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xx Preface

Preface
The Twelfth Edition of Electric Circuits represents a planned, incremen-
tal revision focusing on the Assessment Problems and the end-of-chapter  
Problems. The fundamental goals of the text are unchanged. These goals are:

• To build new concepts and ideas on concepts previously presented. 
This challenges students to see the explicit connections among the 
many circuit analysis tools and methods.

• To develop problem-solving skills that rely on a solid conceptual 
foundation. This challenges students to examine many different 
approaches to solving a problem before writing a single equation.

• To introduce realistic engineering experiences at every opportunity. 
This challenges students to develop the insights of a practicing engi-
neer and exposes them to practice of engineering.

Why This Edition?
The Twelfth Edition of Electric Circuits incorporates the following new and 
revised elements:

• End-of-chapter problems—Problem solving is fundamental to the 
study of circuit analysis. Having a wide variety of problems to assign 
and work is a key to success in any circuits course. Therefore, nearly 
all of the existing existing end-of-chapter problems were revised, and 
some new end-of-chapter problems were added. The only problems 
that were not altered are those asking you to derive or prove a par-
ticular result.

• Assessment Problems—After most subsections in a chapter, one or 
two assessment problems give you a chance to reflect on the new 
material and apply it to solve a problem. Every assessment problem is 
new to the Twelfth Edition and comes with answers to all parts of the 
problem posed. Many of the assessment problems have interactive 
video solutions available in Mastering, which guide you through the 
solution and ask you to participate in the problem-solving process.

• Mastering Engineering is an online tutorial and assessment pro-
gram that provides students with personalized feedback and 
hints and instructors with diagnostics to track students’ prog-
ress. With the Twelfth Edition, Mastering Engineering will offer 
new enhanced end-of-chapter problems with hints and feedback, 
Coaching Activities, and Adaptive Follow-Up assignments. Visit  
www.masteringengineering.com for more information.

• We have eliminated the Selected Answers appendix that has 
appeared in previous editions. Some instructors may not wish to 
assign  problems whose solutions are readily available to students at 
the back of the text. Since instructors have the complete solutions 
available to them, they are free to supply answers to select problems 
they assign if they wish. Providing the reader with answers to prob-
lems discourages them from checking their own answers using an 
alternate analysis technique or comparing their answers to known 
circuit behavior.
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Hallmark Features

Analysis Methods
Students encountering circuit analysis for the first time can benefit from 
 step-by-step directions that lead them to a problem’s solution. These directions 
are compiled into a collection of analysis methods, and many of the examples 
in the text use these analysis methods. Some of the analysis methods that are 
used most often can be found inside the book’s covers for easy reference.

Chapter Problems
Users of Electric Circuits have consistently praised the breadth, depth, vari-
ety, and sheer number of Chapter Problems. In the Twelfth Edition, there 
are nearly 1200 end-of-chapter problems, organized at the end of each 
chapter by section.

Practical Perspectives
The Twelfth Edition continues using Practical Perspectives to introduce the 
chapter. They provide real-world circuit examples, taken from real-world 
devices. Every chapter begins by describing a practical application of the 
material that follows. After presenting that material, the chapter revisits 
the Practical Perspective, performing a quantitative circuit analysis using 
the newly introduced chapter material. End-of-chapter problems directly 
related to the Practical Perspective application are identified for easy 
reference. These problems provide additional opportunities for solving 
 real-world problems using the chapter material.

Assessment Problems
Each chapter begins with a set of chapter objectives. At key points in the 
chapter, you are asked to stop and assess your mastery of a particular 
objective by solving one or more assessment problems. The answers to the 
assessment problems are given at the conclusion of each problem, so you 
can check your work. If you can solve the assessment problems for a given 
objective, you have mastered that objective. The Student Study area of Mas-
tering includes interactive video solutions for many of the assessment prob-
lems. If you want more practice, several end-of-chapter problems that relate 
to the objective are suggested at the conclusion of the assessment problems.

Examples
Every chapter includes numeric examples illustrating the concepts pre-
sented in the text. There are nearly 200 examples in this text that apply a 
particular concept, often employ an Analysis Method, and exemplify good 
problem-solving skills.

Checking the Results of Analysis
You are encouraged to check analysis results to verify that they make sense. 
There are many different ways to check results and examples of these 
checks are included throughout the text, the assessment problems, and the 
end-of-chapter problems. Don’t rely on comparing your results with some 
known answer, and instead check your own answer by solving the problem 
in a different way or comparing your answer with known circuit behavior.

Fundamental Equations and Concepts
Throughout the text, you will see fundamental equations and concepts set apart 
from the main text. This is done to help you focus on some of the key principles 
in electric circuits and to help you navigate through the important topics.
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Integration of Computer Tools
Computer tools can assist in the learning process by providing a visual rep-
resentation of a circuit’s behavior, validating a calculated solution, reducing 
the computational burden of more complex circuits, and iterating toward a 
desired solution using parameter variation. This computational support is 
often invaluable in the design process. The Twelfth Edition supports PSpice 
and Multisim, both popular computer tools for circuit simulation and anal-
ysis. Chapter problems suited for exploration with PSpice and Multisim are 
marked accordingly.

Design Emphasis
The Twelfth Edition emphasizes the design of circuits in many ways. First, 
many of the Practical Perspective discussions focus on the design aspects 
of the circuits. The accompanying Chapter Problems continue discussing 
design issues in these practical examples. Second, design-oriented Chapter 
Problems have been labeled explicitly, enabling students and instructors 
to identify those problems with a design focus. Third, identifying problems 
suited to PSpice or Multisim exploration suggests design opportunities 
using these software tools. Fourth, some problems in nearly every chapter 
ask you to choose realistic circuit component values in achieving a desired 
circuit design. Once such a problem has been analyzed, the student can 
build and test the circuit in a laboratory, comparing the analysis with the 
measured performance of the actual circuit.

Accuracy
All text and problems in the Twelfth Edition have undergone our strict hall-
mark accuracy checking process, to ensure the most error-free book possible.

Resources for Students
Mastering Engineering—Mastering Engineering provides tutorial home-
work problems designed to emulate the instructor’s office hour environ-
ment, guiding students through engineering concepts with self-paced  
individualized coaching. These in-depth tutorial homework problems pro-
vide students with feedback specific to their errors and optional hints that 
break problems down into simpler steps. Visit www.pearson.com/mastering/ 
engineering for more information.

Learning Catalytics—Learning Catalytics is an interactive student response 
tool that encourages team-based learning by using students’ smartphones, 
tablets, or laptops to engage them in interactive tasks and thinking. Visit 
www.learningcatalytics.com for more information.

 Student Workbook—This resource teaches students techniques for solving 
problems presented in the text. Organized by concepts, this is a valuable 
problem-solving resource for students. The Student Workbook is available 
in Mastering.

Introduction to Multisim and Introduction to PSpice Manuals—There are 
several powerful circuit simulators available free or at low cost to students. 
Circuit simulation is an excellent tool for exploring a circuit in depth and 
for visualizing the behavior of a circuit. The Multisim and PSpice manuals 
introduce these two popular simulators using examples tied directly to the 
main text. These manuals are available in Mastering.
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Resources for Instructors
All instructor resources are available for download at www.pearsonhighered 
.com. If you are in need of a login and password for this site, please contact 
your local Pearson representative.

Instructor Solutions Manual—Fully worked-out solutions to Assessment 
Problems and end-of-chapter problems.

PowerPoint Lecture Images—All figures from the text are available in 
 PowerPoint for your lecture needs. An additional set of full lecture slides 
with embedded assessment questions are available upon request.

Mastering Engineering—This online tutorial and assessment program 
allows you to integrate dynamic homework with automated grading and 
personalized feedback. MasteringEngineering allows you to easily track 
the performance of your entire class on an assignment-by-assignment basis, 
or the detailed work of an individual student. For more information visit 
www.masteringengineering.com.

Learning Catalytics—This “bring your own device” student engagement, 
assessment, and classroom intelligence system enables you to measure 
student learning during class, and adjust your lectures accordingly. A wide 
variety of question and answer types allows you to author your own ques-
tions, or you can use questions from a library available in the system. For 
more information visit www.learningcatalytics.com or click on the Learning 
Catalytics link inside Mastering Engineering.

Introduction to Multisim and Introduction to PSpice Manuals—These 
manuals, available in Mastering, are excellent resources for those wishing 
to integrate PSpice or Multisim into their classes.

Prerequisites
In writing the first 12 chapters of the text, we have assumed that the reader 
has taken a course in elementary differential and integral calculus. We have 
also assumed that the reader has had an introductory physics course, at 
either the high school or university level, that introduces the concepts of 
energy, power, electric charge, electric current, electric potential, and elec-
tromagnetic fields. In writing the final six chapters, we have assumed the 
student has had, or is enrolled in, an introductory course in differential 
equations.

Course Options
The text has been designed for use in a one-semester, two-semester, or a 
three-quarter sequence.

• Single-semester course: After covering Chapters  1–4 and Chap-
ters 6–10 (omitting Sections 7.7 and 8.5) the instructor can develop 
the desired emphasis by covering Chapter 5 (operational amplifiers), 
Chapter 11 (three-phase circuits), Chapters 13 and 14 (Laplace meth-
ods), or Chapter 18 (two-port circuits).

• Two-semester sequence: Assuming three lectures per week, cover the 
first nine chapters during the first semester, leaving Chapters 10–18 
for the second semester.

• Academic quarter schedule: Cover Chapters 1–6 in the first quarter, 
Chapters 7–12 in the second quarter, and Chapters 13–18 in the third 
quarter.
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Note that the introduction to operational amplifier circuits in Chapter 5 can 
be omitted with minimal effect on the remaining material. If Chapter 5 is 
omitted, you should also omit Section 7.7, Section 8.5, Chapter 15, and those 
assessment problems and end-of-chapter problems that pertain to opera-
tional amplifiers.

There are several appendixes at the end of the book to help readers 
make effective use of their mathematical background. Appendix A presents 
several different methods for solving simultaneous linear equations; com-
plex numbers are reviewed in Appendix B; Appendix C contains additional 
material on magnetically coupled coils and ideal transformers; Appendix D 
contains a brief discussion of the decibel; Appendix E is dedicated to Bode 
diagrams; Appendix F is devoted to an abbreviated table of trigonometric 
identities that are useful in circuit analysis; and an abbreviated table of use-
ful integrals is given in Appendix G. Appendix H provides tables of com-
mon standard component values for resistors, inductors, and capacitors, to 
be used in solving many end-of-chapter problems.
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2

CHAPTER CONTENTS

1
CHAPTER 

Circuit Variables
Electrical engineering is an exciting and challenging profession 
for anyone who has a genuine interest in, and aptitude for, applied 
science and mathematics. Electrical engineers play a dominant 
role in developing systems that change the way people live and 
work. Satellite communication links, cell phones, computers, 
televisions, diagnostic and surgical medical equipment, robots, 
and aircraft represent systems that define a modern  technological 
society. As an electrical engineer, you can participate in this 
ongoing technological revolution by improving and refining 
 existing systems and by discovering and developing new systems 
to meet the needs of our ever-changing society.

This text introduces you to electrical engineering using the 
analysis and design of linear circuits. We begin this chapter by 
presenting an overview of electrical engineering, some ideas 
about an engi neering point of view as it relates to circuit analy-
sis, and a review of the International System of Units. We then 
describe generally what circuit analysis entails. Next, we intro-
duce the concepts of voltage and current. We continue by discuss-
ing the ideal basic element and the need for a polarity reference 
system. We conclude the chapter by describing how current and 
voltage relate to power and energy.

1.1 Electrical Engineering: An Overview p. 4

1.2 The International System of Units p. 9

1.3 Circuit Analysis: An Overview p. 11

1.4 Voltage and Current p. 12

 1.5 The Ideal Basic Circuit Element p. 14

1.6 Power and Energy p. 15

1 Understand and be able to use SI units and 
the standard prefixes for powers of 10.

2 Know and be able to use the definitions of 
voltage and current.

3 Know and be able to use the definitions of 
power and energy.

4 Be able to use the passive sign convention 
to calculate the power for an ideal basic cir-
cuit element given its voltage and current.

CHAPTER OBJECTIVES
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Practical Perspective
Balancing Power
One of the most important skills you will develop is the 
ability to check your answers for the circuits you design 
and analyze using the tools developed in this text. A com-
mon method used to check for valid answers is to calcu-
late the power in the circuit. The linear circuits we study 
have no net power, so the sum of the power associated 
with all circuit components must be zero. If the total 
power for the circuit is zero, we say that the power bal-
ances, but if the total power is not zero, we need to find 
the errors in our calculation.

As an example, we will consider a simple model 
for distributing electricity to a typical home. (Note that a 

more realistic model will be investigated in the Practical 
Perspective for Chapter 9.) The components labeled a and 
b represent the source of electrical power for the home. The 
components labeled c, d, and e represent the wires that 
carry the electrical current from the source to the devices 
in the home requiring electrical power. The components 
labeled f, g, and h represent lamps, televisions, hair dryers, 
refrigerators, and other devices that require power.

Once we have introduced the concepts of voltage, 
current, power, and energy, we will examine this circuit 
model in detail, and use a power balance to determine 
whether the results of analyzing this circuit are correct.
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4 Circuit Variables

1.1 Electrical Engineering: An Overview
The electrical engineering profession focuses on systems that produce, 
transmit, and measure electric signals. Electrical engineering combines the 
physicist’s models of natural phenomena with the mathematician’s tools for 
manipulating those models to produce systems that meet practical needs.  
Electrical systems pervade our lives; they are found in homes, schools, 
 workplaces, and transportation vehicles everywhere. We begin by  presenting 
a few examples from each of the five major classifications of electrical systems:

• communication systems
• computer systems
• control systems
• power systems
• signal-processing systems

Then we describe how electrical engineers analyze and design such systems.
Communication systems are electrical systems that generate, trans-

mit, and distribute information. Well-known examples include television 
equipment, such as cameras, transmitters, receivers, and monitors; radio 
telescopes, used to explore the universe; satellite systems, which return 
images of other planets and our own; radar systems, used to coordinate 
plane flights; and telephone systems.

Figure 1.1 depicts the major components of a modern telephone sys-
tem that supports mobile phones, landlines, and international calling. 
Inside a telephone, a microphone turns sound waves into electric signals. 
These signals are carried to local or mobile exchanges, where they are 

Communications satellite

International exchange
Main exchanges

Mobile exchange

Main exchange

Local exchange

Private telephone

Telephone box

Telephone poles

International exchange Undersea cable

Cell phoneCell

Cell tower

Fiber-optic cable

Figure 1.1 ▲ A telephone system.
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combined with the signals from tens, hundreds, or thousands of other 
telephones. The form of the signals can be radio waves traveling through 
air, electrical signals traveling in underground coaxial cable, light pulses 
traveling in fiber-optic cable, or microwave signals that travel through 
space. The combined signals are broadcast from a transmission antenna 
to a receiving antenna. There the  combined signals are separated at an 
exchange, and each is routed to the appropriate telephone, where an 
earphone acts as a speaker to convert the received electric signals back 
into sound waves. At each stage of the process, electric circuits operate 
on the signals. Imagine the challenge involved in designing, building, and 
 operating each circuit in a way that guarantees that all of the hundreds of 
 thousands of simultaneous calls have high-quality connections.

Computer systems use electric signals to process information ranging  
from word processing to mathematical computations. Systems range 
in size and power from simple calculators to personal computers to 
 supercomputers that perform such complex tasks as processing weather 
data and modeling chemical interactions of complex organic molecules.  
These systems include networks of integrated circuits—miniature 
 assemblies of hundreds, thousands, or millions of electrical components 
that often  operate at speeds and power levels close to fundamental 
 physical limits, including the speed of light and the thermodynamic laws.

Control systems use electric signals to regulate processes. Examples 
include the control of temperatures, pressures, and flow rates in an oil 
refinery; the fuel–air mixture in a fuel-injected automobile engine; mech-
anisms such as the motors, doors, and lights in elevators; and the locks in 
the Panama Canal. The autopilot and autolanding systems that help to fly 
and land airplanes are also familiar control systems.

Power systems generate and distribute electric power. Electric power, 
which is the foundation of our technology-based society, usually is gen-
erated in large quantities by nuclear, hydroelectric, solar, and thermal 
(coal-, oil-, or gas-fired) generators. Power is distributed by a grid of con-
ductors that  crisscross the country. A major challenge in designing and 
operating such a system is to provide sufficient redundancy and control 
so that failure of any piece of equipment does not leave a city, state, or 
region completely without power.

Signal-processing systems act on electric signals 
that represent information. They transform the sig-
nals and the information contained in them into a 
more suitable form. There are many different ways 
to process the signals and their information. For 
example, image-processing systems gather massive 
quantities of data from orbiting weather satellites, 
reduce the amount of data to a manageable level, 
and transform the remaining data into a video image 
for the evening news broadcast. A magnetic reso-
nance imaging (MRI) scan is another example of an 
image-processing system. It takes signals generated 
by powerful magnetic fields and radio waves and 
transforms them into a detailed, three- dimensional 
image such as the one shown in Fig. 1.2, which can 
be used to diagnose disease and injury.

Considerable interaction takes place among the 
engineering disciplines involved in designing and oper-
ating these five classes of systems. Thus, communica-
tions engineers use digital computers to control the 
flow of information. Computers contain control sys-
tems, and control systems contain computers. Power 
systems require extensive communications systems to 

Meniscus

Tibia

Patellar
tendon

Patella
(knee cap)

Femur

Figure 1.2 ▲ An MRI scan of an adult knee joint.
Science History Images /Alamy Stock Photo
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6 Circuit Variables

coordinate safely and reliably the operation of components, which may be 
spread across a continent. A signal-processing system may involve a commu-
nications link, a computer, and a control system.

A good example of the interaction among systems is a  commercial 
airplane, such as the one shown in Fig. 1.3. A sophisticated communica-
tions system enables the pilot and the air traffic controller to monitor the 
plane’s location, permitting the air traffic controller to design a safe flight 
path for all of the nearby aircraft and enabling the pilot to keep the plane 
on its designated path. An onboard computer system manages engine 
functions, implements the navigation and flight control systems, and gen-
erates video information screens in the cockpit. A complex control system 
uses cockpit commands to adjust the position and speed of the airplane, 
producing the appropriate signals to the engines and the control surfaces 
(such as the wing flaps, ailerons, and rudder) to ensure the plane remains 
safely airborne and on the desired flight path. The plane must have its 
own power system to stay aloft and to provide and distribute the electric 
power needed to keep the cabin lights on, make the coffee, and activate 
the entertainment system. Signal-processing systems reduce the noise in 
air traffic communications and transform information about the plane’s 
location into the more meaningful form of a video display in the cockpit. 
Engineering challenges abound in the design of each of these systems and 
their integration into a coherent whole. For example, these systems must 
operate in widely varying and unpredictable environmental conditions. 
Perhaps the most important engineering challenge is to guarantee that 
sufficient redundancy is incorporated in the designs,  ensuring that passen-
gers  arrive safely and on time at their desired destinations.

Although electrical engineers may be interested primarily in one area, 
they must also be knowledgeable in other areas that interact with this area 
of interest. This interaction is part of what makes electrical engineering 
a challenging and exciting profession. The emphasis in engineering is on 
making things work, so an engineer is free to acquire and use any tech-
nique from any field that helps to get the job done.

Electrical
distribution

Landing
gear

Ice
protection

Environmental
controlFlight 

control

Navigation

Air traffic 
communications

Secondary
controls

Primary
controls

Primary
controls

Starter
generator

Engine
systems

Figure 1.3 ▲ Interacting systems on a commercial aircraft.
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 1.1 Electrical Engineering: An Overview 7

Circuit Theory
An electric circuit is a mathematical model that approximates the behav-
ior of an actual electrical system. Since electric circuits are found in every 
branch of electrical engineering, they provide an important foundation for 
learning how to design and operate systems such as those just described. 
The models, the mathematical techniques, and the language of circuit theory 
will form the intellectual framework for your future engineering endeavors.

Note that the term electric circuit is commonly used to refer to an 
actual electrical system as well as to the model that represents it. In this 
text, when we talk about an electric circuit, we always mean a model, 
unless otherwise stated. It is the modeling aspect of circuit theory that has 
broad applications across engineering disciplines.

Circuit theory is a special case of electromagnetic field theory: the 
study of static and moving electric charges. But applying generalized 
field theory to the study of electric signals is cumbersome and requires 
advanced mathematics. Consequently, a course in electromagnetic field 
theory is not a prerequisite to understanding the material in this text. We 
do, however, assume that you have had an introductory physics course in 
which electrical and magnetic phenomena were discussed.

Three basic assumptions permit us to use circuit theory, rather than 
electromagnetic field theory, to study a physical system represented by an 
electric circuit.

1. Electrical effects happen instantaneously throughout a system. We 
can make this assumption because we know that electric signals 
travel at or near the speed of light. Thus, if the system is physically 
small, electric signals move through it so quickly that we can con-
sider them to affect every point in the system simultaneously. A 
system that is small enough so that we can make this assumption is 
called a lumped-parameter system.

2. The net charge on every component in the system is always zero. 
Thus, no component can collect a net excess of charge, although 
some components, as you will learn later, can hold equal but oppo-
site separated charges.

3. There is no magnetic coupling between the components in a system. 
As we demonstrate later, magnetic coupling can occur within a 
component.

That’s it; there are no other assumptions. Using circuit theory provides 
simple solutions (of sufficient accuracy) to problems that would become 
hopelessly complicated if we were to use electromagnetic field theory. 
These benefits are so great that engineers sometimes specifically design 
electrical systems to ensure that these assumptions are met. The impor-
tance of assumptions 2 and 3 becomes apparent after we introduce the 
basic circuit elements and the rules for analyzing interconnected elements.

Let’s take a closer look at assumption 1. The question is, “How 
small does a physical system have to be to qualify as a lumped-parameter 
 system?” To get a quantitative answer to this question, remember that 
electric signals propagate as waves. If the wavelength of the signal is large 
compared to the physical dimensions of the system, we have a lumped- 
parameter system. The wavelength λ is the velocity divided by the repeti-
tion rate, or frequency, of the signal; that is, c fλ = . The frequency f is 
measured in hertz (Hz). For example, power systems in the United States 
operate at 60 Hz. If we use the speed of light c( 3 10 m/s)8= ×  as the 
velocity of propagation, the wavelength is 5 10 6×  m. If the power system 
of interest is physically smaller than this wavelength, we can represent it as 
a lumped-parameter system and use circuit theory to analyze its behavior. 
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8 Circuit Variables

How do we define smaller? A good rule is the rule of 1 10th: If the  dimension 
of the system is less than 1 10th  the dimension of the wavelength, you 
have a lumped-parameter system. Thus, as long as the physical dimension 
of the power system is less than 5 10 5×  m (which is about 310 miles),  
we can treat it as a lumped-parameter system.

Now consider a communication system that sends and receives radio 
signals. The propagation frequency of radio signals is on the order of 
10 9 Hz, so the wavelength is 0.3 m. Using the rule of 1 10th, a commu-
nication system qualifies as a lumped-parameter system if its dimension 
is less than 3 cm. Whenever any of the pertinent physical dimensions of a 
system under study approaches the wavelength of its signals, we must use 
electromagnetic field theory to analyze that system. Throughout this text 
we study circuits derived from lumped-parameter systems.

Problem Solving
As a practicing engineer, you will not be asked to solve problems that 
have already been solved. Whether you are improving the performance 
of an existing system or designing a new system, you will be working on 
unsolved problems. As a student, however, you will read and discuss 
problems with known solutions. Then, by solving related homework and 
exam problems on your own, you will begin to develop the skills needed 
to  attack the unsolved problems you’ll face as a practicing engineer.

Let’s review several general problem-solving strategies. Many of 
these pertain to thinking about and organizing your solution strategy 
 before proceeding with calculations.

1. Identify what’s given and what’s to be found. In problem solving, 
you need to know your destination before you can select a route 
for getting there. What is the problem asking you to solve or find? 
Sometimes the goal of the problem is obvious; other times you may 
need to paraphrase or make lists or tables of known and unknown 
information to see your objective.

On one hand, the problem statement may contain extraneous 
information that you need to weed out before proceeding. On the 
other hand, it may offer incomplete information or more complexi-
ties than can be handled by the solution methods you know. In that 
case, you’ll need to make assumptions to fill in the missing infor-
mation or simplify the problem context. Be prepared to circle back 
and reconsider supposedly extraneous information and/or your 
assumptions if your calculations get bogged down or produce an 
answer that doesn’t seem to make sense.

2. Sketch a circuit diagram or other visual model. Translating a verbal 
problem description into a visual model is often a useful step in the 
solution process. If a circuit diagram is already provided, you may 
need to add information to it, such as labels, values, or reference 
directions. You may also want to redraw the circuit in a simpler, but 
equivalent, form. Later in this text you will learn the methods for 
developing such simplified equivalent circuits.

3. Think of several solution methods and decide on a way of choosing 
among them. This course will help you build a collection of analyt-
ical tools, several of which may work on a given problem. But one 
method may produce fewer equations to be solved than another, or 
it may require only algebra instead of calculus to reach a solution. 
Such efficiencies, if you can anticipate them, can streamline your cal-
culations considerably. Having an alternative method in mind also 
gives you a path to pursue if your first solution attempt bogs down.
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4. Calculate a solution. Your planning up to this point should have helped 
you identify a good analytical method and the correct equations for 
the problem. Now comes the solution of those equations. Paper-and- 
pencil, calculator, and computer methods are all available for per-
forming the actual calculations of circuit analysis. Efficiency and your 
instructor’s preferences will dictate which tools you should use.

5. Use your creativity. If you suspect that your answer is off base or if 
the calculations seem to go on and on without moving you toward a 
solution, you should pause and consider alternatives. You may need 
to revisit your assumptions or select a different solution method. Or 
you may need to take a less conventional problem-solving approach, 
such as working backward from a solution. This text provides 
answers to all of the Assessment Problems and many of the Chapter 
Problems so that you may work backward when you get stuck. In 
the real world, you won’t be given answers in advance, but you may 
have a desired problem outcome in mind from which you can work 
backward. Other creative approaches include allowing yourself to 
see parallels with other types of problems you’ve successfully solved, 
following your intuition or hunches about how to proceed, and sim-
ply setting the problem aside temporarily and coming back to it later.

6. Test your solution. Ask yourself whether the solution you’ve obtained 
makes sense. Does the magnitude of the answer seem reasonable? Is 
the solution physically realizable? Are the units correct? You may 
want to rework the problem using an alternative method to validate 
your original answer and help you develop your intuition about the 
most efficient solution methods for various kinds of problems. In the 
real world, safety-critical designs are always checked by several inde-
pendent means. Getting into the habit of checking your answers will 
benefit you both as a student and as a practicing engineer.

These problem-solving steps cannot be used as a recipe to solve every prob-
lem in this or any other course. You may need to skip, change the order of, 
or elaborate on certain steps to solve a particular problem. Use these steps 
as a guideline to develop a problem-solving style that works for you.

1.2 The International System of Units
Engineers use quantitative measures to compare theoretical results to exper-
imental results and compare competing engineering designs. Modern engi-
neering is a multidisciplinary profession in which teams of engineers work 
together on projects, and they can communicate their results in a meaningful 
way only if they all use the same units of measure. The International System 
of Units (abbreviated SI) is used by all the major engineering societies and 
most engineers throughout the world; hence we use it in this text.

The SI units are based on seven defined quantities:

• length
• mass
• time
• electric current
• thermodynamic temperature
• amount of substance
• luminous intensity

These quantities, along with the basic unit and symbol for each, are 
listed in Table 1.1. Although not strictly SI units, the familiar time units 
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10 Circuit Variables

of minute (60 s), hour (3600 s), and so on are often used in engineering 
calculations. In addition, defined quantities are combined to form derived 
units. Some quantities, such as force, energy, power, and electric charge, 
you already know through previous physics courses. Table 1.2 lists the 
derived units used in this text.

In many cases, the SI unit is either too small or too large to use con-
veniently. Standard prefixes corresponding to powers of 10, as listed in 
Table 1.3, are then applied to the basic unit. Engineers often use only the 
prefixes for powers divisible by 3; thus centi, deci, deka, and hecto are used 
rarely. Also, engineers often select the prefix that places the base number 
in the range between 1 and 1000. Suppose that a time calculation yields 
a result of 10 5−  s, that is, 0.00001 s. Most engineers would describe this  
quantity as 10 sµ , that is, × −10 10 s6 , rather than as 0.01 ms or 10,000 ns.

Example 1.1 illustrates a method for converting from one set of units 
to another and also uses power-of-10 prefixes.

TABLE 1.1 The International System of Units (SI)

National Institute of Standards and Technology Special Publication 330, 2008 Edition, Natl. 
Inst. Stand. Technol. Spec. Pub. 330, 2008 Ed., 96 pages (March 2008)

Quantity Basic Unit Symbol

Length meter m

Mass kilogram kg

Time second s

Electric current ampere A

Thermodynamic temperature degree kelvin K

Amount of substance mole mol

Luminous intensity candela cd

TABLE 1.2 Derived Units in SI

National Institute of Standards and Technology Special Publication 330,  
2008 Edition, Natl. Inst. Stand. Technol. Spec. Pub. 330, 2008 Ed., 96 pages 
(March 2008)

Quantity Unit Name (Symbol) Formula

Frequency hertz (Hz) s 1−

Force newton (N) kg m/s 2⋅

Energy or work joule (J) N m⋅

Power watt (W) J s

Electric charge coulomb (C) A s⋅

Electric potential volt (V) J C

Electric resistance ohm ( )Ω V A

Electric conductance siemens (S) A V

Electric capacitance farad (F) C V

Magnetic flux weber (Wb) V s⋅

Inductance henry (H) Wb A

TABLE 1.3  Standardized Prefixes to Signify 
Powers of 10

National Institute of Standards and Technology Special 
Publication 330, 2008 Edition, Natl. Inst. Stand. Technol. Spec. 
Pub. 330, 2008 Ed., 96 pages (March 2008)

Prefix Symbol Power

atto a 10 18−

femto f 10 15−

pico p 10 12−

nano n 10 9−

micro µ 10 6−

milli m 10 3−

centi c 10 2−

deci d 10 1−

deka da 10

hecto h 10 2

kilo k 10 3

mega M 10 6

giga G 10 9

tera T 1012
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1.3 Circuit Analysis: An Overview
We look broadly at engineering design, specifically the design of electric 
 circuits, before becoming involved in the details of circuit analysis. This 
overview provides you with a perspective on where circuit analysis fits within 
the whole of circuit design. Even though this text focuses on circuit analysis, 
we try to provide opportunities for circuit design where appropriate.

All engineering designs begin with a need 1 , as shown in Fig. 1.4. 
This need may come from the desire to improve on an existing design, or it 
may be something brand new. A careful assessment of the need results in 
design specifications, which are measurable characteristics of a proposed 
design. Once a design is proposed, the design specifications 2  allow us 
to assess whether or not the design actually meets the need.

A concept 3  for the design comes next. The concept derives from 
a complete understanding of the design specifications coupled with an 
insight into the need, which comes from education and experience. The 
concept may be realized as a sketch, as a written description, or as some 
other form. Often the next step is to translate the concept into a mathe-
matical model. A commonly used mathematical model for electrical sys-
tems is a circuit model 4 .

The elements that make up the circuit model are called ideal circuit 
components. An ideal circuit component is a mathematical model of an 
actual electrical component, like a battery or a light bulb. The ideal circuit 

EXAMPLE 1.1 Using SI Units and Prefixes for Powers of 10

If a signal can travel in a cable at 80% of the speed of 
light, what length of cable, in inches, represents 1 ns?

Solution
First, note that 1 ns 10 s9= − . Also, recall that the speed  
of light c 3 10 m/s8= × . Then, 80% of the speed 
of light is = × = ×c0.8 (0.8)(3 10 ) 2.4 10 m/s.8 8  
Using a product of ratios, we can convert 80% of the 
speed of light from meters per second to inches per 
nanosecond. The result is the distance in inches traveled 
in 1 nanosecond:

×

=

2.4 10 meters
1 second

. 1 second
10 nanoseconds

. 100 centimeters
1 meter

. 1 inch
2.54 centimeters

9.45 inches/nanosecond

8

9

Therefore, a signal traveling at 80% of the speed of 
light will cover 9.45 inches of cable in 1  nanosecond.

Objective 1—Understand and be able to use SI units and the standard prefixes for powers of 10

1.1  Assume a data file travels through a fiber-optic 
cable at 95% the speed of light. How long does 
it take the signal to get from Boston to Chicago 
if the distance is approximately 950 miles?

Answer: 5.36 ms.

1.2  How tall, in miles, is a stack of $100 bills that 
totals $1 trillion? Assume the thickness of a 
$100 bill is 0.11 mm.

Answer: 683.51 miles.

ASSESSMENT PROBLEMS

SELF-CHECK: Also try Chapter Problems 1.1, 1.2, and 1.5.
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components used in a circuit model should rep-
resent the behavior of the actual electrical com-
ponents to an acceptable degree of accuracy. 
The tools of circuit analysis 5 , the focus of 
this text, are then applied to the circuit. Circuit 
 analysis uses mathematical techniques to predict 
the behavior of the circuit model and its ideal 
circuit components. A comparison between the 
desired behavior, from the design specifications, 
and the predicted behavior, from circuit analysis, 
may lead to refinements in the circuit model and 
its ideal circuit elements. Once the desired and 
 predicted behaviors are in agreement, a physical 
prototype 6  can be constructed.

The physical prototype is an actual electrical 
system, constructed from actual electrical com-
ponents. Measurements determine the quantita-
tive behavior of the physical system. This actual 
behavior is compared with the desired behavior 
from the design specifications and the predicted 
behavior from circuit analysis. The comparisons 
may result in refinements to the physical proto-
type, the circuit model, or both. This iterative 
process, in which models, components, and sys-
tems are continually refined, usually produces a 
design that accurately satisfies the design speci-
fications and thus meets the need.

Circuit analysis clearly plays a very important 
role in the design process. Because circuit analysis 
is applied to circuit models, practicing engineers 
try to use mature circuit models so that the result-
ing designs will meet the design specifications in 
the first iteration. In this text, we use models that 
have been tested for at least 40 years; you can 

assume that they are mature. The ability to model actual electrical systems 
with ideal circuit elements makes circuit theory extremely useful to engineers.

Saying that the interconnection of ideal circuit elements can be 
used to quantitatively predict the behavior of a system implies that we 
can  describe the interconnection with mathematical equations. For the 
 mathematical equations to be useful, we must write them in terms of 
measurable quantities. In the case of circuits, these quantities are voltage 
and current, which we discuss in Section 1.4. The study of circuit analysis 
involves  understanding the behavior of each ideal circuit element in terms 
of its voltage and current and understanding the constraints imposed on 
the voltage and current as a result of interconnecting the ideal elements.

1.4 Voltage and Current
The concept of electric charge is the basis for describing all electrical phe-
nomena. Let’s review some important characteristics of electric charge.

• Electric charge is bipolar, meaning that electrical effects are  described 
in terms of positive and negative charges.

• Electric charge exists in discrete quantities, which are integer 
 multiples of the electronic charge, 1.6022 10 C.19× −

• Electrical effects are attributed to both the separation of charge and 
charges in motion.

Circuit
model

Need

Circuit which
meets design
specificationsConcept

Design specifications

Physical
insight

Physical
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Circuit
analysis

Refinement
based on analysis
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measurements

Refinement based
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1

2

3 4 6

5

Figure 1.4 ▲ A conceptual model for electrical engineering design.
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In circuit theory, the separation of charge creates an electric force 
 (voltage), and the motion of charge creates an electric fluid (current).

The concepts of voltage and current are useful from an engineering 
point of view because they can be expressed quantitatively. Whenever 
positive and negative charges are separated, energy is expended. Voltage 
is the energy per unit charge created by the separation. We express this 
ratio in differential form as

DEFINITION OF VOLTAGE

 wv = d
dq

,  (1.1)

where

the voltage in volts,=v  

the energy in joules,=w

=q the charge in coulombs.

The electrical effects caused by charges in motion depend on the rate 
of charge flow. The rate of charge flow is known as the electric current, 
which is expressed as

DEFINITION OF CURRENT

 =i dq
dt

,  (1.2)

where

=i the current in amperes,

=q the charge in coulombs,

=t the time in seconds.

Equations 1.1 and 1.2 define the magnitude of voltage and current, 
respectively. The bipolar nature of electric charge requires that we assign 
polarity references to these variables. We will do so in Section 1.5.

Although current is made up of discrete moving electrons, we do not 
need to consider them individually because of the enormous number of 
them. Rather, we can think of electrons and their corresponding charge 
as one smoothly flowing entity. Thus, i is treated as a continuous variable.

One advantage of using circuit models is that we can model a com-
ponent strictly in terms of the voltage and current at its terminals. Thus, 
two physically different components could have the same relationship 
between the terminal voltage and terminal current. If they do, for pur-
poses of circuit analysis, they are identical. Once we know how a com-
ponent behaves at its terminals, we can analyze its behavior in a circuit. 
However, when developing component models, we are interested in a 
component’s  internal behavior. We might want to know, for example, 
whether charge conduction is taking place because of free electrons mov-
ing through the crystal lattice structure of a metal or whether it is because 
of electrons moving within the covalent bonds of a semiconductor mate-
rial. These concerns are beyond the realm of circuit theory, so in this text 
we use component models that have already been developed.
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1.5 The Ideal Basic Circuit Element
An ideal basic circuit element has three attributes.

1. It has only two terminals, which are points of connection to other 
circuit components.

2. It is described mathematically in terms of current and/or voltage.

3. It cannot be subdivided into other elements.

Using the word ideal implies that a basic circuit element does not exist as a 
realizable physical component. Ideal elements can be connected in order 
to model actual devices and systems, as we discussed in Section 1.3. Using 
the word basic implies that the circuit element cannot be further reduced 
or subdivided into other elements. Thus, the basic circuit elements form 
the building blocks for constructing circuit models, but they themselves 
cannot be modeled with any other type of element.

Figure 1.5 represents an ideal basic circuit element. The box is blank 
because we are making no commitment at this time as to the type of cir-
cuit element it is. In Fig. 1.5, the voltage across the terminals of the box 
is denoted by v, and the current in the circuit element is denoted by i. 
The plus and minus signs indicate the polarity reference for the voltage, 
and the arrow placed alongside the current indicates its reference direc-
tion. Table 1.4 interprets the voltage polarity and current direction, given 
positive or negative numerical values of v and i. Note that algebraically 
the notion of positive charge flowing in one direction is equivalent to the 
notion of negative charge flowing in the opposite direction.

Assigning the reference polarity for voltage and the reference direction 
for current is entirely arbitrary. However, once you have assigned the ref-
erences, you must write all subsequent equations to agree with the chosen 
references. The most widely used sign convention applied to these references 
is called the passive sign convention, which we use throughout this text.

21

vi 1 2

Figure 1.5 ▲ An ideal basic circuit element.

TABLE 1.4 Interpretation of Reference Directions in Fig. 1.5

Positive Value Negative Value

v voltage drop from terminal 1 to terminal 2 voltage rise from terminal 1 to terminal 2

or or

voltage rise from terminal 2 to terminal 1 voltage drop from terminal 2 to terminal 1

i positive charge flowing from terminal 1 to terminal 2 positive charge flowing from terminal 2 to terminal 1

or or

negative charge flowing from terminal 2 to terminal 1 negative charge flowing from terminal 1 to terminal 2

PASSIVE SIGN CONVENTION

Whenever the reference direction for the current in an 
element is in the direction of the reference voltage drop 
across the element (as in Fig. 1.5), use a positive sign in 
any expression that relates the voltage to the current. 
Otherwise, use a negative sign.

We apply this sign convention in all the analyses that follow. Our 
purpose for introducing it even before we have introduced the differ-
ent types of basic circuit elements is to emphasize that selecting polarity 
references is not a function either of the basic elements or the type of 
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 1.6 Power and Energy 15

interconnections made with the basic elements. We apply and interpret 
the passive sign convention for power calculations in Section 1.6.

Example 1.2 illustrates one use of the equation defining current.

EXAMPLE 1.2 Relating Current and Charge

No charge exists at the left terminal of the element 
in Fig. 1.5 for t 0.<  At t 0,=  a 5 A current begins 
to flow into the left terminal.

a) Derive the expression for the charge accumu-
lating at the left terminal of the element for  
t 0.>

b)  If the current is stopped after 10 seconds, 
how much charge has accumulated at the left 
 terminal?

Solution

a) From the definition of current given in Eq. 1.2, 
the expression for charge accumulation due to 
current flow is

q t i x dx( ) ( ) .
t

0∫=

Therefore,

q t dx x t t t( ) 5 5 5 5(0) 5 C for 0.
t t

0 0
∫= = = − = >

b) The total charge that accumulates at the left 
terminal in 10 seconds due to a 5  A current is 

= =q(10) 5(10) 50 C.

Objective 2—Know and be able to use the definitions of voltage and current

1.3  The current at the terminals of the element in 
Fig. 1.5 is

i t0, 0;= <

i te t250 mA, 0.t2000= ≥−

a) Find the expression for the charge accumulating at 
the left terminal.

b) Find the charge that has accumulated at t 1=  ms.

Answer: a) te e62.5(1 2000 ) nC;t t2000 2000− −− −

b) 37.12 nC.

1.4  In electronic circuits it is not unusual to 
 encounter currents in the microampere range. 
Assume a µ75 A  current, due to the flow 
of  electrons. What is the average number of 
 electrons per second that flow past a fixed ref-
erence cross section that is perpendicular to the 
direction of flow?

Answer: ×4.681 10  elec/s.14

ASSESSMENT PROBLEMS

SELF-CHECK: Also try Chapter Problems 1.9 and 1.10.

1.6 Power and Energy
Power and energy calculations are important in circuit analysis. Although 
voltage and current are useful variables in the analysis and design of elec-
trically based systems, the useful output of the system often is nonelectrical 
(e.g., sound emitted from a speaker or light from a light bulb), and this out-
put is conveniently expressed in terms of power or energy. Also, all practical 
devices have limitations on the amount of power that they can handle. In the 
design process, therefore, voltage and current calculations by themselves are 
not sufficient to determine whether or not a design meets its specifications.

We now relate power and energy to voltage and current and at the 
same time use the power calculation to illustrate the passive sign conven-
tion. Recall from basic physics that power is the time rate of expending or 
absorbing energy. (A water pump rated 75 kW can deliver more liters per 

M01_NILS8436_12_SE_C01.indd   15 1/15/22   4:19 PM



16 Circuit Variables

second than one rated 7.5 kW.) Mathematically, energy per unit time is 
expressed in the form of a derivative, or

1 2

v1 2
i

i

1

(b) p = −vi

(a) p = vi

2

v1 2
i

1

(c) p = −vi

2

v 12

v 12

1

(d) p = vi

2
i

Figure 1.6 ▲ Polarity references and the  
expression for power.

DEFINITION OF POWER

 =p
d
dt

,
w

 (1.3)

where
=p the power in watts,

the energy in joules,=w

t the time in seconds.=

Thus, 1 W is equivalent to 1 J s.
The power associated with the flow of charge follows directly from 

the definition of voltage and current in Eqs. 1.1 and 1.2, or

p d
dt

d
dq

dq
dt

,( )= =








w w

so

POWER EQUATION
 v=p i,  (1.4)

where

p the power in watts,=
the voltage in volts,=v

i the current in amperes.=

Equation 1.4 shows that the power associated with a basic circuit element is 
the product of the current in the element and the voltage across the element. 
Therefore, power is a quantity associated with a circuit element, and we have 
to determine from our calculation whether power is being delivered to the 
circuit element or extracted from it. This information comes from correctly 
applying and interpreting the passive sign convention (Section 1.5).

If we use the passive sign convention, Eq. 1.4 is correct if the refer-
ence direction for the current is in the direction of the reference voltage 
drop across the terminals. Otherwise, Eq. 1.4 must be written with a minus 
sign. In other words, if the current reference is in the direction of a refer-
ence voltage rise across the terminals, the expression for the power is

p i.= −v
The algebraic sign of power is based on charge movement through 

voltage drops and rises. As positive charges move through a drop in volt-
age, they lose energy, and as they move through a rise in voltage, they 
gain energy. Figure 1.6 summarizes the relationship between the polarity 
references for voltage and current and the expression for power.

We can now state the rule for interpreting the algebraic sign of power:

INTERPRETING ALGEBRAIC SIGN OF POWER

• If the power is positive (that is, if p 0> ), power is being 
delivered to the circuit element represented by the box.

• If the power is negative (that is, if p 0< ), power is being 
extracted from the circuit element.
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 1.6 Power and Energy 17

Example 1.3 shows that the passive sign convention generates the correct 
sign for power regardless of the voltage polarity and current direction you 
choose.

EXAMPLE 1.3 Using the Passive Sign Convention

a)  Suppose you have selected the polarity refer-
ences shown in Fig. 1.6(b). Your calculations 
for the current and voltage yield the following 
numerical results:

i 4 A and 10 V.= = −v
Calculate the power associated with the circuit 
element and determine whether it is absorbing 
or supplying power.

b) Your classmate is solving the same problem but 
has chosen the reference polarities shown in 
Fig. 1.6(c). Her calculations for the current and 
voltage show that

i 4 A and 10 V.= − =v
What power does she calculate?

Solution

a) The power associated with the circuit element in 
Fig. 1.6(b) is

= − − =p ( 10)(4) 40 W.

Thus, the circuit element is absorbing 40  W.

b) Your classmate calculates that the power associ-
ated with the circuit element in Fig. 1.6(c) is

= − − =p (10)( 4) 40 W.

Using the reference system in Fig. 1.6(c) gives the 
same conclusion as using the reference system in 
Fig. 1.6(b)—namely, that the circuit element is 
absorbing 40 W. In fact, any of the reference sys-
tems in Fig. 1.6 yields this same result.

Example 1.4 illustrates the relationship between voltage, current, 
power, and energy for an ideal basic circuit element and the use of the 
passive sign convention.

EXAMPLE 1.4 Relating Voltage, Current, Power, and Energy

Assume that the voltage and current at the  
terminals of the element in Fig. 1.5 are

= = <i t0, 0, 0;v

e i e t10 kV, 20 A, 0.t5000 5000= = ≥− −v
a) Calculate the power supplied to the element at 1 ms.
b) Calculate the total energy (in joules) delivered 

to the circuit element.

Solution

a) Since the current is entering the terminal+  
of the voltage drop defined for the element in 
Fig. 1.5, we use a “ ”+  sign in the power equation.

p i e e e(10,000 )(20 ) 200,000 W.t t t5000 5000 10,000v= = =− − −

= =− −p e e(0.001) 200,000 200,00010,000(0.001) 10

200,000(45.4 10 ) 9.08 W.6= × =−

b) From the definition of power given in Eq. 1.3, the 
expression for energy is

w t p x dx( ) ( ) .
t

0∫=

To find the total energy delivered, integrate 
the expresssion for power from zero to infinity. 
Therefore,

e dx e200,000 200,000
10,000

x
x

total
10,000

0

10,000

0
∫= =

−
−

∞ − ∞

w

= − − − = + =−∞ −e e20 ( 20 ) 0 20 20 J.0 

Thus, the total energy supplied to the circuit 
 element is 20  J.
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Figure 1.7 ▲ Circuit model for power distribution in 
a home, with voltages and currents defined.

 Objective 3—Know and use the definitions of power and energy; Objective 4—Be able to use the passive 
sign convention

1.5  Assume that a 50 V voltage drop occurs across an 
element from terminal 1 to terminal 2 and that a 
current of 250 mA enters terminal 2.
a) Specify the values of v  and i for the polarity 

references shown in Fig. 1.6(a)–(d).
b) Calculate the power associated with the  

circuit element.
c) Is the circuit element absorbing or delivering 

power?

Answer:
(a) Figure 1.6(a):    50 V,=v i 250 mA;= −  

Figure 1.6(b):    50 V,=v  i 250 mA;=  
Figure 1.6(c):     50 V,= −v  i 250 mA;= −  
Figure 1.6(d):    50 V,= −v  i 250 mA;=

(b) 12.5 W;
(c) delivering.

1.6  The manufacturer of a 6 V dry-cell flashlight 
battery says it will deliver 15 mA for 60 contin-
uous hours. During that time the voltage will 
drop from 6 V to 4 V. Assume the voltage drop 
is linear in time. How much energy does the 
battery delivery during the 60 h interval?

Answer: 16.2 kJ.

1.7  The voltage and current at the terminals of the 
circuit element in Fig. 1.5 are zero for t 0.<  
For t 0≥ , they are

e t15  V, 0;t250v = ≥−

i e t40  mA, 0.t250= ≥−

a) Calculate the power supplied to the element 
at 10 ms.

b) Calculate the total energy delivered to the 
circuit element.

Answer: (a) 4.04 mW; (b) 1.2 mJ.

ASSESSMENT PROBLEMS

SELF-CHECK: Also try Chapter Problems 1.12, 1.19, and 1.24.

Practical Perspective
Balancing Power
A circuit model for distributing power to a typical home is shown in  
Fig. 1.7, with voltage polarities and current directions defined for all of 
the circuit components. Circuit analysis gives values for all of these volt-
ages and currents, as summarized in Table 1.5. To determine whether 
or not the values given are correct, calculate the power associated with 
each component. Use the passive sign convention in the power calcula-
tions, as shown in the following:

p i (120)( 10) 1200 W,a a a= = − = −v p i (120)(9) 1080 W,b b b= − = − = −v

p i (10)(10) 100 W,c c c= = =v p i (10)(1) 10 W,d d d= − = − = −v

p i ( 10)( 9) 90 W,e e e= = − − =v p i ( 100)(5) 500 W,f f f= − = − − =v

p i (120)(4) 480 W,g g g= = =v p i ( 220)( 5) 1100 W.h h h= = − − =v
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TABLE 1.5  Voltage and Current Values 
for the Circuit in Fig. 1.7

Component V( )v i A( )

a 120 10−

b 120 9

c 10 10

d 10 1

e 10− 9−

f 100− 5

g 120 4

h 220− 5−

The power calculations show that components a, b, and d are 
supplying power, since the power values are negative, while components  
c, e, f, g, and h are absorbing power. Now check to see if the power 
balances by finding the total power supplied and the total power 
absorbed.

p p + p + p 1200 1080 10 2290 W;supplied a b d= = − − − = −

p p p p p pabsorbed c e f g h= + + + +

100 90 500 480 1100 2270 W;= + + + + =

p p 2290 2270 20 W.supplied absorbed+ = − + = −

Something is wrong—if the values for voltage and current in this circuit 
are correct, the total power should be zero! There is an error in the data, 
and we can find it from the calculated powers if the error exists in the 
sign of a single component. Note that if we divide the total power by 2, 
we get −10 W, which is the power calculated for component d. If the 
power for component d is +10 W, the total power would be 0. Circuit 
analysis techniques from upcoming chapters can be used to show that 
the current through component d should be 1  A− , not 1  A+  as given in 
Table 1.5.

SELF-CHECK: Assess your understanding of the Practical Perspective 
by trying Chapter Problems 1.36 and 1.37.

• The International System of Units (SI) enables engineers 
to communicate in a meaningful way about quantitative 
results. Table 1.1 summarizes the SI units; Table 1.2 pres-
ents some useful derived SI units. (See page 10.)

• A circuit model is a mathematical representation of an 
electrical system. Circuit analysis, used to predict the 
behavior of a circuit model, is based on the variables of 
voltage and current. (See page 12.)

• Voltage is the energy per unit charge created by 
charge separation and has the SI unit of volt. (See 
page 13.)

wd dq=v

• Current is the rate of charge flow and has the SI unit 
of ampere. (See page 13.)

i dq dt=

• The ideal basic circuit element is a two-terminal com-
ponent that cannot be subdivided; it can be described 

mathematically in terms of its terminal voltage and cur-
rent. (See page 14.)

•  The passive sign convention uses a positive sign in the 
expression that relates the voltage and current at the 
terminals of an element when the reference direction 
for the current through the element is in the direction 
of the reference voltage drop across the element. (See 
page 14.)

• Power is energy per unit of time and is equal to the 
product of the terminal voltage and current; it has the SI 
unit of watt. (See page 16.)

wp d dt i= = v

The algebraic sign of power is interpreted as follows:

• If p 0,>  power is being delivered to the circuit or 
circuit component.

• If p 0,<  power is being extracted from the circuit or 
circuit component. (See page 16.)

Summary
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Section 1.2

 1.1  A $20 bill weighs 1 g and is 6.14 inches long.

a) If you laid $20 bills end to end, how much 
money would you need to circle the Earth at the 
equator? Assume the distance of the equator is 
40,075 km.

b) What is the weight of the bills in part (a), in 
tons?

 1.2  Files can be downloaded using a broadband connec-
tion at a rate of 50 10 6×  bits per second (50 Mbps). 
Using a fiber-optic cable, the download speed 
increases to 2 Gbps.

a) The pdf files for this text total about 65.5 10 6×  
bytes (65.5 MB). There are 8 bits in a byte. How 
long does it take to download these files using a 
broadband connection?

b) How long does it take to download the files from 
part (a) using a fiber-optic cable?

c) The Library of Congress digital collection totals 
about 74 TB. How long does it take to download 
these files using a broadband connection?

d) How long does it take to download the files from 
part (c) using a fiber-optic cable?

 1.3  A 27-inch monitor contains 1920 1080×  picture 
ele ments, or pixels. Each pixel is represented in 
24 bits of memory. A byte of memory is 8 bits.

a) How many megabytes (MB) of memory are 
required to store the information displayed on 
the monitor?

b) Suppose it takes 10 ms to refresh the monitor. 
How fast must the image data be moved from 
memory to the monitor? Express your answer in 
gigabits per second (Gbps).

c) A 27-inch monitor is 24 inches wide and 14 inches 
high. What is the size of an individual pixel in 
square millimeters (mm2)?

 1.4  A tablet screen displays 1024 600×  picture ele-
ments (pixels) in each frame of a video. Each pixel 
requires 3 bytes of memory. Videos are displayed at 
a rate of 60 frames per second. How many minutes 
of video will fit in a 128 gigabyte memory?

  1.5  Approximately 5.4 million hybrid passenger vehi-
cles have been sold in the United States since 1999. 
Approximately 1.4 million plug-in electric passen-
ger vehicles have been sold in the United States 
since 2010. Assume the average energy stored in a 
hybrid vehicle battery is 1.5 kilowatt-hours (kWh), 
and assume the average energy stored in a plug-in 

electric vehicle battery is 45 kWh. If 80% of the 
hybrid vehicles and 90% of the plug-in electric 
vehicles are still in service, estimate the total energy 
stored in these vehicles in gigawatt-hours.

 1.6  Suppose a plug-in electric vehicle has a 64 kWh 
battery. The energy consumption of the vehicle is 
16 kWh/100 km.

a) If the battery is charged to 60% of its capacity, 
how many miles can be driven before recharging 
the battery?

b) If you want to travel 200 miles before recharging the 
battery, you will need to charge the battery to what 
percent of its capacity before starting your trip?

Section 1.4

 1.7  The current at the terminals of the element in 
Fig. 1.5 is

i t0, 0;= =

i e t20  A, 0.t5000= ≥−

Calculate the total charge (in microcoulombs) 
entering the element at its left terminal.

 1.8  There is no charge at the left terminal of the ele-
ment in Fig. 1.5 for t 0< . At t 0=  a current of 

e25  mAt1000−  enters the left terminal.

a) Derive the expression for the charge that accu-
mulates at the left terminal for t 0> .

b) Find the total charge that accumulates at the  
left terminal.

c) If the current is stopped at t 1 ms= , how much 
charge has accumulated at the left terminal?

 1.9  The current entering the left terminal of Fig. 1.5 is

i t100  cos 2500  mA.=

Assume the charge at the left terminal is zero at the 
instant the current is passing through its maximum 
value. Find the expression for q(t).

 1.10  How much energy is imparted to an electron as 
it flows through a 9 V battery from the positive 
to the negative terminal? Express your answer in 
attojoules.

 1.11  The expression for the charge entering the left  
terminal of Fig. 1.5 is

q t e1 1 C.t
2 2α α α( )= − + α−

Find the maximum value of the current entering the 
terminal if 0.03679 s .1α = −

Problems
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Sections 1.5–1.6

 1.12  The references for the voltage and current at the 
terminals of a circuit element are as shown in 
Fig. 1.6(c). The numerical values for v and i are 
80 V  and 4−  A.

a) Calculate the power at the terminals and state 
whether the power is being absorbed or deliv-
ered by the element in the box.

b)  Given that the current is due to electron flow, 
state whether the electrons are entering or leav-
ing terminal 2.

c) Do the electrons gain or lose energy as they pass 
through the element in the box?

 1.13  Repeat Problem 1.12 with a current of 4 A .

 1.14  When a car has a dead battery, it can often be started 
by connecting the battery from another car across 
its terminals. The positive terminals are connected 
together as are the negative terminals. The connec-
tion is illustrated in Fig. P1.14. Assume the current i 
in Fig. P1.14 is measured and found to be 25 A.

a) Which car has the dead battery?

b) If this connection is maintained for 1 min, how 
much energy is transferred to the dead battery?

 1.16  One 9 V battery supplies 150 mA to a boom box. 
How much energy does the battery supply in 3 h?

 1.17  A high-voltage direct-current (dc) transmission line 
between two industrial buildings is operating at 
800 kV and carrying 1800 A, as shown in Fig. P1.17. 
Calculate the power, in megawatts, at the Building X 
end of the line and state the direction of power flow.

A Bi

2 21 1

Figure P1.14

 1.15  Two electric circuits, represented by boxes A and B, 
are connected as shown in Fig. P1.15. The reference 
direction for the current i in the interconnection and 
the reference polarity for the voltage v across the 
interconnection are as shown in the figure. For each 
of the following sets of numerical values, calculate 
the power in the interconnection and state whether 
the power is flowing from A to B or vice versa.

a) i 150 mA, 20 V,= = −v
b) i 15 A, 40 V,= =v

c) i 50 mA, 2 kV,= − = −v  
d) i 3 A, 80V.= − =v

v

1

2

i

BA

Figure P1.15

800 kV
1

2

1.8 kA

Building YBuilding X

Fig. P1.17

 1.18  The voltage and current at the terminals of the 
circuit element in Fig. 1.5 are zero for t 0< . For 
t 0≥  they are

te80  kV,t500= −v

i te15  A.t500= −

a) Calculate the power supplied to the element at 
10 ms.

b) Calculate the total energy delivered to the cir-
cuit element.

 1.19    The voltage and current at the terminals of the 
circuit element in Fig. 1.5 are zero for t 0< . For 
t 0≥  they are

v = −e100  V,t500

i e20   20 mA.t500= − −

a) Find the maximum value of the power delivered 
to the circuit.

b) Find the total energy delivered to the element.

  1.20    The voltage and current at the terminals of the 
circuit element in Fig. 1.5 are zero for t 0<   
and >t 3 s. In the interval between 0 and 3 s the 
expressions are

t t t(3 ) V, 0 3 s;= − < <v

i t t(6 4 ) mA, 0 3 s.= − < <

a) At what instant of time is the power being deliv-
ered to the circuit element maximum?

b) What is the power at the time found in part (a)?

c) At what instant of time is the power being 
extracted from the circuit element maximum?

d) What is the power at the time found in part (c)?

e) Calculate the net energy delivered to the circuit 
at 0, 1, 2, and 3 s.

 1.21    The voltage and current at the terminals of the 
circuit element in Fig. 1.5 are zero for t 0< .  For 
t 0≥  they are

t e(16,000 20)  V,t800= + −v

i t e(128 0.16)  A.t800= + −

PSPICE
MULTISIM

PSPICE
MULTISIM

PSPICE
MULTISIM
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 1.27  Repeat Problem 1.26 if the current during a charge 
cycle is shown in Fig. P1.27.PSPICE

MULTISIM

a) At what instant of time is maximum power 
delivered to the element?

b) Find the maximum power in watts.

c) Find the total energy delivered to the element in 
microjoules.

 1.22  The voltage and current at the terminals of the 
circuit element in Fig. 1.5 are zero for t 0< . For 
t 0≥  they are

e e  V,t t500 1500= −− −v

i e e30 40 10  mA.t t500 1500= − +− −

a) Find the power at t 1 ms= .

b) How much energy is delivered to the circuit ele-
ment between 0 and 1 ms?

c) Find the total energy delivered to the element.

 1.23     The voltage and current at the terminals of the 
circuit element in Fig. 1.5 are zero for t 0< .  For 
t 0≥  they are

t e(10,000 5)  V,t400= + −v

i t e(40 0.05)  A.t400= + −

a) Find the time when the power delivered to the 
circuit element is maximum.

b) Find the maximum value of p in watts.

c) Find the total energy delivered to the circuit ele-
ment in millijoules.

 1.24     The voltage and current at the terminals of the 
circuit element in Fig. 1.5 are zero for t 0< . For 
t 0≥  they are

e t400   sin 200  V,t100= −v

i e t5   sin 200  A.t100= −

a) Find the power absorbed by the element at 
t 10 ms= .

b) Find the total energy absorbed by the element.

 1.25      The voltage and current at the terminals of the ele-
ment in Fig. 1.5 are

t i t36  sin 200  V, 25  cos200  A.π π= =v
a) Find the maximum value of the power being 

 delivered to the element.

b) Find the maximum value of the power being 
 extracted from the element.

c) Find the average value of p in the interval 
t0 5 ms≤ ≤ .

d) Find the average value of p in the interval 
t0 6.25 ms≤ ≤ .

 1.26    The voltage and current at the terminals of an auto-
mobile battery during a charge cycle are shown in 
Fig. P1.26.

PSPICE
MULTISIM

PSPICE
MULTISIM

PSPICE
MULTISIM

PSPICE
MULTISIM
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Figure P1.26

4
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16

20
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Figure P1.27

 1.28  An industrial battery is charged over a period of 
several hours at a constant voltage of 240 V. Initially, 
the current is 5 mA and increases linearly to 10 mA 
in 5 ks. From 5 ks to 10 ks, the current is constant at 
10 mA. From 10 ks to 15 ks, the current decreases 
linearly to 5 mA. At 15 ks the power is disconnected 
from the battery.

a) Sketch the current from t 0=  to t 15 ks= .

b) Sketch the power delivered to the battery from 
t 0=  to t 15 ks= .

c) Using the sketch of the power, find the total 
energy delivered to the battery.

a) Calculate the total charge transferred to the  battery.

b) Calculate the total energy transferred to the  battery.
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 1.31  The numerical values of the voltages and currents 
in the interconnection seen in Fig. P1.31 are given 
in Table P1.31. Does the interconnection satisfy the 
power check?

 1.29  The voltage and current at the terminals of the cir-
cuit element in Fig. 1.5 are shown in Fig. P1.29.

a) Sketch the power versus t plot for t0 80 ms≤ ≤ .

b) Calculate the energy delivered to the circuit ele-
ment at t 10,  30,  and 80 ms= .

1010 20 30 40 50 60 70

1010

8

– 8

20 30 40 50 60 70

t (ms)

i (mA)

v (V)

250

– 250

t (ms)

80

80

Figure P1.29

 1.30  The numerical values for the currents and voltages 
in the circuit in Fig. P1.30 are given in Table P1.30. 
Find the total power developed in the circuit.

a

va1 2

ia

b
vb2 1

ib

e

ve2 1

ie

f
vf 21

if

ic c
1

2

1

2

vc d vdid

Figure P1.30

TABLE P1.30

Element Voltage (V) Current (A)

a −8 7

b −2 7−

c 10 15

d 10 5

e 6− 3

f 4− 3

a

g

va

1 2id

ig

ia

vd

1 2

vg1 2

d

b

h

vb

1 2ie

ih

ib

ve

2 1

vh1 2

vc

2

1

ic

c

vf

1

2

if

f

e

Figure P1.31

 1.32  The numerical values of the voltages and currents 
in the interconnection seen in Fig. P1.32 are given 
in Table P1.32. Does the interconnection satisfy the 
power check?

if
ie

id
c

vc

g
vgd vd

2

1
f

vf
1

2
e

ve

1

2

1

2

ic

b

vb 12 12

ib

a

va2 1

ia

ig

Figure P1.32

TABLE P1.31

Element Voltage (V) Current (mA)

a 6 500

b 10 100

c −8 −400

d −2 300

e −2 300

f 4 −200

g −6 200

h 2 −400
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24 Circuit Variables

 1.35  The voltage and power values for each of the ele-
ments shown in Fig. P1.35 are given in Table P1.35.

a) Show that the interconnection of the elements 
satisfies the power check.

b) Find the value of the current through each of the 
elements using the values of power and voltage 
and the current directions shown in the figure.

 1.34  Assume you are an engineer in charge of a project 
and one of team members reports that the intercon-
nection in Fig. P1.34 does not pass the power check. 
The data for the interconnection are given in Table 
P1.34.

a) Is the team member correct? Explain your answer.

b) If the team member is correct, can you find the 
 error in the data?

 1.33  The current and power for each of the intercon-
nected elements in Fig. P1.33 are measured. The val-
ues are listed in Table P1.33.

a) Show that the interconnection satisfies the 
power check.

b) Identify the elements that absorb power.

c) Find the voltage for each of the elements in the 
interconnection, using the values of power and cur-
rent and the voltage polarities shown in the figure.

iava

2

1

2 2

21

1 1

ic

ie

id
vd

1

1

2

2

vb

vc

ib
ve

if

vf

a

c

d

e

f

b

Figure P1.33

TABLE P1.33

Element Power (mW) Current (mA)

a 918− 51−

b 810− 45

c 12− 6−

d 400 20−

e 224 14−

f 1116 31

ifie

ia
a

id

c

va

vc

21

e
ve

1

2

f vf

1

2

dvd

1

2

ic

h
vh 12

12

ih

b  

vb1 2ib

g
vg1 2

ig

Figure P1.34

TABLE P1.34

Element Voltage (kV) Current (mA)

a 5 150−

b 2 250

c 3 200

d 5− 400

e 1 50−

f 4 −350

g 2− 400

h 6− −350

id

ib

ic ie

ifia

a
b

e

c

d

f

vd2 1

2

1

ve

1

2

vb2

1

va
2

1

vc

1

2

vf

Figure P1.35

TABLE P1.35

Element Power (W) Voltage (kV)

a 750 supplied 3−

b 1600 absorbed 4

c 400 supplied 1

d 150 absorbed 1

e 800 supplied 4−

f 200 absorbed 4

TABLE P1.32

Element Voltage (V) Current (mA)

a 160− 10−

b 100− 20−

c 60− 6

d 800 50−

e 800 20−

f 700− 14

g 640 16−
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 1.37    Suppose there is no power lost in the wires used to 
distribute power in a typical home.

a) Create a new model for the power distribution 
circuit by modifying the circuit shown in Fig. 1.7. 
Use the same names, voltage polarities, and cur-
rent directions for the components that remain 
in this modified model.

PRACTICAL
PERSPECTIVE

 1.36    Show that the power balances for the circuit in 
Fig. 1.7, using the voltage and current values given in 
Table 1.5, with the value of the current for compo-
nent d changed to 1 A− .

PRACTICAL
PERSPECTIVE

b) The following voltages and currents are calcu-
lated for the components:

120 Va =v i 8 Aa = −

120 Vb =v i 8 Ab =

120 Vf = −v i 6 Af =

120 Vg =v i 6 Ag =

240 Vh = −v

If the power in this modified model balances, 
what is the value of the current in component h?
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CHAPTER CONTENTS

2
CHAPTER 

Circuit Elements
There are five ideal basic circuit elements:

• voltage sources
• current sources
• resistors
• inductors
• capacitors

In this chapter, we discuss the characteristics of the first three 
circuit elements—voltage sources, current sources, and resistors. 
Although this may seem like a small number of elements, many 
practical systems can be modeled with just sources and resistors. 
They are also a useful starting point because of their relative sim-
plicity; the mathematical relationships between voltage and cur-
rent in sources and resistors are algebraic. Thus, you will be able 
to begin learning the basic techniques of circuit analysis with only 
algebraic manipulations.

 We will postpone introducing inductors and capacitors until 
Chapter 6, because their use requires that you solve integral and 
differential equations. However, the basic analytical techniques 
for solving circuits with inductors and capacitors are the same 
as those introduced in this chapter. So, by the time you need to 
begin manipulating more difficult equations, you should be very 
familiar with the methods of writing them.

2.1 Voltage and Current Sources p. 28

2.2 Electrical Resistance (Ohm’s Law) p. 32

2.3 Constructing a Circuit Model p. 36

2.4 Kirchhoff’s Laws p. 39

 2.5  Analyzing a Circuit Containing Dependent 
Sources p. 45

1 Understand the symbols for and the 
 behavior of the following ideal basic circuit 
elements: independent voltage and current 
sources, dependent voltage and current 
sources, and resistors.

2 Be able to state Ohm’s law, Kirchhoff’s 
 current law, and Kirchhoff’s voltage law, 
and be able to use these laws to analyze 
simple circuits.

3 Know how to calculate the power for each 
element in a simple circuit and be able 
to determine whether or not the power 
 balances for the whole circuit.

CHAPTER OBJECTIVES
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Practical Perspective
Heating with Electric Radiators
You want to heat your small garage using a couple of 
electric radiators. The power and voltage requirements 
for each radiator are 1200 W, 240 V. But you are not sure 
how to wire the radiators to the power supplied to the 
garage. Should you use the wiring diagram on the left or 
the one on the right? Does it make any difference?

Once you have studied the material in this chapter, 
you will be able to answer these questions and deter-
mine how to heat the garage. The Practical Perspective 
at the end of this chapter guides you through the anal-
ysis of two circuits based on the two wiring diagrams 
shown below.

limbi007/123RF

radiator radiator1
2

240 V

radiator

radiator1
2

240 V
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28 Circuit Elements

2.1 Voltage and Current Sources
An electrical source is a device capable of converting nonelectric energy 
to electric energy and vice versa. For example, a discharging battery 
 converts chemical energy to electric energy, whereas a charging battery 
converts  electric energy to chemical energy. A dynamo is a machine  
that converts mechanical energy to electric energy and vice versa. For 
operations in the mechanical-to-electric mode, it is called a generator. For 
transformations from electric to mechanical energy, it is called a motor. 
Electric sources either deliver or absorb electric power while maintaining 
either voltage or current. This behavior led to the creation of the ideal 
voltage source and the ideal current source as basic circuit elements.

• An ideal voltage source is a circuit element that maintains a pre-
scribed voltage across its terminals regardless of the current flowing 
in those terminals.

• An ideal current source is a circuit element that maintains a pre-
scribed current through its terminals regardless of the voltage across 
those terminals.

These circuit elements do not exist as practical devices—they are ideal-
ized models of actual voltage and current sources.

Using an ideal model for current and voltage sources constrains the 
mathematical descriptions of these components. For example, because an 
ideal voltage source provides a steady voltage even if the current in the 
element changes, it is impossible to specify the current in an ideal voltage 
source as a function of its voltage. Likewise, if the only information you 
have about an ideal current source is the value of current supplied, it is 
impossible to determine the voltage across that current source. We have 
sacrificed our ability to relate voltage and current in a practical source for 
the simplicity of using ideal sources in circuit analysis.

Ideal voltage and current sources can be further described as either 
independent sources or dependent sources.

• An independent source establishes a voltage or current in a circuit 
without relying on voltages or currents elsewhere in the circuit. The 
value of the voltage or current supplied is specified by the value of 
the independent source alone.

• A dependent source, in contrast, establishes a voltage or current 
whose value depends on the value of a voltage or current elsewhere 
in the circuit. You cannot specify the value of a dependent source 
unless you know the value of the voltage or current on which it 
depends.

The circuit symbols for the ideal independent sources are shown in 
Fig. 2.1. Note that a circle is used to represent an independent source. To 
completely specify an ideal independent voltage source in a circuit, you 
must include the value of the supplied voltage and the reference polarity, 
as shown in Fig. 2.1(a). Similarly, to completely specify an ideal indepen-
dent current source, you must include the value of the supplied current 
and its reference direction, as shown in Fig. 2.1(b).

The circuit symbol for an ideal dependent source is a diamond, as 
shown in Fig. 2.2. There are four possible variations because both depen-
dent current sources and dependent voltage sources can be controlled by 
either a voltage or a current elsewhere in the circuit. Dependent sources 
are sometimes called controlled sources.

To completely specify an ideal dependent voltage-controlled volt-
age source, you must identify the controlling voltage, the equation 

1

2

(a) (b)

vs is

Figure 2.1 ▲ The circuit symbols for (a) an ideal 
independent voltage source and (b) an ideal 
 independent current source.
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 2.1 Voltage and Current Sources 29

that permits you to compute the supplied voltage from the controlling 
 voltage, and the reference polarity for the supplied voltage. For example, 
in Fig. 2.2(a), the controlling voltage is v x , the equation that determines 
the supplied voltage v s  is

v v ,s xµ=

and the reference polarity for v s  is as indicated. Note that µ is a  multiplying 
constant that is dimensionless.

Similar requirements exist for completely specifying the other ideal 
dependent sources. In Fig. 2.2(b), the controlling current is ix , the equa-
tion for the supplied voltage v s  is

v i ,s xρ=

the reference polarity is as shown, and the multiplying constant ρ has the 
dimension volts per ampere. In Fig. 2.2(c), the controlling voltage is v x , 
the equation for the supplied current is  is

vα=i ,s x

the reference direction is as shown, and the multiplying constant α has the 
dimension amperes per volt. In Fig. 2.2(d), the controlling current is ix , 
the equation for the supplied current is  is

i i ,s xβ=

the reference direction is as shown, and the multiplying constant β  is 
dimensionless.

Note that the ideal independent and dependent voltage and current 
sources generate either constant voltages or currents, that is, voltages and 

Voltage Sources Current Sources

Supplied
voltage (vs)
depends...

(a) ideal, dependent, voltage-
controlled voltage source

(c) ideal, dependent, voltage-
controlled current source

Voltage
Controlled

Current
Controlled

...on the
controlling
voltage (vx)

Supplied
current (is)
depends...

...on the
controlling
voltage (vx)

vs 5   vx is 5   vx 

1

2

Supplied
voltage (vs)
depends...

(b) ideal, dependent, current-
controlled voltage source

...on the
controlling
current (ix)

1

2

(d) ideal, dependent, current-
controlled current source

Supplied
current (is)
depends...

...on the
controlling
current (ix)

vs 5   ix is 5   ix 

Figure 2.2 ▲ (a) (b) Circuit symbols for ideal dependent voltage sources and (c) (d) ideal  dependent current sources.
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30 Circuit Elements

currents that are invariant with time. Constant sources are often called dc 
sources. The dc stands for direct current, a description that has a histori-
cal basis but can seem misleading now. Historically, a direct current was 
defined as a current produced by a constant voltage. Therefore, a constant 
voltage became known as a direct current, or dc, voltage. The use of dc for 
constant stuck, and the terms dc current and dc voltage are now universally 
accepted in science and engineering to mean constant current and con-
stant voltage.

Finally, we note that ideal sources are examples of active circuit ele-
ments. An active element is one that models a device capable of generat-
ing electric energy. Passive elements model physical devices that cannot 
generate electric energy. Resistors, inductors, and capacitors are exam-
ples of passive circuit elements. Examples 2.1 and 2.2 illustrate how the 
characteristics of ideal independent and dependent sources limit the types 
of permissible interconnections of the sources.

Use the definitions of the ideal independent voltage 
and current sources to determine which intercon-
nections in Fig. 2.3 are permitted and which violate 
the constraints imposed by the ideal sources.

Solution
Connection (a) is permitted. Each source supplies 
voltage across the same pair of terminals, marked 
a and b. This requires that each source supply the 
same voltage with the same polarity, which they do.

Connection (b) is permitted. Each source supplies 
current through the same pair of terminals, marked 
a and b. This requires that each source supply the 
same current in the same direction, which they do.

Connection (c) is not permitted. Each source sup-
plies voltage across the same pair of terminals, 
marked a and b. This requires that each source 
 supply the same voltage with the same polarity, 
which they do not.

Connection (d) is not permitted. Each source sup-
plies current through the same pair of terminals, 
marked a and b. This requires that each source 
 supply the same current in the same direction, 
which they do not.

Connection (e) is permitted. The voltage source 
supplies voltage across the pair of terminals 
marked a and b. The current source supplies cur-
rent through the same pair of terminals. Because 
an ideal voltage source supplies the same voltage 
regardless of the current, and an ideal current 
source supplies the same current regardless of the 
voltage, this  connection is permitted.

EXAMPLE 2.1 Testing Interconnections of Ideal Sources

(a) (b)

2 A

(c)

10 V

a

b
(d)

5 A

(e)

a b

a b

a

b

1

2
10 V 5 V

1

2

1

2

a

b

1

2
10 V 10 V

1

2
5 A

5 A

5 A

Figure 2.3 ▲ The circuits for Example 2.1.
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 2.1 Voltage and Current Sources 31

EXAMPLE 2.2
  Testing Interconnections of Ideal Independent  

and Dependent Sources

State which interconnections in Fig. 2.4 are permit-
ted and which violate the constraints imposed by 
the ideal sources, using the definitions of the ideal 
independent and dependent sources.

Solution
Connection (a) is not permitted. Both the inde-
pendent source and the dependent source supply 
 voltage across the same pair of terminals, labeled 
a and b. This requires that each source supply the 
same voltage with the same polarity. The indepen-
dent source supplies 5 V, but the dependent source 
supplies 15 V.

Connection (b) is permitted. The independent volt-
age source supplies voltage across the pair of termi-
nals marked a and b. The dependent current source 
supplies current through the same pair of terminals. 
Because an ideal voltage source supplies the same 
voltage regardless of current, and an ideal current 
source supplies the same current regardless of volt-
age, this is a valid connection.

Connection (c) is permitted. The independent cur-
rent source supplies current through the pair of 
terminals marked a and b. The dependent voltage 
source supplies voltage across the same pair of ter-
minals. Because an ideal current source supplies 
the same current regardless of voltage, and an ideal 

voltage source supplies the same voltage regardless 
of current, this is a valid connection.

Connection (d) is not permitted. Both the inde-
pendent source and the dependent source supply 
current through the same pair of terminals, labeled 
a and b. This requires that each source supply the 
same current in the same direction. The indepen-
dent source supplies 2 A, but the dependent source 
supplies 6 A in the opposite direction.

ix 5 2 A

is 5 3ix

(d)

a

b

ix 5 2 A

vs 5 4ix

(c)

a

b

1

2

vx 5 5 V

is 5 3vx

(b)

a

b

1

2
vx 5 5 V

vs 5 3vx

(a)

a

b

1

2

1

2

Figure 2.4 ▲ The circuits for Example 2.2.

Objective 1—Understand ideal basic circuit elements

2.1 For the circuit shown,
a) What value of v 1  is required to make this a 

valid interconnection?
b) For this value of v 1 , find the power associated 

with the voltage source.

Answer:     (a) 20 V;
(b) 8 W.

2.2 For the circuit shown,
a) What value of α is required to make this a 

valid interconnection?
b) For this value of α, find the power associated 

with the current source.
c) Is the current source supplying or absorbing 

power?

Answer:     (a) 400 V/A;
(b) 90 mW;
(c) Absorbing.

ASSESSMENT PROBLEMS

SELF-CHECK: Also try Chapter Problems 2.6 and 2.7.

1 2

400 mA v1>50
v1

16 V 15 mA
2

2
1

iD

aiD
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32 Circuit Elements

2.2 Electrical Resistance (Ohm’s Law)
Resistance is the capacity of materials to impede the flow of current or, 
more specifically, the flow of electric charge. The circuit element mod-
eling this behavior is the resistor. Figure 2.5 shows the resistor’s circuit 
symbol, with R denoting the resistance value of the resistor.

To understand resistance, think about the electrons that make up 
electric current moving through, interacting with, and being resisted by 
the atomic structure of some material. The interactions convert some 
electric energy to thermal energy, dissipated as heat. Many useful electri-
cal devices take advantage of resistance heating, including stoves, toast-
ers, irons, and space heaters.

Most materials resist electric current; the amount of resistance 
depends on the material. Metals like copper and aluminum have small 
values of resistance, so they are often used as wires conducting electric 
current. When represented in a circuit diagram, copper or aluminum wir-
ing isn’t usually modeled as a resistor; the wire’s resistance is so small 
compared to the resistance of other circuit elements that we can neglect 
the wiring resistance to simplify the diagram.

A resistor is an ideal basic circuit element, which is described mathe-
matically using its voltage and current. The relationship between voltage 
and current for a resistor is known as Ohm’s law, after Georg Simon Ohm, 
a German physicist who established its validity early in the nineteenth 
century. Consider the resistor shown in Fig. 2.6(a), where the current in 
the resistor is in the direction of the voltage drop across the resistor. For 
this resistor, Ohm’s law is

R

Figure 2.5 ▲ The circuit symbol for a resistor 
 having a resistance R.

1

2

Ri

v 5 2iR

1

2

Ri

v 5 iR

(a) (b)

v v

Figure 2.6 ▲ Two possible reference choices 
for the current and voltage at the terminals of a 
resistor and the resulting equations.

8 V

Figure 2.7 ▲ The circuit symbol for an 8 Ω  resistor.

OHM’S LAW

 v iR,=  (2.1)

where

v = the voltage in volts,

i the current in amperes,=

R the resistance in ohms.=

For the resistor in Fig. 2.6(b), Ohm’s law is

 v = −iR,  (2.2)

where υ, i, and R are again measured in volts, amperes, and ohms, respec-
tively. We use the passive sign convention (Section 1.5) in determining the 
algebraic signs in Eqs. 2.1 and 2.2.

Resistance is measured in the SI unit ohms. The Greek uppercase 
omega (Ω) is the standard symbol for an ohm. The circuit diagram symbol 
for an 8 Ω  resistor is shown in Fig. 2.7.

Ohm’s law expresses the voltage as a function of the current. 
However, expressing the current as a function of the voltage also is conve-
nient. Thus, from Eq. 2.1,

 i
R

,v=  (2.3)
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 2.2 Electrical Resistance (Ohm’s Law) 33

or, from Eq. 2.2,

 v= −i
R

.  (2.4)

The reciprocal of the resistance is referred to as conductance, is sym-
bolized by the letter G, and is measured in siemens (S). Thus,

 =G
R
1 .  (2.5)

An 8 Ω  resistor has a conductance value of 0.125 S.
Ideal resistors model the behavior of physical devices. The word ideal 

reminds us that the resistor model makes several simplifying assumptions 
about the behavior of actual resistive devices. Assuming the resistance of 
the ideal resistor is constant, so that its value does not vary over time, is 
the most important of these simplifications. Most actual resistive devices 
have a time-varying resistance, often because the temperature of the 
device changes over time. The ideal resistor model represents a physical 
device whose resistance doesn’t vary much from some constant value over 
the time period of interest in the circuit analysis. In this text, we assume 
that the simplifying assumptions about resistance devices are valid, and 
we thus use ideal resistors in circuit analysis.

We can calculate the power at the terminals of a resistor in several 
ways. The first approach is to use the defining equation (Section 1.6) to 
calculate the product of the terminal voltage and current. For the resistor 
shown in Fig. 2.6(a), we write

 v=p i,  (2.6)

and for the resistor shown in Fig. 2.6(b), we write

 v= −p i. (2.7)

A second method expresses resistor power in terms of the current and 
the resistance. Substituting Eq. 2.1 into Eq. 2.6, we obtain

v ( )= =p i iR i.

So

POWER IN A RESISTOR IN TERMS OF CURRENT

 p i R.2=  (2.8)

Likewise, substituting Eq. 2.2 into Eq. 2.7, we have

 v ( )= − = − − =p i iR i i R.2  (2.9)

Equations 2.8 and 2.9 are identical, demonstrating that regardless of volt-
age polarity and current direction, the power at the terminals of a resistor 
is positive. Therefore, resistors absorb power from the circuit.
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34 Circuit Elements

A third method expresses resistor power in terms of the voltage and 
resistance. The expression is independent of the polarity references, so

POWER IN A RESISTOR IN TERMS OF VOLTAGE

 
v

p
R

 .
2

=  (2.10)

Sometimes a resistor’s value will be expressed as a conductance 
rather than as a resistance. Using the relationship between resistance and 
conductance given in Eq. 2.5, we can also write Eqs. 2.9 and 2.10 in terms 
of the conductance, or

 =p i
G

,
2

 (2.11)

 v=p G.2  (2.12)

Equations 2.6–2.12 provide a variety of methods for calculating the power 
absorbed by a resistor. Each yields the same answer. In analyzing a circuit, 
look at the information provided and choose the power equation that uses 
that information directly.

Example 2.3 illustrates Ohm’s law for a circuit with an ideal source 
and a resistor. Power calculations at the terminals of a resistor also are 
illustrated.

In each circuit in Fig. 2.8, either the value of v  or i is 
not known.

EXAMPLE 2.3
  Calculating Voltage, Current, and Power for a Simple 

Resistive Circuit

a) Calculate the values of v  and i.
b) Determine the power dissipated in each  

resistor.

Solution

a) The voltage v a  in Fig.  2.8(a) is a drop in the 
direction of the resistor current. The resistor 
voltage is the product of its current and its 
 resistance, so

v ( )( )= =1 8 8 V.a

The current i ,b  in the resistor with a conductance 
of 0.2 S in Fig.  2.8(b) is in the direction of the 
voltage drop across the resistor. The resistor 

1 A

(a) (b)

1

2

1 A

8 V 50 V 0.2 Sva

1

2

ib

(c) (d)

1

2
20 V 50 V 25 Vvc

1

2 id

 Figure 2.8 ▲ The circuits for Example 2.3.
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 2.2 Electrical Resistance (Ohm’s Law) 35

current is the product of its voltage and its con-
ductance, so

i 50 0.2 10 A.b ( ) ( )= =

The voltage v c  in Fig. 2.8(c) is a rise in the direc-
tion of the resistor current. The resistor voltage 
is the product of its current and its resistance, so

v ( ) ( )= − = −1 20 20 V.c

The current id  in the 25 Ω  resistor in Fig. 2.8(d) 
is in the direction of the voltage rise across the 
resistor. The resistor current is its voltage divided 
by its resistance, so

i 50
25

2 A.d = − = −

b) The power dissipated in each of the four  
resistors is

p 8
8

1 8 8 W8

2
2( )

( ) ( )= = =Ω

(using Eq. 2.10 and Eq. 2.9);

p 50 0.2 500 W0.2S
2( ) ( )= =

(using Eq. 2.12);

p 20
20

1 20 20 W20

2
2( )

( ) ( )= − = =Ω

(using Eq. 2.10 and Eq. 2.9);

p 50
25

2 25 100 W25

2
2( )

( ) ( )= = − =Ω

(using Eq. 2.10 and Eq. 2.9).

ASSESSMENT PROBLEMS

Objective 2—Be able to state and use Ohm’s law

2.3 For the circuit shown,

a) If vg =  100 V and =i 2g A, find the value of 
R and the power absorbed by the resistor.

b) If i 250g = mA and the power delivered by 
the voltage source is 125 W, find vg , R, and 
the power absorbed by the resistor.

c) If R 800 = Ω  and the power absorbed by 
R is 20 mW, find ig  and vg.

2.4 For the circuit shown,

a) If i 20g = mA and G 5 mS= , find v g  and 
the power delivered by the current source.

b) If v = 50 Vg  and the power delivered to the 
conductor is 400 W, find the conductance G 
and the source current ig .

c)  If G 20  Sµ=  and the power delivered to 
the conductance is 50 mW, find ig  and vg.

SELF-CHECK: Also try Chapter Problems 2.11 and 2.12.

Answer:     (a) 50 Ω , 200 W;
(b) 500 V, 2 kΩ , 125 W;
(c) 5 mA, 4 V.

1

2
R

ig

vg

Answer:     (a) 4 V, 80 mW;
(b) 160 mS, 8 A;
(c) 1 mA, 50 V.

Gig vg

1

2
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2.3 Constructing a Circuit Model
Let’s now move on to using ideal sources and resistors to construct circuit 
models of real-world systems. Developing a circuit model of a device or 
system is an important skill. Although this text emphasizes circuit-solving 
skills, as an electrical engineer you’ll need other skills as well, one of the 
most important of which is modeling.

We develop circuit models in the next two examples. In Example 2.4, 
we construct a circuit model based on knowing how the system’s compo-
nents behave and how the components are interconnected. In Examp le 2.5,  
we create a circuit model by measuring the terminal behavior of a device.

EXAMPLE 2.4 Constructing a Circuit Model of a Flashlight

Thom Lang/Corbis/Getty Imagess

Figure 2.9 ▲ A flashlight can be viewed as an electri-
cal system.

Construct a circuit model of a flashlight. Figure 2.9 
shows a photograph of a widely available flashlight.

Solution
When a flashlight is regarded as an electrical sys-
tem, the components of primary interest are the 
batteries, the lamp, the connector, the case, and the 
switch. Figure  2.10 shows these components. We 
now consider the circuit model for each component.

• A dry-cell battery maintains a reasonably con-
stant terminal voltage if the current demand is 
not excessive. Thus, if the dry-cell battery is oper-
ating within its intended limits, we can model it 
with an ideal voltage source. The prescribed volt-
age is constant and equal to the sum of two dry-
cell values.

• The ultimate output of the lamp is light energy, 
the result of heating the lamp’s filament to a 
temperature high enough to cause radiation in 
the visible range. We can model the lamp with 
an  ideal resistor. The resistor accounts for the 
amount of electric energy converted to thermal 
energy, but it does not predict how much of the 
thermal energy is converted to light energy. The 
resistor representing the lamp also predicts the 
steady current drain on the batteries, a character-
istic of the system that also is of interest. In this 
model, Rl  symbolizes the lamp resistance.

•  The connector used in the flashlight serves a 
dual role. First, it provides an electrical con-
ductive path between the dry cells and the 
case. Second, it is formed into a springy coil 
that applies mechanical pressure to the contact 
between the batteries and the lamp, maintaining 
contact between the two dry cells and between 
the dry cells and the lamp. Hence, in choosing 
the wire for the connector, we may find that its 
mechanical properties are more important than 

its electrical properties for the flashlight design. 
Electrically, we can model the connector with an 
ideal resistor with resistance R1.

• The case also serves both a mechanical and an 
electrical purpose. Mechanically, it contains all 
the other components and provides a grip for the 
person using the flashlight. Electrically, it pro-
vides a connection between other elements in 
the flashlight. If the case is metal, it conducts cur-
rent between the batteries and the lamp. If it is 
plastic, a metal strip inside the case connects the 
coiled connector to the switch. An ideal resistor 
with resistance Rc  models the electrical connec-
tion provided by the case.
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Our flashlight example provides some general modeling guidelines.

1. The electrical behavior of each physical component is of primary 
interest in a circuit model. In the flashlight model, three very differ-
ent physical components—a lamp, a coiled wire, and a metal case—
are all represented by resistors because each circuit component 
resists the current flowing through the circuit.

2. Circuit models may need to account for undesired as well as desired 
electrical effects. For example, the heat resulting from the lamp 
resistance produces the light, a desired effect. However, the heat 
resulting from the case and coil resistance represents an unwanted 
or parasitic resistance. It drains the dry cells and produces no useful 
output. Such parasitic effects must be considered, or the resulting 
model may not adequately represent the system.

Lamp

Filament
terminal

Dry cell # 1

Case

Connector spring

Sliding switch

Dry cell # 2

Figure 2.10 ▲ The arrangement of flashlight 
components.

OFF

ON

(a)

(b)

(c)

Figure 2.11 ▲ Circuit symbols. (a) Short circuit. 
(b) Open circuit. (c) Switch.

Rc

Rl

R1

vs
1

2

Figure 2.12 ▲ A circuit model for a flashlight.

• The switch has two electrical states: on or off. An 
ideal switch in the on state offers no  resistance 
to the current, but it offers infinite resistance to 
current in the off state. These two states repre-
sent the limiting values of a resistor; that is, the 
on state corresponds to a zero resistance, called 
a short circuit R( 0),=  and the off state corre-
sponds to an infinite resistance called an open 
circuit R .( )= ∞  Figures 2.11(a) and (b) depict 
a short circuit and an open circuit, respectively. 
The symbol shown in Fig.  2.11(c) represents a 
switch that can be either a short circuit or an 

open circuit, depending on the position of its 
contacts.

We now construct the circuit model of the 
flashlight shown in Fig. 2.10. Starting with the dry-
cell batteries, the positive terminal of the first cell 
is connected to the negative terminal of the sec-
ond cell. The positive terminal of the second cell is 
connected to one terminal of the lamp. The other 
terminal of the lamp makes contact with one side 
of the switch, and the other side of the switch is 
connected to the metal case. The metal spring con-
nects the metal case to the negative terminal of the 
first dry cell. Note that the connected elements in 
Fig. 2.10 form a closed path or circuit. Figure 2.12 
shows a circuit model for the flashlight.
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38 Circuit Elements

3. Modeling requires approximation. We made several simplifying 
assumptions in developing the flashlight’s circuit model. For exam-
ple, we assumed an ideal switch, but in practical switches, contact 
resistance may be large enough to interfere with proper operation 
of the system. Our model does not predict this behavior. We also 
assumed that the coiled connector exerts enough pressure to elim-
inate any contact resistance between the dry cells. Our model does 
not predict the effect of inadequate pressure. Our use of an ideal 
voltage source ignores any internal dissipation of energy in the dry 
cells, which might be due to the parasitic heating just mentioned. 
We could account for this by adding an ideal resistor between the 
source and the lamp resistor. Our model assumes the internal loss 
to be negligible.

We used a basic understanding of the internal components of the 
flashlight to construct its circuit model. However, sometimes we know 
only the terminal behavior of a device and must use this information to 
construct the model. Example 2.5 presents such a modeling problem.

EXAMPLE 2.5 Constructing a Circuit Model Based on Terminal Measurements

The voltage and current are measured at the ter-
minals of the device illustrated in Fig. 2.13(a), and 
the values of v t  and it  are tabulated in Fig. 2.13(b). 
Construct a circuit model of the device inside the 
box.

Solution
Plotting the voltage as a function of the current 
yields the graph shown in Fig. 2.14(a). The equation 
of the line in this figure is v = i4t t , so the termi-
nal voltage is directly proportional to the terminal 
current. Using Ohm’s law, the device inside the box 
behaves like a 4 Ω  resistor. Therefore, the circuit 
model for the device inside the box is a 4 Ω resistor, 
as seen in Fig. 2.14(b).

We come back to this technique of using termi-
nal characteristics to construct a circuit model after 
introducing Kirchhoff’s laws and circuit analysis.

SELF-CHECK: Assess your understanding of this example by trying Chapter Problems 2.14 and 2.15.

vt (V) it (A)

240

220

0

20

40

210

25

0

5

10

(b)(a)

1

2

vt Device

it

Figure 2.13 ▲ The (a) device and (b) data for Example 2.5.

210 5 10

(a)

220
240

vt  (V)

25

40
20

it (A)

4 V

(b)

vt

1

2

it

Figure 2.14 ▲ (a) The values of v t  versus it  for the device in Fig. 2.13. (b) The circuit 
model for the device in Fig. 2.13.
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2.4 Kirchhoff’s Laws
A circuit is solved when we determine the voltage across and the current 
in every element. While Ohm’s law is an important tool for solving a cir-
cuit, it may not be enough to provide a complete solution. Generally, we 
need two additional algebraic relationships, known as Kirchhoff’s laws, to 
solve most circuits.

Kirchhoff’s Current Law
Let’s try to solve the flashlight circuit from Example 2.4. We begin by 
redrawing the circuit as shown in Fig. 2.15, with the switch in the on state. 
We have labeled the current and voltage variables associated with each 
resistor and the current associated with the voltage source, including 
reference polarities. For convenience, we use the same subscript for the 
voltage, current, and resistor labels. In Fig. 2.15, we also removed some 
of the terminal dots of Fig. 2.12 and have inserted nodes. Terminal dots 
are the start and end points of an individual circuit element. A node is a 
point where two or more circuit elements meet. In Fig.  2.15, the nodes 
are labeled a, b, c, and d. Node d connects the battery and the lamp and 
stretches all the way across the top of the diagram, though we label a sin-
gle point for convenience. The dots on either side of the switch indicate 
its terminals, but only one is needed to represent a node, labeled node c.

The circuit in Fig. 2.15 has seven unknowns: is , i1, ic , il , v 1 , v c , and v l .  
Recall that = 3 V,sv  as it represents the sum of the terminal voltages 
of the two dry cells. To solve the flashlight circuit, we must find values 
for the seven unknown variables. From algebra, you know that to find 
n unknown quantities you must solve n simultaneous independent equa-
tions. Applying Ohm’s law (Section  2.2) to each of the three resistors 
gives us three of the seven equations we need:

 v = i R ,1 1 1  (2.13)

 v = i R ,c c c  (2.14)

 v = i R .l l l  (2.15)

What about the other four equations?
Connecting the circuit elements constrains the relationships among 

the terminal voltages and currents. These constraints are called Kirchhoff’s 
laws, after Gustav Kirchhoff, who first stated them in a paper published 
in 1848. The two laws that state the constraints in mathematical form are 
known as Kirchhoff’s current law and Kirchhoff’s voltage law.

We can now state Kirchhoff’s current law (KCL):

a b c

d

vl

1

2

vs
1

2

v12 1

i1
vc1 2

ic
is il Rl

RcR1

Figure 2.15 ▲ Circuit model of the flashlight with 
assigned voltage and current variables.

KIRCHHOFF’S CURRENT LAW (KCL)
The algebraic sum of all the currents at any node in
a circuit equals zero.

To use Kirchhoff’s current law at a node, assign an algebraic sign cor-
responding to the current’s reference direction for every current at the 
node. Assigning a positive sign to a current leaving the node requires 
assigning a negative sign to a current entering a node. Conversely, giving a 
negative sign to a current leaving a node requires giving a positive sign to 
a current entering a node.
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40 Circuit Elements

We apply Kirchhoff’s current law to the four nodes in the circuit 
shown in Fig. 2.15, using the convention that currents leaving a node are 
positive. The four equations are:

 i inode a  0,s 1− =  (2.16)

 + =i inode b 0,c1  (2.17)

  i inode c  0,c l− − =  (2.18)

 − =i inode d 0.l s   (2.19)

But Eqs. 2.16–2.19 are not an independent set because any one of 
the four can be derived from the other three. In any circuit with n nodes, 
n 1−  independent equations can be derived from Kirchhoff’s current 
law.1 Let’s disregard Eq. 2.19 so that we have six independent equations, 
namely, Eqs. 2.13–2.18. We need one more, which we can derive from 
Kirchhoff’s voltage law.

Kirchhoff’s Voltage Law
Before we can state Kirchhoff’s voltage law, we must define a closed path 
or loop. Starting at an arbitrarily selected node, we trace a closed path in 
a circuit through selected basic circuit elements and return to the original 
node without passing through any intermediate node more than once. The 
circuit shown in Fig. 2.15 has only one closed path or loop. For example, 
choosing node a as the starting point and tracing the circuit clockwise, we 
form the closed path by moving through nodes d, c, b, and back to node a. 
We can now state Kirchhoff’s voltage law (KVL):

KIRCHHOFF’S VOLTAGE LAW (KVL)

The algebraic sum of all the voltages around any
closed path in a circuit equals zero.

To use Kirchhoff’s voltage law, assign an algebraic sign (reference 
direction) to each voltage in the loop. As we trace a closed path, a voltage 
will appear either as a rise or a drop in the tracing direction. Assigning a 
positive sign to a voltage rise requires assigning a negative sign to a volt-
age drop. Conversely, giving a negative sign to a voltage rise requires giv-
ing a positive sign to a voltage drop.

We now apply Kirchhoff’s voltage law to the circuit shown in Fig. 2.15, 
tracing the closed path clockwise and assigning a positive algebraic sign to 
voltage drops. Starting at node d leads to the expression

 − + − = 0.l c s1v v v v  (2.20)

Now we have the seven independent equations needed to find the seven 
unknown circuit variables in Fig. 2.15.

Solving seven simultaneous equations for the simple flashlight model 
seems excessive. In the coming chapters, we present analytical techniques 
that solve a simple one-loop circuit like the one shown in Fig. 2.15 using 
a single equation. Before leaving the flashlight circuit, we observe two 
analy sis details that are important for the techniques presented in subse-
quent chapters.

1 We say more about this observation in Chapter 4.
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1. If you know the current in a resistor, you also know the voltage 
across the resistor because current and voltage are directly related 
through Ohm’s law. Thus, you can associate one unknown variable 
with each resistor, either the current or the voltage. For example, 
choose the current as the unknown variable. Once you solve for the 
unknown current in the resistor, you can find the voltage across the 
resistor. In general, if you know the current in a passive element, 
you can find the voltage across it, greatly reducing the number of 
simultaneous equations to solve. In the flashlight circuit, choosing 
the current as the unknown variable eliminates the voltages cv , lv , 
and 1v  as unknowns, and reduces the analytical task to solving four 
simultaneous equations rather than seven.

2. When only two elements connect to a node, if you know the current 
in one of the elements, you also know it in the second element by 
applying Kirchhoff’s current law at the node. When just two ele-
ments connect at a single node, the elements are said to be in series, 
and you need to define only one unknown current for the two ele-
ments. Note that each node in the circuit shown in Fig. 2.15 con-
nects only two elements, so you need to define only one unknown 
current. Equations 2.16–2.18 lead directly to

i i i i ,s c l1= = − =

which states that if you know any one of the element currents, you 
know them all. For example, choosing is  as the unknown eliminates 
i1, ic , and il . The problem is reduced to determining one unknown, 
namely, is .

Examples 2.6 and 2.7 illustrate how to write circuit equations based 
on Kirchhoff’s laws. Example 2.8 illustrates how to use Kirchhoff’s laws 
and Ohm’s law to find an unknown current. Example 2.9 expands on the 
technique presented in Example 2.5 for constructing a circuit model for a 
device whose terminal characteristics are known.

EXAMPLE 2.6 Using Kirchhoff’s Current Law

Sum the currents at each node in the circuit shown 
in Fig. 2.16. Note that there is no connection dot (•) 
in the center of the diagram, where the 4 Ω branch 
crosses the branch containing the ideal current 
source ia.

Solution
In writing the equations, we use a positive sign for a 
current leaving a node. The four equations are

+ − − =i i i inode a 0,1 4 2 5

+ − − − =i i i i inode b 0,2 3 1 b a

i i i inode c 0,b 3 4 c− − − =

+ + =i i inode d 0.5 a c

5 V

i5

a c

1 V

i1

d

b

ic

ibia 3 V

i3
2 V

i2

4 V

i4

Figure 2.16 ▲ The circuit for Example 2.6.
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EXAMPLE 2.7 Using Kirchhoff’s Voltage Law

Sum the voltages around each designated path in the 
circuit shown in Fig. 2.17.

Solution
In writing the equations, we use a positive sign for a 
voltage drop. The four equations are

path a 0,1 2 4 b 3v v v v v− + + − − =

v v vpath b 0,a 3 5− + + =

v v v v vpath c 0,b 4 c 6 5− − − − =

path d 0.a 1 2 c 7 dv v v v v v− − + − + − =
d

d

a

b c

1 2

vd

vc
2

1

1 2

vb

2 V

v2 21

1 V

v1 12

1

2
va

7 V

v7 12

6 V

v6 21

3 V

v3 21 4 V

v4 12

5 Vv5

1

2

Figure 2.17 ▲ The circuit for Example 2.7.

a) Use Kirchhoff’s laws and Ohm’s law to find io  in 
the circuit shown in Fig. 2.18.

b) Test the solution for io  by verifying that the total 
power generated equals the total power dissipated.

EXAMPLE 2.8
  Applying Ohm’s Law and Kirchhoff’s Laws to Find 

an Unknown Current

Because io  also is the current in the 120 V 
source, we have two unknown currents and 
therefore must derive two simultaneous equa-
tions involving io  and i1. One of the equations 
results from applying Kirchhoff’s current law to 
either node b or c. Summing the currents at node 
b and assigning a positive sign to the currents 
leaving the node gives

i i  6 0.o1 − − =

We obtain the second equation from Kirchhoff’s 
voltage law in combination with Ohm’s law. 
Noting from Ohm’s law that = i10o ov  and 

= i501 1v , we sum the voltages clockwise 
around the closed path  c-a-b-c to obtain

i i120 10 50 0.o 1− + + =

In writing this equation, we assigned a positive 
sign to voltage drops in the clockwise direction. 
Solving these two equations (see Appendix A) 
for io  and i1 yields

i i3 A  and  3 A.o 1= − =

b) The power for the Ω50   resistor is

p i 50 3 50 450 W.50 1
2 2( ) ( ) ( ) ( )= = =Ω

Solution

a) We begin by redrawing the circuit and assigning 
an unknown current to the 50 Ω resistor and 
unknown voltages across the 10 Ω and 50 Ω  
resistors. Figure 2.19 shows the circuit. The nodes 
are labeled a, b, and c to aid the discussion.

1

2
120 V 6 A

10 V

io
50 V

Figure 2.18 ▲ The circuit for Example 2.8.

1

2
120 V 6 A

10 V

50 V

io

o

i1

ba

c

1v

v

Figure 2.19 ▲ The circuit shown in Fig. 2.18, with 
the unknowns i1, vo, and 1v  defined.
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The power for the 10 Ω resistor is

p i 10 3 10 90 W.o10
2 2( ) ( ) ( ) ( )= = − =Ω

The power for the 120 V source is

p i120 120 3 360 W.o120V ( )= − = − − =

The power for the 6 A source is

v v( ) ( )= − = = =p i6 ,  and  50 50 3 150 V;  6A 1 1 1

therefore

p 150 6 900 W.6A ( )= − = −

The 6 A source is delivering 900 W, and the 120 V 
source and the two resistors are absorbing power. The 
total power absorbed is 

p p p 360 450 90 900 W.6A 50 10+ + = + + =Ω Ω  

Therefore, the solution verifies that the power deliv-
ered equals the power absorbed.

 EXAMPLE 2.9 Constructing a Circuit Model Based on Terminal Measurements

We measured the terminal voltage and terminal cur-
rent on the device shown in Fig. 2.20(a) and tabulated 
the values of v t  and it  in Fig. 2.20(b).

a) Construct a circuit model of the device inside the 
box.

b) Using this circuit model, predict the power this 
device will deliver to a 10 Ω resistor.

Solution

a) Plotting the voltage as a function of the current 
yields the graph shown in Fig. 2.21(a). The equa-
tion of the line plotted is

= − i30 5 .t tv

What circuit model components produce this 
relationship between voltage and current? 
Kirchhoff’s voltage law tells us that the voltage 
drops across two components in series add. From 
the equation, one of those components pro-
duces a 30 V drop regardless of the current, so 
this component’s model is an ideal independent 
voltage source. The other component produces a 

positive voltage drop in the direction of the cur-
rent it . Because the voltage drop is proportional 
to the current, Ohm’s law tells us that this com-
ponent’s model is an ideal resistor with a value 
of 5 Ω . The resulting circuit model is depicted in 
the dashed box in Fig. 2.21(b).

b) Now we attach a 10 Ω  resistor to the device in 
Fig.  2.21(b) to complete the circuit. Kirchhoff’s 
current law tells us that the current in the Ω10 
resistor equals the current in the 5 Ω resistor. 
 Using Kirchhoff’s voltage law and Ohm’s law, 
we can write the equation for the voltage drops 

it (A)

0

3

6

vt (V)

30

15

0

(b)(a)

1

2

vtDevice

it

Figure 2.20 ▲ (a) Device and (b) data for Example 2.9.

(b)

(a)

vt (V)

30

15

3 6
it (A)

1

2
30 V

b

10 V

5 V a

i
vt

1

2

Figure 2.21 ▲ (a) The graph of v t versus it  for the device 
in Fig. 2.20(a). (b) The resulting circuit model for the device in 
Fig. 2.20(a), connected to a 10 Ω  resistor.
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around the circuit, starting at the voltage source 
and proceeding clockwise:

i i30 5 10 0.− + + =

Solving for i, we get

i 2 A.=

This is the value of the current in the 10 Ω  resis-
tor, so compute the resistor’s power using the 
equation p i R2= :

p 2 10 40 W.10
2( ) ( )= =Ω

ASSESSMENT PROBLEMS

Objective 3—Be able to state and use Ohm’s law and Kirchhoff’s current and voltage laws

2.5 For the circuit shown, calculate (a) i ;1  (b) ;1v  
(c) ;2v  (d) ;3v  and (e) the power delivered by 
the 180 V source.

Answer:     (a) 3 A;−
(b) 75 V;−
(c) 45 V;
(d) 60 V;
(e) 540 W.

 

2.7 a)  The terminal voltage and terminal current 
were measured on the device shown. The 
values of tv  and it  are provided in the table. 
Using these values, create the straight-line 
plot of tv  versus it . Compute the equation 
of the line and use the equation to con-
struct a circuit model for the device using 
an ideal voltage source and a resistor.

b)  Use the model constructed in (a) to predict 
the power that the device will deliver to a 
200 Ω  resistor.

Answer:   (a)  A 40 V source in series with a 800 Ω  
resistor;

(b) Ω320 m .

2.6 Use Ohm’s law and Kirchhoff’s laws to find the 
value of R in the circuit shown.

Answer: = ΩR 120  .

2.8 Repeat Assessment Problem 2.7, but use the 
equation of the graphed line to construct a cir-
cuit model containing an ideal current source 
and a resistor.

Answer:   (a)  A 50 mA current source connected 
between the terminals of a 800 Ω  
resistor;

(b) 320 mW.

SELF-CHECK: Also try Chapter Problems 2.17, 2.19, 2.29, and 2.30.

3 A R40 V

80 V

100 V
1

2

20 V180 V
1

2

15 V

v21 2

v11 2

25 V

v3

1

2i1

1

2

vt

it (mA)vt (V)

Device

0

20

40

50

40

24

8

0

(b)(a)

it
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2.5  Analyzing a Circuit Containing 
Dependent Sources

We conclude this introduction to elementary circuit analysis by consider-
ing circuits with dependent sources. One such circuit is shown in Fig. 2.22.

We want to use Kirchhoff’s laws and Ohm’s law to find ov  in this cir-
cuit. Before writing equations, it is good practice to examine the circuit 
diagram closely. This will help us identify the information that is known 
and the information we must calculate. It may also help us devise a strat-
egy for solving the circuit using only a few calculations.

A look at the circuit in Fig. 2.22 reveals that:

• Once we know io , we can calculate ov  using Ohm’s law.
• Once we know i∆, we also know the current supplied by the depen-

dent source i5 ∆.
• The current in the 500 V source is i ∆, using Kirchhoff’s current law 

at node a.

There are thus two unknown currents, i∆ and io . We need to construct 
and solve two independent equations involving these two currents to pro-
duce a value for ov . This is the approach used in Example 2.10.

 EXAMPLE 2.10     Analyzing a Circuit with a Dependent Source

Find the voltage ov  for the circuit in Fig. 2.22.

Solution
The closed path consisting of the voltage source, the 
5 Ω resistor, and the 20 Ω  resistor contains the two 
unknown currents. Apply Kirchhoff’s voltage law 
around this closed path, using Ohm’s law to express 
the voltage across the resistors in terms of the cur-
rents in those resistors. Starting at node c and tra-
versing the path clockwise gives:

i i500 5 20 0.o− + + =∆

Now we need a second equation containing these 
two currents. We can’t apply Kirchhoff’s voltage 
law to the closed path formed by the 20 Ω  resistor 
and the dependent current source because we don’t 
know the value of the voltage across the dependent 
current source. For this same reason, we cannot 
apply Kirchhoff’s voltage law to the closed path con-
taining the voltage source, the 5 Ω  resistor, and the 
 dependent source.

We turn to Kirchhoff’s current law to  generate 
the second equation. Either node b or node c can 
be used to construct the second equation from 
Kirchhoff’s current law, since we have already used 
node a to determine that the current in the voltage 
source and the 5 Ω resistor is the same. We select 
node b and produce the following equation,  summing 
the currents leaving the node:

i i i5 0.o− + − =∆ ∆

Solve the KCL equation for io  in terms of 
i i i6 ,o( )=∆ ∆  and then substitute this expression 
for io  into the KVL equation to give

i i i500 5 20(6 ) 125 .= + =∆ ∆ ∆

Therefore,

i i500 125 4 A  and   6 4 24 A.o ( )= / = = =∆

Using io  and Ohm’s law for the 20 Ω  resistor, we 
can solve for the voltage v o :

v = =i20 480 V.o o

1

2
500 V 20 V

io

5 V

iD

a b

c

5iDvo

1

2

Figure 2.22 ▲ A circuit with a dependent source.
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Think about a circuit analysis strategy before beginning to write equa-
tions because not every closed path yields a useful Kirchhoff’s voltage law 
equation and not every node yields a useful Kirchhoff’s current law equa-
tion. Think about the problem and select a fruitful approach and useful 
analysis tools to reduce the number and complexity of equations to be 
solved. Example 2.11 applies Ohm’s law and Kirchhoff’s laws to another 
circuit with a  dependent source. Example 2.12 involves a much more com-
plicated circuit, but with a careful choice of analysis tools, the analysis is 
relatively uncomplicated.

EXAMPLE 2.11
    Applying Ohm’s Law and Kirchhoff’s Laws to Find  

an Unknown Voltage

a) Use Kirchhoff’s laws and Ohm’s law to find the 
voltage ov  as shown in Fig. 2.23.

b) Show that your solution is consistent with the 
requirement that the total power developed in the 
circuit equals the total power dissipated.

Solution

a)  A close look at the circuit in Fig. 2.23 reveals that:
• There are two closed paths, the one on the left 

with the current is  and the one on the right with 
the current io .

• Once io  is known, we can compute ov  using 
Ohm’s law.

We need two equations for the two currents. 
Because there are two closed paths and both have 
voltage sources, we can apply Kirchhoff’s voltage 
law to each, using Ohm’s law to express the voltage 
across the resistors in terms of the current in those 
resistors. The resulting equations are:

i i i i10 6 0 and 3 2 3 0.s s o o− + = − + + =

Solving for the currents yields

i i1.67 A and 1 A.s o= =

Applying Ohm’s law to the 3 Ω  resistor gives the 
desired voltage:

= =i3 3 V.o ov

b) To compute the power delivered to the  voltage 
sources, we use the power equation, vp i= ,  
together with the passive sign convention. The 
power for the independent voltage source is

( )= − = − = −p i10 10 1.67 16.7 W.s

The power for the dependent voltage source is

p i i3 5 1 5 W.s o( ) ( )( )= − = − = −

Both sources are supplying power, and the total 
power supplied is 21.7 W.

To compute the power for the resistors, we use 
the power equation, p i R2= . The power for the 
6 Ω  resistor is

p 1.67 6 16.7 W.2( ) ( )= =

The power for the 2 Ω  resistor is

p 1 2 2 W.2( ) ( )= =

The power for the 3 Ω  resistor is

p 1 3 3 W.2( ) ( )= =

The resistors all absorb power, and the total power 
absorbed is 21.7 W, equal to the total power sup-
plied by the sources.

6 V 3 V3is10 V vo

1

2

1

2

1

2

is

2 V

io

Figure 2.23 ▲ The circuit for Example 2.11.
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EXAMPLE 2.12     Applying Ohm’s Law and Kirchhoff’s Laws in an Amplifier Circuit

The circuit in Fig. 2.24 represents a common con-
figuration encountered in the analysis and design 
of transistor amplifiers. Assume that the values of 
all the circuit elements—R1 , R2 , RC , RE , VCC , and  
V0—are known.

a) Develop the equations needed to determine the 
current in each element of this circuit.

b) From these equations, devise a formula for com-
puting iB  in terms of the circuit element values.

A fourth equation results from imposing the 
constraint presented by the series connection of 
RC  and the dependent source:

β=i i(4) .C B

We use Kirchhoff’s voltage law to derive the 
remaining two equations. We must select two 
closed paths, one for each Kirchhoff’s voltage 
law equation. The voltage across the dependent 
current source is unknown and cannot be deter-
mined from the source current iBβ , so select two 
closed paths that do not contain this dependent 
current source.

We choose the paths b-c-d-b and b-a-d-b, 
then use Ohm’s law to express resistor voltage 
in terms of resistor current. Traverse the paths 
in the clockwise direction and specify voltage 
drops as positive to yield

+ − =V i R i R(5) 0,E E0 2 2

− + − =i R V i R(6)   0.CC1 1 2 2

b) To get a single equation for iB  in terms of the 
known circuit variables, you can follow these 
steps:

• Solve Eq. (6) for i1, and substitute this 
 solution for i1 into Eq. (2).

• Solve the transformed Eq. (2) for i2 , and sub-
stitute this solution for i2  into Eq. (5).

• Solve the transformed Eq. (5) for iE , and sub-
stitute this solution for iE  into Eq. (3). Use 
Eq.  (4) to eliminate iC  in Eq. (3).

• Solve the transformed Eq. (3) for iB , and 
rearrange the terms to yield

/
/

i
V R R R V

R R R R R

[ ]

[ ] (1 )
.B

CC

E

2 1 2 0

1 2 1 2 β

( ) ( )

( ) ( )
=

+ −

+ + +
 (2.21)

Problem 2.38 asks you to verify these steps. Note 
that once we know iB , we can easily obtain the 
remaining currents.

Solution
Carefully examine the circuit to identify six 
unknown currents, designated i1, i2 , iB , iC , iE ,  
and iCC . In defining these six unknown currents, 
we observed that the resistor RC  is in series with 
the dependent current source iBβ , so these two 
components have the same current. We now must 
derive six independent equations involving these 
six unknowns.

a) We can derive three equations by applying 
Kirchhoff’s current law to any three of the nodes 
a, b, c, and d. Let’s use nodes a, b, and c and label 
the currents away from the nodes as positive:

+ − =i i i(1)   0,C CC1

+ − =i i i(2)   0,B 2 1

− − =i i i(3) 0.E B C

a

d

2
b

1

3

c1 2

VCC
1

2

iCC

iB

RC
iC

RE
iE

R2
i2

R1
i1

V0
biB

Figure 2.24 ▲ The circuit for Example 2.12.
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Heating with Electric Radiators
Let’s determine which of the two wiring diagrams introduced at the 
beginning of this chapter should be used to wire the electric radiators to 
the power supplied to the garage. We begin with the diagram shown in 
Fig. 2.25. We can turn this into a circuit by modeling the radiators as resis-
tors. The resulting circuit is shown in Fig. 2.26. Note that each radiator has 
the same resistance, R, and is labeled with a voltage and current value.

To find the unknown voltages and currents for the circuit in  
Fig. 2.26, begin by using Kirchhoff’s voltage law to sum the voltage 
drops around the path on the circuit’s left side:

− + = ⇒ =240 0 240 V.1 1v v
Now use Kirchhoff’s voltage law to sum the voltage drops around the 
path on the circuit’s right side:

− + = ⇒ = =0 240 V.1 2 2 1v v v v
Remember that the power and voltage specifications for each radiator 
are 1200 W, 240 V. Therefore, the configuration shown in Fig. 2.25 sat-
isfies the voltage specification, since each radiator would have a sup-
plied voltage of 240 V.

Next, calculate the value of resistance R that correctly models 
each radiator. We want the power associated with each radiator to be  
1200 W. Use the equation for resistor power that involves the resistance 
and the voltage:

v v v
= = = ⇒ = = = Ωp

R R
p R

p
240
1200

48 .1
1
2

2
2

2
1
2

1

2

Each radiator can be modeled as a 48 Ω resistor, with a voltage drop of 240 V 
and power of 1200 W. The total power for two radiators is thus 2400 W.

Finally, calculate the power for the 240 V source. To do this, calcu-
late the current in the voltage source, is, using Kirchhoff’s current law to 
sum the currents leaving the top node in Fig. 2.26. Then use is to find 
the power for the voltage source.

ASSESSMENT PROBLEMS

Objective 4—Know how to calculate power for each element in a simple circuit

2.9 For the circuit shown, find vo and the total 
power absorbed in the circuit.

Answer:     15 V, 1.4167 W.

(c) i2, and
(d) the power supplied by the two sources.

Answer:     (a) 0;
(b) − 0.15 A;
(c)  − 0.45 A;
(d) 812 W.

20 V 150 V
1

2
300 V

450 V

1

2

vo

1

2

vx
vx

100

200 V 12 kV

1

2

1

2
9 kV 3 kV

8 kV

vD

i1

io

i2

vD

200

2.10 For the circuit shown, find
(a) io,
(b) i1,

Practical Perspective

2

1
240 V radiator radiator

Figure 2.25 ▲ A wiring diagram for two radiators.

2

1
v1

2

1
v2R R

2

1

i1

240 V

is

i2

Figure 2.26 ▲ A circuit based on Fig. 2.25.

SELF-CHECK: Also try Chapter Problems 2.32 and 2.33.
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( )( ) ( )( )

− + + = ⇒ = + = +

= +

=
= − = − = −

i i i i i i
R R

p i

0

240
48

240
48

10 A.

240 240 10 2400 W.

s s

s s

1 2 1 2
1 2v v

Thus, the total power in the circuit is −2400 + 2400 = 0, and the power 
balances.

Now look at the other wiring diagram for the radiators, shown in 
Fig. 2.27. We know that the radiators can be modeled using 48 Ω resis-
tors, which are used to turn the wiring diagram into the circuit in Fig. 2.28.

Start analyzing the circuit in Fig. 2.28 by using Kirchhoff’s voltage 
law to sum the voltage drops around the closed path:

v v v v− + + = ⇒ + =240 0 240.x y x y

Next, use Kirchhoff’s current law to sum the currents leaving the node 
labeled a:

− + = ⇒ = =i i i i i0 .x y x y

The current in the two resistors is the same, and we can use that cur-
rent in Ohm’s law equations to replace the two unknown voltages in the 
Kirchhoff’s voltage law equation:

48i + 48i = 240 = 96i  ⇒  i = 240
96

 = 2.5 A.

Use the current in the two resistors to calculate the power for the two 
radiators:

= = = =p p Ri (48)(2.5) 300 W.x y
2 2

Thus, if the radiators are wired as shown in Fig. 2.27, their total power is 
600 W. This is insufficient to heat the garage.

Therefore, the way the radiators are wired has a big impact on the 
amount of heat that will be supplied. When they are wired using the dia-
gram in Fig. 2.25, 2400 W of power will be available, but when they are 
wired using the diagram in Fig. 2.27, only 600 W of power will be available.

SELF-CHECK: Assess your understanding of the Practical Perspective by 
solving Chapter Problems 2.41–2.44.

a

1

2
240 V

radiator

radiator

Figure 2.27 ▲ Another way to wire two radiators.

�

�
240 V

a

121

2

48 V

48 Vvy

vx iy

ix

Figure 2.28 ▲ A circuit based on Fig. 2.27.

Summary

• The circuit elements introduced in this chapter are volt-
age sources, current sources, and resistors:

• An ideal voltage source maintains a prescribed 
voltage regardless of the current in the source. An 
ideal current source maintains a prescribed current 
regardless of the voltage across the source. Voltage 
and current sources are either independent, that is, 
not influenced by any other current or voltage in the 
circuit, or dependent, that is, determined by some 
other current or voltage in the circuit. (See pages 28 
and 29.)

• A resistor constrains its voltage and current to be 
proportional to each other. The value of the propor-
tional constant relating voltage and current in a resis-
tor is called its resistance and is measured in ohms. 
(See page 32.)

• Ohm’s law establishes the proportionality of voltage 
and current in a resistor. Specifically,

= iRv
if the current flow in the resistor is in the direction of 
the voltage drop across it, or

= −iRv
if the current flow in the resistor is in the direction of 
the voltage rise across it. (See page 32.)

• By combining the equation for power, =p iv , with Ohm’s 
law, we can determine the power absorbed by a resistor:

= =p i R R.2 2v

(See pages 33–34.)

• Circuits have nodes and closed paths. A node is a point 
where two or more circuit elements join. When just two 
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• Kirchhoff’s voltage law states that the algebraic sum 
of all the voltages around any closed path in a circuit 
equals zero. (See page 40.)

• A circuit is solved when the voltage across and the 
 current in every element have been determined. By 
combining an understanding of independent and 
dependent sources, Ohm’s law, and Kirchhoff’s laws, we 
can solve many simple circuits.

elements connect to form a node, they are said to be in 
series. A closed path is a loop traced through connect-
ing elements, starting and ending at the same node and 
encountering intermediate nodes only once each. (See 
pages 39–40.)

• The voltages and currents of interconnected circuit ele-
ments obey Kirchhoff’s laws:

• Kirchhoff’s current law states that the algebraic sum 
of all the currents at any node in a circuit equals zero. 
(See page 39.)

 2.3 If the interconnection in Fig. P2.3 is valid, find the 
total power developed by the voltage sources. If the 
interconnection is not valid, explain why.

Problems

Section 2.1

 2.1 a)   Is the interconnection of ideal sources in the cir-
cuit in Fig. P2.1 valid? Explain.

b) Identify which sources are developing power 
and which sources are absorbing power.

c) Verify that the total power developed in the 
 circuit equals the total power absorbed.

d) Repeat (a)–(c), reversing the polarity of the 10 V  
source.

 2.2 If the interconnection in Fig. P2.2 is valid, find the 
total power developed in the circuit. If the intercon-
nection is not valid, explain why.

8 V30 V

10 V

2

1

1 2

Figure P2.1

12 V

8 V

1

2
30 V

1

2

1 2

50 mA

Figure P2.2

100 V
2

1
25 A 20 A

60 V

5 A

1 2

Figure P2.3

 2.4 If the interconnection in Fig. P2.4 is valid, find the 
total power developed by the current sources. If the 
interconnection is not valid, explain why.

 2.5 The interconnection of ideal sources can lead to an 
indeterminate solution. With this thought in mind, 
explain why the solutions for 1v  and 2v  in the cir-
cuit in Fig. P2.5 are not unique.

40 V15 A 50 V

5 A

1

2

1

2

10 V

12

Figure P2.4

100 V

50 V

10 A

20 A10 A

1

1
2

2

v1

v2

1 2

2

1

Figure P2.5
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  2.6 For the circuit in Fig. P2.6,

a) What value of α is required in order for the 
interconnection to be valid?

b) For the value calculated in part (a), find the 
power associated with the 25 V source.

 2.7 For the circuit in Fig. P2.7,

a) What value of gv  is required in order for the 
interconnection to be valid?

b) For the value of gv  calculated in part (a), find 
the power associated with the 8 A source.

2

1
25 V15 A vx

1

2

avx

Figure P2.6

8 A
ib
4

vg
1

2

1

2

ib

Figure P2.7

 2.8 If the interconnection in Fig. P2.8 is valid, find the 
total power developed in the circuit. If the intercon-
nection is not valid, explain why.

 2.9 Find the total power developed in the circuit in  
Fig. P2.9.

1
2

1
2

1
2

50 V

80 V

250 V

6iD

25 A

iD

2

1

Figure P2.8

1
2

1

2
50 V

75 A

25 A

20 V

1

2

vD

5vD

Figure P2.9

 2.10 a)   Is the interconnection in Fig. P2.10 valid? 
Explain.

b) Can you find the total power developed in the 
circuit? Explain.

Sections 2.2–2.3

 2.11 For the circuit shown in Fig. P2.11,

a) Find i.

b) Find the power supplied by the voltage source.

c) Reverse the polarity of the voltage source and 
repeat parts (a) and (b).

20 V 50 mA

100 mA 30 V
1

2

1
2

i1

3i1

Figure P2.10

120 V 10 kV
i

1

2

Figure P2.11

 2.12 For the circuit shown in Fig. P2.12,

a) Find v .

b) Find the power absorbed by the resistor.

c) Reverse the direction of the current source and 
repeat parts (a) and (b).

75 mA 8 kVv

1

2

Figure P2.12

 2.13 A pair of automotive headlamps is connected 
to a 12 V battery via the arrangement shown in  
Fig. P2.13. In the figure, the triangular symbol ▼ 
is used to indicate that the terminal is connected 
directly to the metal frame of the car.

a) Construct a circuit model using resistors and an 
independent voltage source.

b) Identify the correspondence between the ideal 
circuit element and the symbol component that 
it represents.
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 2.16 A variety of current source values were applied to the 
device shown in Fig. P2.16(a). The power absorbed 
by the device for each value of current is recorded 
in the table given in Fig. P2.16(b). Use the values in 
the table to construct a circuit model for the device 
consisting of a single resistor from  Appendix H.

 2.14 A variety of voltage source values were applied to the 
device shown in Fig. P2.14(a). The power absorbed 
by the device for each value of voltage is recorded 
in the table given in Fig. P2.14(b). Use the values in 
the table to construct a circuit model for the device 
consisting of a single resistor from  Appendix H.

2

12 V battery

Switch

Lamp A

Lamp B

1

Figure P2.13

v (V) p (mW)

5

10

15

20

25

30

16.67

66.67

150.00

266.67

416.67

600.00

(b)(a)

Device v

1

2

Figure P2.14

 2.15 The terminal voltage and terminal current were 
measured on the device shown in Fig. P2.15(a). 
The values of v and i are given in the table of  
Fig. P2.15(b). Use the values in the table to con-
struct a circuit model for the device consisting of a 
single resistor from Appendix H.

222.4

211.2

11.2

22.4

33.6

v (V)i (mA)

240

220

20

40

60

(b)(a)

i

1

2

vDevice

Figure P2.15

Section 2.4

 2.17 Given the circuit shown in Fig. P2.17, find

a) the value of ia,

b) the value of ib,

c) the value of bv ,

d) the power dissipated in each resistor,

e) the power delivered by the 80 V source.

PSPICE
MULTISIM

i (mA)

1

2

3

4

5

6

18

72

162

288

450

648

(b)

p (mW)

(a)

Device i

Figure P2.16

1

2
80 V

10 V

10 Via

ib

15 Vvb

1

2

Figure P2.17

 2.18 The current ix  in the circuit shown in Fig. P2.18 is  
25 mA, and the voltage xv  is 25 V. Find (a) i1; (b) 1v ;  
(c) gv ; and (d) the power supplied by the voltage source.

 2.19 a)  Find the currents i1 and i2  in the circuit in  
Fig. P2.19.

b)   Find the voltage ov . 

c)   Verify that the total power developed equals the 
total power dissipated.

PSPICE
MULTISIM

1 kV2 kV

5 kVvg 250 V
2

1

i1ix

2

1
vx

2

1
v1

Figure P2.18

4 A 90 V80 Vi1

30 V

i2
vo

1

2

Figure P2.19
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 2.20 The current ia  in the circuit shown in Fig. P2.20 is  
2 mA. Find (a) io ; (b) ig ; and (c) the power delivered 
by the independent current source.

PSPICE
MULTISIM

 2.21 Consider the circuit shown in Fig. P2.21.

a) Find ov  using Kirchoff’s laws and Ohm’s law.

b) Test the solution for ov  by verifying that the  total 
power supplied equals the total power  absorbed.

4 kV2 kVio

ia

3 kV

1 kV

ig

Figure P2.20

2.5 mA

5 kV

100 V 2 kV

2

1
vo

1

2

Figure P2.21

 2.22 The voltage across the 15 kΩ  resistor in the circuit 
in Fig. P2.22 is 500 V, positive at the upper terminal.

a) Find the power dissipated in each resistor.

b) Find the power supplied by the 100 mA ideal 
current source.

c) Verify that the power supplied equals the total 
power dissipated.

PSPICE
MULTISIM

 2.23 The current io  in the circuit in Fig. P2.23 is 1 A.

a) Find i1.

b) Find the power dissipated in each resistor.

c) Verify that the total power dissipated in the cir-
cuit equals the power developed by the 150 V 
source.

PSPICE
MULTISIM

5 kV

7.5 kV

4 kV
500 V

10 kV

15 kV

1

2

100 mA

Figure P2.22

 2.24 The currents i1 and i2  in the circuit in Fig. P2.24 are 
10 A and 25 A, respectively.

a) Find the power supplied by each voltage source.

b) Show that the total power supplied equals the 
total power dissipated in the resistors.

4 V

50 V

25 V
1

2
150 V

10 V

65 Vi1

io

Figure P2.23

10 V

2 V

2 V

100 V

i2 10 V

i1 25 V

1

2
460 V

1

2
130 V

Figure P2.24

 2.25 The currents ia  and ib  in the circuit in Fig. P2.25 are 
4 A and 2A, respectively.

a) Find ig.

b) Find the power dissipated in each resistor.

c) Find gv .

d) Show that the power delivered by the current 
source is equal to the power absorbed by all the 
other elements.

PSPICE
MULTISIM

4 V
8 V 4 V

12 V

1

2

vg ig 6 V
1

2
80 V

24 V

10 V

ib

12 V

ia

Figure P2.25
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 2.28 The voltage and current were measured at the ter-
minals of the device shown in Fig. P2.28(a). The 
 results are tabulated in Fig. P2.28(b).

a) Construct a circuit model for this device using 
an ideal voltage source in series with a resistor.

b) Use the model to predict the value of it  when tv  
is zero.

 2.29 The voltage and current were measured at the ter-
minals of the device shown in Fig. P2.29(a). The 
 results are tabulated in Fig. P2.29(b).

a) Construct a circuit model for this device using 
an ideal current source in parallel with a resistor.

b) Use the model to predict the amount of power 
the device will deliver to a 5 Ω  resistor.

vt (V)

50

58

66

74

82

0

2

4

6

8

it (A)

(b)(a)

it

1

2

vtDevice

Figure P2.28

 2.30 The table in Fig. P2.30(a) gives the relationship 
 between the terminal voltage and current of the prac-
tical constant voltage source shown in Fig. P2.30(b).

a) Plot sv  versus is .
b) Construct a circuit model of the practical source 

that is valid for i0 225 mAs≤ ≤ , based on the 
equation of the line plotted in (a). (Use an ideal 
voltage source in series with an ideal resistor.)

c) Use your circuit model to predict the current 
delivered to a 400 Ω  resistor connected to the 
terminals of the practical source.

d) Use your circuit model to predict the current 
delivered to a short circuit connected to the ter-
minals of the practical source.

e) What is the actual short-circuit current?
f) Explain why the answers to (d) and (e) are not 

the same.

(a)

it

1

2

vtDevice

100

180

260

340

420

vt (V)

0

4

8

12

16

it (A)

(b)

Figure P2.29

 2.26 The variable resistor R in the circuit in Fig. P2.26 is 
adjusted until va equals 60 V. Find the value of R.

 2.27 For the circuit shown in Fig. P2.27, find (a) R and (b) 
the power supplied by the 500 V source.

1

2

10 V

45 V

R

12 V240 V 180 V

18 V

1

2

va

 Figure P2.26

1

2

30 V
30 V

36 V
60 V

60 V

180 V

R

500 V

60 V
1

2

Figure P2.27
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75

60

45

30

20

10

0

vs (V)

0

75

150

225

300

400

500

is (mA)

(a) (b)

is

1

2

vsCVS

Figure P2.30
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 2.32 For the circuit shown in Fig. P2.32, find ov  and the 
total power supplied in the circuit.

 2.31 The table in Fig. P2.31(a) gives the relation-
ship between the terminal current and voltage 
of the practical constant current source shown in  
Fig. P2.31(b).

a) Plot is  versus sv .
b) Construct a circuit model of this current source 

that is valid for ≤ ≤0 75 Vsv , based on the 
equation of the line plotted in (a).

c) Use your circuit model to predict the current 
delivered to a 2.5 kΩ  resistor.

d)  Use your circuit model to predict the open- 
circuit voltage of the current source.

e) What is the actual open-circuit voltage?
f) Explain why the answers to (d) and (e) are not 

the same.

20.0

15.0

17.5

12.5

9.0

4.0

0

0

25

50

75

100

125

140

is (mA) vs (V)

(a) (b)

CCS

is

1

2

vs

Figure P2.31

1
2

3ix

6 V

ix

2 V
2

1

vo280 V

Figure P2.32

 2.34 Consider the circuit shown in Fig. P2.34.

a) Find io . 

b) Verify the value of io  by showing that the 
power generated in the circuit equals the power 
absorbed in the circuit.

5 V
1

2
8 V

1

2

i1

54 kV

6 kV

1.8 kV
2 1

1 V
v1 2

30i1

Figure P2.33

8 A 3 V 4 V
1

2

12 V

1

2

v1
v1
6

io

Figure P2.34

 2.35 For the circuit in Fig. P2.35, current iφ is 2 A. 
Calculate 

a) vs, 
b)  the power absorbed by the independent  voltage 

source, 
c)  the power delivered by the independent  current 

source, 
d)  the power delivered by the controlled current 

source, 
e) the total power dissipated in the two resistors.

PSPICE
MULTISIM

10 V

5 A vs
1

2
30 V

if

2if
Figure P2.35

 2.33 For the circuit shown in Fig. P2.33, find (a) the cur-
rent i1 in microamperes, (b) the voltage v in volts, (c) 
the total power generated, and (d) the total power 
absorbed.

 2.36 For the circuit shown in Fig. P2.36,  
a) calculate i∆  and ov , and  
b)  show that the power developed equals the 

power absorbed.

PSPICE
MULTISIM

2
1

2
150 V 20 V

20is
12

5is
1 2

18 ViD 40 V

is1

2

vo

8iD

Figure P2.36
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(a)

1

2 3
Position 1

1

2 3
Position 2

(b)

1 2

3 4
Position 1

1 2

3 4
Position 2

(c)

a
b

vg
1

2 l

Figure P2.40

 2.38 Derive Eq. 2.21. Hint: Use Eqs. (3) and (4) from 
Example 2.12 to express iE  as a function of iB . Solve 
Eq. (2) for i2  and substitute the result into both  
Eqs. (5) and (6). Solve the “new” Eq. (6) for i1 and 
substitute this result into the “new” Eq. (5). Replace 
iE  in the “new” Eq. (5) and solve for iB . Note that 
because iCC  appears only in Eq. (1), the solution for 
iB  involves the manipulation of only five equations.

 2.39 For the circuit shown in Fig.  2.24, R 20 k ,1 = Ω    
 R 80 k2 = Ω, R 500 C = Ω, R 100 E = Ω, V 15 V,CC =   
V 200 mV0 = , and 39.β =  Calculate iB , iC , iE ,  

3dv , bdv , i2 , i1, abv , iCC , and 13v . (Note: In the dou-
ble subscript notation on voltage variables, the first 
subscript is positive with respect to the second sub-
script. See Fig. P2.39.)

PSPICE
MULTISIM

3

d

RE v3d

1

2

Figure P2.39

four-terminal, two-position switch. The switches 
are shown schematically in Fig. P2.40(a), which  
illustrates a three-way switch, and P2.40(b), which 
illustrates a four-way switch.

a) Show how two three-way switches can be 
connected between a and b in the circuit in  
Fig. P2.40(c) so that the lamp l can be turned on 
or off from two locations.

b) If the lamp (appliance) is to be controlled from 
more than two locations, four-way switches are 
used in conjunction with two three-way  switches. 
One four-way switch is required for each loca-
tion in excess of two. Show how one four-way 
switch plus two three-way switches can be 
 connected between a and b in Fig. P2.40(c) to 
control the lamp from three locations. (Hint: The 
four-way switch is placed between the three-way 
switches.)

 2.37 Find 1v  and gv  in the circuit shown in Fig. P2.37 
when ov  equals 250 mV. (Hint: Start at the right end 
of the circuit and work back toward gv .)

v1

1

2

vovg

1

2
50i2

10 V

i1

i2

20i1

40 V 25 V 50 V100 V 12.5 V
1

2

Figure P2.37

Sections 2.1–2.5

 2.40 It is often desirable in designing an electric wiring 
system to be able to control a single appliance from 
two or more locations, for example, to control a 
lighting fixture from both the top and bottom of a 
stairwell. In home wiring systems, this type of con-
trol is implemented with three-way and four-way 
switches. A three-way switch is a three- terminal, 
two-position switch, and a four-way switch is a 

PSPICE
MULTISIM
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 2.41 Suppose you want to add a third radiator to your 
garage that is identical to the two radiators you 
have already installed. All three radiators can be 
modeled by 48 Ω  resistors. Using the wiring dia-
gram shown in Fig. P2.41, calculate the total power 
for the three radiators.

PRACTICAL
PERSPECTIVE

radiator radiator radiator
1

2
240 V

Figure P2.41

 2.42 Repeat Problem 2.41 using the wiring diagram 
shown in Fig. P2.42. Compare the total radiator 
power in this configuration with the total radiator 
power in the configuration shown in Fig. P2.41.

PRACTICAL
PERSPECTIVE

radiator radiator

radiator
1

2
240 V

Figure P2.42

 2.43 Repeat Problem 2.41 using the wiring diagram 
shown in Fig. P2.43. Compare the total radiator 
power in this configuration with the total radiator 
power in the configuration shown in Fig. P2.41.

PRACTICAL
PERSPECTIVE

radiator

radiator

radiator
1

2
240 V

Figure P2.43

 2.44 Repeat Problem 2.41 using the wiring diagram 
shown in Fig. P2.44. Compare the total radiator 
power in this configuration with the total radiator 
power in the configuration shown in Fig. P2.41.

PRACTICAL
PERSPECTIVE

radiator

radiator

radiator
1

2
240 V

Figure P2.44
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CHAPTER CONTENTS

3
CHAPTER

Simple Resistive Circuits
This chapter focuses on two important circuit element 
 interconnections: series connections and parallel connections.

• When resistors are connected in series and in parallel, we 
can combine these resistors into equivalent resistors, reduc-
ing the number of circuit elements and the circuit’s com-
plexity, and simplifying the circuit analysis.

•  When a voltage source is connected to two or more resistors 

in series, the supplied voltage divides across the resistors. 
This common configuration is used as a voltage divider that 
outputs a specific (desired) voltage, smaller than the sup-
plied voltage. We introduce voltage division, a new tool that 
simplifies the analysis of these circuits.

• When a current source is connected to two or more resistors 

in parallel, the supplied current divides among the resistors. 
This common configuration is used as a current divider that 
 outputs a specific (desired) current, smaller than the sup-
plied current. We introduce current division, a new tool that 
simplifies the analysis of these circuits.

Finally, we look at three important measurement instruments.

• The ammeter, which is a practical application of the current 
divider, is used to measure current.

•  The voltmeter, which is a practical application of the voltage  
divider, is used to measure voltage.

• The Wheatstone bridge, which introduces two new inter-
connections known as delta and wye connections, is used  
to measure resistance.

3.1 Resistors in Series p. 60

3.2 Resistors in Parallel p. 61

 3.3  The Voltage-Divider and Current-Divider 
Circuits p. 64

3.4  Voltage Division and Current Division p. 68

3.5 Measuring Voltage and Current p. 70

3.6  Measuring Resistance—The Wheatstone 
Bridge p. 73

3.7  Delta-to-Wye (Pi-to-Tee) Equivalent   
Circuits p. 75

1 Be able to recognize resistors connected 
in series and in parallel and use the rules 
for combining series-connected resistors 
and  parallel-connected resistors to yield 
 equivalent resistance.

2 Know how to design simple voltage-divider 
and current-divider circuits.

3 Be able to use voltage division and  current 
division appropriately to solve simple 
circuits.

4 Be able to determine the reading of an 
 ammeter when added to a circuit to 
 measure current; be able to determine the 
reading of a voltmeter when added to a 
 circuit to measure voltage.

5 Understand how a Wheatstone bridge is 
used to measure resistance.

6 Know when and how to use delta-to-wye 
equivalent circuits to solve simple circuits.

CHAPTER OBJECTIVES

M03_NILS8436_12_SE_C03.indd   58 07/01/22   7:29 AM



Practical Perspective
Resistive Touch Screens
Many mobile phones and tablet computers use touch 
screens created by applying a transparent resistive 
material to the glass or acrylic screens. Two screens 
are typically used, separated by a transparent insulat-
ing layer. We can model a touch screen as a grid of 
resistors in the x-direction and a grid of resistors in the 
y-direction. The figure on the right depicts one row of  
the grid in the x-direction, with terminals 1x  and 2x , 
and one column of the grid in the y-direction, with ter-
minals 1y  and 2y .

A separate electronic circuit repeatedly applies a volt-
age drop across the grid in the x-direction (between the 
points 1x  and 2x  ), then removes that voltage and applies 

a voltage drop across the grid in the y-direction (between 
points 1y  and 2y  ). When the screen is touched, the two 
resistive layers are pressed together, creating a voltage 
that is sensed in the x-grid and another voltage that is 
sensed in the y-grid. These two voltages precisely locate 
the point where the screen was touched.

How is the voltage created by touching the screen 
related to the position where the screen was touched? 
How are the properties of the grids used to calculate the 
touch position? We will answer these questions in the 
Practical Perspective at the end of this chapter. The circuit 
analysis required to answer these questions uses some of 
the new tools developed in this chapter.

y1

y2

x2x1

y1

y2

x2x1

x

y

The screen is not touched,
so the grids overlap but
do not connect

The screen is touched here,
so the grids are connected
at the touch point

Touch

Spacer

Top Layer

Resistive Coating

Bottom Layer

Denis Semenchenko/Shutterstock
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60 Simple Resistive Circuits

3.1 Resistors in Series
In Chapter 2, we learned that two elements connected at a single node are 
said to be in series. For example, the seven resistors in Fig. 3.1 are con-
nected in series. Series-connected circuit elements carry the same current. 
Applying Kirchhoff’s current law to each node in the circuit, we can show 
that these resistors carry the same current. The series interconnection in 
Fig. 3.1 requires that

i i i i i i i i ,s 1 2 3 4 5 6 7= = − = = = − = − =

so if we know any one of the seven currents, we know them all. Thus, we 
can redraw Fig. 3.1 as shown in Fig. 3.2, using the single current i .s

To find i ,s  we apply Kirchhoff’s voltage law around the single closed 
loop in the clockwise direction. Defining the voltage across each resistor 
as a drop in the direction of is  (Ohm’s law) gives

− + + + + + + + =i R i R i R i R i R i R i R 0,s s s s s s s s1 2 3 4 5 6 7v

or

( )= + + + + + +i R R R R R R R .s s 1 2 3 4 5 6 7v  

This equation tells us we can simplify the circuit in Fig. 3.2 by replacing 
the seven resistors with a single equivalent resistor, Req, whose numerical 
value is the sum of the individual resistors; that is,

= + + + + + +R R R R R R R Req 1 2 3 4 5 6 7

and

= i R .s s eqv

Thus, we can redraw Fig. 3.2 as shown in Fig. 3.3, which is a much simpler 
circuit.

In general, if k resistors are connected in series, the equivalent single 
resistor has a resistance equal to the sum of the k resistances, or

1

2
ys R4

a b dc

h g ef

R7

i7

R6

i6

R5

i5

R2

i2

R3

i3
i4is

R1

i1

Figure 3.1 ▲ Resistors connected in series.

COMBINING RESISTORS IN SERIES

 R R R R R. . . .
i

k

i keq
1 1 2= ∑ = + + +

=
 (3.1)

Note that the resistance of the equivalent resistor is always larger than the 
largest resistor in the series connection.

Think about equivalent resistance by visualizing the series-connected 
resistors inside a black box, depicted on the left of Fig. 3.4. (An electrical 
engineer uses the term black box to imply an opaque container; that is, 
the contents are hidden from view.) The single equivalent resistor is in 
a second black box, on the right of Fig. 3.4. We can derive the equation 
for the equivalent resistor by writing the equations relating voltage and 
current for each black box and finding the condition that makes these two 
equations equivalent, given in Eq. 3.1 when =k 7.

1

2
ys R4

R1 R2a b dc R3

R7 R6 R5

h g ef

is

Figure 3.2 ▲ Series resistors with a single unknown 
current is.

R4 Req

R1 R2a R3

R7 R6 R5h

a

h

is

ys

1

2

is

ys

1

2

Figure 3.4 ▲ The black box equivalent of the circuit 
shown in Fig. 3.2.

1

2
ys Req

a

h

is

Figure 3.3 ▲ A simplified version of the circuit 
shown in Fig. 3.2.
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3.2 Resistors in Parallel
Two elements connected at both of their nodes are said to be in parallel. For 
example, the four resistors in the circuit in Fig. 3.5 are in parallel. Parallel-
connected circuit elements have the same voltage across their terminals. 
Don’t assume that two elements are parallel connected merely because they 
are lined up in parallel in a circuit diagram. The defining characteristic of 
parallel-connected elements is that they have the same voltage across their 
terminals. In Fig. 3.6, you can see that R1  and R3 are not parallel connected 
because, between their respective terminals, another resistor dissipates some 
of the voltage.

We can reduce resistors in parallel to a single equivalent resistor using 
Kirchhoff’s current law and Ohm’s law. In Fig.  3.5, we let the currents 
i i i,   ,   ,1 2 3  and i4  be the currents in the resistors R1  through R ,4  respectively.  
Note that the positive reference direction for each resistor current is 
through the resistor from node a to node b. From Kirchhoff’s current law,

= + + +i i i i i .s 1 2 3 4

The parallel connection of the resistors means that the voltage across each 
resistor must be the same. Hence, from Ohm’s law,

i R i R i R i R .s1 1 2 2 3 3 4 4 v= = = =

Therefore,

v v v v
i

R
i

R
i

R
i

R
, , , and .s s s s

1
1

2
2

3
3

4
4

= = = =  

Substituting the expressions for the four branch currents into the KCL 
equation and simplifying yields

v= + + +






i

R R R R
1 1 1 1 ,s s

1 2 3 4

from which

v
= = + + +

i
R R R R R

1 1 1 1 1 .s

s eq 1 2 3 4

This equation shows that the four resistors in Fig. 3.5 can be replaced by 
a single equivalent resistor, thereby simplifying the circuit. The circuit in 
Fig. 3.7 illustrates the substitution. The equivalent resistance of k resistors 
connected in parallel is

COMBINING RESISTORS IN PARALLEL

 
R R R R R

1 1 1 1 . . . 1 .
i ki

k

eq 1 21
∑= = + + +
=

 (3.2)

Note that the resistance of the equivalent resistor is always smaller 
than the resistance of the smallest resistor in the parallel connection. 
Using conductance when dealing with resistors connected in parallel is 
sometimes more convenient. In that case, Eq. 3.2 becomes

. . .G G G G G .
i

k

i keq
1

1 2∑= = + + +
=

R1 R2 R3 R4

a

b

isys
1

2

Figure 3.5 ▲ Resistors in parallel.

R3R1

R2

Figure 3.6 ▲ Nonparallel resistors.

1

2
ys Req

a

b

is

Figure 3.7 ▲ Replacing the four parallel resistors 
shown in Fig. 3.5 with a single equivalent resistor.
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62 Simple Resistive Circuits

Many times only two resistors are connected in parallel. Figure 3.8 illus-
trates this special case. We calculate the equivalent resistance from Eq. 3.2:

R R R
R R

R R
1 1 1 ,
eq 1 2

2 1

1 2

= + =
+

or

COMBINING TWO RESISTORS IN PARALLEL

 R
R R

R R
.eq

1 2

1 2

=
+

 (3.3)

Thus, for just two resistors in parallel, the equivalent resistance equals 
the product of the resistances divided by the sum of the resistances. 
Remember that you can only use this result in the special case of just two 
resistors in parallel.

Work through Examples 3.1 and 3.2 to practice using series and paral-
lel simplifications in circuit analysis.

EXAMPLE 3.1 Applying Series-Parallel Simplification

a) Find the equivalent resistance seen by the cur-
rent source in Fig.  3.9, using series and parallel 
simplifications.

b) Use your results in part (a) to find the power 
delivered by the current source.

Solution

a) Our goal is a circuit with the 50  mA current 
source and a single resistor. We start simplifying 
the circuit’s right-hand side, moving left toward 
the current source. The 2 kΩ  and 3 kΩ  resistors 
are in series and can be replaced by a single resis-
tor whose value is

2000 3000 5000 5 k .+ = = Ω

Figure 3.10(a) shows this simplified circuit where 
the 20 kΩ  and the 5 kΩ  resistors are now in paral-
lel. We replace these parallel-connected resistors 
with a single equivalent resistor, calculating its 
value using the “product over the sum” equation  
(Eq. 3.3):

20,000 5000
20,000 5000

4000 4 k .
( )( )

+
= = Ω

Figure 3.10(b) shows this result, and now we see 
the two 4 kΩ resistors are in series. They can be 
replaced with a single resistor whose value is

4000 4000 8000 8 k .+ = = Ω

R2R1

a

b

Figure 3.8 ▲ Two resistors connected in parallel.

2 kV4 kV

6 kV 24 kV 20 kV 3 kV50 mA

Figure 3.9 ▲ The circuit for Example 3.1.

4 kV

6 kV 24 kV 20 kV 5 kV50 mA

(a)

4 kV

4 kV6 kV 24 kV50 mA

(b)

3 kV50 mA

(d)

6 kV 24 kV 8 kV50 mA

(c)

Figure 3.10 ▲ Simplifying the circuit in Fig. 3.9.
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 3.2 Resistors in Parallel 63

Figure 3.10(c) shows this simplification. Now the 
24 kΩ , 6 kΩ, and 8 kΩ  resistors are in parallel. 
To find their equivalent, we add their inverses 
and invert the result (Eq. 3.2):

1
24,000

1
6000

1
8000

1
24,000

4
24,000

3
24,000

1

1

( )
( )
+ +

= + +

−

−

8
24,000

24,000
8

3000 3 k .
1

( )= = = = Ω
−

The equivalent resistance seen by the current 
source is 3 kΩ , as shown in Fig. 3.10(d).

b) The power of the source and the power of the 
equivalent 3 kΩ  resistor must sum to zero. 
Using Fig.  3.10(d), we can easily calculate the 
resistor’s power using its current and resistance  
to give

p 0.05 3000 7.5 W.2( ) ( )= =

The equivalent resistor is absorbing 7.5  W, so the 
current source must be delivering 7.5 W.

EXAMPLE 3.2 Solving a Circuit Using Series-Parallel Simplification

Find i i, ,s 1  and i2  in the circuit shown in Fig. 3.11.

Solution
Using series-parallel simplifications, we reduce the 
resistors to the right of the x-y terminals to a single 
equivalent resistor. On the circuit’s  right-hand side, the 

Ω3   and Ω6   resistors are in series. We replace this series  
combination with a 9 Ω  resistor, reducing the circuit to 
the one shown in Fig. 3.12(a). Then we replace the par-
allel combination of the 9 Ω and 18 Ω  resistors with 
a single equivalent resistance of ( )( )× +18 9 18 9 , 
or 6 .Ω  Figure 3.12(b) shows the resulting circuit. The 
nodes x and y marked on all diagrams should help you 
trace through the circuit simplification.

From Fig.  3.12(b) you can use Ohm’s law to 
verify that

i 120
6 4

12 A.s ( )
=

+
=

Figure 3.13 shows this result and includes the volt-
age 1v  to help clarify the subsequent discussion. 
Using Ohm’s law, we compute the value of 1v :

v 12 6 72 V.1 ( )( )= =  

Since 1v  is the voltage drop from node x to node 
y, we can return to the circuit shown in Fig. 3.12(a) 
and again use Ohm’s law to calculate i1 and i .2  Thus,

v
i

18
72
18

4 A,1
1= = =

v
i

9
72
9

8 A.2
1= = =

We have found the three specified currents by 
using series-parallel reductions in combination with 
Ohm’s law.

18 V 6 V

x

y

4 V 3 V

120 V
is

i1 i2
1

2

Figure 3.11 ▲ The circuit for Example 3.2.

6 V

x

y

4 V

(b)

120 V

18 V 9 V

x

y

4 V

(a)

120 V

is

is

i1 i2

1

2

1

2

Figure 3.12 ▲ A simplification of the circuit shown 
in Fig. 3.11.

y1 6 V

x

y

4 V

120 V
12 A

1

2

1

2

Figure 3.13 ▲ The circuit of Fig. 3.12(b) showing 
the numerical value of is.
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64 Simple Resistive Circuits

Objective 1—Be able to recognize resistors connected in series and in parallel

3.1 For the circuit shown, find (a) the voltage v,  
(b) the power delivered to the circuit by the 
current source, and (c) the power dissipated in 
the 75 Ω  resistor.

Answer:  a)  3.6  V;
b) 108  mW;
c) 3888 W.µ

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter Problems 3.1–3.4.

3.3  The Voltage-Divider  
and Current-Divider Circuits

The Voltage-Divider Circuit
A voltage-divider circuit produces two or more smaller voltages from a 
single voltage supply. This is especially useful in electronic circuits, where 
a single circuit may require voltages of 15 V+ , 15 V− , and 5 V+ . An 
example of a voltage-divider circuit that creates two voltages is shown in 
Fig 3.14. We introduce the current i, as shown in Fig. 3.14(b), and recog-
nize (from Kirchhoff’s current law) that R1  and R2  carry this current. 
Using Ohm’s law to determine the resistor voltages from the current i and 
applying Kirchhoff’s voltage law around the closed loop yields

iR iR ,s 1 2v = +

or
v

i
R R

.s

1 2

=
+

Using Ohm’s law and the expression for i, we calculate 1v  and 2v :

 v viR
R

R R
,s1 1

1

1 2

= =
+

  (3.4)

 v viR
R

R R
.s2 2

2

1 2

= =
+

 (3.5)

Equations 3.4 and 3.5 show that 1v  and 2v  are fractions of .sv  Expressed in 
words, each fraction is

the resistance across which the divided voltage is defined
the sum of the two resistances

.

Before leaving Example 3.2, you should verify that the solution sat-
isfies Kirchhoff’s current law at every node and Kirchhoff’s voltage law 
around every closed path. (There are three closed paths that can be 
tested.) You can also show that the power delivered by the voltage source 
equals the total power dissipated in the resistors, and thus the power in 
the circuit balances. (See Problems 3.10 and 3.11.)

100 V300 V 75 V

35 V

40 V

140 V

30 mA y

1

2

R1

R2

ys

y1

y2

(a)

R1

R2

ys

y1

y2

(b)

1

21

2 1

2

1

21

2 1

2

i

Figure 3.14 ▲ (a) A voltage-divider circuit and (b)  
the voltage-divider circuit with current i indicated.
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Because this ratio is always less than 1.0, the divided voltages 1v  and 2v  
are always less than the source voltage .sv

Work through Example 3.3 to design a simple voltage divider.

EXAMPLE 3.3 Designing a Simple Voltage Divider

The voltage divider in Fig. 3.14 has a source voltage 
of 20  V. Determine the values of the resistors R1
and R2  to give v 15 V1 =  and v 5 V2 = .

Solution
From Eqs. 3.4 and 3.5,

R

R R

R

R R
15 20 and 5 20 .1

1 2

2

1 2

( ) ( )=
+

=
+

Unfortunately, these two equations are not inde-
pendent. If you solve each equation for R1, you get 

=R R3 .1 2  An infinite number of combinations of 
R1  and R2  yield the correct values for 1v  and 2v .  
For example, if you choose R 10 k2 = Ω, then 
R 30 k1 = Ω gives the correct voltages, but if you 
choose R 4002 = Ω, then R 12001 = Ω  gives the 
correct voltages.

EXAMPLE 3.4 Adding a Resistive Load to a Voltage Divider

a) For the voltage divider designed in Example 3.3, 
suppose R 10 k2 = Ω  and R 30 k1 = Ω. Connect 
a resistor R 10 kL = Ω in parallel with R2  and 
determine the voltage across RL.

b) Repeat part (a) using R 4002 = Ω  and R 12001 = Ω,  
but the same value of RL.

Solution

a) The voltage divider with the resistor RL is shown 
in Fig. 3.15. The resistor RL  acts as a load on the 
 voltage-divider circuit. A load on any circuit consists 
of one or more circuit elements that draw power 
from the circuit. The parallel combination of the 

two 10 kΩ  resistors, one from the voltage divider 
and the other the load resistor RL, gives an equiva-
lent resistance of 5 kΩ. Therefore, from Eq. 3.5,

v 5000
30,000 5000

20 2.86 V.o ( )=
+

=

This is certainly not the 5   V we were expecting the 
voltage divider to deliver to the load, because adding 
the load resistor changed the voltage-divider circuit.

b) The voltage divider with a different set of resis-
tors and the same load resistor is shown in 
Fig.  3.16. Again, we expect the load resistor to 
change the voltage-divider circuit. The parallel 
combination of the 400 Ω  and 10 kΩ  resistors  

When selecting values for R1  and R2 , you should consider the power the  
resistors must dissipate and the effects of connecting the  voltage-divider 
circuit to other circuit components. Example 3.4 uses the voltage divider 
designed in Example 3.3 to supply 5 V to a 10 kΩ resistor.

1

2

30 kV

10 kV 10 kV

20 V

yo

1

2

R1 =

R2 = RL =

Figure 3.15 ▲ The voltage divider from Example 3.3  
with a resistive load.

1

2

1200 V

400 V 10 kV

20 V

yo

1

2

Figure 3.16 ▲ The voltage divider from Example 3.3  
with a different choice of R1 and R2 resistors and a 
resistive load.
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66 Simple Resistive Circuits

Figure 3.17 shows a general voltage divider with a load RL  connected. 
The expression for the output voltage is

v v
R

R R
,o s

eq

1 eq

=
+

where

R
R R

R R
.eq

2 L

2 L

=
+

Substituting the expression for Req into the equation for ov  and simplifying 
yields

 v v
R

R R R R[1 ]
.o s

2

1 2 L 2( )
=

+ +
 (3.6)

Note that Eq. 3.6 reduces to Eq. 3.5 as R ,L →∞  as it should. Equation 3.6  
shows that, as long as R R ,L 2>>  the voltage ratio o sv v  is essentially 
undisturbed by adding a load to the divider, as we saw in Example 3.4.

Another characteristic of the voltage-divider circuit is its sensitivity 
to the tolerances of the resistors. By tolerance we mean a range of possi-
ble values. The resistances of commercially available resistors always vary 
within some percentage of their stated value. Example 3.5 illustrates the 
effect of resistor tolerances in a voltage-divider circuit.

gives an equivalent resistance of 384.615 Ω. 
Therefore, from Eq. 3.5,

384.615
1200 384.615

20 4.85 V.ov ( )=
+

=

This is much closer to the 5 V we expected the 
voltage divider to deliver to the load. The effect 
of the load resistor is minimal because the load 
resistor value is much larger than the value of R2
in the voltage divider.

EXAMPLE 3.5 The Effect of Resistor Tolerance on the Voltage-Divider Circuit

The resistors used in the voltage-divider circuit 
shown in Fig. 3.18 have a tolerance of ±10%. Find 
the maximum and minimum value of .ov

Solution
From Eq. 3.5, the maximum value of ov  occurs  
when R 110 k2 = Ω  (10% high) and R 22.5 k1 = Ω
(10% low), and the minimum value of ov  occurs 
when R 90 k2 = Ω  (10% low) and R 27.5 k1 = Ω
(10% high). Therefore

v max
110 k

110 k 22.5 k
100 83.02 Vo ( ) ( )=

+
=

and

v min
90 k

90 k 27.5 k
100 76.60 V.o ( ) ( )=

+
=

If we choose 10% resistors for this voltage divider, 
the no-load output voltage will lie between 76.60 
and 83.02   V.

yo

1

2

R1

RLR2

ys
1

2

Figure 3.17 ▲ A voltage divider connected to a 
load RL.

R1

R2

1

2

25 kV

100 kV

100 V

yo

1

2

Figure 3.18 ▲ The circuit for Example 3.5.
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 The Current-Divider Circuit
The current-divider circuit shown in Fig. 3.19 consists of two resistors con-
nected in parallel across a current source. It divides the current is  between 
R1  and R .2  What is the relationship between the current is  and the cur-
rent in each resistor (i1 and i2 )? The voltage across the parallel resistors 
can be expressed in three ways: as the product of the R1  resistor and its 
current i1, as the product of the R2  resistor and its current i2 , and as the 
product of the equivalent resistance seen by the source and the source 
current. These three expressions for the voltage are given as

v i R i R
R R

R R
i .s1 1 2 2

1 2

1 2

= = =
+

Therefore,

 i
R

R R
i ,s1

2

1 2

=
+

 (3.7)

 i
R

R R
i .s2

1

1 2

=
+

 (3.8)

Equations 3.7 and 3.8 show that when the current divides between two resis-
tors in parallel, the current in one resistor equals the current entering the 
parallel pair multiplied by the other resistance and divided by the sum of the 
resistors. See how to design a current divider by working through Example 3.6.

Objective 2—Know how to design simple voltage-divider and current-divider circuits

ASSESSMENT PROBLEMS

EXAMPLE 3.6 Designing a Current-Divider Circuit

Suppose the current source for the current divider 
shown in Fig. 3.19 is 100   mA. Assuming you have 
0.25   W resistors available, what is the largest R2
 resistor you can use to get i 50 mA2 = ?

Solution
While you can use Eq. 3.8 to find the ratio of resis-
tors, it should be clear that if the current in one 
resistor is 50   mA, the current in the other resistor 
must also be 50   mA, so both resistors must have the 
same value. Therefore, there are an infinite number 
of different resistor values which, when used for R1

and R2  will give i 50 mA2 = . If the resistors have 
the same value and the same current, they absorb 
the same amount of power, which cannot exceed 
0.25   W. From the power equation for resistors,

( )= = =p i R R0.05 0.252 2

so

R 0.25
0.05

100 .2( )
= = Ω

The largest 0.25   W resistors that can be used to  
create a current i 50 mA2 =  are 100 Ω resistors.

3.2 a)  Find the no-load value of ov  in the circuit shown.
b) Find ov  when RL  is 4 k .Ω
c) How much power is dissipated in the 8 kΩ

resistor if the load terminals are accidentally 
short-circuited?

d)  What is the maximum power dissipated in 
the 4 kΩ resistor?

Answer:   (a) 20   V;    (b) 12   V; 

(c) 0.45   W; (d) 0.1   W.

is i2i1R1 R2y

1

2

Figure 3.19 ▲ The current-divider circuit.
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68 Simple Resistive Circuits

3.4 Voltage Division and Current 
Division

We now introduce two additional and very useful circuit analysis tech-
niques known as voltage division and current division. These techniques 
generalize the results from analyzing the voltage-divider circuit in Fig. 3.14 
and the current-divider circuit in Fig. 3.19. We begin with voltage division.

Voltage Division
Consider the circuit shown in Fig. 3.20, where the box on the left contains 
a single voltage source or any other combination of basic circuit elements 
that results in the voltage v  shown in the figure. To the right of the box 
are n resistors connected in series. We are interested in finding the voltage 
drop jv  across an arbitrary resistor Rj  in terms of the voltage v. We start 
by using Ohm’s law to calculate i, the current through all of the resistors in 
series, in terms of the current v  and the n resistors:

i
R R R R. . . .

n1 2 eq

=
+ + +

=v v

The equivalent resistance, R ,eq  is the sum of the n resistor values because 
the resistors are in series, as shown in Eq. 3.1. We apply Ohm’s law a 
second time to calculate the voltage drop jv  across the resistor R ,j substi-
tuting Reqv for i:

3.3 a)  Find the value of R that will create a 12   mA 
current in the Ω5 k resistor for the circuit 
shown.

b) How much power will the resistor R from 
part (a) need to dissipate?

c) How much power will the current source 
generate for the value of R from part (a)?

Answer: (a) 10 k ;Ω
(b) 3.24   W;
(c) 9   W.

SELF-CHECK: Also try Chapter Problems 3.13, 3.15, and 3.19.

VOLTAGE DIVISION EQUATION

v viR
R

R
.j j

j

eq

= =  (3.9)

Equation 3.9 is the voltage division equation. It says that the volt-
age drop jv  across a single resistor Rj  from a collection of series- 
connected resistors is proportional to the total voltage drop v  across the 
set of  series-connected resistors. The constant of proportionality is the 
ratio of the single resistance to the equivalent resistance of the series- 
connected set of resistors, or R R .j eq

7 kV

4 kV

3 kV 5 kV

R30 mA

Rj

R1 R2

Rn Rn21

y

1

2

yj

1

2

i
Circuit

Figure 3.20 ▲ Circuit used to illustrate voltage 
division.
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Current Division
Now consider the circuit shown in Fig.  3.21, where the box on the left 
contains a single current source or any other combination of basic circuit 
elements that results in the current i shown in the figure. To the right of 
the box are n resistors connected in parallel. We are interested in finding 
the current i j  through an arbitrary resistor Rj  in terms of the current i. 
We start by using Ohm’s law to calculate v, the voltage drop across each of 
the resistors in parallel, in terms of the current i and the n resistors:

v i R R R iR|| || . . . || .n1 2 eq( )= =

The equivalent resistance of n resistors in parallel, R ,eq  can be calculated 
using Eq. 3.2. We apply Ohm’s law a second time to calculate the current 
i j  through the resistor R ,j  replacing v  with iReq:

CURRENT DIVISION EQUATION

 vi
R

R

R
i.j

j j

eq= =  (3.10)

Equation 3.10 is the current division equation. It says that the current ij 
through a single resistor Rj  from a collection of parallel-connected resistors is 
proportional to the total current i supplied to the set of  parallel-connected resis-
tors. The constant of proportionality is the ratio of the equivalent resistance 
of the parallel-connected set of resistors to the single resistance, or R R .jeq  
Note that the constant of proportionality in the current division equation is the 
inverse of the constant of proportionality in the voltage division equation!

Example 3.7 uses voltage division and current division to solve for 
voltages and currents in a circuit.

EXAMPLE 3.7 Using Voltage Division and Current Division to Solve a Circuit

Use current division to find the current io  and use 
voltage division to find the voltage ov  for the circuit 
in Fig. 3.22.

Solution
We can use Eq. 3.10 if we can find the equivalent 
resistance of the four parallel branches containing 
resistors. Using “+” to represent  series-connected 
resistors and “||” to represent parallel-connected 
resistors, the equivalent resistance is

( ) ( )= + + +R 36 44 ||10|| 40 10 30 ||24eq

80 10 80 24 1
1

80
1

10
1

80
1

24

6 .= =
+ + +

= Ω

Rn21 Rn y

1

2

Circuit R1 R2 Rj ij

i

Figure 3.21 ▲ Circuit used to illustrate current division.
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Figure 3.22 ▲ The circuit for Example 3.7.
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70 Simple Resistive Circuits

Applying Eq. 3.10,

i 6
24

8 2 A.o ( )= =

We can use Ohm’s law to find the voltage drop across 
the 24 Ω  resistor:

v 24 2 48 V.( )( )= =

This is also the voltage drop across the branch con-
taining the 40 Ω , the 10 Ω , and the 30 Ω   resistors 

in series. Use voltage division to  determine the 
voltage drop ov  across the 30 Ω resistor from  
the voltage drop across the series- connected 
resistors, using Eq. 3.9. The equivalent resis-
tance of the series- connected resistors is  
40 10 30 80+ + = Ω , so

v 30
80

48 18 V.o ( )= =

Objective 3—Be able to use voltage and current division to solve simple circuits

3.4 a) Use voltage division to determine the volt-
age ov  across the 10 Ω  resistor in the circuit 
shown.

b) Use current division to calculate the current 
in the 80 Ω  resistor. (Hint: Start by using  ov  
from part (a) to find the current in the 10 Ω  
resistor.) 

c) How much power is absorbed by the 50 Ω
resistor?

Answer: a) 10   V;
b) 0.5   A;
c) 12.5   W.

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter Problems 3.25 and 3.27.

3.5 Measuring Voltage and Current
Working with actual circuits often requires making voltage and current 
measurements. The next two sections explore several common devices 
used to make these measurements. The devices are relatively simple to 
analyze and offer practical examples of the current- and voltage-divider 
configurations. We begin by looking at ammeters and voltmeters.

• An ammeter is an instrument designed to measure current; it is placed 
in series with the circuit element whose current is being measured.

• A voltmeter is an instrument designed to measure voltage; it is placed 
in parallel with the element whose voltage is being measured.

Ideal ammeters and voltmeters have no effect on the circuit variable 
they are designed to measure. That is, an ideal ammeter has an equivalent 
resistance of 0 Ω  and functions as a short circuit in series with the ele-
ment whose current is being measured. An ideal voltmeter has an infinite 
equivalent resistance and functions as an open circuit in parallel with the 
element whose voltage is being measured. Figure 3.23 measures the cur-
rent in R1  using an ammeter and measures the voltage across R2  using a  
voltmeter. The ideal models for these meters in the same circuit are shown 
in Fig. 3.24.

There are two broad categories of meters used to measure continuous 
voltages and currents: analog meters and digital meters.

120 V
1

2

yo1 2

70 V

80 V 30 V

50 V10 V

1

2
ys R2

R1

V

A

Figure 3.23 ▲ An ammeter connected to mea-
sure the current in R1, and a voltmeter connected 
to measure the voltage across R2.

1

2
ys R2

R1

V

A

Figure 3.24 ▲ A short-circuit model for the ideal 
ammeter, and an open-circuit model for the ideal 
voltmeter.
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 Analog Meters
Analog meters are based on the d’Arsonval meter movement, which 
includes a dial readout pointer as shown in Fig.  3.25. The d’Arsonval 
meter movement consists of a movable coil placed in the field of a per-
manent magnet. When current flows in the coil, it creates a torque on the 
coil, causing it to rotate and move a pointer across a calibrated scale. By 
design, the deflection of the pointer is directly proportional to the current 
in the movable coil. The coil is characterized by both a voltage rating and 
a current rating. For example, one commercially available meter move-
ment is rated at 50   mV and 1   mA. This means that when the coil is car-
rying 1   mA, the voltage drop across the coil is 50   mV and the pointer is 
deflected to its full-scale position.

An analog ammeter consists of a d’Arsonval movement in paral-
lel with a resistor, as shown in Fig.  3.26. The parallel resistor limits 
the amount of current in the movement’s coil by shunting some of it 
through R .A  In contrast, an analog voltmeter consists of a d’Arsonval 
movement in series with a resistor, as shown in Fig.  3.27. Here, the 
resistor limits the voltage drop across the meter’s coil. In both meters, 
the added resistor determines the full-scale reading of the meter 
movement.

From these descriptions we see that an analog meter is nonideal; both 
the added resistor and the meter movement introduce resistance in the 
circuit where the meter is attached. In fact, any instrument used to make 
physical measurements extracts energy from the system while making 
measurements. The more energy extracted by the instruments, the more 
severely the measurement is disturbed. The equivalent resistance of a real 
ammeter is not zero, so it adds resistance to the circuit in series with the 
element whose current is being read. The equivalent resistance of a real 
voltmeter is not infinite, so it adds resistance to the circuit in parallel with 
the element whose voltage is being read.

How much these meters disturb the circuit being measured 
depends on the effective resistance of the meters compared with the 
resistance in the circuit. For example, using the rule of 1 10th , the 
effective resistance of an ammeter should be no more than 1 10th  of 
the value of the smallest resistance in the circuit to be sure that the 
current being measured is nearly the same with or without the amme-
ter. But in an analog meter, the value of resistance is determined by 
the desired full-scale reading we wish to make, and it cannot be arbi-
trarily selected. Examples 3.8 and 3.9 illustrate how to calculate the 
resistance needed in an analog ammeter or voltmeter. The examples 
also determine the effective resistance of the meter when it is inserted 
in a circuit.

EXAMPLE 3.8 Using a d’Arsonval Ammeter

a) A 50   mV, 1   mA d’ Arsonval movement is to be 
used in an ammeter with a full-scale reading of 
10   mA. Determine R .A

b) Repeat (a) for a full-scale reading of 1   A.

c) How much resistance is added to the circuit 
when the 10   mA ammeter is inserted to measure 
current?

d) Repeat (c) for the 1   A ammeter.

Solution

a)  Look at the analog ammeter circuit in Fig. 3.26. 
The current in the ammeter must divide between 
the branch with the resistor RA  and the branch 
with the meter movement. From the prob-
lem statement we know that when the cur-
rent in the ammeter is 10   mA, 1   mA is flowing 
through the meter coil, which means that 9   mA  

Scale

Movable
coil

Permanent
magnet

Restoring spring

Magnetic steel core

Pointer

Figure 3.25 ▲ A schematic diagram of a d’Arsonval 
meter movement.

Ry

Voltmeter
terminals

d’Arsonval
movement

Analog voltmeter

Figure 3.27 ▲ An analog voltmeter 
circuit.

RA
Ammeter
terminals

Analog ammeter

d’Arsonval
movement

Figure 3.26 ▲ An analog ammeter circuit.
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must be diverted through R .A  We also know that 
when the movement carries 1   mA, the voltage 
across its terminals is 50   mV, which is also the 
voltage across R .A  Using Ohm’s law,

× = ×− −R9 10 50 10 ,A
3 3

or

R 50 9 5.555 .A = = Ω

b) When the full-scale deflection of the ammeter is 
1   A, RA must carry 999   mA when the movement 
carries 1   mA. In this case,

× = ×− −R999 10 50 10 ,A
3 3

or

R 50 999 50.05 m .A = ≈ Ω

c) Let Rm represent the equivalent resistance of the 
ammeter. When the ammeter current is 10   mA, 
its voltage drop is 50   mV, so from Ohm’s law,

R 0.05
0.01

5 .m = = Ω

Alternatively, the resistance of the ammeter is 
the equivalent resistance of the meter movement 
in parallel with RA. The resistance of the meter 
movement is the ratio of its voltage to its current, 
or 0.05 0.001 50= Ω. Therefore,

R 50|| 50 9
50 50 9

50 50 9
5 .m ( )

( )
( )

( )
= =

+
= Ω

d) For the 1   A ammeter

R 0.05
1

0.05 ,m = = Ω

or, alternatively,

R 50|| 50 999
50 50 999

50 50 999
0.05  .m ( )

( )
( )

( )
= =

+
= Ω

EXAMPLE 3.9 Using a d’Arsonval Voltmeter

a) A 50   mV, 1   mA d’ Arsonval movement is to be 
used in a voltmeter in which the full-scale read-
ing is 150   V. Determine R .v

b) Repeat (a) for a full-scale reading of 5   V.

c) How much resistance does the 150   V meter insert 
into the circuit?

d) Repeat (c) for the 5   V meter.

Solution

a) Look at the analog voltmeter circuit in Fig. 3.27. 
The voltage across the voltmeter must divide 
between the resistor Rv  and the meter movement. 
From the problem statement we know that when 
the voltage across the voltmeter is 150   V, the 
voltage across the meter coil must be 50   mV. The 
remaining 149.95   V must be the voltage across Rv.  
We also know that when the movement’s voltage 
drop is 50   mV, its current is 1   mA, which is also 
the current in Rv. Using Ohm’s law,

vR 149.95
0.001

149,950 .= = Ω  

b) For a full-scale reading of 5   V, the voltage across 
Rv  is 4.95   V and the current in Rv  is still 1   mA, 
so from Ohm’s law,

vR 4.95
0.001

4950 .= = Ω

c) Let Rm represent the equivalent resistance 
of the voltmeter. When the voltage across the 
voltmeter is 150   V, its current is 1   mA, so from  
Ohm’s law,

R 150
10

150,000 .m 3
= = Ω

−

Alternatively, the resistance of the voltme-
ter is the equivalent resistance of Rv  in series 
with the meter movement. The resistance of 
the meter movement is the ratio of its volt-
age to its current, or 50 mV 1 mA 50= Ω .  
Therefore,

R 149,950 50 150,000 .m = + = Ω

d) For the 5   V voltmeter,

R 5
10

5000 ,m 3
= = Ω

−

or, alternatively,

R 4950 50 5000 .m = + = Ω
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Objective 4—Be able to determine the reading of ammeters and voltmeters

3.5 a) Find the current in the circuit shown.
b) If the ammeter in Example 3.8(a) is used to 

measure the current, what will it read?

Answer: (a) 200   mA;
(b) 166.67   mA.

3.6 a) Find the voltage v across the 50 kΩ  resistor 
in the circuit shown.

b) If the 150   V voltmeter of Example 3.9(a) 
is used to measure the voltage, what will it 
read?

Answer: (a) 100   V;
(b) 90   V.

ASSESSMENT PROBLEMS

SELF-CHECK: Also try Chapter Problems 3.34 and 3.35.

Digital Meters
Digital meters measure the continuous voltage or current signal at dis-
crete points in time, called the sampling times. The signal is thus con-
verted from an analog signal, which is continuous in time, to a digital 
signal, which exists only at discrete instants in time. A more detailed 
explanation of the workings of digital meters is beyond the scope of this 
text and course. However, you are likely to see and use digital meters 
in lab settings because they offer several advantages over analog meters. 
They introduce less resistance into the circuit to which they are connected 
(though they are still nonideal), are easier to connect, and take more pre-
cise measurements owing to the nature of their readout mechanism.

3.6 Measuring Resistance—  
The Wheatstone Bridge

While many different circuit configurations are used to measure resistance, 
here we will focus on just one, the Wheatstone bridge. The Wheatstone 
bridge circuit is used to precisely measure resistances of medium val-
ues, that is, in the range of 1 Ω  to 1 M .Ω  In commercial models of the 
Wheatstone bridge, accuracies on the order of ±0.1% are possible. The 
bridge circuit, shown in Fig. 3.28, consists of four resistors, a dc voltage 
source, and a detector. The resistance of one of the four resistors can be 
varied, which is indicated by the arrow through R .3  The dc voltage source 
is usually a battery, which is indicated by the battery symbol for the volt-
age source υ in Fig. 3.28. The detector is generally a d’Arsonval move-
ment in the microamp range and is called a galvanometer. In Fig.  3.28, 
R R,   ,1 2  and R3  are known resistors and Rx is the unknown resistor.

To find the value of R ,x  we adjust the variable resistor R3  until there 
is no current in the galvanometer. We then calculate the unknown resistor 
from the simple expression

 R
R
R

R  .x
2

1
3=  (3.11)

25 V5 V

i
1

2
y

25 kV

50 kV

150 V
1

2

1 2

Rx

R1

R3

R2

y

1

2

Figure 3.28 ▲ The Wheatstone bridge circuit.
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74 Simple Resistive Circuits

We derive Eq. 3.11 by applying Kirchhoff’s laws to the bridge circuit. 
We redraw the bridge circuit as Fig. 3.29 to show the branch currents in 
the bridge. When ig  is zero, we say the bridge is balanced. At node a, 
Kirchhoff’s current law requires that

=i i ,1 3

while at node b, Kirchhoff’s current law requires that

=i i .x2

Now, because ig  is zero, the voltage drop across the detector is also zero, 
so nodes a and b are at the same potential. Thus, when the bridge is bal-
anced, Kirchhoff’s voltage law for the clockwise path containing the gal-
vanometer and resistors R3  and Rx gives

+ − =R i R i0 0x x 3 3

so

=i R i R .x x3 3

Using Kirchhoff’s voltage law for the path containing the galvanometer 
and resistors R1  and R2  gives

=i R i R .1 1 2 2

Divide the first KVL equation by the second KVL equation to give

i R

i R

i R

i R
.x x3 3

1 1 2 2

=

Eliminate the currents (because =i i1 3  and =i ix2 ) and solve for Rx to 
get Eq. 3.11.

Now that we have verified the validity of Eq. 3.11, some comments 
about the result are in order. First, note that if =R R 12 1 , the unknown 
resistor Rx equals R3 , so R3  must vary over a range that includes the 
value R .x  For example, if the unknown resistance is Ω1000   and R3  could 
be varied from 0 to 100 Ω , the bridge could never be balanced. Thus, 
to cover a wide range of unknown resistors, we must be able to vary the 
ratio R R2 1 . In a commercial Wheatstone bridge, R1  and R2  consist of 
decimal values of resistances that can be switched into the bridge cir-
cuit. Normally, the decimal values are 1,  10,  100,  and 1000 Ω , so that the 
ratio R R2 1  can be varied from 0.001 to 1000 in decimal steps. The vari-
able resistor R3  is usually adjustable in integral values of resistance from  
1 to 11,000 .Ω

Second, although Eq. 3.11 implies that Rx can vary from zero to infin-
ity, the practical range of Rx is approximately 1 Ω  to 1 M .Ω  Resistances 
smaller than 1 Ω  are difficult to measure on a standard Wheatstone bridge 
because of thermoelectric voltages generated at the junctions of dissim-
ilar metals and because of thermal heating effects—that is, i R2  effects. 
Resistances larger than 1 MΩ  are difficult to measure accurately because 
of leakage currents. In other words, if Rx is large, the current leakage in 
the electrical insulation may be comparable to the current in the branches 
of the bridge circuit.

Example 3.10 uses a Wheatstone bridge to measure a range of 
unknown resistors.

ix

Rx

a b
ig

i1

R1

i3

R3

i2

R2

y

1

2

Figure 3.29 ▲ A balanced Wheatstone bridge 
0i( )g = .
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EXAMPLE 3.10  Using a Wheatstone Bridge to Measure Resistance

For the Wheatstone bridge in Fig. 3.30, R3  can be 
varied from 10 Ω  to 2 kΩ. What range of resistor 
values can this bridge measure?

Solution
When R 103 = Ω , the bridge is balanced when

R 4000
1000

 (10) 40 .x = = Ω

When R 2 k3 = Ω, the bridge is balanced when

R 4000
1000

 (2000) 8 k .x = = Ω

Therefore, the range of resistor values the bridge 
can measure is 40 Ω to 8 kΩ .

Objective 5—Understand how a Wheatstone bridge is used to measure resistance

3.7 The bridge circuit shown is balanced when 
R R1 k ,   5001 2= Ω = Ω , and R 2 k .3 = Ω
The bridge is energized from a 30   V dc source.

a) What is the value of Rx?

b) If the bridge is left in the balanced state, 
which resistor must dissipate the most 
 power?

Answer: a) 1 k ;Ω
b) Rx.

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter Problem 3.52.

 3.7  Delta-to-Wye (Pi-to-Tee) 
Equivalent Circuits

Look again at the Wheatstone bridge in Fig. 3.28; if we replace the gal-
vanometer with its equivalent resistance Rm, we get the circuit shown in 
Fig. 3.31 (p. 76). Because this circuit does not have any series- connected 
or parallel-connected resistors, we cannot simplify it using the sim-
ple series or parallel equivalent circuits introduced earlier in this chap-
ter. But the five interconnected resistors can be reduced to a single 
equivalent resistor using a delta-to-wye ( ∆-to-Y) or pi-to-tee (π -to-T)   
equivalent circuit.1

RxR3

y

1

2

4 kV
1 kV

Figure 3.30 ▲ The circuit for Example 3.10.

Rx

R1

R3

R2

y

1

2

1  ∆  and Y structures are present in a variety of useful circuits, not just resistive networks. 
Hence, the ∆-to-Y transformation is a helpful tool in circuit analysis.
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76 Simple Resistive Circuits

The resistors R R,  1 2 , and Rm (or R R,   m3 , and Rx) in the circuit 
shown in Fig. 3.31 form a delta (∆) interconnection because the inter-
connection looks like the Greek letter ∆. It is also called a pi intercon-
nection because the ∆ can be reshaped like the Greek letter π  without 
disturbing the electrical equivalence of the two configurations, as shown 
in Fig. 3.32.

The resistors R R,   m1 , and R3  (or R R,   m2 , and Rx) in the circuit shown 
in Fig. 3.31 form a wye (Y) interconnection because the interconnection 
can be shaped to look like the letter Y. It is easier to see the Y shape 
of the interconnection in Fig.  3.33. The Y configuration is also called a 
tee (T) interconnection because the Y structure can be reshaped into a T 
structure without disturbing the electrical equivalence of the two struc-
tures, as shown in Fig. 3.33.

Figure  3.34 illustrates the ∆-to-Y (or π -to-T) equivalent circuit 
transformation. But we cannot transform the ∆ interconnection  
into the Y interconnection simply by changing the shape of the inter-
connections. Saying the ∆-connected circuit is equivalent to the 
Y-connected circuit means that the ∆ configuration can be replaced 
with a Y configuration without changing the terminal behavior. Thus, 
if each circuit is placed in a black box, we can’t tell whether the box 
contains a set of ∆-connected resistors or a set of Y-connected resis-
tors by making external measurements. This condition is true only if 
the resistance between  corresponding terminal pairs is the same for 
each box. For example, the resistance between terminals a and b must 
be the same whether we use the ∆ -connected set or the Y-connected 
set. For each pair of terminals in the ∆-connected circuit, compute 
the equivalent resistance using series and parallel simplifications. For 
each pair of terminals in the Y-connected circuit, compute the equiv-
alent resistance using only series simplification. The three equivalent 
resistance equations are

 R
R R R

R R R
R R

( )
,c a b

a b c
ab 1 2=

+
+ +

= +  (3.12)

 R
R R R

R R R
R R

( )
,a b c

a b c
bc 2 3=

+
+ +

= +  (3.13)

 R
R R R

R R R
R R

( )
.b c a

a b c
ca 1 3=

+
+ +

= +  (3.14)

Straightforward algebraic manipulation of Eqs. 3.12–3.14 gives values 
for the Y-connected resistors in terms of the ∆-connected resistors. Use 
these equations when transforming three ∆-connected resistors into an 
equivalent Y connection:

 R
R R

R R R
,b c

a b c
1 =

+ +
 (3.15)

 R
R R

R R R
,c a

a b c
2 =

+ +
 (3.16)

 R
R R

R R R
 .a b

a b c
3 =

+ +
 (3.17)

Reversing the ∆-to-Y transformation also is possible, so we can start with a 
Y structure and replace it with an equivalent ∆ structure. The expressions  

Rm

Rx

R1

R3

R2

y

1

2

Figure 3.31 ▲ A resistive network generated by a 
Wheatstone bridge circuit.

Rc

Rb Ra

a

c

b
Rc

Rb

a

c

b

Ra

Figure 3.32 ▲ A ∆ configuration viewed as a π
configuration.

R1 R2

c

R3

a b

c

R1 R2

R3

a b

Figure 3.33 ▲ A Y structure viewed as a  
T structure.

Rc

Rb

a

c

b

Ra

a

c

b

R1 R2

R3

Figure 3.34 ▲ The ∆-to-Y transformation.

M03_NILS8436_12_SE_C03.indd   76 07/01/22   7:30 AM



 3.7 Delta-to-Wye (Pi-to-Tee) Equivalent Circuits 77

for the three ∆-connected resistors as functions of the three Y-connected 
resistors are

 R
R R R R R R

R
,a

1 2 2 3 3 1

1

=
+ +

 (3.18)

 R
R R R R R R

R
,b

1 2 2 3 3 1

2

=
+ +

 (3.19)

 R
R R R R R R

R
 .c

1 2 2 3 3 1

3

=
+ +

 (3.20)

Example 3.11 uses a ∆-to-Y transformation to simplify a circuit and 
its analysis.

EXAMPLE 3.11  Applying a Delta-to-Wye Transform

Find the current and power supplied by the 40   V 
source in the circuit shown in Fig. 3.35.

Substituting the Y resistors into the circuit 
shown in Fig.  3.35 produces the circuit shown in 
Fig.  3.37. From Fig.  3.37 we can easily calculate 
the resistance seen by the 40   V source using series- 
parallel simplifications:

R 5 50 (10 40)||(12.5 37.5) 

55
(50)(50)
50 50

80 .

eq = + + + +

= +
+

= Ω

The circuit simplifies to an 80 Ω  resistor across a  
40   V source, as shown in Fig. 3.38, so the 40   V source 
delivers current i 40 80 0.5 A= =  and power 
p 40(0.5) 20 W= =  is delivered to the circuit.Solution

This problem is easy to solve if we can find  
the equivalent resistance seen by the source. Begin 
this simplification by replacing either the upper ∆ 
(100, 125, 25 Ω) or the lower ∆ (40, 25, 37.5 Ω)  
with its equivalent Y. We choose to replace the 
upper ∆ by computing the three Y resistances, 
defined in Fig.  3.36, using Eqs. 3.15 to 3.17. Thus,

R 100 125
250

50  ,1 = × = Ω

R 125 25
250

12.5  ,2 = × = Ω

R 100 25
250

10  .3 = × = Ω

40 V
1

2

100 V 125 V

25 V

5 V

40 V 37.5 V

Figure 3.35 ▲ The circuit for Example 3.11.

R1100 V 125 V

25 V

R3
R2

Figure 3.36 ▲ The equivalent Y resistors.

40 V
1

2

5 V

10 V 12.5 V

50 V

40 V 37.5 V

Figure 3.37 ▲ A transformed version of the circuit 
shown in Fig. 3.35.

80 Vi40 V
1

2

Figure 3.38 ▲ The final step in the simplification of 
the circuit shown in Fig. 3.35.
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78 Simple Resistive Circuits

Practical Perspective
Resistive Touch Screens
Let’s analyze the resistive grid in the x-direction. We model the resis-
tance of the grid in the x-direction with the resistance Rx, as shown in 
Fig. 3.39. The x-location where the screen is touched is indicated by the 
arrow. Touching the screen effectively divides the total resistance, Rx, 
into two separate resistances Rxα  and 1 R( ) xα− . The resulting voltage 
drop across the resistance Rxα  is Vx.

From the figure you can see that when the touch is on the far right 
side of the screen, 0α =  and 0Vx = . Similarly, when the touch is 
on the far left side of the screen, 1α =  and V Vx s= . If the touch is 
between the two edges of the screen, the value of α is between 0 and 
1 and the two parts of the resistance Rx  form a voltage divider. We can 
calculate the voltage Vx using the equation for voltage division:

V
R

R R
V

R
R

V V
(1 )

    .x
x

x x
s

x

x
s s

α
α α

α
α=

+ −
= =

We can find the value of α, which represents the location of the touch 
point with respect to the far right side of the screen, by dividing the 
voltage across the grid resistance starting at the touch point, Vx, by the 
voltage applied across the entire resistive grid in the x-direction, Vs:

V
V

 .x

s

α =

Now we want to use the value of α to determine the x-coordinate of 
the touch location on the screen. Typically, the screen coordinates are 
specified in terms of pixels (short for “picture elements”). For example, 
the screen of a mobile phone is a grid of pixels, with px pixels in the 
x-direction and py pixels in the y-direction. Each pixel is identified by its 
x-location (a number between 0 and 1px − ) and its y-location (a number  
between 0 and 1py − ). The pixel with the location (0, 0) is in the 
 upper-left-hand corner of the screen, as shown in Fig. 3.40.

Since α represents the location of the touch point with respect 
to the right side of the screen, 1( )α−  represents the location of the 
touch point with respect to the left side of the screen. Therefore, the 
 x-coordinate of the pixel corresponding to the touch point is

x p(1 ) .xα= −

Objective 6—Know when and how to use delta-to-wye equivalent circuits

3.8 Use a Y-to-∆ transformation to find the voltage  
v  in the circuit shown.

Answer: 3   V.

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter Problems 3.60, 3.61, and 3.63.

15 V

1 V 10 V

40 V 50 V

y1 2

1

2
24 V

1

1

2

2

(1 –   )Rx
Rx

Rx

Vs

Vx

Figure 3.39 ▲ The resistive touch screen grid in the 
x-direction.

(0, 0) (px 2 1, 0)

(0, py 2 1) (px 2 1, py 2 1)

Figure 3.40 ▲ The pixel coordinates of a screen 
with px pixels in the x-direction and py pixels in 
the y-direction.
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1

2

(1 – β)Ry

βRy

Ry
Vs

Vy

1

2

Figure 3.41 ▲ The resistive touch screen grid in the 
y-direction.

Note that the value of x is capped at p( 1)x − .
Using the model of the resistive screen grid in the y-direction shown 

in Fig. 3.41, it is easy to show that the voltage created by a touch at the 
arrow is given by

V V .y sβ=

Therefore, the y-coordinate of the pixel corresponding to the touch point is

y p(1 ) ,yβ= −

where the value of y is capped at p( 1)y − . (See Problem 3.72.)

SELF-CHECK: Assess your understanding of the Practical Perspective 
by solving Chapter Problems 3.72–3.75.

Summary

• Series resistors can be combined to obtain a single 
equivalent resistance according to the equation

�R R R R R .
i

k

i keq
1

1 2∑= = + + +
=

(See page 60.)

• Parallel resistors can be combined to obtain a single 
equivalent resistance according to the equation

�
R R R R R

1   1 1 1 1  .
i

k

i keq 1 1 2
∑= = + + +
=

When just two resistors are in parallel, the equation for 
equivalent resistance can be simplified to give

R
R R

R R
 .eq

1 2

1 2

=
+

(See pages 61–62.)

• When voltage is divided between series-connected 
resistors, as shown in the figure, the voltage across each 
resistor can be found according to the equations

v v
R

R R
  ,s1

1

1 2

=
+

v v
R

R R
  .s2

2

1 2

=
+

(See page 64.)

• When current is divided between parallel-connected 
resistors, as shown in the figure, the current in each 
resistor can be found according to the equations

i
R

R R
i  ,s1

2

1 2

=
+

i
R

R R
i  .s2

1

1 2

=
+

(See page 67.)

R1

R2

ys

y1

y2

1

21

2 1

2

is i2i1 R1 R2

• Voltage division is a circuit analysis tool used to find the 
voltage drop across a single resistance from a collection 
of series-connected resistances when the voltage drop 
across the collection is known:

v v
R

R
  ,j

j

eq

=

where v j  is the voltage drop across the resistance Rj  
and v  is the voltage drop across the series-connected  
resistances whose equivalent resistance is R .eq  (See  
page 68.)

•  Current division is a circuit analysis tool used to find the 
current through a single resistance from a collection of 
parallel-connected resistances when the current into the 
collection is known:

i
R

R
i  ,j

j

eq=

M03_NILS8436_12_SE_C03.indd   79 07/01/22   7:30 AM



80 Simple Resistive Circuits

(a)

5 A 30 V 64 V 10 V

1.2 V 6 V6 V

(d)

(c)

7 kV6 kV10 kV

5 kV3 kV 8 kV

2 mA

(b)

240 V

200 V

180 V 300 V

140 V
1

2
10 V

50 V
1

2

60 V

50 V 30 V

45 V40 V

Figure P3.1

where i j  is the current through the resistance Rj  and 
i is the current into the parallel-connected resistances 
whose equivalent resistance is R .eq  (See page 69.)

• A voltmeter measures voltage and must be placed in 
parallel with the voltage being measured. An ideal volt-
meter has infinite internal resistance and thus does not 
alter the voltage being measured. (See page 70.)

• An ammeter measures current and must be placed in 
series with the current being measured. An ideal amme-
ter has zero internal resistance and thus does not alter 
the current being measured. (See page 70.)

• Digital meters and analog meters have internal resis-
tance, which influences the value of the circuit variable 
being measured. Meters based on the d ’ Arsonval meter 

movement deliberately include internal resistance as a 
way to limit the current in the movement’s coil. (See 
pages 71–73.)

• The Wheatstone bridge circuit is used to make pre-
cise measurements of a resistor’s value using four 
resistors, a dc voltage source, and a galvanometer. A 
Wheatstone bridge is balanced when the resistors 
obey Eq. 3.11, resulting in a galvanometer reading of  
0   A. (See pages 73–74.)

• A circuit with three resistors connected in a ∆ configu-
ration (or a π  configuration) can be transformed into an 
equivalent circuit in which the three resistors are Y con-
nected (or T connected). The ∆-to-Y transformation 
is given by Eqs. 3.15–3.17; the Y-to-∆ transformation is 
given by Eqs. 3.18–3.20. (See pages 75–77.)

Problems

Sections 3.1–3.2

 3.1 For each of the circuits shown in Fig. P 3.1,

a) identify the resistors connected in series,

b) simplify the circuit by replacing the series- 
connected resistors with equivalent resistors.

 3.2 For each of the circuits shown in Fig. P 3.2,

a) identify the resistors connected in parallel,

b) simplify the circuit by replacing the parallel- 
connected resistors with equivalent resistors.

 3.3 For each of the circuits shown in Fig. P 3.1,

a) find the equivalent resistance seen by the source,

b) find the power developed by the source.

 3.4 For each of the circuits shown in Fig. P 3.2,

a) find the equivalent resistance seen by the source,

b)  find the power developed by the source.
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(b)

(a)

(d)

6 kV

400 V

5 kV3 kV60 V

12 kV

4 kV

1

2

(c)

30 V20 V

40 V

5 V 18 V

4 V

9 V
8 V

12

75 kV

25 kV

150 kV50 kV

100 kV

300 kV

0.5 V
1

212 V 20 V 18 V

21 V

28 V

200 mA

Figure P3.2

(d)

a

b

250 V

300 V 150 V200 V600 V

(c)

a

b

10 kV

6 kV

14 kV

12 kV

2 kV

(a)

a

b
6 V

5 V 20 V

10 V

(b)

a

b

30 kV 60 kV 200 kV 50 kV

20 kV

Figure P3.5

 3.6 Find the equivalent resistance Rab for each of the 
circuits in Fig. P 3.6.PSPICE

MULTISIM

 3.5 Find the equivalent resistance Rab for each of the 
circuits in Fig. P 3.5.PSPICE

MULTISIM

60 V
30 V

15 V

18 V

12 V

a

b

(a) (c)

15 V

12 V

24 V

120 V 60 V 20 V

7 V25 V

a

b

(b) (d)

30 V

5 V

10 V

9 V

35 V18 V

60 V

10 V

75 V

20 V

50 V
40 V

a

b

14 V 30 V

27 V
24 V

12 V
2 V

3 V

30 V

50 V
20 V a

b

Figure P3.6
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250 V

750 V

250 V 300 V

1 kV

50 mA

900 V

2.4 kV
500 V

(b)

(a) (c)

16 V

12 V

4 V

144 V

14 V

5 V
15 V

12 V

10 V
18 V10 V

1

2

60 V

10 V

14 V

5 A

2.5 V

15 V

5.6 V 12 V

144 V

4 V

25 V
12 V

(d)

15 V20 V

18 V

48 V
10 V

6 V

1

2

Figure P3.7

R2 RL

100 V

75 V
1

2
yo

1

2

a

b

Figure P3.12

 3.7 a) In the circuits in Fig. P 3.7(a)–(d), find the equiv-
alent resistance seen by the source.

b) For each circuit find the power delivered by the 
source.

 3.8 a) Find an expression for the equivalent resistance 
of two resistors of value R in series.

b) Find an expression for the equivalent resistance 
of n resistors of value R in series.

c) Using the results of (a), design a resistive net-
work with an equivalent resistance of 2 kΩ
using two resistors with the same value from 
Appendix H.

d) Using the results of (b), design a resistive net-
work with an equivalent resistance of 6 kΩ 
using a minimum number of identical resistors 
from Appendix H.

 3.9 a) Find an expression for the equivalent resistance 
of two resistors of value R in parallel.

b) Find an expression for the equivalent resistance 
of n resistors of value R in parallel.

c) Using the results of (a), design a resistive net-
work with an equivalent resistance of 6 kΩ 
using two resistors with the same value from 
Appendix H.

d) Using the results of (b), design a resistive net-
work with an equivalent resistance of Ω900  
using a minimum number of identical resistors 
from Appendix H.

PSPICE
MULTISIM

 3.10 a) Show that the solution of the circuit in Fig. 3.11 
(see Example 3.1) satisfies Kirchhoff’s current 
law at junctions x and y.

b) Show that the solution of the circuit in Fig. 3.11 
satisfies Kirchhoff’s voltage law around every 
closed loop.

 3.11 a) Find the power dissipated in each resistor in the 
circuit shown in Fig. 3.11.

b) Find the power delivered by the 120   V source.

c) Show that the power delivered equals the power 
dissipated.

 Section 3.3

 3.12 In the voltage-divider circuit shown in Fig. P 3.12, 
the no-load value of ov  is 25   V. When the load resis-
tance RL is attached across the terminals a and b, v o 
drops to 15   V. Find RL.

PSPICE
MULTISIM

PSPICE
MULTISIM

PSPICE
MULTISIM
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4.7 kVR1

3.3 kVR2
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1
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Figure P3.13

 3.16 Assume the voltage divider designed in Problem 3.15 
has been constructed from 0.15   W resistors. What is 
the smallest resistor from Appendix H that can be 
used as RL before one of the resistors in the divider 
is operating at its dissipation limit?

 3.17 A voltage divider like that in Fig.  3.17 is to be 
designed so that ko sv v=  at no load R( )L = ∞
and o sv vα=  at full load R R( )oL = . Note that by 
definition α < <k 1.

a) Show that
α

α
= −R k

k
R  o1

and
α

α
= −

−
R k

k
R

(1 )
  .o2  

b) Specify the numerical values of R1 and R2 if  
k  =  0.75, α = 0.50, and R 10 ko = Ω.

c) If v 100 Vs = , specify the maximum power that 
will be dissipated in R1 and R2.

d) Assume the load resistor is accidentally short 
circuited. How much power is dissipated in R1 
and R2?

 3.18 There is often a need to produce more than one 
voltage using a voltage divider. For example, the 
memory components of many personal computers 
require voltages of 15 V,−  5   V, and 15 V,+  all with 
respect to a common reference terminal. Select the 
values of R1, R2, and R3 in the circuit in Fig. P3.18 to 
meet the following design requirements:

• The total power supplied to the divider circuit 
by the 30   V source is 30   W when the divider is 
unloaded.

• The three voltages, all measured with respect to 
the common reference terminal, are v 15 V1 = , 
v 5 V2 = , and v 15 V3 = − .

DESIGN
PROBLEM

DESIGN
PROBLEM

 3.13 a) Calculate the no-load voltage ov  for the voltage- 
divider circuit shown in Fig. P3.13.

b) Calculate the power dissipated in R1 and R2.

c) Assume that only 0.5   W resistors are available. 
The no-load voltage is to be the same as in (a). 
Specify the smallest ohmic values of R1 and R2.

DESIGN
PROBLEM
PSPICE

MULTISIM

 3.14 a) The voltage divider in Fig. P3.14(a) is loaded 
with the voltage divider shown in Fig. P3.14(b); 
that is, a is connected to a′, and b is connected to 
b′. Find v o.

b) Now assume the voltage divider in Fig. P3.14(b) is 
connected to the voltage divider in Fig. P3.14(a)  
by means of a  current-controlled voltage source 
as shown in Fig. P3.14(c). Find v o.

c) What effect does adding the dependent- voltage 
source have on the operation of the voltage 
 divider that is connected to the 380   V source?

PSPICE
MULTISIM

 3.15 The no-load voltage in the voltage-divider circuit 
shown in Fig. P3.15 is 20   V. The smallest load resistor 
that is ever connected to the divider is 48 kΩ. When 
the divider is loaded, v o is not to drop below 16   V.

a) Design the divider circuit to meet the specifica-
tions just mentioned. Specify the numerical val-
ues of R1 and R2.

b) Assume the power ratings of commercially avail-
able resistors are 1 16, 1 8, 1 4, 1, and 2   W. What 
minimum power rating would you specify?

PSPICE
MULTISIM

DESIGN
PROBLEM
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yo
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Figure P3.14
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84 Simple Resistive Circuits

 3.19 Find the power dissipated in the 1.2 kΩ  resistor in 
the current-divider circuit in Fig. P3.19.PSPICE

MULTISIM

800 V 2.4 kV 1.2 kV320 mA

Figure P3.19

20 V

12 V

20 V

10 V

40 V 180 V12 Ayo

1

2

io

Figure P3.20

ig yg

1

2

i1 R1 i 2 R2 i 3 R3 i4 R4

Figure P3.21

 3.20 For the current-divider circuit in Fig. P3.20 calculate

a) io and v o.

b) the power dissipated in the 12 Ω  resistor.

c) the power developed by the current source.

PSPICE
MULTISIM

 3.21 Specify the resistors in the current-divider circuit in 
Fig. P3.21 to meet the following design criteria:

vi i i1 mA;   1 V;   2 ;g g 1 2= = =

i i i i2 ;  and  2 .2 3 3 4= =

DESIGN
PROBLEM

 3.22 a) Show that the current in the kth branch of the 
circuit in Fig. P3.22(a) is equal to the source cur-
rent ig times the conductance of the kth branch 
divided by the sum of the conductances, that is,

i
i G

G G G G G. . . . . . .k
g k

k N1 2 3

=
+ + + + + +

b) Use the result derived in (a) to calculate the 
current in the 5 Ω resistor in the circuit in  
Fig.  P3.22(b).

PSPICE
MULTISIM

(b)

0.25 V1142 mA 2.5 V 10 V 20 V6.25 V1 V

(a)

ig R1 RNR3R2 Rkik

io

Figure P3.22

Section 3.4

 3.23 Look at the circuit in Fig. P3.1(a).

a)  Use current division to find the current in the 
Ω10 k  resistor from top to bottom.

b) Using your result from (a), find the voltage drop 
across the Ω10 k  resistor, positive at the top.

c) Using your result from (b), use voltage division 
to find the voltage drop across the 6   kΩ resistor, 
positive at the top.

d) Using your result from (c), use voltage division 
to find the voltage drop across the 5   kΩ resistor, 
positive on the left.

 3.24 Look at the circuit in Fig. P3.1(d).

a) Use current division to find the current in the 
Ω1.2   resistor from left to right.

b) Use the result from part (a) and current division 
to find the current in the Ω10   resistor from top 
to bottom.

 3.25 Attach a 20   mA current source between terminals a 
and b in Fig. P3.5(b), with the current going from b to a.

a) Use current division to find the current in the 
Ω60 k  resistor from top to bottom.

b) Using your result from (a), find the voltage drop 
across the Ω60 k  resistor, positive at the top.

c) Starting with your result from (b), use voltage 
division to find the voltage across the Ω20 k  
resistor, positive on the left.

d) Using your result from (c), find the current in 
the 20 kΩ resistor from left to right.

e) Starting with your result from (d), use current 
division to find the current in the 200 kΩ resis-
tor from top to bottom.
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 3.26 Attach a 128   V voltage source between the termi-
nals a and b in Fig. P3.6(b), with the positive termi-
nal at the top.

a) Use voltage division to find the voltage across 
the Ω15   resistor, positive on the left.

b) Use the result from part (a) to find the current 
in the Ω15  resistor from left to right.

c) Use the result from part (b) and current division 
to find the current in the Ω120  resistor from 
top to bottom.

d) Use the result from part (c) to find the voltage 
across the Ω120  resistor, positive at the top.

e) Use the result from part (d) and voltage division 
find the voltage across the Ω60  resistor, posi-
tive at the top.

f) Use the result from part (e) to find the current 
in the Ω20  resistor from top to bottom.

 3.27 Consider the circuit in Fig. P3.7(c).

a) Use voltage division to find the voltage across 
the Ω4  resistor from left to right.

b) Using your result from (a), find the current in 
the Ω4  resistor from left to right.

c) Using your result from (b), use current division 
to find the current in the Ω14  resistor from left 
to right.

d) Using your result from (c), use current division 
to find the current in the Ω18  resistor from top 
to bottom.

  3.28 Find v 1 and v 2 in the circuit in Fig. P3.28 using volt-
age and/or current division.PSPICE

MULTISIM

 3.29 a) Find the voltage v x in the circuit in Fig. P3.29 
using voltage and/or current division.

b) Replace the 18   V source with a general voltage 
source equal to Vs. Assume Vs is positive at the 
upper terminal. Find vx as a function of Vs.

PSPICE
MULTISIM

 3.30 Find vo in the circuit in Fig. P3.30 using voltage  
and/or current division.PSPICE

MULTISIM

 3.31 For the circuit in Fig. P3.31, find ig and then use cur-
rent division to find io.

 3.32 For the circuit in Fig. P3.32, calculate (a) ig and 
(b) the power dissipated in the 30   Ω resistor.PSPICE

MULTISIM

Section 3.5

 3.33 A d’ Arsonval movement is rated at 1   mA and  
50  mV. Assume 0.5   W precision resistors are 
available to use as shunts. What is the largest full- 
scale- reading ammeter that can be designed using a 
single resistor? Explain.

 3.34 A shunt resistor and a 50   mV, 1   mA d’Arsonval 
movement are used to build a 10   A ammeter. A 
resistance of Ω15 m is placed across the terminals 
of the ammeter. What is the new full-scale range of 
the ammeter?

 3.35 A d’ Arsonval voltmeter is shown in Fig. P3.35. Find 
the value of Rv for each of the following full-scale 
readings: (a) 100   V, (b) 5   V, and (c) 100   mV.

DESIGN
PROBLEM
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86 Simple Resistive Circuits

 3.36 Suppose the d’ Arsonval voltmeter described in 
 Problem 3.35(b) is used to measure the voltage 
across the Ω60  resistor in Fig. P3.36.

a) What will the voltmeter read?

b) Find the percentage of error in the voltmeter 
reading if

( )= − ×% error measured value
true value

1 100.

50 mV
1 mA

Voltmeter

Ry

Figure P3.35

60 V

20 V

5 V
1

2

io

Figure P3.36

imeas

im

100 mV, 2 mA

(25/12) V

 Figure P3.37

200 mV
5 mA

Ammeter

RA

Figure P3.38

3.37 a) Show for the ammeter circuit in Fig. P3.37 that 
the current in the d’ Arsonval movement is 
always 1 25th  of the current being measured.

b) What would the fraction be if the 100 mV, 2 mA
movement were used in a 5   A ammeter?

c) Would you expect a uniform scale on a dc 
d’ Arsonval ammeter?

 3.38 A d’ Arsonval ammeter is shown in Fig. P3.38.

a) Calculate the value of the shunt resistor, RA, to 
give a full-scale current reading of 10   A.

b) How much resistance is added to a circuit when 
the 10   A ammeter in part (a) is inserted to mea-
sure current?

c) Calculate the value of the shunt resistor, RA, to 
give a full-scale current reading of 8   A.

d) How much resistance is added to a circuit when 
the 8   A ammeter in part (c) is inserted to mea-
sure current?

75 mV
1.5 mA Common

750 V

25 kV 125 kV30 mA

1

2

y

(b)(a)

Rm

Figure P3.39

60 V

30 V

10 V

Ammeter

180 V
1

2

Figure P3.41

 3.39 The voltmeter shown in Fig. P3.39(a) has a full-
scale reading of 750   V. The meter movement is 
rated 75 mV and 1.5   mA. What is the percentage of 
error in the meter reading if it is used to measure 
the voltage v in the circuit of Fig. P3.39(b)?

 3.40 The elements in the circuit in Fig. 2.24 have the follow-
ing values: = ΩR 40 k1 , = ΩR 60 k2 , R 750C = Ω, 
R 120 E = Ω, =V 10 VCC , =V 0.6 V0 ,  and β = 49.

a) Calculate the value of iB in microamperes.

b) Assume that a digital multimeter, when used as 
a dc ammeter, has a resistance of Ω1 k . If the 
meter is inserted between terminals b and 2 to 
measure the current iB, what will the meter read?

c) Using the calculated value of iB in (a) as the cor-
rect value, what is the percentage of error in the 
measurement?

 3.41 The ammeter in the circuit in Fig. P3.41 has a 
resistance of Ω0.5  . Using the definition of the 
percentage of error in a meter reading found in 
Problem 3.36, what is the percentage of error in the 
reading of this ammeter?

PSPICE
MULTISIM
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 3.42 The ammeter described in Problem 3.41 is used to 
measure the current io in the circuit in Fig. P3.36. What 
is the percentage of error in the measured value?

 3.43 The circuit model of a dc voltage source is shown 
in Fig. P3.43. The following voltage measurements 
are made at the terminals of the source: (1) With 
the terminals of the source open, the voltage is 
measured at 80   mV, and (2) with a Ω10 M  resistor 
connected to the terminals, the voltage is measured 
at 72   mV. All measurements are made with a digital 
voltmeter that has a meter resistance of Ω10 M .

a) What is the internal voltage of the source (v s) in 
millivolts?

b)  What is the internal resistance of the source (Rs) 
in kiloohms?

 3.44 The voltage-divider circuit shown in Fig. P3.44 is 
designed so that the no-load output voltage is 2 3rds  
of the input voltage. A d’ Arsonval voltmeter having 
a sensitivity of 200  VΩ , a full-scale rating of 500   V, 
and thus an effective resistance of 100 k Ω, is used to 
check the operation of the circuit.

a) What will the voltmeter read if it is placed across 
the 150   V source?

b) What will the voltmeter read if it is placed across 
the Ω60 k  resistor?

c) What will the voltmeter read if it is placed across 
the Ω30 k  resistor?

d) Will the voltmeter readings obtained in parts (b) 
and (c) add to the reading recorded in part (a)? 
Explain why or why not.

 3.45 You have been told that the dc voltage of a power 
supply is about 350   V. When you go to the instru-
ment room to get a dc voltmeter to measure the 
power supply voltage, you find that there are only 
two dc voltmeters available. One voltmeter is rated 
300   V full scale and has a sensitivity of 900  VΩ . 
The other voltmeter is rated 150   V full scale and 
has a sensitivity of 1200  VΩ . (Hint: You can find 
the effective resistance of a voltmeter by multiply-
ing its rated full-scale voltage and its sensitivity.)

a) How can you use the two voltmeters to check 
the power supply voltage?

b) What is the maximum voltage that can be measured?

c) If the power supply voltage is 320   V, what will 
each voltmeter read?

 3.46 Assume that in addition to the two voltmeters 
described in Problem 3.45, a Ω50 k  precision resis-
tor is also available. The Ω50 k  resistor is connected 
in series with the series-connected voltmeters. This 
circuit is then connected across the terminals of 
the power supply. The reading on the 300   V meter 
is 205.2  V and the reading on the 150   V meter is  
136.8   V. What is the voltage of the power supply?

 3.47 Design a d’ Arsonval voltmeter that will have the 
three voltage ranges shown in Fig. P3.47.

a) Specify the values of R1, R2, and R3.

b) Assume that a Ω500 k resistor is connected 
between the 100   V terminal and the common 
 terminal. The voltmeter is then connected to an 
unknown voltage using the common terminal 
and the 200   V terminal. The voltmeter reads 
188 V. What is the unknown voltage?

c) What is the maximum voltage the voltmeter in 
(b) can measure?

DESIGN
PROBLEM
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 3.48 Assume in designing the multirange voltmeter 
shown in Fig. P3.48 that you ignore the resistance of 
the meter movement.

a) Specify the values of R1, R2, and R3.

b)  For each of the three ranges, calculate the 
percentage of error that this design strategy 
produces.

DESIGN
PROBLEM

 3.49 A Ω600 k  resistor is connected from the 200   V 
terminal to the common terminal of a dual-scale 
voltmeter, as shown in Fig. P3.49(a). This modified 
voltmeter is then used to measure the voltage across 
the Ω360 k  resistor in the circuit in Fig. P3.49(b).

a) What is the reading on the 500   V scale of the 
meter?

b) What is the percentage of error in the measured 
voltage?

Section 3.6

 3.50 Assume the ideal voltage source in Fig.  3.28 is 
 replaced by an ideal current source. Show that  
Eq.  3.11 is still valid.

 3.51 Find the power dissipated in the Ω3 k  resistor in the 
circuit in Fig. P3.51.

PSPICE
MULTISIM

PSPICE
MULTISIM
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15 kV 25 kV

5 kV3 kV

1

2
192 V

Figure P3.51

15 kV 3 kV

45 kV9 kV

1
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Figure P3.53

 3.52 The bridge circuit shown in Fig.  3.28 is energized 
from a 24   V dc source. The bridge is balanced when 

= ΩR 500 1 , = ΩR 1000 2 , and = ΩR 750 3 .

a) What is the value of Rx?

b) How much current (in milliamperes) does the dc 
source supply?

c) Which resistor in the circuit absorbs the most 
power? How much power does it absorb?

d) Which resistor absorbs the least power? How 
much power does it absorb?

 3.53 Find the detector current id in the unbalanced 
bridge in Fig. P3.53 if the voltage drop across the 
detector is negligible.

PSPICE
MULTISIM

3.54 In the Wheatstone bridge circuit shown in Fig. 3.28, 
the ratio R R2 1 can be set to the following values: 
0.001, 0.01, 0.1, 1, 10, 100, and 1000. The resistor 
R3  can be varied from 1 to Ω11,110  , in incre-
ments of Ω1  . An unknown resistor is known to lie 
between Ω4 and 5  . What should be the setting of 
the R R2 1  ratio so that the unknown resistor can 
be measured to four significant figures?

Section 3.7

 3.55 Find the current and power supplied by the 40   V 
source in the circuit for Example 3.11 (Fig. 3.35) by 
replacing the Y on the left (25, 40, and 100 Ω) with 
its equivalent ∆.

PSPICE
MULTISIM
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Figure P3.61 3.56 Find the current and power supplied by the 40   V 
source in the circuit for Example 3.11 (Fig. 3.35) by 
replacing the Y on the right (25, 37.5, and 125 Ω) 
with its equivalent ∆.

 3.57 Find the current and power supplied by the 40   V 
source in the circuit for Example 3.11 (Fig. 3.35) by 
replacing the lower ∆ (25, 37.5, and 40 Ω) with its 
equivalent Y.

  3.58 Use a ∆-to-Y transformation to find the voltage v 
in the circuit in Fig. P3.58.

 3.59 Use a Y-to-∆ transformation to find (a) io; (b) i1;  
(c) i2; and (d) the power delivered by the ideal cur-
rent source in the circuit in Fig. P3.59.

PSPICE
MULTISIM

 3.60 For the circuit shown in Fig. P3.60, find (a) i1, (b) v,  
(c) i2, and (d) the power supplied by the voltage 
source.

PSPICE
MULTISIM

 3.61 a) Find the resistance seen by the ideal voltage 
source in the circuit in Fig. P3.61.

b) If v ab equals 600   V, how much power is dissi-
pated in the Ω15   resistor?

PSPICE
MULTISIM

 3.62 a) Find the equivalent resistance Rab in the circuit 
in Fig. P3.62 by using a ∆-to-Y transformation 
involving resistors R2, R3, and R4.

b) Repeat (a) using a Y-to-∆ transformation 
involving resistors R2, R4, and R5.

c) Give two additional ∆-to-Y or Y-to-∆ transfor-
mations that could be used to find Rab.

PSPICE
MULTISIM
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Figure P3.62

 3.63 Find the equivalent resistance Rab in the circuit in  
Fig. P3.63.PSPICE

MULTISIM

 3.64 Derive Eqs. 3.15–3.20 from Eqs. 3.12–3.14. The fol-
lowing two hints should help you get started in the 
right direction:

1) To find R1 as a function of Ra, Rb, and Rc, first 
subtract Eq. 3.13 from Eq. 3.14 and then add this 
result to Eq. 3.12. Use similar manipulations to 
find R2 and R3 as functions of Ra, Rb, and Rc.

PSPICE
MULTISIM
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Figure P3.66

2) To find Rb as a function of R1, R2, and R3, take 
advantage of the derivations obtained by hint 
(1), namely, Eqs. 3.15–3.17. Note that these equa-
tions can be divided to obtain

R
R

R
R

R
R
R

R, or   ,c

b
c b

2

3

2

3

= =

and
R
R

R
R

R
R
R

R, or   .b

a
a b

1

2

2

1

= =

Now use these ratios in Eq. 3.14 to eliminate Ra and 
Rc. Use similar manipulations to find Ra and Rc as 
functions of R1, R2, and R3.

 3.65 Show that the expressions for ∆ conductances as 
functions of the three Y conductances are

G
G G

G G G
,a

2 3

1 2 3

=
+ +

G
G G

G G G
,b

1 3

1 2 3

=
+ +

G
G G

G G G
,c

1 2

1 2 3

=
+ +

where

= =G
R

G
R

1 , 1 , etc.a
a

1
1

Sections 3.1–3.7

3.66 a) For the circuit shown in Fig. P3.66 the bridge 
is balanced when R 0∆ = . Show that if  

�R Ro∆  the bridge output voltage is 
approximately

RR
R R( )

 o
o

4

4
2 inv v≈

−∆
+

b) Given R 7502 = Ω , = ΩR 250 3 , = ΩR 1 k4 , and  
10 Vinv = , what is the approximate bridge out-

put voltage if R∆  is 2% of Ro?

c) Find the actual value of v o in part (b).

PSPICE
MULTISIM

3.67 a) If percent error is defined as

= −




×% error

approximate value
true value

1 100,

show that the percent error in the approxima-
tion of v o in Problem 3.66 is

R R
R R R

% error
( )

( )
  100.3

2 3 4

=
− ∆

+
×

b) Calculate the percent error in v o, using the val-
ues in Problem 3.66(b).

 3.68 Assume the error in vo in the bridge circuit in  
Problem 3.66 is not to exceed 1%. What is the larg-
est percent change in Ro that can be tolerated?

 3.69 Resistor networks are sometimes used as  volume- 
control circuits. In this application, they are referred 
to as resistance attenuators or pads. A typical fixed- 
attenuator pad is shown in Fig. P3.69. In designing 
an attenuation pad, the circuit designer will select 
the values of R1 and R2 so that the ratio of o iv v  
and the resistance seen by the input voltage source 
Rab both have a specified value.

a) Show that if =R Rab L, then

R R R R4 ( ),L
2

1 1 2= +

R
R R R2

.o

i

2

1 2 L

v
v

=
+ +

b) Select the values of R1 and R2 so that 
= = ΩR R 600 ab L  and 0.6o iv v = .

c) Choose values from Appendix H that are closest 
to R1 and R2 from part (b). Calculate the percent 
error in the resulting values for Rab and v vo i  if 
these new resistor values are used.

DESIGN
PROBLEM

DESIGN
PROBLEM

3.70 a) The fixed-attenuator pad shown in Fig. P3.70 is 
called a bridged tee. Use a Y-to-∆  transforma-
tion to show that =R Rab L if =R RL .

b) Show that when =R RL , the voltage ratio o iv v  
equals 0.50.

DESIGN
PROBLEM
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 3.71 The design equations for the bridged-tee attenuator 
circuit in Fig. P3.71 are

R
RR

R R
2

3
,2

L
2

2
L
2

=
−

R R
R R

3
3

,o

i

L

L

v
v

=
−
+

when R2 has the value just given.

a) Design a fixed attenuator so that 3i ov v=  
when = ΩR 600 L .

b) Assume the voltage applied to the input of the 
pad designed in (a) is 180   V. Which resistor in 
the pad dissipates the most power?

c) How much power is dissipated in the resistor in 
part (b)?

d) Which resistor in the pad dissipates the least 
power?

e) How much power is dissipated in the resistor in 
part (d)?

PSPICE
MULTISIM

Fixed-attenuator pad

R

R

R

RLR

a

b

yi

1

2

c

d

yo

1

2

 Figure P3.70

R R

RLR

a

b

yi

1

2

c

d

yo

1

2

R2

Figure P3.71

3.72 a) Using Fig.  3.41 derive the expression for the 
voltage Vy.

b) Assuming that there are py pixels in the y- direction,  
derive the expression for the y-coordinate of the 
touch point, using the result from part (a).

 3.73 A resistive touch screen has 6   V applied to the grid 
in the x-direction and in the y-direction. The screen 
has 720 pixels in the x-direction and 1260 pixels in 
the y-direction. When the screen is touched, the 
voltage in the x-grid is 4.5   V and the voltage in the 
y-grid is 1.5   V.

a) Calculate the values of α and β .

b) Calculate the x- and y-coordinates of the pixel at 
the point where the screen was touched.

 3.74 A resistive touch screen has 540 pixels in the  
x-direction and 860 pixels in the y-direction. 
The resistive grid has 4   V applied in both the  
x- and y-directions. The pixel coordinates at the 
touch point are (108, 602). Calculate the voltages  
Vx and Vy.

 3.75 Suppose the resistive touch screen described in 
Problem 3.74 is simultaneously touched at two 
points, one with coordinates (108, 602) and the 
other with coordinates (270, 430).

a) Calculate the voltage measured in the x- and 
y-grids.

b) Which touch point has your calculation in (a) 
identified?

PRACTICAL
PERSPECTIVE

PSPICE
MULTISIM

PRACTICAL
PERSPECTIVE

PSPICE
MULTISIM

DESIGN
PROBLEM

PRACTICAL
PERSPECTIVE

PRACTICAL
PERSPECTIVE
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CHAPTER CONTENTS

4
CHAPTER 

Techniques of Circuit 
Analysis
This chapter introduces two powerful circuit-analysis  
techniques: the node-voltage method and the mesh-current 

method. The power of these methods comes from their ability to 
describe complex circuits using a minimum number of simulta-
neous equations. The alternative—applying Kirchhoff’s laws and 
Ohm’s law—becomes cumbersome for complex circuits.

We also introduce new techniques for simplifying  circuits: 
source transformations and Thévenin and Norton equiva-

lent  circuits. Adding these skills to your existing knowledge of 
 series-parallel reductions and ∆-to-Y transformations greatly 
 expands your ability to simplify and solve complex circuits.

Finally, we explore the concepts of maximum power  transfer 
and superposition. You will learn to use Thévenin equivalent 
circuits to establish the conditions needed to ensure maximum 
power is delivered to a resistive load. Superposition helps us ana-
lyze circuits that have more than one independent source.

 4.1 Terminology p. 94

 4.2  Introduction to the Node-Voltage 
 Method p. 96

 4.3  The Node-Voltage Method and 
 Dependent Sources p. 98

 4.4  The Node-Voltage Method: Some 
 Special Cases p. 100

 4.5  Introduction to the Mesh-Current 
 Method p. 104

  4.6  The Mesh-Current Method and 
 Dependent Sources p. 107

  4.7  The Mesh-Current Method: Some 
 Special Cases p. 108

 4.8  The Node-Voltage Method Versus the 
Mesh-Current Method p. 112

 4.9  Source Transformations p. 115

4.10  Thévenin and Norton Equivalents p. 118

4.11  More on Deriving the Thévenin 
 Equivalent p. 123

4.12 Maximum Power Transfer p. 126

4.13 Superposition p. 129

1 Understand and be able to use the 
node-voltage method to solve a circuit.

2 Understand and be able to use the 
mesh-current method to solve a circuit.

3  Be able to decide whether the node- voltage 
method or the mesh-current method is the 
preferred approach to solving a particular 
circuit.

4 Understand source transformation and be 
able to use it to solve a circuit.

5 Understand the concept of the Thévenin 
and Norton equivalent circuits and be 
able to construct a Thévenin or Norton 
 equivalent for a circuit.

6 Know the condition for maximum power 
transfer to a resistive load and be able to 
calculate the value of the load resistor that 
satisfies this condition.

CHAPTER OBJECTIVES
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Practical Perspective
Circuits with Realistic Resistors
 In the last chapter, we examined the effect of imprecise 
resistor values on the performance of a voltage divider. 
Resistors are manufactured for only a small number of 
discrete values, and any given resistor from a batch of 
resistors will vary from its stated value within some toler-
ance. Resistors with a tolerance of 1% are more expen-
sive than resistors with a tolerance of 10%. If we know 
that a particular resistor must be very close to its stated 

value for the circuit to function correctly, we can then 
decide to spend the extra money necessary to achieve a 
tighter tolerance on that resistor’s value.

Therefore, we want to predict the effect of varying the 
value of each resistor in a circuit on the output of that cir-
cuit, a technique known as sensitivity analysis. Once we 
have presented additional circuit analysis methods, the 
topic of sensitivity analysis will be examined.

0

Band color
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94 Techniques of Circuit Analysis

4.1 Terminology
Before discussing the node-voltage and mesh-current methods of circuit 
analysis, we must define a few basic terms. So far, all the circuits presented 
have been planar circuits—that is, those circuits that can be drawn on 
a plane with no crossing branches. A circuit that is drawn with crossing 
branches still is considered planar if it can be redrawn with no crossing 
branches. For example, the circuit shown in Fig. 4.1(a) can be redrawn as 
Fig. 4.1(b); the circuits are equivalent because all the node connections 
have been maintained. Therefore, Fig. 4.1(a) is a planar circuit because 
it can be redrawn as one. Figure 4.2 shows a nonplanar circuit—it cannot 
be redrawn in such a way that all the node connections are maintained 
and no branches overlap. Identifying a circuit as planar or nonplanar is 
important, because

• the node-voltage method is applicable to both planar and nonplanar 
circuits;

• the mesh-current method is limited to planar circuits.

Describing a Circuit—The Vocabulary
When ideal basic circuit elements (Section 1.5) are interconnected to form 
a circuit, the resulting interconnection is described in terms of nodes, 
paths, loops, branches, and meshes. Two of these terms, nodes and loops, 
were defined in Section 2.4. The rest of the terms are defined in Table 4.1. 
The table also includes examples of each definition taken from the circuit 
in Fig. 4.3, which are developed in Example 4.1.

ys

R5

R6 R3

R1

R4

R2

1

2

R7

R8

(a)

ys

R5

R6

R7

R3

R1

R4

R2

1

2 R8

(b)

Figure 4.1 ▲ (a) A planar circuit. (b) The same 
 circuit redrawn to verify that it is planar.

ys R6 R9

R7

R11

R1

R4

R3

R8

R10

R5

R2

1

2

Figure 4.2 ▲ A nonplanar circuit.

EXAMPLE 4.1 Identifying Node, Branch, Mesh, and Loop in a Circuit

For the circuit in Fig. 4.3, identify

a) all nodes.

b) all essential nodes.

c) all branches.

d) all essential branches.

e) all meshes.

f) two paths that are not loops or essential branches.

g) two loops that are not meshes.

Solution

a) The nodes are a, b, c, d, e, f, and g.

b) The essential nodes are b, c, e, and g.

c) The branches are ,1v  ,2v  R ,1  R ,2  R ,3  R ,4  R ,5  R ,6  
R I,  and  .7

d) The essential branches are R ,1 1−v  R R ,2 3−  
R ,2 4−v  R R R,   ,   ,5 6 7  and I.

e) The meshes are R R R R ,1 1 5 3 2− − − −v  
R R R R ,2 2 3 6 4− − − −v  R R R ,5 7 6− −  and 

R I .7 −

f) R R R1 5 6− −  is a path, but it is not a loop 
(because it does not have the same starting 
and ending nodes), nor is it an essential branch 
(because it does not connect two essential nodes). 

R2 2−v  is also a path but is neither a loop nor 
an essential branch, for the same reasons.

g) R R R R1 1 5 6 4 2− − − − −v v  is a loop but is 
not a mesh because there are two loops within it. 
I R R5 6− −  is also a loop but not a mesh.

SELF-CHECK: Assess your understanding of this material by trying Chapter Problem 4.1.

1

2

1

2

R4

R3R2

R1

R5

R6

R7 I

a
b

d
ec

f g

y2

y1

Figure 4.3 ▲ A circuit illustrating nodes, branches, meshes, 
paths, and loops.
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 4.1 Terminology 95

Simultaneous Equations—How Many?
Recall that we need b independent equations to solve a circuit with b 
unknown currents. In Fig. 4.3, for example, the circuit has nine branches 
with unknown currents, so b 9= ; we need nine independent equations to 
solve for the unknown currents. Some of the equations can be written by 
applying Kirchhoff’s current law (KCL) to a set of the circuit’s nodes. In 
fact, if the circuit has n nodes, we can derive n 1−  independent equations 
by applying Kirchhoff’s current law to any set of n 1−  nodes.1 To obtain 
the rest of the needed b n( 1)− −  equations, we apply Kirchhoff’s volt-
age law (KVL) to circuit loops or meshes.

To reduce the number of independent equations needed, we can use 
essential nodes and essential branches instead of nodes and branches. This 
is because the number of essential nodes in a circuit is less than or equal to 
the number of nodes, and the number of essential branches is less than or 
equal to the number of branches. Thus, our systematic method for writing the 
necessary equations to solve for the circuit’s unknown currents is as follows:

• Count the number of essential nodes, ne.
• Count the number of essential branches, be , where the current is 

 unknown.
• Write n 1e −  equations by applying KCL to any set of n 1e −  nodes.
• Write b n( 1)e e− −  equations by applying KVL around a set of 

b n( 1)e e− −  loops or meshes.

Remember that the voltage for each component in every loop or mesh 
must be known or must be  described in terms of the component’s current 
using Ohm’s law.

Let’s illustrate our systematic approach by applying it to the circuit 
from Example 4.1, as seen in Example 4.2.

TABLE 4.1 Terms for Describing Circuits

Name Definition Example from Fig. 4.3

node A point where two or more circuit elements join a

essential node A node where three or more circuit elements join b

path A trace of adjoining basic elements with no elements  
included more than once

R R R1 1 5 6− − −v

branch A path that connects two nodes R1

essential branch A path that connects two essential nodes without  
passing through an essential node

R1 1−v

loop A path whose last node is the same as the starting node R R R R1 1 5 6 4 2− − − − −v v

mesh A loop that does not enclose any other loops R R R R1 1 5 3 2− − − −v

planar circuit A circuit that can be drawn on a plane with no  
crossing branches

Fig. 4.3 is a planar circuit.
Fig. 4.2 is a nonplanar circuit.

1Applying KCL to the last unused node (the nth node) does not generate an independent 
equation. See Problem 4.4.

EXAMPLE 4.2  Using Essential Nodes and Essential Branches to Write 
Simultaneous Equations

The circuit in Fig.  4.4 has six essential branches, 
denoted i i1 6− , where the current is unknown. Use 
the systematic approach to write the six equations 
needed to solve for the six unknown currents.

Solution
The essential nodes in the circuit are labeled b, c, e, 
and g, so n 4e = . From the problem statement we 
know that the number of essential branches where 
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96 Techniques of Circuit Analysis

4.2 Introduction to the Node-Voltage 
Method

The node-voltage method generates independent simultaneous equations 
by applying Kirchoff’s current law at the essential nodes of the circuit. 
Solving the simultaneous equations yields the voltage drops between all 
but one of the essential nodes and a reference essential node. You can 
use these voltages to calculate voltages and currents for every component 
in the circuit, thereby solving the circuit. We illustrate the step-by-step 
 procedure using the circuit in Fig. 4.5.

Step 1 is to make a neat layout of the circuit so that no branches cross 
and to mark the essential nodes on the circuit diagram, as in Fig.  4.6. 
This circuit has three essential nodes n( 3);e =  therefore, we need two 
n( 1)e −  KCL equations to describe the circuit.

Step 2 is to select one of the three essential nodes as a reference 
node. Although in theory the choice is arbitrary, there is often an obvious 
and practical choice. Choosing the reference node becomes easier with 
practice. For example, the node with the most branches is usually a good 
choice, so we select the lower node in Fig. 4.5 as the reference node. The 
reference node is identified by the symbol ▼, as in Fig. 4.6. Complete this 

the current is unknown is b 6e = . Note that there 
are seven essential branches in the circuit, but the 
current in the essential branch containing the current 
source is known. We need to write six independent 
equations because there are six unknown currents.

We derive three of the six independent equa-
tions by applying Kirchhoff’s current law to any 
three of the four essential nodes. We use the nodes 
b, c, and e to get

− + + − =

− − =

+ − =

i i i I

i i i

i i i

0,

0,

0.

1 2 6

1 3 5

3 4 2

We derive the remaining three equations by 
 applying Kirchhoff’s voltage law around three 
meshes. Remember that the voltage across every 
component in each mesh must be known or must 
be expressed as the product of the component’s 
resistance and its current using Ohm’s law. Because 
the circuit has four meshes, we need to dismiss one 
mesh. We eliminate the R I7 −  mesh because we 
don’t know the voltage across I.2 Using the other 
three meshes gives

+ + + − =

− + + + − =

− + − =

v
v

R i R i i R R

i R R i R i R

i R i R i R

( ) 0,

( ) 0,

0.

1 1 5 2 3 2 3 1

3 2 3 4 6 5 4 2

2 5 6 7 4 6

Rearranging the six equations to facilitate their 
solution yields the set

− + + + + + =

+ − + − + =

− + + + + =

+ + + + + + =

+ − + + + + =

− + − + + =

v
v

i i i i i i I

i i i i i i

i i i i i i

R i R i R R i i i i

i i R R i R i R i i

i R i i R i i R i

0 0 0 ,

0 0 0 0,

0 0 0 0,

( ) 0 0 0 ,

0 0 ( ) 0 ,

0 0 0 0.

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

1 1 5 2 2 3 3 4 5 6 1

1 2 2 3 3 6 4 4 5 6 2

1 5 2 3 6 4 5 7 6

1

2

1

2

R4

i5

R3

i3

R2

R1

i1

R5i2

R6i4

R7i6 I

a
b

d
ec

f g

y2

y1

Figure 4.4 ▲ The circuit shown in Fig. 4.3 with six unknown 
branch currents defined.

2We say more about this decision in Section 4.7.

SELF-CHECK: Assess your understanding of this material by trying Chapter Problems 4.2–4.4.

2 V1 V

5 V10 V 10 V 2 A
1

2

Figure 4.5 ▲ A circuit used to illustrate the 
node-voltage method of circuit analysis.

y1 y2

1

2 2

1

2 V1 21 V

5 V10 V 10 V 2 A
1

2

Figure 4.6 ▲ The circuit shown in Fig. 4.5 with a 
reference node and the node voltages.
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 4.2 Introduction to the Node-Voltage Method 97

step by labeling the remaining essential node voltages on the circuit dia-
gram. A node voltage is defined as the voltage rise from the reference 
node to a nonreference essential node. For this circuit, we must define two 
node voltages, which are denoted 1v  and 2v  in Fig. 4.6.

In Step 3 we generate the KCL equations. To do this, write the cur-
rent leaving each branch connected to a nonreference node as a function 
of the node voltages and sum the currents to zero in accordance with 
Kirchhoff’s current law. Let’s look at node 1. Ohm’s law tells us that the 
current leaving node 1 through the 1 Ω  resistor equals the voltage across 
the resistor ( 101 −v ) divided by its resistance (1 Ω). That is, the current 
equals ( 10)/1.1 −v  Figure 4.7 depicts these observations. Repeating this 
reasoning, the current leaving node 1 through the 5 Ω  resistor is /5,1v  
and the current leaving node 1 through the 2 Ω  resistor is ( )/2.1 2−v v  
Because the sum of the three currents leaving node 1 must equal zero, we 
can write the KCL equation at node 1 as

 10
1 5 2

0.1 1 1 2−
+ +

−
=

v v v v  (4.1)

Repeating the process for node 2 gives

 
2 10

2 0.2 1 2−
+ − =

v v v
 (4.2)

Note that the first term in Eq. 4.2 is the current leaving node 2 through 
the 2 Ω  resistor, the second term is the current leaving node 2 through the 
10 Ω  resistor, and the third term is the current leaving node 2 through the 
current source.

In Step 4, solve the simultaneous equations (see Appendix A). 
Equations 4.1 and 4.2 are the two simultaneous equations that describe 
the circuit in terms of the node voltages 1v  and .2v  Solving for 1v  and 2v  
yields

= =

= =

v

v

100
11

9.09 V,

120
11

10.91 V.

1

2

Step 5 uses the node voltages to solve for the remaining unknowns in 
the circuit. Once the node voltages are known, all branch currents can be 
calculated. Once these are known, the component voltages and powers 
can be calculated.

A condensed version of the node-voltage method is shown in 
Analysis Method 4.1. To practice the node-voltage method, work through  
Example 4.3.

10 V

i
1 V

iR2 1 1

2

y1
1

2

Figure 4.7 ▲ Computation of the branch current i.

NODE-VOLTAGE METHOD

1. Identify each essential node.
2. Pick and label a reference node; then 
label the node voltages at the remaining 
essential nodes.
3. Write a KCL equation for every 
 nonreference essential node.
4. Solve the equations to find the node- 
voltage values.
5. Solve the circuit using node voltages 
from Step 4 to find component currents, 
voltages, and power values.

Analysis Method 4.1 The basic version 
of the node-voltage method.

EXAMPLE 4.3 Using the Node-Voltage Method

a) Use the node-voltage method of circuit analysis 
to find the branch currents ia , ib , and ic  in the 
circuit shown in Fig. 4.8.

b) Find the power associated with each source, and 
state whether the source is delivering or absorb-
ing power.

40 V10 V

5 V

50 V
ia

icib 3 A
1

2

Figure 4.8 ▲  The circuit for Example 4.3.
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98 Techniques of Circuit Analysis

4.3 The Node-Voltage Method  
and Dependent Sources

If the circuit contains dependent sources, the KCL equations must be 
supplemented with the constraint equations imposed by the dependent 
sources. We will modify Step 3 in the node-voltage method to accommo-
date dependent sources. Example 4.4 illustrates the application of the 
node-voltage method to a circuit containing a dependent source.

Solution

a) We begin by noting that the circuit has two essen-
tial nodes; thus, we need to write a single KCL 
equation. Step 1: Identify the two essential nodes. 
Step 2: Select the lower node as the reference 
node and define the unknown node voltage as 1v . 
Figure 4.9 illustrates these decisions. Step 3: Write 
a KCL equation at the nonreference essential 
node by summing the currents leaving node 1:

50
5 10 40

3 0.1 1 1−
+ + − =

v v v

Step 4: Solve the equation for 1v , giving

40 V.1 =v

Step 5: Use the node voltage 1v  and Ohm’s law 
to find the requested branch currents:

i

i

i

50
5

50 40
5

2 A,

10
40
10

4 A,

40
40
40

1 A.

a
1

b
1

c
1

=
−

= − =

= = =

= = =

v

v

v

b) The power associated with the 50 V source is

p i50 100 W (delivering).50V a= − = −

The power associated with the 3 A source is

p 3 3(40) 120 W (delivering).3A 1= − = − = −v

We check these calculations by noting that 
the total delivered power is 220 W. The  
to-tal power absorbed by the three resistors is 
4(5) 16(10) 1(40)+ +  or 220 W, which equals 
the total delivered power.

40 V10 V

5 V 1

50 V
1

2
3 Ay1

1

2

Figure 4.9 ▲ The circuit shown in Fig. 4.8 with a reference 
node and the unknown node voltage 1v .

Objective 1—Understand and be able to use the node-voltage method

4.1 a)  For the circuit shown, use the node-voltage 
method to find v1 and v 2. 

b) How much power is delivered to the circuit 
by the 5 A source?

c) Repeat (b) for the 40 mA source.

4.2 Use the node-voltage method to find v1 and v 2 
in the circuit shown.

ASSESSMENT PROBLEMS

5 V 25 V

120 V

5 A 40 mAy1

1

2

y2

1

2

Answer: a) 24.133 V, 3.33V;

b) 120.67 W;

c) 133.33 mW.−

10 V 5 V

80 V4 V

3 A144 V y1

1

2

y2

1

2

1

2

SELF-CHECK: Also try Chapter Problems 4.8, 4.11, and 4.13.

Answer: 100 V, 20 V.
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EXAMPLE 4.4 Using the Node-Voltage Method with Dependent Sources

Use the node-voltage method to find the power dis-
sipated in the 5 Ω  resistor in the circuit shown in 
Fig. 4.10.

As written, these two node-voltage equations con-
tain three unknowns, namely, 1v , 2v , and iφ . We need 
a third equation, which comes from the constraint 
imposed by the dependent source. This equation 
expresses the controlling current of the dependent 
source, iφ , in terms of the node voltages, or

i
5

 .1 2=
−

φ
v v

As you can see, we need to modify Step 3 in the 
node-voltage procedure to remind us to write a 
constraint equation whenever a dependent source 
is present.

Step 3: Write a KCL equation at each nonreference 
essential node. If the circuit contains dependent 
sources, write a dependent source constraint equa-
tion that defines the controlling voltage or current of 
the dependent source in terms of the node voltages.

The condensed form for Step 3 is shown in 
Analysis Method 4.2.

Step 4: Solve for 1v , 2v , and iφ , giving

i16 V,  10 V, and  1.2 A.1 2= = =φv v

Step 5: Use the node voltage values to find the cur-
rent in the 5 Ω  resistor and the power dissipated in 
that resistor:

i

p i

5
16 10

5
1.2 A,

5 5(1.2) 7.2 W.

1 2

5Ω
2 2

=
−

= − =

= = =

φ

φ

v v

A good exercise to build your problem-solving 
intuition is to reconsider this example, using node 2 
as the reference node. Does it make the analysis 
easier or harder?

Solution
Step 1: Identify the circuit’s three essential nodes. 
We will need two KCL equations to describe the 
circuit.

Step 2: Since four branches terminate on the lower 
node, we select it as the reference node and label 
the node voltages at the remaining essential nodes. 
The results of the first two steps are shown in  
Fig. 4.11.

1

2
20 V

2 V 5 V 2 V

10 V
if

20 V 8if
1

2

Figure 4.10 ▲ The circuit for Example 4.4.

1

2
20 V

2 V 5 V 2 V

10 V
if

20 V 8if
1

2

1 2

y1

1

2

y2

1

2

Figure 4.11 ▲ The circuit shown in Fig. 4.10, with a reference 
node and the node voltages.

Step 3: Generate the simultaneous equations by 
applying KCL at the nonreference essential nodes. 
Summing the currents leaving node 1 gives the 
equation

20
2 20 5

0.1 1 1 2−
+ +

−
=

v v v v

Summing the currents leaving node 2 yields

i

5 10

8

2
0.2 1 2 2−

+ +
−

=φv v v v

NODE-VOLTAGE METHOD

3.  Write a KCL equation for every nonref-
erence essential node.
• If there are dependent sources, write 

a constraint equation for each one.

Analysis Method 4.2 Modified Step 3 
for the node-voltage method.
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Objective 1—Understand and be able to use the node-voltage method

4.3 a)  Use the node-voltage method to find the 
power associated with each source in the  
circuit shown.

b) State whether the source is delivering power 
to the circuit or extracting power from the 
circuit.

Answer: a) p 6.75 W;450mA = −  p 11.25 W;i6.25 =
∆

= −p 54 W;45V

b) independent sources are delivering 
power while dependent source is extract-
ing power.

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter Problems 4.17 and 4.18.

25 V

1

2
450 mA 45 V

iD

100 V

5 V

6.25 iD
1

2

 4.4 The Node-Voltage Method:  
Some Special Cases

Let’s explore the special case in which a voltage source is the only ele-
ment between two essential nodes. The five-step node-voltage method 
still  applies as long as we modify Step 2.

As an example, let’s look at the circuit in Fig. 4.12. There are three 
essential nodes in this circuit, which means two simultaneous equations are 
needed. Apply Steps 1 and 2 to identify the essential nodes, choose a ref-
erence node, and label the remaining nodes. Notice that the 100 V source 
constrains the voltage between node 1 and the reference node to 100 V. 
We now modify Step 2 in order to take advantage of this simplification.

Step 2: Pick and label a reference node, then label the node voltages at the 
remaining essential nodes. If a voltage source is the only element between 
an essential node and the reference node, replace the node voltage label 
with the value of the voltage source.

Thus, we can replace the voltage 1v  in the circuit with its value, 100 V, 
as shown in Fig. 4.13.

Now Step 3 requires only a single KCL equation at node 2:

 100
10 50

5 0.2 2−
+ − =

v v  (4.3)

In Step 4, solve Eq. 4.3 for :2v

125 V.2 =v

Knowing ,2v  we can calculate the current in every branch. Use Step 5 to 
verify that the current into node 1 in the branch containing the indepen-
dent voltage source is 1.5 A.

As another example, consider the circuit shown in Fig. 4.14, which has 
four essential nodes and requires three simultaneous equations. However, 
two essential nodes are connected by an independent voltage source, and 
two other essential nodes are connected by a current-controlled dependent 

50 V25 V

10 V1

100 V
1

2
5 Ay1

1

2

2

y2

1

2

Figure 4.12 ▲ A circuit with a known node voltage.

50 V25 V

10 V1

100 V 100 V
1

2
5 A

1

2

2

y2

1

2

Figure 4.13 ▲ The circuit in Fig. 4.12 with the node 
voltage 1v  replaced with its value, 100 V.

50 V 100 V40 V 4 A50 V
1

2

5 V

if

2 1

10if

Figure 4.14 ▲ A circuit with a dependent voltage 
source connected between nodes.

M04_NILS8436_12_SE_C04.indd   100 13/01/22   2:52 PM



 4.4 The Node-Voltage Methodd: Some Special Cases  101

voltage source. Making simple modifications to the node-voltage method 
allows us to take advantage of these observations.

There are several possibilities for the reference node. The nodes 
on each side of the dependent voltage source look attractive because, if 
chosen, one of the node voltages would be either i10+ φ  (left node is the 
reference) or i10− φ  (right node is the reference). The lower node looks 
even better because one node voltage is immediately known (50 V) and 
five branches terminate there. We therefore opt for the lower node as the 
reference.

Figure 4.15 shows the redrawn circuit, after Steps 1 and 2. Notice that 
we introduced the current i because we cannot express the current in the 
dependent voltage source branch as a function of the node voltages 2v  
and .3v  We write a KCL equation at node 2 to give

 i
50

5 50
0,2 2−

+ + =
v v  (4.4)

and at node 3 to give

 i
100

4 0.3 − − =
v

  (4.5)

We eliminate i simply by adding Eqs. 4.4 and 4.5 to get

 50
5 50 100

4 0.2 2 3−
+ + − =

v v v  (4.6)

We will continue the steps of the node-voltage method after we introduce 
a new concept, the supernode.

The Concept of a Supernode
When a voltage source is between two essential nodes, we can combine 
those nodes and the source to form a supernode. Let’s apply the super-
node concept to our circuit from Fig. 4.15. Figure 4.16 shows the circuit 
redrawn with a supernode created by combining nodes 2 and 3. We can 
remember to look for supernodes by modifying Step 2 one final time:

Step 2: Pick and label a reference node, then label the node voltages at the 
remaining essential nodes. If a voltage source is the only element between 
an essential node and the reference node, replace the node voltage label 
with the value of the voltage source. If a voltage source is the only element 
between two nonreference essential nodes, combine the two essential 
nodes and the voltage source into a single supernode.

Step 3 also needs to be modified. Obviously, Kirchhoff’s current law 
must hold for supernodes, so we can write a single KCL equation for the 
supernode. The supernode also constrains the difference between the 
node voltages used to create the supernode to the value of the voltage 
source within the supernode. We therefore need to write a supernode 
constraint equation. Thus, we arrive at the final version of Step 3.

Step 3: Write a KCL equation at each supernode, then write a KCL equa-
tion at each remaining nonreference essential node where the voltage is 
unknown. If there are any dependent sources, write a dependent source 
constraint equation for each one, and if there are any supernodes, write a 
supernode constraint equation for each one.

The final version of the node-voltage method can be found in the end- 
of-chapter Summary; a condensed version is given in Analysis Method 4.3.

50 V 100 V40 V

5 V1 2 3

4 A50 V 50 V

1

2

y2

1

2

y3

1

2

1

2

if

2 1

10if

i

Figure 4.15. ▲ The circuit shown in Fig. 4.14 with 
the  selected node voltages defined.

