires for beams C1-continuous ansatz functions
which, for a finite element formulation, is easily available using Hermite polynomi-
als, see e.g. Oñate (2013). Thus a virtual element formulation for beams does not
necessarily provide any advantages. However, based on the virtual element method
beam elements of any ansatz order can be formulated easily, as will be shown in
Sect. 13.1.

The usual forms of isoparametric finite element ansatz functions are not able to ful-
fillC1-continuity needed to discretize problemswhen using theKirchhoff-Love plate
theory. Approximations lead to non-conforming elements. First elements that met
C1-continuity were developed inWithum (1966) and then within the TUBA series of
triangular elements in Argyris et al. (1968) and by Bell (1969) using a different math-
ematical formulation. Quadrilateral elements were designed by De Veubeke (1968)
based on a composite approach that included four triangular elements. Strictly rect-
angular elements can be found e.g. in Bufler and Stein (1970) which however have
a reduced application range, being not able to discretize general shapes of plates.
Even if C1-continuity is fulfilled, like within the TUBA element family, there is still

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
P. Wriggers et al., Virtual Element Methods in Engineering Sciences,
https://doi.org/10.1007/978-3-031-39255-9_13

395

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39255-9_13&domain=pdf
https://doi.org/10.1007/978-3-031-39255-9_13


396 13 Virtual Elements for Beams and Plates

a disadvantage since higher order kinematical quantities, e.g. components of the cur-
vature, w,xx ,w,yy , appear as nodal unknowns, besides the deflection w and rotations
w,x ,w,y . It is not obvious and intuitive how to formulate Dirichlet boundary condi-
tions for these variables which renders the application of such elements difficult in
an engineering environment.

The latter complicationwas circumvented by the introduction ofReissner-Mindlin
elements that only have to fulfil C0-continuity and thus allow the use of ansatz func-
tions well known in solid mechanics. The development of related finite elements
started with the work of e.g. Zienkiewicz et al. (1971), Hughes et al. (1977). Due to
locking of these elements in the thin plate limit, numerous different variants were
considered in the following years to overcome this problem. Locking is related to
the vanishing shear strains γα → 0 for plate thickness h → 0, see e.g. the textbooks
Hughes (2012), Reddy (1999), Oñate (2013). One of the numerous variants to over-
come locking is based on the discrete, point-wise fulfillment ofC1-continuity that led
to the discrete Kirchhoff triangles (DKT), see Batoz et al. (1980), and quadrilaterals
(DKQ), see Batoz and Tahar (1982).

In the virtual element method the ansatz is defined at the edges of the elements
which allows to fulfill C1-continuity in a relatively easy way. Thus, Kirchhoff-Love
plate elements can be developed without any restrictions, see Brezzi and Marini
(2013). As shown in Sect. 13.2, VEM has the advantage that no higher order kine-
matical quantities have to be introduced as nodal unknowns. Construction of virtual
plate elements with e.g. three- and four nodes allows to revisit the construction
of Kirchhoff-Love elements and their integration into classical software packages.
Numerical results for two virtual plate elements with low order ansatz spaces can be
found in Chinosi and Marini (2016) which includes error estimates. Its application
for a range of engineering problems is described in Wriggers et al. (2021) which
has a section where the virtual element technology is employed to develop trian-
gular and quadrilateral finite element like plate elements. Other researcher have so
far developed virtual element schemes for dynamic plate problems, see Mora et al.
(2018), and buckling analysis of plates, see Mora and Velásquez (2020), Meng and
Mei (2020). Furthermore, virtual plate elements using Reissner-Mindlin kinematics
were developed inBeirão daVeiga et al. (2019)while non-conforming discretisations
were considered in Antonietti et al. (2018) to model plate problems with VEM.

13.1 Virtual Element Formulations for Euler-Bernoulli
Beams

As an introduction of C1-continuous virtual elements we consider a beam of length
l with a stiffness of E I where E is the Young’s modulus and I the moment of inertia
of the cross section. The beam is loaded by a line load of magnitude q, see Fig. 13.1a.
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Fig. 13.1 Beam problem and virtual element

The fourth order ordinary differential of the Euler-Bernoulli beamwith a constant
cross section is given for the deflection w by

E I w′′′′(x) = q(x) . (13.1)

By introducing a potential form the differential equation (13.1) can be written as a
minimization problem

1

2

l∫

0

E I [w′′(x)]2dx −
l∫

0

q(x)w(x)dx −→ MI N . (13.2)

When using the virtual element formulation, the approximation of the deflection wh

is not defined along the beam axis. The unknown function wh is only known at the
nodal points of the element, as has been already discussed for trusses in Sect. 1.2.1.
For a fourth order differential equation not only the nodal deflection wi but also its
derivative w,x i (rotations) and, depending on the ansatz order, some moments mk

have to be introduced as unknowns.

13.1.1 Third Order Ansatz for a One-Dimensional Virtual
Beam Element

The first and simplest virtual element formulation for a beam relies on a cubic ansatz.
Here the nodal unknowns wi are introduced together with the rotations w,x i = θi to
describe a beam element of length lv, as depicted in Fig. 13.1b. The four unknowns
w1, θ1, w2 and θ2 lead to a choice of a cubic ansatz

wπ = a1 + a2x + a3x
2 + a4x

3 = 〈1 x x2 x3〉

⎧⎪⎪⎨
⎪⎪⎩

a1
a2
a3
a4

⎫⎪⎪⎬
⎪⎪⎭

= H(1,3)
w (x) a . (13.3)
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As in the bar example in Sect. 1.2.1 the parameters can be determined from the
L2-projection which has now to be written for the curvature w′′

lv∫

0

p′′ (w′′
h − w′′

π ) dx = 0 →
lv∫

0

p′′ w′′
π dx =

lv∫

0

p′′ w′′
h dx (13.4)

Again p is a polynomial of the same order as wπ . Since second derivatives appear on
the left hand side of the projection only the coefficients a3 and a4 can be determined
from (13.4). Thus one can write

w′′
π = 〈2 6x〉

{
a3
a4

}
= B(1,3)

w â and p′′ = 〈2 6x〉 = B(1,3)
w (13.5)

which yields after integration a 2 × 2 matrix for the left side of the projection (13.4)

lv∫

0

p′′ w′′
π dx =

lv∫

0

[B(1,3)
w ]TB(1,3)

w dx â = lv

[
4 6lv
6lv 12l2v

]
â = Gπ â . (13.6)

The right hand side of the projection (13.4) cannot be computed directly since wh is
not known along the beam axis. However by using partial integration twice we are
able to shift wh to single values at the boundary of the element which are known

lv∫

0

p′′ w′′
h dx = (p′′w′

h)
∣∣lv
0 − (p′′′wh)

∣∣lv
0 +

lv∫

0

p′′′′ wh dx . (13.7)

In (13.3) we use a cubic polynomial hence the fourth order derivative p′′′′ is zero.
Noting that the derivative p′′′ can be written as ∇B(1,3)

w = 〈0 6〉 the matrix form of
(13.7) follows with the right side of (13.5) as

lv∫

0

p′′ w′′
h dx = ([B(1,3)

w ]Tw′
h

)∣∣lv
0 − ([∇B(1,3)

w ]T wh
)∣∣lv

0 . (13.8)

The rotation w′
h is known at the nodes of the beam element: w′

h(x = 0) = θ1 and at
w′
h(x = lv) = θ2, see Fig. 13.1b. The same is true for the deflectionwh :wh(x = 0) =

w1 and wh(x = lv) = w2. By introducing these relations into the above equation and
by combining the result with (13.6) the explicit matrix form of (13.4)

Gπ â =
{
2
6lv

}
θ2 −

{
2
0

}
θ1 −

{
0
6

}
(w2 − w1) (13.9)
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is obtained. The solution of this equation yields the coefficients a3 and a4 as a function
of the nodal unknowns wv

â = 1

l2v

[−1 −2lv 3 −lv
2
lv

1 − 2
lv

1

]
wv = P̂wv (13.10)

with wT
v = 〈w1 θ1 w2 θ2〉. Based on this result the curvature w′′

π can be expressed
with (13.5) as w′′

π = B(1,3)
w (x) â = B(1,3)

w (x) P̂wv. Now the strain energy of the beam
element (13.2) will be approximated using w′′

π

UB = 1

2

l∫

0

E I [w′′
π (x)]2dx = 1

2
wT

v P̂
T E I

lv∫

0

[B(1,3)
w (x)]T B(1,3)

w (x) dx P̂wv .

(13.11)
We note that the integral in this equation was already evaluated in (13.6). Thus the
stiffness matrix KB,V of the virtual Euler-Bernoulli beam element can be computed
explicitly by a second derivative of the potential with respect to the nodal unknowns

KB,V = ∂2UB

∂wv∂wv
= E I P̂T Gπ P̂ = E I

l3v

⎡
⎢⎢⎣

12 6lv −12 6lv
6lv 4l2v −6lv 2l2v
−12 −6lv 12 −6lv
6lv 2l2v −6lv 4l2v

⎤
⎥⎥⎦ (13.12)

which is exactly the same stiffness matrix as for the finite element method with a
cubic Hermitian ansatz function, see e.g. Oñate (2013).

What remains is to compute the loading term in the potential (13.2). The ansatz
wh is not known inside the element but can be approximated by wπ in (13.3). So
far only a3 and a4 are known. To compute coefficients a1 and a2 the relation (1.13)
in Sect. 1.2.1 has to be extended to include also the derivative of the deflection (the
rotations). The idea is to equalise not only the average of the nodal degrees of freedom
ofwh and the value of the projectionwπ at the element nodes but also the rotationsw′

h
and w′

π . Hence the following conditions can be employed to compute the remaining
coefficients

2∑
i=1

wh(xi ) =
2∑

i=1

wπ (xi ) and
2∑

i=1

w′
h(xi ) =

2∑
i=1

w′
π (xi ) . (13.13)

By evaluating these equations at the nodal points x = 0 and x = lv we obtain for the
deflections

w1 + w2 = a1 + (a1 + a2lv + a3l
2
v + a4l

3
v ) (13.14)

and the rotations
θ1 + θ2 = a2 + (a2 + 2a3lv + 3a4l

2
v ) . (13.15)
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By insertinga3 anda4 from (13.10) the resulta2 = θ1 anda1 = w1 follows.This result
is in away obvious since the ansatz (13.3) immediately reveals thatwπ (0) = a1

.= w1

and w′
π (0) = a2

.= θ1.
Now all coefficients are known as functions of the nodal degrees of freedom wv

which can be expressed by the projection

a = Pwv =⇒

⎧⎪⎪⎨
⎪⎪⎩

a1
a2
a3
a4

⎫⎪⎪⎬
⎪⎪⎭

=

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0

−1 −2lv 3 −lv
2
lv

1 − 2
lv

1

⎤
⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

w1

θ1
w2

θ2

⎫⎪⎪⎬
⎪⎪⎭

(13.16)

With (13.3) the projection wπ is complete

wπ (x) = H(1,3)
w (x)Pwv . (13.17)

By inserting this ansatz into the loading term in (13.2), here written for the element
v, we derive for q(x) = q0 = const.

lv∫

0

q(x)wπ (x)dx = q0

lv∫

0

H(1,3)
w (x) dx Pwv = q0 lv

2

〈
1 lv

6 1 − lv
6

〉
wv (13.18)

which is exactly the same result as provided by a cubic Hermitian finite element
ansatz, see e.g. Oñate (2013).

Like for the truss in Sect. 1.2.1,the virtual element method leads for the Euler-
Bernoulli beam to an identical result as the finite element method where the stiffness
matrix has full rank. Thus the remainder (wh − wπ ) inwh = wπ + (wh − wπ ) is zero.

13.1.2 Fourth Order Ansatz for a One-Dimensional Virtual
Beam Element

This simple example will underline the methodology used to derive virtual elements
for higher order ansatz function. For this purposewediscuss a fourth order (quadratic)
ansatz for the problem E Iw′′′′(x) = q(x), see Fig. 1.8.

Analogously to the case of the cubic projection we select a quartic function

wπ = a1 + a2 x + a3 x
2 + a4 x

3 + a5 x
4 = H(1,4)

w (x) a (13.19)

with H(1,4)
w (x) = 〈1 x x2 x3 x4〉 and aT = 〈a1 a2 a3 a4 a5〉. This projection function

has five unknown parameters and the question is: how will it be possible to derive a
virtual element since we have only two points at the edges of the element with nodal
displacements w1 and w2 and the nodal rotations θ1 and θ2?
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The solution is analogous to Sect. 1.2.2. We look at the least square projection
(13.4) together with (13.7)

lv∫

0

p′′ (w′′
h − w′′

π ) dx = 0 →
lv∫

0

p′′ w′′
π dx = (p′′w′

h)
∣∣lv
0 − (p′′′wh)

∣∣lv
0 +

lv∫

0

p′′′′ wh dx

(13.20)
where now p has the same polynomial degree as (13.19) and thus is a quartic poly-
nomial with p′′′′ = const. Hence the last integral

∫
wh dx does not vanish. But it is

also not computable since wh is not known inside the element. As in Sects. 1.2.2 and
3.1.7 we introduce the internal variable (so called moment)

m0 = 1

lv

∫ lv

0
wh dx (13.21)

which is scaled by the element length such that m0 has the same dimensions as w1

and w2. With this new variable the projection in (13.20) can be determined, as we
will see next.

