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Preface

Thanks for turning to the Preface.

This introductory text is written for students at the advanced undergraduate
level and beyond in mathematics and its applications and for those in the sciences
and engineering who desire a rigorous introduction to mathematical analysis. The
major part of the book provides a motivated introduction to analysis in Euclidean
space, beginning with the single variable case and properties of the real number
field. Later chapters include topics that are helpful in the study of more advanced
areas such as ordinary and partial differential equations, Fourier series, Lebesgue
measure and integration, and Hilbert space. These later chapters are intended as
a springboard for such studies, and the applications in the book are there to spark
interest rather than delve deeply into specific application areas. My purpose has
been to write a book that students will find interesting and useful.

The genesis of the book was a collection of written supplements I used in
teaching advanced courses in ordinary and partial differential equations and applied
analysis for more than twenty years. Most of the students in these courses were
majoring in mathematics or applied mathematics, with possibly a quarter of the
class majoring in one of the sciences or engineering or having come to mathematics
from another undergraduate major. Most of the students had no exposure to basic
analysis in Euclidean space or normed spaces in general. In an effort to provide
an appropriate language for making and understanding mathematical statements
about differential equations and dynamical systems, I supplied written handouts on
the basic analysis background required. I found the process of filling in the gaps in
those supplements to be long but enjoyable, and it led me to complete this book.

This book addresses three major goals of analysis instruction in the undergrad-
uate curriculum. The first goal is to present a careful, rigorous study of real valued
functions of a real variable and vector valued functions of a vector variable, starting
from the properties of the real number system. The second goal is to help students
develop the mathematical maturity and critical thinking skills necessary for suc-
cess throughout the upper division of an undergraduate program and beyond. A

xix
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third goal is to provide a passage, a transit point, to a few developments of modern
analysis that have had an important influence in both its theoretical and applied
aspects. With these goals in view, the core of the book is grounded solidly in the
world of Euclidean space, but at appropriate places, the book introduces and ap-
plies inner product, normed, and metric spaces. Thus, readers are made aware that
there are interesting and useful developments beyond Euclidean space in which the
basic concepts of analysis play important roles and may be studied further.

The prerequisite for beginning the book is two semesters of the standard uni-
versity undergraduate curriculum in elementary single variable calculus and an
introductory course in proof technique often having titles such as Transition to
Advanced Mathematics or Introduction to Mathematical Reasoning. This should
suffice for Chapters 1–7. However, undergraduate introductions to multivariable
calculus and linear algebra are prerequisites for the material from Chapter 8 on-
ward, where the focus is on n-dimensional Euclidean space Rn and a few function
spaces. At most American universities, students will have taken a third semester
calculus course in introductory multivariable calculus before entry into a course
such as the present book. Readers with more substantial undergraduate mathe-
matics backgrounds than this will probably make more rapid progress in the book.
In particular, introductory courses in elementary differential equations or numeri-
cal methods may provide some readers with additional motivation for some of the
topics considered.

This text provides a bridge from one-dimensional analysis to more general
spaces, building on the core topics of differentiation and integration and a few well
chosen application areas such as solving equations, inverting functions, measuring
the volume of sets, and understanding basic properties of differential equations, in-
cluding some basic Fourier analysis for application to partial differential equations.
The text culminates with two chapters on the Lebesgue theory and a chapter on
inner product spaces and Fourier expansion in Hilbert space.

The book is suitable for both classroom instruction and self-study and provides
students with a solid background to build on if they wish to move on to more
advanced studies or applications in their areas of interest.

There are several unique features of this text.

(1) The book combines expansive coverage of analysis on the real line and Eu-
clidean space and detailed coverage of the Lebesgue theory suitable for moti-
vated and advanced undergraduates or first-year graduate students. It has top-
ics chapters on fundamental aspects of ordinary differential equations, Fourier
series, and basic problems in partial differential equations.

The book offers three successive bridges in this passage to modern analysis:
Lower Bridge: Chapters 2–7 provide rigorous coverage of real valued func-

tions of a real variable. There is enough material here for a comprehensive
semester course.

Middle Bridge: With Chapters 2–7 providing background in basic con-
cepts, Chapters 8–13 cover analysis in Rn, including differentiation and in-
tegration of vector functions and the extension of the Riemann integral to
functions on bounded subsets of Rn. The inverse function theorem and im-
plicit function theorem apply the derivative and linearization ideas to the local
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solution of systems of equations. There is enough coverage of general metric
space and normed space ideas to allow for discussions of some basic appli-
cations, including matrix norms in Chapter 9 and the contraction mapping
theorem in complete metric spaces in Chapter 11. The discussion of matrix
norms is important for work in numerical analysis, which we have indicated in
some exercises. Matrix norms also play an important role in some estimates in
Chapter 13. The contraction mapping theorem is applied to the existence and
uniqueness theorem for ordinary differential equations in Chapter 14. Chap-
ters 8–13 provide an appropriate springboard for more advanced studies of
analysis, including the background for the differential equations and Fourier
series in Chapters 14 and 15.

Upper Bridge: Chapters 14 and 15 can be used as topics chapters that
draw especially on material from Chapters 7–11. Chapter 15 can also be
viewed as an introduction to ideas that can be pursued in more detail in the
final three chapters of the book. Chapters 16 and 17 cover Lebesgue measure
and the Lebesgue integral, respectively. These topics are motivated and cov-
ered in enough generality so that the spaces of most interest, the integrable
functions (and square integrable functions) on measurable subsets of R or
Rn, can be discussed. Applications of these ideas appear in an introduction
to Hilbert space in Chapter 18, which also explores and clarifies, in a more
general setting, some issues arising in Chapter 15 concerning Fourier series.

(2) The concepts of geometric series and contraction mappings are introduced
early in the book. Differentiation of vector functions, the multivariable mean
value theorem, and the inverse and implicit function theorem are all given
full consideration due to their importance in applications and more advanced
studies. Applications of these ideas appear throughout the text. Many intro-
ductory analysis texts do not place enough emphasis on these ideas.

(3) The final five chapters cover topics beyond the standard undergraduate cover-
age: aspects of ordinary differential equations, Fourier series and partial differ-
ential equations, Lebesgue measure, the Lebesgue integral and its comparison
with the Riemann integral, and the study of the Hilbert space L2[−π, π] and
its isometric isomorphism with the sequence space l2 established with the help
of the Lebesgue theory.

The features of this book make it useful as a text in several ways. The book
can be useful for students who wish to cross only the first, or the first two, or all
three, of the bridges described earlier.

a. First, it can be a comprehensive text for a semester course in undergraduate
analysis based on Chapters 1–7.

b. Second, a follow-up semester in analysis, emphasizing Euclidean space, can
be based on the material in Chapters 8–13. For a semester-length honors course,
this second course might include some differential equations or Fourier analysis with
selections from Chapters 14 and 15 for interested students.

c. Third, an undergraduate honors or topics section could be formed by selec-
tions from Chapters 14–18, which go beyond the standard undergraduate coverage
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of analysis in Rn. Such a course could benefit undergraduates interested in pro-
ceeding to graduate school.

d. First-year graduate students in mathematics or applied mathematics, the
sciences, or engineering may want a refresher course, either guided or self-study, in
analysis. Such a course could be based on selected portions of Chapters 8–18, with
reference to Chapters 2–7 as needed. Basic analysis is important for many students
in these areas.

The book has enough material for three academic semesters of coursework,
including topics for individual reading or an honors course. It presents material
at a level appropriate for advanced undergraduates and some first-year graduate
students, depending on instructor choices and student backgrounds and interests.
An introduction that covers Rn in a comprehensive manner and discusses metric
spaces that are important in applications will serve these students well.

There are more than 570 exercises. Almost every section of the book includes
an Exercises section at the end. Some of the longer sections include exercises at the
end of subsections. Many of the exercises are supplied with a hint or presented as
guided exercises with multiple parts. The exercises reinforce the reading of the text
and provide opportunities to develop skills in mathematical reasoning, analysis, and
writing. The index has more than 1000 entries.

Remark on Item Numbering: The numbered items within any section are
Definitions, Lemmas, Propositions, Theorems, Corollaries, and Examples; these
items are numbered consecutively as they appear by chapnum.secnum.itemnum
to indicate chapter, section, and item number. Since Exercises appear in blocks at
the end of sections (and a few subsections) they are numbered separately within
a similar scheme, chapnum.secnum.exernum. Numbered equations and figures
are numbered using chapnum.itemnum.

Descriptive chapter summaries follow:

Chapter 1 Sets and Functions. This chapter will be a review for many
readers, but it includes basic notation and essential results on sets and cardinality
that everyone will need.

Chapters 2–7 provide sufficient material for a semester course in the analysis
of real valued functions of a real variable. Their main purpose is to impart a solid
working knowledge of the concepts of analysis so that the student can proceed to the
study of Euclidean metric space Rn.

Chapter 2 The Complete Ordered Field R. This chapter presents the
axioms for the real numbers, including the completeness axiom in the form of the
least upper bound property. (References are given for the construction of a field
having this completeness property.) The focus is on motivating and proving the
main properties of the field of real numbers: the Archimedean property, the nested
interval property and decimal representations, the Bolzano-Weierstrass theorem,
and the convergence of Cauchy sequences. The chapter ends with demonstrations
that some results familiar from elementary calculus cannot hold using only the
field of rational numbers; these are included to emphasize the importance of the
least upper bound property and to motivate interested readers to read about the
construction of the real numbers from the rationals.
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Chapter 3 Introduction to Series. After basic definitions, this chapter in-
troduces the geometric series and applies it in the discussion of the Cantor set. The
Euler number e and alternating series are followed by the simplest versions of the
ratio and root tests, which are based on the geometric series. General versions of
the ratio and root tests appear in Section 3.11 after covering limit inferior and limit
superior in Section 3.10. Other convergence tests include Abel’s test and Dirichlet’s
test. (The integral test appears in Chapter 6.) Absolute versus conditional conver-
gence is introduced in Section 3.7 after alternating series, while a more complete
discussion of the contrast between absolute and conditional convergence appears in
Section 3.12, which includes Riemann’s rearrangement theorem.

Chapter 4 Basic Topology, Limits, and Continuity. The coverage of
basic topology of the real line includes open sets, closed sets, compact sets, and
connected sets. We define the limit of a function and continuity at a point and then
discuss continuity on an interval, uniform continuity, and the continuous image of
compact sets. The chapter ends with a classification of discontinuities of functions.

Chapter 5 Differentiation. After basic definitions, we establish the mean
value theorem and the scalar inverse function theorem, as well as Darboux’s the-
orem on the intermediate value property of derivatives. We point out the role of
the mean value theorem in helping to establish certain mappings as contraction
mappings, and thus show its usefulness for the solution of equations as well as for
basic estimates of differences in function values. Other important results include
Cauchy’s mean value theorem with applications to l’Hôpital’s rules for indetermi-
nate forms, the single variable Taylor’s theorem, and the extreme value theorem.

Chapter 6 The Riemann Integral. After defining partitions and Riemann-
Darboux sums, we discuss the integral of a bounded function, the integrability
of continuous functions and monotone functions, Lebesgue measure zero, and the
criterion for Riemann integrability. The coverage then proceeds with integral prop-
erties and mean value theorems, the fundamental theorem of calculus, Taylor’s
theorem with integral remainder, and improper integrals.

Chapter 7 Sequences and Series of Functions. The major topics are
pointwise convergence and its importance and limitations, uniform convergence and
its advantages; integration and differentiation of series, and the Weierstrass test for
uniform convergence; the existence of a continuous nowhere differentiable function;
power series and Taylor series; series definitions for the elementary transcendental
functions and proofs of some of their properties; and, in the final section, the
Weierstrass approximation theorem.

Chapters 8 and 10–13 are primarily on Rn, though Chapter 8 shows a variety
of vector spaces of interest in analysis. Chapter 9 is the metric space preparation
for Chapters 11 and 14–18.

Chapter 8 The Metric Space Rn. After a vector space review in Section 8.1,
the coverage proceeds with the inner product and norm structure of n-dimensional
Euclidean space, and Fourier expansion with respect to an orthogonal basis, in
Sections 8.2–8.4. Section 8.5 presents the spectral theorem for real symmetric ma-
trices in complete detail, which provides a good application and extension of the
discussion in Section 8.4. Section 8.6 discusses the metric distance on Rn. Section
8.7 establishes the completeness of Rn, defined as the convergence of all Cauchy
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sequences. Basic topological definitions are collected in Section 8.8, which includes
the relative topology of a subset of Rn. The nested intervals property and the
Bolzano-Weierstrass theorem appear in Section 8.9. Mappings of Euclidean spaces
are covered in Section 8.10 in six short subsections, beginning with limits and con-
tinuity and moving on to topological properties of continuous mappings, including
continuous images of compact sets and connected sets. A result on differentiation
under the integral is included here since it uses facts about continuous mappings
of compact sets.

Chapter 9 Metric Spaces and Completeness. Metric spaces are essential;
bounded subsets of normed spaces are metric spaces but not normed vector spaces.
With the experience of Rn well in hand, the basic topology in Section 9.1 is a direct
generalization of what is now familiar for n-dimensional space. There is only a slight
increase in abstraction here, with some notation required for general metric space.
Section 9.2 presents the contraction mapping theorem for complete metric spaces
in a direct generalization of the scalar version established in Chapter 5. Section
9.3 proves the completeness of the function space C[a, b] with the maximum norm
(uniform norm) and the completeness of the l2 sequence space, both introduced in
Section 8.3. Other topics include the lp sequence spaces, matrix norms, and the
completeness of the space of n×n real matrices. These function spaces are involved
in the study of ordinary differential equations and Fourier series in Chapters 14 and
15.

Chapter 10 Differentiation in Rn. In Sections 10.1–10.5 we define and
discuss partial derivatives, the derivative as a linear mapping, the matrix represen-
tation of the derivative for given bases in domain and range, sufficient conditions
for the existence of the derivative, and the chain rule. We prove the mean value
theorem first for real valued functions in Section 10.6 and apply it in Section 10.7
with other single variable calculus ideas to prove the two-dimensional case of the
implicit function theorem. The mean value theorem for vector valued functions
appears in Section 10.8. The chapter winds up with a presentation of Taylor’s
theorem in Section 10.9 and relative extrema without constraints in Section 10.10.

Chapter 11 Inverse and Implicit Function Theorems. In Section 11.1,
the scalar geometric series motivates a convergence result for matrix geometric
series. We apply this result to prove that matrix inversion is a continuous mapping
of the set of invertible n×n real matrices. Section 11.2 proves the inverse function
theorem in Rn as an application of the contraction mapping theorem, and the
continuity of matrix inversion is used in the proof of continuous differentiability
of the local inverse function. Section 11.3 uses the inverse function theorem to
prove the implicit function theorem. The problem of constrained extrema and
the Lagrange multiplier theorem appear in Section 11.4. Section 11.5 presents the
Morse lemma, another application of the inverse function theorem.

Chapters 12 and 13 cover the Riemann integral; the theory of Jordan measurable
sets in Rn, the bounded sets that have a well-defined volume; and the C1 change of
variables formula.
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Chapter 12 The Riemann Integral in Rn. Sections 12.1 and 12.2 describe
the extension of the Riemann integral to closed intervals and certain bounded sub-
sets of Rn. This extension allows a theory of measurable sets (called Jordan mea-
surable sets or sets with volume), introduced in Section 12.3. This may be the
reader’s first exposure to a type of measure theory. Sections 12.4 and 12.5 develop
the criterion that a function is Riemann integrable if and only if it is continuous
except possibly on a set of Lebesgue measure zero. (The proof includes the case
of real functions of a real variable, which is stated without proof in Section 6.4.)
The Riemann integral and Jordan measure are limited from the larger point of
view required by modern analysis, as they are restricted to certain bounded sets
and bounded functions with limited amounts of discontinuity. Consequently, the
integral does not behave well under pointwise limits, as seen already in the sin-
gle variable case. However, the Riemann integral is adequate for many purposes,
including areas that lie beyond this book, such as the study of finite-dimensional
smooth manifolds and the integration of smooth functions on them. Thus, the Rie-
mann integral in Rn and Jordan measure deserve a place in an introductory text.
(Later in the text, the Lebesgue integral is seen to be a significant extension of
the Riemann integral and one that behaves well under limit processes without the
strong assumption of uniform convergence. Moreover, the Lebesgue theory does
not require a separate theory of improper integrals to handle unbounded functions
and unbounded domains, as the Riemann theory does.)

Chapter 13 Transformation of Integrals. Space-filling curves are intrin-
sically interesting, and we include an example of one in Section 13.1 to motivate
interest in appropriate conditions for coordinate transformations (variable substi-
tutions) in the integral. Section 13.2 considers the transformation of integrable
functions and sets with volume under C1 transformations. We develop the change
of variables formula in Sections 13.3 and 13.4. The rather involved proof is as
geometric as we can make it, with the argument building in a fairly natural way,
starting from the case of linear mappings. In Section 13.5, we show that the surface
integrals familiar from introductory multivariable calculus are well defined by virtue
of the change of variables formula. In the same section, we recall the divergence
theorem and then establish a coordinate-free interpretation for the divergence of
a vector field F; if the vector field is a gradient field, F = ∇f , then we obtain a
coordinate-free interpretation of the Laplacian of f . This is helpful in understand-
ing the physical significance of Laplace’s equation in Chapter 15.

Chapter 14 Ordinary Differential Equations. Section 14.1 presents the
existence and uniqueness theorem for initial value problems for scalar differential
equations as an application of the contraction mapping theorem. A similar mathe-
matical setup for systems appears in Section 14.2, including the equivalent integral
equation, the completeness of a space of solution candidates, and the local Lips-
chitz condition, followed by the proof of existence and uniqueness for initial value
problems. We cover the extension of solutions to a maximal interval of existence
in Section 14.3 and the continuous dependence of solutions on initial conditions
and parameters in Section 14.4. Section 14.5 covers the special case of linear au-
tonomous systems and the matrix exponential solution.
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Chapter 15 The Dirichlet Problem and Fourier Series. In terms of
background, this chapter depends primarily on the reader’s knowledge of uniform
convergence and the ideas of orthogonal Fourier expansion from Section 8.4. Sec-
tion 15.1 provides motivation for studying Laplace’s partial differential equation
and introduces the Dirichlet problem for the unit disk. Section 15.2 introduces the
standard trigonometric set of functions on [−π, π] and establishes their orthogonal-
ity. Section 15.3 constructs a solution of the Dirichlet problem using separation of
variables and Fourier series. This section includes Poisson’s theorem, which shows
that the solution in the interior of the disk, constructed by the separation of vari-
ables method, matches up continuously with the given boundary data. Uniqueness
of the solution is also established. Section 15.4 explores in guided exercises the ap-
plication of the separation of variables method to some Sturm-Liouville boundary
value problems for the heat equation and the wave equation. Section 15.5 estab-
lishes the best mean square approximation property of the Fourier coefficients. A
trigonometric version of the Weierstrass approximation theorem follows easily, and
we use it to prove Parseval’s equality for continuous functions of period 2π. Sec-
tions 15.6 and 15.7 discuss pointwise convergence of the Fourier series for piecewise
smooth functions and Fejér’s theorem on the uniform convergence of the Cesàro
means for continuous functions of period 2π.

Chapter 16 Measure Theory and Lebesgue Measure. The introduction
provides some motivation for the study of measure theory and the form it takes.
Sections 16.1–16.3 motivate and discuss σ-algebras, arithmetic in the extended real
numbers, and basic properties of measures. We attempt to indicate that probability
problems are a natural motivator for σ-algebras, measure theory, and measurable
functions. Section 16.4 describes the construction of a measure from an outer
measure. Section 16.5 applies this construction to define Lebesgue measure on R
and on Rn, considering the cases where n > 1 separately for those who wish to
focus only on Lebesgue measure on the real line. We prove that all Borel sets (hence
all open sets and all closed sets) are Lebesgue measurable. Vitali’s example of a
nonmeasurable set appears at the end of the chapter.

Chapter 17 The Lebesgue Integral. The introduction describes Lebesgue’s
approach to the integral and contrasts it with that of Riemann in order to motivate
the definition of measurable function. Section 17.1 gives the definition and basic
properties of real valued measurable functions on a measurable space; the section
is mostly set-theoretic and no measure is yet involved. Section 17.2 defines the
simple functions and their integrals on a measure space. Section 17.3 continues
with the definition of the integral for nonnegative measurable functions and then
for general measurable functions, and defines the class of integrable functions. Sec-
tion 17.4 establishes the fundamental limit theorems: the monotone convergence
theorem (which implies the linearity of the integral), Fatou’s lemma, and the dom-
inated convergence theorem. Section 17.5 shows that the Lebesgue integral is a
true extension of the Riemann integral for bounded functions on [a, b]. Section 17.6
shows that the space of integrable functions on a given measure space is a complete
normed space, a Banach space.

Chapter 18 Inner Product Spaces and Fourier Series. This chapter
places the concrete setting of Chapter 15 into the proper abstract framework of
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infinite-dimensional inner product spaces. Sections 18.1 and 18.2 include examples
of orthonormal sets and orthonormal expansions that generalize the simpler setting
of Fourier expansion in R3 from Section 8.4. In particular, Section 18.2 character-
izes complete orthonormal sets in a complete inner product space (a Hilbert space).
Section 18.3 discusses mean square convergence (convergence in the L2 norm) for
the Fourier series of continuous functions and Riemann integrable functions on [a, b].
Finally, in Section 18.4, we define the Lebesgue space L2[−π, π] of square integrable
functions, prove that it is a Hilbert space, and show that the standard trigonomet-
ric set is a complete orthonormal set in L2[−π, π]. The Riesz-Fischer theorem is
also included, showing that the Hilbert spaces L2[−π, π] and l2 are isometrically
isomorphic.

Appendix A The Schroeder-Bernstein Theorem. A formal proof of the
useful Schroeder-Bernstein theorem appears here. The theorem appears in the text
in Section 1.4 with a plausibility argument at that point.

Appendix B Symbols and Notations. This appendix provides a quick
reference for some symbols and notations, including the Greek alphabet.
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Chapter 1

Sets and Functions

Readers of this book will have some previous experience with the language of sets
and familiarity with basic logic and proof techniques. The exercises at the end of
each section of this preliminary chapter provide opportunities for practice in these
areas. Some references for set theory and proof technique are given at the end of
the chapter.

1.1. Set Notation and Operations

Our purpose in this section is to introduce some terminology and notation that is
helpful in making clear and concise statements in mathematical analysis. In order
to provide examples and to make the discussion of some interest, we rely on the
reader’s previous experience to provide some intuition about real numbers, integers,
rational numbers, and functions defined on subsets of real numbers.

By the term set we mean a collection of objects of our conception or imagina-
tion, including a means to distinguish unambiguously the members (or elements) of
a set from objects that are not in the set. This meaning of the term set can lead to
paradoxes if carried too far; see Exercise 1.1.1. In this book we will not encounter
such paradoxes beyond Exercise 1.1.1.

Definition 1.1.1. The empty set, denoted ∅, is the set which contains no ele-
ments.

We imagine the empty set every day: we have no emails from home today (the
collection of emails from home today is the empty set); we have no credit cards
(the set of our credit cards is empty); the set of integer solutions of the equation
x2 = 2 is the empty set.

A useful concept in any discussion is the idea of the universal set. The universal
set is the set of all objects being considered in a specific discussion. For example,
when thinking about the properties of integers, the universal set is the set Z of all

1
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integers.1 Another specific discussion may involve all the functions that are defined
and continuous on the real number interval 0 ≤ x ≤ 1 and which take values in the
range interval 0 ≤ y ≤ 1.

We generally denote sets by uppercase letters. These could be Roman letters
A,B,C, . . . , X, Y, Z or script letters A,B, C, . . . ,X ,Y ,Z. We generally denote ele-
ments of sets by lower case letters a, b, c, . . . , x, y, z. In later parts of the book we
denote certain vector quantities by boldface letters, a,b, c, . . . ,x,y, z. The sym-
bolic statement

a ∈ A

means that a is an element of (belongs to, is contained in) the set A. The statement

a /∈ A

means that a is not an element of the set A. Sets are often defined or identified by
a notation of the form

{x ∈ X : x has property P}.
For example, the set of even integers can be described by

E = {x ∈ Z : x = 2n, n ∈ Z},
since we already understand Z is the set of all integers.

Definition 1.1.2. If X and Y are sets, then the set

X − Y = {x ∈ X : x /∈ Y }
is called the complement of Y relative to X or the complement of Y in X.
If the universal set U is understood in a specific discussion, then we may write

Y c = U − Y

and call it the complement of Y .

Definition 1.1.3. If X and Y are sets, the statement X is a subset of Y , written
X ⊆ Y , means that if x ∈ X, then x ∈ Y .

This definition of X ⊆ Y allows the possibility that X = Y . If it is important
in a specific discussion that Y contain an element not in X, it is usually clear from
the context, or can be mentioned explicitly, or the notation X ⊂ Y can be used.

The empty set is a subset of every set, as follows from the definition of subset.
(See Exercise 1.1.2.)

The statement that sets X and Y are equal, written X = Y , means that X ⊆ Y
and Y ⊆ X. This statement of set equality involves two implications: x ∈ X implies
x ∈ Y , and x ∈ Y implies x ∈ X. To establish set equality, both implications must
be established.

Definition 1.1.4. Let A and B be sets. The union of A and B, denoted A ∪ B,
is the set

A ∪B = {x : x ∈ A or x ∈ B}.

1The set of integers is denoted Z with a nod to the German word Zahlen for numbers.
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The intersection of A and B, denoted A ∩B, is the set

A ∩B = {x : x ∈ A and x ∈ B}
We say that sets A and B are disjoint if A ∩B is empty.

For example, let us write O for the set of odd integers. With E denoting the
set of even integers, we have

Z = E ∪O and E ∩O = ∅.
We may also say that Z is the disjoint union of E and O.

We will denote the set of real numbers by R. The standard notations for
intervals of real numbers are probably already familiar. We use these real interval
notations for bounded intervals:

[a, b] = {x ∈ R : a ≤ x ≤ b},

(a, b) = {x ∈ R : a < x < b},
(a, b] = {x ∈ R : a < x ≤ b},
[a, b) = {x ∈ R : a ≤ x < b}.

For unbounded intervals, we use these interval notations:

(a,∞) = {x ∈ R : a < x} and [a,∞) = {x ∈ R : a ≤ x},

(−∞, b) = {x ∈ R : x < b} and (−∞, b] = {x ∈ R : x ≤ b}.
Thus the notation (a,∞) specifies the set of all real numbers x such that x > a.
The interval (a,∞) may also be indicated by writing the inequality a < x < ∞ to
emphasize that no upper bound is intended for x. The interval (−∞, b) may also
be indicated by writing the inequality −∞ < x < b to emphasize that no lower
bound is intended for x. We may occasionally write R = (−∞,∞).2

There are useful generalizations of the union and intersection operations on
pairs of sets. We employ the idea of an arbitrary index set I, which may be either
finite or infinite.

Definition 1.1.5. Let I be an index set (finite or infinite), and suppose that for
each i ∈ I there is associated a set Ai. The union of the sets Ai is the set⋃

i∈I
Ai =

{
x : x ∈ Ai for some i ∈ I

}
.

The intersection of the sets Ai is the set⋂
i∈I

Ai =
{
x : x ∈ Ai for all i ∈ I

}
.

De Morgan’s laws relate the operations of complementation and general unions
and intersections.

2These uses of the symbol ∞ are intended as convenient reminders (for emphasis) of the unbound-
edness of an interval, in one direction or the other, when writing inequality notations. We do not
consider them as number elements until Section 16.2, where we admit the two symbols ±∞ as elements
of the extended real number system for use in measure theory, where they enter into arithmetic laws
with the real numbers. At that point, the new elements ±∞ are also defined to obey the ordering
requirement that −∞ < x < ∞ for every real number x.
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Theorem 1.1.6 (De Morgan’s laws). Let I be an index set. Given the sets Ai, for
i ∈ I, we have

(1.1)
( ⋂

i∈I
Ai

)c
=
⋃
i∈I

Ac
i

and

(1.2)
( ⋃

i∈I
Ai

)c
=
⋂
i∈I

Ac
i .

In other words, the complement of the intersection equals the union of the comple-
ments, and the complement of the union equals the intersection of the complements.

Proof. We will prove (1.1) and leave (1.2) as Exercise 1.1.6.

The complement of the intersection is contained in the union of the comple-
ments: If x ∈ (

⋂
i∈I Ai)

c, then x /∈
⋂

i∈I Ai, so there is an i0 such that x /∈ Ai0 ,
hence x ∈ Ac

i0
. Therefore x ∈

⋃
i∈I Ac

i .

The union of the complements is contained in the complement of the inter-
section: If x ∈

⋃
i∈I Ac

i , then for some i0, x ∈ Ac
io
, hence x /∈ Ai0 . Therefore

x /∈
⋂

i∈I Ai, so x ∈ (
⋂

i∈I Ai)
c. This completes the proof of (1.1). �

Exercises.

Exercise 1.1.1. The Russell Paradox
A situation in which an object of our imagination or conception has a certain
property if and only if it does not have that property is called a paradox. Paradoxes
are logically unacceptable, of course. The example here will show that we cannot
say just anything at all in order to define a set, and that some care is required. Let
us say that a set is respectable if it does not contain itself as an element. Now let
B be the set of all respectable sets. Try to answer this question: Is B a respectable
set? The attempt to answer it yields a paradox, as follows:
1. Show that if B is respectable, then B is not respectable.
2. Show that if B is not respectable, then B is respectable.

Exercise 1.1.2. Show that Definition 1.1.3 implies that the empty set is a subset
of every set. Hint : The implication, If A then B, is false only when A is true and
B is false.

Exercise 1.1.3. Prove that A = B, if B = {(1, 0), (0, 1)} and A = {(x, y) : x ∈
R, y ∈ R and x2+ y2 = 1, x+ y = 1}. Hint : Proving B ⊆ A means verifying that
(1, 0) and (0, 1) are solutions of the two equations in the definition of A. Proving
A ⊆ B means finding (constructing) all solutions of the equations defining A and
showing they are in the list given by B.

Exercise 1.1.4. Prove the following statements about sets A and B:

1. A−B is empty if and only if A ⊆ B.

2. If A ∩B is empty, then A−B = A and B −A = B.

3. If A ⊆ B, then Bc ⊆ Ac.
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Exercise 1.1.5. Prove the following statements about sets A, B, C:

1. A−B = A ∩Bc.

2. A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C) and A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).

3. (A ∪B)− C = (A− C) ∪ (B − C) and (A ∩B)− C = (A− C) ∩ (B − C).

Exercise 1.1.6. Prove De Morgan’s law (1.2).

1.2. Functions

An important construction with sets is the Cartesian product.

Definition 1.2.1. If X and Y are sets, then the Cartesian product of X and
Y is the set

X × Y =
{
(x, y) : x ∈ X and y ∈ Y

}
,

which consists of all ordered pairs (x, y), with x ∈ X and y ∈ Y .

Now think about the collection of all the functions that are defined and con-
tinuous on the real number interval 0 ≤ x ≤ 1 and take values in the range interval
0 ≤ y ≤ 1. You may think about the graph of one of these functions f as a subset
of the Cartesian product [0, 1]× [0, 1]; the graph is

graph f =
{
(x, y) ∈ [0, 1]× [0, 1] : y = f(x)

}
.

In fact, the function itself may be defined as this particular subset of the Cartesian
product.

Let X and Y be sets. We define a function f from X into Y to be a subset
of the Cartesian product X × Y such that for each x ∈ X, there is associated a
unique y ∈ Y such that (x, y) ∈ f ; this y is denoted f(x). Informally we can
think of a function as mapping elements x ∈ X to elements y = f(x) ∈ Y ; more
precisely, each x ∈ X is mapped to a unique element f(x) ∈ Y . Consequently we
shall typically write f : X → Y to indicate that f is a function mapping X into Y .
Our visual image of a function graph provides a geometric image to illustrate the
rule associating the value f(x) = y ∈ Y with each x ∈ X.

Definition 1.2.2. Let X and Y be sets and f : X → Y a function. Let A be a
subset of X and B be a subset of Y . The direct image of A under f (or simply,
the image of A) is the set

f(A) =
{
f(x) ∈ Y : x ∈ A

}
.

The inverse image of B under f is the set

f−1(B) =
{
x ∈ X : f(x) ∈ B

}
.

We record the basic properties of inverse images and direct images in Theorem
1.2.3 and Theorem 1.2.4, respectively. These properties are left as exercises for the
reader. In particular, the behavior of inverse images under f is easy to describe.

Theorem 1.2.3. Let f : X → Y be a function. The following properties hold:

1. For every B ⊆ Y , f(f−1(B)) ⊆ B.

2. If B1 ⊆ B2 ⊆ Y , then f−1(B1) ⊆ f−1(B2).
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3. If B1 ⊆ Y and B2 ⊆ Y , then f−1(B1 ∪B2) = f−1(B1) ∪ f−1(B2).

4. If B1 ⊆ Y and B2 ⊆ Y , then f−1(B1 ∩B2) = f−1(B1) ∩ f−1(B2).

5. For every B ⊆ Y , f−1(Bc) = [f−1(B)]c, where Bc = Y −B is the complement
of B in Y .

The behavior of direct images requires some care in the case of intersections
and complements.

Theorem 1.2.4. Let f : X → Y be a function. The following properties hold:

1. For every A ⊆ X, A ⊆ f−1(f(A)).

2. If A1 ⊆ A2 ⊆ X, then f(A1) ⊆ f(A2).

3. If A1 ⊆ X and A2 ⊆ X, then f(A1 ∪ A2) = f(A1) ∪ f(A2).

4. If A1 ⊆ X and A2 ⊆ X, then f(A1 ∩ A2) ⊆ f(A1) ∩ f(A2).

Consider property 4 on the image of an intersection. For example, if there are
points a 
= b in X such that f(a) = f(b), then with A1 = {a} and A2 = {b},
the intersection A1 ∩ A2 is empty, and hence f(A1 ∩ A2) is the empty set, but
f(A1) ∩ f(A2) has one element.

Definition 1.2.5 (One-to-One and Onto). A function f : X → Y is one-to-
one (or injective) if for any x1, x2 ∈ X with x1 
= x2, we have f(x1) 
= f(x2).
Equivalently, for all x1, x2 ∈ X, f(x1) = f(x2) implies x1 = x2. The function
f is onto (or surjective) if f(X) = Y . The function f is a bijection if it is
one-to-one and onto.

If f : X → Y is bijective, then the direct image preserves complements, that is,
if A ⊆ X, then

f(X −A) = f(Ac) = [f(A)]c = Y − f(A).

However, f : R → [−1, 1] = Y defined by f(x) = sin x is onto Y but not one-
to-one, and if A = [0, π], then f(Ac) = [−1, 1] and [f(A)]c = [−1, 1] − f(A) =
[−1, 1] − [0, 1] = [−1, 0). The function g : N → N defined by g(n) = n2 is
one-to-one but not onto, and if A = {2}, then g(Ac) = {1, 32, 42, . . .}; however,
[g(A)]c = N− {4}.

Definition 1.2.6 (Inverse Function). A function f : A ⊆ X → Y is invertible
if it is one-to-one on the set A. If y ∈ f(A), then there is a unique x ∈ A such
that f(x) = y. We write x = f−1(y), and this correspondence defines a function
f−1 : f(A) → A called the inverse of f , or the inverse of f restricted to A. The
domain of this inverse is f(A) and the range is A.

Exercises.

Exercise 1.2.1. Prove Theorem 1.2.3. In addition, show that f is onto Y if and
only if for every B ⊂ Y , f(f−1(B)) = B.

Exercise 1.2.2. Prove Theorem 1.2.4. In addition, show that f is one-to-one if
and only if for every A ⊂ X, A = f−1(f(A)).
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1.3. The Natural Numbers and Induction

The natural numbers are the numbers used for counting objects. The set of natural
numbers is denoted by

N := {1, 2, 3, . . .}.
The set N is ordered by the less than or equal to relation (denoted by the symbol
≤), which has the following properties:

For every k, n and m in N,

1. k ≤ k; (reflexive)

2. if k ≤ n and n ≤ k, then k = n; (antisymmetric)

3. if k ≤ n and n ≤ m, then k ≤ m. (transitive)

These three properties define what is called a partial ordering, but the ordering on
N has an additional property that should be remembered as the most important
property for our purposes in this book.

The most important property of the set of natural numbers is that N is well
ordered by the less than or equal to relation. A partially ordered set is called well
ordered if every nonempty subset of it has a least element. (A nonempty subset
S has a least element if it contains an element a such that a ≤ y for every element
y in S. By the antisymmetry property of a partial ordering, if a least element of S
exists, there cannot be more than one.)

An important consequence of N being well ordered is that the natural numbers
are totally ordered, which means that for any natural numbers n and m, either
n ≤ m or m ≤ n. The reason is that the nonempty set S = {n,m} has a least
element; if it is n, then n ≤ m, and if it is m, then m ≤ n.

Proofs by mathematical induction are based on the following result, which is a
consequence of well ordering.

Theorem 1.3.1. Suppose S is a subset of the set N of natural numbers such that

(1) 1 ∈ S;

(2) for each n ∈ N with n ≥ 1, n ∈ S implies n+ 1 ∈ S.

Then S = N.

Proof. The proof is by contradiction. Suppose (1) and (2) hold and that S 
= N.
Let F = N− S. Then F is nonempty, and by well ordering, F has a least element
t ∈ F . Since 1 ∈ S, t 
= 1, hence t > 1. Let s = t − 1. Then s ∈ N and
s < t. Moreover, s cannot be an element of F since t is the least element of F .
Therefore s ∈ S. But then s + 1 = (t − 1) + 1 = t ∈ S by (2). This is the desired
contradiction. �

Many arithmetical statements can be proved with the help of Theorem 1.3.1.

Example 1.3.2. Suppose we wish to prove that the following formula, denoted
A(n), holds for each natural number n:

A(n) :
n∑

k=1

k =
n(n+ 1)

2
.
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We can proceed this way: Let S = {n ∈ N : A(n) is true}. We want to show
that S = N. Thus we want to show that properties (1) and (2) (the hypotheses
of Theorem 1.3.1) hold. Note that 1 ∈ S because statement A(1) is the statement

that
∑1

k=1 k = 1(1+1)
2 , and this is certainly true. Now suppose that A(n) is true,

that is, n ∈ S, so that
n∑

k=1

k =
n(n+ 1)

2
.

Then compute that

n+1∑
k=1

k =
( n∑

k=1

k
)
+ (n+ 1) =

n(n+ 1)

2
+ (n+ 1),

by the hypothesis that A(n) is true. Now rearrange the right-hand side of this
result to obtain

n+1∑
k=1

k =
(n+ 2)(n+ 1)

2
,

which is precisely the statement A(n+1). Hence the truth of A(n) (that is, n ∈ S)
implies the truth of A(n+ 1) (that is, n+ 1 ∈ S). Thus A(n) is true for all n ∈ N.

�

Most applications of Theorem 1.3.1 follow the general pattern of this example.
Assuming that step (1) holds, the work consists in showing the induction step in
(2): n ∈ S implies n+ 1 ∈ S.

The principle of mathematical induction can be restated in the following useful
form.

Theorem 1.3.3 (Mathematical Induction). Suppose that for each positive integer
n we are given a statement A(n). Suppose further that we can prove the following
two properties:

(1) A(1) is true;

(2) for each positive integer n, the truth of A(n) implies the truth of A(n+ 1).

Then for all positive integers n, statement A(n) is true.

Proof. The proof is by contradiction, and has essentially the same structure as
the proof of Theorem 1.3.1, allowing only for the change in the language of the
properties (1) and (2) given here. Let S = {n ∈ N : A(n) is true}. Thus, we
assume (1) and (2) hold, and that the set F = N − S, consisting of the positive
integers n for which the statement A(n) is false, is nonempty. By well ordering
of the positive integers, there is a least element m in F , and statement A(m) is
false. By (1), m 
= 1, so m > 1. Since m is the least element of F , m − 1 /∈ S;
that is, statement A(m− 1) is true. But then, by (2), statement A(m) is true since
m = (m − 1) + 1. The desired contradiction is that statement A(m) is both true
and false. Therefore hypotheses (1) and (2) imply that for all positive integers n,
statement A(n) is true. �
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The following statement of the induction principle has a modified property (2)
which appears to be stronger than (2) in Theorem 1.3.3. In fact, Theorem 1.3.3 is
equivalent to Theorem 1.3.4.

Theorem 1.3.4 (Mathematical Induction II). Suppose that for each positive in-
teger n we are given a statement A(n). Suppose further that we can prove the
following two properties:

(1) The statement A(1) is true.

(2) For each positive integer n, the truth of A(k) for all k with 1 ≤ k < n implies
the truth of A(n).

Then the statement A(n) is true for all positive integers n.

Proof. Assume (1) and (2) hold. Let F be the set of integers n ≥ 0 for which the
statement A(n) is false, and assume that F is nonempty, having least element m.
Then A(m) is false. By hypothesis (1), m 
= 1, so m > 1. Since m is the least
element of F , for every k < m statement A(k) is true. Then by hypothesis (2),
statement A(m) is true. The deduction that A(m) is both true and false is the
contradiction which completes the proof. �

Theorem 1.3.4 is helpful, for example, in the proof that all real symmetric
matrices are diagonalizable by a real orthogonal matrix; see Theorem 8.5.7.

Sometimes it is convenient to start the indexing of a list of statements with the
index 0 rather than 1. In the proof of the induction principle, we could have replaced
the initial number 1 by the number 0, and the argument would have proceeded just
as well. (The nonnegative integers are well ordered.)

Example 1.3.5. With practice, we find that induction is lurking behind many
simple statements we want to make. Suppose {Aj : j ∈ N} is a collection of sets
(of numbers or other objects) and we wish to talk about the union of all these
sets, denoted

⋃∞
j=1 Aj . Some, or many, of the sets Aj may overlap (have nonempty

intersection), or not, as the case may be, but in some situations, any overlap is a
mere inconvenience. For example, at several places later in the book we find it is
useful to express the same union as a union of sets that are pairwise disjoint. In
other words, we want to write

∞⋃
j=1

Aj =

∞⋃
j=1

Bj

where the sets Bj are pairwise disjoint , meaning that Bi ∩ Bj is empty for i 
= j.
We may also say that the collection {Bj : j ∈ N} is a disjoint collection or a disjoint
sequence (see Definition 1.3.6 below). We also say that the union of the sets Bj is
a disjoint union. A simple definition that yields such sets Bj is to define B1 = A1,
and then to say we define

Bn = An −
n−1⋃
j=1

Aj , for n ≥ 2,

or equivalent wording. It is the principle of induction that assures us that the sets
Bn have truly been defined for every positive integer n. �
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The concept of a sequence is important throughout this book.

Definition 1.3.6. A sequence in a set X is a function f : N → X.

Defining fn = f(n) (by induction), we often denote sequences by enclosing the
elements in parentheses, (f1, f2, f3, . . .), though this is not a strict rule. It is legit-
imate to simply refer to a sequence fk, for example. The notation, (f1, f2, f3, . . .),
carries with it the natural ordering of the images inherited from the ordering of
N. A notation such as (fk)

∞
k=1 can be used if it is important to indicate explicitly

the starting value of the index. For uniformity of notation when discussing general
properties of sequences, it is assumed that k = 1 is the starting value unless spec-
ified otherwise. This is the reason for using N as the domain in Definition 1.3.6.
But it would be counterproductive to insist on always starting with index k = 1.
The index set {0, 1, 2, 3, . . .} = {0} ∪N is frequently used in the study of infinite
series. For a sequence f , it is not only the range of f , denoted {f(k) : k ∈ N}, that
matters, but often the ordered listing of elements is of interest as well. As shown
in the section on Equivalence of Sets and Cardinality, in principle any countably
infinite set can serve as the domain (or index set) of a sequence. Finite sequences
in X can also be useful. They normally have domain {1, . . . , n} for some n ∈ N.

The set Z of integers, the numbers that can represent the results of transactions
involving whole currency units, is denoted by

Z := {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}.

The set Z is totally ordered by ≤, but not well ordered.

The algebraic operations of addition and multiplication of integers operate on
the product set

Z× Z = {(a, b) : a ∈ Z and b ∈ Z},

and are viewed as functions from Z× Z to Z. Any two integers a, b can be added
to give another integer, a + b, or multiplied to give an integer ab. Each of these
binary algebraic operations is commutative,

a+ b = b+ a and ab = ba, for all a, b ∈ Z,

and associative,

a+ (b+ c) = (a+ b) + c and a(bc) = (ab)c, for all a, b, c ∈ Z.

Multiplication is distributive over addition:

a(b+ c) = ab+ ac, for all a, b, c ∈ Z.

The number 0 is the unique additive identity for the set Z: a + 0 = a for any
a ∈ Z, and 0 is the only number with that property. For each a ∈ Z, there is a
unique additive inverse, denoted −a, such that a+ (−a) = 0. The number 1 is the
unique multiplicative identity for Z: 1a = a for any a ∈ Z. The set Z does not
include multiplicative inverses for every nonzero integer. Only the numbers 1 and
−1 have multiplicative inverses in Z.
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Exercises.

Exercise 1.3.1. Prove by induction: For each natural number n,
n∑

k=1

k2 =
n(n+ 1)(2n+ 1)

6
.

Exercise 1.3.2. Prove by induction: For each natural number n,
n∑

k=1

k3 =
n2(n+ 1)2

4
=
( n∑

k=1

k
)2

.

Exercise 1.3.3. Recall that a positive integer is a prime number if its only
positive integer factors are 1 and itself. Prove: Every positive integer is either a
prime number or the product of prime numbers. Hint : Use Theorem 1.3.4.

Exercise 1.3.4. Prove the finite geometric sum formula: If r 
= 1, then for any
positive integer n,

n∑
k=0

rk =
1− rn+1

1− r
.

Exercise 1.3.5. Let h > 0. Use induction to prove Bernoulli’s inequality : For all
positive integers n, (1 + h)n ≥ 1 + nh.

Exercise 1.3.6. Let k and n be nonnegative integers with 0 ≤ k ≤ n. The
binomial coefficients are defined by( n

k

)
=

n!

k!(n− k)!

where 0! := 1, and for n ≥ 1, n! is the product of the first n positive integers:
n! = n(n− 1)(n− 2) · · · (3)(2)(1).

1. Prove that
( n

k − 1

)
+
( n

k

)
=
( n+ 1

k

)
for 1 ≤ k ≤ n.

2. Prove the special binomial theorem: For real y and any positive integer n,

(1 + y)n =

n∑
k=0

( n
k

)
yk.

Hint : Use part (1) for the induction step. Observe that for a general finite sum
such as

∑n
k=0 ak, equivalent expressions are a0+

∑n
k=1 ak and an+

∑n
k=1 ak−1.

3. Show that Bernoulli’s inequality, (1 + h)n ≥ 1 + nh for positive real h and
positive integer n, follows from the special binomial theorem.

4. Prove the general binomial theorem: For real x 
= 0 and y, and any positive
integer n,

(x+ y)n =
n∑

k=0

( n
k

)
xn−kyk.

Exercise 1.3.7. For the index set N of natural numbers, define the real number
intervals Jn = (1, 1 + 1/n) for n ∈ N. Find

⋃
n∈N Jn and

⋂
n∈N Jn. Then find

(
⋃

n∈N Jn)
c and (

⋂
n∈N Jn)

c.

Exercise 1.3.8. Repeat the previous exercise with the real number intervals Jn =
[1, 1 + 1/n], n ∈ N.
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1.4. Equivalence of Sets and Cardinality

Let Jn ⊂ N be the set of the first n positive integers, Jn = {1, 2, 3, . . . , n}. A set
X is finite, by definition, if and only if there exists an n ∈ N such that there is a
bijection f : Jn → X. If a set X is not finite, then X is infinite. For finite sets,
we can refer to the number of elements in the set; the number of elements is some
positive integer n. For infinite sets, we cannot speak so easily about the number of
elements. For example, it might seem that the set E of even positive integers has
only half as many elements as the set N of positive integers. It might seem that
there must be more numbers on the real number line than there are numbers in the
real interval [0, 1]. If we are thinking of the inclusion mapping x �→ x from [0, 1]
to (−∞,∞) or from E to N, then of course there are numbers not in the image
of this injective mapping. But this does not rule out the possibility of a bijection
between [0, 1] and (−∞,∞) or between E and N.

The way to approach these questions is by means of bijections and the concept
of two sets X and Y having the same cardinality.

Definition 1.4.1. Let U be a set. Subsets X and Y of U have the same cardinal-
ity if there exists a bijection h : X → Y , in which case we write card(X) = card(Y ).

It is useful to have the concept of an equivalence relation on a set M , which
gives a classification of the elements which are alike in a specific way. Let M be a
set or collection. An equivalence relation on M is a relation, denoted ∼, between
selected pairs of elements of M such that (i) x ∼ x for all x; (ii) if x ∼ y, then
y ∼ x; and (iii) if x ∼ y and y ∼ z, then x ∼ z. These properties are known as the
(i) reflexive, (ii) symmetric, and (iii) transitive, properties of the relation. A more
formal definition of an equivalence relation ∼ on M is to define it as that subset
R of the Cartesian product M ×M consisting of all pairs (x, y) such that x ∼ y.
Then (i) (x, x) ∈ R for all x; (ii) if (x, y) ∈ R, then (y, x) ∈ R; and (iii) if (x, y) ∈ R
and (y, z) ∈ R, then (x, z) ∈ R.

If U is a set and M is the collection of all subsets of U , then the relation
defined by X ∼ Y if and only if card(X) = card(Y ) is an equivalence relation on
M . Reflexivity and symmetry are clear from the definition. The relation is also
transitive, because if there are bijections h : X → Y and g : Y → W , so that X
and Y have the same cardinality, and Y and W have the same cardinality, then
g ◦ h : X → W is also a bijection, and thus X and W have the same cardinality.

Example 1.4.2. Let E be the set of even positive integers, and let f : N → E be
f(k) = 2k. Then f is a bijection, with inverse f−1 : E → N given by f−1(k) = k/2.
So E and N have the same cardinality. Define g : Z → N by setting g(n) = 2n if
n > 0, and g(n) = −2n+1 if n ≤ 0. We can visualize the one-to-one correspondence
given by g and its inverse g−1:

(0, 1,−1, 2,−2, 3,−3, . . .)
g−→ (1, 2, 3, 4, 5, 6, 7, . . .),

(1, 2, 3, 4, 5, 6, 7, . . .)
g−1

−→ (0, 1,−1, 2,−2, 3,−3, . . .).

Thus, Z and N have the same cardinality, and by transitivity of the relation, Z and
E also have the same cardinality. �
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Let X and Y be sets. If there exists an injective (one-to-one) function f : X →
Y , then, in the absence of further knowledge, there is the possibility that there are
elements in Y that are not in the image f(X). Without further knowledge, the
question remains whether there exists a bijection between X and Y . It can often
happen that injective mappings f : X → Y and g : Y → X are available, but
neither f nor g is onto. In such a case, the knowledge gap associated with specific
injective mappings can always be closed. This is the assertion of the Schroeder-
Bernstein theorem.

Theorem 1.4.3 (Schroeder-Bernstein). Let X and Y be sets. If there exists a
one-to-one mapping f : X → Y and a one-to-one mapping g : Y → X, then X and
Y have the same cardinality.

Plausibility argument. The rigorous proof of this theorem might be a hard sell,
and therefore it is deferred to an appendix for those who might be interested.
Instead, consider the following plausibility argument:

To help in thinking about the situation, we can think of the elements of X
as cats and the elements of Y as dogs. We say that each cat x ∈ X picks a dog
f(x) ∈ Y to chase, and different cats chase different dogs. Similarly, each dog y ∈ Y
picks a cat g(y) ∈ X to chase, and different dogs chase different cats. With each
dog and cat chasing a unique cat and dog, respectively, we note four possible types
of patterns, or chasing chains:

� Chasing chains that form a finite loop consisting of an even number of animals;
within such a loop, we match each cat with the dog it chases.

� Chasing chains that are doubly infinite, with no start and no end; within such
a chain, we match each cat with the dog it chases.

� Chasing chains that start with a cat, but have no end; within such chains, we
match each cat with the dog it chases.

� Chasing chains that start with a dog, but have no end; in such chains, we
match each cat with the dog chasing it.

Given these four possibilities, we may convince ourselves that the elements of X
and Y may be put into one-to-one correspondence. But the construction of such
a correspondence is not obvious. For example, the number of chasing chains of
each type is not known. As noted, this is best considered a plausibility argument.
If you are satisfied, it is perfectly fine, and the examples after the theorem are
recommended. �

The Schroeder-Bernstein theorem is an important tool in the study of cardi-
nality. We consider some examples.

Example 1.4.4. The real intervals [0, 1] and [0, 1) have the same cardinality. Let
f : [0, 1) → [0, 1] be the inclusion mapping, f(x) = x, and let g : [0, 1] → [0, 1) be
g(x) = x/2. Then f are g are both injective, hence [0, 1] and [0, 1) have the same
cardinality by Theorem 1.4.3. �

Theorem 1.4.3 and elementary functions can be used to show that any two of the
intervals (a, b), [a, b], (a, b], [a, b), (a,∞), [a,∞), (−∞, b), (−∞, b], and (−∞,∞)
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have the same cardinality. Stated more briefly, any two nontrivial real intervals are
in one-to-one correspondence.

Example 1.4.5. We show that (0, 1) and (−∞,∞) have the same cardinality. The
function f : (−π/2, π/2) → (−∞,∞) given by f(x) = tanx is strictly increasing,
hence one-to-one, and f is onto (−∞,∞). The function g : (0, 1) → (−π/2, π/2)
defined by g(x) = −π/2 + πx is a bijection. Hence, (0, 1) and (−∞,∞) have the
same cardinality since f ◦ g is a bijection. �

Definition 1.4.6. A set X is denumerable if it has the same cardinality as the
set N of natural numbers, that is, there exists a bijection h : N → X.

A set X is denumerable if and only if there is a bijection h : N → X. The
bijection h provides an enumeration or listing, of the set X, given by the sequence
(h1, h2, h3, . . .), where hk := h(k) for each k ∈ N. We say that X is enumerated by
the given sequence.

Example 1.4.7. Consider the bijection g : Z → N given earlier where g(n) = 2n
if n > 0, and g(n) = −2n+ 1 if n ≤ 0. Thus,

(0, 1,−1, 2,−2, 3,−3, . . .)
g−→ (1, 2, 3, 4, 5, 6, 7, . . .).

In fact, g−1 provides the enumeration of Z by mapping the sequence on the right,
which is N, one-to-one and onto Z, the sequence on the left. �

The next result says that denumerable sets frequently appear.

Proposition 1.4.8. Every infinite set S has a denumerable subset.

Proof. We define a denumerable subset D of S and give its enumeration. From
each nonempty subset of S we can select a specific element of that subset. For S it-
self, let x1 be the chosen element of S. For the subset S−{x1} = {x1}c, let x2 be the
chosen element. Suppose that we have selected elements x1, x2, x3, . . . , xn−1 such
that for each k = 2, . . . , n− 1, element xk ∈ {x1, . . . , xk−1}c = S − {x1, . . . , xk−1}.
Then from the subset S − {x1, . . . , xn−1} = {x1, . . . , xn−1}c, we select an element
xn. By induction we have defined a set {x1, x2, x3, . . .} of distinct elements of S
indexed by the set of positive integers. Then D = {x1, x2, x3, . . .} is a denumerable
subset of S. �

Proposition 1.4.9. If S is an infinite subset of N, then S is denumerable and
there is a unique enumeration of S, (k1, k2, k3, . . . , kn, kn+1, . . .) such that k1 <
k2 < k3 < · · · < kn < kn+1 < · · · .

Proof. There is a smallest element of S, which we denote by k1. Suppose we have
defined k1, k2, . . . , kn such that k1 < k2 < · · · < kn and such that if k ∈ S but
k /∈ {k1, k2, . . . , kn}, then k > kn. Then define kn+1 to be the smallest element of
S which is greater than kn. Then the mapping h(n) = kn, n ∈ N, gives the desired
enumeration of S. �

The next corollary explains why denumerable sets may be considered the small-
est infinite sets.
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Corollary 1.4.10. If D is a denumerable set and S is an infinite subset of D, then
S is denumerable.

Proof. Given any enumeration of D, its infinite subset S corresponds to an infinite
subset of N via the given enumeration. Then by the previous proposition, S is
denumerable. �

Corollary 1.4.11. If D is a denumerable set and f : D → S is onto S, then S is
either denumerable or finite.

Proof. Since f is onto S, for each y ∈ S there is some element xy ∈ D such that
f(xy) = y. Define g : S → D by g(y) = xy. Then g is one-to-one, because if
y, z ∈ S and g(y) = g(z), then

y = f(xy) = f(g(y)) = f(g(z)) = f(xz) = z.

Now g(S) ⊂ D and since g is one-to-one, g provides a bijection of S and g(S). If
g(S) is infinite, then g(S), and hence S, is denumerable by the previous corollary.
Otherwise, g(S), and hence S, is finite. �

Proposition 1.4.12. The Cartesian product N×N is denumerable.

Proof. Let h : N×N → N be the mapping

h(n,m) = 2n3m.

It can be shown that h is one-to-one (Exercise 1.4.1). Hence, by Proposition 1.4.9,
N×N is denumerable. �

Corollary 1.4.13. If D is a denumerable set, then the Cartesian product D ×D
is denumerable.

Proof. If h : N → D is a bijection, then so is the mapping H : N×N → D ×D
defined by H(n,m) = (h(n), h(m)). �

The proof of the next proposition is left to Exercise 1.4.2.

Proposition 1.4.14. If for each k ∈ N, Dk is a denumerable set, then the union
D =

⋃∞
k=1 Dk is denumerable.

Finally, we say that a set is countable if it is either finite or denumerable. In
either case, the set may be put into a one-to-one correspondence with a subset of
the counting numbers N. The context should make the meaning clear as to whether
a finite or infinite set is intended.

Exercises.

Exercise 1.4.1. Complete the proof of Proposition 1.4.12 by showing that the
mapping h : N × N → N given by h(n,m) = 2n3m is one-to-one. Hint : Use
the Fundamental Theorem of Arithmetic (the Unique Factorization Theorem for
positive integers).
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Exercise 1.4.2. Prove Proposition 1.4.14. Hint : Enumerate each of the sets Dk

as follows: D1 = (x11, x12, x13, . . .), D2 = (x21, x22, x23, . . .), and so on. Define
f : N×N → D by f(i, j) = xij and show that f is onto D =

⋃∞
k=1Dk. Then apply

Corollary 1.4.11.

Exercise 1.4.3. Suppose that for each k ∈ N, Dk is nonempty and is either a
finite or a denumerable set. Show that the union D =

⋃∞
k=1 Dk is denumerable.

Exercise 1.4.4. Let ∼ be an equivalence relation on a set M . Show that ∼
determines a partition of M into disjoint subsets, called the equivalence classes
relative to ∼, such that the elements within each class are all equivalent under the
relation, and M is the union of the equivalence classes.

1.5. Notes and References

The description of the Russell paradox in Exercise 1.1.1 is from Sagan [54]. The
Unique Factorization Theorem for positive integers referenced in Exercise 1.4.1 is
in Birkhoff and Mac Lane [4] or any modern algebra text.

Halmos [26] is an excellent and readable presentation of the essentials of set
theory. For more on basic logic and methods of proof, see Krantz [39].



Chapter 2

The Complete Ordered Field
of Real Numbers

The algebraic structure known as a field is an efficient way of organizing and ex-
pressing the properties of the rational numbers, the real numbers, and the complex
numbers, among other important number systems such as the finite fields that play
an important role in modern cryptography. The main goal of this chapter is to
explain the algebraic structure of fields and, in particular, the special structure of
the field of real numbers. The special structure of the real numbers is described in
the statement that the real number system is a complete ordered field. It will take
some space, time, and effort to explain the terms involved in that statement, but
the result will be a deeper understanding of the real numbers as the foundation for
all of modern analysis.

It might seem appropriate to define the real numbers before discussing their
properties. The real number field can be defined by means of constructions based
on the rational numbers. We give references later for the standard constructions.
Those constructions are important because they establish that the real number
system, endowed with its special properties needed for the success of calculus,
actually exists as a consistent number system. The rigorous construction of a
complete ordered field ensures that the definition we give of the real number field
is more than an empty exercise.

However, for an understanding of analysis, what is needed is an understanding
of the properties of the real numbers, and for that purpose we do not detour to
study the rigorous proof of existence and uniqueness of a complete ordered field. In
short, you can proceed to study the properties of the real numbers without worry
that the effort is an empty exercise. After all, you have previous experience with
the problem-solving power of calculus, so there must be something substantial at
the foundations. That something is the existence of a complete ordered field. The
properties of the field of real numbers are all presented in the axioms for a complete
ordered field, and these axioms appear in the first two sections of the chapter.

17
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Sections 2.3-2.7 explore the properties of the real numbers that are of fundamental
importance for analysis. For interested readers, Section 2.8 includes references for
the construction of a complete ordered field and provides encouragement for the
study of such a construction.

2.1. Algebra in Ordered Fields

Readers of this book have years of experience in dealing with the field operations
and properties of the rational numbers and the real numbers. A field is a set F
together with two binary operations, defined by functions A : F × F → F and
M : F × F → F called addition and multiplication, respectively, which satisfy the
axioms set out in items A1 - A4, M1 - M4, and D1 in the next subsection. We shall
denote the addition and multiplication operations on elements of F in the familiar
way indicated by A(x, y) = x+ y and M(x, y) = xy.

2.1.1. The Field Axioms. The axioms for addition in F are as follows:

A1. For all x, y ∈ F , x+ y = y + x. (commutativity)

A2. For all x, y, z ∈ F , (x+ y) + z = x+ (y + z). (associativity)

A3. There exists an element 0 ∈ F (an additive identity) such that x + 0 = x
for all x ∈ F .

A4. For every x ∈ F there is an element y ∈ F such that x+ y = 0.

The additive identity 0 inA3 is uniquely determined. Also, an additive inverse y for
x in A4 is uniquely determined by x, and we write it as −x, so that x+ (−x) = 0.

We can form finite sums for elements x1, x2, . . . , xn ∈ F by defining inductively

x1 + x2 + · · ·+ xn = (x1 + x2 + · · ·+ xn−1) + xn.

Finite sums do not depend on the ordering of the terms; one can give a proof by
induction of this fact, but we shall not do so. The sum x1 + x2 + · · · + xn can be
written using the concise and unambiguous summation notation

n∑
k=1

xk.

The axioms for multiplication in F are as follows.

M1. For all x, y ∈ F , xy = yx. (commutativity)

M2. For all x, y, z ∈ F , (xy)z = x(yz). (associativity)

M3. There exists an element 1 ∈ F (a multiplicative identity) different from
the additive identity 0, such that x1 = 1x = x for all x ∈ F .

M4. If x ∈ F and x 
= 0, there exists an element v ∈ F such that xv = vx = 1.
(multiplicative inverse)

The multiplicative identity 1 is unique. Given x ∈ F with x 
= 0, the multiplicative
inverse v of x in M4 is uniquely determined by x, and we write it x−1 or 1/x. In
a field, we can never divide by the additive identity (Exercise 2.1.1).
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We can form the product of finitely many elements x1, x2, . . . , xn ∈ F by defin-
ing inductively

x1x2 · · ·xn−1xn = (x1x2 · · ·xn−1)xn.

The product does not depend on the ordering of the terms; again, one can give a
proof by induction of this fact. The product x1x2 · · ·xn can be written using the
concise and unambiguous product notation

n∏
k=1

xk.

If n is a positive integer and x ∈ F , then we define xn = xx · · ·x =
∏n

k=1 x. If
a 
= 0 ∈ F , then we define a0 = 1, the multiplicative identity. Then for any integers
m,n ≥ 0 and a ∈ F ,

am+n = aman.

Also we define a−m = (a−1)m; with this definition, one can show that the law of
exponents am+n = aman holds for all integers m,n.

The axiom of distributivity relates addition and multiplication, asserting that
multiplication distributes over addition:

D1. For all x, y, z ∈ F , x(y + z) = xy + xz. (distributivity)

We observe that by the commutativity of multiplication, we also have

(y + z)x = x(y + z) = xy + xz = yx+ zx.

Example 2.1.1. The set Q of rational numbers, with the usual operations of
addition and multiplication, satisfies the field axioms and is therefore a field. �
Example 2.1.2. The set R of real numbers, which you may think of as the set
of decimal expansions if you like, with the usual operations of addition and mul-
tiplication you have always used, is assumed to be a field. (Later in the chapter,
we define decimal representations for the real numbers.) If q ∈ Q, then q is a real
number, hence R contains Q as a subset. (We show later in the chapter how this
containment follows from the field axioms and the order axiom discussed below.)
In fact, the addition and multiplication operations on R, when restricted to Q,
are exactly the operations of Q, so Q is a subfield of R. In the remainder of this
chapter, we shall identify the property or properties of R that distinguish it from
Q and allow us to do analysis. �

There are only two elements whose existence is specifically demanded by the
field axioms: the additive identity and the multiplicative identity. These two ele-
ments alone describe a particular field, as follows.

Example 2.1.3. The set Z2 = {0, 1} is made into a field by defining addition by
0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1, and 1 + 1 = 0, and defining multiplication by
(0)(0) = 0, (0)(1) = 0, (1)(0) = 0, and (1)(1) = 1. One can verify directly that the
field axioms hold. �

Here are some basic properties that follow from the field axioms. In any field,
(−1)x = −x, so the additive inverse of x equals the product of x and the additive
inverse of the multiplicative unit. Also, −(ab) = (−a)b = a(−b) follows easily from
the axioms and the uniqueness of additive inverses.
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Example 2.1.4. The field C of complex numbers is the set of ordered pairs (a, b),
where a, b ∈ R, with the operations of addition and multiplication for (a, b), (c, d) ∈
C defined by

(a, b) + (c, d) = (a+ c, b+ d)

and
(a, b)(c, d) = (ac− bd, bc+ ad),

respectively. Although it may not be tremendously exciting to do so, one can
check directly that both of these operations are commutative and associative, and
multiplication distributes over addition:

[(a, b) + (c, d)](e, f) = (a, b)(e, f) + (c, d)(e, f).

The additive identity is (0, 0). The additive inverse of (a, b) is (−a,−b). The
multiplicative identity is (1, 0), and the multiplicative inverse of (a, b) 
= (0, 0)
is (a/(a2 + b2),−b/(a2 + b2)). These facts can all be verified directly from the
stated definitions. Instead of doing that, we wish to show the reasonableness of
the definitions. Let us write a = (a, 0). If we set i = (0, 1), then by the definition
of multiplication, i2 = (0, 1)(0, 1) = (−1, 0) = −1. Again by the definition of
multiplication and our agreed notations, (0, b) = (b, 0)(0, 1) = bi. Thus, for any
(a, b) ∈ C, the definition of addition and our agreed notations allow us to write

(a, b) = (a, 0) + (0, b) = a+ bi.

One can now verify that the definition of multiplication is exactly the one needed
to ensure that if i2 = −1 and multiplication and addition are indeed commutative,
then (a + bi)(c + di) can be expanded by the usual rules to yield the product
(ac − bd) + (bc + ad)i = (ac − bd, bc + ad). Finally, if z = a + 0i = a, then
z is a real number, hence C contains R as a subset. In fact, the addition and
multiplication operations on C, when restricted to R, are exactly the operations of
R, by definition, so R is a subfield of C. �

2.1.2. The Order Axiom and Ordered Fields. Let F be a field and P ⊂ F a
subset that satisfies the following conditions:

O1. If x, y ∈ P , then x+ y ∈ P and xy ∈ P .

O2. For each x ∈ F , exactly one of the following is true:

x ∈ P, or x = 0, or − x ∈ P.

Then P is called a positive set.

An ordered field is a field F that contains a positive set P . The idea of a
positive set is that an order comparison between two elements of F only requires a
determination of whether an element is in the positive set, because in a field we have
additive inverses and therefore can subtract one element from another element. (Is
it true that b − a > 0, that is, is it true that b − a ∈ P?) We begin by learning a
little bit about the positive set P . First, if F is an ordered field with positive set P ,
and a ∈ F with a 
= 0, then a2 ∈ P . Here is the proof: If a 
= 0, then either a ∈ P
or −a ∈ P . If a ∈ P , then a2 ∈ P by the definition of a positive set. If −a ∈ P ,
then (−a)2 ∈ P , and (−a)2 = (−a)(−a) = (−1)(−1)a2 = −(−1)a2 = a2, so again
a2 ∈ P . Since 1 
= 0 in F and 12 = 1, we know that 1 ∈ P .

Other important properties of ordered fields include the following ones.
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The product of a positive element and a negative element of F must be negative:
If a ∈ P (a > 0) and −b ∈ P (b < 0), then a(−b) = (−a)b = −(ab) ∈ P , and hence
ab < 0.

In an ordered field, x ∈ P implies x−1 ∈ P . Here is the proof: If x ∈ P , then
x 
= 0, so x−1 exists and x−1 
= 0. If −x−1 ∈ P , then P contains

x(−x−1) = −(xx−1) = −1,

but this contradicts the fact that 1 ∈ P . Hence, x−1 ∈ P .

In order to derive further properties involving order, it is best to define the
usual order symbols <, >, ≤ and ≥ and work with them. In an ordered field, we
write a < b if and only if b + (−a) ∈ P . We also write b > a to mean a < b. In
particular, x > 0 if and only if x ∈ P . We write a ≤ b if and only if a = b (meaning
b− a = 0) or a < b.

Condition O2 implies that the positive set of an ordered field induces a total
ordering by ≤. Any ordered field is totally ordered.

Example 2.1.5. The set of positive rational numbers

Q+ = {p : p ∈ Q, p > 0}
is the set of positive elements of the rational number field Q. Q is totally ordered
by ≤, but not well ordered. �

Example 2.1.6. The set of positive real numbers

R+ = {r : r ∈ R, r > 0}
is the set of positive elements of the real number field R. R is totally ordered by
≤, but not well ordered. �

In an ordered field, we have seen that −1 is not an element of the positive set
P . This fact allows us to see that there is no possible positive set P for the field of
complex numbers. Thus, the complex field C is not an ordered field.

Proposition 2.1.7. The field C of complex numbers is not an ordered field. (No
positive set exists in C.)

Proof. Suppose C has a positive set. Since i2 = −1 and i2 is the square of a
nonzero element, −1 is an element of the positive set, which is a contradiction of
our earlier deduction that −1 is not in the positive set of an ordered field. Therefore
a positive set for C does not exist. �

Theorem 2.1.8. Let x, y and z be elements of an ordered field F with positive set
P . The following properties hold:

1. If x < y, then x+ z < y + z.

2. If x < y and z ∈ P , then xz < yz.

3. If x < y and −z ∈ P , then yz < xz.

4. If x < y, then x < (x+ y)/2 < y.

5. If x < y and y < z, then x < z.
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Proof. 1. Since x < y, y − x ∈ P . We want to show that (y + z) − (x + z) ∈ P .
But (y + z)− (x+ z) = y − x ∈ P , hence x+ z < y + z.

2. Since x < y, y− x ∈ P . Hence yz− xz = (y− x)z ∈ P since y− x and z are
positive elements. Part 3 is left as an exercise for the reader.

4. Using part 1 twice, we have 2x = x + x < x + y < y + y = 2y. Hence, on
multiplication by 2−1 ∈ P , two applications of part 2 imply that x < (x+y)/2 < y.

5. This follows from the transitivity of ≤. Or we can say that by hypothesis,
y − x ∈ P and z − y ∈ P , hence (z − y) + (y − x) = z − x ∈ P . �

We know that Q and R are ordered fields but C is not. Our next goal is to see
in what ways R and Q are different.

The earliest geometers knew that the hypotenuse of a right triangle having
two unit-length sides is incommensurate with the side, that is, the side cannot be
subdivided into a whole number of standard lengths, such that the ratio of the
unit-length side to the hypotenuse is an exact ratio of whole numbers. In modern
language, the real number

√
2 is not a rational number. We prove this now, but

before beginning the proof, we note that a positive integer is even if its square is
even (Exercise 2.1.5).

Lemma 2.1.9. There is no rational number x such that x2 = 2.

Proof. Suppose there exists a rational number x with x2 = 2. Write x = p/q with
p, q ∈ Z and suppose that p and q have no common integer factor (other than 1).
Then

2 = x2 = p2/q2 =⇒ 2q2 = p2.

From this we conclude that p2 is an even integer, so we may write p2 = 2k for a
positive integer k. But then q2 = p2/2 = 4k2/2 = 2k2 must also be even. So both
p2 and q2 are even. If the square of a positive integer is even, then the integer itself
is even. (The equivalent contrapositive statement is: If an integer is odd, then its
square is odd.) Thus both p and q are even, and this contradicts the assumption
that p and q have no common factor other than 1. �

Lemma 2.1.9 points out a specific deficiency of the rational number field that
we will return to later on. (There are many other gaps; for example, 3

√
2 is not

rational, and neither are π and the Euler number e.) For now we continue the
general discussion of properties of fields and, in particular, ordered fields.

Every ordered field F contains a copy of the natural numbers, under the iden-
tification

n ↔ n · 1 := 1 + · · ·+ 1︸ ︷︷ ︸
n terms

, n ∈ N,

where 1 is the multiplicative identity of F . In order for this statement to make useful
sense, we must show that all these elements are actually distinct, in an ordered
field. (Note that these elements in Z2 simply give the two elements 0, 1 ∈ Z2, since
1 · 1 = 1, 2 · 1 = 1 + 1 = 0, 3 · 1 = 1, and so on. But Z2 is not an ordered field.)

Theorem 2.1.10. In an ordered field, the elements n · 1, n ∈ N, that is, the
elements 1, 1 + 1, 1 + 1 + 1, . . . are all positive and distinct.
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Proof. Let A(n) be the statement A(n) :
(∑n

j=1 1
)
∈ P , where P is the positive

set of the ordered field. In the summation, the index runs through the positive
integers from 1 to n, and the term being summed is the multiplicative unit of the

field. Then A(1) is true since
∑1

j=1 1 = 1 ∈ P . Assume that A(n) :
(∑n

j=1 1
)
∈ P

is true. Then
n+1∑
j=1

1 =
( n∑

j=1

1
)
+ 1 ∈ P,

since P is closed under addition. By the induction principle, for each positive

integer n, statement A(n) is true, that is, for each n,
(∑n

j=1 1
)
∈ P .

In order to see that these elements are all distinct, consider the difference
between any two of them. The difference is either (i) one of these sums and hence
an element of P , or (ii) the additive inverse of one of these sums. In either case, an
element of P or the additive inverse of an element of P cannot be the zero element
of F . �

An immediate corollary of this theorem is that any ordered field is infinite.

We are now justified in making the identification

n ↔ n · 1 := 1 + · · ·+ 1︸ ︷︷ ︸
n terms

, n ∈ N,

where 1 is the multiplicative identity of F , and asserting that every ordered field
contains a copy of the natural numbers. With this understanding we write N ⊂ F .
Consequently, every ordered field F also contains a copy of the integers Z and the
rational numbers Q, since for any positive integers m and n in F , the elements
0, −m, and m/n = mn−1 are in F . It is with this understanding that we write
N ⊂ Z ⊂ Q ⊂ F , where F is any ordered field. In particular, the ordered field of
most interest to us is the field R of real numbers, and N ⊂ Z ⊂ Q ⊂ R.

We are assuming that bothR and Q satisfy the field axioms. The order relation
on Q is embedded in the order relation on R, and the positive set of Q is contained
in the positive set of R. It will be essential for us to isolate the way in which R
differs from Q, and that is the subject of the next section.

Exercises.

Exercise 2.1.1. No division by zero.
Prove: In a field, the additive identity 0 has no multiplicative inverse. Hint : Proof
by contradiction.

Exercise 2.1.2. Show that Z2 is not an ordered field.

Exercise 2.1.3. Prove property 3 of Theorem 2.1.8. Then prove the following
properties in an ordered field F as an extension of Theorem 2.1.8:

6. If x < 0, then 1/x < 0.

7. If xy > 0, then either (x > 0 and y > 0) or (x < 0 and y < 0).

8. If x2 + y2 = 0, then x = 0 and y = 0.

9. If x < y, then there are infinitely many elements z with x < z < y.
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Exercise 2.1.4. Let F be an ordered field and a ∈ F with a > 0. Prove: If a < b,
then for each positive integer n, an < bn.

Exercise 2.1.5. Show that a positive integer is even if its square is even. Hint :
The contrapositive statement: If a positive integer is odd, then its square is odd.

2.2. The Complete Ordered Field of Real Numbers

Many people identify the set R of real numbers with the set of all points on a
number line. We may also think of the real numbers as the collection of all decimal
numbers.1 This is a valid point of view, as we will see later. However, our main goal
in this section is to describe the property that distinguishes the rational number
field from the real number field, because it is this distinguishing property that
allows us to fill the gaps in the rational number line such as

√
2. To describe this

property, we need some additional concepts.

Definition 2.2.1. Let S be a subset of an ordered field F .

1. We say that S is bounded above if there is an element b ∈ F such that
s ≤ b for all s ∈ S, and b is then called an upper bound for S.

2. We say that S is bounded below if there is an element a ∈ F such that
a ≤ s for all s ∈ S, and a is then called a lower bound for S.

3. The set S is bounded if it is bounded above and bounded below.

The subset of the rational numbers defined by

S = {s ∈ Q : either s < 0, or s ≥ 0 and s2 < 2}
is nonempty, since 1 ∈ S. S is not bounded below, but it is bounded above. For
example, b = 2 is an upper bound for S: The proof is by contradiction, for if s ∈ S
and s > 2 = b, then s2 > 22 = 4, which contradicts the assumption that s ∈ S. So
we clearly have s ≤ b = 2 for all s ∈ S. In a similar way, one can show that b = 3/2
is also a rational upper bound for S, and so is 142/100 = 71/50. In fact, for any
rational number b which is an upper bound for S, there is another rational number
β which is an upper bound for S and β < b. In fact there is no least upper bound
for this set S of rational numbers.

Definition 2.2.2 (Supremum and Infimum). Let F be an ordered field and S ⊂ F .

1. If S is bounded above, then an element b ∈ F is the least upper bound or
supremum of S if b is an upper bound for S and b ≤ u for all upper bounds
u for S.

2. If S is bounded below, then an element m ∈ F is the greatest lower bound
or infimum for S if m is a lower bound for S and l ≤ m for all lower bounds
l for S.

If S is a nonempty set which has no upper bound, we may write supS = ∞,
and if S is nonempty and has no lower bound, we may write inf S = −∞. This is
a notational convenience.

1There is actually a certain restriction which we shall note later.
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Using the concept of least upper bound, it is possible to show that if F is an
ordered field and we define the set S as above, that is,

S = {s ∈ F : either s < 0, or s ≥ 0 and s2 < 2},
and if supS exists in F , then (supS)2 = 2. (This argument will be carried out in
the proof of Theorem 2.3.11 below.) However, since we have shown that there is no
rational number x such that x2 = 2, it follows that the set S, defined as a subset
of the field F = Q, does not have a least upper bound in Q.

If a least upper bound for S exists, then it must be unique. Indeed, if b1 and
b2 are least upper bounds for S, then we have b1 ≤ b2, since b2 is also an upper
bound for S, and b2 ≤ b1, since b1 is also an upper bound for S; hence, b1 = b2. If
a greatest lower bound for S exists, then it must be unique (Exercise 2.2.1).

The intervals (0, π] and (0, π) both have least upper bound π; it is the maximum
of (0, π], whereas (0, π) has no maximum. Standard terminology for the least upper
bound of S is the supremum of S, written supS.

The intervals [−π, 0) and (−π, 0) both have greatest lower bound −π; it is the
minimum of [−π, 0), whereas (−π, 0) has no minimum. Standard terminology for
the greatest lower bound of S is the infimum of S, written inf S.

The one remaining axiom of the real number field is the least upper bound
property of R.

LUB. (Least Upper Bound) Every nonempty subset S ⊂ R that is bounded
above has a least upper bound in R; that is, there is a real number b such
that b = supS.

The least upper bound property is often called the Completeness Axiom for R,
since it is this property of the real numbers that guarantees there are no gaps in
the real number line.

Definition 2.2.3. An ordered field F is called complete if it has the least upper
bound property.

The fields Q and R both satisfy the axioms for an ordered field, and R also
satisfies the least upper bound property. However, we have seen that Q is not a
complete ordered field, since the set

S = {s ∈ Q : either s < 0, or s ≥ 0 and s2 < 2}
is bounded above but does not have a least upper bound in Q.

We are assuming that the field of real numbers is complete, since we are as-
suming the least upper bound property for R. In the last analysis, this is perfectly
legitimate, but it may be somewhat unsatisfying. If you are one of the readers for
whom this assumption is unsatisfying, then congratulations to you and rest assured
that it is legitimate, because it is possible to show that a complete ordered field ex-
ists. In other words, the deductions we make from the least upper bound property
are not an empty exercise. A complete ordered field can be constructed, starting
from the rational field Q. Moreover, the constructed complete ordered field can be
represented by the more familiar decimal representation of numbers on the (real)
number line. We can establish the decimal representation based (ultimately) on
the least upper bound property. That is, the decimal representation depends on
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the least upper bound property and some of its consequences. We do not pause
here to construct R from Q and prove that R has the least upper bound property.
For some guidance and references for this construction, see the last section of this
chapter.

We will eventually see that there are several properties of R equivalent to the
least upper bound property. One of them is the greatest lower bound property of R.

GLB. (Greatest Lower Bound) Every nonempty subset S ⊂ R that is bounded
below has a greatest lower bound in R; that is, there is a real number m
such that m = inf S.

Indeed, it is not difficult to show that S is bounded below if and only if the set

−S := {−s : s ∈ S}
is bounded above, and in this case we have

(2.1) inf S = − sup(−S).

We conclude that if there exists a supremum for any set that is bounded above,
then there exists an infimum for any set that is bounded below. For example, the
interval S = (π, 4] has the number π as greatest lower bound, even though S has
no minimum number. For this set S, note that

inf S = inf(π, 4] = − sup[−4,−π) = − sup(−S).

On the other hand, if S is bounded above then −S is bounded below, and − inf(−S)
= sup(S). Thus, if there exists an infimum for any set that is bounded below, then
there exists a supremum for any set that is bounded above. See Exercise 2.2.4. It is
only necessary to assume one of these two properties, and then the other property
can be deduced as a theorem, as we have just argued.

We will continue to refer to the least upper bound property of R as the Com-
pleteness Axiom, the one additional axiom that makes R very different from Q.
The deepest and most interesting results about real valued functions of a real vari-
able depend on the least upper bound property. A study of the consequences of
this property will lead us to several more properties of R that are equivalent to
the least upper bound property, and we should view these equivalent properties as
different aspects or different expressions of the completeness of R.

The following result is a fundamental characterization of the least upper bound
and greatest lower bound for bounded subsets of an ordered field.

Theorem 2.2.4. Let S be a subset of the ordered field F .

1. An upper bound M of S is the least upper bound for S if and only if for every
positive element ε there is an element x ∈ S such that M − ε < x ≤ M .

2. A lower bound m of S is the greatest lower bound for S if and only if for every
positive element ε there is an element y ∈ S such that m ≤ y < m+ ε.

Proof. We prove statement 1 here and leave statement 2 to Exercise 2.2.3.

Suppose M = supS and suppose that there exists an ε0 ∈ F with ε0 > 0 such
that x ≤ M − ε0 for every x ∈ S. Then M − ε0 is an upper bound for S which
is strictly less than M , a contradiction of the definition of M . Thus M = supS
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implies that for every ε ∈ F with ε > 0 there is an element x ∈ S such that
M − ε < x ≤ M .

Now let M be an upper bound for S such that for every ε ∈ F with ε > 0
there is an element x ∈ S such that M − ε < x ≤ M . If M is not the least
upper bound for S, then there is an M0 < M such that M0 is an upper bound
for S, so that x ≤ M0 for all x ∈ S. Given ε = M − M0, there is an x ∈ S such
that M − ε = M − (M − M0) < x ≤ M , which says that M0 < x, contrary to
the assumption that M0 was an upper bound for S. This completes the proof of
statement 1. �

We end the section with some basic results on supremum and infimum.

Theorem 2.2.5. The following properties hold for the supremum and infimum of
subsets of real numbers:

1. Let B be a bounded set of real numbers. If α > 0, then

(2.2) sup{αb : b ∈ B} = α supB, inf{αb : b ∈ B} = α inf B.

2. If Γ is a given index set and sets A = {aγ : γ ∈ Γ}, B = {bγ : γ ∈ Γ} are
bounded, then

sup{aγ + bγ : γ ∈ Γ} ≤ supA+ supB,(2.3)

inf{aγ + bγ : γ ∈ Γ} ≥ inf A+ inf B.(2.4)

3. If Γ, Δ are given index sets and A = {aγ : γ ∈ Γ}, B = {bδ : δ ∈ Δ} are
bounded, then

sup{aγ + bδ : γ ∈ Γ, δ ∈ Δ} = supA+ supB,(2.5)

inf{aγ + bδ : γ ∈ Γ, δ ∈ Δ} = inf A+ inf B.(2.6)

Proof. We prove only (2.4) and (2.6) and leave the remaining properties for Ex-
ercise 2.2.7.

Proof of (2.4): From the definition of infimum, for every γ ∈ Γ we have aγ ≥
inf A and bγ ≥ inf B, hence aγ + bγ ≥ inf A+inf B. Now (2.4) follows immediately.

Proof of (2.6): By the definition of inf A and inf B, the right-hand side of (2.6)
must be a lower bound for the set {aγ + bδ : γ ∈ Γ, δ ∈ Δ}. Given any ε > 0, there
is an aγ0

∈ A such that

aγ0
< inf A+ ε/2

and a bδ0 ∈ B such that

bδ0 < inf B + ε/2.

Then aγ0
+ bδ0 is an element of {aγ + bδ : γ ∈ Γ, δ ∈ Δ} such that

aγ0
+ bδ0 < inf A+ inf B + ε.

By Theorem 2.2.4, the greatest lower bound of {aγ + bδ : γ ∈ Γ, δ ∈ Δ} must be
inf A+ inf B. �
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Exercises.

Exercise 2.2.1. Let S be a subset of an ordered field with S bounded below. Show
that if a greatest lower bound for S exists, then it must be unique.

Exercise 2.2.2. Show: If a set contains one of its upper bounds, then that bound
must be the supremum of the set. If a set contains one of its lower bounds, then
that bound must be the infimum of the set. A finite set contains its supremum and
infimum.

Exercise 2.2.3. Prove statement 2 of Theorem 2.2.4.

Exercise 2.2.4. Prove: If S is a set which is bounded above and bounded below,
then inf(−S) = − supS and sup(−S) = − inf S.

Exercise 2.2.5. Prove: If S is nonempty and bounded, then inf S ≤ supS. What
must be true of S if S is nonempty and inf S = supS?

Exercise 2.2.6. Let F = {a+ b
√
2 : a, b ∈ Q}, considered as a subset of R. Show

that F is a field which contains an element x such that x2 = 2. (This example
should dispel any idea that the real numbers are introduced merely to have a field
in which 2 has a positive square root.)

Exercise 2.2.7. Prove the parts of Theorem 2.2.5 not proved in the text.

2.3. The Archimedean Property and Consequences

We have seen that N ⊂ Z ⊂ Q ⊂ R, where R is the complete ordered field of real
numbers. We wish to understand the distribution of the integers and the rationals
within the field of real numbers. Understanding the distribution of the integers Z
within any ordered field (and hence within Q and R) requires no new concepts, so
we deal with that issue first.

Lemma 2.3.1. Let F be an ordered field. For any integer n, there are no integers
in the open interval (n, n+ 1) ⊂ F .

Proof. For the case n = 0, note that every positive integer k ∈ F satisfies k ≥ 1.
(This can be established by induction.) So the interval (0, 1) contains no positive
integer, and since it clearly contains no negative integer, the interval (0, 1) contains
no integer at all. Now for the case of general n. Suppose there exists an integer k
in the interval (n, n+ 1). Then

n < k < n+ 1 =⇒ 0 < k − n < 1.

Thus k − n is an integer in the interval (0, 1), which contradicts the conclusion
we just reached above. The contradiction is due to the assumption that there
existed an integer k in the interval (n, n+1). So the interval (n, n+1) contains no
integers. �

In R, any bounded subset S consisting only of integers must contain both supS
and inf S, as the next lemma shows.

Lemma 2.3.2. If S ⊂ Z∩R and S is bounded above, then S contains a maximum
element; that is, supS ∈ S. If S ⊂ Z ∩ R is bounded below, then S contains a
minimum element; that is, inf S ∈ S.
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Proof. If S ⊂ Z is bounded above, then m = supS ∈ R exists by the completeness
axiom. By definition of supremum, m−1 is not an upper bound for S, so there is an
integer n in S such that m− 1 < n ≤ m. Then m < n+1, and since m is an upper
bound for S, we must have S ⊂ (−∞,m]. By Lemma 2.3.1, there is no integer in
the interval (n, n+1), so there is no element of S in (n, n+1). Since n ≤ m < n+1,
n itself is an upper bound for S, and therefore we have n = m = supS ∈ S.

If S ⊂ Z is bounded below, then −S = {−s : s ∈ S} is bounded above, hence
sup(−S) = −s0 ∈ −S for some s0 ∈ S, by the argument above. But then

inf S = − sup(−S) = −(−s0) = s0,

which shows that S contains its minimum element. �

In general, the supremum of a set that is bounded above need not be an element
of that set, since the set need not contain a maximum element. The infimum of a
set that is bounded below need not be an element of that set, since the set need
not contain a minimum element. Remember that Lemma 2.3.2 is about bounded
sets of integers.

There is a property of Q that is also possessed by R. This is the Archimedean
property, which holds for some, but not all, ordered fields. The Archimedean prop-
erty is the key to understanding the distribution of Q within R.

Definition 2.3.3. An ordered field F is called Archimedean if for every x ∈ F
there is an n ∈ N such that n > x.

The Archimedean property asserts, for those fields F that have it, that the set
N within F is unbounded. There is no upper bound for N in an Archimedean field.

Proposition 2.3.4. The rational field Q is Archimedean.

Proof. It is sufficient to consider positive x = p/q ∈ Q with both p > 0 and q > 0.
Since q ≥ 1, we have x = p/q ≤ p, and hence x = p/q < p+ 1 ∈ N. �

Example 2.3.5. Let S = { 1
2 ,

1
3 ,

1
4 , . . . ,

1
n , . . .} be considered as a subset of the

rational field Q. Then inf S exists and inf S = 0. In order to see this, we use the
Archimedean property of Q and apply statement 1 of Theorem 2.2.4. For every
ε ∈ Q with ε > 0, there is an element 1/n ∈ S such that 0 < 1/n < 0 + ε; this is
true since for any given ε ∈ Q with ε > 0 there is an n ∈ N such that n > 1/ε.
Note that 0 = inf S /∈ S. �

The Archimedean property of Q is an easy consequence of the order properties
in Q. We want to show that R is also Archimedean; in fact, it will be essential
for us to know this. The Archimedean property of R follows from the least upper
bound property of R and Lemma 2.3.2.

Theorem 2.3.6. The field R of real numbers is Archimedean.

Proof. The proof is by contradiction. Suppose that R is not Archimedean. Then
there is an element x ∈ R such that n ≤ x for all n ∈ N. Then N is a bounded
subset of R and x is an upper bound for N. By Lemma 2.3.2,

n0 := supN ∈ N,
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and therefore n ≤ n0 for every n ∈ N. But n0 + 1 ∈ N, and n0 + 1 > n0, which is
a contradiction of the fact that n0 = supN. Thus R is Archimedean. �

It is the Archimedean property of R that allows us to make the following
statement: Given any real ε > 0 there exists a positive integer n such that 1/n < ε.
(Given ε > 0, there is an n such that 1/ε < n by the Archimedean property, and
hence 1/n < ε.)

It is clear from Lemma 2.3.1 that if n is an integer, then the real interval
[n, n + 1) contains exactly one integer, namely n. It is also true that for any real
number α, the real interval [α, α+ 1) contains exactly one integer. The proof calls
on the Archimedean property of the real numbers.

Theorem 2.3.7. For any real number α, the interval [α, α + 1) contains exactly
one integer.

Proof. Let
S = {n ∈ Z : n < α+ 1}.

Since −(α+ 1) is a real number, the Archimedean property implies that there is a
positive integer n such that n > −(α + 1), and thus −n < α + 1. Since −n is an
integer, S is nonempty. Since S is bounded above by α + 1, Lemma 2.3.2 implies
there is a maximum member m of S. If m < α, then m+ 1 < α+ 1, so m+ 1 ∈ S,
which contradicts the fact that m is the largest member of S. Thus, m ≥ α and
the integer m satisfies α ≤ m < α+ 1.

Now suppose there are integers m1 and m2 with α ≤ m1 < m2 < α+ 1. Then
m2 −m1 > 0. Since m1 ≥ α and m2 < α+ 1,

0 < m2 −m1 < (α+ 1)− α = 1,

which says that m2 − m1 is an integer in the interval (0, 1), a contradiction of
Lemma 2.3.1. So there is exactly one integer in the interval [α, α+ 1). �

We can now describe the distribution of the rational numbers and the irrational
numbers along the real number line.

Definition 2.3.8. A subset S of the real numbers is dense in R if for any two
real numbers a < b, there is an s ∈ S such that a < s < b.

A statement equivalent to Definition 2.3.8 is that a subset S ⊆ R is dense in
R if every nonempty open interval (a, b) ⊆ R intersects S.

We will prove the existence of the real number square roots
√
2 and −

√
2 later

in the section; we know that they are irrational numbers. The next theorem shows
that the set Q of rational numbers is dense in R, and that as a consequence, the
set I of irrational numbers is also dense in R.

Theorem 2.3.9. The complete ordered field of real numbers has the following prop-
erties:

1. (The Density of Rationals): For any two real numbers a < b, there is a rational
number q such that a < q < b.

2. (The Density of Irrationals): For any two real numbers a < b, there is an
irrational number x such that a < x < b.
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Proof. (The Density of Rationals): Given real numbers a and b with a < b, let
δ = b−a > 0. By the Archimedean property, there is a natural number n such that
n(b − a) > 1. By Theorem 2.3.7 there is an integer m in the interval [nb − 1, nb).
Since n 
= 0,

nb− 1 ≤ m < nb =⇒ b− 1/n ≤ m/n < b.

Since 1/n < b− a, −1/n > a− b, so that

a = b+ (a− b) < b− 1/n ≤ m/n < b,

which says that the rational number m/n is in the interval (a, b).

(The Density of Irrationals): The density of the irrationals follows from the
density of the rationals together with the fact that irrational numbers exist. To see
this, let a, b satisfy a < b. Now

√
2 > 0, hence 1/

√
2 > 0, so a/

√
2 < b/

√
2. By the

density of the rationals, there is a rational number q such that a/
√
2 < q < b/

√
2.

Hence, a < q
√
2 < b. The number q

√
2 must be irrational, since it is the product

of a rational and an irrational number. �

The proof of the density of the rationals and the irrationals should make us
pause and ponder the result. It is impossible for us to minimize the importance of
the Archimedean property or the existence of even a single irrational number.

A few final thoughts on the Archimedean property are in order before we move
on to the absolute value function and its basic properties.

An Archimedean ordered field need not be complete. The rational field Q is
an example.

There exist ordered fields that are not Archimedean. They play no role in this
book. However, the interested reader can see Exercise 2.3.2 for an example.

We now discuss the absolute value function on an ordered field F . The absolute
value of a ∈ F , denoted |a|, is defined by

|a| :=
{

a if a ≥ 0,
−a if a < 0.

By considering the cases a < 0 and a ≥ 0, it should be clear that we may write
±a ≤ |a| for any a ∈ F . The next theorem lists the main properties of the absolute
value function.

Theorem 2.3.10. The absolute value in an ordered field F has the following prop-
erties for a, b ∈ F :

1. |a| ≥ 0, and |a| = 0 if and only if a = 0;

2. |ab| = |a||b|;
3. |a+ b| ≤ |a|+ |b| (the triangle inequality);

4.
∣∣|a| − |b|

∣∣ ≤ |a+ b| (the reverse triangle inequality).

Proof. 1. If a = 0, then |a| = 0, by definition. If a 
= 0, then |a| > 0, by the
two cases in the definition. Now given that |a| ≥ 0, the contrapositive of the last
statement amounts to saying that if |a| = 0, then a = 0.
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2. Consider cases. If a > 0 and b > 0, then ab > 0, hence |ab| = ab = |a||b|. If
either a = 0 or b = 0, then ab = 0, so |ab| = 0 = |a||b|. If a < 0 and b > 0, then
ab < 0, so |ab| = −ab = |a||b|. A similar argument applies if a > 0 and b < 0.

3. If a + b > 0, then |a + b| = a + b ≤ |a| + |b| since a ≤ |a| and b ≤ |b|. If
a+ b < 0, then |a+ b| = −(a+ b) = −a− b ≤ |a|+ |b| since −a ≤ |a| and −b ≤ |b|.
If a+ b = 0, then |a+ b| = 0 ≤ |a|+ |b| since |a| ≥ 0 and |b| ≥ 0.

4. We have a = a+ b− b, so |a| ≤ |a+ b|+ | − b| = |a+ b|+ |b|, using statement
3. Consequently, |a| − |b| ≤ |a + b|. Now reverse the roles of a and b, and write
b = b+ a− a. Then |b| ≤ |a+ b|+ |a|, and hence |b| − |a| ≤ |a+ b|. The two results
together yield ||a| − |b|| ≤ |a+ b|. �

Theorem 2.3.10 applies to R since R is ordered.

We have seen that there is no rational number x such that x2 = 2. The
completeness of the real number field guarantees that there is a real number solution
to this equation. The proof of this result uses the algebraic properties of a field and
the Archimedean property of the real numbers.

Theorem 2.3.11. There exists a positive real number x such that x2 = 2.

Proof. Define the set

S = {s ∈ R : s ≥ 0 and s2 ≤ 2}.

S is nonempty, since 1 ∈ S. S is bounded above by 3, for if s ∈ S and s > 3, then
s2 > 32 = 9, a contradiction of s2 ≤ 2. Therefore s ∈ S implies s ≤ 3. We want to
show that supS is the desired positive square root of 2. Now let r = supS, which
exists by the least upper bound property. The three possibilities are that r2 < 2,
r2 > 2, or r2 = 2. We show that the first two options cannot occur.

Suppose that r2 < 2, and let δ = 2− r2 > 0. In order to reach a contradiction,
we want to show that there is a positive integer m such that (r+ 1

m )2 < 2. By the
binomial theorem, for any positive integer m we have(

r +
1

m

)2
= r2 + 2r

1

m
+

1

m2
.

By the Archimedean property of R, there exists a positive integer m such that

2r

δ/2
< m and

1

δ/2
< m < m2.

Hence,

(2.7) 2r
1

m
+

1

m2
<

δ

2
+

δ

2
= δ,

and we have (
r +

1

m

)2
= r2 + 2r

1

m
+

1

m2
< r2 + δ = 2.

But this says that r + 1
m ∈ S and thus contradicts r = supS. We may conclude

that r2 ≥ 2.
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If r2 > 2, then we let δ = r2−2 > 0. One can then show that there is a positive
integer m such that (r− 1

m )2 > 2: To see this, note that for any positive integer m,(
r − 1

m

)2
= r2 − 2r

1

m
+

1

m2
> r2 −

(
2r

1

m
+

1

m2

)
,

and, as above, we may choose m such that (2.7) holds, and hence(
r − 1

m

)2
≥ r2 −

(
2r

1

m
+

1

m2

)
> r2 − δ = 2.

But this implies that r − 1
m is an upper bound for S (for if not, then there is an

s ∈ S such that r− 1
m < s and then (r− 1

m )2 < s2 ≤ 2). However, r− 1
m < r, and

r is the least upper bound for S. This contradiction rules out the option r2 > 2.

The only remaining possibility is that r2 = 2. This proves the existence of a
positive square root of 2. Uniqueness follows easily from the fact that 0 < x < y
implies x2 < y2. �

The positive real number x such that x2 = 2 is not rational. Note that −x also
satisfies (−x)2 = 2, since (−x)(−x) = x2 = 2. Of course we write x =

√
2 and

−x = −
√
2. (The use of the radical sign as a root notation is defined more generally

by a Remark after Theorem 2.3.12.) Theorem 2.3.11 confirms the existence of real

numbers that are not rational, as
√
2 and −

√
2 are not rational. If x is a real number

and x is not rational, then x is called an irrational number. (We anticipated this
proof of existence of irrationals in Theorem 2.3.9 when we proved the density of the
rationals and the irrationals.) We denote the set of irrational real numbers by I.
Thus, I = R−Q and R = Q ∪ I.

The argument given to prove Theorem 2.3.11 actually shows that if F is an
ordered field, and

S = {s ∈ F : either s < 0, or s ≥ 0 and s2 ≤ 2},
and if supS exists in F , then (supS)2 = 2. However, since we have shown that
there is no rational number x such that x2 = 2, it follows that the bounded set
S ⊂ Q = F does not have a least upper bound in Q. Thus Q is not complete; Q
does not have the least upper bound property.

We now apply the least upper bound property of the field of real numbers to
prove the existence of n-th roots.

Theorem 2.3.12. If a is a real number such that a ≥ 0 and n is a positive integer,
then there exists a unique real number r > 0 such that rn = a.

Proof. The unique n-th root of a = 0 is, of course, r = 0. Now assume a > 0.
Define the set

S = {s ∈ R : s ≥ 0 and sn ≤ a}.
We want to show that S is bounded above and supS is the desired n-th root of a.
The number a+ 1 is an upper bound for S. For if not, then there is an s ∈ S such
that s > a+ 1, which implies sn > (a+ 1)n ≥ 1 + na > a by Bernoulli’s inequality,
and this contradicts the definition of S. Now let r = supS. The three possibilities
are that rn < a, rn > a, or rn = a. We show that the first two options cannot
occur.
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Suppose that rn < a, and let δ = a− rn > 0. In order to reach a contradiction,
we want to show that there is a positive integer m such that (r+ 1

m )n < a. By the
binomial theorem, for any positive integer m we have(

r +
1

m

)n
=

n∑
k=0

( n
k

)
rk

1

mn−k
= rn +

n−1∑
k=0

( n
k

)
rk

1

mn−k
.

By the Archimedean property of R, for each integer k in the range 0 ≤ k ≤ n− 1
there exists a positive integer mk such that( n

k

)
rk

δ/n
< mk < mn−k

k .

Hence, for k = 0, 1, . . . , n− 1, ( n
k

)
rk

1

mn−k
k

<
δ

n
.

By choosing m = max{m0,m1, . . . ,mn−1}, we have(
r +

1

m

)n
= rn +

n−1∑
k=0

( n
k

)
rk

1

mn−k
≤ rn + n

δ

n
= rn + δ = a.

But this says that r + 1
m ∈ S, and thus contradicts r = supS. We may conclude

that rn ≥ a.

If rn > a, then we let δ = rn − a > 0. One can then show that there is a
positive integer m such that (r − 1

m )n > a. (See Exercise 2.3.6.) But this implies

that r − 1
m is an upper bound for S (for if not, then there is an s ∈ S such that

r − 1
m < s and then (r − 1

m)n < sn ≤ a). However, r − 1
m < r, and r is the least

upper bound for S. This contradiction rules out the option rn > a.

The only remaining possibility is that rn = a. This proves the existence of a
positive n-th root of a. Uniqueness follows easily from the fact that 0 < x < y
implies xn < yn. �
Remark (Radical Sign Notation for n-th Roots). The unique n-th root of a number
a ≥ 0 may be written using the common radical sign notation as n

√
a.

Corollary 2.3.13. If a < 0 and n is an odd positive integer, then there exists a
unique real number b < 0 such that bn = a.

Proof. The positive number |a| = −a has a unique n-th root r, with rn = |a| = −a
and r > 0. Let b = −r. Then bn = (−1)nrn = −rn = −(−a) = a. The proof of
uniqueness is left to the reader. �

We summarize the discussion so far with the following definition.

Definition 2.3.14 (Roots). Let n be a positive integer.

1. If x ≥ 0, then we define x1/n to be the unique nonnegative real number y such
that yn = x.

2. If x is real and n is odd, then x1/n is the unique real number y such that
yn = x.
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We can now define power expressions xr for rational r. If x is real and n is a
positive integer, then, provided x1/n is defined and x1/n 
= 0, we write

x−1/n =
1

x1/n
.

If x is a real number and r is rational, say r = p/q where p, q ∈ Z and p and q have
no common factors other than 1 (so r is in lowest terms), we define

xr = (x1/q)p,

provided x1/q is defined. With these definitions, the usual laws of rational exponents
hold. Instead of listing these laws here, the reader can view them in Section 7.5,
where the definition of br, for b > 0, is extended to arbitrary real exponents r.

We turn to the complex field C for a moment. Even though C is not an ordered
field, there is a very useful function on C that has the same basic properties as the
absolute value of real numbers. This absolute value function for C must be defined
without reference to an order relation. If z = a+ bi ∈ C, then define

|z| = |a+ bi| =
√
a2 + b2.

The real number |z| is called the absolute value of z (or the modulus of z). If
we think of z = a + bi as the point (a, b) in the coordinate plane, then |z| is the
Euclidean distance from (a, b) to the origin. If z is real, that is, z = a + 0i, then

one can verify that |z| =
√
a2 = |a|.

The conjugate of the complex number z = a + bi is denoted z̄ and is defined
by z̄ = a− bi. Geometrically, z̄ is the reflection of z in the x-axis of the coordinate
plane. If z = a+ bi, then

zz̄ = (a+ bi)(a− bi) = a2 + b2 + 0i = a2 + b2.

Consequently, if z = a+ bi 
= 0, then

z−1 =
1

z
=

z̄

zz̄
=

a− bi

a2 + b2
=

a

a2 + b2
− bi

a2 + b2
,

which confirms the formula stated in Example 2.1.4 for the multiplicative inverse
of a nonzero complex number.

Before proceeding, we prove explicitly a simple result that will be used repeat-
edly.

Lemma 2.3.15. Let L be a real or complex number. If |L| ≤ ε for every ε > 0,
then L = 0.

Proof. Clearly |L| ≥ 0 by the definition of absolute value. If |L| > 0, then take
ε = |L|/2. By hypothesis, |L| ≤ |L|/2, hence 2|L| ≤ |L|, but |L| > 0 implies that
2 ≤ 1, which is a contradiction. Hence |L| = 0, so L = 0. �

Exercises.

Exercise 2.3.1. Prove: Given any real number ε > 0 there exists a positive integer
n such that 1/2n < ε.
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Exercise 2.3.2. Let Q[x] denote the collection of rational expressions of the form
f(x)/g(x), where

f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0, where n ∈ N,

g(x) = bmxm + bm−1x
m−1 + · · ·+ b1x+ b0, where m ∈ N, bm 
= 0,

ai, bj ∈ Q, and f(x), g(x) have no linear factor in common.

(a) Show that Q[x] is a field.

(b) Show that Q[x] is ordered by the positive set P consisting only of those el-
ements f(x)/g(x) for which the product of the lead coefficients of f(x) and
g(x) is positive, that is, anbm > 0.

(c) Show that Q[x] does not have the Archimedean property.

Exercise 2.3.3. Show that for all a, b in an ordered field, |a − b| ≤ |a| + |b| and
−|a| ≤ a ≤ |a|. Given that −|a| ≤ a ≤ |a| and −|b| ≤ b ≤ |b|, add the corresponding
parts of these inequalities to obtain

−|a| − |b| ≤ a+ b ≤ |a|+ |b|,
and show that this gives another proof of the triangle inequality.

Exercise 2.3.4. Show that properties 1-4 of Theorem 2.3.10 hold for the absolute
value of complex numbers.

Exercise 2.3.5. Prove by induction: For any positive integer n and any real num-
bers a1, a2, . . . , an, |a1 + a2 + · · ·+ an| ≤ |a1|+ |a2|+ · · ·+ |an|.

Exercise 2.3.6. Show that if rn > a, then there is a positive integer m such that
(r − 1

m)n > a. Hint : For any positive integer m,(
r − 1

m

)n
=

n∑
k=0

( n
k

)
rk

(−1)n−k

mn−k
≥ rn −

n−1∑
k=0

( n
k

)
rk

1

mn−k
.

Exercise 2.3.7. Prove: If x ∈ Q and y ∈ I, then x + y ∈ I. If x ∈ Q, x 
= 0, and
y ∈ I, then xy ∈ I.

2.4. Sequences

Many of the basic concepts of analysis involve processes of approximation. A fun-
damental tool for discussing approximation is the concept of a sequence, and a solid
understanding of the convergence of sequences will enable us to understand other
limit processes that occur later.

Recall the definition of a sequence in a set X (Definition 1.3.6). A sequence
in a field F is a function a : N → F . A sequence will generally be indicated by
writing (ak). (Recall that we distinguish the sequence (ak) from the range of the
sequence, {a(k) : k ∈ N}.)

We present the common basic properties of sequences in any of the fields of
essential interest to us: Q, R andC. Most of the properties we present for sequences
also hold for sequences in C, since they depend on an absolute value function to
measure distance between elements. We just need to remember that C is not
ordered.
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The values of a sequence inherit a natural ordering from the ordering of the
natural numbers. The notation ak indicates the particular value of the k-th element
of a sequence with respect to this ordering, whereas the full ordered sequence is
indicated by writing (ak); however, we may occasionally write “the sequence ak”
and then the meaning is clear. More complete notations, such as (ak), (ak)

∞
k=1 or

(ak)
∞
1 , may be used for sequences if it is essential to indicate the starting index.

Definition 2.4.1. A sequence (ak) in R has limit L ∈ R if for every real ε > 0
there exists a natural number M = M(ε) such that if k ≥ M , then |ak − L| < ε.
We indicate the limit by writing limk→∞ ak = L, and we also say that the sequence
converges to L or is convergent (to L).

Although the complex fieldC is not an ordered field, the absolute value function
allows a similar definition for complex number sequences: A sequence (ak) in C has
limit L ∈ C if for every real ε > 0 there exists a natural number M = M(ε) such
that if k ≥ M , then |ak − L| < ε.

It is essential to know that if a real or complex sequence has a limit, then the
limit is uniquely determined.

Theorem 2.4.2. A sequence of real or complex numbers that converges has a
unique limit.

Proof. Let (ak)
∞
k=1 be a real or complex sequence that converges to a limit L1, that

is, limk→∞ ak = L1. Suppose there is another number L2 such that limk→∞ ak =
L2. We want to show that L1 = L2.

Choose any ε > 0. Since limk→∞ ak = L1, there is an N1(ε/2) > 0 such that

|ak − L1| < ε/2 for all k ≥ N1(ε/2).

Since limk→∞ ak = L2, there is an N2(ε/2) > 0 such that

|ak − L2| < ε/2 for all k ≥ N2(ε/2).

Then for all k ≥ N(ε) := max{N1(ε/2), N2(ε/2)},
|L1 − L2| = |L1 − ak + ak − L2| ≤ |L1 − ak|+ |ak − L2| < ε/2 + ε/2 = ε.

Since ε > 0 was arbitrary, we conclude that |L1 − L2| = 0, by Lemma 2.3.15. �

Instead of writing limk→∞ ak = L, we may sometimes indicate this limit by
writing

ak → L as k → ∞,

or sometimes simply by ak → L, when it is understood that k → ∞. If a sequence
has no limit, then we say that the sequence diverges, or is a divergent sequence.

Here is a simple, but very important, example of a convergent sequence.

Example 2.4.3. The real number sequence (1/n), n ∈ N converges with limit 0.
We must use the Archimedean property of R. Given ε > 0, there is an M ∈ N such
that 1/M < ε, because 1/ε > 0, and thus there is an M ∈ N such that M > 1/ε by
the Archimedean property. Then for k ≥ M we have |1/k − 0| = 1/k < 1/M < ε.
Since ε > 0 was arbitrary, limn→∞ 1/n = 0. �
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We say that a set S of real numbers is bounded if there is a real number M
such that |x| ≤ M for all x ∈ S. A sequence (ak) in R or C is bounded if the
range of the sequence is a bounded set. Thus (ak) is a bounded sequence if and
only if there is a real number M such that |ak| ≤ M for each k.

Theorem 2.4.4. A sequence of real or complex numbers that converges is bounded.

Proof. Suppose (ak) is a sequence that converges to the limit L. Consider a specific
value of ε > 0, say ε = 1. There is an N(ε) = N(1) such that

|ak − L| < 1 for all k ≥ N(1).

Since |ak| − |L| ≤ |ak − L| we have

|ak| ≤ |L|+ 1 for all k ≥ N(1).

Now let

M := max
{
|L|+ 1, |a1|, |a2|, . . . , |aN(1)|

}
.

Then for each k ∈ N, |ak| ≤ M , so the sequence (ak) is bounded. �

Limit calculations routinely use the following results on constant multiples,
sums, products, and quotients of convergent sequences.

Theorem 2.4.5. Let (ak)
∞
1 and (bk)

∞
1 be convergent sequences (in R or C), with

lim
k→∞

ak = a and lim
k→∞

bk = b.

Then the following statements are true:

1. If c is any real or complex constant, then the sequence c(ak) := (cak) is con-
vergent, and

lim
k→∞

cak = ca = c lim
k→∞

ak.

2. The sequence (ak + bk)
∞
1 is convergent, and

lim
k→∞

(ak + bk) = a+ b = lim
k→∞

ak + lim
k→∞

bk.

3. The sequence (akbk)
∞
1 is convergent, and

lim
k→∞

(akbk) = ab = [ lim
k→∞

ak][ lim
k→∞

bk].

4. If b 
= 0, then the sequence (ak/bk)
∞
1 is convergent, and

lim
k→∞

ak
bk

=
a

b
=

limk→∞ ak
limk→∞ bk

.

Proof. We prove statements 2 and 3 here, and leave statements 1 and 4 to Exercise
2.4.1.

2. Let ε > 0. By hypothesis, there is an N1 = N1(ε) such that if k ≥ N1, then
|ak − a| < ε/2, and there is an N2 = N2(ε) such that if k ≥ N2, then |bk − b| < ε/2.
Thus, if k ≥ max{N1, N2}, then

|ak + bk − (a+ b)| = |ak − a+ bk − b|
≤ |ak − a|+ |bk − b| < ε

2
+

ε

2
= ε.

Since ε > 0 is arbitrary, this shows that limk→∞(ak + bk) = a+ b.
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3. By Theorem 2.4.4, there are bounds M1 > 0, M2 > 0 such that |ak| ≤ M1

and |bk| ≤ M2 for all k. We estimate as follows:

|akbk − ab| = |akbk − abk + abk − ab|
≤ |ak − a||bk|+ |a||bk − b|
≤ |ak − a|M2 +M1|bk − b|.

Given ε > 0, there is an N1 = N1(ε) such that k ≥ N1 implies |ak − a| < ε/(2M2),
and there is an N2 = N2(ε) such that k ≥ N2 implies |bk − b| < ε/(2M1). Then
k ≥ max{N1, N2} implies

|akbk − ab| < ε

2M2
M2 +M1

ε

2M1
= ε.

Therefore limk→∞(akbk) = ab = [limk→∞ ak][limk→∞ bk]. �

Limit computations often require some preliminary estimates. A comparison
result such as the following one is often useful.

Theorem 2.4.6 (The Squeeze Theorem). Let (ak), (bk) and (ck) be sequences of
real numbers such that for each k,

ak ≤ bk ≤ ck.

If limk→∞ ak = limk→∞ ck = L for some real number L, then

lim
k→∞

bk = L.

Proof. Write bk − L = bk − ak + ak − L. For each k, ak ≤ bk ≤ ck, hence

|bk − L| ≤ |bk − ak|+ |ak − L| ≤ |ck − ak|+ |ak − L|.
Since ck − ak = ck − L+ L− ak, we may also write

|bk − L| ≤ |ck − L|+ 2|ak − L|.
Given ε > 0, there exists M1 such that k ≥ M1 implies |ck − L| < ε/2, and there
exists M2 such that k ≥ M2 implies |ak − L| < ε/4. If k ≥ max{M1,M2}, then

|bk − L| ≤ |ck − L|+ 2|ak − L| < ε/2 + 2ε/4 = ε.

Consequently, limk→∞ |bk − L| = 0, and hence limk→∞ bk = L. �

The squeeze theorem for real sequences is quite useful.

Example 2.4.7. For each k ∈ N, 0 < 1/(1 + k) < 1/k, and since 1/k → 0 as
k → ∞, the squeeze theorem implies that limk→∞ 1/(1 + k) = 0. �

Example 2.4.8. Suppose we wish to determine the limit indicated here:

lim
k→∞

k + 3 sin k

2 + k2
.

Note that for each k ∈ N,

0 ≤
∣∣∣k + 3 sin k

2 + k2

∣∣∣ ≤ k + 3| sin k|
2 + k2

<
k + 3

k2
=

1

k
+

3

k2
.

Since limk→∞ 1/k = 0 = limk→∞ 3/k2, the squeeze theorem implies that the indi-
cated limit is 0. �
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The ordering of the real numbers plays an important role in the squeeze theorem
for limits of real sequences. Since C is not an ordered field, in general it is only the
absolute values of complex numbers that obey order relations inherited from R. Is
there a squeeze theorem for complex sequences? In other words, if (ak), (bk), and
(ck) are complex sequences with

|ak| ≤ |bk| ≤ |ck| for each k,

and there exists a complex number L such that limk→∞ ak = L = limk→∞ ck, is
it true that limk→∞ bk = L? The answer is negative; Exercise 2.4.2 requests a
counterexample.

A subsequence of a given sequence (ak) is a sequence obtained from (ak) by
deleting some terms from (ak) and then reindexing the remaining terms such that
the k-th term that remains had index nk in the original sequence. Thus if the
subsequence is (bk), we have

b1 = an1
, b2 = an2

, . . . , bk = ank
, . . . ,

where n1 < n2 < n3 < · · · , that is, nk < nk+1 for every k. We may then denote
the subsequence (bk) also by (ank

) by considering the composition indicated here:

k �→ n(k) =: nk �→ a(n(k)) =: ank
.