50 V 100 V40 V

5 V1 2 3

4 A50 V 50 V y2

1

2

1

2

y3

1

2

1

2

if

2 1

10if

Figure 4.16 ▲ Combining nodes 2 and 3 to form a 
supernode.
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102 Techniques of Circuit Analysis

We can now use Step 3 to create the equations for the circuit in 
Fig. 4.16. First, write the KCL equation for the supernode. Starting with 
the 5 Ω  branch and moving counterclockwise around the supernode, we 
generate the equation

 50
5 50 100

4 0,2 2 3−
+ + − =

v v v  (4.7)

which is identical to Eq. 4.6. Creating a supernode at nodes 2 and 3 has 
made writing this equation much easier. Next, write the supernode con-
straint equation by setting the value of the voltage source in the super-
node to the difference between the two node voltages in the supernode:

 i10 .3 2− = φv v  (4.8)

Finally, express the current controlling the dependent voltage source as a 
function of the node voltages:

 i
50

5
 .2=

−
φ

v  (4.9)

Use Step 5 to solve Eqs. 4.7, 4.8, and 4.9 for the three unknowns 2v , 3v , 
and iφ  to give

= = =φv v i60 V, 80 V,  and  2 A.2 3

Let’s use the node-voltage method to analyze the amplifier circuit first 
introduced in Section 2.5 and shown again in Fig. 4.17. When we analyzed 
this circuit using Ohm’s law, KVL, and KCL in Section 2.5, we faced the task 
of writing and solving six simultaneous equations. Work through Example 
4.5 to see how the node-voltage method can simplify the circuit analysis.

NODE-VOLTAGE METHOD

1. Identify each essential node.
2. Pick and label a reference node; then label the node 
voltage at the remaining essential nodes.

• If a voltage source is the only element between an 
essential node and the reference node, replace the 
node voltage label with the value of the voltage 
source.

• If a voltage source is the only element between 
two nonreference essential nodes, combine the 
nodes and the source into a single supernode.

3. Write a KCL equation for each supernode and every 
remaining nonreference essential node where the voltage 
is unknown.

• If there are dependent sources, write a constraint 
equation for each one.

• If there are supernodes, write a constraint equation 
for each one.

4. Solve the equations to find the node voltage values 
and any other unknowns.
5.  Solve the circuit using the values from Step 4 to find 
component currents, voltages, and power values.

Analysis Method 4.3 Complete form of the node-voltage method.

VCC

R2

R1

RE

biB

RC

1

2

a

b c

d

V0

1 2

iB

Figure 4.17 ▲ The transistor amplifier circuit 
shown in Fig. 2.24.

EXAMPLE 4.5 Node-Voltage Analysis of the Amplifier Circuit

Use the node-voltage method to find iB  in the 
 amplifier circuit shown in Fig. 4.17.

Solution
Step 1: We identify the four essential nodes, which 
are labeled a, b, c, and d. Step 2: Choose node d 
as the reference node. Then label the voltages at 
the remaining three essential nodes. Before writing 

equations, we notice two special cases. The voltage 
source VCC  in the branch connecting node a and 
the reference node constrains the voltage between 
those nodes, so =v VCCa , and the voltage source 
V0 in the branch between nodes b and c constrains 
the voltage between those nodes and creates a 
supernode. The results of Steps  1 and 2 and the 
modifications prompted by the special cases are 
depicted in Fig. 4.18.
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Step 3: Write the supernode KCL equation to 
give

 
R

V
R R

i 0.CC

E
B

b

2

b

1

c β+
−

+ − =
v v v

  (4.10)

Now write the dependent source constraint equa-
tion, which defines the controlling current Bi  in 
terms of the node voltages. Since iB  is the current 
in a voltage source, we cannot use Ohm’s law, so 
instead, write a KCL equation at node c:

 i
R

i .B
E

B
c β= −

v
 (4.11)

The last part of Step 3 is the supernode constraint 
equation
 − =v v V .b c 0  (4.12)

R1

RC

R2 RE

1

2

yb
iB

1

1

2 2

yc

VCC

biB
VCC

V0

1

2

b c

d

a

1 2

Figure 4.18 ▲ The circuit shown in Fig. 4.17, with voltages and 
the supernode identified.

Step 3 gave us three equations with three unknowns. 
To solve these equations, we use back-substitution 
to eliminate the variables v b  and v c. Begin by rear-
ranging Eq. 4.11 to give

 
β

=
+

v
i

R (1 )
.B

E

c  (4.13)

Next, solve Eq. 4.12 for vc  to give

 = −v v V .c b 0  (4.14)

Substituting Eqs. 4.13 and 4.14 into Eq. 4.10 and 
 rearranging yields

R R R
V
R

V
R

1 1 1
(1 ) (1 )

 .
E

CC

E
b

1 2 1

0

β β
+ +

+











= +

+
v  

 (4.15)

Solving Eq. 4.15 for bv  yields

 
V R R V R R

R R R R R
(1 )

(1 ) ( )
 .CC E

E
b

2 0 1 2

1 2 1 2

β
β

=
+ +

+ + +
v  (4.16)

You should verify that, when Eq. 4.16 is combined 
with Eqs. 4.13 and 4.14, the solution for iB  is

 i
V R R R V

R R R R R
( ) / ( )

( ) / ( ) (1 )
 ,B

CC

E

2 1 2 0

1 2 1 2 β
=

+ −
+ + +

 (4.17)

which is identical to Eq. 2.21. (See Problem 4.31.) 
Using the node-voltage method to analyze this 
 circuit reduces the problem from manipulating 
six simultaneous equations (see Problem 2.38) to 
manipulating three simultaneous equations.

Objective 1—Understand and be able to use the node-voltage method

4.4 Use the node-voltage method to find ov  in the 
circuit shown.

Answer: 1.5 V.

4.5 Use the node-voltage method to find ov  in the 
circuit shown.

Answer: 25 V.

ASSESSMENT PROBLEMS

1 V

2 V

3 V

2

4 V
2
1

1yx

2yx

7 A

yo

1

2

60 V 30 V20 V80 V

10 V

100 V
1

2

21

4yD

yD

1

2

yo1 2
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104 Techniques of Circuit Analysis

4.5 Introduction to the Mesh-Current 
Method

Before we learn about the mesh-current method for solving circuits, let’s 
summarize the node-voltage method. The node-voltage method pre-
sented in Sections 4.2–4.4 is used to solve a circuit by writing simultane-
ous KCL equations at essential nodes. If a dependent source is present, 
a dependent source constraint equation is required. Special cases exist 
when a voltage source is the only component in a branch connecting two 
essential nodes. If one of the essential nodes is the reference node, the 
node voltage at the other node is the value of the voltage source and no 
KCL equation is required at that node. If neither of the essential nodes is 
the reference node, the two nodes and the voltage source are combined 
into a supernode. A KCL equation is written for the supernode as well as 
a supernode constraint equation. The simultaneous equations are solved 
to find the node voltages, and the node voltages can be used to find the 
voltage, current, and power for every circuit component.

We now turn to the mesh-current method, presented in Sections  
4.5–4.7. The mesh-current method is used to solve a circuit by writing simul-
taneous KVL equations for the circuit’s meshes. If a dependent source is 
present, a dependent source constraint equation is required. Special cases 
exist when a current source is a component of a mesh. If a current source is 
a component in only one mesh, the mesh current must have the same value 
as the current source and no KVL equation is needed for that mesh. If a 
current source is shared by two adjacent meshes, the two meshes are com-
bined to form a supermesh. A KVL equation is written for the supermesh 
as well as a supermesh constraint equation. The simultaneous equations 
are solved to find the mesh currents, and the mesh currents can be used to 
find the voltage, current, and power for every circuit component.

Did you notice the symmetries in the descriptions of the node-voltage 
method and the mesh-current method? In engineering, this symmetry is 
called duality, and we will encounter it throughout this text. In comparing the 
two circuit analysis techniques, we see that essential nodes and meshes are 
duals, KVL and KCL are duals, voltages and currents are duals, supernodes 
and supermeshes are duals, and so on. Recognizing the existence of duality 
can help you master the techniques for circuit analysis presented in this text.

Applying the Mesh-Current Method
Recall from the terms defined in Table 4.1 that a mesh is a loop that does 
not contain any other loops. You should review the definitions of loop 
and path in Table 4.1, too. A mesh current is the current that exists on the 
perimeter of a mesh. We represent a mesh current on a circuit diagram 

4.6 Use the node-voltage method to find v  in the 
circuit shown.

SELF-CHECK: Also try Chapter Problems 4.25, 4.27, and 4.30.

Answer: 60 V.

1

2

7.5if6 V

15 V

12.5 V 4 V80 V

y1 2

if
1 2
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 4.5 Introduction to the Mesh-Current Method 105

using a curved arrow that follows the mesh perimeter, where the arrow-
head indicates the current’s direction.

Just like the node-voltage method, the mesh-current method is a 
step-by-step procedure. Let’s use the mesh-current method for the circuit 
shown in Fig. 4.19 to solve for the currents i1, i2 , and i3. Because the cir-
cuit has two meshes, we expect to write two simultaneous equations.

In Step 1, we identify the meshes using a directed curved arrow that 
follows the perimeter of the mesh.

Step 2 labels the mesh currents using the labels ia  and ib. The results 
of Steps 1 and 2 are shown in Fig. 4.20. We can see from this figure that 
the branch current i1  equals the mesh current ia  and that the branch 
current i2  equals the mesh current ib. Note that to avoid confusion we 
use different names for the branch currents and the mesh currents in  
this circuit.

In Step 3, we write the KVL equation for each mesh. Let’s start with 
the mesh whose mesh current is ia. Pick a starting point anywhere on the 
perimeter of the mesh and sum the voltage drops for each component 
in the mesh in the direction of the mesh current until you return to the 
starting point. Start below the 100 V source and travel in the clockwise 
direction of the mesh current. The first voltage is due to the 100 V source 
and has the value –100. The next voltage is across the 4 Ω  resistor, whose 
current is ia , so from Ohm’s law the voltage is i4 a. The next voltage is 
across the 10 Ω  resistor, whose current is (i ia b− ), so from Ohm’s law the 
voltage is 10(i ia b− ). We are back to the starting point, so KVL tells us 
that the sum of these three voltages is zero:

i i i100 4 10( ) 0.a a b− + + − =

Repeat this process to get the KVL equation for the ib  mesh. Remember 
that you can start anywhere on the perimeter of this mesh, so let’s start at 
the left of the 5 Ω  resistor. Again we determine the voltage drops for each 
component in the direction of the ib  mesh. The voltage drop for the 5 Ω  
resistor is i5 b , the voltage drop for the 40 V source is 40, and the voltage 
drop for the 10 Ω  resistor is 10(i ib a− ). We have returned to the starting 
point, so KVL tells us that the sum of these three voltages is zero:

i i i5 40 10( ) 0.b b a+ + − =

In Step 4, we solve these simultaneous mesh current equations (see 
Appendix A) to find that the mesh current values are

i 10 Aa =

and

i 4 A.b =

Step 5 uses the mesh currents to solve for the currents, voltages, and 
power for all components in the circuit. Let’s calculate the three branch 
currents to illustrate:

= =

= =

= − =

i i

i i

i i i

10 A,

4 A,

6 A.

1 a

2 b

3 a b

The ability to calculate the branch currents using the mesh currents is cru-
cial to the mesh-current method of circuit analysis. Once you know the 
mesh currents, you also know the branch currents. And once you know 
the branch currents, you can compute any voltages or powers of  interest. 
A condensed version of the mesh-current method is given in Analysis 
Method 4.4.

i3
1

2

1

2

i1 i2

4 V 5 V

10 V100 V 40 V

Figure 4.19 ▲ A circuit used to illustrate devel-
opment of the mesh-current method of circuit 
analysis.

1

2

1

2
ia

ib

4 V

10 V

5 V

100 V 40 V

i1 i3 i2

Figure 4.20 ▲ Mesh currents ai  and bi .

MESH-CURRENT METHOD

Analysis Method 4.4 The basic version 
of the mesh-current method.

1. Identify the meshes with curved  
 directed arrows that follow the perimeter  
of each mesh.
2. Label the mesh currents for each  
mesh.
3. Write the KVL equations for each  
mesh.
4. Solve the KVL equations to find the  
mesh current values.
5. Solve the circuit using mesh currents 
from Step 4 to find component currents,  
voltages, and power values.
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1

2

1

2
40 V

2 V 6 V 4 V

6 V8 V 20 Vyo

1

2

Figure 4.21 ▲ The circuit for Example 4.6.

1

2

1

2
40 V

2 V 6 V 4 V

6 V8 V 20 V
ia icib

Figure 4.22 ▲ The three mesh currents used to analyze the 
circuit shown in Fig. 4.21.

Example 4.6 illustrates how the mesh-current method is used to find 
source powers and a branch voltage.

EXAMPLE 4.6 Using the Mesh-Current Method

a) Use the mesh-current method to determine the 
power associated with each voltage source in the 
circuit shown in Fig. 4.21.

b) Calculate the voltage ov  across the 8 Ω  resistor.

 Solution
a) Step 1: We identify the three meshes in the circuit 

and draw the mesh currents as directed curved 
arrows following the perimeter of each mesh. It 
is best to define all mesh currents in the same di-
rection.

Step 2: Label the mesh currents; the results of the 
first two steps are depicted in Fig. 4.22.

Step 3: We use KVL to generate an equation for 
each mesh by summing the voltages in the direc-
tion of the mesh current. In the ia  mesh, start just 

below the 40 V source and sum the voltages in 
the clockwise direction to give

i i i40 2 8( ) 0.a a b− + + − =

In the ib  mesh, start below the 8 Ω  resistor and 
sum the voltages in the clockwise direction to give

i i i i i8( ) 6 6( ) 0.b a b b c− + + − =

In the ic  mesh, start below the 6 Ω  resistor and 
sum the voltages in the clockwise direction to give

i i i6( ) 4 20 0.c b c− + + =

Step 4: Solve the three simultaneous mesh cur-
rent equations from Step 3 to give

=

=

= −

i

i

i

5.6 A,

2.0 A,

0.80 A.

a

b

c

Step 5: Use the mesh currents to find the power 
for each source. The mesh current ia  equals the 
branch current in the 40 V source, so the power 
associated with this source is

= − = −p i40 224 W.40V a

The minus sign means that this source is deliver-
ing power to the network. The current in the 20 
V source equals the mesh current i ;c  therefore

= = −p i20 16 W.20V c

The 20 V source also is delivering power to the 
network.

b) The branch current in the 8 Ω  resistor in the di rec-
tion of the voltage drop ov  is i i .a b−  Therefore

i i8( ) 8(3.6) 28.8 V.o a b= − = =v

Objective 2—Understand and be able to use the mesh-current method

4.7 Use the mesh-current method to find (a) the 
power delivered by the 44 V source to the cir-
cuit shown and (b) the power dissipated in the 
3 Ω  resistor.

Answer: a) 352 W;

b) 12 W.

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter Problems 4.36 and 4.37.

6 V 3 V

1 V 2 V4 V

2 V44 V 1

2
1

2
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 4.6 The Mesh-Current Method and 
Dependent Sources

If the circuit contains dependent sources, we must modify the equation- 
writing step in the mesh-current analysis method, just as we did in the 
node-voltage analysis method.

Step 3: Write the KVL equation for each mesh; if the circuit contains 
a dependent source, write a dependent source constraint equation that 
defines the controlling variable for the dependent source in terms of the 
mesh currents.

The condensed form for Step 3 is shown in Analysis Method 4.5. 
Example 4.7 applies the mesh-current method to a circuit with a depen-
dent source.

MESH-CURRENT METHOD

Analysis Method 4.5 Modified Step 3 for 
the mesh-current method.

3. Write the KVL equations for each mesh.
• If there are dependent sources, write 

a dependent source constraint equa-
tion for each.

EXAMPLE 4.7 Using the Mesh-Current Method with Dependent Sources

Use the mesh-current method to find the power 
dissipated in the 4 Ω  resistor in the circuit shown 
in Fig. 4.23.

Solution
Step 1: Begin by drawing the mesh currents in each 
of the three meshes.

Step 2: Label each mesh current. The resulting cir-
cuit is shown in Fig. 4.24.

Step 3: Write a KVL equation for each mesh by 
picking a starting point anywhere in the mesh 
and summing the voltages around the mesh in the 

 direction of the mesh current. When you return to 
the starting point, set the sum equal to zero. The 
three mesh-current equations are

− + − − =

− + + − =

− + − + =φ

i i i i

i i i i i

i i i i i

5( ) 20( ) 50 0,

5( ) 1 4( ) 0,

20( ) 4( ) 15 0.

1 2 1 3

2 1 2 2 3

3 1 3 2

To complete Step 3, express the branch current con-
trolling the dependent voltage source in terms of 
the mesh currents as

i i i .1 3= −φ

Step 4: Solve the four equations generated in Step 
3 to find the four unknown currents:

= = = =φi i i i29.6 A, 26 A, 28 A, 1.6 A.1 2 3

Step 5: Use the mesh currents to find the power for 
the 4 Ω  resistor. The current in the 4 Ω  resistor ori-
ented from left to right is i i ,3 2−  or 2 A. Therefore, 
the power dissipated is

= − = =p i i( ) (4) (2) (4) 16 W.4Ω 3 2
2 2

What if you had not been told to use the mesh- 
current method? Would you have chosen the 
node-voltage method? It reduces the problem to 
finding one unknown node voltage because of the 
presence of two voltage sources between essential 
nodes. We say more about making such choices in 
Section 4.8.

1 V

5 V 4 V

1

2
15if50 V

1

2
20 Vif

Figure 4.23 ▲ The circuit for Example 4.7.

1 V

5 V 4 V

1

2
15if50 V

1

2
20 Vif

i2

i1 i3

Figure 4.24 ▲ The circuit shown in Fig. 4.23 with the three 
mesh currents.
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108 Techniques of Circuit Analysis

4.7 The Mesh-Current Method: Some 
Special Cases

Recall that voltage sources present special cases when using the node- voltage 
method (Section 4.4). So, it is no surprise that current sources present spe-
cial cases when using the mesh-current method. There are two  special cases, 
one that occurs when a current source is in a single mesh, and the other that 
occurs when a current source is shared by two adjacent meshes.

When a current source is in a single mesh, the value of the mesh cur-
rent is known, since it must equal the current of the source. Therefore, we 
label the mesh current with its value, and we do not need to write a KVL 
equation for that mesh. This leads to the following modification in Step 2 
of the mesh-current method.

Step 2: Label the mesh current for each mesh; if there is a current source in 
a single mesh, label the mesh current with the value of the current source.

This special case is illustrated in Example 4.8.

Objective 2—Understand and be able to use the mesh-current method

4.8 a)  Determine the number of mesh-current 
equations needed to solve the circuit shown.

b) Use the mesh-current method to find the 
power delivered by the dependent voltage 
source.

Answer: a) 3;

b) 46,640 W.

4.9 Use the mesh-current method to find v  in the 
circuit in Assessment Problem 4.6, which is 
repeated here.

Answer: 60 V.

ASSESSMENT PROBLEMS

SELF-CHECK: Also try Chapter Problems 4.40 and 4.42.

EXAMPLE 4.8 A Special Case in the Mesh-Current Method

Use the mesh-current method to find branch cur-
rents ia, ib, and ic  in the circuit for Example 4.3, 
repeated here as Fig. 4.25.

Solution
 Step 1: Use directed arrows that traverse the mesh 
perimeters to identify the three mesh currents.

Step 2: Label the mesh currents as i1, i2 , and i3. The 
modification in Step 2 reminds us to look for cur-
rent sources, and the i3 mesh has a current source 
that is not shared by any other mesh. Therefore,  
the i3 mesh current equals the current supplied by 
the source. Note that i3 and the current source are 

5 V3 V

iD

2 V7 V

20 V 30 V
2

1
30 V

1

2

21

53iD

15 V

6 V
7.5if

if
80 V

1

2
12.5 V 4 V

y1 2

21

5 V

10 V50 V 40 V 3 A
1

2

ia
ib ic

Figure 4.25 ▲ The circuit for Example 4.8.
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in  opposite directions, so the current in this mesh 
should be labeled 3−  A. The results of Steps 1 and 2 
are shown in Fig. 4.26.

Step 3: Write the KVL equations for the meshes 
whose mesh currents are unknown, which in this 
 example are the i1 and i2  meshes. Remember to pick  
a starting point anywhere along the mesh, sum the 
voltages in the direction of the mesh current, and 
set the sum equal to zero when you return to the 

 starting point. The resulting simultaneous mesh cur-
rent equations are

i i i

i i i

50 5 10( ) 0 and

10( ) 40( ( 3)) 0.

1 1 2

2 1 2

− + + − =

− + − − =

Step 4: Solving the simultaneous mesh current 
equations gives

i i2 A and 2 A.1 2= = −

Step 5: Finally, we use the mesh currents to calculate  
the branch currents in the circuit, ia , ib , and ic .

= =

= − =

= + =

i i

i i i

i i

2 A,

4 A,

3 1 A.

a 1

b 1 2

c 2

These are the same branch current values as those 
calculated in Example 4.3. Which of the two circuit 
analysis methods is better when calculating the 
branch currents? Which method is better when cal-
culating the power associated with the sources?

Now we turn our attention to the other special case, created by a 
current source that is shared between two adjacent meshes. The circuit 
shown in Fig. 4.27 depicts this situation. Applying Steps 1 and 2, we define 
the mesh currents i i,   ,a b  and i ,c  as well as the voltage across the 5 A cur-
rent source. In Step 3, we write the KVL equations for each mesh; let’s 
start with mesh a and pick the starting point just below the 100 V source. 
The first two voltages we encounter when we traverse the mesh in the 
direction of the mesh current are 100 V−  and 3(i ia b− ). But when we get 
to the current source, we must label the voltage drop across it as v and use 
this variable in the equation. Thus, for mesh a:

 i i i100 3( ) 6 0.a b a− + − + + =v  (4.18)

The same situation arises in mesh c, to give

 i i i50 4 2( ) 0.c c b+ − + − =v  (4.19)

We now add Eqs. 4.18 and 4.19 to eliminate v ; when simplified, the result is

 i i i50 9 5 6 0.a b c− + − + =  (4.20)

We will complete Steps 4 and 5 in the mesh-current method after intro-
ducing a new concept, the supermesh.

 The Concept of a Supermesh
When a current source is shared between two meshes, we can combine 
these meshes to form a supermesh, which traverses the perimeters of the 
two meshes and avoids the branch containing the shared current source. 
Figure 4.28 illustrates the supermesh concept. Using a modified Step 3, 
we write a KVL equation around the supermesh (denoted by the dashed 
line), using the original mesh currents to give

i i i i i i100 3( ) 2( ) 50 4 6 0,a b c b c a− + − + − + + + =

10 V

3 V

6 V

2 V

4 V

icia
50 V

1

2
100 V

1

2
5 Ay

1

2

ib

Figure 4.27 ▲ A circuit illustrating mesh analysis 
when a branch contains an independent current 
source.

5 V

10 V50 V –3 A40 V 3 A
1

2

ia
ib ic

i1 i2

Figure 4.26 ▲ The circuit shown in Fig. 4.25 with the mesh 
currents identified and labeled.

10 V

3 V

6 V

2 V

4 V

Supermesh

50 V
1

2
100 V

1

2
icia

ib

5 A

Figure 4.28 ▲ The circuit shown in Fig. 4.27, 
 illustrating the concept of a supermesh.
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which simplifies to

 i i i50 9 5 6 0.a b c− + − + =  (4.21)

Note that Eqs. 4.20 and 4.21 are identical. Thus, the supermesh has elim-
inated the need for introducing the unknown voltage across the current 
source.

The KVL equation for the b mesh is

 i i i i i10 2( ) 3( ) 0.b b c b a+ − + − =  (4.22)

We have two simultaneous equations, Eqs. 4.21 and 4.22, but 
three unknowns. Remember that the presence of a supernode in the 
node- voltage method requires a KCL equation at the supernode and a  
supernode constraint equation that defines the difference between the node  
voltages in the supernode as the value of the voltage source in the super-
node. In a like manner, the presence of a supermesh in the mesh-current  
method requires a KVL equation around the supermesh and a supermesh 
constraint equation that defines the difference between the mesh currents 
in the supermesh as the value of the shared current source. From Fig. 4.28, 
the supermesh constraint equation is

 i i 5.c a− =  (4.23)

The final version of Steps 2 and 3 in the mesh-current method reminds us 
how to handle current sources in our circuits:

• Step 2: Label the mesh current for each mesh; if there is a current 
source in a single mesh, label the mesh current with the value of the 
source. If there is a current source shared between two meshes, create 
a supermesh by combining the two meshes and mentally erasing the 
current source.

• Step 3: Write a KVL equation around each supermesh and each sin-
gle mesh where the mesh current is unknown. If there is a dependent 
source, write a constraint equation defining the controlling quantity 
for the dependent source in terms of the mesh currents. If there is a 
supermesh, write a supermesh constraint equation that defines the 
difference between the two mesh currents in the supermesh as the 
value of the shared current source.

The final version of the mesh-current method can be found in the end-of-
chapter Summary; a condensed version is given in Analysis Method 4.6.

MESH-CURRENT METHOD

Analysis Method 4.6 Complete form of the mesh-current method.

1. Identify the meshes with curved directed arrows that follow the perimeter of each mesh.
2. Label the mesh currents for each mesh.

•  If a current source is in a single mesh, label the mesh current with the value of the current source.
• If a current source is shared between two meshes, combine the meshes to create a supermesh and  

ment ally erase the current source.
3. Write the KVL equations for each supermesh and each single mesh where the current is unknown.

• If there are dependent sources, write a dependent source constraint equation for each.
• If there are supermeshes, write a supermesh constraint equation for each.

4. Solve the KVL equations and any constraint equations to find the mesh-current values and other unknowns.
5. Solve the circuit using mesh currents from Step 4 to find component currents, voltages, and power values.
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Use the mesh-current method to find iB  for the 
 amplifier circuit in Fig. 4.29.

Solution
Step 1: Use directed arrows that traverse the mesh 
perimeters to identify the three mesh currents.

Step 2: Label the mesh currents as i i,   ,a b  and ic .  
Then recognize the current source that is shared 
between the ia and ic meshes. Combine these meshes, 
bypassing the branch with the shared current 
source, to create a supermesh. The result of the first 
two steps is the circuit shown in Fig. 4.30.

R1

Rc

RER2

biB
VCC

1

2V0

1 2

iB

Figure 4.29 ▲ The circuit shown in Fig. 2.24.

Use Step 4 to solve Eqs. 4.21–4.23 and confirm that the solutions for the 
three mesh currents are

i i i1.75 A, 1.25 A, and 6.75 A.a b c= = =

Work through Example 4.9 to see how the mesh-current method can be 
used to solve the amplifier circuit from Example 4.5.

EXAMPLE 4.9 Mesh-Current Analysis of the Amplifier Circuit

Step 3: Using KVL, sum the voltages around the 
supermesh in terms of the mesh currents i i, ,a b  and 
ic  to obtain

 R i R i i V( ) 0.CC E1 a c b 0+ + − − =v  (4.24)

The KVL equation for mesh b is

 + + − =R i V R i i( ) 0.E2 b 0 b c  (4.25)

The constraint imposed by the dependent current 
source is

 B = −i i i .b a  (4.26)

The supermesh constraint equation is

 Bβ = −i i i .a c  (4.27)

Step 4: Use back-substitution to solve Eqs. 4.24–4.27. 
Start by combining Eqs. 4.26 and 4.27 to eliminate 

Bi  and solve for ic  to give

 i i i(1 ) .c a bβ β= + −   (4.28)

We now use Eq. 4.28 to eliminate ic  from Eqs. 4.24 
and 4.25:

β β+ + − + = −R R i R i V V[ (1 ) ] (1 ) ,E E CC1 a b 0
(4.29)

R i R R i V(1 ) [ (1 ) ] .E Ea 2 b 0β β− + + + + = −
(4.30)

You should verify that the solution of Eqs. 4.29 and 
4.30 for ia  and ib  gives

 
β

β
=

− − +
+ + +

i
V R V R V R

R R R R R
(1 )

(1 ) ( )
,CC CC E

E
a

0 2 2

1 2 1 2

 (4.31)

 i
V R R V

R R R R R
(1 )

(1 ) ( )
 .E CC

E
b

0 1

1 2 1 2

β
β

=
− − +

+ + +
 (4.32)

Step 5: Use the two mesh currents from Eqs. 4.31 
and 4.32, together with the definition for Bi  in  
Eq. 4.26, to find Bi . You should verify that the result 
is the same as that given by Eq. 2.21.

R1

Rc

R2 RE

VCC
1

2
ic

ia

ib

V0
1 2

iB

biB

Figure 4.30 ▲ The circuit shown in Fig. 4.29, depicting 
the supermesh created by the presence of the dependent 
 current source.

M04_NILS8436_12_SE_C04.indd   111 13/01/22   2:52 PM



112 Techniques of Circuit Analysis

10 kV

1.5 kV 4 kV

3 kV

2 kV 20 V
2

1
25 mA

4.8 The Node-Voltage Method Versus 
the Mesh-Current Method

It is natural to ask, “When is the node-voltage method preferred to the 
mesh-current method and vice versa?” As you might suspect, there is no 
clear-cut answer. Asking a number of questions, however, may help you 
identify the more efficient method before plunging into the solution process:

• Does one of the methods result in fewer simultaneous equations to 
solve?

• Is there a branch between two essential nodes that contains only a 
voltage source? If so, making one of the essential nodes the refer-
ence node and using the node-voltage method reduces the number of 
equations to be solved.

• Is there a mesh containing a current source that is not shared with an 
adjacent mesh? If so, using the mesh-current method allows you to 
reduce the number of equations to be solved.

• Will solving some portion of the circuit give the requested solution? 
If so, which method is most efficient for solving just the pertinent 
portion of the circuit?

Perhaps the most important observation is that, for any situation, some 
time spent thinking about the problem in relation to the various analytical 

Objective 2—Understand and be able to use the mesh-current method

4.10 Use the mesh-current method to find the power 
dissipated in the 10 kΩ  resistor in the circuit 
shown.

ASSESSMENT PROBLEMS

SELF-CHECK: Also try Chapter Problems 4.44, 4.47, 4.49, and 4.50.

Answer: 0.25 W.

Answer: 0.2 A.

4.12 Use the mesh-current method to find the 
power dissipated in the 100 Ω resistor in the 
circuit shown.

Answer: 2.25 W.

4.11 Use the mesh-current method to find the 
mesh current ia  in the circuit shown.

500 V 160 V

0.3 A

40 V 1

2

25 Vyf

1

2

yf

50
ia

100 V 32 V

20 V

50 V60 V

30 V 150 mA1

2
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approaches available is time well spent. Examples 4.10 and 4.11 illus-
trate the process of deciding between the node-voltage and mesh-current 
methods.

EXAMPLE 4.10  Understanding the Node-Voltage Method Versus  
Mesh-Current Method

Find the power dissipated in the 300 Ω  resistor in 
the circuit shown in Fig. 4.31.

Solution
To find the power dissipated in the 300 Ω  resistor, 
we need to find either the current in the resistor 
or the voltage across it. The mesh-current method 
yields the current in the resistor; this approach 
requires solving five mesh equations, as depicted in 
Fig. 4.32, and a dependent source constraint equa-
tion, for a total of six simultaneous equations.

Let’s now consider using the node-voltage 
method. The circuit has four essential nodes, and 
therefore only three node-voltage equations are 
required to describe the circuit. The dependent 
voltage source between two essential nodes forms a 
supernode, requiring a KCL equation and a super-
node constraint equation. We have to sum the cur-
rents at the remaining essential node, and we need to 
write the dependent source constraint equation, for a 
total of four simultaneous equations. Thus, the node- 
voltage method is the more attractive approach.

Step 1: We begin by identifying the four essential 
nodes in the circuit of Fig. 4.31. The three black dots 
at the bottom of the circuit identify a single essen-
tial node, and the three black dots in the middle of 
the circuit are the three remaining essential nodes.

Step 2: Select a reference node. Two essential 
nodes in the circuit in Fig.  4.31 merit consider-
ation. The first is the reference node in Fig.  4.33, 
where we also defined the three node voltages 

,   ,1 2v v  and 3v , and indicated that nodes 1 and 3 
form a supernode because they are connected by 
a dependent voltage source. If the reference node 
in Fig. 4.33 is selected, one of the unknown node 
voltages is the voltage across the 300 Ω  resistor, 
namely, 2v  in Fig. 4.33. Once we know this voltage,  
we calculate the power in the 300 Ω  resistor by 
using the expression

= vp /300.300Ω 2
2

The second node worth considering as the ref-
erence node is the bottom node in the circuit, as 
shown in Fig. 4.34. If this reference node is chosen, 
one of the unknown node voltages is eliminated 
because i50b = ∆v . We would need to write two 
KCL equations and a dependent source constraint 
equation, and solve these three simultaneous equa-
tions. However, to find either the current in the 
300 Ω  resistor or the voltage across it requires an 
additional calculation once we know the node volt-
ages av  and .cv

100 V150 V 250 V 500 V

iD

50iD
200 V 400 V

1

2
256 V

1

2
128 V

2

1

300 V

Figure 4.31 ▲ The circuit for Example 4.10.

ia ic id ie

100 V150 V 250 V 500 V

iD

200 V 400 V
1

2
256 V

1

2
50 iD 128 V

2

1

300 V

ib

Figure 4.32 ▲ The circuit shown in Fig. 4.31, with the five 
mesh currents.

100 V150 V 250 V 500 V

iD

y1 y2

y3

50 iD
200 V 400 V

1

2
256 V

1

2
128 V

2

1

300 V

1

3

2

Figure 4.33 ▲ The circuit shown in Fig. 4.31, with a 
 reference node.

b

yb

a

ya

c

yc100 V150 V 250 V 500 V

iD

50 iD200 V 400 V
1

2
256 V

1

2
128 V

2

1

300 V

Figure 4.34 ▲ The circuit shown in Fig. 4.31 with an 
 alternative reference node.
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Find the voltage ov  in the circuit shown in Fig. 4.35.

Solution
We first consider using the mesh-current method.

Step 1: Identify the three mesh currents in the circuit 
using directed arrows that follow the mesh perimeters.

Step 2: Label the three mesh currents. Because there 
are two current sources, each shared by two meshes, 
we can combine all three meshes into a single super-
mesh that traverses the perimeter of the entire circuit 
and avoids the two branches with current sources. The 
result of these two steps is shown in Fig. 4.36.

4 V

6 V

1

2
193 V

1

2
0.8yu0.5 A0.4yDyo

2

1

2.5 V

7.5 V

yu1 2

8 V

2 V

yD1 2

Figure 4.35 ▲ The circuit for Example 4.11.

Step 3: We compare these two possible reference 
nodes by generating two sets of KCL equations and 
constraint equations. The first set pertains to the cir-
cuit shown in Fig. 4.33, and the second set is based 
on the circuit shown in Fig. 4.34.

• Set 1 (Fig. 4.33)
At the supernode,

100 250 200 400
( 128)
500

1 1 2 3 3 2 3 2+
−

+ +
−

+
− +v v v v v v v v

+
+

=
v 256

150
0.3

At ,2v

300 250 400
128
500

0.2 2 1 2 3 2 3+
−

+
−

+
+ −

=
v v v v v v v

The dependent source constraint equation is

i
300

 .2=∆
v

The supernode constraint equation is

i50 .1 3− = ∆v v

•   Set 2 (Fig. 4.34); remember that i50b = ∆v .
At ,av

+
−

+
−

+
−

=∆v v v v vi
200

256
150

50
100 300

0.a a a a c

At ,cv

+
+

+
−

+
−

=∆v v v v vi
400

128
500

50
250 300

0.c c c c a

The dependent source constraint equation is

=
−

∆
v v

i
300

 .c a

EXAMPLE 4.11   Comparing the Node-Voltage and Mesh-Current Methods

Step 3: Write the KCL equation for the supermesh:

i i i v i i193 4 2.5 2 0.8 8 7.5a b c c b− + + + + + +θ

i6 0.a+ =

The supermesh constraint equations are

i i i i0.4 and 0.5,b a c b− = − =∆v  

and the two dependent source constraint equations are

= = −θ∆v vi i2 and 7.5 .c b

Step 4: We must solve the five simultaneous equa-
tions generated in Step 3.

Step 5: We need one additional equation to find ov  
from the mesh current ia:

i193 10 .o a= −v

Now let’s consider using the node-voltage method.

Step 1: There are four essential nodes in the circuit 
of Fig. 4.35, identified by the four black dots in the 
figure.

Step 2: We can make the unknown voltage ov  one 
of the three node voltages by choosing the bottom 
left node as the reference node. After labeling the 
remaining two node voltages, we have the circuit in 
Fig. 4.37.

ia ib ic

4 V

6 V

1

2
193 V

1

2
0.8yu

0.5 A
0.4yDyo

2

1

2.5 V

7.5 V

yu1 2

8 V

2 V

yD1 2

Figure 4.36 ▲ The circuit shown in Fig. 4.35 with the three mesh 
currents.

Step 4: Solve each set of equations.

Step 5: Verify that both solutions lead to a power calcula-
tion of 16.57 W dissipated in the 300 Ω  resistor.
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v v v v
+ +

+ −
=θ

7.5
0.5

0.8
10

0.b b a

The dependent source constraint equations are

= − =
− +






θ

θ
∆v v v

v v v
and 2

( 0.8 )
10

.b
a b

Step 4: Once we solve these five simultaneous 
equations, we have the value of ov  without writing 
an additional equation, so Step 5 is not needed.

Based on the comparison of the two methods, 
the node-voltage method involves a bit less work. 
You should verify that both approaches give 

173 V.o =v

Step 3: The KCL equations are

−
− +

−
=

−
− +

− +
=θ

∆
v v v v

v v v v v

193
10

0.4
2.5

0,

2.5
0.5

( 0.8 )
10

0,

o o

o

a

a a b

Objective 3—Deciding between the node-voltage and mesh-current methods

4.13 Find the power delivered by the 100 V voltage 
source in the circuit shown.

Answer: 1 kW.

4.14 Find the power delivered by the voltage-con-
trolled current source in the circuit shown.

Answer: 6 kW.

ASSESSMENT PROBLEMS

SELF-CHECK: Also try Chapter Problems 4.54 and 4.58.

4.9 Source Transformations
We are always interested in methods that simplify circuits. Series-parallel 
reductions and ∆-to-Y transformations are already on our list of simpli-
fying techniques. We now expand the list with source transformations. A 
source transformation allows a voltage source in series with a resistor to 
be replaced by a current source in parallel with the same resistor or vice 
versa. Figure 4.38 shows a source transformation. The double-headed 
arrow emphasizes that a source transformation is bilateral; that is, we can 
start with either configuration and derive the other.

We need to find the relationship between sv  and is  that guarantees 
the two configurations in Fig. 4.38 are equivalent with respect to nodes a 
and b. Equivalence is achieved if any resistor RL has the same current and 
thus the same voltage drop, whether connected between nodes a and b in 
Fig. 4.38(a) or Fig. 4.38(b).

4 V

6 V

1

2
193 V 0.5 A

1

2
0.8yu

1

2
0.4yDyo

2

1

2.5 V

7.5 V

yu1 2

8 V

2 V

yD1 2

yb

ya

Figure 4.37 ▲ The circuit shown in Fig. 4.35 with 
node voltages.

30 V 5 V

25 V 1

2

100 V
1

2
7.5 A
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1.5 V
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1

2

R

ys

a

b
(a)

is

a

b
(b)

R

 Figure 4.38 ▲ Source transformations.

20 V30 V

4 V 6 V

10 V

5 V

6 V
1

2

1

2
40 V

Figure 4.39 ▲ The circuit for Example 4.12.

Suppose RL is connected between nodes a and b in Fig. 4.38(a). Using 
Ohm’s law, we find that the current in RL is

 i
R R

s .=
+
v  L

L
 (4.33)

Now suppose the same resistor RL is connected between nodes a and b in 
Fig. 4.38(b). Using current division, we see that the current in RL is

 i R
R R

is .=
+

 L
L

 (4.34)

If the two circuits in Fig. 4.38 are equivalent, these resistor currents must 
be the same. Equating the right-hand sides of Eqs. 4.33 and 4.34 and sim-
plifying gives the condition of equivalence:

  i
Rs

s .= v
 (4.35)

When Eq. 4.35 is satisfied for the circuits in Fig. 4.38, the current in 
RL connected between nodes a and b is the same for both circuits for all 
values of R .L  If the current in RL is the same for both circuits, then the 
voltage drop across RL is the same for both circuits, and the circuits are 
equivalent at nodes a and b. If the polarity of sv  is reversed, the orienta-
tion of is  must be reversed to maintain equivalence.

Example 4.12 uses source transformations to simplify a circuit- analysis 
problem.

EXAMPLE 4.12 Using Source Transformations to Solve a Circuit

Find the power associated with the 6 V source for 
the circuit shown in Fig. 4.39 and state whether the 
6 V source is absorbing or delivering the power.

Solution
If we study the circuit shown in Fig.  4.39, we see 
ways to simplify the circuit by using source trans-
formations. But we must simplify the circuit in a 
way that preserves the branch containing the 6 V 
source. Therefore, begin on the right side of the cir-
cuit with the branch containing the 40 V source. We 
can transform the 40 V source in series with the 5 Ω  
resistor into an 8 A current source in parallel with a 
5 Ω  resistor, as shown in Fig. 4.40(a).

Next, replace the parallel combination of the 
20 Ω and 5 Ω  resistors with a 4 Ω  resistor. This 4 Ω  
resistor is in parallel with the 8 A source and there-
fore can be replaced with a 32 V source in series 
with a 4 Ω  resistor, as shown in Fig.  4.40(b). The 
32 V source is in series with 20 Ω of resistance and, 
hence, can be replaced by a current source of 1.6 A 
in parallel with 20 Ω, as shown in Fig. 4.40(c). The 
20 Ω and 30 Ω parallel resistors can be reduced to 
a single 12 Ω  resistor. The parallel combination of 
the 1.6 A current source and the 12 Ω  resistor trans-
forms into a voltage source of 19.2 V in series with 
12 Ω . Figure  4.40(d) shows the result of this last 
transformation. The current in the direction of the 
voltage drop across the 6 V source is −(19.2 6)/16, 
or 0.825 A. Therefore, the power associated with 
the 6 V source is

= =p (6) (0.825) 4.95 W6V

and the voltage source is absorbing power.
Practice your circuit-analysis skills by using 

 either the node-voltage method or the mesh- 
current method to solve this circuit and verify that 
you get the same answer.
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6 V

30 V

6 V

10 V

4 V

20 V 8 A
1

2
6 V 5 V

(a)  First step

30 V

6 V

10 V

4 V 4 V

32 V
1

2

1

2
6 V

(b)  Second step

20 V30 V

4 V

1

2
1.6 A6 V

(c)  Third step

12 V4 V

19.2 V
1

2

1

2

(d)  Fourth step

Figure 4.40 ▲ Step-by-step simplification of the circuit shown in Fig. 4.39.

A couple of questions arise from the source transformation depicted 
in Fig. 4.40.

• What happens if there is a resistance Rp  in parallel with the voltage 
source?

• What happens if there is a resistance Rs in series with the current 
source?

In both cases, the resistance can be removed to create a simpler equiva-
lent circuit with respect to terminals a and b. Figure 4.41 summarizes this 
observation. The two circuits depicted in Fig. 4.41(a) are equivalent with 
respect to terminals a and b because they produce the same voltage and 
current in any resistor RL inserted between nodes a and b. The same can 
be said for the circuits in Fig. 4.41(b). Example 4.13 illustrates an applica-
tion of the equivalent circuits depicted in Fig. 4.41.

EXAMPLE 4.13 Using Special Source Transformation Techniques

a) Use source transformations to find the voltage 
ov  in the circuit shown in Fig. 4.42.

b) Find the power developed by the 250 V voltage 
source.

c) Find the power developed by the 8 A current 
source.

Solution

a) We begin by removing the 125 Ω and 10 Ω  resis-
tors because the 125 Ω resistor is connected in par-
allel with the 250 V voltage source and the 10 Ω  
resistor is connected in series with the 8 A current 
source. We also combine the series- connected resis-
tors in the rightmost branch into a single resistance 
of 20 Ω. Figure 4.43 shows the simplified circuit.

Now use a source transformation to replace 
the series-connected 250 V source and 25 Ω resis-
tor with a 10 A source in parallel with the 25 Ω  
resistor, as shown in Fig.  4.44. We can then use 
Kirchhoff’s current law to combine the parallel 

15 V

5 V25 V

250 V 125 V
1

2
10 V

8 A
100 Vyo

1

2

Figure 4.42 ▲ The circuit for Example 4.13.

(a)

is

Rp

R

ys
1

2

a

b

R

ys
1

2

a

b

(b)

a

b

Rs

R R

a

b

is

Figure 4.41 ▲ (a) Generating a simplified equivalent 
circuit from a circuit with a resistor in parallel with a 
voltage source; (b) generating a simplified circuit from 
a circuit with a resistor in series with a current source.
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20 V

25 V

250 V
1

2
8 A 100 Vyo

1

2

Figure 4.43 ▲ A simplified version of the circuit 
shown in Fig. 4.42.

20 V10 A 25 V 8 A 100 Vyo

1

2

Figure 4.44 ▲ The circuit shown in Fig. 4.43 after a 
source transformation.

current sources into a single source. The parallel 
resistors combine into a single resistor. Figure 4.45 
shows the result. Hence 20 V.o =v

b) We need to return to the original circuit in 
Fig. 4.42 to calculate the power associated with 
the sources. While a resistor connected in paral-
lel with a voltage source or a resistor connected 
in series with a current source can be removed 
without affecting the terminal behavior of the 
circuit, these resistors play an important role in 
how the power is dissipated throughout the cir-
cuit. The current supplied by the 250 V source, 
 represented as si , equals the current in the 125 Ω  
resistor plus the current in the 25 Ω resistor. Thus,

i 250
125

  250 20
25

11.2 A.s = + − =

Therefore, the power developed by the voltage 
source is

= =p (developed) (250) (11.2) 2800 W.250V

c) To find the power developed by the 8 A cur-
rent source, we first find the voltage across the 
source. If we let sv  represent the voltage across 
the source, positive at the upper terminal of the 
source, we obtain

+ = = = −v v v8(10) 20,   or   60 V,s o s

and the power developed by the 8 A source is 
480 W. Note that the 125 Ω  and 10 Ω  resistors do 
not affect the value of ov  but do affect the power 
calculations. Check your power calculations by 
 determining the power absorbed by all of the 
resistors in the circuit.

Objective 4—Understand source transformation

4.15 a)  Use a series of source transformations to 
find the voltage v  in the circuit shown.

b) How much power does the 10 mA source 
deliver to the circuit?

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter Problems 4.59 and 4.60.

Answer: a) 2 V;
b) 31.2 mW.

4.10  Thévenin and Norton 
Equivalents

At times in circuit analysis, we want to concentrate on what happens 
at a specific pair of terminals. For example, when we plug a toaster 
into an outlet, we are interested primarily in the voltage and current at 
the terminals of the toaster. We have little or no interest in the effect 

2 A 10 Vyo

1

2

Figure 4.45 ▲ The circuit shown in Fig. 4.44 after 
combining sources and resistors.

600 V

400 V 1 kV10 mA y

1

2

160 V

2

1
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2 kV

2
15 V

7.5 V

1
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that connecting the toaster has on voltages or currents elsewhere in the 
circuit supplying the outlet. We can expand this interest in terminal 
behavior to a set of appliances, each requiring a different amount of 
power. We then are interested in how the voltage and current delivered 
at the outlet change as we change appliances. In other words, we want 
to focus on the behavior of the circuit supplying the outlet, but only at 
the outlet terminals.

Thévenin and Norton equivalents are circuit simplification tech-
niques. These equivalent circuits retain no information about the inter-
nal behavior of the original circuit and focus only on terminal behavior. 
They are extremely valuable when analyzing complex circuits where one 
portion of the circuit is fixed, so it can be replaced by a simple Thévenin 
or Norton equivalent, and another portion of the circuit is changing. 
Although here we discuss them as they pertain to resistive circuits, 
Thévenin and Norton equivalent circuits may be used to represent any 
circuit made up of linear elements.

The Thévenin equivalent circuit is the simplest equivalent for a 
given circuit and consists of a single voltage source in series with a sin-
gle resistor. The Norton equivalent circuit is the source transform of the 
Thévenin equivalent circuit. To better grasp the concept of a Thévenin 
equivalent circuit, imagine a circuit with a complex interconnection 
of resistors, independent sources, and dependent sources, as shown 
in Fig. 4.46(a). We are interested in simplifying this complex circuit 
with respect to the terminals a and b. The simplified equivalent circuit, 
shown in Fig. 4.46(b), is the series combination of a voltage source VTh  
and a resistor RTh  called the Thévenin equivalent circuit. It is equiva-
lent to the original circuit in the sense that, if we connect the same load 
across the terminals a and b of each circuit, we get the same voltage and 
current at the terminals of the load. This equivalence holds for all pos-
sible values of load resistance.

The Thévenin Equivalent
To represent the original circuit by its Thévenin equivalent, we must cal-
culate the Thévenin voltage VTh and the Thévenin resistance R .Th  First, 
we note that if the load resistance is infinitely large, we have an open- 
circuit condition. The open-circuit voltage at the terminals a and b in the 
circuit shown in Fig. 4.46(b) is V .Th  By hypothesis, this must be the same 
as the open-circuit voltage at the terminals a and b in the original circuit. 
Therefore, to find the Thévenin voltage V ,Th  calculate the open-circuit 
voltage in the original circuit.

Reducing the load resistance to zero gives us a short-circuit condition. 
If we place a short circuit across the terminals a and b of the Thévenin 
equivalent circuit, the short-circuit current directed from a to b is

 i
V
R

 .sc
Th

Th
=  (4.36)

By hypothesis, this short-circuit current must be identical to the short- 
circuit current that exists in a short circuit placed across the terminals a 
and b of the original network. From Eq. 4.36,

 R
V
i

 .Th
Th

sc
=  (4.37)

Thus, the Thévenin resistance is the ratio of the open-circuit voltage to 
the short-circuit current. Work through Example 4.14 to see how to find 
the Thévenin equivalent of a circuit.

A resistive
network containing
independent and
dependent sources

a

b

a

b

(a) (b)

1

2

RTh

VTh

Figure 4.46 ▲ (a) A general circuit. (b) The Thévenin 
equivalent circuit.
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EXAMPLE 4.14 Finding a Thévenin Equivalent

Find the Thévenin equivalent of the circuit in  
Fig. 4.47.

Solution
To find the Thévenin equivalent of the circuit shown 
in Fig. 4.47, we first calculate the open-circuit volt-
age .abv  Note that when the terminals a, b are open, 
there is no current in the 4 Ω  resistor. Therefore the 
open-circuit voltage abv  is identical to the voltage 
across the 3 A current source, labeled 1v . We find the 
voltage by solving a single KCL equation. Choosing 
the lower node as the reference node, we get

25
5 20

3 0.1 1−
+ − =

v v

Solving for 1v  yields

= =v V32 V .1 Th

Hence, the Thévenin voltage for the circuit is 32 V.
The next step is to place a short circuit across the  

terminals a and b and calculate the resulting short- 
circuit current. Figure 4.48 shows the circuit with the 
short in place. Note that the short-circuit current is  

in the direction of the open-circuit voltage drop across 
the terminals a and b. If the short-circuit current is in 
the direction of the open-circuit voltage rise across the 
terminals, a minus sign must be inserted in Eq. 4.37.

The short-circuit current (isc) is found easily 
once 2v  is known. Therefore, the problem reduces 
to finding 2v  with the short in place. Again, if we 
use the lower node as the reference node, the KCL 
equation at the node labeled 2v  is

25
5

 
20

3  
4

0.2 2 2−
+ − + =

v v v

Solving for 2v  gives

16 V.2 =v

Hence, the short-circuit current is

= =i 16
4

4 A.sc

We now find the Thévenin resistance by substitut-
ing the numerical values for the Thévenin voltage, 
VTh , and the short-circuit current, isc , into Eq. 4.37:

= = =R
V
i

32
4

8 Ω.Th
Th

sc

Figure 4.49 shows the Thévenin equivalent for 
the circuit shown in Fig. 4.45.

You should verify that, if a 24 Ω resistor is con-
nected across the terminals a and b in Fig.  4.47, the 
voltage across the resistor will be 24 V and the current 
in the resistor will be 1 A, as would be the case with 
the Thévenin circuit in Fig. 4.49. This same equivalence 
between the circuits in Figs. 4.47 and 4.49 holds for any 
resistor value connected between nodes a and b.

The Norton Equivalent
A Norton equivalent circuit consists of an independent current source in 
parallel with the Norton equivalent resistance, as shown in Fig. 4.50. We can 
 derive it directly from the original circuit by calculating the open-circuit volt-
age and the short-circuit current, just as we did when calculating the Thévenin 
equivalent. The Norton current equals the short-circuit current at the ter-
minals of interest, and the Norton resistance is the ratio of the open-circuit 
 voltage to the short-circuit current, so it is identical to the Thévenin resistance:

20 V

5 V 4 V

25 V
1

2
3 Ay1

1

2

yab

1

2

a

b

Figure 4.47 ▲ A circuit used to illustrate a Thévenin 
equivalent.

20 V

5 V 4 V

25 V
1

2

a

b

3 Ay2

1

2

isc

Figure 4.48 ▲ The circuit shown in Fig. 4.47 with terminals 
a and b short-circuited.

8 V

32 V
1

2

a

b

Figure 4.49 ▲ The Thévenin equivalent of the circuit shown 
in Fig. 4.47.
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=

= =

I i

R
i

R

;

.

N sc

N
oc

sc
Th

v
 (4.38)

If we already have a Thévenin equivalent circuit, we can derive the 
Norton equivalent circuit from it simply by making a source transformation.

Using Source Transformations
Sometimes we can use source transformations to derive a Thévenin or 
Norton equivalent circuit. This technique works best when the network 
contains only independent sources. Dependent sources require us to retain 
the identity of the controlling voltages and/or currents, and this constraint 
usually prohibits simplification of the circuit by source transformations. 
Work through Example 4.15 to see how a series of source transformations 
leads to a Norton equivalent circuit.

Gain additional practice with Thévenin equivalent circuits and see 
how to cope with the presence of a dependent source in the original circuit 
by working through Example 4.16.

EXAMPLE 4.15 Finding a Norton Equivalent

Find the Norton equivalent of the circuit in Fig. 4.47 
by making a series of source transformations.

Solution
We start on the left side of the circuit and trans-
form the series-connected 25 V  source and 5 Ω  
resistor to a parallel-connected 5A  source and 
5 Ω  resistor, as shown in Step 1 of Fig.  4.51. Use 
KCL to combine the parallel-connected 5A  and 
3A  sources into a single 8 A  source, and com-
bine the parallel-connected 5 Ω  and 25 Ω  resistors 

into a single 4 Ω  resistor, as shown in Step 2 of 
Fig.  4.51. Now transform the parallel-connected 
8 A  source and 4 Ω  resistor to a series-connected 
32 V  source and 4 Ω  resistor, and combine the two 
 series-connected 4 Ω  resistors into a single 8 Ω  
 resistor, as shown in Step 3 of Fig. 4.51. Note that 
the result of Step 3 is the Thévenin equivalent cir-
cuit we derived in Example 4.14. Finally, transform 
the series-connected 32 V  source and 8 Ω  resis-
tor into a parallel-connected 4 A  source and 8 Ω  
resistor, which is the Norton equivalent circuit, as 
shown in Step 4 of Fig. 4.51.

A resistive
network containing
independent and
dependent sources

a

b

a

b

(a) (b)

IN RN

Figure 4.50 ▲ (a) A general circuit. (b) The Norton 
equivalent circuit.
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5 V 4 V

25 V 3 A
1

2

a

b

20 V5 V

4 V

3 A5 A

a

b

Source transformation; series 
resistors combined, producing 
the Thévenin equivalent circuit

Source transformation Parallel sources and
parallel resistors combined

4 V
a

b

4 V8 A

a

b

8 V4 A

Source transformation, producing
the Norton equivalent circuit

8 V
a

b

32 V
1

2

Step 1 

Step 3 Step 4 

Step 2 

Figure 4.51 ▲ Step-by-step derivation of the Thévenin and Norton equivalents of the circuit shown in Fig. 4.47.
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Find the Thévenin equivalent for the circuit con-
taining dependent sources shown in Fig. 4.52.

Solution
The first step in analyzing the circuit in Fig. 4.52 is to 
recognize that the current labeled ix  must be zero. 
(Note the absence of a return path for ix  to enter the 
left-hand portion of the circuit.) The open-circuit,  
or Thévenin, voltage is the voltage across the 25 Ω  
resistor. Since i 0,x =

= = − = −vV i i( 20 )(25) 500 .Th ab

The current i is

i
V5 3

2000
5 3

2000
 .Th= − =

−v  

In writing the equation for i, we recognize that the 
Thévenin voltage is identical to v. When we com-
bine these two equations, we obtain

= −V 5 V.Th

To calculate the short-circuit current, we place 
a short circuit across a and b. When the terminals a 
and b are shorted together, the control voltage v  is 
reduced to zero. Therefore, with the short in place, 
the circuit shown in Fig.  4.52 becomes the one 
shown in Fig. 4.53. With the short circuit shunting 
the 25 Ω  resistor, all of the current from the depen-
dent current source appears in the short, so

i i20 .sc = −

1
2

25 V

2 kV

5 V 3y 20i
1

2
yab

1

2

y

1

2

a

b

i

ix

Figure 4.52 ▲ A circuit used to illustrate a Thévenin equiva-
lent when the circuit contains dependent sources.

25 V

2 kV

5 V 20i
1

2
isc

a

b

i

Figure 4.53 ▲ The circuit shown in Fig. 4.52 with terminals 
a and b short-circuited.

100 V

5 V
2
1

a

b

Figure 4.54 ▲ The Thévenin equivalent for the circuit shown 
in Fig. 4.52.

EXAMPLE 4.16  Finding the Thévenin Equivalent of a Circuit with  
a Dependent Source

As the voltage controlling the dependent volt-
age source has been reduced to zero, the current 
controlling the dependent current source is

i 5
2000

2.5 mA.= =

Combining these two equations yields a short- 
circuit current of

i 20(2.5) 50 mA.sc = − = −

From isc  and VTh  we get

= = −
−

=R
V
i

5
0.05

100 Ω.Th
Th

sc

Figure 4.54 illustrates the Thévenin equivalent  
for the circuit shown in Fig.  4.52. Note that the 
reference polarity marks on the Thévenin voltage 
source in Fig. 4.54 agree with the preceding equa-
tion for V .Th

Objective 5—Understand Thévenin and Norton equivalents

4.16 Find the Norton equivalent circuit with respect 
to the terminals a, b for the circuit shown.

ASSESSMENT PROBLEMS

Answer: = = =I i R50 mA;  2 kΩ.N sc N

2 kV

4 kV 3 kV75 mA

a

b
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4.11  More on Deriving the Thévenin 
Equivalent

We can calculate the Thévenin resistance, RTh , directly from the circuit 
rather than calculating it as the ratio of the open-circuit voltage to the 
short-circuit current (Eq. 4.37). If the circuit contains only independent 
sources and resistors, we can determine RTh  by deactivating all indepen-
dent sources and then calculating the resistance seen looking into the 
network at the designated terminal pair. A voltage source is deactivated 
by replacing it with a short circuit, while a current source is deactivated 
by replacing it with an open circuit. Example 4.17 illustrates this direct 
method for determining RTh .

4.17 Find the Thévenin equivalent circuit with respect 
to the terminals a, b for the circuit shown.

Answer: V R52 V;  6 Ω.Th Th= =

4.18 An ammeter with an internal resistance of 50 Ω 
is used to measure the current io  in the circuit 
shown. What is the ammeter reading?

Answer: 5.988 mA.

SELF-CHECK: Also try Chapter Problems 4.65, 4.67, and 4.73.

EXAMPLE 4.17  Finding the Thévenin Equivalent Resistance Directly  
from the Circuit

Find RTh  to the left of the terminals a and b for the 
circuit shown in Fig. 4.55.

with  the parallel combination of the 5 and 20 Ω 
 resistors. Thus,

R R 4
(5)(20)
5 20

8 Ω.ab Th= = +
+

=

Note that deriving RTh  directly from the circuit 
is much simpler than finding RTh  from Eq. 4.37, as 
we did in Example 4.14.

Solution
Deactivating the independent sources simplifies the 
circuit to the one shown in Fig. 4.56. The resistance 
seen looking into the terminals a and b is denoted 
R ,ab  which consists of the 4 Ω  resistor in series 

If the circuit or network contains dependent sources, a direct method 
for finding the Thévenin resistance RTh  is as follows. We first deactivate 
all independent sources, and then we apply either a test voltage source 
or a test current source to the Thévenin terminals a and b. The Thévenin 

1

2

12 V 2 V

6 V12 V

8 A

a

b

18 mA 60 kV

12 kV 15 kV

36 V
2

1
io

20 V

5 V 4 V

25 V 3 A yab

1

2

a

b

1

2

Figure 4.55 ▲ A circuit used to illustrate a Thévenin 
equivalent.

a

b

5 V

20 V

4 V

Rab

Figure 4.56 ▲ The circuit shown in Fig. 4.55 after deactiva-
tion of the independent sources.
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i

2 kV

25 V3yT

1

2 20i

iT

yT
1

2

Figure 4.57 ▲ An alternative method for computing the 
Thévenin resistance.

resistance equals the ratio of the voltage across the test source to the cur-
rent delivered by the test source. Example 4.18 illustrates this alternative 
procedure for finding R ,Th  using the same circuit as Example 4.16.

EXAMPLE 4.18 Finding the Thévenin Equivalent Resistance Using a Test Source

Find the Thévenin resistance RTh  for the circuit in 
Fig. 4.52, using the test source method.

Solution
Begin by deactivating the independent voltage 
source and exciting the circuit from the terminals a 
and b with either a test voltage source or a test cur-
rent source. If we apply a test voltage source, we will 
know the voltage of the dependent voltage source 
and hence the controlling current i. Therefore, we 
opt for the test voltage source. Figure  4.57 shows 
the circuit for computing the Thévenin resistance.

The test voltage source is denoted ,Tv  and the 
current that it delivers to the circuit is labeled i .T  
To find the Thévenin resistance, we solve the cir-
cuit for the ratio of the voltage to the current at the 
test source; that is, R i/ .T TTh = v  From Fig. 4.57,

v

v

= +

=
−

i i

i

25
20 ,

3
2000

.

T
T

T

We then substitute the expression for i into the 
equation for iT  and solve the resulting equation for 
the ratio i /T Tv :

v v

v

= −

= − = =

i

i

25
 

60
2000

,

1
25

6
200

50
5000

1
100

.

T
T T

T

T

The Thévenin resistance is the inverse of the ratio 
i /T Tv , so

R
i

100 Ω.T

T
Th = =

v
 

In a network containing only resistors and dependent sources, the 
Thévenin equivalent voltage =V 0Th  and the Norton equivalent current 

=I 0N . It should be clear that if the circuit you start with has no indepen-
dent sources, its equivalent circuit cannot have any independent sources 
either. Therefore, the Thévenin and Norton equivalents for a circuit with 
only dependent sources and resistors is a single equivalent resistance, 
whose value must be determined using the test source method. The proce-
dure is illustrated in Example 4.19.

EXAMPLE 4.19  Finding the Thévenin Equivalent of a Circuit with Dependent 
Sources and Resistors

Find the Norton equivalent for the circuit in Fig. 4.58. Solution
The circuit in Fig. 4.58 has no independent sources. 
Therefore, the Norton equivalent current is zero, 
and the Norton equivalent circuit consists only of 
the Norton resistance, RN . Applying a test source 
to the terminals a and b is the only way to deter-
mine RN . We have applied a test current source, 
whose value is iT , as shown in Fig.  4.59. Analyze 
this circuit to calculate the voltage across the test 
source, Tv , and then calculate the Norton equiva-
lent resistance using the ratio of Tv  to iT.

a

b

20 V

10 V 30 Vyx

1

2

vx

6

Figure 4.58 ▲ A circuit used to determine a Thévenin equiv-
alent when the circuit contains only dependent sources and 
resistors.
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We conclude this discussion of Thévenin and Norton equivalents with 
one final example of their application in circuit analysis. Sometimes we 
can use a Thévenin equivalent to simplify one portion of a circuit, thereby 
greatly simplifying analysis of the larger network. Let’s return to the 
amplifier circuit first introduced in Section 2.5 and subsequently analyzed 
in Sections 4.4 and 4.7. Study Example 4.20 to see how a Thévenin equiv-
alent of one portion of this circuit helps us in the analysis of the whole 
circuit.

Write a KCL equation at the top essential node to 
give

i
20 10 6 30

 .T
T x T=

+
− +

v v v

Use voltage division to find the voltage across the 
10 Ω  resistor:

10
20 10

 
3

 .x T
T=

+
=v v v

Then,

i
30 18 30 90

 .T
T T T T= − + =

v v v v

Therefore, the Norton equivalent of the circuit 
in Fig.  4.58 is a single resistor whose resistance 

= =vR i/ 90 ΩT TN .

EXAMPLE 4.20 Using a Thévenin Equivalent to Analyze the Amplifier Circuit

Use a Thévenin equivalent of the left side of the ampli-
fier circuit, shown in Fig. 4.60, to find the current iB.

 Solution
We redraw the circuit as shown in Fig. 4.61 to pre-
pare to replace the subcircuit to the left of V0 with 
its Thévenin equivalent. You should be able to 
determine that this modification has no effect on 

the branch currents i ,1  i ,2  i ,B  and i .E  Then replace 
the circuit made up of V ,CC  R ,1  and R2  with a 
Thévenin equivalent, with respect to the terminals 
b and d. The Thévenin voltage and resistance are

 V
V R

R R
,CC

Th
2

1 2

=
+

 (4.39)

 R
R R

R R
 .Th

1 2

1 2

=
+

 (4.40)

a

b

20 V

10 V 30 Vyx yT iT

1

2

1

2

vx

6

Figure 4.59 ▲ The circuit in Fig. 4.58 with a test current 
source.

iE

VCC

R2

R1

RE

biB

RC

1

2

a

b c

d

V0

1 2

iB

i1

i2

Figure 4.60 ▲ The application of a Thévenin equivalent in 
circuit analysis.

biB

RC

a9a

d

R1i1

RE iE

R2i2

VCC
1

2
VCC

1

2 V0

1 2

iB

b c

Figure 4.61 ▲ A modified version of the circuit shown in 
Fig. 4.60.
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c

1

2
VTh

RTh

d

a

RE iE

RC

VCC
1

2
b

V0

iB

1 2

biB

Figure 4.62 ▲ The circuit shown in Fig. 4.61 modified by a 
Thévenin equivalent.

With the Thévenin equivalent, the circuit in Fig. 4.61 
becomes the one shown in Fig. 4.62.

We now derive an equation for iB  by summing 
the voltages around the left mesh. In writing this 
mesh equation, we recognize that i i(1 ) .E Bβ= +  
Thus,

β= + + +V R i V R i(1 ) ,B E BTh Th 0

from which

 i
V V

R R (1 )
 .B

E

Th 0

Th β
=

−
+ +

 (4.41)

When we substitute Eqs. 4.39 and 4.40 into Eq. 4.41, 
we get the same expression obtained in Eq. 2.25. 
Note that once we have incorporated the Thévenin 
equivalent into the original circuit, we can obtain 
the solution for iB  by writing a single equation.

4.12 Maximum Power Transfer
Circuit analysis plays an important role in the analysis of systems designed 
to transfer power from a source to a load. This text discusses power trans-
fer in two basic types of systems.

• Systems Optimized for Maximum Efficiency Power utility systems 
are a good example of this type because they generate, transmit, and 
distribute large quantities of electric power. If a power utility system 
is inefficient, a large percentage of the power generated is lost in the 
transmission and distribution processes, and thus wasted. We will 
look at these types of systems in Sections 9.10 and 9.11.

• Systems Optimized for Maximum Power Communication and instru-
mentation systems are good examples because when information 
(data) is transmitted via electric signals, the power available at the 
transmitter or detector is limited. Thus, transmitting as much of this 
power as possible to the receiver (load) is desirable. In such applica-
tions, the amount of power being transferred is small, so the transfer 
efficiency is not a primary concern. Here we consider maximum power 
transfer in systems that can be modeled by a purely resistive circuit.

Objective 5—Understand Thévenin and Norton equivalents

4.19 Find the Norton equivalent circuit with respect 
to the terminals a, b for the circuit shown.

Answer: = = =I i R60 mA;  1866.67 Ω.N sc N

4.20 Find the Thévenin equivalent circuit with 
 respect to the terminals a, b for the circuit 
shown.

Answer: = =vV 60 V,Th ab  R 1.5 kΩ.Th =

ASSESSMENT PROBLEMS

SELF-CHECK: Also try Chapter Problems 4.74 and 4.80.

1

2
280 V

b

a
2 kV 2 kV

5.6 kV2 kV

0.2iD

iD
2
1

2

1

2.5 kV

100 V

4 kV

6 kV

a

b

5000i1

1023y2

y2

1

2

i1
625 V
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Maximum power transfer can best be described with the aid of the circuit 
shown in Fig. 4.63. We assume a resistive network containing independent and  
dependent sources and a designated pair of terminals, a and b, to which a load, 
R ,L  is connected. The problem is to determine the value of RL that permits max-
imum power delivery to R .L  The first step in this process is to recognize that a 
resistive network can always be replaced by its Thévenin equivalent. Therefore, 
we redraw the circuit shown in Fig. 4.63 as the one shown in Fig. 4.64. Replacing 
the original network by its Thévenin equivalent greatly simplifies the task of 
finding R .L  To derive RL, begin by expressing the power dissipated in RL as a 
function of the three circuit parameters V ,Th  R ,Th  and R .L  Thus

 = =
+







p i R

V
R R

R .2
L

Th

Th L

2

L  (4.42)

Next, we recognize that for a given circuit, VTh  and RTh  will be fixed. 
Therefore, the power dissipated is a function of the single variable R .L  To 
find the value of RL that maximizes the power, we use elementary calcu-
lus to write an equation for the derivative of p with respect to RL:

=
+ − ⋅ +

+












dp
dR

V
R R R R R

R R
( )  2( )

( )
  .

L
Th
2 Th L

2
L Th L

Th L
4

The derivative is zero and p is maximized when

+ = +R R R R R( ) 2 (     ).Th L
2

L Th L

Solving for the load resistance RL yields

EXAMPLE 4.21 Calculating the Condition for Maximum Power Transfer

a) For the circuit shown in Fig. 4.65, find the value 
of RL that results in maximum power being 
transferred to R .L

b)  Calculate the maximum power that can be deliv-
ered to R .L

c) When RL is adjusted for maximum power trans-
fer, what percentage of the power delivered by 
the 360 V source reaches RL?

CONDITION FOR MAXIMUM POWER 
TRANSFERRED TO A RESISTIVE LOAD

 =R R .L Th  (4.43)

Thus, maximum power transfer occurs when the load resistance RL equals 
the Thévenin resistance R .Th  To find the maximum power delivered to R ,L   
substitute Eq. 4.43 into Eq. 4.42:

MAXIMUM POWER TRANSFERRED  
TO A RESISTIVE LOAD

 = =p
V R

R
V

R(2 ) 4
.max

Th
2

L

L
2

Th
2

L
 (4.44)

Analyzing a circuit to calculate the load resistor required for maximum 
power transfer is illustrated in Example 4.21.

Resistive network
containing
independent and
dependent sources

b

a

RL

Figure 4.63 ▲ A circuit describing maximum power 
transfer.

1

2

a

b

VTh

RTh

i RL

Figure 4.64 ▲ A circuit used to determine the value 
of RL for maximum power transfer.

RL150 V

30 V a

b

360 V
1

2

Figure 4.65 ▲ The circuit for Example 4.21.

M04_NILS8436_12_SE_C04.indd   127 13/01/22   2:52 PM



128 Techniques of Circuit Analysis

Solution

a) The Thévenin voltage for the circuit to the left of 
the terminals a and b is

V 150
180

 (360) 300 V.Th = =

The Thévenin resistance is

R
(150)(30)

180
25 Ω.Th = =

Replacing the circuit to the left of the terminals 
a and b with its Thévenin equivalent gives us the 
circuit shown in Fig. 4.66, so RL must equal 25 Ω  
for maximum power transfer.

b) The maximum power that can be delivered to RL is

p 300
50

(25) 900 W.max

2

( )= =

c) When RL equals 25 Ω, the voltage abv  is

300
50

(25) 150 V.ab ( )= =v

From Fig.  4.65, when abv  equals 150 V, the cur-
rent in the voltage source in the direction of the 
voltage rise across the source is

i 360 150
30

210
30

7 A.s = − = =

Therefore, the source is delivering 2520 W to the 
circuit, or

p i (360) 2520 W.s s= − = −

The percentage of the source power delivered to 
the load is

900
2520

   100 35.71%.× =

Objective 6—Know the condition for and calculate maximum power transfer to resistive load

4.21 a)  Find the value of R that enables the circuit 
shown to deliver maximum power to the ter-
minals a, b.

b) Find the maximum power delivered to R.

Answer: a) 2.5 kΩ;
b) 6.4 mW.

4.22 Assume that the circuit in Assessment Problem 
4.21 is delivering maximum power to the load 
resistor R.
a) How much power is the voltage source deliv-

ering to the network?
b) Repeat (a) for the current source.
c) What percentage of the total power gener-

ated by these two sources is delivered to the 
load resistor R?

Answer:
a)  1.196 W (delivered);

b) 182.4 mW (absorbed);

c) 0.535%.

ASSESSMENT PROBLEMS

SELF-CHECK: Also try Chapter Problems 4.88 and 4.91.

RL

25 V a

b

300 V
1

2

Figure 4.66 ▲ Reduction of the circuit shown in Fig. 
4.66 by means of a Thévenin equivalent.

4.8 kV

1.6 kV

1.8 kV

R

2.4 kV

60 V
2
1 15 mA 5 kV
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4.13 Superposition
A linear system obeys the principle of superposition, which states that 
whenever a linear system is excited, or driven, by more than one inde-
pendent source of energy, the total response is the sum of the individual 
responses. An individual response is the result of an independent source 
acting alone. Because we are dealing with circuits made up of intercon-
nected linear-circuit elements, we can apply the principle of superposition 
directly to the analysis of such circuits when they are driven by more than 
one independent energy source. At present, we restrict the discussion to 
simple resistive networks; however, the principle is applicable to any lin-
ear system.

Superposition is applied in both the analysis and design of circuits. In 
analyzing a complex circuit with multiple independent voltage and current 
sources, there are often fewer, simpler equations to solve when the effects 
of the independent sources are considered one at a time. Applying super-
position can thus simplify circuit analysis. Be aware, though, that some-
times applying superposition actually complicates the analysis, producing 
more equations to solve than with an alternative method. Superposition 
is required only if the independent sources in a circuit are fundamentally 
different. In these early chapters, all independent sources are dc sources, 
so superposition is not required. We introduce superposition here in antic-
ipation of later chapters in which circuits will require it.

Superposition is applied in design to synthesize a desired circuit 
response that could not be achieved in a circuit with a single source. If the 
desired circuit response can be written as a sum of two or more terms, the 
response can be realized by including one independent source for each 
term of the response. This approach to the design of circuits with complex 
responses allows a designer to consider several simple designs instead of 
one complex design.

We demonstrate the superposition principle in Example 4.22.

EXAMPLE 4.22 Using Superposition to Solve a Circuit

Use the superposition principle to find the branch 
currents in the circuit shown in Fig. 4.67.

We can easily find the branch currents in the cir-
cuit in Fig. 4.68 once we know the node voltage across 
the 3 Ω  resistor. Denoting this voltage ,1v   we write

120
6

 
3

 
2 4

0,1 1 1−
+ +

+
=

v v v
 

from which

30 V.1 =v

Solution
We begin by finding the branch currents resulting 
from the 120 V voltage source. We denote those 
currents with a prime. Replacing the ideal current 
source with an open circuit deactivates it; Fig. 4.68 
shows this. The branch currents in this circuit are 
the result of only the voltage source.

4 V3 V

6 V

120 V
i1

2 V

i3
i4i2

1

2
12 A

Figure 4.67 ▲ A circuit used to illustrate superposition.

4 V3 V120 V

6 V

i91

2 V

i93
i94i92

1

2

y1

Figure 4.68 ▲ The circuit shown in Fig. 4.67 with the cur-
rent source deactivated.
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4 V3 V

6 V

i10

2 V

i30
i40i20 12 A

Figure 4.69 ▲ The circuit shown in Fig. 4.67 with the volt-
age source deactivated.

2 1

10 V20 V

5 V

10 V
iD1

2
5 A

0.4yD

2iD
yo

1

2

yD

1

2

Figure 4.71 ▲ The circuit for Example 4.23.

When applying superposition to linear circuits containing both inde-
pendent and dependent sources, you must recognize that the dependent 
sources are never deactivated. Example 4.23 applies superposition when a 
circuit contains both dependent and independent sources.

Now we can write the expressions for the branch 
currents ′ ′i ithrough1 4  directly:

i

i

i i

120 30
6

15 A,

30
3

10 A,

30
6

5 A.

1

2

3 4

′ = − =

′ = =

′ = ′ = =

To find the component of the branch currents 
resulting from the current source, we deactivate the 
ideal voltage source and solve the circuit shown in 
Fig.  4.69. The double-prime notation for the cur-
rents indicates they are the components of the total 
current resulting from the ideal current source.

We determine the branch currents in the cir-
cuit shown in Fig. 4.69 by first solving for the node 
voltages across the 3 and 4 Ω  resistors, respec-
tively. Figure  4.70 shows the two node voltages. 

The two KCL equations that describe the circuit 
are

3 6 2
0,

2
 

4
  12 0.

3 3 3 4

4 3 4

+ +
−

=

−
+ + =

v v v v

v v v

Solving the simultaneous KCL equations for 3v  and 
,4v  we get

12 V,

24 V.
3

4

= −

= −

v
v

Now we can write the branch currents i1
″  through i4

″ 
directly in terms of the node voltages 3v  and 4v :

i

i

i

i

6
12
6

2 A,

3
12
3

4 A,

2
12 24

2
6 A,

4
24
4

6 A.

1
3

2
3

3
3 4

4
4

′′ =
−

= =

′′ = = − = −

′′ =
−

= − + =

′′ = = − = −

v

v

v v

v

To find the branch currents in the original cir-
cuit, that is, the currents i ,1  i ,2  i ,3  and i4  in Fig. 4.67, 
we simply add the single-primed currents to the 
 double-primed currents:

i i i

i i i

i i i

i i i

  15 2 17 A,

  10 4 6 A,

  5 6 11 A,

  5 6 1 A.

1 1 1

2 2 2

3 3 3

4 4 4

= ′ + ′′ = + =

= ′ + ′′ = − =

= ′ + ′′ = + =

= ′ + ′′ = − = −

You should verify that the currents i ,1  i ,2  i ,3  and i4  
have the correct values for the branch currents in 
the circuit shown in Fig. 4.67.

EXAMPLE 4.23 Using Superposition to Solve a Circuit with Dependent Sources

Use the principle of superposition to find ov  in the 
circuit shown in Fig. 4.71.

Solution
We begin by finding the component of ov  result-
ing from the 10 V source. Figure 4.72 shows the cir-
cuit. With the 5A  source deactivated, ′∆v  must equal 
( 0.4 )  10 .( )− ′∆v  Hence, ′∆v  must be zero, the branch 
containing the two dependent sources is open, and

20
25

 (10) 8 V.o′ = =v

4 V3 V

6 V 2 V

12 Ay4

1

2

y3

1

2

Figure 4.70 ▲ The circuit shown in Fig. 4.69 showing the 
node voltages 3v  and 4v .
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When the 10 V source is deactivated, the circuit 
reduces to the one shown in Fig.  4.73. We have 
added a reference node and the node designations 
a, b, and c to aid the discussion. Summing the cur-
rents away from node a yields

v v
v v v

′′
+

′′
− ′′ = ′′ − ′′ =∆ ∆20 5

0.4 0, or 5  8 0.o o
o

Summing the currents away from node b gives

v
v

v v

′′ +
− ′′

− =

′′ + − ′′ =

∆
∆

∆ ∆

i

i

0.4
2

10
5 0, or

4 2 50.

b

b

We now use

v v= ′′ + ′′∆ ∆i2b

to find the value for v ′′∆ .  Thus,

v v′′ = ′′ =∆ ∆5 50,   or   10 V.

From the node a equation,

v v′′ = ′′ =5 80,   or  16 V.o o

The value of ov  is the sum of v ′o  and v ′′,o  or 24 V.

SELF-CHECK: Assess your understanding of this material by trying Chapter Problems 4.92 and 4.97.

10 V20 V

5 V

10 V
iD9

0.4yD9

2 iD9
yo9

1

2

yD9

1

2
2 1

1

2

Figure 4.72 ▲ The circuit shown in Fig. 4.71 with the 5 A 
source deactivated.

10 V20 V

5 V a b

c

iD0
5 A

0.4yD0

2iD0
yo0

1

2

yD0

1

2
2 1

Figure 4.73 ▲ The circuit shown in Fig. 4.71 with the 
10 V source deactivated.

y2

1

2

y1

1

2

R4R1Ig1 Ig2R3

R2

Figure 4.74 ▲ Circuit used to introduce sensitivity 
analysis.

Practical Perspective
Circuits with Realistic Resistors
It is not possible to fabricate identical electrical components. For exam-
ple, resistors produced from the same manufacturing process can vary 
in value by as much as 20% . Therefore, in creating an electrical system, 
the designer must consider the impact that component variation will 
have on the performance of the system. Sensitivity analysis permits the 
designer to calculate the impact of variations in the component values 
on the output of the system. We will see how this information enables a 
designer to specify an acceptable component value tolerance for each 
of the system’s components.

Consider the circuit shown in Fig.  4.74. We will use sensitivity 
analysis to determine the sensitivity of the node voltages 1v  and 2v  to 
changes in the resistor R1 . Using the node-voltage method, we derive 
the expressions for 1v  and 2v  as functions of the circuit resistors and 
source currents. The results are given in Eqs. 4.45 and 4.46d:

 

R R R I R R R R R I

R R R R R R

{  [ ( ) ] }

( )( )
,g g

1
1 3 4 2 2 3 4 3 4 1

1 2 3 4 3 4

=
− + +

+ + +
v  (4.45)

 
R R R R I R I

R R R R R R

[( ) ]

( ) ( )
 .g g

2
3 4 1 2 2 1 1

1 2 3 4 3 4

=
+ −

+ + +
v  (4.46)
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The sensitivity of 1v  with respect to R1  is found by differentiating Eq. 4.45 
with respect to R1 , and similarly the sensitivity of 2v  with respect to R1  
is found by differentiating Eq. 4.46 with respect to R1 . We get

d
dR

R R R R R R R I R R R R R I

R R R R R R

[ ( )] { [ ( )] }

[( )( ) ]
,g g1

1

3 4 2 3 4 3 4 2 3 4 2 3 4 1

1 2 3 4 3 4
2

=
+ + − + +

+ + +
v

 (4.47)

=
− + +

+ + +
vd

dR

R R R R I R R R R R I

R R R R R R

{ [ ( )   ] }

[( )( ) ]
 .g g2

1

3 4 3 4 2 2 3 4 3 4 1

1 2 3 4 3 4
2   (4.48)

We now consider an example with actual component values to illus-
trate the use of Eqs. 4.47 and 4.48.

EXAMPLE
Assume the nominal values of the components in the circuit in Fig. 4.74 
ared: R 25 Ω1 = ; R 5 Ω2 = ; R 50 Ω3 = ; R 75 Ω4 = ; I 12 Ag1 = ; and 
I 16 A.g2 =  Use sensitivity analysis to predict the values of 1v  and 2v  if 
the value of R1  is different by 10% from its nominal value.

Solution
From Eqs. 4.45 and 4.46 we find the nominal values of 1v  and 2v . Thus

 
=

− +
+

=v 25{3750(16) [5(125) 3750]12}
30(125) 3750

25 V,1  (4.49)

and

 
3750[30(16) 25 12)

30(125) 3750
90 V.2v

( ]
=

−
+

=  (4.50)

Now from Eqs. 4.47 and 4.48 we can find the sensitivity of 1v  and 2v  
to changes in R1 . Hence,

( ) ( )

( )
=

+ − − +
+

vd
dR

[3750 5 125 ] {3750(16) [3750 5 125 ]12}
[ 30 (125) 3750]

1

1
2

 
7

12
 V/Ω,=  (4.51)

and

=
− +vd

dR
3750{3750(16) [5(125) 3750]12}

(7500)
2

1
2

 0.5 V/Ω.=  (4.52)

How do we use the results given by Eqs. 4.51 and 4.52? Assume 
that R1  is 10% less than its nominal value, that is, R 22.5 Ω1 = . Then 

R 2.5 Ω1∆ = −  and Eq. 4.51 predicts that 1∆v  will be

7
12

( 2.5) 1.4583 V.1 ( )∆ = − = −v

Therefore, if R1  is 10% less than its nominal value, our analysis pre-
dicts that 1v  will be

 25 1.4583 23.5417 V.1v = − =  (4.53)
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Similarly, for Eq. 4.52 we have

0.5( 2.5) 1.25 V,2∆ = − = −v

 90 1.25 88.75 V.2v = − =  (4.54)

We attempt to confirm the results in Eqs. 4.53 and 4.54 by substituting the 
value R 22.5 Ω1 =  into Eqs. 4.45 and 4.46. When we do, the results are

23.4780 V,1 =v

88.6960 V.2 =v

Why is there a difference between the values predicted from the sensi-
tivity analysis and the exact values computed by substituting for R1  in 
the equations for 1v  and 2v ? We can see from Eqs. 4.47 and 4.48 that 
the sensitivity of 1v  and 2v  with respect to R1  is a function of R1  be-
cause R1  appears in the denominator of both Eqs. 4.47 and 4.48. This 
means that as R1  changes, the sensitivities change; hence, we cannot 
expect Eqs. 4.47 and 4.48 to give exact results for large changes in R .1  
Note that for a 10% change in R1 , the percent error between the pre-
dicted and exact values of 1v  and 2v  is small. Specifically, the percent 
error in 0.2713%1 =v  and the percent error in 0.0676%2 =v .

From this example, we can see that a tremendous amount of work 
is involved if we are to determine the sensitivity of 1v  and 2v  to changes 
in the remaining component values, namely, R2 , R3 , R4 , I g1, and I g2 . 
Fortunately, PSpice3 has a sensitivity function that will perform sensi-
tivity analysis for us. The sensitivity function in PSpice calculates two 
types of sensitivity. The first is known as the one-unit sensitivity, and 
the second is known as the 1% sensitivity. In the example circuit, a one-
unit change in a resistor would change its value by 1 Ω and a one-unit 
change in a current source would change its value by 1 A . In contrast, 
1% sensitivity analysis determines the effect of changing resistors or 
sources by 1% of their nominal values.

The result of PSpice sensitivity analysis of the circuit in Fig. 4.69 is 
shown in Table 4.2. Because we are analyzing a linear circuit, we can 

3See the PSpice supplement that accompanies this text.

TABLE 4.2 PSpice Sensitivity Analysis Results

Element 
Name

Element 
Value

Element Sensitivity 
(Volts/Unit)

Normalized Sensitivity 
(Volts/Percent)

(a) DC Sensitivities of Node Voltage V1

R1 25 0.5833 0.1458

R2 5 5.417− 0.2708−

R3 50 0.45 0.225

R4 75 0.2 0.15

IG1 12 14.58− 1.75−

IG2 16 12.5 2

(b) Sensitivities of Output V2

R1 25 0.5 0.125

R2 5 6.5 0.325

R3 50 0.54 0.27

R4 75 0.24 0.18

IG1 12 12.5− 1.5−

IG2 16 15 2.4
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134 Techniques of Circuit Analysis

use superposition to predict values of 1v  and 2v  if more than one com-
ponent’s value changes. For example, let us assume R1  decreases to 
24 Ω and R2  decreases to 4 Ω . From Table 4.2 we can combine the unit 
sensitivity of 1v  to changes in R1  and R2  to get

R R
  0.5833 5.417 4.8337 V/Ω.1

1

1

2

∆
∆

+
∆
∆

= − = −
v v

Similarly,

R R
0.5 6.5 7.0 V/Ω.2

1

2

2

∆
∆

+
∆
∆

= + =
v v

Thus, if both R1  and R2  decreased by 1 Ω, we would predict

25  4.8227 29.8337 V,

90 7 83 V.
1

2

= + =

= − =

v
v

If we substitute R 24 Ω1 =  and R 4 Ω2 =  into Eqs. 4.45 and 4.46,  
we get

29.793 V,

82.759 V.
1

2

=

=

v
v

In both cases, our predictions are within a fraction of a volt of the actual 
node-voltage values.

Circuit designers use the results of sensitivity analysis to determine 
which component value variation has the greatest impact on the out-
put of the circuit. As we can see from the PSpice sensitivity analysis 
in Table 4.2, the node voltages 1v  and 2v  are much more sensitive to 
changes in R2  than to changes in R1 . Specifically, 1v  is (5.417/0.5833) or 
approxi mately 9 times more sensitive to changes in R2  than to changes 
in R1 , and 2v  is (6.5/0.5) or 13 times more sensitive to changes in R2  
than to changes in R1 . Hence, in the example circuit, the tolerance on 
R2  must be more stringent than the tolerance on R1  if it is important to 
keep 1v  and 2v  close to their nominal values.

SELF-CHECK: Assess your understanding of this Practical Perspective 
by trying Chapter Problems 4.105–4.107.

Summary

• For the topics in this chapter, mastery of some basic terms, 
and the concepts they represent, is necessary. Those terms 
are node, essential node, path, branch, essential branch, 
mesh, and planar circuit. Table  4.1 provides definitions 
and examples of these terms. (See page 95.)

• Two new circuit analysis techniques were introduced in 
this chapter:

• The node-voltage method works with both planar 
and nonplanar circuits. The steps in the node-voltage 
method are in Table 4.3. (See page 135.)

• The mesh-current method works only with planar 
circuits. The steps in the mesh-current method are in 
Table 4.3. (See page 135.)

• Several new circuit simplification techniques were 
introduced in this chapter:

• Source transformations allow us to exchange a volt-
age source ( sv ) and a series resistor (R) for a current 
source (is ) and a parallel resistor (R) and vice  versa. 
The combinations must be equivalent in terms of 
their terminal voltage and current. Terminal equiva-
lence holds, provided that

i
R

 .s
s=

v

(See pages 115–116.)
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TABLE 4.3 Steps in the Node-Voltage Method and the Mesh-Current Method

Node-Voltage Method Mesh-Current Method

Step 1
Identify nodes/meshes

Identify the essential nodes by circling them 
on the circuit diagram.

Identify the meshes by drawing directed 
arrows inside each mesh.

Step 2
Label node voltages/mesh currents
Recognize special cases

Pick and label a reference node; then label 
the remaining essential node voltages.
• If a voltage source is the only component 

in a branch connecting the reference 
node and another essential node, label 
the essential node with the value of the 
voltage source.

• If a voltage source is the only component 
in a branch connecting two  nonreference 
essential nodes, create a supernode that 
includes the voltage source and the two 
nodes on either side.

Label each mesh current.
• If a current source is in a single mesh, 

label the mesh current with the value of 
the current source.

• If a current source is shared by two 
adjacent meshes, create a supermesh by 
combining the two adjacent meshes and 
temporarily eliminating the branch that 
contains the current source.

Step 3
Write the equations

Write the following equations:
• A KCL equation for any supernodes;
• A KCL equation for any remaining 

essential nodes where the voltage is 
unknown;

• A constraint equation for each dependent 
source that defines the controlling vari-
able for the dependent source in terms of 
the node voltages;

• A constraint equation for each supernode 
that equates the difference between the 
two node voltages in the supernode to the 
voltage source in the supernode.

Write the following equations:
• A KVL equation for any supermeshes;
• A KVL equation for any remaining 

meshes where the current is unknown;
• A constraint equation for each dependent 

source that defines the controlling vari-
able for the dependent source in terms of 
the mesh currents;

• A constraint equation for each supermesh 
that equates the difference between the 
two mesh currents in the supermesh to 
the current source eliminated to form the 
supermesh.

Step 4
Solve the equations

Solve the equations to find the node 
voltages.

Solve the equations to find the mesh 
 currents.

Step 5
Solve for other unknowns

Use the node voltage values to find any 
unknown voltages, currents, or powers.

Use the mesh current values to find any 
unknown voltages, currents, or powers.

• Thévenin equivalents and Norton equivalents allow us 
to simplify a circuit composed of sources and resistors 
into an equivalent circuit consisting of a voltage source 
and a series resistor (Thévenin) or a current source and 
a parallel resistor (Norton). The simplified circuit and 
the original circuit must be equivalent in terms of their 
terminal voltage and current. Note that

• The Thévenin voltage (VTh) is the open-circuit volt-
age across the terminals of the original circuit;

• The Thévenin resistance (RTh) is the ratio of the 
Thévenin voltage to the current in a short circuit con-
necting the terminals of the original circuit;

• The Norton equivalent is obtained by performing a 
source transformation on a Thévenin equivalent.

(See pages 118–121.)

• Maximum power transfer is a technique for calculating 
the maximum value of p that can be delivered to a load, 
RL. Maximum power transfer occurs when =R RL Th,  
the Thévenin resistance as seen from the resistor RL. 
The equation for the maximum power transferred is

=p
V
R4

.Th
2

L

(See pages 126–127.)

• In a circuit with multiple independent sources,  
superposition allows us to activate one source at a time 
and calculate voltages and currents due to each source. 
To determine the voltages and currents that exist when 
all independent sources are active, sum the voltages 
and currents that resulted from each of the sources. 
Dependent sources are never deactivated when apply-
ing superposition. (See page 129.)
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Figure P4.6

b) Show that the KCL equation in part (a) can be 
derived from the KCL equations at nodes b, c, 
and e (see Example 4.2).

 4.5 A current leaving a node is defined as positive.

a) Sum the currents at each essential node in the 
circuit shown in Fig. P4.5.

b) Show that any one of the equations in (a) can be 
derived from the remaining three equations.

Section 4.1

 4.1 For the circuit shown in Fig. P4.1, state the 
 numerical value of the number of (a) branches, (b) 
 branches where the current is unknown, (c) essen-
tial branches, (d) essential branches where the cur-
rent is  unknown, (e) nodes, (f) essential nodes, and 
(g) meshes.

Problems

  4.2 a) If only the essential nodes and branches are 
identified in the circuit in Fig. P4.1, how many 
simultaneous equations are needed to describe 
the circuit?

b) How many of these equations can be derived 
using Kirchhoff’s current law?

c) How many must be derived using Kirchhoff’s 
voltage law?

d) What two meshes should be avoided in applying 
the voltage law?

 4.3 Assume the current ig  in the circuit in Fig. P4.3 is 
known. The resistors R R1 5−  are also known.

a) How many unknown currents are there?

b) How many independent equations can be writ-
ten using Kirchhoff’s current law (KCL)?

c) Write an independent set of KCL equations.

d) How many independent equations can be 
derived from Kirchhoff’s voltage law (KVL)?

e) Write a set of independent KVL equations.

 4.7 Use the node-voltage method to find v in the circuit 
in Fig. P4.7.PSPICE

MULTISIM

6 V 4 V2 V

1 V 12 V 2

1

4.5 A 30 Vy

1

2

Figure P4.7

2 V

5 V

yo

1

2

12 V

180 V
1

2

5 A

Figure P4.8

 4.8 Use the node-voltage method to find ov  in the cir-
cuit in Fig. P4.8.PSPICE

MULTISIM

Section 4.2

 4.6 Use the node-voltage method to find how much 
 power the 2 A source extracts from the circuit in Fig. 
P4.6.

PSPICE
MULTISIM

 4.4 Look at the circuit in Fig. 4.4.

a) Write the KCL equation at the essential node 
labeled g.

1 2

3

R1

R2

R3 R4

i2

i3 i4i1ig

Figure P4.5
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 4.9 a) Find the power developed by the 5 A current 
source in the circuit in Fig. P4.8.

b) Find the power developed by the 180 V voltage 
source in the circuit in Fig. P4.8.

c)  Verify that the total power developed equals the 
total power dissipated.

 4.10 A 10 Ω  resistor is connected in series with the cur-
rent source in the circuit in Fig. P4.8.

a) Find ov .

b) Find the power developed by the 5 A current 
source.

c) Find the power developed by the voltage source.

d) Verify that the total power developed equals the 
total power dissipated.

e) What effect will any finite resistance connected 
in series with the 5 A current source have on the 
value of ov ?

 4.11 a) Use the node-voltage method to find the branch 
currents i ia f−  in the circuit shown in Fig. P4.11.

b) Find the total power developed in the circuit.

PSPICE
MULTISIM

PSPICE
MULTISIM

PSPICE
MULTISIM

 4.12 a) Use the node-voltage method to find 1v , 2v , and 
3v  in the circuit in Fig. P4.12.

b) How much power does the 640 V voltage source 
deliver to the circuit?

PSPICE
MULTISIM

 4.13 Use the node-voltage method to find 1v  and 2v  in 
the circuit shown in Fig. P4.13.PSPICE

MULTISIM
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1
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1

2

Figure P4.13
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Figure P4.16

 4.14 Use the node-voltage method to find the total 
 power dissipated in the circuit in Fig. P4.14.PSPICE

MULTISIM

 4.15 The circuit shown in Fig. P4.15 is a dc model of a 
residential power distribution circuit.

a) Use the node-voltage method to find the branch 
currents i i .1 6−

b) Test your solution for the branch currents by 
showing that the total power dissipated equals 
the total power developed.

PSPICE
MULTISIM

 4.16 a) Use the node-voltage method to show that the 
output voltage ov  in the circuit in Fig. P4.16 is 
equal to the average value of the source voltages.

b) Find ov  if 150 V1 =v , 200 V2 =v , and 
50 V3 = −v .

PSPICE
MULTISIM

 Section 4.3

 4.17 a) Use the node-voltage method to find the total 
power developed in the circuit in Fig. P4.17.

b) Check your answer by finding the total power 
absorbed in the circuit.

PSPICE
MULTISIM
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 4.18 Use the node-voltage method to calculate the 
 power delivered by the dependent voltage source in 
the circuit in Fig. P4.18.

PSPICE
MULTISIM

1

2

5 A 15 V 30 V 10 V

5 V 30 V

5 iD

iD

Figure P4.17
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 4.19 a) Use the node-voltage method to find ov  for the 
circuit in Fig. P4.19.

b) Find the total power supplied in the circuit.

 4.20 a) Find the node voltages 1v , 2v , and 3v  in the cir-
cuit in Fig. P4.20.

b) Find the total power dissipated in the circuit.

PSPICE
MULTISIM

 4.21 a) Use the node-voltage method to find ov  in the 
circuit in Fig. P4.21.

b) Find the power developed by the dependent 
source.

c) Find the total power developed by the indepen-
dent sources.

PSPICE
MULTISIM
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Figure P4.21
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1
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Figure P4.24

Section 4.4

 4.22 Use the node-voltage method to find io  in the cir-
cuit in Fig. P4.22.PSPICE

MULTISIM

 4.23 Use the node-voltage method to find the value of 
ov  in the circuit in Fig. P4.23.PSPICE

MULTISIM

 4.24 a) Use the node-voltage method to find the branch 
currents i1, i2 , and i3 in the circuit in Fig. P4.24.

b) Check your solution for i1, i2 , and i3 by showing 
that the power dissipated in the circuit equals 
the power developed.

PSPICE
MULTISIM
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 4.25 Use the node-voltage method to find the value of 
ov  in the circuit in Fig. P4.25.PSPICE

MULTISIM
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 4.26 a) Use the node-voltage method to find the power 
dissipated in the 5 Ω  resistor in the circuit in  
Fig. P4.26.

b) Find the power supplied by the 500 V source.

 4.27 Use the node-voltage method to find v in the cir-
cuit in Fig. P4.27.PSPICE

MULTISIM
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 4.28 Use the node-voltage method to find the power 
developed by the voltage-controlled current source 
in the circuit in Fig.  P4.28.

PSPICE
MULTISIM

 4.29 Assume you are a project engineer and one of your 
staff is assigned to analyze the circuit shown in Fig.  
P4.29. The reference node and node numbers given 
on the figure were assigned by the analyst. The 
analysis gives the values of 3v  and 4v  as 235 V and 
222 V, respectively.

a) What values did the analyst use for the node 
voltages at nodes 1 and 2 writing KCL equations 
at nodes 3 and 4?

b) Use the values supplied by the analyst to calcu-
late the total power developed in the circuit and 
the total power dissipated in the circuit.

c) Do you agree with the solution submitted by the 
analyst?

12

1 2
if

10 V 20 V250 V

(30)if

2
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Figure P4.29
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 4.30 a) Use the node-voltage method to find ov  and the 
power delivered by the 0.5 A current source in 
the circuit in Fig. P4.30. Use node a as the refer-
ence node.

b) Repeat part (a), but use node b as the reference 
node.

c) Compare the choice of reference node in (a) and 
(b). Which is better, and why?

PSPICE
MULTISIM

 4.31 Show that when Eqs. 4.13, 4.14, and 4.16 are solved 
for iB , the result is identical to Eq. 2.21.

Section 4.5

 4.32 Solve Problem 4.11 using the mesh-current method.

 4.33 Solve Problem 4.15 using the mesh-current method.
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 4.34 Solve Problem 4.22 using the mesh-current method.

 4.35 Solve Problem 4.26 using the mesh-current method.

 4.36 a) Use the mesh-current method to find the total 
power developed in the circuit in Fig. P4.36.

b)  Check your answer by showing that the total 
 power developed equals the total power 
dissipated.

PSPICE
MULTISIM
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 4.37 a) Use the mesh-current method to find the branch 
currents ia , ib , and ic  in the circuit in Fig. P4.37.

b) Repeat (a) if the polarity of the 64 V source is 
reversed.

PSPICE
MULTISIM

Section 4.6

 4.38 Solve Problem 4.18 using the mesh-current method.

 4.39 a) Use the mesh-current method to find ov  in the 
circuit in Fig. P4.39.

b) Find the power delivered by the dependent 
source.

PSPICE
MULTISIM
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 4.40 Use the mesh-current method to find the power 
 delivered by the 400 V source in the circuit seen in 
Fig. P4.40.

PSPICE
MULTISIM

 4.41 Use the mesh-current method to find the power 
developed in the dependent voltage source in the 
circuit in Fig. P4.41.

PSPICE
MULTISIM

 4.42 Use the mesh-current method to find the power dis-
sipated in the 10 Ω  resistor in the circuit in Fig. P4.42.PSPICE

MULTISIM

Section 4.7

 4.43 Solve Problem 4.13 using the mesh-current method.

 4.44 a) Use the mesh-current method to find how much 
power the 12 A current source delivers to the 
circuit in Fig. P4.44.

b) Find the total power delivered to the circuit.

c) Check your calculations by showing that the 
total power developed in the circuit equals the 
total power dissipated
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 4.45 Solve Problem 4.17 using the mesh-current method.

 4.46 Use the mesh-current method to find the total 
power developed in the circuit in Fig. P4.46.PSPICE

MULTISIM
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  4.47 a) Use the mesh-current method to solve for i∆  in 
the circuit in Fig. P4.47.

b) Find the power delivered by the independent 
current source.

c) Find the power delivered by the dependent volt-
age source.

PSPICE
MULTISIM

 4.48 a) Use the mesh-current method to determine 
which sources in the circuit in Fig. P4.48 are gen-
erating power.

b) Find the total power dissipated in the circuit.

PSPICE
MULTISIM

 4.49 Use the mesh-current method to find the total 
power dissipated in the circuit in Fig. P4.49.PSPICE

MULTISIM
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 4.50 a) Use the mesh-current method to find the branch 
currents a e−i i  in the circuit in Fig. P4.50.

b) Check your solution by showing that the total 
power developed in the circuit equals the total 
power dissipated.

PSPICE
MULTISIM

 4.51 Solve Problem 4.24 using the mesh-current method.

 4.52 a) Assume the 18 V source in the circuit in Fig. 
P4.49 is changed to –10 V. Find the total power 
dissipated in the circuit.

b) Repeat (a) with the 3 A current source replaced 
by a short circuit.

c) Explain why the answers to (a) and (b) are the 
same.

d) Now assume you wish to change the value of the 
15 V source, instead of the 18 V source, in the 
circuit in Fig. P4.49 to get the same power dissi-
pated by the current source that you found in (a) 
and (b). Use the results in part (c) to calculate 
the new value of this voltage source.

 4.53 a) Find the branch currents i ia e−  for the circuit 
shown in Fig. P4.53.

b) Check your answers by showing that the 
total power generated equals the total power 
dissipated.

PSPICE
MULTISIM
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Section 4.8

 4.54 Assume you have been asked to find the power dis-
sipated in the horizontal 10 Ω  resistor in the circuit 
in Fig. P4.54.

a)  Which method of circuit analysis would you rec-
ommend? Explain why.

b) Use your recommended method of analysis to 
find the power dissipated in the horizontal 10 Ω  
resistor.

c) Would you change your recommendation if the 
problem had been to find the power developed 
by the 4 A current source? Explain.

d) Find the power delivered by the 4 A current 
source.

PSPICE
MULTISIM
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 4.55 A 20 Ω resistor is placed in parallel with the 4 A 
current source in the circuit in Fig. P4.54. Assume 
you have been asked to calculate the power devel-
oped by the current source.

a) Which method of circuit analysis would you rec-
ommend? Explain why.

b) Find the power developed by the current source.

 4.56 The variable dc current source in the circuit in Fig. 
P4.56 is adjusted so that the power developed by 
the 15 A current source is 3750 W. You want to find 
the value of idc .

a) Would you use the node-voltage or mesh- 
current method to find idc? Explain your choice.

b) Use the method selected in (a) to find idc .

PSPICE
MULTISIM

PSPICE
MULTISIM

 4.57 a) Would you use the node-voltage or mesh- current 
method to find the power absorbed by the 10 V 
source in the circuit in Fig. P4.57? Explain your 
choice.

b) Use the method you selected in (a) to find the 
power.

PSPICE
MULTISIM

 4.58 The variable dc voltage source in the circuit in Fig. 
P4.58 is adjusted so that io  is zero.

a) Would you use the node-voltage or mesh- current 
method to find dcv ? Explain your choice.

b) Find the value of dcv , using the method selected 
in (a).

c) Check your solution by showing the power 
developed equals the power dissipated.

PSPICE
MULTISIM

Section 4.9

 4.59 a) Use source transformations to find the current 
io  in the circuit in Fig. P4.59.

b) Verify your solution by using the node-voltage 
method to find io .

PSPICE
MULTISIM
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  4.60 a) Use a series of source transformations to find io  
in the circuit in Fig. P4.60.

b) Verify your solution by using the mesh-current 
method to find io .

PSPICE
MULTISIM
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Figure P4.63

 4.61 a) Find the current io  in the circuit in Fig. P4.61 
using a sequence of appropriate source 
transformations.

b) Using the result obtained in (a), work back 
through the circuit to find the power developed 
by the 100 V source.

 4.62 a) Make a series of source transformations to find 
the voltage ov  in the circuit in Fig. P4.62.

b) Verify your solution using the mesh-current 
method.

 4.63 a) Use source transformations to find ov  in the cir-
cuit in Fig. P4.63.

b) Find the power developed by the 340 V  source.

c) Find the power developed by the 5A  current 
source.

d) Verify that the total power developed equals the 
total power dissipated.

PSPICE
MULTISIM

Section 4.10

 4.64 Find the Norton equivalent with respect to the ter-
minals a, b for the circuit in Fig. P4.64.PSPICE

MULTISIM
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b

Figure P4.64
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 4.65 Find the Thévenin equivalent with respect to the 
terminals a, b for the circuit in Fig. P4.65.PSPICE

MULTISIM

 4.66 Find the Norton equivalent with respect to the ter-
minals a, b for the circuit in Fig. P4.66.

 4.67 Find the Norton equivalent with respect to the ter-
minals a, b in the circuit in Fig. P4.67.PSPICE

MULTISIM

PSPICE
MULTISIM
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 4.68 Find the Thévenin equivalent with respect to the 
terminals a, b for the circuit in Fig. P4.68.PSPICE

MULTISIM
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Figure P4.72

 4.69 A Thévenin equivalent can also be determined 
from measurements made at the pair of terminals of 
interest. Assume the following measurements were 
made at the terminals a, b in the circuit in Fig. P4.69.
When a 15 kΩ resistor is connected to the terminals 
a, b, the voltage abv  is measured and found to be 45 V.

When a 5 kΩ resistor is connected to the termi-
nals a, b, the voltage is measured and found to be 25 V.

Find the Thévenin equivalent of the network 
with respect to the terminals a, b.

 4.70 The Wheatstone bridge in the circuit shown in Fig. 
P4.70 is balanced when R3 equals 1200 Ω.  If the gal-
vanometer has a resistance of 30 Ω,  how much cur-
rent will the galvanometer detect, when the bridge is 
unbalanced by setting R3 to 1204 Ω? (Hint: Find the 
Thévenin equivalent with respect to the galvanome-
ter terminals when R 1204 Ω.3 =  Note that once we 
have found this Thévenin equivalent, it is easy to find 
the amount of unbalanced current in the galvanome-
ter branch for different galvanometer movements.)

PSPICE
MULTISIM

resistor and the headlights can be modeled as a 
0.65 Ω resistor. What are the Thévenin and Norton 
equivalents for the battery?

 4.72 Determine io  and ov  in the circuit shown in Fig. 
P4.72 when Ro is a resistor from  Appendix H such 
that R10 Ω 100 Ω.o≤ <

PSPICE
MULTISIM

 4.73 A voltmeter with a resistance of 100 kΩ  is used to 
measure the voltage abv  in the circuit in Fig. P4.73.

a) What is the voltmeter reading?

b) What is the percentage of error in the voltmeter 
reading if the percentage of error is defined as 

− ×[(measured actual)/actual] 100?

PSPICE
MULTISIM
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Figure P4.75

 4.74 Determine the Thévenin equivalent with respect to 
the terminals a, b for the circuit shown in Fig. P4.74.PSPICE

MULTISIM

 4.71 An automobile battery, when connected to a car 
radio, provides 12.5 V to the radio. When connected 
to a set of headlights, it provides 11.7 V to the head-
lights. Assume the radio can be modeled as a 6.25 Ω 

 4.75 Find the Norton equivalent with respect to the termi-
nals a, b for the circuit seen in Fig. P4.75.PSPICE

MULTISIM
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 4.76 When an ammeter is used to measure the current iφ  
in the circuit shown in Fig. P4.76, it reads 6 A.

a) What is the resistance of the ammeter?

b)  What is the percentage of error in the current 
measurement?

PSPICE
MULTISIM
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Figure P4.76

Section 4.11

 4.77 a) Find the Thévenin equivalent with respect to the ter-
minals a, b for the circuit in Fig. P4.77 by finding the 
open-circuit voltage and the short-circuit current.

b) Solve for the Thévenin resistance by removing 
the independent sources. Compare your result 
to the Thévenin resistance found in (a).

PSPICE
MULTISIM
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 4.78 a) Find the Thévenin equivalent resistance with 
respect to the terminals a, b in the circuit in Fig. 
P4.64 without finding either the open-circuit 
voltage or the short-circuit current.

b) Find the Norton equivalent resistance with 
respect to the terminals a, b in the circuit in Fig. 
P4.65 without finding either the open-circuit 
voltage or the short-circuit current.

 4.79 Find the Norton equivalent with respect to the ter-
minals a, b for the circuit seen in Fig. P4.79.

 4.80 Find the Thévenin equivalent with respect to the 
terminals a, b in the circuit in Fig. P4.80.

 4.81 Find the Thévenin equivalent with respect to the 
terminals a, b in the circuit in Fig. P4.81.

Section 4.12

 4.82 a) Calculate the power delivered to Ro for each 
value of Ro used in Problem 4.72.

b) Plot the power delivered to Ro versus the resis-
tance Ro.

c) At what value of Ro is the power delivered to 
Ro a maximum?

 4.83 A variable resistor Ro is connected across the ter-
minals a, b in the circuit in Fig. P4.75. The variable 
resistor is adjusted until maximum power is trans-
ferred to Ro.

a) Find the value of Ro.

b) Find the maximum power delivered to Ro.

c) Find the percentage of the total power devel-
oped in the circuit that is delivered to Ro.

d)  Find the resistor from  Appendix H closest in 
value to the Ro from part (a).

e) Find the percentage of the total power devel-
oped in the circuit that is delivered to the resis-
tor in part (d).

 4.84 a) Find the value of the variable resistor Ro in the 
circuit in Fig. P4.84 that will result in maximum 
power dissipation in the 6 Ω resistor. (Hint: Hasty 
conclusions could be hazardous to your career.)

b) What is the maximum power that can be deliv-
ered to the 6 Ω resistor?

PSPICE
MULTISIM
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 4.85 The variable resistor in the circuit in Fig. P4.85 is 
adjusted for maximum power transfer to Ro.

a) Find the value of Ro.

b) Find the maximum power that can be delivered 
to Ro.

c) Find a resistor in  Appendix H closest to the 
value in part (a). How much power is delivered 
to this resistor?

PSPICE
MULTISIM

 4.86 What percentage of the total power developed in 
the circuit in Fig. P4.85 is delivered to Ro when Ro 
is set for maximum power transfer?

 4.87 The variable resistor Ro in the circuit in Fig. P4.87 is 
adjusted until it absorbs maximum power from the 
circuit.

a) Find the value of Ro.

b) Find the maximum power.

c) Find the percentage of the total power devel-
oped in the circuit that is delivered to Ro.

PSPICE
MULTISIM

PSPICE
MULTISIM

 4.88 The variable resistor Ro in the circuit in Fig. P4.88 
is adjusted until the power dissipated in the resis-
tor is 1.5 W. Find the values of Ro that satisfy this 
condition.

PSPICE
MULTISIM
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 4.89 The variable resistor Ro in the circuit in Fig. P4.89 is 
adjusted for maximum power transfer to Ro.

a) Find the value of Ro.

b) Find the maximum power that can be delivered 
to Ro.

c) What percentage of the total power developed 
in the circuit is delivered to Ro found in part(a)?

d) If Ro is selected from  Appendix H, which resis-
tor value will result in the greatest amount of 
power delivered to Ro?

PSPICE
MULTISIM

 4.90 The variable resistor in the circuit in Fig. P4.90 is 
adjusted for maximum power transfer to Ro.

a) Find the numerical value of Ro.

b)  Find the maximum power delivered to Ro.

c) How much power does the 280 V source deliver 
to the circuit when Ro is adjusted to the value 
found in (a)?

PSPICE
MULTISIM
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 4.91 The variable resistor RL in the circuit in Fig. P4.91 is 
adjusted for maximum power transfer to RL.

a) Find the numerical value of RL.

b) Find the maximum power transferred to RL.

PSPICE
MULTISIM
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Section 4.13

 4.92 a) Use the principle of superposition to solve 
Problem 4.7.

b) Use the principle of superposition to solve 
Problem 4.8.

 4.93 Use the principle of superposition to find the cur-
rent io  in the circuit in Fig. P4.93.

PSPICE
MULTISIM

PSPICE
MULTISIM
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 4.94 Use the principle of superposition to find the cur-
rent io  in the circuit shown in Fig. P4.94.PSPICE

MULTISIM

 4.95 Use superposition to solve for io  and ov  in the cir-
cuit in Fig. P4.95.

 4.96 a) In the circuit in Fig. P4.96, before the 5 mA cur-
rent source is attached to the terminals a, b, the 
current io  is calculated and found to be 3.5 mA. 
Use superposition to find the value of io  after 
the current source is attached.

b) Verify your solution by finding io  when all three 
sources are acting simultaneously.

PSPICE
MULTISIM

 4.97 a) Use the principle of superposition to solve 
Problem 4.21(a).

b) Use the principle of superposition to solve 
Problem 4.27.

 4.98 Use the principle of superposition to find ov  in the 
circuit in Fig. P4.98.

PSPICE
MULTISIM

PSPICE
MULTISIM
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where
theTh =v  Thévenin voltage,

theo =v  terminal voltage corresponding to the 
load resistance RL.

 4.100 Two ideal dc voltage sources are connected by elec-
trical conductors that have a resistance of r  Ω/m, as 
shown in Fig. P4.100. A load having a resistance of 
R Ω moves between the two voltage sources. Let x 
equal the distance between the load and the source 

1v , and let L equal the distance between the sources.

a) Show that

RL R x
RL rLx rx

( )
2 2

 .1 2 1
2

=
+ −

+ −
v v v v

b) Show that the voltage v will be minimum when

x L R
rL

   
2

 ( ) .
2 1

1 1 2 1 2
2=

−
− ± − −











v v

v v v v v

c) Find x from part (b) when =L 20 km,  
=v 1800 V,1  =v 2000 V,2   R 7.1 Ω,=  and 

r 4 10  Ω/m.5= × −

d) What is the minimum value of v for the circuit 
of part (c)?

y
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2

1

2

y1
1

2
y2
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      load)

r V/m r V/m

r V/m r V/m

L

x

Figure P4.100

 4.101 Find i in the circuit in Fig. P4.101.
PSPICE

MULTISIM
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 4.102 Find 1v , 2v , and 3v  in the circuit in Fig. P4.102.
PRACTICAL
PERSPECTIVE

 4.103 Assume your supervisor has asked you to determine 
the power developed by the 16 V source in the circuit 
in Fig. P4.103. Before calculating the power devel-
oped by the 16 V source, the supervisor asks you to 
submit a proposal describing how you plan to attack 
the problem and why you have chosen your proposed 
method of solution.

a) Describe your plan of attack, explaining your 
reasoning.

b) Use the method you have outlined in (a) to find 
the power developed by the 16 V source.

Sections 4.1–4.13

  4.99 Laboratory measurements on a dc voltage source 
yield a terminal voltage of 120 V with no load con-
nected to the source and 40 V when loaded with a 
40 Ω resistor.

a) What is the Thévenin equivalent with respect to 
the terminals of the dc voltage source?

b) Show that the Thévenin resistance of the source 
is given by the expression

R R1 ,
o

Th
Th

L= −








v
v

PSPICE
MULTISIM
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 4.104 For the circuit in Fig. 4.74 derive the expressions for 
the sensitivity of 1v  and 2v  to changes in the source 
currents I g1 and I g2 .

 4.105 Assume the nominal values for the components in 
the circuit in Fig. 4.74 are: R 25 Ω;1 =  R 5 Ω;2 =  
R 50 Ω;3 =  R 75 Ω;4 =  I 12 A;g1 =  and I 16 A.g2 =  
Predict the values of 1v  and 2v  if I g1 increases to 
13 A and all other components stay at their nomi-
nal values. Check your predictions using a tool like 
PSpice or MATLAB.

  4.106 Repeat Problem 4.105 if Ig2 decreases to 15 A, and 
all other components stay at their nominal values. 
Check your predictions using a tool like PSpice or 
MATLAB.

PRACTICAL
PERSPECTIVE

PRACTICAL
PERSPECTIVE

PSPICE
MULTISIM

PRACTICAL
PERSPECTIVE

 4.107 Repeat Problem 4.105 if Ig1 increases to 13 A and 
Ig2 decreases to 15 A. Check your predictions using 
a tool like PSpice or MATLAB.

 4.108 Use the results given in Table 4.2 to predict the val-
ues of 1v  and 2v  if R2  and R4  increase to 10% above 
their nominal values and R1 and R3 decrease to 10%  
below their nominal values. Ig1 and Ig2 remain at their  
nominal values. Compare your predicted values of 

1v  and 2v  with their actual values.

PRACTICAL
PERSPECTIVE

PRACTICAL
PERSPECTIVE
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CHAPTER CONTENTS

5
CHAPTER 

The Operational Amplifier
This chapter analyzes circuits containing sources, resistors, and 
a new component, the operational amplifier (op amp). Unlike 
sources and resistors, the op amp is not an ideal basic circuit ele-
ment. Instead, it is a complicated integrated circuit consisting of 
many electronic components such as transistors and diodes that 
are beyond the scope of this text. We can use op amps in intro-
ductory circuits, however, by taking a black box approach that 
focuses solely on the terminal behavior of the op amp (not on its 
internal structure or the currents and voltages that exist in this 
structure).

Operational amplifier circuits were first used as basic build-
ing blocks in analog computers. The term operational refers to 
op amp circuits that implement mathematical operations such as 
integration, differentiation, addition, sign changing, and scaling. 
While the range of applications has broadened beyond im ple-
menting mathematical operations, the original name for the cir-
cuit persists.

We do not introduce new circuit analysis techniques in this 
chapter. Instead, we apply tools we have already introduced to 
analyze and design interesting and useful op amp circuits that 
perform scaling, addition, and subtraction. Once we introduce 
inductors and capacitors in Chapter  6, we will present op amp 
circuits that integrate and differentiate electric signals.

Initially, we employ an ideal model of the op amp’s terminal 
behavior. At the conclusion of this chapter, we consider a more 
realistic op amp model that employs a dependent source. This 
provides additional opportunities to practice analyzing circuits 
with these sources.

5.1 Operational Amplifier Terminals p. 152

5.2 Terminal Voltages and Currents p. 152

5.3 The Inverting-Amplifier Circuit p. 156

5.4 The Summing-Amplifier Circuit p. 158

5.5  The Noninverting-Amplifier Circuit  
p. 160

 5.6 The Difference-Amplifier Circuit p. 162

5.7  A More Realistic Model for the 
 Operational Amplifier p. 167

1 Be able to name the five op amp terminals 
and describe and use the voltage and  
current constraints and the resulting  
simplifications they lead to in an ideal  
op amp.

2 Be able to analyze simple circuits  
containing ideal op amps and recognize  
the following op amp circuits: inverting  
amplifier, summing amplifier, noninverting  
amplifier, and difference amplifier.

3 Understand the more realistic model for an 
op amp and be able to use this model to 
analyze simple circuits containing op amps.

CHAPTER OBJECTIVES
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Practical Perspective
Strain Gages
How could you measure the amount of bending in metal 
cables, such as the ones shown in the figure, without 
physically contacting the cables? One method uses a 
strain gage, which is a type of transducer. A transducer is  
a device that measures a quantity by converting it into a 
more convenient form. The quantity we wish to  measure 
in the metal bar is the bending angle, but measuring the 
angle directly is quite difficult and could even be danger-
ous. Instead, we attach a strain gage (shown in the line 
drawing here) to the metal bar. A strain gage is a grid of 
thin wires whose resistance changes when the wires are 
lengthened or shortened, according to the equation

∆ = ∆R R L
L

2 ,

where R  is the resistance of the gage at rest, ∆L L  is the  
fractional lengthening of the gage (which is the definition  
of strain), 2 is a constant typical of the manufacturer’s 
gage factor, and R∆  is the change in resistance due to  
the bending of the bar. Typically, pairs of strain gages 
are attached to opposite sides of a bar. When the bar is 
bent, the wires in one pair of gages get longer and thinner, 
increasing the resistance, while the wires in the other pair of  
gages get shorter and thicker, decreasing the resistance.

How can the change in resistance be measured? One 
way would be to use an ohmmeter. However, the change 

in resistance experienced by the strain gage is typically 
much smaller than an ohmmeter can measure accurately. 
Usually, the pairs of strain gages are connected to form 
a Wheatstone bridge, and the voltage difference between 
two legs of the bridge is measured. We use an op amp 
circuit to amplify, or increase, the voltage difference to 
make an accurate measurement. After we introduce oper-
ational amplifiers and some of the important circuits that 
employ them, we conclude with an analysis of a strain 
gage circuit that measures the bending in the metal bar.

Horiyan/Shutterstock
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Offset null

Inverting

input

Noninverting

input

NC

Output

Offset null

V
1

V
2

Figure 5.1 ▲ The eight-lead DIP package (top view).

5.1 Operational Amplifier Terminals
We begin by looking at the terminal behavior of a commercially available 
op amp, the A 741.µ  Fairchild Semiconductor introduced this widely used  
device in 1968. This op amp is available in several different packages. For 
our discussion, we assume an eight-lead DIP.1 Figure 5.1 shows a top view 
of the package, with the terminals, their names, and numbers. We focus 
on the following terminals:

• inverting input,
• noninverting input,
• output,
• positive power supply V( ),+

• negative power supply V( ).−

The remaining three terminals are of little or no concern. The two offset 
null terminals may be used in an auxiliary circuit that compensates for 
performance degradation owing to aging and imperfections. These termi-
nals are seldom used because degradation is usually negligible. Terminal 8 
is an unused terminal; NC stands for no connection, which means that the 
terminal is not connected to the op amp circuit.

Figure 5.2 shows a common circuit symbol for an op amp that con-
tains the five terminals of primary interest. Because word labels are 
inconvenient in circuit diagrams, we simplify the terminal designations in 
the following way. The noninverting input terminal is labeled plus +( ),  
and the inverting input terminal is labeled minus −( ).  The power supply 
 terminals, which are always drawn outside the triangle, are marked +V  
and V .−  The terminal at the apex of the triangle is always understood to 
be the output terminal. Figure 5.3 summarizes these simplifications.

 5.2 Terminal Voltages and Currents
We now describe the behavior of the op amp using the terminal voltages 
and currents. The voltage variables are measured from a common refer-
ence node.2 Figure 5.4 shows the five voltage variables with their refer-
ence polarities.

All voltages are considered as voltage rises from the common node, a 
convention we also used in the node-voltage analysis method. A positive  
supply voltage (VCC) is connected between +V  and the common node. A 
negative supply voltage (−VCC ) is connected between −V  and the common 
node. The voltage between the inverting input terminal and the common 
node is denoted .nv  The voltage between the noninverting input terminal  
and the common node is designated as .pv  The voltage between the output  
terminal and the common node is denoted .ov

Figure 5.5 shows the current variables with their reference directions, 
all of which are into the terminals of the operational amplifier: in is the 
current into the inverting input terminal; i p is the current into the nonin-
verting input terminal; io is the current into the output terminal; +ic  is the 
current into the positive power supply terminal; and −ic

 is the current into 
the negative power supply terminal.

1 DIP is an abbreviation for dual in-line package. This means that the terminals on each side 
of the package are in line and that the terminals on opposite sides of the package also line up.
2 The common node is external to the op amp. It is the reference terminal of the circuit in 
which the op amp is embedded.

Noninverting
input

Inverting
input

Positive power supply

Output

Negative power supply

1

2

Figure 5.2 ▲ The circuit symbol for an operational 
amplifier (op amp).

1

2

V1

V2

Figure 5.3 ▲ A simplified circuit symbol for  
an op amp.

VCC

2

1

Common node

V1

V2

2

yo

1

yp

2

1
1

2

2

yn

1
VCC

1

2

Figure 5.4 ▲ Terminal voltage variables.
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The terminal behavior of the op amp as a linear circuit element is 
characterized by constraints on the input voltages and the input currents. 
The voltage constraint is derived from the voltage transfer characteristic 
of the op amp integrated circuit, pictured in Fig. 5.6.

The voltage transfer characteristic describes how the output voltage 
varies as a function of the input voltages—that is, how voltage is trans-
ferred from the input to the output. Note that the op amp’s output voltage 
is a function of the difference between its input voltages, p n−v v . The 
equation for the voltage transfer characteristic is

 =

− − < −

− − ≤ − ≤ +

+ − > +











v

v v

v v v v

v v

V A V

A V A V

V A V

( ) ,

( ) ( ) ,

( ) .
o

CC p n CC

p n CC p n CC

CC p n CC

 (5.1)

We see from Fig. 5.6 and Eq. 5.1 that the op amp has three distinct 
regions of operation: negative saturation, linear region, and positive sat-
uration. When the magnitude of the input voltage difference ( p n−v v  ) 
is small, the op amp behaves as a linear device, so the output voltage is a 
linear function of the input voltages. More specifically, the output voltage  
is equal to the difference between the input voltages times the multiplying  
constant, or gain, A. Outside this linear region are two saturation  regions. 
When the output of the op amp saturates, the op amp behaves as a 
 nonlinear device; its output voltage is no longer a linear function of the 
input voltages.

Op Amp Input Voltage Constraints
When we confine the op amp to its linear operating region, a constraint is 
imposed on the input voltages, pv  and .nv  The constraint is based on typi-
cal numerical values for VCC  and A in Eq. 5.1. For most op amps, the rec-
ommended dc power supply voltages seldom exceed 20 V, and the gain, 
A, is rarely less than 10,000, or 10 .4  We see from both Fig. 5.6 and Eq. 5.1 
that in the linear region, the magnitude of the input voltage difference 
( p n−v v  ) must be less than 20 10 ,4  or 2 mV.

Node voltages in the circuits we study are typically much larger than 
2 mV, so a voltage difference of less than 2 mV means the two voltages 
are essentially equal. Thus, when an op amp is constrained to its linear 
operating region and the node voltages are much larger than 2 mV, the 
constraint on the input voltages of the op amp is

INPUT VOLTAGE CONSTRAINT FOR AN OP AMP

 .p nv v=  (5.2)

Note that Eq. 5.2 characterizes the relationship between the input volt-
ages for an ideal op amp—that is, an op amp whose value of A is infinite.

We can use Eq. 5.2 only if the op amp is confined to its linear oper-
ating region. The op amp stays in its linear region if the op amp circuit 
includes a signal path from the op amp’s output terminal to its inverting 
input terminal. This configuration is known as negative feedback because 
the signal is fed back from the output and is subtracted from the input 
signal. The negative feedback causes the input voltage difference to 
decrease. Because the output voltage is proportional to the input voltage 
difference, the output voltage is also decreased, and the op amp operates 
in its linear region.

VCC

2

1

V1

V2

1

2

VCC

1

2

ip

io

ic1

in

ic2

Figure 5.5 ▲ Terminal current variables.

Positive saturation

Negative saturation

(VCC >A)

VCC

yo

(yp 2 yn)

Linear region

VCC

(2VCC >A)

Figure 5.6 ▲ The voltage transfer characteristic of 
an op amp.
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154 The Operational Amplifier

If a circuit containing an op amp does not provide a negative feedback 
path from the op amp output to the inverting input, then the op amp will 
normally saturate. But even if the circuit provides a negative feedback 
path for the op amp, linear operation is not guaranteed. So how do we 
know whether the op amp is operating in its linear region?

The answer is, we don’t! We deal with this dilemma by assuming linear 
operation, performing the circuit analysis, and then checking our results 
for contradictions. For example, suppose we assume that an op amp in a 
circuit is operating in its linear region, and we compute the output voltage 
of the op amp to be 10 V. On examining the circuit, we discover that VCC  
is 6 V, resulting in a contradiction, because the op amp’s output voltage 
can be no larger than V .CC  Thus, our assumption of linear operation was 
invalid, and the op amp output must be saturated at 6 V.

We have identified a constraint on the input voltages that is based on 
the voltage transfer characteristic of the op amp, the assumption that the 
op amp is restricted to its linear operating region, and typical values for 
VCC

3 and A. Equation 5.2 represents the voltage constraint for an ideal op 
amp, that is, with a value of A that is infinite.

Op Amp Input Current Constraints
We now turn our attention to the constraint on the input currents. Analysis of 
the op amp integrated circuit reveals that the equivalent resistance seen by the 
input terminals of the op amp is very large, typically 1 MΩ or more. Ideally, 
the equivalent input resistance is infinite, resulting in the current constraint

3 The positive and negative power supply voltages do not have to be equal in magnitude.  
In the linear operating region, v o  must lie between the two supply voltages. For example, if 

=+V 15 V and = −−V 10 V, then − ≤ ≤v10 V 15 Vo .

INPUT CURRENT CONSTRAINT FOR AN IDEAL OP AMP

  i i 0.p n= =  (5.3)

Note that the current constraint is not based on assuming that the op amp 
is confined to its linear operating region, as was the voltage constraint. 
Together, Eqs. 5.2 and 5.3 form the constraints on terminal behavior that 
define our ideal op amp model.

From Kirchhoff’s current law we know that the sum of the currents 
entering the operational amplifier is zero, or

i i i i i 0.p n o c c+ + + + =+ −

Substituting the constraint given by Eq. 5.3 into this KCL equation gives

i i i( ).o c c= − ++ −

The equation for i  o tells us that, even though the current at the input ter-
minals is negligible, there may still be appreciable current at the output 
terminal.

When we use Eqs. 5.2 and 5.3 in analyzing a circuit with an op amp, 
we are effectively using an ideal model of that op amp. Let’s summarize 
the circuit analysis steps:

Step 1:  Check for the presence of a negative feedback path; if it exists, we 
can assume the op amp is operating in its linear region.

ANALYZING A CIRCUIT WITH 
AN IDEAL OP AMP

1. Check for a negative feedback path.  
If it exists, assume the op amp operates  
in its linear region.
2. Write a KCL equation at the inverting 
input terminal.
3. Solve the KCL equation and use the 
solution to find the op amp’s output voltage.
4. Compare the op amp’s output voltage 
to the power supply voltages to determine 
if the op amp is operating in its linear region 
or if it is saturated.

Analysis Method 5.1  Analyzing an ideal op 
amp circuit with a negative feedback path.
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Step 2:  Write a KCL equation at the inverting input terminal, using the 
input current constraint (Eq. 5.3), the value of nv  (Eq. 5.2), and 
Ohm’s law to find the currents. This equation will usually contain 
the unknown voltage at the op amp’s output terminal.

Step 3:  Solve the KCL equation and calculate the voltage at the op amp’s 
output terminal.

Step 4:  Compare the voltage at the op amp’s output terminal to the power 
supply voltages to determine whether the op amp is actually in its 
linear region or whether it has saturated.

These steps are summarized in Analysis Method 5.1. Example 5.1 
 analyzes an op amp circuit using this analysis method.

EXAMPLE 5.1 Analyzing an Op Amp Circuit

The op amp in the circuit shown in Fig. 5.7 is ideal.

a) Calculate ov  if 1 Va =v  and 0 V.b =v
b) Repeat (a) for 1 Va =v  and 2 V.b =v
c) If 1.5 V,a =v  specify the range of bv  that avoids 

amplifier saturation.

 Solution
a) Step 1:  A negative feedback path exists from the 

op amp’s output to its inverting input through 
the 100 kΩ resistor, so we assume the op amp is 
confined to its linear operating region.

Step 2:  The voltage at the inverting input termi-
nal is 0 because 0p b= =v v  from the connected  
voltage source, and n p=v v  from the voltage con-
straint in Eq. 5.2.

Step 3:  Use KCL to sum the currents entering 
the node labeled nv  to get

i i i 0.n25 100+ − =

Remember that i   n is the current entering the invert-
ing op amp terminal. From Ohm’s law,

i
25,000

1 0
25,000

1
25,000

;n
25

a=
−

= − =
v v

i
100,000

0
100,000 100,000

.o n o o
100 =

−
=

−
=

v v v v

The current constraint requires i 0.n =  Sub-
stituting the values for the three currents into the 
KCL equation, we obtain

1
25,000 100,000

0.ov
+ =

Hence, ov  is 4 V− .

Step 4:  Because ov  lies between 10 V± , our as-
sumption that the op amp is in its linear region of 
operation is confirmed.

b) Using the same steps as in (a), we get

2 V,p nb= = =v v v

i i .25 100= −

i
25,000

1 2
25,000

1
25,000

;n
25

a=
−

= − = −
v v

i
100,000

2
100,000

.o n o
100 =

−
=

−v v v

Therefore, 6 Vo =v .   Again, ov  lies within 10 V± .

c) As before, ,n p b= =v v v  and i i .25 100= −  
Because 1.5 Va =v ,

1.5
25,000 100,000

.ob b−
=

−v v v

Solving for bv  as a function of ov  gives

1
5

6 .ob ( )= +v v

Now, if the amplifier operates within its linear 
region, 10 V 10 Vo− ≤ ≤v . Substituting these 
limits on ov  into the expression for ,bv  we find 
the range for bv  is

0.8 V 3.2 V.b− ≤ ≤v

25 kV 10 V

210 V
yo

1

2

ya
1

2 yb
1

2

2

1

100 kV

i25

i100

Figure 5.7 ▲ The circuit for Example 5.1.
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156 The Operational Amplifier

Objective 1—Use voltage and current constraints in an ideal op amp

5.1  Assume that the op amp in the circuit shown is 
ideal.
a) Calculate ov  for the following values of v s :  

6 V, 3.5 V, 1.25 V, 1 V, 2.4 V,− − −  and 
5.4 V.

b) Specify the range of sv  required to avoid  
amplifier saturation.

Answer : (a)  − − −15 V, 14 V, 5 V, 4 V, 9.6 V, 15 V;
(b) 3.75 V 3.75 V.s− ≤ ≤v

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter Problems 5.1, 5.3, and 5.5.

10 kV 15 V

–15 V
yo

1

2

ys
1

2

2

1

40 kV

5.3 The Inverting-Amplifier Circuit
This section and the three that follow present some important op amp 
circuits. We begin with the inverting-amplifier circuit, shown in Fig. 5.8. 
This circuit contains an ideal op amp, two resistors (Rf  and Rs), a voltage 
source ( ),sv  and a short circuit connecting the noninverting input terminal 
and the common node.

We can analyze this circuit to obtain an expression for the output volt-
age, ,ov  as a function of the source voltage, .sv  Starting with Step 1, we 
note the circuit’s negative feedback path, so assume the op amp is in its 
linear operating region. In Step 2, the voltage constraint of Eq. 5.2 sets the  
voltage at 0,n =v  because the voltage at 0.p =v  Step 3 generates a single  
KCL equation at the inverting terminal of the op amp, given as

i i i .s f n+ =

From Ohm’s law,

i
R

,s
s

s

=
v

i
R

.f
o

f

=
v

Now we invoke the constraint stated in Eq. 5.3, namely,

i 0.n =

Substituting the expressions for i   s, i   f, and i   n into the KCL equation and 
solving for v   o yields

INVERTING-AMPLIFIER EQUATION

 R

R
.o

f

s
s=

−
v v  (5.4)

1VCC

2VCC

yo

1

2

2

1is

in

if

yp

2

1

yn

2

1

Rs

Rf

ys
1

2

Figure 5.8 ▲ An inverting-amplifier circuit.
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Note that the output voltage is an inverted, scaled replica of the input. The  
sign reverses, or inverts, from input to output. The scaling factor, or gain,  
is the ratio R R ,f s  which is usually greater than 1, so .o s>v v  Hence, we  
call this circuit an inverting amplifier.

Using Step 4, we see that the result given by Eq. 5.4 is valid only if 
the op amp shown in the circuit in Fig. 5.8 is operating in its linear region. 
Even if the op amp is not ideal, Eq. 5.4 is a good approximation. (We 
demonstrate this in Section  5.7.) Equation 5.4 specifies the gain of the 
inverting amplifier with the external resistors Rf  and R .s  In Step 4, the 
upper limit on the gain, R R ,f s  is determined by the power supply volt-
ages and the value of the signal voltage .sv  If we assume equal power 
supply voltages, that is, V V V ,CC= − =+ −  we get

V
R

R
V

R

R

V
, , .o CC

f

s
s CC

f

s

CC

s

≤ ≤ ≤v v
v

For example, if =V 15 VCC  and = 10 mV,sv  the ratio R Rf s  must be 
less than 1500.

In the inverting amplifier circuit shown in Fig. 5.8, the resistor Rf  pro-
vides the negative feedback connection. That is, it connects the output ter-
minal to the inverting input terminal. If Rf  is removed, the feedback path 
is opened and the amplifier is said to be operating open loop. Figure 5.9 
shows the open-loop operation.

Opening the feedback path drastically changes the behavior of the 
circuit. To understand the open-loop circuit, we do not replace the op amp 
with its ideal model; although A and the input resistance are both large, 
they are not infinite. Now the output voltage is

 = −v vA ,o n  (5.5)

assuming as before that V V V ;CC= − =+ −  then V An CC<v  for lin-
ear operation. Because the inverting input current is almost zero, the volt-
age drop across Rs is almost zero, and the inverting input voltage nearly 
equals the signal voltage, ;sv  that is, .n s≈v v  Hence, the op amp can oper-
ate open loop in the linear mode only if V A.s CC<v  If V A,s CC>v  
the op amp simply saturates. In particular, if V A,s CC< −v  the op amp 
saturates at V ,CC+  and if V A,s CC>v  the op amp saturates at V .CC−  
Because the relationship shown in Eq. 5.5 occurs when there is no feed-
back path, the value of A is often called the open-loop gain of the op amp.

Example 5.2 uses the inverting-amplifier equation to design an invert-
ing amplifier using realistic resistor values.

1VCC

2VCC

yo

1

2

ys
1

2

2

1

yn

2

1

Rs

Figure 5.9 ▲ An inverting-amplifier operating open 
loop.

EXAMPLE 5.2 Designing an Inverting Amplifier

a) Design an inverting amplifier (see Fig. 5.8) with 
a gain of 12. Use 15 V±  power supplies and an 
ideal op amp.

b) What range of input voltages, sv , allows the op 
amp in this design to remain in its linear operat-
ing region?

Solution

a) We need to find two resistors whose ratio is  
12 from the realistic resistor values listed  

in Appendix H. There are lots of different  
possibilities, but let’s choose R 1 ks = Ω and 
R 12 kf = Ω. Use the  inverting-amplifier equa-
tion (Eq. 5.4) to verify the design:

R

R
12,000
 1000 

12 .o
f

s
s s s= − = − = −v v v v

Thus, we have an inverting amplifier with a gain 
of 12, as shown in Fig. 5.10.
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158 The Operational Amplifier

b) Solve two different versions of the inverting- 
amplifier equation for sv , first using 15 Vo = +v  
and then using 15 Vo = −v :

= − = −15 12 so 1.25 V;s sv v

− = − =15 12 so 1.25 V.s sv v

Thus, if the input voltage is greater than or equal 
to −1.25 V and less than or equal to +1.25 V, 
the op amp in the inverting amplifier will remain 
in its linear operating region.

115 V

215 V
yo

1

2

ys
1

2

2

1

1 kV

12 kV

Figure 5.10 ▲ Inverting amplifier for Example 5.2.

Objective 2—Be able to analyze simple circuits containing ideal op amps

5.2  The source voltage sv  in the circuit in 
Assessment Problem 5.1 is 800 mV. The  
40 kΩ  feedback resistor is replaced by a  
variable resistor R .x  What range of Rx allows 

the inverting amplifier to operate in its linear 
region?

Answer:  R0 187.5 k .x≤ ≤ Ω

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter Problems 5.8 and 5.11.

5.4 The Summing-Amplifier Circuit
Figure  5.11 shows a summing amplifier with three input voltages. The 
output voltage of a summing amplifier is an inverted, scaled sum of the 
voltages applied to the input of the amplifier. We can find the relationship 
between the output voltage ov  and the three input voltages, , ,a bv v  and ,cv
using Analysis Method 5.1.

The summing amplifier has a negative feedback path that includes  
the resistor R   f, so in Step 1 we assume the op amp is in its linear region. 
We then use the ideal op amp voltage constraint in Step 2 together with 
the ground imposed by the circuit at pv  to determine that 0n p= =v v . 
In Step 3, we write a KCL equation at the inverting input terminal, using 
Ohm’s law to specify the current in each resistor in terms of the voltage 
across that resistor, to get

R R R R
i 0.n n n n o

f
n

a

a

b

b

c

c

−
+

−
+

−
+

−
+ =

v v v v v v v v

Apply the voltage constraint from Step 2 and the current constraint 
i 0n =  to the KCL equation, then solve for vo to get

INVERTING SUMMING-AMPLIFIER EQUATION

 R

R

R

R

R

R
.o

f f f

a
a

b
b

c
c= − + +







v v v v  (5.6)
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2
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1

in

yn

2

1

Rb

Ra

Rc

Rf

Figure 5.11 ▲ A summing amplifier.
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Equation 5.6 shows that the output voltage is an inverted, scaled sum of 
the three input voltages. According to Step 4, this equation is valid only if 
the value of v   o is between the two power supply voltages.

If R R R R ,sa b c= = =  then Eq. 5.6 reduces to

R

R
( ).o

f

s
a b c= − + +v v v v

Finally, if we make R Rf s= , the output voltage is just the inverted sum 
of the input voltages. That is,

( ).o a b c= − + +v v v v

Although we analyzed the summing amplifier with three input sig-
nals, the number of input voltages can be increased or decreased as 
needed. For example, you might wish to sum 16 individually recorded 
audio signals to form a single audio signal. The summing-amplifier config-
uration in Fig. 5.11 could include 16 different input resistors whose values 
specify different amplification factors for each of the input audio tracks. 
The summing amplifier thus plays the role of an audio mixer. As with 
 inverting- amplifier circuits, the scaling factors in summing-amplifier cir-
cuits are  determined by the external resistors R R R R R, , , , , .f na b c …

Example 5.3 uses the summing-amplifier equation to design an invert-
ing summing amplifier.

EXAMPLE 5.3 Designing a Summing Amplifier

a) Design a summing amplifier (see Fig.  5.11) 
whose output voltage is

4 5 .o a b c= − − −v v v v

Use an ideal op amp with 12 V±  power supplies 
and a 20 kΩ  feedback resistor.

b)  Suppose 2 Va =v  and 1V.c = −v  What range 
of input voltages for v    b allows the op amp in this 
design to remain in its linear operating region?

c) Suppose 2 V, 3V,a b= =v v  and 1V.c = −v  
Using the input resistor values found in part (a), 
how large can the feedback resistor be before the 
op amp saturates?

Solution

a) Use the summing-amplifier equation (Eq. 5.6) 
and the feedback resistor value to find the three 
input resistor values:

R

R
R4 so 20 k

4
5 k ;

f

a
a− = − = = Ω

R

R
R1 so 20 k

1
20 k ;

f

b
b− = − = = Ω

R

R
R5 so 20 k

5
4 k .

f

c
c− = − = = Ω

The resulting circuit is shown in Fig. 5.12.

b) Substitute the values for v   a and v   c into the equa-
tion for v   o given in the problem statement to get

4 2 5 1 3 .o b b( ) ( )= − − − − = − −v v v

Solving this equation for v    b in terms of v   o gives

3 .ob = − −v v

Now substitute the two power supply voltages 
for the output voltage to find the range of v    b val-
ues that keeps the op amp in its linear region:

15 V 9 V.b− ≤ ≤v

c) Starting with the summing-amplifier equa-
tion, Eq. 5.6, substitute the input resistor values 
found in part (a) and the specified input voltage 

2

1

+12 V

1

2

yo

1

2

ynya yb yc

212 V
1

2

5 kV
20 kV

4 kV

20 kV

1

2

1

2

in

Figure 5.12 ▲ The summing amplifier for Example 5.3(a).
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160 The Operational Amplifier

values. Remember that the feedback resistor is 
an unknown in this equation:

R R R R

5000
2

20,000
3

4000
1

6

20,000
.o

f f f f
( ) ( ) ( )= − − − − = −v

From this equation, it should be clear that if the 
op amp saturates, it will do so at its negative 
power supply value, 12 V.−  Using this voltage 

for vo in the preceding equation and solving for 
the feedback resistance gives

R 40 k .f = Ω

Given the specified input voltages, this is the 
largest value of feedback resistance that keeps 
the op amp in its linear region.

Objective 2—Be able to analyze simple circuits containing ideal op amps

5.3  a)  Find ov  in the circuit shown if 0.25 Va =v  
and 0.1 V.b =v

b) If 0.1 V,b =v  how large can av  be before 
the op amp saturates?

c) If 0.25 V,a =v  how large can bv  be before 
the op amp saturates?

d) Repeat (a), (b), and (c) with the polarity of 
bv  reversed.

Answer: a) 5 V;−
b) 0.6875 V;
c) 0.8 V;
d) 3,−  0.8125, and 2 V.

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter Problems 5.12, 5.13, and 5.15.

2

1

25 kV

16 V

1

2

yo

ya

212 V

40 kV

400 kV

1

2

yb
1

2

5.5 The Noninverting-Amplifier Circuit
Figure  5.13 depicts a noninverting-amplifier circuit. We use Analysis 
Method 5.1 to find the expression for the output voltage as a func-
tion of the source voltage v   g. Starting with Step 1, we note that the 
 noninverting- amplifier circuit has a negative feedback path with the resis-
tor R   f, so we assume that the op amp is in its linear region. In Step 2, the 
voltage constraint equation (Eq. 5.2) tells us that .n p=v v  However, the 
voltage at the noninverting terminal is not 0 because the terminal is not 
connected to the common node. The current constraint equation (Eq. 5.3) 
tells us the noninverting input current is zero. Since this current equals the 
current in the resistor R   g, there is no voltage drop across R   g and p g=v v .  
Therefore, n g=v v  as well.

In Step 3, we write a KCL equation at the inverting terminal, using 
the result of Step 2 and the current constraint equation to give

R R
0.

g

s

g o

f

+
−

=
v v v

Solve the KCL equation for ov  to get

2

1

Rs 1VCC

1

2

yo

1

2 2

yn

1

yp

2VCCRg

Rf

yg
1

2

Figure 5.13 ▲ A noninverting amplifier.
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From Step 4 we know that keeping the op amp in its linear region requires 
that

R R

R

V
.

s f

s

CC

g

+
<

v

Once again, the ideal op amp assumption allows us to express the out-
put voltage as a function of the input voltage and the external resistors Rs 
and R .f

Example 5.4 illustrates the design of a noninverting amplifier using 
realistic resistor values.

NONINVERTING-AMPLIFIER EQUATION

 R R

R
.o

s f

s
g=

+
v v  (5.7)

EXAMPLE 5.4 Designing a Noninverting Amplifier

a) Design a noninverting amplifier (see Fig.  5.13) 
with a gain of 6. Assume the op amp is ideal.

b) Suppose we wish to amplify a voltage gv , where 
− ≤ ≤ +1.5 V 1.5 V.gv  What are the smallest 
power supply voltages that could be used with 
the resistors selected in part (a) to ensure that 
the op amp remains in its linear region?

Solution

a) Using the noninverting-amplifier equation 
(Eq. 5.7),

 
R R

R

R R

R
6 so

   
6.o

s f

s
g g

s f

s

=
+

=
+

=v v v

Therefore,

R R R R R6 ,      so      5 .s f s f s+ = =

Look at the realistic resistor values listed in 
Appendix H. Let’s choose  R 10 kf = Ω , so 
R 2 ks = Ω . But there is not a 2 kΩ resistor in  
Appendix H. We can create an equivalent 2 kΩ 
resistor by combining two 1 kΩ  resistors in 
series. We can use a third 1 kΩ resistor for Rg .  
The resulting circuit is shown in Fig. 5.14.

b) Solve two different versions of the noninverting- 
amplifier equation for ov , first using = +1.5 Vgv  
and then using 1.5 Vg = −v :

6 1.5 9 V;o ( )= =v

6 1.5 9 V.o ( )= − = −v

Thus, if we use 9 V±  power supplies for the 
noninverting amplifier designed in part (a) and 

1.5 V 1.5 Vg− ≤ ≤ +v , the op amp will remain 
in its linear operating region. The circuit resulting 
from the analysis in parts (a) and (b) is shown in 
Fig. 5.14, with V 9 V=+  and V 9 V.= −−

2

1

1 kV 1 kV V+

1

2

yoyg

V–1 kV

10 kV

1

2

Figure 5.14 ▲ The noninverting amplifier design of 
Example 5.4.

M05_NILS8436_12_SE_C05.indd   161 07/01/22   8:30 AM



162 The Operational Amplifier

Objective 2—Be able to analyze simple circuits containing ideal op amps

5.4  The op amp in the circuit shown is ideal.
a) Calculate v   o when v   g equals 3 V.
b) Specify the range of values of v   g so that the 

op amp operates in a linear mode.
c) Assume that v   g equals 5 V and that the 

48 kΩ resistor is replaced with a variable 
resistor. What value of the variable resistor 
will cause the op amp to saturate?

Answer: a) 7.56 V;

b) 3.97 V 3.97 V;gv− ≤ ≤
c) 35 k .Ω

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter Problems 5.19 and 5.20.

2

1

10 V

1

2

yo

210 V

yg
1

2

15 kV

48 kV

30 kV

45 kV 30 kV

5.6 The Difference-Amplifier Circuit
The output voltage of a difference amplifier is proportional to the dif-
ference between the two input voltages. To demonstrate, we analyze the 
difference-amplifier circuit shown in Fig. 5.15, using Analysis Method 5.1. 
In Step 1, we note the negative feedback path that includes the resistor R   b 
and thereby assume the op amp is in its linear region. In Step 2, we use the 
voltage constraint equation (Eq. 5.2) to recognize that n p=v v . Now we 
need an expression for v   p. Let’s focus on the subcircuit at the noninverting 
input; employing the current constraint equation (Eq. 5.3), we note that 
there is no current into the noninverting input. Therefore, the current in 
the v    b source remains in the loop containing that source and the resistors 
R   c and R   d. The voltage at the noninverting terminal is the voltage across 
R   d, which we can find using voltage division:

R

R R
.p n

d

c d
b=

+
=v v v

At Step 3, write a KCL equation at the inverting terminal, employing the 
current constraint equation again to see that the current into the inverting 
terminal is zero:

R R
0.n n oa

a b

−
+

−
=

v v v v

Solving the KCL equation for v   o as a function of both v   a and v   n, we get

R R

R

R

R
.o n

a b

a

b

a
a=

+





 −







v v v

Substituting the equation for v   n into the equation for v   o gives the desired 
relationship:

DIFFERENCE-AMPLIFIER EQUATION

 
R R R
R R R

R
R

( )
( )

.o
d a b

a c d
b

b

a
a=

+
+

−v v v  (5.8)
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1

2
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1
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1

2

Figure 5.15 ▲ A difference amplifier.
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Equation 5.8 shows that the output voltage is proportional to the 
 difference between a scaled replica of bv  and a scaled replica of .av  In 
general, the scaling factor applied to bv  is not the same as that applied to 

.av  However, the scaling factor applied to each input voltage can be made 
equal by setting

 R

R

R

R
.a

b

c

d

=  (5.9)

When Eq. 5.9 is satisfied, the expression for the output voltage reduces to

SIMPLIFIED DIFFERENCE-AMPLIFIER EQUATION

 R
R

( ).o
b

a
b a= −v v v  (5.10)

If Eq. 5.9 is satisfied, the output voltage is a scaled replica of the difference 
between the input voltages bv  and .av  As in the previous ideal amplifier cir-
cuits, the scaling is controlled by the external resistors. Furthermore, the rela-
tionship between the output voltage and the input voltages is not affected by 
connecting a nonzero load resistance across the output of the amplifier.

Follow Example 5.5 to design a difference amplifier using realistic 
resistor values.

EXAMPLE 5.5 Designing a Difference Amplifier

a) Design a difference amplifier (see Fig. 5.15) that 
amplifies the difference between two input volt-
ages by a gain of 8, using an ideal op amp and 

8 V±  power supplies.
b) Suppose 1Va =v  in the difference amplifier 

designed in part (a). What range of input volt-
ages for bv  will allow the op amp to remain in its 
linear operating region?

Solution

a) Using the simplified difference-amplifier equa-
tion (Eq. 5.10),

R

R

R

R
8 so

   
8.o

b

a
b a b a

b

a

( ) ( )= − = − =v v v v v

We want two resistors whose ratio is 8. Look at 
the realistic resistor values listed in Appendix H.  
Let’s choose R 12 kb = Ω, so = ΩR 1.5 ka , 
although there are many other possibilities. Note 
that the simplified difference-amplifier equation 
requires that

R

R

R

R 
.a

b

c

d

=

A simple choice for Rc  and Rd  is 
= = ΩR R 1.5 kc a  and R R 12 kd b= = Ω. 

The resulting circuit is shown in Fig. 5.16.

b) Using = 1av , solve two different versions of 
the simplified  difference-amplifier equation 
(Eq. 5.10) for v    b in terms of v   o. Then substitute 
the two limiting values for the output voltage, 

8 Vo = +v  and 8 Vo = −v :

8
1 8

8
1 2 V;o

b = + = + =v
v

8
1 8

8
1 0 V.o

b = + = − + =v
v

Thus, if 1 Va =v  in the difference amplifier 
from part (a), the op amp will remain in its linear 
region if 0 V 2 Vb≤ ≤v .

2

1

+ 8 V

1

2

yo

2 8 V

yb

ya
1

2

1

2

1.5 kV

12 kV

1.5 kV

12 kV

Figure 5.16 ▲ The difference amplifier designed in 
Example 5.5.
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Objective 2—Be able to analyze simple circuits containing ideal op amps

5.5  a)  In the difference amplifier shown, 2 V.a =v   
What range of values for bv  will result in  
linear operation?

b) Repeat (a) with the Ω6 k  resistor increased 
to Ω18 k .

Answer: a) 2 V 6 V;b− ≤ ≤v
b) 3 V 9 V.b− ≤ ≤v

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter Problems 5.26, 5.27, and 5.32.

2

1

12 V

1

2

yo

212 V

yb

ya
1

2

1

2

12 kV

36 kV

6 kV

18 kV

The Difference Amplifier—Another Perspective
Let’s examine the difference-amplifier behavior more closely by redefining 
its inputs in terms of two other voltages. The first is the differential mode 
input, which is the difference between the two input voltages in Fig. 5.15:

 v v v .dm b a= −  (5.11)

The second is the common mode input, which is the average of the two 
input voltages in Fig. 5.15:

 v v v( ) 2.cm a b= +  (5.12)

Using Eqs. 5.11 and 5.12, we can now represent the original input  voltages, 
av  and ,bv  in terms of the differential mode and common mode voltages, 
dmv  and cmv :

 v v v1
2

,a cm dm= −  (5.13)

  v v v1
2

.b cm dm= +  (5.14)

Substituting Eqs. 5.13 and 5.14 into Eq. 5.8 gives the output of the dif-
ference amplifier in terms of the differential mode and common mode 
voltages:

R R R R

R R R

R R R R R R

R R R( )
( ) ( )

2 ( )o
a d b c

a c d
cm

d a b b c d

a c d
dm=

−
+













+
+ + +

+












v v v

v vA A ,cm cm dm dm= +  (5.15)

where Acm  is the common mode gain and Adm  is the differential mode 
gain. Now, substitute R Rc a=  and R R ,d b=  which are possible values 
for Rc  and Rd  that satisfy Eq. 5.9, into Eq. 5.15:

 R

R
(0) .o cm

b

a
dm= +







v v v  (5.16)
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Thus, an ideal difference amplifier has A 0,cm =  amplifies only the dif-
ferential mode portion of the input voltage, and eliminates the common 
mode portion of the input voltage. Figure 5.17 shows a  difference-amplifier 
circuit with differential mode and common mode input voltages in place 
of av  and .bv

Equation 5.16 provides an important perspective on the function of 
the difference amplifier. In many applications it is the differential mode 
signal that contains the information of interest, while the common mode 
signal represents the noise found in all electric signals. For example, an 
electrocardiograph electrode measures the voltages produced by your 
body that regulate your heartbeat. These voltages have very small magni-
tudes compared with the electrical noise that the electrode picks up from 
lights and other electrical equipment in the room. The noise appears as 
the common mode portion of the measured voltage, whereas the heart 
rate voltages comprise the differential mode portion. Thus, an ideal dif-
ference amplifier (one whose resistors satisfy Eq. 5.9) amplifies only the 
voltage of interest and suppresses the noise.

Measuring Difference-Amplifier Performance—  
The Common Mode Rejection Ratio
An ideal difference amplifier has zero common mode gain and nonzero 
(and usually large) differential mode gain. Two factors influence the ideal 
common mode gain—resistance mismatches (that is, Eq. 5.9 is not sat-
isfied) or a nonideal op amp (that is, Eqs. 5.2 and 5.3 are not satisfied). 
We focus first on how resistance mismatches affect the performance of a 
difference amplifier.

Suppose that resistor values are chosen that do not precisely satisfy 
Eq. 5.9. Instead, the relationship among the resistors R R R, , ,a b c  and Rd  is

R

R

R

R
(1 ) ,a

b

c

d

ε= −

so

R R R R(1 ) and ,a c b dε= − =
or

 R R R R(1 ) and ,d b a cε= − =  (5.17)

where ε is a very small number. We can see the effect of this resistance 
mismatch on the common mode gain of the difference amplifier by substi-
tuting Eq. 5.17 into Eq. 5.15 and simplifying the expression for Acm :

A
R R R R

R R R

(1 )
[ (1 ) ]cm

a b a b

a a b

ε
ε

=
− −

+ −

R

R R(1 )
b

a b

ε
ε

=
−

+ −

R

R R
.b

a b

ε
≈

−
+

 (5.18)

The approximation in Eq. 5.18 is valid because ε is very small, and there-
fore 1 ε( )−  is approximately 1. Note that when the resistors in the differ-
ence amplifier satisfy Eq. 5.9, 0ε =  and Eq. 5.18 gives A 0.cm =

2

1

1VCC

1

2

yo

2VCCycm
1

2

1

2

1

2

ydm

2

ydm

2
Rd

Rb

Rc

Ra

Figure 5.17 ▲ A difference amplifier with common 
mode and differential mode input voltages.
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166 The Operational Amplifier

Now calculate the effect of the resistance mismatch on the differen-
tial mode gain by substituting Eq. 5.17 into Eq. 5.15 and simplifying the 
expression for Adm :

A
R R R R R R

R R R

(1 ) ( ) [ (1 ) ]
2 [ (1 ) ]dm

b a b b a b

a a b

ε ε
ε

=
− + + + −

+ −

R
R

R

R R
1

( 2)

(1 )
b

a

a

a b

ε
ε

= −
+ −













R
R

R

R R
1

( 2)
.b

a

a

a b

ε
≈ −

+











 (5.19)

We use the same rationale for the approximation in Eq. 5.19 as in the 
computation of A .cm  When the resistors in the difference amplifier satisfy 
Eq. 5.9, 0ε =  and Eq. 5.19 gives A R R .dm b a=

The common mode rejection ratio (CMRR) measures a difference 
amplifier’s performance. It is defined as the ratio of the differential mode 
gain to the common mode gain:

 A

A
CMRR .dm

cm

=  (5.20)

The larger the CMRR, the closer the difference amplifier’s behavior is to 
ideal. We can see the effect of resistance mismatch on the CMRR by sub-
stituting Eqs. 5.18 and 5.19 into Eq. 5.20:

R
R

R R R

R R R
CMRR

[1 ( 2) ( )]

( )

b

a
a a b

b a b

ε

ε
≈

− +

− +

R R

R

(1 2)a b

a

ε
ε

≈
− +
−

R R1
.b a

ε
≈

+
−

 (5.21)

From Eq. 5.21, if the resistors in the difference amplifier are matched, 
0ε =  and CMRR .= ∞  Even if the resistors are mismatched, we can 

minimize the impact of the mismatch by making the differential mode 
gain R R( )b a  very large, thereby making the CMRR large.

The second reason for nonzero common mode gain is a nonideal op 
amp. Remember that the op amp is itself a difference amplifier because 
in the linear operating region, its output is proportional to the difference 
of its inputs; that is, A( ).o p n= −v v v  The output of a nonideal op amp 
is not strictly proportional to the difference between the inputs (the dif-
ferential mode input) but also includes a common mode signal. Internal 
mismatches in the integrated circuit components make the behavior of 
the op amp nonideal, in the same way that the resistor mismatches in the 
 difference-amplifier circuit make its behavior nonideal. Even though a 
discussion of nonideal op amps is beyond the scope of this text, note that 
the CMRR is used to rate op amps in practice by assessing how nearly 
ideal an op amp’s behavior is.

 Example 5.6 examines how resistor mismatches affect the CMRR of 
a difference amplifier.
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EXAMPLE 5.6 Calculating the CMRR

a) Suppose the Rc resistor in the difference ampli-
fier designed in Example 5.5, shown in Fig. 5.16, 
is 10% larger than its nominal value. All other 
resistor values are unchanged. Calculate the 
common mode gain, the difference mode gain, 
and the CMRR for the difference amplifier.

b) Repeat part (a) assuming the R   d resistor value is 
10% larger than its nominal value and all other 
resistor values are unchanged.

Solution

a) Use the common mode gain equation in Eq. 5.15 
with R 1500(1.1) 1650c = = Ω to get

A 1500 12,000 12,000 1650
1500 1650 12,000

0.0879.

cm
( )( ) ( )( )

( )
= −

+
= −

Then use the difference mode gain equation in 
Eq. 5.15 with R 1500(1.1) 1650c = = Ω to get

The CMRR (Eq. 5.20) is thus

CMRR 7.956
0.0879

90.5.=
−

=

b) Use the common mode gain equation in Eq. 5.15 
with = = ΩR 12,000(1.1) 13,200d  to get

A 1500 13,200 12,000 1500
1500 1500 13,200

0.08163.

cm
( )( ) ( )( )

( )
= −

+
=

Then use the difference mode gain equation in 
Eq. 5.15 with R 12,000(1.1) 13,200d = = Ω to 
get

A 13,200 1500 12,000 12,000 1500 13,200
2 1500 1500 13,200

8.0408.

dm
( ) ( )

( )( )
= + + +

+
=

The CMRR (Eq. 5.20) is thus

CMRR 8.0408
0.08163

98.5.= =
A 12,000 1500 12,000 12,000 1650 12,000

2 1500 1650 12,000
7.956.

dm
( ) ( )

( )( )
= + + +

+
=

Objective 2—Be able to analyze simple circuits containing ideal op amps

5.6  In the difference amplifier shown, what range 
of R   x yields a CMRR 1000?≥

Answer:

R19.93 k 20.07 k .xΩ ≤ ≤ Ω

ASSESSMENT PROBLEM

SELF-CHECK: Assess your understanding of this material by trying Chapter Problems 5.33 and 5.34.

 5.7  A More Realistic Model for the 
Operational Amplifier

We now consider a more realistic model, shown in Fig. 5.18, that predicts 
the performance of an op amp in its linear region of operation. This model 
includes three modifications to the ideal op amp: (1) a finite input resistance, 
R ;i  (2) a finite open-loop gain, A; and (3) a nonzero output resistance, R .o
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1

2
1

2

20 kV

50 kV

Rx

50 kV
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168 The Operational Amplifier

When using the equivalent circuit shown in Fig. 5.18, the assumptions 
that n p=v v  (Eq. 5.2) and i i 0n p= =  (Eq. 5.3) are invalid. Equation 5.1  
is also invalid because the output resistance, R   o, is not zero.

Although the presence of A, Ri, and Ro  makes op amp circuit anal-
ysis more cumbersome, it remains straightforward. To illustrate, we 
use the equivalent circuit shown in Fig.  5.18 when analyzing both an 
inverting and a noninverting amplifier. We begin with the inverting 
amplifier.

Analyzing an Inverting-Amplifier Circuit Using  
a More Realistic Op Amp Model
The circuit for the inverting amplifier, using the op amp circuit shown 
in Fig. 5.18, is depicted in Fig. 5.19. We can find the output voltage, ,ov  
as a function of the source voltage, v    s, by writing two KCL equations 
at the nodes labeled a and b in Fig. 5.19. Note that 0p =v  due to the 
external short-circuit connection at the noninverting input terminal. The 
equations are:

R R R
nodea: 0,n s

s

n

i

n o

f

−
+ +

−
=

v v v v v

R

A

R
nodeb:

( )
0.o n

f

o n

o

−
+

− −
=

v v v v

We rearrange the KCL equations, preparing to use either back-substitution 
or Cramer’s method to solve for ov :

v v v
R R R R R
1 1 1 1 1 ,

s i f
n

f
o

s
s+ +









 − =

v vA
R R R R

1 1 1 0.
o f

n
f o

o−








 + +









 =

Solving for ov  yields

 
A R R

R
R

A
R
R

R
R

R
R

( )

1 1
.o

o f

s

f

o

i

s

i

o

f

s=
− +

+ +






 + +







 +

v v  (5.22)

Note that Eq. 5.22 reduces to Eq. 5.4 as R 0,o →  R ,i → ∞  and A .→ ∞
If the inverting amplifier shown in Fig. 5.19 has a load resistance, RL, 

at its output terminal, the relationship between ov  and sv  is

A R R

R
R

A
R
R

R
R

R
R

R
R

R
R

( )

1 1 1
.o

o f

s

f

o

i

o o s

i

o

f

s

L L

=
− +

+ + +






 + +







 +






 +

v v

Analyzing a Noninverting-Amplifier Circuit Using 
a More Realistic Op Amp Model
Using the equivalent circuit shown in Fig. 5.18 to analyze a noninverting 
amplifier, we obtain the circuit depicted in Fig.  5.20. Here, the voltage 
source gv  in series with the resistance Rg  represents the signal source. 
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2

yo
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2
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1

2
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A(yp 2 yn)

2

1
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Ri
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io
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Figure 5.18 ▲ An equivalent circuit for an 
 operational amplifier.
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Figure 5.19 ▲ An inverting-amplifier circuit.
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Figure 5.20 ▲ A noninverting-amplifier circuit.
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The resistor RL denotes the load on the amplifier. We derive an expres-
sion for ov  as a function of v   g by writing KCL equations at nodes a and b:

 
R R R R

node a: 0,n

s

n g

g i

n o

f

+
−

+
+

−
=

v v v v v  (5.23)

 
R R

A

R
node b:

( )
0.o n

f

o o p n

oL

−
+ +

− −
=

v v v v v v
 (5.24)

The current in Rg  is the same as in R ,i  so

 
R R R

.
p g

g

n g

i g

−
=

−

+

v v v v
 (5.25)

Use Eq. 5.25 to eliminate pv  from Eq. 5.24, giving

v v v
R R R R R R R
1 1 1 1 1 ,n

s g i f
o

f
g

g i

+
+

+








 −
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+











AR
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1 1 1 1
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i
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o

f o
g
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 + + +









 =

+











v v v

Solving for ov  yields

 
R R R R AR

R
R
A

K
R R R R R R

AR

[( ) ( )]

(1 )
( )( )

,o
f s s o i g

s
o

r
f s f s i g

i

=
+ +

+ + +
+ + +

v
v

 (5.26)

where

K
R R

R

R R

R

R R R R R R

R R
.r

s g

i

f s f s f g g s

iL L

=
+

+
+

+
+ +

Note that Eq. 5.26 reduces to Eq. 5.7 when R 0,o →  A ,→ ∞  and 
R .i → ∞  For the unloaded R( )L = ∞  noninverting amplifier, Kr  
reduces to R R Rs g i( )+  and the expression for v   o becomes

R R R R AR

R
R
A

R R

R AR
R R R R R R

[( ) ]

1 1 [ ( )( )]
.o

f s s o i g

s
o s g

i i
f s f s i g

=
+ +

+ +
+






 + + + +

v
v

 (5.27)

Example 5.7 analyzes a noninverting-amplifier circuit that employs 
the more realistic op amp model.

EXAMPLE 5.7  Analyzing a Noninverting-Amplifier  
Circuit Using a Realistic  
Op Amp Model

Here we analyze the noninverting amplifier 
designed in Example 5.4 using the realistic op amp 
model in Fig. 5.18. Assume that the open-loop gain 
A 50,000= , the input resistance R 100 ki = Ω , 
and the output resistance R 7.5 ko = Ω . The cir-
cuit is shown in Fig. 5.21; note that there is no load 
resistance at the output.

1

2

1

2

1

2

1

2

yo

1 2

1

2 yn

ypyg

A(yp 2 yn)

Ro
Ri

2 kV

1 kV

10 kV

Figure 5.21 ▲ The noninverting amplifier from 
Example 5.4, using a realistic op amp model  
with A 50,000= , R ki 100= Ω, and 
R ko 7.5= Ω.
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10 k 2 k 2 k 7.5 k
100 k 50,000

2 k 7.5 k
50,000

1 2 k 1 k
100 k

1
50,000 100 k

10 k 2 k 10 k 2 k 100 k 1 k
5.9988.o

g ( )

( )( )

( )( )

( )
( )( ) ( )( )[ ]

=
+ +

+ + + + + + +
=

v
v

Note how close this value is to the gain of 6 spec-
ified and achieved in Example 5.4 using the ideal 
op amp model.

b) From part (a), when 1Vg =v , 5.9988 Vo =v .  
Now use Eq. 5.23 to solve for v   n in terms of v   o 
and v   g:

v ( )+
+

+

=
+

+

1
2 k

1
1 k 100 k

1
10 k

1
100 k 1 k

5.9988
10 k

;

n

0.999803 V.n =v

Use Eq. 5.25 to solve for v   p:

R

R R
1 k 0.999803 1

100 k 1 k
1

0.999996 V.

p
g n g

i g
g

( ) ( )=
−

+
+ = −

+
+

=

v
v v

v

a) Calculate the ratio of the output voltage to the 
source voltage, .o gv v

b) Find the voltages at the input terminals v   n and 
v   p with respect to the common node, when 

1Vg =v .

Solution

a) Using Eq. 5.27,

c) Using the results from part (b), we find that 
the voltage difference at the op amp input 
 terminals is

v v 192.895  V.p n µ− =

While this voltage difference is very small, it is 
not zero, as we assume when using the ideal op 
amp model.

d) The current in the signal source is the current in 
the resistor R   g. Using Ohm’s law,

i
R

1 0.999996
1000

3.86 nA.g
g p

g

=
−

= − =
v v

This is also the current into the noninverting 
op amp terminal. It is very small but is not 
zero, as we assume when using the ideal op 
amp model.

c) Find the voltage difference at the op amp input termi-
nals, ( – )p nv v , when 1Vg =v .

d) Find the current in the signal source, i   g, when the volt-
age of the source 1Vg =v .

Objective 3—Understand the more realistic model for an op amp

5.7  The inverting amplifier in the circuit shown 
has an input resistance of 480 k ,Ω  an output 
resistance of 2 k ,Ω  and an open-loop gain of 
100,000. Assume that the amplifier is operating 
in its linear region.
a) Calculate the voltage gain ( )o gv v  of the 

amplifier.
b) Calculate the value of nv  in microvolts when 

1V.g =v
c) Calculate the resistance seen by the signal 

source ( )gv .
d) Repeat (a)–(c) using the ideal model for the 

op amp.

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter Problems 5.45 and 5.47.

Answer: a) 1.49996;−
b) 16.25 V;µ
c) 16,000.26 ;Ω
d) µ− Ω1.5, 0 V, 16 k .

15 V

215 V
yo

1

2

yg
1

2

2

1

16 kV

24 kV
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Practical Perspective
Strain Gages
 hanges in the shape of elastic solids are of great importance to engi-
neers who design structures such as aircraft frames that twist, stretch, 
or bend when subjected to external forces. To use strain gages, you 
need information about the physical structure of the gage, methods of 
bonding the gage to the surface of the structure, and the orientation 
of the gage relative to the forces exerted on the structure. Strain gage 
measurements are important in many engineering applications, and 
knowledge of electric circuits is germane to their proper use.

The circuit shown in Fig.  5.22 provides one way to measure the 
change in resistance experienced by strain gages in applications like 
the one in the chapter opener. As we will see, this circuit is the familiar 
difference amplifier, with the strain gage bridge providing the two volt-
ages whose difference is amplified. The pair of strain gages that are 
lengthened once the bar is bent have the values + ∆R R in the bridge 
feeding the difference amplifier, whereas the pair of strain gages that are 
shortened have the values − ∆R R. We will analyze this circuit to dis-
cover the relationship between the output voltage, vo, and the change in 
resistance, ∆R, experienced by the strain gages.

To begin, assume that the op amp is ideal. Writing the K L equa-
tions at the inverting and noninverting input terminals of the op amp, we 
see

 
R R R R R

,n n n o

f

ref −
+ ∆

=
− ∆

+
−v v v v v  (5.28)

 
R R R R R

.
p p p

f

ref −

− ∆
=

+ ∆
+

v v v v
 (5.29)

Now rearrange Eq. 5.29 to get an expression for the voltage at the 
 noninverting terminal of the op amp:

 R R
R R R R R

1 1 1
.p

f

ref

( )

=
− ∆

+ ∆
+

− ∆
+











v
v

 
(5.30)

As usual, we will assume that the op amp is operating in its linear region, 
so v v=p n, and the expression for v p in Eq. 5.30 must also be the 

2

1
1

11

2 2
2

yo

yn yp

yref

Rf

Rf

1

2

R 2 DR

R 2 DR

R 1 DR

R 1 DR

1VCC

2VCC

Figure 5.22 ▲ An op amp circuit used for measuring the change in 
strain gage resistance.
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 expression for v n. We can thus substitute the right-hand side of Eq. 5.30 
for v n in Eq. 5.28 and solve for vo. After some algebraic manipulation,

 
R R

R R

(2 )

( )
.o

f

2 2 ref=
∆

− ∆
v v  (5.31)

Because the change in resistance experienced by strain gages is very 
small, R R2∆ <<( )  so R R R2 2 2− ∆ ≈( )  and Eq. 5.31 becomes

R

R
2 ,o

f
refδ≈v v

where δ = ∆R R. By adjusting the value of R   f, we can amplify the small 
change in resistance to get a large, measurable output voltage, as long 
as the output voltage value is between the two power supply values.

SELF-CHECK: Assess your understanding of this Practical Perspective 
by trying Chapter Problem 5.50.

Summary

• The operational amplifier (op amp) is a complex elec-
tronic circuit with two input terminals, two power 
 supply terminals, and one output terminal. The voltage 
at the inverting input terminal is v  n, the voltage at the 
 noninverting input terminal is v  p, and the voltage at  
the output terminal is v  o, all with respect to a common 
node. The current into the inverting input terminal is i   n, 
while the current into the noninverting input terminal is i   p.  
(See page 152.)

•  The equation that defines the voltage transfer charac-
teristic of an ideal op amp is

v

v v

v v v v

v v

V A V

A V A V

V A V

, ( ) ,

( ), ( ) ,

, ( ) ,
o

CC p n CC

p n CC p n CC

CC p n CC

=

− − < −

− − ≤ − ≤ +

+ − > +











where A is a proportionality constant known as the 
open-loop gain, and VCC  represents the power supply 
voltages. (See page 153.)

• A feedback path between an op amp’s output and 
its inverting input can constrain the op amp to its 
linear operating region where A( )o p n= −v v v . 
(See page 153.)

• A voltage constraint exists when the op amp is con-
fined to its linear operating region due to typical val-
ues of VCC  and A. If the ideal modeling assumptions are 
made—meaning A is assumed to be infinite—the ideal 
op amp model is characterized by the voltage constraint

.p n=v v
(See page 153.)

• A current constraint further characterizes the ideal op 
amp model, assuming the ideal input resistance of the 

op amp integrated circuit is infinite. This current con-
straint is given by

i i 0.p n= =

(See page 154.)

• To analyze an ideal op amp circuit, follow these steps:

• Check for the presence of a negative feedback path; 
if it exists, we can assume the op amp is operating in 
its linear region.

• Write a KCL equation at the inverting input termi-
nal, using the input current constraint (Eq. 5.3), the 
value of nv , and Ohm’s law to find the currents. This 
equation will usually contain the unknown voltage at 
the op amp’s output terminal.

• Solve the KCL equation and determine the voltage 
at the op amp’s output terminal.

• Compare the voltage at the op amp’s output terminal 
to the power supply voltages to determine whether 
the op amp is actually in its linear region or whether 
it has saturated.

• An inverting amplifier is an op amp circuit producing an 
output voltage that is an inverted, scaled replica of the 
input. (See page 156.)

• A summing amplifier is an op amp circuit producing an 
output voltage that is a scaled sum of the input voltages. 
(See page 158.)

• A noninverting amplifier is an op amp circuit producing 
an output voltage that is a scaled replica of the input 
voltage. (See page 160.)
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• A difference amplifier is an op amp circuit producing 
an output voltage that is a scaled replica of the input 
voltage difference. (See page 162.)

• The two voltage inputs to a difference amplifier can 
be used to calculate the common mode and difference 
mode voltage inputs, cmv  and dmv . The output from the 
difference amplifier can be written in the form

A A ,o cm cm dm dm= +v v v

where Acm  is the common mode gain and Adm  is the 
differential mode gain. (See page 164.)

• In an ideal difference amplifier, A 0.cm =  To measure 
how nearly ideal a difference amplifier is, we use the 
common mode rejection ratio:

A
A

CMRR .dm

cm

=

An ideal difference amplifier has an infinite CMRR. 
(See page 166.)

• We considered both a simple, ideal op amp model and 
a more realistic model in this chapter. The differences 
between the two models are as follows:

Simplified Model More Realistic Model

Infinite input resistance Finite input resistance

Infinite open-loop gain Finite open-loop gain

Zero output resistance Nonzero output resistance

(See page 167.)

Problems

Sections 5.1–5.2

 5.1  The op amp in the circuit in Fig. P5.1 is ideal.

a) Label the five op amp terminals with their 
names.

b) What ideal op amp constraint determines the 
value of i   n? What is this value?

c) What ideal op amp constraint determines the 
value of ( )p n−v v ? What is this value?

d) Calculate v  o.

 5.2  a)  Replace the 2.5 V source in the circuit in 
Fig. P5.1 and calculate v   o for each of the follow-
ing source values: 0.4 V , 2.0 V , 3.5 V, −0.6 V, 
−1.6 V, −2.4 V.

b) Specify the range of voltage source values that 
will not cause the op amp to saturate.

PSPICE
MULTISIM

 5.3  The op amp in the circuit in Fig. P5.3 is ideal.

a) Calculate v   o if 1.5 Va =v  and 0 Vb =v .

b) Calculate v   o if 3Va =v  and 0 Vb =v .

c) Calculate v   o if 1Va =v  and 2 Vb =v .

d) Calculate v   o if 4 Va =v  and = 6 Vbv .

e) If 4.5 Vb =v , specify the range of v   a such that 
the amplifier does not saturate.

 5.4   A voltmeter with a full-scale reading of 10 V is 
used to measure the output voltage in the circuit 
in Fig. P5.4. What is the reading of the voltmeter? 
Assume the op amp is ideal.

PSPICE
MULTISIM

PSPICE
MULTISIM

80 kV

16 kV

2.5 V 3.5 kV

10 V

215 V
1

1

2

2

1

1
1

222

yn
yp

in

yo

Figure P5.1

18 V

160 kV

40 kV

218 V

5 kV

20 kV

2

1

2

2

2

1

1 1

yoyb
ya

Figure P5.3

2

1 2

yo ym

1

2 1

3.5 mA

2.2 MV

10 V

210 V

Figure P5.4
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 5.5  Find i   o in the circuit in Fig. P5.5 if the op amp is 
ideal.

 5.6  The op amp in the circuit in Fig. P5.6 is ideal. 
Calculate the following:

a) v   a;

b) v   o;

c) i   a;

d) i   o.

 5.7  Find i L (in microamperes) in the circuit in Fig. P5.7.

Section 5.3

 5.8  The op amp in the circuit in Fig. P5.8 is ideal.

a) Find the range of values for σ  in which the op 
amp does not saturate.

b) Find i   o (in microamperes) when 0.12σ = .

PSPICE
MULTISIM

PSPICE
MULTISIM

PSPICE
MULTISIM

PSPICE
MULTISIM

2

1

io

9 kV

12 V

212 V

15 kV 6 kV
1 mA

Figure P5.5

80 kV

6 kV

120 mV

9 V

29 V

20 kV 240 kV

2

1

1

2
yo

1

2

1

2
ya

io

ia 60 kV

Figure P5.6

5 kV

3 kV

6 kV

10 kV

3 V

5 V

5 V

4 kV

25 V

2

2

2

11

1 iL

Figure P5.7

 5.9  a)  The op amp in the circuit shown in Fig. P5.9 is 
ideal. The adjustable resistor R∆ has a maximum 
value of 120 kΩ, and α is restricted to the range 
of α≤ ≤0.25 0.8 . Calculate the range of v   o if 

40 mVg =v .

b) If α is not restricted, at what value of α will the 
op amp saturate?

PSPICE
MULTISIM

170 kV

s170 kV

180 kV

 10 V

210 V

yo

1

2

500 mV
1

2

2

1

3.2 kV

30 kV

4.8 kV

io

Figure P5.8

10 kV

12 V

212 V

yo

1

2

yg
1

2

2

1

4 kV

20 kV

aRD
RD

Figure P5.9

 5.10  a)  Design an inverting amplifier with a gain of 6. 
Use an ideal op amp, a 30 kΩ resistor in the 
feedback path, and 15 V±  power supplies.

b) Using your design from part (a), determine the 
range of input voltages that will keep the op 
amp in its linear operating region.

c)  Suppose you wish to amplify a 5 V signal, using 
your design from part (a) with a variable feed-
back resistor. What is the largest value of feed-
back resistance that keeps the op amp in its  linear 
operation region? Using this resistor value, what 
is the new gain of the inverting amplifier?

 5.11  a)  Design an inverting amplifier with a gain of 4, 
using an ideal op amp. Use a minimum number 
of resistors from  Appendix H.

b) If you wish to amplify signals between 5 V−  
and 4 V using the circuit you designed in part 
(a), what are the smallest power supply voltages 
you can use?

PSPICE
MULTISIM
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Section 5.4

 5.12  The op amp in Fig. P5.12 is ideal.

a) What circuit configuration is shown in this 
figure?

b) Find v   o if v 0.5 Va = , v 1.5 Vb = , and v 2.5 V.c = −

c) The voltages v   a and v    b remain at 0.5 V and 1.5 V, 
respectively. What are the limits on v   c if the op 
amp operates within its linear region?

PSPICE
MULTISIM

9 V

29 V

yo

1

2

yc

1

2

1

yb

2

1

ya

2

2

1

3.3 kV

20 kV

30 kV

60 kV

180 kV

Figure P5.12

 5.13  a) The op amp in Fig. P5.13 is ideal. Find v  o if 
v 16 Va = , v 12 Vb = , v 6 Vc = − , and v 10 Vd = .

b) Assume v   a, v   c, and v   d retain their values as given 
in (a). Specify the range of v   b such that the op 
amp operates within its linear region.

PSPICE
MULTISIM

12 V

212 V

yo

1

2

yc

1

2

1

yb

2

1

ya

2

2

1

33 kV

55 kV

66 kV

220 kV

330 kV

550 kV
1

2
yd

Figure P5.13

 5.14  The 330 kΩ feedback resistor in the circuit in 
Fig. P5.13 is replaced by a variable resistor R   f. The 
voltages −a dv v  have the same values as given in 
Problem 5.13(a).

a) What value of R  f will cause the op amp to 
 saturate? Note that R0 f≤ ≤ ∞ .

b) When R   f has the value found in (a), what is the 
current (in microamperes) into the output ter-
minal of the op amp?

 5.15    Refer to the circuit in Fig. 5.11, where the op amp 
is assumed to be ideal. Given that R 4 ka = Ω,  
R 5 kb = Ω, R 20 kc = Ω, 200 mVa =v , 

150 mVb =v , 400 mVc =v , and V 6 VCC = ± , 
specify the range of R   f for which the op amp oper-
ates within its linear region.

PSPICE
MULTISIM

PSPICE
MULTISIM

 5.16  a)  Design an inverting-summing amplifier using a 
150 kΩ resistor in the feedback path so that

(5 10 3 ).o a b c= − + +v v v v

Use 12 V±  power supplies.

b) Suppose 3 Vb = −v  and 4 Vc =v . What 
range of values for v   a will keep the op amp in its 
linear operating region?

 5.17  Design an inverting-summing amplifier so that

(3 5 4 2 ).o a b c d= − + + +v v v v v

Start by choosing a feedback resistor (Rf)  from 
Appendix H. Then choose single resistors or con-
struct resistor networks using resistor values in 
Appendix H to satisfy the design values for R   a, R   b, 
R   c, and R   d. Draw your final circuit diagram.

Section 5.5

 5.18  The op amp in the circuit of Fig. P5.18 is ideal.

a) What op amp circuit configuration is this?

b) Calculate v   o.

PSPICE
MULTISIM

DESIGN
PROBLEM

PSPICE
MULTISIM

2

1

15 V

1

2

yo

215 V
1

2

40 kV

80 kV

3 V

Figure P5.18

 5.19  The op amp in the circuit of Fig. P5.19 is ideal.

a) What op amp circuit configuration is this?

b) Find v   o in terms of v   s.

c) Find the range of values for v   s such that v   o does 
not saturate and the op amp remains in its linear 
region of operation.

2

1

15 V

29 V

8 kV

25 kV

32 kV

1

2
ys 75 kV

1

2

yo7 kV

Figure P5.19
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 5.20  Assume that the op amp in the circuit in Fig. P5.20 is 
ideal.

a) Find the output voltage when the variable resis-
tor is set to 60 kΩ.

b) How large can R   x be before the amplifier 
saturates?

PSPICE
MULTISIM

2

1

5 V

25 V
1

2

4.5 kV

63 kV

15 kV

400 mV

1

2

yoRx

Figure P5.20

 5.21  a)  Design a noninverting amplifier (see Fig.  5.13) 
with a gain of 5, using a 100 kΩ resistor in the 
feedback path. Draw your final circuit diagram.

b) Suppose you wish to amplify input signals in the 
range 3 V 2 V.g− ≤ ≤v  What are the mini-
mum values of the power supplies that will keep 
the op amp in its linear operating region?

 5.22  a)  Design a noninverting amplifier (see Fig.  5.13) 
with a gain of 4. Use resistors from Appendix H. 
You might need to combine resistors in series 
and in parallel to get the desired resistance. 
Draw your final circuit.

b) If you use 12 V±  power supplies for the op amp, 
what range of input values will allow the op amp 
to stay in its linear operating region?

 5.23 The op amp in the circuit of Fig. P5.23 is ideal.

a) What op amp circuit configuration is this?

b) Find v   o in terms of v   s.

c) Find the range of values for v   s such that v   o does 
not saturate and the op amp remains in its linear 
region of operation.

PSPICE
MULTISIM

2

1
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10 kV

40 kV
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Figure P5.23
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Figure P5.24

 5.24  The circuit in Fig. P5.24 is a noninverting summing 
amplifier. Assume the op amp is ideal. Design the 
circuit so that

4 2 .o a b c= + +v v v v

a) Specify the numerical values of R   b, R   c, and R   f.

b) Calculate i   a, i   b, and i   c (in microamperes) when 
0.75 V,   1.0 V,a b= =v v  and 1.5 V.c =v

PSPICE
MULTISIM

DESIGN
PROBLEM

 5.25  The op amp in the noninverting summing amplifier 
of Fig. P5.25 is ideal.

a) Specify the values of Rf , Rb, and Rc  so that

6 3 4 .o a b c= + +v v v v
b) Using the values found in part (a) for Rf , Rb, 

and Rc , find (in microamperes) i s and i o when 
0.5 Va =v , 2.5 Vb =v , and 1Vc =v .

PSPICE
MULTISIM

15 V

215 V

1

yb

2

1

ya

2
yc

1

2

2

1 1
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Rs  5 15 kV
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Figure P5.25
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Section 5.6

 5.26  The op amp in the circuit of Fig. P5.26 is ideal.

a) What op amp circuit configuration is this?

b) Find an expression for the output voltage v   o in 
terms of the input voltage v   a.

c) Suppose 1625 mV.a =v  What value of R   f will 
cause the op amp to saturate?
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220 V

2

1

2 kV

80 kV

20 kV 6.8 kV

Rf

4 V
2

1

Figure P5.28
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Rf = 20 kV

1

2
8 V

1

2
ya

25 kV

2

yo33 kV

1

Figure P5.26

 5.27  The resistors in the difference amplifier shown in  
Fig. 5.15 are R R R20 k ,   80 k ,   47 ka b c= Ω = Ω = Ω,  
and R 33 k .d = Ω  The signal voltages v   a and v   b are 
0.45 and 0.9 V, respectively, and V 9 V.CC = ±

a) Find v   o.

b) What is the resistance seen by the signal  
source v   a?

c) What is the resistance seen by the signal  
source v    b?

 5.28  The resistor Rf in the circuit in Fig. P5.28 is adjusted 
until the ideal op amp saturates. Specify R   f in 
kilohms.

PSPICE
MULTISIM

 5.29  Select the values of R   a and R   f in the circuit in  
Fig. P5.29 so that

i i5000( ).o b a= −v

Use single resistors or combinations of resistors 
from Appendix H. The op amp is ideal.

DESIGN
PROBLEM
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Figure P5.29

 5.30  Design a difference amplifier (Fig. 5.15) to meet the 
following criteria: 2 5 .o b a= −v v v  The resistance  
seen by the signal source v   b is 600 k ,Ω  and the resis-
tance seen by the signal source v   a is 18 kΩ when the  
output voltage v   o is zero. Specify the values of R   a, 
R   b, R   c, and R   d using single resistors or combinations  
of resistors from Appendix H.

 5.31 a) Use the principle of superposition to derive Eq. 5.8.

b) Derive Eqs. 5.9 and 5.10.

 5.32  The op amp in the adder-subtracter circuit shown in 
Fig. P5.32 is ideal.

a) Find v   o when v v v0.4 V,  0.8 V,  0.2 V,a b c= = =  
and 0.6 V.d =v

b) If v   a, v    b, and v   d are held constant, what values of 
v   c will not saturate the op amp?

PSPICE
MULTISIM

DESIGN
PROBLEM
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Figure P5.32

 5.33  Suppose the 12 kΩ resistor R   d in the difference 
amplifier in Fig. 5.16 is replaced by a variable resis-
tor. What range of R   d values will ensure the differ-
ence amplifier has a CMRR 100≥ ?

 5.34  In the difference amplifier shown in Fig. P5.34, com-
pute (a) the differential mode gain, (b) the common 
mode gain, and (c) the CMRR.
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Figure P5.35

 5.35  The op amp in the circuit of Fig. P5.35 is ideal.

a) Plot v   o versus α when R R5f 1=  and 3 V.g =v  
Use increments of 0.1 and note by hypothesis 
that 0 1.0.α≤ ≤

b)  Write an equation for the straight line you plot-
ted in (a). How are the slope and intercept of the 
line related to v   g and the ratio R R ?f 1

c) Using the results from (b), choose values for vg 
and the ratio R Rf 1  such that 8 5.o α= − +v

Sections 5.1–5.6

 5.36  Assume that the ideal op amp in the circuit in  
Fig. P5.36 is operating in its linear region.

a) Calculate the power delivered to the 10 kΩ 
resistor.

b) Repeat (a) with the op amp removed from the 
circuit, that is, with the 10 kΩ resistor connected 
in the series with the voltage source and the 
40 kΩ resistor.

c) Find the ratio of the power found in (a) to that 
found in (b).

d) Does the insertion of the op amp between the 
source and the load serve a useful purpose? 
Explain.

PSPICE
MULTISIM

2

1

1

2

40 kV
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10 kV400 mV

Figure P5.36

 5.37  Assume that the ideal op amp in the circuit seen in 
Fig. P5.37 is operating in its linear region.

a) Show that R R R[( ) ] .o s1 2 1= +v v
b) What happens if R1 → ∞  and R 0?2 →

c) Explain why this circuit is referred to as a volt-
age follower when R1 = ∞ and R 0.2 =

2

1R1

1

2
ys

Rs

R2

yo

1

2

Figure P5.37

 5.38  a)  Show that when the ideal op amp in Fig. P5.38 is 
operating in its linear region,

i
R

3
.g

a =
v

b) Show that the ideal op amp will saturate when

R
R V( 2 )

3
.CC g

g
a =

± − v
v

2

1

1

2

VCC 

2VCC 

yg

R

R R

Raia

Figure P5.38
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 5.39  The circuit inside the shaded area in Fig. P5.39 is a 
constant current source for a limited range of values 
of RL.

a) Find the value of i   L for R 2.5 k .L = Ω

b) Find the maximum value for R   L for which i   L will 
have the value in (a).

c) Assume that R 6.5 k .L = Ω  Explain the oper-
ation of the circuit. You can assume that 
i i 0n p= ≈  under all operating conditions.

d) Sketch i   L versus R   L for R0 6.5 k .L≤ ≤ Ω

PSPICE
MULTISIM
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47 kV
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 Figure P5.39

 5.40  The signal voltage v   g in the circuit shown in  
Fig. P5.40 is described by the following equations:

t0,   0,g = ≤v

π( )= ≤ ≤ ∞t t4 sin  5
3

 V,  0 .gv

Sketch v   o versus t, assuming the op amp is ideal.
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MULTISIM
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Figure P5.40

 5.41  The voltage v   g shown in Fig. P5.41(a) is applied 
to the inverting amplifier shown in Fig. P5.41(b). 
Sketch v   o versus t, assuming the op amp is ideal.
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MULTISIM
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 5.42  The two op amps in the circuit in Fig. P5.42 are 
ideal. Calculate v   o1 and v   o2.PSPICE

MULTISIM

20 V

220 V

1

2

14.7 V
yo1

20 V

220 V

1

2

3 kV

1.5 kV

13 kV

4.7 kV

2 kV

10 V
yo2

Figure P5.42

 5.43  The op amps in the circuit in Fig. P5.43 are ideal.

a) Find i   a.

b) Find the value of the right source voltage for 
which i 0.a =

PSPICE
MULTISIM
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Section 5.7

 5.44  Derive Eq. 5.31.

 5.45  Repeat Assessment Problem 5.7, given that the 
inverting amplifier is loaded with a 400 Ω resistor.

 5.46  Assume the input resistance of the op amp in  
Fig. P5.46 is infinite and its output resistance is zero.

a) Find v   o as a function of v   g and the open-loop 
gain A.

b) What is the value of v   o if 0.5 Vg =v  and 
A 150= ?

c) What is the value of v   o if 0.5 Vg =v  and 
A = ∞?

d) How large does A have to be so that v   o is 98% of 
its value in (c)?

PSPICE
MULTISIM

PSPICE
MULTISIM

500 mV
2

1 400 mV

2

1

5 V

25 V

15 kV

90 kV

1 kV

120 kV

30 kV
2

1

5 V

25 V 1

2

ia

Figure P5.43

25 kV 10 V

210 V
yo

1

2

yg
1

2

2

1

150 kV

Figure P5.46

 5.47  The op amp in the noninverting amplifier circuit 
of Fig. P5.47 has an input resistance of Ω440 k , an 
output resistance of 5 k ,Ω  and an open-loop gain of 
100,000. Assume that the op amp is operating in its 
linear region.

a) Calculate the voltage gain ( ).o gv v
b) Find the inverting and noninverting input volt-

ages v   n and v   p (in millivolts) if 1V.g =v
c) Calculate the difference ( )p n−v v  in microvolts 

when 1V.g =v
d) Find the current drain in picoamperes on the sig-

nal source v   g when 1V.g =v
e) Repeat (a)–(d) assuming an ideal op amp.
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 5.48  a)  Find the Thévenin equivalent circuit with respect 
to the output terminals a, b for the inverting 
amplifier of Fig. P5.48. The dc signal source has 
a value of 400 mV. The op amp has an input re-
sistance of 500 k ,Ω  an output resistance of 5 kΩ,  
and an  open-loop gain of 300,000.

b) What is the output resistance (the resistance 
seen from the terminals a and b) of the inverting 
amplifier?

c) What is the resistance (in ohms) seen by the sig-
nal source v   s when the load at the terminals a, b 
is 500 Ω?
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 5.49 Repeat Problem 5.48 assuming an ideal op amp.
PSPICE

MULTISIM
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Sections 5.1–5.7

 5.50  Suppose the strain gages in the bridge in Fig. 5.22 
have the value Ω ±150  2%. The power supplies to 
the op amp are 12 V,±  and the reference voltage, 
v   ref, is taken from the positive power supply.

a) Calculate the value of Rf  so that when the strain 
gage that is lengthening reaches its maximum 
length, the output voltage is 4 V.

b) Suppose that we can accurately measure 30 mV 
changes in the output voltage. What change 
in strain gage resistance can be detected in 
 milliohms?

 5.51  a)  For the circuit shown in Fig. P5.51, show that if 
�R R,∆  the output voltage of the op amp is 

approximately

R

R

R R

R R
R

( )

( 2 )
( ) .o

f f

f
2 in≈

+

+
−∆v v

b) Find v   o if R R R350 k , 15 k , 150  ,f = Ω = Ω ∆ = Ω   
and = 12 V.inv

c) Find the actual value of v   o in (b).

PRACTICAL
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 5.52   a) If percent error is defined as

%error
approximatevalue

truevalue
1 100,= −












×

show that the percent error in the approxima-
tion of v   o in Problem 5.51 is

R
R

R R

R R
%error

( )

( 2 )
100.f

f

=
∆ +

+
×

b) Calculate the percent error in v   o for Problem 
5.51(b).

 5.53  Assume the percent error in the approximation of 
v   o in the circuit in Fig. P5.51 is not to exceed 1%. 
What is the largest percent change in R that can be 
tolerated?

 5.54  Assume the resistor in the variable branch of the 
bridge circuit in Fig. P5.51 is R R− ∆  instead of 
R R.+ ∆
a) What is the expression for v   o if �R R∆ ?

b) What is the expression for the percent error in v   o  
as a function of R, R   f, and R∆ ?

c) Assume the resistance in the variable arm of 
the bridge circuit in Fig. P5.51 is 14,820 Ω and 
the values of R, R   f, and v   in are the same as in 
Problem 5.51(b). What is the approximate value 
of v   o?

d) What is the percent error in the approxima-
tion of v   o when the variable arm resistance is 
14,820 Ω?
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CHAPTER CONTENTS

6 
CHAPTER 

Inductance, Capacitance, 
and Mutual Inductance
Here we introduce inductors and capacitors, the last two ideal 
circuit elements mentioned in Chapter  2. Fortunately, the circuit- 
analysis techniques you learned in Chapters 3 and 4 apply to circuits 
containing inductors and capacitors as well. Once you understand the 
terminal behavior of these elements in terms of current and voltage, 
you can use Kirchhoff’s laws to describe any interconnections with the 
other basic elements.

Like other components, inductors and capacitors are easier to  
describe in terms of circuit variables rather than electromagnetic 
field variables. Hence, Sections 6.1 and 6.2 briefly review the field 
concepts underlying inductors and capacitors before focusing  
on the circuit descriptions. These sections also examine energy  
in inductors and capacitors. Energy can be stored in both mag-
netic and electric fields, so inductors and capacitors can store 
energy. For example, energy can be stored in an inductor and then  
released to fire a spark plug, or stored in a capacitor and then 
released to fire a strobe light. In ideal inductors and  capacitors, 
you can extract only as much energy as you have stored. Because 
 inductors and capacitors cannot generate energy, they are classi-
fied as passive elements.

Section  6.3 describes circuit simplification using series and 
parallel combinations of capacitors or inductors.

In Sections 6.4 and 6.5, we consider two circuits linked by a  
magnetic field and thus magnetically coupled. The voltage 
induced in one circuit is related to the time-varying current in the 
other circuit by a parameter known as mutual inductance. The 
practical significance of magnetic coupling unfolds as we study 
the relationships between current, voltage, power, and several  
new parameters specific to mutual inductance. We introduce 
these relationships here and then describe their utility in a device 
called a transformer in Chapters 9 and 10.

6.1 The Inductor p. 184

6.2 The Capacitor p. 189

6.3  Series-Parallel Combinations of 
Inductance and Capacitance p. 194

6.4 Mutual Inductance p. 199

6.5  A Closer Look at Mutual Inductance p. 203

1 Know and be able to use the equations for  
voltage, current, power, and energy in an  
inductor; understand how an inductor 
behaves in the presence of constant current;  
and understand the requirement that the 
current be continuous in an inductor.

2 Know and be able to use the equations 
for voltage, current, power, and energy in 
a capacitor; understand how a capacitor 
 behaves in the presence of constant volt-
age; and understand the requirement that 
the voltage be continuous in a capacitor.

3 Be able to combine inductors with initial 
conditions in series and in parallel to form 
a single equivalent inductor with an initial 
condition; be able to combine capacitors 
with initial conditions in series and in par-
allel to form a single equivalent capacitor 
with an initial condition.

4 Understand the basic concept of mutual 
 inductance and be able to write mesh- 
current equations for a circuit containing 
magnetically coupled coils using the dot 
convention correctly.

CHAPTER OBJECTIVES
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Practical Perspective
Capacitive Touch Screens
The Practical Perspective in Chapter 3 used a grid of re-
sistors to create a touch screen for a phone or computer  
monitor. But resistive touch screens have some limita-
tions, the most important of which is that the screen can 
only process a single touch at any instant in time (see 
Problem 3.75). This means a resistive touch screen can-
not process the “pinch” gesture used by many devices to 
enlarge or shrink the image on the screen.

Multi-touch screens use a different component  
within a grid below the screen—capacitors. When you 
touch a capacitive touch screen, the capacitor’s value 

changes, causing a voltage change. Once you have 
learned the basic behavior of capacitors and know how 
they combine in series and in parallel, we will present  
two possible designs for a  multi-touch screen using a 
grid of capacitors.

cobalt88 /Shutterstock
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184 Inductance, Capacitance, and Mutual Inductance

The independent current source in the circuit 
shown in Fig. 6.2 generates zero current for t 0<  
and the pulse te10 At5−  for t 0.>

(a)

L

(b)

L

1 2v

i

Figure 6.1 ▲ (a) The graphic symbol for an inductor 
with an inductance of L henrys. (b) Assigning refer-
ence voltage and current to the inductor, following 
the passive sign convention.

i

1

2

v 100 mH

i 5 0, t , 0

i 5 10te25t A, t . 0

Figure 6.2 ▲ The circuit for Example 6.1.

6.1 The Inductor
An inductor is an electrical component that opposes any change in electri-
cal current. It is composed of a coil of wire wound around a supporting core  
whose material can be magnetic or nonmagnetic. The behavior of inductors  
is based on phenomena associated with magnetic fields. The source of the  
magnetic field is charge in motion, or current. If the current is varying with  
time, the magnetic field is varying with time. A time-varying magnetic field  
induces a voltage in any conductor linked by the field. The circuit parame-
ter of inductance relates the induced voltage to the current.

Figure 6.1(a) shows an inductor, represented graphically as a coiled 
wire. Its inductance is symbolized by the letter L and is measured in henrys  
(H). Assigning the reference direction of the current in the direction of the 
voltage drop across the terminals of the inductor, as shown in Fig. 6.1(b), 
and using the passive sign convention yields

THE INDUCTOR iv −  EQUATION

 v L di
dt

,=  (6.1)

where v is measured in volts, L in henrys, i in amperes, and t in seconds. 
If the current reference is in the direction of the voltage rise, Eq. 6.1 is 
written with a minus sign.

Note from Eq. 6.1 that the voltage across the terminals of an  inductor 
is proportional to the time rate of change of the current in the inductor. 
We can make two important observations here. First, if the current is 
constant, the voltage across the ideal inductor is zero. Thus, the inductor 
behaves as a short circuit in the presence of a constant, or dc, current. 
Second, current cannot change instantaneously in an inductor; that is, the 
current cannot change by a finite amount in zero time. Equation 6.1 tells 
us that this change would require an infinite voltage, and infinite voltages  
are not possible. For example, when someone opens the switch on an in-
ductive circuit in an actual system, the current initially continues to flow in 
the air across the switch, a phenomenon called arcing. The arc across the 
switch prevents the current from dropping to zero instantaneously.

Example 6.1 illustrates the application of Eq. 6.1 to a simple circuit.

EXAMPLE 6.1  Determining the Voltage, Given the Current, at the Terminals  
of an Inductor

a) Sketch the current waveform.

b) At what instant of time is the current maximum?

c) Express the voltage across the terminals of the 
100 mH inductor as a function of time.

d) Sketch the voltage waveform.

e) Are the voltage and the current at a maximum at 
the same time?

f) At what instant of time does the voltage change 
polarity?

g) Is there ever an instantaneous change in voltage 
across the inductor? If so, at what time?
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0.736

i (A)

0.20 t (s)

Figure 6.3 ▲ The current waveform for Example 6.1.

1.0

v (V)

0.20 0.6
t (s)

Figure 6.4 ▲ The voltage waveform for Example 6.1.

Solution

a) Figure 6.3 shows the current waveform.

b) di dt te e e t10( 5 ) 10 (1 5 )  A s;t t t5 5 5= − + = −− − −  
di dt 0=  when t 0.2 s.=  (See Fig. 6.3.)

c) Ldi dt e t0.1 10 1 5t5v ( ) ( )= = −−   
     e t  1 5  Vt5 ( )= −− , t 0;>  0,v =  t 0.<

d) Figure 6.4 shows the voltage waveform.

e) No; the voltage is proportional to di/dt, not i.

f) At 0.2 s, which corresponds to the moment when 
di/dt is passing through zero and changing sign.

g) Yes, at t 0= . Note that the voltage can change 
instantaneously across the terminals of an induc-
tor, even though the current in the inductor 
 cannot change instantaneously.

Current in an Inductor in Terms of the Voltage Across 
the Inductor
Equation 6.1 expresses the voltage across the terminals of an inductor as 
a function of the current in the inductor. Now we express the current as 
a function of the voltage. To find i as a function of v, start by multiplying 
both sides of Eq. 6.1 by a differential time dt:

dt L di
dt

dt    .v ( )=

Multiplying the rate at which i varies with t by a differential change in time 
generates a differential change in i, so the expression simplifies to

dt L di    .v =

We next integrate both sides of the simplified expression. For conve-
nience, we interchange the two sides of the equation and write

v∫ ∫ τ=L dx d  .
i t

i t

t

t

( )

( )

0 0

Note that we use x and τ  as the variables of integration, so i and t become 
limits on the integrals. Then, divide both sides of the integral equation by 
L and solve for the inductor current to get

THE INDUCTOR i v−  EQUATION

 v∫ τ= +i t
L

d i t( ) 1   ( ),
t

t

0
0

 (6.2)

where i(t0) is the value of the inductor current at the time when we initiate 
the integration, namely, t0. In many practical applications, t0 is zero and 
Eq. 6.2 becomes

v∫ τ ( )= +i t
L

d i( ) 1   0 .
t

0
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v 100 mHi
1

2

Figure 6.5 ▲ The circuit for Example 6.2.
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0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Figure 6.6 ▲ The voltage waveform for Example 6.2.

2

1.5

1

0.5

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t (s)

i (A)

Figure 6.7 ▲ The current waveform for Example 6.2.

Equations 6.1 and 6.2 both give the relationship between the voltage 
and current at the terminals of an inductor. In both equations, the refer-
ence direction for the current is in the direction of the voltage drop across 
the terminals. Pay attention to the algebraic sign of i(t0). If the initial cur-
rent direction and the reference direction for i are the same, the initial 
current is positive. If the initial current is in the opposite direction, it is 
negative. Example 6.2 illustrates the application of Eq. 6.2.

EXAMPLE 6.2  Determining the Current, Given the Voltage, at the Terminals of 
an Inductor

The voltage pulse applied to the 100 mH inductor 
shown in Fig. 6.5 is 0 for t 0<  and is given by the 
expression

t te20  Vt10v ( ) = −

for t 0.>  Also assume i 0=  for t 0.≤
a) Sketch the voltage as a function of time.

b) Find the inductor current as a function of time.
c) Sketch the current as a function of time.

Solution

a) The voltage as a function of time is shown in 
Fig. 6.6.

b) The current in the inductor is 0 at t 0= . There-
fore, the current for t 0>  is

i e d1
0.1

  20 0
t

10
0∫ τ τ= +τ−

e200
100

  10 1 ,
t10

0
τ( )= − +





τ−

( )= − − >− −te e t2 1 10  A, 0.t t10 10

e) Figure 6.7 shows the current as a function of time.

In Example 6.2, i approaches a constant value of 2 A as t increases. 
We say more about this result after discussing the energy stored in an 
inductor.

Power and Energy in the Inductor
The power and energy relationships for an inductor can be derived directly 
from the current and voltage relationships. If the current reference is in 
the direction of the voltage drop across the terminals of the inductor, the 
power is

 = vp i.  (6.3)

Remember that power is in watts, voltage is in volts, and current is in 
amperes. If we express the inductor voltage as a function of the inductor 
current, the expression for inductor power becomes
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We can also express the current in terms of the voltage:

v v∫ τ= +





p

L
d i t1   ( ) .

t

t

0
0

We can use Eq. 6.4 to find the energy stored in the inductor. Power is the 
time rate of expending energy, so

w= =p d
dt

Li di
dt

 .

Multiplying both sides by a differential time gives the differential 
relationship

w =d Li di  .

Integrate both sides of the differential relationship, recognizing that the ref-
erence for zero energy corresponds to zero current in the inductor. Thus

w
dx L y dy    ,

i

0 0∫ ∫=

so

POWER IN AN INDUCTOR

 =p Li di
dt

.  (6.4)

ENERGY IN AN INDUCTOR

 w Li1
2

.2=  (6.5)

As before, we use different symbols of integration to avoid confusion  
with the limits placed on the integrals. In Eq. 6.5, the energy is in joules, 
inductance is in henrys, and current is in amperes. Example 6.3 applies 
Eqs. 6.3 and 6.5 to the circuits in Examples 6.1 and 6.2 to examine power 
and energy in these circuits.

EXAMPLE 6.3  Determining the Current, Voltage, Power, and  
Energy for an Inductor

a) For Example 6.1, plot i, v, p, and w versus time. 
Line up the plots vertically to allow easy assess-
ment of each variable’s behavior.

b) In what time interval is energy being stored in 
the inductor?

c) In what time interval is energy being extracted 
from the inductor?

d) What is the maximum energy stored in the inductor?
e) Evaluate the integrals

∫ ∫
∞

p dt p dtand ,
0

0.2

0.2

and comment on their significance.

f) Repeat (a)–(c) for Example 6.2.

g) In Example 6.2, why is there a sustained current 
in the inductor as the voltage approaches zero?

Solution

a) The plots of i and v follow directly from the 
expressions for i and v obtained in Example 6.1. 
Applying Eq. 6.3,

vp i e t te

te t

1 5 10

10 1 5 W.

t t

t

5 5

10

[ ]( )( )

( )

= = −

= −

− −

−
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Figure 6.8 ▲ The variables i, v , p, and w versus t for 
Example 6.1.

0.5

1.0

0 0.60.20.1 0.50.40.3
t (s)

v (V)

1.0

2.0

i (A)

0 0.60.20.1 0.50.40.3
t (s)

300

600

p (mW)

0 0.60.20.1 0.50.40.3
t (s)

100

200

w (mJ)

0 0.60.20.1 0.50.40.3
t (s)

Figure 6.9 ▲ The variables v , i, p, and w versus t for 
Example 6.2.

e) From part (a),  

p te t te t e10 1 5 10 50 .t t t10 10 2 10( )= − = −− − −

Thus

p dt e t10
100

( 10 1)
t

0

0.2 10

0

0.2

∫ = − −





−

t e e t 50
10

  2
10

 
100

10 1
t t2 10 10

0

0.2

{ }( )−
−

+ − −





− −

e0.2 27.07 mJ,2= =−

p dt e t10
100

10 1
t

0.2

10

0.2
∫ ( )= − −





∞ − ∞

t e e t 50
10

2
10

 
100

10 1
t t2 10 10

0.2
{ }( )−

−
+ − −





− − ∞

e0.2 27.07 mJ.2= − = −−

Based on the definition of p, the area under the plot 
of p versus t represents the energy expended over 
the interval of integration. Hence, integrating the 
power between 0 and 0.2 s represents the energy 

Applying Eq. 6.5,

w Li te t e1
2

1
2

0.1 10 5  J.t t2 5 2 2 10( )( )= = =− −

The plots of i, v , p, and w are shown in Fig. 6.8.

b) When the energy curve increases, energy is being 
stored. Thus, from Fig. 6.8, energy is being stored 
in the time interval 0 to 0.2 s. This corresponds to 
the interval when p 0.>

c) When the energy curve decreases, energy is 
being extracted. Thus, from Fig.  6.8, energy is 
being extracted in the time interval 0.2 s to ∞. 
This corresponds to the interval when p 0< .

d) Equation 6.5 tells us that energy is at a maxi-
mum when current is at a maximum; the graphs 
in Fig.  6.8 confirm this. From Example 6.1, 
i 0.736 A.max =  Therefore, w = 27.07 mJmax .
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stored in the inductor during this time interval. 
Integrating p between 0.2 s and infinity gives the 
energy extracted. Note that in this time interval, all 
the energy originally stored is removed, so after the 
current peak, no energy is stored in the inductor.

f) The plots of v, i, p, and w follow directly from 
the expressions for v and i given in Example 6.2 
and are shown in Fig. 6.9. Note that in this case 

the power is always positive, and hence energy is 
always being stored during the voltage pulse.

g) The inductor stores energy when the voltage pulse 
is applied. Because the inductor is ideal, the energy 
cannot dissipate after the voltage subsides to zero, 
and thus current continues to circulate in the cir-
cuit. Practical inductors require a resistor in the cir-
cuit model, which we will examine later in this text.

Objective 1—Know and be able to use the equations for voltage, current, power, and energy in an inductor

6.1  The current supplied by the current source in 
the circuit shown is

= ≥−i te t18  A for  0.g
10t

a) Find the voltage across the inductor for t 0≥ .
b) Find the power, in microwatts, at the termi-

nals of the inductor when t 200 ms= .
c) Is the inductor absorbing or delivering 

power at 200 ms?
d)  Find the energy, in microjoules, stored in the 

inductor at 200 ms.
e) Find the maximum energy, in microjoules, 

stored in the inductor and the time when the 
maximum occurs.

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter Problems 6.7 and 6.9.

Answer:   a) te t t0.9 1 10  mV for  0;t10 ( )− ≥−

b) −59.34 μW;
c) delivering;
d) 5.93 μ J;
e) 10.96 μ J at 0.1 s.

6.2 The Capacitor
A capacitor is an electrical component consisting of two conductors 
 separated by an insulator or dielectric material. The capacitor is the only 
device other than a battery that can store electrical charge. The behavior 
of capacitors is based on phenomena associated with electric fields. The 
source of the electric field is separation of charge, or voltage. If the voltage 
is varying with time, the electric field is varying with time. A time-varying 
electric field produces a displacement current in the space occupied by 
the field. The circuit parameter of capacitance relates the displacement 
current to the voltage, where the displacement current is equal to the con-
duction current at the terminals of the capacitor.

The circuit symbol for a capacitor is two short parallel conductive 
plates, as shown in Fig. 6.10(a). The capacitance is represented by the let-
ter C and is measured in farads (F). Because the farad is an extremely 
large quantity of capacitance, practical capacitor values usually lie in the 
picofarad (pF) to microfarad μ( F) range.

The capacitor’s symbol reminds us that capacitance occurs whenever 
electrical conductors are separated by a dielectric, or insulating, material. 
This condition implies that electric charge is not transported through the 
 capacitor. Although applying a voltage to the terminals of the capacitor 
cannot move a charge through the dielectric, it can displace a charge within 

1

2

v 50 mHig

(b)

C

1 2

i

(a)

C

(b)

C

1 2v

i

(a)

C

Figure 6.10 ▲ (a) The circuit symbol for a capacitor. 
(b) Assigning reference voltage and current to the 
capacitor, following the passive sign convention.
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190 Inductance, Capacitance, and Mutual Inductance

the dielectric. As the voltage varies with time, the displacement of charge 
also varies with time, causing what is known as the displacement current.

The displacement current is indistinguishable from the conduction 
current at the capacitor’s terminals. The current is proportional to the rate 
at which the voltage across the capacitor varies with time, so

CAPACITOR − vi  EQUATION

 = vi C d
dt

,  (6.6)

where i is measured in amperes, C in farads, v in volts, and t in seconds. In 
Fig. 6.10(b), the current reference is in the direction of the voltage drop 
across the capacitor. Using the passive sign convention, we write Eq. 6.6 
with a positive sign. If the current reference is in the direction of the volt-
age rise, Eq. 6.6 is written with a minus sign.

Two important observations follow from Eq. 6.6. First, if the voltage 
across the terminals is constant, the capacitor current is zero because a 
conduction current cannot be established in the dielectric material of the 
capacitor. Only a time-varying voltage can produce a displacement cur-
rent. Thus, a capacitor behaves as an open circuit in the presence of a con-
stant voltage. Second, voltage cannot change instantaneously across the 
terminals of a capacitor. Equation 6.6 indicates that such a change would 
produce infinite current, a physical impossibility.

Equation 6.6 gives the capacitor current as a function of the capacitor 
voltage. To express the voltage as a function of the current, we multiply 
both sides of Eq. 6.6 by a differential time dt and then integrate the result-
ing differentials:

i dt C d dx
C

i d    or  1   .
t

t

t

t

( )

( )

0 0
∫ ∫ τ= =v

v

v

Carrying out the integration of the left-hand side of the second equation 
and rearranging gives

CAPACITOR −v i  EQUATION

 ∫ τ= +t
C

i d t( ) 1   ( ).
t

t

0
0

v v  (6.7)

In many practical applications of Eq. 6.7, the initial time is zero; that is, 
t 0.0 =  Thus, Eq. 6.7 becomes

v v∫ τ= +t
C

i d( ) 1   (0).
t

0

We can easily derive the power and energy relationships for the 
 capacitor. From the definition of power,

CAPACITOR POWER EQUATION

 v v υ= =p i C d
dt

 ,  (6.8)
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or

v∫ τ= +





p i

C
i d t1 ( ) .

t

t

0
0

Combining the definition of energy with Eq. 6.8 yields

w v v=d C d  ,

from which

w v

∫ ∫=dx C y dy,
0 0

or

CAPACITOR ENERGY EQUATION

 =w vC1
2

.2  (6.9)

In deriving Eq. 6.9, the reference for zero energy corresponds to zero 
voltage.

Examples 6.4 and 6.5 illustrate the current, voltage, power, and energy 
relationships for a capacitor.

EXAMPLE 6.4 Determining Current, Voltage, Power, and Energy for a Capacitor

The voltage pulse across the terminals of a μ0.5  F  
capacitor is:

v =
≤

≤ ≤

≥










− −

t

t

t t

e t

( )
0, 0 s;
4  V, 0 s 1 s;

4  V, 1 s.t( 1)

a) Derive the expressions for the capacitor current, 
power, and energy.

b) Sketch the voltage, current, power, and energy as 
functions of time. Line up the plots vertically.

c) Specify the time interval when energy is being 
stored in the capacitor.

d)  Specify the time interval when energy is being 
delivered by the capacitor.

e) Evaluate the integrals

∫ ∫
∞

p dt p dtand
0

1

1

and comment on their significance.

Solution

a) From Eq. 6.6,

μ

μ μ

μ μ

=

= <

= < <

− = − >










− − − −

i

t

t

e e t

(0.5 )(0) 0, 0 s;

(0.5 )(4) 2 A, 0 s 1 s;

(0.5 )( 4 ) 2 A, 1 s.t t( 1) ( 1)

The expression for the power is derived from Eq. 6.8:

μ μ

μ μ

=
≤

= ≤ <

− = − >










− − − − − −

p

t

t t t

e e e t

0, 0 s;

(4 )(2 ) 8 W, 0 s 1 s;

(4 )( 2 ) 8 W, 1 s.t t t( 1) ( 1) 2( 1)

The energy expression follows directly from Eq. 6.9:

μ μ

μ μ

=

≤

= ≤ <

= ≥










− − − −

w

t

t t t

e e t

0, 0 s;

(0.5 )16 4 J, 0 s 1 s;

(0.5 )16 4 J, 1 s.t t

1
2

2 2

1
2

2( 1) 2( 1)
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4
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Figure 6.11 ▲ The variables v, i, p, and w versus t 
for Example 6.4.

b) Figure  6.11 shows the voltage, current, power, 
and energy as functions of time.

c) Energy is being stored in the capacitor  whenever 
the power is positive. Hence, energy is being 
stored in the interval from 0 to 1 s.

d) Energy is being delivered by the capacitor when-
ever the power is negative. Thus, energy is being 
delivered for all t greater than 1 s.

e) The integral of p dt is the energy associated with 
the time interval corresponding to the integral’s 
limits. Thus, the first integral represents the 
 energy stored in the capacitor between 0 and 
1 s, whereas the second integral represents the 
 energy returned, or delivered, by the capacitor in 
the interval 1 s to ∞:

∫ ∫ μ= = =p dt t dt t8 4 4  J,
0

1

0

1
2

0

1

∫ ∫ μ= − = −
−

= −
∞

− −
∞ − − ∞

p dt e dt e( 8 ) ( 8)
2

4  J.t
t

1
2( 1)

1

2( 1)

1

The voltage applied to the capacitor returns to zero 
as time increases, so the energy returned by this 
 ideal capacitor must equal the energy stored.

EXAMPLE 6.5  Finding v, p, and w Induced by a Triangular Current Pulse for a 
Capacitor

An uncharged μ0.2  F capacitor is driven by a 
triangular current pulse. The current pulse is  
described by

μ
μ

μ

=

≤
≤ ≤

− ≤ ≤
≥











i t

t

t t

t t

t

( )

0, 0;
5000  A, 0 20  s;

0.2 5000  A, 20 40  s;

0, 40  s.

a) Derive the expressions for the capacitor volt-
age, power, and energy for each of the four time 
intervals needed to describe the current.

b) Plot i, v, p, and w versus t. Align the plots as spec-
ified in the previous examples.

c) Why does a voltage remain on the capacitor after 
the current returns to zero?

Solution

a) For t    0≤ , v, p, and w all are zero.
For μ≤ ≤t0 20  s,

v ∫ τ τ( )=
×

+ = ×
−

d t1
0.2 10

  5000 0 12.5 10  V,
t

6
9 2

0

p i t62.5 10  W,12 3v= = ×

= = ×w vC t1
2

15.625 10  J.2 12 4

For μ μ≤ ≤t20  s 40  s,

20 10 12.5 10 20 10 5 V.6 9 6 2v ( ) ( )× = × × =− −
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Then,

v ∫ τ τ( )=
×

− +
µ−

d1
0.2 10

  0.2 5000 5
t

6 20 s

t t10 12.5 10 10  V,6 9 2( )= − × −

p i,= v

t t t62.5 10 7.5 10  2.5 10 2  W,12 3 9 2 5( )= × − × + × −

=w vC1
2

,2

= × − × + ×

− + −

t t t

t

(15.625 10 2.5 10 0.125 10

2 10 ) J.

12 4 9 3 6 2

5

For μ≥t 40  s,

10 V,v =

p i 0,= =v

μ= =w vC1
2

10  J.2

b) The excitation current and the resulting voltage, 
power, and energy are plotted in Fig. 6.12.

c) Note that the power is always positive for the 
duration of the current pulse, which means that 
energy is continuously being stored in the capac-
itor. When the current returns to zero, the stored 
energy is trapped because the ideal capacitor 
cannot dissipate energy. Thus, a voltage remains 
on the capacitor after its current returns to zero.

Objective 2—Know and be able to use the equations for voltage, current, power, and energy in a capacitor

6.2  The voltage across the 5 μF capacitor shown in 
the figure is te500 Vt2500v = −  for t 0.≥
a) Find the current through the capacitor for t 0.≥
b) Find the power at the terminals of the capac-

itor when t 100  s.μ=
c) Is the capacitor absorbing or delivering 

power at 100 μs?

Answer: a) e t2.5 1 2500 mAt2500 ( )−−  for t 0;>
b) 56.86  W;μ
c) absorbing.

6.3  Consider the capacitor and its voltage drop 
from Assessment Problem 6.2.
a)  Find the energy stored in the capacitor at 100 µs.
b) Find the maximum energy stored in the capaci-

tor and the time when the maximum occurs.

Answer: a) 3.79 nJ;
b) 13.53 nJ at 0.4 ms.

ASSESSMENT PROBLEMS

SELF-CHECK: Also try Chapter Problems 6.19 and 6.21.
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10 200 30 40 50 60
t (ms)

10 20 30 40 50 60
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100 20 30 40 50 60

100
200
300
400
500
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2
4
6
8
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w (mJ)
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Figure 6.12 ▲ The variables i, v, p, and w versus t for 
Example 6.5.
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194 Inductance, Capacitance, and Mutual Inductance

6.3 Series-Parallel Combinations  
of Inductance and Capacitance

Just as series-parallel combinations of resistors can be reduced to a single 
equivalent resistor, series-parallel combinations of inductors or capacitors 
can be reduced to a single inductor or capacitor.

Inductors in Series and Parallel
Figure  6.13 shows inductors in series. The series connection means the 
inductors all have the same current, so we define only one current for the 
series combination. The voltage drops across the individual inductors are

L di
dt

L di
dt

L di
dt

, , and .1 1 2 2 3 3v v v= = =

The voltage across the series connection is

L L L di
dt

.1 2 3 1 2 3v v v v ( )= + + = + +

Thus, the equivalent inductance of series-connected inductors is the sum 
of the individual inductances. For n inductors in series,

COMBINING INDUCTORS IN SERIES

 ∑=
=

L L  .
i

n

ieq
1

 (6.10)

If the original inductors carry an initial current of i(t0), the equivalent 
inductor carries the same initial current. Figure 6.14 shows the equivalent 
circuit for series inductors carrying an initial current.

Inductors in parallel have the same terminal voltage, so the current in 
each inductor is a function of the terminal voltage and the initial current 
in that inductor. For the three inductors in parallel shown in Fig. 6.15, the 
currents for the individual inductors are

v∫ τ ( )= +i
L

d i t1   ,
t

t

1
1

1 0
0

v∫ τ ( )= +i
L

d i t1 , 
t

t

2
2

2 0
0

v∫ τ ( )= +i
L

d i t1     .
t

t

3
3

3 0
0

The current entering the top node shared by the three parallel inductors is 
the sum of the inductor currents:

i i i i  .1 2 3= + +

Substituting the expressions for i1, i2, and i3 into the sum yields

 i
L L L

d i t i t i t1 1 1 ( ) ( ) ( ).
t

t

1 2 3
1 0 2 0 3 0

0

v∫ τ= + +






 + + +  (6.11)

L2L1
v11

1 2

2 v21 2
L3
v31 2

v

i

Figure 6.13 ▲ Inductors in series.

L2L1

1

1

2

2

L3

v

i(t0)

i

 Leq 5 L1 1 L2 1 L3

v

i(t0)

i

Figure 6.14 ▲ An equivalent circuit for inductors in 
series carrying an initial current i(t0).

v L1

i1
L2

i2
i1(t0) i2(t0) L3

i3
i3(t0)

i

1

2

Figure 6.15 ▲ Three inductors in parallel.
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The expression for the current as a function of the voltage for a single 
equivalent inductor is

 v∫ τ= +i
L

d i t1 ( ). 
t

t

eq
0

0

 (6.12)

Comparing Eq. 6.12 with Eq. 6.11 yields

L L L L
1 1 1 1 ,
eq 1 2 3

= + +

i t i t i t i t( ) ( ) ( ) ( ).0 1 0 2 0 3 0= + +

Figure 6.16 shows the equivalent circuit for the three parallel inductors in 
Fig. 6.15.

The results for three inductors in parallel can be extended to n induc-
tors in parallel:

Capacitors in Series and Parallel
Capacitors connected in series can be reduced to a single equivalent 
capacitor. The reciprocal of the equivalent capacitance is equal to the sum 
of the reciprocals of the individual capacitances. The initial voltage on 
the equivalent capacitor is the algebraic sum of the initial voltages on the 
individual capacitors. Figure 6.17 and the following equations summarize 
these observations for n series-connected capacitors:

 ∑=
=L L

1   1 ,
i

n

ieq 1

 (6.13)

COMBINING INDUCTORS AND THEIR  
INITIAL CURRENTS IN PARALLEL

 v v∑( ) ( )=
=

t t  .
j

n

j0
1

0  (6.16)

 ∑=
=C C

1   1 ,
i

n

ieq 1

 (6.15)

COMBINING CAPACITORS AND THEIR  
INITIAL VOLTAGES IN SERIES

We leave the derivation of the equivalent circuit for series-connected 
 capacitors as an exercise. (See Problem 6.28.)

The equivalent capacitance of capacitors connected in parallel is the 
sum of the individual capacitances, as Fig. 6.18 on page 196 and the fol-
lowing equation show:

COMBINING CAPACITORS IN PARALLEL

 ∑=
=

C C  .
i

n

ieq
1

 (6.17)

 ∑( ) ( )=
=

i t i t  .
j

n

j0
1

0
 (6.14)

Capacitors connected in parallel must carry the same voltage. Therefore, 
the initial voltage across the original parallel capacitors equals the 

v
i(t0)

i

1

2

Leq

i(t0) 5 i1(t0) 1 i2(t0) 1 i3(t0)

1
Leq

1
L1

5 1
L2

1 1
L3

1

Figure 6.16 ▲ An equivalent circuit for three induc-
tors in parallel.

i

v

1

2

v(t0)
1

2
Ceq

v(t0) 5 v1(t0) 1 v2(t0) 1 ... 1 vn(t0)

1
Ceq

1
C1

5 1
C2

1 1
Cn

1 ... 1

(b)

2

v

v1(t0)

i
1

2

1

C1

v2(t0)
1

2
C2

vn(t0)
1

2

Cn

(a)

Figure 6.17 ▲ An equivalent circuit for capacitors 
connected in series. (a) The series capacitors. (b) 
The equivalent circuit.
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(b)

i

v

1

2

Ceq 5 C1 1 C2 1 ... 1 Cn

i

v

1

2

C1 C2 Cn

...

...

(a)

Figure 6.18 ▲ An equivalent circuit for capacitors connected 
in parallel. (a) Capacitors in parallel. (b) The equivalent circuit.

6 mH

24 mH

12 mH

10 mH

6 A

10 A

a

b

Figure 6.19 ▲ Interconnected inductors for 
Example 6.6.

initial voltage across the equivalent capacitance Ceq. The derivation of 
the equivalent circuit for parallel capacitors is left as an exercise. (See 
Problem 6.29.)

Examples 6.6 and 6.7 use series and parallel combinations to simplify 
a circuit with multiple inductors and a circuit with multiple capacitors.

EXAMPLE 6.6 Finding the Equivalent Inductance

Figure  6.19 shows four interconnected inductors. 
The initial currents for two of the inductors are also 
shown in Fig.  6.19. A single equivalent inductor, 
together with its initial current, is shown in Fig. 6.20.

a) Find the equivalent inductance, Leq.
b) Find the initial current in the equivalent inductor.

Solution

a) Begin by replacing the parallel-connected 12 mH 
and 24 mH inductors with a single equivalent 
inductor whose inductance is

1
0.012

1
0.024

0.008 8 mH.
1

( )+ = =
−

Now the 8 mH, 6 mH, and 10 mH inductors are 
in series. Combining them gives

L 0.008 0.006 0.010 0.024 24 mH.eq = + + = =

b) The initial current in the equivalent inductor, i, is 
the same as the current entering the node to the 
left of the 24 mH inductor. The KCL equation 
at that node, summing the currents entering the 
node, is

i 10 6 0.− + =

Therefore, the initial current in the equivalent 
inductor is i = 4 A.

a

b

Leq

i

Figure 6.20 ▲ The equivalent inductor for the 
 inductors in Fig. 6.19.
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EXAMPLE 6.7 Finding the Equivalent Capacitance

Figure  6.21 shows four interconnected capacitors. 
The initial voltages for three of the capacitors 
are also shown in Fig.  6.21. A single equivalent 
 capacitor, together with its initial voltage, is shown in  
Fig. 6.22.

a) Find the equivalent capacitance, Ceq.
b) Find the initial voltage across the  equivalent 

 capacitor.

Solution

a) Begin by replacing the μ10  F and μ15  F capacitors 
with a single equivalent capacitor whose capacitance 
is

μ( )×
+

×
= × =

− −

−
−1

10 10
1

15 10
6 10 6  F.

6 6

1
6

Next, combine the μ6  F capacitor from the first sim-
plification with the μ14  F capacitor to give

μ× + × = × =− − −6 10 14 10 20 10 20  F.6 6 6

Finally, combine the μ20  F from the previous simplifica-
tion with the μ20  F on the left side of the circuit to give

C 1
20 10

1
20 10

10 10 10 F.eq 6 6

1
6 μ=

×
+

×






 = × =

− −

−
−  

b) To find the initial voltage from a to b, use KVL to sum 
the initial voltages for the capacitors on the perimeter 
of the circuit. This gives

12 8 16 20 V.− + =

Therefore, the initial voltage across the equivalent 
 capacitor is 20 V.

Objective 3—Be able to combine inductors or capacitors in series and in parallel to form a single equiva-
lent inductor

6.4  The initial values of i1 and i2  in the circuit 
shown are 0.6 A−  and 0.2 A,  respectively. The 
voltage at the terminals of the parallel induc-
tors for t 0≥  is e100  mV.t25−

a) If the parallel inductors are replaced by a 
single inductor, what is its inductance?

b) Find the initial current in the equivalent 
inductor.

c) Use the equivalent inductor to find i t( ).
d) Find i t( )1  and i t( ).2  Verify that the solutions 

for i t( ),1  i t( ),2  and i t( ) satisfy Kirchhoff’s 
current law.

Answer: a) 16 mH;
b) −0.4 A;
c) e250 150 mA;t25− −−

d)  i t e83.33 516.67 mA;t
1

25( ) = − −−  
i t e166.67 366.67 mA.t

2
25( ) = − +−

ASSESSMENT PROBLEMS

a

b

v

1

2

Ceq

Figure 6.22 ▲ The equivalent capacitor for the capacitors  
in Fig. 6.21.

15 mF

10 mF20 mF

14 mF
12

a

b

8 V21 12 V
1

2

16 V

Figure 6.21 ▲ Interconnected capacitors for Example 6.7.

1

2

48 mH 24 mHv i1(t) i2(t)

i(t)
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v1

v2

i

1

2

1 2

100 mF
25 mF

TABLE 6.1 Inductor and Capacitor Duality

Inductors Capacitors

Primary v-i equation t L di t
dt

v( )
( )= i t C d t

dt
v

( )
( )=

Alternate v-i equation v∫ τ τ ( )( ) ( )= +i t
L

d i t1  
t

t

0
0

v v∫ τ τ ( )( ) ( )= +t
C

i d t1
t

t

0
0

Initial condition i t 0( ) t 0v( )

Behavior with a constant source If i t I t( ) ,   ( ) 0v= =  and the inductor 
behaves like a short circuit

If t V i t( ) ,   ( ) 0v = =  and the capacitor 
behaves like an open circuit

Continuity requirement i(t) is continuous for all time so v(t) is finite v(t) is continuous for all time so i(t) is finite

Power equation p t t i t Li t di t
dt

v( ) ( ) ( ) ( )
( )= = p t t i t C t d t

dt
v v v

( ) ( ) ( ) ( )
( )= =

Energy equation ( ) ( )=w t Li t1
2

2 ( ) ( )=w vt C t1
2

2

Series-connected equivalent ∑=
=

L Lj
j

n

eq
1

i t i t jfor all jeq 0 0( ) ( )=

∑=
=C C

1 1

jj

n

eq 1

∑( ) ( )=
=

v vt tj
j

n

eq 0 0
1

Parallel-connected equivalent ∑=
=L L

1 1

jj

n

eq 1

∑( ) ( )=
=

i t i tj
j

n

eq 0 0
1

∑=
=

C C j
j

n

eq
1

t t jfor all jeq 0 0v v( ) ( )=

Inductor and Capacitor Symmetry
 We introduced the concept of symmetry, or duality, in Chapter 4. In that 
chapter, we recognized several examples of duality, including

• essential nodes and meshes;
• KCL and KVL;
•  the node-voltage method and the mesh-current method.

There are also examples of duality in Sections 6.1 through 6.3; these are summa-
rized in Table 6.1. From this table we note many dual relationships, including

• voltage and current;
• open circuits and short circuits;
• inductance and capacitance;
• series connections and parallel connections.

6.5  The current in the two capacitors shown is 
i e50 mAt200= −  for t 0.≥  The initial values 
of 1v  and 2v  are 15 V  and 10 V,−  respectively.

a) If the series capacitors are replaced by a single 
equivalent capacitor, what is its capacitance?

b) Find the initial voltage across the equivalent 
capacitor.

c) Use the results of (a) and (b) to find the 
voltage drop across the capacitor.

d) Calculate the total energy trapped in the 
capacitors as t → ∞. (Hint: Don’t use the 
equivalent capacitance calculated in part 
(a)—find the energy trapped in each capaci-
tor and then add.)

SELF-CHECK: Also try Chapter Problems 6.24, 6.26, 6.28, and 6.32.

Answer: a) 20  F;μ
b) 5 V;
c) e12.5 17.5 V;t200− +−

d) 15.3125 mJ.
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Recognizing the symmetry in the characteristics of inductors and capac-
itors makes it easier to understand and remember these characteristics.

6.4  Mutual Inductance
A time-varying current in an inductor coil creates a time-varying  magnetic 
field that surrounds that coil, as we saw in Section 6.1. Inductance relates 
the voltage drop across an inductor to the time-varying current in that 
inductor. As you will see, it makes sense to rename this parameter 
self-inductance.

Now we consider circuits containing two inductors with time-varying 
currents, each creating a time-varying magnetic field. In these circuits, the 
magnetic field generated by one coil’s current envelops the other coil and 
vice versa, thereby magnetically coupling the two inductors and the circuits 
that contain them. Figure 6.23 shows an example of such a circuit, where 
L1 and L2 are the self-inductances of the individual inductors and M is 
the mutual inductance associated with the magnetic coupling. Note the 
 double-headed arrow adjacent to M; the arrows indicate the pair of coils 
with this value of mutual inductance. We need this notation to accommo-
date circuits with more than one pair of magnetically coupled coils.

The mesh-current method is the easiest way to analyze circuits 
with magnetically coupled inductors. Following Analysis Method 4.6 
(page 110), in Step 1 we identify the meshes, and in Step 2 we label the 
mesh currents. The result is shown in Fig. 6.24. In Step 3, we write a KVL 
equation around each mesh, summing the voltages across each mesh com-
ponent. There will be two voltages across each inductor coil because the 
coils are magnetically coupled. One voltage is the self-induced voltage, 
which is the product of the self-inductance of the coil and the first deriva-
tive of that coil’s current. The other voltage is the mutually induced volt-
age, which is the product of the mutual inductance of the coils and the first 
derivative of the current in the other coil. Consider the inductor on the 
left in Fig. 6.24 with self-inductance L .1  The self-induced voltage across 
this coil is L di dt1 1( ), and the mutually induced voltage across this coil is 
M di dt2( ). But what about the polarities of these two voltages?

Using the passive sign convention, we find that the self-induced 
 voltage is a voltage drop in the direction of the current producing the 
 voltage. But the polarity of the mutually induced voltage depends on the 
way the inductor coils are wound in relation to the reference direction of 
coil currents. Showing the details of mutually coupled windings is very 
cumbersome. Instead, we use the dot convention to determine the mutu-
ally induced voltage polarities. A dot is placed on one terminal of each 
winding, as shown in Fig. 6.25. These dots carry the sign information, so 
we can draw the inductor coils schematically rather than showing how 
they wrap around a core structure.

The dot convention can be summarized as follows:

DOT CONVENTION FOR MAGNETICALLY  
COUPLED INDUCTOR COILS

When the reference direction for a current enters the dot-
ted terminal of a coil, the reference polarity of the volt-
age that it induces in the other coil is positive at its dotted 
terminal.

Or, stated alternatively,

1

2
L1vg

R1

L2 R2

M

 Figure 6.23 ▲ Two magnetically coupled coils.

1

2
vg

R1

R2L1 L2i1 i2

M

Figure 6.24 ▲ Coil currents i1 and i2 used to 
describe the circuit shown in Fig. 6.23.

1

2
vg

R1

R2L1 L2 i2i1

M

Figure 6.25 ▲ The circuit of Fig. 6.24 with dots 
added to the coils indicating the polarity of the 
 mutually induced voltages.
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200 Inductance, Capacitance, and Mutual Inductance

Usually, dot markings will be provided for you in the circuit diagrams 
in this text, as they are in Fig. 6.25. Let’s use the dot convention to com-
plete Step 3 in the mesh-current method. Start with the mesh on the left in  
Fig. 6.25 and sum the voltages around the mesh in the direction of the i1  
mesh current to get

− + + − =v i R L
di
dt

M
di
dt

        0.g 1 1 1
1 2

The first three terms in the sum, including their signs, should be familiar 
to you. Look at the fourth term: note that the i2 current enters the undot-
ted terminal of the L2 inductor and creates a mutually induced voltage 
across the L1 inductor that is positive at its undotted terminal. This is a 
voltage rise with respect to the direction of i1, so the sign of M di dt2  in 
the sum is negative.

Now consider the mesh on the right in Fig. 6.25, and sum the voltages 
around the mesh in the direction of the i2 mesh current to get

i R L
di
dt

M
di
dt

0.2 2 2
2 1+ − =

Look at the third term in the sum: the i1 current enters the dotted terminal 
of the L1 inductor and creates a mutually induced voltage across the L2 
inductor that is positive at its dotted terminal. This is a voltage rise with 
respect to the direction of i2, so the sign of M di dt1  in the sum is nega-
tive. Figure 6.26 shows the self- and mutually induced voltages across both 
inductor coils, together with their polarity marks.

ALTERNATE DOT CONVENTION

When the reference direction for a current leaves the 
dotted terminal of a coil, the reference polarity of the 
voltage that it induces in the other coil is negative at its 
dotted terminal.

The Procedure for Determining Dot Markings
If the polarity dots are not given, you can often determine their locations 
by examining the physical configuration of the actual circuit or by testing 
it in the laboratory. We present both of these procedures.

The first procedure assumes that we know the physical arrangement 
of the two coils and the mode of each winding in a magnetically coupled 
circuit. Use the following six steps, applied here to Fig. 6.27, to create the 
dot markings:

1. Arbitrarily select one terminal—say, the D terminal—of one coil 
and mark it with a dot.

1

2
vg

L1

R1

M
di2
dt
1

2

di1
dt

L1

2

1

i1

L2
R2M

di1
dt
1

2

di2
dt

L2

2

1

i2
M

Figure 6.26 ▲ The self- and mutually induced voltages 
 appearing across the coils shown in Fig. 6.25.

(Step 4)

(Step 2)

A

B

C

D

Arbitrarily
dotted
terminal
(Step 1)

iD

iA

fD

Figure 6.27 ▲ A set of coils showing a method for 
determining a set of dot markings.
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2

1

R

Switch

dc
voltmeter

VBB

1

2

Figure 6.28 ▲ An experimental setup for 
 determining polarity marks.

4 H

5 V 20 V

16 H

8 H

i1

i2igig 60 V

Figure 6.29 ▲ The circuit for Example 6.8.

2. Assign a current into the dotted terminal and label it i .D

3. Use the right-hand rule1 to determine the direction of the magnetic 
field established by iD inside the coupled coils and label this field Dφ .

4. Arbitrarily pick one terminal of the second coil—say, terminal A—
and assign a current into this terminal, showing the current as i .A

5. Use the right-hand rule to determine the direction of the flux estab-
lished by iA  inside the coupled coils and label this flux .Aφ

6. Compare the directions of the two fluxes Dφ  and .Aφ  If the fluxes 
have the same reference direction, place a dot on the terminal of 
the second coil where the test current i( )A  enters. If the fluxes have 
different reference directions, place a dot on the terminal of the 
second coil where the test current leaves. In Fig. 6.27, the fluxes Dφ  
and Aφ  have the same reference direction, and therefore a dot goes 
on terminal A.

The second procedure determines the relative polarities of magneti-
cally coupled coils experimentally. This method is used when it is impos-
sible to determine how the coils are wound on the core. One experimental 
method is to connect a dc voltage source, a resistor, a switch, and a dc volt-
meter to the pair of coils, as shown in Fig. 6.28. The shaded box covering the 
coils implies that physical inspection of the coils is not possible. The resistor 
R limits the magnitude of the current supplied by the dc voltage source.

Begin by marking the coil terminal connected to the positive terminal 
of the dc source, via the switch and limiting resistor, with a dot, as shown 
in Fig. 6.28. When the switch is closed, observe the voltmeter deflection. 
If the momentary deflection is upscale, place a dot on the coil terminal 
connected to the voltmeter’s positive terminal. If the deflection is down-
scale, place a dot on the coil terminal connected to the voltmeter’s nega-
tive terminal.

Example 6.8 constructs the equations for a circuit with magnetically 
coupled coils, using the dot convention.

EXAMPLE 6.8  Finding Mesh-Current Equations for a  
Circuit with Magnetically Coupled Coils

a) Use the mesh-current method to write equations 
for the circuit in Fig. 6.29 in terms of the currents 
i1 and i .2

b) Verify that if there is no energy stored in the cir-
cuit at t 0=  and if = − −i e16 16  A,g

t5  the 
solutions for i1 and i2  are

i e e4  64 68  A,t t
1

5 4= + −− −

i e e1 52  51  A.t t
2

5 4= − +− −

Solution

a) Follow the steps in Analysis Method 4.6. Steps  
1 and 2 identify the meshes and label the mesh 
currents, as shown in Fig. 6.29. In Step 3, we write 

a KVL equation for each mesh where the current 
is unknown. Summing the voltages around the i1 
mesh yields

di
dt

d
dt

i i i i i i4 8     20 5 0.g g
1

2 1 2 1( ) ( )( )+ − + − + − =

1 See discussion of Faraday’s law on page 203.
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5 V 20 V

60 V

a

i1

i216 A

Figure 6.30 ▲ The circuit of Example 6.8 when 
= ∞t .

Look carefully at the second term in this equa-
tion and make certain you understand how the 
dot convention was used. Note that the voltage 
across the 4 H coil due to the current i i ,g 2( )−  
that is, d i i dt8 ,g 2( )−  is a voltage drop in the 
direction of i1, so this term has a positive sign.
The KVL equation for the i2  mesh is

i i i d
dt

i i
di
dt

20  60 16   8 0.g2 1 2 2
1( )( )− + + − − =

Look carefully at the fourth term in this equa-
tion and make certain you understand how the 
dot convention was used. The voltage induced in 
the 16 H coil by the current i ,1  that is, di dt8 ,1  is 
a voltage rise in the direction of i ,2  so this term 
has a negative sign.

b) To check the validity of i1 and i ,2  we begin by 
testing the initial and final values of i1 and i .2  We 
know by hypothesis that i i0 0 0.1 2( ) ( )= =  
From the given solutions we have

i 0 4 64 68 0,1 ( ) = + − =

i 0 1 52 51 0.2 ( ) = − + =

Now we observe that as t approaches infinity, the 
source current ig( ) approaches a constant value 
of 16 A, and therefore the magnetically coupled 
coils behave as short circuits. Hence, at t = ∞ 
the circuit reduces to that shown in Fig.  6.30. 
From Fig.  6.30 we see that at t = ∞ the three 
resistors are in parallel across the 16 A source. 
The equivalent resistance is 3.75 Ω, and thus the  

voltage across the 16 A current source is 60 V.  
Write a KCL equation at node a, using Ohm’s 
law to find the currents in the 20 Ω  and 60 Ω  
resistors to give

i ( ) 60
20

60
60

4 A.1 ∞ = + =

Using Ohm’s law,

i ( ) 60
60

1 A.2 ∞ = =

These values agree with the final values pre-
dicted by the solutions for i1 and i :2

i 4 64 0 68 0 4 A,1 ( ) ( ) ( )∞ = + − =

i 1 52 0 51 0 1 A.2 ( ) ( ) ( )∞ = − + =

Finally, we check the solutions to see if they satisfy 
the differential equations derived in (a). We will 
leave this final check to the reader via Problem 6.37 .

Objective 4—Use the dot convention to write mesh-current equations for mutually coupled coils

6.6  Let gv  represent the voltage across the current 
source in the circuit in Fig. 6.29. The reference 
for gv  is positive at the upper terminal of the 
current source.
a) Find gv  as a function of time when 

i e16 16 A.g
t5= − −

b) What is the initial value of gv ?
c) Find the expression for the power developed 

by the current source.
d) How much power is the current source 

developing when t is infinite?
e) Calculate the power dissipated in each resis-

tor when t is infinite.

Answer: a) e e60 5780   5840  V;t t4 5+ −− −

b) 0 V;
c) e e

e e

960 92,480 94,400

92,480 93,440  W;

t t

t t

4 5

9 10

+ −

− +

− −

− −

d) 960 W;
e) p p

p

720 W,  180 W,  

60 W.
5 20

60

= =
=

Ω Ω

Ω

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter Problem 6.43.
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N turns

ff
1

2

v

i

Figure 6.31 ▲ Representation of a magnetic field 
linking an N-turn coil.

6.5 A Closer Look at Mutual 
Inductance

Here we take a closer look at self-inductance, and then we turn to a deeper 
inspection of mutual inductance, examining the limitations and assump-
tions made in Section 6.4.

A Review of Self-Inductance
Michael Faraday, who studied inductance in the early 1800s, envisioned a 
magnetic field consisting of lines of force surrounding the current- carrying 
conductor. Picture these lines of force as energy-storing elastic bands that 
close on themselves. As the current increases and decreases, the elastic 
bands (that is, the lines of force) spread and collapse about the conductor. 
The voltage induced in the conductor is proportional to the number of 
lines that collapse into, or cut, the conductor. This image of induced volt-
age is expressed by Faraday’s law:

 v λ= d
dt

 ,   (6.18)

where λ is the flux linkage, measured in weber-turns.
So, how is Faraday’s law related to inductance as defined in 

Section 6.1? Let’s look at the coil depicted in Fig. 6.31. The lines threading 
the N  turns, labeled φ , represent the magnetic lines of force that make up 
the magnetic field, which has a spatial orientation and a strength. Use the 
right-hand rule to determine the spatial orientation: When the fingers of 
the right hand are wrapped around the coil and point in the direction of 
the current, the thumb points in the direction of that portion of the mag-
netic field inside the coil.

To determine the magnetic field strength, begin by defining flux link-
age, introduced in Faraday’s law (Eq. 6.18). The flux linkage is the prod-
uct of the magnetic field, ,φ  measured in webers (Wb), and the number of 
turns linked by the field, N:

N .λ φ=

The magnitude of the flux, φ , is related to the magnitude of the coil cur-
rent by the relationship

Pφ = Ni

where N  is the number of turns on the coil, and P  is the permeance of the 
space occupied by the flux. When the space containing the flux is made 
up of magnetic materials (such as iron, nickel, and cobalt), the permeance 
varies with the flux, giving a nonlinear relationship between φ  and i. But 
when the space containing the flux is composed of nonmagnetic materials, 
the permeance is constant, giving a linear relationship between φ  and i . 
Note that the flux is also proportional to the number of turns on the coil.
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N1

f21

f21

N2is

1

v1

2

1

v2

2

i1

f11 f11

Figure 6.32 ▲ Two magnetically coupled coils.