It is convenient to introduce a matrix formulation in order to shorten notation.
This leads to the second derivative of wπ

w′′
π = 2a3 + 6a4 x + 12a5 x

2 = B(1,4)
w (x) â (13.22)

where B(1,4)
w (x) = 〈2 6x 12x2〉 and âT = 〈a3 a4 a5〉. By writing the second deriva-

tive of the polynomial p in matrix form p′′ = [B(1,4)
w ]T = 〈2 6x 12x2〉T the left hand

side of (13.20) yields

lv∫

0

p′′ w′′
π dx =

lv∫

0

[B(1,4)
w (x)]TB(1,4)

w (x) dx â =
lv∫

0

⎡
⎣ 4 12x 24x2

12x 36x2 72x3

24x2 72x3 144x4

⎤
⎦ dx

⎧⎨
⎩
a3
a4
a5

⎫⎬
⎭ .

(13.23)
The polynomials can be integrated exactly, leading to

lv∫

0

p′′ w′′
π dx =

⎡
⎣4lv 6l2v 8l3v
6l2v 12l3v 18l4v
8l3v 18l4v

144
5 l5v

⎤
⎦
⎧⎨
⎩
a3
a4
a5

⎫⎬
⎭ = G â (13.24)

The right hand side in (13.20) can be evaluated with p′′′ = 〈0 6 24x〉T and p′′′′ =
〈0 0 24〉T resulting in
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r(whi ) = (p′′ w′
h)
∣∣lv
0 − (p′′′ wh)

∣∣lv
0 +

lv∫

0

p′′′′ wh dx

=
⎛
⎝
⎧⎨
⎩

2
6x
12x2

⎫⎬
⎭w′

h −
⎧⎨
⎩

0
6

24x

⎫⎬
⎭wh

⎞
⎠
∣∣∣∣∣∣
lv

0

+
⎧⎨
⎩

0
0
24

⎫⎬
⎭

lv∫

0

wh dx .

(13.25)

With the unknowns defined in the right part of Fig. 13.1, wh(0) = w1, wh(lv) = w2,
w′
h(0) = θ1 and w′

h(lv) = θ2, and the internal unknown m0 the right hand side of
(13.25) follows as

r(wi , θi ,m0) =
⎧⎨
⎩
2(θ2 − θ1)

6 lvθ2
12l2v θ2

⎫⎬
⎭−

⎧⎨
⎩

0
6 (w2 − w1)

24lvw2

⎫⎬
⎭+

⎧⎨
⎩

0
0

24lvm0

⎫⎬
⎭ (13.26)

The projection equation (13.20) can now be solved for the unknowns a by combining
(13.24) and (13.26)

G â = r(wi , θi ,m0) →
⎧⎨
⎩
a3
a4
a5

⎫⎬
⎭ =

⎧⎪⎨
⎪⎩

− 3
2l2v

(12w1 + 3lvθ1 + 8w2 − 4lvθ2 − 20m0)
2
l3v
(16w1 + 3lvθ1 + 14w2 − 2lvθ2 − 30m0)

− 5
2l4v

(6w1 + lvθ1 + 6w2 − lvθ2 − 12m0)

⎫⎪⎬
⎪⎭ .

(13.27)
Furthermore the constants a1 and a2 can be obtained by the conditions that the

average of the projection wπ and its derivative w′
π evaluated at the nodal points is

equal to the average of the ansatz wh and its derivative w′
hat the nodal points for one

element
2∑

k=1

wπ (xk) =
2∑

k=1

wk ,

2∑
k=1

w′
π (xk) =

2∑
k=1

θk . (13.28)

The first equation leads with x1 = 0, x2 = lv and the ansatz (13.19) to

a1 + (a1 + a2 lv + a3 l
2
v + a4 l

3
v + a5 l

4
v ) = w1 + w2 (13.29)

and the second condition results in

a2 + (a2 + 2a3 lv + 3a4 l
2
v + 4a5 l

3
v ) = θ1 + θ2 . (13.30)

The two equations above yield a matrix system from which a1 and a2 can be deter-
mined [

2 lv
0 2

]{
a1
a2

}
=
{
w1 + w2

θ1 + θ2

}
−
[
l2v l3v l4v
2lv 3l2v 4l3v

]⎧⎨
⎩
a3
a4
a5

⎫⎬
⎭ . (13.31)
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This leads after some algebra with (13.27) to a1 = w1 and a2 = θ1. Again, the result
is obvious since for x = 0 the ansatz function should give the nodal values w1 and
θ1 at this point.

As for the virtual beam element with cubic ansatz in Sect. 13.1 a projector, see
(13.16), can be defined which expresses the constants aT = 〈a1 a2 a3 a4 a5〉 in terms
of the nodal values and the moment wT

v = 〈w1 θ1 w2 θ2 m0〉 as

a = Pwv =⇒

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a1
a2
a3
a4
a5

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

= 1

l4v

⎡
⎢⎢⎢⎢⎣

l4v 0 0 0 0
0 l4v 0 0 0

−18l2v − 9
2 l

3
v −12l2v +6l3v 30l2v

32lv 6l2v 28lv −4l2v −60lv
−15 − 5

2 lv −15 5
2 lv 30

⎤
⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

w1

θ1
w2

θ2
m0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(13.32)

The definitions in (13.19) and (13.22) together with

B = 1

l4v

⎡
⎣−18l2v − 9

2 l
3
v −12l2v +6l3v 30l2v

32lv 6l2v 28lv −4l2v −60lv
−15 − 5

2 lv −15 5
2 lv 30

⎤
⎦ (13.33)

yield thematrix form of the projection of the ansatz function and its second derivative

wπ = H(1,4)
w (x)Pwv and w′′

π = B(1,4)
w (x)Bwv . (13.34)

The derivative w′′
π from (13.34) can now be inserted into the potential energy and

integrated using the result from (13.24)

Uv = 1

2

lv∫

0

E I (w′′
π )2 dx = 1

2
wT

v B
T

lv∫

0

[B(1,4)
w (x)]TB(1,4)

w (x) dx Bwv = 1

2
wT

v B
TGBwv.

(13.35)
Now the stiffnessmatrix of the virtual element follows by differentiation with respect
to wv as

KB,V = ∂2Uv

∂wv∂wv
= B

TGB = E I

l3v

⎡
⎢⎢⎢⎢⎣

192 36lv 168 −24lv −360
36lv 9l2v 24lv −3l2v −60lv
168 24lv 192 −36lv −360

−24lv −3l2v −36lv 9l2v 60lv
−360 −60lv −360 60lv 720

⎤
⎥⎥⎥⎥⎦ (13.36)

It is interesting to note that there is no adequate FEM formulation that yields a finite
beam element with 5 degrees of freedom.

The loading term follows from the potential, see (13.2),
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Uq =
lv∫

0

q(x)wh dx (13.37)

Interestingly, for the case of q(x) = q0 = const. the integral
∫
wh dx can be evalu-

ated directly using the definition (13.21) of the variable m0. This yields

Uq = q0

lv∫

0

wh dx = q0 m0 lv (13.38)

Thus the matrix form of the loading term is simply given by1

f B,V
0 = q0 lv

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0
0
0
0
1

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(13.39)

which is similar to the constant loading term of the truss element with quadratic
ansatz function, see (1.36). For a load q(x) = (1 − x

lv
) q1 + x

lv
q2 that varies linearly

in the virtual element the potential of the loading term follows by inserting wπ from
(13.34)

Uq =
lv∫

0

[(
1 − x

lv

)
q1 + x

lv
q2

]
H(1,4)

w (x)Pwv dx =

lv
120

[(q1 − q2)[12(w1 − w2) + lv(θ1 + θ2)] + 60 (q1 + q2)m0]

(13.40)

where the two constants q1 and q2 describe the load magnitude at the nodes. Differ-
entiation of Uq with respect to the nodal unknowns yields the load vector for one
element

f B,V
1 = ∂Uq

∂wv
= lv

120

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

12(q1 − q2)
(q1 − q2)lv

−12(q1 − q2)
(q1 − q2)lv

60(q1 + q2)lv

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(13.41)

The accuracy of the developed element is investigated using a clamped beam, see
Fig. 13.2. Only one element is considered for a constant load, q1 = q2 = q0 leading
to f0 in (13.39). With the boundary conditions for the clamped beam (w1 = θ1 = 0),

1 One can evaluateUq in a different way by inserting the ansatz for wπ , see (13.34) into the integral
in (13.38). This will actually lead after some algebraic manipulations to exactly the same result.
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Fig. 13.2 One beam
element under linearly
varying line load

see Fig. 13.2, the first and second row and column of the element stiffness matrix
(13.36) can be eliminated. In line with that, the first two rows of the load vector are
deleted as well which yields the equation system and the solution

⎡
⎣ 192 −36lv −360

−36lv 9l2v 60lv
−360 60lv 720

⎤
⎦
⎧⎨
⎩
w2

θ2
m0

⎫⎬
⎭ =

⎧⎨
⎩

0
0

q0 lv

⎫⎬
⎭ =⇒

⎧⎨
⎩
w2

θ2
m0

⎫⎬
⎭ = q0 l3v

E I

⎧⎨
⎩

lv
8
1
6
lv
20

⎫⎬
⎭ (13.42)

The nodal values w2 and θ2 are identical to the analytical results. Furthermore the
moment distribution can be computed within the beam: M(x) = −E I w′′

π . By intro-
ducing the results of (13.42) in (13.34) the moment distribution

M(x) = E I B(1,4)
w (x)Bwv = −q0

2
(lv − x)2 (13.43)

is obtained. Again, the result matches the analytical solution hence the analytical
solution is a fourth order polynomial and thus the quartic ansatz (13.19) approximates
the solutions exactly.

A computation using the linearly distributed load yields the equation system and
solution

⎡
⎣ 192 −36lv −360

−36lv 9l2v 60lv
−360 60lv 720

⎤
⎦
⎧⎨
⎩
w2

θ2
m0

⎫⎬
⎭ =

⎧⎨
⎩

−(q1 − q2)
lv
10

(q1 − q2)
l2v
120

(q1 + q2)
lv
2

⎫⎬
⎭

=⇒
⎧⎨
⎩
w2

θ2
m0

⎫⎬
⎭ = l3v

24E I

⎧⎨
⎩

lv
5 (4q1 + 11q2)
q1 + 3q2

lv
15 (5q1 + 13q2

⎫⎬
⎭

(13.44)

The result demonstrates that w2 and θ2 coincide with the analytical solution at the
right element node. This can actually be shown for all complete polynomial ansatz
functions that fulfil the homogeneous differential equation of the beam. The result
(13.44) produces the approximate bending moment distribution

MB,V
1 (x) = −E IB(1,4)

w (x)Bwv = −(19q1 + 41q2)
l2v
120

+ (2q1 + 3q2)
lvx

5
− (q1 + q2)

x2

4
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which is not the same as the analytical solution

MB,A
1 (x) = − (lv − x)2

6lv
[(q1 + 2q2)lv + (q2 − q1)x] , (13.45)

being a cubic function in x .

13.1.3 Static Condensation of the Moments

When using the classical ansatz functions, linear for the truss and cubic Hermitian for
the beam, the virtual elements are identical to finite elements. For higher order ansatz
functions there is a difference between virtual and finite element formulations, as
shown in Sects. 1.2 and 13.1. These higher order ansatz spaces yield a more accurate
resolution of the displacements and resultant stresses. Hence higher order virtual
element ansatz functions can be employed when an increased accuracy for non-
homogeneous problems is of interest.

As outlined in Wriggers (2022), the basic linear finite element formulation is
recovered when a static condensation of the moments mi is performed. The stiffness
matrix and right hand side can be split at element level in the nodal displacement
variables uI and the moments mM

[
KI I KI M

KMI KMM

] {
uI

mM

}
=
{
RI

RM

}
. (13.46)

With K̄I I = (
KI I − KI M K−1

MMKMI
)
we obtain two equations for uI and mM

K̄I I uI =RI − KI MK−1
MMRM

KMM mM = (RM − KMI uI )
(13.47)

It can be shown that the matrix K̄I I is equivalent to the matrix representing the
cubic ansatz given in (13.12) for any order of the ansatz used to derive the virtual
element.2 It is also well known that the stiffness matrix related to the cubic ansatz
leads to exact nodal deflections wi and nodal rotations θi for any given right hand
side, see Tong (1969), Hughes (1987).

However the approximation of the deflection within the cubic beam element are
only exact for q(x) = 0 in (13.1). Hence it is for q(x) �= 0 appealing to use a virtual
element formulation with higher order approximations which yields a better repre-
sentation of the beam deflection and with this also of the bending moment and shear
force within the element. Classically, analytical results can be recovered for the load

2 This is consistent with the result that the third order ansatz exactly solves the homogenous part of
the beam Eq. (13.1).



13.2 Kirchhoff-Love Plates 407

q(x) = ∑m
k=0 qkx

m, for m ≥ 0 by using an ansatz H(1,4+m), see e.g. (13.19) for
m = 0.

Based on these observations, a postprocessing step can be introduced which is
based on the following procedure:

1. Compute the nodal deflections and rotations using the cubic beam formulation
which is equivalent to the finite element beam. This yields the exact nodal degrees
of freedom uI .

2. Determine the moments mM that follow from (13.47)2 which completes the
unknowns for the virtual element with a higher order ansatz.

3. The higher order approximation wπ of the deflection w within the element can
then be computed by constructing a projector, see e.g. (13.32) for the fourth order
virtual element ansatz.

Thus the accuracy of a classical beam element can be enhanced and a higher order
solution at local element level is obtained by using the virtual element formulation.

The above procedure of static condensation can also be applied for the truss ele-
ment discussed in the introduction, see Sect. 1.2. In case of trusses, a linear ansatz
solves already the homogeneous equations (1.1). Hence, analytical results can be
recovered for the load q(x) = ∑m

k=0 qkx
m, for m ≥ 0 by employing an ansatz

H(1,2+m). Again, an elimination of the internal degrees of freedom is possible by
using (13.47)1 which yields the stiffness matrix (1.33) related to the linear ansatz
function. Then from (13.47)2 the nodal degrees of freedom ui and moments mk for
a higher order approximation can be obtained. These lead to an enhanced approxi-
mation uπ for the virtual truss element.