In other words, the sequence (bk) = (ank
) is a subsequence of (ak) if (nk) is a

strictly increasing sequence of positive integers. This gives the formal definition of
subsequence.

Definition 2.4.9. A subsequence of a sequence a : N → R is a composition of a
with a strictly increasing function from N into N. If the elements of the sequence
are denoted ak (so k �→ a(k) = ak), then the elements of a subsequence may be
denoted ank

(so k �→ nk �→ a(nk) = ank
).

A useful fact to remember about the notation for any subsequence (ank
) of (ak)

is that nk ≥ k for every k ∈ N; this may be proved by induction (Exercise 2.4.3).

Example 2.4.10. The odd positive integers form a subsequence of the positive
integers: If ak = k for k ∈ N, and nk = 2k − 1 for k ∈ N, then ank

= 2k − 1 yields
the sequence of odd positive integers. �

Example 2.4.11. The sequence (ak) = (1, 1/2, 1/3, . . .) converges with limit 0. In
fact, any subsequence of this sequence also converges with limit 0. �

The statement in the last example is generalized in the next theorem.

Theorem 2.4.12. If the sequence (ak) converges to L, then every subsequence of
(ak) also converges to L.

Proof. If ak → L as k → ∞, then for every ε > 0 there is an N(ε) such that

|ak − L| < ε for all k > N(ε).

For any subsequence (ank
), we have nk ≥ k, so k > N(ε) implies nk > N(ε), and

therefore
|ank

− L| < ε for all k > N(ε).

Since ε > 0 is arbitrary, we conclude that limk→∞ ank
= L. �
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There is a simple corollary of this theorem: If the sequence (ak) converges
with limit L, then for each fixed natural number m, limk→∞ ak+m = L, since the
sequence (ak+m) is a subsequence of (ak). Thus, sequential convergence does not
depend on the first few terms of the sequence; in fact, sequential convergence does
not depend on any finite number of leading terms of a sequence.

In the next example we determine some candidates for a sequential limit.

Example 2.4.13. Define ak+1 =
√
2 + ak. The sequence is completely determined

if we specify a value for a1, say a1 =
√
2. Note that if limk→∞ ak = L exists, then

limk→∞ ak+1 = L as well, and hence, by writing the equation as a2k+1 = 2+ak, the

limit laws imply that L2 = 2+L. Thus the limit L, if it exists, satisfies L2 = 2+L,
so either L = −1 or L = 2. By the definition of the sequence, we cannot have L
negative. But we should not jump to the conclusion that L = 2 is the limit, because
the existence question really matters and we have not yet settled it. Recall that we
stated that if the limit L exists then L must satisfy L2 = 2+ L. So our conclusion
thus far is this: If a real sequence is determined by the equation ak+1 =

√
2 + ak

and the specification of a1 > −2, and if the limit L = limk→∞ ak exists, then L = 2.
�

The concept of amonotone sequence is key to the understanding of more general
sequences.

Definition 2.4.14. A sequence (ak) of real numbers is monotone increasing if
ak+1 ≥ ak for all k, and monotone decreasing if ak+1 ≤ ak for all k. A sequence
is monotone if it is either monotone increasing or monotone decreasing.

Given a monotone sequence (ak)
∞
1 , we may indicate that it is monotone in-

creasing by writing a1 ≤ a2 ≤ . . ., or that it is monotone decreasing by writing
a1 ≥ a2 ≥ . . .. If a sequence is specified (or known) to be either increasing or
decreasing, then the term monotone is not strictly necessary.

Theorem 2.4.15 (Monotone Sequence Theorem). Let (bk) be a sequence of real
numbers. If the sequence (bk) is monotone increasing and bounded, then it converges
and

lim
k→∞

bk = sup
k
{bk}.

If (bk) is monotone decreasing and bounded, then it converges and

lim
k→∞

bk = inf
k
{bk}.

Proof. Suppose (bk) is monotone increasing and bounded, and let B = supk{bk};
by assumption, B < ∞. Given any ε > 0, by the definition of supremum there is
an N = N(ε) such that B − ε < bN , and hence |bN −B| < ε. Since the sequence is
monotone increasing, for k ≥ N we have bN ≤ bk ≤ B. Therefore |bk − B| < ε if
k ≥ N . Thus, limk→∞ bk = B.

The statement on bounded decreasing sequences is proved by a similar argu-
ment, which is left as Exercise 2.4.4. �

Theorem 2.4.15 asserts that any bounded monotone sequence is convergent. It
allows us to complete the discussion of convergence from Example 2.4.13.
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Example 2.4.16. The sequence in Example 2.4.13 such that ak+1 =
√
2 + ak and

a1 =
√
2 can be shown to be monotone increasing and bounded above (Exercise

2.4.5). It converges with the limit L = 2 = sup{ak}. �

We have seen that every subsequence of a convergent sequence with limit L
must converge to the same limit L. However, the convergence of a subsequence
does not generally imply the convergence of the original sequence. The next result
is an important exception.

Theorem 2.4.17. If (bk) is an increasing sequence and if some subsequence (bnk
)

of (bk) converges and limk→∞ bnk
= b, then (bk) itself converges to the same limit,

limk→∞ bk = b.

Proof. Since the subsequence (bnk
) is increasing, the convergence assumption im-

plies that

b = lim
k→∞

bnk
= sup

k∈N
{bnk

}.

Thus, for every ε > 0, there is an N = N(ε) such that

b− ε < bnN(ε)
≤ bnk

≤ b

for all k > N(ε). Since nk ≥ k for all k ∈ N, we have bnk
≥ bk for all k ∈ N.

Hence, bk ≤ b for all k, and bnN(ε)
≤ bk ≤ bnk

≤ b for all k > nN(ε). Therefore

|bk − b| < ε for all k > nN(ε).

Since ε is arbitrary, this shows that limk→∞ bk = b. �

Exercises.

Exercise 2.4.1. Prove parts 1 and 4 of Theorem 2.4.5.

Exercise 2.4.2. Give an example of complex number sequences (ak), (bk) and (ck)
such that for each k, |ak| ≤ |bk| ≤ |ck|, and limk→∞ ak = limk→∞ ck = L for some
complex number L, but limk→∞ bk 
= L. Hint : Consider an example where both
(ak) and (ck) are constant sequences.

Exercise 2.4.3. Show by induction that if (ank
) is a subsequence of (ak), then for

each k ∈ N, nk ≥ k.

Exercise 2.4.4. Show that if the sequence (bk) is monotone decreasing and bounded,
then it converges, and limk→∞ bk = infk{bk}.

Exercise 2.4.5. Show that the sequence defined by ak+1 =
√
2 + ak, a1 =

√
2, is

monotone increasing and bounded above. (Hint : Use induction to establish both
properties.) Then conclude that limk→∞ ak = 2.
What if a1 = 1 or a1 = 2? What if a1 > −2? What happens if a1 = −2?

Exercise 2.4.6. Prove: If an > 0 and an → L > 0, then
√
an →

√
L.

Exercise 2.4.7. Show that the sequence (an), defined by

a1 = 1, and an+1 = −1 +
√
8 + an (n ≥ 1),

is increasing and bounded. Find limn→∞ an.
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2.5. Nested Intervals and Decimal Representations

The least upper bound property implies the monotone sequence theorem, and the
monotone sequence theorem implies the next result called the nested interval theo-
rem.

Theorem 2.5.1 (Nested Interval Theorem). For each positive integer n let an and
bn be real numbers such that an < bn. Let In := [an, bn] and suppose that for all n,

In+1 ⊆ In.

Then
⋂∞

n=1 In is nonempty. If, in addition,

lim
n→∞

(bn − an) = 0,

then there is exactly one point x that belongs to In for every n, and the sequences
(an) and (bn) both converge to x.

Proof. The hypothesis that the intervals are nested, that is, In+1 ⊆ In for each n,
means that for every n,

an ≤ an+1 < bn+1 ≤ bn.

The sequence (an) is increasing and bounded above by b1, and the sequence (bn)
is decreasing and bounded below by a1. By Theorem 2.4.15, there are numbers a
and b such that, for all n,

(2.8) an ≤ a and b ≤ bn,

and limn→∞ an = a, limn→∞ bn = b. By (2.8), a, b ∈
⋂∞

n=1 In. By hypothesis,
(bn − an) → 0, and the difference law for limits implies that

0 = lim
n→∞

(bn − an) = b− a.

Thus a = b, and if we set x = a = b, then by (2.8), x ∈ In for every n. Finally, the
existence of two distinct points that belong to every interval In would contradict
the hypothesis that (bn − an) → 0. �

The remaining goal of this section is to define a decimal representation for each
real number and to show that for each decimal representation of a certain type, there
is a unique real number associated with it. The argument for Theorem 2.5.2 below
shows that the elements of a complete ordered field have unique representations as
nonterminating decimal expansions, and this helps to confirm one of the long-held
intuitions about the real numbers that most of us develop. But first we must clarify
some terminology.

A decimal expansion is an expression of the form d0.d1d2d3 . . ., where for each
positive integer n, the digit dn ∈ {0, 1, 2, . . . , 9}, and d0 can be any nonnegative
integer. A terminating decimal expansion is one for which there is an m ∈ N
such that for each k ≥ m, dk = 0. A decimal expansion is nonterminating if it
is not terminating. It will be convenient to define and work with nonterminating
expansions. For the moment, we need not give any arithmetic meaning to a decimal
expansion in its entirety (this is best done later, using the basic concepts of infinite
series). Right now, it is only important to note that Theorem 2.5.2 uses concepts
and facts about R that are familiar thus far in the book.
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Given a positive real number x > 0, there is a unique integer n(x) such that
n(x) < x ≤ n(x) + 1. The integer n(x) is called the integer part of x > 0, for
the purpose of decimal representation using nonterminating expansions. Note that
n(x) is the largest integer less than x, and x − n(x) ∈ (0, 1]. For example, x = .1
implies n(x) = 0, and x = 2 implies n(x) = 1, which allows the nonterminating
expansion 2 = 1.999. (A bar over a digit or group of digits indicates that the
pattern repeats thereafter.) With this definition of the integer part of a positive
real number in hand, we can focus on the decimal representation of real numbers
in the interval (0, 1].

Theorem 2.5.2. There is a one-to-one correspondence between the interval (0, 1]
of real numbers and the set of nonterminating decimal expansions of the form
0.d1d2d3 . . ., with each dk ∈ {0, 1, 2, . . . , 9}.

Proof. The first part of the proof is the definition of the mapping from (0, 1] to
the set of decimal representations and the proof that this mapping is one-to-one.
Let x ∈ (0, 1]. Then n(x) = 0. The selection of the digit d1 is as follows. Express
the interval (0, 1] as the union of 10 disjoint intervals of the form (a, b], each having
length equal to 1/10. These are the intervals (0, 1/10], (1/10, 2/10], and so on, up
to (9/10, 1]. Then x is in exactly one of these intervals, and if it is the k-th interval
counting from the left, denoted I1 := ((k− 1)/10, k/10], then set d1 = k− 1. (This
is equivalent to choosing d1 equal to n(10x).)

In order to select the digit d2 in the representation of x, express the previous
interval I1 = ((k − 1)/10, k/10] as the union of 10 disjoint intervals of the form
(a, b], each having length equal to 1/102 = 1/100. Then x is in exactly one of these
intervals, and if it is the j-th one, then set d2 = j − 1. (This j-th interval of I1 is
the interval we denote I2 := ((k − 1)/10 + (j − 1)/100, (k − 1)/10 + j/100].)

Continue in the way indicated above. More specifically, after selecting the m-
th digit dm in the interval Im having length 1/10m, divide Im into 10 subintervals
of the form (a, b] having length 1/10m+1; if x is in the i-th subinterval, then set
dm+1 = i− 1.

This procedure associates with x ∈ (0, 1] a decimal representation of the form
0.d1d2d3 . . ..

Let Im be the union of Im and its left-hand endpoint, so that Im is a closed
interval. The association x �→ 0.d1d2d3 . . . is one-to-one because by construction of
the nested sequence of closed intervals (Im), with x ∈ Im for each m, the length
of Im is 1/10m, and limm→∞ 1/10m = 0. (In this limit statement we have used
the Archimedean property of R.) Thus there cannot be distinct points in the
intersection of the intervals Im.

The next part of the proof establishes that the mapping x �→ 0.d1d2d3 . . .
defined above is onto the set of decimal representations of the indicated form.
Given a decimal expansion 0.d1d2d3 . . ., we must ‘decode it’ to show there is an
x ∈ (0, 1] which is associated with it via the mapping. The given digits determine
the appropriate intervals within which x should be found. Starting with d1 and
proceeding left to right with the given digits, we may select the appropriate closed
interval Im of length 1/10m based on the digit dm. The resulting sequence of closed
intervals Im is a nested sequence, and the limit of the lengths is limm→∞ 1/10m = 0,
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by construction. Hence, by the nested interval theorem,
⋂

m Im = {x} for some
unique x ∈ R. By the selection of these intervals, the element x is associated,
via the mapping defined in the first part of the proof, with the representation
0.d1d2d3 . . ., with which we started. �

Based on the digit selection procedure of Theorem 2.5.2, the decimal repre-
sentation of the number 1 is given by 0.999̄. The decimal representation of 1/2 is
0.4999̄.

This digit selection procedure produces nonterminating expansions. Conse-
quently, rational numbers are represented by nonterminating expansions that re-
peat, rather than by terminating expansions. (The one exception to this rule is the
expansion for 0, which is 0.000̄, but this is the only terminating expansion we use.)
Conversely, each repeating expansion represents a rational number, a fact that is
perhaps easiest to realize after the basic concepts of infinite series are introduced.

What about positive x not in (0, 1]? If x > 0, then we define the decimal
representation of x to be n(x).d1d2d3 . . ., where 0.d1d2d3 . . . is the representation
of x− n(x) ∈ (0, 1].

For x < 0, we take the integer part of x to be the least integer greater than
x, instead of the greatest integer less than x. Then we can use the decimal rep-
resentation of the positive number −x and introduce a negative sign in front. For
example, we want −1/2 to be represented by −.4999̄. Thus, the expansion of −1
is −0.999̄ . . ..

With a good understanding of the proof of Theorem 2.5.2, it is clear that there
is nothing in the structure of the argument that requires the use of the digits in the
set {0, 1, 2, . . . , 9}. It is really no more difficult to consider expansions using the
digits from the set {0, 1, 2, . . . , b− 1}, where b ∈ N and b ≥ 2. This means that at
each step, we subdivide into b subintervals rather than 10 subintervals. Then the
appropriate nested intervals Im in the modified argument will have length 1/bm,
and again the crucial fact that limm→∞ 1/bm = 0 holds true, by the Archimedean
property. With b = 2, we obtain binary expansions 0.d1d2d3 . . . for x ∈ (0, 1]
with each dn ∈ {0, 1}. With b = 3 we have tertiary expansions 0.d1d2d3 . . . for
x ∈ (0, 1] with each dn ∈ {0, 1, 2}. Proceeding as indicated above for positive and
negative elements, the binary expansion of 1 is 0.111, and the binary expansion of
−1 is −0.111; the tertiary expansion of 1 is 0.222, and the tertiary expansion of
−1 is −0.222. (For simplicity in what follows, we simply refer to the d0 digit as an
integer.)

If b ∈ N and b ≥ 2, we call the unique nonterminating expansion of a nonzero
real number x using only the digits in the set {0, 1, 2, . . . , b− 1} the expansion of
x in the number base b. We can state the following result.

Theorem 2.5.3. Let b ∈ N with b ≥ 2. There is a one-to-one correspondence
between R − {0} and the set of nonterminating base b expansions of the form
d0.d1d2d3 . . . where dk ∈ {0, 1, 2, . . . , b− 1} for k ∈ N, and d0 is an integer.

We now show that R and Q do not have the same cardinality.

Theorem 2.5.4. The complete ordered field R is uncountably infinite.
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Proof. We choose to work with the base two nonterminating binary expansions.

Suppose to the contrary that R is countably infinite, and let an enumeration of
R be given by the following listing of base 2 expansions from Theorem 2.5.3 (plus
the expansion for 0, listed first here):

r0 = a00.a01a02a03 . . . = 0.000 . . . ,

r1 = a10.a11a12a13 . . . ,

r2 = a20.a21a22a23 . . . ,

· · · = · · · ,

where, for j ≥ 1, aij is either 0 or 1, and for each i, ai0 is an integer. Now define a
binary expansion r∗ = d0.d1d2d3 . . . as follows:
Step 0. Set d0 = 1.
Step 1. Set d1 = 1 if a11 = 0; set d1 = 0 if a11 = 1.
Step 2. Set d2 = 1 if a22 = 0; set d2 = 0 if a22 = 1, and so on.

The digits dk of r∗ are defined for all k, and r∗ differs from rk in the k-th digit,
since for each k ≥ 0, dk 
= akk. Therefore r∗ is not in the assumed listing of all
elements of R. The listing is assumed to consist of the nonterminating expansions
guaranteed by Theorem 2.5.3. Can r∗ be a terminating expansion? If that were the
case, then all elements in the above listing past some index j have their diagonal
digit equal to 1, since dk = 0 for k ≥ j implies akk = 1 for k ≥ j. However, in that
case the listing does not include all the expansions guaranteed by Theorem 2.5.3,
since there would be only finitely many rk, specifically those for 0 ≤ k < j, which
could have a zero diagonal entry akk. However, this is absurd, as we may easily
specify infinitely many binary nonterminating expansions which have zero diagonal
entry akk. This contradiction implies that r∗ is nonterminating, and thus r∗ is one
of the expansions guaranteed by Theorem 2.5.3. However, r∗ is not in the listing,
as we have seen, and this contradiction proves the theorem. �

It is immediate from Theorem 2.5.4 that the set I of irrational numbers is
uncountably infinite: We have R = Q∪I, and if I is countable, then so is R, a con-
tradiction. We have deduced the fact that there are uncountably many irrationals
from the the least upper bound property (by way of the Archimedean property and
the nested interval theorem). Let us see how the nested interval theorem fails for

Q. We know there is a
√
2 gap in the rational number line. The number x =

√
2

has a decimal expansion 1.d1d2d3 . . .. For each n, let rn be the truncation of this
expansion after the digit dn, so

rn = 1.d1d2d3 . . . dn = 1.d1d2d3 . . . dn.

It is clear from the digit selection procedure in Theorem 2.5.2 that this truncated
expansion represents the number

rn = 1 +
d1
10

+
d2
102

+ · · ·+ dn
10n

.

For each n, we have
√
2 ∈ In, where In is the n-th interval chosen in the digit

selection procedure for
√
2. If Jn = In ∩ Q, then Jn is an interval in the ordered
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field Q and the endpoints of Jn are in Q. However,
∞⋂

n=1

Jn =
( ∞⋂

n=1

In

)
∩Q = {

√
2} ∩Q,

which is empty. The nested interval theorem fails in Q.

An algebraic number is a real or complex number that satisfies a polynomial
equation with integer coefficients. (An equivalent definition is that an algebraic
number is a real or complex number that satisfies a polynomial equation with
rational coefficients.) For example,

√
2 and 3

√
2 are real algebraic numbers, and

i =
√
−1 is a complex algebraic number. Every rational number is a real algebraic

number, and
√
2 and 3

√
2 are algebraic irrationals. The algebraic irrationals can

be described as the set of real numbers x0 that satisfy an equation of the form

a0x
n
0 + a1x

n−1
0 + · · ·+ an−1x0 + an = 0,

for integers aj and some n ≥ 2, but no linear equation of the form

b0x+ b1 = 0,

with integer b0 and b1. Denote the set of algebraic irrationals by Ia. Let It = I−Ia;
the elements of It are called transcendental numbers. Then R = Q ∪ Ia ∪ It, a
disjoint union.

Exercises.

Exercise 2.5.1. Give an example to show that a nested sequence of open intervals
(or half-open intervals) can have empty intersection.

Exercise 2.5.2. Show that the argument of Theorem 2.5.2 does not assign any
number x ∈ (0, 1] a terminating expansion. Thus, according to the discussion
following the theorem, no nonzero real number is assigned a terminating expansion.

Exercise 2.5.3. A nonterminating decimal expansion r is repeating if for some
nonnegative integers n ≤ m, r = d0.d1 . . . dn−1dn . . . dm. Otherwise, it is nonre-
peating.

1. Show that each repeating decimal expansion represents a rational number,
and each rational number is represented by a repeating decimal expansion.

2. Show that there are countably many nonterminating, repeating decimal ex-
pansions.

3. Show that there are uncountably many nonterminating, nonrepeating decimal
expansions.

Exercise 2.5.4. Let x > 0 and suppose that the portion 0.d1d2d3 . . . dn of the
expansion for x− n(x) ∈ (0, 1] has been selected as in the proof of Theorem 2.5.2,
where d0 = n(x). Show that

d1
10

+
d2
102

+ · · ·+ dn
10n

< x ≤ d1
10

+
d2
102

+ · · ·+ dn + 1

10n
.

Exercise 2.5.5. Let p > 0 be a prime number. Show that
√
p is an algebraic

irrational number. Hint : If p divides a product q1q2 of integers q1 and q2, then
either p divides q1 or p divides q2.
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Exercise 2.5.6. Show that the set Ia of algebraic irrationals is countably infinite.
Show that the set of real algebraic numbers Ia ∪Q is countably infinite. Conclude
that the set It of transcendental numbers is uncountable. (Thus transcendental
numbers exist, but it is difficult to prove that specific real numbers are transcen-
dental. In particular, e and π are known to be transcendental.)

2.6. The Bolzano-Weierstrass Theorem

We have seen that any bounded, infinite monotone sequence in R has a limit. On
the other hand, bounded nonmonotonic sequences need not converge.

Example 2.6.1. Consider the bounded sequence given by2

ak = (−1)k
ek

1 + ek
,

which does not converge: The subsequence a2k = e2k/(1+ e2k) has limit 1, and the
subsequence a2k−1 = −e2k−1/(1 + e2k−1) has limit −1, as k → ∞. �

Perhaps intuition suggests that a bounded infinite subset of the real numbers
should have the property that its points tend to cluster or accumulate about some
point. We will see in this section that such an intuition is sound. It is not difficult
to see that the sequence in Example 2.6.1 has convergent subsequences. But the
sequence (sin k)∞k=1 is more difficult to think about. It is bounded. Its range has
infinitely many elements, otherwise the sequence would be eventually constant,
and that is not possible, as the sine function has least period 2π and therefore
cannot eventually repeat itself over a unit interval. It is not clear if sin k can get
arbitrarily close to ±1, for example, unless we know how closely positive integers
can approximate the numbers nπ/2, n ∈ N. We cannot seem to pin down any
other specific point where the elements of this sequence cluster. Are there any?

In order to clarify the issue, we need the next definition.

Definition 2.6.2. Let S be a subset of an ordered field F . A point p ∈ F is a
cluster point (or accumulation point) of S if for each ε ∈ F with ε > 0 the
interval (p− ε, p+ ε) in F contains infinitely many points of S distinct from p.

We note that there is a distinction between a bounded sequence with infi-
nite range (it is an ordered infinite set with infinitely many elements) and general
bounded infinite sets. We will soon clarify that the distinction makes no difference
as far as the question of existence of a cluster point.

We can now state the Bolzano-Weierstrass theorem for bounded infinite sets in
R. It says that an infinite search is guaranteed to find a cluster point for the set
{sin k : k ∈ N}.

Theorem 2.6.3 (Bolzano-Weierstrass I). Every bounded infinite set of real num-
bers has a cluster point, which need not be an element of the set.

2Basic properties of the exponential function ex and the other elementary functions are established
in Section 7.5.
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Proof. Let S be a bounded infinite subset of R. Then there is a finite interval
[a, b], a < b, such that S ⊆ [a, b]. Bisect the interval [a, b] into its left and right
halves, [a, (a + b)/2] and [(a + b)/2, b], each of which is a closed interval. At least
one of these closed intervals must contain infinitely many elements of S. (If both
halves contain infinitely many, then for definiteness choose the left half.) Denote
the chosen half by I1. Now bisect I1. Either the left half or the right half of I1
contains infinitely many elements of S. Call that half I2. Assuming In has been
chosen, we choose the half (either left or right) of In which contains infinitely many
elements of S and call that half In+1. By induction, this defines a sequence of closed
intervals In, n ∈ N, such that for each n, In+1 ⊂ In, and each In contains infinitely
many elements of S. For each n, the length of In+1 is half the length of In. In fact,
for each n, the length of In is (b−a)/2n. By the nested interval theorem (Theorem
2.5.1), there is exactly one point x0 that is an element of each In. We want to show
that x0 is a cluster point of S. Given any ε > 0, there is an n such that the length
of In is (b− a)/2n < ε. Since x0 ∈ In, if y ∈ In, then |y − x0| < ε, and hence In is
contained in the interval (x0− ε, x0+ ε). Since In contains infinitely many elements
of S, this proves that x0 is a cluster point of S. �

There is also a useful version of the Bolzano-Weierstrass theorem for infi-
nite sequences. Before we state and prove it, note that the sequence (bk) =
((−1)k) = (−1, 1,−1, 1, . . .) has convergent subsequences, but the range is the finite
set {1,−1}, which clearly has no cluster points. Any sequence with finite range has a
convergent subsequence, whether or not the sequence is eventually constant. Thus,
for the sequential Bolzano-Weierstrass theorem we only need to consider bounded
infinite sequences (that is, bounded sequences with infinite range). An example is
the sequence (sin(1/k))∞k=1, for which the range set {sin(1/k) : k ∈ N} is infinite.
Observe that the range has the cluster point 0, since limk→∞ sin(1/k) = 0. In fact,
we have the following basic consequence of the definition of sequential convergence
(Definition 2.4.1).

Proposition 2.6.4. Suppose that (ak)
∞
k=1 is an infinite sequence in R, that is, the

range {ak : k ∈ N} of the sequence is an infinite subset of R. If limk→∞ ak = L ∈
R, then L is a cluster point of the infinite set {ak : k ∈ N}.

Proof. If L is the limit of the sequence, then given εk = 1/k > 0, there is an N(εk)
such that if k ≥ N(εk), then |ak−L| < 1/k. Since the sequence has infinitely many
elements, there must be infinitely many of them within a distance 1/k of L that
are distinct from L. This is true for each positive integer k, hence L is a cluster
point of the range of the sequence. �

Here is the sequential Bolzano-Weierstrass theorem.

Theorem 2.6.5 (Bolzano-Weierstrass II). Every bounded infinite sequence of real
numbers (that is, every bounded sequence with infinite range) has a convergent
subsequence.

Proof. If (ak) is a bounded infinite sequence, then the range {ak} has a cluster
point a, by Theorem 2.6.3. Thus, given εk = 1/k, there is an element ank

such
that |ank

− a| < 1/k. Moreover, for each k we may choose nk+1 ≥ nk, since each
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interval about a contains infinitely many elements of the range of the sequence.
This construction yields a subsequence (ank

) that converges to a. �

These two results, Bolzano-Weierstrass I (for bounded infinite sets) and Bolzano-
Weierstrass II (for bounded infinite sequences), are actually equivalent. As an
exercise, one can show that Theorem 2.6.3 follows from Theorem 2.6.5.

There is no Bolzano-Weierstrass theorem for Q. For example, one can define a
monotone increasing sequence (sk) in the set

S = {s ∈ Q : either s < 0, or s ≥ 0 and s2 < 2}
having no limit in Q, since supS does not exist in Q. Thus, we also see that there
is no analogue of the monotone sequence theorem (Theorem 2.4.15) for Q.

Exercises.

Exercise 2.6.1. 1. Does the set {1/n : n ∈ N} have a cluster point?
2. Does the sequence

tan−1
(
(−1)k

ek

1 + ek

)
have a convergent subsequence? How many cluster points does the range of this
sequence have?

Exercise 2.6.2. Show that if every bounded infinite sequence of real numbers has
a convergent subsequence, then every bounded infinite set of real numbers has a
cluster point.

Exercise 2.6.3. Show that the sequential Bolzano-Weierstrass Theorem 2.6.5 im-
plies the nested interval Theorem 2.5.1.

2.7. Convergence of Cauchy Sequences

If an infinite sequence (ak) of real numbers converges, then the elements of the
sequence must get arbitrarily close to each other as k → ∞, since the limit must be
the only cluster point of the range of the sequence. We want to investigate whether
the converse is true: If the elements of an infinite sequence (ak) in R get arbitrarily
close to each other as k → ∞, does the sequence converge to a limit in R? First,
we need the definition of what it means for the elements of a sequence in R to get
arbitrarily close to each other as k → ∞.

The next definition applies to both real and complex number sequences.

Definition 2.7.1 (Cauchy Sequence). A sequence (ak) in R or C is called a
Cauchy sequence if for each ε > 0, there is a natural number N = N(ε) such
that for all m,n ≥ N ,

|am − an| < ε.

In fact, the concept of Cauchy sequence makes sense in any ordered field F ,
since the absolute value function is defined in F . (We see later in the book that the
concept of Cauchy sequence makes sense in any normed vector space; for example,
C is a complex vector space normed by the absolute value function.) As we noted
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above, a convergent sequence must be a Cauchy sequence. The proof is left as an
exercise.

There are Cauchy sequences of rational numbers that do not have a rational
number limit. In other words, not every Cauchy sequence of rationals converges
to an element of Q. Think of the sequence of finite decimal approximations of√
2, which is a Cauchy sequence of rational numbers that does not converge to an

element of Q.

Theorem 2.7.2. Every Cauchy sequence in R converges to a limit in R.

Proof. We may assume that the sequence has infinite range. Suppose that (ak) is
a Cauchy sequence. Since the sequence is Cauchy, it is bounded: Let ε = 1 in the
definition of Cauchy sequence; then there is an integer N such that if n,m > N ,
then |an − am| < 1, hence |an| − |am| < 1. Fix m = N + 1. Then for n > N ,

|an| < |aN+1|+ 1.

If we let M = max{|aj | : 1 ≤ j ≤ N}, then for all positive integers k,

|ak| ≤ max{M, |aN+1|+ 1}.
By the Bolzano-Weierstrass theorem (Theorem 2.6.5), the sequence (ak) has a sub-
sequence (ank

) that converges to a limit L. So we want to show that a Cauchy
sequence that has a subsequence with limit L must itself converge to L. Let ε > 0.
Since (ank

) converges, there is an integer N1 such that

|ank
− L| < ε

2
if k ≥ N1.

Since (ak) is Cauchy, there is an integer N2 such that

|an − am| < ε

2
if n,m ≥ N2.

Thus, if we take k ≥ max{N1, N2}, then, since nk ≥ k for each k,

|ak − ank
| < ε

2
and |ank

− L| < ε

2
.

Consequently, for k ≥ max{N1, N2},

|ak − L| ≤ |ak − ank
|+ |ank

− L| < ε

2
+

ε

2
= ε,

which proves that (ak) converges with limit L. �

It can be shown that the convergence of Cauchy sequences in R (Theorem
2.7.2) implies the least upper bound property, hence these two properties of R are
actually equivalent.

Corollary 2.7.3. Every Cauchy sequence in C converges to a limit in C.

Proof. If zk = ak + ibk defines a Cauchy sequence in C, then (ak) and (bk) are
real Cauchy sequences, since

|am − an| ≤ |zm − zn| and |bm − bn| ≤ |zm − zn|.
Hence, ak → a ∈ R and bk → b ∈ R, by Theorem 2.7.2. Since

|zk − (a+ ib)| = |(ak − a) + i(bk − b)| ≤ |ak − a|+ |i(bk − b)| = |ak − a|+ |bk − b|,
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the squeeze theorem for real sequences implies that limk→∞ |zk − (a + ib)| = 0
(Exercise 2.7.2). Hence, zk → (a+ ib) ∈ C. �

The result of Corollary 2.7.3 is what is meant by the completeness of the
complex field C: Every Cauchy sequence in C converges to an element of C.

We have not proved a Bolzano-Weierstrass theorem for the complex field C.
However, there is such a theorem, and the reader is invited to prove it in Exercise
2.7.3.

Exercises.

Exercise 2.7.1. A convergent sequence must be a Cauchy sequence.

Exercise 2.7.2. In the proof of Corollary 2.7.3 show that the squeeze theorem for
real sequences implies that limk→∞ |zk − (a+ ib)| = 0.

Exercise 2.7.3 (Bolzano-Weierstrass for C). 1. Show that every bounded infi-
nite subset S of the complex field C has a cluster point which need not be
contained in S. Thus, every bounded infinite sequence in C has a convergent
subsequence with limit in C. Hint : S is contained in some square [a, b]× [a, b];
subdivide it repeatedly to obtain two real Cauchy sequences, and then use
Theorem 2.7.2.

2. Give a proof of the completeness of C based on part 1 of this exercise.

Exercise 2.7.4. Let (ak)
∞
k=1 be a Cauchy sequence. Show that there is a subse-

quence (ank
)∞k=1 such that |ank+1

− ank
| < 1/2k for all k.

2.8. Summary: A Complete Ordered Field

Here we summarize some thoughts and facts about the real numbers that may serve
as a guide for further reading.

2.8.1. Properties that Characterize Completeness. Several important facts
about the complete ordered field R have been presented in this chapter. The
completeness axiom is the least upper bound property in (a) below. The main
results established thus far are listed in (b)-(e).

(a) R has the least upper bound property;

(b) the monotone sequence theorem;

(c) the nested interval theorem;

(d) the Bolzano-Weierstrass theorem for bounded infinite sets;

(e) the convergence of Cauchy sequences.

We proved the following sequence of implications:

(a) =⇒ (b) =⇒ (c) =⇒ (d) =⇒ (e)

Recall that we proved the important Archimedean property from the least upper
bound axiom (a). It is possible to show that (e) implies (d).
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Theorem 2.8.1. Property (e) implies (d): If every Cauchy sequence in an ordered
field F converges to an element of F , then every bounded infinite subset of F has
a cluster point (and hence every bounded infinite sequence in F has a convergent
subsequence).

A proof of this result appears in Schramm [57] (Theorem 10.17, page 176).

It is also possible to show that (d) together with the Archimedean property
implies (a).

Theorem 2.8.2. If the ordered field F has the Archimedean property and if every
bounded infinite subset of F has a cluster point, then F has the least upper bound
property.

For a proof of this result, see Schramm [57] (Theorem 7.6, page 110).

The somewhat mysterious reappearance of the Archimedean property as a hy-
pothesis in closing the loop back to (a) suggests a longer story. The following
theorem gives something more of the full story; its proof forms a major theme
throughout the text by Schramm [57].

Theorem 2.8.3. Let F be an ordered field. Then the following are equivalent:

1. F has the least upper bound property.

2. F has the Archimedean property and the nested interval theorem holds in F .

3. F has the Archimedean property and the Bolzano-Weierstrass theorem on
bounded infinite sets holds in F .

4. F has the Archimedean property and every Cauchy sequence in F converges
to an element of F .

Each of these properties serves to characterize the complete ordered field R,
and hence each item describes a property of R which does not hold in Q. There is
a longer list of equivalences on offer in Schramm [57] than stated here.

2.8.2. Why Calculus Does Not Work in Q. Several important results in in-
troductory calculus courses are consequences of the least upper bound property.
The emphasis here is to show that some familiar facts of introductory calculus do
depend on the least upper bound property of the reals, by showing that the same
statements fail to be true when working with the rational number field Q. The
message to take away is that it is the least upper bound property of R, the com-
pleteness of R, that makes calculus and modern analysis possible. The theorems
mentioned by name below should prompt some memory of introductory calculus,
and they are proved (for the real field!) later in the text.

Let us consider why calculus does not work in Q.3 Let a, b ∈ Q with a < b,
and let [a, b] denote the interval of rational numbers x such that a ≤ x ≤ b. We
define continuity and differentiability for functions f : [a, b] → Q as follows:

Let x ∈ [a, b] ⊂ Q. The function f : [a, b] → Q is continuous at x ∈ Q if
and only if for every sequence (xk) in Q such that limk→∞ xk = x, it is true that
limk→∞ f(xk) = f(x), that is, for every rational ε > 0 there is a positive integer

3This discussion is motivated in part by examples in Chapter 1 of Körner [38].
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N = N(ε) such that if k ≥ N , then |f(xk) − f(x)| < ε. If f is continuous at each
x ∈ [a, b] ⊂ Q, then we say f is continuous on [a, b] ⊂ Q.

If f : (a, b) → Q is defined on an open interval (a, b) ⊂ Q and x ∈ (a, b) ⊂ Q,
then the derivative of f at x is defined by the limit

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
, h rational,

provided this limit exists in Q. Then it is true that differentiability of f at x implies
continuity of f at x, because one can argue, correctly, that

lim
h→0

[f(x+ h)− f(x)] = lim
h→0

f(x+ h)− f(x)

h
lim
h→0

h = f ′(x) · 0 = 0.

Also, it is still true that the derivative of a sum of two differentiable functions equals
the sum of their derivatives. Good so far.

Example 2.8.4. Let f : Q → Q be defined by

f(x) =

{
1 if x2 < 2,

−1 if x2 > 2.

Then f is continuous at each x ∈ Q. Indeed, f is differentiable at each x ∈ Q, and
f ′(x) = 0 for all x ∈ Q. Despite the fact that f is continuous, we have f(1) = 1 and
f(2) = −1, and there is no x ∈ (1, 2) ⊂ Q with f(x) = 0. Thus the intermediate
value theorem for continuous functions fails for f : Q → Q. �

Exercise 2.8.1 shows that the mean value theorem also fails for f on [1, 2]. (It
is also worth recalling that the part of the fundamental theorem of calculus dealing
with the evaluation of definite integrals depends on the mean value theorem.)

Let I be an interval in Q. A function h : I → Q is increasing if x, y ∈ Q, x < y
implies h(x) < h(y). However, there is a function h : Q → Q with h′(x) > 0 for all
x ∈ Q, and yet h is not an increasing function!

Example 2.8.5. Consider the function h : Q → Q defined by

h(x) = x+ f(x),

where f is the function in Example 2.8.4. Then h′(x) exists for each x ∈ Q, and
h′(x) = 1 + f ′(x) = 1 > 0. But consider that 4/3 < 3/2, while h(4/3) = 4/3 + 1 =
7/3, and h(3/2) = 3/2 − 1 = 1/2. So h(4/3) > h(3/2), and therefore h is not an
increasing function. �

2.8.3. The Existence of a Complete Ordered Field. The existence of a com-
plete ordered field is essential so that calculus is not an empty exercise; of course,
it is not. There are two standard ways of showing that a complete ordered field R
exists. Both methods construct R from the rational number field Q. It is probably
fair to say that serious students of mathematics should have some familiarity with
both constructions.

1. The complete ordered field R can be constructed as the set of Dedekind cuts
of the rational numbers. Schramm [57] (Chapter 22) offers a nice discussion
with exercises for the reader.
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2. The complete ordered field R can be constructed as the set of equivalence
classes of Cauchy sequences in Q. Strichartz [64] has a nice exposition of this
approach.

The end result of either of these approaches is the following theorem.

Theorem 2.8.6. There exists an ordered field R which contains the rational field
Q and is complete, that is, R has the property that any nonempty subset of R which
is bounded above has a least upper bound in R.

Familiarity with the construction of R from Q can deepen the understanding
and appreciation of the real numbers, but it will not, in and of itself, help the reader
to understand analysis. Understanding basic analysis depends largely on working
with the properties of the real number field that follow from completeness.

2.8.4. The Uniqueness of a Complete Ordered Field. Two ordered fields F
and F ′ are order-isomorphic if there is a one-to-one mapping h : F → F ′ onto F ′

such that x, y ∈ F implies

h(xy) = h(x)h(y) and h(x+ y) = h(x) + h(y)

and moreover, x, y ∈ F and x < y implies h(x) < h(y). This means that F and
F ′ are simply relabeled versions of each other and the field operations and order
relations are preserved under the relabeling.

Theorem 2.8.7. Any two complete ordered fields F and F ′ are order-isomorphic.

A proof of this theorem is given in McShane and Botts [46] (Theorem 6.1,
pages 22-24).

The success of mathematicians in establishing the uniqueness under order iso-
morphism of a complete ordered field is a very satisfying result, as there is essen-
tially only one complete ordered field, and that is the complete ordered field of real
numbers.

Exercise.

Exercise 2.8.1. Show that the mean value theorem fails for f on [1, 2] in Example
2.8.4: Even though f is continuous on [1, 2] ⊂ Q and differentiable on (1, 2) ⊂ Q,
there is no point ξ ∈ (1, 2) such that f(2)− f(1) = f ′(ξ)(2− 1).





Chapter 3

Basic Theory of Series

This chapter contains the basic theory of numerical series. A central role is played
by geometric series.

3.1. Some Special Sequences

Before introducing infinite series, there are some sequences whose limits are useful
enough to single out for attention in this section. We establish these limits in detail
and in the process illustrate several useful techniques.

The first result provides a key to understanding geometric series later in The-
orem 3.3.1.

Lemma 3.1.1. If a is a real or complex number and |a| < 1, then

lim
n→∞

an = 0.

Proof. If a = 0, then (an) is the constant sequence consisting of zeros only, so
the statement is true. Otherwise, we have 0 < |a| < 1. For each n ∈ N, |an+1| =
|a||an| < |an|, so the sequence (|an|) is monotone decreasing and bounded below by
0. Thus L = limn→∞ |an| exists and, in fact, L = inf{|an| : n ∈ N}. Since |a| > 0,
|an| = |a|n > 0 for each n, and therefore L ≥ 0. We want to show that L = 0.
Suppose to the contrary that L > 0. For each positive integer n, we have

|an| = |an+1|
|a| ≥ L

|a| ,

by the definition of L. Therefore L/|a| is also a lower bound for {|an| : n ∈ N}.
But 0 < |a| < 1 implies that L/|a| > L, and this contradicts the fact that L is
the greatest lower bound. Hence, L = 0 = limn→∞ |an|, and this is equivalent to
limn→∞ an = 0. �

Other proofs of Lemma 3.1.1 may be of interest in showing different techniques.
After the limit L is established, one can argue as follows. Since limn→∞ |an| = L,
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we also have limn→∞ |an+1| = L, since (|an+1|) is a subsequence of (|an|). Hence,

L = lim
n→∞

|an+1| = |a| lim
n→∞

|an| = |a|L,

and therefore (1− |a|)L = 0. By hypothesis, |a| < 1, so L = 0.

Still another proof of Lemma 3.1.1 can be based on the use of Bernoulli’s
inequality. Take 0 < |a| < 1 and write |a| = 1/(1 + h) where h > 0, that is, choose
h = (1− |a|)/|a|. By Bernoulli’s inequality, for each positive integer n,

1

|an| = (1 + h)n ≥ 1 + nh,

so we have

0 < |an| ≤ 1

1 + nh
<

1

nh
.

Given ε > 0, there is an n0 such that n0 > 1/(εh) (by the Archimedean property).
Then for n ≥ n0,

|an| < 1

nh
≤ 1

n0h
< ε.

Since this is true for every ε > 0, limn→∞ |an| = 0 if 0 < |a| < 1.

It is useful to define what is meant by a sequence approaching ±∞. This
is different from saying that the sequence is unbounded (in either the positive or
negative direction).

Definition 3.1.2. A sequence (ak) diverges to +∞, written conveniently (with
a slight abuse of limit notation) as

lim
k→∞

ak = +∞,

if for every M ∈ N there is an N = N(M) such that if k ≥ N , then ak > M .
Similarly, (ak) diverges to −∞, written conveniently as

lim
k→∞

ak = −∞,

if for every M ∈ N there is an N = N(M) such that if k ≥ N , then ak < −M .

As we mentioned, divergence to ±∞ is different from saying that a sequence
is unbounded in either the positive or the negative direction. For example, the
sequence ak = (−1)k2k is unbounded in both the positive and negative directions,
in the sense that for every M ∈ N we can find indices k, l such that ak > M and
al < −M , but this sequence does not diverge to either +∞ or to −∞. However,
we can say that |ak| diverges to +∞.

Another example to consider is the sequence

(ak)
∞
k=1 =

(∣∣∣k sin kπ

2

∣∣∣) = (1, 0, 3, 0, 5, 0, 7, 0, . . .),

which is unbounded in the positive direction, but does not diverge to +∞ since
ak = 0 for all even k.

Lemma 3.1.3. If a > 0, then limn→∞ a1/n = 1.
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Proof. If a = 1, the statement is clearly true. If a > 1, then for each positive
integer n, a1/n > 1. (Otherwise, with a1/n ≤ 1, we have a = (a1/n)n ≤ 1n = 1.)
Let bn = a1/n − 1. Then bn > 0, and (1 + bn)

n = a. By the binomial theorem,

a = (1 + bn)
n ≥ 1 + nbn,

and hence

0 < bn ≤ a− 1

n
.

This shows that limn→∞ bn = 0, which is equivalent to limn→∞ a1/n = 1.

If 0 < a < 1, then 1/a > 1, and therefore by the case already considered,

lim
n→∞

(1/a)1/n = 1.

Then, by the quotient limit law, limn→∞ a1/n = limn→∞
1

(1/a)1/n
= 1. �

The next lemma is used to help define the Euler number e in Theorem 3.1.5
below.

Lemma 3.1.4. Let a and b be real numbers such that 0 ≤ a < b. Then

bn+1 − an+1

b− a
< (n+ 1)bn.

Proof. One verifies directly that for any a and b,

bn+1 − an+1 = (b− a)(bn + abn−1 + a2bn−2 + · · ·+ an−1b+ an).

If 0 ≤ a < b, then

bn+1 − an+1

b− a
= bn + abn−1 + a2bn−2 + · · ·+ an−1b+ an

< bn + bbn−1 + b2bn−2 + · · ·+ bn−1b+ bn

= (n+ 1)bn,

as desired. �

Theorem 3.1.5. The sequence (1+ 1/n)n is increasing and convergent. The limit
is called the Euler number and is denoted by e. Thus,

e = lim
n→∞

(
1 +

1

n

)n
.

Proof. By Lemma 3.1.4, if 0 ≤ a < b, then

bn+1 − an+1 < (n+ 1)bn(b− a),

which is equivalent to

bn[b− (n+ 1)(b− a)] < an+1.

If a = 1+ 1
n+1 and b = 1+ 1

n , then 0 ≤ a < b and b− (n+1)(b−a) = 1, so we have

bn < an+1, which is
(
1 +

1

n

)n
<
(
1 +

1

n+ 1

)n+1

.

This shows that the sequence (1 + 1/n)n is increasing.
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If we let a = 1 and b = 1 + 1
2n , then b− (n+ 1)(b− a) = 1

2 , so

1

2
bn < an+1, which is

1

2

(
1 +

1

2n

)n
< 1n+1 = 1.

Multiply the latter inequality by 2 and then square the result to obtain(
1 +

1

2n

)2n
< 4.

Since the sequence (1 + 1
n )

n is increasing, for each positive integer n we have(
1 +

1

n

)n
<
(
1 +

1

2n

)2n
< 4.

So (1 + 1
n )

n is bounded above and hence convergent. �

Theorem 3.1.6. The sequence (n1/n), for n = 3, 4, . . ., is decreasing and conver-
gent, and limn→∞ n1/n = 1.

Proof. We have seen, at the end of the proof of Theorem 3.1.5, that for each
positive integer n, (

1 +
1

n

)n
< 4.

So we certainly have
(n+ 1)n

nn
≤ n

for n ≥ 4. Hence, for n ≥ 4, we have

(n+ 1)n ≤ nn+1 =⇒ (n+ 1)n/(n+1) ≤ n =⇒ (n+ 1)1/(n+1) ≤ n1/n.

This shows that the sequence (n1/n) is decreasing for n ≥ 4, and since it is bounded
below by 1, limn→∞ n1/n = L exists and L ≥ 1. Then the sequence of squares (n2/n)
has limit L2. Now,

lim
n→∞

(n
2

)2/n
= lim

n→∞
n2/n

(1
2

)2/n
= L2,

by Lemma 3.1.1 and the product limit law. The subsequence (2n/2)2/2n of (n/2)2/n

also converges to L2. Hence, (2n
2

)2/2n
= n1/n → L2,

from which we conclude that L2 = L. Since L 
= 0, we have L = 1. �

Exercises.

Exercise 3.1.1. Find limn→∞( 12 − i 13 )
n.

Exercise 3.1.2. Prove: If a > 1, then limk→∞ ak = +∞ (Definition 3.1.2). Hint :
Let a = 1 + δ, where δ > 0, and use the estimate (1 + δ)k > 1 + kδ which follows
from the binomial expansion of (1 + δ)k.

Exercise 3.1.3. If q is a real number such that |q| < 1, then limn→∞ nqn = 0.
Hint : If q > 0, write q = 1/(1 + h) where h > 0. Hint : Use the previous exercise.
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Exercise 3.1.4. Find the indicated limits:

1. limn→∞(1 + 1
n2 )

n2

;

2. limn→∞(1 + 1
n2 )

n;

3. limn→∞(1 + 1
3n )

3n;

4. limn→∞(1 + 1
3n )

n.

Exercise 3.1.5. Show that limn→∞(n2)1/n = 1.

Exercise 3.1.6. Show that for any k ∈ N, limn→∞(nk)1/n = 1.

3.2. Introduction to Series

A finite series of real or complex numbers is a sum indicated using standard sum-
mation notation, as in the expression

N∑
k=1

ak = a1 + a2 + · · ·+ aN .

The elements of the finite sequence (ak) can be real or complex numbers. The
numerical value of a finite sum is always well-defined. We must define what is
meant by an infinite series of real or complex numbers ak, denoted

∑∞
k=1 ak, where

(ak)
∞
k=1 is an infinite sequence.

Definition 3.2.1. An infinite series of real or complex numbers,
∑∞

k=1 ak, is the
sequence of partial sums (sn)

∞
n=1 where

sn :=

n∑
k=1

ak = a1 + a2 + · · ·+ an−1 + an.

The numbers ak are called the terms of the series.

Our concept of summation of an infinite series is essentially the idea of adding
the terms one by one, accumulating a running total for the sum. The appropriate
concept for a running total is the partial sum, which respects the given ordering of
the terms as indexed by k ∈ N.

Definition 3.2.2. An infinite series
∑∞

k=1 ak converges if limn→∞ sn exists, and
we define the sum of the series to be s = limn→∞ sn. If (sn) does not converge,
then we say the series diverges.

Example 3.2.3. If the real number x has decimal representation a0.a1a2 . . ., then
the series

∑∞
k=0 ak10

−k converges with sum x. �
Example 3.2.4. Consider the infinite series

∞∑
k=0

1

2k
= 1 +

1

2
+

1

22
+

1

23
+ · · · .

Since the summation begins at k = 0, it is convenient to write sn for the sum of
the terms through the nth power term:

sn =
n∑

k=0

1

2k
= 1 +

1

2
+

1

22
+ · · ·+ 1

2n
.
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By Exercise 1.3.4 on finite geometric sums, we have

sn =

n∑
k=0

(1
2

)k
=

1− (1/2)n+1

1− (1/2)
= 2[1− (1/2)n+1].

Letting n → ∞, we have (1/2)n+1 → 0 by Lemma 3.1.1, and therefore

lim
n→∞

sn = 2.

The sequence of partial sums converges with limit 2. Therefore the series
∑∞

k=1 1/2
k

converges, with sum 2. We write
∑∞

k=1 1/2
k = 2. �

There is a Cauchy criterion for convergence of series.

Theorem 3.2.5. An infinite series
∑∞

k=1 ak of real or complex numbers converges
if and only if for every ε > 0 there is an integer N = N(ε) such that if m > n ≥ N ,
then

|sm − sn| = |an+1 + an+2 + · · ·+ am| < ε.

Proof. The series converges if and only if the sequence of partial sums converges,
if and only if (sn) is a Cauchy sequence in R or C. �

Example 3.2.6 (The Harmonic Series). The infinite series
∞∑
k=1

1

k
= 1 +

1

2
+

1

3
+

1

4
+ · · ·

is known as the harmonic series. We will show that the harmonic series diverges
by showing that the sequence of partial sums is not a Cauchy sequence. Let

sn =
n∑

k=1

1

k
= 1 +

1

2
+

1

3
+ · · ·+ 1

n− 1
+

1

n
.

Consider, in particular, the partial sums sn, sm where n = 2k and m = 2k+1 =
2k + 2k. Then the difference sm − sn consists of 2k nonzero terms,

|sm − sn| = sm − sn =
1

2k + 1
+

1

2k + 2
+ · · ·+ 1

2k + 2k
.

Each of these terms is greater than or equal to 1/2k+1, so we have

sm − sn > 2k
1

2k+1
=

1

2
.

This is true for any choice of k in defining the numbers n = 2k and m = 2k+1.
Hence (sn) is not a Cauchy sequence, and in fact the partial sums are unbounded.
Therefore the harmonic series diverges. �

In each of the last two examples, the general summand ak of the series satisfied
the condition that limk→∞ ak = 0. Notice that the sequence 1/2k converges to zero
faster than 1/k. The more rapid convergence of 1/2k to zero enabled the conver-
gence of the partial sums in Example 3.2.4, while the relatively slower convergence
of 1/k allows the partial sums of the harmonic series to become unbounded. But
there is no sharp dividing line between convergent series of positive terms and di-
vergent series of positive terms with regard to the rate of convergence of ak to zero.
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(See Exercise 3.2.1.) We have the following important necessary condition for the
convergence of an infinite series of real or complex numbers ak.

Theorem 3.2.7. If the series
∑∞

k=1 ak converges, then limk→∞ ak = 0.

Proof. If the series converges, then the sequence (sn)
∞
n=1 of partial sums converges.

Note that an = sn − sn−1 and

lim
n→∞

an = lim
n→∞

(sn − sn−1) = lim
n→∞

sn − lim
n→∞

sn−1 = 0,

which completes the proof. �

The condition limk→∞ ak = 0 is not sufficient for convergence of
∑∞

k=1 ak.
This failure of the converse of Theorem 3.2.7 is illustrated clearly by the harmonic
series in Example 3.2.6. We can never conclude solely on the basis of ak → 0 that
the series

∑∞
k=1 ak converges.

A statement equivalent to Theorem 3.2.7 is its contrapositive, which provides
a direct test for divergence of infinite series : If limk→∞ ak does not exist or, if
existing, limk→∞ ak 
= 0, then the series

∑∞
k=1 ak diverges.

Example 3.2.8. The series
∑∞

k=1(k − 3)/2k diverges, because

lim
k→∞

ak = lim
k→∞

k − 3

2k
=

1

2

= 0.

The series
∑∞

k=1 k cos(1/k) diverges, because limk→∞ k cos(1/k) does not exist.
�

It is important to have some basic facts about sums, differences and constant
multiples of series.

Theorem 3.2.9 (Sums and Constant Multiples of Series). Let (ak) and (bk) be
sequences of real or complex numbers, and let c be a real or complex constant. If∑∞

k=1 ak and
∑∞

k=1 bk converge, then their sum, difference, and constant multiple
by c also converge; moreover,

∑∞
k=1(ak±bk) =

∑∞
k=1 ak±

∑∞
k=1 bk and

∑∞
k=1 cak =

c
∑∞

k=1 ak.

Proof. Each result follows from the corresponding parts of Theorem 2.4.5 on sums,
differences and constant multiples of convergent sequences. The details are left to
Exercise 3.2.2. �
Theorem 3.2.10. Suppose ak ≥ 0 for all k = 1, 2, . . .. Then

∑∞
k=1 ak converges if

and only if the sequence of partial sums sn is bounded above.

Proof. The partial sums sn form a monotone increasing sequence since ak ≥ 0
for all k. If (sn) converges, then the partial sums are bounded above, by Theorem
2.4.4. If the partial sums are bounded above, then (sn) converges, by Theorem
2.4.15. �
Theorem 3.2.11. Let numbers bk be given, for k = 1, 2, . . .. The telescoping series∑∞

k=1(bk+1 − bk) converges if and only if limn→∞ bn exists, and when convergent,
the series sum is

∞∑
k=1

(bk+1 − bk) = lim
n→∞

bn − b1.
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Proof. The partial sum sn is sn =
∑n

k=1(bk+1 − bk) = bn+1 − b1. Therefore the
telescoping series converges if and only if limn→∞ bn+1 = limn→∞ bn exists. �

Example 3.2.12. We may use partial fractions to write

∞∑
k=1

1

k(k + 1)
=

∞∑
k=1

(1
k
− 1

k + 1

)
= −

∞∑
k=1

( 1

k + 1
− 1

k

)
.

With bk = 1/k, we have limk→∞ bk = 0, so
∑∞

k=1 1/[k(k + 1)] = −(−b1) = 1. �

Exercises.

Exercise 3.2.1. Let ak > 0 for all k ∈ N.

1. Show: If
∑∞

k=1 ak converges, then there are numbers ck with 0 < ak < ck such
that

∑∞
k=1 ck converges. (There is no “largest” convergent series.)

2. Show: If
∑∞

k=1 ak diverges, then there are numbers dk with 0 < dk < ak such
that

∑∞
k=1 dk diverges. (There is no “smallest” divergent series.)

Exercise 3.2.2. Provide the details in the proof of Theorem 3.2.9.

Exercise 3.2.3. Determine whether these series converge, and find the sum if the
series does converge:

1. (1/
√
2− 1) + (1/

√
3− 1/

√
2) + (1/

√
4− 1/

√
3) + · · · .

2. 1
1·3+

1
2·4+

1
3·5+· · · . Hint : 1/(k+2)−1/k = 1/(k+2)−1/(k+1)+1/(k+1)−1/k.

Exercise 3.2.4. Set m = n + 1 in the Cauchy criterion for series to deduce the
necessary condition, an → 0, for convergence of the series.

Exercise 3.2.5. Consider the series
∞∑
k=1

log
(
1 +

1

k

)
= log 2 + log

3

2
+ log

4

3
+ · · · .

1. Show that the sequence of general terms ak = log(1 + 1
k ) converges to zero.

2. Find an expression for the sum of the first n terms of the series.

3. Show that the series diverges.

3.3. The Geometric Series

Let q be a real or complex number. The infinite series
∑∞

k=0 q
k is called a geo-

metric series. It is convenient to define

sn =

n∑
k=0

qk = 1 + q + q2 + q3 + · · ·+ qn,

so that sn is the sum of the first n + 1 terms of the geometric series. There is an
interesting and useful fact about these partial sums of a geometric series. For any
n ∈ N, the partial sum sn of the first n+ 1 terms in a geometric series is given by

(3.1) sn =
1− qn+1

1− q
.
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In order to see this, note that the product (1−q)sn yields a telescoping or collapsing
sum, so that

(1− q)sn = 1− qn+1,

from which (3.1) follows, if q 
= 1. We now recall (Lemma 3.1.1) that if q is a
number such that |q| < 1, then limn→∞ qn+1 = 0. The next result completely
describes the convergence properties of a geometric series.

Theorem 3.3.1 (Geometric Series). The geometric series
∑∞

k=0 q
k converges if

|q| < 1 and diverges if |q| ≥ 1. If |q| < 1, then

∞∑
k=0

qk =
1

1− q
.

Proof. The geometric series converges if and only if its sequence (sn) of partial
sums converges. The partial sum sn =

∑n
k=0 q

n, for q 
= 1, is given by the formula
in (3.1). If |q| < 1, then limn→∞ qn+1 = 0, and by the quotient limit law,

lim
n→∞

sn = lim
n→∞

1− qn+1

1− q
=

1

1− q
.

Therefore the series converges, with sum equal to 1/(1− q). On the other hand, if
|q| ≥ 1, then |qn+1| = |q||qn| ≥ |qn| ≥ 1 for each n ∈ N, so limn→∞ qn 
= 0 and the
series diverges. �

Example 3.3.2. We notice that

∞∑
k=1

(9)10−k = 9
∞∑
k=0

10−k − 9 = 9
1

1− (1/10)
− 9 = 9

10

9
− 9 = 1.

Therefore the repeating base 10 decimal 0.999 represents the number 1. �

Exercises.

Exercise 3.3.1. Determine whether these geometric series converge or diverge,
and find the sum if the series converges:

(a)
∞∑
k=0

( √
11√

2 +
√
3

)k
(b)

∞∑
k=0

1

(1− i)k
(c)

∞∑
k=0

( √
2

1 + i

)k
.

Exercise 3.3.2. Use Theorem 3.3.1 to determine whether these series converge or
diverge, and find the sum if the series converges:

(a)

∞∑
k=1

1

2k
(b)

∞∑
k=2

1

(1− i)k
(c)

∞∑
k=2

(√2

3

)k
.

Exercise 3.3.3. Suppose the number .020202 is a ternary (base-3) representation.
What number is represented?
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3.4. The Cantor Set

The Cantor set is a remarkable set of real numbers. Its study helps us to begin to
see the richness of the real number line. The Cantor set C is a subset of the interval
[0, 1] constructed by a process of extracting middle thirds. We now describe exactly
what this means. We begin by considering the following sequence of sets, each of
which is a finite union of open intervals:

D0 = ∅,

D1 =
(1
3
,
2

3

)
,

D2 =
(1
9
,
2

9

)
∪
(7
9
,
8

9

)
,

D3 =
( 1

27
,
2

27

)
∪
( 7

27
,
8

27

)
∪
(19
27

,
20

27

)
∪
(25
27

,
26

27

)
,

· · · .
Each of the sets Dn is extracted, or carved away, from [0, 1]. For each n ≥ 1, Dn

is a union of 2n−1 open intervals, each of which is the middle third of an interval
that remains after the points in Dn−1 have been removed.

Definition 3.4.1. The Cantor set C is the complement in [0, 1] of the union of
the sets Dn:

C =
{
x ∈ [0, 1] : x /∈

∞⋃
k=0

Dk

}
= [0, 1]−

∞⋃
k=0

Dk.

Remark. The Cantor set C is also called the Cantor middle thirds set or the
Cantor ternary set.

We may write

C =
( ∞⋃

k=0

Dk

)c
with the understanding that the complement is taken with respect to [0, 1]. By
DeMorgan’s law,

C =
( ∞⋃

k=0

Dk

)c
=

∞⋂
k=0

Dc
k.

Since we form the Cantor set C by this intersection, let us write C0 = [0, 1] and
define Ck := Ck−1 −Dk, for k ≥ 1. Then it is immediate that

(3.2) C =
∞⋂
k=0

Ck.

The first few sets Ck are given by

C0 =
[
0, 1
]
,

C1 =
[
0,

1

3

]
∪
[2
3
, 1
]
,

C2 =
[
0,

1

9

]
∪
[2
9
,
1

3

]
∪
[2
3
,
7

9

]
∪
[8
9
, 1
]
,
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1C

C2

D2

Figure 3.1. The first few sets in the construction of the Cantor set. The

indicated sets are shown with bold line segments within the unit interval. The
set D2 consists of the middle thirds of the segments comprising C1. Then
C2 = C1 −D2.

and

C3 =
[
0,

1

27

]
∪
[ 2
27

,
1

9

]
∪
[2
9
,
7

27

]
∪
[ 8
27

,
1

3

]
∪
[2
3
,
19

27

]
∪
[20
27

,
7

9

]
∪
[8
9
,
25

27

]
∪
[26
27

, 1
]
.

(See Figure 3.1 for the first few sets in this sequence.) The length, denoted by
λ(I), of a bounded interval I = [a, b] (or I = (a, b] or I = [a, b)) is λ(I) = b − a.
One can prove by induction that each closed set Ck is the union of 2k disjoint
closed intervals Ij , each with length λ(Ij) = 1/3k. For example, C20 is the union of
1, 048, 576 disjoint closed intervals of length 1/320 ≈ 2.868(10)−10. Since C ⊂ Ck,
C is covered by 2k disjoint closed intervals whose lengths sum to 2k/3k. But this
is true for each positive integer k, so it seems that C takes up no space whatever
in [0, 1]. The reader is invited to examine this in Exercise 3.4.1.

If the Cantor set takes up no space in [0, 1], then which points, and how many,
can it contain? It is clear that the endpoints of the open intervals removed in
forming C are in C, so C is an infinite set. For example, the numbers 1/3k, for
k ∈ N, are elements of C, as are the numbers 1 − 1/3k. What else is in C? (See
Exercise 3.4.2 for a few more numbers in C.)

It may be surprising that C is not countable. But it is possible to show that C
is an uncountable set. To see why this is so, it is helpful to understand the Cantor
set from a different point of view.

Every real number x in [0, 1] has a base-3 decimal expansion, which we write
as

x =

∞∑
j=1

bj3
−j , where bj ∈ {0, 1, 2}.

This base-3 representation is unique unless x is of the form q3−k for some integers
q and k, in which case there can be only two such expansions; one expansion ends
in an infinite sequence of 2s and the other expansion ends in an infinite sequence of
0s. (This situation also occurs with decimal expansions and repeated nines versus
repeated zeros.) Two examples with k = 3 are given by the numbers

x = (5)3−3 = .011222 . . . = .012000 . . .
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and

y = (4)3−3 = .010222 . . . = .011000 . . . .

Note that one of the expansions for each number has bk = b3 = 1 and the other
has either b3 = 0 or b3 = 2. For such points, we agree to use the representation
where bk = 0 or bk = 2, not the one where bk = 1. With this agreement, the base-3
expansion of any x in [0, 1] is unique. For example, the expansion for 1/3 is then
.0222 . . ., for 2/3 it is .2000 . . ., for 1/9, .00222 . . ., and for 7/9, .20222 . . .. The
chosen expansion for (5)3−3 is .012000 . . ., and for (4)3−3, .010222 . . ..

Now let x ∈ [0, 1] and let
∑∞

j=1 bj3
−j , where bj ∈ {0, 1, 2}, be the unique base-3

expansion for x, determined by our convention when necessary. Referring to the
excluded sets Dn in the construction of the Cantor set, we see that

1. b1 = 1 if and only if x ∈ D1;

2. b1 
= 1 and b2 = 1 if and only if x ∈ D2;

3. b1 
= 1, b2 
= 1 and b3 = 1 if and only if x ∈ D3;

and, in general, bj 
= 1 for 1 ≤ j ≤ k − 1 and bk = 1, if and only if x ∈ Dk. We
conclude that a number x in [0, 1] is in the Cantor set C if and only if the base-3
expansion for x has bj 
= 1 for all j. This proves the following theorem.

Theorem 3.4.2. The Cantor set C is the set of all points in [0, 1] that have a
base-3 ternary expansion

∑∞
j=1 bj3

−j with bj 
= 1 for all j. Hence,

C =
{
x ∈ [0, 1] : x =

∞∑
j=1

bj
3j

, where bj ∈ {0, 2}
}
.

We can now show that the Cantor set is uncountable.

Theorem 3.4.3. The Cantor set C is uncountable.

Proof. The proof is by a diagonal argument like that in the proof that R is un-
countable. Every x ∈ C has a unique base-3 ternary expansion

∑∞
j=1 bj3

−j where
for each j, either bj = 0 or bj = 2. We know that C is an infinite set. If C is
assumed to be countably infinite, then one can derive a contradiction. The details
are left as Exercise 3.4.4. �

Exercises.

Exercise 3.4.1. Consider the representation C =
⋂∞

k=0 Ck of the Cantor set.

1. Prove by induction: Each set Ck is the union of 2k disjoint closed intervals Ij ,
with length λ(Ij) = 1/3k for j = 1, . . . , 2k.

2. Prove: For every ε > 0 there is a finite collection of closed intervals {Ij}mj=1

such that C ⊂
⋃m

j=1 Ij and
∑m

j=1 μ(Ij) < ε. Hint : Use Lemma 3.1.1.

Exercise 3.4.2. Show that the numbers 1/3k, 1−1/3k, k ∈ N, are in the Cantor set
C. Show also that 1/4 and 3/4 are in C. Then show that 1/(3k4) and 1− 1/(3k4),
k ∈ N, are in C. Hint : C is symmetric with respect to the midpoint 1/2 of [0, 1].

Exercise 3.4.3. Write the base-3 expansion of 1
9 ,

2
9 ,

7
9 , and

8
9 .
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Exercise 3.4.4. Prove that the Cantor set C is uncountable. Hint : Use a diagonal
argument.

Exercise 3.4.5. Show that the sets Dn, removed from the interval [0, 1] in the
construction of the Cantor set, have lengths that sum to 1. Compare this with
Exercise 3.4.1.

Exercise 3.4.6. A Cantor set with positive total length
Let C0 = [0, 1] and let 0 < α < 1. Starting with C0 at step n = 0, we remove
the open middle portion of C0 of length α/3. For each integer n ≥ 1, at step
n we remove 2n open intervals, each with length α3−(n+1), each one the open
middle portion of one of the remaining 2n closed intervals of C0. (The Cantor set
construction had α = 1.) Show that the sum of the lengths of all the open intervals
removed in forming F is α. Therefore F can be said to have total length 1 − α.
(Later in the text, we will understand this statement to mean that F has Lebesgue
measure 1− α.)

3.5. A Series for the Euler Number

We give another representation of the important Euler number e, which has been
defined by

e = lim
n→∞

(
1 +

1

n

)n
.

(See Theorem 3.1.5.) First, we note that for each positive integer k ≥ 4, we have
k! ≥ 2k and hence 1/k! ≤ 1/2k. Thus for each n ≥ 4,

sn =
n∑

k=4

1

k!
≤

n∑
k=4

1

2k
,

where the sums on the right-hand side are the partial sums of a convergent geometric
series. Therefore (sn)

∞
n=4 is a bounded increasing sequence of positive numbers. We

conclude that the series
∑n

k=0 1/k! converges.

The following notation is standard for finite products of numbers ak:

n∏
k=1

ak = a1a2 · · · an.

Theorem 3.5.1. The number e := limn→∞

(
1 + 1

n

)n
is the sum of the following

series:

e =
∞∑
k=0

1

k!
= 1 + 1 +

1

2!
+

1

3!
+ · · ·+ 1

k!
+ · · · .

Proof. For each integer n ≥ 0, let sn =
∑n

k=0 1/k!, and for n ≥ 1, let bn =
(1 + 1

n )
n. We want to show that limn→∞ sn = limn→∞ bn. Starting from the

binomial theorem, we reduce each term in bn by the common factors in the quotient
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n!/(n− k)!, and then divide each of the remaining factors by n, as follows:

bn =
(
1 +

1

n

)n
=

n∑
k=0

n!

k!(n− k)!

( 1
n

)k
= 1 + 1 +

1

2!

n(n− 1)

n2
+

1

3!

n(n− 1)(n− 2)

n3
+ · · ·+ 1

n!

n!

nn

= 1 + 1 +
1

2!

(
1− 1

n

)
+

1

3!

(
1− 1

n

)(
1− 2

n

)
+ · · ·+ 1

n!

n−1∏
k=1

(
1− k

n

)

≤ 1 + 1 +
1

2!
+

1

3!
+ · · ·+ 1

n!
= sn.

Hence, e = limn→∞ bn ≤ limn→∞ sn. Now we need the inequality in the other
direction. Fix n and a positive integer m ≤ n. In the expansion above for bn, by
retaining only the terms through the 1/m! term, we have

bn ≥ 1 + 1 +
1

2!

(
1− 1

n

)
+ · · ·+ 1

m!

m−1∏
k=1

(
1− k

n

)
=: cnm.

For each fixed m, we have

e = lim
n→∞

bn ≥ lim
n→∞

cnm = 1 + 1 +
1

2!
+ · · ·+ 1

m!
= sm.

Thus e ≥ limm→∞ sm. We conclude that e =
∑∞

k=0 1/k!. �

By using either the partial sums sn of the series
∑∞

k=0 1/k! or the sequence
bn = (1 + 1

n )
n, one can verify that e ≈ 2.718 to three decimal places.

In general, it can be quite difficult to show that specific numbers are irrational.
However, we now have the tools available to show that the Euler number e is
irrational. We need the series expression for e, the geometric series, and the fact
that the interval (0, 1) contains no integer (Lemma 2.3.1).

Theorem 3.5.2. The Euler number e is irrational.

Proof. Let n be a positive integer and let sn =
∑n

k=0 1/k!. Then e− sn > 0, since
all the terms of the series for e are positive. We estimate e− sn as follows:

e− sn =
1

(n+ 1)!
+

1

(n+ 2)!
+

1

(n+ 3)!
+ · · ·

=
1

(n+ 1)!

[
1 +

1

n+ 2
+

1

(n+ 2)(n+ 3)
+ · · ·

]
<

1

(n+ 1)!

[
1 +

1

n+ 1
+

1

(n+ 1)2
+

1

(n+ 1)3
+ · · ·

]
=

1

(n+ 1)!

1

1− (1/(n+ 1))

=
1

(n+ 1)!

n+ 1

n
=

1

n!n
.

Thus, 0 < e− sn < 1/(n!n) for every positive integer n.
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Now suppose that e is rational. Then e = m/n for some positive integers m
and n. By the estimate just proven, we have

0 < e− sn <
1

n!n
,

hence

0 < n! (e− sn) <
1

n
.

Since

e− sn =
m

n
−
(
1 + 1 +

1

2!
+

1

3!
+ · · ·+ 1

n!

)
,

it follows that n! (e− sn) is a sum of integers, and hence must be an integer. But
since 0 < n! (e − sn) < 1, this contradicts Lemma 2.3.1 which asserts that the
interval (0, 1) contains no integer. Therefore e is irrational. �

3.6. Alternating Series

We have already seen an example of a series whose terms have alternating signs,
for example, the convergent geometric series

∞∑
k=0

(−1/2)k = 1− 1

2
+

1

4
− · · · .

Definition 3.6.1. Infinite series of the form
∞∑
k=1

(−1)k+1ak = a1 − a2 + a3 − · · · or
∞∑
k=1

(−1)kak = −a1 + a2 − a3 + · · · ,

where ak > 0 for all positive integers k, are called alternating series.

Theorem 3.6.2. If (ak) is a decreasing sequence of positive numbers such that
limk→∞ ak = 0, then the alternating series

∑∞
k=1(−1)k+1ak and

∑∞
k=1(−1)kak

converge. For either of these convergent series, if s is the sum and sn is the partial
sum of the first n terms, then

|sn − s| < |an+1|.

Proof. We shall work with the series
∑∞

k=1(−1)k+1ak = a1 − a2 + a3 − · · · . The
argument for the other series is similar. Consider the partial sums s2n+1 with an odd
number of terms and s2n with an even number of terms. Since (ak) is decreasing, the
subsequence (s2n) of the partial sums is increasing, and the subsequence (s2n+1)
is decreasing. Also notice that we have s2 ≤ s3 (for n = 1), s4 ≤ s5 (n = 2),
and, in general, s2n ≤ s2n+1. Thus, we have a nested sequence of closed intervals,
[s2n, s2n+1], which are nonempty since ak 
= 0 for each k. Since |s2n+1 − s2n| =
|a2n+1| → 0 as n → ∞, the intersection of these closed intervals is a number s
such that limn→∞ s2n = s = limn→∞ s2n+1. It follows that limn→∞ sn = s and the
series converges with sum s. For the error estimate in using the partial sum sn,
notice that if n = 2m, then s2m ≤ s ≤ s2m+1, so

|sn − s| = |s2m − s| < |s2m+1 − s2m| = |a2m+1|,
while if n = 2m+ 1, then s2m+2 ≤ s ≤ s2m+1, so

|sn − s| = |s2m+1 − s| < |s2m+2 − s2m+1| = | − a2m+2|.
This competes the proof. �
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Notice that with q < 0 and |q| < 1, convergent geometric series
∑∞

k=0 q
k =∑∞

k=0(−1)k|q|k are covered by Theorem 3.6.2. In the next example we consider the
harmonic series with alternating signs.

Example 3.6.3. The alternating harmonic series is
∞∑
k=1

(−1)k+1 1

k
= 1− 1

2
+

1

3
− 1

4
− · · · .

Theorem 3.6.2 applies, and this alternating series converges. �

Example 3.6.4. Consider the series
∞∑
k=1

(−1)k
1
3
√
k

and

∞∑
k=1

(−1)k+1 1√
k2 + k

.

Theorem 3.6.2 applies to each series, and we conclude that each converges. �

Exercises.

Exercise 3.6.1. Let ak = k3 for 1 ≤ k ≤ 1010, and ak = (−1)k/k4/3 for k > 1010.
Show that

∑∞
k=1 ak converges.

Exercise 3.6.2. Give an example of convergent series
∑

ak and
∑

bk such that∑
akbk does not converge.

Exercise 3.6.3. Show that the series
∑∞

k=1(−1)k+1xk/k converges for 0 < x < 1.
(The sum is log(1+x) for these values of x, where log denotes the natural logarithm
function.) Show that the series converges when x = 1. (The sum when x = 1 can
be shown to equal log 2.) What about x = −1?

3.7. Absolute Convergence and Conditional Convergence

A useful approach to the question of series convergence involves an examination of
the series of absolute values of the original terms.

Definition 3.7.1. Let ak be real or complex numbers. The series
∑∞

k=1 ak con-
verges absolutely (is absolutely convergent) if the series with nonnegative
terms

∑∞
k=1 |ak| converges.

The following result is of fundamental importance.

Theorem 3.7.2. If
∑∞

k=1 ak converges absolutely, then it converges.

Proof. Assume
∑∞

k=1 ak converges absolutely, that is,
∑∞

k=1 |ak| converges. De-
noting the partial sums of the latter series by

Sn =

n∑
k=1

|ak|,

we have that (Sn) is a Cauchy sequence of real numbers. We wish to show that the
partial sums

sn =
n∑

k=1

ak
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for the original series form a Cauchy sequence, from which we may conclude that
(sn) converges. Given ε > 0, there is an N such that if m > n ≥ N , then

|Sm − Sn| = Sm − Sn < ε.

Since sm − sn = an+1 + · · ·+ am, we have the estimate

|sm − sn| = |an+1 + · · ·+ am| ≤ |an+1|+ · · ·+ |am| = Sm − Sn.

Thus, if m > n ≥ N , then

|sm − sn| ≤ Sm − Sn < ε.

Since ε > 0 is arbitrary, (sn) is Cauchy and hence limn→∞ sn exists. �

The potential for wide applicability of Theorem 3.7.2 depends on having a good
supply of sufficient conditions for the convergence of series with nonnegative terms.
In the next section we consider several useful convergence tests for such series.

Let us consider some standard terminology for the convergent series not covered
by Theorem 3.7.2.

Definition 3.7.3. The series
∑∞

k=0 ak is said to be conditionally convergent
if it converges, but

∑∞
k=0 |ak| does not converge. Thus a series is conditionally

convergent if it converges, but does not converge absolutely.

An example of a conditionally convergent series is the alternating harmonic
series given by

∑∞
k=1(−1)k 1

k . This series converges, but not absolutely, since∑∞
k=1 |(−1)k 1

k | =
∑∞

k=1
1
k is the harmonic series, which diverges.

The term conditional convergence is appropriate, due to the fact that the con-
vergence is conditioned on the stated ordering of the terms ak in the series. As we
will see, if a series of real numbers converges conditionally, then the terms of the
series may be reordered in such a way as to create a new series that converges to any
pre-specified real number. On the other hand, a series that converges absolutely
will still converge, and to the same sum, if the terms of the series are rearranged
in any order whatever. These matters are discussed in greater detail in the final
section of this chapter.

Exercise.

Exercise 3.7.1. Prove the following statements:

1. If bk ≥ 0 for all k,
∑∞

k=1 bk converges with sum b, and |ak| ≤ bk for all k, then∑∞
k=1 ak converges.

2. If the ak are real numbers and a =
∑∞

k=1 ak, then −b ≤ a ≤ b, where b =∑∞
k=1 bk from part 1.

3. If the ak are complex numbers and the sum a =
∑∞

k=1 ak is not a real number,
then |a| ≤ b. Hint : Denote the n-th partial sums for the two series by sn =∑n

k=1 ak and Sn =
∑n

k=1 bk, and use the triangle inequality to compare them.
In particular, show that |sn| ≤ Sn and that for n > m, |sn − sm| ≤ |Sn −Sm|.
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3.8. Convergence Tests for Series with Positive Terms

We begin with simple direct comparisons for series with nonnegative terms, giving
a basic convergence test and a divergence test.

Theorem 3.8.1. Let ak ≥ 0, ck ≥ 0 and dk ≥ 0 for each k. The following
statements are true:

1. If there is an N such that ak ≤ ck for all k ≥ N , and
∑∞

k=1 ck converges, then∑∞
k=1 ak converges.

2. If there is an N such that ak ≥ dk for all k ≥ N , and
∑∞

k=1 dk diverges, then∑∞
k=1 ak diverges.

Proof. It suffices to consider the series as beginning with index value k = N , since
the convergence or divergence of a series is independent of the first N terms. Series
with nonnegative terms have monotone increasing sequences of partial sums, and
these partial sums converge if and only if they are bounded. If ak ≤ ck for k ≥ N ,
and

∑∞
k=N ck converges, then there is a number B such that

aN + · · ·+ aN+n ≤ cN + · · ·+ cN+n ≤ B for all n ∈ N.

Therefore
∑∞

k=N ak converges since its partial sums are bounded. On the other
hand, if ak ≥ dk for k ≥ N , and

∑∞
k=N dk diverges, then

aN + · · ·+ aN+n ≥ dN + · · ·+ dN+n → ∞ as n → ∞.

Therefore
∑∞

k=N ak diverges since its partial sums are unbounded. �

Example 3.8.2. Consider the series
∑∞

k=1 5/(2
k + 3). We have

5

2k + 3
≤ 5

2k
.

Since
∑∞

k=1 1/2
k converges, we conclude that

∑∞
k=1 5/2

k = 5
∑∞

k=1 1/2
k converges.

�

Example 3.8.3. For the series
∑∞

k=1 k/(k
2 + k + 3), we have

k

k2 + k + 3
≤ k

k2
=

1

k
,

but
∑

1/k diverges and is termwise larger than our series; this comparison is in-
conclusive. It might appear difficult to get a series that is termwise smaller than
k/(k2 + k + 3) and known to diverge. But notice that

k

k2 + k2 + k2
<

k

k2 + k + 3
for k ≥ 2,

and since
∑

k/3k2 = 1
3

∑
1
k diverges, our original series must diverge. �

When a direct comparison is difficult, the limit comparison test of Exercise
3.8.2 is sometimes helpful.
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Exercises.

Exercise 3.8.1. Prove: If ak, ck are positive for each k and there are constants
α > 0 and N > 0 such that ak < αck for all k ≥ N , then the convergence of∑∞

k=1 ck implies the convergence of
∑∞

k=1 ak.

Exercise 3.8.2. A limit comparison test
Prove: If ak > 0 and bk > 0 for each k, and if

lim
k→∞

ak
bk

= L > 0,

then
∑∞

k=1 ak converges if and only if
∑∞

k=1 bk converges. Hint : By the limit
hypothesis, there exists N such that if k ≥ N , then L/2 < ak/bk < 3L/2. Use the
result of Exercise 3.8.1.

Exercise 3.8.3. More limit comparisons

1. Prove: If ak > 0 and bk > 0 for each k, and if limk→∞ ak/bk = 0 and
∑

bk
converges, then

∑
ak converges.

2. Prove: If ak > 0 and bk > 0 for each k, and if limk→∞ ak/bk = ∞ and
∑

bk
diverges, then

∑
ak diverges.

Exercise 3.8.4. Which series converge and which diverge?

(a)

∞∑
k=1

k + 2

k
√
k

(b)

∞∑
k=1

1 + 1/k

5k
(c)

∞∑
k=1

1

| sin(k)| .

3.9. Geometric Comparisons: The Ratio and Root Tests

Since geometric series are completely understood they are a good choice as the
dominating series for comparison purposes. We obtain some useful general tests
for absolute convergence in this way. The following special case of Theorem 3.8.1
is important.

Theorem 3.9.1. If there is a B > 0 and q ∈ (0, 1) such that |ak| ≤ Bqk for all
k ∈ N, then the series

∑∞
k=1 ak converges absolutely.

Proof. The geometric series
∑∞

k=1 Bqk converges (to Bq/(1− q)), hence
∑∞

k=1 ak
converges absolutely by Theorem 3.8.1. �

There are useful variations of this result. For example, the hypothesis that
|ak| ≤ Bqk for all k ≥ M for some positive integer M also implies that

∑∞
k=1 ak

converges absolutely. From the geometric series comparison in Theorem 3.9.1 we
obtain two important sufficient conditions for absolute convergence. These are the
basic versions of the ratio test and the root test usually discussed in introductory
calculus.

Theorem 3.9.2. Let
∑∞

k=1 ak be a series of nonzero real numbers.

1. If limk→∞ |ak+1|/|ak| < 1, then the series converges absolutely.

2. If limk→∞ |ak+1|/|ak| > 1, then the series diverges.

3. If limk→∞ |ak+1|/|ak| = 1, then the test is inconclusive.
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Proof. To prove statement 1, let α = limk→∞ |ak+1|/|ak| < 1 and choose q such
that α < q < 1. There exists N = N(ε) such that if k ≥ N , then |ak+1|/|ak| < q <
1. Hence, |ak| ≤ qk−N |aN | for k ≥ N . Since q = qk+1/qk, we have

|ak+1|
qk+1

<
|ak|
qk

≤ q−N |aN | for k ≥ N,

and therefore |ak| ≤ Bqk if k > N , where B = q−N |aN |. Thus the series converges
absolutely by Theorem 3.9.1. The reader is invited to prove part 2 in Exercise 3.9.1.
See also Exercise 3.9.3 for an illustration of part 3. �

Theorem 3.9.3. Let
∑∞

k=1 ak be a series of real numbers.

1. If limk→∞ |ak|1/k < 1, then the series converges absolutely.

2. If limk→∞ |ak|1/k > 1, then the series diverges.

3. If limk→∞ |ak|1/k = 1, then the test is inconclusive.

Proof. We prove part 1 here. If lim |ak|1/k = α < 1, choose q such that α < q < 1.
There exists N such that |ak|1/k < q < 1 for k ≥ N , hence |ak| ≤ qk for k ≥ N .
Since

∑∞
k=N qk converges,

∑∞
k=1 ak converges absolutely. Exercise 3.9.2 asks for a

proof of part 2, and Exercise 3.9.3 provides an illustration of part 3. �

More general versions of the ratio test and root test allow the maximum ap-
plicability from conditions similar to those in Theorem 3.9.2 and Theorem 3.9.3.
These general versions of the ratio test and root test appear in Section 3.11. They
use the concepts of limit superior and limit inferior of a sequence of real numbers,
discussed in Section 3.10.

Exercises.

Exercise 3.9.1. Prove part 2 of Theorem 3.9.2.

Exercise 3.9.2. Prove part (2) of Theorem 3.9.3.

Exercise 3.9.3. Consider the divergent series
∑∞

k=1 1/k and the convergent series∑∞
k=1 1/k

2. Show that limk→∞ |ak+1/ak| = 1 and limk→∞ |ak|1/k = 1 for each of
these series. This establishes part 3 for both Theorem 3.9.2 and Theorem 3.9.3.

Exercise 3.9.4. Show that the series
∑∞

k=0 x
k/k! converges absolutely for all real

x. (The sum is, of course, ex, established later in the text.) What about
∑∞

k=0 z
k/k!

for z ∈ C?

Exercise 3.9.5. Consider the following series:

(i)

∞∑
k=1

xk (ii)

∞∑
k=1

xk

k
(iii)

∞∑
k=1

xk

k2
.

Show that each of these series converges when |x| < 1 and diverges when |x| > 1.
Then consider |x| = 1: Show that series (i) does not converge if |x| = 1; series (ii)
converges for one value of x where |x| = 1 and diverges for the other; and series
(iii) converges when |x| = 1.
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3.10. Limit Superior and Limit Inferior

This section covers the concepts of limit superior and limit inferior of a sequence.
Even a sequence that does not converge may have subsequences that converge, and
it is useful to describe the behavior of these subsequences.

Example 3.10.1. Consider the sequence(
2,−1,

1

2
,−1

2
,
2

3
,−1

3
,
3

4
,−1

4
,
4

5
, . . .

)
.

It is not difficult to see that the largest subsequential limit of (ak) is 1 and the
least subsequential limit is 0. This conclusion follows from the observation that
any convergent subsequence must have its limit enclosed by the intervals [−1/m, 1]
for each m ∈ N, together with the observation that there are indeed specific subse-
quences which converge to 1 and 0, respectively. Notice also that these limit values
are different from the supremum and infimum of the range of the sequence, given
by 2 and −1, respectively. �

Before proceeding, let us first observe that a sequence that is unbounded below
has a subsequence that diverges to −∞, and a sequence that is unbounded above
has a subsequence that diverges to ∞. The reader should verify this observation as
an exercise.

The concepts of limit superior and limit inferior of a bounded sequence (ak) are
designed for the purpose of describing subsequential limits of (ak) in a systematic
way. We now set up some notation to help with the introduction of these concepts.

Let (ak), k ∈ N, be a bounded sequence of real numbers, so that |ak| ≤ M for
some M and all k ∈ N; thus, the sequence is bounded above and below. Letting
l1 = inf{ak : k ∈ N} and u1 = sup{ak : k ∈ N}, we observe that the interval [l1, u1]
contains every term of (ak). For each m, we consider the infimum and supremum
of the tail end of (ak) for k ≥ m. Thus, define

lm = inf{ak : k ≥ m},
um = sup{ak : k ≥ m}.

Then (lm) is monotone increasing, (um) is monotone decreasing, and therefore we
obtain a nested sequence of intervals [lm, um], m ∈ N, such that the mth interval
contains the entire tail of (ak) for k ≥ m. Now let

α = sup
m

lm = sup
m

inf{ak : k ≥ m},(3.3)

ω = inf
m

um = inf
m

sup{ak : k ≥ m}.(3.4)

The numbers α and ω both exist by the monotone sequence theorem. We make the
following definitions.

Definition 3.10.2. Let (ak) be a bounded sequence of real numbers.

1. The limit superior of (ak) is defined by

lim sup ak := inf
m

sup{ak : k ≥ m}.

2. The limit inferior of (ak) is defined by

lim inf ak := sup
m

inf{ak : k ≥ m}.
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We emphasize that every bounded sequence of real numbers has a limit infimum
and a limit supremum and each of these numbers is finite. If (ak) is not bounded
below, then we may indicate this by writing lim inf ak = −∞. If (ak) is not bounded
above, then we may write lim sup ak = ∞.

It is possible to have a sequence bounded above for which the number ω in
(3.4) is −∞; for example, consider the sequence (−1,−2,−3, . . .). Of course, then
the number α in (3.3) is −∞ as well. And it is possible to have a sequence bounded
below for which the number α in (3.3) is ∞; for example, consider the sequence
(1, 2, 3, . . .). Of course, then the number ω in (3.4) is ∞ as well. Notice that neither
of these examples has any convergent subsequences.

We think of lim sup ak and lim inf ak as the largest and smallest subsequential
limits of (ak), respectively, and this thought is justified by Theorem 3.10.3 and
Theorem 3.10.4 below. These theorems give several equivalent characterizations of
the limit superior and limit inferior, respectively.

First we make a few more observations about subsequential limits. If the num-
ber b is the limit of a subsequence of (ak), then by (3.3) and (3.4), b belongs to the
interval [α, ω]. The sequence (ak) converges if and only if α = ω, in which case there
is exactly one subsequential limit for (ak). Thus, if S is the set of subsequential
limits of (ak), then S ⊂ [α, ω]. (The theorems below show that, in fact, α and ω
are elements of S, as we indicated above.)

A helpful observation in the description of subsequential limits of (ak) is as
follows. If β is a number such that ak > β for at most finitely many terms of (ak),
then no subsequence of (ak) can converge to a limit greater than β, since such a
limit would require that infinitely many terms of (ak) be greater than β. Stated in
a different but logically equivalent form, we observe that if β has the property that
there exists an Nβ such that ak ≤ β for all k ≥ Nβ , then no number greater than
β can be a subsequential limit of (ak).

We may characterize lim sup ak as follows.

Theorem 3.10.3. Let (ak) be a bounded sequence of real numbers. Then the
following statements for a real number x∗ are equivalent:

1. If um = sup{ak : k ≥ m}, then x∗ = infm um = limm um, that is, x∗ =
lim sup ak (Definition 3.10.2).

2. If S is the set of all subsequential limits of (ak), then x∗ = supS.

3. x∗ is the infimum of the set B consisting of all real numbers β such that ak > β
for at most finitely many terms of (ak).

4. For any ε > 0, there are at most finitely many terms of (ak) such that ak >
x∗ + ε, but infinitely many terms of (ak) such that ak > x∗ − ε.

Proof. 1 implies 2: Suppose (ank
) is a convergent subsequence of (ak) with limit

b. Then b ≤ um for each m, hence b ≤ limm um. On the other hand, by definition
of u1, there exists n1 ≥ 1 such that u1 − 1 < an1

≤ u1. By induction, we may
choose nk+1 > nk such that for all k ∈ N,

uk −
1

k
< ank

≤ uk.
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Since limk uk = x∗, we conclude that limk ank
= x∗, and hence x∗ ∈ S. Therefore

x∗ = supS. (This proves that lim sup ak as defined by Definition 3.10.2 really is
the largest subsequential limit of (ak).)

2 implies 3: Let x∗ = supS. Then given any ε > 0, there are at most finitely
many terms of (ak) with ak > x∗ + ε. Thus, x∗ + ε belongs to the set B of 3. Since
x∗ = supS, there is a subsequence of (ak) that converges to a number greater than
x∗ − ε, and therefore x∗ − ε does not belong to B. Since ε > 0 is arbitrary, we
conclude that x∗ = inf B. Thus, 3 holds.

3 implies 4: Let ε > 0. Since x∗ = inf B, there exists β ∈ B such that
x∗ ≤ β < x∗ + ε. Then by definition of B, x∗ + ε also belongs to B. So there are at
most finitely many terms of (ak) such that ak > x∗+ ε. But x∗− ε does not belong
to B, so there are infinitely many terms of (ak) such that ak > x∗ − ε. Thus, 4
holds.

4 implies 1: If 4 holds, then for any ε > 0, we have um < x∗ + ε for all
sufficiently large m. Hence, inf{um : m ∈ N} ≤ x∗ + ε. Also by 4, there are
infinitely many terms of (ak) such that ak > x∗ − ε, so x∗ − ε < um for all m ∈ N.
Hence, x∗ − ε ≤ inf{um : m ∈ N}. Since ε > 0 is arbitrary, we conclude that
x∗ = inf{um : m ∈ N}. And since (um) is decreasing, we also have x∗ = limm um.
Therefore 1 holds. �

The next theorem gives a characterization of lim inf ak. The proof is left to the
interested reader as Exercise 3.10.5.

Theorem 3.10.4. Let (ak) be a bounded sequence of real numbers. Then the
following statements for a real number x∗ are equivalent:

1. If lm = inf{ak : k ≥ m}, then x∗ = supm lm = limm lm, that is, x∗ = lim inf ak
(Definition 3.10.2).

2. If S is the set of all subsequential limits of (ak), then x∗ = inf S.

3. x∗ is the supremum of the set B consisting of all real numbers β such that
ak < β for at most finitely many terms of (ak).

4. For any ε > 0, there are at most finitely many terms of (ak) such that ak <
x∗ − ε, but infinitely many terms of (ak) such that ak < x∗ + ε.

Exercises.

Exercise 3.10.1. Find lim inf ak and lim sup ak for these sequences:

1. ak = (1− 1
k ) cos(kπ);

2. ak = (1 + 1
k ) sin(k

π
3 );

3. ak = 2 sin(k π
2 ) cos(kπ).

Exercise 3.10.2. Suppose (ak) and (bk) are sequences bounded above. Prove that
lim sup(ak + bk) ≤ lim sup ak + lim sup bk.

Exercise 3.10.3. Suppose (ak) and (bk) are sequences bounded below. Prove that
lim inf(ak + bk) ≥ lim inf ak + lim inf bk.

Exercise 3.10.4. Suppose ak ≤ bk for all k ≥ N for some positive integer N .
Show that lim sup ak ≤ lim sup bk and lim inf ak ≤ lim inf bk.

Exercise 3.10.5. Prove Theorem 3.10.4.
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3.11. Additional Convergence Tests

This section provides some additional convergence tests for numerical series.

For absolute convergence, the coverage includes the general versions of the root
test and ratio test, and geometric series continue to play an important role here.
(The integral test can be found in Section 6.3.)

For conditional convergence, we consider Abel’s test and Dirichlet’s test.

3.11.1. Absolute Convergence: The Root and Ratio Tests. Earlier in Theo-
rem 3.9.2 and Theorem 3.9.3 we saw applications of a comparison test with geomet-
ric series, which gave us the basic ratio test and root test usually seen in calculus
courses. In this section we present more general versions of the root test and ra-
tio test by employing the concepts of limit superior and limit inferior, as well as
geometric series.

Theorem 3.11.1 (Root Test). Let
∑

ak be a series of real numbers.

1. If lim sup |ak|1/k < 1, then the series converges absolutely.

2. If lim sup |ak|1/k > 1, then the series diverges.

Proof. 1. Assume L = lim sup |ak|1/k < 1. By hypothesis, we can choose an ε > 0
such that L+ ε < 1. Then there exists an N(ε) such that

|ak|1/k < L+ ε for all k > N(ε).

Thus, |ak| < (L + ε)k for all k > N(ε). Since L + ε < 1, the terms on the right
are the terms of a convergent geometric series. By the comparison test, the series∑∞

N |ak| converges, so
∑

ak converges absolutely.

2. If L = lim sup |ak|1/k > 1, then we can choose an ε > 0 such that L− ε > 1.
There exists a subsequence (ank

) such that

|ank
|1/nk > L− ε > 1,

and hence |ank
| > (L− ε)nk > 1. Consequently, we cannot have ak → 0 as k → ∞,

and therefore
∑

ak diverges. �

Theorem 3.11.2 (Ratio Test). Let
∑

ak be a series of real numbers.

1. If lim sup |ak+1/ak| < 1, then the series converges absolutely.

2. If lim inf |ak+1/ak| > 1, then the series diverges. (An example is given below
to show that the condition lim sup |ak+1/ak| > 1 does not imply divergence.)

Proof. 1. Assume L = lim sup |ak+1/ak| < 1. By hypothesis, we can choose an
ε > 0 such that L+ ε < 1. Then there exists an N = N(ε) such that∣∣∣ak+1

ak

∣∣∣ < L+ ε for all k ≥ N(ε).

Thus, for each positive integer j, we have

|aN+j | < |aN | (L+ ε)j .
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Since L + ε < 1, the terms on the right are the terms of a convergent geometric
series. By the comparison test, the series

∑∞
j=1 |aN+j | converges, so

∑
ak converges

absolutely.

2. Suppose L = lim inf |ak+1/ak| > 1. Then we may choose an ε > 0 such that
L− ε > 1. Then there exists an N = N(ε) such that∣∣∣ak+1

ak

∣∣∣ > L− ε for all k ≥ N(ε).

Thus, for each positive integer j, we have

|aN+j | > |aN | (L− ε)j .

Since L − ε > 1, the terms on the right are the terms of a divergent geometric
series. Consequently, limj→∞ |aN+j | 
= 0 if the limit exists at all, and so

∑
ak

diverges. �

There is an interesting relation between the ratio test and root test. It is
possible to establish the inequalities

lim inf
∣∣∣ak+1

ak

∣∣∣ ≤ lim inf |ak|1/k

and

lim sup |ak|1/k ≤ lim sup
∣∣∣ak+1

ak

∣∣∣.
These inequalities imply that if either part of the ratio test applies, then the corre-
sponding part of the root test applies. Thus the root test is the more general test in
that it will apply in some cases where the ratio test does not apply. However, there
are many series for which the ratio test may be easier to apply. These inequalities
also help to explain the need for the limit inferior in the divergence test portion of
the ratio test. Also consider the next example.

Example 3.11.3. We know that the alternating harmonic series

∞∑
k=1

(−1)k+1 1

k
= 1− 1

2
+

1

3
− 1

4
+ · · ·

converges. (The sum equals log 2, where log indicates the natural logarithm func-
tion.) By Theorem 3.2.9 on the sum of convergent series, we may write

1

2

∞∑
k=1

(−1)k+1 1

k
=

∞∑
k=1

0 +
1

2

∞∑
k=1

(−1)k+1 1

k

= 0 +
1

2
+ 0− 1

4
+ 0 +

1

6
+ 0− 1

8
+ · · · = 1

2
log 2.

Since 3
2 log 2 = log 2 + 1

2 log 2, we may also conclude from Theorem 3.2.9 that

3

2
log 2 =

(
1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+

1

7
− 1

8
+

1

9
− 1

10
+

1

11
− 1

12
+ · · ·

)
+
(
0 +

1

2
+ 0− 1

4
+ 0 +

1

6
+ 0− 1

8
+ 0 +

1

10
+ 0− 1

12
+ · · ·

)
= 1 + 0 +

1

3
− 1

2
+

1

5
+ 0 +

1

7
− 1

4
+

1

9
+ 0 +

1

11
− 1

6
+ · · · .
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The reader may verify that the pattern continues as follows:

3

2
log 2 =

(
1 +

1

3

)
− 1

2
+
(1
5
+

1

7

)
− 1

4
+
(1
9
+

1

11

)
− 1

6
+
( 1

13
+

1

15

)
+ · · · ,

giving a series having sum 3
2 log 2. For the latter series, which we label (ak), the

subsequence of ratios given by( |a3k|
|a3k−1|

)∞
k=1

= (3/2, 7/4, 11/6, . . . , (4k − 1)/2k, . . .)

shows that lim sup |ak+1|/|ak| ≥ 2. From this we conclude that the condition
lim sup |ak+1|/|ak| > 1 does not imply divergence. �

In the next two examples, the limits in the ratio test and root test do not exist,
but the limit superior does exist.

Example 3.11.4. For the series

∞∑
k=1

ak = 1 +
2

3
+

1

3
+

2

32
+

1

32
+

2

33
+

1

33
+

2

34
+ · · · ,

we have |ak+1|/|ak| = 2/3 if k is odd, and |ak+1|/|ak| = 1/2 if k is even. Therefore
limk→∞ |ak+1|/|ak| does not exist. But lim sup |ak+1|/|ak| = 2/3 < 1, so the series
converges by part 1 of the ratio test. �

Example 3.11.5. For the series

∞∑
k=1

ak =
1

10
+

1

22
+

1

103
+

1

24
+

1

105
+

1

26
+ · · · ,

we have k
√
ak = 1/10 if k is odd, and k

√
ak = 1/2 if k is even. Therefore limk→∞ k

√
ak

does not exist, but lim sup k
√
ak = 1/2 < 1, so the series converges by part 1 of the

root test. �

Example 3.11.6. The series
∑∞

k=0 1/k! converges, and by definition its sum is the
Euler number e. Let us show that this series converges by the root test. If m is a
positive integer and k > m, then

k! = k(k − 1) · · · (m+ 1)(m) · · · (2)(1) > mk−mm = mk−m+1.

By taking k sufficiently large, we have

(k!)1/k > (mk−m+1)1/k = mm(1−m)/k >
m

2
.

Then ( 1

k!

)1/k
<

2

m
.

Since m was arbitrary, this shows that limk→∞(1/k!)1/k exists and equals zero. So∑∞
k=0 1/k! converges by the root test. Note that the ratio test also applies to this

series, since k!/(k + 1)! = 1/(k + 1) → 0 as k → ∞. �
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3.11.2. Conditional Convergence: Abel’s and Dirichlet’s Tests. In this sec-
tion we present the Abel summation formula and show that it leads to two addi-
tional tests that help with conditionally convergent series: Abel’s Test and Dirich-
let’s Test.

The Abel summation formula is an elementary result; it is also called the sum-
mation by parts formula.

Theorem 3.11.7 (Abel’s Summation by Parts). Let (ak)
∞
0 and (bk)

∞
0 be sequences

of real or complex numbers. For any positive integer n, let

σn(a) :=

n∑
j=0

aj .

Then
n∑

k=0

akbk = bn+1σn(a)−
n∑

k=0

(bk+1 − bk)σk(a).

Proof. For any k we have ak = σk(a)− σk−1(a), where we set σ−1(a) = 0. Then
we have

n∑
k=0

akbk =

n∑
k=0

(σk(a)− σk−1(a))bk

=

n∑
k=0

σk(a)bk −
n∑

k=0

σk−1(a)bk

=

n∑
k=0

σk(a)bk −
n∑

k=1

σk−1(a)bk (since σ−1(a) = 0)

=

n∑
k=0

σk(a)bk −
n∑

k=0

σk(a)bk+1 + bn+1σn(a) (by a shift of index).

A simple rearrangement yields the stated result. �

The summation by parts formula leads to Abel’s test for convergence.

Theorem 3.11.8 (Abel’s Test). If the series
∑∞

k=0 ak is convergent and (bk)
∞
k=0

is a monotonic convergent sequence, then the series
∑∞

k=0 akbk is convergent.

Proof. We wish to apply Abel’s summation by parts formula. Let us write σn(a) :=∑n
k=0 ak. Since (σn(a)) and (bn) are convergent sequences, the sequence (bn+1σn(b))

is also convergent. From the summation by parts formula, it remains to show that
the sequence of sums

(3.5)

n∑
k=0

(bk+1 − bk)σk(a),

indexed by n, converges, where, as before, σk(a) :=
∑k

j=0 aj . Since the sequence

(σk(a)) is bounded, we may write

|σk(a)| ≤ M for some M.
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Now we estimate
n∑

k=0

|bk+1 − bk||σk(a)| ≤ M

n∑
k=0

|bk+1 − bk|,

and the summation on the right must be bounded since (bk) is bounded. In fact,
since (bk) is monotonic,

n∑
k=0

|bk+1 − bk||σk(a)| ≤ M |bn+1 − b0|.

Since (bn) is bounded, the sums on the left side here form a bounded, monotone
increasing sequence, which converges. Therefore the sequence (3.5) converges, and
this completes the proof. �

In the proof of Abel’s test, the convergence of the series
∑∞

k=0 ak and of the
sequence (bk) was needed only to ensure convergence of the sequence bn+1σn(a) ap-
pearing in the summation by parts formula. Dirichlet’s test relaxes the assumption
of convergence of

∑∞
k=0 ak to boundedness of the partial sums, but requires that

the monotone sequence (bk) converge to zero.

Theorem 3.11.9 (Dirichlet’s Test). The series
∑∞

k=0 akbk converges if the follow-
ing conditions hold:
1. the partial sums σn(a) =

∑n
k=0 ak form a bounded sequence;

2. b0 ≥ b1 ≥ b2 ≥ · · · ;
3. limk→∞ bk = 0.

Proof. The partial sums of the series are given by the summation by parts formula,
and the convergence of the sequence of sums

n∑
k=0

(bk+1 − bk)σk(a)

follows in exactly the same way as in the proof of Abel’s test. It remains to show
that the sequence bn+1σn(a) converges. If we have the bound |σn(a)| ≤ M for all
n, then

|bn+1σn(a)| ≤ M |bn+1| → 0 as n → ∞.

Hence, bn+1σn(a) → 0 as n → ∞, and from the summation by parts formula we
conclude that the series

∑∞
k=0 akbk converges. �

We have already considered alternating series in Theorem 3.6.2, but it is inter-
esting to note that the earlier theorem follows from Dirichlet’s test. For convenience
we recall that Theorem 3.6.2 states: If the sequence (ak) is monotone decreasing
with limit zero, then the series with alternating signs

∞∑
k=1

(−1)kak = −a1 + a2 − a3 + · · ·

converges. The partial sums of
∑∞

k=1(−1)k take only the values −1 and 0, hence
they are bounded, while the ak are decreasing with limit zero. Therefore the con-
vergence of the alternating series follows directly from Dirichlet’s test.
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The next example can be helpful with some trigonometric series. To discuss it,
we call on some facts about the sine and cosine functions and the real exponential
function. These functions are discussed more completely in Section 7.5, but are
likely to be familiar from introductory calculus courses.

Example 3.11.10. If x is real, we define

eix = cosx+ i sin x.

(See Exercise 3.11.2 for a motivation of this formula using the complex exponential
series, which has the same form as the real exponential series discussed in detail in
Section 7.5; see also Definition 7.5.1 and the comments following it.) Recall that
cos(−x) = cosx and sin(−x) = − sin x. Then, from the definition above for eix,
it follows by induction, together with the trigonometric identities for the sine and
cosine of the sum of two angles, that for all integers k, we have

(eix)k = eikx = cos kx+ i sin kx.

(See Exercise 3.11.2.) Notice that for any real x, e−ix = cosx − i sinx = eix, the
conjugate of eix, and thus

cosx =
eix + e−ix

2
and sin x =

eix − e−ix

2i
.

By the formula for the sum of a finite geometric series, we have

n∑
k=1

eikx =
1− ei(n+1)x

1− eix
− 1

=
1− ei(n+1)x

1− eix
− 1− eix

1− eix

= eix
1− einx

1− eix

= eix
einx/2(e−inx/2 − einx/2)

eix/2(e−ix/2 − eix/2)

= ei(n+1)x/2 e−inx/2 − einx/2

e−ix/2 − eix/2

=
[
cos

1

2
(n+ 1)x+ i sin

1

2
(n+ 1)x

] (−2i sin(nx/2)

−2i sin(x/2)

)
=

[
cos

1

2
(n+ 1)x+ i sin

1

2
(n+ 1)x

] sin 1
2nx

sin 1
2x

.

This computation is valid as long as eix 
= 1, that is, x 
= 2nπ, n ∈ Z. By extracting
the real and imaginary parts from each side, we have

n∑
k=1

cos kx =
cos 1

2 (n+ 1)x sin 1
2nx

sin 1
2x

and
n∑

k=1

sin kx =
sin 1

2 (n+ 1)x sin 1
2nx

sin 1
2x

.
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Consequently, these sums have the following bounds:∣∣∣ n∑
k=1

cos kx
∣∣∣ ≤ 1

| sin 1
2x|

=
∣∣∣ csc 1

2
x
∣∣∣

and ∣∣∣ n∑
k=1

sin kx
∣∣∣ ≤ 1

| sin 1
2x|

=
∣∣∣ csc 1

2
x
∣∣∣,

with both inequalities holding for x 
= 2nπ, n ∈ Z. �

Theorem 3.11.11. If the sequence (bk) decreases with limk→∞ bk = 0, then the
following statements are true:

1. The series
∑∞

k=1 bk sin kx converges for all real x.

2. The series
∑∞

k=1 bk cos kx converges for all real x except possibly for x = 2nπ,
n ∈ Z.

Proof. By the result of Example 3.11.10, the hypotheses of Dirichlet’s test are
satisfied, since for real x the partial sums

∑n
k=1 sin kx and

∑n
k=1 cos kx are bounded

by | csc 1
2x|, with the only possible exceptions being those stated for the cosine series.

(Observe that sin kx = 0 for x = 2nπ, n ∈ Z.) �

Exercises.

Exercise 3.11.1. Show that neither the ratio test nor the root test applies to the
series

∑∞
k=1 1/

√
k.

Exercise 3.11.2. Let x be a real number.

1. Use the complex exponential series defined by exp(z) =
∑∞

k=0 z
k/k!, conver-

gent for all z ∈ C, to define the expression eix as exp(ix), and show that
eix = cosx+ i sinx. (This is called Euler’s identity.)

2. Show that eiπ = −1, relating four of the most important numbers in mathe-
matics.

3. Show that (eix)k = eikx = cos kx + i sin kx for each positive integer k. Con-
clude that this identity also holds for negative integers k.

Exercise 3.11.3. Show that the series
∑∞

k=1
1
k sin k converges.

Exercise 3.11.4. Show that the series
∑∞

k=1
1
k sin2 k diverges. Hint : sin2 x =

(1− cos 2x)/2.

3.12. Rearrangements and Riemann’s Theorem

It is implicit in the definition of an infinite series
∑

ak that the terms in the series
are ordered. If we rearrange the terms of

∑
ak, for example by interchanging the

numbers in each successive pair from (ak), then we obtain the new series

a2 + a1 + a4 + a3 + a6 + a5 + · · · ,
which is a series different from

∑
ak because the sequence of its partial sums differs

from that of
∑

ak.
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Definition 3.12.1. Let
∑∞

k=1 ak be a given series. Let (pk) be a sequence in
which every positive integer occurs exactly once, that is, p : N → N is 1-1 and
onto. Then (pk) is called a permutation of N and the series

∑∞
k=1 apk

is called
a rearrangement of

∑∞
k=1 ak.

Any rearrangement of an absolutely convergent series must converge to the
same sum.

Theorem 3.12.2. If
∑∞

k=1 ak converges absolutely and S =
∑∞

k=1 ak, and if∑∞
k=1 apk

is any rearrangement of
∑∞

k=1 ak, then we also have S =
∑∞

k=1 apk
.

Proof. Let (pk) be any permutation of N, and
∑∞

k=1 apk
the corresponding re-

arrangement of
∑∞

k=1 ak. We use the Cauchy criterion for the convergence of∑∞
k=1 |ak| to show that S =

∑∞
k=1 apk

. Let ε > 0. We may choose an integer
M > 0 such that if n,m ∈ N and n ≥ m > M , then

(3.6)
n∑

k=m

|ak| < ε.

We can choose a positive integer K > M such that all the integers 1, 2, . . . ,M are
contained in the list p1, p2, . . . , pK . If we then choose a positive integer N > K,
then the partial sum

N∑
k=1

ak

will include each of the terms a1, a2, . . . , aM . The partial sum

N∑
k=1

apk

will also include each of the terms a1, a2, . . . , aM . Thus the difference of these
partial sums,

N∑
k=1

ak −
N∑

k=1

apk
,

includes the original terms ak only for k > M . Thus, let m = M + 1 in (3.6) and
take any n ≥ N > K ≥ M + 1, such that n is larger than all indices appearing in
the two summations up to N . Then we have∣∣∣ N∑

k=1

ak −
N∑

k=1

apk

∣∣∣ ≤ 2
n∑

k=M+1

|ak| < 2ε.

Letting n → ∞, we have∣∣∣ N∑
k=1

ak −
N∑

k=1

apk

∣∣∣ ≤ 2
∞∑

k=M+1

|ak| ≤ 2ε.

We can achieve this inequality (that is, such an N exists) for every ε > 0. Therefore

limN→∞
(∑N

k=1 ak −
∑N

k=1 apk

)
exists and equals zero. By hypothesis,

lim
N→∞

N∑
k=1

ak = S
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exists, so that

lim
N→∞

N∑
k=1

apk
= S

as well. �

We wish to prove Riemann’s rearrangement theorem, which illustrates the stark
contrast between absolute convergence and conditional convergence. Riemann’s
Theorem 3.12.4, below, follows from Theorem 3.12.3.

As usual we write the series as
∑∞

k=1 ak. Let

a+k = max{ak, 0} and a−k = max{−ak, 0}.

Then a+k = ak if ak is positive and a+k = 0 otherwise, and a−k = |ak| if ak is negative

and a−k = 0 otherwise. Thus the nonzero a+k are the positive terms of the series,

and the nonzero a−k are the absolute values of the negative terms. It is useful to
have the placeholder zeros, however, as we observe that

ak = a+k − a−k and |ak| = a+k + a−k .

Theorem 3.12.3. If
∑∞

k=1 ak is absolutely convergent, then the series
∑∞

k=1 a
+
k

and
∑∞

k=1 a
−
k are both convergent. If

∑∞
k=1 ak is conditionally convergent, then the

series
∑∞

k=1 a
+
k and

∑∞
k=1 a

−
k are both divergent.

Proof. Suppose
∑∞

k=1 ak is absolutely convergent. By definition of a+k and a−k , we
have

0 ≤ a+k ≤ |ak| and 0 ≤ a−k ≤ |ak|,
hence the series

∑∞
k=1 a

+
k and

∑∞
k=1 a

−
k are both convergent by a direct comparison.

Now suppose that
∑∞

k=1 ak is conditionally convergent, and thus the series∑∞
k=1 |ak| diverges. We want to show that the series

∑∞
k=1 a

+
k and

∑∞
k=1 a

−
k are

both divergent. Since |ak| = a+k + a−k , the series

∞∑
k=1

(a+k + a−k )

diverges. We cannot have both
∑∞

k=1 a
+
k and

∑∞
k=1 a

−
k convergent, since that would

imply that their sum
∑∞

k=1 |ak| is convergent. Therefore at least one of
∑∞

k=1 a
+
k

and
∑∞

k=1 a
−
k diverges. We seek a contradiction by assuming that one of these

series converges and the other diverges. Without loss of generality, let us assume
that

∑∞
k=1 a

+
k = S < ∞ and

∑∞
k=1 a

−
k = ∞. Write sn and s±n for the n-th partial

sum of the series
∑∞

k=1 ak and
∑∞

k=1 a
±
k , respectively; thus, we have sn = s+n − s−n

for each n. By our hypothesis, for any positive M , no matter how large, there is
an N = N(M) such that for n ≥ N , we have s−n > M + S, and s+n ≤ S (since s+n
increases with limit S). It follows that sn = s+n−s−n < S−(M+S) = −M , and hence
that sn → −∞, so that

∑∞
k=1 ak diverges. This contradicts the original hypothesis

that
∑∞

k=1 ak is conditionally convergent. Therefore the second statement of the
theorem is true. �
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Theorem 3.12.3 indicates how different conditional convergence is from absolute
convergence. If a series converges absolutely, then the series of its positive terms
and the series of its negative terms both converge. A conditionally convergent
series can converge only due to a strong dependence on the cancellation between
its positive and negative terms.

Theorem 3.12.3 also tells us that a conditionally convergent series tends to
converge slowly; the divergence of

∑∞
k=1 |ak| implies that ak does not approach

zero very rapidly as k → ∞, and thus it might take a very large value of n for the
partial sum sn to approximate the series sum to a specified accuracy.

We now prove the rearrangement theorem due to B. Riemann.

Theorem 3.12.4. Suppose
∑∞

k=1 ak is conditionally convergent. Given any real
number S, there is a rearrangement

∑∞
k=1 apk

that converges to S.

Proof. By Theorem 3.12.3, the series
∑∞

k=1 a
+
k and

∑∞
k=1 a

−
k both diverge. Since∑∞

k=1 ak converges, limk→∞ ak = 0.