Here, we assume that the core material—the space containing the 
flux—is nonmagnetic. Then, substituting the expressions for flux ( )φ  and 
flux linkage ( )λ  into Eq. 6.18 takes us from Faraday’s law to the inductor 
equation:

d
dt

d N
dt

( )v λ φ
= =

P
φ= =N

d
dt

N d
dt

Ni ( )

 P= =N di
dt

L di
dt

.2  (6.19)

The polarity of the induced voltage in the circuit in Fig. 6.31 depends 
on the current creating the magnetic field. For example, when i  is increas-
ing, di dt  is positive and v  is positive, so energy is required to establish 
the magnetic field. The product iv  gives the rate at which energy is stored  
in the field. When i is decreasing, di dt  is negative, v is negative, and the 
field collapses about the coil, returning energy to the circuit.

Given this deeper look at self-inductance, we now reexamine mutual 
inductance.

The Concept of Mutual Inductance
Figure 6.32 shows two magnetically coupled coils. Use the procedure pre-
sented in Section 6.4 to verify that the dot markings on the two coils agree 
with the direction of the coil windings and currents shown. The number 
of turns on each coil are N1 and N ,2  respectively. Coil 1 is energized by a 
time-varying current source that establishes the current i1 in the N1 turns. 
Coil 2 is not energized and is open. The coils are wound on a nonmagnetic 
core. The flux produced by the current i1 can be divided into two compo-
nents, labeled 11φ  and .21φ  The flux component 11φ  is the flux produced by 
i1 that links only the N1 turns. The component 21φ  is the flux produced by 
i1 that links both the N 2  and N1 turns. The first digit in the flux subscript 
gives the coil number, and the second digit refers to the coil current. Thus, 

11φ  is a flux linking coil 1 and produced by a current in coil 1, whereas 21φ  
is a flux linking coil 2 and produced by a current in coil 1.

The total flux linking coil 1 is ,1φ  the sum of 11φ  and 21φ :

.1 11 21φ φ φ= +

The flux 1φ  and its components 11φ  and 21φ  are related to the coil current 
i1 as follows:

Pφ = N i ,1 1 1 1

Pφ = N i ,11 11 1 1

Pφ = N i ,21 21 1 1

where P1 is the permeance of the space occupied by the flux ,1φ  P11 is the 
permeance of the space occupied by the flux ,11φ  and P21 is the permeance 
of the space occupied by the flux .21φ  Combining these four equations and 
simplifying yields the relationship between the permeance of the space 
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f22 f22

i2

f12

f12

N1 is
N2

1

v1

2

1

v2

2

Figure 6.33 ▲ The magnetically coupled coils of 
Fig. 6.32, with coil 2 excited and coil 1 open.

occupied by the total flux 1φ  and the permeances of the spaces occupied 
by its components 11φ  and 21φ :

 = +P P P .1 11 21  (6.20)

We use Faraday’s law to derive expressions for 1v  and 2v :

d
dt

d N
dt

N d
dt

( )
 ( )1

1 1 1
1 11 21v λ φ

φ φ= = = +

P P P= + = =N
di
dt

N
di
dt

L
di
dt

( ) ,1
2

11 21
1

1
2

1
1

1
1  (6.21)

and

v P
λ φ

= = =
d
dt

d N
dt

N d
dt

N i
( )

 ( )2
2 2 21

2 21 1 1

P= =N N
di
dt

M
di
dt

.2 1 21
1

21
1

The coefficient of di dt1  in the equation for v1 is the self-inductance of 
coil 1. The coefficient of di dt1  in the equation for v2 is the mutual induc-
tance between coils 1 and 2. Thus

 P=M N N .21 2 1 21  (6.22)

The subscript on M specifies an inductance that relates the voltage induced 
in coil 2 to the current in coil 1.

Figure 6.33 again shows two magnetically coupled coils, but now coil 2  
is energized by a time-varying current source i2( ) and coil 1 is open. The 
total flux linking coil 2 is

  .2 22 12φ φ φ= +

The flux 2φ  and its components 22φ  and 12φ  are related to the coil current 
i2  as follows:

Pφ = N i ,2 2 2 2

Pφ = N i ,22 22 2 2

Pφ = N i .12 12 2 2

The voltages 2v  and 1v  are

v P
λ

= = =
d
dt

N
di
dt

L
di
dt

 ,2
2

2
2

2
2

2
2  (6.23)

v P
λ

φ= = = =
d
dt

d
dt

N N N
di
dt

M
di
dt

 ( ) .
1

1
1 12 1 2 12

2
12

2

The coefficient of mutual inductance that relates the voltage induced in 
coil 1 to the time-varying current in coil 2 is

 P=M N N .12 1 2 12  (6.24)

M06_NILS8436_12_SE_C06.indd   205 1/15/22   3:42 PM



206 Inductance, Capacitance, and Mutual Inductance

For nonmagnetic materials, the permeances 12P  and 21P  are equal, so from 
Eqs. 6.22 and 6.24,

M M M.12 21= =

Hence, for linear circuits with just two magnetically coupled coils, attach-
ing subscripts to the coefficient of mutual inductance is not necessary.

Mutual Inductance in Terms of Self-Inductance
Here we derive the relationship between mutual inductance and self-in-
ductance. From Eqs. 6.21 and 6.23,

P=L N ,1 1
2

1

P=L N ,2 2
2

2

so

P P=L L N N .1 2 1
2

2
2 

1 2

Use Eq. 6.20 and the corresponding expression for P2 to write

P P P P= + +L L N N ( )( ).1 2 1
2

2
2

11 21 22 12

But for a linear system, P P=21 12, so the expression for L1L2 becomes

P
P
P

P
P

= +






 +






L L N N( ) 1 11 2 1 2 12

2 11

12

22

12

P
P

P
P

= +






 +







M 1   1 .2 11

12

22

12
 (6.25)

Now replace the two terms involving permeances by a single constant, 
defined as

 
P
P

P
P

= +






 +







k

1 1   1 .
2

11

12

22

12
 (6.26)

Substituting Eq. 6.26 into Eq. 6.25 and rearranging yields

M k L L2 2
1 2=

or

RELATING SELF-INDUCTANCES AND  
MUTUAL INDUCTANCE

 =M k L L ,1 2  (6.27)

where the constant k is called the coefficient of coupling. From Eq. 6.26,

k
k1   1 so 1.

2
≥ ≤
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i1 i2
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1

v1

2

1

v2

M

Figure 6.34 ▲ The circuit used to derive the basic 
energy relationships.

In fact, the coefficient of coupling must lie between 0 and 1, or

 ≤ ≤k0 1.  (6.28)

The coefficient of coupling is 0 when the two coils have no common 
flux; that is, when 0.12 21φ φ= =  This condition implies that P = 0,12  
and Eq. 6.26 indicates that k1 ,2 = ∞  or k 0.=  If there is no flux link-
age between the coils, obviously M is 0.

The coefficient of coupling is equal to 1 when 11φ  and 22φ  are 0. This condi-
tion implies that all the flux that links coil 1 also links coil 2, so P P= = 0,11 22  
which represents an ideal state. In reality, winding two coils so that they share 
precisely the same flux is physically impossible. Magnetic materials (such as 
alloys of iron, cobalt, and nickel) create a space with high permeance and are 
used to establish coefficients of coupling that approach unity. (We say more 
about this important quality of magnetic materials in Chapter 9.)

Energy Calculations
We conclude by calculating the total energy stored in magnetically cou-
pled coils. Along the way, we confirm two observations made earlier: For 
linear magnetic coupling, (1) M M M,12 21= =  and (2) M k L L ,1 2=  
where k0 1.≤ ≤

Look at the circuit shown in Fig. 6.34. Initially, assume that the cur-
rents i1 and i2  are zero and that this zero-current state corresponds to zero 
energy stored in the coils. Then let i1 increase from zero to some arbitrary 
value I 1 and compute the energy stored when i I .1 1=  Because i 0,2 =  
the total power input into the pair of coils is i ,1 1v  and the energy stored is

∫ ∫=dw L i di ,
W I

0
1 1 1

0

1 1

=W L I1
2

.1 1 1
2

Now we hold i1 constant at I 1 and increase i2  from zero to some arbi-
trary value I .2  During this time interval, the voltage induced in coil 2 by 
i1 is zero because I 1 is constant. The voltage induced in coil 1 by i2  is 
M di dt .12 2  Therefore, the power input to the pair of coils is

p I M
di
dt

i .1 12
2

2 2v= +

The total energy stored in the pair of coils when i I2 2=  is

∫ ∫ ∫= +dw I M di L i di ,
W

W I I

1 12 2
0

2 2 2
01

2 2

or

= + +W W I I M L I1
2

,1 1 2 12 2 2
2

= + +L I L I I I M1
2

1
2

.1 1
2

2 2
2

1 2 12  (6.29)

If we reverse the procedure—that is, if we first increase i2  from zero to I 2  
and then increase i1 from zero to I 1—the total energy stored is

 = + +W L I L I I I M1
2

1
2

.1 1
2

2 2
2

1 2 21  (6.30)
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Equations 6.29 and 6.30 express the total energy stored in a pair of  linearly 
coupled coils as a function of the coil currents, the self-inductances, and 
the mutual inductance. Note that the only difference between these equa-
tions is the coefficient of the current product I I .1 2  We use Eq. 6.29 if i1 is 
established first and Eq. 6.30 if i2  is established first.

When the coupling medium is linear, the total energy stored is the 
same regardless of the order used to establish I 1 and I2 because the resul-
tant magnetic flux depends only on the final values of i1 and i ,2  not on how 
the currents reached their final values. If the resultant flux is the same, the 
stored energy is the same. Therefore, for linear coupling, M M .12 21=  
Also, because I 1 and I 2  are arbitrary values of i1 and i ,2  respectively, we 
represent the coil currents by their instantaneous values i1 and i .2  Thus, at 
any instant of time, the total energy stored in the coupled coils is

 = + +w t L i L i Mi i( ) 1
2

1
2

.1 1
2

2 2
2

1 2  (6.31)

We derived Eq. 6.31 by assuming that both coil currents entered dot-
ted terminals. We leave it to you to verify that, if one current enters a 
dotted terminal while the other leaves such a terminal, the algebraic sign 
of the term Mi i1 2  reverses. Thus, in general,

ENERGY STORED IN MAGNETICALLY COUPLED COILS

 = + ±w t L i L i Mi i( ) 1
2

1
2

.1 1
2

2 2
2

1 2  (6.32)

We can use Eq. 6.32 to show that M cannot exceed L L .1 2  The mag-
netically coupled coils are passive elements, so the total energy stored can 
never be negative. If w t( ) can never be negative, Eq. 6.32 indicates that

+ − ≥L i L i Mi i1
2

1
2

01 1
2

2 2
2

1 2

when i1 and i2  are either both positive or both negative. The limiting 
value of M occurs when

 + − =L i L i Mi i1
2

1
2

0.1 1
2

2 2
2

1 2  (6.33)

To find the limiting value of M, we add and subtract the term 
i i L L1 2 1 2  to the left-hand side of Eq. 6.33. Doing so generates a term 
that is a perfect square:

 ( )−








 + − =

L
i

L
i i i L L M

2 2
0.1

1
2

2

2

1 2 1 2  (6.34)

The squared term in Eq. 6.34 can never be negative, but it can be zero. 
Therefore, w( ) ≥t 0 only if

 ≥L L M  ,1 2  (6.35)

which is another way of saying that

M k L L k(0 1).1 2= ≤ ≤
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We derived Eq. 6.35 by assuming that i1 and i2  are either both positive or 
both negative. However, we get the same result if i1 and i2  have opposite 
signs because in this case we obtain the limiting value of M by selecting 
the plus sign in Eq. 6.32.

Work through Example 6.9 to practice calculating the coupling coeffi-
cient and the stored energy for magnetically coupled coils.

EXAMPLE 6.9  Calculating the Coupling Coefficient and Stored Energy for 
Magnetically Coupled Coils

The mutual inductance and self-inductances of the 
coils in Fig.  6.34 are M L40 mH,  25 mH,1= =  
and L 100 mH.2 =
a) Calculate the coupling coefficient.

b) Calculate the energy stored in the coupled coils 
when i 10 A1 =  and i 15 A.2 =

c) If the coupling coefficient is increased to 1 and 
=i 10 A,1  what value of i2 results in zero stored 

energy?

Solution

a) 
( )( )

= = =k M
L L

0.04
0.025 0.1

0.8
1 2

.

b) ( )( ) ( )( )

( )( )( )

= +

+ =

w 1
2

0.025 10 1
2

0.1 15

0.04 10 15  18.5 J.

2 2

c) When k M1,   0.025 0.1 0.05 50 mH.( )( )= = = =  
The energy in the coils is now

( ) ( )( )( ) ( ) ( )( )+ + =i i1
2

0.025 10 1
2

0.1 0.05 10 02
2

2
2

so i2 must satisfy the quadratic equation

i i0.05 0.5 1.25 0.2
2

2+ + =

Use the quadratic formula to find i2:

i 0.5 0.5 4 0.05 1.25
2 0.05

5 A.2

2 ( )( )

( )
= − ± − = −

You should verify that the energy is zero for this 
value of i2, when k 1.=

Objective 4—Understand the concept of mutual inductance

6.7  Two magnetically coupled coils have self- 
inductances of 60 mH and 9.6 mH, respectively. 
The mutual inductance between the coils is  
22.8 mH.
a) What is the coefficient of coupling?
b) For these two coils, what is the largest value 

that M can have?

c) Assume that the physical structure of these 
coupled coils is such that P1 = P2. What is 
the turns ratio N1/ N2 if N1 is the number of 
turns on the 60 mH coil?

Answer: a) 0.95;
b) 24 mH;
c) 2.5.

ASSESSMENT PROBLEM

SELF-CHECK: Assess your understanding of this material by trying Chapter Problems 6.48 and 6.51.

Practical Perspective
Capacitive Touch Screens
Capacitive touch screens are often used in applications where two or 
more simultaneous touch points must be detected. We will discuss 
two designs for a multi-touch screen. The first design employs a grid 
of electrodes, as shown in Fig. 6.35. When energized, a small parasitic 
capacitance, Cp, exists between each electrode strip and ground, as  
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210 Inductance, Capacitance, and Mutual Inductance

shown in Fig. 6.36(a). When the screen is touched, say at position  
x, y on the screen, a second capacitance exists due to the transfer of a 
small amount of charge from the screen to the human body, which acts 
like a conductor. This introduces a second capacitance at the point of 
touch with respect to ground, as shown in Fig. 6.36(b).

A touch-screen controller is continually monitoring the capaci-
tance between the electrodes in the grid and ground. If the screen is 
untouched, the capacitance between every electrode in the x-grid and 
ground is Cp; the same is true for the capacitance between every elec-
trode in the y-grid and ground.

When the screen is touched at a single point, Ct and Cp combine in 
parallel. The equivalent capacitance between the x-grid electrode clos-
est to the touch point and ground is now

= +C C C .tx t p

Likewise, the equivalent capacitance between the y-grid electrode clos-
est to the touch point and ground is now

= +C C C .ty t p

Thus, a screen touch increases the capacitance between the 
 electrodes and ground for the x- and y-grid electrodes closest to the 
touch point.

What happens when there are two simultaneous points where the 
screen is touched? Assume that the first touch point has coordinates 
x1, y1 and the second touch point has coordinates x2, y2. Now there are 
four screen locations that correspond to an increase in capacitance: 
x1, y1; x1, y2; x2, y1; and x2, y2. Two of those screen locations match the 
two touch points, and the other two points are called “ghost” points 
because the screen was not touched at those points. Therefore, this 
method for implementing a capacitive touch screen cannot accurately 
identify more than a single touch point.

Most modern capacitive touch screens do not use the “ self-  
capacitance” design. Instead of measuring the capacitance between 
each x-grid electrode and ground, and each y-grid electrode and 
ground, the capacitance between each x-grid electrode and each y-grid 
electrode is measured. This capacitance is known as “mutual” capaci-
tance and is shown in Fig. 6.37(a).

When the screen is touched, say at position x, y on the screen, a 
second capacitance again exists due to the transfer of a small amount 
of charge from the screen to the human body. The second capaci-
tance exists at the point of touch with respect to ground, as shown 
in Fig. 6.37(b). Therefore, whenever there is a change in the mutual 
 capacitance, Cmxy, the screen touch point can be uniquely identified 
as x, y. If the screen is touched at the points x1, y1 and x2, y2 then pre-
cisely two mutual capacitances change: Cmx1y1

 and Cmx2y2
. There are no 

“ghost” points identified, as there were in the self- capacitance design. 
The mutual capacitance design produces a multi-touch screen capa-
ble of identifying two or more touch points uniquely and accurately.

SELF-CHECK: Assess your understanding of the Practical Perspective 
by solving Chapter Problems 6.52– 6.54.

x-grid electrode y-grid electrode

x-grid electrode y-grid electrode

b)

a)

Cmxy

Ct

Cmxy

Figure 6.37 ▲ (a) Mutual capacitance between an 
x-grid and a y-grid electrode. (b) Additional capaci-
tance introduced by a touch.

a)

b)

Cp

Cp

Electrode

Electrode

Ct

Figure 6.36 ▲ (a) Parasitic capacitance between 
electrode and ground with no touch. (b) Additional 
capacitance introduced by a touch.

Y3
Y2

Y1

Y0

X0 X1 X2 X3

Figure 6.35 ▲ Multi-touch screen with grid of 
electrodes.
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Summary

• Inductance is a linear circuit parameter that relates the 
voltage induced by a time-varying magnetic field to the 
current producing the field. (See page 184.)

• Capacitance is a linear circuit parameter that relates the 
current induced by a time-varying electric field to the 
voltage producing the field. (See page 189.)

•  Inductors and capacitors are passive elements; they can 
store and release energy, but they cannot generate or 
dissipate energy. (See page 182.)

• The instantaneous power at the terminals of an inductor 
or capacitor can be positive or negative, depending on 
whether energy is being delivered to or extracted from 
the element.

• An inductor:

• does not permit an instantaneous change in its termi-
nal current,

• does permit an instantaneous change in its teminal 
voltage, and

• behaves as a short circuit in the presence of a con-
stant terminal current. (See page 184.)

• A capacitor:

• does not permit an instantaneous change in its termi-
nal voltage,

• does permit an instantaneous change in its terminal 
current, and

• behaves as an open circuit in the presence of a con-
stant terminal voltage. (See page 190.)

• Equations for voltage, current, power, and energy in 
ideal inductors and capacitors are given in Table  6.1. 
(See page 198.)

• Inductors in series or in parallel can be replaced 
by an equivalent inductor. Capacitors in series or 
in parallel can be replaced by an equivalent capac-
itor. The equations are summarized in Table 6.1. The 
 table   includes the initial conditions for series and 
parallel equivalent circuits involving inductors and 
capacitors.

• Mutual inductance, M, is the circuit parameter relating 
the voltage induced in one circuit to a time-varying cur-
rent in another circuit. Specifically,

L
di
dt

M
di
dt

 1 1
1

12
2v = +

M
di
dt

L
di
dt

,2 21
1

2
2v = +

where 1v  and i1 are the voltage and current in circuit 1, 
and 2v  and i2  are the voltage and current in circuit 2. For 
coils wound on nonmagnetic cores, M M M.12 21= =  
(See page 199.)

• The dot convention establishes the polarity of mutually 
induced voltages:

When the reference direction for a current enters the 
dotted terminal of a coil, the reference polarity of the 
voltage that the current induces in the other coil is 
positive at its dotted terminal.

Or, alternatively,

When the reference direction for a current leaves the 
dotted terminal of a coil, the reference polarity of the 
voltage that the current induces in the other coil is 
negative at its dotted terminal.

(See page 199.)

• The relationship between the self-inductance of each 
winding and the mutual inductance between windings is

M k L L .1 2=

The coefficient of coupling, k, is a measure of the degree 
of magnetic coupling. By definition, k0 1.≤ ≤  (See 
page 206.)

• The energy stored in magnetically coupled coils in a 
linear medium is related to the coil currents and induc-
tances by the relationship

= + ±w L i L i Mi i1
2

1
2

  .1 1
2

2 2
2

1 2

(See page 208.)
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Figure P6.7
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300 mHvs
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2

i

Figure P6.1

b) Specify the time intervals when the inductor is 
storing energy and the time intervals when the 
inductor is delivering energy.

c) Show that the total energy extracted from the 
inductor is equal to the total energy stored.

 6.5  The current in a 2 H inductor is

i t25 A,   0;= ≤  

i B t B t e t( cos 5 sin 5 )  A,   0.t
1 2= + ≥−

The voltage across the inductor (passive sign con-
vention) is 100 V at t 0= . Calculate the power at 
the terminals of the inductor at t 500 ms= . State 
whether the inductor is absorbing or delivering 
power.

 6.6  The current in a 20 mH inductor is known to be 
t t e7 (15sin140 35cos140 )   mAt20+ − −  for t 0≥ .  

Assume the passive sign convention.

a) At what instant of time is the voltage across the 
inductor maximum?

b) What is the maximum voltage?

 6.7  The triangular current pulse shown in Fig. P6.7 is 
applied to a 375 mH inductor.

a) Write the expressions that describe i(t) in 
the four intervals t 0< , t0 25 ms≤ ≤ , 

t25 ms 50 ms≤ ≤ , and t 50 ms> .

b) Derive the expressions for the inductor volt-
age, power, and energy. Use the passive sign 
convention.

PSPICE
MULTISIM

PSPICE
MULTISIM

Section 6.1

 6.1  The voltage at the terminals of the μ300 H inductor 
in Fig. P6.1(a) is shown in Fig. P6.1(b). The inductor 
current i is known to be zero for t 0≤ .

a) Derive the expressions for i for t 0≥ .

b) Sketch i versus t for t0 ≤ ≤ ∞ .

PSPICE
MULTISIM

PROBLEMS

 6.2  The initial current in a 4 mH inductor is zero. For  
t ≥ 0, the current is

i t e e( ) 8 8 A.t t300 1200= −− −

a) Find the initial voltage across the inductor in the 
direction of the current.

b) Find the instant in time, greater than zero, when 
the voltage across the inductor is zero.

c) Find the expression for the power delivered to 
the inductor.

d) Find the time at which the power delivered to 
the inductor is maximum.

e) Find the maximum power delivered to the 
inductor.

f) Find the time at which the energy stored in the 
inductor is maximum.

g) Find the maximum energy stored in the inductor.

 6.3  The current in a 15 mH inductor is known to be

i t1 A,   0;= ≤

= + ≥− −i A e A e tA,   0.t t
1

2000
2

8000

The voltage across the inductor (passive sign con-
vention) is 60 V at t 0= .

a) Find the expression for the voltage across the 
inductor for t 0> .

b) Find the time, greater than zero, when the power 
at the terminals of the inductor is zero.

 6.4  Assume in Problem 6.3 that the value of the voltage 
across the inductor at t 0=  is 300 V−  instead of 
60 V.

a) Find the numerical expressions for i and v for 
t 0≥ .

PSPICE
MULTISIM

 6.8  a)  Find the inductor current in the circuit in Fig. 
P6.8 if =v t250 sin1000  V , L 50 mH= , and 
i(0) 5 A= − .

b) Sketch v, i, p, and w versus t. In making these 
sketches, use the format used in Fig. 6.8. Plot over 
one complete cycle of the voltage waveform.

c) Describe the subintervals in the time inter-
val between 0 and 2π  ms when power is being 
absorbed by the inductor. Repeat for the sub-
intervals when power is being delivered by the 
inductor.

PSPICE
MULTISIM
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Lv

1

2

i

Figure P6.8

50 mHvL(t) 1

2

iL(t)

Figure P6.9

 6.9  The current in the 50 mH inductor in Fig. P6.9 is 
known to be 2 A for t 0< . The inductor voltage for 
t 0≥  is given by the expression

t e t( ) 2.8  V, 0 0.5 s;L
t20v = ≤ ≤− +

t e t( ) 2.8  V, 0.5 s .L
t20( 0.5)v = − ≤ < ∞− −

Sketch t( )Lv  and i t( )L  for t0 ≤ < ∞ .

 6.10  The current in and the voltage across a 2.5 H 
inductor are known to be zero for t 0≤ . The volt-
age across the inductor is given by the graph in  
Fig. P6.10 for t 0≥ .

a) Derive the expression for the current as a  
function of time in the intervals t0 2 s≤ ≤ ,  

≤ ≤t2 s 6 s, ≤ ≤t6 s 10 s, t10 s 12 s≤ ≤ , 
and t12 s ≤ < ∞ .

b) For t 0> , what is the current in the inductor 
when the voltage is zero?

c) Sketch i versus t for t0 ≤ < ∞ .

2 4 6 8 10 12

50

–50

t (s)

v (V)

Figure P6.10

  6.11  Initially there was no energy stored in the 20 H 
inductor in the circuit in Fig. P6.11 when it was 
placed across the terminals of the voltmeter. At 
t 0=  the inductor was switched instantaneously to 
position b where it remained for 1.2 s before return-
ing instantaneously to position a. The d’Arsonval 
voltmeter has a full-scale reading of 25 V and a 
sensitivity of Ω1000 V . What will the reading of 
the voltmeter be at the instant the switch  returns to 
position a if the inertia of the d’Arsonval movement 
is negligible?

ab

20 H14 mV
1

2 1
2 Voltmeter

Figure P6.11

 6.12  Evaluate the integral

p dt 
0
∫
∞

for Example 6.2. Comment on the significance of 
the result.

Section 6.2

 6.13  The expressions for voltage, power, and energy 
derived in Example 6.5 involved both integration 
and manipulation of algebraic expressions. As an 
engineer, you cannot accept such results on faith 
alone. That is, you should develop the habit of ask-
ing your self, “Do these results make sense in terms 
of the known behavior of the circuit they purport 
to describe?” With these thoughts in mind, test the 
expressions of  Example 6.5 by performing the fol-
lowing checks:

a) Check the expressions to see whether the volt-
age is continuous in passing from one time inter-
val to the next.

b) Check the power expression in each inter-
val by selecting a time within the interval and 
seeing whether it gives the same result as the 
 corresponding product of v and i. For example, 
test at 10 and μ30  s.

c) Check the energy expression within each inter-
val by selecting a time within the interval and 
seeing whether the energy equation gives the 
same result as vC1 2 2. Use 10 and μ30  s  as test 
points.
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 6.14  The voltage across a μ0.6  F  capacitor is zero for  
t < 0. For t ≥ 0, the voltage is e t40 sin 30,000  V.t15,000−

a) Find the initial current in the capacitor in the 
direction of the voltage drop.

b) Find the power delivered to the capacitor at 
=t π 80 ms.

c) Find the energy stored in the capacitor at 
t π 80 ms.=

 6.15 The current and voltage for a 0.6 µF capacitor 
are both zero for t < 0. For t ≥ 0, the current is 

t3cos 50,000 A.

a) Find the expression for the voltage drop across 
the capacitor in the direction of the current.

b) Find the maximum power delivered to the 
capacitor any one instant in time.

c) Find the maximum energy stored in the capaci-
tor any one instant in time.

 6.16  The triangular voltage pulse shown in Fig. P6.16 is 
applied to a μ500  F capacitor.

a) Write the expressions that describe v(t) in 
the five time intervals t 0< , t0 5 s≤ ≤ , 

t5 s 15 s≤ ≤ , t15 s 20 s≤ ≤ , and t 20 s> .

b) Derive the expressions for the capacitor cur-
rent, power, and energy for the time intervals in  
part (a). Use the passive sign convention.

c) Identify the time intervals between 0 and 20 s 
when power is being delivered by the capaci-
tor. Repeat for the time intervals when power is 
being absorbed by the capacitor.

0

10

–10

5 10 15 20

t (s)

v (V)

 Figure P6.16

260.6 V

200 nF

(a)

1 2v

i
200

50

100

i (mA)

(b)

4000 600 800 1000
t (ms)

100e21000t mA, t $ 0

Figure P6.18

 6.17  The voltage across the terminals of a 400 nF capac-
itor is

=
≤

+ ≥






− −

v
t

A te A e t

25 V, 0;

( ) V, 0.t t
1

1500
2

1500

The initial current in the capacitor is 90 mA. 
Assume the passive sign convention.

a) What is the initial energy stored in the capacitor?

b) Evaluate the coefficients A1 and A2.

c) What is the expression for the capacitor  current?

PSPICE
MULTISIM

 6.18  The initial voltage on the 200 nF capacitor shown 
in Fig. P6.18(a) is −60.6 V. The capacitor current 
has the waveform shown in Fig. P6.18(b).

a) How much energy, in microjoules, is stored in 
the capacitor at μ=t 250  s?

b) Repeat (a) for t = ∞.

PSPICE
MULTISIM

 6.19  The rectangular-shaped current pulse shown in  
Fig. P6.19 is applied to a 200 nF capacitor. The 
initial voltage on the capacitor is a 40 V drop in 
the reference direction of the current. Derive the 
expression for the capacitor voltage for the time 
intervals in (a)–(c).

a) μ≤ ≤t0 100  s;

b) μ μ≤ ≤t100  s 300  s;

c) μ ≤ < ∞t300  s .

d) Sketch v(t) over the interval 
μ μ− ≤ ≤t100  s 500  s.

PSPICE
MULTISIM

100 200 300 400 500
t (ms)

i (mA)

–40

0

40

80

Figure P6.19

 6.20  The voltage at the terminals of the capacitor in 
Fig. 6.10 is known to be

=
− ≤

− + ≥






−

v
t

e t t t

30 V, 0;

10 10 (4 cos 3000 sin 3000  ) V, 0.t1000

Assume μ=C 0.5  F.

PSPICE
MULTISIM
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a) Find the current in the capacitor for t 0< .

b) Find the current in the capacitor for t 0> .

c) Is there an instantaneous change in the voltage 
across the capacitor at t 0?=

d) Is there an instantaneous change in the current 
in the capacitor at t 0?=

e) How much energy (in microjoules) is stored in 
the capacitor at t ?= ∞

 6.21  A μ0.5  F capacitor is subjected to a voltage pulse 
having a duration of 2 s. The pulse is described by 
the following equations:

=
≤ ≤

− ≤ ≤










v t

t t

t t( )

40  V, 0 1 s;

40(2 )  V, 1 s 2 s;

0 elsewhere.
C

3

3

Sketch the current pulse that exists in the capacitor 
during the 2 s interval.

 6.22  The current shown in Fig. P6.22 is applied to a 250 nF 
capacitor. The initial voltage on the capacitor is zero.

a) Find the charge on the capacitor at μ=t 30  s.

b) Find the voltage on the capacitor at μ=t 50  s.

c) How much energy is stored in the capacitor by 
this current?

PSPICE
MULTISIM

10 20 30 40 50 60

50

0

–50

70

i (mA)

t (ms)

Figure P6.22

(a)

(b)
21 H

15 H
a

b

4 H

44 H
12 H 25 H

10 H

1.2 H

12 H

80 H 60 H

5 H

14 H6 H

15.8 H24 H

10 H

a

b

Figure P6.23

Section 6.3

 6.23  Assume that the initial energy stored in the induc-
tors of Figs. P6.23(a) and (b) is zero. Find the equiv-
alent inductance with respect to the terminals a, b.

PSPICE
MULTISIM

 6.24  Use realistic inductor values from  Appendix H to 
construct series and parallel combinations of induc-
tors to yield the equivalent inductances specified 
here. Try to minimize the number of inductors used. 
Assume that no initial energy is stored in any of the 
inductors.

a) 25 mH;

b) μ150 H;

c) μ80 H.

 6.25  The two parallel inductors in Fig. P6.25 are con-
nected across the terminals of a black box at t 0= .  
The resulting voltage v for t 0>  is known to be 

e1800 Vt20− − . It is also known that i (0) 4 A1 =  
and i (0) 16 A2 = − .

a) Replace the original inductors with an equiva-
lent inductor and find i(t) for t 0≥ .

b) Find i1(t) for t 0≥ .

c) Find i2(t) for t 0≥ .

d) How much energy is delivered to the black box 
in the time interval t0 ≤ < ∞?

e) How much energy was initially stored in the par-
allel inductors?

f) How much energy is trapped in the ideal 
 inductors?

g) Show that your solutions for i1 and i2 agree with 
the answer obtained in (f).
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Black
box

i(t)

i1(t) 10 H i2(t) 30 H
t 5 0

v

2

1

Figure P6.25

 6.26  The three inductors in the circuit in Fig. P6.26 are con-
nected across the terminals of a black box at t 0= . 
The resulting voltage for t 0>  is known to be

e1250  V.o
t25v = −

If i (0) 10 A1 =  and i (0) 5 A2 = − , find

a) io(0);

b) i t t( ),   0;o ≥  

c) i t t( ),   0;1 ≥

d) i t t( ),   0;2 ≥

e) the initial energy stored in the three inductors;

f) the total energy delivered to the black box; and

g) the energy trapped in the ideal inductors.

PSPICE
MULTISIM

Black
box

vo

1

2

t 5 0
32 Hi28 Hi1

io

3.6 H

Figure P6.26

 6.27  For the circuit shown in Fig. P6.26, how many milli-
seconds after the switch is opened is the energy 
delivered to the black box 80% of the total energy 
delivered?

 6.28  Derive the equivalent circuit for a series connection 
of ideal capacitors. Assume that each capacitor has 
its own initial voltage. Denote these initial voltages 
as v1(t0), v2(t0), and so on. (Hint: Sum the voltages 
across the string of capacitors, recognizing that the 
series connection forces the current in each capaci-
tor to be the same.)

 6.29  Derive the equivalent circuit for a parallel con-
nection of ideal capacitors. Assume that the initial 
voltage across the paralleled capacitors is v(t0).  
(Hint: Sum the currents into the string of capacitors, 
recognizing that the parallel connection forces the 
voltage across each capacitor to be the same.)

8 nF

12.8 nF
5.6 nF

30 V

10 V

18 nF

15 V

8 nF

32 nF40 nF

5 V

30 V

1

1 12

2

2

1

1

2

2

a

b

10 V

21 mF
24 mF 28 mF

36 mF

14 mF

20 mF

5 V

12 mF

8 V

2 V
+

+

+ –

+

–

–

–

a

b

(a)

(b)

Figure P6.30

 6.31  Use realistic capacitor values from Appendix H to 
construct series and parallel combinations of capac-
itors to yield the equivalent capacitances specified 
below. Try to minimize the number of capacitors 
used. Assume that no initial energy is stored in any 
of the capacitors.

a) 500 µF;

b) 15 nF;

c) 750 pF.

 6.32  The two series-connected capacitors in Fig. P6.32 
are connected to the terminals of a black box at 
t 0= . The resulting current i(t) for t 0>  is known 
to be μ−e900 At2500 .

a) Replace the original capacitors with an equiva-
lent capacitor and find vo(t) for t 0≥ .

b) Find v1(t) for t 0≥ .

c) Find v2(t) for t 0≥ .

d) How much energy is delivered to the black box 
in the time interval t0 ≤ < ∞?

e) How much energy was initially stored in the 
 series capacitors?

f) How much energy is trapped in the ideal 
capacitors?

g) Show that the solutions for v1 and v2 agree with 
the answer obtained in (f).

 6.30  Find the equivalent capacitance with respect to the 
terminals a, b for the circuits shown in Fig. P6.30.
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Black
box

i(t)

1

2

45 V

15 V

20 nF

30 nF

1

2

v1

1

2
1

2

v2

2

vo

1t 5 0

Figure P6.32

  6.33  The four capacitors in the circuit in Fig. P6.33 are 
connected across the terminals of a black box at 
t 0= . The resulting current ib for t 0>  is known 
to be

μ= −i e50 A.b
t250

If (0) 15 Vav = , (0) 45 Vcv = − , and (0) 40 Vdv =
(0) 40 Vdv = , find the following for t 0≥ : (a) vb(t), 

(b)   va(t), (c)   vc(t), (d)   vd(t), (e)   i1(t), and (f) i2(t).

Black
box

2

vb

1

ib

t 5 012.5 nF

va 12

vc2 1

1.5 nF

50 nF

i21 nF i1

2

vd

1

Figure P6.33

320 V

20 mH500 nFv1

1

2

v2

1

2

io

Figure P6.35

 6.34  For the circuit in Fig. P6.33, calculate

a) the initial energy stored in the capacitors;

b) the final energy stored in the capacitors;

c) the total energy delivered to the black box;

d) the percentage of the initial energy stored that is 
delivered to the black box; and

e) the time, in milliseconds, it takes to deliver 5 µJ 
to the black box.

 6.35  The current in the circuit in Fig. P6.35 is known to 
be

= +−i e t t50 (cos6000 2 sin 6000 ) mAo
t8000

for t 0≥ + . Find (0 )1v +  and (0 )2v + .

 6.36  At t 0= , a series-connected capacitor and induc-
tor are placed across the terminals of a black box, as 
shown in Fig. P6.36. For t 0≥ , it is known that

i e tsin 60 A.o
t80= − −

If = −v (0) 300 VC  find vo for t 0≥ .

t 5 0 Black
box

1

2

vo

5 H io

vC 20 mF

1

2

Figure P6.36

Section 6.4

 6.37 a)  Show that the differential equations derived in 
(a) of Example 6.8 can be rearranged as  follows:

di
dt

i
di
dt

i i
di

dt
4 25 8 20 5 8 ;g

g1 2
2+ − − = −

di
dt

i
di
dt

i
di

dt
8 20 16 80 16 .g1

1
2

2− − + + =

b) Show that the solutions for i1 and i2 given in (b) 
of Example 6.8 satisfy the differential equations 
given in part (a) of this problem.

 6.38 a)  Show that the two coupled coils in Fig. P6.38 can 
be replaced by a single coil having an inductance 
of L L L M2 .ab 1 2= + +  (Hint: Express vab as 
a function of iab.)

b) Show that if the connections to the ter-
minals of the coil labeled L2 are reversed, 
L L L M2 .ab 1 2= + −

M

a b
L1 L2

Figure P6.38
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 6.39 a)   Show that the two magnetically coupled coils in 
Fig. P6.39 can be replaced by a single coil having 
an inductance of

L
L L M

L L M2
.ab

1 2
2

1 2

=
−

+ −

(Hint: Let i1 and i2 be clockwise mesh currents in 
the left and right “windows” of Fig. P6.39, respec-
tively. Sum the voltages around the two meshes. In 
mesh 1 let vab be the unspecified applied voltage. 
Solve for di dt1  as a function of vab.)

b) Show that if the magnetic polarity of coil 2 is 
 reversed, then

L
L L M

L L M2
.ab

1 2
2

1 2

=
−

+ +

L1 L2

a

b

M

Figure P6.39

vBB

1

2

R
t 5 0

dc
voltmeter

1

2

Figure P6.42

 6.40  Let vo represent the voltage across the 16 H induc-
tor in the circuit in Fig. 6.29. Assume vo is positive at 
the dot. As in Example 6.8, i e16 16  Ag

t5= − − .

a) Can you find vo without having to differentiate 
the expressions for the currents? Explain.

b) Derive the expression for vo.

c) Check your answer in (b) using the appropriate 
current derivatives and inductances.

 6.41 a)  Write a set of mesh-current equations for the cir-
cuit in Example 6.8 if the dot on the 4 H induc-
tor is at the right-hand terminal, the reference 
direction of ig is reversed, and the 60 Ω resistor is 
increased to 780 Ω.

b) Verify that if there is no energy stored in the cir-
cuit at t = 0, and if ig = 1.96 −1.96e−4t A, the solu-
tions to the differential equations derived in part 
(a) are

i e e0.4 11.6 12 A,t t
1

4 5= − − +− −

i e e0.01 0.99 A.t t
2

4 5= − − +− −

 6.42  The polarity markings on two coils are to be deter-
mined experimentally. The experimental setup is 
shown in Fig. P6.42. Assume that the terminal con-
nected to the negative terminal of the battery has 
been given a polarity mark as shown. When the 
switch is closed, the dc voltmeter kicks upscale. 
Where should the polarity mark be placed on the 
coil connected to the voltmeter?

 6.43  There is no energy stored in the circuit in Fig. P6.43 
at the time the switch is opened.

a) Derive the differential equation that governs 
the behavior of i2 if L 10 H1 = , L 40 H2 = , 
M 5 H= , and R 90 o = Ω.

b) Show that when i e t10 10 A,  0,g
t= − ≥−  the 

differential equation derived in (a) is satisfied 
when i e e t5  A,  0.t t

2
2.25= − ≥− −

c) Find the expression for the voltage v 1 across the 
current source.

d) What is the initial value of v 1? Does this make 
sense in terms of known circuit behavior?

(a) (b)

1

2

3

1

2
3

4

4

FPO

Figure P6.44

t 5 0
ig

1

2

v1 L1 L2 Roi2

M

Figure P6.43

  6.44  The physical construction of two pairs of magnet-
ically coupled coils is shown in Fig. P6.44. Assume 
that the magnetic flux is confined to the core mate-
rial in each structure. Show two possible locations 
for the dot markings on each pair of coils.

Section 6.5

 6.45 a)  Starting with Eq. 6.26, show that the coefficient 
of coupling can also be expressed as

φ
φ

φ
φ

=













k .21

1

12

2

b) On the basis of the fractions 21 1φ φ  and ,12 2φ φ  
explain why k is less than 1.0.
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 6.46  Two magnetically coupled coils are wound on a 
nonmagnetic core. The self-inductance of coil 1 is 
250 mH, the mutual inductance is 100 mH, the coef-
ficient of coupling is 0.5, and the physical structure 
of the coils is such that P P= .11 22

a) Find L2 and the turns ratio N N .1 2

b) If N 1000,1 =  what are the values of P1 and P ?2

 6.47  The self-inductances of two magnetically coupled 
coils are 288 mH and 162 mH, respectively. The 288 
mH coil has 1000 turns, and the coefficient of cou-
pling between the coils is 1/3. The coupling medium 
is nonmagnetic. When coil 1 is excited with coil 2 
open, the flux linking only coil 1 is 0.5 as large as the 
flux linking coil 2.

a) How many turns does coil 2 have?

b) What is the value of P2 in nanowebers per 
 ampere?

c) What is the value of P11 in nanowebers per 
 ampere?

d) What is the ratio ( )?22 12φ φ

 6.48  The self-inductances of the coils in Fig.  6.34 are 
L 25 mH1 =  and L 100 mH.2 =  If the coefficient 
of coupling is 0.8, calculate the energy stored in the sys-
tem in millijoules when (a) i i10 A,  15 A;1 2= =  
(b) i i10 A,  15 A;1 2= − = −  (c) i i10 A,  15 A;1 2= − = 

i i10 A,  15 A;1 2= − =  and (d) = = −i i10 A,  15 A.1 2

 6.49  The coefficient of coupling in Problem 6.48 is 
increased to 1.0.

a) If i1 equals 10 A, what value of i2 results in zero 
stored energy?

b) Is there any physically realizable value of i2 that 
can make the stored energy negative?

 6.50  The self-inductances of two magnetically coupled 
coils are μ=L 400 H1  and μ=L 900 H.2  The 
coupling medium is nonmagnetic. If coil 1 has 250 
turns and coil 2 has 500 turns, find P11  and P21 (in 
nanowebers per ampere) when the coefficient of 
coupling is 0.75.

 6.51  Consider the magnetically coupled coils described 
in Example 6.9. Assume that the physical arrange-
ment of the coils results in P P= .1 2  If coil 1 has 
500 turns, how many turns does coil 2 have?

Sections 6.1–6.5

  6.52  Suppose a capacitive touch screen that uses the 
 mutual-capacitance design, as shown in Fig.  6.37, 
is touched at the point x, y. Determine the mutual 
capacitance at that point, ′C ,mxy  in terms of the mutual 
capacitance at the point without a touch, Cmxy, and the 
capacitance introduced by the touch, Ct.

 6.53  a)  Assume the parasitic capacitance in the self- 
capacitance design, C 80 pF,p =  and the 
capacitance introduced by a touch is 20 pF (see 
Fig.  6.36[b]). What is the capacitance at the 
touch point with respect to ground for the x-grid 
and y-grid electrodes closest to the touch point?

b) Assume the mutual capacitance in the  mutual- 
capacitance design, C 80 pF,mxy =  and the 
 capacitance introduced by a touch is 20 pF (see 
Fig.  6.37[b]). What is the mutual capacitance 
 between the x- and y-grid electrodes closest to 
the touch point?

c) Compare your results in parts (a) and (b)—does 
touching the screen increase or decrease the 
capacitance in these two different capacitive 
touch screen designs?

 6.54  a)  As shown in the Practical Perspective, the self- 
capacitance design does not permit a true multi-
touch screen—if the screen is touched at two 
difference points, a total of four touch points are 
identified, the two actual touch points and two 
ghost points. If a self-capacitance touch screen is 
touched at the x, y coordinates (1.8, 2.4) and (3.0, 
4.6), what are the four touch locations that will 
be identified? (Assume the touch coordinates 
are measured in inches from the upper left cor-
ner of the screen.)

b) A self-capacitance touch screen can still func-
tion as a  multi-touch screen for several common 
gestures. For example, suppose at time t1 the two 
touch points are those identified in part (a), and 
at time t2 four touch points associated with the 
x, y coordinates (2.2, 2.8) and (2.5, 3.4) are iden-
tified. Comparing the four points at t1 with the 
four points at t2, software can recognize a pinch 
gesture—should the screen be zoomed in or 
zoomed out?

c) Repeat part (b), assuming that at time t2 four 
touch points associated with the x, y coordinates 
(1.2, 1.8) and (3.6, 5.0) are identified.

PRACTICAL
PERSPECTIVE

PRACTICAL
PERSPECTIVE

PRACTICAL
PERSPECTIVE
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CHAPTER CONTENTS

7
CHAPTER 

Response of First-Order 
RL and RC Circuits
In this chapter, we focus on circuits that consist only of sources, 
resistors, and either (but not both) inductors or capacitors. We call 
these circuits RL (resistor-inductor) and RC (resistor- capacitor) 
circuits. In Chapter 6, we saw that inductors  and capacitors can 
store energy. We analyze RL and RC circuits to determine the 
currents and voltages that arise when energy is either released 
or acquired by an inductor or capacitor in response to an abrupt 
change in a dc voltage or current source.

We divide our analysis of RL and RC circuits into three phases.

• First Phase: Find the currents and voltages that arise when 
stored energy in an inductor or capacitor is suddenly released 
to a resistive network. This happens when the inductor or 
capacitor is abruptly disconnected from its dc source. Thus, 
we can reduce the circuit to one of the two equivalent forms 
shown in Fig. 7 .1 on page 222. These currents and voltages 
characterize the natural response of the circuit because the 
nature of the circuit itself, not external sources of excitation, 
determines its behavior.

• Second Phase: Find the currents and voltages that arise 
when energy is being acquired by an inductor or capacitor 
when a dc voltage or current source is suddenly applied. 
This response is called the step response.

• Third Phase: Develop a general method for finding the response 
of RL and RC circuits to any abrupt change in a dc voltage or 
current source. A general method exists because the process for 
finding both the natural and step responses is the same.

 Figure 7.2 (page 222) shows the four general configurations 
of RL and RC circuits. Note that when there are no independent 
sources in the circuit, the Thévenin voltage or Norton current is 
zero, and the circuit reduces to one of those shown in Fig.  7.1; 
that is, we have a natural-response problem.

RL and RC circuits are also known as  first-order circuits because  
their voltages and currents are described by first-order differential 
equations. No matter how complex a circuit may appear, if it can 
be reduced to a Thévenin or Norton equivalent connected to the 

7.1  The Natural Response of an RL 
 Circuit p. 222

 7.2  The Natural Response of an RC 
 Circuit p. 228

 7.3  The Step Response of RL and RC 
 Circuits p. 233

7.4  A General Solution for Step and Natural 
Responses p. 241

7.5 Sequential Switching p. 246

7.6 Unbounded Response p. 250

7.7 The Integrating Amplifier p. 252

1 Be able to determine the natural response 
of both RL and RC circuits.

2 Be able to determine the step response of 
both RL and RC circuits.

3 Know how to analyze circuits with 
 sequential switching.

4 Be able to analyze op amp circuits 
 containing resistors and a single capacitor.

 CHAPTER OBJECTIVES
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Practical Perspective
Artificial Pacemaker
The muscle that makes up the heart contracts due to 
 rhythmical electrical impulses. Pacemaker cells control the 
impulse frequency. In adults, the pacemaker cells estab-
lish a resting heart rate of about 72 beats per minutes. 
Sometimes, however, damaged pacemaker cells produce a 
very low resting heart rate (a condition known as bradycar-
dia) or a very high resting heart rate (a condition known as 
tachycardia). When either happens, a normal heart rhythm 
can be restored by implanting an artificial pacemaker 
that mimics the pacemaker cells by delivering electrical 

impulses to the heart. Examples of internal and external 
artificial pacemakers are shown in the figures below.

Artificial pacemakers are very small and lightweight. 
They have a programmable microprocessor that adjusts 
the heart rate based on several parameters, an efficient 
battery with a life of up to 15 years, and a circuit that 
 generates the pulse. The simplest circuit consists of a 
 resistor and a capacitor. After we introduce and study 
the RC circuit, we will look at an RC circuit design for an 
 artificial pacemaker.

Wires Pacemaker

Electrode

Pacemaker

Electrode

Swapan Photography/Shutterstock

Tewan Banditrukkanka/Shutterstock
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Figure 7.2 ▲ Four possible first-order circuits.
(a) An inductor connected to a Thévenin equivalent. 
(b) An inductor connected to a Norton equivalent. 
(c) A capacitor connected to a Thévenin equivalent. 
(d) A capacitor connected to a Norton equivalent.

(a)

Leq ReqI0

(b)

ReqCeq V0

1

2

Figure 7.1 ▲ The two forms of the circuits for 
 natural response. (a) RL circuit. (b) RC circuit.

7.1 The Natural Response  
of an RL Circuit

We can describe the natural response of an RL circuit using the circuit 
shown in Fig. 7.3. We assume that the independent current source gener-
ates a constant current Is and that the switch has been in a closed position 
for a long time. We define the phrase a long time more accurately later in 
this section. For now it means that all currents and voltages have reached 
a constant value. Thus only constant, or dc, currents exist in the circuit 
just before the switch opens, and the voltage across the inductor is zero 
Ldi dt( 0)= . Therefore, before the stored energy is released,

• The inductor behaves like a short circuit;
• The entire source current Is appears in the inductive branch; and
• There is no current in either R0 or R.

To find the natural response, we find the voltage and current at the 
terminals of the resistor R after the switch has been opened—that is, after 
the source and its parallel resistor R0 have been disconnected and the 
inductor begins releasing energy. If we let t 0=  denote the instant when 
the switch is opened, we find t( )v  and i t( )  for t 0.≥  For ≥t 0, the circuit 
shown in Fig. 7.3 reduces to the one shown in Fig. 7.4.

 Deriving the Expression for the Current
To find i t( ), we write an expression involving i, R, and L for the circuit in 
Fig. 7.4 using Kirchhoff’s voltage law. Summing the voltages around the 
closed loop gives

 L di
dt

Ri 0,+ =  (7.1)

where we used the passive sign convention. Equation 7.1 is a first-order 
ordinary differential equation because it involves the ordinary derivative 
of the unknown, di dt, and the highest order derivative appearing in the 
equation is 1.

We can go one step further in describing this equation. The coeffi-
cients in the equation, R and L, are constants; that is, they are not func-
tions of either the dependent variable i or the independent variable t. 
Thus, the equation can also be described as an ordinary differential equa-
tion with constant coefficients.

terminals of an equivalent inductor or capacitor, it is a first-order cir-
cuit. If the original circuit has two or more inductors or capacitors, 
they must be interconnected so that they can be replaced by a single 
equivalent element.

After introducing the techniques for analyzing the natural and 
step responses of first-order circuits, we will discuss three special 
cases:

•  Sequential switching (circuits in which switching occurs at 
two or more instants in time);

• Circuits with an unbounded response;
• The integrating amplifier circuit (containing an ideal op amp).

R0Is R

i

L v

1

2

t 5 0

Figure 7.3 ▲ An RL circuit.

i

L

1

2

vRi(0) 5 Is

Figure 7.4 ▲ The circuit shown in Fig. 7.3, for 0t ≥ .
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 7.1 The Natural Response of an RL Circuit 223

To solve Eq. 7.1, we divide by L, move the term involving i to the  
right-hand side, and then multiply both sides by a differential time dt. The 
result is

di
dt

dt R
L

i dt    .= −

Next, we recognize the left-hand side of this equation simplifies to a differ-
ential change in the current i, that is, di. We now divide through by i, getting

= −di
i

R
L

dt  .

We obtain an explicit expression for i as a function of t by integrating both 
sides. Using x and y as variables of integration yields

∫ ∫= −dx
x

R
L

dy  ,
i t

i t

t

t

( )

( )

0 0

where i t( )0  is the current at time t 0  and i t( )  is the current at time t. Here, 
t 0.0 =  Therefore, carrying out the indicated integration gives

i t
i

R
L

tln
( )
(0)

.= −

Based on the definition of the natural logarithm, we can solve for the cur-
rent to get

i t i e( ) (0) .R L t( )= −

Recall from Chapter 6 that the inductor current cannot change instan-
taneously. Therefore, in the first instant after the switch has been opened, 
the current in the inductor remains unchanged. If 0−  is the time just prior 
to switching and 0+  is the time immediately following switching, then

INITIAL INDUCTOR CURRENT

 i i I(0 ) (0 ) .0= =− +
 (7.2)

I 0  is the inductor’s initial current, as in Fig. 7.1(a), and has the same direc-
tion as the reference direction of i. Hence, the equation for the current 
becomes

= ≥−i t I e t( ) , 0 .R L t
0

( )

Figure 7.5 shows this response, where the current has an initial value I 0  
and decreases exponentially toward zero as t increases.

Note that the expression for i t( )  includes the term e .R L t( )−   The 
 coefficient of t—namely, R L—determines the rate at which the current 
 approaches zero. The reciprocal of this coefficient is the time constant of 
the circuit, denoted

TIME CONSTANT FOR RL CIRCUIT

  .L
R

τ =  (7.3)

0

i(t)

t

I0

Figure 7.5 ▲ The current response for the circuit 
shown in Fig. 7.4.
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224 Response of First-Order RL and RC Circuits

Using the time constant, we write the expression for current as

NATURAL RESPONSE OF AN RL CIRCUIT

 = ≥τ−i t I e t( ) , 0.t
0  (7.4)

Now we have a step-by-step method for finding the natural response of an 
RL circuit.

Step  1:  Determine the initial current, I0, in the inductor. This usually 
involves analyzing the circuit for t 0< .

Step 2:  Calculate the time constant, τ . To do this, you need to find the 
equivalent resistance attached to the inductor for t 0≥ .

Step 3:  Write the equation for the inductor current for t 0≥  by substituting 
the values for the initial current and the time constant into Eq. 7 .4.

Step  4:  Calculate any other quantities of interest, such as resistor current 
and voltage, using resistive circuit analysis techniques.

This method is summarized in Analysis Method 7.1 and is illustrated 
in Example 7.1.

RL NATURAL-RESPONSE 
METHOD

1. Determine the initial inductor current, 
I0, by analyzing the circuit for t 0< .

2. Calculate the time constant, L Rτ = ,  
where R is the equivalent resistance  
connected to the inductor for t 0≥ .

3. Write the equation for the inductor 
current, = τ−i t I e( ) t

0 , for t 0≥ .
4. Calculate other quantities of interest 

using the inductor current.

Analysis Method 7.1 Finding the RL  
natural response.

EXAMPLE 7.1 Determining the Natural Response of an RL Circuit

The switch in the circuit shown in Fig. 7.6 has been 
closed for a long time before it is opened at t 0.=  
Find

a) i t t( ) for  0L ≥ ,

b) ≥ +i t t( ) for  0o ,

c) ≥ +v t t( ) for  0o ,

d) the percentage of the total energy stored in the  
2 H inductor that is dissipated in the 10 Ω  resistor.

Solution
Use Analysis Method 7.1.

a) Step   1: To determine the initial current in the in-
ductor, draw the circuit in Fig. 7 .6 for t 0< . The 
switch has been closed for a long time prior to 
t 0= , so we know the inductor voltage is zero 
at t 0= − and the inductor can be replaced by a 
short circuit. The result is shown in Fig. 7 .7 . The 
short circuit shunts all of the resistors, so it has all  

of the current from the source. Therefore, the cur-
rent in the inductor at t 0= − is 20 A and

= = =− +I i i(0 ) (0 ) 20 A.L L0

Step   2: To calculate the time constant, τ , we 
need to find the equivalent resistance attached to 
the inductor when t 0≥ . To do this, draw the cir-
cuit in Fig. 7 .6 for t 0≥ . Since the switch is now 
open, the current source and its parallel resistor 
are removed from the circuit, as shown in Fig. 7 .8. 

2 V

0.1 V 10 V 40 V20 A 2 HiL

iot 5 0

1

2

vo

Figure 7.6 ▲ The circuit for Example 7.1.

2 V

0.1 V 10 V 40 V20 A I0

 Figure 7.7 ▲ The circuit for Example 7.1 when <t 0.

10 V 40 V

2

2 HiL

io2 V
1

vo

Figure 7.8 ▲ The circuit for Example 7.1 when ≥t 0.
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 7.1 The Natural Response of an RL Circuit 225

From this circuit you can see that the equivalent 
resistance attached to the inductor is

R 2 (40 10) 10 eq �= + = Ω

and the time constant of the circuit is

L
R

2
10

0.2 s.
eq

τ = = =

Step   3: Write the equation for the inductor  current 
by substituting the values for the initial current and 
the time constant into Eq. 7 .4 to give

i t I e e e t( ) 20 20 A, 0.L
t t t

0
0.2 5= = = ≥τ− − −

Step   4: We use resistive circuit analysis in the re-
maining parts of this problem to find additional 
currents and voltages.

b) We find the current in the 40 Ω  resistor in Fig. 7. 8 
using current division; that is,

i i 10
10 40

.o L= −
+

Note that this expression is valid for ≥ +t 0  
 because i 0o =  at = −t 0 , so the resistor cur-
rent io changes instantaneously. Thus,

i t i t e t( ) 0.2 ( ) 4  A,  0 .o L
t5= − = − ≥− +

c) We find the voltage ov  in Fig.  7. 8 by applying 
Ohm’s law:

v t i e t( ) 40 160  V, 0 .o o
t5= = − ≥− +

d) The power dissipated in the 10 Ω  resistor in 
Fig. 7. 8 is

v
p t e t( )

10
2560  W, 0 .o t

10

2
10= = ≥Ω

− +

The total energy dissipated in the 10 Ω  resistor is

w t e dt( ) 2560 256 J.t
10

10
0∫= =Ω

−
∞

The initial energy stored in the 2 H inductor is

Li(0) 1
2

(0) 1
2

2 (20) 400 J.L
2 2( )= = =w

Therefore, the percentage of energy dissipated in 
the 10 Ω  resistor is

256
400

 (100) 64%.=

Objective 1—Be able to determine the natural response of both RL and RC circuits

7.1  In the circuit shown, the switch makes contact 
with position b just before breaking contact with 
position a. This is known as a  make-before-break 
switch and it ensures that the inductor current is 
continuous. Assume the time between “making” 
and “breaking” is negligible. The switch has been 
in the a position for a long time. At t 0=  the 
switch is thrown from position a to position b.
a) Determine the initial current in the inductor.
b)  Determine the time constant of the circuit 

for t 0.>
c) Find i, 1v , and 2v  for t 0.≥
d) What percentage of the initial energy stored 

in the inductor is dissipated in the 90 Ω  
resistor 1 ms after the switch is thrown from 
position a to position b?

Answer:
a) 0.5 A;
b) 2 ms;
c) v

v
i e e

e

0.5 A;   80 V;  

35 V;

t t

t

500
1

500

2
500

= = −

= −

− −

−

d) 35.6%
7.2  In the circuit shown, the switch has been in 

position 1 for a long time. At t 0,=  the switch 
moves instantaneously to position 2.
a) Find t( )ov  for t 0 .≥ +

b) What percentage of the initial energy stored 
in the inductor is eventually dissipated in the 
40 Ω  resistor?

ASSESSMENT PROBLEMS

SELF-CHECK: Also try Chapter Problems 7.1–7.3.

1

2
60 V

70 V

30 V

i

90 V

0.32 H

1

2

v1
1

2

v2

t 5 0

a

b

12 V

6 V
40 V 10 V240 V

4 V

2

72 mH

vo

1

t = 0 2

1

1

2

Answer:
a) −e64 V;t250  b)  8.89%.
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226 Response of First-Order RL and RC Circuits

Deriving the Expressions for Voltage,  
Power, and Energy
We derive the voltage across the resistor in Fig. 7.4 using Ohm’s law:

 iR I Re t, 0 .t
0v = = ≥τ− +  (7.5)

Note that while the current is defined for t 0≥  (Eq. 7.4), the voltage is 
defined only for ≥ +t 0 , not at t 0.=  At t 0=  a step change occurs in 
the voltage. For t 0,<  the derivative of the current is zero, so the voltage 
is also zero Ldi dt( 0)= =v . Thus

=−v(0 ) 0,

=+v I R(0 ) ,0

where (0 )+v  is obtained from Eq. 7.5 with t 0= +.1 The value of the volt-
age at t 0=  is undefined owing to the step change at t 0= . Thus, we 
use t 0≥ +  when defining the region of validity for the voltage in Eq. 7.5.

We derive the power dissipated in the resistor from any of the follow-
ing expressions:

p i p i R p
R

, , or .2
2

v v= = =

Whichever form is used, the resulting expression can be reduced to

= ≥τ− +p I Re t, 0 .t
0
2 2

The energy delivered to the resistor during any interval of time after the 
switch has been opened is

w p dx I Re dx
t

x
t

0
0
2 2

0∫ ∫= = τ−

I R e
2

(1 )t
0
2 2τ= − τ−

L
R

I R e
2

(1 )t
0
2 2= − τ−

LI e t1
2

(1 ), 0 .t
0
2 2= − ≥τ− +

Note from the energy equation that as t becomes infinite, the energy dis-
sipated in the resistor approaches the initial energy stored in the inductor.

The Significance of the Time Constant
The time constant is an important parameter for first-order circuits. 
You can express the time elapsed after switching as an integer multiple 
of .τ  For example, one time constant after the inductor begins releasing 
its stored energy to the resistor, the current has been reduced to e ,1−  or 
approximately 0.37 of its initial value.

Table 7.1 gives the value of e t τ−  for integer multiples of τ  from 1 to 10. 
Note that the current is less than 1% of its initial value when the elapsed 

1We can define the expressions −0  and +0  more formally. The expression x(0 )−  refers to the 
limit of the variable x as →t 0  from the left, or from negative time. The expression +x(0 ) 
refers to the limit of the variable x as t 0→  from the right, or from positive time.

TABLE 7.1  Value of τ−e t  for t  Equal to 
Integral Multiples of τ

t τ−te t e t τ−

τ 3.6788 10 1× − 6τ 2.4788 10 3× −

2τ 1.3534 10 1× − 7τ 9.1188 10 4× −

3τ 4.9787 10 2× − 8τ 3.3546 10 4× −

4τ 1.8316 10 2× − 9τ 1.2341 10 4× −

5τ 6.7379 10 3× − 10τ 4.5400 10 5× −
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 7.1 The Natural Response of an RL Circuit 227

time exceeds five time constants. So, five time constants after switching has 
occurred, the currents and voltages have essentially reached their final val-
ues. After switching, the changes to the currents and voltages are momen-
tary events and represent the transient response of the circuit.

By contrast, the phrase a long time implies that five or more time con-
stants have elapsed, for first-order circuits. The response that exists a long 
time after switching is called the steady-state response. The phrase a long 
time then also means the time it takes the circuit to reach its steady-state 
value.

The time constant also represents the time required for the current to 
reach its final value if the current continues to change at its initial rate. To 
illustrate, we evaluate di dt  at 0+  and assume that the current  continues 
to change at this rate:

τ τ
= − = −τ+ − +di

dt
I

e
I

(0 ) .0 0 0

Now, if i starts at I 0  and decreases at a constant rate of I 0 τ  amperes per 
second, the expression for i becomes

τ
= −i I

I
t.0

0

This expression indicates that i would reach its final value of zero in  
τ  seconds. Figure 7.9 shows how this graphic interpretation can be used to 
estimate a circuit’s time constant from a plot of its natural response. Such 
a plot could be generated on an oscilloscope measuring output  current. 
Drawing the tangent to the natural-response plot at t 0=  and reading the 
value at which the tangent intersects the time axis gives the value of .τ  This  
allows you to determine the time constant of a circuit even if you don’t 
know its component values.

Up to this point, we have dealt with circuits having a single inductor. 
But the techniques presented apply to circuits with multiple inductors if 
the inductors can be combined into a single equivalent inductor. Example 7.2  
finds the natural response of an RL circuit that contains two inductors.

 EXAMPLE 7.2  Determining the Natural Response of an RL Circuit with Parallel 
Inductors

In the circuit shown in Fig. 7.10, the initial currents 
in inductors L1 and L2  have been established by 
sources not shown. The switch is opened at t 0.=
a) Find i i,   ,1 2  and i3 for t 0.≥
b) Calculate the initial energy stored in the parallel 

inductors.

c) Determine how much energy is stored in the 
inductors as → ∞t .

d) Show that the total energy delivered to the resis-
tive network equals the difference between the 
results obtained in (b) and (c).

Solution

a) The key to finding currents i i,   ,1 2  and i3 lies in 
knowing the voltage t( ).v  We can easily find t( )v  
if we simplify the  circuit shown in Fig. 7.10 to the 
equivalent form shown in Fig. 7.11. The parallel 
inductors combine to give an equivalent induc-
tance of 4 H, carrying an initial current of 12 A. 
The resistive network reduces to a single resis-
tance of � �+ = Ω40 [4 (15 10)] 8  . We can 
now use Analysis Method 7.1.

0

i

I0

t
t

i 5 I0 2 (I0>t)t

i 5 I0e
2t>t

Figure 7.9 ▲ A graphic interpretation of the time 
constant of the RL circuit shown in Fig. 7.4.

i1

L1 (5 H)
40 V 15 V 10 V

4 V

8 A
i2 i3

L2 (20 H)
4 A

t 5 0
v(t)

1

2

Figure 7.10 ▲ The circuit for Example 7.2.

i

v(t)

1

2

4 H12 A 8 V

Figure 7.11 ▲ A simplification of the circuit shown 
in Fig. 7.10.
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228 Response of First-Order RL and RC Circuits

7.2 The Natural Response  
of an RC Circuit

The form of an RC circuit’s natural response is analogous to that of an RL 
circuit. Consequently, we don’t treat the RC circuit in as much detail as we 
did the RL circuit.

We develop the natural response of an RC circuit using the circuit 
shown in Fig. 7.12. Begin by assuming that the switch has been in posi-
tion a for a long time, allowing the loop containing the dc voltage source 
V ,g  the resistor R ,1  and the capacitor C to reach a steady-state condition. 
Recall from Chapter 6 that a capacitor behaves as an open circuit in the 

Step  1: The initial current in the inductor in Fig. 7.11 
is I 12 A0 = .

Step 2:  The equivalent resistance attached to the  
inductor in Fig. 7.11 is 8 Ω. Therefore, the time con-
stant is

L
R

4
8

0.5 s.τ = = =

Step 3:  The inductor current in Fig. 7.11 is

i t I e e e t( ) 12 12  A, 0.t t t
0

0.5 2= = = ≥τ− − −

Step 4: We will use additional circuit analysis  
techniques to find the currents i1, i2, and i3. To 
begin, note that in Fig. 7.11, t i t( ) 8 ( )=v , so

v t e t( ) 96 V, 0 .t2= ≥− +

From the circuit in Fig. 7.10, we see that t( ) 0=v  
at = −t 0 , so the expression for t( )v  is valid for 

≥ +t 0 . After obtaining t( ),v  we can calculate i1 
and i2 using the relationship between current and 
voltage in inductors:

∫= −−i e dx1
5

  96 8x
t

1
2

0

= − ≥−e t1.6 9.6 A, 0,t2

∫= −−i e dx1
20

  96 4x
t

2
2

0

= − − ≥−e t1.6 2.4 A, 0.t2

We will use two steps to find i3; in the first step, cal-
culate the voltage across the parallel 15 Ω  and 10 Ω 
resistors using voltage division. Calling that voltage 

15 10v � , positive at the top of the circuit, we get

v v
�
�� =

+
= = ≥− − +e e t

15 10
4 15 10

6
10

 (96 ) 57.6  V,  0 .t t
15 10

2 2

Now use Ohm’s law to calculate i3, giving

v �= = ≥− +i e t
10

5.76 A, 0 .t
3

15 10 2

Note that the expressions for the inductor cur-
rents i1 and i2  are valid for t 0,≥  whereas the 
expression for the resistor current i3 is valid for 

≥ +t 0 .

b) The initial energy stored in the inductors is

w = + =1
2

(5)(8) 1
2

(20)(4) 320 J.2 2

c) As → ∞t , →i 1.6 A1  and → −i 1.6 A.2  
Therefore, a long time after the switch opens, the 
energy stored in the two inductors is

w = + − =1
2

(5)(1.6) 1
2

(20)( 1.6) 32 J.2 2

d) We obtain the total energy delivered to the resis-
tive network by integrating the expression for 
the instantaneous power from zero to infinity:

w ∫ ∫= =
∞

− −
∞

pdt e e dt(96 )(12 )t t

0
2 2

0

=
−

=
−

∞
e1152

4
288 J.

t4

0

This result is the difference between the initially 
stored energy (320 J) and the energy trapped in 
the parallel inductors (32 J). Also, note that the 
equivalent inductor for the parallel inductors 
(which predicts the terminal behavior of the 
parallel combination) has an initial energy of 

=(4)(12) 288 J1
2

2 ; that is, the energy stored in 
the equivalent inductor represents the amount of 
energy that will be delivered to the resistive net-
work at the terminals of the original inductors.

SELF-CHECK: Also try Chapter Problem 7.20.
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 7.2 The Natural Response of an RC Circuit  229

presence of a constant voltage, so the source voltage appears across the 
capacitor terminals. In Section 7.3, we will discuss how the capacitor volt-
age builds to the steady-state value of the dc voltage source. Here it is 
important to remember that when the switch is moved from position a to 
position b (at t 0= ), the voltage on the capacitor is V .g  Because there 
can be no instantaneous change in the voltage at the terminals of a capaci-
tor, the problem reduces to solving the circuit shown in Fig. 7.13.

Deriving the Expression for the Voltage
We can easily find the voltage t( )v  by writing a KCL equation. Using the 
lower node between R and C as the reference node and summing the cur-
rents away from the upper node between R and C gives

 C d
dt R

0.v v+ =  (7.6)

Comparing Eq. 7.6 with Eq. 7.1, you should see that the mathematical 
techniques used to find i(t) in the RL circuit can be used to find v(t) in the 
RC circuit. We leave it to you to show that

t e t( ) (0) , 0.t RC= ≥−v v

As we have already noted, the initial voltage on the capacitor equals 
the voltage source voltage V ,g  or

CAPACITOR VOLTAGE
 

V V(0 ) (0) (0 ) ,g 0v v v= = = =− +
 

 (7.7)

where V0 denotes the initial voltage on the capacitor. The time constant 
for the RC circuit equals the product of the resistance and capacitance, 
namely,

TIME CONSTANT FOR RC CIRCUIT

 RC.τ =  (7.8)

Therefore, the general expression for the voltage becomes

NATURAL RESPONSE OF AN RC CIRCUIT

 t V e t( ) , 0,t
0v = ≥τ−  (7.9)

which indicates that the natural response of an RC circuit is an exponen-
tial decay of the initial voltage. The time constant RC governs the rate of 
decay. Figure 7.14 shows the plot of Eq. 7.9 and the graphic interpretation 
of the time constant.

Now we have a step-by-step method for finding the natural response 
of an RC circuit.

Step 1:  Determine the initial voltage, V0, across the capacitor. This usu-
ally involves analyzing the circuit for t 0.<

1

2 C

a b

t 5 0
Vg R

R1

Figure 7.12 ▲ An RC circuit.

C iv RVg

1

2

1

2

Figure 7.13 ▲ The circuit shown in Fig. 7.12, after 
switching.

0 t

V0

v(t)

t

v(t) 5V0 2 tV0
T

v(t) = V0e
2t>T

Figure 7.14 ▲ The natural response of an RC 
circuit.
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230 Response of First-Order RL and RC Circuits

Step 2:  Calculate the time constant, .τ  To do this, you need to find the 
equivalent resistance attached to the capacitor for t 0.≥

Step 3:  Write the equation for the capacitor voltage for t 0≥  by substi-
tuting the values for the initial voltage and the time constant into Eq. 7 .9.

Step 4:  Calculate any other quantities of interest, such as resistor current 
and voltage, using resistive circuit analysis techniques.

This method is summarized in Analysis Method 7.2.
After determining t( ),v  we can easily derive the expressions for i, p, 

and w:

i t
t

R
V
R

e t( )
( )

  , 0 ,t0= = ≥τ− +v

p i
V
R

e t  , 0 ,t0
2

2v= = ≥τ− +

w p dx
V
R

e dx  x
tt

0
2

2

00 ∫∫= = τ−

CV e t1
2

(1 ), 0.t
0
2 2= − ≥τ−

Example 7.3 uses Analysis Method 7.2 to determine the natural 
response of an RC circuit. Analysis Method 7.2 applies to circuits with a 
single capacitor, but it can also be used to analyze circuits with multiple 
capacitors if they can all be combined into a single equivalent capacitor. 
Example 7.4 considers a circuit with two capacitors.

RC NATURAL-RESPONSE 
METHOD

1. Determine the initial capacitor voltage, 
V0, by analyzing the circuit for t 0< .

2. Calculate the time constant, RC,τ =  
where R is the equivalent resistance 
connected to the capacitor for t 0≥ .

3. Write the equation for capacitor  
voltage, t V e( ) t

0v = τ− , for t 0≥ .
4. Calculate other quantities of interest 

using the capacitor voltage.

EXAMPLE 7.3 Determining the Natural Response of an RC Circuit

The switch in the circuit shown in Fig. 7.15 has been 
in position x for a long time. At t 0,=  the switch 
moves instantaneously to position y. Find

a) t( )Cv  for t 0,≥
b) t( )ov  for t 0 ,≥ +

c) i t( )o  for t 0 ,≥ +  and

d) the total energy dissipated in the 60 kΩ resistor.

Solution
Use Analysis Method 7.2.

a) Step  1: Determine the initial capacitor voltage 
V0 by drawing the circuit in Fig.  7.15 for t < 0.  
The result is shown in Fig.  7.16, and since the 
 capacitor behaves like an open circuit, its initial 
voltage equals the source voltage:

V 100 V.0 =

Step 2:  Calculate the time constant. To do this, 
draw the circuit in Fig. 7.15 for t 0,≥  as shown 
in Fig. 7.17, and find the equivalent resistance at-
tached to the capacitor:

R 32,000 (240,000 60,000)eq �= +

80 k ,= Ω

R C (80,000)(0.5 10 )eq
6τ = = × −

40 ms.=

Analysis Method 7.2 Finding the RC  
natural response.

1

2

1

2

1

2
100 V vo

vC0.5 mF

io
x y

t 5 0

240 kV 60 kV

10 kV 32 kV

Figure 7.15 ▲ The circuit for Example 7.3.

1

2

10 kV

100 V V0

1

2

Figure 7.16 ▲ The circuit in Fig. 7.15 for <t .0

240 kV

32 kV

60 kV

1

2

1

2

0.5 mF

io

vC vo

Figure 7.17 ▲ The circuit in Fig. 7.15 for ≥t .0
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Step  3:  Write the equation for the capacitor voltage 
by substituting the values for V0 and τ into Eq. 7.9:

t e e t( ) 100 100  V, 0.C
t t0.04 25= = ≥− −v

Step 4: Determine the remaining quantities using 
resistive circuit analysis techniques for the circuit 
in Fig. 7.17.

b) To find t( )ov  in Fig. 7.17, note that the resistive 
 circuit forms a voltage divider across the termi-
nals of the capacitor. Thus

=
+

t t( )
240,000 60,000

32,000 (240,000 60,000)
( )o C

�
�

v v

e e t0.6(100 ) 60  V, 0 .t t25 25= = ≥− − +

This expression for t( )ov  is valid for t 0≥ +  
because (0 )o

−v  is zero. Thus, we have an instan-
taneous change in the voltage across the 240 kΩ  
resistor.

c) We find the current i t( )o  from Ohm’s law:

( )
( )

= = ≥− +i t
t

e t
60,000

 mA, 0 .o
o t25v

d) The power dissipated in the 60 kΩ resistor is

= = ≥Ω
− +p t i t e t( ) ( )(60,000) 60 mW, 0 .o

t
60k

2 50

The total energy dissipated is

∫= =Ω

∞
i t dt( )(60,000) 1.2 mJ.60k 0

2
0

w

EXAMPLE 7.4 
 Determining the Natural Response of an RC Circuit with Series 
Capacitors

The initial voltages on capacitors C1 and C2  in the 
circuit shown in Fig. 7.18 have been established by 
sources not shown. The switch is closed at t 0.=
a) Find t t( ),   ( ),1 2v v  and t( )v  for t 0≥  and i t( )  for 

t 0 .≥ +

b) Calculate the initial energy stored in the capaci-
tors C1 and C .2

c) Determine how much energy is stored in the 
capacitors as → ∞t .

d) Show that the total energy delivered to the 
250 kΩ  resistor is the difference between the 
results obtained in (b) and (c).

Solution

a) Once we know t( ),v  we can obtain the current 
i t( )  from Ohm’s law. After determining i t( ), we 
can calculate t( )1v  and t( )2v  because the voltage 
across a capacitor is a function of the capacitor cur-
rent. To find t( ),v  we replace the series- connected 
 capacitors with an equivalent capacitor. It has a 

capacitance of μ4  F and is charged to a voltage 
of 20 V. Therefore, the circuit shown in Fig. 7.18 
reduces to the one shown in Fig. 7.19. We can now 
use Analysis Method 7.2 to determine v(t).

Step 1:  The initial voltage across the capacitor in 
Fig. 7.19 is V 20 V.0 =

Step 2:  The resistance attached to the capacitor 
in Fig. 7.19 is Ω250 k . Therefore, the time 
constant is 

(250 10 )(4 10 ) 1 s.3 6τ = × × =−

Step 3:   Write the equation for the capacitor 
voltage by substituting the values for V0 
and τ  in Eq. 7 .9 to give

t e t( ) 20  V, 0.t= ≥−v

Step 4:  Determine the currents and voltages 
requested using the techniques described 
at the start of the Solution.

For the circuit in Fig. 7.19, use Ohm’s law to find 
the current i t( ) :

v
μ= = ≥− +i t

t
e t( )

( )
250,000

80   A, 0 .t

t 5 0
C1 (5 mF) v1(t)

v(t)

v2(t)

i(t)

4 V

1

2

C2 (20 mF)24 V

250 kV

2

1

2

2

1

2

1

1

Figure 7.18 ▲ The circuit for Example 7.4.

1

2

4 mF
i(t)

t 5 0

v(t)
250 kV

20 V

1

2

Figure 7.19 ▲ A simplification of the circuit shown in Fig. 7.18.
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232 Response of First-Order RL and RC Circuits

Knowing i t( ), we calculate the expressions for 
t( )1v  and v2(t) for the circuit in Fig. 7 .18:

v ∫= −
×

× −
−

− −t e dx( ) 1
5 10

  80 10 4x
t

1 6
6

0

e t(16 20) V, 0,t= − ≥−

v ∫= −
×

× +
−

− −t e dx( ) 1
20 10

80 10 24x
t

2 6
6

0

e t(4 20) V, 0.t= + ≥−

b) The initial energy stored in C1 is

1
2

(5 10 )(4) 40  J.1
6 2w μ= × =−

The initial energy stored in C2  is

1
2

(20 10 )(24) 5760  J.2
6 2w μ= × =−

The total energy stored in the two capacitors is

w μ= + =40 5760 5800  J.o

c) As → ∞t ,

v v→ − → +20 V and  20 V.1 2

Therefore, the energy stored in the two capaci-
tors is

μ

= × − + ×

=

∞
− −1

2
(5 10 )( 20) 1

2
(20 10 )(20)  

5000  J.

6 2 6 2w

d) The total energy delivered to the 250 kΩ resistor is

w ∫ ∫ μ= = × =
∞

− − −
∞

pdt e e dt(20 )(80 10 ) 800 J.t t

0
6

0

Comparing the results obtained in (b) and (c) 
shows that

μ μ= −800  J (5800 5000)  J.

The energy stored in the equivalent capaci-
tor in Fig.  7 .19 is μ× =−(4 10 )(20) 800  J.1

2
6 2  

Because this capacitor predicts the terminal 
behavior of the original series-connected capac-
itors, the energy stored in the equivalent capaci-
tor is the energy delivered to the 250 kΩ resistor.

Objective 1—Be able to determine the natural response of both RL and RC circuits

7.3  In the circuit shown, the switch has been in the 
left position for a long time. At =t 0 it moves 
to the right position and stays there.
a) Find the initial voltage drop across the 

capacitor.
b) Find the initial energy stored by the 

capacitor.
c) Find the time constant of this circuit for t 0> .
d) Write the expression for the capacitor voltage  

v(t) for t 0≥ .

Answer:
a) 150 V;
b) 450 μJ;
c) 1 ms;
d) e150  V.t1000−

7.4  The switch in the circuit shown has been in the 
left position for a long time. At =t 0 it moves 
to the right position and stays there.
a) Write the expression for the capacitor volt-

age v(t) for t 0.≥
b) Write the expression for the current in the 

2.4 kΩ resistor, i(t), for t 0 .≥ +

c) What percentage of the initial energy stored 
in the capacitor is dissipated by the 3 kΩ 
resistor 500 μs after the switch is thrown?

Answer:
a) e59.4 V;t1000−

b) e9.9 mA;t1000−

c) 42.14%.

ASSESSMENT PROBLEMS

SELF-CHECK: Also try Chapter Problems 7.24 and 7.25.

10 kV

150 V 30 kV 60 kV

t = 0

40 nF

5 kV

1

2

v

1

2

40 mA 3.3 kV2.7 kV 0.5 mF
t = 0

2.4 kV

3.6 kV3 kV

i
1

2

v
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 7.3 The Step Response of RL and RC Circuits 233

7.3 The Step Response of RL and RC 
Circuits

The response of a circuit to the sudden application of a constant voltage 
or current source is called the step response of the circuit. In this section, 
we find the step response of first-order RL and RC circuits by describ-
ing the currents and voltages generated when either dc voltage or cur-
rent sources are suddenly applied. We also show how the circuit responds 
when energy is being stored in the inductor or capacitor. We begin with 
the step response of an RL circuit.

The Step Response of an RL Circuit
We modify the first-order circuit shown in Fig. 7.2(a) by adding a switch 
and develop the step response of an RL circuit using the resulting circuit, 
shown in Fig. 7.20. We assume a nonzero initial current i(0), so the induc-
tor has stored energy at the time the switch is closed. We want to find the 
expressions for the current in the circuit and for the voltage across the 
inductor after the switch has been closed. We use circuit analysis to derive 
the differential equation that describes the circuit in terms of the variable 
of interest, and then we use elementary calculus to solve the equation, just 
as we did in Section 7.1.

After the switch in Fig. 7.20 has been closed, KVL requires that

 = +V Ri L di
dt

,s  (7.10)

which can be solved for the current by separating the variables i and t and 
then integrating. We begin by solving Eq. 7.10 for the derivative di dt :

di
dt

Ri V
L

R
L

i
V
R

  .s s( )=
− +

= − −

Next, we multiply both sides of the equation for di dt  by a differential 
time dt. This step reduces the left-hand side of the equation to a differen-
tial change in the current. Thus

( )= − −di R
L

i
V
R

dt  .s

We now separate the variables in the equation for di to get

−
= −di

i V R
R

L
dt

( )s

and then integrate both sides. Using x and y as variables for the integra-
tion, we obtain

∫ ∫−
= −dx

x V R
R

L
dy

( )
  ,

sI

i t t( )

00

where I 0  is the current at t 0=  and i t( )  is the current at any t 0.>  
Evaluating the integrals gives

i t V R
I V R

R
L

tln
( ) ( )

( )
  ,s

s0

−
−

= −

1

2

Vs

1

2

R

t 5 0
i L v(t)

Figure 7.20 ▲ A circuit used to illustrate the step 
response of a first-order RL circuit.
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234 Response of First-Order RL and RC Circuits

from which

 
i t V R
I V R

e
( ) ( )

( )
,s

s

R L t

0

( )−
−

= −

or

 i t
V
R

I
V
R

e( ) .s s R L t
0

( )( )= + − −  (7.11)

Equation 7.11 indicates that after the switch is closed, the current 
changes exponentially from its initial value I0 to a final value I V R .sf =  
The time constant of the circuit, L R ,τ =  determines the rate of change. 
We can determine the final value of the current by analyzing the circuit 
in   Fig. 7.20 as t ,→ ∞  and we can calculate the time constant by finding 
the equivalent resistance attached to the inductor in the circuit shown in  
Fig.  7.20 for t 0.≥  Now express the equation for inductor current 
(Eq. 7.11) in terms of the initial value of the current, the final value of the 
current, and the time constant of the circuit to give

STEP RESPONSE OF AN RL CIRCUIT

 = + − τ−i t I I I e( ) ( ) .t
f 0 f  (7.12)

Using Eq. 7.12, we can construct a step-by-step procedure to calculate 
the step response of an RL circuit.

Step   1: Determine the initial current, I0, in the inductor. This usually 
involves analyzing the circuit for t 0.<

Step 2: Calculate the time constant, .τ  To do this, you need to find the 
equivalent resistance attached to the inductor for t 0.≥

Step 3: Calculate the final value of the inductor current, If, by analyzing 
the circuit as t approaches infinity.

Step 4: Write the equation for the inductor current when t 0≥  by sub-
stituting the values for the initial current, the time constant, and the final 
current into Eq. 7.12.

Step 5: Calculate any other quantities of interest, such as resistor current 
and voltage, using resistive circuit analysis techniques.

This method is summarized in Analysis Method 7.3 and is applied to a 
specific circuit in Example 7.5.

RL STEP-RESPONSE METHOD

1. Determine the initial inductor current, 
I0, by analyzing the circuit for <t 0 .

2. Calculate the time constant, τ = L R ,  
where R is the equivalent resistance 
connected to the inductor for ≥t 0.

3. Find the final value for the inductor 
current, If, by analyzing the circuit as 
→ ∞t .

4. Write the equation for inductor current, 
= + − τ−i t I I I e( ) ( )  ,t

f 0 f  for ≥t 0 .
5. Calculate other quantities of interest 

using the inductor current.

Analysis Method 7.3 Finding the RL step 
response.

EXAMPLE 7.5 Determining the Step Response of an RL Circuit

The switch in the circuit shown in Fig. 7.21 has been in 
position a for a long time. At t 0,=  the switch moves 
from position a to position b. The switch is a make-
before-break type; that is, the connection at position 
b is established before the connection at position a is 
broken, so the inductor current is continuous.

a) Find the expression for i t( )  for t 0.≥
b) What is the initial voltage across the induc-

tor just after the switch has been moved to  
position b?

2 V

10 V
200 mH

ab

8 A
i

1

2

v

t 5 0

24 V
1

2

Figure 7.21 ▲ The circuit for Example 7.5.
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c) Does this initial voltage make sense in terms of 
circuit behavior?

d) How many milliseconds after the switch has been 
moved does the inductor voltage equal 24 V?

e) Plot both i t( )  and t( )v  versus t.

Solution

a) Use Analysis Method 7.3 to find the inductor current.

Step   1: Determine the initial current in the 
inductor. To do this, draw the circuit in Fig. 7 .21 
when t 0<  and the switch is in position a, as 
shown in Fig. 7.22. Note that since the switch has 
been in position a for a long time, the inductor 
behaves like a short circuit that carries all of the 
current from the 8 A current source. Therefore, 
I 8 A0 = −  because the inductor current and 
the source current are in opposite directions.

Step   2: Calculate the time constant for the cir-
cuit. Start by drawing the circuit in Fig. 7 .21 when 
t 0≥  and the switch is in position b, as shown in 
Fig. 7.23. Then determine the Thévenin equivalent 
resistance for the circuit attached to the inductor. 
Since the circuit attached to the inductor is already 
a Thévenin equivalent circuit, the Thévenin equiv-
alent resistance is 2 Ω  and 0.2 2 0.1 s.τ = =

Step   3: Calculate the final value for the inductor 
current. To do this, draw the circuit in Fig. 7 .21 
as t ,→ ∞  when the switch is in position b, as 
shown in Fig. 7 .24. Since the switch has been in 
position b for a long time, the inductor behaves 
like a short circuit, as seen in Fig. 7 .24, and the 
current can be found from Ohm’s law. Therefore, 
I 24 2 12 A.f = =

Step   4: Write the equation for the inductor cur-
rent when t 0≥  by substituting the values for 
the initial current, the time constant, and the 
final current into Eq. 7.12 to give

i I I I e( ) t
f 0 f= + − τ−

e12 ( 8 12) t 0.1= + − − −

e t12 20  A,  0.t10= − ≥−

Step   5: Calculate any other quantities of inter-
est, which we do in the remainder of this example.

b) The voltage across the inductor is

L di
dt

 =v

e0.2(200 )t10= −

e t40  V, 0 .t10= ≥− +

The initial inductor voltage is

(0 ) 40 V.=+v

c) Yes. In the instant after the switch has been 
moved to position b, the inductor current is 
8 A counterclockwise around the newly formed 
closed path. This current causes a 16 V drop 
across the 2 Ω  resistor. This voltage drop adds to 
the 24 V drop across the source, producing a 40 V 
drop across the inductor.

d) We find the time at which the inductor voltage 
equals 24 V by solving the expression

e24 40 t10= −

for t:

t 1
10

 ln  40
24

 =

51.08 ms.=

e) Figure  7.25 shows the graphs of i t( )  and t( )v  
versus t. Note that at the instant of time when 
the current equals zero, the inductor voltage 
equals the source voltage of 24 V, as predicted by 
Kirchhoff’s voltage law.

10 V 8 AI0

Figure 7.22 ▲ The circuit in Fig. 7.21 for <t .0

1

2

24 V 200 mH

2 V

Figure 7.23 ▲ The circuit in Fig. 7.21 for ≥t .0

1

2

24 V

2 V

If

Figure 7.24 ▲ The circuit in Fig. 7.21 as → ∞t .

28

v(V) i(A)

v i

100 200 300 400 500
t (ms)

8
16
24
32
40

24

4
8

12

Figure 7.25 ▲ The current and voltage waveforms for Example 7.5.
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236 Response of First-Order RL and RC Circuits

Observations on the Step Response of an RL Circuit
Let’s take a closer look at the RL step response of the circuit shown in 
Fig. 7.20. If the initial energy in the inductor is zero, I 0  is zero and Eq. 7.11 
reduces to

 = − −i t
V
R

V
R

e( )   .s s R L t( )  (7.13)

One time constant after the switch has been closed, the current will 
have reached approximately 63% of its final value, or

i
V
R

V
R

e
V
R

( )   0.6321 .s s s1τ = − ≈−

If the current were to continue to increase at its initial rate, it would reach 
its final value at t ;τ=  that is, because

di
dt

V
R

e
V
L

e  1   ,s t s t

τ( )=
− − =τ τ− −

the initial rate at which i t( )  increases is

=di
dt

V
L

(0) .s

If the current were to continue to increase at this rate, the expression for 
i would be

 =i
V
L

t  ,s  (7.14)

so at t ,τ=

i
V
L

L
R

V
R

  .s s= =

Equations 7.13 and 7.14 are plotted in Fig. 7.26. The values for i( )τ  and If 
are also shown in this figure.

The voltage across an inductor is Ldi dt , so from Eq. 7.11, for t 0 ,≥ +

 ( ) .0
( )

0
( )v L R

L
I

V
R

e V I R es R L t
s

R L t( )( )= − − = −− −
 (7.15)

The voltage across the inductor is zero before the switch is closed because 
the inductor is behaving like a short circuit. The voltage equation indi-
cates that the inductor voltage jumps to V I Rs 0−  at the instant the switch 
is closed and then decays exponentially to zero.

Objective 2—Be able to determine the step response of both RL and RC circuits

7.5  The switch in the circuit shown has been open 
for a long time. It is closed at t 0= .
a) Find the initial current in the inductor.
b) Find the final current in the inductor.
c) Find the time constant of this circuit for t 0.>
d) Write the expression for the inductor current 

i(t) for t 0.≥ Answer: a) 4 mA;−
b) 1 mA;
c) 6.67 μs;
d) e1 5  mA.t150,000− −

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter Problems 7.35–7.37.

t
0

i

0.632

5t4t3t2t

i 5 t
Vs

L

i 5
Vs

R
Vs

R

Vs

R

Vs

R

2 e2t>T

t

Figure 7.26 ▲ The step response of the RL  circuit 
shown in Fig. 7.20 when I 0.0 =

250 V
t = 0

i

200 mH

30 kV 1 mA
1

2

25 kV
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 7.3 The Step Response of RL and RC Circuits 237

Does the value of v  at t 0= +  make sense? Because the initial cur-
rent is I 0  and the inductor prevents an instantaneous change in current, 
the current is I 0  in the instant after the switch has been closed. The volt-
age drop across the resistor is I R,0  so the voltage across the inductor is the 
source voltage minus the resistor voltage, that is, V I R.s 0−

When the initial inductor current is zero, Eq. 7.15 simplifies to

V e .s
R L t( )= −v

If the initial current is zero, the voltage across the inductor jumps to Vs 
when the switch closes. We also expect the inductor voltage to approach 
zero as t increases because the current in the circuit is approaching the 
constant value of V R.s  Figure  7.27 shows the plot of the simplified 
 voltage equation and the relationship between the time constant and the 
initial rate at which the inductor voltage is decreasing.

We can also describe the voltage t( )v  across the inductor in Fig. 7.20 
directly, without first calculating the circuit current. We begin by noting 
that the voltage across the resistor is the difference between the source 
voltage and the inductor voltage. Using Ohm’s law, we write

i
V
R R

,s= − v

where Vs  is a constant. Differentiating both sides with respect to time 
yields

di
dt R

d
dt

1   .= − v

Then, if we multiply each side of this equation by the inductance L, we get 
an expression for the voltage across the inductor on the left-hand side, or

L
R

d
dt

.v v= −

Putting this differential equation into standard form yields

 
d
dt

R
L

0.
v

v+ =  (7.16)

You should verify (in Problem 7.43) that the solution to Eq. 7.16 is identi-
cal to that given in Eq. 7.15.

At this point, a general observation about the step response of an RL 
circuit is pertinent. (This observation will prove helpful later.) When we 
derived the differential equation for the inductor current, we obtained 
Eq. 7.10, which we can rewrite as

 
di
dt

R
L

i
V
L

.s+ =  (7.17)

Observe that Eqs. 7.16 and 7.17 have the same form. Specifically, each 
equates the sum of the first derivative of the variable and a constant 
times the variable to a constant value. In Eq. 7.16, the constant on the 
 right-hand side happens to be zero; hence, this equation takes on the same 
form as the natural-response equations in Section  7.1. In both Eq. 7.16 
and Eq. 7.17, the constant multiplying the dependent variable is the recip-
rocal of the time constant; that is, R L 1 .τ=  We will encounter a sim-
ilar situation in the derivations for the step response of an RC circuit. In 
Section 7.4, we will use these observations to develop a general approach 
to finding the natural and step responses of RL and RC circuits.

R
L

t
0

v 5 Vs 2

v 5 Vse
2(R>L)t

Vs

v

0.368 Vs

5T4T3T2T

Vs t

T

Figure 7.27 ▲ Inductor voltage versus time.
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The Step Response of an RC Circuit
We can find the step response of a first-order RC circuit by analyzing the 
circuit shown in Fig. 7.28. For mathematical convenience, we choose the 
Norton equivalent of the network connected to the equivalent capacitor. 
Summing the currents away from the top node in Fig. 7.28 generates the 
differential equation

C
d
dt R

I .s
v v
+ =

Dividing both sides of the differential equation by C gives

 
d
dt RC

I
C

.sv v
+ =  (7.18)

Comparing Eq. 7.18 with Eq. 7.17 reveals that the form of the solution 
for v  is the same as that for the current in the inductive circuit, namely, 
Eq. 7.11. Therefore, by substituting the appropriate variables and coeffi-
cients, we can write the solution for v  directly. The translation requires 
that I s  replace V ,s  C replace L, R1  replace R, and V0 replace I .0  We get

 I R V I R e t( ) , 0.s s
t RC

0v = + − ≥−  (7.19)

Equation 7.19 indicates that after the switch has been closed, the 
voltage changes exponentially from its initial value V0 to a final value 
V I R.sf =  The time constant of the circuit, RC,τ =  determines the rate 
of change. We can determine the final value of the voltage by analyzing 
the circuit in Fig. 7.28 as t 0,→  and we can calculate the time constant 
by finding the equivalent resistance attached to the capacitor in the circuit 
shown in Fig. 7.28 for t 0.≥  Now express the equation for capacitor volt-
age (Eq. 7.19) in terms of the initial value of the voltage, the final value of 
the voltage, and the time constant of the circuit to give

STEP RESPONSE OF AN RC CIRCUIT

 t V V V e t( ) f ( 0 f ) .τ= + − −v  (7.20)

Using Eq. 7.20, we can construct a step-by-step procedure to calculate 
the step response of an RC circuit.

 Step   1: Determine the initial voltage, V0, across the capacitor. This usually 
involves analyzing the circuit for t 0.<

Step   2: Calculate the time constant, .τ  To do this, you need to find the 
equivalent resistance attached to the capacitor for t 0.≥

Step   3: Calculate the final value of the capacitor voltage, Vf, by analyzing 
the circuit as t approaches infinity.

Step   4: Write the equation for the capacitor voltage when t 0≥  by sub-
stituting the values for the initial voltage, the time constant, and the final 
voltage into Eq. 7.20.

Step   5: Calculate any other quantities of interest, such as resistor current 
and voltage, using resistive circuit analysis techniques.

This method is summarized in Analysis Method 7.4.

RC STEP-RESPONSE METHOD

1. Determine the initial capacitor voltage, 
V0, by analyzing the circuit for t 0< .

2. Calculate the time constant, RC,τ =  
where R is the equivalent resistance 
connected to the inductor for t 0≥ .

3. Calculate the final value for the 
capacitor voltage, Vf, by analyzing the 
circuit as t ∞→ .

4. Write the equation for the capacitor 
voltage, v = + − τ−t V V V e( ) ( )  ,t

f 0 f  
for t 0≥ .

5. Calculate other quantities of interest 
using the capacitor voltage.

Analysis Method 7.4 Finding the RC step 
response.

RIs

i
C v

1

2

t 5 0

Figure 7.28 ▲ A circuit used to illustrate the step 
response of a first-order RC circuit.
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A similar derivation for the current in the capacitor yields the differ-
ential equation

 
di
dt RC

i
1

  0.+ =  (7.21)

Equation 7.21 has the same form as Eq. 7.16, so the solution for i is 
obtained by using the same translations used for the solution of Eq. 7.18. 
Thus

 i I
V
R

e t, 0 ,s
t RC0= − ≥− +  (7.22)

where V0 is the initial voltage across the capacitor.
We obtained Eqs. 7.19 and 7.22 by applying a mathematical analogy 

to the solution for the step response of the RL circuit. Let’s see whether 
these solutions for the RC circuit make sense in terms of known circuit 
behavior. From Eq. 7.19, we have already observed that the initial capac-
itor voltage is V ,0  the final capacitor voltage is I R,s  and the time constant 
of the circuit is RC. Also note that the solution for v  is valid for t 0.≥  
These observations are consistent with the behavior of a capacitor in par-
allel with a resistor when driven by a constant current source.

Equation 7.22 predicts that the current in the capacitor at t 0= +  is 
I V R .s 0−  This prediction makes sense because the capacitor voltage can-
not change instantaneously, and therefore the initial current in the resistor 
is V R .0  The capacitor branch current changes instantaneously from zero at 
t 0= − to I V Rs 0−  at t 0 .= +  The capacitor current is zero at t .= ∞

Example 7.6 illustrates how to use Analysis Method 7.4 to find the 
step response of a first-order RC circuit.

 EXAMPLE 7.6 Determining the Step Response of an RC Circuit

The switch in the circuit shown in Fig. 7.29 has been 
in position 1 for a long time. At t 0,=  the switch 
moves to position 2. Find

a) t( )ov  for t 0≥  and

b) i t( )o  for t 0≥ + .

Solution

Use Analysis Method 7.4.

a)    Step   1: Determine the initial voltage across the 
capacitor by analyzing the circuit in Fig.  7 .29  
for t 0.<  Do this by redrawing the circuit with 
the switch in position 1, as shown in Fig. 7 .30. 
Note that the capacitor behaves like an open 
circuit because the switch has been in posi-
tion 1 for a long time. The capacitor’s initial 
voltage is the same as the voltage across the 

60 kΩ resistor, which we can find using voltage  
division:

V 60,000
60,000 20,000

 (40) 30 V.0 =
+

=

Step   2: Calculate the time constant by finding 
the equivalent resistance attached to the capaci-
tor for t 0≥  in the circuit of Fig. 7 .29. Begin by 
drawing the circuit in Fig. 7 .29 with the switch in 
position 2, as shown in Fig. 7 .31(a). Then find the 
Norton equivalent with respect to the terminals 
of the capacitor. Begin by computing the open- 
circuit voltage, which is given by the 75 V−  source 
divided across the 40 kΩ  and 160 kΩ   resistors:

V 160,000
40,000 160,000

 ( 75) 60 V.oc =
+

− = −

40 V 60 kV 160 kV 75 V
io

1

2
0.25 mF vo

t 5 0
20 kV 8 kV 40 kV

2

1

1

2

1 2

Figure 7.29 ▲ The circuit for Example 7.6.

60 kV

20 kV

40 V
1

2
V0

1

2

Figure 7.30 ▲ The circuit in Fig. 7.29 when <t .0

M07_NILS8436_12_SE_C07.indd   239 11/01/22   7:09 PM



240 Response of First-Order RL and RC Circuits

SELF-CHECK: Also try Chapter Problems 7.54 and 7.56.

Next, calculate the Thévenin resistance, as seen 
to the right of the capacitor, by shorting the 
75 V  source and making series and parallel com-
binations of the resistors:

= + = ΩR 8000 40,000 160,000 40 kTh � . 

The value of the Norton current source is the 
ratio of the  open-circuit voltage to the Thévenin 
resistance, or 60 (40,000) 1.5 mA.− = −  The 
resulting Norton equivalent circuit is shown in 
Fig.  7.31(b). From Fig.  7.31(b) we see that the 
equivalent resistance attached to the capacitor is 

Ω40 k ,  so the time constant is

RC (40,000)(0.25 10 ) 10 ms.6τ = = × =−

Step   3: Calculate the final value of the capaci-
tor voltage by analyzing the circuit in Fig.  7.29 
as t .→ ∞  The circuit is shown in Fig. 7.32, and 
since the switch has been in position 2 for a long 

time, the capacitor behaves like an open circuit. 
The final capacitor voltage equals the voltage 
across the 40 kΩ  resistor, so

V (40,000)(1.5 10 ) 60 V.f
3= − × = −−

Step   4: Write the equation for capacitor voltage 
by substituting the values for initial capacitor 
voltage, time constant, and final capacitor volt-
age into Eq. 7 .20 to give

V V V e( )o
t

f 0 f= + − τ−v

e60 30 ( 60 ] t 0.01[ )= − + − − −

e t60 90 V, 0.t100= − + ≥−

Step   5: We calculate the other quantity of interest,  
io, in part (b).

b) Write the solution for io  using the relationship 
between current and voltage in a capacitor to give

= = × −− −v
i C

d
dt

e(0.25 10 )( 9000 )o
o t6 100

e2.25 mA.t100= − −

Because d dt(0 ) 0,o =−v  the expression for io  
clearly is valid only for t 0 .≥ +

Objective 2—Be able to determine the step response of both RL and RC circuits

7.6  Assume the switch in the circuit shown has 
been in position a for a long time. At t 0=  the 
switch is moved to position b.
a) Find the initial voltage across the capacitor.
b) Find the time constant of this circuit for t 0> .
c) Find the final voltage across the capacitor.
d) Find the initial current in the capacitor, i(0+).
e) Write the expression for the capacitor voltage  

vC (t) for t 0.≥
f) Write the expression for the capacitor current  

i(t) for t 0 .≥ +

Answer: a) −50 V;
b) 0.1 s;
c) −24 V;
d) 6.5 A;
e) e24 26 V;t10− − −

f) e6.5 A.t10−

ASSESSMENT PROBLEM

40 kV 1.5 mAVf

1

2

Figure 7.32 ▲ The circuit in Fig. 7.29 as → ∞t .

8 kV 40 kV

160 kV
75 V0.25 mF

1

2 40 kV 1.5 mA0.25 mF

(a) (b)

Figure 7.31 ▲  (a) The circuit in Fig. 7.29 when ≥t 0 ; (b) replacing the circuit to the right of 
the  capacitor in part (a) with its Norton equivalent.

400 V

20 V

5 V

25 mF
30 V

a b

50 V
i

t = 0
1

2

vC
1

2

1

2
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7.4 A General Solution for Step  
and Natural Responses

We can construct a general approach to finding either the natural response 
or the step response of the first-order RL and RC circuits because their 
differential equations all have the same form. To generalize the solution 
of these four possible circuits, we let x t( ) represent the unknown quantity, 
where x t( ) represents the circuit variable that is required to be continuous 
for all time. Thus, x(t) is the inductor current for RL natural- and step- 
response circuits and is the capacitor voltage for RC natural- and  
step-response circuits. From Eqs. 7.16, 7.17, 7.18, and 7.21, we know that 
the differential equation describing both the natural and step responses of 
the RL and RC circuits takes the form

dx
dt

x K,
τ

+ =

where the value of the constant K is zero for the natural response and 
nonzero for the step response.

How are the natural and step responses of RL circuits different, and 
how are they the same? Compare the circuits we analyzed to determine 
the natural and step responses of RL circuits using Figs. 7.3 and 7.20. The 
step-response circuit contains an independent source for t 0,≥  but the 
natural-response circuit does not. Now compare the analysis of the RL nat-
ural response and the RL step response (Analysis Methods 7.1 and 7.3). 
There is one extra calculation in the step-response analysis that computes 
the final value of the inductor current. We can make Analysis Methods 7.1 
and 7.3 exactly the same by recognizing that the final value of the induc-
tor current in the natural-response circuit is 0. These same observations 
hold when comparing both the natural and step responses of RC circuits 
(Figs. 7.12 and 7.28) and the natural-response analysis and  step- response 
analysis of RC circuits (Analysis Methods 7.2 and 7.4). So we can make 
Analysis Methods 7.2 and 7.4 exactly the same by recognizing that the final 
value of the capacitor voltage in the natural-response circuit is 0.

Next, let’s look at how the step response of an RL circuit is similar to 
and different from the step response of an RC circuit. Comparing Analysis 
Methods 7.2 and 7.4, we identify four important differences:

• In the RL circuit, we find the inductor current for t 0;≥  in the RC 
circuit, we find the capacitor voltage for t 0.≥

• We analyze the RL circuit when t 0<  to find the initial inductor current; 
we analyze the RC circuit when t 0<  to find the initial capacitor voltage.

• We analyze the RL circuit when t 0≥  to find the equivalent resis-
tance attached to the inductor and use it to calculate the circuit’s 
time constant, L R ;τ =  we analyze the RC circuit when t 0≥  to 
find the equivalent resistance attached to the capacitor and use it to 
calculate the circuit’s time constant, RC.τ =

• We analyze the RL circuit as t → ∞  to find the final inductor cur-
rent; we analyze the RC circuit as t → ∞  to find the final capacitor 
voltage. If the circuit exhibits a natural response instead of a step 
response, we know that the final values are zero without performing 
circuit analysis.

Based on these comparisons, we can create a general step-by-step method 
to calculate the natural and step responses of both RL and RC circuits.

Step   1: Identify the variable x(t), which is the quantity that is required to 
be continuous for all time. This is the inductor current in RL circuits and 
the capacitor voltage in RC circuits.
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242 Response of First-Order RL and RC Circuits

Step   2: Calculate the initial value X0 by analyzing the circuit to find x(t) 
for t 0.<

Step   3: Calculate the time constant, ,τ  for the circuit by analyzing the cir-
cuit for t 0≥  to find the equivalent resistance attached to the inductor or 
capacitor. For RL circuits, L R ,τ =  and for RC circuits, RC.τ =

Step   4: Calculate the final value Xf by analyzing the circuit to find x(t) as 
t .→ ∞  If the circuit exhibits a natural response, X 0,f =  so no calcula-
tion is needed.

 Step   5: Write the equation for x(t) by substituting the initial value X0, the 
time constant ,τ  and the final value Xf into the expression

GENERAL METHOD FOR NAT-
URAL AND STEP RESPONSE  
OF RL AND RC CIRCUITS

1. Identify the variable x(t), which is the 
inductor current for RL circuits and capacitor 
voltage for RC circuits.
2. Calculate the initial value X0 by analyzing 
the circuit to find x(t) for <t 0 .
3. Calculate the time constant τ; for RL cir-
cuits =τ L R and for RC circuits =τ RC, 
where R is the equivalent resistance con-
nected to the inductor or capacitor for ≥t 0 .
4. Calculate the final value Xf by analyzing 
the circuit to find x(t) as t ;→ ∞  for the natu-
ral response, =X 0f .
5. Write the equation for x(t), 

= + − τ−x t X X X e( ) ( )  ,t
f 0 f  for ≥t 0 .

6. Calculate other quantities of interest 
using x(t).

Analysis Method 7.5 Finding the RL and RC 
natural and step response.

GENERAL SOLUTION FOR NATURAL AND STEP 
RESPONSES OF RL AND RC CIRCUITS 

 x t X X X e t( ) ( ) ,   0.t
f 0 f= + − ≥τ−  (7.23)

Step   6: Use x(t) to find any other quantities of interest in the circuit.

These general steps are summarized in Analysis Method 7.5. 
Examples 7.7–7.9 illustrate how to use Analysis Method 7.5 to find the 
natural or step responses of RC or RL circuits.

The switch in the circuit shown in Fig. 7.33 has been 
closed for a long time. At t 0=  the switch opens 
and remains open.

a) What is the initial value of io?
b) What is the time constant of the circuit when the 

switch is open?
c) What is the final value of io?
d) What is the expression for io(t) when t 0?≥
e) What is the expression for vo(t) when t 0?≥
f) Find (0 )o

−v  and (0 ).o
+v

Solution
Use Analysis Method 7.5.

a) Step 1: Identify the inductor current, io, as the 
variable of interest, because this is an RL circuit.
Step 2: Calculate the initial value of io. The switch 
has been closed for a long time, so the inductor 
behaves like a short circuit. Therefore, the current 
through the inductor is the current in the 25 Ω  

EXAMPLE 7.7  Using the General Solution Method to Find an RL Circuit’s 
Natural Response

resistor. Using current division, the current in the 
25 Ω  resistor is [(100 25) 25](0.075) 60 mA,� =  
so I i (0) 60 mA.o0 = =

b) Step   3: Calculate the time constant L Rτ = . 
When t 0,≥  the equivalent resistance attached to 
the inductor is the series combination of the 100 Ω  
and 25 Ω  resistors, or 125 Ω . Therefore,

 0.05
125

0.4 ms.τ = =

c) Step   4: Calculate the final value for the induc-
tor current, If. This is a natural-response problem 
because for t 0≥  there is no source in the circuit. 
Eventually, all of the energy stored in the inductor 
before the switch opens is dissipated by the resis-
tors and the inductor current is zero, so I 0.f =

d) Step   5: Write the equation for the inductor cur-
rent by substituting the values for I0, ,τ  and If 
into Eq. 7 .23 to give

i t I I I e e( ) ( ) 0 (0.06 0)o
t t

f 0 f
0.4 10 3= + − = + −τ− − × −

e t60 mA, 0.t2500= ≥−

e) Step   6: Use the inductor current to find the volt-
age across the Ω100  ,  using Ohm’s law. The result is

t i e t( ) 100 6  V,  0 .o o
t2500= − = − ≥− +v

25 V

50 mH75 mA 100 V
iot 5 0 1

2

vo

Figure 7.33 ▲ The circuit for Example 7.7.
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f) From part (a), when t 0<  the switch is closed, 
and the current divides between the 100 Ω  and 
25 Ω  resistors. We know that the current in the 
25 Ω  is 60 mA, so the current in the 100 Ω  must 
be 75 60 15 mA.− =  Using Ohm’s law,

(0 ) 100(0.015) 1.5 V.o = =−v

From part (e)

e(0 ) 6 6 V.o
2500(0 )= − = −+ − +v

There is a discontinuity in the voltage across the 
100 Ω  resistor at t 0.=

EXAMPLE 7.8  Using the General Solution Method to Find an RC  
Circuit’s Step Response

The switch in the circuit shown in Fig. 7.34 has been 
in position a for a long time. At t 0=  the switch is 
moved to position b.

a) What is the expression for t( )Cv  when t 0?≥
b) What is the expression for i t( )  when ≥ +t 0 ?
c) How long after the switch is in position b does 

the capacitor voltage equal zero?
d) Plot t( )Cv  and i t( )  versus t.

Solution
Use Analysis Method 7.5.

a) Step   1:  Identify the capacitor voltage, v C , as the 
variable of interest, because this is an RC  circuit.

Step   2: Calculate the initial value of v C . The 
switch has been in position a for a long time, 
so the capacitor looks like an open circuit. 
Therefore, the voltage across the capacitor is the 
voltage across the 60 Ω  resistor. Using voltage 
division, the voltage across the 60 Ω  resistor is 

+ =[60 (60 20)](40) 30 V,  positive at the 
lower terminal of the resistor. But Cv  is posi-
tive at the upper terminal of the capacitor, so 
V (0) 30 V.C0 = = −v

 Step   3: Calculate the time constant RC.τ =  
When t 0,≥  the equivalent resistance attached 
to the capacitor has the value 400 k .Ω  Therefore,

(400 10 )(0.5 10 ) 0.2 s.3 6τ = × × =−

Step   4: Calculate the final value for the capac-
itor voltage, Vf. As t ,→ ∞  the switch has been 
in position b for a long time, and the capacitor 
behaves like an open circuit in the presence of the 

90 V source. Because of the open circuit, there is 
no current in the 400 kΩ  resistor, so V 90 V.f =

Step  5:  Write the equation for capacitor voltage 
by substituting the values for V0, ,τ  and Vf into 
Eq. 7.23 to give

t V V V e e( ) ( ) 90 ( 30 90)C
t t

f 0 f
0.2= + − = + − −τ− −v

e t90 120  V, 0.t5= − ≥−

b) Step 6: Use the relationship between voltage 
and current for capacitors to find the capacitor 
voltage. The result is

i t C
d
dt

e( ) (0.5 10 )[ 5( 120 )]C t6 5= = × − −− −v

μ= ≥− +e t300   A, 0 .t5

c) To find how long the switch must be in position 
b before the capacitor voltage becomes zero, we 
solve the equation derived in (a) for the time 
when t( ) 0C =v :

e e120 90  or  120
90

,t t5 5= =−

so

t 1
5

 ln  4
3

57.54 ms.( )= =

Note that when 0,C =v  the voltage drop across 
the 400 kΩ  resistor is 90 V so μ=i 225  A .

d) Figure  7.35 shows the graphs of t( )Cv  and i t( )  
 versus t.

60 V
0.5 mF

t 5 0

400 kV 20 V

i
1

2

vC

b a

90 V

1

2

40 V

2

1

Figure 7.34 ▲ The circuit for Example 7.8.

20

220
0

40
60
80

100
120

50
100
150
200
250
300

230

vC

vC (V)i (mA)

i

200 400 600 800
t (ms)

Figure 7.35 ▲ The current and voltage waveforms for Example 7.8.
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EXAMPLE 7.9  Using the General Solution Method to Find an RL  
Circuit’s Step Response

The switch in the circuit shown in Fig. 7.36 has been 
open for a long time. At t 0=  the switch is closed. 
Find the expression for

a) i t t( ) when  0≥  and
b) t t( ) when  0≥ +v .

Solution
Use Analysis Method 7.5.

a) Step   1: Identify the inductor current, i, as the 
variable of interest, because this is an RL circuit.

Step   2: Calculate the initial value of i. The 
switch has been open for a long time, so from 
Ohm’s law, the initial current in the inductor is 
20 (1 3) 5 A.+ =  Thus, I i(0) 5 A.0 = =

 Step   3: Calculate the time constant L R .τ =  
When t 0,≥  the switch is closed, shunting the 

3 Ω  resistor. The remaining resistance attached 
to the inductor has the value Ω1  . Therefore,

80 10
1

80 ms.
3

τ = × =
−

Step   4:  Calculate the final value for the inductor 
current. As t ,→ ∞  the switch has been closed 
for a long time, and the inductor behaves like a 
short circuit in the presence of the 20 V source. 
Using Ohm’s law, the current in the inductor is 
20 1 20 A,=  so I 20 A.f =

Step   5: Write the equation for inductor current 
by substituting the values for I0, ,τ  and If into  
Eq. 7.23 to give

i t I I I e e( ) ( ) 20 (5 20)t t
f 0 f

0.08= + − = + −τ− −

e t20 15 A, 0.t12.5= − ≥−

b) Step   6: Use the relationship between voltage 
and current for inductors to find the inductor 
voltage. The result is

t L di
dt

e( ) (80 10 ) 12.5( 15 )t3 12.5[ ]= = × − −− −v

e t15 V, 0 .t12.5= ≥− +

Objectives 1 and 2—Be able to determine the natural and step response of both RL and RC circuits

7.7  Assume the switch in the circuit shown has 
been open for a long time before closing at 
t = 0. Write the expression for the inductor  
current, i(t), for t ≥ 0.

Answer: −e12 mA.t320,000

7.8  Assume the switch in the circuit shown has 
been in position a for a long time. At t = 0 the 
switch is moved to position b.
a) Find ov (t) for t 0 .≥ +

b) Find io (t) for t 0 .≥ +

Answer: a) e80 130  V;t3125− + −

b) e2 13  mA.t3125+ −

ASSESSMENT PROBLEMS

SELF-CHECK: Also try Chapter Problems 7.55 and 7.57 .

i(t)

1

2
20 V 80 mH

1 V

3 V

v(t)

1

2

t 5 0

Figure 7.36 ▲ The circuit for Example 7.9.

20 mA 20 kV 60 kV 50 mH

10 kV 

t = 0 

10 kV i(t)

5 kV a b

10 kV75 V

10 kV

t = 0

40 kV 100 V40 nFvo(t)

io(t)
1

2

1

2

2

1
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Example 7.10 shows that Eq. 7.23 can even be used to find the step 
response of some circuits containing magnetically coupled coils.

EXAMPLE 7.10     Determining the Step Response of a  
Circuit with Magnetically Coupled Coils

There is no energy stored in the circuit in Fig. 7.37 
at the time the switch is closed.

a) Find the solutions for i ,o  ,ov  i ,1  and i .2

b) Show that the solutions obtained in (a) make 
sense in terms of known circuit behavior.

 Solution

a) For the circuit in Fig. 7.37, the magnetically cou-
pled coils can be replaced by a single inductor 
having an inductance of

L
L L M

L L M2
45 36
18 12

1.5 H.eq
1 2

2

1 2

=
−

+ −
= −

−
=

(See Problem 6.39.) It follows that the circuit in 
Fig. 7 .37 can be simplified, as shown in Fig. 7.38. 
We can apply Analysis Method 7.5 to the circuit 
in Fig. 7 .38.

Step   1: Identify the inductor current, io, as the 
variable of interest, because this is an RL circuit.

Step   2: Calculate the initial value of i. By hypoth-
esis, there is no initial energy stored in the coils, 
so there is no initial current in the equivalent  
1.5 H inductor. Thus, I i(0) 0.0 = =

Step   3: Calculate the time constant L R .τ =  
When t 0,≥  the switch is closed and the resis-
tance attached to the inductor has the value 
7.5  .Ω  Therefore,

1.5
7.5

0.2 s.τ = =

Step 4: Calculate the final value for the inductor 
current. As t ,→ ∞  the switch has been closed 
for a long time, and the inductor behaves like a 
short circuit in the presence of the 120 V source. 
Using Ohm’s law, the current in the inductor is 
120 7.5 16 A,=  so I 16 A.f =

Step 5: Write the equation for inductor current 
by substituting the values for I0, ,τ  and If into 
Eq. 7.23 to give

i t I I I e e( ) ( ) 16 (0 16)o
t t

f 0 f
0.2= + − = + −τ− −

= − ≥−e t16 16 A,  0.t5

Step  6: Use the inductor current and the rela-
tionship between voltage and current for induc-
tors to find the inductor voltage. The result is

t L di
dt

e( ) (1.5) 5( 16 )o
t5[ ]= = − − −v

e t120  V,  0 .t5= ≥− +

To find i1 and i2  we use KVL for the mesh con-
taining the coupled coils in Fig. 7.37 to see that

di
dt

di
dt

di
dt

di
dt

3 6 6   15  1 2 1 2+ = +

or

di
dt

di
dt

3 .1 2= −

It also follows from Fig. 7.37 and KCL that 
i i i ,o 1 2= +  so

di
dt

di
dt

di
dt

di
dt

di
dt

di
dt

3 2 .o 1 2 2 2 2= + = − + = −

Therefore

e
di
dt

80 2 .t5 2= −−

Because i (0)2  is zero, we have

i e dx40 x
t

2
5

0∫= − −

= − + ≥−e t8  8 A, 0.t5

Using i i i ,o 1 2= +  we get

i e e(16 16 ) ( 8 8 )t t
1

5 5= − − − +− −

e t24 24 A, 0.t5= − ≥−

1

2

7.5 V

3 H

6 H

120 V

t 5 0

i1
15 H

i2

1

2

vo

io

Figure 7.37 ▲ The circuit for Example 7.10.

1

2

t 5 0

1.5 H

io

120 V

7.5 V

vo

2

1

Figure 7.38 ▲ The circuit in Fig. 7.37 with the magnetically 
 coupled coils replaced by an equivalent coil.
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246 Response of First-Order RL and RC Circuits

b) First, we observe that i (0),o  i (0),1  and i (0)2  are 
all zero, which is consistent with the statement 
that no energy is stored in the circuit at the 
instant the switch is closed. Then we observe that 

(0 ) 120 V,o =+v  which is consistent with the 
fact that i (0) 0.o =  Now we see that the solu-
tions for i1 and i2  are consistent with the solution 
for ov  by observing

di
dt

di
dt

3 6  o
1 2= +v

e e360 240t t5 5= −− −

= ≥− +e t120 V, 0 ,t5

or
di
dt

di
dt

6 15  o
1 2= +v

e e720 600t t5 5= −− −

e t120  V, 0 .t5= ≥− +

The final values of i1 and i2  can be checked using 
flux linkages. The flux linking the 3 H coil ( )1λ  
must be equal to the flux linking the 15 H coil 
( )2λ  because

d
dt

d
dt

.o
1 2λ λ

= =v

Now

λ = +i i3 6  Wb-turns1 1 2

and

λ = +i i6 15  Wb-turns.2 1 2

Regardless of which expression we use, we obtain

λ λ= = − −e24 24  Wb-turns.t
1 2

5

Note the solution for 1λ  or 2λ  is consistent with 
the solution for .ov

The final value of the flux linking either coil 
1 or coil 2 is 24 Wb-turns; that is,

λ λ∞ = ∞ =( ) ( ) 24 Wb-turns.1 2

The final value of i1 is

i ( ) 24 A1 ∞ =

and the final value of i2  is

i ( ) 8 A.2 ∞ = −

The consistency between these final values for i1 
and i2  and the final value of the flux linkage can 
be seen from the expressions:

i i( ) 3 ( ) 6 ( )1 1 2λ ∞ = ∞ + ∞

3 24 6( 8) 24 Wb-turns,( )= + − =

i i( ) 6 ( ) 15 ( )2 1 2λ ∞ = ∞ + ∞

= + − =6(24) 15( 8) 24 Wb-turns.

The final values of i1 and i2  can only be checked 
via flux linkage because at t = ∞ the two coils are 
ideal short circuits. We cannot use current division 
when the two branches have no  resistance.

7.5 Sequential Switching
Whenever switching occurs at two or more distinct times in a circuit, we 
have sequential switching. For example, a single, two-position switch may 
be in position 1 at t1 and in position 2 at t2, or multiple switches may be 
opened or closed in sequence. We determine the voltages and currents 
generated by a switching sequence using the techniques described pre-
viously in this chapter, primarily Analysis Method 7.5. We derive the 
expressions for t( )v  and i t( )  for a given position of the switch or switches 
and then use these solutions to determine the initial conditions for the 
next position of the switch or switches.

With sequential switching problems, a premium is placed on obtain-
ing the initial value x t( ).0  Recall that anything but inductive currents and 
capacitive voltages can change instantaneously at the time of switching. 
Thus, solving first for inductive currents and capacitive voltages is even 
more pertinent in sequential switching problems. Drawing the circuit that 

SELF-CHECK: Assess your understanding of this material by using the general solution method to solve Chapter 
Problems 7.70 and 7.71.
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pertains to each time interval in such a problem is often helpful in the 
solution process.

Examples 7.11 and 7.12 illustrate the analysis techniques for circuits 
with sequential switching. The first example is a natural-response problem 
with two switching times, and the second is a step-response problem.

EXAMPLE 7.11   Analyzing an RL Circuit That Has Sequential Switching

The two switches in the circuit shown in Fig. 7.39 
have been closed for a long time. At t 0,=  switch 
1 is opened. Then, 35 ms later, switch 2 is opened.

a) Find i t t( ) for  0 35 ms.L ≤ ≤
b) Find i t for  35 ms.L ≥
c) What percentage of the initial energy stored in 

the 150 mH inductor is dissipated in the 18 Ω 
resistor?

d) Repeat (c) for the 3 Ω resistor.
e) Repeat (c) for the 6 Ω resistor.

Solution
We use Analysis Method 7.5 to solve this  problem.
a) Step  1: Identify the inductor current, iL, as the 

variable of interest, because this is an RL circuit.

Step 2: Calculate the initial value of i. For t 0<  
both switches are closed, causing the 150 mH 
inductor to short-circuit the 18 Ω resistor. The 
equivalent circuit is shown in Fig. 7.40. We deter-
mine the initial current in the inductor by solving 
for i (0 )L

−  in the circuit shown in Fig. 7.40. After 
making several source transformations, we find 
i (0 )L

−  to be 6 A, so I 6 A.0 =

Step  3: Calculate the time constant L R .τ =  
For t0 35 ms,≤ ≤  switch 1 is open (switch 2 
is closed), which disconnects the 60 V voltage 
source and the 4 Ω and 12 Ω resistors from the 

circuit. The inductor is no longer behaving as a 
short circuit (because the dc source is no longer in  
the circuit), so the 18 Ω resistor is no longer short- 
circuited. The equivalent circuit is shown in 
Fig.  7.41. Note that the equivalent resistance 
across the terminals of the inductor is the parallel 
combination of 9 Ω and 18  ,Ω  or 6  .Ω  Therefore,

0.15
6

25 ms.τ = =

Step 4: Calculate the final value for the inductor 
current. For t0 35 ms≤ ≤  there is no source in 
the circuit, so during this time period we have a 
natural-response problem and the final value of 
the inductor current is zero. Thus, I 0.f =

Step 5: Write the equation for the inductor cur-
rent for t0 35 ms≤ ≤  by substituting the values  
for I0, ,τ  and If into Eq. 7 .23 to give

i t I I I e e( ) ( ) 0 (6 0)L
t t

f 0 f
0.025= + − = + −τ− −

= ≤ ≤−e t6 A,  0 35 ms.t40

b) Now we repeat Steps 2–5 for t 35 ms.≥

Step 2: Calculate the initial value of the inductor 
current for this time segment. When t 35 ms,=  
the value of the inductor current is determined 
from the inductor current equation for the pre-
vious time segment because the inductor current 
must be continuous for all time. So,

i e e(35 10 ) 6 6 1.48 A.L
3 40(35 10 ) 1.43× = = =− − × −−

Thus, for t 35 ms,≥  I 1.48 A.0 =

Step  3: Calculate the time constant L R .τ =  
For t 35 ms,≥  both switches are open, and the 
circuit reduces to the one shown in Fig.  7 .42.  

18 V60 V

t 5 0

6 V12 V

1 2

4 V
t 5 35 ms

3 V

150 mH
1

2

iL
vL

1

2

Figure 7.39 ▲ The circuit for Example 7.11.

60 V 6 V12 V

4 V 3 V

1

2
iL(02)

Figure 7.40 ▲ The circuit shown in Fig. 7.39, for <t .0

18 V6 V

1
3 V

150 mH

2

iL

iL(01) 5 6 A

vL

1

2

Figure 7.41 ▲ The circuit shown in Fig. 7.39, for ≤ ≤t .0 35 ms
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248 Response of First-Order RL and RC Circuits

Note that the equivalent resistance across the ter-
minals of the inductor is the series combination of 
3 Ω and 6 Ω or 9  .Ω  Therefore,

0.15
9

16.67 ms.τ = =

Step  4: Calculate the final value for the induc-
tor current. For t 35 ms≥  there is no source in 
the circuit, so during this time period we have a 
 natural-response problem, and the final value of 
the inductor current is zero. Thus, I 0.f =

Step 5: Write the equation for inductor current 
when t 35 ms≥  by substituting the values for I0, 

,τ  and If into Eq. 7.23 to give

= + −

= + −

τ− −

− −

i t I I I e

e

( ) ( )

0 (1.48 0)
L

t t

t

f 0 f
( )

( 0.035) 0.01667

0

e t1.48 A,  35 ms.t60( 0.035)= ≥− −

Note that when switch 2 is opened, the time con-
stant changes and the exponential function is 
shifted in time by 35 ms.

Step 6: Use the inductor current to solve the re-
maining parts of this problem.

c)  The 18 Ω resistor is in the circuit only during the 
first 35 ms of the switching sequence. During this 
interval, the voltage across the resistor is

d
dt

e0.15  (6 )L
t40= −v

= − < <−e t36 V, 0 35 ms.t40

The power dissipated in the 18 Ω resistor is

p e t
18

72 W, 0 35 ms.L t
2

80v
= = < <−

Hence, the energy dissipated is

e dt72 t80
0

0.035
w ∫= −

=
−

−e72
80

  t80

0

0.035

e0.9(1 ) 845.27 mJ.2.8= − =−

The initial energy stored in the 150 mH inductor is

1
2

(0.15)(6) 2.7 J 2700 mJ.0
2w = = =

Therefore, (845.27 2700)   100,×  or 31.31% of 
the initial energy stored in the 150 mH inductor 
is dissipated in the 18 Ω resistor.

d) For t0 35 ms,< <  the voltage across the 3 Ω 
resistor is

9
(3)L

3 ( )=Ωv v

= 1
3 Lv

e12 V.t40= − −

Therefore, the energy dissipated in the 3 Ω  
resistor in the first 35 ms is

e
dt

( 12 )
3

 
t

3

40 2

0

0.035
w ∫=

−
Ω

−

e0.6(1 )2.8= − −

563.51 mJ.=

For t 35 ms,>  the current in the 3 Ω resistor is

i i e e(6 ) A.L
t

3
1.4 60( 0.035)= =Ω

− − −

Hence, the energy dissipated in the 3 Ω resistor 
for t 35 ms>  is

i dt33 3
2

0.035
w ∫=Ω Ω

∞

e e dt3(6 ) ( )t1.4 2 60( 0.035) 2
0.035∫= − − −
∞

e e108
120

t
2.8

120( 0.035)

0.035
= ×

−
−

− − ∞

e108
120

  54.73 mJ.2.8= =−

The total energy dissipated in the 3 Ω resistor is

(total) 563.51 54.733w = +Ω

618.24 mJ.=

The percentage of the initial energy stored is

618.24
2700

  100 22.90%.× =

e) Because the 6 Ω resistor is in series with the 3 Ω 
resistor, the energy dissipated and the percentage 

3 V

6 V 150 mH

iL
vL

1

2
iL(0.035) > 1.48A

Figure 7.42 ▲ The circuit shown in Fig. 7.39, for ≥t .35 ms
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of the initial energy stored will be twice that of the 
3 Ω resistor:

(total) 1236.48 mJ,6w =Ω

and the percentage of the initial energy stored is 
45.80%. We check these calculations by observing that

1236.48 618.24  845.27 2699.99 mJ+ + =

and

31.31 22.90 45.80 100.01%.+ + =

The small discrepancies in the summations are 
the result of roundoff errors.

EXAMPLE 7.12   Analyzing an RC Circuit That Has Sequential Switching

The uncharged capacitor in the circuit shown in 
Fig.  7.43 is initially switched to terminal a of the 
three-position switch. At t 0,=  the switch is 
moved to position b, where it remains for 15 ms. 
After the 15 ms delay, the switch is moved to posi-
tion c, where it remains indefinitely.

a) Derive the numerical expression for the voltage 
across the capacitor.

b) Plot the capacitor voltage versus time.

c) When will the voltage on the capacitor equal  
200 V?

Solution
We use Analysis Method 7.5 to solve this problem.

a) Step   1: Identify the capacitor voltage, v, as the 
variable of interest, because this is an RC circuit.

Step   2: Calculate the initial value of v. For 
t 0< , the capacitor is initially uncharged, so 
V (0) 0 V0 = =v .

Step   3: Calculate the time constant RCτ = . 
When t0 15 ms≤ ≤ , the equivalent resistance 
attached to the capacitor has the value 100 kΩ.  
Therefore,

(100 10 )(0.1 10 ) 10 ms.3 6τ = × × =−

Step  4: Calculate the final value for the capac-
itor voltage, Vf. If the switch were to remain in 
 position b for a long time, the capacitor would 
eventually behave like an open circuit in the pres-
ence of the 400 V source. Because of the open 

circuit, there would be no current in the Ω100 k   
resistor, so V 400 Vf = .

Step 5: Write the equation for capacitor voltage by 
substituting the values for V0, τ , and Vf into Eq. 7 .23 
to give

t V V V e e( ) ( ) 400 (0 400)t t
f 0 f

0.01= + − = + −τ− −v

= − ≤ ≤−e t400 400 V, 0 15 ms.t100

Now we repeat Steps 2–5 for the next time interval, 
t 15 ms≥ .

Step 2: Calculate the initial value of v.  At t 15 ms= ,  
the capacitor voltage is determined by the equation 
we derived for the previous time interval. So,

= − = −
=

− −e e(0.015) 400 400 400 400  

310.75 V.

100(0.015) 1.5v

Thus, V (0.015) 310.75 V0 = =v .

Step 3: Calculate the time constant RCτ = . When 
t 15 ms≥ , the equivalent resistance attached to the 
capacitor has the value 50 kΩ. Therefore,

(50 10 )(0.1 10 ) 5 ms.3 6τ = × × =−

Step 4: Calculate the final value for the capacitor 
voltage, Vf. For t 15 ms≥ , the switch remains in 
position c for a long time, and there is no source in 
the circuit. During this time interval, the circuit ex-
hibits a natural response, so V 0f = .

Step 5: Write the equation for capacitor voltage by 
substituting the values for V0, τ , and Vf into Eq. 7.23 
to give

t V V V e

e

( ) ( )

0 (310.75 0)

t t

t

f 0 f
( )

( 0.015) 0.005

0v = + −

= + −

τ− −

− −

= ≥− −e t310.75 V, 15 ms.t200( 0.015)

Step  6: Use the capacitor voltage to solve the re-
maining parts of this problem.

b) Figure 7.44 shows the plot of v versus t.

400 V
50 kV

100 kV

a

b

c
1

2

v(t) 0.1mF
1

2

Figure 7.43 ▲ The circuit for Example 7.12.
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250 Response of First-Order RL and RC Circuits

c) The plot in Fig.  7.44 reveals that the capacitor 
voltage will equal 200 V at two different times: 
once in the interval between 0 and 15 ms and 

once after 15 ms. We find the first time by solving 
the expression

e200 400 400 ,t100 1= − −

which yields t 6.93 ms.1 =  We find the second 
time by solving the expression

e200 310.75 .t200( 0.015)2= − −

In this case, t 17.20 ms.2 =

Objective 3—Know how to analyze circuits with sequential switching

7.9  In the circuit shown, switch 1 has been closed, 
and switch 2 has been open for a long time. At 
t 0,=  switch 1 is opened. Then 20 ms later, 
switch 2 is closed. Find
a) ≤ ≤t t( ) for  0 0.02 sCv ,
b) ≥t t( ) for  0.02 sCv ,
c) the total energy dissipated in the 20 kΩ  

resistor, and
d) the total energy dissipated in the 80 kΩ  

resistor.

Answer: a) e40  V;t100−

b) e5.4134  V;t125( 0.02)− −

c) 398.5 μJ;
d) 1.5 μJ.

7.10  In the circuit shown, switch A has been open 
and switch B has been closed for a long time. 
At t 0= , switch A closes. Five seconds after 
switch A closes, switch B opens. Find the induc-
tor current iL(t)
a) for t0 5 s≤ ≤ ;
b) for t 5 s.≥

Answer: a)  2 A;
b) − −e2 At0.2( 5) .

ASSESSMENT PROBLEMS

SELF-CHECK: Also try Chapter Problems 7.72 and 7.80.

7.6 Unbounded Response
A circuit response may grow, rather than decay, exponentially with time. 
This type of response, called an unbounded response, is possible if the cir-
cuit contains dependent sources. In circuits with an unbounded response, 
the Thévenin equivalent resistance with respect to the terminals of either 
an inductor or a capacitor is negative. This negative resistance generates 
a negative time constant, and the resulting currents and voltages increase 
without limit. In an actual circuit, a component eventually breaks down or 
saturates, halting the unbounded response.

We cannot use Analysis Method 7.5 to analyze a circuit with an 
unbounded response because calculating a final value of voltage or current 

50

100

200

300
v 5 400 2 400e2100t

v 5 310.75e2200(t 2 0.015)

v (V)

10 15 20 25
t (ms)

Figure 7.44 ▲ The capacitor voltage for Example 7.12.

2 1

80 kV 20 kV 60 kV

15 kV

0.5 mF

t = 20 ms t = 0

1

2

vC(t) 80 V 1

2
10 V 1 V 5 HA

B

t = 5 s iL(t)

t = 0

1

2

5 V
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is not possible. Instead, we must derive the differential equation describ-
ing the circuit’s response and then solve it using the separation of variables 
technique. Example 7.13 analyzes a circuit with an unbounded response to 
illustrate this technique.

As an engineer, you should be aware that interconnected circuit ele-
ments may create unbounded responses. If such interconnections are 
unintended, the resulting circuit may experience unexpected, and poten-
tially dangerous, component failures.

a) When the switch is closed in the circuit shown 
in Fig. 7.45, the voltage on the capacitor is 10 V. 
Find the expression for vo for t 0.≥

b) Assume that the capacitor short-circuits when 
its terminal voltage reaches 150 V. How many 
milliseconds elapse before the capacitor short-  
circuits?

Solution

a) We need to write the differential equation that 
describes the capacitor voltage, vo. To make this 
task easier, let’s simplify the circuit attached to 
the capacitor by replacing it with its Thévenin 
equivalent. This subcircuit is shown in Fig. 7.46, 
and as you can see, it does not contain an inde-
pendent source. Thus, the Thévenin equivalent 
consists of a single resistor. To find the Thévenin 
equivalent resistance for the circuit in Fig. 7.46, 
we use the test-source method (see Example 4.18,  
p. 124), where vT is the test voltage and iT is the 
test current. Writing a KCL equation at the top 
node, we get

( )=
×

−
×

+
×

i
10 10

7
20 10 20 10

 T
T T T

3 3 3

v v v

Solving for the ratio iT Tv  yields the Thévenin 
resistance:

R
i

5 k .T

T
Th

v
= = − Ω

EXAMPLE 7.13 Finding the Unbounded Response in an RC Circuit

We replace the two resistors and the dependent 
source in Fig.  7.45 with RTh to get the circuit 
shown in Fig. 7.47. For t 0,≥  write a KCL equa-
tion at the top node to construct the differential 
equation describing this circuit:

d
dt

(5 10 )
5000

0o o6× +
−

=− v v

Dividing by the coefficient of the first derivative 
yields

d
dt

40 0.o
o− =

v v

This equation has the same form as Eq. 7.1, so we 
can find vo(t) using the same separation of vari-
ables technique applied to Eq. 7.1 (see p.  223). 
Thus, the capacitor voltage is

= ≥t e t( ) 10 V, 0.o
t40v

b) 150 Vo =v  when e 15t40 = .  
Therefore, =t40 ln 15 , and =t 67.70 ms .

SELF-CHECK: Assess your understanding of this material by trying Chapter Problems 7.86 and 7.89.

t 5 0
10 kV 20 kV7iDvo iD10 V 5 mF

1

2

1

2

Figure 7.45 ▲ The circuit for Example 7.13.

10 kV 20 kV7iD iD

iT

vT

1

2

Figure 7.46 ▲ The test-source method used to find RTh.

25 kV10 V
t 5 0

vo5 mF
1

2

1

2

 Figure 7.47 ▲ A simplification of the circuit shown in Fig. 7.45.
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7.7 The Integrating Amplifier
We are now ready to analyze an integrating-amplifier circuit, shown in 
Fig. 7.48, which is based on the op amp presented in Chapter 5. This cir-
cuit generates an output voltage proportional to the integral of the input 
voltage. In Fig. 7.48, we added the branch currents if and is, along with the 
node voltages vn and vp, to aid our analysis. We assume that the op amp is 
ideal. Write a KCL equation at the inverting input node, and remember 
that the current into the ideal op amp at its input terminals is zero, to get

i i 0.f s+ =

Also, the ideal op amp constrains the voltages at its two input terminals 
to give

.n p=v v

In the integrating amplifier circuit, 0p =v , so using Ohm’s law

i
R

,s
s

s

=
v

and using the relationship between voltage and current for a capacitor,

i C
d
dt

.f f
ov

=

Substituting the expressions for is and if into the KCL equation and 
solving for d dtov , we get

d
dt R C

1 .o

s f
s

v
v= −

Multiplying both sides of this equation by a differential time dt and then 
integrating from t0 to t generates the equation

 v v v∫= − +t
R C

dy t( ) 1 ( ). o
s f

s o
t

t

0
0

 (7.24)

In Eq. 7.24, t0 represents the instant in time when we begin the integra-
tion. Thus, t( )o 0v  is the value of the output voltage at that time. Also, 
because 0,n p= =v v  t( )o 0v  is identical to the initial voltage on the 
feedback capacitor Cf.

 Equation 7.24 states that the output voltage of an integrating ampli-
fier equals the initial value of the voltage on the capacitor plus an inverted 
(minus sign), scaled R C(1 )s f  replica of the integral of the input voltage.  
If no energy is stored in the capacitor when integration commences,  
Eq. 7.24 reduces to

t
R C

dy( ) 1   .o
s f

s
t

t

0

v v∫= −

For example, assume that the input voltage is the rectangular voltage 
pulse shown in Fig. 7.49. Assume also that the initial value of vo(t) is zero 
at the instant vs steps from 0 to Vm. Using Eq. 7.24, we see that

R C
V t t t1   0, 0 .o

s f
m 1= − + ≤ ≤v

1

2

2

1

if

Cf

Rs VCC

2VCC
vs

vovp
vn

is 1

2

1

2

1

2

Figure 7.48 ▲ An integrating amplifier.

t1 2t1 t

Vm

vs

2Vm

0

Figure 7.49 ▲ An input voltage signal.
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When t lies between t1 and 2t1,

R C
V dy

R C
V t1 ( ) 1  o

s f
m

s f
m

t

t

1
1

v ∫= − − −

V
R C

t
V

R C
t t t t

2
, 2 .m

s f

m

s f
1 1 1= − ≤ ≤

Figure 7.50 shows a plot of vo(t) versus t. Clearly, the output voltage is 
an inverted, scaled replica of the integral of the input voltage.

The output voltage is proportional to the integral of the input voltage 
only if the op amp operates within its linear range—that is, if it doesn’t 
saturate. Examples 7.14 and 7.15 further illustrate the analysis of the inte-
grating amplifier.

EXAMPLE 7.14 Analyzing an Integrating Amplifier

Assume that the numerical values for the voltage 
shown in Fig. 7.49 are V 50 mVm =  and t 1 s.1 =  
We apply this voltage to the  integrating-amplifier  
circuit shown in Fig. 7.48. The circuit parameters of 
the amplifier are R 100 ks = Ω, C 0.1  Ff μ= , and  
V 6 VCC = . The capacitor’s initial voltage is zero.

a) Calculate vo(t).

b) Plot vo(t) versus t.

Solution

a) For t0 1 s,≤ ≤

t1
(100 10 )(0.1 10 )

 50 10 0o 3 6
3= −

× ×
× +

−
−v

t t5  V, 0 1 s.= − ≤ ≤

For t1 2 s,≤ ≤

t(5 10) V.o = −v

b) Figure 7.51 shows a plot of vo(t) versus t.

EXAMPLE 7.15 Analyzing an Integrating Amplifier That Has Sequential Switching

At the instant the switch makes contact with ter-
minal a in the circuit shown in Fig. 7.52, the volt-
age on the 0.1  Fμ  capacitor is 5 V. The switch 

remains at terminal a for 9 ms and then 
moves instantaneously to terminal b. How 
many milliseconds after making contact 
with terminal b does the op  amp saturate?

Solution
The expression for the output voltage 
during the time the switch is at terminal a is

dy1
(100 10 )(0.1 10 )

  ( 10) ( 5)o

t

3 6 0
v ∫= −

× ×
− + −

−

t(1000 5) V.= −

t1 t2t10

vo

Vmt1
RsCf

2

Figure 7.50 ▲ The output voltage of an integrating 
amplifier.

10

25

2 t (s)

vo (V)

Figure 7.51 ▲ The output voltage for Example 7.14.

1

2

1

2

2

1

100 kV 6 V

26 V
8 V

10 V

a

5 V

b

0.1 mF

21

1

2

vo

t 5 9 ms

 Figure 7.52 ▲ The circuit for Example 7.15.
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254 Response of First-Order RL and RC Circuits

Thus, 9 ms after the switch makes contact with termi-
nal a, the output voltage is × − =−1000(9 10 ) 5 4 V3 .  
Note that the op amp does not saturate during its 
first 9 ms of operation.

The expression for the output voltage after the 
switch moves to terminal b is

dy1
(100 10 )(0.1 10 )

8 4 o

t

3 6 9 10 3
v ∫= −

× ×
+

− × −

t800( 9 10 ) 43= − − × +−

t(11.2 800 ) V.= −

When the switch is at terminal b, the voltage is 
decreasing, and the op amp eventually saturates at 

6 V.−  Therefore, we set the expression for vo equal 
to 6 V−  to obtain the saturation time ts:

t11.2 800 6,s− = −

or

t 21.5 ms.s =

Thus, the integrating amplifier saturates 21.5 ms after 
making contact with terminal b.

25 V

225 V
14 V

1

2 45 V
2

1

2

1

33 kV 47 kV

20 kV

vo

1

2

t 5 0

80 kV

56 V2 1

2.5 mF

10 V

210 V
4 V

1

2

2

1

R

vo

1

2

t 5 0

5.1 kV

500 nF

Objective 4—Be able to analyze op amp circuits containing resistors and a single capacitor

7.11  At the instant the switch in the circuit shown is 
closed, the voltage across the capacitor is 56 V. 
Assume an ideal op amp. How many millisec-
onds after the switch is closed will the output 
voltage vo equal zero?

Answer: 80 ms.

7.12  a)  Suppose the energy stored in the capacitor 
in the circuit shown is zero at the instant the 
switch is closed. The ideal op amp reaches 
saturation in 15 ms. What is the numerical 
value of R?

b) Now suppose that at the instant the switch 
is closed in the circuit shown, the voltage 
across the capacitor is 6 V, positive on the 
right. If the ideal op amp saturates in 40 ms, 
what is the numerical value of R?

Answer:  a)  12 kΩ;
  b)  20 kΩ.

ASSESSMENT PROBLEMS

SELF-CHECK: Also try Chapter Problems 7.90 and 7.94.

From the examples, we see that the integrating amplifier can perform the 
integration function very well but only within specified limits that avoid satu-
rating the op amp. The op amp saturates because charge accumulates on the 
feedback capacitor. We can prevent saturation by placing a resistor in parallel 
with the feedback capacitor. We examine such a circuit in Chapter 8.

Note that we can convert the integrating amplifier to a differentiating 
amplifier by interchanging the input resistance Rs and the feedback capac-
itor Cf. Then

R C
d
dt

.o s f
sv

v
= −

We leave the derivation of this expression as an exercise for you. The dif-
ferentiating amplifier is seldom used because in practice it is a source of 
 unwanted or noisy signals.

Finally, we can use an inductor instead of a capacitor to create both 
integrating- and differentiating- amplifier circuits. Since it is easier to fab-
ricate capacitors for integrated-circuit devices, inductors are rarely used in 
integrating amplifiers.
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Controller

R

Vs C vC

2

1

2

1

Figure 7.53 ▲ An artificial pacemaker circuit.

Vmax

etc.

tc t

vC(t)

Figure 7.54 ▲ Capacitor voltage versus time for the 
circuit in Fig. 7.53.

R

Vs C

1

2

vC

1

2

Figure 7.55 ▲ The artificial pacemaker circuit at 
=t 0, when the capacitor is charging.

Practical Perspective
Artificial Pacemaker
The RC circuit shown in Fig. 7.53 can be used in an artificial pacemaker 
to establish a normal heart rhythm by generating periodic electrical 
impulses. The box labeled “controller” behaves as an open circuit until 
the voltage drop across the capacitor reaches a preset limit. Once that 
limit is reached, the capacitor discharges its stored energy in the form 
of an electrical impulse to the heart, starts to recharge, and then the 
process repeats.

Before we develop the analytical expressions that describe the cir-
cuit’s behavior, let’s get a feel for how the circuit works. First, when the 
controller behaves like an open circuit, the dc voltage source will charge 
the capacitor via the resistor R, toward a value of Vs volts. But once 
the capacitor voltage reaches Vmax, the controller behaves like a short 
circuit, enabling the capacitor to discharge. Once the capacitor dis-
charge is complete, the controller again acts like an open circuit and the 
capacitor starts to recharge. This cycle of charging and discharging the 
capacitor establishes the desired heart rhythm, as shown in Fig. 7.54.

In drawing Fig. 7.54, we have chosen =t 0 at the instant the capac-
itor starts to charge. This plot also assumes that the circuit has reached 
the repetitive stage of its operation and that the time to discharge the 
capacitor is negligible when compared to the recharge time. We need 
an equation for vC(t) as a function of Vs, R, and C to design the artificial 
pacemaker circuit.

To begin the analysis, we assume that the circuit, shown in Fig. 7.55, 
has been in operation for a long time. Let =t 0 at the instant when the 
capacitor has completely discharged and the controller is acting as an 
open circuit. From the circuit we find the initial and final values of the 
capacitor voltage and the circuit’s time constant:

= =V (0) 0;C0 v

τ= ∞ = =V V RC( ) ;  and  .C sf v

To find the capacitor voltage while the capacitor is charging, substitute 
the initial and final values of the capacitor voltage and the circuit’s time 
constant into Eq. 7.23 and simplify to get

= − −t V e( )  (1 ).C s
t RCv

Suppose the controller is programmed to generate an electrical 
pulse that stimulates the heart when = =V V0.75C s maxv . Given val-
ues of R and C, we can determine the resulting heart rate, H, in beats 
per minute as follows:

=
−

H
RC

60
 ln 0.25

  [beats per minute].

A more realistic design problem requires you to calculate the value 
of resistance, R, given Vmax as a percentage of Vs , C, and the desired 
heart rate in beats per minute. Developing an equation for resistance, R, 
is the focus of Problem 7.106.

SELF-CHECK: Assess your understanding of the Practical Perspective 
by solving Chapter Problems 7.104–7.107.
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1

2
120 V 30 V 2 V8 mH

6 V
t 5 0

i

3 V

Figure P7.1

Summary

• A first-order circuit may be reduced to a Thévenin (or 
Norton) equivalent connected to either a single equiva-
lent inductor or capacitor. (See page 220.)

• The natural response is the currents and voltages that 
exist when stored energy is released to a circuit that 
contains no independent sources. (See page 220.)

• The time constant of an RL circuit equals the equiva-
lent inductance divided by the Thévenin resistance as 
viewed from the terminals of the equivalent inductor. 
(See page 223.)

• The time constant of an RC circuit equals the product of 
the equivalent capacitance and the Thévenin resistance 
as viewed from the terminals of the equivalent capaci-
tor. (See page 229.)

• The step response is the currents and voltages that result 
from abrupt changes in dc sources connected to a circuit. 
Stored energy may or may not be present at the time the 
abrupt changes take place. (See page 233.)

• Analysis Method 7.5 can be used to find the solution for 
the natural and step responses of both RL and RC circuits:

Step  1: Identify the variable x(t), which is the quantity 
that is required to be continuous for all time. This is the 
inductor current in RL circuits and the capacitor voltage 
in RC circuits.

Step 2: Calculate the initial value X0, by analyzing the 
circuit to find x(t) for t 0< .

Step  3: Calculate the time constant, τ , for the circuit 
by analyzing the circuit for t 0≥  to find the equivalent 
resistance attached to the inductor or capacitor. For RL 
circuits, L Rτ = , and for RC circuits, RCτ = .

Step  4: Calculate the final value Xf, by analyzing the 
circuit to find x(t) as t → ∞ . If the circuit exhibits a 
natural response, X 0f = , so no calculation is needed.

 Step 5: Write the equation for x(t) by substituting the  
initial value X0, the time constant τ, and the final value Xf, 
into the expression x t X X X e( ) ( ) t

f 0 f= + − τ− , t 0≥ .

Step 6: Use x(t) to find any other quantities of interest 
in the circuit. (See page 242.)

• Sequential switching in first-order circuits is analyzed 
by dividing the analysis into time intervals corres-
ponding to specific switch positions. Initial values for 
a particular interval are determined from the solution 
corresponding to the immediately preceding interval. 
(See page 246.)

• An unbounded response occurs when the Thévenin resis-
tance is negative, which is possible when the first- order 
circuit contains dependent sources. (See page 250.)

• An integrating amplifier consists of an ideal op amp, a 
capacitor in the negative feedback branch, and a resistor 
in series with the signal source. It outputs the inverted, 
scaled integral of the signal source, within specified lim-
its that avoid saturating the op amp. (See page 252.)

Problems

Section 7.1

 7.1  The switch in the circuit of Fig. P 7.1 has been closed 
for a long time and opens at t 0= .

a) Calculate the initial value of i.

b) Calculate the initial energy stored in the 
inductor.

c) What is the time constant of the circuit for t 0> ?

d) What is the numerical expression for i(t) for 
t 0≥ ?

e) What percentage of the initial energy stored has 
been dissipated in the 2 Ω resistor 5 ms after the 
switch opens?

 7.2  The switch in the circuit in Fig. P 7.2 has been closed 
for a long time before opening at t 0= .

a) Find i (0 )1
−  and i (0 )2

− .

b) Find i (0 )1
+  and i (0 )2

+ .

c) Find i1(t) for t 0≥ .

d) Find i2(t) for t 0≥ + .

e) Explain why i i(0 ) (0 )2 2≠− + .

PSPICE
MULTISIM
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1

2
9 V

t 5 0

15 kVi2 30 mH

15 kV 15 kV

i1

Figure P7.2

50 V

25 V 300 V 50 mH

io
iL

t = 0 

200 V100 V

1

2

vL
1

2

Figure P7.3

 7.6  At =t 0, the switch in the circuit of Fig. P 7.6 moves 
instantaneously from position a to position  b. 
Calculate vo(t) for t 0≥ + .

PSPICE
MULTISIM

 7.3  The switch shown in Fig. P 7.3 has been open for a 
long time before closing at t 0= .

a) Find i (0 )o
− , i (0 )L

− , and (0 )L
−v .

b) Find i (0 )o
+ , i (0 )L

+ , and (0 )L
+v .

c) Find i ( )o ∞ , i ( )L ∞ , and ( )L ∞v .

d) Write the expression for iL(t) for t 0≥ .

e)  Write the expression for io(t) for t 0≥ + .

f) Write the expression for vL(t) for t 0≥ + .

 7.4  The switch in the circuit in Fig. P 7.4 has been closed 
for a long time. At t 0=  it is opened.

a) Calculate vo(t) for t 0≥ + .

b) Assume the switch in Fig. P 7.4 has been open for 
one time constant. At that instant, what percent-
age of the total energy stored in the 0.2 H induc-
tor has been dissipated by the 20 Ω resistor?

PSPICE
MULTISIM

 7.5  The switch in the circuit in Fig. P 7.5 has been open 
for a long time. At t 0=  the switch is closed.

a) Determine io(0+) and i ( )o ∞ .

b) Determine io(t) for t 0≥ .

c) How many milliseconds after the switch has 
been closed will io equal 3.8 A?

PSPICE
MULTISIM

 7.7  For the circuit of Fig. P7.6, what percentage of the 
initial energy stored in the inductor is eventually 
dissipated in the 4 Ω resistor?

 7.8  In the circuit in Fig. P7.8, the switch has been closed 
for a long time before opening at t 0= .

a) Find the value of L so that vo(t) equals 
+0.25 (0 )ov  when t 5 ms= .

b) Find the percentage of the stored energy that 
has been dissipated in the 50 Ω resistor when 
t 5 ms= .

 7.9  The switch in the circuit seen in Fig. P 7.9 has been 
in position 1 for a long time. At t 0= , the switch 
moves instantaneously to position 2. Find the value 
of R so that 50% of the initial energy stored in the 
20 mH inductor is dissipated in R in 10  sμ .

 7.10  In the circuit in Fig. P 7.9, let Ig represent the dc 
current source, σ  represent the fraction of initial 
energy stored in the inductor that is dissipated in to 
seconds, and L represent the inductance.

a) Show that

σ
=

−
R

L
t

ln[1 (1 )]
2

.
o

b) Test the expression derived in (a) by using it to 
find the value of R in Problem 7.9.

15 V

80 V

50 V
t = 0

50 V 60 V 20 V0.2 H

3 V

2 V

1

2

1

2

vo

Figure P7.4

16 V 12 V

20 mH80 V

io
t = 0

4 V 8 V

1

2

Figure P7.5

6.4 A
t 5 0

a

b

vo 10 V 0.32 H 4 V

6 V
1

2

Figure P7.6

1 kV 50 V

t 5 0

5 kV

60 mA L

1

2

vo

Figure P7.8

5 V R

t 5 0

20 mH

21

10 A

Figure P7.9
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258 Response of First-Order RL and RC Circuits

 7.14  The switch in Fig. P 7.14 has been closed for a long 
time before opening at t 0= . Find

a) ≥i t t( ), 0;L

b) ≥ +t t( ), 0 ;Lv
c) i t t( ), 0 .≥∆

+

L Rv

1

2

i

Figure P7.12

200 mH

30 kV120 mA

t 5 0

20 kV40 kV

t 5 0

60 kV

Figure P7.13

1

2
54 V 9 V 100 V 200 V

t 5 0

iL iD

200 mH

3 V 4.5 V
1

2

vL

1 2

50 iD

Figure P7.14

 7.11  a)  Use component values from Appendix H to  
create a first-order RL circuit (see Fig. 7.4) with 
a time constant of 0.2 ms. Use a single inductor 
and a network of resistors, if necessary. Draw 
your circuit.

b)  Suppose the inductor you chose in part (a) has 
an initial current of 40 mA. Write an expression 
for the current through the inductor for t 0≥ .

c) Using your result from part (b), calculate the 
time at which one fourth of the initial energy 
stored in the inductor has been dissipated by the 
resistor.

 7.12  In the circuit in Fig. P 7.12, the voltage and current 
expressions are

e t100  V, 0 ;t80= ≥− +v

i e t4  A, 0.t80= ≥−

Find

a) R;

b) τ  (in milliseconds);

c) L;

d) the initial energy stored in the inductor;

e) the time (in milliseconds) it takes to dissipate 
80% of the initial stored energy.

 7.13  The two switches in the circuit seen in Fig. P 7.13 are 
synchronized. The switches have been closed for a 
long time before opening at t 0= .

a) How many microseconds after the switches 
are open is the energy dissipated in the 60 kΩ 
resistor 25% of the initial energy stored in the 
200 mH inductor?

b) At the time calculated in (a), what percentage of 
the total energy stored in the inductor has been 
dissipated?

 7.15  What percentage of the initial energy stored in the 
inductor in the circuit in Fig. P 7.14 is dissipated by 
the current-controlled voltage source?

 7.16  The switch in the circuit in Fig. P 7.16 has been 
closed for a long time before opening at t 0= . Find 

t( )ov  for t 0≥ + .
PSPICE

MULTISIM

25 A 50 mH5vo

t = 0

10 V

1

2

vo

Figure P7.16

 7.17  The two switches shown in the circuit in Fig. P 7.17 
operate simultaneously. Prior to t 0=  each switch 
has been in its indicated position for a long time. 
At t 0=  the two switches move instantaneously to 
their new positions. Find

a) ≥ +t t( ),   0 ;ov

b) i t t( ),   0.o ≥

PSPICE
MULTISIM

5 mA

2.5 kV

1 kV

t 5 0

t 5 0

80 mH io 48 mH

20 mH

1

2

vo

Figure P7.17

 7.18  For the circuit seen in Fig. P 7.17, find

a) the total energy dissipated in the 2.5 kΩ resistor;

b) the energy trapped in the ideal inductors.
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 7.19  The 220 V, Ω1   source in the circuit in Fig. P 7.19 is 
inadvertently short-circuited at its terminals a, b. 
At the time the fault occurs, the circuit has been in 
operation for a long time.

a) What is the initial value of the current iab in the 
short-circuit connection between terminals a, b?

b) What is the final value of the current iab?

c) How many microseconds after the short circuit 
has occurred is the current in the short equal to 
210 A?

PSPICE
MULTISIM

1

2
220 V

12 V

2 mH

60 V

15 mH

1 V a

b

Figure P7.19

 7.20  In the circuit shown in Fig. P 7.20, the switch has 
been in position a for a long time. At t 0= , it 
moves instantaneously from a to b.

a) Find vo(t) for ≥ +t 0 .

b) What is the total energy delivered to the 1 kΩ 
 resistor?

c) How many time constants does it take to deliver 
95% of the energy found in (b)?

PSPICE
MULTISIM

2.5 mA 16 kV 1 kV

t 5 0

120 mH
60 mH

4 kV ba

1

2

vo

Figure P7.20

Section 7.2

 7.21  The switch in the circuit in Fig. P 7.21 is closed at 
t 0=  after being open for a long time.

a) Find i (0 )1
−  and i (0 )2

− .

b) Find i (0 )1
+  and i (0 )2

+ .

c) Explain why i i(0 ) (0 )1 1=− + .

d) Explain why i i(0 ) (0 )2 2≠− + .

e) Find i1(t) for t 0≥ .

f) Find i2(t) for t 0≥ + .

PSPICE
MULTISIM

t 5 0

20 kV 5 kV 10 kV

100 mA 0.4 mF

10 V
1

2

i2 i1
5 kV

Figure P7.21

80 kV 50 kV

t 5 020 kV

7.5 mA

1

2

v(t)0.4 mF

Figure P7.22

 7.22  The switch in the circuit of Fig. P 7.22 has been 
closed for a long time and is opened at t 0= . Find

a) the initial value of v(t),

b) the time constant of the circuit for t 0> ,

c) the numerical expression for v(t) after the switch 
is opened,

d) the initial energy stored in the capacitor, and

e) the length of time required to dissipate 75% of 
the initially stored energy.

  7.23  The switch in the circuit of Fig. P 7.23 has been 
closed for a long time. At t 0=  the switch opens 
and stays open. Find vo(t) for t 0≥ .

60 V 5 nF 25 kV

75 kV

vo

1

2

1

2

t 5 0

Figure P7.23

40 kVvo(t)

t 5 0

1

2

15 V

15 kV 20 kV

1

2
1 mF

5 mF

Figure P7.24

 7.24  The switch in the circuit of Fig. P 7.24 has been 
closed for a long time before being opened at t 0= .  
Find vo(t) for t 0≥ .
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 7.25  What percentage of the initial energy stored in the 
circuit of Fig. P 7.24 has been dissipated after the 
switch has been open for 60 ms?

 7.26  a)  Use component values from  Appendix H to cre-
ate a first-order RC circuit (see Fig. 7.13) with a 
time constant of 4 ms. Use a single capacitor and 
a network of resistors, if necessary. Draw your 
circuit.

b) Suppose the capacitor you chose in part (a) has 
an initial voltage drop of 120 V. Write an expres-
sion for the voltage drop across the capacitor for 
t 0.≥

c) Using you result from part (b), calculate the 
time at which the voltage drop across the capac-
itor has reached 30 V.

 7.27  In the circuit shown in Fig. P 7.27, both switches 
operate together; that is, they either open or close at 
the same time. The switches are closed a long time 
before opening at t 0= .

a) How many microjoules of energy have been 
dissipated in the 12 kΩ resistor 2 ms after the 
switches open?

b) How long does it take to dissipate 95% of the 
initially stored energy?

1
2

mF60 V

t 5 0t 5 0

12 kV

1.8 kV

68 kV
1
6

Figure P7.27

 7.28  In the circuit in Fig. P 7.28 the voltage and current 
expressions are

e t100  V, 0;t1000= ≥−v
i e t5  mA, 0 .t1000= ≥− +

Find

a) R;

b) C;

c) τ  (in milliseconds);

d) the initial energy stored in the capacitor.

e) How many microseconds does it take to dissipate 
80% of the initial energy stored in the capacitor?

1

2

v RC

i

Figure P7.28

 7.29  The switch in the circuit seen in Fig. P 7.29 has been 
in position x for a long time. At t 0,=  the switch 
moves instantaneously to position y.

a) Find α so that the time constant for t 0>  is 1 ms.

b) For the α found in (a), find .v∆

18 mA 10 kV

20 kV

avD

0.2 mF
5 kV

x y

t 5 0
1

2

vD

Figure P7.29

 7.30  a)   In Problem 7.29, how many microjoules of 
 energy are generated by the dependent current 
source during the time the capacitor discharges 
to 0 V?

b) Show that for t 0≥  the total energy stored and 
generated in the capacitive circuit equals the 
total energy dissipated.

 7.31  The switch in the circuit in Fig. P 7.31 has been in 
position 1 for a long time before moving to position 
2 at t 0= . Find io(t) for t 0≥ + .

PSPICE
MULTISIM

1

2

2 1

60 kV

2 3 104io

25 V

t 5 0

1

2

3.3 kV

io 25 nF

Figure P7.31

 7.32  After the circuit in Fig. P 7.32 has been in operation 
for a long time, a screwdriver is inadvertently con-
nected across the terminals a, b at t = 0. Assume the 
resistance of the screwdriver is negligible.

a) Find the current in the screwdriver at t 0= +  
and t .= ∞

b) Derive the expression for the current in the 
screwdriver for t 0 .≥ +

PSPICE
MULTISIM

25 mA 200 V

a

b

5 V

8 V

50 mF

2 mF

Figure P7.32

M07_NILS8436_12_SE_C07.indd   260 11/01/22   7:09 PM



 Problems 261

 7.33  At the time the switch is closed in the circuit in  
Fig. P 7.33, the voltage across the parallel capacitors is 
30 V and the voltage on the 200 nF capacitor is 10 V.

a) What percentage of the initial energy stored in 
the three capacitors is dissipated in the 25 kΩ 
resistor?

b) Repeat (a) for the 625 Ω and Ω15 k  resistors.

c) What percentage of the initial energy is trapped 
in the capacitors?

PSPICE
MULTISIM

40 nF

200 nF

15 kV

625 V

t 5 0
1

2
30 V

1 210 V

10 nF
25 kV

Figure P7.33

 7.34  The switch in the circuit in Fig. P 7.34 has been in 
position a for a long time and 0 V2 =v . At t 0= , 
the switch is thrown to position b. Calculate

a) i, v1, and v2 for t 0≥ + ,

b) the energy stored in the 2  Fμ  capacitor at t 0= ,  
and

c) the energy trapped in the circuit and the total 
energy dissipated in the 5 kΩ resistor if the 
switch remains in position b indefinitely.

a

75 V

b 5 kV

2 mF

t = 0
v1

v2

i
8 mF1

2

4.7 kV

1

2

1

2

Figure P7.34

Section 7.3

 7.35  The switch in the circuit shown in Fig. P 7.35 has 
been closed for a long time before opening at 
t 0.=

a) Find the numerical expressions for iL(t) and 
vo(t) for t 0.≥

b) Find the numerical values of (0 )L
+v  and (0 ).o

+v

PSPICE
MULTISIM

32 V
t = 0

iL5 mH

8 V 6 A1

2

12 V

vo

1

2

vL 12

Figure P7.35

  7.36  Assume that the switch in the circuit of Fig. 7.21 has 
been in position b for a long time and that at t 0=  
it moves to position a. Find

a) i(0+);

b) v(0+);

c) t, 0;τ >

d) i(t), t 0;≥  and

e) v(t), t 0 .≥ +

 7.37  The switch in the circuit shown in Fig. P 7.37 has 
been in position a for a long time. At t 0,=  the 
switch moves instantaneously to position b.

a) Find the numerical expression for io(t) when 
t 0.≥

b) Find the numerical expression for vo(t) for 
t 0 .≥ +

PSPICE
MULTISIM

40 A

ba

io

t = 0

4 V

60 V

20 V

5 V

240 V
10 mH

1

2

vo
1

2

Figure P7.37

 7.38  Repeat Problem 7.37 assuming that the switch in 
the circuit in Fig. P 7.37 has been in position b for 
a long time and then moves to position a at t 0=  
and stays there.

 7.39  a)  Use component values from  Appendix H to cre-
ate a first-order RL circuit (see Fig.  7.20) with 
a time constant of 125  s.μ  Use a single inductor 
and a network of resistors, if necessary. Draw 
your circuit.

b) Suppose the inductor you chose in part (a) has no 
initial stored energy. At t 0,=  a switch connects 
a voltage source with a value of 16 V in series with 
the inductor and equivalent resistance. Write an 
expression for the current through the inductor 
for t 0.≥

c) Using your result from part (b), calculate the 
time at which the current through the inductor 
reaches 50% of its final value.

 7.40  The switch in the circuit shown in Fig. P 7.40 has 
been closed for a long time. The switch opens at 
t 0.=  For t 0 :≥ +

a) Find vo(t) as a function of Ig, R1, R2, and L.

b) Explain what happens to vo(t) as R2 gets larger 
and larger.
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c) Find vSW as a function of Ig, R1, R2, and L.

d) Explain what happens to vSW as R2 gets larger 
and larger.

1

2

R2

vo(t)R1 LIg

1 2vsw

t 5 0

Figure P7.40

1

2

R

Vbb Ld'Arsonval
voltmeter

t 5 0

Figure P7.41

20 V

10 V

0.9vf

40 V87.2 mH

10 V

37.5 V

250 V

io(t)
t = 0

vf1 2

1

2

1

2

Figure P7.44

 7.41  The switch in the circuit in Fig. P 7.41 has been 
closed for a long time. A student abruptly opens 
the switch and reports to their instructor that when 
the switch opened, an electric arc with noticeable 
persistence was established across the switch, and 
at the same time the voltmeter placed across the 
coil was damaged. On the basis of your analysis of 
the circuit in Problem 7.40, can you explain to the 
student why this happened?

 7.42  The current and voltage at the terminals of the 
 inductor in the circuit in Fig. 7.20 are

i t e t( ) (10 10 ) A,   0;t500= − ≥−

= ≥− +v t e t( ) 200 �V, � 0 .t500

a) Specify the numerical values of Vs, R, Io, and L.

b) How many milliseconds after the switch has 
been closed does the energy stored in the induc-
tor reach 25% of its final value?

 7.43  a)  Derive Eq. 7.16 by first converting the Thévenin 
equivalent in Fig.  7.20 to a Norton equivalent 
and then summing the currents away from the 
upper node, using the inductor voltage v as the 
variable of interest.

b) Use the separation of variables technique to find 
the solution to Eq. 7.16. Verify that your solution 
agrees with the solution given in Eq. 7.15.

 7.44  The switch in the circuit in Fig. P 7.44 has been open 
a long time before closing at t 0.=  Find io(t) for 
t 0.≥

PSPICE
MULTISIM

 7.45  The switch in the circuit in Fig. P 7.45 has been open 
a long time before closing at t 0.=  Find vo(t) for 
t 0 .≥ +

PSPICE
MULTISIM

5 V2 mA 2 mH 4iD

1

2

vo 1 mA

t 5 010 V 15 V

4 V

iD

Figure P7.45

 7.46  There is no energy stored in the inductors L1 and L2 
at the time the switch is opened in the circuit shown 
in Fig. P 7.46.

a) Derive the expressions for the currents i1(t) and 
i2(t) for t 0.≥

b) Use the expressions derived in (a) to find i ( )1 ∞  
and i ( ).2 ∞

Ig L1 L2Rg i1(t) i2(t)
t 5 0

Figure P7.46

1

2

16 V

80 V6 H12 H

2
1

vo

t 5 0

80 V 2
1

Figure P7.47

 7.47  The switch in the circuit in Fig. P 7.47 has been in 
position 1 for a long time. At t 0=  it moves instan-
taneously to position 2. How many milliseconds 
after the switch moves does vo equal −80 V?

PSPICE
MULTISIM

 7.48  For the circuit in Fig. P 7.47, find (in joules):

a) the total energy dissipated in the 80 Ω resistor,

b) the energy trapped in the inductors, and

c) the initial energy stored in the inductors.
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 7.49  The switch in the circuit in Fig. P 7.49 has been open 
a long time before closing at t 0.=  Find vo(t) for 
t 0 .≥ +

PSPICE
MULTISIM

60 mH

40 mH 5 V

20 V

75 V

10 A

t = 0
1

2

vo

1

2

Figure P7.49

 7.50  The make-before-break switch in the circuit of  
Fig. P 7.50 has been in position a for a long time. At 
t 0,=  the switch moves instantaneously to posi-
tion b. Find

a) ≥ +t t( ),   0 ;ov
b) ≥i t t( ),   0;1

c) i t t( ),   0.2 ≥

PSPICE
MULTISIM

15 V 48 V

ba

12 H20 A

1

2

vo 10 A

t 5 0

i1 i2 8 H

Figure P7.50

 7.51  a)  Find the expression for the voltage across the 
160 kΩ resistor in the circuit shown in Fig. 7.29. 
Let this voltage be denoted vA, and assume the 
reference polarity for the voltage is positive at 
the upper terminal of the 160 kΩ resistor.

b) Specify the interval of time for which the expres-
sion in part (a) is valid.

 7.52  a)  The switch in the circuit in Fig. P 7.52 has been in 
position a for a long time. At t 0,=  the switch 
moves instantaneously to position b and stays 
there. Find the initial and final values of the 
capacitor voltage, the time constant for t 0,≥  
and the expression for the capacitor voltage for 
t 0.≥

b) Now suppose the switch in the circuit in  
Fig. P 7.52 has been in position b for a long time. 
At t 0,=  the switch moves instantaneously to 
position a and stays there. Find the initial and 
final values of the capacitor voltage, the time 
constant for t 0,≥  and the expression for the 
capacitor voltage for t 0.≥

10 kV 12.5 kV

150 kV

50 kV

40 nF
200 V

a b

120 V
i

t = 0
1

2

vC
1

2

1

2

Figure P7.52

 7.53  The circuit in Fig. P 7.53 has been in operation for a 
long time. At t 0,=  the voltage source drops from 
100 V to 25 V and the current source reverses direc-
tion. Find vo(t) for t 0.≥

PSPICE
MULTISIM

 7.54  The switch in the circuit shown in Fig. P 7.54 has 
been open for a long time. The initial charge on the 
capacitor is zero. At t 0,=  the switch is closed.

a) Find the expression for i(t) for t 0 .≥ +

b) Find the expression for v(t) for t 0 .≥ +

PSPICE
MULTISIM

2

1 20 kV 10 mA100 V vo

1

2

5 kV 2 kV

12 kV 0.05 mF

Figure P7.53

 7.55  The switch in the circuit in Fig. P 7.55 has been in 
position a for a long time. At t 0,=  the switch 
moves instantaneously to position b. At the instant 
the switch makes contact with terminal b, switch 2 
opens. Find t( )ov  for t 0.≥

PSPICE
MULTISIM

20 kV7.5 mA 30 kV
i(t)

v(t)

1

2

t 5 0
0.1 mF

Figure P7.54

1

2
120 V

40 nF

1

26 mA

a b

vo

1

2

80 kV 25 kV

t 5 0

t 5 0

40 kV

Figure P7.55

 7.56  The switch in the circuit of Fig. P 7.56 has been in 
position a for a long time. At t 0=  the switch is 
moved to position b. Calculate (a) the initial volt-
age on the capacitor; (b) the final voltage on the 
capacitor; (c) the time constant (in microseconds) 
for t 0;>  and (d) the length of time (in microsec-
onds) required for the capacitor voltage to reach 
zero after the switch is moved to position b.
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 7.57  The switch in the circuit seen in Fig. P 7.57 has been 
in position a for a long time. At t 0,=  the switch 
moves instantaneously to position b. Find vo(t) and 
io(t) for t 0 .≥ +

PSPICE
MULTISIM

2

1
5 mA

100 nF

t 5 0

15 kV

10 kV

5 kV

20 kV

1

2

vC

b

a75 V

Figure P7.56

15 mA 20 kV 25 mA

20 kV

10 kV 125 nFvo(t)

io(t)

ab

t 5 0

1

2

 Figure P7.57
12 kV 36 kV 15 kV30ib

ib

t 5 0
8 mF400 mA

Figure P7.61

 7.58  The current and voltage at the terminals of the 
capacitor in the circuit in Fig. 7.28 are

i t e t( ) 50  mA,   0 ;t2500= ≥− +

t e t( ) (80 80 ) V,   0.t2500= − ≥−v

a) Specify the numerical values of Is , V0 , R, C, and .τ

b) How many microseconds after the switch has 
been closed does the energy stored in the capac-
itor reach 64% of its final value?

 7.59  a)  Use component values from  Appendix H to cre-
ate a first-order RC circuit (see Fig. 7.28) with a 
time constant of 2 ms. Use a single capacitor and 
a network of resistors, if necessary. Draw your 
circuit.

b) Suppose the capacitor you chose in part (a) has 
an initial voltage drop of −40 V. At t 0,=  a 
switch connects a current source with a value of 
100 mA in parallel with the capacitor and equiv-
alent  resistance. Write an expression for the volt-
age drop across the capacitor for t 0.≥

c) Using your result from part (b), calculate the 
time at which the voltage drop across the capac-
itor reaches 0 V.

 7.60  a)  Derive Eq. 7.17 by first converting the Norton 
equivalent circuit shown in Fig. 7.28 to a Thévenin  
equivalent and then summing the voltages 
around the closed loop, using the capacitor cur-
rent i as the relevant variable.

b) Use the separation of variables technique to find 
the solution to Eq. 7.17. Verify that your solu-
tion agrees with that of Eq. 7.22.

 7.61  The switch in the circuit shown in Fig. P 7.61 opens at 
t 0=  after being closed for a long time. How many 
milliseconds after the switch opens is the energy 
stored in the capacitor 90% of its final value?

PSPICE
MULTISIM

 7.62  The switch in the circuit shown in Fig. P 7.62 has 
been in the off position for a long time. At t 0,=  
the switch moves instantaneously to the on posi-
tion. Find t( )ov  for t 0.≥

PSPICE
MULTISIM

6 kV 20 kV

80 kV 100 V10 kV
5 nF

OFF ON

30 3 103iD

iD

t = 0

8 mA
vo

1

2

1

1

2

2

Figure P7.62

Vg

Rg t 5 0

2

1
v2(t)

C1
1

2

C2

2

1
v1(t)

Figure P7.64

 7.63  Assume that the switch in the circuit of Fig. P 7.62 
has been in the on position for a long time before 
switching instantaneously to the off position at 
t 0.=  Find t( )ov  for t 0.≥

 7.64  There is no energy stored in the capacitors C1 and 
C2 at the time the switch is closed in the circuit seen 
in Fig. P 7.64.

a) Derive the expressions for t( )1v  and t( )2v  for 
t 0.≥

b) Use the expressions derived in (a) to find ( )1 ∞v  
and ( ).2 ∞v

PSPICE
MULTISIM
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  7.65  The switch in the circuit of Fig. P 7.65 has been 
in position a for a long time. At t 0,=  it moves 
instantaneously to position b. For t 0 ,≥ +  find

a) t( );ov
b) i t( );o

c) t( );1v
d) t( );2v
e) the energy trapped in the capacitors as t .→ ∞

PSPICE
MULTISIM

1

2

1

2

ba2.2 kV 5 kV

60 V

vo

v1 100 V

iot 5 0

v2

0.3 mF

0.6 mF

1

2

1

2
1

2

Figure P7.65
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75 V 20 kV
40 nF
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t = 0

1

2
v1

1

2

1

2

Figure P7.66

 7.66  The switch in the circuit in Fig. P 7.66 has been in 
position x for a long time. The initial charge on the 
10 nF capacitor is zero. At t 0,=  the switch moves 
instantaneously to position y.

a) Find t( )ov  for t 0 .≥ +

b) Find t( )1v  for t 0.≥

Section 7.4

 7.67  Repeat (a) and (b) in Example 7.10 if the mutual 
inductance is reduced to zero.

 7.68  There is no energy stored in the circuit in Fig. P 7.68 
at the time the switch is closed.

a) Find i t( )  for t 0.≥

b) Find t( )1v  for t 0 .≥ +

c) Find t( )2v  for t 0.≥

d) Do your answers make sense in terms of known 
circuit behavior?

PSPICE
MULTISIM

50 V

200 V
5 H

4 H

8 H

t = 0

i (t)

v1(t)

v2(t)

1

1

2
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Figure P7.68
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vo
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Figure P7.70

 7.69  Repeat Problem 7.68 if the dot on the 8 H coil is at 
the top of the coil.

 7.70  There is no energy stored in the circuit in Fig. P 7.70 
at the time the switch is closed.

a) Find i t( )o  for t 0.≥

b) Find t( )ov  for t 0 .≥ +

c) Find i t( )1  for t 0.≥

d) Find i t( )2  for t 0.≥

e) Do your answers make sense in terms of known 
circuit behavior?

PSPICE
MULTISIM

PSPICE
MULTISIM

 7.71  There is no energy stored in the circuit of Fig. P 7.71 
at the time the switch is closed.

a) Find i t( )o  for t 0.≥

b) Find t( )ov  for t 0 .≥ +

c)  Find i t( )1  for t 0.≥

d) Find i t( )2  for t 0.≥

e) Do your answers make sense in terms of known 
circuit behavior?

1

2

75 V

8 mH

10 mH

15 V

t 5 0

i1
20 mH

1

2

vo

io

i2

Figure P7.71

150 V 75 V

50 V

25 mH80 mA

1

2

vo

t 5 0

0 1 250 ms
a

b

1 2

Figure P7.72

Section 7.5

 7.72  The action of the two switches in the circuit seen 
in Fig. P 7.72 is as follows. For t 0,<  switch 1 is in 
position a and switch 2 is open. This state has existed 
for a long time. At t 0,=  switch 1 moves instanta-
neously from position a to position b, while switch 2  
remains open. Two hundred fifty microseconds after 
switch 1 operates, switch 2 closes, remains closed for 
400 μs, and then opens. Find ov  1 ms after switch 1 
moves to position b.

PSPICE
MULTISIM
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 7.73  For the circuit in Fig. P 7.72, how many microseconds  
after switch 1 moves to position b is the energy 
stored in the inductor 4% of its initial value?

 7.74  Switch a in the circuit of Fig. P 7.74, has been open 
for a long time, and switch b has been closed for 
a long time. Switch a is closed at t 0=  and, after 
remaining closed for 1 s, is opened again. Switch b 
is opened simultaneously, and both switches remain 
open indefinitely. Determine the expression for the 
inductor current i that is valid when (a) 0 ≤ t ≤ 1 s 
and (b) t ≥ 1 s.

PSPICE
MULTISIM

10 V 2 H

8 A

b

a

3 V

2 V 0.8 V

3 V 6 V

9 V
t = 1 s

t = 1 s

t = 0
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Figure P7.74

i
480 V

96 V

120 V4 V

20 mH500 V v

1

2

cb

a

1

2

Figure P7.75
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Figure P7.76
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t = 3 ms

3 mA 2 kV
t = 0

1

2

vo

21 8 kV

Figure P7.77

 7.75  The switch in the circuit shown in Fig. P 7.75 has 
been in position a for a long time. At t 0,=  the 
switch is moved to position b, where it remains for  
0.1 ms. The switch is then moved to position c, where 
it remains indefinitely. Find

a) +i(0 );

b) μi(25  s);

c) μi(200  s);

d) v(100 � s);μ−

e) μ+(100   s).v

PSPICE
MULTISIM

 7.76  The capacitor in the circuit seen in Fig. P 7.76 has 
been charged to 494.6 mV. At t 0,=  switch 1 closes, 
causing the capacitor to discharge into the resistive 
network. Switch 2 closes 50  sμ  after switch 1 closes. 
Find the magnitude and direction of the current in 
the second switch 100  sμ  after switch 1 closes.

PSPICE
MULTISIM

 7.77  There is no energy stored in the capacitor in the 
circuit in Fig. P 7.77 when switch 1 closes at t 0.=  
Switch 2 closes 3 microseconds later. Find t( )ov  for 
t 0.≥

PSPICE
MULTISIM

  7.78  In the circuit in Fig. P 7.78, switch 1 has been in 
 position a and switch 2 has been closed for a long 
time. At t 0,=  switch 1 moves instantaneously to 
position b. Four hundred microseconds later, switch 
2 opens, remains open for 1 ms, and then recloses. 
Find vo 1.6 ms after switch 1 makes contact with 
 terminal b.

5 kV 2

35 kV

8 mA 10 kV35 kV 50 nF

a 1

b
t = 0

 0 + 400 ms

 0 + 1.4 ms1

2

vo

Figure P7.78

 7.79  For the circuit in Fig. P 7.78, what percentage of the 
initial energy stored in the 50 nF capacitor is dissi-
pated in the 10 kΩ resistor?

 7.80  The switch in the circuit in Fig. P 7.80 has been 
in position a for a long time. At t 0,=  it moves 
instantaneously to position b, where it remains for 
250 ms before moving instantaneously to position c. 
Find vo for t 0.≥

PSPICE
MULTISIM

PSPICE
MULTISIM
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 7.81  The voltage waveform shown in Fig. P 7.81(a) is 
 applied to the circuit of Fig. P 7.81(b). The initial 
 current in the inductor is zero.

a) Calculate t( ).ov
b) Make a sketch of t( )ov  versus t.

c) Find vo at t 4 s.μ=

PSPICE
MULTISIM

50 mA 2 kV

4.7 kV

vo 0.16 mF

a c

b
t 5 0 t 5 250 ms

6.25 kV1

2

Figure P7.80
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Figure P7.83
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Figure P7.84

 7.82  The current source in the circuit in Fig. P 7.82(a) 
generates the current pulse shown in Fig. P 7.82(b). 
There is no energy stored at t 0.=

a) Derive the numerical expressions for t( )ov  for 
the time intervals μ< < <t t0,  0 50  s, and 

μ < < ∞t50  s .

b) Calculate (50   s)ov μ−  and (50   s).ov μ+

c) Calculate i (50   s)o μ−  and i (50   s).o μ+

PSPICE
MULTISIM

 7.84  The voltage signal source in the circuit in Fig. P 7.84(a) 
is generating the signal shown in Fig. P 7.84(b). There 
is no stored energy at t 0.=

a) Derive the expressions for t( )ov  that apply in the  
intervals t t t0; 0 10 ms; 10 ms 20 ms;< ≤ ≤ ≤ ≤   
and t20 ms .≤ < ∞

b) Sketch vo and vs on the same coordinate axes.

c) Repeat (a) and (b) with R reduced to 10 k .Ω

PSPICE
MULTISIM

  7.85  The circuit shown in Fig. P 7.85 is used to close the 
switch between a and b for a predetermined length 
of time. The electric relay holds its contact arms 
down as long as the voltage across the relay coil 
exceeds 12 V. When the coil voltage equals 12 V,  
the  relay contacts return to their initial position by 
a mechanical spring action. The switch between a 
and b is  initially closed by momentarily pressing 
the push button. Assume that the capacitor is fully 
charged when the push button is first pushed down. 
The resistance of the relay coil is 40 kΩ, and the 
inductance of the coil is negligible.

a) How long will the switch between a and b 
remain closed?

b) Write the numerical expression for i from the 
time the relay contacts first open to the time the 
capacitor is completely charged.

c) How many milliseconds (after the circuit 
between a and b is interrupted) does it take the 
capacitor to reach 75% of its final value?

 7.83  The voltage waveform shown in Fig. P 7.83(a) is 
 applied to the circuit of Fig. P 7.83(b). The initial 
voltage on the capacitor is zero.

a) Calculate t( ).ov
b) Make a sketch of t( )ov  versus t.

PSPICE
MULTISIM

is

io

is (mA)

vo8 kV

(a) (b)

250 mH

50 t (ms)

25

0

1

2

Figure P7.82
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Section 7.6

 7.86  The switch in the circuit in Fig. P 7.86 has been 
closed for a long time. The maximum voltage rating 
of the 16 nF capacitor is 930 V. How long after the 
switch is opened does the voltage across the capaci-
tor reach the maximum voltage rating?

PSPICE
MULTISIM

1.6 mA8 kV
t 5 0

4 kV

16 kViD16 nF11.5iD

Figure P7.86

5 V

25 V

2 V

2

1

vo

1

2

6.8 kV0.01 mF

10 kV

160 kV

40 kV

t 5 0

1
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Figure P7.91

 7.87  The inductor current in the circuit in Fig. P 7.87 
is 25 mA at the instant the switch is opened. The 
 inductor will malfunction whenever the magnitude 
of the inductor current equals or exceeds 12 A. How 
long after the switch is opened does the inductor 
malfunction?

PSPICE
MULTISIM

Figure P7.87

8 H 25 mA

2 kV

t 5 0
15 3 1024 vf

1vf2

6 kV

 7.88  The capacitor in the circuit shown in Fig. P 7.88 is 
charged to 25 V at the time the switch is closed. If 
the capacitor ruptures when its terminal voltage 
equals or exceeds 50 kV, how long does it take to 
rupture the capacitor?

PSPICE
MULTISIM

100 kV

25 kV

iD
25 V

1

2

25 nF
t 5 0

12

75 3 103iD

Figure P7.88

 7.89  The gap in the circuit seen in Fig. P 7.89 will arc over 
whenever the voltage across the gap reaches 36 kV. 
The initial current in the inductor is zero. The value 
of β  is adjusted so the Thévenin resistance with 
respect to the terminals of the inductor is 3 k− Ω.

a) What is the value of β?

b) How many microseconds after the switch has 
been closed will the gap arc over?

PSPICE
MULTISIM

Figure P7.89

6 kV 300 mH

2 kV

bis120 V
t = 0 is
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2

Section 7.7

 7.90  There is no energy stored in the capacitor at the 
time the switch in the circuit of Fig. P 7.90 makes 
contact with terminal a. The switch remains at posi-
tion a for 32 ms and then moves instantaneously to 
position b. How many milliseconds after making 
contact with terminal a does the op amp saturate?

PSPICE
MULTISIM

 7.91  When the switch closes in the circuit shown in  
Fig. P 7.91, there is no energy stored in the capaci-
tor. How long does it take to saturate the op amp?

PSPICE
MULTISIM
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Figure P7.90
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 7.92  Repeat Problem 7.91 with an initial voltage on the 
capacitor of 1 V, positive at the upper terminal.PSPICE

MULTISIM
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 7.94  The voltage pulse shown in Fig. P 7.94(a) is 
 applied to the ideal integrating amplifier shown in  
Fig. P 7.94(b). Derive the numerical expression for 
vo(t) when (0) 0o =v  for the time intervals

a) <t 0;

b) ≤ ≤t0 50 ms;

c) ≤ ≤t50 ms 100 ms;

d) t100 ms .≤

PSPICE
MULTISIM

 7.93  The voltage source in the circuit in Fig. P 7.93(a) 
is generating the triangular waveform shown in  
Fig. P 7.93(b). Assume the energy stored in the 
 capacitor is zero at t 0=  and the op amp is ideal.

a) Derive the numerical expressions for vo(t) for 
the following time intervals: t0 5  sμ≤ ≤ ; 

μ μ≤ ≤t5  s 15  s; and t15  s 20  sμ μ≤ ≤ .

b) Sketch the output waveform between 0 and 
20  sμ .

c) If the triangular input voltage continues to 
repeat itself for t 20  sμ> , what would you 
expect the output voltage to be? Explain.
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Figure P7.93

 7.95  Repeat Problem 7.94 with a 4 MΩ resistor placed 
across the 50 nF feedback capacitor.

 7.96  There is no energy stored in the capacitors in the 
circuit shown in Fig. P 7.96 at the instant the two 
switches close. Assume the op amp is ideal.

a) Find vo as a function of va, vb, R, and C.

b) On the basis of the result obtained in (a), 
describe the operation of the circuit.

c) How long will it take to saturate the amplifier 
if 10 mVa =v ; 60 mVb =v ; R 40 k= Ω; 
C 25 nF= ; and V 12 VCC = ?
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Figure P7.96
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270 Response of First-Order RL and RC Circuits

 7.98  The component values in the circuit of Fig. P 7.97 
are V 9 VCC = ; R 3 kL = Ω; C C 2 nF1 2= = ; 
and R R 18 k1 2= = Ω.

a) How long is T2 in the off state during one cycle 
of operation?

b) How long is T2 in the on state during one cycle 
of operation?

c) Repeat (a) for T1.

d) Repeat (b) for T1.

e) At the first instant after T1 turns on, what is the 
value of ib1?

f) At the instant just before T1 turns off, what is 
the value of ib1?

g) What is the value of vce2 at the instant just before 
T2 turns on?

 7.99  Repeat Problem 7.98 with C 3 nF1 =  and C 2.8 nF2 = .  
All other component values are unchanged.

 7.100  The astable multivibrator circuit in Fig. P 7.97 is 
to satisfy the following criteria: (1) One transis-
tor switch is to be on for 50  sμ  and off for 75 sμ   
for each cycle; (2) R 5 kL = Ω; (3) V 12 VCC = ;  
(4) R R1 2= ; and (5) ≤ ≤R R R2 20L L1 . What 
are the limiting values for the capacitors C1 and C2?

 7.101  The circuit shown in Fig. P 7.101 is known as a 
monostable multivibrator. The adjective monostable 
is used to describe the fact that the circuit has one 
stable state. That is, if left alone, the electronic 
switch T2 will be on, and T1 will be off. (The oper-
ation of the ideal transistor switch is described in 
detail in Problem 7.97.) T2 can be turned off by 
momentarily closing the switch S. After S returns to 
its open position, T2 will return to its on state.

PSPICE
MULTISIM

Sections 7.1–7.7

  7.97  The circuit shown in Fig. P 7.97 is known as an 
astable multivibrator and finds wide application 
in pulse circuits. The purpose of this problem is to 
relate the charging and discharging of the capaci-
tors to the operation of the circuit. The key to ana-
lyzing the circuit is to understand the behavior of 
the ideal transistor switches T1 and T2. The circuit 
is designed so that the switches automatically alter-
nate between on and off. When T1 is off, T2 is on 
and vice versa. Thus in the analysis of this circuit, we 
assume a switch is either on or off. We also assume 
that the ideal transistor switch can change its state 
instantaneously. In other words, it can snap from 
off to on and vice versa. When a transistor switch 
is on, (1) the base current ib is greater than zero,  
(2) the terminal voltage vbe is zero, and (3) the 
terminal voltage vce is zero. Thus, when a transis-
tor switch is on, it presents a short circuit between 
the terminals b,e and c,e. When a transistor switch 
is off, (1) the terminal voltage vbe is negative, (2) 
the base current is zero, and (3) there is an open 
circuit between the terminals c,e. Thus when a 
transistor switch is off, it presents an open circuit 
between the terminals b,e and c,e. Assume that T2 
has been on and has just snapped off, while T1 has 
been off and has just snapped on. Further assume 
that C2 is charged to the supply voltage VCC, and 
the charge on C1 is zero. Finally, assume C C1 2=  
and R R R10 L1 2= = .

a) Derive the expression for vbe2 during the inter-
val that T2 is off.

b) Derive the expression for vce2 during the inter-
val that T2 is off.

c) Find the length of time T2 is off.

d) Find the value of vce2 at the end of the interval 
that T2 is off.

e) Derive the expression for ib1 during the interval 
that T2 is off.

f) Find the value of ib1 at the end of the interval 
that T2 is off.

g) Sketch vce2 versus t during the interval that T2 
is off.

h) Sketch ib1 versus t during the interval that T2 is 
off.

PSPICE
MULTISIM

Figure P7.97
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 7.104  Derive the expression for heart rate in beats per 
minute given the values of R and C and assum-
ing that the capacitor discharges when its voltage 
reaches 75% of the source voltage Vs. The expres-
sion, given in the Practical Perspective, is repeated 
here for convenience:

H
RC

60
 ln  0.25

  [beats per minute].=
−

 7.105  Use an expression similar to the one derived in 
Problem 7.104 to calculate the heart rate in beats 
per minute for R 100 k= Ω, C 5  Fμ= , if the 
capacitor discharges when its voltage reaches 80% 
of the source voltage Vs.

 7.106  Show that the resistance required to achieve a heart 
rate H, in beats per minute, is given by the equation

R
HC

V
V

60

 ln  1
,

s

max
= −

−








where C is the capacitance, Vs is the source voltage, 
and Vmax is the capacitor voltage at which discharge 
occurs.

 7.107  Use the expression derived in Problem 7.106 to 
calculate the resistance required to achieve a heart 
rate of 72 beats per minute using a capacitance of 
10  Fμ  and assuming that the capacitor discharges 
when its voltage reaches 70% of the source voltage.

PRACTICAL
PERSPECTIVE

PRACTICAL
PERSPECTIVE

PRACTICAL
PERSPECTIVE

PRACTICAL
PERSPECTIVE

a) Show that if T2 is on, T1 is off and will stay off.

b) Explain why T2 is turned off when S is momen-
tarily closed.

c) Show that T2 will stay off for RC ln 2 s.

Figure P7.101
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 7.102  The parameter values in the circuit in Fig. P 7.101 
are V 12 VCC = ; = ΩR 8 k1 ; R 40 kL = Ω; 
C 100 pF= ; and R 36,067 = Ω.

a) Sketch vce2 versus t, assuming that after S is 
momentarily closed, it remains open until the 
circuit has reached its stable state. Assume S is 
closed at t 0= . Make your sketch for the inter-
val t2 5  sμ− ≤ ≤ .

b) Repeat (a) for ib2 versus t.

 7.103  The relay shown in Fig. P 7.103 connects the 12 V dc 
generator to the dc bus as long as the relay current 
is greater than 0.35 A. If the relay current drops to 
0.35 A or less, the spring-loaded relay immediately 
connects the dc bus to the 12 V standby battery. The 
resistance of the relay winding is 30 Ω. The induc-
tance of the relay winding is to be determined.

a) Assume the prime motor driving the 12 V dc 
generator abruptly slows down, causing the gen-
erated voltage to drop suddenly to 9 V. What 
value of L will assure that the standby battery 
will be connected to the dc bus in 0.1 seconds?

b) Using the value of L determined in (a), state 
how long it will take the relay to operate if the 
generated voltage suddenly drops to zero.

Figure P7.103
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CHAPTER CONTENTS

8 
CHAPTER Natural and Step 

Responses of RLC 
Circuits
In this chapter, we discuss the natural response and step  response 
of circuits containing a resistor, an inductor, and a  capacitor, known 
as RLC circuits. We limit our analysis to two simple structures: the 
parallel RLC circuit and the series RLC circuit.

We begin with the natural response of a parallel RLC circuit and 
cover this material in two sections: one section discusses the solution 
of the second-order differential equation that describes the circuit, 
and the other presents the three distinct forms that the solution can 
take. After introducing these three forms, we show that the same 
forms apply to the step response of a parallel RLC circuit as well as 
to the natural and step responses of series RLC circuits. The chap-
ter concludes with an introduction to an op-amp-based circuit whose 
output is also characterized by a  second-order differential equation.

Parallel RLC Circuits
We characterize the natural response of a parallel RLC circuit 
by finding the voltage across the parallel branches created by the 
release of energy stored in the inductor or capacitor, or both. The 
circuit is shown in Fig. 8.1 on page 274. The initial voltage on the 
capacitor, V0, represents the initial energy stored in the capaci-
tor. The initial current in the inductor, I 0, represents the initial 
energy stored in the inductor. You can find the individual branch 
currents after determining the voltage.

We derive the step response of a parallel RLC circuit by using 
Fig. 8.2 on page 274. We determine the circuit’s response when a 
dc current source is applied suddenly. Energy may or may not be 
stored in the circuit when the current source is applied.

 Series RLC Circuits
We characterize the natural response of a series RLC circuit by 
finding the current generated in the series-connected elements by 
the release of initially stored energy in the inductor, capacitor, or 
both. The circuit is shown in Fig. 8.3 on page 274. As before, the 
initial inductor current, I 0, and the initial capacitor voltage, V0, 
represent the initially stored energy. You can find the individual 
element voltages after determining the current.

8.1  Introduction to the Natural Response of 
a Parallel RLC Circuit p. 274

8.2  The Forms of the Natural Response of a 
Parallel RLC Circuit p. 278

 8.3  The Step Response of a Parallel RLC 
Circuit p. 289

 8.4  The Natural and Step Response of a 
Series RLC Circuit p. 296

8.5  A Circuit with Two Integrating 
Amplifiers p. 303

1  Be able to determine the natural response 
and the step response of parallel RLC 
circuits.

2 Be able to determine the natural response 
and the step response of series RLC 
circuits.

CHAPTER OBJECTIVES
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Practical Perspective 
Clock for Computer Timing
The digital circuits found in most computers require 
a  timing signal that synchronizes the operation of the 
 circuits. Consider a laptop computer whose processor 
speed is 2 GHz. This means that the central processing 
unit for this computer can perform about 2 109×  simple 
operations every second.

The timing signal, produced by a clock generator 
chip, is typically a square wave with the required clock 
frequency. The square wave is obtained from a sinusoi-
dal wave with the required clock frequency. Typically, 

the sinusoidal wave is generated by a precisely cut 
quartz crystal with an applied voltage. The crystal 
 produces a stable frequency suitable for synchronizing 
digital circuits.

We can also generate a sinusoidal wave using a 
 circuit with an inductor and a capacitor. By choosing the 
values of inductance and capacitance, we can create a 
sinusoid with a specific frequency. We will  examine such 
a design once we have presented the fundamental con-
cepts of second-order circuits.

Scanrail/123RF

David J. Green/Alamy Stock Photo

Analog to digital
conversion

Quartz crystal
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274 Natural and Step Responses of RLC Circuits

8.1 Introduction to the Natural 
Response of a Parallel RLC 
Circuit

To find the natural response of the circuit shown in Fig. 8.1, we begin by 
deriving the differential equation that the voltage v  satisfies. We choose to 
find the voltage because it is the same for each component. Once we know 
the voltage, we can find every branch current by using the current–voltage 
relationship for the branch component. We write the differential equation 
for the voltage using KCL to sum the currents leaving the top node, where 
each current is expressed as a function of the unknown voltage v :

R L
d I C d

dt
1   0.

t

0
0

v v v∫ τ+ + + =

We eliminate the integral in the KCL equation by differentiating once 
with respect to t, and because I 0  is a constant, we get

R
d
dt L

C d
dt

1   0.
2

2
+ + =v v v

We now divide the equation by the capacitance C and arrange the deriva-
tives in descending order:

 + + =d
dt RC

d
dt LC

1   0.
2

2
v v v

 (8.1)

Equation 8.1 is an ordinary, second-order differential equation with con-
stant coefficients because it describes a circuit with both an inductor and a 
capacitor. Therefore, we also call RLC circuits second-order circuits.

 The General Solution of the Second-Order 
Differential Equation
We can’t solve Eq. 8.1 by separating the variables and integrating, as we 
were able to do with the first-order equations in Chapter 7. Instead, we 
solve Eq. 8.1 by assuming that the voltage is of the form

 = Ae ,stv  (8.2)

where A and s are unknown constants.
Why did we choose an exponential form for v, given in Eq. 8.2? The 

reason is that Eq. 8.1 requires the sum of the following three terms equals 
zero for all values of t: the second derivative of v, the first derivative of 
v times a constant, and v times a constant. This can occur only if higher- 
order derivatives of v have the same form as v. The exponential func-
tion satisfies this criterion. Furthermore, note that the solutions of the 

R

i

L

V0C

I0 1

2

Figure 8.3 ▲ A circuit used to illustrate the natural 
response of a series RLC circuit.

1

2

R

i
t 5 0

L

CV

Figure 8.4 ▲ A circuit used to illustrate the step 
 response of a series RLC circuit.

R

iL iRiC
LV0C vI0

1
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1

2

Figure 8.1 ▲ A circuit used to illustrate the natural 
response of a parallel RLC circuit.

RLC
t 5 0

vI

1

2

Figure 8.2 ▲ A circuit used to illustrate the step 
 response of a parallel RLC circuit.

We describe the step response of a series RLC circuit using the 
circuit shown in Fig. 8.4. We determine the circuit’s response to the 
sudden application of the dc voltage source. Energy may or may 
not be stored in the circuit when the switch is closed.
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 8.1 Introduction to the Natural Response of a Parallel RLC Circuit 275

first-order equations we derived in Chapter 7 were all exponential; thus, 
it seems reasonable to assume that the solution of the second-order equa-
tion is also exponential.

If Eq. 8.2 is a solution of Eq. 8.1, it must satisfy Eq. 8.1 for all values of t.  
Substituting Eq. 8.2 into Eq. 8.1 generates the expression

+ + =As e As
RC

e A
LC

e 0,st st st2

or

Ae s s
RC LC

1   0st 2( )+ + =

which can be satisfied for all values of t only if A is zero or the parentheti-
cal term is zero because e 0st ≠  for any finite values of st. We cannot use 
A 0=  as a general solution because to do so implies that the voltage is 
zero for all time—a physical impossibility if energy is stored in either the 
inductor or capacitor. Therefore, in order for Eq. 8.2 to be a solution of 
Eq. 8.1, the parenthetical term must be zero, or

CHARACTERISTIC EQUATION, PARALLEL RLC CIRCUIT

 + + =s s
RC LC

1 0.2  (8.3)

Equation 8.3 is called the characteristic equation of the differential 
equation because the roots of this quadratic equation determine the  
mathematical character of t( )v .

The two roots of Eq. 8.3 are

( )= − + −s
RC RC LC
1

2
1

2
1 ,1

2

s
RC RC LC
1

2
1

2
1 .2

2

( )= − − −

If either root is substituted into Eq. 8.2, v satisfies the differential equation 
in Eq. 8.1, regardless of the value of A. Therefore, both

A e  ands t
1

1=v

A e s t
2

2=v

satisfy Eq. 8.1. Denoting these two solutions 1v  and ,2v  respectively, we 
can show that their sum also is a solution. Specifically, if we let

v v v A e A e ,s t s t
1 2 1 2

1 2= + = +

then

vd
dt

A s e A s e  ,s t s t
1 1 2 2

1 2= +

vd
dt

A s e A s e .s t s t
2

2 1 1
2

2 2
21 2= +
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276 Natural and Step Responses of RLC Circuits

TABLE 8.1 Natural-Response Parameters of the Parallel RLC Circuit

Parameter Terminology
Value in  
Natural Response

s s,  1 2
Characteristic roots s1

2
0
2α α ω= − + −

s2
2

0
2α α ω= − − −

α Neper frequency
RC
1

2
 α =

0ω Resonant radian frequency
LC
1  0ω =

Substituting these expressions for v and its first and second derivatives 
into Eq. 8.1 gives

A e s
RC

s
LC

A e s
RC

s
LC

1 1 1 1 0.s t s t
1 1

2
1 2 2

2
2

1 2( ) ( )+ + + + + =

But each parenthetical term is zero because by definition s1 and s2  are 
roots of the characteristic equation. Hence, the natural response of the 
parallel RLC circuit shown in Fig. 8.1 is

 v A e A e .s t s t
1 2

1 2= +  (8.4)

In Eq. 8.4, the constants s1 and s2 , which are the roots of the characteristic 
equation, are determined by the circuit parameters R, L, and C. The con-
stants A1 and A2 are determined by the initial conditions for the inductor 
and the capacitor.

To find the natural response (Eq. 8.4), we begin by finding the roots 
of the characteristic equation, s1 and s2 , which we first wrote in terms of 
the circuit parameters. We now rewrite them as follows:

 s ,1
2

0
2α α ω= − + −  (8.5)

 s ,2
2

0
2α α ω= − − −  (8.6)

where

NEPER FREQUENCY, PARALLEL RLC CIRCUIT

 α =
RC
1

2
,  (8.7)

RESONANT RADIAN FREQUENCY,  
PARALLEL RLC CIRCUIT

 
LC
1  .0ω =  (8.8)

These results are summarized in Table 8.1.
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The exponent of e must be dimensionless, so both s1 and s2  (and hence 
α and 0ω ) must have the dimension of the inverse of time, or frequency. 
To distinguish among the frequencies s ,1  s ,2  ,α  and ,0ω  we use the fol-
lowing terminology: s1 and s2  are the complex frequencies, α is the neper 
frequency, and 0ω  is the resonant radian frequency. The full significance 
of this terminology unfolds as we move through the remaining chapters of 
this text. These frequencies all have the dimension of angular frequency 
per time. For the complex frequencies, the neper frequency, and the reso-
nant radian frequency, we specify values using the unit radians per second 
(rad s).

The form of the roots s1 and s2  depends on the values of α and .0ω  
There are three possibilities.

• If ,0
2 2ω α<  both roots will be real and distinct. For reasons to be dis-

cussed later, we call the voltage response overdamped.
•  If ,0

2 2ω α>  both s1 and s2  will be complex and, in addition, will 
be conjugates of each other. In this situation, we call the voltage 
response underdamped.

• If 0
2 2ω α= , s1 and s2  will be real and equal. Here, we call the voltage 

response critically damped.

As we shall see, damping affects the way the voltage response reaches its 
final (or steady-state) value. We discuss each case separately in Section 8.2.

Example 8.1 illustrates how the values of R, L, and C determine the 
numerical values of s1 and s2 .

EXAMPLE 8.1  Finding the Roots of the Characteristic  
Equation of a Parallel RLC Circuit

a) Find the roots of the characteristic equation that 
governs the transient behavior of the voltage in  
the circuit of Fig. 8.5 if R L200  ,   50 mH,= Ω =  
and C 0.2  F.µ=

b) Will the response be overdamped, underdamped, 
or critically damped?

c) Repeat (a) and (b) for R 312.5  .= Ω
d) What value of R causes the response to be criti-

cally damped?

Solution

a) For the given values of R, L, and C,

RC
1

2
1

2 200 0.2 10
12,500  rad s,

6
α

( )( )
= =

×
=

−

LC
1 1

50 10 0.2 10
10 rad s .0

2
3 6

8 2 2ω
( )( )

= =
× ×

=
− −

From Eqs. 8.5 and 8.6,

s 12,500 12,500 101
2 8( )= − + −

12,500 7500 5000 rad s,= − + = −  

s 12,500 12,500 102
2 8( )= − − −

12,500 7500 20,000  rad s.= − − = −

b) The voltage response is overdamped because 
.0

2 2ω α<

c) For = ΩR 312.5  ,

RC
1

2
1

2 312.5 0.2 10
8000  rad s.

6
α

( )( )
= =

×
=

−

Since 0
2ω  remains at 10 rad s ,8 2 2

s 8000 8000 101
2 8( )= − + −

j8000 6000  rad s,= − +

s 8000 8000 102
2 8( )= − − −

j8000 6000  rad s.= − −

R

iL iRiC
LC V0 vI0

1

2

1

2

Figure 8.5 ▲ A circuit used to illustrate the natural 
response of a parallel RLC circuit.
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278 Natural and Step Responses of RLC Circuits

(In electrical engineering, the imaginary number 
1−  is represented by the letter j because the 

letter i represents current.)
In this case, the voltage response is under-

damped since .0
2 2ω α>

d)  For critical damping, ,2
0
2α ω=  so

RC LC
1

2
1 10 ,

2
8( ) = =

or

RC
1

2
10 ,4=

and

R 1
2 10 0.2 10

250� .
4 6( )( )

=
×

= Ω−

Objective 1—Be able to determine the natural response and the step response of parallel RLC circuits

8.1  The resistance, inductance, and capacitance in a 
parallel RLC circuit are 1 kΩ, 12.5 H, and µ2 F, 
respectively.
a) Calculate the roots of the characteristic 

equation that describes the voltage response 
of the circuit.

b) Will the response be over-, under-, or criti-
cally damped?

c) Suppose R is increased to 1562.5 Ω. 
Calculate the new roots of the characteristic 
equation.

d) What value of R will result in a critically 
damped response?

Answer: (a) = − = −s s100 rad s, 400 rad s;1 2
(b) overdamped;
(c) = − +

= − −
s j

s j

160 120 rad s,

160 120 rad s;
1

2

(d) 1250 .Ω

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter Problem 8.7.

8.2 The Forms of the Natural 
Response of a Parallel RLC 
Circuit

In this section, we find the natural response for each of the three types of 
damping: overdamped, underdamped, and critically damped. As we have 
already seen, the values of s1 and s2 determine the type of damping. We 
need to find values for the two coefficients A1 and A2 so that we can com-
pletely characterize the natural response given in Eq. 8.4. This requires 
two equations based on the following observations:

• The initial value of the voltage in Eq. 8.4 must be the same as the 
initial value of the voltage in the circuit.

• The initial value of the first derivative of the voltage in Eq. 8.4 must 
be the same as the initial value of the first derivative of the voltage 
in the circuit.

As we will see, the natural-response equations, as well as the equations 
for evaluating the unknown coefficients, are slightly different for each of 
the three types of damping. This is why the first task that presents itself 
when finding the natural response is to determine whether the response is 
overdamped, underdamped, or critically damped.
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 The Overdamped Response
When the roots of the characteristic equation are real and distinct, the 
response of a parallel RLC circuit is overdamped. The solution for the 
voltage is

PARALLEL RLC NATURAL RESPONSE: OVERDAMPED

 A e A e  ,s t s t
1 2

1 2v = +  (8.9)

where s1 and s2  are the roots of the characteristic equation. The constants 
A1 and A2  are determined by the initial conditions, specifically from the 
values of (0 )v +  and d dt(0 ) ,v +  which in turn are determined from the ini-
tial voltage on the capacitor, V ,0  and the initial current in the inductor, I .0

To determine the values of A1 and A2 , we need two independent 
equations. The first equation sets the initial value v from Eq. 8.9 equal to 
the initial value of v in the circuit, which is the initial voltage for the capac-
itor, V0. The resulting equation is

 A A V0 .1 2 0v( ) = + =+  (8.10)

The second equation sets the initial value of d dtv  from Eq. 8.9 equal 
to the initial value of d dtv  in the circuit. The initial value of d dtv  from 
Eq. 8.9 is

d
dt

s A s A
0 .1 1 2 2

v( )
= +

+

But how do we find the initial value of d dtv  from the circuit? Remember 
that d dtv  appears in the equation relating voltage and current for a 
capacitor,

i C d
dt

 .C = v

We can solve the capacitor equation for d dtv  and find its initial value in 
terms of the initial current in the capacitor:

d
dt

i
C

0 0
.Cv( ) ( )

=
+ +

Now we use KCL to find the initial current in the capacitor. We know 
that the sum of the three branch currents at t 0= + must be zero. The 
initial current in the resistive branch is the initial voltage V0 divided by the 
resistance, and the initial current in the inductive branch is I .0  Using the 
reference system depicted in Fig. 8.5, we obtain

i
V
R

I0 .C
0

0( ) =
−

−+

Now we have the second equation needed to find the values of A1 and A2 
in Eq. 8.9:

 
d

dt
A s A s

C
V
R

I
0 1   .1 1 2 2

0
0

v ( )( )
= + =

−
−

+

 (8.11)
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280 Natural and Step Responses of RLC Circuits

The method for finding the voltage for the parallel RLC circuit in 
Fig. 8.5 is as follows:

Step 1: Determine the initial values of capacitor voltage, V0, and inductor 
current, I0, by analyzing the parallel RLC circuit for t 0< .

Step 2: Determine the values of the neper frequency, α, and the resonant 
radian frequency, 0ω , using the values of R, L, and C and the equations in 
Table 8.1.

Step 3: Compare 2α  and .0
2ω  If 2

0
2α ω> , the response is overdamped:

t A e A e t( ) ,   0.s t s t
1 2

1 2= + ≥v

Step 4: If the response is overdamped, calculate the values of s1 and s2 
from α and 0ω , using the equations in Table 8.1.

Step 5: If the response is overdamped, calculate the values of A1 and A2 
by solving Eqs. 8.10 and 8.11 simultaneously:

A A V ;1 2 0+ =

A s A s
C

V
R

I1   .1 1 2 2
0

0( )+ =
−

−

Step 6: Write the equation for v (t) from Step 3 using the results from 
Steps  4 and 5. Find any desired branch current using the relationship 
between voltage and current for the component in the branch.

A condensed version of this method is given in Analysis Method 8.1. 
Examples 8.2 and 8.3 use this method to find the overdamped response of 
a parallel RLC circuit.

1. Determine the initial capacitor volt-
age (V0) and inductor current (I0) from 
the circuit.
2. Determine the values of α and ω0  
using the equations in Table 8.1.
3. If α ω<2

0
2, the response 

is overdamped and 
= + ≥v t A e A e t( ) ,   0s t s t

1 2
1 2 .

4. If the response is overdamped, 
calculate s1 and s2 using the equations in 
Table  8.1.
5. If the response is overdamped, 
calculate A1 and A2 by simultaneously 
solving Eqs. 8.10 and 8.11.
6. Write the equation for v (t) from Step 3  
using the results from Steps 4 and 5; find 
any desired branch currents.

Analysis Method 8.1 The natural response 
of an overdamped parallel RLC circuit.

EXAMPLE 8.2  Finding the Overdamped Natural Response of a  
Parallel RLC Circuit

For the circuit in Fig.  8.6, 0 12 V,v( ) =+  and 
i 0 30 mA.L ( ) =+

a) Find the expression for v (t).

b) Sketch v (t) in the interval t0 250  s.µ≤ ≤

Solution

a) We use Analysis Method 8.1 to find the voltage.

Step  1: Determine the initial values of capac-
itor voltage, V0, and inductor current, I0; since 
these values are given in the problem statement, 
no circuit analysis is required.

Step 2: Determine the values of α and 0ω  using 
the equations in Table 8.1:

RC
1

2
1

2 200 0.2 10
12,500 rad s,6α

( )( )
= =

×
=−

LC
1 1

50 10 0.2 10
10 rad s .0

2
3 6

8 2 2ω
( )( )

= =
× ×

=− −

Step 3: Compare 2α  and 0
2ω ; since 2

0
2α ω> , the 

response is overdamped and

t A e A e t( ) , 0.s t s t
1 2

1 2= + ≥v

Step 4: Since the response is overdamped, calcu-
late the values of s1 and s2:

s 12,500 12,500 101
2

0
2 2 8α α ω ( )= − + − = − + −

12,500 7500 5000 rad s;= − + = −

s 12,500 12,500 102
2

0
2 2 8α α ω ( )= − − − = − − −

12,500 7500 20,000 rad s.= − − = −

NATURAL RESPONSE OF A 
PARALLEL RLC CIRCUIT

200 V

iL iRiC

50 mH0.2 mF V0 vI0

1

2

1

2

Figure 8.6 ▲ The circuit for Example 8.2.
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Step 5: Since the response is overdamped, cal-
culate the values of A1 and A2 by simultaneously 
solving

A A V 12;1 2 0+ = =

A s A s
C

V
R

I1   so1 1 2 2
0

0( )+ =
−

−

A A5000 20,000 1
0.2 10

  12
200

0.03  

450,000.

1 2 6 ( )− − =
×

− −

= −

−

Solving,

A A14 V and 26 V.1 2= − =

Step 6: Write the equation for v (t) using the re-
sults from Steps 4 and 5:

t e e t( ) 14 26  V, 0.t t5000 20,000v ( )= − + ≥− −

b) Figure 8.7 shows a plot of v (t) versus t over the 
interval t0 250  s.µ≤ ≤

EXAMPLE 8.3  Calculating Branch Currents in the Natural Response of a 
Parallel RLC Circuit

Derive the expressions for the three branch cur-
rents iR, iL, and iC in Example 8.2 (Fig. 8.6) during 
the time the stored energy is being released.

Solution
We know the voltage across the three branches 
from the solution in Example 8.2 is

t e e t( ) 14 26  V, 0.t t5000 20,000v ( )= − + ≥− −

The current in the resistive branch is then

i t
t

e e t( )
( )

200
70 130  mA, 0.R

t t5000 20,000v
( )= = − + ≥− −

There are two ways to find the current in the induc-
tive branch. One way is to use the integral relation-
ship that exists between the current and the voltage 
at the terminals of an inductor:

i t
L

x dx I( ) 1   ( ) .L L
t

0

0
v∫= +

A second approach is to find the current in the 
capacitive branch first and then use the fact that 

i i i 0.R L C+ + =  Let’s use this approach. The 
current in the capacitive branch is

i t C d
dt

( )C = v

e e0.2 10 70,000 520,000t t6 5000 20,000( )= × −− − −

e e t14 104  mA, 0 .t t5000 20,000( )= − ≥− − +

Now find the inductive branch current from the 
relationship

i t i t i t( ) ( ) ( )L R C= − −

e e t56 26  mA, 0.t t5000 20,000( )= − ≥− −

We leave it to you to show that the integral 
relationship between voltage and current in an 
inductor leads to the same result. Note that the 
expression for iL  agrees with the initial inductor 
current, as it must.

0
50 100 150 200 250

22

24

26

2

4

6

8

10

12

v(t) (V)

t (ms)

Figure 8.7 ▲ The voltage response for Example 8.2.
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282 Natural and Step Responses of RLC Circuits

The Underdamped Voltage Response
When ω α> ,0

2 2  the roots of the characteristic equation are complex 
numbers, and the response is underdamped. For convenience, we express 
the roots s1 and s2 as

                 α ω α= − + − −s ( )1 0
2 2

                  α ω α= − + −j 0
2 2

       α ω= − + j ,d  (8.12)

s j ,d2 α ω= − −  (8.13)

where

Objective 1—Be able to determine the natural response and the step response of parallel RLC circuits

8.2  The element values in the circuit shown are 
R 5 k= Ω, L 6.25 H= , and C 40 nF.=  The 
initial current I0 in the inductor is 8 mA, and 
the initial voltage on the capacitor is −10 V. The 
output signal is the voltage v. Find (a) i 0R ( )+ ;  
(b) i 0C ( )+ ; (c) d dt(0 )v + ; (d) A1; (e) A2; and 
(f) v (t) when t 0.≥

Answer: (a) −2 mA;
(b) −6 mA;
(c) −150,000 V s;
(d) – 63.33 V;
(e) 53.33 V;
(f) e e53.33 63.33  V.t t4000 1000−− −

8.3  Using the results of Assessment Problem 8.2, find
a) ≥ +i t t( ), 0 ;R

b) ≥ +i t t( ), 0 ;C

c) ≥ +i t t( ), 0 .L

Answer: (a) e e10.67 12.67  mA;t t4000 1000−− −

(b) e e2.533 8.533  mA;t t1000 4000−− −

(c) −− −e e2.133 10.133  mA.t t4000 1000

ASSESSMENT PROBLEMS

SELF-CHECK: Also try Chapter Problems 8.3 and 8.18.

DAMPED RADIAN FREQUENCY

 .d 0
2 2ω ω α= −  (8.14)

The term dω  is called the damped radian frequency. Later we explain the 
reason for this terminology.

The underdamped voltage response of a parallel RLC circuit is

PARALLEL RLC NATURAL RESPONSE

 t B e t B e t( )  cos   sin  ,t
d

t
d1 2v ω ω= +α α− −  (8.15)

which follows from Eq. 8.9. In making the transition from Eq. 8.9 to 
Eq. 8.15, we use the Euler identity:

e jcos   sin  .j θ θ= ±θ±

R

iL iRiC
LC V0 vI0

1

2

1

2
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Thus,

t A e A e( ) j t j t
1 2

d dv = +α ω α ω( ) ( )− + − +

A e e A e et j t t j t
1 2

d d= +α ω α ω− − −

e A t jA t A t jA t( cos sin cos sin )t
d d d d1 1 2 2ω ω ω ω= + + −α−

e A A t j A A tcos sin .t
d d1 2 1 2ω ω[ ]( ) ( )= + + −α−

At this point in the transition from Eq. 8.9 to Eq. 8.15, replace the arbi-
trary constants A A1 2+  and j A A1 2( )−  with new arbitrary constants 
denoted B1  and B2  to get

e B t B t( cos sin )t
d d1 2v ω ω= +α−

B e t B e tcos sin .t
d

t
d1 2ω ω= +α α− −

The constants B1 and B2 are real, not complex, because the voltage 
is a real function. Don’t be misled by the fact that B j A A .2 1 2( )= −  In 
this underdamped case, A1 and A2 are complex conjugates, and thus B1 
and B2 are real. (See Problems 8.11 and 8.12.) Defining the underdamped  
response in terms of the coefficients B1 and B2 yields a simple expres-
sion for the voltage, v. We determine B1 and B2 in the same way that we 
found A1 and A2 for the overdamped response—by solving two simulta-
neous equations. The first equation sets the initial value v from Eq. 8.15 
equal to the initial value of v in the circuit. The second equation sets the 
initial value of d dtv  from Eq. 8.15 equal to the initial value of d dtv  
in the circuit. Note that the initial values of v and d dtv  in the circuit 
are the same in both the underdamped and overdamped cases. For the 
underdamped response, the two simultaneous equations that determine 
B1 and B2 are

= =B V(0 ) ,+
1 0v  (8.16)

 
d

dt
B B

C
V
R

I
(0 ) 1   .d

+

1 2
0

0
v

α ω ( )= − + =
−

−
 (8.17)

The overall process for finding the underdamped response is the same 
as that for the overdamped response, although the response equations and 
the simultaneous equations used to find the constants are slightly differ-
ent. We can modify Steps 3, 4, and 5 in the method for finding the voltage 
for the parallel RLC circuit to accommodate the differences.

Step 3: Compare 2α  and .0
2ω  If 2

0
2α ω> , the response is overdamped:

t A e A e t( ) , 0.s t s t
1 2

1 2= + ≥v

If 2
0
2α ω< , the response is overdamped:

t B e t B e t t( ) cos sin , 0.t
d

t
d1 2v ω ω= + ≥α α− −

Step 4: If the response is overdamped, calculate the values of s1 and s2 
from α and 0ω , using the equations in Table 8.1. If the response is under-
damped, calculate the value of dω  from

 .d 0
2 2ω ω α= −

1. Determine the initial capacitor  
voltage (V0) and inductor current (I0) 
from the circuit.
2. Determine the values of α and ω0 
using the equations in Table 8.1.
3. If α ω>2

0
2, the response is  

overdamped and 
= + ≥v t A e A e t( ) , 0s t s t

1 2
1 2 ;

If α ω< 00
222 , the response 

is underdamped and 
ω ω= + ≥α α− −v t B e t B e t t( ) cos   sin  , 0.t

d
t

d1 2

4. If the response is overdamped, 
 calculate s1 and s2 using the equations 
in Table 8.1;
If the response is underdamped, 
 calculate dω  using ω ω α= −d 0

2 2 .
5. If the response is overdamped, 
calculate A1 and A2 by simultaneously 
solving Eqs. 8.10 and 8.11;
6. If the response is underdamped, 
calculate B1 and B2 by simultaneously 
solving Eqs. 8.16 and 8.17.
7. Write the equation for v(t) from Step 3  
using the results from Steps 4 and 5; find 
any desired branch currents.

Analysis Method 8.2 The natural response 
of an overdamped or underdamped parallel 
RLC circuit.

NATURAL RESPONSE OF A 
PARALLEL RLC CIRCUIT
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284 Natural and Step Responses of RLC Circuits

Step 5: If the response is overdamped, calculate the values of A1 and A2 
by solving Eqs. 8.10 and 8.11 simultaneously:

A A V ;1 2 0+ =

A s A s
C

V
R

I1   .1 1 2 2
0

0( )+ =
−

−

If the response is underdamped, calculate the values of B1 and B2 by solv-
ing Eqs. 8.16 and 8.17 simultaneously:

B V ;1 0=

 B B
C

V
R

I1   .d1 2
0

0α ω ( )− + =
−

−

These modified steps are condensed in Analysis Method 8.2. We 
examine the characteristics of the underdamped response following 
Example 8.4, which analyzes a circuit whose response is underdamped.

EXAMPLE 8.4  Finding the Underdamped Natural Response of a  
Parallel RLC Circuit

In the circuit shown in Fig.  8.8, V 0,0 =  and 
I 12.25 mA.0 = −
a) Calculate the voltage response for t 0.≥
b) Plot v(t) versus t for the time interval 

t0 11 ms.≤ ≤

Solution
Use Analysis Method 8.2.

a) Step 1: Determine the initial values of capacitor 
voltage, V0, and inductor current, I0; since these 
values are given in the problem statement, no cir-
cuit analysis is required.

Step 2: Determine the values of α and 0ω  using 
the equations in Table 8.1:

RC
1

2
1

2 20,000 125 10
200  rad s,

9
α

( )( )
= =

×
=

−

LC
1 1

8 125 10
10   rad s .0

2
9

6 2 2ω
( )( )

= =
×

=−

Step 3: Compare 2α  and 0
2ω ; since 2

0
2α ω< , the 

response is  underdamped and

ω ω= + ≥α α− −t B e t B e t t( ) cos  sin  , 0.t
d

t
d1 2v

Step 4: Since the response is underdamped, 
 calculate the value of dω :

10 200 979.80  rad s.d 0
2 2 6 2ω ω α ( )= − = − =

Step 5: Since the response is underdamped, 
 calculate the values of B1 and B2 by simultane-
ously solving

B V 0;1 0= =

B B
C

V
R

I1   sod1 2
0

0α ω ( )− + =
−

−

B B200 979.80 1
125 10

  0
20,000

12.25 10

98,000.

1 2 9
3( )( )− + =

×
− − − ×

=

−
−

Solving,

B B0 V and 100 V.1 2= =

Step 6: Write the equation for v(t) using the 
 results from Steps 4 and 5:

t e t t( ) 100 sin 979.80  V, 0.t200v = ≥−

20 kV

iL iRiC

8 H125 nF V0 vI0

1

2

1

2

Figure 8.8 ▲ The circuit for Example 8.4.
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Characteristics of the Underdamped Response
Let’s look at the general nature of the underdamped response. From  
Eq. 8.15 and the plot in Fig. 8.9 we know that the voltage alternates, or oscil-
lates between positive and negative values. The voltage oscillates because 
there are two types of energy-storage elements in the circuit: the inductor 
and the capacitor. (A mechanical analogy of this electric circuit is that of a 
mass suspended on a spring, where oscillation is possible because energy 
can be stored in both the spring and the moving mass.) The oscillation rate 
is fixed by ωd and the oscillation amplitude decreases exponentially at a rate 
determined by α, so α is also called the damping factor or damping coeffi-
cient. That explains why dω  is called the damped radian frequency.

If there is no damping, 0α =  and the frequency of oscillation is .0ω  
Whenever there is a dissipative element, R, in the circuit, α is not zero 
and the frequency of oscillation, ,dω  is less than .0ω  Thus, when α is not 
zero, the frequency of oscillation is said to be damped. As the dissipative 
losses in the circuit decrease, the persistence of the oscillations increases, 
and the frequency of the oscillations approaches .0ω  In other words, as 
R ,→ ∞  the energy dissipation in the circuit in Fig. 8.8 approaches zero 
because p R 02v= → . As R ,   0α→ ∞ →  and d 0ω ω→ ; thus, the volt-
age oscillates and its amplitude does not decay.

In Example 8.4, if R is increased to infinity, the solution for v(t) becomes

t t t( ) 98 sin 1000  V, 0.v = ≥

b) Figure  8.9 shows the plot of v(t) versus t for the 
first 11 ms after the stored energy is released. It 
clearly indicates that the underdamped response is 
a damped oscillation. The voltage v(t) approaches 
its final value, alternating between values that 
are greater than and less than the final value. 
Furthermore, these swings about the final value 
decrease exponentially with time.

Objective 1—Be able to determine the natural and the step response of parallel RLC circuits

8.4  The natural voltage response of the circuit in  
Fig. 8.1 is e t e t120 cos300 80 sin 300  V,t t400 400+− −   
t 0,≥  when the capacitor is 250 Fµ . Find

a) L;

b) R;

c) V0;

d) I0;

e) i t( ).L

Answer: (a) 16 mH;

(b) 5 ;Ω

(c) 120 V;

(d) 18 A;−

(e) e t t( 18 cos300 sin 300 ) A.t400 − +−

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter Problems 8.9 and 8.16.

1 2 3 4 5 6 7 8 9 11
0

220
240

20
40
60
80

v(t) (V)

t(ms)

Figure 8.9 ▲ The voltage response for Example 8.4.
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286 Natural and Step Responses of RLC Circuits

In this case, the oscillation is sustained at a frequency of 1000 rad/s and the 
maximum amplitude of the voltage is 98 V.

Let’s examine the qualitative differences between an underdamped 
and an overdamped response. In an underdamped system, the response 
oscillates, or “bounces,” about its final value. This oscillation is also called 
ringing. In an overdamped system, the response approaches its final value 
without ringing or in what is sometimes described as a “sluggish” manner. 
When specifying the desired response of a second-order system, you have 
two options:

• Reach the final value in the shortest time possible, without concern 
for the small oscillations about that final value that will eventu-
ally cease. Therefore, design the system components to achieve an  
underdamped response.

• Do not allow the response to exceed its final value, perhaps to ensure 
that components are not damaged. Therefore, design the system com-
ponents to achieve an overdamped response, and accept a relatively 
slow rise to the final value.

The Critically Damped Voltage Response
The response of a parallel RLC circuit is critically damped when ,0

2 2ω α=  
or .0ω α=  When a circuit is critically damped, the response is on the verge 
of oscillating, and the roots of the characteristic equation are real and equal:

 α= = − = −s s
RC
1

2
 .1 2  (8.18)

If we substitute s s1 2 α= = −  into the voltage equation (Eq. 8.9), the 
equation becomes

A A e A e ,t t
1 2 0v ( )= + =α α− −

where A0 is an arbitrary constant. But this expression for v cannot satisfy 
two independent initial conditions V I( ,   )0 0  with only one constant, A0.

Thus, when the roots of the characteristic equation are equal, the 
solution for the differential equation (Eq. 8.1) must take a different form, 
namely,

PARALLEL RLC NATURAL RESPONSE—CRITICALLY 
DAMPED

  v t D te D e( ) .t t
1 2= +α α− −

 (8.19)

This solution involves a simple exponential term plus the product of a lin-
ear term and an exponential term. The justification of Eq. 8.19 is left for 
an introductory course in differential equations.

There are only two unknowns in Eq. 8.19, D1 and D2. We find their 
values in the same way we found A1 and A2  for the overdamped response 
and B1  and B2for the underdamped response—by solving two simultane-
ous equations.

One equation sets the initial value v from Eq. 8.19 equal to the ini-
tial value of v in the circuit. The second equation sets the initial value of 
d dtv  from Eq. 8.19 equal to the initial value of d dtv  in the circuit. Note 
that the initial values of v and d dtv  in the circuit are the same in the 
underdamped, overdamped, and critically damped cases. For the critically 
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damped response, the two simultaneous equations that determine D1 and 
D2 are

D V(0 ) ,2 0v = =+  (8.20)

 
d

dt
D D

C
V
R

I
(0 ) 1   .1 2

0
0

v
α ( )= − =

−
−

+

 (8.21)

The overall process for finding the critically damped response is the 
same as that for the overdamped and underdamped responses, but again, 
the response equation and the simultaneous equations used to find the 
constants are slightly different. We can modify Steps  3, 4, and 5 in the 
method for finding the voltage for the parallel RLC circuit to accommo-
date the differences.

Step 3: Compare 2α  and .0
2ω  If 2

0
2α ω> , the response is overdamped:

t A e A e t( ) , 0.s t s t
1 2

1 2v = + ≥

If 2
0
2α ω< , the response is underdamped:

t B e t B e t t( ) cos sin , 0.t
d

t
d1 2v ω ω= + ≥α α− −

If 2
0
2α ω= , the response is critically damped:

t D te D e t( ) , 0.t t
1 2v = + ≥α α− −

Step 4: If the response is overdamped, calculate the values of s1 and s2 
from α and 0ω , using the equations in Table 8.1. If the response is under-
damped, calculate the value of dω  from

.d 0
2 2ω ω α= −

If the response is critically damped, you can skip this step.

Step 5: If the response is overdamped, calculate the values of A1 and A2 
by solving Eqs. 8.10 and 8.11 simultaneously:

A A V ;1 2 0+ =

A s A s
C

V
R

I1   .1 1 2 2
0

0( )+ =
−

−

If the response is underdamped, calculate the values of B1 and B2 by solv-
ing Eqs. 8.16 and 8.17 simultaneously:

B V ;1 0=

B B
C

V
R

I1   .d1 2
0

0α ω ( )− + =
−

−

If the response is critically damped, calculate the values of D1 and D2 by 
solving Eqs. 8.20 and 8.21 simultaneously:

D V ;2 0=

D D
C

V
R

I1   .1 2
0

0α ( )− =
−

−

These modified steps are condensed in Analysis Method 8.3, while Table 8.2 
collects all of the equations needed to find the natural response of any par-
allel RLC circuit.

1. Determine the initial capacitor voltage 
(V0) and inductor current (I0) from the 
circuit.
2. Determine the values of α and 0ω  
using the equations in Table 8.2.
3. If 22

00
22α ω> , the response is overdamped 

and v t A e A e t( ) , 0s t s t
1 2

1 2= + ≥ ;
If 22

00
22α ω< , the response is underdamped  

and v t B e t B e t( ) cos  sin  ,t
d

t
d1 2ω ω= +α α− −

t ≥ 0;
If ,2

0
2α ω=  the response is critically damped 

and = + ≥α α− −t D te D te t( ) , 0.t t
1 2v

4. If the response is overdamped, 
calculate s1 and s2 using the equations in 
Table 8.2;
If the response is underdamped, calculate 

dω  using the equation in Table 8.2.
5. If the response is overdamped, 
calculate A1 and A2 by simultaneously 
solving the equations in Table 8.2;
If the response is underdamped, 
calculate B1 and B2 by simultaneously 
solving the equations in Table 8.2;
If the response is critically damped, 
 calculate D1 and D2 by simultaneously 
 solving the equations in Table 8.2.
6. Write the equation for v(t) from Step 3 
using the results from Steps 4 and 5; find 
any desired branch currents.

Analysis Method 8.3 The natural response 
of parallel RLC circuits.

NATURAL RESPONSE OF A 
PARALLEL RLC CIRCUIT

 8.2 The Forms of the Natural Response of a Parallel RLC Circuit 287
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288 Natural and Step Responses of RLC Circuits

You will rarely encounter critically damped systems in practice, 
largely because 0ω  must equal α exactly. Both of these quantities depend 
on circuit parameters, and in a real circuit it is very difficult to choose 
component values that satisfy an exact equality relationship. Even so, 
Example 8.5 illustrates the approach for finding the critically damped 
response of a parallel RLC circuit.

EXAMPLE 8.5  Finding the Critically Damped Natural Response of a  
Parallel RLC Circuit

a) For the circuit in Example 8.4 (Fig. 8.8), find the value 
of R that results in a critically damped voltage response.

b)  Calculate t( )v  for t 0.≥
c) Plot t( )v  versus t for t0 7 ms.≤ ≤

Solution
a) From Example 8.4, we know that 10 .0

2 6ω =  There-
fore, for critical damping,

RC
10 1

2
,3α = =

or

R 1
2 1000 125 10

4000  .9( )( )
=

×
= Ω−

b) Follow the steps in Analysis Method 8.3 to find the 
voltage v.

Step 1: Determine the initial values of capacitor 
voltage, V0, and inductor current, I0; since these 

 values are given in Example 8.4, no circuit analysis 
is required.

Step 2: From part (a), we know that 

1000  rad s0α ω= = .

Step 3: Compare 2α  and 0
2ω ; since 2

0
2α ω= , the 

response is critically damped and

t D te D e t( ) , 0.t t
1 2v = + ≥α α− −

Step 4: Since the response is critically damped, this 
step is not needed.

Step 5: Since the response is critically damped, cal-
culate the values of D1 and D2:

D V 0;2 0= =

D D
C

V
R

I1   so1 2
0

0α ( )− =
−

−

D D1000 1
125 10

  0
4000

12.25 10  

98,000.

1 2 9
3( )( )− =

×
− − − ×

=

−
−

(Note that the equations for v(t), v(0+), and dv(0+)/dt  assume that the reference direction for the current in 
every component is in the direction of the reference voltage drop across that component.)

 TABLE 8.2 Equations for Analyzing the Natural Response of Parallel RLC Circuits

Characteristic equation s
RC

s
LC

1 1 02 + + =

Neper, resonant, and  
damped frequencies

RC LC
1

2
  1

d0 0
2 2α ω ω ω α= = = −

Roots of the characteristic equation s s,1
2

0
2

2
2

0
2α α ω α α ω= − + − = − − −

α ω> :2
0
2  overdamped v t A e A e t( ) ,   0s t s t

1 2
1 2= + ≥

A A V(0 ) 1 2 0v = + =+

d
dt

s A s A
C

V
R

I
(0 ) 1  1 1 2 2

0
0

v ( )= + =
−

−
+

α ω< :2
0
2  underdamped t B e t B e t t( ) cos  sin  ,   0t

d
t

d1 2v ω ω= + ≥α α− −

B V(0 ) 1 0v = =+

d
dt

B B
C

V
R

I
(0 ) 1  d1 2

0
0

v
α ω ( )= − + =

−
−

+

:2
0
2α ω=  critically damped t D te D e t( ) ,   0t t

1 2
α α= + ≥− −v

D V(0 ) 2 0= =+v
d

dt
D D

C
V
R

I
(0 ) 1  1 2

0
0α ( )= − = − −

+v
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 8.3 The Step Response of a Parallel RLC Circuit 289

8.3 The Step Response of a Parallel 
RLC Circuit

Now we find the step response of a parallel RLC circuit, represented by 
the circuit shown in Fig. 8.11. The step response results from the sudden 
application of a dc current source. Energy may or may not be stored in the 
circuit when the current source is applied. We develop a general approach 
to the step response by finding the current in the inductive branch i( )L .

Why do we find the inductor current? Remember that for the nat-
ural response, we found the voltage because it was the same for all of 
the parallel-connected components, and we could use the voltage to find 
the current in any branch. But to find the step response, we need to sat-
isfy three constraints. Two of the constraints are established by the ini-
tial values of the capacitor voltage and the inductor current, just as in 
the  natural-response problem. For the step-response problem, a third 
constraint arises from a nonzero final value that exists because there is a 
source in the circuit for t 0≥ .

We draw the circuit in Fig. 8.11 as t → ∞. In the presence of the dc 
current source, the capacitor behaves like an open circuit, and the induc-
tor behaves like a short circuit, which shunts the resistor. The resulting 
circuit is shown in Fig. 8.12, where we see that the only nonzero final value 
is the inductor current. This explains why we find the inductor current and 
not the voltage in the parallel RLC step response.

Therefore,

D D98,000  V s and 0 V.1 2= =

Step 6: Write the equation for v(t) using the re-
sults from Steps 4 and 5:

t te t( ) 98,000  V, 0.t1000v = ≥−

c) Figure  8.10 shows a plot of t( )v  versus t in the 
interval t0 7 ms.≤ ≤

Objective 1—Be able to determine the natural and the step response of parallel RLC circuits

8.5 The voltage response of the circuit in Fig. 8.1 
is D te D e tV, 0.t t

1
500

2
500+ ≥− −  The initial 

current in the inductor I0 is –10 mA, and the 
initial voltage across the capacitor V0 is 8 V. 
The inductance is 4 H. Find
a) C;
b) R;
c) D2;
d) D1;
e) i t t( ) for 0 .C ≥ +

Answer: (a) 1 F;µ

(b) 1 k ;Ω

(c) 8 V;

(d) 6000 V s;

(e) e t(2 3000 ) mA.t500 −−

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter Problems 8.10 and 8.17.

0

8

16

24

32

40

v(t) (V)

1 2 3 4 5 6 7
t (ms)

Figure 8.10 ▲ The voltage response for Example 8.5.

RLC
t 5 0

vI

1

2

iC iL iR

Figure 8.11 ▲ A circuit used to describe the step 
response of a parallel RLC circuit.

RI

1

2

Vf  5 0

If  5 I

Figure 8.12 ▲ The circuit in Fig. 8.11 as t → ∞.
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290 Natural and Step Responses of RLC Circuits

To find the inductor current iL in the circuit in Fig. 8.11, we begin with 
a KCL equation for the circuit’s top node:

i i i I  ,L R C+ + =

or

 + + =i
R

C d
dt

I .L
v v  (8.22)

Because

L
di
dt

,L=v

we get

d
dt

L
d i
dt

 .L
2

2
=v

Now we can write Eq. 8.22 using only the inductor current and its first and 
second derivatives, to give

i L
R

di
dt

LC
d i
dt

I  .L
L L

2

2
+ + =

For convenience, we divide through by LC and rearrange terms:

 + + =
d i
dt RC

di
dt

i
LC

I
LC

1    .L L L
2

2
 (8.23)

Compare Eq. 8.23 with Eq. 8.1—they have the same form, but note the 
nonzero constant on the right-hand side of Eq. 8.23. Before showing how 
to solve Eq. 8.23 directly, we find its solution indirectly. When we know 
the solution of Eq. 8.23, explaining the direct approach will be easier.

The Indirect Approach
We can solve for iL  indirectly by first finding the voltage v . We use the 
techniques introduced in Section  8.2 because the differential equation 
that v  must satisfy is identical to Eq. 8.1. To see this, we simply return to 
Eq. 8.22 and express iL  as a function of v ; thus

L
d I

R
C d

dt
I1 , 

t

0
0
v v v∫ τ + + + =

where I0 is the initial current in the inductor. Differentiating once with 
respect to t reduces the right-hand side to zero because I is a constant and 
eliminates I0 from the left-hand side for the same reason. Thus

L R
d
dt

C d
dt

1 0,
2

2
v v v+ + =

or

d
dt RC

d
dt LC

1 0.
2

2
v v v+ + =
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As discussed in Section 8.2, the solution for v  depends on the roots of the 
characteristic equation. Thus, the three possible solutions are

A e A e    ,s t s t
1 2

1 2= +v

B e t B e t cos   sin  ,t
d

t
d1 2v ω ω= +α α− −

D te D e  .t t
1 2v = +α α− −

A word of caution: Because there is a source in the circuit for t 0,>  you 
must take into account the value of the source current at t 0= + when 
you evaluate the coefficients in the three expressions for v.

To find the three possible solutions for i ,L  we substitute the three 
expressions for v into Eq. 8.22. When this has been done, you should be 
able to verify that the three solutions for iL  will be

PARALLEL RLC STEP-RESPONSE FORMS

  i I A e A e  (overdamped),L
s t s t

1 2
1 2= + ′ + ′  (8.24)

  
i I B e t

B e t

cos

sin  (underdamped),
L

t
d

t
d

1

2

ω

ω

= + ′

+ ′

α

α

−

−
 

(8.25)

  i I D te D e  (critically damped),L
t t

1 2= + ′ + ′α α− −  (8.26)

where A ,1′  A ,2′  B ,1′  B ,2′  D ,1′  and D ,2′  are arbitrary constants. In each case, 
the primed constants can be found indirectly in terms of the arbitrary 
constants associated with the voltage solution. However, this approach is 
cumbersome.

The Direct Approach
As we have just seen, the solution for a second-order differential equa-
tion with a constant forcing function equals the forced response, plus a 
response function identical in form to the natural response. Thus, we can 
always write the solution for the step response in the form

i I
function of the same form

as the natural response
,f= +












or

V
function of the same form

as the natural response
,fv = +













where I f  and Vf  represent the final value of the response function. The 
final value may be zero, as we saw for the voltage v  in the circuit in Fig. 8.12.

As we have already noted, the only quantity with a nonzero final 
value in the circuit of Fig. 8.11 is the inductor current. Let’s construct a 
method for finding the parallel RLC step response for the inductor cur-
rent by altering the parallel RLC natural-response method.

Step 1: Determine the initial values of capacitor voltage, V0, and inductor 
current, I0, by analyzing the parallel RLC circuit for t 0< . In this step, we 
also need to find the final value of the inductor current, If, by analyzing the 
circuit as t .→ ∞

 8.3 The Step Response of a Parallel RLC Circuit 291
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292 Natural and Step Responses of RLC Circuits

Step 2: Determine the values of the neper frequency, ,α  and the resonant 
radian frequency, ,0ω  using the values of R, L, and C. No modifications are 
needed for this step.

Step 3: Compare 2α  and .0
2ω  Here we replace the natural response for the 

voltage with the step response for the inductor current, given in Eqs. 8.24–8.26.

Step 4: If the response is overdamped, calculate the values of s1 and s2. If 
the response is underdamped, calculate the value of .dω  If the response is 
critically damped, you can skip this step. No changes are needed in this step.

Step 5: Calculate the values of the A B,   ,′ ′  and D′  coefficients by simul-
taneously solving two equations. To construct the first equation, we eval-
uate the expression for iL(t) from Step 3 at t 0= + and set it equal to the 
initial inductor current, I0. For example, in the overdamped case the first 
 equation is

I A A I ;f 1 2 0+ ′ + ′ =

in the underdamped case, the first equation is

I B I ;f 1 0+ ′ =

and in the critically damped case, the first equation is

I D I .f 2 0+ ′ =

To construct the second equation, we find di dtL  from the inductor 
current in Step 3, evaluate it at t 0 ,= +  and set it equal to the initial value 
of di dtL  from the circuit. How do we find di dtL  from the circuit? We 
use the relationship between voltage and current in an inductor to get

di
dt L

V
L

0 0
 .L L 0v( ) ( )

= =
+ +

In the overdamped case, the second equation is

A s A s
V
L

;1 1 2 2
0′ + ′ =

in the underdamped case, the second equation is

B B
V
L

;d1 2
0α ω− ′ + ′ =

and in the critically damped case, the second equation is

D D
V
L

 .1 2
0α′ − ′ =

Step 6: Write the equation for iL(t) from Step 3 using the results from 
Steps 4 and 5. Find the voltage v and the remaining branch currents using 
the relationship between voltage and current for the component in each 
branch.

The steps for finding the step response of a parallel RLC circuit 
are condensed into Analysis Method 8.4. All of the equations you will 
need are collected in Table 8.3. Examples 8.6–8.10 illustrate how to use 
Table 8.3 and Analysis Method 8.4 when finding the step response of a 
parallel RLC circuit.

1. Determine the initial capacitor voltage 
(V0), the initial inductor current (I0), and 
the final inductor current (If) from the 
circuit.
2. Determine the values of α and 0ω  
using the equations in Table 8.3.
3. If ,2

0
2α ω>  the response is overdamped  

and i t I A e A e t( ) , 0 ;L
s t s t

f 1 21 2= + ′ + ′ ≥ +

If ,2
0
2α ω<  the response is underdamped  

and i t I B e t

B e t t

( ) cos

sin ,   0 ;
L

t
d

t
d

f 1

2

ω

ω

= + ′

+ ′ ≥

α

α

−

− +

 i t I B e t

B e t t

( ) cos

sin ,   0 ;
L

t
d

t
d

f 1

2

ω

ω

= + ′

+ ′ ≥

α

α

−

− +

If ,2
0
2α ω=  the response is critically  

damped and 
i t I D te D e t( ) , 0L

t t
f 1 2= + ′ + ′ ≥α α− − +.

4. If the response is overdamped, 
calculate s1 and s2 using the equations in 
Table 8.3;
If the response is underdamped, calculate 

ddω  using the equation in Table 8.3.
5. If the response is overdamped, 
 calculate ′A1 and ′A2 by simultaneously 
solving the equations in Table 8.3;
If the response is underdamped, 
calculate ′B1 and ′B2 by simultaneously 
solving the equations in Table 8.3;
If the response is critically damped, 
 calculate ′D1 and ′D2  by simultaneously 
solving the equations in Table 8.3.
6. Write the equation for iL(t) from Step 3  
using the results from Steps 4 and 5; 
find the inductor voltage and any desired 
branch currents.

Analysis Method 8.4 The step response of 
parallel RLC circuits.