13.2 Kirchhoff-Love Plates

In this section the basic equations are summarized that govern the deformation of
plates under general loading for small deflections and rotations. The theory is written
as well for isotropic as for anisotropic elastic constitutive behaviour.

13.2.1 Mathematical Model of the Plate and Constitutive
Relations

The geometry of the plate is described by its mid surface�m and its thickness h. The
thickness is assumed to be constant. A point X within the plate can be described by
the sum of its projection Xm onto the mid surface and a vector in normal direction:
X = Xm + Z. The normal vector is given as Z = X3 E3. The base vector E3 is
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Fig. 13.3 Plate geometry

normal to the mid-surface of the plate �m and X3 is the associated coordinate, see
Fig. 13.3,

X = Xm + X3E3 = XαEα + X3E3 (13.48)

where (E1, E2, E3) is an orthonormal Cartesian basis and index α ∈ {1, 2}.
The displacement u(Xm, X3) of point X can be described in the Kirchhoff-Love

theory by the deflection w of the plate and the rotation w,α around the axes Eα
3

u(Xm, X3) = w(Xm) E3 − X3 w,α(Xm) Eα (13.50)

where w,α is the derivative of w with respect to the coordinates Xα which can be
written as the gradient ∇w = w,α Eα .

The in-plane strain ε associated with the displacement u is given with (2.9) by

ε(u) = ∇su = X3 κ (13.51)

where the curvature operator κ is given by

κ = −w,αβ Eα ⊗ Eβ = −∇∇w . (13.52)

The equilibrium equations of the plate derive from the balance of momentum
(2.22) where it is assumed that the plate is symmetrical with respect to its mid-
surface leading to the range of X3: (− h

2 ≤ X3 ≤ h
2 ). After some algebraic work the

partial differential equations describing the plate equilibrium follows as

3 A rotation θ that rotates in positive direction around the axes Eα follows from

θ = θX EX + θY EY = w,αEα × E3 = w,2 E1 − w,1 E2 (13.49)

.
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Mαβ,β − Qα = 0 ⇔ DivM − Q = 0
Qα,α + q̄ = 0 ⇔ Div Q + q̄ = 0

(13.53)

with the distributed load q̄ , the shear force Q = Qα Eα and the moments

M = Mαβ Eα ⊗ Eβ with Mαβ =
∫ h/2

−h/2
X3 σαβ dX3 (13.54)

where σαβ are the stresses within the plate. Equations (13.53) yield

Mαβ,αβ + q̄ = 0 ⇔ Div[DivM] − q̄ = 0 (13.55)

The Dirichlet and von Neumann boundary conditions can be summarized as

w = w̄ and ∇w · n = w̄,n on 
D

(DivM) · n + Mnt,s = Q̄n and n · Mn = M̄nn on 
N
(13.56)

where (•̄) are the prescribed values. The normal and tangent vectors n and t at the
boundary 
m can be found in Fig. 13.3.

The shear force cannot be determined froma constitutive relation and follows from
the equilibrium of the moments (13.53) as Q = DivM. In the first von Neumann
boundary condition, the shear force is amended by the twisting moment and thus a so
called substitute or total shear force Qn + Mnt,s = (DivM) · n + Mnt,s is generally
introduced, see e.g. Timoshenko and Woinowsky-Krieger (1959). Here the last term
is given by Mnt,s = M12,2 n1 + M12,1 n2 where n1 and n2 are the components of the
normal vector n.

Isotropic elastic behaviour. The elastic deformation of the plate is described by
Hooke’s law under plane stress condition, see (2.47).With the associated constitutive
tensor Cplσ a constitutive relation can be derived with σ = Cplσ ε that links the
moment of the in-plane stress to the curvature using (13.51) and (13.54)

M =
∫ h/2

−h/2
X2
3 Cplσ κ dX3 . (13.57)

For a plate with constant thickness the integral (13.57) yields

M = h3

12
Cplσ κ = Db

(
κ + ν

1 − ν
tr(κ) 1

)
= Db κ (13.58)

with the unit tensor in two dimensions 1 = δαβ Eα ⊗ Eβ , Young’s modulus E , Pois-
son ratio ν and the bending stiffness Db

Db = E h3

12(1 − ν2)
. (13.59)
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By inserting the constitutive relations (13.58) into the equilibrium equation (13.55)
one arrives at the classical fourth order partial differential equation for the plate
deflection w

Db 

w = q̄ . (13.60)

Furthermore, the elastic strain energy density can be introduced

ψ(w) = 1

2
tr[M κ] = 1

2
κ · D κ = Db

2

[
κ · κ + ν

1 − ν
(tr κ)2

]
(13.61)

and a potential describing the plate deflection follows with (13.56) as4

Upl =
∫

�m

(ψ(w) − q̄ w)dA −
∫


m

(Q̄n w + M̄nn w,n) d
 (13.62)

where q̄ is the distributed transverse load and Q̄n , M̄n and Mt are the transverse load
and moments at the Neumann boundary 
N , respectively.

Often it is advantageous to introduce Voigt notation which can be used to rewrite
the moments and curvatures

M =
⎧⎨
⎩
Mxx

Myy

Mxy

⎫⎬
⎭ , ϒ =

⎧⎨
⎩

w,xx

w,yy

2w,xy

⎫⎬
⎭ . (13.63)

where the strainϒ is now defined as the negative curvature. The constitutive relation
may be expressed through the matrix D that is defined with (13.59) by

M = −Dϒ = −Db

⎡
⎣1 ν 0

ν 1 0
0 0 1−ν

2

⎤
⎦ϒ (13.64)

and the strain energy in (13.61) can be rewritten in Voigt notation as

ψ(w) = 1

2
ϒT

Dϒ . (13.65)

Anisotropic elastic behaviour. Laminated plates consist of layers of fibers (com-
posite plies) that are embedded in a matrix and have different directions. Thus it is
necessary tomodel the anisotropy of these layer, see e.g. Reddy (2004). Generally the
constitutive response of several layers (stack of composite plies) has to be modelled.

4 The appearance of second order derivatives of w in the strain energy density (13.61) requires
a C1-continuous ansatz for the deflection w within a numerical method, like the finite or virtual
element formulation.
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Each ply consists of fibers that point into a direction with the angle φ with respect
to the X -axis.

For each ply k the orthotropic constitutive matrix is defined with respect to the
orthotropic basis (the notation ¯(•) refers to the orthotropic basis, while not using a
bar refers to the global Cartesian basis):

D̄k = 1

1 − ν12ν21

⎡
⎣ E1 ν12E2 0

ν12E2 E2 0
0 0 G12

⎤
⎦ (13.66)

where E1 relates to the stiffness in fiber direction and E2 is the stiffness perpendicular
to the fiber direction. The Poisson ration of the ply is given by ν12 and the shear mod-
ulus is G12. The Poisson ratio ν21 = E2

E1
ν12 is a dependent variable. The orthotropic

constitutive matrix D̄k has to be transformed to the Cartesian X -Y coordinate system,
describing the mid-plane of the plate by the transformation,

Dk = T−1
D̄kT−T (13.67)

with

T−1 =
⎡
⎣ cosφ2 sin φ2 −2 sin φ cosφ

sin φ2 cosφ2 2 sin φ cosφ

sin φ cosφ − sin φ cosφ cosφ2 − sin φ2

⎤
⎦ . (13.68)

Now an integration over the thickness has to be performed considering all npl plies.
This leads, analogous to (13.57), to a sumover all plies and defines the globalmaterial
stiffness matrix DG

DG = 1

3

npl∑
k=1

Dk(Z
3
k − Z3

k−1) (13.69)

where the integration is executed for each ply over the ply thickness hk = Zk − Zk−1.
Now the strain energy for the laminated plate is given in Voigt notation by

ψ(w) = 1

2
ϒT

DG ϒ (13.70)

and the moments follow fromM = −DG ϒ.

13.3 Formulation of the Virtual Element

The virtual plate element for Kirchhoff-Love kinematics can be derived in the same
way as the virtual elements for solids. However, the ansatz space has to be changed
due to the C1-continuity requirements. Furthermore, the projection onto the polyno-
mial space is different, as has been shown in Sect. 13.1 for the beam.
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13.3.1 General Notations

A virtual plate element �v is described in Fig. 13.4.
The element has nV vertices. The boundary 
v consists of nE edges 
e with

normal and tangential vectors (Ne , T e) at each edge. The normal Ne and tangent
T e are given for a segment e by

Ne =
{
nX

nY

}
e

= 1

le

{−(Y2e+1 − Y2e−1)

X2e+1 − X2e−1

}
e

and T e =
{
tX
tY

}
e

= 1

le

{
X2e+1 − X2e−1

Y2e+1 − Y2e−1

}
e

(13.71)

where le is the length of the segment e and (Xk ,Yk) with k = {2e − 1, 2e + 1} are the
vertex nodes defining the segment. Furthermore a non-dimensional local coordinate
ξ = Xe

le
is introduced along each element edge 
e.

The virtual element has in general different degrees of freedom at the vertices and
the midnodes as pointed out in Fig. 13.4 where unknowns for the deflection w and
the rotations θ are provided at the vertices and the rotation θt at a midnodes.

The rotations θ are used as degrees of freedom. Their vectors point in positive
direction of the coordinate axes (θ = θα Eα) and are connected to the derivatives of
the deflection by θx = w,y and θy = −w,x . At an edge
e, see Fig. 13.4, the following
relations hold

∇w · T e = w,s = θ · Ne = θn
∇w · Ne = w,n = −θ · T e = −θt

(13.72)

Fig. 13.4 Virtual element for the Kirchhoff-Love plate
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13.3.2 Ansatz and Projection

In Sect. 3.1 an ansatz spacewas defined for the virtual solid element. Such a space has
now to be defined for the plate problem as well. Since the Kirchhoff-Love plates need
a C1-continuous ansatz the following space for an ansatz of order n is introduced

Vh|�v = {wh ∈ H 2(�v),

2wh ∈ Pn−4(�v),wh,t ∈ Pr (
e),wh,n ∈ Ps(
e)}

(13.73)
where we set Pn−4(�v) = {0} for n < 4. The parameters r and s describe the ansatz
order for the rotations aroundnormal and tangent directionwh,t andwh,n , respectively,
and can be chosen differently.5 The condition 
2w ∈ Pn−4(�v) is fundamental for
the element to be uni-solvent which ensures the uniqueness of the deflectionw inside
the element.

It is not difficult to create virtual plate elements that fulfill C1-continuity since
the ansatz has only to be formulated at the boundary. Within such ansatz only the
deflection and the two rotations wh , wh,x and wh,y appear as unknowns which is
different to classical Kirchhoff-Love plate elements when using the finite element
method. There C1-continuous elements need higher order variables, e.g. w,xx as
unknowns which need special interpretation, see e.g. Argyris et al. (1968).

The ansatz function for the deflectionwh has to be formulated in two dimensions.6

It has the properties

(a0): wh ,wh,t and wh,n are known at the vertices k of the polygon �v,
(a1): wh is a polynomial Pn of degree n at each edge 
e ∈ 
v,
(a2): wh,t is a polynomial Pr of degree r = n − 1 at each edge 
e ∈ 
v,
(a3): wh,n is a polynomial Ps of degree s at each edge 
e ∈ 
v with additional

unknowns of wh,n at s − 1 equally spaced points in 
e,
(a4): wh ,wh,t and wh,n are continuous at all edges 
e ∈ 
v of the polygon �v,
(a5): 
2wh is a polynomial of degree Pn−4 on the polygon �v.

With these definitions, the ansatz for the deflection wh is a harmonic function inside
�v which is only known at the edges 
e of �v. The ansatz wh is not known inside of
the polygon �v.

The L2-projection, as defined in (3.10) for solids, is now formulated in terms
of the second order gradients that are equivalent to the curvature (13.52). Here the
weighting function v ∈ Nn

π is a polynomial that has the same order as the ansatz
for wπ , see (3.3). Two more averaging conditions, equivalent to (3.11), take care
of the constant and linear terms that disappear when evaluating ∇∇wπ . Thus three
conditions, see e.g. Brezzi and Marini (2013), have to be introduced

5 By selecting adequate ansatz functions for wh . wh,t and wh,n it is even possible to generate virtual
plate elements that have a higher continuity than C1, see e.g. Brezzi and Marini (2013).
6 As discussed for beams, it is necessary to introduce moments m when the ansatz order exceeds a
certain polynomial degree. In this section we avoid the introduction of moments by choosing low
ansatz orders of n = 3 and s ∈ {1, 2}.
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∫

�v

∇∇wπ · ∇∇v d� =
∫

�v

∇∇wh · ∇∇v d�,

∫

�v

∇wπ d� =
∫

�v

∇wh d�, (13.74)

∫


v

wπ d� =
∫


v

wh d� .

Since wh is not known within �v the right hand side of the first two equations has
to be transferred to boundary integrals as in the solid case, see e.g. (3.14). The first
equation yields

∫

�v

∇∇wh · ∇∇v d� =
∫


v

(∇wh ⊗ N) · ∇∇v d
 −
∫

�v

∇wh · Div(∇∇v) d�

=
∫


v

(∇wh ⊗ N) · ∇∇v d
 −
∫


v

wh[N · Div(∇∇v)] d


+
∫

�v

wh 
2v d� (13.75)

and the second one leads to
∫

�v

∇wh d� =
∫


v

wh N d� . (13.76)

All terms on the right hand side of the above equations are computable with ansatz
functions that have the properties (a0)–(a5).