Suppose first that S ≥ 0. We rearrange
∑∞

k=1 ak to converge to S as follows:

1. Add the positive terms from the series
∑∞

k=1 ak, in their original order, up
to and including the first positive term such that the sum exceeds S. This step is
possible since

∑∞
k=1 a

+
k diverges.

2. Then add the negative terms from
∑∞

k=1 ak, in their original order, up to
and including the first negative term such that the sum is less than S. This step is
possible since

∑∞
k=1 a

−
k diverges.

3. Repeat steps 1 and 2. This process never terminates since
∑∞

k=1 a
+
k and∑∞

k=1 a
−
k are both divergent.

Any given term ak of the original series is eventually captured in a repetition
of either step 1 or step 2 and included in the new series. Therefore this algorithm
results in a rearrangement

∑∞
k=1 apk

of the original series.

We now show that the rearranged series converges to S. Given ε > 0, there
exists an N = N(ε) such that if k ≥ N , then |ak| < ε. Choose K = K(ε) sufficiently
large that all the terms a1, . . . , aN are included among the list ap1

, . . . , apK
. Then

for k ≥ K, |apk
| < ε. Then for n ≥ K, the switching specified in steps 1 and 2

implies that the partial sums of the rearranged series satisfy∣∣∣S −
n∑

k=1

apk

∣∣∣ < ε.

To see this, note that if we had |S−
∑n

k=1 apk
| ≥ ε for some n ≥ K, then we added

in too many terms of the same sign, in contradiction to the algorithm specifications.
This proves that S = limn→∞

∑n
k=1 apk

.

If the given real number S is negative, we interchange steps 1 and 2 so that we
begin the algorithm with the step that adds negative terms until we first undershoot
S, and proceed from there. �

Here is one example of a rearranged conditionally convergent series converging
to a value different from the sum of the original series.
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Example 3.12.5. The convergent series of Example 3.11.3,(
1+

1

3

)
− 1

2
+
(1
5
+

1

7

)
− 1

4
+
(1
9
+

1

11

)
− 1

6
+
( 1

13
+

1

15

)
− 1

8
+
( 1

17
+

1

19

)
+ · · · ,

which has sum 3
2 log 2, is a rearrangement of the conditionally convergent series

∞∑
k=1

(−1)k+1 1

k
= 1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+

1

7
− 1

8
+ · · · ,

which has sum log 2. The parentheses in the rearranged series indicates the grouping
specified by the algorithm in the proof of Theorem 3.12.4 in order to achieve the
sum S = 3

2 log 2. �

Exercise.

Exercise 3.12.1. Show that if
∑∞

k=1 ak is conditionally convergent, there are re-
arrangements of the series whose partial sums diverge to +∞ or −∞.

3.13. Notes and References

The material of this chapter was influenced by many sources, but especially by
Folland [16], Rudin [52], and Sagan [54]. In particular, the presentation of Theorem
3.12.3 and Theorem 3.12.4 in Section 3.12 follows Folland [16]. One of the topics we
did not discuss here is the product (Cauchy product) of series, which can be found
in Folland [16] or Rudin [52]. Many additional topics and interesting exercises can
be found in these books.



Chapter 4

Basic Topology, Limits, and
Continuity

Topological concepts are based on the concept of an open set. The collection of
open subsets of R provides us with a language for working with local properties of
real valued functions defined on R. Examples of local properties are continuity at
a point and differentiability at a point. The language of open sets can also help
us to describe global properties of sets and functions. Mathematicians define the
topology of R as the collection of all open sets in R.

The first three sections of the chapter define and discuss the basic properties
of open sets and closed sets, compact sets, and connected sets. The remainder
of the chapter presents basics on limits, continuity, uniform continuity, and the
classification of discontinuities of a function.

4.1. Open Sets and Closed Sets

The following terminology concerning bounded intervals of real numbers is probably
familiar from elementary calculus. If a and b are real numbers with a < b, then
the interval (a, b) is an open interval, and [a, b] is a closed interval. (Intervals
of the form [a, b) or (a, b] are sometimes called half-open or half-closed, but this
terminology will not be very helpful to us.) The characteristic property of an open
interval that distinguishes it from the other three types of interval is this: Each
point x0 ∈ (a, b) can be surrounded by another open interval (c, d) ⊂ (a, b) such
that x0 ∈ (c, d). In other words, for each point x0 of (a, b) there is some open
interval (c, d) ⊂ (a, b) containing x0 and consisting only of points from the set (a, b)
itself. That is, x0 is surrounded only by other points of (a, b). By considering the
included endpoint(s) of the other three types of interval above, we can see that this
property does not hold for those intervals.

91
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Definition 4.1.1. Let S be a set of real numbers.

1. A point x0 ∈ S is an interior point of S if there exists an ε > 0 such that the
open interval (x0 − ε, x0 + ε) is contained in S. The set of all interior points
of S, sometimes denoted IntS, is called the interior of S.

2. A point x0 ∈ R is a boundary point of S if for every ε > 0 the interval
(x0− ε, x0+ ε) has nonempty intersection with both S and its complement Sc.
The set of all boundary points of S, denoted ∂S, is called the boundary of
S.

Note that a boundary point of S need not be an element of S.

The property that distinguishes an open interval of real numbers from other
types of intervals is that every point in the interval is an interior point of it. The
interval [2, 3) is not open since the endpoint 2 is not an interior point of [2, 3).
There is no ε > 0 such that the interval (2− ε, 2 + ε) is contained in [2, 3).

There are sets other than open intervals having the property that all of their
points are interior points. We want to call these sets open sets as well.

Definition 4.1.2. A set O ⊆ R is open if every point in O is an interior point of
O.

Thus a set O ⊆ R is open if, and only if, for every x ∈ O there is an ε > 0 such
that the interval (x− ε, x+ ε) is contained in O. Equivalently, S is open if and only
if S equals its interior.

Let us verify that an open interval (a, b) is indeed an open set. This may seem
obvious since the definition of and open set was patterned on the distinguishing
property of open intervals as opposed to other types of intervals. However, given
any x ∈ (a, b), we should be able to find an ε which shows that x is an interior point
of (a, b). For example, let

ε =
1

2
min{|x− a|, |x− b|} =

1

2
min{x− a, b− x} > 0.

(Sketch the interval (a, b), the point x ∈ (a, b) and ε.) This definition of ε implies
that

a ≤ x− ε < x+ ε ≤ b

and hence
(x− ε, x+ ε) ⊂ (a, b).

This construction of ε > 0 (which is dependent on x) works for any x ∈ (a, b), so
(a, b) is an open set.

Example 4.1.3. The finite union of open intervals given by

(1, 2) ∪ (3, 5) ∪ (5, 7)

is an open set. The countable union of open intervals given by
∞⋃
n=1

(
n, n+

1

n

)
=
(
1, 2
)
∪
(
2,

5

2

)
∪
(
3,

10

3

)
∪ · · ·

is an open set. Each of these statements is true, since any point in the union must
be a point of one of the open intervals in the collection, and hence an interior point
of the union since it is an interior point of that interval. �
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Theorem 4.1.4. The union of any collection (finite, countable, or uncountable) of
open sets in R is an open set in R.

Proof. Let A be any index set and let O :=
⋃

α∈A Oα where, for each α ∈ A, Oα is
an open set of real numbers. If x ∈ O =

⋃
α∈A Oα, then x ∈ Oα0

for some α0 ∈ A.
Since Oα0

is open, there is an ε > 0 such that (x− ε, x+ ε) ⊂ Oα0
⊂ O. Therefore

every point of the union is an interior point and hence O is open. �

The set R = (−∞,∞) is an open set. This follows directly from the definition
of an open set. We should also address the other extreme case of a subset of the
reals: The empty set is an open set. (Why? Explain why the definition of an open
set implies that the empty set is open.)

Are intersections of open sets always open? Note that (0, 1)∩ (1, 2) = ∅, which
is one reason we needed to decide whether or not the empty set was open.

Observe that we can write a set consisting of a single point, such as {1}, as the
intersection of infinitely many open intervals, for example

{1} =

∞⋂
j=1

(1− 1/j, 1 + 1/j),

and hence the intersection of infinitely many open sets need not be open. However,
note that the finite intersection

10⋂
j=1

(1− 1/j, 1 + 1/j) = (1− 1/10, 1 + 1/10) = (9/10, 11/10)

is an open set.

Consider open sets that are not nested as in the last paragraph. The nonempty
intersection

(0, 1) ∩ (.5, 2) ∩ (.4, .75)

is easily seen to be open, as a simple sketch will suggest. The intersection is
(.5, .75). If x is in this intersection (.5, .75), then x has a neighborhood (open
interval) (x− ε1, x+ ε1) surrounding it and contained in (0, 1), and another neigh-
borhood (x − ε2, x + ε2) surrounding it and contained in (.5, 2), and still another
neighborhood (x− ε3, x+ ε3) surrounding it and contained in (.4, .75). Taking ε :=
min{εi : i = 1, 2, 3}, we get an ε-interval about x contained entirely within the
intersection (.5, .75). This type of argument works for the intersection of any finite
number of open sets.

Theorem 4.1.5. The intersection of any finite collection of open sets in R is an
open set in R.

Proof. Let n ∈ N and let O1, . . . , On be open sets of real numbers. We want to
show that the intersection

V :=

n⋂
j=1

Oj

is also an open set. Let x ∈ V . Since x ∈ Oj for all j = 1, . . . , n, there are numbers
εj > 0 such that (x− εj , x+ εj) ⊂ Oj for j = 1, . . . , n. If we let ε = min{ε1, . . . , εn},
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then (x− ε, x+ ε) ⊂ Oj for j = 1, . . . , n. Thus (x− ε, x+ ε) ⊂ V and x is an interior
point of V . Hence V is open. �

Since arbitrary unions of open sets are open, it is easy to construct a variety
of open sets by taking unions of pairwise disjoint collections of open intervals. For
example, both

(0, 1) ∪ (2, 3) ∪ (4, 6)

and
∞⋃
j=2

(j + 1/j2, j + 1/j) = (9/4, 5/2) ∪ (28/9, 10/3) ∪ · · ·

are unions of pairwise disjoint collections of open sets, and hence they are open.
The union

∞⋃
j=2

(j + 1/j, j + 3/j) = (5/2, 7/2) ∪ (10/3, 4) ∪ (17/4, 19/4) ∪ (26/5, 28/5) ∪ · · ·

is also open since it is a union of open sets. However, these open sets are not
pairwise disjoint. Note that there is some overlap in the first two intervals shown,
but for j ≥ 4 the intervals are pairwise disjoint. Therefore this open set can be
expressed as the disjoint union

(5/2, 4) ∪ (17/4, 19/4) ∪ (26/5, 28/5) · · · .

If you have difficulty providing an example of an open set which cannot be expressed
as a countable union of disjoint open intervals, you might be motivated to try to
prove the following theorem.

Theorem 4.1.6 (Structure of Open Sets). Let O be an open subset of real numbers.
Then there are countably many pairwise disjoint open intervals Ik such that

O =
⋃
k

Ik.

Proof. The result is true in a trivial way when O = ∅. Therefore we assume that
O is nonempty and open. The intersection of O with the set of rational numbers is
countable. Let r1, r2, . . . be an enumeration of O ∩Q. For each k there exist real
numbers a and b such that rk ∈ (a, b) ⊂ O, since O is open. Using the least upper
bound and greatest lower bound properties of the reals, we may define

ak = inf{a : rk ∈ (a, b) ⊂ O for some b > a}

and

bk = sup{b : rk ∈ (a, b) ⊂ O for some a < b}.
It is possible to have ak = −∞ or bk = ∞. Let Ik = (ak, bk). Then, by the
definition of ak and bk, Ik ⊂ O, hence

⋃
k Ik ⊂ O. Now rk ∈ Ik and r1, r2, . . .

is an enumeration of O ∩ Q, so
⋃

k Ik contains every rational number in O. If s
is irrational and s ∈ O, then there exist a and b such that s ∈ (a, b) ⊂ O, since
O is open. Since Q is dense in R, there is a j such that rj ∈ (a, b), and thus
s ∈ Ij ⊂

⋃
k Ik. This proves that

⋃
k Ik = O. �
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Any proof of the structure theorem for open sets inRmust use the completeness
of the reals in some way. For an alternative proof based on an equivalence relation
with the Ik being the equivalence classes, see Exercise 4.1.3.

Definition 4.1.7. A set F ⊆ R is closed if its complement F c ⊆ R is open.

Since R is open, its complement ∅ is closed, and since ∅ is open, its complement
R is closed. So R and ∅ are both open and closed. We will see immediately after
Theorem 4.1.13 below that there are no nonempty proper subsets of R that are
both open and closed.

Any closed interval [a, b] with a and b finite is a closed set, since the complement,
(−∞, a) ∪ (b,∞), is open. For the same reason, intervals of the form (−∞, b] and
[a,∞) are closed sets.

It is left as an exercise to show that every finite set of real numbers is closed.
The next example is more interesting.

Example 4.1.8. The set

F = {0} ∪ {1/j : j ∈ N} = {0, 1, 1/2, 1/3, . . .}
is closed. Note that the complement of this set is

(−∞, 0) ∪
[ ∞⋃
j=1

( 1

j + 1
,
1

j

)]
∪ (1,∞)

which is open since it is a union of open intervals. �

Theorem 4.1.9. The intersection of any collection (finite, countable, or uncount-
able) of closed sets in R is a closed set in R.

Proof. Let Fα be a closed set of real numbers for each α in some index set A, and
let

F =
⋂
α∈A

Fα.

We show that the complement of F is open. By one of DeMorgan’s laws,

F c =
[ ⋂
α∈A

Fα

]c
=
⋃
α∈A

F c
α.

For each α, Fα is closed, hence F c
α is open. Thus F c is open, since a union of open

sets is open. Hence F is closed. �

Are arbitrary unions of closed sets always closed? No. Think of an example
like the following countable union of closed intervals,

∞⋃
j=2

[1/j, 1− 1/j] = (0, 1),

which is not closed.

Theorem 4.1.10. The union of any finite collection of closed sets in R is a closed
set in R.
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Proof. Let n ∈ N, let F1, . . . , Fn be closed sets of real numbers, and let F =⋃n
j=1 Fj . Then F c =

(⋃n
j=1 Fj

)c
=
⋂n

j=1 F
c
j is an intersection of a finite collection

of open sets in R, and by Theorem 4.1.5, F c is open. �

Recall that we defined the concept of cluster point (or accumulation point)
in an ordered field in Definition 2.6.2 in the discussion of the Bolzano-Weierstrass
theorem. For convenience we repeat that definition here for the ordered field R.

Definition 4.1.11. Let S be a set of real numbers.

1. A point x0 ∈ R is a cluster point (or, accumulation point) of S if for
every ε > 0 the interval (x0 − ε, x0 + ε) contains infinitely many points of S
distinct from x0.

2. If x0 ∈ S and x0 is not a cluster point of S, then it is an isolated point
of S.

We usually opt for two syllables rather than five, and use the term cluster point.
Note that a cluster point of S need not be an element of S. A point x0 ∈ S is an
isolated point of S if and only if there exists some ε > 0 such that the interval
(x0 − ε, x0 + ε) contains no point of S other than x0 (Exercise 4.1.4). The reader
should also verify the following statements: Every interior point of S is a cluster
point of S. Every isolated point of S is a boundary point of S. Every nonisolated
boundary point of S is a cluster point of S.

Theorem 4.1.12. A point x0 ∈ S is a cluster point of S if and only if there is
a nonconstant sequence (xn) of points of S distinct from x0 such that xn → x0 as
n → ∞.

Proof. Suppose x0 is a cluster point of S. Let εn = 1/n. Then for each n we may
choose a point xn of S such that xn 
= x0 and |xn − x0| < 1/n. By the definition
of a cluster point, we may even arrange that for each n, xn 
= xk for 1 ≤ k < n.
This gives an infinite, nonconstant sequence (xn) of points distinct from x0 such
that xn → x0 as n → ∞.

For the converse, if there is a nonconstant sequence (xn) of points of S distinct
from x0 such that xn → x0 as n → ∞, then x0 satisfies the definition of a cluster
point of S. �

Note that any sequence in S that converges to an isolated point of S must
eventually be constant.

Theorem 4.1.13. A subset of the real numbers is closed if and only if it contains
all its cluster points.

Proof. Suppose S is a closed subset of R. Then Sc is open. If a is a cluster point
of S and a ∈ Sc, then there is a δ > 0 such that (a − δ, a + δ) ⊂ Sc, but this
contradicts a being a cluster point of S. Hence every cluster point of a closed set
S is in S.

Suppose now that S contains all its cluster points. Let b ∈ Sc. Then b is not a
cluster point of S, so there exists a δ > 0 such that (b−δ, b+δ) contains no point of
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S, and hence (b− δ, b+ δ) ⊂ Sc. (See Exercise 4.1.4.) This is true for each b ∈ Sc,
so Sc is an open set. Therefore S is closed. �

Theorem 4.1.13 easily explains why the set F in Example 4.1.8 is closed, since
the only cluster point of F is 0 and 0 ∈ F .

From the structure Theorem 4.1.6 and Theorem 4.1.13, we can see that there
is no nonempty proper subset of the reals that is both open and closed, as follows:
If O is an open, nonempty proper subset of R, then by Theorem 4.1.6 there is at
least one endpoint b of a nonempty open interval Ik ⊂ O such that b /∈ O. The
point b is a cluster point of O since it is a cluster point of Ik; however, b /∈ Ik,
and b cannot be an element of any other open interval in the disjoint union of the
structure theorem. Therefore O does not contain all its cluster points. Hence O is
not closed, by Theorem 4.1.13.

Definition 4.1.14. The closure of a set S ⊆ R, denoted S, is the union of S and
its set of cluster points.

Theorem 4.1.15. A subset S of the real numbers is closed if and only if it equals
its closure, that is, S = S.

Proof. S is closed if and only if it contains all its cluster points, by Theorem 4.1.13,
so by definition of the closure of S, S is closed if and only if S = S. �

Recall that we defined a subset S of R to be dense in R provided that between
any two real numbers there is an element of S (Definition 2.3.8). Thus, a subset
S is dense in R if every nonempty open interval (a, b) intersects S. An equivalent
statement is that S is dense in R if the closure of S equals R, S = R: Let x ∈ R;
then x ∈ S if and only if there is a sequence of points sk ∈ S such that sk → x
as k → ∞, and this occurs if and only if every nonempty open interval about
x intersects S. Thus, S = R if and only if every nonempty open interval in R
intersects S. We have seen that the set of rational numbers is dense in the real line,
Q = R, and the set of irrational numbers is dense as well, I = R.

More generally, we say that a set S is dense in an open set U if U ⊂ S. For
example, the rational numbers are dense in (0, 1) since (0, 1) ⊂ Q. The irrational
numbers are also dense in (0, 1).

The following definition is also useful.

Definition 4.1.16. A set S ⊂ R is nowhere dense if its closure S has no interior
point.

It follows from the definition that a set S ⊂ R is nowhere dense if and only if
its closure S contains no open interval of positive length.

There is another interesting property of the Cantor set C we can now consider.

Theorem 4.1.17. The Cantor set C is closed and nowhere dense.

Proof. By its definition, C is the intersection
⋂∞

k=1Ck of a countable collection of
closed sets, hence C is a closed set.

Since C is closed, it equals its closure, so we must show that C has no interior
points, that is, C contains no open interval of positive length. Suppose to the
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contrary that C does have an interior point and thus does contain an open interval
J of positive length, λ(J). Let k be a positive integer such that 2−k ≤ λ(J). Since
C is contained in the set Ck which is a union of 2k disjoint intervals, each of length
3−k, J must be contained in one of these intervals. Thus, λ(J) ≤ 3−k. But then
2−k ≤ λ(J) ≤ 3−k, which is the contradiction we seek. Therefore C is nowhere
dense. �

Recall that C has total length zero. This is a good opportunity to look again,
or for the first time, at Exercise 3.4.6, which describes a Cantor set F in [0, 1] with
positive total length. The set F is a countable intersection of closed sets Ck, hence
F is closed. By the construction in Exercise 3.4.6, each closed set Ck consists of 2k

disjoint closed intervals of length α/3k+1, where 0 < α < 1. If F has an interior
point, it contains an interval J of positive length, say λ(J). Let k be a positive
integer such that 2−k ≤ λ(J). Then J must be contained in one of these closed
intervals of length α/3k+1, and hence

2−k ≤ λ(J) ≤ α/3k+1 < 3−(k+1),

a contradiction. Therefore F contains no open interval of positive length. Hence F
is a nowhere dense set which has positive total length.

It may be useful to briefly summarize the four types of points we have defined
to describe basic topological notions concerning sets of real numbers:

� interior points,

� isolated points,

� cluster points,

� boundary points.

Given a set S, every point of S is either an interior point or a boundary point.
Interior points and isolated points belong to S, by definition. Boundary points
need not belong to S. Cluster points are either interior points or boundary points,
but never isolated points. Isolated points are boundary points.

Exercises.

Exercise 4.1.1. Show: S ⊂ R is an open set if and only if ∂S = ∅.
Exercise 4.1.2. Show: If a is a real number and δ > 0, then {x : |x − a| > δ} is
an open set.

Exercise 4.1.3. This exercise outlines another proof of the structure theorem for
open sets in R. Let O ⊆ R be an open set.

1. Define a relation on O as follows: x ∼ y if all real numbers strictly between x
and y are elements of O. Show that this defines an equivalence relation on O.

2. Let {Oα}α∈A be the collection of equivalence classes for this equivalence rela-
tion. Show that each Oα is a nonempty open interval.

3. Show that there are countably many equivalence classes.

Exercise 4.1.4. Prove: A point x0 ∈ S is an isolated point of S (Definition 4.1.11)
if and only if there exists ε > 0 such that the interval (x0 − ε, x0 + ε) contains no
point of S other than x0.
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Exercise 4.1.5. A subset F ⊂ R is closed if and only if every Cauchy sequence of
elements of F has its limit in F .

Exercise 4.1.6. Prove: For any set S of real numbers, ∂S = ∂(R− S).

Exercise 4.1.7. Prove: For any set S of real numbers, ∂S = S − IntS.

Exercise 4.1.8. Prove: If S = ∂S, then S cannot be open unless S is empty. Give
an example of such a set S that is closed, and an example that is neither closed nor
open.

Exercise 4.1.9. Give an example of an unbounded set S for which ∂S is bounded.

Exercise 4.1.10. Prove: S is closed if and only if S contains all its boundary
points.

4.2. Compact Sets

One of the most useful concepts in analysis is that of a compact set. The definition
of compact set uses the concept of an open cover of a set.

Definition 4.2.1. Let S be a subset of the real numbers and let Oγ be an open set
for each γ in some index set Γ. If

S ⊂
⋃
γ∈Γ

Oγ ,

then the collection {Oγ}γ∈Γ is called an open cover of S. If {Oγ}γ∈Γ is an open
cover of S, Γ0 ⊂ Γ, and

S ⊂
⋃

γ∈Γ0

Oγ ,

then the collection {Oγ}γ∈Γ contains the subcover {Oγ}γ∈Γ0
of S. If a subcover

of S has finitely many elements, it is a finite subcover of S.

Definition 4.2.2. A set K of real numbers is compact if every open cover of K
contains a finite subcover of K.

We first observe that a compact set must be bounded. For suppose K ⊂ R
is compact, and consider the union of all open intervals of the form (−k, k) where
k ∈ N. This union certainly containsK, so there is a finite subcover, say {(−kj , kj) :
j = 1, . . . ,m}. Since

K ⊂
m⋃
j=1

(−kj , kj) = (−k0, k0)

where k0 = max{k1, k2, . . . , km}, it follows that K is bounded. Since compact sets
must be bounded, R is not compact. Also, no unbounded interval can be compact.

Example 4.2.3. The collection of open intervals

Ω = {(1/k, 1 + 1/k) : k ∈ N}
is an open cover of S = (0, 1], but this collection contains no finite subcover of S.

For any finite subcollection Ω̂ ⊆ Ω there is a maximum value of k, say k0, such
that the interval (1/k0, 1 + 1/k0) ∈ Ω̂. But then 1/(2k0) ∈ S and 1/(2k0) is not

contained in any interval of the collection Ω̂, so Ω̂ cannot cover S. Hence S = (0, 1]
is not compact. �



100 4. Basic Topology, Limits, and Continuity

Example 4.2.4. Let S be the set of reals defined by

S =
{ 1

2n
: n ∈ N

}
=
{1
2
,
1

4
,
1

8
,
1

16
, . . .

}
.

Let Ω = {On : n ∈ N} be the collection of open intervals

On =
( 1

2n
− 1

2

1

2n+1
,
1

2n
+

1

2

1

2n+1

)
=
( 1

2n
− 1

2n+2
,
1

2n
+

1

2n+2

)
,

that is,

O1 =
(3
8
,
5

8

)
, O2 =

( 3

16
,
5

16

)
, . . . , On =

( 3

2n+2
,

5

2n+2

)
, . . . .

Then for each n ∈ N, On contains 1
2n and no other element of S. The collection

{On}n∈N is an open cover of S. Since the sets in the cover are pairwise-disjoint, no
subcover from the collection {On}n∈N can cover S. Hence S is not compact. The
only cluster point of S is 0, so the closure of S is S̄ = S ∪ {0}. Consider the open
cover Ω1 of S̄ obtained by augmenting the collection {On}n∈N with the interval
(− 1

10 ,
1
10 ), that is, Ω1 = Ω ∪ {(− 1

10 ,
1
10 )}. Note that S̄ can be covered by the finite

subcover of Ω1 given by {(
− 1

10
,
1

10

)
, O1, O2, O3

}
.

that is, S̄ ⊂ (− 1
10 ,

1
10 ) ∪ O1 ∪ O2 ∪ O3. Of course, the interval (− 1

10 ,
1
10 ) in this

discussion could be replaced by any open interval (−δ, δ) with δ > 0, and still the
open cover Ω ∪ {(−δ, δ)} of S̄ contains a finite subcover. �

The last two examples suggest a relation between the property of compactness
and the properties of being closed and bounded. We clarify this relation with the
following result.

Theorem 4.2.5. If K ⊂ R is compact, then K is closed and bounded.

Proof. Suppose K ⊂ R and K is compact. Then K is bounded, as we saw in
the comments immediately following Definition 4.2.2. We will show K is closed by
showing that Kc is open. Let a ∈ Kc. We want to show that a is an interior point
of Kc. Consider the collection of open sets Ok, k ∈ N, defined by

Ok = {x ∈ R : |x− a| > 1/k}.
Then

⋃∞
k=1 Ok = R − {a}, so K ⊂

⋃∞
k=1 Ok. Since K is compact, there is a finite

subcover, say

K ⊂
m⋃
j=1

Okj
.

Let N = max{k1, . . . , km}. Then

K ⊂
m⋃
j=1

Okj
= {x ∈ R : |x− a| > 1/N}.

By taking complements, we have

{x ∈ R : |x− a| < 1/N} ⊂ {x ∈ R : |x− a| ≤ 1/N} ⊂ Kc,

which shows that a is an interior point of Kc. Since every point of Kc is an interior
point, Kc is open, and hence K is closed. �
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We show next that any closed subset of a compact set is compact.

Theorem 4.2.6. If F is closed, K is compact, and F ⊂ K ⊂ R, then F is compact.

Proof. Let {Oα} be an open cover of F . Then

{F c} ∪ {Oα}
is an open cover of K. Since K is compact, there is a finite subcover of K. If the
finite subcover of K includes F c, then we may omit F c from the subcover and still
have a finite subcover of F from the open cover {Oα}. �

Theorem 4.2.7. Every closed interval [a, b] is compact.

Proof. The proof is by contradiction. We suppose that {Oα} is an open cover of
I0 = [a, b] for which there is no finite subcover of [a, b]. Then one of the subintervals
[a, (a+b)/2] or [(a+b)/2, b] (or both) cannot be covered by a finite subcollection from
{Oα}; choose one and label it I1. By our assumption on I1, either the left-half or the
right-half closed subinterval of I1 cannot be covered by a finite subcollection from
{Oα}. Choose one and call it I2. If this process cannot be continued indefinitely by
some choice of subintervals at each stage, there is a contradiction of the assumption
that {Oα} has no finite subcover. Thus, under our assumption, there is a sequence
of closed and nonempty intervals In such that In+1 ⊂ In for each n = 0, 1, 2, . . .,
with length λ(In) = (a + b)/2n. Since limn→∞ λ(In) = 0, Theorem 2.5.1 implies
there is a unique point x ∈

⋂∞
n=1 In ⊂ [a, b]. Since x ∈ [a, b], x ∈ Oα0

for some α0.
Since Oα0

is open, there is a δ > 0 such that (x − δ, x + δ) ⊂ Oα0
. But there is

a positive integer N such that λ(IN ) = (a + b)/2N < δ/2. (This follows from the
Archimedean property of R.) But then x ∈ IN ⊂ Oα0

, which contradicts the fact
that IN cannot be covered by a finite subcollection from {Oα}. This contradiction
shows that [a, b] is compact. �

Theorem 4.2.8. If K ⊂ R is closed and bounded, then K is compact.

Proof. Suppose K is closed and bounded. Then K ⊆ [−b, b] for some b > 0. Since
[−b, b] is compact by Theorem 4.2.7, its closed subset K is compact by Theorem
4.2.6. �

Theorems 4.2.5 and 4.2.8 together prove the following result called the Heine-
Borel theorem.

Theorem 4.2.9. A set K ⊂ R is compact if and only if it is closed and bounded.

Compact sets in R may also be characterized as those sets K such that every
infinite subset of K contains a nonconstant convergent sequence with limit in K;
in other words (by Theorem 4.1.12) every infinite subset of K contains a cluster
point in K.

Theorem 4.2.10. A subset K ⊂ R is compact if and only if every infinite subset
of K contains a nonconstant convergent sequence with limit in K.

Proof. If K is compact, then K is closed and bounded. Let S be an infinite subset
of K. By the Bolzano-Weierstrass theorem, the bounded infinite set S has a cluster
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point p. By Theorem 4.1.12, there is a nonconstant sequence (ak) of points of S,
with ak 
= p, such that limk→∞ ak = p. Since S ⊂ K and K is closed, p ∈ K.

Suppose that every infinite subset of K contains a nonconstant convergent
sequence with limit in K. If K is not bounded, then for each positive integer n,
there is an element an ∈ K such that |an| > n. The resulting sequence (an) in K
is unbounded and hence diverges to ∞. More to the point, every subsequence of a
sequence that diverges to ∞ must also diverge to ∞. But this is a contradiction of
our hypothesis. Thus K must be bounded. In order to show that K is closed, we
want to show that K contains all its cluster points. Let p ∈ R be a cluster point
of K. Then, by Theorem 4.1.12, there is a nonconstant sequence (xk) of points
of K such that xk 
= p, and limk→∞ xk = p. By hypothesis, the infinite set {xk}
contains a nonconstant convergent sequence (a subsequence of (xk)) that converges
to a limit in K; however, that limit must equal p, so p ∈ K. Therefore K is closed.
By Theorem 4.2.8, K is compact. �

We will see in Chapter 8 that the characterizations of compactness in Theorem
4.2.9 and Theorem 4.2.10 extend directly to n-dimensional space Rn. However, in
the more general context of metric spaces considered in Chapter 9, we will see that
compactness is not equivalent to being closed and bounded.

Exercises.

Exercise 4.2.1. Show that if A ⊂ R is bounded, then its closure A is compact.

Exercise 4.2.2. Show that if S ⊂ R and S is compact, then supS ∈ S and
inf S ∈ S.

Exercise 4.2.3. Suppose F and K are subsets of R with F closed and K compact.
Show that F ∩K is compact.

Exercise 4.2.4. A nested sequence Kn+1 ⊂ Kn of nonempty, compact subsets
Kn ⊂ R has a nonempty, compact intersection. Hint : Kn ⊆ In = [infKn, supKn].

Exercise 4.2.5. Show that K ⊂ R is compact if and only if every infinite sequence
in K has a convergent subsequence with limit in K.

4.3. Connected Sets

The property of connectedness is an important one in topology because, as we show
later, it is a property preserved by continuous mappings. In order to introduce
the concept of connectedness, it is easiest to state what is meant by a set being
disconnected.

Definition 4.3.1. A subset S of R is disconnected if there exist open sets A and
B such that

A ∩ S 
= φ, B ∩ S 
= φ, (A ∩ S) ∩ (B ∩ S) = ∅, (A ∩ S) ∪ (B ∩ S) = S.

In this case, we say that A and B provide a disconnection of S, or that A and B
disconnect S. A set S ⊂ R is connected if it is not disconnected.

The connected subsets of R are fairly easy to characterize.
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Theorem 4.3.2. A subset of R is connected if and only if it is an interval. In
particular, R is connected.

Proof. Each of the required implications is proved by proving the contrapositive
statement.

S connected implies S is an interval. The contrapositive is: If S ⊂ R is
not an interval, then S is disconnected. If S is not an interval, then there are
distinct points x, y in S with x < y and a point z /∈ S with x < z < y. Let
A = {w ∈ R : w < z} = (−∞, z) and B = {w ∈ R : z < w} = (z,∞). Then A and
B are open sets with A ∩ B = ∅, A ∩ S 
= ∅ since x ∈ A, B ∩ S 
= ∅ since y ∈ B,
and (A ∩ S) ∪ (B ∩ S) = S. Hence A and B disconnect S.

S is an interval implies S is connected. (This ensures thatR is connected, since
R is an interval.) The contrapositive is: If S ⊆ R is disconnected, then S is not an
interval. Thus, we suppose the open sets A and B disconnect S. By the structure
theorem for open subsets of R, we may express A and B as disjoint countable
unions of open intervals, say A =

⋃
k Ak and B =

⋃
j Bj where Ak and Bj are open

intervals for each k, j. Since A ∩ S 
= ∅, B ∩ S 
= ∅, and (A ∩ S) ∩ (B ∩ S) = ∅, we
may assume, by relabeling A and B if necessary, that for some k0 and j0, Ak0

lies
to the left of Bj0 . Clearly, (Ak0

∩ S) ∩ (B ∩ S) = ∅ and (A ∩ S) ∩ (Bj0 ∩ S) = ∅.
Since S ⊂ A ∪B, but supAk0

/∈ S and inf Bj0 /∈ S, S is not an interval. �

The proof of Theorem 4.3.2 used the least upper bound property ofR implicitly
when we used the structure theorem for open sets. As a corollary of Theorem 4.3.2,
the reader can deduce a result we noted earlier in the chapter; see Exercise 4.3.1.

Exercise.

Exercise 4.3.1. Deduce from Theorem 4.3.2 that the only subsets of R that are
both open and closed are the empty set and R.

4.4. Limit of a Function

In this section we define the limit of a function at a cluster point of its domain D.
Recall that a cluster point of D need not be an element of D.

Definition 4.4.1 (Limit at a Point). Let D ⊂ R and f : D → R. Let a be a
cluster point of D, and let L ∈ R. We say that f has the limit L as x approaches
a, and we write

lim
x→a

f(x) = L

if for every ε > 0 there is a δ = δ(ε, a) > 0 such that

x ∈ D and 0 < |x− a| < δ =⇒ |f(x)− L| < ε.

Notice that the definition of limit allows for one-sided limits at an endpoint of
a domain like [a, b]. In Section 4.9 we give a general definition of one-sided limits
that is helpful in discussing discontinuities of a function.

The uniqueness of a limiting value as defined by Definition 4.4.1 is an important
issue considered below in Theorem 4.4.6.
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That the δ in the definition generally must depend on both ε and a will be clear
from the next example.

Example 4.4.2. Consider f(x) = 1/x on D = (0, 1]. Suppose we want to show
that limx→1/2 f(x) = 2 (which it surely is) from the definition. We have to show
that for every ε > 0 there is a δ = δ(ε, a = 1/2) > 0 such that

x ∈ D and 0 < |x− 1/2| < δ =⇒ |f(x)− 2| < ε.

We begin by writing

|f(x)− 2| =
∣∣∣ 1
x
− 2
∣∣∣ = ∣∣∣1− 2x

x

∣∣∣ = 2|1/2− x|
|x| ,

where we have isolated the factor |x− 1/2| that must be restricted by a suitable δ.
In the spirit intended by the question of a limiting value, we can agree to consider
only those x with, say, 1/4 ≤ x ≤ 3/4, which are in D. This is useful because it
provides us with a bound for the factor 1/|x| = 1/x. Consequently, for these values
of x, we have

|f(x)− 2| = 2|1/2− x|
|x| ≤ 8|x− 1/2|.

The upper bound helps because it isolates the crucial factor |x− 1/2| in an upper
bound for |f(x)− 2|, and because we may now achieve

8|x− 1/2| < ε

and hence |f(x)− 2| < ε, by choosing

|x− 1/2| < δ

where δ is any positive number less than or equal to min{1/4, ε/8}. On the other
hand, consider the verification that

lim
x→1/4

f(x) = 4.

Similar reasoning and calculations show that we will have

|f(x)− 4| < ε

provided we choose 1/8 < x < 3/8 and

|x− 1/4| < δ

where δ is any positive number less than or equal to min{1/8, ε/32}. (As an exercise,
check this statement.) Clearly, the values of a function may change more rapidly as
we vary x in some regions of its domain than in other regions. From this standpoint,
it is no surprise that the choice of δ for a given ε in the definition of limx→a f(x) = L
generally depends on both ε and a. �

Let us emphasize another important feature of the definition of limit. The
essential issue about a limit is the behavior of the function for values of x near to,
but not equal to, the point a, hence the consideration of those x with 0 < |x−a| < δ
in the definition. A function f may have a limiting value at a whether or not f(a)
is defined, and the value f(a) (if defined) is immaterial in determining the existence
of the limit. (See Exercise 4.4.1.) As we will see later, the concept of continuity of
a function at a point a simplifies the question of the limiting value of the function
at a.
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The computation of some limits using the definition provides good practice
with both the definition of limit and some elementary estimates. We present one
example here and leave others for the exercises.

Example 4.4.3. We show that limx→1 x
2 = 1 from the definition. We have

|x2 − 1| = |(x+ 1)(x− 1)| = |(x+ 1)| |(x− 1)| ≤ 3|x− 1|
for all x in the interval defined by |x − 1| ≤ 1. Let ε > 0. If ε < 3, then we may
take δ = ε/3 so that |x − 1| < δ implies |x − 1| < 1, hence |x2 − 1| < ε. (Of
course a similar statement can be made for any ε > 0, with an appropriate δ being
δ = min{ε/3, 1}.) Hence, limx→1 x

2 = 1. �

As this simple example shows, the key in applying Definition 4.4.1 directly is
to relate the difference |f(x) − f(a)| to the difference |x − a| by an inequality, by
supplying appropriate constant bounds on certain terms that arise. A sketch of
the graph of f for x near a can often be helpful in determining an appropriate
candidate for limx→a f(x). See Exercise 4.4.2.

We may also define limits at infinity.

Definition 4.4.4 (Limit at Infinity). Let D ⊆ R and f : D → R. Let L ∈ R. We
write

lim
x→∞

f(x) = L ( lim
x→−∞

f(x) = L)

if for every ε > 0 there is an M > 0 such that

x ∈ D and x ≥ M (x ≤ −M) =⇒ |f(x)− L| < ε.

Example 4.4.5. Let f : [1,∞) → R be the function f(x)=1/x. Then limx→∞ f(x)
= 0 = L, since for every ε > 0 we may choose N = N(ε) = 1/ε, and then for all
x > N , |f(x)| = 1/x < ε. Similarly, for each positive integer n, f(x) = 1/xn has
limit 0 as x → ∞. �

Before doing anything else, we should show that limits are unique.

Theorem 4.4.6 (Uniqueness of Limits). Let f : D → R and let a be a cluster
point of D. If limx→a f(x) = L1 and limx→a f(x) = L2 according to Definition
4.4.1, then L1 = L2.

Proof. By the triangle inequality,

|L1 − L2| ≤ |L1 − f(x)|+ |f(x)− L2|.
By hypothesis, given any ε > 0 there is a δ1 > 0 such that if 0 < |x − a| < δ1,
then |L1 − f(x)| < ε/2; and, there is a δ2 > 0 such that if 0 < |x − a| < δ2, then
|f(x) − L2| < ε/2. Thus, if 0 < |x − a| < δ := min{δ1, δ2}, then |L1 − L2| <
ε/2 + ε/2 = ε. Since ε > 0 was arbitrary, the result follows. �

The proof of uniqueness of limits at a = ±∞ is similar and is left as an exercise.

We are now ready to establish some basic properties of limits that are used as
a matter of routine. The proofs of some of these facts will be left as exercises for
the reader.
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Theorem 4.4.7. Let a be a cluster point of the domain of f , or ±∞. Let L ∈ R.
The following properties hold:

(a) If limx→a f(x) = L exists, then for any c ∈ R, limx→a cf(x) = cL.

(b) limx→a f(x) = L exists if and only if limx→a |f(x)− L| = 0.

(c) If g(x) ≤ f(x) ≤ h(x) for x in a common domain having a as a cluster point,
and limx→a g(x) = limx→a h(x) = L exists, then limx→a f(x) = L.

Proof. We will prove (a) and (c) when a is a cluster point and leave the remaining
parts to Exercise 4.4.5.

(a) The result is clear if c = 0, so we assume that c 
= 0. By hypothesis, for
every ε > 0 there is a δ > 0 such that if 0 < |x − a| < δ, then |f(x) − L| < ε/|c|.
Thus if 0 < |x− a| < δ, then

|cf(x)− cL| = |c| |f(x)− L| < |c| ε

|c| = ε.

Since ε > 0 was arbitrary, this proves (a).

(c) We may write

|f(x)− L| = |f(x)− g(x) + g(x)− L|
≤ |f(x)− g(x)|+ |g(x)− L|
≤ |h(x)− g(x)|+ |g(x)− L|
≤ |h(x)− L|+ |L− g(x)|+ |g(x)− L|,

where we used g(x) ≤ f(x) ≤ h(x) in the third line. By hypothesis, given ε > 0,
there is a δ1 > 0 such that if 0 < |x − a| < δ1, then |g(x) − L| < ε/3; and,
there is a δ2 > 0 such that if 0 < |x − a| < δ2, then |h(x) − L| < ε/3. Thus, if
0 < |x− a| < δ := min{δ1, δ2}, then

|f(x)− L| < ε/3 + ε/3 + ε/3 = ε.

The proofs of (a) and (c) when a = ±∞, and the proof of (b) when a is either a
cluster point or ±∞, are left to Exercise 4.4.5. �

The result in Theorem 4.4.7(c) is often called the squeeze theorem and it is
quite useful. An example will be considered below.

As a matter of routine, we need to find the limits of sums, differences, products,
and quotients of functions. Suppose that the functions f and g are defined on a
common domain D. Then the sum f + g and difference f − g are defined by

(f ± g)(x) := f(x)± g(x), x ∈ D.

The product fg is defined on D by

(fg)(x) := f(x)g(x), x ∈ D.

Finally, the quotient f/g is defined by

(f/g)(x) := f(x)/g(x), {x ∈ D : g(x) 
= 0}.
Establishing the limits for these combinations directly from the limit definition
requires a significant amount of work. The definition of limit of a function f at a
point a makes no reference to sequences as the method of approach to the limit
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point and limiting function value. However, the next result characterizes the limit
of a function in terms of sequential convergence and is often a labor-saving device.

Theorem 4.4.8. Let D ⊂ R and f : D → R. Let a be a cluster point of
D. Then limx→a f(x) = L if and only if for every sequence (xn)

∞
n=1 satisfying

limn→∞ xn = a, we have limn→∞ f(xn) = L.

Proof. (only if part) Suppose limx→a f(x) = L, and let (xn) be any sequence that
converges to a. By hypothesis, for every ε > 0 there is a δ = δ(ε) > 0 such that if
0 < |x − a| < δ, then |f(x) − L| < ε. Given δ > 0 there is an N = N(δ(ε)) such
that if n ≥ N , then 0 < |xn − a| < δ. Thus if n ≥ N , then |f(xn) − L| < ε. This
shows that limn→∞ f(xn) = L.

In order to establish the if part, we will prove its contrapositive. Thus, assume
that it is not true that limx→a f(x) = L. Then there exists an ε > 0 such that for
every δn = 1/n, there is some point xn such that 0 < |xn − a| < δn = 1/n and
|f(xn)−L| ≥ ε. Then the sequence (xn) satisfies limn→∞ xn = a, and it is not the
case that limn→∞ f(xn) = L. �

We use the sequential characterization of limit in the next result, where we
employ the limit laws for sequences in Theorem 2.4.5.

Theorem 4.4.9. Let f and g be functions defined on a common domain D, and
let a be a cluster point of D. Suppose

lim
x→a

f(x) = L1 and lim
x→a

g(x) = L2.

Then

1. limx→a(f ± g)(x) = L1 ± L2;

2. limx→a(fg)(x) = L1L2;

3. limx→a(f/g)(x) = L1/L2, if L2 
= 0.

Proof. Since

lim
x→a

f(x) = L1 and lim
x→a

g(x) = L2,

by invoking Theorem 4.4.8 we have that if ak → a, then f(ak) → L1 and g(ak) →
L2. Then the limit laws of parts 2 and 3 Theorem 2.4.5 imply, respectively, that

lim
ak→a

(f ± g)(ak) = L1 ± L2

and

lim
ak→a

(fg)(ak) = L1L2.

Thus, by Theorem 4.4.8, statements 1 and 2 of the present theorem hold.

In addition, if L2 
= 0, then part 4 of Theorem 2.4.5 implies that

lim
ak→a

(f/g)(ak) = L1/L2.

Thus, by Theorem 4.4.8, statement 3 of the present theorem holds. �

We consider some examples.



108 4. Basic Topology, Limits, and Continuity

-0.3

 0.3

-0.4  0.4

Figure 4.1. The function f in Example 4.4.11 exhibits increasingly rapid
oscillation and limit zero as x approaches 0.

Example 4.4.10. By Theorem 4.4.7(b) with f(x) = x, we clearly have limx→a x =
a for any number a. It then follows from an induction argument using the product
limit law that any power function xn with positive integer exponent n satisfies
limx→a x

n = an for any a. We can then conclude from the constant multiple and
the sum limit laws that any polynomial function

p(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0

satisfies limx→a p(x) = p(a) for any a. Any quotient p/q of polynomial functions p
and q is called a rational function. By the quotient limit law, any rational function
p/q satisfies limx→a p(x)/q(x) = p(a)/q(a) at every point a where it is defined. �

Example 4.4.11. The graph of the function

f(x) = x cos(1/x) +
x3 + 3x

4 + x5
sin(1/x)

oscillates in a complicated manner as x → 0. (See Figure 4.1.) However, it is not
difficult to see from the triangle inequality that

0 ≤ |f(x)| ≤ |x|+
∣∣∣x3 + 3x

4 + x5

∣∣∣,
and both terms in the bound on the right side approach 0 as x → 0. Thus, we have
limx→0 f(x) = 0 by the squeeze Theorem 4.4.7(c). �
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In view of the previous definitions of limits, it would seem paradoxical to speak
of infinite limits; however, the following conventional notation is often useful and
worth setting out as a definition.

Definition 4.4.12. Let D ⊂ R and f : D → R. Let a be a cluster point of D. We
say that limx→a f(x) = ∞ if for every N > 0 there is a δ = δ(N) > 0 such that if
|x− a| < δ, then f(x) > N . Similarly, we say that limx→a f(x) = −∞ if for every
N > 0 there is a δ = δ(N) > 0 such that if |x− a| < δ, then f(x) < −N .

The notational convention of this definition can be extended to the case of
a = ±∞ as a “limit point”. For example, limx→∞ f(x) = ∞ if for every N > 0
there is an M = M(N) > 0 such that if x > M , then f(x) > N .

Exercises.

Exercise 4.4.1. Consider the following functions on the domains indicated:

1. f(x) = x2 for x ∈ (−2, 2);

2. g(x) = (x2 − x)/(x− 1) for x ∈ (−2, 2) and x 
= 1, and g(1) = 4;

3. h(x) = x2 for x ∈ (−2, 2) and x 
= 1.

Graph each function and show that

lim
x→1

f(x) = lim
x→1

g(x) = lim
x→1

h(x) = 1.

Exercise 4.4.2. Suppose f(x) = 3x2 sin(1/x) for x 
= 0. Graph f for x near 0 and
then verify your candidate for limx→0 f(x) using Definition 4.4.1.

Exercise 4.4.3. Show that limx→0(x
3 + 3x)/(4 + x5) = 0. (See Example 4.4.11.)

Exercise 4.4.4. Find limx→0(
√
1 + x2 − 1)/x.

Exercise 4.4.5. Refer to Theorem 4.4.7. Prove parts (a) and (c) when a = ±∞,
and prove (b) when a is either a cluster point or ±∞.

4.5. Continuity at a Point

Intuitively, the idea of continuity of a function f at a point a is that as x approaches
a, the function values f(x) should approach a well-defined limit value and that
limit value should be the value of the function at a. Thus continuity at a rules
out behavior like that in Exercise 4.4.1, where the limit of a function exists but is
different from the function value, or the limit exists but the function is not defined
at the limit point. Continuity of f at a should also rule out unbounded asymptotic
behavior or oscillating behaviors as x → a such that a well-defined function limit
does not exist.

Definition 4.5.1. Let D ⊂ R and f : D → R. Let a ∈ D. Then f is continuous
at the point a if limx→a f(x) = f(a).

By the definition of limit, then, f is continuous at a ∈ D if and only if for every
ε > 0 there is a δ = δ(ε, a) > 0 such that

x ∈ D and 0 < |x− a| < δ =⇒ |f(x)− f(a)| < ε.
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If the domain D has any isolated point(s) a, this definition implies that f is con-
tinuous at a.

Example 4.5.2. It follows from the discussion in Example 4.4.10 that polynomial
functions

p(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0

and rational functions

r(x) =
anx

n + an−1x
n−1 + · · ·+ a1x+ a0

bmxm + bm−1xm−1 + · · ·+ b1x+ b0

are continuous at every point at which they are defined. Thus p(x) is continuous
on R, and r(x) is continuous at every point where its denominator is not zero.
(Exercise 4.5.1.) �
Example 4.5.3. Let f(x) = x2 for 0 ≤ x < 1 and f(x) = 1 + 1/n for x =
1 + 1/n, where n is any positive integer. The domain of this function is the set
D = [0, 1) ∪ {1 + 1/n}∞n=1 and f is continuous at every point of this domain. Each
point of the set {1 + 1/n}∞n=1 is an isolated point of D. Note that f has no chance
of being continuous at x = 1 since f is undefined at x = 1. �

The next result is an immediate consequence of the theorem on limits of sums,
products, and quotients of functions.

Theorem 4.5.4. Suppose f and g are functions defined in an open set D containing
the point a. If f and g are both continuous at a, then the following conditions hold:

1. f ± g is continuous at a.

2. fg is continuous at a.

3. f/g is continuous at a if g(a) 
= 0.

Proof. Apply the theorem on the limit of a sum, product, and quotient of func-
tions. �

We also have a sequential characterization of continuity at a point.

Theorem 4.5.5. Let f : D → R and a ∈ D. The function f is continuous at a if
and only if for every sequence (xn) in D such that limn→∞ xn = a,

lim
n→∞

f(xn) = f(a).

Proof. Apply the sequential characterization of limit in Theorem 4.4.8. �

Recall that if g : U → R and f : V → R, then the composition f ◦ g : U → R
is the function defined by (f ◦ g)(x) = f(g(x)) for x ∈ g−1(V ) ∩ U . Under what
conditions is a composite function continuous at a point?

Example 4.5.6. It is possible to have limx→x0
g(x0) = L and limz→L f(z) = M ,

but limx→x0
f(g(x)) 
= M . As a simple example of this behavior, consider g(x) ≡ 1

and

f(x) =

{
2 if x 
= 1,
−1 if x = 1.

Then g(x) → 1 = L as x → 1 = x0, and f(z) → 2 as z → 1 = L, but f ◦ g(x) =
f(g(x)) = −1 as x → 1. �
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In the example, f is not continuous at g(1) = 1 = L.

Theorem 4.5.7. Suppose g : U → R and f : V → R. If g is continuous at a ∈ U
and f is continuous at g(a) ∈ V , then f ◦ g is continuous at a.

Proof. We use the sequential characterization of continuity. Let (xn) be any se-
quence such that xn → a as n → ∞. Then, by continuity of g at a, g(xn) → g(a),
and hence by continuity of f at g(a), f(g(xn)) → f(g(a)). �

Under the hypotheses of Theorem 4.5.7, we have

f(g(a)) = f( lim
n→∞

g(xn)) = lim
n→∞

f(g(xn))

where the first equality is due to continuity of g at a and the second equality is due
to continuity of f at g(a).

There is another characterization of continuity at a point that is useful later
on in describing the class of Riemann integrable functions. This characterization is
just as easily described in the more general setting of functions defined on subsets
of Rn for any fixed n ≥ 1, so it is presented later, in Exercise 8.10.7. (For interested
readers there is no harm in looking ahead and working that exercise for f : D ⊂
R → R.)

Exercises.

Exercise 4.5.1. Verify the continuity statements made in Example 4.5.2.

Exercise 4.5.2. In Example 4.5.3, if we include the point x = 1 in the domain of
f , how should f(1) be defined so as to make f continuous at 1?

Exercise 4.5.3. Prove: If f : D → R is continuous on D, then |f | : D → R,
defined by |f |(x) = |f(x)|, is also continuous on D.

Exercise 4.5.4. Let f : D → R and suppose a ∈ D. Show that f is discontinuous
at a if and only if there exists an ε > 0 and a sequence xk → a as k → ∞ such that
for every k, |f(xk)− f(a)| ≥ ε.

Exercise 4.5.5. Let f(x) = x sin(1/x) if x 
= 0, and let f(0) = 0. Show that f is
continuous on [0, 1].

4.6. Continuous Functions on an Interval

We say that a function f : D → R is continuous on D if f is continuous at
each x ∈ D. With this definition and Theorem 4.5.4, it is easy to talk about
the continuity on [a, b] of the sum, difference, and product of functions that are
continuous on [a, b]. If f and g are continuous on [a, b] and g(x) 
= 0 for any
x ∈ [a, b], then f/g is continuous on [a, b]. If the composition f ◦ g is defined on
[a, b], g is continuous on [a, b] and f is continuous on the image g([a, b]), then, by
Theorem 4.5.7, f ◦ g is continuous on [a, b].

Proposition 4.6.1. Let f : D → R and let a ∈ D. If f is continuous at a and
f(a) 
= 0, then there is an interval (a − δ, a + δ), where δ > 0, such that f(x) 
= 0
and f(x) has the same sign as f(a), for all x ∈ (a− δ, a+ δ).
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Proof. Let ε < |f(a)|/2. By continuity of f at a, there is a δ > 0 such that if
x ∈ D and |x− a| < δ, then |f(x)− f(a)| < ε, and therefore

−|f(a)|
2

< −ε < f(x)− f(a) < ε <
|f(a)|
2

.

Adding f(a) to both sides gives

f(a)− |f(a)|
2

< f(x) < f(a) +
|f(a)|
2

.

If f(a) > 0, then for x ∈ D and |x− a| < δ, we have 0 < f(a)
2 < f(x). On the other

hand, if f(a) < 0, then for x ∈ D and |x− a| < δ, we have f(x) < f(a)
2 < 0. �

The next result is a special case of the intermediate value theorem, and it is of
special interest in root finding problems.

Proposition 4.6.2. If f is continuous on [a, b] and f(a) and f(b) are nonzero and
have opposite sign, then there is some point z ∈ (a, b) such that f(z) = 0.

Proof. We will assume that f(a) < 0 and f(b) > 0. (The argument is similar if
f(b) < 0 and f(a) > 0.) Let A = {x ∈ [a, b] : f(x) < 0}. Then A is nonempty since
a ∈ A, and A is bounded above by b. Hence, supA exists, and we let z = supA.
Then z > a by Proposition 4.6.1, and z < b, also by Proposition 4.6.1, since
f(b) > 0. Thus z ∈ (a, b). Since z = supA, for any positive integer n, there is an
xn ∈ A such that z − 1/n < xn ≤ z. Then xn → z as n → ∞, so f(xn) → f(z), by
continuity of f . Since xn ∈ A, f(xn) < 0, and therefore f(z) = limn→∞ f(xn) ≤ 0.
If f(z) < 0, then Proposition 4.6.1 implies that f takes negative values throughout
some open interval about z, and this contradicts the fact that z = supA. Hence,
f(z) = 0. �

The next result is the intermediate value theorem.

Theorem 4.6.3 (Intermediate Value Theorem). If f : [a, b] → R is a continuous
function and c is any real number between f(a) and f(b), then there exists a point
z ∈ (a, b) such that f(z) = c.

Proof. We may assume that f(a) < f(b). Given c between f(a) and f(b), the
function F (x) = f(x) − c is continuous on [a, b] and satisfies the hypothesis of
Proposition 4.6.2, since F (a) = f(a)− c < 0 and F (b) = f(b)− c > 0. Thus there
is some point z ∈ (a, b) such that F (z) = 0, that is, f(z) = c. �

In the next section we continue to study continuity as a global property of a
function.

Exercises.

Exercise 4.6.1. Apply Proposition 4.6.2 to show that f(x) = x3−x−1 has a root
between a = 0 and b = 2.

Exercise 4.6.2. Assume 0 is in the range of f : [a, b] → R. Prove: If f is
continuous, then the set f−1(0) = {x ∈ [a, b] : f(x) = 0} is compact. What if
f−1(0) = ∅?
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Exercise 4.6.3. Suppose that f : [a, b] → R is continuous. Show that the image
f([a, b]) must be an interval.

Exercise 4.6.4. Continuity and inverse images of open sets
This exercise provides a characterization of continuity of a real function on an
open interval. This property generalizes to functions of several variables. Suppose
f : (a, b) → R, where we may have a = −∞ or b = ∞.

1. Prove: If f is continuous on (a, b), then the inverse image f−1(O) is open for
any open set O.

2. Prove: If the inverse image f−1(O) is open for any open set O, then f is
continuous on (a, b).

Exercise 4.6.5. Continuity of an inverse function
Suppose f is continuous on (a, b) and f is either strictly increasing or strictly
decreasing on (a, b). Show that f is invertible and the inverse function f−1 :
f((a, b)) → (a, b) is continuous. Hint : If (a, b) 
= (−∞,∞), then it is straight-
forward to extend f to all of R so that f is strictly monotone on R, hence f is
invertible on R. Argue that f maps open intervals to open intervals using the
intermediate value theorem. Then draw a conclusion for the inverse restricted to
f((a, b)).

4.7. Uniform Continuity

We know that f : D → R is continuous at a point x0 if and only if for every ε > 0
there is a δ > 0 such that

x ∈ D and |x− x0| < δ =⇒ |f(x)− f(x0)| < ε.

If this statement holds for all x0 ∈ D, then f is continuous on D. As we have seen,
the δ generally depends on ε and the point x0. Suppose that for every ε > 0, a
δ = δ(ε) > 0 can be found, dependent only on ε, such that

x1, x2 ∈ D and |x1 − x2| < δ =⇒ |f(x1)− f(x2)| < ε.

Then we have a stronger form of continuity of f on the domain D called uniform
continuity of f on D.

Definition 4.7.1. Let D ⊂ R. A function f : D → R is uniformly continuous
on D if for every ε > 0 there is a δ = δ(ε) > 0 such that if x, y ∈ D and |x− y| <
δ(ε), then |f(x)− f(y)| < ε.

It is clear from this definition that if f is uniformly continuous on D, then f is
continuous at every point in D.

Example 4.7.2. Let us show that f(x) = x2 is uniformly continuous on (0, 2).
Given ε > 0, we can ensure that, for x, y ∈ (0, 2),

|f(x)− f(y)| = |x2 − y2| = |(x+ y)(x− y)| = |x+ y||x− y| ≤ 4|x− y| < ε

provided we choose

|x− y| < δ =
ε

4
.

Since ε was arbitrary, f(x) = x2 is uniformly continuous on (0, 2). �
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Example 4.7.3. The function f(x) = 1/x is not uniformly continuous on (0, 1],
because we can satisfy the negation of the definition statement, as follows. Let
ε = 1/2. Let xn = 1/n and yn = 2/n for n ∈ N. Then, for all n,

|f(xn)− f(yn)| =
∣∣∣ 1
xn

− 1

yn

∣∣∣ = ∣∣∣yn − xn

xnyn

∣∣∣ = n

2
≥ 1/2 = ε.

This shows that f(x) = 1/x is not uniformly continuous on (0, 1]. �

Theorem 4.7.4. Let f : K → R be continuous on a compact set K ⊂ R. Then f
is uniformly continuous on K.

Proof. Let ε > 0. For each y ∈ K there is a δ = δ(ε, y) > 0 such that

x ∈ D and |x− y| < δ(ε, y) =⇒ |f(x)− f(y)| < ε

2
.

Let Jy = {x ∈ K : |x − y| < 1
2δ(ε, y)}. Then the collection {Jy : y ∈ K} is

an open cover of K. Since K is compact, there is a finite collection of points
y1, y2, . . . , ym ∈ K such that

K ⊂ Jy1
∪ · · · ∪ Jym

.

Now let

δ :=
1

2
min{δ(ε, y1), δ(ε, y2), . . . , δ(ε, ym)}.

Then δ > 0 since it is the minimum of a finite set of positive numbers. Suppose
now that x1, x2 ∈ K with |x1 − x2| < δ. Since x1 ∈ K, x1 ∈ Jyj

for some j with
1 ≤ j ≤ m, hence

|x1 − yj | <
1

2
δ(ε, yj).

By the definition of δ, we also have

|x2 − yj | ≤ |x2 − x1|+ |x1 − yj | < δ +
1

2
δ(ε, yj) < δ(ε, yj).

Then it follows from the definition of δ(ε, yj) that

|f(x1)− f(x2)| ≤ |f(x1)− f(yj)|+ |f(yj)− f(x2)| <
ε

2
+

ε

2
= ε.

Since ε > 0 is arbitrary, we have shown that for every ε > 0 there is a δ > 0 such
that if x1, x2 ∈ K and |x1 − x2| < δ, then |f(x1) − f(x2)| < ε. Therefore f is
uniformly continuous on K. �

An immediate corollary of Theorem 4.7.4 is that every real valued function
that is continuous on a closed and bounded interval [a, b] is uniformly continuous
on [a, b].

Exercise 4.7.3 offers a proof of Theorem 4.7.4 by contradiction.
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Exercises.

Exercise 4.7.1. Suppose g : D → E is uniformly continuous on D and f : E → R
is uniformly continuous on E. Is f ◦ g : D → R uniformly continuous on D?

Exercise 4.7.2. A function f : D → R satisfies a Lipschitz condition on D if
there is a number L such that |f(x)− f(y)| ≤ L|x− y| for all x, y ∈ D. Then L is
called a Lipschitz constant for f on D. (Note: Using the mean value theorem,
a function with a bounded derivative on an interval J can be shown to satisfy a
Lipschitz condition on J ; see Exercise 5.2.1.)
Show that a function that satisfies a Lipschitz condition on D is uniformly contin-
uous on D.

Exercise 4.7.3. By the negation of Definition 4.7.1 of uniform continuity, the
function f : D → R is not uniformly continuous on D if and only if there is an ε > 0
and sequences xn, zn in D such that limn→∞ |xn− zn| = 0 but |f(xn)− f(zn)| ≥ ε.
Give a proof of Theorem 4.7.4 by contradiction using this statement together with
Theorem 4.2.10.

Exercise 4.7.4. Suppose f : R → R is continuous on R, and there is a number p
such that f(x+ p) = f(x) for all x. Show that f is uniformly continuous on R.

4.8. Continuous Image of a Compact Set

The extreme value theorem, Theorem 4.8.2 of this section, is one of the most fre-
quently applied results in introductory calculus.

We show first that the continuous image of a compact set is compact. Recall
that if f : K → R, K ⊂ R, then the image of K under f is f(K) = {y : y =
f(x), x ∈ K}.
Theorem 4.8.1. If f : K → R is continuous on K and K is compact, then the
image f(K) is compact.

Proof. Assume that f : K → R is continuous on K and K is compact. We wish
to show that f(K) is closed and bounded.

Suppose that f(K) is not bounded. Without loss in generality we assume that
f(K) is not bounded above. Then there is a sequence of points f(xn), xn ∈ K,
such that for each n, f(xn) > n. Since K is compact, by Theorem 4.2.10 there
is a subsequence xnk

such that limk→∞ xnk
= a ∈ K. Since f is continuous at a,

f(xnk
) → f(a). But we have f(xnk

) > nk for all k, by our assumption that f(K) is
not bounded above. This contradiction shows that f(K) must be bounded above.
By a similar argument by contradiction, one can show that f(K) must be bounded
below. Hence, f(K) is bounded.

If f(K) consists of isolated points only, then f(K) is closed and we are done.
Otherwise, let b be a cluster point of f(K). Then there is a sequence xn in K
such that limn→∞ f(xn) = b. Since K is compact, Theorem 4.2.10 implies that the
sequence xn inK has a convergent subsequence xnk

such that limk→∞ xnk
= a ∈ K.

Since (f(xnk
)) is a subsequence of (f(xn)), we have limk→∞ f(xnk

) = b. Since f
is continuous at a, we have f(a) = b, which shows that b ∈ f(K). Since b is an
arbitrary cluster point of f(K), f(K) is closed. �
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A more general version of Theorem 4.8.1 for functions of several variables is
considered in Theorem 8.10.19.

If f : D → R, D ⊂ R, and there is an xM ∈ D such that f(x) ≤ f(xM ) for all
x ∈ D, then f(xM ) is called the maximum value of f on D. If there is an xm ∈ D
such that f(x) ≥ f(xm) for all x ∈ D, then f(xm) is called the minimum value of
f on D.

The following result is called the extreme value theorem.

Theorem 4.8.2 (Extreme Value Theorem). If K is compact and f : K → R is
continuous on K, then f assumes its maximum and its minimum values on K.

Proof. If K is compact and f is continuous on K, then f(K) is compact, by
Theorem 4.8.1. Since f(K) is compact, sup f(K) ∈ f(K) and inf f(K) ∈ f(K)
(Exercise 4.2.2). Thus there exist xM , xm ∈ K such that f(xM ) = sup f(K) and
f(xm) = inf f(K). Consequently, for every x ∈ K, f(xm) ≤ f(x) ≤ f(xM ), so f
assumes its maximum and minimum values on K. �

An immediate corollary of Theorem 4.8.2 is that every function continuous on
a closed and bounded interval [a, b] achieves its maximum and minimum values on
[a, b].

Continuous functions on noncompact sets need not achieve a maximum or a
minimum value (Exercise 4.8.2). Functions that are defined on a compact set K,
if not continuous on K, need not achieve a maximum or a minimum value there
(Exercise 4.8.3).

Exercises.

Exercise 4.8.1. Supply the proof by contradiction in Theorem 4.8.1 that f(K)
must be bounded below.

Exercise 4.8.2. 1. Give an example of a function f : [0, 1) → R which is continu-
ous but does not achieve a maximum value on [0, 1).
2. Give an example of a function on [0,∞) (or on another noncompact set) which
is continuous but does not achieve a minimum value on that set.

Exercise 4.8.3. Let f : [−1, 1] → R be defined by f(x) = x2 for x ∈ (−1, 0)∪(0, 1),
and f(−1) = 2, f(0) = 2, f(1) = 2. Show that f has no minimum value on [−1, 1],
but that f does have a maximum value there.

Exercise 4.8.4. Give an example of a function f : R → R that has a bounded
range and achieves a minimum value, but has no maximum value.

Exercise 4.8.5. Give a different (and possibly shorter) proof of Theorem 4.8.1 by
starting with an open cover of the image f(K) and using the idea of Exercise 4.6.4
in this slightly modified form: A function f : K → R is continuous on K if and
only if for any open set O ⊆ R, we have f−1(O) = K ∩ U for some open set U of
real numbers. (A set of the form K∩U , where U is open, is said to be open relative
to K.)
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4.9. Classification of Discontinuities

A general definition of one-sided limits helps in discussing discontinuities of a func-
tion. We extend the earlier definition of limit (Definition 4.4.1) as follows. Let
f : (a, b) → R. We say that f has a right-hand limit at a, denoted f(a+), if for
every ε > 0 there is a δ > 0 such that

0 < x− a < δ =⇒ |f(x)− f(a+)| < ε.

We write f(a+) = limx→a+ f(x) when this limit exists. We say that f has a
left-hand limit at b, denoted f(b−), if for every ε > 0 there is a δ > 0 such that

0 < b− x < δ =⇒ |f(x)− f(b−)| < ε.

We write f(b−) = limx→b− f(x) when this limit exists.

It should be clear that if x0 is an interior point of the domain of f , then
limx→x0

f(x) exists if and only if f has both a left-hand limit and a right-hand
limit at x0 and limx→x0+ f(x) = limx→x0− f(x). Then limx→x0

f(x) equals the
common value of these one-sided limits.

Definition 4.9.1. A function f is said to have a discontinuity of the first kind,
or jump discontinuity, at the point a if the one-sided limits f(a+) and f(a−)
both exist but are unequal: f(a+) 
= f(a−).

Example 4.9.2. The sawtooth function defined by

f(x) =

{
x+ 1 if − 1 ≤ x < 0,
x− 1 if 0 ≤ x < 1,

has a jump discontinuity at a = 0. Note that f(0+) = limx→0+ f(x) = −1, and
f(0−) = limx→0− f(x) = 1. �

If f is not defined at a, but the one-sided limits f(a+) and f(a−) exist and
are equal, then a is a removable discontinuity of f , in the sense that if we define
f(a) to be this common limiting value, then f is made continuous at a. (Of course
the discontinuity is also removable if f(a) is already defined but is not equal to the
common limit.) See Exercise 4.4.1.

Definition 4.9.3. A function f is said to have a discontinuity of the second
kind at the point a if either of the one-sided limits f(a+) or f(a−), or both, fail
to exist.

Example 4.9.4. The function defined by f(x) = 1/x for x > 0 and f(x) = ex for
x ≤ 0. Then limx→0+ f(x) = ∞. That is, the right-hand limit at 0 does not exist.
Therefore f has a discontinuity of the second kind at 0. �

We can also say that a function f has an infinite discontinuity at a if
limx→a+ f(x) = ±∞ or limx→a− f(x) = ±∞, or both.

Example 4.9.5. For a different kind of function behavior which exhibits a discon-
tinuity of the second kind, consider the function y = f(x) = sin(1/x) for |x| 
= 0.
The graph of f oscillates more and more rapidly between its bounds y = ±1 as
x → 0 from either direction, and limx→0 f(x) does not exist. Consequently, there
is no way to define a value for f(0) so as to make f continuous at 0. �
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We consider one more example. Let us write Bδ(a) := {x : |x− a| < δ}.

Example 4.9.6. Define f : R → R by

f(x) =

{
0 if x ∈ I,
1/n if x = m/n, m, n ∈ Z, (m,n) = 1.

Here (m,n) means the GCD (greatest common divisor) of m and n. Thus if x is
rational and x = m/n in “lowest terms”, then f(x) = 1/n. We will show that f is
continuous at every irrational and discontinuous at every rational. Let a ∈ I. Then
a ∈ (k, k+ 1) for some integer k. Let ε > 0 and choose n0 ∈ N such that 1/n0 < ε.
There are only finitely many rational numbers m/n in (k, k+ 1) that have n < n0,
so one of them is closest to a, say at distance δ = δ(ε) > 0. We have

|f(x)− f(a)| =
{

|0− 0| = 0, if x ∈ I,
|1/n− 0| = 1/n, if x = m/n.

By our definition of δ, 1/n < 1/n0 < ε for all m/n ∈ Bδ(a) ∩ Q. Therefore
|f(x) − f(a)| < ε for all x ∈ Bδ(a). Therefore f is continuous at a. Since a was
arbitrary in I, f is continuous at every irrational. On the other hand, if a = m/n
is rational, with (m,n) = 1, then there is a sequence of irrationals yk such that
yk → m/n, while |f(yk)− f(m/n)| = |0− 1/n| = 1/n. Thus f is not continuous at
a = m/n. �

The discontinuities of monotone functions are relatively easy to describe and
we turn to them now.

Definition 4.9.7. Let f : I → R where I is an interval. Then

1. f is monotone increasing on I if x1 ≤ x2 implies f(x1) ≤ f(x2);

2. f is monotone decreasing on I if x1 ≤ x2 implies f(x1) ≥ f(x2).

A more strict definition is needed when we discuss invertible real functions.
We say that a function f : I → R is strictly increasing if x1 < x2 implies
f(x1) < f(x2), and strictly decreasing if x1 < x2 implies f(x1) > f(x2).

Theorem 4.9.8. Monotone functions on an open interval have discontinuities only
of the first kind, that is, jump discontinuities.

Proof. To show that the discontinuities of f are all of the first kind, it suffices to
show that at each point of I the left-hand and right-hand limits of f exist.

Let f be a monotone decreasing function on an open interval I. Let p ∈ I. If
p < x, then f(p) ≥ f(x). Therefore the set

R = {f(x) : p < x}
is bounded above. Let M = supR. If ε > 0, then there is a point s such that p < s
and

|f(s)−M | < ε.

If p < x < s, then M ≥ f(x) ≥ f(s), so |f(x) −M | < ε. Therefore limx→p+ f(x)
exists and equals M . Now let

L = {f(x) : x < p},
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which is bounded below with m = inf L. An argument similar to the previous
one using the definition of infimum and the fact that f is decreasing shows that
limx→p− f(x) exists and equals m.

The arguments required for the case of an increasing function are similar to
those given for the case of decreasing f (Exercise 4.9.1). �

It can also be shown that monotone functions on an interval have at most
countably many discontinuities; see Exercise 4.9.2.

Exercises.

Exercise 4.9.1. Complete the proof of Theorem 4.9.8 for the case of a monotone
increasing function.

Exercise 4.9.2. Show that a monotone function on an interval has at most count-
ably many discontinuities. Hint : All discontinuities must be jump discontinuities,
by Theorem 4.9.8. For each discontinuity, choose a rational number in the “jump
interval” not contained in the range. Show that this choice yields a one-to-one
mapping of the set of discontinuities into Q.





Chapter 5

The Derivative

This chapter presents the basic properties of the derivative of a real valued function
of a real variable. We assume the reader has experience from introductory calculus
courses with the geometric idea of the derivative at an interior point of the domain
as the slope of the tangent line to the graph of a function. We also assume familiar-
ity with the elementary functions (polynomials, rational functions, trigonometric
functions, exponential functions, logarithmic functions, and their inverses) and we
shall use facts about derivatives of elementary functions in examples. For reference,
we note that the natural logarithm function, denoted log(x) in this book, is defined
in Theorem 6.7.9. The exponential function exp(x) = ex (the inverse of the natural
logarithm function), as well as exponential and logarithm functions for other bases
b > 0, and the sine and cosine functions, are defined and discussed in detail in
Section 7.5.

5.1. The Derivative: Definition and Properties

Geometrically, the slope of a function graph at a point (a, f(a)) on the graph
indicates the rate of change of the function with respect to the independent variable
as that variable approaches the point a. This rate of change is the limiting value
of the slopes

f(x)− f(a)

x− a

of chords joining the points (x, f(x)) and (a, f(a)), as x approaches a, when this
limiting value exists. This limit process makes sense whenever the point a is an
interior point of the domain.

Definition 5.1.1. Let D be an interval of real numbers, let f : D → R, and
suppose a ∈ D is an interior point. If the limit

lim
x→a

f(x)− f(a)

x− a

121
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exists, then f is said to be differentiable at a, and the limiting value is denoted
by f ′(a) and called the derivative of f at a. If D is an open interval, and if f is
differentiable at every a ∈ D, then we say f is differentiable on D.

In this limit process we always have x approaching a through values x ∈ D. If
f ′(a) exists, then we have

f ′(a) = lim
x→a

f(x)− f(a)

x− a
= lim

h→0

f(a+ h)− f(a)

h
.

This is easily seen by setting x = a+h and noting that x → a if and only if h → 0.
The derivative of f at a is uniquely determined when it exists, since the function
(of x or of h, as indicated) defined by the difference quotient has a unique limit
when the limit exists.

If the domain of f is a closed interval D = [a, b], then we can discuss the
possibility of derivatives at the endpoints, and this is sometimes useful. These are
called one-sided derivatives when they exist. Specifically, at the left-hand endpoint
a, the derivative of f , if it exists, is a right-sided derivative of f at a,

f ′(a) = f ′
R(a) = lim

x→a+

f(x)− f(a)

x− a
,

the limit notation indicating that x approaches a from the right within the domain
D. At the right-hand endpoint b, the derivative of f , if it exists, is a left-sided
derivative of f at b,

f ′(b) = f ′
L(b) = lim

x→b−

f(x)− f(b)

x− b
,

the limit notation indicating that x approaches b from the left within the domain
D. One-sided derivatives are defined at interior points of the domain in the same
way, provided the appropriate limits exist. It is an exercise to show that at an
interior point d ∈ D, f ′(d) exists if and only if f ′

L(d) and f ′
R(d) both exist and are

equal. (See Exercise 5.1.1.)

Example 5.1.2. The function f [−1, 1] → R given by f(x) = |x| has a left-sided
derivative and a right-sided derivative at a = 0. In particular,

f ′
L(0) = lim

x→0−

|x| − 0

x− 0
= lim

x→0−

−x

x
= −1,

which is also clear from the graph of f . By a similar calculation, f ′
R(0) = 1. But f

is not differentiable at 0, since f ′
L(0) 
= f ′

R(0). �

Suppose we need to consider the continuity of a derivative function at an end-
point. For example, suppose f : [a, b] → R is differentiable on [a, b]. The right-sided
limit of f ′ at a is denoted

f ′(a+) = lim
x→a+

f ′(x),

and the left-sided limit of f ′ at b is denoted

f ′(b−) = lim
x→b−

f ′(x).

Then f ′ is continuous at a if f ′
R(a) = f ′(a+), and f ′ is continuous at b if f ′

L(b) =
f ′(b−).
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If a function has a well-defined slope at a given point (a, f(a)) of its graph,
then the function must be continuous at the point a.

Theorem 5.1.3. Let f : D → R and let a ∈ D be an interior point of D. If f ′(a)
exists, then f is continuous at a.

Proof. For x 
= a, we can write

f(x)− f(a) = (x− a)
f(x)− f(a)

x− a
.

Now let x → a on both sides and use the product law for limits to deduce that

lim
x→a

[f(x)− f(a)] = lim
x→a

[
(x− a)

f(x)− f(a)

x− a

]
= 0 · f ′(a) = 0.

Thus limx→a f(x) = f(a) and f is continuous at a. �

Our definitions of continuity and differentiability at endpoints allow for one-
sided limits at endpoints of an interval domain. By an argument similar to that in
Theorem 5.1.3, we can say that if f is differentiable on [a, b] (or on [a, b) or (a, b]),
then f is also continuous on [a, b] (or [a, b) or (a, b], respectively).

Differentiability at a point is strictly stronger than continuity at a point; that is,
continuity at a point does not imply differentiability at that point. For an example
where continuity does not imply differentiability, think of a function graph having a
sharp corner point where there is no well-defined slope, although continuity holds.
In fact, Example 5.1.2 will do, since |x| is continuous at 0 (since |x| → 0 as x → 0)
but |x| is not differentiable at 0.

To emphasize just how different the concepts of continuity and differentiability
really are, we note here that a real valued continuous function onRmay be nowhere
differentiable. A specific example is given in Section 7.3.

The continuity property assured by Theorem 5.1.3 is useful in the next example.

Example 5.1.4. Suppose g is differentiable at x and g(x) 
= 0. Then by continuity
of g at x (Theorem 5.1.3), g(x + h) 
= 0 for sufficiently small |h|. We compute
the derivative of the reciprocal function 1/g(x) at the point x directly from the
definition and the facts deduced thus far. The difference quotient can be expressed
as

1

h

[ 1

g(x+ h)
− 1

g(x)

]
=

1

g(x+ h)g(x)

g(x)− g(x+ h)

h
.

We take the limit as h → 0 and use appropriate limit laws to find the derivative:

d

dx

[ 1

g(x)

]
= lim

h→0

1

g(x+ h)g(x)

g(x)− g(x+ h)

h

= lim
h→0

1

g(x+ h)g(x)
lim
h→0

g(x)− g(x+ h)

h

= − 1

[g(x)]2
g′(x).

This formula is familiar from introductory calculus. We used the product and
quotient limit laws, as well as the differentiability, and thus the continuity, of g at x.
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For example, using the derivative of tanx, which is sec2 x, the derivative of the
cotangent function, cotx = 1/ tanx, is

d

dx
cot x =

d

dx

1

tanx
= − 1

tan2 x

d

dx
tanx = − 1

tan2 x
sec2 x.

Therefore the derivative of the cotangent function is −1/ sin2 x = − csc2 x. �

The sum of two functions which are differentiable at a is also differentiable at a.

Theorem 5.1.5 (Sum and Difference). Suppose f and g are real valued functions
defined in an interval about a. If f and g are both differentiable at a, then f ± g is
differentiable at a and

(f ± g)′(a) = f ′(a)± g′(a).

Proof. The proof is left as Exercise 5.1.3. �

If f and g have a left-sided derivative at the point a, that is, f ′
L(a) and g′L(a)

both exist, then f ± g also has a left-sided derivative at a, equal to f ′
L(a)± g′L(a).

Likewise, if f and g both have a right-sided derivative at the point b, then f ± g
also has a right-sided derivative at b. Variations like this will not be mentioned
explicitly from here on.

The rules for differentiation of products and quotients of differentiable functions
are stated next.

Theorem 5.1.6 (Product and Quotient). Suppose f and g are real valued functions
defined in an interval about a. If f and g are both differentiable at a, then the
following statements are true:

1. The product function (fg)(x) = f(x)g(x) is differentiable at a and

(fg)′(a) = f ′(a)g(a) + f(a)g′(a).

2. The quotient function (f/g)(x) = f(x)/g(x) is differentiable at a if g(a) 
= 0,
and

(f/g)′(a) =
f ′(a)g(a)− f(a)g′(a)

[g(a)]2
.

Proof. 1. We first write the difference quotient in a form that allows us to use the
hypothesis. In particular we will add and subtract appropriate terms. Thus, we
write

f(x)g(x)− f(a)g(a)

x− a
=

f(x)g(x)− f(a)g(x) + f(a)g(x)− f(a)g(a)

x− a

=
f(x)− f(a)

x− a
g(x) + f(a)

g(x)− g(a)

x− a
.

Now let x → a on both sides, to obtain the desired product rule.
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2. We use the product rule to compute the derivative at the point a, using the
previously computed derivative of 1/g(x):

d

dx

[f(x)
g(x)

]∣∣∣
a

=
d

dx

[
f(x)

1

g(x)

]∣∣∣
a

= f ′(a)
1

g(a)
+ f(a)

(
− g′(a)

[g(a)]2

)
=

f ′(a)g(a)− f(a)g′(a)

[g(a)]2
.

This is the desired statement of the quotient rule. �

We want to establish the chain rule for the derivative of a composite function.
Suppose the composition h(x) = (g ◦ f)(x) = g(f(x)) is defined in some open
interval J about the point a, and suppose that g is differentiable at f(a) and f
is differentiable at a. Let x ∈ J be a point near a, and let Δx = x − a and
Δf = f(x)− f(a), and Δh = g(f(x))− g(f(a)). Then we can write the difference
quotient for the composition h(x) = g(f(x)) as

Δh

Δx
=

Δh

Δf

Δf

Δx
,(5.1)

provided Δf 
= 0 and Δx 
= 0. In the limit process, we are allowed to assume
the condition Δx 
= 0; however, what about the assumption Δf 
= 0? We cannot
guarantee the latter condition, since it may be that f takes the value f(a) infinitely
often in any open interval about a. We cannot deny that this is possible, so we
cannot be sure that Δx → 0 implies that Δf 
= 0. Hence, we cannot argue from
(5.1), using the product limit law, that the limit of the difference quotient yields
h′(a) = g′(f(a))f ′(a). The way to avoid this technical difficulty is to write the
derivative definition in an alternative but equivalent way.

If f ′(a) exists, then

lim
Δx→0

Δf

Δx
= lim

x→a

f(x)− f(a)

x− a
= f ′(a).

By limit laws, this is equivalent to the statement

lim
Δx→0

[Δf

Δx
− f ′(a)

]
= lim

x→a

[f(x)− f(a)

x− a
− f ′(a)

]
= 0,

which is equivalent to the statement

lim
Δx→0

[Δf − f ′(a)Δx

Δx

]
= lim

x→a

[f(x)− f(a)− f ′(a)(x− a)

x− a

]
= 0.

When f ′(a) exists, we have

lim
Δx→0

[Δf − f ′(a)Δx] = lim
x→a

[f(x)− f(a)− f ′(a)(x− a)] = 0.

But it is important to realize we also have the stronger statement that

(5.2) lim
Δx→0

Δf − f ′(a)Δx

Δx
= lim

x→a

f(x)− f(a)− f ′(a)(x− a)

x− a
= 0.

The expression Δf − f ′(a)Δx = f(x) − f(a) − f ′(a)(x − a) is the error when
approximating f(x) with the tangent line approximation, f(a) + f ′(a)(x − a), at
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the point (a, f(a)). The existence of the derivative f ′(a) is equivalent to (5.2),
which tells us that this error goes to zero more rapidly than x approaches a.

In the definition of a derivative and in other situations we encounter expressions
of the form E(h)/h that have zero limit as h → 0. It is convenient to have a notation
for this.

Definition 5.1.7. We say that a function E(h), which is defined for small |h|, is
little-oh of h as h → 0, if

lim
h→0

E(h)

h
= 0.

We indicate this limit property by writing E(h) = o(h).

Consequently, if E(h) = o(h), then necessarily limh→0 E(h) = 0, because E(h)
must approach zero faster than h. We may also write o(h) to mean a function of
h, perhaps unspecified in detail, which satisfies

lim
h→0

o(h)

h
= 0.

We may set h = x − a in (5.2) and use the little-oh notation to re-express the
definition of differentiability of f at a by saying that there exists a number L such
that

(5.3) f(a+ h)− f(a)− Lh = o(h).

We write L = f ′(a) for the number so defined. Here is the equivalent definition of
a derivative:

Definition 5.1.8. A function f defined on some interval about a is differentiable
at a if there is a number L such that

f(a+ h)− f(a)− Lh = o(h) as h → 0.

This is equivalent to saying that f is differentiable at a if there is a number L such
that the quotient

f(a+ h)− f(a)− Lh

h
=: V (h) → 0 as h → 0.

We can now prove the chain rule for the differentiation of a composite function.

Theorem 5.1.9 (Chain Rule). Let I and J be open intervals. If f : J → I is
differentiable at a ∈ J and g : I → R is differentiable at f(a) ∈ I, then the
composition (g ◦ f)(x) = g(f(x)) is differentiable at a ∈ J and

(g ◦ f)′(a) = g′(f(a))f ′(a).

Proof. Let a ∈ J and let x be near a. In the proof we write Δx = x−a, x = a+Δx,
Δf = f(x)−f(a). We shall use a generic notation, V (z), for a function of a variable
z that satisfies V (z) → 0 as z → 0, when such an expression appears in the context
of Definition 5.1.8.

Since g′(f(a)) exists, we may write

(5.4) g(f(a) + Δf) = g(f(a)) + g′(f(a))Δf + V (Δf)Δf.
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Since f ′(a) exists, we may write

Δf = f ′(a)Δx+ V (Δx)Δx.

Since f(a)+Δf = f(x), we can substitute the expression for Δf into the right-hand
side of (5.4) to obtain

g(f(x)) = g(f(a+Δx)) = g(f(a)) + g′(f(a))[f ′(a)Δx+ V (Δx)Δx]

+V (Δf)[f ′(a)Δx+ V (Δx)Δx].

Rearrange this, making use of the generic V notation to see that

g(f(x))− g(f(a))− g′(f(a))f ′(a)Δx = V (Δx)Δx,

where we used the fact that Δf → 0 as Δx → 0. This expression implies that
(g ◦ f)′(a) exists and equals g′(f(a))f ′(a). �

It follows easily from Theorem 5.1.9 that if f is differentiable on J , f(J) ⊂ I,
and g is differentiable on I, then g ◦ f is differentiable on J .

Exercises.

Exercise 5.1.1. Let f : [a, b] → R and let a < d < b. Show that f ′(d) exists if
and only if f ′

L(d) and f ′
R(d) both exist and are equal.

Exercise 5.1.2. Define f : (−1, 1) → R by f(x) = x2 sin(1/x) for x 
= 0, and
f(0) = 0. Show that f is differentiable on (−1, 1).

Exercise 5.1.3. Prove Theorem 5.1.5, the sum and difference rules for derivatives.

Exercise 5.1.4. Let f be defined by f(x) = x2 for x ∈ Q and f(x) = 0 for x ∈ I.
Show that f is differentiable only at x = 0, and f ′(0) = 0.

5.2. The Mean Value Theorem

We first define the concepts of local maximum value and local minimum value for
a real valued function defined on an open interval.

Definition 5.2.1. Let f : (a, b) → R.

1. The function f has a relative maximum at a point x ∈ (a, b) if there is a
δ > 0 such that f(s) ≤ f(x) for all s ∈ (x−δ, x+δ). The relative maximum
value is then f(x).

2. The function f has a relative minimum at a point x ∈ (a, b) if there is a
δ > 0 such that f(s) ≥ f(x) for all s ∈ (x−δ, x+δ). The relative minimum
value is then f(x).

Relative extreme points and relative extreme values are also called local extreme
points and local extreme values.

If f(c) is a relative extreme value of f , then the point (c, f(c)) on the graph
is also called a relative extreme point of f . In topographic terms, a relative
extreme point might occur on a smooth hilltop or in a smooth valley bottom, or it
might occur at a sharp Λ-shaped mountain peak or at the bottom of a V-shaped
ditch. These different topographic phrasings depend on how smooth, or how jagged,
is the peak or the low point. The example f(x) = |x| (or f(x) = −|x|) shows that
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there may be a relative maximum (or minimum) value f(c) at a point where f ′(c)
does not exist, as at c = 0.

The derivative is the mathematical tool for discussing slopes of smooth function
graphs. There is a well-defined slope f ′(c) at an extreme point (c, f(c)) of the graph
of f only if that slope equals zero.

Theorem 5.2.2. If f : (a, b) → R and f has either a relative maximum or a
relative minimum at c ∈ (a, b), and if f ′(c) exists, then f ′(c) = 0.

Proof. Suppose f has a relative maximum at c ∈ (a, b). Then there is a δ > 0
such that if |x− c| < δ, then

f(x) ≤ f(c).

Taking x > c, we have
f(x)− f(c)

x− c
≤ 0.

Letting x → c with x > c, we conclude that

f ′(c) ≤ 0.

On the other hand, taking x < c, we have

f(x)− f(c)

x− c
≥ 0.

Now let x → c with x < c to get

f ′(c) ≥ 0.

Therefore f ′(c) = 0. If f has a relative minimum at c, then a similar argument
shows that f ′(c) = 0. �

We now use Theorem 5.2.2 and the existence of extreme values for continuous
functions on closed intervals to establish a special case of the mean value theorem,
often known as Rolle’s theorem.

Theorem 5.2.3 (Rolle). Let f : [a, b] → R be continuous on [a, b] and differentiable
on the open interval (a, b). If f(a) = f(b), then there is a point c ∈ (a, b) such that
f ′(c) = 0.

Proof. If f is a constant function on (a, b), then the result is immediate, since the
derivative of a constant function is zero.

Thus, suppose that f is not constant on (a, b). If there is an x ∈ (a, b) such
that f(x) > f(a), then f must attain an absolute maximum value f(c1) for some
c1 ∈ (a, b), and f ′(c1) = 0 by Theorem 5.2.2. On the other hand, if there is an
x ∈ (a, b) such that f(x) < f(a), then f must attain an absolute minimum value
f(c2) for some c2 ∈ (a, b), hence, f ′(c2) = 0 by Theorem 5.2.2. �

If f(a) = f(b), there can be more than one point at which the derivative of
f is zero. Consider the function f(x) = x3 − x on the interval [−1, 1], where

f ′(x) = 3x2 − 1 equals zero at c1 = 1/
√
3 and c2 = −1/

√
3, both in (−1, 1).

When it applies, Rolle’s theorem states that there is a point x = c ∈ (a, b) at
which the slope f ′(c) equals the slope of the chord that joins the points (a, f(a)) and
(b, f(b)), the slope of this chord being zero under the hypothesis that f(a) = f(b).
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In the statement of the mean value theorem below, we consider a more general
function graph over [a, b] and establish the corresponding statement about equality
of derivative and chord slope at some point c ∈ (a, b), by a reduction to the case of
Rolle’s theorem.

Theorem 5.2.4 (Mean Value). If f : [a, b] → R is continuous on [a, b] and differ-
entiable on (a, b), then there is a point c ∈ (a, b) such that

f ′(c) =
f(b)− f(a)

b− a
.

Proof. The line passing through the points (a, f(a)) and (b, f(b)) has equation

y = f(a) +
x− a

b− a
(f(b)− f(a)).

We consider the function

h(x) := f(x)− f(a)− x− a

b− a
(f(b)− f(a)).

Then h(a) = 0 = h(b). Since h is continuous on [a, b] and differentiable on (a, b),
by Rolle’s theorem there is a point c ∈ (a, b) such that h′(c) = 0, hence

h′(c) = f ′(c)− f(b)− f(a)

b− a
= 0,

as we wished to show. �

The mean value theorem provides important information about differences in
function values. Naturally enough, the mean value theorem can be helpful in eval-
uating limits of expressions that involve differences in function values. See the
exercises for some applications. The mean value theorem plays an important role
in determining whether certain mappings are contraction mappings in Section 5.5.

Given appropriate information on the sign of the derivative f ′ over an open
interval (a, b), Theorem 5.2.4 allows us to deduce important monotonicity properties
of f on (a, b). Recall that a function f on an interval I is increasing on I if
f(x) ≤ f(y) whenever x ≤ y. It is strictly increasing on I if f(x) < f(y)
whenever x < y. A function f on an interval I is decreasing on I if f(x) ≥ f(y)
whenever x ≤ y. It is strictly decreasing on I if f(x) > f(y) whenever x < y.

Theorem 5.2.5. Suppose f : [a, b] → R is continuous on [a, b] and differentiable
on (a, b). Then the following implications hold:

1. If |f ′(c)| ≤ M for all c in (a, b), then for each x ∈ (a, b),

|f(x)− f(a)| ≤ M(x− a) < M(b− a).

2. If f ′(x) = 0 for all x ∈ (a, b), then f is a constant function on (a, b).

3. If f ′(x) ≥ 0 for all x ∈ (a, b), then f is increasing on (a, b). If f ′(x) > 0 for
all x ∈ (a, b), then f is strictly increasing on (a, b).

4. If f ′(x) ≤ 0 for all x ∈ (a, b), then f is decreasing on (a, b). If f ′(x) < 0 for
all x ∈ (a, b), then f is strictly decreasing on (a, b).
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Proof. 1. For any x ∈ (a, b), by the mean value theorem there is a c ∈ (a, b) such
that

|f(x)− f(a)| = |f ′(c)(x− a)| ≤ M(x− a) < M(b− a).

2. Let s and t be points in the interval (a, b) with s < t. By the mean value
theorem, there is a point c with s < c < t such that

f(t)− f(s) = f ′(c)(t− s).

Under the hypothesis, it follows that f(t) = f(s) for any pair of points s, t, so f is a
constant function on (a, b). Proofs of statements 3 and 4 are left to the reader. �

Statement 2 of Theorem 5.2.5 implies another fact which is familiar from ele-
mentary calculus. Recall that a function F is an antiderivative of f on (a, b) if
F ′(x) = f(x) for all x ∈ (a, b).

Theorem 5.2.6. Let G and F be differentiable on (a, b) and suppose that

G′(x) = F ′(x) = f(x) for all x ∈ (a, b).

Then G(x) = F (x) + C, where C is a constant.

Proof. Since G′(x) − F ′(x) = 0 for all x ∈ (a, b), statement 2 of Theorem 5.2.5
implies that G(x)−F (x) = C, a constant, that is, G(x) = F (x)+C for all x ∈ (a, b),
where C is a constant. �

Thus, any two antiderivatives of f on (a, b) differ by a constant. The reader is
familiar with the indefinite integral notation,

∫
f(x) dx = F (x)+C, which denotes

the family of antiderivatives of f . The domain being an interval is important in
statement 2 of Theorem 5.2.5 and Theorem 5.2.6: for example, if f(x) = 0 for
x ∈ (−1, 0) and f(x) = 1 for x ∈ (0, 1), then f ′(x) = 0 for all x ∈ (−1, 0) ∪ (0, 1);
similarly, if g(x) = 2 for x ∈ (−1, 0) and g(x) = 0 for x ∈ (0, 1), then g′(x) = 0
for all x ∈ (−1, 0) ∪ (0, 1), so f ′(x) = g′(x) = 0, but neither f nor g is constant on
its domain; also, f and g have the same derivative, but do not differ by a constant
over the common domain.

According to Theorem 5.2.5, the sign of the derivative f ′ tells us a great deal
over any interval where the sign does not change. However, the existence and
knowledge of the derivative f ′(a) at a single point a may tell us far less about
f than we would like. For example, from the knowledge that f ′(a) > 0, can we
conclude that f is strictly increasing on some open interval about the point a? The
next example provides a negative answer.

Example 5.2.7. Let f : R → R be the function

f(x) =

{
x2 sin(1/x) if x 
= 0,
0 if x = 0.

Then f ′(0) exists and f ′(0) = 0, by the definition of derivative. We have f ′(x) =
2x sin(1/x) − cos(1/x) for x 
= 0. Note that as x → 0, 2x sin(1/x) → 0, while
cos(1/x) oscillates infinitely often between +1 and −1. (See Figure 5.1.) Now
let g(x) = f(x) + 1

2x. Then g is differentiable for all x, g′(x) = f ′(x) + 1
2 , and

g′(0) = f ′(0) + 1
2 = 1

2 > 0, but g is not increasing on any open interval containing
0, because within any interval (−δ, δ), δ > 0, there are subintervals on which
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Figure 5.1. The graph of the function f in Example 5.2.7. If g(x) = f(x) +
1
2
x, then g′(0) = f ′(0) + 1

2
= 1

2
> 0, but g is not increasing on any open

interval containing 0.

f ′(x) < − 1
2 , and thus g′(x) < 0. Therefore g is not increasing on any interval

containing 0. �

We examine sufficient conditions for the local invertibility of a function in the
following section on the inverse function theorem.

Exercises.

Exercise 5.2.1. Prove: If f is differentiable on an open interval I and |f ′| is
bounded on I, then f is uniformly continuous on I. Hint : See Exercise 4.7.2.

Exercise 5.2.2. Use the mean value theorem to find the following limits:

1. limx→∞[
√
x+ 3−

√
x ].

2. limx→∞[
√
x− 5−

√
x ].

Exercise 5.2.3. Suppose that f is differentiable on (a, b) and f ′(x) 
= 0 for all
x ∈ (a, b). Show that f is one-to-one on (a, b).

5.3. The One-Dimensional Inverse Function Theorem

Here we consider the existence of an inverse for a function defined on an interval.
Readers who have done Exercise 4.6.5 will recognize the first statement of the next
theorem; an outline of the argument for it is included here.
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Theorem 5.3.1. Suppose f : (a, b) → R.

1. If f is continuous on (a, b) and strictly increasing or strictly decreasing, then
the inverse function f−1 : f

(
(a, b)

)
→ (a, b) exists and f−1 is continuous.

2. If f : (a, b) → R is differentiable on (a, b) and f is strictly increasing or
strictly decreasing on (a, b), then (f−1)′ exists for all y ∈ f

(
(a, b)

)
for which

f ′(f−1(y)
)

= 0, and

(5.5) (f−1)′(y) =
1

f ′
(
f−1(y)

) .
3. If f : (a, b) → R is differentiable on (a, b) and f ′(x) > 0 for all x ∈ (a, b) or

f ′(x) < 0 for all x ∈ (a, b), then (f−1)′ exists for all y ∈ f
(
(a, b)

)
and ( 5.5)

holds.

Proof. 1. If f is strictly increasing or strictly decreasing on (a, b), then f−1 :
f
(
(a, b)

)
→ (a, b) exists. It follows from the continuity of f and the intermediate

value theorem that f maps open intervals one-to-one and onto open intervals. The
same properties show that f−1 is continuous on f

(
(a, b)

)
. We leave the details to

the reader.

2. Since f−1 is continuous by part 1, limy→y0
f−1(y) = f−1(y0); that is,

limy→y0
x = x0 where f(x) = y and f(x0) = y0. Hence, if f ′(f−1(y0)) 
= 0,

(f−1)′(y0) = lim
y→y0

f−1(y)− f−1(y0)

y − y0
= lim

x→x0

1
f(x)−f(x0)

x−x0

=
1

f ′(x0)
=

1

f ′
(
f−1(y0)

) ,
as we wished to show.

3. This follows immediately from part 2 since Theorem 5.2.5 implies that f is
either strictly increasing or strictly decreasing on (a, b). �

The function f(x) = x3 is differentiable on any interval about 0 and is strictly
increasing on any interval, but f ′(f−1(0)

)
= 0 for y = 0 = f(0). This f is

an example of a function that satisfies the hypothesis in part 2 but not part 3 of
Theorem 5.3.1. The failure of the inverse function f−1(y) = y1/3 to be differentiable
at y = 0 is due to the zero derivative of f at x = 0, since this condition gives the
inverse function graph a vertical slope at the origin.

If we assume that f has a continuous derivative in an interval about a, and
f ′(a) 
= 0, then the inverse function exists and has a continuous derivative in a
neighborhood of b = f(a). This useful sufficient condition for the existence of a
continuously differentiable inverse function gives us the following statement known
as the inverse function theorem.

Theorem 5.3.2. Let f : J → R where J is an interval containing the point a.
If f ′ is continuous on J and f ′(a) 
= 0, then f is locally invertible on an interval
I ⊂ J with a ∈ I, and f−1 : f(I) → I has a continuous derivative on f(I) given by

(5.6) (f−1)′(y) =
1

f ′
(
f−1(y)

) .
Proof. Let us assume that f ′(a) > 0; the argument is similar if f ′(a) < 0. Since
f ′(a) > 0 and f ′ is continuous on J , then there is an interval I ⊂ J containing a
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such that f ′(x) > 0 for all x ∈ I. By Theorem 5.2.5, f is strictly increasing, and
hence invertible, on I. By part 3 of Theorem 5.3.1, (f−1)′ exists for all y ∈ f(I)
and (5.6) holds. In view of (5.6), (f−1)′ is continuous on f(I), since f ′ is continuous
on I and f−1 is continuous on f(I). �

It is Theorem 5.3.2 that we will generalize later on for vector valued functions
of a vector variable.

Exercises.

Exercise 5.3.1. Let f(x) = cosx + 23x5 − 5x3 + 16x2 − x + 1. Show that f is
locally invertible on an interval about 0. Find (f−1)′(2).

Exercise 5.3.2. Let f(x) = x3 − 3x2 + 2x.

1. Find an interval I containing 0 on which f is locally invertible. What is the
largest interval containing 0 on which f is invertible?

2. Find (f−1)′(0).

3. Investigate the possibility of local inversion of f in an interval about each of

these points: x1 = 1−
√
3
3 , x2 = 1, x3 = 1 +

√
3
3 , and x4 = 2.

Exercise 5.3.3. Kepler’s equation
If a planet moves along an ellipse, described by x = a cos θ, y = b sin θ, a > b, with
the sun at one focus ((a2− b2)1/2, 0), and if t is the time measured from the instant
the planet passes through perihelion (a, 0), then from Kepler’s laws the relation
between the position θ and the time t is given by Kepler’s equation

2π

p
t = θ − ε sin θ,

where p is the period of the motion, and ε ∈ (0, 1) is the eccentricity of the elliptic
orbit.

1. Show that Kepler’s equation can be solved for θ = f(t).

2. Show that dθ/dt = 2π/p(1− ε cos θ).

3. Conclude that dθ/dt achieves a maximum at the perihelion (a, 0) and a mini-
mum at the aphelion (−a, 0).

5.4. Darboux’s Theorem

We have seen that derivatives may not be continuous at every point, but any
function that is a derivative on an open interval does have a property in common
with continuous functions: Any derivative function must have the intermediate
value property. This is the assertion of the following theorem, known as Darboux’s
theorem. It is a consequence of Theorem 5.2.2.

Theorem 5.4.1 (Darboux). Let I be an open interval of the real line, and suppose
f : I → R is a differentiable function. Then f ′ has the following intermediate value
property on I: If a, b ∈ I with a < b and f ′(a) 
= f ′(b), then for any number m
between f ′(a) and f ′(b) there is a point c ∈ (a, b) ⊂ I such that f ′(c) = m.
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Proof. We suppose that a < b and f ′(a) < m < f ′(b). The function g(x) =
f(x) − m(x − a), x ∈ I, is differentiable on I. Since g′(a) = f ′(a) − m < 0 and
g′(b) = f ′(b)−m > 0, in some small interval about a we have s1 < a < s2 implies
g(s1) > g(s2), and in some small interval about b we have t1 < b < t2 implies
g(t1) < g(t2). (This follows from the derivative definition.) Therefore g attains its
minimum on [a, b] (as it must, since it is continuous there) at some point c in the
open interval (a, b). By Theorem 5.2.2, g′(c) = f ′(c)−m = 0, hence f ′(c) = m. If,
on the other hand, we have f ′(b) < m < f ′(a), then a similar argument using the
same function g shows that g must have its maximum at a point c ∈ (a, b), leading
to the same conclusion. �

Recall the function f from Example 5.2.7:

f(x) =

{
x2 sin(1/x) if x 
= 0,
0 if x = 0.

We saw that f ′(0) exists, f ′(0) = 0, and f ′(x) = 2x sin(1/x)− cos(1/x) for x 
= 0.
Since limx→0 f

′(x) does not exist, f ′ is not continuous at x = 0. Nevertheless, being
a derivative, f ′ must have the intermediate value property, by Darboux’s theorem.
A comment on the function g(x) = f(x) + 1

2x from that example may be helpful
here. We had g′(0) > 0, but g was not strictly increasing on any interval containing
0; however, we can say (from the derivative definition) that there is some open
interval about 0 on which we have t1 < 0 < t2 implies g(t1) < g(t2).

A consequence of the intermediate value property for derivatives is that f ′

cannot have any jump discontinuities, where both one-sided limits of f ′ exist at a
point but are unequal, since a jump discontinuity precludes the intermediate value
property.

Exercise.

Exercise 5.4.1. Is it possible for g(x) = 1/x to be the derivative of a real valued
function defined on an open interval containing x = 0? Explain.

5.5. Approximations by Contraction Mapping

Suppose we wish to solve an equation that has the form x = g(x). This is known
as a fixed point problem, since a solution of the equation is a point x mapped to
itself by the function g. Suppose we iterate the mapping g starting from a given
point x0, generating the iterates x1 = g(x0), x2 = g(x1), and so on. In general, we
have xn+1 = g(xn) for n ≥ 0, provided all these iterates are defined. Suppose the
sequence (xn) converges, say q = limn→∞ xn. Then, provided g is continuous and
defined at q, we have

q = lim
n→∞

xn = lim
n→∞

g(xn−1) = g( lim
n→∞

xn−1) = g(q),

and hence q is a solution of the given equation. Provided the conditions required for
the definition and convergence of the sequence of iterates and the continuity of the
mapping g hold true, this process is called the method of successive approximations,
and it yields a solution of the equation x = g(x).
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Example 5.5.1. Consider the equation f(x) = x3 − x − 1 = 0. Observe that
f(1) = −1 and f(2) = 5, so the intermediate value theorem for continuous functions
implies that there must be a point x∗ between 1 and 2 such that f(x∗) = 0. There
are several ways in which the equation f(x) = x3 − x − 1 = 0 might be expressed
as a fixed point problem. By isolating a factor of x in various ways in this equation
we can arrive at the following possibilities:

(1) x = x3 − 1 = g1(x);

(2) x = (x+ 1)1/3 = g2(x);

(3) x = (x2 − 1)−1 = g3(x);

(4) x =
√
1 + (1/x) = g4(x).

In addition, another equation equivalent to x3 − x− 1 = 0 is given by

(5) x = x− x3 − x− 1

3x2 − 1
= g5(x).

This last formulation may appear arbitrary, unless one is already familiar with New-
ton’s method for approximating a root. In any case, Newton’s method is examined
in more detail in Theorem 5.5.5 below. �

The basis for successive approximations of a solution of an equation x = g(x)
by the iteration xn+1 = g(xn) is a theorem known as the Contraction Mapping
Theorem. There are more general formulations of the contraction mapping principle
than the result considered in this section. A more general version of this principle
is considered later in this book.

The definition of our sequence of iterates, and its convergence, is ensured by a
contraction condition on the mapping g which is stated next.

Definition 5.5.2. Let C be a subset of R and suppose that g : C → C. If there is
a real number k with 0 < k < 1 such that

|g(x)− g(y)| ≤ k|x− y|

for all x, y ∈ C, then g is called a contraction mapping on C with contraction
constant k.

A contraction mapping g : C → C is uniformly continuous on C (Exercise
5.5.1).

Contraction mappings are useful for establishing the existence and uniqueness
of solutions of equations that take the form x = g(x). If g : C → C and x∗ in
C satisfies g(x∗) = x∗, then x∗ is called a fixed point of g. The concept of a
contraction mapping helps us to solve such fixed point problems.

The following theorem holds for contraction mappings on any closed subset
of R, including closed intervals taking any of the forms [a, b], [a,∞), or (−∞, b].
Notice that the error estimate for the partial sums of a geometric series provides
the main estimate needed in this Contraction Mapping Theorem.

Theorem 5.5.3 (Scalar Contraction Mapping). Let C be a closed subset of R and
g : C → C a contraction mapping with contraction constant k. Then g has a unique
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fixed point x∗ in C. Moreover, given any x0 ∈ C, the iteration

xn+1 = g(xn)

defines a sequence (xn) that converges to x∗, and for each n we have

|xn − x∗| ≤
kn

1− k
|x1 − x0|.

Proof. Since |g(x) − g(y)| ≤ k|x − y| for any x, y ∈ C, an induction argument
shows that

|xn+1 − xn| ≤ kn|x1 − x0|.
If 0 < n < m, then

|xm − xn| ≤ |xm − xm−1|+ · · ·+ |xn+1 − xn|
≤ (kn + · · ·+ km−1)|x1 − x0|
< kn(1 + k + k2 + · · · )|x1 − x0|

=
kn

1− k
|x1 − x0|,

where we used the sum of a geometric series in the last line. Since 0 < k < 1,
the sequence (xn) is a Cauchy sequence which must converge to a limit x∗, and
x∗ ∈ C since C is closed. Now hold n fixed and let m → ∞ in the estimate above
to yield the estimate in the statement of the theorem. Since a contraction mapping
is continuous, we have

g(x∗) = lim
n→∞

g(xn) = lim
n→∞

xn+1 = x∗,

so x∗ is a fixed point of g. If there were another fixed point x∗∗ of g, we would have

|x∗ − x∗∗| = |g(x∗)− g(x∗∗)| ≤ k|x∗ − x∗∗|,
but since k < 1, this implies x∗ = x∗∗, so the fixed point is unique. �

The application of the contraction mapping theorem requires the reformulation
of a given equation f(x) = 0 in the form x = g(x) for some suitable choice of
function g, as well as the verification that g : C → C for a suitable subset C. The
mean value theorem (Theorem 5.2.4) is often helpful in deciding if a mapping g is
a contraction mapping on a particular set C, using an appropriate bound for the
derivative of g on C as a contraction constant. Let us try to use the mean value
theorem in analyzing the mappings g1 and g2 defined in Example 5.5.1.

Example 5.5.4. We continue with Example 5.5.1 and examine three ways in which
the equation f(x) = x3 − x − 1 = 0 of that example can be reformulated so as to
attempt to apply the contraction mapping theorem.

Rewrite the equation in the equivalent form x = x3 − 1 = g1(x). It is difficult
to find a closed interval C such that g1 : C → C. This is because g′1(x) = 3x2,
which is certainly larger than 1 for values of x close to the root q. So g1 is not a
good candidate for a contraction mapping on a closed set containing the desired
root q.

Now rewrite the equation in the equivalent form x = (x+ 1)1/3 = g2(x). Note
that g′2(x) = 1

3 (x + 1)−2/3 and the maximum of |g′2(x)| over the interval [1,∞)

is k := 1/3(2)2/3 < 1. Also note that g2 : [1,∞) → [1,∞). By the mean value
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 1

 1  1.34783  1.5

Figure 5.2. Following tangent lines to the next iterate in Newton’s method,
according to the iteration in equation (5.7). The modified Newton iteration in
Theorem 5.5.5 uses known upper and lower bounds on the absolute value of
the derivative of f over an interval which encloses an isolated root of f ; thus,
fewer derivative computations are needed.

theorem (Theorem 5.2.4), g2 is a contraction mapping on C = [1,∞). By the
contraction mapping theorem, the successive approximations defined by

xn+1 = g2(xn) = (xn + 1)1/3, n = 0, 1, 2, . . . ,

converge to the root q ∈ (1, 2). �

If we rewrite f(x) = x3−x−1 = 0 in the equivalent form x = x−f(x)/f ′(x) =
g5(x), then we have the iteration

(5.7) xn+1 = xn − f(xn)

f ′(xn)
= xn − x3

n − xn − 1

3x2
n − 1

=
2x3

n + 1

3x2
n − 1

(x0 given),

which is Newton’s method. The function g(x) = x− f(x)/f ′(x) can be shown to be
a contraction mapping in some closed interval about the root q, provided f ′(q) 
= 0.
Newton’s method is especially valuable because of its rapid convergence to the root.

Let us examine Newton’s method in more detail. The geometric idea is to
choose a starting approximation x0 for a root, and then to follow the tangent line
approximations for f at each iterate to its intersection with the x axis, which gives
the next iterate. (See Figure 5.2). Actually, the next theorem deals with a modified
Newton iteration with simpler computations which save on the number of derivative
evaluations required.
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Theorem 5.5.5 (Simplified Newton Method). Let f : [a, b] → R be differentiable
with f(a)f(b) < 0, that is, f(a) and f(b) have opposite sign. Suppose f ′(x) 
= 0
for all x ∈ [a, b], and let 0 < m ≤ |f ′(x)| ≤ M for all x ∈ [a, b]. Then, given any
x0 ∈ [a, b], the sequence defined by

xn+1 = xn − f(xn)

M

converges to the unique solution x∗ of the equation f(x) = 0 in [a, b]. Moreover,
for each positive integer n,

|xn − x∗| ≤
|f(x0)|

m

(
1− m

M

)n
.

Proof. Since f(x) = 0 if and only if −f(x) = 0, we may assume that f(a) < 0 <
f(b) and f ′(x) > 0 for all x ∈ [a, b]. (Otherwise, we may work with −f .) Thus we
have M ≥ f ′(x) ≥ m > 0 for all x ∈ [a, b]. Define g : [a, b] → R by

g(x) = x− f(x)

M
.

We will show that g maps [a, b] into [a, b], and g is a contraction mapping. Since
M ≥ f ′(x) ≥ m, we have

0 ≤ g′(x) = 1− f ′(x)

M
≤ 1− m

M
=: k < 1.

This shows that g is increasing (not necessarily strictly) on [a, b], and, in view of
the mean value theorem, g satisfies

|g(x)− g(y)| ≤ k|x− y|

for all x, y ∈ [a, b]. It remains to show that g([a, b]) ⊂ [a, b]. But g(a) = a −
f(a)/M > a since f(a) < 0. And g(b) = b − f(b)/M < b since f(b) > 0. Since g
is increasing on [a, b], it follows that g([a, b]) ⊂ [a, b]. Now we can apply Theorem
5.5.3 to conclude that the sequence xn+1 = xn − f(xn)/M converges to the unique
fixed point x∗ of g in [a, b], which must be the unique solution of the equation
f(x) = 0 in [a, b]. Since k = 1−m/M and x1−x0 = −f(x0)/M , the error estimate
from Theorem 5.5.3 yields precisely the estimate

|xn − x∗| ≤ kn

1− k
|x1 − x0|

=
|f(x0)|

m

(
1− m

M

)n
.

This completes the proof. �

As mentioned earlier, there are more general versions of the contraction map-
ping theorem. Later in this book a version of the contraction theorem for mappings
of subsets of n-dimensional Euclidean space Rn helps to establish the important
inverse function theorem. Another extension of the contraction theorem helps to
establish the existence and uniqueness of solutions to initial value problems for
ordinary differential equations.
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Exercises.

Exercise 5.5.1. Show that a contraction mapping g : C → C is uniformly contin-
uous on C.

Exercise 5.5.2. Iteration converges, but not to a fixed point
Let f : (0,∞) → (0,∞) be f(x) = 1

2x for x > 0. Show that the iteration xn+1 =
f(xn) converges for any initial choice x0, but x = f(x) has no solution.

Exercise 5.5.3. Show that the equation x3 − x− 1 = 0 is equivalent to the fixed
point problem x = gj(x) for each of the functions gj , (j = 1, . . . , 5) indicated in
Example 5.5.1.

Exercise 5.5.4. Investigate the functions g3 and g4 of Example 5.5.1 to see if
either function is a contraction mapping on a suitable closed interval about the real
root x∗ between 1 and 2.

Exercise 5.5.5. Set x0 = 1 in the Newton iteration in (5.7) and find the iterates
x1, x2, x3 approximating the unique real root of x3−x−1 = 0. How many accurate
digits do you have at each step? What if x0 = 2?

5.6. Cauchy’s Mean Value Theorem

As we have seen, one of the primary uses of the mean value theorem is the approx-
imation represented by statement 1 of Theorem 5.2.5: If |f ′(c)| ≤ M for all c in
(a, b), then for each x with a < x < b we have

|f(x)− f(a)| ≤ M(x− a) < M(b− a)

or

−M(b− a) < −M(x− a) ≤ f(x)− f(a) ≤ M(x− a) < M(b− a).