STEP RESPONSE OF A 
PARALLEL RLC CIRCUIT
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TABLE 8.3 Equations for Analyzing the Step Response of Parallel RLC Circuits

Characteristic equation + + =s
RC

s
LC

I
LC

1 1  2

Neper, resonant, and damped frequencies
RC LC
1

2
  1

d0 0
2 2α ω ω ω α= = = −

Roots of the characteristic equation s s,1
2

0
2

2
2

0
2α α ω α α ω= − + − = − − −

α ω> :2
0
2  overdamped i t I A e A e t( ) , 0L

s t s t
f 1 2

1 2= + ′ + ′ ≥

i I A A I(0 )L f 1 2 0= + ′ + ′ =+

di
dt

s A s A
V
L

(0 )
 L

1 1 2 2
0= ′ + ′ =

+

α ω< :2
0
2  underdamped i t I B e t B e t t( ) cos sin , 0L

t
d

t
df 1 2ω ω= + ′ + ′ ≥α α− −

i I B I(0 )  L f 1 0= + ′ =+

di
dt

B B
V
L

(0 )
 L

d1 2
0α ω= − ′ + ′ =

+

α ω= :2
0
2  critically damped i t I D te D e t( ) , 0L

t t
f 1 2= + ′ + ′ ≥α α− −

= + ′ =+i I D I(0 )L f 2 0

α= ′ − ′ =
+di

dt
D D

V
L

(0 )
 L

1 2
0

EXAMPLE 8.6  Finding the Overdamped Step Response of a  
Parallel RLC Circuit

The initial energy stored in the circuit in Fig.  8.13 is 
zero. At t 0,=  a dc current source of 24 mA is applied 
to the circuit. The value of the resistor is 400 Ω. Find 
i t( )L  for t 0≥ .

Solution
Follow the steps in Analysis Method 8.4.

Step 1: The initial values of capacitor voltage, V0, and 
inductor current, I0, are both zero because the initial 
stored energy is zero. As t ,→ ∞  the capacitor behaves 
like an open circuit and the inductor behaves like a 
short circuit that shunts the resistor, so all of the current 
from the source is in the inductor. Thus, I 24 mA.f =
Step 2: Using the equations in the second row of 
Table 8.3,

RC
1

2
1

2 400 25 10
50,000  rad s;9α

( )( )
= =

×
=−

LC
1 1

0.025 25 10
40,000  rad s.0 9ω

( )( )
= =

×
=−

Step 3: Compare 2α  and ;0
2ω  since ,2

0
2α ω>  the 

response is overdamped and from Table 8.3,

i t I A e A e t( ) ,   0.L
s t s t

f 1 2
1 2= + ′ + ′ ≥

Step 4: Calculate s1 and s2 using the equations in the 
third row of Table 8.3:

s 50,000 50,000 40,0001
2

0
2 2 2α α ω= − + − = − + −

50,000 30,000 20,000  rad s;= − + = −

α α ω= − − − = − − −s 50,000 50,000 40,0002
2

0
2 2 2

50,000 30,000 80,000  rad s.= − − = −

Step 5: Calculate the values of A1′  and A2′  by simulta-
neously solving the equations from row 4 in Table 8.3:

I A A I A Aso 0.024 0;f 1 2 0 1 2+ ′ + ′ = + ′ + ′ =

s A s A
V
L

A Aso 20,000 80,000 0.1 1 2 2
0

1 2′ + ′ = − ′ − ′ =

Solving,

A A32 mA and 8 mA.1 2′ = − ′ =

Step 6: Write the equation from Step 3 using the 
results from Steps 4 and 5 to give

( )= − + ≥− −i t e e t( ) 24 32 8  mA, 0.L
t t20,000 80,000

R25 mH25 nFt 5 0
I v

1

2

iC iL iR

Figure 8.13 ▲ The circuit for Example 8.6.

(Note that the equations for iL(t), iL(0+), and diL(0+)/dt  assume that the reference direction for the current in every 
component is in the direction of the reference voltage drop across that component.)
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294 Natural and Step Responses of RLC Circuits

EXAMPLE 8.7  
Finding the Underdamped Step Response of a  
Parallel RLC Circuit

The resistor in the circuit in Example 8.6 (Fig. 8.13) 
is increased to Ω625  . Find i t( )L  for t 0.≥

Solution
Follow the steps in Analysis Method 8.4.

Step 1: From Step 1 of Example 8.6, V I I0,   0,   24 mA.0 0 f= = =
V I I0,   0,   24 mA.0 0 f= = =

Step 2: Since only R has changed, 40,000  rad s0ω =  
from Example 8.6 and

RC
1

2
1

2 625 25 10
32,000  rad s.9α

( )( )
= =

×
=−

Step 3: Compare 2α  and ;0
2ω  since ,2

0
2α ω<  the 

response is underdamped and from Table 8.3,

i t I B e t B e t t( ) cos sin ,   0.L
t

d
t

df 1 2ω ω= + ′ + ′ ≥α α− −

Step 4: Calculate dω  using the equation in the sec-
ond row of Table 8.3:

40,000 32,000 24,000 rad s.d 0
2 2 2 2ω ω α= − = − =

Step 5: Calculate the values of B1′  and B2′  by simulta-
neously solving the equations from row 5 in Table 8.3:

I B I Bso 0.024 0;f 1 0 1+ ′ = + ′ =

α ω− ′ + ′ = − ′ + ′ =B B
V
L

B B  so   32,000 24,000 0.d1 2
0

1 2

Solving,

B B24 mA and 32 mA.1 2′ = − ′ = −

Step 6: Write the equation from Step 3 using the 
results from Steps 4 and 5 to give

i t e t

e t t

( ) (24 24 cos24,000

32 sin 24,000 ) mA, 0.

L
t

t

32,000

32,000

= −

− ≥

−

−

EXAMPLE 8.8  Finding the Critically Damped Step Response of a  
Parallel RLC Circuit

The resistor in the circuit in Example 8.6 (Fig. 8.13) 
is set at Ω500  . Find iL  for t 0.≥

Solution
Follow the steps in Analysis Method 8.4.

Step 1: From Step 1 of Example 8.6,

V I I0,   0,   24 mA.0 0 f= = =
Step 2: Since only R has changed,

ω = 40,000 rad s,0

and from the second row of Table 8.3

RC
1

2
1

2 500 25 10
40,000  rad s.9α

( )( )
= =

×
=−

Step 3: Compare 2α  and ;0
2ω  since ,2

0
2α ω=  the 

response is critically damped and from Table 8.3,

i t I D te D e t( ) ,   0.L
t t

f 1 2= + ′ + ′ ≥α α− −

Step 4: The response is critically damped, so this 
step is not needed.

Step 5: Calculate the values of D1′  and D2′  by 
simultaneously solving the equations from row 6 in 
Table 8.3:

I D I Dso 0.024 0;f 2 0 2+ ′ = + ′ =

D D
V
L

D D  so 40,000 0.1 2
0

1 2α′ − ′ = ′ − ′ =

Solving,

D D960,000  mA s and 24 mA.1 2′ = − ′ = −

Step 6: Write the equation from Step 3 using the 
results from Steps 4 and 5 to give

i t te e t( ) 24 960,000 24  mA,  0.L
t t40,000 40,000( )= − − ≥− −
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EXAMPLE 8.9 Comparing the Three-Step Response Forms

a) Plot on a single graph, over a range from 0 to 
µ200  s, the overdamped, underdamped, and  

critically damped responses derived in  
Examples 8.6–8.8.

b) Use the plots of (a) to find the time required for 
iL  to reach 90% of its final value.

c) On the basis of the results obtained in (b), which 
response would you specify in a design that puts 
a premium on reaching 90% of the final value of 
the output in the shortest time?

d) Which response would you specify in a design 
that must ensure that the final value of the cur-
rent is never exceeded?

Solution

a) See Fig. 8.14.

b) The final value of iL  is 24 mA, so we can 
read the times off the plots corresponding to 
i 21.6 mA.L =  Thus, µ=t 130  s,od  t 97  s,cd µ=  
and t 74  s.ud µ=

c) The underdamped response reaches 90% of the 
final value in the fastest time, so it is the desired 
response type when speed is the most important 
design specification.

d) From the plot, you can see that the underdamped 
response overshoots the final value of current, 
whereas neither the critically damped nor the 
overdamped response produces currents in 
excess of 24 mA. Although specifying either of 
the latter two responses would meet the design 
specification, it is best to use the overdamped 
response. It would be impractical to require a 
design to achieve the exact component values 
that ensure a critically damped response.

EXAMPLE 8.10     Finding the Step Response of a Parallel RLC Circuit with Initial 
Stored Energy

Suppose energy had been  stored in the circuit in 
Example 8.8 (Fig.  8.13, with R 500 = Ω) at the 
instant the dc current source is applied. The initial 
current in the inductor is 29 mA, and the initial 
voltage across the capacitor is 50 V. Find i t( )L  for 
t 0≥  and t( )v  for t 0.≥

Solution
Follow Analysis Method 8.4.

 Step  1: From the problem statement, V 50 V0 =  
and I 29 mA.0 =  The final value of the inductor 
current is unchanged from the problem in Example 
8.8, so I 24 mA.f =

Step 2: From Example 8.8, 40,000  rad sα =  and 
40,000  rad s.0ω =

Step   3: Compare 2α  and ;0
2ω  since ,2

0
2α ω=  the 

response is critically damped and from Table 8.3,

i t I D te D e t( ) , 0.L
t t

f 1 2= + ′ + ′ ≥α α− −

Step 4: The response is critically damped, so this step is 
not needed.

Step 5: Calculate the values of D1′  and D2′  by simultane-
ously solving the equations from row 6 in Table 8.3:

    I D I Dso 0.024 0.029;f 2 0 2+ ′ = + ′ =

D D
V
L

D D  so 40,000 50
0.025

2000.1 2
0

1 2α′ − ′ = ′ − ′ = =

Underdamped (R 5 625 V)

Overdamped (R 5 400 V)
Critically damped (R 5 500 V)

2
0

6

10

14

18

22

26

iL (mA)

20 60 100 140 180 200
t (ms)

Figure 8.14 ▲ The current plots for Example 8.9.
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296 Natural and Step Responses of RLC Circuits

Solving,

D D2.2 10   mA s and 5 mA.1
6

2′ = × ′ =

Step 6: Write the equation from Step 3 using the 
results from Steps 4 and 5 to give

( )= − × + ≥− −i t te e t( ) 24 2.2 10 5 mA, 0.L
t t6 40,000 40,000

We can get the expression for t t( ),   0≥v  by using 
the relationship between the voltage and current in 
an inductor:

v( ) =t L
di
dt

   L

te

e

e

(25 10 )[ 2.2 10 )( 40,000

2.2 10

5 ( 40,000) ] 10

t

t

t

3 6 40,000

6 40,000

40,000 3

( )

( )

= × × −

+ ×

+ − ×

− −

−

− −

te e t2.2 10 50  V, 0.t t6 40,000 40,000( )= − × + ≥− −

To check this result, let’s verify that the initial 
voltage across the inductor is 50 V:

v( ) ( )( ) ( )= − × + =0 2.2   10 0 1    50 1 50 V.6

Objective 1—Be able to determine the natural response and the step response of parallel RLC circuits

8.6  In the circuit shown, = ΩR 12.5  , L 25 mH,=  
C 62.5  F,µ=  and I 2 A.=  The initial voltage 
drop across the capacitor is 50 V and the initial 
inductor current is 1 A. Find (a) i 0 ;R ( )+  (b) 
i 0 ;C ( )+  (c) di dt(0 ) ;L

+  (d) s ,1  s ;2   
(e) i t( )L  for t 0;≥  and (f) t( )v  for t 0 .≥ +

Answer: (a) 4 A;

(b) 3A;−

(c) 2000 A s;

(d) (−640 + j480) rad/s, (−640 − j480) rad/s;

(e) + −−e t t2 ( cos480 + 2.833sin 480 ) At640  
for t 0;≥

(f) −−e t t(50 cos480 33.33sin 480 ) Vt640  
for t 0 .≥ +

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter Problems 8.34–8.36.

 8.4 The Natural and Step Responses 
of a Series RLC Circuit

The procedures for finding the natural and step responses of a series RLC 
circuit are the same as those used to find the natural and step responses of 
a parallel RLC circuit because both circuits are described by differential 
equations that have the same form. For the natural-response problem, we 
solve for the current because it is the same for all circuit components. We 
begin by summing the voltages, expressed in terms of the current, around 
the closed path in the circuit shown in Fig. 8.15. Thus

Ri L di
dt C

i d V1       0.
t

0
0∫ τ+ + + =

We now differentiate once with respect to t to get

R di
dt

L d i
dt

i
C

    0,
2

2+ + =

RLC
t 5 0

vI

1

2

iC iL iR

R

i

L

C

I0

V0

1

2

Figure 8.15 ▲ A circuit used to illustrate the natural 
response of a series RLC circuit.
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  8.4 The Natural and Step Responses of a Series RLC Circuit 297

which we can rearrange as

 d i
dt

R
L

di
dt

i
LC

  0.
2

2 + + =  (8.27)

Comparing Eq. 8.27 with Eq. 8.1 reveals that they have the same form. 
Therefore, to find the solution of Eq. 8.27, we follow the same process 
that led us to the solution of Eq. 8.1.

From Eq. 8.27, the characteristic equation for the series RLC circuit is

CHARACTERISTIC EQUATION, SERIES RLC CIRCUIT

 s R
L

s
LC

1 0.2 + + =  (8.28)

The roots of the characteristic equation are

s R
L

R
L LC2 2

1 ,1,2

2

( )= − ± −

or

α α ω= − ± −s     .1,2
2

0
2

The neper frequency ( )α  for the series RLC circuit is

NEPER FREQUENCY, SERIES RLC CIRCUIT

 R
L2

rad s,α =  (8.29)

and the expression for the resonant radian frequency is

RESONANT RADIAN FREQUENCY, SERIES RLC CIRCUIT

 ω =
LC
1 rad s.0

 (8.30)

Note that the equation for the neper frequency of the series RLC circuit 
differs from that of the parallel RLC circuit, but the equations for the res-
onant radian frequencies are the same.

The current response will be overdamped, underdamped, or critically 
damped according to whether  0

2 2ω α< , 0
2 2ω α> , or 0

2 2ω α= , respec-
tively. Thus, the three possible solutions for the current are as follows:

SERIES RLC NATURAL-RESPONSE FORMS

  i t A e A e( )      (overdamped),s t s t
1 2

1 2= +  (8.31)

  

ω

ω

=

+

α

α

−

−

i t B e t

B e t

( ) cos

sin (underdamped),

t
d

t
d

1

2  (8.32)

   i t D te D e( )    (critically damped).t t
1 2= +α α− −  (8.33)
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298 Natural and Step Responses of RLC Circuits

Once you know the current you can find the voltage across any circuit 
element.

Let’s construct a method for finding the series RLC natural response for 
the circuit’s current by altering the parallel RLC natural-response method.

Step 1: Determine the initial values of capacitor voltage, V0, and inductor 
current, I0, by analyzing the RLC circuit. This step is unchanged.

Step 2: Determine the values of the neper frequency, ,α  and the resonant 
radian frequency, ,0ω  using the values of R, L, and C. While the equation 
for 0ω  is the same for both circuits, the equation for α is different: for the 
parallel RLC, RC1 (2 )α = , and for the series RLC, R 2L.α =

Step 3: Compare α 2 and 0
2ω  to determine the response form. Use the 

appropriate equation for the circuit current from Eqs. 8.31–8.33.

Step 4: If the response is overdamped, calculate the values of s1 and s2. If 
the response is underdamped, calculate the value of .dω  If the response is 
critically damped, you can skip this step. No changes are needed in this step.

Step 5: Calculate the values of the A, B, and D coefficients by simulta-
neously solving two equations. To construct the first equation, we evalu-
ate the expression for i(t) from Step 3 at t 0= + and set it equal to the 
initial inductor current, I0. For example, in the overdamped case the first 
 equation is

+ =A A I ;1 2 0

in the underdamped case, the first equation is

=B I ;1 0

and in the critically damped case, the first equation is

=D I .2 0

To construct the second equation, we find di dt  from the circuit current 
in Step 3, evaluate it at t 0= + and set it equal to the initial value of di dt  
from the circuit. How do we find the initial value of di dt  from the circuit? 
We use the relationship between voltage and current in an inductor to get

di
dt L
(0 ) (0 )

.Lv
=

+ +

But we don’t know the initial voltage across the inductor, so we use KVL to 
find it. We know that the sum of the three component voltages at t 0= + 
must be zero. The voltage across the resistor at t 0= + is the product of 
the initial current (I0) and the resistance, and the voltage across the capaci-
tor at t 0= + is V0. Using the reference system in Fig. 8.15, we obtain

v RI V(0 ) .L 0 0= − −+

So the initial value of di dt  from the circuit is

( )= − −
+di

dt L
RI V

(0 ) 1 .0 0

Thus, in the overdamped case, the second equation is

+ = − −A s A s
L

RI V1 ( )1 1 2 2 0 0
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in the underdamped case, the second equation is

α ω− + = − −B B
L

RI V1 ( );d1 2 0 0

and in the critically damped case, the second equation is

α− = − −D D
L

RI V1 ( ).1 2 0 0

Step 6: Write the equation for i(t) from Step 3 using the results from 
Steps 4 and 5. Find the voltage for any component using its relationship 
between voltage and current.

The steps for finding the natural response for a parallel RLC circuit 
are condensed into Analysis Method 8.5. All of the equations you will 
need are collected in Table 8.4.

To verify that the procedure for finding the step response of a series 
RLC circuit is similar to that for a parallel RLC circuit, we show that the 
differential equation that describes the capacitor voltage in Fig. 8.16 has 
the same form as the differential equation that describes the inductor cur-
rent in Fig. 8.11. Applying KVL to the circuit shown in Fig. 8.16 gives

V Ri L di
dt

  .C= + + v

The current (i) is related to the capacitor voltage ( Cv ) by the expression

i C
d
dt

,C=
v

from which

di
dt

C
d
dt

 .C
2

2
=

v

NATURAL RESPONSE OF A 
SERIES RLC CIRCUIT

1. Determine the initial capacitor voltage 
(V0) and inductor current (I0) from the circuit.
2. Determine the values of α and ω0 using 
the equations in Table 8.4.
3. If α ω> ,22

0
2  the response is overdamped 

and = + ≥i t A e A e t( ) , 0s t s t
1 2

1 2 ;
If α ω< ,22

00
22  the response is underdamped and  

ω ω= + ≥α α− −i t B e t B e t t( ) cos sin , 0;t
d

t
d1 2

If α ω= ,22
0
2  the response is critically damped  

and = + ≥α α− −i t D te D e t( ) , 0t t
1 2 .

4. If the response is overdamped, calculate 
s1 and s2 using the equations in Table 8.4;
If the response is underdamped, calculate 
ωd using the equation in Table 8.4.
5. If the response is overdamped, calculate 
A1 and A2 by simultaneously solving the 
 equations in Table 8.4;
If the response is underdamped, calculate 
B1 and B2 by simultaneously solving the 
equations in Table 8.4;
If the response is critically damped, 
 calculate D1 and D2 by simultaneously 
 solving the equations in Table 8.4.
6. Write the equation for i(t) from Step 3 
using the results from Steps 4 and 5; find any 
desired component voltages.

Analysis Method 8.5 The natural response  
of series RLC circuits.

TABLE 8.4
  Equations for Analyzing the Natural Response of  

Series RLC Circuits

Characteristic equation s R
L

s
LC

  1 02 + + =

Neper, resonant, and 
damped frequencies

R
L LC2

  1
d0 0

2 2α ω ω ω α= = = −

Roots of the  
characteristic equation

s s,1
2

0
2

2
2

0
2α α ω α α ω= − + − = − − −

:2
0
2α ω>  overdamped i t A e A e t( ) ,   0s t s t

1 2
1 2= + ≥

i A A I(0 ) 1 2 0= + =+

( )= + = − −
+di

dt
s A s A

L
RI V

(0 ) 1
1 1 2 2 0 0

:2
0
2α ω<  underdamped i t B e t B e t t( ) cos sin , 0t

d
t

d1 2ω ω= + ≥α α− −

i B I(0 ) 1 0= =+

α ω ( )= − + = − −
+di

dt
B B

L
RI V

(0 ) 1
d1 2 0 0

:2
0
2α ω=  critically 

damped
= + ≥α α− −i t D te D e t( ) , 0t t

1 2

= =+i D I(0 ) 2 0

α ( )= − = − −
+di

dt
D D

L
RI V

(0 ) 1
1 2 0 0

1

2

R

i

t 5 0

L

CV

vR1 2 vL1 2

vC

1

2

Figure 8.16 ▲ A circuit used to illustrate the step 
response of a series RLC circuit.

(Note that the equations for i(t), i(0+), and di(0+)/dt  assume that the reference direction for the cur-
rent in every component is in the direction of the reference voltage drop across that component.)
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300 Natural and Step Responses of RLC Circuits

Substitute the expressions for the current and its first derivative into the 
KVL equation to get

 
d
dt

R
L

d
dt LC

V
LC

  .C C C
2

2

v v v
+ + =  (8.34)

Equation 8.34 has the same form as Eq. 8.23; therefore, the procedure for 
finding Cv  parallels that for finding i .L  The three possible solutions for Cv  
are as follows:

SERIES RLC STEP-RESPONSE FORMS

 V A e A e         (overdamped),C
s t s t

f 1 2
1 2v = + ′ + ′  (8.35)

 

V B e t

B e t

    cos  

  sin  (underdamped),
C

t
d

t
d

f 1

2

v ω

ω

= + ′

+ ′

α

α

−

−
 (8.36)

 V D te D e   (critically damped),C
t t

f 1 2v = + ′ + ′α α− −
 (8.37)

where Vf  is the final value of .Cv  Hence, from the circuit shown in 
Fig. 8.15, the final value of Cv  is the dc source voltage V.

Let’s look at how to alter the series RLC natural-response method 
(Analysis Method 8.5) to find the series RLC step response for the 
 capacitor voltage.

Step 1: Determine the initial values of capacitor voltage, V0, and induc-
tor current, I0, by analyzing the RLC circuit. In this step, we also need to 
find the final value of the capacitor voltage, Vf, by analyzing the circuit as 
t .→ ∞

Step 2: Determine the values of the neper frequency, ,α  and the resonant 
radian frequency, ,0ω  using the values of R, L, and C. No modifications are 
needed for this step.

Step 3: Compare 2α  and .0
2ω  Here we replace the natural response for 

the current with the step response for the capacitor voltage, given in  
Eqs. 8.35–8.37.

Step 4: If the response is overdamped, calculate the values of s1 and s2. If 
the response is underdamped, calculate the value of .dω  If the response 
is critically damped, you can skip this step. No changes are needed in this 
step.

Step 5: Here we calculate the values of the A B,   ,′ ′  and D′  coefficients by 
simultaneously solving two equations. To construct the first equation, we 
evaluate the expression for vC(t) from Step 3 at t 0= + and set it equal to 
the initial capacitor voltage, V0. For example, in the overdamped case the 
first equation is

V A A V ;f 1 2 0+ ′ + ′ =

in the underdamped case, the first equation is

V B V ;f 1 0+ ′ =

and in the critically damped case, the first equation is

V D V .f 2 0+ ′ =
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To construct the second equation, we find d dtCv  from the capacitor voltage 
in Step 3, evaluate it at t 0= + and set it equal to the initial value of d dtCv  
from the circuit. How do we find d dtCv  at t 0= + from the circuit? We use 
the relationship between voltage and current in a capacitor to get

vd
dt

i
C

I
C

(0 ) (0 )
 .C C 0= =

+ +

In the overdamped case, the second equation is

A s A s
I
C

;1 1 2 2
0′ + ′ =

in the underdamped case, the second equation is

B B
I
C

;d1 2
0α ω− ′ + ′ =

and in the critically damped case, the second equation is

D D
I
C

 .1 2
0α′ − ′ =

Step 6: Here we must write the equation for vC(t) from Step 3 using the 
results from Steps 4 and 5. Find the current i and the remaining compo-
nent voltages using the relationships between voltage and current.

The steps for finding the step response for a series RLC circuit are con-
densed into Analysis Method 8.6. All of the equations you will need are 
collected in Table 8.5.

Examples 8.11 and 8.12 find the natural and step responses of a series 
RLC circuit.

(Note that the equations for vC(t), vC(0+), and dvC(0+)/dt  assume that the reference direction 
for the current in every component is in the direction of the reference voltage drop across that 
component.)

STEP RESPONSE OF A  
SERIES RLC CIRCUIT

1. Determine the initial capacitor voltage 
(V0), the initial inductor current (I0), and 
the final capacitor voltage (Vf) from the 
circuit.
2. Determine the values of α and ω0 
using the equations in Table 8.5.
3. If α ω> ,22

0
2  the response 

is overdamped and 
t V A e A e t( )     , 0 ;C

s t s t
f 1 2

1 2= + ′ + ′ ≥ +v
If α ω< ,22

00
22  the response 

is underdamped and 
t V B e t B e t

t

( ) cos   sin ,

0 ;
C

t
d

t
df 1 2ω ω= + ′ + ′

≥

α α− −

+

v

If α ω= ,22
0
2  the response 

is critically damped and 
= + ′ + ′ ≥α α− − +t V D te D e t( ) , 0C

t t
f 1 2v .

4. If the response is overdamped, 
 calculate s1 and s2 using the equations in 
Table 8.5;
If the response is underdamped, calculate 
ωd using the equation in Table 8.5.
5. If the response is overdamped, 
 calculate ′A1 and ′A2 by simultaneously 
solving the equations in Table 8.5;
If the response is underdamped, 
calculate ′B1 and ′B2  by simultaneously 
solving the equations in Table 8.5;
If the response is critically damped, 
 calculate ′D1 and ′D2  by simultaneously 
solving the equations in Table 8.5.
6.  Write the equation for vC(t) from Step 3 
using the results from Steps 4 and 5; find 
the capacitor current and any desired 
 component voltages.

Analysis Method 8.6 The step response of 
series RLC circuits.

TABLE 8.5
  Equations for Analyzing the Step Response of Series RLC 

Circuits

Characteristic equation s R
L

s
LC

V
LC

1  2 + + =

Neper, resonant, and 
damped frequencies

R
L LC2

  1
d0 0

2 2α ω ω ω α= = = −

Roots of the characteristic 
equation

s s,1
2

0
2

2
2

0
2α α ω α α ω= − + − = − − −

:2
0
2α ω>  overdamped t V A e A e t( ) ,   0C

s t s t
f 1 2

1 2= + ′ + ′ ≥ +v

v V A A V(0 )C f 1 2 0= + ′ + ′ =+

vd
dt

s A s A
I
C

(0 )
 C

1 1 2 2
0= ′ + ′ =

+

:2
0
2α ω<  underdamped t V B e t B e t t( ) cos sin ,   0C

t
d

t
df 1 2ω ω= + ′ + ′ ≥α α− − +v

v V B V(0 )C f 1 0= + ′ =+

vd
dt

B B
I
C

(0 )
 C

d1 2
0α ω= − ′ + ′ =

+

:2
0
2α ω=  critically 

damped
t V D te D e t( ) ,   0C

t t
f 1 2= + ′ + ′ ≥α α− − +v

= + ′ =+ V D V(0 )C f 2 0v

α= ′ − ′ =
+d

dt
D D

I
C

(0 )
 C

1 2
0v
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302 Natural and Step Responses of RLC Circuits

EXAMPLE 8.11    Finding the Natural Response of a Series RLC Circuit

The 0.1  Fµ  capacitor in the circuit shown in 
Fig. 8.17 is charged to 100 V. At t 0=  the capaci-
tor is discharged through a series combination of a 
100 mH inductor and a 560 Ω  resistor.

a) Find i t( )  for t 0.≥
b) Find t( )Cv  for t 0.≥

Solution

a) This is a natural-response problem because 
there is no source in the circuit for t 0;≥  follow 
Analysis Method 8.5, which uses Table 8.4.

Step 1: Determine the initial values of capacitor 
voltage, V0, and inductor current, I0. From the 
problem statement and the circuit configuration, 
V 100 V0 =  and I 0.0 =

Step 2: Determine the values of α and 0ω  using 
the equations in Table 8.4:

R
L2

560
2 0.1

2800  rad s,α
( )

= = =

LC
1 1

0.1 0.1 10
10 rad s .0

2
6

8 2 2ω
( )( )

= =
×

=−

Step 3: Compare 2α  and ;0
2ω  since ,2

0
2α ω<  the re-

sponse is underdamped and from row 5 in Table 8.4,

i t B e t B e t t( ) cos sin ,   0.t
d

t
d1 2ω ω= + ≥α α− −

Step 4: Since the response is underdamped, calcu-
late the value of dω  from row 2 in Table 8.4:

10 2800 9600  rad s.d 0
2 2 8 2ω ω α= − = − =

Step 5: Since the response is underdamped, calcu-
late the values of B1 and B2 by simultaneously solv-
ing the equations from row 5 in Table 8.4:

B I 0;1 0= =

B B
L

RI V1 sod1 2 0 0α ω ( )− + = − −

( )( )− + = − − = −B B2800 9600 1
0.1

  560 (0) 100 1000.1 2

Solving,

B B0 and 0.1042 A.1 2= = −

Step 6: Write the equation for i(t) using the results 
from Steps 4 and 5:

i t e t t( ) 0.1042 sin 9600  A, 0.t2800= − ≥−

b) To find t( ),Cv  we can use either of the following 
relationships:

 v v
C

i d Ri L di
dt

1 100 or .C

t

C
0∫ τ ( )= + = − +

Whichever expression is used (the second is recom-
mended), the result is

v t t t e t( ) (100 cos9600 29.17sin 9600 )  V, 0.C
t2800= + ≥−

EXAMPLE 8.12    Finding the Step Response of a Series RLC Circuit

No energy is stored in the 100 mH inductor or the 
0.4  Fµ  capacitor when the switch in the circuit 
shown in Fig. 8.18 is closed. Find t( )Cv  for t 0.≥

Solution
This is a step-response problem because there is 
a source in the circuit for t 0;≥  follow Analysis 
Method 8.6, which uses Table 8.5.

Step 1: Determine the initial values of capaci-
tor voltage, V0, and inductor current, I0, and the 
final value of the capacitor voltage, Vf. From the 
problem statement and the circuit configuration, 
V I0,   0,0 0= =  and V 48 V.f =

t 5 0

560 Vi

100 mH

0.1 mF100 V

1

2

vC

1

2

Figure 8.17 ▲ The circuit for Example 8.11.

1

2

0.1 H
t 5 0

1250 V

0.4 mF48 V vC

1

2

Figure 8.18 ▲ The circuit for Example 8.12.

M08_NILS8436_12_SE_C08.indd   302 13/01/22   3:17 PM
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Step 2: Determine the values of α and 0ω  using the 
equations in Table 8.5:

R
L2

1250
2 0.1

6250  rad s;α
( )

= = =

LC
1 1

0.1 0.4 10
25 10 rad s .0

2
6

6 2 2ω
( )( )

= =
×

= ×−

Step 3: Compare 2α  and ;0
2ω  since ,2

0
2α ω>  the 

response is overdamped and from row 4 in Table 8.5:

v t V A e A e t( ) , 0.C
s t s t

f 1 2
1 2= + ′ + ′ ≥

Step 4: Since the response is overdamped, calculate 
the values of s1 and s2 from row 2 in Table 8.5:

s 6250 6250 50001
2

0
2 2 2α α ω= − + − = − + −

6250 3750 2500  rad s;= − + = −

s 6250 6250 50002
2

0
2 2 2α α ω= − − − = − − −

6250 3750 10,000  rad s.= − − = −

Step 5: Since the response is overdamped, calculate 
the values of A1′  and A2′  by simultaneously solving the 
equations from row 4 in Table 8.5:

V A A V A Aso 48 0;f 1 2 0 1 2+ ′ + ′ = + ′ + ′ =

s A s A
I
C

A A  so 2500 10,000 0.1 1 2 2
0

1 2′ + ′ = − ′ − ′ =

Solving,

A A64 V and 16 V.1 2′ = − ′ =

Step 6: Write the equation for vC(t) in Step 3 using the 
results from Steps 4 and 5:

v t e e t( ) 48 64 16  V,  0.C
t t2500 10,000( )= − + ≥− −

Objective 2—Be able to determine the natural response and the step response of series RLC circuits

8.7  The initial energy stored in the circuit shown is 
zero. Find vo(t) for t 0.≥

Answer: e t e t16 16 cos300 21.33 sin 300 Vt t400 400− −− −   
for t 0.≥

8.8  The resistor in the circuit of Assessment 
Problem 8.7 is changed to 250 Ω. The initial 
energy stored is still zero. Find vo(t) for t 0.≥

Answer: te e20 10,000 20 Vt t500 500− −− −  for t 0.≥

8.9  The resistor in the circuit of Assessment 
Problem 8.7 is changed to 312.5 Ω. The initial 
energy stored is still zero. Find vo(t) for t 0.≥

Answer:

e e25 33.33 8.33 Vt t250 1000− +− −  for t 0.≥

ASSESSMENT PROBLEMS

SELF-CHECK: Also try Chapter Problems 8.49–8.51.

8.5 A Circuit with Two Integrating 
Amplifiers

A circuit containing two integrating amplifiers connected in cascade1 
is also a second-order circuit; that is, the output voltage of the second 
integrator is related to the input voltage of the first by a second-order 
 differential equation. We begin our analysis of a circuit containing two 
cascaded amplifiers with the circuit shown in Fig. 8.19.

250 mH

16 mF
+

−

t = 0

80 mA 200 V vo(t)

1 In a cascade connection, the output signal of the first amplifier ( 1ov  in Fig. 8.19) is the input 
signal for the second amplifier.
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304 Natural and Step Responses of RLC Circuits

We derive the differential equation that defines the relationship 
between ov  and gv , assuming that the op amps are ideal. Begin the deri-
vation by summing the currents at the inverting input terminal of the first 
integrator:

R
C d

dt

0
 (0 ) 0.g

o
1

1 1

−
+ − =

v
v

Simplifying and rearranging, we get

 = −
v

v
d
dt R C

1   .o
g

1

1 1

 (8.38)

Now, sum the currents away from the inverting input terminal of the sec-
ond integrating amplifier:

R
C d

dt
0

 (0 ) 0,o
o

1

2
2

−
+ − =

v
v

or

d
dt R C

1   .o
o

2 2
1= −

v
v

Differentiating both sides of this equation gives

d
dt R C

d
dt

1   .o o
2

2
2 2

1= −
v v

We find the differential equation that governs the relationship between ov  
and gv  by substituting for d dto1v , using Eq. 8.38:

 =
v

v
d
dt R C R C

1   1   .o
g

2

2
1 1 2 2

 (8.39)

Example 8.13 illustrates the step response of a circuit containing two cas-
caded integrating amplifiers.

VCC

2VCC vo1

1

2

vg

1

2

2

1

R1
R2

C1

VCC

2VCC vo

1

2

2

1

C2

Figure 8.19 ▲ Two integrating amplifiers connected in cascade.
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5 V

25 V vo1

1

2

vg

1

2

2

1

9 V

29 V

250 kV
500 kV

0.1 mF
1 mF

vo

1

2

2

1

Figure 8.20 ▲ The circuit for Example 8.13.

EXAMPLE 8.13    Analyzing Two Cascaded Integrating Amplifiers

No energy is stored in the circuit shown in Fig. 8.20 
when the input voltage gv  jumps instantaneously 
from 0 to 25 mV.

a) Derive the expression for t( )ov  for t t0 .sat≤ ≤
b) Find the time tsat when the circuit saturates.

Solution

a) Figure  8.20 indicates that the amplifier scaling 
factors are

R C
1 1000

250 0.1
40,

1 1 ( )( )
= =

R C
1 1000

500 1
2.

2 2 ( )( )
= =

Now, because 25 mVg =v  for t 0,>  Eq. 8.39 
becomes

d
dt

40 2 25 10 2.o
2

2
3( )( )( )= × =−v

To solve for ,ov  we let

g t
d
dt

( ) ,o=
v

Then,

dg t
dt

dg t dt
( )

2 and ( ) 2 .= =

Hence

dy dx2 ,
g

g t t

0

( )

0∫ ∫=
( )

from which

g t g t( ) 0 2 .( )− =

However,

g
d

dt
0

0
0,o( )

( )
= =

v

because the energy stored in the circuit ini-
tially is zero, and the op amps are ideal. (See  
Problem 8.62.) Then,

d
dt

t t2  and  0 .o
o o

2v
v v ( )= = +

But 0 0,o ( ) =v  so the expression for ov  becomes

t t t, 0 .o
2

sat= ≤ ≤v

b) The second integrating amplifier saturates when 
ov  reaches 9 V or t 3 s.=  But it is possible that 

the first integrating amplifier saturates before 
t 3 s.=  To explore this possibility, use Eq. 8.38 
to find d dto1v :

 
vd
dt

40 25 10 1.o1 3( )= − × = −−

Solving for o1v  yields

t.o1 = −v

Thus, at t 3 s,=  3 V,o1 = −v  and, because the 
power supply voltage on the first integrating 
amplifier is 5 V,±  the circuit reaches saturation 
when the second amplifier saturates. When one 
of the op amps saturates, we no longer can use 
the linear model to predict the behavior of the 
circuit.

Two Integrating Amplifiers with Feedback Resistors
Figure  8.21 depicts a variation of the circuit shown in Fig.  8.19. Recall 
from Section  7.7 that the op amp in the integrating amplifier saturates 
due to the feedback capacitor’s accumulation of charge. Here, a resistor 

SELF-CHECK: Assess your understanding of this material by trying Chapter Problem 8.59.
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306 Natural and Step Responses of RLC Circuits

is placed in parallel with each feedback capacitor (C1 and C2 ) to over-
come this problem. We derive the equation for the output voltage, ,ov  
and determine the impact of these feedback resistors on the integrating 
amplifiers from Example 8.13.

We begin the derivation of the second-order differential equation 
that relates o1v  to gv  by summing the currents at the inverting input node 
of the first integrator:

R R
C d

dt

0 0
 (0 ) 0.g o

o
a

1

1
1 1

−
+

−
+ − =

v v
v

Simplifying and rearranging, we get

d
dt R C R C

1    .o
o

g1

1 1
1

a 1

+ =
−v

v
v

For convenience, we let R C1 1 1τ = :

 
τ

+ =
−d

dt R C
 .o o g1 1

1 a 1

v v v
 (8.40)

Next, sum the currents at the inverting input terminal of the second 
integrator:

R R
C d

dt
0 0

 (0 ) 0.o o
o

1

b 2
2

−
+

−
+ − =

v v
v

Simplifying and rearranging, we get

 
τ

+ =
−d

dt R C
,o o o

2

1

b 2

v v v  (8.41)

where R C .2 2 2τ =  Differentiating both sides of Eq. 8.41 yields

d
dt

d
dt R C

d
dt

1   1   .o o o
2

2
2 b 2

1

τ
+ = −

v v v

From Eq. 8.40,

d
dt R C

    ,o o g1 1

1 a 1τ
=

−
−

v v v

VCC1

2VCC1 vo1

1

2

vg

1

2

2

1

Ra

R1

Rb VCC 2

2VCC 2 vo

1

2

2

1

C1

R2

C2

Figure 8.21 ▲ Cascaded integrating amplifiers with feed-
back resistors.
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and from Eq. 8.41,

v
v

vR C
d
dt

R C
  .o

o
o1 b 2

b 2

2τ
= − −

Finally, eliminate vo1 and d dto1v  from the second-order differential 
equation and obtain the desired relationship:

 
v v

v
vd

dt
d
dt R C R C

  1 1 1  .o o
o

g
2

2
1 2 1 2 a 1 b 2τ τ τ τ

+ +






 +







 =  (8.42)

From Eq. 8.42, the characteristic equation is

 
τ τ τ τ

+ +






 + =s s1 1 1 0.2

1 2 1 2

The roots of the characteristic equation are real, namely,

s 1,1
1τ

= −

s 1.2
2τ

= −

Example 8.14 determines the step response of two cascaded integrating 
amplifiers when the feedback capacitors are shunted with feedback resistors.

EXAMPLE 8.14  
Analyzing Two Cascaded Integrating Amplifiers with Feedback 
Resistors

The parameters for the circuit shown in Fig.  8.21 are 
= ΩR 100 k ,a  = ΩR 500 k ,1  C 0.1  F,1 µ=  R 25 k ,b = Ω   

R 100 k ,2 = Ω  and C 1  F.2 µ=  The power supply voltage 
for each op amp is 6 V.±  The signal voltage ( gv ) for the 
cascaded integrating amplifiers jumps from 0 to 250 mV  
at t 0.=  No energy is stored in the feedback capacitors 
at the instant the signal is applied.

a) Find the differential equation that governs .ov
b) Find t( )ov  for t 0.≥
c) Find the differential equation that governs .o1v
d) Find t( )o1v  for t 0.≥

Solution

a) From the numerical values of the circuit parameters,  
we have R C 0.05 s1 1 1τ = = ; R C 0.10 s2 2 2τ = = ,  
and  R C R C 1000  V sg a 1 b 2

2=v .  Substituting 
these values into Eq. 8.42 gives

d
dt

d
dt

30 200 1000.o o
o

2

2
+ + =

v v
v

b) The roots of the characteristic equation are 
s 20  rad s1 = −  and s 10  rad s.2 = −  The final value 

of ov  is the product of the input voltage and the 
gain of each stage because the capacitors behave 
as open circuits as t .→ ∞  Thus,

v 250 10 500
100

  100
25

5 V.o
3( )( )

( ) ( )∞ = × − − =−

The solution for ov  thus takes the form:

v A e A e5     .o
t t

1
10

2
20= + ′ + ′− −

With 0 0o ( ) =v  and d dt(0) 0,o =v  the numer-
ical values of A1′  and A2′  are A 10 V1′ = −  and 
A 5 V.2′ =  Therefore, the solution for ov  is

v t e e t( ) 5 10 5  V, 0.o
t t10 20( )= − + ≥− −

The solution assumes that neither op amp satu-
rates. We have already noted that the final value 
of ov  is 5 V, which is less than 6 V; hence, the sec-
ond op amp does not saturate. The final value 
of o1v  is 250 10 500 100 ,3 ( )( )× −−  or 1.25 V.−  
Therefore, the first op amp does not saturate, and 
our assumption and solution are correct.
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308 Natural and Step Responses of RLC Circuits

Practical Perspective
Clock for Computer Timing
Consider the circuit in Fig. 8.22, where the output is the voltage drop 
across the capacitor. For 0.≥t  this circuit looks like the series RLC 
 natural-response circuit of Fig. 8.3 without its resistor. When we analyze 
this LC circuit, we will discover that its output is an undamped sinusoid, 
which a computer’s clock generator could use instead of the typical 
quartz crystal oscillator. We will be able to specify the frequency of the 
clock by selecting appropriate values for the inductor and capacitor.

Since this is a series RLC natural-response problem, we follow 
Analysis Method 8.5, which uses Table 8.4. Remember that R 0=  for 
t 0.≥

Step 1: Determine the initial values of capacitor voltage, V0 , and induc-
tor current, I 0. How does the circuit behave when t 0?<  When the 
switch is in the a position, all of the components are connected. The 
capacitor acts like an open circuit, whose voltage is V0 , and the inductor 
acts like a short circuit, whose current is I 0 . The capacitor and inductor 
have the same voltage, and since the inductor’s voltage is 0, V 0.0 =  
The current in the inductor is the current in the loop containing the volt-
age source, the resistor, and the inductor, which is =I V R .s s0

Step 2: Determine the values of α and 0ω  using the equations in 
Table 8.4:

R
L L2

0
2

0,α = = =

LC
1  .0

2ω =

Step 3: Compare 2α  and ;0
2ω  since ,2

0
2α ω<  the response is under-

damped and from row 5 in Table 8.4:

i t B e t B e t t( ) cos sin , 0.t
d

t
d1 2ω ω= + ≥α α− −

Step 4: Since the response is underdamped, calculate the value of dω  
from row 2 in Table 8.4:

0 .d 0
2 2

0
2 2

0ω ω α ω ω= − = − =

c) Substituting the numerical values of the parame-
ters into Eq. 8.40 generates the desired differential 
equation:

d
dt

20 25.o
o

1
1+ = −

v
v

d) We have already noted the initial and final values 
of ,o1v  along with the time constant .1τ  Thus, we 
write the solution in accordance with Analysis 
Method 7.5, developed in Section 7.4:

v e1.25 0 1.25o
t

1
20( )[ ]= − + − − −

e t1.25 1.25  V, 0.t20= − + ≥−

SELF-CHECK: Assess your understanding of this material by trying Chapter Problem 8.60.

aRs

C
LVs

b

vo(t)

t = 0

i
1

2

1

2

Figure 8.22 ▲ An LC natural response circuit.

M08_NILS8436_12_SE_C08.indd   308 13/01/22   3:17 PM



 Summary 309

Step 5: Since the response is underdamped, calculate the values of B1 
and B2 by simultaneously solving the equations from row 5 in Table 8.4:

B I
V
R

 ;s

s
1 0= =

B B
L

R I V1 sod s1 2 0 0α ω ( )− + = − −

B B
L

V
R

0 1 0 0 0.s

s
1 0 2ω( ) ( )− + = −







 −







 =

Solving,

B
V
R

B  and 0.s

s
1 2= =

Step 6: Write the equation for i(t) using the results from Steps 4 and 5:

i t
V
R

e t t( )   cos , 0.s

s

t0
0ω= ≥( )−

We can now use the expression for the current in the circuit to find the 
voltage output by the capacitor:

v t
C

i x dx
C

V
R

xdx
V
R C

t t( ) 1   1   cos sin ,   0.o

t
s

s

t
s

s0 0
0

0
0∫ ∫ ω

ω
ω( )= = = ≥

By choosing values for L and C, we can use the circuit in Fig. 8.22 to 
generate an undamped sinusoid when t 0≥  for a computer’s clock 
generator.

So why is a quartz crystal used to generate the sinusoid for the clock 
generator instead of the LC circuit of Fig. 8.22? Remember that our anal-
ysis of the LC circuit assumed that the inductor and capacitor are ideal. 
But ideal inductors and capacitors do not exist—real inductors and ca-
pacitors have a small amount of resistance. We leave it to you to exam-
ine the effect of this small amount of resistance on the performance of 
an LC oscillator in the Chapter Problems.

SELF-CHECK: Assess your understanding of the Practical Perspective 
by solving Chapter Problems 8.65–8.67.

Summary
• The characteristic equation for both the parallel and 

series RLC circuits has the form

s s2 0,2
0
2α ω+ + =

where RC1 2α =  for the parallel circuit, R L2α =  
for the series circuit, and LC10

2ω =  for both the par-
allel and series circuits. (See pages 275 and 297.)

• The roots of the characteristic equation are

s .1,2
2

0
2α α ω= − ± −

(See page 276.)

• The form of the natural and step responses of series and 
parallel RLC circuits depends on the values of 2α  and ;0

2ω  
such responses can be overdamped, underdamped, or criti-
cally damped. These terms describe the impact of the dissi-
pative element (R) on the response. The neper frequency, 

,α  reflects the effect of R. (See pages 276 and 277.)

• To determine the natural response of a parallel RLC 
circuit, follow the steps in Analysis Method 8.3, using 
the equations in Table 8.2. (See page 287.)

• To determine the step response of a parallel RLC cir-
cuit, follow the steps in Analysis Method 8.4, using the 
equations in Table 8.3. (See page 292.)
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310 Natural and Step Responses of RLC Circuits

• To determine the natural response of a series RLC cir-
cuit, follow the steps in Analysis Method 8.5, using the 
equations in Table 8.4. (See page 299.)

• To determine the step response of a series RLC circuit, 
follow the steps in Analysis Method 8.6, using the equa-
tions in Table 8.5. (See page 301.)

• When two integrating amplifiers with ideal op amps are 
connected in cascade, the output voltage of the second 

integrator is related to the input voltage of the first by an 
ordinary, second-order differential equation. Therefore, 
the techniques developed in this chapter may be used 
to analyze the behavior of a cascaded integrator. (See 
pages 303 and 304.)

• We can overcome the limitation of a simple integrating 
amplifier—the saturation of the op amp due to charge 
accumulating in the feedback capacitor—by placing a 
resistor in parallel with the capacitor in the feedback 
path. (See page 305.)

Problems
Sections 8.1–8.2

 8.1  The resistance and inductance of the circuit in 
Fig. 8.5 are 100 Ω and 20 mH, respectively.

a) Find the value of C that makes the voltage 
response critically damped.

b) If C is adjusted to give a neper frequency of 
5 krad/s, find the value of C and the roots of the 
characteristic equation.

c) If C is adjusted to give a resonant frequency of 
20 krad/s, find the value of C and the roots of the 
characteristic equation.

 8.2  The natural response for the circuit shown in Fig. 8.1 
is known to be

t e e t( ) 12( ) V, 0.t t200 1800v = − + ≥− −

If C 18  Fµ= , find i (0 )L
+  in milliamperes.

 8.3  Suppose the capacitor in the circuit shown in Fig. 8.1 
has a value of 50  nF. The voltage response for  
t 0≥  is

t e e( ) 5 20  V.t t5000 20,000v = − +− −

a) Determine the numerical values of 0ω , α, L, 
and R.

b) Calculate iR(t), iL(t), and iC(t) for t 0≥ + .

 8.4  In the circuit shown in Fig.  8.1, a 5   H inductor is 
shunted by a 8 nF capacitor, the resistor R is adjusted 
for critical damping, V 25 V0 = − , and I 1 mA0 = − .

a) Calculate the numerical value of R.

b) Calculate v(t) for t 0≥ .

c) Find v(t) when i t( ) 0C = .

d) What percentage of the initially stored energy 
remains stored in the circuit at the instant iC (t) 
is 0?

PSPICE
MULTISIM

 8.5  The circuit elements in the circuit in Fig.  8.1 are 
R 2 k= Ω, L 250 mH= , and C 10 nF= . The 
 initial inductor current is 30 mA−  and the initial 
capacitor voltage is 90 V.

a) Calculate the initial current in each branch of 
the circuit.

b) Find v(t) for t 0≥ .

c) Find iL(t) for t 0≥ .

 8.6  The resistance in Problem 8.5 is increased to 2.5 kΩ.  
Find the expression for v(t) for t 0≥ .

 8.7  The resistance in Problem 8.5 is increased to 
(12,500 3) Ω. Find the expression for v(t) for t 0≥ .

 8.8  The resistor in the circuit in Example 8.4 is changed 
to 4000 2 Ω.

a) Find the numerical expression for v(t) when 
t 0≥ .

b)  Plot v(t) versus t for the time interval 
t0 7 ms≤ ≤ . Compare this response with 

the one in Example 8.4 R( 20 k )= Ω  and 
Example  8.5 R( 4 k )= Ω . In particular, com-
pare peak values of v(t) and the times when 
these peak values occur.

 8.9  A 10 mH inductor, a 1 Fµ  capacitor, and a variable 
resistor are connected in parallel in the circuit of 
Fig. P8.9.  The resistor is adjusted so that the roots of the 
characteristic equation are j8000 6000 rad s− ± .  
The initial voltage on the capacitor is 10 V and the 
initial current in the inductor is 80 mA. Find

a) R;

b) d dt(0 ) ;v +

c) B1 and B2 in the solution for v; and

d) iL(t).
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when R is 200 Ω. Find

a) the values of α, 0ω , L, C, A1, and A2

Hint
di

dt
di

dt
di

dt L R
i

C
:

(0 ) (0 ) (0 ) (0) 1 (0 )
,C L R Cv

= − − =
−

−








+ + + +

b) the expression for t t( ), 0≥v ,

c) the expression for i t( ) 0R ≥ ,

d) the expression for i t( ) 0L ≥ .

 8.16  The two switches in the circuit seen in Fig. P8.16 
operate synchronously. When switch 1 is in position 
a, switch 2 is in position d. When switch 1 moves 
to position b, switch 2 moves to position c. Switch 
1 has been in position a for a long time. At t 0= , 
the switches move to their alternate positions. Find 
vo(t) for t 0≥ .

PSPICE
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 8.10  The resistor in Fig. P8.9 is adjusted for critical 
damping. The inductance and capacitance values 
are 0.4 H and 10 Fµ , respectively. The initial energy 
stored in the circuit is 25 mJ and is distributed 
equally between the inductor and capacitor. Find

a) R;

b) V0;

c) I0;

d) D1 and D2 in the solution for v;  and

e) i t, 0 .R ≥ +

 8.11  Assume the underdamped voltage response of the 
circuit in Fig. 8.1 is written as

t A A e t j A A e t( ) ( ) cos ( ) sin .t
d

t
d1 2 1 2v ω ω= + + −α α− −

The initial value of the inductor current is I0, and the 
initial value of the capacitor voltage is V0. Show that 
A2 is the conjugate of A1. (Hint: Use the same pro-
cess as outlined in the chapter to find A1 and A2.)

 8.12  Show that the results obtained from Problem 8.11—
that is, the expressions for A1 and A2—are consis-
tent with Eqs. 8.16 and 8.17 in the text.

 8.13   In the circuit in Fig.  8.1, R 2 = Ω, C 250 mF= , 
L 0.4 H= , V 0 V0 = , and I 3 A0 = − .

a) Find v(t) for t 0≥ .

b) Find the first three values of t for which d dtv  is 
zero. Let these values of t be denoted t1, t2, and t3.

c) Show that t t T 2d d3 1 ω π.− = =

d) Show that t t T 2d2 1− = .

e) Calculate v(t1), v(t2), and v(t3).

f) Sketch v(t) versus t for t t0 3≤ ≤ .

 8.14  a)  Find v(t) for t 0≥  in the circuit in Problem 8.13 
if the 2 Ω  resistor is removed from the circuit.

b) Calculate the frequency of v(t) in rad/s.

c)  Calculate the maximum amplitude of v(t) in 
volts.

 8.15  The initial value of the voltage v in the circuit in 
Fig. 8.1 is zero, and the initial value of the capaci-
tor current, i (0 )C

+ , is 15 mA. The expression for the 
capacitor current is known to be

i t A e A e t( ) , 0 ,C
t t

1
160

2
40= + ≥− − +
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Figure P8.16

 8.17  The resistor in the circuit of Fig. P8.16 is increased 
from 1.6 kΩ  to 2 kΩ  and the inductor is decreased 
from 1 H to 640 mH. Find vo(t) for t ≥ 0.

 8.18  The resistor in the circuit of Fig. P8.16 is decreased 
from Ω1.6 k  to 800 Ω and the inductor is decreased 
from 1 H to 160 mH. Find vo(t) for t ≥ 0. 

 8.19  The switch in the circuit of Fig. P8.19 has been in 
position a for a long time. At t 0=  the switch 
moves instantaneously to position b. Find vo(t) for 
t 0≥ .
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75 V 8 H

4 kV
104if if

t = 0

6 kV 150 kV 60 kV
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vo
1
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1
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1 2

Figure P8.19

 8.20  The capacitor in the circuit of Fig. P8.19 is decreased 
to 1 nF and the inductor is increased to 10 H. Find 
vo(t) for t ≥ 0.

 8.21  The capacitor in the circuit of Fig. P8.19 is decreased 
to 0.8 nF and the inductor is increased to 12.5 H. 
Find vo(t) for t ≥ 0.

 8.22  a)  Design a parallel RLC circuit (see Fig. 8.1) using 
component values from Appendix H, with a res-
onant radian frequency of 20  krad s . Choose a 
resistor or create a resistor network so that the 
response is critically damped. Draw your circuit.
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12 V
1

2

Figure P8.24

vo

1

2

6.25 mF 25 H

800 V

t 5 0

30 V
1

2

io

Figure P8.25

b) Calculate the roots of the characteristic equa-
tion for the resistance in part (a).

8.23   a)  Change the resistance for the circuit you 
designed in Problem 8.22(a) so that the response 
is underdamped. Continue to use components 
from Appendix H. Calculate the roots of the 
characteristic equation for this new resistance.

b) Change the resistance for the circuit you 
designed in Problem 8.22(a) so that the response 
is overdamped. Continue to use components 
from Appendix H. Calculate the roots of the 
characteristic equation for this new resistance.

 Section 8.3

 8.24   The switch in the circuit in Fig. P8.24 has been open 
a long time before closing at t 0= . At the time the 
switch closes, the capacitor has no stored energy. 
Find vo for t 0≥ .
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 8.25  There is no energy stored in the circuit in Fig. P8.25 
when the switch is closed at t 0= . Find vo(t) for 
t 0≥ .

PSPICE
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 8.26  a)  For the circuit in Fig. P8.25, find io for t 0≥ .

b) Show that your solution for io is consistent with 
the solution for vo in Problem 8.25.

 8.27  The switch in the circuit in Fig. P8.27 has been open 
for a long time before closing at t 0= . Find io(t) 
for t 0≥ .
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800 V

t 5 0
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Figure P8.27

 8.28  a)  For the circuit in Fig. P8.27, find vo for t 0≥ .

b) Show that your solution for vo is consistent with 
the solution for io in Problem 8.27.

 8.29  For the circuit in Example 8.6, find, for t 0≥ , (a) 
v(t); (b) iR(t); and (c) iC(t).

 8.30  For the circuit in Example 8.7, find, for t 0≥ , (a) 
v(t) and (b) iC(t).

 8.31  For the circuit in Example 8.8, find v(t) for  
t 0≥ .

 8.32  Switches 1 and 2 in the circuit in Fig. P8.32 are syn-
chronized. When switch 1 is opened, switch 2 closes 
and vice versa. Switch 1 has been open a long time 
before closing at t 0= . Find iL(t) for t 0≥ .
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Switch 2
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Figure P8.32

300 V

150 V

3 V120 mA 31.25 mH 500 nF
1

2

t = 0

iL

Figure P8.33

 8.33  The switch in the circuit in Fig. P8.33. has been open 
for a long time before closing at t 0= . Find iL(t) 
for t 0≥ .

PSPICE
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 8.34  Assume that at the instant the 1 A current source 
is applied to the circuit in Fig. P8.34, the initial cur-
rent in the inductor is 0.5 A, and the initial voltage 
on the capacitor is 40 V (positive at the upper ter-
minal). Find the expression for iL(t) for t 0≥  if L 
equals 640 mH.

PSPICE
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iL(t) 1 mFL1 A 500 V

Figure P8.34

 8.35  The inductance in the circuit in Fig. P8.34 is changed 
to 1.5625 H. Find iL(t) for t 0≥ .

 8.36  The inductance in the circuit in Fig. P8.34 is changed 
to 1 H. Find iL(t) for t 0≥ .

  8.37  The switch in the circuit in Fig. P8.37 has been open 
for a long time before closing at t 0= . Find

a) iL(t) for t 0≥ ,

b) vo(t) for t 0≥ .
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 8.38  Consider the circuit in Fig.  P8.37. 

a) Find the total energy delivered to the inductor.

b) Find the total energy delivered to the equivalent 
resistance.

c) Find the total energy delivered to the capacitor.

d) Find the total energy delivered by the voltage 
source.

e) Check the results of parts (a) through (d) against 
the conservation of energy principle.

Section 8.4

 8.39  The current in the circuit in Fig. 8.3 is known to be

= + ≥− −i B e t B e t tcos600 sin 600 , 0.t t
1

800
2

800

The capacitor has a value of 500 F;µ  the initial 
value of the current is zero; and the initial voltage 
on the capacitor is 12 V. Find the values of R, L, 
B1, and B2.

 8.40  Find the voltage across the 500  Fµ  capacitor for 
the circuit described in Problem 8.39. Assume the 
reference polarity for the capacitor voltage is posi-
tive at the upper terminal.

 8.41  The initial energy stored in the 31.25 nF capacitor 
in the circuit in Fig. P8.41 is 9  Jµ . The initial energy 
stored in the inductor is zero. The roots of the char-
acteristic equation that describes the natural behav-
ior of the current i are 4000 s 1− −  and 16,000 s 1− − .

a) Find the numerical values of R and L.

b) Find the numerical values of i(0) and di dt(0)  
immediately after the switch has been closed.

c) Find i(t) for t 0≥ .

d) How many microseconds after the switch closes 
does the current reach its maximum value?

e) What is the maximum value of i in milliamperes?

f) Find vL(t) for t 0≥ .
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250 V

1 kV 1.6 H25 V 1
2
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Figure P8.37

31.25 nF L
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i(t)t 5 0
vL(t)

1
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Figure P8.41

 8.42  In the circuit in Fig. P8.42, the resistor is adjusted 
for critical damping. The initial capacitor voltage is 
90 V, and the initial inductor current is 24 mA.

a) Find the numerical value of R.

b) Find the numerical values of i and di dt  immedi-
ately after the switch is closed.

c) Find vC(t) for t 0≥ .
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100 V

t = 0
va300 V

a b 200 V 600 V

5 H

1
1
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2
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Figure P8.43
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250 mH160 nFvC

1
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t 5 0 i

Figure P8.42

  8.43  The switch in the circuit in Fig. P8.43 has been in 
position a for a long time. At t 0= , the switch 
moves instantaneously to position b.

a) What is the initial value of va?

b) What is the initial value of d dtav ?

c) What is the numerical expression for va(t) for 
t 0≥ ?
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 8.44  The switch in the circuit shown in Fig. P8.44 has 
been in position a for a long time. At t 0= , the 
switch is moved instantaneously to position b. Find 
i t t( ) for  0≥ .

t = 0

i
a b

200 V

100 mH
200 nF

50 V

70 V
1

2

Figure P8.44
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Figure P8.49

 8.46  The switch in the circuit shown in Fig. P8.46 has 
been closed for a long time. The switch opens at 
t 0= . Find t( )ov  for t 0≥ + .

 8.47  a)  Design a series RLC circuit (see Fig. 8.3) using 
component values from Appendix H, with a res-
onant radian frequency of 5  krad s. Choose a 
resistor or create a resistor network so that the 
response is critically damped. Draw your circuit.

b) Calculate the roots of the characteristic equa-
tion for the resistance in part (a).

 8.48  a)  Change the resistance for the circuit you 
designed in Problem 8.47(a) so that the response 
is underdamped. Continue to use components 
from Appendix H. Calculate the roots of the 
characteristic equation for this new resistance.

b) Change the resistance for the circuit you 
designed in Problem 8.47(a) so that the response 
is overdamped. Continue to use components 
from Appendix H. Calculate the roots of the 
characteristic equation for this new resistance.

 8.50   Find i(t) for t 0≥  for the circuit in Problem 8.49.

 8.51  Repeat Problems 8.49 and 8.50 if the 80 Ω  resistor 
is replaced by a 100 Ω  resistor.

  8.52  The switch in the circuit of Fig. P8.52 has been in 
position a for a long time. At t 0=  the switch moves 
instantaneously to position b. Find vo(t) for t 0≥ .
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 8.53  The circuit shown in Fig. P8.53 has been in opera-
tion for a long time. At t 0= , the source voltage 
suddenly drops to 100 V. Find vo(t) for t 0≥ .
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 8.45  The switch in the circuit shown in Fig. P8.45 has been 
closed for a long time. The switch opens at t 0= .  
Find

a) i t t( ) for  0,o ≥

b) t t( ) for  0.oυ ≥
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1
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Figure P8.45

 8.49  The switch in the circuit in Fig. P8.49 has been in 
position a for a long time. At t 0= , it moves to 
position b. Find vC(t) for t 0≥ .

PSPICE
MULTISIM
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 8.54  The two switches in the circuit seen in Fig. P8.54 
operate synchronously. When switch 1 is in  
position a, switch 2 is closed. When switch 1 is in 
position b, switch 2 is open. Switch 1 has been   
in position a for a long time. At t 0= , it moves 
instantaneously to position b. Find vC(t) for t 0≥ .
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 8.55  Assume that the capacitor voltage in the circuit 
of Fig.  8.16 is underdamped. Also assume that no 
 energy is stored in the circuit elements when the 
switch is closed.

a) Show that d dt Ve t( )  sin C d
t

d0
2ω ω ω= α−v .

b) Show that d dt 0C =v  when t n dπ ω= , where 
n 0,  1,  2,  = ….

c) Let π ω=t nn d , and show that 

v = − − α π ω−t V V e( ) ( 1)C n
n n d.

d) Show that

T
t V
t V

1  ln 
( )
( )d

C

C

1

3

α =
−
−

v
v

 , 

where T t td 3 1= − .

1

2

R

Vg L

t 5 0

vo(t)

1

2

C

Figure P8.57

 8.58  The circuit parameters in the circuit of Fig. P8.57 
are = ΩR 120  , =L 5 mH, =C 500 nF, and 

= −V 600 Vg .

a) Express vo(t) numerically for t 0≥ .

b)  How many microseconds after the switch opens 
is the inductor voltage maximum?

c) What is the maximum value of the inductor 
 voltage?

d) Repeat (a)–(c) with R reduced to 12 Ω.

Section 8.5

 8.59  The voltage signal of Fig. P8.59(a) is applied to the 
cascaded integrating amplifiers shown in Fig. P8.59(b). 
There is no energy stored in the capacitors at the 
instant the signal is applied.

a) Derive the numerical expressions for vo(t) and 
vo1(t) for the time intervals t0 0.2 s≤ ≤  and 

t t0.2 s sat≤ ≤ .

b) Compute the value of tsat.
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 8.57  The switch in the circuit shown in Fig. P8.57 has 
been closed for a long time before it is opened at 
t 0= . Assume that the circuit parameters are such 
that the response is underdamped.

a) Derive the expression for vo(t) as a function of 
Vg, α, dω , C, and R for t 0≥ .

b) Derive the expression for the value of t when the 
magnitude of vo is maximum.

 8.56  The voltage across a 200 nF capacitor in the circuit 
of Fig. 8.16 is described as follows: After the switch 
has been closed for several seconds, the voltage is 
constant at 50 V. The first time the voltage exceeds 
50 V, it reaches a peak of 63.505 V. This occurs 
π 12 ms  after the switch has been closed. The sec-
ond time the voltage exceeds 50 V, it reaches a peak 
of 50.985 V. This second peak occurs π 4  ms after 
the switch has been closed. At the time when the 
switch is closed, there is no energy stored in either 
the capacitor or the inductor. Find the numerical 
values of R and L. (Hint: Work Problem 8.55 first.)
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 8.62  Show that, if no energy is stored in the circuit shown 
in Fig.  8.20 at the instant vg jumps in value, then 
d dtov  equals zero at t 0= .

 8.63  a)  Rework Example 8.14 with feedback resistors 
R1 and R2 removed.

b) Rework Example 8.14 with (0) 5 Vo1 =v  and 
(0) 10 Vo = −v .

 8.64  a)  Find the equation for vo(t) for t t0 sat≤ ≤  in 
the circuit shown in Fig.  8.20 if (0) 12 Vo1 =v  
and (0) 6 Vo = −v .

b) How long does the circuit take to reach 
 saturation?

Sections 8.1–8.5

 8.65  a)  Suppose the circuit in Fig.  8.22 has a 8 nH 
inductor and a 5 pF capacitor. Calculate the 
frequency, in GHz, of the sinusoidal output for 
t 0≥ . (Note that to get frequency in hertz (Hz) 
divide frequency in rad/s by 2π.)

b) The dc voltage source and series-connected 
resistor in Fig. 8.22 are used to establish the ini-
tial energy in the inductor. If V 12 V=  and 
R 50 s = Ω, calculate the initial energy stored in 
the inductor.

c)  What is the total energy stored in the LC circuit 
for any time t 0≥ ?

 8.66  Consider the LC oscillator circuit in Fig.  8.22. 
Assume that V 12 V= , R 25 s = Ω, and 
L 0.5 nH= .

a) Calculate the value of capacitance, C, that will 
produce a sinusoidal output with a frequency of 
5 GHz for t 0≥ .

b) Write the expression for the output voltage, 
vo(t), for t 0≥ .
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 8.60  The circuit in Fig. P8.59(b) is modified by adding 
a 250 kΩ  resistor in parallel with the 2  Fµ  capac-
itor and a 250 kΩ  resistor in parallel with the 4  Fµ  
capacitor. As in Problem 8.59, there is no energy 
stored in the capacitors at the time the signal is 
applied. Derive the numerical expressions for vo(t) 
and vo1(t) for the time intervals t0 0.2 s≤ ≤  and 
t 0.2 s≥ .

 8.61  a)     Derive the differential equation that relates the 
output voltage to the input voltage for the cir-
cuit shown in Fig. P8.61.

b) Compare the result with Eq. 8.39 when 
R C R C RC1 1 2 2= =  in Fig. 8.19.

c) What is the advantage of the circuit shown in 
Fig. P8.61?
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 8.67  Suppose the inductor and capacitor in the LC oscil-
lator circuit in Fig.  8.22 are not ideal, but instead 
have some small resistance that can be lumped 
together. Assume that V 12 V= ,  R 50 s = Ω, 
L 8 nH= , and C 5 pF= , just as in Problem 8.65. 
Suppose the resistance associated with the inductor 
and capacitor is 24 mΩ.

a) Calculate the values of the neper frequency, ,α  
and the resonant radian frequency, 0ω .

b) Is the response of this circuit overdamped, 
underdamped, or critically damped?

c) What is the actual frequency of oscillation, in GHz?

d) Approximately how long will the circuit oscillate?

PRACTICAL
PERSPECTIVE
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CHAPTER CONTENTS

9 
CHAPTER 

Sinusoida l  
Steady-State Analysis
Thus far, we have focused on circuits with constant sources; 
in this chapter we are now ready to consider circuits energized 
by sinusoidal voltage or current sources. For these circuits, we 
will calculate the values of the specified output voltages and 
currents in the steady state. This means we will not know the 
complete response of the circuits, which in general is the sum of 
the transient (or natural) response and the steady-state response. 
Our analysis will only characterize a circuit’s response once the 
transient component has decayed to zero.

Sinusoidal sources and their effect on circuit behavior form 
an important area of study for several reasons.

• Generating, transmitting, distributing, and consuming elec-
tric energy occurs under essentially sinusoidal steady-state 
conditions.

• Understanding sinusoidal behavior makes it possible to 
predict the behavior of circuits with nonsinusoidal sources.

• Specifying the behavior of an electrical system in terms of 
its steady-state sinusoidal response simplifies the design. If 
the system satisfies the specifications, the designer knows 
that the circuit will respond satisfactorily to nonsinusoidal 
inputs.

The remaining chapters of this book are largely based on the 
techniques used when analyzing circuits with sinusoidal sources. 
Fortunately, the circuit analysis and simplification techniques 
from Chapters 1–4 work for circuits with sinusoidal as well as dc 
sources, so some of the material in this chapter will be very famil-
iar to you. The challenges of sinusoidal analysis include devel-
oping the appropriate component models, writing the equations 
that describe the resulting circuit, and working with complex 
numbers.

9.1 The Sinusoidal Source p. 320

9.2 The Sinusoidal Response p. 323

9.3 The Phasor p. 324

9.4  The Passive Circuit Elements in the 
Frequency Domain p. 327

9.5  Kirchhoff’s Laws in the Frequency 
Domain p. 332

 9.6  Series, Parallel, and Delta-to-Wye 
Simplifications p. 333

 9.7  Source Transformations and Thévenin–
Norton Equivalent Circuits p. 340

9.8 The Node-Voltage Method p. 344

9.9 The Mesh-Current Method p. 345
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9.12 Phasor Diagrams p. 357

1 Understand phasor concepts and be able 
to perform a phasor transform and an 
 inverse phasor transform.

2 Be able to transform a circuit with a 
 sinusoidal source into the frequency 
 domain using phasor concepts.

3 Know how to use the following 
 circuit-analysis techniques to solve a circuit 
in the frequency domain:

• Kirchhoff’s laws;

• Series, parallel, and delta-to-wye 
simplifications;

•  Voltage and current division;

• Thévenin and Norton equivalents;

• Node-voltage method; and

• Mesh-current method.

4 Be able to analyze circuits containing linear 
transformers using phasor methods.

5 Understand the ideal transformer 
 constraints and be able to analyze circuits 
containing ideal transformers using phasor 
methods.

CHAPTER OBJECTIVES
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Practical Perspective
A Household Distribution Circuit
Power systems that generate, transmit, and distribute 
electrical power are designed to operate in the sinusoidal 
steady state. The standard household distribution circuit 
used in the United States supplies both 120 V and 240 V.

Consider the following situation. At the end of a day 
of fieldwork, a farmer returns to the farmstead, checks 
the hog confinement building, and finds the hogs are 
dead. The problem is traced to a blown fuse that caused 
a 240 V fan motor to stop. The loss of ventilation led to 
the suffocation of the livestock. The interrupted fuse is 
located in the main switch that connects the farmstead to 
the electrical service.

Before the insurance company settles the claim, 
it wants to know if the electric circuit supplying the 

farmstead functioned properly. The lawyers for the insur-
ance company are puzzled because one of the farmer’s 
children was home from school and spent part of the day 
playing video games in the living room. At one point they 
used the kitchen microwave to reheat some leftovers. 
The lawyers have hired you to explain why the kitchen 
appliances and the living room electronics continued to 
operate after the fuse in the main switch blew.

We will explore this situation and answer the question 
after learning how to calculate the steady-state response 
of circuits with sinusoidal sources.

Yulia Grigoryeva/Shutterstock

Björn Erlandsson /123RF Tetra Images/Alamy Stock Photo
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320 Sinusoida l Steady-State Analysis 

9.1 The Sinusoidal Source
A sinusoidal voltage source (independent or dependent) produces a 
voltage that varies sinusoidally with time. A sinusoidal current source 
(independent or dependent) produces a current that varies sinusoidally 
with time. We begin by reviewing the sinusoidal function, using a voltage 
source as an example, but our observations also apply to current sources.

We can express a sinusoidally varying function with either the sine 
function or the cosine function. Although they work equally well, we 
 cannot use both functional forms simultaneously. We will use the cosine 
function throughout our discussion. Hence, we write a sinusoidally vary-
ing voltage as

 ω φ( )= +V tcos .mv  (9.1)

To aid discussion of the parameters in Eq. 9.1, we show the voltage ver-
sus time plot in Fig. 9.1. The coefficient Vm gives the maximum amplitude 
of the sinusoidal voltage. Because 1±  bounds the cosine function, Vm±  
bounds the amplitude, as seen in Fig. 9.1. You can also see that the sinusoi-
dal function repeats at regular intervals; therefore, it is a periodic function. 
A periodic function is characterized by the time required for the function to 
pass through all its possible values. This time is the period of the function, T, 
and is measured in seconds. The reciprocal of T gives the number of cycles 
per second, or the frequency, of the periodic function, and is denoted f, so

 f
T
1 .=  (9.2)

A cycle per second is called a hertz, abbreviated Hz. (The term cycles per 
second rarely is used in contemporary technical literature.)

Now look at the coefficient of t in Eq. 9.1. Omega ( )ω  represents the 
angular frequency of the sinusoidal function and is related to both T and f:

  f T2 2 (radians second).ω π π= =  (9.3)

Equation 9.3 tells us that the cosine (or sine) function passes through 
a complete set of values each time its argument, t,ω  passes through 
2 rad(360 )π ° . From Eq. 9.3, we see that whenever t is an integral multiple 
of T, the argument tω  increases by an integral multiple of 2π  rad.

The angle φ  in Eq. 9.1 is the phase angle of the sinusoidal voltage. It 
determines the value of the sinusoidal function at t 0;=  therefore, it fixes 
the point on the periodic wave where we start measuring time. Changing 
the phase angle φ  shifts the sinusoidal function along the time axis but 
has no effect on either the amplitude V( )m  or the angular frequency ( )ω .  
Note, for example, that reducing φ  to zero shifts the sinusoidal function 
shown in Fig. 9.1 φ ω  time units to the right, as shown in Fig. 9.2. When 
compared with a sinusoidal function with 0,φ =  a sinusoidal function 
with a positive φ  is shifted to the left, while a sinusoidal function with a 
negative φ  is shifted to the right. (See Problem 9.1.)

Remember that tω  and φ  must carry the same units because the argu-
ment of the sinusoidal function is t( ).ω φ+  With tω  expressed in radians, 
you would expect φ  to also be in radians. However, φ  normally is given 
in degrees, and tω  is converted from radians to degrees before the two 
quantities are added. The conversion from radians to degrees is given by

(numberof degrees) 180 (numberof radians).
π

=
�

0

2Vm
T

v

Vm

t

Vm

Figure 9.1 ▲ A sinusoidal voltage.

t0

2Vm

v

Vm

f>v

Figure 9.2 ▲ The sinusoidal voltage from Fig. 9.1 
shifted to the right when φ = 0.
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 9.1 The Sinusoidal Source 321

Another important characteristic of the sinusoidal voltage (or cur-
rent) is its rms value. The rms value of a periodic function is defined 
as the square root of the mean value of the squared function. Hence, if 
v V tcos ,m ω φ( )= +  the rms value of v  is

 ∫ ω φ= +
+

V
T

V t dt1 cos ( ) .m
t

t T

rms
2 2

0

0

 (9.4)

Note from Eq. 9.4 that we obtain the mean value of the squared voltage 
by integrating v 2  over one period (that is, from t 0  to +t T0 ) and then 
dividing by the range of integration, T. Note further that the starting point 
for the integration t 0  is arbitrary.

The quantity under the square root sign in Eq. 9.4 reduces to V 2.m
2  

(See Problem 9.8.) Hence, the rms value of v  is

RMS VALUE OF A SINUSOIDAL VOLTAGE SOURCE

 V
V

2
.m

rms =  (9.5)

The rms value of the sinusoidal voltage depends only on the maximum 
amplitude of v , namely, V .m  The rms value is not a function of either the 
frequency or the phase angle. In Chapter 10, we explain the importance 
of the rms value and use it extensively to calculate power in circuits with 
sinusoidal sources.

We can completely describe a specific sinusoidal signal if we know its 
frequency, phase angle, and amplitude. Examples 9.1, 9.2, and 9.3 illus-
trate these basic properties of the sinusoidal function. In Example 9.4, we 
calculate the rms value of a periodic function, and in so doing we clarify 
the meaning of root mean square.

EXAMPLE 9.1 Finding the Characteristics of a Sinusoidal Current

A sinusoidal current has a maximum amplitude of  
20 A. The current passes through one complete cycle  
in 1 ms. The magnitude of the current at t 0=  is 
10 A.

a) What is the frequency of the current in hertz?

b) What is the frequency in radians per second?

c) Write the expression for i t( ) using the cosine 
function. Express φ  in degrees.

d) What is the rms value of the current?

Solution
a) From the statement of the problem, T 1 ms;=  

hence, f T1 1 0.001 1000 Hz= = = .

b) f2 2 1000 2000 rad/sω π π π( )= = = .

c) We have

ω φ

π φ

= +

= +

i t I t

t

( ) cos( )

20 cos(2000 ) A,
m

but i 0 10 A.( ) =  Therefore, 10 20 cosφ= , so 
60φ = °. Thus, the expression for i t( ) becomes

i t t( ) 20 cos(2000 60 ) A.π= + °

d) From Eq. 9.5, the rms value of a sinusoidal current 
is I 2 .m  Therefore, the rms value is 20 2 , or 
14.14 A.
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EXAMPLE 9.2 Finding the Characteristics of a Sinusoidal Voltage

A sinusoidal voltage is given by the expression 
t300 cos(120 30 ) V.v π= + °

a) What is the period of the voltage in milliseconds?

b) What is the frequency in hertz?

c) What is the magnitude of v  at t 2.778 ms?=

d) What is the rms value of v ?

Solution

a) From the expression for v ,  120 rad s.ω π=  Because 
T T2 , 2 1 60 sω π π ω= = = , or 16.667 ms.

b) The frequency is T1 ,  or 60 Hz.

c) From (a), 2 16.667;ω π=  thus, at t 2.778 ms= ,  
tω  is nearly 1.047 rad, or 60 .°  Therefore, 
( ) ( )= ° + ° =v 2.778 ms 300 cos 60 30 0 V.

d) V 300 2 212.13 V.rms = =

EXAMPLE 9.3 Translating a Sine Expression to a Cosine Expression

We can translate the sine function to the cosine 
function by subtracting 90 ( 2 rad)π°  from the argu-
ment of the sine function.

a) Verify this translation by showing that

t tsin cos 90 .ω θ ω θ( )( )+ = + − °

b) Use the result in (a) to express tsin 30ω( )+ °  as 
a cosine function.

 Solution

a) Verification involves direct application of the 
trigonometric identity

cos cos cos sin sin .α β α β α β( )− = +

We let tα ω θ= +  and 90 .β = °  From the trigo-
nometric identity,

t t

t

cos 90 cos cos 90

sin sin 90 .

ω θ ω θ

ω θ

( ) ( )

( )

( )

( )

+ − ° = + °

+ + °

Since cos90 0° =  and sin 90 1,° =  we have

t tcos 90 sin .ω θ ω θ( ) ( )+ − ° = +

b) From (a) we have

t t

t

sin 30 cos 30 90

cos 60 .

ω ω

ω

( ) ( )

( )

+ ° = + ° − °

= − °

EXAMPLE 9.4 Calculating the rms Value of a Triangular Waveform

Calculate the rms value of the periodic triangular 
current shown in Fig. 9.3. Express your answer in 
terms of the peak current I .p

Solution
From the definition of rms, the rms value of i is

∫=
+

I
T

i dt1 .
t

t T

rms
2

0

0

Interpreting the integral under the square root 
sign as the area under the squared function for an 
interval of one period helps us find the rms value. 
The squared function, with the area between 0 and 
T shaded, is shown in Fig. 9.4. Notice that the area 
under the squared current for an interval of one 
period is equal to four times the area under the 
squared  current for the interval 0 to T 4  seconds; 
that is,

2TN4

Ip

2Ip

i

2TN2 TN4 TN2 3TN4 T
t

etc.

Figure 9.3 ▲ Periodic triangular current.

M09_NILS8436_12_SE_C09.indd   322 11/01/22   8:41 PM



 9.2 The Sinusoidal  esponse 323

 9.2 The Sinusoidal Response
As stated in the Introduction, this chapter focuses on the steady-state 
 response to sinusoidal sources. But we begin by characterizing the total 
response, which will help you keep the steady-state solution in perspective.

The circuit shown in Fig. 9.5 describes the general problem, where v s  
is a sinusoidal voltage described by

V tcos .s mv ω φ( )= +

For convenience, we assume the circuit’s initial current is zero, and we 
measure time from the moment the switch is closed. We want to find i t( ) 
for t 0,≥  using a method similar to the one used when finding the step 
response of an RL circuit (Chapter 7). But here, the voltage source is 
time-varying sinusoidal voltage rather than a constant voltage. Applying 
KVL to the circuit in Fig. 9.5 gives us the ordinary differential equation

 L di
dt

Ri V tcos .m ω φ( )+ = +  (9.6)

The solution for Eq. 9.6 is discussed in an introductory course in dif-
ferential equations. We ask those of you who have not yet studied differ-
ential equations to accept that the solution for i is

i
V

R L
e

V

R L
tcos cos ,m R L t m

2 2 2 2 2 2ω
φ θ

ω
ω φ θ( ) ( )=

−

+
− +

+
+ −( )−  

 
 (9.7)

where

L
R

tan .1θ ω( )= −

∫ ∫=
+

i dt i dt4 .
t

t T T
2 2

0

4

0

0

The analytical expression for i in the interval 0 to 
T 4  is

i
I

T
t t T

4
, 0 4.p= < <

The area under the squared function for one   
period is

∫ ∫= =
+

i dt
I

T
t dt

I T
4

16

3
.

t

t T pT p2
2

2
2

0

4 2

0

0

The mean, or average, value of the function is simply 
the area for one period divided by the period. Thus

i
T

I T
I1

3
1
3

.p
pmean

2
2= =

The rms value of the current is the square root of 
this mean value. Hence

I
I

3
.p

rms =

SELF-CHECK: Assess your understanding of this material by trying Chapter Problems 9.5–9.7.

TN4 TN2 3TN4 T
t

etc.

2TN2 2TN4 0

Ip

i2

2

Figure 9.4 ▲ i 2 versus t.

i(t)
vs

R

1

2
L

t 5 0

Figure 9.5 ▲ An RL circuit excited by a sinusoidal 
voltage source.
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324 Sinusoida l Steady-State Analysis 

Thus, we can easily determine θ  for a circuit driven by a sinusoidal source 
of known frequency. We can check that Eq. 9.7 is valid by showing that it 
satisfies Eq. 9.6 for all values of t 0≥ ; this exercise is left for your explo-
ration in Problem 9.10.

Look carefully at the two terms on the right-hand side of Eq. 9.7. 
The first term is a decaying exponential function whose time constant is 

L R.τ =  This term is the transient component of the current because it 
decays to zero as t 0.→  Remember from Chapter 7 that this transient 
component has less than 1% of its initial value when t 5 .τ=

The second term is a cosine whose frequency is ,ω  the same as the fre-
quency of the voltage source. This is the steady-state component of the cur-
rent because it persists as long as the switch remains closed and the source 
continues to supply the sinusoidal voltage. In this chapter, we find only the 
steady-state response of circuits with sinusoidal sources; that is, we find the 
response once its transient component has decayed to zero. We develop a 
technique for calculating the steady-state response directly, thus avoiding the 
problem of solving the differential equation. However, when we use this tech-
nique, we cannot find either the transient component or the total response.

Using the steady-state component of Eq. 9.7, we identify four import-
ant characteristics of the steady-state solution:

1. The steady-state solution is a cosine function, just like the circuit’s 
source.

2. The frequency of the solution is identical to the frequency of the 
source. This condition is always true in a linear circuit when the 
circuit parameters, R, L, and C, are constant. (If frequencies in 
the solution are not present in the source, there is a nonlinear ele-
ment in the circuit.)

3.  The maximum amplitude of the steady-state response, in general, dif-
fers from the maximum amplitude of the source. For the circuit in 
Fig. 9.5, the maximum amplitude of the current is V R L ,m

2 2 2ω+  
while the maximum amplitude of the source is V .m

4. The phase angle of the steady-state response, in general, differs from 
the phase angle of the source. For the circuit being discussed, the phase 
angle of the current is φ θ− , and that of the voltage source is .φ

These characteristics motivate the phasor method, which we introduce  
in Section 9.3. Note that finding only the steady-state response means 
finding only its maximum amplitude and phase angle. The waveform and 
frequency of the steady-state response are already known because they 
are the same as the circuit’s source.

SELF-CHECK: Assess your understanding of this material by trying 
Chapter Problem 9.9.

9.3 The Phasor
A phasor is a complex number that carries the amplitude and phase angle 
information of a sinusoidal function.1 The phasor concept is rooted in Euler’s 
identity, which relates the exponential function to the trigonometric function:

e jcos sin .j θ θ= ±θ±

Euler’s identity gives us another way of representing the cosine and sine 
functions. We can think of the cosine function as the real part of the 

1You can review complex numbers by reading Appendix B.
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exponential function and the sine function as the imaginary part of the 
exponential function; that is,

θ { }= θecos jR

and

θ { }= θesin ,jI

where R means “the real part of” and I  means “the imaginary part of.”
Because we chose to use the cosine function to represent sinusoidal 

signals (see Section 9.1), we can apply Euler’s identity directly. In partic-
ular, we write the sinusoidal voltage function given in Eq. 9.1 by replacing 
the cosine function with the real part of the complex exponential:

ω φ( )= +V tcosmv

{ }= ω φ( )+V em
j tR

{ }= ω φV e e .m
j t jR

We can move the constant Vm inside the argument of the R function with-
out altering the equation. We can also reverse the order of the two expo-
nential functions inside the argument and write the voltage as

v V e e .m
j j tR{ }= φ ω

In this expression for the voltage, note that the quantity V em
jφ  is a complex 

number that carries the amplitude and phase angle of the cosine function 
we started with (Eq. 9.1). We define this complex number as the phasor 
representation, or phasor transform, of the given sinusoidal function. Thus

PHASOR TRANSFORM

  ω φ{ }( )= = +φV e V tV cos ,m
j

mP  (9.8)

where the notation ω φ{ }( )+V tcosmP  is read as “the phasor transform 
of V tcos( ).m ω φ+ ” Thus, the phasor transform transfers the sinusoidal 
function from the time domain to the complex-number domain, which is 
also called the frequency domain, since the response depends, in general, 
on .ω  As in Eq. 9.8, throughout this text we represent a phasor quantity by 
using a boldface capital letter.

Equation 9.8 is the polar form of a phasor, but we also can express a 
phasor in rectangular form. Thus, we rewrite Eq. 9.8 as

φ φ= +V jVV cos sin .m m

Both polar and rectangular forms are useful in circuit applications of the 
phasor concept.

We see from Eq. 9.8 that phasors always have the form Ae ,jφ  where 
A is the amplitude of the underlying voltage or current. It is common to 
abbreviate phasors using the angle notation A ,φ�  where

A Ae .jφ ≡ φ�

We use this angle notation extensively in the material that follows.
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Inverse Phasor Transform
Using Eq. 9.8, we can transform a sinusoidal function to a phasor. We can 
also reverse the process; that is, we can transform a phasor back to the 
original sinusoidal function. If V 100 26 V,= − �  the expression for v  
is t100 cos( 26 )ω − °  V because we have decided to use the cosine func-
tion for all sinusoids. Notice that the phasor cannot give us the value of ω  
because it carries only amplitude and phase information. When we trans-
form a phasor to the corresponding time-domain expression, we use the 
inverse phasor transform function, as shown in the equation

INVERSE PHASOR TRANSFORM

 P RV e V e e V tcosm
j

m
j j t

m
1 ω θ{ } { } ( )= = + °θ θ ω−  (9.9)

where the notation P { }φ− V em
j1  is read as “the inverse phasor transform 

of V e .m
jφ ” Using Eq. 9.9, we find the inverse phasor transform by multi-

plying the phasor by e j tω  and extracting the real part of the product.
Before applying the phasor transform to circuit analysis, we use it to 

solve a problem with which you are already familiar: adding sinusoidal 
functions. Example 9.5 shows how the phasor transform greatly simplifies 
this type of problem.

EXAMPLE 9.5 Adding Cosines Using Phasors

If ω= − °y t20 cos( 30 )1  and ω= + °y t40 cos( 60 )2 ,  
express = +y y y1 2 as a single sinusoidal function.

a) Solve by using trigonometric identities.

b) Solve by using the phasor concept.

Solution

a) First, we expand both y1  and y ,2  using the cosine 
of the sum of two angles, to get

y t t20 cos cos30 20 sin sin 30 ;1 ω ω= ° + °

y t t40 cos cos 60 40 sin sin 60 .2 ω ω= ° − °

Adding y1  and y ,2  we obtain

y t20 cos 30 40 cos 60 cos ω( )= ° + °

t20 sin 30 40 sin 60 sin ω( )+ ° − °

t t37.32 cos 24.64 sin .ω ω= −

To combine these two terms, we treat the coeffi-
cients of the cosine and sine as sides of a right tri-
angle (Fig. 9.6) and then multiply and divide the 
right-hand side by the hypotenuse. Our expression 
for y becomes

ω ω( )= −y t t44.72 37.32
44.72

cos 24.64
44.72

sin

t t44.72 cos33.43 cos sin 33.43 sin .ω ω( )= ° − °

Again, we invoke the identity involving the 
cosine of the sum of two angles and write

y t44.72 cos 33.43 .ω( )= + °

b) The sum of the two cosines is

y t t20 cos 30 40 cos 60 .ω ω( ) ( )= − ° + + °

Use Euler’s identity to rewrite the right-hand 
side of this equation as

R R{ } { }= +ω ω− ° °y e e e e20 40j j j j30 60

R{ }= +ω ω− ° °e e e e20 40 .j j j j30 60

33.438

24.6444.72

37.32

Figure 9.6 ▲ A right triangle used in the solution for y.
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Factoring out the term e jω  from each term gives

Ry e e e20 40 .j j j30 60( ){ }= + ω− ° °

We can calculate the sum of the two phasors 
using the angle notation:

j j20 30 40 60 17.32 10 20 34.64( ) ( )− ° + ° = − + +

j37.32 24.64= +

44.72 33.43 .= °

Therefore,

Ry e e44.72 j j33.43{ }= ω°

t44.72 cos 33.43 .ω( )= + °

Adding sinusoidal functions using phasors is 
clearly easier than using trigonometric identities. 
Note that it requires the ability to move back and 
forth between the polar and rectangular forms of 
complex numbers.

Objective 1—Understand phasor concepts and be able to perform a phasor transform and an inverse 
 phasor transform

 9.1  Find the phasor transform of each trigonomet-
ric function:
a) = +i t25cos(200 60°) mA;
b) = −t45sin(50 30°) V;v
c) ω

ω
= +

+ − °
t

t
10 cos( 53.13°)

4.47cos( 116.565 ) V;
v

d) i t

t

150 sin(10 45°)

150 cos(10 45°) A.

π

π

= − −

+ +

Answer: a) I 25 60  mA;= °
b) V 45 120 V;= − °

c) V 5.66 45  V;= °
d) I 300 45 A.= °

 9.2  Find the time-domain expression corresponding 
to each phasor:
a) I 400 38  mA;= °
b) V (50 50 80 60 )  V;= − ° − °
c) jV (80 40 25 75  )  V.= − + − °

Answer: a) ω +t400 cos( 38°) mA;
b) t107.87 cos( 94.18°) V;ω −
c) t107.67 cos( 36.57°) V.ω −

ASSESSMENT PROBLEMS

SELF-CHECK: Also try Chapter Problem 9.11.

9.4  The Passive Circuit Elements 
in the Frequency Domain

Applying the phasor transform in circuit analysis is a two-step process.

1. Establish the relationship between the phasor current and the pha-
sor voltage at the terminals of the passive circuit elements. We com-
plete this step in this section, analyzing the resistor, inductor, and 
capacitor in the phasor domain.

2. Develop the phasor-domain version of Kirchhoff’s laws, which we 
discuss in Section 9.5.

The V-I Relationship for a Resistor
From Ohm’s law, if the current in a resistor is ω θ( )= +i I tcosm i , the 
voltage at the terminals of the resistor, as shown in Fig. 9.7, is

ω θ[ ]= +R I tcos( )m iv

ω θ[ ]= +RI tcos( ) ,m i

1 2

R

v

i

Figure 9.7 ▲ A resistive element carrying a 
 sinusoidal current.

M09_NILS8436_12_SE_C09.indd   327 11/01/22   8:41 PM



328 Sinusoida l Steady-State Analysis 

1 2

R

V
I

Figure 9.8 ▲ The frequency-domain equivalent 
 circuit of a resistor.

2TN4 0

v, i
v

i

i
v

TN2 T 3TN2 2T
t

Figure 9.9 ▲ A plot showing that the voltage and 
current at the terminals of a resistor are in phase.

where I m  is the maximum amplitude of the current in amperes and iθ  is 
the phase angle of the current.

The phasor transform of this voltage is

RI e RIV .m
j

m i
i θ= =θ

But I m iθ  is the phasor representation of the sinusoidal current, so we 
can write the voltage phasor as

RELATIONSHIP BETWEEN PHASOR VOLTAGE AND 
PHASOR CURRENT FOR A RESISTOR

 RV I,=  (9.10)

which states that the phasor voltage at the terminals of a resistor is the 
resistance times the phasor current—the phasor version of Ohm’s law. 
Figure 9.8 shows the circuit diagram for a resistor in the frequency domain.

 Equation 9.10 contains an important piece of information—namely, 
that at the terminals of a resistor, there is no phase shift between the cur-
rent and voltage. Figure 9.9 depicts this phase relationship, where the 
phase angle of both the voltage and the current waveforms is 60 .°  The sig-
nals are said to be in phase because they both reach corresponding values 
on their respective curves at the same time (for example, they are at their 
positive maxima at the same instant).

The V-I Relationship for an Inductor
We derive the relationship between the phasor current and phasor 
voltage at the terminals of an inductor by assuming a sinusoidal cur-
rent and using Ldi dt  to establish the corresponding voltage. Thus, for 
i I tcos( )m iω θ= + , the expression for the voltage is

ω ω θ( )= = − +L di
dt

LI tsin .m iv

We now replace the sine function with the cosine function:

v LI tcos( 90 ).m iω ω θ= − + − °

The phasor representation of the voltage is then

ω= − θ( )− °LI eV m
j 90i

ω= − θ − °LI e em
j j90i

j LI em
j iω= θ

j LI .m iω θ=

Note that, in deriving the expression for the phasor voltage, we used the 
identity

= ° − ° = −− °e j jcos90 sin 90 .j90

Also, I m iθ  is the phasor representation of the sinusoidal current, so we 
can express the phasor voltage in terms of the phasor current:
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Equation 9.11 states that the phasor voltage at the terminals of an 
inductor equals j Lω  times the phasor current. Figure 9.10 shows the 
 frequency-domain equivalent circuit for the inductor. Note that the rela-
tionship between phasor voltage and phasor current for an inductor also 
applies for the mutual inductance in one coil due to current flowing in 
another mutually coupled coil. That is, the phasor voltage at the terminals 
of one coil in a mutually coupled pair of coils equals j Mω  times the pha-
sor current in the other coil.

We can rewrite Eq. 9.11 as

L IV 90 m iω θ( )= °

LI ( 90) ,m iω θ= + °

which indicates that the voltage and current are out of phase by exactly 
90 .°  Specifically, the voltage leads the current by 90 ,°  or, equivalently, 
the current lags the voltage by 90° . Figure 9.11 illustrates the concept of 
 voltage leading current or current lagging voltage. For example, the voltage 
reaches its negative peak exactly 90°  before the current reaches its neg-
ative peak. The same observation can be made with respect to the zero- 
going-positive crossing or the positive peak.

We can also express the phase shift in seconds. A phase shift of 90°  
corresponds to one-fourth of a period; hence, the voltage leads the current 
by T 4, or f1 (4 ) second.

The V-I Relationship for a Capacitor
To determine the relationship between the phasor current and phasor 
voltage at the terminals of a capacitor, we start with the relationship 
between current and voltage for a capacitor in the time domain,

vi C d
dt

,=

and assume that

ω θ= +V tcos( ).mv v

Therefore,

v
vi C d

dt
CV tsin .mω ω θ( )= = − +

We now rewrite the expression for the current using the cosine function:

vi CV tcos 90 .mω ω θ( )= − + − °

RELATIONSHIP BETWEEN PHASOR VOLTAGE AND 
PHASOR CURRENT FOR AN INDUCTOR

 j L .V Iω=  (9.11)

t

v, i

0

908

2TN4 TN2 T 3TN2

v

i

Figure 9.11 ▲ A plot showing the phase relation-
ship between the current and voltage at the termi-
nals of an inductor ( 60 ).iφ = °

1 2

jvL

V
I

Figure 9.10 ▲ The frequency-domain equivalent 
circuit for an inductor.
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1 2

1NjvC

V
I

Figure 9.12 ▲ The frequency-domain equivalent 
circuit of a capacitor.

The phasor representation of the current is

ω= − θ( )− °CV eI m
j 90v

ω= − θ − °CV e em
j j90v

ω= θvj CV em
j

j CV .mω θ= v

Since Vm θv  is the phasor representation of the sinusoidal voltage, we 
can express the current phasor in terms of the voltage phasor as

j CI V.ω=

Now express the voltage phasor in terms of the current phasor, to con-
form to the phasor equations for resistors and inductors:

RELATIONSHIP BETWEEN PHASOR VOLTAGE AND 
PHASOR CURRENT FOR A CAPACITOR

 
ω

=
j C

V I1 . (9.12)

DEFINITION OF IMPEDANCE

 ZV I,=  (9.13)

Equation 9.12 demonstrates that the equivalent circuit for the capacitor in 
the phasor domain is as shown in Fig. 9.12.

The voltage across the terminals of a capacitor lags behind the current 
by 90 .°  We can show this by rewriting Eq. 9.12 as

C
IV 1 90 m iω

θ( )= − ° °

I
C

( 90) .m
iω

θ= − °

Thus, we can also say that the current leads the voltage by 90°. Figure 9.13 
shows the phase relationship between the current and voltage at the ter-
minals of a capacitor.

 Impedance and Reactance
We conclude this discussion of passive circuit elements in the frequency 
domain with an important observation. When we compare Eqs. 9.10, 9.11, 
and 9.12, we note that they are all of the form

where Z represents the impedance of the circuit element. Solving for Z 
in Eq. 9.13, you can see that impedance is the ratio of a circuit element’s 
voltage phasor to its current phasor. Thus, the impedance of a resistor is R, 
the impedance of an inductor is j L,ω  the impedance of mutual inductance 
is j M,ω  and the impedance of a capacitor is j C1 .ω  In all cases, imped-
ance is measured in ohms. Note that, although impedance is a complex 
number, it is not a phasor. Remember, a phasor is a complex number that 

t

v

v, i

02TN4 TN2 T 3TN2 2T

i

908

Figure 9.13 ▲ A plot showing the phase relation-
ship between the current and voltage at the termi-
nals of a capacitor ( 60 ).iθ = °
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results from the phasor transform of a cosine waveform. Thus, although 
all phasors are complex numbers, not all complex numbers are phasors.

Impedance in the frequency domain is the quantity analogous to resis-
tance, inductance, and capacitance in the time domain. The imaginary 
part of the impedance is called reactance. The values of impedance and 
reactance for each of the component values are summarized in Table 9.1.

And, finally, a reminder. The passive sign convention holds in the 
frequency domain. If the reference direction for the current phasor in a 
circuit element is in the direction of the voltage phasor rise across the 
element, you must insert a minus sign into the equation that relates the 
voltage phasor to the current phasor.

Work through Example 9.6 to practice transforming circuit compo-
nents from the time domain to the phasor domain.

EXAMPLE 9.6 Calculating Component Voltages Using Phasor Techniques

Figure 9.14 shows a resistor and an inductor con-
nected in series. The current in these components is

( )= + °i t50 cos 1000 45 mA.

The phasor transform of these components is shown 
in Fig. 9.15. Find

a) ZR;

b) ZL;

c) I;

d) VR;
e) VL.

 Solution

a) = = ΩZ R 100 ;R

b) Z j L j j(1000)(0.05) 50 ;L ω= = = Ω

c) tI 0.05cos(1000 45 0.05 45
50 45  mA;
P{ }= + ° = °

= °

d) ZV I (100)(0.05 45 ) 5 45 V;R R= = ° = °

e) Z jV I ( 50)(0.05 45 ) 2.5 135 V.L L= = ° = °

Objective 2—Be able to transform a circuit with a sinusoidal source into the frequency domain using  
phasor concepts

 9.3  A 400 Hz sinusoidal voltage with a maximum 
amplitude of 100 V  at t 0=  is applied across 
the terminals of an inductor. The maximum 
amplitude of the steady-state current in the 
inductor is 20 A.
a) What is the frequency of the inductor 

current?
b) If the phase angle of the voltage is zero, what 

is the phase angle of the current?
c) What is the inductive reactance of the 

inductor?
d) What is the inductance of the inductor, in 

millihenries?
e) What is the impedance of the inductor?

Answer: a) 400 Hz;
b) 90 ;− °
c) Ω5 ;
d) 1.99 mH;
e) Ωj5 .

 9.4  A 50 kHz sinusoidal voltage has zero phase 
angle and a maximum amplitude of 10 mV. 
When this voltage is applied across the terminals 
of a capacitor, the resulting steady-state current 
has a maximum amplitude of μ628.32 A.
a) What is the frequency of the current in radi-

ans per second?
b) What is the phase angle of the current?

ASSESSMENT PROBLEMS

TABLE 9.1  Impedance and Reactance 
Values

Circuit 
Element Impedance Reactance

Resistor R —

Inductor j Lω Lω

Capacitor j C( 1 )ω− C1 ω−

1 21 2

100 V 50 mHi

vR vL

Figure 9.14 ▲ The components for Example 9.6.

1 21 2

ZR ZL
I

VR VL

Figure 9.15 ▲ The phasor transform of the components in Fig. 9.14.
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 9.5 Kirchhoff’s Laws in the Frequency  
Domain

Kirchhoff’s Voltage Law in the Frequency Domain
We begin by assuming that v v v, , , n1 2 …  represent voltages around a closed 
path in a circuit. We also assume that the circuit is operating in a sinusoi-
dal steady state. Thus, Kirchhoff’s voltage law requires that

+ + + =v v v 0,n1 2 �

which in the sinusoidal steady state becomes

ω θ ω θ ω θ( )( ) ( )+ + + + + + =V t V t V tcos cos cos 0.m m m n1 2 n1 2
�

We now use Euler’s identity to write the KVL equation as

� { }{ } { }+ + + =θ ω θ ω θ ωR R RV e e V e e V e e 0,m
j j t

m
j j t

m
j j t

n
n

1
1

2
2

which we simplify as

R �V e e V e e V e e 0.m
j j t

m
j j t

m
j j t

n
n

1
1

2
2{ }+ + + =θ ω θ ω θ ω

Factoring the term e j tω  from each term yields

R �V e V e V e e( ) 0,m
j

m
j

m
j j t

n
n

1
1

2
2{ }+ + + =θ θ θ ω

or
R � eV V V( ) 0.n

j t
1 2{ }+ + + =ω

But e 0,j t ≠ω  so

SELF-CHECK: Also try Chapter Problems 9.12 and 9.13.

c) What is the capacitive reactance of the 
capacitor?

d) What is the capacitance of the capacitor, in 
microfarads?

e) What is the impedance of the capacitor?

Answer: a) 314,159.27 rad s;
b) 90 ;°
c) − Ω15.92 ;
d) μ0.2 F;
e) − Ωj15.92 .

KVL IN THE FREQUENCY DOMAIN

 � 0,n1 2V V V+ + + =  (9.14)

KCL IN THE FREQUENCY DOMAIN

 � 0,n1 2I I I+ + + =  (9.15)

which is the statement of Kirchhoff’s voltage law as it applies to phasor 
voltages.

Kirchhoff’s Current Law in the Frequency Domain
A similar derivation applies to a set of sinusoidal currents. Thus, if

�+ + + =i i i 0,n1 2
then

where I I I, , , n1 2 …  are the phasor representations of the individual  currents 
i i i, , , .n1 2 …  Thus, Eq. 9.15 states Kirchhoff’s current law as it applies to 
phasor currents.
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Equations 9.13, 9.14, and 9.15 form the basis for circuit analysis in 
the frequency domain. Note that Eq. 9.13 has the same algebraic form 
as Ohm’s law and that Eqs. 9.14 and 9.15 state Kirchhoff’s laws for pha-
sor quantities. Therefore, you can use all the techniques developed for 
analyzing resistive circuits to find phasor currents and voltages. No new 
analytical techniques are needed; the basic circuit analysis and simplifi-
cation tools covered in Chapters 2–4 can all be used to analyze circuits in 
the frequency domain. Phasor-circuit analysis consists of two fundamental 
tasks: (1) You must be able to construct the frequency-domain model of a 
circuit; and (2) you must be able to manipulate complex numbers and/or 
quantities algebraically.

 Example 9.7 illustrates the use of KVL in the frequency domain.

EXAMPLE 9.7 Using KVL in the Frequency Domain

a) Use the results from Example 9.6 to calculate the 
phasor voltage drop, from left to right, across the 
series combination of the resistive and inductive 
impedances in Fig. 9.15.

b) Use the phasor voltage found in (a) to calculate 
the steady-state voltage drop, from left to right, 
across the series combination of resistor and 
inductor in Fig. 9.14.

Solution

a) Using KVL, the phasor voltage drop from left to 
right in Fig. 9.15 is

V V V 5 45 2.5 135

5.59 71.565  V.

1 2= + = ° + °

= °

b) To find the steady-state voltage drop across the 
resistor and inductor in Fig. 9.14, we need to apply 
the inverse phasor transform to the phasor V from 
part (a). We need the frequency of the current 
defined in Example 9.6, which is ω = 1000 rad s:

t V

t

5.59 71.565

5.59cos 1000 71.565 V.
ss

1 1P P { }
( )

( ) { }= = °

= + °

− −v

9.6 Series, Parallel, and Delta-to-Wye 
Simplifications

The rules for combining impedances in series or parallel and for making 
delta-to-wye transformations are the same as those for resistors. The only 
difference is that combining impedances involves the algebraic manipula-
tion of complex numbers.

Objective 3—Know how to use circuit analysis techniques to solve a circuit in the frequency domain

 9.5  Four branches terminate at a common node. 
The reference direction of each branch current 
(i ,1  i ,2  i ,3  and i4 ) is away from the node. If

ω= +i t80 cos( 30°) A,1   
   ω= − −i t100 sin( 135°) A,2  and  
   i t50 cos( 90°) A,3 ω= −  find i .4

Answer:  i t161.59 cos( 150.035°) A.4 ω= +

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter Problem 9.20.
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1

2

a

b

Vab
I

Z1 Z2 Zn

Figure 9.16 ▲ Impedances in series.

vs v

90 V 32 mH

1
1

2

2

5 mF

Figure 9.17 ▲ The circuit for Example 9.8.

Combining Impedances in Series
Impedances in series can be combined into a single equivalent imped-
ance whose value is the sum of the individual impedances. The circuit 
shown in Fig. 9.16 defines the problem in general terms. The imped-
ances Z Z Z, , , n1 2 …  are connected in series between terminals a,b. When 
impedances are in series, they carry the same phasor current I. From  
Eq. 9.13, the voltage drop across each impedance is …Z Z ZI I I, , , ,n1 2  and 
from Kirchhoff’s voltage law,

 = + + +Z Z ZV I I Inab 1 2 �

( )= + + +Z Z Z I.n1 2 �

The equivalent impedance between terminals a,b is

COMBINING IMPEDANCES IN SERIES

 Z Z Z Z .nab
ab

1 2
V

I
�= = + + +  (9.16)

VOLTAGE DIVISION IN THE FREQUENCY DOMAIN

 =
Z

Z
.j

j
s

eq

V V  (9.17)

Remember from Chapter 3 that we can use voltage division to find the 
voltage across a single component from a collection of series- connected  
components whose total voltage is known (Eq. 3.9). We derived the volt-
age division equation using the equation for the equivalent resistance of 
series-connected resistors. Using the same process, we can derive the volt-
age division equation for frequency-domain circuits, where Vs is the volt-
age applied to a collection of series-connected impedances, Vj is the voltage 
across the impedance Zj, and Zeq is the equivalent impedance of the series- 
connected impedances:

Example 9.8 illustrates the following frequency-domain circuit analysis 
techniques: combining impedances in series, Ohm’s law for phasors, and 
voltage division.

EXAMPLE 9.8 Combining Impedances in Series

A 90 Ω  resistor, a 32 mH inductor, and a μ5 F 
 capacitor are connected in series across the ter-
minals of a sinusoidal voltage source, as shown in 
Fig. 9.17. The steady-state expression for the source 
voltage v s  is ( )+ °t750 cos 5000 30 V.

a) Construct the frequency-domain equivalent 
 circuit.

b) Calculate the phasor voltage V using voltage 
 division for the circuit from part (a).

c) Find the steady-state voltage v using the inverse phasor 
transform.
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90 V j160 V

1

2
2j40 V

a

b

308750
V V

1

2

Figure 9.18 ▲ The frequency-domain equivalent 
circuit for the circuit shown in Fig. 9.17.

Solution

a) From the expression for v s , we have 
ω = 5000 rad s. Therefore, the impedance of 
the inductor is

Z j L j j5000 32 10 160 ,L
3ω ( )( )= = × = Ω−

and the impedance of the capacitor is

Z j
C

j j1 1
5000 5 10

40 .C 6ω ( )( )
= − = −

×
= − Ω

−

The phasor transform of v s  is

V 750 30 V.s = °

Figure 9.18 illustrates the frequency-domain 
equivalent circuit of the circuit shown in Fig. 9.17.

b) Using voltage division, we see that the phasor 
voltage V is proportional to the source voltage; 
from Eq. 9.17,

 
j

j j
V

40
90 160 40

(750 30 ) 200 113.13 V.=
−

+ −
° = − °

Note that we used Eq. 9.16 to find the equivalent 
impedance of the series-connected impedances 
in the circuit.

c) Find the steady-state voltage v using the inverse 
phasor transform of V from part (b). Remember 
that the source frequency is 5000 rad s:

v ( )= − °t t( ) 200 cos 5000 113.13 V.

This voltage is the steady-state component of the 
complete response, which is what remains once 
the transient component has decayed to zero.

Objective 3—Know how to use circuit analysis techniques to solve a circuit in the frequency domain

 9.6  Using the values of resistance and capacitance in 
the circuit of Fig. 9.17, let V 100 45  Vs = °  and 

5000  rad s.ω =  Find
a) the value of inductance that yields a steady-state 

output voltage v with a phase angle of 90°;−

b) the magnitude of the steady-state output  
voltage v.

Answer: a) 26 mH;
b) 31.43 V.

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter Problem 9.19.

Combining Impedances in Parallel
Impedances connected in parallel can be reduced to an equivalent imped-
ance using the reciprocal relationship

COMBINING IMPEDANCES IN PARALLEL

 = + + +
Z Z Z Z

1 1 1 1 .
nab 1 2

�  (9.18)

Figure 9.19 depicts the parallel connection of impedances. Note 
that when impedances are in parallel, they have the same voltage across 
their terminals. We derive Eq. 9.18 directly from Fig. 9.19 by combining 
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a

1

2

V

b

Z1I1 Z2I2 ZnIn

I

Figure 9.19 ▲ Impedances in parallel.

TABLE 9.2  Admittance and Susceptance 
Values

Circuit 
Element

Admittance Y( ) Susceptance

Resistor G (conductance) —

Inductor j L( 1 )ω− L1 ω−

Capacitor j Cω Cω

Kirchhoff’s current law with the phasor-domain version of Ohm’s law, 
that is, Eq. 9.13. From Fig. 9.19,

= + + +I I I I ,n1 2 �

or

= + + +
Z Z Z Z
V V V V .

nab 1 2

�

Canceling the common voltage term from both sides gives us Eq. 9.18.
From Eq. 9.18, for the special case of just two impedances in parallel,

 Z
Z Z

Z Z
.ab

1 2

1 2

=
+

 (9.19)

We can also express Eq. 9.18 in terms of admittance, defined as the recip-
rocal of impedance and denoted Y. Thus

( )= = +Y
Z

G jB1 siemens .

Admittance is a complex number whose real part, G, is called conductance 
and whose imaginary part, B, is called susceptance. Like admittance, con-
ductance and susceptance are measured in siemens (S). Replacing imped-
ances with admittances in Eq. 9.18, we get

= + + +Y Y Y Y .nab 1 2 �

The admittance of each of the ideal passive circuit elements also is worth 
noting and is summarized in Table 9.2.

Finally, remember from Chapter 3 that we can use current division to 
find the current in a single branch from a collection of  parallel-connected 
branches whose total current is known (Eq. 3.10). We derived the cur-
rent division equation using the equation for the equivalent resistance 
of  parallel-connected resistors. Using the same process, we can derive 
the  current division equation for frequency-domain circuits, where Is is 
the current supplied to a collection of parallel-connected impedances, Ij is 
the current in the branch containing impedance Zj, and Zeq is the equiva-
lent impedance of the parallel-connected impedances:

CURRENT DIVISION IN THE FREQUENCY DOMAIN

 =
Z

Z s
eq

.j
j

I I  (9.20)

We use Eq. 9.18 to calculate the equivalent impedance in Eq. 9.20.
Example 9.9 analyzes a circuit in the frequency domain using series 

and parallel combinations of impedances and current division.
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10 V

6 V

40 mH
1 mF

1

2

vis i

Figure 9.20 ▲ The circuit for Example 9.9.

EXAMPLE 9.9 Combining Impedances in Series and in Parallel

The sinusoidal current source in the circuit shown in  
Fig. 9.20 produces the current i t8 cos200,000 A.s =
a) Construct the frequency-domain equivalent circuit.

b) Find the equivalent admittance to the right of 
the current source.

c) Use the equivalent admittance from part (b) to 
find the phasor voltage V.

d) Find the phasor current I, using current division.

e) Find the steady-state expressions for v and i.

Solution

a) The phasor transform of the current source is 
8 0 ;°  the resistors transform directly to the fre-
quency domain as 10 and Ω6 ; the μ40 H inductor 
has an impedance of Ωj8  at the given frequency 
of 200,000 rad s; and at this frequency the 1 Fμ  
capacitor has an impedance of − Ωj5 . Figure 9.21 
shows the frequency-domain equivalent circuit 
and symbols representing the phasor transforms 
of the unknowns.

b)  We first find the equivalent admittance to the 
right of the current source by adding the admit-
tances of each branch. The admittance of the first 
branch is

= =Y 1
10

0.1 S,1

the admittance of the second branch is

=
+

= −Y
j

j1
6 8

0.06 0.08 S,2

and the admittance of the third branch is

=
−

=Y
j

j1
5

0.2 S.3

The admittance of the three branches is

Y Y Y Yeq 1 2 3= + +

= + j0.16 0.12 S

0.2 36.87 S.= °

c) The impedance seen by the current source is

Z
Y

1 5 36.87 .eq
eq

= = − ° Ω

The phasor voltage V is

ZV I 40 36.87 V.eq= = − °

d) Using Eq. 9.20, together with the equivalent 
impedance found in part (c), we get

j
I

5 36.87

6 8
(8 0 ) 4 90 A.=

− °

+
° = − °

You can verify this answer using the phasor volt-
age across the branch, V, and the impedance of 
the branch, + Ωj(6 8) .

e) From the phasors found in parts (c) and (d), the 
steady-state time-domain expressions are

v ( )( ) = − °t t40 cos 200,000 36.87 V,

( )( ) = − °i t t4 cos 200,000 90 A.

10 V

6 V

j8 V
2j5 V

1

2

V I088
A

Figure 9.21 ▲ The frequency-domain equivalent circuit.
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a b

n

c

Zc

Z3

Zb Za

Z1 Z2

Figure 9.22 ▲ The delta-to-wye transformation.

Objective 3—Know how to use circuit analysis techniques to solve a circuit in the frequency domain

 9.7  A 100 Ω resistor is connected in parallel with a 
μ1.25 F capacitor. This parallel combination is 

connected in series with a 30 Ω resistor and a 
8 mH inductor.
a) Calculate the impedance of this interconnec-

tion if the frequency is 8 krad s.
b) Repeat (a) for a frequency of 4 krad s.
c) At what finite frequency does the impedance of 

the interconnection become purely resistive?
d) What is the impedance at the frequency 

found in (c)?

Answer: a) j80 14  ;+ Ω
b) j110 8  ;− Ω
c) 6000  rad s;
d) 94  .Ω

 9.8  The interconnection described in Assessment 
Problem 9.7 is connected across the termi-
nals of a voltage source that is generating 
v t470 cos 6000  V.=  What is the maximum 
amplitude of the current in the μ1.25 F capacitor?

Answer: 3 A.

ASSESSMENT PROBLEMS

SELF-CHECK: Also try Chapter Problems 9.26, 9.27, and 9.39.

Delta-to-Wye Transformations
The Δ-to-Y transformation for resistive circuits, discussed in Section 3.7, 
also applies to impedances. Figure 9.22 defines the Δ-connected imped-
ances along with the Y-equivalent circuit. The Y impedances as functions 
of the Δ impedances are

 =
+ +

Z
Z Z

Z Z Z
,1

b c

a b c

 (9.21)

 =
+ +

Z
Z Z

Z Z Z
,2

c a

a b c

 (9.22)

 =
+ +

Z
Z Z

Z Z Z
.3

a b

a b c

 (9.23)

The Δ-to-Y transformation also may be reversed; that is, we can start 
with the Y structure and replace it with an equivalent Δ structure. The Δ 
impedances as functions of the Y impedances are

 =
+ +

Z
Z Z Z Z Z Z

Z
,a

1 2 2 3 3 1

1

 (9.24)

 =
+ +

Z
Z Z Z Z Z Z

Z
,b

1 2 2 3 3 1

2

 (9.25)

 =
+ +

Z
Z Z Z Z Z Z

Z
.c

1 2 2 3 3 1

3

 (9.26)

The process used to derive Eqs. 9.21–9.23 or Eqs. 9.24–9.26 is the same 
as that used to derive the corresponding equations for resistive circuits. In 
fact, comparing Eqs. 3.15–3.17 with Eqs. 9.21–9.23 and Eqs. 3.18–3.20 with 
Eqs. 9.24–9.26 reveals that the symbol Z has replaced the symbol R. You 
may want to review Problem 3.64 concerning the derivation of the Δ-to-Y 
transformation.

Example 9.10 uses the Δ-to-Y transformation in phasor-circuit 
analysis.
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EXAMPLE 9.10  Using a Delta-to-Wye Transform in the Frequency Domain

Use a Δ-to-Y impedance transformation to find I ,0  
I ,1  I ,2  I ,3  I ,4  I ,5  V ,1  and V2 in the circuit in Fig. 9.23.

Note that the abn branch is in parallel with the acn 
branch. Therefore, we may replace these two branches 
with a single branch having an impedance of

( )( )= = ΩZ 60 12
72

10 .an

Combining this Ω10  resistor with the impedance 
between n and d reduces the circuit to the one 
shown in Fig. 9.25. From that circuit,

j
jI

120 0
18 24

4 53.13 2.4 3.2 A.0 =
°

−
= ° = +

Once we know I ,0  we can work back through 
the equivalent circuits to find the branch currents 
in the original circuit. We begin by noting that I 0  is 
the current in the branch nd of Fig. 9.24. Therefore,

( )= − = −j jV I8 24 96 32 V.nd 0

We can now calculate the voltage Van  because

V V Van nd= +

where V is the phasor voltage of the source and Vnd  
is known. Thus

( )= − − = +j jV 120 96 32 24 32 V.an

Solution
It is not possible to simplify the circuit in Fig. 9.23 
using series and parallel combinations of imped-
ances. But if we replace either the upper delta (abc) 
or the lower delta (bcd) with its Y equivalent, we 
can simplify the resulting circuit by series-parallel 
combinations. To decide which delta to replace, 
find the sum of the impedances around each delta. 
This quantity forms the denominator for the equiv-
alent Y impedances. The sum around the lower 
delta is j30 40,+  so we choose to transform the 
lower delta to its equivalent Y. The Y impedance 
connecting to terminal b is

( )( )
=

+
+

= + ΩZ
j

j
j

20 60 10
30 40

12 4 ,1

the Y impedance connecting to terminal c is

( )
=

−
+

= − − ΩZ
j
j

j
10 20
30 40

3.2 2.4 ,2

and the Y impedance connecting to terminal d is

( )( )
=

+ −
+

= − ΩZ
j j

j
j

20 60 20
30 40

8 24 .3

Inserting the Y-equivalent impedances into the cir-
cuit results in the circuit shown in Fig. 9.24.

We can simplify the circuit in Fig. 9.24 by mak-
ing series-parallel combinations. The impedence of 
the abn branch is

Z j j12 4 4 12 ,abn = + − = Ω

and the impedance of the acn branch is

Z j j63.2 2.4 2.4 3.2 60 .acn = + − − = Ω

20 V

j60 V 2j20 V

j2.4 V

63.2 V

a

2j4 V

cb

d
2

1

V1

2

1

V2

10 V

I0

I3
I2I1

I5I4

1

2
120  08 V

Figure 9.23 ▲ The circuit for Example 9.10.

12 V

j4 V

2j2.4 V

2j 24 V

23.2 V

j 2.4 V

63.2 V

a

2j4 V

cb

I0

d

n

1

2

8 V

120  08 V

Figure 9.24 ▲ The circuit shown in Fig. 9.23, with 
the lower delta replaced by its equivalent wye.

2j24 V2

1
18 V

I0
a

d

120      V  08 

Figure 9.25 ▲ A simplified version of the circuit 
shown in Fig. 9.24.

M09_NILS8436_12_SE_C09.indd   339 11/01/22   8:43 PM



340 Sinusoida l Steady-State Analysis 

We now compute the branch currents I abn  and Iacn 
using Van and the equivalent impedance of each branch:

=
+

= +
j

jI
24 32

12
2 8

3
A,abn

=
+

= +
j

jI
24 32

60
4

10
8

15
A.acn

In terms of the branch currents defined in Fig. 9.23,

= = + jI I 2 8
3

A,1 abn

= = + jI I 4
10

8
15

A.2 acn

We check the calculations of I1 and I 2  by noting that

jI I I2.4 3.2 .1 2 0+ = + =

To find the branch currents I ,3  I ,4  and I ,5  we must 
first calculate the voltages V1  and V .2  Referring to 
Fig. 9.23, we note that

j jV I120 0 ( 4) 328
3

8 V,1 1= ° − − = +

j jV I120 0 63.2 2.4 96 104
3

V.2 2( )= ° − + = −

We now calculate the branch currents I ,3  I ,4  and 
I 5:

=
−

= + jI
V V

10
4
3

12.8
3

A,3
1 2

=
+

= −
j

jI
V

20 60
2
3

1.6 A,4
1

=
−

= +
j

jI
V

20
26
15

4.8 A.5
2

We check the calculations by noting that

j j jI I I2
3

26
15

1.6 4.8 2.4 3.2 ,4 5 0+ = + − + = + =

j j jI I I4
3

2
3

12.8
3

1.6 2 8
3

,3 4 1+ = + + − = + =

j j jI I I4
3

4
10

12.8
3

8
15

26
15

4.8 .3 2 5+ = + + + = + =

Objective 3—Know how to use circuit analysis techniques to solve a circuit in the frequency domain

 9.9  Use a Y-to-Δ  transformation to find the cur-
rent I in the circuit shown.

Answer: I 0.62  81.07  A.= − °

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter Problem 9.42.

9.7 Source Transformations and 
Thévenin–Norton Equivalent 
Circuits

The source transformations introduced in Section 4.9 and the Thévenin–
Norton equivalent circuits discussed in Section 4.10 are analytical tech-
niques that also can be applied to frequency-domain circuits. We prove these 
techniques are valid by following the same process used in Sections 4.9 and 
4.10, except that we substitute impedance (Z) for resistance (R). Figure 9.26 
shows a source-transformation equivalent circuit in the frequency domain.

15 V

60 V

75 V

2j45 V j30 V

1

2

25 V

I

50 2908
V

M09_NILS8436_12_SE_C09.indd   340 11/01/22   8:43 PM



 9.7 Source Transformations and Thévenin–Norton Equivalent Circuits 341

Figure 9.27 illustrates the frequency-domain version of a Thévenin 
equivalent circuit, and Fig. 9.28 shows the frequency-domain equivalent 
of a Norton equivalent circuit. The techniques for finding the Thévenin 
equivalent voltage and impedance are identical to those used for resistive 
circuits, except that the frequency-domain equivalent circuit involves pha-
sors and complex numbers. The same holds for finding the Norton equiv-
alent current and impedance.

Example 9.11 demonstrates the application of the  source-transformation 
equivalent circuit to frequency-domain analysis. Example 9.12 illustrates 
the details of finding a Thévenin equivalent circuit in the frequency domain.

EXAMPLE 9.11  Performing Source Transformations in the Frequency Domain

Use a series of source transformations to find the 
phasor voltage V0 in the circuit shown in Fig. 9.29.

which is in parallel with the current source of 
− j4 12 A. Another source transformation con-

verts this parallel combination to a series combi-
nation of a voltage source and the impedance of 

+ Ωj1.8 2.4 . The voltage of the voltage source is

( )( )= − + = −j j jV 4 12 1.8 2.4 36 12 V.

The resulting circuit is shown in Fig. 9.31. We added 
the current I 0  to this circuit to assist us in finding V .0

We have now reduced the circuit to a simple 
series connection. We calculate the current I 0  by 
dividing the voltage of the source by the total series 
impedance:

=
−
−

= +
j
j

jI
36 12
12 16

1.56 1.08 A.0

Solution
Begin by replacing the series combination of the volt-
age source (40 0 )°  and the impedance of + Ωj1 3+ Ωj1 3   
with the parallel combination of a current source 
and the + Ωj1 3  impedance. The current source is

=
+

= −
j

jI 40
1 3

4 12 A.

The resulting circuit is shown in Fig. 9.30. We used 
the polarity of the 40 V source to determine the 
direction for I.

Next, we combine the two parallel branches 
into a single impedance,

( )( )
=

+ −
= + ΩZ

j j
j

1 3 9 3
10

1.8 2.4 ,

1

2
Vs

a

b
Vs 5 ZsIs

Is

a

b
Is 5 VsNZs

Zs

Zs

Figure 9.26 ▲ A source transformation in the fre-
quency domain.

ZTh

1

2

Frequency-domain
linear circuit;
may contain
both independent
and dependent
sources.

a

b

VTh

a

b

Figure 9.27 ▲ The frequency-domain version of a 
Thévenin equivalent circuit.

ZNIN

a

b

a
Frequency-domain
linear circuit;
may contain
both independent
and dependent
sources. b

Figure 9.28 ▲ The frequency-domain version of a 
Norton equivalent circuit.

j3 V

10 V9 V

2j19 V2j3 V

1

2

j0.6 V1 V 0.2 V

1

2

V040 08 V

Figure 9.29 ▲ The circuit for Example 9.11.

10 V9 V

2j19 V2j3 V

1 V

j3 V

j0.6 V0.2 V

4 2 j12
A

1

2

V0

Figure 9.30 ▲ The first step in reducing the circuit 
shown in Fig. 9.29.
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Now multiply I 0  by the impedance j10 19−  to get V0:

( )( )= + − = −j j jV 1.56 1.08 10 19 36.12 18.84 V.0

You can verify this result by using voltage division 
to calculate V0.

EXAMPLE 9.12  Finding a Thévenin Equivalent in the Frequency Domain

Find the Thévenin equivalent circuit with respect to 
terminals a,b for the circuit shown in Fig. 9.32.

We added the current I to Fig. 9.33; note that 
once we know its value, we can compute the Thévenin 
voltage. Use KVL to find I by summing the voltages 
around the closed path in the circuit. Hence

( )= − + + = − +j jI I I V I V100 10 40 120 10 130 40 10 .x x

We relate the controlling voltage Vx  to the current I 
by noting from Fig. 9.33 that

V I100 10 .x = −

Then,

= −
−

= − −
j

jI 900
30 40

10.8 14.4 A.

Finally, we note from Fig. 9.33 that

= +V V I10 120xTh

I I10 100 10 120( )= − +

j1000 20 10.8 14.4( )= + − −

= − j784 288 V.

Solution
We first determine the Thévenin equivalent voltage. 
This voltage is the open-circuit voltage  appearing 
at terminals a,b. We choose the reference for the 
Thévenin voltage as positive at terminal a. We can 
make two source transformations using the 120 V, 

Ω12 , and Ω60  circuit elements to simplify the left-
hand side of the circuit. These transformations must 
preserve the identity of the controlling voltage Vx 
because of the dependent voltage source.

The first source transformation replaces the 
series combination of the 120 V source and Ω12  
resistor with a 10 A current source in parallel with 

Ω12 . Next, we replace the parallel combination of 
the 12 and Ω60  resistors with a single Ω10  resis-
tor. Finally, we replace the parallel-connected 10 A 
source and Ω10  resistor with a 100 V source in series 
with Ω10 . Figure 9.33 shows the resulting circuit.

10 V

2j19 V

1

2

j2.4 V1.8 V j0.6 V0.2 V

1

2

V036 2 j12 V

I0

Figure 9.31 ▲ The second step in reducing the circuit shown 
in Fig. 9.29.

1

2

1

2

12 V

60 V

a

b2

1

Vx

2j40 V

10Vx

120 V

V
120  08 

Figure 9.32 ▲ The circuit for Example 9.12.

1

2

1

2

10 V

2

1

Vx

2

1

VTh

2j40 V

10Vx

a

b

I

120 V

V
100  08 

Figure 9.33 ▲ A simplified version of the circuit 
shown in Fig. 9.32.
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We can find the Thévenin impedance using any 
of the techniques in Sections 4.10–4.11 for finding 
Thévenin resistance. We use the test-source method 
in this example. We begin by deactivating all inde-
pendent sources in the circuit, and then we apply 
either a test-voltage source or a  test-current source 
to the terminals of interest. The ratio of the volt-
age to the current at the test source is the Thévenin 
impedance. Figure 9.34 presents the result of apply-
ing this technique to the circuit shown in Fig. 9.32 
while preserving the identity of V .x

We added branch currents I a  and I b  to simplify 
the calculation of I .T  You should verify the follow-
ing relationships by applying Ohm’s law, KVL, and 
KCL for phasors:

=
−

=
j

I
V

V I
10 40

, 10 ,T
xa a

I
V V10

120
T x

b =
−

j
j

V 9 4
120 1 4

,T ( )

( )
=

− +
−

I I IT a b= +

j
jV

10 40
1

9 4
12

T ( )=
−

−
+

j
j

V 3 4
12 10 40

,T ( )

( )
=

−
−

= = − ΩZ j
V
I

91.2 38.4 .T

T
Th

Figure 9.35 depicts the Thévenin equivalent circuit.

Objective 3—Know how to use circuit analysis techniques to solve a circuit in the frequency domain

 9.10  Find the steady-state expression for t( )i  in the 
circuit shown by using source transformations. 
The sinusoidal voltage sources are

i 4 cos500t A,1 =

i t2 sin 500  A.2 =

Answer: t4.47cos(500 26.57°) A.+

 9.11  Find the Norton equivalent with respect to ter-
minals a,b in the circuit shown.

Answer:  jI 6 4 AN = + ;  
= − + ΩZ j20 20 .N

ASSESSMENT PROBLEMS

SELF-CHECK: Also try Chapter Problems 9.44, 9.45, and 9.49.

1

2

1

2

12 V

60 V

2

1

Vx

2j40 V

10Vx

a

b

120 V

VT

IT

Ia

Ib

Figure 9.34 ▲ A circuit for calculating the Thévenin 
equivalent impedance.

1

2

91.2 V
a

b

784 2 j288
V

2j38.4 V

Figure 9.35 ▲ The Thévenin equivalent for the 
 circuit shown in Fig. 9.32.

50 V 20 mF

i(t)

120 mH

30 V

i1 i2
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5Vx10 V
a

b

2j10 V(240 1 j40) V

21
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9.8 The Node-Voltage Method
In Sections 4.2–4.4, we introduced the node-voltage method of circuit 
analysis, culminating in Analysis Method 4.3 (p. 102). We can use this 
analysis method to find the steady-state response for circuits with sinusoi-
dal sources. We need to make a few modifications:

• If the circuit is in the time domain, it must be transformed to the 
appropriate frequency domain. To do this, transform known volt-
ages and currents to phasors, replace unknown voltages and currents 
with phasor symbols, and replace the component values for resistors, 
inductors, mutually coupled coils, and capacitors with their imped-
ance values.

• Follow the steps in Analysis Method 4.3 to find the values of the 
unknown voltage and current phasors of interest.

• Apply the inverse phasor transform to the voltage and current pha-
sors to find the steady-state values of the corresponding voltages and 
currents in the time domain.

Example 9.13 illustrates these steps. Assessment Problem 9.12 and many 
of the chapter problems give you an opportunity to use the node-voltage 
method to solve for steady-state sinusoidal responses.

 EXAMPLE 9.13  Using the Node-Voltage Method in the Frequency Domain

Use the node-voltage method to find the branch 
currents ia, ib, and ic in the steady-state, for the cir-
cuit shown in Fig. 9.36. The value of the current 
source in this circuit is i t10.6 cos(500 )As = .

Now we can employ Analysis Method 4.3.

Step 1:  The circuit has three essential nodes, two at 
the top and one on the bottom. We will need two 
KCL equations to describe the circuit.

Step 2:  Four branches terminate on the bottom 
node, so we select it as the reference node and label 
the node voltages at the remaining essential nodes. 
The results of the first two steps are shown in Fig. 9.38.

10 V 400 mF

4 mH1 V

iais ic

ix

20ix

1

2

5 V

ib

Figure 9.36 ▲ The circuit for Example 9.13.

10 V 2j5 V

j2 V1 V

Ia Ic

Ix

20Ix

10.6  08 A
1

2

5 V

Ib

Figure 9.37 ▲ The circuit in Fig. 9.36, transformed into the 
frequency domain.

Solution
We begin by transforming the circuit into the fre-
quency domain. To do this, we replace the value 
of the current source with its phasor transform, 
10.6 0 A° . We also replace the currents ia, ib, ic, 
and ix with corresponding phasor symbols Ia, Ib, Ic, 
and Ix. Then we  replace the inductor and capacitor 
values with their impedances, using the frequency 
of the source:

( )( )= × = Ω−Z j j500 4 10 2 ;L
3

( )( )
=

−
×

= − Ω
−

Z
j

j
500 400 10

5 .C 6

The resulting frequency-domain circuit is shown in 
Fig. 9.37.

10 V 2j5 V

j2 V1 V

Ix

20Ix

10.6  08 A
1

2

5 V1 2

V2

1

2

V1

1

2

Figure 9.38 ▲ The circuit shown in Fig. 9.37, with the node 
 voltages defined.
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Step 3:  Apply KCL at the nonreference essential 
nodes to give

j
V V V

10.6
10 1 2

0,1 1 2− + +
−

+
=

and

j j
V V V V I
1 2 5

20
5

0.x2 1 2 2−
+

+
−

+
−

=

The circuit has a dependent source, so we need a 
dependent source constraint equation that defines 
Ix in terms of the node voltages:

j
I

V V
1 2

.x
1 2=

−
+

Step 4:  Solve the three equations from Step 3 for 
V1, V2, and Ix:

= − jV 68.4 16.8 V,1

= − jV 68 26 V,2

= + jI 3.76 1.68 A.x

Step 5:  Use the phasor values from Step 4 to find 
the three branch currents from Fig. 9.37:

jI
V
10

6.84 1.68 A 7.04 13.8 A,a
1= = − = − °

jI
V I20

5
1.44 11.92 A 12 96.89 A,x

b
2=

−
= − − = − °

j
jI

V
5

5.2 13.6 A 14.56 69.08 A.c
2=

−
= + = °

We find the steady-state values of the branch 
 currents in the  time-domain circuit of Fig. 9.37 
by applying the inverse phasor transform to the 
results of Step 5. Remember that the frequency of 
the current source in the circuit is 500 rad s. The  
results are

( )= − °i t7.04 cos 500 13.8 A,a

( )= − °i t12 cos 500 96.89 A,b

( )= + °i t14.56 cos 500 69.08 A.c

Objective 3—Know how to use circuit analysis techniques to solve a circuit in the frequency domain

 9.12  Use the node-voltage method to find the 
steady-state expression for io  in the circuit  
shown if i t5cos2500  Ag =  and  

t20 cos(2500 90°) V.gv = +

Answer: t2.24 cos(2500 63.43°) A.+

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter Problems 9.54 and 9.55.

9.9 The Mesh-Current Method
We can also use the mesh-current method to analyze frequency-domain 
circuits. If a problem begins with a circuit in the time domain, it needs to 
be transformed into the frequency domain. Then, Analysis Method 4.6 
(p. 110) can be used to find the mesh-current phasors, just as it was used 
to find mesh currents in resistive circuits. Finally, apply the inverse phasor 
transform to the phasor voltages and currents to find the steady-state volt-
ages and currents in the time domain. We use the mesh-current method to 
analyze a frequency-domain circuit in Example 9.14.

1.6 mH

50 mF

100 mF

ioig vg

12 V

1

2
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EXAMPLE 9.14  Using the Mesh-Current Method in the Frequency Domain

Use the mesh-current method to find the voltages 
V ,1  V ,2  and V3 in the circuit shown in Fig. 9.39.

The circuit in Fig. 9.40 has a dependent source, so we 
need a constraint equation that defines Ix in terms of 
the mesh currents. The resulting equation is

I I I .x 1 2= −

Solution
The circuit is already in the frequency domain, so 
we apply Analysis Method 4.6.

Step 1:  Use directed arrows that traverse the mesh 
perimeters to identify the two mesh current phasors.

Step 2:  Label the mesh current phasors as I1 and I2, 
as shown in Fig. 9.40.

Step 3:  Write the KVL equations for the meshes:

 j jI I I150 1 2 12 16 ,1 1 2( ) ( )( )= + + − −

j jI I I I0 12 16 1 3 39 .x2 1 2( )( ) ( )= − − + + +

Step 4:  Solving the simultaneous equations in Step 3  
gives

= − − jI 26 52 A,1

= − − jI 24 58 A,2

= − + jI 2 6 A.x

Step 5:  Finally, we use the mesh-current phasors 
from Step 4 to find the phasor voltages identified in 
the circuit of Fig. 9.39:

( )= + = −j jV I1 2 78 104 V,1 1

( )= − = +j jV I12 16 72 104 V,x2

( )= + = −j jV I1 3 150 130 V.3 2

Also

= − + jI39 78 234 V.x

We check these calculations by summing the volt-
ages around closed paths:

jV V150 150 78 104 721 2− + + = − + − +

+ =j104 0,

− + + = − − + −j jV V I39 72 104 150 130x2 3

− + =j78 234 0,

− + + + = − + − +jV V I150 39 150 78 104 150x1 3

− − + =j j130 78 234 0.

j2 V

12 V

2j16 V

1

2

j3 V1 V 1 V

150  08
V

1 2V1 1 2V3

1

2

V2 Ix
39Ix

1

2

Figure 9.39 ▲ The circuit for Example 9.14.

j2 V

12 V

2j16 V

1

2

j3 V1 V 1 V

39 Ix
1

2

Ix

I1 I2

150  08
V

Figure 9.40 ▲ Mesh currents used to solve the 
 circuit shown in Fig. 9.39.
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 9.10 The Transformer
A transformer is a device based on the magnetic coupling that charac-
terizes mutually coupled inductor coils. Transformers are used in both 
 communication and power circuits. In communication circuits, the trans-
former is used to match impedances and eliminate dc signals from por-
tions of the system. In power circuits, transformers are used to establish ac 
 voltage levels that facilitate the transmission, distribution, and consump-
tion of electrical power. We need to know how a transformer behaves in 
the sinusoidal steady state when analyzing both communication and power 
systems. In this section, we will discuss the sinusoidal steady-state behavior 
of the linear transformer, which is found primarily in communication cir-
cuits. In Section 9.11, we will present the ideal transformer, which is used 
to model the ferromagnetic transformers found in power systems.

When analyzing circuits containing mutually coupled inductor coils, 
we use the mesh-current method. The node-voltage method is hard to use 
when mutual inductance is present because the currents in the coupled 
coils cannot be written by inspection as functions of the node voltages.

The Analysis of a Linear Transformer Circuit
A simple transformer is formed when two coils are wound on a single core 
to ensure magnetic coupling. Figure 9.41 shows the  frequency- domain 
circuit model of a system that uses a transformer to connect a load to a 
source. The transformer winding connected to the source is called the 
 primary winding, and the winding connected to the load is called the 
 secondary winding. The transformer circuit parameters are

=R the resistanceof theprimary winding,1

=R the resistanceof thesecondary winding,2

=L theself-inductanceof theprimary winding,1

=L theself-inductanceof thesecondary winding,2

=M themutual inductance.

Objective 3—Know how to use circuit analysis techniques to solve a circuit in the frequency domain

9.13  Use the mesh-current method to find the 
steady-state expression for v o  in the circuit 
shown if v t400 cos5000  Vg = .

Answer: t178.89 cos(5000 153.43°) V+ .

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter Problems 9.60 and 9.61.

50 V

2 mF

150iD

vg 100 V vo

1

2
2

1

60 mH

iD

1

2

ZS

ZL
1

2

Source Transformer Load

VS

a

b

c

d

jvL1 jvL2

jvM
R2R1

I2I1

Figure 9.41 ▲ The frequency-domain circuit model 
for a transformer used to connect a load to a source.
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The internal voltage of the sinusoidal source is V ,S  and the internal 
 impedance of the source is Z .S  The impedance ZL  represents the load 
connected to the secondary winding of the transformer. The phasor cur-
rents I1 and I 2  are the primary and secondary currents of the transformer, 
respectively.

We analyze the circuit in Fig. 9.41 to find I1 and I 2  as functions of the 
circuit parameters VS, ZS, R1 , L1, L2 , R2 , M, Z ,L  and .ω  Let’s write the 
two KVL equations that describe the circuit:

ω ω= + + −Z R j L j MV I I( ) ,S S 1 1 1 2

j M R j L ZI I0 .1 2 2 L 2ω ω( )= − + + +

We define

 ω= + +Z Z R j L ,S11 1 1  (9.27)

 ω= + +Z R j L Z ,22 2 2 L  (9.28)

where Z11 is the total self-impedance of the mesh containing the primary 
winding of the transformer and Z22  is the total self-impedance of the mesh 
containing the secondary winding. Using the impedances defined in Eqs. 
9.27 and 9.28, we solve the mesh-current equations for I1 and I 2 to give

 
ω

=
+

Z
Z Z M

I V ,S1
22

11 22
2 2

 (9.29)

 ω
ω

ω
=

+
=

j M
Z Z M

j M
Z

I V I .S2
11 22

2 2
22

1  (9.30)

We are also interested in finding the impedance seen when we look 
into the transformer from the terminals a and b. The internal source volt-
age VS is attached to an equivalent impedance whose value is the ratio of 
the source-voltage phasor to the primary current phasor, or

ω ω= =
+

= +Z
Z Z M

Z
Z M

Z
V
I

.S

1
int

11 22
2 2

22
11

2 2

22

The impedance at the terminals of the source is −Z Z ,Sint  so

ω ω ω
ω( )

= + − = + +
+ +

Z Z M
Z

Z R j L M
R j L Z

.Sab 11

2 2

22
1 1

2 2

2 2 L

 (9.31)

Note that the impedance Zab  is independent of the magnetic polarity 
of the transformer because the mutual inductance M appears in Eq. 9.31 as 
a squared quantity. The impedance Zab  is interesting because it describes 
how the transformer affects the impedance of the load as seen from the 
source. Without the transformer, the load would be connected directly to 
the source, and the source would see a load impedance of Z ;L  with the 
transformer, the load is connected to the source through the transformer, 
and the source sees a load impedance that is a modified version of Z ,L  as 
seen in the third term of Eq. 9.31.

Reflected Impedance
The third term in Eq. 9.31 is called the reflected impedance Z( )r  because 
it is the equivalent impedance of the secondary coil and load impedance 
transmitted, or reflected, to the primary side of the transformer. Note that 
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the reflected impedance exists because of the mutual inductance. If the two 
coils are not coupled, M is zero, Zr  is zero, and Zab  is the  self- impedance 
of the primary coil.

To consider reflected impedance in more detail, we first express the 
load impedance in rectangular form:

= +Z R jX ,L L L

where the load reactance X L carries its own algebraic sign. That is, X L is a 
positive number if the load is inductive and a negative number if the load is 
capacitive. We can now write the reflected impedance in rectangular form:

Z M
R R j L Xr

2 2

2 L 2 L

ω
ω( )

=
+ + +

 
ω ω

ω
=

+ − +
+ + +

M R R j L X
R R L X

[( ) ( )]
( ) ( )

2 2
2 L 2 L

2 L
2

2 L
2

 (9.32)

M
Z

R R j L X[( ) ( )].
2 2

22
2 2 L 2 L

ω ω= + − +

The derivation of Eq. 9.32 uses the fact that, when ZL  is written in  
rec tangular form, the self-impedance of the mesh containing the second-
ary winding is

ω( )= + + +Z R R j L X .22 2 L 2 L

In Eq. 9.32 we see that the self-impedance of the secondary circuit 
is reflected into the primary circuit by a scaling factor of M Z ,22

2ω( )  
and that the sign of the reactive component L X2 Lω( )+  is reversed. 
Thus, the linear transformer reflects the complex conjugate of the 
 self-impedance of the secondary circuit Z( )22

*  into the primary winding 
with a scalar multiplier.

Example 9.15 analyzes a circuit with a linear transformer.

EXAMPLE 9.15   Analyzing a Linear Transformer in the Frequency Domain

The parameters of a linear transformer are 
= ΩR 200 ,1  = ΩR 100 ,2  =L 9 H,1  =L 4 H,2  

and k 0.5.=  The transformer couples a load 
impedance with an Ω800  resistor in series with a 

μ1 F capacitor to a sinusoidal voltage source. The 
300 V (rms) source has an internal impedance of 

+ Ωj500 100  and a frequency of 400 rad s.

a) Construct a frequency-domain equivalent circuit 
of the system.

b) Calculate the self-impedance of the primary 
circuit.

c) Calculate the self-impedance of the secondary 
circuit.

d) Calculate the impedance reflected into the 
 primary winding.

e) Calculate the scaling factor for the reflected 
impedance.

f) Calculate the impedance seen looking into the 
primary terminals of the transformer.

g) Calculate the Thévenin equivalent with respect 
to the terminals of the load impedance.

Solution

a) Figure 9.42 shows the frequency-domain equiv-
alent circuit. Note that the internal voltage of  
the source serves as the reference phasor be-
cause it is assigned a phase angle of 0°, and that 
V1  and V2 represent the terminal voltages of 
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the transformer. In constructing the circuit in 
Fig. 9.42, we made the following calculations:

ω ( )( )= = Ωj L j j400 9 3600 ,1

ω ( )( )= = Ωj L j j400 4 1600 ,2

( )( )= =M 0.5 9 4 3 H,

ω ( )( )= = Ωj M j j400 3 1200 ,

ω ( )( )

−
=

−
×

= − Ω
−

j
C

j
j

400 1 10
2500 .

6

b) From Eq. 9.27, the self-impedance of the primary 
circuit is

= + + + = + ΩZ j j j500 100 200 3600 700 3700 .11

c) From Eq. 9.28, the self-impedance of the second-
ary circuit is

= + + − = − ΩZ j j j100 1600 800 2500 900 900 .22

d) From Eq. 9.32, the impedance reflected into the 
primary winding is

( )=
−







 +Z

j
j1200

900 900
900 900r

2

( )= + = + Ωj j8
9

900 900 800 800 .

e) The scaling factor by which Z22
*  is reflected is 8 9.

f) The impedance seen looking into the primary 
terminals of the transformer is the impedance 
of the primary winding, Z11, plus the reflected 
impedance, Zr ; thus

= + + + = + ΩZ j j j200 3600 800 800 1000 4400 .ab

g) The Thévenin voltage is the open-circuit value of 
Vcd , which equals j1200 times the open-circuit 
value of I .1  The open-circuit value of I1 is

j
I

300 0
700 37001 =

°
+

79.67 79.29 mA.= − °

Therefore

jV 1200(79.67 79.29 ) 10Th
3= − ° × −

95.60 10.71 V.= °

The Thévenin impedance equals the impedance 
of the secondary winding, plus the impedance 
reflected from the primary when the voltage 
source is replaced by a short circuit. Thus

( )= + +
+







 −Z j

j
j100 1600 1200

700 3700
700 3700Th

2

= + Ωj171.09 1224.26 .

The Thévenin equivalent is shown in Fig. 9.43.

1

2

a

b

c

d

j3600 V j1600 V 2j2500 V

j1200200 V 100 V 800 Vj100 V500 V

1

2

V1

1

2

V2300  08 V
I1

I2

Figure 9.42 ▲ The frequency-domain equivalent circuit for Example 9.15.

1

2

171.09 V j1224.26 V
c

d

95.60  10.718

V

Figure 9.43 ▲ The Thévenin equivalent circuit for 
Example 9.15.
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9.11 The Ideal Transformer
An ideal transformer consists of two magnetically coupled coils having N1 
and N 2  turns, respectively, and exhibiting these three properties:

1. The coefficient of coupling is unity k 1 .( )=

2.  The self-inductance of each coil is infinite L L .1 2( )= = ∞

4. The coil losses, due to parasitic resistance, are negligible.

Understanding the behavior of ideal transformers begins with Eq. 9.31, 
which describes the impedance at the terminals of a source connected to 
a linear transformer. We repeat this equation in the following discussion 
and examine it further.

Exploring Limiting Values
Equation 9.31, repeated here as Eq. 9.33, defines the relationship bet-
ween the input impedance (Zab) and load impedance (ZL) for a linear 
transformer:

ω= + −Z Z M
Z

ZSab 11

2 2

22

ω ω
ω( )

= + +
+ +

R j L M
R j L Z

.1 1

2 2

2 2 L

 (9.33)

Let’s consider what happens to Eq. 9.33 as L1 and L2  each become infinitely 
large and, at the same time, the coefficient of coupling approaches unity. 
Transformers wound on ferromagnetic cores can approach these condi-
tions. Even though such transformers are nonlinear, we can obtain some 
useful information using an ideal model that ignores the nonlinearities.

To show how Zab  changes when k 1=  and L1 and L2  approach 
infinity, we first introduce the notation

Z R R j L X R jX22 2 L 2 L 22 22ω( )= + + + = +

Objective 4—Be able to analyze circuits containing linear transformers using phasor methods

 9.14  a) Find the steady-state expression for the 
currents ig  and iL  in the circuit shown when 
v = t70 cos5000  V.g

b) Find the coefficient of coupling.

c) Find the energy stored in the magneti-
cally coupled coils at t 100π  sμ=  and 
t 200π  s.μ=

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter Problems 9.74 and 9.76.

8 mH

2 mH

2 mH
ig iL

vg

10 V

30 V
1

2

Answer: a) = −i t5cos(5000 36.87°) A,g  
= −i tcos(5000 180°) A;L

b) 0.5;
c) t wat  100π  s,  9 mJ,μ= =  

t wat  200π  s,  12 mJ.μ= =
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and then rearrange Eq. 9.33:

 
ω

ω
ω

= +
+

+ −
+







Z R

M R
R X

j L
M X

R Xab 1

2 2
22

22
2

22
2 1

2 2
22

22
2

22
2

 (9.34)

= +R jX .ab ab

At this point, we must be careful with the imaginary part of Zab because, 
as L1 and L2  approach infinity, Xab is the difference between two large 
quantities. Thus, before letting L1 and L2  increase, we write the imagi-
nary part of Zab as

X L
L L X
R X

L
L X

R X
( )( )

1 ,ab 1
1 2 22

22
2

22
2 1

2 22

22
2

22
2

ω
ω ω

ω
ω

= −
+

= −
+









where we recognize that, when k 1= , M L L .2
1 2=  Putting the term 

multiplying L1ω  over a common denominator gives

ω
ω

=
+ +

+






X L

R L X X
R X

.ab 1
22
2

2 L L
2

22
2

22
2

Factoring L2ω  out of the numerator and L( )2
2ω  out of the denominator, 

then simplifying, yields

X
L
L

X R X L
R L X L

( )
( ) [1 ( )]

.ab
1

2

L 22
2

L
2

2

22 2
2

L 2
2

ω
ω ω

=
+ +

+ +

As k approaches 1.0, the ratio L L1 2  approaches the constant value 
of N N .1 2

2( )  This follows from the relationship between L1 and N1  
(Eq. 6.21), the relationship between L2 and N2 (Eq. 6.23), and the fact 
that, as the coupling becomes extremely tight, the two permeances P1 and 
P2 become equal. The expression for Xab simplifies to

=






X

N
N

X ,ab
1

2

2

L

as →∞L ,1  →∞L ,2  and →k 1.0.

The same reasoning leads to simplification of the reflected resistance 
in Eq. 9.34:

ω
+

= =








M R
R X

L
L

R
N
N

R .
2 2

22

22
2

22
2

1

2
22

1

2

2

22

Substituting the simplified forms for Xab and the reflected resistance in 
Eq. 9.34 yields

( )= +






 +







 +Z R

N
N

R
N
N

R jX .ab 1
1

2

2

2
1

2

2

L L

Compare this expression for Zab with the one given in Eq. 9.33. We see that 
when the coefficient of coupling approaches unity and the  self-inductances 
of the coupled coils approach infinity, the transformer reflects the secondary 
winding resistance and the load impedance to the primary side by a scaling 
factor equal to the turns ratio N N1 2( ) squared. Hence, we may describe 
the terminal behavior of the ideal transformer in terms of two characteris-
tics. First, the magnitude of the volts per turn is the same for each coil, or

 =
N N
V V

.1

1

2

2

 (9.35)
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Second, the magnitude of the ampere-turns is the same for each coil, or

 =N NI I .1 1 2 2  (9.36)

We use magnitude signs in Eqs. 9.35 and 9.36 because we have not yet 
established reference polarities for the currents and voltages; we discuss 
the removal of the magnitude signs shortly.

Figure 9.44 shows two lossless R R 01 2( )= =  magnetically coupled 
coils. We use Fig. 9.44 to validate Eqs. 9.35 and 9.36. In Fig. 9.44(a), coil 2 
is open; in Fig. 9.44(b), coil 2 is shorted. Although we carry out the follow-
ing analysis in terms of sinusoidal steady-state operation, the results also 
apply to instantaneous values of v  and i.

Determining the Voltage and Current Ratios
Note in Fig. 9.44(a) that the voltage at the terminals of the open-circuit 
coil is entirely the result of the current in coil 1; therefore,

j MV I .2 1ω=

The current in coil 1 is

j L
I

V
.1

1

1ω
=

Thus,
M
L

V V .2
1

1=

For unity coupling k( 1)= , the mutual inductance equals L L ,1 2  so the 
expression for V2 becomes

L
L

V V .2
2

1
1=

For unity coupling, the flux linking coil 1 is the same as the flux linking 
coil 2, so we need only one permeance to describe the self-inductance of 
each coil. Thus,

P
P

N
N

N
N

V V V2
2
2

1
2 1

2

1
1= =

or

VOLTAGE RELATIONSHIP FOR AN IDEAL 
TRANSFORMER

 
V V

=
N N

.1

1

2

2
 (9.37)

Summing the voltages around the shorted coil of Fig. 9.44(b) yields

j M j LI I0 ,1 2 2ω ω= − +

which, when k 1,=  gives

= = = =
L
M

L

L L

L
L

N
N

I
I

.1

2

2 2

1 2

2

1

2

1

1

2

1

2

(a)

V1

N1 N2

jvL1

jvM

jvL2 V2

1

2

I1

(b)

V1

N1 N2

jvL1

jvM

jvL2

I1 I2

Figure 9.44 ▲ The circuits used to verify Eqs. 9.35 
and 9.36 for an ideal transformer.
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Therefore,

CURRENT RELATIONSHIP FOR AN IDEAL 
TRANSFORMER

 =N NI I .1 1 2 2  (9.38)

DOT CONVENTION FOR IDEAL TRANSFORMERS

If the coil voltages V1 and V2 are both positive or neg-
ative at the dot-marked terminals, use a plus sign in  
Eq. 9.35. Otherwise, use a negative sign.

If the coil currents I1 and I 2 are both directed into or 
out of the dot-marked terminals, use a minus sign in  
Eq. 9.36. Otherwise, use a plus sign.

Figure 9.45 shows the graphic symbol for an ideal transformer. The 
vertical lines in the symbol represent the layers of magnetic material from 
which ferromagnetic cores are often made. Coils wound on a ferromag-
netic core behave very much like an ideal transformer, for several reasons. 
The ferromagnetic material creates a space with high permeance. Thus, 
most of the magnetic flux is trapped inside the core material, establish-
ing tight magnetic coupling between coils that share the same core. High 
permeance also means high self-inductance because PL N .2=  Finally, 
ferromagnetically coupled coils efficiently transfer power from one coil to 
the other. Efficiencies in excess of 95% are common, so neglecting losses 
is a valid approximation for many applications.

Determining the Polarity of the Voltage and Current 
Ratios
We now turn to the removal of the magnitude signs from Eqs. 9.35 and 
9.36. Note that magnitude signs do not appear in Eqs. 9.37 and 9.38 
 because we established reference polarities for voltages and reference 
 directions for currents in Fig. 9.44. In addition, we specified the magnetic 
polarity dots of the two coupled coils.

The rules for assigning the proper algebraic sign to Eqs. 9.35 and 9.36 
are as follows:

The four circuits shown in Fig. 9.46 illustrate these rules.

Ideal

N1 N2

Figure 9.45 ▲ The graphic symbol for an ideal 
transformer.

Ideal

N1 N2

I1 I2

Ideal

N1 N2

I1 I2

Ideal

N1 N2

I1 I2

Ideal

N1 N2

I1 I2V1

1

2

V2

1

2

(a)

N1I1  5 2N2I2

V1

N1

V2

N2
5 ,

V1

1

2

V2

1

2

(b)

N1I1 5 N2I2

V1

N1

V2

N2
5

V1

1

2

V2

1

2

(c)

N1I1 5 N2I2

V1

N1

V2

N2
5 5

V1

1

2

V2

1

2

(d)

N1I1 5 2N2I2

,2 , V1

N1

V2

N2

,2

Figure 9.46 ▲ Circuits that show the proper algebraic signs for relating the terminal voltages and currents of an ideal 
transformer.
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The turns ratio for the two windings is an important parameter of the 
ideal transformer. In this text, we use a to denote the ratio N N ,2 1  so

 =a
N
N

.2

1

 (9.39)

Figure 9.47 shows three ways to represent the turns ratio of an ideal 
transformer. Figure 9.47(a) shows the number of turns in each coil explic-
itly. Figure 9.47(b) shows that the ratio N N2 1  is 5 to 1, and Fig. 9.47(c) 

shows that the ratio N N2 1  is 1 to .1
5

Example 9.16 analyzes a circuit containing an ideal transformer.

 EXAMPLE 9.16    Analyzing an Ideal Transformer  
Circuit in the Frequency Domain

The load impedance connected to the secondary 
winding of the ideal transformer in Fig. 9.48 is a 
237.5 mΩ resistor in series with a μ125 H inductor.

If the sinusoidal voltage source v( )g  is gener-
ating the voltage t2500 cos400 V, find the steady-
state expressions for: (a) i ;1  (b) v ;1  (c) i ;2  and (d) v .2

Using the relationship between V1 and V2 for 
the ideal transformer and using Ohm’s law to 
express V2 in terms of I2, we have

jV V I10 10[(0.2375 0.05) ].1 2 2= = +

Because

I I102 1=

we have

jV I10 0.2375 0.05 101 1( )= +

j I23.75 5 .1( )= +

Therefore

j I2500 0 24 7 ,1( )° = +

or

I 100 6.26 A.1 = − °

Thus, the steady-state expression for i1 is

( )= − °i t100 cos 400 16.26 A.1

b) jV 2500 0 100 16.26 0.25 21 ( )( )= ° − − ° +

j2420 185 2427.06 4.37 V.= − = − °

Hence, in the steady state

v ( )= − °t2427.06 cos 400 4.37 V.1

c) I I10 1000 16.26 A.2 1= = − °

Therefore, in the steady state

( )= − °i t1000 cos 400 16.26 A.2

d) V V0.1 242.71 4.37 V,2 1= = − °

so in the steady state,

v ( )= − °t242.71cos 400 4.37 V.2

Solution

a) We begin by transforming the circuit to the fre-
quency domain. The voltage source has the pha-
sor value 2500 0 V;°  the 5 mH inductor has an 
impedance of Ωj2 ; and the μ125 H inductor 
has an impedance of Ωj0.05 . The resulting fre-
quency domain circuit is shown in Fig. 9.49.

Writing a KCL equation for the left-hand mesh 
in Fig. 9.49 gives

j I V2500 0 0.25 2 .1 1( )° = + +

Ideal

(a)

N1 5 500 N2 5 2500

Ideal

1 : 5

(b)

Ideal

1N5 : 1

(c)

V2

1

2

V1

1

2

V2

1

2

V1

1

2

V2

1

2

V1

1

2

Figure 9.47 ▲ Three ways to show that the turns 
ratio of an ideal transformer is 5.

1

2

10 : 1

vg

0.25 V 237.5 mV

i1

5 mH

125 mHv2

1

2

v1

1

2 Ideal

i2

Figure 9.48 ▲ The circuit for Example 9.16.

1

2

10 : 1
0.25 V 0.2375 V

I1

j2 V

j0.05 VV1

1

2

V2

1

2Ideal

I2

2500  08
V

Figure 9.49 ▲ Phasor domain circuit for Example 9.16.
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Using an Ideal Transformer for Impedance Matching
Ideal transformers can be used to increase or decrease the impedance 
level of a load, as illustrated by the circuit shown in Fig. 9.50. The imped-
ance seen by the practical voltage source (Vs  in series with Zs ) is V I .1 1  
The voltage and current at the terminals of the load impedance (V2 and 
I 2 ) are related to V1  and I1 by the transformer turns ratio; thus

a
V

V
,1

2=

and

aI I .1 2=

Therefore, the impedance seen by the practical source is

Z
a

V
I

V
I

1 ,IN
1

1
2

2

2

= =

but the ratio V I2 2  is the load impedance Z ,L  so the expression for ZIN 
becomes

 =Z
a

Z1 .IN 2 L  (9.40)

Thus, the ideal transformer’s secondary coil reflects the load impedance 
back to the primary coil, with the scaling factor a1 .2

Note that the ideal transformer changes the magnitude of ZL  but 
does not affect its phase angle. Whether ZIN  is greater or less than ZL  
depends on the turns ratio a. The ideal transformer—or its practical coun-
terpart, the ferromagnetic core transformer—can be used to match the 
magnitude of ZL  to the magnitude of Z .s  We will discuss why this may be 
desirable in Chapter 10.

Ideal transformers are also used to increase or decrease voltages from 
a source to a load, as we will see in Chapter 10. Thus, ideal transform-
ers are used widely in the electric utility industry, where it is desirable to 
decrease, or step down, the voltage level at the power line to safer resi-
dential voltage levels.

Objective 5—Be able to analyze circuits with ideal transformers

9.15  The source voltage in the phasor domain circuit 
in the accompanying figure is 200  0  V.°  Find 
the amplitude and phase angle of V2 and I .2

Answer:  V 3577.71  153.43  V;2 = °  

I 0.4  143.13  A.2 = − °

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter Problem 9.80.

1 : 20

Ideal

Vs
1

2

10 V

I1

4 kVj5 V

V1

1

2

V2

1

2

I2

2j8 kV

1

2

1

2

V1

1

2

V2

I1

Vs

1 : a

Ideal

ZL

Zs

I2

Figure 9.50 ▲ Using an ideal transformer to couple 
a load to a source.
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9.12 Phasor Diagrams
When we analyze the sinusoidal steady-state operation of a circuit using 
phasors, a diagram of the phasor currents and voltages can give us addi-
tional insight into the circuit’s behavior. A phasor diagram shows the 
 magnitude and phase angle of each phasor quantity in the  complex- number 
plane. Phase angles are measured counterclockwise from the positive real 
axis, and magnitudes are measured from the origin of the axes. For exam-
ple, Fig. 9.51 shows the phasor quantities 10 30 ,°  12 150 ,°  5 45 ,− °  and 
8 170 .− °

Because constructing phasor diagrams for circuits usually involves 
both currents and voltages, we use two different magnitude scales, one for 
currents and one for voltages. Visualizing a phasor on the  complex- number 
plane is a good way to check your calculations. For example, suppose you 
convert the phasor j7 – 3−  to polar form. Before making your calcula-
tion, you should anticipate a magnitude greater than 7 and an angle in 
the third quadrant that is more negative than 135− ° or less positive than 
225 ,°  as illustrated in Fig. 9.52.

Examples 9.17 and 9.18 construct and use phasor diagrams. You can 
use phasor diagrams to get additional insight into the steady-state sinu-
soidal operation of a circuit. For example, Problem 9.83  uses a phasor 
diagram to explain the operation of a phase-shifting circuit.

EXAMPLE 9.17  Using Phasor Diagrams to Analyze a Circuit

Use a phasor diagram for the circuit in Fig. 9.53 to 
find the value of R that causes the current through 
that resistor, i ,R  to lag the source current, i ,s  by 45°  
when ω = 5 krad s.

Solution
According to KCL, the sum of the currents I ,R  
I ,L  and IC  must equal the source current I .s  If we 
assume that the phase angle of the voltage Vm  is 
zero, we can draw the current phasors for each of the 
components. The current phasor for the inductor is

V
j

VI
0

5000 0.2 10
90 ,L

m
m3( )( )

=
°
×

= °
−

whereas the current phasor for the capacitor is

V
j

VI
0

5000 (50 10 )
4 90 ,C

m
m6( )

=
°

− ×
= °

−
 

and the current phasor for the resistor is

V
R

V
R

I
0

0 .R
m m=

°
= °

These phasors are shown in Fig. 9.54. The pha-
sor diagram also shows the source current phasor, 
sketched as a dashed line, which must be the sum of 
the current phasors of the three circuit components 
and must be at an angle that is 45°  more positive 
than the current phasor for the resistor. As you 
can see, summing the phasors makes an isosceles 
 triangle, so the length of the current phasor for the 
resistor must equal V3 .m  Therefore, the value of 
the resistor is Ω.1

3

1508

12  1508
10  308

8  21708

5  2458

21708
2458

308

Imag

Real

Figure 9.51 ▲ A graphic representation of phasors.

225827

2j3

1358

Imag

Real

Figure 9.52 ▲ The complex number 
− − = °j . .7 3 7 62 156 80 .

is R

1

2

vm 0.2 mH

iL

50 mF

iC iR

Figure 9.53 ▲ The circuit for Example 9.17.

458

Is
IC 5 j4Vm

IL 5 2j1Vm
IR 5 Vm>R

Imag

Real

Figure 9.54 ▲ The phasor diagram for the currents in 
Fig. 9.53.
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The circuit in Fig. 9.55 has a load consisting of the 
parallel combination of the resistor and inductor. Use 
phasor diagrams to explore the effect of adding a 
capacitor across the terminals of the load on the 
amplitude of Vs  if we adjust Vs  so that the amplitude 
of VL  remains constant. Utility companies use this 
technique to control the voltage drop on their lines.

Solution
We begin by assuming zero capacitance across the 
load. After constructing the phasor diagram for the 
zero-capacitance case, we can add the capacitor and 
study its effect on the amplitude of V ,s  holding the 
amplitude of VL  constant. Figure 9.56 shows the 
frequency-domain equivalent of the circuit in 
Fig. 9.55. We added the phasor branch currents I, 
I ,a  and I b  to Fig. 9.56 to assist our analysis.

Figure 9.57 shows the stepwise evolution of the 
phasor diagram. Keep in mind that in this example 
we are not interested in specific phasor values and 
positions, but rather in the general effect of adding 
a capacitor across the terminals of the load. Thus, 
we want to develop the relative positions of the 
phasors before and after the capacitor is added.

Relating the phasor diagram to the cir-
cuit shown in Fig. 9.56, we make the following 
observations:

• We choose VL  as our reference because we are 
holding its amplitude constant. For convenience, 
we place this phasor on the positive real axis.

• We know that I a  is in phase with VL  and that its 
magnitude is RV .L 2  (On the phasor diagram, 
the magnitude scale for the current phasors is 
independent of the magnitude scale for the volt-
age phasors.)

vL

1

2

vs
1

2

L1R1

R2 L2

Figure 9.55 ▲ The circuit for Example 9.18.

VL

1

2

Vs
1

2

jvL1R1

R2 jvL2Ia Ib

I

Figure 9.56 ▲ The frequency-domain equivalent of 
the circuit in Fig. 9.55.

EXAMPLE 9.18  Using Phasor Diagrams to Analyze Capacitive Loading Effects

• We know that I b  lags behind VL  by 90°  and that 
its magnitude is LV .L 2ω

• The current I is equal to the sum of I a  and I b .
• The voltage drop across R1  is in phase with the 

current I, and the voltage drop across j L1ω  leads 
I by 90° .

• The source voltage is given by 
R j LV V I( ) .s L 1 1ω= + +

The completed phasor diagram shown in Step 6 of  
Fig. 9.57 shows the amplitude and phase angle relation-
ships among all the currents and voltages in Fig. 9.56.

Now add the capacitor branch shown in Fig. 9.58. 
We are holding VL  constant, so we construct the 
 phasor diagram for the circuit in Fig. 9.58 following 
the same steps as those in Fig. 9.57, except that, in 
Step 4, we add the capacitor current I c to the diagram, 
where I c leads VL  by 90 ,°  with CI V .C Lω=  
Figure 9.59 shows the effect of I c on the current I: 
Both the magnitude and phase angle of I change as 
the magnitude of Ic changes. As I changes, so do the 
magnitude and phase angle of the voltage drop across 
the impedance R j L( ),1 1ω+  resulting in changes 
to the magnitude and phase angle of Vs . The pha-
sor diagram shown in Fig. 9.60 depicts these obser-
vations. The dashed phasors represent the pertinent 
currents and voltages  before adding the capacitor.

VL

(1) (2)

VL

Ia

(3)

VL

Ib

Ia
VL

Ib I

Ia

(4)

(5)

jvL1I

R1I

VL

Ib

Ia908

I
(6)

jvL1I

jvL1I

R1I R1I
VL

Ib

Ia

I

Vs

Figure 9.57 ▲ The step-by-step evolution of the 
phasor diagram for the circuit in Fig. 9.56.

VL

1

2

Vs
1

2

jvL1R1

R2 jvL2

I

jvC
1 IcIbIa

Figure 9.58 ▲ The addition of a capacitor to the circuit 
shown in Fig. 9.56.
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Practical Perspective 
A Household Distribution Circuit
After determining the loads on the three-wire distribution circuit prior to 
the interruption of Fuse A, you are able to construct the  frequency- domain 
circuit model shown in Fig. 9.61. The impedances of the wires connect-
ing the source to the loads are assumed negligible.

Let’s begin by calculating all of the branch current phasors in the 
figure, prior to the interruption of Fuse A. We calculate I4, I5, and I6 using 
Ohm’s law:

I 120
24

5 0 A;4 = = °

I 120
12

10 0 A;5 = = °

j
jI 240

8.4 6.3
18.29 13.71 A 22.86 36.87 A.6 =

+
= − = − °

Thus, comparing the dashed phasors of I, R I,1  
j L I,1ω  and Vs  with their solid counterparts clearly 
shows the effect of adding C to the circuit. In partic-
ular, adding the capacitor reduces the source volt-
age amplitude while maintaining the load voltage 
amplitude. Practically, this result means that, as the 
load increases (i.e., as I a  and I b  increase), we can 
add capacitors to the system (i.e., increase I c), so 

that under heavy load conditions we can maintain 
VL  without increasing the amplitude of the source 
voltage.

SELF-CHECK: Assess your understanding of this 
material by trying Chapter Problems 9.84 and 9.85.

VL

Ib

Ic

Ia

I

Figure 9.59 ▲ The effect of the capacitor current Ic on the 
line current I.

Fuse A (100 A)

Fuse B (100 A)

30 A

24 V

8.4 V

j6.30 V

Fan motor

15 A

15 A

12 V

Momentary
short
circuit
interrupts
fuse A

120  08

V

120  08

V
I5

I4

I2

I3

I1 I6
3

1

2

1

2

Figure 9.61 ▲ The three-wire household distribution circuit model.

Vs

Vs

Ib

Ic

VLIa

I

I

jvL1I

R1I

Figure 9.60 ▲ The effect of adding a load-shunting  
capacitor to the circuit shown in Fig. 9.53 if VL  
is held constant.
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We calculate I1, I2, and I3 using KCL and the other branch currents:

jI I I 23.29 13.71 A 27.02 30.5 A;1 4 6= + = − = − °

I I I 5 0 A;2 5 4= − = °

jI I I 28.29 13.71 A 31.44 25.87 A.3 5 6= + = − = − °

Now calculate those same branch current phasors after Fuse A is 
interrupted. We assume that the fan motor behaves like a short circuit 
when it stalls, and the interrupted fuse behaves like an open circuit. The 
circuit model now looks like Fig. 9.62. To analyze this circuit, we write 
two mesh current equations using the mesh current phasors shown in 
Fig. 9.62:

( )− =I I12 120;a b

( )+ − =I I I24 12 0.b b a

Solving the mesh current equations, we get

=I 15 A;a

=I 5 A.b

Using these mesh current phasors to calculate the new branch current 
phasors from Fig. 9.61, we get

=I 0 A;1

= = =I I I 15 A;2 3 a

= =I I 5 A;6 b

= − = −I I I 5 A;4 1 6

= + =I I I 10 A.5 2 4

We can see that even though Fuse A is interrupted and the I1 branch 
current is zero, all of the other branch currents are nonzero. The appli-
ances and electronics in the house continued to operate because they 
are represented by the 12 Ω load that still has an ample supply of current.

SELF-CHECK: Assess your understanding of this Practical Perspective 
by trying Chapter Problems 9.88 and 9.89.

Fuse B (100 A)

30 A

24 V

15 A

15 A

12 V

120  08

V

120  08

V Ia

1

2

1

2

Ib

Figure 9.62 ▲ The circuit in Fig. 9.61 after Fuse A is interrupted and 
the fan motor stalls.
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Summary
•  The general equation for a sinusoidal source is

v ω φ ( )( )= +V tcos voltage source ,m

or

ω φ( ) ( )= +i I tcos current source ,m

where Vm (or I m) is the maximum amplitude, ω  is the 
frequency, and φ  is the phase angle. (See page 320.)

• The frequency, ω , of a sinusoidal response is the same 
as the frequency of the sinusoidal source driving the 
circuit. The amplitude and phase angle of the response 
are usually different from those of the source. (See 
page 323.)

• The best way to find the steady-state voltages and 
currents in a circuit driven by sinusoidal sources is to 
 perform the analysis in the frequency domain. The 
following mathematical transforms allow us to move 
 between the time and frequency domains.

• The phasor transform (from the time domain to the 
frequency domain):

ω φ{ }( )= = +φ PV e V tV cos .m
j

m

• The inverse phasor transform (from the frequency 
domain to the time domain):

{ } { }=φ φ ω−P RV e V e e .m
j

m
j j t1

(See pages 324–325.)

• In a circuit with a sinusoidal source, the voltage leads 
the current by 90° at the terminals of an inductor, and 
the current leads the voltage by 90° at the terminals of a 
capacitor. (See pages 327–331.)

• Impedance (Z) relates the phasor current and phasor 
voltage for resistors, inductors, and capacitors in an 
equation that has the same form as Ohm’s law,

ZV I,=

where the reference direction for I obeys the pas-
sive sign convention. The reciprocal of impedance is 

admittance (Y), so another way to express the current- 
voltage relationship for resistors, inductors, and capac-
itors in the frequency domain is

YV I .=

(See pages 330 and 336.)

• The equations for impedance and admittance for 
resistors, inductors, and capacitors are summarized in 
Table 9.3.

• All of the circuit analysis techniques developed in 
Chapters 2–4 for resistive circuits also apply to sinusoi-
dal steady-state circuits in the frequency domain. These 
techniques include KVL, KCL, series, and parallel com-
binations of impedances, voltage and current division, 
node-voltage and mesh- current methods, Thévenin and 
Norton equivalents, and source transformation.

• The two-winding linear transformer is a coupling device 
made up of two coils wound on the same nonmagnetic 
core. Reflected impedance is the impedance of the sec-
ondary circuit as seen from the terminals of the primary 
circuit, or vice versa. The reflected impedance of a linear 
transformer seen from the primary side is the complex 
conjugate of the self-impedance of the secondary circuit 
scaled by the factor ω( )M Z22

2 . (See pages 347–349.)

• The two-winding ideal transformer is a linear trans-
former with the following special properties: perfect 
coupling k( 1)= , infinite  self-inductance in each coil 
L L( )1 2= = ∞ , and lossless coils R R( 0)1 2= = .  

The circuit behavior is governed by the turns ratio 
a N N .2 1=  In particular, the volts per turn is the same 
for each winding, or

N N
V V

,1

1

2

2

= ±

and the ampere turns are the same for each winding, or

N NI I .1 1 2 2= ±

(See page 356.)

TABLE 9.3  Impedance and Related Values

Element Impedance Z( ) Reactance Admittance Y( ) Susceptance

Resistor R (resistance) — G (conductance) —

Capacitor j C1 ω( )− C1 ω− j Cω Cω

Inductor j Lω Lω j L1 ω( )− L1 ω−
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 9.7  Find the rms value of the full-wave rectified sinusoi-
dal voltage shown in Fig. P9.7.

Section 9.1

 9.1  In a single graph, sketch i t60 cos( )ω φ= +  versus 
t  for φ = − °60°,  30°,  0°, 30 , and 60°.−

a) State whether the current function is shifting to 
the right or left as φ  becomes more negative.

b) What is the direction of shift if φ  changes from 
0 to 30°?

 9.2  At μ= −t 250 6   s, a sinusoidal voltage is known to 
be zero and going positive. The voltage is next zero 
at μ=t 1250 6   s. It is also known that the voltage 
is 75 V at t 0= .

a) What is the frequency of v in hertz?

b) What is the expression for v?

 9.3  A sinusoidal current is zero at μ=t 150  s and 
increasing at a rate of π20,000 A s. The maximum 
amplitude of the current is 10  A.

a) What is the frequency of i in radians per second?

b) What is the expression for i?

 9.4  The rms value of the sinusoidal voltage supplied 
to the convenience outlet of a home in Scotland is 
230 V. What is the maximum value of the voltage at 
the outlet?

 9.5  Consider the sinusoidal voltage
v t t( ) 170 cos(120 60°) V.π= −

a) What is the maximum amplitude of the voltage?

b) What is the frequency in hertz?

c) What is the frequency in radians per second?

d)  What is the phase angle in radians?

e) What is the phase angle in degrees?

f) What is the period in milliseconds?

g) What is the first time after t 0=  that v 170 V= ?

h) The sinusoidal function is shifted 125 18  ms  to 
the right along the time axis. What is the expres-
sion for v(t)?

i) What is the minimum number of milliseconds 
that the function must be shifted to the left if the 
expression for v(t) is t170 sin120  Vπ ?

 9.6  A sinusoidal voltage is given by the expression

t100 cos(240 45°) V.v π= +

Find (a) f in hertz; (b) T in milliseconds; (c) Vm; 
(d) v(0); (e) φ  in degrees and radians; (f) the small-
est positive value of t at which v 0;=  and (g) the 
smallest positive value of t at which vd dt 0.=

Problems

Vm

v

TN20 T 3TN2 2T
t

v 5 Vm sin       t, 0 < t < TN22p
T

Figure P9.7

 9.8  Show that

∫ ω φ+ =
+

V t dt
V T

cos ( )
2

.m
m

t

t T
2 2

2

0

0

Section 9.2

 9.9  The voltage applied to the circuit shown in Fig. 9.5 
at t 0=  is t100 cos(400 60°) V.+  The circuit resis-
tance is 40 Ω  and the initial current in the 75 mH 
inductor is zero.

a) Find i(t) for t 0.≥

b) Write the expressions for the transient and 
steady-state components of i(t).

c) Find the numerical value of i after the switch has 
been closed for 1.875 ms.

d) What are the maximum amplitude, frequency 
(in radians per second), and phase angle of the 
steady-state current?

e) By how many degrees are the voltage and the 
steady-state current out of phase?

 9.10  a) Verify that Eq. 9.7 is the solution of Eq. 9.6. 
This can be done by substituting Eq. 9.7 into the 
left-hand side of Eq. 9.6 and then noting that 
it equals the right-hand side for all values of 
t 0.>  At t 0,=  Eq. 9.7 should reduce to the 
initial value of the current.

b) Because the transient component vanishes as 
time elapses and because our solution must 
satisfy the differential equation for all values 
of t, the steady-state component, by itself, must 
also satisfy the differential equation. Verify this 
observation by showing that the steady-state 
component of Eq. 9.7 satisfies Eq. 9.6.

Sections 9.3–9.4

 9.11  Use the concept of the phasor to combine the fol-
lowing sinusoidal functions into a single trigono-
metric expression:
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vg
1

2
Circuit

ig

Figure P9.14

R1

a

b

L1

(a) (b)

a

b

R2 L2

Figure P9.15

R1

a

b
(a) (b)

a

b

R2

C1

C2

Figure P9.17

a) y t t100 cos(300 45°) 500 cos(300 60°),= + + −

b) y t t250 cos(377 30°) 150 sin(377 140°),= + − +

c) = + − −

+ +

y t t

t

60 cos(100 60°) 120 sin(100 125°) 

100 cos(100 90°),  and

d) ω ω

ω

= + + +

+ −

y t t

t

100 cos( 40°)  100 cos( 160°)

100 cos( 80°).

 9.12  The current in a 20 mH inductor is 

t10 cos(10,000 30°)+t10 cos(10,000 30°)+  A. 

Calculate (a) the inductive reactance; (b) the 
impedance of the inductor; (c) the phasor voltage 
V; (d) the steady-state expression for the voltage 
across the inductor.

 9.13  The voltage across the terminals of a 5 μF capacitor 
is t30 cos(4000 25°)+  V. Calculate (a) the capaci-
tive reactance; (b) the impedance of the capacitor; 
(c) the phasor voltage I; (d) the steady-state expres-
sion for the current in the capacitor.

 9.14  The expressions for the steady-state voltage and 
current at the terminals of the circuit seen in  
Fig. P9.14 are

v t150 cos(8000 20°) V,g π= +

i t30 sin(8000 38°) A.g π= +

a) What is the impedance seen by the source?

b) By how many microseconds is the current out of 
phase with the voltage?

 9.16  a) Show that at a given frequency ,ω  the circuits in 
Fig. P9.15(a) and (b) will have the same imped-
ance between the terminals a,b if

R
R L

R
L

R L
L

,   .2
1
2 2

1
2

1
2

1
2 2

1
2

2
1

ω ω
ω

=
+

=
+

(Hint:  The two circuits will have the same 
impedance if they have the same admittance.)

b) Find the values of resistance and inductance that 
when connected in parallel will have the same 
impedance at 10 krad s as a 5 k  Ω resistor con-
nected in series with a 500 mH inductor.

 9.17  a) Show that at a given frequency ,ω  the circuits in 
Fig. P9.17(a) and (b) will have the same imped-
ance between the terminals a,b if

 R
R

R C1
,1

2
2

2
2

2
2ω

=
+

C
R C

R C
1

.1

2
2
2

2
2

2
2
2

2

ω
ω

=
+

b) Find the values of resistance and capacitance 
that when connected in series will have the same 
impedance at 80  krad s  as that of a Ω500     
resistor connected in parallel with a 25 nF 
capacitor.

Sections 9.5 and 9.6

 9.15  a) Show that, at a given frequency ,ω  the circuits in 
Fig. P9.15(a) and (b) will have the same imped-
ance between the terminals a,b if

R
L R

R L
L

R L
R L

,   .1

2
2
2

2

2
2 2

2
2 1

2
2

2

2
2 2

2
2

ω
ω ω

=
+

=
+

b) Find the values of resistance and inductance 
that when connected in series will have the same 
impedance at 20 krad s as that of a 50 k  Ω resis-
tor connected in parallel with a 2.5 H inductor.
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 9.18  a) Show that at a given frequency ,ω  the circuits 
in Fig 9.17(a) and (b) will have the same imped-
ance between the terminals a,b if

R
R C

R C
1

,2

2
1
2

1
2

2
1 1

2

ω
ω

=
+

C
C

R C1
.2

1
2

1
2

1
2ω

=
+

(Hint: The two circuits will have the same imped-
ance if they have the same admittance.)

b) Find the values of resistance and capacitance 
that when connected in parallel will give the 
same impedance at 20 krad s as that of a 2 k  Ω
resistor connected in series with a capacitance of 
50 nF.

 9.19  Three branches having impedances of j4   3  ,− Ω  
j16 12  ,+ Ω  and j100  ,− Ω  respectively, are con-

nected in parallel. What are the equivalent (a) 
admittance, (b) conductance, and (c) susceptance 
of the parallel connection in millisiemens? (d) If 
the parallel branches are excited from a sinusoidal 
current source where i t50 cos  A,ω=  what is the 
maximum amplitude of the current in the purely 
capacitive branch?

 9.20  A 400 Ω  resistor, a 87.5 mH inductor, and a 
312.5 nF  capacitor are connected in series. 
The series-connected elements are energized 
by a sinusoidal voltage source whose voltage is 

t500 cos(8000 60°) V.+

a) Draw the frequency-domain equivalent circuit.

b) Reference the current in the direction of the 
voltage rise across the source, and find the pha-
sor current.

c) Find the steady-state expression for i(t).

 9.21  A 20   Ω  resistor and a μ1  F  capacitor are connected 
in parallel. This parallel combination is also in paral-
lel with the series combination of a 1   Ω resistor and 
a μ40  H  inductor. These three parallel branches 
are driven by a sinusoidal current source whose cur-
rent is t20 cos(50,000 20°) A.−

a) Draw the frequency-domain equivalent circuit.

b) Reference the voltage across the current source 
as a rise in the direction of the source current, 
and find the phasor voltage.

c) Find the steady-state expression for v(t).

 9.22  a) Using component values from Appendix H, 
combine at least one resistor and one inductor in 
parallel to create an impedance of j20 40 + Ω 

PSPICE
MULTISIM

PSPICE
MULTISIM

400 V

1

2

40 mH

400 nF
io(t)

vs

Figure P9.25

80 V240 V

48 mH2.5 mF
ig

vo

1

2

Figure P9.26

at a frequency of 1000  rad s. (Hint:  Use the 
results of Problem 9.16.)

b)  Using component values from Appendix H, 
combine at least one resistor and one capacitor 
in parallel to create an impedance of j20 40 − Ω 
at a frequency of 1000  rad s. (Hint:  Use the 
result of Problem 9.18.)

 9.23  a) Using component values from Appendix H,  
find a single capacitor or a network of capacitors 
that, when combined in parallel with the RL cir-
cuit from Problem 9.22(a), gives an equivalent 
impedance that is purely resistive at a frequency 
of 1000 rad s.

b) Using component values from Appendix H, 
find a single inductor or a network of inductors 
that, when combined in parallel with the RC cir-
cuit from Problem 9.22(b), gives an equivalent 
impedance that is purely resistive at a frequency 
of 1000 rad s.

 9.24  a) Using component values from Appendix H, 
combine at least one resistor, inductor, and 
capacitor in series to create an impedance of 

j800 600   − Ω at a frequency of 5000  rad s .

b) At what frequency does the circuit from part (a) 
have an impedance that is purely resistive?

 9.25  Find the steady-state expression for io(t) in the cir-
cuit in Fig. P9.25 if v t750 cos  5000  mV.s =PSPICE

MULTISIM

 9.26  Find the steady-state expression for vo in the circuit 
of Fig. P9.26 if i t200 cos  5000  mA.g =
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2 kV

31.25 nF

500 mH
1

1

2
vg vo

1

2

Figure P9.27

300 V62.5 V

500 V 1 mF50 mH

io

vs
1

2

Figure P9.28

10 V5 V

2j40 V

2j10 V

20 V

10 V
a

b

Zab

j20 V

j30 V

Figure P9.29

2j12.8 V

Yab

j12 V
j10 V

4 V

5 V
6 V

13.6 V

2j2 V

a

b

Figure P9.30

 9.27  The circuit in Fig. P9.27 is operating in the sinusoi-
dal steady state. Find the steady-state expression for 
vo(t) if v t64 cos  8000  V.g =

PSPICE
MULTISIM

 9.28  The circuit in Fig. P9.28 is operating in the sinusoidal 
steady state. Find io(t) if v t t( ) 250 sin 2500  V.s =PSPICE

MULTISIM

 9.29  Find the impedance Zab in the circuit seen in 
Fig. P9.29. Express Zab in both polar and rectangu-
lar form.

 9.30  Find the admittance Yab in the circuit seen in 
Fig. P9.30. Express Yab in both polar and rectangu-
lar form. Give the value of Yab in millisiemens.

4 kV 625 nF

5 H
a

b

 Figure P9.31

12 V

125 nF 20 V

1

2

ig vo25 mH

Figure P9.32

40 1 j 80 mA

25 V

120  V 160  V
Vg

Ic

Ib
Ia2

1

2j80 Vj40 V

Figure P9.33

150 V 10 V

4 mF 2 H
io

vg
1

2

Figure P9.34

 9.31  a) For the circuit shown in Fig. P9.31, find the fre-
quency (in radians per second) at which the 
impedance Zab is purely resistive.

b) Find the value of Zab at the frequency of (a).

PSPICE
MULTISIM

 9.32  a) For the circuit shown in Fig. P9.32, find the steady-
state expression for vo if =i t5cos800,000  A.g

b) By how many nanoseconds does vo lag ig?

PSPICE
MULTISIM

 9.33  The phasor current Ia in the circuit shown in 
Fig. P9.33 is 40 0  mA.°

a) Find Ib, Ic, and Vg.

b) If 800  rad s,ω =  write expressions for ib(t), 
ic(t), and vg(t).

PSPICE
MULTISIM

 9.34  The frequency of the sinusoidal voltage source in 
the circuit in Fig. P9.34 is adjusted until the current 
io is in phase with vg.

a) Find the frequency in hertz.

b) Find the steady-state expression for ig (at the 
frequency found in [a]) if v t10 cos  V.g ω=

PSPICE
MULTISIM
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 9.35  a) The frequency of the source voltage in the circuit 
in Fig. P9.35 is adjusted until vo is in phase with 
ig. What is the value of ω  in radians per second?

b) If i t2.5cos  mAg ω=  (where ω  is the frequency 
found in [a]), what is the steady-state expression 
for vo?

PSPICE
MULTISIM

200 mH
5 kV

1.2 kV

50 nFvo

1

2

ig

Figure P9.35

2 H

25 nF

10 kV

4 kV

ig
vo

1

2

1

2
vg

Figure P9.36

1

2
Vg

Ib

Ia j2 V

2j8 V

2j5 V

j5 V

6 V
Z

Figure P9.37

Vg Ig

1

2

V1

20 V

1

2
j5 V 2j10 V

Z

3 V j1 V

Figure P9.38

ig

L

1600 V
62.5 nF

4 kVvg
1

2

Figure P9.40

40 mH400 V

io
400 nFvg

1

2

Figure P9.39

12.5 kV

vg
1

2

5 H

C

ig

Figure P9.41

 9.36  The frequency of the sinusoidal voltage source in 
the circuit in Fig. P9.36 is adjusted until ig is in phase 
with vg.

a) What is the value of ω  in radians per second?

b) If v t45cos  Vg ω=  (where ω  is the frequency 
found in [a]), what is the steady-state expression 
for vo?

PSPICE
MULTISIM

 9.37  Find Ib and Z in the circuit shown in Fig. P9.37 if 
V 60 0 Vg = °  and I 5 90 A.a = − °

 9.38  Find the value of Z in the circuit seen in Fig. P9.38 
if jV 100 50 V,g = −  jI 20 30 A,g = +  and 

jV 40 30 V.1 = +

 9.39  The circuit shown in Fig. P9.39 is operating in the 
sinusoidal steady state. Find the value of ω  if

i t100 sin( 81.87°) mA,o ω= +
v t50 cos( 45°) V.g ω= −

 9.40  a) The source voltage in the circuit in Fig. P9.40 
is v t96 cos10,000  V.g =  Find the values of L 
such that ig is in phase with vg when the circuit is 
operating in the steady state.

b) For the values of L found in (a), find the steady-
state expressions for ig.

PSPICE
MULTISIM

 9.41  The circuit shown in Fig. P9.41 is operating in the 
sinusoidal steady state. The capacitor is adjusted 
until the current ig is in phase with the sinusoidal 
voltage vg.

a) Specify the capacitance in microfarads if 
v t250 cos1000  V.g =

b) Give the steady-state expression for ig when C 
has the value found in (a).

PSPICE
MULTISIM

 9.42  Solve for I0 in Example 9.10 using a Y-to-Δ transform.

Section 9.7

 9.43  The sinusoidal voltage source in the circuit 
in Fig. P9.43 is developing a voltage equal to 

t22.36 cos(5000 26.565°) V.+
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a) Find the Thévenin voltage with respect to the 
terminals a,b.

b) Find the Thévenin impedance with respect to 
the terminals a,b.

c) Draw the Thévenin equivalent.

50 mH

50 mH

250 V

a

b

400 nF
1

2
vg

Figure P9.43

24 V

2j22 V

j40 V
a

b

1

2
75 08 V

Figure P9.44

30 V 25N6 mF v2v1 vo(t)

1

2

15 mH 20 V

1

2

2

1

Figure P9.45

V0

I0

Device

1

2

Figure P9.46

a

b

2j12 V

j12 V

12 V

12 V12 V

12 V

3 V 12

87 08 V

Figure P9.47

 9.44  Use source transformations to find the Thévenin 
equivalent circuit with respect to the terminals a,b 
for the circuit shown in Fig. P9.44.

 9.45  Find the steady-state expression for vo(t) in the cir-
cuit of Fig. P9.45 using source transformations. The 
sinusoidal voltage sources are

v = +t240 cos(4000 53.13°) V,1

v = t96 sin 4000 V.2

 9.46  The device in Fig. P9.46 is represented in the fre-
quency domain by a Norton equivalent. When 
an inductor having an impedance of j100 Ω  is 
connected across the device, the value of V0 is 
100  120° mV. When a capacitor having an imped-
ance of j100 − Ω  is connected across the device, 
the value of I0 is 3 210° mA− . Find the Norton 
current IN and the Norton impedance ZN.

 9.47  Find the Norton equivalent circuit with respect to 
the terminals a,b for the circuit shown in Fig. P9.47.

1

2

600 V j150 V 2j150 V
a

b

Vo75 08 V

1

2

40 V
50

Vo

Figure P9.48

10 V

10IxIx 20 V

a

b

2j10 V

j10 V

1

2
A2 458

Figure P9.49

1

2
1

2

2j250 V
a

b

50 V

1000 V

4V2 V2Vs

1

2

If
If

Figure P9.50

  9.48  Find the Thévenin equivalent circuit with respect to 
the terminals a,b of the circuit shown in Fig. P9.48.

 9.49  Find the Thévenin equivalent with respect to the 
terminals a,b in the circuit of Fig. P9.49.

 9.50  Find the Norton equivalent circuit with respect to 
the terminals a,b for the circuit shown in Fig. P9.50 
when V 25 0  V.s = °
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 9.51  Find Zab in the circuit shown in Fig. P9.51 when the 
circuit is operating at a frequency of 1.6  Mrad s.

25 nF

25 mH
1 2

15iD

25 ViD

a

b

Figure P9.51

a

b

1 kV

47 kV
125 V

iD

19iD
 nF  nF10

3
5
3

Figure P9.52

 9.52  Find the Thévenin impedance seen looking into the 
terminals a,b of the circuit in Fig. P9.52 if the fre-
quency of operation is 25  krad s.

 9.53  The circuit shown in Fig. P9.53 is operating at a 
frequency of 10 krad s. Assume α is real and lies 
between 50−  and 50+ , that is, 50 50.α− ≤ ≤

a) Find the value of α so that the Thévenin imped-
ance looking into the terminals a,b is purely 
resistive.

b) What is the value of the Thévenin impedance for 
the α found in (a)?

d) Can α be adjusted so that the Thévenin imped-
ance equals j5 5 + Ω? If so, what is the value 
of α?

h) For what values of α will the Thévenin imped-
ance be inductive?

1

210 V aiD

a

b

1 mH

iD

Figure P9.53

1

2

1

2

j40 V

Vo100  08 V j20 V40 V

60 V

Figure P9.54

5 V 9 mF 100 mH

20 V

1

2
is vsv(t)

1

2

Figure P9.55

Section 9.8

 9.54  Use the node-voltage method to find Vo in the cir-
cuit in Fig. P9.54.

 9.55  Use the node-voltage method to find the steady-
state expression for v(t) in the circuit of Fig. P9.55. 
The sinusoidal sources are 
       i t10 cos50,000  A,s =  

 v = t100 sin 50,000 V.s

PSPICE
MULTISIM

 9.56  Use the node-voltage method to find the steady-
state expression for vo(t) in the circuit in Fig. P9.56 if

v t40 cos(5000 53.13°) V,g1 = +

v t8 sin 5000  V.g2 =

PSPICE
MULTISIM

6 V

400 mH 50 mF

vovg1 vg2
1

2
1

2
1

2

Figure P9.56

2.5ID

1

2

V02j10 V
1

2

j5 V

8 VID 15  08 A

Figure P9.57

  9.57  Use the node-voltage method to find the phasor 
voltage V0 in the circuit shown in Fig. P9.57. Express 
the voltage in both polar and rectangular form.
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 9.58  Use the node-voltage method to find Vo and Io in 
the circuit seen in Fig. P9.58.

20 V

j40 V

32 Io

1

2

Vo 2j50 V

Vo
4

Io
1

2
25 V17  08 A

Figure P9.58

2 V 0.75Vx

3 V

2 1

1

2

1 V

33.8  08
V

I

2j5 V

j2 V

Vx

Figure P9.61

Section 9.9

 9.59  Use the mesh-current method to find the steady-
state expression for v(t) in the circuit in Fig. P9.55.

 9.60  Use the mesh-current method to find the steady-
state expression for vo(t) in the circuit in Fig. P9.56.

 9.61  Use the mesh-current method to find the phasor 
current I in the circuit of Fig. P9.61.PSPICE

MULTISIM

20 V

125 mHva vb

1.25 mF

1

2 1

2io

Figure P9.62

1.2 mH

80 V

20 V

va vb

5 mF

1

2 2

1
ia ib

Figure P9.63

5 V

5 V

j5 V 2j5 V

2

1

1

2
Id

08 A2

08 V

Ib

Ia

Ic

08 V50100

Figure P9.64

250 nF

vo 400 mH

300 V 600 V

vg
1

2

1

2

Figure P9.65

50 V

1 H

250 V

20 mF

ig

io

Figure P9.66

 9.62  Use the mesh-current method to find the steady-
state expression for io(t) in the circuit in Fig. P9.62 if

=v t60 cos 40,000  V,a

v t90 sin(40,000 180°) V.b = +

 9.63  Use the mesh-current method to find the steady-state 
expression for the branch currents ia and ib in the 
circuit seen in Fig. P9.63 if v t100 sin10,000 Va =  
and v t500 cos10,000 V.b =

PSPICE
MULTISIM

 9.64  Use the mesh-current method to find the branch 
currents Ia, Ib, Ic, and Id in the circuit shown in  
Fig. P9.64.

Sections 9.5–9.9

 9.65  Use voltage division to find the steady-state 
expression for v t( )o  in the circuit in Fig. P9.65 if 

=v t75 cos 5000  Vg .
PSPICE

MULTISIM

 9.66  Use current division to find the steady-state 
expression for io in the circuit in Fig. P9.66 if 

=i t125 cos 500  mAg .
PSPICE

MULTISIM
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 9.67  For the circuit in Fig. P9.67, suppose

v t100 cos(200   135°) V,a = +

v t50 cos(100 45°) V.b = +

a) What circuit analysis technique must be used to 
find the steady-state expression for v t( )o ?

b)  Find the steady-state expression for v t( )o .

200 mF

250 mH

50 V

va vo vb
1

2

1

2

1

2

Figure P9.67

1

2

20 mF

vo 100 V

200 mH

1

2
v2v1

1

2

Figure P9.68

vg

10 kV 10 kV

1 mF

200 kV

33 kV

12 V

212 V

vo

1

2

1

2

2

1

Figure P9.69

1

2

2

1

25 kV

20 kV 10 kV

40 kV

100 pF

6 V

50 pF
26 V

vg vo

1

2

Figure P9.71

 9.68  For the circuit in Fig. P9.68, suppose

v t40 sin 500  V,1 =

v t60 cos(250 7.125°) V.2 = +

a) What circuit analysis technique must be used to 
find the steady-state expression for v t( )o ?

b) Find the steady-state expression for v t( )o .

 9.69  The sinusoidal voltage source in the circuit 
shown in Fig. P9.69 is generating the voltage 

=v t1.2 cos 100  Vg . If the op amp is ideal, what 
is the steady-state expression for v t( )o ?

PSPICE
MULTISIM

 9.70  The μ1 F capacitor in the circuit seen in Fig. P9.69 
is replaced with a variable capacitor. The capacitor 
is adjusted until the output voltage leads the input 
voltage by 120°.

a) Find the value of C in microfarads.

b) Write the steady-state expression for v t( )o  when 
C has the value found in (a).

 9.71  The op amp in the circuit seen in Fig. P9.71 is  ideal. 
Find the steady-state expression for v t( )o  when 
v t20 cos10  Vg

6= .

PSPICE
MULTISIM

PSPICE
MULTISIM

 9.72  The op amp in the circuit in Fig. P9.72 is ideal.

a) Find the steady-state expression for v t( )o .

b) How large can the amplitude of vg be before the 
amplifier saturates?

PSPICE
MULTISIM

1

2

2

1

200 kV

vg 5 2 cos 100,000t V

160 kV

80 kV

5 V
100 pF

25 V

vg

20 kV

vo

1

2

Figure P9.72

 9.73  The op amp in the circuit shown in Fig. P9.73 is 
ideal. The voltage of the ideal sinusoidal source is 

= t10 cos 200,000  Vgv .

a) How small can Co be before the steady-state 
output voltage no longer has a pure sinusoidal 
waveform?

b) For the value of Co found in (a), write the steady-
state expression for vo.

PSPICE
MULTISIM
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Section 9.10

 9.74  The sinusoidal voltage source in the circuit seen in 
Fig. P9.74 is operating at a frequency of 50 krad s.  
The coefficient of coupling is adjusted until the 
peak amplitude of i1 is maximum.

a) What is the value of k?

b) What is the peak amplitude of i1 if 
v t369 cos(5 10 ) Vg

4= × ?

PSPICE
MULTISIM

1

2

2

1

Co

200 V

500 V

10 V

12.5 nF

210 V

vg

500 V

vo

1

2

Figure P9.73

20 V 100 V

5 mH

k

1

2

75 V 300 V

20 mHvg

i1

40 nF

 Figure P9.74

10 V 40 V

3.2 mH 12.8 mH 250 nF

ka

b

Zab

Figure P9.75

ZS

ZL
1

2

Source Transformer Load

VS

a

b

c

d

jvL1 jvL2

jvM
R2R1

I2I1

Figure P9.76

 9.75  The value of k in the circuit in Fig. P9.75 is adjusted 
so that Zab is purely resistive when 25  krad sω = . 
Find Zab.

 9.76  A linear transformer couples a load consisting of 
a 360 Ω resistor in series with a 0.25 H inductor 
to a sinusoidal voltage source, as see in Fig. P9.76. 
The voltage source has an internal impedance of 

j184 0 + Ω  and a maximum voltage of 245.2 V, and 
it is operating at 800 rad s. The transformer param-
eters are = Ω = = Ω = =R L R L k100  ,   0.5 H,  40  ,   0.125 H,  and  0.41 1 2 2

= Ω = = Ω = =R L R L k100  ,   0.5 H,  40  ,   0.125 H,  and  0.41 1 2 2 . Calculate (a) the re-
flected impedance; (b) the primary current; and (c) 
the secondary current.

PSPICE
MULTISIM

 9.77  For the circuit in Fig. P9.77, find the Thévenin equiv-
alent with respect to the terminals c,d.

1

2

15 V

d

30 V

j200 V

j50 V

j20 V

c

225  08
V (rms)

Figure P9.77

IdealIdeal

a

b

50:1 1:25

Zab
ZL

Figure P9.80

 9.78  A series combination of a 150 Ω  resistor and a 20 nF  
capacitor is connected to a sinusoidal voltage source 
by a linear transformer. The source is operating at 
a frequency of 500  krad s. At this frequency, the 
internal impedance of the source is j(5 16) + Ω.  
The rms voltage at the terminals of the source is 
125 V when it is not loaded. The parameters of the 
linear transformer are = ΩR 12 1 , μ=L 80  H1 ,  
R 50 2 = Ω, μ=L 500  H2 , and μ=M 100  H.

a) What is the value of the impedance reflected 
into the primary?

b) What is the value of the impedance seen from 
the terminals of the practical source?

Section 9.11

 9.79  At first glance, it may appear from Eq. 9.34 that an 
inductive load could make the reactance seen look-
ing into the primary terminals (i.e., Xab) look capac-
itive. Intuitively, we know this is impossible. Show 
that Xab can never be negative if XL is an inductive 
reactance.

 9.80  Find the impedance Zab in the circuit in Fig. P9.80 if 
Z j200  150 L = + Ω.
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 9.81  a) Show that the impedance seen looking into the 
terminals a,b in the circuit in Fig. P9.81 is given 
by the expression

=
+









Z
Z

N
N

1

.ab
L

1

2

2

b) Show that if the polarity terminal of either one 
of the coils is reversed then

=
−









Z
Z

N
N

1  

.ab
L

1

2

2

N1

N2

a

b

Zab

ZLIdeal

Figure P9.81

N2

N1

a

b

Zab

ZL

Ideal

Figure P9.82

R1

R1

Rx

C
vs 5 Vm cos vt vo

1

2

1

2

Figure P9.83

 9.82  a)  Show that the impedance seen looking into the 
terminals a,b in the circuit in Fig. P9.82 is given 
by the expression

= +






Z

N
N

Z1 .ab
1

2

2

L

b) Show that if the polarity terminals of either one 
of the coils is reversed,

= −






Z

N
N

Z1   .ab
1

2

2

L

Section 9.12

 9.83  Show by using a phasor diagram what happens to 
the magnitude and phase angle of the voltage vo 
in the circuit in Fig. P9.83 as Rx is varied from zero 
to infinity. The amplitude and phase angle of the 
source voltage are held constant as Rx varies.

PSPICE
MULTISIM

 9.84  The parameters in the circuit shown in Fig. 9.56 are 
R 1 1 = Ω, L 2 1ω = Ω, R 25 2 = Ω, L 50 2ω = Ω, 
and jV 200 0 VL = + .

a) Calculate the phasor voltage Vs.

b) Connect a capacitor in parallel with the inductor, 
hold VL constant, and adjust the capacitor until 
the magnitude of I is a minimum. What is the 
capacitive reactance? What is the value of Vs?

c) Find the value of the capacitive reactance that 
keeps the magnitude of I as small as possible 
and that at the same time makes

V V 200 V.s L= =

 9.85  a) For the circuit shown in Fig. P9.85, compute Vs 
and Vl.

b) Construct a phasor diagram showing the rela-
tionship between Vs, Vl, and the load voltage of 
440 0° V.

c) Repeat parts (a) and (b), given that the load 
voltage remains constant at 440 0° V, when 
a capacitive reactance of − Ω22  is connected 
across the load terminals.

440  08 VVs

Vl

0.2 V j1.6 V

22 V j22 V 2j22 V

1

1

2

2

1

2

Figure P9.85

Sections 9.1–9.12

 9.86  A residential wiring circuit is shown in Fig. P9.86. In 
this model, the resistor R3 is used to model a 240 V 
appliance (such as an electric range), and the resis-
tors R1 and R2 are used to model 120 V appliances 
(such as a lamp, toaster, and iron). The branches 
carrying I1 and I2 are modeling what electricians 
refer to as the hot conductors in the circuit, and the 
branch carrying In is modeling the neutral conduc-
tor. Our purpose in analyzing the circuit is to show 

PRACTICAL
PERSPECTIVE
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the importance of the neutral conductor in the sat-
isfactory operation of the circuit. You are to choose 
the method for analyzing the circuit.

a) Show that In is zero if R R1 2= .

b) Show that V V1 2=  if R R1 2= .

c)  Open the neutral branch and calculate V1 and 
V2 if R 250 1 = Ω, R 25 2 = Ω, and = ΩR 103 .

d) Close the neutral branch and repeat (c).

e) On the basis of your calculations, explain why 
the neutral conductor is never fused in such a 
manner that it could open while the hot conduc-
tors are energized.

IP
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0.1 V
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j0.2 V

In

j0.1 V

I2

Figure P9.86
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1 1
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Figure P9.88

 9.87  a) Find the primary current IP for (c) and (d)  in 
Problem 9.86.

b) Do your answers make sense in terms of known 
circuit behavior?

PRACTICAL
PERSPECTIVE

 9.89  Suppose the 60 Ω  resistance in the distribution cir-
cuit in Fig. P9.88 is replaced by a 80 Ω  resistance.

a) Recalculate the branch current in the 4 Ω  
 resistor, I2.

b) Recalculate the primary current, IP.

c) On the basis of your answers, is it desirable to have 
the resistance of the two 125 V loads be equal?

 9.90  Assume the fan motor in Fig. 9.61 is equipped with a 
thermal cutout designed to interrupt the motor cir-
cuit if the motor current becomes excessive. Would 
you expect the thermal cutout to operate? Explain.

 9.91  Explain why fuse B in Fig. 9.61 is not interrupted 
when the fan motor stalls.

PRACTICAL
PERSPECTIVE

PRACTICAL
PERSPECTIVE

PRACTICAL
PERSPECTIVE

 9.88  a) Calculate the branch currents −I I1 6 in the cir-
cuit in Fig. P9.88.

b) Find the primary current IP.

PRACTICAL
PERSPECTIVE
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10 
CHAPTER 

Sinusoidal Steady-State 
Power Calculations
Nearly all electric energy is supplied by sinusoidal voltages 
and currents. Thus, after our Chapter 9 discussion of sinusoidal 
circuits, we now consider sinusoidal steady-state power calcula-
tions. We are primarily interested in the average power delivered 
to or supplied by a pair of terminals in the sinusoidal steady state. 
We also present other power quantities, including reactive power, 
complex power, and apparent power.

We begin and end this chapter with two concepts that should be 
very familiar to you from previous chapters: the basic equation for 
power (Section 10.1) and maximum power transfer (Section 10.6). 
In between, we discuss the general techniques for calculating 
power, which will be familiar from your studies in Chapters 1 and 4, 
although some additional mathematical techniques are required 
here to deal with sinusoidal, rather than dc, signals. We also revisit 
the rms value of a sinusoid, briefly introduced in Chapter 9, because 
it is used extensively in power calculations.

A wide variety of problems deal with the delivery of energy 
to do work, ranging from determining the power rating for safely 
and efficiently operating an appliance to designing the vast array 
of generators, transformers, and wires that provide electric 
energy to household and industrial consumers. Thus, power engi-
neering is an important and exciting subdiscipline in electrical 
engineering.

10.1 Instantaneous Power p. 376

10.2 Average and Reactive Power p. 377

10.3  The rms Value and Power  
Calculations p. 382

10.4 Complex Power p. 384

10.5 Power Calculations p. 386

10.6 Maximum Power Transfer p. 393

1  Understand the following ac power con-
cepts, their relationships to one another, 
and how to calculate them in a circuit:

• Instantaneous power;

• Average (real) power;

• Reactive power;

• Complex power; and

• Power factor.

2 Understand the condition for maximum real 
power delivered to a load in an ac circuit 
and be able to calculate the load imped-
ance required to deliver maximum real 
power to the load.

3 Be able to calculate all forms of ac power 
in ac circuits with linear transformers and in 
ac circuits with ideal transformers.

CHAPTER OBJECTIVES
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Practical Perspective 
Vampire Power
Even when we are not using many of the common 
 electrical devices found in our homes, schools, and busi-
nesses, they can still be consuming power. This “standby 
power” can run an internal clock, charge  batteries, 
 display time or other quantities, monitor temperature or 
other  environmental measures, or search for signals to 
receive. Devices such as microwave ovens, cable boxes, 
 televisions,  remote controls, and computers all consume 
power when not in use.

The ac adapters used to charge many portable 
 devices are a common source of standby power. Even 

when the device is unplugged from the adapter, the 
adapter can continue to consume power if it is plugged 
into the wall outlet. Because the plug on the adapter 
looks somewhat like vampire fangs, standby power has 
become known as “vampire power.” It is power that is 
used even while we sleep.

How much vampire power do electrical devices in 
our home use over the course of a year? Is there a way to 
reduce or eliminate vampire power? These questions are 
explored in the Practical Perspective example at the end 
of the chapter and in the chapter problems.

katalinks/123RF

Route55/Shutterstock

Pung/Shutterstock
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376 Sinusoidal Steady-State Power Calculations

1

2
v

i

Figure 10.1 ▲ The black box representation of a 
circuit used for calculating power.

10.1 Instantaneous Power
Consider the familiar circuit in Fig. 10.1. Here, v  and i are steady-state 
sinusoidal signals, given by

v vV tcos( ),m ω θ= +

i I tcos( ),m iω θ= +

where vθ  is the voltage phase angle and iθ  is the current phase angle. 
Using the passive sign convention, we find that the power at any instant 
of time is

vp i.=

This is instantaneous power. Instantaneous power is measured in watts 
when the voltage is in volts and the current is in amperes.

Because the circuit operates in the sinusoidal steady state, we can 
choose any convenient reference for zero time. It is convenient to define 
zero time at the instant the current passes through a positive maximum. 
This reference system requires a shift of both the voltage and current by 

.iθ  Thus, the equations for voltage and current become

 V tcos( ),m iω θ θ= + −v v  (10.1)

 i I tcos .m ω=  (10.2)

When we substitute Eqs. 10.1 and 10.2 into the power equation, the 
expression for the instantaneous power becomes

vp V I t tcos( ) cos .m m iω θ θ ω= + −

We could use this equation directly to find the average power. Instead, we 
use a couple of trigonometric identities to construct a much more infor-
mative expression. We begin with the trigonometric identity1

cos cos 1
2

cos 1
2

cosα β α β α β( ) ( )= − + +

and let vt     iα ω θ θ= + −  and tβ ω=  to give

v vp
V I V I

t
2

cos( )
2

cos(2 ) .m m
i

m m
iθ θ ω θ θ= − + + −

Now use the trigonometric identity

cos cos cos   sin sinα β α β α β( )+ = −

to expand the second term on the right-hand side of the expression for p, 
which gives

INSTANTANEOUS POWER

 

v v

v

p
V I V I

t

V I
t

2
cos( )

2
cos(   )cos2

 
2

sin(   )sin 2 .

m m
i

m m
i

m m
i

θ θ θ θ ω

θ θ ω

= − + −

− −
 

 (10.3)

1 See Appendix F.
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 10.2 Average and Reactive Power 377

Examine the three terms on the right-hand side of Eq. 10.3. The first 
term is a constant; it is not a function of time. The other two terms are 
sinusoids, each with a frequency that is double the frequency of the volt-
age and current in Eqs. 10.1 and 10.2. You can make these same observa-
tions in the plot of Fig. 10.2, which depicts v , i, and p, assuming v 60°θ =  
and 0°.iθ =  You can see that the frequency of the instantaneous power 
is twice the frequency of the voltage or current. Therefore, the instanta-
neous power goes through two complete cycles for every cycle of either 
the voltage or the current.

Also note that the instantaneous power may be negative for a portion 
of each cycle. When the power is negative, the energy stored in the induc-
tors or capacitors is being extracted. The instantaneous power varies with 
time when a circuit operates in the sinusoidal steady state. As a result, 
some motor-driven appliances (such as refrigerators) experience vibra-
tion and require resilient motor mountings to prevent excessive vibration.

In the next section, we use Eq. 10.3 to find the average power at the 
terminals of the circuit in Fig. 10.1 and also introduce the concept of reac-
tive power.

AVERAGE (REAL) POWER

 vP
V I

2
cos( ),m m

iθ θ= −  (10.5)

10.2 Average and Reactive Power
As we have already noted, Eq. 10.3 has three terms, which we can rewrite 
as follows:

 p P P t Q tcos2 sin 2 ,ω ω= + −  (10.4)

where

2p 3p 4p
vt

(radians)p

2Vm

2Im

Im

Vm

0

v, i, p

v v

v v

i i

i i

p p

p p

2
VmIm

4

VmIm

2

3VmIm

4

Figure 10.2 ▲ Instantaneous power, voltage, and current versus tω  
for steady-state sinusoidal operation.
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Figure 10.3 ▲ Instantaneous power and  average 
power for a purely resistive circuit.

P is the average power, and Q is the reactive power. Average power is 
sometimes called real power because it describes the power in a circuit 
that is transformed from electric to nonelectric energy. Although the two 
terms are interchangeable, we primarily use the term average power in 
this text.

It is easy to see why P is called the average power: it is the average of 
the instantaneous power over one period. In equation form,

 P
T

p dt1   ,
t

t T

o

0

∫=
+

 (10.7)

where T is the period of the sinusoidal function. The limits on the integral 
imply that we can initiate the integration process at any convenient time t 0   
but that we must terminate the integration exactly one period later.  
(We could integrate over nT periods, where n is an integer, provided we 
multiply the integral by nT1 .)

We could find the average power by substituting Eq. 10.3 directly 
into Eq. 10.7 and integrating. But the average value of p is given by the 
first term on the right-hand side of Eq. 10.3 because the integral of both 

tcos 2ω  and tsin 2ω  over one period is zero. Thus, the average power is 
given in Eq. 10.5.

We can develop a better understanding of all the terms in Eq. 10.4 
and the relationships among them by examining the power in circuits that 
are purely resistive, purely inductive, or purely capacitive.

Power for Purely Resistive Circuits
If the circuit between the terminals in Fig. 10.1 is purely resistive, the volt-
age and current are in phase, which means that vθ θ= .i  Equation 10.4 
then reduces to

p P P tcos 2 .ω= +

The instantaneous power for a resistor is called the instantaneous real 
power. Figure 10.3 shows a graph of p for a purely resistive circuit with 

377  rad s .ω =  By definition, the average power, P, is the average of p 
over one period. Looking at the graph, we see that P 1=  for this circuit. 
Note that the instantaneous real power can never be negative, which is 
seen in its equation and is also shown in Fig. 10.3. In other words, power 
cannot be extracted from a purely resistive network. Resistors dissipate 
electric energy in the form of thermal energy.

Power for Purely Inductive Circuits
If the circuit between the terminals in Fig. 10.1 is purely inductive, the 
current lags the voltage by 90°  (that is, v 90°iθ θ= − ); therefore, 

90°.iθ θ− = +v  The expression for the instantaneous power then   
reduces to

p Q tsin 2 .ω= −

REACTIVE POWER

 vQ
V I

2
sin( ) .m m

iθ θ= −  (10.6)
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Figure 10.4 ▲ Instantaneous power, average 
power, and reactive power for a purely inductive 
circuit.
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Figure 10.5 ▲ Instantaneous power, average 
power, and reactive power for a purely capacitive 
circuit.

In a purely inductive circuit, the average power is zero, and energy is not 
transformed from electric to nonelectric form. Instead, the instantaneous 
power in a purely inductive circuit is continually exchanged between the 
circuit and the source driving the circuit, at a frequency of 2 .ω  When p is 
positive, energy is stored in the magnetic fields associated with the induc-
tive elements, and when p is negative, energy is extracted from the mag-
netic fields.

We measure the power of purely inductive circuits using the reactive 
power Q. The name reactive power recognizes an inductor as a reactive 
element; its impedance is purely reactive. Note that average power P 
and reactive power Q carry the same dimension. To distinguish between 
average and reactive power, we use the units watt (W) for average power 
and var (volt-amp reactive, or VAR) for reactive power. Figure 10.4 
plots the instantaneous power for a purely inductive circuit, assuming 

377  rad sω =  and Q 1 VAR.=

 Power for Purely Capacitive Circuits
If the circuit between the terminals in Fig. 10.1 is purely capacitive, the cur-
rent leads the voltage by 90°  (that is, vθ θ= + 90°i ); thus, vθ θ− = −90°.i  
The expression for the instantaneous power then becomes

p Q tsin 2 .ω= −

Again, the average power is zero, and energy is not transformed from 
electric to nonelectric form. Instead, the power is continually exchanged 
between the source driving the circuit and the electric field associated with 
the capacitive elements. Figure 10.5 plots the instantaneous power for a 
purely capacitive circuit, assuming 377  rad sω =  and Q 1 VAR.= −

Note that the decision to use the current as the reference (see Eq. 10.2) 
means that Q is positive for inductors (because v 90°iθ θ− = ) and nega-
tive for capacitors (because v 90°iθ θ− = − ). Power engineers recognize 
this difference in the algebraic sign of Q by saying that inductors demand 
(or absorb) magnetizing vars and capacitors furnish (or deliver) magnetiz-
ing vars. We say more about this convention later.

The Power Factor
The angle v iθ θ−  is used when computing both average and reactive 
power and is referred to as the power factor angle. The cosine of this angle 
is called the power factor, abbreviated pf, and the sine of this angle is 
called the reactive factor, abbreviated rf. Thus

POWER FACTOR

 pf cos( ),iθ θ= −v  (10.8)

vrf sin( ).iθ θ= −

Even if you know the value of the power factor, you cannot determine the 
power factor angle because v vcos( ) cos( ).i iθ θ θ θ− = −  To completely 
describe this angle, we use the phrases lagging power factor and leading 
power factor. Lagging power factor means that current lags voltage—
hence, an inductive load. Leading power factor means that current leads 
voltage—hence, a capacitive load. Both the power factor and the reactive 
factor are convenient quantities to use in describing electrical loads.

Example 10.1 illustrates the interpretation of P and Q using numeri-
cal calculations.
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1

2
v

i

Figure 10.6 ▲ A pair of terminals used for calculating 
power.

EXAMPLE 10.1    Calculating Average and Reactive Power

a) Calculate the average power and the reactive 
power at the terminals of the network shown in 
Fig. 10.6 if

v t100 cos 15°  V,ω( )= +

i t4 sin 15°  A.ω( )= −

b) State whether the network inside the box is 
absorbing or delivering average power.

c)  State whether the network inside the box is 
absorbing or supplying magnetizing vars.

Solution

a) Because i is expressed in terms of the sine func-
tion, the first step in calculating P and Q is to 
 rewrite i as a cosine function:

i t4 cos 105°  A.ω( )= −

We now calculate P and Q directly from Eqs. 10.5 
and 10.6, using the passive sign convention. Thus

P 1
2

(100) (4) cos[15° ( 105°)] 100 W,= − − = −

Q 1
2

100(4) sin[15° ( 105°)] 173.21 VAR.= − − =

b) The value of P is negative, so the network inside 
the box is delivering average power to the 
terminals.

c) The value of Q is positive, so the network inside 
the box is absorbing magnetizing vars at its 
terminals.

Objective 1—Understand ac power concepts, their relationships to one another, and how to calcuate them 
in a circuit

10.1  The following sets of values for v and i pertain 
to the circuit shown in Fig. 10.1. For each set of 
values, calculate P and Q and state whether the 
circuit inside the box is absorbing or delivering 
(1) average power and (2) magnetizing vars.

a) v ω( )= +t100 cos 50° V,  
 i t10 cos( 15°) A;ω= +

b) v t40 cos( 15°) V,ω= −  
 i t5cos( 60°) A;ω= +

c) v ω= +t400 cos( 30°) V,  
 i t10 sin( 240°) A;ω= +

d) t200 sin( 250°) V,v ω= +  
  i t5 cos( 40°) A.ω= +

Answer: a)   P 409.58 W (abs)= ,
Q 286.79 VAR (abs);=

b)   =P 25.88 W (abs), 
= −Q 96.59 VAR (del);

c)    = −P 1000 W (del), 
= −Q 1732.05 VAR (del);

d)   = −P 250 W (del), 
=Q 433.01 VAR (abs).

10.2  For every pair of voltage and current values in 
Assessment Problem 10.1, compute the power 
factor and the reactive factor for the network 
inside the box in Fig. 10.6. (Hint:  Use i−  to cal-
culate the power factor and reactive factor.)

Answer: a)  pf 0.82=  lagging; rf 0.57;=
b)  pf 0.26=  leading; rf 0.97;= −
c)   pf 0.5= −  leading; rf 0.87;= −
d)  pf 0.5= −  lagging; rf 0.87.=

ASSESSMENT PROBLEMS

SELF-CHECK: Also try Chapter Problem 10.1.
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 Appliance Ratings
Average power is used to quantify the power needs of household appli-
ances. Your monthly electric bill is based on the number of kilowatt-hours 
used by the household. Table 10.1 presents data for some common appli-
ances, including the average hours per month and the number of months 
the appliance is used, the annual kilowatt-hour (kwh) consumption, and 
the annual cost of operation. For example, a coffee maker has a monthly 
use of 30 hours, or one hour per day, is used every month of the year, and 
consumes 60 kwh per year, at a cost of about $10. Therefore, the coffee 
maker consumes 60 kwh 360 hours 0.167 kW 167 W= =  of power 
during the hour it operates each day.

Example 10.2 uses Table 10.1 to determine whether four common 
appliances can all be in operation without exceeding the current-carrying 
capacity of the household.

TABLE 10.1 Annual Energy Requirements of Electric Household Appliances

Appliance
Hours in Use 

per Month
Months  

Used
Annual 
kWH

Annual  
Cost

A/C—central 120 3 1080 $173

Clothes dryer—electric 24 12 901 $144

Clothes washer (does not include cost of hot water) 28 12 108 $17

Coffee maker (residential) 30 12 60 $10

Computer—desktop with monitor * * 127 $20

Computer—laptop * * 23 $4

Dishwasher—heat dry (does not include hot water) 30 12 293 $47

DVD player 60 12 18 $3

Fan—ceiling (does not include lights) 150 6 72 $12

Fan—table/box/floor 60 3 28 $4

Game console (includes standby/phantom load) * * 65 $10

Heating system—electric heat—baseboard, 10 ft 240 5 1500 $240

Humidifier 240 12 360 $58

Lighting—incandescent, 75 Watt 60 12 54 $9

Lighting—CFL, 20 Watt (75 W incandescent equivalent) 90 12 22 $3

Lighting—LED, 10 Watt (75 W incandescent equivalent) 90 12 12 $2

Microwave 9 12 101 $16

Oven—electric 9 12 284 $45

Refrigerator—19–21.4 cu ft —2001–2008 720 12 533 $85

Refrigerator—19–21.4 cu ft (new ENERGY STAR) 720 12 336 $54

Set-top box, cable/satellite receiver 720 12 249 $40

Television—50 ″+ non-ENERGY STAR TV * * 215 $34

Water heater—electric
(newer base model .95 energy factor)

n/a 12 4559 $729

*Draws power in standby mode
Notes:
• Hours in Use per Month is based on a typical four-person household in a northern U.S. state.
• Annual kWh may vary considerably depending on model, age, and use.
• Annual Cost is based on 16 cents per kilowatt hour (kWH).
• Data used with permission from https://www.efficiencyvermont.com/tips-tools/tools/electric-usage-chart-tool
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1

2

Vm cos(vt 1 u
v

) R

Figure 10.7 ▲ A sinusoidal voltage applied to the 
terminals of a resistor.

EXAMPLE 10.2    Making Power Calculations Involving Household Appliances

The branch circuit supplying the outlets in a typ-
ical home kitchen is wired with #12 conductor and 
is  protected by either a 20 A fuse or a 20 A circuit 
breaker. Assume that the following 120 V appliances 
are in operation at the same time: a coffee maker, 
microwave, dishwasher, and older refrigerator. Will 
the circuit be interrupted by the protective device?

Solution
We have already estimated that the average 
power used by the coffee maker is 167 W. Using 
Table 10.1, we find that the average power used by 
the other three appliances is

P 101
9 12

0.935 kW 935 W,microwave ( )( )
= = =

P 293
30 12

0.814 kW 814 W,dishwasher ( )( )
= = =

P 533
720 12

0.062 kW 62 W.refrigerator ( )( )
= = =

The total average power used by the four appliances is

P 167 935 814 62 1978 W.total = + + + =

The total current in the protective device is

I
P

V
1978
120

16.5 A.total= = =

Since the current is less than 20 A, the protective device 
will not interrupt the circuit.

SELF-CHECK: Assess your understanding of this material by trying Chapter Problem 10.3.

10.3  The RMS Value and Power 
Calculations

When we introduced the rms value of a sinusoidal voltage (or current) in 
Section 9.1, we mentioned that it would play an important role in power 
calculations. We now discuss this role.

Assume a sinusoidal voltage is applied to the terminals of a resistor, 
as shown in Fig. 10.7, and that we want to determine the average power 
delivered to the resistor. From Eq. 10.7,

vP
T

V t
R

dt1  
cos ( )m

t

t T 2 2

0

0

∫
ω φ

=
++

R T
V t dt1   1   cos ( )  .m

t

t T 2 2

0

0

∫ ω φ= +







+

v
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From Eq. 9.4, we see that the bracketed term is the rms value of the volt-
age squared. Therefore, the average power delivered to R is

P
V

R
.rms

2

=

If the resistor has a sinusoidal current, say, I tcos ,m iω φ( )+  the  average 
power delivered to the resistor is

P I R.rms
2=

The rms value is also referred to as the effective value of the sinusoi-
dal voltage (or current). The rms value has an interesting property: Given 
an equivalent resistive load, R, and an equivalent time period, T, the rms 
value of a sinusoidal source delivers the same energy to R as does a dc 
source of the same value. For example, a dc source of 100 V delivers the 
same energy in T seconds that a sinusoidal source of 100 V(rms) deliv-
ers, assuming equivalent load resistances (see Problem 10.11). Figure 10.8 
demonstrates this equivalence. The effect of the two sources is identical 
with respect to energy delivery. So we use the terms effective value and 
rms value interchangeably.

The average power given by Eq. 10.5 and the reactive power given by 
Eq. 10.6 can be written in terms of effective values:

vP
V I

2
cos( )m m

iθ θ= −

v
V I

2
 

2
cos( )m m

iθ θ= −

V I cos( )irms rms θ θ= −v  (10.9)

and, by similar manipulation,

 vθ θ= −Q V I sin( ) .irms rms  (10.10)

Using the effective values of sinusoidal signals in power calculations 
is so widespread that we specify the voltage and current ratings of circuits 
and equipment using rms values. For example, the voltage rating of res-
idential electric wiring is often 240 V 120 V service. These voltages are 
the rms values of the sinusoidal voltages supplied by the utility company,  
which provides power at two voltage levels, accommodating low-voltage  
appliances (such as televisions) and higher-voltage appliances (such as 
electric ranges). Appliances such as electric lamps, irons, and toasters 
all carry rms ratings on their nameplates. For example, a 120 V, 100 W 
lamp has a resistance of 120 100 ,2  or 144  ,Ω  and draws an rms current of 
120 144 , or 0.833 A. The peak value of the lamp current is 0.833 2, or 
1.18 A.

The phasor transform of a sinusoidal function may also be expressed 
as an rms value. The magnitude of the rms phasor is equal to the rms value 
of the sinusoidal function. We indicate that a phasor is based on an rms 
value using either an explicit statement, a parenthetical “rms” adjacent to 
the phasor’s units, or the subscript “rms.”

In Example 10.3, we use rms values to calculate power.

1

2
Rvs 5 100 V(rms)

1

2
RVs 5 100 V(dc)

Figure 10.8 ▲ The effective value of vs [100 V(rms)] 
delivers the same power to R as the dc voltage Vs 
[100 V(dc)].
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384 Sinusoidal Steady-State Power Calculations

EXAMPLE 10.3     Determining Average Power Delivered to a Resistor by a 
Sinusoidal Voltage

a) A sinusoidal voltage having a maximum ampli-
tude of 625 V is applied to the terminals of a 
50 Ω resistor. Find the average power delivered 
to the resistor.

b) Repeat (a) by first finding the current in the resistor.

Solution
a) The rms value of the sinusoidal  voltage is 

625 2 ,  or approximately 441.94 V. The average 
power delivered to the 50 Ω resistor is

P
V

R
441.94

50
3906.25 W.rms

2 2( )= = =

b) The maximum amplitude of the current in the 
resistor is 625 50, or 12.5 A. The rms value of 
the current is 12.5 2 , or approximately 8.84 A. 
Hence, the average power delivered to the resis-
tor is

P 8.84 50 3906.25 W.2( )= =

Objective 1—Understand ac power concepts, their relationships to one another, and how to calculate them 
in a circuit

10.3  The periodic triangular current in Example 9.4, 
repeated here, has a peak value of 240 mA. 
Find the average power that this current deliv-
ers to a 1 kΩ  resistor.

Answer: 19.2 W.

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter Problem 10.16.

2TN2 2TN4

2Ip

Ip

TN4 TN2 3TN4 T
t

etc.

i

10.4 Complex Power
Before discussing the methods for calculating real and reactive power in 
circuits operating in the sinusoidal steady state, we introduce and define 
complex power. Complex power is the complex sum of real power and 
reactive power, or

COMPLEX POWER

 S P jQ.= +  (10.11)

As you will see, we can compute the complex power using the voltage and 
current phasors for a circuit. Equation 10.11 can then be used to determine 
the average and reactive power, because R{ }=P S  and Q S .{ }= I

Complex power has the same units as average or reactive power. 
However, to distinguish complex power from both average and reactive 

M10_NILS8436_12_SE_C10.indd   384 11/01/22   9:06 PM



 10.4 Complex Power 385

power, we use the units volt-amps (VA). Thus, we use volt-amps for 
 complex power, watts for average power, and vars for reactive power, as 
summarized in Table 10.2.

Complex power provides a geometric relationship among several dif-
ferent power quantities. In Eq. 10.11, envision P, Q, and S  as the sides 
of a right triangle, as shown in Fig. 10.9. We can show that the angle θ  in 
the power triangle is the power factor angle v .iθ θ−  For the right triangle 
shown in Fig. 10.9,

Q
P

tan  .θ =

But from the definitions of P and Q (Eqs. 10.5 and 10.6, respectively),

v

v

Q
P

V I

V I

2 sin( )
2 cos( )

 m m i

m m i

θ θ
θ θ

( )

( )
=

−
−

vθ θ= −tan( ) .i

Therefore, v .iθ θ θ= −  The geometric relationships for a right triangle 
mean that the four power triangle dimensions (the three sides and the 
power factor angle) can be determined if any two of the four are known.

The magnitude of complex power is referred to as apparent power. 
Specifically,

TABLE 10.2  Three Power Quantities  
and Their Units

Quantity Units

Complex power volt-amps

Average power watts

Reactive power var

Q 5 reactive power

P 5 average power

@S @ 5 apparent power

u

Figure 10.9 ▲ A power triangle.

APPARENT POWER

 S P Q .2 2= +  (10.12)

Apparent power, like complex power, is measured in volt-amps. The appar-
ent power, or volt-amp, requirement of a device designed to convert electric 
energy to a nonelectric form is more useful than the average power require-
ment. The apparent power represents the volt-amp capacity required to sup-
ply the average power used by the device. As you can see from the power 
triangle in Fig. 10.9, unless the power factor angle is 0° (that is, the device 
is purely resistive, pf 1,=  and Q 0= ), the volt-amp capacity required by 
the device is larger than the average power used by the device.

Many appliances (including refrigerators, fans, air conditioners, fluo-
rescent lighting fixtures, and washing machines) and most industrial loads 
operate at a lagging power factor. The power factor of these loads can be 
corrected either by adding a capacitor to the device itself or by connecting 
capacitors across the line feeding the load; the latter method is often used 
for large industrial loads. Many of the problems at the end of the chapter 
explore methods for correcting a lagging power factor load and improving 
the operation of a circuit.

Example 10.4 uses a power triangle to calculate several quantities 
associated with power in an electrical load.

EXAMPLE 10.4    Calculating Complex Power

An electrical load operates at 240 V(rms). The 
load absorbs an average power of 8 kW at a lagging 
power factor of 0.8.

a) Calculate the complex power of the load.
b) Calculate the impedance of the load, Z.

Q

P

@S @

u

Figure 10.10 ▲ A power triangle.

M10_NILS8436_12_SE_C10.indd   385 11/01/22   9:07 PM



386 Sinusoidal Steady-State Power Calculations

θ=P S cos ,

θ=Q S sin .

Since cos 0.8,θ =  we know that sin 0.6.θ =  
Therefore

S P
cos

8000
0.8

10, 000 10 kVA,
θ

= = = =

Q S sin 10, 000 0.6 6 kvar,θ ( )( )= = =

and

S P jQ j8 6 kVA.= + = +

b) From the problem statement, we know that 
P 8 kW=  for the load. Using Eq. 10.9,

vP V I cos( )irms rms θ θ= −

I240   0.8rms( ) ( )=

8000 W.=

Solving for I ,rms

I 41.67 A(rms).rms =

We already know the angle of the load imped-
ance because it is the power factor angle:

cos 0.8 36.87°.1θ ( )= =−

We also know that θ  is positive because the 
power factor is lagging, indicating an inductive 
load. Compute the load impedance magnitude 
using its definition as the ratio of the magnitude 
of the load voltage to the magnitude of the load 
current:

Z
V
I

240
41.67

5.76.rms

rms

= = =

Hence,

Z j5.76 36.87°  4.608 3.456  .= Ω = + Ω

Solution

a)  Because the power factor is lagging, we know 
that the load is inductive and that the algebraic 
sign of the reactive power is positive. From the 
power triangle shown in Fig. 10.10,

Objective 1—Understand ac power concepts, their relationships to one another, and how to calculate them 
in a circuit

10.4  For the circuit shown in the figure, the source 
voltage vg is 150 cos 250t V. Find
a) the average power absorbed by the load,
b) the reactive power absorbed by the load,
c) the apparent power absorbed by the load, and
d) the power factor of the load.

Answer: a)  180 W;
b)  90 VAR;
c)   201.25 VA;
d)   0.89 lagging.

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter Problem 10.18.

10.5 Power Calculations
We now develop additional equations for calculating real, reactive, and 
complex power. We begin by combining Eqs. 10.5, 10.6, and 10.11 to get

v vS
V I

j
V I

2
cos( )

2
sin( )m m

i
m m

iθ θ θ θ= − + −

v v
V I

j
2

  cos( ) sin( )m m
i iθ θ θ θ[ ]= − + −

vv
V I

e V I
2

  1
2

( ).m m j
m m i

( )i θ θ= = −θ θ−

80 mF

1
2

vg

Load

50 V

100 mH
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If we use the rms values of the sinusoidal voltage and current, the expres-
sion for the complex power becomes

vS V I ( ).irms rms θ θ= −

Therefore, if the phasor current and voltage are known at a pair of 
terminals, the complex power associated with that pair of terminals is 
either one half the product of the phasor voltage and the conjugate of the 
phasor current, or the product of the rms phasor voltage and the conju-
gate of the rms phasor current. We can show this for the rms phasor volt-
age and current in Fig. 10.11 as follows:

vS V I ( )irms rms θ θ= −

vV I e j
rms rms

( )i= θ θ−

vV e I e  j j
rms rms

i= θ θ−

so

COMPLEX POWER, ALTERNATE FORM

 S V I .rms rms
*=  (10.13)

Note that I eI j
rms
*

rms
i= θ−  follows from Euler’s identity and the trigono-

metric identities cos cosθ θ( ) ( )− =  and sin sinθ θ( ) ( )− = − :

I e I jIcos sinj
i irms rms rms

i θ θ( ) ( )= − + −θ−

I jIcos sini irms rmsθ θ( ) ( )= −

I .rms
*=

If the voltage and current phasors are not specified as rms values, the der-
ivation technique used for Eq. 10.13 yields

 =S VI1
2

.*  (10.14)

Both Eqs. 10.13 and 10.14 use the passive sign convention. If the current 
reference is in the direction of the voltage rise across the terminals, we 
insert a minus sign on the right-hand side of each equation.

Example 10.5 uses Eq. 10.14 in a power calculation, with the phasor 
representation of the voltage and current from Example 10.1.

EXAMPLE 10.5    Calculating Power Using Phasor Voltage and Current

a)  Calculate the average power and the reactive 
power at the terminals of the network shown in 
Fig. 10.12 if

V 100 15 V,= °

I 4 105 A.= − °

b) State whether the network inside the box is 
absorbing or delivering average power.

c) State whether the network inside the box is 
absorbing or supplying magnetizing vars.

1

2

Vrms

Irms

Circuit

Figure 10.11 ▲ The phasor voltage and current 
associated with a pair of terminals.

Circuit
1

2

V

I

Figure 10.12 ▲ The circuit for Example 10.5.
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388 Sinusoidal Steady-State Power Calculations

Solution

a) From Eq. 10.14,

S 1
2

(100 15 )(4 105°) 200 120= ° + = °

j100 173.21 VA.= − +

Once we calculate the complex power, we can 
read off both the real and reactive powers, 
because S P jQ.= +  Thus

P 100 W,= −

Q 173.21 var.=

b) The value of P is negative, so the network inside 
the box is delivering average power to the 
terminals.

c) The value of Q is positive, so the network inside 
the box is absorbing magnetizing vars at its 
terminals.

Alternate Forms for Complex Power
Equations 10.13 and 10.14 have several useful variations. We use the rms 
form of the equations throughout because voltages and currents are most 
often given as rms values in power computations.

The first variation of Eq. 10.13 replaces the voltage with the prod-
uct of the current times the impedance. We can always represent the cir-
cuit inside the box of Fig. 10.11 by an equivalent impedance, as shown in 
Fig. 10.13. Then,

ZV I .rms rms=

Replacing the rms voltage phasor in Eq. 10.13 yields

S Z I I  rms rms
*=

ZI rms
2=

R jXI ( )rms
2= +

 R j X P jQI I ,rms
2

rms
2= + = +  (10.15)

from which

 = =P R I RI 1
2

,mrms
2 2  (10.16)

  = =Q X I XI 1
2

.mrms
2 2  (10.17)

In Eqs. 10.15 and 10.17, X is the reactance of either the equivalent induc-
tance or the equivalent capacitance of the circuit. Remember that reac-
tance is positive for inductive circuits and negative for capacitive circuits.

A second variation of Eq. 10.13 replaces the current with the voltage 
divided by the impedance:

 S
Z Z

P jQV
V V

.rms
rms

*
rms

2

*( )= = = +  (10.18)

Note that if Z is a pure resistive element,

 P
R

V
,rms

2

=  (10.19)

and if Z is a pure reactive element,

 Q
X

V
 .rms

2

=  (10.20)

Z
1

2

Vrms

Irms

Figure 10.13 ▲ The general circuit of Fig. 10.11 
replaced with an equivalent impedance.
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In Eq. 10.20, X is positive for an inductor and negative for a capacitor.
Examples 10.6–10.8 demonstrate various power calculations in cir-

cuits operating in the sinusoidal steady state.

EXAMPLE 10.6   Calculating Average and Reactive Power

In the circuit shown in Fig. 10.14, a load having 
an impedance of j39 26 + Ω  is fed from a volt-
age source through a line having an impedance of 

j1 4  .+ Ω  The source voltage is 250 V(rms).

a) Calculate the load current phasor I L  and voltage 
phasor V .L

b) Calculate the average and reactive power deliv-
ered to the load.

c) Calculate the average and reactive power deliv-
ered to the line.

d) Calculate the average and reactive power sup-
plied by the source.

Solution

a) The line and load impedances are in series across 
the voltage source, so the load current equals the 
voltage divided by the total impedance, or

j
jI

250 0
40 30

4 3 5  36.87°  A(rms).L =
°

+
= − = −

Because the voltage is given as an rms value, the 
current value is also rms. The load voltage is the 
product of the load current and load impedance:

j jV I39 26 234 13L L( )= + = −

234.36  3.18°  V(rms).= −

b) Use Eq. 10.13 to find the average and reactive 
power delivered to the load. Therefore

S j jV I 234 13 4 3L L
* ( )( )= = − +

j975 650 VA.= +

Thus, the load is absorbing an average power of 
975 W and a reactive power of 650 var.

c) Because the line current is known, the average 
and reactive power delivered to the line are most 
easily calculated using Eqs. 10.16 and 10.17. Thus

P 5 1 25 W,2( ) ( )= =

Q 5 4 100 var.2( ) ( )= =

Note that the reactive power associated with 
the line is positive because the line reactance is 
inductive.

d) We can calculate the average and reactive power 
delivered by the source by adding the complex 
power delivered to the line to that delivered to 
the load, or

S j j25 100 975 650= + + +

j1000 750 VA.= +

The complex power at the source can also be cal-
culated from Eq. 10.13:

S I250 .s L
*= −

The minus sign is inserted in Eq. 10.13 whenever 
the current reference is in the direction of a volt-
age rise. Thus

S j j250 4 3 1000 750  VA.s ( ) ( )= − + = − +

The minus sign implies that both average power 
and magnetizing reactive power are being deliv-
ered by the source. This result agrees with the 
previous calculation of S, as it must, because 
the source supplies all the average and reactive 
power absorbed by the line and load.

Source Line Load

j26 V

j4 V1 V

1

2

VL
IL

39 V
2501

2
08

V(rms)

Figure 10.14 ▲ The circuit for Example 10.6.
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390 Sinusoidal Steady-State Power Calculations

EXAMPLE 10.7  Calculating Power in Parallel Loads

The two loads in the circuit shown in Fig. 10.15 can 
be described as follows: Load 1 absorbs 8 kW at a 
leading power factor of 0.8. Load 2 absorbs 20 kVA 
at a lagging power factor of 0.6.

a) Determine the power factor of the two loads in 
parallel.

b) Determine the apparent power required to supply 
the loads, the magnitude of the current, I s , and the 
average power loss in the transmission line.

c) Given that the frequency of the source is 60 Hz, 
compute the value of the capacitor that would 
correct the power factor to 1 if placed in parallel 
with the two loads. Recalculate the values in (b) 
for the load with the corrected power factor.

It follows that

= +S j20,000 10,000 VA,

and

j
jI

20, 000 10, 000
250

80 40 A(rms).s
* =

+
= +

Therefore

jI 80 40 89.44  26.57°  A(rms).s = − = −

Thus, the power factor of the combined load is

pf cos 0 26.57° 0.8944 lagging.( )= + =

The power factor of the two loads in paral-
lel is lagging because the net reactive power is 
positive.

b) The apparent power supplied to the two loads is

= + =S j20,000 10,000 22.36 kVA.

The magnitude of the current supplying this 
apparent power is

I 80 j40 89.44 A(rms).s = − =

The average power lost in the line results from 
the current in the line resistance:

( ) ( )= = =P RI 89.44 0.05 400 W.sline
2 2

Note that the power supplied totals 
20, 000 400 20, 400 W,+ =  even though the 
loads require a total of only 20,000 W.

Solution

a) All voltage and current phasors in this problem 
are rms values. Note from the circuit diagram in 
Fig. 10.15 that = +I I I .s 1 2  The total complex 
power absorbed by the two loads is

S I250 s
*( )=

I I250 ( )1 2
*( )= +

I I250 2501
*

2
*( ) ( )= +

S S .1 2= +

We can sum the complex powers geometrically, 
using the power triangles for each load, as shown 
in Fig. 10.16. From the problem statement,

S j8000 8000 .6
.8

 1
( )

( )
= −

= − j8000 6000 VA, 

S j20, 000 .6  20, 000 .82 ( ) ( )= +

= + j12,000 16,000 VA. 

1

2

0.05 V j0.50 V

1

2

Vs

Is

L1 I1 L2 I2
250 08
V(rms)

Figure 10.15 ▲ The circuit for Example 10.7.

(b)

1

5

(c)

(a)

22.36 kVA

20 kW

10 kVAR26.5658

20 kVA

12 kW

53.138
16 kVAR8 kW

26 kVAR
10 kVA

236.878

Figure 10.16 ▲ (a) The power triangle for load 1;  
(b) The power triangle for load 2; (c) The sum of the  
power triangles.
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c) As we can see from the power triangle in 
Fig. 10.16(c), we can correct the power factor 
to 1 if we place a capacitor in parallel with the 
 existing loads that supplies 10 kVAR of magne-
tizing  reactive power. The value of the capacitor 
is  calculated as follows. First, find the capacitive 
reactance from Eq. 10.20:

X
V

Q
 rms

2

=

250
10, 000

 
2( )

=
−

6.25  .= − Ω

Recall that the reactive impedance of a capacitor 
is C1 ,ω−  and 2 60 376.99  rad s,ω π( )= =  be-
cause the source frequency is 60 Hz. Thus,

C
X
1 1

376.99 6.25
424.4  F.

ω
μ

( )( )
= − = −

−
=

Adding the capacitor as the third load is rep-
resented in geometric form as the sum of the 
two power triangles shown in Fig. 10.17. When  
the power factor is 1, the apparent power and 
the average power are the same, as seen from the 
power triangle in Fig. 10.17(c). Therefore, once 
the power factor has been corrected, the appar-
ent power is

S P 20 kVA.= =

The magnitude of the current that supplies this 
apparent power is

I 20, 000
250

80 A(rms).s = =

The average power lost in the line is thus reduced 
to

P RI 80 0.05 320 W.sline
2 2( ) ( )= = =

Now, the power supplied totals

20, 000 320   20, 320 W.+ =

Note that the addition of the capacitor has reduced 
the line loss by 20%, from 400 W to 320 W.

1 210 kVAR

5

(a) (b)

(c)

22.36 kVA

20 kW

20 kW

10 kVAR26.5658

Figure 10.17 ▲ (a) The sum of the power triangles 
for loads 1 and 2; (b) The power triangle for a 424.4 

Fμ  capacitor at 60 Hz; (c) The sum of the power 
triangles in (a) and (b).

EXAMPLE 10.8    
 Balancing Power Delivered with Power Absorbed in an AC 
Circuit

a) Calculate the total average and reactive power 
delivered to each impedance in the circuit shown 
in Fig. 10.18.

b) Calculate the average and reactive powers asso-
ciated with each source in the circuit.

c) Verify that the average power delivered equals 
the average power absorbed and that the magne-
tizing reactive power delivered equals the mag-
netizing reactive power absorbed.

Solution

a) The complex power delivered to the j1 2( )+ Ω  
impedance is

= = +S P jQV I1
21 1 1

*
1 1

( )( )= − − +j j1
2

78 104 26 52

( )= + j1
2

3380 6760

= + j1690 3380 VA.

j2 V

12 V

2j16 V

1

2

1 V

39I2
1

2
I2Vs

I1

j3 V1 V

I3

V11 2

V2

1

2

V31 2

Vs 5 150 08 V

V1 5 (78 2 j104) V I1 5 (226 2 j52) A

I2 5 (22 1 j6) A

I35 (224 2 j58) A

V2 5 (72 1 j104) V

V3 5 (150 2 j130) V

Figure 10.18 ▲ The circuit, with solution, for Example 10.8.
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1

2

Source Load

4 V

120 V

j90 V

j3 V

VL
IL

1

2

Line

465 0 V(rms)8

Thus, this impedance is absorbing an aver-
age power of 1690 W and a reactive power of  
3380 VAR. The complex power delivered to the 

j12 16( )− Ω impedance is

S P jQV I1
22 2 2

*
2 2= = +

j j1
2

72 104 2 6( )( )= + − −

j240 320 VA.= −

Therefore, the impedance in the vertical branch 
is absorbing 240 W and delivering 320 VAR. 
The complex power delivered to the j1 3( )+ Ω 
impedance is

S P jQV I1
23 3 3

*
3 3= = +

j j1
2

150 130 24 58( )( )= − − +

j1970 5910 VA.= +

This impedance is absorbing 1970 W and  
5910 VAR.

b) The complex power associated with the indepen-
dent voltage source is

S P jQV I1
2s s s s1

*= − = +

j1
2

150 26 52( )( )= − − +

= − j1950 3900 VA.