The left hand side in (13.74) needs the introduction of an ansatz for the projection
wπ of order k

wπ = 〈 1 X Y
1

2
X2 XY

1

2
Y 2 . . .

1

k(k − 1)
Y k〉

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a0
a1
a2
. . .

a 1
2 n(n+1)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

= H(2,k)
w (X,Y ) a

(13.77)
which then can be inserted into (13.74). Due to the computability of the second
derivative ∇∇wπ the ansatz must be at least of second order (k = 2) which then
results in an element with constant curvature. The same ansatz can be made for the
weighting function v leading to v = H(2,k)

w (X,Y ) c where c is a vector of constants
that are eliminated like constants related to test functions.
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13.3.3 Ansatz Function

In this section we will provide ansatz functions for two simple virtual plate elements,
that have been discussed in Chinosi and Marini (2016), Wriggers et al. (2022). With
the notation, introduced in Sect. 13.3.1, a cubic Hermite interpolation (n = 3) is
selected for the deflection at the element edge 
e for both elements

(wh)e = H1(ξe)w1 + leH
′
1(ξe)θ1n + H2(ξe)w2 + leH

′
2(ξe)θ2n (13.78)

where the basis functions are defined in terms of Hermite splines

H1(ξe) = 2ξ 3
e − 3ξ 2

e + 1 , H ′
1(ξe) = ξ 3

e − 2ξ 2
e + ξe ,

H2(ξe) = −2ξ 3
e + 3ξ 2

e , H ′
2(ξe) = ξ 3

e − ξ 2
e .

(13.79)

The derivative θn in (13.72) is then obtained by the scaled derivative of (13.79) with
respect to ξe

(θhn)e = 1

le

d(wh)e

dξe
(13.80)

which has the explicit form

(θhn)e = 6

le
(ξ 2

e − ξe)w1 + (3ξ 2
e − 4ξe + 1)θ1n + 6

le
(−ξ 2

e + ξe)w2 + (3ξ 2
e − 2ξe)θ2n

(13.81)
for both elements.

The tangential rotation (θht )e at the edge 
e is defined by a linear ansatz (s = 1)
for element 1 and a quadratic ansatz (s = 2) for element 2

element 1: (θht )e = (1 − ξe) θ1t + ξe θ2t ,

element 2: (θht )e = (2ξ 2
e − 3ξe + 1) θ1t + (2ξ 2

e − 1) θ2t + 4(ξe − ξ 2
e ) θ3t .

(13.82)

Note that this selection corresponds to the property (a3) for the ansatz function w,n

which is related to θt , see (13.72). This yields for the quadratic ansatz of element 2
with s = 2 one additional unknown θ3t at the edge as demonstrated in Fig. 13.4.

13.3.4 Plate Element with Constant Curvature

The simplest possible C1-continuous plate element is element 1. This element has
only vertex nodes, see Fig. 13.5.

In element 1 the linear ansatz (13.82)1 is selected for the rotation θt . This choice
results in a second order scheme in which the projection wπ has to be a quadratic
function which is defined at element level by
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Fig. 13.5 Element with constant curvature for the Kirchhoff-Love plate

wπ = H(2,2)
w a = 〈

1 X Y 1
2 X

2 XY 1
2Y

2
〉
⎧⎪⎪⎨
⎪⎪⎩

a1
a2
. . .

a6

⎫⎪⎪⎬
⎪⎪⎭

. (13.83)

The unknown parameters ai have to be linked to the element unknowns by the
projection procedure (13.74). The polynomial Nn

π has to be selected in the same way
as the ansatz for wπ using the quadratic function H(2,2).

Now we can evaluate the first equation in (13.74). Noting that Div(∇∇Nn
π ) and


2Nn
π are zero for the ansatz (13.83) we arrive with (13.75) at

∫

�v

∇∇wπ d� = 1

2

∫

v

(∇wh ⊗ N + N ⊗ ∇wh) d
 . (13.84)

since ∇∇Nn
π = const and can be eliminated from both sides of (13.74)1. Note that

the symmetry of the curvature tensor∇∇wπ has been taken into account. By inserting
the ansatz (13.83) into (13.84) this equation simplifies to

�v ∇∇wπ |v = 1

2

∫

v

(∇wh ⊗ N + N ⊗ ∇wh) d
 (13.85)

with the constant curvature

∇∇wπ |v =
[
a4 a5
a5 a6

]
(13.86)
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at element level. The right hand side of (13.84) consists of the second order poly-
nomial wh(ξ),ξ and the linear ansatz for θt (ξ) per segment 
e. It can be exactly
integrated which results in a sum of all nE edge contributions

nE∑
e=1

∫ 1

0

[(
1

2le
wh(ξ),ξ (T e ⊗ Ne + Ne ⊗ T e) − θt (ξ) Ne ⊗ Ne

)
le dξ

]
e

=
nE∑
e=1

[
1

2
(w2 − w1)(T e ⊗ Ne + Ne ⊗ T e) − le

θt1 + θt2

2
Ne ⊗ Ne

]
e

.

(13.87)

All terms in the sum are related to the edge 
e and thus values change from segment
to segment.

By comparing (13.86) and (13.87) the unknowns a4 to a6 are obtained by inspec-
tion once all contributions related to the segments have been added. We observe that
a4 to a6 are defined as a linear combination of the nodal values of w and θt . Thus
(13.86) can be generally written in Voigt notation, see (13.64), as

ϒπ = B1 u1 (13.88)

where u1 denotes the vector of all nodal unknowns7

u1 = 〈w1 θX1 θY1 w2 θX2 θY2 . . . wnV θXnV θYnV 〉T . (13.90)

Note that the matrix B1 is constant due to the quadratic ansatz for wπ .
The constants a1 to a3 follow from the two conditions (13.76) and (13.74)3.

∫
�v

∇wπ d�v =
∫


v

whN d
 (13.91)

and ∫

v

wπ d
 =
∫


v

wh d
 . (13.92)

The term on the left hand side in (13.91) yields with (13.83)

∫
�v

∇wπ d�v =
∫

�v

{
a2 + a4X + a5Y
a3 + a5X + a6Y

}
d�v (13.93)

7 The global rotations (θX , θY ) are related to the local rotations (θn, θt ) by the transformation

{
θX
θY

}
=
(
nX tX
nY tY

)T {
θn
θt

}
(13.89)

using (13.71).
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and involves only polynomials. The right hand side of (13.91) can be explicitly
determined as

∫


v

whN d
 =
nE∑
e=1

1∫

0

[(w1H1(ξ) + leθ1nH
′
1(ξ) + w2H2(ξ) + leθ2nH

′
2(ξ)) dξ ]ele Ne

=
nE∑
e=1

[
1

2
(w1 + w2) + le

12
(θ1n − θ2n)

]
e

le Ne (13.94)

Now Eqs. (13.93) and (13.91) can be combined with (13.94) which leads to

{
a2
a3

}
= 1

�v

⎡
⎢⎣

nE∑
e=1

[
1

2
(w1 + w2) + le

12
(θ1n − θ2n)

]
e
le Ne −

∫

�v

{
a4X + a5Y
a5X + a6Y

}
d�v

⎤
⎥⎦

(13.95)
Here the last term can be exactly integrated over the boundary using relations (A.22)
and (A.24) or the explicit sums (A.2)–(A.4). In the same way as Eq. (13.87) formula
(13.95) leads to a linear mapping between a2, a3 and the element unknowns for w
and θn .

The last term that has to be connected to the nodal values of the ansatz is the
coefficient a1. Using Eq. (13.92) the coefficient a1 follows directly. With (13.83) and
(13.92) one writes

∫


v

(a1 + a2X + a3Y + a4
2
X2 + a5XY + a6

2
Y 2) d
 =

nE∑
e=1

[
w1 + w2

2
+ le

12
(θ1n − θ2n)

]
e
le

(13.96)
which yields a1 immediately since a2 to a6 are already known from the relations
(13.87) and (13.95).

With (13.87), (13.95) and (13.96) the L2 projection wπ is completely defined for
the virtual element �v in terms of the nodal unknowns. Thus the linear mapping

wπ = M1(X,Y )u1 (13.97)

can be introducedwhich provides the projectionwπ in terms of the 3 nV nodal degrees
of freedom (13.90) of the plate element.

Matrix forms for these relations were derived in e.g. Sect. 3.1.6 for solid elements.
Here no explicit form is provided. This is mainly due to the fact that the software
AceGen, see e.g. Korelc andWriggers (2016), was employed to automatically derive
and code8 the residual vector and stiffness matrix associated with element 1.

8 For a different implementation using MATLAB we refer to Yu (2022) who included the source
code for a plate element in the paper.
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13.3.5 Plate Element with Linear Curvature

The L2 projector for element 2 relies on the ansatz forw and θt in (13.79) and (13.82)2
element 2 which yields a virtual plate element of order 3. Thus the projection wπ has
to be cubic function in x and y. It is defined at element level by

wπ = H(2,3)
w a = 〈

1 X Y 1
2 X

2 XY 1
2Y

2 1
6 X

3 1
2 X

2Y 1
2 XY

2 1
6Y

3
〉
⎧⎪⎪⎨
⎪⎪⎩

a1
a2
. . .

a10

⎫⎪⎪⎬
⎪⎪⎭

(13.98)

Using Voigt notation the gradient of wπ is given by

∇wπ =
{
wπ,x

wπ,y

}
= ∇H(2,3)

w a =
[
0 1 0 X Y 0 1

2 X
2 XY 1

2Y
2 0

0 0 1 0 X Y 0 1
2 X

2 XY 1
2Y

2

]
a . (13.99)

In the same way the curvature follows with wπ,xy = wπ,yx as

∇∇wπ =
⎧⎨
⎩

wπ,xx

wπ,yy

2wπ,xy

⎫⎬
⎭ = ∇∇H(2,3)

w aκ =
⎡
⎣1 0 0 X Y 0 0
0 0 1 0 0 X Y
0 2 0 0 2X 2Y 0

⎤
⎦ aκ . (13.100)

which is a linear function in X and Y . The matrix was shortened to non zero entries.
Only the unknown coefficients aκ = {a4 . . . a10} affect the curvature since the first
three columns in ∇H(2,3)

w , see (13.99), would lead to zero values in (13.100).
The ansatz for the weighting function v results directly from (13.98) and its

gradients follow from (13.99) and (13.100) as

v = H(2,3)
w c , ∇v = ∇H(2,3)

w c and ∇∇v = ∇∇H(2,3)
w cκ (13.101)

Let us consider again the L2 projection (13.74) together with (13.75). For the
cubic ansatz the relation

∫

�v

∇∇wπ · ∇∇v d� =
∫


v

∇wh · [∇∇v N] d
 −
∫


v

wh[N · Div(∇∇v)] d


(13.102)
can be used to obtain a4 to a10 in terms of the nodal unknowns. Note that the term

2Nn

π in (13.75) is zero again for the ansatz (13.98) . The integral on the left side
yields with (13.100)

∫

�v

∇∇wπ · ∇∇v d� = cTκ

∫

�v

[∇∇H(2,3)
w ]T∇∇H(2,3)

w d� aκ (13.103)
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which depends only on polynomials up to order 2. Hence the integral can be evaluated
directly using (A.2)–(A.7). However it can also be transformed in the same way as
the right hand side to a boundary integral and then integrated. The choice depends
on the available software and the most efficient approach. Note that the matrix inside
the integral has the size (7 × 7) due to the reduction to the unknowns a4 to a10.

After some algebra the right hand side can be computed with

∇∇v N = ∇∇(H(2,3)
w )N cκ =

[
nx ny 0 nx X (ny X + nxY ) nyY 0
0 nx ny 0 nx X (ny X + nxY ) nyY

]
cκ

(13.104)
and the constant term

N · Div(∇∇v) = ∇∇(H(2,3)
w )D cκ = [

0 0 0 nx ny nx ny
]
cκ (13.105)

as
∫


v

∇wh · [∇∇v N] d
 = cTκ

∫


v

[∇∇(H(2,3)
w )N ]T {∇wh} d
 (13.106)

∫


v

wh[N · Div(∇∇v)] d
 = cTκ [∇∇(H(2,3)
w )D]T

∫


v

wh d
 (13.107)

which leads to the equation system for the unknown coefficients aκ of wπ in terms
of the nodal degrees of freedom

∫

�v

[∇∇H(2,3)
w ]T∇∇H(2,3)

w d� aκ =
∫


v

[∇∇(H(2,3)
w )N ]T {∇wh} d
 − [∇∇(H(2,3)

w )D]T
∫


v

wh d

(13.108)

The first integral of the right hand side can be evaluated analogously to (13.95). The
only difference is that now some integral terms occur where the coordinates X and
Y appear. The second integral is exactly the same as the right hand side in (13.96).
Equation13.108 can now be solvedwhich yields the unknown parameters aκ in terms
of the nodal degrees of freedom u2, in short aκ = Pκ u2. Here, the vector u2 contains
all nodal unknowns of element 2

u2 = 〈w1 θX1 θY1 θt1 w2 θX2 θY2 θt2 . . . wnV θXnV θYnV 〉T . (13.109)

Again, the local rotations associated with specific edges can be transformed to global
rotations using (13.89).
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In Voigt notation, see (13.64), the curvature ϒπ of the plate element follows by
inserting aκ into (13.100) which leads to the form

ϒπ = B2(X,Y )u2 with B2(X,Y ) = ∇∇H(2,3)
w (X,Y )Pκ (13.110)

which is a linear function in X and Y .
Equation system (13.108) has to be complemented by the conditions (13.91) and

(13.92). The first one yields after inserting the gradient (13.99)

∫

�v

∇H(2,3)
w d�v a =

nE∑
e=1

[
1

2
(w1 + w2) + le

12
(θ1n − θ2n)

]
k

le Ne . (13.111)

Here the left hand side can be simply integrated using relations (A.2)–(A.7). The
right hand side of (13.91) has the same form as (13.94).