This gives a useful approximation to f(x) in terms of the value f(a). By using
more derivative information about f , when available, we can obtain better approx-
imations for f(x). As a first step toward that goal, we consider in this section
Cauchy’s mean value theorem, which will be used to establish Taylor’s theorem in
the following section.

In the mean value theorem, the graph of f can be viewed as being traced out
by parametric equations x = t and y = f(t) for a ≤ t ≤ b. Now recall the concept of
the tangent vector at a point of a parametric plane curve. The mean value theorem
states that the line segment joining (a, f(a)) and (b, f(b)) has slope equal to the
slope of the tangent vector (1, f ′(c)) to this curve at some point c ∈ (a, b), that is,

f ′(c)

1
=

f(b)− f(a)

b− a
.

Now consider a more general plane curve described by parametric equations x = g(t)
and y = f(t), where the functions f and g are continuous on [a, b] and differentiable
on (a, b). The curve passes through the points (g(a), f(a)) and (g(b), f(b)), and the
slope of the segment joining these points is

f(b)− f(a)

g(b)− g(a)
,
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(g(b),f(b))

(g’(c),f’(c))

Figure 5.3. Illustrating Cauchy’s mean value theorem: The line segment
joining (g(b), f(b)) and (g(a), f(a)) has slope equal to the slope of the tangent
vector (g′(c), f ′(c)), for some c with a < c < b.

provided g(a) 
= g(b). Since f and g are differentiable for t ∈ (a, b), the curve has
a tangent vector defined for each value t ∈ (a, b) by (g′(t), f ′(t)) := g′(t)i + f ′(t)j,
and this tangent vector varies smoothly with t provided g′(t) and f ′(t) are not
simultaneously zero at any point t. (See Figure 5.3.) It appears that at some value
t = c, the smooth curve must have a tangent vector with slope equal to the slope
of the segment joining the points (g(a), f(a)) and (g(b), f(b)). This intuition is
confirmed by Cauchy’s mean value theorem.

Theorem 5.6.1 (Cauchy Mean Value). Suppose f and g are continuous on [a, b]
and differentiable on (a, b). If f ′(x) and g′(x) are not both equal to zero at any
x ∈ (a, b) and g(a) 
= g(b), then there is a point c ∈ (a, b) such that

(5.8)
f ′(c)

g′(c)
=

f(b)− f(a)

g(b)− g(a)
.

Proof. We proceed as in the proof of the mean value theorem. Consider the
function

h(x) := f(x)− f(a)− g(x)− g(a)

g(b)− g(a)
[f(b)− f(a)].

Then h(a) = 0 = h(b). Since h is continuous on [a, b] and differentiable on (a, b),
by Rolle’s theorem there is a point c ∈ (a, b) such that h′(c) = 0, hence

h′(c) = f ′(c)− g′(c)
f(b)− f(a)

g(b)− g(a)
= 0,

from which (5.8) follows. �

If we take g(x) = x in Cauchy’s mean value theorem, we recover the result of the
mean value theorem (Theorem 5.2.4) as a special case. Also note that if g′(x) 
= 0



5.6. Cauchy’s Mean Value Theorem 141

for x ∈ (a, b), then g satisfies the hypotheses of Theorem 5.6.1. In particular, f ′

and g′ cannot simultaneously vanish, and g(a) 
= g(b) because by the mean value
theorem, g(b)− g(a) = g′(c)(b− a) for some c ∈ (a, b), but g′(c) 
= 0.

5.6.1. Limits of Indeterminate Forms. We shall explore some applications
of Cauchy’s mean value theorem to the evaluation of limits of quotients where the
numerator and denominator both approach zero, or the numerator and denominator
both become unbounded as the variable x approaches a limit point a. The following
theorems are usually associated with the name of Guillaume François Marquis de
l’Hôpital, 1661-1704.

Theorem 5.6.2 (Rule for 0/0 Forms). Suppose f and g are defined and continuous
on an open interval I containing the point a, f and g are differentiable on I −{a},
f(a) = g(a) = 0, g′(x) 
= 0 for x ∈ I − {a}, and limx→a

f ′(x)
g′(x) exists. Then

limx→a
f(x)
g(x) exists and

(5.9) lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)
.

Proof. Choose δ > 0 such that Bδ(a) ⊂ I. Let x ∈ Bδ(a) so that |x − a| < δ.
Cauchy’s mean value theorem applies to f and g on an interval containing both x
and a. Using the fact that f(a) = g(a) = 0, we conclude that for any x ∈ I − {a},
there is some c between a and x such that

f(x)g′(c) = g(x)f ′(c).

If g(x) = 0 for some x ∈ I − {a}, then the mean value theorem applied to g says
that

g(x)− g(a) = g′(ξ)(x− a) = 0

for some ξ ∈ I − {a}. But this contradicts the assumption that g′(x) 
= 0 for
x ∈ I − {a}. Therefore g(x) 
= 0 for all x ∈ I − {a}. Thus, for each x ∈ I − {a},
there is some c between a and x such that

f(x)

g(x)
=

f ′(c)

g′(c)
.

As x → a, the point c → a as well, and the limit statement (5.9) follows. �

Applications of Theorem 5.6.2 can be explored in the exercises.

We recall that the meaning of statements such as limx→a f(x) = ±∞ is given
in Definition 4.4.12.

Theorem 5.6.3 (Rule for ∞/∞ Forms). Suppose f and g are defined and contin-
uous on I − {a} where I is an open interval containing the point a. If f and g are
differentiable on I − {a}, limx→a f(x) = ±∞, limx→a g(x) = ±∞, g′(x) 
= 0 for

x ∈ I − {a}, and limx→a
f ′(x)
g′(x) exists, then limx→a

f(x)
g(x) exists and

(5.10) lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)
.
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Proof. Let δ > 0 be such that if 0 < |x−a| < δ then x ∈ I. Write L = limx→a
f ′(x)
g′(x) .

Then for every ε > 0 there is a δ1 with 0 < δ1 < δ such that∣∣∣f ′(x)

g′(x)
− L
∣∣∣ < ε for 0 < |x− a| < δ1.

We again use Cauchy’s mean value theorem. For any x such that x ∈ (a − δ1, a),
there is a c ∈ (a− δ1, x) such that

f(x)− f(a− δ1)

g(x)− g(a− δ1)
=

f ′(c)

g′(c)

(Also, for any x ∈ (a, a+ δ1), there is a c ∈ (x, a+ δ1) such that

f(x)− f(a+ δ1)

g(x)− g(a+ δ1)
=

f ′(c)

g′(c)
.
)

We deal with the first case only, as the second case is handled by a similar argument.
Since g′(x) 
= 0 for x ∈ I − {a}, the mean value theorem guarantees that g(x) −
g(a− δ1) 
= 0. Thus, we may write

∣∣∣f(x)− f(a− δ1)

g(x)− g(a− δ1)
− L
∣∣∣ = ∣∣∣f(x)

g(x)
·
1− f(a−δ1)

f(x)

1− g(a−δ1)
g(x)

− L
∣∣∣ < ε

for all x ∈ (a− δ1, a). Letting x approach a, we have

lim
x→a

1− f(a−δ1)
f(x)

1− g(a−δ1)
g(x)

= 1

by the quotient limit law, since limx→a f(x) = ±∞ and limx→a g(x) = ±∞. By a

straightforward argument using the triangle inequality, it follows that limx→a
f(x)
g(x)

exists and (5.10) holds. �

Exercises.

Exercise 5.6.1. Find the indicated limits:

(1) lim
x→0

xn

ex − 1
(2) lim

x→0
x cotx (3) lim

x→0

tan−1(x2)

x sinx
.

Exercise 5.6.2. Find the indicated limit:

lim
x→0

sinx log(sin2 x)

cosx
.

Exercise 5.6.3. Find the indicated limit:

lim
x→0

log | cotx|
cotx

.

Exercise 5.6.4. Limits as x → ±∞ are defined in Definition 4.4.4. Discuss the
extension of l’Hôpital’s rule to limits at infinity, limx→±∞ f(x)/g(x), under appro-
priate conditions. Hint : Set z = 1/x so that z → 0 as x → ±∞, and try this
approach to find limx→∞ x(1− e−1/x).



5.7. Taylor’s Theorem with Lagrange Remainder 143

5.7. Taylor’s Theorem with Lagrange Remainder

Taylor’s theorem shows how to use derivative information for a function at a single
point in order to approximate the function by a polynomial function in a neigh-
borhood of that point. Taylor’s theorem includes an estimate of the error in that
approximation. We begin with a result that gives useful local information about a
function in the neighborhood of a degenerate critical point.

Lemma 5.7.1. Let I be an open interval and let n be a nonnegative integer. Sup-
pose that f : I → R has n+ 1 derivatives f ′, f ′′, . . . , f (n+1) on I, and that at some
point a in I,

f (k)(a) = 0 for 0 ≤ k ≤ n.

Then for each x 
= a in I, there is a point c in I between a and x such that

(5.11) f(x) =
f (n+1)(c)

(n+ 1)!
(x− a)n+1.

Proof. Define g : I → R by

g(x) =
1

(n+ 1)!
(x− a)n+1.

Then
g(k)(a) = 0 for 0 ≤ k ≤ n.

If x 
= a, then g′(x) 
= 0. We assume now without loss of generality that a < x.
Apply Cauchy’s mean value theorem to f and g on the open interval (a, x) to
conclude that there is a point c1 ∈ (a, x) such that

f(x)

g(x)
=

f(x)− f(a)

g(x)− g(a)
=

f ′(c1)

g′(c1)
.

Given c1, apply Cauchy’s mean value theorem to f ′ and g′ on the interval (a, c1)
to conclude that there is a point c2 ∈ (a, c1) such that

f ′(c1)

g′(c1)
=

f ′(c1)− f ′(a)

g′(c1)− g′(a)
=

f ′′(c2)

g′′(c2)
.

We may continue in this way to obtain points a < cn < · · · < c2 < c1 < x such that

f(x)

g(x)
=

f ′(c1)

g′(c1)
=

f ′′(c2)

g′′(c2)
= · · · = f (n)(cn)

g(n)(cn)
.

By a final application of Cauchy’s mean value theorem to f (n) and g(n) on the
interval (a, cn), there is a point c with a < c < cn such that

f(x)

g(x)
=

f (n)(cn)− f (n)(a)

g(n)(cn)− g(n)(a)
=

f (n+1)(c)

g(n+1)(c)
.

By the definition of g(x), g(n+1)(c) = 1, and (5.11) follows immediately. �

In general, we define the Taylor polynomial of degree n for f at a point a
by

Pn(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 + · · ·+ f (n)(a)

n!
(x− a)n.

Notice that the derivatives of Pn and f at a are equal through order n.
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The next result is known as Taylor’s theorem with Lagrange remainder term.

Theorem 5.7.2 (Taylor’s Theorem with Lagrange Remainder). Let I be an open
interval containing a and let n be a nonnegative integer. If f : I → R has n + 1
derivatives on I, then for any x 
= a in I there is a point c in I between a and x
such that

f(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 + · · ·+ f (n)(a)

n!
(x− a)n

+
f (n+1)(c)

(n+ 1)!
(x− a)n+1.(5.12)

Proof. Let Pn(x) be the Taylor polynomial of degree n at a,

Pn(x) =
n∑

k=0

f (k)(a)

k!
(x− a)k.

As we have noted,

f (k)(a) = P (k)
n (a) for 0 ≤ k ≤ n.

If R(x) := f(x)− Pn(x), x in I, then

R(k)(a) = 0 for 0 ≤ k ≤ n.

By Lemma 5.7.1, for any x in I, there is a point c in I such that

f(x)− Pn(x) = R(x) =
R(n+1)(c)

(n+ 1)!
(x− a)n+1.

Since Pn is a polynomial of degree n, P
(n+1)
n (c) = 0, hence R(n+1)(c) = f (n+1)(c).

Thus, by the previous equation,

f(x) = Pn(x) +
f (n+1)(c)

(n+ 1)!
(x− a)n+1,

which is the assertion of (5.12). �

Equation (5.12) is known as Taylor’s formula. Let us indicate the error term,
or remainder, in Taylor’s formula by writing

Ra,n(x) =
f (n+1)(c)

(n+ 1)!
(x− a)n+1.

This expression is called the Lagrange form of the remainder , and it gives the error
when using the Taylor polynomial of degree n, Pn(x), to approximate f near a. If
a bound can be determined for |f (n+1)(x)| on the interval I, let us say

|f (n+1)(x)| ≤ M for x ∈ I,

then

|Ra,n(x)| =
∣∣∣f (n+1)(c)

(n+ 1)!
(x− a)n+1

∣∣∣ ≤ M

(n+ 1)!
(x− a)n+1.

According to Taylor’s theorem, if the second derivative f ′′ exists on I, and a ∈ I,
then for any x ∈ I there is a point c ∈ I between a and x such that

f(x) = f(a) + f ′(a)(x− a) +
f ′′(c)

2!
(x− a)2.
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The first degree polynomial f(a) + f ′(a)(x − a) is the function that defines the
tangent line approximation to f about the point x = a. The error when using this
tangent line approximation is given by

Ra,1(x) =
f ′′(c)

2!
(x− a)2,

where c = c(x) depends on x. This is a more specific estimate than the one given
by the assumption of the existence of the derivative f ′(a), which tells us that

f(x) = f(a) + f ′(a)(x− a) + o(|x− a|) as x → a,

where the expression o(|x− a|) satisfies the limit property

lim
x→a

o(|x− a|)
|x− a| = 0.

The assumption of the existence of f ′′ on I shows that under this additional hy-
pothesis on f , we have

o(|x− a|) = f ′′(c)

2!
(x− a)2,

where c = c(x) depends on x.

Exercises.

Exercise 5.7.1. Show that if p : R → R is a polynomial function of degree n,
p(x) = anx

n + an−1x
n−1 + · · ·+ a1x+ a0, then the nth Taylor polynomial for p at

a = 0 is p itself.

Exercise 5.7.2. Find a bound for the error term when using P4(x) to approximate
the function f(x) = cos 2x for |x| ≤ π/4, that is, estimate the remainder R0,4(x)
for |x| ≤ π/4.

5.8. Extreme Points and Extreme Values

We have seen that if a function f has a relative extremum at x0 and f ′(x0) exists,
then necessarily f ′(x0) = 0. The next theorem provides conditions for detecting
relative extrema and distinguishing local maxima from local minima, using higher
order derivative information.

Theorem 5.8.1. Let I be an open interval and assume that f : I → R has n+ 1
derivatives, f ′, f ′′, . . . , f (n+1) all defined on I, and f (n+1) is continuous on I. Let
x0 be a point in I such that

f ′(x0) = f ′′(x0) = · · · = f (n)(x0) = 0, and f (n+1)(x0) 
= 0.

The following statements are true:

1. If n is even, then x0 is not an extreme point for f .

2. If n is odd, then x0 is an extreme point, which is a local minimum point if
f (n+1)(x0) > 0 and a local maximum point if f (n+1)(x0) < 0.
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Proof. By the hypothesis of zero derivatives through order n and Taylor’s theorem,
for any h such that x0 + h is in I, we have

(5.13) f(x0 + h)− f(x0) =
f (n+1)(x0 + θh)

(n+ 1)!
hn+1

for some θ = θ(h) with 0 < θ < 1. Since f (n+1) is continuous and f (n+1)(x0) 
= 0,
f (n+1)(x0 + h) 
= 0 for all sufficiently small |h|, say |h| ≤ h0. By continuity,
f (n+1)(x0 + h) cannot change sign for |h| ≤ h0 for h0 sufficiently small.

1. If n is even, then the factor hn+1 on the right-hand side of (5.13) takes on
both positive and negative values for |h| ≤ h0. Therefore x0 is not an extreme point
for f .

2. If n is odd and f (n+1)(x0) > 0, then the right-hand side of (5.13) has
constant positive sign for |h| ≤ h0, hence f(x0 + h) > f(x0) and x0 is a local
minimum point for f . If n is odd and f (n+1)(x0) < 0, then the right-hand side of
(5.13) has constant negative sign, hence f(x0 + h) < f(x0) for |h| ≤ h0 and x0 is a
local maximum point for f . �

Possibly the most commonly used result on extreme points in elementary cal-
culus occurs as case 2 of Theorem 5.8.1 when n = 1. This is the case that allows
identification of extreme points by means of the second derivative test: f ′(x0) = 0
and f ′′(x0) < 0 imply a local maximum at x0; while f ′(x0) = 0 and f ′′(x0) > 0
imply a local minimum at x0.

There are functions to which Theorem 5.8.1 does not apply at all, as in the
next example.

Example 5.8.2. Consider the function

f(x) =

{
e−1/x2

if x 
= 0,
0 if x = 0.

It can be shown that f has derivatives of all orders at every real x. (We say that f
is of class C∞ on R.) Moreover, f (n)(0) = 0 for every n. Theorem 5.8.1 does not
apply to f . However, f has a local minimum at x0 = 0. �

If n > 1, and case 1 of Theorem 5.8.1 applies to f , then the function g(x) =
f ′(x) satisfies

g′(x0) = · · · = g(n−1)(x0) = 0, and g(n)(x0) 
= 0.

Hence g has a local extreme at x0, by the theorem applied to g, and g(x0) =
f ′(x0) = 0. If x0 is a point where f ′(x0) = 0 and x0 is an extreme point for f ′,
then we call x0 an inflection point for f . For example, x0 = 0 is an inflection
point for f(x) = x3; it is a local minimum point for f ′(x) = 3x2. On the other
hand, x0 = 0 is an inflection point for f(x) = −x3; it is then a local maximum
point for f ′(x) = −3x2.
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Exercises.

Exercise 5.8.1. Verify the statements in Example 5.8.2 about the function f .
Hint : Show, by induction, that for every positive integer n,

f (n)(x) = e−1/x2

qn

( 1
x

)
for x 
= 0,

where qn(t) is a polynomial in t = 1/x, and f (n)(0) = 0.

Exercise 5.8.2. Suppose f is three times continuously differentiable. Let h = x−a
for x near a. By Taylor’s theorem, for each sufficiently small h, we have

f(a+ h)− f(a) = f ′(a)h+
f ′′(a)

2!
h2 +

f (3)(c3)

3!
h3

for some c3 between a and x. Establish the following using Taylor’s theorem.

1. Show that if there is a local minimum of f at x = a, then f ′(a) = 0. (We know
this from an earlier theorem, but derive it now from the expression above.)

2. Show that if there is an extremum of f at a and f ′′(a) > 0, then f has a local
minimum at a.

3. Show that f ′(a) = 0 is necessary for a local maximum.

4. Show that the condition f ′′(a) < 0 is sufficient for a local extremum to be a
local maximum.

5.9. Notes and References

This chapter was influenced by Folland [16], Krantz [40] and Sagan [54].





Chapter 6

The Riemann Integral

This chapter contains the most fundamental properties of the Riemann integral
and consequences of the fundamental theorem of calculus. The primary geometric
interpretation of the definite integral in introductory calculus is the computation
of the area between the graph of a continuous function and its domain axis. Later
in this book we extend this area measure of a planar region to a larger class of sets.

6.1. Partitions and Riemann-Darboux Sums

The Riemann integral is defined for bounded functions on closed intervals. We
begin with notation for finite collections of points that subdivide an interval [a, b]
into subintervals.

Definition 6.1.1. Let x0, x1, . . . , xn be points in the interval [a, b] with a = x0 <
x1 < · · · < xn−1 < xn = b. Then the set P = {x0, x1, . . . , xn} is called a partition
of [a, b]. The subintervals of P are the intervals [xk−1, xk] for k = 1, . . . , n. A
partition P ′ is a refinement of P if P ⊆ P ′.

The functions we consider are bounded on [a, b] but not necessarily continuous
at every point. So we must consider the supremum and infimum (rather than the
maximum and minimum) of the function on each subinterval of a partition when
defining our approximating sums, which are called Riemann-Darboux sums.

Definition 6.1.2. Let f : [a, b] → R be bounded and let P = {x0, x1, . . . , xn} be a
partition of [a, b]. Let

Mk = sup
x∈[xk−1,xk]

f(x) and mk = inf
x∈[xk−1,xk]

f(x).

The upper and lower Riemann-Darboux sums for f over [a, b] with parti-
tion P are defined, respectively, by

U(f, P ) =

n∑
k=1

Mk(xk − xk−1) and L(f, P ) =

n∑
k=1

mk(xk − xk−1).

149
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For simplicity, the notation for upper and lower sums does not include any
reference to the domain interval since the domain is fixed in most of the following
discussion.

In the notation of Definition 6.1.2, since mk ≤ Mk for each k, it is clear that
L(f, P ) ≤ U(f, P ) for any given partition P of [a, b]. We need to know how these
sums behave under refinements of any partition.

Theorem 6.1.3. Let f : [a, b] → R be a bounded function.

1. If P is a partition of [a, b] and P ′ is any refinement of P , then

L(f, P ) ≤ L(f, P ′) and U(f, P ′) ≤ U(f, P ).

2. If P1 and P2 are any two partitions of [a, b], then

L(f, P1) ≤ U(f, P2).

Proof. 1. We prove the inequality regarding the upper sums, U(f, P ′) ≤ U(f, P ).
If P = P ′, then there is nothing to prove, so we assume that P ⊂ P ′ as a proper
subset. It is probably easiest to think about the inequality if the refinement P ′

has only one point more than P , say P ′ = P ∪ {x∗}, and we prove it for this case
first. Since any partition has finitely many points, the general result will follow by
induction. Suppose that Ik = [xk−1, xk] is the subinterval of P that contains x∗.
Then the contribution to the upper sums from all the subintervals except Ik are
the same under the refinement, and, in the notation of Definition 6.1.2,

Mk(xk − xk−1) = sup
x∈[xk−1,xk]

f(x)(xk − xk−1)

= sup
x∈[xk−1,xk]

f(x)(xk − x∗) + sup
x∈[xk−1,xk]

f(x)(x∗ − xk−1)

≥ sup
x∈[x∗,xk]

f(x)(xk − x∗) + sup
x∈[xk−1,x∗]

f(x)(x∗ − xk−1),

where the inequality holds because each supremum in the last line is taken over a
smaller set than the set in the next-to-last line (Exercise 6.1.1). Hence,
U(f, P ∪ {x∗}) ≤ U(f, P ). The inequality for the lower sums is handled in a
similar manner.

2. If P1 = P2, then we have already noted the result. If P1 
= P2, then P1 ∪ P2

is a refinement of both P1 and P2, and hence

L(f, P1) ≤ L(f, P1 ∪ P2) ≤ U(f, P1 ∪ P2) ≤ U(f, P2)

by part 1. �

Exercises.

Exercise 6.1.1. Prove: If S ⊂ T , then inf T ≤ inf S and supS ≤ supT . Is it
possible to have S ⊂ T and S 
= T with both inequalities being equalities? Hint :
Consider intervals.

Exercise 6.1.2. Prove the following:

1. If S and T are sets of real numbers such that for every s ∈ S and t ∈ T , s < t,
then supS ≤ inf T .
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2. If S = {L(f, P ) : P partitions [a, b]} and T = {U(f, P ) : P partitions [a, b]},
then s < t for every s ∈ S and t ∈ T .

3. Let S and T satisfy the hypothesis in 1. Show: If for every ε > 0 there exist
s ∈ S and t ∈ T such that t− s < ε, then supS = inf T .

6.2. The Integral of a Bounded Function

Let f : [a, b] → R be a bounded function. For any sequence of partition refinements
of [a, b], say Pk ⊂ Pk+1 for k ∈ N, Theorem 6.1.3 tells us that the corresponding
sequence (U(f, Pk)) of upper sums for f is bounded below (by any lower sum) and
the sequence (L(f, Pk)) of lower sums for f is bounded above (by any upper sum).
Moreover, we have a nested sequence, ([L(f, Pk), U(f, Pk)]), of closed, nonempty
intervals on the number line. The intersection of those intervals must be nonempty,
by the nested interval theorem. But the intersection may not be a single point,
because it may not be true that U(f, Pk)− L(f, Pk) → 0 as k → ∞.

Example 6.2.1. Let f : [0, 1] → R be defined by

f(x) =

{
0 if x ∈ [0, 1] ∩Q,
1 if x ∈ [0, 1] ∩ I.

This is called the Dirichlet1 function. It is a very useful example. The Dirichlet
function has U(f, P ) = 1 and L(f, P ) = 0 for every partition P of [0, 1], hence
U(f, P )− L(f, P ) = 1 for every P . �

Theorem 6.1.3 assures us that the infimum of all possible upper sums and the
supremum of all possible lower sums must exist, since the collection of upper sums
is bounded below, and the collection of lower sums is bounded above.

Definition 6.2.2. Let f : [a, b] → R be a bounded function. The upper Rie-
mann integral of f over [a, b], denoted U b

a(f), is defined by

U b
a(f) := inf

{
U(f, P ) : P partitions [a, b]

}
.

The lower Riemann integral of f over [a, b], denoted Lb
a(f), is defined by

Lb
a(f) := sup

{
L(f, P ) : P partitions [a, b]

}
.

In view of item 2 of Theorem 6.1.3 and Exercise 6.1.2, we have

Lb
a(f) ≤ U b

a(f).

As the example of the Dirichlet function shows, there may be an unclosable gap
between Lb

a(f) and U b
a(f) for a given f . We wish to single out those functions for

which the upper and lower sums can close the gap.

Definition 6.2.3. A bounded function f : [a, b] → R is Riemann integrable
over [a, b] if Lb

a(f) = U b
a(f), in which case we denote this common value by∫ b

a

f(x) dx.

1P. G. L. Dirichlet, 1805-1859.
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The Dirichlet function in Example 6.2.1 is not Riemann integrable over [0, 1],
because U(f, P ) = 1 and L(f, P ) = 0 for every partition P of [0, 1], and hence
Lb
a(f) = 0 < 1 = U b

a(f).

We consider two more examples, in each case working from the definition of
Riemann integrability.

Example 6.2.4. Any constant function f(x) = c is Riemann integrable on [a, b],
since it is straightforward to verify that U(f, P ) = L(f, P ) = c(b − a) for every
partition P . �

Example 6.2.5. The step function

f(x) =

{
1 if 0 ≤ x < 1,
2 if 1 ≤ x ≤ 2,

having one jump discontinuity, at x = 1, is Riemann integrable over [0, 2]. This
is a piecewise-constant function. Consider any partition P that contains 1 (we
can always do so by refinement if necessary). Suppose xk = 1 in the ordering
of elements of P . Then Mk − mk = 1 and Mk+1 − mk+1 = 1, and all other
differences between supremum and infimum of f on subintervals of P are zero.
Hence, U(f, P )− L(f, P ) = (xk − xk−1) + (xk+1 − xk) = xk+1 − xk−1. Given any
ε > 0, we may choose a partition P containing 1 such that 0 < xk+1 − xk−1 < ε. It
follows from Exercise 6.1.2 (part 3) that L2

0(f) = U2
0 (f). Therefore f is Riemann

integrable over [0, 2]. From this, one can see that
∫ 2

0
f(x) dx = 3. �

As seen in this example, the criterion from Exercise 6.1.2 (part 3) for the
equality Lb

a(f) = sup{L(f, P )} = inf{U(f, P )} = U b
a(f) provides the following

criterion for Riemann integrability.

Theorem 6.2.6. A function f : [a, b] → R is Riemann integrable if and only if for
every ε > 0 there is a partition P of [a, b] such that

U(f, P )− L(f, P ) < ε.

Proof. The sets

S =
{
L(f, P ) : P partitions [a, b]

}
and T =

{
U(f, P ) : P partitions [a, b]

}
satisfy the conditions in Exercise 6.1.2 (part 1).

If f is Riemann integrable, then Lb
a(f) = U b

a(f). Thus, given ε > 0 there are
numbers s ∈ S and t ∈ T such that t− s < ε. The sums s and t may correspond to
different partitions P1 and P2, but with the refinement P1 ∪ P2 we obtain a lower
sum s′ and upper sum t′ with s < s′ < t′ < t, and hence t′ − s′ < ε.

Conversely, suppose that for every ε > 0 there is a partition P of [a, b] such
that U(f, P )− L(f, P ) < ε. Then we may conclude that

Lb
a(f) = supS = inf T = U b

a(f)

by Exercise 6.1.2 (part 3). �

By analogy with the Cauchy criterion for sequential convergence, this theorem
might be called a Cauchy criterion for integrability, but the result is due to Riemann,
who actually used tagged partitions (choosing a point ck ∈ [xk−1, xk] to form sums)
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instead of Riemann-Darboux sums, which Darboux introduced. So Theorem 6.2.6
is Riemann’s criterion for integrability.

Given f : [a, b] → R and a partition P = {x0, x1, . . . , xn} of [a, b], we have, in
the notation of Definition 6.1.2,

U(f, P )− L(f, P ) =

n∑
k=1

(Mk −mk)(xk − xk−1).

Definition 6.2.7. Let f be a bounded real function on [c, d] with c < d. The
oscillation of f on [c, d], denoted ωf ([c, d]), is defined by

ωf ([c, d]) := sup
x∈[c,d]

f(x)− inf
x∈[c,d]

f(x).

Since the oscillation Mk −mk of f on a subinterval [xk−1, xk] determined by a
partition occurs frequently in some arguments, it is convenient to use it in the proofs
of some properties of the integral. We restate Riemann’s criterion for integrability
in terms of the oscillation of f on subintervals.

Theorem 6.2.8. A function f : [a, b] → R is Riemann integrable if and only if for
every ε > 0 there is a partition P = {x0, x1, . . . , xn} of [a, b] such that

n∑
k=1

ωf ([xk−1, xk])(xk − xk−1) < ε.

Example 6.2.9. The function f(x) = x is Riemann integrable over [0, 1] and∫ 1

0
x dx = 1/2. We verify both assertions. Let Pn = {0, 1

n ,
2
n , . . . ,

n−1
n , 1}. Let

Ik = [k−1
n , k

n ] for k = 1, . . . , n. Since f is increasing,

Mk = sup
Ik

f(x) =
k

n
, mk = inf

Ik
f(x) =

k − 1

n
,

and ωf (Ik) =
k
n − k−1

n = 1
n . Then

U(f, Pn) =
n∑

k=1

k

n

1

n
=

1

n2

n∑
k=1

k =
1

n2

n(n+ 1)

2
=

1

2
+

1

2n

and

L(f, Pn) =

n∑
k=1

k − 1

n

1

n
=

1

n2

n∑
k=1

(k − 1) =
1

n2

(n− 1)n

2
=

1

2
− 1

2n
.

It follows that

U(f, Pn)− L(f, Pn) =
n∑

k=1

ωf (Ik)
1

n
=

n∑
k=1

1

n2
=

1

n
,

as is also seen from the expressions for the upper and lower sum. Given ε > 0 there
is an n such that 1/n < ε, so the integrability of f over [0, 1] follows from Theorem
6.2.6. Moreover, we have

1

2
− 1

2n
= L(f, Pn) ≤ L1

0(f) ≤ U1
0 (f) ≤ U(f, Pn) =

1

2
+

1

2n

for any n ∈ N. Letting n → ∞, we conclude infn{U(f, Pn)} = supn{L(f, Pn)} = 1
2 .

Given any partition P of [0, 1], we may consider a partition P ∪ Pn which refines
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both P and Pn. So we conclude that infP {U(f, P )} = supP {L(f, P )} = 1
2 . Thus,

L1
0(f) = U1

0 (f) =
1
2 , which verifies the integrability of f over [0, 1] and the value of

the integral. We have
∫ b

a
f(x) dx = limn→∞ L(f, Pn) = limn→∞ U(f, Pn). �

In this example, the conditions U(f, Pn+1)≤U(f, Pn) and L(f, Pn)≤L(f, Pn+1),
combined with U(f, Pn) − L(f, Pn) → 0 as n → ∞, enabled us to conclude that∫ b

a
f(x) dx = limn→∞ L(f, Pn) = limn→∞ U(f, Pn).

Exercises.

Exercise 6.2.1. For the bounded function f : [0, 2] → R defined by

f(x) =

{ √
x if 0 ≤ x ≤ 1,

sin
(
1/(x− 1)

)
if 1 < x ≤ 2,

show how to define, for each ε > 0, a partition P of [0, 2] such that U2
0 (f)−L2

0(f) < ε.
Hint : The only point of discontinuity is x = 1. Given ε > 0, let δ > 0 be such
that [1 − δ, 1 + δ] ⊂ (0, 2). So f is integrable on [0, 1 − δ] and on [1 + δ, 2]. If
P1 and P2 are partitions of [0, 1 − δ] and [1 + δ, 2], then P := P1 ∪ P2 partitions
[0, 2]. Use boundedness of f to show that δ > 0 can be chosen small enough that
U(f, P )− L(f, P ) < ε.

Exercise 6.2.2. Verify in detail the integrability of f(x) = x2 over [0, 1] (as in

Example 6.2.9), and verify that
∫ 1

0
x2 dx = 1/3.

Exercise 6.2.3. Suppose f is defined on [0, 1] and integrable over [δ, 1] for every
0 < δ < 1. Does it follow that f is integrable over [0, 1]?

6.3. Continuous and Monotone Functions

In this section we show that the continuous functions on [a, b] and the monotone
functions on [a, b] are Riemann integrable. We also establish the integral test for
infinite series with positive terms.

Theorem 6.3.1. Every continuous function on [a, b] is Riemann integrable on
[a, b].

Proof. Let f : [a, b] → R be continuous on [a, b]. By Theorem 4.7.4, f is uniformly
continuous on [a, b], so for every ε > 0 there is a δ(ε) > 0 such that

x, y ∈ [a, b] and |x− y| < δ(ε) =⇒ |f(x)− f(y)| < ε

2(b− a)
.

Let P = {x0, x1, . . . , xn} be any partition of [a, b] such that

max{|xk − xk−1| : k = 1, . . . , n} < δ(ε).

Since f is continuous on the compact set [a, b], f assumes a maximum and a mini-
mum value over each of the compact subintervals [xk−1, xk], k = 1, . . . , n (Theorem
4.8.2). By the choice of partition, it follows that

max
x∈[xk−1,xk]

f(x)− min
x∈[xk−1,xk]

f(x) ≤ ε

2(b− a)
.
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Consequently,

U(f, P )− L(f, P ) ≤
n∑

k=1

ε

2(b− a)
(xk − xk−1)

=
ε

2(b− a)
(b− a) < ε.

By Theorem 6.2.6, f is integrable on [a, b]. �

Theorem 6.3.1 says that continuity of f on [a, b] is a sufficient condition for Rie-
mann integrability on [a, b]. The integrability of the step function in Example 6.2.5
shows that continuity on [a, b] is not necessary for Riemann integrability. However,
the Dirichlet function on [0, 1], which is discontinuous at every point in [0, 1], is not
Riemann integrable. These examples suggest that some discontinuity is permissi-
ble for an integrable function; a precise description of how much discontinuity is
permissible will be given later.

Recall the definition of monotone function (Definition 4.9.7).

Theorem 6.3.2. Every monotone function on [a, b] is Riemann integrable on [a, b].

Proof. We prove this for monotone decreasing f , and leave the monotone increas-
ing case, which is similar, to Exercise 6.3.1. So let f be monotone decreasing on
[a, b]. It is possible to have f(a) = f(b), but in that case f must be a constant func-
tion and hence integrable, so we assume that f(a) > f(b). Let P = {x0, x1, . . . , xn}
be a partition of [a, b]. Since f is monotone decreasing, we have

ωf ([xk−1, xk]) = f(xk−1)− f(xk).

Consequently,

U(f, P )− L(f, P ) =
n∑

k=1

ωf ([xk−1, xk])(xk − xk−1)

=
n∑

k=1

(f(xk−1)− f(xk))(xk − xk−1).

Taken by itself, the sum of function differences,
∑n

k=1(f(xk−1) − f(xk)), equals
f(a)− f(b), by monotonicity. Given ε > 0, we may choose a partition P such that

0 < xk − xk−1 <
ε

f(a)− f(b)
, k = 1, . . . , n,

and then

U(f, P )− L(f, P ) <
ε

f(a)− f(b)

n∑
k=1

(f(xk−1)− f(xk))

=
ε

f(a)− f(b)
(f(a)− f(b)) = ε.

Hence f is integrable over [a, b] by Theorem 6.2.6 (or Theorem 6.2.8). �
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Example 6.3.3. The function f defined below is monotone decreasing on [0, 1]
and has a countable infinity of discontinuities:

f(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, 0 ≤ x < 1/2,
1/2, 1/2 ≤ x < 3/4,
1/4, 3/4 ≤ x < 7/8,
· · · · · ·
1/2k, (2k − 1)/2k ≤ x < (2k+1 − 1)/2k+1,
· · · · · ·
0, x = 1.

Theorem 6.3.2 applies, and f is integrable over [0, 1]. �

The reader is invited to construct a monotone increasing function on [a, b]
having a countably infinite set of discontinuities (Exercise 6.3.2). Such functions
are Riemann integrable by Theorem 6.3.2. We recall that any monotone function
on [a, b] has at most countably many discontinuities, by Exercise 4.9.2.

How discontinuous can a function be on [a, b] and still be Riemann integrable?
The answer to this question is the subject of the following section.

We end this section with the integral test for infinite series with positive terms,
which involves monotone functions. The integral test can be viewed as a test for
absolute convergence of a series.

There are many series for which the root test and the ratio test do not apply. For
example, the harmonic series,

∑∞
k=1 1/k, and the series

∑∞
k=1 1/k

2, were noted in
Exercise 3.9.3. The integral test addresses series with monotone decreasing positive
terms. In stating this test, we assume that our summation index starts with k = 0;
in practice this condition can be relaxed.

Theorem 6.3.4 (Integral Test). If ak ≥ 0 and the sequence (ak) is monotone de-

creasing, then
∑∞

k=0 ak converges if and only if the sequence (
∫ k

0
f(x) dx) converges,

where f : [0,∞) → R is any monotone decreasing function for which f(k) = ak for
all integers k ≥ 0.

Proof. Since f is decreasing, f(k) ≤ f(t) for t ∈ [k − 1, k]. Consequently, for any
n, we have

n∑
k=1

f(k) ≤
n∑

k=1

∫ k

k−1

f(t) dt ≤
n−1∑
k=0

f(k).

We also have ∫ n

0

f(t) dt =
n∑

k=1

∫ k

k−1

f(t) dt.

If the sequence
∫ n

0
f(x) dx converges, then the sequence of partial sums

∑n
k=1 f(k),

which is monotone increasing, is bounded and therefore converges. Conversely,

if the series
∑∞

k=0 f(k) converges, then its partial sums,
∑n

k=1

∫ k

k−1
f(t) dt, which

increase, are bounded and therefore converge. �

Example 6.3.5. Consider the series
∑∞

k=1 1/
√
k. The root test and ratio test are

inconclusive. However, the integral test applies and shows that this series diverges.
(We may start the indexing with k = 1 and define f(t) = 1/

√
t for t ∈ [1,∞), and
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f(k) = ak for all integers k ≥ 1.) Of course, the comparison 1/
√
k ≥ 1/k with the

terms of the harmonic series also shows the divergence. The integral test may also
be used to show that the p-series

∞∑
k=1

1

kp

converges if p > 1 and diverges if 0 < p < 1. (See Exercise 6.3.3.) �

Exercises.

Exercise 6.3.1. Prove Theorem 6.3.2 for the case of monotone increasing functions.

Exercise 6.3.2. Give an example of a monotone increasing function f on [0, 1]

having a countable infinity of discontinuities. Can you find
∫ 1

0
f(x) dx for your

example?

Exercise 6.3.3. Use the integral test to show that the p-series
∑∞

k=1 1/k
p converges

if p > 1 and diverges if 0 < p < 1.

Exercise 6.3.4. Show that the series
∑∞

k=2 1/[k(log k)
p] converges if p > 1 and

diverges if p ≤ 1.

Exercise 6.3.5. Show that series (a) diverges and series (b) converges:

(a)
∞∑
k=3

1

k log k log(log k)
(b)

∞∑
k=3

1

k log k [log(log k)]2
.

Exercise 6.3.6. Show that the series
∑∞

n=1 1/n
x converges for x > 1 and diverges

for x ≤ 1. The function ζ(x) :=
∑∞

n=1 1/n
x, x > 1, is called the Riemann zeta

function.

6.4. Lebesgue Measure Zero and Integrability

If J is an interval with endpoints a and b with a ≤ b, we define the length, or
measure, of J to be m(J) = b − a. The following concept will eventually lead us
to a characterization of the Riemann integrable functions on [a, b].

Definition 6.4.1. A subset S of the real numbers has Lebesgue measure zero
if for every ε > 0 there is a sequence of open intervals, Ji, such that S ⊂

⋃
i Ji and∑

i

m(Ji) < ε.

The sum
∑

im(Ji) is the total length (or total measure) of {Ji}.

It is easy to verify from this definition that the empty set has Lebesgue measure
zero. Here is a much larger class of sets having measure zero:

Lemma 6.4.2. Every countable subset of R has Lebesgue measure zero.

Proof. We consider finite sets and countably infinite sets separately. If S is fi-
nite, write S = {x1, . . . , xn}. Given ε > 0, for each i we may cover xi by
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(x1 − ε/3n, xi + ε/3n), an interval of length 2ε/3n. The union of these n open
intervals contains S and has total measure

n∑
i=1

2ε

3n
=

2

3
ε < ε.

If S is countable, let S = {x1, x2, x3, . . .} denote an enumeration of S. Given ε > 0,
we want to cover S by a union of intervals whose total length is less than ε. Think
of a series of lengths like

∑∞
i=1 1/2

i = 1, or better,
∑∞

i=1 1/2
i+1 = 1/2. For each

i, we may choose an open interval of length ε/2i+1 centered at xi, and the total
length of these intervals will be

∞∑
i=1

ε

2i+1
= ε

∞∑
i=1

1

2i+1
=

ε

2
< ε.

Thus, S has measure zero. �

Since the set Q of rational numbers is countable, Q has Lebesgue measure zero.
With the simple technique in the proof of Lemma 6.4.2, the reader can show that
a union of finitely many sets of measure zero has measure zero (Exercise 6.4.1). In
addition, one can show that we obtain the same concept of measure zero if we use
closed intervals instead of open intervals in the definition (Exercise 6.4.2).

Even more interesting is that there are uncountable sets that have Lebesgue
measure zero. The Cantor set is one of them.

Example 6.4.3. Let us show that the Cantor set C ⊂ [0, 1] (Definition 3.4.1) has
measure zero. For each k ∈ N, C ⊂ Ck = (Dk)

c by (3.2), and each closed set
Ck is the union of 2k closed intervals, each interval having length 1/3k. The total
length of these closed intervals covering Ck is therefore 2k(1/3k) = (2/3)k. (Or
cover Ck with 2k open intervals, each of length 2/3k if you wish, for a total length
of 2k(2/3k) = 2(2/3)k.) For any ε > 0, we can choose a k such that (2/3)k < ε (or
2(2/3)k < ε, if you used the open intervals). Therefore C has measure zero, and we
know from Theorem 3.4.3 that C is uncountable. �

We now return to the question of characterizing the Riemann integrable func-
tions on an interval [a, b].

Theorem 6.4.4. A bounded function f : [a, b] → R is Riemann integrable on [a, b]
if and only if the set of points at which f is discontinuous is a set of Lebesgue
measure zero.

The proof of Theorem 6.4.4 is postponed to a later section, where a general
argument will establish a similar statement for real valued functions defined on a
generalized rectangle in Rn. (See Theorem 12.5.1.)

In general, we say that a property holds almost everywhere (a.e.) on a set
S ⊂ R if it holds at all points of S with the possible exception of a set Z ⊂ S having
Lebesgue measure zero. For example, the property of continuity of a function holds
(or not) at particular points of the domain. A function f : [a, b] → R is said to be
continuous almost everywhere (continuous a.e.) in (or on) [a, b] if the set of
discontinuities of f in [a, b] is a set of Lebesgue measure zero. Similarly, a function



6.5. Properties of the Integral 159

g is differentiable a.e. in [a, b] if g′ fails to exist only on a set Z ⊂ [a, b] having
measure zero.

In summary, we have the following characterization of Riemann integrable func-
tions: A bounded function f : [a, b] → R is Riemann integrable on [a, b] if and only
if f is continuous a.e. in [a, b].

Example 6.4.5. Let f : [0, 1] → R be defined by f(x) = 0 if x = 1/n, n ∈ N,
and f(x) = 1 otherwise. Then f has countably many points of discontinuity, so f
is continuous a.e. on [0, 1]. �

Example 6.4.6. If f is integrable on [a, b], then f2, defined by f2(x) = [f(x)]2

for x ∈ [a, b], is also integrable. Notice that the set of discontinuities of f2 must be
contained in the set of discontinuities of f . Since f is integrable, f is continuous
a.e. in [a, b], hence f2 is continuous a.e. in [a, b] and therefore f2 is integrable. �

Exercises.

Exercise 6.4.1. Show that a finite union of sets of measure zero has measure zero.
Hint : See the proof of Lemma 6.4.2.

Exercise 6.4.2. Show that a subset S ⊂ R has Lebesgue measure zero if and only
if for every ε > 0 there is a countable collection {Ki} of closed intervals such that
S ⊂

⋃
i Ki and

∑
i m(Ki) < ε.

Exercise 6.4.3. Show that the set of all real algebraic numbers (that is, roots of
polynomials having rational coefficients) has measure zero.

Exercise 6.4.4. Evaluate
∫ 1

0
f(x) dx for the function f of Example 6.4.5.

Exercise 6.4.5. Prove: If f and g are integrable on [a, b], then fg is integrable on
[a, b]. Hint : (f + g)2 = f2 + 2fg + g2.

Exercise 6.4.6. Prove: If f and g are integrable on [a, b] and g(x) ≥ m > 0 for
some m, then f/g is integrable on [a, b].

Exercise 6.4.7. Suppose f(x) ≥ 0 for x ∈ [a, b] and f is integrable on [a, b]. Show
that

√
f is integrable on [a, b].

Exercise 6.4.8. Give an example of a function f : [a, b] → R such that f2 is
integrable but f is not integrable.

6.5. Properties of the Integral

Henceforward in the text, until the Lebesgue integral has been introduced, if a
function is Riemann integrable we will simply say that it is integrable. The first
properties considered here involve the restriction of integration to a subinterval of
a known domain of integrability [a, b], and the splitting of a domain of integration
[a, b] into disjoint intervals of integration whose union is [a, b].

Theorem 6.5.1. If f is integrable over [a, b], then f is integrable over any subin-
terval [c, d] ⊂ [a, b].
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Proof. Intuitively, this result is fairly clear: Any partition of [a, b] that contains
the points c and d induces a partition (contains a partition) of [c, d]. Moreover, the
difference between the upper and lower sums over [a, b] is greater than or equal to
the difference between upper and lower sums for the induced partition of [c, d]. If
the former is less than ε, then so must be the latter. We write this out in detail.

Given ε > 0, there is a partition P = {x0, x1, . . . , xn} of [a, b] such that

U(f, P )− L(f, P ) < ε.

We may assume that c = xi and d = xj for some i < j; otherwise, we may consider
the refinement P ′ = P ∪ {c, d}, for which we must have U(f, P ′) − L(f, P ′) ≤
U(f, P ) − L(f, P ) < ε, since L(f, P ) ≤ L(f, P ′) ≤ U(f, P ′) ≤ U(f, P ). With that
assumption, we have that

c = xi < xi+1 < · · · < xj = d

is a partition of [c, d]. Let us write S and s for the upper and lower sums corre-
sponding to this partition of [c, d]. Then

U(f, P )− L(f, P ) =

n∑
k=1

ωf ([xk−1, xk])(xk − xk−1)

= S − s+
i∑

k=1

ωf ([xk−1, xk])(xk − xk−1)

+
n∑

k=j+1

ωf ([xk−1, xk])(xk − xk−1)

≥ S − s.

Hence, S − s < ε, and since ε is arbitrary, f is integrable over [c, d]. �

Theorem 6.5.2. If c ∈ [a, b] and f is integrable over both [a, c] and [c, b], then f
is integrable over [a, b], and∫ b

a

f(x) dx =

∫ c

a

f(x) dx+

∫ b

c

f(x) dx.

Proof. Given ε > 0, there is a partition P 1 = {x0 = a, x1, . . . , xj = c} of [a, c]
such that

j∑
k=1

ωf ([xk−1, xk])(xk − xk−1) <
ε

2
,

and a partition P 2 = {xj = c, xj+1, . . . , xn = b} of [c, b] such that

n∑
k=j+1

ωf ([xk−1, xk])(xk − xk−1) <
ε

2
.

Then P 1 ∪ P 2 = {x0 = a, x1, . . . , xj = c, xj+1, . . . , xn = b} is a partition of [a, b],
and

n∑
k=1

ωf ([xk−1, xk])(xk − xk−1) <
ε

2
+

ε

2
= ε.

This proves that f is integrable over [a, b] by Theorem 6.2.8.
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In order to establish the addition formula, we consider a sequence of partitions
(P 1

m) for [a, c] and (P 2
m) for [c, b], with notation as above, such that∫ c

a

f(x) dx = lim
m→∞

U(f, P 1
m) = lim

m→∞
L(f, P 1

m)

and ∫ b

c

f(x) dx = lim
m→∞

U(f, P 2
m) = lim

m→∞
L(f, P 2

m).

Then (P 1
m∪P 2

m) is a sequence of partitions of [a, b], and U(f, P 1
m∪P 2

m) = U(f, P 1
m)+

U(f, P 2
m), L(f, P 1

m ∪ P 2
m) = L(f, P 1

m) + L(f, P 2
m). Letting m → ∞ and using the

integrability of f over [a, b], we conclude that the addition formula holds. �

Let f be integrable over [a, b]. For any subinterval [α, β] ⊆ [a, b] we define∫ α

β

f(x) dx = −
∫ β

α

f(x) dx.

We also define ∫ α

α

f(x) dx = 0

for any α. Then for any numbers α, β, γ ∈ [a, b], one can verify that the formula

(6.1)

∫ β

α

f(x) dx+

∫ γ

β

f(x) dx =

∫ γ

α

f(x) dx

holds.

Definition 6.5.3. Let f be Riemann integrable over [a, b] and let c be a point in
[a, b]. The function

Fc(x) =

∫ x

c

f(t) dt

is called an indefinite integral of f on [a, b].

An indefinite integral Fc of f is an antiderivative of f , since F ′
c(x) = f(x) by

the fundamental theorem to be established later. For different values of c, we obtain
different indefinite integrals Fc of f . For a value ĉ we have

Fĉ(x) =

∫ x

ĉ

f(t) dt.

By the addition formula (6.1), we have

Fc(x)− Fĉ(x) =

∫ x

c

f(t) dt−
∫ x

ĉ

f(t) dt =

∫ x

c

f(t) dt+

∫ ĉ

x

f(t) dt =

∫ ĉ

c

f(t) dt.

Thus, any two indefinite integrals of f differ by a constant.

See Exercise 6.5.1 for some basic monotonicity properties of the integral.

Next, we consider the linearity of the integral.

Theorem 6.5.4. The integral is a linear function from the set of all Riemann
integrable functions on [a, b] into the set of real numbers; that is, the following
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properties hold:

1. If f is integrable over [a, b], then so is αf for any real α, and∫ b

a

αf(x) dx = α

∫ b

a

f(x) dx.

2. If f and g are integrable over [a, b], then so is f + g, and∫ b

a

(
f(x) + g(x)

)
dx =

∫ b

a

f(x) dx+

∫ b

a

g(x) dx.

Proof. If f and g are continuous at x, then f + g is continuous at x. Thus, the set
of discontinuities of f + g is contained in the union of the sets of discontinuities of
f and g. The set of discontinuities of αf is contained in the set of discontinuities
of f . It follows that if f and g are integrable over [a, b], then f + g and αf are

continuous a.e. in [a, b], and therefore
∫ b

a
(f(x) + g(x)) dx and

∫ b

a
αf(x) dx exist.

For any integrable f and partitions P of [a, b], we have

inf
P

U(−f, P ) = − sup
P

L(f, P ),

and it follows immediately that

(6.2)

∫ b

a

−f(x) dx = −
∫ b

a

f(x) dx.

For any α > 0 and any partition P = {x0, x1, . . . , xn−1, xn} of [a, b], we have
(6.3)

sup
[xk−1,xk]

αf(x) = α sup
[xk−1,xk]

f(x) and inf
[xk−1,xk]

αf(x) = α inf
[xk−1,xk]

f(x)

for k = 1, . . . , n. Hence, U(αf, P ) = αU(f, P ) and L(αf, P ) = αL(f, P ) for α > 0.
By (6.2), (6.3) and Theorem 2.2.5, we have∫ b

a

αf(x) dx = α

∫ b

a

f(x) dx

for any real α.

If f and g are integrable over [a, b] and P = {x0, x1, . . . , xn−1, xn} is a partition
of [a, b], then by Theorem 2.2.5,

sup
[xk−1,xk]

(f(x) + g(x)) ≤ sup
[xk−1,xk]

f(x) + sup
[xk−1,xk]

g(x), for k = 1, . . . , n,

and

inf
[xk−1,xk]

(f(x) + g(x)) ≥ inf
[xk−1,xk]

f(x) + inf
[xk−1,xk]

g(x), for k = 1, . . . , n.

Thus, for any partition P ,

(6.4) U(f + g, P ) ≤ U(f, P ) + U(g, P )

and

(6.5) L(f + g, P ) ≥ L(f, P ) + L(g, P ).
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Now for any ε > 0, there are partitions P1 and P2 such that

U(f, P1)−
ε

2
<

∫ b

a

f(x) dx and U(g, P2)−
ε

2
<

∫ b

a

g(x) dx.

If Q = P1 ∪ P2, then (6.4) implies∫ b

a

(f(x) + g(x)) dx− ε < U(f + g,Q)− ε

≤ U(f,Q) + U(g,Q)− ε <

∫ b

a

f(x) dx+

∫ b

a

g(x) dx,

and hence

(6.6)

∫ b

a

(f(x) + g(x)) dx <

∫ b

a

f(x) dx+

∫ b

a

g(x) dx+ ε.

A similar argument using (6.5) shows that for every ε > 0,

(6.7)

∫ b

a

(f(x) + g(x)) dx >

∫ b

a

f(x) dx+

∫ b

a

g(x) dx− ε.

Since ε > 0 is arbitrary in (6.6) and (6.7), this completes the proof of the second
statement of the theorem. �

Exercises.

Exercise 6.5.1. Prove the following statements:

1. If f and g are integrable over [a, b] and f(x) ≤ g(x) for all x ∈ [a, b], then∫ b

a
f(x) dx ≤

∫ b

a
g(x) dx.

2. If f is integrable over [a, b], then so is |f |, and |
∫ b

a
f(x) dx| ≤

∫ b

a
|f(x)| dx.

Exercise 6.5.2. Show that parts 1 and 2 of Theorem 6.5.4, taken together, are
equivalent to the statement that if f and g are integrable over [a, b], then so is
αf + βg for all real α and β, and∫ b

a

(αf(x) + βg(x)) dx = α

∫ b

a

f(x) dx+ β

∫ b

a

g(x) dx.

Exercise 6.5.3. Supply the details to establish (6.7) in the proof of additivity of
the integral in Theorem 6.5.4.

6.6. Integral Mean Value Theorems

Consider the positive valued function f(x) = x on [0, 3]. The area of the triangular
region between the graph of f and the interval [0, 3] along the x-axis is determined
by geometry to equal

area =
1

2
(base) (height) =

1

2
(3)(3) =

9

2
.

This can be viewed as the area of a rectangle of base length 3 and height equal to
the function value at a specific point, namely, at x = c = 3/2. That is, area =
(3)(f(3/2)) = (3)(3/2) = 9/2. We generalize this geometrically evident fact in the
next theorem.
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Theorem 6.6.1 (First Mean Value Theorem for Integrals). If f : [a, b] → R is
continuous on [a, b], then there is a point c ∈ [a, b] such that∫ b

a

f(x) dx = f(c)(b− a).

Proof. Since f is continuous on the closed interval [a, b], f attains its minimum
and maximum values on that interval. Thus there exist numbers m = min[a,b] f(x)
and M = max[a,b] f(x) such that

m ≤ f(x) ≤ M for all x ∈ [a, b].

Integrating from a to b preserves the inequality. Hence,

m(b− a) ≤
∫ b

a

f(x) dx ≤ M(b− a).

By the intermediate value theorem for continuous functions, f takes on every value
between m and M . Hence, there is a point c ∈ [a, b] such that

f(c) =
1

b− a

∫ b

a

f(x) dx,

as we wished to show. �

We define the average value of f on the interval [a, b] by

1

b− a

∫ b

a

f(x) dx.

Then the first mean value theorem for integrals says that a continuous function
assumes its average value on [a, b] at some point c ∈ [a, b].

The first mean value theorem resulted from an integration of the inequality
m ≤ f(x) ≤ M from a to b. We preserve this inequality if we multiply it by any
nonnegative function. This leads to the second mean value theorem for integrals.

Theorem 6.6.2 (Second Mean Value Theorem for Integrals). If f is continuous on
[a, b] and g is integrable with g(x) ≥ 0 for x ∈ [a, b], then there is a point c ∈ [a, b]
such that ∫ b

a

f(x)g(x) dx = f(c)

∫ b

a

g(x) dx.

Proof. Since g(x) ≥ 0 for x ∈ [a, b], we may write

mg(x) ≤ f(x)g(x) ≤ Mg(x) for all x ∈ [a, b],

where m = min[a,b] f(x) and M = max[a,b] f(x). An integration from a to b gives

m

∫ b

a

g(x) dx ≤
∫ b

a

f(x)g(x) dx ≤ M

∫ b

a

g(x) dx.

If
∫ b

a
g(x) dx 
= 0, then

m ≤
∫ b

a
f(x)g(x) dx∫ b

a
g(x) dx

≤ M,
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and by the intermediate value theorem applied to f there is a point c ∈ [a, b] such
that

f(c) =

∫ b

a
f(x)g(x) dx∫ b

a
g(x) dx

,

thus proving the theorem. On the other hand, if
∫ b

a
g(x) dx = 0, then we must

have
∫ b

a
f(x)g(x) dx = 0, in which case the conclusion of the theorem holds for any

choice of the point c. �

Exercises.

Exercise 6.6.1. Show: If f is integrable over [a, b] and m = infa≤x≤b f(x), M =
supa≤x≤b f(x), then there exists a number μ with m ≤ μ ≤ M such that∫ b

a

f(x) dx = μ(b− a).

Exercise 6.6.2. Show: If f, g : [a, b] → R are integrable over [a, b], g(x) ≥ 0 for
x ∈ [a, b], and m = infa≤x≤b f(x), M = supa≤x≤b f(x), then there is a number
m ≤ μ ≤ M such that ∫ b

a

f(x)g(x) dx = μ

∫ b

a

g(x) dx.

Exercise 6.6.3. Show that if g is continuous on [a, b] and
∫ b

a
g(x) dx = 0, then

g(x) ≡ 0 on [a, b]. Hint : Apply Theorem 6.6.2 with f = g. Then argue by
contradiction.

6.7. The Fundamental Theorem of Calculus

We begin by showing that every indefinite integral of f on [a, b] is uniformly con-
tinuous there.

Theorem 6.7.1. If f is Riemann integrable over [a, b], then any indefinite integral
of f is uniformly continuous on [a, b].

Proof. An indefinite integral of f on [a, b] has the form F (x) =
∫ x

c
f(t) dt for some

point c in [a, b] (Definition 6.5.3). Since f is Riemann integrable, it is bounded,
so that for some M , |f(x)| ≤ M for x ∈ [a, b]. Let x and y be in [a, b]. By the
definition of F and the addition formula (6.1),

|F (x)− F (y)| =
∣∣∣ ∫ x

c

f(t) dt−
∫ y

c

f(t) dt
∣∣∣ = ∣∣∣ ∫ x

y

f(t) dt
∣∣∣ ≤ M |x− y|.

Given any ε > 0, if x, y ∈ [a, b] with |x − y| < δ := ε/M , then |F (x) − F (y)| < ε.
This shows that F is uniformly continuous on [a, b]. �

With the stronger hypothesis of continuity of f , an indefinite integral is differ-
entiable and its derivative is equal to f .
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Theorem 6.7.2 (Fundamental Theorem of Calculus I). If f is continuous on [a, b],
then for any c in [a, b], the indefinite integral

Fc(x) :=

∫ x

c

f(t) dt

is differentiable on [a, b] and F ′
c(x) = f(x) for all x ∈ [a, b].

Proof. Let x0 and x be in [a, b]. By the first mean value theorem for integrals of
continuous functions, there is a point ξ = ξx between x0 and x such that

Fc(x)− Fc(x0) =

∫ x

c

f(t) dt−
∫ x0

c

f(t) dt =

∫ x

x0

f(t) dt = f(ξ)(x− x0).

As x approaches x0, the point ξ = ξx approaches x0. Since f is continuous at x0,
we have

F ′
c(x0) = lim

x→x0

Fc(x)− Fc(x0)

x− x0
= lim

x→x0

f(ξ)(x− x0)

x− x0
= lim

x→x0

f(ξ) = f(x0).

This is true for each x0 in [a, b] (with one-sided limits for the points x0 = a and
x0 = b), and this completes the proof. �

The next example shows that if we relax the continuity hypothesis on f to
Riemann integrability, then the conclusion of Theorem 6.7.2 need not hold.

Example 6.7.3. An indefinite integral of a Riemann integrable function need not
be differentiable on [a, b]. Consider the function

f(x) =

{
0 for 0 ≤ x ≤ 1,
1 for 1 < x ≤ 2,

with a jump discontinuity at x = 1. Then the indefinite integral F (x) =
∫ x

0
f(t) dt

is given by

F (x) =

{
0 for 0 ≤ x ≤ 1,
x− 1 for 1 < x ≤ 2,

and F is continuous on [0, 2]. However, F ′(1) does not exist. �

It can happen that an indefinite integral of a Riemann integrable f may be
differentiable on [a, b] but its derivative may not equal f(x) for all x ∈ [a, b].

Example 6.7.4. Consider the function f on [0, 1] defined by f(x) = 0 for x 
= 1/3
and f(1/3) = 2. Then f is discontinuous at x = 1/3, but f is integrable and
F (x) =

∫ x

0
f(t) dt is differentiable, since F (x) = 0 for all x in [0, 1]. Hence, F ′(x) =

0 for all x in [0, 1], but then F ′(1/3) 
= f(1/3). Note also that f does not have the
intermediate value property, so f cannot equal the derivative of any function on
[0, 1]. �

Theorem 6.7.5 (Fundamental Theorem of Calculus II). Let f : [a, b] → R be
Riemann integrable over [a, b]. If F : [a, b] → R is continuous on [a, b], differentiable
on (a, b), and F ′(x) = f(x) for all x ∈ (a, b), then∫ b

a

f(x) dx = F (b)− F (a) =: F (x)
∣∣∣b
a
.
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Proof. Let P = {x0 = a, x1, x2, . . . , xn−1, xn = b} be a partition of [a, b]. Then we
may use a telescoping sum to write

F (b)− F (a) =
n∑

k=1

[F (xk)− F (xk−1)].

Since F is continuous on [a, b] and differentiable on (a, b), we may apply the mean
value theorem on each subinterval [xk−1, xk], and conclude that there exist points
ξk with xk−1 < ξk < xk such that

F (xk)− F (xk−1) = F ′(ξk)(xk − xk−1) = f(ξk)(xk − xk−1),

for 1 ≤ k ≤ n. Then

F (b)− F (a) =

n∑
k=1

f(ξk)(xk − xk−1),

and consequently, the lower and upper Riemann sums for f associated with P
satisfy

L(f, P ) ≤ F (b)− F (a) ≤ U(f, P ).

Since this is true for each partition P of [a, b], and f is integrable over [a, b], we
have ∫ b

a

f(x) dx = sup
P

{L(f, P )} = inf
P
{U(f, P )} = F (b)− F (a),

and the theorem is proved. �

It is possible to have F continuous on [a, b] and differentiable on (a, b), but
f(x) := F ′(x) is not bounded on (a, b), and thus f = F ′ is not Riemann integrable.
In such a case, the evaluation conclusion of Theorem 6.7.5 cannot hold.

Example 6.7.6. Let F (x) = x2 sin(1/x2) for x > 0, and let

F (0) = lim
x→0

(
x2 sin

1

x2

)
= 0.

Then F is continuous on [0, 1] and differentiable on (0, 1). However,

F ′(x) = 2x sin
( 1

x2

)
− 2

x
cos
( 1

x2

)
for x 
= 0,

for x > 0. Hence, f := F ′ is unbounded on (0, 1) and therefore not Riemann
integrable. The evaluation conclusion of Theorem 6.7.5 does not hold. �

We needed continuity of F on the closed interval [a, b] in Theorem 6.7.5 so that
we could apply the mean value theorem. What if all the other hypotheses hold,
except continuity at one of the endpoints? For example, take f : [0, 1] → R to be
f(x) ≡ 1 and define F : [0, 1] → R by F (x) = x for 0 ≤ x < 1 and F (1) = 0. Then
F ′(x) = f(x) for all x ∈ (0, 1), but F is not continuous on [0, 1], and we have

F (1)− F (0) = 0 
=
∫ 1

0

f(x) dx = 1.

However, limx→1 F (x) = 1 and∫ 1

0

f(x) dx = 1 = lim
x→1−

F (x)− lim
x→0+

F (x).
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This example suggests the slightly stronger version of Theorem 6.7.5 in Exercise
6.7.1.

There are two important methods of integration that follow from the funda-
mental theorem of calculus. First, we have the change of variables formula for
integrals, also known as integration by substitution.

Theorem 6.7.7 (Change of Variables). Let g : [α, β] → [a, b] be continuous on
[α, β] and suppose that g′ exists and is continuous on [α, β], and g(α) = a, g(β) = b.
If f is continuous on [a, b], then∫ β

α

f(g(t))g′(t) dt =

∫ b

a

f(u) du.

Proof. Define

h(u) =

∫ u

a

f(s) ds.

By Theorem 6.7.2, h is differentiable on [a, b] and h′(u) = f(u) for u ∈ [a, b].
Theorem 6.7.5 applies, yielding

h(b)− h(a) =

∫ b

a

f(u) du.

The continuous function F (t) = h(g(t)) satisfies

F ′(t) = h′(g(t))g′(t) = f(g(t))g′(t)

for t ∈ [α, β]. Since f , g and g′ are continuous, F ′(t) is continuous on [α, β], and
hence by Theorem 6.7.5,∫ β

α

f(g(t))g′(t) dt =

∫ β

α

F ′(t) dt = F (β)− F (α).

Since

F (β)− F (α) = h(g(β))− h(g(α)) = h(b)− h(a),

this completes the proof. �

Next, we have the method of integration by parts.

Theorem 6.7.8 (Integration by Parts). Suppose f and g are differentiable on [a, b]
and f ′, g′ are Riemann integrable over [a, b]. Then∫ b

a

f(x)g′(x) dx = f(x)g(x)
∣∣∣b
a
−
∫ b

a

g(x)f ′(x) dx.

Proof. By the hypotheses on f and g, both fg′ and gf ′ are Riemann integrable
over [a, b]. By the product rule for differentiation,

d

dx
(f(x)g(x)) = f ′(x)g(x) + f(x)g′(x),

and fg is continuous on [a, b]. Hence, Theorem 6.7.5 implies that∫ b

a

(f ′(x)g(x) + f(x)g′(x)) dx = f(x)g(x)
∣∣∣b
a

and a rearrangement yields the desired formula. �
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The properties developed to this point allow us to define the natural logarithm
function, denoted log.

Theorem 6.7.9. The function log : (0,∞) → R defined by

log x =

∫ x

1

1

t
dt, x > 0,

and called the natural logarithm, satisfies the following properties:

1. log(xy) = log x+ log y for all x, y > 0;

2. log(1/x) = − log x for all x > 0;

3. log is differentiable and log′(x) = 1/x for all x > 0;

4. log is strictly increasing and has range R, and the inverse function log−1 is
differentiable, with [log−1]′(y) = log−1(y) for all y ∈ R.

Remark. We usually write exp = log−1, and thus exp′(y) = exp(y) for all real y.
Further properties of the function exp are discussed in Section 7.5.

Proof. We first prove statement 1. If x, y > 0 and x > 1, let g : [y, xy] → [1, x] be
g(t) = t/y. By Theorem 6.7.7, with f(s) = 1/s, we have∫ x

1

1

s
ds =

∫ xy

y

f(g(t))g′(t) dt =

∫ xy

y

1

t/y

1

y
dt =

∫ xy

y

1

t
dt,

from which it follows that log x = log xy − log y, as we wanted. If x, y > 0 and
x < 1, let g : [xy, y] → [x, 1] be g(t) = t/y; then∫ 1

x

1

s
ds =

∫ y

xy

f(g(t))g′(t) dt =

∫ y

xy

1

t
dt,

from which it follows that − log x = log y− log xy, again as desired. Thus statement
1 holds. From the definition, log 1 = 0. Now statement 2 follows from 1, since

0 = log 1 = log[x(1/x)] = log x+ log 1/x =⇒ log 1/x = − log x.

Theorem 6.7.2 implies statement 3, and log′(x) = 1/x for x > 0 implies that log is
strictly increasing on (0,∞). For the proof of statement 4, note that on the interval
[k, k + 1], 1/t ≥ 1/(k + 1), so for integers n ≥ 2,∫ n

1

1

t
dt ≥ 1

2
+ · · ·+ 1

n
=

n−1∑
k=1

1

k + 1
.

Since the series
∑∞

k=1 1/(k+1) diverges, and since log is increasing and continuous
on (0,∞), it follows that log x → +∞ as x → +∞. Exercise 6.7.6 shows that
log x → −∞ as x → 0+, and hence the range of log is R. For each y ∈ R, we have,
for x = log−1(y),

[log−1]′(y) =
1

log′(x)
=

1

1/x
= x = log−1(y),

and this completes the proof of statement 4. �
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Later, using the theory of power series, we show that for each real number x,
log−1(x) = exp(x) is actually the sum of the convergent series

∞∑
k=0

1

k!
xk.

In view of Theorem 3.5.1, we see that the Euler number e equals exp(1).

Example 6.7.10. We evaluate
∫ π/4

0
tan t log(cos t) dt. Let f(u) = u and g(t) =

log(cos t). Then g′(t) = − sin t/ cos t = − tan t, and therefore∫ π/4

0

tan t log(cos t) dt = −
∫ π/4

0

f(g(t))g′(t) dt = −
∫ π/4

0

g(t)g′(t) dt.

The required antiderivative is F (t) = [log(cos t)]2/2, with F ′(t) = g(t)g′(t), and F
is continuous on [0, π/4]. Thus,

−
∫ π/4

0

g(t)g′(t) dt = −
(
[log(1/

√
2)]2/2− [log 1]2/2

)
= −1

2
[log

√
2]2.

Let u = g(t) = log(cos t), so that du = − tan t dt, and hence∫ π/4

0

tan t log(cos t) dt = −
∫ log(1/

√
2)

0

u du = −u2

2

∣∣∣log(1/√2)

0
.

The u-substitution is indeed a helpful device. �

Example 6.7.11. We apply Theorem 6.7.8 to evaluate
∫ π

0
ex cosx dx. Let f(x) =

ex, g′(x) = cosx. Then∫ π

0

ex cosx dx = ex sin x
∣∣π
0
−
∫ π

0

ex sin x dx.

Applying integration by parts once more to the integral
∫ π

0
ex(− sinx) dx on the

right side, with f(x) = ex and g′(x) = − sinx, we have∫ π

0

ex cosx dx = ex sinx
∣∣∣π
0
+ ex cosx

∣∣∣π
0
−
∫ π

0

ex cosx dx.

Let us denote the quantity we want by I :=
∫ π

0
ex cosx dx, which satisfies

I = ex sinx
∣∣∣π
0
+ ex cosx

∣∣∣π
0
− I,

so we have 2I = −(eπ + 1), and hence I = −(eπ + 1)/2. �

Exercises.

Exercise 6.7.1. Prove: If f : [a, b] → R is Riemann integrable over [a, b], and the
function F : (a, b) → R is differentiable on (a, b), limx→b− F (x) and limx→a+ F (x)
exist, and F ′(x) = f(x) for all x ∈ (a, b), then∫ b

a

f(x) dx = lim
x→b−

F (x)− lim
x→a+

F (x).

Exercise 6.7.2. Apply Theorem 6.7.7 to evaluate these integrals:

(a)

∫ e2

e

log(t+ 1)

t+ 1
dt (b)

∫ 1

0

2t
√
2− t2 dt.
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Exercise 6.7.3. Apply Theorem 6.7.7 to evaluate:∫ 2

1

cos(log x)

x
dx.

Exercise 6.7.4. Apply Theorem 6.7.8 to evaluate these integrals:

(a)

∫ 1

0

√
1 + x2 dx (b)

∫ 1

0

tan−1 x dx.

Exercise 6.7.5. Apply Theorem 6.7.8 to evaluate these integrals:

(a)

∫ 1

0

sin−1 x dx (b)

∫ π/2

0

x cosx dx.

Exercise 6.7.6. Complete the proof that the range of log is R by showing that
log x → −∞ as x → 0+.

6.8. Taylor’s Theorem with Integral Remainder

Recall that the degree n Taylor polynomial of f at a is defined by

n∑
k=0

f (k)(a)

k!
hk = f(a) + f ′(a)h+

f ′′(a)

2!
h2 + · · ·+ f (n)(a)

n!
hn,

where h = x − a. We have seen already in Taylor’s Theorem 5.7.2 that this poly-
nomial approximates f(x) well for x = a+ h near a. The error or remainder term
is defined by

(6.8) Ra,n(h) = f(a+ h)−
n∑

k=0

f (k)(a)

k!
hk.

Theorem 5.7.2 assumed only that the order (n + 1) derivative of f exists on an
interval about a, and showed that Ra,n(h) = f (n+1)(c)hn+1/(n + 1)!, where c is
some point between a and a+ h.

The following version of Taylor’s theorem has a stronger hypothesis and leads
to a more detailed error estimate for the remainder. The proof involves repeated
integrations by parts.

Theorem 6.8.1 (Taylor’s Theorem with Integral Remainder). Let n ≥ 0 and
suppose that f is Cn+1 on an open interval I containing the point a. If h is such
that a+ h ∈ I, then

f(a+ h) =
n∑

j=0

f (j)(a)

j!
hj +Ra,n(h)

= f(a) + f ′(a)h+
f ′′(a)

2!
h2 + · · ·+ f (n)(a)

n!
hn +Ra,n(h),(6.9)

where

(6.10) Ra,n(h) =
hn+1

n!

∫ 1

0

f (n+1)(a+ th)(1− t)n dt.
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Proof. Let 0 ≤ t ≤ 1. By the chain rule, we have d
dtf(a+ th) = hf ′(a+ th), so by

the fundamental theorem of calculus,

f(a+ h)− f(a) = h

∫ 1

0

f ′(a+ th) dt.

This is exactly the assertion of the theorem in the case where n = 0. On the
right-hand side, integrate by parts, with u = f ′(a+ th)h and dv = dt, and choose
v = t− 1 = −(1− t) to get

h

∫ 1

0

f ′(a+ th) dt = −(1− t)hf ′(a+ th)|10 + h

∫ 1

0

(1− t)f ′′(a+ th)h dt

= f ′(a)h+ h2

∫ 1

0

(1− t)f ′′(a+ th) dt,

and substitution of this result into the first equation above yields exactly the state-
ment of the theorem for the case n = 1. We can continue this process of integration
by parts. Suppose that we have obtained

f(a+ h) =

k−1∑
j=0

f (j)(a)

j!
hj +

hk

(k − 1)!

∫ 1

0

f (k)(a+ th)(1− t)k−1 dt.

(This formula has been shown above to hold for k = 1 and k = 2, corresponding
to n = 0 and n = 1, respectively.) In the integral on the right-hand side we may
integrate again by parts, with u = hkf (k)(a+ th) and v = −(1− t)k/k!, to find that
the final term in the previous equation equals

f (k)(a)

k!
hk +

hk+1

k!

∫ 1

0

f (k+1)(a+ th)(1− t)k dt,

and consequently

f(a+ h) =

k∑
j=0

f (j)(a)

j!
hj +

hk+1

k!

∫ 1

0

f (k+1)(a+ th)(1− t)k dt.

Observe that this is the assertion of the theorem if f is Ck+1 on I. By induction
we may continue the process up through the step involving the Taylor polynomial
of degree n, plus the remainder involving the integration of f (n+1), yielding exactly
(6.9) and (6.10) of the theorem statement. This completes the proof. �

If we know (or assume) a bound on |f (n+1)(x)| for x near a, we can deduce
the remainder estimate in the following corollary from the earlier Taylor’s Theorem
5.7.2. However, the continuity of f (n+1) on some open interval about a guarantees
such a bound on a possibly smaller closed interval about a. We can then restrict
to an open interval within that closed interval to get the following result.

Corollary 6.8.2. If f is Cn+1 on an open interval I and if |f (n+1)(x)| ≤ M for
all x ∈ I, then for each a ∈ I and each h such that a+ h ∈ I,

|Ra,n(h)| ≤ M
|h|n+1

(n+ 1)!
.
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Proof. Using the remainder formula (6.10), the bound on |f (n+1)(x)| on I gives

|Ra,n(h)| ≤ M
|h|n+1

n!

∫ 1

0

(1− t)n dt,

and since ∫ 1

0

(1− t)n dt =
1

n+ 1
,

the result follows. �

Using the second mean value theorem for integrals we can also recover the
Lagrange form of the remainder from (6.10). Assuming the hypotheses of Taylor’s
Theorem 6.8.1, the remainder term is

Ra,n(h) =
hn+1

n!

∫ 1

0

f (n+1)(a+ th)(1− t)n dt.

Since 1− t ≥ 0 for t ∈ [0, 1], the second mean value theorem applied to this integral
implies that

Ra,n(h) =
hn+1

n!
f (n+1)(c)

∫ 1

0

(1− t)n dt =
f (n+1)(c)

(n+ 1)!
hn+1

for some number c between a and a+ h. This is Lagrange’s remainder.

It is important to observe that from either the integral remainder or the La-
grange remainder, one may deduce deduce easily deduce that

(6.11)
Ra,n(h)

hn
→ 0 as h → 0.

This limit statement expresses the idea that the remainder goes to zero faster than
hn as h → 0. It gives us a measure of how good the degree n Taylor polynomial
approximation of f is for small h. Note that when f is Cn+1, Corollary 6.8.2
provides a computable bound for Ra,n(h) in many cases. It is also possible to
achieve the limit behavior (6.11) with a weaker hypothesis on f ; see Exercises
6.8.1-6.8.2.

Finally, notice that it is sometimes convenient to write the result of either of
the Taylor Theorems 5.7.2, 6.8.1 in the form

f(x) = f(a) + f ′(a)(x− a) + · · ·+ f (n)(a)

n!
(x− a)n +Ra,n(x− a)

where x− a = h and Ra,n(x− a) = Ra,n(h).

Exercises.

Exercise 6.8.1. This exercise presents a version of Taylor’s theorem in which no
derivatives are assumed beyond those appearing in the degree n Taylor polynomial
for f at the point a:

Theorem 6.8.3 (Cn Taylor theorem). Let n ≥ 1 and suppose that f is Cn on an
interval I, a ∈ I and a + h ∈ I. Then the remainder Ra,n(h) defined by ( 6.8) is
given by

Ra,n(h) =
hn

(n− 1)!

∫ 1

0

[f (n)(a+ th)− f (n)(a)](1− t)n−1 dt.
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Prove Theorem 6.8.3 as follows:

1. Apply Theorem 6.8.1 with n there replaced by n−1, and write the result in the
form f(a+h)−Ta,n−1(h) = Ra,n−1(h) where Ta,n−1 is the Taylor polynomial
of degree n− 1 of f at a.

2. Subtract f (n)(a)hn/n! from both sides of your result from part 1.

3. Use the fact that
∫ 1

0
(1 − t)n−1 dt = 1/n to deduce the desired expression for

Ra,n(h).

Exercise 6.8.2. This exercise presents a remainder estimate for the Cn Taylor
Theorem 6.8.3 in the previous exercise:

Corollary 6.8.4. If n ≥ 1, f is Cn on an interval I, and a, a+ h ∈ I, then

Ra,n(h)

hn
→ 0 as h → 0.

Prove Corollary 6.8.4. Hints : Use the definition of continuity of f (n) at a to
get an upper bound on |Ra,n(h)| for small |h|, then use statement 3 in the previous
exercise, together with the definition of limit of a function.

Exercise 6.8.3. Find the Taylor polynomial of degree 3 about the point a = 0
for f(x) = 1/(x + 5). Find a constant M such that the remainder Ra,3 satisfies
|Ra,3| ≤ M |h|4 for |h| ≤ .5. Sketch f and the Taylor polynomial of degree 3.

Exercise 6.8.4. Find the Taylor polynomial of degree 3 about the point a = 0 for
f(x) = cosx. Find a constant M such that the remainder Ra,3 satisfies |Ra,3| ≤
M |h|4 for |h| ≤ .5. Sketch f and the Taylor polynomial of degree 3.

6.9. Improper Integrals

The Riemann integral is defined for bounded functions on closed and bounded in-
tervals. A different approach is required for the integration of unbounded functions,
or the integration of functions defined on intervals that are either unbounded or not
closed. In the discussion to follow it is important to remember that all functions
are assumed to be Riemann integrable over any finite closed intervals that appear.

6.9.1. Functions on [a,∞) or (−∞, b]. We shall call on the definition of limits
at infinity from Definition 4.4.4.

Suppose that f : [a,∞) → R is Riemann integrable on [a, b] for each b > a.
Then the equation

F (b) =

∫ b

a

f(x) dx, for b > a,

defines a function F : [a,∞) → R. This function F may or may not have a limit

at infinity. If limb→∞ F (b) = limb→∞
∫ b

a
f(x) dx exists, then the limit is called the

improper integral of f on [a,∞) and is written∫ ∞

a

f(x) dx = lim
b→∞

∫ b

a

f(x) dx.
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Example 6.9.1. Let f : [1,∞) → R be the function f(x) = 1/x2. Then f is
integrable on [1, b] for each b > 1, and∫ b

1

1

x2
dx = − 1

x

∣∣∣b
1
= −1

b
+ 1.

Since limb→∞(− 1
b + 1) = 1, we have∫ ∞

1

1

x2
dx = 1

for the improper integral of f(x) = 1/x2 on [1,∞). �

We can extend the technique illustrated above to functions f : (−∞, b] → R,
Riemann integrable on [a, b] for each a < b. Here is an example.

Example 6.9.2. Let f(x) = xex on (−∞, 0]. Then f is integrable on [a, 0] for
each a < 0, and, using integration by parts,∫ 0

a

xex dx = −aea − 1 + ea.

Since lima→−∞(−aea− 1+ ea) = −1, we say the improper integral of f on (−∞, 0]

exists and
∫ 0

−∞ xex = −1. �

Sometimes a comparison with a simpler integrand can determine the conver-
gence or divergence of an improper integral.

Theorem 6.9.3. Suppose f : [a,∞) → R and g : [a,∞) → R are Riemann
integrable on [a, b] for every b > a. If 0 ≤ f(x) ≤ g(x) for all x ≥ a and

∫∞
a

g(x) dx

exists, then
∫∞
a

f(x) dx exists.

Proof. By the hypotheses, we have, for each b > a,

0 ≤
∫ b

a

f(x) dx ≤
∫ b

a

g(x) dx ≤
∫ ∞

a

g < ∞.

Therefore the set {∫ b

a

f(x) dx : b > a
}

is bounded above and thus has a least upper bound. Since the function F (b) =∫ b

a
f(x) dx is increasing with b, limb→∞ F (b) exists. �

6.9.2. Functions on (a, b] or [a, b). Suppose that f : (a, b] → R is Riemann
integrable on [α, b] for each α ∈ (a, b]. Then the equation

F (α) =

∫ b

α

f(x) dx, for α ∈ (a, b]

defines a function F : (a, b] → R. This function F may or may not have a limit

as α → a. If limα→a F (α) = limα→a

∫ b

α
f(x) dx exists, then the limit is called the

improper integral of f on (a, b] and is written∫ b

a

f(x) dx = lim
α→a

∫ b

α

f(x) dx.
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Example 6.9.4. If f : (0, 1] → R is given by f(x) = 1/
√
x, then the improper

integral
∫ 1

0
f(x) dx exists, since

lim
α→0

∫ 1

α

1√
x
dx = lim

α→0
2x1/2

∣∣∣1
α
= lim

α→0
(2− 2α1/2) = 2,

and we write
∫ 1

0
f(x) dx =

∫ 1

0
(1/

√
x) dx = 2. However, if g : (0, 1] → R is given by

g(x) = 1/x2, then the improper integral
∫ 1

0
g(x) dx does not exist, since

lim
α→0

∫ 1

α

1

x2
dx = lim

α→0
−x−1

∣∣∣1
α
= lim

α→0
(−1 +

1

α
)

does not exist. �

Theorem 6.9.5. Suppose f : (a, b] → R and g : (a, b] → R are Riemann integrable

on [ε, b] for every ε ∈ (a, b]. If 0 ≤ f(x) ≤ g(x) for all x ∈ (a, b] and
∫ b

a
g(x) dx

exists, then
∫ b

a
f(x) dx exists.

The proof of Theorem 6.9.5 is similar to the proof of Theorem 6.9.3 and is left
to Exercise 6.9.2.

Improper integrals over [a, b) in which the integrand becomes unbounded as x
approaches the right-hand endpoint are handled in a similar manner. See Exercise
6.9.4.

6.9.3. Functions on (a,∞), (−∞, b) or (−∞,∞). The potential difficulty here
is the open intervals, where a function might not be defined at an endpoint or might
become unbounded in an approach to the endpoint.

If f is defined on (a,∞), and if, for some c > a, the improper integrals∫ c

a

f(x) dx and

∫ ∞

c

f(x) dx

exist, then we define the improper integral∫ ∞

a

f(x) dx =

∫ c

a

f(x) dx+

∫ ∞

c

f(x) dx,

the sum of two improper integrals. Note that the right-hand side here is∫ c

a

f(x) dx+

∫ ∞

c

f(x) dx = lim
ε→0

∫ c

a+ε

f(x) dx+ lim
N→∞

∫ N

c

f(x) dx

= lim
N→∞
ε→0

∫ N

a+ε

f(x) dx.

(The reader should verify that the choice of c does not matter; that is, if the
improper integrals exist for one such c, then they exist for any such c, and the
value given for the improper integral is independent of the choice of c.)

If a function f is defined on (−∞, b), and if, for some c < b, the improper
integrals ∫ c

−∞
f(x) dx and

∫ b

c

f(x) dx
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exist, then we define∫ b

−∞
f(x) dx =

∫ c

−∞
f(x) dx+

∫ b

c

f(x) dx,

which is the sum of two improper integrals.

Similarly, if f : (−∞,∞) → R and if, for some real number c, the improper
integrals ∫ c

−∞
f(x) dx and

∫ ∞

c

f(x) dx

exist, then

(6.12)

∫ ∞

−∞
f(x) dx =

∫ c

−∞
f(x) dx+

∫ ∞

c

f(x) dx.

Note that (6.12) actually means∫ ∞

−∞
f(x) dx = lim

M→∞

∫ c

−M

f(x) dx+ lim
N→∞

∫ N

c

f(x) dx

= lim
N→∞
M→∞

∫ N

−M

f(x) dx.

Again, the existence of these integrals is independent of the number c, provided
there exists some c producing convergent integrals. For example, if c produces
convergent integrals as indicated, and if b < c, then both∫ b

−∞
f(x) dx and

∫ ∞

b

f(x) dx

are convergent, since
∫∞
b

f(x) dx =
∫ c

b
f(x) dx+

∫∞
c

f(x) dx.

6.9.4. Cauchy Principal Value. A concept of improper integral for
∫∞
−∞ f(x) dx

different from (6.12) is the concept of the Cauchy principal value of this integral.
The Cauchy principal value may exist even in cases where the improper integral as
defined by (6.12) does not exist.

To define the Cauchy principal value, we suppose that f : R → R and f is
integrable over any interval of the form [−N,N ], where N is real. If the limit

lim
N→∞

∫ N

−N

f(x) dx

exists, then this limit is called the Cauchy principal value of f(x) over (−∞,∞),
and we write ∫ ∞

−∞
f(x) dx = lim

N→∞

∫ N

−N

f(x) dx.

If the improper integral of f as in (6.12) exists, then the Cauchy principal value
of f over (−∞,∞) exists (Exercise 6.9.5). For an example where f has a Cauchy
principal value over (−∞,∞), but the improper integral (6.12) fails to exist, see
Exercise 6.9.6.
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Another case of the Cauchy principal value occurs if f : [a, c) ∪ (c, b] → R
is Riemann integrable on [a, c − ε] and [c + ε, b] for all ε satisfying 0 < ε <
min{c− a, b− c}. Then, provided the limit exists,

lim
ε→0+

(∫ c−ε

a

f(x) dx+

∫ b

c+ε

f(x) dx
)

is called the Cauchy principal value of
∫ b

a
f(x) dx. For example, the Cauchy

principal value of
∫ 1

−1
1/x dx exists (Exercise 6.9.7). The Cauchy principal value

of
∫ b

a
f(x) dx, for f as described in this paragraph, may exist with f being neither

Riemann integrable on [a, b] nor improperly integrable on [a, c] and [c, b].

For either type of integral considered here, our discussion shows that it makes
sense to attempt to compute the Cauchy principal value.

Exercises.

Exercise 6.9.1. Show that the improper integral
∫∞
1

√
xe−x exists. Hint : Com-

pare the integrand with xe−x.

Exercise 6.9.2. Prove Theorem 6.9.5.

Exercise 6.9.3. Formulate a theorem analogous to Theorem 6.9.3 that allows one
to determine that a given improper integral over [a,∞) diverges.

Exercise 6.9.4. Determine whether the improper integral
∫ 0

−1
−x−1/3 dx exists,

and find its value if it does exist.

Exercise 6.9.5. Show that if the improper integral of f as in (6.12) exists, then
the Cauchy principal value of f over (−∞,∞) exists.

Exercise 6.9.6. Define f : (−∞,∞) → R by

f(x) =

{
1/(1 + x) if |x| > 2,
0 if |x| ≤ 2.

Show that
∫∞
−∞ f(x) dx exists as a Cauchy principal value equal to − log 3, but that

the improper integral (6.12) does not exist.

Exercise 6.9.7. Show that the Cauchy principal value of
∫ 1

−1
1/x dx exists and

evaluate it.

Exercise 6.9.8. Show that
∫ 2

0
(
√
|x− 1|)−1 dx exists and evaluate it.

Exercise 6.9.9. Show that
∫ 1

0
x log x dx exists and evaluate it.

Exercise 6.9.10. Let f : [0,∞) → R. The Laplace transform of f is the
function F(s) defined by F(s) =

∫∞
0

f(t)e−st dt, when the improper integral exists.
This operation is linear in f and is often written as L(f(t)) = F(s). Clearly
L(0) = 0. Find the indicated Laplace transforms:

1. L(eat) for a real,

2. L(tk) for k = 0, 1, 2,

3. L(sinωt), ω real,
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4. L(cosωt), ω real,

5. L(eatf(t)), if L(f(t)) = F(s).

Exercise 6.9.11. See Exercise 6.9.10 for the definition of the Laplace transform
of f , L(f(t)). Use integration by parts to show that if L(f(t)) = F(s), then
L(f ′(t)) = sF(s)− f(0) and L(f ′′(t)) = s2F(s)− f(0)s− f ′(0).

Exercise 6.9.12. Solve the differential equation f ′(t) + 2f(t) = 0 with initial
condition f(0) = 1 by Laplace transforming both sides of the equation to get an
algebraic equation for L(f(t)) = F(s). Then determine f(t) from F(s) by an
appropriate inverse Laplace transform using results from Exercise 6.9.10.

Exercise 6.9.13. Solve the differential equation f ′′(t) + 3f ′(t) + 2f(t) = 0 with
initial conditions f(0) = 0, f ′(0) = 1 using Laplace transforms. A partial fraction
expansion will be helpful in obtaining an expression for L(f(t)) = F(s) from which
you may recover f(t) by using results from Exercise 6.9.10. (This final step is
called finding the inverse Laplace transform of F(s). It is straightforward for
this equation.) Hint : A partial fraction expansion of the resulting expression for
F(s) will facilitate the determination of f(t) from F(s).

6.10. Notes and References

The books by Folland [16], Krantz [40], Lang [42], Sagan [54] and Schramm [57]
were all helpful resources on Riemann integration. Folland [16] influenced the
coverage of Taylor’s theorem and the remainder expressions. Our discussion of
improper integrals draws on Friedman [18].





Chapter 7

Sequences and Series of
Functions

In this chapter we extend the analysis of infinite series with a study of sequences
and series of functions. We study pointwise convergence and uniform convergence
of sequences and series of functions and emphasize the important role of uniform
convergence in limit processes. Power series provide the definitions for the expo-
nential and trigonometric functions. The chapter concludes with a statement and
proof of the Weierstrass approximation theorem.

7.1. Sequences of Functions: Pointwise and Uniform Convergence

In this section we define two convergence concepts for sequences of functions, point-
wise convergence and uniform convergence. Uniform convergence is a stronger con-
dition than pointwise convergence, and it has the advantage that many desirable
properties of terms in the series, such as continuity and integrability, are preserved
in the limit function.

7.1.1. Pointwise Convergence. The concept of pointwise convergence is the
natural starting point for a discussion of convergence of a sequence of functions.

Definition 7.1.1. Let fn : D ⊆ R → R for n ∈ N. The sequence (fn) converges
pointwise on S ⊆ D to a function f : S → R if for every x ∈ S,

lim
n→∞

fn(x) = f(x).

The resulting function f on S is the limit function of the sequence (fn).

We also write “fn → f on S” to indicate pointwise convergence of the functions
fn to f on the set S. When the domain S is understood, pointwise convergence
of (fn) to f on S may be indicated simply by writing “fn → f”. Since limits of
real sequences are unique, the limit function f is uniquely determined when (fn)
converges pointwise.

181
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According to the definition of limit of a sequence, for a given point x, the
sequence fn(x) has a limit (denoted f(x) in Definition 7.1.1) if for every ε > 0
there is an N = N(ε, x) such that if n ≥ N(ε, x), then

|fn(x)− f(x)| < ε.

We observe the important fact that for a given ε > 0 the required N = N(ε, x) may
depend in general on the point x as well as on ε.

Example 7.1.2. The sequence of functions fn(x) = xn for x ∈ [0, 1] converges
pointwise to the function f on [0, 1] where

f(x) =

{
0 if 0 ≤ x < 1,
1 if x = 1.

The verification is simply that limn→∞ xn = 0 for 0 ≤ x < 1, and fn(1) = 1 for all
n, so limn→∞ fn(1) = 1. Notice also that for a given x with 0 < x < 1, if we want
to have

|xn − 0| = xn < ε < 1,

or equivalently, n log x < log ε, we must choose n ≥ N(ε, x) ≥ log ε/ log x. �

As we will see, the observation that the N = N(ε, x) generally depends on
both ε and the point x is the key to understanding why a definition as natural
as Definition 7.1.1 leads to a concept with some important limitations. The re-
mainder of this section is devoted to illustrating pointwise convergence by several
examples. We are especially interested in whether or not the properties of continu-
ity, boundedness, differentiability, and integrability of the terms fk carries over to
the pointwise limit. Some examples are chosen to illustrate certain limitations of
pointwise convergence with regard to these issues:

1. The pointwise limit of a sequence of continuous functions need not be contin-
uous. (This is illustrated already by the previous example.)

2. The pointwise limit of a sequence of bounded functions need not be bounded.

3. The pointwise limit of a sequence of Riemann integrable functions need not
be Riemann integrable. Even if the limit function f for (fn) is integrable, it
may not be true that the integral of f equals the limit of the integrals of the
fn.

4. The pointwise limit of a sequence of differentiable functions need not be dif-
ferentiable. Even if the fn’s are differentiable and the limit function f is
differentiable, it may not be true that the derivative of f equals the limit of
the derivatives of the fn.

Despite the negative nature of some conclusions we draw from these examples,
the concept of pointwise convergence of a sequence of functions is fundamental in
the development of other concepts of convergence for sequences.

Example 7.1.3. Let fn : (0, 1] → R be defined by

fn(x) =

{
n for 0 < x ≤ 1/n
1/x for 1/n < x ≤ 1.
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For any given x ∈ (0, 1] there is an N such that if n ≥ N , then 1/N < x, and
consequently

|fn(x)− 1/x| = |1/x− 1/x| = 0.

Hence, fn → f where f(x) = 1/x for x ∈ (0, 1]. Observe that each fn is bounded
on (0, 1], but the limit function f is not bounded on (0, 1]. �

Example 7.1.4. In order to give an example of a sequence of integrable functions
fn on [a, b] having a pointwise limit function f that is not integrable, we can simply
augment the definition of the fn’s from the previous example. Let fn(x) be as in
Example 7.1.3 for x ∈ (0, 1] and, in addition, we define fn(0) = 0 for each n. Then
fn → f on the closed interval [0, 1], where

f(x) =

{
0 for x = 0,
1/x for 0 < x ≤ 1.

Each fn is Riemann integrable on [0, 1] since it is continuous a.e., while the limit
function f is not integrable since it is not bounded on [0, 1]. �

It is possible to have integrable functions fn that converge to an integrable
limit function f , and yet the integral of the limit f does not equal the limit of the
integrals of the fn. See Exercise 7.1.1.

We consider the behavior of differentiability with respect to pointwise limits in
section 7.2.

7.1.2. Uniform Convergence. We have seen that the concept of pointwise con-
vergence has some serious limitations because important and desirable properties
possessed by the functions in a sequence need not be preserved in the pointwise limit
function. Uniform convergence is a stronger concept that ensures the preservation
of such desirable properties as continuity, boundedness, and integrability.

Definition 7.1.5. Let fn : D ⊆ R → R for n ∈ N. The sequence (fn) converges
uniformly on S ⊆ D to a function f : S → R if for every ε > 0 there is an
N = N(ε) ∈ N such that

|fn(x)− f(x)| < ε for all n ≥ N(ε) and all x ∈ S.

Figure 7.1 shows an ε-band about f illustrating uniform convergence of fn to
f . When the domain S is understood, the uniform convergence of (fn) to f on S
may be indicated by writing

“fn → f uniformly” or “fn
unif→ f”.

It should be clear from Definition 7.1.5 and the definition of limit of a sequence

that if fn
unif→ f , then fn converges pointwise to f on S.

Proposition 7.1.6. If fn converges uniformly to f on S, then fn converges point-
wise to f on S.

In symbolic language using the quantifiers ∀ (for all) and ∃ (there exists), the

definition of fn
unif→ f states that

∀ε > 0 ∃N(ε) ∀x ∈ S ∀n ≥ N(ε) (|fn(x)− f(x)| < ε).
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f+ε

εf−

fn

f

D

Figure 7.1. Illustrating uniform convergence of the sequence of functions fn
to the function f . The dotted curves bound an ε-band about the graph of f .

In order to gain a better understanding of uniform convergence, it is useful to
examine the negation of the definition of uniform convergence in the case where the
sequence converges pointwise to a function f . The negation of Definition 7.1.5 is

∃ε > 0 ∀N ∃x ∈ S ∃n ≥ N (|fn(x)− f(x)| ≥ ε).

Thus we can say that a sequence (fn) fails to converge uniformly to a pointwise
limit f if and only if there exists some ε0 > 0 such that for every n there is a point
xn such that

|fn(xn)− f(xn)| ≥ ε0.

We record this statement as a useful proposition.

Proposition 7.1.7. A sequence of functions (fn) defined on S and having the
pointwise limit f on S fails to converge uniformly to f if and only if there exists
an ε0 > 0 such that for every positive integer n there is a point xn in S such that

|fn(xn)− f(xn)| ≥ ε0.

As noted above, uniform convergence implies pointwise convergence. The con-
verse does not hold, as shown by the next example.

Example 7.1.8. The sequence of functions fn(x) = xn for x ∈ [0, 1] converges
pointwise. However, (fn) does not converge uniformly to f on [0, 1]. In order to
see why, notice that the limit function f has a jump discontinuity at x = 1. Let
ε0 = 1/2 be half the distance of this jump. Then no matter how large we take n,
there is some point 0 < xn < 1 for which we have

|fn(xn)− f(xn)| = |xn
n − 0| = xn

n ≥ ε0 = 1/2.
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For example, we can take xn = (ε0)
1/n = (1/2)1/n to achieve this inequality. Notice

that xn is an increasing sequence that moves to the right just fast enough as n
increases to guarantee that the distance |fn(xn) − f(xn)| is larger than 1/2. Of
course, other points might be chosen to achieve an even larger gap. In any case, fn
does not converge to f uniformly on [0, 1]. �

The example of fn(x) = xn on [0, 1] also shows that a sequence of continuous
functions on a set S can converge pointwise to a limit function that is not continuous
on S. The next result shows the strength of uniform convergence with regard to
continuity.

Theorem 7.1.9. If the functions fn : S ⊆ R → R are continuous on S and fn
converges uniformly to f on S, then f is continuous on S.

Proof. Let x0 be a point in S. Let us show continuity of the limit function f at
x0. This requires that f(x) can be made as close as we like to f(x0) by taking
x sufficiently close to x0. In order to motivate the essential estimate that is the
key to the argument, notice that the hypotheses say that f(x) ≈ fn(x) for large n,
fn(x) ≈ fn(x0) by continuity of fn at x0, and fn(x0) ≈ f(x0) for large n. So we
should be able to get f(x) ≈ f(x0) by appropriate estimates. This motivates us to
write

f(x)− f(x0) = f(x)− fn(x) + fn(x)− fn(x0) + fn(x0)− f(x0),

which implies

|f(x)− f(x0)| ≤ |f(x)− fn(x)|+ |fn(x)− fn(x0)|+ |fn(x0)− f(x0)|.
Let ε > 0. By the uniform convergence, we may choose a fixed n sufficiently large
so that for all x ∈ S (including x0),

|f(x)− fn(x)| < ε/3, and hence also |fn(x0)− f(x0)| < ε/3.

It should be clear that the choice of n places no restriction on x. Now, by continuity
of fn at x0, there is a δ > 0 such that if |x− x0| < δ, then

|fn(x)− fn(x0)| < ε/3.

In summary, then, if |x− x0| < δ, then

|f(x)− f(x0)| < ε/3 + ε/3 + ε/3 = ε.

Therefore f is continuous at x0. Since the argument applies to any and all x0 in
S, we conclude that f is continuous on S. �

Recall that a pointwise limit of bounded functions need not be bounded; see
Example 7.1.4. However, a uniform limit of bounded functions is bounded.

Theorem 7.1.10. If the functions fn : S ⊆ R → R are bounded on S and fn
converges uniformly to f on S, then f is bounded on S.

Proof. Let ε = 1. By the uniform convergence, there is an N such that for n ≥ N
and all x ∈ S, ∣∣∣|f(x)| − |fn(x)|

∣∣∣ ≤ |fn(x)− f(x)| < 1.
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Thus, if we let n = N , then for all x ∈ S, we have

|f(x)| ≤ 1 + |fN (x)| ≤ 1 + sup
x∈S

|fN (x)| < ∞,

since fN is bounded. Therefore f is bounded on S. �

In the next theorem, we invoke the result, proved in Theorem 12.4.7 by a unified
argument for any Rn, that a countable union of sets of Lebesgue measure zero has
Lebesgue measure zero. We have placed the unified argument at that point in the
text to avoid duplicating the argument here for the case n = 1 alone. Readers
might reasonably postpone a reading of that argument; however, it can be read at
this point since it applies to the current case of dimension n = 1 as written.1

Theorem 7.1.11. If the functions fn : [a, b] → R are Riemann integrable and fn
converges uniformly to f on [a, b], then f is integrable on [a, b].

Proof. Since the functions fn are Riemann integrable on [a, b], each fn is bounded
on [a, b], by the definition of integrability. By Theorem 7.1.10, a uniform limit of
bounded functions is bounded, so f is bounded on [a, b]. In order to show that f
is Riemann integrable on [a, b] it only remains to show that f is continuous almost
everywhere in [a, b].

Let Df be the set of points in [a, b] at which f is discontinuous. If x0 ∈ Df ,
then there must be some k for which fk is discontinuous at x0, for otherwise the
uniform convergence of fn to f guarantees that f is continuous at x0. So Df ⊂ Dfk ,
where Dfk denotes the set of discontinuities of fk. Accordingly, for each n, let Dfn

be the set of discontinuities of fn. Then we have

Df ⊂
∞⋃

n=1

Dfn .

By hypothesis, each fn is Riemann integrable on [a, b], soDfn has Lebesgue measure
zero. Since Df is a subset of a countable union of sets of Lebesgue measure zero,
Df has Lebesgue measure zero. Hence, by Theorem 6.4.4, f is Riemann integrable
on [a, b]. �

Theorem 7.1.12. If the functions fn : [a, b] → R are Riemann integrable and fn
converges uniformly to f on [a, b], then

lim
n→∞

∫ b

a

fn(x) dx =

∫ b

a

lim
n→∞

fn(x) dx =

∫ b

a

f(x) dx.

Proof. By Theorem 7.1.11, the limit function f is Riemann integrable. Given
ε > 0, there exists N such that if n ≥ N , then for all x in [a, b],

|fn(x)− f(x)| < ε/(b− a).

1Readers who wish to read Theorem 12.4.7 now should observe the comment on notation in the
paragraph immediately preceding the statement of that theorem.
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For n ≥ N , we may estimate the difference of integrals by∣∣∣ ∫ b

a

fn(x) dx−
∫ b

a

f(x) dx
∣∣∣ =

∣∣∣ ∫ b

a

(fn(x)− f(x)) dx
∣∣∣

≤
∫ b

a

|fn(x)− f(x)| dx

<
ε

(b− a)
(b− a) = ε.

Hence the statement of the theorem follows. �

Theorem 7.1.12 states that uniform convergence allows us to interchange the
operations of integration and limit of a sequence of functions.

Can we interchange the operations of differentiation and limit of a sequence of
functions? That is, if we know that fn → f and f ′

n exists for each n, is it true
that f ′

n → f ′? The example of the functions fn(x) = xn shows that the pointwise
limit function f need not be continuous at every point, and hence need not be
differentiable at every point. In such a case we do not have pointwise convergence
f ′
n → f ′ = (limn fn(x))

′ everywhere since the derivative on the right does not exist
at some points.

What if the fn are differentiable and fn
unif→ f? Are these conditions sufficient

for the limit function f to be differentiable? No, they are not sufficient, and Exercise
7.1.12 outlines an argument for a specific counterexample.

However, using Theorem 7.1.12 we can get a positive result on the limit of
a sequence of derivatives f ′

n, if fn → f , the f ′
n are continuous, and f ′

n converges
uniformly. In fact, we really only need to assume that the sequence fn(x0) converges
for some point x0, and that f ′

n converges uniformly to some function g, and then
we may conclude that fn has a pointwise limit f , and f ′ = g.

Theorem 7.1.13. Suppose that each fn is defined on an open interval (a, b) and
the derivative function f ′

n is continuous on (a, b). If f ′
n converges uniformly to a

function g on (a, b), and there is a point x0 in (a, b) such that limn→∞ fn(x0) = L
exists, then fn converges pointwise to f , where

f(x) = L+

∫ x

x0

g(s) ds, x ∈ (a, b),

and f ′(x) = g(x) = limn→∞ f ′
n(x) for all x in (a, b).

Proof. For each n, we have

fn(x) = fn(x0) +

∫ x

x0

f ′
n(s) ds, for x ∈ (a, b),

by the fundamental theorem of calculus. Now fix a point x in (a, b). The hypotheses

limn→∞ fn(x0) = L and f ′
n

unif→ g imply, using Theorem 7.1.12, that

lim
n→∞

fn(x) = lim
n→∞

(
fn(x0) +

∫ x

x0

f ′
n(s) ds

)
= L+

∫ x

x0

g(s) ds.
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Therefore fn has the pointwise limit f as stated, and

f ′(x) = g(x) = lim
n→∞

f ′
n(x), x ∈ (a, b)

follows by the fundamental theorem. �

In Theorem 7.1.13 we needed the convergence of fn(x0) at some point x0 be-
cause the uniform convergence of a sequence of functions (f ′

n in this case) does not
imply the convergence of the sequence of antiderivatives, as shown by this simple

example: Let fn(x) = n for all real x. Then f ′
n(x) = 0 and f ′

n
unif→ 0 on R. But

fn(x) does not converge at any point x.

Theorem 7.1.13 allows us to differentiate functions even in some cases where
we possess no explicit representation for the limit function, as in the next example.

Example 7.1.14. Let 0 < b < 1 and let fn : [0, b] → R be defined by

fn(x) = 1 + x+
x2

2
+ · · ·+ xn

n
.

Then limn→∞ fn(0) = 1 exists, and we have

f ′
n(x) = 1 + x+ · · ·+ xn−1 =

1− xn

1− x
for x ∈ [0, b].

If m > n, then

|f ′
m(x)− f ′

n(x)| =
∣∣∣1− xm

1− x
− 1− xn

1− x

∣∣∣ = |xn − xm|
1− x

≤ |xn − xm|
1− b

< ε

if m,n > N(ε) since the sequence xn converges uniformly on [0, b]. Therefore the
sequence (f ′

n) converges uniformly on [0, b]. Theorem 7.1.13 applies and we conclude
that

f ′ = lim
n→∞

f ′
n = ( lim

n→∞
fn)

′,

where f ′(x) = limn→∞(1 − xn)/(1 − x) = 1/(1 − x). We can recover f from f ′

in this case using the fundamental theorem of calculus and the fact that f(0) =
limn→∞ fn(0) = 1. Thus,

f(x) = 1 +

∫ x

0

f ′(s) ds = 1 +

∫ x

0

1

1− s
ds = 1− log(1− x),

and we conclude that

f(x) = lim
n→∞

(
1 + x+

x2

2
+ · · ·+ xn

n

)
= 1− log(1− x).

This also yields the useful series expansion

log(1− x) = − lim
n→∞

(
x+

x2

2
+ · · ·+ xn

n

)
= −

∞∑
k=1

xk

k

for x ∈ [0, b] where 0 < b < 1. �

A pointwise limit function f = limn fn may be differentiable without the fn
being differentiable, as in the next example.
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Example 7.1.15. Let fn(x) be defined by

fn(x) =

{
1/n if x ∈ I ∩ [0, 1],
0 if x ∈ Q ∩ [0, 1].

Then each fn is nowhere continuous on [0, 1] so each fn is nowhere differentiable
on [0, 1]. The limit function is f(x) = 0 for all x ∈ [0, 1], so the limit function is
differentiable on [0, 1]. �

Exercises.

Exercise 7.1.1. Consider the functions fn : [0, 1] → R defined by

fn(x) =

⎧⎨
⎩

0 for x = 0,
n for 0 < x < 1/n,
0 for 1/n ≤ x ≤ 1.

Show that fn → f on [0, 1], where f(x) ≡ 0 on [0, 1]. Then show that
∫ 1

0
f(x) dx 
=

limn→∞
∫ 1

0
fn(x) dx.

Exercise 7.1.2. Define functions fn on R−{1} by fn(x) = 1− [xn/(1−x)]. Find
the largest set S on which the sequence (fn) converges pointwise, and determine
the limit function on S.

Exercise 7.1.3. Let {q1, q2, q3, . . .} = Q∩ [0, 1] be an enumeration of the rationals
in the interval [0, 1]. Define fn : [0, 1] → R by

fn(x) =

{
0 if x ∈ {q1, q2, q3, . . . , qn},
1 if x ∈ [0, 1]− {q1, q2, q3, . . . , qn}.

Explain why each fn is integrable on [0, 1]. Show that fn converges pointwise to the
Dirichlet function f , where f(x) = 0 if x ∈ Q∩ [0, 1] and f(x) = 1 if x ∈ [0, 1]−Q,
which we know is not integrable.

Exercise 7.1.4. Consider the series
∑∞

n=1 x(1− x2)n.

1. Show that this series converges to

f(x) =

{
0 x = 0,
1
x − x −

√
2 < x <

√
2, x 
= 0.

2. Verify that each term of the series is continuous, differentiable, and integrable
on (−

√
2,
√
2), but the sum f has none of these properties.

Exercise 7.1.5. Let fn(x) = 1/x − x/n for x ∈ (0, 1]. Show that fn converges
uniformly on (0, 1] to the limit function f(x) = 1/x, x ∈ (0, 1].

Exercise 7.1.6. Define the continuous functions fn on [0, 1] by

fn(x) =

{
1− nx 0 ≤ x ≤ 1/n,
0 1/n ≤ x ≤ 1.

Find the pointwise limit function and show that it is not continuous on [0, 1].

Exercise 7.1.7. Define the continuous bounded functions fn on (0, 1] by

fn(x) =

{
n 0 < x ≤ 1/n,
1/x 1/n < x ≤ 1.

Find the pointwise limit function and show that it is not bounded on (0, 1].
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Exercise 7.1.8. Let fn(x) =
1
n sinnx for x ∈ R. Show that fn

unif→ 0 on R.

Exercise 7.1.9. Does the sequence fn(x) = nx/(1 + nx) converge uniformly on
R? What about on the interval [1, 2]?

Exercise 7.1.10. Define the sequence fn on [0, 1] for n > 1 by

fn(x) =

{
nx 0 ≤ x ≤ 1/n,
− n

n−1 (x− 1) 1/n ≤ x ≤ 1.

Show that fn has a pointwise limit f on [0, 1]. Is f continuous? Is the convergence
uniform?

Exercise 7.1.11. Show that the sequence of functions defined by

fn(x) =
n+ x

4n+ x
, n = 1, 2, 3, . . . ,

converges uniformly on the interval [0, N ] for any N < ∞, but does not converge
uniformly on [0,∞).

Exercise 7.1.12. This exercise deals with a specific sequence of differentiable func-

tions fn such that fn
unif→ f on R but the limit function f fails to be differentiable

on R. Let fn : R → R be given by

fn(x) = cosx+
1

2
cos 3x+

1

4
cos 9x+ · · ·+ 1

2n
cos 3nx.

1. Show that (fn) converges uniformly on R. Hint : Show that for m > n,

|fm(x)− fn(x)| < 1/2n.

2. Let f be the pointwise (and uniform) limit function, f = limn→∞ fn. Show
that f is not differentiable at 0 as follows. First, consider the sequence xk =
π/3k → 0 as k → ∞. Show that for n ≥ k, the difference quotient (fn(xk)−
fn(0))/(xk − 0) is given by

1
π
3k

[
cos

π

3k
+

1

2
cos

π

3k−1
+ · · ·+ 1

2k−1
cos

π

3
− 1

2k
− · · · − 1

2n
− 1− 1

2
− · · · − 1

2n

]
.

3. Then use the fact that

f(xk)− f(0)

xk − 0
= lim

n→∞

fn(xk)− fn(0)

xk − 0

to show that

f(xk)− f(0)

xk − 0
< −3k

π

1

2k
= − 1

π

(3
2

)k
,

and therefore the difference quotient diverges to −∞. Consequently, f ′(0)
does not exist. Since f must be periodic with period 2π, this argument shows
that f fails to be differentiable at all points 2kπ, k ∈ Z. (In fact, Hardy [27]
showed in 1909 that f is nowhere differentiable on R.)
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7.2. Series of Functions

Recall that a numerical series
∑∞

k=1 ak is defined to be the sequence of partial
sums (sn), where sn =

∑n
k=1 ak. In the same way, a series of real functions of a

real variable x, denoted
∞∑
k=1

fk(x),

is defined to be the sequence of partial sums

sn(x) =

n∑
k=1

fk(x), n = 1, 2, 3, . . . .

For series of functions we must specify a common domain for the fk.

Definition 7.2.1. Let fk : D ⊆ R → R for all k ∈ N.

1. The series
∑∞

k=1 fk(x) converges pointwise on S ⊆ D if the sequence (sn)
converges pointwise on S.

2. The series
∑∞

k=1 fk(x) converges uniformly on S ⊆ D if the sequence (sn)
converges uniformly on S.

3. The series
∑∞

k=1 fk(x) converges absolutely on S ⊆ D if
∑∞

k=1 |fk(x)|
converges pointwise on S.

4. If the series
∑∞

k=1 fk(x) converges pointwise, then the sum of the series is
the function f(x) := limn→∞ sn(x).

Remark. If the series
∑∞

k=1 fk(x) converges pointwise on S with sum f , we may
write any of the following phrases to indicate this fact: f =

∑∞
k=1 fk on S, or

limn→∞ sn = f on S, or f(x) =
∑∞

k=1 fk(x) for all x ∈ S, or sn → f on S.

It should be clear that absolute convergence of a series of functions on S implies
pointwise convergence of the series on S, and that uniform convergence of a series
of functions implies pointwise convergence of the series. Again we are interested
in whether or not the properties of continuity, boundedness, differentiability, and
integrability of the terms fk carries over to the sum of a series.

Theorem 7.2.2. Suppose the series
∑∞

k=1 fk(x) converges uniformly on S to the
sum f : S → R. Then the following statements are true:

1. If all the fk are continuous on S, then the sum f is continuous on S.

2. If all the fk are bounded on S, then the sum f is bounded on S.

Proof. Let sn(x) =
∑n

k=1 fk(x). If each fk is continuous on S, then each sn is
continuous on S. If each fk is bounded on S, then each sn is bounded on S. Since
f(x) = limn→∞ sn(x), statement 1 on continuity of f follows from the continuity of
a uniform sequential limit of continuous functions (Theorem 7.1.9), and statement
2 on boundedness of f follows from the boundedness of a uniform sequential limit
of bounded functions (Theorem 7.1.10). �

In practice we may start the indexing of a series at any convenient value.
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Example 7.2.3. If fk : R → R is defined by fk(x) = xk for k = 0, 1, 2, . . ., then
we have the geometric series

∞∑
k=0

fk(x) =

∞∑
k=0

xk = 1 + x+ x2 + · · ·

which converges pointwise on the set S = {x : |x| < 1}. We agree to make sn the
partial sum through the term xn, and thus write

sn(x) =

n∑
k=0

xk =
1− xn+1

1− x
.