Note that the independent voltage source is 
absorbing an average power of 1950 W and deliv-
ering 3900 VAR. The complex power associated 
with the current-controlled voltage source is

S P jQI I1
2

(39 )( )x x x2 3
*= = +

j j1
2

78 234 24 58( )( )= − + − +

j5850 5070 VA.= − −

Both average power and magnetizing reactive 
power are being delivered by the dependent 
source.

c) The total power absorbed by the passive imped-
ances and the independent voltage source is

= + + + =P P P P P 5850 W.sabsorbed 1 2 3

The dependent voltage source is the only circuit 
element delivering average power. Thus

P 5850 W.delivered =

Magnetizing reactive power is being absorbed by 
the two horizontal branches. Thus

= + =Q Q Q 9290 VAR.absorbed 1 3

Magnetizing reactive power is being delivered by 
the independent voltage source, the capacitor in 
the vertical impedance branch, and the depen-
dent voltage source. Therefore

=Q 9290 VAR.delivered

Objective 1—Understand ac power concepts, their relationships to one another, and how to calculate them 
in a circuit

10.5  The load impedance in the circuit shown is 
shunted by a capacitor having a capacitive reac-
tance of 125  .− Ω  Calculate:
a) the rms phasors VL  and I L ,
b) the average power and magnetizing reactive 

power absorbed by the j120 90( )+ Ω load 
impedance,

c) the average power and magnetizing reac-
tive power absorbed by the j4 3( )+ Ω line 
impedance,

d)  the average power and magnetizing reactive 
power delivered by the source, and

e) the magnetizing reactive power delivered by 
the shunting capacitor.

ASSESSMENT PROBLEMS
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Answer: a) 460.47 1.82°  V(rms),−  
3.07 38.69° A(rms);−

b) 1130.91 W,  848.19 VAR;

c) 37.7 W,  28.27 VAR;

d) 1168.61 W,  −819.91 VAR;

e) 1696.26 VAR.

10.6  The voltage at the terminals of a load is 
400 V(rms). The load is absorbing an average 
power of 6 kW and a magnetizing reactive 
 power of 8 kVAR. Derive two equivalent 
 impedance models of the load.

Answer: 9.6 Ω  in series with 12.8 Ω  of inductive 
reac tance; 26.67 Ω  in parallel with 20 Ω  
of inductive reactance.

10.7  Three loads are connected in parallel across a 
250 V(rms) line, as shown in the figure. Load 1 
absorbs 16 kW and 18 kVAR; Load 2 absorbs 

10 kVA at 0.6 leading; and Load 3 absorbs 
8 kW at unity power factor.
a) Find the impedance that is equivalent to the 

three parallel loads.
b) Find the power factor of the equivalent load 

as seen from the line’s input terminals.

SELF-CHECK: Also try Chapter Problems 10.19, 10.23, and 10.24.

Answer: a) 1.875 + j0.625 Ω;
b) 0.9487 lagging.

10.6 Maximum Power Transfer
Recall from Chapter 4 that certain systems—for example, those that trans-
mit information via electric signals—need to transfer a maximum amount 
of power from the source to the load. We now  determine the condition for 
maximum power transfer in sinusoidal steady-state networks, beginning 
with Fig. 10.19. We must determine the load impedance ZL  that maxi-
mizes the average power delivered to terminals a and b. Any linear net-
work can be replaced by a Thévenin equivalent circuit, so we will use the 
circuit in Fig. 10.20 to find the value of ZL  that results in maximum aver-
age power delivered to ZL .

For maximum average power transfer, ZL  must equal the conjugate 
of the Thévenin impedance; that is,

CONDITION FOR MAXIMUM AVERAGE  
POWER TRANSFER

 Z Z .L Th
*=  (10.21)

We derive Eq. 10.21 by a straightforward application of elementary calcu-
lus. We begin by expressing ZTh and ZL  in rectangular form:

Z R jX ,Th Th Th= +

Z R jX .L L L= +

In these impedance equations, the reactance term carries its own algebraic 
sign—positive for inductance and negative for capacitance. We assume that 
the Thévenin voltage amplitude is an rms value. We also use the Thévenin 
voltage as the reference phasor, that is, the phasor whose phase angle is 0°. 
Then, from Fig. 10.20, the rms value of the load current I is

R R j X X
I

V
( ) ( )

 .Th

Th L Th L

=
+ + +

ZL

a
Generalized linear
network operating
in the sinusoidal
steady state

b

Figure 10.19 ▲ A circuit describing maximum 
power transfer.

1

2

a

b

I

ZTh

VTh ZL

Figure 10.20 ▲ The circuit shown in Fig. 10.19, with 
the network replaced by its Thévenin equivalent.

1

2

250 V(rms) 1 2 3
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394 Sinusoidal Steady-State Power Calculations

The average power delivered to the load is

P RI .2
L=

Therefore,

 P
R

R R X X

V
( ) ( )

 .Th
2

L

L Th
2

L Th
2

=
+ + +

 (10.22)

In Eq. 10.22, remember that V ,Th  R ,Th  and X Th  are fixed quantities, 
whereas RL and X L are independent variables. Therefore, to maximize 
P, we must find the values of RL and X L that make both P RL∂ ∂  and 

P X L∂ ∂  zero.

From Eq. 10.22,

P
X

R X X

R R X X

V 2 ( )
[( ) ( ) ]

,
L

Th
2

L L Th

L Th
2

L Th
2 2

∂
∂

=
− +

+ + +

P
R

R R X X R R R

R R X X

V [( ) ( ) 2 ( )]
[( ) ( ) ]

 .
L

Th
2

L Th
2

L Th
2

L L Th

L Th
2

L Th
2 2

∂
∂

=
+ + + − +

+ + +

From its equation, P X L∂ ∂  is zero when

X X .L Th= −

From its equation, P RL∂ ∂  is zero when

R R X X( ) .L Th
2

L Th
2= + +

Note that when we combine the expressions for XL and RL, both partial 
derivatives are zero when Z Z .L Th

*=

The Maximum Average Power Absorbed
When Z Z ,L Th

*=  we can use the circuit in Fig. 10.20 to calculate the 
maximum average power that is delivered to ZL . The rms load current 
is RV 2Th L  because Z Z ,L Th

*=  and the maximum average power  
delivered to the load is

 P
R

R R

V V
4

1
4

   .max
Th

2
L

L
2

Th
2

L

= =  (10.23)

If the Thévenin voltage phasor is expressed using its maximum amplitude 
rather than its rms amplitude, Eq. 10.23 becomes

 P
R

V1
8

   .m
max

2

L

=  (10.24)

Maximum Power Transfer When ZL Is Restricted
Maximum average power can be delivered to ZL  only if ZL  can be set 
equal to the conjugate of Z .Th  In some situations, this is not possible. First, 
RL and X L may be restricted to a limited range of values. To maximize 
power in this situation, set X L as close to X Th−  as possible and then adjust 
RL as close to R X X( )Th

2
L Th

2+ +  as possible (see Example 10.10).
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1

2

5 V

20 V

j3 V

2j6 V

a

b

ZLV
20 08

Figure 10.21 ▲ The circuit for Example 10.9.

A second type of restriction occurs when the magnitude of ZL  can be 
varied, but its phase angle cannot. Under this restriction, maximum power 
is delivered to the load when the magnitude of ZL  is set equal to the mag-
nitude of Z ;Th  that is, when

Z Z .L Th=

The proof of this is left to you as Problem 10.43.
For purely resistive networks, maximum power transfer occurs when 

the load resistance equals the Thévenin resistance. Note that we first derived 
this result in the introduction to maximum power transfer in Chapter 4.

Examples 10.9–10.11 calculate the load impedance ZL that produces 
maximum average power transfer to the load, for several different situa-
tions. Example 10.12 finds the condition for maximum power transfer to a 
load for a circuit with an ideal transformer.

EXAMPLE 10.9     Determining Maximum Power Transfer without Load 
Restrictions

a) For the circuit shown in Fig. 10.21, determine the 
impedance ZL  that results in maximum average 
power transferred to Z .L

b) What is the maximum average power transferred 
to the load impedance determined in (a)?

Solution

a) To begin, determine the Thévenin equivalent 
with respect to the load terminals a, b. After 
two source transformations involving the 20 V 
source, the 5 Ω  resistor, and the 20 Ω  resistor, 
we simplify the circuit shown in Fig. 10.21 to the 
one shown in Fig. 10.22. Use voltage division in 
the simplified circuit to get

j
j j

V
6

4 3 6
  16 0Th ( )=

−
+ −

°

j19.2  53.13° 11.52 15.36 V.= − = −

To find the Thévenin impedance, deactivate the 
source in Fig. 10.22 and calculate the impedance 
seen looking into the terminals a and b. Thus,

Z j j
j j

j j

j

6 || 4 3
6 4 3

4 3 6

5.76 1.68 .

Th ( )
( )( )

= − + =
− +

+ −
= − Ω

For maximum average power transfer, the load 
impedance must be the conjugate of Z ,Th  so

Z j5.76 1.68  .L = + Ω

b) We calculate the maximum average power deliv-
ered to ZL  using the circuit in Fig. 10.23, which 
has the Thévenin equivalent of the original net-
work attached to the load impedance calculated 
in part (a). From Fig. 10.23, the rms magnitude of 
the load current I is

I
19.2 2
2 5.76

1.1785 A(rms).rms ( )
= =

The average power delivered to the load is

P I 5.76 8 W.rms
2 ( )= =

1

2

4 V j3 V

2j6 V

a

b

1

2

VThV
16 08

Figure 10.22 ▲ A simplification of Fig. 10.21 by source 
transformations.

I
1

2V

5.76 V

5.76 V

2j1.68 V

j1.68 V

a

b

19.2 253.138

Figure 10.23 ▲ The circuit shown in Fig. 10.21, 
with the original network replaced by its Thévenin 
equivalent.
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1

2

3000 V

b

aj4000 V

RL

jXL

ZL

08
V(rms)

10

Figure 10.24 ▲ The circuit for Examples 10.10 and 
10.11.

EXAMPLE 10.10        Determining Maximum Power Transfer with Load Impedance 
Restriction

a) For the circuit shown in Fig. 10.24, what value of 
ZL  results in maximum average power transfer to 
ZL ? What is the maximum power in milliwatts?

b) Assume that the load resistance can be varied 
between 0 and 4000 Ω  and that the capacitive 
reactance of the load can be varied between 0 
and 2000  .− Ω  What values of RL and X L trans-
fer the most average power to the load? What is 
the maximum average power that can be trans-
ferred under these restrictions?

Solution

a) If there are no restrictions on RL and X ,L  max-
imum average power is delivered to the load if 
the load impedance equals the conjugate of the 
Thévenin impedance. Therefore we set

R X3000  and 4000  ,L L= Ω = − Ω

or

Z j3000 4000  .L = − Ω

Because the source voltage is an rms value, the 
average power delivered to ZL  is

P 1
4

  10
3000

25
3

 mW 8.33 mW.
2

= = =

b) Now RL and X L are restricted, so first we 
set X L as close to 4000 − Ω  as possible; thus, 
X 2000  .L = − Ω  Next, we set RL as close to 

R X X( )Th
2

L Th
2+ +  as possible. Thus

R 3000 2000 4000 3605.55  .L
2 2( )= + − + = Ω

Since RL can be varied from 0 to 4000  ,Ω  we can 
set RL to 3605.55  .Ω  Therefore, the load imped-
ance value is

Z j3605.55 2000  .L = − Ω

For this value of ZL , the value of the load cur-
rent is

j
I

10  0°
6605.55 2000

1.4489  16.85° mA(rms).rms =
+

= −

The average power delivered to the load is

P (1.4489 10 ) 3605.55 7.57 mW.3 2 ( )= × =−

This is the maximum power delivered to a load 
with the specified restrictions on RL and X .L  
Note that this is less than the 8.33 mW that can 
be delivered if there are no restrictions, as we 
found in part (a).

EXAMPLE 10.11     Finding Maximum Power Transfer with Impedance Angle 
Restrictions

A load impedance having a constant phase angle of 
36.87°−  is connected across the terminals a and b 

in the circuit shown in Fig. 10.24. The magnitude 
of ZL  is varied until the average power delivered is 
maximized under the given restriction.

a) Specify ZL  in rectangular form.

b) Calculate the average power delivered to Z .L

Solution

a) When only the magnitude of ZL can be varied, 
maximum power is delivered to the load when 

the magnitude of ZL  equals the magnitude of 
Z .Th  So,

Z Z j3000 4000 5000  .L Th= = + = Ω

Therefore,

= − = − ΩjZ 5000 36.87° 4000 3000  .L

b) When ZL  equals j4000 3000  ,− Ω  the load cur-
rent is

=
+

= −
j

I 10
7000 1000

1.4142 8.13°   mA(rms),rms
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and the average power delivered to the load is

P 1.4142 10 4000 8 mW.3 2( ) ( )= × =−

This quantity is the maximum power that can 
be delivered by this circuit to a load impedance 

whose angle is constant at 36.87°.−  Again, this 
quantity is less than the maximum power that 
can be delivered if there are no restrictions  
on Z .L

Objective 2—Understand the condition for maximum real power delivered to a load in an ac circuit

10.8  The source voltage in the circuit shown is 
t80 cos 250  V.

a) What impedance should be connected across 
terminals a and b for maximum average 
power transfer?

b) What is the average power transferred to the 
impedance in (a)?

c) Assume that the load is restricted to pure 
resistance. What size resistor connected 
across a and b will result in the maximum 
average power transferred?

d) What is the average power transferred to the 
resistor in (c)?

Answer: a) j128 512  ;+ Ω
b) 1.25 W;
c) 527.76  ;Ω
d) 487.9 mW.

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter Problems 10.44, 10.49, and 10.50.

EXAMPLE 10.12     
Finding Maximum Power Transfer in a Circuit with an Ideal 
Transformer

The variable resistor in the circuit in Fig. 10.25 is 
adjusted until maximum average power is delivered 
to R .L

a) What is the value of RL in ohms?

b)  What is the maximum average power (in watts) 
delivered to RL?

Solution

a) We first find the Thévenin equivalent with 
respect to the terminals of R .L  We determine 
the open-circuit voltage using the circuit in 
Fig. 10.26. The variables V ,1  V ,2  I ,1  and I 2  have 
been added to aid the discussion.

1

2

a

b

RL

20 V

60 V Ideal
4 : 1

V(rms)
840 08

Figure 10.25 ▲ The circuit for Example 10.12.

1

2

a

b

20 V

60 V

4 : 1

08
V(rms)

I1

I2

V1

1

2

V2

2

1
VTh

1

2

Ideal840

Figure 10.26 ▲ The circuit used to find the Thévenin  
voltage.

640 mH

6.25 mF

64 V

320 V

vg

a

b

1

2
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The ideal transformer imposes the following 
constraints on the variables V ,1  V ,2  I ,1  and I 2:

V V I I1
4

, 1
4

.2 1 1 2= = −

The open-circuit value of I 2  is zero; hence, I1 is 
zero. It follows that

V V840  0  V(rms), 210  0  V(rms).1 2= ° = °

From Fig. 10.26 we note that VTh is the negative 
of V ,2  because there is no current in the 20 Ω 
 resistor. Hence

V 210  0  V(rms).Th = − °

We determine the short-circuit current using the 
circuit in Fig. 10.27. Since I1 and I 2  are mesh cur-
rents, write a KVL equation for each mesh:

I I V840 0 80 20 ,1 2 1° = − +

I I V0 20 20 .2 1 2= − +

Combine these two KVL equations with the con-
straint equations to get

I V840  0 40 ,2 1° = − +

I
V

0 25
4

.2
1= +

Solving for the short-circuit value of I 2  yields

I 6 A(rms).2 = −

Therefore, the Thévenin resistance is

R 210
6

35  .Th = −
−

= Ω

Maximum power will be delivered to RL when 
RL equals 35  .Ω

b) We determine the maximum power delivered 
to RL using the Thévenin equivalent circuit in 
Fig. 10.28. From this circuit, the rms current in 
the load resistor is ( 210 70)−  A(rms). Therefore,

P 210
70

  35 315 W.max

2

( ) ( )= − =

1

2

a

b

20 V

60 V

4 : 1

08
V(rms)

I1

I2

V1

1

2

V2

2

1Ideal840

Figure 10.27 ▲ The circuit used to calculate the 
short-circuit current.

2

1

35 V

b

a

35 V08
V(rms)
210

Figure 10.28 ▲ The Thévenin equivalent loaded for maximum 
power transfer.

Objective 3—Be able to calculate all forms of ac power in ac circuits with linear transformers and ideal 
transformers

10.9  Find the average power delivered to the 
9 Ω  resistor in the circuit shown if 
v t180 2 cos100  V.g =

Answer: 1296 W.

10.10 a)  Find the average power delivered to 
the 80 Ω  resistor in the circuit shown if 
v t496 cos 2000  V.g =

b) Find the average power delivered to the 
75 Ω  resistor.

c) Find the power developed by the ideal volt-
age source. Check your result by showing 
that the power absorbed equals the power 
developed.

Answer: a) 1000 W;
b) 984 W;
c) 1984 W, 1000 984 1984 W.+ =

ASSESSMENT PROBLEMS

50 mH

80 V75 V

40 mH 100 mH

vg
1

2

vg 9 V

40 mH

90 mH30 mH

3 V

1

2
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10.11  The variable load resistor RL in the circuit 
shown is adjusted for maximum average power 
transfer to RL.
a) Find RL.
b) Find the maximum average power  delivered 

to the RL found in part (a).
c) What percentage of the average power 

developed by the voltage source is delivered 
to RL when RL is absorbing maximum aver-
age power? Answer: a) 16 Ω;

b) 25 W;
c) 10.87%.

SELF-CHECK: Also try Chapter Problems 10.51, 10.61, and 10.62.

Practical Perspective 
Vampire Power
Vampire power, or standby power, may cost you more than you think. The 
average household has about 40 electrical products that draw power, 
even when they are turned off. Approximately 5% of typical residential 
power consumption can be attributed to standby power. Table 10.3 pro-
vides the power consumption for several different devices. Notice that 
when a device is “off” it is often still consuming power.

Consider a typical mobile phone charger. According to the values 
given in Table 10.3, when the charger is detached from the phone it 
consumes only a fraction of the power required when the charger is 

TABLE 10.3 Average Power Consumption of Common Electrical Devices

Electrical device+ Power [W]*

Mobile phone charger

 Attached to phone, phone charging 3.68

 Plugged into wall outlet but not into phone 0.26

Notebook computer AC adapter

 Attached to computer, computer charging 44.28

 Attached to computer, computer sleeping 15.77

 Attached to computer, computer off 8.9

 Plugged into wall outlet but not into computer 4.42

DVD player

 On and playing 9.91

 On and not playing 7.54

 Off 1.55

Microwave oven

 Ready with door closed 3.08

 Ready with door open 25.79

 Cooking 1433.0

Inkjet multifunction printer

 On 9.16

 Off 5.26

*Data in this table from Lawrence Berkeley National Laboratory report (http://standby.lbl.gov/standby.html).
+This value is the average of the power measured for many types of each device.

4 V 1 V

12 V

16 V

1

2V(rms)
0840

Ideal

1:4

RL
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400 Sinusoidal Steady-State Power Calculations

attached to the phone and the phone is charging. Suppose you charge 
your phone for three hours each day but leave the charger plugged into 
the wall outlet 24 hours a day. Recall that the electric company charges 
you based on the number of kilowatt-hours (kWh) you use in a given 
month. A device that uses 1000 W of power continuously over one hour 
has consumed 1 kWh. Let’s calculate the number of kilowatt-hours 
used by the phone charger in one month:

P kWh 30 3 3.68 21 0.26
1000

1.8 kWh.[ ]
( ) ( )[ ]= + =

Now do the calculation again, this time assuming that you unplug the 
charger when it is not being used to charge the phone:

P kWh 30 3 3.68 21 0
1000

0.33 kWh.[ ]
( ) ( )[ ]= + =

Keeping the charger plugged in when you are not using it consumes 
more than 5 times the power needed to charge your phone every day. 
You can therefore minimize the cost of vampire power by unplugging 
electrical devices if they are not being used.

Why does the phone charger consume power when not plugged into 
the phone? The electronic circuitry in your phone uses 5 V(dc) sources 
to supply power. The phone charger must transform the 120 V(rms) sig-
nal supplied by the wall outlet into a signal that can be used to charge 
the phone. Phone chargers can use linear transformers, together with 
other circuitry, to output the voltage needed by the phone.

Consider the circuit in Fig. 10.29. The linear transformer is part 
of the circuitry used to reduce the voltage supplied by the source to 
the level required by the phone. The additional components needed 
to complete this task are not shown in the circuit. When the phone is 
unplugged from the circuit in Fig. 10.29, but the circuit is still connected 
to the 120 V(rms) source, there is still a path for the current, as shown in 
Fig. 10.30. The current is

R R j L
I 120  .

s 1 1ω
=

+ +

The real power, delivered by the voltage source and supplied to the 
resistors, is

P R R I .s 1
2( )= +

This is the vampire power being consumed by the phone charger even 
when it is not connected to the phone.

 SELF-CHECK: Assess your understanding of this Practical Perspective 
by trying Chapter Problems 10.67–10.71.

120
V(rms)

Rs MR1

L1

R2

L2
1
2

phone

Figure 10.29 ▲ A linear transformer used in a phone 
charger.

1
2

120
V(rms)

jvM

jvL2jvL1

Rs

I

R1 R2

Figure 10.30 ▲ The phone charger circuit when the 
phone is not connected.
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Summary

• Instantaneous power is the product of the instantaneous 
terminal voltage and current, or vp i.= ±  The positive 
sign is used when the reference direction for the current 
is from the positive to the negative reference polarity of 
the voltage. The frequency of the instantaneous power 
is twice the frequency of the voltage (or current). (See 
page 376.)

• Average power is the average value of the instantaneous 
power over one period. It is the power converted from 
electric to nonelectric form and vice versa, so it is also 
called real power. Average power is given by

P V I1
2

cos( )m m iθ θ= −v

vV I cos( ).irms rms θ θ= −

(See page 377.)

• Reactive power is the electric power exchanged between 
the magnetic field of an inductor and the source that 
drives it or between the electric field of a capacitor and 
the source that drives it. Reactive power is never con-
verted to nonelectric power. Reactive power is given by

Q V I1
2

sin(   )m m iθ θ= −v

vV I sin( ).irms rms θ θ= −

Both average power and reactive power can be 
expressed in terms of either peak V I( , )m m  or rms 
V I( , )rms rms  current and voltage. RMS values, also 

called effective values, are widely used in both house-
hold and industrial applications. (See page 378.)

• The power factor is the cosine of the phase angle 
between the voltage and the current:

vpf cos( ).iθ θ= −

The terms lagging and leading, added to the description 
of the power factor, indicate whether the current is lag-
ging or leading the voltage and thus whether the load is 
inductive or capacitive. (See page 379.)

• The reactive factor is the sine of the phase angle 
between the voltage and the current:

vrf sin( ).iθ θ= −

(See page 379.)

• Complex power is the complex sum of the real and reac-
tive powers, or

S P jQ= +

VI V I1
2

*
rms rms

*= =

Z
Z

I
V

 .rms
2 rms

2

*
= =

(See page 384.)

• Apparent power is the magnitude of the complex power:

S P Q .2 2= +

(See page 385.)

•  The watt is used as the unit for both instantaneous and 
real power. The var (volt amp reactive, or VAR) is used 
as the unit for reactive power. The volt-amp (VA) is 
used as the unit for complex and apparent power. (See 
page 385.)

• Maximum power transfer occurs in circuits operating 
in the sinusoidal steady state when the load imped-
ance is the conjugate of the Thévenin impedance as 
viewed from the terminals of the load impedance. (See 
page 393.)

Problems

Sections 10.1–10.2

 10.1  For each of the following sets of voltage and cur-
rent, calculate the real and reactive power in the line 
between networks A and B for the circuit in Fig. P10.1. 
In each case, state whether average power flows from 
A to B or vice versa. Also state whether magnetizing 
vars are being transferred from A to B or vice versa.

a) t100 cos( 45°) V,ω= −v
i t20 cos( 15°) A;ω= +

b) t100 cos( 45°) V,ω= −v
i t20 cos( 165°) A;ω= +

c) t100 cos( 45°) V,ω= −v
i t20 cos( 105°) A;ω= +

d) t100 cos  V,ω=v  

  i t20 cos( 120°) A.ω= +
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402 Sinusoidal Steady-State Power Calculations

e) Does the load absorb or generate magnetizing 
vars?

f) What is the power factor of the load?
g) What is the reactive factor of the load?

 10.8  Find the average power dissipated in the 20 Ω    
resistor in the circuit seen in Fig. P10.8 if 

=i t15 cos 10,000  A.g

PSPICE
MULTISIM 10.2  Show that the maximum value of the instantaneous 

power given by Eq. 10.3 is P P Q2 2+ +  and 
that the minimum value is P P Q .2 2− +

 10.3 a) A college student wakes up on a warm day. The 
central air conditioning is on, and the room feels 
comfortable. She turns on the dishwasher, takes 
some milk out of the old refrigerator, and puts 
some oatmeal in the microwave oven to cook. 
If all of these appliances in her dorm room are 
supplied by a 120 V(rms) branch circuit pro-
tected by a 60 A(rms) circuit breaker, will the 
breaker interrupt her morning?

b) Her roommate wakes up and moves wet clothes 
from the washer to the dryer. Before she turns 
on the dryer, what does she ask her roommate 
to turn off so the circuit breaker is not tripped?

 10.4 a) Calculate the real and reactive power associ-
ated with each circuit element in the circuit in 
Fig. P9.57.

b) Verify that the average power generated equals 
the average power absorbed.

c) Verify that the magnetizing vars generated equal 
the magnetizing vars absorbed.

 10.5  Repeat Problem 10.4 for the circuit shown in Fig. 
P9.62.

 10.6  Find the average power delivered by the ideal 
current source in the circuit in Fig. P10.6 if 
i t30 cos 25, 000  mA.g =

PSPICE
MULTISIM

BA 1

2
v

i
Figure P10.1

40 mF 40 mH

5 V2 V

ig

Figure P10.6

  10.7  A load consisting of a 1350 Ω  resistor in parallel 
with a 405 mH inductor  is connected across the 
terminals of a sinusoidal voltage source vg, where 
v t90 cos 2500  V.g =

a) What is the peak value of the instantaneous 
power delivered by the source?

b) What is the peak value of the instantaneous 
power absorbed by the source?

c) What is the average power delivered to the load?
d) What is the reactive power delivered to the load?

20 Vig

10iD

iD

12
1 mH

2.5 mF

Figure P10.8

 10.9  The op amp in the circuit shown in Fig. P10.9 is 
 ideal. Calculate the average power delivered to the 
1 kΩ  resistor when v = t 4 cos 5000  V.g

PSPICE
MULTISIM

1.5 kV

1 kV

8 V

28 V
vg

7.5 kV

80 nF

2

1
1

2

Figure P10.9

 10.10  The load impedance in Fig. P10.10 absorbs 40 kW 
and 30 kVAR. The sinusoidal voltage source devel-
ops 50 kW.

a) Find the values of capacitive line reactance that 
will satisfy these constraints.

b) For each value of line reactance found in (a), 
show that the magnetizing vars developed equals 
the magnetizing vars absorbed.

ZL

LoadSource Line

2500 08  
V(rms)

20 V

1

2

2jX V
Figure P10.10

Section 10.3

 10.11  A dc voltage equal to Vdc V is applied to a resis-
tor of ΩR  . A sinusoidal voltage equal to vs V is 
also applied to a resistor of R  .Ω  Show that the 
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dc voltage will deliver the same amount of energy 
in T seconds (where T is the period of the sinusoi-
dal voltage) as the sinusoidal voltage provided Vdc 
equals the rms value of vs. (Hint: Equate the two 
expressions for the energy delivered to the resistor.)

 10.12 a) A personal computer with a monitor and key 
board requires 60 W at 110 V(rms). Calculate the 
rms value of the current carried by its power cord.

b) A laser printer for the personal computer in (a) 
is rated at 80 W at 110 V(rms). If this printer is 
plugged into the same wall outlet as the com-
puter, what is the rms value of the current drawn 
from the outlet?

 10.13  Find the rms value of the periodic current shown in 
Fig. P10.13.

30

i (A)

100 20 30 40 50 t (ms)

 Figure P10.13

 10.14  The periodic current shown in Fig. P10.13 dissipates 
an average power of 24 kW in a resistor. What is the 
value of the resistor?

 10.15 a) Find the rms value of the periodic voltage shown 
in Fig. P10.15.

b) Suppose the voltage in part (a) is applied to the 
terminals of a 2.5 kΩ  resistor. Calculate the 
average power dissipated by the resistor.

c) When the voltage in part (a) is applied to a dif-
ferent resistor, that resistor dissipates 625 mW of 
average power. What is the value of the resistor?

25

225

0
2

4 6

8 10

12 14

16

etc.

t (s)

vg (V)

Figure P10.15

 10.16 a) Find the rms value of the periodic voltage shown 
in Fig. P10.16.

Sections 10.4–10.5

 10.17  A load consisting of a 1350 Ω resistor in parallel 
with a 405 mH inductor is connected across the 
terminals of a sinusoidal voltage source vg, where 
v = t90 cos 2500  V.g  Find

a) the average power delivered to the load,
b) the reactive power for the load,
c) the apparent power for the load, and
d) the power factor of the load.

 10.18 a) Find VL(rms) and θ  for the circuit in Fig. P10.18 
if the load absorbs 250 VA at a lagging power 
factor of 0.6.

b) Construct a phasor diagram of each solution 
obtained in (a).

PSPICE
MULTISIM

100

20

220
20 40 60 80 100 120

2100

etc.

v (V)

t (ms)

Figure P10.16

1 V j8 V

240 u8 V(rms) VL Load

1

2

1

2

08

Figure P10.18

 10.19 a) Find the average power, the reactive power, 
and the apparent power supplied by the volt-
age source in the circuit in Fig. P10.19 if 
v = t50 cos 10  V.g

5

b) Check your answer in (a) by showing 
P P .dev abs= Σ

c) Check your answer in (a) by showing 
Q Q .dev abs= Σ

PSPICE
MULTISIM

b) If this voltage is applied to the terminals of a 
12 Ω  resistor, what is the average power dissi-
pated in the resistor?

M10_NILS8436_12_SE_C10.indd   403 11/01/22   9:13 PM



404 Sinusoidal Steady-State Power Calculations

 10.25  The three parallel loads in the circuit shown in 
Fig. P10.25 can be described as follows: Load 1 is 
absorbing an average power of 24 kW and reactive 
power of 18 kvars; Load 2 is absorbing an average 
power of 48 kW and generating reactive power 
of 30 kvars; Load 3 is a 60 Ω  resistor in parallel 
with an inductor whose reactance is Ω480  .  Find 
the rms magnitude and the phase angle of Vg if 
V 2400 0 V(rms).o = °

 10.20  The voltage Vg in the frequency-domain circuit 
shown in Fig. P10.20 is 340 0 V(rms).°

a) Find the average and reactive power for the 
voltage source.

b)  Is the voltage source absorbing or delivering 
average power?

c) Is the voltage source absorbing or delivering 
magnetizing vars?

d) Find the average and reactive powers associated 
with each impedance branch in the circuit.

e) Check the balance between delivered and 
absorbed average power.

f) Check the balance between delivered and 
absorbed magnetizing vars.

vg 
1

2

5 V

50 mH1 mF

7.5 V

Figure P10.19

2j100 VVg

50 V 80 V

j60 V1
2

Figure P10.20

 10.21  Two 660 V(rms) loads are connected in parallel. The 
two loads draw a total average power of 52,800 W 
at a power factor of 0.8 leading. One of the loads 
draws 40 kVA at a power factor of 0.96 lagging. 
What is the power factor of the other load?

 10.22  The two loads shown in Fig. P10.22 can be described 
as follows: Load 1 absorbs an average power of 
24.96 kW and 47.04 kVAR of reactive power;  
Load 2 has an impedance of j(5 5)  .− Ω  The voltage 
at the terminals of the loads is t480 2 cos 120    V.π

a) Find the rms value of the source voltage.
b) By how many microseconds is the load voltage 

out of phase with the source voltage?
c) Does the load voltage lead or lag the source 

voltage?

1

2

1

2

VLVg

0.01 V j0.1 V

0.01 V j0.1 V

L1 L2

Figure P10.22

 10.23  Find the phasor voltage Vs for the circuit in 
Fig. P10.23 if loads L1 and L2 are absorbing 15 kVA 
at 0.6 pf lagging and 6 kVA at 0.8 pf leading, respec-
tively. Express Vs in polar form.

1
1

2
2

L1 L2

j1 V

Vs 08 V(rms)200

Figure P10.23

vg Load 1 Load 2 Load 3
1

2

Figure P10.24

 10.24  The three loads in the circuit in Fig. P10.24 can 
be described as follows: Load 1 is a 12 Ω  resistor 
in  series with a 15 mH inductor; Load 2 is a 16 μF 
 capacitor in series with an 80 Ω resistor; and Load 3 
is a 400 Ω resistor in series with the parallel combi-
nation of a 20 H inductor and a 5 μF capacitor. The 
frequency of the voltage source is 60 Hz.
a) Give the power factor and reactive factor of 

each load.
b) Give the power factor and reactive factor of the 

composite load seen by the voltage source.

1

2
L1 L3L2

j10 V

VoVg

1

2

Figure P10.25

 10.26  The three loads in the circuit seen in Fig. P10.26 are 
described as follows: Load 1 is absorbing 1.8 kW and 
600 VAR; Load 2 is absorbing 1.5 kVA at a power 
factor of 0.8 leading; Load 3 is a 12 Ω resistor in par-
allel with an inductance whose reactance is Ω48  .

a) Calculate the average power and the magnetiz-
ing reactive power delivered by each source if 
V V 120 0 V(rms).g g1 2= = °
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L1

L3

L2

Vg1

Vg2
1

2

1

2

Figure P10.26

1

2

1

2

j0.08 V

Vs

0.01 V

L1 L2 L3
250 08

 V(rms)

Figure P10.28

1

2
1

2

S1

S3

S2

1

2

1

2

08 V(rms)

0.05 V

0.15 V

0.05 V

Vg1

Vg2

125

08 V(rms)125

Figure P10.29

 10.27  Suppose the circuit shown in Fig. P10.26 represents 
a residential distribution circuit in which the imped-
ances of the service conductors are negligible and 
V V 120 0 V(rms).g g1 2= = °  The three loads in 
the circuit are L1 (a new refrigerator, an electric 
oven, and a microwave oven); L2  (a humidifier and 
a ceiling fan with four 75 W incandescent bulbs); 
and L3  (a clothes washer and a clothes dryer). 
Assume that all of these appliances are in operation 
at the same time. The service  conductors are pro-
tected with 50 A (rms) circuit breakers. Will the service 
to this residence be interrupted? Why or why not?

 10.28  The three loads in Assessment Problem 10.7 are fed 
from a line having a series impedance 0.01 + j0.08 Ω, 
as shown in Fig. P10.28.

a) Calculate the rms value of the voltage (Vs) at 
the sending end of the line.

b) Calculate the average and reactive powers asso-
ciated with the line impedance.

c) Calculate the average and reactive powers at the 
sending end of the line.

d) Calculate the efficiency ( )η  of the line if the effi-
ciency is defined as

P P( ) 100.load sending endη = ×

 10.29  The three loads in the circuit seen in Fig. P10.29 are 

S j5 2 kVA1 = + , 

S j3.75 1.5 kVA2 = + , 

S j8  0 kVA3 = + .

a) Calculate the complex power associated with 
each voltage source, Vg1 and Vg2.

 10.30  A factory has an electrical load of 1800 kW at a 
lagging power factor of 0.6. An additional variable 
power factor load is to be added to the factory. The 
new load will add 600 kW to the real power load of 
the factory. The power factor of the added load is to 
be adjusted so that the overall power factor of the 
factory is 0.96 lagging.

a)  Specify the reactive power associated with the 
added load.

b) Does the added load absorb or deliver magne-
tizing vars?

c) What is the power factor of the additional load?

d) Assume that the voltage at the input to the fac-
tory is 4800 V(rms). What is the rms magnitude 
of the current into the factory before the vari-
able power factor load is added?

e) What is the rms magnitude of the current into 
the factory after the variable power factor load 
has been added?

 10.31  Assume the factory described in Problem 10.30 
is fed from a line having an impedance of 

j0.02 0.16  .+ Ω  The voltage at the factory is main-
tained at 4800 V(rms).

a) Find the average power loss in the line before 
and after the load is added.

b) Find the magnitude of the voltage at the send-
ing end of the line before and after the load is 
added.

 10.32  A group of small appliances on a 60 Hz system 
requires 25 kVA at 0.96 pf lagging when operated at 
125 V(rms). The impedance of the feeder supplying 
the appliances is j6 48 m .+ Ω  The voltage at the 
load end of the feeder is 125 V(rms).

a) What is the rms magnitude of the voltage at the 
source end of the feeder?

b) What is the average power loss in the feeder?

c) What size capacitor (in microfarads) across the 
load end of the feeder is needed to improve the 
load power factor to unity?

b) Verify that the total real and reactive power 
delivered by the sources equals the total real 
and reactive power absorbed by the network.

b) Check your calculations by showing your results 
are consistent with the requirements

P P ;dev abs∑ ∑=

Q Q .dev abs∑ ∑=
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406 Sinusoidal Steady-State Power Calculations

d) After the capacitor is installed, what is the rms 
magnitude of the voltage at the source end of 
the feeder if the load voltage is maintained at 
125 V(rms)?

e) What is the average power loss in the feeder  
for (d)?

 10.33 a) Find the average power dissipated in the line in 
Fig. P10.33.

b) Find the capacitive reactance that when con-
nected in parallel with the load will make the 
load look purely resistive.

c) What is the equivalent impedance of the load  
in (b)?

d) Find the average power dissipated in the line 
when the capacitive reactance is connected 
across the load.

e) Express the power loss in (d) as a percentage of 
the power loss found in (a).

1

2

Line Load

1 V j4 V

39 V

j26 V

Source

08
V(rms)
250

Figure P10.33

250 kVA
0.96
lag

Vs

1 V j8 V

08 V(rms)

1

2

1

2

2500

Figure P10.34

1

2
Zab

a

b

08
V(rms) 40 V

j50 V

j100 V

j70 V j40 V

j30 V

10 V j20 V

340

Figure P10.36

1 V

Ia

Ib Id

Ic

IfIe
20  08

V(rms)

j1 Vj2 V

1 V2j1 V

j1 V

2

1

Figure P10.37

 10.36 a) Find the average power delivered to the 40 Ω  
resistor in the circuit in Fig. P10.36.

b) Find the average power developed by the ideal 
sinusoidal voltage source.

c) Find Zab.
d) Show that the average power developed equals 

the average power dissipated.

 10.34  The steady-state voltage drop between the load 
and the sending end of the line seen in Fig. P10.34 
is excessive. A capacitor is placed in parallel with 
the 250 kVA load and is adjusted until the steady-
state voltage at the sending end of the line has the 
same magnitude as the voltage at the load end, that 
is, 2500 V(rms). The 250 kVA load is operating at 
a power factor of 0.96 lag. Calculate the size of the 
capacitor in microfarads if the circuit is operating at 
60 Hz. In selecting the capacitor, keep in mind the 
need to keep the power loss in the line at a reason-
able level.

  10.35  Consider the circuit described in Problem 9.78.

a) What is the rms magnitude of the voltage across 
the load impedance?

b) What percentage of the average power devel-
oped by the practical source is delivered to the 
load impedance?

 10.37 a) Find the six branch currents I Ia f−  in the circuit 
in Fig. P10.37.

b) Find the complex power in each branch of the 
circuit.

c) Check your calculations by verifying that the 
average power developed equals the average 
power dissipated.

d) Check your calculations by verifying that the 
magnetizing vars generated equal the magnetiz-
ing vars absorbed.

 10.38 a) Find the average power delivered by the sinu-
soidal current source in the circuit of Fig. P10.38.

b) Find the average power delivered to the 1 kΩ  
resistor.

Ideal

3 : 1

3 kV 2 kV

1 kV

mA(rms)
10 08

Figure P10.38

 10.39  The sinusoidal voltage source in the circuit in 
Fig. P10.39 is developing an rms voltage of 680 V. 
The 80 Ω  load in the circuit is absorbing 16 times 
as much average power as the 320 Ω  load. The two 
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loads are matched to the sinusoidal source that has 
an internal impedance of 136 0  k .° Ω

a) Specify the numerical values of a1 and a2.

b) Calculate the power delivered to the 80 Ω  load.

c) Calculate the rms value of the voltage across the 
320 Ω  resistor.

 10.42  Suppose an impedance equal to the conjugate of 
the Thévenin impedance is connected to the termi-
nals c, d of the circuit shown in Fig. P9.77.

a) Find the average power developed by the sinu-
soidal voltage source.

b) What percentage of the average power developed 
by the source is lost in the linear transformer?

 10.43  Prove that if only the magnitude of the load imped-
ance can be varied, the most average power is 
transferred to the load when Z Z .L Th=  (Hint: 
In deriving the expression for the load’s average 
power, write the load impedance (ZL) in the form 
Z Z j Zcos sin ,L L Lθ θ= +  and note that only 
ZL  is variable.)

 10.44 a) Determine the load impedance for the circuit 
shown in Fig. P10.44 that will result in maximum 
average power being transferred to the load if 

10  krad s .ω =

b) Determine the maximum average power delivered 
to the load from part (a) if v t90 cos10, 000  V.g =

c) Repeat part (b) when ZL consists of two com-
ponents from Appendix H whose values yield 
a maximum average power closest to the value 
calculated in part (a).

1

2V(rms)
08680

320 V

80 V

136 kV

a1:1

Ideal

a2:1

Ideal

Figure P10.39

1

2

4 V

j42 V

4 V

500 Turns

Ideal

250 Turns 2j8 V

250  08
V(rms)

Figure P10.40

A circuit
operating in
the sinusoidal
steady
state b

a
1

2
Vab

Figure P10.41

 10.40 a) Find the average power dissipated in each resis-
tor in the circuit in Fig. P10.40.

b) Check your answer by showing that the total 
power developed equals the total power absorbed.

 Section 10.6

 10.41  The phasor voltage Vab in the circuit shown in 
Fig. P10.41 is 480 0  V(rms)°  when no external 
load is connected to the terminals a, b. When a load 
having a resistance of 100 Ω  is connected across  
a, b, the value of Vab is j240 80 V(rms).−

a) Find the impedance that should be connected 
across a, b for maximum average power transfer.

b) Find the maximum average power transferred to 
the load of (a).

c) Construct the impedance of part (a) using com-
ponents from Appendix H if the source fre-
quency is 250 rad/s.

1

2
ZL60 kV

2.5 nF6 H

vg

Figure P10.44

 10.45  The load impedance ZL for the circuit shown in 
Fig. P10.45 is adjusted until maximum average 
power is delivered to ZL.

a) Find the maximum average power delivered to 
ZL.

b) What percentage of the total power developed 
in the circuit is delivered to ZL?

Vs

Vs

5
1

2
1

2
ZL

5 V 10 V

j5 V250  08 V(rms)

2j10 V

Figure P10.45

 10.46  The variable resistor in the circuit shown in 
Fig. P10.46 is adjusted until the average power it 
absorbs is maximum.
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 10.49  The peak amplitude of the sinusoidal voltage source 
in the circuit shown in Fig. P10.49 is 150 2 V  and 
its period is 200 π  sμ . The load resistor can be  
varied from 0 to 20 Ω and the load inductor can be var-
ied from 1 to 8 mH.

a) Calculate the average power delivered to the 
load when R 10 o = Ω  and L 6 mH.o =

b) Determine the settings of Ro and Lo that will 
result in the most average power being trans-
ferred to Ro.

c) What is the average power in (b)? Is it greater 
than the power in (a)?

d) If there are no constraints on Ro and Lo, what is 
the maximum average power that can be deliv-
ered to a load?

e) What are the values of Ro and Lo for the condi-
tion of (d)?

f) Is the average power calculated in (d) larger 
than that calculated in (c)?

PSPICE
MULTISIM

 10.47  The variable resistor Ro in the circuit shown in 
Fig. P10.47 is adjusted until maximum average 
power is delivered to Ro.

a) What is the value of Ro in ohms?
b) Calculate the average power delivered to Ro.
c) If Ro is replaced with a variable impedance Zo, 

what is the maximum average power that can be 
delivered to Zo?

d) In (c), what percentage of the circuit’s devel-
oped power is delivered to the load Zo?

1

2

18 V j6 V j15 V

2j24 V

8 V

R
630  08
V(rms)

Figure P10.46

1

2

10 V
2j20 V

j10 V RoVf600  08 V(rms)

Vf

1

2

20

Figure P10.47

1 V

160 V

j8 V

2jXCj240 V

1

2

Vs

1

2

08 V(rms)4800

Figure P10.48

1

2
Lo

300 V

vg

Ro

1 mF

Figure P10.49

1

2

1

2

230 V j50 V

j100 V Vo 100 Vj40 V

V(rms)

660
2

08

Figure P10.51

 10.48  The sending-end voltage in the circuit seen in 
Fig. P10.48 is adjusted so that the load voltage 
is always 4800 V(rms). The variable capacitor is 
adjusted until the average power dissipated in the 
line resistance is minimum.
a) If the frequency of the sinusoidal source is 

60 Hz, what is the value of the capacitance in 
microfarads?

b) If the capacitor is removed from the circuit, what 
percentage increase in the magnitude of Vs is 
necessary to maintain 4800 V(rms) at the load?

c) If the capacitor is removed from the circuit, what 
is the percentage increase in line loss?

 10.50 a) Assume that Ro in Fig. P10.49 can be varied 
between 0 and 50  .Ω  Repeat (b) and (c) of 
 Problem 10.49.

b) Is the new average power calculated in (a) 
 greater than that found in Problem 10.49(a)?

c)  Is the new average power calculated in (a) less 
than that found in 10.49(d)?

 10.51  For the frequency-domain circuit in Fig. P10.51, 
calculate:

a) the rms magnitude of Vo;

b) the average power dissipated in the 100 Ω 
resistor;

c) the percentage of the average power generated 
by the ideal voltage source that is delivered to 
the 100 Ω  load resistor.

PSPICE
MULTISIM

a) Find R.

b) Find the maximum average power.

c)  Find the resistor in Appendix H that would have 
the most average power delivered to it.
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 10.54 a) Find the steady-state expression for the cur-
rents ig and iL in the circuit in Fig. P10.54 when 

= t70 cos 5000  Vgv .

b) Find the coefficient of coupling.

c) Find the energy stored in the magnetically cou-
pled coils at π μ=t 100   s  and t 200   sπ μ= .

d) Find the power delivered to the 30 Ω  resistor.

e) If the 30 Ω  resistor is replaced by a variable 
resistor RL, what value of RL will yield maxi-
mum average power transfer to RL?

f) What is the maximum average power in (e)?

g) Assume the 30 Ω  resistor is replaced by a vari-
able impedance ZL. What value of ZL will result 
in maximum average power transfer to ZL?

h) What is the maximum average power in (g)?

PSPICE
MULTISIM

1
2

10 V

2 mHvg

ig iL
8 mH 30 V

2 mH

Figure P10.54

Zo
1

2
80  08

V(rms)

10 V

j20 V
j20 V

j40 V

Figure P10.55

1

2

8 V 20 V 31 Vj56 V

j40 V j100 V

j50 V

Source Transformer Load

08
V(rms)

ZL
760

Figure P10.56

 10.52  The 100 Ω  resistor in the circuit in Fig. P10.51 is 
 replaced with a variable impedance Zo. Assume Zo 
is adjusted for maximum average power transfer  
to Zo.

a) What is the maximum average power that can 
be delivered to Zo?

b) What is the average power developed by the 
ideal voltage source when maximum average 
power is delivered to Zo?

c) Choose single components from Appendix H to 
form an impedance that dissipates average power 
closest to the value in part (a). Assume the source 
frequency is 60 Hz. Calculate the resulting aver-
age power dissipated by this impedance.

 10.53 a) Solve Example 10.12 if the polarity dot on the 
coil connected to terminal a is at the top.

b) Solve Example 10.12 if the amplitude of the 
voltage source is reduced to 146 V(rms) and the 
turns ratio is reversed to 1:4.

PSPICE
MULTISIM

 10.55  Find the impedance seen by the ideal voltage source 
in the circuit in Fig. P10.55 when Zo is adjusted for 
maximum average power transfer to Zo.

  10.56  The impedance ZL in the circuit in Fig. P10.56 is 
adjusted for maximum average power transfer to 
ZL. The internal impedance of the sinusoidal volt-
age source is j8 56 + Ω.

a) What is the maximum average power delivered 
to ZL?

b) What percentage of the average power delivered 
to the linear transformer is delivered to ZL?

 10.57  For the circuit in Fig. P10.57, 240 2 cosg =v t4000 V  

and RL = 140 Ω. Find

a) the rms magnitude of vo;

b) the average power delivered to RL;

c) the percentage of the average power generated 
by the ideal voltage source that is delivered to RL.

k 5 0.751

2
vg RL

20 V 40 mH

10 mH vo

1

2

Figure P10.57

 10.58  Assume the value of the load resistor, RL, in the  
circuit in Fig. P10.57 is adjustable.

a) Find the value of RL that maximizes the average 
power delivered to RL

b) Find the power delivered to RL when RL has the 
value found in (a).
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1:4
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j50 V C250  08
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1

2

Figure P10.60
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1 : 2.5 1 : 4

Figure P10.61

1 V 4 V 0.25 V
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4:1
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Figure P10.63

5 kV

N2
Ideal

N1

50 V15 kV

V1

16  08
mA(rms)

1 2

Figure P10.64

 10.59  The polarity dot on the 40 mH inductor in the cir-
cuit in Fig. P10.57 is reversed.

a) Find the value of k that makes vo equal to zero.

b) Find the power developed by the source when k 
has the value found in (a).

 10.60  The sinusoidal voltage source in the circuit in 
Fig. P10.60 is operating at a frequency of 50  krad s.  
The variable capacitive reactance in the circuit is 
adjusted until the average power delivered to the 
160 Ω resistor is as large as possible.

a) Find the value of C in nanofarads.

b) When C has the value found in (a), what is the 
average power delivered to the 160 Ω  resistor?

c) Replace the 160 Ω  resistor with a variable resis-
tor Ro. Specify the value of Ro so that maximum 
average power is delivered to Ro.

d) What is the maximum average power that can 
be delivered to Ro?

 10.61  Find the average power delivered to the 4 kΩ  resis-
tor in the circuit of Fig. P10.61.

 10.65 a) If N1 equals 1500 turns, how many turns should 
be placed on the N2 winding of the ideal trans-
former in the circuit seen in Fig. P10.65 so that 
maximum average power is delivered to the 
3600 Ω  load?

b) Find the average power delivered to the 3600 Ω  
resistor.

c) What percentage of the average power deliv-
ered by the ideal voltage source is dissipated in 
the linear transformer?

PSPICE
MULTISIM

 10.64 a) If N1 equals 2520 turns, how many turns should 
be placed on the N2 winding of the ideal trans-
former in the circuit of Fig. P10.64 so that max-
imum average power is delivered to the 50 Ω 
load?

b) Find the average power delivered to the 50 Ω  
load.

c) Find the voltage V1.

d) What percentage of the power developed by 
the ideal current source is delivered to the 50 Ω  
resistor?

 10.62  The ideal transformer connected to the 4 kΩ  load 
in Problem 10.61 is replaced with an ideal trans-
former that has a turns ratio of 1: a.

a) What value of a results in maximum average 
power being delivered to the 4 kΩ resistor?

b)  What is the maximum average power?

 10.63   The variable load resistor RL in the circuit shown in 
Fig. P10.63 is adjusted for maximum average power 
transfer to RL.

a) Find the maximum average power.

b) What percentage of the average power devel-
oped by the ideal voltage source is delivered 
to RL when RL is absorbing maximum average 
power?

PSPICE
MULTISIM

c) Test your solution by showing that the power 
developed by the ideal voltage source equals the 
power dissipated in the circuit.

Ideal

3 V 32 V

1

2V(rms)
08240 3600 Vj4 V j124 V N2

N1
j20 V

Figure P10.65
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1

2
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Figure P10.66

 10.66  The load impedance ZL in the circuit in Fig. P10.66 
is adjusted until maximum average power is trans-
ferred to ZL.

a) Specify the value of ZL if N 15, 000 turns1 =  
and N 5000 turns2 = .

b) Specify the values of IL and VL when ZL is 
absorbing maximum average power.

c) Repeat the calculation in part (a) assuming that 
the computer is charging for 6 hours and discon-
nected from the AC adapter for 18 hours, but the 
AC adapter remains plugged into the wall outlet.

d) Repeat the calculation in part (a) assuming that 
the computer is charging for 6 hours and the AC 
adapter is unplugged from the wall outlet for 
18 hours.

 10.68 a) Suppose you use your microwave oven for 20 
minutes each day. The remaining time, the oven 
is ready with the door closed. Use the values 
in Table 10.3 to calculate the total number of  
kilowatt-hours used by the microwave oven in 
one month.

b) What percentage of the power used by the 
microwave oven in one month is consumed 
when the oven is ready with the door closed?

 10.69  Determine the amount of power, in watts, consumed 
by the transformer in Fig. 10.30. Assume that the 
voltage source is ideal R( 0  )s = Ω , R 10 1 = Ω ,  
and L 180 mH1 = . The frequency of the 120 V(rms)  
source is 60 Hz.

 10.70  Repeat Problem 10.69, but assume that the lin-
ear transformer has been improved so that 
R 80 m1 = Ω . All other values are unchanged.

 10.71  Repeat Problem 10.69 assuming that the linear 
transformer in Fig. 10.30 has been replaced by an 
ideal transformer with a turns ratio of 25:1. (Hint: 
You shouldn’t need to make any calculations to 
determine the amount of power consumed.)

PRACTICAL
PERSPECTIVE

PRACTICAL
PERSPECTIVE

PRACTICAL
PERSPECTIVE

PRACTICAL
PERSPECTIVE

Sections 10.1–10.6

10.67 a) Use the values in Table 10.3 to calculate the 
number of kilowatt-hours consumed in one 
month by a notebook computer AC adapter if 
every day the computer is charging for 6 hours 
and sleeping for 18 hours..

b) Repeat the calculation in part (a) assuming that 
the computer is charging for 6 hours and off for 
18 hours.

PRACTICAL
PERSPECTIVE
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CHAPTER CONTENTS

11 
CHAPTER 

Balanced  
Three-Phase Circuits
We use three-phase circuits to generate, transmit, 
dis tribute, and consume large blocks of electric power. The 
comprehensive analysis of such systems is a field of study in its 
own right; we cannot cover it in a single chapter. Fortunately, an 
understanding of the steady-state sinusoidal behavior of balanced 
three-phase circuits is sufficient for engineers who do not spe-
cialize in power systems. We analyze balanced three-phase cir-
cuits using several shortcuts based on circuit-analysis techniques  
discussed in earlier chapters.

The basic structure of a three-phase system consists of volt-
age sources connected to loads by means of transformers and 
transmission lines. To analyze such a circuit, we can reduce it 
to a voltage source connected to a load via a line. The omission 
of the transformer simplifies the discussion without jeopardiz-
ing a basic understanding of the three-phase system. Figure 11.1 
on page 414 shows a basic circuit. A defining characteristic of a 
balanced three-phase circuit is that it contains a set of balanced 
three-phase voltages at its source. We begin by considering these 
voltages, and then we move to the voltage and current relation-
ships for the Y-Y and Y-∆ circuits. After considering voltage and 
current in such circuits, we conclude with sections on power and 
power measurement.

11.1  Balanced Three-Phase Voltages p. 414

11.2  Three-Phase Voltage Sources p. 415

11.3  Analysis of the Wye-Wye Circuit p. 416

11.4  Analysis of the Wye-Delta Circuit p. 422

11.5   Power Calculations in Balanced  
Three-Phase Circuits p. 425

11.6   Measuring Average Power in  
Three-Phase Circuits p. 430

1 Know how to analyze a balanced,  
three-phase wye-wye connected circuit.

2 Know how to analyze a balanced,  
three-phase wye-delta connected circuit.

3  Be able to calculate power (average, 
 reactive, and complex) in any three-phase 
circuit.

CHAPTER OBJECTIVES
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 Practical Perspective
Transmission and Distribution of Electric Power
In this chapter, we introduce circuits that are designed 
to handle large blocks of electric power. These are the 
circuits used to transport electric power from generat-
ing plants to both industrial and residential customers. 
We  introduced a very basic residential customer circuit in 
the design perspective for Chapter 1. Now we introduce 
the type of circuit that delivers electric power to an entire 
residential subdivision.

One of the requirements imposed on electric  utilities 
is to maintain the rms voltage level at the customer’s 
premises. Whether lightly loaded, as at 3:00 am, or heav-
ily loaded, as at midafternoon on a hot, humid day, the 
utility must supply the same rms voltage. To satisfy this 
requirement, utility systems place capacitors at strategic 
locations in the distribution network. The  capacitors sup-
ply magnetizing vars close to the loads requiring them, 

adjusting the power factor of the load. We illustrate this 
concept after we have analyzed balanced three-phase 
circuits.

Douglas Sacha/Moment/Getty Images
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Three-phase
line

Three-phase
load

Three-phase
voltage
source

Figure 11.1 ▲ A basic three-phase circuit.

11.1 Balanced Three-Phase Voltages
A set of balanced three-phase voltages consists of three sinusoidal volt-
ages that have identical amplitudes and frequencies but are out of phase 
with each other by exactly 120°. We refer to the three phases as a, b, and c, 
and use the a-phase as the reference phase. The three voltages are referred 
to as the a-phase voltage, the b-phase voltage, and the c-phase voltage.

Only two possible phase relationships can exist between the a-phase vol-
tage and the b- and c-phase voltages. One possibility is for the b-phase voltage  
to lag the a-phase voltage by 120°,  in which case the c-phase voltage must 
lead the a-phase voltage by 120°. This phase relationship is known as the 
abc (or positive) phase sequence. Using phasor notation, we see that the 
abc phase sequence is

 VV 0 ,ma = °  

(11.1)VV 120°,mb = −

VV 120°.mc = +

The only other possibility is for the b-phase voltage to lead the a-phase 
voltage by 120°,  in which case the c-phase voltage must lag the a-phase 
voltage by 120°. This phase relationship is known as the acb (or negative) 
phase sequence. In phasor notation, the acb phase sequence is

 VV 0 ,ma = °

 VV 120°,mb = +  (11.2)

VV 120°.mc = −

Figure 11.2 shows the phasor diagrams of the voltages in Eqs. 11.1 and 
11.2. The phase sequence is the clockwise order of the subscripts around 
the diagram, starting from V .a  You can use the phasor diagrams to show 
that the sum of the three phasor voltages in a balanced set is zero. This 
important characteristic can also be derived from Eq. 11.1 or 11.2 to give

+ + =V V V 0.a b c

Because the sum of the phasor voltages is zero, the sum of the instanta-
neous voltages also is zero; that is,

0.a b cv v v+ + =  

Now that we know the nature of a balanced set of three-phase volt-
ages, we can state the first of the analytical shortcuts alluded to in the 
introduction to this chapter: if we know the phase sequence and one volt-
age in the set, we know the entire set. Thus, for a balanced three-phase 
system, once we determine the voltages (or currents) in one phase, we can 
use the 120° phase angle difference and the phase sequence to find the 
voltages or currents in the remaining two phases.

SELF-CHECK: Assess your understanding of three-phase voltages by try-
ing Chapter Problems 11.1 and 11.2.

Va

Vb

Vc

Vb

Va

Vc

Figure 11.2 ▲ Phasor diagrams of a balanced 
set of three-phase voltages. (a) The abc (positive) 
 sequence. (b) The acb (negative) sequence.
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 11.2 Three-Phase Voltage Sources 415

11.2 Three-Phase Voltage Sources
A three-phase voltage source is a generator with three separate windings 
distributed around the periphery of the stator. Each winding comprises 
one phase of the generator. The rotor of the generator is an electromag-
net driven at synchronous speed by a prime mover, such as a steam or 
gas turbine. Rotation of the electromagnet induces a sinusoidal voltage 
in each winding. The phase windings are designed so that the sinusoi-
dal voltages induced in them are equal in amplitude and out of phase 
with each other by 120°. The phase windings are stationary with respect 
to the rotating electromagnet, so the frequency of the voltage induced 
in each winding is the same. Figure  11.3 shows a sketch of a two-pole 
three-phase source.

There are two ways of interconnecting the separate phase wind-
ings to form a three-phase source: as a wye (Y) or as a delta ∆)( . 
Figure 11.4 shows both, with ideal voltage sources modeling the phase 
windings of the three-phase generator. The common terminal in the 
Y-connected source, labeled n in Fig. 11.4(a), is called the neutral ter-
minal of the source, which may or may not be available for external 
connections.

When constructing a circuit model of a three-phase generator, we 
need to consider the impedance of each phase winding. Sometimes it is 
so small (compared with other impedances in the circuit) that we don’t 
include it in the generator model; the model then consists solely of ideal 
voltage sources, as in Fig. 11.4. If the impedance of each phase winding is 
not negligible, we connect an inductive winding impedance in series with 
an ideal sinusoidal voltage source in each phase. Because the winding con-
struction in each phase is the same, we make the winding impedances in 
each phase identical. Figure 11.5 shows two models of a three-phase gen-
erator, one using a Y connection and the other using a ∆ connection. In 
both models, Rw is the winding resistance, and  Xw is the inductive reac-
tance of the winding.

Because both three-phase sources and three-phase loads can be either 
Y-connected or ∆-connected, the basic circuit in Fig. 11.1 represents four 
different configurations:

Source Load

Y Y

Y ∆
∆ Y
∆ ∆

We begin by analyzing the Y-Y circuit. The remaining three config-
urations can be reduced to a Y-Y equivalent circuit, so analysis of 
the Y-Y circuit is the key to solving all balanced three-phase arrange-
ments. We  then illustrate how to transform a Y-∆  circuit to a Y-Y  
circuit and leave the analysis of the ∆-Y and ∆-∆  circuits to you in the  
Problems.

Axis of 
a-phase 
winding

c-phase winding

b-
ph

as
e 

w
in

di
ng

a-phase winding

c-phase winding

b-
ph

as
e 

w
in

di
ng

a-phase winding

N

S

Rotation

Rotor

Field winding

Stator

Axis of 
b-phase 
winding

Axis of 
c-phase 
winding

Figure 11.3 ▲ A sketch of a three-phase voltage 
source.

12

1
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1
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1
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1
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1

2
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b

c
(a)

a

b

c
(b)

Va

Vb

Va

Vb

Vc

Vc

Figure 11.4 ▲ The two basic connections of an 
ideal three-phase source. (a) A Y-connected source. 
(b) A ∆-connected source.
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Figure 11.5 ▲ A model of a three-phase source 
with winding impedance: (a) a Y-connected source; 
and (b) a ∆-connected source.

a A

n N

b B

c C

IaA

Va9n

Zga

Zla

Zlb

Zlc
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Zgc

Zgb ZB

ZA

ZC

1

2

Vc9n
Vb9n

2

1

2 1

I0

IbB

IcC

Figure 11.6 ▲ A three-phase Y-Y system.

What happens to the KCL equation if the three-phase circuit in 
Fig. 11.6 is balanced? To answer this question, we must formally define 
a balanced three-phase circuit. A three-phase circuit is balanced if it 
 satisfies the following criteria:

11.3 Analysis of the Wye-Wye Circuit
Figure 11.6 illustrates a general Y-Y circuit, in which we included a fourth 
conductor that connects the source neutral to the load neutral. A fourth 
conductor is possible only in the Y-Y arrangement. For convenience, 
we transformed the Y connections into “tipped-over tees.” In Fig. 11.6, 
Z Z, ,ga gb  and Zgc  represent the internal impedance associated with each 
phase winding of the voltage generator; Zla, Zlb and Zlc represent the imped-
ance of the lines connecting a phase of the source to a phase of the load; Z0 is 
the impedance of the neutral conductor connecting the source neutral to the 
load neutral; and Z Z, ,A B  and ZC  represent the impedance of each phase of 
the load.

We can describe this circuit with a single KCL equation. Using the 
source neutral as the reference node and letting VN denote the node volt-
age between the nodes N and n, we get

Z Z Z Z Z Z Z Z Z Z
V V V V V V V

0.
l l l

N

0

N a n

A a ga

N b n

B b gb

N c n

C c gc

+
−

+ +
+

−
+ +

+
−

+ +
=′ ′ ′

CONDITIONS FOR A BALANCED  
THREE-PHASE CIRCUIT

1. The voltage sources form a balanced three-phase set.

2. The impedance of each phase of the voltage source is the same.

3. The impedance of each line is the same.

4. The impedance of each phase of the load is the same.
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There is no restriction on the impedance of the neutral conductor; its 
value has no effect on whether the system is balanced.

The circuit in Fig. 11.6 is balanced if

1. V V,   ,a n b n′ ′  and ′Vc n  are a set of balanced three-phase voltages.

2. Z Z Z .ga gb gc= =

 3. = =Z Z Zl l la b c.

 4. Z Z Z .A B C= =

If the circuit in Fig. 11.6 is balanced, we can rewrite the KCL equation at 
VN as

 +








 =

+ +

φ φ

′ ′ ′

Z Z Z
V

V V V1 3 ,N
0

a n b n c n  (11.3)

where

Z Z Z Z Z Z Z Z Z Z .l l lA a ga B b gb C c gc= + + = + + = + +φ

The right-hand side of Eq. 11.3 is zero because by hypothesis the numer-
ator is a set of balanced three-phase voltages and φZ  is not zero. The 
only value of VN that satisfies Eq. 11.3 is zero. Therefore, for a balanced 
 three-phase circuit,

 =V 0.N  (11.4)

When a three-phase circuit is balanced, VN is zero, so the volt-
age between the source neutral, n, and the load neutral, N, is zero. 
Consequently, the current in the neutral conductor is zero, so we can 
either remove the neutral conductor from a balanced Y-Y configura-
tion =I( 0)0  or replace it with a short circuit between the nodes n and 

=VN ( 0).N  Both equivalents are convenient to use when modeling bal-
anced three-phase circuits.

If the three-phase circuit in Fig.  11.6 is balanced, the three line 
 currents are

 
Z Z Z Z

I
V V V

,
l

aA
a n N

A a ga

a n=
−

+ +
=

φ

′ ′  

(11.5)
Z Z Z Z

I
V V V

,
l

bB
b n N

B b gb

b n=
−

+ +
=

φ

′ ′

Z Z Z Z
I

V V V
.

l
cC

c n N

C c gc

c n=
−

+ +
=

φ

′ ′

From these equations, we see that the three line currents form a bal-
anced set; that is, the current in each line is equal in amplitude and 
frequency and is 120° out of phase with the other two line currents. 
Thus, if we calculate the current I aA  and we know the phase sequence, 
we have a shortcut for finding I bB and I .cC  This is the same shortcut 
used to find the b- and c-phase source voltages from the a-phase source 
voltage.
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Figure 11.7 ▲ A single-phase equivalent circuit.

Terminology
We use Fig. 11.6 to define some important terms.

• Line voltage is the voltage across any pair of lines. In Fig. 11.6, the 
three line voltages at the load are VAB, VBC, and VCA.

• Phase voltage is the voltage across a single phase. In Fig.  11.6, the 
three phase voltages at the load are VAN, VBN, and VCN.

• Line current is the current in a single line. In Fig. 11.6, the three line 
currents are IaA, IbB, and IcC.

• Phase current is the current in a single phase. In Fig. 11.6, the three 
phase currents for the load are IAN, IBN, and ICN.

From Fig. 11.6 you can see that when the load is Y-connected, the line 
current and phase current in each phase are identical, but the line voltage 
and phase voltage in each phase are different.

The Greek letter phi φ( ) is widely used in the literature to denote 
a per-phase quantity. Thus, φ φ φ φZ PV I,   ,   ,   , and φQ  are interpreted 
as  voltage-per-phase, current-per-phase, impedance-per-phase, real  
p ower-per-phase, and reactive power-per-phase, respectively.

Since three-phase systems are designed to handle large blocks of elec-
tric power, all voltage and current specifications are rms values. When 
voltage ratings are given, they refer specifically to the rating of the line 
voltage. Thus, when a three-phase transmission line is rated at 345 kV, 
the value of the line-to-line voltage is 345,000 V(rms). In this chapter, we 
express all voltages and currents as rms values.

Constructing a Single-Phase Equivalent Circuit
We can use Eq. 11.5 to construct an equivalent circuit for the a-phase 
of the balanced Y-Y circuit. From this equation, the line current in the 
a-phase is the voltage generated in the a-phase winding of the generator 
divided by the total impedance in the a-phase of the circuit. Thus, Eq. 11.5 
describes the circuit shown in Fig. 11.7, in which the neutral  conductor has 
been replaced by a short circuit. The circuit in Fig. 11.7 is the  single-phase 
equivalent circuit for a balanced three-phase circuit. Once we solve 
this circuit, we can write down the voltages and currents in the other 
two phases, using the relationships among the phases. Thus, drawing a 
 single-phase equivalent circuit is an important first step in analyzing a  
balanced  three-phase circuit.

Note that the current in the neutral conductor in Fig. 11.7 is IaA. This 
is not the same as the current in the neutral conductor of the balanced 
three-phase circuit, which is

= + +I I I I .0 aA bB cC

Thus, the circuit shown in Fig. 11.7 gives the correct value of the line cur-
rent but only the a-phase component of the neutral current. In a balanced 
three-phase circuit, the line currents form a balanced three-phase set, and 

=I 00 .
Once we know the line current (IaA) in Fig.  11.7, we know the 

phase current (IAN) because they are equal. We can also use Ohm’s 
law to calculate the phase voltage (VAN) from the phase current and  
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Figure 11.8 ▲ Line-to-line and line-to-neutral 
voltages.
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Figure 11.9 ▲ Phasor diagrams showing the 
 relationship between line-to-line and line-to- 
neutral voltages in a balanced system. (a) The abc 
 sequence. (b) The acb sequence.

the load impedance. But how do we calculate the line voltage, VAB? 
The line voltage is not even shown in the single-phase equivalent circuit 
in Fig. 11.7. In a Y-connected load, the line voltages and the phase volt-
ages are related. Using Fig.  11.8, we can describe those relationships 
using KVL:

= −V V V ,AB AN BN

= −V V V ,BC BN CN

= −V V V .CA CN AN

To derive the relationship between the line voltages and the phase 
voltages, we assume a positive, or abc, sequence. Using the phase voltage 
in the a-phase as the reference,

VV 0 ,AN = °φ

VV 120°,BN = −φ

VV 120°,CN = +φ

where φV  represents the magnitude of the phase voltage. Substituting the 
phase voltages into the equations for the line voltages yields

 V V VV   0   120° 3 30 ,AB = ° − − = °φ φ φ  (11.6)

 V V VV   120° 120° 3 90°,BC = − − = −φ φ φ  (11.7)

 V V VV   120°   0 3   150 .CA = − ° = °φ φ φ  (11.8)

Equations 11.6–11.8 reveal that

1. The magnitude of the line voltage is 3  times the magnitude of the 
phase voltage.

2. The line voltages form a balanced three-phase set.

3. The set of line voltages leads the set of phase voltages by 30°.

We leave it to you to demonstrate that for a negative sequence, the 
only change is that the set of line voltages lags the set of phase volt-
ages by 30°.  The phasor diagrams shown in Fig. 11.9 summarize these 
observations. Here, again, is a shortcut in the analysis of a balanced 
system: If you know any phase voltage in the circuit, say VBN, you 
can determine the  corresponding line voltage, which is VBC, and vice 
versa.

Example 11.1 shows how to use a single-phase equivalent circuit to 
solve a balanced three-phase Y-Y circuit.
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Figure 11.10 ▲ The single-phase equivalent circuit for  
Example 11.1.

EXAMPLE 11.1    Analyzing a Wye-Wye Circuit

A balanced three-phase Y-connected generator with 
positive sequence has an impedance of j0.2 0.5 Ω φ+  
and an internal voltage of 120 φV . The generator 
feeds a balanced three-phase Y-connected load hav-
ing an impedance of j39 28  Ω .φ+  The impedance 
of the line connecting the generator to the load is 

j0.8 1.5  Ω .φ+  The internal voltage of the generator 
in the a-phase is the reference phasor.

a) Construct the a-phase equivalent circuit of the 
system.

b) Calculate the three line currents I I,   ,aA bB  and I .cC

c) Calculate the three phase voltages at the load, 
V V,   ,AN BN  and V .CN

d) Calculate the line voltages V V,   ,AB BC  and VCA  
at the terminals of the load.

e) Calculate the phase voltages at the terminals of 
the generator, V V,   ,an bn  and V .cn

f) Calculate the line voltages V V,   ,ab bc  and Vca  at 
the terminals of the generator.

g) Repeat (a)–(f) for a negative phase sequence.

Solution

a) Figure  11.10 shows the single-phase equivalent 
circuit.

b)  The a-phase line current is the voltage in the a-phase 
divided by the total impedance in the a-phase:

j
I

120 0
(0.2 0.8 39) (0.5 1.5 28)

 aA =
°

+ + + + +

j
120 0

40 30
 =

°
+

2.4  36.87° A.= −

For a positive phase sequence,

I 2.4 156.87° A,bB = −

I 2.4 83.13  A.cC = °

c) The line current and the phase current in the 
a-phase are equal. The phase voltage across the 
load in the a-phase is the product of the single- 
phase impedance of the load and the phase cur-
rent in the load:

jV (39 28)(2.4 36.87°)AN = + −

115.22  1.19° V.= −

For a positive phase sequence,

V 115.22  121.19° V,BN = −

V 115.22  118.81  V.CN = °

d) For a positive phase sequence, the magnitude of 
the line voltages is 3  times the magnitude of 
the phase voltages, and the line voltages lead the 
phase voltages by 30°. Thus

V V( 3  30 )AB AN= °

199.58  28.81 V,= °

V 199.58  91.19°  V,BC = −

V 199.58  148.81  V.CA = °

e) The phase voltage of the source in the a-phase is 
the voltage of the ideal source minus the voltage 
across the source impedance. Therefore,

jV 120 (0.2 0.5)(2.4 36.87°)an = − + −

120 1.29 31.33= − °

= − j118.90 0.67

118.90 0.32° V.= −

For a positive phase sequence,

V 118.90 120.32° V,bn = −

V 118.90 119.68  V.cn = °
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f) The line voltages at the source terminals are

V V( 3 30 )ab an= °

205.94 29.68  V,= °

V 205.94 90.32° V,bc = −

V 205.94 149.68  V.ca = °

g) Changing the phase sequence has no effect on 
the single-phase equivalent circuit. The three line 
currents are

I 2.4 36.87° A,aA = −

I 2.4 83.13  A,bB = °

I 2.4 156.87° A.cC = −

The phase voltages at the load are

V 115.22 1.19° V,AN = −

V 115.22 118.81  V,BN = °

V 115.22 121.19°  V.CN = −

For a negative phase sequence, the line voltages 
lag the phase voltages by 30°:

V V( 3 30°)AB AN= −

= − °199.58 31.19  V,

=V 199.58 88 .81 ° V,BC

= − °V 199.58 151.19  V.CA

The phase voltages at the terminals of the 
 generator are

= −V 118.90 0.32°  V,an

=V 118.90 119.68° V,bn

= −V 118.90 120.32° V.cn

The line voltages at the terminals of the gener-
ator are

= −V V( 3 30°)ab an

= −205.94 30.32° V,

=V 205.94 89.68° V,bc

= − °V 205.94 150.32  V.ca

Objective 1—Know how to analyze a balanced, three-phase wye-wye circuit

11.1  The voltage from A to N in a balanced three-
phase circuit is 80 50  V.°  If the phase 
sequence is positive, what is the value of V ?CA

Answer: −138.56 160° V.

11.2  The b-phase voltage of a balanced three-phase 
Y-connected system is −150 30° V. If the phase 
sequence is negative, what is the value of VBC ?

Answer: −259.81 60° V.

11.3  The magnitude of the phase voltage of an ideal 
balanced  three-phase Y-connected source is 
125 V. The source is connected to a balanced 
Y-connected load by a distribution line that 
has an impedance of φ+ j0.1 0.8  Ω . The load 
impedance is φ+ j19.9 14.2  Ω . The phase 
sequence of the source is acb. Use the a-phase 
voltage of the source as the reference. Specify 
the magnitude and phase angle of the following 

quantities: (a) the three line currents, (b) the 
three line voltages at the source, (c) the three 
phase voltages at the load, and (d) the three 
line voltages at the load.

Answer: a)    = −I 5 36.87°  A,aA

     =I 5 83.13° A,bB  and
    = − °I 5 156.87  A;cC

b)    = −V 216.51 30° V,ab

   =V 216.51 90° V,bc  and
   = − °V 216.51 150  V;ca

c)    = −V 122.23 1.36°  V,AN

   =V 122.23 118.64° V,BN  and
   = − °V 122.23 121.36  V;CN

d)  = − °V 211.72 31.36  V,AB

 =V 211.72 88.64° V,BC  and
 = −V 211.72 151.36°  V.CA

ASSESSMENT PROBLEMS

SELF-CHECK: Also try Chapter Problems 11.10–11.12.
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Figure 11.11 ▲ A balanced three-phase Y-Δ system.

11.4 Analysis of the Wye-Delta Circuit
A balanced, three-phase, Y-∆ circuit is shown in Fig.  11.11. From this 
 circuit you can see that the line voltage and the phase voltage in each 
phase of the load are the same. For example, =V VAN AB. But the line 
current and the phase current in each phase of the load are not the same. 
This is an important difference when comparing the Y-∆ circuit with the 
Y-Y circuit, where the line and phase currents are the same in each phase 
of the load but the line and phase voltages are different.

When the load in a three-phase circuit is connected in a delta, it can 
be transformed into a wye by using the delta-to-wye transformation dis-
cussed in Section 9.6. When the load is balanced, the impedance of each 
leg of the wye is one-third the impedance of each leg of the delta, or

RELATIONSHIP BETWEEN DELTA-CONNECTED  
AND WYE-CONNECTED IMPEDANCES

 Z
Z
3

,Y = ∆  (11.9)

which follows directly from Eqs. 9.21–9.23. After the ∆ load has 
been replaced by its Y equivalent, the a-phase can be modeled by the 
 single-phase equivalent circuit shown in Fig. 11.12.

We use this circuit to calculate the line currents, and we then 
use the line currents to find the currents in each phase of the original  
∆-connected load. The relationship between the line currents and the 
phase currents in each phase of the delta can be derived using the circuit 
shown in Fig. 11.11. We assume a positive phase sequence and let φI  rep-
resent the magnitude of the phase current. Then

= °φII 0 ,AB

= − °φII 120 ,BC

= °φII 120 .CA

In writing these equations, we arbitrarily selected I AB as the reference 
phasor.

a9

n

a A

N

IaAVa9n

Zga Zla

ZA
1

2

Figure 11.12 ▲ A single-phase equivalent circuit.
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We can write the line currents in terms of the phase currents by apply-
ing KCL at the nodes labeled A, B, and C in Fig. 11.11:

 = −I I IaA AB CA  (11.10)

= − °φ φI I0° 120

= −φI3 30°,

= −I I IbB BC AB  (11.11)

= − ° − °φ φI I120 0

= − °φI3 150 ,

= −I I IcC CA BC  (11.12)

= ° − −φ φI I120 120°

= φI3 90°.

Comparing the line currents and the phase currents reveals that the mag-
nitude of the line currents is 3  times the magnitude of the phase currents 
and that the set of line currents lags the set of phase currents by 30°.

We leave it to you to verify that, for a negative phase sequence, 
the line currents are still 3  times larger than the phase currents, but 
they lead the phase currents by 30°.  Thus, we have a shortcut for cal-
culating line currents from phase currents (or vice versa) for a balanced 
 three-phase ∆-connected load. Figure  11.13 summarizes this shortcut 
graphically. Example 11.2 analyzes a balanced three-phase circuit hav-
ing a Y-connected source and a ∆-connected load, using a single-phase 
equivalent circuit.

EXAMPLE 11.2     Analyzing a Wye-Delta Circuit

The Y-connected source in Example 11.1 feeds a  
∆-connected load through a distribution line having 
an impedance of φ+ j0.3 0.9  Ω . The load imped-
ance is φ+ j118.5 85.8  Ω . Use the internal voltage 
of the generator in the a-phase as the reference.

a) Construct a single-phase equivalent circuit of the 
three-phase system.

b) Calculate the line currents I I,   ,aA bB  and I .cC

c) Calculate the phase voltages at the load terminals.

d) Calculate the phase currents of the load.

e) Calculate the line voltages at the source terminals.

Solution

a) Figure  11.14 shows the single-phase equivalent 
circuit. The load impedance of the Y equivalent is

j
j

118.5 85.8
3

39.5 28.6  Ω .φ
+

= +

b) The a-phase line current is the source voltage in 
the a-phase divided by the sum of the impedances 
in the a-phase:

=
°

+ + + + +j
I

120 0

(0.2 0.3 39.5) (0.5 0.9 28.6)
 aA

=
°

+
= −

j

120  0

40 30
2.4 36.87° A.

IaAIbB

IcC

IAB308

IAB
308

ICA

308

IBC

308

IBC

308

ICA
308

IcC

IaAIbB

(a)

(b)

Figure 11.13 ▲ Phasor diagrams showing the rela-
tionship between line currents and phase currents 
in a ∆-connected load. (a) The positive sequence. 
(b) The negative sequence.

0.2 V

n

j0.5 V

120  08 V

a9 a A

N

0.3 V j0.9 V

IaA

1

2

39.5 V

j28.6 V

Figure 11.14 ▲ The single-phase equivalent circuit 
for Example 11.2.
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Hence

= −I 2.4 156.87° A,bB

= °I 2.4 83.13  A.cC

c) Because the load is ∆ connected, the phase 
 voltages are the same as the line voltages. To 
calculate the line voltages, we first calculate 
VAN using the single-phase equivalent circuit in 
Fig. 11.14:

= + −jV (39.5 28.6)(2.4 36.87°)AN

= −117.04  0.96° V.

Because the phase sequence is positive, the line 
voltage VAB is

=V V( 3 30°) AB AN

= °202.72  29.04  V.

Therefore

= −V 202.72  90.96° V,BC

V 202.72  149.04  V.CA = °

d) The phase currents of the load can be calculated 
directly from the line currents:

( )=I I1
3

  30°  AB aA

= −1.39 6.87°  A.

Once we know I ,AB  we also know the other load 
phase currents:

I 1.39 126.87° A,BC = −

=I 1.39 113.13° A.CA

Note that we can check the calculation of I AB 
by using the previously calculated VAB and the 
impedance of the ∆-connected load; that is,

= =
+φZ j

I
V 202.72 29.04°

118.5 85.8
 AB

AB

1.39  6.87° A.= −

e) To calculate the line voltage at the terminals of 
the source, we first calculate V .an  Figure  11.14 
shows that Van  is the voltage drop across the line 
impedance plus the load impedance, so

= + − °jV (39.8 29.5)(2.4  36.87 )an

= −118.90  0.32°  V.

The line voltage Vab  is

=V V( 3  30°)ab an

= °205.94  29.68  V.

Therefore

= −V 205.94  90.32°  V,bc

V 205.94  149.68  V.ca = °

Objective 2—Know how to analyze a balanced, three-phase wye-delta connected circuit

11.4  The current I AB in a balanced three-phase  
∆-connected load is 25  40°  A. If the phase 
sequence is positive, what is the value of I aA?

Answer: 43.3  10°  A.

11.5  A balanced three-phase ∆-connected load is 
fed from a balanced three-phase circuit. The 
reference for the a-phase line current is toward 
the load. The value of the current in the a-phase 
is −10  30° A. If the phase sequence is posi-
tive, what is the value of I BC ?

Answer: −5.77  180°  A.

11.6  The line voltage VCA  at the terminals of 
a balanced  three-phase ∆-connected load 
is 2400  0°  V. The line current I cC  is 
103.92  40° A.
a) Calculate the per-phase impedance of 

the load if the phase sequence is positive.
b) Repeat (a) for a negative phase sequence.

Answer: a) 40  70°  Ω;−
b) 40  10°  Ω.−

ASSESSMENT PROBLEMS
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11.5  Power Calculations in Balanced 
Three-Phase Circuits

So far, we have analyzed balanced three-phase circuits using a  single-phase 
equivalent circuit to determine line currents, phase currents, line volt-
ages, and phase voltages. We now calculate power for balanced three-
phase  circuits. We begin by considering the average power delivered to a 
 balanced Y-connected load.

 Average Power in a Balanced Wye Load
Figure 11.15 shows a Y-connected load, along with its pertinent currents 
and voltages. We calculate the average power associated with any one 
phase by using the techniques introduced in Chapter 10. Using Eq. 10.9, 
we express the average power associated with the a-phase as

 θ θ= −P V I  cos( ),iA AN aA A Av  (11.13)

where vθ A  and θiA denote the phase angles of VAN  and I ,aA  respectively. 
Using the notation introduced in Eq. 11.13, we can find the power associ-
ated with the b- and c-phases:

 P V I cos( ),iB BN bB B Bθ θ= −υ  (11.14)

 P V I cos( ).iC CN cC C Cvθ θ= −  (11.15)

In Eqs. 11.13–11.15, all phasor currents and voltages use the rms value of 
the sinusoidal function they represent.

In a balanced three-phase system, the magnitude of each  line-to- neutral 
voltage is the same, as is the magnitude of each phase current. The argu-
ment of the cosine functions is also the same for all three phases. We intro-
duce the following notation to take advantage of these observations:

V V V V ,AN BN CN= = =φ

I I I I ,aA bB cC= = =φ

and

v v v .i B i C iA A B Cθ θ θ θ θ θ θ= − = − = −φ

Moreover, for a balanced system, the power delivered to each phase 
of the load is the same, so

P P P P V I cos ,A B C θ= = = =φ φ φ φ

where φP  represents the average power per phase. The total average 
power delivered to the balanced Y-connected load is simply three times 
the power per phase, or

 P P V I3 3 cos .T θ= =φ φ φ φ  (11.16)

11.7  The line voltage at the terminals of a balanced 
∆-connected load is 240 V. Each phase of 
the load consists of a 3 Ω  resistor in parallel 
with a −4 Ω capacitive reactance. What is the 

magnitude of the current in the line feeding 
the load?

Answer: 173.21 A.

SELF-CHECK: Also try Chapter Problems 11.13, 11.16, and 11.17.
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VCN

VBN
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IbB

IcC

ZB

ZA

ZC

Figure 11.15 ▲ A balanced Y load used to intro-
duce average power calculations in three-phase 
circuits.
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Figure 11.16 ▲ A ∆-connected load used to 
 discuss power calculations.

Expressing the total power in terms of the rms magnitudes of the line 
voltage and current is also desirable. If we let VL and I L  represent the rms 
magnitudes of the line voltage and current, respectively, we can modify 
Eq. 11.16 as follows:

TOTAL REAL POWER IN A BALANCED  
THREE-PHASE LOAD

 θ θ( )= =φ φP
V

I V I3
3

cos 3 cos .T
L

L L L  (11.17)

In deriving Eq. 11.17, we recognized that, for a balanced Y-connected 
load, the magnitude of the phase voltage is the magnitude of the line volt-
age divided by 3,  and that the magnitude of the line current is equal to 
the magnitude of the phase current. When using Eq. 11.17 to calculate the 
total power delivered to the load, remember that θφ  is the phase angle 
between the phase voltage and current.

Reactive and Complex Power in a Balanced Wye Load
We can also calculate the reactive power and complex power associated 
with any phase of a Y-connected load using the techniques introduced in 
Chapter 10. For a balanced load, the expressions for the reactive power are

θ=φ φ φ φQ V I sin ,

TOTAL REACTIVE POWER IN A BALANCED  
THREE-PHASE LOAD

 θ= =φ φQ Q V I3 3 sin .T L L  (11.18)

TOTAL COMPLEX POWER IN A BALANCED  
THREE-PHASE LOAD

 θ= =φ φS S V I3 3 .T L L  (11.19)

Use Eq. 10.13 to express the complex power of any phase. For a bal-
anced Y-connected load,

= = = =φ φ φS V I V I V I V I ,AN aA
*

BN bB
*

CN cC
* *

where φV  and φI  represent a phase voltage and current for the same 
phase. Thus, in general,

= + =φ φ φ φ φS P jQ V I ,*

Power Calculations in a Balanced Delta Load
If the load is ∆-connected, the calculation of power—average, reactive, or 
 complex—is basically the same as that for a Y-connected load. Figure 11.16 
shows a ∆-connected load, along with its pertinent currents and voltages. 
The average power associated with each phase is

vθ θ= −P V I cos( ),iA AB AB AB AB

vθ θ= −P V I cos( ),iB BC BC BC BC
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vθ θ= −P V I cos( ).iC CA CA CA CA

For a balanced load,

VV V V ,AB BC CA= = = φ

II I I ,AB BC CA= = = φ

v v v ,i BC i CA iAB AB BC CAθ θ θ θ θ θ θ− = − = − = φ

and

θ= = = =φ φ φ φP P P P V I cos .A B C  

Thus, whether you have a balanced Y- or ∆ -connected load, the average 
power per phase is equal to the product of the rms magnitude of the phase 
voltage, the rms magnitude of the phase current, and the cosine of the 
angle between the phase voltage and current.

The total average power delivered to a balanced ∆-connected load is

θ= =φ φ φ φP P V I3 3 cosT

θ( )= φV
I

3
3

cosL
L

θ= φV I3 cos .L L

Note that this equation is the same as Eq. 11.17. The expressions for reac-
tive power and complex power also are the same as those developed for 
the Y load:

θ=φ φ φ φQ V I sin ;

θ= =φ φ φ φQ Q V I3 3 sin ;T

S P jQ V I ;*= + =φ φ φ φ φ

θ= =φ φS S V I3 3 .T L L

Instantaneous Power in Three-Phase Circuits
Although we are primarily interested in average, reactive, and complex 
power calculations, computing the total instantaneous power is also 
important. In a balanced three-phase circuit, this power has an interesting 
property: it is invariant with time! Thus, the torque developed at the shaft 
of a three-phase motor is constant, which in turn means less vibration in 
machinery powered by three-phase motors.

Let the instantaneous line-to-neutral voltage v AN  be the reference, 
and, as before, θφ  is the phase angle vθ θ− .iA A  Then, for a positive phase 
sequence, the instantaneous power in each phase is

ω ω θ= = − φp i V I t tcos cos( ),m mA AN aAv

ω ω θ= = − − −φp i V I t tcos( 120°)cos( 120°),m mB BN bBv

ω ω θ= = + − +φp i V I t tcos( 120°)cos( 120°),m mC CN cCv

where Vm and I m  represent the maximum amplitude of the phase voltage 
and line current, respectively. The total instantaneous power is the sum of 
the instantaneous phase powers, which reduces to θφV I1.5 cos ;m m  that is,

p p p p V I1.5 cos .T m mA B C θ= + + = φ
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Note that this result is consistent with Eq. 11.16 since = φV V2m  and 
= φI I2m  (see Problem 11.23).
Examples 11.3–11.5 illustrate power calculations in balanced three-

phase circuits.

EXAMPLE 11.3    Calculating Power in a Three-Phase Wye-Wye Circuit

a) Calculate the average power per phase delivered 
to the Y-connected load of Example 11.1.

b) Calculate the total average power delivered to 
the load.

c) Calculate the total average power lost in the line.

d) Calculate the total average power lost in the 
generator.

e) Calculate the total number of magnetizing vars 
absorbed by the load.

f) Calculate the total complex power delivered by 
the source.

Solution

a) From Example 11.1, = =φ φV 115.22 V, I 2.4 A,  
and 1.19  ( 36.87) 35.68°.θ = − − − =φ . Therefore

( )=φP (115.22) 2.4 cos35.68°

= 224.64 W.

The power per phase may also be calculated 
from I R ,2

φ φ  or

= =φP (2.4) (39) 224.64 W.2

b) The total average power delivered to the load 
is = =φP P3 673.92 W.T  We calculated the 
line voltage in Example 11.1, so we can also use 
Eq. 11.17:

P 3(199.58) 2.4 cos 35.68°T ( )=

= 673.92 W.

c) The total power lost in the line is

= =P 3(2.4) (0.8) 13.824 W.line
2

d) The total internal power lost in the generator is

= =P 3(2.4) (0.2) 3.456 W.gen
2

e) The total number of magnetizing vars absorbed 
by the load is

( )=Q 3(199.58) 2.4 sin 35.68°T

= 483.84 VAR.

f) The total complex power associated with the 
source is

( )( )= = −φS S3 3 120 2.4   36.87°T

= − − j691.20 518.40 VA.

The minus sign indicates that the average power 
and magnetizing reactive power are being deliv-
ered to the circuit. We check this result by cal-
culating the total average and reactive power 
absorbed by the circuit:

= + +P 673.92 13.824 3.456

= 691.20 W (check),

= + +Q 483.84 3(2.4) (1.5) 3(2.4) (0.5)2 2

= + +483.84 25.92 8.64

= 518.40 VAR (check).

EXAMPLE 11.4    Calculating Power in a Three-Phase Wye-Delta Circuit

a) Calculate the total complex power delivered to 
the ∆-connected load of Example 11.2.

b) What percentage of the average power at the 
sending end of the line is delivered to the load?

Solution
a) Using the a-phase values from the solution of 

Example 11.2, we obtain

= = °φV V 202.72  29.04 V,AB

= = −φI I 1.39  6.87°  A.AB
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Figure 11.17 ▲ The single-phase equivalent circuit for 
Example 11.5.

Using Eq. 11.19, we have

= °S 3(202.72  29.04° )(1.39  6.87 )T

= + j682.56 494.21 VA.

b) The total average power at the sending end of 
the distribution line equals the total average 
power delivered to the load plus the total aver-
age power lost in the line; therefore

= +P 682.56 3(2.4) (0.3)input
2

= 687.74 W.

The fraction of the average power reaching the 
load is 682.56 687.74, or 99.25%.  Nearly 100% 
of the average power at the input is delivered 
to the load because the resistance of the line is 
quite small compared to the load resistance.

EXAMPLE 11.5    Calculating Three-Phase Power with an Unspecified Load

A balanced three-phase load requires 480 kW at a 
lagging power factor of 0.8. The load is fed from a 
line having an impedance of φ+ j0.005 0.025  Ω . 
The line voltage at the terminals of the load is 600 V.

a) Construct a single-phase equivalent circuit of the 
system.

b) Calculate the magnitude of the line current.

c) Calculate the magnitude of the line voltage at 
the sending end of the line.

d) Calculate the power factor at the sending end of 
the line.

Solution

a) Figure  11.17 shows the single-phase equivalent 
circuit. We arbitrarily selected the line-to-neutral 
voltage at the load as the reference.

b) The line current I aA
*  appears in the equation for 

the complex power of the load:

( ) = + jI600
3

(160 120)10  VA.aA
* 3

Solving for I aA
*  we get

= °I 577.35  36.87  A.aA
*

Therefore,

= −I 577.35  36.87° A.aA

The magnitude of the line current is the magni-
tude of IaA, so I 577.35 A.L =

We obtain an alternative solution for I L  from 
the expression

θ= φP V I3 cosT L L

= I3(600) (0.8)L

= 480,000 W;

=I 480,000
3(600)(0.8)

 L

= 1000
3

 

= 577.35 A.

c) To calculate the magnitude of the line voltage 
at the sending end, we first calculate V .an  From 
Fig. 11.17,

�= + ZV V Ian AN aA

= + + −j600
3

(0.005 0.025)(577.35  36.87°)

= °357.51  1.57  V.

Thus

=V V3L an

= 619.23 V.

d) The power factor at the sending end of the line 
is the cosine of the phase angle between Van and 
I :aA

pf cos [1.57° ( 36.87°)]= − −

= cos38.44°

= 0.783 lagging.
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Pointer

Watt
scale

Potential-coil
terminals

Current-coil
terminals

Figure 11.18 ▲ The key features of the 
 electrodynamometer wattmeter.

An alternative method for calculating the power 
factor is to first calculate the complex power at 
the sending end of the line:

= + + +φS j j(160 120)10 (577.35) (0.005 0.025)3 2

= + j161.67 128.33 kVA

= 206.41  38.44°  kVA.

The power factor is

=pf cos38.44°

= 0.783 lagging.

Finally, if we calculate the total complex power at 
the sending end, after first calculating the magni-
tude of the line current, we can use this value to 
calculate V .L  That is,

V I3 3(206.41) 10 ,L L
3= ×

V
3(206.41) 10

3(577.35)L

3
=

×

= 619.23 V.

Objective 3—Be able to calculate power (average, reactive, and complex) in any three-phase circuit

11.8  The three tools described in the following list are 
part of a university’s machine shop. Each piece 
of equipment is a balanced three-phase load 
rated at 220 V. Calculate (a) the total real power 
required by the three tools, (b) the magnitude of 
the line current supplying these three tools, and 
(c) the power factor of the combined load.

• Drill press: 10.2 kVA at 0.87 pf lagging;
• Lathe: 4.2 kW at 0.91 pf lagging;
• Band saw: line current 36.8 A, 7.25 kVAR.

Answer:
a) 25,078 W;
b) 75.62 A;
c) 0.87 lagging;

11.9  A balanced three-phase source is supplying 60 kVA 
at 0.96 pf leading to two balanced Δ-connected 
parallel loads. The distribution line connecting the 
source to the load has negligible impedance. Load 1 
is purely resistive and absorbs 45 kW.
a) Determine the types of components and 

their impedances in each phase of load 2 if 
the line voltage is 630 V and the impedance 
components are in series.

b) Repeat (a) with the impedance components 
in parallel.

Answer: a) R X34.02 Ω, 45.36 Ω;C= = −

b) = = −R X94.5 Ω,   70.875 Ω.C

ASSESSMENT PROBLEMS

SELF-CHECK: Also try Chapter Problems 11.24 and 11.26.

11.6  Measuring Average Power in 
Three-Phase Circuits

The instrument used to measure power in three-phase circuits is the elec-
trodynamometer wattmeter. It contains two coils. One coil, called the 
 current coil, is stationary and is designed to carry a current proportional 
to the load current. The second coil, called the potential coil, is movable 
and carries a current proportional to the load voltage. The important fea-
tures of the wattmeter are shown in Fig. 11.18.

The average deflection of the pointer attached to the movable coil 
is proportional to the product of the rms current in the current coil, 
the rms voltage impressed on the potential coil, and the cosine of the 
phase angle between the voltage and current. The pointer deflects in a 
direction that depends on the instantaneous polarity of the current-coil 
 current and the potential-coil voltage. Therefore, each coil has one ter-
minal with a polarity mark—usually a plus sign—but sometimes the dou-
ble polarity mark ± is used. The wattmeter deflects upscale when (1) the 
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polarity-marked terminal of the current coil is toward the source, and 
(2) the  polarity-marked terminal of the potential coil is connected to the 
same line in which the current coil has been inserted.

The Two-Wattmeter Method
Consider a general network inside a box, with power supplied by n con-
ducting lines. Such a system is shown in Fig.  11.19. If we wish to mea-
sure the total power at the terminals of the box, we need to know −n 1 
currents and voltages. This follows because if we choose one terminal as 
a reference, there are only −n 1 independent voltages. Likewise, only 

−n 1 independent currents can exist in the n conductors entering the 
box. Thus, the total power is the sum of −n 1 product terms; that is, 

�v v v= + + + − −p i i i .n n1 1 2 2 1 1
Applying this general observation, we can see that for a three- con-

ductor circuit, whether balanced or not, we need only two wattmeters to 
measure the total power. For a four-conductor circuit, we need three watt-
meters if the three-phase circuit is unbalanced, but only two wattmeters if 
it is balanced, because in the latter case there is no current in the neutral 
line. Thus, only two wattmeters are needed to measure the total average 
power in any balanced three-phase system.

The two-wattmeter method determines the magnitude and algebraic 
sign of the average power indicated by each wattmeter. We can describe 
the basic problem using the circuit shown in Fig.  11.20, where the two 
wattmeters are indicated by the shaded boxes and labeled W1 and W .2  
The coil notations cc and pc stand for current coil and potential coil, 
respectively. The current coils of the wattmeters are inserted in lines aA 
and cC, making line bB the reference line for the two potential coils. The 
load is Y-connected, and its per-phase impedance is θ=φZ Z   .  This is 
a general representation, as any ∆-connected load can be represented by 
its Y equivalent; furthermore, for the balanced case, the impedance angle 
θ  is unaffected by the ∆-to-Y transformation.

We now develop general equations for the readings of the two 
 wattmeters, making the following assumptions.

• The current drawn by the potential coil of the wattmeter is negligible 
compared with the line current measured by the current coil.

• The loads can be modeled by passive circuit elements, so the phase 
angle of the load impedance (θ  in Fig. 11.20) lies between −90°  (pure 
capacitance) and +90° (pure inductance).

• The phase sequence is positive.

From our introductory discussion of the average deflection of the 
wattmeter and the placement of wattmeter 1 in Fig. 11.20, we note that the 
wattmeter reading, W ,1  is

 W V I cos1 AB aA 1θ=  (11.20)

θ= V I cos .L L 1

It follows that

 W V I cos2 CB cC 2θ=  (11.21)

θ= V I cos .L L 2

In Eq. 11.20, θ1  is the phase angle between VAB and I ,aA  and in Eq. 11.21, 
θ2 is the phase angle between VCB and I .cC

n

3

2

1

2

v1

1

2

v2 1

2

v3

1

General
network

i1

i2

i3

Figure 11.19 ▲ A general circuit whose power is 
supplied by n conductors.

W2

a
cc

pc

pc

W1

cc

b

c

A

N
B

C

Zf 5 0Z 0  u

Zf

Zf

Zf

1

1

2

2

IaA

IcC

VAN

VCN

12
12

12
12

Figure 11.20 ▲ A circuit used to analyze the 
two-wattmeter method of measuring average power 
delivered to a balanced load.
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To calculate W1 and W ,2  we express θ1  and θ2 in terms of the 
 impedance angle θ,  which is also the same as the phase angle between the 
phase  voltage and current. For a positive phase sequence,

 θ θ θ= + = +φ30° 30°,1  (11.22)

 θ θ θ= − = −φ30° 30°.2  (11.23)

The derivation of Eqs. 11.22 and 11.23 is left as an exercise (see Problem 
11.41). When we substitute Eqs. 11.22 and 11.23 into Eqs. 11.20 and 11.21, 
respectively, we get

θ= +φW V I cos( 30°),1 L L

θ= −φW V I cos( 30°).2 L L

To find the total power, we add W1 and W ;2  thus

 θ= + = φP W W V I2 cos cos30°T 1 2 L L  (11.24)

θ= φV I3 cos ,L L

which is the expression for the total average power in a three-phase cir-
cuit, given in Eq. 11.17. Therefore, we have confirmed that the sum of the 
two wattmeter readings is the total average power.

A closer look at the expressions for W1 and W2 reveals the following 
about the readings of the two wattmeters:

1. If the power factor is greater than 0.5, both wattmeters read positive.

2. If the power factor equals 0.5, one wattmeter reads zero.

3. If the power factor is less than 0.5, one wattmeter reads negative.

4.  Reversing the phase sequence will interchange the readings on the 
two wattmeters.

Example 11.6 and Problems 11.41–11.52 illustrate these observations.

EXAMPLE 11.6    Computing Wattmeter Readings in Three-Phase Circuits

Calculate the reading of each wattmeter in the cir-
cuit in Fig. 11.20 if the phase voltage at the load is 
120 V and

a) = +φZ j8 6 Ω;

b) = −φZ j8 6 Ω;

c) Z j5 5 3 Ω;= +φ  and

d) = − °φZ 10  75  Ω.

e) Verify for (a)–(d) that the sum of the wattmeter 
readings equals the total power delivered to the 
load.

Solution

a) = =φZ V10  36.87° Ω,   120 3 V,L   

  = =I 120 10 12 A.L

( )= + =W (120 3) 12 cos(36.87° 30°) 979.75 W,1

( )= − =W (120 3) 12 cos(36.87° 30°) 2476.25 W.2

The power factor is =cos36.87° 0.8 , so as 
expected, both wattmeter readings are positive.
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b) = − =φZ V10  36.87° Ω,   120 3 V,L   

 = =I 120 10 12 A.L

( )= − + =W (120 3) 12 cos( 36.87° 30°) 2476.25 W,1

( )= − − =W (120 3) 12 cos( 36.87° 30°) 979.75 W.2

The power factor is cos 36.87° 0.8− = , so as 
expected, both wattmeter readings are positive. 
But the readings on the wattmeters are inter-
changed when compared to the results of part 
(a) because the sign of the power factor angle 
changed, which has the same impact on the watt-
meter readings as a change in phase sequence.

c) = + = =φZ j V5(1 3) 10  60°  Ω,   120 3 V,L  
and =I 12 A.L

( )= + =W (120 3) 12 cos(60° 30°) 0,1

( )= − =W (120 3) 12 cos(60° 30°) 2160 W.2

The power factor is =cos  60° 0.5 , so as 
expected, one of the wattmeter readings is zero.

d) = − =φZ V10  75°  Ω,   120 3 VL , =I 12 A.L

( )= − + =W (120 3) 12 cos( 75° 30°) 1763.63 W,1

( )= − − = −W (120 3) 12 cos( 75° 30°) 645.53 W.2

The power factor is cos 75° 0.26− = , so as 
expected, one wattmeter reading is negative.

e) For each load impedance value, the real power 
delivered to a single phase of the load is I RL

2
L,  

where RL is the resistive impedance of the load. 
Since the three-phase circuit is balanced, the 
total real power delivered to the three-phase 
load is I R3 L

2
L.

For the impedance in part (a), 

P 3 12) (8 3456 W,T
2( )= =

+ = +W W 979.75 2476.251 2  = 3456 W.

For the impedance in part (b), 

P 3 12) (8 3456 W,T
2( )= =

+ = +W W 2476.25 979.751 2  = 3456 W.

For the impedance in part (c), 

P 3(12) (5) 2160 W,T
2= =

+ = +W W 0 21601 2  = 2160 W.

For the impedance in part (d), 

= −φZ j2.5882    9.6593 Ω so

( )= =P 3(12) 2.5882 1118.10 W,T
2

W W 1763.63 645.531 2+ = −   1118.10 W.=

SELF-CHECK: Assess your understanding of the 
two-wattmeter method by trying Chapter Problems 
11.42 and 11.43.

Practical Perspective
Transmission and Distribution of Electric Power
At the start of this chapter we noted that utilities must maintain the rms 
voltage level at their customer’s premises. Although the acceptable de-
viation from a nominal level may vary among different utilities, we will as-
sume that the tolerance is %5± . Thus, a nominal rms voltage of 120 V  
could range from 114 V to 126 V. We also pointed out that strategically 
located capacitors can be used to support voltage levels.

The circuit shown in Fig. 11.21 represents a substation in a munici-
pal system. We assume that the system is balanced, the line-to-line volt-
age at the substation is 13.8 kV, the impedance of the distribution line 
is 0 6 4 8  φ+ Ω. j . , and the load at the substation at 3:00 pm on a hot, 
humid day in July is 3 6 MW.  and 3.6 magnetizing MVAR.

Generator
Plant Substation

3-f line

Figure 11.21 ▲ A substation connected to a 
power plant via a three-phase line.
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1

2

1

2

a A

Nn

Van

0.6 V j4.8 V

1.2
MW

1.2
MVAR

13,800 08 V
3

Figure 11.22 ▲ A single-phase equivalent circuit 
for the system in Fig. 11.21.

Using the line-to-neutral voltage at the substation as a reference, the 
single-phase equivalent circuit for the system in Fig. 11.21 is shown in 
Fig. 11.22. The line current can be calculated from the expression for the 
complex power at the substation. Thus,

= + jI13,800
3

  (1.2 1.2)10 .aA
* 6

It follows that

jI 150.61 150.61 A,aA
* = +

or

= − jI 150.61 150.61 A.aA

The line-to-neutral voltage at the generating plant is the voltage drop 
across the load, VAN, plus the voltage across the transmission line, so

= + + −j jV 13,800
3

  0° (0.6 4.8)(150.61 150.61)an

= + j8780.74 632.58  = °8803.50  4.12  V.

Therefore, the magnitude of the line voltage at the generating plant is

= =V 3(8803.50) 15,248.11 V.ab

We are assuming the utility is required to keep the voltage level within 
%5±  of the nominal value. This means the magnitude of the line-to-line 

voltage at the power plant should not exceed 14.5 kV nor be less than 
13.1 kV. The magnitude of the line voltage at the generating plant exceeds 
14.5 kV, so could cause problems for customers.

To address this problem, connect a capacitor bank to the substa-
tion bus that supplies the magnetizing vars required by the load. Now 
the generator does not need to supply this reactive power, the load has a 
unity power factor, and the line current I aA becomes

= + jI 150.61 0 A.aA

Therefore, the voltage at the generating plant necessary to maintain a 
line-to-line voltage of 13,800 V at the substation is

= + + +j jV 13,800
3

  0° (0.6 4.8)(150.61 0)an

= + j8057.80 722.94  = 8090.17  5.13° V.

Hence

= =V 3(8090.17) 14,012.58 V.ab  

This voltage level falls within the allowable range of 13.1 kV to 14.5 kV.

SELF-CHECK: Assess your understanding of this Practical Perspective 
by trying Chapter Problems 11.53(a)–(b) and 11.54–11.56.
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Summary

• A set of balanced three-phase voltages consists of three 
sinusoidal voltages that have identical amplitudes and 
frequencies but are out of phase with each other by 
exactly 120°. For the abc (or positive) phase sequence,

= = − =V V VV V V  0°,   120°,   120°.m m ma b c

For the acb (or negative) phase sequence,

= = = −V V VV V V  0°, 120°, 120°.m m ma b c

(See page 414.)

• Three-phase systems can be unbalanced or balanced. A 
three-phase system is balanced when the following con-
ditions are satisfied:

1. The voltage sources form a balanced three-phase set.

2. The impedance of each phase of the voltage source 
is the same.

3. The impedance of each line is the same.

4. The impedance of each phase of the load is the same.

(See page 417.)

• A single-phase equivalent circuit is used to calculate the 
line current and the phase voltage in one phase of the Y-Y 
structure. The a-phase is normally chosen for this purpose. 
If the structure is not Y-Y, any ∆ connections should be 
transformed into equivalent Y connections before creating 
a single-phase equivalent circuit. (See page 418.)

• Once we know the line current and phase voltage in the 
a-phase equivalent circuit, we can use analytical short-
cuts to find any current or voltage in a balanced three-
phase circuit, based on the following facts:

• The b- and c-phase currents and voltages are iden-
tical to the a-phase current and voltage except for a 
120° shift in phase. The direction of the phase shift 
depends on the phase sequence.

• The set of line voltages is out of phase with the set of 
phase voltages by ±30°. The plus sign corresponds 
to the positive phase sequence, while the minus sign 
corresponds to the negative phase sequence.

• In a Y-Y circuit, the magnitude of a line voltage is 3  
times the magnitude of a phase voltage.

• The set of line currents is out of phase with the set 
of phase currents in ∆-connected sources and loads 
by 30°.∓  The minus sign corresponds to the positive 
phase sequence, while the plus sign  corresponds to 
the negative phase sequence.

•  The magnitude of a line current is 3  times the 
 magnitude of a phase current in a ∆-connected 
source or load.

(See pages 419 and 423.)

• The techniques for calculating per-phase average 
power, reactive power, and complex power are identical 
to those introduced in Chapter 10. (See page 425.)

• The total real, reactive, and complex power can be deter-
mined either by multiplying the corresponding per-
phase quantity by 3 or by using the expressions based 
on line current and line voltage, as given by Eqs. 11.17, 
11.18, and 11.19. (See page 426.)

• The total instantaneous power in a balanced three-
phase circuit is constant and equals V I1.5 m m pf. (See 
page 427.)

• A wattmeter measures the average power delivered to a 
load by using a current coil connected in series with the 
load and a potential coil connected in parallel with the 
load. (See page 430.)

• The total average power in a balanced three-phase cir-
cuit can be measured by summing the readings of two 
wattmeters connected in two different phases of the cir-
cuit. (See page 432.)
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Problems

Section 11.1

 11.1  What is the phase sequence of each of the following 
sets of voltages?

a)  v ω= +t120 cos( 54°) V,a

v ω= −t120 cos( 66°) V,b

t120 cos( 174°) V;cv ω= +

b)  v ω= −t3240 cos( 26°) V,a

v ω= +t3240 cos( 94°) V,b

v ω= −t3240 cos( 146°) V.c

 11.2  For each set of voltages, state whether or not the 
voltages form a balanced three-phase set. If the set is 
 balanced, state whether the phase sequence is positive 
or negative. If the set is not balanced,  explain why.
a) v = t339 cos377  V,a

v = −t339 cos(377 120°) V,b

t339 cos(377 120°) V;cv = +

b) v = t622  sin 377  V,a

v = −t622 sin(377 240°) V,b

= +v t622 sin(377 240°) V;c

c) v = t933sin 377  V,a

v = +t933sin(377 240°) V,b

t933cos(377 30°) V;cv = +

d) v ω= +t170 sin( 60°) V,a

v ω= +t170 sin( 180°) V,b

t170 cos( 150°) V;cv ω= −

e) v ω= +t339 cos( 30°) V,a

PSPICE
MULTISIM

v ω= −t339 cos( 90°) V,b

t393cos( 240°) V;cv ω= +

f) v ω= +t3394 sin( 70°) V,a

v ω= −t3394 cos( 140°) V,b

v ω= +t3394 cos( 180°) V.c

 11.3  Verify that the sum of the three voltage phasors is 
zero for either Eq. 11.1 or Eq. 11.2.

Section 11.2

 11.4  Refer to the circuit in Fig. 11.5(b). Assume that there 
are no external connections to the terminals a, b, c 
and that the per-phase impedance of the winding is 

j2 4 Ω+ . Assume further that the three windings 
are from a three-phase generator whose voltages are 
those described in Problem 11.2(a). Determine the 
current circulating in the ∆-connected generator.

 11.5 Repeat Problem 11.4 but assume that the per-phase 
impedance of the winding is j5 1 Ω+  and that 
the three-phase voltages are those described in 
Problem 11.2(f).

Section 11.3

 11.6 a) Find Io in the circuit in Fig. P11.6.

b) Find VAN.

c) Find VAB.

d) Is the circuit a balanced or unbalanced three-
phase system?

PSPICE
MULTISIM

All phasor voltages in the following Problems are stated in terms of the rms value.

a

n

A

N

240  1208 V

240  21208 V

240  08 V

0.2 V 0.8 Vj1.6 V j3.4 V 79 V j55 V

b B0.3 V 0.7 Vj2.4 j5.6 V 79 V j52 V

c C0.4 V 1.6 Vj2.8 V j7.2 V 78 V j50 V

12

1

2

2
1

Io

Figure P11.6
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 11.9  A balanced three-phase circuit has the following 
characteristics:

• Y-Y connected;

• The line voltage at the source is 

= °V 120 3 0 V;ab

•  The phase sequence is positive;

• The line impedance is φ+ j2 3  Ω ;

• The load impedance is φ+ j28 37  Ω .

a) Draw the single phase equivalent circuit for the 
a-phase.

b) Calculate the line current in the a-phase.

c) Calculate the line voltage at the load in the 
a-phase.

0.8 V

0.8 V

0.8 V

20 V

N

0.2 V

0.2 V

0.2 V

A

B

C 

a

b
n

c

j4 V 79 V

159 V

39 V

j54.4 V

j24.4 V

j114.4 V

j4 V

j4 V

j1.6 V

j1.6 V

j1.6 V

2

2

2

1

1

1

Io
480 21208 V

480  08 V

480  1208 V

Figure P11.7

3 V

3 V

3 V 17 V

7 VA

B
n N

C

a

b

240  08 V

240  1208 V

240  21208 V

c

17 V

j2 V

j28 V

j2 V

j2 V

j18 V

2j42 V

2

1

2 1

2

1

Io

Figure P11.8

 11.10  The phase voltage at the terminals of a balanced 
three-phase Y-connected load is 2400 V. The load 
has an impedance of φ+ j16 12  Ω  and is fed from 
a line having an impedance of φ+ j0.10  0.80  Ω . 
The Y-connected source at the sending end of  the 
line has a phase sequence of acb and an internal 
impedance of φ+ j0.02 0.16  Ω . Use the a-phase 
voltage at the load as the reference and calculate 
(a) the line currents IaA, IbB, and IcC; (b) the line 
voltages at the source, Vab, Vbc and Vca; and (c) the 
internal phase-to-neutral voltages at the source, 
V V V, , and .a n b n c n′ ′ ′

 11.11  The time-domain expressions for three line-to- 
neutral voltages at the terminals of a Y-connected 
load are

v ω= t7967cos  V,AN

v ω= +t7967cos( 120°) V,BN

v ω= −t7967cos( 120°) V.CN

What are the time-domain expressions for the three 
line-to-line voltages vAB, vBC, and vCA?

 11.12  The magnitude of the line voltage at the terminals 
of a balanced Y-connected load is 12,800 V. The load 
impedance is φ+ j216 63  Ω . The load is fed from 
a line that has an impedance of φ+ j0.25 2  Ω .

a) What is the magnitude of the line current?

b) What is the magnitude of the line voltage at the 
source?

 11.7  Find the rms value of Io in the unbalanced three-
phase circuit seen in Fig. P11.7.

 11.8 a)  Is the circuit in Fig. P11.8 a balanced or unbal-
anced three-phase system? Explain.

b) Find Io.
PSPICE

MULTISIM
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Section 11.4

 11.13  A balanced, three-phase circuit is characterized as 
follows:

• Y-∆ connected;

• Source voltage in the b-phase is −20 90°  V;

• Source phase sequence is acb;

• Line impedance is φ+ Ωj1 3  ;

• Load impedance is φ− Ωj117 99  .

a) Draw the single phase equivalent for the a-phase.

b) Calculate the a-phase line current.

c) Calculate the a-phase line voltage for the three-
phase load.

 11.14  A balanced ∆-connected load has an impedance of 
φ+ Ωj360 105  . The load is fed through a line hav-

ing an impedance of φ+ j0.1 1  Ω . The phase volt-
age at the terminals of the load is 33 kV. The phase 
sequence is positive. Use VAB as the reference.

a) Calculate the three phase currents of the load.

b) Calculate the three line currents.

c)  Calculate the three line voltages at the sending 
end of the line.

 11.15  A balanced Y-connected load having an impedance 
of φ− j96 28  Ω  is connected in parallel with a bal-
anced ∆-connected load having an impedance of 

φ+ j144 42  Ω . The parallel loads are fed from a 
line having an impedance of φj1.5  Ω . The magni-
tude of the phase voltage of the Y-load is 7500 V.

a) Calculate the magnitude of the phase current in 
the Y-connected load.

b) Calculate the magnitude of the phase current in 
the ∆-connected load.

c) Calculate the magnitude of the current in the 
line feeding the loads.

d) Calculate the magnitude of the line voltage at 
the sending end of the line.

 11.16  An abc sequence balanced three-phase Y-connected 
source supplies power to a balanced, three-phase  
∆-connected load with an impedance of φ+ Ωj12 9 .  
The source voltage in the a-phase is 120 80° V. The 
line impedance is φ+ j1 1  Ω . Draw the single phase 
equivalent circuit for the a-phase and use it to find 
the current in the a-phase of the load.

 11.17  In a balanced three-phase system, the source is 
a balanced Y with an abc phase sequence and 
a line voltage = −V 110 60° Vab . The load is 
a balanced Y in parallel with a balanced ∆. The 
phase impedance of the Y is φ+ j10 8  Ω  and 
the phase impedance of the ∆ is φ− j12 15  Ω .  

Z2

Z1 Z3

a A

c C
b B

1
2 1

2
1208 V720

12

21208 V720

08 V720

Figure P11.18

The line impedance is φ+ j1.8 0.4  Ω . Draw the 
single phase equivalent circuit and use it to calcu-
late the line voltage at the load in the a-phase.

 11.18  For the circuit shown in Fig. P11.18, find

a) the phase currents IAB, IBC, and ICA,

b) the line currents IaA, IbB, and IcC
when = +Z j4.8 1.4 Ω1 , = −Z j16 12 Ω2 , and 

= +Z j25 25 Ω3 .

PSPICE
MULTISIM

 11.19  A three-phase ∆-connected generator has an inter-
nal impedance of φ+ j0.6 4.8  Ω . When the load is 
removed from the generator, the magnitude of the 
terminal voltage is 34,500 V. The generator feeds a 
∆-connected load through a transmission line with 
an impedance of φ+ j0.8 6.4  Ω . The per-phase 
impedance of the load is − j2877 864 Ω.

a) Construct a single-phase equivalent circuit.

b) Calculate the magnitude of the line current.

c) Calculate the magnitude of the line voltage at 
the terminals of the load.

d) Calculate the magnitude of the line voltage at 
the terminals of the source.

e) Calculate the magnitude of the phase current in 
the load.

f) Calculate the magnitude of the phase current in 
the source.

 11.20  A balanced three-phase ∆-connected source is 
shown in Fig. P11.20.

a)  Find the Y-connected equivalent circuit.

b) Show that the Y-connected equivalent circuit 
delivers the same open-circuit voltage as the 
original ∆-connected source.

c) Apply an external short circuit to the terminals 
A, B, and C. Use the ∆-connected source to find 
the three line currents IaA, IbB, and IcC.

d) Repeat (c) but use the Y-equivalent source to 
find the three line currents.
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 11.21  The ∆-connected source of Problem 11.20 is 
 connected to a Y-connected load by means of a 
balanced three-phase distribution line. The load 
impedance is φ+ j957 259  Ω . and the line imped-
ance is φ+ j1.2 12  Ω .

a) Construct a single-phase equivalent circuit for 
the system.

b) Determine the magnitude of the line voltage at 
the terminals of the load.

c) Determine the magnitude of the phase current 
in the ∆-connected source.

d) Determine the magnitude of the line voltage at 
the terminals of the source.

 11.22  The impedance Z in the balanced three-phase cir-
cuit in Fig. P11.22 is + j600 450 Ω. Find

a) IAB, IBC, and ICA,

b) IaA, IbB, and IcC,

c) Iba, Icb, and Iac.

Z

Z Z

a A

c C
b B

1
2 1

2

12

69 08 kV

IaA

IbB

IcC

69 1208 kV

69 21208 kV

Figure P11.22
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a
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b B

C

5.4 V

5.4 V

j27 V

j27 V

08 V

7200     21208 V

1

2

5.4 V

j27 V

1

2

7200

3

3

7200     1208 V3

Figure P11.20 Section 11.5

 11.23  Show that the total instantaneous power in a bal-
anced three-phase circuit is constant and equal to 

θφV I1.5 cosm m , where Vm and Im represent the max-
imum amplitudes of the phase voltage and phase 
current, respectively.

 11.24  In a balanced three-phase system, the source has an abc 
sequence, is Y-connected, and = −V 250 60° V.an  
The source feeds two loads, both of which are 
Y-connected. The impedance of load 1 is φ+ j15 20  Ω . 
The complex power for the a-phase of load 2 is 
500 45°  VA. Find the total complex power supplied 
by the source.

 11.25  A balanced three-phase distribution line has an 
impedance of φ+ j1 5  Ω . This line is used to supply 
three balanced  three-phase loads that are connected 
in parallel. The three loads are =L 75 kVA1  at 
0.96 pf leading, =L 150 kVA2  at 0.80 pf lagging, 
and =L 168 kW3  and 36 kVAR (magnetizing). 
The magnitude of the line voltage at the terminals 
of the loads is 2500 3 V.

a) What is the magnitude of the line voltage at the 
sending end of the line?

b) What is the percent efficiency of the distribution 
line with respect to average power?

  11.26  A three-phase positive sequence Y-connected source 
supplies 24 kVA with a power factor of 0.6 lagging 
to a parallel combination of a Y-connected load and 
a ∆-connected load. The Y-connected load uses  
12 kVA at a power factor of 0.8 lagging and has an 
a-phase current of 40 60° A.

a) Find the complex power per phase of the  
∆-connected load.

b) Find the magnitude of the line voltage.

 11.27  The line-to-neutral voltage at the terminals of the 
balanced  three-phase load in the circuit shown 
in Fig. P11.27 is 480 V. At this voltage, the load is 
absorbing 180 kVA at 0.8 pf lag.

a) Using VAN as the reference, find Ina in polar 
form.

b) Calculate the complex power associated with 
the ideal three-phase source.

c) Check that the total average power delivered 
equals the total average power absorbed.

d) Check that the total magnetizing reactive power 
delivered equals the total magnetizing reactive 
power absorbed.
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 11.30  The three-phase average power rating of a single 
cabinet of a Cray supercomputer is 300 kW. The 
three-phase line supplying the cabinet has a line 
voltage rating of 480 V. Assume the line current is 
400 A. The computer absorbs magnetizing VARs.

a) Calculate the total magnetizing reactive power 
absorbed by the CPU.

b) Calculate the power factor.

 11.31  A balanced three-phase source is supplying 90 kVA 
at 0.8 lagging to two balanced Y-connected parallel 
loads. The distribution line connecting the source to 
the load has negligible impedance. Load 1 is  purely 
resistive and absorbs 60 kW. Find the per-phase 
impedance of Load 2 if the line voltage is 415.69 V  
and the impedance components are in series.

 11.32  Three balanced three-phase loads are connected  
in parallel. Load 1 is Y-connected with an impedance 

3 Vj6 V b
B

A

12

5031 V

5031 V
j1380 V

5031 V

j1380 V

j1380 V

3 Vj6 V j24 V

j24 V

j24 V

a

C

3 Vj6 V c

08 V14,000
1

2

1208 V14,000
2

1

21208 V14,000

Figure P11.29

of φ+ j300 100  Ω ; load 2 is ∆-connected with  
an impedance of φ− j5400 2700  Ω ; and load 3 is 

+ j112.32 95.04 kVA . The loads are fed from a 
distribution line with an impedance of j1 10 Ω φ+ . 
The magnitude of the  line-to-neutral voltage at the 
load end of the line is 7.2kV.

a) Calculate the total complex power at the send-
ing end of the line.

b) What percentage of the average power at the 
sending end of the line is delivered to the loads?

  11.33  At full load, a commercially available 200 hp, three-
phase induction motor operates at an efficiency of 
96% and a power factor of 0.92 lag. The motor is sup-
plied from a three-phase outlet with a line-voltage  
rating of 208 V.

a) What is the magnitude of the line current drawn 
from the 208 V outlet? =(1 hp 746 W.)

b) Calculate the reactive power supplied to the 
motor.

 11.34  The complex power associated with each phase of a 
balanced load is + j144 192 kVA. The line voltage 
at the terminals of the load is 2450 V.

a) What is the magnitude of the line current 
 feeding the load?

b) The load is delta-connected and the impedance 
of each phase is a resistance in parallel with a 
reactance. Calculate R and X.

c) The load is wye-connected and the impedance 
of each phase is a resistance in series with a reac-
tance. Calculate R and X.

 11.35  A balanced bank of delta-connected capacitors 
is connected in parallel with the load described in 
Problem 11.34. The effect is to place a capacitor in 
parallel with the load in each phase. The line voltage 
at the terminals of the load thus remains at 2450 V.  
The circuit is operating at a  frequency of 60 Hz. The 
capacitors are adjusted so that the magnitude of the 
line current feeding the parallel combination of the 
load and capacitor bank is at its minimum.

a) What is the size of each capacitor in microfarads?

b) Repeat (a) for wye-connected capacitors.

c) What is the magnitude of the line current?

 11.36  The output of the balanced positive-sequence 
three-phase source in Fig. P11.36 is 78 kVA at a 
leading power factor of 0.8. The line voltage at the 
source is 208 3 .

a) Find the magnitude of the line voltage at the 
load.

b) Find the total complex power at the terminals 
of the load.

12

a

b
n

c

0.2 V j0.4 V

0.2 V j0.4 V

0.2 V j0.4 V

A

B

180 kVA

C

1

2
Van

Vcn
2

1

2j15 V 2j15 V

2j15 V

Vbn

0.8 pf
lag

Ina

Figure P11.27

 11.28  Calculate the complex power in each phase of the 
unbalanced load in Problem 11.18.

11.29  a) Find the rms magnitude and the phase angle of 
ICA in the circuit shown in Fig. P11.29.

b) What percent of the average power delivered by 
the three-phase source is dissipated in the three-
phase load?
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 11.37  The total apparent power supplied in a balanced, 
three-phase Y-∆ system is 3600 VA. The line volt-
age is 208 V. If the line impedance is negligible and 
the power factor angle of the load is 25° , determine 
the impedance of the load.

 11.38  A three-phase line has an impedance of φ+ Ωj0.5 4 .  
The line feeds two balanced three-phase loads con-
nected in parallel. The first load is absorbing a total 
of 691.2 kW and delivering 201.6  kVAR magnetiz-
ing vars. The second load is ∆-connected and has an 
impedance of φ+ j622.08 181.44  Ω . The line-to-
neutral voltage at the load end of the line is 7200 V. 
What is the magnitude of the line voltage at the 
source end of the line?

 11.39  A balanced three-phase load absorbs 190.44 kVA at 
a leading power factor of 0.8 when the line voltage 
at the terminals of the load is 13,800 V. Find four 
equivalent circuits that can be used to model this 
load.

 11.40  The total power delivered to a balanced three-
phase load when operating at a line voltage of 
6600 3 V is 1188 kW at a lagging power factor of 
0.6. The impedance of the distribution line supply-
ing the load is φ+ j0.5 4  Ω . Under these operating 
conditions, the drop in the magnitude of the line 
voltage between the sending end and the load end 
of the line is excessive. To compensate, a bank of  
∆-connected capacitors is placed in parallel with 
the load. The capacitor bank is designed to furnish 
1920 kVAR of magnetizing reactive power when 
operated at a line voltage of 6600 3 V.

a) What is the magnitude of the voltage at the 
sending end of the line when the load is operat-
ing at a line voltage of 6600 3 V and the capac-
itor bank is disconnected?

b) Repeat (a) with the capacitor bank connected.

c) What is the average power efficiency of the line 
in (a)?

d) What is the average power efficiency in (b)?

e) If the system is operating at a frequency of 60 Hz, 
what is the size of each capacitor in microfarads?

0.04 V j0.2 V

0.04 V j0.2 V

0.04 V j0.2 V

Balanced
three-phase

source

Balanced
three-phase

load

Figure P11.36
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12 12
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b
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B

C
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W1

Zf

Zf

Zf

1

2

2

1

480  08 V

Figure P11.47

Section 11.6

 11.41  Derive Eqs. 11.22 and 11.23.

 11.42  The two-wattmeter method is used to measure the 
power at the load end of the line in Example 11.1. 
Calculate the reading of each wattmeter.

 11.43  The two wattmeters in Fig.  11.20 can be used to 
compute the total reactive power of the load.

a) Prove this statement by showing that 
θ− = φW W V I3( ) 3 sin2 1 L L .

b) Compute the total reactive power from the watt-
meter readings for each of the loads in Example 
11.6. Check your computations by  calculating 
the  total reactive power directly from the given 
voltage and impedance.

 11.44  The wattmeters in the circuit in Fig. 11.20 read as fol-
lows: W 114,291.64 W1 = , and W 618,486.24 W2 = .  
The magnitude of the line voltage is 7600 3 V. The 
phase sequence is positive. Find φZ .

 11.45  The two-wattmeter method is used to measure the 
power delivered to the unbalanced load in Problem 
11.18. The current coil of wattmeter 1 is placed in 
line aA and that of wattmeter 2 is placed in line bB.

a) Calculate the reading of wattmeter 1.

b) Calculate the reading of wattmeter 2.

c) Show that the sum of the two wattmeter read-
ings equals the total power delivered to the 
unbalanced load.

 11.46  a) Calculate the complex power associated with 
each phase of the balanced load in Problem 11.22.

b) If the two-wattmeter method is used to measure 
the average power delivered to the load, specify 
the reading of each meter.

 11.47  a)  Calculate the reading of each wattmeter in the 
circuit shown in Fig. P11.47. The value of φZ  is 
60  30° Ω .

b) Verify that the sum of the wattmeter readings 
equals the total average power delivered to the 
∆-connected load.
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 11.49  The line-to-neutral voltage in the circuit in 
Fig. P11.48 is 720 V, the phase sequence is positive, 
and the load impedance is φ+ j96 72  Ω .

a) Calculate the wattmeter reading.

b) Calculate the total reactive power associated 
with the load.

 11.50  a) Find the reading of each wattmeter in the cir-
cuit shown in Fig. P11.50 if = − ΩZ 60  30°  A ,  

=Z 24  30°  ΩB , and =Z 80  0°  ΩC .

b) Show that the sum of the wattmeter readings 
equals the total average power delivered to the 
unbalanced three-phase load.
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 11.51  The balanced three-phase load shown in Fig. P11.51 
is fed from a balanced, positive-sequence, three-
phase Y-connected source. The impedance of the 
line connecting the source to the load is negligible. 
The line-to-neutral voltage of the source is 4800 V.

a) Find the reading of the wattmeter in watts.

 11.52  a) Calculate the reading of each wattmeter in the cir-
cuit shown in Fig. P11.52 when Z j828 621 = − Ω.

b) Check that the sum of the two wattmeter read-
ings equals the total power delivered to the load.

c) Check that −W W3( )1 2  equals the total mag-
netizing vars delivered to the load.

Sections 11.1–11.6

  11.53  Refer to the Practical Perspective example:

a) Construct a power triangle for the substa-
tion load before the capacitors are con-
nected to the bus.

b) Repeat (a) after the capacitors are con-
nected to the bus.

c) Using the line-to-neutral voltage at the 
substation as a reference, construct a pha-
sor diagram that depicts the relationship 
between VAN and Van before the capacitors 
are added.

d) Assume a positive phase sequence and con-
struct a phasor diagram that depicts the 
relationship between VAB and Vab.

PRACTICAL
PERSPECTIVE

 11.48  In the balanced three-phase circuit shown in 
Fig. P11.48, the current coil of the wattmeter is 
 connected in line aA, and the potential coil of the 
wattmeter is connected across lines b and c. Show 
that the wattmeter reading multiplied by 3  equals 
the total reactive power associated with the load. 
The phase sequence is positive.

b) Explain how you would connect a second 
 wattmeter in the circuit so that the two wattme-
ters would measure the total power.

c) Calculate the reading of the second wattmeter.

d) Verify that the sum of the two wattmeter read-
ings equals the total average power delivered to 
the load.
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 11.54  Refer to the Practical Perspective example. Assume 
the frequency of the utility is 50 Hz.

a) What is the µF rating of each capacitor if the 
capacitors are delta-connected?

b) What is the µF rating of each capacitor if the 
capacitors are wye-connected?

 11.55  In the Practical Perspective example, calculate the 
total line loss in kW before and after the capacitors 
are connected to the substation bus.

 11.56  In the Practical Perspective example, what hap-
pens to the voltage level at the generating plant if 
the substation is maintained at 13.8 kV, the substa-
tion load is removed, and the added capacitor bank 
remains connected?

 11.57  Assume the load on the substation bus in the 
Practical Perspective example drops to 225 kW and 
540 magnetizing kVAR. Also assume the capacitors 
remain connected to the substation.

a) What is the magnitude of the line-to-line volt-
age at the generating plant that is required to 
maintain a line-to-line voltage of 13.8 kV at the 
substation?

b) Will this power plant voltage level cause prob-
lems for other customers?

 11.58  Assume in Problem 11.57 that when the load drops 
to 225 kW and 540 magnetizing kVAR the capac-
itor bank at the substation is disconnected. Also 
assume that the line-to-line voltage at the substa-
tion is maintained at 13.8 kV.

a) What is the magnitude of the line-to-line voltage 
at the generating plant?

PRACTICAL
PERSPECTIVE

PRACTICAL
PERSPECTIVE

PRACTICAL
PERSPECTIVE

PRACTICAL
PERSPECTIVE

PRACTICAL
PERSPECTIVE

b) Is the voltage level found in (a) within the 
acceptable range of variation?

c) What is the total line loss in kW when the 
capacitors stay on line after the load drops to 

+ j225 540 kVA ?

d) What is the total line loss in kW when the 
capacitors are removed after the load drops to 

+ j225 540 kVA ?

e)  Based on your calculations, would you recom-
mend disconnecting the capacitors after the load 
drops to + j225 540 kVA ? Explain.

 11.59  Choose a single capacitor from Appendix H that 
is closest to the µF rating of the delta-connected 
capacitor from Problem 11.54(a).

a) How much reactive power will a capacitor bank 
using this new value supply?

b) What line-to-line voltage at the generating plant 
will be required when this new capacitor bank is 
connected to the substation bus?

 11.60  Choose a single capacitor from Appendix H that 
is closest to the µF rating of the wye-connected 
capacitor from Problem 11.54(b).

a) How much reactive power will a capacitor bank 
using this new value supply?

b) What line-to-line voltage at the generating plant 
will be required when this new capacitor bank is 
connected to the substation bus?

PRACTICAL
PERSPECTIVE

PRACTICAL
PERSPECTIVE
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 CHAPTER CONTENTS

12 
CHAPTER 

Introduction to the 
Laplace Transform
We now introduce the Laplace transform, which forms the 
basis of a powerful technique that is widely used to analyze linear, 
lumped-parameter circuits. We need the Laplace transform 
analysis technique because we can use it to solve the following 
types of problems.

• Finding the transient behavior of circuits whose describing 
equations consist of more than a single node-voltage or 
mesh-current differential equation. In other words, ana-
lyzing multiple-node and multiple-mesh circuits that are 
described by sets of linear differential equations.

• Determining the transient response of circuits whose signal 
sources vary in ways more complicated than the simple dc 
level jumps considered in Chapters 7 and 8.

• Calculating the transfer function for a circuit and using it 
to find the steady-state sinusoidal response of that circuit 
when the frequency of the sinusoidal source is varied. We 
discuss the transfer function in Chapter 13.

•  Relating the time-domain behavior of a circuit to its 
 frequency-domain behavior, in a systematic fashion.

In this chapter, we define the Laplace transform, discuss its per-
tinent characteristics, and present a systematic method for trans-
forming expressions from the frequency domain to the time domain.

 12.1  Definition of the Laplace Transform  
p. 446

12.2 The Step Function p. 447

12.3 The Impulse Function p. 449

12.4 Functional Transforms p. 452

12.5 Operational Transforms p. 453

12.6 Applying the Laplace Transform p. 458

12.7 Inverse Transforms p. 460

12.8 Poles and Zeros of F(s) p. 470

12.9 Initial- and Final-Value Theorems p. 472

1 Be able to calculate the Laplace transform 
of a function using the definition of Laplace 
transform, the Laplace transform table, 
and/or a table of operational transforms.

2 Be able to calculate the inverse Laplace 
transform using partial fraction expansion 
and the Laplace transform table.

3 Be able to find and plot the poles and zeros 
for a rational function in the s domain.

4 Understand and know how to use the 
initial-value theorem and the final-value 
theorem.

CHAPTER OBJECTIVES
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Practical Perspective 
Transient Effects
As we learned in Chapter  9, power delivered from 
 electrical wall outlets in the United States can be mod-
eled as a sinusoidal voltage or current source, where the 
frequency of the sinusoid is 60 Hz. We used the phasor 
transform, introduced in Chapter  9, to find the steady-
state response of a circuit to a sinusoidal source.

But in many cases, we need to consider the complete 
response of a circuit to a sinusoidal source. Remember that 
the complete response has two parts—the steady-state 
response that takes the same form as the input to the cir-
cuit, and the transient response that decays to zero as time 
progresses. When a circuit’s source is a 60 Hz sinusoid, 
the steady-state response is also a 60 Hz sinusoid whose 
magnitude and phase angle can be calculated using pha-
sor circuit analysis. The transient response depends on the 
components that make up the circuit, the values of those 
components, and the way the components are intercon-
nected. Once the source is switched into the circuit, the  
voltage and current for every circuit component are the sum 
of a transient expression and a steady-state expression.

The transient part of the voltage and current even-
tually decays to zero. But, initially, the sum of the 
transient part and the steady-state part might exceed 
the voltage or current rating of the circuit component. 
This is why it is important to determine the complete 
response of a circuit. The Laplace transform tech-
niques introduced in this chapter can be used to find 
the complete response of a circuit to a sinusoidal 
source.

Consider the RLC circuit shown, comprised of com-
ponents from Appendix H and powered by a 60 Hz sinu-
soidal source. As detailed in Appendix H, the 10 mH  
inductor has a current rating of 40 mA. The amplitude of 
the sinusoidal source has been chosen so that this rating 
is not exceeded in the steady state. Once we have pre-
sented the Laplace transform method, we will be able to 
determine whether this current rating is exceeded when 
the source is first switched on and both the transient 
and steady-state components of the inductor current 
exist.

1

2

10 mH 100 mF

vg

t 5 0
iL

15 V

Arctic ice/Shutterstock
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446 Introduction to the Laplace Transform

12.1  Definition of the Laplace 
Transform

The Laplace transform of a function is given by the expression

LAPLACE TRANSFORM

 L ∫{ } = −
∞

f t f t e dt( ) ( ) ,st

0
 (12.1)

where the symbol { }L f t( )  is read “the Laplace transform of f t( ).”
The Laplace transform of f t( ) is also denoted F s( );  that is,

 { }= LF s f t( ) ( ) . (12.2)

This notation emphasizes that when the integral in Eq. 12.1 has been eval-
uated, the resulting expression is a function of s. In our applications, t rep-
resents the time domain and s represents the frequency domain. Note that 
the dimension of s must be reciprocal time, or frequency, because the expo-
nent of e in the integral of Eq. 12.1 must be dimensionless. The Laplace 
transform transforms the problem from the time domain to the frequency 
domain. Once we solve the problem in the frequency domain, we inverse- 
transform the solution back to the time domain.

Recall that the phasor is also a transform. As we know from Chapter 9, 
it converts a sinusoidal signal into a complex number for easier, algebraic 
computation of circuit values. After determining the phasor value of a sig-
nal, we transform it back to its time-domain expression. Both the Laplace 
transform and the phasor transform exhibit an essential feature of mathe-
matical transforms: They create a new domain to make the mathematical 
manipulations easier. After finding the unknown in the new domain, we 
inverse-transform it back to the original domain.

In circuit analysis, we use the Laplace transform to transform a set 
of integrodifferential equations in the time domain to a set of algebraic 
equations in the frequency domain. We can therefore find the solution for 
an unknown quantity by solving a set of algebraic equations.

Before we illustrate some of the important properties of the Laplace 
transform, some general comments are in order. First, note that the inte-
gral in Eq. 12.1 is improper because the upper limit is infinite. Thus, we 
are confronted immediately with the question of whether the integral 
converges. In other words, does a given f t( ) have a Laplace transform? 
Obviously, the functions of primary interest in engineering analysis have 
Laplace transforms; otherwise we would not be interested in the trans-
form. In linear circuit analysis, we excite circuits with sources that have 
Laplace transforms. Excitation functions such as t t  or e ,t 2  which do not 
have Laplace transforms, are of no interest here.

Second, because the lower limit on the integral is zero, the Laplace 
transform ignores f t( ) for negative values of t. That is, F s( ) is determined 
by the behavior of f t( ) only for positive values of t. To emphasize that 
the lower limit is zero, Eq. 12.1 is frequently referred to as the one-sided, 
or unilateral, Laplace transform. In the two-sided, or bilateral, Laplace 
transform, the lower limit is −∞. We do not use the bilateral form here; 
hence, F s( ) is understood to be the one-sided transform.

The Laplace transform’s lower limit creates a concern: what happens 
when f t( ) has a discontinuity at the origin? If f t( ) is continuous at the 
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 12.2 The Step Function 447

origin, like the function in Fig. 12.1(a), f (0) is not ambiguous. However, if 
f t( ) has a finite discontinuity at the origin, like the function in Fig. 12.1(b), 
should the Laplace transform integral include or exclude the discontinuity?  
That is, should we make the lower limit −0  and include the discontinuity, or  
choose +0  as the lower limit and exclude the discontinuity? (We use the 
notation −0  and +0  to denote values of t just to the left and right of the 
origin, respectively.) Actually, we may choose either as long as we are 
consistent. For reasons we explain later, we choose −0  as the lower limit.

Because we are using −0  as the lower limit, we note that the inte-
gral from −0  to +0  is zero, except when the discontinuity at the origin 
is an impulse function. We discuss this situation in Section 12.3. The two 
functions shown in Fig. 12.1 have the same unilateral Laplace transform 
because there is no impulse function at the origin for the function in 
Fig. 12.1(b).

The one-sided Laplace transform ignores f t( ) for < −t 0 . We use ini-
tial conditions to account for what happens prior to −0 . Thus, the Laplace 
transform predicts the response to a function that begins after initial con-
ditions have been established.

In the discussion that follows, we divide the Laplace transforms into 
two types: functional transforms and operational transforms. A functional 
transform is the Laplace transform of a specific function, such as ωtsin ,  t, 

−e ,at  and so on. An operational transform defines a general mathematical 
property of the Laplace transform, such as finding the transform of the 
derivative of f t( ). Before considering functional and operational trans-
forms, we introduce the step and impulse functions.

12.2 The Step Function
When a circuit contains a switch, a change in the switch position creates 
abrupt changes in currents and voltages, as we have seen in previous chap-
ters. An abrupt change is represented mathematically as a discontinuity, 
which can occur at any instant in time. We represent such discontinuities 
in the functions that describe the currents and voltages using step and 
impulse functions.

Figure 12.2 illustrates the step function. The symbol for the step func-
tion is Ku(t). The mathematical definition of the step function is

= <Ku t t( ) 0, 0,

 = >Ku t K t( ) , 0.  (12.3)

If K is 1, the function in Eq. 12.3 is the unit step, u(t).
The step function is not defined at =t 0. If we need to define the 

transition between −0  and +0 , we assume that it is linear and that

=Ku K(0) 0.5 .

As before, −0  and +0  represent symmetric points arbitrarily close to the 
left and right of the origin. Figure 12.3 illustrates the linear transition from 

−0  to +0 .
A discontinuity may occur at some time other than =t 0;  for exam-

ple, it may occur in sequential switching. A step that occurs at =t a is 
represented by the function ( )−Ku t a .  Thus

Ku t a t a0, ,( )− = < +

Ku t a K t a, .( )− = >

1.0

f (t)

e2at e2at, t . 0

0
(a)

1.0

f (t)

t 

(b)

t
0

0, t , 0

Figure 12.1 ▲ A continuous and discontinuous 
function at the origin. (a) f t( ) is continuous at the 
 origin. (b) f t( ) is discontinuous at the origin.

f (t)

K

0
t 

Figure 12.2 ▲ The step function.

02 01

0.5K

K

f (t)

t 

Figure 12.3 ▲ The linear approximation to the step 
function.
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448 Introduction to the Laplace Transform

If >a 0,  the step occurs to the right of the origin, and if <a 0,  the step 
occurs to the left of the origin. The step function’s value is 0 when the 
argument −t a is negative, and it is K when the argument is positive. 
Figure 12.4 illustrates a step that occurs at =t a.

A step function equal to K for <t a  is written as ( )−Ku a t .  Thus

( )− = <Ku a t K t a, ,

( )− = >Ku a t t a0, .

The discontinuity is to the left of the origin when <a 0. This type of step  
is shown in Fig. 12.5.

We can add two step functions to create a function that describes a 
finite-width pulse. For example, the function − − −K u t u t[ ( 1) ( 3)] has 
the value K for < <t1 3 and the value 0 everywhere else, so it is a finite-
width pulse of height K initiated at =t 1 and terminated at =t 3. In 
defining this pulse, think of the step function ( )−u t 1  as “turning on” the 
constant value K at =t 1, and the step function ( )− −u t 3  as “turning 
off” the constant value K at =t 3. We use step functions to turn on and 
turn off linear functions at desired times in Example 12.1.

0

K

f (t)

a
t 

Figure 12.4 ▲ A step function occurring at =t a  
when >a 0.

f (t)

K

0 a
t 

Figure 12.5 ▲ A step function −Ku a t( ) for >a 0.

EXAMPLE 12.1   Using Step Functions to Represent a Function of Finite 
Duration

Use step functions to write an expression for the 
function illustrated in Fig. 12.6.

 terminate each linear segment at the proper times. In 
other words, we use the step function to turn on and turn 
off the three nonzero pieces of the function:

+ = =t t t2 ,  on at  0,  off at  1;

− + = =t t t2 4,  on at  1,  off at  3;

+ − = =t t t2 8,  on at  3,  off at  4.

These straight line segments and their equations are 
shown in Fig. 12.7. The expression for f t( ), valid for all 
 values of t, is

= − − + − + −f t t u t u t t u t( ) 2 [ ( ) ( 1)] ( 2 4)[ ( 1)

u t t u t u t( 3)] (2 8) [ ( 3) ( 4)].− − + − − − −

SELF-CHECK: Assess your understanding of step functions by trying Chapter Problems 12.1 and 12.2.

0 1 2 3 4
t  (s)

f (t)

22

2

Figure 12.6 ▲ The function for Example 12.1.

Solution
The function shown in Fig. 12.6 is made up of linear 
segments, so it is a piecewise linear function. You 
have probably seen such functions defined using a dif-
ferent functional form for each of its time segments. 
For this function, the piecewise-linear definition is

= ≤
= ≤ ≤

= − + ≤ ≤
= − ≤ ≤
= ≥

t

t t

f t t t

t t

t

0,   0;

2 ,  0 1 s;

( ) 2 4,  1 s 3 s;

2 8, 3 s 4 s;

0, 4 s.

We can construct a single continuous definition for 
this function using step functions to initiate and 

0 1
2t 2 8

22t 1 4

2t

2 3 4 t (s)

f (t)

22

24

2

4

Figure 12.7 ▲ Definition of the three line segments turned on and 
off with step functions to form the function shown in Fig. 12.6.
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12.3 The Impulse Function
An impulse is a signal of infinite amplitude and zero duration. Such signals 
don’t exist in nature, but some circuit signals come very close to approx-
imating this definition, so a mathematical model of an impulse is useful. 
For example, the impulse function1 enables us to define the derivative at 
a discontinuity, such as the one in the function of Fig. 12.1(b), and thus to 
define the Laplace transform of that derivative. Also, voltage and current 
impulses occur in circuit analysis either because of a switching operation 
or because the circuit is excited by an impulsive source. We will analyze 
these situations in Chapter 13, but here we define the impulse function 
generally.

Describing the Impulse Function
We describe the impulse function by considering how we would define 
the derivative of the function in Fig.  12.1(b) at its discontinuity. First, 
we assume that the function varies linearly across the discontinuity, as 
shown in Fig.  12.8. In this figure, note that as 0,∈ →  an abrupt disconti-
nuity occurs at the origin. When we differentiate the function, the deriva-
tive between ∈−  and ∈+  is constant, with a value of ∈1 2 . For ∈>t ,  the 
derivative is − ∈( )− −ae a t . Figure 12.9 shows these observations graphically. 
As ∈  approaches zero, the value of ′f t( ) between ∈±  approaches infin-
ity. At the same time, the duration of this large value is approaching zero. 
Furthermore, the area under ′f t( ) between ∈±  remains constant as 0.∈ →  
In this example, the area is unity. As ∈  approaches zero, we say that the 
function between ∈±  approaches a unit impulse function, denoted δ t( ). 
Thus, the derivative of f t( ) at the origin approaches a unit impulse function 
as ∈  approaches zero, or

f t(0) ( ) as 0.δ ∈′ → →

If the area under the impulse function curve is other than unity, the 
impulse function is denoted δK t( ), where K is the area. K is often referred 
to as the strength of the impulse function.

To summarize, an impulse function is created from a variable- 
parameter function whose parameter approaches zero. The variable- 
parameter function must exhibit the following three characteristics as the para-
meter approaches zero:

1. The amplitude of the function approaches infinity.

2. The duration of the function approaches zero.

3. The area under the variable-parameter function is constant as the 
parameter value changes.

Many different variable-parameter functions have these three characteris-
tics. In Fig. 12.8, we used a linear function ∈= +f t t( ) 0.5 0.5. Another 
example of a variable-parameter function with the three characteristics is 
the exponential function:

∈
= ∈−f t K e( )

2
  .t

As ∈  approaches zero, the function becomes infinite at the origin and at 
the same time decays to zero in an infinitesimal length of time. 

1The impulse function is also known as the Dirac delta function.

0.5
t 1 0.5

02 

1.0

f (t)

t  

1
2  

e2a (t 2   )

PP

P

P

 Figure 12.8 ▲ A magnified view of the discontinuity 
in Fig. 12.1(b), assuming a linear transition between 

∈−  and ∈+ .

f 9(t )

t 

2a

2ae2a (t 2   )

1
2  

02P P

P

P

Figure 12.9 ▲ The derivative of the function shown 
in Fig. 12.8.

M12_NILS8436_12_SE_C12.indd   449 10/01/22   6:50 PM



450 Introduction to the Laplace Transform

Figure 12.10 illustrates f t( )  as 0.∈ →  An impulse function is created 
as 0∈ →  if the area under the function is independent of ∈ . Thus,

K e dt K e dtArea
2

   
2

 t t
0

0∫ ∫∈ ∈
= +∈ ∈

−∞

∞
−

K e K e
2 1 2 1

t t0

0∈ ∈ ∈ ∈
= ⋅ + ⋅

−

∈ ∈

−∞

− ∞

= + =K K K
2 2

,

so the area under the curve is constant and equal to K units. Therefore, as 
0,∈ →  δ→f t K t( ) ( ).

Defining the Impulse Function and Its Sifting 
Property
Mathematically, the impulse function is defined as

 K t dt K( ) ;∫ δ =
−∞

∞
 (12.4)

 t t( ) 0, 0.δ = ≠  (12.5)

Equation 12.4 states that the area under the impulse function is constant. 
This area represents the strength of the impulse. Equation 12.5 states that 
the impulse is zero everywhere except at =t 0. An impulse that occurs 
at =t a is denoted δ( )−K t a . The graphic symbol for the impulse 
function is an arrow. The strength of the impulse is given parenthetically 
next to the head of the arrow. Figure 12.11 shows the impulses δK t( ) and 

δ( )−K t a .
An important property of the impulse function is the sifting property, 

which is expressed as

  f t t a dt f a( ) ( )  ( ),∫ δ − =
−∞

∞
 (12.6)

where we assume the function f t( ) is continuous at =t a,  the location of 
the impulse. Equation 12.6 shows that the impulse function sifts out all values 
of f t( ) except the one at =t a. Equation 12.6 follows from Eqs. 12.4 and 
12.5, noting that δ −t a( ) is zero everywhere except at =t a,  and hence the 
integral can be written

f t t a dt f t t a dt( ) ( ) ( ) ( ) .
a

a

∫ ∫δ δ− = −
−∞

∞

−∈

+∈

But because f t( ) is continuous at a, it takes on the value f a( ) as t a,→  so

f a t a dt f a t a dt( ) ( ) ( ) ( )
a

a

a

a

∫ ∫δ δ− = −
−∈

+∈

−∈

+∈

= f a( ).

Laplace Transform and Derivatives of the Impulse 
Function
We use the sifting property of the impulse function to find its Laplace 
transform:

L t t e dt e( ) ( ) 1,st s(0)
0∫δ δ{ } = = =− −
∞

−

0

f (t)

t 

K>(2  2)

2 ,   1

K
2  2

e20 t 0 >P
1

K
2  1

e2 0 t 0 >P
2P P

P
P

PK>(2  1)P

Figure 12.10 ▲ A variable-parameter function used 
to generate an impulse function.

Kd(t)

(K)

f (t)

0

Kd(t 2 a)

(K)

a t 

Figure 12.11 ▲ A graphic representation of the 
 impulse K t( )δ  and K t a( )δ − .
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which is an important Laplace transform. We can also define the 
 derivatives of the impulse function and the Laplace transform of these 
derivatives. We discuss the first derivative, along with its transform, and 
then state the result for the higher-order derivatives.

The function illustrated in Fig. 12.12(a) generates an impulse function 
as 0.∈ →  Figure 12.12(b) shows the derivative of this impulse- generating 
function, which is defined as the derivative of the impulse δ′ t[ ( )] as 0.∈ →  
The derivative of the impulse function sometimes is referred to as a 
moment function, or unit doublet.

To find the Laplace transform of δ′ t( ),  we apply the defining integral 
to the function shown in Fig.  12.12(b) and, after integrating, let 0.∈ →  
Then

L t e dt e dt( ) lim 1 1st st

0 2

0

20∫ ∫δ
∈ ∈( ){ }′ = + −









∈ ∈

∈

→
−

−
−

−

+

e e
s

lim 2  
s s

0 2∈
= + −

∈

∈ ∈

→

−

se se
s

lim
2

 
s s

0 ∈
= −

∈

∈ ∈

→

−

s e s e
s

lim
2

 
s s

0

2 2
= +

∈

∈ ∈

→

−

= s.

We used l’Hôpital’s rule twice in this derivation, to evaluate the indeter-
minate form 0 0 .

Higher-order derivatives can be generated in a similar manner (see 
Problem 12.7), and the defining integral can then be used to find the 
Laplace transforms. The Laplace transform of the nth derivative of the 
impulse function is

L t s( ) .n n( )δ{ } =

Finally, note that the derivative of a step function is an impulse func-
tion; that is,

δ =t
du t

dt
( )

( )
 .

Figure  12.13 depicts the relationship between the impulse function and 
the step function. The function shown in Fig. 12.13(a) approaches a unit 
step function as 0.∈ →  The function shown in Fig. 12.13(b)—the deriva-
tive of the function in Fig. 12.13(a)—approaches a unit impulse as 0.∈ →

The impulse function is an extremely useful concept in circuit anal-
ysis, and we say more about it in the following chapters. We introduced 
the concept here so that we can include discontinuities at the origin in our 
definition of the Laplace transform.

SELF-CHECK: Assess your understanding of the impulse function by try-
ing Chapter Problems 12.9 and 12.10.

1> 

f (t)

f 9(t)

t 

t 
02  

(a)

(b)

1>  2

21>  2

02 PP

P

P

P P

P

Figure 12.12 ▲ The first derivative of the impulse 
function. (a) The impulse-generating function used to 
define the first derivative of the impulse. (b) The first 
derivative of the impulse-generating function that 
approaches t( )δ′  as 0∈ → .

0

1.0

f (t)

f 9(t)

t 

t 

2  

02  

(a)

(b)

1
2  

PP

P

P P

Figure 12.13 ▲ The impulse function as the deriva-
tive of the step function: (a) f t u t( ) ( )→  as 0∈ → ; 
and (b) f t t( ) ( )δ′ →  as 0∈ → .
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452 Introduction to the Laplace Transform

12.4 Functional Transforms
The Laplace transform of a specified function of t is called a functional 
transform. Because we are using the unilateral, or one-sided, Laplace 
transform, we define all functions to be zero for < −t 0 .

We derived one functional transform pair in Section 12.3, where we 
showed that the Laplace transform of the unit impulse function equals 1. 
Next, we find the Laplace transform of the unit step function at the origin, 
where

L ∫ ∫{ } = =

=
−

=

−
∞

−
∞

− ∞

+

+

u t f t e dt e dt

e
s s

( ) ( ) 1

1.

st st

st

0 0

0

Thus, the Laplace transform of the unit step function is s1 .
The Laplace transform of the decaying exponential function shown in 

Fig. 12.14 is

L e e e dt e dt
s a

1 .at at st a s t

0
( )

0∫ ∫{ } = = =
+

− − −
∞

− +
∞

+ +

In deriving the Laplace transforms of the unit step function and the decay-
ing exponential function, we used the fact that integration across the dis-
continuity at the origin is zero.

Let’s find the Laplace transform of the sinusoidal function shown in 
Fig. 12.15. The expression for f t( ) for > −t 0  is ωtsin ;  hence, the Laplace 
transform is

L t t e dtsin (sin ) st

0∫ω ω{ } = −
∞

−

e e
j

e dt
2

j t j t
st

0∫= −







ω ω−
−

∞

−

e e
j

dt
2

s j t s j t

0∫= −ω ω( ) ( )− − − +∞

−

j s j s j
1
2

1 1
ω ω

=
−

−
+









ω
ω

=
+s

.
2 2

Table 12.1 gives an abbreviated list of functional Laplace transform 
pairs. It includes the functions of most interest in an introductory course 
on circuit applications.

0, t , 0

1.0

f (t)

e2at, t . 0

0
t 

Figure 12.14 ▲ A decaying exponential function.

etc.

t 
0

1.0

21.0

f (t)

Figure 12.15 ▲ A sinusoidal function for t 0.>
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TABLE 12.1 An Abbreviated List of Laplace Transform Pairs

Type f t t( ) ( 0 )> − F(s)

(impulse) δ t( ) 1

(step) u t( )
s
1  

(ramp) t
s
1  
2

(exponential) −e at
+s a
1  

(sine) ωtsin
ω

ω+s
 

2 2

(cosine) ωtcos
ω+

s
s

 
2 2

(damped ramp) −te at

( )+s a
1  

2

(damped sine) ω−e tsinat
ω

ω+ +s a( )
 

2 2

(damped cosine) ω−e tcosat
ω

+
+ +

s a
s a( )

 
2 2

12.5 Operational Transforms
Operational Laplace transforms define how mathematical operations per-
formed on f t( ) affect its Laplace transform, F s( ). Operational transforms 
also define how mathematical operations performed on F(s) affect its cor-
responding time-domain function f(t). The operations we consider include 
(1) multiplication by a constant; (2) addition and subtraction; (3) differen-
tiation; (4) integration; (5) translation in the time domain; (6) translation 
in the frequency domain; and (7) scale changing.

Multiplication by a Constant
From the defining integral, if

L f t F s( ) ,{ } ( )=
then

L Kf t KF s( ) .{ } ( )=

Thus, multiplication of f t( ) by a constant corresponds to multiplying F s( ) 
by the same constant.

Objective 1—Be able to calculate the Laplace transform of a function using the definition of Laplace transform

12.1  Use the defining integral to
a) find the Laplace transform of ω θ+tsin( );
b) find the Laplace transform of tcos( ).ω θ+

Answer: a) s
s

cos sin ;
2 2

ω θ θ
ω

+
+

b) s
s

cos sin .
2 2
θ ω θ

ω
−
+

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter Problem 12.13.
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454 Introduction to the Laplace Transform

Addition and Subtraction
Addition and subtraction in the time domain translate into addition and 
subtraction in the frequency domain. Thus if

L f t F s( ) ( ),1 1{ } =

L f t F s( ) ( ),2 2{ } =

L f t F s( ) ( ),3 3{ } =
then

L f t f t f t F s F s F s( ) ( ) ( ) ( ) ( ) ( ).1 2 3 1 2 3{ }+ − = + −

Use the defining integral to derive this operation transform by recogniz-
ing that the integral of a sum of functions equals the sum of each func-
tion’s integral.

Differentiation
We use the definition of the Laplace transform to find the operational 
transform for differentiation in the time domain:

L
df t

dt
df t

dt
e dt

( ) ( )
.st

0∫{ } = 







−
∞

−

We integrate by parts to evaluate this integral. Let = −u e st  and 
d df t dt dt[ ( ) ]v =  to give

df t
dt

e f t f t se dt( ) ( )( ).st st

0
0

L ∫{ }( )
= − −−

∞
−

∞

−
−

Because we are assuming that f t( ) has a Laplace transform, evaluating 
−e f t( )st  at = ∞t  gives zero. We complete the evaluation of the integral 

to get

f s f t e dt sF s f(0 ) ( ) ( ) (0 ).st

0∫− + = −− − −
∞

−

Thus, the Laplace transform of the derivative of f(t) is

L
df t

dt
sF s f

( )
( ) (0 ).{ } = − −

This important result shows that differentiation in the time domain trans-
forms to an algebraic operation in the s domain.

Use the Laplace transform of the first derivative of f(t) to find the 
Laplace transform of higher-order derivatives. For example, to find the 
Laplace transform of the second derivative of f t( ),  we first let

g t
df t

dt
( )

( )
.=
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Now we find the Laplace transform of g(t):

= − −G s sF s f( ) ( ) (0 ).

But because

dg t
dt

d f t
dt

( ) ( )
,

2

2
=

we know

L L
dg t

dt
d f t

dt
sG s g

( ) ( )
( ) (0 ).

2

2{ }{ } = = − −

Therefore,

L
d f t

dt
s F s sf

df
dt

( )
( ) (0 )

(0 )
.

2

2
2{ } = − −−

−

We find the Laplace transform of the nth derivative by successively 
applying the preceding process, which leads to the general result

L
d f t

dt
s F s s f s

df
dt

( )
( ) (0 )

(0 )
 

n

n
n n n1 2{ } = − −− − −

−

s
d f

dt
d f

dt
 

(0 ) . . . (0 )
.n

n

n
3

2

2

1

1
− − −−

− − −

−

Integration
We find the Laplace transform of the integral of f(t) by again applying the 
defining integral:

L f x dx f x dx e dt  ( )  ( )  .
t t

st

0 00∫ ∫∫{ } = 





−
∞

− −−

Integrate by parts to evaluate the integral on the right-hand side of this 
expression. Let

u f x dx( ) ,
t

0∫=
−

d e dt.stv = −

Then

 =du f t dt( )  ,

= −
−

v e
s

  .
st
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456 Introduction to the Laplace Transform

The integration-by-parts formula yields

L f x dx e
s

f x dx e
s

f t dt( ) ( ) ( ) .
t st t st

0 0 0 0∫ ∫ ∫{ } = − +
− ∞ −∞

− − − −

The first term on the right-hand side is zero at both the upper and lower 
limits. The value at the lower limit is zero because both limits on the inte-
gral are the same. The value at the upper limit is zero because e 0st →−  as 
t .→∞  The second term on the right-hand side is F s s( ) ; therefore

L f x dx
F s

s
( )

( )
,

t

0∫{ } =
−

which reveals that integration in the time domain transforms to multipli-
cation by s1  in the s domain. We have therefore demonstrated that the 
Laplace transform translates a set of integrodifferential equations into a 
set of algebraic equations.

Translation in the Time Domain
If we start with any function ( ) ( )f t u t , we can represent the same func-
tion, translated in time by the constant a, as − −f t a u t a( ) ( ).2 To find the 
Laplace transform of − −f t a u t a( ) ( ), start with the defining integral:

L t a u t a u t a f t a e dt( ) ( ) ( ) ( ) st

0∫{ }− − = − − −
∞

−

f t a e dt( ) .st

a∫= − −
∞

In writing this equation, we took advantage of − =u t a( ) 0  for <t a. 
Now change the variable of integration by letting = −x t a. Then =x 0  
when =t a, = ∞x  when = ∞t  and =dx dt.  Rewrite the integral as

L f t a u t a f x e dx( ) ( ) ( ) s x a

0∫{ }− − = ( )− +
∞

e f x e dx( )sa sx

0∫= − −
∞

= −e F s( ).as

Thus

L f t a u t a e F s a( ) ( ) ( ), 0.as{ }− − = >−

Translation in the time domain corresponds to multiplication by an expo-
nential in the frequency domain.

2Note that throughout we multiply any arbitrary function f t( ) by the unit step function u t( ) 
to ensure that the resulting function is defined for all positive time.

M12_NILS8436_12_SE_C12.indd   456 10/01/22   6:52 PM



 12.5 Operational Transforms 457

For example, knowing that

L tu t
s

( ) 1 ,
2

{ } =

we can use this operational transform to find the Laplace transform of 
t a u t a( ) ( )− − :

L t a u t a e
s

.
as

2
( ) ( ){ }− − =

−

Translation in the Frequency Domain
Translation in the frequency domain corresponds to multiplication by an 
exponential in the time domain:

L e f t F s a  ( ) ( ),at{ } = +−

which follows from the defining integral. Problem 12.15 asks you to  derive 
this result.

We can use this operational transform to derive new transform pairs. 
Thus, knowing that

L t s
s

cos ,
2 2

ω
ω

{ } =
+

we use the effect of translation in the frequency domain to deduce that

 L e t s a
s a

cos
( )

.at
2 2

ω
ω

{ } = +
+ +

−

Scale Changing
The scale-change property gives the relationship between f t( ) and F s( ) 
when the time variable is multiplied by a positive constant:

L f at
a

F s
a

a( ) 1 , 0.( ){ } = >

The derivation is left to Problem 12.16. The scale-change property is par-
ticularly useful in experimental work, when time-scale changes are made 
to assist in building a model of a system.

We use this operational transform to formulate new transform pairs. 
Thus, knowing that

{ } =
+
s

s
cos t

1
,

2
L

we use the effect of scale changing to show that

L t
s

s
s

s
cos 1  

1
.2 2 2

ω
ω

ω
ω ω( )

{ } =
+

=
+

Table 12.2 lists these operational transforms.
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458 Introduction to the Laplace Transform

12.6 Applying the Laplace Transform
We now use the Laplace transform to solve the ordinary integrodifferen-
tial equations that describe the behavior of a lumped-parameter circuit, 
such as the one shown in Fig. 12.16. We assume that no initial energy is 
stored in the circuit at the instant the switch is opened. The problem is to 
find the time-domain expression for v t( )  when ≥t 0.

TABLE 12.2  An Abbreviated List of Operational Transforms

Operation f(t) F(s)

Multiplication by a constant Kf t( ) KF s( )

Addition/subtraction f t f t f t( ) ( ) ( ) . . .1 2 3+ − + F s F s F s( ) ( ) ( ) . . .1 2 3+ − +

First derivative (time)
df t

dt
( )

  sF s f( ) (0 )− −

Second derivative (time) d f t
dt

( )
 

2

2
s F s sf

df
dt

( ) (0 )
(0 )

 2 − −−
−

nth derivative (time) d f t
dt

( )
 

n

n
s F s s f s

df
dt

( ) (0 )  
(0 )

 n n n1 2− −− − −
−

s
df

dt
d f

dt
   

(0 ) . . . (0 )n
n

n
3

2

2

1

1
− − −−

− − −

−

Time integral f x dx( ) 
t

0∫
F s

s
( )

 

Translation in time f t a u t a a( ) ( ),   0− − > −e F s( )as

Translation in frequency −e f t( )at ( )+F s a

Scale changing >f at a( ),   0 ( )a
F s

a
1  

First derivative (s) tf t( ) −
dF s

ds
( )

 

nth derivative (s) t f t( )n ( )−
d F s

ds
1

( )
 n

n

n

s integral
f t

t
( )

  F u du( ) 
s∫
∞

Idc
t 5 0

CLR

1

2

v(t)

Figure 12.16 ▲ A parallel RLC circuit.

Objective 1—Be able to calculate the Laplace transform of a function using the Laplace transform table or 
a table of operational transforms

12.2  Use the appropriate operational transform  
from Table 12.2 to find the Laplace transform  
of each function:

a) −t e ;at3

b) d
dt

e t ( cos );at ω−

c) e x dxsin   .ax
t

0∫ ω−
−

Answer: a)  
s a

6 ;4( )+

b) ω
ω

− − −
+ +

a sa
s a( )

;
2 2

2 2

c) ω
ω+ +s s a[( ) ]

.
2 2

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter Problems 12.17 and 12.18.
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We begin by writing the integrodifferential equation that v t( )  must 
satisfy, using a single KCL equation to describe the circuit. Summing the 
currents away from the top node in the circuit gives:

t
R L

x dx C
d t

dt
I u t

( ) 1   ( ) 
( )

.
t

0
dc∫ ( )+ + =

v v v

Note that we represented the switch opening at =t 0 with the product of 
the source current and the unit step function, Idcu(t).

We transform the KCL equation into the s-domain using four opera-
tional transforms (multiplication by a constant, addition, integration, and 
differentiation) and one functional transform (unit step) to get

( )+ + − =−V s
R L

V s
s

C sV s I
s

( ) 1 ( )
[ ( ) (0 )] 1 .dcv

The result is an algebraic equation with one unknown variable, V(s). 
We are assuming that the circuit parameters R, L, and C, as well as the 
source current I ,dc  are known; the initial voltage on the capacitor −(0 )v  is 
zero because the initial energy stored in the circuit is zero. Thus, we have 
reduced the problem to solving an algebraic equation.

Solving for V s( ) gives

( )+ + =V s
R sL

sC
I
s

( ) 1 1 ,dc

( ) ( )
=

+ +
V s

I C
s RC s LC

( )
1 1

.dc
2

To find v t( ) , we must inverse-transform the expression for V s( ). We 
denote this inverse operation as

L { }= −t V s( ) ( ) .1v

The inverse transform, which takes the solution from the s-domain to the 
time domain, is the subject of Section 12.7. In that section, we also pres-
ent a final, critical step: checking the validity of the resulting time-domain 
expression. This final step is not unique to the Laplace transform; it is 
always a good idea to test any derived solution to be sure it makes sense in 
terms of known system behavior.

Before continuing, we simplify the notation by dropping the paren-
thetical t in time-domain expressions and the parenthetical s in frequency- 
domain expressions. We use lowercase letters for all time-domain variables, 
and we represent the corresponding s-domain variables with uppercase let-
ters. Thus

L L{ } { }= = −V V or   ,1v v

L L{ } { }= = −i I i I or    ,1

L L{ } { }= = −f F f For   ,1

and so on.
 Example 12.2 supplies component values for the circuit in Fig. 12.16 

and uses Laplace transforms to predict the circuit’s output voltage.
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460 Introduction to the Laplace Transform

12.7 Inverse Transforms
The expression for V s( ) in Example 12.2 is a rational function of s. This 
means we can write V(s) as a ratio of two polynomials in s where only inte-
ger powers of s appear in the polynomials. For linear, lumped- parameter 
circuits with constant component values, the s-domain  expressions for the 
unknown voltages and currents are always rational functions of s. (For 
verification, work Problems 12.27–12.31.) If we can inverse-transform 
rational functions of s, we can find the time- domain expressions for the 
voltages and currents. This section presents a straightforward and system-
atic technique for finding the inverse transform of a rational function.

In general, we need to find the inverse transform of a function that 
has the form

 F s
N s
D s

a s a s a s a
b s b s b s b

( )
( )
( )

. . .
. . .

.n
n

n
n

m
m

m
m

1
1

1 0

1
1

1 0

= =
+ + + +
+ + + +

−
−

−
−

 (12.7)

The coefficients a and b are real constants, and the exponents m and 
n are positive integers. The ratio N s D s( ) ( ) is called a proper rational 
function if >m n,  and an improper rational function if ≤m n. Only a 
proper rational function can be expanded as a sum of partial fractions. 
This restriction poses no problem, as we show at the end of this section.

EXAMPLE 12.2   Using Laplace Transforms to Predict a Circuit’s Response

Suppose for the circuit in Fig. 12.16, =I 24 mAdc , 
=R 400 Ω, =L 25 mH, and =C 25 nF. There 

is no energy stored in the circuit when the switch 
opens at =t 0. Find the Laplace transform of v(t) 
and use it to predict the functional form of v(t).

Solution
Using the expression for v(s) found for the circuit 
in Fig. 12.16,

( ) ( )
=

+ +
V s

I C
s RC s LC

( )
1 1

dc
2

] [
=

×
+ × + ×

−

− −s s
0.024 (25 10 )

[1 (400)(25 10 ) 1 (0.025)(25 10 )]

9

2 9 9

= ×
+ + ×s s

96 10
10 16 10

.
4

2 5 8

The expression for V(s) is not a familiar functional 
Laplace transform, so we cannot use Tables  12.1 
and 12.2 to find its inverse transform. But note that 
we can rewrite the denominator of V(s) as the prod-
uct of two factors:

( )( )
= ×

+ +
V s

s s
( ) 96 10

20, 000 80, 000
.

4

Now, recognize that we can write V(s) as the sum 
of two terms, with each factor appearing in the 
denominator of one term:

( ) ( )
=

+
+

+
V s

K
s

K
s

( )
20, 000 80, 000

.1 2

Each of these terms looks like a familiar Laplace 
transform. Using the transform for the exponential 
function (Table  12.1) and the operational trans-
forms for multiplication by a constant and addition 
(Table 12.2) we predict that v(t) is the sum of two 
exponential terms in the form −e t20,000  and −e t80,000 .

SELF-CHECK: Assess your understanding of this material by trying Chapter Problem 12.32.
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Partial Fraction Expansion: Proper Rational 
Functions
A proper rational function is expanded into a sum of partial fractions by 
writing a term or a series of terms for each root of D s( ).  Thus, D s( ) must 
be factored before we construct a partial fraction expansion. For each dis-
tinct root of D s( ),  a single term appears in the sum of partial fractions. 
For each multiple root of D s( ) of multiplicity r, the sum of partial frac-
tions contains r terms. For example, in the rational function

+
+ +

s
s s s

6
( 3)( 1)

,
2

the denominator has four roots. Two of these roots are distinct—namely, 
at =s 0 and = −s 3. A multiple root of multiplicity 2 occurs at = −s 1. 
Thus, the partial fraction expansion takes the form

+
+ +

≡ +
+

+
+

+
+

s
s s s

K
s

K
s

K
s

K
s

6
( 3)( 1) 3 ( 1) 1

.
2

1 2 3
2

4

To find the inverse transform from the sum of partial fractions, we iden-
tify the f t( ) corresponding to each term in the sum using the functional 
and operational transform tables. Use Tables 12.1 and 12.2 to verify that

L { }+
+

+
+

+
+

− K
s

K
s

K
s

K
s3 ( 1) 1

1 1 2 3
2

4

( )= + + +− − −K K e K te K e u t( ) .t t t
1 2

3
3 4

Now we need to find the numerator coefficients K K K( ,   ,   ,  . . .)1 2 3  
that appear in each partial fraction term. There are only four different 
types of partial fraction terms because the roots of D s( ) can be (1) real 
and distinct; (2) complex and distinct; (3) real and repeated; or (4) com-
plex and repeated. We develop a technique to determine the numerator 
coefficient for each type of partial fraction term. Before doing so, a few 
general comments are in order.

We used the ≡identity sign in the partial fraction  expansion to 
emphasize that expanding a rational function into a sum of partial frac-
tions establishes an identical equation. This means that both sides of 
the equation must be the same for all values of the variable s. Also, the 
identity  relationship must hold when the same mathematical operation is 
applied to both sides. These observations will help us calculate the coeffi-
cient values.

Before creating a partial fraction expansion, you should verify that 
the rational function is proper. This check is important because the proce-
dure for finding the partial fraction coefficients will not prevent you from 
generating invalid results if the rational function is improper. We present 
a procedure for checking the coefficients, but you can avoid wasted effort 
by always asking, “Is F s( ) a proper rational function?”

Partial Fraction Expansion: Distinct Real Roots of D(s)
Let’s find the partial fraction expansion of a proper rational function 
whose denominator has distinct real roots. For example,

( ) ( )( )( ) ( ) ( )
=

+ + +
≡

+
+

+
+

+
F s

N s
s p s p s p

K
s p

K
s p

K
s p

( )
( )

  .
1 2 3

1

1

2

2

3

3
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462 Introduction to the Laplace Transform

To find K1 for the first partial fraction term, we multiply both sides of the 
identity by the denominator beneath K1 to get

 
( ) ( )( )

( )

( )

( )

+ +
≡ +

+
+

+
+

+
N s

s p s p
K

K s p
s p

K s p
s p

( )
  .

2 3
1

2 1

2

3 1

3

Then when we evaluate both sides of the identity for = −s p1 , which is 
the root of the partial fraction term whose coefficient is K1:

( )

( )

( )

( )
( )

( )

+ +

≡ +
+

+
+

+
+

=

=−

=− =−

N s
s p s p

K
K s p

s p
K s p

s p
K

( )

.

s p

s p s p

2 3

1
2 1

2

3 1

3
1

1

1 1

The right-hand side is always the desired K, and the left-hand side is always 
its numerical value. To find K2 and K3, repeat the steps used to find K1.

Example 12.3 illustrates this process.

EXAMPLE 12.3    Finding the Inverse Laplace Transform When F(s) Has Distinct 
Real Roots

Use partial fraction expansion to find the inverse 
Laplace transform of

( )( )

( )( )
= + +

+ +
F s s s

s s s
( ) 96 5 12

8 6
.

Solution
We begin by noting that F(s) is a proper rational 
function. The partial fraction expansion of F(s) is

( )( )

( )( ) ( ) ( )
= + +

+ +
≡ +

+
+

+
F s s s

s s s
K
s

K
s

K
s

( ) 96 5 12
8 6 8 6

.1 2 3

To find the value of K ,1  we multiply both sides by s 
and then evaluate both sides at =s 0:

( )( )

( )( )
+ +

+ +
≡ +

+
+

+= = =

s s
s s

K
K s

s
K s

s
96 5 12

8 6 8 6
,

s s s0
1

2

0

3

0

or

= =K
96(5)(12)

8(6)
120.1

To find the value of K ,2  we multiply both sides by 
+s 8 and then evaluate both sides at = −s 8 :

( )( )

( )

( ) ( )

( )

+ +
+

≡
+

+ +
+

+

=−

=− =−

s s
s s

K s
s

K
K s

s

96 5 12
6

8 8
6

,

s

s s

8

1

8
2

3

8

or
−

− −
= = −K

96( 3)(4)
( 8)( 2)

72.2

Then K 3 is

( )( )

( )
+ +

+
= =

=−

s s
s s

K96 5 12
8

48.
s 6

3

Therefore,

( )( )

( )( ) ( ) ( )

+ +
+ +

≡ −
+

+
+

s s
s s s s s s

96 5 12
8 6

120 72
8

48
6

.

It is a good idea to test this result. While the 
choice of test values is completely open, we choose 
values that are easy to verify. For example, testing 
at either −5 or −12  is convenient because in both 
cases the left-hand side reduces to zero. Choosing 
−5 yields

−
− + = − − + =120

5
72
3

48
1

24 24 48 0,

whereas testing −12  gives

−
−

−
+

−
= − + − =120

12
72

4
48

6
10 18 8 0.

Now find the inverse transform of F(s) using 
the tables of functional and operational transforms 
(Tables 12.1 and 12.2):

L { }( )( )
( )( )

( ) ( )
+ +
+ +

= − +− − −s s
s s s

e e u t
96 5 12

8 6
120 78 48 .t t1 8 6
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Partial Fraction Expansion: Distinct Complex Roots 
of D(s)
We begin by noting that if F(s) describes the Laplace transform of a volt-
age or current in a physically realizable circuit, the factors of D(s) that 
have complex roots will always come in conjugate pairs. Let’s assume that

α β α β α β α β
( )

( )( ) ( ) ( )
=

+
+ − + +

≡
+ −

+
+ +

F s
A s z

s j s j
K

s j
K

s j
( ) .1 1 2

Here we assume that z1 is a real number.
We find the unknown coefficients, K1 and K2, using the same tech-

nique we employed when the factors of D(s) were real and distinct. As 
you will see, the only difference is that the algebra involves complex num-
bers. To find K1, we multiply both sides of the identity by the denomina-
tor beneath K1 to get

α β
α β

α β
( )

( )

( )

( )

+
+ +

≡ +
+ −

+ +
A s z

s j
K

K s j
s j

  .1
1

2

Then when we evaluate both sides of the identity for α β= − +s j , which 
is the root of the partial fraction term whose coefficient is K1:

A s z
s j

K
K s j

s j
K .

s j s j

1
1

2
1α β

α β
α β

( )
( )

( )
( )

+
+ +

= +
+ −

+ +
=

α β α β=− + =− +

We evaluate the left-hand side of the identity to get an expression for K1:

K
A z j

j
A j

z
2 2 2

.1
1 1α β

β
α

β
( )

( )
=

− + +
= +

−







Objective 2—Be able to calculate the inverse Laplace transform using partial fraction expansion and the 
Laplace transform table

12.3  Find f t( ) if

( )( )( )
= + +

+ + +
F s s s

s s s
( ) 8 37 32

1 2 4
.

2

Answer: f t e e e u t( ) ( 5 2 ) ( ).t t t2 4= + +− − −

12.4  Find f t( ) if

( )( )( )
= + +

+ + +
F s s s

s s s
( ) 10 76 160

2 4 6
.

2

Answer: f t e e e u t( ) (6 4 8 ) ( ).t t t2 4 6= − +− − −

12.5  Suppose for the circuit in Fig. 12.16, 
I 15mAdc = , R 800= Ω, C 1 Fµ= , and 

=L 4 H. There is no energy stored in the  
circuit when the switch opens at =t 0.
a) Find V(s), the Laplace transform of v(t).
b) Find v(t) by finding the inverse transform of 

the partial fraction expansion of V(s).

Answer: a) =
+ + ×

V s
s s

( ) 15, 000
800 25 102 4

;

b) v t e e u t( ) [20 20 ] ( ) V.t t250 1000= −− −

ASSESSMENT PROBLEMS

SELF-CHECK: Also try Chapter Problems 12.42(a) and (b).
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464 Introduction to the Laplace Transform

As expected, K1 is a complex number. We repeat the steps used to find K1 
when finding the expression for K2:

α β
α β

α β
( )

( )

( )

( )

+
+ −

=
+ +

+ −
+

A s z
s j

K s j
s j

K ;1 1
2

A s z
s j

K s j
s j

K ;
s j s j

1 1
2α β

α β
α β

( )
( )

( )
( )

+
+ −

=
+ +

+ −
+

α β α β=− − =− −

K
A z j

j
A j

z
2 2 2

.2
1 1α β
β

α
β

( )
( )

=
− + −

−
= −

−







Compare the expression for K1 with the expression for K2; K1 and K2 
are conjugates. This will always be the case when D(s) has complex roots, 
so we need only calculate one coefficient, since the other is its conjugate. 
We can use the following general polar form for K1 and K2:

 = =θ θ−K K e K K eand .j j
1 2

Using the polar form for the general coefficients K1 and K2, we can find 
the inverse Laplace transform of F(s), with the help of the functional and 
operational transform tables (Tables 12.1 and 12.2) and Euler’s identity:

L K e
s j

K e
s j

K e e K e e
j j

j j t j j t1

α β α β{ }+ −
+

+ +
= +

θ θ
θ α β θ α β( ) ( )−

−
− − − − +

K e e K e et j t t j t= +α β θ α β θ( ) ( )− + − − +

K e t j tcos( ) sint β θ β θ( )[ ]= + + +α−

K e t j tcos sint β θ β θ( ) ( )[ ]+ + − +α−

K e t2 cos .t β θ( )= +α−

Because distinct complex roots appear frequently in lumped- parameter 
linear circuit analysis, we summarize these results with a new transform 
pair. Whenever D s( ) contains distinct complex roots—that is, factors of the 
form α β α β( )( )+ − + +s j s j —a pair of terms of the form

α β α β+ −
+

+ +
K

s j
K

s j

*

appears in the partial fraction expansion, where the partial fraction coeffi-
cient is, in general, a complex number. In polar form,

 K K e K ,j θ= =θ  (12.8)

where K  denotes the magnitude of the complex coefficient. Then

 K K e K .j* θ= = −θ−  (12.9)

The pair of complex conjugate partial fraction terms always inverse- 
transforms as

L K
s j

K
s j

1
*

α β α β{ }+ −
+

+ +
−

 K e t2 cos .t β θ( )= +α−  (12.10)
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 12.7 Inverse Transforms 465

In applying Eq. 12.10, it is important to note that K is defined as the coef-
ficient associated with the denominator α β+ −s j , and K * is defined as 
the coefficient associated with the denominator α β+ +s j .

Example 12.4 finds the inverse Laplace transform of an s-domain 
function with distinct complex roots.

EXAMPLE 12.4   Finding the Inverse Laplace Transform When F(s) Has Distinct 
Complex Roots

Use partial fraction expansion to find the inverse 
Laplace transform of

F s s
s s s

( ) 100 3
6 6 25

.
2( )
( )

( )
= +

+ + +

Solution
We begin by noting that F s( ) is a proper rational 
function. Next we find the roots of the quadratic 
term s s6 25:2 + +

( )( )+ + = + − + +s s s j s j6 25 3 4 3 4 .2

With the denominator in factored form, we create 
the partial fraction expansion:

 
s

s s s

K
s

K
s j

K
s j

100 3
6 6 25

6 3 4 3 4
.

2

1 2 2
*

( )
( )

( )
+

+ + +
≡

+
+

+ −
+

+ +

Find K1 and K2 using the same process employed in 
Example 12.3:

K s
s s
100 3

6 25
100 3

25
12,

s
1 2

6

( ) ( )= +
+ +

= − = −
=−

( )

( )

( )( )
( )

( )
= +

+ + +
=

+

= − =
=− +

−

K s
s s j

j
j j

j e

100 3
6 3 4

100 4
3 4 8

 

6 8 10 .
s j

j

2
3 4

53.13°

Thus

s
s s s

s s j s j

100 3
6 6 25

12
6

10  53.13°
3 4

10  53.13°
3 4

.

2( )
( )

( )
+

+ + +

≡ −
+

+ −
+ −

+
+ +

Before inverse-transforming the terms in the 
partial fraction expansion, we check the expansion 
numerically. We test using = −s 3 because the 
left-hand side reduces to zero at this value:

F s
j j

( ) 12
3

10  53.13°
4

10  53.13°
4

 = − + −
−

+

4 2.5  36.87° 2.5  36.87°= − + + −

= − + + + − =j j4 2.0 1.5 2.0 1.5 0.

Finally, perform the inverse-transform, using 
the functional and operational transform tables 
(Tables 12.1 and 12.2) and the new transform pair 
in Eq. 12.10:

L { }( )

[ ]

( )

( )

( ) ( )

+
+ + +

= − + −

−

− −

s
s s s

e e t u t

100 3
6 6 25

12 20 cos 4 53.13° .t t

1
2

6 3

Objective 2—Be able to calculate the inverse Laplace transform using partial fraction expansion and the 
Laplace transform table

12.6  Find f t( ) if

( )( )
= + +

+ + +
F s s s

s s s
( ) 22 60 58

1 4 5
.

2

2

Answer: = + +− −f t e e t u t( ) [10 20 cos( 53.13°)] ( ).t t2

ASSESSMENT PROBLEMS
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466 Introduction to the Laplace Transform

Partial Fraction Expansion: Repeated Real Roots of D(s)
We describe two methods for finding the partial fraction coefficients for 
terms generated by a multiple root with multiplicity r. Method A requires 
you to solve several simultaneous algebraic equations. Method B is a 
modification of the process we have been using to find the coefficients 
for the partial fraction terms associated with distinct roots. Both methods 
begin with the identity relating the original s-domain function, which must 
be a proper rational function, and its partial fraction expansion:

 
N s
D s

K

s p

K

s p

K
s p

( )
( )

  . . . .r r
r1 2

1( ) ( ) ( )
≡

+
+

+
+ +

+−

Method A

1. Combine all terms in the partial fraction expansion over the common 
denominator, D(s). Call the numerator of this new function N1(s).

2. Collect all of the terms in the numerator N1(s) according to their 
power of s. The coefficient of each power of s will include some of 
the unknown partial fraction coefficients.

3. Equate the coefficient of each power of s in N1(s) with the coeffi-
cient of the corresponding power of s in N(s). The result is a col-
lection of simultaneous equations whose unknowns are the partial 
fraction coefficients.

4. Solve the simultaneous equations to find the partial fraction 
coefficients.

Method B

1. Multiply both sides of the identity defining the partial fraction 
expansion by the multiple root raised to its rth power. Call the 
resulting identity Ir.

2. Find K in the numerator of the factor raised to the rth power by 
evaluating both sides of Ir at the multiple root.

3. To find K in the numerator of the factor raised to the −r( 1) power, 
differentiate both sides of Ir with respect to s. Call the resulting 
identity −I r( 1) . Evaluate both sides of −I r( 1)  at the multiple root. 
The right-hand side is always the desired K, and the left-hand side 
is always its numerical value.

4. Repeat Step 3 to find the remaining partial fraction coefficients by 
differentiating −I r( 1)  to get −I r( 2) and so on. In total, you will have 
differentiated −I r( 1)r  times.

Example 12.5 uses Method A to find the inverse Laplace transform 
for an s-domain function with repeated real roots.

12.7  Suppose for the circuit in Fig. 12.16, 
=I 15 mAdc , =R 1250 Ω, =L 4 H, and 

C 1  Fµ= . These are the same values used in 
Assessment Problem 12.5 except for the value 
of R. There is no energy stored in the circuit 
when the switch opens at =t 0.
a) Find V(s), the Laplace transform of v(t).

b) Find v(t) by finding the inverse transform of the 
partial fraction expansion of V(s).

Answer: a) =
+ + ×

V s
s s

( )
15, 000

800 25 10
;

2 4

b) v t e t u t( ) (50 sin 300 ) ( ).t400= −

SELF-CHECK: Also try Chapter Problems 12.43(c) and (d).
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 12.7 Inverse Transforms 467

EXAMPLE 12.5  
 Finding the Inverse Laplace Transform When F(s) Has 
Repeated Real Roots

Use partial fraction expansion to find the inverse 
Laplace transform of

( )

( )
= +

+
F s s

s s
( ) 100 25

5
.3

Solution
We begin by noting that F s( ) is a proper rational func-
tion. Next we find the partial fraction expansion of F(s):

( )

( ) ( ) ( )

+
+

≡ +
+

+
+

+
+

s
s s

K
s

K

s

K

s

K
s

100 25
5 5 5 5

.3
1 2

3
3

2
4

We will use Method A to find the partial fraction 
coefficients. Begin by multiplying the numerator 
and denominator of each term in the partial frac-
tion expansion with an expression that creates a 
denominator of +s s( 5)3  in each term:

s
s s

K s
s s

K s
s s

K s s
s s

K s s
s s

100 25
5

5
5 5

5
5

5
5

.

3
1

3

3
2

3

3
3

4
2

3

( )

( )

( )

( ) ( )

( )

( )

( )

( )

+
+

≡
+

+
+

+

+
+

+
+

+
+

Combine the terms on the right-hand side over their 
common denominator, and expand the resulting 
numerator by collecting the coefficients for each 
power of s. The numerator on the right-hand side is

K K s K K K s

K K K K s

K

( ) (15 10 )

(75 5 25 )

(125 ).

1 4
3

1 3 4
2

1 2 3 4

1

+ + + +

+ + + +

+

Equate the coefficients of each power of s in the 
numerators on the right-hand side and left-hand 
side to create four simultaneous equations:

+ =K K 0;1 4

+ + =K K K15 10 0;1 3 4

K K K K75 5 25 100;1 2 3 4+ + + =

=K125 2500.1

Solve the simultaneous equations to find

K K K K20; 400; 100; 20.1 2 3 4= = − = − = −

Therefore, the partial fraction expansion is

( )

( ) ( ) ( )

+
+

≡ −
+

−
+

−
+

s
s s s s s s

100 25
5

20 400
5

100
5

20
5

.3 3 2

At this point, we can check our expansion by 
testing both sides at = −s 25; for this value of s, 
both sides should equal zero. The result of evalu-
ating the partial fraction expansion at = −s 25 is

( ) ( ) ( )−
−

−
−

−
−

−
=20

25
400
20

100
20

20
20

0.3 2

Use the functional and operational transform 
tables (Tables  12.1 and 12.2) to transform each 
term in the partial fraction expansion. Thus, the 
inverse transform of F(s) is

L s
s s

t e te e u t100 25
5

20 200 100 20 ( ).t t t1
3

2 5 5 5{ } [ ]
( )

( )

+
+

= − − −− − − −

Objective 2—Be able to calculate the inverse Laplace transform using partial fraction expansion and the 
Laplace transform table

12.8 Find f t( ) if

( )
=

+
+

F s
s

s s
( )

80( 3)

2
.2

Answer: f t te e u t( ) (60 40 60 ) .t t2 2 ( )= − −− −

12.9  Suppose for the circuit in Fig. 12.16, 
=I 15 mAdc , =R 1 kΩ, =L 4 H, and 

C 1  Fµ= . These are the same values used in 

Assessment Problems 12.5 and 12.7 except for 
the value of R. There is no energy stored in the 
circuit when the switch opens at =t 0.
a) Find V(s), the Laplace transform of v(t).
b) Find v(t) by finding the inverse transform of 

the partial fraction expansion of V(s).

Answer: a) =
+ + ×

V s
s s

( ) 15, 000
1000 25 10

;
2 4

b) ( )= −v t te u t( ) (15, 000 )  V.t500

ASSESSMENT PROBLEMS

SELF-CHECK: Also try Chapter Problems 12.44(b) and (c).
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468 Introduction to the Laplace Transform

 Partial Fraction Expansion: Repeated Complex 
Roots of D(s)
We can find the coefficients of the partial fraction terms corresponding to 
repeated complex roots using either Method A or Method B. The algebra 
involves complex numbers. Recall that complex roots always appear in 
conjugate pairs and that the coefficients associated with a conjugate pair 
are also conjugates, so that only half the Ks need to be evaluated. We 
illustrate the process using Method B in Example 12.6.

EXAMPLE 12.6   Finding the Inverse Laplace Transform When F(s) Has 
Repeated Complex Roots

Use partial fraction expansion to find the inverse 
Laplace transform of

( )
=

+ +
F s

s s
( ) 768

6 25
.

2 2

Solution
After factoring the denominator polynomial, we 
write

( ) ( )
=

+ − + +
F s

s j s j
( ) 768

3 4 3 4
 2 2

( )
≡

+ −
+

+ −
K

s j

K
s j3 4 3 4

 1
2

2

K
s j

K
s j

 
3 4 3 4

.1
*

2
2
*

( )
+

+ +
+

+ +

Now we need to evaluate only K1  and K ,2  because 
K1

* and K 2
* are conjugate values. We use Method B 

to find these two partial fraction coefficients.
The value of K1  is

K
s j j

768
3 4

768
8

12.
s j

1 2
3 4

2( ) ( )
=

+ +
= = −

=− +

To find the value of K 2, multiply F(s) by 
( )+ −s j3 4 2, find the first derivative of the result 
with respect to s, and evaluate for = − +s j3 4:

K d
ds s j

s j

j
j

  768
3 4

 

2(768)
3 4

2(768)
8

3 3  90°.

s j

s j

2 2
3 4

3
3 4

3

( )

( )

( )

=
+ +













=
−
+ +

=
−

= − = −

=− +

=− +

From the values for K1 and K2, K 121
* = −  and 

= =K j3 3  90° .2
*  Group the partial fraction 

expansion by conjugate terms to obtain

F s
s j s j

s j s j

( ) 12
3 4

12
3 4

3  90°
3 4

3  90°
3 4

.

2 2( ) ( )

( ) ( )

= −
+ −

+ −
+ +













+
−

+ −
+

+ +













Inverse-transform F s( ) by applying the functional and 
operational transforms (Tables 12.1 and 12.2) to the 
terms in the partial fraction expansion. The result is 

f t te t e t u t( ) 24 cos4 6 cos(4 90°) .t t3 3[ ] ( )= − + −− −

Objective 2—Be able to calculate the inverse Laplace transform using partial fraction expansion and the 
Laplace transform table

12.10  Find f t( ) if

( )
=

+ +
F s

s s
( ) 14, 400

60 2500
.

2 2

Answer:

f t te t e t u t( ) ( 4.5 cos40 0.1125 sin 40 ) ( ).t t30 30= − +− −

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter Problem 12.45(b).
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Note that if F s( ) has a real root a of multiplicity r in its denominator, 
the partial fraction expansion has a term of the form

( )+
K

s a
.

r

The inverse transform of this term is

 L K
s a

Kt e
r

u t
1 !

.r

r at
1

1{ }( ) ( )
( )

+
=

−
−

− −
 (12.11)

If F s( ) has a complex root of α β+ j  of multiplicity r in its denomina-
tor, the partial fraction expansion has a conjugate pair of terms in the form

α β α β( ) ( )+ −
+

+ +
K

s j
K

s j
.

r r

*

The inverse transform of this pair is

K K

s j s jr r
1

θ
α β

θ
α β( ) ( )+ −

+
−

+ +











−L

 K t
r

e t u t2
1 !

  cos ( ).
r

t
1

β θ
( )

( )=
−

+





α

−
−  (12.12)

Equations 12.11 and 12.12 are the key to finding the inverse transform 
for any partial fraction expansion with repeated roots. One further note 
regarding these two equations: In circuit analysis problems, r is seldom 
greater than 2. Therefore, the inverse transform of a rational function can 
be handled with four transform pairs. Table 12.3 lists these pairs.

Partial Fraction Expansion: Improper Rational 
Functions
An improper rational function can always be written as the sum of a poly-
nomial and a proper rational function. The polynomial is then inverse- 
transformed into impulse functions and derivatives of impulse functions, 
while the proper rational function is inverse-transformed by the tech-
niques outlined in this section.

We illustrate the procedure in Example 12.7.

TABLE 12.3 Four Useful Transform Pairs

Pair Number Nature of Roots F(s) f(t)

1 Distinct real +
K

s a
  −Ke u t( )at

2 Repeated real
( )+

K
s a

 
2

−Kte u t( )at

3 Distinct complex α β α β+ −
+

+ +
K

s j
K

s j
 

*

K e t u t2 cos( ) ( )t β θ+α−

4 Repeated complex α β α β( ) ( )+ −
+

+ +
K

s j
K

s j
 

2

*

2 t K e t u t2 cos( ) ( )t β θ+α−

Note: In pairs 1 and 2, K is a real quantity, whereas in pairs 3 and 4, K is the complex quantity θK .
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470 Introduction to the Laplace Transform

EXAMPLE 12.7   Finding the Inverse Laplace Transform of an Improper Rational 
Function

Use partial fraction expansion to find the inverse 
Laplace transform of

= + + + +
+ +

F s s s s s
s s

( ) 13 66 200 300
9 20

.
4 3 2

2

Solution
The order of the numerator is 4, while the order of 
the denominator is 2, so F(s) is an improper rational  
function. To write it as the sum of a polynomial and 
a proper rational function, divide the denominator 
into the numerator until the remainder is a proper 
rational function. The result is

)F s s s
s s
s s s s( ) 9 20

4 10
13 66 200 3002

2

4 3 2( )= + +
+ +
+ + + +

= + + + +
+ +

s s s
s s

4 10 30 10
9 20

.2
2

Next, expand the proper rational function into a 
sum of partial fractions: 

s
s s

s
s s s s

30 100
9 20

30 100
4 5

20
4

50
5

.
2 ( )( )

+
+ +

= +
+ +

≡ −
+

+
+

Replace the proper rational function in F(s) with the 
partial fraction expansion to get

= + + −
+

+
+

F s s s
s s

( ) 4 10 20
4

50
5

.2

Using the tables of functional and operational trans-
forms (Tables  12.1 and 12.2) we can now inverse- 
transform F(s). Hence

δ δ
δ ( ) ( )= + + − −− −f t

d t
dt

d t
dt

t e e u t( )
( )

4
( )

10 ( ) 20 50 .t t
2

2
4 5

Objective 2—Be able to calculate the inverse Laplace transform using partial fraction expansion and the 
Laplace transform table

12.11  Find f t( ) if

= + +
+ +

F s s s
s s

( ) 25 395 1494
15 54

.
2

2

Answer: t e e u t25 ( ) [8 12 ] .t t6 9δ ( )+ +− −

12.12  Find f t( ) if

= + − −
+ +

F s s s s
s s

( ) 5 20 49 108
7 10

.
3 2

2

Answer:

f t
d t

dt
t e e u t( ) 5

( )
15 ( ) [10 4 ] .t t2 5δ δ ( )= − + −− −

ASSESSMENT PROBLEMS

SELF-CHECK: Also try Chapter Problem 12.45(d).

12.8 Poles and Zeros of F(s)
The rational function of Eq. 12.7 can also be expressed as the ratio of two 
factored polynomials. In other words, we can write F s( ) as

 
( )

( )
( )( )

( )( )
=

+ + +
+ + +

F s
K s z s z s z

s p s p s p
( )

. . .
. . .

,n

m

1 2

1 2

 (12.13)

where K is the constant a b .n m

The roots of the denominator polynomial, that is, −p1, −p2 , −p3 , . . ., 
pm− , are called the poles of F(s); they are the values of s at which F s( ) 

becomes infinitely large. The roots of the numerator polynomial, that is, 
−z1, −z2 , −z3, . . ., −zn  are called the zeros of F(s); they are the values of s 
at which F s( ) becomes zero. We can visualize the poles and zeros of F s( ) as 
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EXAMPLE 12.8   Finding and Plotting the Poles and Zeros of an s-Domain 
Function

a) Suppose F1(s) is given by

= + + +
+ + +

F s s s s
s s s s

( ) 40 440 2200 5000
4 88 880 4000

.1

3 2

4 3 2

Find the poles and zeros of F1(s) and plot them 
on the complex s plane.

b) Suppose F2(s) is given by

= + +
+ + + +

F s s s
s s s s

( ) 8 120 400
2 20 70 100 48

.2

2

4 3 2

Find the poles and zeros of F2(s) and plot them 
on the complex s plane.

Solution

a) Begin by factoring out a constant in the numer-
ator and denominator of F1(s). Then factor the 
numerator and denominator polynomials. The 
result is

=
+ + +

+ + +
F s

s s s
s s s s

( )
40( 11 55 125)

4( 22 220 1000 )
 1

3 2

4 3 2

( )( )

( )( )

( )

( )
=

+ + − + +
+ + − + +
s s j s j

s s s j s j
10 5 3 4 3 4

10 6 8 6 8
.

The poles of F1(s) are at 0, −10 , − + j6 8, and 
− − j6 8. The zeros are at −5, − + j3 4,  and 
− − j3 4. Figure 12.17 shows the poles and zeros 
plotted on the s plane, where X’s represent poles 
and O’s represent zeros.

b) Factor out a constant in the numerator and 
denominator of F2(s). Then factor the numerator 
and denominator polynomials to give

( )
( )

=
+ +

+ + + +
F s

s s
s s s s

( )
8 15 50

2 10 35 50 24
 2

2

4 3 2

( )( )

( )( )( )( )
= + +

+ + + +
s s

s s s s
4 5 10

1 2 3 4
.

The zeros of F2(s) are −5 and −10. The poles of  
F2(s) are −1, −2, −3, and −4. They are plotted in the 
complex s plane in Fig. 12.18. Note that F2(s) also has 
a second-order zero at infinity because for large val-
ues of s the function reduces to s4 ,2  and =F s( ) 02  
when = ∞s . In general, F s( ) can have either an 
rth-order pole or an rth-order zero at infinity. In this 
text, we are interested in the poles and zeros located 
in the finite s plane. Therefore, when we refer to the 
poles and zeros of a rational function of s, we are 
referring to the finite poles and zeros.

 12.8  Poles and Zeros of F(s) 471

5

25

210 25

23 1 j 4

23 2 j 4

26 2 j 8

26 1 j 8
s plane

P{s}

R{s}

Figure 12.17 ▲ Plotting poles and zeros on the s plane for 
F1(s) in Example 12.8.

 2 2 2 2 2 2

s plane

10 8 6 4 2

P{s}

R{s}

Figure 12.18 ▲ Plotting poles and zeros on the s plane for F2(s) in Example 12.8.

points on a complex s plane. In the complex s plane, we use the horizontal 
axis to plot the real values of s and the vertical axis to plot the imaginary  
values of s. Example 12.8 finds the poles and zeros for two different func-
tions of s and plots the locations of the poles and zeros on the complex 
plane.
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472 Introduction to the Laplace Transform

Objective 3—Be able to find and plot the poles and zeros for a rational function in the s domain

12.13  Find the poles and zeros for the following rational 
functions of s.

a) = + +
+ +

F s s s
s s s

( ) 10 210 980
14 50

;  
2

3 2

b) F s s s
s s s

( ) 5 50 445
4 40 176 480

;  
2

3 2
= + +

+ + +

c) = + +
+ + + +

F s s s
s s s s

( ) 25 200 400
8 38 56 25

. 
2

4 3 2

Answer: a) Zeros at −7 and −14; poles at 0 and 
j7− ± ;

b) Zeros at j5 8− ± ; poles at −6 and 
− ± j2 4;

c)  Two zeros at −4; poles at − ± j3 4  and 
two poles at −1.

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter Problem 12.46.

 12.9 Initial- and Final-Value Theorems
The initial- and final-value theorems enable us to determine the behavior 
of f t( ) at 0 and ∞  from F s( ). Hence, we can check the initial and final 
values of f t( ) to see if they conform to known circuit behavior, before 
actually finding the inverse transform of F s( ).

The initial-value theorem states that

INITIAL-VALUE THEOREM

 f t sF slim   ( ) lim   ( ),
t s0

=
→ →∞+

 (12.14)

FINAL-VALUE THEOREM

 f t sF slim   ( ) lim   ( ).
t s 0

=
→∞ →

 (12.15)

and the final-value theorem states that

The initial-value theorem assumes that f t( ) does not have an impulse func-
tion at the origin. The final-value theorem is valid only if the poles of F s( ),  
except for a first-order pole at the origin, lie in the left half of the s plane.

To prove Eq. 12.14, we start with the operational transform of the 
first derivative:

df
dt

sF s f
df
dt

e dt( ) (0 )   .st

0∫{ } = − =− −
∞

−
L

Now we take the limit as → ∞s :

 sF s f
df
dt

e dtlim  [ ( ) (0 )] lim .
s s

st

0∫− =
→∞

−
→∞

−
∞

−
 (12.16)
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Observe that the right-hand side of Eq. 12.16 can be written as

df
dt

e dt
df
dt

e dtlim       .
s

st0
0

0

0∫ ∫+






→∞

−
∞

−

+

+

As s→∞, df dt e 0st( ) →− ; hence, the second integral vanishes in the limit. 
The first integral reduces to f f(0 ) (0 ),−+ −  which is independent of s.  
Thus, the right-hand side of Eq. 12.16 becomes

df
dt

e dt f flim   (0 ) (0 ).
s

st

0∫ = −
→∞

∞
− + −

−

Because f (0 )−  is independent of s, the left-hand side of Eq. 12.16 can be 
written as

sF s f sF s flim [ ( ) (0 )] lim  [ ( )] (0 ).
s s

− = −
→∞

−
→∞

−

Therefore,

= =
→ ∞

+
→ +

sF s f f tlim ( ) (0 ) lim ( ),
s t 0

which completes the proof of the initial-value theorem.
The proof of the final-value theorem also starts with the operational 

transform of the first derivative. Here we take the limit as s 0→ :

 sF s f
df
dt

e dtlim[ ( ) (0 )] lim   .
s s

st

0 0 0∫( )− =
→

−
→

−
∞

−
 (12.17)

The integration is with respect to t and the limit operation is with respect 
to s, so the right-hand side of Eq. 12.17 reduces to

df
dt

e dt
df
dt

dtlim   .
s

st

0 0 0∫ ∫( ) =
→

−
∞ ∞

− −

Because the upper limit on the integral is infinite, this integral may also be 
written as a limit process:

df
dt

dt
df
dy

dylim ,
t

t

0 0∫ ∫=
∞

→∞− −

where we use y as the symbol of integration to avoid confusion with the 
upper limit on the integral. Carrying out the integration on the right-hand 
side gives

f t f f t flim [ ( ) (0 )] lim  [ ( )] (0 ).
t t

− = −
→∞

−
→∞

−

Substituting this expression into the right-hand side of Eq. 12.17 gives

sF s f f t flim  [ ( )] (0 ) lim [ ( )] (0 ).
s t0

− = −
→

−
→∞

−

Since f (0 )−  cancels, we get

=
→ → ∞

sF s f tlim ( ) lim ( ),
s t0

which completes the proof of the final value theorem.
The final-value theorem is useful only if ∞f ( ) exists. This condition is 

true only if all the poles of F s( ),  except for a single pole at the origin, lie 
in the left half of the s plane.

Example 12.9 applies the initial- and final-value theorems to the 
s-domain function from Example 12.2.
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474 Introduction to the Laplace Transform

1

2

10 mH 100 mF

cos 120pt V

iL

15 V

Figure 12.19 ▲ A series RLC circuit with a 60 Hz 
sinusoidal source.

EXAMPLE 12.9  Applying the Initial- and Final-Value Theorems

Suppose for the circuit in Fig. 12.16, =I 24 mAdc , 
=R 400 Ω, =L 25 mH, and =C 25 nF. There 

is no energy stored in the circuit when the switch 
opens at =t 0. In Example 12.2, we found the 
Laplace transform of v(t) is

V s
s s

( ) 96 10
10 16 10

.
4

2 5 8
= ×

+ + ×

Use the initial- and final-value theorems to predict 
the initial and final values of v(t) and verify that V(s)  
correctly predicts the values of +v(0 ) and ∞v( ) 
from the circuit.

Solution
From the initial-value theorem,

= ×
+ + ×→ ∞ → ∞

sV s s
s s

lim ( ) lim 96 10
10 16 10

.
s s

4

2 5 8

To evaluate the limit on the right-hand side, divide 
numerator and denominator by the highest power 
of s in the denominator, in this case s2, and find the 
limit as →s1 0 :

( )

( ) ( )

×
+ + ×

=
×

+ + ×

→∞

→

s
s s

s

s s

lim 96 10
10 16 10

lim
96 10 1

1 10 1 16 10 1
 

s

s

4

2 5 8

1 0

4

5 8 2

=
+ +

= = =
→

+v vt0
1 0 0

0 lim ( ) (0 ).
t 0

Since the problem states that there is no energy 
stored in the circuit prior to the switch opening at 

=t 0, we have confirmed that the initial voltage is 
zero.

Before applying the final-value theorem, find 
the poles of V(s). They are −20, 000 and −80, 000,  
so both lie in the left-half complex plane, and we 
can use the final-value theorem to get

= ×
+ + ×

=
→ →

sV s s
s s

lim ( ) lim 96 10
10 16 10

0.
s s0 0

4

2 5 8

As we expected from the circuit, as → ∞t , the 
 final-value theorem gives ∞ =v( ) 0. Thus, V(s) cor-
rectly predicts the initial and final values of V(t).

Objective 4—Understand and know how to use the initial-value theorem and the final-value theorem

 12.14  Use the initial- and final-value theorems 
to find the initial and final values of f t( ) in 
Assessment Problems 12.4, 12.8, and 12.10.

Answer: 10, 0; 0, 60; and 0, 0.

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter Problem 12.52.

Practical Perspective
Transient Effects
The circuit introduced in the Practical Perspective at the beginning of 
the chapter is repeated in Fig.  12.19 with the switch closed and the 
chosen sinusoidal source.

We use Laplace methods to determine the complete response of the 
inductor current, iL. To begin, use K-L to sum the voltage drops around 
the circuit, in the clockwise direction:

i
di
dt

i x dx t15 0.01 1
100 10

  ( ) cos120 .L
L

L

t

6 0∫ π+ +
×

=
−
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Using Table 12.1 and 12.2, we find the Laplace transform of the K-L 
equation:

I sI
I
s

s
s

15 0.01 10
120

. L L
L4

2 2π( )
+ + =

+

Solve this equation for I L:

I s
s s s

100
1500 10 (120 )

.L

2

2 6 2 2π[ ][ ]
=

+ + +

Note that the expression for I L has two complex conjugate pairs of 
poles, so the partial fraction expansion of I L will have four terms:

I
K

s j
K

s j

K
s j

K
s j

750 661.44 750 661.44

120 120
.

L
1 1

*

2 2
*

π π

( ) ( )

( ) ( )

=
+ −

+
+ +

+
−

+
+

Determine the values of K K and 1 2 :

K s
s s j s

100
750 661.44 (120 )

 

0.07357 97.89°,

s j
1

2

2 2
750 661.44π[ ][ ]

=
+ + +

= −

=− +

K s
s s s j

100
[ 1500 10 ][ 120 ]

0.018345 56.61°.
s j

2

2

2 6
120π

=
+ + +

=
π=

Therefore, the s-domain expression for the inductor current is

I
s j s j

s j s j

0.07357 97.89°
750 661.44

0.07357 97.89°
750 661.44

0.018345 56.61°
120

0.018345 56.61°
120

.

L

π π

( ) ( )

( ) ( )

=
−

+ −
+

+ +

+
−

+
−

+

Finally, we use Table  12.3 to calculate the inverse Laplace transform 
and find iL :

i e t

t

147.14 cos 661.44 97.89°

36.69 cos 120 56.61°  mA.
L

t750

π

( )

( )

= −
+ +

−

The first term in the inductor current is the transient response, which will 
decay to zero in about 7 ms. The second term in the inductor current is 
the steady-state response, which has the same frequency as the 60 Hz 
 sinusoidal source and will persist as long as this source is connected 
in the circuit. Note that the amplitude of the steady-state response is 
36.69 mA, which is less than the 40 mA current rating of the inductor. 
But the transient response has an initial amplitude of 147.14 mA, far 
greater than the 40 mA current rating. Calculate the value of the inductor 
current at = 0t :

i (0) 147.14(1)cos( 97.89°) 36.69 cos(56.61°) 6.21  A.L µ= − + = −

Clearly, the transient part of the response does not cause the induc-
tor current to exceed its rating initially. But we need a plot of the com-
plete response to determine whether or not the current rating is ever 
exceeded, as shown in Fig. 12.20.
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476 Introduction to the Laplace Transform

The plot suggests we check the value of the inductor current at 1 ms:

i e(0.001) 147.14 cos( 59.99°) 36.69 cos(78.21°) 42.4 mA.L
0.75= − + =−

Thus, the current rating is exceeded in the inductor, at least momentar-
ily. If we determine that we never want to exceed the current rating, we 
should reduce the magnitude of the sinusoidal source. This example 
illustrates the importance of considering the complete response of a cir-
cuit to a sinusoidal input, even if we are satisfied with the steady-state 
response.

SELF-CHECK: Assess your understanding of the Practical Perspective 
by trying Chapter Problems 12.57 and 12.58.

Summary
• The Laplace transform is a tool for converting time- 

domain equations into frequency-domain equations, 
according to the following general definition:

f t f t e dt F s( ) ( ) ( ), st

0∫{ } = =−
∞

L

where f t( ) is the time-domain expression and F(s) is 
the frequency-domain expression. (See page 446.)

• The step function Ku t( )  describes a function that 
experiences a discontinuity from one constant level to 
another at some point in time. K is the magnitude of 
the jump; if =K 1, Ku t( )  is the unit step function. (See 
page 447.)

• The impulse function δK t( ) is defined as

∫ δ =
−∞

∞

K t dt K( ) ,

δ = ≠t t( ) 0, 0.

K is the strength of the impulse; if =K 1, δK t( ) is the 
unit impulse function. (See page 449.)

• A functional transform is the Laplace transform of a 
specific function. Important functional transform pairs 
are summarized in Table 12.1. (See page 453.)

• Operational transforms define the general mathemati-
cal properties of the Laplace transform. Important oper-
ational transform pairs are summarized in Table  12.2. 
(See page 458.)

• In linear lumped-parameter circuits, F s( ) is a rational 
function of s. (See page 460.)

• If F s( ) is a proper rational function, the inverse transform 
is found by a partial fraction expansion. (See page 461.)

• If F s( ) is an improper rational function, it can be 
 inverse-transformed by first expanding it into a sum of a 
polynomial and a proper rational function. (See page 469.)

• F s( ) can be expressed as the ratio of two factored poly-
nomials. The roots of the denominator are called poles 
and are plotted as X's on the complex s plane. The roots 
of the numerator are called zeros and are plotted as O’s 
on the complex s plane. (See page 470.)

50

40

30

20

10

0

210

220

230

240

250

iL(t) (mA)

t (ms)

0 10 20 30 40 50

Figure 12.20 ▲ Plot of the inductor current for the circuit in Fig. 12.19.
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t (s)

t (s)

t (s)

f (t)

f (t)

f (t)

(a)

(b)

(c)

12840

120

2120

250

0 10

30

50

0 1 2 3 4

24

50 sin      (0 # t # 4)p
2

t 

Figure P12.1

• The initial-value theorem states that

=
→ → ∞+

f t sF slim   ( ) lim   ( ).
t s0

The theorem assumes that f t( ) contains no impulse 
functions. (See page 472.)

•  The final-value theorem states that

=
→ ∞ → +

f t sF slim   ( ) lim   ( ).
t s 0

The theorem is valid only if the poles of F s( ),  except 
for a first-order pole at the origin, lie in the left half of 
the s plane. (See page 472.)

• The initial- and final-value theorems allow us to predict 
the initial and final values of f t( ) from an s-domain 
expression. (See page 474.)

Problems

Section 12.2

 12.1  Use step functions to write the expression for each 
of the functions shown in Fig. P12.1.

 12.2  Use step functions to write the expression for each 
function shown in Fig. P12.2.

t (s)

f (t)

f (t)

(a)

(b)

63 9

t (s)

23

210220

215

15

10

50

20

2629

Figure P12.2

 12.3  Make a sketch of f(t) for t25 s 25 s− ≤ ≤  when 
f(t) is given by the following expression:

f t t u t t u t( ) (20 400) ( 20) (40 400) ( 10)= − + + + + +

t u t(400 40 ) ( 10)+ − −

t u t(20 400) ( 20).+ − −
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2>  2

22>  2

  >2
2  2  >2 0

t

d9(t)

P

P P

P P

P

Figure P12.5

 12.4  Step functions can be used to define a window func-
tion. Thus − − −u t u t( 1) ( 4) defines a window  
1 unit high and 3 units wide located on the time axis 
between 1 and 4.

  A function f(t) is defined as follows:

= ≤f t t( ) 0, 0 ;

t t30 , 0 2 s;= ≤ ≤

= ≤ ≤t60, 2 s 4 s;

t t60 cos  
4

, 4 s 8 s;π π( )= − ≤ ≤

= − ≤ ≤t t30 300, 8 s 10 s;

= ≤ < ∞t0, 10 s .

a) Sketch f(t) over the interval − ≤ ≤t2 s 12 s.

b) Use the concept of the window function to write 
an expression for f(t).

Section 12.3

 12.5  The triangular pulses shown in Fig. P12.5 are equiv-
alent to the rectangular pulses in Fig.  12.12(b), 
because they both enclose the same area ∈(1 ) and 
they both approach infinity proportional to ∈1 2  as 

0.∈ →  Use this triangular-pulse representation for 
δ′ t( ) to find the Laplace transform of t( ).δ ′′

Laplace transform of the rectangular pulse that 
exists between ±∈ in Fig. 12.9 and then finding the 
limit of this transform as 0.∈ →

 12.9  Evaluate the following integrals:

a) I t t t dt( 4)[ ( ) 4 ( 2)] ;3
2

4

∫ δ δ= + + −
−

b) ∫ δ δ δ= + + + −
−

I t t t t dt[ ( ) ( 2.5) ( 5)] .2
3

4

 12.10  Find f(t) if

∫π
ω ω= ω

−∞

∞
f t F e d( ) 1

2
  ( ) ,j t

and

ω
ω
ω

πδ ω=
+
+

F
j
j

( )
3
4

  ( ).

 12.11  Show that

t s( ) .n n( )δ{ } =L

 12.12  a) Show that

f t t a dt f a( ) ( )  ( ).∫ δ′ − = − ′
−∞

∞

(Hint:  Integrate by parts.)

b) Use the formula in (a) to show that

L δ{ }′ =t s( ) .

Sections 12.4–12.5

 12.13  Find the Laplace transform of each of the following 
functions:

a) f t t( ) ;=

b) = −f t te( ) ;at

c) f t t( ) sin ;ω=

d) β=f t t( ) cosh ;

e) f t t( ) sinh .β=

 12.14  a)  Use the first derivative (time) operational trans-
form given in Table  12.2 to find the Laplace 

transform of −d
dt

te ( ).at

b) Check your result in part (a) by first differen-
tiating and then transforming the resulting 
expression.

 12.15  Show that

L{ } = +−e f t F s a( ) ( ).at

 12.16  Show that

L ( ){ } =f at
a

F s
a

( ) 1 .

 12.6  Explain why the following function generates an 
impulse function as 0∈ → :

f t
t

t( ) , .
2 2

π
=

∈
∈ +

−∞ ≤ ≤ ∞

 12.7  a)  Find the area under the function shown in 
Fig. 12.12(a).

b)  What is the duration of the function when 0∈ = ?

c) What is the magnitude of f(0) when 0∈ = ?

 12.8  In Section 12.3, we used the sifting property of the 
impulse function to show that t( ) 1.δ{ } =L  Show 
that we can obtain the same result by finding the 
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 12.17  a) Find e dx .ax
t

0
L ∫{ }−

−

b) Check the results of (a) by first integrating and 
then transforming.

 12.18  a)  Find d
dt

tsin .ω{ }L

b) Find d
dt

t  cos .ω{ }L

c) Find d
dt

t u t  ( ) .
3

3
2{ }L

d) Check the results of parts (a), (b), and (c) by first 
differentiating and then transforming.

 12.19  a)  Find the Laplace transform of the function illus-
trated in Fig. P12.19.

b) Find the Laplace transform of the first deriva-
tive of the function illustrated in Fig. P12.19.

c) Find the Laplace transform of the second deriv-
ative of the function illustrated in Fig. P12.19.

 12.23  Find the Laplace transform for (a) and (b).

a) β= −f t d
dt

e t( )  ( sinh ).at

b) ∫ ω= −
−

f t e x dx( ) cos   .ax
t

0

c) Verify the results obtained in (a) and (b) by first 
carrying out the indicated mathematical opera-
tion and then finding the Laplace transform.

 12.24  a) Given that L{ }=F s f t( ) ( ) , show that

L{ }− =
dF s

ds
t f t 

( )
  ( ) .

b) Show that

L{ }− =
d F s

ds
t f t( 1)

( )
( ) .n

n

n
n

c) Use the result of (b) to find L L β{ } { }t t t,   sin ,5  
and te tcosh .tL{ }−

 12.25  a)   Show that if L{ }=F s f t( ) ( ) , and f t t{ ( ) }  is 
Laplace-transformable, then

F u du
f t

t
( )

.
s∫ { }( ) =
∞

L

(Hint:  Use the defining integral to write

∫ ∫∫ ( )=
∞

−
∞∞

−
F u du f t e dt du( ) ( )

s

ut

s 0

and then reverse the order of integration.)

b) Starting with the Laplace transform of βt tsin ,  
from Problem 12.24(c), use the operational 
transform given in (a) of this problem to find 
L β{ }tsin .

Section 12.6

 12.26  The switch in the circuit in Fig. P12.26 has been 
in position a for a long time. At =t 0,  the switch 
moves instantaneously to position b.

a) Derive the integrodifferential equation that gov-
erns the behavior of the voltage vo for ≥ +t 0 .

b) Show that

=
+

+ +
V s

V s R L
s R L s LC

( )
[ ( )]

[ ( ) (1 )]
.o

dc
2

f (t)

16

0

216

t (s)4 8 12 16

Figure P12.19

 12.20  Find the Laplace transform of each of the following 
functions:

a) ( )= − −− −f t e u t( ) 20 2 .t5( 2)

b) f t t u t u t

t u t u t

t u t u t

( ) (8 8)[ ( 1) ( 2)]

(24 8 )[ ( 2) 4)

(8 40)[ ( 4) 5 ].

( ]

( )

= − − − −

+ − − − −

+ − − − −

 12.21  a) Find the Laplace transform of

∫ −
x dx 

t

0

by first integrating and then transforming.

b) Check the result obtained in (a) by using the time 
integral operational transform given in  Table 12.2.

 12.22  Find the Laplace transform (when 0∈ → ) of the 
derivative of the exponential function illustrated in 
Fig. 12.9, using each of the following two methods:

a) First differentiate the function and then find the 
transform of the resulting function.

b) Use the first derivative (time) operational trans-
form given in Table 12.2.

1

2

R L

Vdc

t 5 0
vob

a

C
1

2

Figure P12.26
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480 Introduction to the Laplace Transform

 12.27  The switch in the circuit in Fig. P12.27 has been 
in position a for a long time. At =t 0,  the switch 
moves instantaneously to position b.

a) Derive the integrodifferential equation that gov-
erns the behavior of the current io for ≥ +t 0 .

b) Show that

=
+

+ +
I s

I s RC
s RC s LC

( )
[ (1 )]

[ (1 ) (1 )]
.o

dc
2

t 5 0 R

a

b
CIdc L

io

Figure P12.27

 12.28  There is no energy stored in the circuit shown in 
Fig. P12.28 at the time the switch is opened. In 
Section 12.6, we derived the integrodifferential equa-
tion that governs the behavior of the voltage vo. We 
also showed that the Laplace transform of vo is

=
+ +

V s
I C

s RC s LC
( )

(1 ) (1 )
.o

dc
2

Use Vo(s) to show that the Laplace transform of io is

=
+ +

I s
sI

s RC s LC
( )

(1 ) (1 )
.o

dc
2

Idc

t 5 0

vo R CL
io

1

2

Figure P12.28

1

2

R

Vdc

t 5 0
voL Cio
1

2

Figure P12.29

 12.29  The switch in the circuit in Fig. P12.29 has been 
open for a long time. At =t 0,  the switch closes.

a) Derive the integrodifferential equation that gov-
erns the behavior of the voltage vo for ≥t 0.

b) Show that

=
+ +

V s
V RC

s RC s LC
( )

(1 ) (1 )
.o

dc
2

c) Show that

=
+ +

I s
V RLC

s s RC s LC
( )

[ (1 ) (1 )]
.o

dc
2

  12.30  There is no energy stored in the circuit shown in  
Fig. P12.30 at the time the switch is opened.

a) Derive the integrodifferential equations that 
 govern the behavior of the node voltages v1 and v2.

b) Show that

=
+ +

V s
sI s

C s R L s LC
( )

( )

[ ( ) (1 )]
.g

2 2

R

L
t 5 0

Cv1ig

1 1

2

v2

2

Figure P12.30

1

2

100 V

160 V

40 V10 H

15 H 20 H180 V
t 5 0

i1 i2

Figure P12.31

 12.31  a)  Write the two simultaneous differential equa-
tions that describe the circuit shown in Fig. P12.31  
in terms of the mesh currents i1 and i2.

b) Laplace-transform the equations derived in (a). 
Assume that the initial energy stored in the cir-
cuit is zero.

c) Solve the equations in (b) for I1(s) and I2(s).

PSPICE
MULTISIM

 12.32  In the circuit shown in Fig.  12.16, the dc cur-
rent source is replaced with a sinusoidal source 
that delivers a current of t5 cos10  A. The cir-
cuit components are =R 1 Ω, =C 25 mF, and 

=L 625 mH. Find the numerical expression for 
V(s).

Section 12.7

 12.33  The circuit parameters in the circuit in Fig. P12.26 
are =R 5 kΩ, =L 1 H, and =C 250 nF.  If 

=V 15 V,dc  find vo(t) for ≥t 0.

 12.34  The circuit parameters in the circuit in Fig. P12.27 
are =R 50 Ω, =L 31.25 mH, and C 2  F.µ=  If 

=I 100 mA,dc  find io(t) for ≥t 0.

 12.35  The parameter values for the circuit in Fig. P12.28 
are as follows: =R 4 kΩ, =L 2.5 H,  =C 25 nF, 
and =I 3 mA.dc

a) Find vo(t) for ≥t 0.

b) Find io(t) for ≥t 0.

c) Does your solution for io(t) make sense when 
=t 0? Explain.

PSPICE
MULTISIM

PSPICE
MULTISIM
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 12.36  The circuit parameters in the circuit in Fig. P12.29 
are =R 10 kΩ; =L 800 mH;  and =C 100 nF. 
If Vdc is 70 V, find

a) vo(t) for ≥t 0;

b) io(t) for ≥t 0.

 12.37  The circuit parameters in the circuit in Fig. P12.30 
are =R 2500 Ω;  =L 500 mH;  and =C 500 nF.  
If =i t( ) 15 mA,g  find v2(t).

 12.38  Use the results from Problem 12.31 and the circuit 
shown in Fig P12.31 to

a) Find i1(t) and i2(t).

b) Find ∞i ( )1  and ∞i ( ).2

c) Do the solutions for i1 and i2 make sense? Explain.

 12.39  Find v(t) in Problem 12.32.

 12.40  Derive the transform pair given by Eq. 12.10.

  12.41  a) Derive the transform pair given by Eq. 12.11.

b) Derive the transform pair given by Eq. 12.12.

 12.42  Find f(t) for each of the following functions:

a) F s s s
s s s

( ) 6 26 26
( 1)( 2)( 3)

;
2

= + +
+ + +

b) F s s s s
s s s s

( ) 13 134 392 288
( 2)( 10 24)

;
3 2

2
= + + +

+ + +

c) F s
s

s s s
( )

10( 119)
( 5)( 10 169)

;
2

2
=

+
+ + +

d) = + +
+ +

F s s s
s s s

( ) 56 112 5000
( 14 625)

.
2

2

 12.43  Find f(t) for each of the following functions.

a) F s
s s

( ) 480
( 12 100)

;
2

=
+ +

b) F s s s
s s s

( ) 15 30
( 10 50)

;
2

2
= + +

+ +

c) F s s s
s s s

( ) 10 30 400
( 5)( 20 325)

;
2

2
= + +

+ + +

d) =
+

+ + + +
F s

s
s s s s

( )
10( 3)

( 6 34)( 12 52)
.

2

2 2

 12.44  Find f(t) for each of the following functions.

a) F s
s s
s s

( )
8( 5 50)

( 10)
;

2

2
=

− +
+

b) F s s s
s s

( ) 4 7 1
( 1)

;
2

2
= + +

+

c) F s s s s
s s s

( ) 6 15 50
( 4 5)

;
3 2

2 2
= − + +

+ +

d) F s s s s
s s

( ) 16 72 216 128
( 2 5)

.
3 2

2 2
= + + −

+ +

 12.45  Find f(t) for each of the following functions.

a) F s
s

s s s
( )

100( 1)
( 2 5)

;
2 2

=
+

+ +

PSPICE
MULTISIM

PSPICE
MULTISIM

b) F s
s

s s
( )

40( 2)
( 1)

;
3

=
+

+

c) F s s s
s s

( ) 5 29 32
( 2)( 4)

;
2

= + +
+ +

d) = + + −
+ +

F s s s s
s s

( ) 2 8 2 4
( 5 4)

. 
3 2

2

Sections 12.8–12.9

 12.46  Find the poles and zeros for the s-domain functions 
in Problems 12.43(a) and 12.43(d).

 12.47  Find the poles and zeros for the s-domain functions 
in Problems 12.45(a) and 12.45(b).

 12.48  Use the initial- and final-value theorems to check 
the initial and final values of the current and volt-
age in Problem 12.27.

 12.49  Use the initial- and final-value theorems to check the 
initial and final values of the current in Problem 12.28.

 12.50  Use the initial- and final-value theorems to check 
the initial and final values of the current and volt-
age in Problem 12.29.

 12.51  a)  Use the initial-value theorem to find the initial 
value of v in Problem 12.32.

b) Can the final-value theorem be used to find the 
steady-state value of v? Why or why not?

 12.52  Apply the initial- and final-value theorems to each 
transform pair in Problem 12.42.

 12.53  Apply the initial- and final-value theorems to each 
transform pair in Problem 12.43.

  12.54  Apply the initial- and final-value theorems to each 
transform pair in Problem 12.44.

 12.55  Apply the initial- and final-value theorems to each 
transform pair in Problem 12.45.

Sections 12.1–12.9

 12.56  a)  Use phasor circuit analysis techniques from 
Chapter 9 to determine the steady-state expres-
sion for the inductor current in Fig. 12.19.

b) How does your result in part (a) compare to the 
complete response for inductor current calcu-
lated in the Practical Perspective?

 12.57  Find the maximum magnitude of the sinusoidal 
source in Fig. 12.19 such that the complete response 
of the inductor current does not exceed the 40 mA 
current rating at =t 1 ms.

 12.58  Suppose the input to the circuit in Fig 12.19 is a 
damped ramp of the form −Kte  V.t500  Find the 
largest value of K such that the inductor current 
does not exceed the 40 mA current rating.

PRACTICAL
PERSPECTIVE

PRACTICAL
PERSPECTIVE

PRACTICAL
PERSPECTIVE
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 CHAPTER CONTENTS

13 
CHAPTER 

The Laplace Transform 
in Circuit Analysis
The Laplace transform has two characteristics that make it an 
attractive tool for circuit analysis.

• It transforms a set of linear constant-coefficient differential 
equations into a set of linear polynomial equations, which 
are easier to manipulate and solve.

• It automatically introduces into the polynomial equations 
the initial values of the current and voltage variables. Thus, 
initial conditions are an inherent part of the transform pro-
cess. (This contrasts with the classical approach to the solu-
tion of differential equations, in which initial conditions are 
considered when the unknown coefficients are evaluated.)

We begin this chapter by showing how to avoid writing 
time-domain integrodifferential equations and transforming them 
into the s domain. In Section 13.1, we’ll develop the s- domain cir-
cuit models for resistors, inductors, and capacitors. Then we can 
transform entire circuits into the s domain and write the s-domain 
equations directly. Section  13.2 reviews Ohm’s and Kirchhoff’s 
laws for s-domain circuits. After establishing these fundamentals, 
we apply the Laplace transform method to a variety of circuit 
problems in Section 13.3, using the circuit analysis and simplifica-
tion tools first introduced for resistive circuits.

After solving for the circuit response in the s domain, we 
 inverse-transform back to the time domain, using partial fraction 
expansion (as demonstrated in Chapter 12). As before, checking 
the final time-domain equations in terms of the initial conditions 
and final values is an important step in the solution process.

We introduce a new concept, the transfer function, in 
Section 13.4. The transfer function for a circuit is the ratio of the 
Laplace transform of its output to the Laplace transform of its input. 
In Chapters  14 and 15, we’ll use the transfer function in circuit 
design, but here we focus on using it for circuit analysis. We con-
tinue this chapter with a look at the role of partial fraction  expansion 
(Section  13.5) and the convolution integral (Section  13.6) when 
using the transfer function in circuit analysis. We conclude with a 
discussion of the impulse function in circuit analysis.

 13.1 Circuit Elements in the s Domain p. 484

13.2 Circuit Analysis in the s Domain p. 486

13.3 Applications p. 488

13.4 The Transfer Function p. 500

13.5  The Transfer Function in Partial 
Fraction Expansions p. 502

13.6  The Transfer Function and the 
Convolution Integral p. 505

13.7  The Transfer Function and the  
Steady-State Sinusoidal 
Response p. 511

13.8   The Impulse Function in Circuit 
Analysis p. 514

1  Be able to transform a circuit into the s 
domain using Laplace transforms; be sure 
you understand how to represent the initial 
conditions on energy-storage elements in 
the s domain.

2 Know how to analyze a circuit in the s 
domain and be able to transform an  
s-domain solution back to the time domain.

3 Understand the definition and significance 
of the transfer function and be able to 
calculate the transfer function for a circuit 
using s-domain techniques.

4 Know how to use a circuit’s transfer  
function to calculate the circuit’s unit 
impulse response, its unit step response, 
and its steady-state response to a  
sinusoidal input.

CHAPTER OBJECTIVES
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Practical Perspective 
Surge Suppressors
When using personal computers and other sensitive 
 electronic equipment, we need to provide protection from 
voltage surges. These surges can occur during a lightning 
storm or just by switching an electrical device on or off. 
A  commercially available surge suppressor is shown in 
the accompanying figure.

How can flipping a switch to turn on a light or turn 
off a hair dryer cause a voltage surge? At the end of this 
chapter, we will answer that question using Laplace trans-
form techniques to analyze a circuit. We will illustrate how 
a voltage surge can be created by switching off a resistive 
load in a circuit operating in the sinusoidal steady state.

Virote Chuenwiset/Shutterstock

Jhaz Photography/Shutterstock
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484 The Laplace Transform in Circuit Analysis

13.1 Circuit Elements in the s Domain
A three-step procedure transforms each circuit element into an s-domain 
equivalent circuit.

1. Write the time-domain equation relating the terminal voltage to 
the terminal current.

2. Laplace transform the time-domain equation to generate an alge-
braic relationship between the s-domain current and voltage.

3. Construct a circuit model that satisfies the relationship between 
the s-domain current and voltage.

Note the s-domain dimensions: the s-domain voltage dimension is 
 volt-seconds [V-s], the s-domain current dimension is ampere-seconds 
[A-s], and thus the s-domain voltage-to-current ratio dimension is volts 
per ampere, or ohms. An impedance in the s domain is measured in ohms, 
and an  admittance is measured in siemens. We use the passive sign con-
vention in all the derivations.

A Resistor in the s Domain
We begin with the resistor. From Ohm’s law,

=v Ri.

Because R is a constant, the Laplace transform of Ohm’s law is

 =V RI ,  (13.1)

where

{ } { }= =vV I iand .L L

From Eq. 13.1 we see that the s-domain equivalent circuit of a resistor is a 
resistance of R ohms that carries a current of I ampere-seconds and has a 
terminal voltage of V volt-seconds.

Figure  13.1 shows the time- and frequency-domain circuits of the 
resistor. Note that going from the time domain to the frequency domain 
does not change the resistance element.

An Inductor in the s Domain
Figure 13.2 shows an inductor carrying an initial current of I 0  amperes. 
The time-domain equation relating the terminal voltage to the terminal 
current is

L di
dt

.v =  

The Laplace transform of the inductor equation gives

 V L sI i sLI LI(0 ) .0[ ]= − = −−  (13.2)

One circuit configuration that satisfies Eq. 13.2 is an impedance 
of sL ohms in series with an independent voltage source of LI 0  volt- 
seconds, as shown in Fig. 13.3. Note that the polarity of the voltage source 
LI 0  agrees with the minus sign in Eq. 13.2. Note also that LI 0  carries  

I0L i

a

b

1

2

v

Figure 13.2 ▲ An inductor of L henrys carrying an 
initial current of I0 amperes.

a

b

V

I sL

LI0
2
1

1

2

Figure 13.3 ▲ The series equivalent circuit for an 
inductor of L henrys carrying an initial current of I0 
amperes.

a

b

1

2

V

I

sL I0
s

Figure 13.4 ▲ The parallel equivalent circuit for an 
inductor of L henrys carrying an initial current of I0 
amperes.

1

2

V

a

b

sL I

Figure 13.5 ▲ The s-domain circuit for an inductor 
when the initial current is zero.

R i

a

b
(a)

V R I 

a

b
(b)

1

2

v

1

2

Figure 13.1 ▲ The resistor. (a) Time domain.  
(b) Frequency domain.
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 13.1 Circuit Elements in the s Domain 485

its own algebraic sign; that is, if the initial value of i is opposite to the ref-
erence direction for i, then I 0  has a negative value.

We can also solve Eq. 13.2 for the current I and then construct the 
circuit to satisfy the resulting equation. The current I is given by

=
+

= +I
V LI

sL
V
sL

I
s

.0 0

The s-domain equivalent circuit that satisfies this equation is an 
impedance of sL ohms in parallel with an independent current source of 
I s0  ampere-seconds, as seen in Fig. 13.4.

There are two other ways to construct the s domain circuit in Fig. 13.4: 
(1) find the Norton equivalent of the circuit shown in Fig. 13.3 or (2) start 
with the inductor current as a function of the inductor voltage in the time 
domain and then Laplace transform the resulting integral equation. We 
leave these two approaches to Problems 13.1 and 13.2.

If the initial energy stored in the inductor is zero, that is, if =I 0,0  
the s-domain equivalent circuit is an inductor with an impedance of sL 
ohms. Figure 13.5 shows this circuit.

A Capacitor in the s Domain
A capacitor with initial stored energy also has two s-domain equivalent 
circuits. Figure 13.6 shows a capacitor initially charged to V0 volts. The 
capacitor current is

i C d
dt

.υ=

Transforming the capacitor equation yields

 = − = −−vI C sV sCV CV[ (0 )] ,0  (13.3)

so the s-domain current I is the sum of two branch currents. One branch 
contains an admittance of sC siemens, and the second branch contains an 
independent current source of CV0 ampere-seconds. Figure  13.7 shows 
this parallel equivalent circuit.

To derive the other equivalent circuit for the charged capacitor, solve 
Eq. 13.3 for V:

( )= +V
sC

I
V
s

1 .0

Figure 13.8 shows the circuit that satisfies the equation for capacitor volt-
age, which is a series combination of an impedance and an independent 
voltage source.

In the equivalent circuits shown in Figs. 13.7 and 13.8, V0 carries its 
own algebraic sign. In other words, if the polarity of V0 is opposite to the 
reference polarity for υ, V0 is a negative quantity. If the initial voltage on 
the capacitor is zero, both equivalent circuits reduce to an impedance of 

sC1  ohms, as shown in Fig. 13.9.
In Chapter 9 we used the phasor transform to turn a time-domain cir-

cuit into a frequency-domain circuit. In this chapter, we use the s- domain 
equivalent circuits, summarized in Table 13.1, to transform a time- domain 
circuit into the s domain. When the time-domain circuit contains induc-
tors and capacitors with initial stored energy, you need to decide whether 
to use the parallel or series s-domain equivalent circuit. With a little 
 forethought and some experience, the best choice is often evident.

i

a

b

1

2

v

1

2

V0C

Figure 13.6 ▲ A capacitor of C farads initially 
charged to V0 volts.

1>sC

a

b

1

2

V CV0

I

Figure 13.7 ▲ The parallel equivalent circuit for a 
capacitor initially charged to V0 volts.

a

b

1

2

V

I

1

2
V0>s

1>sC

Figure 13.8 ▲ The series equivalent circuit for a 
capacitor initially charged to V0 volts.

2

1

V

I

1>sC

a

b

Figure 13.9 ▲ The s-domain circuit for a capacitor 
when the initial voltage is zero.
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486 The Laplace Transform in Circuit Analysis

13.2 Circuit Analysis in the s Domain
Before presenting a method for using the s-domain equivalent circuits in 
analysis, we make some important observations.

• If no energy is stored in the inductor or capacitor, the relationship 
between the s-domain voltage and current for each passive element is:

OHM’S LAW IN THE s DOMAIN 

 =V ZI ,  (13.4)

Time Domain Frequency Domain

Ri

1

2

v

b

a

v 5 Ri

i

1

2

v

b

a

L I0

v 5 L di>dt,
1
L

i  5 vdx 1 I0•0–     

t

1

2

v

1

2

V0

b

a

i C

RI

I

1

2

V

b

a

V 5 RI

b

V

2

1 a

V 5 sLI 2 LI0

sL

2

1
LI0

a

b

1

2

VI

1

2
V0>s

1>sC

I
sC

V0
sV 5 1

V
sL

I0
sI 5 1

b

1

2

V

I

sL I0>s

a

b

a

1>sC

1

2

V CV0

I

I 5 sCV 2 CV0

i  5 C dv>dt,
1
C

v 5 idx 1 V0•0–     

t

TABLE 13.1  Summary of the s-Domain Equivalent Circuits

where Z is the s-domain impedance of the element. Thus, a resistor 
has an impedance of R ohms, an inductor has an impedance of sL 
ohms, and a capacitor has an impedance of sC1  ohms. The relation-
ship contained in Eq. 13.4 also appears in Figs. 13.1(b), 13.5, and 13.9. 
Equation 13.4 is known as Ohm’s law in the s domain. The reciprocal 
of the impedance is admittance. Therefore, the s-domain  admittance 
of a resistor is R1  siemens, an inductor has an admittance of sL1  
siemens, and a capacitor has an admittance of sC siemens.
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• The rules for combining impedances and admittances in the s 
domain are the same as those for frequency-domain circuits. Thus, 
 series- parallel simplifications and ∆-to-Y conversions also are appli-
cable to s-domain analysis.

• Kirchhoff’s laws apply to s-domain currents and voltages because an 
operational Laplace transform states that the Laplace transform of a 
sum of time-domain functions equals the sum of the Laplace trans-
forms of the individual functions (see Table 12.2). The algebraic sum 
of the currents at a node is zero in the time domain, so the algebraic 
sum of the Laplace-transformed currents is also zero. A similar state-
ment holds for the algebraic sum of the Laplace-transformed voltages 
around a closed path. The s-domain version of Kirchhoff’s laws is

 ∑ =Iat every node in a circuit, alg  0,  (13.5)

 ∑ =Varound every closed path in a circuit, alg  0.  (13.6)

Therefore, because Ohm’s law, KVL, and KCL hold in the s domain, 
all of the circuit-analysis techniques developed in Chapters 2–4 for resistive 
circuits can be used to analyze circuits in the s domain. These  techniques 
include combining impedances in series and parallel to find equivalent 
 impedances, voltage division and current division, the node-voltage method 
and the mesh-current method, source transformation, and Thévenin and 
Norton equivalent circuits. This leads us to the following step-by-step pro-
cedure for using Laplace transform techniques to analyze circuits.

Step 1 determines the initial current in each inductor and the initial volt-
age across each capacitor by analyzing the time-domain circuit for <t 0.

Step 2 transforms each independent voltage or current source defined by 
time-domain functions into the s domain using the functional and opera-
tional transforms in Tables 12.1 and 12.2.

Step 3  transforms voltages and currents represented by time-domain sym-
bols such as v(t) and i(t) into corresponding s-domain symbols such as V 
and I.

Step 4 transforms any remaining components in the time-domain circuit 
into the s domain using the circuits in Table  13.1. When inductors and 
capacitors have nonzero initial values, calculated in Step 1, these initial 
conditions are represented by independent sources in series or parallel 
with the component impedances.

Step 5 analyzes the resulting s-domain circuit using the techniques devel-
oped for resistive circuits in Chapters 2–4. The analysis produces s-domain 
voltages and currents that should each be represented as a ratio of two 
polynomials in s.

Step 6 applies the initial- and final-value theorems to the s-domain functions 
from Step 5 to check the values of the corresponding time-domain functions 
at =t 0 and = ∞t . Note that it might not be possible to apply one or both 
of these theorems, depending on the form of the s-domain function.

Step 7 represents each s-domain voltage and current of interest as a  partial 
fraction expansion and then uses Table 12.3 to  inverse-Laplace-transform 
the s-domain voltages and currents back to the time domain.

This analysis method yields the complete response to any circuit 
whose voltage and current sources have Laplace transforms. This method 
represents the most comprehensive circuit analysis technique presented in 
this text and is summarized in Analysis Method 13.1. Example 13.1 applies 
the first five steps in Analysis Method 13.1 to a time-domain circuit.

LAPLACE TRANSFORM 
METHOD

1. Determine the initial conditions for 
inductors and capacitors.
2. Laplace-transform independent 
voltage and current functions using 
Tables 12.1 and 12.2.
3.  Transform symbolic time-domain 
voltages and currents into s-domain 
symbols.
4. Transform remaining circuit compo-
nents into the s domain using Table 13.1.
5. Analyze the s-domain circuit  using 
resistive circuit analysis techniques; 
 represent the resulting s-domain voltages 
and currents as ratios of polynomials in s.
6. Use the initial- and final-value 
 theorems to check the s-domain voltages 
and currents.
7. Inverse-Laplace-transform the  
s-domain voltages and currents using 
partial fraction expansion and Table 12.3.

Analysis Method 13.1 Laplace-transform 
circuit-analysis method.

 13.2 Circuit Analysis in the s Domain 487
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488 The Laplace Transform in Circuit Analysis

EXAMPLE 13.1   Transforming a Circuit into the s Domain

A Ω500   resistor, a 16 mH inductor, and a 25 nF 
 capacitor are connected in parallel.

a) Express the admittance of this parallel combina-
tion of elements as a rational function of s.

b) Compute the numerical values of the zeros and 
poles.

Solution

a) We use Analysis Method 13.1 to transform the 
three parallel-connected components from the 
time domain to the s domain.

Step 1:  There are no initial conditions for the 
inductor and capacitor.

Step 2:  There are no voltage or current sources.

Step 3:  There are no symbolic voltages or currents.

Step 4:  Because there are no initial conditions, 
each component is represented by its s-domain 
impedance:

= ΩZ 500  ;R

= ΩZ s0.016   ;L

=
×

= × Ω
−

Z
s s

1
25 10

40 10   .C 9

6

The s-domain circuit is shown in Fig. 13.10.

Step 5:  Find the equivalent admittance by add-
ing the inverse of the three impedances:

= + +
×

= + + ×
×

Y
s

s

s s
s

1
500

1
0.016 40 10

80,000 25 10
40 10

 S.

eq 6

2 8

6

b) The numerator factors are + +s j( 40,000 30,000) 
and + −s j( 40,000 30,000). Therefore the zeros 
are − + j40,000 30,000 and − − j40,000 30,000 .  
There is a pole at 0.

Objective 1—Be able to transform a circuit into the s domain using Laplace transforms

13.1  A 2 kΩ resistor, a 6.25 H inductor, and a 250 nF 
capacitor are in parallel.
a)  Express the impedance of this parallel com-

bination as a rational function of s.
b) Compute the numerical values of the zeros 

and poles.

Answer: a) s s s4 10  / ( 2000 64 10 );6 2 4× + + ×

b) z 0,1− =

p 400 rad/s,1− = −

p 1600 rad/s.2− = −

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter Problems 13.5 and 13.6.

13.3 Applications
We now use Analysis Method 13.1 to find the complete response of  several 
example circuits. We start with two familiar circuits from Chapters 7 and 8 
to show that the Laplace transform approach yields the same results found 
using the first- and second-order circuit analysis techniques. Example 13.2 
solves an RC circuit, and Example 13.3 solves an RLC circuit.

500 V Yeq40 3 106

V 0.016s V
s

Figure 13.10 ▲ The s domain circuit for Example 13.1.
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 13.3 Applications 489

EXAMPLE 13.2  The Natural Response of an RC Circuit

The circuit in Fig. 13.11 was analyzed in Example 7.3  
using first-order circuit analysis techniques. Use the 
Laplace transform method to find vo(t) for ≥ +t 0 .

Solution
Apply the Laplace transform method using 
Analysis Method 13.1.

Step 1:  Determine the initial voltage across the 
capacitor by analyzing the circuit in Fig.  13.11 for 

<t 0. Because the switch has been in position 
x for a long time, the capacitor behaves like an 
open circuit. The voltage across the open circuit 

=V 100 V.0

Step 2:  For ≥t 0, there are no voltage or current 
sources in the circuit, so we can skip this step.

Step 3:  The voltage across the Ω240 k  resistor 
is represented in the s domain as V, as shown in 
Fig. 13.12.

Step 4:  The impedance of the three resistors is 
their resistance. The impedance of the capacitor is

= =
×

= × Ω
−

Z
sC s s
1 1

0.5 10
2 10   .C 6

6

Because the capacitor has an initial condition,  
we must decide whether to represent it using a  
 series-connected voltage source or a  parallel- 
 connected current source, as shown in Table  13.1. 
Here we use the series-connected voltage source, 
whose value is =V s s s100  V- .0  The s-domain 
circuit that results from Steps  1–4 is shown in 
Fig. 13.12.

 Step 5:  Begin by combining the parallel-connected  
Ω240 k  and Ω60 k  resistors into a single equivalent 

Ω48 k  resistor whose voltage is Vo. Now use volt-
age division to find Vo:

( )( )
=

× + +
V

s s
48,000

2 10 32,000 48,000
  100

o 6

=
+s
60

25
.