Finally the coefficient a1 can be determined from (13.92)

∫


v

H(2,3)
w d
 a =

nE∑
e=1

[
w1 + w2

2
+ le

12
(θ1n − θ2n)

]
e

le (13.112)

where the ansatz function (13.78) is inserted on the right side which yields exactly
the result reported in (13.96).

The three Eqs. (13.108), (13.111) and (13.112) can be solved successively, starting
(13.108). It is also possible to put the equations into one equation system which has
the matrix form

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∫

v

H(2,3)
w d


− − − − − − −∫
�v

∇H(2,3)
w d�v

− − − − − − −∫
�v

[∇∇H(2,3)
w ]T∇∇H(2,3)

w d�

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

a =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫

v

whd


− − − − − − −∫

v

whNd


− − − − − − −∫

v

[∇∇(H(2,3)
w )N ]T {∇wh} d


−[∇∇(H(2,3)
w )D]T ∫


v

wh d


⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(13.113)

and can be solved for the unknown coefficients a. Inserting these coefficients now
into the ansatz wπ , see (13.98), leads to the mapping

wπ = M2(X,Y )u2 (13.114)

which describes wπ in terms of the vector u2, see (13.109), containing all nodal
unknowns of element 2.
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13.3.6 Residual and Stiffness Matrix of the Virtual Plate
Element

As in the previous chapters, the virtual element is derived from the total energy. Two
contributions have to be considered. These are the consistency part that stems from
inserting the ansatz function (13.97) and (13.114) into the element and a stabilization
part that is needed to obtain the proper rank for the resulting stiffness matrix.

We note, that element 1 has 9 degrees of freedom (DOFs) and constant curvature
with three independent components cans ∈ {wxx ,wxy ,wyy}, see (13.86). This leads
to a stiffness matrix, related to the consistency part, that has a rank deficiency of

r1d = DOFs1 − c1ans − RGB = 9 − 3 − 3 = 3

including the three-rigid body modes (RGB). The rank deficiency of element 2 with
12 degrees of freedom and cubic ansatz for wπ is given by

r2d = DOFs2 − c2ans − RGB = 12 − 7 − 3 = 2

due to the 7 independent components related to the curvature in (13.100).9 Thus
even the simplest possible element (triangle with three vertices, nV = 3) needs to
be stabilized, hence all other elements with nV > 3 are rank deficient as well and a
stabilization is inevitable.

By assembling all element contributions for nT virtual elements the total energy
is given by

U (wh) = AnT
v=1

[
Uv

c (wπ ) +Uv
stab(wh − wπ )

]
. (13.116)

Part of the virtual element due to projection (consistency term). With the strain
ϒ of the plate that depends on the projection wπ and the loading q̄ we obtain the
potential energy of an element

Uv
c (wπ ) =

∫

�v

[
1

2
[ϒ(wπ )]TDϒ(wπ ) − q̄ wπ

]
d� (13.117)

with the constitutive tensor D for the isotropic and DGfor the anisotropic case.
The curvature ϒ is constant for element 1 which leads with (13.88) to the trivial

evaluation of the first term

9 In general, the rank deficiency of a plate element can be computed by the formula

rd = nE (r + s − 1) − (n + 1)(n + 2)

2
(13.115)

where nE are the number of edges, r is the polynomial degree of the ansatz wh , s is the polynomial
degree of the ansatz for wh ,n and n is the ansatzorder of wπ , see also (13.73).
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∫

�v

1

2
[ϒ(wπ )]TDϒ(wπ ) d� = �

2
uT
1 B

T
1DB1 u1 (13.118)

For element 2 the strain ϒ is linear in X and Y , hence the integration involves terms
up to second order in the coordinateswhich again can be performed over the boundary
using (A.22) and (A.24)

∫

�v

1

2
[ϒ(wπ )]TDϒ(wπ ) d� = 1

2
uT
2

∫

�v

B
T
2 (X,Y )DB2(X,Y ) d�u2 . (13.119)

The projectionwπ is known in terms of the unknowns (w , θX , θY )k at the vertices
of element 1 and 2 and the unknown rotation θt at the mid node of element 2,
see (13.97) and (13.114). The mappings wπ = Mel(X,Y )uel can be employed in
(13.117) to compute the loading part for elements el = 1, 2

∫

�v

q̄ wπ d� =
∫

�v

q̄Mel(X,Y ) d�uel . (13.120)

Once the integration over the element area is carried out the potential is just a function
of the unknowns of the element. This fact can be used to compute the element residual
and tangent by differentiation with respect to the nodal unknowns.

Stabilization part.Within the virtual elementmethod, the rank deficient consistency
part of the element has to be stabilized. See for weak formulations of virtual plate
elements Brezzi and Marini (2013), Mora et al. (2018). This approach leads to a
stabilization operator for the potential energy which addresses the error at all nodal
points nN (vertices and midpoints):

Uv
stab(wh − wπ ) = Db

2 h2v

nN∑
k=1

[
ŵ(Xk)

2 +
∥∥∥∥ lk−1 + lk

2
∇ŵ(Xk)

∥∥∥∥
2

+ ∥∥lk θ̂t (Xk)
∥∥2
]

(13.121)

with ŵ(Xk) = wh(Xk) − wπ (Xk) ,

∇ŵ(Xk) = ∇wh(Xk) − ∇wπ (Xk) and

θ̂t (Xk) =
{

θt h(Xk) − θt π (Xk) for el = 2
0 for el = 1 .

Here, Db is the bending stiffness, see (13.59), and hv is the maximum diameter of the
virtual element v thus h2v can be interpreted as the element area �v. The rotation at
each vertex node is scaled by the mean value of the lengths lk and lk−1 of the adjacent
segments. The function wh and the projection wπ have to be evaluated at the vertices
Xk = {Xk,Yk}.

A different stabilization energy is provided by an extension of (13.121) which
describes the total error on the edge in a mean way by an integral instead of using
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discrete values, see Wriggers et al. (2022). Thus an integration has to be performed
over the edge which is described by the coordinate Xe. This new stabilization takes
the distribution of each degree of freedom along the edge into account

Uv
stab(wh − wπ ) = Db

2�v

nE∑
e=1

1

le

∫


e

[
ŵ(Xe)

2 + ‖le∇ŵ(Xe)‖2
]
d
 . (13.122)

Again h2v can be used in this equation instead of �v. The edge integral in (13.122) is
evaluated numerically using Gauss quadrature

∫


e

f (x)d
 =
1∫

0

f (x)Jξdξ = le

ng∑
g=1

wg f (xg) (13.123)

where the Jacobian Jξ in the transformation d
 = Jξdξ is the length of the eth edge
Jξ = ‖ ∂Xe

∂ξ
‖ = le, ξ ∈ [0, 1] is the local coordinate and xg is the Gauss point.

When employing stabilizations (13.121) and (13.122) the resulting tangent matri-
ces have full rank. Note, that implementing stabilization (13.121) leads to a more
efficient code at element level.

In Sect. 6.1.3 the energy stabilization was introducedwhich is based on the formu-
lation of a stabilization energy that has to be evaluated using a finite element submesh
inside a virtual element. Such approach is also possible for the plate element. How-
ever it is not straight forward to select simple finite elements with the same nodal
degrees of freedom that can be inserted. In Wriggers et al. (2022) the Morley, see
Morley (1968), and the DKT plate element, see Batoz et al. (1980), were employed
to stabilize the consistency part. The results show that such stabilization impairs the
order of convergence due to a reduced convergence order of the finite elements when
compared to the virtual plate elements. Hence the stabilization, discussed above, is
optimal for virtual plate elements.

Residual and tangent matrix. Once the formulation for the consistency (13.120)
and stabilization (13.121) part of the potential is completed, these are function of
the element unknowns: Uv

c (wπ ) = Uv
c [uv] and Uv

stab(wh − wπ ) = Uv
stab[uv]. Then

residual vector Rv and tangent (stiffness) matrix Kv follow from

Rv = ∂(Uv
c [uv] +Uv

stab[uv])
∂uv

and Kv = ∂Rv

∂uv
. (13.124)

for the virtual plate element v.



13.4 Numerical Examples 425

13.4 Numerical Examples

In this section we first study the behaviour of the virtual plate elements 1 and 2
and the effect of the two stabilizations. The performance of the elements will be
illustrated by means of numerical examples that are classical benchmark problems
and also related to engineering applications. All numerical solutions are compared
with analytical solutions when available. The range of problems includes isotropic
material as well as anisotropic materials. Some of the examples can be found in
Wriggers et al. (2022).

13.4.1 Notation Used in the Examples

The following notation is introduced to distinguish the different versions of the virtual
plate elements 1 and 2:

• VE-1: first order VEM formulation. Degrees of freedom (DOF) per vertex are:
(wk, θ k), see Sect. 13.3.4,

• VE-2: second order VEM formulation. DOFs per vertex are: (wk, θ k) and per
element edge θt e, see Sect. 13.3.5.

For comparison purposes the DKT plate element will be used which is known in the
engineering community as a well performing element, see Batoz et al. (1980). Its
DOFs per vertex are: (wk, θ k). The element will be denoted by FE-DKT.

The following types of stabilization will be employed for the virtual plate
elements:

• st-1a/b: nodal error stabilization (13.121), where “a” refers to using the element
size h2v and “b” to employing the element area �v in the scaling factor.

• st-2a/b: edge-integrated error stabilization (13.122) where “a” and “b” have the
same meaning as above.

Virtual plate elements can have arbitrary number of nodes, starting from triangular
shape via quadrilateral shape to general non-convex forms. Here we will employ the
following types of elements and meshes

• T1: triangle mesh with 3 edges per element,
• Q1: quadrilateral mesh with 4 edges per element,
• VO-U: Voronoi-type mesh, with uniformly distributed cell seeds,
• VO-R: Voronoi-type mesh, with randomly distributed cell seeds.

A T1 mesh consists of virtual elements with triangular shape having 9 unknowns
(element 1) or 12 unknowns (element 2) per element. Q1 meshes are composed of
quadrilateral virtual elements with four edges and 12 unknowns (element 1) or 16
unknowns (elements 2) per element. The number of nodes per element depends in a
Voronoi type mesh on the shape of the Voronoi cells. In our examples the number of
edges in a Voronoi-type mesh varies from three to ten.
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13.4.2 Clamped Plate Under Uniform Load

The general convergence behaviour of element 1 and 2 is reported for a clamped plate.
Furthermore, the impact of the different stabilizations is discussed. The clamped plate
under uniform load has an analytical solution, see e.g. Taylor and Govindjee (2004),
which allows an exhaustive convergence analysis. The clamped square plate has size
B × H = 8m × 8m and is subjected to a uniform load q̄. Due to symmetry only
one quarter of the problem has to be modeled, see Fig. 13.6.

The material parameters are provided in Table13.1.
The analytical results of the clamped plate problem are summarized in Table13.2

for the data provided in Table13.1. Table13.2 depicts the total strain energy Wref ,
the mid deflection wref as well as minimum, Mmin

ref , and maximum, Mmax
ref , bending

moments of the plate up to ten digits.
Figure13.7a, b show the discretisation of the plate with square and Voronoi ele-

ments. The convergence study for virtual element 1 (VE-1) using the two types of
classical stabilization, is shown for square elements in Fig. 13.8a. The same study is
performed for virtual element 2 (VE-2), see Fig. 13.8b. For regular and unstructured
Voronoi meshes the convergence results are illustrated in Fig. 13.9. The convergence
study is performed with respect to the deflection at the center of the plate and the
energy using the analytical values wref and Wref from Table13.2 as reference. Fur-
thermore, the results of the DKT element (FE-DKT) which is know to be one of the
best finite plate elements are included for comparison.

Fig. 13.6 Boundary value
problem of the clamped plate

Table 13.1 Material parameters

Description Symbol Value Unit

Young’s modulus E 2 × 108 kN
m2

Poisson ratio ν 0.3

Thickness t 0.01 m

Uniform surface load q̄ −1.0 kN
m2

Bending stiffness Db (13.59) 18.315 Nm
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Table 13.2 Analytical solutions, see Taylor and Govindjee (2004)

Description Symbol Formula Value Unit

Energy Wref 3.891200775 × 10−4q2B3H3/Db 5.569 kJ

Deflection wref 1.265319087 × 10−3q B2H2/Db −0.283 m

Min. Moment Mmin
ref 2.290509078 × 10−2q B H −1.466 kNm

Max. Moment Mmax
ref −5.13337648 × 10−2q B H 3.285 kNm

Fig. 13.7 Different meshes: quadrilateral Q1 and random-seed Voronoi mesh

Fig. 13.8 Convergence study of deflection w for square Q1 meshes

All results demonstrate that the choice of stabilization does not influence the
asymptotic convergence behaviour since the slopes of the curves are the same. How-
ever there is an influence regarding the coarsemesh accuracy and the type of element.
The order of convergence is 1 for VE-1 while VE-2 demonstrates an order of con-
vergence of 2, see Fig. 13.8.

In this section only the behaviour of VE-1 and VE-2 when using different stabi-
lizations is investigated for quadrilateral, regular and unstructured Voronoi meshes
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Fig. 13.9 Convergence study of energy W and deflection w for different forms of the elements
(structured and unstructured meshes)

depicted in Fig. 13.7. The influence of the stabilization when using virtual elements
with triangular shape is further discussed in Sect. 13.5.

The effect between stabilization type “a” and “b” is related to the normalisation
with the element size h2v (st-�a) or the area Ωv (st-�b). The difference between both
scalings is negligible. But generally, using the area yields slightly better results in
all cases.

There is a slight difference in stabilizations “1” and “2”. For Q1 meshes sta-
bilization “1” is superior, but for Voronoi meshes, stabilization “2” is better by a
small amount. It seems that the best stabilization depends on the mesh type. As
expected, structured meshes perform better than unstructured Voronoi type meshes.
In this example the Q1meshes yield the best results but also the Voronoi type meshes
yield solutions that have a high accuracy, Hence the virtual plate elements can be
employed safely for the solution of engineering structures. The use of Q1-meshes
will be explored further in Sect. 13.5.