The limit function on S is

f(x) = lim
n→∞

sn = lim
n→∞

1− xn+1

1− x
=

1

1− x
.

We now show the uniform convergence of this series on the closed interval [−b, b]
for any 0 < b < 1, directly from the definition. Given ε > 0, if m > n we have

|sm(x)− sn(x)| =
∣∣∣xn+1 − xm+1

1− x

∣∣∣ ≤ |xn+1 − xm+1|
1− b

< ε/2

for all x ∈ [−b, b] if m,n > N(ε), since the sequence (xn) converges uniformly on
[−b, b]. Now let m → ∞ in the last inequality and use the continuity of the absolute
value function to conclude that for all x ∈ [−b, b], we have

|f(x)− sn(x)| ≤ ε/2 < ε

provided n > N(ε). Therefore the geometric series converges uniformly to f(x) =
1/(1− x) on [−b, b], if 0 < b < 1. �

7.2.1. Integration and Differentiation of Series. The sum of a uniformly con-
vergent series of Riemann integrable functions is Riemann integrable, and the series
defining the sum can be integrated term-by-term.

Theorem 7.2.4 (Integration of a Series Term-by-Term). If the functions fk :
[a, b] → R are Riemann integrable on [a, b] and

∑∞
k=1 fk(x) converges uniformly on

[a, b], then the sum f(x) =
∑∞

k=1 fk(x) is Riemann integrable on [a, b] and∫ b

a

f(x) dx =

∫ b

a

∞∑
k=1

fk(x) dx =

∞∑
k=1

∫ b

a

fk(x) dx.

Proof. Let sn =
∑n

k=1 fk on [a, b]. Then Theorem 7.1.11 applied to the sn implies
that f = limn→∞ sn is Riemann integrable on [a, b]. An application of Theorem
7.1.12 to the sequence sn yields

lim
n→∞

∫ b

a

sn(x) dx =

∫ b

a

lim
n→∞

sn(x) dx =

∫ b

a

f(x) dx.

But ∫ b

a

sn(x) dx =

∫ b

a

n∑
k=1

fk(x) dx =

n∑
k=1

∫ b

a

fk(x) dx

is the n-th partial sum of the series
∑∞

k=1

∫ b

a
fk(x) dx. The result follows. �
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We also have the following consequence of Theorem 7.1.13 on term-by-term
differentiation of a uniformly convergent series of differentiable functions.

Theorem 7.2.5 (Differentiation of a Series Term-by-Term). Suppose the func-
tions fk : (a, b) → R are differentiable and f ′

k is continuous on (a, b) for each k,∑∞
k=1 fk(x0) converges for some x0 ∈ (a, b), and

∑∞
k=1 f

′
k(x) converges uniformly

on (a, b). Then the sum f =
∑∞

k=1 fk is differentiable on (a, b) and

f ′(x) =
∞∑
k=1

f ′
k(x) for all x ∈ (a, b).

Proof. The result follows by a direct application of Theorem 7.1.13 to the partial
sums sn =

∑n
k=1 fk, since the derivative s′n =

∑n
k=1 f

′
k is continuous for each n,

and by hypothesis, (sn(x0)) converges for some x0 and the sequence (s′n) converges
uniformly on (a, b). �

7.2.2. Weierstrass’s Test: Uniform Convergence of Series. Uniform conver-
gence of a series of functions can often be determined using the following simple
test.

Theorem 7.2.6 (Weierstrass Test). Suppose the real valued functions fk, k ≥ 1,
are defined on a common domain D ⊆ R. If each fk satisfies a bound of the form

|fk(x)| ≤ Mk for all x ∈ D,

where the Mk are fixed numbers, and if the series of the Mk converges, that is,∑∞
k=1Mk < ∞, then the series

∑∞
k=1 fk(x) converges uniformly on D.

Proof. Since
∑∞

k=1 Mk converges, the series
∑∞

k=1 fk(x) converges absolutely by a
direct comparison test, and therefore converges for each x ∈ D, so a pointwise limit
function f exists on D. It remains to show that the series converges uniformly to
f on D. Define the partial sums sn of the series by

sn(x) =

n∑
k=1

fk(x), x ∈ D.

We want to show that the sequence sn converges uniformly on D. Let Sn be the
sequence of partial sums of the series

∑∞
k=1Mk, and note that each Sn ≥ 0. Given

ε > 0, there is a number N(ε) > 0 such that

m > n > N(ε) =⇒
m∑

k=n+1

Mk = Sm − Sn <
ε

2
.

Thus, for m > n > N(ε) and all x ∈ D, the partial sums sn(x) satisfy

|sm(x)− sn(x)| =
∣∣∣ m∑
k=n+1

fk(x)
∣∣∣ ≤ m∑

k=n+1

Mk <
ε

2
.

Fix x ∈ D and let m → ∞. By the continuity of the absolute value function, for
any fixed n > N(ε) we have

lim
m→∞

|sm(x)− sn(x)| = |f(x)− sn(x)| ≤
ε

2
< ε.
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Since x in D was fixed but arbitrary, we conclude that if n > N(ε), then |f(x) −
sn(x)| < ε for all x ∈ D. Thus the sequence sn converges uniformly to f on D. �

Example 7.2.7. For the geometric series of Example 7.2.3, we may bound the
terms by

|fk(x)| = |xk| ≤ bk

when x ∈ [−b, b]. The series
∑∞

k=1 b
k converges since it is a geometric series with

base 0 < b < 1. By the Weierstrass test, the geometric series converges uniformly
on [−b, b] when 0 < b < 1. �

Exercises.

Exercise 7.2.1. Write out in terms of ε and N(ε) the assertions of statements 1-2
of Definition 7.2.1.

Exercise 7.2.2. Show that the series
∑∞

k=0 x
k/k! converges uniformly on any

bounded interval.

Exercise 7.2.3. Show that the series
∑∞

k=1(−1)k+1xk converges uniformly on any
interval of the form [−b, b], where 0 < b < 1.

Exercise 7.2.4. Show that the series
∞∑
k=1

1

k2
sin(kx)

defines a function f on R. Show that f is continuous on R.

7.3. A Continuous Nowhere Differentiable Function

An example of a continuous nowhere differentiable function can be constructed by
superimposing graphs having an increasing number of sharp corner points with
slopes on either side of increasing magnitude. Define

ψ(x) =

{
x for 0 ≤ x ≤ 1,
2− x for 1 ≤ x ≤ 2,

and extend ψ to all of R by the condition that ψ(x + 2) = ψ(x) for all real x.
Observe that |ψ(x)| ≤ 1 for all x and |ψ(x) − ψ(y)| ≤ |x − y| for all x, y; also,
|ψ(n + 1) − ψ(n)| = 1 for any integer n. The continuous nowhere differentiable
function of the following theorem is from Rudin [52].

Theorem 7.3.1. The function f : R → R defined by

f(x) =
∞∑
k=0

(3
4

)k
ψ(4kx)

is continuous and nowhere differentiable.

Proof. Since |( 34 )kψ(4kx)| ≤ ( 34 )
k and

∑∞
k=0(

3
4 )

k converges, the series converges
uniformly on R by the Weierstrass test, and the sum f is a continuous function on
R by Theorem 7.2.2. Moreover, since(3

4

)k
ψ(4k(x+ 2)) =

(3
4

)k
ψ(4kx+ 4k · 2) =

(3
4

)k
ψ(4kx),
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each of the partial sums has period 2, and consequently the limit function f has
period 2 on R. Let us show that f fails to be differentiable at every x. First
observe that the graph of the k-th term in the series, ( 34 )

kψ(4kx), is made up of

line segments of slope either 3k or −3k. Now let x be a fixed real number and let
m be any positive integer. Then there exists n ∈ Z such that

n ≤ 4mx ≤ n+ 1.

(Given x, the integer n depends on m, n = n(m), but for simplicity we do not
indicate this in the notation.) Define

αm = 4−mn and βm = 4−m(n+ 1),

and observe that

αm ≤ x ≤ βm and βm − αm = 4−m.

Our goal is to show that the difference quotients

f(βm)− f(αm)

βm − αm

become arbitrarily large as m → ∞. (See Exercise 7.3.2.) Consider the numbers
4kαm and 4kβm, k ∈ N. Then

k > m =⇒ 4kβm − 4kαm = 4k−m (an even integer),

k = m =⇒ 4kβm − 4kαm = 1,(7.1)

k < m =⇒ 4kβm − 4kαm =
1

4m−k
< 1.

For k < m there is no integer between 4kαm and 4kβm. By (7.1), properties of ψ
we have noted, and triangle inequality arguments, we have

|f(βm)− f(αm)| =
∣∣∣ m∑
k=0

(3
4

)k
(ψ(4kβm)− ψ(4kαm))

∣∣∣
≥

(3
4

)m
−

m−1∑
k=0

∣∣∣(3
4

)k
(ψ(4kβm)− ψ(4kαm))

∣∣∣
≥

(3
4

)m
−

m−1∑
k=0

(3
4

)k(1
4

)m−k

=
(3
4

)m
−
(1
4

)m m−1∑
k=0

3k (finite geometric series)

=
(3
4

)m
+

1

2 · 4m − 1

2

(3
4

)m
≥ 1

2

(3
4

)m
.

Consequently,∣∣∣f(βm)− f(αm)

βm − αm

∣∣∣ ≥ 4m
1

2

(3
4

)m
=

1

2
3m → ∞ as m → ∞.

This shows that f ′(x) does not exist (Exercise 7.3.2). Since x was arbitrary, the
function f is nowhere differentiable. �
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Exercises.

Exercise 7.3.1. Graph some partial sums of the series in Theorem 7.3.1, for ex-
ample, five terms and ten terms, to see how the sharp corners proliferate.

Exercise 7.3.2. Suppose f : (a, b) → R, x ∈ (a, b) and f ′(x) exists. Let a < αn ≤
x ≤ βn < b for n ∈ N , and suppose that αn → x and βn → x as n → ∞. Show
that

f ′(x) = lim
n→∞

f(βn)− f(αn)

βn − αn
.

Hint : Verify that

f(βn)− f(αn)

βn − αn
− f ′(x)

is equivalent to

cn

[f(βn)− f(x)

βn − x
− f ′(x)

]
+ (1− cn)

[f(αn)− f(x)

αn − x
− f ′(x)

]
where cn = (βn − x)/(βn − αn). Note that 0 ≤ cn ≤ 1.

7.4. Power Series; Taylor Series

Power series are a very useful type of infinite series of functions.

Definition 7.4.1. If x0 is a fixed real or complex number and ak is a sequence of
real or complex numbers, then a series of the form

∞∑
k=0

ak(x− x0)
k

is called a power series. The partial sums of such a series are given by

sn =
n∑

k=0

ak(x− x0)
k for n = 0, 1, 2, . . . .

Power series have special properties that distinguish them from more general
series of functions. These properties may be deduced in the special case where
x0 = 0 and translated easily to the general case where x0 
= 0; consequently, we
assume throughout this section that x0 = 0 and we study power series of the form

∞∑
k=0

akx
k.

Theorem 7.4.2. If the power series
∑∞

k=0 akx
k converges for x = b 
= 0, then it

converges absolutely for all x with |x| < |b|.

Proof. If
∑∞

k=0 akb
k converges, then the terms are bounded, so there exists an

M > 0 such that |akbk| ≤ M for all k. For any fixed x with |x| < |b|, and for any k,

|akxk| =
∣∣∣akbk(xk

bk

)∣∣∣ ≤ M
∣∣∣x
b

∣∣∣k.
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Since |x/b| < 1, we have the convergent geometric series

∞∑
k=0

M
∣∣∣x
b

∣∣∣k =
M

1− |xb |
,

and therefore for all |x| < |b|,
n∑

k=0

|akxk| ≤ M

1− |xb |
.

Hence
∑∞

k=0 |akxk| converges for all |x| < |b|, as we wished to show. �

Now let S be the subset of R defined by

(7.2) S =
{
x :

∞∑
k=0

akx
k converges

}
.

If S is not bounded above, then the power series
∑∞

k=0 akx
k converges for all x,

and hence converges absolutely for all x, by Theorem 7.4.2. If S is bounded above,
then it has a least upper bound r = supS ≥ 0. It is an immediate consequence
of the definition of r = supS that

∑∞
k=0 akx

k converges absolutely for all |x| < r.
Thus the next definition makes sense.

Definition 7.4.3. If the set S in ( 7.2) is bounded above, then the number

r = supS = sup
{
x :

∞∑
k=0

akx
k converges

}
is called the radius of convergence of

∑∞
k=0 akx

k. If S is not bounded above,
then we write r = ∞ for the radius of convergence.

It can happen that the radius of convergence is r = 0; for example, as in the
series

∞∑
k=1

(kx)k = x+ 22x2 + 33x3 + · · · ,

which must diverge for x 
= 0, since then limk→∞ kkxk does not exist.

Theorem 7.4.4. Let r be the radius of convergence of the power series
∑∞

k=0 akx
k,

where r = ∞ is possible. Then the following statements are true:

1.
∑∞

k=0 akx
k converges absolutely for all x with |x| < r.

2.
∑∞

k=0 akx
k diverges for all x with |x| > r.

3.
∑∞

k=0 akx
k converges uniformly to a continuous bounded function on every

closed real interval [a, b] ⊂ (−r, r).

4. The function f(x) =
∑∞

k=0 akx
k may be integrated term-by-term from 0 to x

for any x ∈ (−r, r):∫ x

0

f(t) dt =

∫ x

0

∞∑
k=0

akt
k dt =

∞∑
k=0

∫ x

0

akt
k dt =

∞∑
k=0

ak
k + 1

xk+1.
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5. f(x) =
∑∞

k=0 akx
k may be differentiated term-by-term at any x ∈ (−r, r):

f ′(x) =
∞∑
k=0

ak
d

dx
xk =

∞∑
k=1

kakx
k−1.

6. The sum function f of a convergent power series
∑∞

k=0 akx
k has derivatives

of all orders on (−r, r).

Proof. Statements 1 and 2 follow from the definition of r and Theorem 7.4.2.

3. On the interval [a, b] ⊂ (−r, r), we have |akxk| ≤ |ak|max{|a|, |b|}k, and∑
|ak|max{|a|, |b|}k converges since max{|a|, |b|} < r. By the Weierstrass test, the

series converges absolutely and uniformly on [a, b] to a continuous limit function.
The partial sums are continuous and therefore bounded on [a, b], and hence their
uniform limit on [a, b] is also bounded.

4. By the uniform convergence on the interval between 0 and x, this follows
directly from Theorem 7.2.4 applied to the power series on that interval.

5. If r > 0, the series converges at all points of (−r, r), and the termwise
differentiated series

∑∞
k=1 kakx

k−1 is a power series having the same radius of
convergence r (Exercise 7.4.1). Thus the differentiated series converges uniformly
on any closed interval about a given point x ∈ (−r, r). By an application of Theorem
7.2.5, we may conclude that

f ′(x) = a1 + 2a2x+ 3a3x
2 + · · · =

∞∑
k=1

kakx
k−1.

Finally, statement 6 follows by an inductive application of statement 5. �

The next example illustrates the term-by-term integration property.

Example 7.4.5. From the definition of the natural logarithm function and a simple
substitution, we have

log(1 + x) =

∫ 1+x

1

1

t
dt =

∫ x

0

1

1 + t
dt.

For |t| < 1, we have the geometric series sum,

1

1 + t
= 1− t+ t2 − t3 + · · · =

∞∑
k=0

(−1)ktk,

with radius of convergence equal to 1. By Theorem 7.4.4 (statement 4), term-by-
term integration yields

log(1 + x) =

∞∑
k=0

∫ x

0

(−1)ktk dt =

∞∑
k=0

(−1)k
xk+1

k + 1
=

∞∑
k=1

(−1)k+1x
k

k
.

This power series converges uniformly on any closed subinterval of (−1, 1). Clearly
it cannot converge when x = −1, but it does converge when x = 1 to the value
log 2. �

The root test (Theorem 3.11.1) provides an explicit rule for the radius of con-
vergence of a power series.
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Theorem 7.4.6 (Cauchy-Hadamard). If
∑∞

k=0 akx
k converges for some x 
= 0,

then the radius of convergence of the power series is given by

r =
1

lim sup k
√
ak

, if lim sup k
√
ak > 0,

and by r = ∞, if lim sup k
√
ak = 0.

Proof. If x 
= 0 and
∑∞

k=0 akx
k converges, then the terms |akxk| are bounded and

therefore

lim sup k

√
|akxk| = |x| lim sup k

√
|ak|

exists as a finite value. Hence lim sup k
√
|ak| exists as a finite value.

Suppose lim sup k
√
|ak| > 0. By the root test,

∑∞
k=0 akx

k converges if

|x| lim sup k
√
|ak| < 1 or |x| < 1

lim sup k
√
ak

.

On the other hand, the series diverges if

|x| lim sup k
√
|ak| > 1 or |x| > 1

lim sup k
√
ak

.

Hence the radius of convergence equals (lim sup k
√
|ak|)−1 as stated.

If lim sup k
√
|ak| = 0, then the root test implies that the series converges abso-

lutely for all x. �

In Section 7.5 the sine and cosine functions are defined by power series, yielding
solutions of the differential equation y′′(x)+y(x) = 0 with initial conditions y(0) = 0
and y′(0) = 1 (y = sin x), and y(0) = 1 and y′(0) = 0 (y = cosx). The usual
geometric interpretations of these functions can be shown to follow from these
definitions.

Clearly, power series can be used to define important functions, and such func-
tions have derivatives of all orders in the interior of the interval of convergence.

On the other hand, if a given function f has derivatives of all orders on an
interval, we can define an infinite power series associated with f , using the derivative
values of f at a given point a in the interval. The resulting series is called the
Taylor series of f about a (or centered at a). We now define these Taylor series
and consider the convergence of the resulting series to the function f that gives rise
to the series.

We say that f is C∞, or infinitely differentiable, on an interval I if f has
derivatives of all orders at each point in I. Suppose that f : I → R is infinitely
differentiable and a ∈ I. Then it is possible to define the Taylor series for f
centered at x = a by

∞∑
k=0

f (k)(a)

k!
(x− a)k.
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The Taylor series for f centered at x = a is, by definition, the sequence (sn(x))
∞
n=1

of partial sums given by

sn(x) =
n∑

k=0

f (k)(a)

k!
(x− a)k = f(a) + f ′(a)(x− a) + · · ·+ f (n)(a)

n!
(x− a)n

for x ∈ I. It follows directly from Taylor’s Theorem 5.7.2 and the definition of
Taylor series that a necessary and sufficient condition for the pointwise convergence
of sn to f on I is that the remainder Ra,n(x) has limit zero as n → ∞, for each
x ∈ I,

lim
n→∞

Ra,n(x) = 0 for each x ∈ I.

Example 7.4.7. Let f(x) = sin x and a = 0. Since |f (n)(x)| ≤ 1 for all n, the
remainder term Ra,n(x), for any choice of x in Taylor’s theorem, satisfies

|Ra,n(x)| ≤
|x|n+1

(n+ 1)!
.

In particular, by computing derivatives of f through order 5 at a = 0, we find

sin x = x− 1

3!
x3 +

1

5!
x5 +R0,5(x)

where |R0,5(x)| ≤ |x|6/6!. In fact, it is not difficult to see that for any positive
integer n, |R0,n(x)| ≤ |x|n+1/(n+ 1)!. It follows that for |x| ≤ b,

lim
n→∞

R0,n(x) = 0,

so the Taylor series for the sine function converges to the value sinx for |x| ≤ b.
Since this is true for arbitrary b > 0, the Taylor series for the sine function converges
to sinx for any real number x. �

The Taylor series for ex, and a Taylor series for log(1 + x), for x ∈ (−1, 1), are
considered in the exercises.

The existence of derivatives of all orders for a function f on an interval does
not suffice to ensure that f has a representation by Taylor series. Consider the next
example.

Example 7.4.8. Define f : R → R by

f(x) =

{
e−1/x2

for x 
= 0,
0 for x = 0.

The graph of f appears in Figure 7.2. One can show that f (k)(0) = 0 for every
positive integer k, and consequently f is C∞ on R. Thus the Taylor series for f
centered at x = 0 exists and has all coefficients equal to zero. Thus f cannot be the
sum of its Taylor series centered at x = 0 over any nontrivial interval containing
the origin, and thus we say that f is not an analytic function.2 �

The next result is a uniqueness result for power series representation of f on
an interval. The proof is left to Exercise 7.4.6.

2The term analytic function is a standard term in complex analysis which describes a differentiable
complex valued function f(z) of the complex variable z. The existence of the complex derivative is a
strong condition, and such functions are in fact represented by their Taylor series expansions.
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-3  0  3

Figure 7.2. The graph of f(x) = e−1/x2
. The Taylor series for f centered at

the origin has all coefficients zero, since all derivatives of f at the origin equal
zero. Thus the Taylor series cannot represent f on any nontrivial interval
about the origin, and consequently we say that f is not an analytic function.

Theorem 7.4.9. Suppose f(x) =
∑∞

k=0 ak(x− a)k for all x ∈ (a− r, a+ r), where

r is the radius of convergence of the power series. Then
∑∞

k=0 ak(x − a)k is the

Taylor series of f centered at x = a; that is, ak = f (k)(a)/k!.

Exercises.

Exercise 7.4.1. Show that the radius of convergence of
∑∞

k=1 kakx
k−1 is the same

as the radius of convergence of
∑∞

k=0 akx
k. Thus, verify that in Theorem 7.4.4,

statement 6 follows from statement 5 by induction.

Exercise 7.4.2. Let f(x) = ex. Show that for any real x and any positive integer
n,

ex = 1 + x+
x2

2!
+ · · ·+ xn

n!
+R0,n(x),

where

|R0,n(x)| ≤
{

ex|x|n+1/(n+ 1)! if x > 0,

|x|n+1/(n+ 1)! if x < 0.

Conclude that the Taylor series for f(x) = ex at a = 0 converges to the value ex

for any real x.

Exercise 7.4.3. Let f(x) = log(1 + x), which is defined on the interval (−1, 1)
centered at a = 0. Show that for k ≥ 1, f (k)(x) = (−1)k+1(k − 1)! (1 + x)−k, and
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thus f has the Taylor series representation

log(1 + x) =

∞∑
k=1

(−1)k+1

k
xk = x− 1

2
x2 +

1

3
x3 − · · · ,

which converges for −1 < x < 1. Show that the remainder R0,k(x), when x = 1,
satisfies limk→∞ R0,k(1) = 0, and therefore the series

∞∑
k=1

(−1)k+1

k
= 1− 1

2
+

1

3
− 1

4
+ · · ·

converges to log 2.

Exercise 7.4.4. Show that for the function f in Example 7.4.8, f (k)(0) = 0 for
every positive integer k.

Exercise 7.4.5. Suppose that all derivatives of f at the point x = a are uniformly
bounded on an interval I containing the point x = a, say |f (k)(x)| ≤ M for all
x ∈ I and all k ∈ N. Show that limn→∞ Ra,n(x) = 0 for all x ∈ I, and therefore f
is the sum of its Taylor series centered at a, that is,

f(x) =
∞∑
k=0

f (k)(a)

k!
(x− a)k, for all x ∈ I.

Exercise 7.4.6. Prove Theorem 7.4.9. Hint : Use term-by-term differentiation.

Exercise 7.4.7. Define the function F by

F (x) :=

∫ x

0

log(1− t) dt, for x < 1.

Find the Taylor series centered at a = 0 for F , and determine its interval of con-
vergence. Hint : Differentiate to get a known series, then justify term-by-term
integration.

Exercise 7.4.8. Consider the function f(x) = x/(1 + x), for −1 < x < ∞.

1. Find the Taylor series centered at a = 0 for f , and determine its interval of
convergence.

2. Estimate the remainder R0,5, and specify an interval on which the estimate is
valid.

7.5. Exponentials, Logarithms, Sine and Cosine

This section applies some earlier results to rigorously establish the most fundamen-
tal properties of the elementary transcendental functions: the exponential, loga-
rithm, and trigonometric functions.

In Theorem 6.7.9, we defined the natural logarithm function by the integral

log x =

∫ x

1

1

t
dt

and established its fundamental properties. In particular, log x is differentiable for
x > 0, log : (0,∞) → R, with d

dx log x = 1/x for all x > 0. Since log x is a
strictly increasing function, it is invertible on its range, which is (−∞,∞), and
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log−1 : (−∞,∞) → (0,∞). We know from experience in calculus courses that
log−1(x) = exp(x) and, in fact, we usually write ex instead of exp(x). A major goal
of the section is to justify this name and notation for the inverse of log.

7.5.1. Exponentials and Logarithms. We begin with a power series definition
of the exponential function exp(x) in Definition 7.5.1 below. We then deduce that
exp(x) really equals

log−1 : (−∞,∞) → (0,∞).

First we recall that the Euler number e was defined by the result of Theorem 3.1.5,
which established that the limit

lim
n→∞

(
1 +

1

n

)n
exists. By definition, this limit is the Euler number e. In Theorem 3.5.1, it was
shown that e is also the sum of the series

∞∑
k=0

1

k!
.

When b is a positive number and x is a rational number, we know what is
meant by the expression bx. For example, since e > 0, for a rational number
x = p/q, with positive p, q ∈ Z, we have ex = ep/q = q

√
ep, which is the q-th root of

ep = e · · · e (p factors). But what about ex (or, more generally, bx) for irrational x?
An exponential operation bx for all real x that is true to its name should certainly
have the properties bxby = bx+y and (bx)−1 = b−x for all real x and y. The key
to assigning a meaning to the expression ex for irrational x is the series definition
given here.

Definition 7.5.1. The function exp : R → R defined by

exp(x) =

∞∑
k=0

1

k!
xk

is called the real exponential function.

The series
∑∞

k=0
1
k!x

k converges absolutely for any real x by the ratio test, and
uniformly on any bounded set of real numbers by the Weierstrass test. So exp is
defined and continuous on R.

We should note that the complex exponential function, exp(z), z ∈ C, is
defined by the same power series with a complex variable z in place of the real
variable x,

exp(z) =

∞∑
k=0

1

k!
zk.

Again, this series converges absolutely for any complex z, and uniformly on any
bounded set in the complex plane.

From the series definition, we have exp(0) = 1 and exp(1) = e, the Euler
number. The next proposition shows that exp(x) has another essential property of
an exponentiation operation with base e.
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Proposition 7.5.2. For any real numbers x and y,

exp(x) exp(y) = exp(x+ y).

Proof. Using the fact that the series converges absolutely for any x, we find by a
rearrangement that

exp(x) exp(y) =
( ∞∑

k=0

1

k!
xk
)( ∞∑

m=0

1

m!
ym
)

=

∞∑
n=0

( ∑
k+m=n

1

k!

1

m!
xkym

)
(by rearrangement)

=

∞∑
n=0

( n∑
k=0

1

k!

1

(n− k)!
xkyn−k

)
(set m = n− k)

=

∞∑
n=0

1

n!

( n∑
k=0

n!

k!(n− k)!
xkyn−k

)
by the introduction of the n! factors in both the numerator and the denominator.
The inner sum is the binomial expansion of (x + y)n, so we have exp(x) exp(y) =∑∞

n=0
1
n! (x+ y)n, which equals exp(x+ y) by the series definition. �

Other important properties of exp follow from Proposition 7.5.2.

Proposition 7.5.3. The function exp : R → R is differentiable and has the fol-
lowing properties:

1. d
dx exp(x) = exp(x) for all x;

2. exp(x) > 0 for all x;

3. exp(−x) = 1/ exp(x) for all x;

4. exp : R → R+ is one-to-one (it is strictly increasing) and onto R+ = (0,∞).

Proof. 1 follows by term-by-term differentiation of the defining series for exp(x),
which is valid due to the uniform convergence of the series on bounded intervals.
By induction, it follows that exp(x) is a C∞ function on R.

2 For any x, exp( 12x) exp(
1
2x) = [exp( 12x)]

2 = exp(x), so exp(x) ≥ 0. Since we
have exp(x) exp(−x) = exp(0) = 1, exp(x) 
= 0, and therefore exp(x) > 0 for all x.
This also shows that exp(−x) = (exp(x))−1 = 1/ exp(x), so 3 holds.

4 That exp is strictly increasing follows from 2 and 1. Since exp(x) is C∞ on
R, it is one-to-one and has a C∞ inverse by the inverse function theorem. By (2),
the range of exp is a subset of R+. Since exp(1) = e,

exp(n) = exp(1) · · · exp(1) = e · · · e = en,

and since e > 1, en → ∞ as n → ∞. So exp(x) is not bounded above. Also,
exp(−1) = 1/ exp(1) = 1/e, so exp(−n) = 1/en → 0 as n → ∞. (Alternatively, by
the fundamental theorem of calculus and the fact that exp(x) > 1 for x > 0, we
have

exp(x) = exp(0) +

∫ x

0

exp(t) dt > 1 +

∫ x

0

1 dt = 1 + x, for x > 0,
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so exp(x) → ∞ as x → ∞, and since exp(−x) = 1/ exp(x), exp(x) → 0 as x →
−∞.) Consequently, the range of exp must be (0,∞), as we now show. Given any
y > 1, there is an n1 ∈ N such that 1 < y < en1 , and then by continuity of exp and
the intermediate value theorem, there is an x such that 0 < x < n1 and exp(x) = y.
If 0 < y < 1, there is an n2 ∈ N such that e−n2 < y < 1, and the intermediate
value theorem implies that there is an x such that −n2 < x < 0 and exp(x) = y.
Hence, exp is onto (0,∞). �

We have exp−1 : (0,∞) → (−∞,∞). Since the derivative of exp−1 at y ∈
(0,∞) is the reciprocal of the derivative of exp at the point x such that exp(x) = y,
we have

d

dy
exp−1(y) =

1
d
dx exp(x)

=
1

exp(x)
=

1

y
, for y = exp(x).

Thus log y and exp−1(y) have the same derivative for all y > 0, and log 1 = 0 =
exp−1(1), as we have seen. Thus,

log = exp−1 and exp−1 = log .

By the definition of inverse, we have

log(exp(x)) = x for all real x

and

exp(log y) = y for all y > 0.

In particular, log 1 = 0 and log e = 1.

The next proposition shows that exp : R → R+ really can be interpreted as
a continuous exponentiation operation that extends the definition of ex defined for
rational x.

Proposition 7.5.4. exp(x) is a differentiable (hence continuous) function on R
such that exp(x) = ex for all x ∈ Q.

Proof. We only need to show that ex = exp(x) for all x ∈ Q. We have seen
already in the proof of Proposition 7.5.3 (item 4) that for any positive integer n,
exp(n) = exp(1+ · · ·+1) = exp(1) · · · exp(1) = en. And by Proposition 7.5.3 (item
3), we have, for positive integer n, exp(−n) = 1/ exp(n) = 1/en, which we usually
write as e−n, so exp(−n) = e−n. We also have

(exp(1/n))n = exp(1/n) · · · exp(1/n) = exp(1/n+ · · ·+ 1/n) = exp(1) = e,

so exp(1/n) is an n-th root of e, which we usually write as exp(1/n) = n
√
e = e1/n.

Now let m and n be positive integers. By the facts just given, we have

exp(m/n) = exp(1/n+ · · ·+ 1/n) = (exp(1/n))m = ( n
√
e)m = em/n.

If m < 0 and n > 0, then we have

exp(m/n) = exp(−|m|/n) = 1/ exp(|m|/n) = 1/e|m|/n = e−|m|/n = em/n,

which completes the proof. �
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Proposition 7.5.4 indicates that for a continuous exponentiation operation with
base e we must define

ex := exp(x)

when x is irrational, and this completes the definition of the expression ex for all

real x. In particular, this defines power expressions such as eπ and e
√
2.

But what about πe? or
√
2
e
? or 2π? In other words, for a full range of

exponentiation operations with various bases b > 0, we should extend the reasoning
applied to the base e exponential and its inverse, the base e logarithm, to other
bases b > 0. (The function log = exp−1 could be denoted by loge (or ln, for
natural logarithm), to distinguish it from other logarithm functions associated
with exponential functions with other base numbers b, to be defined; however, log
without a subscript notation will always mean the inverse of exp.) First, we record
once more the main properties of log which were derived in Theorem 6.7.9. The
interested reader may wish to derive these properties here from the properties of
exp and the fact that log = exp−1.

Proposition 7.5.5. The function log : R+ → R has the following properties:

1. log(xy) = log(x) + log(y) for every x, y > 0;

2. log(1/x) = − log x;

3. log is differentiable and d
dx log x = 1/x for every x > 0;

4. log is one-to-one (it is strictly increasing) and onto R.

We now proceed to consider other bases. Let b > 0. For rational numbers
x = p/q, we clearly have

bx = bp/q = (bp)1/q = [(elog b)p]1/q = e(p/q) log b = exp
(p
q
log b

)
= exp(x log b).

In order to have a function bx which is continuous on R, we define

bx := exp(x log b) for irrational x.

Definition 7.5.6. The function expb : R → R+ defined by

expb(x) = exp(x log b)

is called the exponential function with base b.

Note that if b = 1, then log b = log 1 = 0, so expb(x) = exp(0) = 1 for all x,
and from here on we remove this case from consideration.

From the definition, we have expb(0) = exp(0) = 1. The other basic properties
of expb(x) follow from the properties of exp.

Proposition 7.5.7. If b > 0, b 
= 1, then the function expb : R → R+ has the
property that

expb(x) expb(y) = expb(x+ y)

for any real x and y, and also the following properties:

1. expb(x) > 0 for all x.

2. expb(−x) = 1/ expb(x) for all x.

3. d
dx expb(x) = expb(x) log b for all x.



7.5. Exponentials, Logarithms, Sine and Cosine 207

4. If b > 1, then expb(x) is strictly increasing on R, and
a) expb(x) → +∞ as x → +∞;
b) expb(x) → 0 as x → −∞.

5. If 0 < b < 1, then expb : R → R+ is strictly decreasing on R, and
a) expb(x) → 0 as x → +∞;
b) expb(x) → +∞ as x → −∞.

6. expb : R → R+ is one-to-one and onto R+.

Proof. For real x and y, using the corresponding property of exp gives

expb(x) expb(y) = exp(x log b) exp(y log b) = exp((x+ y) log b) = expb(x+ y).

Properties 1 and 2 follow from the corresponding properties of exp. The derivative
formula 3 follows from the known derivative of exp and the chain rule:

d

dx
expb(x) =

d

dx
exp(x log b) = exp(x log b) log b = expb(x) log b,

and this formula determines the increasing or decreasing property of expb, according
to whether b > 1 or 0 < b < 1, which determines the sign of log b. The final
properties, a) and b) for both parts 4 and 5, as well as part 6, follow readily from
property 4 of Proposition 7.5.3 and Definition 7.5.6, and are left as exercises for the
reader. �

The function expb provides a continuous exponentiation operation with base
b > 0 that extends the definition of bx defined for rational x.

Proposition 7.5.8. expb(x) is a differentiable (hence continuous) function on R
such that expb(x) = bx for all x ∈ Q.

The proof of Proposition 7.5.8 is left to the interested reader.

Let b > 0, b 
= 1. Since expb : R → R+ is a C∞ one-to-one function onto
R+, by Proposition 7.5.8 and Proposition 7.5.7 (part 6), there is a C∞ function,
denoted logb : R

+ → R, which is the inverse of expb, so that

logb(expb(x)) = x for all x ∈ R

and

expb(logb(x)) = x for all x ∈ R+.

We have seen that d
dx expb(x) = expb(x) log b for every real x. Differentiating

expb(logb(x)) = x, we find that

expb(logb(x)) log b ·
d

dx
logb(x) = 1 for all x > 0,

so that
d

dx
logb(x) =

1

x log b
for all x > 0.

We now have all the tools needed to write the basic properties for exponentials
bx and their logarithms. Using the basic exp and log, we can obtain the final
major properties of exponentiation with base b. For any b > 0, b 
= 1, we have
log(bx) = log(exp(x log b)) = x log b, so

log(bx) = x log b.
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Consequently, (bx)y = exp(y log(bx)) = exp(yx log(b)) = exp(xy log(b)) = bxy, that
is,

(bx)y = bxy.

Here is a summary of the basic properties of exponentiation with base b > 0, all of
which have now been established.

Proposition 7.5.9. If b > 0, b 
= 1, and x, y ∈ R, then

1. b0 = 1, and bx > 0 for every x;

2. bxby = bx+y;

3. (bx)y = bxy.

Here are the corresponding logarithm properties, for b > 0 and b 
= 1.

Proposition 7.5.10. If b > 0, b 
= 1, and x, y ∈ R+, then

1. logb(1) = 0;

2. logb(xy) = logb(x) + logb(y);

3. logb(x
a) = a logb(x) for every real number a.

Proof. It is similar to the arguments for the basic log function. Property 2 follows
from Proposition 7.5.9 (property 2), by writing x = br and y = bs and applying
logb to the identity eres = er+s, to get

logb xy = logb(b
rbs) = logb b

r+s = r + s = logb x+ logb y.

Property 3 follows from Proposition 7.5.9 (property 3), by writing x = br, so that

logb(x
a) = logb((b

r)a) = logb(b
ra) = ra = a logb x,

as desired. �

See Exercise 7.5.1 for an alternative definition of bx.

7.5.2. Power Functions. Power functions xr, for rational r, are well under-
stood from basic calculus. Our interest here is power functions with irrational

exponents, such as xπ or x
√
2. Most of the work has been done in the subsection

on exponentials.

If x > 0, then xa is well-defined by xa := exp(a log x). The exponential rule
xaxb = xa+b follows from Proposition 7.5.9 (property 2). The exponential rule
(xa)b = xab follows from Proposition 7.5.9 (property 3). The rule xaya = (xy)a

follows from the calculation

xaya = exp(a log x) exp(a log y) = exp(a(log x+ log y)) = exp(a log(xy)) = (xy)a.

The derivative of xa is
d

dx
xa = axa−1 for x > 0,

which follows from the chain rule calculation

d

dx
xa =

d

dx
exp(a log x) = exp(a log x)

a

x
= ax−1xa = axa−1,

using the first exponential rule in this subsection.
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The properties given above assumed that x > 0. There are restrictions on
powers xa when x < 0. For example, if p and q are integers, we may write

xp/q = q
√
xp

for any x < 0, provided p is even.

Finally, if x = 0, we define xa = 0a = 0 for any a > 0.

7.5.3. Sine and Cosine Functions. We define the sine and cosine functions by
infinite series.

Definition 7.5.11. We define the function sin : R → R by the series

sinx =
∞∑
k=1

(−1)k+1 x2k−1

(2k − 1)!
= x− x3

3!
+

x5

5!
− x7

7!
+ · · · ,

and call it the sine function. We define the function cos : R → R by the series

cosx =

∞∑
k=0

(−1)k
x2k

(2k)!
= 1− x2

2!
+

x4

4!
− x6

6!
− · · · ,

and call it the cosine function.

Using the ratio test for absolute convergence and Weierstrass’ test for uniform
convergence, we may deduce that each of these series converges absolutely for each
real x and uniformly on bounded intervals.

By direct substitution of −x for x in the defining series, we verify directly that

sin(−x) = − sin x and cos(−x) = cosx

for all real x. Thus the sine function is an odd function and the cosine function is
an even function.

The derivatives of the sine and cosine functions may be obtained by termwise
differentiation of the series, since the termwise differentiated series also converge
uniformly on bounded intervals. Thus we obtain the formulas

d

dx
sin x = cosx and

d

dx
cosx = − sinx.

From these formulas, one can deduce by induction that sinx and cosx have deriva-
tives of all orders, that is, the sine and cosine functions are C∞ functions on R.

Let us show the Pythagorean identity,

cos2 x+ sin2 x = 1

for all real x. Indeed, differentiation of cos2 x+ sin2 x gives

2 cosx(− sinx) + 2 sin x cosx = 0 =⇒ cos2 x+ sin2 x = constant,

and from the series definitions, we have sin 0 = 0 and cos 0 = 1, so the constant
equals 1. It follows easily that for all real x,

| sinx| ≤ 1 and | cosx| ≤ 1.

It is convenient here to establish the uniqueness of the solution pair f, g for the
initial value problem consisting of the pair of differential equations

(7.3) f ′ = g and g′ = −f
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and the initial conditions

(7.4) f(0) = 0 and g(0) = 1.

We do this here without calling on the general theory of existence and uniqueness
for solutions of initial value problems. We already know that f1(x) = sin x and
g1(x) = cosx provide a solution of the initial value problem (7.3), (7.4). Now
suppose that f and g satisfy (7.3) and (7.4). Consider the pair of functions

−f(x) cosx+ g(x) sinx

and

f(x) sinx+ g(x) cosx.

It is straightforward to verify that these functions have zero derivative for all x, by
virtue of the differential equations (7.3) satisfied by the pairs f , g and sin x, cosx.
Consequently, there are real constants α and β such that for all x,

−f(x) cosx+ g(x) sinx = α,(7.5)

f(x) sinx+ g(x) cosx = β.(7.6)

By setting x = 0 and using (7.4) we find that α = 0 and β = 1. For each x, we can
view f(x) and g(x) as the unknowns in these equations, written in matrix form as[

− cosx sin x
sinx cosx

] [
f(x)
g(x)

]
=

[
0
1

]
.

We may invert the coefficient matrix, whose determinant is −1 (or use elementary
operations), to solve the equations for f(x) and g(x), obtaining[

f(x)
g(x)

]
=

[
− cosx sinx
sinx cosx

]−1 [
0
1

]

=

[
− cosx sinx
sinx cosx

] [
0
1

]

=

[
sin x
cosx

]
for all real x. This shows the uniqueness of the solution of (7.3), (7.4).

We now establish the addition formulas for sine and cosine, that is, for all real
x and y,

sin(x+ y) = sin x cos y + cosx sin y,(7.7)

cos(x+ y) = cosx cos y − sin x sin y.(7.8)

Consider the left-hand sides of (7.7) and (7.8) with y considered fixed but
arbitrary; they define a pair of functions f2 = sin(x + y), g2 = cos(x + y) of the
variable x, which satisfy

f ′
2(x) = g2(x) and g′2(x) = −f2(x),

that is, f2, g2 satisfy equation (7.3). Their initial conditions at x = 0 are f2(0) =
sin y and g2(0) = cos y. By an argument similar to the one given earlier, we find
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that f = f2 and g = g2 satisfy equations (7.5), (7.6), except with α = − sin y and
β = cos y. We then solve (7.5), (7.6) with these right-hand sides, to find that

[
f2(x)
g2(x)

]
=

[
− cosx sin x
sinx cosx

] [
− sin y
cos y

]

=

[
sin x cos y + cosx sin y
cosx cos y − sinx sin y

]
for all real x, which establishes (7.7) and (7.8).

We can now define the number π and establish the periodicity of sine and
cosine.

First, note that if g(x) is continuous and satisfies g(0) > 0 and g(x0) = 0
for some x0 > 0, then there is a smallest positive number z such that g(z) = 0
(Exercise 7.5.3). Since g(x) = cosx is continuous and g(0) = cos 0 = 1 > 0, there is
a smallest positive number z such that cos z = 0 provided we show that cosx0 = 0
for some x0 > 0. Since d

dx sinx = cosx, by the mean value theorem there is a
number c such that

sin 2− sin 0 = 2 cos c =⇒ sin 2 = 2 cos c

from which it follows that | cos c| ≤ 1/2. By the cosine addition formula and the
Pythagorean identity,

cos 2c = cos2 c− sin2 c = 2 cos2 c− sin2 c− cos2 c = 2 cos2 c− 1 < 0.

This gives us cos 0 > 0 and cos 2c < 0, so by the intermediate value theorem, there
is a number x0 between 0 and 2c such that cosx0 = 0. Thus, by Exercise 7.5.3,
there is a smallest positive number z such that cos z = 0.

Definition 7.5.12. Let z be the smallest positive number such that cos z = 0. Then
the number π is defined by π := 2z.

Theorem 7.5.13. The functions sin x and cosx are periodic with period 2π, and
2π is the least positive period of these functions.

Proof. By Definition 7.5.12, cosπ/2 = 0 and since cos2 x+sin2 x = 1, sin2 π/2 = 1.
By the addition formula (7.8) for cosine,

cosπ = cos2 π/2− sin2 π/2 = 0− 1 = −1.

Then it follows from the Pythagorean identity that sin π = 0, and hence, by (7.8),

cos 2π = cos2 π − sin2 π = 1− 0 = 1,

and therefore sin 2π = 0. Now, by (7.7) and (7.8),

sin(x+ 2π) = sinx and cos(x+ 2π) = cosx

for all x ∈ R. Thus sinx and cosx are periodic with period 2π. That 2π is the
least positive period of these functions is left to Exercise 7.5.4. �

We can now relate the analytic definition of π with the geometric significance
of the number π as the area enclosed by a circle of radius 1. If this circle is centered
at the origin in the plane, it is described by the equation x2 + y2 = 1. We define
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the areas of planar regions by integration, and thus by symmetry we may define
the area enclosed by this circle by stating that∫ 1

0

√
1− x2 dx =

1

4
(area of the unit circle).

Thus we wish to prove that ∫ 1

0

√
1− x2 dx =

π

4
.

To do so, we use an integration by substitution. We have sin 0 = 0, and sin π/2 = 1,
by the Pythagorean identity and the fact that cosπ/2 = 0. Since sin u is increasing
and differentiable for u ∈ [0, π/2], we may let x = sinu and use the addition formula
(7.8) and Pythagorean identity to get∫ 1

0

√
1− x2 dx =

∫ π/2

0

cos2 u du =

∫ π/2

0

1 + cos 2u

2
du =

π

4
.

7.5.4. Some Inverse Trigonometric Functions. The functions

sin : [−π/2, π/2] → [−1, 1] and cos : [0, π] → [−1, 1]

have continuous inverses, considered in Exercises 7.5.5-7.5.6. We focus here on
the tangent function and its principal value inverse. Since cosx > 0 for all x ∈
(−π/2, π/2), the function tan : (−π/2, π/2) → R is well defined by

tanx =
sin x

cosx
, x ∈ (−π/2, π/2).

Indeed this formula defines tanx for all real x 
= ±k π
2 for odd positive integers k

(where cos(±k π
2 ) = 0), and tan(x+ π) = tanx where defined. Differentiation gives

d

dx
[tanx] =

1

cos2 x
, x ∈ (−π/2, π/2),

so tanx has a positive derivative on (−π/2, π/2) and is therefore strictly increasing
there. The range of tan is all of R. From the Pythagorean identity, it follows
that cos2 x = 1/(1 + tan2 x). Write y = tanx. By Theorem 5.3.1, the inverse
tan−1 : R → (−π/2, π/2) has derivative

d

dy
[tan−1 y] = cos2(tan−1 y) =

1

1 + y2
, y ∈ R.

Since tan 0 = 0, we have 0 = tan−1(0), and by the fundamental theorem,

tan−1 y =

∫ y

0

1

1 + t2
dt, y ∈ R.

7.5.5. The Elementary Transcendental Functions. The functions ex, sinx,
cosx, tanx are known as the elementary transcendental functions. They are called
elementary because everybody has known about them for a long time and found
them to be very useful. The best reason for the name transcendental comes from
work of both F. Lindemann and K. Weierstrass in the last two decades of the
nineteenth century. In particular, we note the following theorem, quoted from
Niven [49].
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Theorem 7.5.14 (Transcendental values of the elementary functions). The fol-
lowing statements are true:

1. The values ex, sinx, cosx, and tanx, as well as

sinh x =
ex − e−x

2
, coshx =

ex + e−x

2
and tanhx =

sinh x

coshx
=

ex − e−x

ex + e−x
,

are transcendental numbers for any nonzero algebraic number x.

2. In addition, the values of log x, sin−1 x, and, in general, the inverse functions
of the functions listed in statement 1, are transcendental for any nonzero al-
gebraic number x 
= 1.

In particular, since 1 is a nonzero algebraic number, e1 = e is transcendental.
What about π? If π were algebraic, then so would be π/4, and hence, by the
theorem, we would have that tanπ/4 = 1 is transcendental, which is clearly false.
So π is not algebraic, and therefore π is transcendental.

If one considers that the point set (Q∪Ia)×(Q∪Ia) of “algebraic points”
is everywhere dense in R2, it seems truly incredible that the graphs of
these functions manage to wind their way through the plane avoiding all
but one of these algebraic points. H. Sagan [54] (page 616).

Exercises.

Exercise 7.5.1. Since Q is dense in R, for any real number x there exists an
increasing sequence (qn) of rational numbers such that limn→∞ qn = x. If b > 0,
b 
= 1, and x ∈ R, suppose we define bx := limn→∞ bqn , where (qn) is an increasing
sequence of rationals with limn→∞ qn = x.

1. Show that this definition of bx does not depend on the specific rational se-
quence used; that is, show that if (qn) and (rn) are increasing sequences of
rational numbers such that limn→∞ qn = x = limn→∞ rn, then

lim
n→∞

aqn = lim
n→∞

arn .

In particular, it is consistent with our previous definition of bq when q is
rational, since the constant rational sequence qn = q has limit q.

2. Conclude that this definition yields the same functions defined in the text.

3. Show that, under this new definition, the laws of real exponents follow from
the corresponding laws of rational exponents by limit arguments.

Exercise 7.5.2. The complex hyperbolic cosine and complex hyperbolic
sine functions are defined in terms of the complex exponential function by cosh z =
(ez + e−z)/2 and sinh z = (ez − e−z)/2 for complex z. (Replacing z by real x in
these formulas defines the real hyperbolic cosine and real hyperbolic sine
functions.)

1. Show that sinh ix = i sinx and cosh ix = cosx for all real x.

2. Show that for all complex z and w, sinh(z+w) = sinh z coshw+cosh z sinhw,
and cosh(z + w) = cosh z coshw + sinh z sinhw.

3. Express sinh(x + iy) and cosh(x + iy) in terms of real functions of the real
variables x and y.
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Exercise 7.5.3. Prove: If g(x) is continuous and satisfies g(0) > 0 and g(x0) = 0
for some x0 > 0, then there is a smallest positive number z such that g(z) = 0.
Hint : Define z = inf{x : g(x) = 0}, and show that z > 0 and g(z) = 0.

Exercise 7.5.4. Prove that 2π is the least positive period of sin x and cosx.

Exercise 7.5.5. Show that sin : [−π/2, π/2] → [−1, 1] has a continuous inverse on
[−1, 1]. Denote the inverse by sin−1 : [−1, 1] → [−π/2, π/2], and show that

sin−1 y =

∫ y

0

1√
1− t2

dt for |y| < 1.

Interpret geometrically.

Exercise 7.5.6. Show that cos : [0, π] → [−1, 1] has a continuous inverse on [−1, 1].
Denote the inverse by cos−1 : [−1, 1] → [0, π], and show that

cos−1 y =
π

2
−
∫ y

0

1√
1− t2

dt for |y| < 1.

Interpret geometrically. Show that sin−1 y + cos−1 y = π/2 for all y ∈ [−1, 1].

Exercise 7.5.7. Before the gamma function

Show that
∫ b

0
e−x dx = 1− e−b for all b > 0, and thus

∫∞
0

e−x dx = 1.

Exercise 7.5.8. Towards the gamma function

1. Use integration by parts to show that∫ b

0

xne−x dx = −bne−b + n

∫ b

0

xn−1e−x dx, for n = 1, 2, . . . .

2. Deduce that for n ≥ 1,∫ ∞

0

xne−x dx = n

∫ ∞

0

xn−1e−x dx.

3. Using the result of Exercise 7.5.7, we obtain
∫∞
0

xe−x dx =
∫∞
0

e−x dx = 1

and
∫∞
0

x2e−x dx = 2 · 1 = 2. Show that∫ ∞

0

xne−x dx = n! for n = 0, 1, 2, . . . .

Exercise 7.5.9. The gamma function
Let α > 0. Notice that for 0 < ε < 1 < b,∫ b

ε

xα−1e−x dx =

∫ 1

ε

xα−1e−x dx+

∫ b

1

xα−1e−x dx.

1. Deduce that limε→0+

∫ 1

ε
xα−1e−x dx exists if 0 < α < 1, and when α ≥ 1, it is

a Riemann integral. Hint : For the first statement, note that 0 ≤ xα−1e−x ≤
xα−1 for all x ≥ 0.

2. Show that limb→∞
∫ b

1
xα−1e−x dx exists for fixed α > 0. Hint : Divide the

integrand f(x) = xα−1e−x by g(x) = 1/x2, and find limx→∞ xα+1e−x = 0;
then deduce that, given ε > 0, there existsN(ε) such that 0 ≤ xα−1e−x ≤ εx−2

for x > N(ε).
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3. Conclude that for α > 0,

Γ(α) :=

∫ ∞

0

xα−1e−x dx = lim
ε→0+

∫ 1

ε

xα−1e−x dx+ lim
b→∞

∫ b

1

xα−1e−x dx

defines a function, called the gamma function. Use Exercise 7.5.8 to show
that Γ(n+ 1) = n! for n = 0, 1, 2, 3, . . ..

4. Integrate by parts to find that Γ(α+ 1) = αΓ(α) for α > 0.

7.6. The Weierstrass Approximation Theorem

Polynomial functions on [a, b] are continuous functions, and we know that a uni-
form limit of polynomials defined on [a, b] is necessarily a continuous function. The
Weierstrass approximation theorem asserts that every continuous real valued func-
tion on [a, b] can be approximated uniformly by polynomial functions. There is
no assumption of derivatives in this statement. This is a stronger result than the
uniform convergence of Taylor polynomials on closed intervals within the interval
of convergence of a Taylor series.

First, we observe that by a linear mapping from [0, 1] to [a, b] we only need
consider a continuous function on the interval [0, 1].

The Russian mathematician S. N. Bernstein used a simple probabilistic idea as
the basis of his proof of the Weierstrass approximation theorem. Suppose a coin
has the property that the probability of showing heads on a single toss is x, and the
probability of showing tails is therefore 1 − x. The probability of showing exactly
k heads after n tosses is( n

k

)
xk(1− x)n−k =

n!

k! (n− k)!
xk(1− x)n−k,

because the probabilities of the outcomes of the n independent tosses multiply to
give the probability of the final outcome of the sequence of n tosses, and the number
of ways that the k heads can occur is the same as the number of combinations of
k objects chosen from n objects. In n tosses of the coin, some number k of heads
must appear, where 0 ≤ k ≤ n, with probability 1 (certainty in probability theory)
so the probabilities for achieving k heads, for 0 ≤ k ≤ n, add to 1:

(7.9)

n∑
k=0

( n
k

)
xk(1− x)n−k = 1.

Note that this is the special case of the binomial expansion of (x+y)n when y = 1−x:

1 = (x+ 1− x)n =

n∑
k=0

( n
k

)
xk(1− x)n−k.

Let f be continuous on [0, 1]. Since f is uniformly continuous on [0, 1], for
a given x ∈ (0, 1] and n sufficiently large, we can approximate f(x) by the value
f(k/n) for some k with 0 ≤ k ≤ n. Consider the polynomial function Bn(x) defined
by

Bn(x) =
n∑

k=0

( n
k

)
xk(1− x)n−kf(k/n).
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These polynomials are called the Bernstein polynomials associated with f . Using
(7.9), we may write

f(x)−Bn(x) =

n∑
k=0

( n
k

)
xk(1− x)n−k[f(x)− f(k/n)]

and consequently

|f(x)−Bn(x)| ≤
n∑

k=0

( n
k

)
xk(1− x)n−k|f(x)− f(k/n)|.

For fixed n, the expression xk(1 − x)n−k is bounded for x ∈ [0, 1]. The difference
|f(x)− f(k/n)| can be made small for a given x by choosing n large and k appro-
priately. However, for a given ε > 0 we must be able to see how to choose n large
enough so that the entire summation is less than ε for all x ∈ [0, 1].

The key to showing that the approximation is uniform is provided by two
identities that follow from (7.9) by differentiation with respect to x. Differentiation
of (7.9) with respect to x gives

0 =
n∑

k=0

( n
k

)
xk−1(1− x)n−k−1(k − nx).

Then multiplication by x(1− x) gives

(7.10) 0 =
n∑

k=0

( n
k

)
xk(1− x)n−k(k − nx).

Now differentiation of (7.10) with respect to x gives

(7.11) 0 =

n∑
k=0

( n
k

)
[−nxk(1− x)n−k + xk−1(1− x)n−k−1(k − nx)2].

An application of (7.9) to (7.11) yields

n =

n∑
k=0

( n
k

)
xk−1(1− x)n−k−1(k − nx)2,

and multiplication of this last result by x(1− x) gives

nx(1− x) =

n∑
k=0

( n
k

)
xk(1− x)n−k(k − nx)2.

A final division by n2 gives

(7.12)
x(1− x)

n
=

n∑
k=0

( n
k

)
xk(1− x)n−k(x− k/n)2.

The key identities for the proof of Theorem 7.6.1 are (7.9) and (7.12). The knowl-
edge of a definite bound for x(1− x) on [0, 1] will imply that the right-hand side of
(7.12) can be made arbitrarily small uniformly in x. The proof will be completed
by relating the bound for the right-hand side of (7.12) with the bound given above
for |f(x)−Bn(x)|.
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Theorem 7.6.1 (Weierstrass Approximation Theorem). Suppose a < b. Let f :
[a, b] → R be continuous on [a, b] and let ε > 0. Then there exists a polynomial
function p : [a, b] → R with real coefficients such that for all x ∈ [a, b],

|f(x)− p(x)| < ε.

Proof. We have seen that for all x ∈ [0, 1] and all n,

(7.13) |f(x)−Bn(x)| ≤
n∑

k=0

( n
k

)
xk(1− x)n−k|f(x)− f(k/n)|.

Let ε > 0. By the uniform continuity of f on [0, 1], there is a δ > 0 such that

|x− k/n| < δ =⇒ |f(x)− f(k/n)| < ε/2.

For any fixed x, the right-hand side of (7.13) can be split into two summations, one
of them, labeled

∑
x, over those k such that |x − k/n| < δ, and the other, labeled∑′

x, over those k such that |x− k/n| ≥ δ. For any fixed x, one can check without
difficulty that

∑
x < ε/2. The proof will be completed by showing that the sum∑′

x (independently of x, that is, for all x with |x−k/n| ≥ δ) can be made less than
ε/2 by choosing n sufficiently large. Since f is continuous on [0, 1] it is bounded
there, so there exists M such that |f(x)| ≤ M for all x ∈ [0, 1]. Thus, for any x,

0 ≤
∑′

x
≤ 2M

∑′′

x

( n
k

)
xk(1− x)n−k

where the summation
∑′′

x on the right is over those k such that |x− k/n| ≥ δ. So
we want to show that the summation on the right can be made less than ε/4M
independently of x. Now identity (7.12) provides the needed bound, for it shows
that for each x,

x(1− x)

n
=

n∑
k=0

( n
k

)
xk(1− x)n−k(x− k/n)2.

≥ δ2
∑′′

x

( n
k

)
xk(1− x)n−k.

Hence, for each x, ∑′′

x

(
n
k

)
xk(1− x)n−k ≤ x(1− x)

δ2n
.

Since x(1− x) is bounded by 1/4 for x ∈ [0, 1], we have∑′′

x

( n
k

)
xk(1− x)n−k ≤ 1

4δ2n
.

With an abbreviated notation, the right-hand side of (7.13) is now bounded as
follows: ∑

x

+
∑′

x
<

ε

2
+ 2M

∑′′

x
≤ ε

2
+

M

2δ2n
.

Now choose n such that n > M/(δ2ε). Then the Bernstein polynomial Bn(x)
associated with f satisfies

|f(x)−Bn(x)| <
ε

2
+

ε

2
= ε

for all x ∈ [0, 1]. �
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Exercise.

Exercise 7.6.1. Verify the derivation of (7.10), (7.11) and (7.12) in the proof of
the Weierstrass Approximation Theorem 7.6.1.

7.7. Notes and References

For additional information on the probabilistic ideas behind Bernstein’s approach
to the proof of the Weierstrass theorem, see Kazarinoff [34]. There is a more
abstract view of the Weierstrass approximation theorem in the book by Simmons
[59], together with a discussion of the important generalization of it known as the
Stone-Weierstrass theorem.



Chapter 8

The Metric Space Rn

The most basic concepts of analysis appear in the preceding chapters on real valued
functions of a real variable. However, most applied problems deal with more than
one variable and more than one real valued function. They often involve vector
valued functions of a vector variable. The position, velocity and acceleration of even
a single point mass in space are vector functions of time, each vector function having
three real component functions. A continuous dynamical model for the populations
of n interacting species may involve a system of n nonlinear ordinary differential
equations with n dependent variables for the populations of the species (time being
the independent variable). Even a nodding acquaintance with problems arising in
the sciences or engineering indicates the need for a rigorous look at multivariable
calculus. The most basic study of multivariable problems involves vector valued
functions of a vector variable in Euclidean space, that is, mappings from Rn to
Rm. For such mappings, we will discuss important analogues of the derivatives,
integrals, mean value theorem, and inverse function theorem that are important in
single variable analysis. To discuss these analogues, we need the basic theory of
normed vector spaces. While our main focus in this chapter is on the n-dimensional
vector space Rn, we also give some attention to function spaces, that is, vector
spaces whose elements are functions.

8.1. The Vector Space Rn

The Cartesian product of n nonempty sets S1, S2, . . . , Sn is the set

S1 × S2 × · · · × Sn =
{
(x1, x2, . . . , xn) : xj ∈ Sj for j = 1, . . . , n

}
consisting of all ordered n-tuples (x1, x2, . . . , xn) where the j-th element xj is an
element of Sj for j = 1, . . . , n. These are ordered n-tuples because we require that
(x1, x2, . . . , xn) = (y1, y2, . . . , yn) if and only if xj = yj for all j = 1, . . . , n, that is,
these n-tuples are equal as finite sequences defined on the set {1, 2, . . . , n}.

219



220 8. The Metric Space Rn

Definition 8.1.1. The collection of all ordered n-tuples of real numbers is the
n-fold Cartesian product

R×R× · · · ×R︸ ︷︷ ︸
n factors

= {(x1, x2, . . . , xn) : xj ∈ R for j = 1, . . . , n}

and we denote this set by Rn.

In introductory multivariable calculus, most of the work is done in the plane
R2 or in space R3. In those situations, ordered pairs (x1, x2) or ordered triples
(x1, x2, x3) are visualized as position vectors with terminal point at the point with
coordinates (x1, x2) (or (x1, x2, x3)) and initial point at the origin (0, 0) (or (0, 0, 0)).
We shall write elements of Rn using boldface letters, for example

x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn).

By definition, x = y if and only if xj = yj for j = 1, . . . , n.

The set Rn is given algebraic structure by the operations of addition of n-tuples
and scalar multiplication of an n-tuple by a real number. Here are the definitions.

Definition 8.1.2. If x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) are elements of
Rn and α is a real number, we define

x+ y = (x1, x2, . . . , xn) + (y1, y2, . . . , yn) = (x1 + y1, x2 + y2, . . . , xn + yn)

and
αx = α(x1, x2, . . . , xn) = (αx1, αx2, . . . , αxn).

The set Rn together with these operations satisfies the axioms of a real vector
space, which we state below. First, a remark about notation:

Remark. Elements of Rn (for any n) will be denoted by boldface letters. Dis-
cussions about elements in an arbitrary general vector space will not use boldface
for those elements.

We assume the reader is familiar with the axioms that define a real vector
space, but we recall the definition here.

Definition 8.1.3. A set V together with an addition operation and a scalar mul-
tiplication operation is a real vector space if the following properties hold:

1. Closure under addition and multiplication: If x, y ∈ V , then x + y ∈ V . If
x ∈ V and α ∈ R, then αx ∈ V .

2. Addition is commutative: x+ y = y + x for all x, y ∈ V .

3. Addition is associative: x+ (y + z) = (x+ y) + z for all x, y, z ∈ V .

4. There exists a unique additive identity 0 ∈ V that satisfies x + 0 = x for all
x ∈ V .

5. Each x ∈ V has a unique additive inverse y such that x+ y = 0 ∈ V .

6. (αβ)x = α(βx) for all x ∈ V and α, β ∈ R.

7. (α+ β)x = αx+ βx for all x ∈ V and α, β ∈ R.

8. α(x+ y) = αx+ αy for all x, y ∈ V and α ∈ R.

9. If x ∈ V , then 0x = 0 ∈ V and 1x = x.
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Properties 1-9 of a set V with operations of addition (a mapping V × V → V )
and scalar multiplication (a mapping R × V → V ) are the axioms that define a
real vector space (or a vector space over the real scalar field R). Notice that
these properties only guarantee the existence of a single element in V , and that is
the additive identity, the zero vector, 0. Indeed, the set V = {0} with the operation
table 0 + 0 = 0 and α0 = 0 for all α ∈ R (necessarily, by property 9), is a real
vector space. It is an important space, describing for example the solution set of
the system of linear equations Ax = 0, where A is a real n× n nonsingular matrix
and 0 is the zero vector in Rn.

If properties 1-9 hold for elements of a set V and scalars from the complex field
C, then V is a complex vector space (or a vector space over the complex scalar
field C).

The elements of a space V are often called vectors, but there are vector spaces
whose elements are functions, and vector spaces whose elements are matrices. Ex-
amples are given below.

Readers with some experience with abstract algebra will recognize the first five
axioms as the axioms of an object called an abelian (commutative) group under
addition.

In discussions of real vector spaces, real numbers are often called scalars. It
follows from the definitions of addition and scalar multiplication that if x,y ∈ Rn

and α, β are scalars, then

αx+ βy = (αx1 + βy1, αx2 + βy2, . . . , αxn + βyn).

When we said that these two algebraic operations provide Rn with algebraic struc-
ture, we mean precisely that the set V = Rn supplied with these operations is a
real vector space. We record this as the next theorem and encourage the reader to
think through a proof of this theorem in Exercise 8.1.1.

Theorem 8.1.4. The set Rn, with the operations of addition and scalar multipli-
cation in Definition 8.1.2, is a real vector space.

Recall that addition and scalar multiplication of (real or complex valued) func-
tions are defined pointwise: If a set S of functions has common domain D, then for
f, g ∈ S,

(f + g)(x) = f(x) + g(x), (αf)(x) = αf(x) for all x ∈ D.

With these definitions of addition and scalar multiplication, a few moments’ thought
will show that S is a vector space (real or complex) if S is closed under the oper-
ations (axiom 1). Note that the additive identity is the zero function whose value
at any x ∈ D is zero (axiom 4). The other axioms (axioms 2-3,5-9) are immediate
consequences of the definitions of addition and scalar multiplication of functions.

The following theorem is useful when dealing with subsets W of a known vector
space V . A proof is requested in Exercise 8.1.2.

Theorem 8.1.5. Let V be a real vector space and let W be a subset of V closed
under the operations on V , that is, for all x, y ∈ W and α ∈ R, we have x+ y ∈ W
and αx ∈ W . Then W is a real vector space with the same addition and scalar
multiplication as defined on V . We call W a subspace of the vector space V .

The variety of vector spaces is immense.
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Example 8.1.6. Let F [a, b] be the set of real valued functions defined on [a, b].
It is straightforward to verify that F [a, b] has the structure of a real vector space
if we define pointwise addition and scalar multiplication of functions in the usual
way: if f, g ∈ F [a, b] and α ∈ R, then (f + g)(x) = f(x) + g(x), x ∈ [a, b], and
(αf)(x) = αf(x), x ∈ [a, b]. �

The next examples describe some subspaces of the vector space F [a, b].

Example 8.1.7. Let B[a, b] be the set of real valued functions bounded on [a, b].
By definition, f ∈ B[a, b] if and only if there is some M > 0 such that |f(x)| ≤ M
for all x ∈ [a, b]. Then B[a, b] is a real vector space. For the closure under addition
and scalar multiplication, let f, g ∈ B[a, b] and let M1,M2 be real numbers such
that |f(x)| ≤ M1 and |g(x)| ≤ M2 for all x ∈ [a, b]. Then for all x ∈ [a, b], we
have |f(x) + g(x)| ≤ |f(x)| + |g(x)| ≤ M1 + M2 and |(αf)(x)| ≤ |α|M1. Hence,
f + g, αf ∈ B[a, b]. �

Example 8.1.8. The set C[a, b] of real-valued functions continuous on [a, b] is a
real vector space. Closure under pointwise addition and scalar multiplication were
established in the previous example, since every function continuous on [a, b] is
bounded on [a, b]. Thus, C[a, b] is a subspace of the vector space B[a, b]. �

Example 8.1.9. The set P [a, b] of polynomial functions on [a, b] with real coef-
ficients is a real vector space. It is a subspace of C[a, b], and thus a subspace of
B[a, b]. �

Example 8.1.10. We assume some basic familiarity with matrices. The set Rmn

of m× n real matrices (m rows and n columns, with real entries) is a vector space
if addition and scalar multiplication are defined entrywise:

A = [aij ], B = [bij ] =⇒ A+B = [aij + bij ],

and, if α ∈ R,

αA = [αaij ],

where 1 ≤ i ≤ m and 1 ≤ j ≤ n. If the entries are taken to be complex numbers
(including real numbers) and scalars are allowed to be complex, then we get the
complex vector space Cmn of m× n complex matrices. �

Let V be a real (or complex) vector space. It follows from the axioms that
arbitrary linear combinations of elements of V are also elements in V . That is, if
v1, v2, . . . , vm ∈ V and c1, c2, . . . , cm ∈ V , then the finite sum

c1v1 + c2v2 + · · ·+ cmvm

is defined unambiguously as an element in V as a consequence of the closure and
associativity axioms, and is called a linear combination of the vj .

Definition 8.1.11. Let V be a real vector space, and X a subset of V . The set
X is linearly independent if whenever {x1, . . . , xn} is a finite subset of X and
c1x1 + · · ·+ cnxn = 0 for some scalars c1, . . . , cn, it follows that 0 = c1 = · · · = cn.
The set X is linearly dependent if it is not linearly independent, that is, if there
is some finite subset {x1, . . . , xn} of X and scalars c1, . . . , cn, not all zero, such
that c1x1 + · · ·+ cnxn = 0.
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A subset S ⊂ V is a spanning set for V if every element of V can be written
as a linear combination of elements from S; then we also say that S spans V . A
basis B of V is a linearly independent spanning set. A vector space V is finite-
dimensional if it contains a finite spanning set; if no finite spanning set exists,
then V is infinite-dimensional. For a finite-dimensional space, the dimension
of the space is the minimum number of elements in a spanning set. One can show
that, in a finite-dimensional space, a spanning set is a basis if and only if it has
minimal size.

There are some special and important vectors in Rn which we now identify. In
Rn, the n vectors

e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1)

are called the standard basis vectors for Rn. These vectors form a basis for Rn.
Consequently, every vector x in Rn can be written as a linear combination of the
ej in a unique way; see Exercise 8.1.3.

The spaces B[a, b], C[a, b] and P [a, b] are infinite-dimensional. The space Rn

is finite-dimensional with dimension n (by Exercise 8.1.3). The matrix space Rmn

is finite-dimensional and has dimension mn; a basis is given by the matrices Eij ,
1 ≤ i ≤ m, 1 ≤ j ≤ n, where Eij has all entries zero except for the (i, j)-entry,
which equals 1.

Vector spaces are present everywhere in mathematical analysis. We give several
more examples below. In each of these examples, one should check closure of the
relevant set under the operations of addition and scalar multiplication; the other
algebraic properties for a vector space are then easily seen to be satisfied.

Example 8.1.12. The rational number field V = Q is a vector space with the
rational number field Q as the field of scalars. This space is not especially useful
for analysis since Q is not complete. The real field R = R1 is a vector space with
the real number field R as the field of scalars. �

Example 8.1.13. Let C ′[a, b] be the set of real valued functions defined on [a, b]
and differentiable on (a, b). Then C ′[a, b] is a real vector space. �

Example 8.1.14. Let C1[a, b] be the set of real valued functions defined on [a, b]
and having a continuous derivative on (a, b). Then C1[a, b] is a real vector space
and it is a proper subspace of C ′[a, b]. We also note that C[a, b] is a proper subspace
of C ′[a, b]. �

Example 8.1.15. Let R[a, b] be the set of real valued functions that are integrable
on [a, b]. Then R[a, b] is a real vector space. Only closure needs to be checked
since R[a, b] is a subset of the vector space F [a, b] of real valued functions on
[a, b]. Clearly, R[a, b] is closed under real scalar multiplication. If f and g are in
R[a, b], then the discontinuities of f + g are contained in the union of the sets of
discontinuities of f and g. Since those sets have Lebesgue measure zero, so does
the set of discontinuities of f + g, hence f + g ∈ R[a, b]. �

Additional examples of real vector spaces are considered in the exercises for
this section.
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Exercises.

Exercise 8.1.1. Prove Theorem 8.1.4. Hint : Many properties might be verified
without writing them down, but writing them is good practice. Be sure to prove
the uniqueness of the additive identity and uniqueness of additive inverses.

Exercise 8.1.2. Prove Theorem 8.1.5.

Exercise 8.1.3. Show that the standard basis vectors e1, . . . , en deserve their
name: Show that {e1, . . . , en} is a basis of Rn. Then show that every vector x in
Rn can be written in a unique way as a linear combination of the ej .

Exercise 8.1.4. Check closure under addition and scalar multiplication for each
of the spaces considered in Examples 8.1.13-8.1.14. Also, state the containment
relations for all pairs of the spaces R[a, b], P [a, b], C[a, b], C ′[a, b], C1[a, b] and
B[a, b].

Exercise 8.1.5. Consider the set S consisting of all real sequences ξ = (ξk). Prove:
S is a real vector space.

Exercise 8.1.6. Consider the set l1 consisting of the real sequences ξ = (ξk) such
that

∑∞
k=1 |ξk| converges. Prove: l1 is a real vector space.

Exercise 8.1.7. Consider the set l∞ consisting of the bounded real sequences
ξ = (ξk). Prove: l

∞ is a real vector space.

8.2. The Euclidean Inner Product

We are assuming that the reader has some experience from an introductory multi-
variable calculus course with the dot product

x · y = x1y1 + x2y2 + x3y3

of vectors x = (x1, x2, x3) and y = (y1, y2, y3) in R3. In this book, we denote this
product by

(x,y) = x1y1 + x2y2 + x3y3,

and we shall use a similar notation for generalizations of this product in certain
other vector spaces.

The next definition is based on the fundamental properties of this product.

Definition 8.2.1. Let V be a real vector space. A function mapping V × V into
R, with values denoted (x, y), is a real inner product if it has these properties:

(i) (x, x) ≥ 0 for all x ∈ V , and (x, x) = 0 if and only if x = 0;

(ii) α(x, y) = (αx, y) = (x, αy) for all x, y ∈ V and α ∈ R;

(iii) (x, y) = (y, x) for all x, y ∈ V ;

(iv) (x, y + z) = (x, y) + (x, z) for all x, y, z ∈ V .

Here are some important consequences of these properties. For any x ∈ V ,
(x, 0) = 0; this follows from (ii), since we can take α = 0 and any x, y to give

0 = 0(x, y) = (x, 0y) = (x, 0).



8.2. The Euclidean Inner Product 225

From properties (iii) and (iv), it follows that (x+y, z) = (x, z)+(y, z) for all x, y, z ∈
V . Property (iii) says that a real inner product is symmetric in its arguments.
Properties (ii), (iii) and (iv) combine to imply that an inner product is linear in
both of its arguments, so it is bilinear :

(αx+ βy, z) = α(x, z) + β(y, z) and (z, αx+ βy) = α(z, x) + β(z, y)

for all x, y, z ∈ V and real numbers α and β.

The familiar dot product of vectors in R3 is an inner product by this definition.
It is a special case of the next theorem.

Theorem 8.2.2. The mapping Rn ×Rn to R defined by

(x,y) = x1y1 + x2y2 + · · ·+ xnyn, for x,y ∈ Rn,

is an inner product. This is called the Euclidean inner product, or the standard
inner product, on Rn.

Proof. We have (x,x) = x2
1 + x2

2 + · · · + x2
n ≥ 0 for all x ∈ V . If x 
= 0, then

for some j, xj 
= 0, hence (x,x) > 0; thus, if (x,x) = 0, then xj = 0 for each j.
Therefore property (i) of the definition holds. For property (ii),

α
n∑

j=1

xjyj =
n∑

j=1

(αxj)yj =
n∑

j=1

xj(αyj),

by the distributive and associative laws of the real numbers, hence

α(x,y) = (αx,y) = (x, αy).

Property (iii) follows from commutativity of real number multiplication. Verifica-
tion of property (iv) of the definition is left to Exercise 8.2.1. �

A real vector space V with a real inner product (·, ·) is called a real inner
product space.

Theorem 8.2.3 (Cauchy-Schwarz Inequality). If V is a real inner product space
and x, y ∈ V , then

|(x, y)| ≤
√

(x, x)
√
(y, y),

and equality holds if and only if the vectors are collinear, that is, if and only if
x+ t0y = 0 for some t0 ∈ R.

Proof. If y = 0, then (y, y) = 0, as we have shown, so the stated inequality simply
requires that (x, 0) = 0, and we have also shown this above. Now assume that x
and y 
= 0 are fixed vectors in V and t is real. Properties (ii), (iii) and (iv) of
Definition 8.2.1 imply that

(x+ ty, x+ ty) = (x, x) + 2t(x, y) + t2(y, y).

The right-hand side is a quadratic polynomial in t, and by property (i) of Definition
8.2.1,

(x+ ty, x+ ty) ≥ 0,

hence, for all t,

(x, x) + 2t(x, y) + t2(y, y) ≥ 0.
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The minimum value of this quadratic polynomial must occur at the point

t = t0 = − (x, y)

(y, y)
.

Substituting t0 for t in the quadratic implies

0 ≤ (x+ t0y, x+ t0y) = (x, x)− (x, y)2

(y, y)
,

which is equivalent to
(x, y)2 ≤ (x, x)(y, y).

Taking the positive square root of each side yields the desired result. Finally,
note that equality holds if and only if 0 = (x + t0y, x + t0y), hence if and only if
x+ t0y = 0. �

For the Euclidean inner product of vectors x,y in Rn, the Cauchy-Schwarz
inequality is

|(x,y)| ≤
√

(x,x)
√
(y,y).

Letting y = ej , the j-th standard basis vector, we immediately have

|xj | = |(x, ej)| ≤
√
(x,x), where x = (x1, . . . , xn).

The next example introduces an important inner product for a space of con-
tinuous functions.

Example 8.2.4. Consider the space C[a, b] of continuous functions on [a, b]. We
define an inner product on C[a, b] by

(f, g) =

∫ b

a

f(x)g(x) dx for f, g ∈ C[a, b].

It is straightforward to check that this is indeed an inner product on C[a, b]. Let
us verify in particular that (f, f) = 0 implies f = θ ∈ C[a, b]. To see it, notice that
if f(x0) 
= 0 for some x0 ∈ [a, b], then [f(x0)]

2 > 0, and by continuity, [f(x)]2 > 0

for all x in some neighborhood of x0. But then (f, f) =
∫ b

a
[f(x)]2 dx > 0. Thus, if

(f, f) = 0, then necessarily f(x) ≡ 0, that is, f = θ ∈ C[a, b]. �
Example 8.2.5. Consider the vector space R[a, b] of Riemann integrable functions
on [a, b] (Example 8.1.15). If we define

(f, g) =

∫ b

a

f(x)g(x) dx for f, g ∈ R[a, b],

then it can be verified that this product satisfies all the requirements for an inner
product in Definition 8.2.1 except condition (i) which states that (f, f) = 0 implies
f = θ ∈ R[a, b]. For example, choose any finite set F of points in [a, b] and let f
take the value 1 on those points, and then define f(x) = 0 for x ∈ [a, b]− F . Then

f is Riemann integrable and
∫ b

a
[f(x)]2 dx = 0, but f 
= θ ∈ R[a, b]. What we can

say is that if (f, f) = 0, then
∫ b

a
f2 dx = 0, hence f2 = 0 almost everywhere in [a, b],

and hence f = 0 almost everywhere in [a, b]. Since the product (f, g) is so useful,
we can modify our thinking about the Riemann integrable functions by identifying
two functions if they are equal except on a set of measure zero in [a, b], that is, they
are equal a.e. in [a, b]. (We can define an equivalence relation ∼ on R[a, b] such that
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f ∼ g if and only if f = g almost everywhere in [a, b]. Then we have well defined
operations of addition and scalar multiplication of equivalence classes. See Exercise
8.2.4.) In practice, we can continue to work with individual functions and simply
identify functions that are equal almost everywhere in [a, b]. By this agreement, we
consider R[a, b] to be an inner product space with inner product (f, g) as defined
above. We remark that, in linear algebra terms, we are thus actually working with
the quotient space, R[a, b] modulo the subspace of functions that are equal to zero
almost everywhere in [a, b]. �

Exercises.

Exercise 8.2.1. Complete the proof of Theorem 8.2.2 by verifying that property
(iv) of Definition 8.2.1 holds for the Euclidean inner product (x,y) on Rn.

Exercise 8.2.2. Show that (x,x) = 0 if and only if x = 0, using only the definition
of inner product (Definition 8.2.1).

Exercise 8.2.3. Prove: If a1, a2, . . . , an ∈ R, then( n∑
i=1

ai

)2
≤ n

n∑
i=1

a2i .

Exercise 8.2.4. Consider the equivalence relation ∼ on R[a, b]: f ∼ g if and only
if f = g almost everywhere in [a, b].

1. Show that if f1 ∼ f2, g1 ∼ g2 and α ∈ R, then [f1] + [g1] = [f2] + [g2] and
α[f1] = α[f2]. Thus, the addition and scalar multiplication of equivalence
classes of Riemann integrable functions on [a, b] is well defined.

2. Verify that the equivalence classes, with addition and scalar multiplication as
defined, form a real vector space.

3. Show that ([f ], [g]) :=
∫ b

a
f(x)g(x) dx defines an inner product on the space of

equivalence classes. First, show that if f1 ∼ f2 and g1 ∼ g2, then ([f1], [g1]) =
([f2], [g2]). Then verify properties (i), (ii), (iii), (iv) of Definition 8.2.1.

8.3. Norms

On the real line we measure the magnitude of a number by its absolute value and
the length of an interval [a, b] (or the distance between any two points a and b) by
|a − b|. In the plane, we measure the length of a line segment from a to b by the
formula √

(b1 − a1)2 + (b2 − a2)2,

and this is the same as the length of the vector (b1 − a1, b2 − a2) = b − a. We
have a similar distance formula in three-dimensional space. In this section we begin
to think about the general idea of the magnitude, or norm, of vectors in a vector
space. As we will see, there can be many ways to define this magnitude measure,
or norm, and a variety of norms are useful in problems of analysis.

Remark. We use a single bar notation, | · |, for norms in Rn, and different norms
may be subscripted differently, for example, |x|1 or |x|2. We also use a single bar
notation, | · |, in some general statements about general normed vector spaces. In
contrast, for matrix norms and function space norms, we use the double bar: ‖ · ‖.
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Definition 8.3.1. (Norm)
Let V be a real vector space. A function mapping V into R, with values denoted by
|x| for x ∈ V , is a norm if it has these properties:

(i) |x| ≥ 0 for all x ∈ V , and |x| = 0 if and only if x = 0.

(ii) |αx| = |α| |x| for all x ∈ V and all α ∈ R.

(iii) |x+ y| ≤ |x|+ |y| for all x, y ∈ V (the triangle inequality).

A real vector space equipped with a norm is called a real normed vector
space, or a real normed linear space.

The triangle inequality (iii) implies another useful inequality, as follows. For
all x, y in a real normed space, we have

(8.1)
∣∣∣|x| − |y|

∣∣∣ ≤ |x+ y|.

The proof of this reverse triangle inequality is the same as the argument for the
corresponding statement about absolute values in the vector space of real numbers.
(See Exercise 8.3.1.)

An inner product space is always a normed space, by the next result.

Theorem 8.3.2. If V is a real vector space with an inner product, then the function
| · | on V given by |x| =

√
(x, x) defines a norm on V .

Proof. We verify directly properties (i), (ii), and (iii) of Definition 8.3.1.

(i) If x 
= 0, then |x| > 0 since (x, x) > 0. If x = 0, then (x, x) = 0, hence
|x| = 0.

(ii) |αx| =
√
(αx, αx) =

√
α2(x, x) using property (ii) of the inner product

Definition 8.2.1. Hence, |αx| = |α||x|.
(iii) Using first the distributive property and then the commutative property

of an inner product, we find that

|x+ y|2 = (x+ y, x+ y) = (x, x) + 2(x, y) + (y, y).

By the Cauchy-Schwartz inequality and the definition of |x|, we may write 2(x, y) ≤
2|x||y|, and consequently,

|x+ y|2 ≤ (|x|+ |y|)2.
Taking the positive square root of each side yields the triangle inequality. �

The Euclidean inner product yields the Euclidean norm on the real vector
spaceRn by the construction in Theorem 8.3.2. We record this in the next corollary.

Corollary 8.3.3. The function from Rn to Rn defined by

|x|2 =
√
(x,x) =

√
x2
1 + x2

2 + · · ·+ x2
n

for x = (x1, x2, . . . , xn) ∈ Rn, is a norm, called the Euclidean norm.

The definition of a norm in an inner product space V as in Theorem 8.3.2
allows us to express the Cauchy-Schwarz inequality in terms of the induced norm,
by writing

|(x, y)| ≤ |x| |y|.
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For the Euclidean inner product (the dot product) and the associated Euclidean
norm, the Cauchy-Schwarz inequality reads

|(x,y)| ≤ |x|2 |y|2.

Since |ej |2 = 1 for each standard basis vector, the Cauchy-Schwarz inequality
implies that

|xj | = |(x, ej)| ≤ |x|2
for j = 1, 2, . . . , n, for any x = (x1, . . . , xn).

We have seen that an inner product allows us the useful notion of orthogonality
(perpendicularity) of two vectors. Recall that the angle θ between two nonzero
vectors x,y in Rn is defined by the formula

cos θ =
(x,y)

|x|2|y|2
, where 0 ≤ θ ≤ π.

This formula agrees with the ones in the case of analytic geometry in the plane
n = 2 and in space n = 3. We say that the vectors x and y are orthogonal if
(x,y) = 0. This definition also gives us the following generalization of the law of
cosines from trigonometry: By expansion of the inner products, we have

|x− y|22 = |x|22 + |y|22 − 2(x,y),

and hence

|x− y|22 = |x|22 + |y|22 − 2|x|2|y|2 cos θ.

Another interesting geometric property of a norm is the parallelogram law.
See Exercises 8.3.2, 8.3.3.

A norm allows us to define open balls and the notion of an open set in a
normed space. The definitions will be familiar as they are direct generalizations of
open intervals and open sets in the real line. If V is a normed space with norm
| · |, then the open ball of radius δ > 0 centered at the point a ∈ V is the set
Bδ(a) = {x ∈ V : |x− a| < δ}. If S ⊂ V , then a point a ∈ S is an interior point
of S if there exists some δ > 0 such that Bδ(a) ⊂ S. A set S is open if every point
of S is an interior point. A set F ⊂ V is closed if its complement V − F is open.
All topological notions and convergence questions in V are based on these concepts,
and explored further in later sections of this chapter. We have the following basic
definition.

Definition 8.3.4. Let V be a normed vector space with norm | · |.

1. A sequence (ak) in V is a Cauchy sequence if for every ε > 0 there is a
positive integer N = N(ε) such that if m,n ≥ N , then |xm − xn| < ε.

2. A sequence (xk) converges with limit b ∈ V if for every ε > 0 there is an
N = N(ε) such that if k ≥ N , then |xk − b| < ε.

3. A normed space V is called complete if every Cauchy sequence in V converges
to a limit that is an element of V .

If a sequence converges, there is a unique limit, and the proof is formally
identical to the proof in the case of convergent real sequences.
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Recalling Example 8.2.5, we see that a norm on the space of (equivalence classes
of) Riemann integrable functions is induced by the inner product given there. That
is,

(8.2) ‖f‖2 := (f, f)1/2 =
(∫ b

a

|f(x)|2 dx
)1/2

,

which is called the L2 norm. (The symbolic designation L2 norm is due to the
important role of this norm in the study of the vector space of functions that are
square integrable in the Lebesgue sense. This space is discussed in greater detail
later in this book after the development of the Lebesgue integral.) To explore this
norm now for Riemann integrable functions, see Exercises 8.3.10, 8.3.11, 8.3.12.

Example 8.3.5 (Hilbert sequence space l2). Here we introduce the interesting set
l2 of real number sequences that are square summable, that is,

l2 =
{
(ξk)

∞
k=1 :

∞∑
k=1

ξ2k < ∞
}
.

If x = (ξ1, ξ2, ξ3, . . .) and y = (η1, η2, η3, . . .) are in l2, we shall write

(8.3) (x, y) =

∞∑
k=1

ξkηk

and

(8.4) ‖x‖2 = (x, x)1/2 =
( ∞∑

k=1

ξ2k

)1/2
.

We now justify this notation by showing that l2 is indeed a real vector space, (8.3)
does define an inner product on l2, and thus (8.4) is indeed a norm on l2. This space
is called the Hilbert sequence space. It is studied in more detail at several places
later in the book. Let us verify that l2 is a real vector space under componentwise
addition and scalar multiplication, by which we mean that if x and y are in l2, with

x = (ξ1, ξ2, ξ3, . . .) and y = (η1, η2, η3, . . .),

and α ∈ R, then

αx = (αξ1, αξ2, αξ3, . . .) and x+ y = (ξ1 + η1, ξ2 + η2, ξ3 + η3, . . .).

The zero vector in l2 is the element of l2 with all entries zero. With these definitions
it is clear that if x ∈ l2, then αx ∈ l2. Now let us show that x + y ∈ l2. For each
positive integer n, let us write

xn = (ξ1, . . . , ξn, 0, 0, . . .) and yn = (η1, . . . , ηn, 0, 0, . . .),

where all components beyond the n-th are zero. By the triangle inequality in the
finite-dimensional space Rn, we have( n∑

k=1

(ξk + ηk)
2
)1/2

≤
( n∑

k=1

ξ2k

)1/2
+
( n∑

k=1

η2k

)1/2

≤
( ∞∑

k=1

ξ2k

)1/2
+
( ∞∑

k=1

η2k

)1/2
.
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Since the right-hand side is a finite real number, we may let n → ∞ on the left to
see that

∞∑
k=1

(ξk + ηk)
2 < ∞

and thus x+ y ∈ l2, and in fact,

‖x+ y‖2 ≤ ‖x‖2 + ‖y‖2
by means of (8.4). It is easy to verify that this directly establishes the norm on
l2. We now want to show that the series (8.3) converges, from which fact we can
define the inner product on l2. Using the same finite truncations of x, y ∈ l2, the
Cauchy-Schwarz inequality in the finite-dimensional space Rn yields

(xn, yn) =
n∑

k=1

ξkηk ≤
( n∑

k=1

ξ2k

)1/2( n∑
k=1

η2k

)1/2
.

We may let n → ∞ to obtain

(x, y) =
∞∑
k=1

ξkηk ≤
( ∞∑

k=1

ξ2k

)1/2( ∞∑
k=1

η2k

)1/2
= ‖x‖2‖y‖2 < ∞

which establishes at the same time the convergence of (8.3) and the Cauchy-Schwarz
inequality for the inner product. All the defining properties of a real inner product
in Definition 8.2.1 are now easy to verify. Therefore the inner product for the vector
space l2 is well defined by (8.3), and the induced norm is given by (8.4). �

The next three examples present norms on Rn different from the Euclidean
norm.

Example 8.3.6. Define |x|1 for x ∈ Rn by

|x|1 =
n∑

j=1

|xj | = |x1|+ |x2|+ · · ·+ |xn|.

Again, the triangle inequality follows from the triangle inequality for real numbers.
If x,y ∈ Rn, then

|x+ y|1 =
n∑

j=1

|xj + yj | ≤
n∑

j=1

|xj |+ |yj | = |x|1 + |y|1.

Properties (i) and (ii) of Definition 8.3.1 are left as an exercise. �

Example 8.3.7. Let p be a real number greater than 1, and p 
= 2. Define |x|p for
x ∈ Rn by

|x|p =
( n∑

j=1

|xj |p
)1/p

.

This defines a norm on Rn. Properties (i) and (ii) of the norm definition clearly
hold. Property (iii) is the triangle inequality, also known as the Minkowski in-
equality for finite sums in the present instance, and it is proved near the end of
Section 9.4. �
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p = ∞p = 4

p = 2

p = 1

Figure 8.1. The p-norm unit balls in R2 for p = 1, 2, 4,∞. The arrows point
to the boundary (the unit sphere) for each ball.

Example 8.3.8. Define |x|∞ for x ∈ Rn by

|x|∞ = max
1≤j≤n

|xj |.

This can be called the max norm on Rn. The triangle inequality follows from the
triangle inequality for real numbers. If x,y ∈ Rn, we have

max
1≤j≤n

|xj + yj | ≤ max
1≤j≤n

(|xj |+ |yj |) ≤ max
1≤j≤n

|xj |+ max
1≤j≤n

|yj |,

hence |x + y|∞ ≤ |x|∞ + |y|∞. Properties (i) and (ii) of Definition 8.3.1 clearly
hold for | · |∞. �

It is interesting to compare the unit balls for the p-norms | · |p, for p = 1, 2, 4,∞.
Figure 8.1 shows the unit balls for these norms in R2. The next proposition shows
the relation between the max norm and the p-norms and explains the notation,
| · |∞, for the max norm.

Proposition 8.3.9. For any fixed x ∈ Rn,

lim
p→∞

|x|p = |x|∞.

Proof. It is clear for x = 0, so let x = (x1, . . . , xn) be nonzero, and assume,
without loss of generality, that the first component of x is the one with the maximum
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absolute value, thus, |x|∞ = max1≤j≤n |xj | = |x1| 
= 0. Then

|x|p =
( n∑

j=1

|xj |p
)1/p

=
(
|x1|p + |x2|p + · · ·+ |xn|p

)1/p

= |x1|
[
1 +
∣∣∣x2

x1

∣∣∣p + · · ·+
∣∣∣xn

x1

∣∣∣p]1/p
= |x|∞

[
1 +
∣∣∣x2

x1

∣∣∣p + · · ·+
∣∣∣xn

x1

∣∣∣p]1/p.
We can write

log
[
1 +
∣∣∣x2

x1

∣∣∣p + · · ·+
∣∣∣xn

x1

∣∣∣p]1/p =
1

p
log
[
1 +
∣∣∣x2

x1

∣∣∣p + · · ·+
∣∣∣xn

x1

∣∣∣p],
and as p → ∞, this quantity has limit zero, since |xj/x1| < 1 for 2 ≤ j ≤ n and log
is continuous at 1. Therefore by continuity of the exponential function at 0,

lim
p→∞

[
1+
∣∣∣x2

x1

∣∣∣p+ · · ·+
∣∣∣xn

x1

∣∣∣p]1/p = lim
p→∞

exp
(
log
[
1+
∣∣∣x2

x1

∣∣∣p+ · · ·+
∣∣∣xn

x1

∣∣∣p]1/p) = 1.

It follows that limp→∞ |x|p = |x|∞. �

The space C[a, b] can also be normed in different ways.

Example 8.3.10. The definition ‖f‖max = maxa≤x≤b |f(x)| gives a norm on
C[a, b], the real vector space of real valued functions continuous on [a, b]. A different

norm on C[a, b] is defined by ‖f‖1 =
∫ b

a
|f(x)| dx. Both statements are straight-

forward to verify. (See Exercise 8.3.7 and Exercise 8.3.8.) This space is discussed
more fully later. In particular, the completeness of C[a, b] with respect to the norm
‖f‖max (that is, the fact that every Cauchy sequence converges) is shown in The-
orem 9.3.1. However, C[a, b] is not complete with respect to the norm ‖f‖1. (See
Exercise 9.3.2 or Exercise 9.3.3.) �

Since we have been able to define different norms on Rn, two questions arise.
First, does the topology (the collection of open sets and the notion of convergence)
change with the norm employed in Rn? We show below that all norms on Rn are
equivalent in the sense that they define the same collection of open sets and the
same notion of convergence in Rn. (And in light of the statement about C[a, b]
in Example 8.3.10, this norm equivalence in Rn should be a reassuring statement
about Euclidean space.) Second, is it useful to employ more than one norm function
on Rn? The answer is Yes, as it is a matter of convenience, and this is illustrated
more fully later.

We now proceed to discuss the equivalence of norms and the proof that all
norms on Rn are equivalent. We first require an appropriate notion of equivalence
of norms. Recall we use single bars for vector norms.

Definition 8.3.11. Let V be a vector space (finite- or infinite-dimensional). Two
norms | · | and | · |0 on V are called equivalent if there are numbers α > 0 and
β > 0 such that for all x ∈ V ,

α|x| ≤ |x|0 ≤ β|x|.
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If the norms | · | and | · |0 on V are equivalent, then every open ball in one norm
contains an open ball in the other norm (Exercise 8.3.15). Consequently, the two
norms define the same collection of open subsets of V . Also, a sequence converges
as measured by | · | if and only if it converges as measured by | · |0 (Exercise 8.3.16).

The next lemma will be used to establish the uniqueness of a norm topology on
a finite-dimensional real vector space V . This means that the choice of a norm on V
is a matter of convenience, as all possible norms on V generate the same collection
of open sets in the space. This is a nice feature of finite-dimensional spaces, since
a particular norm sometimes offers advantages in certain arguments. The proof of
the lemma uses only the defining properties of a norm and the Bolzano-Weierstrass
theorem for sequences of real numbers.

Lemma 8.3.12. Let V be a finite-dimensional real normed vector space with norm
| · | and suppose that {v1, . . . , vn} is any basis of V . Then there exists a number
m > 0 such that if v =

∑n
i=1 aivi for real scalars a1, . . . , an, then

(8.5) |v| =
∣∣∣ n∑
i=1

aivi

∣∣∣ ≥ m(|a1|+ · · ·+ |an|).

Proof. We note first that if all ai = 0, then (8.5) holds for any m. Thus we may
assume that

∑n
i=1 |ai| > 0. Now observe that the inequality in (8.5) implies that

(8.6)
∣∣∣ n∑
i=1

bivi

∣∣∣ ≥ m

for all (b1, . . . , bn) such that
∑n

i=1 |bi| = 1. And, conversely, if (8.6) holds for all
(b1, . . . , bn) such that

∑n
i=1 |bi| = 1, then (8.5) holds for all

∑n
i=1 |ai| > 0, as we

see by setting bi = ai/(
∑n

i=1 |ai|) and dividing (8.5) by
∑n

i=1 |ai| to obtain (8.6),
using property (ii) of the norm definition.

Thus, we will prove that there exists m > 0 such that (8.6) holds for all
(b1, . . . , bn) such that

∑n
i=1 |bi| = 1. The proof is by contradiction. Thus, we

assume that there is no such m > 0. Then there exists a sequence of elements yk
of V ,

yk =

n∑
i=1

bki vi = bk1v1 + · · ·+ bknvn,

such that |yk| → 0 as k → ∞. (Note that the superscript k is not a power.) And
for each k, we have

∑n
i=1 b

k
i = 1. Consequently, for all k and each i = 1, . . . , n,

|bki | ≤ 1. So each component sequence (bki )
∞
k=1, i = 1, . . . , n, is bounded. By

the Bolzano-Weierstrass theorem for real sequences, the sequence (bk1)
∞
k=1 has a

convergent subsequence. Let b1 be the limit of that subsequence, and let us denote
by (y1,k) the corresponding subsequence of (yk). Again by the Bolzano-Weierstrass
theorem, the sequence (y1,k) has a subsequence (y2,k) for which the corresponding
subsequence of second components (a subsequence of (bk2)

∞
k=1) converges, with limit

b2. We continue in this way, and after n steps, we obtain a subsequence of (yk)
which we denote in the usual way by (ymk

), with elements expressed by

ymk
=

n∑
i=1

cki vi, where
n∑

i=1

|cki | = 1,
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and such that for each i = 1, . . . , n, the i-th component sequence (cki )
∞
k=1 converges

to bi. Letting y =
∑n

i=1 bivi, a triangle inequality estimate shows that |ymk
−y| → 0

as k → ∞. Moreover,

1 = lim
k→∞

n∑
i=1

|cki | =
n∑

i=1

|bi|.

Consequently, not all the bi are zero, and linear independence of the vi implies that
y 
= 0. However, (ymk

) is a subsequence of (yk) and by hypothesis |yk| → 0 as
k → ∞, so |ymk

| → 0 as k → ∞. Since ymk
→ y, we also have |ymk

| → |y|, so
|y| = 0. Hence, y = 0, a contradiction of the previous deduction that y 
= 0. This
proves (8.6), and hence (8.5). �

The next result reassures us that on a finite-dimensional vector space there is
only one possible norm topology and only one possible notion of sequential conver-
gence in norm on V .

Theorem 8.3.13. Any two norms | · | and | · |0 on a finite-dimensional real vector
space are equivalent.

Proof. Let n = dimV , and let {v1, . . . , vn} be any basis for V . Every v ∈ V has
a unique representation

v =

n∑
i=1

αivi = α1v1 + · · ·+ αnvn

with αi ∈ R for i = 1, . . . , n. By Lemma 8.3.12 applied to | · | there is a number
m > 0 such that

|v| = |α1v1 + · · ·+ αnvn| ≥ m(|α1|+ · · ·+ |αn|).
Since | · |0 is a norm, the triangle inequality implies that

|v|0 = |α1v1 + · · ·+ αnvn|0 ≤
n∑

i=1

|αi| |vi|0 ≤ k
n∑

i=1

|αi|,

where k = max1≤i≤n |vi|0. Thus, we have for all v ∈ V ,

1

k
|v|0 ≤

n∑
i=1

|αi| ≤
1

m
|v|,

and hence

(8.7)
m

k
|v|0 ≤ |v|.

Now we may reverse the roles of | · | and | · |0 in the argument just given, to find

numbers m̂ and k̂ such that for all v ∈ V ,

(8.8)
m̂

k̂
|v| ≤ |v|0.

Consequently, (8.7) and (8.8) together imply

m̂

k̂
|v| ≤ |v|0 ≤ k

m
|v|

for all v ∈ V . Therefore | · | and | · |0 are equivalent norms. �
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The fact that there is a single equivalence class of norms on a finite-dimensional
vector space allows us to choose convenient norms in certain situations with no
danger that the results will change with the norm topology, since the norm topology
cannot change. For example, estimates using the max norm |x|∞ are especially
useful in the chapters on multiple Riemann integrals and their transformations by
coordinate change.

It is important to realize that not every norm comes from an inner product.
Exercises 8.3.5-8.3.6 show that the norms |x|1 and |x|∞ on Rn are not induced by
any inner product in Rn.

Exercises.

Exercise 8.3.1. Reverse triangle inequality
Show that for all v, w in a real normed space V , we have∣∣∣|v| − |w|

∣∣∣ ≤ |v + w|.

Exercise 8.3.2. Parallelogram law
Show that the following identity holds for the Euclidean norm: If x,y are any two
vectors in Rn, then

|x+ y|22 + |x− y|22 = 2(|x|22 + |y|22).
Make a sketch and explain what this has to do with parallelograms.

Exercise 8.3.3. Parallelogram law again
Let V be an inner product space with inner product denoted (v, w) for v, w ∈ V .

Show that the following identity holds for the induced norm |v| =
√
(v, v): If

v, w ∈ V , then

|v + w|2 + |v − w|2 = 2(|v|2 + |w|2).
Hint : If you completed Exercise 8.3.2, did your argument depend strictly on the
Euclidean inner product?

Exercise 8.3.4. Recovering an inner product from the induced norm
Verify by direct calculation that in an inner product space V , the inner product
can be expressed in terms of the induced norm as follows:

(x, y) =
1

4

(
|x+ y|2 − |x− y|2

)
for all x, y ∈ V.

Exercise 8.3.5. Assume n ≥ 2. Show that the norm |x|1 in Example 8.3.6 is not
induced by any inner product in Rn. Hint : Use the result of Exercise 8.3.3.

Exercise 8.3.6. Assume n ≥ 2. Show that the norm |x|∞ in Example 8.3.8 is not
induced by any inner product in Rn.

Exercise 8.3.7. 1. Show that ‖f‖ := maxa≤x≤b |f(x)| is a norm on the real vector
space C[a, b] of real valued functions continuous on [a, b].
2. Find the distance between the functions φ(t) = t and ψ(t) = t3 in the space
C[0, 1] with metric given by the maximum norm.

Exercise 8.3.8. Show that ‖f‖1 :=
∫ b

a
|f(x)| dx defines a norm on the real vector

space C[a, b] of real valued functions continuous on [a, b].
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Exercise 8.3.9. Show that ‖f‖ := supa≤x≤b |f(x)| is a norm on the real vector
space B[a, b] of real valued functions bounded on [a, b].

Exercise 8.3.10. Consider Theorem 8.3.2 with reference to the space R[−π, π]
with its inner product and norm ‖ · ‖2 (on equivalence classes) defined by

‖f‖2 =
(∫ π

−π

|f(x)|2 dx
)1/2

and called the L2 norm. We know from Example 8.2.5 that there are specific
nonzero integrable functions for which ‖f‖2 = 0.

1. Show that if f ∈ R[−π, π] and ‖f‖2 = 0, then f(x) = 0 at every point x where
f is continuous.

2. Show that if f ∈ R[−π, π] and f(x) = 0 at every point x where f is continuous,
then ‖f‖2 = 0.

Exercise 8.3.11. Show that if f, g are Riemann integrable functions on [−π, π],
then(∫ π

−π

|f(x) + g(x)|2 dx
)1/2

≤
(∫ π

−π

|f(x)|2 dx
)1/2

+
(∫ π

−π

|g(x)|2 dx
)1/2

.

Exercise 8.3.12. R[a, b] is not complete in the L2 norm
This exercise shows that R[0, 2π] is not complete in the L2 norm. Consider the
function f defined by

f(x) =

{
0 for x = 0,
log(1/x) for 0 < x ≤ 2π.

In the space R[0, 2π], define a sequence (fk)
∞
k=1 by

fk(x) =

{
0 for 0 ≤ x ≤ 1/k,
f(x) for 1/k < x ≤ 2π.

Observe that f is not in R[0, 2π] since f is not bounded on [0, 2π], but fk ∈ R[0, 2π]
for each k.

1. Show that (fk)
∞
k=1 is a Cauchy sequence in R[0, 2π]. Hint : Note that for

m > n,

‖fm − fn‖22 =

∫ 1/n

1/m

|fm(x)− fn(x)|2 dx =

∫ 1/n

1/m

| log(1/x)|2 dx =

∫ 1/n

1/m

(log x)2 dx

and use the fact that d
dx [x(log x)

2 − 2x log x+ 2x] = (log x)2.

2. Verify that limk→∞
∫ 2π

0
(fk(x)− f(x))2 dx = 0, but f /∈ R[0, 2π].

Exercise 8.3.13. Consider the vector space l1 from Exercise 8.1.6. Prove that,
with ξ = (ξk) ∈ l1, |ξ|1 :=

∑∞
k=1 |ξk| defines a norm on l1.

Exercise 8.3.14. Consider the vector space l∞ from Exercise 8.1.7. Prove that,
with ξ = (ξk) ∈ l∞, |ξ|∞ := supk |ξk| defines a norm on l∞.

Exercise 8.3.15. Suppose | · | and | · |0 are equivalent norms on V . Show that
every open ball in one norm contains an open ball in the other norm. Conclude
that both norms define the same collection of open subsets of V .
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Exercise 8.3.16. Suppose | · | and | · |0 are equivalent norms on V . Show that a
sequence in V converges with respect to | · | if and only if it converges with respect
to | · |0.

Exercise 8.3.17. Prove the following statements:

1. If S is a complete subspace of a normed space Y , then S is a closed set in Y .

2. If Y is a complete normed space and S is a subspace that is a closed set in Y ,
then S is complete.

3. Every finite-dimensional subspace S of a normed space Y is complete, hence
closed. As a corollary, every finite-dimensional normed space is complete.
Hint : Choose a basis of S and a Cauchy sequence in S, and apply Lemma
8.3.12 to the elements of the sequence.

Exercise 8.3.18. Consider the space l2 with the orthonormal set {ek}∞k=1. Estab-
lish the Cauchy-Schwarz inequality as follows:

1. Suppose ‖y‖2 = 1, and expand the right-hand side of the inequality 0 ≤
‖x− (x, y)y‖22.

2. For ‖y‖2 
= 1, rescale y and use the result of part 1.

Exercise 8.3.19. Consider the vector space R[−π, π] with its integral inner prod-
uct and norm

‖f‖ =
(∫ π

−π

|f(x)|2 dx
)1/2

.

1. Show that there exist nonzero integrable functions f for which ‖f‖ = 0.

2. However, show that if f ∈ R[−π, π] with ‖f‖ = 0, then f(x) = 0 whenever f
is continuous at x.

3. Conversely, show that if f ∈ R[−π, π], and f is zero at all of its points of
continuity, then ‖f‖ = 0.

8.4. Fourier Expansion in Rn

In this section we consider some fundamental facts about orthogonal expansion in
Rn. The properties are extended to other inner product spaces, including infinite-
dimensional spaces, in later developments in the book. Recall that the Euclidean
inner product (x,y) in R3 is a linear function of each of its arguments and that√
(x,x) is the Euclidean length of the vector x.

An inner product provides the important concept of orthogonality (perpendic-
ularity) of two vectors. The angle θ between two nonzero vectors x,y in Rn is
given by the formula

cos θ =
(x,y)

|x|2|y|2
, where 0 ≤ θ ≤ π.

We say that the vectors x and y are orthogonal if (x,y) = 0.

The first results of the section are vector expressions of the Pythagorean theo-
rem in R3.

Theorem 8.4.1. If x,y ∈ R3 and (x,y) = 0, then |x+ y|22 = |x|22 + |y|22.
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Proof. Expanding |x+ y|22 using the properties of the inner product, we have

|x+ y|22 =
(
(x+ y), (x+ y)

)
= (x,x) + 2(x,y) + (y,y) = |x|22 + |y|22

since (x,y) = 0. �

In the space R3 there is no trouble in defining sets of three pairwise orthogonal
vectors. For example, recall that if v and w are nonzero orthogonal vectors in R3,
then v × w is nonzero and orthogonal to both v and w. We have the following
Pythagorean theorem.

Theorem 8.4.2 (Pythagorean Theorem). If v1,v2,v3 ∈ R3 are pairwise orthogo-
nal, then

|v1 + v2 + v3|22 = |v1|22 + |v2|22 + |v3|22.
Consequently, for any c1, c2, c3 ∈ R, we have

|c1v1 + c2v2 + c3v3|22 = |c1|2|v1|22 + |c2|2|v2|22 + |c3|2|v3|22.

Proof. By the pairwise orthogonality of v1,v2,v3, we have

|v1 + v2 + v3|22 =

3∑
i=1

3∑
j=1

(vi,vj)

=
3∑

j=1

(vj ,vj) = |v1|22 + |v2|22 + |v3|22.

Now observe that pairwise orthogonality of v1,v2,v3 implies pairwise orthogonality
of c1v1, c2v2, c3v3 for any scalars c1, c2, c3. From this, the second statement of the
theorem follows easily, since |cjvj |22 = |cj |2|vj |22 for j = 1, 2, 3. �

The standard basis vectors in R3, defined by e1 = (1, 0, 0), e2 = (0, 1, 0), and
e3 = (0, 0, 1), are important because every x = (x1, x2, x3) ∈ R3 can be written in
a unique way as a linear combination

x = x1e1 + x2e2 + x3e3.

One can use pairwise orthogonality of the ej to obtain a useful representation of the
coefficients xj , which are the components of x with respect to the basis {e1, e2, e3}.
We have

(x, e1) = x1, (x, e2) = x2, (x, e3) = x3.

Notice that each ej has unit norm, |ej |2 = 1.

Every basis of R3 consists of three linearly independent vectors v1,v2,v3. If
the vj are pairwise orthogonal, then we obtain an orthogonal basis for R3. The
justification for this statement is that if v1,v2,v3 are pairwise orthogonal, then
{v1,v2,v3} is a linearly independent set, and thus a basis for R3. In order to see
this, suppose that

c1v1 + c2v2 + c3v3 = 0.

Take the dot product of both sides with vj to verify that cj(vj ,vj) = 0, so cj = 0
for j = 1, 2, 3 since each vj 
= 0. If for each j = 1, 2, 3 we also have |vj |2 = 1, then
the orthogonal basis {v1,v2,v3} is called an orthonormal basis for R3. The
standard basis {e1, e2, e3} is an orthonormal basis for R3.
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Theorem 8.4.3 (Fourier Expansion). If {v1,v2,v3} is an orthogonal basis for R3

and x ∈ R3 has the representation x = c1v1 + c2v2 + c3v3, then

cj =
(x,vj)

(vj ,vj)
=

(x,vj)

|vj |22
for j = 1, 2, 3.

If the basis is orthonormal, then cj = (x,vj) for j = 1, 2, 3, and hence

x = (x,v1)v1 + (x,v2)v2 + (x,v3)v3.

Proof. Take the inner product of each side of x = c1v1 + c2v2 + c3v3 with vj and
use orthogonality. We find that (x,vj) = cj(vj ,vj). Since each vj is a basis vector,
we have |vj |22 
= 0, hence we can solve for each cj , j = 1, 2, 3, and we have the first
result. If the basis is orthonormal, then for each j we have |vj |22 = 1 and the second
statement follows. �

In either of the cases covered by Theorem 8.4.3, the coefficients cj of the element
x with respect to the basis {v1,v2,v3} are called the Fourier coefficients of x.
Given x, the linear combination

3∑
j=1

cjvj = c1v1 + c2v2 + c3v3

is called the Fourier expansion or the Fourier representation of x. Theorem
8.4.3 states that each vector x in R3 equals the sum of its Fourier expansion.

Example 8.4.4. An important application of orthogonal bases occurs in the prob-
lem of diagonalizing a real symmetric matrix. We consider the case of the real
symmetric 3× 3 matrix A given by

A =

⎡
⎣ 2 1 0

1 2 0
0 0 2

⎤
⎦ .

The eigenvalues of A are λ1 = 1, λ2 = 2, and λ3 = 3. Corresponding eigenvectors
satisfying Av1 = v1, Av2 = 2v2 and Av3 = 3v3 are given by

v1 =

⎡
⎣ 1

−1
0

⎤
⎦ v2 =

⎡
⎣ 0

0
1

⎤
⎦ v3 =

⎡
⎣ 1

1
0

⎤
⎦ .

It should be clear that {v1,v2,v3} is an orthogonal basis of R3. The action of
the linear transformation T (x) = Ax is especially simple on the basis {v1,v2,v3},
since Av1 = v1, Av2 = 2v2, and Av3 = 3v3. These three equations are equivalent
to the statement that

A
[
v1 v2 v3

]
=
[
v1 v2 v3

] ⎡⎣ 1 0 0
0 2 0
0 0 3

⎤
⎦ .

Thus the matrix S defined by

S =
[
v1 v2 v3

]
=

⎡
⎣ 1 0 1

−1 0 1
0 1 0

⎤
⎦
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has the property that AS = SD, where D is diagonal with the eigenvalues of A
along its main diagonal. Equivalently, we have S−1AS = D. �

Exercises 8.4.1-8.4.2 explore the application of Fourier coefficients to some basic
approximation problems.

The Fourier expansion of x with respect to an orthonormal basis leads to an
expression of the Pythagorean theorem called Parseval’s theorem.

Theorem 8.4.5 (Parseval’s Theorem). If {v1,v2,v3} is an orthonormal basis for
R3, then for every x ∈ R3,

|x|22 =
3∑

j=1

(x,vj)
2 = (x,v1)

2 + (x,v2)
2 + (x,v3)

2.

Proof. Given x, we have x = c1v1+ c2v2+ c3v3, where cj = (x,vj) for j = 1, 2, 3.
By the Fourier expansion of Theorem 8.4.3 and orthogonality of the basis,

|x|22 =
∣∣(x,v1)v1 + (x,v2)v2 + (x,v3)v3

∣∣2
2

= (x,v1)
2|v1|22 + (x,v2)

2|v2|22 + (x,v3)
2|v3|22.

Since |vj |22 = 1 for each j, |x|22 = (x,v1)
2 + (x,v2)

2 + (x,v3)
2. �

It is possible to state and prove straightforward generalizations of Theorem
8.4.3 and Theorem 8.4.5 in the space Rn, where the Euclidean inner product of
x = (x1, . . . , xn) and y = (y1, . . . , yn) in Rn is given by

(x,y) =

n∑
j=1

xjyj = x1y1 + · · ·+ xnyn,

and |x|2 =
√
(x,x). The extensions for Rn are considered in Exercise 8.4.3. Later

in this book we extend the ideas and results of this section to other inner product
spaces, such as the sequence space l2 and some other function spaces.

Exercises.

Exercise 8.4.1. Best approximation from a line
Let v be a vector in R2 with unit norm, and V = {cv : c ∈ R} the line spanned
by v. Let x be a vector not in the subspace V , so that x 
= cv for any choice of
scalar c. Show that the closest approximation to x by a vector in V is given by
px = (x,v)v. Hint : Think geometrically.

Exercise 8.4.2. Best approximation from a plane
Let v1 and v2 be orthogonal vectors in R3 with unit norm, and V = {c1v1+ c2v2 :
c1, c2 ∈ R} the plane spanned by v1 and v2. Let x be a vector not in the subspace
V , so that x 
= c1v1+c2v2 for any choice of scalars c1 and c2. Show that the closest
approximation to x by a vector in V is given by px = (x,v1)v1 + (x,v2)v2. Hint :
Think geometrically.

Exercise 8.4.3. Fourier expansion and Parseval’s theorem in Rn

Formulate and prove an extension of the Fourier expansion Theorem 8.4.3 for Rn.
Do the same for Parseval’s Theorem 8.4.5.