Step 6:  Use the initial- and final-value theorems to 
show that the initial value of vo is 60 V and final 
value of vo is zero, as we expect from the circuit in 
Fig. 13.11.

( )
=

+
=

+( )→∞ →∞ →
sV s

s s
lim lim   60

25
lim 60

1 25s
o

s s1 0

υ=
+

= =
→

t60
1 0

60 lim ( );
t

o
0

=
+

=
+

= =
→ → →∞

vsV s
s

tlim lim   60
25

60(0)
0 25

0 lim ( ).
s

o
s t

o
0 0

Step 7:  Since Vo is already a partial fraction, we can 
use the transforms in Table 12.3 to find vo:

t
s

e u t( ) 60
25

60  V.o
t1 25L { } ( )=

+
=− −v

This matches the voltage found in Example 7.3 
using first-order circuit-analysis methods.

EXAMPLE 13.3   The Step Response of an RLC Circuit

Consider the circuit in Fig. 13.13, where the initial 
current in the inductor is 29 mA and the initial volt-
age across the capacitor is 50 V. This circuit was 
analyzed in Example 8.10 using second-order cir-
cuit analysis techniques. Use the Laplace transform 
method to find v(t) for ≥t 0.

100 V
1
2

x y10 kV  32 kV

0.5mF
240 kV 60 kVvo

vC

1

1

22

t 5 0

Figure 13.11 ▲ The RC circuit for Example 13.2.

32 kV

60 kV240 kV
1

2
100

s V-s

2 3 106

V 1

2

V

s

o

Figure 13.12 ▲ The circuit in Fig. 13.11 for t 0,≥  transformed 
into the s domain.

25 mH 500 V25 nF24 mA

iL
t 5 0

1

2

v

Figure 13.13 ▲ The parallel RLC circuit for Example 13.3.
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490 The Laplace Transform in Circuit Analysis

500 V

1.25 mA-s mA-s 1

2

V

29
s

mA-s24
s 40 

s

403106

s  V

V

Figure 13.14 ▲ The circuit in Fig. 13.13 for ≥t ,0  trans-
formed into the s domain.

Solution
Apply the Laplace transform method using 
Analysis Method 13.1.

Step 1:  Both initial conditions are given in the 
problem statement, so we can skip this step.

Step 2:  We can describe the parallel combination 
of the current source and the switch in Fig. 13.13 as 
24u(t) mA. The Laplace transform of this function 
is s24  mA-s, which is the current source value in 
the s-domain circuit in Fig. 13.14.

Step 3:  The voltage across the 240 kΩ resistor 
is represented in the s domain as V, as shown in 
Fig. 13.12.

Step 4:  The impedance of the resistor is its resis-
tance. The impedance of the inductor is

Z sL s s0.025
40L = = = Ω

and the impedance of the capacitor is

Z
sC s s
1 1

25 10
40 10 .C 9

6
= =

×
= × Ω

−

Both the inductor and capacitor have non-
zero initial conditions. We must decide whether 
to represent them as series-connected voltage 
sources or as parallel-connected current sources, 
as shown in Table  13.1. Here we use parallel- 
connected current sources because the resulting 
circuit has only parallel- connected components. 
The value of the current source in parallel with 
the inductor is =I s s   0.029  A-s,0  with the 
current arrow directed down. The value of the 
current source in parallel with the capacitor is 
CV (50)(25 10 ) 1.25  A-s,0

9 µ= × =−  with the 
current arrow directed up. The s-domain circuit that 
results from Steps 1–4 is shown in Fig. 13.14.

Step 5:  Begin by combining the three parallel- 
connected impedances into a single equivalent 
impedance:

( )=
×

+ +
−

Z s
s40 10

40 1
500eq 6

1

s
s s

40 10
80,000 16 10

.
6

2 8
= ×

+ + ×
Ω

To find the voltage across this equivalent imped-
ance, multiply by the sum of the three parallel- 
connected currents:

( )= + × −−V Z
s s

0.024 1.25 10   0.029
eq

6

= − ×
+ + ×

s
s s

50 20 10
80,000 16 10

 V-s.
4

2 8

Step 6:  Use the initial- and final-value theorems 
to predict the initial and final values of v:

= − ×
+ + ×→∞ →∞

sV s s
s s

lim lim   50 20 10
80,000 16 10s s

2 4

2 8

( )= = =
→

v t50
1

50 lim ;
t 0

= − ×
+ + ×→ →

sV s s
s s

lim lim   50 20 10
80,000 16 10

 
s s0 0

2 4

2 8

=
×

= =
→∞

v t
(0)

16 10
0 lim ( ).

t8

The initial-value theorem predicts the correct initial 
voltage from the problem statement, =V 50 V.0  
To confirm the final value of the voltage, envision 
the circuit in Fig.  13.13 as → ∞t . The inductor 
is behaving like a short circuit, and the capacitor 
is behaving like an open circuit in parallel with the 
short  circuit. Therefore, the final value of capacitor 
voltage in the circuit is zero, as predicted by the 
 final-value theorem.

Step 7:  The partial fraction expansion of V is

( )
= − ×

+
V s

s
50 20 10

40,000

4

2

( ) ( )
= − ×

+
+

+s s
2.2 10

40,000
50
40,000

.
6

2

Now use the transforms in Table 12.3 to find v:

L { }( ) ( )
= − ×

+
+

+
−v t

s s
( ) 2.2 10

40,000
50
40,000

1
6

2

( ) ( )= − × +− −te e u t2.2 10   50  V.t t6 40,000 40,000

This matches the voltage found in Example 8.10 
using second-order circuit analysis methods.

( )

( ) ( )
=

− ×
+ + ×( )→

s

s s
lim

50 20 10 1
1 80,000 1 16 10 1s1/ 0

4

8 2
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 13.3 Applications 491

Next, we analyze a circuit with a sinusoidal source using Laplace meth-
ods. Phasor methods, presented in Chapter 9, were used to analyze circuits 
with sinusoidal sources but have an important limitation—they only pro-
duce the steady-state response of the circuit, not the complete response. 
Recall that the complete response consists of both the  steady-state and 
the transient response. Laplace methods do not have this limitation, so 
they produce a circuit’s complete response to a sinusoidal source, as seen 
in Example 13.4.

 Objective 2—Know how to analyze a circuit in the s domain and be able to transform an s domain solution 
to the time domain

13.2  The switch in the circuit shown has been in 
position x for a long time. At =t 0,  the switch 
is thrown to position y.
a) Find Vo  as a rational function of s.
b) Find the time-domain expression for .ov

Answer: a) ( )( )= − + +V s s150 400 1600o ;

b) e e u t(50 200 )  V.o
t t400 1600v ( )= −− −

13.3  There is no energy stored in the circuit shown 
at the time the current source is turned on.
a) Find the s-domain expression for V.
b) Find the s-domain expression for I.

c) Find the time-domain expression for v  when 
>t 0.

d) Find the time-domain expression for i when 
>t 0.

Answer: a) V
s

s s s
48( 25 10 )

( 2500)( 10,000)
;

2 6
=

+ ×
+ +

b) I
s s

480
( 2500)( 10,000)

;=
+ +

c) t e e u t( ) (48 80 80 ) ( ) V;t t2500 10,000υ = − +− −

d) i t e e u t( ) (64 64 ) ( ) mA.t t2500 10,000= −− −

ASSESSMENT PROBLEMS

SELF-CHECK: Also try Chapter Problems 13.11, 13.12, and 13.22.

 EXAMPLE 13.4   Analyzing a Circuit with a Sinusoidal Source

The circuit in Fig. 13.15 has no initial stored energy. 
At =t 0,  the switch closes and the circuit is driven 
by a sinusoidal source υ =t t( ) 15 cos 40,000  V.  
Use Laplace methods to find i(t) for ≥t 0.

Solution
Apply the Laplace transform method using Analysis 
Method 13.1.

Step 1:  There is no initial stored energy, so both ini-
tial conditions are zero.

Step 2:  Using the functional and operational trans-
form tables (Tables 12.1 and 12.2), we see that the 
Laplace transform of v(t) is

V t s
s

15 cos 40,000 15
40,000

 V-s.
2 2

{ }= =
+

L

2.5 H

t 5 0

5 kV

50 V3 A

x y

625 nF

1

2

vo

1

2

v
0.1 H1250 V

0.4 mF

38.4u(t)
mA i

1

2
v(t) i(t) 4 kV

62.5 mH

10 nF

t 5 0

Figure 13.15 ▲ The circuit for Example 13.4.
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492 The Laplace Transform in Circuit Analysis

This is the value of the voltage source for the  
s-domain circuit in Fig. 13.16.

Step 3:  The current is represented in the s domain 
as I, as shown in Fig. 13.16.

Step 4:  The impedance of the resistor is its resis-
tance. The impedance of the inductor is

Z sL s s0.0625
16L = = = Ω

and the impedance of the capacitor is

Z
sC s s
1 1

10 10  
10 .C 9

8
= =

×
= Ω

−

The s-domain circuit that results from Steps 1–4 is 
shown in Fig. 13.16.

Step 5:  To find the current I, divide the source volt-
age by the sum of the impedances:

I

s
s

s
s

15
40,000

4000 10
16

2 2

8
= +

+ +

s
s s s

240
40,000 64,000 16 10

 A-s.
2

2 2 2 8( )( )
=

+ + + ×

Step 6:  Use the initial-value theorem to predict the 
initial value of i:

sI s
s s s

lim lim 240
40,000 64,000 16 10s s

3

2 2 2 8( )( )
=

+ + + ×→∞ →∞

s

s s s

lim
240 1

1 40,000 1 60,000 16 10s1/ 0 2 8

2( ) ( )
( )

=
+













+ +
×
















( )→

( )= = =
→

i t0
(1)(1)

0 lim .
t 0

The initial-value theorem predicts correctly that the 
initial current is zero. We cannot use the final-value 
theorem to predict the final current because I has 
two poles on the imaginary axis at ± j40,000  rad s.

Step 7:  The partial fraction expansion of I is

( )( )
=

+ + + ×
I s

s s s
240

40,000 64,000 16 10

2

2 2 2 8

K
s j

K
s j40,000 40,000

1 1
*

=
−

+
+

K
s j

K
s j32,000 24,000 32,000 24,000

.2 2
*

+
+ −

+
+ +

.

Finding K1 and K2,

1

2
I 4 kV

108

s V

16
s

V

s2  1 40,0002
s15 V-s

Figure 13.16 ▲ The circuit in Fig 13.16 for t 0,≥  trans-
formed into the s domain.

Now use the transforms in Table 12.3 to find i:

i t
s j s j

1.875 10
40,000

1.875 10
40,000

1
3 3

L {( ) = ×
−

+ ×
+

−
− −

s j s j

3.125 10 126.87°

32,000 24,000

3.125 10 126.87°

32,000 24,000

3 3

+
× −

+ −
+

×

+ +







− −

= t[3.75cos40,000

e t u t6.25  cos 24,000 126.87° ]  mA.t32,000 ( ) ( )+ −−

The first term in the expression for i(t) is the 
steady-state response. Its frequency matches the 
frequency of the source, and this term persists for 
all time. You should use the phasor methods from 
Chapter 9 to verify this result. The second term in 
the expression for i(t) is the transient response, or 
the natural response. Note that it decays to zero as 

→ ∞t . This part of the response is independent of 
the voltage source and is based only on the passive 
component values and their interconnections.

( )( )
=

+ + + ×

= ×

=

−

K s
s j s s

240
40,000 64,000 16 10

1.875 10 ;

s j
1

2

2 8
40,000

3

K s
s s j

240
40,000 32,000 24000

3.125 10 126.87 .

s j
2

2

2 2
32,000 24,000

3

( )( )
=

+ + +

= × − °

=− +

−

M13_NILS8436_12_SE_C13.indd   492 15/01/22   3:47 PM



 13.3 Applications 493

Until now, we avoided analyzing circuits with inductors and capaci-
tors that have two or more meshes, or three or more essential nodes. Such 
circuits are described by two or more simultaneous differential equations, 
and the techniques for solving these systems of equations are beyond the 
scope of this text. However, using Laplace techniques, we can transform 
a circuit into the s domain and write a set of simultaneous algebraic equa-
tions, whose solution is much more manageable. Example 13.5 illustrates 
this by solving a circuit with two meshes.

Objective 2—Know how to analyze a circuit in the s domain and be able to transform an s-domain solution 
to the time domain

13.4  The energy stored in the circuit shown is zero 
at the time when the switch is closed. Find the 
 current io(t) for ≥t 0.

Answer:
( )

−

+ +−

t

e t u t

[17.68 cos(50 135°)

18.06  cos(39.965 46.194°)]  mA.t8.33

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter Problem 13.24.

EXAMPLE 13.5   Analyzing a Circuit with Multiple Meshes

The circuit in Fig. 13.17 has no initial stored energy. 
At =t 0,  the switch closes. Use Laplace methods 
to find i1(t) and i2(t) for ≥t 0.

Solution
Apply the Laplace transform method using Analysis 
Method 13.1.

Step 1:  There is no initial stored energy, so both 
 initial conditions are zero.

Step 2:  The series connection of the 336 V dc volt-
age source and the switch can be described in the 
time domain as 336u(t) V. Using the functional and 
operational transform tables (Tables 12.1 and 12.2), 
the Laplace transform of this voltage is

{ } =u t
s

336 ( ) 336  V-s.L

This is the value of the voltage source for the  
s-domain circuit in Fig. 13.18.

Step 3:  The currents are represented in the s 
domain as I1 and I2, as shown in Fig. 13.18.

Step 4:  The impedance of the resistors is their 
resistance. The impedance of the inductors is

Z sL s Z sL s8.4   ; 10   .L L1 1 2 2= = Ω = = Ω

The s-domain circuit that results from Steps 1–4 is 
shown in Fig. 13.18.

Step 5:  The two KVL equations are

= + −
s

s I I336 (42 8.4 ) 42 ,1 2

= − + +I s I0 42 (90 10 ) .1 2

240 mH

2.5 mF

4 V

0.1 sin 50t V 1

2

t 5 0 io(t)

10 H8.4 H

336 V
1

2
48 V42 V

t 5 0 i1 i2

Figure 13.17 ▲ A multiple-mesh RL circuit.

8.4s V 10s V

48 V42 V
1

2
I1 I2

336
s  V-s

Figure 13.18 ▲ The s-domain equivalent circuit for the 
 circuit shown in Fig. 13.17.
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494 The Laplace Transform in Circuit Analysis

( )( )
=

+ +→ →
sI

s s
lim lim   168

2 12s s0
2

0

( )= = =
→∞

i t168
(2)(12)

7 A lim .
t

2

To verify these values, consider the circuit in 
Fig. 13.17 as → ∞t . The inductors now behave like 
short circuits, as shown in Fig. 13.19.

The two KVL equations that describe this circuit are

− =i i42 42 336;1f 2f

− + =i i42 90 0.1f 2f

Solving, we find the final value of i1 is 15 A and the 
final value of i2 is 7 A, as predicted by the final-
value theorem.

Step 7:  Expanding I 1 and I 2  into a sum of partial 
fractions gives

= −
+

−
+

I
s s s

15 14
2

1
12

,1

= −
+

+
+

I
s s s
7 8.4

2
1.4

12
.2

We obtain the expressions for i1 and i2  by inverse- 
transforming I1 and I2, using Table 12.3:

( )= − −− −i e e u t(15 14 )  A,t t
1

2 12

( )= − +− −i e e u t(7 8.4 1.4 )  A.t t
2

2 12

One final test involves calculating the voltage drop 
across the 42 Ω resistor using three different meth-
ods. From the circuit, the voltage across the 42 Ω 
resistor (positive at the top) is

i i
di
dt

i
di
dt

42( ) 336 8.4 48 10 .1 2
1

2
2= − = − = +v

You should verify that regardless of which expres-
sion is used, the voltage is

υ ( )= − −− −e e u t(336 235.2 100.80 )  V.t t2 12

We are thus confident that the solutions for i1 and 
i2  are correct.

Using Cramer’s method, we get

s

s

42 8.4 42

42 90 10
∆ =

+ −

− +

= + +s s84( 14 24)2

( )( )= + +s s84 2 12 ,

N
s

s

336 42

0 90 101 =
−

+

=
+s

s
3360( 9)

,

N
s s42 8.4 336

42 02 =
+

−

=
s

14,112 .

Therefore,

=
∆

=
+

+ +
I

N s
s s s

40( 9)
( 2)( 12)

,1
1

=
∆

=
+ +

I
N

s s s
168

( 2)( 12)
.2

2

Step 6:  Use the initial-value theorem to predict the 
initial values of i1 and i2:

sI s
s s

lim lim 40 9
2 12s s

1
( )

( )( )
= +

+ +→∞ →∞

s s

s s
lim

40 1 9 1
1 2 1 12s1/ 0

2[ ]( ) ( )

( )( ) ( )( )
=

+
+ +( )→

( )= = =
→

i t0
(1)(1)

0 lim ;
t 0

1

( )( )
=

+ +→∞ →∞
sI

s s
lim lim 168

2 12s s
2

s
s s

lim
168 1

1 2 1 12s1 0

2( )
( )( ) ( )( )

=
+ +( )→

( )= = =
→

i t0
(1)(1)

0 lim .
t 0

2

The initial-value theorem predicts correctly that the 
initial currents are zero. Now use the final-value the-
orem to predict the values of i1 and i2 as t :→ ∞

( )

( )( )

( )

= +
+ +

=

= =

→ →

→∞

sI s
s s

i t

lim lim 40 9
2 12

40(9)
(2)(12)

15 A lim ;

s s

t

0
1

0

1

1

2
336 V 42 V 48 V

i2fi1f

 Figure 13.19 ▲ The circuit in Fig 13.17 as t .→ ∞
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We can use Thévenin and Norton equivalents to simplify circuits 
in the s domain. When one part of the circuit changes frequently while 
another part remains constant, we can find a simpler equivalent for the 
constant part of the circuit that makes analysis of the entire circuit eas-
ier. Example 13.6 creates a Thévenin equivalent to simplify part of an 
s-domain circuit.

Objective 2—Know how to analyze a circuit in the s domain and be able to transform an s-domain solution 
to the time domain

13.5  There is no energy stored in the circuit shown  
at the time the sources are energized.
a) Find I s( )1  and I s( ).2
b) Find i t( )1  and i t( )2  for ≥t 0.

Answer: a) =
+ +

+ +

= + +
+ +

I
s s

s s s

I s s
s s s

30( 50 3750
( 100)( 150)

,

22.5 6000 112,500
( 100)( 150)

;

1

2

2

2

b)  ( ) ( )= − +− −i t e e u t( ) 7.5 52.5 75  A,t t
1

100 150

i t e e u t( ) 7.5 52.5 37.5  A.t t
2

100 150( ) ( )= + −− −

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter Problems 13.16 and 13.20.

EXAMPLE 13.6   Creating a Thévenin Equivalent in the s Domain

We want to find the capacitor current, iC, for the 
circuit in Fig. 13.20. The circuit has no initial stored 
energy, and at =t 0,  the switch closes. Find the 
Thévenin equivalent for the circuit to the left of the 
terminals a and b in the s domain, using Laplace 
methods. Then analyze the simplified circuit to find 
iC(t) for ≥t 0.

Solution
Apply the Laplace transform method using Analysis 
Method 13.1.

Step 1:  There is no initial stored energy, so both ini-
tial conditions are zero.

Step 2:  The series connection of the 480 V dc volt-
age source and the switch can be described in the 
time domain as 480u(t) V. Using the functional and 
operational transform tables (Tables 12.1 and 12.2), 
the Laplace transform of this voltage is

u t
s

480 ( ) 480  V-s.{ } =L

This is the value of the voltage source for the  
s-domain circuit in Fig. 13.21.

Step 3:  The capacitor current and voltage are rep-
resented in the s domain as IC and VC, as shown in 
Fig. 13.21.

Step 4:  The impedance of the resistors is their 
 resistance. The impedances of the inductor and 
 capacitor are

Z sL s s0.002
500

;L = = = Ω

Z
sC s s
1 1

5 10
2 10 .C 6

5
= =

×
= × Ω

−

50 V

100 V

30u(t) A

500 mH

375u(t) V
1

2

400 mF

i1

i2

1

2

vC

60 V20 V

5 mF
t 5 0

480 V
1

2
2 mH iC

a

b

Figure 13.20 ▲ The circuit for Example 13.6.

M13_NILS8436_12_SE_C13.indd   495 15/01/22   3:47 PM



496 The Laplace Transform in Circuit Analysis

The s-domain circuit that results from Steps 1–4 is 
shown in Fig. 13.21.

Step 5:  The Thévenin voltage is the open-circuit 
voltage across terminals a and b. Under open- 
circuit conditions, there is no voltage across the 
60 Ω  resistor. Using voltage division,

=
+

=
+

V
s s

s s
(480 )(0.002 )

20 0.002
480

10
.Th 4

The Thévenin impedance seen from terminals a and 
b equals the 60 Ω resistor in series with the parallel 
combination of the 20 Ω resistor and the inductive 
impedance. Thus

= +
+

=
+
+

Z
s

s
s
s

60
0.002 (20)

20 0.002
80( 7500)

10
.Th 4

Using the Thévenin equivalent, we reduce the circuit 
shown in Fig. 13.21 to the one shown in Fig.  13.22.

In this circuit, the capacitor current Cl  equals the 
Thévenin voltage divided by the total series imped-
ance. Thus, 

( ) ( )
= +

+
+

+ ×
=

+
I s

s
s s

s
s

480
10

80 7500
10

2 10
6
5000

.C

4

4

5 2

Step 6:  Use the initial- and final-value theorems to 
predict the initial and final values of iC:

sI s
s s

lim lim 6
5000

lim 6
1 5000s

C
s s

2

2 1 0 2( ) ( )( )
=

+
=

+( )→∞ →∞ →

( )= = =
→

i t6
(1)

6 A lim ;
t

C2 0

sI s
s

i tlim lim 6
5000

0
5000

0 lim .
s

C
s t

C
0 0

2

2 2( ) ( )
( )=

+
= = =

→ → →∞

Let’s calculate the initial capacitor current from the 
circuit in Fig. 13.20. The initial inductor current is zero 
and the initial capacitor voltage is zero, so the ini-
tial capacitor current is +480 (20 60) or 6 A, which 
agrees with the prediction of the initial-value theorem. 
The final value of the capacitor current is zero because 
as → ∞t  in the circuit shown in Fig. 13.20, the capac-
itor behaves like an open circuit. This final capacitor 
current also agrees with the prediction of the final- 
value theorem.

Step 7:  The partial fraction expansion of IC is

= −
+

+
+

I
s s

30,000
( 5000)

6
5000

,C 2

and its inverse transform is

( )= − +− −i te e u t( 30,000 6 )  A.C
t t5000 5000

Suppose we also want to find the voltage drop 
across the capacitor, υC . Once we know i ,C  we could 
find υC  by integration in the time domain:

∫υ = × − −
−

x e dx2 10 (6 30,000 )   .C
x

t
5 5000

0

Although the integration is not difficult, we can avoid 
it altogether by first finding the s-domain expression 
for VC  and then using the inverse transform to find υC .  
Thus

= = ×
+

V
sC

I
s

s
s

1   2 10   6
( 5000)C C

5

2

= ×
+s

12 10
( 5000)

,
5

2

and

( )= × −v te u t12 10  V.C
t5 5000

You can explore this circuit’s behavior further in 
 Problem 13.36.

60 V20 V

0.002s V IC

a

b

1

2

VC
1

2
480

s
V-s 2 3 105

s V

Figure 13.21 ▲ The Laplace transform of the circuit 
shown in Fig. 13.20.

IC

a

b

1

2

VC 2 3 105

s

80 (s 1 7500)

s 1 104

1

2

480
s 1 104

V-s

V

V

Figure 13.22 ▲ A simplified version of the circuit 
shown in Fig. 13.21, using a Thévenin equivalent.
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 13.3 Applications 497

We can also use Laplace transform methods to analyze circuits with 
mutually coupled coils. Example 13.7 illustrates this process.

Objective 2—Know how to analyze a circuit in the s domain and be able to transform an s-domain solution 
to the time domain

13.6  The two switches in the circuit shown  operate 
simultaneously. There is no energy stored in the 
circuit at the instant the switches close. Find 
i t t( ) for  0≥ + by first finding the s-domain 
Thévenin equivalent of the circuit to the left of the 
terminals a,b.

Answer: ( )+−e t u t63.25 cos(50 71.57°)  mA.t150

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter Problem 13.34.

EXAMPLE 13.7   Analyzing a Circuit with Mutual Inductance

Consider the circuit in Fig.  13.23. The make- 
beforebreak switch has been in position a for a long 
time. At =t 0, the switch moves instantaneously to 
position b. Use Laplace methods to find i2(t) for ≥t 0.

Solution
Apply the Laplace transform method using Analysis  
Method 13.1.

Step 1:  Because the switch has been in posi-
tion a for a long time, both inductors behave like 
short circuits. The current in the 2 H inductor is 

+ =60 (9 3) 5 A, and the current in the 8  H 
 inductor is zero. Therefore, =−i (0 ) 5 A1  and 

=−i (0 ) 0.2

Step 2:  For ≥t 0, there is no independent source 
in the circuit, so we can skip this step.

Step 3:  The currents in the two coils are repre-
sented in the s domain as I1 and I2.

Step 4:  Before calculating the impedance of the 
resistors and inductors, we replace the magnet-
ically coupled coils with a T-equivalent circuit.1 
Figure 13.24 shows the new circuit.

The impedance of the resistors is their resis-
tance, and the impedance of the inductors is sL. 
Because we plan to use the mesh-current method 
in the s domain, we use the series-equivalent cir-
cuit for inductors carrying initial current. We place 
a voltage source in the vertical leg of the tee, to 
represent the initial value of the current in that  

1 See Appendix C.

10 H40 V
1

2

1 kV 1 kV

t 5 0 t 5 0
2 mFi(t)

a

b

2 H

b

a 2 H

t 5 0

60 V
1

2

3 V 2 V9 V

10 V

i1

8 H

i2

Figure 13.23 ▲ The circuit for Example 13.7, containing magnetically 
coupled coils.

b

3 V 2 V

10 V
i1 i2

(L1 2 M)
0 H

(L2 2 M)
6 H

(M) 2 H

Figure 13.24 ▲ The circuit shown in Fig. 13.23, with the 
magnetically coupled coils replaced by a T-equivalent  
circuit.
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498 The Laplace Transform in Circuit Analysis

vertical leg, which is +− −i i(0 ) (0 ),1 2  or 5 A. The 
s-domain circuit resulting from Steps 1–4 is shown 
in Fig. 13.25.

Step 5:  Write the two s-domain mesh equations for 
the circuit in Fig. 13.25:

+ + =s I sI(3 2 ) 2 10;1 2

+ + =sI s I2 (12 8 ) 10.1 2

Solving for I 2  yields

=
+ +

I
s s

2.5
( 1)( 3)

.2

Step 6:  Use the initial- and final-value theorems to 
predict the initial and final values of i2:

sI s
s s

lim lim 2.5
1 3s s

2 ( )( )
=

+ +→∞ →∞

( )
( )( ) ( )( )

=
+ +( )→

s
s s

lim
2.5 1

1 1 1 3s1/ 0

i t0
(1)(1)

0 lim ;
t 0

2 ( )= = =
→

sI s
s s

i t

lim lim   2.5
1 3

0
(1)(3)

0 lim .

s s

t

0
2

0

2

( )( )

( )

=
+ +

=

= =

→ →

→∞

The initial- and final-value theorems correctly pre-
dict the initial and final values of the current i2 for 
the circuit in Fig. 13.23.

Step 7:  The partial fraction expansion of I2 is

=
+

−
+

I
s s
1.25

1
1.25

3
.2  

Using Table 12.3, the inverse Laplace transform of 
I2 is

( )= −− −i e e u t(1.25 1.25 )  A.t t
2

3

Figure 13.26 shows a plot of i2  versus t. This response 
makes sense in terms of the known physical behav-
ior of the magnetically coupled coils. A current 
can exist in the L2  inductor only if there is a time- 
varying current in the L1 inductor. As i1 decreases 
from its initial value of 5 A, i2  increases from zero 
and then approaches zero as i1 approaches zero.

b

3 V 2 V

10 V
I1 I2

6s V

2s V

2

1
10 V-s

Figure 13.25 ▲ The s-domain equivalent circuit for 
the  circuit shown in Fig. 13.24.

t (ms)
0

481.13

i2 (mA)

549.31

Figure 13.26 ▲ The plot of i2 versus t for the circuit shown 
in Fig. 13.23.

Objective 2—Know how to analyze a circuit in the s domain and be able to transform an s-domain solution 
to the time domain

13.7  In the circuit shown, switch 1 closes at =t 0 
and the  make-before-break switch moves 
instantaneously from position a to position b.
a) Find I s( )1 .

b) Find i t( )1 .

Answer: a) 
s

s s s
50( 4.8)

( 20)( 60)
;

− −
+ +

b) e e u t(0.2 1.55 1.35 )  A.t t20 60 ( )− +− −

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter Problems 13.40 and 13.41.

1

2

1

2

10 V

120 V

a

b

15 H3 H

1
3 H

2

360 V24 V 20 V

i1 t 5 0 t 5 0
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 13.3 Applications 499

Because we are analyzing linear lumped-parameter circuits, we 
can use superposition to divide the response into components that can 
be identified with particular sources and initial conditions. We need to 
identify these components in order to use the transfer function, which we 
introduce in the next section. Example 13.8 illustrates superposition in the 
s domain by revisiting the circuit from Example 13.3 and separating its 
output voltage, v, into three components, two associated with the circuit’s 
initial conditions and one associated with the circuit’s independent source.

EXAMPLE 13.8  Applying Superposition in the s Domain

Repeat the analysis of the s-domain circuit for 
Example 13.3, shown in Fig.  13.14. Use superpo-
sition to separate the time-domain voltage v into 
three components, each one being the response to 
one of the three sources in Fig. 13.14.

Solution
Since each source in Fig. 13.14 is a current source, 
we will use Ohm’s law to find each component of 
V, using the equivalent impedance of the three 
 parallel-connected impedances. This equivalent 
impedance, calculated in Example 13.3, is

= ×
+ + ×

ΩZ s
s s

40 10
80,000 16 10

.eq

6

2 8

Define ′V  as the component of V in Fig. 13.14 
due to the initial capacitor energy. Find ′V  using 
the circuit in Fig.  13.27, where the only source is 
the one that represents the initial condition for the 
capacitor.

( )′ = × =
+ + ×

−V Z s
s s

1.25 10 50
80,000 16 10

.eq
6

2 8

The partial fraction expansion of ′V  is

( ) ( )
′ = − ×

+
+

+
V

s s
2 10

40,000
50
40,000

.
6

2

Use Table  12.3 to find the inverse Laplace trans-
form of ′V :

V e te u t50 2 10  V.t t1 40,000 6 40,000( ){ } ( )′ = ′ = − ×− − −v L

Therefore, ′v  is the component of v that is due only 
to the initial energy of the capacitor in the circuit of 
Fig. 13.13.

Next, define ′′V  as the component of V in 
Fig.  13.14 due to the initial inductor energy. Find 

′′V  using the circuit in Fig.  13.28, where the only 
source is the one that represents the initial condi-
tion for the inductor.

( )′′ = − = − ×
+ + ×

V Z
s s s

0.029 1.16 10
80,000 16 10

.eq

6

2 8

The partial fraction expansion of ′′V  is

( )
′′ = − ×

+
V

s
1.16 10

40,000
.

6

2

Use Table  12.3 to find the inverse Laplace trans-
form of ′′V :

V te u t1.16 10  V.n t1 6 40,000v { } ( ) ( )′′ = = − ×− −L

Therefore, ′′v  is the component of v that is due only 
to the initial energy of the inductor in the circuit of 
Fig. 13.13.

Finally, define ′′′V  as the component of V in  
Fig. 13.14 due to the 24 mA dc current source. Find 

′′′V  using the circuit in Fig.  13.29, where the only 
source is the one that represents the 24 mA dc  
current source.

500 V

1

2

V 940 
s  V

1.25 mV-s

 Vs
40 3 106

 Figure 13.27 ▲ The response of the circuit in Fig. 13.14 due 
to the initial capacitor voltage.

500 V

1

2

V040 
s  V

mA-s29
s

 Vs
40 3 106

Figure 13.28 ▲ The response of the circuit in Fig. 13.14 due 
to the initial inductor current.

500 V

1

2

V - mA-s24
s

40 3 106
 V

40 
s  V

s

Figure 13.29 ▲ The response of the circuit in Fig. 13.14 due 
to the independent dc current source.
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500 The Laplace Transform in Circuit Analysis

( )′′′ = = ×
+ + ×

V Z
s s s

0.024 0.96 10
80,000 16 10

.eq

6

2 8

The partial fraction expansion of ′′′V  is

V
s
0.96 10

40,000
.

6

2( )
′′′ = ×

+

Use Table  12.3 to find the inverse Laplace trans-
form of V ′′′:

V te u t0.96 10  V.t1 6 40,000( ){ } ( )′′′ = ′′′ = ×− −v L

Therefore, ′′′v  is the component of v that is due 
only to the 24 mA current source in the circuit of 
Fig. 13.13.

The voltage v in the circuit of Fig. 13.13 is the 
sum of the three component voltages we just found:

e te u t50 2.2 10 V.t t40,000 6 40,000( ) ( )

= ′ + ′′ + ′′′
= − ×− −

v v v v

This is the result found in Example 13.3.

Objective 2—Know how to analyze a circuit in the s domain and be able to transform an s-domain solution 
to the time domain

13.8  The energy stored in the circuit shown is zero at 
the instant the two sources are turned on.
a) Find the component of v  for >t 0 owing to 

the voltage source.
b) Find the component of v  for >t 0 owing to 

the current source.
c) Find the expression for v  when >t 0.

 Answer: a) e e u t(40 120 160 )  V;t t4 6 ( )+ −− −

b) ( )− +− −e e u t(10 30 20 )  V;t t4 6

c) ( )+ −− −e e u t(50 90 140 )  V.t t4 6

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter Problem 13.44.

13.4 The Transfer Function
The transfer function is defined as the s-domain ratio of the Laplace 
transform of the output (response) to the Laplace transform of the input 
(source). As we will see, the transfer function characterizes a circuit’s 
behavior in a single s-domain expression, without revealing what compo-
nents make up the circuit or how those components are interconnected. In 
computing the transfer function, we only consider circuits where all initial 
conditions are zero. If a circuit has multiple independent sources, we can 
find the transfer function for each source and use superposition to find the 
response to all sources.

The transfer function is

DEFINITION OF A TRANSFER FUNCTION

 =H s
Y s
X s

( )
( )
( )

,  (13.7)

60u(t) V 1.5u(t) Av 12.5 mF

1

2

10 H10 V

20 V
1

2
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 13.4 The Transfer Function 501

where Y s( ) is the Laplace transform of the output signal, and X s( ) is 
the Laplace transform of the input signal. Note that the transfer function 
depends on what is defined as the output signal. Consider, for example, 
the series circuit shown in Fig. 13.30. If the current is defined as the output 
signal of the circuit,

= =
+ +

=
+ +

H s I
V R sL sC

sC
s LC RCs

( ) 1
1 1

.
g

2

In deriving H(s), we recognized that I corresponds to the output Y s( ) and 
Vg  corresponds to the input X s( ).

If, instead, the capacitor voltage is defined as the output signal of the 
circuit shown in Fig. 13.30, then the transfer function is

H s V
V

sC
R sL sC s LC RCs

( )
1

1
1

1
.

g
2

= =
+ +

=
+ +

Thus, because circuits may have multiple sources and because the definition 
of the output signal of interest can vary, a single circuit can generate many 
transfer functions. Remember that when multiple sources are involved, no 
single transfer function can represent the total output; transfer functions 
associated with each source must be combined using superposition to yield 
the total response. Example 13.9 illustrates the computation of a transfer 
function for known numerical values of R, L, and C.

EXAMPLE 13.9   Deriving the Transfer Function of a Circuit

The voltage source v g  drives the circuit shown in 
Fig.  13.31. The output signal is the voltage across 
the capacitor, v .o

a)  Find the transfer function for this circuit.

b) Calculate the numerical values for the poles and 
zeros of the transfer function.

Solution

a) Use Analysis Method 13.1 to construct and ana-
lyze the s-domain circuit.

Step 1: The circuit in Fig.  13.31 has no initial 
stored energy, an assumption we always make 
when calculating a circuit’s transfer function. 
Therefore, we can skip this step.

Step 2: There are no independent sources des-
cribed by a time-domain function in this circuit, 
so we can skip this step.

Step 3: Represent the source and output voltages 
using Vg and Vo, respectively, as shown in  Fig. 13.32.

Step 4: The impedance of the resistors is their 
resistance. The impedances of the inductor and 
capacitor are

= = ΩZ sL s0.05   ;L

Z
sC s s
1 1

10
10 .C 6

6

( )
= = = Ω

−

The s-domain circuit resulting from Steps 1–4 
is shown in Fig. 13.32.

R sL

2

1

VVg 1>sC
1

2

I

Figure 13.30 ▲ A series RLC circuit.

1 mFvg

1

2

vo

1000 V

50 mH

1

2

250 V

Figure 13.31 ▲ The circuit for Example 13.9.

Vg

1000 V

0.05s V

1

2

250 V
106

s   V

1

2

Vo

Figure 13.32 ▲ The s-domain equivalent circuit for the cir-
cuit shown in Fig. 13.31.
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502 The Laplace Transform in Circuit Analysis

Step 5: From the problem statement, the trans-
fer function is the ratio of V Vo g. Writing a 
node-voltage equation at the upper node and 
summing the currents leaving the node gives

−
+

+
+ =

V V V
s

V s
1000 250 0.05 10

0.o g o o
6

Solving for Vo yields

( )
=

+

+ + ×
V

s V

s s

1000 5000

6000 25 10
.o

g

2 6

Hence, the transfer function is

( )= = +
+ + ×

H s
V
V

s
s s

( ) 1000 5000
6000 25 10

.o

g
2 6

b) The poles of H s( ) are the roots of the denomina-
tor polynomial. Therefore

− = − −p j3000 4000,1

− = − +p j3000 4000.2

The zeros of H s( ) are the roots of the numerator 
polynomial; thus, H s( ) has a zero at

− = −z 5000.1

Objective 3—Understand the definition and significance of the transfer function; be able to derive a 
 transfer function

13.9 a) Derive the numerical expression for the 
transfer function V Io g  for the circuit 
shown.

b) Give the numerical value of each pole and 
zero of H s( ).

Answer: a) =
× +

+ + ×
H s

s
s s

( )
12.5 10 ( 10,000)

10,000 250 10
;

6

2 6
 

b) − = − +p j5000 15,000,1  

− = − −p j5000 15,000,2  − = −z 10,000.

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter Problem 13.53.

The Location of Poles and Zeros of H(s)
For linear lumped-parameter circuits, H s( ) is always a rational function of s. 
Complex poles and zeros always occur in conjugate pairs. The poles of H s( ) 
must lie in the left half of the s plane if the response to a bounded source (one 
whose values lie within some finite bounds) is to be bounded. The zeros of 
H s( ) may lie in either the right half or the left half of the s plane.

With these general characteristics in mind, we next discuss the role 
that H s( ) plays in determining the circuit’s output.

13.5  The Transfer Function in Partial 
Fraction Expansions

Using the definition of a circuit’s transfer function (Eq. 13.7), we can find 
the circuit’s output by multiplying the transfer function and the circuit’s 
input:

 Y s H s X s( ) .( ) ( )=  (13.8)

ig

1

2

vo

50 mH

500 V

80 nF
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 13.5 The Transfer Function in Partial Fraction Expansions 503

We have already noted that H s( ) is a rational function of s; X s( ) also is 
a rational function of s for the time-domain functions of most interest in 
circuit analysis (see Table 12.1).

Expanding the right-hand side of Eq. 13.8 into a sum of partial frac-
tions produces a term for each pole of H s( ) and X s( ).  The terms gener-
ated by the poles of H s( ) correspond to the transient components of the 
total response. The terms generated by the poles of X s( ) correspond to 
the steady-state components of the response, which exist after the tran-
sient components have become negligible. Example 13.10 illustrates these 
general observations.

EXAMPLE 13.10   Analyzing the Transfer Function of a Circuit

The circuit in Example 13.9 (Fig.  13.31) is driven 
by a voltage source whose voltage increases linearly 
with time, namely, ( )=v tu t50  V.g

a) Use the transfer function to find v .o

b) Identify the transient component of the response.

c) Identify the steady-state component of the 
 response.

d) Sketch v o  versus t for ≤ ≤t0 1.5 ms.

Solution

a) From Example 13.9,

( )= +
+ + ×

H s s
s s

( ) 1000 5000
6000 25 10

.
2 6

 

The Laplace transform of the source voltage is 
s50 ;2  therefore, the s-domain expression for the 

output voltage is

( )= +
+ + ×

V s
s s s

1000 5000
( 6000 25 10 )

  50 .o 2 6 2

The partial fraction expansion of Vo is

=
+ −

V
K

s j3000 4000o
1

K
s j

K
s

K
s

 
3000 4000

.1
*

2
2

3+
+ +

+ +

We evaluate the coefficients K K,   ,1 2  and K 3 by 
using the techniques described in Section 12.7:

K 5 5 10   79.70°;1
4= × −

K 5 5 10   79.70°;1
* 4= × −−

K 10;2 =

K 4 10 .3
4= − × −

Using Table  12.3, the time-domain expression 
for v o  is

e t[10 5 10 cos 4000 79.70°o
t4 3000 ( )= × +− −v

t u t10 4 10 ]  V.4 ( )+ − × −

b) The transient component of v o  is

( )× +− −e t10 5 10 cos 4000 79.70°  V.t4 3000

Note that this term is generated by the poles 
( )− + j3000 4000  and ( )− − j3000 4000  of the 
transfer function.

c) The steady-state component of the response is

( )− × −t u t(10 4 10 )  V.4

These two terms are generated by the second- 
order pole K s( )2  of the input voltage.

d) Figure 13.33 shows a sketch of v o  versus t. Note 
that the deviation from the steady-state solu-
tion −t10,000 0.4 mV  is imperceptible after 
approximately 1 ms.

2

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
t (ms)

4

6

8

10

12

14

16

vo (mV)

(10,000t 2 0.4) mV

vo

Figure 13.33 ▲ The graph of ov  versus t for 
Example 13.10.
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504 The Laplace Transform in Circuit Analysis

Observations on the Use of H(s) in Circuit Analysis
Example 13.10 related the components that make up a circuit’s response 
to the poles of the transfer function, H(s), and the poles of the circuit’s 
input in the s domain, using a partial fraction expansion. However, the 
example raises questions about driving a circuit with an increasing ramp 
voltage that generates an increasing ramp response. Eventually, exces-
sive voltage will cause the circuit components to fail, and then our linear 
model is invalid. But some practical applications have input ramp func-
tions that increase to some maximum value over a finite time interval, 
so the response to a ramp input is important. If the time it takes for the 
ramp to reach its maximum value is long compared with the time con-
stants of the circuit, the solution assuming an unbounded ramp is valid for 
this finite time interval.

Here are some additional observations about a circuit’s transfer func-
tion, defined in Eq. 13.7.

• If the circuit’s input is delayed by a seconds,

x t a u t a e X s ,as( ) ( ){ } ( )− − = −L

then from Eq. 13.8, the circuit’s output is

( )= −Y s H s X s e( ) ( ) .as

If y t H s X s( ) ( ) ,1 { }( )= −L  then

y t a u t a H s X s e( ) .as1 { }( ) ( ) ( )− − = − −L

Therefore, delaying the input by a seconds delays the output by a 
seconds. A circuit that exhibits this characteristic is time invariant.

• If the circuit’s input is a unit impulse, the circuit’s output equals the 
inverse transform of the transfer function. Thus, if

x t t X s( ) ( ), then  ( ) 1δ= =

and

( )=Y s H s( ) .

Hence,

( )=y t h t( ) ,

so the inverse transform of the transfer function equals the unit 
impulse response of the circuit.

• A circuit’s unit impulse response is also its natural response because 
applying an impulsive source is equivalent to instantaneously storing 
energy in the circuit (see Section 13.8). The subsequent release of this 
stored energy is the circuit’s natural response (see Problem 13.87).

• A circuit’s unit impulse response, h t( ), contains enough information 
to compute the response to any source that drives the circuit. We can 
extract a circuit’s response to an arbitrary source from the circuit’s 
unit impulse response, using the convolution integral. This technique 
is demonstrated in the next section.
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 13.6  The Transfer Function and the 
Convolution Integral

The convolution integral relates the output y t( ) of a linear time-invariant 
circuit to the input x t( ) of the circuit and the circuit’s impulse response 
h t( ). The integral relationship can be expressed in two ways:

Objective 4—Know how to use a circuit’s transfer function to calculate the circuit’s impulse response, unit 
step response, and steady-state response to sinusoidal input

13.10  Find (a) the unit step and (b) the unit impulse 
response of the circuit shown in Assessment 
Problem 13.9.

Answer:

a) ( )+ −−e t u t[500 2500 cos(15,000 126.87°)]  V;t5000

b) ( ) ( )−−e t u t[13.2 cos 15,000 18.43°  MV.t5000

13.11  The unit impulse response of a circuit is

θ( )= +−v t e t( ) ( 1000/3) cos 3  V,o
t

where tan 1
3

.θ = −

a) Find the transfer function of the circuit.
b) Find the unit step response of the circuit.

 Answer: a) + + +s s s10( 2) ( 2 10);2

b) ( )+ −−e t u t[2 (10 3) cos(3 126.87°)]  V.t

ASSESSMENT PROBLEMS

SELF-CHECK: Also try Chapter Problems 13.56 and 13.57.

CONVOLUTION INTEGRAL

 ∫ ∫λ λ λ λ λ λ= − = −
−∞

∞

−∞

∞
y t h x t d h t x d( ) ( ) ( ) ( ) ( ) .  (13.9)

We are interested in the convolution integral for several reasons.

• We can find a circuit’s output for any input by working entirely in the 
time domain. This is beneficial when x t( ) and h t( ) are known only 
through experimental data. In such cases, using Laplace transform 
methods may be awkward or even impossible, as we would need to 
compute the Laplace transform of experimental data.

• The convolution integral introduces the concepts of memory and the 
weighting function into analysis. The concept of memory enables us 
to predict, to some degree, how closely the output waveform repli-
cates the input waveform, using the impulse response (or the weight-
ing function) h t( ).

• The convolution integral provides a formal procedure for finding the 
inverse transform of products of Laplace transforms.

To derive Eq. 13.9, we assume that the circuit is linear and time 
in variant. Because the circuit is linear, the principle of superposition is 
valid, and because it is time invariant, the response delay and the input 
delay are the same. Consider Fig.  13.34, in which the block containing 
h t( ) represents any linear time-invariant circuit whose impulse response 

x(t) y(t)h(t)

Figure 13.34 ▲ A block diagram of a general circuit.
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506 The Laplace Transform in Circuit Analysis

is known, x t( ) represents the input signal and y t( ) represents the output 
signal. We also assume the following:

• x t( ) is the general signal shown in Fig. 13.35(a).
• =x t( ) 0  for < −t 0 .  Once we derive the convolution integral assum-

ing =x t( ) 0  for < −t 0 ,  extending the integral to include excitation 
functions that exist for all time is straightforward.

• A discontinuity in x t( ) at the origin (between −0  and +0 ) is permitted.

Begin by approximating x t( ) with a series of rectangular pulses of uni-
form width λ∆ , as shown in Fig. 13.35(b). Thus

� �= + + + +x t x t x t x t( ) ( ) ( ) ( ) ,i0 1

where x t( )i  is a rectangular pulse that equals λ( )x i  between λi and λ +i 1 
and is zero elsewhere. Note that the ith pulse can be expressed using step 
functions; that is,

λ λ λ λ( ) ( )= − − − + ∆x t x u t u t( ) { [ ( )]}.i i i i

Continue to approximate x t( ) by making the pulse width λ∆  so small 
that we can approximate the ith component using an impulse function 
of strength λ λ( )∆x .i  Figure 13.35(c) shows this impulse representation, 
where the brackets beside each arrow represent the impulse strength. The 
impulse representation of x t( ) is

λ λδ λ λ λδ λ= ∆ − + ∆ − +�x t x t x t( ) ( ) ( ) ( ) ( )0 0 1 1

�x t( ) ( ) .i iλ λδ λ+ ∆ − +

When we represent x t( ) with a series of impulse functions (which 
occur at equally spaced intervals of time, that is, at λ λ λ …,   ,   ,  0 1 2 ), the 
 output function y t( ) is the sum of uniformly delayed impulse responses. 
The strength of each response depends on the strength of the impulse driv-
ing the circuit. For example, let’s assume that the unit impulse response 
of the circuit represented by the box in Fig. 13.34 is the exponential decay 
function shown in Fig. 13.36(a). Then the approximation of y t( ) is the sum 
of the impulse responses shown in Fig. 13.36(b).

Analytically, the expression for y t( ) is

λ λ λ λ λ λ= ∆ − + ∆ −y t x h t x h t( ) ( ) ( ) ( ) ( )0 0 1 1

�x h t( ) ( )2 2λ λ λ+ ∆ − +

�x h t( ) ( ) .i iλ λ λ+ ∆ − +

As λ∆ → 0, the sum approaches a continuous integral, or

∑ ∫λ λ λ λ λ λ− ∆ → −
=∞

∞ ∞
x h t x h t d( ) ( ) ( ) ( )  .

i
i i

0

Therefore,

∫ λ λ λ= −
∞

y t x h t d( ) ( ) ( )  .
0

x(l1)x(t)

x(l0)

l0 l1 l2 l3 . . . . . . .li

l1 l2 l3 . . . li

x(li)
x(l2)

x(l3)

t

x(t)

x(l0) Dl

[x
(l

1)
 D

l
]

[x
(l

2)
 D

l
]

[x
(l

3)
 D

l
]

[x
(l

i)
 D

l
]

l0
t

x(t)

0
t

(a)

(b)

(c)

Figure 13.35 ▲ The excitation signal of x(t). (a) A 
general excitation signal. (b) Approximating x(t) 
with a series of pulses. (c) Approximating x(t) with a 
series of impulses.

h(t)

0

y(t)

l0 l1 l2 l3

Approximation of y(t)

t

t

(a)

(b)

Figure 13.36 ▲ The approximation of y(t). (a) The 
impulse response of the box shown in Fig. 13.34. 
(b) Summing the impulse responses.
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If x t( ) exists over all time, then the lower limit on the integral is −∞. 
Thus, in general,

∫ λ λ λ= −
−∞

∞
y t x h t d( ) ( ) ( )  ,

which is the second form of the convolution integral given in Eq. 13.9.
To derive the first form of the integral in Eq. 13.9, we change the vari-

able of integration in the second form of the integral. Let λ= −u t ,  and 
then λ= −du d , = −∞u  when λ = ∞, and = +∞u  when λ = −∞.  
Now we can write

y t x t u h u du( ) ( ) ,∫ ( ) ( )= − −
∞

−∞

or

∫ ( ) ( )( )= −
−∞

∞
y t x t u h u du( ) .

Since u is a symbol of integration, this integral is equivalent to the first 
form of the convolution integral, Eq. 13.9.

The convolution integral relating y t h t( ),   ( ), and x t( )  (Eq. 13.9), is 
often written using a shorthand notation:

 ( ) ( ) ( )= =y t h t x t x t h t( ) * ( ) * , (13.10)

where the asterisk represents the integral relationship between h t( ) and 
x t( ). Thus, h t x t( ) * ( )  is read as “h t( ) is convolved with x t( )” and implies 
that

∫ λ λ λ( ) ( )= −
−∞

∞
h t x t h x t d( ) * ( )   ,

whereas x t h t( ) * ( ) is read as “x t( ) is convolved with h t( )” and implies that

∫ λ λ λ( ) ( )= −
−∞

∞
x t h t x h t d( ) * ( )   .

The integrals in Eq. 13.9 give the most general relationship for the 
convolution of two functions. However, when we apply the convolution 
integral, we can change the lower limit to zero and the upper limit to t. 
Then we can write Eq. 13.9 as

∫ ∫λ λ λ λ λ λ= − = −y t h x t d x h t d( ) ( ) ( )  ( ) ( )  .
t t

0 0

We change the limits for two reasons. First, for physically realizable cir-
cuits, h t( ) is zero for <t 0 because there is no impulse response before 
you apply an impulse. Second, we start measuring time at the instant we 
turn on the input x t( ); therefore =x t( ) 0  for t 0 .< −

A graphic interpretation of the convolution integrals (Eq. 13.9) helps 
us use convolution as a computational tool. We begin with the first integral 
and assume that the circuit’s impulse response is the exponential decay 
function shown in Fig. 13.37(a) and its input function has the waveform 
shown in Fig. 13.37(b). In each of the plots, we replace t with λ,  the symbol 
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508 The Laplace Transform in Circuit Analysis

of integration. Replacing λ with λ−  folds the excitation function over the 
vertical axis, as shown in Fig. 13.37(c). The folding operation explains why 
Eq. 13.9 is called the convolution integral. Replacing λ−  with λ−t  slides 
the folded function to the right, as shown in Fig. 13.37(d).

At any specified value of t, the output function y t( ) is the area under 
the product function λ λ( ) ( )−h x t , as shown in Fig. 13.37(e). This plot 
explains why we can set the lower limit on the convolution integral to 
zero and the upper limit to t. For λ < 0, the product λ λ( ) ( )−h x t  is 
zero because λ( )h  is zero. For λ > t, the product λ λ( ) ( )−h x t  is zero 
because λ( )−x t  is zero.

Figure 13.38 shows the second form of the convolution integral. Once 
again, the product function in Fig. 13.38(e) explains why we use zero for 
the lower limit and t for the upper limit.

Example 13.11 illustrates how to use the convolution integral and the 
unit impulse response to find a circuit’s output in response to a given input.

h(l)

A

0
l

x(l)

M

0 t1 t2
l

x(t 2 l)

M

t 2 t1t 2 t2 t
l

h(l)x(t 2 l)

MA

t 2 t10 t
l

x(2l)

M

02t12t2
l

y(t) 5 Area

(e)

(d)

(c)

(b)

(a)

Figure 13.37 ▲ A graphic interpretation of the 
convolution integral h x t d( ) ( )

t

0 λ λ λ∫ − .  
(a) The impulse response. (b) The excitation  
function. (c) The folded excitation function.  
(d) The folded excitation function displaced  
t units. (e) The product h x t( ) ( )λ λ− .

(a)

(b)

(c)

(d)

(e)

0

0

0

0

0

A

A

A

MA

M

h(l)

x(l)

h(2l)

h(t 2 l)

h(t 2 l)x(l)

l

l

l

l

l

t1 t2

t1

t

t

y(t) 5 Area

Figure 13.38 ▲ A graphic interpretation of the  
convolution integral h t x d( ) ( )

t

0 λ λ λ∫ − .  
(a) The impulse response. (b) The excitation  
function. (c) The folded impulse response.  
(d) The folded impulse response displaced t units. 
(e) The product h t x( ) ( )λ λ− .
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EXAMPLE 13.11    Using the Convolution Integral to Find an Output Signal

The input voltage v i  for the circuit shown in 
Fig. 13.39(a) is shown in Fig. 13.39(b).

a) Use the convolution integral to find v .o

b) Plot v o  over the range of ≤ ≤t0 15 s.

Solution

a) Begin by finding the unit impulse response of the 
circuit. The s-domain equivalent of the circuit in 
Fig. 13.39(a) replaces the inductor with an impedance 
of s Ω and the two voltages with Vo and Vi. Using volt-
age division,

=
+

V
s

V1
1

  .o i

When v i  is a unit impulse function δ t( ), =V 1i  and 
= = +H s V V s( ) 1 ( 1)o i . Then,

( )= = −v h t e u t( ) ,o
t

from which

λ λ( ) ( )= λ−h e u . 

Using the first form of the convolution integral in 
Eq. 13.9, we construct the impulse response and folded 
input function shown in Fig.  13.40, which helps us 
select the convolution integral limits. As we slide the 
folded input function to the right, we break the inte-
gration into three intervals: ≤ ≤t0 5; ≤ ≤t5 10; 
and ≤ ≤ ∞t10 . The integration intervals corre-
spond to points where the input function’s definition 
changes. Figure 13.41 depicts the position of the folded 
input function for each interval.

The expression for v i  in the time interval ≤ ≤t0 5 
is

= ≤ ≤v t t4 , 0 5 s.i

1

2

1 H

1 V

1

2

vovi

(a)

20 V

0 5

vi

10
t (s)

(b)

Figure 13.39 ▲ The circuit and excitation voltage for 
Example 13.11. (a) The circuit. (b) The input voltage.

h(l)

1.0

0

e2l

Impulse response

Folded excitation

l

l

20 V

vi(2l)

25 0210

Figure 13.40 ▲ The impulse response and the 
folded input function for Example 13.11.

0

0

1.0

h (l)

vi (t 2 l)

vi (t 2 l)

vi (t 2 l)

l

l

20

(t 2 10) (t 2 5) t 105

0(t 2 10) (t 2 5) t 105

0 (t 2 10) (t 2 5) t105

0 < t < 5

5 < t < 10

10 < t < `

l

l

20

20

Figure 13.41 ▲ The displacement ( )λ−v ti  for 
three different time intervals.
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Hence, the expression for the folded input func-
tion in the interval λ− ≤ ≤t t5    is

λ λ λ( ) ( )− = − − ≤ ≤v t t t t4 , 5 .i

In the other two time intervals, vi is a constant.
We can now set up the three convolution inte-

grals to find v .o  For ≤ ≤t0 5 s :

∫ λ λ( )= − λ−v t e d4  o

t

0

= + −−e t4( 1) V.t

For ≤ ≤t5 10 s,

∫ ∫υ λ λ λ( )= + −λ λ−
−

−
−

e d t e d20   4  o

t

t

t

0

5

5

= + − ( )− − −e e4(5 ) V.t t 5

For ≤ ≤ ∞t10  s,

∫ ∫υ λ λ λ( )= + −λ λ−
−

−
−

−
e d t e d20   4  o

t

t

t

t

10

5

5

= − +( ) ( )− − − − −e e e4( 5 ) V.t t t5 10

b) Values for v o  are shown graphically in Fig. 13.42.

SELF-CHECK: Assess your understanding of convolution by trying Chapter Problems 13.64 and 13.65.

The Concepts of Memory and the Weighting 
Function
We mentioned at the beginning of this section that the convolution inte-
gral introduces the concepts of memory and the weighting function into 
circuit analysis. The graphical interpretation of the convolution integral 
is the easiest way to understand these concepts. We can view the folding 
and sliding of a circuit’s input function on a time scale divided into past, 
present, and future time intervals. The vertical axis represents the present 
value of x(t), with past values to the right of the vertical axis and future 
values to the left. Figure  13.43 shows this description of x(t), using the 
input function from Example 13.11.

When we combine the past, present, and future views of τ( )−x t  
with the impulse response of the circuit, we see that the impulse response 
weights x t( ) according to present and past values. For example, Fig. 13.41 
shows that the impulse response in Example 13.11 gives less weight to 
past values of x t( ) than to the present value of x t( ). In other words, the 
circuit “remembers” less and less about past input values. Therefore, 
in Fig. 13.42, v o  quickly approaches zero when the present value of the 
input is zero (that is, when >t 10 s). Since the present value of the input 
receives more weight than the past values, the output quickly approaches 
the present value of the input.

Because the convolution integral uses the product of λ( )−x t  and 
λ( )h , the impulse response is considered the circuit’s weighting function. 

The weighting function, in turn, determines how much memory the circuit 
has. Memory represents how accurately the circuit’s response matches 
its input. For example, if the impulse response, or weighting function, is 
flat, as shown in Fig. 13.44(a), it gives equal weight to all values of x t( ), 
past and present. Such a circuit has a perfect memory. However, if the 
impulse response is an impulse function, as shown in Fig. 13.44(b), it gives 
no weight to past values of x(t) and the circuit has no memory.

20 4 6 8 10 12 14
t (s)

2
4
6
8

10
12
14
16
18
20

vo (V)

Figure 13.42 ▲ The voltage response versus time for 
Example 13.11.

(t 2 5)

vi (t 2 l)

(t 2 10) 0 t

Past (has happened)

Future (will happen)

P
re

se
nt

l

Figure 13.43 ▲ The past, present, and future values 
of the input function.

0
(a)

0

t

1.0

h(t)

(b)

t

1.0

h(t)

Figure 13.44 ▲ Weighting functions. (a) Perfect 
memory. (b) No memory.
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The more memory a circuit has, the more distortion exists between 
the circuit’s input waveform and its output. We can demonstrate this by 
assuming that the circuit has no memory, that is, δ=h t A t( ) ( ),  and then 
noting from the convolution integral that

∫ λ λ λ= −y t h x t d( ) ( ) ( ) 
t

0

∫ δ λ λ λ= −A x t d( ) ( ) 
t

0

( )= Ax t .

The expression for y(t) shows that, if the circuit has no memory, the out-
put is a scaled replica of the input.

The circuit shown in Example 13.11 illustrates the distortion between 
input and output for a circuit that has some memory. This distortion is 
clear when we plot the input and output waveforms on the same graph, as 
in Fig. 13.45.

13.7  The Transfer Function and 
the Steady-State Sinusoidal 
Response

Once we have computed a circuit’s transfer function, we can use it to find 
the steady-state response to a sinusoidal input. To show this, we assume that

ω φ= +x t A t( ) cos  ( ),

and then we use Eq. 13.8 to find the steady-state solution of y t( ). To find 
the Laplace transform of x t( ), we first write x t( ) as

ω φ ω φ= −x t A t A t( ) cos cos sin sin ,

from which

X s
A s
s

A
s

( )
( cos ) ( sin )

2 2 2 2

φ
ω

φ ω
ω

=
+

−
+

A s
s

( cos sin )
.

2 2

φ ω φ
ω

=
−

+

Substituting the expression for X(s) into Eq. 13.8 gives the s-domain 
expression for the response:

Y s H s
A s

s
( ) ( )

( cos sin )
.

2 2

φ ω φ
ω

=
−

+

Think about the partial fraction expansion of Y(s). The number of terms 
in the expansion depends on the number of poles of H s( ).  Because H s( ) 
is not specified, we write the expansion of Y(s) as

Y s
K

s j
K

s j
H s( ) terms generated by the poles of  ( ).1 1

*

∑ω ω
=

−
+

+
+

2

2 40 6 8 10 12 14
t (s)

4
6
8

10
12
14
16
18
20

vo, vi (V)

Response

Excitation

Figure 13.45 ▲ The input and output waveforms for 
Example 13.11.
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The first two terms in the partial fraction expansion corre-
spond to the complex conjugate poles of the sinusoidal input because 

ω ω ω( )( )+ = − +s s j s j .2 2  But the terms corresponding to the poles 
of H s( ) do not contribute to the steady-state response of y t( ), because 
all these poles lie in the left half of the s plane. Consequently, the corre-
sponding time-domain terms approach zero as t increases. Thus, only the 
first two partial fraction terms determine the steady-state response, so we 
only have to calculate a single partial fraction coefficient, K1 :

φ ω φ
ω

=
−

+ ω=

K
H s A s

s j
( ) ( cos sin )

s j
1

ω ω φ ω φ
ω

=
−H j A j

j
( ) ( cos sin )

2

ω φ φ
ω=

+
= φH j A j

H j Ae
( ) (cos sin )

2
1
2

( ) .j

In general, ω( )H j  is a complex number, which we can write in polar form as

ω ω= θ ωH j H j e( ) | ( )| .j ( )

We see that the transfer function’s magnitude, ω( )H j , and its phase 
angle, θ ω( ), vary with the frequency ω.  Substituting the polar form for 

ωH j( )  into the equation for K1 and simplifying, we see that the expres-
sion for K1  becomes

ω= θ ω φ+K A H j e
2

| ( )| .j
1

[ ( ) ]

We find the steady-state component for y t( ) by inverse-transforming 
the first two terms in the partial fraction expansion of Y(s), ignoring the 
terms generated by the poles of H s( ).  Thus

SINUSOIDAL STEADY-STATE RESPONSE COMPUTED 
USING A TRANSFER FUNCTION

 ω ω φ θ ω= + +y t A H j t( ) | ( )|cos[ ( )],ss  (13.11)

which tells us how to find a circuit’s steady-state response to a sinusoidal 
input using the circuit’s transfer function:

• Determine the input sinusoid’s magnitude, A, frequency, ω , and phase  
angle, φ .

• Evaluate the circuit’s transfer function, H(s), for ω=s j .
• Transform ωH j( )  into polar form, with a magnitude ωH j| ( )| and a 

phase angle θ .
• Write the steady-state output as a cosine with the amplitude ωA H j| ( )|,  

a phase angle of φ θ+ , and a frequency of ω .

Example 13.12 uses a circuit’s transfer function to find its sinusoidal 
steady-state response.
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EXAMPLE 13.12    Using the Transfer Function to Find the Steady-State 
Sinusoidal Response

The circuit from Example 13.9 is shown in Fig. 13.46. 
The sinusoidal source voltage is

120 cos (5000t 30°) V.g = +v
Find the steady-state expression for v .o

Solution
From Example 13.9,

( )= +
+ + ×

H s s
s s

( ) 1000 5000
6000 25 10

.
2 6

The frequency of the voltage source is 5000 rad s , 
so we evaluate ( )H j5000 :

( )
( )

=
+

− × + + ×
H j

j
j

5000
1000 5000 5000

25 10 5000(6000) 25 106 6

j
j

j1 1
6

1 1
6

2
6

  45°.=
+

=
−

= −

Then, from Eq. 13.11,

v ( )= + −t
(120) 2

6
cos 5000 30° 45°oss

( )= −t20 2 cos 5000 15°  V.

Objective 4—Know how to use a circuit’s transfer function to calculate the circuit’s impulse response, unit 
step response, and steady-state response to sinusoidal input

13.12  The current source in the circuit from  
Asse   ssment Problem 13.9, shown here, is delivering  
10 cos 20,000t mA. Use the transfer function to 
compute the steady-state expression for v .o

Answer: −t11.18 cos(20,000 63.43°) V.

13.13 The op amp in the circuit shown is ideal.
a) Find the transfer function V V .o g

b) Find vo if u t0.6 ( ) Vg =v .
c)  Find the steady-state expression for vo if 

t2 cos 10,000  Vg =v .

Answer: a) 
+

+ +
s s

s s
( 30,000)

( 5000)( 8000)
;

b) ( )−− −e e u t(5 4.4 )  V;t t5000 8000

c) −t4.42 cos(10,000 6.34°) V.

ASSESSMENT PROBLEMS

SELF-CHECK: Also try Chapter Problems 13.80 and 13.81.

The relationship between H s( ) and ω( )H j  provides a link between 
the time domain and the frequency domain. Using Eq. 13.11, we can find 
the sinusoidal steady-state response of a circuit by evaluating ω( )H j .  
Theoretically, we can reverse the process; instead of using H s( ) to find 

ω( )H j , we can use ω( )H j  to find H s( ).  To do so, we determine ω( )H j  
experimentally and then construct H s( ) from the data. Once we know 
H s( ),  we can find the circuit’s response to other inputs. While this experi-
mental approach is not always possible, in some cases it does provide a way 
to find H(s) for a circuit whose components and their values are unknown.

The transfer function is also used to find a circuit’s frequency response, 
a concept we introduce in the next chapter.

1

2
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1

2

vo1 mF
50 mH

250 V

1000 V

 Figure 13.46 ▲ The circuit for Example 13.12.
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514 The Laplace Transform in Circuit Analysis

13.8  The Impulse Function in Circuit 
Analysis

Circuit analysis uses impulse functions to represent a switching operation 
or because a circuit’s input is an impulsive source. We can use Laplace 
transform methods to determine the impulsive currents and voltages 
created during switching, and to find a circuit’s response to an impul-
sive source. To begin, we create an impulse function with a switching 
operation.

Switching Operations
We use two different circuits to create an impulse function with a switch-
ing operation: a capacitor circuit, and a series inductor circuit.

Capacitor Circuit

In the circuit shown in Fig. 13.47, the capacitor C1 is charged to an initial 
voltage of V0 at the time the switch is closed. The initial charge on C2  
is zero. We want to find the expression for i t( )  as →R 0. Figure 13.48 
shows the s-domain equivalent circuit, and we use Ohm’s law to find the 
s- domain current I:

=
+ +

I
V s

R sC sC(1 ) (1 )
0

1 2

=
+

V R
s RC(1 )

,
e

0

where the equivalent capacitance ( )+C C C C1 2 1 2  is replaced by Ce.
We inverse-transform the expression for I using Table 12.3 to get

( ) ( )= −i
V
R

e u t    ,t RC0 e

which indicates that as R decreases, the initial current ( )V R0  increases 
and the time constant ( )RCe  decreases. Thus, as R gets smaller, the cur-
rent starts from a larger initial value and then drops off more rapidly. 
Figure 13.49 shows these characteristics of i.

As R approaches zero, the initial value of i approaches infinity and 
the duration of i approaches zero. If the area under the current function is 
independent of R, i approaches an impulse function. Physically, the total 
area under the i versus t curve represents the total charge transferred to 
C2  after the switch is closed. Thus

∫= = =
∞

−
−

q
V
R

e dt V CArea   ,t RC
e

0

0
0

e

so the total charge transferred to C2  equals V Ce0  coulombs and is inde-
pendent of R. Thus, as R approaches zero, the current approaches an 
impulse with strength V C ;e0  that is,

δ→i V C t( ).e0

The physical interpretation of this expression says that when =R 0,  
a finite amount of charge is transferred to C2  instantaneously. Set =R 0  
in the circuit of Fig. 13.47 to see why we get an instantaneous transfer of 
charge. With =R 0,  closing the switch creates a contradiction: we apply a 

R1

R2

R2 , R1V0
R1

V0

R2

0
t

i

Figure 13.49 ▲ The plot of i(t) versus t for two 
 different values of R.

1

2

I

R

V0
s

1
sC2

1
sC1

Figure 13.48 ▲ The s-domain equivalent circuit for 
the circuit shown in Fig. 13.47.

C2C1

i(t)t 5 0

R

1

2

V0

Figure 13.47 ▲ A circuit showing the creation of an 
impulsive current.
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 13.8 The  mpulse Function in Circuit Analysis 515

voltage across a capacitor whose initial voltage is zero. The capacitor volt-
age can change instantaneously only if there is an instantaneous transfer 
of charge. When the switch is closed, the voltage across C2  does not jump 
to V0 but to its final value of

=
+

v
C V

C C
.2

1 0

1 2

We leave the derivation of v2 to you (see Problem 13.85).
If we set =R 0  at the outset, Laplace transform analysis predicts the 

impulsive current response. Thus,

=
+

=
+

=I
V s

sC sC
C C V
C C

C V
(1 ) (1 )

.e
0

1 2

1 2 0

1 2
0

In writing this equation for I, we use the capacitor voltages at = −t 0 . The 
inverse transform of I, which is constant, is the constant times the impulse 
function; therefore,

δ=i C V t( ).e 0

Example 13.13 uses Laplace methods to analyze an inductor circuit 
whose output contains an impulse.

EXAMPLE 13.13   A Series Inductor Circuit with an Impulsive Response

The switch in the circuit shown in Fig.  13.50 has 
been closed for a long time. At =t 0 it opens. Use 
Laplace methods to find the output voltage, vo, and 
the current in the 3 H inductor, i1.

Solution
Use Analysis Method 13.1 to construct and analyze 
the s-domain circuit.

Step 1:  For <t 0, the switch is closed, and the 
inductors behave like short circuits. The current in 
the 2 H inductor is zero, since there is no source in 
that part of the circuit. The current in the 3 H inductor  
is =100 10 10 A .

Step 2:  The combination of the dc voltage source 
and the switch is defined by the time-domain func-
tion 100u(t). The Laplace transform of this function 
is 100/s V-s, which labels the voltage source in the 
s-domain circuit in Fig. 13.51.

Step 3:  Represent the output voltage and current 
using Vo and I1, respectively, as shown in Fig. 13.51. 
Note that in the s-domain circuit, the current in 
both inductors is the same.

Step 4:  The impedance of the resistors is their resis-
tance. The impedance of the inductors is sL. We also 
need to represent the nonzero initial current in the 
3 H inductor using either a series-connected voltage 
source or a parallel-connected current source. Here, 
we choose the voltage source, so the resulting s- 
domain circuit has a single mesh. The voltage source 
has the value = =LI 3(10) 300  V-s. The s-domain 
circuit resulting from Steps 1–4 is shown in Fig. 13.51.

Step 5:  From the circuit in Fig.  13.51, we find Vo 
using voltage division:

( )= +
+

+ = + +
+

V s
s s

s s
s s

2 15
5 25

  100 30 12 130 300
5

.o

2

2

1

2

10 V

t 5 0

3 H

100 V

1

2

vo

L1i1
i2

2 H L2

15 V

Figure 13.50 ▲ The circuit for Example 13.13.

1
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10 V 3s
2 1

30 V-s
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s

1

2

Vo
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2 s

15 V

V

V

V-s

Figure 13.51 ▲ The s-domain equivalent circuit for  
the circuit shown in Fig. 13.50.
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2

0

4
6
8

10i1

i2 t

i1, i2 (A)

i1 5 i2 

Figure 13.52 ▲ The inductor currents versus t for 
the circuit shown in Fig. 13.50.

Now use Ohm’s law to find I1:

( )
( )

=
+

+
= +

+
I

s
s

s
s s

100 30
5 25

6 20
5

.1

Step 6:  We will discuss initial and final values in 
this circuit after we find the output voltage and cur-
rent, so for now we skip this step.

Step 7:  The expression for Vo is an improper rational  
function, so before we find its partial fraction 
expansion we must divide numerator by denomina-
tor to get

( )
= + +

+
= + +

+
V s s

s s
s

s s
12 130 300

5
12 70 300

5
.o

2

2

The second term is a proper rational function of s, 
so we can find the partial fraction expansion:

( )
= + +

+
V

s s
12 60 10

5
.o

Using Tables  12.1–12.3, we can inverse- Laplace-
transform Vo to get

δ ( ) ( )= + + −v t e u t12 ( ) 60 10  V.o
t5

The partial fraction expansion for I1 is

( ) ( )
= +

+
= +

+
I s

s s s s
6 20

5
4 2

5
.1

Using Table 12.3, we can inverse-Laplace- transform 
I1 to get

( ) ( )= + −i e u t4 2  A.t
1

5

Do the solutions for the output voltage and current in the circuit of 
Fig.  13.50 make sense? Before the switch is opened, the current in the 
3 H inductor is 10 A, and the current in the 2 H inductor is 0 A. From 
the  equation for i1 derived in Example 13.13, we know that at = +t 0 ,  
the current in both inductors is 6 A. This means the current in the 3 H 
inductor changes instantaneously from 10 to 6 A, while the current in the 
2 H inductor changes instantaneously from 0 to 6 A. Then, the current 
decreases exponentially from 6 A to a final value of 4 A. This final value 
is easily verified from the circuit; that is, it should equal 100 25,  or 4 A. 
Figure 13.52 shows these characteristics of i1 and i .2

Do these instantaneous jumps in the inductor current make sense in 
terms of the physical behavior of the circuit? First, note that when the 
switch opens in Fig.  13.50, the two inductors are in series. Any impul-
sive voltage appearing across the 3 H inductor must be exactly balanced 
by an impulsive voltage across the 2 H inductor because the sum of the 
impulsive voltages around a closed path must equal zero. Faraday’s law 
states that the induced voltage is proportional to the change in flux link-
age λ=v d dt( ). Therefore, the change in flux linkage must sum to zero. 
In other words, the total flux linkage immediately after switching is the 
same as that before switching. For the circuit here, the flux linkage before 
switching is

λ = + = + =L i L i 3(10) 2(0) 30 Wb-turns.1 1 2 2

Immediately after switching, it is

λ = + =+ +L L i i( ) (0 ) 5 (0 ).1 2

Therefore,

= =+i (0 ) 30 5 6 A.1
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LV0d(t)

R

1

2

Figure 13.53 ▲ An RL circuit excited by an impul-
sive voltage source.

Thus, the solution for i1 in Example 13.13 agrees with the principle of the 
conservation of flux linkage.

We now test the validity of vo from Example 13.13. First, we check 
the impulsive term δ t12 ( ). The instantaneous jump of i2 from 0 to 6 A at 

=t 0 means the derivative of i2 contains the impulse δ t6 ( ). This current 
impulse results in a δ t12 ( )  impulse in the voltage across the 2 H induc-
tor. For t di dt di dt e s0,   10 At

2 1
5> = = − − . The voltage v o  is the 

sum of the voltage across the 15 Ω  resistor and the voltage across the 2 H  
inductor:

= + + −− −v e e15(4 2 ) 2( 10 )o
t t5 5

( )= + −e u t(60 10 )  V.t5

This expression agrees with the last two terms of vo from Example 13.13. 
Thus, the expression for vo does make sense in terms of known circuit 
behavior.

We can also check the instantaneous drop from 10 to 6 A in the cur-
rent i .1  This drop means the derivative of i1 contains the impulse δ− t4 ( ).  
Therefore, the voltage across L1 includes the impulse δ− t12 ( ) . This 
impulse exactly balances the impulse included in the voltage across L ;2  
that is, the sum of the impulsive voltages around a closed path equals zero.

Impulsive Sources
Impulse functions can appear in circuit sources as well as circuit outputs. 
These sources are called impulsive sources. An impulsive source creates a 
finite amount of energy in the circuit instantaneously. A mechanical anal-
ogy is striking a bell with an impulsive clapper blow. After the energy has 
been transferred to the bell, the natural response of the bell determines 
the tone emitted (that is, the frequency of the resulting sound waves) and 
the tone’s duration.

In the circuit shown in Fig. 13.53, an impulsive voltage source with a 
strength of V0 volt-seconds is applied to a series connection of a resistor 
and an inductor. When the voltage source is applied, the initial energy in 
the inductor is zero, so the initial current is zero. There is no voltage drop 
across R, so the impulsive voltage source appears directly across L. The 
impulsive voltage across the inductor creates an instantaneous current. 
The current is

i
L

V x dx1 ( )  .
t

0
0∫ δ=

−

The integral of δ t( )  over any interval that includes zero is 1, so

=+i
V
L

(0 )  A.0

Thus, in an infinitesimal moment, the impulsive voltage source has stored 
energy in the inductor, given by

L
V
L

V
L

1
2 2

 J.0
2

0
2

( )= =w
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518 The Laplace Transform in Circuit Analysis

EXAMPLE 13.14    A Circuit with Both Internally Generated and Externally 
Applied Impulses

The switch in the circuit shown in Fig.  13.55 has 
been closed for a long time. At =t 0 it opens. Use 
Laplace methods to find the output voltage, vo, and 
the current in the 3 H inductor, i1.

Solution
Note that the circuit in Fig. 13.55 was created from 
the circuit for Example 13.13 (Fig.  13.50) by add-
ing an impulsive voltage source of δ t50 ( ) in series 
with the 100 V source. In Example 13.13, we found 
the s-domain circuit that corresponds to the time- 
domain circuit in Fig.  13.50. The s-domain circuit 

is shown in Fig. 13.51. To find the s-domain circuit  
corresponding to the circuit in Fig.  13.55, we add 
another voltage source in series, whose value is 

δ{ } =L t50 ( ) 50 V-s. The s-domain equivalent cir-
cuit is shown in Fig. 13.56.

From this circuit, the expression for I1 is

( )
( )

=
+ +
+

= +
+

I
s

s
s

s s
100 50 30

5 25
16 20

5
.1

The partial fraction expansion of I1 is

= +
+

I
s s
4 12

5
,1

The initial current V L0  now decays to zero due to the natural 
response of the circuit; that is,

( )= τ−i
V
L

e u t  ,t0

where τ = L R . Remember from Chapter  7 that the natural response 
occurs as passive elements release or store energy. When a circuit is driven 
by an impulsive source, the total response is completely defined by the 
natural response; the duration of the impulsive source is so infinitesimal 
that it does not create a forced response.

We can also derive the inductor current using the Laplace transform 
method. Figure  13.54 shows the s-domain equivalent of the circuit in 
Fig. 13.53. From this circuit,

=
+

=
+

I
V

R sL
V L

s R L( )
.0 0

The inverse Laplace transform is

( )= = τ− −i
V
L

e
V
L

e u t    .R L t t0 ( ) 0

Thus, the Laplace transform method gives the correct solution for ≥ +i 0 .
Finally, we consider the case in which internally generated impulses 

and externally applied impulses occur simultaneously. As we see in 
Example 13.14, the Laplace transform method automatically ensures the 
correct solution for > +t 0  if inductor currents and capacitor voltages at 

= −t 0  are used in constructing the s-domain equivalent circuit and if 
externally applied impulses are represented by their transforms.

sLV0

R

I
1

2

Figure 13.54 ▲ The s-domain equivalent circuit for 
the circuit shown in Fig. 13.53.

10 V 3 H

100 V

50d(t) V 15 V

2 H

t 5 0

1

2

vo

i1

i2

1

2

1

2

Figure 13.55 ▲ The circuit shown in Fig. 13.50 with an 
impulsive voltage source added in series with the 100 V 
source.
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V

 V

V-s

V-s

Figure 13.56 ▲ The s-domain equivalent circuit for the 
 circuit shown in Fig. 13.55.
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Figure 13.57 ▲ The inductor currents versus t for 
the circuit shown in Fig. 13.55.

and the inverse Laplace transform of I1 is

( ) ( )= + −i e u t4 12  A.t
1

5

The expression for Vo is

( )
( )

= + = + +
+

V s I s s
s s

2 15 32 280 300
5

,o 1

2

which is an improper rational function. Before 
we can find the partial fraction expansion, we 

divide the numerator of Vo by its denominator 
to get

( )
= + +

+
V s

s s
32 120 300

5
.o

The partial fraction expansion of Vo is then

= + +
+

V
s s

32 60 60
5o

and the inverse Laplace transform of Vo is

δ ( ) ( )= + + −v t e u t32 ( ) 60 60  V.o
t5

As before, we test the results of Example 13.14 to see whether they 
make sense. From the expression for i1, we see that the current in L1 and 
L2  is 16 A at = +t 0 .  In Example 13.13, at the instant the switch opens, i1 
decreases from 10 to 6 A and i2  increases from 0 to 6 A. Superimposed on 
these changes is a 10 A current in L1 and L2 , due to the impulsive voltage 
source; that is,

∫ δ=
+

=
−

i x dx1
3 2

50 ( ) 10 A.
t

1
0

 

Therefore, i1 increases suddenly from 10 to 16 A, while i2  increases sud-
denly from 0 to 16 A. The final value of both currents is 4 A. Figure 13.57 
shows i1 and i2 graphically.

We can also find the abrupt changes in i1 and i2  without using super-
position. The sum of the impulsive voltages across the 3 H and 2 H induc-
tors equals δ t50 ( ). Thus, the change in flux linkage must sum to 50; that is,

λ λ∆ + ∆ = 50.1 2

Because λ = Li, we get

∆ + ∆ =i i3 2 50.1 2

But because i1 and i2  must be equal after the switch opens,

+ ∆ = + ∆− −i i i i(0 ) (0 ) .1 1 2 2

Thus,

+ ∆ = + ∆i i10 0 .1 2

Solving for ∆i1 and ∆i2 yields

∆ =i 6 A,1

∆ =i 16 A.2

These expressions agree with the previous check.
Figure  13.57 also indicates that the derivatives of i i and 1 2  will  

contain an impulse at =t 0. Specifically, the derivative of i1 will have an 
impulse of δ t6 ( ),  and the derivative of i2  will have an impulse of δ t16 ( ). 
Figure 13.58 illustrates the derivatives of i1 and i .2

Now let’s turn to the expression for the output voltage, vo, found in 
Example 13.14. The impulsive component δ t32 ( ) agrees with the impulse 

t

(16)

0

260

t

di1
dt

di2
dt(6)

0

260

Figure 13.58 ▲ The derivatives of i1 and i2.
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Figure 13.59 ▲ Phasor-transformed circuit used to 
introduce a  switching surge voltage.
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1
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2 1

1
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sL

Figure 13.60 ▲ The circuit in Fig. 13.59, 
 transformed to the s domain.

Practical Perspective 
Surge Suppressors
As mentioned at the beginning of this chapter, voltage surges can 
occur in a circuit that is operating in the sinusoidal steady state. We 
use Laplace transform methods to see how a voltage surge is created 
between the line and neutral conductors of a household circuit when a 
load is switched off during sinusoidal steady-state operation.

Consider the phasor-transformed circuit shown in Fig. 13.59, which 
models a household circuit with three loads, one of which is switched off  
at =t 0. To simplify the analysis, we assume that the  line-to-neutral 
voltage, Vo, is ∠ ( )120 0°  V rms , a standard household voltage, and that 
when the load is switched off at =t 0, the value of Vg does not change. 
After the switch is opened, we can construct the s-domain circuit, as 
shown in Fig. 13.60. Note that because the phase angle of the voltage 
across the inductive load is 0°, the initial current through the inductive 
load is 0. Therefore, only the line inductance has a nonzero initial condi-
tion, which is modeled in the s-domain circuit as a voltage source with 
the value �L I 0, as seen in Fig. 13.60.

Just before the switch is opened at t 0= , each of the loads 
has a steady-state sinusoidal voltage with a peak magnitude of 

= .120 2 169 7 V. All of the current in the line from the voltage source 
divides among the three loads. When the switch is opened at =t 0, all 
of the current in the line appears in the remaining resistive load because 
the inductive load current is 0 at =t 0 and the inductor current cannot 
change instantaneously. Therefore, the voltage drop across the remain-
ing loads can experience a surge as the line current is directed through 
the resistive load.

For example, if the initial current in the line is ( )25 A rms  and the 
impedance of the resistive load is 12 Ω , the voltage drop across the resis-
tor surges from .169 7 V to =(25)( 2)(12) 424.3 V when the switch is 
opened.  f the resistive load cannot handle this amount of voltage, it needs 
to be protected with a surge suppressor such as the one shown at the 
beginning of the chapter.

SELF-CHECK: Assess your understanding of this Practical Perspective 
by trying Chapter Problems 13.94 and 13.95.

δ t16 ( )  that characterizes di dt2  at the origin. The term +−e(60 60)t5  
agrees with the fact that for > +t 0 ,

= + = +v i
di
dt

i
di
dt

15 2 15 2 .o 2
2

1
1

We test the impulsive component of di dt1  by noting that it produces 
an impulsive voltage of δ t(3)6 ( ), or δ t18 ( ),  across L .1  This voltage, added 
to δ t32 ( ) across L ,2  gives us δ t50 ( ). Thus, the algebraic sum of the impul-
sive voltages around the mesh is zero.

To summarize, the Laplace transform will correctly predict the impul-
sive currents and voltages created by switching. However, the s-domain 
equivalent circuits must be based on initial conditions at = −t 0 , that 
is, on the initial conditions that exist prior to the switching. The Laplace 
transform will correctly predict the response to impulsive input sources by 
representing these sources in the s domain by their Laplace transforms.

SELF-CHECK: Assess your understanding of the impulse function in cir-
cuit analysis by trying Chapter Problems 13.89 and 13.93.
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Summary
• We can represent each of the circuit elements as an 

s-domain equivalent circuit by Laplace-transforming 
the voltage-current equation for each element:

• Resistor: =V RI

• Inductor: = −V sLI LI 0

• Capacitor: ( )= +V sC I V s1 o

In these equations, { }= vV ,L  { }= LI i , I 0  is the 
initial current through the inductor, and V0 is the initial 
voltage across the capacitor. (See pages 484–485.)

• Using Steps 1–4 in Analysis Method 13.1, we can trans-
form the  time-domain circuit into the s domain. Table 13.1 
summarizes the equivalent circuits for resistors, inductors, 
and capacitors in the s domain. (See page 486.)

• Solve the s-domain equivalent circuit in Analysis  Method 
13.1, Step 5, by writing algebraic equations using the 
circuit analysis techniques from resistive circuits. Step 6 
checks the resulting s-domain voltages and currents using 
the initial- and final-value theorems, where possible.  
Step 7 finds the partial fraction expansion for the s-domain  
voltages and currents, and uses Table  12.3 to find the 
inverse Laplace transforms. (See page 487.)

• Circuit analysis in the s domain is particularly advanta-
geous for solving transient response problems in linear 
lumped parameter circuits when initial conditions are 
known. It is also useful for problems involving multiple 
simultaneous mesh-current or node-voltage equations 
because it reduces problems to algebraic rather than 
differential equations. (See page 489.)

• The transfer function is the s-domain ratio of a circuit’s 
output to its input. It is defined as

=H s
Y s
X s

( )
( )
( )

,

where Y s( ) is the Laplace transform of the output 
 signal, and X s( ) is the Laplace transform of the input 
signal. (See page 500.)

• The partial fraction expansion of the product H s X s( ) ( ) 
yields a term for each pole of H s( ) and X s( ).  The H s( ) 

terms correspond to the transient component of the 
total response, while the X s( ) terms correspond to the 
steady-state component. (See page 503.)

• If a circuit is driven by a unit impulse, δ=x t t( ) ( ),  then the 
response of the circuit equals the inverse Laplace trans-
form of the transfer function, L { } ( )= =−y t H s h t( ) ( ) .1  
(See pages 504–505.)

• When a circuit is time-invariant, delaying the input by a 
seconds delays the output by a seconds. (See page 504.)

• The output of a circuit, y t( ), can be computed by con-
volving the input, x t( ), with the impulse response of the 
circuit, h t( ) :

∫ λ λ λ( ) ( ) ( )= = −y t h t x t h x t d( ) * ( )  
t

0

∫ λ λ λ( ) ( ) ( )= = −x t h t x h t d* ( )   .
t

0

A graphical interpretation of the convolution integral usu-
ally helps you to compute y t( ). (See pages 505 and 508.)

• We can use the transfer function of a circuit to compute 
its steady-state response to a sinusoidal source. To do so, 
make the substitution ω=s j  in H s( ) and represent 
the resulting complex number as a magnitude and phase 
angle. If

ω φ( )= +x t A t( ) cos ,

ω ω( ) ( )= θ ω( )H j H j e ,j

then

ω ω φ θ ω( ) ( )= + +y t A H j t( ) cos[ ].ss

(See page 512.)

• Laplace transform analysis correctly predicts impulsive 
currents and voltages arising from switching and impul-
sive sources. You must ensure that the s-domain equiv-
alent circuits are based on initial conditions prior to the 
switching, that is, at = −t 0 . (See page 520.)
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Figure P13.7

Problems

Section 13.1

  13.1  Derive the s-domain equivalent circuit shown in 
Fig.  13.4 by expressing the inductor current i as a 
function of the terminal voltage v and then finding 
the Laplace transform of this time-domain integral 
equation.

 13.2  Find the Norton equivalent of the circuit shown in 
Fig. 13.3.

 13.3  Find the Thévenin equivalent of the circuit shown 
in Fig. 13.7.

Section 13.2

 13.4  A Ω1 k  resistor is in series with an 500 mH induc-
tor. This series combination is in parallel with a 
400 nF capacitor.

a) Express the equivalent s-domain impedance of 
these parallel branches as a rational function.

b) Determine the numerical values of the poles 
and zeros.

 13.5  A 10 kΩ resistor, a 5 H inductor, and a 20 nF capac-
itor are in series.

a) Express the s-domain impedance of this series 
combination as a rational function.

b) Give the numerical value of the poles and zeros 
of the impedance.

 13.6  The parallel circuit in Example 13.1 is placed in 
series with a 2 kΩ resistor.

a) Express the s-domain impedance of this series 
combination as a rational function.

b) Give the numerical values of the poles and zeros 
of the impedance.

 13.7  Find the poles and zeros of the impedance seen 
looking into the terminals a,b of the circuit shown 
in Fig. P13.7.

 13.8  Find the poles and zeros of the impedance seen 
looking into the terminals a,b of the circuit shown 
in Fig. P13.8.

a

b

1 V

1 V
1 H1 F

1 F

Figure P13.8

Section 13.3

 13.9 a) Find the s-domain expression for Vo in the cir-
cuit in Fig. P13.9.

b) Use the s-domain expression derived in (a) to 
predict the initial and final values of vo.

c) Find the time-domain expression for vo.

PSPICE
MULTISIM

0.5 H9.6u(t) mA vo3.2 nF

1

2

7 kV

Figure P13.9

 13.10  Find the time-domain expression for the current in 
the capacitor in Fig. P13.9. Assume the reference 
direction for iC is down.

 13.11  The switch in the circuit in Fig. P13.11 has been in 
position a for a long time. At =t 0, the switch is 
thrown to position b.

a) Construct an s-domain circuit for >t 0.

b)  Find I, V1, and V2 as rational functions of s.

c) Find the time-domain expressions for i, v1, and v2.

PSPICE
MULTISIM

PSPICE
MULTISIM

5 kVi

t 5 0
1

2
100 V

10 kV a b

0.2 mF
1

2
v1

0.8 mF
1

2
v2

Figure P13.11

 13.12  The switch in the circuit in Fig. P13.12 has been in 
position a for a long time. At =t 0, it moves instan-
taneously from a to b.

a) Construct the s-domain circuit for >t 0.

b) Find Io(s).

c) Find io(t) for ≥t 0.
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1

2

50 Va

b

20 mH

200 V

30 V12 A 120 V5 mF

t 5 0

i0

Figure P13.12

 13.13  Find Vo and vo in the circuit shown in Fig. P13.13 if 
the initial energy is zero and the switch is closed at 

=t 0.
PSPICE

MULTISIM

1

2
200 nF

1.5 kV

30 V
t 5 0

vo

1

2

100 mH

Figure P13.13

1

2

4 kV

0.5 H48 V

t 5 0

80 nF

1

2

vo

io

Figure P13.15

 13.14  Repeat Problem 13.13 if the initial voltage on the 
capacitor is 20 V positive at the lower terminal.

 13.15  The switch in the circuit in Fig. P13.15 has been 
closed for a long time. At =t 0, the switch is 
opened.

a) Find vo for ≥t 0.

b) Find io for ≥t 0.

PSPICE
MULTISIM

PSPICE
MULTISIM

 13.16  The dc current and dc voltage sources are applied 
simultaneously to the circuit in Fig. P13.16. No 
energy is stored in the circuit at the instant of 
application.

a) Derive the s-domain expressions for V1 and V2.

b) For t > 0, derive the time-domain expressions for 
v1 and v2.

PSPICE
MULTISIM

1 H

5 A 15 V
1

2

t 5 0 t 5 0
1 F

1

2

v1 3 V

1

2

v2

15 V

Figure P13.16

 13.17   There is no initial energy in the circuit in Fig. P13.17 
before the switch closes at =t 0.

a) Find the s-domain expression for I.

b) Find the time-domain expression for i when 
>t 0.

c) Find the s-domain expression for V.

d) Find the time-domain expression for v when 
>t 0.

4 H

0.25 F

4.8 V

160 V
1

2

t 5 0
v1

2

i

Figure P13.17

 13.18  There is no energy stored in the circuit in Fig. P13.18 
at = −t 0 .

a) Find Vo.

b) Find vo.

c) Does your solution for vo make sense in terms of 
known circuit behavior? Explain.

PSPICE
MULTISIM

1

2

vo 2 V

4 V

3u(t) A

1 H 0.5 F

15u(t) V
1

2

 Figure P13.18

 13.19  The make-before-break switch in the circuit in  
Fig. P13.19 has been in position a for a long time. At 

=t 0, it moves instantaneously to position b. Find 
vo for ≥t 0.

PSPICE
MULTISIM

c) Calculate v1(0+) and v2(0+).

d) Compute the steady-state values of v1 and v2.
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524 The Laplace Transform in Circuit Analysis

 13.23  There is no energy stored in the circuit in Fig. P13.23 
at the time the voltage source is energized.

a) Find Vo and Io.

b) Find vo and io for ≥t 0.

a

b

5 H

2

1

4 kV

10 kV

15 kV

150 V 20 nF

t 5 0

v0

+

–

Figure P13.19

1

2

21 kV4 kV

300u(t) V 5 nF80 mH
io

1

2

vo

Figure P13.20

5mF

100 V 100 V

30 V

1
2

10 V

500 V

2 mH

50 V

t 5 0

vo

1

2

Figure P13.21

 13.20  There is no energy stored in the circuit in Fig. P13.20 
at = −t 0 .

a) Use the node voltage method to find vo.

b) Find the time domain expression for io.

c) Do your answers in (a) and (b) make sense in 
terms of known circuit behavior? Explain.

PSPICE
MULTISIM

12.5 kV 50 kV

10 kV

10 nF

4 H vo

1

2

iL20 mA
t 5 0

a

b

Figure P13.22

5 H

400 V

vo

1

1

2

2
50,000te230tu(t)

io

Figure P13.23

25 nF 625 V
t 5 0

25 mHi(t)

i

Figure P13.24

a

b

7.5 mH

2

1

2 1

if
10 V

50 V20 V50 V vo

20if

1

2

t 5 0

5 mF

 Figure P13.25

 13.21  The switch in the circuit in Fig. P13.21 has been 
closed for a long time before opening at =t 0.

a) Construct the s-domain equivalent circuit for >t 0.

b) Find Vo.

c) Find vo for ≥t 0.

PSPICE
MULTISIM

 13.22  The switch in the circuit in Fig. P13.22 has been 
in position a for a long time. At =t 0, the switch 
moves instantaneously to position b.

a) Construct the s-domain circuit for >t 0.

b) Find Vo.

c) Find IL.

d) Find vo for >t 0.

e) Find iL for ≥t 0.

PSPICE
MULTISIM

 13.24  There is no initial energy in the circuit in Fig. P13.24 
before the switch opens at =t 0. The current 
source is 24 cos 40,000t mA. Find i(t) for ≥t 0.

 13.25  The switch in the circuit seen in Fig. P13.25 has been 
in position a for a long time. At =t 0, it moves 
instantaneously to position b.

a) Find Vo.

b) Find vo.

PSPICE
MULTISIM
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 13.26  There is no energy stored in the circuit in Fig. P13.26 
at the time the switch is closed.

a) Find vo for ≥t 0.

b) Does your solution make sense in terms of 
known circuit behavior? Explain.

PSPICE
MULTISIM

1

2

1

2
5 V

vD

if
10if

t 5 0 5 mF

1 H
40 V

vo

1

2

1 2

vD

50

Figure P13.26

10 V

1

2

1 1

22

0.25vf

vg vf vo 140 V

20 H

100 mF

Figure P13.27

 13.27  The initial energy in the circuit in Fig. P13.27 is zero. 
The ideal voltage source is ( )u t600  V .

a) Find Vo(s).

b) Use the initial- and final-value theorems to find 
+v (0 )o  and ∞v ( )o .

c) Do the values obtained in (b) agree with known 
circuit behavior? Explain.

d) Find vo(t).

PSPICE
MULTISIM

 13.28  There is no energy stored in the circuit in Fig. P13.28 
at the time the current source turns on. Given that 

( )=i u t100  Ag :

a) Find Io(s).

b) Use the initial- and final-value theorems to find 
+i (0 )o  and ∞i ( )o .

c) Determine if the results obtained in (b) agree 
with known circuit behavior.

d) Find io(t).

PSPICE
MULTISIM

25 H

if

io

20 mF

25 V

20if

ig 5 V

1 2

Figure P13.28

 13.29  The switch in the circuit in Fig. P13.29 has been 
closed for a long time before opening at =t 0. 
Find vo for ≥t 0.

PSPICE
MULTISIM

20 kV5 mA 200 kV 100 nF 9if

1
t 5 0

vo

if

2

Figure P13.29

 13.30  Find vo in the circuit shown in Fig. P13.30 if 
( )=i u t15  Ag . There is no energy stored in the 

circuit at =t 0.
PSPICE

MULTISIM

1.6 V
ig

vf

vo

200 mF

0.4vf 200 mH1

2

1

2

Figure P13.30

 13.31  There is no energy stored in the circuit in Fig. P13.31 
at the time the current source is energized.

a) Find Ia and Ib.

b) Find ia and ib.

c) Find Va, Vb, and Vc.

d) Find va, vb, and vc.

e) Assume a capacitor will break down whenever 
its terminal voltage is 1000 V. How long after the 
current source turns on will one of the capaci-
tors break down?

PSPICE
MULTISIM

1

2

vc

1 2vb

1 2va

50 V

50 V

10 mF

10 mF

10 mF4u(t) A

ia

ib

Figure P13.31

  13.32  There is no energy stored in the capacitors in the 
circuit in Fig. P13.32 at the time the switch is closed.

a) Construct the s-domain circuit for >t 0.

b) Find I1, V1, and V2.

c) Find i1, v1, and v2.

d) Do your answers for i1, v1, and v2 make sense in 
terms of known circuit behavior? Explain.

PSPICE
MULTISIM
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526 The Laplace Transform in Circuit Analysis

 13.36  Using the expression for capacitor voltage found 
in Example 13.6, show that the capacitor current in 
Fig. 13.20 is positive for t0 200  sµ< <  and nega-
tive for t 200  sµ> . Also show that at 200  sµ , the 
current is zero and that this corresponds to when 
vd dtC  is zero.

 13.37  The switch in the circuit shown in Fig. P13.37 has been 
open for a long time. The voltage of the sinusoidal 
source is ω φ= +v V tsin  ( )g m . The switch closes at 

=t 0. Note that the angle φ  in the voltage expression 
determines the value of the  voltage at the moment 
when the switch closes, that is, φ= V(0) sing mv .

a) Use the Laplace transform method to find i for 
>t 0.

b) Using the expression derived in (a), write the 
expression for the current after the switch has 
been closed for a long time.

c) Using the expression derived in (a), write the 
expression for the transient component of i.

d) Find the steady-state expression for i using the 
phasor method. Verify that your expression is 
equivalent to that obtained in (b).

e)  Specify the value of φ  so that the circuit passes 
directly into steady-state operation when the 
switch is closed.

1

2

20 kV

50 nF

2.5 nF10 nF

t 5 0

80 V

v2

1

2

v1

1

2

i1

Figure P13.32

1

2

25 kV

6.25 kV

50 nF

250 mH

125 nF75 nF

75 V

t 5 0

vo

1

2

a

b

io

Figure P13.33

 13.33  The switch in the circuit seen in Fig. P13.33 has been 
in position a for a long time before moving instanta-
neously to position b at =t 0.

a) Construct the s-domain equivalent circuit for 
>t 0.

b) Find Io and io.

c) Find Vo and vo.

PSPICE
MULTISIM

 13.34  The initial charge on the capacitor in the circuit in 
Fig. P13.34 is zero.

a) Find the s-domain Thévenin equivalent circuit 
with respect to the terminals a,b.

b) Find the s-domain expression for the current 
that the circuit delivers to a load consisting of a  
1 H inductor in series with a 2 Ω resistor.

5 V 1 V 2 V

0.2vx

2 1

0.5 F

20u(t)
1

2

a

b

1

2

vx 1 H

Figure P13.34

 13.35  There is no initial energy in the circuit in Fig. P13.35 
before the switch closes at =t 0. Find vo(t) for 

≥t 0.

40 sin 50,000t V 1.2 mHvo

1

2

30 V
1

2

1 mF

t 5 0

Figure P13.35

1

2
Vg

L

Ri
t 5 0

Figure P13.37

1

2

10 V

50 V4 H2 H

2 H

12 V

t 5 0

4 mF

1

2

vo

io

Figure P13.38

 13.38  The switch in the circuit seen in Fig. P13.38 has been 
closed for a long time before opening at =t 0. Use 
the Laplace transform method of analysis to find io.

PSPICE
MULTISIM
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 13.39 a) Using the results from Example 13.7 for the cir-
cuit in Fig. 13.23, verify that i2 reaches a peak 
value of 481.13 mA at t = 549.31 ms.

b) For the circuit shown in Fig. P13.23, find i1(t) for 
>t 0.

c) Compute di1/dt when i2 is at its peak value.

d) Express i2 as a function of di1/dt when i2 is at its 
peak value.

e) Use the results obtained in (c) and (d) to calcu-
late the peak value of i2.

 13.40  There is no energy stored in the circuit in Fig. P13.40 
at the time the switch is closed.

a) Find I1.

b) Use the initial- and final-value theorems to find 
+i (0 )1  and ∞i ( )1 .

c) Find i1.

PSPICE
MULTISIM

30 mH

40 mH

3 A 2 A

90 mH
1350 V600 V

i1 i2

Figure P13.42

2 V

20u(t) V 5u(t) Avo1.25 H 50 mF

1

2

1

2

Figure P13.44

1

2

136 V 1 kV

4 kV12.5 H0.5 H

1.5 H

88.4 V
t 5 0

i1

Figure P13.40

5 V

12 V

b

a

2.4 H

1.2 H75 V

3.6 Ht 5 0

io

1

2
6 V

Figure P13.43

 13.41 a) Find the current in the 4 kΩ resistor in the circuit 
in Fig. P13.40. The reference direction for the cur-
rent is from top to bottom through the resistor.

b) Repeat part (a) if the dot on the 12.5 H coil is 
reversed.

 13.42  The magnetically coupled coils in the circuit seen 
in Fig. P13.42 carry initial currents of 3 and 2 A, as 
shown.

a) Find the initial energy stored in the circuit.

b) Find I1 and I2.

c) Find i1 and i2.

d) Find the total energy dissipated in the 600 and 
Ω1350   resistors.

e) Repeat (a)–(d), with the dot on the 90 mH 
inductor at the lower terminal.

PSPICE
MULTISIM

 13.43  The make-before-break switch in the circuit seen in 
Fig. P13.43 has been in position a for a long time. At 

=t 0, it moves instantaneously to position b. Find 
io for ≥t 0.

PSPICE
MULTISIM

 13.44  There is no energy stored in the circuit seen in  
Fig. P13.44 at the time the two sources are energized.

a) Use the principle of superposition to find Vo.

b)  Find vo for >t 0.

PSPICE
MULTISIM

 13.45  Find vo(t) in the circuit shown in Fig. P13.45 if the 
ideal op amp operates within its linear range and 

( )=v u t0.4  Vg . Assume there is no energy stored 
in the circuit when the source is energized.

PSPICE
MULTISIM

2

1

25 kV

4 nF

5 kV
4 nF

1

2

vo(t)
vg

1

2

Figure P13.45

 13.46  The op amp in the circuit seen in Fig. P13.46 is ideal. 
There is no energy stored in the capacitors at the 
time the circuit is energized. Determine (a) Vo, (b) 
vo, and (c) how long it takes to saturate the opera-
tional amplifier.

PSPICE
MULTISIM
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528 The Laplace Transform in Circuit Analysis

 13.47  The op amp in the circuit shown in Fig. P13.47 is 
ideal. There is no energy stored in the circuit at the 
time it is energized. If ( )=v tu t20,000  Vg , find 
(a) Vo, (b) vo, (c) how long it takes to saturate the 
 operational amplifier, and (d) how small the rate of 
increase in vg must be to prevent saturation.

PSPICE
MULTISIM

12.5 V

12.5 V

200 kV

100 nF

200 nF

100 nF

400 kV400 kV

vo
8u(t) V

1
2

2
1

1

22

Figure P13.46

2

1

5 V

25 V

20 kV

10 nF

8 kV
50 nF

1

2

vo

1

2

vg

C1
R1

R2

C2

Figure P13.47

5 V

25 V

vo

1

2

vg2
1

2

vg1

20 nF

80 kV

20 kV

20 kV

15 kV

2

1

10 nF

1

2

Figure P13.48

 13.48  The op amp in the circuit shown in Fig. P13.48 is 
ideal. There is no energy stored in the capacitors at 
the instant the circuit is energized.

a) Find vo if ( )=v u t16  Vg1  and ( )=v u t8  Vg2 .

b) How many milliseconds after the two voltage 
sources are turned on does the op amp saturate?

PSPICE
MULTISIM

Sections 13.4–13.5

 13.49 a) Find the transfer function =H s V V( ) o i  for 
the circuit shown in Fig. P13.49(a).

b) Find the transfer function =H s V V( ) o i  for 
the circuit shown in Fig. P13.49(b).

c) Create two different circuits that have the transfer 
function = = +H s V V s( ) 5000 ( 5000)o i . Use  
components selected from Appendix H and Figs. 
P13.49(a) and (b).

PSPICE
MULTISIM

(a) (b)

R

voCvi

1

2

1

2

L

voRvi

1

2

1

2

Figure P13.49

(a) (b)

C
vo Lvi

1

2

1

2

R

voR vi

1

2

1

2

 Figure P13.50

 13.50 a) Find the transfer function =H s V V( ) o i  for the  
circuit shown in Fig. P13.50(a).

b) Find the transfer function =H s V V( ) o i  for the  
circuit shown in Fig. P13.50(b).

c) Create two different circuits that have the trans-
fer function = = +H s V V s s( ) ( 250)o i . Use 
components selected from Appendix H and  
Figs. P13.50(a) and (b).

 13.51 a) Find the transfer function =H s V V( ) o i  for 
the circuit shown in Fig. P13.51. Identify the 
poles and zeros for this transfer function.

b) Find components from Appendix H which 
when used in the circuit of Fig. P13.51 will 
result in a transfer function with two poles that 
are distinct real numbers. Calculate the values 
of the poles.

c) Find components from Appendix H which when 
used in the circuit of Fig. P13.51 will result in a 
transfer function with two poles, both with the 
same value. Calculate the value of the poles.

d) Find components from Appendix H which when 
used in the circuit of Fig. P13.51 will result in a 
transfer function with two poles that are com-
plex conjugate complex numbers. Calculate the 
values of the poles.
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 13.52  Repeat Problem 13.51 for the circuit in Fig. P13.52. 
In parts (b) – (d), let L = 1 mH and C = 0.1 μF, and 
use one or two resistors from Appendix H.

vovi

1

2

1

2

L

C R

Figure P13.52

C

L

vovi

1

2

1

2

R

Figure P13.51

 13.53  Find the numerical expression for the transfer func-
tion V V( )o i  of each circuit in Fig. P13.53 and give 
the numerical value of the poles and zeros of each 
transfer function.

PSPICE
MULTISIM

100 kV

vo

(c) (d)

40 nF

40 nF 100 kVvi

(a) (b)

1

2

1

2

15 kV

vo5 mHvi

1

2

1

2

5 mH

vo15 kVvi

1

2

1

2

vovi

1

2

1

2

25 kV

400 nF100 kVvi

1

2

vo

1

2

(e)

Figure P13.53

 13.54 a) Find the numerical expression for the transfer func-
tion =H s V V( ) o i for the circuit in Fig. P13.54.

b) Give the numerical value of each pole and zero 
of H(s).

400 kV

400 kV

62.5 nF
vi

1

2

vo

1

2

800 kV

Figure P13.54

 13.55  The operational amplifier in the circuit in Fig. P13.55  
is ideal.

a) Find the numerical expression for the transfer 
function =H s V V( ) .o g

b) Give the numerical value of each zero and pole 
of H(s).

c) Use the transfer function to find the unit step 
response for the circuit in Fig. P13.55.

R1 C1

10 kV 20 nF 5 V

25 V

1

2

vg

R2 5 25 kV

C2 5 4 nF

1

2

vo

2

1

Figure P13.55

1

2

2

1

62.5 kV

8 nF

8 kV
2 nF

1

2

vo

vg

VCC 

2VCC 

 Figure P13.56

 13.56  The operational amplifier in the circuit in Fig. P13.56  
is ideal.

a) Derive the numerical expression of the transfer 
function =H s V V( ) o g for the circuit in Fig. P13.56.

b) Give the numerical value of each pole and zero 
of H(s).

c) Use the transfer function to find the unit step 
response for the circuit in Fig. P13.56.
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530 The Laplace Transform in Circuit Analysis

 13.57  The operational amplifier in the circuit in Fig. P13.57  
is ideal.

a) Find the numerical expression for the transfer 
function =H s V V( ) o g .

b) Give the numerical value of each zero and pole 
of H(s).

c) Use the transfer function to find the unit step 
response for the circuit in Fig. P13.57.

2

1

VCC 

2VCC 

10 kV

250 nF

40 kV

500 nF

1

2

vo

1

2

vg

Figure P13.57

10 kV 2 Hig
t 5 0

50 nF

io

Figure P13.58

1

2

vD 1 kV

0.5 kV

10 Hig

1 2

mvD

io

Figure P13.59

8 kV

4 H

8 H

12 Hvg 750 nF
1

2

io

Figure P13.60

 13.58  There is no energy stored in the circuit in Fig. P13.58  
at the time the switch is opened. The sinusoidal cur-
rent source is generating the signal t60 cos 4000 mA. 
The response signal is the current io.

a) Find the transfer function I I .o g

b) Find Io(s).

c) Describe the nature of the transient component 
of io(t) without solving for io(t).

d) Describe the nature of the steady-state compo-
nent of io(t) without solving for io(t).

e) Verify the observations made in (c) and (d) by 
finding io(t).

PSPICE
MULTISIM

 13.59 a) Find the transfer function I Io g  as a function of 
µ for the circuit seen in Fig. P13.59.

b) Find the largest value of µ that will produce a 
bounded output signal for a bounded input 
signal.

c) Find io for µ = −0.5,  0,  1,  1.5, and 2 if 
( )=i u t10  A.g

PSPICE
MULTISIM

 13.60  In the circuit of Fig. P13.60 io is the output signal 
and vg is the input signal. Find the poles and zeros 
of the transfer function, assuming there is no initial 
energy stored in the linear transformer or in the 
capacitor.

Section 13.6

 13.61 a) Given y t x t h t( ) * ,( ) ( )=  find y(t) when h(t) 
and x(t) are the rectangular pulses shown in  
Fig. P13.61(a).

b) Repeat (a) when h(t) changes to the rectangular 
pulse shown in Fig. P13.61(b).

c) Repeat (a) when h(t) changes to the rectangular 
pulse shown in Fig. P13.61(c).

d) Sketch y(t) versus t for (a)–(c) on a single graph.

e) Do the sketches in (d) make sense? Explain.

t t

tt

20
(a)

(b) (c)

0

1

h(t)

50

4

h(t)

20

h(t)

200

5

x(t)

10

 Figure P13.61
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 13.62 a) Find x t h t( ) * ( ) when h(t) and x(t) are the rect-
angular pulses shown in Fig. P13.62(a).

b) Repeat (a) when x(t) changes to the rectangular 
pulse shown in Fig. P13.62(b).

c) Repeat (a) when h(t) changes to the rectangular 
pulse shown in Fig. P13.65(c).

 13.65  Interchange the inductor and resistor in Problem 
13.64 and again use the convolution integral to 
find vo.

 13.66  Assume the voltage impulse response of a circuit 
can be modeled by the triangular waveform shown 
in Fig. P13.66. The voltage input signal to this circuit 
is the step function 4u(t) V.

a) Use the convolution integral to derive the 
expressions for the output voltage.

b) Sketch the output voltage over the interval 0 
to 25 s.

c) Repeat parts (a) and (b) if the area under the 
voltage impulse response stays the same but the 
width of the impulse response narrows to 5 s.

d) Which output waveform is closer to replicating 
the input waveform: (b) or (c)? Explain.

(a)

20

h(t)

t

(b)

80

(c)

20

h(t)

t
0.50

20

x(t)

t80

10

x(t)

t
100

Figure P13.62

(a)

(b)

15

5 10 15 20 l (s)

h(t) (V)

l (s)

20

vi(l) (V)

21 7

Figure P13.63

1 V

1 H

1

2

vi

1

2

vo

Figure P13.64

 13.63  The voltage impulse response of a circuit is shown 
in Fig. P13.63(a). The input signal to the circuit is the 
rectangular voltage pulse shown in Fig. P13.63(b).

a) Derive the equations for the output voltage. 
Note the range of time for which each equation 
is applicable.

b) Sketch vo for ≤ ≤t0 27 s.

 13.64  A rectangular voltage pulse v u t u t[ ( ) 1 ] Vi ( )= − −  
is applied to the circuit in Fig. P13.64. Use the con-
volution integral to find vo.

10 200

5

h(t) (V)

t (s)

Figure P13.66

0 4

vi (V)

16

t (ms)

Figure P13.67

 13.67 a)  Use the convolution integral to find the out-
put voltage of the circuit in Fig. P13.53(a) if the 
input voltage is the rectangular pulse shown in 
Fig. P13.67.

b) Sketch vo(t) versus t for the time interval 
≤ ≤t0 10 ms.
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532 The Laplace Transform in Circuit Analysis

b) Use the convolution integral to find vo.

c) Show that your solutions for vo and io are consistent 
by calculating vo and io at − + −1  ms, 1  ms, 4  ms, 
and +4  ms.

 13.68 a) Repeat Problem 13.67, given that the resistor 
in the circuit in Fig. P13.53(a) is decreased to 

Ω10 k .

b)  Does decreasing the resistor increase or decrease 
the memory of the circuit?

c) Which circuit comes closer to transmitting a 
replica of the input voltage?

 13.69 a) Assume the voltage impulse response of a cir-
cuit is

=
<
≥






−

h t
t

e t
( )

0, 0;

20 , 0.t2

Use the convolution integral to find the output 
voltage if the input signal is 20u(t) V.

b) Repeat (a) if the voltage impulse response is

=
<

− ≤ ≤

≥










h t

t

t t

t

( )

0, 0;

20(1 ), 0 1 s;

0, 1 s.

c) Plot the output voltage versus time for (a) and 
(b) for ≤ ≤t0 2 s.

 13.70  Use the convolution integral to find vo in the circuit 
seen in Fig. P13.70 if ( )=v u t75  V.i

50 V 2 H

vovi 8 H

1

2

1

2

Figure P13.70

4 V 400 mH

vovi 100 mF

1

2

1

2

Figure P13.71

 13.71  The input voltage in the circuit seen in Fig. P13.71 is

u t u t10[ ( ) 0.1 ] V.i ( )= − −v

a) Use the convolution integral to find vo.

b) Sketch vo for ≤ ≤t0 1 s.

 13.72 a) Use the convolution integral to find io in the cir-
cuit in Fig. P13.72(a) if ig is the pulse shown in 
Fig. P13.72(b).

(b)

ig (mA)

10

25

5

2 3 4 51 t (ms)

(a)

20 V

5 V

ig vo

1

2

io

25 mH

Figure P13.72

1

2
vg

6 V

60 V 40 V

vg (V)

100

2100

(b)(a)

0.50 1.0 t (s)

io

Figure P13.73

 13.73 a) Find the impulse response of the circuit shown 
in Fig. P13.73(a) if vg is the input signal and io is 
the output signal.

b) Given that vg has the waveform shown in  
Fig. P13.73(b), use the convolution integral to 
find io.

c) Does io have the same waveform as vg? Why or 
why not?

 13.74 a) Find the impulse response of the circuit seen in 
Fig. P13.74 if vg is the input signal and vo is the 
output signal.

b) Assume that the voltage source has the wave-
form shown in Fig. P13.73(b). Use the convolu-
tion integral to find vo.

c) Sketch vo for ≤ ≤t0 1.5 s.
d) Does vo have the same waveform as vg? Why or 

why not?
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 13.75 a) Show that if ( ) ( )=y t h t x t( ) * , then

( ) ( )=Y s H x X s( ) .

b) Use the result given in (a) to find f(t) if

=
+

F s a
s s a

( )
( )

.
2

 13.76  The sinusoidal voltage pulse shown in Fig. P13.76(a) 
is applied to the circuit shown in Fig. P13.76(b). Use 
the convolution integral to find the value of vo at 

=t 2.2 s.

vo125 mF 10 Vvg

40 V
1

2

1

2

 Figure P13.74

1

2

vo

1

2

vi

(a) (b)
p>20 p

10

vi (t)

t (s)

625 kV

1.6 mF

Figure P13.76

 13.77  The current source in the circuit shown in Fig. P13.77(a) 
is generating the waveform shown in Fig. P13.77(b). 
Use the convolution integral to find vo at =t 7 ms.

(a)

ig 40 kV vo

1

2

10 kV

80 nF

(b)

ig (mA)

5

210

2 4 t (ms)10 3 65 7 8

Figure P13.77

Section 13.7

 13.78  When an input voltage of 240u(t) V is applied to a 
circuit, the response is known to be

v ( )= − +− −e e u t(75 100 25 )  V.o
t t800 3200

What will the steady-state response be if 
t40 cos 1600  Vg =v ?

 13.79  The transfer function for a linear time-invariant 
 circuit is

= =
+

+ + ×
H s

V
V

s
s s

( )
10 ( 6000)

( 875 88 10 )
.o

g

4

2 6

If v = t12.5 cos 8000  V,g  what is the steady-state 
 expression for vo?

 13.80  The transfer function for a linear time-invariant cir-
cuit is

= =
+

+ +
H s

I
I

s
s s

( )
25( 8)

60 150
.o

g
2

If =i t10 cos 20  A,g  what is the steady-state 
expression for io?

 13.81  The operational amplifier in the circuit seen in  
Fig. P13.81 is ideal and is operating within its linear 
region.

a) Calculate the transfer function V V .o g

b) If v = t200 10 cos  8000  mV,g  what is the 
steady-state expression for vo?

PSPICE
MULTISIM

1

2

2

1

5 V

25 Vvg

250 kV

250 pF

25 kV
5 nF

1

2

vo 20 kV

Figure P13.81

 13.82  a) For the circuit in Fig. P13.82 find the steady-state 
expression for vo when v = t10 cos 50,000 V.g

b) Replace the 50 kΩ resistor with a variable resis-
tor and compute the value of resistance neces-
sary to cause vo to lead vg by 120°.
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534 The Laplace Transform in Circuit Analysis

Section 13.8

 13.83  The inductor L1 in the circuit shown in Fig. P13.83 
is carrying an initial current of ρ A at the instant 
the switch opens. Find (a) v(t); (b) i1(t); (c) i2(t); and 
(d) λ t( ), where λ t( ) is the total flux linkage in the 
circuit.

2

1

1

2

115 V

215 V
vg

10 kV 10 kV

400 pF

50 kV

1

2

vo

Figure P13.82

L1 L2R v i2
i1

t 5 0r

1

2

 Figure P13.83

 13.84 a) Let → ∞R  in the circuit shown in Fig. P13.83, 
and use the solutions derived in Problem 13.83 
to find v(t), i1(t), and i2(t).

b) Let = ∞R  in the circuit shown in Fig. P13.83 
and use the Laplace transform method to find 
v(t), i1(t), and i2(t).

 13.85  Show that after V0Ce coulombs are trans-
ferred from C1 to C2 in the circuit shown in 
Fig.  13.47 (with R = 0), the voltage across each 
capacitor is +C V C C( ).1 0 1 2  (Hint: Use the 
 conservation-of-charge principle.)

 13.86  There is no energy stored in the circuit in Fig. P13.86 
at the time the impulsive voltage is applied.

a) Find vo(t) for ≥t 0.

b) Does your solution make sense in terms of 
known circuit behavior? Explain.

1

2

vo

5 mH

20 mH750d(t) mV
1

2

100 V

Figure P13.86

1000 V

250 V t 5 0

v0 1000 V
50 mH

1 mF

1

2

1

2

Figure P13.87

54 kV50d(t) mA vo0.5 mF

1

2

40 nF

Figure P13.88

4 kV

20 kV

20 A
400 mH

80 kV

100 mH

t 5 0

1

2

v(t)i1 i2

Figure P13.89

 13.87  The voltage source in the circuit in Example 13.9 is 
changed to a unit impulse; that is, δ=v t( ).g

a) How much energy does the impulsive voltage 
source store in the capacitor?

b) How much energy does it store in the inductor?

c) Use the transfer function to find vo(t).

d) Show that the response found in (c) is identi-
cal to the response generated by first charging 
the capacitor to 1000 V and then releasing the 
charge to the circuit, as shown in Fig. P13.87.

 13.88  There is no energy stored in the circuit in Fig. P13.88 
at the time the impulsive current is applied.

a) Find vo for ≥ +t 0 .

b) Does your solution make sense in terms of 
known circuit behavior? Explain.

 13.89  The switch in the circuit in Fig. P13.89 has been 
closed for a long time. The switch opens at =t 0. 
Compute (a) −i (0 );1  (b) +i (0 );1  (c) −i (0 );2  (d) 

+i (0 );2  (e) i1(t); (f) i2(t); and (g) v(t).

 13.90  There is no energy stored in the circuit in Fig. P13.90 
at the time the impulse voltage is applied.

a) Find i1 for ≥ +t 0 .

b) Find i2 for ≥ +t 0 .
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c) Find vo for ≥ +t 0 .

d) Do your solutions for i1, i2, and vo make sense in 
terms of known circuit behavior? Explain.

1

2

R1

R210 V vo

io

C1

C2

t 5 0
1

2

Figure P13.91

1

2

i1 i2

vo2 H 2 H

1 H

50d(t) V  F2
3

1

2

 Figure P13.90

 13.91  The parallel combination of R2 and C2 in the circuit 
shown in Fig. P13.91 represents the input circuit to a 
cathode-ray oscilloscope (CRO). The parallel com-
bination of R1 and C1 is a circuit model of a com-
pensating lead that is used to connect the CRO to 
the source. There is no energy stored in C1 or C2 at 
the time when the 10 V source is connected to the 
CRO via the compensating lead. The circuit values 
are =C 5 pF,1  =C 20 pF,2  = ΩR 1 M ,1  and 

= ΩR 4 M .2

a) Find vo.

b) Find io.

c) Repeat (a) and (b) given C1 is changed to 80 pF.

1

2

ba
5 kV

25 V

t 5 0

1

2
v3400 nF

1

2
v2500 nF

1

2
v1125 nF

i(t)

Figure P13.93

 13.92  Show that if =R C R C1 1 2 2 in the circuit shown in 
Fig. P13.91, vo will be a scaled replica of the source 
voltage.

 13.93  The switch in the circuit in Fig. P13.93 has been 
in position a for a long time. At =t 0,  the switch 
moves to position b. Compute (a) −v (0 );1  (b) 

−v (0 );2  (c) −v (0 );3  (d) i(t); (e) +v (0 );1  (f) +v (0 );2  
and (g) +v (0 ).3

Sections 13.1–13.8

 13.94  Assume the line-to-neutral voltage Vo in the 60 Hz 
circuit of Fig. 13.59 is 120 0° V (rms). Load Ra is 
absorbing 720 W; load Rb is absorbing 450 W; and 
the inductive load is absorbing 360 magnetizing 
VAR. The inductive reactance of the line is Ω2  . 
Assume Vg does not change after the switch opens.

a) Calculate the initial value of i2(t) and io(t).

b) Find Vo, vo(t), and +v (0 )o  using the s-domain 
circuit of Fig. 13.60.

c) Test the steady-state component of vo using pha-
sor domain analysis.

d) Using a computer program of your choice, plot 
vo vs. t for ≤ ≤t0 20 ms.

 13.95  Assume the switch in the circuit described in 
Problem 13.94 opens at the instant the sinusoidal 
steady-state voltage vo is zero  and going positive, 
i.e., π=v t120 2 sin120  V.o

a) Find vo(t) for ≥t 0.

b) Using a computer program of your choice, plot 
vo(t) vs. t for ≤ ≤t0 20 ms.

c) Compare the disturbance in the voltage in part  
(a) with that obtained in part (c) of Problem 13.94.

 13.96  The purpose of this problem is to show that the 
 line-to-neutral voltage in the circuit described in 
Problem 13.94 can go directly into steady state if the 
load Rb is disconnected from the circuit at precisely 
the right time. Let V tcos(120 ) V,o m π θ= +v  
where =V 120 2.m  Assume vg does not change 
after Rb is disconnected.

a)  Find the value of θ  (in degrees) so that vo goes 
directly into steady-state operation when the 
load Rb is disconnected.

b) For the value of θ  found in part (a), find vo(t) 
for ≥t 0.

c) Using a computer program of your choice, plot 
on a single graph, for − ≤ ≤t10 ms 10 ms, 
vo(t) before and after load Rb is disconnected.

PRACTICAL
PERSPECTIVE

PRACTICAL
PERSPECTIVE

PRACTICAL
PERSPECTIVE
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CHAPTER CONTENTS

14
CHAPTER 

Introduction to Frequency-
Selective Circuits
Up to this point in our analysis of circuits with sinusoidal sources, 
the source frequency has been held constant. In this chapter, we 
analyze the effect of varying source frequency on circuit voltages 
and currents. The result of this analysis is the frequency response 
of a circuit.

We’ve seen in previous chapters that a circuit’s response 
depends on the types of elements in the circuit, the way the ele-
ments are connected, and the element impedances. Varying the 
frequency of a sinusoidal source does not change the element 
types or their connections, but it does change the capacitor and 
inductor impedances because these impedances are functions of 
frequency.

We can design circuits whose output signals reside within 
a desired frequency range, excluding all other frequen-
cies that appear in the circuit’s input. Such circuits are called 
 frequency- selective circuits. Many devices that communicate via 
electric signals, such as telephones, radios, televisions, and satel-
lites, employ frequency-selective circuits.

Frequency-selective circuits are also called filters because 
they filter out certain input signals on the basis of frequency. Note 
that no practical frequency-selective circuit can perfectly or com-
pletely filter out selected frequencies. Rather, filters attenuate— 
that is, weaken or lessen the effect of—any input signals with 
 frequencies outside the desired frequency band. For example, 
your home stereo system may have a graphic equalizer. Each band 
in the graphic equalizer is a filter that amplifies sounds  (audible  
frequencies) in the frequency range of the band and attenuates 
frequencies outside of that band. Thus, the graphic equalizer 
 enables you to change the sound volume in each frequency band.

We begin this chapter by analyzing circuits from each of the 
four major categories of filters: low pass, high pass, band pass, 
and band reject. The transfer function of a circuit is the starting 
point for the frequency response analysis. Pay close attention to 
the similarities among the transfer functions of circuits that per-
form the same filtering function. We will employ these similari-
ties when designing filter circuits in Chapter 15.

14.1 Some Preliminaries p. 538

14.2 Low-Pass Filters p. 539

14.3 High-Pass Filters p. 545

14.4 Bandpass Filters p. 550

14.5 Bandreject Filters p. 560

1 Know the RL and RC circuit configurations 
that act as low-pass filters and be able to 
design RL and RC circuit component val-
ues to meet a specified cutoff frequency.

2 Know the RL and RC circuit configurations 
that act as high-pass filters and be able to 
design RL and RC circuit component val-
ues to meet a specified cutoff frequency.

3 Know the RLC circuit configurations 
that act as bandpass filters, understand 
the definition of and relationship among 
the center frequency, cutoff frequen-
cies, bandwidth, and quality factor of a 
 bandreject filter, and be able to design RLC 
circuit component values to meet design 
specifications.

4 Know the RLC circuit configurations that 
act as bandreject filters, understand 
the definition of and relationship among 
the center frequency, cutoff frequen-
cies,  bandwidth, and quality factor of a 
 bandreject filter, and be able to design RLC 
circuit component values to meet design 
specifications.

CHAPTER OBJECTIVES
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Pushbutton Telephone Circuits
A pushbutton telephone produces tones that you hear 
when you press a button. You may have wondered about 
these tones. How are they used to tell the telephone sys-
tem which button was pushed? Why are tones used at 
all? Why do the tones sound musical? How does the 
phone system tell the difference between button tones 
and the normal sounds of people talking or singing?

The telephone system was designed to handle 
audio signals—those with frequencies between 300  Hz 
and 3 kHz. Thus, all signals from the system to the user 
have to be audible—including the dial tone and the busy 
signal. Similarly, all signals from the user to the system 
have to be audible, including the signal that the  user 

has pressed a button. It is important to distinguish but-
ton signals from the normal audio signal, so a dual- 
tone-multiple- frequency (DTMF) design is employed. When 
a number button is pressed, a unique pair of sinusoidal 
tones with very precise frequencies is sent by the phone 
to the telephone system. The DTMF frequency and timing 
specifications make it unlikely that a human voice could 
 produce the exact tone pairs, even if the person were try-
ing. In the central telephone facility, electric circuits moni-
tor the audio signal, listening for the tone pairs that signal a 
number. In the Practical Perspective example at the end of 
the chapter, we will examine the design of the DTMF filters 
used to determine which button has been pushed.

Practical Perspective

Urbanbuzz/Alamy Photo Stock

Fuse/Getty Images
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538 Introduction to Frequency-Selective Circuits

14.1 Some Preliminaries
Recall from Section 13.7 that a circuit’s transfer function provides an easy 
way to compute the steady-state response to a sinusoidal input. There, 
we considered only fixed-frequency sources. To study the frequency 
response of a circuit, we replace a fixed-frequency sinusoidal source with 
a varying-frequency sinusoidal source. The transfer function is still an 
immensely useful tool because the magnitude and phase of the output 
signal depend only on the magnitude and phase of the transfer function 
H j( ),ω  which vary as a function of the source frequency ω.  Note that this 
method of analyzing the output of a circuit as its input frequency varies 
assumes that we can vary the input frequency without changing its mag-
nitude or phase angle.

To further simplify this first look at frequency-selective circuits, we 
will also restrict our attention to cases where both the input and out-
put signals are sinusoidal voltages, as illustrated in Fig.  14.1. Thus, the 
circuit’s transfer function will be the ratio of the Laplace transform 
of the output voltage to the Laplace transform of the input voltage, or 

=H s V s V s( ) ( ) ( ).o i  We should keep in mind, however, that for a partic-
ular application, a current may be either the input signal or output signal 
of interest.

The signals passed from the input to the output fall within a band 
of frequencies called the passband. Input voltages outside this band have 
their magnitudes attenuated by the circuit and are thus effectively pre-
vented from reaching the circuit’s output. Frequencies not in a circuit’s 
passband are in its stopband. Frequency-selective circuits are categorized 
by the location of the passband.

We can identify the type of frequency-selective circuit by examining 
its frequency response plot. A frequency response plot shows how a cir-
cuit’s transfer function (both amplitude and phase) changes as the source 
frequency changes. A frequency response plot has two parts.

• A graph of ωH j( )  versus frequency ω,  called the magnitude plot.
• A graph of θ ωj( ) versus frequency ω,  called the phase angle plot.

The ideal frequency response plots for the four major categories of fil-
ters are shown in Figs. 14.2 and 14.3. Figure 14.2 illustrates the ideal plots 
for a low-pass and a high-pass filter, respectively. Both filters have one 
passband and one stopband, which are defined by the cutoff frequency 
that separates them. The names low pass and high pass are derived from 
the magnitude plots: a low-pass filter passes signals at frequencies lower 
than the cutoff frequency from the input to the output, and a high-pass 
filter passes signals at frequencies higher than the cutoff frequency. Thus, 
the terms low and high as used here do not refer to any absolute val-
ues of frequency, but rather to relative values with respect to the cutoff 
frequency.

Note from the graphs for both these filters (as well as those for the 
bandpass and bandreject filters in Fig. 14.3) that the phase angle plot for 
an ideal filter varies linearly in the passband. It is of no interest outside the 
passband because there the magnitude is zero. Linear phase variation is 
necessary to avoid phase distortion.

The two remaining categories of filters each have two cutoff fre-
quencies. Figure  14.3(a) illustrates the ideal frequency response plot 
of a bandpass filter, which passes a source voltage to the output only 
when the source frequency is within the band defined by the two cut-
off frequencies. Figure  14.3(b) shows the ideal plot of a bandreject  
filter, which passes a source voltage to the output only when the source 
frequency is outside the band defined by the two cutoff frequencies. 

Vo(s)

1

2

Vi (s) 1

2
Circuit

Figure 14.1 ▲ A circuit with voltage input and 
output.

Passband Stopband

(a)

ƒH( jv) ƒ

vvc

1

u( jv)

u( jvc)

08

08

Stopband Passband

(b)

ƒH( jv) ƒ 

vvc

1

u( jv)
u( jvc)

Figure 14.2 ▲ Ideal frequency response plots for  
(a) an ideal low-pass filter and (b) an ideal high-pass 
filter.
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 14.2  ow-Pass Filters 539

The  bandreject filter thus rejects, or stops, the source voltage from 
reaching the output when its frequency is within the band defined by 
the cutoff frequencies.

In specifying a filter using any of the circuits from this chapter, it is 
important to note that the magnitude and phase angle characteristics are 
not independent. In other words, the characteristics of a circuit that result 
in a particular magnitude plot will also dictate the form of the phase angle 
plot and vice versa. For example, once we select a desired form for the 
magnitude response of a circuit, the phase angle response is also deter-
mined. Alternatively, if we select a desired form for the phase angle 
response, the magnitude response is also determined. Although there 
are some frequency-selective circuits for which the magnitude and phase 
angle behavior can be independently specified, these circuits are not pre-
sented here.

The next sections present examples of circuits from each of the four 
filter categories. These circuits represent only a few of the many circuits 
that act as filters. As you read, focus your attention on trying to identify 
what properties of a circuit determine its behavior as a filter. For exam-
ple, you should note the various forms of the transfer functions that per-
form the same filtering function. Identifying the form of a filter’s transfer 
function will ultimately help you in designing filter circuits for particular 
applications.

All of the filters in this chapter are passive filters because their behav-
ior depends only on passive elements: resistors, capacitors, and inductors. 
Usually, the largest output amplitude a passive filter can achieve equals 
the input amplitude. The only passive filter described in this chapter that 
can amplify its output is the series RLC resonant filter. Also, if you place 
an impedance in series with the source or in parallel with the load, the 
maximum output amplitude will decrease. Because many practical filter 
applications require amplification (a ratio of output-to-input amplitude 
greater than 1), passive filters have some significant disadvantages. Many 
active filter circuits, introduced in Chapter 15, provide amplification, and 
thereby overcome this passive filter disadvantage.

 14.2 Low-Pass Filters
Two circuits that behave as low-pass filters are the series RL circuit and 
the series RC circuit. Let’s investigate the circuit characteristics that affect 
the cutoff frequency.

The Series RL Circuit—Qualitative Analysis
A series RL circuit is shown in Fig. 14.4(a). The circuit’s input is a sinu-
soidal voltage source with varying frequency. The circuit’s output is the 
voltage across the resistor. Suppose the source frequency starts very low 
and increases gradually. We know that the behavior of the ideal resistor 
does not change because its impedance is independent of frequency. But 
consider how the behavior of the inductor changes.

Recall that the impedance of an inductor is ωj L. At low frequen-
cies, the inductor’s impedance is very small compared with the resistor’s 
impedance, and the inductor effectively functions as a short circuit. The 
term low frequencies thus refers to any frequencies for which ωL R� .  
The equivalent circuit for ω = 0  is shown in Fig. 14.4(b). In this equiv-
alent circuit, the output voltage and the input voltage are equal both in 
magnitude and in phase angle.

Stopband Pass-
band Stopband

(a)

ƒH( jv) ƒ

vvc1 vc2

1

u( jv)

u( jvc2)

u( jvc1)

08

Passband Stop-
band Passband

(b)

ƒH( jv) ƒ

vvc1 vc2

1

u( jv)

u( jvc1)

u( jvc2)

08

Figure 14.3 ▲ Ideal frequency response plots for (a) 
an ideal bandpass filter and (b) an ideal bandreject 
filter.
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Figure 14.4 ▲ (a) A series RL low-pass filter. (b) 
The equivalent circuit at 0.ω =  (c) The equivalent 
circuit at .ω = ∞

M14_NILS8436_12_SE_C14.indd   539 07/01/22   12:44 PM



540 Introduction to Frequency-Selective Circuits
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Figure 14.5 ▲ The frequency response plot for the 
series RL circuit in Fig. 14.4(a).

As the frequency increases, the impedance of the inductor increases 
relative to that of the resistor. Increasing the inductor’s impedance causes 
a corresponding increase in the magnitude of the voltage drop across the 
inductor and a corresponding decrease in the output voltage magnitude. 
Increasing the inductor’s impedance also introduces a shift in phase angle 
between the inductor’s voltage and current, resulting in a phase angle dif-
ference between the input and output voltage. The output voltage always 
lags the input voltage, and as the frequency increases, this phase lag 
approaches 90°.

At high frequencies, the inductor’s impedance is very large compared 
with the resistor’s impedance, and the inductor thus functions as an open 
circuit, effectively blocking the flow of current in the circuit. The term 
high frequencies thus refers to any frequencies for which ωL R� . The 
equivalent circuit for ω = ∞ is shown in Fig. 14.4(c), where the output 
voltage magnitude is zero. The phase angle of the output voltage is 90°  
more negative than that of the input voltage, so the output lags the input 
by 90°.

Based on the behavior of the output voltage magnitude, this series RL 
circuit selectively passes low-frequency inputs to the output, and it blocks 
high-frequency inputs from reaching the output. The circuit’s response to 
varying input frequency is shown in Fig. 14.5, and these plots represent 
the frequency response of the series RL circuit in Fig. 14.4(a). The upper 
plot shows how ωH j( )  varies with frequency. The lower plot shows how 
θ ωj( ) varies with frequency. Appendix E presents a method for construct-
ing these plots.

We have also superimposed the ideal magnitude plot for a low-pass 
filter from Fig. 14.2(a) on the magnitude plot of the RL filter in Fig. 14.5 
(see the dashed line). There is an obvious difference between the magni-
tude plots of an ideal filter and an actual RL filter. The ideal filter exhibits 
a discontinuity in magnitude at the cutoff frequency, ω ,c  which creates an 
abrupt transition between the passband and the stopband. While this is, 
ideally, how we would like our filters to perform, it is not possible to use 
real components to construct a circuit with an abrupt transition in mag-
nitude. Circuits acting as low-pass filters have a magnitude response that 
transitions gradually between the passband and the stopband. Hence, the 
magnitude plot of a real circuit requires us to define what we mean by the 
cutoff frequency, ω .c

Defining the Cutoff Frequency
We need to define the cutoff frequency, ω ,c  for realistic filter circuits 
because the magnitude plot does not allow us to identify a single fre-
quency that divides the passband and the stopband. The definition for 
cutoff  frequency widely used by electrical engineers is the frequency for 
which the transfer function magnitude is decreased by the factor 1 2  
from its maximum value:

CUTOFF FREQUENCY DEFINITION

 H j H( ) 1
2

  ,c maxω =  (14.1)

where H max  is the maximum magnitude of the transfer function. It follows 
from Eq. 14.1 that the passband of a filter is defined as the range of fre-
quencies for which the amplitude of the output voltage is at least 70.7% of 
the maximum possible amplitude.
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Defining the cutoff frequency using the constant 1 2  is not an arbi-
trary choice. Examining another consequence of the cutoff frequency 
explains this choice. Recall from Section  10.5 that the average power 
delivered by any circuit to a load is proportional to V ,L

2  where VL is the 
amplitude of the voltage drop across the load:

P
V
R

1
2

.L
2

=

If the circuit has a sinusoidal voltage source, ωV j( ),i  then the load voltage 
is also a sinusoid, and its amplitude is a function of the frequency ω.  We 
define Pmax  as the value of the average power delivered to a load when the 
magnitude of the load voltage is maximum:

P
V

R
1
2

.max
L
2

max=

If we vary the frequency of the sinusoidal voltage source, ωV j( ),i  the 
load voltage is a maximum when the magnitude of the circuit’s transfer 
function is also a maximum:

 V H V .iL max max=  (14.2)

Now consider what happens to the average power when the frequency of 
the voltage source is ω .c  Using Eqs. 14.1 and 14.2, the magnitude of the 
load voltage at ωc  is

V j H j V( ) ( )  c c iL ω ω=

H V1
2 imax=

V1
2

.L max=

Now, compute the power delivered to the load at the cutoff frequency:

P j
V j

R
( ) 1

2
( )

c
cL

2

ω
ω

=

V

R
1
2

1
2

  L max

2

( )
=

V
R

1
2

2L
2

max=

=
P

2
.max

We see that, at the cutoff frequency ω ,c  the average power delivered by 
the circuit is one half the maximum average power. Thus, ωc  is also called 
the half-power frequency. In the filter’s passband, the average power 
delivered to a load is at least 50% of the maximum average power.
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Figure 14.6 ▲ The s-domain equivalent for the 
 circuit in Fig. 14.4(a).

The Series RL Circuit—Quantitative Analysis
Now that we have defined the cutoff frequency for filter circuits, we can 
analyze the series RL circuit to find the relationship between the compo-
nent values and the cutoff frequency for this low-pass filter. We begin by 
constructing the s-domain equivalent of the circuit in Fig. 14.4(a), assum-
ing the initial conditions are zero. The resulting equivalent circuit is shown 
in Fig. 14.6. The voltage transfer function for this circuit is

 H s
V s
V s

R L
s R L

( )
( )
( )

.o

i

= =
+

 (14.3)

To study the frequency response, we make the substitution ω=s j  
in Eq. 14.3:

ω
ω

=
+

H j
R L

j R L
( ) .

We can now separate ωH j( ) into two equations. The first defines the 
transfer function magnitude as a function of frequency; the second defines 
the transfer function phase angle as a function of frequency:

 H j
R L

R L
( )

( )
,

2 2
ω

ω
=

+
 (14.4)

θ ω ω( )= − −j L
R

( ) tan .1

Close examination of Eq. 14.4 provides the quantitative support for the 
magnitude plot shown in Fig. 14.5.

• When ω = 0, the denominator and the numerator are equal and 
=H j( 0) 1. This means that at ω = 0, the input voltage is passed 

to the output terminals without a change in the voltage magnitude.
• As the frequency increases, the numerator of Eq. 14.4 is unchanged, 

but the denominator gets larger. Thus, ωH j( )  decreases as the fre-
quency increases, as shown in the plot in Fig. 14.5. Likewise, as the 
frequency increases, the phase angle changes from its dc value of 0°, 
becoming more negative.

• As ω → ∞,  the denominator of Eq. 14.4 approches infinity and 
ω →H j( ) 0,  as seen in Fig.  14.5. As ω → ∞  , the phase angle 

 approaches −90°, as seen from the phase angle plot in Fig. 14.5.

Using Eq. 14.4, we can compute the cutoff frequency, ω .c  Remember 
that ωc  is defined as the frequency at which ω ( )=H j H( ) 1 2 .c max  
For the low-pass filter, = =H H j( 0) 1,max  as seen in Fig. 14.5. Thus, 
for the circuit in Fig. 14.4(a),

H j
R L

R L
( ) 1

2
1

( )
.c

c
2 2

ω
ω

= =
+

Solving for ω ,c  we get

CUTOFF FREQUENCY FOR RL FILTERS

 R
L

.cω =  (14.5)
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Equation 14.5 provides an important result. The cutoff frequency, ω ,c  
can be set to any desired value by appropriately selecting values for R and L. 
We can therefore design a low-pass filter with whatever cutoff frequency is 
needed. Example 14.1 demonstrates the design potential of Eq. 14.5.

 EXAMPLE 14.1     Designing a Low-Pass Filter

Electrocardiology is the study of the electric  signals 
produced by the heart. These signals maintain 
the heart’s rhythmic beat and are measured by an 
 instrument called an electrocardiograph. This instru-
ment must be capable of detecting periodic signals 
whose frequency is about 1 Hz (the normal heart 
rate is 72 beats per minute). The instrument must 
operate in the presence of sinusoidal noise consisting 
of signals from the surrounding electrical environ-
ment, whose fundamental frequency is 60 Hz—the 
frequency at which electric power is supplied.

Choose values for R and L in the circuit of 
Fig.  14.4(a) such that the resulting circuit could 
be used in an electrocardiograph to filter out any 
noise above 10  Hz and pass the electric signals 
from the heart at or near 1 Hz. Then compute the 
magnitude of Vo at 1 Hz, 10 Hz, and 60 Hz to see 
how well the filter performs.

Solution
The problem is to select values for R and L that 
yield a low-pass filter with a cutoff frequency of 
10 Hz. From Eq. 14.5, we see that R and L cannot 
be specified independently to generate a value for 
ω .c  Therefore, let’s choose a commonly available 
value of L, 100 mH. Before we use Eq. 14.5 to com-
pute the value of R needed to obtain the desired 
cutoff frequency, we need to convert the cutoff fre-
quency from hertz to radians per second:

ω π π= =2 (10) 20   rad s .c

Now, solve for the value of R that, together with 
=L 100 mH, will yield a low-pass filter, with a 

cutoff frequency of 10 Hz:

R L (20 ) 100 10 6.28  .c
3ω π ( )= = × = Ω−

We can compute the magnitude of Vo using the 
equation V H j V( )o iω= ⋅ :

ω
ω

=
+

V
R L

R L
V( )

 ( )
 o i2 2

π
ω π

=
+

V20
 400

  .i2 2

Table  14.1 summarizes the computed magnitude 
values for the frequencies 1 Hz, 10 Hz, and 60 Hz. 
As expected, the input and output voltages have 
the same magnitudes at the low frequency because 
the circuit is a low-pass filter. At the cutoff fre-
quency, the output voltage magnitude has been 
reduced by 1 2  from the unity passband magni-
tude. At 60 Hz, the output voltage magnitude has 
been reduced by a factor of about 6, achieving the 
desired attenuation of the noise that could corrupt 
the signal the electrocardiograph is designed to 
measure.

A Series RC Circuit
The series RC circuit shown in Fig.  14.7 also behaves as a low-pass fil-
ter. We can verify this via the same qualitative analysis used previously. 
In fact, such a qualitative examination is an important problem-solving 
step that you should get in the habit of performing when analyzing filters. 
Doing so enables you to predict the filtering characteristics (low pass, high 
pass, etc.) and thus also predict the general form of the transfer function. 
If the calculated transfer function matches the qualitatively predicted 
form, you have an important accuracy check.

1

2
vi C vo

1

2

R

Figure 14.7 ▲ A series RC low-pass filter.

TABLE 14.1   Input and Output Voltage 
Magnitudes for Three 
Frequencies

f Hz( ) Vi V( ) Vo V( )

 1 1.0 0.995

10 1.0 0.707

60 1.0 0.164
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Figure 14.8 ▲ The s-domain equivalent for the circuit in Fig. 14.7.

EXAMPLE 14.2     Designing a Series RC Low-Pass Filter

For the series RC circuit in Fig. 14.7:

a) Find the transfer function between the source 
voltage and the output voltage.

b) Determine an equation for the cutoff frequency 
in the series RC circuit.

c) Choose values for R and C that will yield a low-
pass filter with a cutoff frequency of 3 kHz.

Solution

a) To derive an expression for the transfer function, 
we first construct the s-domain equivalent of the 
circuit in Fig.  14.7, as shown in Fig.  14.8. Using 
s-domain voltage division on the equivalent cir-
cuit, we find

=
+

H s RC

s
RC

( )

1

1
.

Now, substitute ω=s j  and compute the magni-
tude of the resulting expression:

ω

ω ( )
=

+

H j RC

RC

( )

1

  1
.

2
2

b) At the cutoff frequency ω ,c  ωH j( )  is equal to 
( )H1 2 .max  For a low-pass filter, =H H j( 0),max   
and for the circuit in Fig.  14.8, =H j( 0) 1.  We can 
then describe the relationship among the quantities R, 
C, and ωc :

 H j RC

RC

( ) 1
2

(1)

1

1
.c

c
2

2ω

ω ( )
= =

+

Solving this equation for ω ,c  we get

CUTOFF FREQUENCY FOR RC FILTERS 

RC
1 .cω =

c) From the results in (b), we see that the cutoff frequency 
is determined by the values of R and C. Because R and 
C cannot be determined independently, let’s choose 
C 1  F.µ=  Given a choice, we will usually specify a 
value for C first, rather than for R, because the num-
ber of available capacitor values is much smaller than 
the number of resistor values. Remember that we have 
to convert the specified cutoff frequency from 3 kHz 
to π(2 )(3)  krad s:

ω
=R

C
1

c

π
=

× × −
1

(2 )(3 10 )(1 10 )3 6

= Ω53.05  .

Note that the circuit’s output is defined as the voltage across the 
capacitor. We again use three frequency regions to determine how the 
series RC circuit in Fig. 14.7 behaves:

• Zero frequency (ω = 0): The impedance of the capacitor is infinite, 
and the capacitor acts as an open circuit. The input and output volt-
ages are thus the same.

• Frequencies increasing from zero: The impedance of the capacitor 
decreases relative to the impedance of the resistor, and the source 
voltage divides between the resistive impedance and the capacitive 
impedance. The output voltage is thus smaller than the source voltage.

• Infinite frequency (ω = ∞): The impedance of the capacitor is zero, 
and the capacitor acts as a short circuit. The output voltage is thus zero.

Based on this analysis, the series RC circuit functions as a low-pass filter. 
Example 14.2 explores this circuit quantitatively.
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Figure 14.9 summarizes the two low-pass filter circuits we have ana-
lyzed. Look carefully at the transfer functions and notice their similar 
form—they differ only in the terms that specify the cutoff frequency. We 
can therefore identify a general form for the transfer functions of these 
two low-pass filters:

TRANSFER FUNCTION FOR LOW-PASS FILTERS

 H s
s

( ) .c

c

ω
ω

=
+

 (14.6)

Any circuit with a voltage ratio described by Eq. 14.6 would behave as a 
low-pass filter with a cutoff frequency of ω .c  The problems at the end of 
the chapter give you other examples of circuits with this voltage ratio.

Relating the Frequency Domain to the Time Domain
Finally, you might have noticed one other important relationship. Recall 
our discussion of the natural responses of the first-order RL and RC cir-
cuits in Chapter 7. An important parameter for these circuits is the time 
constant, τ , which characterizes the shape of the time response. For the 
RL circuit, the time constant has the value L R (Eq. 7.3); for the RC cir-
cuit, the time constant is RC (Eq. 7.8). Compare the time constants to the 
cutoff frequencies for these circuits and notice that

 τ ω= 1 .c  (14.7)

This result is a direct consequence of the relationship between the 
time response of a circuit and its frequency response, as revealed by the 
Laplace transform. The discussion of memory and weighting as repre-
sented in the convolution integral of Section 13.6 shows that as ω → ∞,c  
the filter has no memory, and the output approaches a scaled replica of the 
input; that is, no filtering has occurred. As ω → 0,c  the filter has increased 
memory, and the output voltage is a distortion of the input because filter-
ing has occurred.

Objective 1—Know the RL and RC circuit configurations that act as low-pass filters

14.1  A series RC low-pass filter requires a cutoff fre-
quency of 4 kHz. Use =C 10 nF  and compute 
the value of R required.

Answer: 3978.9 Ω.

14.2  A series RL low-pass filter with a cutoff fre-
quency of 10 kHz is needed. Using =L 1 mH, 

compute (a) R; (b) ωH j( )  at 100 kHz; and 
(c) θ ωj( ) at 100 kHz.

Answer: a) 62.8 Ω;

b) 0.0995;

c) −84.3°.

 ASSESSMENT PROBLEMS

SELF-CHECK: Also try Chapter Problems 14.1 and 14.6.

14.3 High-Pass Filters
Now we examine two circuits that function as high-pass filters. Once 
again, they are the series RL circuit and the series RC circuit. We will see 
that the same series circuit can act as either a low-pass or a high-pass filter, 
depending on where the output voltage is defined. We will also determine 

1

2
Vi R Vo

1

2

sL

s 1 R>L
R>L

H(s) 5

vc 5 R>L

1

2
Vi Vo

1

2

R

s 1 1>RC
1>RC

H(s) 5

sC
1

vc 5 1>RC

Figure 14.9 ▲ Two low-pass filters, the series RL 
and the series RC, together with their transfer func-
tions and cutoff frequencies.
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Figure 14.10 ▲ (a) A series RC high-pass filter; (b) 
the equivalent circuit at 0;ω =  and (c) the equiva-
lent circuit at .ω = ∞

the relationship between the component values and the cutoff frequency 
of these filters.

The Series RC Circuit—Qualitative Analysis
A series RC circuit is shown in Fig. 14.10(a). In contrast to its low-pass 
counterpart in Fig. 14.7, the output voltage here is defined across the resis-
tor, not the capacitor. Because of this, the effect of the changing capaci-
tive impedance is different than it was in the low-pass configuration.

At ω = 0, the capacitor behaves like an open circuit, so there is 
no current in the resistor. This is illustrated in the equivalent circuit in 
Fig.  14.10(b). In this circuit, there is no voltage across the resistor and 

=v 0.o  The circuit filters out the low-frequency input voltage before it 
reaches the circuit’s output.

As the frequency of the voltage source increases, the impedance of 
the capacitor decreases relative to the impedance of the resistor, and the 
source voltage is now divided between the capacitor and the resistor. The 
output voltage magnitude thus begins to increase.

When the frequency of the source is infinite (ω = ∞), the capacitor 
behaves as a short circuit, so the capacitor voltage is zero. This is illus-
trated in the equivalent circuit in Fig. 14.10(c). In this circuit, the input 
and output voltages are the same.

The phase angle difference between the input and output voltages 
also varies as the frequency of the source changes. For ω = ∞,  the out-
put voltage is the same as the input voltage, so the phase angle difference 
is zero. As the frequency of the source decreases and the impedance of 
the capacitor increases, a phase shift is introduced between the voltage 
and the current in the capacitor. This creates a phase difference between 
the input and output voltages. The phase angle of the output voltage 
leads that of the source voltage. When ω = 0, this phase angle difference 
reaches its maximum of 90°.+

Based on our qualitative analysis, we see that when the output is 
 defined as the voltage across the resistor, the series RC circuit behaves 
as a high-pass filter. The components and connections are identical to the 
low-pass series RC circuit, but the choice of output is different. Thus, we 
have confirmed the earlier observation that the filtering characteristics of 
a circuit depend on the definition of the output as well as on circuit com-
ponents, values, and connections.

Figure  14.11 shows the frequency response plot for the series RC 
high-pass filter. For reference, the dashed lines indicate the magnitude 
plot for an ideal high-pass filter. We now turn to a quantitative analysis of 
this same circuit.

The Series RC Circuit—Quantitative Analysis
To begin, construct the s-domain equivalent of the circuit in Fig. 14.10(a), 
as shown in Fig. 14.12. We use voltage division to find the transfer function:

= =
+

H s
V s
V s

s
s RC

( )
( )
( ) 1

.o

i

Making the substitution ω=s j  gives

ω
ω

ω
=

+
H j

j
j RC

( )
1

.

sC
1

1

2
Vi(s) R Vo(s)

1

2

Figure 14.12 ▲ The s-domain equivalent of the 
 circuit in Fig. 14.10(a).

vc v

ƒH( jv)ƒ

u( jv)

08

1908

1.0

0

Figure 14.11 ▲ The frequency response plot for the 
series RC circuit in Fig. 14.10(a).
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Next, we separate ωH j( ) into two equations. The first is the equation 
describing the magnitude of the transfer function; the second is the equa-
tion describing the phase angle of the transfer function:

 ω ω
ω

=
+

H j
RC

( )
(1 )

,
2 2

 (14.8)

θ ω ω= − −j RC( ) 90° tan .1

A close look at the equations for the magnitude and phase angle of 
the transfer function confirms the shape of the frequency response plot 
in Fig.  14.11. Using Eq. 14.8, we can calculate the cutoff frequency for 
the series RC high-pass filter. Recall that at the cutoff frequency, the 
magnitude of the transfer function is ( )H1 2 .max  For a high-pass filter, 

= ∞H H j( ) ,max  as seen from Fig. 14.11. We can construct an equation 
for ωc  by setting the left-hand side of Eq. 14.8 to ∞H j(1 2) ( ) , noting 
that for this series RC circuit, ∞ =H j( ) 1:

ω

ω
=

+ RC
1
2 (1 )

.c

c
2 2

Solving for ω ,c  we get

 
RC
1 .cω =  (14.9)

Equation 14.9 presents a familiar result. The cutoff frequency for the 
series RC circuit has the value RC1 , whether the circuit is configured as 
a low-pass filter in Fig. 14.7 or as a high-pass filter in Fig. 14.10(a). This 
is not a surprising result, as we have already discovered a connection 
between the cutoff frequency, ωc , and the time constant, τ, of a circuit.

Example 14.3 analyzes a series RL circuit, this time configured as a 
high-pass filter. Example 14.4 examines the effect of adding a load resistor 
at the output of the filter.

 EXAMPLE 14.3     Designing a Series RL High-Pass Filter

Show that the series RL circuit in Fig.  14.13 also 
acts like a high-pass filter:

a) Derive an expression for the circuit’s transfer 
function.

b) Use the result from (a) to determine an equation 
for the cutoff frequency in the series RL circuit.

c) Choose values for R and L that will yield a high-
pass filter with a cutoff frequency of 15 kHz.

Solution

a) Begin by constructing the s-domain equivalent of 
the series RL circuit, as shown in Fig. 14.14. Then 
use voltage division to find the transfer function:

=
+

H s s
s R L

( ) .

Making the substitution ω=s j , we get

ω
ω

ω
=

+
H j

j
j R L

( ) .

Notice that this equation has the same form as 
the equation for the series RC high-pass filter.

b) To find an equation for the cutoff frequency, first 
compute the magnitude of ωH j( ):

ω ω
ω

=
+

H j
R L

( )
 ( )

.
2 2

1

2
vi L vo

1

2

R

Figure 14.13 ▲ The circuit for Example 14.3.
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EXAMPLE 14.4     Loading the Series RL High-Pass Filter

Examine the effect of placing a load resistor in par-
allel with the inductor in the RL high-pass filter 
shown in Fig. 14.15:

a) Determine the transfer function for the circuit in 
Fig. 14.15.

b) Sketch the magnitude plot for the loaded RL 
high-pass filter, using the values for R and L 
from the circuit in Example 14.3(c) and letting 
R RL = . On the same graph, sketch the magni-
tude plot for the unloaded RL high-pass filter of 
Example 14.3(c).

 Solution

a) Begin by transforming the circuit in Fig. 14.15 to 
the s-domain, as shown in Fig.  14.16. Use volt-
age division across the parallel combination of 
inductor and load resistor to compute the trans-
fer function:

H s

R sL
R sL

R
R sL

R sL

R
R R

s

s
R

R R
R
L

Ks
s

( )

,
c

L

L

L

L

L

L

L

L

ω

=
+

+
+

=
+









+
+









=
+

where

K
R

R R
KR L,   .c

L

L

ω=
+

=

Note that ωc  is the cutoff frequency of the loaded 
filter.

b) For the unloaded RL high-pass filter from 
 Example 14.3(c), the passband magnitude is  
1, and the cutoff frequency is 15 kHz. For the 
loaded RL high-pass filter, R R 500  ,L= = Ω  so  

=K 1 2 . Thus, for the loaded filter, the passband  

magnitude is =(1)(1 2) 1 2 , and the cutoff fre-
quency is =(15, 000)(1 2) 7.5 kHz.  A sketch of 
the magnitude plots of the loaded and unloaded 
circuits is shown in Fig. 14.17.

Then, as before, we set the left-hand side of this 
equation to H(1 2) ,max  based on the defini-
tion of the cutoff frequency ω .c  Remember that 

= ∞H H j( )max  for a high-pass filter, and for 

the series RL circuit,  ∞ =H j( ) 1. We solve 
the resulting equation for the cutoff frequency:

ω

ω
ω=

+
=

R L
R
L

1
2    ( )

,   .c

c
c2 2

This is the same cutoff frequency we computed 
for the series RL low-pass filter.

c) Using the equation for ωc  computed in (b), we 
find that it is not possible to specify values for R 
and L independently. Therefore, let’s arbitrarily 
select a value of Ω500   for R. Remember to con-
vert the cutoff frequency to radians per second:

ω π
= = =L R 500

(2 )(15, 000)
5.31 mH.

c

sL

R

1

2
Vi(s) Vo(s)

1

2

Figure 14.14 ▲ The s-domain equivalent of the circuit in 
Fig. 14.13.

L

R

1

2
vi vo

1

2

RL

Figure 14.15 ▲ The circuit for Example 14.4.

sL

R

RL
1

2
Vi(s) Vo(s)

1

2

Figure 14.16 ▲ The s-domain equivalent of the circuit in 
Fig. 14.15.

Frequency (kHz)

Unloaded

Loaded

fc9 fc10 20 30 40 50

1
2

1
22

0.2

0.4

0.6

1.0

0.8

0
0

ƒH( jv)ƒ

Figure 14.17 ▲ The magnitude plots for the unloaded RL  
high-pass filter of Fig 14.13 and the loaded RL high-pass  
filter of Fig. 14.15.
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Let’s compare the transfer functions of the unloaded filter in  
Example 14.3 and the loaded filter in Example 14.4. Both transfer func-
tions are in the form:

=
+

H s Ks
s K R L

( )
( )

,

with =K 1 for the unloaded filter and = +K R R R( )L L  for the loaded  
filter. Note that the value of K for the loaded circuit reduces to the value 
of K for the unloaded circuit when = ∞R ;L  that is, when there is no load 
resistor.

The cutoff frequencies for both filters can be seen directly from their 
transfer functions. In both cases, ω = K R L( ),c  where =K 1 for the 
unloaded circuit, and = +K R R R( )L L  for the loaded circuit. Again, 
the cutoff frequency for the loaded circuit reduces to that of the unloaded 
circuit when = ∞R .L  Because + <R R R( ) 1,L L  the effect of the load 
resistor is to reduce the passband magnitude by the factor K and to lower 
the cutoff frequency by the same factor.

We predicted these results at the beginning of this chapter. When 
the output voltage amplitude of a passive high-pass filter is maximum, it 
equals the amplitude of the filter’s input voltage. Placing a load across the 
filter, as we did in Example 14.4, decreases the output voltage amplitude. 
If we need to amplify signals in the passband, we must turn to active fil-
ters, such as those discussed in Chapter 15.

The effect of a load on a filter’s transfer function poses another 
dilemma in circuit design. We typically begin with a transfer function 
specification and then design a filter to meet that specification. We may 
or may not know what the load on the filter will be. Ideally, we want the 
filter’s transfer function to remain the same regardless of the load on it, 
but this is not possible for the passive filters presented here.

Figure  14.18 summarizes the high-pass filter circuits we have ana-
lyzed. Looking at the expressions for H(s), we see that they differ only in 
the denominator, which includes the cutoff frequency. As we did with the 
low-pass filters in Eq. 14.6, we state a general form for the transfer func-
tion of these two high-pass filters:

TRANSFER FUNCTION FOR HIGH-PASS FILTERS

  H s s
s

( ) .
cω

=
+  (14.10)

Any circuit with a voltage ratio described by Eq. 14.10 would behave 
as a high-pass filter with a cutoff frequency of ω .c  The problems at the 
end of the chapter give you other examples of circuits with this voltage 
ratio.

We have drawn attention to another important relationship. We have 
discovered that a series RC circuit has the same cutoff frequency whether 
it is configured as a low-pass filter or as a high-pass filter. The same is 
true of a series RL circuit. Given the connection between the cutoff fre-
quency of a filter circuit and its time constant, we should expect the cut-
off frequency to be a characteristic parameter of the circuit whose value 
depends only on the circuit components, their values, and the way they 
are connected.

s 1 1>RC
sH(s) 5

vc 5 1>RC
1

2
Vi R Vo

1

2

s 1 R>L
sH(s) 5

vc 5 R>L
1

2
Vi sL Vo

1

2

R

sC
1

Figure 14.18 ▲ Two high-pass filters, the series RC 
and the series RL, together with their transfer func-
tions and cutoff frequencies.
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550 Introduction to Frequency-Selective Circuits

14.4 Bandpass Filters
The next filters we examine are those that pass voltages within a band 
of frequencies to the output while filtering out voltages at frequencies 
 outside this band. These filters are somewhat more complicated than the 
low-pass and high-pass filters of the previous sections. As we have already 
seen in Fig. 14.3(a), ideal bandpass filters have two cutoff frequencies, ωc1 
and ω ,c2  which identify the passband. For realistic bandpass filters, these 
cutoff frequencies are again defined as the frequencies for which the mag-
nitude of the transfer function equals H(1 2) .max

Center Frequency, Bandwidth, and Quality Factor
Besides the cutoff frequencies ωc1 and ω ,c2  three other important param-
eters characterize a bandpass filter. The first is the center frequency, ω ,o  
defined as the frequency for which a circuit’s transfer function is purely 
real. Another name for the center frequency is the resonant frequency. 
This is the same name given to the frequency that characterizes the nat-
ural response of the second-order circuits in Chapter 8 because they are 
the same frequencies! When a circuit is driven at the resonant frequency, 
we say that the circuit is in resonance because the frequency of the forcing 
function is the same as the natural frequency of the circuit. The center 
frequency is the geometric center of the passband; that is, ω ω ω= .o c c1 2  
For bandpass filters, the magnitude of the transfer function is maximum at 
the center frequency ( ω=H H j( )omax ).

The second parameter is the bandwidth, β , which is the width of the 
passband. The final parameter is the quality factor Q, which is the ratio of 
the center frequency to the bandwidth. The quality factor describes the 
width of the passband, independent of its location on the frequency axis. It 
also describes the shape of the magnitude plot, independent of frequency.

Although five different parameters characterize bandpass filters—ω ,c1   
ω ,c2  ω ,o  β,  and Q—only two of the five can be specified independently. 
That is, once we specify any two of these parameter values, the other 
three can be calculated from the dependent relationships among them. 
We explore these relationships next, as we derive expressions for the five 
characteristic parameters in terms of the component values for two RLC 
circuits that act as bandpass filters.

Objective 2—Know the RL and RC circuit configurations that act as high-pass filters

14.3  A series RL high-pass filter has = ΩR 15 k  
and =L 10 mH.  What is ωc  for this filter?

Answer: 1.5  Mrad s .

14.4  A series RC high-pass filter has C 47  F.µ=  
Compute the cutoff frequency for the following 
values of R: (a) 50  ;Ω  (b) 1 k ;Ω  and (c) 5 k .Ω

Answer: a) 425.5  rad s ;

b) 21.3  rad s ;

c) 4.26  rad s .

14.5  Compute the transfer function of a series RC 
low-pass filter that has a load resistor RL in 
parallel with its capacitor.

Answer: =
+

H s RC

s
KRC

( )

1

1
,  where =

+
K

R
R R

.L

L

ASSESSMENT PROBLEMS

SELF-CHECK: Also try Chapter Problems 14.11 and 14.16.

M14_NILS8436_12_SE_C14.indd   550 07/01/22   12:44 PM



 14.4 Bandpass Filters 551

The Series RLC Circuit—Qualitative Analysis
Figure  14.19(a) depicts a series RLC circuit. We want to consider the 
effect of changing the source frequency on the magnitude of the output 
voltage. As before, changes to the source frequency result in changes to 
the impedance of the capacitor and the inductor. This time, the qualitative 
analysis is somewhat more complicated because the circuit has both an 
inductor and a capacitor.

At ω = 0, the capacitor behaves like an open circuit, and the inductor 
behaves like a short circuit. The equivalent circuit is shown in Fig. 14.19(b). 
The open circuit representing the capacitor impedance prevents current 
from reaching the resistor, and the resulting output voltage is zero.

At ω = ∞, the capacitor behaves like a short circuit, and the induc-
tor behaves like an open circuit. The equivalent circuit is shown in 
Fig. 14.19(c). The inductor now prevents current from reaching the resis-
tor, and again the output voltage is zero.

But what happens in the frequency region between ω = 0  and 
ω = ∞? Between these two extremes, both the capacitor and the inductor 
have finite impedances. In this region, the source voltage divides among 
the capacitor, inductor, and resistor. Remember that the capacitor imped-
ance is negative, whereas the inductor impedance is positive. Thus, at some 
frequency, the capacitor impedance and the inductor impedance have 
equal magnitudes and opposite signs; the two impedances cancel out, so 
the output voltage equals the source voltage. This special frequency is the 
center frequency, ω .o  On either side of ω ,o  the output voltage is less than 
the source voltage. Note that at ω ,o  the series combination of the inductor 
and capacitor behaves like a short circuit.

The frequency response plot for the circuit in Fig. 14.19(a) is shown 
in Fig.  14.20. The ideal bandpass filter magnitude plot is overlaid (as a 
dashed line) on the transfer function magnitude plot for comparison.

Now consider what happens to the transfer function phase angle. At 
the center frequency, ωo, the phase angles of the input and output volt-
ages are equal, so the phase angle of the transfer function is zero. As the 
frequency decreases, the capacitor phase angle is larger than the induc-
tor phase angle. Because the capacitor contributes positive phase shift, 
the transfer function phase angle is positive. At very low frequencies, the 
transfer function phase angle is 90°.+

Conversely, if the frequency increases from the center frequency, the 
inductor phase angle is larger than the capacitor phase angle. The induc-
tor contributes negative phase shift, so the transfer function phase angle 
is negative. At very high frequencies, the transfer function phase angle is 

90°.−  The plot of the transfer function phase angle is shown in Fig. 14.20.

The Series RLC Circuit—Quantitative Analysis
We begin by drawing the s-domain equivalent for the series RLC circuit, 
as shown in Fig. 14.21. Using voltage division, we find that the transfer 
function equation is

H s
R L s

s R L s LC
( )

( )
( ) (1 )

.
2

=
+ +

 (14.11)

As before, we substitute ω=s j  into Eq. 14.11 and produce the equations 
for the magnitude and the phase angle of the transfer function:

 H j
R L

LC R L
( )  

( )

[(1 ) ] [ ( )]
,

2 2 2
ω

ω
ω ω

=
− +

 (14.12)

1

2
vi R vo

1

2

CL

(a)

1

2
vi R vo

1

2

L

(c)

C

1

2
vi R vo

1

2

L

(b)

C

Figure 14.19 ▲ (a) A series RLC bandpass filter; 
(b) the equivalent circuit for 0ω = ; and (c) the 
equivalent circuit for ω = ∞.

1
2

v

v

1.0

ƒH( jv)ƒ

u( jv)

2908

908

08

0
vc1 vc2vo

b

Figure 14.20 ▲ The frequency response plot for the 
series RLC bandpass filter circuit in Fig. 14.19.

sL

1

2
Vi(s)

1>sC

R Vo(s)

1

2

Figure 14.21 ▲ The s-domain equivalent for the 
circuit in Fig. 14.19(a).
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552 Introduction to Frequency-Selective Circuits

Next, calculate the cutoff frequencies, ωc1 and ω .c2  Remember 
that at the cutoff frequencies, the magnitude of the transfer function is 

H(1 2) .max  Because ω=H H j( ) ,omax  we find H max  by substituting 
Eq. 14.13 into Eq. 14.12:

ω=H H j( )omax

R L

LC R L

( )

[(1 ) ]    ( )
o

o o
2 2 2

ω

ω ω
=

− +

LC R L

LC LC LC R L

(1 )( )

[(1 ) (1 )] [ (1 )( )]
1.

2 2
=

− +
=

Now set the left-hand side of Eq. 14.12 to H(1 2) max  (which equals 1 2 )  
and prepare to solve for ωc:

ω
ω ω

=
− +

R L

LC R L
1
2

( )

[(1 ) ] ( )
c

c c
2 2 2

ω ω
=

− +L R RC
1

[( ) (1 )] 1
.

c c
2

We can equate the denominators of the two sides of this expression and 
simplify to get

 ω
ω

± = −L
R RC

1 1 .c
c

Rearrange to get the following quadratic equation:

ω ω± − =R
L LC

1 0.c c
2

θ ω
ω

ω
= −

−












−j
R L

LC
( ) 90° tan

( )
(1 )

.1
2

Now calculate the five parameters that characterize this RLC band-
pass filter. Recall that the center frequency, ω ,o  is defined as the fre-
quency for which the circuit’s transfer function is purely real. The transfer 
function for the RLC circuit in Fig. 14.21 will be real when the capacitor 
and inductor impedances sum to zero:

ω
ω

+ =j L
j C

1 0.o
o

Solving for ω ,o  we get

CENTER FREQUENCY

 ω =
LC

1 .o  (14.13)
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CUTOFF FREQUENCIES, SERIES RLC FILTERS

 ω ( ) ( )= − + +R
L

R
L LC2 2

1 ,c1

2

 (14.14)

 ω ( ) ( )= + +R
L

R
L LC2

 
2

  1 .c2

2

 (14.15)

The solution of the quadratic equation yields four values for the cut-
off frequency. Only two of these values are positive and have physical 
significance; they identify the passband of this filter:

We can use Eqs. 14.14 and 14.15 to confirm that the center frequency, ω ,o  
is the geometric mean of the two cutoff frequencies:

Recall that the bandwidth of a bandpass filter is defined as the dif-
ference between the two cutoff frequencies. Because ω ω>c c2 1  we can 
compute the bandwidth by subtracting Eq. 14.14 from Eq. 14.15:

RELATIONSHIP BETWEEN CENTER FREQUENCY  
AND CUTOFF FREQUENCIES

ω ω ω= ⋅o c c1 2

RELATIONSHIP BETWEEN BANDWIDTH  
AND CUTOFF FREQUENCIES

β ω ω= −c c2 1

R
L

R
L LC

R
L

R
L LC2 2

1
2 2

12 2

( ) ( ) ( ) ( )= − + +










 + +












=
LC

1 .

R
L

R
L LC

R
L

R
L LC2 2

  1
2 2

  1 ,
2 2

( ) ( ) ( ) ( )= + +










 − − + +













so

BANDWIDTH, SERIES RLC FILTERS

 β = R
L

.  (14.16)
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We now have five parameters that characterize the series RLC  
bandpass filter: two cutoff frequencies, ωc1 and ω ,c2  which delimit the 
passband; the center frequency, ω ,o  at which the magnitude of the transfer 
function is maximum; the bandwidth, β,  a measure of the width of the 
passband; and the quality factor, Q, a second measure of passband width. 
Remember, only two of these parameters can be specified independently 
in a design. We have already observed that the quality factor is the ratio 
of the center frequency to the bandwidth. We can also rewrite the equa-
tions for the cutoff frequencies in terms of the center frequency and the 
bandwidth:

 ω β β ω( )= − + +
2 2

,c o1

2
2

ω β β ω( )= + +
2 2

.c o2

2
2

Alternative forms for these equations express the cutoff frequencies in 
terms of the quality factor and the center frequency (see Problem 14.23):

ω ω= ⋅ − + +






















Q Q

1
2

1 1
2

,c o1

2

ω ω= ⋅ + +






















Q Q

1
2

1 1
2

.c o2

2

Examples 14.5, 14.6, and 14.7 illustrate the design of bandpass fil-
ters, introduce another RLC circuit that behaves as a bandpass filter, and 
examine the effects of source resistance on the characteristic parameters 
of a series RLC bandpass filter.

The quality factor, the last of the five characteristic parameters, is defined 
as the ratio of center frequency to bandwidth. Using Eqs. 14.13 and 14.16:

RELATIONSHIP AMONG QUALITY FACTOR,  
CENTER FREQUENCY, AND BANDWIDTH

ω
β

=Q o

=
LC

R L
1

( )
,

so

QUALITY FACTOR, SERIES RLC FILTERS

 =Q L
R C

.
2  (14.17)
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vi voC L

1

2

Figure 14.22 ▲ The circuit for Example 14.6.

EXAMPLE 14.5     Designing a Bandpass Filter

A graphic equalizer is an audio amplifier that allows 
you to select different levels of amplification within 
different frequency regions. Using the series RLC 
circuit in Fig. 14.19(a), choose values for R, L, and 
C that yield a bandpass circuit able to select inputs 
within the 1 kHz–10 kHz frequency band. Such a 
circuit might be used in a graphic equalizer to select 
this frequency band from the larger audio band 
(generally 0–20 kHz) prior to amplification.

Solution
We need to compute values for R, L, and C that 
produce a bandpass filter with cutoff frequencies 
of 1 kHz and 10 kHz. There are many possible 
 approaches to a solution. For instance, we could use 
Eqs. 14.14 and 14.15, which specify ωc1 and ωc2  in 
terms of R, L, and C. Because of the form of these 
equations, the algebraic manipulations might get 
complicated. Instead, we will calculate the center 
frequency, ,oω  from the cutoff frequencies and then 
use Eq. 14.13 to compute L and C from .oω  Next 
we will calculate the bandwidth, β , from the cutoff 
frequencies and finally, use Eq. 14.16 to compute R 
from β . While this approach involves several com-
putational steps, each calculation is fairly simple.

Any approach we choose will provide only 
two equations—insufficient to solve for the three 
unknowns—because of the dependencies among 
the bandpass filter characteristics. Thus, we need to 
select a value for either R, L, or C and use the two 
equations we’ve chosen to calculate the remain-
ing component values. Here, we arbitrarily choose 

µ1  F  as the capacitor value.
We compute the center frequency as the geo-

metric mean of the cutoff frequencies:

= = =f f f (1000)(10, 000) 3162.28 Hz.o c c1 2

Next, use Eq. 14.13 to find L using C and the 
center frequency, which must be converted to 
radians sec :

L
C

1   1
[2 (3162.28)] (10 )o

2 2 6ω π
= =

−

= 2.533 mH.

The bandwidth is the difference between the 
two cutoff frequency values, so

10,000 1000 9 kHz.c c2 1β ω ω= − = − =

Now convert the bandwidth to radians sec  and use 
Eq. 14.16 to calculate R:

 R L [2 (9000)] (2.533 10 ) 143.24  .3β π= = × = Ω−

To check whether these component values pro-
duce the bandpass filter we want, substitute them 
into Eqs. 14.14 and 14.15. We find that

ω = 6283.19  rad s  (1000 Hz),c1

ω = 62, 831.85  rad s  (10, 000 Hz),c2

which are the cutoff frequencies specified for the 
filter.

This example reminds us that only two of the 
five bandpass filter parameters can be specified 
independently. The other three parameters can be 
computed from the two that are specified. In turn, 
these five parameter values depend on the three 
component values, R, L, and C, of which only 
two can be specified independently. It is almost 
always easiest to calculate the center frequency and  
bandwidth from whatever two parameters are spec-
ified, and then use Eqs. 14.13 and 14.16 to calculate 
the two unknown component values.

EXAMPLE 14.6     Designing a Parallel RLC Bandpass Filter

a) Show that the RLC circuit in Fig. 14.22 is also a 
bandpass filter by deriving an expression for the 
transfer function H s( ).  Note that this circuit is a 
parallel RLC circuit with the parallel-connected 
current source and resistor source-transformed to 
a series-connected voltage source and resistor. This 
permits us to continue defining the filter transfer 
functions as ratios of output to input voltages.

b) Compute the center frequency, .oω
c) Calculate the cutoff frequencies, ωc1 and ,c2ω  the 

bandwidth, β,  and the quality factor, Q.

d) Compute values for R and L to yield a bandpass 
filter with a center frequency of 5 kHz and a 
bandwidth of 200 Hz, using a µ5  F  capacitor.
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Solution

a) Begin by transforming the circuit in Fig.  14.22  
to the s domain; the result is shown in Fig. 14.23. 
We can find the transfer function for the  
s-domain circuit using voltage division if we first 
compute the equivalent impedance of the paral-
lel combination of L and C, identified as Z s( )eq  
in Fig. 14.23:

�Z sL
sC

sL sC
sL sC

sL
s LC

1 ( ) (1 )
(1 ) 1

.eq 2
= =

+
=

+

Now,

= =
+

=
+ +

H s
V s
V s

Z

R Z

s
RC

s s
RC LC

( )
( )
( ) 1

.o

i

eq

eq 2

b) To find the center frequency, we need to cal-
culate the frequency for which the transfer 
function  magnitude is maximum. Substituting  

ω=s j  in H s( ),

ω

ω

ω ω( ) ( )
=

− +

H j RC

LC RC

( )
1  2

2 2

RC
L
R

1

1 1
.

2
ω

ω

=

+ −









The magnitude of this transfer function is maxi-
mum when

 ω( )− =
LC

1 0.2
2

Thus,

ω =
LC

1
o

and

ω= =H H j( ) 1.omax

1

2

Zeq(s)
R

Vi(s) Vo(s)1>sC sL

1

2

Figure 14.23 ▲ The s-domain equivalent of the circuit in 
Fig. 14.22.

QUALITY FACTOR, PARALLEL  
RLC FILTERS 

ω
β

= =Q R C
L

.0
2

BANDWIDTH, PARALLEL RLC FILTERS 

β ω ω= − =
RC
1 .c c2 1

CUTOFF FREQUENCIES, PARALLEL  
RLC FILTERS

ω ( )= − + +
RC RC LC
1

2
1

2
1 ,c1

2

ω ( )= + +
RC RC LC
1

2
   1

2
1 .c2

2

c) At the cutoff frequencies, the magnitude of 
the transfer function is H(1 2) 1 2.max =  
Substituting this constant on the left-hand side 
of the magnitude equation and simplifying,  
we get

RC
L
R

1 1.c

c

ω
ω

−















= ±

Rearranging this equation once again produces 
two quadratic equations for the cutoff frequen-
cies, with four solutions. Only two of them are 
positive and therefore have physical significance:

We compute the bandwidth from the cutoff 
frequencies:

Finally, use the definition of quality factor to 
cal culate Q:

Notice that once again we can specify the cutoff 
frequencies for this bandpass filter in terms of its 
center frequency and bandwidth:

2 2
  ,c o1

2
2ω β β ω( )= − + +
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Ri L

vi vo

C

1

2

R

Figure 14.24 ▲ The circuit for Example 14.7.

2 2
  .c o2

2
2ω β β ω( )= + +

d) Use the equation for bandwidth in (c) to com-
pute a value for R, given µ=C 5  F. Remember 
to convert the bandwidth to radians sec :

β
=R

C
1

π
=

× −
1

(2 )(200)(5 10 )6

= Ω159.15  .

Using the value of capacitance and the equation 
for center frequency in (b), compute the inductor 
value:

L
C

1

o
2ω

=

π
=

× −
1

[2 (5000)] (5 10 )2 6

202.64  H.µ=

EXAMPLE 14.7      Determining the Effect of a Nonideal Voltage Source  
on a Series RLC Bandpass Filter

For each of the filters we have constructed, we 
have always assumed an ideal voltage source, that 
is, a voltage source with no series resistance. When 
we design with a filter using values of R, L, and C 
whose equivalent impedance has a magnitude close 
to the actual impedance of the voltage source, it is 
not valid to assume the voltage source is ideal. In 
this example, we determine the effect of the non-
zero source resistance Ri  on the series RLC band-
pass filter characteristics.

a) Determine the transfer function for the circuit in 
Fig. 14.24.

construct the transfer function using voltage 
 division:

( )
=

+
+

+
H s

R
L

s

s
R R

L
s

LC

( )
1

.
i2

Substitute ω=s j  and calculate the transfer 
function magnitude:

ω
ω

ω ω( )( )
=

− +
+

H j

R
L

LC
R R

L

( )
1    

.
i2

2 2

The center frequency, ,oω  is the frequency at 
which this transfer function magnitude is maxi-
mum, which is

ω =
LC

1 .o

b) Sketch the magnitude plot for the circuit in 
Fig. 14.24, using the values for R, L, and C from 
Example 14.5 and setting =R Ri . On the same 
graph, sketch the magnitude plot for the circuit 
in Example 14.5, where =R 0.i

Solution

a) Begin by transforming the circuit in Fig.  14.24 
into the s domain, as shown in Fig.  14.25. Now 

1

2

Ri sL

Vi(s) Vo(s)

1>sC

1

2

R

Figure 14.25 ▲ The s-domain equivalent of the circuit in 
Fig. 14.24.
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Figure 14.26 ▲ The magnitude plots for a series RLC bandpass filter with a zero source resis-
tance and a nonzero source resistance.

At the center frequency, the maximum magnitude is

ω= =
+

H H j R
R R

( ) .o
i

max

The cutoff frequencies can be computed by setting the 
transfer function magnitude equal to H(1 2) max:

ω ( )= −
+

+
+

+
R R

L
R R

L LC2 2
1 ,c

i i
1

2

ω ( )=
+

+
+

+
R R

L
R R

L LC2 2
1 .c

i i
2

2

The bandwidth is calculated from the cutoff 
frequencies:

β ω ω= − =
+R R
L

.c c
i

2 1

Finally, the quality factor is computed from the center 
frequency and the bandwidth:

ω
β

= =
+

Q
L C

R R
.o

i

From this analysis, note that we can write the transfer 
function of the series RLC bandpass filter with non-
zero source resistance as

H s K s
s s

( ) ,
o

2 2

β
β ω

=
+ +

where

=
+

K R
R R

.
i

Note that when =R 0,i  =K 1 and the transfer 
 function is

H s s
s s

( ) .
o

2 2

β
β ω

=
+ +

b) The circuit in Example 14.5 has a center frequency  
of 3162.28 Hz and a bandwidth of 9 kHz, and 

=H 1.max  If we use the same values for R, L, 
and C in the circuit in Fig.  14.24 and let =R R,i  
then the center frequency remains at 3162.28 kHz,  
but β = + =R R L( ) 18 kHz,i  and H Rmax = /
R R( ) 1 2.i+ =  The transfer function magnitudes 

for these two bandpass filters are plotted on the same 
graph in Fig. 14.26.

If we compare the characteristic parameter values for the filter with 
=R 0i  to the values for the filter with ≠R 0,i  we see the following:

• The center frequencies are the same.
• The maximum transfer function magnitude for the filter with ≠R 0i  

is smaller than that for the filter with =R 0.i
• The bandwidth for the filter with ≠R 0i  is larger than that for the 

filter with =R 0.i  Thus, the cutoff frequencies and the quality fac-
tors for the two circuits are also different.

Adding a nonzero source resistance to a series RLC bandpass filter leaves 
the center frequency unchanged but widens the passband and reduces the 
passband magnitude.
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Figure 14.27 ▲ Two RLC bandpass filters, together 
with equations for the transfer function, center fre-
quency, and bandwidth of each.

Here we see the same design challenge we saw when adding a load 
resistor to the high-pass filter. We would like to design bandpass filters 
with filtering properties that are unchanged by the internal resistance 
of the voltage source. Unfortunately, this is not possible for filters con-
structed from passive elements. In Chapter 15, we will discover that active 
filters are insensitive to changes in source resistance and thus are better 
suited to designs in which this is an important issue.

Figure 14.27 summarizes the two RLC bandpass filters we have stud-
ied. Note that the expressions for the circuit transfer functions have the 
same form. As we have done previously, we can create a general form for 
the transfer functions of these two bandpass filters:

TRANSFER FUNCTION FOR BANDPASS FILTERS

 H s s
s s

( ) .
o

2 2

β
β ω

=
+ +

 (14.18)

Any circuit with the transfer function in Eq. 14.18 acts as a bandpass filter 
with a center frequency ωo  and a bandwidth β.

In Example 14.7, we saw that the transfer function can also be written 
in the form

H s K s
s s

( ) ,
o

2 2

β
β ω

=
+ +

where the values for K and β  depend on whether the series resistance of 
the voltage source is zero or nonzero.

Relating the Frequency Domain to the Time Domain
It should come as no surprise that the parameters characterizing the fre-
quency response of RLC bandpass filters and the parameters characterizing 
the time response of RLC circuits are related. Consider the series RLC cir-
cuit in Fig. 14.19(a). In Chapter 8 we discovered that the natural response 
of this circuit is characterized by the neper frequency α( )  and the resonant 
frequency ω( )o . These parameters were expressed in terms of the circuit 
components in Eqs. 8.29 and 8.30, which are repeated here for convenience:

 α = R
L2

,

ω =
LC

1 .o

We see that the same parameter ωo  is used to characterize both the time 
response and the frequency response. That’s why the center frequency 
is also called the resonant frequency. The bandwidth and the neper fre-
quency are related by the equation

 2β α= .  (14.19)

Recall that the natural response of a series RLC circuit may be 
 underdamped, overdamped, or critically damped. The transition from  
overdamped to underdamped occurs when .o

2 2ω α=  Consider the relation-
ship between α and β  from Eq. 14.19 and the definition of the quality factor Q.  
The transition from an overdamped to an underdamped response occurs 
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Figure 14.28 ▲ (a) A series RLC bandreject filter.  
(b) The equivalent circuit for 0ω = . (c) The equiva-
lent circuit for ω = ∞.

when Q 1 2.=  Thus, a circuit whose frequency response contains a sharp 
peak at ,oω  indicating a high Q and a narrow bandwidth, will have an  
underdamped natural response. Conversely, a circuit whose frequency response 
has a broad bandwidth and a low Q will have an overdamped natural response.

Objective 3—Know the RLC circuit configurations that act as bandpass filters

14.6  Using the circuit in Fig. 14.19(a), compute the 
values of R and C to give a bandpass filter with 
a center frequency of 25 kHz and a quality 
factor of 8. Use a 1 mH inductor.

Answer: C 40.53 nF,=  R 19.63  .= Ω

14.7  Using the circuit in Fig. 14.22, compute the 
values of R and L to give a bandpass filter with 
a center frequency of 8 kHz and a bandwidth of 
500 Hz. Use a 25  Fµ  capacitor.

Answer: R 12.73  ,= Ω  L 15.83  H.µ=

14.8  Recalculate the component values for the  
circuit in Example 14.6(d) so that the frequency 
response of the resulting circuit is unchanged 
using a 1 mH inductor.

Answer: C 1.0132  F,µ=  R 785.4  .= Ω

14.9  Recalculate the component values for the 
circuit in Example 14.6(d) so that the quality 
factor of the resulting circuit is unchanged but 
the center frequency has been moved to 8 kHz. 
Use a 25 nF  capacitor.

Answer: R 19.89 k ,= Ω  =L 15.83 mH.

ASSESSMENT PROBLEMS

SELF-CHECK: Also try Chapter Problems 14.24 and 14.30.

 14.5 Bandreject Filters
We turn now to the last of the four filter categories—the bandreject filter. 
This filter passes source voltages outside the band between the two cutoff 
frequencies to the output (the passband) and attenuates source voltages 
before they reach the output at frequencies between the two cutoff fre-
quencies (the stopband). Bandpass filters and bandreject filters thus per-
form complementary functions in the frequency domain.

Bandreject filters and bandpass filters have the same characteristic 
parameters: the two cutoff frequencies, the center frequency, the band-
width, and the quality factor. Again, only two of these five parameters can 
be specified independently.

We examine two circuits that function as bandreject filters and then 
derive equations relating the circuit component values to the characteris-
tic parameters for each circuit.

The Series RLC Circuit—Qualitative Analysis
Figure 14.28(a) shows a series RLC circuit. Although the circuit compo-
nents and connections are identical to those in the series RLC bandpass 
filter in Fig. 14.19(a), the output voltage is now defined across the inductor- 
capacitor pair. As we saw in the case of low- and high-pass filters, the 
same circuit may perform two different filtering functions, depending on 
the definition of the output voltage.

We have already noted that at ω = 0, the inductor behaves like a 
short circuit and the capacitor behaves like an open circuit, as shown in 
Fig.  14.28(b). At ω = ∞,  these roles switch, as shown in Fig.  14.28(c). 
In both equivalent circuits, the output voltage is defined across an open 
circuit, so the output and input voltages have the same magnitude. This 
series RLC bandreject filter circuit then has two passbands—one below 
the lower cutoff frequency and the other above the upper cutoff frequency.
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Between these two passbands, both the inductor and the capacitor 
have finite impedances of opposite signs. As the frequency is increased 
from zero, the inductor impedance increases and the capacitor impedance 
decreases. Therefore, the phase shift between the input and the output 
approaches −90°  as ωL  approaches C1 .ω  As soon as ωL  exceeds C1 ,ω  
the phase shift jumps to +90° and then approaches zero as ω  continues 
to increase.

At some frequency between the two passbands, the impedances of 
the inductor and capacitor are equal but have opposite signs, so their sum 
is zero. Thus, at this frequency, the series combination of the inductor 
and capacitor acts like a short circuit, and the output voltage magnitude is 
zero. This is the center frequency of the series RLC bandreject filter.

Figure 14.29 presents a sketch of the frequency response for the series 
RLC bandreject filter from Fig.  14.28(a). Note that the magnitude plot 
is overlaid with that of the ideal bandreject filter from Fig. 14.3(b). Our 
qualitative analysis has confirmed the shape of the magnitude and phase 
angle plots. We now turn to a quantitative analysis of the circuit to con-
firm this frequency response and to compute values for the parameters 
that characterize this response.

 The Series RLC Circuit—Quantitative Analysis
After transforming to the s domain, as shown in Fig. 14.30, we use voltage 
division to find the transfer function equation:

=
+

+ +
=

+

+ +
H s

sL
sC

R sL
sC

s
LC

s R
L

s
LC

( )

1

1

1

1
.

2

2

Substituting ωj  for s in H(s), we generate equations for the transfer func-
tion magnitude and the phase angle:

ω
ω

ω ω( ) ( )
=

−

− +

H j LC

LC
R

L

( )  

1

1
,

2

2
2 2

θ ω

ω

ω
= −

−













−j

R
L

LC

( ) tan
1

.1

2

Note that the equations for the transfer function magnitude and phase 
angle confirm the frequency response shape pictured in Fig. 14.29, which 
we developed from the qualitative analysis.

We use the circuit in Fig. 14.30 to calculate the center frequency. For 
the bandreject filter, the center frequency is still defined as the frequency 
for which the sum of the impedances of the capacitor and inductor is zero. 
In the bandpass filter, the magnitude at the center frequency was a max-
imum, but in the bandreject filter, this magnitude is a minimum. This is 
because in the bandreject filter, the center frequency is in the stopband, 
not in the passband. Because the sum of the capacitor and inductor imped-
ances is zero at the center frequency,

ω =
LC

1 .o

Substituting LC1  for ωo  in the equation for the transfer function mag-
nitude shows that ω =H j( ) 0.o

0

ƒH( jv)ƒ

u( jv)

1.0

908

2908

08

vc1 vc2 vvo

1
2

Figure 14.29 ▲ The frequency response plot for the 
series RLC bandreject filter circuit in Fig. 14.28(a).

1

2

R

Vi(s)

1>sC

1

2

Vo(s)

sL

Figure 14.30 ▲ The s-domain equivalent of the 
 circuit in Fig. 14.28(a).
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The cutoff frequencies, the bandwidth, and the quality factor 
are defined and calculated for the bandreject filter and the bandpass  
filter in exactly the same way. Note that for the bandreject filter, 

= = ∞H H j H j( 0) ( )max , and for the series RLC bandreject filter in 
Fig. 14.28(a), =H 1.max  Thus,

ω ( )= − + +R
L

R
L LC2 2

1 ,c1

2

ω ( )= + +R
L

R
L LC2 2

1 .c2

2

These equations are the same as Eqs. 14.14 and 14.15.
Use the cutoff frequencies to generate an expression for the bandwidth, β :

β = R L .

This equation is the same as Eq. 14.16.
Finally, the center frequency and the bandwidth produce an equation 

for the quality factor, Q:

=Q L
R C

.
2

This equation and Eq. 14.17 are the same.
Again, we can represent the expressions for the two cutoff frequen-

cies in terms of the bandwidth and center frequency, as we did for the 
bandpass filter:

2 2
,c o1

2
2ω β β ω( )= − + +

2 2
.c o2

2
2ω β β ω( )= + +

Alternative forms for these equations express the cutoff frequencies in 
terms of the quality factor and the center frequency:

ω ω= ⋅ − + +






















Q Q

1
2

1 1
2

,c o1

2

ω ω= ⋅ + +






















Q Q

1
2

1 1
2

.c o2

2

Example 14.8 presents the design of a series RLC bandreject filter.

 EXAMPLE 14.8  Designing a Series RLC Bandreject Filter

Using the series RLC circuit in Fig. 14.28(a), com-
pute the component values that yield a bandreject 
filter with a bandwidth of 250 Hz and a center fre-
quency of 750 Hz. Use a 100 nF capacitor. Compute 
values for R, L, ,c1ω  ,c2ω  and Q.

Solution
We begin by using the definition of quality factor to 
compute its value for this filter:

ω β= =Q 3.o

Use Eq. 14.13 to compute L, remembering to con-
vert ωo  to radians per second:

L
C

1 1
[2 (750)] (100 10 )

450 mH.
o
2 2 9ω π

= =
×

=
−

Use Eq. 14.16 to calculate R:

R L 2 (250)(450 10 ) 707  .3β π= = × = Ω−
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The values for the center frequency and bandwidth 
can be used to compute the two cutoff frequencies:

2 2
  3992.0  rad s,c o1

2
2ω β β ω( )= − + + =

2 2
  5562.8  rad s.c o2

2
2ω β β ω( )= + + =

The cutoff frequencies are at 635.3 Hz and 885.3 Hz.  
Their difference is − =885.3 635.3 250 Hz, con-
firming the specified bandwidth. The geometric 
mean is =(635.3) (885.3) 750 Hz,  confirming 
the specified center frequency.

As you might suspect by now, another configuration that produces a 
bandreject filter is a parallel RLC circuit. The analysis details of the parallel 
RLC circuit are left to Problem 14.35, and the results are summarized in 
Fig. 14.31, along with the series RLC bandreject filter. As we did for other 
categories of filters, we can state a general form for the transfer functions of 
bandreject filters, replacing the constant terms with β  and ωo :

TRANSFER FUNCTION FOR BANDREJECT FILTERS

 H s
s

s s
( ) .o

o

2 2

2 2

ω
β ω

=
+

+ +
 (14.20)

Equation 14.20 is useful in filter design because any circuit with a transfer 
function in this form can be used as a bandreject filter.

Objective 4—Know the RLC circuit configurations that act as bandreject filters

14.10  Design the component values for the RLC  
bandreject filter shown at the bottom of 
Fig. 14.31 so that the center frequency is 15 kHz 
and the quality factor is 6. Use a µ10 H inductor.

Answer: µ=C 11.26  F,

R 5.65  .= Ω

14.11  Compute the component values for Assessment 
Problem 14.10 to achieve a bandreject filter with 
a center frequency of 4 kHz. The filter has a Ω30   
resistor. The quality factor remains at 6.

Answer: L 198.9  H,µ=

C 7.96  F.µ=

ASSESSMENT PROBLEMS

SELF-CHECK: Also try Chapter Problems 14.36 and 14.37.

1

2
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s2 1 (R>L)s 1 1>LC

s2 1 1>LC

R

Vi

1

2

Vo

sL
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2

Vo

sL
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H(s) 5

b 5 1>RCvo 5 1>LC

s2 1 s>RC 1 1>LC

s2 1 1>LC

sC
1

Figure 14.31 ▲ Two RLC bandreject filters,  
together with equations for the transfer function, 
center frequency, and bandwidth of each.
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Figure 14.32 ▲ Tones generated by the rows and 
columns of telephone pushbuttons.

Practical Perspective
Pushbutton Telephone Circuits

In the Practical Perspective at the start of this chapter, we described 
the dual-tone-multiple-frequency (DTMF) system used to signal that a 
button has been pushed on a pushbutton telephone. A key element of 
the DTMF system is the DTMF receiver—a circuit that decodes the tones 
produced by pushing a button and determines which button was pushed.

In order to design a DTMF receiver, we need a better understanding 
of the DTMF system. As you can see from Fig. 14.32, the buttons on the 
telephone are organized into rows and columns. The pair of tones gener-
ated by pushing a button depends on the button’s row and column. The 
button’s row determines its low-frequency tone, and the button’s column 
determines its high-frequency tone.1 For example, pressing the “6”  button 
produces sinusoidal tones with the frequencies 770 Hz and 1477 Hz.

At the telephone switching facility, bandpass filters in the DTMF 
receiver first detect whether tones from both the low-frequency and 
high-frequency groups are simultaneously present. This test rejects 
many extraneous audio signals that are not DTMF. If tones are present in 
both bands, other filters are used to select among the possible tones in 
each band so that the frequencies can be decoded, identifying a unique 
button. Additional tests are performed to prevent false button detection. 
For example, only one tone per frequency band is allowed; the high and 
low-band frequencies must start and stop within a few milliseconds of 
one another to be considered valid; and the high- and low-band signal 
amplitudes must be sufficiently close to each other.

You may wonder why bandpass filters are used instead of a  
high-pass filter for the high-frequency group of DTMF tones and a 
lowpass filter for the low-frequency group of DTMF tones. The reason 
is that the telephone system uses frequencies outside of the band 
from 300 Hz to 3 kHz for other signaling purposes, such as ringing 
the phone’s bell. Bandpass filters prevent the DTMF receiver from 
erroneously detecting these other signals.

SELF-CHECK: Assess your understanding of this Practical Perspective 
by trying Chapter Problems 14.51–14.53.

1 A fourth high-frequency tone is reserved at 1633 Hz. This tone is used infrequently and is not produced by a standard 12-button telephone.

Summary
• A frequency-selective circuit, or filter, enables signals at 

certain frequencies to reach the output, and it attenuates 
signals at other frequencies to prevent them from reach-
ing the output. The passband contains the  frequencies 
of those signals that are passed; the  stopband contains 
the frequencies of those signals that are attenuated. 
(See page 538.)

• The cutoff frequency, ,cω  separates frequencies in the 
stopband from frequencies in the passband. At the  
cutoff frequency, the magnitude of the transfer function 

equals H(1 2) .max  (See page 540.)

• A low-pass filter passes voltages at frequencies below 
ωc  and attenuates frequencies above .cω  Any circuit 
with the transfer function

ω
ω

=
+

H s
s

( ) c

c

functions as a low-pass filter. (See page 545.)

• A high-pass filter passes voltages at frequencies above 
ωc  and attenuates voltages at frequencies below ωc. 
Any circuit with the transfer function
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ω
=

+
H s s

s
( )

c

functions as a high-pass filter. (See page 549.)

• Bandpass filters and bandreject filters each have 
two cutoff frequencies, ωc1 and ωc2. These filters 
are further characterized by their center fre-
quency ω( )o , bandwidth β( ) , and quality factor 
(Q). These quantities are defined as

,o c c1 2ω ω ω= ⋅

,c c2 1β ω ω= −

Q .oω β=

(See pages 553 and 554.)

• A bandpass filter passes voltages at frequencies 
within the passband, which is between ωc1 and  

.c2ω  It attenuates frequencies outside of the 
passband. Any circuit with the transfer function

H s s
s s

( )
o

2 2

β
β ω

=
+ +

functions as a bandpass filter. (See page 559.)

• A bandreject filter attenuates voltages at fre-
quencies within the stopband, which is between 
ωc1 and .c2ω  It passes frequencies outside of the 
stopband. Any circuit with the transfer function

H s
s

s s
( )

 
 

o

o

2 2

2 2

ω
β ω

=
+

+ +

functions as a bandreject filter. (See page 563.)

• Adding a load to the output of a passive fil-
ter changes its filtering properties by altering 
the location and magnitude of the passband. 
Replacing an ideal voltage source with one 
whose source resistance is nonzero also changes 
the filtering properties of the rest of the circuit, 
again by altering the location and magnitude of 
the passband. (See pages 548 and 557.)

Section 14.2

 14.1  a) Find the cutoff frequency in hertz for the RL fil-
ter shown in Fig. P14.1.

b)  Calculate ωH j( ) at ωc, ω0.3 c, and ω3 c.

c) If t50 cos  Vi ω=v , write the steady-state 
expression for vo when ω ω= c, ω ω= 0.3 c, and 
ω ω= 3 c.

 14.2  Consider the low-pass filter in Fig. P14.2, which has 
a load resistor RL.

a) What is the transfer function of the unloaded filter?

b) What is the transfer function of the loaded filter?

c) Compare the transfer function of the unloaded 
filter in part (a) and the transfer function of the 
loaded filter in part (b). Are the cutoff frequen-
cies different? Are the passband gains different?

d) If = ΩR 1 k  and =L 20 mH, what is the cutoff  
frequency of the unloaded filter in rad s?

e) What is the smallest value of load resistance that 
can be used with the filter components in part (d)  
so that the cutoff frequency of the resulting 
filter is no more than 10% different from the 
unloaded filter?

 14.3  A resistor, denoted as Rl, is added in series with the 
inductor in the circuit in Fig. 14.4(a). The new low-
pass filter circuit is shown in Fig. P14.3.

a) Derive the expression for H(s) where 
=H s V V( ) o i.

b) At what frequency will the magnitude of ωH j( ) 
be maximum?

c) What is the maximum value of the magnitude of 
ωH j( )?

d) At what frequency will the magnitude of ωH j( ) 
equal its maximum value divided by 2 ?

Problems
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e) Assume a resistance of Ω75   is added in series 
with the 250 mH inductor in the circuit in 
Fig.  P14.1. Find ωc, H j( 0), H j( )cω , H j( 0.3 )cω ,  
and H j( 3 )cω .
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 14.4  Use a 10 mH inductor to design a low-pass passive 
filter with a cutoff frequency of 2.5 krad s.

a) Specify the value of the filter’s resistor.

b) A load resistor of 100 Ω  is connected across the 
output terminals of the filter. What is the cutoff 
frequency of the loaded filter, in rad s?

 14.5  Consider the low-pass filter designed in Problem 
14.4(a).

a) Assume the cutoff frequency cannot decrease 
by more than 5% from the specified value, 
2.5 krad s . What is the smallest value of load 
resistance that can be connected across the out-
put terminals of the filter?

b) If the resistor found in part (a) is connected 
across the output terminals of the filter, what is 
the magnitude of ωH j( ) when ω = 0?

 14.6  Use a 25 mH inductor to design a low-pass, RL, pas-
sive filter with a cutoff frequency of 2.5 kHz.

a)  Specify the value of the resistor.

b) A load having a resistance of Ω750   is connected 
across the output terminals of the filter. What is 
the cutoff frequency of the loaded filter in hertz?

c) If you must use a single resistor from Appendix H 
for part (a), what resistor should you use? What is 
the resulting cutoff frequency of the filter?

 14.7  a) Find the cutoff frequency (in hertz) of the low-
pass filter shown in Fig. P14.7.

b) Calculate ωH j( ) at ωc, ω0.2 c, and ω8 c.

c) If t480 cos mVi ω=v , write the steady-state 
expression for vo when ω ω= c, ω0.2 c, and ω8 c.

DESIGN
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 14.8  A resistor denoted as RL is connected in  parallel 
with the capacitor in the circuit in Fig.  14.7. The 
 loaded low-pass filter circuit is shown in Fig. P14.8.

a) Derive the expression for the voltage transfer 
function V Vo i.

b) At what frequency will the magnitude of ωH j( ) 
be maximum?

c) What is the maximum value of the magnitude of 
ωH j( )?

d) At what frequency will the magnitude of ωH j( ) 
equal its maximum value divided by 2 ?

e) Assume a resistance of Ω300 k  is added in par-
allel with the 4 nF capacitor in the circuit in 
Fig. P14.7. Find ωc, H j( 0), ωH j( )c , ωH j( 0.2 )c , 
and ωH j( 8 )c .

 14.9  Design a passive RC low-pass filter (see Fig. 14.7) 
with a cutoff frequency of 500 Hz using a 50 nF  
 capacitor.

a) What is the cutoff frequency in rad s?

b) What is the value of the resistor?

c) Draw your circuit, labeling the component val-
ues and output voltage.

d) What is the transfer function of the filter in part (c)?

e) If the filter in part (c) is loaded with a resistor 
whose value is the same as the resistor in part (b), 
what is the transfer function of this loaded filter?

f) What is the cutoff frequency of the loaded filter 
from part (e)?

g) What is the passband magnitude of the loaded 
 filter from part (e)?

 14.10  Use a 25 nF capacitor to design a low-pass passive 
filter with a cutoff frequency of 160  krad s .

a) Specify the cutoff frequency in hertz.

b) Specify the value of the filter resistor.

c) Assume the cutoff frequency cannot increase by 
more than 8%. What is the smallest value of load 
resistance that can be connected across the out-
put terminals of the filter?

d)  If the resistor found in (c) is connected across 
the output terminals, what is the magnitude of 

ωH j( ) when ω = 0?

DESIGN
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Section 14.3

 14.11  Using a 25 mH inductor, design a high-pass, RL, 
passive filter with a cutoff frequency of 160 krad s .

a) Specify the value of the resistance.

b) Assume the filter is connected to a pure resistive 
load. The cutoff frequency is not to drop below 
150 krad s . What is the smallest load resistor 
that can be connected across the output termi-
nals of the filter?

 14.12  Consider the circuit shown in Fig. P14.12.

a) What is the transfer function, =H s V s V s( ) ( ) ( )o i ,  
of this filter?

b) What is the cutoff frequency of this filter?

c) What is the magnitude of the filter’s transfer 
function at ω=s j c ?

DESIGN
PROBLEM
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 14.13  Suppose a Ω1 k  load resistor is attached to the filter 
in Fig. P14.12.

a) What is the transfer function, =H s V s V s( ) ( ) ( )o i ,  
of this filter?

b) What is the cutoff frequency of this filter?

c) How does the cutoff frequency of the loaded 
filter compare with the cutoff frequency of the 
unloaded filter in Fig. P14.12?

d) What else is different for these two filters?

 14.14  a) Find the cutoff frequency (in hertz) for the  
high-pass filter shown in Fig. P14.14.

b) Find ωH j( ) at ωc, ω0.1 c, and ω10 c.

c) If t0.8 cos  V1 ω=v , write the steady-state 
expression for vo when ω ω= c, ω ω= 0.1 c, and 
ω ω= 10 c.
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 14.15  A resistor, Rc, is connected in series with the capac-
itor in the circuit in Fig. 14.10(a). The new high-pass 
filter circuit is shown in Fig. P14.15.

a) Derive the expression for H(s) where =H s V V( ) .o i

b) At what frequency will the magnitude of ωH j( ) 
be maximum?

c) What is the maximum value of the magnitude of 
ωH j( )?

d) At what frequency will the magnitude of ωH j( ) 
equal its maximum value divided by 2 ?

e) Assume a resistance of 10 kΩ  is connected in 
series with the 2.5 nF capacitor in the circuit in 
Fig. P14.14. Calculate ωc , ωH j( )c , ωH j( 0.1 )c , 
and ωH j( 10 )c .

 14.16  Using a 20 nF capacitor, design a high-pass passive 
filter with a cutoff frequency of 800 Hz.

a)  Specify the value of R in kilohms.

b) A Ω68 k  resistor is connected across the output 
terminals of the filter. What is the cutoff fre-
quency, in hertz, of the loaded filter?

 14.17  Design a passive RC high-pass filter (see Fig. 14.10[a]) 
with a cutoff frequency of 300 Hz using a 100 nF 
capacitor.

a) What is the cutoff frequency in rad s?

b) What is the value of the resistor?

c) Draw your circuit, labeling the component val-
ues and output voltage.

d) What is the transfer function of the filter in part (c)?

e) If the filter in part (c) is loaded with a resistor 
whose value is the same as the resistor in (b), 
what is the transfer function of this loaded filter?

f) What is the cutoff frequency of the loaded filter 
from part (e)?

g) What is the passband magnitude of the loaded 
filter from part (e)?

Section 14.4

 14.18  Calculate the center frequency, the bandwidth, and 
the quality factor of a bandpass filter that has an 
upper cutoff frequency of 200  krad s and a lower 
cutoff frequency of 180  krad s .

DESIGN
PROBLEM

M14_NILS8436_12_SE_C14.indd   567 07/01/22   12:44 PM



568 Introduction to Frequency-Selective Circuits

a) Draw your filter, labeling all component values 
and the input and output voltages.

b) Calculate the percent error in this new filter’s 
center frequency and quality factor when com-
pared to the values specified in Problem 14.24.

 14.26  Use a 20 nF capacitor to design a series RLC  
bandpass filter, as shown at the top of Fig.  14.27. 
The center frequency of the filter is 20 kHz, and the 
quality factor is 5.

a) Specify the values of R and L.

b) What is the lower cutoff frequency in kilohertz?

c) What is the upper cutoff frequency in kilohertz?

d) What is the bandwidth of the filter in kilohertz?

 14.27  Design a series RLC bandpass filter using only three 
components from Appendix H that comes closest 
to meeting the filter specifications in Problem 14.26.

a) Draw your filter, labeling all component values 
and the input and output voltages.

b) Calculate the percent error in this new filter’s 
center frequency and quality factor when com-
pared to the values specified in Problem 14.26.

 14.28  For the bandpass filter shown in Fig. P14.28, calcu-
late the following: (a) fo; (b) Q; (c) fc1; (d) fc2 ; and 
(e) β .

PSPICE
MULTISIM

PSPICE
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 14.19  A bandpass filter has a center, or resonant, frequency 
of 80  krad s  and a quality factor of 8. Find the 
bandwidth, the upper cutoff frequency, and the lower 
cutoff frequency. Express all answers in kilohertz.

 14.20  Design a series RLC bandpass filter (see Fig. 14.19[a]) 
with a quality factor of 5 and a center frequency of  
20 krad/s, using a 50 nF capacitor.

a) Draw your circuit, labeling the component val-
ues and output voltage.

b) For the filter in part (a), calculate the bandwidth 
and the values of the two cutoff frequencies.

 14.21  The input to the series RLC bandpass filter  designed 
in Problem 14.20 is t0.2 cos Vω . Find the volt-
age drop across the resistor when (a) ω ω= o;  
(b) ω ω= c1; (c) ω ω= c2; (d) ω ω= 0.1 o; (e) ω ω= 10 o.

 14.22  The input to the series RLC bandpass filter  designed 
in Problem 14.20 is t0.2 cos Vω . Find the voltage 
drop across the series combination of the induc-
tor and capacitor when (a) ω ω= o; (b) ω ω= c1; 
(c) ω ω= c2; (d) ω ω= 0.1 o; (e) ω ω= 10 o.

 14.23  a) Using the relationship between the bandwidth 
and the cutoff frequencies and the relationship 
between the center frequency and the cutoff fre-
quencies, show that

2 2
;c o1

2
2ω β β ω( )= − + +  

2 2
.c o2

2
2ω β β ω( )= + +

b) Using the expressions for the two cutoff fre-
quencies in terms of the center frequency and 
the bandwidth given in part (a), show that

 ω ω= ⋅ − + +






















Q Q

1
2

1 1
2

,c o1

2

ω ω= ⋅ + +






















Q Q
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1 1
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 14.24  Using a 25 nF capacitor in the bandpass circuit 
shown in Fig. 14.22, design a filter with a quality fac-
tor of 10 and a center frequency of 50  krad s .

a) Specify the numerical values of R and L.

b) Calculate the upper and lower cutoff frequen-
cies in kilohertz.

c) Calculate the bandwidth in hertz.

 14.25  Design a series RLC bandpass filter using only three 
components from Appendix H that comes closest 
to meeting the filter specifications in  Problem 14.24.
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 14.29  The input voltage in the circuit in Fig. P14.28  
is ωt0.8 cos  V. Calculate the output voltage when 
(a) ω ω= o; (b) ω ω= c1; and (c) ω ω= c2.

 14.30  For the bandpass filter shown in Fig. P14.30, find  
(a) ωo, (b) fo, (c) Q, (d) ωc1, (e) fc1, (f) ωc2, (g) fc2, 
and (h) β .

PSPICE
MULTISIM

 14.31  The purpose of this problem is to investigate how 
a resistive load connected across the output ter-
minals of the bandpass filter shown in Fig.  14.22 
affects the quality factor and hence the bandwidth 
of the filtering system. The loaded filter circuit is 
shown in Fig.  P14.31.
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a)  Calculate the transfer function V Vo i  for the 
circuit shown in Fig. P14.31.

b) What is the expression for the bandwidth of the 
system?

c) What is the expression for the loaded bandwidth 
β( )L  as a function of the unloaded bandwidth 
β( )U ?

d) What is the expression for the quality factor of 
the system?

e) What is the expression for the loaded quality 
factor (QL) as a function of the unloaded quality 
factor (QU)?

f) What are the expressions for the cutoff frequen-
cies ωc1 and ωc2 ?
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 14.32  The components in the circuit in Fig. P14.31 are 
R 100 k ,= Ω  =C 4 pF, and L 400 H.µ=  The 
quality factor of the circuit is not to drop below 9. 
What is the smallest permissible value of the load 
resistor RL?

 14.33  Consider the circuit shown in Fig. P14.33.

a) Find ωo.

b) Find β .

c) Find Q.

d) Find the steady-state expression for vo when 
t750 cos mVi oω=v .

e) Show that if RL is expressed in M ,Ω  the Q of the 
circuit in Fig. P14.33 is

=
+

Q
R

25
1 1.25

.
L

f) Plot Q versus RL for Ω ≤ ≤ ΩR1 M   40 M .L
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 14.34  A block diagram of a system consisting of a sinusoi-
dal voltage source, a series RLC bandpass filter, and 
a load is shown in Fig. P14.34. The internal imped-
ance of the sinusoidal source is + Ωj36 0  , and the 
impedance of the load is j320 0 .+ Ω

  The RLC series bandpass filter has a 5 nF capacitor, 
a center frequency of 250 krad s , and a quality fac-
tor of 10.

a) Draw a circuit diagram of the system.

b) Specify the numerical values of L and R for the 
filter section of the system.

c) What is the quality factor of the interconnected 
system?

d) What is the bandwidth (in hertz) of the inter-
connected system?

Section 14.5

 14.35  a) Show (via a qualitative analysis) that the circuit 
in Fig. P14.35 is a bandreject filter.

b)  Support the qualitative analysis of (a) by finding 
the voltage transfer function of the filter.

c) Derive the expression for the center frequency 
of the filter.

d) Derive the expressions for the cutoff frequen-
cies ωc1 and .c2ω

e) What is the expression for the bandwidth of the 
filter?

f) What is the expression for the quality factor of 
the circuit?

 14.36  For the bandreject filter in Fig. P14.36, calculate  
(a) ω ;o  (b) fo; (c) Q; (d) ω ;c1  (e) f c1; (f) ω ;c2  (g) f c2; 
and (h) β  in kilohertz.

PSPICE
MULTISIM
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 14.37  Use a 100 nF capacitor to design a bandreject filter, 
as shown in Fig. P14.37. The filter has a center fre-
quency of 50 kHz and a quality factor of 8.

a) Specify the numerical values of R and L.

b) Calculate the upper and lower cutoff frequen-
cies in kilohertz.

c) Calculate the filter bandwidth in kilohertz.
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 14.38  Assume the bandreject filter in Problem 14.37 is 
loaded with a 932 Ω  resistor.

a) What is the quality factor of the loaded circuit?

b) What is the bandwidth (in kilohertz) of the 
loaded circuit?

c) What is the upper cutoff frequency in kilohertz?

d) What is the lower cutoff frequency in kilohertz?

 14.39  Design a parallel RLC bandreject filter using only 
three components from Appendix H that comes 
closest to meeting the filter specifications in 
Problem 14.37.

a) Draw your filter, labeling all component values 
and the input and output voltages.

b) Calculate the percent error in this new filter’s 
center frequency and quality factor when com-
pared to the values specified in Problem 14.37.

 14.40  For the bandreject filter in Fig. P14.40, calculate  
(a) ω ;o  (b) fo; (c) Q; (d) β  in hertz; (e) ω ;c1  (f) fc1; 
(g) ω ;c2  and (h) fc2.

PSPICE
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 14.41  For the bandreject filter in Fig. P14.40,

a) Find ωH j( ) at ,   ,   ,  0.1 ,o c c o1 2ω ω ω ω  and 10 .oω

b) If t2 cos  V,i ω=v  write the steady-state 
expression for vo when ,oω ω=  ,c1ω ω=  

,c2ω ω=  0.1 ,oω ω=  and 10 .oω ω=

 14.42  Design an RLC bandreject filter (see Fig. 14.28[a]) 
with a quality of 2/3 and a center frequency of 
4 krad s , using a 80 nF capacitor.

a) Draw your circuit, labeling the component val-
ues and output voltage.

b)  For the filter in part (a), calculate the bandwidth 
and the values of the two cutoff frequencies.

 14.43  The input to the RLC bandreject filter designed 
in Problem 14.42 is ωt125 cos  V. Find the voltage 
drop across the series combination of the induc-
tor and capacitor when (a) ;oω ω=  (b) ;c1ω ω=   
(c) ;c2ω ω=  (d) 0.125 ;oω ω=  (e) 8 .oω ω=

 14.44  The input to the RLC bandreject filter designed in 
Problem 14.42 is ωt125 cos  V. Find the voltage drop 
across the resistor when (a) ;oω ω=  (b) ;c1ω ω=  
(c) ;c2ω ω=  (d) 0.125 ;oω ω=  (e) 8 .oω ω=

 14.45  The purpose of this problem is to investigate how a 
resistive load connected across the output terminals 
of the bandreject filter shown in Fig. 14.28(a) affects 
the behavior of the filter. The loaded filter circuit is 
shown in Fig. P14.45.

a) Find the voltage transfer function V V .o i

b) What is the expression for the center frequency?

c) What is the expression for the bandwidth?

d) What is the expression for the quality factor?

e) Evaluate ωH j( ).o

f) Evaluate H j( 0).

g) Evaluate ∞H j( ).

h) What are the expressions for the cutoff frequen-
cies ωc1 and ωc2?
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e) Suppose R 80  ,= Ω  =L 10 mH,  C 400  F.µ=  
Calculate the cutoff frequency of this filter, that 
is, the frequency at which the magnitude of the 
transfer function is 1 2 .

 14.46  The parameters in the circuit in Fig. P14.45 are 
= ΩR 5 k , =L 400 mH, =C 250 pF,  and 

= ΩR 20 k .L

a) Find ω ,o  β  (in kilohertz), and Q.

b) Find H(j0) and ∞H j( ).

c) Find fc2 and fc1.

d) Show that if RL is expressed in k ,Ω  the Q of the 
circuit is

= +Q R8[1  (5 )].L

e) Plot Q versus RL for R2 k 50 k .LΩ ≤ ≤ Ω

 14.47  The load in the bandreject filter of Fig. P14.45 is 
Ω36 k . The filter’s center frequency is 1 Mrad/s and 

the capacitor is 400 pF. At very low and very high 
frequencies, the amplitude of the sinusoidal output 
voltage should be at least 96% of the amplitude of 
the sinusoidal input voltage.

a) Specify the numerical values of R and L.

b) What is the quality factor of the circuit?

Sections 14.1–14.5

 14.48  Consider the following voltage transfer function:

=H s
V
V

( ) o

i

= ×
+ + ×s s

4 10
500 4 10

.
6

2 6

a) At what frequencies (in radians per second) is 
the magnitude of the transfer function equal to 
unity?

b)  At what frequency is the magnitude of the trans-
fer function maximum?

c) What is the maximum value of the transfer func-
tion magnitude?

 14.49  Consider the series RLC circuit shown in Fig. P14.49. 
When the output is the voltage across the resistor, 
we know this circuit is a bandpass filter. When the 
output is the voltage across the series combination 
of the inductor and capacitor, we know this circuit 
is a bandreject filter. This problem investigates the 
behavior of this circuit when the output is across 
the inductor.

a) Find the transfer function, =H s V s V s( ) ( ) ( )o i  
when Vo(s) is the voltage across the inductor.

b) Find the magnitude of the transfer function in 
part (a) for very low frequencies.

c) Find the magnitude of the transfer function in 
part (a) for very high frequencies.

d) Based on your answers in parts (b) and (c), what 
type of filter is this?
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 14.50  Repeat Problem 14.49 for the circuit shown in 
Fig. P14.50. Note that the output voltage is now the 
voltage across the capacitor.

 14.51  Design a parallel RLC bandpass filter (see Fig. 14.27) 
for detecting the low-frequency tone generated by 
pushing a telephone button as shown in Fig. 14.32.

a) Calculate the values of L and C that place the 
cutoff frequencies at the edges of the DTMF 
low- frequency band. Note that the resistance in 
standard telephone circuits is always = ΩR 600  .

b) What is the output amplitude of this circuit at 
each of the low-band frequencies, relative to the 
peak amplitude of the bandpass filter?

c) What is the output amplitude of this circuit at 
the lowest of the high-band frequencies?

 14.52  Design a DTMF high-band bandpass filter simi-
lar to the low-band filter design in Problem 14.51. 
Be sure to include the fourth high-frequency tone, 
1633  Hz, in your design. What is the response 
amplitude of your filter to the highest of the low- 
frequency DTMF tones?

 14.53  The 20 Hz signal that rings a telephone’s bell has 
to have a very large amplitude to produce a loud 
enough bell signal. How much larger can the ring-
ing signal amplitude be, relative to the low-band 
DTMF signal, so that the response of the filter in 
Problem 14.51 is no more than one-third as large as 
the largest of the DTMF tones?
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CHAPTER CONTENTS

15
CHAPTER 

Active Filter Circuits
Active filter circuits, which employ op amps, can be config-
ured as low-pass filters, high-pass filters, bandpass filters, and 
bandreject filters, just like the passive circuits we analyzed in 
Chapter  14. Active filter circuits have several advantages over 
their passive counterparts.

• Active circuits can produce bandpass and bandreject filters  
without using inductors. This is advantageous because 
inductors are usually large, heavy, and costly, and they can 
introduce electromagnetic field effects that compromise the 
desired frequency response characteristics.

• Active filters provide control over passband amplification 
that is not available in passive filter circuits. Examine the 
transfer functions of all the filter circuits from Chapter 14 
and you will notice that the maximum magnitude does not 
exceed 1. This is not surprising, since most of the transfer 
functions in Chapter 14 were derived using voltage division. 
Active filters permit us to specify both the filtering char-
acteristics and a passband gain, an advantage over passive 
filters.

• Active filters can have resistive loads at their outputs whose 
presence does not alter the filter characteristics due to the 
properties of ideal op amps. This is another advantage of 
active filters, as both the cutoff frequency and the passband 
magnitude of passive filters can change when a resistive 
load is added at the output.

Thus, we can implement filter designs using active circuits when 
physical size, passband amplification, and load variation are 
important parameters in the design specifications.

In this chapter, we analyze a few of the many filter cir-
cuits that use op amps. You will see how these op amp circuits  
overcome the disadvantages of passive filter circuits. We will also 
combine basic op amp filter circuits to achieve specific frequency 
responses and to attain a more nearly ideal filter response. 
Note that throughout this chapter we assume that every op amp 
behaves as an ideal op amp.

15.1  First-Order Low-Pass and High-Pass 
Filters p. 574

15.2 Scaling p. 577

15.3  Op Amp Bandpass and Bandreject 
Filters p. 580

15.4 Higher-Order Op Amp Filters p. 587

15.5  Narrowband Bandpass and Bandreject 
Filters p. 600

1 Know the op amp circuits that behave as 
first-order low-pass and high-pass filters 
and be able to calculate component values 
for these circuits to meet specifications of 
cutoff frequency and passband gain.

2 Be able to design filter circuits starting 
with a prototype circuit and use scaling 
to achieve desired frequency response 
 characteristics and component values.

3 Understand how to use cascaded  
first- and second-order Butterworth filters 
to implement low-pass, high-pass, band-
pass, and bandreject filters of any order.

4 Be able to use the design equations to 
calculate component values for prototype 
narrowband bandpass and narrowband 
bandreject filters to meet desired filter 
specifications.

CHAPTER OBJECTIVES
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Practical Perspective
Bass Volume Control
The circuits we analyze in this chapter are frequency 
 selective, which means that the circuit’s behavior depends 
on its sinusoidal input frequency. These filter circuits play 
important roles in many audioelectronic applications.

Audioelectronic systems such as radios and home 
stereo systems often provide separate volume controls 
labeled “treble” and “bass.” These controls allow you to 
set the volume of high-frequency audio signals (“treble”) 
and the volume of low-frequency audio signals (“bass”) 

independently. Adjusting the amplification (boost) or 
attenuation (cut) in these two frequency bands allows you 
to customize the sound with more precision than you get 
using a single volume control.

The Practical Perspective example at the end of this 
chapter presents a bass volume control circuit composed 
of a single op amp together with resistors and capaci-
tors. An adjustable resistor controls the amplification in 
the bass frequency range.

Be Good/Shutterstock
Juraj Kovac/Shutterstock

Arnut09Job/Shutterstock Bass Treble

Peter Gudella/Shutterstock
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Figure 15.1 ▲ A first-order low-pass filter.
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Figure 15.2 ▲ A general op amp circuit.

15.1  First-Order Low-Pass  
and High-Pass Filters

Consider the circuit in Fig. 15.1. When the frequency of the source is var-
ied, only the impedance of the capacitor is affected. At very low frequen-
cies, the capacitor acts like an open circuit, and the op amp circuit acts like 
an inverting amplifier with a gain of −R R .2 1  At very high frequencies, 
the capacitor acts like a short circuit that connects the op amp’s output to 
ground. The op amp circuit in Fig. 15.1 thus functions as a low-pass filter 
with a passband gain of −R R .2 1

To confirm this qualitative assessment, we compute the transfer func-
tion =H s V s V s( ) ( ) ( ).o i  Note that the circuit in Fig. 15.1 has the general 
form of the circuit shown in Fig. 15.2, where the impedance in the input path 
( )Zi  is the resistor R ,1  and the impedance in the feedback path ( )Z f  is the 
parallel combination of the resistor R2 and the capacitor impedance sC1 .

The circuit in Fig.  15.2 has the same configuration as the invert-
ing amplifier circuit from Chapter 5, so its transfer function is −Z Z .f i  
Therefore, the transfer function for the circuit in Fig. 15.1 is

 
ω

ω

( )
=

−
=

−
= −

+
H s

Z

Z

R
sC

R
K

s
( )

    1

,f

i

c

c

2

1

 (15.1)

where

 K
R
R

,2

1

=  (15.2)

and

 
R C

1 .c
2

ω =  (15.3)

Note that Eq. 15.1 has the same form as the general equation for low-
pass filters given in Eq. 14.6, with an important difference: the gain in the  
passband, K, is set by the ratio R R .2 1  The op amp low-pass filter thus permits 
the passband gain and the cutoff frequency to be specified independently.

 A Note about Frequency Response Plots
Frequency response plots, introduced in Chapter  14, provide valuable 
insight into the way a filter circuit functions. Thus, we make extensive use 
of frequency response plots in this chapter, too. The frequency response 
plots in Chapter  14 have two components—a plot of the transfer func-
tion magnitude versus frequency and a plot of the transfer function phase 
angle, in degrees, versus frequency. The two plots are usually stacked on 
top of one another so that they can share the same frequency axis.

In this chapter, we use a special type of frequency response plot called 
the Bode plot. Bode plots are discussed in detail in Appendix E, which 
includes information about how to construct these plots by hand. You will 
probably use a computer to construct Bode plots, so here we summarize 
their special features. Bode plots differ from the frequency response plots 
in Chapter 14 in two important ways.

• A Bode plot uses a logarithmic axis for the frequency values instead 
of a linear axis. This permits us to plot a wider range of frequencies of 
interest. Normally, we plot three or four decades of frequencies, say from 
10 rad s2  to 10 rad s6 , or 1 kHz to 1 MHz, choosing the frequency 
range where the transfer function characteristics are changing. If we plot 
both the magnitude and phase angle plots, they share the frequency axis.
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Figure 15.3 ▲ The Bode magnitude plot of the low-pass filter from 
Example 15.1.

• The Bode magnitude is plotted in decibels (dB) versus the log of the 
frequency, instead of plotting the absolute magnitude versus linear 
frequency. The decibel is discussed in Appendix D. Briefly, if the mag-
nitude of the transfer function is H jω( ) , its value in dB is given by

A H j20  log .dB 10 ω( )=

Note that although H jω( )  is an unsigned quantity, AdB  is a signed 
quantity. When =A 0,dB  the transfer function magnitude is 1, since 

=20  log (1) 0.10  When <A 0,dB  the transfer function magnitude is 
between 0 and 1, and when >A 0,dB  the transfer function magnitude is 
greater than 1. Finally, note that

20  log 1 2 3 dB.10 = −

Recall that at a filter’s cutoff frequency the transfer function’s magni-
tude has been reduced from its maximum value by 1 2. Translating this 
definition to magnitude in dB, we find that a transfer function’s magnitude 
at its cutoff frequency has been reduced from its maximum magnitude by 3 
dB. For example, if the magnitude of a low-pass filter in its passband is 26 
dB, the magnitude used to find the cutoff frequency is 26 3 23 dB.− =

Example 15.1 illustrates the design of a first-order low-pass filter to 
meet desired specifications of passband gain and cutoff frequency; it also 
illustrates a Bode magnitude plot of the filter’s transfer function.

EXAMPLE 15.1     Designing a Low-Pass Op Amp Filter

Using the circuit shown in Fig. 15.1, calculate values 
for C and R2 that, together with R 1  ,1 = Ω  produce 
a low-pass filter having a gain of 1 in the passband 
and a cutoff frequency of 1  rad s. Find the transfer 
function for this filter and use it to sketch a Bode 
magnitude plot of the filter’s frequency response.

Solution
Equation 15.2 gives the passband gain in terms of 
R1  and R ,2  so we use it to calculate the required 
value of R2 :

 R KR (1)(1) 1  .2 1= = = Ω

Now use Eq. 15.3 to calculate C and satisfy the cut-
off frequency specification:

ω
= = =C

R
1 1

(1)(1)
1 F.

c2

The transfer function for the low-pass filter is 
given by Eq. 15.1:

H s K
s s

( ) 1
1

.c

c

ω
ω

= −
+

= −
+

The Bode plot of H jω( )  is shown in Fig. 15.3. We 
have just designed a prototype low-pass op amp fil-
ter. It uses a resistor value of 1 Ω  and a capacitor 
value of 1 F, and it has a cutoff frequency of 1  rad s.  

As we shall see in the next section, prototype fil-
ters provide a useful starting point for the design of 
filters that use more realistic component values to 
achieve a desired frequency response.
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Figure 15.4 ▲ A first-order high-pass filter.

You may have recognized the circuit in Fig.  15.1 as the integrating 
amplifier circuit introduced in Chapter 7. They are indeed the same cir-
cuit, so integrating in the time domain corresponds to low-pass filtering in 
the frequency domain. This relationship between integration and low-pass 
filtering is also evident from the operational Laplace transform for inte-
gration derived in Chapter 12.

The circuit in Fig.  15.4 is an active first-order high-pass filter. This 
circuit also has the general form of the circuit in Fig. 15.2, only now the 
impedance in the input path is the series combination of R1  and sC1 , and 
the impedance in the feedback path is the resistor R .2  The transfer func-
tion for the circuit in Fig 15.4 is thus

 
ω

=
−

=
−

+
= −

+
H s

Z

Z
R

R
sC

K s
s

( )
1

,f

i c

2

1

 (15.4)

where

 K
R
R

,2

1

=  (15.5)

and

 
R C

1 .c
1

ω =  (15.6)

The form of the transfer function given in Eq. 15.4 is the same as that in 
Eq. 14.10, the equation for passive high-pass filters. Again, the active filter 
can have a passband gain greater than 1.

Example 15.2 designs an active high-pass filter that must meet fre-
quency response specifications from a Bode plot.

EXAMPLE 15.2     Designing a High-Pass Op Amp Filter

Figure  15.5 shows the Bode magnitude plot of a 
high-pass filter. Using the active high-pass filter cir-
cuit in Fig. 15.4, calculate values of R1  and R2 that 
produce the desired magnitude response. Use a 
0.1  Fμ  capacitor. If a 10 kΩ  load resistor is added to 
this filter, how will the magnitude response change?

 Solution
Begin by writing a transfer function that has the 
magnitude plot shown in Fig. 15.5. To do this, note 
that the gain in the passband is 20 dB; therefore, 

=K 10. Also note that the 3 dB point is 500 rad/s,  
which must be the filter’s cutoff frequency. 
Equation 15.4 is the transfer function for a high-
pass filter, so the transfer function that has the mag-
nitude response shown in Fig. 15.5 is given by

H s s
s

( ) 10
500

.= −
+

Next, equate this transfer function with Eq. 15.4:

H s s
s

R R s
s R C

( ) 10
500 1

.2 1

1

( )
( )

= −
+

=
−

+
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Figure 15.5 ▲ The Bode magnitude plot of the high-pass filter for 
Example 15.2.
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Figure 15.6 ▲ The high-pass filter for Example 15.2.

Equating the numerators and denominators and 
then simplifying, we get two equations:

= =
R
R R C

10 , 500 1 .2

1 1

Using the specified value of C  (0.1  F),μ  we find

R R20 k , 200 k .1 2= Ω = Ω

The circuit is shown in Fig. 15.6.
Because we have made the assumption that the 

op amp is ideal, adding any load resistor, regardless of 
its resistance, has no effect on the filter circuit. Thus, 
the magnitude response of a high-pass filter with a 

load resistor is the same as that of a high-pass filter 
with no load resistor, which is depicted in Fig. 15.5.

Objective 1—Know the op amp circuits that behave as first-order low-pass and high-pass filters and be 
able to calculate their component values

15.1 Compute the resistor values needed for the 
low-pass filter circuit in Fig. 15.1 to produce the 
transfer function

= −
+

H s
s

( ) 8000
2000

.

Use a 40 nF  capacitor.

Answer: R R3125  ,   12.5 k .1 2= Ω = Ω

15.2 Compute the values for R2  and C that yield a 
high-pass filter with a passband gain of 1 and a 
cutoff frequency of 1  rad s  if R1  is 1  .Ω   
(Note: This is the prototype high-pass filter.)

Answer: R C1  ,   1 F.2 = Ω =

ASSESSMENT PROBLEMS

SELF-CHECK: Also try Chapter Problems 15.3 and 15.5.

15.2 Scaling
When designing and analyzing filter circuits, it is convenient to use compo-
nent values like 1  ,Ω  1 H, and 1 F because any computations required are 
simple. Unfortunately, these values are unrealistic for specifying practical 
components, and they result in filters with undesirable characteristics, like 
a cutoff frequency of 1 rad/s. But we can use scaling to transform the con-
venient component values into realistic values and transform undesirable 
filter characteristics into desirable ones. There are two types of scaling: 
magnitude and frequency.

Magnitude Scaling

We scale a circuit in magnitude by multiplying the impedance at a given 
frequency by the scale factor k .m  Thus, we multiply all resistors and induc-
tors by km  and all capacitors by k1 .m  If we let unprimed variables rep-
resent the initial values of the parameters, and we let primed variables 
represent the scaled values of the variables, we have

′ = ′ = ′ =R k R L k L C C k, ,  and   .m m m
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Figure 15.7 ▲ The series RLC circuit for Example 15.3.

Note that km  is by definition a positive real number that can be either less 
than or greater than 1.

Frequency Scaling

We scale a circuit in frequency by changing the circuit’s component values 
so that at the new frequency, the impedance of each element is the same 
as it was at the original frequency. Because resistive impedance is inde-
pendent of frequency, resistors are unaffected by frequency scaling. If we 
let k f  denote the frequency scale factor, inductor and capacitor values are 
both multiplied by k1 .f  Thus, for frequency scaling,

′ = ′ = ′ =R R L L k C C k, , and .f f

The frequency scale factor k f  is also a positive real number that can be 
less than or greater than 1.

A circuit can be scaled simultaneously in both magnitude and 
 frequency. The scaled values (primed) in terms of the original values 
 (unprimed) are

COMPONENT SCALE FACTORS

′ =R k R,m

′ =L
k
k

L,m

f
 (15.7)

′ =C
k k

C1 .
m f

The Use of Scaling in the Design of Filters
When designing filters, follow these steps to use scaling:

• Select the cutoff frequency, ω ,c  to be 1  rad s  (if you are designing 
low- or high-pass filters), or select the center frequency, ω ,o  to be 
1  rad s  (if you are designing bandpass or bandreject filters).

• Select a 1 F capacitor and calculate the values of the resistors needed 
to give the desired passband gain (if you are designing an active fil-
ter) and the 1  rad s  cutoff or center frequency.

• Use scaling to compute more realistic component values that give the 
desired cutoff or center frequency.

Example 15.3 illustrates the scaling process in general, and Example 15.4 
illustrates the use of scaling in the design of a low-pass filter.

EXAMPLE 15.3     Scaling a Series RLC Filter

The passive series RLC filter shown in Fig. 15.7 has 
a center frequency of =LC1 1  rad s, a band-
width of =R L 1  rad s, and thus a quality factor 
of 1. Use scaling to compute new values of R and 
L that yield a circuit with the same quality factor 
but with a center frequency of 500 Hz. Use a 2  Fμ  
capacitor.
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The final component values are

R R C3183.1  ,   15,915.5  ,   10 nF.1 2′ = Ω ′ = Ω ′ =

The transfer function of the filter is given by

= −
+

H s
s

( ) 31,415.93
6283.185

.

The Bode plot of this transfer function’s magnitude 
is shown in Fig. 15.8.
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Figure 15.8 ▲ The Bode magnitude plot of the low-pass filter  
from Example 15.4.

 Solution
Compute the frequency scale factor that will shift the 
center frequency from 1  rad s  to 500 Hz. Remember, 
the unprimed variables represent values before scal-
ing, whereas the primed variables represent values 
after scaling.

k
2 (500)

1
3141.59.f

o

o

ω
ω

π
=

′
= =

Now, use Eq. 15.7 to compute the magnitude scale 
factor that, together with the frequency scale factor, 
will yield a capacitor value of 2  Fμ :

( )( )
=

′
=

×
=

−
k

k
C
C

1 1
3141.59 2 10

159.155.m
f

6

Use Eq. 15.7 again to compute the magnitude- and 
frequency-scaled values of R and L:

′ = = ΩR k R 159.155  ,m

′ = =L
k
k

L 50.66 mH.m

f

With these component values, the center fre-
quency of the series RLC circuit is

=LC1 3141.61  rad s or 500 Hz,

and the bandwidth is

=R L 3141.61  rad s or 500 Hz;

thus, the quality factor is still 1.

EXAMPLE 15.4     Scaling a Prototype Low-Pass Op Amp Filter

Use the prototype low-pass op amp filter from 
Example 15.1, along with magnitude and fre-
quency scaling, to compute the resistor values for 
a low-pass filter with a gain of 5, a cutoff frequency 
of 1000 Hz, and a feedback capacitor of 10 nF. 
Construct a Bode plot of the resulting transfer 
function’s magnitude.

Solution
To begin, use frequency scaling to place the cutoff 
frequency at 1000 Hz:

ω ω π= ′ = =k 2 (1000) 1 6283.185,f c c

where the primed variable has the new value and 
the unprimed variable has the old value of the cut-
off frequency. Then compute the magnitude scale 
factor that, together with =k 6283.185,f  will scale 
the capacitor to 10 nF:

( )( )
=

′
= =

−
k

k
C
C

1 1
6283.185 10

15,915.5.m
f

8

Since resistors are scaled only by using magnitude 
scaling,

R R k R 15,915.5 (1) 15,915.5  .m1 2 ( )′ = ′ = = = Ω

Finally, we need to meet the passband gain 
specification. We can adjust the values of either ′R1  
or ′R2  because = ′ ′K R R .2 1  If we adjust ′R ,2  we will 
change the cutoff frequency because ω ′ = ′ ′R C1 .c 2  
Therefore, we can adjust the value of ′R1  to alter 
only the passband gain:

R R K 15,915.5 (5) 3183.1  .1 2 ( )′ = ′ = = Ω
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Figure 15.9 ▲ Constructing the Bode magnitude plot of a bandpass filter.

15.3  Op Amp Bandpass  
and Bandreject Filters

We now analyze and design op amp circuits that act as bandpass and 
band reject filters. Our initial approach is motivated by the Bode plot con-
struction shown in Fig. 15.9. We can see from the plot that the bandpass 
filter consists of three separate elements:

Objective 2—Be able to design filter circuits starting with a prototype and use scaling to achieve desired 
frequency response and component values

15.3 What magnitude and frequency scale factors 
will transform the prototype low-pass filter into 
a low-pass filter with a 10  Fμ  capacitor and a 
cutoff frequency of 4 kHz?

Answer: = =k k25,132.74,   3.98.f m

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter Problems 15.25 and 15.26.

• A unity-gain low-pass filter whose cutoff frequency is ω ,c2  the larger 
of the two cutoff frequencies.

• A unity-gain high-pass filter whose cutoff frequency is ω ,c1  the 
smaller of the two cutoff frequencies.

• A gain component to provide the desired passband gain.

These three subcircuits are cascaded in series. The subcircuit transfer func-
tions are multiplied to form the cascade transfer function, and the subcir-
cuit magnitude plots are added to create the cascade magnitude plot.
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Figure 15.10 ▲ A cascaded op amp bandpass filter. (a) The block diagram. (b) The circuit.

This method of constructing an active bandpass filter and its corre-
sponding magnitude response assumes that the lower cutoff frequency 
(ωc1) is significantly smaller than the upper cutoff frequency (ωc2 ). The 
resulting filter is called a broadband bandpass filter because the band of 
frequencies passed is wide. The formal definition of a broadband filter 
requires that the two cutoff frequencies satisfy the equation

ω
ω

≥ 2.c

c

2

1

As illustrated by the Bode plot construction in Fig. 15.9, we require that 
the magnitude of the high-pass filter be unity at the cutoff frequency of the 
low-pass filter and that the magnitude of the low-pass filter be unity at the 
cutoff frequency of the high-pass filter. Then the bandpass filter will have 
the cutoff frequencies specified by the low-pass and high-pass filters. We 
need to determine the relationship between ωc1 and ωc2  that will satisfy 
the requirements illustrated in Fig. 15.9.

We can construct a circuit consisting of three subcircuits by cascading a 
low-pass op amp filter, a high-pass op amp filter, and an inverting amplifier 
(see Section 5.3), as shown in Fig. 15.10(a). Figure 15.10(a) is called a block 
diagram. Each block represents a component or subcircuit, and the output 
of one block is the input to the next, in the direction indicated. We want to 
establish the relationship between ωc1 and ωc2  that will permit each sub-
circuit to be designed independently, without concern for the other subcir-
cuits in the cascade. This reduces the bandpass filter design to the design 
of a unity-gain first-order low-pass filter, a unity-gain first-order high-pass 
filter, and an inverting amplifier, each of which is a simple circuit.

The transfer function of the cascaded bandpass filter is the product of 
the transfer functions of the three cascaded subcircuits:

=H s
V
V

( ) o

i

s
s

s

R

R
c

c c

f

i

2

2 1

ω
ω ω

=
−
+









−
+









−







ω
ω ω( )( )

=
−

+ +
K s

s s
c

c c

2

1 2

 
K s

s s( )
.c

c c c c

2
2

1 2 1 2

ω
ω ω ω ω

=
−

+ + +
 (15.8)
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Equation 15.8 is not in the standard form for the transfer function of a 
bandpass filter discussed in Chapter 14, namely,

H s
s s

.
o

BP 2 2

β
β ω

=
+ +

In order to convert Eq. 15.8 into the form of the standard transfer func-
tion for a bandpass filter, we require that

�ω ω .c c2 1

When the upper cutoff frequency is much larger than the lower cutoff 
frequency,

ω ω ω( )+ ≈ ,c c c1 2 2

and the transfer function for the cascaded bandpass filter in Eq. 15.8 
becomes

ω
ω ω ω

=
−

+ +
H s

K s
s s

( ) .c

c c c

2
2

2 1 2

Thus, if the bandpass filter specifications include an upper cutoff fre-
quency that is much larger than the lower cutoff frequency, we can design 
each subcircuit of the cascaded circuit independently. We compute the 
values of RL and CL in the low-pass filter to give us the desired upper 
cutoff frequency, ωc2:

ω =
R C

1 .c
L L

2

We compute the values of RH  and C H  in the high-pass filter to give us the 
desired lower cutoff frequency, ωc1:

ω =
R C

1 .c
H H

1

Now we compute the values of Ri  and Rf  in the inverting amplifier 
to provide the desired passband gain. To do this, we consider the mag-
nitude of the bandpass filter’s transfer function, evaluated at the center 
frequency, ωo:

ω
ω ω

ω ω ω ω ω
( )

( )

( ) ( )
=

−
+ +

H j
K j

j j 
 o

c o

o c o c c

2
2

2 1 2

ω
ω

=
K c

c

2

2

= K.

Recall from Chapter 5 that the gain of the inverting amplifier is R R .f i  
Therefore,

ω( ) =H j
R

R
.o

f

i

Any choice of resistors that satisfies this equation will produce the desired 
passband gain.

Example 15.5 illustrates the design process for the cascaded bandpass 
filter.
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Figure 15.11 ▲ The cascaded op amp bandpass filter designed in Example 15.5.

EXAMPLE 15.5     Designing a Broadband Bandpass Op Amp Filter

Design a bandpass filter for a graphic equalizer to 
provide an amplification of 2 within the band of fre-
quencies between 100 and 10,000 Hz. Use 0.2  Fμ  
capacitors.

Solution
We can design each subcircuit in the cascade and 
meet the specified cutoff frequency values only if the 
upper cutoff frequency is much larger than the lower 
cutoff frequency. In this case, ω ω= 100 ,c c2 1  so we 
can say that �ω ωc c2 1. Begin with the low-pass  
filter, whose cutoff frequency is ωc2. From Eq. 15.3,

ω π= =
R C

1 2 (10,000),c
L L

2

π ( )( )[ ]
=

× −
R 1

2 10,000 0.2 10L 6

80  .≈ Ω

Next, we turn to the high-pass filter, whose cutoff 
frequency is ωc1. From Eq. 15.6,

ω π= =
R C

1 2 (100),c
H H

1

π ( )( )[ ]
=

× −
R 1

2 100 0.2 10H 6

≈ Ω7958  .

Finally, we need the gain stage. Two resistors are 
required, so one of the resistors can be selected 
arbitrarily. Let’s select a Ω1 k  resistor for R .i  Then,

=R 2(1000)f

2000  2 k .= Ω = Ω

The resulting circuit is shown in Fig. 15.11. We 
leave it to you to show that the magnitude of this 
circuit’s transfer function is reduced by 1 2  from 
its maximum value at both cutoff frequencies, veri-
fying the validity of the assumption �ω ωc c2 1.

We can use a subcircuit approach when designing op amp bandre-
ject filters, too, as illustrated in Fig. 15.12. Like the bandpass filter, the  
band reject filter consists of three separate elements.

• A unity-gain low-pass filter with a cutoff frequency of ω ,c1  which is 
the smaller of the two cutoff frequencies.

•  A unity-gain high-pass filter with a cutoff frequency of ω ,c2  which is 
the larger of the two cutoff frequencies.

• A summing amplifier that provides the desired gain in the passbands.

There are important differences between the three subcircuits that 
comprise the bandpass filter and those that comprise the bandreject filter. 
The cutoff frequencies of the low-pass and high-pass filters are obviously 
different—in the bandpass filter, the low-pass filter subcircuit has a cutoff 
frequency of ωc2, and in the bandreject filter, the low-pass filter subcir-
cuit has a cutoff frequency of ωc1. The cutoff frequencies for the high-
pass filter subcircuit are also reversed. The most important difference is 
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Figure 15.12 ▲ Constructing the Bode magnitude plot of a bandreject 
filter.

that the three subcircuits in the bandreject filter cannot be cascaded in 
series because they do not combine additively on the Bode plot. Instead, 
the low-pass and high-pass filters act in parallel, and a summing ampli-
fier combines their outputs and provides the passband gain. Figure 15.13 
shows this design both in block diagram form and as a circuit.