Figure 13.10 depicts contour plots of the deflection w and the bending moment
MXX , for the virtual element VE-2:st-1b. The contour plots of the structured meshes
as well as the unstructured Voronoi meshes report minimum and maximum bend-
ing moments (maxMXX = 3.285 and minMXX = −1.466) that match exactly the
analytical results in Table13.2. But element VE-1 and all other investigated mesh
types produce equally good results and demonstrate that the developed virtual plate
elements are capable of computing meaningful engineering solutions.
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Fig. 13.10 Deflection w (a, b) and Moments MXX (c, d) for structured and unstructured meshes,
note that MYY is same but flipped over the domain diagonal

13.4.3 Rhombic Plate

The solution of Kirchhoff-Love plates can include singularities. Unlike the Reissner-
Mindlin plates where singularities are associated with specific loading conditions,
e.g. point loads, and certain geometrical conditions, e.g. reentrant corners, Kirchhoff-
Love plates show singular behaviour only for particular geometries like obtuse and
reentrant corners.

The simply supported rhombic plate, see Fig. 13.11a, depicts such singular
behaviour. The rhombic plate is subjected to a uniform load. Its dimensions are
H = B = 8 m. The angle α in Fig. 13.11a is selected as α = 30o which creates an
internal, obtuse angle of 150◦. The material parameters can be found in Table13.1.

Near the obtuse angles the solution is singular, belonging to H γ−ε, ∀ε > 0 with
γ = 2 − α

π−α
. Therefore the asymptotic convergence rate for uniform meshes is

given by α
π−α

= 0.2 and the solution is governed by the singularity, see e.g. Babuska
and Scapolla (1989).
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Fig. 13.11 Rhombic plate geometry and meshes

Fig. 13.12 Rhombic plate with α = 30◦: Convergence study of the deflection w

In such cases it is well known that an adaptive refinement leads to an improvement
of the asymptotic convergence, with the possibility to recover the optimal conver-
gence rate, see Babuska and Scapolla (1989). Since a virtual plate element can have
an arbitrary number of nodes, it is relatively simple to adaptively refine a regular
mesh, see Fig. 13.11b, in a non uniform manner, see Fig. 13.11c. This allows the
recovery of a better convergence rate. In this example the refinement is based on
bisecting hv as demonstrated in Fig. 13.11c. Only new nodes have to be added at
the middle of the edge of an element since the number of nodes can be arbitrary and
still yield a C1-continuous mesh avoiding hanging nodes that appear when a finite
element mesh is refined in the same manner. Five refinement steps were executed
towards the obtuse corner to compute the solutions in Fig. 13.12 for elements 1 and 2
st-2b using regular, Voronoi, Fig. 13.7b, and adaptively refined meshes, Fig. 13.11c.
The adaptive local refinement increases the convergence rate drastically when com-
pared to a mesh refined uniformly by a factor of 2 as shown in Fig. 13.12. The simple
bisecting refinement however is not sufficient to recover the optimal convergence rate
which would need a node insertion as shown in Wang et al. (1984). But the results
show clearly the sensitivity of the solution with respect to the mesh refinement at the
singularity.

Here the criteria for adaptive refinement is based on the difference of the energy
between element nodes. To keep this difference small, elements at the obtuse corners
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Fig. 13.13 Moment MXX using VE-2 with 32 × 32 elements, St-1b

are automatically refined, as depicted in Fig. 13.11c. The energy of the previous
refinement step is used in this convergence study as an indicator for the refinement
in the next step.

An analytical solution for the rhombic plate can be found in Morley (1962) for
different plate angles, however it is only provided up to three digits. Based on adaptive
finite elements solutions convergence results for the rhombic plate were reported in
Wang et al. (1984), Babuska and Scapolla (1989) with 3 digit accuracy. We note, that
the asymptotic convergence rate of 0.2 (related to the singularity) is recovered for
all element formulations with a uniformly refined mesh which is clearly depicted in
Fig. 13.12.

Figure13.13 shows the distribution of the bending moment MXX for the rhombic
plate using a uniform mesh with 32 × 32 VE-2 quadrilateral virtual elements which
demonstrates the singularity of the bending moment at the obtuse corner.

13.4.4 Rectangular Orthotropic Plate

The simplest version of anisotropy in a plate is provided by orthotropic behaviour. It is
possible to obtain an analytical solution for suchmaterial as given in Timoshenko and
Woinowsky-Krieger (1959) for a rectangular plate. Here the orthotropic directions
coincide with the main axis of the plate. This example can be used to investigate the
response of the virtual plate elements for a more complex material.

Using the same notation as in Timoshenko and Woinowsky-Krieger (1959) the
problem is characterized by a simplified material stiffness matrix when compared to
(13.69)

D̂G =
⎡
⎣Dx D1 0
D1 Dy 0
0 0 Dxy

⎤
⎦ = t3

12

⎡
⎣Ex Ê 0
Ê Ey 0
0 0 G

⎤
⎦ . (13.125)

In this relation t is the thickness of the plate with length a = 2 mm and width b = 1
mm. The plate is simply supported and subjected to a uniform load q. The material
data can be found in Table13.3.



432 13 Virtual Elements for Beams and Plates

Fig. 13.14 Simply supported plate, quantities plotted on the deformed configuration

Table 13.3 Material parameters for the orthotropic plate

Description Symbol Value Unit

Young’s modulus in
fiber direction

Ex 10000 MPa

Transverse modulus Ey 1000 MPa

Shear modulus G 500 MPa

Modulus Ê 500 MPa

Thickness of the
specimen

t 0.01 mm

Surface load q −0.1 MPa

By noting that H = D1 + 2Dxy = Ê + 2G, the deflection can be expressed by
the double sum

w(X, Y ) = 16 q

π6

∑
m=1,3..

∑
n=1,3...

1

mn(m
4

a4
Dx + 2m

2n2
a2b2

H + n4
b4

Dy)
sin
[mπ

a
X
]
sin
[nπ

b
Y
]
.

(13.126)
A convergence study of the deflection w at the center (X,Y ) = ( a2 ,

b
2 ) of the

plate is performed for the orthotropic plate using element VE-2: st-2b for regular
(Fig. 13.11a) and Voronoi (Fig. 13.7b) meshes.

The reference value wref is computed for the given data with Mathematica
by using m = n = 1, 3, . . . , 31 terms of the sum (13.126) which yields the con-
verged result wref = −1.5835858431216134 mm. Deflection and distribution of the
moment MXX are depicted in Fig. 13.14.

Figure13.15 depicts the error of deflectionw in themiddle of the plate.We observe
a quadratic convergence rate for element 2 for Q1 and Voronoi meshes VO-R and
VO-U. As in the previous example, Q1 meshes yield the best result. This examples
underlines that the Kirchhoff-Love virtual elements converge for these more intricate
materialswith the sameorder as for isotropicmaterials. Thiswas also shown for plates
with anisotropic materials in Wriggers et al. (2021).
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Fig. 13.15 Convergence study of the deflection w for the orthotropic plate

13.5 Stabilization Free C1-Continuous Virtual Plate
Elements for FEM Codes

Virtual plate elements can, of course, assume the simple form of a triangular or
quadrilateral element. SuchC1-continuous plate element can be based on both virtual
elements, VE-1 or VE-2, see Fig. 13.16. The VE-1:T1 to VE-2:Q1 elements, defined
in Fig. 13.16, can be implemented in conventional finite element codes since their
number of nodes and degrees of freedom coincidewith the node numbers and degrees
of freedomof classical finite plate elements. The so constructedC1-continuous virtual
plate elements do not need a high ansatz order within the element, like in the TUBA
family of triangular elements in Argyris et al. (1968) or—as quadrilaterals—using
a composition of four triangular elements, see De Veubeke (1968). The developed
virtual element formulation provides the necessaryC1-continuity forKirchhoff plates
for elements depicted in Fig. 13.16. These have as VE-1:T1 and VE-1:Q1 three
unknowns per node and thus in total 9 and 12 unknowns, respectively. As VE-2:T1
and VE-2:Q1 the elements have three unknowns at the vertices and one unknown at
the midnodes along the edges summing up to 12 and 16 total unknowns per element,
respectively.10

Stabilization free formulation. As discussed in Sect. 13.3.6 it is not possible to avoid
stabilization for the standard construction of the virtual plate element. However when
looking at the formula (13.115) we observe that a proper rank of the plate element
can be obtained by raising the ansatz order for the projection wπ . Table13.4 shows
the necessary ansatz order for the projection wπ which avoids rank deficiency.

Thus, for element VE-1:T1 the cubic polynomial (13.98) can be used instead of
the quadratic ansatz (13.83) to compute the projection using (13.113) with the ansatz
wh from (13.78) and θht for element 1 in (13.82)1. In the same way the projection
can be changed for VE-2:T1 by using wπ = H(2,4)

w a instead of (13.98) where now
H(2,4)

w is a fourth order polynomial and a has 15 independent constants. The resulting
projection is on one side less efficient since the equation system to be solved changes

10 It is even possible to construct virtual plate elements with a higher continuity, see e.g. Brezzi and
Marini (2013, 2021), by just introducing higher order ansatz functions at the edges.
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Fig. 13.16 Three and four noded virtual elements VE-1 and VE-2

Table 13.4 Ansatz order wπ of for correct rank of triangular plate

Element VE-1:T1 VE-2:T1

Ansatz order wπ 3 4

in this case from (10 × 10) to (15 × 15) but on the other side the stabilization has not
to be computed and the solution is no longer dependent on a stabilization parameter.
When testing the rank of the stabilization free elements VE-1:T1 and VE-2:T1 it
turns out that the eigenvalues are basically the same as with the stabilization and
include the correct number of zero eigenvalues for the rigid body modes.

The VE-2:Q1 element would need a fifth order polynomial for proper rank, see
Table13.4. This leads to a local solution of a (21 × 21) matrix for the determination
of the parameters a. Hence it is more efficient to construct this element from two
VE-2:T1 elements by local assembly and elimination of the unknown θt related to
edge that defines the interface between the two triangles. The same argument hold
for VE-1:Q1 which can be easily constructed from two VE-1:T1 elements by local
assembly.

Since the virtual elements VE-1:T1 to VE-2:Q1 have C1-continuity with a low
order ansatz function it is of interest to investigate how these virtual plate elements
perform on classical finitemesheswhich are used in engineering software. It is also of
interest how the stabilization free triangular virtual elements perform in comparison
to the stabilized ones. All test results will be compared with finite elements that
approximate the curvature in the same way as the derived virtual elements VE-1:T1
to VE-2:Q1. For the virtual element VE-1 an equivalent Kirchhoff plate element
with constant curvature is the nonconforming Morley element, see Morley (1968).
For element VE-2 non-conforming triangular plate element, developed by Specht
(1988), and the DKT element, see Batoz et al. (1980) can be selected which both
rely on a linear curvature approximation.

We start the comparison with two benchmark examples of a clamped plate under
uniform and point load, see e.g. Oñate (2013), and illustrate the performance of the
virtual plate elements VE-1:T1 to VE-2:Q1 depicted in Fig. 13.16 for stabilizations
(13.121), (13.122) and the stabilization free formulation.
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13.5.1 Clamped Plate Under Uniform Load

The clamped plate under uniform load q̄ was already discussed in Sect. 13.4.2.Geom-
etry and material data are the same as in Sect. 13.4.2 and the analytical solutions are
given in Table13.2. Results related to the convergence behaviour of a number of
conforming and non-conforming plate elements are provided in Oñate (2013) for the
case of a uniform load.

We compare the results of solutions obtained with finite elements from Morley,
Specht and the DKT formulation with the virtual plate elements that have the same
nodes as standard triangles and quadrilaterals, see Fig. 13.17. For the pointwise sta-
bilization “st-1”, see (13.121), Fig. 13.17a demonstrates that VE-1 has a better coarse
mesh accuracy than the Morley element despite the fact that both elements have a
constant approximation of the curvature. The solution of the stabilization-free VE-
1:T1 element is exactly the same as the one of element VE-1:T1 with stabilization
“st-1”, and thus, it is not extra marked in Fig. 13.17a.

For the pointwise stabilization VE-2 outperforms the DKT and Specht elements,
although all elements approximate the curvature with a linear polynomial. It is inter-
esting that the triangular element VE-1 has an extremely good coarse mesh accuracy
when using the continuous stabilization “st-2” in (13.122) as shown in Fig. 13.17b.
The triangular VE-1 element with stabilization “st-2b” is simple, efficient, depicts
a superior coarse grid accuracy and has only three nodes. Thus it qualifies as a
C1-continuous Kirchhoff plate element for legacy finite element codes.

Interestingly, the behaviour of VE-2:T1 is not influenced by the type of stabi-
lization, also the stabilization-free version yields the same results as VE-2:T1 with
stabilizations “st-1b” and ”st-2b”.

The rate of convergence is shown in Fig. 13.18 for the finite elements and the
virtual element VE-2 with linear curvature. It can be clearly seen that VE-2 depicts
a higher convergence order when compared to the DKT and Specht elements as
demonstrated. Thus the conforming virtual element 2 as a triangular well as as a
quadrilateral element is performing extremely well and thus a good candidate for

Fig. 13.17 Convergence study of the deflectionw under uniform load forVE-1 andVE-2, compared
with finite elements
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Fig. 13.18 Convergence of the deflection w for element 2, compared to Specht and DKT finite
elements for a plate under uniform load

finite element software aswell. This is especially true for the stabilization-free version
since it does not rely on additional parameters.