242 8. The Metric Space Rn

8.5. Real Symmetric Matrices

In this section we present the spectral theorem for real symmetric matrices, which
states that every real symmetric matrix can be diagonalized by means of an orthogo-
nal transformation matrix. The discussion provides some useful review of important
linear algebra and matrix theory and employs the idea of an orthonormal basis for
subspaces of Rn.

8.5.1. Definitions and Preliminary Results. We will be implicitly using the
fundamental theorem of algebra which states that every polynomial of degree n with
complex number coefficients has exactly n roots, taking account of multiplicities
for repeated roots.

Recall that the transpose AT of an n × n matrix A is formed by making row
j of AT the row vector with the same entries left-to-right in the same order as the
column j entries of U read top-to-bottom, for 1 ≤ j ≤ n. For example,

A =

⎡
⎣ 0 1 2

3 4 5
6 7 8

⎤
⎦ =⇒ AT =

⎡
⎣ 0 3 6

1 4 7
2 5 8

⎤
⎦ .

Definition 8.5.1. A real n× n matrix A is called symmetric if AT = A.

We also need the concept of an orthogonal matrix.

Definition 8.5.2. A real n × n matrix U is called orthogonal if its columns
form an orthonormal basis of Rn, or, what is equivalent, U satisfies the condition
UTU = I, where I is the n× n identity matrix.

Remark. It follows from this definition that an orthogonal matrix U has orthonor-
mal columns and is invertible, with U−1 = UT .

An arbitrary real n × n matrix can have complex eigenvalues and associated
eigenvectors with complex number components. For this reason, we study a real
symmetric matrix initially as a linear transformation of the space Cn whose el-
ements are vectors with n components that can be any complex numbers. The
space Cn is a vector space over the complex number field, which means that it has
properties 1-9 of the vector space definition (Definition 8.1.3) with scalars from the
complex field C. We will also use an inner product on Cn. First, we define what
is meant by a complex inner product on a vector space with complex scalars, such
as Cn. Recall that if z = x+ iy ∈ C, then z̄ = x− iy is the complex conjugate of
z. If z and w are complex numbers, then zw = z w and z + w = z + w.

Definition 8.5.3 (Complex Inner Product). Let V be a vector space over the
complex number field. A function mapping V × V into C, with values denoted
(v, w), is a complex inner product if it has these properties:

(i) (v1 + v2, w) = (v1, w) + (v2, w) for all v1, v2, w ∈ V .

(ii) (αv,w) = α(v, w) for all v, w ∈ V and α ∈ C;

(iii) (v, w) = (w, v) for all v, w ∈ V ;

(iv) (v, v) ≥ 0 for all v ∈ V , and (v, v) = 0 if and only if v = 0.
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For the vector space Cn, we can define an inner product as follows: If v,w ∈
Cn, written as v = (v1, . . . , vn), w = (w1, . . . , wn), we define

(v,w) = v1w1 + v2w2 + · · ·+ vnwn.

Properties (i) and (ii) are easily verified for this product (Exercise 8.5.1). Consider
(iii): We have

(w,v) = w1v1 + w2v2 + · · ·+ wnvn,

and conjugation yields

(w,v) = w1v1 + w2v2 + · · ·+ wnvn,

which equals (v,w) since complex number multiplication is commutative. Now (iii)
implies that (v,v) is real, and (iv) says

(v,v) = v1v1 + · · ·+ vnvn =

n∑
j=1

|vj |2,

and this sum is positive if and only if v 
= 0. By combining properties (iii) and (i),
we deduce that

(v,w1 +w2) = (v,w1) + (v,w2),

and by combining (ii) and (iii), we deduce that

(v, αw) = α(v,w).

(The latter two properties hold, of course, for any complex inner product.)

The norm on Cn induced by the inner product we have just defined is given by

|v| = (v,v)1/2 =
( n∑

j=1

|vj |2
)1/2

.

The Cauchy-Schwarz inequality is
∣∣(v,w)

∣∣ ≤ |v| |w|. Since we need neither the
norm nor the inequality in this section, we leave the verification of these facts to
the interested reader.

In the computations that follow, we think of a complex vector as a column
vector, and its transpose as a row vector, and then the complex inner product
(v,w) may also be written as vTw, with the definition

w =

⎡
⎣ w1

· · ·
wn

⎤
⎦ .

In order to establish the spectral theorem we need three preliminary results,
all centered around a given eigenvalue of a symmetric matrix and the associated
eigenspace. Recall that λ is an eigenvalue of A if there is a nonzero vector v
such that Av = λv. Then v is said to be an eigenvector for λ. By definition,
eigenvectors of A associated with λ are nonzero vectors.

Lemma 8.5.4. Every eigenvalue of an n×n real symmetric matrix is real and has
a corresponding eigenvector in Rn.
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Proof. Let A be an n × n real symmetric matrix, and let λ be an eigenvalue
of A with corresponding eigenvector v. Since Av = λv and A is real, complex
conjugation gives Av = λv = λv. Using the complex inner product (u,w) = uTw
on Cn, we have

(Av,v) = (Av)Tv = vTATv = vTAv = vT (λv) = λvTv.

Since we also have
(Av,v) = (λv,v) = λvTv,

it follows that λvTv = λvTv. Since vTv > 0 for an eigenvector v, we have λ = λ,
so λ is real. To see that λ has a corresponding eigenvector in Rn, write v = u+ iw
where u,w ∈ Rn. Then Av = Au+ iAw, and both Au and Aw are real since A is
real. Since Av = λv = λu + iλw and λ is real, we have Au = λu and Aw = λw,
and at least one of u,w is nonzero since v is nonzero. This proves the lemma. �

We define the eigenspace for an eigenvalue λ of a real symmetric matrix A to
be the null space

N (λI −A) =
{
v ∈ Rn : Av = λv

}
,

the set of all solutions of the linear system of equations, (λI − A)v = 0. This null
space is closed under vector addition and scalar multiplication by real numbers, so
N (λI −A) is a subspace of Rn.

We introduced the complex inner product on Cn for the immediate purpose of
establishing Lemma 8.5.4. It is certainly worth knowing about for advanced work
in linear algebra and numerical analysis. Since we can regard the real symmetric
matrix A as a linear transformation ofRn, we can now revert to using the Euclidean
inner product for real vectors in the remaining results of this section.

Lemma 8.5.5. If A is an n×n real symmetric matrix, λ is an eigenvalue of A, and
W = N (λI−A) is the corresponding eigenspace for λ, then W has an orthonormal
basis.

Proof. Suppose W is a subspace of Rn of dimension k. Then W has a basis
{x1, . . . ,xk}. From this set of k linearly independent vectors, an orthogonal basis
can be constructed as follows: Let v1 = x1, and for j = 2, . . . , k, define

vj = xj −
j−1∑
i=1

(vj ,vi)

‖vi‖2
vi.

This procedure is called the Gram-Schmidt process, and it produces an orthog-
onal set that spans the subspace W , hence an orthogonal basis {v1, . . . ,vk} for W .
(See Exercise 8.5.2). We can normalize the vectors vj by setting uj = vj/‖vj‖ for
1 ≤ j ≤ k, and thus obtain an orthonormal basis of W . �

Let V be a subspace of Rn. We say that V is an invariant subspace for A if
v ∈ V implies Av ∈ V . We express this invariance of V by writing A(V ) ⊆ V . It
is easy to see that the eigenspace W = N (λI − A) of an eigenvalue λ is invariant
for A, since Av = λv ∈ W for every v ∈ W .

If V is a subspace of Rn, the orthogonal complement of V in Rn is the
subspace

V ⊥ :=
{
w ∈ Rn : (v,w) = 0 for all v ∈ V

}
.
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It is easily verified that this set is closed under vector addition and scalar multipli-
cation, so V ⊥ is indeed a subspace of Rn. (We read V ⊥ as “V perp”.)

We need one more fact about symmetric matrices before addressing the spectral
theorem. Note that we can still write (v,w) = vTw when computing with the
Euclidean inner product for real vectors.

Lemma 8.5.6. If A is an n × n real symmetric matrix and W ⊂ Rn is the
eigenspace for an eigenvalue λ of A, then W⊥ is an invariant subspace for A,
that is, A(W⊥) ⊆ W⊥.

Proof. Let v ∈ W , so that Av = λv, and let w ∈ W⊥. We have

(Av,w) = (λv,w) = λ(v,w) = 0,

and

(Av,w) = (Av)Tw = vTATw = vTAw = (v, Aw),

since AT = A. Hence, (v, Aw) = 0. This is true for every v ∈ W and w ∈ W⊥.
Thus w ∈ W⊥ implies Aw ∈ W⊥. Hence W⊥ is invariant under A. �

8.5.2. The Spectral Theorem for Real Symmetric Matrices. We are ready to
prove the spectral theorem for real symmetric matrices, which says that every real
symmetric matrix can be diagonalized by means of an orthogonal transformation
matrix.

Theorem 8.5.7 (Spectral Theorem). If A is an n×n real symmetric matrix, then
there exists an orthonormal basis {u1, . . . ,un} of Rn consisting of eigenvectors of
A. If

U =
[
u1 · · · un

]
,

then U is an orthogonal matrix and U−1AU = UTAU = Λ, where Λ is a diagonal
matrix with the eigenvalues of A on the main diagonal.

Proof. The proof is by induction on the dimension n. For n = 1, a real 1×1 matrix
A = [λ] is symmetric and has λ as its sole eigenvalue. Then the set {1} (consisting
of an eigenvector for A) is an orthonormal basis for R where the Euclidean inner
product is real number multiplication. To proceed to the induction step, we assume
that A is a real n × n symmetric matrix and that the theorem holds for all real
symmetric matrices of size less than n. (Thus we are using the principle of induction
in Theorem 1.3.4.) Let λ1 be an eigenvalue for A and let W be the corresponding
eigenspace. Suppose dimW = k. Then W has an orthonormal basis {u1, . . . ,uk}.
If k = n, then we are done. If k < n, then we may augment this basis for W with
an orthonormal basis {vk+1, . . . ,vn} for W⊥. Then {u1, . . . ,uk,vk+1, . . . ,vn} is
an orthonormal basis for Rn. Note that the vectors vk+1, . . . ,vn need not be
eigenvectors for A; they merely serve to fill out an orthonormal basis of Rn, and
thus ensure that the matrix Q1 defined by

Q1 = [u1 · · · uk vk+1 . . . vn]

is orthogonal, that is, QT
1 Q1 = I, and hence Q−1

1 = QT
1 . Since both W and W⊥ are

invariant under A, the matrix representation of the linear transformation Lx = Ax
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in the basis {u1, . . . ,uk,vk+1, . . . ,vn} is block diagonal, since we have

Q−1
1 AQ1 = QT

1 AQ1 =

[
λ1Ik 0

0 Â

]
where Ik is a k × k identity matrix and Â is (n − k) × (n − k). Moreover, Â is
symmetric, since QT

1 AQ1 is symmetric by the symmetry of A:

(QT
1 AQ1)

T = QT
1 A

TQ1 = QT
1 AQ1.

The similarity transformation preserves the eigenvalues of A, so the eigenvalues of
Â are eigenvalues of A. Now we invoke the induction hypothesis: There exists an
orthonormal set {ûk+1, . . . , ûn} in Rn−k consisting of eigenvectors of Â. If we set

Q2 =

[
Ik 0
0 [ûk+1 · · · ûn]

]
,

then we have

QT
2 (Q

T
1 AQ1)Q2 = Λ

where Λ is an n× n diagonal matrix with the eigenvalues of A along the diagonal,
with each eigenvalue appearing a number of times equal to its geometric multiplicity,
which is the number of linearly independent eigenvectors for that eigenvalue. Set
U = Q1Q2. Then UTU = I and U−1AU = UTAU = Λ, which is equivalent
to AU = UΛ. Therefore the columns of U are eigenvectors of A and form an
orthonormal basis of Rn. �

The spectral theorem allows a convenient characterization of positive definite
and negative definite quadratic forms. First, the definitions.

Definition 8.5.8. Let A be an n × n real symmetric matrix. The function Q :
Rn → R given by

Q(x) = (Ax,x) = xTAx

is the quadratic form determined by A. We say that A is positive definite if
xTAx > 0 for all nonzero x ∈ Rn, and that A is negative definite if xTAx < 0
for all nonzero x ∈ Rn. Otherwise, A is said to be indefinite. These terms are
also applied to the quadratic form itself.

Theorem 8.5.9. Let A be an n × n real symmetric matrix. Then A is positive
definite if and only if all eigenvalues of A are positive, and A is negative definite if
and only if all eigenvalues of A are negative.

Proof. Suppose A is positive definite. Let Av = λv. Then

vTAv = vT (λv) = λvTv > 0.

Since vTv > 0 for an eigenvector v, we have λ > 0. Therefore all eigenvalues of A
are positive. On the other hand, suppose that all eigenvalues of A are positive. Let
x be a nonzero vector, and write

x =
n∑

i=1

ciui
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where {u1, . . . ,un} is an orthonormal basis of eigenvectors of A, with Aui = λiui

for i = 1, . . . , n. There is at least one nonzero ci, and by orthonormality of the ui

we have
xTAx =

∑
i=1

λic
2
i > 0,

since all λi > 0. Therefore A is positive definite.

The proof of the statement about negative definite A is similar (Exercise 8.5.3).
�

The spectral theorem also implies that a real symmetric matrix A is positive
semidefinite, that is, xTAx ≥ 0 for all x, if and only if all eigenvalues of A are
nonnegative. Similarly, a real symmetric matrix A is negative semidefinite, that is,
xTAx ≤ 0 for all x, if and only if all eigenvalues of A are less than or equal to zero.

Exercises.

Exercise 8.5.1. Show that if z and w are complex numbers, then zw = z w and
z + w = z +w. Then check the details to show that the complex inner product for
Cn satisfies properties (i)-(iv) of Definition 8.5.3.

Exercise 8.5.2. Gram-Schmidt orthogonalization in Rn

1. Suppose {x1,x2,x3} is a linearly independent set in R3. Sketch these vectors
as nonorthogonal vectors in R3. Define v1 = x1, and then define

v2 = x2 −
(x2,v1)

|v1|22
v1 and v3 = x3 −

(x3,v1)

|v1|22
v1 −

(x3,v2)

|v2|22
v2.

Sketch the vectors v1,v2,v3. Show that span {v1,v2} = span {x1,x2}. Show
that {v1,v2,v3} is an orthogonal set, and hence a basis forR3. By normalizing
the vectors vj , we obtain an orthonormal basis of R3.

2. Suppose {x1, . . . ,xn} is a linearly independent set in Rn. Let v1 = x1, and
for 2 ≤ j ≤ n, define

vj = xj −
j−1∑
i=1

(vj ,vi)

|vi|22
vi.

Show that span {v1, . . . ,vk} = span {x1, . . . ,xk} for 1 ≤ k ≤ n, and thus
{v1, . . . ,vn} is an orthogonal basis for Rn. By normalizing the vectors vj , we
obtain an orthonormal basis of Rn.

Exercise 8.5.3. Complete the details to show that an n×n real symmetric matrix
is negative definite if and only if all eigenvalues of A are negative.

Exercise 8.5.4. If B is any n × n real matrix, not necessarily symmetric, then
xTBx is the quadratic form determined by B. Show that there is a symmetric
matrix P such that xTBx = xTPx for all x ∈ Rn. Hint : Write B = 1

2 (B +BT ) +
1
2 (B −BT ).

Exercise 8.5.5. Find an orthogonal matrix P such that P−1AP is diagonal, if

A =

⎡
⎣ −2 1 0

1 −2 1
0 1 −2

⎤
⎦ .
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8.6. The Euclidean Metric Space Rn

The length of vectors in the plane and in space was abstracted to provide the
definition of a norm. And a norm can be used to define the distance between two
points. If x,y ∈ R3, then the Euclidean distance between x = (x1, x2, x3) and
y = (y1, y2, y3) is defined by

d(x,y) =
√
(x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2.

Note that this is exactly the Euclidean norm |x− y|2 for x,y ∈ R3.

Often it is useful to have a distance function defined for pairs of points in sets
that are not vector spaces, including the case of a proper subset of a vector space
which is not a subspace. The next definition is stated for an arbitrary nonempty
set and lists the essential properties of a distance function, or metric.

Definition 8.6.1 (Metric Space). Let X be a nonempty set. A function d : X ×
X → R with values denoted d(x, y) is a metric in X if the following properties
hold for x, y, z ∈ X:

1. d(x, y) > 0 if x 
= y.

2. d(x, x) = 0.

3. d(x, y) = d(y, x).

4. d(x, y) ≤ d(x, z) + d(z, y).

A nonempty set X with a metric is called a metric space.

We see that a metric in R3 is determined by the Euclidean norm. More gener-
ally, we have the following theorem:

Theorem 8.6.2. If V is a normed space with norm | · |, then the function d(x, y) =
|x− y| is a metric for V , hence V is a metric space.

Proof. 1. d(x, y) = |x− y| > 0 if x− y 
= 0.

2. d(x, x) = |x− x| = |0| = 0.

3. d(x, y) = |x− y| = |(−1)(y − x)| = |y − x| = d(y, x).

4. d(x, y) = |x− y| = |x− z + z − y| ≤ |x− z|+ |z − y| = d(x, z) + d(z, y). �

If x,y ∈ Rn, then the distance between x = (x1, . . . , xn) and y = (y1, . . . , yn)
as determined by the Euclidean norm is

d(x,y) =
√
(x1 − y1)2 + · · ·+ (xn − yn)2,

and we naturally call this the Euclidean metric in Rn. If x ∈ Rn, then in the
Euclidean norm, the set of all points y such that d(x,y) < r is usually denoted
Br(x) = {y : |y − x|2 < r}, the open ball of radius r about x.

Example 8.6.3. We identify the product spaceRn×Rp withRn+p. The Euclidean
metric on the product space Rn ×Rp is the Euclidean metric on Rn+p under the
identification. �

We proceed to define sequential convergence, Cauchy sequences, and complete-
ness, for general metric spaces.
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Definition 8.6.4. Let X be a metric space with metric d. A sequence (xk)
∞
k=1 in

X converges to a point x in X if for every ε > 0 there is a positive integer N such
that if k ≥ N , then d(xk, x) < ε. Then x is called the limit of the sequence (xk).

This definition implies that a sequence (xk) converges with limit x if and only
if limk→∞ d(xk, x) = 0. It is straightforward to show that the limit of a convergent
sequence is unique.

Definition 8.6.5. A sequence (xk)
∞
k=1 in X is a Cauchy sequence if for every

ε > 0 there is a positive integer N such that if m,n ≥ N , then d(xm, xn) < ε.

A sequence that converges is necessarily a Cauchy sequence.

Definition 8.6.6. A metric space X is said to be complete if every Cauchy se-
quence in X has a limit in X.

A space X may be complete with respect to one metric but not complete with
respect to a different metric.

Example 8.6.7. On the real vector space C[a, b] of real valued functions continuous
on [a, b],

d(f, g) := max
a≤x≤b

|f(x)− g(x)|

is a metric. (See also Example 8.3.10.) An alternative choice of distance function,

d(f, g) :=

∫ b

a

|f(x)− g(x)| dx,

provides another metric on C[a, b]. (See Example 8.3.10, Exercise 8.3.7 and Exercise
8.3.8.) We will see in Section 9.3 that C[a, b] is complete with respect to the first
of these metrics, but C[a, b] is not complete with respect to the second, integral
metric. These facts will be examined more fully in Theorem 9.3.1 and Exercise
9.3.2. �

We end this section with an example of a metric on a vector space of sequences.
This example serves to give an impression of how general the concept of a metric
space is, as the metric in this space does not arise from a norm.

Example 8.6.8. Let S denote the set of all real sequences. Then S is a vector
space with componentwise operations of addition and scalar multiplication. Define
a metric on the sequence space s as follows: If σ = (σk), μ = (μk) ∈ S, define the
distance between σ and μ by

d(σ, μ) :=

∞∑
k=1

1

2k
|σk − μk|

1 + |σk − μk|
.

Then properties (i), (ii), (iii) of Definition 8.6.1 hold. The triangle inequality (iv)
also holds, as we now show. Let

g(t) =
t

1 + t
, for t real.

Then g′(t) = (1 + t)−2 > 0 for all t, so g is an increasing function of t. Hence,

|a+ b| ≤ |a|+ |b| =⇒ g(|a+ b|) ≤ g(|a|+ |b|).
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Consequently, the triangle inequality for numbers implies

|a+ b|
1 + |a+ b| ≤ |a|+ |b|

1 + |a|+ |b|

=
|a|

1 + |a|+ |b| +
|b|

1 + |a|+ |b|

≤ |a|
1 + |a| +

|b|
1 + |b| .

If ξ = (ξk), ζ = (ζk), and η = (ηk) are in S, then, letting a = ξk−ζk and b = ζk−ηk,
we have a+ b = ξk − ηk, and

|ξk − ηk|
1 + |ξk − ηk|

≤ |ξk − ζk|
1 + |ξk − ζk|

+
|ζk − ηk|

1 + |ζk − ηk|
.

Now multiply both sides of this inequality by 1/2k and sum from k = 1 to ∞ to
obtain

d(ξ, η) ≤ d(ξ, ζ) + d(ζ, η),

which is the triangle inequality for the space S. �

It is important to realize that not every metric comes from a norm. Metrics
induced by a norm according to d(x, y) = |x− y| also have the properties given in
the following theorem.

Theorem 8.6.9. If the metric d is induced by a norm | · | on a normed space X,
according to d(x, y) = |x−y|, then for all x, y, a ∈ X and all scalars α, the following
properties hold:

1. d(x+ a, y + a) = d(x, y);

2. d(αx, αy) = |α|d(x, y).

Proof. By definition, d(x+ a, y + a) = |(x+ a)− (y + a)| = |x− y| = d(x, y) and
d(αx, αy) = |αx− αy| = |α||x− y| = |α|d(x, y). �

We can see that the metric for the sequence space S in Example 8.6.8 is not
induced by any norm on S because the metric there does not satisfy property 2 of
Theorem 8.6.9.

In summary, an inner product on a vector space defines a norm, and a norm de-
fines a metric distance. However, not every norm is derived from an inner product,
and not every metric is derived from a norm.

Exercise.

Exercise 8.6.1. Show that in the metric space S of Example 8.6.8, the distance
between any two elements of S is less than 1.
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8.7. Sequences and the Completeness of Rn

By the equivalence of norms on Rn (Theorem 8.3.13), we may discuss convergence
of sequences using any norm we wish. Let us work with the Euclidean norm | · |2 on
Rn. A sequence inRn is a function a : N → Rn where a(k) = ak, and we denote the
sequence by (ak). Definition 8.3.4 includes the definition of Cauchy sequence and
convergent sequence for a normed space such as Rn. The uniqueness of sequential
limits in Rn follows by an argument similar to the one that shows uniqueness of
real number sequential limits (Theorem 2.4.2). Convergent sequences are bounded
in norm, and every subsequence of a convergent sequence must converge to the
same limit. The formulation and proof of these facts is left to Exercise 8.7.1. If
(ak) converges with limit L, we may write

lim
k→∞

ak = L or ak → L (as k → ∞).

Any sequence in Rn determines an ordered n-tuple of real number sequences.
Consider the following example.

Example 8.7.1. Consider the sequence in R3 defined by

ak =
( 1

k2
, sin

kπ

2
,
3k − 2

4k + 5

)
.

The first and third component sequences have limits 0 and 3/4, respectively, as
k → ∞. However, sin(kπ/2) has no limit, since

lim sup sin(kπ/2) = 1 and lim inf sin(kπ/2) = −1.

Thus there is no point L in R3 which can be the limit of (ak). �

The next lemma helps us to reduce convergence questions for sequences in Rn

to questions about convergence of the real component sequences.

Lemma 8.7.2. If x = (x1, x2, . . . , xn) ∈ Rn, then

|xj | ≤ |x|2 ≤
√
n max{|x1|, |x2|, . . . , |xn|}

for j = 1, 2, . . . , n.

Proof. We noted earlier that |xj | ≤ |x|2 for j = 1, 2, . . . , n. Since

|x|22 =
n∑

j=1

|xj |2 ≤
n∑

j=1

[max{|x1|, . . . , |xn|}]2 = n[max{|x1|, . . . , |xn|}]2,

taking positive square roots on both sides yields the second inequality. �
Theorem 8.7.3. A sequence in Rn converges with limit L if and only if each real
component sequence converges to the corresponding component of L.

Proof. Suppose limk→∞ ak = L = (L1, . . . , Ln). Let j be a fixed integer in
{1, 2, . . . , n}, and denote the real j-th component sequence by (akj). By Lemma
8.7.2,

|akj − Lj | ≤ |ak − L|2 ≤
√
n max{|ak1 − L1|, |ak2 − L2|, . . . , |akn − Ln|}.

Given ε > 0, there is an N = N(ε) such that |ak − L|2 < ε for all k ≥ N , hence
|akj−Lj | < ε for all k ≥ N . This shows that the j-th component sequence converges
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with limit Lj . Since j was arbitrary in this argument, each component sequence
converges to the corresponding component of L.

Conversely, suppose that each component sequence converges to the corre-
sponding component of L = (L1, . . . , Ln) ∈ Rn. Since there are finitely many
components, given ε > 0 there is an N such that

√
n max{|ak1 − L1|, |ak2 − L2|, . . . , |akn − Ln|} < ε

for all k ≥ N . Then also |ak − L|2 < ε for all k ≥ N . Therefore (ak) converges to
L = (L1, . . . , Ln). �

Notice that Theorem 8.7.3 establishes without any doubt that the sequence in
Example 8.7.1 diverges.

Example 8.7.4. Consider the sequence in R2 defined by

ak =
( 1

k2
, k101e−k

)
.

The first component sequence (1/k2) clearly converges, so (ak) converges if and
only if limk→∞ k101e−k exists. But this limit exists and equals zero, by repeated
application of l’Hôpital’s rule. �

We are now ready to discuss the completeness of the space Rn. As in the
case of sequences of real numbers, a convergent sequence in Rn must be a Cauchy
sequence, and the reader is encouraged to write this out in Exercise 8.7.2. It is
now possible to address the converse question: Does every Cauchy sequence in Rn

converge to a limit in Rn?

It follows from the fundamental inequality in Lemma 8.7.2 that the sequence
(ak) in Rn is a Cauchy sequence if and only if each of its component sequences is a
Cauchy sequence of real numbers. The proof of this fact follows directly from the
inequality

|aj1 − aj1| ≤ |al − ak|2 ≤
√
n max{|al1 − ak1|, |al2 − ak2|, . . . , |aln − akn|},

which holds for j = 1, . . . , n. (See also Exercise 8.7.3.)

Theorem 8.7.5. A sequence in Rn converges to a limit in Rn if and only if it is
a Cauchy sequence.

Proof. If the sequence (ak) is Cauchy, then each of its component sequences is
Cauchy, by Lemma 8.7.2 and Exercise 8.7.3, and hence each component sequence
converges to a real number limit. Thus, (ak) itself converges, by Theorem 8.7.3.

For the converse statement (the only if part), see Exercise 8.7.2. �

Thus the completeness of Rn is a consequence of the completeness of the real
number field R.

Exercises.

Exercise 8.7.1. Suppose that the sequence (ak) in Rn converges with limit L.
Prove the following:

1. The limit is unique.
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2. The sequence is bounded: There exists M such that |ak| ≤ M for all k.

3. If (ank
) is any subsequence of (ak), then limk→∞ ank

= L.

Exercise 8.7.2. Prove: If a sequence (ak) in Rn converges to a limit in Rn, then
it is a Cauchy sequence.

Exercise 8.7.3. Write an ε,N(ε) proof of the following statement:
A sequence (ak) in Rn is a Cauchy sequence if and only if each of its component
sequences is a Cauchy sequence of real numbers.

8.8. Topological Concepts for Rn

This section presents the basic definitions of topological concepts in Rn.

8.8.1. Topology of Rn. The concepts and definitions in this subsection flow
from the pattern set down earlier for topological notions for subsets of the real num-
bers. The accumulation of definitions is not meant to intimidate but to encourage
some review of the earlier material from Chapter 4, since the pattern of definition
and argument for the facts presented here already appears in the earlier work, and
it is important to observe the similarities.

We begin with the basic topological definitions describing points in relation to
a given subset of Rn. The statements are essentially the same as in the case of
subsets of real numbers.

Definition 8.8.1. Let S be a subset of Rn.

1. A point x ∈ S is an interior point of S if there exists an ε > 0 such that
the open ball Bε(x) is contained in S. The set of all interior points of S,
sometimes denoted IntS, is called the interior of S.

2. A point x is a boundary point of S if for every ε > 0 the open ball Bε(x)
has nonempty intersection with both S and its complement Sc. The set of all
boundary points of S, denoted ∂S, is called the boundary of S. A boundary
point of S need not be a point of S.

3. A point x is a cluster point (or, accumulation point) of S if for every
ε > 0 the open ball Bε(x) contains infinitely many points of S distinct from x.

4. If x ∈ S and x is not a cluster point of S, then it is an isolated point.

A subset S of Rn is open if every point of S is an interior point. A subset F
of Rn is closed if its complement Rn −F is open. As in the case of subsets of the
real numbers, a set F ⊆ R is closed if and only if F contains all its cluster points,
if and only if F = F .

A set S ⊂ Rn is dense in Rn if S = Rn. For example, Qn, the Cartesian
product of n copies of Q, is dense in Rn. More generally, a set S is dense in an
open set U if U ⊂ S. A set S ⊂ Rn is nowhere dense if its closure S has no
interior point.

We record several fundamental theorems whose proofs are straightforward trans-
lations of the proofs of earlier results.
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Theorem 8.8.2. In Rn, the following statements hold:

1. The union of any collection of open sets in Rn is an open set in Rn.

2. The intersection of a finite collection of open sets in Rn is open in Rn.

The proof of part 1 of Theorem 8.8.2 is essentially the same as the proof of
Theorem 4.1.4; the proof of part 2 is essentially the same as the argument for
Theorem 4.1.5. By essentially the same, we mean that only the notation of the
earlier argument might need adaptation to reflect the new setting of Rn.

Theorem 8.8.3. In Rn, the following statements hold:

1. The intersection of any collection of closed sets in Rn is a closed set in Rn.

2. The union of any finite collection of closed sets in Rn is closed in Rn.

The proof of part 1 of Theorem 8.8.3 is essentially the same as the proof of
Theorem 4.1.9; the proof of part 2 is essentially the same as the argument for
Theorem 4.1.10.

Theorem 8.8.4. Let S ⊂ Rn. A point x0 ∈ S is a cluster point of S if and only
if there is a nonconstant sequence (xn) of points of S distinct from x0 such that
xn → x0 as n → ∞.

To prove Theorem 8.8.4, translate the proof of Theorem 4.1.12 to Rn.

8.8.2. Relative Topology of a Subset. Each subset of Rn inherits a topology,
a designated collection of open subsets, from Rn itself. This inherited topology
is called the relative topology on the subset. This section presents some global
properties of continuous functions, described conveniently in the language of relative
topology. Definition 8.8.5 (Definition 8.8.8) describes the sets that are open (closed)
relative to a given subset E. The basic properties of the relative topology are set out
in Theorem 8.8.7, Theorem 8.8.10 and Theorem 8.8.11. The concept of the relative
topology on a subset of the reals provides a convenient language for a topological
characterization of continuous functions on a domain E ⊂ R (Theorem 8.10.9). We
also discuss continuous images of connected sets for real valued functions of a real
variable.

Definition 8.8.5. Let E ⊂ Rn. A subset S of E is open relative to E if
S = E ∩O for some open subset O of Rn.

If S is open relative to E ⊂ Rn, we also say that S is open in E. For every set
E ⊂ Rn, E = E ∩Rn and Rn is open, so every set E is open in itself. The empty
set is also open in E.

If E = Rn, then Definition 8.8.5 agrees with the definition of open subset of
Rn. In fact, if E is any open set, then the subsets of E that are open relative to E
are exactly the subsets of E that are open in Rn. We now consider a set E ⊂ R
which is not open, and some of its subsets that are open in E.

Example 8.8.6. Let E = [0, 2). For any b with 0 < b < 2, the subset Sb = [0, b)
is open in E since, for example, we have

Sb = [0, b) = E ∩ (−b, b)

and (−b, b) is an open subset of the reals. �
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In the general study of topology, the collection of open sets in a space defines
what we call the topology of the space, and the set of open sets in S determined
by Definition 8.8.5 defines the relative topology of the subset S, meaning the
topology that S inherits from the ambient space (Rn, in this case). The relative
topology on E provides a topology for E in the same sense that the open subsets
of Rn provide a topology for Rn. This is the content of the next theorem, whose
proof is left to Exercise 8.8.1.

Theorem 8.8.7. The collection of sets that are open relative to E ⊂ Rn con-
tains the empty set and E itself, and is closed under arbitrary unions and finite
intersections.

An equally useful concept is that of the collection of subsets of S that are closed
relative to S.

Definition 8.8.8. Let E ⊂ Rn. A subset S of E is closed relative to E if
S = E ∩ F for some closed subset F of Rn.

If S is closed relative to E ⊂ Rn, we also say that S is closed in E.

For every set E, the empty set is closed in E. Also, for every set E ⊂ Rn,
E = E ∩Rn and Rn is closed, so every set E is closed in itself. For this reason, if
E ⊂ Rn and S ⊂ E, we say that S is dense in E if the closure of S intersected
with E equals E, that is, S ∩ E = E. This definition recognizes that E is the
universal set for the purpose of discussing the denseness of S, and is equivalent to
forming the closure of S using only those cluster points of S that are elements of E.

Example 8.8.9. The set S = I∩ (0, 1) of irrational numbers in E = (0, 1) is dense
in (0, 1), since S ∩ (0, 1) = (0, 1). The rational numbers in (0, 1) are also dense in
(0, 1). �

If E = Rn, then Definition 8.8.8 agrees with the earlier definition of closed
subset of Rn. If E is a closed subset of Rn, then the subsets of E that are closed
relative to E are exactly the subsets of E that are closed in Rn.

Theorem 8.8.10. The collection of sets that are closed relative to E ⊂ Rn con-
tains the empty set and E itself, and is closed under finite unions and arbitrary
intersections.

The next theorem shows that relatively closed sets are just as important as
relatively open sets.

Theorem 8.8.11. Let E ⊂ Rn. A subset S of E is open relative to E if and only
if its complement in E, E − S = Sc ∩ E, is closed relative to E.

Exercises.

Exercise 8.8.1. Prove Theorem 8.8.7.

Exercise 8.8.2. Prove Theorem 8.8.10.

Exercise 8.8.3. Prove Theorem 8.8.11.
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8.9. Nested Intervals and the Bolzano-Weierstrass Theorem

We have seen that the real number field has the least upper bound property if and
only if it has the nested interval property. Since Rn is not a field it makes no sense
to speak of a least upper bound property for this space. However, we can extend
the notion of interval to Rn, and prove a nested interval property for this space.

First, we generalize real intervals with the concept of intervals in Rn. An open
interval in Rn (n ≥ 2) is a Cartesian product of n real intervals,

B = (a1, b1)× · · · × (an, bn),

where ai < bi for 1 ≤ i ≤ n. A closed interval in Rn (n ≥ 2) has the form

B = [a1, b1]× · · · × [an, bn],

where ai ≤ bi for 1 ≤ i ≤ n. (Note that the interior of a closed interval is the open
interval having the same endpoints for each interval factor.)

A set is open in Rn if every point of the set is an interior point; a set is closed
if its complement in Rn is open. It is an exercise to show that a closed interval in
Rn is a closed set, and an open interval in Rn is an open set.

Theorem 8.9.1 (Nested Interval Property). If Ik = [a
(k)
1 , b

(k)
1 ] × · · · × [a

(k)
n , b

(k)
n ]

is a nested sequence of closed nonempty intervals in Rn, that is, if

(8.9) Ik+1 ⊆ Ik for each k ∈ N,

then the intersection
⋂∞

k=1 Ik is nonempty. If limk→∞ |b(k)j − a
(k)
j | = 0 for each

j = 1, 2 . . . , n, then the intersection consists of a single point.

Proof. By the hypothesis (8.9), we have for each j = 1, 2, . . . , n a nested sequence
of real intervals

[a
(k+1)
j , b

(k+1)
j ] ⊆ [a

(k)
j , b

(k)
j ], k ∈ N.

By the nested interval Theorem 2.5.1, there are real numbers cj ∈ [a
(k)
j , b

(k)
j ] for

all k ∈ N, j = 1, 2, . . . , n. Thus, c = (c1, c2, . . . , cn) ∈ Ik for all k ∈ N. If, in

addition, we have limk→∞ |b(k)j − a
(k)
j | = 0 for each j = 1, 2, . . . , n, then again by

Theorem 2.5.1, there is exactly one number cj ∈ [a
(k)
j , b

(k)
j ] for all k ∈ N, for each

j = 1, 2, . . . , n, and thus a single point in the intersection
⋂

k Ik. �

We can now prove a Bolzano-Weierstrass theorem for Rn. First we need the
definition of bounded set in Rn.

Definition 8.9.2. A set S ⊂ Rn is bounded if there is a number M > 0 such
that |x|2 ≤ M for all x ∈ S.

We have used the Euclidean norm in this definition of bounded set, but it does
not matter which norm on Rn we use (Exercise 8.9.3).

Theorem 8.9.3 (Bolzano-Weierstrass). A bounded infinite set S in Rn has at least
one cluster point, which need not be an element of S.

Proof. See Exercise 8.9.4. �
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Exercises.

Exercise 8.9.1. Prove that an open interval in Rn is an open set.

Exercise 8.9.2. Prove that a closed interval in Rn is a closed set.

Exercise 8.9.3. Explain why we could use any norm on Rn in Definition 8.9.2. To
be precise, if | · |0 denotes any norm on Rn, explain why there is a number M > 0
such that |x|2 ≤ M for all x ∈ S if and only if there is a number M0 > 0 such that
|x|0 ≤ M0 for all x ∈ S.

Exercise 8.9.4. Write a detailed proof of Theorem 8.9.3. Hint : Follow the idea of
the proof of Theorem 2.6.3, observing that now an enclosing interval B for S must
be subdivided into 2n subintervals, and the process continued by such subdivisions
at each step.

8.10. Mappings of Euclidean Spaces

This section presents the basic definitions and results for mappings of Euclidean
spaces. Many of the results of this section have a global character.

8.10.1. Limits of Functions and Continuity. The definitions of limit of a func-
tion F : D → Rm at a cluster point of the domain D ⊆ Rn and continuity of F at
a point a ∈ D take the same form as in the single variable case.

Definition 8.10.1. Let D ⊆ Rn and F : D → Rm. Let a be a cluster point of D,
and let L ∈ Rm. We say that F has limit L as x approaches a, and write

lim
x→a

F(x) = L

if for every ε > 0 there is a δ > 0 such that

x ∈ D and 0 < |x− a| < δ =⇒ |F(x)− L| < ε.

As expected, limits are unique, and the proof is exactly the same as the proof
of Theorem 4.4.6 with the absolute value replaced by a norm.

Theorem 8.10.2. Let F : D → Rn and let a be a cluster point of D. If
limx→a F(x) = L1 and limx→a F(x) = L2 according to Definition 8.10.1, then
L1 = L2.

For functions mapping a subset of Rn into the real numbers, we usually employ
a lowercase f instead of the boldfaced capital F. Limits may then be indicated by
limx→a f(x) = L ∈ R (that is, L is not boldfaced).

Definition 8.10.3. Let D ⊆ Rn and F : D → Rm. If a ∈ D, then F is continu-
ous at a if

lim
x→a

F(x) = F(a).

We have the following characterization of limits and continuity in terms of
sequential convergence. The proof mimics the proof in the single variable case.
(See Theorem 4.4.8.)
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Theorem 8.10.4. Let D ⊆ Rn and F : D → Rm. Let a be a cluster point of D.
Then the following are true:

1. limx→a F(x) = L if and only if for every sequence (xn) such that limn→∞ xn =
a, we have limn→∞ F(xn) = L.

2. In particular, F is continuous at a if and only if for every sequence (xn) in D
such that limn→∞ xn = a, we have limn→∞ F(xn) = F(a).

Two of the properties of limits in Theorem 4.4.7 have direct analogues here.
In particular, limx→a F(x) = L ∈ Rn if and only if limx→a |F(x) − L| = 0. And
if limx→a F(x) = L, then for any scalar c ∈ R, limx→a cF(x) = cL. The squeeze
theorem (Theorem 4.4.7(c)) has a direct extension only for real valued functions of
x ∈ Rn, and the formulation and proof of this extension is an exercise.

Sums, differences, products, and quotients of functions are defined pointwise
as usual. The results of Theorem 4.4.9 on limits of sums and differences extend
to the case of mappings from D ⊆ Rn into Rm and follow from the sequential
characterization in Theorem 8.10.4. For real valued functions, the product and
quotient limit laws hold as well, and these are summarized in the following theorem.

Theorem 8.10.5. Let F and G be functions defined on a common domain D, and
let a be a cluster point of D.

1. If limx→a F(x) = L1 and limx→a G(x) = L2, then

lim
x→a

(F±G)(x) = L1 ± L2.

2. If f and g are real valued on D, and if limx→a f(x) = L1 and limx→a g(x) =
L2, then

lim
x→a

f(x)g(x) = L1L2, and lim
x→a

f(x)/g(x) = L1/L2 if L2 
= 0.

The next result is an immediate consequence of Theorem 8.10.5.

Theorem 8.10.6. Suppose F and G are vector valued, and f and g are real valued,
functions defined in an open set D ⊆ Rn that contains the point a.

1. If F and G are both continuous at a, then F±G is continuous at a.

2. If f and g are both continuous at a, then fg is continuous at a, and, if
g(a) 
= 0, then f/g is continuous at a.

Let U ⊆ Rn, V ⊆ Rm and suppose that G : U → Rm and F : V → Rp. Then
the composition F ◦G is the function defined by

(F ◦G)(x) = F(G(x)), for x ∈ G−1(V ) ∩ U,

where G−1(V ) = {x : G(x) ∈ V }. We have the following theorem on the continuity
of the composite mapping at a point.

Theorem 8.10.7 (Continuity of Composition). Let U ⊆ Rn and V ⊆ Rm, and
suppose that G : U → Rm and F : V → Rp. If G is continuous at a ∈ U and F is
continuous at G(a) ∈ V , then F ◦G is continuous at a.
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Proof. We use the sequential characterization of continuity. Let (xj)
∞
j=1 be any

sequence such that xj → a as j → ∞. Then, by continuity of G at a, G(xj) →
G(a), and by continuity of F at G(a), F(G(xj)) → F(G(a)). �

We record the following definitions for continuity and uniform continuity of
functions F : D ⊆ Rn → Rm over their domain D.

Definition 8.10.8. We say that a function F : D ⊆ Rn → Rm is continuous on
D if it is continuous at each x ∈ D. We say that F is uniformly continuous on
D if for every ε > 0 there is a δ = δ(ε) > 0 such that if x, y ∈ D and |x− y| < δ(ε),
then |f(x)− f(y)| < ε.

Exercises.

Exercise 8.10.1. Let f(x, y) = x2y/(x4 + y2) if (x, y) 
= (0, 0), and f(0, 0) = 0.
Show that lim(x,y)→(0,0) f(x, y) does not exist. Hint : Consider different paths of
approach to (0, 0).

Exercise 8.10.2. Show that the function

f(x, y) =

{
xy/(x2 + y2) if (x, y) 
= (0, 0),
0 if (x, y) = (0, 0)

is not continuous at (0, 0).

Exercise 8.10.3. Show that the function

f(x, y) =

{
xy/
√

x2 + y2 if (x, y) 
= (0, 0),
0 if (x, y) = (0, 0)

is continuous on R2. Use the limit definition to show that f is continuous at (0, 0).

Exercise 8.10.4. Formulate and prove a squeeze theorem (as in Theorem 4.4.7
(c)) for real valued functions of x in Rn.

Exercise 8.10.5. Prove Theorem 8.10.2.

Exercise 8.10.6. Prove Theorem 8.10.4.

Exercise 8.10.7. Let f : B ⊂ Rn → R be a bounded function, where B is an
interval in Rn, and let p ∈ B. For each open set U containing p, let us define
o(f, U) by

o(f, U) = sup
{
|f(x1)− f(x2)| : x1,x2 ∈ U ∩B

}
.

Then define the oscillation of f at p ∈ B by

o(f,p) = inf
{
o(f, U) : U open and p ∈ U

}
.

Show the following:

1. o(f,p) exists for any p ∈ B, and o(f,p) ≥ 0.

2. f is continuous at p if and only if o(f,p) = 0.

3. If D = {x ∈ B : f is discontinuous at x}, then D =
⋃∞

n=1 D1/n, where
D1/n = {x ∈ B : o(f,x) ≥ 1/n}.

4. For any n ∈ N, the set D1/n = {x ∈ B : o(f,x) ≥ 1/n} is a closed set.
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8.10.2. Continuity on a Domain. We can now give a global characterization of
continuity on a domain. We consider real valued functions f and leave the extension
to vector valued functions as an exercise. Let f : E ⊂ Rn → R. Recall that if V
is any set of real numbers, then the set f−1(V ) = {x ∈ E : f(x) ∈ V } is called the
inverse image of V under f .

Theorem 8.10.9. A function f : E ⊂ Rn → R is continuous on E if and only if
the inverse image f−1(V ) of every open set V is open relative to E. If the domain
E is an open set in Rn, then f is continuous on E if and only if the inverse image
f−1(V ) of every open set V is open.

Proof. Suppose f is continuous on E. Let O be an open set in R. If f−1(O) is
empty, then f−1(O) is open (the empty set is open) and we are done, so we assume
now that f−1(O) is nonempty. If a ∈ f−1(O), then f(a) ∈ O. Since O is open,
there is an ε = ε(a) > 0 such that Bε(f(a)) ⊂ O. Since f is continuous at a, there
is a δ = δ(ε, a) such that

f(Bδ(a)) ⊂ Bε(f(a)) ⊂ O,

that is to say,

E ∩Bδ(a) ⊂ f−1(O).

This construction can be carried out for each a ∈ f−1(O). Now let

O1 =
⋃

a∈f−1(O)

Bδ(ε,a)(a).

Then O1 is open since it is a union of open sets. If x ∈ f−1(O), then clearly x ∈ O1

(since x ∈ Bδ(ε,x)(x)). So f−1(O) ⊂ O1. And since f−1(O) ⊂ E, we have

f−1(O) ⊂ E ∩O1.

But if x ∈ E ∩O1, then there is some a ∈ f−1(O) for which

x ∈ E ∩Bδ(ε,a)(a) ⊂ f−1(O),

and therefore

E ∩O1 ⊂ f−1(O).

Hence f−1(O) = E ∩O1.

Now suppose that for every open set O in R there is an open set O1 in Rn such
that

f−1(O) = E ∩O1.

Let a ∈ E. We want to show that f is continuous at a. For every ε > 0, Bε(f(a))
is open in R, and a ∈ f−1(Bε(f(a))). There is an open set O1 in Rn such that

f−1(Bε(f(a))) = E ∩O1.

Since a ∈ O1, there is a δ = δ(ε) > 0 such that Bδ(a) ⊂ O1. Since

E ∩Bδ(a) ⊂ E ∩O1 ⊂ f−1(Bε(f(a))),

we have
f(E ∩Bδ(a)) ⊂ Bε(f(a)).

Since ε was arbitrary, this proves that f is continuous at a. Since this is true for
each a ∈ E, f is continuous on E. �
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The second statement of this theorem covers the case where f is defined on all
of Rn, and then f is continuous on Rn if and only if the inverse image f−1(O) of
every open set O is open in Rn.

The proof of Theorem 8.10.9 extends with minor modifications to cover the
case of functions F : E ⊂ Rn → Rm. Thus, a mapping F : E ⊆ Rn → Rm is
continuous on E if and only if for every open set O ⊂ Rm there is an open set
O1 ⊂ Rn such that F−1(O) = E ∩O1.

A closed set is the complement of an open set. The continuity of a function
f on a set E may also be characterized using inverse images of closed sets. Recall
that for any set W , we have

f−1(W c) = (f−1(W ))c.

Theorem 8.10.10. Let f : E ⊂ Rn → R. The function f is continuous on E if
and only if the inverse image f−1(W ) of every closed set W is closed relative to E.
If the domain E is a closed set in Rn, then f is continuous on E if and only if the
inverse image f−1(W ) of every closed set W is closed.

Proof. Suppose f is continuous on E. If W is closed, then W c is open, and thus
f−1(W c) = (f−1(W ))c = E ∩O where O is an open set, by Theorem 8.10.9. Then
f−1(W ) = (E ∩ O)c = Ec ∪ Oc, and by the definition of inverse image, we must
have f−1(W ) = E ∩Oc.

Conversely, if for any closed set W we have f−1(W ) = E∩Oc where O is open,
then (f−1(W ))c = (E ∩ Oc)c = Ec ∪ O and therefore f−1(W c) = Ec ∪ O. By the
definition of inverse image, we must have f−1(W c) = E ∩O. Since this is true for
any closed set W , it follows that the inverse image under f of any open set is open
relative to E, so f is continuous on E by Theorem 8.10.9. �

Note that if f is defined on all of Rn, then f is continuous on Rn if and only
if the inverse image f−1(W ) of every closed set W is closed in Rn.

We now discuss the continuous image of a connected set, with the emphasis
here on real valued functions of a real variable. Recall the characterization of real
intervals as the connected subsets of R, proved in Theorem 4.3.2.

Theorem 8.10.11. If J is a real interval and f : J → R is continuous, then f(J)
is connected, hence an interval.

Proof. Suppose, for the purpose of reaching a contradiction, that U and V are open
sets in f(J) that disconnect f(J). Since f is continuous on J , the sets f−1(U) and
f−1(V ) are open in J , they are disjoint since U ∩ V = ∅, and their union is J since
U ∪ V = f(J). This gives a disconnection of J , which is a contradiction since we
know that every interval is connected. �

An extension of Theorem 8.10.11 is considered in Theorem 8.10.31.

The intermediate value theorem, proved earlier in Theorem 4.6.3 by a different
argument, follows now as a corollary of Theorem 8.10.11:

Corollary 8.10.12. If f : [a, b] → R is a continuous function, and c is any
real number between f(a) and f(b), then there exists a point x ∈ (a, b) such that
f(x) = c.
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Proof. The image f([a, b]) is connected, by Theorem 8.10.11, and hence is an
interval by Theorem 4.3.2. If c lies between f(a) and f(b), then c must belong to
f([a, b]), so f(x) = c for some x ∈ (a, b). �

8.10.3. Open Mappings. A continuous function f : R → R need not map
open sets onto open sets. For example, consider the function in Exercise 8.10.8.
However, mappings that send open sets in the domain onto open sets in the range
are of interest, as we will see shortly.

Definition 8.10.13. The function F : E ⊂ Rn → Rm is called an open mapping
(or, an open map) on E if for every open set O ⊂ Rn there is an open set
O1 ⊆ Rm such that

(8.10) F(E ∩O) = F(E) ∩O1.

Thus F is an open mapping on E if and only if the image of every open set in
E is open in F(E).

Theorem 8.10.14. If F : E ⊂ Rn → Rm is a one-to-one open mapping, then the
inverse function F−1 : F(E) → E is continuous on F(E).

Proof. Let G = F−1, which is defined on F(E) since F is one-to-one. For any
S ⊂ Rn, clearly we have G−1(S) = F(S). Since F is an open mapping on E, if O
is open in Rn, then there is an open set O1 in Rm such that

F(E ∩O) = F(E) ∩O1,

and therefore

G−1(O) = G−1(E ∩O) = F(E ∩O) = F(E) ∩O1.

Since O was an arbitrary open set in Rn, G = F−1 is continuous on its domain
F(E) by a straightforward extension of Theorem 8.10.9 to functions taking values
in Rm. �

Exercises.

Exercise 8.10.8. Define f(x) = −x for x ∈ (−∞, 0), f(x) = 0 for x ∈ [0, 1], and
f(x) = x − 1 for x ∈ (1,∞). Show that f does not generally map open sets onto
open sets.

Exercise 8.10.9. A continuous function g : R → R need not map closed sets onto
closed sets. Show that the function g(x) = x/(1 + x2) maps the closed set [1,∞)
onto the set (0, 1/2], which is not closed.

8.10.4. Continuous Images of Compact Sets. We first define open covers by
extending Definition 4.2.1.

Definition 8.10.15 (Open Cover). Let S be a subset of Rn and let Oγ ⊆ Rn be an
open set for each γ in some index set Γ. If S ⊆

⋃
γ Oγ , then the collection {Oγ}γ∈Γ

is called an open cover of S. If {Oγ}γ∈Γ is an open cover of S, and if Γ0 ⊂ Γ
and S ⊆

⋃
γ∈Γ0

Oγ , then the collection {Oγ}γ∈Γ contains the subcover {Oγ}γ∈Γ0

of S. If a subcover has only finitely many elements it is a finite subcover of S.
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Definition 8.10.16 (Compact Set). A set K in Rn is compact if every open
cover of K contains a finite subcover of K.

As in the case of compact subsets of the real line, any compact set K in Rn

must be bounded, because K is covered by the open cover consisting of the open
cubes centered at the origin and having edge length j, j ∈ N. There is a finite
subcover, so K is contained within one of these cubes, hence K is bounded.

We have the following generalization of Theorem 4.2.9.

Theorem 8.10.17 (Heine-Borel). A subset K of Rn is compact if and only if it
is closed and bounded.

Theorem 8.10.17 can be proved in much the same way as for Theorem 4.2.9,
with appropriate adaptations for the n-dimensional case; the details are left to
Exercise 8.10.10.

We have the following generalization of Theorem 4.2.10.

Theorem 8.10.18. A set K in Rn is compact if and only if every infinite subset
of K contains a nonconstant convergent sequence with limit in K.

We leave the proof as an exercise.

Theorem 4.8.1 on the continuous image of a compact set has the following
extension.

Theorem 8.10.19. If F : K ⊂ Rn → Rm is continuous on a compact set K, then
f(K) is compact.

Proof. Let Ω = {Oα : α ∈ A} be an open cover of the image F(K). Since F is
continuous on K, for each Oα ∈ Ω there is an open set Gα in Rn such that

F−1(Oα) = Gα ∩K.

Then G = {Gα : α ∈ A} is an open cover of K, since for any x ∈ K, we have
F(x) ∈ F(K), and hence F(x) ∈ Oα for some α ∈ A. Since K is compact, there is
a finite subcover, say

G′ = {Gα1
, Gα2

, . . . , Gαm
},

so that K ⊂
⋃m

k=1 Gαk
. Given any point F(x) ∈ F(K), we have x ∈ Gαk

for some
k with 1 ≤ k ≤ m, and thus F(x) ∈ Oαk

. Hence the collection Ω′ = {Oαk
: 1 ≤

k ≤ m} is a finite subcover of the open cover Ω of F(K). This proves that F(K) is
compact. �

We defined uniform continuity of a function F : D ⊆ Rn → Rm in Definition
8.10.8. We have the following theorem, whose proof is suggested in Exercise 8.10.18.

Theorem 8.10.20. If F : K ⊆ Rn → Rm and K is compact, then F is uniformly
continuous on K.
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We have an extreme value theorem for real valued continuous functions on
compact domains:

Theorem 8.10.21 (Extreme Value Theorem). A real valued continuous function
f : K ⊂ Rn → R on a compact set K achieves its absolute maximum and absolute
minimum value on K; that is, there exist points xM and xm in K such that f(xm) ≤
fx) for all x ∈ K, and f(xM ) ≥ f(x) for all x ∈ K.

Proof. The image set f(K) is a compact subset of R, by Theorem 8.10.19, so
f(K) is bounded and closed, and hence F (K) contains its limit points inf f(K)
and sup f(K). �

There is an easy corollary to the extreme value theorem.

Theorem 8.10.22. If F : K ⊂ Rn → Rm is continuous on a compact set K, then
for any norm | · | on Rm, the function |F| : K → R, defined by |F|(x) = |F(x)|,
x ∈ K, achieves its maximum and minimum value on K.

Proof. We only need to know that the composite function |F| is continuous on K.
For any fixed a ∈ K, the reverse triangle inequality for the norm implies that∣∣∣|F(x)| − |F(a)|

∣∣∣ ≤ |F(x)− F(a)|

for x ∈ K. Therefore the continuity of F on K implies continuity of |F|. �

An important special case of Theorem 8.10.22 leads to the next result.

Theorem 8.10.23. Let Cn[a, b] = {ψ : [a, b] → Rn : ψ is continuous} be the set of
continuous curves in Rn defined on the interval [a, b]. With pointwise addition and
scalar multiplication,

(φ+ ψ)(t) = φ(t) + ψ(t), (αψ)(t) = αψ(t), α ∈ R, t ∈ [a, b],

Cn[a, b] is a real vector space. If | · | is a fixed norm on Rn, then Cn[a, b] is normed
by

(8.11) ‖ψ‖ := max
t∈[a,b]

|ψ(t)|.

Proof. The existence of the maximum follows from Theorem 8.10.22 since [a, b]
is compact and |ψ(t)| is continuous on [a, b]. That (8.11) defines a norm is left to
Exercise 8.10.16. �

Exercises.

Exercise 8.10.10. Prove the following statements:

1. If K is a compact set in Rn, then K is closed and bounded. Hint : Follow the
arguments leading to Theorem 4.2.5.

2. If K ⊂ Rn is closed and bounded, then K is compact. Hint : Follow the
arguments leading to Theorem 4.2.8.
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Exercise 8.10.11. Suppose f : R → R is continuous and |f(x)| → ∞ as |x| → ∞.

1. Show that f−1(K) is compact for every compact set K ⊂ R. Compare this
with the situation presented by the function g(x) = 1/(1 + x2); in particular,
consider g−1([−1/2, 1/2]).

2. Let p : R → R be a nonconstant polynomial function. Show that p−1(K) is
compact for every compact set K.

Exercise 8.10.12. Prove Theorem 8.10.18. Hint : Follow the approach of Theorem
4.2.10, modifying statements appropriately for the case of Rn.

Exercise 8.10.13. Show that K ⊂ Rn is compact if and only if every infinite
sequence in K has a convergent subsequence with limit in K. (See also Exercise
4.2.5.)

Exercise 8.10.14. Give a proof of Theorem 8.10.19 following the approach taken
in Theorem 4.8.1, and modifying statements appropriately for the case of Rn.

Exercise 8.10.15. Prove: If K ⊂ R is compact and f : K → R is continuous and
one-to-one, then f−1 : R(f) → K is continuous on R(f), where R(f) is the range
of f .

Exercise 8.10.16. Let | · | be a norm on Rn. Show that ‖ψ‖ = maxt∈[a,b] |ψ(t)|,
for ψ ∈ Cn[a, b], defines a norm on the vector space Cn[a, b].

Exercise 8.10.17. Equivalence of norms revisited
This exercise gives an alternative approach to proving the equivalence of any two
norms on Rn (Theorem 8.3.13). Let | · |2 denote the Euclidean norm on Rn and
let | · | denote any other norm on Rn.

1. Write x = (x1, . . . , xn) =
∑n

k=1 xkek. Use the triangle inequality to show that
|x| ≤

∑n
k=1 |xk| |ek|.

2. Then use the Cauchy-Schwarz inequality to show that
∑n

k=1 |xk| |ek| ≤ M |x|2,
where M = (

∑n
k=1 |ek|2)1/2. Note that this proves one inequality required of

an equivalence, and shows that f(x) = |x| is continuous in the Euclidean
norm.

3. Use the continuity established in part 2 to conclude that f(x) = |x| attains
a positive minimum value m on the compact unit sphere where |x|2 = 1.
Conclude that |x| ≥ m|x|2 for all x 
= 0.

4. Conclude by transitivity of norm equivalence that any two norms on Rn are
equivalent.

Exercise 8.10.18. Prove Theorem 8.10.20. Suggestion: Prove this by contradic-
tion with the help of Theorem 8.10.18. By the negation of the definition of uniform
continuity, the function F : K ⊆ Rn → R is not uniformly continuous on K if and
only if there is an ε > 0 and sequences xn, zn in K such that limn→∞ |xn−zn| = 0
but |F (xn)− F (zn)| ≥ ε.

8.10.5. Differentiation under the Integral. This section provides an opportu-
nity to discuss certain situations where a differentiation follows an integration, and
the issue is whether it is legitimate to differentiate a definite integral by differentiat-
ing under the integral sign. We give a precise statement below in Theorem 8.10.24.
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The theorem employs the compactness of the Cartesian product [a, b]× [c, d] of two
finite closed intervals and the boundedness and uniform continuity of a continuous
function on a compact set, all from the previous section. (Theorem 8.10.21 covers
the boundedness, and Exercise 8.10.18 the uniform continuity, used in this section.)
We also need a partial derivative.

We consider a function f : [a, b]×[c, d] → R, and we define the partial derivative
of f with respect to x at a point (t0, x0) in [a, b]× [c, d] by

D2f(t0, x0) :=
∂f

∂x
(t0, x0) = lim

h→0

f(t0, x0 + h)− f(t0, x0)

h
.

If x0 = d, then the limit is taken for h < 0, and if x0 = c, then the limit is taken
for h > 0.

If the mapping t → f(t, x) is Riemann integrable in t for each fixed x in [c, d],
then

(8.12) g(x) =

∫ b

a

f(t, x) dt

is defined for each x in [c, d]. Under certain conditions, we can show that the func-
tion g : [c, d] → R is differentiable at every x in [c, d], and compute its derivative.

Theorem 8.10.24. Suppose f(t, x) and D2f(t, x) are defined and continuous for
(t, x) in [a, b]× [c, d]. Then the function g in ( 8.12) is differentiable on [c, d], and

g′(x) =

∫ b

a

D2f(t, x) dt

for every x ∈ [c, d].

Proof. Fix x in [c, d]. For any fixed t in [a, b], and for real h, the chain rule gives

d

ds
f(t, x+ sh) = D2f(t, x+ sh)h.

Then the fundamental theorem of calculus (integration of a derivative) implies

f(t, x+ h)− f(t, x) =

∫ 1

0

D2f(t, x+ sh)h ds.

Let λ(x) =
∫ b

a
D2f(t, x) dt. We wish to show that λ(x) = g′(x). By definition of g

and λ, we have

g(x+ h)− g(x)− λ(x)h =

∫ b

a

[f(t, x+ h)− f(t, x)−D2f(t, x)h] dt

=

∫ b

a

[ ∫ 1

0

D2f(t, x+ sh)h ds−D2f(t, x)h
]
dt

=

∫ b

a

{∫ 1

0

[D2f(t, x+ sh)−D2f(t, x)]h ds
}
dt.

Let

Mx(h) = max
0≤s≤1, a≤t≤b

∣∣D2f(t, x+ sh)−D2f(t, x)
∣∣,
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which exists since D2f(t, x+ sh)−D2f(t, x) is continuous for (t, s) ∈ [a, b]× [0, 1].
Then ∣∣g(x+ h)− g(x)− λ(x)h

∣∣ ≤ Mx(h) |h| (b− a).

By the uniform continuity of D2f on the compact set [a, b]× [c, d], given any ε > 0
there is a δ > 0 such that if |h| < δ, then Mx(h) < ε/(b− a), and hence

|g(x+ h)− g(x)− λ(x)h| < ε|h|.

Thus, by the definition of derivative, λ(x) = g′(x). �

As we noted above, the result of Theorem 8.10.24 is often called differentiation
under the integral , since it asserts that under the assumed continuity conditions,
we have

d

dx

[ ∫ b

a

f(t, x) dt
]
=

∫ b

a

D2f(t, x) dt =

∫ b

a

∂f

∂x
(t, x) dt

for each x ∈ [c, d]. By definition of g′(x), this is the same as saying that

lim
h→0

g(x+ h)− g(x)

h
= lim

h→0

1

h

(∫ b

a

[f(t, x+ h)− f(t, x)] dt
)

=

∫ b

a

lim
h→0

[f(t, x+ h)− f(t, x)] dt

=

∫ b

a

∂

∂x
f(t, x) dt

for (t, x) ∈ [a, b] × [c, d]. Thus, Theorem 8.10.24 gives sufficient conditions under
which the limit as h → 0 can be passed inside the integral operation, yielding the
integrand ∂

∂xf(t, x). Note that a direct application of the definition of g′(x) requires
that the integration be done for each h, and then the limit of the resulting function
of h be found. The continuity conditions of Theorem 8.10.24 allow the interchange
of order of the limit and integral operations on the right-hand side.

Exercises.

Exercise 8.10.19. Let f(t, x) = sin(tx)/t for (t, x) ∈ [a, b]× (−∞,∞), where [a, b]
does not contain 0. Use Theorem 8.10.24 to show that if x is real and g(x) is defined
by (8.12), then

g′(x) =

∫ b

a

D2f(t, x) dt =

∫ b

a

cos(tx) dt.

Exercise 8.10.20. Find g′(x) if

g(x) =

∫ 1

0

x√
1− x2t2

dt, 0 ≤ x ≤ 1/2.

Exercise 8.10.21. Find g′(x) if g(x) =
∫ 1

0
e−tx2

dt for x ≥ 1.
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8.10.6. Continuous Images of Connected Sets. We now consider the prop-
erty of connectedness for subsets ofRn. Earlier we defined connectedness for subsets
of the reals and we saw in Theorem 4.3.2 that a subset of R is connected if and
only if it is an interval. In particular, R itself is connected. The next definition is
a straightforward extension of Definition 4.3.1.

Definition 8.10.25. A subset S ⊆ Rn is disconnected if there exist open sets U
and V in Rn such that

1. U ∩ S 
= ∅, V ∩ S 
= ∅,
2. (U ∩ S) ∩ (V ∩ S) = ∅,
3. (U ∩ S) ∪ (V ∩ S) = S.

Then the pair U , V are said to disconnect S. A set S is connected if it is not
disconnected.

Using the language of relative topology, an equivalent definition of disconnected
set is that S ⊆ Rn is disconnected if there are relatively open sets U1 and V1 in S
such that

(i) U1 
= ∅, V1 
= ∅,
(ii) U1 ∩ V1 = ∅,
(iii) U1 ∪ V1 = S.

It is not always easy to decide whether a subset of Rn is connected or discon-
nected. For example, let aj ≤ bj for j = 1, . . . , n, and consider the closed interval
defined by

J = {(x1, . . . , xn) ∈ Rn : aj ≤ xj ≤ bj}.
If we specify instead that aj < xj < bj and aj < bj for j = 1, . . . , n, then we get an
open interval in Rn. If we have any mixture of strict and nonstrict inequalities,
then we still get an interval, one that is neither open nor closed. It is not immediate
from the definition of connected set that an interval in Rn is connected.

Let us first prove that Rn is connected, since the proof provides a useful idea.

Theorem 8.10.26. Rn is a connected set.

Proof. Suppose not, and let U and V be open sets that disconnect Rn. Let
a ∈ U and let b ∈ V . Let r(t) = a + tb for t ∈ R. Since r : R → Rn is
continuous, r−1(U) and r−1(V ) are open sets in R. Since U and V are nonempty
and disjoint, the same is true of r−1(U) and r−1(V ). Since U ∪ V = Rn, we have
r−1(U)∪ r−1(V ) = R. Therefore r−1(U) and r−1(V ) are open sets that disconnect
R, contradicting Theorem 4.3.2. Hence Rn is connected. �

Corollary 8.10.27. The only subsets of Rn that are both open and closed are Rn

and the empty set.

Proof. Suppose A ⊂ Rn, A 
= Rn, A 
= ∅, and A is both open and closed. Then
Ac is open since A is closed, Ac 
= ∅, A ∩ Ac = ∅ and A ∪ Ac = Rn. Thus, A and
Ac disconnect Rn, which contradicts Theorem 8.10.26. �
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The next concept is quite helpful in determining whether certain subsets are
connected or disconnected. Here we make further use of the idea in the proof of
Theorem 8.10.26.

Definition 8.10.28. A set S ⊆ Rn is path connected if for every pair of points
a and b in S, there is a continuous path p : [0, 1] → S such that p(0) = a and
p(1) = b. (Thus for every a and b in S there is a continuous path from a to b
that lies entirely within S.)

Theorem 8.10.29. If S ⊆ Rn is path connected, then S is connected.

A proof of Theorem 8.10.29 is requested in Exercise 8.10.22, and the proof can
be patterned on the argument in the proof of Theorem 8.10.26. Using the concept of
path connectedness, it is relatively easy to show that intervals in Rn are connected
(Exercise 8.10.23). A set S ⊆ Rn is convex if for any pair of points a and b in
S, the line segment joining them, which is the image of the path r(t) = a + tb,
0 ≤ t ≤ 1, lies entirely within S. Since r(t) = a + tb is continuous on [0, 1], if S
is convex, then S is path connected, and thus Theorem 8.10.29 implies that every
convex set is connected.

The converse of Theorem 8.10.29 is not true. There are connected sets that are
not path connected, as in the next example.

Example 8.10.30. Let S ⊂ R2 be the set

S =
{
(x, y) : x = 0 and − 1 ≤ y ≤ 1

}
∪
{
(x, y) : x > 0, y = sin(1/x)

}
,

that is, S is the union of the line segment {0}× [−1, 1] on the y axis and the graph
of y = sin(1/x) for x > 0. Then S is connected, but not path connected (Exercise
8.10.24). �

For open sets, however, connectedness and path connectedness are equivalent;
this follows from the result of Exercise 8.10.25 and Theorem 8.10.29. Observe that
the set S in Example 8.10.30 is not open.

Theorem 8.10.11 showed that if f is a continuous real-valued mapping of an
interval J ⊆ R, then f(J) is connected. We can now prove a general result which
covers the earlier statement.

Theorem 8.10.31. If F : D ⊆ Rn → Rm is continuous and D is a connected set
in Rn, then F(D) is a connected set in Rm.

Proof. Assume F is continuous on the connected set D. Suppose F(D) is discon-
nected, so that there are relatively open sets U1 and V1 in F(D) such that

U1 
= ∅, V1 
= ∅, U1 ∩ V1 = ∅, U1 ∪ V1 = F(D).

By continuity of F, F−1(U1) and F−1(V1) are relatively open in D. Moreover, these
sets are nonempty and disjoint since U1 and V1 are nonempty and disjoint, and
F−1(U1)∪F−1(V1) = D since U1 ∪V1 = F(D). This shows that D is disconnected,
the contradiction we were seeking. �
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Exercises.

Exercise 8.10.22. Prove Theorem 8.10.29.

Exercise 8.10.23. Show that every interval in Rn is a connected set.

Exercise 8.10.24. Show that the set S of Example 8.10.30 is connected but not
path connected.

Exercise 8.10.25. Prove: If S ⊂ Rn is open and connected, then S is path
connected.

Exercise 8.10.26. Prove: If S = [0, 1] and f : S → S is continuous, then f has at
least one fixed point; that is, there exists some point x0 ∈ S such that f(x0) = x0.

8.11. Notes and References

Much of this chapter is influenced by Sagan [54]. Much of the material on norms
is influenced by Kreyszig [41].

Exercise 8.10.26 is the simplest case of a more general fixed point theorem
known as the Brouwer fixed point theorem; see Simmons [59].



Chapter 9

Metric Spaces and
Completeness

This chapter introduces basic topological concepts in metric spaces, proves the
widely applicable contraction mapping theorem for complete metric spaces, and
establishes completeness for some important spaces used later in the book. The
modest level of abstraction required in this chapter provides a basic foundation
for moving beyond Euclidean spaces in the study of analysis. The concept of a
complete metric space arises even when we consider a closed subset of a normed
space when the subset is not a vector space.

9.1. Basic Topology in Metric Spaces

Let X be a metric space with metric d (Definition 8.6.1). The definition does not
require X to be a vector space, although most metric spaces considered in this book
are vector spaces (or subsets of a vector space) and the metric distance function is
defined in terms of a norm. We refer to the elements of X as points, and in general
statements about metric spaces we use lowercase letters to indicate the points.

The following definitions are direct generalizations of definitions in the case of
the metric space R, where d(x, y) = |x−y| is defined by the absolute value function,
and the metric space Rn, where d(x,y) = |x − y|, where | · | is any norm on Rn.
In the definitions which follow we assume that X is a metric space with metric d.

Definition 9.1.1. If X is a metric space, x ∈ X, and δ > 0, then the set of points

Bδ(x) = {y ∈ X : d(y, x) < δ}
is called an open ball about x. The number δ is called the radius of the ball.

Definition 9.1.2. A subset S of a metric space (X, d) is bounded if there is a
positive number M such that d(x, y) ≤ M for all x, y ∈ S.

Definition 9.1.3. If S ⊂ X, then an element x is called an interior point of S
if there exists a positive number δ > 0 such that the open ball Bδ(x) ⊂ S.

271
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Definition 9.1.4. A set S ⊆ X is called an open set if every element of S is an
interior point of S. A set S ⊆ X is called a closed set if its complement, X − S,
is an open set.

By this definition, both X and the empty set are open sets. Thus, by comple-
mentation, X and the empty set are also closed sets. Also, any open ball is an open
set (Exercise 9.1.1).

Definition 9.1.5. If S ⊂ X, a point x is called a boundary point of S if every
open ball about x contains at least one point of S and at least one point of X − S.
The boundary of S, denoted ∂S, is the set of boundary points of S.

Definition 9.1.6. If S ⊂ X, a point x is called a cluster point (or accumulation
point) of S if every open ball about x contains infinitely many points of S. A point
x ∈ S which is not a cluster point of S is called an isolated point of S. The
closure of S, denoted S, is the union of S and the set of all cluster points of S.

Theorem 9.1.7. A set S ⊂ X is closed if and only if it contains all its cluster
points. For any set S, the closure S is a closed set.

Proof. Suppose S is closed. If x ∈ X and x does not belong to S, then x ∈ X−S,
and since X − S is open, there is an open ball about x that contains only points of
X − S. Therefore x is not a cluster point of S. Hence, every cluster point of S is
in S.

Suppose every cluster point of S belongs to S. If x ∈ X − S, then x is not
a cluster point of S, so there is an open ball about x that is contained in X − S.
Thus, every point of X − S is an interior point, so X − S is open, and hence S is
closed.

For any set S, the closure S is the union of S and its set of cluster points, hence
S is a closed set. �

The definition of a set being dense in an open set and the definition of a set
being nowhere dense are the same as for sets in Euclidean space.

Definition 9.1.8. Let X be a metric space. A subset S ⊂ X is dense in an open
set U of X if U ⊂ S. A set S is defined to be nowhere dense if S has no interior
points.

For example, the Weierstrass approximation theorem (Theorem 7.6.1) implies
that the set of polynomial functions on the interval [a, b] is dense in the metric
space C[a, b] of continuous functions on [a, b] with the metric determined by the
uniform norm:

‖f − g‖ = max
x∈[a,b]

|f(x)− g(x)|.

All vector spaces described earlier for which a norm was defined also provide
examples of metric spaces. The space C[a, b] with the max norm (Theorem 8.10.23)
is a complete normed space, and hence a complete metric space; its completeness
is proved later in Theorem 9.3.1.

The behavior of open sets and closed sets under unions and intersections will
seem familiar from Section 4.1. The proofs of the next two theorems are essentially
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the same as the corresponding results in the case of open sets and closed sets in the
real line, and are left as exercises.

Theorem 9.1.9. In a metric space, the following statements are true:

1. The union of any collection of open sets is open.

2. The intersection of any finite collection of open sets is open.

Theorem 9.1.10. In a metric space, the following statements are true:

1. The intersection of any collection of closed sets is closed.

2. The union of any finite collection of closed sets is closed.

In Section 8.6 we stated the definitions of convergent sequence, Cauchy se-
quence, and completeness, for general metric spaces. Readers might wish to review
those definitions before proceeding. (See Definitions 8.6.4, 8.6.5, 8.6.6.)

Theorem 9.1.11. If X is a complete metric space with respect to the metric d,
and Y is a nonempty closed subset of X, then Y is a complete metric space with
the same metric d.

Proof. If X is a metric space with metric d, then Y ⊂ X is also a metric space
with metric d. Supposing that X is complete, let (xk) be a Cauchy sequence in
Y . Then (xk) is Cauchy in X, and by completeness of X there is a limit x ∈ X
for (xk). For any ε > 0, there is an N such that if k ≥ N , then d(xk, x) < ε. So
every open ball about x contains a point of Y . Thus, either x ∈ Y or x is a cluster
point of Y . Since Y is nonempty and closed, x must belong to Y . Therefore every
Cauchy sequence in Y has a limit in Y , and Y is complete. �

Example 9.1.12. We have asserted that the space C[a, b] with the max norm is a
complete normed space, and hence a complete metric space (Theorem 9.3.1). Let
t0 ∈ [a, b], let x0 ∈ R, and define

Y = {ψ ∈ C[a, b] : ψ(t0) = x0}.

Then Y is a closed subset of C[a, b], and hence Y is a complete metric space in the
metric defined by the max norm. To see that Y is closed, notice that convergence of
a sequence (ψk) with respect to the max norm on C[a, b] means uniform convergence
of the ψk on [a, b]. If (ψk) has limit ψ in C[a, b], then, since ψk(t0) = x0 for each k,
we have ψ(t0) = x0, and thus ψ ∈ Y . �

The next definition is the natural generalization of the sequential characteriza-
tion of continuity at a point for mappings from R to R or from Rn to Rm.

Definition 9.1.13. Let (X, d) and (Y, ρ) be metric spaces. A mapping f : X → Y
is continuous at a ∈ X if for any sequence (ak) in X such that d(ak, a) → 0 as
k → ∞, it is true that ρ(f(ak), f(a)) → 0 as k → ∞.

As usual, we say that a mapping f : X → Y is continuous on X if for every
x ∈ X, f is continuous at x. With Theorem 8.10.9 in view, the next result will not
be surprising; its proof is left to Exercise 9.1.8.
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Theorem 9.1.14. Let (X, d) and (Y, ρ) be metric spaces. A mapping f : X → Y
is continuous on X if and only if f−1(O) is an open set in X for every open set O
in Y .

In a metric space, the definition of compact sets is familiar.

Definition 9.1.15. A subset K of a metric space X is compact if every open cover
of K contains a finite subcover of K.

Based on some experience with compact sets in R and Rn the next two the-
orems will look familiar, and their proofs are left as exercises, though we mention
here that both results follow from the characterization of compactness in Theorem
9.1.21 below.

Theorem 9.1.16. If K is a compact subset of a metric space X, then K is closed
and bounded.

Theorem 9.1.17. Let K be a closed subset of a compact metric space X. Then K
is compact.

Theorem 9.1.18. If K is a compact subset of a metric space X, then every se-
quence in K has a subsequence that converges to a point in K.

Proof. Every sequence that is eventually constant, that is, every sequence with
finite range, converges; thus, we need to consider only sequences with infinite range.

We shall prove the contrapositive of the theorem statement. We suppose that
(xk) is a sequence in K with no convergent subsequence. The sequence therefore
has infinitely many distinct elements. For each element x in K, there exists a ball
Bx about x which contains only finitely many elements of (xk). (Otherwise, there
is a point p such that every ball about p contains infinitely many elements of the
sequence, and then some subsequence converges to p.) Then {Bx : x ∈ K} is
an open cover of K, but there is no finite subcover, since any finite subcover can
contain only finitely many elements of (xk). Hence, K is not compact. �

In general metric spaces, the property that a set is closed and bounded does
not generally imply compactness. For example, the unit ball in l2 is closed and
bounded, but it is not compact: Theorem 9.1.18 can be used to establish this fact
(Exercise 9.1.12).

The next definition formalizes two properties that we have seen to be equivalent
in R and Rn.

Definition 9.1.19. Let X be a metric space. A subset A ⊆ X is sequentially
compact if every sequence in A has a subsequence that converges to a point in A.
The set A has the Bolzano-Weierstrass property if every infinite subset of A
has a limit point (cluster point) that belongs to A.

We shall use both properties in Definition 9.1.19 in Theorem 9.1.21 below. We
note that Theorem 9.1.18 establishes that compactness implies sequential compact-
ness.

In order to obtain sufficient conditions for a subset of a general metric space
to be compact, the boundedness property must be strengthened to the concept of
total boundedness.
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Definition 9.1.20. A subset S of a metric space (X, d) is totally bounded if,
for every ε > 0, S can be covered by finitely many open balls of radius ε.

It is clear that total boundedness is necessary for a set to be compact: If K is
compact, then the open cover of K given by {Bε(x) : x ∈ K}, for arbitrary ε > 0,
must have a finite subcover. Completeness is also necessary for compactness: A
Cauchy sequence in a compact set K has a subsequence that converges to a point p
in K, by Theorem 9.1.18, and thus the Cauchy sequence itself must converge to p;
hence, K is complete. The statement complete and totally bounded implies compact
requires some more work, but this is accomplished with the following theorem,
which summarizes the essential characterizations of compactness in a metric space.

Theorem 9.1.21. Let A be a subset of a metric space (X, d). The following are
equivalent:

1. A is compact.

2. A is sequentially compact.

3. A has the Bolzano-Weierstrass property.

4. A is complete and totally bounded.

Proof. The plan of the proof is as follows: We shall prove that 1 implies 2 and 4;
then prove that 2 and 4 are equivalent; and then, that 2 and 4 together imply 1.
This will establish the equivalence of 1, 2, and 4. Finally, we show that 2 and 3 are
equivalent. This will establish the equivalence of the four statements.

Item 1 implies 2 and 4: The implication 1 implies 2 was established in Theorem
9.1.18. That 1 implies 4 was established in our comments after Definition 9.1.20.

Item 2 implies 4: Suppose A is sequentially compact. If A is not complete,
then there exists a Cauchy sequence in A which does not converge to an element
of A, and hence no subsequence converges to an element of A, for if a subsequence
of a Cauchy sequence converges, then the Cauchy sequence itself converges, and
to the same limit as the subsequence. But no convergent subsequence contradicts
the hypothesis that A is sequentially compact. Thus, if A is sequentially compact,
then A is complete. Now suppose A is not totally bounded. Then there exists
ε > 0 such that A cannot be covered by finitely many balls of radius ε. Define a
sequence inductively as follows: Select x1 ∈ A. Then A − Bε(x1) is nonempty by
our hypothesis. Choose x2 ∈ A−Bε(x1). Then A− (Bε(x1)∪Bε(x2)) is nonempty
and d(x1, x2) ≥ ε. If x1, . . . , xk−1 have been chosen such that d(xi, xj) ≥ ε when
1 ≤ i < j ≤ k − 1, then we can select

xk ∈ A−
k−1⋃
i=1

Bε(xi),

since A is assumed not totally bounded. Thus, we have defined a sequence (xk) with
d(xi, xj) ≥ ε when i 
= j. Then (xk) has no convergent subsequence, a contradiction
of the sequential compactness hypothesis. Thus, if A is sequentially compact, then
A is totally bounded.

Statement 4 implies 2: Suppose A is complete and totally bounded. Let (xk) be
a sequence in A. We may assume that this sequence has infinitely many elements.
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Since A is totally bounded, A can be covered by finitely many open balls of radius
1/2, and at least one of these balls contains infinitely many elements of the sequence.
Choose such a ball B1; then there is an infinite subset N1 of positive integers such
that xk ∈ B1 for k ∈ N1. Now A ∩ B1 can be covered by finitely many balls of
radius 1/22; we choose one of them, say B2, such that xk ∈ A ∩B1 ∩B2 if k ∈ N2,
where N2 is an infinite subset of N1. Continuing in this way, we inductively define
a sequence of balls Bj of radius 1/2j and a nested sequence Nj+1 ⊂ Nj of infinite
subsets of positive integers, such that

xk ∈ A ∩
( j⋂

i=1

Bj

)
for k ∈ Nj .

Now choose indices n1 < n2 < n3 < · · · , with nk ∈ Nk for each k. Then the
subsequence (xnk

) of (xk) has the property that

d(xnj
, xnk

) <
2

2j
=

1

2j−1
for k > j,

since k > j implies nk > nj , hence xnk
, xnj

∈ Bj and Bj has radius 1/2
j . Therefore

(xnk
) is a Cauchy sequence in A, and since A is complete, (xnk

) converges to an
element of A. This shows that A is sequentially compact.

Statements 2 and 4 together imply 1: Now assume that A is sequentially com-
pact as well as complete and totally bounded. Let {Oβ} be an open cover of A,
where β belongs to an arbitrary index set. We claim that there exists an ε > 0
such that every ball of radius ε that intersects A is contained in some open set
Oβ of the given cover. This property will prove that A is compact, since the total
boundedness of A implies that A is contained in the union of finitely many of these
ε balls, and hence there are finitely many of the open sets Oβ, say Oβ1

, . . . , Oβm
,

such that

A ⊂
m⋃
i=1

Oβi
.

We prove the claim by contradiction. Thus, suppose there is no such ε > 0. Then
for each positive integer k, there is a ball Bk of radius 1/k such that Bk ∩ A is
nonempty and Bk is not contained in any of the open sets Oβ. For each k, we can
select a point xk ∈ Bk ∩ A. Since A is sequentially compact, the sequence (xk)
has a subsequence (xnk

) that converges to a point x in A. The limit x is in Oβ for
some β. Since Oβ is open, there exists ε > 0 such that the ball Bε(x) ⊂ Oβ. Since
xnk

→ x as k → ∞, there is an N(ε) such that if k ≥ N(ε), then 1/nk < ε/4 and
d(xnk

, x) < ε/2. It follows that Bnk
⊂ Bε(x) ⊂ Oβ, by the following estimate: If

y ∈ Bnk
, which has radius 1/nk, then d(y, xnk

) < 2/nk, and

d(y, x) ≤ d(y, xnk
) + d(xnk

, x)

<
2

nk
+

ε

2

<
2ε

4
+

ε

2
= ε,

and hence y ∈ Bε(x) ⊂ Oβ . This contradicts the hypothesis that Bnk
is not con-

tained in any of the open sets Oβ. This proves the claim above, and the compactness
of A.



9.1. Basic Topology in Metric Spaces 277

At this point, we have established that statements 1, 2, and 4 are equivalent.

Statement 2 is equivalent to 3: That 3 implies 2 is easy to see, since every
sequence in A which is not eventually constant has an infinite set in A as its range;
hence, by 3, there is a limit point of the range that belongs to A, and this limit
point is the limit of a subsequence of the given sequence. Now assume 2 and
suppose that A contains an infinite subset, and hence there is a sequence in A with
infinitely many elements of that subset, none of which are repeated. By 2 there is
a subsequence that converges to a point of A, which is a limit point (cluster point)
of A. Thus every infinite subset of A has a limit point that belongs to A. �

There is an easy corollary of the preceding theorem.

Corollary 9.1.22. A closed subset of a complete metric space is compact if and
only if it is totally bounded.

Proof. A closed subset of a complete metric space is complete, and therefore by
Theorem 9.1.21, it is compact if and only if it is totally bounded. �

Although the language of total boundedness is relatively easy to understand, it
can be difficult to verify for specific closed subsets of a metric space. For example,
closed subsets of the space C[a, b] of continuous real valued functions on [a, b] often
play a role in applications where it is important to know whether every sequence
in the closed subset has a convergent subsequence. A criterion for compactness is
needed which is expressed in terms of the individual functions in the subset. Given
a compact metric space M (such as the interval [a, b]) and the space C(M) of real
valued continuous functions on M, a theorem known as the Arzelà-Ascoli Theorem
characterizes the compact subsets of C(M). References for this theorem are given
in the Notes and References for this chapter.

Exercises.

Exercise 9.1.1. Prove: In a metric space X, any open ball Br(x) is an open set.

Exercise 9.1.2. Let X be a metric space and S ⊂ X. Prove the following state-
ments:

1. If b is a boundary point of S, then either b ∈ S or b is a cluster point of S.

2. If y is a cluster point of S, then either y ∈ S or y ∈ ∂S.

3. S contains all its cluster points if and only if it contains all its boundary points.

4. S is closed if and only if S contains all its boundary points.

Exercise 9.1.3. Prove Theorem 9.1.9.

Exercise 9.1.4. Prove Theorem 9.1.10.

Exercise 9.1.5. Show that the set Y defined by

Y = {φ ∈ C[a, b] : φ(t0) = x0 and |φ(t)− x0| ≤ r for all t ∈ [a, b]},
where t0 ∈ [a, b], x0 and r > 0 are fixed real numbers, is a closed set in C[a, b], and
thus Y is a complete metric space in the metric induced by the sup norm.
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Exercise 9.1.6. Let L : C[0, 1] → R be defined by L(f) = f(0).

1. Is L continuous in the norm ‖f‖ = max0≤t≤1 |f(t)| on C[0, 1]?

2. Is L continuous in the norm ‖f‖1 =
∫ 1

0
|f(t)| dt on C[0, 1]?

Exercise 9.1.7. Let S : C[0, 1] → C[0, 1] be defined by S(f) = f2.

1. Is S continuous in the norm ‖f‖ = max0≤t≤1 |f(t)| on C[0, 1]?

2. Is S continuous in the norm ‖f‖1 =
∫ 1

0
|f(t)| dt on C[0, 1]?

Exercise 9.1.8. Write a detailed proof of Theorem 9.1.14.

Exercise 9.1.9. Let S be a connected subset of a metric space (X, d), with con-
nectedness defined as in the case of connected sets in Rn. Prove: If f : S ⊂ X → Y
is a continuous mapping into a metric space (Y, ρ), then f(S) is a connected set
in Y .

Exercise 9.1.10. Prove Theorem 9.1.16. Hint : Follow the argument for Theorem
4.2.5.

Exercise 9.1.11. Prove Theorem 9.1.17. Hint : Follow the argument for Theorem
4.2.6.

Exercise 9.1.12. Show that the unit ball in l2,

B =
{
(ξk) ∈ l2 : ‖(ξk)‖22 =

∞∑
k=1

ξ2k = 1
}
,

is closed and bounded. Show that B is not compact by giving an example of an
infinite sequence in B which has no convergent subsequence.

9.2. The Contraction Mapping Theorem

Let X be a complete metric space with metric d. We wish to prove a generalization
of the scalar contraction mapping theorem (Theorem 5.5.3).

Definition 9.2.1. A point x ∈ X is a fixed point of a mapping T : X → X if
T (x) = x.

Definition 9.2.2. A mapping T : X → X of a metric space X with metric d is a
contraction mapping if there is a number 0 < r < 1 such that

d(T (x), T (y)) ≤ r d(x, y)

for all x, y ∈ X. Such a constant r is called a contraction constant for T .

From this definition, we immediately deduce that a contraction mapping on X
must be continuous at every point in X. Indeed, if d(xk, y) → 0 as k → ∞, then
d(T (xk), T (y)) → 0 as k → ∞ by the contraction condition.

We now prove the contraction mapping theorem for complete metric spaces.
The reader should observe that the proof of Theorem 9.2.3 is the same as the proof
of the earlier scalar result in Theorem 5.5.3, except for the change in notation
needed to express the more general situation of a complete metric space X with
metric function d.
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Theorem 9.2.3 (Contraction Mapping Theorem). A contraction mapping T :
X → X of a complete metric space X has a unique fixed point x∗. Moreover, if r
is a contraction constant for T , then given any x0 ∈ X, the iteration

xk+1 = T (xk), k = 0, 1, 2, 3, . . . ,

defines a sequence (xk) that converges to x∗, and for each k we have

(9.1) d(xk, x
∗) ≤ rk

1− r
d(x1, x0).

Proof. Let x0 be an arbitrary initial point in X. Since d(T (x), T (y)) ≤ rd(x, y)
for all x, y, it follows by induction that

d(xk+1, xk) ≤ rkd(x1, x0)

for every positive integer k. If 0 < n < m, then

d(xm, xn) ≤ d(xm, xm−1) + d(xm−1, xm−2) + · · ·+ d(xn+1, xn)

≤ (rn + · · ·+ rm−1)d(x1, x0)

= rn(1 + r + r2 + · · ·+ rm−1−n)d(x1, x0)

< rn(1 + r + r2 + · · · )d(x1, x0)

=
rn

1− r
d(x1, x0),(9.2)

where we used the sum of a geometric series in the last estimate. Thus the sequence
(xk) is a Cauchy sequence which converges to a limit x∗ in X since X is complete.
Since a contraction mapping is continuous, we have

T (x∗) = lim
k→∞

T (xk) = lim
k→∞

xk+1 = x∗,

so x∗ is a fixed point of T . If there were another fixed point x∗∗ of T , we would
have

d(x∗, x∗∗) = d(T (x∗), T (x∗∗)) ≤ rd(x∗, x∗∗),

but since r < 1, this implies x∗ = x∗∗, so the fixed point is unique.

Finally, letting m → ∞ in the estimate (9.2) yields the estimate (9.1) in the
statement of the theorem. �

The following corollary is useful when we have a mapping T : Y → Y of a
closed subset Y in a complete metric space X.

Corollary 9.2.4. Let Y be a closed, nonempty subset of a complete metric space
X. A contraction mapping T : Y → Y has a unique fixed point.

Proof. A closed subset of a complete metric space is a complete metric space in its
own right using the metric function d of X (Theorem 9.1.11). The corollary follows
immediately from Theorem 9.2.3. �

The contraction mapping theorem has some far-reaching consequences for the
existence and uniqueness of solutions of equations of various kinds. Important
applications of the contraction theorem in this book occur in the proof of the inverse
function theorem for mappings F : Rn → Rm and in the proof of existence and
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uniqueness for solutions of initial value problems for systems of ordinary differential
equations. There are many other applications.

Exercises.

Exercise 9.2.1. Let f : [1,∞) → [1,∞) be defined by f(x) = x+ e1−x.

(a) Show that |f(x)− f(y)| < |x− y| for all x 
= y in [0,∞).

(b) Show that f has no fixed point in [1,∞).

Exercise 9.2.2. Let f : (1,∞) → (1,∞) be defined by f(x) =
√
x.

(a) Show that f is a contraction mapping on (1,∞).

(b) Show that f has no fixed point in (1,∞).

Exercise 9.2.3. Let S be a closed subset of Rn. A mapping T : S → Rn such
that T (S) ⊇ S is an expansion mapping with respect to a norm | · | on Rn, if
there is a constant L > 1 such that |T (x)−T (y)| ≥ L|x−y| for all x, y in S. Show
that an expansion mapping has a unique fixed point.

9.3. The Completeness of C[a, b] and l2

In this section we establish the completeness of two of the normed spaces that play
important roles later in the book, the spaces C[a, b] and l2.

First, we prove the completeness of the space C[a, b] of continuous real valued
functions on the interval [a, b] with respect to the norm ‖x‖max = maxt∈[a,b] |x(t)|.
Recall that by Theorem 7.1.9, the limit of a uniformly convergent sequence of real
valued continuous functions on [a, b] is a continuous function on [a, b]. As we will
see, convergence of a sequence in the space C[a, b] with the maximum norm is
precisely uniform convergence of that sequence on the interval [a, b].

Theorem 9.3.1. The vector space C[a, b] with the maximum norm is a complete
normed space.

Proof. Let (xm) be a Cauchy sequence in C[a, b]. Then for any ε > 0, there is an
N = N(ε) such that if m,n ≥ N , then

(9.3) ‖xm − xn‖max = max
t∈[a,b]

|xm(t)− xn(t)| < ε.

For any fixed t0 ∈ [a, b],
|xm(t0)− xn(t0)| < ε,

provided m,n ≥ N . Hence the sequence (x1(t0), x2(t0), x3(t0), . . .) is a Cauchy
sequence of real numbers, and since R is complete, this sequence converges, and
we denote the limit by x(t0) = limm→∞ xm(t0). Since t0 was an arbitrary point in
[a, b], we have for any t ∈ [a, b] a number x(t) such that

x(t) = lim
m→∞

xm(t).

Thus (xm) converges pointwise to the function x. It remains to show that x is
continuous on [a, b] and that xm → x in the norm on C[a, b]. Observe that in (9.3)
we may let n → ∞ to obtain, for any m ≥ N ,

max
t∈[a,b]

|xm(t)− x(t)| ≤ ε.
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Then for any t ∈ [a, b] we have

(9.4) |xm(t)− x(t)| ≤ ε for m ≥ N.

By (9.4), the sequence xm converges uniformly to x on [a, b]. By Theorem 7.1.9,
the limit function x is continuous on [a, b], that is, x ∈ C[a, b]. Now that we know
x ∈ C[a, b], we can write ‖xm − x‖max ≤ ε if m ≥ N(ε). This proves that xm → x
in the norm on C[a, b]. Since (xm) was an arbitrary Cauchy sequence, C[a, b] is
complete in the maximum norm. �

Since convergence of a sequence in the maximum norm in C[a, b] means uniform
convergence of that sequence on [a, b], the maximum norm is also called the uniform
norm on C[a, b]. The resulting metric d(x, y) = ‖x−y‖max = maxt∈[a,b] |x(t)−y(t)|
is also called the uniform metric on C[a, b]. By Theorem 9.1.11, any closed subset
of C[a, b] is a complete metric space in the uniform metric. Exercise 9.3.4 is an
application of the contraction theorem to the question of existence and uniqueness
of solutions to an integral equation.

As we noted earlier in Example 8.3.10, C[a, b] is not complete with respect to

the norm ‖x‖1 =
∫ b

a
|x(t)| dt, x ∈ C[a, b]. (See Exercise 9.3.2.)

Definition 9.3.2. A Banach space is a complete normed vector space.

Thus C[a, b] with the maximum norm is a Banach space.

The l2 sequence space was introduced in Example 8.3.5. It is an inner product
space with inner product given by(

(ξk), (ηk)
)
=

∞∑
k=1

ξkηk

and norm given by

‖(ξk)‖2 =
( ∞∑

k=1

ξ2k

)1/2
.

The space l2 is of great importance. The mathematician D. Hilbert employed this
sequence space in an influential study of integral equations early in the twentieth
century. We have the following important definition.

Definition 9.3.3. A Hilbert space is an inner product space that is complete in
the norm induced by the inner product.

We note that every Hilbert space is a Banach space, but not conversely, since
there are norms that are not induced by any inner product.

We now show that l2 is a Hilbert space.

Theorem 9.3.4. The inner product space l2 is a Hilbert space.

Proof. Let (xm) be a Cauchy sequence in the space l2, and let us write xm =
(ξm1 , ξm2 , ξm3 , . . .). Then for any ε > 0, there is an N = N(ε) such that if m,n ≥ N ,
then

(9.5) ‖xm − xn‖2 =
( ∞∑

j=1

|ξmj − ξnj |2
)1/2

< ε.
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For any fixed j0, we have |ξmj0 − ξnj0 |
2 ≤

∑∞
j=1 |ξmj − ξnj |2, and therefore (9.5) implies

that for m,n ≥ N ,

(9.6) |ξmj − ξnj | < ε for all j ∈ N.

If we fix j, then (9.6) implies that the sequence (ξ1j , ξ
2
j , ξ

3
j , . . .) is a Cauchy sequence

of real numbers. By the completeness of R, this sequence converges; let us write

ξj = lim
n→∞

ξnj .

These limits define a sequence

x = (ξ1, ξ2, ξ3, . . .).

We wish to show that x ∈ l2 and xm → x in the norm on l2. By (9.5), for each
k ∈ N, and for m,n ≥ N(ε), we have

k∑
j=1

|ξmj − ξnj |2 < ε2.

With k arbitrary but fixed, and m ≥ N(ε), we may let n → ∞ to obtain

k∑
j=1

|ξmj − ξj |2 ≤ ε2,

where ξj is the j-th entry in x. Then let k → ∞ to obtain for m ≥ N(ε),

(9.7)

∞∑
j=1

|ξmj − ξj |2 ≤ ε2.

Estimate (9.7) says that for m ≥ N(ε), ‖xm − x‖22 ≤ ε2, and it also proves that
xm−x ∈ l2. Since xm ∈ l2 by hypothesis, the triangle inequality for l2 implies that

x = xm + (x− xm) ∈ l2.

Now that we know x ∈ l2, the estimate (9.7) shows that xm → x in the norm
on l2. Since (xm) was an arbitrary Cauchy sequence in l2, this proves that l2 is
complete. �

Exercises.

Exercise 9.3.1. Show that the vector space P [a, b] of real valued polynomial func-
tions on [a, b] is not complete in the maximum norm this space inherits from C[a, b].

For example, consider [a, b] = [−δ, δ] where 0 < δ < 1, and let pk(t) =
∑k

j=0 t
j =

1 + t + t2 + · · · + tk, for k ∈ N. Show that the uniform limit of the pk is not an
element of P [−δ, δ].

Exercise 9.3.2. Show that C[0, 1] is not complete with respect to the norm ‖x‖1 =∫ 1

0
|x(t)| dt, as follows:
1. For k ≥ 2, define xk(t) = 0 if 0 ≤ t ≤ 1/2 − 1/k; xk(t) = kt + 1 − k/2 if

1/2 − 1/k < t < 1/2; and xk(t) = 1 if 1/2 ≤ t ≤ 1. Show that the sequence
(xk) is a Cauchy sequence with respect to the norm ‖ · ‖1. Hint : A sketch of
xk and xn with n > k will suggest a quick geometric argument.
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2. Show that (xk) does not converge to an element of C[0, 1] with respect to the
norm ‖ · ‖1. Hint : Assuming ‖xk − x‖1 → 0 as k → ∞, express ‖xk − x‖1 as
the sum of three integrals: from 0 to 1/2 − 1/k; from 1/2 − 1/k to 1/2; and
from 1/2 to 1. Deduce that x cannot be continuous at t = 1/2.

Exercise 9.3.3. Show that C[0, 1] is not complete with respect to the norm ‖x‖1 =∫ 1

0
|x(t)| dt, as follows: Consider the sequence (xk) given by

xk(t) =

{
k if 0 ≤ t ≤ 1/k2,

1/
√
t if 1/k2 ≤ t ≤ 1.

Show that (xk) is Cauchy with respect to ‖ · ‖1, but that (xk) does not converge in
the norm ‖ · ‖1 to an element of C[0, 1].

Exercise 9.3.4. An integral equation of the form

(9.8) f(x)−
∫ b

a

k(x, y)f(y) dy = g(x),

where g is given, is a linear Fredholm equation of the second kind.1 We may write
(9.8) as a fixed point problem, Tf = f , where

(Tf)(x) := g(x) +

∫ b

a

k(x, y)f(y) dy.

Suppose k : [a, b]× [a, b] → R is a continuous function such that

sup
a≤x≤b

{∫ b

a

|k(x, y)| dy
}
< 1,

and g : [a, b] → R is a continuous function. Show that there is a unique continuous
function f : [a, b] → R that satisfies (9.8). Hint : Show that T is a contraction
mapping on the space C[a, b] with the uniform norm (max norm).

9.4. The lp Sequence Spaces

This section will be of interest to students who are interested in studying functional
analysis. The main goal of the section is to establish the Minkowski inequality,
which allows us to define the sequence spaces lp, for p > 1, and also establishes
the triangle inequality for the norm on lp. The Hölder and Minkowski inequalities
are two classical inequalities at the foundation of the study of function spaces in
functional analysis.

It is appropriate to recall here the definitions of certain sequence spaces already
defined. Exercise 8.1.6 and Exercise 8.3.13 deal with the sequence space l1 consist-
ing of all real sequences ξ = (ξk) such that

∑∞
k=1 |ξk| converges. Exercise 8.1.6

establishes that l1 is a vector space and Exercise 8.3.13 shows that l1 is normed by

‖ξ‖1 :=

∞∑
k=1

|ξk|, ξ = (ξk) ∈ l1.

The triangle inequality for the norm in l1 follows rather easily from the triangle
inequality for the real numbers and basic properties of convergent series. Also, we

1A linear Fredholm equation of the first kind takes the form
∫ b
a
k(x, y)f(y) dy = g(x).
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introduced the Hilbert sequence space l2 in Example 8.3.5 and established there
that l2 is a real inner product space. Finally, Exercise 8.1.7 and Exercise 8.3.14 es-
tablished a normed space structure for the sequence space l∞ consisting of bounded
real sequences.

Now let p be a real number with p > 1, and let lp denote the set of all real
sequences ξ = (ξk) such that

∑∞
k=1 |ξk|p converges. We will establish that lp is

actually a vector space under componentwise addition and scalar multiplication.
We define ‖ξ‖p for ξ ∈ lp by

‖ξ‖p :=
( ∞∑

k=1

|ξk|p
)1/p

, ξ = (ξk) ∈ lp.

Then ‖ξ‖p is well defined for each ξ ∈ lp. We have ‖ξ‖p ≥ 0, and ‖ξ‖p = 0 implies
ξ = (0, 0, 0, . . .) = θ ∈ lp. If α is a real scalar, then ‖αξ‖p = |α|‖ξ‖p.

It remains to show that the sum of two elements of lp is an element of lp and
that the triangle inequality

‖ξ + η‖p ≤ ‖ξ‖p + ‖η‖p
holds. In what follows, let p > 1 and suppose q is defined by

1

p
+

1

q
= 1.

Then p and q are called conjugate exponents . For conjugate exponents, we have

p+ q

pq
= 1 =⇒ pq = p+ q =⇒ (p− 1)(q − 1) = 1,

and hence 1/(p − 1) = q − 1. Thus, if y = xp−1, then x = yq−1, so these power
functions are inverses of each other.

In order to establish the triangle inequality, we establish the following important
inequalities, where p > 1 and q are conjugate exponents:

1. Young’s inequality. If a and b are any positive numbers, then

ab ≤ ap

p
+

bq

q
.

2. Hölder’s inequality. For any nonzero ξ = (ξk) ∈ lp and η = (ηk) ∈ lq,

∞∑
k=1

|ξkηk| ≤
( ∞∑

i=1

|ξi|p
)1/p( ∞∑

j=1

|ηj |q
)1/q

.

3. Minkowski’s inequality. For any ξ = (ξk), η = (ηk) ∈ lp, p > 1,( ∞∑
k=1

|ξk + ηk|p
)1/p

≤
( ∞∑

i=1

|ξi|p
)1/p

+
( ∞∑

j=1

|ηj |p
)1/p

.

This is precisely the triangle inequality ‖ξ + η‖p ≤ ‖ξ‖p + ‖η‖p for ξ, η in lp,
p > 1.

We first prove Young’s inequality. Then we show that Young’s inequality im-
plies Hölder’s inequality, and finally that Hölder’s inequality implies Minkowski’s
inequality.



9.4. The lp Sequence Spaces 285

 1

 1

 b

 a
Figure 9.1. Illustrating Young’s inequality geometrically: The graph of y =
xp−1, which is also the graph of x = yq−1, is shown, and ab ≤

∫ a
0 xp−1 dx +

∫ b
0 yq−1 dy = ap

p
+ bq

q
. There are also cases where the graph of y = xp−1

intersects the right-hand side of the rectangle at or below the level of b, with
the same inequality relating the sum of the two integrals and the product ab.

Young’s inequality. Consider the rectangle in the xy-plane with vertices at
the points (0, 0), (a, 0), (0, b) and (a, b). The area of this rectangle is ab. Consider
also the graph of the function y = xp−1, which is also the graph of the inverse
relation x = yq−1. Now the area between this graph and the x-axis from x = 0 to
x = a, added to the area between this graph and the y-axis from y = 0 to y = b,
must be greater than or equal to the rectangle area ab. That is,

ab ≤
∫ a

0

xp−1 dx+

∫ b

0

yq−1 dy.

See Figure 9.1. Computation of the integrals yields Young’s inequality

ab ≤ ap

p
+

bq

q
.

Young’s inequality implies Hölder’s inequality. We first prove Hölder’s
inequality for ξ ∈ lp and η ∈ lq with ‖ξ‖p = 1 and ‖η‖q = 1. Afterwards, we
scale general elements of these spaces to get the general result. Thus, assume that
ξ = (ξk) ∈ lp and η = (ηk) ∈ lq satisfy

∞∑
k=1

|ξk|p = 1 and
∞∑
k=1

|ηk|q = 1.
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For each k we have, by Young’s inequality,

|ξkηk| = |ξk||ηk| ≤
|ξk|p
p

+
|ηk|q
q

.

Now sum over k, using a direct comparison of convergent series and the relation
1/p+ 1/q = 1 to obtain

∞∑
k=1

|ξkηk| ≤
1

p
+

1

q
= 1.

This is Hölder’s inequality for the case where ‖ξ‖p = 1 and ‖η‖q = 1. Now let
ξ ∈ lp and η ∈ lq be any nonzero elements and define

ξ̂ = (ξ̂k) and η̂ = (η̂k)

by

ξ̂k =
ξk

(
∑∞

k=1 |ξk|p)1/p
and η̂k =

ηk
(
∑∞

k=1 |ηk|q)1/q
.

Then ξ̂ ∈ lp with ‖ξ̂‖p = 1, and η̂ ∈ lq with ‖η̂‖q = 1. Hence
∞∑
k=1

|ξ̂kη̂k| ≤ 1,

which is equivalent to Holder’s inequality
∞∑
k=1

|ξkηk| ≤
( ∞∑

i=1

|ξi|p
)1/p( ∞∑

j=1

|ηj |q
)1/q

.

Observe that the special case where p = 2 and q = 2 gives the Cauchy-Schwarz
inequality

∞∑
k=1

|ξkηk| ≤
( ∞∑

i=1

|ξi|2
)1/2( ∞∑

j=1

|ηj |2
)1/2

,

established earlier for l2 in Example 8.3.5.

Hölder’s inequality implies Minkowski’s inequality. We begin by noting
that Hölder’s inequality certainly holds for finite sums. Let ξ = (ξk) ∈ lp and
η = (ηk) ∈ lp with p > 1. By the triangle inequality for numbers,

|ξk + ηk|p = |ξk + ηk||ξk + ηk|p−1 ≤ (|ξk|+ |ηk|)|ξk + ηk|p−1.

For any positive integer n,
n∑

k=1

|ξk + ηk|p ≤
n∑

k=1

|ξk||ξk + ηk|p−1 +
n∑

k=1

|ηk||ξk + ηk|p−1.

Now apply Hölder’s inequality to each of the sums on the right side. For the first
sum on the right side, Hölder’s inequality yields

n∑
k=1

|ξk||ξk + ηk|p−1 ≤
( n∑

i=1

|ξi|p
)1/p( n∑

j=1

|ξj + ηj |(p−1)q
)1/q

,

and (p− 1)q = p since pq = p+ q. Hölder’s inequality for the second sum yields
n∑

k=1

|ηk||ξk + ηk|p−1 ≤
( n∑

i=1

|ηi|p
)1/p( n∑

j=1

|ξj + ηj |(p−1)q
)1/q

,
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where again (p− 1)q = p. Combining these results, we have
n∑

k=1

|ξk+ηk|p ≤
( n∑

i=1

|ξi|p
)1/p( n∑

j=1

|ξj+ηj |p
)1/q

+
( n∑

i=1

|ηi|p
)1/p( n∑

j=1

|ξj+ηj |p
)1/q

,

and hence
n∑

k=1

|ξk + ηk|p ≤
[( n∑

i=1

|ξi|p
)1/p

+
( n∑

i=1

|ηi|p
)1/p]( n∑

j=1

|ξj + ηj |p
)1/q

.

Divide by the last factor on the right side and use the fact that 1 − 1/q = 1/p to
find ( n∑

k=1

|ξk + ηk|p
)1/p

≤
( n∑

i=1

|ξi|p
)1/p

+
( n∑

i=1

|ηi|p
)1/p

.

This is the Minkowski inequality for finite sums. (Note that this proves the triangle
inequality for the p-norms on Rn.) Let n → ∞; the resulting series on the right-
hand side both converge since ξ, η ∈ lp. Hence the series on the left-hand side also
converges, yielding Minkowski’s inequality for elements of lp, p > 1.

As a consequence of Minkowski’s inequality, the sum of two elements of lp is
also an element of lp, and the triangle inequality holds for ‖ · ‖p. Thus we have
defined the sequence space lp for p > 1.

By following the pattern of proof in Theorem 9.3.4, one can show that the
sequence spaces lp, for all p ≥ 1, are complete (Exercise 9.4.1). Thus, the lp

sequence spaces are Banach spaces. However, lp, for p 
= 2, is not an inner product
space (Exercise 9.4.2).

Exercises.

Exercise 9.4.1. Write a detailed proof that lp, p ≥ 1, is complete with respect
to the p-norm, by following the pattern of the argument in the proof of Theorem
9.3.4.

Exercise 9.4.2. Show that lp, for p 
= 2, is not an inner product space. Hint : The
parallelogram law of Exercise 8.3.3 holds in any inner product space. Show that
this law does not hold for the norm on lp, p 
= 2.

9.5. Matrix Norms and Completeness

Matrix norms are an essential tool in analysis. In this section we present several
convenient ways to norm the space Rn×n of n× n real matrices.

9.5.1. Matrix Norms. This section discusses matrix norms and the complete
normed space of n× n real matrices, and includes some basic matrix analysis that
is useful later in the book. In addition to the background in linear algebra from
Chapter 8, we also assume some familiarity with linear transformations L : Rn →
Rm defined by an m× n matrix A,

Lx = Ax, x ∈ Rn,

and familiarity with the concepts of eigenvalues and eigenvectors for A. We usually
think of vectors in Euclidean space as column vectors. However, sometimes it
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is convenient to write x = (x1, . . . , xn) for points of Rn and y = (y1, . . . , ym) for
points in Rm to indicate the coordinates of these vectors, without having to display
a column vector or the transposed (row) vector, for example xT = [x1 · · ·xn].

For convenience we recall the definition of a linear transformation.

Definition 9.5.1. Let V and W be real vector spaces. A mapping L : V → W is
linear if

(a) L(u+ v) = L(u) + L(v) for all u, v ∈ V and

(b) L(αu) = αL(u) for all α ∈ R and u ∈ V .

The conjunction of (a) and (b) is equivalent to the statement that for all
u, v ∈ V and α, β ∈ R, L(αu + βv) = αL(u) + βL(v). Suppose that V and
W have dimension n and m, respectively. Recall that a choice of bases in V and
W determines an m × n matrix representation A of the linear transformation L
with respect to the specified bases, as follows. Let V have basis {v1, . . . ,vn} and
W have basis {w1, . . . ,wm}. For each x ∈ V , we have

x =

n∑
j=1

xjvj

for a unique choice of coefficients xj . For each j with 1 ≤ j ≤ n, we have

Lvj =

m∑
i=1

aijwi

for a unique choice of coefficients aij . Thus,

Lx =
n∑

j=1

xjLvj =
n∑

j=1

xj

m∑
i=1

aijwi =
m∑
i=1

( n∑
j=1

aijxj

)
wi.

The linear mapping L : V → W is thus represented by the matrix A = [aij ], which
maps the coordinate vector (x1, . . . , xn) of x with respect to the basis {v1, . . . ,vn}
to the coordinate vector of Lx with respect to the basis {w1, . . . ,wm}.

Let us writeRn×n for the vector space of n×nmatrices with real entries. Notice

that the spaces Rn×n and Rn2

are isomorphic, since they both have dimension n2.
(See Exercise 9.5.2.)

Definition 9.5.2. A matrix norm is a function ‖ · ‖ on the vector space Rn×n

of n×n real matrices which satisfies, in addition to the properties (i), (ii), and (iii)
of a norm in Definition 8.3.1, the following property:

(iv) ‖AB‖ ≤ ‖A‖ ‖B‖ for any two n× n matrices A and B.

A matrix norm ‖ · ‖ is compatible with a given vector norm | · | if it satisfies the
inequality

(v) |Ax| ≤ ‖A‖ |x| for any n× n matrix A and any vector x ∈ Rn.

For any matrix norm on real n × n matrices, it is straightforward to show by
induction that ‖Ak‖ ≤ ‖A‖k for every positive integer k.
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Example 9.5.3 (Absolute sum matrix norm). For any n×n matrix A, let us define

(9.9) ‖A‖as =
n∑

i=1

n∑
j=1

|aij |, where A = [aij ],

where the subscript “as” stands for the absolute sum matrix norm. Then ‖ · ‖as
is a matrix norm, as the reader may verify in Exercise 9.5.3. We will now show
that this matrix norm is compatible with the vector norm

(9.10) |x|1 =

n∑
j=1

|xj | = |x1|+ · · ·+ |xn|.

Writing (Ax)i for the i-th component of Ax, we have

|Ax|1 =
n∑

i=1

|(Ax)i| =
n∑

i=1

∣∣∣ n∑
j=1

aijxj

∣∣∣ ≤ n∑
i=1

n∑
j=1

|aij | |xj |.

Since |xj | ≤ |x|1 for each j, we have |Ax|1 ≤ ‖A‖as |x|1, as desired. �

Theorem 9.5.4. Let | · | denote a vector norm on Rn. This vector norm induces
a matrix norm on Rn×n, given by

(9.11) ‖A‖ := max
|x|=1

|Ax|,

where |Ax| is the vector norm of the image vector Ax. Moreover, this matrix norm
is compatible with the vector norm | · |; that is, |Ax| ≤ ‖A‖ |x| for any n×n matrix
A and all x ∈ Rn.

Proof. Since the mapping x �→ |Ax| is continuous and the unit sphere {x : |x| = 1}
is compact, the maximum in (9.11) exists. Clearly ‖A‖ ≥ 0 and ‖A‖ = 0 if and
only if Ax = 0 for all x ∈ Rn with |x| = 1. Since A( x

|x| ) =
1
|x|Ax for any nonzero

x, this is equivalent to saying ‖A‖ = 0 if and only if Ax = 0 for all x ∈ Rn, that
is, A is the zero matrix. If α is a real scalar, then

‖αA‖ = max
|x|=1

∣∣αAx
∣∣ = max

|x|=1
|α|
∣∣Ax
∣∣ = |α|max

|x|=1

∣∣Ax
∣∣ = |α| ‖A‖.

Finally, for the triangle inequality, we have

‖A+B‖ = max
|x|=1

∣∣(A+B)x
∣∣ ≤ max

|x|=1
(
∣∣Ax
∣∣+ ∣∣Bx

∣∣)
≤ max

|x|=1
|Ax|+ max

|x|=1
|Bx| = ‖A‖+ ‖B‖.