Again, it is assumed that the two cutoff frequencies for the bandre-
ject filter are widely separated so that the resulting design is a broadband  
bandreject filter, and �ω ωc c2 1. Then each subcircuit in the parallel design 
can be created independently, and the cutoff frequency specifications will 
be satisfied. The transfer function of the resulting circuit is the sum of the 
low-pass and high-pass filter transfer functions. From Fig. 15.13(b),

ω
ω ω

= −








−
+

+ −
+













H s
R

R s
s

s
( ) f

i

c

c c

1

1 2

R

R
s s s
s s

 f

i

c c c

c c

1 2 1

1 2

ω ω ω
ω ω

( ) ( )
( )( )

=
+ + +
+ +









R

R
s s

s s
 

2
( )( )

.f

i

c c c

c c

2
1 1 2

1 2

ω ω ω
ω ω

=
+ +
+ +







  (15.9)

As we saw in the cascaded bandpass filter design, the two cutoff 
frequencies for the transfer function in Eq. 15.9 are ωc1 and ωc2  only if 

�ω ωc c2 1. Then the cutoff frequencies are given by the equations

ω =
R C

1 ,c
L L

1

ω =
R C

1 .c
H H

2
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Figure 15.13 ▲ A parallel op amp bandreject filter. (a) The block diagram. (b) The 
circuit.

In the two passbands (as →s 0 and → ∞s ), the gain of the transfer func-
tion is R R .f i  Therefore,

=K
R

R
.f

i

As with the design of the cascaded bandpass filter, we have six 
unknowns and three equations. Typically, we choose a commercially 
available capacitor value for CL and C .H  Then we use the equations for 
the cutoff frequencies of the low-pass and high-pass filters, calculating 
RL and RH  to meet the specified cutoff frequencies. Finally, we choose a 
value for either Rf  or Ri  and then use the equation for K to compute the 
other resistance to meet the passband gain specification.

The magnitude of the transfer function in Eq. 15.9 at the center fre-
quency, ω ω ω=o c c1 2, is

H j
R

R
j j

j j
( )

( ) 2 ( )
( ) ( )( )o

f

i

o c o c c

o c c o c c

2
1 1 2

2
1 2 1 2

ω
ω ω ω ω ω

ω ω ω ω ω ω
=

+ +
+ + +









R

R
2f

i

c

c c

1

1 2

ω
ω ω( )

=
+

R

R
2

.f

i

c

c

1

2

ω
ω

≈

If �ω ωc c2 1, then �ω( )H j R R2o f i (because �ω ω 1c c1 2 ), so the  
magnitude at the center frequency is much smaller than the passband 
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Figure 15.14 ▲ The Bode magnitude plot for the circuit to be 
designed in Example 15.6.

magnitude. Thus, the bandreject filter successfully rejects frequencies 
near the center frequency but only if the specifications meet the require-
ments of a broadband filter.

Example 15.6 illustrates the design process for the parallel bandreject 
filter.

EXAMPLE 15.6     Designing a Broadband Bandreject Op Amp Filter

Design a circuit based on the parallel bandreject 
op amp filter in Fig. 15.13(b). The Bode magnitude 
plot of the desired filter is shown in Fig. 15.14. Use 
0.5  Fμ  capacitors in your design.

Solution
From the Bode magnitude plot in Fig. 15.14, we see 
that the bandreject filter’s cutoff frequencies are 
100  rad s and 2000  rad s  and its passband gain 
is 3. Thus, ω ω= 20 ,c c2 1  so we make the assump-
tion that �ω ωc c2 1. Let’s begin with the prototype 
low-pass filter from Example 15.1 and use scaling 
to meet the specifications for cutoff frequency 
and capacitor value. The frequency scale factor 
k f  is 100, which shifts the cutoff frequency from  

1rad s to 100  rad s. The magnitude scale factor km   
is 20,000, which, together with the frequency scale 
factor, scales the capacitor from 1 F to 0.5  Fμ . Using  
these scale factors results in the following scaled 
component values:

R 20 k ,L = Ω

C 0.5  F.L μ=

The resulting cutoff frequency of the low-pass filter 
component is

ω
( )( )

= =
× ×

=
−R C

1 1
20 10 0.5 10

100  rad s.c
L L

1 3 6

We use the same approach to design the high-
pass filter, starting with the prototype high-pass 
op amp filter. Here, the frequency scale factor is 

=k 2000,f  shifting the cutoff frequency from 
1  rad/s to 2000 rad/s. The magnitude scale factor  
is =k 1000,m  which, together with the frequency 
scale factor, scales the capacitor from 1 F to 0.5  F.μ  
The scaled component values are

R 1 k ,H = Ω

C 0.5  F.H μ=

Finally, because the cutoff frequencies are 
widely separated, we can use the ratio R Rf i  to cre-
ate the passband gain of 3. Let’s choose R 1 k ,i = Ω  
as we are already using that resistance for R .H  Then 
R 3 k ,f = Ω  and = = =K R R 3000 1000 3.f i  
The resulting active broadband bandreject filter 
circuit is shown in Fig. 15.15.

Now let’s check our assumption that �ω ωc c2 1 
by calculating the actual gain at the specified cutoff 
frequencies. We do this by making the substitutions 

=s j100  and =s j2000  into the transfer function 
for the parallel bandreject filter, Eq. 15.9, and cal-
culating the resulting magnitude. You should verify 
that the magnitude at the specified cutoff frequen-
cies is greater than the magnitude of =3 2 2.12  
that we expect. Therefore, our rejecting band 
is more narrow than specified in the problem 
statement.
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Figure 15.15 ▲ The resulting bandreject filter circuit designed in Example 15.6.

15.4 Higher-Order Op Amp Filters
None of the filter circuits we have examined so far, whether passive or 
active, are ideal. Remember from Chapter  14 that an ideal filter has a 
discontinuity at the cutoff frequency, which sharply divides the passband 
and the stopband. Although we cannot hope to construct a linear circuit 
with a discontinuous frequency response, we can construct circuits with a 
sharper, yet still continuous, transition at the cutoff frequency.

Cascading Identical Filters
How can we obtain a sharper transition between the passband and the 
stopband? One approach is suggested by the Bode magnitude plots in 
Fig.  15.16. This figure shows the Bode magnitude plots of a cascade of 
identical prototype low-pass filters and includes plots of a single filter, two 
in cascade, three in cascade, and four in cascade. You can see that the 
transition from the passband to the stopband becomes sharper as more 
filters are added to the cascade. The rules for constructing Bode plots 
(from Appendix E) tell us that with one filter, the transition occurs with 
an asymptotic slope of 20 decibels per decade (dB dec). Because circuits 
in cascade are additive on a Bode magnitude plot, a cascade with two fil-
ters has a transition with an asymptotic slope of + =20 20 40  dB dec; 
for three filters, the asymptotic slope is 60  dB dec, and for four filters, it 
is 80  dB dec, as seen in Fig. 15.16.

 SELF-CHECK: Assess your understanding of this material by trying Chapter Problems 15.32 and 15.34.
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Figure 15.17 ▲ A cascade of identical unity-gain low-pass filters. (a) The block diagram. (b) The circuit.
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Figure 15.16 ▲ The Bode magnitude plot of a cascade of identical 
prototype first-order filters.

In general, an n-element cascade of identical low-pass filters will 
transition from the passband to the stopband with a slope of n20 dB dec.  
Figure  15.17 shows both the block diagram and the circuit diagram for 
such a cascade. We compute the transfer function for a cascade of n proto-
type low-pass filters by multiplying the individual transfer functions:

H s
s s s

( ) 1
1

1
1

. . . 1
1( )( ) ( )= −

+
−
+

−
+

s
( 1)

( 1)
.

n

n
=

−
+

 (15.10)
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A cascade of first-order low-pass filters yields a higher-order filter. 
From Eq. 15.10, a cascade of n first-order filters produces an nth-order 
filter because the transfer function has n poles, and the filter has a final 
slope of n20   dB dec  in the transition band.

There is an important issue yet to be resolved, as you will see if you 
look closely at Fig. 15.16. As the order of the low-pass filter is increased 
by adding prototype low-pass filters to the cascade, the cutoff frequency 
changes. For example, in a cascade of two first-order low-pass filters, the  
magnitude of the resulting second-order filter at 1 rad/s, the cutoff frequency  
of the single prototype low-pass filter, is −6 dB. The cutoff frequency of the  
second-order filter is not 1 rad/s. In fact, the cutoff frequency is less than 
1 rad/s.

Therefore, we need to find the cutoff frequency of the nth-order filter 
formed in the cascade of n first-order filters. Then we can use frequency 
scaling to calculate component values that move the cutoff frequency to 
its specified location. The cutoff frequency, ωcn, satisfies the equation 

ω( ) =H j 1 2:

( )

( )
= −

+
H s

s
( ) 1

1
,

n

n

ω
ω

( )
( )

=
+

=H j
j

1
1

  1
2

,cn
cn

n

ω( )+
=1

1

1
2

,
cn

n
2

ω ( )+
=1

1
1
2

,
cn

n

2

2

ω= +2 1,n
cn
2

ω = −2 1.cn
n  (15.11)

Let’s use Eq. 15.11 to find the cutoff frequency of a fourth-order 
 unity-gain low-pass filter constructed from a cascade of four prototype 
low-pass filters:

ω = − =2 1 0.435  rad s.c4
4

Thus, we can design a fourth-order low-pass filter with the cutoff fre-
quency ωc  by starting with a fourth-order cascade consisting of prototype 
low-pass filters and then scaling the components by ω=k 0.435f c .

We can build a higher-order low-pass filter with a nonunity gain by 
adding an inverting amplifier circuit to the cascade. Example 15.7 illus-
trates the design of a fourth-order low-pass filter with nonunity gain.

EXAMPLE 15.7     Designing a Fourth-Order Low-Pass Active Filter

Design a fourth-order low-pass filter with a cutoff 
frequency of 500 Hz and a passband gain of 10. Use 
1  Fμ  capacitors. Sketch the Bode magnitude plot 
for this filter.

Solution
Our design cascades four prototype low-pass fil-
ters. We have already used Eq. 15.11 to calculate 
the cutoff frequency for the resulting fourth-order 
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 Figure 15.19 ▲ The Bode magnitude plot for the fourth-order 
 low-pass filter designed in Example 15.7.
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Figure 15.18 ▲ The cascade circuit for the fourth-order low-pass filter designed in Example 15.7.

low-pass filter as 0.435  rad s. A frequency scale 
factor of =k 7222.39f  will scale the component 
values to give a 500 Hz cutoff frequency. A mag-
nitude scale factor of =k 138.46m , together with  
the frequency scale factor, scales the capacitor 
value from 1 F to 1  Fμ . The scaled component val-
ues are thus

R C138.46  ; 1  F.μ= Ω =

Add an inverting amplifier stage with a gain of 
=R R 10f i  to satisfy the passband gain specifica-

tion. As usual, we can arbitrarily select one of the 
two resistor values. Because we are already using 

Ω138.46   resistors, let R 138.46  ;i = Ω  then,

R R10 1384.6  .f i= = Ω

The circuit for this cascaded fourth-order low-
pass filter is shown in Fig. 15.18. It has the transfer 
function

H s
s

( ) 10 7222.39
7222.39

.
4

= −
+







The Bode magnitude plot for this transfer function 
is sketched in Fig. 15.19.

By cascading identical low-pass filters, we can increase the asymptotic 
slope in the transition between passband and stopband, but our approach 
has a serious shortcoming: The gain of the filter is not constant between 
zero and the cutoff frequency ω .c  Remember that in an ideal low-pass 
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filter, the passband magnitude is 1 for all frequencies below the cutoff fre-
quency. But in Fig. 15.16, we see that the passband magnitude is less than 
1 (0 dB), even for frequencies much less than the cutoff frequency.

We can understand why the passband magnitude is not ideal by look-
ing at the magnitude of the transfer function for a unity-gain low-pass 
nth-order cascade. Because

ω
ω( )

=
+

H s
s

( ) ,cn
n

cn
n

the magnitude is

ω
ω

ω ω( )
( ) =

+
H j cn

n

cn

n
2 2

ω ω( )( )
=

+

1

1
 .

cn

n
2

As we can see from this expression, when �ω ω ,cn  the denominator is 
approximately 1, and the magnitude of the transfer function is also nearly 1. 
But as ω ω→ ,cn  the denominator becomes larger than 1, so the magnitude 
becomes smaller than 1. Because the cascade of low-pass filters results in 
this nonideal behavior in the passband, other approaches are used when 
designing higher-order filters. One such approach is examined next.

Butterworth Filters
A unity-gain Butterworth low-pass filter has a transfer function whose 
magnitude is

 ω
ω ω( )

=
+

H j( )
1

1
,

c
n2

 (15.12)

where n is an integer that denotes the order of the filter.1

When studying Eq. 15.12, note the following:

• The cutoff frequency is ω   rad sc  for all values of n.
• If n is large enough, the denominator is always close to unity when 

ω ω< .c
• In the expression for ω( )H j , the exponent of ω ωc  is always even.

This last observation is important because only even exponents exist in cir-
cuits with resistors, inductors, capacitors, and op amps. (See Problem 15.37.)

Given an equation for the magnitude of the transfer function, how do 
we find H s( )? We can simplify the derivation for H s( ) by using a proto-
type filter, so we set ωc  equal to 1  rad s  in Eq. 15.12. As before, we will 
use scaling to transform the prototype filter to a filter that meets the given 
specifications.

To find H s( ),  first note that if N is a complex quantity, then 
=N NN ,2 *  where N *  is the conjugate of N. It follows that

ω ω ω= −H j H j H j( ) ( )  ( ).2

But because ω=s j , we can write

ω = −H j H s H s( ) ( )  ( ).2

1This filter was developed by the British engineer S. Butterworth and reported in Wireless 
Engineering 7 (1930): 536–541.
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Now observe that ω= −s .2 2  Thus,

 ω ω
( ) =

+
H j

1
1 n

2
2

ω( )
=

+
1

1 n2

( )
=

+ −s
1

1 n2

( )
=

+ − s
1

1 1
,n n2

or

− =
+ −

H s H s
s

( )  ( ) 1
1 ( 1)

.
n n2

Follow these steps to find H s( ) for a given value of n:

1. Find the roots of the polynomial

( )+ − =s1 1 0.n n2

2. Assign the left-half plane roots to H s( ) and the right-half plane 
roots to ( )−H s .

3. Combine terms in the denominator of H s( ) to form first- and  
second-order factors.

Example 15.8 illustrates this process.

EXAMPLE 15.8     Calculating Butterworth Transfer Functions

Find the Butterworth transfer functions for =n 2  
and =n 3.

Solution
For =n 2,  we find the roots of the polynomial

( )+ − =s1 1 0.2 4

Rearranging terms, we find

s 1 1 180 .4 = − = °

Therefore, the four roots are

s j1 45 1 2 2 ,1 = = +°

s j1 135 1 2 2 ,2 = = − +°

s j1 225 1 2 2 ,3 = = − + −°

s j1 315 1 2 2 .4 = = + −°

Roots s2  and s3  are in the left-half plane. Thus,

H s
s j s j

( ) 1

1 2 2 1 2 2( )( )
=

+ − + +

s s

1
2 1

.
2( )

=
+ +

For =n 3, we find the roots of the polynomial

( )+ − =s1 1 0.3 6

Rearranging terms,

s 1 0 1 360 .6 = =° °

Therefore, the six roots are

s 1 0 1,1 = =°

s j1 60 1 2 3 2,2 = = +°

s j1 120 1 2 3 2,3 = = − +°

s j1 180 1 0,4 = = − +°

s j1 240 1 2 3 2,5 = = − + −°

s j1 300 1 2 3 2.6 = = + −°
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TABLE 15.1 Normalized (so that ω = 1 rad sc ) Butterworth Polynomials up to the Eighth Order

n nth-Order Butterworth Polynomial

1 ( )+s 1

2 ( )+ +s s2 12

3 ( )( )+ + +s s s1 12

4 ( )( )+ + + +s s s s0.765 1 1.848 12 2

5 ( )( )( )+ + + + +s s s s s1 0.618 1 1.618 12 2

6 ( )( ) ( )+ + + + + +s s s s s0.518 1 2 1 1.932 12 2 2

7 ( )( )( )( )+ + + + + + +s s s s s s s1 0.445 1 1.247 1 1.802 12 2 2

8 ( )( )( )( )+ + + + + + + +s s s s s s s s0.390 1 1.111 1 1.663 1 1.962 12 2 2 2

VoVi
1

s2 1 0.618s 1 1
1

s2 1 1.618s 1 1
1

s 1 1

Figure 15.20 ▲ A cascade of first- and second-order circuits with the indicated trans-
fer functions yielding a fifth-order low-pass Butterworth filter with 1  rad s.cω =

Butterworth Filter Circuits
Now that we know how to specify the transfer function for a Butterworth 
filter circuit (either by calculating the poles of the transfer function directly or 
by using Table 15.1), we need to design a circuit with such a transfer function. 
Notice the form of the Butterworth polynomials in Table 15.1. They are the 
product of first- and second-order factors; therefore, we can construct a cir-
cuit whose transfer function has a Butterworth polynomial in its denominator 
by cascading active filter circuits, each of which provides one of the needed 
factors. Figure 15.20 presents a block diagram of a cascade whose transfer 
function has a fifth-order Butterworth polynomial in its denominator.

All odd-order Butterworth polynomials include the factor ( )+s 1 ,  
so all odd-order Butterworth filter circuits must have a subcircuit with the 
transfer function ( )= +H s s( ) 1 1 .  This is the transfer function of the 
prototype low-pass active filter from Fig. 15.1. So what remains is to find 
a circuit whose transfer function has the form ( )= + +H s s b s( ) 1 1 .2

1
Such a circuit is shown in Fig. 15.21. To analyze this circuit, write the 

s-domain KCL equations at the noninverting terminal of the op amp and 
at the node labeled Va :

−
+ − +

−
=

V V
R

V V sC
V V

R
( ) 0,i

o
oa

a 1
a

+
−

=V sC
V V

R
0.o

o
2

a

Simplifying the two KCL equations yields

+ − + =RC s V RC s V V(2 ) (1 ) ,o i1 a 1

− + + =V RC s V(1 ) 0.oa 2

Roots s ,3  s ,4  and s5  are in the left-half plane. Thus,

( )( )( )
=

+ + − + +
H s

s s j s j
( ) 1

1 1 2 3 2 1 2 3 2

( )( )
=

+ + +s s s
1

1 1
.

2

Note that the roots of the Butterworth polynomial 
are always equally spaced around the unit circle in 
the s plane. To assist in the design of Butterworth 
filters, Table 15.1 lists the Butterworth polynomials 
up to n 8.=

1

2

Vo

RR

Vi

Va

sC2

1

sC1

1
2

1

1

2

Figure 15.21 ▲ A circuit that provides the second- 
order transfer function for the Butterworth filter 
cascade.
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Use back-substitution to eliminate Va:

( ) ( ) ( )+ + − + =RC s RC s V RC s V V2 1 1 .o o i1 2 1

Then, rearrange this equation to write the transfer function for the circuit 
in Fig. 15.21:

= =
+ +

H s
V
V

R C C

s
RC

s
R C C

( )

1

2 1
.o

i

2
1 2

2

1
2

1 2

Finally, set R 1 = Ω ; then

 =
+ +

H s
C C

s
C

s
C C

( )

1

2 1
.1 2

2

1 1 2

 (15.13)

Equation 15.13 has the form required for the second-order circuit in 
the Butterworth cascade. To get a transfer function of the form

=
+ +

H s
s b s

( ) 1
1

,
2

1

we use the circuit in Fig. 15.21 and choose capacitor values so that

 b
C C C
2 and 1 1 .1

1 1 2

= =  (15.14)

We have thus outlined the procedure for designing an nth-order 
Butterworth low-pass filter circuit with a cutoff frequency of ω = 1  rad sc  
and a gain of 1 in the passband. We can use frequency scaling to calculate 
revised capacitor values that yield any specified cutoff frequency, and we 
can use magnitude scaling to provide more realistic or practical compo-
nent values in our design. Cascading an inverting amplifier circuit pro-
vides a passband gain other than 1.

Example 15.9 illustrates this design process.

EXAMPLE 15.9     Designing a Fourth-Order Low-Pass Butterworth Filter

Design a fourth-order Butterworth low-pass filter 
with a cutoff frequency of 500 Hz and a passband 
gain of 10. Use as many Ω1 k  resistors as possi-
ble. Compare the Bode magnitude plot for this 
Butterworth filter with that of the identical cascade 
filter in Example 15.7.

Solution
From Table  15.1, we find that the fourth-order 
Butterworth polynomial is

( ) ( )+ + + +s s s s0.765 1 1.848 1 .2 2

We will thus need a cascade of two second-order fil-
ters to get the fourth-order transfer function and an 
inverting amplifier circuit to get a passband gain of 
10. The circuit is shown in Fig. 15.22.

The first stage of the cascade is a circuit whose  
transfer function has the polynomial s s( 0.765 1)2 + +   
in its denominator. From Eq. 15.14,

= =C 2
0.765

2.61 F,1a

= =C 1
2.61

0.38 F.2a

The second stage of the cascade is a circuit whose  
transfer function has the polynomial + +s s( 1.848 1)2   
in its denominator. From Eq. 15.14,

= =C 2
1.848

1.08 F,1b

= =C 1
1.08

0.924 F.2b
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Figure 15.22 ▲ A fourth-order Butterworth filter with nonunity gain.
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Figure 15.23 ▲ A comparison of the magnitude responses for a fourth-order low-pass 
filter using the identical cascade and Butterworth designs.

These values for C ,1a  C ,2a  C ,1b  and C2b  yield 
a fourth-order Butterworth filter with a cutoff 
frequency of 1  rad s.  A frequency scale factor of 

=k 3141.6f  will move the cutoff frequency to 
500  Hz. A magnitude scale factor of =k 1000m  
allows us to use Ω1 k  resistors in place of Ω1   resis-
tors. The resulting scaled component values are

R 1 k ,= Ω

=C 831 nF,1a

=C 121 nF,2a

=C 344 nF,1b

=C 294 nF.2b

Finally, we need to specify the resistor values in the 
inverting amplifier stage to yield a passband gain of 
10. Let R 1 k ;1 = Ω  then

R R10 10 k .f 1= = Ω

Figure 15.23 compares the magnitude responses 
of the fourth-order identical cascade filter from 
Example 15.7 and the Butterworth filter we just 
designed. Note that both filters provide a passband 
gain of 10 (20 dB) and a cutoff frequency of 500 Hz, 
but the Butterworth filter is closer to an ideal low-
pass filter due to its flatter passband and steeper roll-
off at the cutoff frequency. Thus, the Butterworth 
design is preferred to the identical cascade design.
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Figure 15.24 ▲ Defining the transition region for a 
low-pass filter.

The Order of a Butterworth Filter
You have probably noticed that the higher the order of the Butterworth 
filter, the closer the transfer function magnitude is to that of an ideal low-
pass filter. In other words, as n increases, the magnitude stays close to unity 
in the passband, the transition band narrows, and the magnitude stays 
close to zero in the stopband. At the same time, as the order increases, 
the number of circuit components increases. Thus, when designing a filter, 
determining the smallest value of n that will meet the filtering specifica-
tions is an important first step.

The filtering specifications for a low-pass filter usually define the 
abruptness of the transition region, as shown in Fig.  15.24. Once A ,p  
ω ,p  A ,s  and ω s  are specified, the order of the Butterworth filter can be 
determined.

For the Butterworth filter,

ω
ω( )=

+
= − +A 20  log 1

1
10 log 1 ,p

p
n p

n
10 2 10

2

ω
ω( )=

+
= − +A 20  log 1

1
10 log 1 .s

s
n s

n
10 2 10

2

It follows from the definition of the logarithm that

ω= +−10 1 ,A
p

n0.1 2p

ω= +−10 1 .A
s

n0.1 2s

Now, solve for ω p
n and ω s

n and find the ratio ω ω( ) .s p
n We get

ω
ω

σ
σ









 = −

−
=

−

−

10 1

10 1
 ,s

p

n
A

A

s

p

0.1

0.1

s

p

where the symbols σ s  and σ p  have been introduced for convenience.
From the expression for σ σs p  we can write

ω ω σ σ( ) ( )=n  log log ,s p s p10 10

or

 n
log

log
 .s p

s p

10

10

σ σ
ω ω

( )
( )

=  (15.15)

We can simplify Eq. 15.15 if ω p is the cutoff frequency because then Ap 

equals −20  log 2,10  and σ = 1.p  Hence

σ
ω ω( )

=n
log

log
.s

s p

10

10

One further simplification is possible. We are using a Butterworth fil-
ter to achieve a steep transition region. Therefore, the filtering specifica-
tion will make �−10 1.A0.1 s  Thus

σ ≈ −10 ,s
A0.05 s

σ ≈ − Alog 0.05 .s s10

Therefore, a good approximation for the calculation of n is

 n
A0.05

log
.s

s p10 ω ω( )
=

−
 (15.16)
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Note that ω ω = f fs p s p, so we can work with frequencies specified in 
 either radians per second or hertz to calculate n.

The order of the filter must be an integer; hence, in using either 
Eq. 15.15 or Eq. 15.16, we select the nearest integer value greater than the 
result given by the equation. Examples 15.10 and 15.11 illustrate the use 
of Eqs. 15.15 and 15.16.

EXAMPLE 15.10        Determining the Order of a Butterworth Filter

a) Determine the order of a Butterworth filter that 
has a cutoff frequency of 1000 Hz and a gain of 
no more than −50 dB  at 6000 Hz.

b) What is the actual gain in dB at 6000 Hz?

Solution

a) Because the cutoff frequency is specified, we 
know σ = 1.p  We also note from the specifi-
cation that ( )− −10 0.1 50  is much greater than 1. 
Hence, we can use Eq. 15.16 with confidence:

n
0.05 50

log 6000 1000
3.21.

10 ( )

( ) ( )
=

− −
=

Therefore, we need a fourth-order Butterworth 
filter.

b) We can use Eq. 15.12 to calculate the actual gain 
at 6000 Hz. The gain in decibels will be

 K 20 log 1
1 6

62.25 dB.10 8( )=
+

= −

EXAMPLE 15.11    An Alternate Approach to Determining the Order of a 
Butterworth Filter

a) Determine the order of a Butterworth filter 
whose magnitude is 10 dB less than the passband 
magnitude at 500 Hz and at least 60 dB less than 
the passband magnitude at 5000 Hz.

b) Determine the cutoff frequency of the filter (in 
hertz).

c) What is the actual gain of the filter (in decibels) 
at 5000 Hz?

Solution

a) Because the cutoff frequency is not given, we use 
Eq. 15.15 to determine the order of the filter:

σ = − =( )− −10 1 3,p
0.1 10

σ = − ≈( )− −10 1 1000,s
0.1 60

ω ω = = =f f 5000 500 10,s p s p

( )
= =n

log 1000 3
log (10)

2.52.10

10

Therefore, we need a third-order Butterworth fil-
ter to meet the specifications.

b) Knowing that the gain at 500 Hz is −10 dB,  
we can determine the cutoff frequency. From 
Eq. 15.12 we can write

10 log 1 10,c10
6ω ω[ ]( )− + = −

where ω π= 1000   rad s. Therefore

ω ω( )+ =1 10,c
6

and

ω ω=
9c 6

= 2178.26  rad s.

It follows that

=f 346.68 Hz.c

c) The actual gain of the filter at 5000 Hz is

[ ]( )= − +K 10  log 1 5000 346.6810
6

= −69.54 dB.
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Figure 15.25 ▲ A second-order Butterworth high-
pass filter circuit.

Butterworth High-Pass, Bandpass, and Bandreject 
Filters
An nth-order Butterworth high-pass filter has a transfer function with 
the nth-order Butterworth polynomial in the denominator, just like the 
nth- order Butterworth low-pass filter. But in the high-pass filter, the 
numerator of the transfer function is s ,n  whereas in the low-pass filter, 
the numerator is 1. Again, we use a cascade approach in designing the 
Butterworth high-pass filter. The first-order factor is achieved by includ-
ing a prototype high-pass filter (Fig.  15.4, with R R 1  ,1 2= = Ω  and 

=C 1 F) in the cascade.
To produce the second-order factors in the Butterworth polynomial, 

we need a circuit with a transfer function of the form

=
+ +

H s s
s b s

( )
1

.
2

2
1

Such a circuit is shown in Fig. 15.25.
This circuit has the transfer function

H s
V
V

s

s
R C

s
R R C

( )
2   1

.o

i

2

2

2 1 2
2

= =
+ +

Setting =C 1 F yields

 H s s

s
R

s
R R

( )
2   1

.
2

2

2 1 2

=
+ +

 (15.17)

Thus, we can realize any second-order factor in a Butterworth polynomial 
of the form ( )+ +s b s 12

1  by including in the cascade the second-order 
circuit in Fig. 15.25 with resistor values that satisfy Eq. 15.18:

 b
R R R
2   and 1 1 .1

2 1 2

= =  (15.18)

At this point, we pause to make a couple of observations about the 
circuits in Figs.  15.21 and 15.25 and their prototype transfer functions 

( )+ +s b s1 12
1  and ( )+ +s s b s 1 .2 2

1

• The high-pass circuit in Fig.  15.25 was obtained from the low-pass 
circuit in Fig. 15.21 by interchanging resistors and capacitors.

• The prototype transfer function of a high-pass filter can be obtained 
from that of a low-pass filter by replacing s in the low-pass expression 
with s1  (see Problem 15.41).

These observations are important because they are true in general.
We can use frequency and magnitude scaling to design a Butterworth 

high-pass filter with practical component values and a cutoff frequency 
other than 1  rad s. Adding an inverting amplifier to the cascade will 
accommodate designs with nonunity passband gains. The problems at the 
end of the chapter include several Butterworth high-pass filter designs.

Now that we can design both nth-order low-pass and high-pass 
Butterworth filters with arbitrary cutoff frequencies and passband gains, 
we can combine these filters in cascade (as we did in Section 15.3) to pro-
duce nth-order Butterworth bandpass filters. We can combine these filters 
in parallel with a summing amplifier (again, as we did in Section 15.3) to 
produce nth-order Butterworth bandreject filters. Example 15.12 illus-
trates the design of a Butterworth bandpass filter.
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EXAMPLE 15.12    Designing a Butterworth Bandpass Filter

Design the bandpass filter from Example 15.5 using 
a cascade of a fourth-order low-pass Butterworth 
filter, a fourth-order high-pass Butterworth filter, 
and an inverting amplifier. The filter should provide 
an amplification of 2 within the band of frequencies 
between 100 and 10,000 Hz and use as many Ω2 k   
resistors and 0.2  Fμ  capacitors as possible.

Solution
The circuit is shown in Fig.  15.26. The first two 
stages in the cascade form the fourth-order low-
pass Butterworth filter, which should have a cutoff 
frequency of 10,000 Hz. We have already designed 
the prototype fourth-order low-pass Butterworth 
filter in Example 15.9, so R 1 = Ω  and

= =
= =

C C

C C

2.61 F, 0.38 F,

1.08 F, 0.924 F.
1a 2a

1b 2b

This prototype low-pass filter has a cutoff fre-
quency of 1 rad/s, so to move the cutoff frequency 
to 10,000 Hz we need a frequency scale factor 
k 20,000 .f π=  To use Ω2 k   resistors, we need to 
scale the Ω1    resistors using a magnitude scale fac-
tor =k 2000.m  The scaled capacitor values are

= =
= =

C C

C C

20.77 nF, 3.02 nF, 

8.59 nF, 7.35 nF.
1a 2a

1b 2b

The next two stages in the cascade form the 
fourth-order high-pass Butterworth filter, which 

should have a cutoff frequency of 100 Hz. To design 
the prototype filter, let =C 1 F. The first stage of 
the prototype high-pass filter must have a transfer 
function whose denominator is the Butterworth 
polynomial + +s s( 0.765 1).2  From Eq. 15.18,

R R
R

2
0.765

2.61  , 1 1
2.61

0.38  .2a 1a
2a

= = Ω = = = Ω

The second stage of the prototype high-pass filter 
must have a transfer function whose denominator 
is the Butterworth polynomial + +s s( 1.848 1).2  
From Eq. 15.18,

R R
R

2
1.848

1.08  , 1 1
1.08

0.924  .2b 1b
2b

= = Ω = = = Ω

This prototype high-pass filter has a cutoff fre-
quency of 1 rad/s, so to move the cutoff frequency 
to 100 Hz, we need a frequency scale factor 

π=k 200 .f  To use 0.2  Fμ  capacitors, we need a 
magnitude scale factor =k 7957.747.m  The scaled 
resistor values are

= Ω = Ω

= Ω = Ω

R R

R R

3023.94  , 20, 769.72  ,  

7352.96  , 8594.37  .

1a 2a

1b 2b

The final stage of the cascade in Fig.  15.26 is the 
inverting amplifier, which must have a gain of 2. 
Let’s use R 2 k ,= Ω  so R R2 4 k .f = = Ω

R R

C1a

C2a

RR

C1b

C2bvi
1

2

2

1

2

1

C
R1a

R2a

C
R

Rf

C
R1b

R2b

1

2

vo

2

1

2

1

2

1

C

Figure 15.26 ▲ The fourth-order Butterworth bandpass filter for Example 15.12.
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Figure 15.27 ▲ An active high-Q bandpass filter.

 15.5  Narrowband Bandpass  
and Bandreject Filters

We can only implement broadband or low-Q bandpass and bandreject fil-
ters when using the cascade and parallel subcircuit designs from the previous 
sections. This limitation is due principally to the form of the transfer func-
tions for cascaded bandpass and parallel bandreject filters—they only have 
discrete real poles. The largest quality factor we can achieve with discrete 
real poles arises when the cutoff frequencies, and thus the pole locations, 
are the same. As an example, consider the transfer function for a bandpass 
filter created from a cascade of a first-order low-pass filter and a first-order 
high-pass filter, where both filters have the same cutoff frequency:

H s
s

s
s

( ) c

c c

ω
ω ω

=
−
+









−
+









ω
ω ω

=
+ +

s
s s2

c

c c
2 2

β
β ω

=
+ +

s
s s

0.5 .
c

2 2

This equation is in the standard form of the transfer function of a bandpass fil-
ter, and thus we can determine the bandwidth and center frequency directly:

β ω= 2 ,c

ω ω= .o c
2 2

From the equations for bandwidth and center frequency and the defini-
tion of Q, we see that

ω
β

ω
ω

= = =Q
2

1
2

 .o c

c

Thus, with discrete real poles, the highest quality bandpass filter (or  
bandreject filter) we can achieve has =Q 1 2.

To build active filters with high quality factor values, we need an 
op amp circuit whose transfer function has complex conjugate poles. 
Figure 15.27 depicts one such circuit for us to analyze. At the inverting 
input of the op amp, write a KCL equation to get

V
sC

V
R1

.oa

3

=
−

Objective 3—Understand how to use cascaded first- and second-order Butterworth filters

15.4 a) For the circuit in Fig. 15.21, find values of C1 
and C2  that yield a second-order prototype 
Butterworth filter with R = 1 Ω.

b) For the circuit Fig. 15.25, find values of R1  
and R2  that yield a second-order prototype 
Butterworth filter with C = 1 F.

Answer: a) C C1.41 F,  0.707 F1 2= = ;

b) R 0.707  ,1 = Ω  R 1.41  .2 = Ω

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter Problems 15.40, 15.47, and 15.49.
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Solving for V ,a

=
−

V
V

sR C
.o

a
3

At the node labeled Va, write a KCL equation to get

−
=

−
+ +

V V
R

V V
sC

V
sC

V
R1 1

.i oa

1

a a a

2

Solving for V ,i

= + + −V sR C R R V sR CV(1 2 ) .i o1 1 2 a 1

Substituting the equation for Va into the equation for Vi and then  
re arranging, we get an expression for the transfer function V Vo i:

 H s

s
R C

s
R C

s
R R C

( )
2   1

,1

2

3 eq 3
2

=

−

+ +
 (15.19)

where

= =
+

R R R
R R

R R
.eq 1 2

1 2

1 2

Equation 15.19 is in the standard form for a bandpass filter transfer 
function; that is,

H s K s
s s

( ) ,
o

2 2

β
β ω

= −
+ +

so we can equate terms and solve for the values of the resistors that will 
achieve a specified center frequency ω( )o , quality factor (Q), and pass-
band gain (K):

β =
R C

2 ;
3

β =K
R C

1 ;
1

ω =
R R C

1 .o
2

eq 3
2

Let’s define the prototype version of the circuit in Fig.  15.27 as a 
bandpass filter with ω = 1  rad so  and =C 1 F. Then the expressions for 
R ,1  R ,2  and R3  can be given in terms of the desired quality factor and 
passband gain. You should verify (in Problem 15.61) that for the proto-
type circuit, the expressions for R ,1  R ,2  and R3  are

=R Q K ,1

 R Q Q K2 ,2
2( )= −  (15.20)

=R Q2 .3

Use scaling to achieve the desired center frequency and to specify practi-
cal values for the circuit components. This design process is illustrated in 
Example 15.13.
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Figure 15.28 ▲ The high-Q bandpass filter 
designed in Example 15.13.

EXAMPLE 15.13   Designing a High-Q Bandpass Filter

Design a bandpass filter, using the circuit in 
Fig. 15.27, that has a center frequency of 3000 Hz, 
a quality factor of 10, and a passband gain of 2. Use 
0.01  Fμ  capacitors in your design. Compute the 
transfer function of your circuit, and sketch a Bode 
plot of its magnitude response.

Solution
Since =Q 10  and =K 2, the values for R ,1  R ,2  
and R3  in the prototype circuit, from Eq. 15.20, are

R
Q
K

10
2

5  ,1 = = = Ω

=
−

=
−

= ΩR
Q

Q K2
10

200 2
10

198
,2 2

R Q2 2(10) 20  .3 = = = Ω

The scaling factors are π=k 6000f , to move 
the center frequency from 1 rad/s to 3000 Hz, and 

=k k10m f
8 , so we can use 0.01 Fμ  capacitors. 

After scaling,

R 26.5 k ,1 = Ω

R 268.0  ,2 = Ω

R 106.1 k .3 = Ω

The circuit is shown in Fig. 15.28.

Substituting the values of resistance and capac-
itance in Eq. 15.19 gives the transfer function for 
this circuit:

= −
+ + ×

H s s
s s

( ) 3770
1885.0 355 10

.
2 6

It is easy to see that this transfer function meets the 
specification of the bandpass filter defined in the 
example. A Bode plot of its magnitude response is 
sketched in Fig. 15.29.

The bandreject design that combines low-pass and high-pass filter 
components with a summing amplifier has the same low-Q restriction as 
the cascaded bandpass filter. The circuit in Fig. 15.30 is an active high-Q 
bandreject filter known as the twin-T notch filter because of the two 
T-shaped parts of the circuit at the nodes labeled a and b.

We begin analyzing this circuit by writing a KCL equation at the node 
labeled Va:

σ
− + − +

−
=V V sC V V sC

V V
R

( ) ( )
2( )

0i o
o

a a
a

240

235

230

225

220

215

210

25

0

5

10

100
f (Hz)

1000500 10,0005000   100,00050,000

6 dB (gain of 2)
ƒH

(j
f)

ƒ d
B

Figure 15.29 ▲ The Bode magnitude plot for the high-Q bandpass 
filter designed in Example 15.13.
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or

σ+ − + =V sCR V sCR sCRV[2 2] [ 2 ] .o ia

Writing a KCL equation at the node labeled Vb yields

σ
−

+
−

+ − =
V V

R
V V

R
V V sC( )2 0i o

o
b b

b

or

σ+ − + =V RCs V RCs V[2 2 ] [1 2 ] .o ib

Writing a KCL equation at the noninverting input terminal of the top 
op amp gives

− +
−

=V V sC
V V

R
( ) 0o

o
a

b

or

− − + + =sRCV V sRC V( 1) 0.oa b

From the three KCL equations, we can use Cramer’s rule to solve for Vo:

V

RCs sCRV

RCs V

RCs

RCs RCs

RCs RCs

RCs RCs

2( 1) 0

0 2( 1)

1 0

2( 1) 0 ( 2 )

0 2( 1) (2 1)

1 1

o

i

i

σ

σ

=

+

+

− −

+ − +

+ − +

− − +

σ
=

+
+ − +

R C s V
R C s RC s

( 1)
4 (1 ) 1

.i
2 2 2

2 2 2

Rearranging this equation for Vo, we can solve for the transfer function:

 σ

( )
= =

+

+
−

+







H s
V
V

s
R C

s
RC

s
R C

( )

1

4(1 ) 1
,o

i

2
2 2

2
2 2

 (15.21)
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Figure 15.30 ▲ A high-Q active bandreject filter.
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which is in the standard form for the transfer function of a bandreject 
filter:

ω
β ω

=
+

+ +
H s

s
s s

( ) .
2

0
2

2
0
2

Therefore,

R C
1 ,o

2
2 2

ω =

β
σ

=
−

RC
4(1 )

.

In this circuit, we have three parameters (R, C, and σ ) and two design 
constraints (ωo  and β ). Thus, one parameter is chosen arbitrarily; it is 
usually the capacitor value because it normally has the fewest commer-
cially available options. Once C is chosen,

 R
C

1 ,
oω

=
 (15.22)

σ β
ω

= − = −
Q

1
4

1 1
4

.
o

Example 15.14 illustrates the design of a high-Q active bandreject 
filter.

 EXAMPLE 15.14   Designing a High-Q Bandreject Filter

Design a high-Q active bandreject filter (based on 
the circuit in Fig. 15.30) with a center frequency of 
5000  rad s  and a bandwidth of 1000  rad s. Use 

μ1  F capacitors in your design.

Solution
In the bandreject prototype filter, ω = 1  rad s,o  

= ΩR 1  , and =C 1 F. Once ωo  and Q are deter-
mined from the filter specifications, C can be  
chosen arbitrarily, and R and σ  can be found from  
Eqs. 15.22. From the specifications, ω = 5000  rad so   
and =Q 5. Using Eqs. 15.22, we see that

ω ( )
= = = Ω

−
R

C
1 1

(5000) 10
200  ,

o
6

σ = − = − =
Q

1 1
4

1 1
4(5)

0.95.

Therefore, we need resistors with the values Ω200   
(R), Ω100   R( 2), Ω190   σR( ), and Ω10   R1 .σ( )[ ]−  

The final design is depicted in Fig.  15.31, and the 
Bode magnitude plot is shown in Fig. 15.32.
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Figure 15.31 ▲ The high-Q active bandreject filter designed in  
Example 15.14.
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Objective 4—Be able to use design equations to calculate component values for prototype narrowband 
bandpass and bandreject filters

15.5 Design an active bandpass filter based on the cir-
cuit in Fig. 15.27 with =Q 16, a passband gain of 
20 dB, and a center frequency of 6.4 kHz. Use 20 nF 
capacitors and specify the values of all resistors.

Answer: = ΩR 1.99 k ,1  = ΩR 39.63  ,2  
= ΩR 39.79 k .3

15.6 Design an active unity-gain bandreject filter based 
on the circuit in Fig. 15.30 with a center frequency 
of 1 kHz  and =Q 20.  Use 15 nF capacitors in 
your design and specify values of R and σ.

Answer: = ΩR 10,610  , σ = 0.9875.

ASSESSMENT PROBLEMS

SELF-CHECK: Also try Chapter Problems 15.62 and 15.64.

Practical Perspective
Bass Volume Control
We now look at an op amp circuit that can be used to control audio signal 
amplification in the bass range. Signals in the audio range have frequencies 
from 20 Hz to 20 kHz. The bass range includes frequencies up to 300 Hz.  
The volume control circuit and its frequency response are shown in 
Fig. 15.33. We can select a desired frequency response curve from the fam-
ily of curves in Fig. 15.33(b) by adjusting the potentiometer in Fig. 15.33(a).

Study the frequency response curves in Fig. 15.33(b) and note the 
following.

220

215

210

25

0

ƒH
(j
v

)ƒ 
dB

v (rad>s)

5

10

10,0005000   100,00050,0001000

Figure 15.32 ▲ The Bode magnitude plot for the high-Q active bandreject filter 
 designed in Example 15.14.
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Figure 15.33 ▲ (a) Bass volume control circuit;  
(b) Bass volume control circuit frequency response.

R1 R1R2

(l2a)R2

1>sC1

Vs

Vo

VbVa aR2

2

1

Figure 15.34 ▲ The s-domain circuit for the bass 
volume control.  ote that α  determines the potenti-
ometer setting, so 0 1α≤ ≤ .

•  The gain in dB can be either positive or negative. If the gain is posi-
tive, a signal in the bass range is amplified or boosted. If the gain is 
negative, the signal is attenuated or cut.

• It is possible to select a response curve that has unity gain (zero dB) 
for all frequencies in the bass range. As we shall see, if the potenti-
ometer is set at its midpoint, the circuit will have no effect on signals 
in the bass range.

• As the frequency increases, all frequency response curves approach 
zero dB or unity gain. Hence, the volume control circuit will have no effect 
on signals in the upper end, or treble range, of the audio frequencies.

We need to find the transfer function, V Vo s, for the circuit in 
Fig.  15.33(a) in order to analyze the circuit’s frequency response. To 
find the transfer function, we transform the circuit into the s domain as 
shown in Fig. 15.34. The node voltages Va and Vb  have been labeled in 
the circuit to support node-voltage analysis. The position of the potenti-
ometer is determined by the numerical value of α, as noted in Fig. 15.34.

To find the transfer function, we write the three KCL equations at the 
nodes labeled Va and Vb, and at the inverting input of the op amp:

α( )−
+

−
+ − =

V
R

V V
R

V V sC
1

( ) 0;sa

2

a

1
a b 1

α
+ − +

−
=

V
R

V V sC
V V

R
( ) 0;ob

2
b a 1

b

1

V
R

V
R1

0.a

2

b

2α α( )−
+ =

Solve the three node-voltage equations to find Vo as a function of Vs 
and hence the transfer function H s( ):

H s
V
V

R R R R C s
R R R R C s

( )
1

.o

s

1 2 1 2 1

1 2 1 2 1

α
α

( )
( )

= =
− + +

+ − +

It follows directly that

H j
R R j R R C

R R j R R C1
.1 2 1 2 1

1 2 1 2 1

ω
α ω
α ω

( )
( )

[ ]( )
=

− + +
+ − +

 ow let’s verify that this transfer function generates the family of fre-
quency response curves depicted in Fig. 15.33(b). First note that when 

0.5α =  the magnitude of H jω( ) is unity for all frequencies, that is,

H j
R R j R R C
R R j R R C

( )
0.5
0.5

1.1 2 1 2 1

1 2 1 2 1

ω
ω
ω

=
+ +
+ +

=

When 0ω = , we have

α
α( )

=
+

+ −
H j

R R
R R

( 0)
1

.1 2

1 2

Observe that ( )H j0  at 1α =  is the reciprocal of ( )H j0  at 0α = ; 
that is,

( )
( )

=
+

=α
α

=
=

H j
R R

R H j
0

1
0

.1
1 2

1 0
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In fact, this reciprocal relationship holds for all frequencies, not just ω = 0.  
For example, α = 0.4 and α = 0.6 are symmetric about α = 0.5 and

ω
ω

ω
( )

( )

( )
=

− + +
+ +α=H j

R R j R R C
R R j R R C

0.4
0.60.4

1 2 1 2 1

1 2 1 2 1

while

ω
ω

ω
( )

( )

( )
=

− + +
+ +α=H j

R R j R R C
R R j R R C

0.6
0.4

.0.6
1 2 1 2 1

1 2 1 2 1

Hence

ω
ω

( )
( )

=α
α

=
=

H j
H j

1 .0.4
0.6

The volume control circuit can either amplify or attenuate its input sig-
nal, depending on the value of α.

The numerical values of R1, R2, and C1 are based on two design 
specifications. The first specification is the passband amplification or 
attenuation in the bass range (as ω → 0). The second specification is 
the frequency at which this passband amplification or attenuation is 
changed by 3 dB. The component values that satisfy the specifications 
are calculated with α equal to either 1 or 0.

As we have already observed, the maximum gain will be 
( )+R R R1 2 1, and the maximum attenuation will be ( )+R R R1 1 2 . If 
we assume ( )+R R R 11 2 1 � , then the amplification (or attenuation) 
will differ by 3 dB from its maximum value when ω = R C1 2 1. This can 
be seen by noting that
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SELF-CHECK: Assess your understanding of this Practical Perspective 
by trying Chapter Problems 15.65 and 15.66.
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608 Active Filter Circuits

Summary
• Active filters consist of op amps, resistors, and capac-

itors. They can be configured as low-pass, high-pass, 
bandpass, and bandreject filters. They overcome many 
of the disadvantages associated with passive filters. (See 
page 572.)

• A prototype low-pass filter has component values of 
= = ΩR R 1 1 2  and =C 1 F , and it produces a unity 

passband gain and a cutoff frequency of 1  rad s.  The 
prototype high-pass filter has the same component 
values and also produces a unity passband gain and a  
cutoff frequency of 1 rad s. (See pages 575 and 576.)

• Magnitude scaling can be used to alter component val-
ues without changing the frequency response of a circuit. 
For a magnitude scale factor of km, the scaled (primed) 
values of resistance, capacitance, and inductance are

′ = ′ = ′ =R k R L k L C C k, , and .m m m

(See page 577.)

• Frequency scaling can be used to shift the frequency 
response of a circuit to another frequency region without 
changing the overall shape of the frequency response. For 
a frequency scale factor of k f , the scaled (primed) values 
of resistance, capacitance, and inductance are

′ = ′ = ′ =R R L L k C C k, , and .f f

(See page 578.)

• Components can be scaled in both magnitude and fre-
quency, with the scaled (primed) component values 
given by

( )′ = ′ = ′ =R k R L k k L C C k k, , and ( ).m m f m f

(See page 578.)

• The design of active low-pass and high-pass filters can 
begin with a prototype filter circuit. Scaling can then be 
applied to shift the frequency response to the desired 
cutoff frequency, using component values that are com-
mercially available. (See page 578.)

• An active broadband bandpass filter can be constructed 
using a cascade of a low-pass filter with the bandpass 
filter’s upper cutoff frequency, a high-pass filter with the 
bandpass filter’s lower cutoff frequency, and (optionally) 
an inverting amplifier gain stage to achieve nonunity 
gain in the passband. Bandpass filters implemented in 
this fashion must be broadband filters �ω ω( )c c2 1 , so 
that each op amp circuit in the cascade can be specified 
independently. (See page 579.)

•  An active broadband bandreject filter can be constructed 
using a parallel combination of a low-pass filter with the 
bandreject filter’s lower cutoff frequency and a  high-pass 
filter with the bandreject filter’s upper cutoff frequency. 
The outputs are then fed into a summing amplifier, which 
can produce nonunity gain in the passband.  Bandreject 
filters implemented in this way must be broadband filters 

�ω ω( )c c2 1 , so that the low-pass and high-pass filter 
circuits can be designed independently. (See page 585.)

• Higher-order active filters have multiple poles in their 
transfer functions, resulting in a sharper transition from 
the passband to the stopband and thus a more nearly 
ideal frequency response. (See page 588.)

• The transfer function of an nth-order Butterworth low-
pass filter with a cutoff frequency of 1  rad s can be 
determined from the equation

( )
( )

− =
+ −

H s H s
s

( ) 1
1 1 n n2

by

• finding the roots of the denominator polynomial

• assigning the left-half plane roots to H(s)

• writing the denominator of H(s) as a product of first-  
and second-order factors

(See pages 591–592.)

• The fundamental problem in the design of a Butterworth 
filter is to determine the order of the filter. The filter speci-
fication usually defines the sharpness of the transition band 
in terms of the quantities Ap, ω p, As, and ω s . From these 
quantities, we calculate the smallest integer larger than the 
solution to either Eq. 15.15 or Eq. 15.16. (See page 596.)

• A cascade of second-order low-pass op amp filters 
(Fig. 15.21) with 1 Ω resistors and capacitor values chosen 
to produce each factor in the Butterworth polynomial 
will produce an even-order Butterworth low-pass filter. 
Adding a prototype low-pass op amp filter will produce 
an odd-order Butterworth low-pass filter. (See page 593.)

• A cascade of second-order high-pass op amp filters 
(Fig.  15.25) with 1 F capacitors and resistor values cho-
sen to produce each factor in the Butterworth polynomial 
will produce an even-order Butterworth high-pass filter. 
Adding a prototype high-pass op amp filter will produce 
an odd-order Butterworth high-pass filter. (See page 598.)

• For both high- and low-pass Butterworth filters, fre-
quency and magnitude scaling can be used to shift the 
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cutoff frequency from 1  rad s and to include realistic 
component values in the design. Cascading an inverting 
amplifier will produce a nonunity passband gain. (See 
page 598.)

• Butterworth low-pass and high-pass filters can be cas-
caded to produce Butterworth bandpass filters of any 
order n. Butterworth low-pass and high-pass filters can 
be combined in parallel with a summing amplifier to 

produce a Butterworth bandreject filter of any order n. 
(See page 599.)

• If a high-Q, or narrowband, bandpass or bandreject filter  
is needed, the circuits shown in Figs. 15.27 and 15.30 can 
be used with the appropriate design equations. Typically, 
capacitor values are chosen from those commercially 
available, and the design equations are used to specify the  
resistor values. (See pages 600 and 603.)

Problems

Section 15.1

 15.1 Design an op amp-based low-pass filter with a cut-
off frequency of 500 Hz and a passband gain of 10 
using a 50 nF  capacitor.

a) Draw your circuit, labeling the component val-
ues and output voltage.

b) If the value of the feedback resistor in the fil-
ter is changed but the value of the resistor in the 
forward path is unchanged, what characteristic 
of the filter is changed?

 15.2 The low-pass filter designed in  Problem 15.1 has an 
input of ωt0.2 cos  V.

a) Suppose the power supplies are ±V .cc  What is 
the smallest value of Vcc that will still cause the 
op amp to operate in its linear region?

b) Find the output voltage when ω ω= .c

c) Find the output voltage when ω ω= 0.1 .c

d) Find the output voltage when ω ω= 10 .c

 15.3 a) Using the circuit in Fig. 15.1, design a low-pass 
filter with a passband gain of 10 dB and a cutoff 
frequency of 2.5 kHz. Assume a 2.5 nF capacitor 
is available.

b) Draw the circuit diagram and label all  components.

 15.4 a) Using only three components from Appendix H,  
design a low-pass filter with a cutoff fre-
quency and passband gain as close as possible 
to the specifications in Problem 15.3(a). Draw 
the  circuit diagram and label all component 
 values.

b) Calculate the percent error in this new fil-
ter’s cutoff frequency and passband gain when 
compared to the values that are specified in  
Problem 15.3(a).

DESIGN
PROBLEM

 15.5 a) Use the circuit in Fig. 15.4 to design a high-pass 
filter with a cutoff frequency of 40 kHz and a 
passband gain of 12 dB. Use a 680 pF capacitor 
in the design.

b) Draw the circuit diagram of the filter and label 
all the components.

 15.6 Using only three components from Appendix H, 
design a high-pass filter with a cutoff frequency and 
passband gain as close as possible to the specifica-
tions in Problem 15.5.

a) Draw the circuit diagram and label all compo-
nent values.

b) Calculate the percent error in this new filter’s 
cutoff frequency and passband gain when com-
pared to the values specified in Problem 15.5(a).

 15.7 Design an op amp-based high-pass filter with a  
cutoff frequency of 300 Hz and a passband gain of  
5 using a 100 nF capacitor.

a)  Draw your circuit, labeling the component val-
ues and the output voltage.

b) If the value of the feedback resistor in the filter  
is changed but the value of the resistor in the 
forward path is unchanged, what characteristic 
of the filter is changed?

 15.8 The input to the high-pass filter designed in 
Problem 15.7 is ωt150 cos  mV.

a) Suppose the power supplies are ± V .cc  What is 
the smallest value of Vcc that will still cause the 
op amp to operate in its linear region?

b) Find the output voltage when ω ω= .c

c) Find the output voltage when ω ω= 0.1 .c

d) Find the output voltage when ω ω= 10 .c

DESIGN
PROBLEM
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a) What is the scaled value of the inductor?

b) Find the frequency for which the impedance Zab 
is purely resistive for the scaled circuit.

c) How is the frequency you found in part  
(b) related to the frequency for which the imped-
ance Zab is purely resistive in the un-scaled 
circuit?

 15.13 Scale the inductor and capacitor in Fig. P9.66 so that 
the magnitude and the phase angle of the output 
current do not change when the input frequency is 
changed from 500 rad/s to 4000 rad/s.

a) What are the scaled values of the inductor and 
capacitor?

b) What is the steady-state value of the output current, 
io, when the input current is 125 cos 4000t mA?

  15.14 The circuit in Problem 10.6 is scaled in magnitude 
by a scale factor of 200.

a) How much real power does the source deliver to 
the scaled circuit?

b) How does the real power in part (a) compare 
with the real power delivered by the source in 
the unscaled circuit?

 15.15 The circuit in Problem 10.6 is scaled in frequency by 
a scale factor of 0.01.

a) If the source frequency is unscaled, how much 
real power does the source deliver to the scaled 
circuit?

b) If the source frequency is scaled by the same fre-
quency scale factor, how much real power does 
the source deliver to the scaled circuit?

c) How does the real power in part (b) compare 
with the real power delivered by the source in 
the unscaled circuit?

 15.16 The circuit in Fig. P13.20 is scaled so that the 4 kΩ 
resistor is replaced by a 20 kΩ resistor and the 5 nF 
capacitor is replaced by a 100 pF capacitor.

a) What is the scaled value of L?

b) What is the expression for vo in the scaled circuit?

 15.17 Scale the circuit in Problem 13.45 so that the 5 kΩ  
resistor is decreased to 1 kΩ and the frequency of 
the voltage response is decreased by a factor of 50. 
Find vo(t).

 15.18 Scale the bandpass filter in Problem 14.30 so that 
the center frequency is 250 kHz and the quality  
factor is 7 .5, using a 10 nF capacitor. Determine the  
values of the resistor and the inductor, and the two 
cutoff frequencies of the scaled filter.

 15.19 Scale the bandreject filter in Problem 14.36 to get 
a center frequency of 500 krad/s, using a μ50  H 
inductor. Determine the values of the resistor, the 
capacitor, and the bandwidth of the scaled filter.

 15.9 Find the transfer function V Vo i  for the circuit 
shown in Fig. P15.9 if Zf is the equivalent imped-
ance of the feedback circuit, Zi is the equivalent 
impedance of the input circuit, and the operational 
amplifier is ideal.

Vi Vo

1

2

1

2

Zi

Zf

2

1

Figure P15.9

 15.10 a) Use the results of Problem 15.9 to find the trans-
fer function of the circuit shown in Fig. P15.10.

b) What is the gain of the circuit as ω → 0?

c) What is the gain of the circuit as ω → ∞?

d) Do your answers to (b) and (c) make sense in 
terms of known circuit behavior?

vi
vo

1

2

1

2

R1

C1

R2

C2

2

1

Figure P15.10

vi
vo

1

2

1

2

R1
C1

R2

C2

2

1

Figure P15.11

 15.11 Repeat Problem 15.10, using the circuit shown in 
Fig. P15.11.

Section 15.2

 15.12 The circuit in Fig. P9.31 is scaled so that the Ω4 k  
resistor is replaced by a Ω500   resistor and the 
625 nF capacitor is replaced by a 1 μF capacitor.
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Show that if either circuit is scaled in both magni-
tude and frequency, the scaled transfer function is

′ =
+

H s
s k

( ) 1
( ) 1

.
f

 15.20 a) Show that if the low-pass filter circuit illustrated 
in Fig. 15.1 is scaled in both magnitude and fre-
quency, the transfer function of the scaled circuit 
is the same as Eq. 15.1 with s replaced by s k f , 
where kf is the frequency scale factor.

b) In the prototype version of the low-pass filter 
circuit in Fig.  15.1, ω = 1  rad sc , =C 1 F,  

= ΩR 1 2 , and =R K1  ohms1 . What is the 
transfer function of the prototype circuit?

c) Using the result obtained in (a), derive the trans-
fer function of the scaled filter.

 15.21 a) Show that if the high-pass filter illustrated in 
Fig. 15.4 is scaled in both magnitude and frequency, 
the transfer function is the same as Eq. 15.4 with s 
replaced by s k f , where kf is the frequency scale 
factor.

b) In the prototype version of the high-pass filter 
circuit in Fig.  15.4, ω = 1  rad sc , = ΩR 1 1 , 

=C 1 F, and =R K  ohms2 . What is the trans-
fer function of the prototype circuit?

c)  Using the result in (a), derive the transfer func-
tion of the scaled filter.

 15.22 The voltage transfer function for either high-pass 
prototype filter shown in Fig. P15.22 is

=
+

H s s
s

( )
1

.

Show that if either circuit is scaled in both magni-
tude and frequency, the scaled transfer function is

′ =
+

H s
s k

s k
( )

( )

( ) 1
.f

f

C 5 1 F

L 5 1 H

R 5 1 V

1

2

vo

1

2

vi

1

2

vo

1

2

vi

R 5 1 V

(a)

(b)

Figure P15.22

(a)

R 5 1 V

(b)

L 5 1 H

1

2

vo

1

2

vi

1

2

vo

1

2

vi

C 5 1 F

R 5 1 V

Figure P15.23

L 5 1 H

1

2

vo

1

2

vi

C 5 1 F

R 5  1
Q  V

Figure P15.24

 15.24 The voltage transfer function of the prototype 
bandpass filter shown in Fig. P15.24 is

=









+






 +

H s
Q

s

s
Q

s
( )

1

1 1
.

2

Show that if the circuit is scaled in both magnitude 
and frequency, the scaled transfer function is

′ =


























 +
















 +

H s
Q

s
k

s
k Q

s
k

( ) 

1

1 1

.f

f f

2

 15.23 The voltage transfer function of either low-pass 
prototype filter shown in Fig. P15.23 is

=
+

H s
s

( ) 1
1

.

 15.25 a) Specify the component values for the prototype  
passive bandpass filter described in Problem 15.24  
if the quality factor of the filter is 25.

b) Specify the component values for the scaled 
bandpass filter described in Problem 15.24 if 
the quality factor is 25; the center, or resonant, 
frequency is 100  krad s;  and the impedance at 
 resonance is Ω3.6 k .
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 15.29 The transfer function for the bandreject filter shown 
in Fig. 14.28(a) is

( )
( )( )

=
+

+ +
H s

s
LC

s R
L

s
LC

( )

1

1
.

2

2

Show that if the circuit is scaled in both magni-
tude and frequency, the transfer function of the 
scaled circuit is equal to the transfer function of the 
unscaled circuit with s replaced by s k( ),f  where kf 
is the frequency scale factor.

 15.30 Show that the observation made in Problem 15.29 
with respect to the transfer function for the circuit 
in Fig. 14.28(a) also applies to the bandreject filter 
circuit (lower one) in Fig. 14.31.

 15.31 The two prototype versions of the passive bandreject  
filter shown in Fig. 14.31 (lower circuit) are shown 
in Fig. P15.31(a) and (b).

Show that the transfer function for either version is

= +

+






 +

H s s

s
Q

s
( ) 1

1 1
.

2

2

Q V

1 H

1 F

(a) (b)

1

2

vo

1

2

vi 1 V

Q F
1

2

vo

1

2

vi

 H1
Q

Figure P15.31

(b)

1 V

1

2

vo

1

2

vi

(a)

1 H

1 F

Q H
1

2

vo

1

2

vi

 V 1
Q

F1
Q

Figure P15.28

c) Draw a circuit diagram of the scaled filter and 
label all the components.

 15.26 An alternative to the prototype bandpass filter 
 illustrated in Fig. P15.24 is to make ω = 1  rad s,o  

= ΩR 1  , and =L Q  henrys.

a) What is the value of C in the prototype filter 
 circuit?

b) What is the transfer function of the prototype filter?

c) Use the alternative prototype circuit just 
described to design a passive bandpass filter 
that has a quality factor of 20, a center frequency 
of 50  krad s,  and an impedance of Ω5 k   at 
resonance.

d) Draw a diagram of the scaled filter and label all 
the components.

e) Use the results obtained in Problem 15.24 to 
write the transfer function of the scaled  circuit.

 15.27 The passive bandpass filter illustrated in Fig. 14.22 
has two prototype circuits. In the first prototype 
circuit, ω = 1  rad s,o  =C 1 F,  =L 1 H,  and 

=R Q ohms. In the second prototype circuit, 
ω = 1  rad s,o  = ΩR 1  , =C Q  farads, and 

=L Q(1 ) henrys.

a) Use one of these prototype circuits (your 
choice) to design a passive bandpass filter that 
has a quality factor of 16 and a center frequency 
of 80  krad s.  The resistor R is Ω80 k .

b) Draw a circuit diagram of the scaled filter and 
label all components.

Section 15.3

 15.28 The passive bandreject filter illustrated in 
Fig. 14.28(a) has the two prototype circuits shown in 
Fig. P15.28.

a) Show that for both circuits, the transfer function is

= +

+






 +

H s s

s
Q

s
( ) 1

1 1
.

2

2

b) Write the transfer function for a bandreject filter 
that has a center frequency of 50  krad s  and a 
quality factor of 5.

DESIGN
PROBLEM

 15.32 Design a bandpass filter, using a cascade connec-
tion, to give a center frequency of 50 krad/s, a  
bandwidth of 300 krad/s, and a passband gain of 1. 
Use 150 nF capacitors. Specify fc1, fc2, RL, and RH.

 15.33 a)  Using 20 nF capacitors, design an active first- 
order bandpass filter that has a lower cutoff 
 frequency of 2000 Hz, an upper cutoff frequency 
of 8000 Hz, and a passband gain of 10 dB. Use 
prototype versions of the low-pass and high-pass 
filters in the design process (see Problems 15.20  
and 15.21).

b) Write the transfer function for the scaled filter.

c) Use the transfer function derived in part (b) to 
find ωH j( )o , where ωo  is the center frequency 
of the filter.

d) What is the passband gain (in decibels) of the 
filter at ωo?

e) Using a computer program of your choice, make 
a Bode magnitude plot of the filter.

PSPICE
MULTISIM

DESIGN
PROBLEM
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 15.38 Verify the entries in Table 15.1 for =n 5 and =n 6.

 15.39 The purpose of this problem is to illustrate the 
 advantage of an nth-order low-pass Butterworth fil-
ter over the cascade of n identical low-pass sections 
by calculating the slope (in decibels per decade) of 
each magnitude plot at the cutoff frequency ωc. To 
facilitate the calculation, let y represent the magni-
tude of the plot (in decibels), and let ω=x log10 . 
Then calculate dy dx  at ωc  for each plot.

a) Show that at the cutoff frequency ω =( 1 rad s)c  
of an nth-order low-pass prototype Butterworth 
filter,

= −
dy
dx

n10   dB dec .

b) Show that for a cascade of n identical low-pass 
prototype sections, the slope at ωc  is

=
− −dy

dx
n20 (2 1)

2
  dB dec .

n

n

1

1

c) Compute dy dx  for each type of filter for 
=n 1,  2,  3,  4 , and ∞ .

d) Discuss the significance of the results obtained 
in part (c).
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Figure P15.37 15.34 Design a parallel bandreject filter with a center 
frequency of 5 kHz, a bandwidth of 30 kHz, and a  
passband gain of 4. Use 250 nF capacitors, and 
specify all  resistor values.

 Section 15.4

 15.35 a) Using 5 nF capacitors, design an active broad-
band first-order bandreject filter with a lower 
cutoff frequency of 1000 Hz, an upper cutoff fre-
quency of 5000 Hz, and a passband gain of 10 dB. 
Use the prototype filter circuits introduced in  
Problems 15.20 and 15.21 in the design process.

b) Draw the circuit diagram of the filter and label 
all of the components.

c) What is the transfer function of the scaled filter?

d) Evaluate the transfer function derived in (c) at 
the center frequency of the filter.

e) What is the gain (in decibels) at the center 
 frequency?

f) Using a computer program of your choice, make a 
Bode magnitude plot of the filter transfer function.

 15.36 Show that the circuit in Fig. P15.36 behaves as a 
bandpass filter. (Hint: Find the transfer function for 
this circuit and show that it has the same form as 
the transfer function for a bandpass filter. Use the 
result from Problem 15.3.)

a) Find the center frequency, bandwidth, and gain 
for this bandpass filter.

b) Find the cutoff frequencies and the quality fac-
tor for this bandpass filter.

PSPICE
MULTISIM

DESIGN
PROBLEM

 15.37 For circuits consisting of resistors, capacitors, induc-
tors, and op amps,  ωH j( ) 2 involves only even 
powers of ω. To illustrate this, compute ωH j( ) 2 for 
the three circuits in Fig. P15.37 when

=H s
V
V

( ) .o

i
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614 Active Filter Circuits

 15.47 a) Write the transfer function for the prototype 
Butterworth filter using the filter order calcu-
lated in Problem 15.40(a).

b) Use the filter specifications in Problem 15.40(a) 
to calculate the frequency scale factor, then use 
it to scale the transfer function in (a). (Hint: See 
Problem 15.46.)

c)  Check the expression derived in part (b) by 
 using it to calculate the gain (in decibels) at 
4000 Hz. Compare your result with that found in 
Problem 15.40(b).

 15.48 a) Using Ω2 k  resistors and ideal op amps, design 
a circuit that will implement the low-pass 
Butterworth filter specified in Problem 15.40. 
The gain in the passband is one.

b) Construct the circuit diagram and label all com-
ponent values.

 15.49 The circuit in Fig. 15.25 has the transfer function

=
+ +

H s s

s
R C

s
R R C

( )
2   1

.
2

2

2 1 2
2

Show that if the circuit is scaled in both magnitude 
and frequency, the transfer function of the scaled 
circuit is

′ =



















 +









 +

H s

s
k

s
k R C

s
k R R C

( )
2   1

.f

f f

2

2

2 1 2
2

Hence the transfer function of a scaled circuit is 
 obtained from the transfer function of an unscaled 
circuit by simply replacing s in the unscaled transfer 
function by s k f , where kf is the frequency scaling 
factor.

 15.50 a) Design a broadband Butterworth bandpass fil-
ter with a lower cutoff frequency of 1000 Hz 
and an upper cutoff frequency of 8000 Hz. The  
passband gain of the filter is 10 dB. The gain 
should be down at least 20 dB at 400 Hz and 
20  kHz. Use 50 nF capacitors in the high-pass 
circuit and Ω5 k  resistors in the low-pass circuit.

b) Draw a circuit diagram of the filter and label all 
the components.

 15.51 a) Derive the transfer function for the filter 
designed in Problem 15.50.

b) Using the expression derived in (a), find the gain 
(in decibels) at 400 Hz and 5000 Hz.

c) Do the values obtained in part (b) satisfy the fil-
tering specifications given in Problem 15.50?

DESIGN
PROBLEM

DESIGN
PROBLEM

 15.40 a) Determine the order of a low-pass Butterworth 
filter that has a cutoff frequency of 1 kHz and a 
gain of at least −40 dB at 4000 Hz.

b) What is the actual gain, in decibels, at 4000 Hz?

 15.41 Derive the prototype transfer function for a fifth- 
order high-pass Butterworth filter by first writing 
the transfer function for a fifth-order prototype 
low-pass Butterworth filter and then replacing s by 

s1  in the low-pass expression.

 15.42 The fifth-order high-pass Butterworth filter in 
Problem 15.41 is used in a system where the cutoff 
frequency is 10 krad/s.

a) What is the scaled transfer function for the  filter?

b) Test your expression by finding the gain (in deci-
bels) at the cutoff frequency.

 15.43 a) Using Ω3 k  resistors and ideal op amps, design a 
low-pass unity-gain Butterworth filter that has a 
cutoff frequency of 20 kHz and is down at least 
25 dB at 100 kHz.

b) Draw a circuit diagram of the filter and label all 
the components.

 15.44 a) Using 25 nF capacitors and ideal op amps, design 
a high-pass unity-gain Butterworth filter with a 
cutoff frequency of 5 kHz and a gain of at least 
−25  dB at 1 kHz.

b) Draw a circuit diagram of the filter and label all 
component values.

 15.45 The low-pass filter designed in Problem 15.43 is  
cascaded with the high-pass filter designed in 
Problem 15.44.

a) Describe the type of filter formed by this 
 interconnection.

b) Specify the cutoff frequencies, the center fre-
quency, and the quality factor of the filter.

c) Derive the scaled transfer function of the filter.

d) Check the derivation of (c) by using it to calcu-
late ωH j( )o , where ωo  is the center frequency of 
the filter.

 15.46 The circuit in Fig. 15.21 has the transfer function

=
+ +

H s
R C C

s
RC

s
R C C

( )

1

2   1
.

2
1 2

2

1
2

1 2

Show that if the circuit in Fig. 15.21 is scaled in both 
magnitude and frequency, the transfer function of 
the scaled circuit is

′ =








 +









 +

H s
R C C

s
k RC

s
k R C C

( )

1

2   1 .
f f

2
1 2

2

1
2

1 2
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 15.52 The purpose of this problem is to guide you through 
the analysis necessary to establish a design procedure 
for determining the circuit components in a filter cir-
cuit. The circuit to be analyzed is shown in Fig. P15.52.

a) Analyze the circuit qualitatively and convince 
yourself that the circuit is a low-pass filter with a 
passband gain of R R2 1.

b) Support your qualitative analysis by deriving 
the transfer function V Vo i. (Hint: In deriv-
ing the transfer function, represent the resis-
tors with their equivalent conductances, that is ,  

=G R11 1, and so forth.) To make the trans-
fer function useful in terms of the entries in 
Table 15.1, put it in the form

=
−

+ +
H s

Kb
s b s b

( ) .o

o
2

1

c) Now observe that we have five circuit 
 components—R1, R2, R3, C1, and C2—and three 
transfer function constraints—K, b1, and bo. At 
first glance, it appears we have two free choices 
among the five components. However, when 
we investigate the relationships between the 
circuit components and the transfer function 
constraints, we see that if C2 is chosen, there 
is an upper limit on C1 in order for R2(G2) to 
be realizable. With this in mind, show that if 

=C 1 F,2  the three conductances are given by 
the expressions

=G KG ;1 2

=






G

b
G

C ;o
3

2
1

=
± − +

+
G

b b b K C
K

4 (1 )
2(1 )

.o
2

1 1
2

1

For G2 to be realizable,

≤
+

C
b

b K4 (1 )
.

o
1

1
2

d) Based on the results obtained in (c), outline the 
design procedure for selecting the circuit com-
ponents once K, bo, and b1 are known.

DESIGN
PROBLEM
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Figure P15.52

 15.53 Assume the circuit analyzed in Problem 15.52 is 
part of a third-order low-pass Butterworth filter 
having a passband gain of 8. (Hint: Implement the 
gain of 8 in the second-order section of the filter.)

a) If =C 1 F2  in the prototype second-order sec-
tion, what is the upper limit on C1?

b) If the limiting value of C1 is chosen, what are the 
prototype values of R1, R2, and R3?

c) If the cutoff frequency of the filter is 50 kHz and 
C2 is chosen to be 250 pF, calculate the scaled 
values of C1, R1, R2, and R3.

d) Specify the scaled values of the resistors and the 
capacitor in the first-order section of the filter.

e) Construct a circuit diagram of the filter and label 
all the component values on the diagram.

 15.54 Interchange the Rs and Cs in the circuit in 
Fig. P15.52; that is, replace R1 with C1, R2 with C2, 
R3 with C3, C1 with R1, and C2 with R2.

a) Describe the type of filter implemented as a 
 result of the interchange.

b) Confirm the filter type described in (a) by deriv-
ing the transfer function V V .o i  Write the trans-
fer function in a form that makes it compatible 
with Table 15.1.

c) Set = =C C 1 F2 3  and derive the expressions 
for C1, R1, and R2 in terms of K, b1, and bo. (See 
Problem 15.52 for the definition of b1 and bo.)

d) Assume the filter described in (a) is used in 
a third-order Butterworth filter that has a  
passband gain of 8. With = =C C 1 F,2 3  cal-
culate the prototype values of C1, R1, and R2 in 
the  second-order section of the filter.

 15.55 a) Use the circuits analyzed in Problems 15.52 and 
15.54 to implement a broadband bandreject 
filter having a passband gain of 20 dB, a lower 
cutoff frequency of 800 Hz, an  upper cutoff 
frequency of 7200 Hz, and an attenuation of at 
least 20 dB at both 1500 Hz and 13.5 kHz. Use 
50 nF capacitors whenever  possible.

b) Draw a circuit diagram of the filter and label all 
the components.

 15.56 a)  Derive the transfer function for the bandreject 
filter described in Problem 15.55.

b) Use the transfer function derived in part (a) to 
find the attenuation (in decibels) at the center 
frequency of the filter.

Section 15.5

 15.57 The purpose of this problem is to develop the 
design equations for the circuit in Fig. P15.57. (See  
Problem 15.52 for suggestions on the development 
of design equations.)

DESIGN
PROBLEM

DESIGN
PROBLEM

DESIGN
PROBLEM

DESIGN
PROBLEM
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616 Active Filter Circuits

a) Based on a qualitative analysis, describe the type 
of filter implemented by the circuit.

b) Verify the conclusion reached in (a) by deriving 
the transfer function V V .o i  Write the transfer 
function in a form that makes it compatible with 
the entries in Table 15.1.

c) How many free choices are there in the selection 
of the circuit components?

d) Derive the expressions for the conductances 
=G R11 1  and =G R11 2  in terms of C1, C2, 

and the coefficients bo and b1. (See Problem 15.52  
for the definition of bo and b1.)

e) Are there any restrictions on C1 or C2?

f) Assume the circuit in Fig. P15.57 is used to  design 
a fourth-order low-pass unity-gain Butterworth 
filter. Specify the prototype values of R1 and R2 
in each second-order section if 1 F capacitors are 
used in the prototype circuit.

1

2

vo

1

2

vi
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R2

C1

C2

2

1
2

1

Figure P15.57

e) Are there any restrictions on C1 and C2?

f) Assume the circuit is used in a third-order 
 Butterworth filter of the type found in (a). 
 Specify the prototype values of R1 and R2 
in the second-order section of the filter if 

= =C C 1 F.1 2

 15.60 a) The circuit in Problem 15.59 is used in a third- 
order high-pass unity-gain Butterworth filter 
that has a cutoff frequency of 40 kHz. Specify 
the values of R1 and R2 if 360 pF  capacitors are 
available to construct the filter.

b) Specify the values of resistance and capacitance 
in the first-order section of the filter.

c) Draw the circuit diagram and label all the 
components.

d) Give the numerical expression for the scaled 
transfer function of the filter.

e) Use the scaled transfer function derived in (d) to 
find the gain in dB at the cutoff frequency.

Sections 15.1–15.5

 15.61 Show that if ω = 1  rad so  and =C 1 F in the cir-
cuit in Fig. 15.27, the prototype values of R1, R2, and 
R3 are

=R Q
K

,1

=
−

R
Q

Q K2
,2 2

=R Q2 .3

 15.62 a) Use 1 μF capacitors in the circuit in Fig.  15.27 
to design a bandpass filter with a quality fac-
tor of 8, a center frequency of 1000 rad/s, and a  
passband gain of 5.

b) Draw the circuit diagram of the filter and label 
all the components.

 15.63 a) Show that the transfer function for a prototype 
narrowband bandreject filter is

= +
+ +

H s s
s Q s

( ) 1
(1 ) 1

.
2

2

b) Use the result found in (a) to find the transfer 
function of the filter designed in Example 15.14.

 15.64 a) Using the circuit shown in Fig.  15.30, design a 
narrowband bandreject filter having a center 
frequency of 1000 rad/s and a quality factor of 
4. Base the design on μ=C 2  F.

b) Draw the circuit diagram of the filter and label 
all component values on the diagram.

c) What is the scaled transfer function of the filter?

DESIGN
PROBLEM
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DESIGN
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 15.58 The fourth-order low-pass unity-gain Butterworth 
filter in Problem 15.57 is used in a system where 
the cutoff frequency is 25 kHz. The filter has 750 pF 
 capacitors.

a) Specify the numerical values of R1 and R2 in 
each section of the filter.

b) Draw a circuit diagram of the filter and label all 
the components.

 15.59 Interchange the Rs and Cs in the circuit in  
Fig. P15.57, that is, replace R1 with C1, R2 with C2, 
and vice versa.

a) Analyze the circuit qualitatively and predict the 
type of filter implemented by the circuit.

b) Verify the conclusion reached in (a) by deriving 
the transfer function V V .o i  Write the transfer 
function in a form that makes it compatible with 
the entries in Table 15.1.

c) How many free choices are there in the selection 
of the circuit components?

d) Find R1 and R2 as functions of bo, b1, C1, and C2.

DESIGN
PROBLEM

DESIGN
PROBLEM
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 15.69 A member of your design team says that the cir-
cuit shown in Fig. P15.69 could be used as a treble 
volume control circuit if + +�R R R R2 .4 1 3 2  
They’ve also derived the voltage transfer function 
and found

=H s
V
V

( ) o

s

β β
β β

{ }
{ }

=
− + + − + +

+ + − + +
R R R R R R C s

R R R R R R C s
(2 ) [(1 ) ]( )

(2 ) [(1 ) ]( )
o

o

3 4 4 4 3 2

3 4 4 3 4 2

,

where = + +R R R R2 .o 1 3 2
You decide to check the behavior of the transfer  

function as ω → 0; as ω → ∞; and the behavior when  
ω = ∞ and β  varies between 0 and 1. Based on 
your testing of the transfer function do you think 
the circuit could be used as a treble volume control? 
Explain.

PRACTICAL
PERSPECTIVE

 15.65 Using the circuit in Fig.  15.33(a) design a volume 
control circuit to give a maximum gain of 30 dB 
and a gain of 27 dB at a frequency of 50 Hz. Use 
a Ω3.3 k  resistor and a Ω100 k  potentiometer. 
Test your design by calculating the maximum gain 
at ω = 0 and the gain at ω = R C1 2 1 using the 
selected values of R1, R2, and C1.

 15.66 Use the circuit in Fig. 15.33(a) to design a bass vol-
ume control circuit that has a maximum gain of 
15.56 dB that drops off 3 dB at 60 Hz.

 15.67 Plot the maximum gain in decibels versus α when 
ω = 0 for the circuit designed in Problem 15.65. 
Let α vary from 0 to 1 in increments of 0.1.

 15.68 a) Show that the circuits in Fig. P15.68(a) and (b) 
are equivalent.

b)  Show that the points labeled x and y in 
Fig. P15.68(b) are always at the same potential.

c) Using the information in (a) and (b), show that 
the circuit in Fig. 15.34 can be drawn as shown in 
Fig. P15.68(c).

d) Show that the circuit in Fig. P15.68(c) is in the 
form of the circuit in Fig. 15.2, where

α
=

+ − +
+

Z
R R R R C s

R C s
(1 )

1
,i

1 2 1 2 1

2 1

α
=

+ +
+

Z
R R R R C s

R C s1
.f

1 2 1 2 1

2 1

PRACTICAL
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 15.70 In the circuit of Fig. P15.69 the component values are 
= = Ω = Ω = ΩR R R R15 k ,   1.5 k ,   470 k ,1 2 3 4  

and =C 4.7 nF.2

a) Calculate the maximum boost in decibels.

b) Calculate the maximum cut in decibels.

c) Is R4 significantly greater than Ro?

d) When β = 1, what is the boost in decibels when 
ω = R C1 ?3 2

e) When β = 0, what is the cut in decibels when 
ω = R C1 ?3 2

f) Based on the results obtained in (d) and (e), 
what is the significance of the frequency R C1 3 2  
when �R R ?o4

 15.71 Using the component values given in Problem 15.70,  
plot the maximum gain in decibels versus β  when 
ω  is infinite. Let β  vary from 0 to 1 in increments 
of 0.1.

PRACTICAL
PERSPECTIVE

PRACTICAL
PERSPECTIVE

PRACTICAL
PERSPECTIVE
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16 
CHAPTER 

Fourier Series
In this chapter, we find the steady-state response of circuits to 
periodic, nonsinusoidal, inputs. A periodic function repeats itself 
every T seconds, so T is the period of the function. For example, 
the function plotted in Fig. 16.1 on page 620 is a periodic wave-
form that is not a sinusoid.

A periodic function satisfies the relationship

 f t f t nT( ) ,( )= ±  (16.1)

where n is an integer 1,  2,  3,  ( )…  and T  is the period. The func-
tion shown in Fig. 16.1 is periodic because

f t f t T f t T f t T20 0 0 0 �( ) ( ) ( ) ( )= − = + = + =

for any arbitrarily chosen value of t .0
 Note that T is the smallest 

time interval that a periodic function may be shifted (either left 
or right) to produce a function that is identical to itself.

Why are we interested in the response of circuits to inputs 
that are periodic but not sinusoids? One reason is that many elec-
trical sources of practical value generate such waveforms. Here 
are a few examples.

•  A nonfiltered electronic rectifier driven from a sinusoidal 
source produces a rectified sine wave that is not sinusoidal 
but is periodic. Figures 16.2(a) and (b) on page 620 show 
the waveforms of the full-wave and half-wave sinusoidal 
rectifiers, respectively.

• The sweep generator used to control the electron beam of 
a cathode-ray oscilloscope produces a periodic triangular 
wave like the one shown in Fig. 16.3 on page 620.

• Function generators, which are used to test equipment in 
a laboratory, are designed to produce nonsinusoidal peri-
odic waveforms, including square waves, triangular waves, 
and rectangular waves. Figure 16.4 on page 620 illustrates 
 typical waveforms output by a function generator.

• A power generator is designed to produce a sinusoidal 
waveform but cannot produce a pure sine wave. Instead,  

16.1  Fourier Series Analysis: An Overview 
p. 621

16.2 The Fourier Coefficients p. 622

16.3  The Effect of Symmetry on the Fourier 
Coefficients p. 625

16.4  An Alternative Trigonometric Form of 
the Fourier Series p. 631

16.5 An Application p. 633

16.6  Average-Power Calculations with 
Periodic Functions p. 639

16.7  The rms Value of a Periodic Function 
p. 641

16.8  The Exponential Form of the Fourier 
Series p. 642

16.9 Amplitude and Phase Spectra p. 645

1  Be able to calculate the trigonometric form 
of the Fourier coefficients for a periodic 
waveform using the definition of the 
coefficients and the simplifications possible 
if the waveform exhibits one or more types 
of symmetry.

2 Know how to analyze a circuit’s response 
to a periodic waveform using Fourier 
coefficients and superposition.

3 Be able to estimate the average power 
delivered to a resistor using a small number 
of Fourier coefficients.

4 Be able to calculate the exponential form 
of the Fourier coefficients for a periodic 
waveform and use them to generate 
magnitude and phase spectrum plots for 
that waveform.

CHAPTER OBJECTIVES
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Practical Perspective 
Active High-Q Filters
An important characteristic of bandpass and bandre-
ject  filters is the quality factor, Q, as we discovered in 
Chapters 14 and 15. The quality factor provides a mea-
sure of how  selective the filter is at and near its center 
frequency. For example, an active bandpass filter with a 
large value of Q will  amplify signals at or near its center 
frequency and will attenuate signals at all other frequen-
cies. In contrast, a bandreject filter with a small value of 
Q will not effectively distinguish between signals at the 
center frequency and signals at frequencies quite differ-
ent from the center frequency.

We can test the quality factor of a bandpass or 
bandreject filter using a periodic signal. For example, 
to test the quality factor of a bandpass filter, input a 
square wave whose frequency is the same as the 

center frequency of the bandpass filter and analyze the 
output. In this chapter, we learn that any periodic sig-
nal can be represented as a sum of sinusoids. The fre-
quencies of the sinusoids include the frequency of the 
periodic signal and integer multiples of that frequency. 
So the input square wave, whose frequency is ω, con-
sists of a sum of sinusoids at the frequencies ω, 2ω, 3ω,  
and so on. If the bandpass  filter has a high quality  
factor, its output will be nearly sinusoidal because 
it filtered out all of the sinusoids that make up the 
square wave except the one at ω. If the filter has a low  
quality factor, its output will still look like a square wave 
because the filter passed many of the sinusoids that 
make up the input square wave to the output. We pres-
ent an example at the end of this chapter.

High-Q
bandpass

filter

The sum of sinusoids
whose frequencies are
integer multiples of the 
fundamental frequency

The sum is a square wave 
at the fundamental frequency

The center frequency of
the filter is the fundamental
frequency

The filter extracts the sinusoid
at the fundamental frequency 
from the square wave

1

5

1 1 1 ???
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T

v(t)

Vm

2T0
t

T

v(t)

Vm

T>20
t

(a) (b)

Figure 16.2 ▲ Output waveforms of a nonfiltered 
sinusoidal rectifier. (a) Full-wave rectification.  
(b) Half-wave rectification.

v(t)

Vm

T 2T 3T
t

0

Figure 16.3 ▲ The triangular waveform of a 
 cathode-ray oscilloscope sweep generator.

T 2T

v(t)

2Vm

Vm

0
t

(a)

T

v(t)

2Vm

Vm

0
t

(b)

t
T 2T

v(t)

Vm

0

(c)

Figure 16.4 ▲ Waveforms produced by function generators used in laboratory testing. (a) Square wave. (b) Triangular wave.  
(c) Rectangular pulse.

it produces a distorted sinusoidal wave that is still periodic. 
We can use the analysis techniques in this chapter to deter-
mine the consequences of a circuit with a slightly distorted 
sinusoidal voltage.

• Any nonlinearity in an otherwise linear circuit creates a  
nonsinusoidal periodic function. The rectifier circuit mentioned 
earlier is one example of this phenomenon. Magnetic saturation, 
which occurs in both machines and transformers, is another 
example of a nonlinearity that generates a nonsinusoidal peri-
odic function. An electronic clipping circuit, which uses transistor 
saturation, is yet another example.

Nonsinusoidal periodic functions are also important when ana-
lyzing nonelectrical systems. Problems involving mechanical vibra-
tion, fluid flow, and heat flow all make use of periodic functions. 
In fact, the study and analysis of heat flow in a metal rod led the 
French mathematician Jean Baptiste Joseph Fourier (1768–1830) 
to the trigonometric series representation of a periodic function. 
This series bears his name and is the starting point for finding the 
steady-state response of a circuit to a periodic input.

2T T 2T0t02T t01T t012Tt0 t

f(t)

A

B

Figure 16.1 ▲ A periodic waveform.
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 16.1 Fourier Series Analysis: An Overview  621

16.1  Fourier Series Analysis:  
An Overview

A periodic function can be represented by an infinite sum of sine and 
 cosine functions that are harmonically related, as Fourier discovered while 
investigating heat-flow problems. Specifically, the frequency of every trig-
onometric term in the infinite series is an integer multiple, or harmonic, 
of the fundamental frequency, 0ω , of the periodic function. Thus, if f(t) is 
periodic, Fourier showed that it can be expressed as

FOURIER SERIES REPRESENTATION OF  
A PERIODIC FUNCTION

 f t a a n t b n t( ) cos sin ,n
n

n0
1

0∑ ω ω= + +υ
=

∞

 (16.2)

where n is the integer sequence 1, 2, 3,  . . . .
In Eq. 16.2, av, a ,n  and bn are known as the Fourier coefficients and are 

calculated from f t( ). We discuss these calculations in Section 16.2. The term 
0ω  (which equals T2π ) represents the fundamental frequency of the peri-

odic function f t( ). The integer multiples of 0ω —that is, 2 ,0ω  3 ,0ω  4 ,0ω  and 
so on—are known as the harmonic frequencies of f t( ). Thus, 2 0ω  is the sec-
ond harmonic, 3 0ω  is the third harmonic, and n 0ω  is the nth harmonic of f t( ).

Before learning how to find a circuit’s response to a periodic input 
using a Fourier series representation of that input, we first look at the pro-
cess in general terms. We can express all the periodic functions of interest 
in circuit analysis using a Fourier series. But not every periodic function 
has a Fourier series representation. The conditions on a periodic function 
f t( )  that ensure it can be expressed as a convergent Fourier series (known 
as Dirichlet’s conditions) are as follows:

1. f t( )  is single-valued.

2. f t( )  has a finite number of discontinuities in the periodic interval.

3. f t( )  has a finite number of maxima and minima in the periodic 
 interval.

4. The integral

f t dt| ( )|
t

t T

0

0

∫
+

exists.

All periodic functions encountered in circuit analysis satisfy Dirichlet’s condi-
tions. These are sufficient, not necessary conditions. Thus, if f t( ) meets these 
requirements, we know that we can express it as a Fourier series. However, if 
f t( ) does not meet these requirements, we still may be able to express it as a 
Fourier series. The necessary conditions on f t( ) are not known.

After we have determined f t( )  and calculated the Fourier coefficients 
(a a,   ,nv  and bn), we replace the periodic source with a dc source a( )v  and 
sinusoidal sources, all connected in series. Each source represents a term 
in the Fourier series representation of the periodic input. Then, we use 
superposition to calculate the response to each source. The sum of the 
individual responses gives us the total steady-state response. The s  teady-
state response to each sinusoidal source is most easily found using the 
phasor methods of Chapter 9.

The procedure just outlined involves no new circuit analysis tech-
niques. It produces the Fourier series representation of the steady-state 
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622 Fourier Series

response; consequently, the functional form of the response is unknown. 
Furthermore, the output waveform is expressed as an infinite sum, so 
we can only estimate its shape by adding a sufficient number of its terms 
 together. While the Fourier series method for finding the steady-state 
 response of a circuit to a periodic input does have some drawbacks, 
it introduces a way of thinking about a problem that is as important as 
getting quantitative results. In fact, the conceptual picture is even more 
important, in some respects, than the quantitative one.

16.2 The Fourier Coefficients
Using the definition of a periodic function over its fundamental period, 
we determine the Fourier coefficients from the relationships

FOURIER COEFFICIENTS

a
T

f t dt1   ,
t

t T

0

0

∫ ( )=
+

v  (16.3)

∫ ω( )=
+

a
T

f t k t dt2   cos ,k
t

t T

0
0

0

 (16.4)

 ∫ ω( )=
+

b
T

f t k t dt2   sin .k
t

t T

0
0

0

 (16.5)

In Eqs. 16.4 and 16.5, the subscript k indicates the kth coefficient in the 
integer sequence 1, 2, 3,  . . . . Note that av  is the average value of f t a( ),   k  
is twice the average value of ωf t k t( )cos ,0  and bk  is twice the average 
value of ωf t k t( )sin .0

We derive Eqs. 16.3–16.5 from Eq. 16.2 by recalling the following 
integral relationships, which hold when m and n are integers:

m t dt msin    0, for all  , 
t

t T

0
0

0

∫ ω =
+

m t dt mcos    0, for all  , 
t

t T

0
0

0

∫ ω =
+

∫ ω ω =
+

m t n t dt m ncos sin   0, for all   and  , 
t

t T

0 0
0

0

∫ ω ω = ≠
+

m t n t dt m nsin sin   0, for all  ,  
t

t T

0 0
0

0

T m n
2

, for  ,= =

∫ ω ω = ≠
+

m t n t dt m ncos cos   0, for all  ,  
t

t T

0 0
0

0

T m n
2

, for  .= =
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v(t)

Vm

T 2T2T 0

Figure 16.5 ▲ The periodic voltage for Example 16.1.

We leave you to verify these equations in Problem 16.5.
To derive Eq. 16.3, integrate both sides of Eq. 16.2 over one period:

f t dt a a n t b n t dt  cos sin  
t

t T

n
n n

t

t T

1
0 0

0

0

0

0

v∫ ∑∫ ω ω( ) = + +










+

=

∞
+

a dt a n t b n t dt( cos sin ) 
t

t T

n
n n

t

t T

1
0 0

0

0

0

0

v∫ ∑ ∫ ω ω= + +
+

=

∞
+

a T 0.= +v

Solving for av  gives us Eq. 16.3.
To derive the expression for the kth value of a ,n  we first multiply 

Eq. 16.2 by ωk tcos 0  and then integrate both sides over one period of f t( ):

∫ ∫ω ω( ) =
+ +

vf t k t dt a k t dtcos   cos  
t

t T

t

t T

0 0
0

0

0

0

a n t k t b n t k t dt( cos cos sin cos ) 
n

n n
t

t T

1
0 0 0 0

0

0∑ ∫ ω ω ω ω+ +
=

∞
+

a T0
2

0.k ( )= + +

Solving for ak  yields the expression in Eq. 16.4.
We obtain the expression for the kth value of bn by first multiplying 

both sides of Eq. 16.2 by ωk tsin 0  and then integrating each side over 
one period of f t( ). You should complete the derivation of Eq. 16.5 in 
Problem 16.6. In Example 16.1 we use Eqs. 16.3–16.5 to find the Fourier 
coefficients for a specific periodic function.

EXAMPLE 16.1      Finding the Fourier Series of a Triangular Waveform

Find the Fourier series for the periodic voltage 
shown in Fig. 16.5.

Solution
To find av, a ,k  and bk using Eqs. 16.3–16.5, we must 
choose the starting time t .0  For the periodic voltage 
of Fig. 16.5, the best choice for t 0  is zero. Any other 
choice makes the required integrations more cum-
bersome. The expression for t( )v  between 0 and T is

t
V

T
t( ) .mv ( )=

The equation for av  is

a
T

V
T

t dt V1     1
2

.m
T

m
0

v ∫ ( )= =

This is clearly the average value of the waveform in 
Fig. 16.5.

The equation for the kth value of an is

∫ ω( )=a
T

V
T

t k t dt2   cos  k
m

T

0
0

V
T k

k t t
k

k t
2

  1 cos sinm
T

2 2
0
2 0

0
0

0ω
ω

ω
ω= +









V
T k

k k
2

  1  (cos 2 1) 0 for all  .m
2 2

0
2ω

π= −












=
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v(t) V

80

40

280

240
50250 1502150 250

t (ms)

Notice that we used the relationship between T and 
0ω , T 2 0π ω= , when evaluating the integral at its 

upper limit.
The equation for the kth value of bn is

∫ ω( )=b
T

V
T

t k t dt2     sin  k
m

T

0
0

ω
ω

ω
ω= −









V
T k

k t t
k

k t
2 1 sin cosm

T

2 2
0
2 0

0
0

0

ω
π= −









V
T

T
k

k
2

0 cos 2m
2

0

V
k

.m

π
=

−

The Fourier series for t( )v  is

�
π

ω
π

ω
π

ω= − − − −
V V

t
V

t
V

t
2

sin
2

sin 2
3

sin 3 .m m m m
0 0 0

t
V V

n
n t( )

2
    1 sinm m

n 1
0v ∑π

ω= −
=

∞

Objective 1—Be able to calculate the trigonometric form of the Fourier coefficients for a periodic waveform

16.1  Derive the expressions for av, a ,k  and bk  for the 
periodic voltage function shown.

Answer: a 0 V,=v

a
k

k k80 sin
2

V, odd,k π
π= −

a k0 V, even,k =

b
k

k240 V, odd,k π
=

b k0 V, evenk = .

16.2  Refer to Assessment Problem 16.1.
a) What is the average value of the periodic voltage?
b) Compute the numerical values of a bk kand  for 

k 1=  through 5.
c) What is the fundamental frequency in radians 

per second?
d) What is the frequency of the third harmonic in 

hertz?
e) Write the Fourier series up to and including the 

fifth harmonic.

Answer: a) 0 V;

b) − −25.465 V, 0, 8.488 V, 0, and 5.093 V;

76.394 V, 0, 25.465 V, 0, and 15.279 V;

c) 31.416 rad s;

d) 15Hz;

e) v t t

t

t

t

t

t

25.465cos31.416

76.394 sin 31.416

8.488 cos94.248

25.465sin 94.248

5.093cos157.08

15.279 sin157.08 V.

( ) = −
+

+
+

−
+

ASSESSMENT PROBLEMS

SELF-CHECK: Also try Chapter Problems 16.1, 16.3, and 16.4.

Finding the Fourier coefficients, in general, is tedious. Therefore, 
anything that simplifies the task is beneficial. Fortunately, when a periodic 
function possesses certain types of symmetry, we can find its Fourier coef-
ficients with fewer computations. In Section 16.3, we discuss how symme-
try affects the coefficients in a Fourier series.

M16_NILS8436_12_SE_C16.indd   624 11/01/22   12:21 PM



 16.3 The Effect of Symmetry on the Fourier Coefficients  625

16.3  The Effect of Symmetry  
on the Fourier Coefficients

Four types of symmetry make the task of evaluating the Fourier coeffi-
cients easier:

• even-function symmetry,
• odd-function symmetry,
• half-wave symmetry,
• quarter-wave symmetry.

The effect of each type of symmetry on the Fourier coefficients is dis-
cussed in the following sections.

Even-Function Symmetry
A function is defined as even if

EVEN FUNCTION

 f t f t( ) ( ).= −   (16.6)

Figure 16.6 illustrates an even periodic function. Functions that satisfy 
Eq. 16.6 are said to be even because polynomial functions with only even 
exponents possess this characteristic.

For even periodic functions, the equations for the Fourier coefficients 
reduce to

a
T

f t dt2   ,
T

0

2

∫ ( )=v  (16.7)

 ∫ ω( )=a
T

f t k t dt4 cos   ,k

T

0

2

0  (16.8)

b k0, for all  .k =  (16.9)

Note that all the b coefficients are zero if the periodic function is even. 
This means that the Fourier series representation of an even periodic 
function consists only of the constant term and cosine terms—there are no 
sine terms. This is not surprising because the cosine function is even, but 
the sine function is not.

The derivations of Eqs. 16.7–16.9 follow directly from Eqs. 16.3–16.5. 
In each derivation, we select t T 20 = −  and then break the interval of 
integration into the range from T 2−  to 0 and 0 to T 2.  For example,

a
T

f t dt1    
T

T

2

2

∫ ( )=
−

v

T
f t dt

T
f t dt1     1   .

T

T

2

0

0

2

∫ ∫( ) ( )= +
−

Now we change the variable of integration in the first integral on the 
right-hand side of the equation for av. We let t x= −  and note that 
f t f x f x( ) ( )( )= − =  because the function is even. Note that x T 2=  
when t T 2= −  and dt dx.= −  Then

f t dt f x dx f x dx   ( )   ,
T T

T

2

0

2

0

0

2

∫ ∫ ∫( ) ( ) ( )= − =
−

f(t)

0
t

2T T

Figure 16.6 ▲ An even periodic function, 
f t f t( ) ( )= − .
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2T 2T>2 T>2 T

f(t)

A

2A

0
t

Figure 16.7 ▲ An odd periodic function 
f t f t( ) ( )= − − .

which shows that the integral from T 2−  to 0 is identical to the integral 
from 0 to T 2. This completes the derivation of Eq. 16.7.

The derivation of Eq. 16.8 proceeds along similar lines. Here,

a
T

f t k t dt
T

f t k t dt2   cos   2 cos   ,k
T

T

2

0

0
0

2

0∫ ∫ω ω( ) ( )= +
−

but

∫ ∫ω ω( ) ( )= − −
−

f t k t dt f x k x dxcos   cos ( )( )
T T2

0

0
2

0

0

∫ ω= f x k x dx( )cos   .
T

0

2

0

As before, the integral from T 2−  to 0 is the same as the integral from 0 
to T 2.  Replacing the first integral in the equation for ak  with a copy of 
the second integral and simplifying yields Eq. 16.8.

All the b coefficients are zero when f t( )  is an even periodic function 
because the integral from T 2−  to 0 is the negative of the integral from 0 
to T 2;  that is,

∫ ∫ω ω= − −
−

f t k t dt f x k x dx( )sin   ( )sin ( )( )
T T2

0

0
2

0

0

∫ ω= − f x k x dx( )sin   .
T

0

2

0

When we use Eqs. 16.7 and 16.8 to find the Fourier coefficients, the inter-
val of integration must be between 0 and T 2.

 Odd-Function Symmetry
A function is defined as odd if

ODD FUNCTION

 f t f t( ) ( ).= − −  (16.10)

Functions that satisfy Eq. 16.10 are said to be odd because polynomial 
functions with only odd exponents have this characteristic. Figure 16.7 
shows an odd periodic function.

The expressions for the Fourier coefficients are

a 0;=v  (16.11)

a k0, for all  ;k =  (16.12)

 ∫ ω=b
T

f t k t dt4 ( )sin   .k

T

0

2

0  (16.13)

Note that all the a coefficients are zero if the periodic function is odd. This 
means that the Fourier series representation of an odd periodic function 
consists only of sine terms; there are no cosine terms. This is not surprising 
because the sine function is odd, but the cosine function is even. It also 
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(a)

2T T2T>2 T>20
t

A

2A

f(t)

(b)

2T T2T>2 T>20
t

A

2A

f(t)

(c)

2T T2T>2 T>20
t

A

2A

f(t)

Figure 16.8 ▲ Choosing where t 0=  can make a 
periodic function even, odd, or neither. (a) A peri-
odic triangular wave that is neither even nor odd. 
(b) The triangular wave of (a) made even by shifting 
the function along the t axis. (c) The triangular wave 
of (a) made odd by shifting the function along the t 
axis.

means that the average value of an odd function is always zero because 
the constant term, av, is always zero.

We use the same process to derive Eqs. 16.11–16.13 that we used to 
derive Eqs. 16.7–16.9. We leave the derivations to you in Problem 16.7.

If a periodic function has even or odd symmetry, the symmetry can 
be destroyed by shifting the function along the time axis. This also means 
that if a periodic function lacks even or odd symmetry, it may be possible 
to shift the function along the time axis to create this symmetry. For exam-
ple, the triangular function shown in Fig. 16.8(a) is neither even nor odd. 
However, we can make the function even by shifting it left, as shown in 
Fig. 16.8(b), or odd by shifting it right, as shown in Fig. 16.8(c).

Half-Wave Symmetry
A periodic function possesses half-wave symmetry if it satisfies the constraint

HALF-WAVE SYMMETRY

 f t f t T( ) 2 .( )= − −  (16.14)

Equation 16.14 states that a periodic function has half-wave symmetry if, 
after it is shifted one-half period and inverted, it is identical to the origi-
nal function. For example, the functions shown in Figs. 16.7 and 16.8 have 
half-wave symmetry, whereas those in Figs. 16.5 and 16.6 do not. Note that  
half-wave symmetry is not determined by where t 0= , as seen in Fig. 16.8.

If a periodic function has half-wave symmetry, both ak  and bk  are 
zero for even values of k. Moreover, av  also is zero because the average 
value of a function with half-wave symmetry is zero. The expressions for 
the Fourier coefficients are

a 0;=v  (16.15)

a k0, for   even;k =  (16.16)

a
T

f t k t dt k4 ( )cos   ,  for   odd;k

T

0

2

0∫ ω=

b k0, for   even;k =  (16.17)

b
T

f t k t dt k4 ( )sin   ,  for   odd.k

T

0

2

0∫ ω=

We derive Eqs. 16.15–16.17 by starting with Eqs. 16.3–16.5 and choos-
ing the interval of integration as T 2−  to T 2.  We then divide this range 
into the intervals T 2−  to 0 and 0 to T 2.  For example, the derivation for 
ak  is

a
T

f t k t dt2 ( )cos  k
t

t T

0
0

0

∫ ω=
+

∫ ω=
−T

f t k t dt2 ( )cos  
T

T

2

2

0

T
f t k t dt2 ( )cos  

T 2

0

0∫ ω=
−

T
f t k t dt2 ( )cos   .

T

0

2

0∫ ω+
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Now we change a variable in the first integral on the right-hand side of the 
equation for ak. Specifically, we let

t x T 2.= −

Then

x T t2, when  0;= =

x t T0,  when  2;= = −

dt dx.=

We rewrite the first integral as

∫ ∫ω ω( ) ( )= − −
−

f t k t dt f x T k x T dx( )cos   2 cos 2 .
T

T

2

0

0
0

2

0

Note that

k x T k x k k k xcos 2 cos cos cos0 0 0ω ω π π ω( ) ( )− = − =

and that, by hypothesis,

f x T f x2 .( ) ( )− = −

Therefore,

∫ ∫ω π ω[ ]= −
−

f t k t dt f x k k x dx( )cos   ( ) cos cos   .
T

T

2

0

0
0

2

0

Incorporating this integral into the equation for ak  gives

a
T

k f t k t dt2 (1 cos ) ( ) cos   .k

T

0

2

0∫π ω= −

But kcos π  is 1 when k is even and 1−  when k is odd. Therefore, we get 
the expressions for ak  given in Eqs. 16.16.

We leave it to you to verify that this same process can be used to 
 derive Eqs. 16.17 (see Problem 16.8).

We summarize our observations by noting that the Fourier series 
 representation of a periodic function with half-wave symmetry has zero 
average value and contains only odd harmonics.

 Quarter-Wave Symmetry
The term quarter-wave symmetry describes a periodic function that has 
half-wave symmetry and, in addition, symmetry about the midpoint of the 
positive and negative half-cycles. The function illustrated in Fig. 16.9(a) 

0

A

2A

T>4 3T>4T>2 T

0 T>4 3T>4T>2 T

t

t

(a)

2A

(b)

f(t)

A

f(t)

Figure 16.9 ▲ (a) A function that has quarter- 
wave symmetry. (b) A function that does not have 
quarter-wave symmetry.
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 16.3 The Effect of Symmetry on the Fourier Coefficients  629

has quarter-wave symmetry about the midpoint of the positive and nega-
tive half-cycles. The function in Fig. 16.9(b) does not have quarter-wave 
symmetry, although it does have half-wave symmetry.

A periodic function that has quarter-wave symmetry can always be 
made either even or odd by the proper choice of the point where =t 0. 
For example, the function shown in Fig. 16.9(a) is odd and can be made 
even by shifting the function T 4  units either right or left along the  
t axis. However, the function in Fig. 16.9(b) can never be made either 
even or odd.

To take advantage of quarter-wave symmetry when calculating the 
Fourier coefficients, you must choose the point where =t 0  to make the 
function either even or odd. If the function is made even, then

a 0,  because of half-wave symmetry;=v

a k0,  for   even, because of half-wave symmetry;k =

∫ ω=a
T

f t k t dt k8 ( ) cos   , for   odd;k

T

0

4

0

b k0,  for all  , because the function is even.k =

 (16.18)

Equations 16.18 result from the function’s quarter-wave symmetry in 
addition to its being even. Remember that if a function has quarter-wave 
symmetry, it also has half-wave symmetry, so we can eliminate av  and ak  
for k even. Comparing the expression for a ,k  k odd, in Eqs. 16.18 with 
Eqs. 16.16 shows that when an even function also has quarter-wave sym-
metry, we can shorten the range of integration from 0 to T 2  to 0 to T 4.  
We leave the derivation of Eqs. 16.18 to you in Problem 16.9.

If the quarter-wave symmetric function is made odd,

a 0,  because the function is odd;=v

a k0,  for all  , because the function is odd;k =

b k0,  for   even, because of half-wave symmetry;k =

 (16.19)

∫ ω=b
T

f t k t dt k8   ( )sin   ,  for   odd.k

T

0

2

0

Equations 16.19 are a direct consequence of the function being both odd 
and quarter-wave symmetric. Again, quarter-wave symmetry allows us to 
shorten the interval of integration from 0 to T 2  to 0 to T 4.  We leave the 
derivation of Eqs. 16.19 to you in Problem 16.10.

Example 16.2 shows how symmetry simplifies the task of finding the 
Fourier coefficients.
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630 Fourier Series

Find the Fourier series representation for the cur-
rent waveform shown in Fig. 16.10.

 Solution
We begin by looking for symmetry in the waveform. 
We find that the function is odd and has half-wave 
and quarter-wave symmetry. Because the function 
is odd, all the a coefficients are zero; that is, a 0=v  
and a 0k =  for all k. Because the function has 
half-wave symmetry, b 0k =  for even values of k. 
Because the function has quarter-wave symmetry, 
the expression for bk  for odd values of k is

b
T

i t k t dt8 sin .k

T

0

4

0∫ ω( )=

2Im

Im

i(t)

2T>2 T>2 T 2T 5T>2 3T3T>20
t

Figure 16.10 ▲ The periodic waveform for Example 16.2.

EXAMPLE 16.2     Finding the Fourier Series of a Periodic Function with Symmetry

In the interval t T0 4,≤ ≤  the expression for  
i t( )  is

=i t
I
T

t( )
4

  .m

Thus

b
T

I
T

t k t dt8 4
  sin  k

m
T

0

4

0∫ ω=

I
T

k t
k

t k t
k

32
 

sin cosm
T

2
0

2
0
2

0

0 0

4ω
ω

ω
ω

= −










I
k

k k
8

sin
2

  (  is odd).m
2 2π

π=

The Fourier series representation of i t( )  is

i t
I

n
n n t( )

8
  1 sin

2
sinm

n
2 2

1,3,5,
0∑π

π ω=
= …

I
t t

8
  sin 1

9
sin 3m

2 0 0π
ω ω(= −

t t1
25

sin 5 1
49

sin 7 .0 0 �ω ω )+ − +

Objective 1—Be able to calculate the trigonometric form of the Fourier coefficients for a periodic waveform

16.3  Derive the Fourier series for the periodic volt-
age shown.

Answer: v t
V

n
n t( )

8
  1 cos .p

n
2

1,3,5, 
2 0∑π

ω=
−

= …

∞

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter Problems 16.14 and 16.15.

v(t)

Vp

2Vp

2T T2T>2 T>2 3T>20
t
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 16.4 An Alternative Trigonometric Form of the Fourier Series 631

16.4  An Alternative Trigonometric 
Form of the Fourier Series

When analyzing a circuit with a periodic input voltage, we could replace 
the input voltage with a collection of series-connected voltage sources, 
where each source corresponds to a term in the Fourier series represen-
tation of the periodic voltage. This would mean that for every harmonic 
frequency, there is a source for the sine term and a source for the cosine 
term at that frequency.

Instead, to simplify the circuit and our analysis of it, we combine the 
sine and cosine terms at the same harmonic frequency into a single term. 
Then, we can transform the circuit into the phasor domain for each har-
monic frequency, where the combined source is represented as a single 
phasor quantity. Thus, we write the Fourier series in Eq. 16.2 as

 ∑ ω θ= + −
=

∞

vf t a A n t( ) cos ( ),
n

n n
1

0   (16.20)

where An  and nθ  are defined as

 θ θ− = + − = −a jb a b A    .n n n n n n n
2 2  (16.21)

We derive Eqs. 16.20 and 16.21 using the phasor method to add the 
cosine and sine terms in Eq. 16.2. We begin by expressing the sine func-
tions as cosine functions; that is, we rewrite Eq. 16.2 as

f t a a n t b n t( ) cos cos ( 90°).
n

n n
1

0 0∑ ω ω= + + −υ
=

∞

Adding the terms under the summation sign by using phasors gives

ω{ } = °a n t acos   0n n0P

and

ω − ° = − ° = −b n t b jb{ cos ( 90 )}   90 .n n n0P

Then

a n t b n t a jb{ cos ( ) cos ( 90 )}n n n n0 0P ω ω+ − ° = −

θ= + −a b  n n n
2 2

θ= −A .n n

The right-hand sides of this expression correspond to Eq. 16.21. When we 
inverse phasor-transform both sides of this expression, we get

ω ω θ{ }+ − ° = −−a n t b n t Acos cos ( 90 )n n n n0 0
1P

A n tcos ( ).n n0ω θ= −

After substituting the right-hand side for the argument of the summa-
tion in the expression for f(t), we get Eq. 16.20. If the periodic function is 
either even or odd, An  reduces to either an (even) or bn (odd), and nθ  is 
either 0° (even) or 90°  (odd).

Example 16.3 calculates the alternative form of the Fourier series for 
a specific periodic function.
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632 Fourier Series

v(t)

Vm

0
t

T
4

T
2

3T
4

3T
2

5T
4

7T
4

T 2T

Figure 16.11 ▲ The periodic function for  
Example 16.3.

EXAMPLE 16.3      Calculating Forms of the Trigonometric Fourier Series for 
Periodic Voltage

a) Derive the expressions for ak  and bk  for the peri-
odic function shown in Fig. 16.11.

b) Write the first four terms of the Fourier series 
representation of t( )v  using the format of 
Eq. 16.20.

and

b
T

V k t dt2   sin  k m

T

0

4

0∫ ω=

V
T

k t
k

2
 

cosm
T

0

0 0

4ω
ω

=
−









V
k

k  1 cos
2

.m

π
π( )= −

b) The average value of t( )v  is

a
V T

T
V4
4

.m m( )
= =v

The values of a jbk k−  for k 1,  2,=  and 3 are

π π π
− = − = − °a jb

V
j
V V2

  45 ,m m m
1 1

π π
− = − = − °a jb j

V V
0   90 ,m m

2 2

π π π
− =

−
− = − °a jb

V
j
V V

3 3
2
3

135 .m m m
3 3

Thus, the first four terms in the Fourier series 
representation of t( )v  are

t
V V

t( )
4

2
cos 45°m m

0π
ω( )= + −v

π
ω+ − °

V
tcos (2 90 )m

0

π
ω( )+ − +

V
t

2
3

cos 3 135° .m
0 �

Solution

a) The voltage t( )v  is neither even nor odd, nor does it 
have half-wave symmetry. Therefore, we use Eqs. 16.4 
and 16.5 to find ak and b .k  Choosing t 0  as zero, we 
obtain

∫ ∫ω ω= +





a

T
V k t dt k t dt2   cos   (0)cos    k m

T

T

t

0

4

0
4

0

ω
ω π

π= =
V
T

k t
k

V
k

k2
 
sin

sin
2

m
T

m0

0 0

4

Objective 1—Be able to calculate the trigonometric form of the Fourier coefficients for a periodic waveform

16.4 a) Compute A1 through A5 and 1θ  through 5θ  for 
the periodic function in Assessment Problem 
16.1, which is repeated here.

b) Using the format of Eq. 16.20, write the Fourier 
series for t( )v  up to and including the fifth 
harmonic.

Answer: a) 80.53 V, 0, 26.84 V, 0, 16.11 V and 108.4°− , 
not defined,  71.57°− , not defined,  108.4°;−

b) t t( ) 80.53cos(31.416 108.4°)= −v
+ −t26.84 cos(94.248 71.57°)

+ −t16.11cos(157.08 108.4°) V.

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter Problem 16.19.

v(t) V

80

40

280

240
50250 1502150 250

t (ms)
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16.5 An Application
Let’s use a Fourier series representation of a periodic input voltage to 
find the steady-state output voltage of a linear circuit, which is the RC 
circuit shown in Fig. 16.12(a). The circuit’s input voltage is the periodic 
square wave shown in Fig. 16.12(b). The output voltage is defined across 
the capacitor.

First, we represent the periodic voltage with its Fourier series. The 
waveform in Fig. 16.12(b) has odd, half-wave, and quarter-wave symme-
try, so the only nonzero Fourier coefficients are the bk coefficients for odd 
values of k:

b
T

V k t dt8   sin  k m

T

0

4

0∫ ω=  

V
k

k
4

  (  is odd).m

π
=

Then the Fourier series representation of gv  is

V
n

n t
4

  1 sin .g
m

n 1,3,5,
0∑π

ω=
= …

∞

v

Writing the series in expanded form, we have

V
t

V
t

4
sin

4
3

sin 3g
m m

0 0π
ω

π
ω= +v

V
t

V
t

4
5

sin 5
4
7

sin 7 .m m
0 0 �

π
ω

π
ω+ + +

The voltage source, gv , in Fig. 16.12(a) can be replaced by infinitely 
many series-connected sinusoidal sources. Each source is a sine function 
whose frequency is an odd multiple of the square wave’s frequency. We 
use the principle of superposition to find the contribution of each source 
to the output voltage.

For each sinusoidal source, the phasor-domain expression for the  
output voltage is

j RC
V

V
1

.o
g

ω
=

+

Since all of the voltage sources are expressed as sine functions, we inter-
pret a phasor using the sine instead of the cosine. In other words, when we 
go from the phasor domain back to the time domain, we simply write the 
time-domain expressions as tsin ω θ( )+  instead of tcos .ω θ( )+

The phasor output voltage due to the sinusoidal source at the funda-
mental frequency is

V
j RC

V
(4 ) 0°
1

.o
m

1
0

π
ω

=
+

Writing Vo1  in polar form gives

π ω
β=

+
−V

R C
V

4
1

,o
m

1
0
2 2 2 1

where

RCtan   .1
1

0β ω= −

vg

Vm

2Vm

T

(b)

2T 3T
t

(a)

vg

1

2

vo
1

2

R

C

Figure 16.12 ▲ An RC circuit excited by a periodic 
voltage. (a) The RC circuit. (b) The square-wave 
voltage.
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634 Fourier Series

Inverse-phasor-transform Vo1  to get the time-domain expression for the 
fundamental frequency component of ov :

V

R C
t

4

1
sin ( ).o

m
1

0
2 2 2 0 1v

π ω
ω β=

+
−

We derive the third-harmonic component of the output voltage in a 
similar manner. The third-harmonic phasor output voltage is

π
ω

=
+
V

j RC
V

(4 3 ) 0°
1 3o

m
3

0

π ω
β=

+
−

V

R C

4
3 1 9

  ,m

0
2 2 2 3

where

RCtan 3 .3
1

0β ω= −

The time-domain expression for the third-harmonic output voltage is

V

R C
t

4

3 1 9
sin(3 ).o

m
3

0
2 2 2 0 3v

π ω
ω β=

+
−

Hence, the expression for the kth-harmonic component of the output 
voltage is

V

k k R C
k t k

4

1
sin( ) (  is odd),ok

m
k2

0
2 2 2 0v

π ω
ω β=

+
−

where

k RC ktan (  is odd).k
1

0β ω= −

We now write down the Fourier series representation of the output 
voltage:

 t
V n t

n n RC
( )

4
 

sin ( )

1 ( )
.o

m

n

n

1,3,5,

0

0
2∑π

ω β
ω

=
−

+= …

∞

v  (16.22)

We derived an analytic expression for the steady-state output, but the shape 
of t( )ov , and its functional form, are not apparent from the equation. As 
we mentioned earlier, this is a disadvantage of the Fourier series approach.

The Fourier series representation of t( )ov  in Eq. 16.22 does provide 
some information about the steady-state output voltage, if we focus on the 
frequency response of the circuit. For example, if C is large, n C1 0ω  is small 
for the higher-order harmonics. Thus, the capacitor short circuits the high- 
frequency components of the input waveform, and the  higher-order har-
monics in the Fourier series representation of t( )ov  are negligible compared 
to the lower-order harmonics. For large C, we can approximate t( )ov  as

v
V

RC n
n t

4
  1 sin( 90°)o

m

n0 1,3,5,
2 0∑πω

ω≈ −
= …

∞

V
RC n

n t
4

  1 cos .m

n0 1,3,5,
2 0∑πω

ω≈
−

= …

∞

 (16.23)

Equation 16.23 shows that the amplitude of the harmonic in the output 
voltage is decreasing by n1 ,2  while the amplitude of the harmonic in the 
input voltage decreases by n1 . If C is so large that only the fundamental 
component is significant, then to a first approximation

t
V
RC

t( )
4

cos ,o
m

0
0πω

ω≈
−

v
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 16.5 An Application 635

and Fourier analysis tells us that the square-wave input is deformed into 
a sinusoidal output.

Now let’s see what happens as →C 0. The circuit shows that ov  and 
gv  are the same when C 0=  because the capacitive branch looks like an 

open circuit at all frequencies. Equation 16.22 predicts the same result 
because, as →C 0,

V
n

n t
4

  1 sin .o
m

n 1,3,5,
0∑π

ω=
= …

∞

v

Therefore →v vo g  as C 0.→
Thus, Fourier series representation for t( )ov  predicts that the output 

will be a highly distorted replica of the input waveform if C is large, and a 
reasonable replica if C is small. In Chapter 13, we looked at the distortion 
between the input and output in terms of how much memory the system 
weighting function had. In the frequency domain, we look at the distortion 
between the steady-state input and output in terms of how the amplitude 
and phase of each harmonic component are altered as it is transmitted 
through the circuit. When the circuit significantly alters the amplitude and 
phase relationships among the harmonics at the output relative to that 
at the input, the output is a distorted version of the input. Thus, in the 
frequency domain, we speak of amplitude distortion and phase distortion.

For the RC circuit in Fig. 16.12(a), amplitude distortion is present 
because the amplitudes of the input harmonics decrease as n1 ,  whereas 
the amplitudes of the output harmonics decrease as

n n RC

1   1

1
.

0
2ω( )+

This circuit also exhibits phase distortion because the phase angle of each 
input harmonic is zero, whereas that of the nth harmonic in the output 
signal is n RCtan .1

0ω− −

An Application of the Direct Approach to the Steady-
State Response
For the simple RC circuit shown in Fig. 16.12(a), we can find the 
 steady-state response without using the Fourier series representation 
of the periodic input voltage. Doing this extra analysis here adds to our 
understanding of the Fourier series approach.

To find the steady-state expression for ov , we reason as follows. The 
square-wave input voltage alternates between charging the capacitor 
toward Vm+  and V .m−  After the circuit reaches steady-state operation, 
this alternate charging becomes periodic. From our analysis of the first- 
order RC circuit in Chapter 7, we know that an abrupt change in the input 
voltage results in an output voltage that is exponential. Thus, the steady-
state waveform of the capacitor voltage for the RC circuit shown in 
Fig. 16.12(a) looks like the waveform shown in Fig. 16.13.

The analytic expressions for t( )ov  in the time intervals t T0 2≤ ≤  
and T t T2 ≤ ≤  are

= + − ≤ ≤−v V V V e t T( ) ,  0 2;o m m
t RC

1

V V V e T t T( ) ,   2 .o m m
t T RC

2
[ ( 2)= − + + ≤ ≤− −v

We derive these equations by using the methods of Chapter 7, as summa-
rized by Eq. 7.23. The value of V2 is the value of t( )ov  at the end of the 
interval t T0 2≤ ≤ :

v T V V V V e2 ( ) ,o m m
T RC

2 1
2( ) = = + − −

vo

V2

0

Toward 1Vm

Toward 2Vm Toward 2Vm

Toward 1Vm

V1

T>2 T 2T3T>2
t

Figure 16.13 ▲ The steady-state waveform of vo for 
the circuit in Fig. 16.12(a).
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and the value of V1  is the value of t( )ov  at the end of the interval 
T t T2 ≤ ≤ :

T V V V V e( ) ( ) .o m m
T RC

1 2
2= = − + + −v

Solving these equations for V1  and V2 yields

V V
V e

e
(1 )

1
.m

T RC

T RC2 1

2

2
= − =

−
+

−

−

Substituting the expressions for V1  and V2 into the equations for t( )ov gives

 V
V
e

e t T
2

1
  , 0 2,o m

m
T RC

T RC
2

= −
+

≤ ≤
−

−v  (16.24)

and

 = − +
+

≤ ≤
−

− −v V
V
e

e T t T
2

1
  , 2 .o m

m
T RC

t T RC
2

[ ( 2)]  (16.25)

Equations 16.24 and 16.25 indicate that t( )ov  has half-wave symme-
try, so the average value of ov  is zero. This result agrees with the Fourier 
series solution for the steady-state response—namely, that because the 
input voltage has no dc component, the output voltage cannot have a dc 
component. Equations 16.24 and 16.25 also show the effect of changing 
the size of the capacitor. If C is small, the exponential functions quickly 
vanish, Vo m=v  between 0 and T 2,  and Vo m= −v  between T 2  and 
T. In other words, →v vo g  as →C 0. If C is large, the output waveform 
becomes triangular in shape, as Fig. 16.14 shows. Note that for large C, 
we may approximate the exponential terms e t RC−  and e t T RC[ ( 2)]− −  by the 
linear terms t RC1 ( )−  and t T RC1 {[ ( 2)] },− −  respectively. Equation  
16.23 gives the Fourier series of this triangular waveform.

Figure 16.14 summarizes the results. The dashed line in Fig. 16.14 is 
the input voltage, the solid colored line depicts the output voltage when C 
is small, and the solid black line depicts the output voltage when C is large.

Finally, we verify that the steady-state response of Eqs. 16.24 and 
16.25 is equivalent to the Fourier series solution in Eq. 16.22. To do so, we 
derive the Fourier series representation of the periodic function described 
by Eqs. 16.24 and 16.25. We have already noted that the periodic voltage 
response has half-wave symmetry. Therefore, the Fourier series contains 
only odd harmonics. For k odd,

∫ ω= −
+









−

−
a

T
V

V e
e

k t dt4  
2

1
cos  k m

m
t RC

T RC

T

20

2

0

 (16.26)RCV
T k RC

k
8

[1 ( ) ]
  (  is odd),m

0
2ω

=
−
+

 

∫ ω= −
+









−

−
b

T
V

V e
e

k t dt4  
2

1
sin  k m

m
t RC

T RC

T

20

2

0

 (16.27)V
k

k V R C
T k RC

k
4 8

[1 ( ) ]
  (  is odd).m m0

2 2

0
2π

ω
ω

= −
+

To show that Eqs. 16.26 and 16.27 are consistent with Eq. 16.22, we must 
prove that

 a b
V
k k RC

4
  1

1 ( )
,k k

m2 2

0
2π ω

+ =
+

 (16.28)

vo

Vm

2Vm

V2

0

Small C

Large C
V1

T>2 T 2T
t

3T>2

Figure 16.14 ▲ The effect of capacitor size on the 
steady-state response.
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and that

 
a
b

k RC.k

k
0ω= −  (16.29)

You can verify Eqs. 16.26–16.29 in Problems 16.23 and 16.24. 
Equations 16.28 and 16.29 are used with Eqs. 16.20 and 16.21 to derive 
the Fourier series expression in Eq. 16.22; we leave the details to you 
in Problem 16.25.

With this illustrative circuit, we showed how to use the Fourier series 
in conjunction with the principle of superposition to find the steady-state 
response to a periodic input voltage. Again, the principal shortcoming 
of the Fourier series approach is the difficulty of ascertaining the out-
put waveform. However, by considering a circuit’s frequency response, 
we can deduce a reasonable approximation of the steady-state response, 
using a finite number of terms in the Fourier series representation. (See 
Problems 16.29 and 16.30.) Example 16.4 provides another example of the 
Fourier series circuit-analysis method.

EXAMPLE 16.4      Finding the Response of an RLC Circuit to a  
Square-Wave Voltage

The square wave in Fig. 16.12(b) has a magnitude 
of 4  Vπ  and a frequency of 100 rad/s. This periodic 
voltage is input to the circuit in Fig. 16.15.

a) Find the first five nonzero terms in the Fourier 
series representation of the square-wave input 
voltage.

b) Find the output voltage, ov , for the circuit in 
Fig. 16.15, using the five terms calculated in 
part (a).

c) Use the frequency response of the circuit in 
Fig. 16.15 to explain the output voltage terms 
you calculated in part (b).

Solution

a) The Fourier series representation of gv  is

V
n

n t
4

  1 sing
m

n
o

1,3,5,
∑π

ω=
= …

∞

v

= + +
+ + +

t t t

t t

16 sin100 5.33sin 300 3.2 sin 500

2.29 sin 700 1.78 sin 900 V.…

b) The circuit in Fig. 16.15 is a parallel RLC bandre-
ject filter. From Fig. 14.31, the transfer function is

H s
s LC

s s RC LC
( )

1
1

2

2
=

+
+ +

s
s s

25 10
100 25 10

.
2 4

2 4
= + ×

+ + ×

To find the terms in the Fourier series represen-
tation of ov , evaluate H(s) for s jω= , where ω  
is the frequency of the term in gv . Then, multiply 
by the phasor representation of that term in gv ,  
and  inverse-phasor-transform the result to find 
the corresponding term in ov . Note that we are 
using the sine function instead of the cosine 
function for the phasor transform and its inverse.
For ω = 100  rad s:

H j
j

j j
100

100 25 10
100 100 100 25 10

 

0.999 2.4°,

2 4

2 4
( )

( )

( ) ( )
=

+ ×
+ + ×

= −

V j100 0.998 2.4° (16) 15.99 2.4°.o ( )( ) = − = −
8 mH

1

2
vo

1

2

vg 20 V

500 mF

Figure 16.15 ▲ The circuit for Example 16.4.

For s300  radω = :

( )
( )

( ) ( )
=

+ ×
+ + ×

= −

H j
j

j j
300

300 25 10
300 100 300 25 10

0.983 10.6° ,

2 4

2 4

V j300 0.983 10.6° (5.33) 5.24 10.6°.o ( )( ) = − = −
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For      ω = 500  rad s :

H j
j

j j
500

500 25 10
500 100 500 25 10

0,
2 4

2 4
( )

( )

( ) ( )
=

+ ×
+ + ×

=

V j500 (0) 3.2 0.o ( ) ( )= =

For     ω = 700  rad s:

( )
( )

( ) ( )
=

+ ×
+ + ×

=

H j
j

j j
700

700 25 10
700 100 700 25 10

0.96 16.26°,

2 4

2 4

( )( ) ( )= =V j700 0.96 16.26° 2.29 2.2 16.26°.o

Therefore, the first five terms in the Fourier 
series representation of the steady-state output 
voltage are

t t

t t

15.99 sin 100 2.4° 5.24 sin 300 10.6°

0 sin 500 2.2 sin 700 16.26°
o ( ) ( )

( )

= − + −
+ + +

v

( )+ + + …t1.76 sin 900 9.13° V.

c) As noted in part (a), the circuit in Fig. 16.15 is 
a bandreject filter. It has a center frequency 
of LC1 500  rad s= , a bandwidth of 

RC1    100  rad s= , and a quality of 5, so it 
is a selective filter. Its cutoff frequencies are 
452.494 rad/s and 552.494 rad/s. The magnitude 
of ov  at 500 rad/s, the center frequency of the fil-
ter, is zero, exactly what we should expect from a 
bandreject filter. The magnitudes of ov  at the fre-
quencies outside the passband defined by the cut-
off frequencies are very close to the magnitudes 
of gv  at those frequencies. This is also the behav-
ior we expect from a selective bandreject filter.

Objective 2—Know how to analyze a circuit’s response to a periodic waveform

16.5 The periodic square-wave voltage seen on the left 
is applied to the circuit shown on the right. Derive 
the first three nonzero terms in the Fourier series 
that represents the steady-state voltage, ov , if 
V 15  Vm π=  and the period of the input voltage 
is 4  ms.π

Answer: t

t

26.83cos(500 63.43°)

16.64 cos(1500   146.31°)

+

+ −

 

t11.14 cos(2500 21.80°) V.+ +

16.6  The periodic square-wave voltage seen on the top 
is applied to the circuit shown on the bottom.
a) Derive the first four terms in the Fourier series 

that represents the steady-state voltage ov .
b) Which frequency component in the input volt-

age is eliminated from the output voltage? 
Explain why.

Answer: a) t41.998 cos 2000 0.60°( )+
t13.985cos 6000 177.32° 0( )+ + +

+ −t5.984 cos(14,000 184.17°) V.

b) The fifth harmonic, at 10,000 rad/s, 
because the circuit is a bandreject filter 
with a center frequency of 10,000 rad/s.

ASSESSMENT PROBLEMS

SELF-CHECK: Also try Chapter Problems 16.28 and 16.30.

1

2

vi

1

2

vo

Vm

vi

T>20 T
t

2Vm

10 mH

10 V

20 kV

100 nF

100 mH

vovg

1

2

1

2

vg(t) [V]

210.5p

10.5p

2p 2p>2 0 p>2 p
t (ms)

For     ω = 900  rad s :

( )
( )

( ) ( )
=

+ ×
+ + ×

=

H j
j

j j
900

900 25 10
900 100 900 25 10

0.99 9.13°,

2 4

2 4

( )( ) ( )= =V j900 0.99 9.13° 1.78 1.76 9.13°.o
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 16.6 Average-Power Calculations with Periodic Functions  639

16.6  Average-Power Calculations  
with Periodic Functions

Given the Fourier series representation of the voltage and current at a pair 
of terminals in a linear lumped-parameter circuit, we can express the aver-
age power at the terminals as a function of the harmonic voltages and cur-
rents. Using the trigonometric form of the Fourier series from Eq. 16.20, 
we find that the periodic voltage and current at the circuit’s terminals are

∑ ω θ= + −
=

∞

v vV V n tcos ( ),
n

n ndc
1

0

∑ ω θ= + −
=

∞

i I I n tcos ( ).
n

n indc
1

0

The notation used in the equations for voltage and current is defined as 
follows:

V the amplitude of the dc voltage component,dc =

V nthe amplitude of the  th-harmonic voltage,n =

nthe phase angle of the  th-harmonic voltage,nθ =υ

I the amplitude of the dc current component,dc =

I nthe amplitude of the  th-harmonic current,n =

nthe phase angle of the  th-harmonic current.inθ =

We assume that the current is in the direction of the voltage drop 
across the terminals, so, using the passive sign convention, the instanta-
neous power at the terminals is iv . The average power is

∫ ∫= =
+ +

vP
T

p dt
T

i dt1 1 .
t

t T

t

t T

0

0

0

0

To find the expression for the average power, we substitute the expres-
sions for voltage and current into the equation for average power and 
integrate. At first glance, this appears to be a formidable task because 
the product iv  requires multiplying two infinite series. However, the only 
terms to survive integration are the products of voltage and current at the 
same frequency. (See Problem 16.5.) Therefore, the equation for average 
power reduces to

∑ ∫ ω θ ω θ

=

+ − −

+

=

∞ +

v

P
T

V I t

T
V I n t n t dt

1  

1   cos( )cos( )  .

t

t T

n
n n

t

t T

n in

dc dc

1
0 0

0

0

0

0

Now, using the trigonometric identity

cos cos 1
2

cos 1
2

cos ,α β α β α β( ) ( )= − + +

we simplify the expression for P to

P V Idc dc=

∑ ∫ θ θ ω θ θ( ]+ − + − −
=

∞ +

v vT
V I

n t dt1  
2

  [cos( ) cos 2 ) .
n

n n
n in n in

t

t T

1
0

0

0
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640 Fourier Series

The second term under the integral sign integrates to zero, so

 P V I
V I

2
cos( ).

n

n n
n indc dc

1
∑ θ θ= + −

=

∞

v  (16.30)

Equation 16.30 states that the total average power delivered by a peri-
odic signal is the sum of the average powers associated with each har-
monic voltage and current. Currents and voltages of different frequencies 
do not interact to produce average power. Example 16.5 computes the 
average power delivered by a periodic voltage.

EXAMPLE 16.5      
Calculating Average Power for a Circuit with a  
Periodic Voltage Source

Assume that the periodic square-wave voltage in 
Example 16.3 is applied across the terminals of 
a 15 Ω resistor. The value of Vm is 60 V, and the 
value of T is 5 ms.

a) Write the first five nonzero terms of the Fourier 
series representation of t( )v . Use the trigono-
metric form given in Eq. 16.20.

b) Calculate the average power associated with 
each term in (a).

c) Calculate the total average power delivered to 
the 15 Ω resistor.

d) What percentage of the total power is delivered 
by the first five terms of the Fourier series?

Solution

a) The dc component of t( )v  is

a
T

T
(60) 4

15 V.
( )

= =v

From Example 16.3 we have

A 2 60 27.01 V,1 π= =

45°,1θ =

A 60 19.10 V,2 π= =

90°,2θ =

π= =A 12 2 9.00 V,3

135°,3θ =

=A 0,4

0°,4θ =

π= =A 12 2 5.40 V,5

45°,5θ =

T
2 2

0.005
400   rad s.0ω π π π= = =

Thus, using the first five nonzero terms of the 
Fourier series,

t t( ) 15 27.01cos 400 45°π( )= + −v

π( )+ −t19.10 cos 800 90°

π( )+ −t9.00 cos 1200 135°

�π( )+ − +t5.40 cos 2000 45°  V.

b) The voltage is applied to the terminals of a resis-
tor, so we can find the power associated with 
each term as follows:

P 15
15

15 W,dc

2
= =

P 1
2

  27.01
15

24.32 W,1

2
= =

P 1
2

  19.10
15

12.16 W,2

2
= =

P 1
2

  9
15

2.70 W,3

2
= =

P 1
2

  5.4
15

0.97 W.5

2
= =

c) To obtain the total average power delivered to 
the 15 Ω resistor, we first calculate the rms value 
of t( )v :

V
T

T
(60) 4

900 30 V.rms

2 ( )
= = =

The total average power delivered to the 15 Ω 
resistor is

P 30
15

60 W.T

2
= =

d) The total power delivered by the first five  
non zero terms is

P P P P P P 55.15 W.dc 1 2 3 5= + + + + =

This is (55.15 60) (100), or 91.92% of the total.
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 16.7 The rms Value of a Periodic Function 641

16.7  The rms Value of a Periodic 
Function

The rms value of a periodic function can be expressed in terms of the 
Fourier coefficients; by definition,

F
T

f t dt1   ( ) .
t

t T

rms
2

0

0

∫=
+

Replacing f t( )  with its Fourier series representation gives

∑∫ ω θ= + −










=

∞+

vF
T

a A n t dt1 cos( )   .
n

n n
t

t T

rms
1

0

2

0

0

The integral of the squared time function simplifies because the only 
terms whose integral over one period are not zero are the square of the dc 
term and the square of the terms at each frequency. Therefore,

 F
T

a T T A1
2

 
n

nrms
2

1

2∑= +








=

∞

v

 (16.31)

∑= +
=

∞

va
A
2n

n2

1

2

va
A

2
.

n

n2

1

2

∑( )= +
=

∞

We can use Eq. 16.31 to find the rms value of a periodic function by 
adding the square of the rms value of each harmonic to the square of the 
dc value and taking the square root of that sum. For example, let’s assume 
that a periodic voltage is represented by the finite series

ω θ ω θ( ) ( )= + − + −v t t10 30 cos 20 cos 20 1 0 2

t t 5cos 3 2 cos 5 V.0 3 0 5ω θ ω θ( ) ( )+ − + −
The rms value of this voltage is

V 10 (30 2) (20 2) (5) (2 2)rms
2 2 2 2 2= + + + +

764.5 27.65 V.= =

Objective 3—Be able to estimate the average power delivered to a resistor using a small number of Fourier 
coefficients

16.7  The periodic voltage across a 10 Ω resistor is 
shown in the figure.
a) Use the first three nonzero terms in the Fourier 

series representation of t( )v  to estimate the 
average power dissipated in the 10 Ω resistor.

b) Calculate the exact value of the average 
power dissipated in the 10 Ω resistor.

c) What is the percentage error in the 
estimated value of the average power 
dissipated?

Answer: a) 59.46 W;
b) 60 W;
c) −0.9041%.

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter Problems 16.33 and 16.34.

v (V)

t
T
4

0

60

T
2

3T
44

2T T
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642 Fourier Series

Because the number of terms in a Fourier series representation of a peri-
odic function is usually infinite, Eq. 16.31 yields an estimate of the actual 
rms value. We illustrate this result in Example 16.6.

SELF-CHECK: Assess your understanding of this material by trying Chapter Problems 16.41 and 16.42.

EXAMPLE 16.6     Estimating the rms Value of a Periodic Function

Use Eq. 16.31 to estimate the rms value of the volt-
age in Example 16.5.

Solution
From Example 16.5,

V 15 V,dc =

=V 27.01 2  V, fundamental’s rms value,1

=V 19.10 2  V, second harmonic’s rms value,2

=V 9.00 2  V, third harmonic’s rms value,3

=V 5.40 2  V,  fifth harmonic’s rms value.5

Therefore,

( ) ( ) ( ) ( )= + + + +V 15 27.01
2

19.10
2

9.00
2

5.40
2

rms
2

2 2 2 2

28.76 V.=

From Example 16.5, the actual rms value is 
30 V. We can get closer to this value by including 
more and more harmonics in Eq. 16.31. For exam-
ple, if we include the harmonics through k 9,=  the 
estimated rms value is 29.32 V.

16.8  The Exponential Form of the 
Fourier Series

The exponential form of the Fourier series is a concise representation of 
the series, given by

 ∑= ω

=−∞

∞

f t C e( ) ,
n

n
jn t0  (16.32)

where

 ∫= ω−
+

C
T

f t e dt1 ( )   .n
jn t

t

t T
0

0

0

 (16.33)

To derive Eqs. 16.32 and 16.33, start with Eq. 16.2 and replace the cosine 
and sine functions with their exponential equivalents:

ω = +ω ω−
n t e ecos

2
,

jn t jn t

0
0 0

ω = −ω ω−
n t e e

j
sin

2
.

jn t jn t

0
0 0

Substituting the exponential equivalents into Eq. 16.2 gives

∑= + + + −ω ω ω ω

=

∞
− −

vf t a
a

e e
b

j
e e( )

2
 ( )

2
 ( )

n

n jn t jn t n jn t jn t

1

0 0 0 0

 (16.34)a
a jb

e
a jb

e
2 2

.
n

n n jn t n n jn t

1

0 0∑( ) ( )= +
−

+
+ω ω

=

∞
−

v

Now we define C n as

�C a jb
A

n1
2

 ( )
2

  , 1,  2,  3, .n n n
n

n∠ θ= − = − =
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From the definition of C n,

∫ ∫ω ω( ) ( )= −







+ +
C

T
f t n t dt j

T
f t n t dt1

2
2   cos 2 sinn

t

t T

t

t T

0 0
0

0

0

0

∫ ω ω( )= −
+

T
f t n t j n t dt1   (cos sin ) 

t

t T

0 0
0

0

T
f t e dt1   ( ) ,jn t

t

t T
0

0

0

∫= ω−
+

which completes the derivation of Eq. 16.33. To complete the derivation 
of Eq. 16.32, we first observe from Eq. 16.33 that

∫ ( )= =
+

vC
T

f t dt a1 .
t

t T

0
0

0

Next we note that

C
T

f t e dt C a jb1 ( ) 1
2

( ).n
jn t

t

t T

n n n
*0

0

0

∫= = = +ω
−

+

Substituting the expressions for C0, Cn, and C n
* into Eq. 16.34 yields

f t C C e C e( )
n

n
jn t

n
jn t

0
1

*0 0∑( )= + +ω ω

=

∞
−

∑ ∑= +ω ω

=

∞

=

∞
−C e C e .

n
n

jn t

n
n

jn t

0 1

*0 0

Note that the second summation on the right-hand side is equivalent to 
summing C en

jn t0ω  from 1−  to ;−∞  that is,

∑ ∑=ω ω

=

∞
−

=−

−∞

C e C e .
n

n
jn t

n
n

jn t

1

*

1

0 0

Because the summation from 1−  to −∞ is the same as the summation 
from −∞ to 1,−  we can rewrite f(t) as

f t C e C e( )
n

n
jn t

n
jn t

0

1
0 0∑ ∑= +ω ω

=

∞

−∞

−

C e ,n
jn t0∑= ω

−∞

∞

which completes the derivation of Eq. 16.32.
We can also find the rms value of a periodic function using the com-

plex Fourier coefficients. From Eqs. 16.21 and 16.31,

vF a
a b

2
,

n

n n
rms

2

1

2 2

∑= +
+

=

∞

C
a b

2
,n

n n
2 2

=
+

C a .0
2 2= v

Therefore:

 ∑= +
=

∞

F C C2 .
n

nrms 0
2

1

2  (16.35)

Example 16.7 finds the exponential Fourier series representation of a 
periodic function.
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644 Fourier Series

Find the exponential Fourier series for the periodic 
voltage shown in Fig. 16.16.

Solution
Using 2τ−  as the starting point for the integration, 
we have, from Eq. 16.33,

C
T

V e dt1
n m

jn t

2

2
0∫= ω

τ

τ
−

−

ω
=

−








ω

τ

τ−

−

V
T

e
jn

 m
jn t

0 2

2
0

Vm

v (t)

0 T
t

2t>2 T2t>2 T1t>2t>2

Figure 16.16 ▲ The periodic voltage for Example 16.7.

EXAMPLE 16.7     Finding the Exponential Form of the Fourier Series

jV
n T

e e ( )m jn jn

0

2 20 0

ω
= −ω τ ω τ−

ω
ω τ=

V
n T

n
2

 sin 2.m

0
0

Since t( )v  has even symmetry, b 0n =  for all n, 
and we expect C n to be real. Moreover, the ampli-
tude of C n follows a x x(sin )  distribution, as indi-
cated when we rewrite

C
V

T
n

n
 
sin 2

2
.n

m 0

0

τ ω τ
ω τ

( )
=

We say more about this subject in Section 16.9. 
The exponential Fourier series representation of 

t( )v  is

∑ τ ω τ
ω τ( ) ( )

= ω

=−∞

∞

v t
V

T
n

n
e( )

sin 2
2

 
n

m jn t0

0

0

∑τ ω τ
ω τ( ) ( )

= ω

=−∞

∞V
T

n
n

e
sin 2

2
  .m

n

jn t0

0

0

 Objective 4—Be able to calculate the exponential form of the Fourier coefficients for a periodic waveform

16.8  Derive the expression for the complex Fourier 
coefficients for the periodic voltage shown here.

Answer: 
π

= = = ± ± ± …C
V

C j
V
n

n
2

,
2

, 1, 2, 3, .o
m

n
m

16.9 a) The periodic voltage in Assessment 
 Problem 16.8 is applied to a 10 Ω resistor. 

If =V 120 V,m  what is the average power 
delivered to the resistor?

b) Assume v(t) is approximated by a trun-
cated exponential form of the Fourier series 
 consisting of the first eight nonzero terms, 
that is, n = 0, 1, 2, 3, 4, 5, 6, and 7. What is 
the rms value of the voltage, using this 
 approximation?

c) If the approximation in part (b) is used to 
represent v(t), what is the percentage of 
error in the calculated power?

Answer: a) 480 W;

b) 68.58 V;

c) 2.02%− .

ASSESSMENT PROBLEMS

SELF-CHECK: Also try Chapter Problems 16.44 and 16.45.

v(t)

Vm

T 2T2T

t

M16_NILS8436_12_SE_C16.indd   644 11/01/22   12:22 PM



 16.9 Amplitude and Phase Spectra 645

16.9 Amplitude and Phase Spectra
As we have noted, we generally cannot visualize what a periodic  function 
looks like in the time domain from its Fourier series representation. 
Nevertheless, we recognize that the Fourier coefficients characterize the 
periodic function completely.

We can describe a periodic function by plotting the amplitude and 
phase angle of each term in its Fourier series versus frequency. The plot of 
each term’s amplitude versus the frequency is called the amplitude spec-
trum of f t( ),  and the plot of each term’s phase angle versus the frequency 
is called the phase spectrum of f t( ). Because the amplitude and phase 
angle are defined at discrete frequency values (that is, at 0ω , 2 0ω , ω …3 ,0 ),  
these plots are also called line spectra.

Amplitude and phase spectra plots are based on either Eq. 16.20 (An  
and nθ− ) or Eq. 16.32 C( )n . We focus on Eq. 16.32 and leave the plots 
based on Eq. 16.20 to the problems. For example, consider the periodic 
voltage in Fig. 16.16. From Example 16.7,

C
V

T
n

n
 
sin 2

2
,n

m 0

0

τ ω τ
ω τ

( )
=

From the expression for Cn, we see that the amplitude spectrum is bounded 
by the envelope of the x x(sin )  function. Figure 16.17 provides the plot 
of x x(sin )  versus x, where x is in radians. It shows that the function’s 
value is zero whenever x is an integral multiple of .π  Replacing 0ω  with 

T2π  in the argument of the sine function in the  e xpression for Cn,

ω τ πτ π
τ( ) = =n n

T
n

T2
.0

We can therefore deduce that the amplitude spectrum goes through zero 
whenever n Tτ  is an integer. As the reciprocal of Tτ  becomes an increas-
ingly larger integer, the number of harmonics between every π  radians 
increases. If n Tπ  is not an integer, the amplitude spectrum still follows 
the x x(sin  )  envelope. However, the envelope is not zero at an inte-
gral multiple of .0ω  Because C n is real for all n, the phase angle associated 
with C n is either zero or 180°,  depending on its algebraic sign.

Now, what happens to the amplitude and phase spectra if f t( )  is 
shifted along the time axis? To find out, we shift the periodic voltage in 
Example 16.6 t 0  units to the right. By hypothesis,

t C e( ) .
n

n
jn t0∑= ω

=−∞

∞

v

Therefore

t t C e C e e( ) ,
n

n
jn t t

n
n

jn t jn t
0

( )0 0 0 0 0∑ ∑− = =ω ω ω

=−∞

∞
−

=−∞

∞
−v

which indicates that shifting the origin has no effect on the amplitude 
spectrum, because

= ω−C C e .n n
jn t0 0

However, the phase spectrum has changed to n tn 0 0θ ω( )− +  rads.
Example 16.8 plots the amplitude and phase spectra for a specific 

instance of the periodic voltage in Example 16.7.

0.2

0

0.4
0.6
0.8

1.0

sin x
x

x
22p 2p21.5p 2p 20.5p 0.5p p 1.5p

Figure 16.17 ▲ The plot of x x(sin )  versus x.
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0

1

0.8

0.6

0.4

0.2

180°

90°

21000 2800 2600 2400 2200 200 400 600 800

f (Hz)

f (Hz)

1000

021000 2800 2600 2400 2200 200 400 600 800 1000

|Cn|

un

Figure 16.18 ▲ The amplitude and phase spectra for the periodic waveform in Fig. 16.16, 
with = =V T5 V,  10 ms,m  and τ = T 5.

EXAMPLE 16.8      Plotting the Amplitude and Phase Spectra for a Periodic 
Voltage

Suppose that for the periodic voltage in Fig. 16.16, 
V T5 V,  10 ms,m = =  and T 5.τ =
a) Plot the amplitude and phase spectra versus fre-

quency (in Hz) for n10 10,− ≤ ≤ +  using the 
expressions for Cn given by Eq. 16.32.

b) Repeat part (a) if the periodic voltage in 
Fig. 16.16 is shifted 2τ  units to the right.

Solution
a)  Substituting the values for Vm and τ into the expres-

sion for Cn from Example 16.7 and simplifying, we get

C
n

n
sin 5

5
.n

π
π

( )
=

The values of Cn for n between –10 and +10 are 
tabulated at right. Since Cn is a real number for all 
values of n, its magnitude is the absolute value of Cn 
and its phase angle is 0° if Cn is positive and 180° if 

Cn is negative. The amplitude and phase spectra are 
plotted in Fig. 16.18.

n Cn n Cn

10− 0.000 1 0.935

9− 0.104− 2 0.757

8− 0.189− 3 0.505

7− 0.216− 4 0.234

6− 0.156− 5 0.000

5− 0.000 6 0.156−

4− 0.234 7 0.216−

3− 0.505 8 0.189−

2− 0.757 9 0.104−

1− 0.935 10 0.000

0 1.000
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16.10  Use the exponential form of the Fourier series to 
write an expression for the voltage shown here.

 Practical Perspective 647

b)  When the periodic voltage in Fig. 16.16 is shifted 
to the right by 2τ , we know that the amplitude 
spectrum is unchanged. Since T 5,τ =  the new 
phase angle θ ′n  is

θ θ π( )′ = − + n / 5 .n n

Objective 4—Be able to calculate the exponential form of the Fourier coefficients for a periodic waveform

Answer: ∑π

π π

= + −

= = −

ω

=−∞

∞

t
V V

n
c jd e

n d n

( )
4 2

  1  ( )  V,

where

sin
2

, 1 cos
2

.

m m

n
n n

jn t

n n

0v

c

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter Problems 16.49 and 16.50.

Practical Perspective 
Active High-Q Filters
Consider the narrowband op amp bandpass filter shown in Fig. 16.20(a). 
The square-wave voltage shown in Fig. 16.20(b) is the input to the filter. 
We know that the square wave is composed of an infinite sum of sinu-
soids, one sinusoid at the same frequency as the square wave and all 
of the remaining sinusoids at integer multiples of that frequency. What 
effect will the filter have on this input sum of sinusoids?

The Fourier series representation of the square wave in Fig. 16.20(b) 
is given by

∑π
π ω=

= …

∞

v t A
n

n n t( ) 4   1 sin
2

cosg
n 1,3,5,

0

where π=A 15.65  V . The first three terms of this Fourier series are given by

45°

245°
2100028002600 24002200 2000 400 600 800 1000

290°

2135°

2180°

90°

135°

180°

un

f (Hz)

Figure 16.19 ▲ The phase spectra for the periodic waveform in  
Fig. 16.16, shifted to the right by τ 2, with = =V T5 V,  10 ms,m   
and τ = T 5.

t

v(t)

T>2 3T>4 5p>4T>42T>4 T0

Vm

The plot of the amplitude spectra for this shifted 
periodic voltage is the same as the one shown in 
Fig. 16.18, while the plot of the phase spectra for 
the shifted period voltage is shown in Fig. 16.19, for 

n10 10.− ≤ ≤ +

The periodic waveform in Fig. 16.16 is important 
because it provides an excellent way to illustrate the tran-
sition from the Fourier series representation of a periodic 
function to the Fourier transform representation of a 
nonperiodic function. We discuss the Fourier transform 
in Chapter 17.
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2

1

(a)

(b)

1

2

vo

1

2

vg

100 nF3912.50 V

100 nF 10 kV

6.26 V

C2

C1

R1

R2

R3

15.65p

vg (V)

t (ms)
25p 50p0250p 225p 12.5p 37.5p

215.65p

237.5p 212.5p

Figure 16.20 ▲ (a) Narrowband bandpass filter; (b) square-wave input.

ω ω ω= − + − …t t t t( ) 62.6 cos 20.87cos 3 12.52 cos 5g 0 0 0v  V. 

The period of the square wave is π µ50   s , so the frequency of the square 
wave is 40,000  rad s.

The transfer function for the bandpass filter in Fig. 16.20(a) is

β
β ω

=
+ +

H s K s
s s

( )
2

0
2

where =K 400 313, β = 2000  rad s, ω = 40,000  rad s0 . This filter  
has a quality factor of =40,000 2000 20. Note that the center  
frequency of the bandpass filter equals the frequency of the input  
square wave.

Multiply each term of the Fourier series representation of the square 
wave, represented as a phasor, by the transfer function H s( ) evaluated 
at the frequency of the term in the Fourier series to get the representa-
tion of the output voltage of the filter as a Fourier series:

�ω ω ω= − − + +v t t t t( ) 80 cos 0.5cos 3 0.17cos 5 V.o 0 0 0

Notice the selective nature of the bandpass filter, which effectively 
amplifies the fundamental frequency component of the input square 
wave and attenuates all of the harmonic components.

Now make the following changes to the bandpass filter of 
Fig. 16.20(a)—let = ΩR 391.25 1 , = ΩR 74.4 2 , = ΩR 1 k3 , and 

µ= =C C 0.1  F1 2 . The transfer function for the filter, H s( ), has the 
same form given above, but now =K 400 313, β = 20,000  rad s ,  
ω = 40,000  rad s0 . The passband gain and center frequency are 
unchanged, but the bandwidth has increased by a factor of 10. This 
makes the quality factor 2, and the resulting bandpass filter is less 
selective than the original filter. We can see this by looking at the output 
voltage of the filter as a Fourier series:

�ω ω ω= − − + +v t t t t( ) 80 cos 5cos 3 1.63cos 5 V.o 0 0 0
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(a)

80

280

20

100

0
220

60
40

240
260

vg (V)

t (ms)

(b)

100

280
2100

20

100
0

220

80

40
60

240
260

vo (V)

t (ms)

Figure 16.21 ▲ (a) The first three terms of the Fourier series of the square wave in Fig. 16.20(b); (b) the first three terms of  
the Fourier series of the output from the bandpass filter in Fig. 16.20(a), where =Q 20  (solid line); the first three terms of  
the Fourier series of the output from the bandpass filter in Fig. 16.20(a) with component values changed to give =Q 2  
(dashed line).

 Summary 649

At the fundamental frequency, the output has the same 
 amplification factor, but the higher harmonic components have not 
been attenuated as significantly as they were when the filter with 

=Q 20  was used. Figure 16.21 plots the first three terms of the 
Fourier series representations of the input square wave and the result-
ing output waveforms for the two bandpass filters. Note the nearly 
perfect replication of a sinusoid in the solid line plot of Fig. 16.21(b) 
and the distortion that results when using a less selective filter in the 
dashed line plot of Fig. 16.21(b).

SELF-CHECK: Assess your understanding of the Practical Perspective 
by solving Chapter Problems 16.56 and 16.57.

Summary
• A periodic function is a function that repeats itself every 

T seconds. A period is the smallest time interval (T) that 
a periodic function can be shifted to produce a function 
identical to itself. (See page 618.)

• The Fourier series is an infinite series used to represent 
a periodic function. The series consists of a constant 
term and infinitely many harmonically related cosine 
and sine terms. (See page 621.)

• The fundamental frequency is the frequency determined 
by the fundamental period ( f T10 =  or f20 0ω π= ). 
(See page 621.)

• The harmonic frequency is an integer multiple of the 
fundamental frequency. (See page 621.)

• The Fourier coefficients are the constant term and the 
coefficient of each cosine and sine term in the series. 
(See Eqs. 16.3–16.5, page 622.)

• Five types of symmetry are used to simplify the compu-
tation of the Fourier coefficients:

•  even, in which all sine terms in the series are zero;
• odd, in which all cosine terms and the constant term 

are zero;
• half-wave, in which all even harmonics are zero;
• quarter-wave, half-wave, even, in which the series 

contains only odd harmonic cosine terms;
• quarter-wave, half-wave, odd, in which the series con-

tains only odd harmonic sine terms.

(See page 625.)

• In the alternative form of the Fourier series, each 
harmonic represented by the sum of a cosine and 
sine term is combined into a single term of the form 

ω θ( )−A n tcosn n0 . (See page 631.)

• For steady-state response, the Fourier series of the 
output signal is determined by first finding the out-
put for each component of the input signal. The indi-
vidual responses are added (superimposed) to form 
the Fourier series of the output signal. The response 
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650 Fourier Series

to the individual terms in the input series is found by 
either  frequency-domain or s-domain analysis. (See 
page 633.)

• The waveform of the output signal is difficult to obtain 
without the aid of a computer. Sometimes the frequency 
response (or filtering) characteristics of the circuit can 
be used to ascertain how closely the output waveform 
matches the input waveform. (See page 635.)

• Only harmonics of the same frequency interact to pro-
duce average power. The total average power is the sum 
of the average powers associated with each frequency. 
(See page 640.)

• The rms value of a periodic function can be estimated 
from the Fourier coefficients. (See Eqs. 16.31 and 16.35, 
page 641.)

• The Fourier series of a periodic signal may also be writ-
ten in exponential form by using Euler’s identity to 
replace the cosine and sine terms with their exponential 
equivalents. (See page 642.)

• An amplitude spectrum plots the amplitudes of a function’s 
Fourier series representation versus discrete frequencies. 
A phase spectrum plots the phase angles of a function’s 
Fourier series representation versus discrete frequencies. 
These plots help to visualize the transformation of a cir-
cuit’s input signal to its output signal. (See page 645.)

Problems

Sections 16.1–16.2

 16.1  Find the Fourier series expressions for the peri-
odic voltage functions shown in Fig. P16.1. Note 
that Fig. P16.1(a) illustrates the square wave; 
Fig. P16.1(b) illustrates the full-wave rectified sine 
wave, where t V T t( ) sin( )m π=v , t T0 ≤ ≤ ; and 
Fig. P16.1(c) illustrates the half-wave rectified sine 
wave, where π( )=t V T t( )  sin 2mv , t T0 2≤ ≤ .

 16.2  Derive the expressions for av , ak, and bk for the 
periodic voltage shown in Fig. P16.2.

Vm

2Vm

T
t

2T 2T 3T

v(t)

v(t)

v(t)

(a)

0

Vm

T
t

2T 2T 3T
(b)

0

Vm

T>2
t

T 3T>2
(c)

0

Figure P16.1

v (V)

100

50

2100

250

15 30 45215230245 60 75 90
t (ms)

 Figure P16.2

200

100

0 T>4 T>2 3T>4 T2T>42T>223T>42T

v(t) V

t

Figure P16.3

 16.3  Derive the Fourier series for the periodic voltage 
shown in Fig. P16.3, given that

v t
T

t T t T( ) 200 cos 2  V,
4 4

;π= − ≤ ≤

v t
T

t T t T( ) 100 cos 2  V,
4

3
4

π= − ≤ ≤ .

M16_NILS8436_12_SE_C16.indd   650 11/01/22   12:22 PM



 16.4  For each of the periodic functions in Fig. P16.4, 
specify

a) ω0  in radians per second;

b) f0 in hertz;

c) the value of av;

d) the equations for ak and bk;

e) v(t) as a Fourier series.

200
3

400
3

800
3

1000
3

200 400
t (ms)

t (ms)

9p

3p

50

25

210 3 4 522 21232425 6 7 8 9 10

v (V)

(a)

(b)

v (V)

Figure P16.4

16.5 a) Verify the following equations:

m t dt m

m t dt m

sin   0, for all  ,

cos   0, for all  .

t

t T

t

t T

0

0

0

0

0

0

∫

∫

ω

ω

=

=

+

+

b) Verify the following equation:

m t n t dt m ncos sin   0, for all   and  .
t

t T

0 0
0

0

∫ ω ω =
+

Hint:  Use the trigonometric identity 

α β α β α β( ) ( )= + − −cos sin 1
2

sin 1
2

sin .

c) Verify the following equation:

∫ ω ω = ≠
+

m t n t dt m nsin sin   0, for all  ,
t

t T

0 0
0

0

T m n
2

, for  .= =

Hint: Use the trigonometric identity 

α β α β α β( ) ( )= − − +sin sin 1
2

cos 1
2

cos .

d) Verify the following equation:

∫ ω ω = ≠
+

m t n t dt m ncos cos   0, for all  ,
t

t T

0 0
0

0

T m n
2

, for  .= =

Hint: Use the trigonometric identity 

α β α β α β( ) ( )= − + +cos cos 1
2

cos 1
2

cos .

 16.6  Derive Eq. 16.5.

Section 16.3

 16.7  Derive the expressions for the Fourier coeffi-
cients of an odd periodic function. Hint: Use the 
same technique as used in the text in deriving 
Eqs. 16.7–16.9.

 16.8  Show that if f t f t T( ) ( 2)= − − , the Fourier coef-
ficients bk are given by the expressions

=b k0,  for   even;k

b
T

f t k t dt k4 sin   ,  for   odd.k

T

0

2

0∫ ω( )=

Hint: Use the same technique as used in the text to 
derive Eqs. 16.16.

  16.9  Derive Eqs. 16.18. Hint: Start with Eqs. 16.16 and 
divide the interval of integration into 0 to T 4   
and T 4  to T 2. Note that because of evenness and 
quarter-wave symmetry, f t f T t( ) ( 2 )= − −  in the 
interval T t T4 2≤ ≤ . Let x T t2= −  in the 
second interval and integrate between 0 and T 4.

 16.10  Derive Eqs. 16.19. Follow the hint given in 
Problem 16.9 except that because of oddness and 
quarter-wave symmetry, f t f T t( ) ( 2 )= −  in the 
interval T t T4 2≤ ≤ .

 Problems 651
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652 Fourier Series

 16.15  It is given that π=v t t t( ) 20 cos(0.25 ) V  over the 
interval − ≤ ≤t6 s 6 s . The function then repeats 
itself.

a) What is the fundamental frequency in radians 
per second?

b) Is the function even?
c) Is the function odd?
d) Does the function have half-wave symmetry?

 16.16 a) Derive the Fourier series for the periodic cur-
rent shown in Fig. P16.16.

b) Repeat (a) if the vertical reference axis is shifted 
T 2  units to the left.

v(t)

Vm

2Vm

2T 2T>2 0 T>2 T
t

(a)

(b)

v(t)

Vm

2Vm

T>60 T5T>62T>3T>3
t

T>2

Figure P16.11

25T>4 23T>4 2T>4 3T>4 5T>4TT>4 T>202T>22T
t

Im

i (t)

Figure P16.16

 16.12  It is given that f t t( ) 0.4 2=  over the interval 
t5 s 5 s− < < .

a) Construct a periodic function that satisfies this 
f(t) between 5−  s and 5+  s, has a period of 20 s, 
and has half-wave symmetry.

b) Is the function even or odd?

c) Does the function have quarter-wave symmetry?

d) Derive the Fourier series for f(t).

e) Write the Fourier series for f(t) if f(t) is shifted 
5 s to the right.

 16.13  Repeat Problem 16.12 given that =f t t( ) 0.4 3  
over the interval t5 s 5 s− < < .

 16.14  One period of a periodic function is described by 
the following equations:

= ≤ ≤i t t t( ) 4000  A, 0 1.25 ms;

= ≤ ≤i t t( ) 5 A, 1.25 ms 3.75 ms;

= − ≤ ≤i t t t( ) 20 4000  A, 3.75 ms 6.25 ms;

= − ≤ ≤i t t( ) 5 A, 6.25 ms 8.75 ms;

= − + ≤ ≤i t t t( ) 40 4000  A, 8.75 ms 10 ms.

a) What is the fundamental frequency in hertz?

b) Is the function even?

c) Is the function odd?

d) Does the function have half-wave symmetry?

e) Does the function have quarter-wave symmetry?

f) Give the numerical expressions for av, ak, and  
bk.

  16.17  The periodic function shown in Fig. P16.17 is even 
and has both half-wave and quarter-wave symmetry.

a) Sketch one full cycle of the function over the 
interval T t T4 3 4− ≤ ≤ .

b) Derive the expression for the Fourier coeffi-
cients av, ak, and bk.

c) Write the first three nonzero terms in the Fourier 
expansion of f(t).

d) Use the first three nonzero terms to estimate 
f T( 8).

2

1

T>4T>8

t

f(t)

Figure P16.17

 16.11  Find the Fourier series of each periodic function 
shown in Fig. P16.11.
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 16.18  It is sometimes possible to use symmetry to find the 
Fourier coefficients, even though the original func-
tion is not symmetrical! With this thought in mind, 
consider the function in Fig. P16.4(a). Observe that 
v(t) can be divided into the two functions illustrated 
in Fig. P16.18(a) and (b). Furthermore, we can make 
v2(t) an even function by shifting it 200 6 ms  to 
the right. This is illustrated in Fig. P16.18(c). At this 
point we note that t t t( ) ( ) ( )1 2= +v v v  and that 
the Fourier series of v1(t) is a single-term series 
consisting of Vm. To find the Fourier series of v2(t), 
we first find the Fourier series of t( 200 6)2 −v  and 
then shift this series 200 6 ms units to the left. Use 
the technique just outlined to verify the Fourier 
coefficients found in Problem 16.4(a).

v1 (V)

v2 (t) [V]

1000
3

1000
3

1000
3

200

200

200

400

400

400

800
3

800
3

800
3

400
3

400
3

400
3

200
3

200
3

200
3

2200
3

2200
3

2200
3

v2(t 2 200>6) [V]

9p

3p

23p

26p

26p

(a)

(b)

(c)

t (ms)

t (ms)

t (ms)

Figure P16.18

Section 16.4

16.19 a) Derive the Fourier series for the periodic func-
tion shown in Fig. P16.19 when π=V 378  Vm . 
Write the series in the form of Eq. 16.20.

b) Use the first five nonzero terms to estimate 
v T( 8).

0

T>2 T
t

v(t)

2Vm

Vm

Figure P16.19

 16.20  Derive the Fourier series for the periodic function 
shown in Fig. P16.3, using the form of Eq. 16.20.

 16.21  Derive the Fourier series for the periodic func-
tion described in Problem 16.12, using the form of 
Eq. 16.20.

 16.22  Derive the Fourier series for the periodic function 
constructed in Problem 16.14, using the form of 
Eq. 16.20.

Section 16.5

 16.23  Derive Eqs. 16.26 and 16.27.

16.24 a)  Derive Eq. 16.28.

 Hint: Note that π ω= +b V k k RCa4k m o k . Use  
this expression for bk to find a bk k

2 2+  in terms 
of ak. Then use the expression for ak to derive 
Eq. 16.28.

b) Derive Eq. 16.29.

 16.25  Show that when we combine Eqs. 16.28 and 16.29 
with Eqs. 16.20 and 16.21, the result is Eq. 16.22. 
Hint: Note from the definition of kβ  that

a
b

tan  ,k

k
kβ= −

and from the definition of kθ  that

θ β= −tan cot .k k

Now use the trigonometric identity
= −x xtan cot(90 )

to show that 90k kθ β= + .

16.26 a) Show that for large values of C, Eq. 16.24 can be 
approximated by the expression

t
V T
RC

V
RC

t( )
4

  .o
m m≈

−
+v

 Problems 653
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654 Fourier Series

 16.29  The full-wave rectified sine-wave voltage shown 
in Fig. P16.29(a) is applied to the circuit shown in 
Fig. P16.29(b).

a) Find the first five nonzero terms in the Fourier 
series representation of vo.

b) Does your solution for vo make sense? Explain.

Note that this expression is the equation 
of the triangular wave for t T0 2≤ ≤ .  
Hints:  (1) Let e t RC1 ( )t RC ≈ −−  and 
e T RC1 ( 2 )T RC2 ≈ −− ; (2) put the result-
ing expression over the common denominator 

T RC2 ( 2 )− ; (3) simplify the numerator; and 
(4) for large C, assume that T RC2  is much less 
than 2.

b) Substitute the peak value of the triangular 
wave into the solution for Problem 16.13 (see 
Fig. P16.13(b)) and show that the result is 
Eq. 16.23.

 16.27  The square-wave voltage shown in Fig. P16.27(a) is 
applied to the circuit shown in Fig. P16.27(b).

a) Find the Fourier series representation of the 
steady-state current i.

b) Find the steady-state expression for i by straight-
forward circuit analysis.

PSPICE
MULTISIM

1

2

vg

vg

R

L

Vm

0 3T>2T>2 T

(a) (b)

t

i

Figure P16.27
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Figure P16.28
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Figure P16.29

10 kV

20 nF 20 mH vovg

1

2

1

2

(a)

(b)

Vm

vg

T>20 T

2Vm

t

Figure P16.30

 16.28  The periodic triangular wave seen in Fig. P16.28(a) 
is applied to the circuit in Fig. P16.28(b). Derive 
the first three nonzero terms in the Fourier series 
that represents the steady-state voltage ov  if 

π=V 281.25  mVm
2  and the period of the input 

voltage is 200  msπ .

 16.30   The periodic square wave shown in Fig. P16.30(a) is 
applied to the circuit in Fig. P16.30(b).

a) Derive the first four nonzero terms in the 
Fourier series that represents the steady-state 
voltage vo if V 210  Vm π=  and the period of 
the input voltage is 0.2π ms.

b) Which harmonic dominates the output voltage? 
Explain why.

PSPICE
MULTISIM
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 16.31  A periodic voltage having a period of π0.1  ms is 
 given by the following Fourier series:

n
n

n n t45   8 sin
2

cos  V.g
n

o
1, 3, 5, 

2 2

3∑ π π ω= −

= …

∞

v

This periodic voltage is applied to the circuit shown 
in Fig. P16.31. Find the amplitude and phase angle 
of the component of ov  that has a frequency of 
300 krad/s.

1

2

10 kV

vg 10 nF mH vo

1

2

10 
9

Figure P16.31

ig

ig (A)

t (ms)

200 V

800 V
20 mH

25 nF
io

0.2p0.1p0

230p2

30p2

(a)

(b)

Figure P16.32

 16.32  The periodic current shown in Fig. P16.32(a) is used 
to energize the circuit shown in Fig. P16.32(b). Write 
the time-domain expression for the fifth-harmonic 
component in the expression for io.

Section 16.6

 16.33  The periodic voltage function in Fig. P16.11(b) 
is applied to the circuit shown in Fig. P16.33. If 

V12 296.09m =  V and T 2094.4 ms= , estimate 
the average power delivered to the 2 Ω resistor.

1

2
2 V

1 H 1 F

vR
vg

1

2

Figure P16.33

1

2
20 kVvg 50 pF

20 mH

(a)

(b)

vg (V)

50

0 p 2p 3p 4p
t (ms)

Figure P16.34

 16.34  The triangular-wave voltage source, shown in 
Fig. P16.34(b), is applied to the circuit in Fig. P16.34(a). 
Estimate the average power delivered to the Ω20 k  
resistor when the circuit is in steady-state operation.

 Problems 655
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656 Fourier Series

 Section 16.7

16.36 a) Use the first four nonzero terms in the Fourier 
series approximation of the periodic voltage 
shown in Fig. P16.36 to estimate its rms value.

b) Calculate the true rms value of the voltage.
c) Calculate the percentage of error in the esti-

mated value.

T>4 T>23T>8 3T>4 7T>85T>8T>80 T
t

Vm

Vm >2

2Vm >2

2Vm

Vg

Figure P16.36

16.37 a) Estimate the rms value of the half-wave rectified 
sinusoidal current shown in Fig. P16.37(a) by 
 using the first three nonzero terms in the Fourier 
series representation of i(t).

b) Calculate the percentage of error in the estimation.
c) Repeat (a) and (b) if the half-wave rectified sinu-

soidal current is replaced by the full-wave recti-
fied sinusoidal current shown in Fig. P16.37(b).

(a)

i (mA)

i (mA)

0 50 100

120

t (ms)

(b)

0 50 100

120

t (ms)

Figure P16.37

T>2

Im

ig

3T>4

T>4

0
T

t

2Im

Figure P16.38

16.38 a) Derive the expressions for the Fourier coef-
ficients for the periodic current shown in 
Fig. P16.38.

b) Write the first four nonzero terms of the series 
using the alternative trigonometric form given 
by Eq. 16.20.

c) Use the first four nonzero terms of the expression 
derived in (b) to estimate the rms value of ig.

d) Find the exact rms value of ig.

e) Calculate the percentage of error in the esti-
mated rms value.

t
T0

v(t) V

270p

Figure P16.35

 16.35  The periodic voltage shown in Fig. P16.35 is applied 
to a π Ω81 k2  resistor.

a) Use the first four nonzero terms in the Fourier 
series representation of v(t) to estimate the aver-
age power dissipated in the resistor.

b) Calculate the exact value of the average power 
dissipated in the resistor.

c) What is the percentage of error in the estimated 
value of the average power?
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 16.39  The voltage and current at the terminals of a 
 network are

v t t80 200 cos (500 45°) 60 sin1500  V,= + + +

i t t10 6 sin(500 75°) 3cos(1500 30°) A.= + + + +

The current is in the direction of the voltage drop 
across the terminals.

a) What is the average power at the terminals?

b) What is the rms value of the voltage?

c) What is the rms value of the current?

 16.40  Assume the periodic function described in Problem 
16.17 is a current i with a peak amplitude of 2 A.

a) Find the rms value of the current.

b) If this current is applied to a 54   Ω  resistor, what 
is the average power dissipated in the resistor?

c) If i is approximated by using just the fundamen-
tal frequency term of its Fourier series, what 
is the average power delivered to the 54   Ω  
resistor?

d)  What is the percentage of error in the estimation 
of the power dissipated?

16.41 a) Find the rms value of the voltage shown in 
Fig. P16.41 for V 50 Vp = . Note that the 
Fourier series for this periodic voltage was 
found in Assessment Problem 16.3.

b) Estimate the rms value of the voltage, using the 
first three nonzero terms in the Fourier series 
representation of v(t).

v(t)

Vp

2Vp

2T 2T>2 0 T>2 3T>2T
t

Figure P16.41

(a) (b)

v (V)

0 5 10

80

280

t (ms)

v (V)

0 5 10

80

280

t (ms)

Figure P16.42

16.42 a) Estimate the rms value of the periodic triangu-
lar voltage shown in Fig. P16.42(a) by using the 
first four nonzero terms in the Fourier series 
representation of v(t).

b) Calculate the percentage of error in the 
 estimation.

c) Repeat parts (a) and (b) if the periodic triangu-
lar voltage is replaced by the periodic square-
wave voltage shown in Fig. P16.42(b).

Vp

v (V)

ta tb0 T
t (s)

2Vp

25

v (V) v (V)

v (V)

0 1 2 3 4 5
t (s) t (s)

t (s)

225

(a) (b)

25

0 2 5

225

25

225

0 5

(c) (d)

Figure P16.43

 16.43  The rms value of any periodic triangular wave 
having the form depicted in Fig. P16.43(a) is inde-
pendent of ta and tb. Note that for the function to 
be single valued, t t .a b≤  The rms value is equal 
to V 3.p  Verify this observation by finding the 
rms value of the three waveforms depicted in 
Fig. P16.43(b)–(d).

 Problems 657
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1

2

1

2

50 kV

200 kVvg 6.25 nF100 mH vo

(a)

(b)

T2T T>22T>2
t

Vm

vg

2Vm

Figure P16.47

16.48 a) Find the rms value of the periodic voltage in 
Fig. P16.47(b).

b) Estimate the rms value of gv  using the complex 
coefficients derived in Problem 16.47(b).

c) What is the percentage of error in the estimated 
rms value of gv ?

Section 16.9

16.49 a) Make an amplitude and phase plot, based on 
Eq. 16.20, for the periodic voltage in Example 
16.3. Assume Vm is 40 V. Plot both amplitude 
and phase versus n ,oω  where n 0,  1,  2,  3, ... .=

b) Repeat (a), but base the plots on Eq. 16.32.

16.50 a) Make amplitude and phase plots for the  periodic 
voltage in Problem 16.35, based on Eq. 16.20. 
Plot both amplitude and phase versus ωn ,o  
where n 0,  1,  2, ... .=

b) Repeat (a), but base the plots on Eq. 16.32.

t (ms)

i (A)

4 8 12 24 36 40 44

2

8

28

2 2 16 20 28 32

Figure P16.44

Section 16.8

 16.44  Derive the expression for the Fourier coeffi-
cients Cn for the periodic function in Fig. P16.44.  
Hint: Take advantage of symmetry by using the fact 
that = −C a jb( ) 2n n n .

16.45 a) Calculate the rms value of the periodic current 
in Problem 16.44.

b) Using C1–C11, estimate the rms value of the 
current.

c) What is the percentage error in the value 
obtained in (b), based on the true value found 
in (a)?

d) For this periodic current, could the error be kept 
below 1.5% using fewer terms to estimate the 
rms value?

 16.46  The current in Problem P16.44 is shifted along the 
time axis 8 ms to the right. Find the exponential 
Fourier series for this shifted periodic current.

 16.47  The periodic voltage source in the circuit shown 
in Fig. P16.47(a) has the waveform shown in 
Fig. P16.47(b).

a) Derive the expression for Cn for the input voltage vg.

b)  Find the values of the complex coefficients 
C C C C C C C C,   ,   ,   ,   ,   ,   ,   ,o 1 1 2 2 3 3 4− − − −  and C4 
for the input voltage gv  if V 72  Vm π=  and 
T 50   s.π µ=

c) Repeat (b) for ov .

d) Use the complex coefficients found in (c) to esti-
mate the average power delivered to the Ω200 k   
resistor.
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A8
A6

A4
A2A0

908

un

(a)

(b)

1808

8vo6vo4vo2vo

0 8vo6vo4vo2vo

nvo

nvo

Figure P16.51

(a)

(b)

krad>s

90°

2un

290°

1
30

5
7

0 1

(17.64)

(441)
(49)

(9)

3 5 7
krad>s

An (mA)

Figure P16.52

 16.52  A periodic current is represented by a Fourier 
series that has a finite number of terms. The ampli-
tude and phase spectra are shown in Fig. P16.52(a) 
and (b), respectively.

a) Write the expression for the periodic current 
using the form given by Eq. 16.20.

b) Is the current an even or odd function of t?

c) Does the current have half-wave symmetry?

d) Calculate the rms value of the current in 
milliamperes.

e) Write the exponential form of the Fourier series.

f)  Make the amplitude and phase spectra plots on 
the basis of the exponential series.

Sections 16.1–16.9

 16.53  The input signal to a unity-gain second-order low-
pass Butterworth filter is a full-wave rectified sine 
wave with an amplitude of 2.5π V and a fundamen-
tal frequency of 5000 rad/s. The cutoff frequency of 
the filter is 1 krad/s. Write the first two terms in the 
Fourier series that represents the steady-state out-
put voltage of the filter.

 16.54  The input signal to a unity-gain third-order high-
pass Butterworth filter is the periodic triangular 
voltage shown in Fig. P16.54. The cutoff frequency 
of the filter is 1 rad/s. Write the first three terms in 
the Fourier series that represents the steady-state 
output voltage of the filter.

 Problems 659

 16.51  A periodic voltage is represented by a truncated 
Fourier series. The amplitude and phase spectra are 
shown in Fig. P16.51(a) and (b), respectively.

a) Write an expression for the periodic voltage 
using the form given by Eq. 16.20.

b) Is the voltage an even or odd function of t?

c) Does the voltage have half-wave symmetry?

d) Does the voltage have quarter-wave symmetry?

0

vg (V)

2p p 4p3p2p22p23p
t (s)

2p2  8

p2  8

Figure P16.54
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(a)

2

1 1

2

vo

1

2

vg

100 nF3912.5 V

100 nF 10 kV

6.26 V

C2

C1

R1

R2

R3

(b)

215.65p

237.5p 212.5p 12.5p 37.5p

15.65p

vg (V)

t (ms)

Figure P16.56

 16.55  The input signal to a unity-gain second-order band-
pass Butterworth filter is a half-wave rectified sine 
wave with an amplitude of 2.5π V and a fundamen-
tal frequency of 5 krad/s. The lower cutoff frequency 
of the filter is 1000 rad/s and the upper cutoff fre-
quency of the filter is 8000 rad/s. Write the first two 
non-zero terms in the Fourier series that represents 
the steady-state output of the filter.

 16.56  The transfer function V V( )o g  for the narrowband 

bandpass filter circuit in Fig. P16.56(a) is

β
β ω

=
−
+ +

H s
K s

s s
( ) .o

o
2 2

a) Find K ,   ,o β  and o
2ω  as functions of the circuit 

parameters R1, R2, R3, C1, and C2.

b) Write the first three terms in the Fourier series 
that represents ov  if gv  is the periodic voltage 
in Fig. P16.56(b).

c) Predict the value of the quality factor for the 
filter by examining the result in part (b).

d) Calculate the quality factor for the filter using 
β  and oω  and compare the value to your pre-
diction in part (c).
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(a)

vo

1 1
1

2

2

2

vg

100 nF25 kV

100 nF 50 kV

20.016 V

C2

C1

R1

R2

R3

(b)

22.25p2

2.25p2

vg (mV)

t (ms)

20.1p 0.1p 0.2p

Figure P16.57

16.57 a) Find the values for K,   ,β  and o
2ω  for the  

bandpass filter shown in Fig. P16.57(a).

b) Find the first three terms in the Fourier series 
for vo in Fig. P16.57(a) if the input to the filter is 
the waveform shown in Fig. P16.57(b).

 Problems 661
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CHAPTER CONTENTS

17 
CHAPTER 

The Fourier Transform
In Chapter  16, we represented periodic functions with a 
Fourier series. This series describes the periodic function using 
the frequency-domain attributes of amplitude and phase angle.   
The Fourier transform extends this frequency-domain represen-
tation to functions that are not periodic. But we have already 
transformed aperiodic functions from the time domain to the fre-
quency domain, using the Laplace transform. You may wonder, 
then, why yet another type of transformation is necessary.

Strictly speaking, the Fourier transform is not a new trans-
form. It is a special case of the bilateral Laplace transform, with 
the real part of the complex frequency set to zero. However, in 
terms of a physical interpretation, the Fourier transform is better 
viewed as a limiting case of a Fourier series. We present this point 
of view in Section 17.1, where we derive the Fourier transform 
equations.

The Fourier transform is more useful than the Laplace trans-
form in certain communications theory and signal-processing 
applications. Although we cannot pursue the Fourier transform 
in depth, its introduction here seems appropriate while the ideas 
underlying the Laplace transform and the Fourier series are still 
fresh in your mind.

17.1  The Derivation of the Fourier 
Transform p. 664

17.2  The Convergence of the Fourier 
Integral p. 666

17.3  Using Laplace Transforms to Find 
Fourier Transforms p. 668

17.4 Fourier Transforms in the Limit p. 670

17.5 Some Mathematical Properties p. 673

17.6 Operational Transforms p. 674

17.7 Circuit Applications p. 679

17.8 Parseval’s Theorem p. 681

1 Be able to calculate the Fourier transform of 
a function using any or all of the following:

•  The definition of the Fourier transform;

•  Laplace transforms;

• Mathematical properties of the Fourier 
transform;

• Operational transforms.

2 Know how to use the Fourier transform to 
find the response of a circuit.

3 Understand Parseval’s theorem and be 
able to use it to answer questions about 
the energy contained within specific 
frequency bands.

CHAPTER OBJECTIVES
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 Practical Perspective
Filtering Digital Signals
It is common to use telephone lines to communicate 
 information from one computer to another. As you may 
know, computers represent all information as collections 
of 1’s and 0’s. The value 1 is represented as a voltage, 
usually 5 V, and 0 is represented as 0 V, as shown below. 

The telephone line has a frequency response charac-
teristic that is similar to a low-pass filter. We can use 
Fourier transforms to understand the effect of transmit-
ting a digital value using a telephone line that behaves 
like a filter.

Squareplum/Shutterstock

0 1 1 1 0 1 0 0 1 0

0 1 1 1 0 1 0 0 1 0
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664 The Fourier Transform

17.1  The Derivation of the Fourier 
Transform

We derive the Fourier transform, viewed as a limiting case of a Fourier 
series and using the exponential form of the series:

 ∑= ω

=−∞

∞

f t C e( ) ,
n

n
jn t0  (17.1)

where

 ∫= ω−
−

C
T

f t e dt1 ( ) .n
jn t

T

T

2

2
0

 (17.2)

In Eq. 17.2, we elected to start the integration at = −t T 2.0
If the period T increases without limit, f(t) transitions from a periodic 

to an aperiodic function. In other words, if T is infinite, f(t) never repeats 
itself and hence is aperiodic. As T increases, the separation between adja-
cent harmonic frequencies becomes smaller and smaller. In particular,

ω ω ω ω π∆ = + − = =n n
T

( 1) 2 ,0 0 0

and as T gets larger and larger, the incremental separation ω∆  approaches 
a differential separation ωd . Therefore,

ω
π

→ → ∞
T

d T1
2

  as .

As the period increases, the frequency is no longer a discrete variable but 
is instead a continuous variable, or

ω ω→ → ∞n Tas .0

We can also see from Eq. 17.2 that, as the period increases, the  
Fourier coefficients C n get smaller. In the limit, →C 0n  as → ∞T . This 
result makes sense because we expect the Fourier coefficients to vanish 
when the function is no longer periodic. Note, however, the limiting value 
of the product C Tn ; that is,

∫→ → ∞ω−
−∞

∞
C T f t e dt T( ) as .n

j t

In writing the limiting value of C Tn , we replaced ωn 0  with ω.  The integral 
represents the Fourier transform of f t( ) and is denoted

FOURIER TRANSFORM

 F f t f t e dt( ) ( ) ( ) .j t∫ω { }= = ω−
−∞

∞
F  (17.3)
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 17.1 The Derivation of the Fourier Transform 665

We obtain an explicit expression for the inverse Fourier transform by 
investigating the limiting form of Eq. 17.1 as → ∞T . We begin by multi-
plying and dividing Eq. 17.1 by T:

∑ ( )= ω

=−∞

∞

f t C T e
T

( ) ( ) 1 .
n

n
jn t0

As → ∞T , the summation approaches integration, ω→C T F( )n , 
ω ω→n 0 , and ω π→T d1 2 . Thus, in the limit, f(t) becomes

INVERSE FOURIER TRANSFORM

 ∫π
ω ω= ω

−∞

∞
f t F e d( ) 1

2
  ( ) .j t  (17.4)

 Equations 17.3 and 17.4 define the Fourier transform. Equation 17.3 
transforms the time-domain expression f t( ) into its corresponding 
 frequency-domain expression ωF( ) . Equation 17.4 defines the inverse 
 operation, transforming ωF( )  into f t( ).

Let’s now derive the Fourier transform of the pulse shown in Fig. 17.1. 
Note that this pulse corresponds to the periodic voltage in Example 16.7 
if we let → ∞T . The Fourier transform of t( )v  comes directly from 
Eq. 17.3:

∫ω = ω
τ

τ
−

−
V V e dt( ) m

j t

2

2

ω
=

−

ω

τ

τ−

−

V e
j( )m

j t

2

2

V
j

j  2 sin
2

,m

ω
ωτ( )=

−
−

which can be written in the form x x(sin )  by multiplying the numerator 
and denominator by τ 2. Then,

 ω τ
ω τ

ω τ
=V V( )  

sin 2
2

.m  (17.5)

For the periodic voltage pulses in Example 16.7, the expression for the 
Fourier coefficients is

 
τ ω τ

ω τ
=C

V
T

n
n

 
sin 2

2
.n

m 0

0

 (17.6)

Compare Eqs. 17.5 and 17.6. Note that as the time-domain function 
goes from periodic to aperiodic, the amplitude spectrum goes from a dis-
crete line spectrum to a continuous spectrum. Furthermore, the envelope 
of the line spectrum has the same shape as the continuous spectrum. Thus, 
as T increases, the lines in the spectrum get closer together and their ampli-
tudes get smaller, but their envelope doesn’t change shape. The physical 
interpretation of the Fourier transform ωV( ) is therefore a measure of the 

v(t)

Vm

0 t>22t>2
t

Figure 17.1 ▲ A voltage pulse.
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666 The Fourier Transform

2p>t22p>t24p>t 4p>t

0.2Vm

nv0

Cn

0
(a)

2p>t22p>t24p>t
nv0

Cn

0.1Vm

0 4p>t
(b)

22p>t24p>t

V(v)

2p>t 4p>t
v

Vmt

0
(c)

Figure 17.2 ▲ Transition of the amplitude spectrum  
as ( )f t  goes from periodic to aperiodic. (a) C n  versus 

ω τ =n T, 5;0  (b) C n  versus ω τ =n T, 10;0  (c) ωV( ) 
versus ω.

f(t)

K

Ke2at

0
t

Figure 17.3 ▲ The decaying exponential  
function −Ke u t( ).at

17.2  The Convergence  
of the Fourier Integral

A function of time f t( ) has a Fourier transform if the integral in Eq. 17.3 
converges. If f t( ) is a well-behaved function that differs from zero over a 
finite interval of time, convergence is no problem. Well-behaved implies 
that f t( ) is single valued and encloses a finite area over the range of inte-
gration. In practical terms, all pulses of finite duration that interest us are 
well-behaved functions. The evaluation of the Fourier transform of the 
rectangular pulse discussed in Section 17.1 illustrates this point.

If f t( ) is different from zero over an infinite interval, the conver-
gence of the Fourier integral depends on the behavior of f t( ) as → ∞t .  
A  single-valued function that is nonzero over an infinite interval has a 
Fourier transform if the integral

∫−∞

∞
f t dt( )

exists and if any discontinuities in f t( ) are finite. An example is the decay-
ing exponential function illustrated in Fig. 17.3. The Fourier transform of 
f t( ) is

frequency content of t( )v . Figure 17.2 illustrates these observations. The 
amplitude spectrum plot is based on the assumption that τ  is constant and 
T is increasing.
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 17.2 The Convergence of the Fourier Integral  667

∫ ∫ω = =ω ω−
−∞

∞
− −

∞
F f t e dt Ke e dt( ) ( ) j t at j t

0

ω ω
=

− +
=

− +
−

ω( )− + ∞
Ke

a j
K

a j( ) ( )
 (0 1)

a j t

0

ω
=

+
>K

a j
a, 0.

A third important group of functions has great practical interest, but 
these functions do not, in a strict sense, have Fourier transforms. For 
 example, the integral in Eq. 17.3 doesn’t converge if f t( ) is a constant. 
The same can be said if f t( ) is a sinusoidal function, ω tcos ,0  or a step 
function, Ku t( ) . These functions are very important in circuit analysis, 
but, to  include them in Fourier analysis, we must resort to the following 
 mathematical manipulations.

• Create a function in the time domain that has a Fourier transform 
and at the same time can be made arbitrarily close to the function of 
interest. Call the approximating function ′f t( ).

• Find the Fourier transform of the approximating function, ω′F ( ), and 
then evaluate the limiting value of ω′F ( ) as ′f t( ) approaches f t( ).

• Define the limiting value of ω′F ( ) as the Fourier transform of f t( ).

Example 17.1 illustrates this three-step process.

EXAMPLE 17.1     Finding the Fourier Transform of a Constant

Find the Fourier transform of a constant function, 
=f t A( ) .

Solution
Approximate a constant with the exponential 
function

ε′ = >ε−f t Ae( ) , 0.t

As ε → 0, ′ →f t A( ) .  Figure  17.4 shows the 
approximation graphically.

The Fourier transform of ′f t( ) is

∫ ∫ω′ = +ε ω ε ω−
−∞

− −
∞

F Ae e dt Ae e dt( ) .t j t t j t
0

0

Evaluating the integrals gives

ω
ε ω ε ω

ε
ε ω

′ =
−

+
+

=
+

F A
j

A
j

A( ) 2 .
2 2

This function generates an impulse function at 
ω = 0  as 0ε → . You can verify this result by show-
ing that

• ω′F ( ) approaches infinity at ω = 0  as ε → 0.
• The width of ω′F ( ) approaches zero as ε → 0.
• The area under ω′F ( ) is independent of ε.

The area under ω′F ( ) is the strength of the impulse 
and is

∫ ∫ε
ε ω

ω ε ω
ε ω

π
+

=
+

=
−∞

∞ ∞A d A d A2 4 2 . 
2 2 2 20

In the limit, ′f t( ) approaches a constant A, and 
ω′F ( ) approaches an impulse function π δ ωA2 ( ).  

Therefore, the Fourier transform of a constant A is 
defined as π δ ωA2 ( ), or

A A{ } 2 ( ).π δ ω=F

A

t

f(t)

0

   2 ,   1

Ae2  2 tAe 2 t

Ae 1 t Ae2  1 t
� �

� �

��

Figure 17.4 ▲ The approximation of a constant with an 
 exponential function.
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668 The Fourier Transform

In Section  17.4, we say more about Fourier transforms defined 
through a limit process. Before doing so, in Section  17.3, we use the 
Laplace transform to find the Fourier transform of functions for which the 
Fourier integral converges.

17.3  Using Laplace Transforms 
to Find Fourier Transforms

We can use a table of unilateral, or one-sided, Laplace transform pairs 
to find the Fourier transform for functions whose Fourier integral con-
verges. The Fourier integral converges when the poles of F(s) lie in the 
left half of the s plane. Note that if F(s) has poles in the right half of the  
s plane or along the imaginary axis, f t( ) does not satisfy the constraint 

that ∫−∞

∞
f t dt( )  exists.

The following rules apply when using Laplace transforms to find the 
Fourier transforms of such functions.

1. If f t( ) is zero for ≤ −t 0 , replace s by ωj  in the Laplace transform 
of f t( ) to get the Fourier transform of f t( ). Thus

 f t f t( ) ( ) .s j{ } { }= ω=+F  (17.7)

2. A negative-time function is nonzero for negative values of time 
and zero for positive values of time. The Fourier transform of a 
negative-time function exists because the range of integration on 
the Fourier integral goes from −∞ to +∞. To find the  Fourier 
 transform of such a negative-time function, reflect the function 

Objective 1—Be able to calculate the Fourier transform of a function

17.1  Use the defining integral to find the Fourier 
transform of the following functions:

a) π= − ≤ ≤f t A t t( ) sin
2

  ,   2 2;

 =f t( ) 0,   elsewhere.

b) 
τ

τ= + − ≤ ≤f t At A t( ) 2 ,  
2

0;

 
τ

τ= − + ≤ ≤f t At A t( ) 2 , 0
2

;

f t( ) 0,   elsewhere.=

Answer: a) 
j A4

4
sin 2 ;

2 2

π
π ω

ω
−

−

b) 
ω τ

ωτ( )−





A4 1 cos
2

.
2

17.2  The Fourier transform of f t( ) is given by

ω ω= −∞ ≤ < −F( ) 0,   8 s;

ω ω= − < < −F( ) 6,   8 s 5 s;

ω ω= − < <F( ) 2,   5 s 5 s;

ω ω= < <F( ) 6,   5 s 8 s;

ω ω= < ≤ ∞F( ) 0,   8 s .

Find f t( ).

Answer: 
π

= −f t
t

t t( ) 1 (6 sin 8 4 sin 5 ).

ASSESSMENT PROBLEMS

SELF-CHECK: Also try Chapter Problems 17.2 and 17.3.

M17_NILS8436_12_SE_C17.indd   668 11/01/22   11:50 PM



 17.3 Using Laplace Transforms to Find Fourier Transforms 669

over to the positive time domain and find its one-sided Laplace 
transform. Replace s with ω−j  in the Laplace transform to get the 
Fourier transform of the original time function. Therefore,

 f t f t( ) ( ) .s j{ } { }= − ω=−+F  (17.8)

3. Functions that are nonzero over all time can be resolved into 
 positive- and negative-time functions. We use Eqs. 17.7 and 17.8 to 
find the Fourier transform of the positive- and negative-time func-
tions, respectively. The Fourier transform of the original function is 
the sum of the two transforms. Thus, if we let

= >+f t f t t( ) ( ) (for  0),

= <−f t f t t( ) ( ) (for  0),

then

= ++ −f t f t f t( ) ( )    ( )

and

f t f t f t( ) ( ) ( ){ } { }{ } = ++ −F F F

f t f t( ) ( ) .s j s j{ } { }= + −ω ω
+

=
−

=−L L  (17.9)

If f t( ) is even, Eq. 17.9 reduces to

f t f t f t( ) ( ) ( ) .s j s j{ } { } { }= +ω ω= =−F L L

If f t( ) is odd, then Eq. 17.9 becomes

f t f t f t( ) ( ) ( ) .s j s j{ } { } { }= −ω ω= =−F L L

Example 17.2 uses the Laplace transform to find the Fourier transform.

EXAMPLE 17.2     Finding the Fourier Transform from the Laplace Transform

Use the Laplace transform to find the Fourier 
transform for each of the following functions:

a) = ≤ −f t t( ) 0, 0 ;

ω= ≥− +f t e t t( ) cos , 0 .at
0

b) ω= ≤ −f t e t t( ) cos ,   0 ;at
0

= ≥ +f t t( ) 0, 0 .

c) = −f t e( ) .a t

Solution

a) Using Rule 1, find the Laplace transform of f(t) 
and substitute ωj  for s to get ωF( ). Therefore,

f t
s a

s a
j a

j a
( )

( ) ( )
.

s j
2

0
2 2

0
2ω

ω
ω ω

{ } =
+

+ +
=

+
+ +ω=

F
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f(t)

f(t) f(2t)

0
02 01

t

Figure 17.5 ▲ The reflection of a negative-time function over to 
the positive-time domain.

b) This is a negative-time function. Using Rule 2, 
reflect the function over to the positive-time 
 domain to get

− = ≤ −f t t( ) 0 (for  0 );

ω− = ≥− +f t e t t( ) cos  (for  0 ).at
0

Both f t( ) and its mirror image are plotted in  
Fig. 17.5. The Fourier transform of f t( ) is

F L
ω

{ } { }= − =
+

+ +ω
ω

=−
=−

f t f t
s a

s a
( ) ( )

( )s j
s j

2
0
2

ω
ω ω( )

=
− +

− + +

j a

j a
.2

0
2

c) This function is defined for all positive and nega-
tive time. Using Rule 3, we find that the positive- 
and negative-time functions are

= =+ − −f t e f t e( ) and ( ) .at at

Find the Laplace transform of +f t( ) and −−f t( ):

f t
s a

( ) 1 ,{ } =
+

+L

f t
s a

( ) 1 .{ }− =
+

−L

Therefore, from Eq. 17.9,

e
s a s a

1 1a t

s j s j
{ } =

+
+

+ω ω

−

= =−
F

ω ω
=

+
+

− +j a j a
1 1

ω
=

+
a

a
2 .

2 2

Objective 1—Be able to calculate the Fourier transform of a function

17.3  Find the Fourier transform of each function. 
In each case, a is a positive real constant.

a) δ= −f t t t( ) ( ),0   −∞ ≤ ≤ ∞t ;

b) = −f t te( ) ,at    ≥t 0;

 =f t te( ) ,at     ≤t 0.

c) = −f t t e( ) ,a t     −∞ ≤ ≤ ∞t .

Answer: a) ω−e ;j t0

b) 
ω
ω( )

−
+
j a

a
4

   
;

2 2 2

c) 
ω

ω( )

−
−

a
a

2( )
.

2 2

2 2 2

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter Problem 17.4.

17.4 Fourier Transforms in the Limit
As we pointed out in Section 17.2, the Fourier transforms of several prac-
tical functions must be defined by a limit process. We now return to these 
types of functions and develop their transforms.
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0

21.0

1.0

sgn(t)

t

Figure 17.6 ▲ The signum function.

The Fourier Transform of a Signum Function
We showed that the Fourier transform of a constant A is π δ ωA2 ( ) in 
Example 17.1. Another function of interest is the signum function, defined 
as +1 for >t 0  and −1 for <t 0 . The signum function is denoted sgn(t) 
and can be expressed in terms of unit step functions as

 = − −t u t u tsgn( ) ( ) ( ).  (17.10)

Figure 17.6 shows the function graphically.
To find the signum function’s Fourier transform, create a function 

that approaches the signum function in the limit:

ε= − − >
ε

ε ε
→

−t e u t e u tsgn( )   lim[ ( ) ( )], 0.t t

0

The function inside the brackets, plotted in Fig. 17.7, has a Fourier trans-
form because the Fourier integral converges. Since f t( ) is an odd func-
tion, its Fourier transform is:

F
ε ε

{ } =
+

−
+ω ω= =−

f t
s s

( ) 1 1
s j s j

j j
1 1

ω ε ω ε
=

+
−

− +

j2
.

2 2

ω
ω ε

=
−

+

As 0ε → , →f t t( ) sgn( ), and f t j( ) 2 .ω{ } →F  Therefore,

F
ω

{ } =t
j

sgn( ) 2 .

The Fourier Transform of a Unit Step Function
To find the Fourier transform of a unit step function, we use the Fourier 
transforms of a constant and the signum function. Note that the unit step 
function can be expressed as

= +u t t( ) 1
2

1
2

 sgn( ).

Thus,

F F Fu t t( ) 1
2

1
2

sgn( ){ } { }{ } = +

πδ ω
ω

= +
j

( ) 1 .

The Fourier Transform of a Cosine Function
To find the Fourier transform of ω tcos 0 , we return to the inverse  
transform integral of Eq. 17.4 and observe that if

ω πδ ω ω= −F( ) 2 ( ),0

0

1.0

21.0

t

e2  tu(t)

e tu(2t)

f(t)

ε

ε

Figure 17.7 ▲ A function that approaches tsgn( )  
as ε approaches zero.
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672 The Fourier Transform

TABLE 17.1 Fourier Transforms of Elementary Functions

Type f(t) ( )F ω

impulse δ t( ) 1

constant A π δ ωA2 ( )

signum tsgn( ) ωj2

step u t( ) πδ ω ω+ j( )   1

positive-time exponential −e u t( )at ω+ >a j a1 (     ),   0

negative-time exponential −e u t( )at ω− >a j a1 ( ),   0

positive- and negative-time exponential −e a t ω+ >a a a2 (     ),   02 2

complex exponential ωe j t0 πδ ω ω−2 ( )0

cosine ω tcos 0 π δ ω ω δ ω ω[ ]+ + −( ) ( )0 0

sine ω tsin 0 π δ ω ω δ ω ω[ ]+ − −j ( ) ( )0 0

then

∫π
πδ ω ω ω= − ω

−∞

∞
f t e d( ) 1

2
[2 ( )] .j t

0

Using the sifting property of the impulse function, we simplify f t( ) to

= ωf t e( ) .j t0

Therefore,

e 2 ( ).j t
0

0 πδ ω ω{ } = −ωF

We now use the Fourier transform of ωe j t0  to find the Fourier transform 
of ω tcos 0  because

ω = +ω ω−
t e ecos

2
.

j t j t

0
0 0

Thus,

t e ecos 1
2

j t j t
0

0 0ω{ } { } { }( )= +ω ω−^ ^F

πδ ω ω πδ ω ω= − + +1
2

[2 ( ) 2 ( )]0 0

πδ ω ω πδ ω ω= − + +( ) ( ).0 0

The Fourier transform of ω tsin 0  involves similar manipulation, which 
we leave for Problem 17.5. Table 17.1 presents a summary of the trans-
form pairs of the important elementary functions.

We now turn to the properties of the Fourier transform that help us 
describe aperiodic time-domain behavior in terms of frequency-domain 
behavior.
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17.5 Some Mathematical Properties
We begin by noting that ωF( )  is a complex quantity and can be expressed 
in either rectangular or polar form. Thus, from the defining integral,

∫ω = ω−
−∞

∞
F f t e dt( ) ( ) j t

∫ ω ω= −
−∞

∞
f t t j t dt( )(cos sin )

∫ ∫ω ω= −
−∞

∞

−∞

∞
f t t dt j f t t dt( )cos ( )sin .

Now we let

∫ω ω=
−∞

∞
A f t t dt( ) ( )cos ,

∫ω ω= −
−∞

∞
B f t t dt( ) ( )sin .

Thus, using the definitions for ωA( ) and ωB( ) , we get

ω ω ω ω= + = θ ωF A jB F e( ) ( ) ( ) ( ) .j ( )

We can make the following observations about ωF( ) :

• The real part of ωF( )—that is, ωA( )—is an even function of ω, so 
ω ω= −A A( ) ( ).

• The imaginary part of ωF( )—that is, ωB( )—is an odd function of ω,  
so ω ω= − −B B( ) ( ).

• The magnitude of ωF( )—that is, ω ω+A B( ) ( )2 2 —is an even func-
tion of ω.

• The phase angle of ωF( )—that is, θ ω ω ω= − B A( )  tan ( ) ( )1 —is an 
odd function of ω.

• Replacing ω  by ω−  generates the conjugate of ωF( ) , so 
ω ω− =F F( ) *( ).

Hence, if f t( ) is an even function, ωF( )  is real, and if f t( ) is an odd 
function, ωF( )  is imaginary. If f t( ) is even,

 
∫ω ω=

∞
A f t t dt( ) 2 ( )cos

0

 (17.11)

and

ω =B( ) 0. 

If f t( ) is an odd function,

ω =A( ) 0
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v0>22v0>2 0

A(v)

M

v

Figure 17.8 ▲ A rectangular frequency spectrum.

and

∫ω ω= −
∞

B f t t dt( ) 2 ( )sin .
0

We leave the derivations for you as Problems 17.10 and 17.11.
If f t( ) is an even function, its Fourier transform is an even function, 

and if f t( ) is an odd function, its Fourier transform is an odd function. 
Moreover, if f t( ) is an even function, from the inverse Fourier integral,

 ∫ ∫π
ω ω

π
ω ω= =ω ω

−∞

∞

−∞

∞
f t F e d A e d( ) 1

2
( ) 1

2
( )j t j t

 (17.12)

∫π
ω ω ω ω= +

−∞

∞
A t j t d1

2
( )(cos sin )

∫π
ω ω ω= +

−∞

∞
A t d1

2
( )cos 0

∫π
ω ω ω=

∞
A t d2

2
( )cos .

0

Now compare Eq. 17.12 with Eq. 17.11. Note that, except for a factor of 
π1 2 , these two equations have the same form. Thus, the waveforms of 
ωA( ) and f t( ) become interchangeable if f t( ) is an even function.

For example, we have already observed that a rectangular pulse in 
the time domain produces a frequency spectrum of the form ω ω(sin  ) . 
Specifically, Eq. 17.5 expresses the Fourier transform of the voltage pulse 
shown in Fig. 17.1. Hence, a rectangular pulse in the frequency domain 
must be generated by a time-domain function of the form t t(sin  ) . We 
can illustrate this transform by finding the time-domain function f t( ) cor-
responding to the frequency spectrum shown in Fig. 17.8. From Eq. 17.12,

∫π
ω ω

π
ω( )= =

ω ω

f t M t d M t
t

( ) 2
2

cos 2
2

 
sin

0

2

0

2
0 0

π
ω

=






M

t
t

1
2

   
sin 2

2
0

π
ω

ω
ω

=






M

t
t

1
2

   
sin  2

2
.0

0

0

We say more about the frequency spectrum of a rectangular pulse in 
the time domain versus the rectangular frequency spectrum of t t(sin  )  
after we introduce Parseval’s theorem.

17.6  Operational Transforms
Fourier transforms, like Laplace transforms, can be classified as 
 functional and operational. So far, we have concentrated on the  functional 
transforms. We now discuss some of the important operational Fourier 
transforms, which are similar to the operational Laplace transforms in 
Chapter 12. Hence, we leave their proofs to you as Problems 17.12–17.19.
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Multiplication by a Constant
From the defining integral, if

f t F( ) ( ),ω{ } =F

then

Kf t KF( ) ( ).ω{ } =F

Thus, multiplication of f t( ) by a constant corresponds to multiplying 
ωF( )  by that same constant.

 Addition (Subtraction)
Addition (subtraction) in the time domain translates into addition 
 (subtraction) in the frequency domain. Thus, if

f t F( ) ( ),1 1 ω{ } =F

f t F( ) ( ),2 2 ω{ } =F

f t F( ) ( ),3 3 ω{ } =F

then

f t f t f t F F F( ) ( ) ( ) ( ) ( ) ( ),1 2 3 1 2 3ω ω ω{ }− + = − +F

which is derived by substituting the algebraic sum of time-domain func-
tions into the defining integral.

Differentiation
The Fourier transform of the first derivative of f t( ) is

df t
dt

j F
( )

( ).ω ω{ } =F

The nth derivative of f t( ) is

d f t
dt

j F
( )

( ) ( ).
n

n
nω ω{ } =F

These equations are valid if f t( ) is zero at ±∞.

Integration
If

∫=
−∞

g t f x dx( ) ( ) ,
t

then

g t
F

j
( )

( )
.

ω
ω

{ } =F

This equation is valid if

∫ =
−∞

∞
f x dx( ) 0.
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Scale Change
Dimensionally, time and frequency are reciprocals. Therefore, when time 
is expanded, frequency is compressed (and vice versa), as reflected in the 
functional transform

F ω( ){ } = >f at
a

F
a

a( ) 1 , 0.

Note that when < <a0 1.0, time is expanded, whereas when >a 1.0, 
time is compressed.

Translation in the Time Domain
Translating a function in the time domain alters the phase spectrum and 
leaves the amplitude spectrum unchanged. Thus

f t a e F( ) ( ).j a ω{ }− = ω−F

If a is positive in this equation, the time function is delayed (shifted to the 
right on the time axis), and if a is negative, the time function is advanced 
(shifted to the left on the time axis).

Translation in the Frequency Domain
Translation in the frequency domain corresponds to multiplication by the 
complex exponential in the time domain:

e f t F( ) ( ).j t
0

0 ω ω{ } = −ωF  

Modulation
Amplitude modulation varies the amplitude of a sinusoidal carrier. If the 
carrier signal is f t( ), the modulated carrier is ωf t t( )cos 0 . The amplitude 
spectrum of the modulated carrier is one-half the amplitude spectrum of 
f t( ) and is centered at ω± 0 , so,

f t t F F( )cos 1
2

( ) 1
2

( ).0 0 0ω ω ω ω ω{ } = − + +F

Convolution in the Time Domain
Convolution in the time domain corresponds to multiplication in the fre-
quency domain. In other words,

∫ λ λ λ( ) ( )= −
−∞

∞
y t x h t d( )

becomes

 y t Y X H( ) ( ) ( ) ( ).ω ω ω{ } = =F  (17.13)

Equation 17.13 is important in Fourier transform applications because it 
states that the output’s transform ωY( ) is the product of the input’s trans-
form ωX( ) and the system function ωH( ). We say more about this rela-
tionship in Section 17.7.
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TABLE 17.2 Operational Transforms

( )f t ( )F ω

Kf t( ) ωKF( )

− +f t f t f t( ) ( ) ( )1 2 3 ω ω ω− +F F F( ) ( ) ( )1 2 3

d f t dt( )n n ω ωj F( ) ( )n

∫−∞
f x dx( )

t
ω ωF j( )

f at( ) ω( ) >
a

F
a

a1   , 0

−f t a( ) ωω−e F( )j a

ωe f t( )j t0 ω ω−F( )0

ωf t t( )cos 0 ω ω ω ω( ) ( )− + +F F1
2

    1
20 0

∫ λ λ λ−
−∞

∞
x h t d( ) ( ) ω ωX H( ) ( )

f t f t( ) ( )1 2 ∫π
ω −

−∞

∞
F u F u du1

2
  ( ) ( )1 2

t f t( )n ω
ω

j
d F

d
( )

( )n
n

n

Convolution in the Frequency Domain
Convolution in the frequency domain corresponds to finding the Fourier 
transform of the product of two time functions. Thus, if

=f t f t f t( ) ( ) ( ),1 2

then

∫ω
π

ω= −
−∞

∞
F F u F u du( ) 1

2
( ) ( ) .1 2

Table 17.2 summarizes these 10 operational transforms and another 
operational transform that we introduce in Example 17.3.

EXAMPLE 17.3     Deriving an Operational Fourier Transform

Find the Fourier transform for the function 
( )=f t t f t( ) ,n  assuming that F f t( ) ( )ω { }= F  is 

known.

Solution
From the definition of the Fourier transform in 
Eq. 17.3,

∫ω = ω−
−∞

∞
F f t e dt( ) ( ) .j t

Take the derivative of both sides with respect to the 
frequency ω  and simplify:

dF
d

d
d

f t e dt

j tf t e dt j tf t

( )
( )

( ) ( ) .

j t

j t

∫

∫

ω
ω ω

[ ]

{ }

=

= − = −

ω

ω

−
−∞

∞

−
−∞

∞
F
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678 The Fourier Transform

Therefore,

tf t j
dF

d
( )

( )
.

ω
ω

{ } =F

Repeat this process, taking the second derivative of 
both sides of Eq. 17.3 with respect to ω :

∫
ω

ω ω
= ω−

−∞

∞d F
d

d
d

f t e dt
( )

 [ ( ) ]j t
2

2

2

2

∫= − − ω−
−∞

∞
jt jt f t e dt( )( ) ( ) j t

j t f t( ) ( ) .2 2{ }= − F

Therefore,

t f t j
d F

d
( ) ( )

( )
.2 2

2

2

ω
ω

{ } =F

Now take the nth derivative of both sides of Eq. 17.3 
with respect to ω :

∫
ω

ω ω
= ω−

−∞

∞d F
d

d
d

f t e dt
( )

 [ ( ) ]
n

n

n

n
j t

∫= − ω−
−∞

∞
jt f t e dt( ) ( )n j t

j t f t( ) ( ) .n n{ }= − F

Replacing −j( )n with j1 n , we get

t f t j
d F

d
( ) ( )

( )
.n n

n

n

ω
ω

{ } =F

Therefore, the effect of multiplying a function by t n 
in the time domain corresponds to finding the nth 
derivative of the function’s Fourier transform with 
respect to ω .

Objective 1—Be able to calculate the Fourier transform of a function

17.4  The rectangular pulse shown can be expressed 
as the difference between two step voltages; 
that is,

τ τ( ) ( )= + − −t V u t V u t( )                V.m mv

Use the operational transform for translation in 
the time domain to find the Fourier transform 
of t( )v .

Answer: ω τ ωτ
ωτ

=V V( ) 2  
sin( )

( )
.m

17.5  Find the Fourier transform of the ramp func-
tion, =f t tu t( ) ( ) Hint: Use the operational 
transform of differentiation in the frequency 
domain.

Answer: πδ ω
ω

′ −j ( ) 1 .
2

ASSESSMENT PROBLEMS

SELF-CHECK: Also try Chapter Problem 17.20.

v(t)

Vm

t2t 0
t
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Use the Fourier transform to find i t( )o  in the circuit 
shown in Fig. 17.9. The current source i t( )g  is the 
signum function 20 sgn(t) A.

Solution
The Fourier transform of the input is

I t( ) 20 sgn( )g ω { }= F

ω
=







j

20 2

ω
=

j
40 .

The transfer function of the circuit is the ratio of I o  
to I g , which we can find using current division in 
the s domain:

=
+

+
I

s
s

I
1 (3 )

3
 o g

�

=
+ s

I1
4

  .g

Therefore,

=
+

H s
s

( ) 1
4

and

ω
ω

=
+

H
j

( ) 1
4

. 

ig(t)

1 H

3 V

1 V io(t)

Figure 17.9 ▲ The circuit for Example 17.4.

17.7 Circuit Applications
The Laplace transform is used more often than the Fourier transform 
when finding a circuit’s response to a nonperiodic input. This is because 
the Laplace transform integral converges for a wider range of input func-
tions and it accommodates initial conditions. We can also use the Fourier 
transform to find a circuit’s response to an input using Eq. 17.13, which 
relates the transform of the output ωY( ) to the transform of the input 

ωX( ) and the transfer function ωH( ) of the circuit. Note that ωH( ) is the 
familiar H s( ), with s replaced by ωj .

Example 17.4 uses the Fourier transform to find the response of a 
circuit.

EXAMPLE 17.4     Using the Fourier Transform to Find the Transient Response

The Fourier transform of i t( )o  is

ω ω ω=I I H( ) ( ) ( )o g

ω ω
=

+j j
40

(4 )
.

Expanding ωI ( )o  into a sum of partial fractions 
yields

ω
ω ω

= +
+

I
K
j

K
j

( )
4

.o
1 2

Evaluating K1  and K 2 gives

= =K 40
4

10,1

=
−

= −K 40
4

10.2

Therefore

ω
ω ω

= −
+

I
j j

( ) 10 10
4

.o

Find the output current in the time domain using 
the functional and operational Fourier transform 
 tables, Tables 17.1 and 17.2. The result is

i t I( ) ( )o o
1 ω[ ]= −F

= − −t e u t5 sgn( ) 10 ( ).t4

Figure  17.10 shows the response. Does the 
solution make sense in terms of known circuit 
 behavior? The answer is yes, based on the follow-
ing analysis. The current source delivers −20 A  to 
the circuit  between −∞ and 0, and because the cur-
rent is  constant, the inductor behaves like a short 
circuit over this time interval. Therefore, the resis-
tance in each branch determines how the −20 A  
divides  between the two branches. One-fourth of 

M17_NILS8436_12_SE_C17.indd   679 11/01/22   11:51 PM



680 The Fourier Transform

0
25

t

io(t)
5 sgn(t)

5 sgn(t)

5
(A)

io

io
210

210e24t

Figure 17.10 ▲ The plot of i t( )o  versus t.

1

2

12 kV

vo 60 kVvg

1

2

2 mF

the −20 A  appears in the io  branch, so io  is −5A 
for <t 0 . When the current source jumps from 
−20 A  to +20 A at =t 0, io  approaches its final 
value of +5 A exponentially. The equivalent resis-
tance with respect to the inductor’s terminals is Ω4  ,  
so the time constant of the exponential rise for 

>t 0  is 0.25 s.

EXAMPLE 17.5      Using the Fourier Transform to Find the Sinusoidal  
Steady-State Response

Suppose the current source in the circuit in Example 
17.4 (Fig. 17.9) changes to a sinusoid, given by

=i t t( ) 50 cos 3  A.g

Use the Fourier transform method to find i t( )o .

Solution
The transform of the input current is

ω π δ ω δ ω= − + +I ( ) 50 [ ( 3) ( 3)].g

As before, the transfer function of the circuit is

ω
ω

=
+

H
j

( ) 1
4   

. 

The transform of the current response then is

ω π δ ω δ ω
ω

=
− + +

+
I

j
( ) 50  

( 3)    ( 3)
4   

.o

To find the inverse transform of ωI ( )o  we begin 
with the inverse Fourier transform intergral in 
Eq.  17.4, and then use the sifting property of the 
impulse function:

i t I( ) ( )o o
1 ω{ }= −F

∫π
π

δ ω δ ω
ω

ω=
− + +

+












ω
−∞

∞

j
e d50

2
( 3) ( 3)

4
j t

=
+

+
−









−e
j

e
j

25 
4 3 4 3

j t j t3 3

( )= +
− −e e e e25 
5 5

j t j j t j3 36.87° 3 36.87°

[ ]= −t5 2 cos (3 36.87°)

= −t10 cos (3 36.87°) A.

You should verify that the solution for i t( )o  is iden-
tical to that obtained by phasor analysis.

Objective 2—Know how to use the Fourier transform to find the response of a circuit

17.6  The voltage source in the circuit shown deliv-
ers a voltage of 36 sgn(t) V. The output is the 
voltage across the 60 kΩ resistor. Compute 
(a)  ωV ( );g  (b)  ωH j( ); (c)  ωV ( );o  (d)  t( );ov  

(e)  −(0 );ov  (f) +(0 );ov  (g) ∞( )ov .

ASSESSMENT PROBLEMS

An important characteristic of the Fourier transform is that it gives 
us the steady-state response to a sinusoidal input. There is no transient 
component in the response because the Fourier transform of ω tcos 0  
 assumes that the function exists over all time. Example 17.5 illustrates 
this feature.
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1

2

25 V

100 V

io

vg 10 mH

800 nFAnswer: a) ωj72 ;

b) ω+ j41.667 (50 );

c) ω ω+j j3000 (50 );

d) − −t e u t30 sgn( )  60   ( ) V;t50

e) −30 V;

f) −30 V;

g) 30 V.

17.7  Use the Fourier transform method to find io in 
the circuit shown if vg = 300 cos 5000t V.

Answer:  +t1cos (5000 90°) A.

SELF-CHECK: Also try Chapter Problems 17.21, 17.27, and 17.31.

17.8 Parseval’s Theorem
Parseval’s theorem relates the energy of a time-domain function having 
finite energy to the Fourier transform of that function. Imagine that the 
time-domain function f t( ) is either the voltage across or the current in a 

Ω1   resistor. The energy of this function then is

∫=Ω
−∞

∞
W f t dt( ) .1

2
 

Parseval’s theorem says that we can also calculate this energy using a 
 frequency-domain integral:

 ∫ ∫π
ω ω= =Ω

−∞

∞

−∞

∞
W f t dt F d( ) 1

2
( ) .1

2 2  (17.14)

Therefore, we can calculate the Ω1   energy associated with f t( )  either by 
integrating the square of f t( ) over all time or by integrating the square of 
the magnitude of the Fourier transform of f t( ) over all frequencies and 
multiplying by π1 2 . Parseval’s theorem is valid if both integrals exist.

The average power of time-domain signals with finite energy is zero 
when averaged over all time. Therefore, when comparing such signals, we 
use the energy content of the signals instead of their average power. Using 
a Ω1   resistor when making the energy calculation is convenient and lets 
us compare the energy content of voltages and currents.

We begin deriving Eq. 17.14 by rewriting the left-hand side as f t( ) 
times itself and then expressing one f t( ) in terms of the inversion integral:

∫ ∫=
∞

−∞

∞

−∞
f t dt f t f t dt( ) ( )  ( )2

∫ ∫π
ω ω= 





ω
−∞

∞

−∞

∞
f t F e d dt( ) 1

2
( )   .j t
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682 The Fourier Transform

We move f t( ) inside the interior integral because the integration is with 
respect to ω , and then we factor the constant π1 2  outside both integrals. 
Then,

∫ ∫∫π
ω ω= 





ω
−∞

∞

−∞

∞

−∞

∞
f t dt F f t e d dt( ) 1

2
  ( )  ( )   .j t2

We reverse the order of integration and then factor ωF( )  out of the inte-
gral with respect to t. Thus

∫ ∫ ∫π
ω ω= 





ω
−∞

∞

−∞

∞

−∞

∞
f t dt F f t e dt d( ) 1

2
( ) ( )   .j t2

The bracketed integral is ω−F( ), so

∫ ∫π
ω ω ω= −

−∞

∞

−∞

∞
f t dt F F d( )  1

2
  ( )  ( ) .2

In Section 17.5, we noted that ω ω− =F F( ) *( ) . Thus, the product 
ω ω−F F( ) ( ) is the magnitude of ωF( )  squared, completing the deriva-

tion of Eq. 17.14. We also noted that ωF( )  is an even function of ω.  
Therefore, we can also write Eq. 17.14 as

 ∫ ∫π
ω ω=

−∞

∞ ∞
f t dt F d( ) 1   ( ) .2 2

0

 (17.15)

Demonstrating Parseval’s Theorem
To demonstrate Eq. 17.15, suppose

= −f t e( ) .a t

Substituting this f(t) into the left-hand side of Eq. 17.15 and evaluating the 
left-hand side, we get

∫ ∫ ∫= +−
−∞

∞

−∞
−

∞
e dt e dt e dta t at at2 2

0
2

0

= +
−−∞

− ∞e
a

e
a2 2

at at2 0 2

0

= + =
a a a

1
2

1
2

1 .

The Fourier transform of f t( ) is

ω
ω

=
+

F a
a

( ) 2 ,
2 2

and therefore the right-hand side of Eq. 17.15 evaluates to

∫π ω
ω

π
ω

ω
ω( )+

=
+

+
∞

−
∞a

a
d a

a a a a
1   4

( )
  4   1

2
  1 tan  

2

2 2 20

2

2 2 2
1

0

π
π( )= + − −
a

2   0
2

0 0

=
a
1 .

Note that both the left-hand side and the right-hand side of Eq. 17.15 
 evaluate to a1 .
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|F(v)|2

v
0 v12v12v2 v2

Figure 17.11 ▲ The graphic interpretation  
of Eq. 17.17.

Interpreting Parseval’s Theorem
A physical interpretation of Parseval’s theorem tells us that the mag-
nitude of the Fourier transform squared, ωF( ) 2, is an energy density  
(in joules per hertz). To see this, change the variable of integration on the 
right-hand side of Eq. 17.15, using ω π= f2 . The result is

∫ ∫π
π π π=

∞ ∞
F f df F f df1   | (2 )| 2 2 (2 ) ,2

0

2

0

where πF f df(2 ) 2  is the energy in an infinitesimal band of frequencies 
df( ),  and the total Ω1   energy associated with f t( ) is the sum (integral) of 

πF f df(2 ) 2  over all frequencies.
We can also calculate the portion of the total energy for a specified 

frequency band. For example, the Ω1  energy in the frequency band from 
ω1 to ω2  is

 
∫π

ω ω=
ω

ω

ΩW F d1   ( ) .1
2

1

2  (17.16)

Note that if we write the frequency-domain integral using

∫π
ω ω

−∞

∞
F d1

2
( ) 2

instead of

∫π
ω ω

∞
F d1   ( ) ,2

0

we can rewrite Eq. 17.16 as

 ∫ ∫π
ω ω

π
ω ω= +

ω

ω

ω

ω

Ω
−

−
W F d F d1

2
  ( ) 1

2
  ( ) .1

2 2

2

1

2

1
 (17.17)

Figure 17.11 shows a graphical interpretation of Eq. 17.17.
Examples 17.6–17.9 illustrate calculations using Parseval’s theorem.

EXAMPLE 17.6     Applying Parseval’s Theorem

The current in a Ω40   resistor is

= −i e u t20 ( ) A.t2

What percentage of the total energy dissipated in 
the resistor is associated with the frequency band 

ω≤ ≤0 2 3  rad s?

Solution
The total energy dissipated in the Ω40   resistor is

∫=Ω
−

∞
W e dt40 400 t

40
4

0

=
−

=
− ∞e16,000 
4

4000 J.
t4

0
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20
25

5

6020220240260 40

10
15

0

|V(v)|2

v (rad>s)

Figure 17.12 ▲ ωV( ) 2  versus ω  for Example 17.7.

260

20
15
10
5

604020240 220 0

25

v (rad>s)

|Vo(v)|2

Figure 17.13 ▲ ωV ( )o
2  versus ω  for Example 17.7.

We can check this total energy calculation with 
 Parseval’s theorem:

ω
ω

=
+

F
j

( ) 20
2

.

Therefore

ω
ω

=
+

F( ) 20
4 2

 

and

∫π ω
ω=

+Ω

∞
W d40 400

4
 40 20

π
ω=









−
∞16,000   1

2
tan

2
1

0

π
π( )= =8000  
2

4000 J.

The energy associated with the frequency band 
ω≤ ≤0 2 3  rad s is

∫π ω
ω=

+ΩW d40 400
440 20

2 3

π
ω=











−16,000   1
2

 tan  
2

1

0

2 3

π
π( )= =8000  
3

8000
3

 J.

Hence, the percentage of the total energy associ-
ated with this range of frequencies is

η = × =
8000 3
4000

  100 66.67%.

EXAMPLE 17.7     Applying Parseval’s Theorem to an Ideal Bandpass Filter

The input voltage for an ideal bandpass filter is

= −t e u t( ) 120 ( ) V.t24v

The filter passes all frequencies that lie between 24 
and 48  rad s, without attenuation, and completely 
rejects all frequencies outside this passband.

a) Sketch ωV( ) 2  for the filter input voltage.

b) Sketch ωV ( )o
2  for the filter output voltage.

c) What percentage of the total Ω1   energy content 
of the input voltage is available at the output?

Solution

a) The Fourier transform of the filter input 
 voltage is

ω
ω

=
+

V
j

( ) 120
24

.

Therefore

ω
ω

=
+

V( ) 14,400
576

.2
2

Figure 17.12 shows the sketch of ωV( ) 2  versus ω .

b) The ideal bandpass filter rejects all frequencies 
outside the passband. The plot of  ωV ( )o

2  ver-
sus ω  looks just like the plot in Fig. 17.12 between 
−48  and −24  rad s and between 24 and 48 rad s ,  
and is zero for all other frequencies, as shown in 
Fig. 17.13.

c) The total Ω1   energy for the input voltage is

∫π ω
ω

π
ω=

+
=









∞
−

∞

W d1 14,400
576

14,400 1
24

 tan  
24i 20

1

0

π
π= =600  
2

300 J.
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10 kV

vo

1

2

vi

1

2

10 mF

Figure 17.14 ▲ The low-pass RC filter for Example 17.8.

The total Ω1   energy for the filter’s output is

∫π ω
ω

π
ω=

+
= −W d1   14,400

576
  600  tan  

24o 224

48
1

24

48

π π
π π( )= − = −− −600  (tan 2 tan 1) 600  

2.84 4
1 1

= 61.45 J.

The percentage of the input energy available at 
the output is

η = × =61.45
300

  100 20.48%.

EXAMPLE 17.8     Applying Parseval’s Theorem to a Low-Pass Filter

We can use Parseval’s theorem to calculate the 
energy available at a filter’s output even if the 
time-domain expression for t( )ov  is unknown. 
Suppose the input voltage to the low-pass RC filter 
circuit shown in Fig. 17.14 is

= −t e u t( ) 15 ( ) V.i
t5v

a) What percentage of the input signal’s Ω1   energy 
is available in the output signal?

b) What percentage of the output energy is  
asso ciated with the frequency range 

ω≤ ≤0 10  rad s?

Solution

a) The Ω1   energy in the input signal is

∫= =
−

=−
∞ − ∞

W e dt e(15 ) 225 
10

22.5 J.i
t

t
5 2

0

10

0

The Fourier transform of the output voltage is

ω ω ω=V V H( ) ( ) ( ),o i

where

ω
ω

=
+

V
j

( ) 15
5

,i

ω
ω ω

=
+

=
+

H
RC

RC j j
( )

1
1

10
10

.

Hence

ω
ω ω

=
+ +

V
j j

( ) 150
(5 )(10 )

,o

ω
ω ω

=
+ +

V ( ) 22,500
(25 )(100 )

.o
2

2 2

The Ω1   energy available in the filter’s output is

∫π ω ω
ω=

+ +

∞
W d1   22,500

(25 )(100 )
  .o 2 20

We can evaluate the integral using a sum of par-
tial fractions:

ω ω ω ω+ +
=

+
−

+
22,500

(25 )(100 )
300

25
300

100
.

2 2 2 2

Then

∫ ∫π
ω

ω
ω

ω{ }=
+

−
+

∞ ∞
W d d300  

25 100o 20 20

π
π π( ) ( )= −





=300   1
5 2

1
10 2

15 J.

The energy available in the output signal there-
fore is 66.67% of the energy available in the 
input signal; that is,

η = =15
22.5

 (100) 66.67%.
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0

v(t)

Vm

2t>2 t>2
t

(a)

V(v)

Vm t

24p
t

22p
t

2p
t

4p
t

(b)

0
v

Figure 17.15 ▲ The rectangular voltage pulse and its Fourier 
transform. (a) The rectangular voltage pulse. (b) The Fourier  
transform of v (t).

b) The output energy associated with the frequency 
range ω≤ ≤0 10  rad s is

∫ ∫π
ω

ω
ω

ω{ }′ =
+

−
+

W d d300  
25 100o 20

10

20

10

π π
π π( ) ( )= − = −− −300   1

5
tan 10

5
1

10
tan 10

10
30   2

2.84 4
1 1

= 13.64 J.

The total Ω1   energy in the output signal is 15 J, 
so the percentage associated with the frequency 
range 0 to 10  rad s  is 90.97%.

EXAMPLE 17.9     Calculating Energy Contained in a Rectangular Voltage Pulse

A voltage pulse, v(t), is shown in Fig.  17.15(a). 
Use Parseval’s theorem to calculate the fraction 
of the total energy associated with v(t) that lies in 
the frequency range ω π τ≤ ≤0 2 . Recall from 
Section 17.1 that we found the Fourier transform of 
the voltage pulse to be

ω τ
ωτ

ωτ
=V V( )  

sin 2
2

.m

The Fourier transform of the voltage pulse is plot-
ted in Fig. 17.15(b).

Solution
To begin, substitute the Fourier transform of the 
voltage pulse into Eq. 17.16:

∫π
τ

ωτ
ωτ

ω=
π τ

W V d1  
sin 2
( 2)

  .m
2 2

0

2 2

2

To evaluate this integral, let ωτ=x 2, so 
τ ω=dx d( 2) . Note that when ω π τ= 2 , π=x .  

Using these substitutions, the energy equation 
 becomes

∫
τ

π
=

π
W

V x
x

dx
2

  sin   .m
2 2

20

Now we can integrate by parts. Let =u x sin 2  
and v =d dx x 2, so =du 2 sin x cos x =dx sin  2x dx  
and = − x1v . Therefore,

∫ ∫= − − −
π π πx

x
dx x

x x
x dxsin sin 1  sin 2

2

20

2

0 0

∫= +
π x

x
dx0 sin 2

0

and

∫
τ

π
=

π
W

V x
x

dx
4

  sin  2
2

.m
2

0

To evaluate this integral, make another sub-
stitution of variables to get the form y ysin  . Let 

=y x2  so =dy dx2  , and π=y 2  when π=x . 
The resulting equation is

∫
τ

π
=

π
W

V y
y

dy
2 sin 

  .m
2

0

2

The integral’s value can be found using an 
online calculator.1 Its value is 1.41815, so

τ
π

( )=W
V2

  1.41815 .m
2

 

To find the total Ω1   energy associated with 
t( )v , use either the time-domain integral or the 

 frequency-domain integral in Eq. 17.14. The total 
energy is

τ=W V .t m
2

1http://www.wolframalpha.com/input/?i=integrate+sin+x+%2F+x+ 
from+0+to+2*pi
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 Practical Perspective  687

17.9  The circuit shown here is driven by the cur-
rent = −i e u t12 ( ) Ag

t10 . What percentage 
of the total 1 Ω energy content in the out-
put current io lies in the frequency range 

ω≤ ≤0 100  rad s?

Answer: 64.7%.

25 Vig 500 mH

io

The fraction of the total energy associated with the 
band of frequencies between 0 and π τ2  is

η = W
Wt

τ
π τ( )

( )
=

V
V

2 1.41815m

m

2

2

= 0.9028.

Therefore, approximately 90% of the energy associ-
ated with t( )v  is contained in the dominant portion 
of the amplitude spectrum.

Note that the plots in Fig.  17.15 show that as 
the width of the voltage pulse τ( ) becomes smaller, 
the dominant portion of the amplitude spectrum 
(that is, the spectrum from π τ−2  to π τ2 ) spreads 
out over a wider range of frequencies. This result 
agrees with our earlier comments about the oper-
ational transform involving a scale change—when 
time is compressed, frequency is expanded and vice 
versa. To transmit a single rectangular pulse with 
reasonable fidelity, the bandwidth of the system 
must be at least wide enough to accommodate the 
dominant portion of the amplitude spectrum. Thus, 
the cutoff frequency should be at least π τ2 rad s ,  
or τ1  Hz.

Objective 3—Understand Parseval’s theorem and be able to use it

17.8  Assume that the magnitude of the Fourier 
transform of t( )v  is as shown. This voltage is 
applied to a Ω10 k  resistor. Calculate the total 
energy delivered to the resistor.

Answer: 16.67 J.

ASSESSMENT PROBLEMS

SELF-CHECK: Also try Chapter Problem 17.41.

Practical Perspective
Filtering Digital Signals
To understand the effect of transmitting a digital signal on a  telephone 
line, consider a pulse that represents a digital value of 1, as shown 
in Fig.  17.15(a), with =V 5 Vm  and τ µ= 1  s.  The Fourier trans-
form of this pulse is shown in Fig.  17.15(b), where the amplitude 

τ µ=V 5  Vm  and the first positive zero-crossing on the frequency axis 
is π τ = =2 6.28  Mrad s 1 MHz.

Note that the digital pulse representing the value 1 is ideally a sum 
of an infinite number of frequency components. But the telephone line 
cannot transmit all of these frequency components. Typically, the line 
has a bandwidth of 10 MHz, meaning that it is capable of transmit-
ting only those frequency components below 10 MHz. This causes the 

0

10

|V( jv)|

25000p 5000p
v (rad>s)
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688 The Fourier Transform

original pulse to be distorted once it is  received by the computer on the 
other end of the telephone line, as seen in Fig. 17.16.

Summary
• The Fourier transform gives a frequency-domain 

description of an aperiodic time-domain function. 
Depending on the nature of the  time-domain signal, 
one of three approaches to finding its Fourier transform 
may be used:

• If the time-domain signal is a well-behaved pulse of 
finite duration, the integral that defines the Fourier 
transform is used. (See page 664.)

• If the one-sided Laplace transform of f t( ) exists and 
all the poles of F s( ) lie in the left half of the s plane, 
F s( ) may be used to find ωF( ) . (See page 668.)

• If f t( ) is a constant, a signum function, a step func-
tion, or a sinusoidal function, the Fourier transform is 
found by using a limit process. (See page 670.)

• Functional and operational Fourier transforms that are 
useful in circuit analysis are tabulated in Tables 17.1 and 
17.2. (See pages 672 and 677.)

• The Fourier transform accommodates both negative- 
time and  positive-time functions and therefore is suited 
to problems whose signals start at = −∞t . In contrast, 
the unilateral Laplace transform is suited to problems 
with initial conditions and signals that exist for >t 0 . 
(See page 679.)

• The Fourier transform of a response signal y(t) is

ω ω ω=Y X H( ) ( ) ( ),

where ωX( ) is the Fourier transform of the input signal 
x(t) and ωH( ) is the transfer function H(s) evaluated at 

ω=s j . (See page 679.)

• The magnitude of the Fourier transform squared is 
a measure of the energy density (joules per hertz) in 
the frequency domain (Parseval’s theorem). Thus, the 
Fourier transform permits us to associate a fraction of 
the total energy contained in f t( ) with a specified band 
of frequencies. (See page 683.)

Problems
Sections 17.1–17.2

 17.1  Use the defining integral to find the Fourier trans-
form of the following functions:

a) f t A t

f t A t

f t

( ) , 2 0;

( ) , 0 2;

( ) 0 elsewhere.

τ

τ

= − − / ≤ <

= < ≤ /

=

  

b) f t t

f t te t a

( ) 0, 0;

( ) , 0, 0.at

= <

= ≥ >−

    

17.2  a) Find the Fourier transform of the function 
shown in Fig. P17.2.

b) Find ωF( )  when ω = 0.

c) Sketch  ωF( )  versus ω  when =A 2 and τ = 1.  
Hint:  Evaluate ωF( )  at ω = ± ± ± … ±1,   2,   3,   , 15.

ω = ± ± ± … ±1,   2,   3,   , 15. Then use the fact that ωF( )  is an even 
function of ω.

Vm 

0
t

v(t)

t>22t>2

Figure 17.16 ▲ The effect of sending a square voltage pulse through a bandwidth- 
limited filter, causing distortion of the resulting output signal in the time domain.
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jA

2jA

v0>22v0>2
v

F(v)

Figure P17.3

Figure P17.2

2t>2

f(t)

A

t
0 t>2

 17.7  If f(t) is a real, odd function of t, show that the inver-
sion integral (Eq. 17.4) reduces to

∫π
ω ω ω= −

−∞

∞
f t B t d( ) 1

2
  ( )sin   .

 17.8  Use the inversion integral (Eq. 17.4) to show that 
j t2 sgn( ).1 ω{ } =−F  Hint: Use Problem 17.7.

 17.9  Find tcos 0ω{ }F  by using the approximating 
 function

ω= −∈f t e t( ) cos ,t
0

where ∈ is a positive real constant.

17.10   Show that if f(t) is an odd function,

ω =A( ) 0,

∫ω ω= −
∞

B f t t dt( ) 2 ( )sin .
0

17.11  Show that if f(t) is an even function,

∫ω ω=
∞

A f t t dt( ) 2 ( )cos ,
0

ω =B( ) 0.

Section 17.6

17.12  a) Show that df t dt j F( ) ( ),ω ω{ } =F  where 
F f t( ) ( ) .ω { }= F  Hint:  Use the defining inte-
gral and integrate by parts.

b) What is the restriction on f(t) if the result given 
in (a) is valid?

c) Show that d f t dt j F( ) ( ) ( ),n n nω ω{ } =F  where 
F f t( ) ( ) .ω { }= F

17.13  a) Show that

f x dx
F

j
( )

( )
,

t

∫
ω
ω{ } =

−∞
F

where F f x( ) ( ) .ω { }= F  Hint:  Use the defin-
ing integral and integrate by parts.

b) What is the restriction on f(x) if the result given 
in (a) is valid?

c) If = −f x e u x( ) ( ),ax  can the operational trans-
form in (a) be used? Explain.

17.14  a) Show that

F ω( ){ } = >f at
a

F
a

a( ) 1 , 0.

b) Given that = −f at e( ) a t  for >a 0, sketch 
F f at( ) ( )ω { }= F  for =a 0.5,  1.0, and 2.0. 
Do your sketches reflect the observation that 

 17.3  The Fourier transform of f(t) is shown in Fig. P17.3.

a) Find f(t).

b) Evaluate f(0).

c) Sketch f(t) for − ≤ ≤t10 s 10 s when π=A 2  
and 2 rad s.0ω =  Hint:  Remember that f(t) is 
odd.

Sections 17.3–17.5

 17.4  Find the Fourier transform of each of the following 
functions. In all of the functions, a is a positive real 
constant.

a) = <f t t( ) 0, 0;

ω= ≥−f t e t t( ) sin , 0.at
0

b) f t e t t( ) sin , .a t
0ω= −∞ ≤ ≤ ∞−

c) f t e t t( ) cos , .a t
0ω= −∞ ≤ ≤ ∞−

d) = >f t t( ) 0, 0;

= − ≤f t te t( ) 0.at

e) f t t e t( ) , .a t3= −∞ ≤ ≤ ∞−

 17.5  Derive tsin .0ω{ }F

 17.6  If f(t) is a real function of t, show that the inversion 
integral (Eq. 17.4) reduces to

∫π
ω ω ω ω ω= −

−∞

∞

f t A t B t d( ) 1
2

[ ( )cos ( )sin ] .
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690 The Fourier Transform

 compression in the time domain corresponds to 
stretching in the frequency domain?

 17.15  Derive each of the following operational transforms:

a) f t a e F( ) ( );j a ω{ }− = ω−F

b) e f t F( ) ( );j t
0

0 ω ω{ } = −ωF

c) f t t F F( )cos 1
2

( ) 1
2

( ).0 0 0ω ω ω ω ω{ } = − + +F

 17.16  Given

∫ λ λ λ= −
−∞

∞
y t x h t d( ) ( ) ( )  ,

show that Y y t X H( ) ( ) ( ) ( ),ω ω ω{ }= =F  where 
X x t( ) ( )ω { }= F  and H h t( ) ( ) .ω { }= F  Hint: 
Use the defining integral to write

y t x h t d e dt( ) ( ) ( )    .j t∫∫ λ λ λ{ } = −





ω
−∞

∞
−

−∞

∞
F

Next, reverse the order of integration and then 
make a change in the variable of integration; that is, 
let λ= −u t .

 17.17  Given =f t f t f t( ) ( ) ( ),1 2  show that

∫ω π ω= −
−∞

∞
F F u F u du( ) (1 2 ) ( ) ( )  .1 2

Hint: First, use the defining integral to express ωF( )  
as

∫ω = ω−
−∞

∞
F f t f t e dt( ) ( ) ( )   .j t

1 2

Second, use the inversion integral to write

∫π
= ω

−∞

∞
f t F u e du( ) 1

2
  ( )   .j t

1 1

Third, substitute the expression for f1(t) into the 
defining integral and then interchange the order of 
integration.

 17.18  Suppose f(t) is defined as follows:

τ
τ= + − ≤ ≤f t At A t( ) 2 ,
2

0;

τ
τ= − + ≤ ≤f t At A t( ) 2 , 0 
2

;

f t( ) 0, elsewhere.=

a) Find the second derivative of f(t).

b) Find the Fourier transform of the second 
derivative.

c)  Use the result obtained in (b) to find the 
Fourier transform of the function in the problem 

ig 1 H4 V

1 V

io

vo

1

2

Figure P17.21

1

2

10 V

40 V
io(t)

vg 4 H

Figure P17.23

statement. (Hint: Use the operational transform 
of differentiation.)

 17.19  Use the Fourier transform of t nf(t) to find each of 
the following Fourier transforms (assuming >a 0 ):

te u t( ) ,at{ }−F

t e ,a t{ }−F

te( }.a t−F

Section 17.7

 17.20  Suppose that =f t f t f t( ) ( ) ( ),1 2  where

f t t( ) cos ,1 0ω=

τ τ= − < <f t t( ) 1, 2   2;2

=f t( ) 0, elsewhere.2

a) Use convolution in the frequency domain to 
find  ωF( ).

b) What happens to ωF( )  as the width of f2(t) 
 increases so that f(t) includes more and more 
cycles of f1(t)?

17.21  a) Use the Fourier transform method to find 
vo(t) in the circuit shown in Fig. P17.21 if 

=i t10 sgn( ) A.g

b) Does your solution make sense in terms of 
known circuit behavior? Explain.

PSPICE
MULTISIM

PSPICE
MULTISIM

 17.22  Repeat Problem 17.21 except replace vo(t) with io(t).

17.23  a) Use the Fourier transform method to find io(t) in 
the circuit shown in Fig. P17.23. The initial value 
of io(t) is zero, and the source voltage is 125u(t) V.

b) Sketch io(t) versus t.

PSPICE
MULTISIM

PSPICE
MULTISIM

 17.24  Repeat Problem 17.23 if the input voltage (vg) is 
changed to t125 sgn( ).PSPICE

MULTISIM
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17.25  a) Use the Fourier transform to find vo in the cir-
cuit in Fig. P17.25 if =i t2 sgn( ) A.g

b) Does your solution make sense in terms of 
known circuit behavior? Explain.

PSPICE
MULTISIM

2

1

vo(t)50 Vig

io(t)

500 mH

Figure P17.25

1

2

10 V

vg

1

2

vo

io

0.1 F

Figure P17.27

1

2

50 kV

vg

1

2

vo

io

0.2 mF

Figure P17.29

1 F0.5 V

1 V

va

1

2

vg
1

2

Figure P17.31

1

2

2.5 V

vg 5 mF

io

vo

1

2

Figure P17.32

1

2
vo

vC

312.5 mH 50 V
iL

vg

20 mF

1 2 1

2

 Figure P17.33

 17.26  Repeat Problem 17.25 except replace vo with io.

17.27  a) Use the Fourier transform to find vo in the cir-
cuit in Fig. P17.27 if vg = −e30  V.t5

b) Find −(0 )ov .

c) Find +(0 )ov .

d) Use the Laplace transform method to find vo for 
≥t 0 .

e)  Does the solution obtained in (d) agree with vo 
for > +t 0  from (a)?

PSPICE
MULTISIM

PSPICE
MULTISIM

17.28  a) Use the Fourier transform to find io in the circuit 
in Fig. P17.27 if vg equals −e30  Vt5 .

b) Find −i (0 )o .

c) Find +i (0 )o .

d) Use the Laplace transform method to find io for 
≥t 0 .

e) Does the solution obtained in (d) agree with io 
for > +t 0  from (a)?

 17.29  The voltage source in the circuit in Fig. P17.29 is 
 given by the expression

= t15 sgn( ) V.gv

a) Find vo(t).

b) What is the value of −(0 )?ov
c) What is the value of +(0 )?ov
d) Use the Laplace transform method to find vo(t) 

for > +t 0 .

e) Does the solution obtained in (d) agree with 
vo(t) for > +t 0  from (a)?

PSPICE
MULTISIM

PSPICE
MULTISIM

 17.30  Repeat Problem 17.29 except replace vo(t) with io(t).

 17.31  The voltage source in the circuit shown in Fig. P17.31 
is generating the voltage v = − +e u t u t( ) ( ) Vg

t .

a) Use the Fourier transform method to find va.

b) Compute va(0−), va(0+), and va(∞).

PSPICE
MULTISIM

PSPICE
MULTISIM

 17.32  The voltage source in the circuit in Fig. P17.32 is 
generating the signal

e u t u t18 ( ) 12 ( ) V.g
t4= − −v

a) Find −(0 )ov  and +(0 )ov .

b) Find −i (0 )o  and +i (0 )o .

c) Find vo.