13.5.2 Clamped Plate Under Point Load

In a second example we apply the triangular and quadrilateral virtual element to the
clamped plate under point load F = 64 kN. The geometrical and the material data
are described in Sect. 13.4.2. The analytical solution is reported in Timoshenko and
Woinowsky-Krieger (1959) as w = −0.0896 F

D . The plot in Fig. 13.19 depicts the
convergence behaviour of the different element formulations.

As shown in Fig. 13.19a the pointwise stabilization “st-1b” yields the best results
for VE-2:Q1 while Fig. 13.19b depicts the superior coarse mesh accuracy of element
VE-1:T1 for the continuous stabilization “st-2b”, as in the previous example. For
the triangular element VE-2:T1 there is no difference in the results for stabilization
“st-1b”, “st-2b” and the stabilization free version.

The asymptotic convergence behaviour can be observed in Fig. 13.20. Here again
the coarse mesh accuracy of the VE-1:T1 element is demonstrated in Fig. 13.20a for
the continuous stabilization “st-2b”. Expectantly the same asymptotic convergence
rate is achieved for VE-1: T1 and VE-1:Q1. Due to the point load the rate of con-
vergence is lower for the higher order ansatz which can be seen in Fig. 13.20b. Here
VE-2: Q1 depicts the best performance when using the pointwise stabilization.

It is impressive to see in both examples, that the proposed virtual elements (VE-
1:T1 st-2b and VE-2:Q2 st-1b) outperform the DKT element which, in the engineer-
ing literature, is known to be an excellent element. This qualifies both virtual plate
elements as candidates for engineering software related to the analysis of thin plates.
Especially the very simple triangular element VE-1:T1 “st-2b” is a good candidate
since it fits easily in existing software packages, having only three nodes and the
same number of unknowns at each node which is actually equivalent to using the
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Fig. 13.19 Convergence study of the deflectionw under point load for VE-1 and -2, compared with
finite elements

Fig. 13.20 Convergence of the deflection w for Elements 1 and 2, compared to Morley and DKT
finite elements for plate under point load

Specht or DKT element. On the other side, the stabilization free form of the VE-2:T1
element is very accurate and has a superior convergence rate.

13.5.3 L-Shaped Plate

An example that is more demanding is the “L-shaped” plate, see Fig. 13.21. The plate
is loaded by a uniform load q = −1 and simply supported at all sides (w = 0).

The geometrical data are provided in Fig. 13.21 with H1 = H2 = 4 and W1 =
W2 = 4. Young’s modulus is given by E = 108, the Poisson ratio by ν = 0.3 and
the plate thickness is t = 0.01. Here a dimensionless representation is provided,
assuming that all geometric and material data match.

The solution of the plate is governed by a singularity at the re-entrant corner. For
the case of all sides being simply supported the regularity in the critical corner is such
thatW ∈ H 7/3, see Beirão da Veiga et al. (2008), which results in a convergence rate
of O(hβ) with β = min( 13 , k) = 1

3 where k is the ansatz order of the element.
For the numerical simulations the virtual elements VE-1 as well as VE-2 are

selected and compared with results obtained by the DKT element. The plate is
discretized using uniform meshes based on triangular and quadrilateral elements.
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Fig. 13.21 Simply supported L-shaped plate

Fig. 13.22 Different meshes for the L-shaped plate

Furthermore, a mesh is employed that is refined at the re-entrant corner, see
Fig. 13.22b. The mesh in Fig. 13.22a consists of 3 areas that are discretized by 2
16 × 16 elements while the mesh in Fig. 13.22b is constructed using 3 areas of
16 × 16 quadrilaterals and a refinement based on a bi-section approach at the re-
entrant corner which halves the element size 5 times in the refined zone.

Figure13.23a shows the deflection obtained with the locally refined mesh of
Fig. 13.22b while Fig. 13.23b depicts the result obtained with a 64 × 64 mesh per
area. Here both discretizations yield basically the same results.

The difference of the accuracy in predicting the bendingmoments is demonstrated
for MXY in Fig. 13.24. It is easily observed, by looking at the minimum and max-
imum values for the bending moment MXY , that the uniform mesh using the DKT
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Fig. 13.23 Deflection of the plate

Fig. 13.24 Distribution of bending moments MXY

element, see Fig. 13.24b, does not produce the same accurate results than virtual
element solution based in the locally refined mesh, see 13.24a. The latter picks up
the singularity in a much clearer way.

It is obvious that this type of problem requires amesh refinement at the areaswhere
singularities occur. Ideally the refinement has to reflect the order of the singularity
which then would lead to optimal convergence rates, for details see e.g. Wang et al.
(1984), Babuska and Scapolla (1989).
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Appendix A
Formulae in Virtual Element Formulations

This appendix provides some useful formulae that help to derive efficient integration
schemes that can be applied within the discretization process of virtual elements.

A.1 Integration Over Polygons

A general polygon occurs often in two-dimensions often as a virtual element, see
Fig.A.1. The following formulae can be used to compute certain integrals that appear
during the derivation of virtual elements.Generally they follow fromGreen’s theorem

∫

�

[
∂Q

∂x
− ∂P

∂y

]
dx dy =

∫

�

P(x, y) dx +
∫

�

Q(x, y) dy (A.1)

where � is the boundary of �. Based on this theorem the following relations can
be derived which allow to compute the integrals by just using the vertices of the
polygon.

The area of the polygon is given by

A =
∫

�

d� = 1

2

n∑
i=1

(xi yi+1 − xi+1 yi ) (A.2)

Higher order integrals, up to polynomial order n = 2:

∫

�

x d� = 1

6

n∑
i=1

(xi yi+1 − xi+1 yi )(xi + xi+1) (A.3)
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Fig. A.1 General polygon
that describes a virtual
element

∫

�

y d� = 1

6

n∑
i=1

(xi yi+1 − xi+1 yi )(yi + yi+1) (A.4)

∫

�

x2 d� = 1

12

n∑
i=1

(xi yi+1 − xi+1 yi )(x
2
i + xi xi+1 + x2i+1) (A.5)

∫

�

y2 d� = 1

12

n∑
i=1

(xi yi+1 − xi+1 yi )(y
2
i + yi yi+1 + y2i+1) (A.6)

∫

�

x y d� = 1

24

n∑
i=1

(xi yi+1 − xi+1 yi )(xi yi+1 + 2xi yi + 2 xi+1 yi+1 + xi+1 yi )

(A.7)
In these relations, xi , yi are the coordinates of the i th polygon vertex, for 1 ≤ i ≤ n.
Also, xn+1, yn+1 are assumed to be equal to the coordinates of the first vertex, i.e.,
xn+1 = x1 and yn+1 = y1.

For higher order polynomials the following relation holds

∫

�

x p yq dx dy = 1

(p + q + 2)(p + q + 1)

(
p + q
p

)×

(A.8)
n∑

i=1

(xi yi+1 − xi+1 yi )
p∑

k=0

q∑
l=0

(
k + l
l

)(
p + q − k − l

q − l

)
xki+1 x

p−k
i yli+1 yq−l

i

see Steger (1996). The expression

(
n
k

)
is the binomial coefficient which follows

from the product
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(
n
k

)
=

k∏
i=1

n + 1 + i

i

for integer values of n and k > 0. For k = 0 the value of

(
n
0

)
is always 1.

Special form for linear functions. The barycenter xb = (xb, yb) of a
two-dimensional domain � is given by

xb = 1

�

∫

�

x d� and yb = 1

�

∫

�

y d� . (A.9)

Thus the integration of a linear function f (x, y) = a + bx + cy over the domain
can be expressed by ∫

�

f (x, y) d� = f (xb, yb)� . (A.10)

This results is also valid in the three-dimensional case
∫

�

f (x) d� = f (xb)� (A.11)

where xb is the barycenter, � the volume and f (x) = a + bx + cy + dz.

A.2 Computation of Volume by Surface Integrals

Classically the divergence or Gauss theorem allows the evaluation of a volume inte-
gral (�) over a closed surface � with outward normal n. Here different variants can
be listed depending on the type of integrands. These are summarized in the list below
for a vector u and a tensor T

∫

�

Div u d� =
∫

�

u · n d� , (A.12)

∫

�

Div T d� =
∫

�

T n d� , (A.13)

∫

�

Rot u d� =
∫

�

u × n d� . (A.14)

For the gradient of a scalar function α(x) one can derive from the Gauss theorem
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∫
�

∇α(x) d� =
∫

�

Gradα(x) d� =
∫

�

α(x) n d� . (A.15)

Using these results, products of vectors and tensors can be transformed partly to
surface integrals. Examples are the rules below

Div (α u) = u · Gradα + αDiv u , (A.16)

Div (α T ) = T Gradα + αDiv T , (A.17)

Div (T u) = T T · Grad u + Div T T · u , (A.18)

Div (u ⊗ w) = (Grad u)w + (Divw) u (A.19)

which then yields e.g. for (A.18) together with (A.12)

∫

�

T T · Grad u d� +
∫

�

Div T T · u d� =
∫

�

(T u) · n d� . (A.20)

Application of the divergence theorem. Another way to compute an area or volume
integral can be derived by using the divergence theorem which reduces the integral
by one-dimension By noting that a function can be written in the two-dimensional
case as

f (x, y) = 1

2
div

{∫
f (x, y)dx ,

∫
f (x, y)dy

}
(A.21)

an area integral can be transformed to a line integral

∫

�

f (x, y) d� = 1

2

∫

�

{∫
f (x, y)dx ,

∫
f (x, y)dy

}
· n d� (A.22)

where n is the outward normal vector of the area �. In the same way we obtain for
three dimensions
∫

�

f (x, y, z) d� = 1

3

∫

� f

{∫
f (x, y, z)dx ,

∫
f (x, y, z)dy ,

∫
f (x, y, z)dz

}
· n d�

(A.23)
where now n is the outward normal to the surface � f of the volume �.

This formulation is especially useful for the integration of polynomials over poly-
gons or polyhedra. In the two-dimensional case it follows

∫

�

x p yqd� = 1

2

∫

�

[
x p+1yq

p + 1
nx + x p yq+1

q + 1
ny

]
d� (A.24)

and in the three-dimensional case one can write
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∫

�

x p yq zrd� = 1

3

∫

� f

[
x p+1yq zr

p + 1
nx + x p yq+1zr

q + 1
ny + x p yq zr+1

r + 1
nz

]
d� (A.25)

where p, q and r is the polynomial degree.1

Using the barycenter. When computing the volume integral over a scalar function
p, which gradient is constant, Grad p = const., one can shift the integration to the
boundary using the relation (A.16) and (A.12). First we reformulate

pDivx = Div(p x) − Grad p · x . (A.26)

Thenwith a changeof coordinates xb = x − b,where bdenotes the coordinates of the
barycenter of the virtual element,we canwritewithDiv(xb) = Div(x − b) = Div(x)

∫
�

pDivx d� =
∫

�

Div(p xb) d� −
∫

�

Grad p · xb d� . (A.27)

Now with Divx = 2 in 2d and Divx = 3 in 3d, and taking into account Grad p =
const. we can write for the two-dimensional case

∫
�

p d� = 1

2

[∫
�

Div(p xb) d� − Grad p ·
∫

�

xb d�

]
. (A.28)

Since
∫
�
xb d� = 0 we arrive finally at

∫
�

p d� = 1

2

∫
�

Div(p xb) d� (A.29)

where the latter surface integral can be transformed to a contour integral

∫
�

p d� = 1

2

∫
�

p xb · n d� (A.30)

with n being the outward normal vector related to the contour.
In the three dimensional case the same result holds for transformation of a volume

to a surface integral, only the factor changes

∫
�

p d� = 1

3

∫
� f

p xb · n d� (A.31)

1 The right hand side of Eq. (A.25) can be transformed to a line integral over the edges of the
polygon using (A.24). However this yields a quite complex formulation that does not lead to an
efficient evaluation of the resulting line integral. The complexity follows from the fact that z has to
be expressed as a function of x and y using the normal form of face � f .
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and the integral on the right hand side has to be computed over the surface � f .
This result can be extended to a vector valued function w with Gradw = const.

by using the identity, see (A.19),

Div(w ⊗ xb) = (Gradw) xb + (Divxb)w . (A.32)

This leads for the two-dimensional case to
∫

�

w d� = 1

2

∫
�

Div(w ⊗ xb) d� = 1

2

∫
�

(w ⊗ xb)n d� (A.33)

and hence the integral over the surface � can be transformed in a line integral over
the contour � ∫

�

w d� = 1

2

∫
�

w (xb · n) d� (A.34)

where n is the outward normal to the contour �.
The same is true in three-dimensional applications where now a volume integral

is transformed to a surface integral

∫
�

w d� = 1

3

∫
� f

w (xb · n) d� (A.35)

where n is the outward normal to the surface � f .



Appendix B
Definition and Labeling of Different Mesh Types

Meshes of complex geometries can be employed within the virtual element method.
These meshes include convex and non-convex shaped elements as well as Voronoi
cells. A precise naming of the different mesh types, here abbreviated by�, is intro-
duced such that numerical results in the different applications of VEM are clearly
distinguishable:

• Virtual element: VE—�,
• Finite element: FE—�.