Therefore (9.11) does define a norm on the space Rn×n. If x ∈ Rn is any nonzero
vector, then x/|x| has unit norm, and therefore

1

|x|
∣∣Ax
∣∣ = ∣∣∣A( 1

|x|x
)∣∣∣ ≤ ‖A‖ =⇒

∣∣Ax
∣∣ ≤ ‖A‖ |x|.

Since the last inequality is also satisfied automatically by x = 0, the matrix norm
defined by (9.11) is compatible with the given vector norm | · |. �

We consider two examples to illustrate Theorem 9.5.4.
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Example 9.5.5 (Matrix norm induced by vector norm | · |∞). The vector norm
|x|∞ = max1≤j≤n |aj | on Rn (Example 8.3.8) is especially useful later in this book.
We now compute the induced matrix norm ‖A‖∞ according to (9.11). In fact we
will show that

‖A‖∞ = max
1≤i≤n

n∑
j=1

|aij |,

that is, ‖A‖∞ is the maximum absolute row sum of A. Fix an index i, and
consider the i-th row of A, with entries aij , j = 1, . . . , n. Define a vector v as
follows. Let vj = 1 if aij ≥ 0 and let vj = −1 if aij < 0. Then |v|∞ = 1, and
the i-th component of Av equals

∑n
j=1 |aij |, the i-th absolute row sum of A. Thus,

since we can realize each of the absolute row sums of A as a component in an image
vector Av for some v with unit norm, it follows from (9.11) that

‖A‖∞ ≥ max
1≤i≤n

n∑
j=1

|aij |.

To show the reverse inequality, let |x|∞ = 1. Then |xj | ≤ 1 for j = 1, . . . , n. For
each i = 1, . . . , n, the i-th component of Ax is

∑n
j=1 aijxj , and hence

∣∣Ax
∣∣
∞ = max

1≤i≤n

∣∣∣ n∑
j=1

aijxj

∣∣∣.
For each i, ∣∣∣ n∑

j=1

aijxj

∣∣∣ ≤ n∑
j=1

|aij | |xj | ≤
n∑

j=1

|aij |,

the right-hand side being the ith absolute row sum of A. Hence,∣∣Ax
∣∣
∞ ≤ max

1≤i≤n

n∑
j=1

|aij |

as we wanted to show. �

Example 9.5.6 (Matrix norm induced by the Euclidean norm | · |2). We apply
some facts from Section 8.5 and the spectral theorem for real symmetric matrices
to discuss the matrix norm ‖A‖2 induced by the Euclidean vector norm |x|2. Let
A be an n×n real matrix. Then ATA is symmetric and positive semidefinite, that
is, xTATAx ≥ 0 for all x, and hence all its eigenvalues are nonnegative. Let

λmax := the maximum eigenvalue of ATA.

We will show that

‖A‖2 = (λmax)
1/2.

By definition, ‖A‖2 = max|x|2=1 |Ax|2. Let λ be an eigenvalue of ATA and let x

be a corresponding eigenvector with |x|2 = 1. Then ATAx = λx implies

|Ax|22 = xTATAx = xT (λx) = λ|x|22 = λ,

and hence |Ax|2 = (λ)1/2. Since this is true for any eigenvalue λ of A, we have

‖A‖2 = max
|x|2=1

∣∣Ax
∣∣
2
≥ (λmax)

1/2.
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To get the reverse inequality, let us list the eigenvalues of ATA, including multi-
plicities, as λ1, . . . , λn. Let x ∈ Rn. Then we may write

x = x1 + x2 + · · ·+ xn

where for each k, xk is an eigenvector for λk, and these eigenvectors are pairwise
orthogonal and form a basis of Rn. Then we have

xTATAx = xT
n∑

k=1

λkxk =
n∑

k=1

λk|xk|22 ≤ λmax

n∑
k=1

|xk|22 = λmax|x|22.

Hence, |Ax|22 ≤ λmax|x|22. Thus, |Ax|2 ≤ (λmax)
1/2|x|2 for all x, and it follows

immediately from the definition that ‖A‖2 ≤ (λmax)
1/2. �

We need a norm for linear mappings from one Euclidean space to another. We
extend the definition of matrix norms given for square matrices in Definition 9.5.2
by defining a matrix norm for Rm×n, the space of m × n real matrices, to be a
function ‖ · ‖ : Rm×n → R that satisfies properties (i), (ii), and (iii) of the norm
definition (Definition 8.3.1). Given fixed vector norms on Rn and Rm, there is a
standard way of defining a matrix norm on Rm×n that is compatible with the
given vector norms. This is the content of the following definition.

Definition 9.5.7. Let L : Rn → Rm be a linear transformation or an m× n real
matrix. Given norms on Rn and Rm (both denoted here by | · |) we define the
associated norm for L by

‖L‖ = max
|x|=1

∣∣Lx∣∣.
Thus ‖L‖ is the maximum of the image vector norms |Lx|, for x in the unit ball

in Rn defined by the given norm in the domain space. We note that every linear
transformation of Euclidean spaces is continuous, since each component function
of L takes the form of a linear combination, with real scalars, of the components
of the vector x. Since the unit sphere defined by |x| = 1 is compact, the maximum
indicated in the definition exists. If |x| = 1, then |Lx| ≤ ‖L‖. For any x 
= 0, the
vector 1

|x|x has unit norm, hence

1

|x|
∣∣Lx∣∣ = ∣∣∣ 1|x|Lx

∣∣∣ = ∣∣∣L( 1

|x|x
)∣∣∣ ≤ ‖L‖,

and therefore |Lx| ≤ ‖L‖ |x|, which is also true when x = 0. For example, if we
use the Euclidean norm, denoted | · |2, for the domain R2 and range R3, then for
convenience and identification we naturally denote the compatible matrix norm of
Definition 9.5.7 by ‖·‖2, and thus for any real 3×2 matrix A, we have the inequality∣∣Ax

∣∣
2
≤ ‖A‖2 |x|2,

which holds for all x ∈ R2 and corresponding image Ax ∈ R3.

Theorem 9.5.8. If L : Rn → Rm is a linear transformation, then L is uniformly
continuous on Rn.

Proof. Assume that norms are given on domain and range space, both indicated
here by the symbol | · |. Given u, v in the domain,∣∣Lu− Lv

∣∣ = ∣∣L(u− v)
∣∣ ≤ ‖L‖ |u− v|,
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where ‖L‖ denotes the associated norm in Definition 9.5.7. Uniform continuity
follows immediately: Given ε > 0, the choice of |u−v| < ε/‖L‖ = δ(ε) implies that
|Lu− Lv| < ε. �

9.5.2. Completeness of Rn×n. We now show that the normed vector space
Rn×n of n× n real matrices is complete, that is, a Banach space.

Theorem 9.5.9. The vector space Rn×n of n×n real matrices is a Banach space,
complete with respect to any matrix norm.

Proof. By the equivalence of norms on a finite-dimensional space, we may use
any norm on Rn×n. We choose the matrix norm ‖ · ‖as, the absolute sum norm:
‖A‖as =

∑n
i=1

∑n
j=1 |aij |. Every Cauchy sequence of matrices Ak in Rn×n must

converge to a matrix A ∈ Rn×n. To see this, note that if Ak ∈ Rn×n defines a
Cauchy sequence, then for each index pair i, j, the sequence of ij entries Aij

k is a

real number Cauchy sequence, since |Aij
n − Aij

k | ≤ ‖An − Ak‖as. Therefore (Aij
k )

converges to a real number, denoted aij . Then the matrix A = [aij ] is such that
limk→∞ Ak = A, that is, limk→∞ ‖Ak−A‖as = 0. Therefore Rn×n is complete. �

The following concept is useful in later discussions in the book on matrix ex-
ponential series and matrix geometric series.

Definition 9.5.10. Let V be a normed vector space with norm ‖ · ‖. The infinite
series

∑∞
k=1 ak, ak ∈ V , is absolutely convergent if the real numerical series∑∞

k=1 ‖ak‖ converges.

A simple but remarkable theorem asserts that absolute convergence in a com-
plete normed space implies convergence.

Theorem 9.5.11 (Absolute Convergence Implies Convergence). Let V be a com-
plete normed vector space. If the infinite series

∑∞
k=1 ak, ak ∈ V , is absolutely

convergent, then it converges in the norm on V to a limit s ∈ V , that is,
∞∑
k=1

ak = lim
n→∞

n∑
k=1

ak = s.

Proof. Let us write

sn =

n∑
k=1

ak and Sn =

n∑
k=1

‖ak‖

for the partial sums of the series in V and the real numerical series of norms,
respectively. Since V is complete, the proof hinges on showing that if (Sn) is
Cauchy, then (sn) is Cauchy in the norm on V . If (Sn) is Cauchy, then given any
ε > 0 there exists an N = N(ε) such that if m > n ≥ N , then

|Sm − Sn| = Sm − Sn =

m∑
k=n+1

‖ak‖ < ε.

Now we can estimate that for m > n ≥ N ,

‖sm − sn‖ =
∥∥∥ m∑

k=n+1

ak

∥∥∥ ≤ m∑
k=n+1

‖ak‖ = Sm − Sn < ε.
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Thus the sequence (sn) of partial sums of the series in V is a Cauchy sequence.
Since V is complete, s = limn→∞ sn =

∑∞
k=1 ak exists. �

Example 9.5.12 (Matrix geometric series). Suppose A is an n × n real matrix
such that ‖A‖ < 1 for some matrix norm. Then I −A is invertible, and

(I −A)−1 =
∞∑
k=0

Ak = I +A+A2 + A3 + · · · ,

where I is the n × n identity matrix. In fact, we will prove this result using the
real numerical geometric series result along with the completeness of Rn×n and
Theorem 9.5.11. First, the series of norms

∑∞
k=0 ‖Ak‖ converges since we have

‖Ak‖ ≤ ‖A‖k for each k, and the real geometric series

∞∑
k=0

‖A‖k

converges since ‖A‖ < 1. Thus,
∑∞

k=0 ‖Ak‖ converges by the direct comparison
test. Since Rn×n is complete, we may now apply Theorem 9.5.11 to conclude that
the matrix series

∑∞
k=0A

k converges to a uniquely defined limit matrix X. We
wish to show that X = (I −A)−1. We follow the proof of the numerical geometric
series result. Write

Sn =

n−1∑
k=0

Ak = I +A+A2 + · · ·+An−1.

Then X = limn→∞ Sn. We have a telescoping sum for the product

(I −A)Sn = I −An.

Now let n → ∞ in this equation to get

(I − A)X = I,

since ‖A‖ < 1 implies that limn→∞ An is the zero matrix. Therefore X is a right
inverse for the square matrix I −A, hence I − A is invertible and X = (I − A)−1.
This proves what we wanted. (See also Exercises 9.5.6, 9.5.7.) �

Exercises.

Exercise 9.5.1. Let V and W be real vector spaces. Prove that a one-to-one
linear mapping L : V → W maps linearly independent sets of vectors to linearly
independent sets.

Exercise 9.5.2. Verify that the set Rn×n of n× n matrices with real entries is a
real vector space, and identify a basis for this space.

Exercise 9.5.3. Show that ‖A‖as =
∑n

i=1

∑n
j=1 |aij | defines a matrix norm on the

space Rn×n of n× n matrices.

Exercise 9.5.4. Define R : l2 → l2 by R(ξ1, ξ2, ξ3, . . .) = (ξ1, ξ2, ξ3, . . .) for ξ = (ξk)
in l2. Show that R is a linear transformation. Show that R is one-to-one and has
no eigenvalues. Hint : Recall that eigenvectors must be nonzero, by definition.
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Exercise 9.5.5. Matrix norm induced by | · |1
This exercise shows that the absolute sum matrix norm, ‖ · ‖as, is not induced by
the vector norm |x|1 =

∑n
k=1 |xk|. Show that the matrix norm induced by the

norm |x|1, according to Theorem 9.5.4, is

‖A‖1 = max
1≤j≤n

n∑
i=1

|aij |,

the maximum absolute column sum of A.

Exercise 9.5.6. Let A ∈ Rn×n and let I be the n× n identity matrix. Show that
if ‖I −A‖ < 1 for some matrix norm, then A is invertible and

A−1 =

∞∑
k=0

(I − A)k.

Exercise 9.5.7. Suppose A ∈ Rn×n and A is invertible. Find a number r > 0 such
that if B ∈ Rn×n and ‖A − B‖ < r for some matrix norm, then B is invertible.
(This shows that the set of invertible matrices is an open set in the space Rn×n of
real n×n matrices.) Hint : Write B = A− (A−B) = A(I−A−1(A−B)) and then
consider the matrix X := A−1(A−B).

Exercise 9.5.8. Jacobi Iteration
Let A = [aij ] be n × n and invertible. Write A = D − L − U , where D =
diag[a11, a22, . . . , ann] is the diagonal part of A, −L is the lower triangular
part of A, and −U is the upper triangular part of A. For example, if A is 3×3,
then

D =

⎡
⎣ a11 0 0

0 a22 0
0 0 a33

⎤
⎦ , −L =

⎡
⎣ 0 0 0

a21 0 0
a31 a32 0

⎤
⎦ , −U =

⎡
⎣ 0 a12 a13

0 0 a23
0 0 0

⎤
⎦ .

Suppose A is diagonally dominant, that is,

(9.12) |aii| >
n∑

j=1,j 
=i

|aij |, for i = 1, . . . , n.

Thus D is invertible.

1. Show that the equation Ax = b may be written as x = D−1(L+U)x+D−1b.

2. Show that the resulting iteration, xk+1 = D−1(L + U)xk +D−1b, converges
to the unique solution of Ax = b for any starting value x0.

Exercise 9.5.9. Gauss-Seidel Iteration
Let A = [aij ] be invertible and 3× 3, for simplicity. Write A = D−L−U as in the
exercise on Jacobi iteration, and assume that D is invertible.

1. Show that the equation Ax = b may be written as

x = (D − L)−1Ux+ (D − L)−1b.

2. State a condition which guarantees that the resulting iteration,

xk+1 = (D − L)−1Uxk + (D − L)−1b,

converges to the unique solution of Ax = b for any starting value x0.
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3. Show that the Gauss-Seidel iteration in part 2 converges if

A =

⎡
⎣ 4 −1 0

−1 4 −1
0 −1 4

⎤
⎦ .

Gauss-Seidel iteration is helpful in the sparse linear systems that arise from fi-
nite difference approximations to certain partial differential equations. It can be
shown that if A is diagonally dominant, that is, (9.12) holds, then the Gauss-Seidel
iteration converges.

Exercise 9.5.10. Let X be a Banach space with norm | · |, and let K : X → X be
a linear transformation. We say that K is bounded if there is a number M > 0
such that |K(x)| ≤ M |x| for all x ∈ X. Let B(X) denote the set of bounded linear
transformations from X to X.

1. Show that B(X) is a vector space.

2. Verify that we define a norm on B(X) by setting

‖K‖ = sup
|x|=1

|K(x)|, K ∈ B(X),

and show that ‖K1K2‖ ≤ ‖K1‖‖K2‖ when K1,K2 ∈ B(X).

3. Extend the result of Example 9.5.12 by proving that if ‖K‖ < 1, then I −K
is invertible and

(I −K)−1 = I +K +K2 +K3 + · · ·
where Km is the m-fold composition of K with itself, and the series converges
absolutely in the norm defined above.

4. Revisit (or visit) Exercise 9.3.4, and show that the unique solution of the
Fredholm integral equation (9.8) is given by

f =

∞∑
m=0

Kmg,

where K : C[a, b] → C[a, b] is given by (Kh)(x) =
∫ b

a
k(x, y)h(y) dy for h ∈

C[a, b].

9.6. Notes and References

The presentation of the lp spaces is drawn from Kreyszig [41].

For further discussion of contraction theorem applications, see Kreyszig [41],
which includes a discussion of the Jacobi and Gauss-Seidel iterations of Exercises
9.5.8-9.5.9. Gauss-Seidel iteration is helpful in the sparse linear systems that arise
from finite difference approximations to certain partial differential equations; see
for example Smith [60]. It can be shown that if A is diagonally dominant, that is,
(9.12) holds, then the Gauss-Seidel iteration converges. An introductory efficiency
comparison of the Jacobi and Gauss-Seidel iterations is available in Strang [62].

Friedman [17] and Simmons [59] cover the Arzelà-Ascoli (or Ascoli-Arzelà)
theorem, mentioned at the end of Section 9.1.





Chapter 10

Differentiation in Rn

In this chapter we study differentiation of functions that map one Euclidean space
into another Euclidean space. The basic results on limits and continuity for these
functions appears in Chapter 8. We denote real valued functions by lowercase
letters, and vector valued functions by boldface letters (either uppercase or
lowercase).

10.1. Partial Derivatives

Let D be an open subset of Rn, and f : D → R a function on D with values in
R. We write x = (x1, x2, . . . , xn) for points of R

n and f(x) = f(x1, x2, . . . , xn) for
the image point in R. For a function f of two or three real variables we will often
write f(x, y) or f(x, y, z).

Definition 10.1.1. The partial derivative of f : D → R with respect to xj at the
point a ∈ D is defined by

Djf(a) = lim
h→0

f(a+ hej)− f(a)

h
,

if the limit exists.

The Leibniz notation ∂f
∂xj

(a) for this defining limit will also be used at times;

in particular, for some specific calculations when f is a function of two or three
variables and we write f(x, y) or f(x, y, z). In component detail, we have

Djf(a) = lim
h→0

f(a1, . . . , aj + h, . . . , an)− f(a1, . . . , aj , . . . , an))

h
,

so this limit is the derivative of the real valued function

xj → f(a1, . . . , xj , . . . , an)

at the point aj , with ak, for k 
= j, held constant. Thus the usual derivative rules
apply when computing partial derivatives. We need only hold xk constant for k 
= j
and differentiate with respect to xj , then evaluate as required, to obtain Djf(a).

297
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In contrast to the case for functions of a single variable, the existence of all
partial derivatives of f at a,

D1f(a), D2f(a), . . . , Dn−1f(a), Dnf(a),

does not guarantee that f is continuous at a.

Example 10.1.2. Let f : R2 → R be the function defined by

f(x, y) =

{
1 if xy = 0,
0 if xy 
= 0.

At (a1, a2) = (0, 0), the definition of partial derivative yields the results that

∂f

∂x
(0, 0) = 0 and

∂f

∂y
(0, 0) = 0.

Thus f has partial derivatives at (a1, a2) = (0, 0). However, f is not continuous at
(0, 0). Observe that the sequence (1/n, 1/n) converges to (0, 0), with f(1/n, 1/n) =
0 → 0 
= 1 = f(0, 0). Also notice that ∂f/∂y does not exist on the x-axis, except
at (0, 0), and ∂f/∂x does not exist on the y-axis, except at (0, 0). �

See also Exercise 10.1.1, where the function has partial derivatives at every
point of R2, the partial derivatives are continuous at every point except the origin,
and the function fails to be continuous at the origin.

Recall that if a real function of a single variable is differentiable at a (that is,
if f ′(a) exists), then f is continuous at a. For the functions in Example 10.1.2
and Exercise 10.1.1, the existence of partial derivatives at a point a, and even the
existence of partial derivatives throughout a neighborhood of a, is seen to be in-
sufficient to guarantee continuity of the function at a. The way to understand this
phenomenon in those examples is to realize that the function graph did not have
a well-defined tangent plane approximation at the point (0, f(0)). The existence
of a tangent plane approximation at (0, f(0)) would imply continuity there. We
will see this more precisely when we have defined differentiability for multivariable
functions in the appropriate way. For the moment, the key idea is to realize that
differentiability of f at a should mean a well-defined linear approximation to the
graph of f at the point (a, f(a)). Under that definition, differentiability at a does
imply continuity at a. What conditions are sufficient for the graph of f to have a
well-defined linear approximation at (a, f(a))? Intuitively, it appears that conti-
nuity of the partial derivatives at all points in some neighborhood of a should be
sufficient, since this guarantees a smoothly varying surface as the graph of f for x
near a. This intuition can be justified with the definition of differentiability and its
consequences.

The definition of second-order (and higher-order) partial derivatives of a real
function f is covered by inductive application of Definition 10.1.1. For example,
given the existence of the real function Djf(x) for all x in some ball about a, the
second-order partial derivative of f indicated by DiDjf(a) is defined by

DiDjf(a) = lim
h→0

Djf(a+ hei)−Djf(a)

h
,

when the limit exists. This is the partial derivative of Djf(x) with respect to the
variable xi at a.
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Some comments are in order on notations for partial derivatives. Readers may
already be familiar with another subscript notation for partial derivatives, and
recognize that if f is a function of x = (x1, x2, . . . , xn) ∈ Rn, then

Djf(a) =
∂f

∂xj
(a) = fxj

(a).

Without the evaluation notation at some point a, the notations Djf ,
∂f
∂xj

and fxj

are usually taken to mean the derivative function itself rather than the evaluation of
the derivative function at any particular point. Care is always needed with partial
derivative notation. Recall that the ordering of subscripts in the subscript notation
for derivatives is the opposite of the ordering of the indicated derivatives in the D
or ∂ notation. For example, the second-order partial derivative DiDjf(a) can be
indicated in any of these ways:

DiDjf(a) =
∂2f

∂xi∂xj
(a) = fxjxi

(a).

Care is needed when using parentheses.1 The variety of partial derivative notations
proves convenient in various circumstances, as clarity is sometimes enhanced by
using one notation rather than another, and clarity takes priority.

We now turn to proving the equality of mixed partial derivatives such as fxy
and fyx. The essential issue is a two-dimensional phenomenon, so we begin with
the following lemma.

Lemma 10.1.3. Let f(x, y) be defined on D ⊂ R2 and let (a, b) be an interior
point of D. If the partial derivatives fx(x, y), fy(x, y) and fyx(x, y) exist in the
open ball Bδ(a, b) for some δ > 0 and if fyx is continuous at (a, b), then fxy(a, b)
exists and

fxy(a, b) = fyx(a, b).

Proof. We want to show that fxy(a, b) exists and fxy(a, b) = fyx(a, b). By defining

Δf(x, y) = f(x+ h, y)− f(x, y),

we may write

fx(x, y) = lim
h→0

Δf(x, y)

h
.

Thus we want to show that

fxy(a, b) = lim
k→0

fx(a, b+ k)− fx(a, b)

k

= lim
k→0

1

k

(
lim
h→0

Δf(a, b+ k)−Δf(a, b)

h

)
(10.1)

exists and equals fyx(a, b). It may be helpful to visualize certain domain points in
the argument that follows. (See Figure 10.1.)

By hypothesis we may differentiate with respect to y to see that

(10.2) (Δf)y(x, y) = fy(x+ h, y)− fy(x, y)

1For example, the expression ∂
∂xi

( ∂f
∂xj

(a)
)
has the value zero, but might not have been intended;

if the intention is to indicate a second-order derivative at the point a, then ∂
∂xi

( ∂f
∂xj

)
(a) is fine, and

(
∂

∂xi

( ∂f
∂xj

))
(a) =

(
∂

∂xi

∂f
∂xj

)
(a) = ∂2f

∂xi∂xj
(a) are also clear.
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δ

(a + h, b)(a, b)

(a + h, b + k)(a, b + k)

Figure 10.1. Proving the equality of mixed partial derivatives: Points near

(a, b) in the proof of Lemma 10.1.3.

exists for all points (x, y) on the line segment joining (a, b) and (a, b+ k) if |k| < δ.
By the mean value theorem (Theorem 5.2.4) there is a θ1 depending on h, k with
0 < θ1 < 1 such that

Δf(a, b+ k)−Δf(a, b) = (Δf)y(a, b+ θ1k) k.

By (10.1), we have

(10.3) fxy(a, b) = lim
k→0

(
lim
h→0

(Δf)y(a, b+ θ1k)

h

)
.

Now by (10.2),

(Δf)y(a, b+ θ1k) = fy(a+ h, b+ θ1k)− fy(a, b+ θ1k).

By choice of h and k, we have (a, b+ θ1k) ∈ Bδ(a, b), and fyx(x, y) exists for (x, y)
in Bδ(a, b), hence

lim
h→0

1

h
[(Δf)y(a, b+ θ1k)] = lim

h→0

1

h
[fy(a+ h, b+ θ1k)− fy(a, b+ θ1k)]

= fyx(a, b+ θ1k).

Now (10.3) and continuity of fyx at (a, b) imply that

fxy(a, b) = lim
k→0

fyx(a, b+ θ1k) = fyx(a, b),

and this completes the proof. �
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The hypothesis of continuity of fyx at a was used in the last step of the proof of
Lemma 10.1.3. See Exercise 10.1.2 for an example where this continuity hypothesis
does not hold, and neither does the conclusion of the lemma.

If we changed the hypotheses in the lemma to read “if fx(x, y), fy(x, y) and
fxy(x, y) exist in the open ball Bδ(a, b) for some δ > 0 and if fxy is continuous at
(a, b)”, then a similar proof allows us to conclude that fyx(a, b) exists and fyx(a, b) =
fxy(a, b).

The general result on equality of mixed partials for real functions now follows.

Theorem 10.1.4. Let f : D ⊆ Rn → R and let a be an interior point of D. If the
partial derivatives Dif(x), Djf(x) and DiDjf(x) exist in an open ball Bδ(a) for
some δ > 0 and if DiDjf is continuous at a, then DjDif(a) exists and

DjDif(a) = DiDjf(a).

Proof. We may assume without loss of generality that i < j. Apply Lemma 10.1.3
to the function φ(x, y) defined by

φ(x, y) = f(a1, . . . , ai−1, x, ai+1, . . . , aj−1, y, aj+1, . . . , an),

to conclude that φxy(a, b) = φyx(a, b); that is, DjDif(a) = DiDjf(a). �

Here it is convenient to introduce some terminology for orders of continuous
differentiability.

Definition 10.1.5. The mapping F : U ⊆ Rn → Rm is of class C1 (or simply, is
C1) at an interior point a ∈ U if the partial derivatives of each component function
of F exist throughout some open ball containing a and are continuous at a.

Definition 10.1.6. Let U be an open subset of Rn. The mapping F : U ⊂ Rn →
Rm is said to be

1. of class C1 on U , or more simply, F is C1 on U , if the first-order partial
derivatives of each component function of F exist and are continuous on U ;

2. of class Ck on U , or is Ck on U , if all the partial derivatives of each
component function of F through order k exist and are continuous on U .

With Theorem 10.1.4 in mind, observe that if the derivatives Dif(x), Djf(x)
and DiDjf(x) exist and are continuous throughout some open ball Bδ(a), then the
hypotheses of the lemma are satisfied at each point of that ball, and therefore

DjDif(x) = DiDjf(x) for all x ∈ Bδ(a).

Therefore, in view of Definition 10.1.6, we can say that if f is of class C2 on U ,
then the order of differentiation in mixed second-order partial derivatives does not
matter.

From introductory multivariable calculus, the reader has some experience with
the differential operators of vector analysis.

If f : D ⊂ Rn → R has partial derivatives at the point x ∈ D, then we write

grad f(x) =
( ∂f

∂x1
(x), . . . ,

∂f

∂xn
(x)
)

and call grad f(x) the gradient of f at x.
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A mapping F : D ⊆ Rn → Rn defines a vector field on D. For n = 3, we get
vector fields in space. For a vector field in space, write

F(x) = (F1(x), F2(x), F3(x)).

If the indicated partial derivatives exist, then

divF(x) =
∂F1

∂x1
(x) +

∂F2

∂x2
(x) +

∂F3

∂x3
(x)

is called the divergence of F at x. For a vector field F on D ⊂ Rn, the divergence
of F at x is

divF(x) =
∂F1

∂x1
(x) + · · ·+ ∂Fn

∂xn
(x).

If F : D ⊂ R3 → R3, written F(x) = (M(x), N(x), P (x)) with x = (x, y, z),
and the partial derivatives exist, then the vector

curlF(x) =
(∂P
∂y

(x)− ∂N

∂z
(x),

∂M

∂z
(x)− ∂P

∂x
(x),

∂N

∂x
(x)− ∂M

∂y
(x)
)

is called the curl of F at x.

Now consider functions f and F defined in space with domain D ⊂ R3 and
points x ∈ D written x = (x, y, z). There is some classical notation associated with
these constructions using the differential operator ∇ = ( ∂

∂x ,
∂
∂y ,

∂
∂z ) treated as a

vector. Thus,

grad f(x) = ∇f(x) =
[( ∂

∂x
,
∂

∂y
,
∂

∂z

)
f
]
(x) =

(∂f
∂x

(x),
∂f

∂y
(x),

∂f

∂z
(x)
)
.

If F(x) = (M(x), N(x), P (x)), then

curlF(x) = ∇× F(x) =

⎡
⎢⎢⎣

e1 e2 e3

∂
∂x

∂
∂y

∂
∂z

M(x) N(x) P (x)

⎤
⎥⎥⎦

yields curlF(x) by a symbolic cross product-determinant calculation. Also,

divF(x) = ∇ · F(x) =
( ∂

∂x
,
∂

∂y
,
∂

∂z

)
· (M,N,P ) =

∂M

∂x
(x) +

∂N

∂y
(x) +

∂P

∂z
(x)

yields divF(x) as a symbolic dot product calculation.

Theorem 10.1.7. Suppose f : U ⊂ R3 → R is a C2 function on U and F : U ⊂
R3 → R3 is a C2 vector field on U . Then the following identities hold:

1. curl grad f(x) = ∇× (∇f)(x) = 0 for all x ∈ U ;

2. div curlF(x) = ∇ · (∇× F)(x) = 0 for all x ∈ U .

Proof. In each case the proof is a direct consequence of the equality of mixed
partial derivatives, and the verification is left to Exercise 10.1.4. �
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The important construction, div grad f(x), for a function f : D ⊂ R3 → R,
may be written

div grad f(x) = ∇ · ∇f(x) =
( ∂

∂x
,
∂

∂y
,
∂

∂z

)
·
(∂f
∂x

,
∂f

∂y
,
∂f

∂z

)
=

∂2f

∂x2
(x) +

∂2f

∂y2
(x) +

∂2f

∂z2
(x).

This construction is often written

∇2f(x) = div grad f(x) =
∂2f

∂x2
(x) +

∂2f

∂y2
(x) +

∂2f

∂z2
(x).

The operator ∇2 = div grad is called the Laplacian operator, and ∇2f(x) is the
Laplacian of f . The Laplacian is also frequently denoted by the simpler notation

Δf(x) =
∂2f

∂x2
(x) +

∂2f

∂y2
(x) +

∂2f

∂z2
(x).

The symbol Δ (called simply “del”) denotes the Laplacian operator. The partial
differential equation

Δu(x) = div gradu(x) =
∂2u

∂x2
(x) +

∂2u

∂y2
(x) +

∂2u

∂z2
(x) = 0

is Laplace’s equation for the unknown u(x, y, z), and it plays an important role
in most of the fundamental differential equations of mathematical physics. In two
space dimensions, for functions u : U ⊂ R2 → R, written as u(x, y), Laplace’s
equation reads

∂2u

∂x2
(x) +

∂2u

∂y2
(x) = 0,

and its C2 solutions can be viewed as the building blocks of the theory of functions
of a complex variable.2 Laplace’s equation in n dimensions reads

∂2u

∂x2
1

(x) +
∂2u

∂x2
2

(x) + · · ·+ ∂2u

∂x2
n

(x) = 0.

In all cases, the C2 solutions of Laplace’s equation are called harmonic functions.

Exercises.

Exercise 10.1.1. Let f : R2 → R be the function defined by

f(x, y) =

{
xy/(x2 + y2) if (x, y) 
= (0, 0),
0 if (x, y) = (0, 0).

1. Show that for (x, y) 
= (0, 0), the partial derivatives are computed by the usual
differentiation rules to obtain

fx(x, y) =
y3 − yx2

(x2 + y2)2
and fy(x, y) =

x3 − xy2

(x2 + y2)2
.

2. Show that at (x, y) = (0, 0), the definition of partial derivative yields fx(0, 0) =
0 and fy(0, 0) = 0, so f has partial derivatives at every point.

2Both the real and imaginary parts of a differentiable function of a complex variable, f : C → C,
are harmonic functions.
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3. Show that f is not continuous at (0, 0).

4. Show that the partial derivatives ∂f/∂x, ∂f/∂y are discontinuous at (0, 0).

Exercise 10.1.2. Let tan−1 be the inverse tangent function taking values in the
interval (−π/2, π/2), and let f : R2 → R be

f(x, y) =

{
x2 tan−1(y/x)− y2 tan−1(x/y) if xy 
= 0,
0 if xy = 0.

Show that D1D2f(0, 0) 
= D2D1f(0, 0).

Exercise 10.1.3. Find the partial derivative D1D2f = fx2x1
for the function

f(x) = x1x2 +
√
1 + x2

2 cos
(
x2/
√
1 + x2

2

)
using the least amount of computation, and justify your computation.

Exercise 10.1.4. Prove Theorem 10.1.7.

Exercise 10.1.5. Show that each of these functions is harmonic:

(a) u(x, y) = coshx sin y; (b) v(x, y) = sinh x cos y; (c) w(x, y) = ey sinx.

Exercise 10.1.6. Show that Φ(x) = Φ(x, y, z) = (x2 + y2 + z2)−1/2 satisfies
Laplace’s equation for x 
= 0.

Exercise 10.1.7. (This exercise presents preliminary versions of a general mean
value theorem proved later using the chain rule. We do not use the chain rule here,
as it has not yet been introduced.)

1. Suppose that f(x1, x2) has first-order partial derivatives at every point of an
open ball Br(a) = {x : |x − a|2 < r} in the plane. Let h be a fixed real
number (positive or negative) with |h| < r, so that for j = 1 and j = 2, the
line segment joining a and a+hej lies in Br(a). Prove that there are numbers
θ1 and θ2 with 0 < θj < 1 for j = 1, 2, such that

f(a+ hej)− f(a) =
∂f

∂xj
(a+ θjhej)h, for j = 1, 2.

Hint : Apply the single variable mean value theorem to φj(t) = f(a + tej)
where I is an interval of real numbers containing both 0 and h. Use only
the definition of φ′

j(t) to find that φ′
j(t) =

∂f
∂xj

(a+ tej). You should find the

argument is the same for j = 1, 2.

2. Extend the result of part 1 by going from a to a + h for any increment h.
That is, suppose f(x1, x2) has first-order partial derivatives at every point of
the open ball Br(a) = {x : |x − a|2 < r} in the plane. Let |h|2 < r. Prove
that there exist points c1, c2 in Br(a) with |a− cj |2 < |h|2 for j = 1, 2, such
that

f(a+ h)− f(a) =
∂f

∂x1
(c1)h1 +

∂f

∂x2
(c2)h2.

Hint : Write the difference f(a+ h)− f(a) as follows:

f(a+ h)− f(a) = f(a1 + h1, a2 + h2)− f(a1, a2)

= f(a1 + h1, a2 + h2)− f(a1 + h1, a2)

+f(a1 + h1, a2)− f(a1, a2).
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View the first difference as involving an increment in the second variable only,
and the second difference as involving an increment in the first variable only.
Apply part 1 to each of these differences, noting that Br(x) is convex.

10.2. Differentiability: Real Functions and Vector Functions

In order to define differentiability of a function at an interior point of its domain,
we take our cue from Definition 5.1.8 in the single variable case. We may use any
specific norm for vectors in Rn and Rm, so we do not subscript the norms here. We
indicate vector norms by single bars and norms of matrices or linear transformations
by double bars.

Definition 10.2.1. Let F : U → Rm, U ⊆ Rn, and let a be an interior point of
U . Then F is differentiable at a if there is a linear mapping T : Rn → Rm such
that

lim
|h|→0

|F(a+ h)− F(a)−Th|
|h| = 0.

The linear mapping T is called the derivative of F at a, which we write hencefor-
ward as DF(a).

Write x = a+ h. By the definition of limit we have that F is differentiable at
a if for every ε > 0 there is a δ > 0 such that if |x− a| < δ, then

|F(x)− F(a)−DF(a)(x− a)|
|x− a| < ε,

that is,
|F(x)− F(a)−DF(a)(x− a)| < ε|x− a|.

This limit statement expresses a precise sense in which the tangent estimate,

F(x) ≈ F(a) +DF(a)(x− a) (x near a),

or, alternatively,

F(a+ h)− F(a) ≈ DF(a)h (h near 0),

is valid. The next theorem gives assurance that the derivative of F at a, if such a
linear mapping exists, is uniquely determined by Definition 10.2.1.

Theorem 10.2.2. If F : U → Rm is differentiable at the interior point a ∈ U ,
then the derivative DF(a) is uniquely determined.

Proof. Suppose T1 and T2 are linear mappings from Rn to Rm that satisfy Def-
inition 10.2.1. Then for every ε > 0 there is a δ > 0 such that if |h| < δ, then

|F(a+ h)− F(a)−T1h| <
ε

2
|h|

and
|F(a+ h)− F(a)−T2h| <

ε

2
|h|.

By the triangle inequality, for all |h| < δ we have

|(T1 −T2)h| = |T1h−T2h| < ε|h|.
But this implies that for all u with |u| = 1, we have |(T1−T2)u| < ε, and therefore
‖T1 −T2‖ < ε. Since ε > 0 was arbitrary, T1 = T2. �
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Example 10.2.3. Using the uniqueness result of Theorem 10.2.2, one verifies easily
from Definition 10.2.1 that the function f(x1, x2) = x2

1 + x2
2 on R2 has derivative

at (0, 0) equal to the zero linear transformation, that is,

Df(0, 0)(h1, h2) = 0

for all (h1, h2). �

Example 10.2.4. A differentiable curve r : J → Rn from an open interval J into
Rn, given by r(t) = (x1(t), . . . , xn(t)), has derivative at t0 ∈ J given by the linear
mapping Dr(t0)h = hr′(t0), where

r′(t0) = (x′
1(t0), . . . , x

′
n(t0)).

See Exercise 10.2.1. Recall that the tangent line to the curve at the point r(t0) has
equation R(h) = r(t0) + hr′(t0), as r

′(t0) is a direction vector for the line. �

If a is not an interior point of the domain of F, then, even if there is a linear
mapping T satisfying Definition 10.2.1, there may not be a unique such linear
mapping, so the derivative of F at a may not be uniquely or well defined in that
situation.

Theorem 10.2.5. If F : U ⊂ Rn → Rm is differentiable at an interior point
a ∈ U , then F is continuous at a.

Proof. The existence of the derivative at a implies that for every ε > 0 there is a
δ > 0 such that if |x− a| < δ, then

|F(x)− F(a)−DF(a)(x− a)| < ε|x− a|.
Letting ε = 1, there is a δ1 > 0 such that |x− a| < δ1 implies that

|F(x)− F(a)−DF(a)(x− a)| < |x− a|,
and hence, by a reverse triangle inequality argument, that

|F(x)− F(a)| < |DF(a)(x− a)|+ |x− a| ≤ (‖DF(a)‖+ 1) |x− a|.
Now let x → a and use the fact that a linear transformation from Rn to Rm is
continuous at a, to conclude that limx→a F(x) = F(a). �

Exercises.

Exercise 10.2.1. Carry out the required limit calculation from Definition 10.2.1
to establish the derivatives asserted in Example 10.2.3 and Example 10.2.4.

Exercise 10.2.2. Let f : R2 → R2 be

f(x1, x2) =

{
x1 + x2 if x1x2 = 0,
1 if x1x2 
= 0.

Show that D1f(0, 0) = 1 = D2f(0, 0), but that f is not continuous at (0, 0). Is f
differentiable at (0, 0)?

Exercise 10.2.3. Let F : U → Rn be the identity mapping on U ⊆ Rn. Show
that at each interior point a ∈ U , DF(a) is the identity linear mapping.

Exercise 10.2.4. Prove: If F : Rn → Rm is a linear mapping, then at each point
a ∈ Rn, DF(a) = F.
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Exercise 10.2.5. Ck but not Ck+1

Consider functions f : R → R.

1. Give an example of a function f that is C1 but not C2. Hint : Start with
g(x) = |x| and integrate.

2. Give an example of a function f that is Ck but not Ck+1.

10.3. Matrix Representation of the Derivative

When we defined partial derivatives of a real function f : U ⊆ Rn → R, we assumed
that points (vectors) in the domain were expressed relative to the standard basis of
Rn given by {e1, . . . , en}. On the other hand, the definition of the derivative made
no reference to any basis of the space of vectors.

Theorem 10.3.1. If U is open in Rn, a ∈ U , and F : U → Rm is differentiable
at a, then the linear transformation DF(a) is represented in the standard bases of
Rn and Rm by the Jacobian matrix

A = JF(a) =

⎡
⎢⎣ D1f1(a) · · · Dnf1(a)

...
...

...
D1fm(a) · · · Dnfm(a)

⎤
⎥⎦ =

⎡
⎢⎣

∂f1
∂x1

(a) · · · ∂f1
∂xn

(a)
...

...
...

∂fm
∂x1

(a) · · · ∂fm
∂xn

(a)

⎤
⎥⎦

where F = (f1, . . . , fm) is the component expression of F.

Proof. We must show that if F = (f1, f2, . . . , fm) is differentiable at a, then all
the partial derivatives of each component function fj exist at a and that the matrix
representation of the linear mapping DF(a) with respect to the standard bases in
Rn and Rm is the Jacobian matrix of F at a. To see this, let A = [aij ] be the matrix
of DF(a) with respect to the standard bases, {e1, . . . , en} for Rn and {e1, . . . , em}
for Rm. We must show that

aij =
∂fi
∂xj

(a) = lim
h→0

fi(a+ hej)− fi(a)

h

for 1 ≤ j ≤ n and 1 ≤ i ≤ m. To be specific, we shall work with Euclidean norms
in domain and range.

For any vector z = (z1, . . . , zm), we have |zi| ≤ |z|2 for i = 1, . . . ,m. Thus for
i = 1, . . . ,m and j = 1, . . . , n we have

0 ≤
∣∣∣fi(a+ hej)− fi(a)

h
− aij

∣∣∣
≤

∣∣∣F(a+ hej)− F(a)

h
−Aej

∣∣∣
2

=
|F(a+ hej)− F(a)−A(hej)|2

|hej |2
,

where the last step used the linearity of A and the fact that |ej | = 1. Since DF(a)
exists, the limit of this last quantity as h → 0 exists and equals zero. Consequently,

lim
h→0

fi(a+ hej)− fi(a)

h
= aij
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for 1 ≤ j ≤ n and 1 ≤ i ≤ m, as desired. This proves that each derivative ∂fi
∂xj

(a)

exists, so the Jacobian matrix A = JF(a) is defined. Our argument also implies
that

lim
|h|2→0

|F(a+ h)− F(a)−Ah|2
|h|2

= 0,

so A = JF(a) is the matrix representation of DF(a) with respect to the standard
bases in Rn and Rm. �

Unless specifically indicated otherwise, we will assume henceforward that our
vectors, in both domain and range space, are expressed in terms of the standard
bases. There may be a tendency to identify DF(x) with the Jacobian matrix of F
at x, but we continue to write DF(x) for the derivative (the linear transformation)
and JF(x) for the matrix representation of DF(x) in the standard bases. The
Jacobian matrix

JF(x) =

⎡
⎢⎢⎢⎢⎢⎣

∂f1/∂x1(x) ∂f1/∂x2(x) · · · ∂f1/∂xn(x)

∂f2/∂x1(x) ∂f2/∂x2(x) · · · ∂f2/∂xn(x)

...
...

...

∂fm/∂x1(x) ∂fm/∂x2(x) · · · ∂fm/∂xn(x)

⎤
⎥⎥⎥⎥⎥⎦

may also be viewed as

JF(x) =

⎡
⎢⎢⎢⎣

∇T f1(x)
∇T f2(x)

...
∇T fm(x)

⎤
⎥⎥⎥⎦

using the row gradients of the component functions, indicated by ∇T fi(x).

If f is a real valued function of n real variables, then the derivative is usually
written with a lowercase d, and thus

df(x)h = ∇T f(x)h = ∇f(x) · h

for all h ∈ Rn, since the standard matrix representation of the derivative df(x) is
the row gradient ∇T f(x).

Exercise.

Exercise 10.3.1. Define F : R2 → R2 by its component functions

f1(x1, x2) = x2
1x2,

f2(x1, x2) = x1 − 3x2.

1. Show that DF(0) is the linear mapping

DF(0)(h1, h2) = (0, h1 − 3h2).

2. Find DF(1, 2)(2, 1).
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10.4. Existence of the Derivative

We begin with a result that should not be too surprising.

Theorem 10.4.1. Let F : U ⊆ Rn → Rm with F = (f1, . . . , fm), and let a be
an interior point of U . Then DF(a) exists if and only if dfj(a) exists for each
component function fj , j = 1, . . . ,m.

Proof. Suppose DF(a) exists. Then for every ε > 0, there is a δ = δ(ε) > 0 such
that if |x− a| < δ, then

|F(x)− F(a)−DF(a)(x− a)|2 < ε|x− a|2.
If F(x) = (f1(x), f2(x), . . . , fm(x)), then we want to show that for each j, dfj(a)
exists and equals the j-th component function of DF(a). Since DF(a) is a linear
mapping each of its components lj is a linear mapping of Rn into R. Thus, the
j-th component of F(x)− F(a)−DF(a)(x− a) can be written as

fj(x)− fj(a)− lj(x− a).

Since we have |xj | ≤ |x|2 for any x = (x1, . . . , xn) in Rn, we obtain

|fj(x)− fj(a)− lj(x− a)| < ε|x− a|2
if |x−a|2 < δ. Since this is true for every ε > 0, we conclude that dfj(a) exists and
must be the linear mapping lj , the j-th component function of DF(a).

Suppose dfj(a) exists for each component function fj , j = 1, . . . ,m, of F. Given
ε > 0, there are numbers δj = δj(ε) > 0, j = 1, . . . ,m, such that if |x − a|2 < δj ,
then

|fj(x)− fj(a)− dfj(a)(x− a)| < ε√
m
|x− a|2.

The function defined by

L(h) = (df1(a), df2(a), . . . , dfm(a))

is linear since each of its components is linear. Let δ := min{δ1, δ2, . . . , δm}. If
|x− a|2 < δ, then each of our component estimates above holds, and we conclude
that

|F(x)− F(a)− L(x− a)|2 <
[
m
( ε2
m
|x− a|22

)]1/2
= ε|x− a|2.

Since ε > 0 was arbitrary, we conclude that DF(a) exists and equals L. �

Theorem 10.4.1 allows us to reduce the argument for vector valued functions
in the next result to the basic case of the real valued component functions.

Theorem 10.4.2. Let F : U ⊆ Rn → Rm and let a be an interior point of U . If
the partial derivatives of each component function of F exist on a ball Br(a) for
some r > 0, and the partial derivatives are continuous at a, then DF(a) exists.

Proof. By Theorem 10.4.1, it suffices to prove this result for the case of a single real
component function, denoted f : U ⊆ Rn → R. Thus we assume that all partial
derivatives of f exist on a ball Br(a) for some r > 0, and all partial derivatives
are continuous at a. We wish to show that df(a) exists. Let h = (h1, . . . , hn) be
such that a+h ∈ Br(a). We may write the increment f(a+ h)− f(a) as a sum of
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increments, each of which is taken parallel to a single coordinate axis, as follows.
Write hj = (h1, . . . , hj , 0, . . . , 0) for j = 1, . . . , n, and h0 = 0. Then we have

f(a+ h)− f(a) =

n∑
j=1

[f(a+ hj)− f(a+ hj−1)].

Now consider the j-th summand as the increment of the function

gj(x) = f(a1 + h1, . . . , aj−1 + hj−1, x, aj+1, . . . , an)

of x in (aj , aj + hj). Apply the mean value theorem to each of these summands to
obtain real numbers bj ∈ (aj , aj + hj), such that

f(a+ hj)− f(a+ hj−1) = Djf(a1 + h1, . . . , aj−1 + hj−1, bj , aj+1, . . . , an)hj ,

where Dj = ∂/∂xj , for j = 1, . . . , n. Hence, f(a+ hj)− f(a+ hj−1) = Djf(bj)hj

where the points bj → a as h → 0, and

f(a+ h)− f(a) =
n∑

j=1

Djf(bj)hj.

Theorem 10.3.1 asserts that if the derivative df(a) exists, then its matrix represen-
tation must be ∇f(a). Observe that L : Rn → R defined by

Lh =

n∑
j=1

Djf(a)hj

determines a linear mapping with Lh = ∇f(a) · h, and we estimate

|f(a+ h)− f(a)− Lh|
|h|2

=
|f(a+ h)− f(a)−

∑n
j=1 Djf(a)hj |

|h|2

=
|
∑n

j=1[Djf(bj)−Djf(a)]hj |
|h|2

≤
n∑

j=1

|Djf(bj)−Djf(a)|
|hj |
|h|2

≤
n∑

j=1

|Djf(bj)−Djf(a)|,

by the triangle inequality for real numbers and the fact that |hj | ≤ |h|2. As h → 0,
bj → a, and the continuity of Djf at a for each j implies that df(a) exists and
df(a) = L. �

Theorem 10.4.2 often allows an easy determination of the existence of DF(a)
for a ∈ U , as in many cases the continuity of the partial derivatives is clear from a
recognition that they belong to known classes of continuous functions. In view of
Definition 10.1.5 (Section 10.1), Theorem 10.4.2 states that if F is C1 at a, then
DF(a) exists. In practice, we are more likely to want this C1 property to hold
over some open set contained in the domain of the mapping, and consequently we
often assume that F : U ⊆ Rn → Rm is C1 on U (Definition 10.1.6 in Section
10.1). Under this stronger hypothesis, we easily deduce from Theorem 10.4.2 that
if the Jacobian matrix JF(x) is defined for all x in U and all entries of the Jacobian
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matrix are continuous functions on U , then the linear mapping DF(x) exists for
all x in U and is represented with respect to the standard bases in Rn and Rm by
JF(a).

Example 10.4.3. Here is an example to which Theorem 10.4.2 does not apply,
since one of the partial derivatives is not continuous at the point in question. Con-
sider the function F = (f1, f2), from R2 to R2, where

f1(x1, x2) =

{
x1 + x2

1 sin(1/x1) if x1 
= 0,

0 if x1 = 0,

and f2(x1, x2) = x2. Clearly, f2 has partial derivatives continuous at every point.
And (f1)x2

(x1, x2) = 0 for all (x1, x2). By the usual differentiation rules, for x1 
= 0,

(f1)x1
(x1, x2) = 1 + 2x1 sin(1/x1)− cos(1/x1).

If x1 = 0, then

(f1)x1
(0, x2) = lim

h→0

f(h, x2)− 0

h
= lim

h→0

h+ h2 sin(1/h)

h
= 1.

Thus the partial derivatives of f1 exist at every point. Observe that (f1)x1
is not

continuous at any point where x1 = 0, due to the cos(1/x1) term. But Definition
10.2.1 applies and shows that (df1)(0, x2) exists for any x2 (Exercise 10.4.1). �

Example 10.4.4. The function

f(x) =

{
(x2

1 + x2
2) sin(1/(x

2
1 + x2

2)) if x 
= 0,

0 if x = 0

clearly has partial derivatives continuous at every point (x1, x2) 
= (0, 0) in R2,
given by the usual differentiation rules. And both partial derivatives exist at the
origin. Observe that

D1f(0, 0) = lim
h→0

f(h, 0)− f(0, 0)

h
= lim

h→0

h2 sin(1/h2)

h
= 0

and that a similar calculation gives D2f(0, 0) = 0. The partial derivatives fail
to be continuous only at the origin (Exercise 10.4.2). Nevertheless, Df(0) exists,
because the tangency estimate of Definition 10.2.1 holds for the linear mapping
h �→ ∇f(0)h = [fx1

(0) fx2
(0)]h = [0 0]h = 0. �

Perhaps the most important differentiation rule is the chain rule for the deriv-
ative of a composition of functions, and the following section is devoted to it. We
end this section with a few differentiation rules we state without proof.

Theorem 10.4.5. Let a be an interior point of D ⊆ Rn. If F,G : D → Rm and
DF(a) and DG(a) exist, then D(F±G)(a) and D(F ·G)(a) exist, and

1. D(F±G)(a) = DF(a)±DG(a);

2. D(F ·G)(a)h = F(a) ·DG(a)h+G(a) ·DF(a)h, for all h in Rn;

3. D(λF)(a)h = λ(a)DF(a)h+ [dλ(a)h]F(a), for all h in Rn and real λ.
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Exercises.

Exercise 10.4.1. In Example 10.4.3, use Definition 10.2.1 of derivative to show
that (df1)(0, x2) exists for any x2. Thus, conclude that DF(0, 0) exists.

Exercise 10.4.2. Refer to Example 10.4.4.

1. Show that the partial derivatives D1f and D2f fail to be continuous at the
origin. Hint : Consider the sequence xk = (1/k, 0) for D1f and the sequence
yk = (0, 1/k) for D2f , or use the symmetry of f in x1, x2.

2. Verify that Df(0) equals the zero mapping, since the tangency estimate of
Definition 10.2.1 holds for the linear mapping h �→ ∇f(0)h = 0.

Exercise 10.4.3. Prove Theorem 10.4.5.

10.5. The Chain Rule

We shall use the notation D(H) for the domain of a mapping H. We shall also call
on the following facts involving direct and inverse images of any mapping H: If S
is a set, then

S ∩ D(H) ⊆ H−1(H(S)),

and if B1 ⊆ B2, then

H−1(B1) ⊆ H−1(B2).

Lemma 10.5.1. Let G : D(G) → Rm and let a be an interior point of D(G). If
G is continuous at a and if G(a) = b is an interior point of A ⊆ Rm, then a is
also an interior point of G−1(A).

Proof. Since b = G(a) is an interior point of A, there is an ε > 0 such that
Bε(G(a)) ⊂ A. Since G is continuous at a and a is an interior point of D(G), there
is a δ > 0 such that G(Bδ(a)) ⊂ Bε(G(a)) and Bδ(a) ⊂ D(G). Thus we have, for
the set S = Bδ(a),

Bδ(a) = Bδ(a) ∩ D(G)

⊆ G−1(G(Bδ(a)))

⊆ G−1(Bε(G(a)))

⊆ G−1(A).

This proves that a is an interior point of G−1(A). �

A proof of the chain rule in the multivariable case can be based on an appropri-
ate extension of the argument for the single variable case in the proof of Theorem
5.1.9, using the little-oh (o(|h|)) concept. Here we shall give a different proof to
provide practice of a different kind.

Theorem 10.5.2. Let G : U ⊂ Rn → Rm and F : V ⊂ Rm → Rp. Let a be
an interior point of U and let b = G(a) be an interior point of V . If DG(a) and
DF(b) exist, then the composition F ◦G is differentiable at a, and

D(F ◦G)(a) = DF(b) ◦DG(a).
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Proof. First, by Lemma 10.5.1 with A = D(F), it follows that a is an interior
point of G−1(D(F)) = D(F ◦ G), so it makes sense to consider the existence of
D(F ◦G)(a).

By reference to the definition of derivative, we must show that, for every ε > 0
there is a δ > 0 such that Bδ(a) ⊂ D(F ◦G) and

(10.4) |(F ◦G)(x)− (F ◦G)(a)−DF(G(a)) ◦DG(a)(x− a)| ≤ ε|x− a|

for all x ∈ Bδ(a). This will be sufficient to prove the theorem, since the composition
of linear mappings is indeed a linear mapping.

Write y = G(x) and b = G(a). Then, for the vector quantity within the norm
symbols on the left-hand side of (10.4), we may write

F(y)− F(b)−DF(b) ◦DG(a)(x− a),

and then adding and subtracting DF(b)(y − b) gives

F(y)− F(b)−DF(b)(y− b) +DF(b)(y− b)−DF(b) ◦DG(a)(x− a)

= F(y)− F(b)−DF(b)(y − b) +DF(b)[G(x)−G(a)−DG(a)(x− a)].

Since G is differentiable at a, there is a δ1 > 0 and a constant M > 0 such that
if x ∈ Bδ1(a), then

|G(x)−G(a)| ≤ M |x− a|.
(This follows from an argument in the proof of Theorem 10.2.5; see also Exercise
10.5.3.) And we may choose δ1 such that Bδ1(a) ⊂ D(F ◦G) since a is an interior
point of this domain.

Since F is differentiable at b, there is a δ2 > 0 such that

|F(y)− F(b)−DF(b)(y− b)| ≤ ε

2M
|y − b|

for all y ∈ Bδ2(b), and we may choose δ2 so that Bδ2(b) ⊂ D(F).

Now choose δ3 = min{δ1, δ2/M} and take x ∈ Bδ3(a). Then

|y − b| = |G(x)−G(a)| ≤ M |x− a| ≤ M
δ2
M

= δ2,

and we then obtain, for x ∈ Bδ3(a),

|F(y)− F(b)−DF(b)(y − b)| ≤ ε

2M
|y − b|

≤ ε

2M
M |x− a|

≤ ε

2
|x− a|.(10.5)

Since DF(b) is a linear mapping, there is a constant K > 0 such that

|DF(b)u| ≤ K|u|

for all u ∈ Rm. Since G is differentiable at a, there is a δ4 > 0 such that Bδ4(a) ⊂
D(F ◦G) and

|G(x)−G(a)−DG(a)(x− a)| ≤ ε

2K
|x− a|
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for all x ∈ Bδ4(a). Now, by the last two inequalities, if x ∈ Bδ4(a) then∣∣DF(b)[G(x)−G(a)−DG(a)(x− a)]
∣∣ ≤ K|G(x)−G(a)−DG(a)(x− a)|

≤ ε

2
|x− a|.(10.6)

Thus, by (10.5), (10.6) and the triangle inequality, we have that if δ = min{δ3, δ4}
and if x ∈ Bδ(a), then (10.4) holds, as we wished to show. �
Example 10.5.3. Let G : R2 → R3 be the mapping with component functions

g1(x1, x2) = x3
1 + x2,

g2(x1, x2) = 2x2,

g3(x1, x2) = x1 + 3x2,

and let F : R3 → R be given by

F(y1, y2, y3) = 3y1 + y32 + y3.

Then D(F◦G) = G−1(D(F)) = G−1(R3) = R2, and F◦G : R2 → R. Since all the
partial derivatives of F and G exist and are continuous everywhere, these functions
are differentiable everywhere. In the standard bases assumed by our descriptions
of these functions, the derivative DG(a), where a = (a1, a2), is represented by its
Jacobian matrix

JG(a) =

⎡
⎣ 3a21 1

0 2
1 3

⎤
⎦

and DF(b), where b = (b1, b2, b3), is represented by its Jacobian matrix

JF(b) =
[
3 3b22 1

]
.

Therefore, by Theorem 10.5.2, D(F ◦ G)(a) is represented with respect to the
standard bases in R2 and R by the matrix product

JF◦G(a) = JF(G(a))JG(a) =
[
3 3(2a2)

2 1
] ⎡⎣ 3a21 1

0 2
1 3

⎤
⎦

=
[
(9a21 + 1) (24a22 + 6)

]
.

Since the explicit composite function is given by

F ◦G(x) = 3(x3
1 + x2) + (2x2)

3 + (x1 + 3x2) = 3x3
1 + x1 + 6x2 + 8x3

2,

we can also directly verify the Jacobian matrix JF◦G(a) above for the composite
function. �

Suppose D(F) ⊆ Rn and F : D(F) → Rn. If F−1 exists in a neighborhood of
F(a) = b, and if DF−1(b) exists, then the identity F−1(F(x)) = x, valid in some
ball about a, implies via Theorem 10.5.2 that, in particular,

DF−1(b) ◦DF(a) = I,

and hence that

(10.7) DF−1(F(a)) = [DF(a)]−1.

The inverse function theorem, discussed later, explains precisely under what con-
ditions equation (10.7) can be extended to an identity that holds throughout some
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neighborhood of the point a. In this connection it may be useful to note that the
function f(x) = x3 is invertible on the real line, but f−1(y) = y1/3 is not dif-
ferentiable at y = 0; thus, although f ′(0) exists, it is not invertible (as a linear
mapping from R to R), so the mere existence of f ′(a) is not sufficient for (10.7)
because it does not guarantee the existence of the derivative of the inverse func-
tion. The inverse function theorem (Theorem 11.2.2) will show that the extension
of (10.7) to a neighborhood of a is guaranteed if F is continuously differentiable in
a neighborhood of a and if DF(a) is invertible; in fact, these conditions guarantee
that F is locally invertible in a neighborhood of a, and that DF−1(y) exists and is
continuous for y in some neighborhood of b = F(a).

Exercises.

Exercise 10.5.1. Write a clear and concise description of why the multivariable
chain rule statement in Theorem 10.5.2 is really an extension of the single variable
chain rule statement in Theorem 5.1.9.

Exercise 10.5.2. Define F : R3 → R3 by

F(y) = (y1 − y3, y2 + 4y3, y1 − 2y2 + 3y3),

and G : R3 → R3 by

G(y) =
(
cosh(y1)− sinh(y3), y2 + 4y3, log

(
1 + 2y22 + 3y23

))
.

Find D(F ◦G)(0) and its matrix representation.

Exercise 10.5.3. Show that if DG(a) exists, then there is a δ1 > 0 and a constant
M > 0 such that |G(x)−G(a)| ≤ M |x−a| for all x ∈ Bδ1(a). Hint : See the proof
of Theorem 10.2.5.

10.6. The Mean Value Theorem: Real Functions

The single variable mean value theorem (Theorem 5.2.4) does not have a direct
generalization to mappings r : [a, b] → Rm where I is an interval and m ≥ 2. A
direct generalization would assert that if r is continuous on [a, b] and differentiable
on (a, b), then there exists a t0 ∈ (a, b) such that

r(b)− r(a) = Dr(t0)(b− a) = (b− a)r′(t0).

Consider the following counterexample to that assertion.

Example 10.6.1. Let r : [0, π] → R2 be the curve given by r(t) = (cos t, sin t) for
0 ≤ t ≤ π. If we have

r(π)− r(0) = (−1, 0)− (1, 0) = Dr(t0)(π − 0) = (−π sin t0, π cos t0)

for some t0 ∈ (0, π), then sin t0 = 2/π and cos t0 = 0. The second condition holds
only for t0 = π/2 ∈ (0, π), but then sin π/2 = 1 
= 2/π. (See Exercise 10.6.1). �

There is, however, a direct generalization of the single variable mean value
theorem to the case of differentiable functions f : U ⊂ Rn → R. The extension
is really a deduction from the single variable result (Theorem 5.2.4) and it has
many important consequences for the analysis of functions of several variables. In
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presenting this generalization, we will need to describe the line segment l joining
two points a and b in Rn; for this purpose, we may write

l = lab = {(1− t)a+ tb : 0 ≤ t ≤ 1} = {a+ t(b− a) : 0 ≤ t ≤ 1}.

The next result is the mean value theorem for real functions of several real variables.

Theorem 10.6.2 (Mean Value Theorem for Real Functions). Let f : U ⊆ Rn → R
and suppose that a and b are interior points of U . If the line segment lab is
contained in the interior of U and f is continuous on lab and differentiable at all
points of lab (except possibly at its endpoints a and b), then there is a point c ∈ lab
such that

(10.8) f(b)− f(a) = ∇f(c) · (b− a).

Proof. The curve r : [0, 1] → Rn given by r(t) = a+t(b−a) is continuous on [0, 1]
and differentiable on (0, 1), and r′(t) = b − a. Define the function φ : [0, 1] → Rn

by φ(t) = f(r(t)) = f(a+t(b−a)). Then φ is continuous on [0, 1] and differentiable
on (0, 1), and φ(0) = f(a), φ(1) = f(b). Since f is differentiable at all points of
lab, the chain rule (Theorem 10.5.2) applies, and we have

φ′(t) = ∇f(a+ t(b− a)) · (b− a).

By the single variable mean value theorem (Theorem 5.2.4), there is a t0 ∈ (0, 1)
such that φ(1) − φ(0) = φ′(t0)(1 − 0) = φ′(t0), hence (10.8) holds with c = a +
t0(b− a). �

The real importance of the mean value Theorem 5.2.4 and its generalizations,
the feature that makes these results most useful, is that they provide approximations
to a difference in function values for nearby points.

There is an easy estimate for the absolute value of the difference in function
values in (10.8). Using the Euclidean vector norm for both ∇f(c) and b − a, the
Cauchy-Schwarz inequality implies that

|f(b)− f(a)| = |∇f(c) · (b− a)| ≤ |∇f(c)|2 |b− a|2.

The remaining corollaries in this section extend this approximation theme using
derivative information.

A set U ⊆ Rn is convex if for any pair of points a,b ∈ U the line segment lab
joining a and b is contained in U . Clearly, Rn itself is convex, as is any open ball
Br(x) (defined with respect to any norm on Rn).

Corollary 10.6.3. Let f : U ⊆ Rn → R be a C1 mapping on an open set U
containing the points a and a+ h and the entire line segment joining them. Then

(10.9) |f(a+ h)− f(a)| ≤
(

max
0≤t≤1

|∇f(a+ th)|2
)
|h|2.

If U is open and convex and |∇f(x)|2 ≤ M for each x ∈ U , then

(10.10) |f(x)− f(y)| ≤ M |x− y|2
for all x,y ∈ U .
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Proof. The segment joining a and a + h is l = {a + th : 0 ≤ t ≤ 1}. Since the
interval [0, 1] is compact and the function t �→ |∇f(a+ th)|2 is continuous on [0, 1],
the maximum on the right-hand side of (10.9) exists. The inequality (10.9) follows
directly from an application of Theorem 10.6.2 to f on the line segment l, and an
application of the Cauchy-Schwarz inequality.

If U is open and convex and |∇f(x)|2 is bounded by M on U , then for any two
points x, y in U , we can let a = x, h = y− x and use M in place of the maximum
in (10.9), and (10.10) follows. �

In the corollary, we assume U is open so that we can talk about the differen-
tiability of f on U . On any closed and bounded subset of U , we will certainly have
a bound on |∇f(x)|2, so the second statement of the corollary always applies on
compact subsets of U .

This is a convenient place to introduce the idea of directional derivatives.

Definition 10.6.4 (Directional Derivative). Suppose f : Br(x) → R where r > 0
and x is in Rn, and let u ∈ Rn be a unit vector in the Euclidean norm, so that
|u|2 = 1. When the limit exists, the number Duf(x) defined by

Duf(x) = lim
h→0

f(x+ hu)− f(x)

h

is called the directional derivative of f at x in the direction u.

When |u|2 = 1, it is reasonable to interpret the directional derivative Duf(x)
as a rate of change of f at x in the direction u, because then the difference quotient
compares the change in function values at points that differ by an increment hu
having norm equal to |h|. Directional derivatives generalize the idea of partial
derivatives, and, as we will see shortly, they allow us to compute the rate of change
of f at x in any direction in space. In particular, we have

Dej
f(x) = lim

h→0

f(x+ hej)− f(x)

h
=

∂f

∂xj
(x).

On the other hand, the mere existence of partial derivatives does not imply existence
of other directional derivatives, as the next example shows.

Example 10.6.5. Let f : R2 → R be defined by

f(x, y) =

{
1 if xy = 0,
0 if x 
= 0 and y 
= 0.

Then the partial derivatives, fx(0, 0) and fy(0, 0), exist and equal zero. However,
if |u|2 = 1 and u 
= ej for j = 1, 2, then Duf(0, 0) does not exist. (See Exercise
10.6.4.) We note that f is not continuous at (0, 0), and hence f is not differentiable
at (0, 0). �

The next result shows that if f is differentiable at a, then all directional deriva-
tives of f at a exist.

Theorem 10.6.6. If f is differentiable at a, then all directional derivatives of f
at a exist, and

Duf(a) =

n∑
j=1

∂f

∂xj
(a)uj = ∇f(a) · u.
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Proof. Since f is differentiable at a,

|f(a+ h)− f(a)−∇f(a) · h|
|h|2

→ 0 as |h|2 → 0.

It follows that for a vector u with |u|2 = 1, and real h,

|f(a+ hu)− f(a)−∇f(a) · (hu)|
|hu|2

→ 0 as |h| → 0.

This says that

1

h
[f(a+ hu)− f(a)− h∇f(a) · u] → 0 as h → 0,

which is equivalent to the statement

lim
h→0

f(a+ hu)− f(a)

h
= ∇f(a) · u,

as we desired. �

By this result, for a differentiable real valued function f : Rn → R, we can
view df(x) : Rn → R as a linear mapping (or linear functional) that determines
directional derivatives of f at x, in the direction of any unit vector u, according to
the chain rule:

(10.11)
d

dt
f(x+ tu)|t=0 = df(x)u = ∇f(x) · u = Duf(x).

We now return to the idea of Duf(x) as a rate of change of f when |u|2 = 1.
By the Cauchy-Schwarz inequality,

|Duf(x)| = |∇f(x) · u| ≤ |∇f(x)|2 |u|2 = |∇f(x)|2,
which is equivalent to the inequality

−|∇f(x)|2 ≤ Duf(x) ≤ |∇f(x)|2.
Moreover, the maximum value of Duf(x) is |∇f(x)|2, and this maximum value is

achieved when u = ∇f(x)
|∇f(x)|2 . The minimum value of Duf(x) is −|∇f(x)|2, and this

minimum value is achieved when u = − ∇f(x)
|∇f(x)|2 .

Exercises.

Exercise 10.6.1. Consider a particle in motion along the helical curve r(t) =
(cos t, sin t, t) for 0 ≤ t ≤ π. Show that r(π) − r(0) = (π − 0)r′(t0) is not possible
for any t0 ∈ (0, π). Explain this result geometrically, without computations.

Exercise 10.6.2. Define φ : R → R2 by φ(t) = (t− t2, t− t5) so that φ(0) = (0, 0)
and φ(1) = (0, 0). Show that there is no T such that 0 < T < 1 with φ(1)−φ(0) =
(1)φ′(T ).

Exercise 10.6.3. Let r > 0 and a ∈ Rn. Show that the open ball Br(a), for any
norm on Rn, is convex.

Exercise 10.6.4. In Example 10.6.5, verify that if |u|2 = 1 and u 
= ej for j = 1, 2,
then Duf(0, 0) does not exist.
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Exercise 10.6.5. Let U ⊆ Rn be an open convex set. Show that if g : U → R
is differentiable on U and dg(x) is zero for all x ∈ U , that is, for each x ∈ U ,
dg(x)h = 0 for all h ∈ Rn, then there exists a real constant c such that g(x) = c
for all x ∈ U .

10.7. The Two-Dimensional Implicit Function Theorem

The two-dimensional implicit function theorem deals with the solution of equations
of the form

f(x, y) = 0

for one of the variables in terms of the other variable, in a neighborhood of a known
solution point (x0, y0). Here f is a real valued function defined on an open subset
of the plane containing the point (x0, y0).

It is important to emphasize the local nature of the solution provided by the
implicit function theorem. Consider the simple equation

x2 + y2 − 1 = 0

defined by the function f(x, y) = x2 + y2 − 1. Evidently the full solution set is
the circle of radius one in R2. Suppose (a, b) satisfies a2 + b2 − 1 = 0. We ask
whether the solution set in a neighborhood of the point (a, b) can be written as
the graph of a function of x; that is, can we solve the equation for y in terms of
x in a neighborhood of the point (a, b)? If ∂f

∂y (a, b) = 2b 
= 0, we may do so, since
∂f
∂y (a, b) = 2b 
= 0 if and only if b 
= 0. If b > 0, then we may solve for y as

y =
√
1− x2 for x in an interval (a− δ, a+ δ) for some δ > 0. (See Figure 10.2.) If

b < 0, then we may solve for y = −
√
1− x2, for x in some interval about a.

The two-dimensional implicit function theorem is the simplest version of the
more general implicit function theorem presented later in Theorem 11.3.1. Theorem
11.3.1 is proved as an application of the general inverse function theorem (Theorem
11.2.2) for mappings of subsets of Rn into Rn.

The argument for the special case of the implicit function theorem considered
here is worth studying because it provides a nice workout using several previous re-
sults.3 Specifically, we shall use the following results: the single variable mean value
theorem; the fact that differentiability of f(x, y) implies f is continuous (Theorem
10.2.5); the intermediate value theorem; the mean value theorem for real functions
of two variables (Theorem 10.6.2); and the boundedness of continuous functions
on a compact set. This important result is also known as Dini’s implicit function
theorem.

Theorem 10.7.1 (Dini’s Implicit Function Theorem). Let D be an open subset of
R2 and suppose that f : D → R has continuous first order partial derivatives in D.
If (x0, y0) ∈ D with f(x0, y0) = 0 and ∂f

∂y (x0, y0) 
= 0, then there is an r > 0 and a

continuously differentiable g : (x0 − r, x0 + r) → R such that

f(x, g(x)) = 0 for all x ∈ (x0 − r, x0 + r),

3Up to this point in the text, we only have the one-dimensional inverse function theorem (Theorem
5.3.2), but not the two-dimensional version, so we cannot call on the proof of the general implicit function
Theorem 11.3.1 at this point.
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Figure 10.2. We can solve the equation x2 + y2 − 1 = 0 uniquely for y in
terms of x, except around (±1, 0).

and if |x− x0| < r and |y − y0| < r with f(x, y) = 0, then y = g(x). Moreover,

∂f

∂x
(x, g(x)) +

∂f

∂y
(x, g(x))g′(x) = 0 for all x ∈ (x0 − r, x0 + r).

Proof. Assume that ∂f
∂y (x0, y0) > 0. The argument in the case where ∂f

∂y (x0, y0) <

0 is similar. Write ∂f
∂y (x0, y0) =: c > 0. Since D is open and ∂f/∂y is continuous

at (x0, y0), there exists δ > 0 such that

R := {(x, y) : |x− x0| ≤ δ, |y − y0| ≤ δ} ⊂ D

and
∂f

∂y
(x, y) >

c

2
> 0 for all (x, y) ∈ R.

It follows from the mean value theorem that for each fixed x with |x − x0| < δ,
the mapping y �→ f(x, y) is increasing on the interval |y − y0| < δ. Then, since
f(x0, y0) = 0, we must have

f(x0, y0 − δ) < 0 < f(x0, y0 + δ).

Since f is differentiable on D, f is continuous on D by Theorem 10.2.5. By conti-
nuity of f , there is a number r such that 0 < r < δ such that

f(x, y0 − δ) < 0 < f(x, y0 + δ) for all x ∈ (x0 − r, x0 + r).

Let I := (x0 − r, x0 + r), and let x be a point of I. By the intermediate value
theorem, there is some point y between y0 − δ and y0 + δ such that f(x, y) = 0.
By the monotone increasing property of f in y, there is only one such point y for
a given x ∈ I. So given x ∈ I, let g(x) be this unique point y. Then g : I → R
and g has the properties that f(x, g(x)) = 0 for all x ∈ I and, if |x − x0| < r and
|y − y0| < r with f(x, y) = 0, then y = g(x).
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We proceed to show that g is differentiable at every x ∈ I. We show this first
for x0. Thus, let h be such that x0 + h ∈ I. Then, by definition of g,

f(x0 + h, g(x0 + h)) = 0 and f(x0, g(x0)) = 0.

By the mean value theorem for real functions of two variables (covered by Theorem
10.6.2), there is a point c(h) on the line segment joining (x0, g(x0)) and (x0 +
h, g(x0 + h)) such that

0 = ∇f(c(h)) · (h, g(x0 + h)− g(x0))

=
∂f

∂x
(c(h))h+

∂f

∂y
(c(h)) (g(x0 + h)− g(x0)),

and hence

g(x0 + h)− g(x0) = −
∂f
∂x (c(h))
∂f
∂y (c(h))

h.

Since R is compact, there is an M > 0 such that∣∣∣∂f
∂x

(x, y)
∣∣∣ ≤ M for all (x, y) ∈ R.

Since ∂f
∂y (x, y) >

c
2 for all (x, y) ∈ R, it follows that∣∣∣g(x0 + h)− g(x0)

∣∣∣ ≤ M

c/2
|h| if x0 + h ∈ I.

Hence, g(x0 + h) → g(x0) as h → 0, and g is continuous at x0. It follows from the
continuity of g at x0 that c(h) → (x0, y0) = (x0, g(x0)) as h → 0. For h 
= 0,

g(x0 + h)− g(x0)

h
= −

∂f
∂x (c(h))
∂f
∂y (c(h))

.

Letting h → 0, and using the continuity of ∂f/∂x and ∂f/∂y, we see that

lim
h→0

g(x0 + h)− g(x0)

h
= − lim

h→0

∂f
∂x (c(h))
∂f
∂y (c(h))

= −
∂f
∂x (x0, y0)
∂f
∂y (x0, y0)

.

Hence, g′(x0) exists and

g′(x0) = −
∂f
∂x (x0, y0)
∂f
∂y (x0, y0)

.

Finally, note that any other point x ∈ I = (x0 − r, x0 + r) satisfies the same
conditions as x0 in the argument above for the existence of the derivative of g and
its value. Thus, g′(x) exists for each x ∈ I, and

(10.12) g′(x) = −
∂f
∂x (x, y)
∂f
∂y (x, y)

, x ∈ I.

Thus, ∂f
∂x (x, g(x)) +

∂f
∂y (x, g(x))g

′(x) = 0 holds for all x ∈ I. The continuity of g′

on I follows from (10.12) and the continuity of ∂f/∂x and ∂f/∂y. �

In the proof of Theorem 10.7.1 we obtained a formula for g′(x) as part of the
argument for its existence, with the result that

∂f

∂x
(x, g(x)) +

∂f

∂y
(x, g(x))g′(x) = 0, x ∈ I.
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If we knew from the start that g′(x) exists for x ∈ I, then the chain rule applied to
the identity f(x, g(x)) = 0, x ∈ I, would yield the same formula.

The implicit function theorem is a useful, even essential, tool in the investiga-
tion of many perturbation problems. As simple examples, we include exercises for
some regular perturbation problems for simple algebraic equations. See Exercises
10.7.2, 10.7.3.

Exercises.

Exercise 10.7.1. Suppose f(x, y) is twice continuously differentiable in an open

neighborhood of (x0, y0), and f(x0, y0) = 0, ∂f
∂y (x0, y0) 
= 0. Show that the solu-

tion function g(x) of Theorem 10.7.1 is also twice continuously differentiable in a
neighborhood of x0, and give a formula for g′′(x).

Exercise 10.7.2. The equation φ(x, ε) = x2 + 2εx − 3 = 0, for small ε, is a
perturbation of the so-called reduced problem, φ(x, 0) = x2 − 3 = 0. The reduced

problem has two solutions, x = ±
√
3.

1. Forgetting the quadratic formula for a moment, investigate the solution of
φ(x, ε) = 0 for x as a function of ε near each of the solutions (

√
3, 0) and

(−
√
3, 0). Thus find two solution branches, x = g1(ε) and x = g2(ε), for ε

near 0.

2. For each solution branch, give the Taylor expansion of the solution function
about ε = 0 through second-order terms.

3. Remembering the quadratic formula now, compare your Taylor approxima-
tions with the exact solutions.

Exercise 10.7.3. The equation φ(x, ε) = x3 + x2 − (2 + ε)x + 2ε = 0, for small
nonzero ε, is a perturbation of the reduced problem, φ(x, 0) = x3 + x2 − 2x = 0,
which has the solutions, x1 = −2, x2 = 0, x3 = 1.

1. Show that for sufficiently small ε, it is possible to solve for a root gj(ε) of
φ(x, ε) = 0 near the root xj of the reduced problem, for j = 1, 2, 3.

2. Find a Taylor expansion for each of the root branches, gj(ε), j = 1, 2, 3,
through second-order terms in ε.

10.8. The Mean Value Theorem: Vector Functions

Our next goal is to extend the mean value theorem to the case of mappings defined
on subsets of Rn and taking values in Rm. It is convenient to use the max norm
on vectors in the domain and range spaces, and the induced matrix norm on m×n
matrices. These norms are given by

|x|∞ = max
1≤i≤n

|xi|, x = (x1, . . . , xn) ∈ Rn

(and similarly in Rm) and

‖L‖∞ = max
|x|∞=1

|Lx|∞, L ∈ Rm×n.

If L is an m× n matrix, then

(10.13) |Lx|∞ ≤ ‖L‖∞ |x|∞
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for every x ∈ Rn. Write Lx = (L1x, . . . , Lmx) where Li is the i-th row of L. Then
the i-th component of Lx is the i-th row of L times x, that is,

(Lx)i = Li x.

Since the matrix norm ‖ · ‖∞ is the maximum absolute row sum of a matrix, we
have that for each i = 1, . . . ,m,

(10.14) ‖Li‖∞ ≤ max
1≤k≤m

‖Lk‖∞ = ‖L‖∞.

We can now establish the mean value theorem for C1 mappings F : U ⊆ Rn → Rm.

Theorem 10.8.1 (Mean Value Theorem for Vector Functions). Let U be an open
set in Rn containing the line segment lab joining the points a and b, and let F :
U → Rm be C1 on U . Then

(10.15) |F(b)− F(a)|∞ ≤
(
max
x∈lab

‖DF(x)‖∞
)
|b− a|∞ .

Proof. Let h = b− a. Define a curve φ : [0, 1] → Rm by

φ(t) = F(a+ th), t ∈ [0, 1].

Then φ is C1. If F(x) = (f1(x), . . . , fm(x)), that is, the component functions of F
are denoted by fi, i = 1, . . . ,m, then the i-th component of φ is

φi(t) = fi(a+ th), t ∈ [0, 1].

Note that φi(0) = fi(a) and φi(1) = fi(b) for each i. By the chain rule, we have

φ′
i(t) = dfi(a+ th)h, t ∈ [0, 1].

For the given a and b, there is a positive integer j ∈ {1, . . . ,m} such that

|F(b)− F(a)|∞ = |fj(b)− fj(a)| = |φj(1)− φj(0)|.
So we can estimate the difference we are interested in by concentrating on the j-th
component. By the fundamental theorem of calculus,

(10.16) |F(b)− F(a)|∞ = |φj(1)− φj(0)| =
∣∣∣ ∫ 1

0

φ′
j(s) ds

∣∣∣.
Now, we estimate∣∣∣ ∫ 1

0

φ′
j(s) ds

∣∣∣ ≤
∫ 1

0

|φ′
j(s)| ds

=

∫ 1

0

|dfj(a+ sh)h| ds

≤ max
0≤s≤1

|dfj(a+ sh)h|

≤
(

max
0≤s≤1

‖dfj(a+ sh)‖∞
)
|h|∞,

where the last line follows from (10.13). Letting τ ∈ [0, 1] be the point at which
max0≤s≤1 ‖dfj(a+ sh)‖∞ occurs, we then have

(10.17)
∣∣∣ ∫ 1

0

φ′
j(s) ds

∣∣∣ ≤ ‖dfj(a+ τh)‖∞ |h|∞ ≤ ‖DF(a+ τh)‖∞ |h|∞
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by (10.14). Now (10.15) is an immediate consequence of (10.16) and (10.17), since
h = b− a and a+ τh ∈ lab. �

The mean value Theorem 10.8.1 has many important consequences for the local
behavior of mappings, as we will see in the remainder of this section. Theorem 10.8.1
estimates the difference in function values at two given points using an upper bound
on the norm of the derivative along the line segment joining the two points. The
next corollary shows how close a linear estimate of the function difference can be,
using any linear mapping L and estimating F(a+ h)− F(a) by Lh.

Corollary 10.8.2. Let U be an open set in Rn and let F : U → Rm be C1 on U .
If the line segment l joining the points a and a+h is contained in U , then for any
linear mapping L : Rn → Rm,

|F(a+ h)− F(a)− Lh |∞ ≤
(
max
x∈l

‖DF(x)− L‖∞
)
|h|∞.

Proof. Define G : U → Rm by G(x) = F(x) − Lx. Since L is linear, for each
x ∈ U , we have DG(x) = DF(x)− L, and again by linearity of L,

G(a+ h)−G(a) = F(a+ h)− F(a)− Lh.

We may apply Theorem 10.8.1 to get

|F(a+ h)− F(a)− Lh|∞ = |G(a+ h)−G(a)|∞
≤

(
max
x∈l

‖DG(x)‖∞
)
|h|∞

=
(
max
x∈l

‖DF(x)− L‖∞
)
|h|∞,

which proves the result. �

Corollary 10.8.2 provides an upper bound for the error in using a linear mapping
L to approximate the difference in function values at two points, the upper bound
depending on the norm of the difference between L and the derivatives of F along the
line segment joining the two points. This is not too surprising, given the estimate
of the mean value theorem, where the derivatives of F along the line segment gave
the upper bound for the difference in function values. If we use L = DF(a), then
we have the estimate

(10.18) |F(a+ h)− F(a)−DF(a)h|∞ ≤
(
max
x∈l

‖DF(x)−DF(a)‖∞
)
|h|∞

where l is the segment joining a and a+ h.

With respect to the max norm on Rn, the closed ball of radius r > 0, usually
denoted by B̄r(0), is actually a closed cube of side length 2r, which we shall also
denote by Cr. Thus,

Cr = {x ∈ Rn : ‖x‖∞ ≤ r}
= B̄r(0) for the max norm

= [−r, r]× · · · × [−r, r].

We call r the radius of the cube Cr and observe that this radius is half the common
side length 2r.



10.8. The Mean Value Theorem: Vector Functions 325

Figure 10.3. Under a C1 mapping F such that F(0) = 0 and DF(0) = I,
the shaded cube Cr centered at the origin is mapped to an image F(Cr) (with
bold boundary curve) which is contained in a slightly larger cube C(1+ε)r. See
Corollary 10.8.3.

Closed cubes play an important role in the development of results on the trans-
formation of multiple Riemann integrals. The special type of mapping F : U ⊆
Rn → Rn considered in the next result has important consequences in that con-
text, and also contributes to the development of the inverse function theorem. To
provide some intuition for this result, consider that a C1 mapping F defined on
an open neighborhood of a cube Cr will distort that cube in a smooth way. If
the mapping fixes the origin, and if the derivative of the mapping at the origin
is the identity, then the image of the cube, F(Cr), will be contained in another
cube of slightly larger radius. (See Figure 10.3.) The next corollary gives a precise
statement.

Corollary 10.8.3. Let U be an open set in Rn containing the cube

Cr = {x ∈ Rn : ‖x‖∞ ≤ r}
and let F : U → Rn be C1 on U with F(0) = 0 and DF(0) = I. If

‖DF(x)− I‖∞ < ε for all x ∈ Cr,

then F(Cr) ⊂ C(1+ε)r.

Proof. Observe that Cr, being a closed ball for the max norm, is a convex set.
We may apply the previous Corollary 10.8.2 by setting a = 0, h = x ∈ Cr, and
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L = DF(0) = I, and letting l be the line segment joining 0 and x. (See Figure
10.8.2.) Then, writing z for arbitrary points on l, we obtain

|F(x)− x |∞ ≤
(
max
z∈l

‖DF(z)− I‖∞
)
|x|∞

< ε |x|∞.

The reverse triangle inequality,∣∣∣ |F(x)|∞ − |x |∞
∣∣∣ ≤ |F(x)− x |∞,

implies that for all x ∈ Cr,

|F(x)|∞ < ε |x|∞ + |x|∞ = (1 + ε)|x|∞ ≤ (1 + ε)r,

hence F(Cr) ⊂ C(1+ε)r. �

Corollary 10.8.3 is restricted to mappings from U ⊆ Rn to Rn because of the
assumption that DF(0) = I. We note that this result states only that F(Cr) is
contained in a cube of slightly larger volume. It is a legitimate question whether
or not the image set F(Cr) itself has a well-defined volume measure. We address
this issue later in the book.

We now return to the more general case of mappings from subsets of Rn to
Rm. The next result is a good example of how a property of the derivative DF(a)
reflects a local property of F itself near a.

Corollary 10.8.4. Let U be an open set in Rn, let a ∈ U , and suppose that
F : U → Rm is C1 on some open neighborhood of a. If DF(a) : Rn → Rm is
one-to-one, then F is one-to-one on an open neighborhood of a.

Proof. Consider first what we know about the derivative DF(a). Since DF(a) :
Rn → Rm is one-to-one, necessarily n ≤ m. Let C1 = {x ∈ Rn : |x|∞ ≤ 1} be the
closed cube centered at the origin in Rn with radius 1. The boundary of C1 is

∂C1 = {x ∈ Rn : |x|∞ = 1},
which is a compact set. Since the linear mapping DF(a) is continuous on ∂C1,

(10.19) η = min
|h|∞=1

|DF(a)h|∞

exists, and η > 0 since DF(a) is one-to-one.

Let U1 be an open neighborhood of a on which F is C1. Let 0 < ε < η. Then
there is an r = r(ε) > 0 such that if

V = {x ∈ Rn : |x− a|∞ < r},
then V ⊆ U1 and

‖DF(x)−DF(a)‖∞ < ε

for all x ∈ V . (The set V is the interior of a closed cube centered at a, that is,
V = IntCr(a).) If x,y ∈ V and x 
= y, then by Corollary 10.8.2 with L = DF(a)
and l being the line segment joining x and y,

|F(x)− F(y)−DF(a)(x− y) |∞ ≤
(
max
z∈l

‖DF(z)−DF(a)‖∞
)
|x− y|∞

< ε |x− y|∞.(10.20)
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Now an application of the reverse triangle inequality and (10.19) gives

|F(x)− F(y)|∞ > |DF(a)(x− y)|∞ − ε |x− y|∞
≥ η |x− y|∞ − ε |x− y|∞
= (η − ε)|x− y|∞.

Since η − ε > 0, x 
= y implies F(x) 
= F(y). So F is one-to-one on V . �

From the proof of Corollary 10.8.4, we have that F|V : V → F(V ) is one-to-one
and onto, so the inverse mapping G : F(V ) → V exists. Moreover, G is continuous,
because for any y1,y2 ∈ F(V ), the final estimate of the proof gives

|G(y1)−G(y2)|∞ <
1

η − ε
|y1 − y2|∞,

so G satisfies a Lipschitz condition on F(V ). If n = m, then we can say more
about G; in particular, G is differentiable at b = F(a) and DG(b) = [DF(a)]−1.
To follow up on this suggestion, see Exercise 10.8.1, which can serve as a useful
introduction to some of the ideas of the inverse function theorem in Chapter 11.

We wrap up this section with a reminder that Corollary 10.8.4 is a local result.
If F : U → Rm is C1 on U and DF(x) is one-to-one for each x ∈ U , we cannot
conclude that F is one-to-one on U , only that F is locally one-to-one on some open
neighborhood of each point of U . Consider the following example.

Example 10.8.5. The mapping F : R2 → R2 defined by

F(x, y) = (x2 − y2, 2xy)

is locally one-to-one in a neighborhood of each point (x, y) 
= (0, 0), since

detJF(x, y) = det

[
2x −2y
2y 2x

]
= 4x2 + 4y2 
= 0

for (x, y) 
= (0, 0). But F is not globally one-to-one on the set R2 − {(0, 0)}. For
example, F(1, 0) = F(−1, 0) = (1, 0). See also Exercise 10.8.2. �

Exercises.

Exercise 10.8.1. Under the hypotheses of Corollary 10.8.4, suppose in addition
that n = m and hence that DF(a) is invertible. Let G be the inverse of F|V .
Let b = F (a) and write y = F(x) for x ∈ V . This exercise shows that G is
differentiable at b and DG(b) = [DF(a)]−1.

1. Write the difference quotient defining DG(b), inserting the candidate
[DF(a)]−1 for DG(b) and using increment h = y − b.

2. Factor out [DF(a)]−1 from the entire vector expression in the numerator of
the quotient in part 1.

3. Use the fact, proven in Corollary 10.8.4, that |F(x)−F(y)|∞ > (η−ε)|x−y|∞
for x and y in V . (This also proved that the inverse mapping G is continuous.)

4. Complete the argument to show that DG(b) = [DF(a)]−1.

Exercise 10.8.2. Show that the component functions of the mapping F in Example
10.8.5 are the real and imaginary parts of the complex mapping f : C → C,
f(z) = z2. Use polar coordinates to show that f (and hence F) maps each circle
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centered at the origin with positive radius r twice onto the circle centered at the
origin with radius r2.

Exercise 10.8.3. If other norms, | · |n on Rn and | · |m on Rm, are used, and we
employ the operator norm

‖L‖mn := max
|v|n=1

|Lv|m

for linear mappings L from Rn to Rm , then the result of the mean value theorem
(Theorem 10.8.1) can be stated as

|F(b)− F(a)|m ≤
(
max
x∈lab

‖DF(x)‖mn

)
|b− a|n.

Prove this by the following two steps:

1. Let φ : [0, 1] → Rm be a continuously differentiable curve with |φ′(t)|m ≤ M
for all t ∈ [0, 1], where | · |m is any norm on Rm. Show that

|φ(1)− φ(0)|m ≤ M.

Hint : If ε > 0, denote by Sε the set of points x ∈ [0, 1] such that

|φ(t)− φ(0)|m ≤ (M + ε) t+ ε

for all t ≤ x. Verify that Sε is nonempty. Let b = supSε, and verify that
b ∈ Sε. Show that if b < 1, then for sufficiently small |h|, say |h| ≤ δ, where
δ > 0, we have b+ h in [0, 1] and∣∣∣φ(b+ h)− φ(b)

h

∣∣∣ < M + ε.

Conclude that b + δ ∈ Sε, a contradiction. Hence, b = 1. Thus, for every
ε > 0,

|φ(1)− φ(0)|m ≤ (M + ε) + ε.

2. Let h = b−a. Apply part 1 to the curve φ(t) = F(a+th) to deduce the stated
result when F satisfies the hypotheses of the mean value Theorem 10.8.1.

10.9. Taylor’s Theorem

In this section we use the letter r to denote an order of continuous differentiability of
our functions. Thus, suppose f is of class Cr+1 on an open set U in Rn containing
the point a. Then there is some open ball about a on which f(a + th) is defined
for −1 ≤ t ≤ 1. The goal of Taylor’s theorem, as in the single variable case, is to
express the function values f(a+ h) for small |h| by an expression of the form

f(a+ h) = P (h) +Ra,r(h)

where P (h) is a degree r polynomial whose derivatives of order k ≤ r at a all agree
with the corresponding derivatives of f , and Ra,r(h) is the remainder term, or error,
in the approximation of f(a+h) by P (h).4 Instead of stating the formula for P (h)
outright, let us see how its expression arises along with the remainder term from
the known single variable result (Theorem 6.8.1).

4Of course, P (h) also depends on a and r, but Ra,r carries this information, P and Ra,r are most
likely to appear together, and Ra,r is the object that requires a reference most often, so we avoid a
more complicated notation for P .
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With a and h fixed, define

g(t) = f(a+ th)

for 0 ≤ t ≤ 1. Since g(1) = f(a + h) and g(0) = f(a), we are interested in the
Taylor expansion

g(1) = g(0) + g′(0) + · · ·+ 1

r!
g(r)(0) + (remainder)

=

r∑
k=0

1

k!
g(k)(0) + (remainder),

where the remainder is determined by (6.10) (with f there replaced by g, a replaced
by 0, and h replaced by 1). This expansion exists by Theorem 6.8.1 since g is of
class Cr+1 on an open interval containing [−1, 1], so we need only compute the
coefficients. We have g(0) = f(a). By the chain rule,

g′(t) = ∇f(a+ th) · h = h · ∇f(a+ th),

so g′(0) = ∇f(a) · h. To help with higher derivatives, note that we may write

g′(t) = h · ∇f(a+ th)

=
n∑

i=1

hi
∂f

∂xi
(a+ th)(10.21)

=
[( n∑

i=1

hi
∂

∂xi

)
f
]
(a+ th)

= [Lf ](a+ th),

where we have written

(10.22) L :=
n∑

i=1

hi
∂

∂xi

as an operator (a linear differential operator) applied to f .5 Since Lf is a new
function, one can evaluate it at a point z, indicated by [Lf ](z). By (10.21), observe

that we will apply the same differential operator L to each term ∂f
∂xi

(a+ th) when
we differentiate to obtain the second derivative of g. Thus,

g′′(t) =

n∑
i=1

hi

( n∑
j=1

hj
∂2f

∂xi∂xj
(a+ th)

)
(10.23)

=

n∑
i=1

hi

[
L ∂f

∂xi

]
(a+ th) (definition of L)

=
[
L
( n∑

i=1

hi
∂f

∂xi

)]
(a+ th) (linearity of L)

= [L(Lf)](a+ th)

= [L2f ](a+ th).

5Some texts use, and some readers may like, the symbolic notation h · ∇ for the operator L, since
[Lf ](z) is the dot product of the vectors h and ∇f(z). We opt for the simpler notation L, since it is
easy to remember the operator formula.



330 10. Differentiation in Rn

Since L is an operator on functions (that is, a function or mapping applied to
functions) the notation Lkf simply means the iterated application of L starting
from f , defined inductively by Lkf = L(Lk−1f). Thus Lkf will make sense as long
as Lk−1f has partial derivatives on the domain of interest for f .

Now back to our function g, which is of class Cr+1. Assuming that g(k)(t) =
[Lkf ](a+ th) for some positive integer k, we have g(k+1)(t) = [Lk+1f ](a+ th) if f
is Ck+1. So we have g(k)(0) = [Lkf ](a) for 0 ≤ k ≤ r if f is at least Cr. Thus,
Theorem 6.8.1 applied to the function g(t) = f(a+ th) yields Taylor’s theorem.

Theorem 10.9.1 (Taylor’s Theorem). Suppose f : U ⊆ Rn → R where U is an
open set containing a, and suppose that f is Cr+1 on U . Let L be the operator
defined in ( 10.22). Then for sufficiently small |h| we have the expansion

(10.24) f(a+ h) = P (h) +Ra,r(h)

where

P (h) =
r∑

k=0

1

k!
[Lkf ](a) =

r∑
k=0

1

k!

[( n∑
i=1

hi
∂

∂xi

)k
f
]
(a)

is the Taylor polynomial of degree r for f at a, and the remainder Ra,r(h)
is defined by Ra,r(h) = f(a+ h)− P (h).

A word on notation is in order. For a function of two variables, we can deal with
the notational issue by using a binomial expansion of the operator L = h1

∂
∂x1

+

h2
∂

∂x2
. This binomial expansion only requires that the operator of multiplication

by a constant hi and the operator ∂
∂xj

commute for any i, j, as they do: hi(
∂

∂xj
f) =

∂
∂xj

(hif) for all differentiable f . Thus, the binomial theorem gives

Lkf(a) =
[(

h1
∂

∂x1
+ h2

∂

∂x2

)k
f
]
(a)

=

k∑
j=0

k!

j!(k − j)!

∂kf

∂xj
1∂x

k−j
2

(a)hj
1 h

k−j
2 .(10.25)

See Exercises 10.9.1, 10.9.2 for calculations with specific functions of two variables.
For functions of three variables, (10.24) applies with an expansion of Lk where

L =
∑3

i=1 hi
∂

∂xi
.

If an expansion for f(a + h) is needed only through quadratic terms in the
components of h, as in the next section on relative extrema at nondegenerate critical
points of f , then from (10.23) and g(0), g′(0) determined earlier, we may write

f(a+ h) = f(a) +

n∑
i=1

∂f

∂xi
(a)hi

+
1

2!

n∑
i=1

n∑
j=1

∂2f

∂xi∂xj
(a)hi hj + Ra,2(h).
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As noted above, this is the remainder for the approximation of g(1) = f(a+ h) by
second-order terms, given by (6.10) (with f , a, and h there, replaced by g, 0, and
1, respectively). Thus, we have

Ra,2(h) =
1

2!

∫ 1

0

g(3)(t)(1− t)2 dt,
(
g(t) = f(a+ th)

)
.

By its definition, the derivative g(k)(t) is k-multilinear in the components of h =
(h1, h2, . . . , hn). In the case of Ra,2(h), g

(3)(t) is trilinear in the components of
h. As noted just prior to Corollary 6.8.2, if we know a bound for all the partial
derivatives of f through third order in a given neighborhood of a, then we have,
for all points a+ h in that neighborhood, an error estimate of the form

|Ra,2(h)| ≤ M
|h|3∞
3!

, where |h|∞ = max
1≤i≤n

|hi|.

Exercises.

Exercise 10.9.1. Compute the Taylor polynomial P (h) of degree 2 if a = (1, 1)
for the function f(x, y) = 1/(x2 + y2), using (10.24) and (10.25).

Exercise 10.9.2. Compute the Taylor polynomial P (h) of degree 3 if a = (−1, 1)
for the function f(x, y) = xy + 1

x − 1
y , using (10.24) and (10.25). We know that

the degree 3 Taylor polynomial gives a better approximation to f(x) for x near a
than does the degree 2 Taylor polynomial, but the next section shows that degree
2 suffices to determine the nature of the critical point at a = (−1, 1).

Exercise 10.9.3. What is the remainder R0,3 for the function f(x, y, z) = xy +
yz + x2z − xyz − yz2 + z3 ? And for g(x, y, z) = xy + x2z + z3 − y10 ?

10.10. Relative Extrema without Constraints

In this section we use a dot notation, v ·w, for the Euclidean inner product (v,w)
of vectors v and w in Rn, in the belief that this will serve to reduce some of the
notational burden.

We begin with the definitions of relative minimum, relative maximum, and
saddle points.

Definition 10.10.1. Let U be an open set in Rn and let f : U → R. Then f has
a relative minimum at a if f(x) ≥ f(a) for all x in some neighborhood of a, and
f has a relative maximum at a if f(x) ≤ f(a) for all x in some neighborhood
of a. If in every neighborhood of a there are points x and z with f(x) > f(a) and
f(z) < f(a), then f has a saddle point at a.

If f has either a relative minimum or a relative maximum at a, then we say
that f has a relative extremum at a. Note that by definition relative extrema
occur at interior points of the domain of a function.

Theorem 10.10.2. If f : U → R has a relative extremum at a ∈ U and if f is
differentiable at a, then

∂f

∂xj
(a) = 0 for j = 1, . . . , n.
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Proof. If f has a relative extremum at a, then the function gj(t) = f(a + tej),
defined for t near 0, must also have a relative extremum at t = 0. Since f is
differentiable at a, gj is differentiable at t = 0, by the chain rule. By the result for
the single variable case (Theorem 5.2.2), necessarily g′j(0) = 0, and the chain rule
gives

0 = g′j(0) = ∇f(a) · ej =
∂f

∂xj
(a).

Since this is true for each j = 1, . . . , n, the proof is complete. �

We say that a is a critical point for f if ∇f(a) = 0. Theorem 10.10.2 says
that if f has a relative extremum at a and f is differentiable at a, then a is a critical
point for f .

The single variable result in Theorem 5.8.1 (part 2) implies that a real function
f of a real variable has a relative minimum at a critical point t0 if f ′(t0) = 0 and
f ′′(t0) > 0, and f has a relative maximum at t0 if f ′(t0) = 0 and f ′′(t0) < 0. These
deductions are based on the single variable Taylor’s theorem. By the multivariable
Taylor’s Theorem 10.9.1, if f is C3 near a, then

f(a+ h) = f(a) +∇f(a) · h+
1

2!

n∑
i=1

n∑
j=1

∂2f

∂xi∂xj
(a)hi hj +Ra,2(h)

for small |h|. The Hessian matrix of f at a is

Hf (a) =

⎡
⎢⎢⎣

fx1x1
(a) fx1x2

(a) · · · fx1xn
(a)

fx2x1
(a) fx2x2

(a) · · · fx2xn
(a)

· · · · · ·
fxnx1

(a) fxnx2
(a) · · · fxnxn

(a)

⎤
⎥⎥⎦ .

The i-th row of Hf (a) is the row gradient of ∂f/∂xi. Recall that an n × n real
matrix A is symmetric if AT = A. The Hessian matrix Hf (a) is a real symmetric
matrix. The quadratic terms in the Taylor expansion may be written as

1

2

n∑
i=1

( n∑
j=1

fxixj
(a)hj

)
hi =

1

2
Hf (a)h · h.

If a is a critical point for f , then

f(a+ h) = f(a) +
1

2
Hf (a)h · h+Ra,2(h).

The local behavior of f near a can be described completely in terms of the properties
of the matrix Hf (a) when Hf (a) is nonsingular. To describe this result, we make
use of the spectral theorem for real symmetric matrices (Theorem 8.5.7) and further
facts from Section 8.5; thus, a reading or review of that material is beneficial here.

The main result of the section is a generalization of the single-variable second
derivative test for local extrema.

Theorem 10.10.3. Suppose that f is C3 on an open set U ⊆ Rn, a ∈ U ,
∇f(a) = 0 and Hf (a) is nonsingular. Then the following statements are true:

1. If Hf (a) is positive definite, then f has a relative minimum at a.

2. If Hf (a) is negative definite, then f has a relative maximum at a.

3. If Hf (a) is indefinite, then f has a saddle point at a.
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Proof. Let λ1, . . . , λn be the eigenvalues of Hf (a), which are all real. By the spec-
tral theorem for real symmetric matrices (Theorem 8.5.7), there is an orthonormal
basis {u1, . . . ,un} of Rn consisting of corresponding orthonormal eigenvectors for
the λi.

1. If Hf (a) is positive definite then all λi > 0 (Theorem 8.5.9). Let m =
min{λ1, . . . , λn}. If h =

∑n
i=1 ciui 
= 0 then

1

2
Hf (a)h · h =

1

2

n∑
i=1

λic
2
i ≥ 1

2
m

n∑
i=1

c2i =
1

2
mh · h.

Since f is C3 we know that for |h| sufficiently small,

|Ra,2(h)| <
1

4
mh · h,

and consequently for these h we have

f(a+ h)− f(a) =
1

2
Hf (a)h · h+Ra,2(h)

≥ 1

4
mh · h > 0.

Therefore f has a relative minimum at a.

2. The proof is similar to part 1 and is left to Exercise 10.10.1.

3. As noted earlier, as a consequence of Theorem 8.5.9, since Hf (a) is nonsin-
gular and indefinite, Hf (a) has a positive eigenvalue λj and a negative eigenvalue
λk. Let uj and uk be corresponding unit eigenvectors. Since ∇f(a) = 0, the Taylor
expansion of the function gj(t) = f(a+ tuj) about t0 = 0 is

gj(t) = gj(0) + g′j(0)t+
1

2
g′′j (0)t

2 +R0,2(t)

= f(a) +
1

2
t2Hf (a)uj · uj +R0,2(t)

= f(a) +
1

2
λjt

2 +R0,2(t).

(See Exercise 10.10.2.) Since λj > 0, it follows that f(a+tuj) > f(a) for sufficiently
small nonzero |t|. A similar argument using the negative eigenvalue λk and the
function gk(t) = f(a + tuk) shows that f(a + tuk) < f(a) for sufficiently small
nonzero |t|. We conclude that f has a saddle point at a. �

Theorem 10.10.3 provides a reasonably quick practical test of the nature of a
critical point for moderate size problems, as software can compute detHf (a) and
the eigenvalues. There are also necessary conditions for relative extrema in terms
of a semidefinite property of the Hessian of f at the critical point; see Exercise
10.10.3.

For functions of two real variables the following special case of Theorem 10.10.3
is often useful.

Corollary 10.10.4. Suppose that f is C3 on an open set U ⊂ R2, a ∈ U and
∇f(a) = 0. Write f(x, y) for (x, y) ∈ U , set

α = fxx(a), β = fxy(a), γ = fyy(a),
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and assume αγ − β2 
= 0. The following statements are true.

1. If αγ − β2 > 0 and α > 0, then f has a relative minimum at a.

2. If αγ − β2 > 0 and α < 0, then f has a relative maximum at a.

3. If αγ − β2 < 0, then f has a saddle point at a.

Proof. We have

Hf (a) =

[
α β
β γ

]
and detHf (a) = αγ − β2 
= 0, so this is indeed a special case of Theorem 10.10.3.
If λ1 and λ2 are the eigenvalues of Hf (a), then αγ − β2 = λ1λ2. We observe also
that entry α = Hf (a)e1 · e1.

1. If αγ − β2 > 0, the eigenvalues have the same sign. If we also have α > 0,
then, since α = Hf (a)e1 · e1 > 0, we cannot have two negative eigenvalues, so in
fact both eigenvalues are positive. Thus Hf (a) is positive definite, and the result
follows from Theorem 10.10.3 (part 1).

2. Again αγ−β2 > 0 implies that the eigenvalues have the same sign. If α < 0,
then, since α = Hf (a)e1 · e1 < 0, we cannot have two positive eigenvalues, so both
eigenvalues are negative. Thus Hf (a) is negative definite, and the result follows
from Theorem 10.10.3 (part 2).

3. Hf (a) is indefinite if and only if one eigenvalue is positive and the other
negative, if and only if αγ − β2 = λ1λ2 < 0. So statement 3 follows from Theorem
10.10.3 (part 3). �

The case where Hf (a) is singular, or detHf (a) = 0, is the case not covered
by either Theorem 10.10.3 or Corollary 10.10.4. In that case, no conclusion can be
made based on Hf (a) alone, and the remainder term Ra,2(h) becomes significant
in determining the local behavior of f near a.

Exercises.

Exercise 10.10.1. Prove: If Hf (a) is negative definite, then f has a relative
maximum at a.

Exercise 10.10.2. Show that if g(t) = f(a + tu) where u is a unit vector such
that Hf (a)u = λu, then g′′(0) = Hf (a)u · u = λ.

Exercise 10.10.3. A real n × n symmetric matrix A is defined to be positive
semidefinite if Ah · h ≥ 0 for all h ∈ Rn, and A is defined to be negative
semidefinite if Ah ·h ≤ 0 for all h ∈ Rn. Prove the following for a C3 function f :

1. If f has a relative minimum at a critical point a, then λi ≥ 0 for every
eigenvalue λi of Hf (a), and Hf (a) is positive semidefinite.

2. If f has a relative maximum at a critical point a, then λi ≤ 0 for every
eigenvalue λi of Hf (a), and Hf (a) is negative semidefinite.
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Exercise 10.10.4. Determine the type of the critical point at the origin for each
of these functions:

1. f(x, y) = x2 − 3xy + y2,

2. f(x, y) = x2 + xy + y2,

3. f(x, y, z) = x2 + y2 + z2 + xz + xyz,

4. f(x, y, z, w) = x2 + y2 + z2 + xz + yw + w2.

Exercise 10.10.5. Show that

f(x, y) = xy +
1

x
− 1

y

has a single critical point and f has a local maximum value there.

Exercise 10.10.6. Determine the type of each critical point of

f(x, y) = xy − xy2.

Exercise 10.10.7. In the proof of Corollary 10.10.4, we needed and established
the if part of each statement below:

1. Hf (a) is positive definite if and only if αγ − β2 > 0 and α > 0.

2. Hf (a) is negative definite if and only if αγ − β2 > 0 and α < 0.

Prove the only if part of each of these statements.

Exercise 10.10.8. Suppose f(x, y) is C2 and Hf (a) is written as in Corollary
10.10.4. Complete the square to express the quadratic form Hf (a)h · h with h =
(h1, h2) as a sum of squares, under appropriate assumptions. Show that this leads
to a different proof of parts 1 and 2 of Corollary 10.10.4.

10.11. Notes and References

The books by Sagan [54] and Edwards [10] were helpful in the preparation of
this chapter. In particular, the presentation of the mean value theorem for vector
functions and its consequences was influenced by Edwards [10].





Chapter 11

The Inverse and Implicit
Function Theorems

The inverse function theorem and the implicit function theorem are concerned with
the solution of systems of equations. These theorems are equally important, and,
in fact, each of these results can be derived from the other. We begin in Section 1
with a result showing that matrix inversion is a continuous mapping on the space
of invertible square matrices. We apply this result in Section 2, where we derive
the inverse function theorem from the contraction mapping theorem by an iterative
procedure closely related to Newton’s method for finding a root of an equation. The
continuous differentiability of the local inverse function follows using the continuity
of matrix inversion. In Section 3 we derive the implicit function theorem from the
inverse function theorem. Section 4 covers the Lagrange multiplier theorem and
Section 5 presents the Morse lemma as applications of implicit function and inverse
function arguments.

11.1. Matrix Geometric Series and Inversion

The numerical geometric series
∑∞

k=0 x
k converges absolutely if |x| < 1. The proof

of this fact, given earlier, extends to the case of a matrix geometric series and
provides a useful result on matrix series and matrix invertibility. The matrix norm
in the following theorem can be any matrix norm.

Theorem 11.1.1. If T is an n × n matrix with ‖T‖ < 1, then the matrix series∑∞
k=0 T

k converges absolutely, I − T is invertible, and

(11.1) (I − T )−1 =

∞∑
k=0

T k.

337



338 11. The Inverse and Implicit Function Theorems

Consequently, if ‖I − T‖ < 1, then T is invertible and

T−1 =
∞∑
k=0

(I − T )k.

Proof. Suppose ‖T‖ < 1. For each k, ‖T k‖ ≤ ‖T‖k, so the real series
∑∞

k=0 ‖T k‖
is dominated termwise by the real geometric series

∑∞
k=0 ‖T‖k. The latter series

converges since ‖T‖ < 1, so
∑∞

k=0 ‖T k‖ converges by the direct comparison test

for series with positive terms. Therefore the matrix series
∑∞

k=0 T
k converges ab-

solutely, and hence
∑∞

k=0 T
k is a well-defined n × n matrix. Let Sn =

∑n
k=0 T

k;

then S := limn→∞ Sn =
∑∞

k=0 T
k exists. For each n,

(I − T )Sn = I − Tn+1,

since the product on the left produces a telescoping sum that yields the right-hand
side. We have

lim
n→∞

(I − T )Sn = (I − T ) lim
n→∞

Sn = (I − T )S = lim
n→∞

(I − Tn+1) = I,

where limn→∞ Tn+1 = 0n×n since ‖T‖ < 1. Since I−T and S are n×n, and I−T
has right inverse S, we conclude that I − T is invertible and S = (I − T )−1. This
completes the proof of the first statement of the theorem.

For the second statement of the theorem, if ‖I − T‖ < 1, we have that T =
I − (I − T ) is invertible, and T−1 =

∑∞
k=0(I − T )k. �

Theorem 11.1.1 has applications to the invertibility of linear transformations.
A linear transformation L : Rn → Rn is represented by a matrix A = [aij ] with
respect to a given basis of Rn, and L is invertible if and only if A is invertible. Let
Inv(Rn,Rn) be the set of invertible elements in L(Rn,Rn), the normed space of
linear transformations of Rn. Exercises 11.1.1 and 11.1.2 give two different views
of the fact that Inv(Rn,Rn) is an open set in L(Rn,Rn).

We consider some useful facts about matrix inversion. Recall that the cofactor
of the entry aij of an n × n matrix A is (−1)i+j times the determinant of the
(n − 1) × (n − 1) submatrix that remains after deleting row i and column j, 1 ≤
i, j ≤ n.

Theorem 11.1.2. A real n×n matrix A is invertible if and only if detA 
= 0, and
when A is invertible the unique inverse of A is given by

(11.2) A−1 =
1

detA
adjA,

where adjA is the classical adjoint of A, defined as the transpose of the matrix
of cofactors of A.

We note in passing that the result called Cramer’s rule for the solution of linear
algebraic equations Ax = y when A is invertible follows from (11.2). For a complete
discussion of Theorem 11.1.2 as well as Cramer’s rule, see Hoffman and Kunze [31]
(Section 5.4).
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Example 11.1.3. We illustrate the 2 × 2 case of Theorem 11.1.2. If A is 2 × 2,
given by

A =

[
a b
c d

]
,

then the classical adjoint of A is

adjA =

[
d −c
−b a

]T
=

[
d −b
−c a

]
.

It is easy to verify that (adjA)A = A(adjA) = (detA)I = (ad − bc)I. Thus, if
detA 
= 0, then

A−1 =
1

detA
adjA =

1

ad− bc

[
d −b
−c a

]
,

a formula familiar from a first course in linear algebra. �

For our purposes in this discussion, the important fact about the cofactors of
A, which give the entries of adjA, is that they are polynomials in the entries of A.
Consequently, each of the entries of A−1 is a continuous real valued function of the
entries of A on the set {A : detA 
= 0}.

Another result of interest concerning the operation of inversion is that the
entries of the inverse of an invertible matrix function are as smooth as the entries
of the original function. This result is used in the proof of the inverse function
theorem in the next section, and we now describe this result in more detail. We
first prove the continuity of inversion for linear transformations, and it follows for
matrix representations since ‖L‖ = ‖A‖ where A is the matrix representation of
the transformation L with respect to a given basis.

Theorem 11.1.4. The inversion mapping φ : Inv(Rn,Rn) → Inv(Rn,Rn) defined
by

φ(L) = L−1

is continuous.

Proof. Let L0 ∈ Inv(Rn,Rn), so L0 is invertible. By Exercise 11.1.1 the set
Inv(Rn,Rn) is open, so if L is sufficiently near L0 in norm, then L is also invertible.
We may write

(11.3) L−1 − L−1
0 = L−1(L0 − L)L−1

0 ,

and consequently we may estimate φ(L)− φ(L0) in norm by

(11.4) ‖L−1 − L−1
0 ‖ ≤ ‖L−1‖ ‖L0 − L‖ ‖L−1

0 ‖.
We want to let ‖L − L0‖ → 0 and conclude that ‖L−1 − L−1

0 ‖ → 0. But we need
to know that ‖L−1‖ remains bounded. A rearrangement of (11.3) gives

L−1[I − (L0 − L)L−1
0 ] = L−1

0 ,

and by Theorem 11.1.1, the quantity in brackets, QL := I − (L0 − L)L−1
0 , is

invertible for ‖L0 − L‖ < 1/[2‖L−1
0 ‖]. With that condition on L, (11.1) implies

that

‖Q−1
L ‖ = ‖[I − (L0 − L)L−1

0 ]−1‖ ≤
∞∑
k=0

‖(L0 − L)L−1
0 ‖k ≤

∞∑
k=0

‖L0 − L‖k‖L−1
0 ‖k.
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Consequently, since L−1 = L−1
0 Q−1

L , we have

‖L−1‖ ≤ ‖L−1
0 ‖ ‖Q−1

L ‖ ≤ ‖L−1
0 ‖

∞∑
k=0

(
‖L0 − L‖ ‖L−1

0 ‖
)k

so ‖L−1‖ remains bounded by 2‖L−1
0 ‖. Now if ‖L − L0‖ → 0, then (11.4) implies

that ‖φ(L)− φ(L0)‖ = ‖L−1 −L−1
0 ‖ → 0, showing continuity of φ at L0. Since L0

is an arbitrary invertible element, the proof is complete. �

We now consider the smoothness of an inverse matrix.