PSPICE
MULTISIM

17.33  a) Use the Fourier transform method to find vo 
in the circuit shown in Fig. P17.33. The voltage 
source generates the voltage

= −e90  V.g
t400v

b) Calculate −(0 )ov , +(0 )ov , and ∞( )ov .

c) Find −i (0 )L ; +i (0 )L ; −(0 )Cv ; and +(0 )Cv .

d) Do the results in part (b) make sense in terms of 
known circuit behavior? Explain.

PSPICE
MULTISIM
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692 The Fourier Transform

17.34  a) Use the Fourier transform method to find vo in 
the circuit in Fig. P17.34 if v = t125 cos 75  Vg .

b) Check the answer obtained in (a) by finding 
the steady-state expression for vo using phasor 
domain analysis.

PSPICE
MULTISIM

1

2
vg

5 H

20 H 360 V

40 V

1

2

vo

Figure P17.34

5 Hig

5 kV

1.25 mF
iL

Figure P17.35

20 V

4 H

12 V

1

2

vovg  F
300

11

2

Figure P17.36

h(t)
vi(t)

(Input voltage)
vo(t)

(Output voltage)

Figure P17.37

10 Vig 200 mHio

Figure P17.40

1

2

20 V

vo5 Vvg

1

2

 F
100

1

Figure P17.41

17.35  a) Use the Fourier transform method to find iL in 
the circuit in Fig. P17.35 when

= − − + −i e u t e u t45 ( ) 45   ( ) A.g
t t400 400

b) Find −i (0 )L .

c) Find +i (0 )L .

d) Do the answers obtained in (b) and (c) make 
sense in terms of known circuit behavior?  Explain.

PSPICE
MULTISIM

17.36  a) Use the Fourier transform method to find vo in 
the circuit in Fig. P17.36 when

v = − + −e u t t e u t60 ( ) 900 ( ) V.g
t t5 5

b) Find −(0 )ov .

c) Find +(0 )ov .

 17.37  When the input voltage to the system shown in 
Fig. P17.37 is 8u(t) V, the output voltage is

e e u t[60 40 20 ] ( ) V.o
t t5 20= − +− −v

What is the output voltage if = t8 sgn( ) Viv ?

 17.38  The voltage across a 50 Ω resistor is te u t4 ( ) V.tv = −  
What percentage of the total energy dissipated in 
the resistor can be associated with the frequency 
band ω≤ ≤0 3 rad s?

 17.39  It is given that ω ω ω= − +ω ω−F e u e u( ) ( ) ( ).

a) Find f(t).

b) Find the Ω1   energy associated with f(t) via 
time-domain integration.

c) Repeat (b) using frequency-domain integration.

d) Find the value of ω1 if f(t) has 95% of the energy 
in the frequency band ω ω≤ ≤0 1.

 17.40  The input current signal in the circuit seen in 
Fig. P17.40 is

= ≥− +i e u t t3 ( ) A, 0 .g
t25

What percentage of the total Ω1   energy content in 
the output signal io lies in the frequency range 0 to 
10  rad s ?

 17.41  The input voltage in the circuit in Fig. P17.41 is 
v = −e60  Vg

t5 .

a) Find vo(t).

b) Sketch ωV ( )g  for ω− ≤ ≤10 10  rad s.

c) Sketch ωV ( )o  for ω− ≤ ≤10 10  rad s.

d) Calculate the Ω1   energy content of vg.

e) Calculate the Ω1   energy content of vo.

f) What percentage of the Ω1   energy content in vg 
lies in the frequency range ω≤ ≤0 10  rad s?

g) Repeat (f) for vo.

Section 17.8
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a) What percentage of the energy in the signal at 
the output of the filter is associated with the fre-
quency band ω α≤ ≤0  if α = a?

b) Repeat (a), given that α = a3 .

c) Repeat (a), given that α = a 3.

C
vovi R

1

2

1

2

Figure P17.42

2 mF

vovi 20 kV

1

2

1

2

Figure P17.43

 17.42  The input voltage to the high-pass RC filter circuit 
in Fig. P17.42 is

= −t Ae u t( ) ( ).i
atv

Let α denote the cutoff frequency of the filter, that 
is, α = RC1 .

 17.43  The amplitude spectrum of the input voltage to the 
high-pass RC filter in Fig. P17.43 is

V ( ) 100 , 25  rad s 50  rad s;i ω
ω

ω= ≤ ≤

ω =V ( ) 0,  elsewhere.i

a) Sketch ωV ( )i
2  for ω− ≤ ≤75 75  rad s.

b) Sketch ωV ( )o
2  for ω− ≤ ≤75 75  rad s.

c) Calculate the Ω1   energy in the signal at the 
 input of the filter.

d) Calculate the Ω1   energy in the signal at the out-
put of the filter.
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CHAPTER CONTENTS

18
CHAPTER

Two-Port Circuits
We have frequently focused on the behavior of a circuit at 
a specified pair of terminals. We introduced the Thévenin and 
Norton equivalent circuits to simplify circuit analysis relative to 
one pair of terminals. But in some electrical systems, a signal is 
fed into one pair of terminals, processed by the system, and ex-
tracted at a second pair of terminals. We can simplify the analysis 
of such systems using two pairs of terminals, each representing 
the points, or ports, where signals are either input or output.

In this chapter, we present circuits that have one input port 
and one output port. Figure 18.1 on page 696 illustrates the basic 
two-port building block. We make several assumptions when 
using the two-port model in Fig. 18.1 to represent a circuit:

• There is no energy stored within the circuit.
• There are no independent sources within the circuit; depen-

dent sources, however, are permitted.
• The current into a given port equals the current out of that 

port; that is, i i1 1= ′  and i i2 2= ′ .
• All external connections must be made to either the input 

port or the output port; no connections can be made 
between ports, that is, between terminals a and c, a and d, b 
and c, or b and d.

These assumptions limit the types of circuits that can be repre-
sented by a two-port model.

When we represent a circuit using a two-port model, we are 
only interested in the circuit’s terminal variables (i1, 1v , i2, and 

2v ). We cannot use the two-port model to find the currents and 
voltages inside the circuit. We have already used such terminal 
behavior when analyzing operational amplifier circuits. In this 
chapter, we formalize that approach by introducing the two-port 
parameters.

18.1 The Terminal Equations p. 696

18.2 The Two-Port Parameters p. 697

18.3  Analysis of the Terminated Two-Port 
 Circuit p. 705

18.4 Interconnected Two-Port Circuits p. 710

CHAPTER OBJECTIVES

1 Be able to calculate any set of two-port 
parameters with any of the following 
methods:

• Circuit analysis;

• Measurements made on a circuit;

• Converting from another set of two- 
port parameters using Table 18.1.

2  Be able to analyze a terminated two-
port circuit to find currents, voltages, 
impedances, and ratios of interest using 
Table 18.2.

3 Know how to analyze a cascade  
interconnection of two-port circuits.
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Practical Perspective
Characterizing an Unknown Circuit
Up to this point, whenever we wanted to create a model of 
a circuit, we needed to know what types of components 
make up the circuit, the values of those components, and 
the interconnections among those components. But what 
if we want to model a circuit that is inside a “black box,” 
where the components, their values, and their intercon-
nections are hidden?

In this chapter, we will discover that by making two 
simple measurements on such a black box, we can 
 create a model consisting of just four values—the two-
port parameter model for the circuit. We can then use 

the two-port parameter model to predict the behavior  
of the circuit once we have attached a power source to 
one of its ports and a load to the other port.

In this example, suppose we have found a circuit, 
enclosed in a casing, with two wires extending from each 
side, as shown below. The casing is labeled “amplifier,” 
and we want to determine whether or not it would be safe 
to use this amplifier to connect a DVD player modeled as a  
2 V source to a speaker modeled as a 32 Ω resistor with 
a power rating of 100 W.

amplifier

HSNphotography/Shutterstock

Ensuper/Shutterstock
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696 Two-Port Circuits

18.1 The Terminal Equations
When we consider a circuit to be a two-port network, we want to relate 
the current and voltage at one port to the current and voltage at the other 
port. Figure 18.1 shows the reference polarities of the terminal voltages 
and the reference directions of the terminal currents. The references at 
each port are symmetric with respect to each other; that is, at each port 
the current is directed into the upper terminal, and at each port the volt-
age rises from the lower to the upper terminal.

The most general two-port network describes the circuit in the  
s domain. For purely resistive circuits, we can analyze the time-domain 
circuit to find its two-port network description. Two-port networks used 
to find sinusoidal steady-state responses can be constructed by finding the 
appropriate s-domain expressions and then replacing s with j ,ω  or by using 
phasor techniques directly. Here, we write all equations in the s domain; 
resistive networks and sinusoidal steady-state solutions become special 
cases. Figure 18.2 shows the basic building block in terms of the s-domain 
variables I ,1  V ,1  I ,2  and V .2

Only two of the four terminal variables are independent. Thus, for 
any circuit, once we specify two of the variables, we can find the two 
remaining unknowns. For example, knowing V1  and V2 and the circuit 
within the box, we can find I 1 and I .2  The two-port network description 
consists of two simultaneous equations. However, there are six different 
ways in which to combine the four variables:

V z I z I ,1 11 1 12 2= +

= +V z I z I ;2 21 1 22 2  
(18.1)

I y V y V ,1 11 1 12 2= +

= +I y V y V ;2 21 1 22 2  
(18.2)

V a V a I ,1 11 2 12 2= −

= −I a V a I ;1 21 2 22 2  
(18.3)

V b V b I ,2 11 1 12 1= −

= −I b V b I ;2 21 1 22 1  
(18.4)

V h I h V ,1 11 1 12 2= +

= +I h I h V ;2 21 1 22 2  
(18.5)

I g V g I ,1 11 1 12 2= +

= +V g V g I .2 21 1 22 2  
(18.6)

These six sets of equations may also be considered as three pairs of 
mutually inverse relations. The first set, Eqs. 18.1, gives the input and out-
put voltages as functions of the input and output currents. The second 
set, Eqs. 18.2, gives the inverse relationship, that is, the input and output 
currents as functions of the input and output voltages. Equations 18.3 and 
18.4 are inverse relations, as are Eqs. 18.5 and 18.6.

The coefficients of the current and/or voltage variables on the right-
hand side of Eqs. 18.1–18.6 are called the parameters of the two-port 
circuit. Thus, when using Eqs. 18.1, we refer to the z parameters of the 
circuit. Similarly, we refer to the y parameters, the a parameters, the b 
parameters, the h parameters, and the g parameters of the network.

s-domain
circuit

1

2

V1

1

2

V2

I1 I2

Figure 18.2 ▲ The s-domain two-port basic 
 building block.

CircuitInput
port

Output
port

1

2

v1

1

2

v2

i1
a

b

c

d
i91 i92

i2

Figure 18.1 ▲ The two-port building block.
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 18.2 The Two-Port Parameters 697

18.2 The Two-Port Parameters
We can determine the parameters for any circuit by computation or 
 measurement. The computations or measurements we need come from 
the parameter equations. For example, suppose we want to find the z 
 parameters for a circuit. From Eqs. 18.1,

 =
=

z
V

I
Ω,

I
11

1

1 02

 (18.7)

 =
=

z
V

I
Ω,

I
12

1

2 01

 (18.8)

 =
=

z
V

I
Ω,

I
21

2

1 02

 (18.9)

 =
=

z
V

I
Ω.

I
22

2

2 01

 (18.10)

 Equations 18.7–18.10 reveal that the four z parameters can be described 
as follows:

• z11  is the impedance seen looking into port 1 when port 2 is open.
• z12  is a transfer impedance. It is the ratio of the port 1 voltage to the 

port 2 current when port 1 is open.
• z21  is a transfer impedance. It is the ratio of the port 2 voltage to the 

port 1 current when port 2 is open.
• z22  is the impedance seen looking into port 2 when port 1 is open.

Therefore, the impedance parameters may be either calculated or mea-
sured by first opening port 2 and determining the ratios V I1 1  and V I ,2 1  
and then opening port 1 and determining the ratios V I1 2  and V I .2 2

Equations 18.7–18.10 show why the parameters in Eqs. 18.1 are called 
the z parameters. Each parameter is the ratio of a voltage to a current and 
therefore is an impedance with the dimension of ohms.

We use the same process to determine the remaining two-port 
parameters, which are either calculated or measured. Finding a two-port  
parameter requires that a port be either opened or shorted. The  
two-port parameters are either impedances, admittances, or dimension-
less ratios. The dimensionless ratios are either ratios of two voltages or 
two currents. Equations 18.11–18.15 summarize these observations.

= =
= =

y
I

V
y

I

V
S, S,

V V
11

1

1 0
12

1

2 02 1

= =
= =

y
I

V
y

I

V
S, S.

V V
21

2

1 0
22

2

2 02 1

 

(18.11)

= = −
= =

a
V

V
a

V

I
, Ω,

I V
11

1

2 0
12

1

2 02 2

= = −
= =

a
I

V
a

I

I
S, .

I V
21

1

2 0
22

1

2 02 2

 

(18.12)

= = −
= =

b
V

V
b

V

I
, Ω,

I V
11

2

1 0
12

2

1 01 1

= = −
= =

b
I

V
b

I

I
S, .

I V
21

2

1 0
22

2

1 01 1

 

(18.13)
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= =
= =

h
V

I
h

V

V
Ω, ,

V I
11

1

1 0
12

1

2 02 1

= =
= =

h
I

I
h

I

V
, S.

V I
21

2

1 0
22

2

2 02 1

 

(18.14)

= =
= =

g
I

V
g

I

I
S, ,

I V
11

1

1 0
12

1

2 02 1

= =
= =

g
V

V
g

V

I
, Ω.

I V
21

2

1 0
22

2

2 02 1

 

(18.15)

We also give descriptive names to the reciprocal sets of two-port 
parameters. The impedance and admittance parameters are grouped into 
the immittance parameters. An immittance is either an impedance or an 
admittance. The a and b parameters are called the transmission parame-
ters because they describe the voltage and current at one end of the two-
port network in terms of the voltage and current at the other end. The 
immittance and transmission parameters are the natural choices for relat-
ing the two-port variables because they relate either voltage to current 
variables or input to output variables. In contrast, the h and g parameters 
relate an input voltage and output current to an output voltage and input 
current. Therefore, the h and g parameters are called hybrid parameters.

 Example 18.1 calculates the z parameters for a resistive circuit by analyz-
ing the circuit. Example 18.2 illustrates how a set of measurements made at 
the terminals of a two-port circuit can be used to calculate the a parameters.

EXAMPLE 18.1  Finding the z Parameters of a Two-Port Circuit

Find the z parameters for the circuit shown in Fig. 18.3. and

= = = Ω
=

z
V

I
10
1

10 .
I

11
1

1 02

Now use voltage division to find V2 for the circuit in 
Fig. 18.4, noting that the voltage across the series com-
bination of the 5 Ω and Ω15  resistors is V 10 V1 = :

V V15
15 5

7.5 V,2 1=
+

=

so

= = = Ω
=

z
V

I
7.5
1

7.5 .
I

21
2

1 02

Next we leave port 1 open, that is, I 0,1 =  
apply a 1 A current source at port 2, and use cir-
cuit  analysis to find V1 and V2. With those two volt-
ages, we can find z22 and z12. The circuit is shown in 

Solution
The circuit is purely resistive, so the s-domain cir-
cuit is also purely resistive. There are many ways to 
find the two-port parameter values. Here, we note 
that with port 2 open, that is, I 0,2 =  we can apply 
a 1 A current source at port 1 and use circuit anal-
ysis to find V1 and V2. With those two voltages, we 
can find z11 and z21. The circuit is shown in Fig. 18.4.

To find V1 for the circuit in Fig. 18.4, find the 
equivalent resistance seen by the 1 A current source:

( )= + = ΩZ 20 5 15 10 .eq

Then,

V Z 1 10 V1 eq( )= =

1

2

V1 20 V

5 V

15 V

1

2

V2

I2I1

Figure 18.3 ▲ The circuit for Example 18.1.

2 2

V1 V2

I2 = 0

1 1

5 V

20 V1 A 15 V

Figure 18.4 ▲ The circuit used to find z11 and z21 
for the circuit in Fig. 18.3.
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 18.2 The Two-Port Parameters 699

Fig. 18.5. To find V2 for the circuit in Fig. 18.5, find 
the  equivalent resistance seen by the 1 A current 
source:

( )= + = ΩZ 15 5 20 9.375 .eq

Then,

V Z 1 9.375 V2 eq( )= =

and

= = = Ω
=

z
V

I
9.375

1
9.375 .

I
22

2

2 01

Now use voltage division to find V1 for the cir-
cuit in Fig. 18.5, noting that the voltage across the 
 series combination of the 5 Ω and 20 Ω resistors is 

=V 9.375 V2 :

V V20
20 5

7.5 V,1 2=
+

=

so

= = = Ω
=

z
V

I
7.5
1

7.5 .
I

12
1

2 01

EXAMPLE 18.2  Finding the a Parameters from Measurements

A two-port circuit is operating in the sinu-
soidal steady state. With port 2 open, a volt-
age of t150 cos 4000 V is applied to port 1. 
Two measurements are made: the current into 
port 1 is t25 cos 4000 45° A,( )−  and the volt-
age across port 2 is t100 cos 4000 15° V.( )+  
Then, port 2 is short-circuited, and a voltage of 

t30 cos 4000 V  is applied to port 1. Two more 
measurements are made: the current into port 1 
is t1.5 cos 4000 30° A,( )+  and the current into 
port 2 is t0.25 cos (4000 150°) A+ . Find the a 
param eters that describe the sinusoidal steady-state 
 behavior of the circuit.

Solution
Phasor-transforming the first set of measurements 
gives

V I150 0° V, 25 45° A,1 1= = −

V I100 15° V, 0 A.2 2= =

From Eqs. 18.12,

a
V
V

150 0°
100 15°

1.5 15°,
I

11
1

2 02

= = = −
=

a
I
V

25 45°
100 15°

0.25 60° S.
I

21
1

2 02

= =
−

= −
=

Phasor-transforming the second set of mea-
surements gives

V I30 0° V, 1.5 30° A,1 1= =

V I0 V, 0.25 150° A.2 2= =

Therefore

a
V
I

30 0°

0.25 150°
120 30° ,

V
12

1

2 02

= − =
−

= Ω
=

a
I
I

1.5 30°
0.25 150°

6 60°.
V

21
1

2 02

= − =
−

=
=

22

V2V1

I1 = 0

11

5 V

15 V 1 A20 V

Figure 18.5 ▲ The circuit used to find z12 and z22 
for the circuit in Fig. 18.3.

Objective 1—Be able to calculate any set of two-port parameters

18.1  Find the z parameters for the circuit shown here.

4 V1 V

12 V

I1

V1 V2

I2

1

2

1

2

Answer:   = Ωz 13  ,11

      = = Ωz z 12  ,12 21

  = Ωz 16  .22

ASSESSMENT PROBLEMS
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700 Two-Port Circuits

Relationships among the Two-Port Parameters
All six sets of two-port parameter equations relate to the same variables. 
Therefore, every set of two-port parameters must be related to every 
other set of these parameters. In other words, if we know one set of two-
port parameters, we can derive all the other sets from the known set. The 
equations used to calculate any single two-port parameter from any set of 
two-port parameters are given in Table 18.1.

We do not derive all the relationships listed in Table  18.1 because 
of the amount of algebra involved. To illustrate the general process, we 
derive the relationships between the z and y parameters and between the 
z and a parameters. To find the z parameters as functions of the y para-
meters, begin by solving Eqs. 18.2 for V1  and V .2  We then compare the 
coefficients of I 1 and I 2  in the resulting expressions to the coefficients of 
I 1 and I 2  in Eqs. 18.1. From Eqs. 18.2,

V

I y

I y

y y

y y

y
y

I
y

y
I ,1

1 12

2 22

11 12

21 22

22
1

12
2= =

∆
−

∆

V

y I

y I

y
y

y
I

y
y

I .2

11 1

21 2 21
1

11
2=

∆
= −

∆
+

∆

Comparing these expressions for V1 and V2 with Eqs. 18.1 shows

=
∆

z
y

y
,11

22

= −
∆

z
y

y
,12

12

= −
∆

z
y

y
,21

21

=
∆

z
y

y
.22

11

SELF-CHECK: Also try Chapter Problems 18.2, 18.4, and 18.5.

18.2  Find the y parameters for the circuit in 
Assessment Problem 18.1.

Answer:   y 250 mS,11 =
  y y 187.5 mS,12 21= = −
  y 203.125 mS.22 =

18.3  The following measurements were made on a 
two-port resistive circuit. With 20 mV applied 
to port 1 and port 2 open, the current into port 
1 is µ0.25 A,  and the voltage across port 2 is 

−5 V. With port 1 short-circuited and 10 V  
applied to port 2, the current into port 1 is 

µ200 A, and the current into port 2 is µ50 A. 
Find the g parameters of the network.

Answer: µ=g 12.5  S;11

 =g 4;12

 g 250;21 = −

 = Ωg 200 k .22
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 18.2 The Two-Port Parameters 701

To find the z parameters as functions of the a parameters, we re -
arrange Eqs. 18.3 in the form of Eqs. 18.1 and then compare coefficients. 
From the second equation in Eqs. 18.3,

= +V
a

I
a

a
I1 .2

21
1

22

21
2

Therefore, substituting this expression for V2 into the first equation of 
Eqs. 18.3 yields

= + −






V

a

a
I

a a

a
a I .1

11

21
1

11 22

21
12 2

Comparing these expressions for V1 and V2 with Eqs. 18.1 gives

=z
a

a
,11

11

21

= ∆z a
a

,12
21

z
a
1 ,21
21

=

=z
a

a
.22

22

21

Example 18.3 illustrates the usefulness of the parameter conversion table.

TABLE 18.1 Parameter Conversion Table

=
∆

= = = ∆ =z
y

y

a

a

b

b
h

h g
1

11
22 11

21

22

21 22 11

= = −
∆

=
∆

= = −b
z

y
y

a

a

h

h

g

g
1

21
12 12

21 22

12

11

12

= −
∆

= ∆ = = = −z
y

y
a

a b

h

h

g

g
1

12
12

21 21

12

22

12

11

= = =
∆

= ∆ = −b
z

z

y

y

a

a
h

h g
1

22
11

12

22

12

11

12 12

=
−
∆

= = ∆ = − =z
y

y a
b

b

h

h

g

g
1

21
21

21 21

21

22

21

11

= ∆ = = = =
∆

h z
z y

a

a

b

b

g

g
1

11
22 11

12

22

12

11

22

=
∆

= = = =
∆

z
y

y

a

a

b

b h
g

g
1

22
11 22

21

11

21 22 11

= = − = ∆ = = −
∆

h
z

z

y

y
a

a b

g

g
1

12
12

22

12

11 22 11

12

=
∆

= = = =
∆

y
z

z

a

a

b

b h
g

g
1

11
22 22

12

11

12 11 22

= − = = − = −∆ = −
∆

h
z

z

y

y a
b

b

g

g
1

21
21

22

21

11 22 11

21

= −
∆

= −∆ = − = − =y
z

z
a

a b

h

h

g

g
1

12
12

12 12

12

11

12

22

= =
∆

= = =
∆

h
z

y
y

a

a

b

b

g

g
1

22
22 11

21

22

21

11

11

= −
∆

= − = −∆ = = −y
z

z a
b

b

h

h

g

g
1

21
21

12 12

21

11

21

22

= =
∆

= = =
∆

g
z

y
y

a

a

b

b

h

h
1

11
11 22

21

11

21

22

22

=
∆

= = = ∆ =y
z

z

a

a

b

b
h

h g
1

22
11 11

12

22

12 11 22

= − = = −∆ = − = −
∆

g
z

z

y

y
a

a b

h

h
1

12
12

11

12

22 11 22

12

= = − =
∆

= −∆ =a
z

z

y

y

b

b
h

h g
1

11
11

21

22

21

22

21 21

= = − = = ∆ = −
∆

g
z

z

y

y a
b

b

h

h
1

21
21

11

21

22 11 22

21

= ∆ = − =
∆

= − =a z
z y

b

b

h

h

g

g
1

12
21 21

12 11

21

22

21

= ∆ = = = =
∆

g z
z y

a

a

b

b

h

h
1

22
11 22

12

11

12

22

11

= = −
∆

=
∆

= − =a
z

y
y

b

b

h

h

g

g
1

21
21 21

21 22

21

11

21

z z z z z11 22 12 21∆ = −

y y y y y11 22 12 21∆ = −

a a a a a11 22 12 21∆ = −

b b b b b11 22 12 21∆ = −

h h h h h11 22 12 21∆ = −

g g g g g11 22 12 21∆ = −

= = − =
∆

= − =
∆

a
z

z

y

y

b

b h

g

g
1

22
22

21

11

21

11

21 21

= = − =
∆

= = −
∆

b
z

z

y

y

a

a h
g

g
1

11
22

12

11

12

22

12 12

= ∆ = − =
∆

= = −b z
z y

a

a

h

h

g

g
1

12
12 12

12 11

12

22

12
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702 Two-Port Circuits

EXAMPLE 18.3     Finding h Parameters from Measurements and Table 18.1

Two sets of measurements are made on a two-
port resistive circuit. The first set is made with 
port 2 open, and the second set is made with port 2 
short-circuited. The results are as follows:

Port 2 Open Port 2 Short-Circuited

V 10 mV1 = V 24 mV1 =

I 10 A1 µ= I 20 A1 µ=

V 40 V2 = − I 1 mA2 =

Find the h parameters of the circuit.

Solution
We can find h11 and h21 directly from the short- 
circuit data:

=
=

h
V

I V
11

1

1 02

24 10
20 10

1.2 k ,
3

6
= ×

×
= Ω

−

−

=
=

h
I

I V
21

2

1 02

10
20 10

50.
3

6
=

×
=

−

−

The parameters h12 and h22  cannot be obtained 
directly from the open- circuit data. However, a check  
of Eqs. 18.7–18.15 indicates that the four a para-
meters can be derived directly from  the measure-
ments. Then, h12 and h22  can be obtained through 
the conversion table.  Specifically,

= ∆h a
a

,12
22

=h
a

a
.22

21

22

The a parameters are

= = ×
−

= − ×
=

−
−a

V

V
10 10

40
0.25 10 ,

I
11

1

2 0

3
3

2

= = ×
−

= − ×
=

−
−a

I

V
10 10

40
0.25 10 S,

I
21

1

2 0

6
6

2

= − = − × = − Ω
=

−

−
a

V

I
24 10

10
24 ,

V
12

1

2 0

3

3
2

= − = − × = − ×
=

−

−
−a

I

I
20 10

10
20 10 .

V
22

1

2 0

6

3
3

2

The numerical value of ∆a  is

a a a a a11 22 12 21∆ = −

5 10 6 10 10 .6 6 6= × − × = −− − −

Thus

h a
a12

22

= ∆

10
20 10

5 10 ,
6

3
5= −

− ×
= ×

−

−
−

h
a
a22

21

22

=

µ= − ×
− ×

=
−

−
0.25 10
20 10

12.5 S.
6

3

Objective 1—Be able to calculate any set of two-port parameters

18.4  The following measurements were made on 
a two-port resistive circuit: With port 2 open, 
V 15 V,2 =  V 10 V,1 = −  and I 30 A;1 =  with 
port 2 short-circuited, = −V 10 V,1  I 4 A,2 =  
and I 5 A.1 = −  Calculate the h parameters.

Answer: h 2  ;11 = Ω

 h 4.667;12 = −

 h 0.8;21 = −

 h 1.6 S.22 =

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter Problem 18.12.
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 18.2 The Two-Port Parameters 703

Reciprocal Two-Port Circuits
A two-port circuit is reciprocal if interchanging an ideal voltage source 
at one port with an ideal ammeter at the other port produces the same 
ammeter reading. A two-port circuit is also reciprocal if interchanging an 
ideal current source at one port with an ideal voltmeter at the other port 
produces the same voltmeter reading. Relationships exist among recipro-
cal two-port parameters, as shown in Table 18.2. For a reciprocal two-port 
circuit, only three calculations or measurements are needed to determine 
a set of parameters.

A reciprocal two-port circuit is symmetric if its ports can be inter-
changed without altering terminal current and voltage values. Figure 18.6 
shows four examples of symmetric two-port circuits. In these circuits, 
additional relationships exist among the two-port parameters, as shown 
in Table 18.2. If a circuit is both reciprocal and symmetric, then only two 
calculations or measurements are necessary to determine all the two-port 
parameters. Example 18.4 determines whether a circuit is reciprocal and 
symmetric.

EXAMPLE 18.4  Determining Whether a Circuit Is Reciprocal and Symmetric

Consider the resistive circuit shown in Fig. 18.7. a) Attach a 15 V source to the terminals a and d 
and calculate the reading on an ideal amme-
ter  attached between terminals c and d. Then 
 attach a 15 V source to the terminals c and d 
and  calculate the reading on an ideal ammeter 
 attached between terminals a and d. Is the cir-
cuit  reciprocal?

b) Find the y parameters for the circuit and deter-
mine whether or not it is symmetric.

Za Za

Zb

Zc

Zb

Zb

Zb

ZbZb

Za

Za

Za

Za

Za

V2V1

I2I1

I2I1

I2I1

I2I1

(a)

(d)(c)

(b)

1

2

1

2

V2V1

1

2

1

2

V1

1

2

V2

1

2

V2V1

1

2

1

2

Figure 18.6 ▲ Four examples of symmetric two-port circuits. (a) A symmetric tee.  
(b) A symmetric pi. (c) A symmetric bridged tee. (d) A symmetric lattice.

a c

d d

60 V

20 V30 V

10 V

b

2

V1

I1 I2

1

2

V2

1

Figure 18.7 ▲ The circuit for Example 18.4.

TABLE 18.2  Two-Port Parameter  
Relationships for  
Reciprocal Circuits

Reciprocal Circuits

z z12 21=

y y12 21=

a a a a a 111 22 12 21− = ∆ =

b b b b b 111 22 12 21− = ∆ =

h h12 21= −

g g12 21= −

Reciprocal and Symmetric Circuits

z z11 22=

y y11 22=

a a11 22=

b b11 22=

h h h h h 111 22 12 21− = ∆ =

g g g g g 111 22 12 21− = ∆ =
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704 Two-Port Circuits

15 V

a c

d d

Ammeter 60 V

20 V30 V

10 V

b

1

2
I

Figure 18.9 ▲ The circuit shown in Fig. 18.7, with the  voltage  
source and ammeter interchanged.

remembering that the ideal ammeter behaves 
like a short circuit. Then,

+ +
−

=
V V V

60 30
15

20
0,bd bd bd

so =V 7.5 V.bd  The ammeter current I is the 
sum of the current in the 30 Ω resistor and the 
current in the Ω10  resistor:

I 7.5
30

15
10

1.75 A.= + =

Since both ammeter readings are the same, the 
circuit in Fig. 18.7 is reciprocal.

b) We can use the analysis results for the circuit in 
Fig. 18.8 to find two of the y parameters. Atta ch-
ing the ammeter between nodes c and d is the 
same as setting V 02 =  in Fig.  18.7. Also, I2 in 
Fig. 18.7 equals I−  in Fig. 18.8, and I1 in Fig. 18.7 
is the sum of the currents in the 30 Ω and Ω10
resistors in Fig. 18.8. Therefore,

I I 1.75 A,2 = − = −

= − + =I 15 5
30

15
10

55
30

A,1

so

= = =
=

y
I

V
55 30

15
11
99

S,
V

11
1

1 02

= = − = −
=

y
I

V
1.75
15

7
60

S.
V

21
2

1 02

We have already shown that the circuit in Fig. 18.7  
is reciprocal, so y y 7 60 S.12 21= = −  

We can use the analysis results for the cir-
cuit in Fig. 18.9 to find y22, because attaching the 
ammeter between nodes a and d is the same as 
setting V 01 =  in Fig.  18.7. Also, I1 in Fig.  18.7 
is the sum of the currents in the 10 Ω and 20 Ω
resistors in Fig. 18.9. Therefore,

I 15 7.5
20

15
10

1.875 A1 = − + =

so

= = =
=

y
I

V
1.875

15
0.125 S.

V
22

2

2 01

Note that y y ,11 22≠  so the circuit in Fig. 18.7 is 
not symmetric.

Solution

a) A 15 V source is attached between nodes a and 
d, and an ammeter is attached between termi-
nals c and d. The resulting circuit is shown in 
Fig.  18.8. To find the ammeter current, begin 
by writing a KCL equation at node b to deter-
mine the voltage between nodes b and d, Vbd. 
Remember that an ideal ammeter behaves like 
a short circuit, so

+
−

+ =
V V V

60
15

30 20
0,bd bd bd

and V 5 V.bd =  Therefore, the current I in the 
ammeter is the sum of the current in the 10 Ω
resistor and the current in the 20 Ω resistor:

I 5
20

15
10

1.75A.= + =

Now interchange the voltage source and amme-
ter as shown in Fig.  18.9. Again, we write a KCL 
equation at node b to determine the voltage Vbd, 

1

2
15 V

a c

d d

I Ammeter60 V

20 V30 V

10 V

b

 Figure 18.8 ▲ The circuit in Fig. 18.7, with a voltage source 
and an ammeter attached.
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 18.3 Analysis of the Terminated Two-Port Circuit  705

18.3  Analysis of the Terminated  
Two-Port Circuit

A terminated two-port circuit usually has a source attached at port 1 and 
a load attached at port 2, as shown in the s-domain circuit of Fig. 18.10. In 
this circuit, Zg  is the internal source impedance, Vg  the internal source 
voltage, and ZL  is the load impedance. To analyze this circuit, we find the 
terminal currents and voltages as functions of the two-port parameters, 
V ,g  Z ,g  and Z .L

Six characteristics of the terminated two-port circuit define its termi-
nal behavior:

• the input impedance Z V I ,in 1 1=  or the admittance Y I Vin 1 1= ;
• the output current I 2 ;
• the Thévenin voltage and impedance V Z( , )Th Th  with respect to port 2;
• the current gain I I2 1;
• the voltage gain V V2 1;
• the voltage gain V Vg2 .

The Six Characteristics in Terms of the z Parameters
To illustrate how these six characteristics are derived, we find their 
expressions using the z parameters of the two-port portion of the cir-
cuit. Table 18.3 summarizes the expressions involving the y, a, b, h, and g 
parameters.

We find the expression for each characteristic using one set of two-
port equations, along with the two constraint equations imposed by the 
source applied at port 1 and the load applied at port 2. Using the z param-
eters, the circuit in Fig. 18.10 is described by the following four equations:

 = +V z I z I ,1 11 1 12 2  (18.16)

 = +V z I z I ,2 21 1 22 2  (18.17)

 V V I Z ,g g1 1= −  (18.18)

= −V I Z .2 2 L  (18.19)

Objective 1—Be able to calculate any set of two-port parameters

18.5  The following measurements were made on a 
resistive two-port network that is symmetric 
and reciprocal: With a short circuit across  
port 2, =I 4 A1  and =V 80 V.1  With port 2 
open, I 2.25 A1 = −  and V 100 V2 = .  

Calculate the y parameters of the two-port 
network.

Answer: y y 50 mS,11 22= =   y y 40 mS.12 21= =

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter Problem 18.13.

1

2

Zg

ZLVg

Two-port model
of a

network

I2I1

V1

1

2

V2

1

2

Figure 18.10 ▲ A terminated two-port model.
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TABLE 18.3 Terminated Two-Port Equations

z Parameters y Parameters

= −
+

Z z
z z

z Zin 11
12 21

22 L

= −
+

Y y
y y Z

y Z1in 11
12 21 L

22 L

I
z V

z Z z Z z z
g

g
2

21

11 22 L 12 21( )( )
=

−

+ + −
=

+ + + ∆
I

y V

y Z y Z yZ Z1
g

g g
2

21

22 L 11 L

=
+

V
z

z Z
V

g
gTh

21

11
=

−

+ ∆
V

y V

y yZ
g

g
Th

21

22

= −
+

Z z
z z

z Zg
Th 22

12 21

11
=

+

+ ∆
Z

y Z

y yZ

1 g

g
Th

11

22

=
−

+
I

I

z

z Z
2

1

21

22 L

=
+ ∆

I

I

y

y yZ
2

1

21

11 L

=
+ ∆

V

V

z Z

z Z z
2

1

21 L

11 L

=
−
+

V

V

y Z

y Z1
2

1

21 L

22 L

( )( )
=

+ + −

V

V

z Z

z Z z Z z zg g

2 21 L

11 22 L 12 21 ( )( )
=

− + +
V

V

y Z

y y Z Z y Z y Z1 1g g g

2 21 L

12 21 L 11 22 L

a Parameters b Parameters

=
+
+

Z
a Z a

a Z ain
11 L 12

21 L 22

=
+
+

Z
b Z b

b Z bin
22 L 12

21 L 11

=
−

+ + +
I

V

a Z a a Z Z a Z
g

g g
2

11 L 12 21 L 22

=
− ∆

+ + +
I

V b

b Z b Z Z b Z b
g

g g
2

11 21 L 22 L 12

=
+

V
V

a a Z
g

g
Th

11 21

=
∆

+
V

V b

b b Z
g

g
Th

22 21

=
+

+
Z

a a Z

a a Z
g

g
Th

12 22

11 21

=
+

+
Z

b Z b

b Z b
g

g
Th

11 12

21 22

= −
+

I

I a Z a
1

L

2

1 21 22

= −∆
+

I

I
b

b b Z
2

1 11 21 L

=
+

V

V

Z

a Z a
2

1

L

11 L 12

=
∆
+

V

V

bZ

b b Z
2

1

L

12 22 L

( )
=

+ + +

V

V

Z

a a Z Z a a Zg g g

2 L

11 21 L 12 22

=
∆

+ + +
V

V

bZ

b b Z b Z b Z Zg g g

2 L

12 11 22 L 21 L

h Parameters g Parameters

= −
+

Z h
h h Z

h Z1in 11
12 21 L

22 L

= −
+

Y g
g g

g Zin 11
12 21

22 L

( )( )
=

+ + −
I

h V

h Z h Z h h Z1
g

g
2

21

22 L 11 12 21 L ( )( )
=

−

+ + −
I

g V

g Z g Z g g Z1
g

g g
2

21

11 22 L 12 21

=
−

+ ∆
V

h V

h Z h
g

g
Th

21

22

=
+

V
g V

g Z1
g

g
Th

21

11

=
+

+ ∆
Z

Z h

h Z h
g

g
Th

11

22

= −
+

Z g
g g Z

g Z1
g

g
Th 22

12 21

11

=
+

I

I

h

h Z1
2

1

21

22 L

=
−

+ ∆
I

I

g

g Z g
2

1

21

11 L

=
−

∆ +
V

V

h Z

hZ h
2

1

21 L

L 11

=
+

V

V

g Z

g Z
2

1

21 L

22 L

( )( )
=

−

+ + −

V

V

h Z

h Z h Z h h Z1g g

2 21 L

11 22 L 12 21 L ( )( )
=

+ + −

V

V

g Z

g Z g Z g g Z1g g g

2 21 L

11 22 L 12 21
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 18.3 Analysis of the Terminated Two-Port Circuit  707

Let’s find the impedance seen looking into port 1, that is, Z V Iin 1 1= .  
In Eq. 18.17, replace V2 with −I Z2 L  and solve the resulting expression 
for I 2 :

 =
−

+
I

z I

Z z
.2

21 1

L 22
 (18.20)

Then substitute this equation into Eq. 18.16 and solve for Z in:

= −
+

Z z
z z

z Z
.in 11

12 21

22 L

To find the output current I ,2  we first solve Eq. 18.16 for I 1 after 
replacing V1  with the right-hand side of Eq. 18.18. The result is

 =
−

+
I

V z I

z Z
.

g

g
1

12 2

11
 (18.21)

We now substitute Eq. 18.21 into Eq. 18.20 and solve the resulting equa-
tion for I 2 :

=
−

+ + −
I

z V

z Z z Z z z( )( )
.

g

g
2

21

11 22 L 12 21

The Thévenin voltage with respect to port 2 equals V2 when I 0.2 =  
With I 0,2 =  Eq. 18.17 reduces to

  ==V z I .I2 0 21 12
 (18.22)

But when I 02 = , Eq. 18.21 becomes ( )= +I V z Z .g g1 11  Substituting 
this expression for I1 into Eq. 18.22 yields the open-circuit value of V2:

 = =
+=V V

z

Z z
V .I

g
g2 0 Th

21

11
2

The Thévenin, or output, impedance is the ratio V I2 2  when Vg  is 
replaced by a short circuit. When Vg  is zero, Eq. 18.18 reduces to

 = −V I Z .g1 1  (18.23)

Substituting Eq. 18.23 into Eq. 18.16 and solving for I1 gives

=
−

+
I

z I

z Z
.

g
1

12 2

11

Now use this expression to replace I 1 in Eq. 18.17, resulting in

= = −
+=

V

I
Z z

z z

z Z
.

V g

2

2 0
Th 22

12 21

11g

The current gain I I2 1  comes directly from Eq. 18.20:

=
−

+
I

I

z

Z z
.2

1

21

L 22
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708 Two-Port Circuits

To derive the expression for the voltage gain V V ,2 1  we start by 
replacing I 2  in Eq. 18.17 with its value from Eq. 18.19; thus

 = +
−






V z I z

V

Z
.2 21 1 22

2

L
 (18.24)

Next, solve Eq. 18.16 for I 1 as a function of V1  and V2:

= −
−






z I V z

V

Z11 1 1 12
2

L

or

 = +I
V

z

z V

z Z
.1

1

11

12 2

11 L
 (18.25)

Finally, replace I 1 in Eq. 18.24 with Eq. 18.25 and solve the resulting 
 expression for V V2 1 :

=
+ −

V

V

z Z

z Z z z z z
2

1

21 L

11 L 11 22 12 21

=
+ ∆

z Z

z Z z
.21 L

11 L

To derive the voltage ratio V V ,g2  we first combine Eqs. 18.16, 18.18, 

and 18.19 to find I 1 as a function of V2 and Vg:

 =
+

+
+

I
z V

Z z Z

V

z Z( )
.

g

g

g
1

12 2

L 11 11
 (18.26)

Then, starting with Eq. 18.17, use Eq. 18.26 to substitute for I1 and Eq. 18.19 
to substitute for I2. The result is an expression involving only V2 and Vg:

=
+

+
+

−V
z z V

Z z Z

z V

z Z

z

Z
V

( )
,

g

g

g
2

21 12 2

L 11

21

11

22

L
2

which we can rearrange to get the desired voltage ratio:

=
+ + −

V

V

z Z

z Z z Z z z( )( )
.

g g

2 21 L

11 22 L 12 21

Example 18.5 illustrates the usefulness of the relationships listed in 
Table 18.3.
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 18.3 Analysis of the Terminated Two-Port Circuit  709

 EXAMPLE 18.5  Analyzing a Terminated Two-Port Circuit

We describe the two-port circuit shown in Fig. 18.11 
using its b parameters, whose values are

= − = − Ωb b20, 3000 ,11 12

b b2 mS, 0.2.21 22= − = −

a) Find the phasor voltage V .2

b) Find the average power delivered to the 5 kΩ  
load.

c) Find the average power delivered to the input 
port.

d) Find the load impedance for maximum average 
power transfer.

e) Find the maximum average power delivered to 
the load in (d).

Then,

V 10
19

500 263.16 0°V.2 ( )= =

b) The average power delivered to the 5000 Ω  
load is

( ) ( )
= = =P

V

2 5000
263.16
2 5000

6.93 W.2
2

2 2

c) To find the average power delivered to the input 
port, we first find the input impedance Z .in  From 
Table 18.3,

=
+
+

Z
b Z b

b Z bin
22 L 12

21 L 11

( )( )

( )
= − −

− × −−
0.2 5000 3000

2 10 5000 203

= = Ω400
3

133.33 .

Now I1 follows directly:

=
+

=
+

=
Z Z

I
V 500

500 133.33
789.47 mA.

g

g
1

in

The average power delivered to the input port is

( ) ( )= = =P
ZI

2
0.78947 133.33

2
41.55 W.1

1
2

in
2

d) The load impedance for maximum power trans-
fer equals the conjugate of the Thévenin imped-
ance seen looking into port 2. From Table 18.3,

=
+

+
Z

b Z b

b Z b
g

g
Th

11 12

21 22

20 500 3000
2 10 500 0.23( )
( )( )

( )
= − −

− × −−

= = Ω13,000
1.2

10,833.33 .

Therefore = = ΩZ Z 10,833.33 .L Th
*

Solution

a) To find V ,2  we have two choices from the entries in 
Table 18.3. We could find I 2  and then find V2 from the 
relationship = − ZV I ,2 2 L  or we could find the volt-
age gain V Vg2  and calculate V2 from the gain. Let’s 
use the latter approach. For the b-parameter values 
given, we have

b b b b b11 22 12 21∆ = −

20 0.2 3000 0.002 2.( )( ) ( )( )= − − − − − = −

From Table 18.3,

=
∆

+ + +
bZ

b b Z b Z b Z Z
V
Vg g g

2 L

12 11 22 L 21 L

2 5000
3000 ( 20)500 ( 0.2)5000 0.002(500)(5000)[ ]

( )( )= −
− + − + − + −

10
19

.=

1

2

500 V

5 kVV1 V2

I1 I2

[b]

2

1

2

1

500  08 V

Figure 18.11 ▲ The circuit for Example 18.5.
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710 Two-Port Circuits

e) To find the maximum average power delivered to 
Z ,L  we first find V2 from the voltage-gain expres-
sion V V .g2  When ZL  is Ω10,833.33 , this gain is

=
∆

+ + +
bZ

b b Z b Z b Z Z

V
Vg g g

2 L

12 11 22 L 21 L

2 10,833.33
3000 20 500 0.2 10,833.33 0.002 500 10,833.33

( )( )

( ) ( )( ) ( )( ) ( )( )( )
= −

− + − + − + −

0.8333.=

Thus

( )( )= =V 0.8333 500 416.67 V,2

and

( ) =P maximum 1
2

416.67
10,833.33L

2

8.01 W.=

Objective 2—Be able to analyze a terminated two-port circuit to find currents, voltages, and ratios of interest

18.6  The following measurements were made on the 
resistive circuit shown here

Measurement 1 Measurement 2

V 4 V1 = V 20 mV1 =

I 5 mA1 = µ=I 20  A1

V 02 = V 40 V2 =

I   200 mA2 = − I 02 =

A variable resistor Ro is connected across port 2 and 
adjusted for maximum power transfer to Ro. Find the 
maximum power.

Answer: 420 µW.

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter Problems 18.29, 18.30, and 18.35.

 18.4 Interconnected Two-Port Circuits
Synthesizing a large, complex system is usually made easier by first design-
ing subsections of the system and then interconnecting the subsections. If 
the subsections are modeled by two-port circuits, we will need to analyze 
interconnected two-port circuits to complete the system design.

Two-port subsystem circuits can be interconnected in five ways: (1) in 
cascade, (2) in series, (3) in parallel, (4) in series-parallel, and (5) in parallel- 
series. Figure 18.12 depicts these five basic interconnections.

1

2

250 V

Resistive
network

5.25 mV

I1

Ro

1

2

V2

1

2

V1

I2
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 18.4 Interconnected Two-Port Circuits 711

We analyze and illustrate only the cascade connection in this section. 
The cascade connection is important because it occurs frequently in the 
modeling of large systems. The a parameters are best suited for describing 
the cascade connection. We analyze the cascade connection using the cir-
cuit shown in Fig. 18.13, where a single prime denotes a parameters in the 
first circuit and a double prime denotes a parameters in the second circuit. 
The output voltage and current of the first circuit are labeled V2′ and I ,2′  
and the input voltage and current of the second circuit are labeled V1′ and 
I .1′  The problem is to derive the a-parameter equations that relate V2 and 
I 2  to V1  and I .1  In other words, we want to construct the equations

 = −V a V a I ,1 11 2 12 2  
(18.27)

= −I a V a I ,1 21 2 22 2

where the a parameters are given explicitly in terms of the a parameters of 
the individual circuits.

We begin the derivation by noting from Fig. 18.13 that

 = ′ ′ − ′ ′V a V a I ,1 11 2 12 2  
(18.28)

= ′ ′ − ′ ′I a V a I .1 21 2 22 2

The interconnection means that V V2 1′ = ′  and I I .2 1′ = − ′  Substituting 
these constraints into Eqs. 18.28 yields

 = ′ ′ + ′ ′V a V a I ,1 11 1 12 1  
(18.29)

I a V a I .1 21 1 22 1= ′ ′ + ′ ′

(a)

1

2

1

2

1 1

2 2

1 2

(b) (c)

(d) (e)

Figure 18.12 ▲ The five basic interconnections of two-port circuits. (a) Cascade.  
(b) Series. (c) Parallel. (d) Series-parallel. (e) Parallel-series.

Circuit 1 Circuit 2

a911

a921

a912

a922

a011

a021

a012

a022

1

2

1

2

1

2

V1 V91V92

1

2

V2

I2I1 I92 I91

Figure 18.13 ▲ A cascade connection.
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712 Two-Port Circuits

The voltage V1′ and the current I 1′  are related to V2 and I 2  through 
the a parameters of the second circuit:

 ′ = ′′ − ′′V a V a I ,1 11 2 12 2  
(18.30)

I a V a I .1 21 2 22 2′ = ′′ − ′′

We substitute Eqs. 18.30 into Eqs. 18.29 to generate the relationships 
between V ,1  I 1 and V ,2  I 2 :

= ′ ′′ + ′ ′′ − ′ ′′ + ′ ′′V a a a a V a a a a I( ) ( ) ,1 11 11 12 21 2 11 12 12 22 2

= ′ ′′ + ′ ′′ − ′ ′′ + ′ ′′I a a a a V a a a a I( ) ( ) .1 21 11 22 21 2 21 12 22 22 2

By comparing these expressions for V1 and I1 to Eqs. 18.27, we get the 
desired expressions for the a parameters of the interconnected networks, 
namely,

 = ′ ′′ + ′ ′′a a a a a ,11 11 11 12 21  (18.31)

= ′ ′′ + ′ ′′a a a a a ,12 11 12 12 22  (18.32)

 = ′ ′′ + ′ ′′a a a a a ,21 21 11 22 21  (18.33)

= ′ ′′ + ′ ′′a a a a a .22 21 12 22 22  (18.34)

If more than two units are connected in cascade, the a parameters of 
the equivalent two-port circuit can be found by successively reducing the 
original set of two-port circuits one pair at a time.

Example 18.6 illustrates how to use Eqs. 18.31–18.34 to analyze a cas-
cade connection with two amplifier circuits.

EXAMPLE 18.6  Analyzing Cascaded Two-Port Circuits

Two identical amplifiers are connected in cascade, 
as shown in Fig.  18.14. Each amplifier is described 
using its h parameters. The values are h 1000 ,11 = Ω  
h 0.0015,12 =  h 100,21 =  and µ=h 100 S.22  Find  
the voltage gain V V .g2

identical, so one set of a parameters describes the 
amplifiers:

a h
h

0.05
100

5 10 ,11
21

4′ = −∆ = + = × −

′ =
−

= − = − Ωa
h

h
1000
100

10 ,12
11

21

′ =
−

= − × = −
−

−a
h

h
100 10

100
10 S,21

22

21

6
6

a
h

1 1
100

10 .22
21

2′ = − = − = − −

Next we use Eqs. 18.31–18.34 to compute the a 
parameters of the cascaded amplifiers:

a a a a a11 11 11 12 21= ′ ′ + ′ ′

25 10 10 108 6( )( )= × + − −− −

10.25 10 ,6= × −

1

2

500 V

10 kV

1

2

Vg V2A1 A2

Figure 18.14 ▲ The circuit for Example 18.6.

Solution
The first step in finding V Vg2  is to convert from 
h parameters to a parameters. The amplifiers are 
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a a a a a12 11 12 12 22= ′ ′ + ′ ′

5 10 10 10 104 2( ) ( )( ) ( )= × − + − −− −

= Ω0.095 ,

a a a a a21 21 11 22 21= ′ ′ + ′ ′

10 5 10 0.01 106 4 6( )( ) ( )( )= − × + − −− − −

= × −9.5 10 S,9

a a a a a22 21 12 22 22= ′ ′ + ′ ′

10 10 106 2 2( ) ( )( )= − − + −− −

1.1 10 .4= × −

From Table 18.3,

( )
=

+ + +
V

V

Z

a a Z Z a a Zg

L

g L g

2

11 21 12 22

10
10.25 10 9.5 10 500 10 0.095 1.1 10 500

4

6 9 4 4[ ]( ) ( )
=

× + × + + ×− − −

10
0.15 0.095 0.055

4
=

+ +

10
3

5
=

33,333.33.=

Thus, an input signal of µ150 V  is amplified to an output 
 signal of 5 V.

Objective 3—Know how to analyze a cascade interconnection of two-port circuits

18.7  The g and h parameters for the resistive two-port 
circuits in the figure are

= = Ωg h3
35

 S; 5 k ;11 11

g h20
7

; 0.2;12 12= = −

= = −g h800
7

; 4;21 21

µ= Ω =g h50
7

 k ; 200  S.22 22

Calculate vo if vg = 30 V dc. Answer: 3750 V.

ASSESSMENT PROBLEM

SELF-CHECK: Also try Chapter Problem 18.38.

Practical Perspective
Characterizing an Unknown Circuit
We make the following measurements to find the h parameters for our 
“black box” amplifier:

• With Port 1 open, apply 50 V at Port 2. Measure the voltage at port 1 
and the current at Port 2:

V I50 mV; 2.5 A.1 2= =  

• With Port 2 short-circuited, apply 2.5 mA at Port 1. Measure the volt-
age at Port 1 and the current at Port 2:

V I1.25 V; 3.75A.1 2= =

Calculate the h parameters according to Eqs. 18.14:

= = = Ω = = =
= =

−h
V

I
h

V

V
1.25

0.0025
500 ; 0.05

50
10 ;

V I
11

1

1 0
12

1

2 0

3

2 1

1

2
[ g ] 15 kVvg [ h ]

10 V

vo

1

2
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= = = = = =
= =

h
I

I
h

I

V
3.75

0.0025
1500; 2.5

50
50 mS.

V I
21

2

1 0
22

2

2 02 1

Now we use the terminated two-port equations to determine 
whether or not it is safe to attach a 2 V(rms) source with a 100 Ω internal  
impedance to Port 1 and use this source together with the amplifier to 
drive a speaker modeled as a 32 Ω resistance with a power rating of 
100 W. Begin by finding the value of I 2 from Table 18.3:

( )( )
=

+ + −
I

h V

h Z h Z h h Z1
g

g
2

21

22 L 11 12 21 L

( )
( )

( )( )[ ][ ] ( ) ( )
=

+ + − −
1500 2

1 0.05 32 500 100 1500 10 323

( )= 1.98 A rms .

Then, calculate the power delivered to the 32 Ω speaker:

( )( )= = =P RI 32 1.98 126 W.2
2 2

The amplifier would thus deliver 126 W to the speaker, which is rated at 
100 W, so it would be better to use a different amplifier or buy a more 
powerful speaker.

SELF-CHECK: Also try Chapter Problem 18.46.

Summary
• The two-port model is used to describe the performance 

of a circuit in terms of the voltage and current at its 
input and output ports. (See page 694.)

• The model is limited to circuits in which

• no independent sources are inside the circuit between 
the ports;

• no energy is stored inside the circuit between the ports;

• the current into the port is equal to the current out of 
the port; and

• no external connections exist between the input and 
output ports.

(See page 692.)

• Two of the four terminal variables V I V I( , , , )1 1 2 2  are 
independent; therefore, only two simultaneous equa-
tions involving the four variables are needed to describe 
the circuit. (See page 694.)

• The six possible sets of simultaneous equations involving  
the four terminal variables are called the z-, y-, a-, b-, h-, and 
g-parameter equations. See Eqs. 18.1–18.6. (See page 694.)

• The equations are written in the s domain. The dc values 
of the parameters are obtained by setting s 0,=  and 
the sinusoidal steady-state values are obtained by set-
ting s jω= . (See page 694.)

• Any set of two-port parameters can be calculated or 
measured by invoking appropriate short-circuit and 
open-circuit conditions at the input and output ports. 
See Eqs. 18.7–18.15. (See pages 695 and 696.)

•  The relationships among the six sets of two-port param-
eters are given in Table 18.1. (See page 699.)

• A two-port circuit is reciprocal if interchanging an ideal 
voltage source at one port with an ideal ammeter at the 
other port produces the same ammeter reading. The 
effect of reciprocity on the two-port parameters is given 
in Table 18.2. (See page 701.)

• A reciprocal two-port circuit is symmetric if its ports 
can be interchanged without disturbing the values of the 
terminal currents and voltages. The added effect of sym-
metry on the two-port parameters is given in Table 18.2. 
(See page 701.)

• The characteristics of a terminated two-port circuit, 
which is connected to a Thévenin equivalent source 
and a load, are summarized by the relationships given 
in Table 18.3. (See page 704.)

• Large networks can be divided into subnetworks by 
means of interconnected two-port models. The cas-
cade connection was used in this chapter to illustrate 
the analysis of interconnected two-port circuits. (See 
page 709.)
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 Problems 715

  18.11  The operational amplifier in the circuit shown in Fig. 
P18.11 is ideal. Find the g parameters of the circuit.

Sections 18.1–18.2

 18.1  Find the y parameters for the circuit in Fig 18.3.

 18.2  Find the h parameters for the circuit in Fig. 18.3.

 18.3  Find the a parameters for the circuit in Fig 18.3.

 18.4  Find the z parameters for the circuit shown in  
Fig. P18.4.

Problems

1
2

4 kV

25 kV30I1500
 V2

I1

V1 V2

I2

1 1

22

Figure P18.5

I1

V1 V2

I25 V 10 V

10 V

16 V

1

2

1

2

Figure P18.4

5 V6 V

40 V 20 V 80 V

I1

V1 V2

I2

1

2

1

2

Figure P18.7

I1 I25 V

5 V

20 V

20 V
V1

1

2

V2

1

2

Figure P18.8

2
1

V1

I1 I2

2

1

Vs

2

1

200 V 16.2Vs V2

2

1

800 V

40 V 160 V

Figure P18.10

2 2

R1

R2 R3

I1

V1 V2

I2

1 1

Figure P18.9

 18.5  Find the b parameters for the circuit in Fig. P18.5.

 18.6  Use the results obtained in Problem 18.5 to calcu-
late the g parameters of the circuit in Fig. P18.5.

 18.7  Find the h parameters for the circuit in Fig. P18.7.

 18.8  Find the b parameters for the circuit shown in  
Fig. P18.8.

 18.9  Select the values of R1, R2, and R3 in the cir-
cuit in Fig. P18.9 so that a 1.211 = , a 34 12 = Ω, 
a 20 mS21 = , and a 1.422 = .

 18.10  Find the h parameters for the circuit shown in 
Fig. P18.10.

1

2 1

2

V2

1

2

V1

I1

200 V

500 V800 V

1 kV

40 V
1VCC

2VCC
I2

Figure P18.11

 18.12  The following measurements were made on the 
two-port network shown in Fig. P18.12.

Port 2 Open Port 1 Short-Circuited

V 50 mV1 = µ=I 2  A1

V 200 mV2 = µ=I 0.5  A2

µ=I 5  A1 V 10 mV2 =

Calculate the g parameters for the network.

V1

I1 I2

2

1

V2g
2

1

Figure P18.12
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716 Two-Port Circuits

18.13  a) Use the measurements given in Problem 18.12 
to find the z parameters for the network.

b) Check your calculations by finding the z param-
eters directly from the g parameters found in 
Problem 18.12.

18.14  Find the h parameters of the two-port circuit shown 
in Fig. P18.14.

1 F

1 H

1 V 1 V
i1

v1

1

2

v2

1

2

i2

Figure P18.18

1
2

25 V 1 Vj10 V

j3 V5I1V1

I1 I2

2

1

V2

2

1

Figure P18.14

1 F

1 V

i1

v1

1

2

v2

1

2

i21 H

Figure P18.19

V1

I1 I2

2

1

10 V

1
2

50 V

2j25 V
2V1

V2

2

1

20 V
V2
5

Figure P18.20

R R

L

M

L

i1 i2

v2

1

2

v1

1

2

 Figure P18.22

Za

Zc

Zb

Zb

I1

V1

1

2

V2

1

2

I2

Figure P18.23

18.15  Derive the expressions for the h parameters as 
functions of the a parameters.

18.16  Derive the expressions for the y parameters as 
functions of the b parameters.

18.17  Derive the expressions for the g parameters as 
functions of the y parameters.

18.18  Find the s-domain expressions for the a parameters 
of the two-port circuit shown in Fig. P18.18.

18.19  Find the s-domain expressions for the y parameters 
of the two-port circuit shown in Fig. P18.19.

18.21  Find the b parameters for the two-port circuit 
shown in Fig. P18.20.

18.22  a) Use the defining equations to find the s-domain 
expressions for the h parameters for the circuit 
in Fig. P18.22.

b) Show that the results obtained in (a) agree with 
the h-parameter relationships for a reciprocal 
symmetric network.

18.23  Is the two-port circuit shown in Fig. P18.23 symmet-
ric? Justify your answer.

18.20  Find the frequency-domain values of the y parame-
ters for the two-port circuit shown in Fig. P18.20.

Section 18.3

18.24  Find the Thévenin equivalent circuit with respect to 
port 2 of the circuit in Fig. 18.10 in terms of the b 
parameters.

 18.25 Derive the expression for the voltage gain V V2 1  
of the circuit in Fig.  18.10 in terms of the g 
parameters.

 18.26 Derive the expression for the current gain I I2 1  
of the circuit in Fig.  18.10 in terms of the a 
parameters.

18.27  Derive the expression for the voltage gain V Vg2  of 
the circuit in Fig. 18.10 in terms of the y parameters.

18.28  Derive the expression for the input impedance 
Z V Iin 1 1=  for the circuit in Fig. 18.10 in terms of 
the h parameters.

18.29  The a parameters of a terminated two-port network 
are a 5 1011

4= × − , a 10 12 = Ω, a 10  S21
6= − , and  

= − × −a 3 1022
2 . The network is driven by a sinu-

soidal voltage source with a maximum amplitude of 
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1
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2

V2

y
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y
12

y
21

y
22
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Figure P18.30

1
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6 V

1

2

V1Vg

1
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V2

g
11

g
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g
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g
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Figure P18.32

1

2

1 V

1 V

s V s V

1>s V

I1 I2

Vg V1

2

1

V2

2

1

Figure P18.33

50 mV and an internal impedance of 100 + j0 Ω. It is 
terminated in a resistive load of 5 kΩ.

a) Calculate the average power delivered to the 
load resistor.

b) Calculate the load resistance for maximum aver-
age power delivered to the load.

c) Calculate the maximum average power deliv-
ered to the load resistor in (b).

18.30  The y parameters for the two-port amplifier circuit 
in Fig. P18.30 are

µ= = −y y2 mS;   2  S;11 12

µ= = −y y100 mS;   50  S.21 22

The internal impedance of the source is j2500 0 + Ω,  
and the load impedance is j70,000 0 + Ω. The ideal 
voltage source is generating a voltage

t80 2  cos4000  mV.gv =

a) Find the rms value of V2.

b) Find the average power delivered to ZL.

c) Find the average power developed by the ideal 
voltage source.

18.31  For the terminated two-port amplifier circuit in  
Fig. P18.30, find

a) the value of ZL for maximum average power 
transfer to ZL.

b) the maximum average power delivered to ZL.

c) the average power developed by the ideal voltage 
source when maximum power is delivered to ZL.

18.32  The g parameters for the two-port circuit in  
Fig. P18.32 are

g j g j1
6

1
6

 S;   0.5 0.5;11 12= − = − +  

g j g j0.5 0.5;   1.5 2.5  .21 22= − = + Ω

The load impedance ZL is adjusted for maximum 
average power transfer to ZL. The ideal voltage 
source is generating a sinusoidal voltage of

t42 2  cos 5000  V.gv =

a) Find the rms value of V2.

b) Find the average power delivered to ZL.

c) What percentage of the average power developed 
by the ideal voltage source is delivered to ZL?

18.33  a) Find the y parameters for the two-port network 
in Fig. P18.33.

b) Find v2 for t 0>  when u t200  Vgv ( )= .

18.34  a) Find the s-domain expressions for the h parame-
ters of the circuit in Fig. P18.34.

b) Port 2 in Fig. P18.34 is terminated in a resistance 
of 800 Ω, and port 1 is driven by a step voltage 
source t u t( ) 45  V1v ( )= . Find v2(t) for t 0>  if 
C 100 nF=  and L 400 mH= .

sL

1>sC 1>sC

I1 I2

2

V1

1

2

V2

1

Figure P18.34

 18.35  The y parameters of the amplifier in the circuit 
shown in Fig. P18.35 are

= = −y y25 mS;   1 mS;11 12

y y250 mS;   40 mS.21 22= − = −

Find the ratio of the output power to that supplied 
by the ideal voltage source.

1

2

10 V

I1

Amplifier 100 V

1

2

V1

1

2

V2

I2

1  08
V(rms)

Figure P18.35

M18_NILS8436_12_SE_C18.indd   717 07/01/22   2:14 PM



718 Two-Port Circuits

 18.36  The linear transformer in the circuit shown in  
Fig. P18.36 has a coefficient of coupling of 0.65. The 
transformer is driven by a sinusoidal voltage source 
whose internal voltage is t100  cos 2000  Vgv = . 
The internal impedance of the source is j10 0 + Ω.

a) Find the frequency-domain a parameters of the 
linear transformer.

b) Use the a parameters to derive the Thévenin 
equivalent circuit with respect to the terminals 
of the load.

c) Derive the steady-state time-domain expression 
for v2.

1

2
10 mH

10 V 20 V 160 V0.65
k

400 V160 mH

1

2

v1

1

2

v2vg

Figure P18.36
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1 2

I2(z12 2 z21)
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1

2
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1

2

V2

z11 2 z21 z22 2 z21

I2

Figure P18.41

 18.37  The following measurements were made on a resis-
tive two-port network:

Condition 1 – create an open circuit at port 2 and 
apply 100 V to port 1:
Measurements: = =I V1.125 A; 104 V.1 2
Condition 2 – create an open circuit at port 1 and 
apply 24 V to port 2:
Measurements: V I20 V; 250 mA.1 2= =
Find the maximum power that this two-port circuit 
can deliver to a resistive load at port 2 when port 1 
is driven by an ideal voltage source of 160 V dc.

Section 18.4

 18.38  Each element in the symmetric bridged-tee  circuit 
in Fig. P18.38 is a 15 Ω resistor. Two of these 
bridged tees are connected in cascade between a dc 
 voltage source and a resistive load. The dc voltage 
source has a no-load voltage of 100 V and an inter-
nal resistance of 8 Ω. The load resistor is adjusted 
 until maximum power is delivered to the load.

a) Calculate the load resistance for maximum power.

b) Calculate the load voltage for the resistance in (a).

c) Calculate the load power for the resistance in (a).

 18.39  The z parameters of the first two-port circuit in  
Fig. P18.39(a) are

= Ω = Ωz z200  ; 20  ;11 12

= − Ω = Ωz z1.6 M ;   40 k .21 22

The circuit in the second two-port circuit is shown 
in Fig. P18.39(b), where R 8 k= Ω. Find vo if 

15 mV dcgv = .

 18.40  The networks A and B in the circuit in Fig. P18.40 
are reciprocal and symmetric. For network A, it is 
known that a 411′ =  and a 5 12′ = Ω.

a) Find the a parameters of network B.

b) Find V2/V1 when I 02 = .

Sections 18.1–18.4

18.41  a) Show that the circuit in Fig. P18.41 is an equiva-
lent circuit satisfied by the z-parameter equations.
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18.43  a) Show that the circuit in Fig. P18.43 is an equiv-
alent circuit satisfied by the h-parameter 
equations.

b) Use the h-parameter equivalent circuit of (a) 
to find the voltage gain V Vg2  in the circuit in 
Fig. 18.14, using the h-parameter values given in 
Example 18.6.

2 1

I1(z21 2 z12)

I1

1

2

V2

1

2

V1

z22 2 z12z11 2 z12

I2

z12

Figure P18.42

1

2

h11 V
I1

1

2

V1

1

2

V2h21I1h12V2

I2

 V
1

h22

Figure P18.43

b) Assume that the equivalent circuit in Fig. P18.41 
is driven by a voltage source having an internal 
 impedance of Zg ohms. Calculate the Thévenin 
equivalent circuit with respect to port 2. Check 
your results against the appropriate entries in 
Table 18.3.

18.42  a) Show that the circuit in Fig. P18.42 is also an 
equivalent circuit satisfied by the z-parameter 
equations.

b) Assume that the equivalent circuit in Fig. P18.42 
is terminated in an impedance of ZL ohms at 
port 2. Find the input impedance V I1 1 . Check 
your results against the appropriate entry in 
Table 18.3.

18.44  a) Derive two equivalent circuits that are satisfied 
by the y-parameter equations. Hint:  Start with 
Eqs. 18.2. Add and subtract y21V2 to the first 
equation of the set. Construct a circuit that sat-
isfies the resulting set of equations, by thinking 
in terms of node voltages. Derive an alternative 
equivalent circuit by first altering the second 
equation in Eq. 18.2.

b) Assume that port 1 is driven by a voltage source 
having an internal impedance Zg, and port 2 is 
loaded with an impedance ZL. Find the current 
gain I I2 1. Check your results against the appro-
priate entry in Table 18.3.

18.45  a) Derive the equivalent circuit satisfied by the 
g-parameter equations.

b) Use the g-parameter equivalent circuit derived 
in part (a) and the h-parameter equivalent cir-
cuit derived in Problem 18.43 to solve for the 
output voltage vo in Assessment Problem 18.7.

18.46  a) What conditions and measurements will allow you 
to calculate the a parameters for the “black box” 
amplifier described in the Practical Perspective?

b) What measurements will be made if the result-
ing a parameters are equivalent to the h parame-
ters calculated in the Practical Perspective?

 18.47     Repeat Problem 18.46 for the z parameters.

PRACTICAL
PERSPECTIVE

PRACTICAL
PERSPECTIVE
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A 
APPENDIX 

The Solution of Linear 
Simultaneous Equations
 Circuit analysis frequently requires us to solve a set of linear simulta-
neous equations. We present several different solution methods here—
some that employ engineering calculators or personal computers, and 
others that require just a pencil and paper. Most of the methods begin 
by placing the system of equations in matrix form. You should review 
matrices and matrix arithmetic, topics found in most intermediate-level 
algebra texts.

A.1 Preliminary Steps
To solve a set of simultaneous equations, we begin by organizing the 
equations into a standard form. To do this, collect all terms containing 
an unknown variable on the left-hand side of each equation and place 
all constants on the right-hand side. Then, arrange the equations in a 
vertical stack such that each variable occupies the same horizontal po-
sition in every equation. For example, in Eqs. A.1, the variables i1, i2 , 
and i3 occupy the first, second, and third position, respectively, on the 
left-hand side of each equation:

− − = −i i i21 9 12 33,1 2 3

− + − =i i i3 6 12 3,1 2 3  (A.1)

− − + =i i i8 4 22 50.1 2 3

Once the equations are in this standard form, you can write the 
equations using matrix notation as

− −
− −
− −





































=
−

















i

i

i

21 9 12

3 6 2

8 4 22

33

3

50

.
1

2

3

We can abbreviate the set of equations in matrix form as =AX B, 
where A is the matrix of coefficients that multiply the variables, X is 
the vector of the variables, and B is the vector of constants from the 
right-hand side of the equations. When written in this abbreviated form, 
we can solve for the vector of unknowns by finding the inverse of the A 
matrix and multiplying it by the B vector:

= −X A B.1
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 A.2 Calculator and Computer Methods 721

If any equation is missing one or more variables, the missing variables 
can be inserted by making their coefficients zero. Thus, Eqs. A.2 are writ-
ten in standard form as shown by Eqs. A.3:

 − =2 4,1 2v v

 + =4 3 16,2 3v v  (A.2)

+ =7 2 5;1 3v v

− + =2 0 4,1 2 3v v v

 + + =0 4 3 16,1 2 3v v v  (A.3)

+ + =7 0 2 5.1 2 3v v v

Equation A.3 is written using matrix form as

−



































=


















2 1 0

0 4 3

7 0 2

4

16

5

.
1

2

3

v
v
v

A.2 Calculator and Computer Methods
Most calculators recommended for engineering students can solve a set of 
simultaneous algebraic equations. Because there are many different calcu-
lators, it is impractical to provide directions or an example here. Instead, 
we provide the general steps for using your calculator to solve equations; 
you should refer to the manual for your specific calculator or search for 
instructions on the web.

1. Input the problem dimension by specifying the number of un-
knowns.

2. Create the A matrix, which is the matrix of coefficients that multi-
ply the unknowns on the left-hand sides of the equations.

3. Create the B array, which is the array of constants on the right-hand 
sides of the equations.

4. Use the “solve” function (which has different names for different 
calculators) for the matrix A and the array B, to calculate the array 
X that contains the values of the unknowns.

Most calculators can solve simultaneous equations that have real number 
coefficients and complex number coefficients. Some can even solve simul-
taneous equations whose coefficients include symbols.

There are many different computer programs that can solve a set of  
algebraic equations. We present two examples: Excel, the spreadsheet appli-
cation, and MATLAB, the matrix-based programming language. You should 
explore the options available and pick the software that works best for you.

 Using Excel
Figure A.1 uses Excel to solve the simultaneous equations given in  
Eqs. A.1. Note that Excel can only solve simultaneous equations whose 
coefficients are real numbers. To begin, enter the A matrix in a square 
collection of cells and enter the B vector in a column of cells. You can 
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722 The Solution of Linear Simultaneous Equations

label the matrix and vector, as shown in the figure, but this is not required. 
Then highlight a column of cells for the vector X, which will contain the 
values of the unknowns. The number of cells in this column must equal 
the number of unknowns. Type the following function in the function box:

= MMULT(MINVERSE(start_cell, end_cell), b :b )n1

and simultaneously press the Ctrl-Shift-Enter keys. This will enter 
the values for the X vector into the highlighted cells and also will sur-
round the function with braces, as shown in Fig. A.1. The function 
MINVERSE(start_cell, end_cell) calculates the inverse of a matrix. The 
matrix values occupy square collection of cells whose upper left cell is 
start_cell and whose lower right cell is end_cell. The MMULT(R, S) mul-
tiplies two matrices, R and S, supplied as arguments.

Using MATLAB
There are several ways to solve a system of simultaneous equations using 
MATLAB. Figure A.2 illustrates one method to solve Eqs. A.1. It begins  

Figure A.1 ▲ Using Excel to solve the simultaneous equations in Eqs. A.1.

>> syms 

>> eq1=21*i1 - 9*i2 - 12*i3 == -33;

>> eq2=-3*i1 + 6*i2 - 2*i3 ==3;

>> eq3=-8*i1 - 4*i2 + 22*i3 == 50;

>> [A,B] = equationsToMatrix([eq1, eq2, eq3], [i1, i2, i3])

A =

B =

-33

3

50

1

2

3

X =

>> X = linsolve(A,B)

[ 21, -9, -12]

[ -3,  6,  -2]

[ -8, -4, -22]

il i2 i3

Figure A.2 ▲ Using MATLAB to solve the simultaneous equations in Eqs. A.1.

Z01_NILS8436_12_SE_APPA.indd   722 08/01/22   9:11 AM
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by defining the three unknown variables and the three simultaneous equa-
tions. Then, the function equationsToMatrix(eq,  var) constructs 
the A matrix and the B vector from the equations supplied in the func-
tion’s first argument, using the variables specified in the function’s second 
argument. Finally, the function linsolve(A,  B) calculates the values of 
the unknowns by  inverting the matrix supplied in the function’s first argu-
ment and then multiplying by the vector supplied in the function’s second 
argument. Note that, unlike Excel, the simultaneous equations specified 
in MATLAB can have complex numbers as coefficients on the left-hand 
side and constants on the right-hand side.

A.3 Paper-and-Pencil Methods
We present two methods that do not require an engineering calculator or 
computer software: back-substitution and Cramer’s method. Both meth-
ods are easy to use when solving two or three simultaneous equations. If 
you have four or more simultaneous equations, you should solve them 
with your calculator or computer because the paper-and-pencil methods 
are quite complicated. Both back-substitution and Cramer’s method work 
for equations with real numbers, with complex numbers, or even with 
symbols as coefficients and constants.

Back-Substitution
The back-substitution method picks one equation and solves it for one 
unknown in terms of the remaining unknowns. The solution is used to 
eliminate that unknown in the remaining equations. This process is  
repeated until only one equation and one unknown remain. To illustrate, 
we will solve Eqs. A.2 using back-substitution. Begin by solving the third 
equation for 3v , to get

= −2.5 3.5 .3 1v v

Now eliminate 3v  in the remaining equations:

− =2 4,1 2v v

+ − =4 3(2.5 3.5 ) 16.2 1v v

Next, solve the first of the two remaining equations for 2v , to get

= −2 4.2 1v v

Eliminate 2v  in the other equation:

− + − =4(2 4) 3(2.5 3.5 ) 16.1 1v v

Simplify and solve for 1v :

− = =
−

= −2.5 24.5 so 24.5
2.5

9.8 V.1 1v v

Finally, use this value for 1v  to find the remaining unknowns:

= − = − − = −2 4 2( 9.8) 4 23.6 V,2 1v v

2.5 3.5 2.5 3.5( 9.8) 36.8 V.3 1v v= − = − − =

There is another way to solve a set of simultaneous equations with 
the back-substitution method. Begin by picking any two equations, and 
multiply one or both equations by a constant such that when the resulting 
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724 The Solution of Linear Simultaneous Equations

equations are added together, one of the unknowns is eliminated. For ex-
ample, consider the first two equations in Eqs. A.3. If we multiply the first 
equation by the constant 4 and add the resulting equation to the second 
equation, we eliminate 2v :

− + =
+ + + =

+ + =

8 4 0 16

0 4 3 16

8 0 3 32.

1 2 3

1 2 3

1 2 3

v v v
v v v

v v v

Now multiply this new equation by 2, and multiply the third equation in 
Eqs. A.3 by −3, Then add the two equations together to eliminate 3v :

+ =
+ − + − = −

− + =

16 6 64

21 6 15

5 0 49.

1 3

1 3

1 3

v v
v v

v v

Therefore,

=
−

= −49
5

9.8 V.1v

We can substitute the value of 1v  back into the first equation in Eqs. A.3 to 
find v 2  and then substitute the value of 2v  back into the second equation in 
Eqs. A.3 to find 3v . You should complete these final steps to verify the values.

Cramer’s Method
We can also use Cramer’s method to solve a set of simultaneous equations. 
The value of each unknown variable is the ratio of two determinants. If we 
let N, with an appropriate subscript, represent the numerator determinant 
and ∆ represent the denominator determinant, then the kth unknown xk  is

 x
N

.k
k=

∆
 ( A . 4 )

The denominator determinant ∆ is the same for every unknown variable 
and is called the characteristic determinant of the set of equations. The 
numerator determinant Nk varies with each unknown.

The characteristic determinant is the determinant of the A matrix. 
For example, the characteristic determinant of Eqs. A.3 is

2 1 0

0 4 3

7 0 2

.∆ =

−

To find the determinant, rewrite the first two columns to the right of the 
determinant to get

∆ =
− −2 1 0

0 4 3

7 0 2

2 1
0 4

7 0

.

There are now five columns. Sum the products of the left-to-right diago-
nals for the first three columns; then subtract the sum of products of the 
right-to-left diagonals for the last three columns:

(2 4 2) ( 1 3 7) (0 0 0) (0 4 7) (2 3 0) ( 1 0 2)

16 21 0 0 0 0 5.

∆ = ⋅ ⋅ + − ⋅ ⋅ + ⋅ ⋅ − ⋅ ⋅ − ⋅ ⋅ − − ⋅ ⋅

= − + − − − = −
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Note that this shortcut method for finding a determinant works only for 
square matrices of dimension 3. To find the determinant for a matrix 
whose dimension is larger than 3, consult a reference on determinants.

To construct the numerator determinant Nk , replace the kth col-
umn in the characteristic determinant with the values in the B vector. 
For example, the numerator determinants for evaluating 1v , 2v , and 3v  in  
Eqs. A.3 are

=

−

N

4 1 0

16 4 3

5 0 2
1

(4 4 2) ( 1 3 5) (0 16 0) (0 4 5) (4 3 0) ( 1 16 2)= ⋅ ⋅ + − ⋅ ⋅ + ⋅ ⋅ − ⋅ ⋅ − ⋅ ⋅ − − ⋅ ⋅

49,=

=N

2 4 0

0 16 3
7 5 2

2

(2 16 2) (4 3 7) (0 0 5) (0 16 7) (2 3 5) (4 0 2)

118,

= ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ − ⋅ ⋅ − ⋅ ⋅ − ⋅ ⋅

=

and

=

−

N

2 1 4

0 4 16

7 0 5
3

(2 4 5) ( 1 16 7) (4 0 0) (4 4 7) (2 16 0) ( 1 0 5)

184.

= ⋅ ⋅ + − ⋅ ⋅ + ⋅ ⋅ − ⋅ ⋅ − ⋅ ⋅ − − ⋅ ⋅

= −

Using Cramer’s method in Eq. A.4, we can solve for 1v , 2v , and 3v :

N 49
5

9.8 V,1
1=

∆
=

−
= −v

N 118
5

23.6 V,2
2=

∆
=

−
= −v

and

N 184
5

36.8 V.3
3=

∆
= −

−
=v

A.4 Applications
The following examples demonstrate the various techniques for solving a 
system of simultaneous equations generated from circuit analysis.
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726 The Solution of Linear Simultaneous Equations

EXAMPLE A.1

Use Cramer’s method to solve for the node volt-
ages 1v  and 2v  in Eqs. 4.1 and 4.2.

Solution
The first step is to rewrite Eqs. 4.1 and 4.2 in  
standard form. Collecting the coefficients of 1v   
and 2v  on the left-hand side and moving the con-
stant terms to the right-hand side of the equations 
gives us

− =1.7 0.5 10,1 2v v

− + =0.5 0.6 2.1 2v v

Rewriting this set of equations in =AX B  format 
gives us

−
−

























=












1.7 0.5

0.5 0.6

10

2
.1

2

v
v

Using Cramer’s method (Eq. A.4), we can 
write expressions for the unknown voltages:

=

−

−

−

10 0.5
2 0.6

1.7 0.5

0.5 0.6

,1v

=
−

−

−

1.7 10

0.5 2

1.7 0.5

0.5 0.6

.2v

The shortcut for calculating the determinant for a 
matrix of dimension 3 does not work for matrices of 
dimension 2. Instead, there is a different shortcut for 
these matrices. Starting at the top of the first column, 
find the product along the left-to-right diagonal. Then 
subtract the product along the right-to-left diagonal 
that starts at the top of the second column. Thus,

 

10 0.5
2 0.6

1.7 0.5

0.5 0.6

(10)(0.6) ( 0.5)(2)
(1.7)(0.6) ( 0.5)( 0.5)

6 1
1.02 0.25

9.09 V,

1 =

−

−

−

=
− −

− − −

= +
−

=

v

1.7 10

0.5 2

1.7 0.5

0.5 0.6

(1.7)(2) (10)( 0.5)
(1.7)(0.6) ( 0.5)( 0.5)

3.4 5
1.02 0.25

10.91 V.

2 =
−

−

−

=
− −
− − −

= +
−

=

v

EXAMPLE A.2

Use Excel to find the three mesh currents in the cir-
cuit in Fig. 4.24.

Solution
The equations that describe the circuit in Fig. 4.24 
were derived in Example 4.7. There are three KVL 
equations:

− + − − =i i i i5( ) 20( ) 50 0,1 2 1 3

− + + − =i i i i i5( ) 1 4( ) 0,2 1 2 2 3

− + − + =φi i i i i20( ) 4( ) 15 0.3 1 3 2

There is also a dependent source constraint equation:

= −φi i i .1 3

Putting these four equations in standard form, we get

− − + =

− + − + =

− − + + =

− − − =

φ

φ

φ

φ

i i i i

i i i i

i i i i

i i i i

25 5 20 0 50,

5 10 4 0 0,

20 4 24 15 0,

0 0.

1 2 3

1 2 3

1 2 3

1 2 3

Rewriting this set of equations in =AX B  format 
gives us

i

i

i

i

25 5 20 0

5 10 4 0

20 4 24 15

1 0 1 1

50

0

0

0

.

1

2

3

− −
− −

− −
− −













































=























φ
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Figure A.3 ▲ Using Excel to solve the simultaneous equations in Example A.2.

The Excel solution is shown in Fig. A.3. The mesh  
currents are i 29.6 A1 = ,  i 26 A2 = ,  and i 28 A3 = ,  

and the controlling current for the dependent  
source is i 1.6 A.=φ

EXAMPLE A.3

Use MATLAB to find the phasor mesh currents I1 
and I 2  in the circuit in Fig. 9.40.

Solution
Summing the voltages around mesh 1 generates the 
equation

∠+ + − − = °j jI I I(1 2) (12 16)( ) 150 0 .1 1 2

Summing the voltages around mesh 2 produces the 
equation

− − + + + =j jI I I I(12 16)( ) (1 3) 39 0.x2 1 2

The current controlling the dependent voltage 
source is

= −I I I .x 1 2

Converting these three equations into standard 
form, we get

j j

j j

I I I

I I I

I I I

(13 14) ( 12 16) 0 150,

( 12 16) (13 13) 39 0,

0.

x

x

x

1 2

1 2

1 2

− + − + + =

− + + − + =

− − =

The MATLAB commands used to solve this set of 
simultaneous equations are shown in Fig. A.4. Note 

>> syms  

>> eq1 = complex(13,-14)*i1 + complex(-12,16)*i2 == 150;

>> eq2 = complex(-12,16)*i1 + complex(13,-13)*i2 + 39*ix == 0;

>> eq3 = i1 - i2 - ix ==0,

>> [A,B] = equationsToMatrix([eq1, eq2, eq3], [i1, i2, ix])

il i2 ix

A =

B =

150

0

0

[   13 - 14i, - 12 + 16i,  0]

[  -12 + 16i,   13 - 13i, 39]

[          1,         -1, -1]

>> X = linsolve(A,B)

X =

- 26 - 52i

- 24 - 58i

- 2 +   6i

Figure A.4 ▲ Using MATLAB to solve the simultaneous equations in Example A.3.
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Vg V1

1

2

V2

1

2

1 2

1
sC

1
sC

1
sCR

R
1

2

Figure A.5 ▲ The circuit for Example A.4.

the use of the complex(a,  b) function to con-
struct the complex coefficients, where a is the real 
part of the coefficient and b is the imaginary part of 
the coefficient. MATLAB gives us the solution

= − − = ∠− °jI 26 52 58.14 116.57 A,1

= − − = ∠ − °jI 24 58 62.77 122.48  A.2

In the first three examples, the matrix elements have been numbers— real 
numbers in Examples A.1 and A.2, and complex numbers in Example A.3. 
It is also possible for the elements to be symbols. Example  A.4 illustrates 
the use of back substitution in a circuit problem where the elements in the 
coefficient matrix are symbols.

EXAMPLE A.4

Solution
Summing the currents leaving nodes 1 and 2 gener-
ates the following set of equations:

−
+ + − =

V V

R
V sC V V sC( ) 0,g1

1 1 2

+ − + − =
V
R

V V sC V V sC( ) ( ) 0.g
2

2 1 2

Let =G R1  and collect the coefficients of V1  and 
V2 to get

+ − =G sC V sCV GV( 2 ) ,g1 2

− + + =sCV G sC V sCV( 2 ) .g1 2

Solve the first equation for V2 to get

=
+

−V
G sC

sC
V G

sC
V

( 2 )
.g2 1

Substitute this expression into the second equation 
to eliminate V2:

sCV G sC
G sC

sC
V G

sC
V sCV( 2 )

( 2 )
.g g1 1− + +

+
−







=

Rearrange and simplify this equation to find the 
 expression for V1 :

G sC sC
sC

V
G G sC sC

sC
V

( 2 ) ( ) ( 2 ) ( )
,g

2 2

1

2+ −
=

+ +

so

=
+ +

+ −

= + +
+ +

V
G G sC sC
G sC sC

V

G sCG s C
G sCG s C

V

( 2 ) ( )
( 2 ) ( )

2
4 3

.

g

g

1

2

2 2

2 2 2

2 2 2

Finally, substitute this expression for V1  into the  
equation for V2; rearrange and simplify to find the 
expression for V2:

V
G sC

sC
G sCG s C
G sCG s C

V G
sC

V
( 2 ) ( 2 )

( 4 3 )
,g g2

2 2 2

2 2 2
=

+ + +
+ +













−

so

Use back-substitution to derive expressions for the 
node voltages V1  and V2 in the circuit in Fig. A.5.

=
+ + + − + +

+ +












=
+

+ +

V
G sC G sCG s C G G sCG s C

sC G sCG s C
V

sC G sC
G sCG s C

V

( 2 )( 2 ) ( 4 3 )
( 4 3 )

2 ( )
4 3

.

g

g

2

2 2 2 2 2 2

2 2 2

2 2 2
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B 
APPENDIX 

Complex Numbers

1You may be more familiar with the notation = −i 1 . In electrical engineering, i is  
used as the symbol for current, and hence in electrical engineering literature, j is used to 
denote − .1

Complex numbers allow us to find the square root of negative numbers. For 
example, consider the equation x x8 41 02 + + = . From the quadratic 
formula, we know that the two values of x that satisfy this equation are

x
8 8 4(41)

2
4 25.1,2

2
= − ± − = − ± −

Therefore, this equation has no solution in a number system that exclu
des complex numbers. Complex numbers, and the ability to manipulate 
them algebraically, are extremely useful in circuit analysis.

B.1 Notation
There are two ways to designate a complex number: with the rectan
gular (or cartesian) form or with the polar (or trigonometric) form. In 
 rectangular form, a complex number is written as a sum of a real compo
nent and an imaginary component; hence

 = +n a jb,

where a is the real component, b is the imaginary component, and j is, 
by definition, −1.1

In polar form, a complex number is written in terms of its magni
tude (or modulus) and angle (or argument); hence

 = θn ce j

where c is the magnitude, θ  is the angle, e is the base of the natural log
arithm, and, as before, = −j 1. The symbol ∠θ°  is frequently used in 
place of θe j , so the polar form can also be written as

 n c .∠θ=

When we write a complex number in polar form, we typically use 
the angle notation. But when we perform mathematical operations 
using complex numbers in polar form, we use the exponential nota
tion because the rules for manipulating an exponential quantity are 
well known. For example, because y y( ) ,x n xn=  then e e( ) ;j n jn=θ θ   
because y y1 ,x x=−  then =θ θ−e e1 ;j j  and so forth.
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730 Complex Numbers

Since there are two ways of expressing the same complex number, we 
need to relate one form to the other. The transition from polar to rectan
gular form makes use of Euler’s identity:

 e jcos sin .j θ θ= ±θ±

A complex number in polar form can be put in rectangular form by writing

ce c j

c jc

a jb

(cos sin )

cos sin

.

j θ θ
θ θ

= +
= +
= +

θ

The transition from rectangular to polar form uses right triangle 
 geometry, namely,

a jb a b e

ce ,

j

j

2 2( )+ = +

=

θ

θ

where

b atan .θ =

The expression for tan θ  does not specify the quadrant where the angle θ  
is located. We can determine the location of θ  using a graphical represen
tation of the complex number.

B.2  The Graphical Representation of 
a Complex Number

A complex number is represented graphically on a complexnumber 
plane, where the horizontal axis represents the real component and the 
vertical axis represents the imaginary component. The angle of the com
plex number is measured counterclockwise from the positive real axis. 
The plot of the complex number n a jb c∠θ= + = , assuming that a 
and b are both positive, is shown in Fig. B.1.

This plot makes very clear the relationship between the rectangular and 
polar forms. Any point in the complexnumber plane is uniquely defined by 
giving either its distance from each axis (that is, a and b) or its radial distance 
from the origin (c) and the angle with respect to the positive real axis, θ.

It follows from Fig. B.1 that θ  is in the first quadrant when a and b are 
both positive, in the second quadrant when a is negative and b is positive, in 
the third quadrant when a and b are both negative, and in the fourth quad
rant when a is positive and b is negative. These observations are illustrated 
in Fig. B.2, where we have plotted + j4 3, − + j4 3, − − j4 3, and − j4 3.

Note that we can also specify θ  as a clockwise angle from the pos
itive real axis. Thus, in Fig. B.2(c), we could also designate − − j4 3 as 
5 143.13∠− °. In Fig. B.2(d), we observe that 5 323.13 5 36.87∠ ∠° = − °. 
It is customary to express θ  in terms of negative values when θ  lies in the 
third or fourth quadrant, so that θ− ≤ ≤� �180 180 .

The conjugate of a complex number is formed by reversing the sign 
of its imaginary component. Thus, the conjugate of +a jb is −a jb , and 
the conjugate of − +a jb is − −a jb. When we write a complex number in 

b

0

c

a Re

Im

u

Figure B.1▲ The graphical representation of +a jb  
when a and b are both positive.

u

3

4 Re

Re Re

Re

Im

Im Im

Im
36.8785 143.1385

323.1385216.8785

3

24

24
23

4
23

(a) (b)

(c) (d)

36.87841 j3 5 5

323.13842 j3 5 5

143.138241 j3 5 5

216.878242 j3 5 5

uu

u

Figure B.2▲ The graphical representation of four 
complex numbers.
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polar form, we construct its conjugate by reversing the sign of the angle θ .  
Therefore, the conjugate of c∠θ  is c∠ θ− . The conjugate of a complex 
number is designated with an asterisk, so n* is understood to be the con
jugate of n. Figure B.3 shows two complex numbers and their conjugates 
plotted on the complexnumber plane. Note that conjugation reflects a 
complex number about the real axis.

B.3 Arithmetic Operations

Addition (Subtraction)
When adding or subtracting complex numbers, we express the numbers in 
rectangular form. Addition involves adding the real parts of the complex 
numbers to form the real part of the sum and adding the imaginary parts 
to form the imaginary part of the sum. Thus, if we are given

= +n j8 161

and

= −n j12 3,2

then

+ = + + − = +n n j j(8 12) (16 3) 20 13.1 2

Subtraction follows the same rule. Thus

− = − + − − = −n n j j(12 8) ( 3 16) 4 19.2 1

If the numbers to be added or subtracted are given in polar form, they are 
first converted to rectangular form. For example, if

n 10 53.131 ∠= °

and

n 5 135 ,2 ∠= − °

then

n n j j

j

j

6 8 3.535 3.535

(6 3.535) (8 3.535)

2.465 4.465 5.10 61.10 ,

1 2

∠

+ = + − −

= − + −

= + = °

and

n n j j

j

6 8 ( 3.535 3.535)

9.535 11.535

14.966 50.42 .

1 2

∠

− = + − − −

= +

= °

u2n2 5 2a1jb5c

2u2n*
2 5 2a2jb5c 2u1n*

1 5 a2jb5c

u1n1 5 a1jb5c

2a a Re

Im

b

2b

u2
u1

2u1
2u2

Figure B.3▲ The complex numbers 1n  and 2n  and 
their conjugates *n1 and *n2.

Z02_NILS8436_12_SE_APPB.indd   731 08/01/22   12:40 PM



732 Complex Numbers

Multiplication (Division)
When multiplying or dividing complex numbers, the numbers can be 
written in either rectangular or polar form. In most cases, polar form 
is more convenient. As an example, let’s find the product n n1 2  when 

= +n j8 101  and = −n j5 42 . Using rectangular form, we have

n n j j j j

j

(8 10)(5 4) 40 32 50 40

80 18

82 12.68 .

1 2

∠

= + − = − + +
= +

= °

If we use polar form, we find the product of two complex numbers by mul
tiplying their magnitudes and adding their angles. For example,

n n

j

(12.81 51.34 )(6.40 38.66 )

82 12.68

80 18.

1 2 ∠ ∠

∠

= ° − °

= °

= +

The first step in dividing two complex numbers in rectangular form 
is to multiply the numerator and denominator by the conjugate of the  
denominator. This makes the denominator a real number. We then divide 
the real number into the new numerator. As an example, let’s calculate 
n n1 2, where = +n j6 31  and = −n j3 12 . We have

n
n

j
j

j j
j j

j j

j
j

6 3
3 1

(6 3)(3 1)
(3 1)(3 1)

18 6 9 3
9 1

15 15
10

1.5 1.5

2.12 45 .

1

2

∠

=
+
−

=
+ +
− +

=
+ + −

+

=
+

= +

= °

In polar form, we calculate n n1 2  by dividing the magnitudes and  
subtracting the angles. For example,

n
n

j

6.71 26.57

3.16 18.43
2.12 45

1.5 1.5.

1

2

∠
∠ ∠=

°

− °
= °

= +

B.4 Useful Identities
In working with complex numbers and quantities, the following identities 
are very useful:

± = ∓j 1,2

− =j j( )( ) 1,
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=
−

j
j

1 ,

= −π±e 1,j

= ±π±e j.j 2

Given that n a jb c θ∠= + = , it follows that

nn a b c ,* 2 2 2= + =

n n a2 ,*+ =

− =n n j b2 ,*

n n 1 2 .* ∠ θ=

B.5  The Integer Power of a Complex 
Number

To raise a complex number to an integer power k, begin by expressing the 
complex number in polar form. Then, to find the kth power of a complex 
number, raise its magnitude to the kth power and multiply its angle by k. Thus

θ θ

= +

= =

= +

θ θ

n a jb

ce c e

c k j k

( )

( )

(cos sin ).

k k

j k k jk

k

For example,

e e e

j

(2 ) 2 32

16 27.71,

j j j12 5 5 60 60= =

= +

° ° °

and

j e e

e

j

(3 4) (5 ) 5

625

527 336.

j j

j

4 53.13 4 4 212.52

212.52

+ = =

=
= − −

° °

°

B.6 The Roots of a Complex Number
To find the kth root of a complex number, we solve the equation

x ce 0,k j− =θ

which is an equation of the kth degree and therefore has k roots.
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To find the k roots …x x x( , , , )k1 2 , we first note that

�ce ce ce .j j j( 2 ) ( 4 )= = =θ θ π θ π+ +

It follows that

�

x ce c e

x ce c e

x ce c e

( ) ,

[ ] ,

[ ] ,

j k k j k

j k k j k

j k k j k

1
1 1

2
( 2 ) 1 1 ( 2 )

3
( 4 ) 1 1 ( 4 )

= =

= =

= =

⋅

θ θ

θ π θ π

θ π θ π

+ +

+ +

We continue this process until the roots start repeating. This will happen 
when the multiple of π  is equal to 2k. For example, let’s find the four 
roots of °e81 j60 . We have

x e e

x e e

x e e

x e e

x e e e

81 3 ,

81 3 ,

81 3 ,

81 3 ,

81 3 3 .

j j

j j

j j

j j

j j j

1
1 4 60 4 15

2
1 4 (60 360 ) 4 105

3
1 4 (60 720 ) 4 195

4
1 4 (60 1080 ) 4 285

5
1 4 (60 1440 ) 4 375 15

= =

= =

= =

= =

= = =

° °

° + ° °

° + ° °

° + ° °

° + ° ° °

Here, x5 is the same as x1, so the roots have started to repeat. Therefore, 
we know the four roots of °e81 j60  are the values given by x1, x2, x3,  
and x4.

Note that the roots of a complex number lie on a circle in the 
 complexnumber plane. The radius of the circle is c k1 . The roots are uni
formly distributed around the circle, and the angle between adjacent roots 
is π k2  radians or k360  degrees. The four roots of °e81 j60  are plotted in 
Fig. B.4.

10583

28583

19583

1583

Re

Im

Figure B.4▲ The four roots of °81 60e j .
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 C 
APPENDIX More on Magnetically 

Coupled Coils and Ideal 
Transformers
C.1  Equivalent Circuits for 

Magnetically Coupled Coils
It is sometimes convenient to model magnetically coupled coils with an 
equivalent circuit that does not include magnetic coupling. Consider 
the two magnetically coupled coils shown in Fig. C.1. The resistances 
R1  and R2  represent the winding resistance of each coil. The goal is to  
replace the magnetically coupled coils inside the shaded area with a 
set of inductors that are not magnetically coupled. Before deriving the 
equivalent circuits, we must point out an important restriction: The 
voltage between terminals b and d must be zero. In other words, we 
must be able to short together terminals b and d without disturbing the 
voltages and currents in the original circuit. This restriction is  imposed 
because, while the equivalent circuits we develop have four termi-
nals, two of those four terminals are shorted together. Thus, the same  
requirement is placed on the original circuits.

We begin by writing the two equations that relate the terminal volt-
ages 1v  and 2v  to the terminal currents i1 and i .2  For the given references 
and polarity dots,

 L
di
dt

M
di
dt1 1

1 2= +v  (C.1)

and

 M
di
dt

L
di
dt

.2
1

2
2= +v  (C.2)

The T-Equivalent Circuit
How can we arrange uncoupled inductors in a circuit that can be 
described by Eqs. C.1 and C.2? If we regard Eqs. C.1 and C.2 as 
mesh-current equations with i1 and i2  as the mesh currents, we need 
one mesh with a total inductance of L1 and a second mesh with a total 
inductance of L2 . Also, the two meshes must have a common induc-
tance of M. The T-equivalent circuit shown in Fig. C.2 satisfies these 
requirements.

You should verify that the equations relating 1v  and 2v  to i1 and 
i2  reduce to Eqs. C.1 and C.2. Note the absence of magnetic coupling  
between the inductors and the zero voltage between b and d.

i1

R1

L1

M

L2 v2

1

2

v1

1

2

a

b

c

d

R1

i2

Figure C.1 ▲ The circuit used to develop an  
equivalent circuit for magnetically coupled coils.

i1

R1 L22ML12M

M

i2
v1

1

2

v2

1

2

a

b

c

d

R2

Figure C.2 ▲ The T-equivalent circuit for the  
magnetically coupled coils of Fig. C.1.
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736 More on Magnetically Coupled Coils and Ideal Transformers

 The π-Equivalent Circuit
We can derive a π -equivalent circuit for the magnetically coupled coils 
shown in Fig. C.1 by solving Eqs. C.1 and C.2 for the derivatives di dt1  
and di dt2 . We treat the resulting expressions as a pair of node-voltage 
equations. Find di dt1  and di dt2  using Cramer’s method:

v
v

v vdi
dt

M

L

L M

M L

L
L L M

M
L L M

;1

1

2 2

1

2

2

1 2
2 1

1 2
2 2= =

−
−

−  (C.3)

 

v
v

v vdi
dt

L

M

L L M
M

L L M
L

L L M
.2

1 1

2

1 2
2

1 2
2 1

1

1 2
2 2=

−
= −

−
+

−
 (C.4)

Now we solve for i1 and i2  by multiplying both sides of Eqs. C.3 and C.4 
by dt  and then integrating:

i i
L

L L M
d M

L L M
d(0)

t t

1 1
2

1 2
2 1

0 1 2
2 2

0∫ ∫τ τ= +
−

−
−

v v  (C.5)

and

i i M
L L M

d
L

L L M
d(0) .

t t

2 2
1 2

2 1
0

1

1 2
2 2

0∫ ∫τ τ= −
−

+
−

v v  (C.6)

If we regard 1v  and 2v  as node voltages, Eqs. C.5 and C.6 describe a circuit 
like the one shown in Fig. C.3.

To find LA, LB, and LC as functions of L1, L2 , and M, write the equa-
tions for i1 and i2  in Fig. C.3 and compare them with Eqs. C.5 and C.6. 
Thus

 
i i

L
d

L
d

i
L L

d
L

d

(0) 1 1 ( )

(0) 1 1 1

t t

t t

1 1
A

1
0 B

1 2
0

1
A B

1
0 B

2
0

∫ ∫

∫ ∫

τ τ

τ τ

= + + −

= + +






 −

v v v

v v

and

 
v v v

v v

∫ ∫

∫ ∫

τ τ

τ τ

= + + −

= − + +








i i
L

d
L

d

i
L

d
L L

d

(0) 1 1 ( )

(0) 1 1 1 .

t t

t t

2 2
C

2
0 B

2 1
0

2
B

1
0 B C

2
0

LA

LB

i2(0) v2

1

2

v1

1

2

c

d

a

b

LCi1(0)

i1 i2

Figure C.3 ▲ The circuit used to derive the π-equivalent circuit for magnetically 
 coupled coils.
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Then

 
L

M
L L M

1 ,
B 1 2

2
=

−

 
L

L M
L L M

1 ,
A

2

1 2
2

=
−
−

 
L

L M
L L M

1 .
C

1

1 2
2

=
−
−

Incorporate the expressions for LA, LB, and LC into the circuit shown in 
Fig. C.3 to get the π -equivalent circuit for the magnetically coupled coils 
shown in Fig. C.1. The result is shown in Fig. C.4.

L1L22M2

M

L1L22M2

L22M

L1L22M2

L12M

R1

i2(0)v1

1

2

a

b

i1(0)
i1

R2

v2

1

2

c

d

i2

Figure C.4 ▲ The π-equivalent circuit for the magnetically coupled coils of Fig. C.1.

i1

R1 R2

i2
v1

1

2

v2

1

2

a

b

c

d

L1L2 2 M2

L1 2 M

L1L2 2 M2

L2 2 M

L1L2 2 M2

M

Figure C.5 ▲ The π-equivalent circuit used for 
sinusoidal steady-state analysis.

Note that the initial values of i1 and i2  are explicit in the π-equivalent  
circuit but implicit in the T-equivalent circuit. If we want to find the 
 sinusoidal steady-state behavior of circuits containing mutual inductance, 
we can assume that the initial values of i1 and i2  are zero. We can thus 
eliminate the current sources in the π-equivalent circuit, and the circuit 
shown in Fig. C.4 simplifies to the one shown in Fig. C.5.

The mutual inductance carries its own algebraic sign in the T- and  
π- equivalent circuits. In other words, if the magnetic polarity of the cou-
pled coils is reversed from that given in Fig. C.1, the algebraic sign of M 
reverses. A reversal in magnetic polarity requires moving one polarity 
dot without changing the reference polarities of the terminal currents and 
voltages.

Example C.1 illustrates the application of the T-equivalent circuit.

EXAMPLE C.1

a) Replace the magnetically coupled coils shown in 
Fig. C.6 with a T-equivalent circuit. Then find the 
phasor currents I 1 and I 2 . The source frequency 
is 400 rad s.

b) Repeat (a), but with the polarity dot on the sec-
ondary winding moved to the lower terminal.

I1

j1200 V

V1

1

2

V2

1

2

a

b

300  08 V 2j2500 Vj1600 Vj3600 V

800 V500 V 200 Vj100 V 100 V

I2
1

2

Figure C.6 ▲ The frequency-domain equivalent circuit for Example C.1.
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738 More on Magnetically Coupled Coils and Ideal Transformers

6 H 1 H

3 H

Figure C.7▲ The T-equivalent circuit for the magnetically 
coupled coils in Example C.1.

j2400 V j400 V

j1200 V

Figure C.8▲ The frequency-domain model of the equiva-
lent circuit at .400 rad s

Solution

a) For the polarity dots shown in Fig. C.6, M has a 
value of 3+  H in the T-equivalent circuit. Therefore, 
the three inductances in the equivalent  circuit are

 L M 9 3 6 H;1 − = − =

 L M 4 3 1 H;2 − = − =

M 3 H.=

Figure C.7 shows the T-equivalent circuit, and  
Fig. C.8 shows the frequency-domain equivalent 
circuit at a frequency of 400 rad s.

Figure C.9 shows the original frequency- do-
main circuit with the magnetically coupled coils re-
placed by the T-equivalent circuit in Fig. C.8. To find 
the phasor currents I1 and I 2 , we first find the node 
voltage across the 1200 Ω  inductive reactance. If we 
use the lower node as the reference, the single KCL 
equation is

500 V 200 V 100 V

j1200 V

j400 Vj 2400 Vj 100 V

300  08 V
800 V

2j2500 V

I1
I2

1

2
V

1

2

Figure C.9 ▲ The circuit of Fig. C.6, with the magnetically  
coupled coils replaced by their T-equivalent circuit.

j j j
V V V300

700 2500 1200 900 2100
0.−

+
+ +

−
=

Solving for V  yields

jV 136 8 136.24 3.37 V.∠= − = − °

Then

j
j

I
300 (136 8)

700 2500
63.25 71.57 mA1 ∠=

− −
+

= − °

and

j
j

I
136 8

900 2100
59.63 63.43 mA.2 ∠=

−
−

= °

b) When the polarity dot is moved to the lower 
terminal of the secondary coil, M has a value of 

3 H−  in the T-equivalent circuit. Before analyz-
ing the new T-equivalent circuit, we note that re-
versing the algebraic sign of M has no effect on 
the solution for I1 and shifts I 2  by 180°. There-
fore, we anticipate that

I 63.25 71.57 mA1 ∠= − °

and

I 59.63 116.57 mA2 ∠= − °

Now let’s analyze the new T-equivalent cir-
cuit. With M 3 H= − , the three inductances in 
the equivalent circuit are

 L M 9 ( 3) 12 H;1 − = − − =

 L M 4 ( 3) 7 H;2 − = − − =

M 3 H.= −

At an operating frequency of 400 rad s , the  
frequency-domain equivalent circuit requires two 
inductors and a capacitor, as shown in Fig. C.10.

j4800 V j 2800 V

2j1200 V

Figure C.10 ▲ The frequency-domain equivalent circuit for 
M 3H= −  and 400 rad sω = .

The resulting frequency-domain circuit for 
the original system appears in Fig. C.11. As be-
fore, we first find the voltage across the center 
branch, which contains a capacitive reactance of 

j1200 Ω− . If we use the lower node as the refer-
ence, the KCL equation is

500 V 200 V 100 V

2j1200 V

j2800 Vj4800 Vj100 V

800 V

2j2500 V

I1 I2

300  08 V
1

2
V

1

2

Figure C.11 ▲ The frequency-domain equivalent circuit for 
Example C.1(b).
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C.2  The Need for Ideal Transformers 
in the Equivalent Circuits

The inductors in the T- and π-equivalent circuits of magnetically cou-
pled coils can have negative values. For example, if L 3 mH,1 =  
L 12 mH,2 =  and M 5 mH,=  the T-equivalent circuit requires an  
inductor of 2 mH− , and the π -equivalent circuit requires an inductor of 

5.5 mH.−  These  negative inductance values do not create a problem if 
you use the  equivalent circuits in computations. However, if you want 
to build the equivalent circuits using circuit components, the negative 
reactance can only be achieved using capacitors. But whenever the fre-
quency of the sinusoidal source changes, you must change the capacitor 
used to generate the negative reactance. For example, at a frequency of 
50 krad s, a 2 mH−  inductor has an impedance of j100 Ω− . This imped-
ance can be modeled with a µ0.2 F capacitor. If the frequency changes to 
25 krad s, the 2 mH−  inductive impedance changes to −j50 Ω and we 
need a µ0.8 F capacitor. If the frequency is varied continuously, using a 
capacitor to simulate negative inductance is impractical.

Instead of using capacitors to create negative reactance, you can 
 include an ideal transformer in the equivalent circuit. This doesn’t 
 completely solve the problem because ideal transformers can only 
be  approximated. However, in some situations the approximation is 
 satisfactory, so knowing how to use an ideal transformer in the T- and  
π-equivalent circuits of magnetically coupled coils is an important tool.

An ideal transformer can be used in two different ways in either the 
T-equivalent or the π-equivalent circuit. Figure C.12 shows the two arrange-
ments for each type of equivalent circuit. To verify any of the equivalent 
circuits in Fig. C.12, we must show that the equations relating 1v  and 2v  to 
di dt1  and di dt2  are identical to Eqs. C.1 and C.2. To demonstrate, we val-
idate the circuit shown in Fig. C.12(a); we leave it to you to verify the circuits 
in Figs. C.12(b), (c), and (d).

j j j
V V V300

700 4900 1200 900 300
0.−

+
+

−
+

+
=

Solving for V gives

jV 8 56

56.57 98.13 V.∠

= − −

= − °

Then

j
j

I
300 ( 8 56)

700 4900

63.25 71.57 mA.

1

∠

=
− − −

+

= − °

and

j
j

I
8 56

900 300

59.63 116.57 mA.

2

∠

=
− −

+

= − °
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740 More on Magnetically Coupled Coils and Ideal Transformers

We redrew the circuit shown in Fig. C.12(a) as Fig. C.13, adding the 
variables i0  and 0v  to aid the discussion. From this circuit,

 L M
a

di
dt

M
a

d
dt

i i( )1 1
1

1 0( )= − + +v  

and

 v ( )= − + +
L
a

M
a

di
dt

M
a

d
dt

i i( ).0
2
2

0
0 1

The ideal transformer imposes constraints on 0v  and i :0

 
a

;0
2=v v

i ai .0 2=

Substituting the constraint equations into the expressions for 1v  and 0v  
from the circuit gives

 L
di
dt

M
a

d
dt

ai( )1 1
1

2= +v

and

 
a

L
a

d
dt

ai M
a

di
dt

( ) .2 2
2 2

1= +
v

Simplifying, we get,

 L
di
dt

M
di
dt1 1

1 2= +v

i2

v1

�

�

v2

�

�

1 : a

Ideal

M
a

(a)

i1

L1 � 
M
a

L2

a2
M
a�

Figure C.12 ▲ The four ways of using an ideal transformer in the T- and π-equivalent 
circuit for magnetically coupled coils.

v1

�

�

v2

�

�

1 : a

Ideal

Ma

a2L1 � Ma L2 � Ma

(b)

i1

i2

1 : a

Ideal

(c)

v1

�

�

i1 i2

v2

�

�

L1L2 � M2

a2L1 � Ma

L2L1 � M2

L2 � Ma

L1L2 � M2

Ma
1 : a

Ideal

(d)

v1

�

�

v2

�

�

i1 i2
a(L1L2 � M2)

M

a2(L1L2 � M2)
L2 � Ma

a 2(L1L2 � M2)
a2L1 � Ma

i1
v1

1

2

v0

1

2

v2

1

2

1 : a

Ideal

M
a

M
aL1 2

(a)

i2

i0

M
a

L2

a2 2

Figure C.13 ▲ The circuit of Fig. C.12(a) with i0  
and 0v  defined.
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and

 M
di
dt

L
di
dt

.2
1

2
2= +v

These expressions for 1v  and 2v  are identical to Eqs. C.1 and C.2. Thus, 
the circuit shown in Fig. C.13 is equivalent to the magnetically coupled 
coils shown inside the box in Fig. C.1 because the terminal behavior of 
these two circuits is the same.

When we showed that the circuit in Fig. C.13 is equivalent to the mag-
netically coupled coils in Fig. C.1, we placed no restrictions on the turns 
ratio a. Therefore, an infinite number of equivalent circuits are possible. 
However, we can always find a turns ratio that makes all of the induc-
tances positive. Two values of a are of particular interest:

 a M
L

,
1

=  (C.7)

and

 a
L
M

,2=  (C.8)

The value of a given by Eq. C.7 eliminates the inductances L M a1 −   
and a L aM2

1 −  from the T-equivalent circuits and the inductances 
L L M a L aM( ) ( )1 2

2 2
1− −  and a L L M a L aM( ) ( )2

1 2
2 2

1− −  from the  
π -equivalent circuits. The value of a given by Eq. C.8 eliminates the in-
ductances L a M a( ) ( )2

2 −  and L aM2 −  from the T-equivalent circuits 
and the inductances L L M L aM( ) ( )1 2

2
2− −  and a L L M( )2

1 2
2− /

L aM( )2 −  from the π-equivalent circuits.
Also note that when a M L1= , the circuits in Figs. C.12(a) and (c) 

are identical, and when a L M2= , the circuits in Figs. C.12(b) and (d) 
are identical. Figures C.14 and C.15 summarize these observations. We 
can use the relationship M k L L1 2=  to derive the inductor values in 
Figs. C.14 and C.15 as functions of the self-inductances L1 and L2 , and the 
coupling coefficient k. Then, the values of a given by Eqs. C.7 and C.8 will 
reduce the number of inductances needed in the equivalent circuit and 
guarantee that all the inductances will be positive.

The values of a given by Eqs. C.7 and C.8 can be determined exper-
imentally from the magnetically coupled coils. To find the ratio M L1 , 
drive the coil with N1 turns using a sinusoidal voltage source and leave the 
N 2  coil open. Use a source frequency that guarantees L R1 1ω � . Figure  
C.16 shows the resulting circuit.

Because the N 2  coil is open,

 j MV I .2 1ω=

Since L R1 1ω � , the current I 1 is

 
j L

I
V

.1
1

1ω
=

Substituting the expression for I1 into the equation for V2 and rearrang-
ing yields

 M
L

V
V

.
I

2

1 0 12







 =

=

Thus, the ratio M L1  equals the ratio of the terminal voltages when I 02 = .

Ideal

1 : a

v1

�

�

v2

�

�

i1 i2

L1

L1 � 1
k2
1

(a)

v1

�

�

v2

�

�

i1

i2

(b)

Ideal

1 : a

k2L2

(1 � k2)L2

Figure C.14 ▲ Two equivalent circuits when  
a M L1= .

Ideal

1 : a

k2L1
v1

�

�

v2

�

�

i2

(a)

i1

L1(1 � k2)

v1

�

�

v2

�

�

i1 i2

(b)

Ideal

1 : a

L2

L2 � 1
k2
1

Figure C.15 ▲ Two equivalent circuits when  
a L M2= .

V2

�

�

I1

�

�
V1

N1 N2

jwL1 jwL2

Figure C.16 ▲ Experimental determination of the 
ratio M L1.
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742 More on Magnetically Coupled Coils and Ideal Transformers

To experimentally determine the ratio L M2 , reverse the procedure; 
that is, coil 2 is energized and coil 1 is left open. Then

L
M

V
V

.
I

2 2

1 01

=








=

Example C.2 illustrates how to replace magnetically coupled coils 
with an equivalent circuit that includes an ideal transformer and positive 
inductor values.

EXAMPLE C.2

Consider the circuit we analyzed in part (b) of 
Example C.1, which replaced the magnetically cou-
pled coils in Fig. C.6 (with the polarity dot on the 
secondary winding moved to the bottom terminal) 
with a T-equivalent circuit. The equivalent circuit is 
shown in Fig. C.11 and must use a capacitor to rep-
resent the negative reactance. Repeat the analysis 
in Example C.1(b). but now replace the magneti-
cally coupled coils with the equivalent circuit in Fig. 
C.14(a).

 SOLUTION
From Example C.1(b) we know that L L9 H, 4 H,1 2= =

L L9 H, 4 H,1 2= =  and M 3 H.= −  We need to calculate 
the coupling coefficient k, the turns ratio a, and the in-
ductor values for the equivalent circuit in Fig. C.14(a):

 k M
L L

3
(9)(4)

0.5,
1 2

= = =

 a M
L

3
9

1
3

,
1

= = − = −

L
k
1 1 9 1

0.5
1 27 H.1 2 2( ) ( )− = − =

Note that in calculating the coupling coefficient, we 
ignore the sign of the mutual inductance because 
this sign represents the location of the polarity 
marks and has no effect on the amount of coupling 
between the coils.

Using the values we calculated, we can replace 
the magnetically coupled coils in Fig. C.6 with the 

equivalent circuit in Fig. C.14(a). Remember that 
the source frequency is 400 rad/sec. The result is the 
circuit in Fig. C.17. We have defined the currents 
and voltages for the ideal transformer, so we can 
write the equations for this circuit. There are three 
meshes, so we will write three KVL equations using 
the mesh currents I1, I a, and I b. Then we use the 
dot convention for ideal transformers to write the 
equations relating the phasor currents I a  and I b, 
and the phasor voltages Va and Vb:

+ − − =

− + + =

− + =

j j

j j

j

I I

I I V

I V

(700 3700) 3600 300 0,

3600 14,400 0,

(900 2500) 0,

1 a

1 a a

b b

 V
V
(1 3)

,a
b=

−

I I1
3

.a b=

Solving for I1 and I b ,

jI 0.02 0.06 63.25 71.57 mA,1 ∠= − = − °

jI 0.0267 0.0533 59.63 63.43 mA.b ∠= + = °

Because I I ,2 b= −

jI 0.0267 0.0533 59.63 116.57 mA.2 ∠= − − = − °

The values for I1 and I2 match those found in part 
(b) of Example C.1.

500 � 200 �

j3600 �

j10,800 �j 100 �

300  0� V

I1 Ia

�

�
Va

�

�

100 �

800 �

�j2500 �

I2Ib

Vb

�

�

1 :�1N3

Ideal

Figure C.17  ▲ The circuit with the magnetically coupled coils replaced by the equivalent circuit in Fig. C.14(a). for Example C.1(b),
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 D
APPENDIX 

pi pop1 p2A B C

 Figure D.1 ▲ Three cascaded circuits.

iin

Rin RL

Rin 5 RL

vin

1

2
vout

1

2
A

iout

Figure D.2 ▲ A circuit in which the input resistance 
equals the load resistance.

The Decibel
The decibel was introduced by telephone engineers to characterize the 
power loss across the cascaded circuits used to transmit telephone sig-
nals. Figure D.1 defines the problem.

There, pi  is the power input to the system, p1  is the power output 
of circuit A, p2  is the power output of circuit B, and po is the power 
output of the system. The power gain of each circuit is the ratio of the 
power out to the power in. Thus

σ σ σ= = =
p
p

p
p

p
p

, , and .A
i

B C
o1 2

1 2

The overall power gain of the system is the product of the individual 
gains, or

σ σ σ= =
p
p

p
p

p
p

p
p

.o

i i

o1 2

1 2
A B C

We can replace the multiplication of power ratios with addition if we 
use the logarithm; that is,

p
p

log log log log .o

i
10 10 A 10 B 10 Cσ σ σ= + +

The log of a power ratio was named the bel, in honor of Alexander 
Graham Bell. Thus, we calculate the overall power gain, in bels, by 
summing the power gains, also in bels, of each segment of the trans-
mission system. In practice, the bel is an inconveniently large quantity. 
 One-tenth of a bel is a more useful measure of power gain—hence the 
decibel. The number of decibels equals 10 times the number of bels, so

p
p

Number of decibels 10 log .o

i
10=

When we use the decibel as a measure of power ratios, in some sit-
uations the resistance seen looking into the circuit equals the resistance 
loading the circuit, as illustrated in Fig. D.2. When the input resistance 
equals the load resistance, we can convert the power ratio to either a 
voltage ratio or a current ratio:

p
p

R
R

o

i

out
2

L

in
2

in

out

in

2

= =








v
v

v
v

or

p
p

i R
i R

i
i

.o

i

out
2

L

in
2

in

out

in

2

= =
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744 The Decibel

 TABLE D.1 Some dB-Ratio Pairs

dB Ratio dB Ratio

0 1.00 30 31.62

3 1.41 40 100.00

6 2.00 60 10 3

10 3.16 80 10 4

15 5.62 100 10 5

20 10.00 120 10 6

These equations show that the number of decibels becomes

 

v
v
i
i

Number of decibels 20 log

20 log .

10
out

in

10
out

in

=

=

 (D.1)

The definition of the decibel used in Bode diagrams (see Appendix E) 
is borrowed from the results expressed by Eq. D.1, since these results 
apply to any transfer function involving a voltage ratio, a current ratio, 
a voltage-to-current ratio, or a current-to-voltage ratio. You should keep 
the original definition of the decibel firmly in mind because it is of funda-
mental importance in many engineering applications.

When you are working with transfer function amplitudes expressed in 
decibels, having a table that translates the decibel value to the actual value 
of the output/input ratio is helpful. Table D.1 gives some useful pairs. The 
ratio corresponding to a negative decibel value is the reciprocal of the 
positive ratio. For example, −3 dB corresponds to an output/input ratio 
of 1 1.41, or 0.707. Interestingly, −3 dB corresponds to the half-power 
frequencies of the filter circuits discussed in Chapters 14 and 15.

The decibel is also used as a unit of power when it expresses the ratio 
of a known power to a reference power. Usually, the reference power is 
1 mW, and the power unit is written dBm, which stands for “decibels rel-
ative to one milliwatt.” For example, a power of 20 mW corresponds to 
±13 dBm.

AC voltmeters commonly provide dBm readings that assume not only 
a 1 mW reference power but also a 600 Ω  reference resistance (a value 
commonly used in telephone systems). Since a power of 1 mW in 600 Ω  
corresponds to 0.7746 V (rms), that voltage is read as 0 dBm on the meter. 
For analog meters, there usually is a 10 dB difference between adjacent 
ranges. Although the scales may be marked 0.1, 0.3, 1, 3, 10, and so on, in 
fact 3.16 V on the 3 V scale lines up with 1 V on the 1 V scale.

Some voltmeters provide a switch to choose a reference resistance (50, 
135, 600, or 900 Ω ) or to select dBm or dBV (decibels relative to one volt).
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 E
APPENDIX 

Bode Diagrams
The frequency response plot is a very important tool for analyzing a 
circuit’s behavior. Up to this point, we have shown qualitative sketches 
of the frequency response without discussing how to create these plots. 
The best way to generate and plot the amplitude and phase data is to 
use a computer; we can rely on it to give us accurate numerical plots of 

ωH j( )  and θ ωj( ) versus ω . But we can create preliminary sketches of 
the frequency response using Bode diagrams.

A Bode diagram is a graphical technique that approximates a sys-
tem’s frequency response. These diagrams are named to recognize the 
pioneering work of H. W. Bode.1 They are most useful for systems 
whose transfer function poles and zeros are reasonably well separated.

A Bode diagram consists of two separate plots: One shows how the 
transfer function amplitude varies with frequency, and the other shows 
how the transfer function phase angle varies with frequency. The Bode 
diagram plots are constructed using semilog graph paper to accommo-
date a wide range of frequencies. In both the amplitude and phase plots, 
the frequency is plotted on the horizontal log scale. The amplitude and 
phase angle are plotted on the linear vertical scale.

 E.1  Real, First-Order Poles and Zeros
First, we consider a transfer function, H(s), with poles and zeros that are 
real and distinct. We introduce the procedure for constructing a Bode 
diagram using

=
+

+
H s

K s z
s s p

( )
( )

( )
,1

1

from which

ω ω
ω ω

=
+
+

H j
K j z
j j p

( )
( )
( )

.1

1

To begin, put the expression for ωH j( )  in a standard form, which 
we derive by dividing out the non-zero poles and zeros:

ω
ω

ω ω
=

+
+

H j
Kz j z

p j j p
( )

(1 )
( )(1 )

.1 1

1 1

Next we let Ko equal Kz p1 1, and express ωH j( )  in polar form:

ω
ω ψ

ω ω β
=

+

° +
H j

K j z

j p
( )

1

( 90 )( 1 )
o 1 1

1 1

1See H. W. Bode, Network Analysis and Feedback Design (New York: Van Nostrand, 1945).
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2See Appendix D for more information regarding the decibel.

ω
ω ω

ψ β=
+
+

− ° −K j z
j p

1
1

( 90 ).o 1

1

1 1

Therefore,

 H j
K j z

j p
( )

1
1

,o 1

1

ω
ω

ω ω
=

+
+

 (E.1)

j( ) 90 .1 1θ ω ψ β= − ° −  (E.2)

By definition, the phase angles ψ1  and β1 are

ψ ω= − ztan ;1
1

1

β ω= − ptan .1
1

1

The Bode diagram includes the plots of Eq. E.1 (amplitude) and Eq. E.2 
(phase) as functions of ω .

E.2 Straight-Line Amplitude Plots
Notice from Eq. E.1 that the amplitude plot requires us to multiply and 
 divide values associated with the poles and zeros of H s( ). We can trans-
form the multiplication and division into addition and subtraction if we 
express ωH j( )  as a logarithmic value: the decibel (dB).2 The amplitude 
of ωH j( )  in decibels is

ω=A H j20 log ( ) .dB 10

Expressing Eq. E.1 in terms of decibels gives

A
K j z

j p
20 log

1
1

o
dB 10

1

1

ω
ω ω

=
+

+
 (E.3)

K j z20 log 20 log 1o10 10 1ω= + +

ω ω− − + j p20 log 20 log 1 .10 10 1

To construct a plot of Eq. E.3 versus frequency ω,  we plot each term 
in the equation separately and then combine the separate plots graphi-
cally. The terms in Eq. E.3 are easy to plot because they can be approxi-
mated by straight lines.

The plot of K20 log o10  is a horizontal straight line because Ko is not a 
function of frequency. The value of this term is positive for >K 1o , zero 
for =K 1o , and negative for <K 1o .

Two straight lines approximate the plot of ω+ j z20 log 110 1 . For 
small values of ω , the magnitude ω+ j z1 1  is approximately 1, and 
therefore

j z20 log 1 0 as  0.10 1ω ω+ → →  
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For large values of ω , the magnitude ω+ j z1 1  is approximately ω z1 , 
and therefore

ω ω ω+ → → ∞j z z20 log 1 20 log ( ) as  .10 1 10 1

On a log frequency scale, ω z20 log ( )10 1  is a straight line with a slope of 
20 dB decade (a decade is a 10-to-1 change in frequency). This straight 
line intersects the 0 dB axis at ω = z1 . This value of ω  is called the corner 
frequency. Thus, two straight lines can approximate the amplitude plot of 
a first-order zero, as shown in Fig. E.1.

The plot of ω−20 log10  is a straight line having a slope of 
−20 dB decade that intersects the 0 dB axis at ω = 1.

Two straight lines approximate the plot of ω− + j p20 log 110 1  and 
intersect on the 0 dB axis at ω = p1. For small values of ω, the magnitude 
is 1 or 0 dB. For large values of ω , the straight line ω p20 log ( )10 1  has a 
slope of 20 dB decade− . Figure E.2 shows the straight-line approxima-
tion of the amplitude plot for a first-order pole.

Figure E.3 shows a plot of Eq. E.3 for =K 10o , z 0.1 rad s,1 =  
and p 5 rad s.1 =  Each term in Eq. E.3 is also plotted in Fig. E.3, so you 
can verify that the individual terms sum to create the plot of the transfer 
function’s amplitude, labeled ωH j20 log ( )10 .

1 2 3 4 5 6 7 8
v (rad s)

910 20 30 40 50

–20

–15

–10

–5

0

5

AdB

p1 10p1–20 log10 p1
v

–20 dBNdecade

Figure E.2 ▲ A straight-line approximation of the amplitude plot of a first-order pole.

25

1 2 3 4 5 6 7
v (rad s)

8 910 20 30 40 50

0

5

10
AdB

15

20

25

Decade

20 dBNdecade

10z1z1

20 log10 z1
v

Figure E.1 ▲ A straight-line approximation of the amplitude plot of a first-order zero.
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20 log10 1 1 j z1
v

220 log10 1 1 j p1
v

220 log10v

10

50
20 log10 |H(jv)|

20 log10 Ko

40

30

20
AdB

0

210

220
0.05 0.1 0.5 1.0 5

v (radNs)
10 50 100 500

20 log10 |H(jv)|

Figure E.3 ▲ A straight-line approximation of the amplitude plot for Eq. E.3.

Example E.1 constructs a straight-line amplitude plot for a transfer 
function with first-order poles and zeros.

EXAMPLE E.1

For the circuit in Fig. E.4:

a)  Find the transfer function, =H s V s V s( ) ( ) ( )o i .

b)  Construct a straight-line approximation of the 
Bode amplitude plot.

c)  Calculate ωH j20 log ( )10  at 50 rad sω =  and 
1000 rad s.ω =  Identify these two values on 

the plot you constructed in (b).

d)  If t t( ) 5 cos (500 15 )V,i = + °v  use the Bode 
plot you constructed to predict the amplitude of 
v t( )o  in the steady state.

Solution
a) Transform the circuit in Fig. E.4 into the s-domain  

and then use voltage division to get

=
+ +

H s
R L s

s R L s
LC

( )
( )

( ) 1 .
2

Substituting the numerical values from the cir-
cuit, we get

=
+ +

=
+ +

H s s
s s

s
s s

( ) 110
110 1000

110
( 10)( 100)

.
2

b)  Write ωH j( )  in standard form:

ω ω
ω ω

=
+ +

H j
j

j j
( )

0.11
[1 ( 10)][1 ( 100)]

.

The expression for the amplitude of ωH j( )  in 
decibels is

A H j

j

20 log ( )

20 log 0.11 20 log

dB 10

10 10

ω

ω

=

= +
 

ω ω− + − +j j20 log 1
10

20 log 1
100

.10 10

Figure E.5 shows the straight-line plot. Each 
term contributing to the overall amplitude is also 
plotted and identified.

c)  We have

=
+ +

= − °

H j
j

j j
( 50)

0.11( 50)
(1 5)(1 0.5)

0.9648 15.25 ,

H j20 log ( 50) 20 log 0.9648

0.311 dB;

10 10=

= −

11 V

100 mH

vi

1

2

vo

10 mF

1

2

Figure E.4 ▲ The circuit for Example E.1.

Z05_NILS8436_12_SE_APPE.indd   748 15/01/22   5:56 PM
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These two magnitude values are plotted in  
Fig. E.5.

d)  The frequency of v i  is 500 rad s. As we can see 
from the Bode plot in Fig. E.5, the value of AdB  
at 500 rad sω =  is approximately −12.5 dB . 
Therefore,

= =−H j( 500) 10 0.24( 12.5 / 20)

and

= = =V H j V( 500) (0.24)(5) 1.19 V.o i

To calculate the actual value of ωH j( ) , substitute 
ω = 500 into the equation for ωH j( ) :

=
+ +

= − °H j
j

j j
( 500)

0.11( 500)
(1 50)(1 5)

0.22 77.54 .

Thus, the actual output voltage magnitude for  
the specified signal source at a frequency of  
500 rad s  is

= = =V H j V( 500) (0.22)(5) 1.1 V.o i

=
+ +

= −

H j
j

j j
( 1000)

0.11( 1000)
(1 100)(1 10)

0.1094 83.72;

= −20 log 0.1094 19.22 dB.10

E.3 More Accurate Amplitude Plots
We can make the straight-line plots for first-order poles and zeros more 
accurate by correcting the amplitude values at the corner frequency, 
 one-half the corner frequency and twice the corner frequency. At the cor-
ner frequency, the actual value in decibels is

A j20 log 1 1

20 log 2

3 dB.

dB 10

10

c
= ± +

= ±

≈ ±

The actual value at one-half the corner frequency is

A j20 log 1 1
2

20 log 5
4

1 dB.

dB 10

10

c /2
= ± +

= ±

≈ ±

At twice the corner frequency, the actual value in decibels is

A j20 log 1 2

20 log 5

7 dB.

dB 10

10

2 c
= ± +

= ±

≈ ±

AdB

220

210

230

240

250

260

0

10

20

30

40

1 10 100 1000500505
v (radNs)

(212.5)
(20.311) (219.22)20 log10 0.11

20 log10 ujvu
20 log10 uH(jv)u

220 log10 u1 1 j uv

100

220 log10 u1 1 j uv

10

Figure E.5 ▲ The straight-line amplitude plot for the transfer func-
tion of the circuit in Fig. E.4.
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In these three equations, the plus sign applies to a first-order 
zero, and the minus sign applies to a first-order pole. The straight-line 
approximation of the amplitude plot is 0 dB at both the corner frequency 
and at one-half the corner frequency, and is ±6 dB at twice the corner  
frequency. Hence, the corrections are ±3 dB at the corner frequency and 
±1 dB at both  one-half the corner frequency and twice the corner fre-
quency. Figure E.6 summarizes these corrections.

If the poles and zeros of H s( ) are widely separated, you can include 
these corrections into the overall amplitude plot and produce a reason-
ably accurate curve. However, if the poles and zeros are close together, 
the overlapping corrections are difficult to evaluate, so estimating the am-
plitude characteristic using the uncorrected straight-line plot is a better 
choice. Use a computer to create an accurate amplitude plot in the fre-
quency range of interest.

E.4 Straight-Line Phase Angle Plots
We can also use straight-line approximations to plot the transfer function 
phase angle versus frequency. Using the transfer function phase angle in 
Eq. E.2, we know that the phase angle associated with the constant Ko is 
zero, and the phase angle associated with a first-order zero or pole at the 
origin is a constant ± °90 . For a first-order zero or pole not at the origin, 
the straight-line approximations are as follows:

• For frequencies less than one-tenth the corner frequency, the phase 
angle is approximated by zero.

• For frequencies greater than 10 times the corner frequency, the 
phase angle is approximated by ± °90 .

• Between one-tenth the corner frequency and 10 times the corner 
frequency, the phase angle plot is a straight line with the value °0  at 
one-tenth the corner frequency,  ± °45  at the corner frequency, and 
± °90  at 10 times the corner frequency.

AdB

vc
2

vc 2vc

225

220

215

210

25

10

15

20

25

0

5

21 dB

1 dB1 dB
3 dB

21 dB

23 dB

Figure E.6 ▲ Corrected amplitude plots for a first-order zero and pole.
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 E.4 Straight-Line Phase Angle Plots 751

Throughout, the plus sign applies to the first-order zero and the minus 
sign to the first-order pole. Figure E.7 depicts the straight-line approxima-
tion for a first-order zero and pole. The dashed curves show the exact plot 
of the phase angle versus frequency. Note how closely the straight-line 
plot approximates the actual phase angle plot. The maximum deviation 
between the straight-line plot and the actual plot is approximately °6 .

We construct a phase angle plot using a straight-line approximation 
in Example E.2.

EXAMPLE E.2

a) Make a straight-line phase angle plot for the 
transfer function in Example E.1.

b) Compute the phase angle θ ωj( ) at ω = 50, 500, 
and 1000  rad s. Add these phase angle values to 
the plot you constructed in (a).

c) Using the results from Example E.1(e) and  
Example E.2(b), compute the steady-state out-
put voltage if the source voltage is given by 
v = − °t t( ) 10 cos(500 25 )V.i

Solution
a) From Example E.1,

H j
j

j j
( )

0.11( )
[1 ( 10)][1 ( 100)]

ω
ω

ω ω
=

+ +

ω
ω ω

ψ β β=
+ +

− −j
j j

0.11
1 ( / 10) 1 ( /100)

( ).1 1 2

Therefore,

θ ω ψ β β= − −j( ) ,1 1 2

where

ψ

β ω

β ω

= °

=

=

−

−

90 ,

tan ( 10), and

tan ( 100).

1

1
1

2
1

We construct the straight-line approximation of 
θ ωj( ) by adding ψ1  = 90° and the straight-line  
approximations for β− 1 and β− 2 , all of which are 
depicted in Fig. E.8.

b) From the transfer function we have
= − °H j( 50) 0.96 15.25 ,

= − °H j( 500) 0.22 77.54 ,

= − °H j( 1000) 0.11 83.72 .

Thus,
θ = − °j( 50) 15.25 ,

θ = − °j( 500) 77.54 ,

and

θ = − °j( 1000) 83.72 .

308

608

908

0 

2308

2608

2908

v (rad s)

z1N10 p1N10 z1 p1 10z1 10p1

Straight-line approximation

u (v) 2b1 5 2tan21 (vNp1)
Actual

Straight-line approximation

c1 5 tan21 (vNz1)
Actual

Figure E.7 ▲ Phase angle plots for a first-order zero and pole.
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21208

2908

2608

2308

08

308

608

908

1 10 100 1000500505

(215.25)

(277.54) (283.72)

u (v)

c1 5 908

u(v) 5 c1 2 b1 2 b2

2b2 5 2tan21 (vN100)

2b1 5 2tan21 (vN10)

v (rad s)

Figure E.8 ▲ A straight-line approximation of ( )θ ω  for  
Example E.2.

These three phase angles are identified in Fig. E.8.

c) The frequency of the input voltage is 500 rad/sec. 
Therefore,

V H j V( 500)

(0.22)(10)

2.2 V,

o i=

=

=
and

j( 500)

77.54 25

102.54 .

o iθ θ θ= +

= − ° − °

= − °

Thus,

v = − °t t( ) 2.2 cos(500 102.54 ) V.o

E.5  Bode Diagrams: Complex Poles 
and Zeros

We now consider how to construct a Bode diagram when the transfer 
function has complex poles and zeros. Let’s focus on constructing the am-
plitude and phase angle plots for a transfer function with a pair of com-
plex poles. Once you understand the rules for handling complex poles, 
you can apply these rules, with minor adjustments, to create plots for a 
pair of complex zeros.

The complex poles and zeros of H s( ) always appear in conjugate 
pairs. When H s( ) has complex poles, the first step in constructing a Bode 
diagram for H s( ) is to combine the conjugate pair into a single quadratic 
term. Thus, for

H s K
s j s j

,
α β α β( )( )

( ) =
+ − + +

we first rewrite the product α β α β+ − + +s j s j( )( ) as

s s s( ) 2 .2 2 2 2 2α β α α β+ + = + + +

When making Bode diagrams, we write the quadratic term in a more con-
venient form:

s s s s2 2 .n n
2 2 2 2 2α α β ζω ω+ + + = + +

Comparing the two forms shows that

ω α β= +n
2 2 2

and

ζω α= .n
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The term ωn  is the corner frequency of the quadratic term, and ζ  is the 
damping coefficient of the quadratic term. If ζ < 1, the roots of the qua-
dratic term are complex, and if ζ ≥ 1, the roots are real. Assuming that 
ζ < 1, we rewrite the transfer function as

H s K
s s

( )
2

.
n n

2 2ζω ω
=

+ +

We then write the transfer function in standard form by dividing through 
by ωn

2 , so

ω
ω ζ ω

=
+ +

H s K
s s

( ) 1
1 ( ) 2 ( )

,n
n n

2
2

from which

H j
K

j
( )

1 ( ) (2 )
,o

n n
2 2

ω
ω ω ζω ω

=
− +

where

ω
=K K .o

n
2

We replace the ratio ω ωn  by a new variable, u. Then

ω
ζ

=
− +

H j
K

u j u
( )

1 2
.o

2

Now we write ωH j( )  in polar form:

ω
ζ β

=
− + −

H j
K

u j u
( )

(1 ) 2
,o

2 1

from which

A H j

K u j u

20 log ( )

20 log 20 log (1 ) 2 ,o

dB 10

10 10
2

ω

ζ

=

= − − +

and

θ ω β ζ= − = −
−

−j u
u

( ) tan 2
1

.1
1

2

E.6  Straight-Line Amplitude Plots for 
Complex Poles

The expression ζ− − +u j u20 log 1 210
2  represents the quadratic term’s 

contribution to the amplitude of ωH j( ) . Because ω ω= →u u, 0n  
as ω → 0, and → ∞u  as ω → ∞. To see how the term behaves as ω  
ranges from 0 to ∞, we note that

u j u u u

u u

20 log (1 ) 2 20 log (1 ) 4

10 log [ 2 (2 1) 1].

10
2

10
2 2 2 2

10
4 2 2

ζ ζ

ζ

− − + = − − +

= − + − +  (E.4)
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Then, as →u 0 ,

u u10 log [ 2 (2 1) 1] 0,10
4 2 2ζ− + − + →

and as → ∞u ,

u u u10 log [ 2 (2 1) 1] 40 log .10
4 2 2

10ζ− + − + → −

From these limiting expressions, we see that the approximate ampli-
tude plot consists of two straight lines. For ω ω< n , the straight line 
lies along the 0 dB axis, and for ω ω> n , the straight line has a slope of 
−40 dB decade. These two straight lines join on the 0 dB axis at =u 1 or 
ω ω= n. Figure E.9 shows the straight-line approximation for a quadratic 
term with ζ < 1.

E.7  Correcting Straig ht-Line Amplitude 
Plots for Complex Poles

Corrections to the straight-line amplitude plot for a pair of complex poles 
depend on the damping coefficient ζ . Figure E.10 shows the effect of ζ  on 
the amplitude plot. Note that when ζ  is very small, a large peak in the am-
plitude occurs in the neighborhood of the corner frequency ω =u( 1)n .  
When ζ ≥ 1 2 , the corrected amplitude plot lies entirely below the 
straight-line approximation. The straight-line amplitude plot can be cor-
rected by locating four points on the actual curve. These four points cor-
respond to (1) one-half the corner frequency, (2) the frequency at which 
the amplitude reaches its peak value, (3) the corner frequency, and (4) the 
frequency at which the amplitude is zero.

At one-half the corner frequency (point 1), the actual amplitude is

 A ( 2) 10 log ( 0.5625).ndB 10
2ω ζ= − +  (E.5)

The amplitude peaks (point 2) at a frequency of

ω ω ζ= −1 2 ,p n
2  (E.6)

and it has a peak amplitude of

 A ( ) 10 log [4 (1 )].pdB 10
2 2ω ζ ζ= − −  (E.7)

At the corner frequency (point 3), the actual amplitude is

A ( ) 20 log 2 .ndB 10ω ζ= −  (E.8)

The corrected amplitude plot crosses the 0 dB axis (point 4) at

 ω ω ζ ω= − =2(1 2 ) 2 .n p0
2  (E.9)

Figure E.11 shows these four points.
Evaluating Eq. E.4 at =u 0.5 and =u 1.0 , respectively, yields 

Eqs. E.5 and E.8. Equation E.9 results from finding the value of u that 
makes ζ+ − + =u u2 (2 1) 1 14 2 2 . To derive Eq. E.6, differentiate 
Eq. E.4 with respect to u and find the value of u where the derivative is 
zero. To derive E.7, find the value of u for the frequency in Eq. E.6, then 
evaluate Eq. E.4 at that value of u.

Example E.3 illustrates the amplitude plot for a transfer function with 
a pair of complex poles.

1

2 3

4

27

26

25

24

23

22

21

0

1

2

3

AdB

v (radNs)

vnN2 vp vn v0

Figure E.11 ▲ Four points on the corrected 
 amplitude plot for a pair of complex poles.
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Figure E.9 ▲ The amplitude plot for a pair of 
 complex poles.
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Figure E.10 ▲ The effect of ζ  on the amplitude plot.
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EXAMPLE E.3

Compute the transfer function for the circuit shown 
in Fig. E.12.

a) Find the value of the corner frequency in radians 
per second.

b) Find the value of Ko.

c) Find the value of the damping coefficient.

d) Make a straight-line amplitude plot for frequen-
cies from 10 to 500 rad s.

e) Calculate the actual amplitude in decibels at 
ω 2n , ω p, ωn , and ωo . Use these values to correct 
the plot in (d).

f) Using the corrected amplitude plot, describe 
the type of filter represented by the circuit in 
Fig. E.12 and estimate its cutoff frequency, ωc .

Solution

Transform the circuit in Fig. E.12 to the s-domain  
and then use voltage division to get

H s LC

s R
L

s
LC

( )

1

1
.

2 ( )
=

+ +

Substituting the component values,

=
+ +

H s
s s

( ) 2500
20 2500

.
2

a) From the expression for H s( ), ω = 2500n
2 ; 

therefore, ω = 50 rad s.n

b) By definition, Ko is ω2500 n
2 , or 1.

c) The coefficient of s in the denominator equals 
ζω2 n; therefore

ζ
ω

= =20
2

0.20.
n

d)  See Fig. E.13.

e)  The actual amplitudes are

ω = − =A ( 2) 10 log (0.6025) 2.2 dB,ndB 10

50 0.92 47.96 rad s,pω = =

ω = − =A ( ) 10 log (0.16)(0.96) 8.14 dB,pdB 10

ω = − =A ( ) 20 log (0.4) 7.96 dB,ndB 10

ω ω= =2 67.82 rad s,p0

ω =A ( ) 0 dB.dB 0

Figure E.13 shows these four points, identified 
as follows:

• Point 1 has the coordinates (25 rad s, 2.2 dB),
• Point 2 has the coordinates (47.96 rad s, 8.14 dB),
• Point 3 has the coordinates (50 rad s , 7.96 dB), 

and
• Point 4 has the coordinates (67.82 rad s, 0 dB).

Figure E.13 also shows the corrected plot, which 
is the dashed line that passes through these four 
points.

f) The amplitude plot in Fig. E.13 identifies the cir-
cuit as a low-pass filter. At the cutoff frequency, 
the magnitude of the transfer function, ωH j( )c , 
is 3 dB less than the maximum magnitude. From 
the corrected plot, the cutoff frequency appears 
to be about 80  rad s, almost the same as that 
predicted by the straight-line Bode diagram.

50 mH 1 V

vi
1

2
vo

1

2

8 mF

Figure E.12 ▲ The circuit for Example E.3.

240

235

230

225

220

215

210

25

0

5 1

10

245
10 50 100 500

AdB

15

v (rad s)

2 3

4

Figure E.13 ▲ The amplitude plot for Example E.3.
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z 5 0.707

21808
0.2 0.4 1.0

u
2 4 8

21658

21508

21358

21208

21058

2908

2758

2608

2458

2308

2158

0

158

z 5 0.1

z 5 0.3

u (v)

Figure E.14 ▲ The effect of ζ  on the phase angle plot.

E.8  Phase Angle Plots for Complex 
Poles

The phase angle plot for a pair of complex poles is a plot of 
θ ω ζ= − −−j u u( ) tan [2 (1 )]1 2 . The phase angle is zero at zero fre-
quency and is − °90  at the corner frequency. It approaches − °180  as ω  
(and, therefore, u) becomes large. As in the case of the amplitude plot, ζ   
determines the exact shape of the phase angle plot. Figure E.14 shows the 
effect of ζ  on the phase angle plot.

We can make a straight-line approximation of the phase angle plot for 
a pair of complex poles. We do so by drawing three line segments:

• For ω ω≤ ζ−(4.81 ) n , draw a horizontal line at 0°;

• For ω ω≥ ζ(4.81 ) n , draw a horizontal line at − °180 ;

• For ω ω ω≤ ≤ζ ζ−(4.81 ) (4.81 )n n , draw a straight line connect-
ing the 0° phase angle at ωζ−(4.81 ) n  to the − °180  phase angle at 

ωζ(4.81 ) n . This line passes through − °90  at ωn  and has a slope of 
ζ−132  degrees/decade ( ζ−2.3  rad/decade).

Figure E.15 depicts the straight-line approximation for ζ = 0.3 and 
shows the actual phase angle plot. We see that the straight line is a good 
approximation of the actual curve near the corner frequency, but the 
error is quite large near the two points where the straight lines intersect. 
In Example E.4, we summarize our discussion of Bode diagrams.

1.6 5 4.81z

1.0 2.0

21808

21508

21208

2908

2608

2308

0

Actual curve

0.62 5 4.812z

u (v)
4408Ndecade

(7.67 radNdec)

u

Figure E.15 ▲ A straight-line approximation of the phase 
angle for a pair of complex poles.
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EXAMPLE E.4

a) Compute the transfer function, H(s), for the cir-
cuit shown in Fig. E.16.

b) Make a straight-line amplitude plot of 
ωH j20 log ( )10 .

c) Use the straight-line amplitude plot to determine 
the type of filter represented by this circuit and 
then estimate its cutoff frequency.

d) Find the actual cutoff frequency.

e) Make a straight-line phase angle plot of ωH j( ) .

f) Using the plot in (e), find the phase angle at the 
estimated cutoff frequency found in (c).

g) Find the phase angle at the actual cutoff frequen-
cy found in (d).

Solution
a) Transform the circuit in Fig. E.16 to the s-domain 

and then use voltage division to get

H s

R
L

s
LC

s R
L

s
LC

( )

1

1
.

2
=

+

+ +

Substituting the component values from  
the circuit gives

=
+

+ +
H s

s
s s

( )
4( 25)

4 100
.

2

b) The first step in making Bode diagrams is to put 
ωH j( )  in standard form. Because H s( ) contains 

a quadratic factor, we first check the value of ζ . 
We find that ζ = 0.2 and ω = 10n , so

=
+

+ +
H s

s
s s

( )
25 1

1 ( 10) 0.4( 10)
,

2

from which

ω
ω ψ

ω ω β
=

+

− +
H j

j

j
( )

1 25

1 ( 10) 0.4 10
.

1

2 1

Note that for the quadratic term, ω=u 10.   
The amplitude of ωH j( )  in decibels is

ω

ω ω( ) ( )

= +

− − +












A j

j

20 log 1 25

20 log 1
10

0.4
10

,

dB 10

10

2

and the phase angle is

θ ω ψ β= −j( ) ,1 1  

where

ψ ω= −tan ( 25),1
1

β
ω
ω

=
−

−tan
0.4( 10)

1 ( 10)
.1

1
2

Figure E.17 shows the amplitude plot and includes the 
plots of the two terms that make up AdB .

c)  The straight-line amplitude plot in Fig. E.17 indicates 
that the circuit is a low-pass filter. At the cutoff fre-
quency, the amplitude of ωH j( )  is 3 dB less than the 
amplitude in the passband. From the plot, we predict 
that the cutoff frequency is approximately 13rad s .

d)  To solve for the actual cutoff frequency, replace s with 
ωj  in H s( ), compute the expression for ωH j( ) , set 

ω =H j( ) (1 2)c =H 1 2max , and solve for ωc . 

First,

ω ω
ω ω

=
+

+ +
H j

j
j j

( )
4( ) 100

( ) 4( ) 100
.

2

vi

40 mF

1 V

1

2

vo

250 mH

1

2

Figure E.16 ▲ The circuit for Example E.4. 20 log10 |1 1 jvN25|

280

260

240

220

0

20

40

60

AdB

1 10 100 100050050
v (rad s)

5

AdB 5 20 log10|H( jv)|

220 log10   |12 1 j0.4 |10
v

10
v2

Figure E.17 ▲ The amplitude plot for Example E.4.
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c1(v)

u (v)

2b1(v)

21808

21358

2908

2458

08

458

908

1358

1 10 100 100050050
v (radNs)

u (v)

5

Figure E.18 ▲ The phase angle plot for Example E.4.

Then,

H j( )
(4 ) 100

(100 ) (4 )
1
2

.c
c

c c

2 2

2 2 2
ω

ω

ω ω
=

+

− +
=

Solving for ωc  gives us

ω = 16 rad s.c

e) Figure E.18 shows the phase angle plot, as well as plots 
of the two angles ψ1  and β− 1. Note that the straight-
line segment of θ ω( ) between 1.0 and 2.5 rad s does 
not have the same slope as the segment between 
2.5 and 100 rad s.

f) From the phase angle plot in Fig. E.18, we estimate 
the phase angle at the estimated cutoff frequency of 
13 rad s to be − °65 .

g) We can compute the exact phase angle at the actu-
al cutoff frequency by substituting =s j16  into the 
transfer function H s( ):

=
+

+ +
H j

j
j j

( 16)
4( 16 25)

( 16) 4( 16) 100
.

2

Computing the phase angle, we see

θ ω θ= = − °j j( ) ( 16) 125.0 .c

Note the large error in the predicted angle. In general, 
straight-line phase angle plots do not give satisfactory 
results in the frequency band where the phase angle is 
changing. The straight-line phase angle plot is useful 
only in predicting the general behavior of the phase 
angle, not in estimating actual phase angle values at 
particular frequencies.
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 F 
APPENDIX 

An Abbreviated Table of 
Trigonometric Identities

1. sin( ) sin cos cos  sinα β α β α β± = ±  

2. ∓cos( ) cos cos sin sinα β α β α β± =

3. sin sin 2 sin
2

cos
2

α β α β α β+ = + −

4. sin sin 2 cos
2

sin
2

α β α β α β( ) ( )− = + −

5. cos cos 2 cos
2

cos
2

α β α β α β( ) ( )+ = + −

6. cos cos 2 sin
2

sin
2

α β α β α β( ) ( )− = − + −

7. 2 sin sin cos( ) cos( )α β α β α β= − − +

8. 2 cos cos cos( ) cos( )α β α β α β= − + +

9. 2 sin cos sin( ) sin( )α β α β α β= + + −

10. sin2 2 sin cosα α α=

11. cos2 2 cos 1 1 2 sin2 2α α α= − = −

12. cos 1
2

1
2

cos22α α= +

13. sin 1
2

1
2

cos22α α= −

14. 
∓

tan( )
tan tan

1 tan tan
α β α β

α β
± = ±

15. tan2
2 tan

1 tan 2
α

α
α

=
−
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 G 
APPENDIX 

An Abbreviated Table of 
Integrals

1. ∫ = −xe dx e
a

ax( 1)ax
ax

2
 

2. ∫ = − +x e dx e
a

a x ax( 2 2)ax
ax

2
3

2 2

3. ∫ = −x ax dx
a

ax x
a

axsin 1 sin cos
2

4. ∫ = +x ax dx
a

ax x
a

axcos 1 cos sin
2

5. ∫ =
+

−e bx dx e
a b

a bx b bxsin ( sin cos )ax
ax

2 2

6. ∫ =
+

+e bx dx e
a b

a bx b bxcos ( cos sin )ax
ax

2 2

7. ∫ +
= −dx

x a a
x
a

1 tan
2 2

1

8. ∫ ( )+
=

+
+ −dx

x a a
x

x a a
x
a( )

1
2

1 tan
2 2 2 2 2 2

1

9. ∫ =
−
−

−
+
+

≠ax bx dx
a b x
a b

a b x
a b

a bsin sin
sin( )

2( )
sin( )

2( )
, 2 2

10. ∫ =
−
−

+
+
+

≠ax bx dx
a b x
a b

a b x
a b

a bcos cos
sin( )

2( )
sin( )

2( )
, 2
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11. ∫ = −
−
−

−
+
+

≠ax bx dx
a b x
a b

a b x
a b

a bsin cos
cos( )

2( )
cos( )

2( )
, 2 2

12. ∫ = −ax dx x ax
a

sin
2

sin2
4

2

13. ∫ = +ax dx x ax
a

cos
2

sin2
4

2

14. ∫

π

π
+

=

>

=

− <











∞ a dx
a x

a

a

a

2
, 0;

0, 0;

2
, 0

2 20

15. ∫
π

π
=

>

− <











∞ ax
x

dx
a

a

sin 2
, 0;

2
, 0

0

16. ∫ = − −x ax dx x
a

ax a x
a

axsin 2 sin 2 cos2
2

2 2

3

17. ∫ = + −x ax dx x
a

ax a x
a

axcos 2 cos 2 sin2
2

2 2

3

18. ∫ =
+

− +





e bx dx e
a b

a bx b bx bx b
a

sin
4

( sin 2 cos )sin 2ax
ax

2
2 2

2

19. ∫ =
+

+ +





e bx dx e
a b

a bx b bx bx b
a

cos
4

( cos 2 sin ) cos 2ax
ax

2
2 2

2
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 H
APPENDIX 

Common Standard 
Component Values

Resistors (5% tolerance) [ ]Ω
10 100 1.0 k 10 k 100 k 1.0 M

120 1.2 k 12 k 120 k

15 150 1.5 k 15 k 150 k 1.5 M

180 1.8 k 18 k 180 k

22 220 2.2 k 22 k 220 k 2.2 M

270 2.7 k 27 k 270 k

33 330 3.3 k 33 k 330 k 3.3 M

390 3.9 k 39 k 390 k

47 470 4.7 k 47 k 470 k 4.7 M

560 5.6 k 56 k 560 k

68 680 6.8 k 68 k 680 k 6.8 M

Capacitors

10 pF 22 pF 47 pF

100 pF 220 pF 470 pF

µ0.001  F µ0.0022  F µ0.0047  F

µ0.01  F µ0.022  F µ0.047  F

µ0.1  F µ0.22  F µ0.47  F

µ1  F µ2.2  F µ4.7  F

µ10  F µ22  F µ47  F

µ100  F µ220  F µ470  F

Inductors

Value Current Rating

µ10  H 3 A

µ100  H 0.91 A

1 mH 0.15 A

10 mH 0.04 A
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A
a parameters, two-port circuits, 694, 695
a-, b-, and c-phase voltage references, 414
ac circuits, balancing power in, 391–392
Active circuit elements, 30
Active filter circuits, 572–617

advantages of, 572, 608
bandpass filters, 580–583, 598–599, 600–602, 608–609
bandreject filters, 583–587, 598, 602–605, 608–609
bass volume control, 573, 605–607
block diagram for, 581
Bode plots for, 574–575, 580, 583–584, 587–588,  

602, 605
broadband (low-Q) filters, 581–587, 608
Butterworth filters, 591–600, 608–609
cascading filters, 581–583, 587–591, 608–609
first-order, 574–577, 608
fourth-order, 589–590, 594–595
higher-order, 587–600, 608
high-pass filters, 576–577, 598, 608
low-pass filters, 574–575, 579, 587–591, 593–595, 608
narrowband (high-Q) filters, 600–605, 609
prototypes, 575–577, 608
scaling, 577–580, 608

Active high-Q filter response, 619, 647–649
Addition/subtraction operations, 454, 675, 731
Admittance (Y), 336, 361
Ammeter, 70–72, 80
Amplifier circuit analysis, 47, 102–103, 111, 125–126,  

252–254, 256, 303–308, 310. See also Operational 
amplifiers

cascading connections, 303–308, 310
integrating-amplifier, 252–254, 256, 303–308, 310
Kirchhoff’s laws for, 47
mesh-current method, 111
node-voltage method, 102–103
Ohm’s law for, 47
resistor-inductor-capacitor (RLC) circuits for, 303–308, 

310
Thévenin equivalent circuits for, 125–126

Amplitude plots, 744–748, 751–753
accuracy of, 747–748
complex poles, 751–753
corrections to, 752–753
straight-line, 744–748, 751–753

Amplitude spectrum, 645–647, 650, 665–666
Fourier series and, 645–647, 650
Fourier transform transition of, 665–666

Amplitude, 320
Analog meters, 71–72, 80

Angular frequency (ω), 320
Appliance power ratings, 381–382
Artificial pacemaker design, 221, 255
Attenuation, 536
Average power (P), 377–384, 389, 394, 401, 425–426, 

430–433, 435, 639–641, 650
absorbed, 394
appliance power ratings, 381–382
balanced three-phase circuits, 425–426, 430–433, 435
calculations for, 377–382, 389, 401, 425–426, 639–641
Fourier series applications, 639–641, 650
maximum power transfer (Pmax), 394
measurement of, 430–433, 435
periodic functions (f(t)) and, 639–641, 650
power factor (pf) for, 379, 401
root-mean-square (rms) value and, 382–384
sinusoidal steady-state circuits, 377–382, 389, 394, 401
wye (Y) loads, 425–426

B
b parameters, two-port circuits, 694, 695
Back-substitution method, 723–724, 728
Balanced three-phase circuits, 412, 416–417, 435. See also 

Three-phase circuits
Bandpass filters, 538–539, 550–560, 565, 580–583, 598–599, 

600–602, 608–609, 684–685
active, 580–583, 598–599, 600–602, 608
bandwidth (β) for, 550, 553–554, 556, 565
block diagram for, 581
Bode plot for, 580, 601
broadband, 581–583, 608
Butterworth, 598–599, 608
cascaded, 581–583
center frequency (ωo) for, 550, 552–554, 565
cutoff frequency (ωc) for, 552–553, 556
design of, 555–557
frequency and time domain relationships, 559–560
frequency of, 538–539
frequency response plot, 539
narrowband, 600–602, 609
op amp filters, 580–583, 598–599, 608
parallel RLC circuit, 555–557
parameters of, 550
Parseval’s theorem for, 684–685
qualitative analysis, 551
quality factor (Q) for, 550, 554, 556
quantitative analysis, 551–554
resonant frequency (ωo) for, 550
series RLC circuit, 551–555, 557–559
transfer function (H(s)) for, 559

Index
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Bandreject filter, 538–539, 560–563, 565, 583–587, 598, 
602–605, 608–609

active, 583–587, 598, 602–605, 608–609
Bode plots for, 584, 605
broadband, 583–587, 608
Butterworth, 598
center frequency (ωo) for, 562
cutoff frequency (ωc) for, 562
design of, 562–563
frequency of, 538–539
frequency response plot, 539
narrowband, 602–605, 609
op amp filters, 583–587, 608
parallel RLC circuit, 563
qualitative analysis, 560–561
quantitative analysis, 561–562
series RLC circuit, 560–563
transfer function (H(s)) for, 561, 563

Bandwidth (β), 550, 553–554, 556, 562, 565
Bass volume control circuit analysis, 573, 605–607
Black box concept, 60
Block diagrams, 581
Bode plots (diagrams), 574–576, 580, 583–584, 587–588, 

602, 605, 743–756
active filter analysis using, 574–576, 580,  

583–584, 588
amplitude plots, 744–748, 751–753
bandpass filters, 580, 602
bandreject filters, 583–584, 605
broadband (low-Q) filters, 581, 583–584
cascading filters, 587–588
complex poles, 750–756
complex zeros, 750–751
corner frequency for, 747–748
high-pass filters, 576
low-pass filters, 574–576, 588
magnitude plots, 587–588
narrowband (high-Q) filters, 602, 605
phase angle plots, 748–750, 754–756
real, first-order poles and zeros, 743–744
straight-line plots, 744–756

Branches, 94–96
Broadband (low-Q) filters, 581–587, 608

bandpass, 581–583, 608
bandreject, 583–587, 608
Bode plots for, 581, 583–584

Butterworth filters, 591–600, 608–609
bandpass, 598–599, 608
bandreject, 598, 608
cascading, 591–600, 608–609
circuit analysis, 591, 593–595
high-pass, 598, 608
low-pass, 591, 593–595
order of, 596–597
transfer functions (H(s)) for, 592–593
transition region, 596–597

Butterworth polynomials, 593

C
Capacitance (C), 183, 189, 195–198, 209–210, 211

equivalent, 196–197
series–parallel combinations, 195–198
touch screens values of, 183, 209–210

Capacitive circuits, power for, 379
Capacitors, 182, 189–193, 195–196, 198–199, 211, 329–330, 

361, 485–486, 514–515, 521, 760
circuit analysis of, 189–193, 514–515
circuit component values, 760
circuit parameter of, 189
current to voltage (i–υ) relationships, 190
displacement current, 189–190
duality (symmetry) of, 198–199, 211
energy in, 182, 191, 211
equivalent circuits for, 196–197, 485–486, 521
impulse function (Kδ(t)) for, 514–515
in parallel, 195–196
in series, 195
Laplace transform method for, 485–486, 514–515, 521
multiple, 196–197
passive behavior of, 182, 211
phasor relationships, 329–330, 361
power in, 182, 190–191, 211
s domain representation, 485–486, 521
symbols for, 189
voltage to current (v–i) relationships, 190, 329–330, 361

Cascading connections, 303–308, 310, 581–583, 587–600, 
608–609, 710–713

active filters, 581–583, 587–600, 608–609
bandpass filters, 581–583
Bode magnitude plot for, 588
Butterworth filters, 591–600, 608–609
fifth-order, 593
fourth-order filters, 589–590
high-pass filters, 598, 608
identical first-order filters, 587–591
integrating-amplifiers, 303–308, 310
low-pass filters, 587–591, 593–595, 608
op amp filters, 587–591
two-port circuits, 710–713

Center frequency (ωo), 550, 552–554, 562, 565
Characteristic determinant, 724–725
Characteristic equations, 275–276, 293, 297, 299–301, 309

parallel RLC circuits, 275–276, 293, 309
series RLC circuits, 297, 299–301

Circuit analysis, 11–15, 40–48, 68–70, 75–80, 92–149, 
150–181, 220, 224, 230, 234, 238, 241–242, 246–254, 256, 
273, 308–309, 318–373, 482–535, 536–571, 573, 605–607, 
679–681, 683–687

amplifiers, 47, 102–103, 111, 125–126
bass volume control, 573, 605–607
circuit design and, 11–12
circuit models for, 13
clock for computer timing, 273, 308–309
component models for, 13
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current division, 69–70, 79–80, 336
delta-to-wye (Δ-to-Y) transformations, 75–78, 80, 

338–340
dependent sources and, 45–48, 98–100, 107–108, 122
Fourier transforms for, 679–681, 683–687
frequency-selective circuits, 536–571
household distribution, 319, 359–360
ideal basic circuit element, 14
ideal circuit components, 11–12
integrating-amplifiers, 252–254, 256
Kirchhoff’s laws for, 40–44, 487
Laplace transform in, 482–535
Laplace transform method for, 487–488, 521
maximum power transfer, 92, 126–128, 135
mesh-current method, 92, 104–115, 134–135, 345–347
natural response method, 220, 224, 230, 241–242, 256
node-voltage method, 92, 96–104, 112–115, 134–135, 

344–345
nonplanar circuits for, 94
Norton equivalent circuits for, 92, 120–123, 135
Ohm’s law for, 42–43, 486
operational amplifiers (op amps), 150–181
passive sign convention for, 14–15
physical prototypes, 12
planar circuits for, 94
resistive circuits, 68–70, 79–80, 93, 115–118, 131–134
s domain, 486–488, 521
sensitivity analysis, 93, 131–134
sequential switching and, 246–250, 256
simultaneous equations for, 94–96
sinusoidal steady-state, 318–373
source transformation, 92, 115–118, 121, 134, 340–343
step response method, 220, 234, 238, 241–242, 256
superposition, 92, 129–131, 135
surge suppressors and, 483, 520
terminal behavior and, 118–126, 152–156
terminals, 118–126
Thévenin equivalent circuits for, 92, 118–126, 135
transformers, 347–356, 361
voltage division, 68–70, 79, 334

Circuit components, 11–13, 37, 324, 578, 760
electrical behavior of, 37
ideal, 11–12
models, 13, 37
scale factors, 578
standard values, 760
steady-state current, 324
transient current, 324

Circuit elements, 26–57, 194–209, 211, 484–486, 521
active, 30
capacitance (C), 195–198, 211, 485–486, 521
current sources, 28–31, 50
dependent sources, 28, 31, 45–48, 50
electrical radiator examples of, 27, 48–49
electrical sources, 28
equivalent circuits in s domain, 485–486, 521

in series, 41, 50
inductance (L), 194–209, 211, 484–485, 521
Kirchhoff's laws for, 39–44, 45–47, 50
Laplace transform method and, 484–487
loops (closed path), 40, 50
model construction, 36–38
nodes, 39, 50
Ohm’s law for, 32–33, 42–43, 45–47, 50, 484
passive, 30
resistance (R), 32–35, 484, 521
s domain representation, 484–486, 521
symbols for, 28–29
voltage sources, 28–31, 50

Circuit models, 13, 27, 32–38, 47–49, 154–155, 167–170, 
172–173, 694, 714

advantage of, 13
amplifier, 47
approximation for, 38
construction of, 36–38, 43–44
electrical behavior of components, 37
electrical effects from, 37
electrical radiator, 27, 48–49
flashlight (electrical system), 36–38, 39–41
operational amplifiers (op amps), 154–155, 167–170, 

172–173
resistors, 32–35
terminal measurements for, 38, 43–44
two-port, 694, 714

Circuit theory, 7–8
Circuits, 2–25, 32–35, 58–91, 445, 474–476, 483, 520, 537, 564

analysis of, 11–12
current (i), 12–13, 15–17, 33
current-divider, 67, 79
delta-to-wye (Δ-to-Y) equivalent, 75–78, 80
electrical charge, 12–13
electrical effects, 7
electrical engineering and, 2–9
energy and, 15–17
frequency ( f ) and, 7
ideal basic element, 14–15
International System of Units (SI) for, 9–11
lumped-parameter systems, 7–8
magnetic coupling, 7
net charge, 7
open, 37
passive sign convention for, 14–17
power, 3, 15–20, 33–34
pushbutton telephone, 537, 564
resistive, 32–35, 58–91
short, 37
surge suppressors for, 483, 520
transient effects on, 445, 474–476
voltage (v), 12–13, 15–17, 34
voltage-divider, 64–66, 79
Wheatstone bridge, 73–75, 80

Clock for computer timing, circuit analysis of, 273, 308–309
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Closed path (loop), 40, 50
Coefficient of coupling, 207–208, 211
Common mode input, 164
Common mode rejection ratio (CMRR), 165–167, 173
Communication systems, 4–5
Complex numbers, 729–734

addition/subtraction of, 731
arithmetic operations, 731–732
graphical representation of, 730–731
identities for, 732–733
integer power of, 733
multiplication/division of, 731
notation for, 729–730
polar form, 729–730
rectangular form, 729–730
roots of, 733–734

Complex power, 384–393, 401, 426–427
apparent power (magnitude), 385, 401
balanced three-phase circuits, 426–427
balancing power in ac circuits, 391–392
calculations for, 384–393, 401
defined, 384
delta (Δ) loads, 426–427
parallel loads and, 390–391
phasors for, 387–388
power calculations for, 384–393, 401, 426–427
power triangle relationship, 385
units for, 384–385, 401
wye (Y) loads, 426

Computer systems, 5
Condition of equivalence, 116
Conductance (G), 33, 336
Continuous functions, 446–447
Control systems, 5
Convolution, 505–511, 521, 676–677

Fourier operational transforms, 676–677
frequency domain, 677
integral, 505–511, 521, 677
memory, concept of using, 510–511
output signal from, 509–510
time domain, 676
transfer function (H(s)) in, 505–511, 521
weighting function and, 510

Cosine functions, 631–632, 650, 671–672
Cramer’s method, 724–726
Critically damped response, 286–289, 291–293, 297–299, 

300–301, 309
natural response, 286–289, 297–300, 309
parallel RLC circuits, 286–289, 291–293, 309
series RLC circuits, 297–299, 301
step response, 291–293, 300–301

Current (i), 12–17, 33, 39–40, 41, 50, 58, 70–73, 80, 152–156, 
172, 184–186, 189–193, 222–224, 230, 289–290, 318, 
320–321, 324, 327–333, 353–355, 417, 418–419, 422–423, 
435, 639–641

balanced three-phase circuits, 417, 418–419, 422–423, 435
capacitors, 189–193
defined, 13

displacement, 189–190
dot convention for, 354–355
electric charge and, 12–14
Fourier series applications, 639–641,
frequency domain and, 327–333, 353–355
ideal transformer ratios, 353–355
inductor relationships, 184–186
initial inductor (I0), 223
input constraint, 154
Kirchhoff’s current law (KCL), 39–40, 41, 50,  

332–333
line, 417, 418–419, 422–423, 435
measurement of, 58, 70–73, 80
natural response and, 222–224, 230
Ohm’s law for, 33, 50
op-amp terminals, 152–156, 172
periodic, 639–641
phase, 418–419, 422–423, 435
polarity of, 354–355
polarity reference, 14
power and energy relationship to, 15–17
resistor power in terms of, 33
resistor-capacitor (RC) circuit expression, 230
resistor-inductor (RL) circuit expression, 222–224
sinusoidal source, 320–321
steady-state analysis and behavior of, 318, 324, 327–333, 

353–355
steady-state component, 324
step response inductor, 289–290
transient component, 324

Current coil, 430, 435
Current-divider circuit, 67, 79
Current division, 69–70, 79–80, 336

frequency domain, 336
resistive circuit analysis, 69–70, 79–80

Current sources, 28–31, 50
Current to voltage (i–v) relationships, 32–33, 185–186, 190
Cutoff frequency (ωc), 540–542, 544, 552–553, 556,  

562, 564
bandpass filters, 552–553, 556
bandreject filter, 562
bandwidth (β) relationship to, 553
center frequency (ωo) relationship to, 553
defined, 540–542, 564
half-power frequency, 541
low-pass filters, 540–542, 544
RC circuit filters, 544
RL circuit filters, 542
RLC circuit filters, 553, 556

D
d’Arsonval meter movement, 71
Damped radian frequency (ωd), 282, 293, 299, 301
Decaying exponential function, 452
Decibels (dB), 743–744
Delta (Δ) interconnection, 76
Delta (Δ) loads, 426–427
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Delta-to-wye (Δ-to-Y) transformations, 75–78, 80, 338–340
equivalent circuits, 75–78, 80
frequency domain, 338–340

Dependent sources, 28, 31, 45–48, 98–100, 107–108, 122, 
130–131

analysis of circuits with, 45–48, 98–100, 107–108, 130–131
circuit elements as, 28, 50
interconnections of, 31
mesh-current method for, 107–108
node-voltage method for, 98–100
Ohm’s law for, 45–47
superposition for, 130–131
Thévenin equivalent circuits of, 122

Derived units, 10
Difference-amplifier circuit, 162–167, 173

common mode input, 164
common mode rejection ratio (CMRR) for, 165–167, 173
differential mode input, 164
ideal op-amp model for, 162–167, 173
negative feedback in, 162

Differential mode input, 164
Differentiation, operational transforms for, 454–455, 675
Digital meters, 73, 80
Digital signal filtering, 663, 687–688
Direct approach for Fourier series, 635–637
Dirichlet’s conditions, 621
Discontinuities of circuits, 447–450, 476. See also Impulse 

function; Step function
Discontinuous functions, 446–447
Displacement current, 189–190
Domain translation, Laplace transform for, 456–457
Dot convention, 199–201, 211, 354–355

ideal transformers, 354–355
mutual inductance, 199–201, 211
polarity and, 199–201, 211, 354–355
procedure for determining, 200–201

Duality, 104, 198–199, 211. See also Symmetry
Dual-tone multiple-frequency (DTMF) design, 537
Dynamo, 28

E
Effective value, 383
Efficiency, power system optimization for, 126
Electric power transmission and distribution, 413, 433–435
Electrical charge, 12–13
Electrical engineering, 2–9

balancing power, 3
circuit theory for, 7–8
communication systems, 4–5
computer systems, 5
control systems, 5
interaction of systems, 6
power systems, 5
problem-solving strategy, 8–9
profession of, 2
signal-processing systems, 5

Electrical radiator circuits, 27, 48–49

Electrical sources, 28. See also Sources
Electrodynamic wattmeter, 430–433, 435
Energy, 15–17, 182, 187–189, 191, 207–209, 211, 226, 230, 374, 

681–687, 688
capacitors and, 182, 191, 211
inductors and, 182, 187–189, 211
mutual inductance and, 207–209, 211
natural response and, 226, 230
power and, 15–17
Parseval’s theorem for, 681–687, 688
power calculations for delivery of, 374
resistor-capacitor (RC) circuit expression, 230
resistor-inductor (RL) circuit expression, 226
storage in magnetically coupled coils, 207–209, 211

Equivalent capacitance (Ceq), 197
Equivalent circuits, 61–62, 194–197, 418–421, 435, 484–486, 

521, 735–742
capacitance (Ceq), 196–197, 485–486, 521
ideal transformers in, 739–742
inductance (Leq), 194–195, 196, 484–485, 521
magnetically coupled coils and, 735–739
π-equivalent circuit, 736–737
resistance (Req), 61–62, 484, 521
s domain representation, 484–486, 521
single-phase, 418–421, 435
T-equivalent circuit, 735

Equivalent inductance (Leq), 196
Equivalent resistance (Req), 60–62
Essential branches and nodes, 94–96
Even periodic function, 625–626
Exponential form of Fourier series, 642–644, 650

F
Faraday’s law, 203–204
Feedback, see Negative feedback
Feedback resistors, 305–308, 310
Filters, 536, 538–539. See also Active filter circuits;  

Frequency-selective circuits
Final-value theorem, 472–474, 477
First-order active filters, 574–577, 608

Bode plots for, 574–576
frequency response plots for, 574–575
high-pass filters, 576–577, 608
low-pass filters, 574–575, 608
op amp filter design, 575, 576–577
prototypes, 575–577, 608

First-order circuits, 220, 222, 256. See also Resistor- 
capacitor (RC) circuits; Resistor-inductor (RL)  
circuits

Flashlight (electrical system) circuit model, 36–38, 39–41
Fourier coefficients, 621–630, 649

even-function symmetry, 625–626
Fourier series of periodic function found with, 630
Fourier series of triangular waveform using, 623–624
half-wave symmetry, 627–628
odd-function symmetry, 626–627
periodic functions (f(t)) for, 621–630
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Fourier coefficients (Continued)
quarter-wave symmetry, 628–629
symmetry effects on, 625–630, 649
trigonometric form of, 622–624

Fourier series, 618–659
active high-Q filter response, 619, 647–649
amplitude spectrum, 645–647, 650
average-power calculations, 639–641, 650
direct approach, 635–637
exponential form of, 642–644, 650
Fourier coefficients, 621–630, 649
fundamental frequency (ω0), 621, 649
harmonic frequency, 621, 649
periodic functions, 618, 620–622, 639–642, 649
periodic response and, 618, 620
periodic voltage applications, 631–637, 639–641, 645–647
phase spectrum, 645–647, 650
phasor domain circuit transformation, 631–632, 650
quality factor (Q), 619
RC circuit application, 633–637
root-mean-square (rms) value, 641–642, 650
sine and cosine terms for, 631–632, 650
steady-state response and, 621–622, 633–638, 650
symmetry functions, 625–630, 649
waveforms, 618, 620, 623–629, 633, 635–636, 650

Fourier transform, 662–691
amplitude spectrum, 665–666
circuit applications, 679–681, 683–687
convergence of integral, 666–668
derivation of, 664–666
digital signal filtering, 663, 687–688
frequency-domain (F(ω)), 664–665, 673–674
frequency-domain representation, 662, 688
integrals used in, 664, 666–668, 673–674
inverse, 665
Laplace transforms for, 668–670
limiting values, 664–665, 667–672
mathematical properties of, 673–674
operational transforms, 674–678
Parseval’s theorem for, 681–687, 688
periodic to aperiodic transition, 662, 665, 688
periodic voltage pulse from, 665
steady-state response from, 680
time-domain (f(t)), 664–665, 673–674
transient response from, 679–680

Fourth-order filters, 589–590, 594–595
Frequency (ω), 324, 361, 538–542, 544, 550, 552–554, 

564–565, 621, 649
bandpass filter, 538–539
bandreject filter, 538–539
center (ωo), 550, 552–554, 565
cutoff (ωc), 540–542, 544, 552–553, 562, 564
fundamental (ω 0), 621, 649
half-power, 541
harmonic, 621, 649
high-pass filter, 538

infinite, 544
low-pass filter, 538–542, 544
passband, 538, 564
passive filters, 539, 549, 559, 565
resonant (ωo), 550
steady-state response, 324, 361
stopband, 538, 564
zero, 544

Frequency domain, 327–357, 361, 446, 457, 460–474, 476–477, 
545, 559–560, 662, 664–665, 673–674, 676–677, 688

bandpass filters, 559–560
convolution in, 677
current division in, 336
delta-to-wye (Δ-to-Y) transformations, 338–340
final-value theorem for, 472–474, 477
Fourier transform (F(ω)), 662, 664–665, 673–674, 676–677, 

688
frequency-selective circuit analysis, 545, 559–560
impedance (Z) and, 330–331, 333–338, 340–343, 361
initial-value theorem for, 472–474, 477
inverse Laplace transforms for, 460–470, 476
Kirchhoff’s laws in, 332–333
Laplace transform (F(s)), 446, 457, 460–474, 476–477
low-pass filters, 545
node-voltage method in, 344–345
Norton equivalent circuits for, 340–341
operational Laplace transform for, 457
operational transforms, 676–677
parallel impedance combination, 335, 337
partial fraction expansion, 461–470
passive circuit elements in, 327–331
phasor transforms and, 325, 327–331
poles of F(s), 470–472, 476
rational functions (F(s)) and, 460–470
series impedance combination, 334–335, 337
source transformations for, 340–343
steady-state circuit analysis in, 327–357, 361
Thévenin equivalent circuits for, 340–341, 343
time domain relationships, 446, 472–474, 477, 545
translation in, 457, 676
voltage division in, 334
voltage to current (v–i) relationships in, 330–331
zeros of F(s), 470–472, 476

Frequency in Hz (f), 320
Frequency of lumped-parameter systems, 7
Frequency response, 536
Frequency response plots, 538–539, 574–576, 580, 584

bandpass filter, 539
bandreject filter, 539
Bode plots, 574–576, 580, 584
first-order active filters, 574–576
high-pass filter, 538, 576
ideal, 538–539
low-pass filter, 538, 575
magnitude plot, 538
phase angle plot, 538
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Frequency scaling, 578, 608
Frequency-selective circuits, 536–571

attenuation of, 536
bandpass filters, 550–560, 565
bandreject filters, 560–563, 565
center frequency (ωo) for, 550, 552–554, 565
cutoff frequency (ωc) for, 540–542, 544, 552–553, 556,  

562, 564
filter categories, 538–539
filters as, 536, 564
frequency and time domain relationships, 545, 559–560
high-pass filters, 545–550, 564–565
low-pass filters, 539–545, 564
parallel RLC, 555–557, 563
pushbutton telephone circuits, 537, 564
qualitative analysis, 539–541, 544, 546, 551, 560–561
quantitative analysis, 542–543, 546–547, 551–554, 561–562
series RC, 543–544, 546–547
series RL, 539–540, 542–543, 547–548
series RLC, 551–555, 557–559, 560–563
transfer function (H(s)) for, 545, 549, 559, 561, 563

Functional Laplace transforms (t), 447, 452–453, 476
Fundamental frequency (ω0), 621, 649

G
g parameters, two-port circuits, 694, 696
Gain, 153
Galvanometer, 73
Generator, 28
Graphical representation of complex numbers, 730–731

H
h parameters, two-port circuits, 694, 696
Half-power frequency, 541
Half-wave periodic function, 627–628
Harmonic frequency, 621, 649
Hertz (Hz), 320
High-pass filters, 538, 545–550, 564–565, 576–577, 598, 608

active, 576–577, 598, 608
Bode plot for, 576
Butterworth, 598, 608
cascading, 598, 608
design of, 547–548, 576–577
first-order, 576–577, 608
frequency of, 538
frequency response plots for, 538, 576
frequency-selective circuit analysis, 538, 545–550, 

564–565
loading, 548
op amp filter design, 576–577
prototypes, 576–577, 608
qualitative analysis, 546
quantitative analysis, 546–547
second-order, 598, 608

series RC circuits, 546–547
series RL circuits, 547–548
transfer function (H(s)) for, 549, 565

Household appliance ratings, 381–382
Household distribution circuit, 319, 359–360
Hybrid parameters, 698, 699

I
Ideal basic circuit element, 14–15
Ideal transformers, 351–356, 361, 397–398, 739–742

current relationship, 353–355
dot convention for, 354–355
equivalent circuits with, 739–742
frequency domain analysis, 351–356
impedance matching using, 356
limiting values of, 351–353
maximum power transfer in, 397–398
polarity of voltage and current, 354–355
steady-state analysis of, 351–356, 361
symbol for, 354
voltage relationship, 353–355

Ideal versus realistic op-amp models, 14–15, 173
Identities for complex numbers, 732–733
Immitance, 698
Impedance (Z), 330–331, 333–338, 340–343, 348–349, 361, 

393–397, 422
admittance (Y) and, 336, 361
balanced three-phase circuits, 422
conductance (G) and, 336
current division and, 336
defined, 330
frequency domain simplifications, 330–331, 333–338, 

340–343, 361
linear transformer circuit analysis using, 348–349, 361
maximum power transfer conditions, 393–397
parallel combination, 335, 337
passive circuit elements, 330–331
phasors and, 330–331
reactance and, 331
reflected (Zr), 348–349, 361
self-, 348
series combination, 334–335, 337
source transformations using, 340–343
steady-state analysis using, 330–331, 333–338,  

348–349, 361
susceptance (B) and, 336
voltage division and, 334
voltage to current (v–i) relationships and, 330–331
wye- and delta-connected relationships, 422

Impedance matching, 356
Improper rational functions, 460, 469–470
Impulse function (Kδ(t)), 449–451, 476, 514–520, 521

capacitor circuit analysis, 514–515
circuit analysis using, 514–520, 521
derivatives of, 451
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Impulse function (Continued)
discontinuities of circuits and, 449–450
impulsive sources, 517–520
inductor circuit analysis, 515–517
Laplace transform method and, 514–520, 521
Laplace transform of, 450–451
sifting property, 450–451
strength (K) of, 449, 476
switching operations, 514–517
unit impulse function (δ(t)), 449, 476
variable parameter function, 449–450
voltage drop and, 516–517

Independent sources, 28, 31, 50
Induced voltage, 199–201, 203–204, 211
Inductance (L), 184, 194–209, 211, 347–348, 351–352

circuit parameter of, 184
equivalent, 194–195, 196
mutual, 182, 199–209, 211
series–parallel combinations, 194–198
self-, 199–200, 203–204, 206–207, 211, 347–348,  

351–352
steady-state transformer analysis and, 347–348,  

351–352
Inductive circuits, power for, 378–379
Inductor current, 289–290
Inductors, 182, 184–189, 194–195, 198–199, 211, 328–329, 

361, 484–485, 515–517, 521, 760
circuit analysis of, 184–189, 515–517
circuit component values, 760
current to voltage (i–v) relationships, 185–186
duality (symmetry) of, 198–199, 211
energy in, 182, 187–189, 211
equivalent circuits for, 194–195, 196, 484–485, 521
impulse function (Kδ(t)) for, 515–517
in series, 194
Laplace transform method for, 484–485, 515–517, 521
magnetic field and, 184
multiple, 194–195, 196
parallel, 194–195
passive behavior of, 182, 211
phasor relationships, 328–329, 361
power in, 182, 186–187, 211
s domain representation, 484–485, 521
symbols for, 184
voltage to current (v–i) relationships, 184–185,  

328–329, 361
Infinite frequency, 544
Initial-value theorem, 472–474, 477
Input constraints, 153–154, 172
In-series circuit elements, 41, 50. See also Series-connected 

circuits
Instantaneous power, 376–377, 378, 401, 427–428

balanced three-phase circuits, 427–428
calculations for, 376–377, 378, 401, 427–428
sinusoidal steady-state circuits, 376–377, 378, 401
time-invariant, 427–428

Instantaneous real power, 378
Integer power of complex numbers, 733

Integrals, 446, 455–456, 505–511, 521, 664–665, 666–668, 
673–674, 758–759

convergence of, 666–668
convolution, 505–511, 521
Fourier transforms, 664, 666–668, 673–674
frequency-domain function (F(ω)) and, 673–674
Laplace transforms, 446, 455–456
table of, 758–759
time-domain function (F(t)) and, 673–674
transfer function (H(s)) use of, 505–511, 521

Integrating-amplifier, 252–254, 256, 303–308, 310
cascading connections, 303–308, 310
feedback resistors and, 305–308, 310
first-order circuit analysis, 252–254, 256
second-order circuit analysis, 303–308, 310
step response of, 305

Integration, operational transforms for, 675
Interconnections, 30–31, 36–37, 58, 60–64, 75–78,  

79–80
circuit model creation for, 36–37
delta (Δ), 76
delta-to-wye (Δ-to-Y) equivalent circuits, 75–78, 80
dependent sources, 31
independent sources, 31
parallel-connected resistors, 58, 61–64, 79
pi (π), 76
pi-to-tee (π-to-T) equivalent circuits, 75–78, 80
resistive circuits, 58, 60–64, 75–78, 79–80
series-connected resistors, 58, 60, 79
series–parallel simplification, 62–63
tee (T), 76
testing ideal sources, 30–31
wye (Y), 76

International System of Units (SI), 9–11
Inverse Fourier transform, 665
Inverse Laplace transforms, 460–470, 476

distinct complex roots, 463–465
distinct real roots, 461–462
improper rational functions, 460, 469–470
partial fraction expansion, 461–470
proper rational functions, 461–469
rational functions and, 460–470
repeated complex roots, 468–468
repeated real roots, 466–467
s-domain and, 460–470, 476
transform pairs for, 469

Inverse phasor transform, 326
Inverting-amplifier circuit, 156–158, 168, 172–173

ideal op-amp model for, 156–158, 172
negative feedback in, 157
realistic op-amp model for, 168, 173

K
Kirchhoff’s laws, 39–44, 45–47, 50, 60–61, 94–95, 332–333, 

487
amplifier circuit analysis using, 47
circuit analysis using, 40–47, 50
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current law (KCL), 39–40, 41, 50, 60–61, 332–333
dependent sources and, 45–47
frequency domain and, 332–333
loop (closed path) for, 40
nodes for, 39
Ohm’s law and, 42–43
parallel-connected circuits and, 61
s domain use of, 487
series-connected (in-series) circuits and, 60
simultaneous equations from, 94–95
steady-state analysis using, 332–333
unknown voltage found from, 46
voltage law (KVL), 40, 42, 50, 60, 332–333

L
Lagging/leading power factors, 379, 401
Laplace transform method, 482–535

circuit analysis in s domain, 486–488
circuit analysis using, 482–535
circuit elements in s domain, 484–486
convolution integral and, 505–511, 521
equivalent circuits for time and frequency domains, 

485–486
impulse function and, 514–520, 521
impulsive sources and, 517–520
Kirchhoff’s laws in s domain, 487
multiple mesh circuit analysis, 493–494
mutual inductance circuit analysis, 497–498
natural response using, 489
Ohm’s law in s domain, 484, 486
partial fraction expansions for, 502–505
procedure for, 487–488, 521
RC circuit analysis, 489
RLC circuit analysis, 489–490
s-domain applications, 495–496, 499–500
s-domain equivalent circuits, 485–486
sinusoidal source circuit analysis, 491–492
sinusoidal steady-state response and, 511–513, 521
step response using, 489–490
superposition applications, 499–500
surge suppressor analysis, 483, 520
Thévenin equivalent circuit from, 495–496
time-invariant circuits, 504–505, 521
transfer function (H(s)) and, 500–513, 521
voltage to current (v–i) equations for, 484–485, 521

Laplace transform, 444–481, 668–670
applications of, 458–460
continuous and discontinuous functions, 446–447
defined, 446
final-value theorem for, 472–474, 477
Fourier transforms from, 668–670
frequency domain (F(s)), 446, 452–458, 460–474, 476–477
functional transforms, 447, 452–453, 476
impulse function (Kδ(t)), 449–451, 476
initial-value theorem for, 472–474, 477
integral of, 446, 455–456

inverse transforms, 460–470, 476
lumped-parameter circuits and, 458–460, 476
operational transforms, 447, 453–458, 476
partial fraction expansion for, 460–470
poles of F(s), 470–472, 476
problem-solving uses, 444
s-domain, 446, 452–458, 460–474, 476–477
step function (Ku(t)), 447–448, 476
time domain (f(t)), 446–458, 472–474, 476–477
transform pairs, 452–453, 469
transient effects on circuits, 445, 474–476
unilateral (one-sided) behavior of, 446–447
unit impulse function (δ(t)), 449, 476
unit step function (u(t)), 447, 476
zeros of F(s), 470–472, 476

Limiting values, 664–665, 667–672
cosine functions, 671–672
elementary functions, 672
Fourier transforms derived using, 664–665
Fourier transforms of, 667–672
signum functions, 671
unit step function, 671

Line current, 417, 418–419, 422–423, 435
Line spectra, 645
Line voltage, 417, 418–419, 435
Linear simultaneous equations, 720–728. See also Simulta-

neous equations
Linear transformer circuits, 347–351, 361

frequency domain analysis of, 347–351
reflected impedance (Zr), 348–349, 361
self-impedance, 348
steady-state analysis, 347–351, 361
winding (primary and secondary), 347

Loads, 127–128, 390–391, 393–397, 425–430
balanced three-phase circuits, 425–430
delta (Δ), 426–427
impedance (Z) conditions and restrictions, 393–397
maximum power transfer, 127–128, 393–397
parallel, 390–391
power calculations for, 390–391, 393–397, 425–430
resistive, 127–128
unspecified, 429–430
wye (Y), 425–426

Loop (closed path), 40, 50, 94
Low-pass filters, 538, 539–545, 564, 574–575, 587–591, 

593–595, 608, 685–686
active, 574–575, 587–591, 593–595, 608
Bode plots for, 574–576, 588
Butterworth, 593–595, 608
cascading connections, 587–591, 593–595, 608
cutoff frequency (ωc) for, 540–542, 544
design of, 543, 544, 575
first-order active, 574–575, 608
fourth-order active, 589–590, 594–595
frequency and time domain relationships, 545
frequency of, 538
frequency response plots for, 538, 574–576
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Low-pass filters (Continued)
frequency-selective circuit analysis, 539–545, 564
half-power frequency, 541
infinite frequency, 544
op amp filter design, 575
prototype, 575, 608
qualitative analysis, 539–541, 544
quantitative analysis, 542–543
series RC circuits, 543–544
series RL circuits, 539–540, 542–543
transfer function (H(s)) for, 545, 564
zero frequency, 544

Lumped-parameter circuits, 7–8, 458–460, 476
frequency (f) of, 7
Laplace transform for, 458–460, 476
systems of, 7–8

M
Magnetic coupling, 7
Magnetic fields, inductors and, 184
Magnetically coupled coils, 207–209, 211, 245–246, 735–739

energy storage in, 207–209, 211
equivalent circuits for, 735–739
mutual inductance and, 207–209, 211
π-equivalent circuit, 736–737
step response of circuit with, 245–246
T-equivalent circuit, 735

Magnitude plot, 538
Magnitude scaling, 577–578, 608
Maximum power transfer
Maximum power transfer (Pmax), 92, 126–128, 135, 393–

399, 401
average power absorbed, 394
circuit analysis for, 92, 126–128, 135
ideal transformer analysis, 397–398
impedance (Z) conditions and restrictions, 393–397
power calculations for, 393–399, 401
resistive loads, 127–128
sinusoidal steady-state analysis of, 393–399, 401
system optimization and, 126
with load restrictions, 396
without load restrictions, 395

Measurement, 9–11, 58, 70–73, 80, 430–433, 435, 699, 702, 
743–744

ammeter for, 70, 71–72, 80
analog meters for, 71–72, 80
current, 58, 70–73, 80
d’Arsonval meter movement, 71
decibels (dB), 743–744
digital meters for, 73, 80
electrodynamic wattmeter for, 430–433, 435
International System of Units (SI), 9–11
power, 430–433, 743–744
resistance, 73–75, 80
three-phase circuits, 430–433,
two-port circuit parameters from, 699, 702

unit prefixes, 10–11
voltage, 58, 70–73, 80
voltmeter for, 70, 72, 80
Wheatstone bridge, 73–75, 80

Memory, concept of using convolution integral, 510–511
Mesh, 94
Mesh circuit analysis, Laplace transform method for, 

493–494
Mesh current, 104–105
Mesh-current method, 92, 104–115, 134–135, 199–202, 

345–347
amplifier circuit analysis, 111
circuit analysis process, 92, 104–115, 134–135
dependent sources and, 107–108
duality of, 104
frequency-domain circuit analysis, 345–347
mutual inductance and, 199–202
node-voltage method compared to, 112–115
special cases for, 108–112
steady-state circuit analysis,345–347
supermesh and, 109–110

Modulation, 676
Motor, 28
Multiplication operations, 453, 675, 732
Mutual inductance, 182, 199–209, 211, 497–498

coefficient of coupling for, 207–208, 211
concept of, 204–206
dot convention, 199–201, 211
energy storage in magnetically coupled coils, 207–209, 211
Laplace transform method for, 497–498
mesh-current method for, 199–202
polarity of induced voltages, 199–201, 204, 211
procedure for determining dot markings, 200–201
s domain circuit, 497–498
self-inductance and, 199–200, 203–204, 206–207, 211

N
Narrowband (high-Q) filters, 600–605, 609

bandpass, 600–602, 608
bandreject, 602–605, 609
Bode plots for, 602, 605

Natural response, 220, 222–232, 241–246, 256, 274–289, 
296–303, 308–310, 489

characteristic equation for, 275–276, 297, 299, 309
circuit phase analysis using, 220
clock analysis for computer timing, 273, 308–309
critically damped response, 286–289, 297–300, 309
current (i) expression for, 222–224, 230
damped radian frequency (ωd), 282, 293, 299–300
energy (w) expression for, 226, 230
general solution for, 241–246, 256
initial inductor current (I0), 223
Laplace transform method for, 489
method for, 224, 230, 241–242, 256, 280, 283, 298–299
Neper frequency (α), 276, 297, 299, 309
overdamped response, 279–282, 297–300, 309
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parallel RLC circuits, 272, 274–296, 309
power (p) expression for, 226, 230
resistor-capacitor (RC) circuits, 220, 228–232, 241–246, 

256, 489
resistor-inductor (RL) circuits, 220, 222–228, 241–246, 256
resistor-inductor-capacitor (RLC) circuits, 274–289, 

296–300, 302, 308–310
resonant radian frequency (ω0), 276, 293, 297, 299
series RLC circuits, 272, 296–300, 302, 310
steady-state response for, 227
symbols for, 274
time constant (τ), 223–224, 226–227, 229, 256
transient response of, 227
underdamped response, 282–286, 297–300, 309
voltage (v) expressions for, 226, 229, 274

Negative feedback, 153–155, 157, 158, 160, 162, 172
difference-amplifier circuit, 162
input voltage constraints and, 153–154
inverting-amplifier circuit, 157
op-amp circuit analysis and, 153–155
summing-amplifier circuit, 158
voltage constraint and, 153–154, 172

Neper frequency (α), 276, 293, 297, 299, 301, 309
parallel RLC circuits, 276, 293, 309
series RLC circuits, 297, 299, 301

Net charge, 7
Neutral terminal, 415
Node voltage, 97
Node-voltage method, 92, 96–104, 112–115, 134–135, 

344–345
amplifier circuit analysis, 102–103
circuit analysis process, 96–98, 101–102, 134–135
dependent sources and, 98–100
duality of, 104
frequency-domain circuit analysis, 344–345
mesh-current method compared to, 112–115
special cases for, 100–104
steady-state circuit analysis, 344–345
supernodes and, 101–102

Nodes, 39, 50, 94–96
Noninverting-amplifier circuit, 159–162, 168–170, 172–173

ideal op-amp model for, 159–162, 172
negative feedback in, 160
realistic op-amp model for, 168–170, 173

Nonplanar circuits, 94
Norton equivalent circuits, 92, 120–123, 135, 340–341

frequency domain simplification, 340–341
impedance (Z) in, 340–341
source transformation, 92, 120–123, 135, 340–341
terminal circuit simplification using, 92, 120–123, 135

O
Odd periodic function, 626–627
Ohm’s law, 32–33, 42–43, 45–47, 50, 61, 484, 486

amplifier circuit analysis using, 47
circuit analysis using, 42–43, 45–47, 50

dependent sources and, 45–47
electrical resistance and, 32–33, 50
Kirchhoff’s law and, 42–43
parallel-connected circuits and, 61
s domain use of, 484, 486

Op amp filters, 575–577, 579, 580–600, 608
bandpass, 580–583, 598–599, 608
bandreject, 583–587, 608
Butterworth, 591–600
cascading, 587–591
design of, 575, 576–577
first-order active, 575, 576–577, 587–591
higher-order active, 587–600
high-pass, 576–577
low-pass, 575, 579
scaling, 579

Open circuit, 37
Open-loop operation, 157
Operational amplifiers (op amps), 150–181. See also Op 

amp filters
common mode rejection ratio (CMRR) for, 165–167, 173
current (i), 152–156, 172
difference-amplifier circuit, 162–167, 173
gain, 153
ideal model, analysis of, 154–155, 172–173
input constraints, 153–154, 172
inverting-amplifier circuit, 156–158, 168, 172
negative feedback in, 153–154, 157, 158, 160, 162, 172
noninverting-amplifier circuit, 159–162, 168–170, 172
open-loop operation, 157
realistic models, analysis of, 167–170, 173
strain gage analysis, 151, 171–172
summing-amplifier circuit, 158–159, 172
symbols for, 152
terminals, 152–156, 172
transducers, 151, 171–172
voltage (v), 152–156, 172

Operational transforms, 447, 453–458, 476, 674–678
addition and subtraction, 454, 675
convolution in frequency domain, 677
convolution in time domain, 676
defined, 447, 476
differentiation, 454–455, 675
Fourier, 674–678
integration, 455–456, 675
Laplace, 447, 453–458, 476
modulation, 676
multiplication by a constant, 453, 675
scale changing, 457, 676
translation in frequency domain, 457, 676
translation in time domain, 456–457, 676

Overdamped response, 279–282, 291–293, 297–299, 300–
301, 309

natural response, 279–282, 297–300, 309
parallel RLC circuits, 279–282, 291–293, 309
series RLC circuits, 297–299, 301
step response, 291–293, 300–301
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P
Parallel-connected circuits, 58, 61–64, 79, 194–196, 335, 337, 

390–391, 710–711. See also Parallel RLC circuits
capacitors, 195–196
circuit elements, 61
combining, 61–62
frequency domain, 335, 337
impedance (Z) combined in, 335, 337
inductors, 194–195
Kirchhoff’s current law for, 61
Ohm’s law for, 61
power calculations for, 390–391
resistors, 58, 61–64, 79
series–parallel simplification, 62–63
two-port, 710–711

Parallel RLC circuits, 272, 274–296, 309, 555–557, 563
bandpass filters, 555–557
bandreject filters, 563
bandwidth (β), 556
characteristic equation for, 275–276, 293, 309
critically damped voltage response, 286–289, 291–293, 309
cutoff frequency (ωc), 556
damped radian frequency (ωd), 282, 293
frequency-selective circuits, 555–557, 563
natural response of, 274–289, 309
Neper frequency (α), 276, 293, 309
overdamped response, 279–282, 291–293, 309
parameters of, 276–277
quality factor (Q), 556
resonant radian frequency (ω0), 276, 293
second-order differential equations for, 274–277
step response of, 289–296, 309
symbols for, 274
underdamped response, 282–286, 291–293, 309

Parasitic resistance, 37
Parseval’s theorem, 681–687, 688

bandpass filter application, 664–665
energy calculations using, 681–687, 688
Fourier transform time-domain functions, 681–687, 688
graphic interpretation of, 683
low-pass filter application, 685–686
rectangular voltage pulse application, 686–687

Partial fraction expansion, 461–470, 502–505
distinct complex roots, 463–465
distinct real roots, 461–462
improper rational functions, 460, 469–470
inverse Laplace transforms and, 461–470
proper rational functions, 461–469
repeated complex roots, 468–468
repeated real roots, 466–467
s domain use of, 461–470, 502–505
transfer function (H(s)) in, 502–505
transform pairs for, 469

Passband frequency, 538, 564
Passive circuit elements, 30, 182, 211, 327–331, 361

capacitors, 182, 211, 329–330, 361
defined, 30

frequency domain, 327–331
impedance (Z) and, 330–331
inductors, 182, 211
phasor transforms and, 325, 327–331
reactance and, 331
resistors, 327–328, 361
voltage to current (v–i) relationships in, 330–331

Passive filters, 539, 549, 559, 565
Passive sign convention, 14–17
Period (T), 320
Periodic current, average-power calculations and, 639–641
Periodic functions (f(t)), 618, 620–630, 639–642, 649–650

average power calculations with, 639–641, 650
defined, 618, 649
Dirichlet’s conditions, 621
even, 625–626
Fourier coefficients and, 621–623, 649
Fourier series of found with symmetry, 630
Fourier series representation, 621–622, 639–641
fundamental frequency (ω0), 621, 649
half, 627–628
harmonic frequency, 621, 649
odd, 626–627
periodic voltage and, 639–641
quarter, 628–629
root-mean-square (rms) value of, 641–642, 650
steady-state response from, 621–622
symmetry effects, 625–630, 649
waveforms, 618, 620–629

Periodic response, 618, 620
Periodic to aperiodic transition, 662, 665, 688
Periodic voltage, 631–637, 639–641, 645–647, 665

amplitude spectra for, 645–647
average-power calculations expressed from, 639–641
Fourier series applications, 631–637, 639–641, 645–647
inverse Fourier transform and, 665
phase spectra for, 645–647
phasor domain circuit transformation and, 631–632
sine and cosine terms for, 631–632
steady-state response and, 633–637
waveforms, 633, 635–636

Periodic waveforms, 618, 620
Phase angle (φ), 320
Phase angle plots, 538, 748–750, 754–756

complex poles, 754–756
frequency response and, 538
straight-line, 748–750, 754–756

Phase current, 418–419, 422–423, 435
Phase sequences for three-phase circuits, 414, 435
Phase spectrum, 645–647, 650
Phase voltage, 418–419, 435
Phase windings, 415
Phasor diagrams, 357–359, 414, 419
Phasor transform, 325–333

frequency domain and, 325, 327–331
inverse, 326
phasor representation as, 325
voltage to current (v–i) relationships, 327–331, 361
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Phasors, 324–331, 387–388, 631–632, 650. See also Phasor 
transforms

capacitor voltage to current (v–i) relationships, 329–330, 
361

complex power calculations using, 387–388
concept of, 324–325
Fourier series transformation to phasor domain, 631–

632, 650
impedance (Z) and, 330–331
inductor voltage to current (v–i) relationships, 328–329, 

361
reactance and, 331
representation, 325
resistor voltage to current (v–i) relationships, 327–328, 361
sinusoidal functions and, 324–327
steady-state analysis using, 324–330

Pi (π)-equivalent circuit, 736–737
Pi (π) interconnection, 76
Pi-to-tee (π-to-T) equivalent circuits, 75–78, 80
Planar circuits, 94
Polar form of complex numbers, 729–730
Polarity, 14, 16–17, 199–201, 204, 211, 354–355

arrows for reference of, 14, 16
coil current and voltage, 354–355
dot convention for, 199–201, 211, 354–355
ideal transformers, 354–355
induced voltages, 199–201, 204, 211
mutual inductance, 199–201, 211
power reference, 16–17
self-inductance, 204
voltage and current references, 14

Poles, 470–472, 476, 502, 743–744, 750–756
amplitude plots, 750–753
complex, 750–756
frequency domain (F(s)), 470–472, 476
phase angle plots, 754–756
real, first-order, 743–744
transfer functions (H(s)), 502

Ports, 694
Potential coil, 430, 435
Power, 3, 15–20, 33–34, 126–128, 135, 182, 186–187, 190–191, 

211, 226, 230, 378–379, 384–385, 391–392, 401, 413, 
427–428, 433–435

ac circuits, 391–392
algebraic sign of, 16–17
balance of in circuits, 3, 19–20
balanced three-phase circuits, 413, 433–435
capacitive circuits, 379
capacitors and, 182, 190–191, 211
current and voltage relationship to, 15–17
defined, 16
electric transmission and distribution, 413, 433–435
energy and, 15–17
inductive circuits, 378–379
inductors and, 182, 186–187, 211
maximum power transfer, 126–128, 135
natural response and, 226, 230
passive sign convention for, 16–17

polarity reference, 16–17
resistive circuits, 378
resistive load transfer, 127–128
resistor-capacitor (RC) circuit expression, 230
resistor-inductor (RL) circuit expression, 226
resistors, 33–34
time-invariant, 427–428
units for, 379, 384–385, 401

Power calculations, 374–411, 425–430, 435
apparent power, 385, 401
appliance ratings for, 381–382
average power (P), 377–384, 389, 394, 401, 425–426
balanced three-phase circuits, 425–430, 435
balancing power in ac circuits, 391–392
complex power, 384–393, 401, 426–427
delta (Δ) loads, 426–427
energy delivery and, 374
instantaneous power, 376–377, 378, 401, 427–428
lagging/leading factors for, 379, 401
maximum power transfer (Pmax), 393–399, 401
parallel loads and, 390–391
phasors for, 387–388
power factor (pf) for, 379, 401
reactive factor (rf) for, 379, 401
reactive power (Q), 377–382, 389, 401, 426–427
root-mean-square (rms) value for, 382–384
sinusoidal steady-state analysis, 374–411
standby (vampire) power, 375, 399–400
unspecified loads, 429–430
wye (Y) loads, 425–426
wye-delta (Y-Δ) circuits, 428–429
wye-wye (Y-Y) circuits, 428

Power consumption, 399
Power equation, 16
Power factor (pf), 379, 401
Power measurement, 430–433, 435, 743–744

balanced three-phase circuits, 430–433, 435
bels, 743
decibels (dB), 743–744
electrodynamic wattmeter for, 430–433, 435
current coil, 430, 435
potential coil, 430, 435
power gain, 743–744
two-wattmeter method, 431–432, 435
wattmeter reading calculations, 432–433

Power systems, 5, 319, 359–360
Power triangle, 385
Problem-solving strategy, 8–9
Proper rational functions, 460–469. See also Partial fraction 

expansion
Prototypes, 12, 575–577, 608
Pushbutton telephone circuits, 537, 564

Q
Qualitative analysis, 539–541, 544, 546, 551, 560–561

bandpass filters, 551
bandreject filters, 560–561
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Qualitative analysis (Continued)
high-pass filters, 546
low-pass filters, 539–541, 544

Quality factor (Q), 550, 554, 556, 562, 619
Quantitative analysis, 542–543, 546–547, 551–554, 561–562

bandpass filters, 551–554
bandreject filters, 561–562
high-pass filters, 546–547
low-pass filters, 542–543

Quarter-wave periodic function, 628–629

R
Rational functions, 460–470

improper, 460, 469–470
inverse Laplace transforms and, 469–470
proper, 461–469
transform pairs for, 469

Reactance, 331
Reactive factor (rf), 379, 401
Reactive power (Q), 377–382, 389, 401, 426–427

balanced three-phase circuits, 426–427
calculations for, 377–382, 389, 401, 426–427
delta (Δ) loads, 426–427
sinusoidal steady-state analysis, 377–382, 389
wye (Y) loads, 426

Reciprocal two-port circuits, 703–704, 714
Rectangular form of complex numbers, 729–730
Rectangular waveforms, 620
Reflected impedance (Zr), 348–349, 361
Resistance (R), 32–35, 37, 50, 61–62, 73–75, 80

conductance (G) and, 33
equivalent (Req), 61–62
measurement of, 73–75, 80
Ohm’s law and, 32–33, 50
parasitic, 37
resistors as models of, 32–35
Wheatstone bridge circuit for, 73–75, 80

Resistive circuits, 58–91, 115–118, 121, 134, 378
analysis of, 68–70, 79–80, 115–118, 121, 134
current-divider circuit, 67, 79
current division, 69–70, 79–80
delta-to-wye (Δ-to-Y) equivalent circuits, 75–78, 80
interconnections, 58, 60–64, 75–78
measurement of voltage and current, 58, 70–73, 80
parallel connections, 58, 61–64, 79
pi-to-tee (π-to-T) equivalent circuits, 75–78, 80
power for, 378
resistor value measurements, 73–75, 80
series connections, 58, 60, 79
series–parallel simplification, 62–63
source transformation, 115–118, 121, 134
touch screens, 59, 78–80
voltage-divider circuit, 64–66, 79
voltage division, 68–70, 79
Wheatstone bridge, 73–75, 80

Resistive loads, 127–128

Resistor-capacitor (RC) circuits, 220–222, 228–232,  
238–246, 249–255, 489, 543–544, 546–547, 633–637

analysis phases for, 220
artificial pacemaker design, 221, 255
current (i) expression, 230
cutoff frequency (ωc), 544
energy (w) expression, 230
first-order circuits as, 220, 222, 256
Fourier series application, 633–637
frequency-selective analysis of, 543–544, 546–547
general solution for, 241–246, 256
high-pass filters, 546–547
integrating-amplifier circuit analysis, 252–254, 256
Laplace transform method for, 489
low-pass filters, 543–544
natural response of, 220, 228–232, 241–246, 256, 489
periodic voltage in, 633–637
power (p) expression, 230
sequential switching, 246, 249–250, 256
steady state response, 633–637
step response of, 220, 238–246, 256
time constant (τ), 229, 256
unbounded response, 250–251, 256
voltage (v) expression, 229

Resistor-inductor (RL) circuits, 220–228, 233–237, 241–251, 
256, 539–540, 542–543, 547–548

analysis phases for, 220
current (i) expression, 222–224
cutoff frequency (ωc), 542
energy (w) expression, 226
first-order circuits as, 220, 222, 256
frequency-selective analysis of, 539–540, 542–543, 

547–548
general solution for, 241–246, 256
high-pass filters, 547–548
low-pass filters, 539–540, 542–543
natural response of, 220, 222–228, 241–246, 256
power (p) expression, 226
qualitative analysis, 546
quantitative analysis, 546–547
sequential switching, 246–249, 256
step response of, 220, 233–237, 241–246, 256
time constant (τ), 223–224, 226–227, 256
unbounded response, 250–251, 256
voltage (v) expression, 226

Resistor-inductor-capacitor (RLC) circuits, 272–317, 
489–490, 551–559, 560–563, 637–638

bandwidth (β), 553–554, 556
center frequency (ωo), 552–554
characteristic equations for, 275–276, 293, 297, 299,  

301, 309
clock for computer timing, 273, 308–309
critically damped voltage response, 286–289, 291–293, 

298–299, 300–301, 309
cutoff frequency (ωc), 553, 556
damped radian frequency (ωd), 282, 293, 301
direct approach for, 291–292, 637–638
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Fourier series approach for, 637–638
frequency-selective circuit analysis, 551–559, 560–563
indirect approach for, 290–291
inductor current for, 289–290
integrating amplifiers in cascade, 303–308, 310
Laplace transform method for, 489–490
natural response of, 274–289, 296–300, 302, 308–310
Neper frequency (α), 276, 293, 297, 301, 309
overdamped response, 279–282, 291–293, 298,  

300–301, 309
parallel, 272, 274–296, 309, 555–557, 563
quality factor (Q) for, 554, 556
resonant radian frequency (ω0), 276, 293, 297, 301
second-order differential equations for, 274–277
series-connected, 272, 274, 296–303, 310, 551–555, 

557–559, 560–563
square-wave voltage and, 637–638
steady-state response of, 637–638
step response of, 289–296, 300–303, 305, 309–310, 489–490
symbols for, 274, 289
timing signals, 273
underdamped voltage response, 282–286, 291–293, 

298–299, 300–301, 309
voltage expressions for, 274

Resistors, 32–35, 50, 61–64, 93, 131–134, 327–328, 361, 484, 
521, 760

circuit component values, 760
conductance (G) and, 33
equivalent circuits for, 61–62, 484, 521
multiple, 61–62
Ohm’s law for, 32–33, 50
phasor relationships, 327–328, 361
power in terms of current, 33
power in terms of voltage, 34
resistance models, 32–35
s domain representation, 484, 521
sensitivity analysis of, 93, 131–134
series–parallel simplification, 62–63
signals in phase, 328
voltage to current (v–i) relationships, 327–328, 361

Resonant frequency (ωo), 550
Resonant radian frequency (ω0), 276, 293, 297, 299, 301

parallel RLC circuits, 276, 293
series RLC circuits, 297, 299, 301

Response, 220, 222–246, 250–251, 256, 272–317, 323–324, 
361, 504–513, 521, 679–680

critically damped, 286–289, 291–293, 297–299,  
300–301, 309

damped radian frequency (ωd), 282, 293, 299, 301
Fourier transforms for, 679–680
general solution for, 241–246, 256
memory, concept of, 510–511
natural, 220, 222–232, 241–246, 256, 274–289, 296–300, 

302, 308–310
overdamped, 279–282, 291–293, 297–299, 300–301, 309
resistor-capacitor (RC) circuits, 220, 228–232, 238–246, 

250–251, 256

resistor-inductor (RL) circuits, 220, 222–228, 233–237, 
241–251, 256

resistor-inductor-capacitor (RLC) circuits, 272–317
sinusoidal, 323–324, 361, 504–513, 521
steady-state analysis of, 318, 323–324, 361
steady-state, 227, 318, 323–324, 361, 504–513, 521, 680
step, 220, 233–246, 256, 289–296, 300–303, 309–310
transfer function (H(s)) and, 504–513, 521
transient, 227, 679–680
unbounded, 250–251, 256
underdamped, 282–286, 291–293, 297–299,  

300–301, 309
unit impulse (h(t)), 504–511
weighting function for, 510

Root-mean-square (rms) value, 321, 382–384, 641–642, 650
effective value as, 383
periodic functions, 641–642, 650
power calculations using, 382–384
sinusoidal sources and, 321

Roots of complex numbers, 733–734

S
s domain, 446, 452–458, 460–474, 476–477, 482–535.  

See also Frequency domain
circuit analysis in, 486–488
circuit elements in, 484–486
final-value theorem for, 472–474, 477
initial-value theorem for, 472–474, 477
inverse Laplace transforms for, 460–470, 476
Kirchhoff’s laws in, 487
Laplace transform method applications, 482–535
Laplace transform (F(s)) of, 460–474, 476–477
mutual inductance circuit in, 497–498
Ohm’s law in, 484, 486
operational transforms for, 447, 453–458, 476
partial fraction expansion, 461–470, 502–505
poles of F(s), 470–472, 476, 502
rational functions (F(s)) and, 460–470
superposition applications in, 499–500
Thévenin equivalent circuit in, 495–496
time domain relationships, 446, 453–458, 472–474, 477
transfer function (H(s)), 500–513, 521
transform pairs, 452–453, 469
zeros of F(s), 470–472, 476, 502

Scale change, 457, 676
Scaling, 577–580, 608

circuit component scale factors, 578
filter design using, 578
frequency, 578, 608
low-pass op-amp filter, 579
magnitude, 577–578, 608
series RLC filter, 578–579

Second-order circuits, 274. See also Resistor-inductor- 
capacitor (RLC) circuits

Second-order filters, 598
Self-impedance, 348
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Self-inductance, 199–200, 203–204, 206–207, 211, 347–348, 
351–352

Faraday’s law for, 203–204
mutual inductance and, 199–200, 206–207, 211
polarity of induced voltages, 199–201, 204, 211
steady-state transformer analysis and, 347–348,  

351–352
voltage drop, 199

Sensitivity analysis of resistors, 93, 131–134
Sequential switching, 246–250, 256

circuit analysis and, 246–250, 256
defined, 246
resistor-capacitor (RC) circuits with, 246, 249–250, 256
resistor-inductor (RL) circuits with, 246–249, 256

Series-connected (in-series) circuits, 41, 50, 58, 60, 79,  
194–195, 334–335, 337, 539–540, 542–544, 546–548, 
710–711. See also Series RLC circuits

black box concept, 60
capacitors, 195
circuit elements, 41, 50
combining, 60
frequency domain, 334–335, 337
frequency-selective circuits, 539–540, 542–544, 546–548
high-pass filters, 546–548
impedances (Z) combined in, 334–335, 337
inductors, 194
Kirchhoff’s laws for, 60
low-pass filters, 539–540, 542–544
resistors, 58, 60, 79
two-port circuits, 710–711

Series–parallel connections, 62–63, 710–711
simplification of, 62–63
two-port circuits, 710–711

Series RLC circuits, 272, 274, 296–303, 310, 551–555, 
557–563, 578–579

bandpass filters, 551–555, 557–559
bandreject filter, 560–563
bandwidth (β), 553, 562
center frequency (ωo), 552, 562
characteristic equation for, 297, 299–301
critically damped response, 297–299, 301
cutoff frequency (ωc), 552–553, 562
frequency-selective circuits, 551–555, 557–563
natural response of, 272, 274, 296–303, 310
Neper frequency (α), 297, 299, 301
overdamped response, 297–299, 301
quality factor (Q), 554, 562
resonant radian frequency (ω0), 297, 299, 301
scaling, 578–579
step response of, 300–303, 310
symbols for, 274
underdamped response, 297–299, 301

Short circuit, 37
Sifting property, 450–451
Signal-processing systems, 5
Signals in phase, 328
Signum functions, 671

Simplification techniques, 62–63, 75–78, 115–118, 121
delta-to-wye (Δ-to-Y) transformation, 75–78
series–parallel simplification, 62–63
source transformation, 115–118, 121

Simultaneous equations, 94–96, 720–728
applications of, 725–728
back-substitution method for, 723–724, 728
calculator and computer methods for, 721–723, 726–728
characteristic determinant of, 724–725
circuit analysis using, 94–96
Cramer’s method for, 724–726
essential nodes and branches for, 95–96
Kirchhoff’s laws for, 94–95
linear, 720–728
number of, 94–96
solution of, 720–728

Sine functions, 631–632, 650
Single-phase equivalent circuits, 418–421, 435
Sinusoidal circuits, 318–373, 374–411

power calculations, 374–411
steady-state analysis, 318–373

Sinusoidal function, 452
Sinusoidal rectifiers, 618, 620
Sinusoidal response, 323–324, 361, 511–513, 521

frequency (ω) of, 324, 361
steady-state analysis of, 323–324, 361
steady-state current component, 324
steady-state solution characteristics, 324
transient current component, 324
transfer function (H(s)) and, 511–513, 521

Sinusoidal sources, 318–323, 361, 491–492
amplitude of, 320
angular frequency (ω), 320
current behavior and, 318
current (i), 320–321
Laplace transform method for, 491–492
period (T), 320
phase angle (φ) of, 320
root-mean-square (rms) value, 321–323
steady-state analysis and, 318–323, 361
steady-state response from, 319, 323–324
voltage (v), 320–322

Source transformation, 92, 115–118, 121, 134, 340–343
bilateral configurations, 115–116
condition of equivalence for, 116
defined, 115
frequency-domain circuit simplification, 340–343
impedance (Z) for, 340–343
Norton equivalent circuits from, 121, 340–341
resistive circuit simplification, 92, 115–118, 121, 134
steady-state circuit analysis, 340–343
Thévenin equivalent circuits from, 121, 340–341, 343

Sources, 28–31, 45–48, 318–323, 361, 491–492, 517–520
active circuit elements, 30
current, 28–31, 50
dependent, 28, 31, 45–48, 50
direct current (dc), 30
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electrical, 28
impulsive, 517–520
ideal, 28–31, 50
independent, 28, 31, 50
interconnections of, 30–31
Laplace transform method for, 517–520
passive circuit elements, 30
sinusoidal, 318–323, 361, 491–492
symbols for, 28–29
voltage, 28–31, 50

Square-wave voltage, 633, 637–638
Square waveforms, 620, 633
Standby (vampire) power analysis, 375,  

399–400
Steady-state analysis, 318–373

admittance (Y), 336, 361
challenges of, 318
delta-to-wye (Δ-to-Y) transformations,  

338–340
frequency domain of, 327–357
household distribution circuit, 319, 359–360
impedance (Z) for, 330–331, 333–338, 340–343,  

361
Kirchhoff’s laws for, 332–333
mesh-current method, 345–347
node-voltage method for, 344–345
Norton equivalent circuit for, 340–342
parallel impedances, 335–338
passive circuit elements, 327–331
phasor diagrams for, 357–359
phasor transforms for, 325–333
phasors, 324–331
responses, 227, 323–324
series impedances, 334–335
sinusoidal sources for, 318–323, 361
source transformations for, 340–343
Thévenin equivalent circuit for, 340–343
transformers, 347–356, 361
voltage to current (v–i) relationships, 327–331, 361

Steady-state current component, 324
Steady-state response, 227, 318, 323–324, 361, 511–513, 521, 

621–622, 633–638, 650, 680
direct approach to, 635–638, 650
Fourier series approach for, 621–622, 633–638,  

650
Fourier transforms for, 680
periodic functions used for, 621–622
periodic voltage and, 633–637
RC circuit periodic voltage response,  

633–637
RLC circuit square-wave voltage response,  

637–638
sinusoidal analysis conditions, 318
sinusoidal sources of, 318, 323–324
square-wave voltage and, 637–638
time constant (τ) and, 227
transfer function (H(s)) and, 511–513, 521
waveforms of, 635–636

Step function (Ku(t)), 447–448, 476
discontinuities of circuits and, 447–448, 476
finite duration representation, 448
unit step function (u(t)), 447, 476

Step response, 220, 233–246, 256, 289–296, 300–303, 305, 
309–310, 489–490

characteristic equation for, 293, 301
circuit analysis using, 220
comparison of RC and RL circuits, 241
critically damped response, 291–293, 300–301
damped radian frequency (ωd), 293, 301
direct approach for, 291–292
general solution for, 241–246, 256
indirect approach for, 290–291
inductor current for, 289–290
inductor voltage versus time, 236–237
integrating-amplifier analysis of, 305
magnetically coupled coils and, 245–246
Laplace transform method for, 489–490
method for, 234, 238, 241–242, 256
Neper frequency (α), 293, 301
overdamped response, 291–293, 300–301
parallel, 272, 289–296
resistor-capacitor (RC) circuits, 220, 238–246, 256
resistor-inductor (RL) circuits, 220, 233–237, 241–246, 256
resistor-inductor-capacitor (RLC) circuits, 289–296, 

300–303, 309–310, 489–490
resonant radian frequency (ω0), 293, 301
series-connected, 272, 300–303
symbols for, 274, 289
underdamped response, 291–293, 300–301

Stopband frequency, 538, 564
Straight-line plots, 744–756. See also Amplitude plots; Phase 

angle plots
Strain gages, op-amp circuit analysis for, 151, 171–172
Strength (K) of impulse function, 449, 476
Summing-amplifier circuit, 158–159, 172
Supermesh, 109–110
Supernodes, 101–102
Superposition, 92, 129–131, 135, 499–500

circuit analysis using, 92, 129–131, 135
dependent sources and, 130–131
Laplace transform method using, 499–500
s domain applications, 499–500

Surge suppressor analysis, 483, 520
Susceptance (B), 336
Switching operations, impulse function (Kδ(t)) for, 514–517
Symmetric two-port circuits, 703–704, 714–715
Symmetry, 104, 198–199, 211, 625–630, 649

capacitors, 198–199, 211
duality as, 104, 198
even-function, 625–626
Fourier coefficient, effects on, 625–630, 649
Fourier series of periodic function found with, 630
half-wave, 627–628
inductors, 198–199, 211
odd-function, 626–627
quarter-wave, 628–629
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T
T-equivalent circuit, 735
Tee (T) interconnection, 76
Terminals, 38, 43–44, 118–126, 152–156, 172, 694–719

circuit behavior and, 118–126, 152–156
current of, 152–156, 172
measurements for circuit construction, 38, 43–44
negative feedback and, 153–154, 172
Norton equivalent circuits and, 120–123
operational amplifier (op amp), 152–156, 172
ports, 694
symbols for, 152
Thévenin equivalent circuits and, 118–126
two-port circuits, 694–719
voltage of, 152–156, 172

Terminated two-port circuits, 705–710
Thévenin equivalent circuits, 92, 118–126, 135, 340–341, 343, 

495–496
amplifier circuit analysis using, 125–126
dependent sources and, 122
impedance (Z) in, 340–341
frequency-domain circuit simplification, 340–341, 343
Laplace transform method for, 495–496
resistance directly from circuit, 123–126
s domain, 495–496
source transformation for, 121, 340–341, 343
terminal circuit simplification using, 92, 118–123, 135

Three-phase circuits, 412–443
a-, b-, and c-phase voltage references, 414
average power measurement in, 430–433, 435
balanced conditions, 412, 416–417, 435
basic circuit use and characteristics, 412, 414
delta (Δ) loads, 426–427
electric power transmission and distribution, 413, 

433–435
impedance relationships, 422
instantaneous power in, 427–428
line current, 417, 418–419, 422–423, 435
line voltage, 417, 418–419, 435
neutral terminal for, 415
phase current, 418–419, 422–423, 435
phase sequences, 414, 435
phase voltage, 418–419, 435
phase windings, 415
phasor diagrams for, 414, 419
power calculations in, 425–430, 435
single-phase equivalent circuit for, 418–421, 435
unspecified loads, 429–430
voltage sources, 415
wye (Y) loads, 425–426
wye-delta (Y-Δ) circuit analysis, 422–425, 428–429
wye-wye (Y-Y) circuit analysis, 416–421, 428

Time constant (τ), 223–224, 226–227, 229, 256
resistor-capacitor (RC) circuits, 229, 256
resistor-inductor (RL) circuits, 223–224, 226–227, 256
significance of, 226–227

steady-state response and, 227
transient response and, 227

Time domain, 446–458, 472–474, 476–477, 545, 559–560, 
664–665, 673–674, 676, 681–687, 688

bandpass filters, 559–560
convolution in, 676
final-value theorem for, 472–474, 477
Fourier transform, 664–665, 673–674, 676,  

681–687, 688
frequency domain relationships, 446, 472–474, 477, 545, 

559–560
functional transforms, 447, 452–453, 476
impulse function (Kδ(t)), 449–451, 476
initial-value theorem for, 472–474, 477
Laplace transform (f(t)), 446–447, 453–458, 472–474, 

476–477
low-pass filters, 545
operational transforms for, 447, 453–458, 476, 676
Parseval’s theorem, 681–687, 688
sifting property and, 450–451
step function (Ku(t)), 447–448, 476
transform pairs, 452–453, 469
translation in, 676
unit impulse function (δ(t)), 449, 476
unit step function (u(t)), 447, 476

Time-invariant circuits, 504–505, 521
Time-invariant instantaneous power, 427–428
Timing signals, 273
Touch screens, 59, 78–80, 183, 209–210

capacitance of, 183, 209–210
resistive circuits of, 59, 78–80

Transducers (strain gages), 151, 171–172
Transfer function (H(s)), 500–513, 521, 545, 549, 559, 561, 

563, 564–565, 592–593
bandpass filters, 559, 565
bandreject filters, 561, 563, 565
Butterworth filters, 592–593
circuit analysis and, 501–502, 504–505
convolution integral and, 505–511, 521
defined, 500–501
frequency-selective circuit analysis using, 545, 549, 559, 

564–565
high-pass filters, 549, 565
Laplace transform method for, 500–513, 521
low-pass filters, 545, 564
partial fraction expansion and, 461–470, 502–505
poles of, 502
sinusoidal steady-state response and, 511–513, 521
time-invariant circuits, 504–505, 521
unit impulse response (h(t)) and, 504–511
weighting function, 510
zeros of, 502

Transform pairs, 452–453, 469
Transformers, 347–356, 361, 739–742

current relationship, 353–355
dot convention for, 354–355
equivalent circuits with, 739–742
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frequency domain analysis of, 347–356
ideal, 351–356, 361, 739–742
impedance matching, 356
limiting values of, 351–353
linear circuits, 347–351, 361
polarity of voltage and current, 354–355
reflected impedance (Zr), 348–349, 361
self-impedance of, 348
self-inductance of, 347–348, 351–352
steady-state analysis of, 347–356, 361
steady-state analysis, 347–356, 361
voltage relationship, 353–355
winding (primary and secondary), 347

Transient current component, 324
Transient response, 227, 679–680
Transition region, 596–597
Transmission parameters, 698, 702
Triangular waveforms, 618, 620, 623–624
Trigonometric identities, 757
Twin-T notch filter, 602
Two-port circuits, 694–719

cascaded, 710–713
conversion table for parameters, 701
hybrid parameters, 698, 699
immitance parameters, 698
interconnected, 710–713, 715
measurements for parameters of, 699, 702
model assumptions, 694, 714
parallel, 710–711
parameters for, 697–705, 714
reciprocal, 703–704, 714
relationships among, 700–701, 703
series-connected, 710–711
series-parallel, 710–711
symmetric, 703–704, 714–715
terminal equations for, 696, 714
terminated, 705–710
transmission parameters, 698, 702
unknown circuit characterization, 695, 713–714
z parameters, 698–699, 705–708

Two-wattmeter method, 431–432, 435

U
Unbounded response, 250–251, 256
Underdamped response, 282–286, 291–293, 297–299, 

300–301, 309
natural response, 282–286, 297–300, 309
parallel RLC circuits, 282–286, 291–293, 309
series RLC circuits, 297–299, 301
step response, 291–293, 300–301

Unilateral (one-sided) Laplace transform, 446–447
Unit impulse function (δ(t)), 449, 476
Unit impulse response (h(t)), 504–511
Unit prefixes, 10–11
Unit step function (u(t)), 447, 452, 476, 671
Unknown circuit characterization, 695, 713–714

V
Vampire (standby) power analysis, 375, 399–400
Volt-amp reactive (VAR), unit of, 379, 385, 401
Volt-amps (VA), unit of, 384–385, 401
Voltage (v), 12–17, 34, 40, 42, 46, 50, 58, 70–73, 80, 152–156, 

172, 184–186, 199–201, 203–204, 211, 226, 229, 274, 
320–322, 332–333, 354–355, 414, 417–419, 435, 631–641, 
645–647, 686–687

a-, b-, and c-phase references, 414
balanced three-phase circuits, 414, 417–419, 435
defined, 13
dot convention for, 354–355
electric charge and, 12–14
Fourier series applications, 631–641, 645–647
frequency domain, 332–333, 354–355
ideal transformer ratios, 353–355
induced, 203–204
inductor relationships, 184–186
input constraint, 153–154
Kirchhoff’s voltage law (KVL), 40, 42, 50, 332–333
line, 417, 418–419, 435
measurement of, 58, 70–73, 80
mutual inductance and, 199–201, 204, 211
natural response expressions for, 226, 229, 274
negative feedback and, 153–154, 172
Ohm’s law for, 33, 50
op-amp terminals, 152–156, 172
Parseval’s theorem for, 686–687
phase, 418–419, 435
phasor notation for, 414
periodic, 631–637, 639–641, 645–647
polarity of, 199–201, 204, 211, 354–355
polarity reference, 14
power and energy relationship to, 15–17
resistor power in terms of, 34
resistor-capacitor (RC) circuits, 229
resistor-inductor (RL) circuits, 226
resistor-inductor-capacitor (RLC) circuits, 274, 637–638
sinusoidal source, 320–322
square-wave, 633, 637–638
steady-state analysis and, 320–322, 332–333, 354–355
unknown found using Kirchhoff’s laws, 46

Voltage-divider circuit, 64–66, 79
Voltage division, 68–70, 79, 334
Voltage drop, 199, 516–517
Voltage sources, 28–31, 50, 415
Voltage to current (v–i) relationships, 184–185, 190, 

327–330, 361, 484–485, 521
capacitors, 190, 329–330, 361
circuit analysis and, 184–185, 190
inductors, 184–185, 328–329, 361
Laplace transform method using, 484–485, 521
phasor domain of, 327–330, 361
resistors, 327–328, 361
steady-state analysis and, 327–330, 361

Voltmeter, 70, 72, 80
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W
Watt (W), unit of, 384–385, 401
Waveforms, 618, 620, 623–629, 633, 635–636, 650

even periodic function, 625–626
half-wave periodic function, 627–628
odd periodic function, 626–627
periodic functions for, 618, 620
periodic voltage, 633, 635–636
periodic, 618, 620
quarter-wave periodic function, 628–629
rectangular, 620
sinusoidal rectifiers, 618, 620
square, 620, 633
square-wave voltage, 633
steady-state response, 635–636
symmetry of periodic functions represented as, 625–629
triangular, 618, 620, 623–624

Wavelength (λ), 7
Weighting function, 510
Wheatstone bridge, 73–75, 80
Winding (primary and secondary), 347, 415
Wye (Y) interconnection, 76

Wye (Y) loads, 425–426
Wye-delta (Y-Δ) circuits, 422–425, 428–429

analysis of balanced, 422–425
power calculations for, 428–429

Wye-wye (Y-Y) circuits, 416–421, 428
analysis of balanced, 416–421
power calculations for, 428

Y
y  parameters, two-port circuits, 694, 695

Z
z parameters, two-port circuits, 694, 695
Zero frequency, 544
Zeros, 470–472, 476, 502, 743–744, 750–751

Bode plots and, 743–744, 750–751
complex, 750–751
frequency domain (F(s)), 470–472, 476
real, first-order, 743–744
transfer functions (H(s)), 502
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 Steps in the Node-Voltage Method and the Mesh-Current Method

Node-Voltage Method Mesh-Current Method

Step 1
Identify nodes/meshes

Identify the essential nodes by circling them 
on the circuit diagram.

Identify the meshes by drawing directed 
arrows inside each mesh.

Step 2
Label node voltages/mesh currents
Recognize special cases

Pick and label a reference node; then label 
the remaining essential node voltages.
• If a voltage source is the only component 

in a branch connecting the reference 
node and another essential node, label 
the essential node with the value of the 
voltage source.

• If a voltage source is the only component 
in a branch connecting two  nonreference 
essential nodes, create a supernode that 
includes the voltage source and the two 
nodes on either side.

Label each mesh current.
• If a current source is in a single mesh, 

label the mesh current with the value of 
the current source.

• If a current source is shared by two 
adjacent meshes, create a supermesh by 
combining the two adjacent meshes and 
temporarily eliminating the branch that 
contains the current source.

Step 3
Write the equations

Write the following equations:
• A KCL equation for any supernodes;
• A KCL equation for any remaining 

essential nodes where the voltage is 
unknown;

• A constraint equation for each dependent 

able for the dependent source in terms of 
the node voltages;

• A constraint equation for each supernode 
that equates the difference between the 
two node voltages in the supernode to the 
voltage source in the supernode.

Write the following equations:
• A KVL equation for any supermeshes;
• A KVL equation for any remaining 

meshes where the current is unknown;
• A constraint equation for each dependent 

able for the dependent source in terms of 
the mesh currents;

• A constraint equation for each supermesh 
that equates the difference between the 
two mesh currents in the supermesh to 
the current source eliminated to form the 
supermesh.

Step 4
Solve the equations

Solve the equations to �nd the node 
voltages.

Solve the equations to �nd the mesh 
currents.

Step 5
Solve for other unknowns

Use the node voltage values to �nd any 
unknown voltages, currents, or powers.

Use the mesh current values to �nd any 
unknown voltages, currents, or powers.

GENERAL METHOD FOR NAT-
URAL AND STEP RESPONSE  
OF RL AND RC CIRCUITS

1. Identify the variable x(t), which is the 
inductor current for RL circuits and capacitor 
voltage for RC circuits.
2. Calculate the initial value X0 by analyzing 
the circuit to find x(t) for <t 0 .
3. Calculate the time constant τ; for RL cir-
cuits =τ L R and for RC circuits =τ RC, 
where R is the equivalent resistance con-
nected to the inductor or capacitor for ≥t 0 .
4. Calculate the final value Xf by analyzing 
the circuit to find x(t) as t ;→ ∞  for the natu-
ral response, =X 0f .
5. Write the equation for x(t), 

= + − τ−x t X X X e( ) ( ) t
f 0 f  for ≥t 0 .

6. Calculate other quantities of interest 
using x(t).

ANALYZING A CIRCUIT WITH 
AN IDEAL OP AMP

1. Check for a negative feedback path.  
If it exists, assume the op amp operates  
in its linear region.
2. Write a KCL equation at the inverting 
input terminal.
3. Solve the KCL equation and use the 
solution to find the op amp’s output voltage.
4. Compare the op amp’s output voltage 
to the power supply voltages to determine 
if the op amp is operating in its linear region 
or if it is saturated.
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1. Determine the initial capacitor voltage 
(V0), the initial inductor current (I0), and 
the final inductor current (If) from the 
circuit.
2. Determine the values of α and 0ω  
using the equations in Table 8.3.
3. If ,2

0
2α ω>  the response is overdamped  

and i t I A e A e t( ) , 0 ;L
s t s t

f 1 21 2= + ′ + ′ ≥ +

If ,2
0
2α ω<  the response is underdamped  

and i t I B e t( ) cosL
t

df 1 ω= + ′ α−  
B e t tsin , ;t

d2 ω+ ′ ≥α +−

If ,2
0
2α ω=  the response is critically  

damped and 
i t I D te D e t( ) , 0L

t t
f 1 2= + ′ + ′ ≥α α− − +.

4. If the response is overdamped, 
calculate s1 and s2 using the equations in 
Table 8.3;
If the response is underdamped, calculate 

ddω  using the equation in Table 8.3.
5. If the response is overdamped, 
 calculate ′A1 and ′A2 by simultaneously 
solving the equations in Table 8.3;
If the response is underdamped, 
calculate ′B1 and ′B2 by simultaneously 
solving the equations in Table 8.3;
If the response is critically damped, 
 calculate ′D1 and ′D2  by simultaneously 
solving the equations in Table 8.3.
6. Write the equation for iL(t) from Step 3  
using the results from Steps 4 and 5; 
find the inductor voltage and any desired 
branch currents.

STEP RESPONSE OF A 
PARALLEL RLC CIRCUIT

1. Determine the initial capacitor voltage 
(V0) and inductor current (I0) from the 
circuit.
2. Determine the values of α and 0ω  

3. If 22
00
22α ω> , the response is overdamped 

and v t A e A e t( ) , 0s t s t
1 2

1 2= + ≥ ;
If 22

00
22α ω< , the response is underdamped  

and v t B e t B e t( ) ,t
d

t
d21 ω ω= + αα −−

t ≥ 0;
If ,2

0
2α ω=  the response is critically damped 

and = + ≥α α− −t D te D te t( ) , 0.t t
1 2v

4. If the response is overdamped, 
calculate s1 and s2 using the equations in 

If the response is underdamped, calculate 

dω 8.2.
5. If the response is overdamped, 
calculate A1 and A2 by simultaneously 

If the response is underdamped, 
calculate B1 and B2 by simultaneously 

If the response is critically damped, 
calculate D1 and D2 by simultaneously 
 
6. Write the equation for v(t) from Step 3 

any desired branch currents.

NATURAL RESPONSE OF A 
PARALLEL RLC CIRCUIT

(Note that the equations for v(t), v(0+), and dv(0+)/dt  assume that the reference direction for the current in 
every component is in the direction of the reference voltage drop across that component.)

 2 Equations for Analyzing the Natural Response of Parallel RLC Circuits

Characteristic equation s
RC

s
LC

1 1 02 + + =

Neper, resonant, and  
damped frequencies

RC LC
1

2
1

d0 0
2 2α ω ω ω α= = = −

Roots of the characteristic equation ss ,1
2

0
2

2
2

0
2α α ω α α ω= − + − = − − −

α ω> :2
0
2  overdamped v t A e A e t( ) 0s t s t

1 2
1 2= + ≥

A A V(0 ) 1 2 0v = + =+

d
dt

s A s A
C

V
R

I
(0 ) 1

1 1 2 2
0

0
v ( )= + =

−
−

+

α ω< :2
0
2  underdamped t B e t B e t t( ) 0t

d
t

d21v ω ω= + ≥αα −−

B V(0 ) 1 0v = =+

d
dt

B B
C

V
R

I
(0 ) 1

d1 2
0

0
v

α ω ( )= − + =
−

−
+

:2
0
2α ω=  critically damped t D te D e t( ) 0t t

1 2= + ≥α α− −v

D V(0 ) 2 0= =+v

d
dt

D D
C

V
R

I
(0 ) 1

1 2
0

0α ( )= − = − −
+v

 Equations for Analyzing the Step Response of Parallel RLC Circuits

Characteristic equation + + =s
RC

s
LC

I
LC

1 12

Neper, resonant, and damped frequencies
RC LC
1

2
1

d0 0
2 2α ω ω ω α= = = −

Roots of the characteristic equation ss ,1
2

0
2

2
2

0
2α α ω α α ω= − + − = − − −

α ω> :2
0
2  overdamped i t I A e A e t( ) , 0L

s t s t
f 1 2

1 2= + ′ + ′ ≥

i I A A I(0 )L f 1 2 0= + ′ + ′ =+

di
dt

s A s A
V
L

(0 )L
1 1 2 2

0= ′ + ′ =
+

α ω< :2
0
2  underdamped i t I B e t B e t t( ) cos sin , 0L

t
d

t
df 1 2ω ω= + ′ + ′ ≥αα −−

i I B I(0L f 1 0= + ′ =+

di
dt

B B
V
L

(0 )L
d1 2

0α ω= − ′ + ′ =
+

α ω= :2
0
2  critically damped i t I D te D e t( ) , 0L

t t
f 1 2= + ′ + ′ ≥α α− −

= + ′ =+i I D I(0 )L f 2 0

α= ′ − ′ =
+di

dt
D D

V
L

(0 )L
1 2

0

(Note that the equations for iL(t), iL(0+), and diL(0+)/dt  assume that the reference direction for the current in every 
component is in the direction of the reference voltage drop across that component.)
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TABLE 8.4
  Equations for Analyzing the Natural Response of  

Series RLC Circuits

Characteristic equation s R
L

s
LC

1 02 + + =

Neper, resonant, and 
damped frequencies

R
L LC2

1
d0 0

2 2α ω ω ω α= = = −

Roots of the  
characteristic equation

ss ,1
2

0
2

2
2

0
2α α ω α α ω= − + − = − − −

:2
0
2α ω>  overdamped i t A e A e t( ) 0s t s t

1 2
1 2= + ≥

i A A I(0 ) 1 2 0= + =+

( )= + = − −
+di

dt
s A s A

L
RI V

(0 ) 1
1 1 2 2 0 0

:2
0
2α ω<  underdamped i t B e t B e t t( ) cos sin , 0t

d
t

d21 ω ω= + ≥αα −−

i B I(0 ) 1 0= =+

α ω ( )= − + = − −
+di

dt
B B

L
RI V

(0 ) 1
d1 2 0 0

:2
0
2α ω=  critically 

damped
= + ≥α α− −i t D te D e t( ) , 0t t

1 2

= =+i D I(0 ) 2 0

α ( )= − = − −
+di

dt
D D

L
RI V

(0 ) 1
1 2 0 0

(Note that the equations for i(t), i(0+), and di(0+)/dt  assume that the reference direction for the cur-
rent in every component is in the direction of the reference voltage drop across that component.)

NATURAL RESPONSE OF A 
SERIES RLC CIRCUIT

1. Determine the initial capacitor voltage 
(V0) and inductor current (I0) from the circuit.
2. Determine the values of α and ω0 using 

3. If α ω> ,22
0
2  the response is overdamped 

and = + ≥i t A e A e t( ) , 0s t s t
1 2

1 2 ;
If α ω< ,22

00
22  the response is underdamped and  

ω ω= + ≥αα −−i t B e t B e t t( ) cos sin , 0;t
d

t
d21

If α ω= ,22
0
2  the response is critically damped  

and = + ≥α α− −i t D te D e t( ) , 0t t
1 2 .

4. If the response is overdamped, calculate 
s1 and s2 8.4;
If the response is underdamped, calculate 
ωd

5. If the response is overdamped, calculate 
A1 and A2 by simultaneously solving the 
 
If the response is underdamped, calculate 
B1 and B2 by simultaneously solving the 

If the response is critically damped, 
calculate D1 and D2 by simultaneously 
 
6. Write the equation for i(t) from Step 3 

desired component voltages.

(Note that the equations for vC(t), vC(0+), and dvC(0+)/dt  assume that the reference direction 
for the current in every component is in the direction of the reference voltage drop across that 
component.)

  Equations for Analyzing the Step Response of Series RLC 
Circuits

Characteristic equation s R
L

s
LC

V
LC

12 + + =

Neper, resonant, and 
damped frequencies

R
L LC2

1
d 00

2 2α ω ω ω α= = = −

Roots of the characteristic 
equation

ss ,1
2

0
2

2
2

0
2α α ω α α ω= − + − = − − −

:2
0
2α ω>  overdamped t V A e A e t( ) 0C

s t s t
f 1 2

1 2= + ′ + ′ ≥ +v

v V A A V(0 )C f 1 2 0= + ′ + ′ =+

vd
dt

s A s A
I
C

(0 )C
1 1 2 2

0= ′ + ′ =
+

:2
0
2α ω<  underdamped t V B e t B e t t( ) cos sin 0C

t
d

t
df 1 2ω ω= + ′ + ′ ≥αα −− +v

v V B V(0 )C f 1 0= + ′ =+

vd
dt

B B
I
C

(0 )C
d1 2

0α ω= − ′ + ′ =
+

:2
0
2α ω=  critically 

damped
t V D te D e t( ) 0C

t t
f 1 2= + ′ + ′ ≥α α− − +v

= + ′ =+ V D V(0 )C f 2 0v

α= ′ − ′ =
+d

dt
D D

I
C

(0 )C
1 2

0v

STEP RESPONSE OF A  
SERIES RLC CIRCUIT

1. Determine the initial capacitor voltage 
(V0), the initial inductor current (I0), and 
the final capacitor voltage (Vf) from the 
circuit.
2. Determine the values of α and ω0 

3. If α ω> ,22
0
2  the response 

is overdamped and 
t V A e A e t( ) , 0 ;C

s t s t
f 1 2

1 2= + ′ + ′ ≥ +v
If α ω< ,22

00
22  the response 

is underdamped and 
t V B e t B e t

t

( ) co sin ,

0 ;
C

t
d

t
df 1 2ω ω= + ′ + ′

≥

αα −−

+

v

If α ω= ,22
0
2  the response 

is critically damped and 
= + ′ + ′ ≥α α− − +t V D te D e t( ) , 0C

t t
f 1 2v .

4. If the response is overdamped, 
calculate s1 and s2 using the equations in 

If the response is underdamped, calculate 
ωd 8.5.
5. If the response is overdamped, 
calculate ′A1 and ′A2  by simultaneously 

If the response is underdamped, 
calculate ′B1 and ′B2  by simultaneously 

If the response is critically damped, 
calculate ′D1 and ′D2  by simultaneously 

6.  Write the equation for vC(t  

the capacitor current and any desired 
component voltages.
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Time Domain Frequency Domain

Ri

1

2

v

b

a

v 5 Ri

i

1

2

v

b

a

L I0

v 5 L di>dt,
1
L

i  5 vdx 1 I0•0–     

t

1

2

v

1

2

V0

b

a

i C

RI

I

1

2

V

b

a

V 5 RI

b

V

2

1 a

V 5 sLI 2 LI0

sL

2

1
LI0

a

b

1

2

VI

1

2
V0>s

1>sC

I
sC

V0
sV 5 1

V
sL

I0
sI 5 1

b

1

2

V

I

sL I0>s

a

b

a

1>sC

1

2

V CV0

I

I 5 sCV 2 CV0

i  5 C dv>dt,
1
C

v 5 idx 1 V0•0–     

t

TABLE 13.1  Summary of the s-Domain Equivalent CircuitsLAPLACE TRANSFORM 
METHOD

1. Determine the initial conditions for 
inductors and capacitors.
2. Laplace-transform independent 
voltage and current functions using 

3.  Transform symbolic time-domain 
voltages and currents into s-domain 
symbols.
4. Transform remaining circuit compo-
nents into the s
5. Analyze the s-domain circuit using 
resistive circuit analysis techniques; 
 represent the resulting s-domain voltages 
and currents as ratios of polynomials in s.
6. Use the initial- and final-value 
theorems to check the s-domain voltages 
and currents.
7. Inverse-Laplace-transform the  
s-domain voltages and currents using 

 Four Useful Transform Pairs

Pair Number Nature of Roots F(s) f(t)

1 Distinct real +
K

s a
−Ke u t( )at

2 Repeated real
( )+

K
s a 2

−Kte u t( )at

3 Distinct complex α β α β+ −
+
+ +

K
s j

K
s j

*

K e t u t2 cos( ) ( )t β θ+α−

4 Repeated complex α β α β( ) ( )+ −
+

+ +
K

s j
K

s j2

*

2 t K e t u t2 cos( ) ( )t β θ+α−

Note: In pairs 1 and 2, K is a real quantity, whereas in pairs 3 and 4, K is the complex quantity θK .
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