Virtual elements VE—� are employed to numerically solve the examples of each
chapter. The abbreviation� stands for different types ofmeshes used in the analysis.
In the two-and three-dimensional case we set

• Q1 for a mesh consisting of quadrilateral elements with 4 nodes, see left part of
Fig.B.1,

• Q2S for a mesh consisting of quadrilateral elements with 8 nodes and straight
edges, see middle and right part of Fig.B.1, which can have arbitrary shape,

• T1: a two-dimensional triangular element with linear shape functions and 3 nodes,
see left part of Fig.B.4,

• T2: a two-dimensional triangular element with quadratic shape functions and 6
nodes and straight edges, see middle and right part of Fig.B.4, which can have
arbitrary shape as long as the edges are straight,

• H1 for a mesh consisting of hexahedral elements with 8 nodes, see left part of
Fig.B.2,

• H2S for a mesh consisting of hexahedral elements with 20 nodes, see middle part
of Fig.B.2. Note that the edges between nodes of the element on the right side of
Fig.B.2 have to be straight,

• H2 for a mesh consisting of hexahedral elements with 26 nodes which is basically
the same as the H2Smesh, but has an additional mid node at each of the 6 surfaces,

• O1: a three-dimensional tetrahedral element with linear shape functions and four
nodes, see left part of Fig.B.5,
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Fig. B.1 Quadrilateral and polygonal elements with 4 (Q1) and 8 (Q2S) nodes

Fig. B.2 Hexahedral elements with 8 (H1) and 20 (H2S) nodes

Fig. B.3 Voronoi mesh with uniformly (VOU) and randomly size distribution (VOR)

• O2: a three-dimensional tetrahedral element with quadratic shape functions and
ten nodes, see right part of Fig.B.5. Note that the edges between nodes of the
element on the right side of Fig.B.5 have to be straight,

• VOU for a mesh consisting of Voronoi cells that have uniform size, see left part
of Fig.B.3, and

• VOR for a mesh consisting of Voronoi cells that have randomly distributed size,
see right part of Fig.B.3.

Additionally the following finite elements FE-� are used where the abbreviation
� stands for:

• T1: a two-dimensional triangular element with linear shape functions and three
nodes, see left part of Fig.B.4,
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Fig. B.4 Triangular elements with 3 (T1) and 6 (T2) nodes

Fig. B.5 Tetrahedral elements with 4 (T1) and 10 (T2) nodes

• T2: a two-dimensional triangular element with quadratic shape functions and six
nodes, see middle part of Fig.B.4,

• Q1: a two-dimensional quadrilateral finite element with linear shape functions and
4 nodes, see left part of Fig.B.1,

• Q2 : a two-dimensional quadrilateral finite element with quadratic shape functions
and nine nodes,

• Q2S: a two-dimensional quadrilateral serendipity finite element with quadratic
shape functions with eight nodes, see middle part of Fig.B.1,

• O1: a three-dimensional tetrahedral element with linear shape functions and four
nodes, see left part of Fig.B.5,

• O2: a three-dimensional tetrahedral element with quadratic shape functions and
ten nodes, see middle part of Fig.B.5,

• H1: a three-dimensional hexahedral finite element with linear shape functions and
eight nodes, see left part of Fig.B.2,

• H2: a three-dimensional hexahedral finite element with quadratic shape functions
and 27 nodes,

• H2S: a three-dimensional hexahedral serendipity finite element with quadratic
shape functions and 20 nodes, see middle part of Fig. B.2.

Generally the element types of the finite element discretization can also be
employed in a virtual element discretization as long as they do not have nodes inside
the element such as the Q2 and H2 finite elements. However the finite elements
cannot assume geometrical shapes, like the elements on the right parts of Figs.B.1,
B.4, B.2 and B.5, since the associated Q2, Q2S, T2, H2S, H2 and O2 elements have
quadratic shape functions that lead within the isoparametric concept to quadratic
surface representations.



452 Appendix B: Definition and Labeling of Different Mesh Types

Reference

Steger, C. 1996. On the calculation of arbitrarymoments of polygons. Technical report, Forschungs-
gruppe Bildverstehen, Informatik IX, TU München. Technical report FGBV-95-05.


	Preface
	Contents
	1 Introduction
	1.1 History and Recent Developments of Virtual Elements
	1.2 Introductory Examples
	1.2.1 Virtual Element Formulation of a Truss Using a Linear Ansatz
	1.2.2 Quadratic Ansatz for a One-Dimensional Virtual Truss Element

	1.3 Contents of the Book
	References

	2 Continuum Mechanics Background
	2.1 Basic Equations
	2.1.1 Kinematics
	2.1.2 Balance Laws

	2.2 Constitutive Equations
	2.2.1 Linear Elasticity
	2.2.2 Finite Elasticity
	2.2.3 Elasto-Plasticity

	2.3 Variational Formulation
	2.3.1 Potential and Weak Form
	2.3.2 Incompressibility
	2.3.3 Plasticity
	2.3.4 Heat Conduction

	References

	3 VEM Ansatz Functions and Projection for Solids
	3.1 Two-Dimensional Case
	3.1.1 General Ansatz Space
	3.1.2 Computation of the Projection
	3.1.3 Equivalent Projector
	3.1.4 Projection for a Linear Ansatz
	3.1.5 Computation of the Projection Using Symbolic Software
	3.1.6 Projection for a Quadratic Ansatz
	3.1.7 Serendipity Virtual Element for a Quadratic Ansatz
	3.1.8 Computation of the Second Order Projection Using Automatic Differentiation
	3.1.9 Higher Order Ansatz for Virtual Elements
	3.1.10 Virtual Elements Ansatz Functions for Curved Surfaces

	3.2 Three-Dimensional Case
	3.2.1 General Ansatz Space in Three Dimensions
	3.2.2 Computation of the Projection in Three Dimensions
	3.2.3 Projection for Linear Ansatz in Three Dimensions

	References

	4 VEM Ansatz Functions and Projection for the Poisson Equation
	4.1 Two-Dimensional Case
	4.1.1 Computation of the Projection
	4.1.2 Projection for a Linear Ansatz
	4.1.3 Projection for a Quadratic Ansatz

	4.2 Three-Dimensional Case
	References

	5 Construction of the Virtual Element
	5.1 Consistency Part
	5.1.1 Weak Form
	5.1.2 Potential

	5.2 Stabilization Techniques for Virtual Elements
	5.2.1 Stabilization by a Discrete Bi-Linear Form
	5.2.2 Energy Stabilization

	5.3 Assembly to the Global Equation System
	5.4 Numerical Example for the Poisson Equation
	5.4.1 Quadratic Membrane
	5.4.2 L-shaped Membrane

	References

	6 Virtual Elements for Elasticity Problems
	6.1 Linear Elastic Response of Two-Dimensional Solids
	6.1.1 Consistency Term Using Voigt Notation
	6.1.2 Consistency Term Using Tensor Notation
	6.1.3 Stabilization
	6.1.4 Numerical Example

	6.2 Finite Strain: Compressible Elasticity
	6.2.1 Consistency Term
	6.2.2 Stability Term
	6.2.3 Virtual Elements for Three-Dimensional Problems in Nonlinear Elasticity
	6.2.4 General Solution for Nonlinear Equations
	6.2.5 Numerical Examples, Compressible Case

	6.3 Incompressible Elasticity
	6.3.1 Linear Virtual Element with Constant Pressure
	6.3.2 Quadratic Serendipity Virtual Element with Linear Pressure
	6.3.3 Nearly Incompressible Behaviour
	6.3.4 Numerical Examples, Incompressible Case

	6.4 Anisotropic Elastic Behaviour
	6.4.1 Numerical Examples, Anisotropic Case

	References

	7 Virtual Elements for Problems in Dynamics
	7.1 Continuum Formulation
	7.2 Mass Matrix
	7.3 Solution Algorithms for Small Strains
	7.3.1 Matrix Formulation
	7.3.2 Numerical Integration in Time, Time Stepping Schemes

	7.4 Solution Algorithms for Finite Strains
	7.5 Numerical Examples
	7.5.1 Transversal Beam Vibration
	7.5.2 Cook's Membrane Problem
	7.5.3 3D Beam

	References

	8 Virtual Element Formulation for Finite Plasticity
	8.1 Formulation of the Virtual Element
	8.1.1 Consistency Part Due to Projection
	8.1.2 Algorithmic Treatment of Finite Strain Elasto-plasticity
	8.1.3 Energy Stabilization of the Virtual Element for Finite Plasticity

	8.2 Numerical Examples
	8.2.1 Necking of Cylindrical Bar
	8.2.2 Taylor Anvil Test

	References

	9 Virtual Elements for Thermo-mechanical Problems
	9.1 Introduction
	9.2 Governing Equations
	9.2.1 Energetic and Dissipative Response Functions
	9.2.2 Global Constitutive Equations
	9.2.3 Weak form and Pseudo-Potential Energy Function

	9.3 Virtual Element Discretization
	9.4 Representative Numerical Example
	References

	10 Virtual Elements for Fracture Processes
	10.1 Fracture Analysis Using Damage Mechanics
	10.1.1 Governing Equations for Isotropic Damage Model
	10.1.2 Virtual Element Formulation for Damage
	10.1.3 Numerical Examples

	10.2 Brittle Crack-Propagation
	10.2.1 Equations of Brittle Crack Propagation
	10.2.2 Modeling Crack Propagation with Virtual Elements
	10.2.3 Computation of Stress Intensity Factors
	10.2.4 Stress Intensity Factor Analysis Using Virtual Elements
	10.2.5 Propagation Criteria: Maximum Circumferential Stress Criterion
	10.2.6 Cutting Technique and Crack Update Algorithm
	10.2.7 Crack Propagation Simulations Based on the Cutting Technique

	10.3 Phase Field Methods for Brittle Fracture Using Virtual Elements
	10.3.1 Governing Equations for Elasticity
	10.3.2 Regularization of a Sharp Crack Topology 
	10.3.3 Variational Formulation of Brittle Fracture
	10.3.4 Formulation of the Virtual Element Method
	10.3.5 Numerical Examples for Brittle Fracture Using Phase Field

	10.4 Phase Field Methods for Ductile Fracture Using Virtual Elements
	10.4.1 Governing Equations for Phase Field Ductile Fracture
	10.4.2 Formulation of the Virtual Element Method
	10.4.3 Numerical Ductile Fracture Simulations

	10.5 Adaptive VEM for Phase-Field Fracture
	10.5.1 Governing Equations
	10.5.2 Mesh Refinement with Virtual Elements
	10.5.3 Adaptive Numerical Simulations for Phase-Field Fracture

	10.6 An Adaptive Scheme to Follow Crack Paths Combining Phase …
	10.6.1 General Idea
	10.6.2 Modeling Crack Propagation Using VEM 
	10.6.3 Discontinuous Crack Propagation Using Phase Field 
	10.6.4 Numerical Examples 

	References

	11 Virtual Element Formulation for Contact
	11.1 Introduction
	11.2 Theoretical Background for Contact of Solids
	11.2.1 Local Contact Kinematics
	11.2.2 Constitutive Relations for Contact
	11.2.3 Potential form for Solids in Contact

	11.3 Contact Discretization Based on Node Insertion
	11.4 Two-Dimensional Treatment of Contact Using VEM
	11.4.1 Inserted Node and Gap in the Two-Dimensional Case
	11.4.2 Discretization of the Contact Interface in 2d
	11.4.3 Penalty Formulation
	11.4.4 Augmented Lagrangian Multiplier Formulation

	11.5 Three-Dimensional Treatment of Contact Using VEM
	11.5.1 Node Insertion for Contact of Three-Dimensional Solids
	11.5.2 Algorithmic Treatment of Node-to-Node Intersection

	11.6 Stabilization of VEM in Case of Contact
	11.7 Numerical Examples
	11.7.1 Behaviour of Different Stabilization Methods
	11.7.2 Two-Dimensional Patch Test
	11.7.3 Three-Dimensional Patch Test
	11.7.4 Hertzian Contact Problem, Two-Dimensional
	11.7.5 Hertz Contact for Large Deformations, Two-Dimensional
	11.7.6 Hertzian Contact, Three-Dimensional
	11.7.7 Contacting Beams
	11.7.8 Wall Mounting of a Bolt

	References

	12 Virtual Elements for Computational Homogenization of Polycrystalline Materials
	12.1 Micro-to-Macro Transition Concept
	12.1.1 The Concept of Representative Volume Elements
	12.1.2 Macroscopic Boundary Value Problem
	12.1.3 Microscopic Boundary Value Problem
	12.1.4 Homogenization and Macro-Homogeneity Conditions
	12.1.5 Computational Homogenization Approach
	12.1.6 Multiscale Modeling Approach (FE2/VE2)

	12.2 The Virtual Element Method
	12.2.1 Homogenization Procedure: Sensitivity Analysis for Virtual Elements

	12.3 Representative Numerical Examples
	12.3.1 Tensile and Shear Deformations in Two Dimensions
	12.3.2 Three Dimensional Homogenization

	References

	13 Virtual Elements for Beams and Plates
	13.1 Virtual Element Formulations for Euler-Bernoulli Beams
	13.1.1 Third Order Ansatz for a One-Dimensional Virtual Beam Element
	13.1.2 Fourth Order Ansatz for a One-Dimensional Virtual Beam Element
	13.1.3 Static Condensation of the Moments

	13.2 Kirchhoff-Love Plates
	13.2.1 Mathematical Model of the Plate and Constitutive Relations

	13.3 Formulation of the Virtual Element
	13.3.1 General Notations
	13.3.2 Ansatz and Projection
	13.3.3 Ansatz Function
	13.3.4 Plate Element with Constant Curvature
	13.3.5 Plate Element with Linear Curvature
	13.3.6 Residual and Stiffness Matrix of the Virtual Plate Element

	13.4 Numerical Examples
	13.4.1 Notation Used in the Examples
	13.4.2 Clamped Plate Under Uniform Load
	13.4.3 Rhombic Plate
	13.4.4 Rectangular Orthotropic Plate

	13.5 Stabilization Free C1-Continuous Virtual Plate Elements for FEM Codes
	13.5.1 Clamped Plate Under Uniform Load
	13.5.2 Clamped Plate Under Point Load
	13.5.3 L-Shaped Plate

	References

	Appendix A Formulae in Virtual Element Formulations
	A.1  Integration Over Polygons
	A.2  Computation of Volume by Surface Integrals
	Appendix B Definition and Labeling of Different Mesh Types
	Reference