Theorem 11.1.5. Suppose A(s) is an n × n matrix function of a real variable s,
and A(s) is C1 in s and invertible for each s in some open interval. Then the
inverse A−1(s) is C1 and

d

ds
A−1(s) = −A−1(s)

[ d
ds

A(s)
]
A−1(s)

for each s. If A(s) is Ck in s, then A−1(s) is also Ck in s.

Proof. By hypothesis, all entries of A(s) are continuously differentiable. By The-
orem 11.1.2, each entry of A−1(s) is a rational function of the entries of A(s), with
denominator detA(s) 
= 0, and therefore a continuously differentiable function of s.
Since each entry of A−1(s) is C1, A−1(s) is a C1 matrix function of s. Since
d
dsA

−1(s) exists, we may differentiate the identity A(s)A−1(s) = I to find[ d
ds

A(s)
]
A−1(s) +A(s)

[ d
ds

A−1(s)
]
= 0n×n,

and hence
d

ds
A−1(s) = −A−1(s)

[ d
ds

A(s)
]
A−1(s).

Finally, if A(s) is Ck in s, then from the form of the entries in A−1(s) we conclude
that each of those entries is also Ck in s, so A−1(s) is a Ck matrix function of s. �

If A(x) is a C1 and invertible matrix function of x on an open set in Rn, then
letting s = xj , 1 ≤ j ≤ n, we have

∂

∂xj
A−1(x) = −A−1(x)

[ ∂

∂xj
A(x)

]
A−1(x), 1 ≤ j ≤ n.

From this relation it follows that if A(x) is Ck in x, then A−1(x) is also Ck in x.

In this section we have highlighted two very different aspects of inversion. First,
equation (11.2) of Theorem 11.1.2 shows that if A is invertible, then the entries
of A−1 are rational functions of the entries of A, with numerators being linear
combinations of (n − 1)-fold products of the entries of A. On the other hand,
Theorem 11.1.1 shows that if ‖A − I‖ < 1, then A−1 is represented by an infinite
matrix series involving all powers of A. Note Exercise 11.1.3, regarding the Cayley-
Hamilton theorem from linear algebra.
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Exercises.

Exercise 11.1.1. Let A and B be elements of L(Rn,Rn) (or matrices in Rn×n).
Show that if A is invertible and B satisfies ‖A−B‖ < 1/‖A−1‖, then B is invertible.
Hint : Write B = A− (A−B) = A(I −A−1(A−B)), and let X = A−1(A−B).

Exercise 11.1.2. Let det : Rn×n → R be the determinant function which maps
the set of n × n real matrices into the real numbers. Use the fact that detA is a
degree n polynomial in the entries of A to show that the set of n×n invertible real
matrices is an open set in the space Rn×n.

Exercise 11.1.3. Let

p(λ) = det(λI −A) = λn + an−1λ
n−1 + · · ·+ a1λ1 + a0

be the characteristic polynomial of an n × n matrix A. The Cayley-Hamilton
theorem states that every n×n matrix A satisfies its own characteristic polynomial,
in the sense that

p(A) = An + an−1A
n−1 + · · ·+ a1A+ a0In×n = In×n.

Consequently, for any n×n matrix A, the powers Ak for k ≥ n can be expressed as
linear combinations of the powers I, A,A2, . . . , An−1. As a simple example, show
that if A is the matrix in Example 11.1.3, then p(λ) = det(λI − A) = λ2 − (a +
d)λ+ (ad− bc) and

A2 − (a+ d)A+ (ad− bc)I = 0.

Then write A3 as a linear combination of I and A.

11.2. The Inverse Function Theorem

In many applications it is important to know whether the inverse of a given mapping
F has the same degree of smoothness as F itself. Recall that even if a mapping
F is differentiable to all orders, its inverse, if it exists, need not be differentiable
everywhere. A simple example of this situation is the mapping F : R → R given by
F (x) = x3. Then F is infinitely differentiable, but its inverse mapping F−1(x) =
3
√
x is not differentiable at x = 0.

The notion of local C1-invertibility, defined next, is an important case il-
lustrating the concept of a mapping and its inverse having the same degree of
smoothness.

Definition 11.2.1. Let F : O → Rn, let a be an interior point of O, and suppose
that F is C1 on an open neighborhood of a. Then F is locally C1-invertible at
a if there exists an open set U ⊂ O with a ∈ U , an open set V with b = F(a) ∈ V ,
and a C1 function G : V → U such that

G ◦ F = IdU , F ◦G = IdV ,

where IdU and IdV are the identity mappings on U and V . (We use the notation
Id here to avoid potential confusion with an identity matrix I.)
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If F is locally C1-invertible at a, then of course F maps U one-to-one and onto
V , and the local inverse G maps V one-to-one and onto U , and Definition 11.2.1
says that

G(F(x)) = x for all x ∈ U and F(G(y)) = y for all y ∈ V.

The main goal of this section is to prove the inverse function theorem, which
gives a sufficient condition for a mapping to be locally C1-invertible at a point. At
the end of Section 10.8, we had developed essentially all the tools needed to prove
the next theorem.

Theorem 11.2.2 (Inverse Function Theorem). Let F : Ω → Rn be C1 on the open
set Ω ⊆ Rn, and suppose that a is in Ω with F(a) = b. If DF(a) is invertible, then
F is locally C1-invertible at a. If y is in the domain of the local C1 inverse and
F(x) = y, then

DF−1(y) = [DF(x)]−1.

Moreover, if F is Ck, then the local inverse of F at a is also Ck.

As in Section 10.8, we will use the convenient max norm on vectors and the
associated matrix norm. Recall that

{x ∈ Rn : |x|∞ < r}

is the open ball Br(0) for the max norm, also called an open cube with side r.

We first consider a useful simplification of the problem. Let Ω be an open cube
centered at a, that is, let r > 0 and let Ω = {x ∈ Rn : |x − a|∞ < r}. Suppose F
satisfies the hypotheses of Theorem 11.2.2, so that F : Ω → Rn is C1 on Ω, a ∈ Ω
with F(a) = b, and DF(a) is invertible. Define a translation mapping on Rn by
τz(x) = x+ z for all x ∈ Rn, so that τz translates each point of Rn by the vector
z. Then we have

τa(x) = x+ a and τ−b(y) = y − b.

Note that τ−b = τ−1
b . Let us define the mapping

(11.5) Ψ = [DF(a)]−1 ◦ τ−b ◦ F ◦ τa.

(See Figure 11.1.) It should be clear that F is locally invertible near a if and only
if Ψ is locally invertible near the origin.

Now Ψ is defined on the open neighborhood τ−1
a (Ω) of the origin and maps the

origin to the origin, Ψ(0) = 0. Using the fact that the derivative of a translation
at any point is the identity, the chain rule implies that the derivative of Ψ at the
origin is DΨ(0) = [DF(a)]−1DF(a) = I. Thus we have reduced the question of
local invertibility to the case of a mapping Ψ such that Ψ(0) = 0 and DΨ(0) = I.

Given the reductions of the preceding paragraph, we shall prove Theorem 11.2.3
below, and then complete the proof of Theorem 11.2.2 by a continuous differentia-
bility argument.
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Ω

τ−1
b

[DF(a)]−1

F

τaΨ(τ−1
a (Ω))

τ−1
a (Ω)

a
b

Figure 11.1. Mapping cubes to illustrate the inverse function theorem: Ω is
an open cube about a, and the mapping Ψ = [DF(a)]−1 ◦ τ−1

b ◦ F ◦ τa takes

the open cube τ−1
a (Ω) onto Ψ(τ−1

a (Ω)). The mapping F is locally invertible
near a if and only if Ψ is locally invertible near the origin.

Theorem 11.2.3. Let O be an open set in Rn containing the origin, let F : O →
Rn be C1 on O, and suppose that F(0) = 0 and DF(0) = I. Then the following
statements hold:

1. Given 0 < ε < 1, there exists r = r(ε) > 0 such that ‖DF(x) − I‖∞ < ε for
all x ∈ Cr, and

C(1−ε)r ⊆ F(Cr) ⊆ C(1+ε)r .

2. With r = r(ε) as above, let V = IntC(1−ε)r and U = F−1(V ) ∩ IntCr. Then
F : U → V is one-to-one and onto with a continuous inverse.

3. The local inverse G : V → U is continuously differentiable, and DG(0) = I.

Proof. 1. Since F is C1 on O, given 0 < ε < 1 there exists r = r(ε) > 0 such that

(11.6) ‖DF(x)− I‖∞ < ε for all x ∈ Cr.

By Corollary 10.8.3, we know already that F(Cr) ⊆ C(1+ε)r, but this fact is also
derived here. By Corollary 10.8.2, with L = DF(0) = I, and l the segment joining
any two points x1,x2 ∈ Cr, we have∣∣F(x1)− F(x2)− (x1 − x2)

∣∣
∞ ≤

(
max
z∈l

‖DF(z)− I‖∞
)
|x1 − x2|∞

≤ ε |x1 − x2|∞.(11.7)

Then reverse triangle inequality arguments from (11.6) and (11.7) together with
the mean value theorem applied to F on Cr yield

(11.8) (1− ε)|x1 − x2|∞ ≤ |F(x1)− F(x2)|∞ ≤ (1 + ε)|x1 − x2|∞,

and this holds for all x1,x2 ∈ Cr. Observe that the left-hand inequality shows that
F is one-to-one on Cr. By setting x2 = 0 in the right-hand inequality, we see that
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if x = x1 ∈ Cr, then

|F(x)|∞ ≤ (1 + ε)|x|∞ ≤ (1 + ε)r,

and hence F(Cr) ⊆ C(1+ε)r. We now show that C(1−ε)r ⊆ F(Cr), using the con-
traction mapping theorem. Now fix y ∈ C(1−ε)r, and consider the mapping

Φy(x) = x− F(x) + y

for x ∈ Cr. Using (11.6) in the mean value Theorem 10.8.1 applied to x − F(x),
we find

|Φy(x)|∞ ≤ |x− F(x)|∞ + |y|∞ ≤ ε|x|∞ + |y|∞ ≤ εr + (1− ε)r = r,

hence Φy maps Cr into Cr. Observe carefully that the same estimate shows that if
y ∈ IntC(1−ε)r, then Φy(x) ∈ IntCr. That is,

(11.9) y ∈ IntC(1−ε)r =⇒ Φy(Cr) ⊆ IntCr.

It follows from the estimate (11.7) that Φy is a contraction on Cr, since 0 < ε < 1,
and for x1,x2 ∈ Cr, we have∣∣Φy(x1)− Φy(x2)

∣∣
∞ =

∣∣F(x2)− F(x1)− (x2 − x1)
∣∣
∞ ≤ ε|x2 − x1|∞.

We have now shown that for each y ∈ C(1−ε)r there is a unique x ∈ Cr such that
F(x) = y. Thus C(1−ε)r ⊆ F(Cr), and this completes the proof of statement 1.

2. We have observed that by (11.9), if y ∈ IntC(1−ε)r, then the unique solution
of F(x) = y satisfies x ∈ IntCr. We need open sets for the domain and range of
the local inverse for F. Given what we know, a natural choice for the range is to let
V = IntC(1−ε)r, and then we define the domain to be U = F−1(V )∩ IntCr. (Since

F need not be globally one-to-one, we intersect F−1(V ) with IntCr, on which F
is one-to-one.) Thus F : U → V is one-to-one and onto, and we denote the local
inverse by G : V → U . The continuity of the local inverse follows from the left-hand
inequality of (11.8), since we have

(1− ε)|x1 − x2|∞ ≤
∣∣F(x1)− F(x2)

∣∣
∞ for all x1,x2 ∈ U ⊂ Cr

and hence

(1− ε)
∣∣G(y1)−G(y2)

∣∣
∞ ≤ |y1 − y2|∞ for all y1,y2 ∈ V.

3. Now we prove continuous differentiability of the local inverse G on V . By
the matrix geometric series Theorem 11.1.1, we know that DF(x1) is invertible for
all x1 ∈ IntCr. From the definition of derivative, we have

(11.10) F(x)− F(x1) = DF(x1)(x− x1) + |x− x1|∞ψ(x− x1)

where limx→x1
ψ(x − x1) = 0. Let y1 = F(x1) and y = F(x) be in V , and let

x1 = G(y1), x = G(y). We want to establish the appropriate tangent estimate for
the expression

(11.11) G(y)−G(y1)− [DF(x1)]
−1(y − y1).

Using (11.10), we have

G(y)−G(y1)− [DF(x1)]
−1(y− y1) = −|x− x1|∞[DF(x1)]

−1(ψ(x− x1)).
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Letting ‖[DF(x1)]
−1‖ = β, the left-hand inequality of (11.8) yields

|G(y)−G(y1)− [DF(x1)]
−1(y − y1)|∞ ≤ β

1− ε
|y − y1|∞|ψ(G(y)−G(y1))|∞.

By the continuity of the local inverse G established in part 2, we have x → x1 as
y → y1. Consequently, limy→y1

ψ(G(y)−G(y1)) = 0, and hence

lim
y→y1

∣∣G(y)−G(y1)− [DF(x1)]
−1(y − y1)

∣∣
∞

|y − y1|∞
= 0.

Thus by the definition of derivative, DG(y1) = [DF(x1)]
−1. In particular, with

x1 = 0 and y1 = 0, we have DG(0) = I, since DF(0) = I. Since y1 was arbitrary
in V , this shows that G is differentiable on V . Finally, to see that DG is continuous
on V , we observe that DG is the composition of three continuous mappings:

(11.12) y1
G�→ Gy1 = x1

DF�→ DF(x1)
φ�→ [DF(x1)]

−1

where φ is the inversion map L �→ L−1 on the set of invertible linear maps from
Rn to Rn, shown to be continuous in Theorem 11.1.4. Hence, DG is continuous
on V . �

We proceed now to complete the proof of Theorem 11.2.2.

Completion of the proof of Theorem 11.2.2. We summarize what we know
about the mapping Ψ in (11.5). Theorem 11.2.3 applies to it. By Theorem 11.2.3
(statement 1), given 0 < ε < 1 there exists r = r(ε) > 0 such that ‖DΨ(x)−I‖∞ < ε
for all x ∈ Cr. By the matrix geometric series Theorem 11.1.1, we also know that
DΨ(x) is invertible for all x ∈ IntCr. By Theorem 11.2.3 (statement 2), there are
open sets V = IntC(1−ε)r and U = Ψ−1(V ) ∩ IntCr, each containing the origin,
such thatΨ maps U one-to-one and onto V . It follows from (11.5) that our function
F (in Theorem 11.2.2) is locally invertible on the open set U1 = τa(U) and maps
U1 one-to-one and onto the open set V1 = τb(A(V )). By (11.5), this local inverse
F−1 : V1 → U1 is given by

(11.13) [F|V1
]−1 = (τb ◦A ◦Ψ ◦ τ−a)

−1|V1
= τa ◦Ψ−1 ◦A−1 ◦ τ−b.

By the chain rule, we deduce that

DF−1(b) = A−1 = [DF(a)]−1.

Now we want to see that, for any y = F(x) ∈ V1 with x ∈ U1, we have
DF−1(y) = [DF(x)]−1. This follows from an argument like that in the proof of
part (3) of Theorem 11.2.3, sinceDF(x) is invertible for x in U1 and the local inverse
of F is continuous. (An argument is also outlined earlier in Exercise 10.8.1.) Thus
the local inverse F−1 : V1 → U1 is differentiable, and its derivative at any point
y = F(x) ∈ V1 is the inverse of the derivative of F at x.

Continuity ofDF−1 on V1 follows, as in (11.12), from the continuity of inversion
of linear mappings, the continuity of DF on U1, and the continuity of F−1.

Finally, if the mapping F is Ck, then the local inverse F−1 is also Ck, as follows
from viewing DF−1(y) as the composition (again as in (11.12)) of Ck mappings,
using the smoothness of inversion from Theorem 11.1.5. �
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The next example serves to emphasize the local nature of the conclusion of the
inverse function theorem.

Example 11.2.4. Define a mapping F : R2 → R2 by means of its component
functions

f1(x, y) = x2 − y2,

f2(x, y) = 2xy.

The determinant of the Jacobian matrix of F at (x, y) is given by

det JF(x, y) = det

[
2x −2y
2y 2x

]
= 4(x2 + y2),

and thus F is locally C1-invertible in some neighborhood of every point except
the origin. However, F is not a globally one-to-one function; we observe that
F(1, 1) = (0, 2) = F(−1,−1). Note that DF(0, 0) is not invertible; in fact, it can
be shown that there is no open neighborhood of the origin on which F is one-to-one
(Exercise 11.2.1). �

Exercises.

Exercise 11.2.1. Consider the function of Example 11.2.4 given by F(x, y) =
(x2 − y2, 2xy). Show that there is no open neighborhood of the origin on which F
is one-to-one.

Exercise 11.2.2. Let F : R2 → R2 be defined by F(x, y) = (x− y, xy).

1. At which points does the inverse function Theorem 11.2.2 apply?

2. On a sketch, indicate the points at which DF fails to be invertible. At these
points, the row gradients for the components of F are linearly dependent.
Interpret this in terms of a tangency condition satisfied by the level curves
of the component functions. Sketch a few of these level curves in all four
quadrants, showing this tangency condition.

3. Note that F(2, 1) = (1, 2). Let G be the local inverse of F such that G(1, 2) =
(2, 1). Find DG(1, 2).

4. Consider the behavior of F under the mapping (x, y) �→ (−y,−x). Conclude
that F is not locally invertible at any of the points you found in part 2.

Exercise 11.2.3. Let F : R2 → R2 be defined by its component functions f1(x, y)
and f2(x, y), where f1(x, y) = x+x2 sin(1/x) if x 
= 0 and f1(x, y) = 0 if x = 0, and
f2(x, y) = y. Show that DF(0, 0) is invertible, but the inverse function Theorem
11.2.2 does not apply. (This is the function of Example 10.4.3.)

Exercise 11.2.4. Let F : R2 → R2 be defined by F(x, y) = (ex cos y, ex sin y).

1. Show that F is locally C1-invertible at very point.

2. Show that F is not a one-to-one mapping.
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3. Find a domain on which F is locally C1-invertible about (0, 0).

4. Show that the range of F equals R2 − {(0, 0)}.

Exercise 11.2.5. Let D = {ρ, φ, θ : ρ > 0, 0 < φ < π,−π < θ ≤ π} ⊂ R3, and let
F : D → R3 be the spherical coordinate mapping given by

(x, y, z) = F(ρ, φ, θ) = (ρ sinφ cos θ, ρ sinφ sin θ, ρ cosφ).

We observe thatD isR3 minus the z-axis. Variable ρ is the distance from (x, y, z) to
the origin, φ is the angle to (x, y, z) from the positive z-axis, and θ is the longitude
(the polar coordinate angle θ of the projected point (x, y, 0)).

1. Describe the surfaces determined by these equations: (i) ρ = constant, (ii)
φ = constant, (iii) θ = constant.

2. Show that detJF(ρ, φ, θ) = ρ2 sinφ. Conclude that F is C1-invertible in a
neighborhood of each point in D.

3. Is F globally one-to-one on D? Hint : Use the fact that ρ2 = x2 + y2 + z2.

11.3. The Implicit Function Theorem

The implicit function theorem is one of the most useful results of basic analysis, as
it deals with the solvability of systems of equations. The lowest-dimensional case of
the theorem was considered in Theorem 10.7.1, and a review of that material may
be beneficial before proceeding. This section extends Theorem 10.7.1 to higher-
dimensional cases, using the inverse function theorem of the previous section.

Let W be an open set in Rn+m and let F : W → Rm. Then the equation

F(u) = 0

represents m equations in n+m variables. The implicit function theorem deals with
the solvability of such an equation for m of the variables in terms of the remaining
n variables. We identify Rn+m with Rn ×Rm and thus write elements of Rn+m

as u = (x,y) with x ∈ Rn and y ∈ Rm. The equation is then written as

F(x,y) = 0.

It will aid our intuition to consider the case of a linear mapping F : Rn×Rm → Rm.
Consider an equation of the form

F(x,y) = Ax+By = 0

where A and B are matrices of size m× n and m×m, respectively. If the m×m
matrix B is invertible, then we may solve the equation F (x,y) = 0 uniquely for y
in terms of x, since y = −B−1Ax. Since

B =
∂F

∂y

is the Jacobian matrix of F with respect to the y components, this sufficient con-
dition for solvability can be expressed as the invertibility of the Jacobian matrix
∂F/∂y. For linear equations, the relevant Jacobian is a constant matrix. For non-
linear equations, the implicit function theorem provides a local solvability result
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based on the invertibility of a Jacobian matrix evaluated at a known solution of the
equations F(x,y) = 0. In the proof of the theorem it will be convenient to write

Fx(x,y) =
∂F

∂x
(x,y) and Fy(x,y) =

∂F

∂y
(x,y),

where x ∈ Rn and y ∈ Rm. Note that ∂F
∂x (x,y) is m× n, and ∂F

∂y (x,y) is m×m.

Theorem 11.3.1 (Implicit Function Theorem). Let W ⊂ Rn×Rm be an open set.
Let F : W → Rm be a C1 mapping. If (x0,y0) is in W and satisfies F(x0,y0) = 0,
and the linear mapping

DyF(x0,y0) =
∂F

∂y
(x0,y0) : R

m → Rm

is invertible, then there exist open sets U ⊂ Rn and V ⊂ Rm such that

(x0,y0) ∈ U × V ⊂ W,

and a unique C1 mapping
g : U → V

such that
F(x,g(x)) = 0

for all x ∈ U . Moreover, F(x,y) 
= 0 if (x,y) ∈ U × V and y 
= g(x); thus the
graph of g is exactly the set F−1(0) ∩ (U × V ).

Proof. We shall apply the inverse function theorem to the mapping H : W →
Rn ×Rm defined by

H(x,y) = (x,F(x,y)).

This mapping will be used to map the local solution set of the equation F(x,y) = 0
in an appropriate neighborhood of (x0,y0) into an open portion of the x coordinate
space. (See Figure 11.2.)

The derivative of H at (a,b), DH(a,b) : Rn ×Rm → Rn ×Rm, is given by

(h1,h2) →
(
h1,

∂F

∂x
(a,b)h1 +

∂F

∂y
(a,b)h2

)
or, in matrix form,

DH(a,b)

[
h1

h2

]
=

[
In 0

Fx(a,b) Fy(a,b)

] [
h1

h2

]
.

From the structure of the matrix DH(a,b), it should be clear that DH(a,b) is
invertible if and only if Fy(a,b) is invertible (Exercise 11.3.1). By hypothesis,
Fy(x0,y0) is invertible, hence DH(x0,y0) is invertible. By the inverse function
theorem there is an open set U0 ×V ⊂ W containing (x0,y0) such that H restricts
to a C1-invertible mapping of U0 × V onto an open set Z ⊂ Rn × Rm. Observe
that the inverse of H : U0 × V → Z leaves the first coordinate unchanged, as H
does. Hence, the C1 mapping H−1 : Z → U0 × V takes the form

(11.14) H−1(x,w) = (x, φ(x,w)),

where φ : Z → V and φ is C1 on Z. In order to define the mapping g asserted by
the theorem, let us choose an open subset of Z of the form U × Y ; thus, we choose
open sets U ⊂ U0 ⊂ Rn and Y ⊂ Rm such that x0 ∈ U , 0 ∈ Y , and U × Y ⊂ Z.
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Figure 11.2. The implicit function theorem realizes the inverse image F−1(0)
as a function graph over the x-space: We project the local solution set of the
equation F(x,y) = 0 to a copy of Rn (the x-space) by the mapping H(x,y)
in the proof of Theorem 11.3.1.

Then the restriction of (H|U0 × V )−1 to the set U × Y is a C1 mapping given by
(11.14) except that now we consider φ : U × Y → V .

Define a mapping g : U → V by

g(x) = φ(x,0).

Then g is C1 on U since φ is C1 on Z (and hence on U × Y ). From the relation
H ◦H−1 = Id|U×Y we obtain, for (x,0) ∈ U × Y :

(x,0) = H ◦H−1(x,0)

= H(x, φ(x,0))

= (x,F(x, φ(x,0)))

= (x,F(x,g(x))).

Therefore F(x,g(x)) = 0 for all x ∈ U .

For the final statement of the theorem, observe that H is one-to-one on U ×V .
If (x,y) ∈ U × V and y 
= g(x), then

H(x,y) 
= H(x,g(x)),

and hence, by definition of H,

(x,F(x,y)) 
= (x,F(x,g(x))) = (x,0),

so F(x,y) 
= 0. This completes the proof. �
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From the identity F(x,g(x)) = 0 for x ∈ U , the chain rule implies that for all
x ∈ U , we have

∂F

∂x
(x,g(x)) +

∂F

∂y
(x,g(x))Dg(x) = 0m×n.

This yields the formula

Dg(x) = −
[∂F
∂y

(x,g(x))
]−1 ∂F

∂x
(x,g(x)).

We observe from this formula that if F is of class Cr, then g is also Cr.

Exercises.

Exercise 11.3.1. Verify as stated in the proof of Theorem 11.3.1 that DH(a,b)
is invertible if and only if Fy(a,b) is invertible.

Exercise 11.3.2. Derive the inverse function theorem from the implicit function
theorem. Hint : Consider G(x,y) = y − F(x) = 0.

Exercise 11.3.3. Is there a unique solution y = h(x) of the equation y2−x2+y = 0
in a neighborhood of the solution (x0, y0) = (0, 0)? Find it explicitly.

Exercise 11.3.4. Consider the system of equations

yex − 2yz + 3xz = 0,

xyz − x+ 2ey = 2.

Investigate the possibilities for solving the system for any two of the variables in
terms of the remaining variable near the point (0, 0, 0).

Exercise 11.3.5. Consider the equation y3 − x+ e1−x = 0.

1. Show that for each x there is a unique y satisfying the equation, and for each
y there is a unique x satisfying the equation.

2. Write the solution for y in terms of x explicitly. Is this solution a C1 function
of x everywhere?

3. Observe that the solution for x in terms of y cannot be written in terms of
elementary functions. Is the solution for x a C1 function of y? Where?

Exercise 11.3.6. Suppose f : R2 → R is defined by f(x, y) = x− y2.

1. Does there exist a real valued function g defined on a neighborhood of x = 0
such that f(x, g(x)) = 0 on that neighborhood?

2. Show that there is a unique function g defined on a neighborhood of x = 1
such that f(x, g(x)) = 0 on that neighborhood and g(1) = −1.

Exercise 11.3.7. Suppose f : R2 → R is defined by f(x, y) = x2 − y2.

1. Find two distinct real valued continuous functions g defined on a neighborhood
of x = 0 such that f(x, g(x)) = 0 on that neighborhood.

2. Find two more real-valued continuous functions g defined on a neighborhood
of x = 0 such that f(x, g(x)) = 0 on that neighborhood.
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11.4. Constrained Extrema and Lagrange Multipliers

Earlier we considered the classification of relative extrema for a real valued function
using the Hessian matrix at an interior critical point of the domain. This section
deals with extrema of real functions subject to one or more constraint equations.

Definition 11.4.1 (Constrained Extrema). Let U be an open set in Rn, let f :
U → R, and suppose that S ⊂ U . Let v0 be a point in S which is an extreme point
for the restriction f |S : S → R. Then v0 is a constrained extremum for f .

If the constraint set S ⊂ U is a closed and bounded set, then constrained
extrema for f do indeed exist in S.

The following simple example illustrates a key geometric idea behind the method
of the Lagrange multiplier theorem.

Example 11.4.2. Suppose we wish to maximize the function f(x, y) = x + y
subject to the constraint g(x, y) = x2+y2−1 = 0. A sketch and some thought about
the geometry of the level sets of f and g leads to the conjecture that the maximum
should occur at (1, 1) and the maximum value of f subject to the constraint g = 0
is 2. (See Figure 11.3.) Here is a geometric argument. Suppose that f has a
relative extremum at the point a in the set where g = 0. Let γ(t), |t| < δ for
some δ > 0, be a path in the set where g = 0 satisfying γ(0) = a. Then the
function f(γ(t)) also has a relative extremum, at t = 0, hence, by the chain rule,
∇f(a) · γ′(0) = 0. But γ′(0) is the tangent vector to the curve γ(t) at the point
a, so γ′(0) is tangent to the level curve g = 0, hence γ′(0) ⊥ ∇g(a), since the
gradient of g at a must be perpendicular to the level curve g = 0 at that point.
Consequently, we necessarily have ∇f(a) = λ∇g(a), that is, these gradients must
be parallel. Thus, (1, 1) = λ(2x, 2y). Since we cannot have λ = 0, it must be that
x = y. This gives two possibilities where f might be maximized when restricted
to the set where g = 0: the points (1, 1) and (−1,−1). Since f(−1,−1) = −2 and
f(1, 1) = 2, clearly f(1, 1) = 2 is a relative maximum for f subject to the constraint
g = 0. In this case it is also a global maximum for f over the constraint set. �

A real constraint equation of the form g(x0) = y0 can always be rewritten in
the form g̃(x0) = 0 by defining g̃(x) = g(x) − y0, with ∇g̃(x) = ∇g(x). For this
reason the theorems of this section are formulated with the constraints written as
zero level sets.

Theorem 11.4.3. Let U be an open set in Rn and let f, g : U → R be C1 functions
on U . Let v0 ∈ U with g(v0) = 0 and ∇g(v0) 
= 0, and let

S = {x ∈ U : g(x) = 0}.
If f , subjected to the constraint g(x) = 0, has a relative extremum at v0, that is, if
f |S has a relative extremum at v0, then there is a number λ such that

∇f(v0) = λ∇g(v0).

Proof. By a relabeling of the variables, if necessary, we may assume that

∂g

∂xn
(v0) 
= 0.
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Figure 11.3. Geometry of optimization by the Lagrange multiplier method:
We wish to maximize f(x, y) = x + y subject to the constraint g(x, y) =
x2+y2−1 = 0. Right: Gradient vectors of g at several points on the constraint
circle. Left: The three arrows represent gradient vectors for f which are
perpendicular to level sets of f . The maximum for f occurs at the base point
of the middle arrow, and at this point a, we have ∇f(a) = λ∇g(a).

Write v0 = (v1, v2, . . . , vn−1, vn). By the implicit function theorem, there is an
open set U1 in Rn−1 containing the point (v1, v2, . . . , vn−1), and a C1 function
φ : U1 → R such that φ(v1, v2, . . . , vn−1) = vn and

g(x1, x2, . . . , xn−1, φ(x1, x2, . . . , xn−1)) = 0

for all (x1, x2, . . . , xn−1) in U1. Consider the function h : U1 → R defined by

h(x1, x2, . . . , xn−1) = f(x1, x2, . . . , xn−1, φ(x1, x2, . . . , xn−1)).

Since f has a relative extremum on the constraint set at v0, the function h has a
relative extremum at (v1, v2, . . . , vn−1). Consequently, for i = 1, 2, . . . , n− 1,

∂h

∂xi
(v0) =

∂f

∂xi
(v0) +

∂f

∂xn
(v0)

∂φ

∂xi
(v0) = 0.

Differentiation of the constraint equation as a function of (x1, x2, . . . , xn−1) and
evaluation at v0 gives, for i = 1, 2, . . . , n− 1,

∂g

∂xi
(v0) +

∂g

∂xn
(v0)

∂φ

∂xi
(v0) = 0.

Since ∂g
∂xn

(v0) 
= 0, we may define

λ :=
∂f/∂xn(v0)

∂g/∂xn(v0)
.

Then from the previous two equalities it follows that

∂f

∂xi
(v0) = λ

∂g

∂xi
(v0), for i = 1, 2, . . . , n− 1.

Since ∂f/∂xn(v0) = λ∂g/∂xn(v0) by definition of λ, we are done. �

The number λ in Theorem 11.4.3 is called a Lagrange multiplier . As we saw in
Example 11.4.2, the multiplier is a tool that can help in locating possible extrema.
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In the case of a function f of n variables subject to k independent constraint
equations, where 0 < k < n, we have the more general result in Theorem 11.4.4 be-
low. Its proof is similar to the argument in the example: if we write the constraint
set as the graph of a function of n − k variables, then the problem of describing
a constrained extremum resolves itself into the problem of describing an uncon-
strained extremum of f over that graph. The implicit function theorem ensures
that the constraint set can be written locally as such a graph.

Theorem 11.4.4 (Lagrange Multiplier Theorem). Let U be an open set in Rn,
and let f : U → R be C1. Suppose 0 < k < n, and let g = (g1, . . . , gk) : U → Rk

be C1. Define

S = {x ∈ U : g(x) = 0} =
k⋂

i=1

{x ∈ U : gi(x) = 0}.

If f |S has a relative extremum at the point v0 and the k×n matrix Jg(v0) has rank
k, then there are numbers λ1, . . . , λk such that

(11.15) ∇f(v0) = λ1∇g1(v0) + · · ·+ λk∇gk(v0).

Proof. Write n = m + k. We shall write points of Rn in the form (x,y), where
x ∈ Rm and y ∈ Rk. In particular, let the relative extreme point v0 = (x0,y0).

Since the matrix Dg(v0) has rank k, we may relabel components if necessary,
and thus permute columns as necessary, so that the k × k submatrix Dyg(v0) =
Dyg(x0,y0) is invertible. Then by the implicit function theorem, there is an open
neighborhood U1 of x0 in Rm and a mapping φ : U1 → Rk such that y0 = φ(x0)
and

(11.16) g(x, φ(x)) = 0 for x ∈ U1.

Therefore the graph of the mapping φ : U1 → Rk lies within the constraint set S.
Now consider the mapping f restricted to this graph. Define h : U1 → R by

h(x) = f(x, φ(x)) for x ∈ U1.

Since U1 is open in Rm, the point x0 (the first block component of v0) must be an
unconstrained extremum of the function h : U1 → R, since v0 is an extremum for
f on S. Consequently, ∇h(x0) = 0. By the definition of h and the chain rule, we
have

(11.17) dh(x0) = dxf(x0,y0) + dyf(x0,y0)Dφ(x0) = 0.

On differentiating (11.16), we find, on evaluation at x0,

Dxg(x0,y0) +Dyg(x0,y0)Dφ(x0) = 0.

By the invertibility of Dyg(x0,y0), we have

Dφ(x0) = −[Dyg(x0,y0)]
−1Dxg(x0,y0).

We may substitute this result into (11.17) to obtain

(11.18) dxf(x0,y0) = dyf(x0,y0)[Dyg(x0,y0)]
−1Dxg(x0,y0).

Now observe that the desired identity (11.15) is equivalent to the identity

df(x0,y0) = [λ1 · · · λk ]Dg(x0,y0),
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where we read the differentials of real functions as row gradients, and this equation
may be split into two block component equations, as follows:

dxf(x0,y0) = [λ1 · · · λk ]Dxg(x0,y0),(11.19)

dyf(x0,y0) = [λ1 · · · λk ]Dyg(x0,y0),(11.20)

where Dxg(x0,y0) is the first m columns of Dg(x0,y0), and Dyg(x0,y0) is the
last k columns of Dg(x0,y0). Again using the invertibility of Dyg(x0,y0), we may
now define the row vector [λ1 · · · λk ] by

[λ1 · · · λk ] := dyf(x0,y0) [Dyg(x0,y0)]
−1,

and this definition ensures that (11.20) is satisfied. Finally, note that (11.19) is
also satisfied since it is equivalent to (11.18) by our definition of [λ1 · · · λk ]. This
establishes (11.15) and proves the theorem. �

The proof of Theorem 11.4.4 used the implicit function theorem, by virtue of
the rank condition on the Jacobian matrix Jg(v0). In practice, given a function f
subject to constraints g = 0, a solution of the constraint equations in closed form
for some unknowns in terms of the others may be quite difficult, even if possible
according to the implicit function theorem. Thus, expressing the given function in
terms of a reduced number of variables and optimizing it as in Section 10.10 may
not be a viable option. The Lagrange multiplier theorem provides the alternative
approach of supplying a necessary condition for constrained extrema that does not
require the knowledge of an explicit solution ahead of time. The multiplier equations
implied by (11.15) introduce k parameters to help solve the combined system of
constraints and multiplier equations for the constrained extrema. Since Theorem
11.4.4 provides necessary conditions for constrained extrema, one must verify the
nature of any candidates found. The multiplier method of Theorem 11.4.4 may be
difficult to apply unless the functions f and g are relatively simple.

Exercises.

Exercise 11.4.1. Minimize f(x, y) = x2 + 4y2 subject to x+ y− 1 = 0. Can f be
maximized subject to this constraint?

Exercise 11.4.2. Minimize f(x, y, z) = x2 + y2 + z2 subject to the constraint
g(x, y, z) = x+ y + z − 1 = 0.

Exercise 11.4.3. Maximize and minimize f(x, y) = x+y subject to the constraint
x2 + 4y2 = 1.

Exercise 11.4.4. Find the maximum and minimum values of f(x, y, z) = x+y+z,
subject to the constraints x2 + y2 + z2 = 1 and x2 + y2 + (z − 1)2 = 1.

Exercise 11.4.5. Recall that a real matrix A is symmetric if AT = A.

1. Give an example of a real 2× 2 matrix that has no real eigenvalues.

2. Show that every real symmetric matrix A has a real eigenvalue, that is, there
is a real number λ and a nonzero vector x such that Ax = λx. Hint : Define
f(x) = xTAx and g(x) = xTx − 1, and then maximize (or minimize) f
subject to the constraint g(x) = 0; in particular, show that the gradient of
the quadratic form xTAx equals 2Ax.
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Exercise 11.4.6. Minimize f(x, y) = x2

4 + y2 subject to x+ y = 3.

Exercise 11.4.7. Find the minimum amount of material required to make a rect-
angular box, enclosed on all six sides, if the volume of the box is to be 9 cubic
feet. Hint : Write x (width), y (length) and z (height) for the dimensions of the
box, set z = 9/(xy) and write the amount of material as a function of x and y,
unconstrained except for x > 0 and y > 0.

Exercise 11.4.8. Revisit Hölder’s inequality using the Lagrange multiplier method.

1. For fixed positive p and q, let

f(x, y) =
xp

p
+

yq

q
, x > 0, y > 0.

Show that the minimum of f subject to g(x, y) = xy − 1 = 0 is 1/p+ 1/q.

2. (Hölder’s inequality) Use the result of part 1 to show that if p > 1 and q > 1
with 1/p+ 1/q = 1, and a ≥ 0, b ≥ 0, then

ab ≤ ap

p
+

bq

q
.

Hint : Consider f in part 1 and the constraint g(x, y) = xy − ab = 0.

11.5. The Morse Lemma

Suppose f is a real valued function of class C2 that has a critical point at x0.
Taylor’s theorem tells us that the second-order terms in the Taylor expansion of
f about x0 approximate the difference f(x) − f(x0) for x near x0. In the case of
a nonsingular Hessian matrix at x0, this approximation provides especially useful
qualitative information about f . The Morse lemma states that if the Hessian at x0

is nonsingular, then there exist local coordinates in a neighborhood of x0 in which
f equals an especially simple quadratic function: a sum of squares.

The argument for this result uses the inverse function theorem, the idea of
completing the square, and an induction argument. Given a quadratic form

αx2
1 + 2βx1x2 + γx2

2,

if α 
= 0, then we can complete a square of the x1 terms,

αx2
1 + 2βx1x2 + γx2

2 = α
(
x1 +

β

α
x2

)2
− β2

α
x2
2 + γx2

2

= α
(
x1 +

β

α
x2

)2
+
(
γ − β2

α

)
x2
2.

Similarly, if γ 
= 0, we can complete a square of the x2 terms. If both α and γ are
zero, but β 
= 0, then the transformation x1 = y1 − y2, x2 = y1 + y2 transforms
2βx1x2 into

2βx1x2 = 2β(y1 − y2)(y1 + y2) = 2βy21 − 2βy22 .

Thus, in all cases, a nonzero quadratic form is transformed into the sum of squared
terms. This is the basic algebraic idea behind the Morse lemma.

We assume that f is differentiable of class Cp, with p to be determined.
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Theorem 11.5.1 (The Morse Lemma). Let O be an open set in Rn and f :
O → R a class Cp function with a nondegenerate critical point at x0 ∈ O, that is,
∇f(x0) = 0, and the Hessian matrix of f at x0,

Hf (x0) =

⎡
⎢⎢⎣

fx1x1
(x0) fx1x2

(x0) · · · fx1xn
(x0)

fx2x1
(x0) fx2x2

(x0) · · · fx2xn
(x0)

· · · · · · · · · · · ·
fxnx1

(x0) fxnx2
(x0) · · · fxnxn

(x0)

⎤
⎥⎥⎦ ,

is nonsingular. Then there are open sets U ⊂ O about x0 and V about 0 ∈ Rn and
a Cp−2 change of coordinates g : V → U , denoted by x = g(u), such that for all
u ∈ V ,

(11.21) f(g(u)) = f(x0)− u2
1 − · · · − u2

k + u2
k+1 + · · ·+ u2

n

where k is a fixed nonnegative integer, called the index of the critical point x0.

Remark. The index k is also called the index of the quadratic form determined by
the fixed matrix Hf (x0). The index of a quadratic form is usually defined as the
dimension of the largest subspace on which the quadratic form is negative definite;
this is the same as the number of negative eigenvalues of the symmetric matrix
of the form, counted with multiplicity [4]. In the present context, if f(x0) is a
nondegenerate, and hence isolated, relative minimum of f , then the index is k = 0,
and the level sets of f in a neighborhood of x0 are topological spheres, expressed in
the u coordinates by the equations

f(x0) +

n∑
k=1

u2
k = constant.

If f(x0) is a nondegenerate relative maximum of f , then the index is k = n, and
the level sets of f in a neighborhood of x0 are the topological spheres expressed in
the u coordinates by the equations

f(x0)−
n∑

k=1

u2
k = constant.

Proof of the Morse Lemma. By translation mappings in the domain and range,
we may assume that x0 = 0 and f(x0) = f(0) = 0. By the fundamental theorem
of calculus and the chain rule, we may write

f(x1, . . . , xn) =

∫ 1

0

d

dt
f(tx1, . . . , txn) dt

=

∫ 1

0

n∑
i=1

xi
∂f

∂xi
(tx1, . . . , txn) dt.

Define functions gi for 1 ≤ i ≤ n by

gi(x1, . . . , xn) =

∫ 1

0

∂f

∂xi
(tx1, . . . , txn) dt.

Then

f(x1, . . . , xn) =
n∑

i=1

xi gi(x1, . . . , xn).
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Since f is Cp, the functions gi are Cp−1. As long as the resulting derivatives are
continuous, we may differentiate gi to any order by differentiating under the integral
(Theorem 8.10.24). Since ∂f

∂xi
(0) = 0 at the critical point 0, an easy computation

shows that gi(0) = 0. Thus, we may apply the same argument to each gi that we
applied to f , so there are Cp−2 functions hij such that

gi(x1, . . . , xn) =

n∑
j=1

xjhij(x1, . . . , xn), 1 ≤ i ≤ n.

This allows us to write

f(x1, . . . , xn) =

n∑
i=1

xi

n∑
j=1

xjhij(x1, . . . , xn)

=
n∑

i=1

n∑
j=1

xixjhij(x1, . . . , xn)(11.22)

where hij(0) = 0 for all i, j. If we have hij(x) 
= hji(x), then we can symmetrize
these coefficient functions by replacing each hij(x) by

1
2 (hij(x)+hji(x)), 1≤ i, j≤n,

since this replacement does not change the value of the summation at any point x.
We assume from here on that hij(x) = hji(x) for all x. Then we can write

f(x1, . . . , xn) =

n∑
i=1

x2
ihii(x) +

∑
1≤i<j≤n

2xixjhij(x).

Two differentiations of f and evaluation at 0 gives

∂2f

∂xi∂xj
(0) = 2hij(0)

for any i, j. Now let us write (11.22) in the form

f(x) = xTH(x)x

where H(x) is a real symmetric n × n matrix for each x, and by the nondegen-
eracy hypothesis on x0 = 0, H(0) is nonsingular. Hence, by continuity, H(x) is
nonsingular for x in some open neighborhood of the origin.

If necessary, we can make a transformation of coordinates to get a leading
coefficient h11(0) 
= 0. The argument for this follows:

Since f is not identically zero near the origin, there is at least one hij with
hij(0) 
= 0. If some diagonal term hii(0) 
= 0, then we can get a nonzero h11(0)
by interchanging the variables x1 and xi, which is accomplished by a permutation
matrix transformation. Then f(x) = h11(x)x

2
1 + · · · , and h11(x) is nonzero in a

neighborhood of 0. If all diagonal terms hii(0) = 0, then there is some pair of
indices i 
= j with hij(0) 
= 0. By permuting the variables according to x1 ↔ xi

and x2 ↔ xj , we obtain h12(0) 
= 0. By the symmetry, h21(0) = h12(0). Then f
has the form

f(x1, . . . , xn) = h12(x)x1x2 + h21(x)x2x1 + · · · = 2h12(x) + · · · .
This leading term can be transformed to the form 2h12(x)(y

2
1 − y22), with nonzero

coefficient 2h12(x) near 0, by the transformation

x1 = y1 − y2, x2 = y1 + y2, x3 = y3, . . . , xn = yn.
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This transformation is invertible. This proves the first claim above. Now f has a
leading term given by either

f(x) = h11(x)x
2
1 + · · ·

or

f(x) = 2h12(x)x
2
1 − 2h12(x)x

2
2 + · · · ,

where h11(0) 
= 0 or h12(0) 
= 0, as the case may be. In either case, the important
point is that the leading coefficient of x2

1 is nonzero in some neighborhood of the
critical point. Let us call this coefficient function h11(x) to cover either case.

Now we have

(11.23) f(x) = h11(x)
( n∑

i,j=1

xi xjkij(x)
)
,

where now kij(x) = hij(x)/h11(x) for x near the origin, and k11(x) ≡ 1. By the
symmetry hij = hji, the terms in parentheses in (11.23) that involve x1 are as
follows, on completing a square:

x2
1 + 2

n∑
j=2

x1xjk1j(x) = x2
1 +
(
2

n∑
j=2

xjk1j(x)
)
x1

=
(
x1 +

n∑
j=2

xjk1j(x)
)2

−
( n∑

j=2

xjk1j(x)
)2

.

Now the coordinate transformation

y1 = x1 +
n∑

j=2

xjk1j(x), y2 = x2, . . . , yn = xn,

ensures that the new variable y1 appears only as y21 . This transformation is easily
seen to be invertible, since

∂y1
∂x1

(x) = 1 +
n∑

j=2

xj
∂k1j
∂x1

(x) ≈ 1,

for x near the origin. Our function f now has the form

h11(y)y
2
1 +

n∑
j,k=2

yjykqjk(y),

where the sum on the right is a quadratic form in (n− 1) variables y2, . . . , yn, and
the functions qjk are class Cp−2. We can redefine y1, by rescaling it, to be y1 =

±
√
|h11(y)| y1, using the plus sign if h11(0) > 0 and the minus sign if h11(0) < 0.

(Note that h11(y) maintains the same sign over some neighborhood of the origin.)
Then f takes the form

f = ±y21 +

n∑
j,k=2

yjykqjk(y).

The step just completed starts the induction argument.
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Now suppose there exist coordinates u1, . . . , un in a neighborhood U1 of the
origin such that

(11.24) f(u) = ±u2
1 ± · · · ± u2

k−1 +

n∑
i,j≥k

uiujHij(u)

for u = (u1, . . . , un) in U1, where Hij(u) = Hji(u) for all i and j, and k−1 < n. As
we argued above, we can carry out a nonsingular transformation of the last n−k+1
variables, if necessary, to ensure that Hkk(0) 
= 0. (Otherwise, we contradict the
hypothesis that our critical point is nondegenerate, since f is then a sum of k−1 < n
squared terms for only k−1 independent variables.) Thus we have Hkk(u) 
= 0 on a
possibly smaller neighborhood U2 ⊂ U1, where Hkk(u) maintains either a positive
or a negative sign.

Now we want to complete another square. To do so, let us separate out from the
residual sum in (11.24) only those terms that involve uk in front of the Hij ’s. These
are the only terms needed to form the new squared term. Using the symmetry of
the Hij , these terms follow, where we complete the square on the uk terms:

u2
kHkk(u) + 2

∑
i>k

ukuiHik(u) = Hkk(u)
[
u2
k + 2uk

n∑
i>k

ui
Hik(u)

Hkk(u)

]

= Hkk(u)
[
u2
k +
(
2uk

n∑
i>k

ui
Hik(u)

Hkk(u)

)
+
( n∑

i>k

ui
Hik(u)

Hkk(u)

)2]

− Hkk(u)
( n∑

i>k

ui
Hik(u)

Hkk(u)

)2

= Hkk(u)
[
uk +

n∑
i>k

ui
Hik(u)

Hkk(u)

]2
−Hkk(u)

( n∑
i>k

ui
Hik(u)

Hkk(u)

)2
.

We want the first term on the right to be the next squared term, and the last term
on the right will go into the new residual. Therefore we define

(11.25) vk = |Hkk(u)|1/2
[
uk +

n∑
i>k

ui
Hik(u)

Hkk(u)

]
to accomplish this. The factor |Hkk(u)|1/2 is a class Cp−2 nonzero function defined
on U2. Our new coordinates v1, . . . , vn are given by vi = ui for i 
= k, and vk = vk(u)
in (11.25). We note that

∂vk
∂uk

(0) = |Hkk(0)|1/2 
= 0,

and by continuity of all the Hik (if p ≥ 2), ∂vk/∂uk is nonzero throughout some
possibly smaller neighborhood U3 ⊂ U2 about the origin. Thus, by the inverse
function theorem, v1, . . . , vn serve as coordinates in U3. If we also rescale vk as√
|Hkk(u)| vk and relabel it again as vk, then, in the coordinates v1, . . . , vn, f takes

the form

f(v) =
( k−1∑

i=1

±v2i

)
± v2k +

n∑
i,j>k

vivjH
′
ij(v) =

k∑
i=1

±v2i +

n∑
i,j>k

vivjH
′
ij(v)
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for v in U3 and Cp−2 functions H ′
ij on U3. This process continues until there are no

nonzero terms in the residual sum, which can occur only after exactly n steps, by
the nondegeneracy hypothesis. Then a rearrangement and relabeling of the squared
terms, if necessary, yields (11.21). �

The proof of the Morse lemma shows that if f is at least class C2, then the
overall coordinate transformation constructed in the proof is at least class C0, that
is, continuous.

In some applications the Morse lemma provides useful information about the
topological nature of the level sets of a function. To give one indication of this,
in the study of stability of equilibria for systems of ordinary differential equations,
certain nonnegative functions V (x) are employed as energy functions (also called
Lyapunov functions) that may decrease along solution curves starting near the equi-
librium point. This decrease along solutions, if it occurs, may be detected without
solving the system explicitly, since the chain rule implies that V (x) decreases along
solutions of the system dx/dt = f(x) when ∇V (x) · f(x) < 0, a condition that
requires knowledge only of the differential equations and V itself. If the equilib-
rium point is a nondegenerate minimum of a C2 function V , then the result of
the Morse lemma shows that solutions near equilibrium become trapped inside the
nested topological spheres that constitute the level sets of V . Thus, such functions
help to determine the stability or asymptotic stability of equilibria. These energy
function ideas are explored for some low-dimensional examples in subsection 14.4.2;
however, the ideas there are not restricted to the use of C2 functions.

Exercises.

Exercise 11.5.1. Does the Morse lemma apply to any critical point of the function
f(x1, x2) = x2

1 − 6x1x2 + 9x2
2?

Exercise 11.5.2. Use the Morse lemma to describe the shape of the graph of
f(x, y) = x2 − 4xy − 6y2 + xy3 for (x, y) in a neighborhood of the origin.

Exercise 11.5.3. Suppose f(x, y) = x2 + y2 + x5 + 3x cosx sin y + 4. Show that
there are local coordinates ξ = ξ(x, y), η = η(x, y) in a neighborhood V of the
origin such that f(x, y) = 4− ξ2 + η2 for (ξ, η) in V .

11.6. Notes and References

See Halmos [25] or Hoffman and Kunze [31] for comprehensive linear algebra back-
ground. The books of Edwards [10] and Lang [42] influenced this chapter. The
Morse lemma is from [47].

The inverse function theorem and implicit function theorem play a fundamental
role in the development of the theory of smooth manifolds; see Boothby [6], Lee
[44], or Munkres [48].

Both the inverse function theorem and the implicit function theorem are funda-
mental in the development of many results for ordinary differential equations (see
Hale [24]) and partial differential equations, see Renardy and Rogers [50].



Chapter 12

The Riemann Integral in
Euclidean Space

In this chapter we extend the Riemann integral of real valued and vector valued
functions to certain subsets of Rn. In outline form, the main goals of the chapter
develop as follows:

In Section 1, we define closed intervals in Rn and extend the Riemann integral
to bounded real valued functions defined on these closed intervals.

Section 2 defines integrability for bounded functions on bounded sets by requir-
ing the function to be integrable on a closed interval containing the bounded set.
The integral thus defined allows us to define a volume measure known as Jordan
measure for certain bounded domains in Rn.

In Section 3 we characterize the Jordan measurable sets; these are the sets that
have volume measure.

In Section 4, we define subsets of Lebesgue measure zero in Rn. In Section 5
this concept helps us to characterize integrability on a closed interval.

Section 6 covers properties of the integral, and Section 7 addresses the compu-
tation of multiple integrals by Fubini’s theorem.

12.1. Bounded Functions on Closed Intervals

The development of the Riemann integral for a function of several variables is
similar to the development in the case of a function of a single variable. Although
the pattern of the development should seem familiar, we present the theory in detail.
Instead of closed intervals in R, the basic domains are the closed intervals in Rn,
which we now define.

Intervals and Partitions. An open interval in Rn (n ≥ 2) is a Cartesian
product of n real intervals,

B = (a1, b1)× · · · × (an, bn),

361
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where ai < bi for 1 ≤ i ≤ n. A closed interval in Rn (n ≥ 2) has the form

B = [a1, b1]× · · · × [an, bn],

where ai ≤ bi for 1 ≤ i ≤ n. (Note that if ai < bi, 1 ≤ i ≤ n, then the interior of
a closed interval is the open interval having the same endpoints for each interval
factor.) The volume of either of these types of intervals, described by the Cartesian
product of real intervals, is defined to be ν(B) =

∏n
i=1(bi − ai).

1 We also define
the volume of a union of finitely many intervals, any two of which intersect (if at
all) only along boundary segments, to be the sum (finite) of the volumes of the
intervals.

The most direct extension of the Riemann integral concept is to the case of
bounded functions defined on a closed interval. (A closed interval in R1 is a closed
interval [a, b].)

A partition P of the closed interval B = [a1, b1]× · · · × [an, bn] is obtained by
choosing a partition for each of the interval factors [ai, bi], say by points xi

0, x
i
1, . . . ,

xi
mi

, with xi
0 = ai and xi

mi
= bi. Given these partition points in each of the

intervals [ai, bi], the resulting partition P of B is precisely the set of lattice points
determined by the partitions of each factor; thus

P = {(x1
j1 , x

2
j2 , . . . , x

n
jn) ∈ Rn : 0 ≤ ji ≤ mi, for i = 1, . . . , n}.

Thus a partition of B yields, for 1 ≤ i ≤ n, mi subintervals for [ai, bi], and we
obtain in this case a total of m1m2 · · ·mn intervals of the partition P , given by
all the Cartesian products

[x1
j1 , x

1
j1+1]× [x2

j2 , x
2
j2+1]× · · · × [xn

jn , x
n
jn+1]

of the subintervals within the [ai, bi], where 0 ≤ ji ≤ mi − 1 for 1 ≤ i ≤ n.

Figure 12.1 indicates a partition of [0, 1]× [0, 1] with (4)(4) = 16 lattice points
and (3)(3) = 9 intervals of the partition, and displays the boundary of each subin-
terval.

Upper and Lower Sums. Let f : B → R be a bounded function on an
interval B in Rn. We denote lower and upper sums for f associated with the
partition P as before; thus, for an interval S of the partition P , we define

mS(f) = inf
x∈S

f(x) and MS(f) = sup
x∈S

f(x).

We then define the lower sum of f for P ,

L(f, P ) =
∑
S

mS(f)ν(S),

and the upper sum of f for P ,

U(f, P ) =
∑
S

MS(f)ν(S),

where each summation is over all the intervals S of the partition P . Clearly, we
have L(f, P ) ≤ U(f, P ) for any partition P .

1We could go ahead and define the volume of intervals having some interval factors closed and
some open, or some factors half-open, to be the product of the lengths of the interval factors. There is
no problem in doing this; however, it is a consequence of the general definition of volume in Definition
12.3.1.
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0

1/4

1/2

1

0 3/41/2 1

Figure 12.1. A partition of [0, 1]× [0, 1] with four mesh points in each factor
for a total of 16 lattice points and nine intervals of the partition. The interval
boundary segments are shown.

Upper and Lower Sums under Refinement. We define a partition P ′ to
be a refinement of a partition P if each interval of P ′ is contained in some interval
of P .

If P ′ is a refinement of P , then L(f, P ) ≤ L(f, P ′) and U(f, P ′) ≤ U(f, P ).
This is so because on any interval of P ′, the infimum of f is greater than or equal
to the infimum on any containing interval from P , and the supremum of f is less
than or equal to the supremum on any containing interval from P . An important
consequence of this monotonic behavior of upper and lower sums under refinement
is that for any two partitions P1 and P2 of B = [a1, b1]× · · · × [an, bn], we have

(12.1) L(f, P1) ≤ U(f, P2).

Indeed, we have for any partition P that is a refinement of both P1 and P2,

L(f, P1) ≤ L(f, P ) ≤ U(f, P ) ≤ U(f, P2),

which proves (12.1). Observe that we may always choose P = P1∪P2 as a refinement
of both P1 and P2.

Integrability of a Real Function on a Closed Interval. If f : B → R is
a bounded function, then the set of lower sums

{L(f, P ) : P is a partition of B}
and the set of upper sums

{U(f, P ) : P is a partition of B}
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are bounded sets. In particular, each of these sets is contained in the real interval
[(infB f)ν(B), (supB f)ν(B)]. By (12.1), we have

sup{L(f, P )} ≤ inf{U(f, P )}.

Definition 12.1.1. If f : B → R is a bounded function on the closed interval B
in Rn, then f is Riemann integrable on B if

sup
P

L(f, P ) = inf
P

U(f, P ),

where the supremum and infimum are taken over all partitions P of B. If f is
Riemann integrable on B, then the Riemann integral of f on B is the common
value, denoted by

∫
B
f .

Other notations for the Riemann integral of f on B, instead of the simplest
notation

∫
B
f , are

∫
B
f(x) dx or

∫
· · ·
∫
B
f(x1, . . . , xn) dx1 · · · dxn, although these

more complicated notations appear most often as a mnemonic device in the com-
putation of iterated integrals or possibly in some change of variable formulas. For
n = 1 and B = [a, b], a real closed interval, the simplest notation is either

∫
[a,b]

f

or
∫ b

a
f .

Integrability of Vector Valued Functions of a Vector Variable. A direct
generalization of Definition 12.1.1 for vector valued functions of a vector variable
is as follows.

Definition 12.1.2. Let F : B → Rm be a function bounded on the closed interval
B in Rn, and let us write F = (f1, . . . , fm) where the fj are the real valued compo-
nent functions. We say that F is Riemann integrable on B if and only if each
component function fj : B → R, 1 ≤ j ≤ m, is Riemann integrable on B. Then
the vector ∫

B

F =
(∫

B

f1, . . . ,

∫
B

fm

)
is called the Riemann integral of F on B.

Riemann’s Criterion for Integrability on a Closed Interval. The fol-
lowing criterion for integrability of a function over a closed interval will be useful
at several places in the development of this chapter.

Theorem 12.1.3. Let B be a closed interval in Rn. A function f : B → R is
Riemann integrable on B if and only if for every ε > 0 there is a partition Pε of B
such that

U(f, Pε)− L(f, Pε) < ε.

Proof. The proof is similar to that of Theorem 6.2.6.

If f is integrable on B, then supP L(f, P ) = infP U(f, P ) =
∫
B
f , the supremum

and infimum being taken over all partitions P of B. Given ε > 0, by the definition
of supremum and infimum, there are partitions P1 and P2 such that

U(f, P1) <
(∫

B

f
)
+ ε/2 and L(f, P2) >

(∫
B

f
)
− ε/2.
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Let Pε = P1∪P2. Then Pε refines P1 and P2, so U(f, Pε) ≤ U(f, P1) and L(f, Pε) ≥
L(f, P2). Hence,

U(f, Pε)− L(f, Pε) ≤ U(f, P1)− L(f, P2) < ε/2 + ε/2 = ε.

Conversely, suppose that for every ε > 0 there is a partition Pε of B such that

U(f, Pε)− L(f, Pε) < ε.

Given the partition Pε, we have

L(f, Pε) ≤ sup
P

L(f, P ) ≤ inf
P

U(f, P ) ≤ U(f, Pε),

and hence

0 ≤ inf
P

U(f, P )− sup
P

L(f, P ) ≤ U(f, Pε)− L(f, Pε) < ε.

Since this is true for every ε > 0, we have infP U(f, P ) = supP L(f, P ), and f is
integrable on B. �

Exercises.

Exercise 12.1.1. Let B = [0, 1]× [0, 1].

1. Partition B by partitioning the first factor using the points 0, 1/2, 3/4, 1, and
partitioning the second factor using the points 0, 1/4, 1/2, 1. Sketch B together
with the complete set of lattice points that comprise the resulting partition P .
Also sketch the boundary segments of each interval of the partition, clearly
outlining these intervals.

2. Refine the partition P of part 1 by adding points 1/6, 1/3 to the partition of
the first factor, and adding points 2/3, 5/6 to the partition of the second factor.
This defines the refinement P ′ of P . Sketch B together with the complete set
of lattice points that comprise the new partition P ′. Also sketch the boundary
segments of each interval of P ′, clearly outlining these intervals.

Exercise 12.1.2. Let B = [0, 1] × [0, 1] and define F : B → R2 by F = (f1, f2),
where

f1(x, y) = 1 for all (x, y) ∈ B

and

f2(x, y) =

{
0 if (x, y) ∈ (Q×Q) ∩B,
1 if (x, y) ∈ (Q×Q)c ∩B.

Show that F is not Riemann integrable on B.

12.2. Bounded Functions on Bounded Sets

We have defined the integral of a bounded function over a closed interval in Rn.
We now want to extend the definition of the integral to bounded functions on more
general bounded domains.

Now let S ⊂ Rn be a bounded set, and f : S → R a bounded function. We
may extend f to all of Rn by defining

fS(x) =

{
f(x) if x ∈ S,
0 if x /∈ S.
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This is called the extension of f by zero. Let B be a closed interval in Rn

that contains the bounded set S. We want to say that f is integrable on S if fS
is integrable on B, that is, if the integral

∫
B
fS exists. However, we have to show

that the existence of the integral, and its value, is independent of the enclosing
interval B.

Lemma 12.2.1. Let S be a bounded subset of Rn and f : S → R a bounded
function such that

∫
B
fS exists for some closed interval B containing S. Then∫

B

fS =

∫
B′

fS

for any other closed interval B′ in Rn containing S.

Proof. We are assuming that
∫
B
fS exists for some closed interval B containing

S, and we let B′ be any other closed interval containing S. Let B′′ be a closed
interval containing B ∪ B′. We propose to show that

∫
B
fS =

∫
B′′ fS =

∫
B′ fS ,

where the existence of the integrals is part of this statement. Let us argue first that∫
B
fS =

∫
B′′ fS ; we will see that the same argument applies to B′.

Any partition P ′′ of B′′ induces a partition P of B by restriction: we use the
partition points in the factors of B′′ that are contained in B, and we include the
endpoints of the factors of B as needed (if these endpoints are not already partition
points included in the description of the partition P ′′). On the other hand, any
partition P of B induces a partition P ′′ of B′′ by extension: in this case, we use
exactly the partition points in each factor of B specified in the description of P as
the partition points for P ′′ in the factors of B′′. Now let P and P ′′ be corresponding
partitions of B and B′′, respectively; that is, either P is the restriction of P ′′ to B
or P ′′ is the extension of P to B′′. Since fS(x) = 0 for all x ∈ B′′ −B, we have

L(fS , P ) = L(fS , P
′′) and U(fS , P ) = U(fS , P

′′).

Hence,

sup
P

L(fS , P ) = sup
P ′′

L(fS , P
′′) and inf

P
U(fS , P ) = inf

P ′′
U(fS , P

′′).

Since
∫
B
fS exists, we have shown that

∫
B′′ fS exists and

∫
B
fS =

∫
B′′ fS . Now since∫

B′′ fS exists, by a similar argument we find that
∫
B′ fS exists and

∫
B′′ fS =

∫
B′ fS .

Hence,
∫
B
fS =

∫
B′ fS since both equal

∫
B′′ fS . �

Lemma 12.2.1 justifies the following definition.

Definition 12.2.2. If S ⊂ Rn is a bounded set and f : S → R is a bounded
function for which

∫
B
fS exists for some closed interval B containing S, then f is

integrable on S and ∫
S

f =

∫
B

fS

is the integral of f on S.

Thus the existence of
∫
S
f , and its value, are independent of the enclosing

interval B.

We have now defined integrability over bounded domains. We want to be
sure that we can integrate (at the very least) continuous functions over a large
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class of domains that are likely to arise in practice. A major question concerns
the identification of bounded sets S that are reasonable domains of integration,
and a major issue concerns the boundary of S. We begin the effort to identify
appropriate domains by introducing the concept of volume, or Jordan measure, in
the next section.

Exercise.

Exercise 12.2.1. Let D = {x ∈ R3 : x = (1/k, 1/k2, 1/k3), k ∈ N}. Define
χD : R3 → R by χD(x) = 1 if x ∈ D and χD(x) = 0 if x /∈ D. (This function χD

is called the characteristic function of the set D.) Find
∫
D
χD.

12.3. Jordan Measurable Sets; Sets with Volume

In introductory calculus, the reader learned how to compute the lengths of curves,
areas of planar regions, and volumes of solids. Often the calculation involved some
ingenuity in describing the boundary of the set in question. The volume of certain
solid objects was computed by integrating the constant function 1 over the set in
question.

This last idea is the one pursued here for developing the concept of volume.
We ask whether it is possible to integrate the simple constant function 1 over the
set. We will see that our definition does lead us to a useful characterization of the
boundary of sets having volume. The precise definition follows.

Definition 12.3.1. If A ⊂ Rn is a bounded set, the characteristic function of
A is the mapping χA : Rn → R defined by

χA(x) =

{
1 if x ∈ A,
0 if x /∈ A.

We say that the set A is Jordan measurable or that A has volume if χA is
integrable on A, that is,

∫
A
χA exists. The volume of A, denoted ν(A), is defined

by

ν(A) =

∫
A

χA.

For open intervals, S = (a1, b1)×· · ·×(an, bn), and their closure, S = [a1, b1]×· · ·×
[an, bn], whose volumes equal

∏n
i=1(bi − ai) by axiom, we define, for consistency,∫

S

χS =

∫
S

χS =

n∏
i=1

(bi − ai).

The volume of A, when it exists, is also called the Jordan measure, or Jordan
content, of A.

For a subset A of the two-dimensional plane, the volume is the area of the
region, and this area is numerically equal to the (three-dimensional) volume of the
solid lying between the graph of χA and the region A in the plane. For an interval
A = [a, b] of real numbers, the volume is the length of the interval, and this length
is numerically the same as the area of the region between the graph of χ[a,b] and
the interval A = [a, b] on the real line.

A set A with volume such that ν(A) = 0 is said to have volume zero.
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Remark. The concept of volume zero is also called Jordan measure zero or
Jordan content zero.

It follows from the definition of integrability of χA that a set A has volume zero
if and only if for every ε > 0 there is a finite collection of closed intervals S1, . . . , SN

such that A ⊆
⋃N

i=1 Si and
N∑
i=1

ν(Si) < ε.

(See Exercise 12.3.2.)

The volume of the open interval S = (a1, b1)× · · · × (an, bn) equals the volume
of its closure, S, the closed interval S = [a1, b1]×· · ·× [an, bn]. After we learn more
about integrability, we will see that the volume is the same, as a consequence of
Definition 12.3.1, if some factors of the interval are open and some closed, and/or
some factors are half-open.

One of the weaknesses of the volume concept as given in Definition 12.3.1 is
that it does not apply to unbounded sets. Another weakness is that a countable
union of sets having volume is not necessarily a set having volume, even in some
cases where we think it probably should be. Consider the next example.

Example 12.3.2. On the real line, the open set
⋃∞

k=1(k−1/2k, k+1/2k) has what
we call finite total length, given by

∞∑
k=1

2

2k
=

∞∑
k=1

1

2k−1
= 2,

but it does not have volume since it is an unbounded set. �

Part of the problem in the last example is that the set is unbounded. But
consider the next example.

Example 12.3.3. Any single point, that is, a singleton set {x}, has volume zero,
since it can be covered by a single closed interval of arbitrarily small volume (Ex-
ercise 12.3.2). On the real line, consider the rational numbers in [0, 1], that is,
S = Q ∩ [0, 1]. Then S is bounded, and it is the union of countably many (sin-
gleton) sets of volume zero, but S does not have volume, much less volume zero,
since χS is not integrable. There are similar examples in the plane and in higher
dimensions. For example, the rational points (the points with rational coordinates)
in the unit square in the plane, Q×Q ∩ [0, 1]× [0, 1], is a countable union of sets
with volume zero, but it does not have volume, since its characteristic function is
not integrable (Exercise 12.3.3). �

We have seen that there are open sets that do not have volume. Since open sets
play a fundamental role in analysis, this must be seen as a weakness in the theory of
Jordan measure we are discussing, and the weakness is tied to the Riemann integral
concept (through Definition 12.3.1). The central issue that prevents some bounded
sets S from having volume is that the boundary ∂S may be too complicated to
allow integrability of the characteristic function χS . This issue about the boundary
∂S is discussed more fully in the next section.
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Exercises.

Exercise 12.3.1. Verify that for any two sets S1, S2 ⊆ Rn, the sets

∂(S2 − S1) = ∂(S2 ∩ (S1)
c), ∂(S1 ∩ S2), and ∂(S1 ∪ S2)

are contained in ∂S1 ∪ ∂S2.

Exercise 12.3.2. Use the definition of integrability to show that a bounded set
A ⊂ Rn has volume zero if and only if for every ε > 0 there is a finite collection of

closed intervals S1, . . . , SN such that A ⊆
⋃N

i=1 Si and
∑N

i=1 ν(Si) < ε. Hint : For
each implication, think of the intervals Si as intervals of a partition P , involved in
defining an upper sum U(χA, P ) for that partition.

Exercise 12.3.3. Show that A = Q×Q∩ [0, 1]× [0, 1] does not have volume, that
is, χA is not integrable.

12.4. Lebesgue Measure Zero

Henri Lebesgue (1875-1941) made some far-reaching advances in measure and inte-
gration theory, and the following concept is central to the success of his approach.
Lebesgue’s approach to integration is discussed later in this book. For now, we need
his concept of measure zero to help characterize the functions that are integrable
in the Riemann sense. This, in itself, is a major success of Lebesgue’s work.

Definition 12.4.1. Let S ⊂ Rn, bounded or unbounded. We say that S has n-
dimensional Lebesgue measure zero (or simply measure zero) if for every
ε > 0 there is a sequence of open intervals, Ji, in Rn such that S ⊆

⋃
i Ji and∑

i

ν(Ji) < ε.

The concepts of measure zero and volume zero depend on the dimension, and
one can write mn(S) = 0 and νn(S) = 0 to indicate n-dimensional Lebesgue mea-
sure zero and n-dimensional volume zero, respectively, if needed.

Example 12.4.2. Let S be the set of rational numbers in the unit interval, S =
Q∩ [0, 1]. Then S has Lebesgue measure zero. We enumerate these rationals by the
listing {r1, r2, r3, . . .}, and then cover the numbers individually by open intervals
whose lengths sum to less than a given ε > 0. For example, cover r1 by an open
interval of length ε/2, r2 by an open interval of length ε/22; in general, cover rk
by an open interval of length ε/2k. Then the countable collection of these open
intervals covers S and has total length less than

∑∞
k=1 ε/2

k = ε. Therefore S has
Lebesgue measure zero. �
Example 12.4.3. The set S = {(x, 0) : 0 ≤ x ≤ 1} has 2-dimensional Lebesgue
measure zero. To verify this, observe that T can be covered by the single closed
interval [0, 1]×[0, δ] for any δ > 0. Since this interval has volume δ, we conclude that
T has volume zero, and hence T has measure zero. Alternatively, given 0 < ε < 1,
S can be covered by a single open interval, for example,

R =
{
(x, y) : − ε

4
< x < 1 +

ε

4
, − ε

4
< y <

ε

4

}
which has volume ν(R) = (1 + ε/2)(ε/2) < ε. Therefore S has measure zero. �
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If S has n-dimensional volume zero, then it has n-dimensional Lebesgue mea-
sure zero. For if S has volume zero, then for any ε > 0, S can be covered by

a finite collection of closed intervals Ii, 1 ≤ i ≤ N , such that
∑N

i=1 ν(Ii) < ε/2.
For each i, we can cover Ii with an open interval Ji of volume ν(Ii) + ε/2i+1, and∑N

i=1 ν(Ji) =
∑N

i=1 ν(Ii) +
∑N

i=1 ε/2
i+1 < ε/2 + ε/2 = ε. Since countable means

finite or countably infinite, S has Lebesgue measure zero. On the other hand, there
are sets having Lebesgue measure zero that do not have volume, as we see in the
next example.

Example 12.4.4. Let S be the set of points in the unit square [0, 1]× [0, 1] having
rational coordinates, that is,

S = Q×Q ∩ [0, 1]× [0, 1].

Then S has Lebesgue measure zero, since S is countable (Exercise 12.4.2). However,
S does not have volume, because the characteristic function of S is not integrable,
by Exercise 12.3.3. �

We have seen that volume zero implies Lebesgue measure zero; however, the
converse does not generally hold. An exception is described in the next proposition.

Proposition 12.4.5. A compact set in Rn that has Lebesgue measure zero also
has volume zero.

Proof. Suppose A ⊂ Rn is compact (that is, closed and bounded) and has Lebesgue
measure zero. Let ε > 0. Since A has Lebesgue measure zero, there is a sequence
of open intervals, Ji, in Rn such that A ⊆

⋃
i Ji and

∑
i ν(Ji) < ε. Since A is

compact, there is a finite subcover {Ji1 , Ji2 , . . . , JiM } of A. By taking the closure of
each of these M open intervals, we have the collection {J i1 , J i2 , . . . , J iM } of closed
intervals, which covers A, and

M∑
j=1

ν(J ij ) ≤
∑
i

ν(Ji) < ε.

This argument holds for every ε > 0, and therefore A has volume zero. �

Observe that if J1×· · ·×Jn is an interval in Rn, then its boundary is given by
n⋃

k=1

J1 × · · · × Jk−1 × (∂Jk)× Jk+1 × · · · × Jn.

It is not difficult to see that the boundary of an interval in Rn has volume zero,
and thus the boundary has n-dimensional Lebesgue measure zero. On the other
hand, it is not difficult to directly see that the boundary of an interval in Rn has
Lebesgue measure zero, and that the boundary is compact (since it is closed and
bounded); hence, the boundary of an interval has volume zero by the proposition.

It follows directly from Definition 12.4.1 that every subset of a set of measure
zero has measure zero (Exercise 12.4.1). In particular, since the empty set is a
subset of every set, it is covered by a single interval of arbitrarily small volume,
and hence has Lebesgue measure zero. By a similar argument, any singleton set
{x} has measure zero, and thus every finite set in Rn has Lebesgue measure zero.
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The reader can verify that we could have chosen closed intervals instead of open
intervals in the definition of Lebesgue measure zero and obtained the same concept
(Exercise 12.4.3).

Example 12.4.6. Let us show that the graph of a continuous function f : [a, b] →
R has 2-dimensional Lebesgue measure zero. It suffices to show that the graph has
2-dimensional volume zero. Let G = {(x, f(x)) : x ∈ [a, b]} be the graph. Since
f is uniformly continuous on [a, b], for every ε > 0 there is a δ > 0 such that
|x1−x2| < δ implies |f(x1)− f(x2)| < ε/(b−a). Thus, for every ε > 0, we can find
a finite cover of G by closed rectangles having height ε/(b− a) and nonoverlapping
interiors. Thus, G is covered by finitely many closed intervals in R2 whose total
volume is less than or equal to ε, so ν(G) = 0. �

Despite the result of this last example, a continuous image of a set with n-
dimensional volume zero need not have n-dimensional volume zero. This fact is
demonstrated by the existence of space-filling curves, one of which is presented at
the beginning of the next chapter.

An advantage of the concept of measure zero over that of volume zero is that
the union of a countable infinity of sets, each having measure zero, is also a set of
measure zero. The case of dimension n = 1 in the next result was invoked earlier
in the proof of Theorem 7.1.11 to show that a uniform limit of Riemann integrable
functions on [a, b] is Riemann integrable on [a, b]. (The proof here applies as written
to the case n = 1, with the understanding that the volume ν(Jk

j ) of interval Jk
j

means the length of that interval.)

Theorem 12.4.7. A countably infinite union of sets of n-dimensional Lebesgue
measure zero is a set of n-dimensional Lebesgue measure zero.

Proof. Let {Ek} be a countable collection of subsets Ek ⊂ Rn, each having
Lebesgue measure zero. Given ε > 0, there exists a doubly indexed collection
of open intervals {Jk

j } in Rn such that for each k,∑
j

ν(Jk
j ) <

ε

2k+1

and
⋃

j J
k
j covers Ek. Thus,

⋃
k,j J

k
j covers

⋃
k Ek. The problem now is to arrange

this doubly indexed collection of intervals into a sequence and then sum the volumes
according to that definite sequence.

We arrange the volumes ν(Jk
j ) of these intervals in a matrix with ν(J1

1 ) as the
upper left entry and, using k as the row index, j as the column index, we can list
the volumes, by tracing the diagonals of slope one in our matrix, starting from the
upper left entry, in the order
(12.2)

ν(J1
1 ), ν(J2

1 ), ν(J1
2 ), ν(J3

1 ), ν(J2
2 ), ν(J1

3 ), ν(J4
1 ), ν(J3

2 ), ν(J2
3 ), ν(J1

4 ),

and so on. Let σn denote the n-th partial sum based on this ordering of the volumes;
thus,

σ1 = ν(J1
1 ), σ2 = ν(J1

1 ) + ν(J2
1 ), σ3 = ν(J1

1 ) + ν(J2
1 ) + ν(J1

2 ), . . . .
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With the diagonals of slope one in our matrix in view, we can form the triangular
partial sums

sn =
∑

k+j≤n

ν(Jk
j ),

and notice that we have

s1 = σ1, s2 = σ3, s3 = σ6, . . . , sn = σ(n(n+1))/2, . . . .

Thus (σn) is an increasing sequence with subsequence (sn). By (12.2), we may
write

sn = σ(n(n+1))/2 =
n∑

k=1

(
ν(Jk

1 ) + ν(Jk−1
2 ) + · · ·+ ν(J1

k)
)
.

Since ν(Jk
j ) ≥ 0 for all k, j ∈ N, we have

sn = σ(n(n+1))/2 =

n∑
k=1

(
ν(Jk

1 ) + ν(Jk−1
2 ) + · · ·+ ν(J1

k )
)
≤

n∑
k=1

( n∑
j=1

ν(Jk
j )
)

≤
n∑

k=1

( ∞∑
j=1

ν(Jk
j )
)
<

n∑
k=1

ε

2k+1
<

ε

2
< ε.

Therefore the sequence (sn) = (σ(n(n+1))/2) is increasing and bounded above by
ε, and it converges to a limit s < ε. Since it is a subsequence of the increasing
sequence (σn), we conclude from Theorem 2.4.17 that (σn) itself converges to the
same limit, hence limn→∞ σn = s < ε. We conclude that the sum of the volumes
of the intervals Jk

j , listed in (12.2), is less than ε. Since ε is arbitrary, this shows
that

⋃
k Ek has Lebesgue measure zero. �

Example 12.4.8. The real numbers of the form a+b
√
2, a, b ∈ Q, are all irrational.

The set of such numbers is a countable union of countable sets, and hence has
measure zero. �

We noted in Example 12.4.3 that the real interval [0, 1], considered as a subset
of the plane, has 2-dimensional Lebesgue measure zero. Let us show that the entire
real line, considered as a subset of the plane, has measure zero.

Example 12.4.9. The entire real line, considered as a subset of the plane, has mea-
sure zero. The proof depends on showing that increasingly larger chunks of the em-
bedded line can be covered by smaller and smaller 2-dimensional interval volumes.
Given 0 < ε < 1, we must find open intervals Jj in R2 such that

∑
j ν(Jj) < ε. For

example, we may choose

Jj =
(
− j

2
,
j

2

)
×
(
− ε

2j(2j)
,

ε

2j(2j)

)
.

The 2-dimensional volume of Jj is ν(Jj) = ε/2j , and thus
∑

j ν(Jj) < ε. Moreover,
it is clear that the entire real line, considered as a subset of the plane, that is, the
set {(x, 0) : x ∈ R}, is contained in the union of the Jj . Thus, the embedded real
line has measure zero in R2. �



12.5. A Criterion for Riemann Integrability 373

Exercises.

Exercise 12.4.1. Show that if A ⊂ B ⊂ Rn and B has Lebesgue measure zero,
then so does A.

Exercise 12.4.2. Show that every countably infinite set in Rn has Lebesgue mea-
sure zero.

Exercise 12.4.3. Show that a set A ⊂ Rn has Lebesgue measure zero if and only
if for every ε > 0 there is a sequence of closed intervals Ii such that A ⊆

⋃
i Ii and∑

i ν(Ii) < ε.

Exercise 12.4.4. Show that if Z ⊂ Rn has Lebesgue measure zero, then for any
a ∈ Rn the translated set a+Z = {a+x : x ∈ Z} also has Lebesgue measure zero.

Exercise 12.4.5. Volume measure is invariant under translations
Show that if Z ⊂ Rn has volume zero, then for any a ∈ Rn the translated set
a + Z = {a + x : x ∈ Z} also has volume zero. Show that, if S has volume, then
for any a ∈ Rn, the translated set a + S = {a + x : x ∈ S} also has volume, and
ν(a+ S) = ν(S).

Exercise 12.4.6. Give an example of a bounded set A ⊂ Rn (for some n) such
that ∂A does not have Lebesgue measure zero.

Exercise 12.4.7. Give an example of a set A ⊂ Rn (for some n) having measure
zero, such that ∂A does not have measure zero.

12.5. A Criterion for Riemann Integrability

The purpose of this section is to prove the following criterion for the integrability
of a real valued function on a closed interval in Rn.

Theorem 12.5.1. Let B be a closed interval in Rn. A bounded function f : B → R
is Riemann integrable on B if and only if the set of points where f is discontinuous
has Lebesgue measure zero.

With n = 1, the theorem includes the case when B = [a, b], a closed interval,
and f : [a, b] → R, in which case a reading of the proof adapts itself to that special
case with no difficulty, providing a proof of Theorem 6.4.4.

Let B be an interval in Rn and f : B → R a bounded function. We begin
by recalling the definitions and result of Exercise 8.10.7 which involves the concept
of the oscillation o(f,p) of f at p ∈ B. For each open set U containing p, the
oscillation of f on U is defined by

o(f, U) = sup
{
|f(x1)− f(x2)| : x1, x2 ∈ U ∩B

}
.

The oscillation of f at p ∈ B is defined by

o(f,p) = inf
{
o(f, U) : U open and p ∈ U

}
.

For any p ∈ B, we have o(f,p) ≥ 0. By Exercise 8.10.7, f is discontinuous at p
if and only if o(f,p) > 0. Thus, f is discontinuous at p if and only if there is an
m ∈ N such that o(f,p) > 1/m. The main advantage of the oscillation concept is
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that it allows us to write the entire set of points of discontinuity of f as a countable
union. Let D be the set of points in B at which f is discontinuous. For each m ∈ N,
let

D1/m = {p ∈ B : o(f,p) ≥ 1/m}.
Then D1/m ⊆ D and

D =

∞⋃
m=1

D1/m.

From Exercise 8.10.7, we have that each set D1/m is a closed set, but we shall
prove this here. If y is a cluster point of D1/m, then every open neighborhood
of y contains points of D1/m. So every open neighborhood U of y is an open
neighborhood of a point p of D1/m; hence, by definition of D1/m, we have

o(f, U) = sup
{
|f(x1)− f(x2)| : x1,x2 ∈ U ∩B

}
≥ 1

m
.

Therefore o(f,y) ≥ 1/m, so y ∈ D1/m. So D1/m contains all its cluster points and
is therefore closed.

Let P be a partition of B, and let m ∈ N be a fixed positive integer. The
subintervals S of the partition P are of two types:

(i) S ∩D1/m 
= ∅, so there exist points in S such that the oscillation of f in every
open neighborhood of those points is ≥ 1/m.

(ii) S ∩D1/m = ∅, which means there are no points in S such that the oscillation
of f in every open neighborhood is ≥ 1/m. Equivalently, for each p ∈ S, we
have o(f,p) < 1/m.

Proposition 12.5.2. Let B be a closed interval in Rn. If f : B → R is a bounded
function and the set D of discontinuities of f has Lebesgue measure zero, then f is
Riemann integrable on B.

Proof. We are assuming that μ(D) = 0. Let ε > 0, and fix a positive integer
m ∈ N such that 1/m < ε. Since D1/m ⊂ D ⊂ B, D1/m is bounded, and since
D1/m is closed, D1/m is compact, and since μ(D) = 0, μ(D1/m) = 0. So there is a
sequence of open intervals {Jk} such that D1/m ⊆

⋃
k Jk and

∞∑
k=1

ν(Jk) < ε.

Since D1/m is compact, a finite number of the Jk cover D1/m; suppose J1, . . . , JN
cover D1/m. Then clearly

(12.3)

N∑
k=1

ν(Jk) < ε.

Let P be a partition of B. By refining the partition if necessary, we may assume
that each interval of the partition is either disjoint from D1/m or contained in one
of the intervals J1, . . . , JN that cover D1/m. Thus the intervals of the partition are
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split into two classes, C1 and C2, not necessarily disjoint:

C1: the collection of intervals of the partition contained in one of the open intervals
J1, . . . , JN , which cover D1/m;

C2: the collection of intervals of the partition that do not intersect D1/m.

For each interval S in C2, since S does not intersect D1/m, the oscillation of f at
each point of S is < 1/m. So for each x ∈ S we can find an open neighborhood Ux

of x such that

MUx
(f)−mUx

(f) <
1

m
,

where we have employed our usual notation for the supremum (M) and infimum
(m) of f over a set. Since S is compact, a finite number of the open sets Ux covers
S. Moreover, we may refine the partition P such that within S, each interval of
the new partition is contained in one of the finitely many open sets Ux that covers
S. We may do this for each of the intervals S in C2, yielding a partition P ′ of B.
There is an M such that |f(x)| ≤ M for x ∈ B. And for the new partition P ′ and
classes C1, C2 relative to P ′, we have

U(f, P ′)− L(f, P ′) ≤
∑

S∈C1

[MS(f)−mS(f)]ν(S) +
∑

S∈C2

[MS(f)−mS(f)]ν(S),

and thus

U(f, P ′)− L(f, P ′) ≤
∑

S∈C1

2Mν(S) +
1

m
ν(B).

Since S ⊂
⋃
Jk for S in C1, (12.3) and the fact that 1/m < ε imply

U(f, P ′)− L(f, P ′) ≤ 2Mε+ ε ν(B) = [2M + ν(B)] ε.

Since ε is arbitrary, Riemann’s criterion (Theorem 12.1.3) implies that f is inte-
grable on B. �

We wish to prove the converse of Proposition 12.5.2.

Proposition 12.5.3. Let B be a closed interval in Rn. If f : B → R is Riemann
integrable on B, then the set D of discontinuities of f has Lebesgue measure zero.

Proof. We have D =
⋃∞

m=1 D1/m where D1/m = {p ∈ B : o(f,p) ≥ 1/m}. We
wish to show that for eachm ∈ N, D1/m has measure zero, for thenD is a countable
union of sets of measure zero, and hence D has measure zero by Theorem 12.4.7.

Let ε > 0. By integrability of f , there is a partition P of B such that

(12.4) U(f, P )− L(f, P ) =
∑
S

[MS(f)−mS(f)]ν(S) < ε,

where the sum is over all intervals S of the partition P . Let n ∈ N be a fixed
positive integer. We write D1/n as a disjoint union as follows. Let

S1 := {x ∈ D1/n : x ∈ ∂S for some rectangle S of P}
and

S2 := {x ∈ D1/n : x ∈ IntS for some rectangle S of P}.
Then D1/n = S1 ∪ S2, and μ(S1) = 0, since the boundary of any interval has
measure zero and there are finitely many intervals of the partition.
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Since S1 has measure zero, we can refine the partition P to produce partition
P ′, if necessary, and find a finite collection C ′ of intervals of P ′ that covers S1 such
that ∑

S∈C′

ν(S) < ε.

Let C denote the collection of intervals S of the partition P ′ that have an
element of D1/n in their interior. Thus, if S is in C, then

MS(f)−mS(f) ≥
1

n
,

and therefore

1

n

∑
S∈C

ν(S) ≤
∑
S∈C

[MS(f)−mS(f)]ν(S) ≤
∑
S

[MS(f)−mS(f)]ν(S) < ε,

by (12.4). Thus, C is a collection of intervals that cover S2, and we have∑
S∈C

ν(S) ≤ n ε.

Then C ∪ C ′ covers S1 ∪ S2 = D1/n and∑
S∈C∪C′

ν(S) < nε+ ε = (n+ 1)ε.

Since ε is arbitrary (and n fixed), D1/n has measure zero. Since n was arbitrary,

D =
⋃∞

m=1 D1/m has measure zero by Theorem 12.4.7. �

Taken together, Propositions 12.5.2 and 12.5.3 complete the proof of Theorem
12.5.1.

The next corollary is an immediate consequence of Theorem 12.5.1 and the
definition of Riemann integrability for a bounded real function on a bounded set S
in Rn (Definition 12.2.2).

Corollary 12.5.4. Let S be a bounded set in Rn and B any closed interval con-
taining S. A bounded function f : S → R is integrable on S if and only if the set of
discontinuities of fS, the extension of f by zero to B, has Lebesgue measure zero.

If a property or statement involving points of B holds for all points except on a
subset of B of Lebesgue measure zero, we may say that the property holds almost
everywhere (a.e.) in B.

Corollary 12.5.5. A bounded set S in Rn has volume if and only if ∂S has
Lebesgue measure zero.

Proof. A bounded set S in Rn has volume if and only if the characteristic function
χS is integrable on S. For any set S, the set of discontinuities of χS coincides with
∂S (Exercise 12.5.1). Thus, by Theorem 12.5.1, χS is integrable if and only if ∂S
has measure zero. �

The next result summarizes the situation with integrability in a convenient
manner for later reference.
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Corollary 12.5.6. Let S be a bounded set that has volume. A bounded function
f : S → R is integrable on S if and only if f is continuous a.e. in the interior of S.

Proof. Extend f by zero to fS on a closed interval B that contains S. The set D
of discontinuities of fS on B is

D = (D ∩ IntS) ∪ (D ∩ ∂S),

since fS ≡ 0 outside the closed set S = IntS ∪ ∂S. Since S has volume, ∂S has
Lebesgue measure zero. So D ∩ ∂S, being a subset of ∂S, has Lebesgue measure
zero. Thus, fS is integrable on B if and only ifD∩IntS has measure zero. Therefore
f is integrable on S if and only if f is continuous a.e. in the interior of S. �

Example 12.5.7. Let f be defined on the closed unit square B = [0, 1]× [0, 1] in
the plane by f(x, y) = 1 for (x, y) in the interior and for points with rational coor-
dinates on the boundary, and f(x, y) = 0 for all other points on the boundary. The
boundary has measure zero in R2 and f is continuous everywhere in the interior,
which is the open unit square (0, 1)× (0, 1), so f is integrable on B. Observe that
f is discontinuous everywhere on the boundary, an uncountable set. �

Exercise.

Exercise 12.5.1. Prove: For any set S ⊂ Rn, the set of discontinuities of χS

coincides with ∂S.

12.6. Properties of Volume and Integrals

Suppose S has volume in Rn. We wish to prove the linearity of the integral over
S. By Corollary 12.5.5 and Corollary 12.5.6 at the end of the previous section, and
Definition 12.2.2, it suffices to prove linearity of the integral on closed intervals B.

Theorem 12.6.1. If B is a closed interval in Rn, f, g : B → R are integrable on
B, and α and β are any real numbers, then αf + βg is integrable on B and∫

B

(αf + βg) = α

∫
B

f + β

∫
B

g.

Proof. If f and g are continuous at p, then so is αf + βg. It follows that the set
of discontinuities of αf + βg is contained in the union of the set of discontinuities
of f with the set of discontinuities of g. If f and g are integrable on B, then they
are continuous a.e. on IntB, so it follows that αf + βg is continuous a.e. on IntB,
hence αf + βg is integrable on B.

(i) Prove that
∫
B
αf = α

∫
B
f for α > 0: We have U(αf, P ) = αU(f, P ) and

L(αf, P ) = αL(f, P ) for any partition P . Since we have established integrability
of αf , it suffices to consider lower sums only. By the integrability of f , we have

supL(αf, P ) = supαL(f, P ) = α supL(f, P ) = α

∫
B

f,

so the integrability of αf implies that
∫
B
αf = α

∫
B
f .

Recall that if S is a set which is bounded above and bounded below, then
inf(−S) = − supS and sup(−S) = − inf S.
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(ii) Prove that
∫
B
(−f) = −

∫
B
f : We have established that −f is integrable.

If P is a partition of B, then L(−f, P ) = −U(f, P ). With

S = {L(−f, P ) : P a partition of B},
we have −S = {U(f, P ) : P a partition of B}, so we have

inf{U(f, P )} = inf(−S) = − supS = − sup{L(−f, P )}.
By the integrability of −f , it follows that sup{L(−f, P )} =

∫
B
(−f), and by the

integrability of f , we have∫
B

(−f) = sup{L(−f, P )} = − inf{U(f, P )} = −
∫
B

f.

(iii) Prove that
∫
B
αf = α

∫
B
f for α < 0: This follows immediately from (i)

and (ii) above, since we have∫
B

αf =

∫
B

−|α|f = −
∫
B

|α|f = −|α|
∫
B

f = α

∫
B

f.

(iv) Prove that
∫
B
(f + g) =

∫
B
f +

∫
B
g: Let P be a partition of B and let S

be any rectangle of the partition P . Since

MS(f + g) = sup
S

(f(x) + g(x)) ≤ sup
S

f(x) + sup
S

g(x) = MS(f) +MS(g)

and

mS(f + g) = inf
S
(f(x) + g(x)) ≥ inf

S
f(x) + inf

S
g(x) = mS(f) +mS(g),

it follows that

(12.5) U(f + g, P ) ≤ U(f, P ) + U(g, P )

and

(12.6) L(f + g, P ) ≥ L(f, P ) + L(g, P ).

Given ε > 0, there exist partitions P1 and P2 such that

U(f, P1) <
ε

2
+

∫
B

f and U(g, P2) <
ε

2
+

∫
B

g.

Let P3 = P1 ∪ P2; then P3 is a refinement of P1 and P2. By (12.5),

U(f + g, P3) ≤ U(f, P3) + U(g, P3) ≤ U(f, P1) + U(g, P2) < ε+

∫
B

f +

∫
B

g,

hence ∫
B

(f + g) = inf{U(f + g, P ) : P a partition of B} ≤ ε+

∫
B

f +

∫
B

g.

By a similar argument using lower sums, (12.6) yields the other inequality,∫
B

(f + g) = sup{L(f + g, P ) : P a partition of B} ≥ ε+

∫
B

f +

∫
B

g.

Since ε is arbitrary, we conclude that
∫
B
(f + g) =

∫
B
f +

∫
B
. This completes the

proof of linearity of the integral on B. �
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As we indicated at the beginning of the section, Theorem 12.6.1 establishes the
linearity of the integral over any bounded set S that has volume, for functions f
and g integrable on S and real numbers α and β, since for any closed interval B
containing S,∫

S

(αf + βg) =

∫
B

(αfS + βgS) = α

∫
B

fS + β

∫
B

gS = α

∫
S

f + β

∫
S

g.

We can now list the basic properties of sets that have volume, that is, the
Jordan measurable sets. The reader might wish to read or work out Exercise 12.3.1
before reading the proofs of these properties.

Theorem 12.6.2. Let S1 and S2 be subsets of Rn that have volume. Then the
following statements are true:

1. S1 ∪ S2 and S1 ∩ S2 have volume, and

ν(S1 ∪ S2) = ν(S1) + ν(S2)− ν(S1 ∩ S2).

2. If IntS1 ∩ IntS2 is the empty set, then

ν(S1 ∪ S2) = ν(S1) + ν(S2).

3. If S1 ⊆ S2, then S2 − S1 = S2 ∩ Sc
1 has volume and

ν(S2 ∩ Sc
1) = ν(S2)− ν(S1).

4. If S1 ⊆ S2, then
ν(S1) ≤ ν(S2).

Proof. 1. Since S1 and S2 have volume, they are bounded and both ∂S1, ∂S2 have
volume zero, so ∂S1 ∪ ∂S2 has volume zero. Then S1 ∪ S2 and S1 ∩ S2 are also
bounded, and both ∂(S1 ∪S2) and ∂(S1 ∩S2) are contained in ∂S1 ∪ ∂S2, and thus
have volume zero, so we may conclude that both S1 ∪S2 and S1 ∩S2 have volume.
It remains to show the formula for the volume of the union. For the characteristic
functions of the four sets S1, S2, S1 ∪ S2 and S1 ∩ S2, it is straightforward to show
that

(12.7) χS1
+ χS2

= χS1∪S2
+ χS1∩S2

(Exercise 12.6.2). Since χS1
and χS2

are integrable on any closed interval B that
contains S1 and S2, we have by the linearity of the integral and the definition of
volume, ∫

B

(χS1
+ χS2

) =

∫
B

χS1
+

∫
B

χS2
= ν(S1) + ν(S2)

and∫
B

(χS1∪S2
+ χS1∩S2

) =

∫
B

χS1∪S2
+

∫
B

χS1∩S2
= ν(S1 ∪ S2) + ν(S1 ∩ S2).

We conclude from (12.7) and these two integral formulas that

ν(S1) + ν(S2) = ν(S1 ∪ S2) + ν(S1 ∩ S2),

which is the desired result.

2. Since S1 and S2 have no interior points in common, if x ∈ S1∩S2, then either
x ∈ ∂S1 or x ∈ ∂S2, so S1 ∩ S2 ⊆ ∂S1 ∪ ∂S2. Since both boundaries have volume
zero, so does S1 ∩ S2. The formula for ν(S1 ∪ S2) then follows from statement 1.
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3. If S1 ⊆ S2, then S2 −S1 = S2 ∩Sc
1 is bounded, and ∂(S2 ∩Sc

1) ⊆ ∂S1 ∪ ∂S2.
Hence, ∂(S2∩Sc

1) has volume zero, so S2∩Sc
1 has volume. Since S2 = S2∪S1 = (S2∩

Sc
1)∪S1 is a disjoint union, statements 1 and 2 imply that ν(S2) = ν(S2∩Sc

1)+ν(S1),
which is the desired result.

4. This is immediate from statement 3 and the fact that ν(S2 ∩ Sc
1) ≥ 0. �

Given the result of Theorem 12.6.2 (statement 1), an induction argument shows
that if each set in a finite collection {S1, . . . , SN} has volume (these are bounded

sets, by definition), then the union
⋃N

i=1 Si is also bounded and has volume. How-
ever, in general, countable unions of sets having volume need not have volume, as
we have seen.

The next theorem summarizes some basic properties of the integral.

Theorem 12.6.3. Let A have volume in Rn, and let f, g : A → R be integrable
on A. Then the following statements are true:

1. If f ≥ 0 on A, then
∫
A
f ≥ 0.

2. If f(x) ≤ g(x) for all x ∈ A, then
∫
A
f ≤

∫
A
g.

3. The function |f | is integrable on A, and
∣∣ ∫

A
f
∣∣ ≤ ∫

A
|f |.

4. If m ≤ |f(x)| ≤ M for all x ∈ A, then

mν(A) ≤
∫
A

|f | ≤ M ν(A).

Proof. 1. If f ≥ 0 on A, then U(f, P ) ≥ L(f, P ) ≥ 0 for any partition P of a
closed interval B containing A. Hence,

∫
A
f = inf U(f, P ) = supL(f, P ) ≥ 0.

2. Since g−f ≥ 0, this follows from statement 1 by the linearity of the integral.

3. Since f is integrable on A, f is continuous a.e. in IntA; therefore |f |
is continuous a.e. in IntA, and it follows that |f | is integrable on A (Corollary
12.5.6). Since −f, f ≤ |f | on A, we have −

∫
A
f ≤

∫
A
|f | and

∫
A
f ≤

∫
A
|f | by

statement 2. Thus,
∣∣ ∫

A
f
∣∣ ≤ ∫

A
|f |.

4. By statement 2, together with mν(A) = m
∫
A
χA =

∫
A
m, and similarly for

M ν(A), we have

mν(A) =

∫
A

m ≤
∫
A

|f | ≤
∫
A

M = M ν(A).

This completes the proof. �

Finally, we again consider an open interval S = (a1, b1)× · · · × (an, bn), and its
closure, S = [a1, b1]× · · · × [an, bn], whose volumes equal

∏n
i=1(bi − ai), by axiom;

thus, we defined ∫
S

χS =

∫
S

χS =
n∏

i=1

(bi − ai)

as part of Definition 12.3.1 so that these two types of sets have consistently defined
volumes. Now, if Ŝ is any variation of S such that some factors are open and
some closed, and/or some factors are half-open, then S ⊂ Ŝ ⊂ S. We could define
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ν(Ŝ) =
∫
Ŝ
χŜ =

∏n
i=1(bi − ai), or simply notice that on any closed interval B

containing S (including S itself), Theorem 12.6.3 (statement 2) shows that

χS ≤ χŜ ≤ χS =⇒
∫
B

χS ≤
∫
B

χŜ ≤
∫
B

χS ,

and hence ν(S) = ν(Ŝ) = ν(S) =
∏n

i=1(bi − ai).

The final theorem of the section characterizes integrability in terms of Riemann
sums defined by selections of points from the intervals of a partition. First, some
definitions.

Definition 12.6.4. Let Q be a closed interval in Rn and suppose f : Q → R
is bounded. Suppose P is a partition of Q and {S1, . . . , Sm} is the collection of
intervals of P . Then the mesh of P is the maximum length of any edge (factor) of
the intervals S1, . . . , Sm, and a selection for P is a set S = {x1, . . . ,xm} such that
xi ∈ Si for 1 ≤ i ≤ m. The Riemann sum for f corresponding to the partition P
and selection S is

R(f, P,S) =
m∑
i=1

f(xi) ν(Si).

Theorem 12.6.5. Let Q be an interval in Rn and suppose f : Q → R is bounded
and is zero outside Q. Then f is integrable on Q and

∫
Q
f = I if and only if, given

ε > 0, there exists δ = δ(ε) > 0 such that

|R(f, P,S)− I| < ε

whenever P partitions Q with mesh less than δ and S is a selection for P .

Proof. Suppose that f is integrable on Q and
∫
Q
f = I. Then f is bounded so

there is an M such that |f(x)| ≤ M for all x in Q. Given ε > 0, there is a partition
P0 of Q with intervals Q1, . . . , Qm such that

U(f, P0)− L(f, P0) =
m∑
i=1

(Mi −mi) ν(Qi) <
ε

2
,

where Mi = supQi
f(x) and mi = infQi

f(x). If A = Q −
⋃m

i=1 IntQi, then A has
volume zero. Then there exists δ > 0 such that, if P refines P0 and has mesh less
than δ, then the sum of the volumes of the intervals P1, . . . , Pk of P that intersect
A is less than ε/4M . Let Pk+1, . . . , Pl be the remaining intervals of P , which all lie
interior to the Qi.

Letting S = {x1, . . . ,xl} be a selection for the partition P , then

inf
Pi

f ≤ f(xi) ≤ sup
Pi

f

for i = k + 1, . . . , l. Thus each of the sums

l∑
i=k+1

f(xi) ν(Pi) and
l∑

i=k+1

∫
Pi

f
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lies between
∑l

i=k+1(infPi
f) ν(Pi) and

∑l
i=k+1(supPi

f) ν(Pi), and it follows that

(12.8)
∣∣∣ l∑
i=k+1

∫
Pi

f −
l∑

i=k+1

f(xi) ν(Pi)
∣∣∣ < ε

2
,

since the difference between the upper and lower sums for P is less than ε/2.

Since −M ≤ f(x) ≤ M for all x, each of the sums

k∑
i=1

∫
Pi

f and

k∑
i=1

f(xi) ν(Pi)

lies between −M
∑k

i=1 ν(Pi) > −ε/4 and M
∑k

i=1 ν(Pi) < ε/4. It follows that

(12.9)
∣∣∣ k∑
i=1

∫
Pi

f −
k∑

i=1

f(xi) ν(Pi)
∣∣∣ < ε

2
.

Since I =
∫
Q
f =

∑l
k=1

∫
Pi

f , inequalities (12.8) and (12.9) and the triangle in-

equality imply that

| I −R(f, P,S)| < ε,

as we wished to show.

For the converse implication, suppose now that ε > 0 is given, and δ = δ(ε) > 0
is such that whenever P is a partition of Q with mesh less than δ and S is a selection
for P , we have

|R(f, P,S)− I| < ε

4
.

Let P be such a partition of Q with intervals P1, . . . , Pp. Let

ai = inf
Pi

f(x) and bi = sup
Pi

f(x).

Then U(f, P ) =
∑p

i=1 bi ν(Pi) and L(f, P ) =
∑p

i=1 ai ν(Pi). We may choose selec-
tions S ′ = {x′

1, . . . ,x
′
p} and S ′′ = {x′′

1 , . . . ,x
′′
p} for P such that

|ai − f(x′
i)| <

ε

4 ν(Q)
and |bi − f(x′′

i )| <
ε

4 ν(Q)

for 1 ≤ i ≤ p. Then, by the triangle inequality,

∣∣∣R(f, P,S ′)− L(f, P )
∣∣∣ =

∣∣∣ p∑
i=1

(
f(x′

i)− ai
)
ν(Pi)

∣∣∣
≤ ε

4 ν(Q)

p∑
i=1

ν(Pi)

=
ε

4
.
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Similarly, for the selection S ′′, we have∣∣∣R(f, P,S ′′)− U(f, P )
∣∣∣ =

∣∣∣ p∑
i=1

(
f(x′′

i )− bi
)
ν(Pi)

∣∣∣
≤ ε

4 ν(Q)

p∑
i=1

ν(Pi)

=
ε

4
.

Combining these results yields, again by the triangle inequality,

U(f, P )− L(f, P ) ≤
∣∣∣U(f, P )−R(f, P,S ′′)

∣∣∣+ ∣∣R(f, P,S ′′)− I
∣∣

+
∣∣ I −R(f, P,S ′)

∣∣+ ∣∣∣R(f, P,S ′)− L(f, P )
∣∣∣

<
ε

4
+

ε

4
+

ε

4
+

ε

4
= ε

by the hypothesis on P . Therefore f satisfies the Riemann criterion for integrability,
and hence f is integrable on Q. Since I is trapped between U(f, P ) and L(f, P ),
I =

∫
Q
f . �

Exercises.

Exercise 12.6.1. Let f(x, y) = y2+cos(1/(2x−y)) for 2x−y 
= 0 and f(x, y) = y2

for 2x − y = 0. Show that f is integrable on the open ball B = {(x, y) ∈ R2 :
x2 + y2 < 1}.

Exercise 12.6.2. Prove: For sets S1 and S2, χS1
+ χS2

= χS1∪S2
+ χS1∩S2

.

Exercise 12.6.3. Let S = [0, 1]× [0, 1]. Give an example of functions f, g : S → R,
neither of them integrable on S, such that f + g is integrable on S.

Exercise 12.6.4. Show that if A is bounded and has volume zero, and g : A → R
is integrable on A, then

∫
A
g = 0.

Exercise 12.6.5. Let A and B be sets that have volume. Show that if A ∩ B is
empty, then

∫
A∪B

f =
∫
A
f +

∫
B
f .

Exercise 12.6.6. Compute
∫
B
f where f and B are as in Example 12.5.7.

Exercise 12.6.7. Let A and B be sets that have volume. Show that if A ∩B has
volume zero, then

∫
A∪B

f =
∫
A
f +

∫
B
f .

Exercise 12.6.8. Prove the following statements:

1. If f and g are continuous on A, g ≥ 0 on A,
∫
A
g > 0, and A is compact and

connected, then there is a point c ∈ A such that∫
A

fg = f(c)

∫
A

g.

2. If A has positive volume, is compact and connected, and f : A → R is
continuous, then

∫
A
f = f(c) ν(A) for some c ∈ A.
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12.7. Multiple Integrals

Readers will recall earlier experience with the computation of integrals over certain
planar regions or domains in 3-space by means of multiple integrals. Theorems that
establish the value of an integral as being equal to certain multiple integrals are
most often associated with the work of G. Fubini (1879-1943) and referred to as
Fubini’s theorem(s). We begin with the following version of Fubini’s theorem for
planar integrals.

Theorem 12.7.1. Let A = [a, b] × [c, d] in R2 and write (x, y) for points of the
plane.

1. If f : A → R is continuous, then∫
A

f =

∫ b

a

(∫ d

c

f(x, y) dy
)
dx =

∫ d

c

(∫ b

a

f(x, y) dx
)
dy.

2. If f : A → R is integrable on A, and for each fixed x ∈ [a, b], the function
fx(y) = f(x, y) is integrable on [c, d], then∫

A

f =

∫ b

a

(∫ d

c

f(x, y) dy
)
dx.

3. If f : A → R is integrable on A, and for each fixed y ∈ [c, d], the function
fy(x) = f(x, y) is integrable on [a, b], then∫

A

f =

∫ d

c

(∫ b

a

f(x, y) dx
)
dy.

Proof. If f is continuous on A, then f is integrable on A. Moreover, each section
fx(y), for fixed x ∈ [a, b], is continuous and hence integrable on [c, d], and each
section fy(x), for fixed y ∈ [c, d], is continuous and hence integrable on [a, b]. Thus
parts 2 and 3 together cover statement 1, so we only need to prove 2 and 3. (See
also Exercise 12.7.7 for a different argument for statement 1.)

2. Assume f : A → R is integrable on A, and for each fixed x ∈ [a, b] the
function fx : [c, d] → R defined by fx(y) = f(x, y) is integrable on [c, d]. Let us
write

g(x) =

∫ d

c

fx(y) dy.

We want to show that g is integrable on [a, b] and that
∫
A
f =

∫ b

a
g(x) dx. Suppose

[a, b] is partitioned by a = x0 < x1 < · · · < xn = b with Vi = [xi−1, xi], and [c, d] is
partitioned by c = y0 < y1 < · · · < ym = d with Wj = [yj−1, yj ]. Let P[a,b] denote
the partition of [a, b] and P[c,d] the partition of [c, d]. Let P be the partition of A
given by the rectangles

Sij = [xi−1, xi]× [yj−1, yj ], 1 ≤ i ≤ n, 1 ≤ j ≤ m.

The upper sum for P is

U(f, P ) =
∑
i,j

MSij
(f)ν(Sij) =

∑
i

∑
j

MSij
(f)ν(Vi)ν(Wj),
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where MS(f) is the supremum of f on a set S. If x ∈ Vi, then for fx(y) = f(x, y)
we have

MSij
(f) ≥ MWj

(fx).

Therefore∑
j

MSij
(f)ν(Wj) ≥

∑
j

MWj
(fx)ν(Wj) ≥

∫ d

c

fx(y) dy = g(x).

Since this inequality holds for any x ∈ Vi, we have∑
j

MSij
(f)ν(Wj) ≥ MVi

(g).

Consequently,

U(f, P ) ≥
∑
i

MVi
(g)ν(Vi) = U(g, P[a,b]).

A similar argument shows that for greatest lower bounds on Sij and lower sums,
we have

L(f, P ) ≤ L(g, P[a,b]).

The integrability of f on A and the last two inequalities imply that g is integrable
on [a, b] and ∫

A

f =

∫ b

a

g(x) dx =

∫ b

a

(∫ d

c

f(x, y) dy
)
dx.

3. Now observe that if f is integrable on A and if for each fixed y ∈ [c, d], the
function fy(x) = f(x, y) is integrable on [a, b], then a similar argument using

h(y) =

∫ b

a

fy(x) dx =

∫ b

a

f(x, y) dx

shows that∫
A

f =

∫ d

c

h(y) dy =

∫ d

c

∫ b

a

fy(x) dx dy =

∫ d

c

(∫ b

a

f(x, y) dx
)
dy.

This completes the proof. �

As the reader is aware from introductory calculus, many complicated regions
may be decomposed into a union of regions of the form

(12.10) A = {(x, y) : a ≤ x ≤ b, φ1(x) ≤ y ≤ φ2(x)}
or

(12.11) B = {(x, y) : c ≤ y ≤ d, ψ1(y) ≤ x ≤ ψ2(y)},
where φ1, φ2, ψ1, ψ2 are continuous functions. Assuming that f is continuous on
a set such as A or B, the integration of f can proceed by multiple integrals, as
indicated in the following result.

Theorem 12.7.2. Let f be a continuous real valued function defined on a domain
of the form ( 12.10) or ( 12.11), where φ1, φ2, ψ1, ψ2 are continuous functions.

1. If f : A → R, then∫
A

f =

∫ b

a

(∫ φ2(x)

φ1(x)

f(x, y) dy
)
dx.
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2. If f : B → R, then∫
B

f =

∫ d

c

(∫ ψ2(y)

ψ1(y)

f(x, y) dx
)
dy.

Proof. 1. Let R = [a, b] × [c̄, d̄] be an interval containing A and consider the
extension of f to R by zero. The graph of φ1 and the graph of φ2 both have
measure zero, by Example 12.4.6. The set of discontinuities of f on R is contained
in the union of these graphs, and therefore f is integrable on R. Similarly, for
each fixed x ∈ [a, b], fx(y) = f(x, y) is continuous for y ∈ [c̄, d̄] except possibly at
y = φ1(x) and y = φ2(x). So fx(y) is integrable on [c̄, d̄]. By Theorem 12.7.1,∫

A

f =

∫
R

f =

∫ b

a

(∫ d̄

c̄

fx(y) dy
)
dx =

∫ b

a

(∫ φ2(x)

φ1(x)

fx(y) dy
)
dx,

which proves statement 1.

A similar argument establishes statement 2 and is left as an exercise. �

The reasoning behind Theorem 12.7.2 can be extended to obtain results like
the following one on triple integrals over a region that is a cylinder over a plane
region of the types considered in the theorem.

Theorem 12.7.3. Let α(x) and β(x) be continuous functions for a ≤ x ≤ b, with
α(x) ≤ β(x), and let γ(x, y) and δ(x, y) be continuous functions for a ≤ x ≤ b,
α(x) ≤ y ≤ β(x), with γ(x, y) ≤ δ(x, y). Let

D = {(x, y, z) ∈ R3 : a ≤ x ≤ b, α(x) ≤ y ≤ β(x), γ(x, y) ≤ z ≤ δ(x, y)}.
If f : D → R is continuous, then

∫
D
f exists and∫

D

f =

∫ b

a

(∫ β(x)

α(x)

(∫ δ(x,y)

γ(x,y)

f(x, y, z) dz
)
dy
)
dx.

Variations on Theorem 12.7.3 are possible if one integrates over a solid region D
which is a cylinder over (that is, projects onto) a plane region in either the xz-plane
or the yz-plane of the types considered in Theorem 12.7.2. Rather than formulate
such variations, we give an illustration of the idea in an example.

Example 12.7.4. Consider the solid tetrahedron D in the first octant of R3,
bounded by the coordinate planes and the plane 4x + 6y + 6z = 12. This plane
passes through three of the four vertex points of D, namely (0, 0, 2), (3, 0, 0) and
(0, 2, 0); the fourth vertex is (0, 0, 0). We will set up a triple integral for the volume
of D using the order of integration indicated by

Volume of D =

∫ ∫ ∫
(1) dz dy dx.

The base of the solid in the xy-plane is a triangle with sides on the coordinate axes
and on the line 4x+ 6y = 12, or y = 2− 2

3x. For each (x, y) in that base triangle,

we have z = 2− 2
3x− y. Thus,

Volume of D =

∫ 3

0

∫ 2− 2
3x

0

∫ 2− 2
3x−y

0

(1) dz dy dx.

See Exercise 12.7.4 for other orderings for the volume integral. �
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Some regions of integration that are not cylindrical in the global sense of The-
orem 12.7.3 might be expressed as unions of cylindrical subregions, extending the
applicability of Theorem 12.7.3 to such unions. Integrals over regions that are not
cylindrical can sometimes be transformed by coordinate change so as to yield an
integral over one of the simpler types of domain considered above. The general
result for such a transformation of integrals is the change of variable formula in
Theorem 13.4.4.

Thus far the results on integration by multiple integrals have dealt only with
the case of a function of two or three real variables. However, the results can be
extended to integrals of functions of finitely many real variables. If A ⊂ Rn and
B ⊂ Rm are closed intervals and f : A × B ⊂ Rn × Rm → R, then we define
x-sections and y-sections of f as follows. For each x ∈ A, define

fx : B ⊂ Rm → R by fx(y) = f(x,y).

And for each y ∈ B, define

fy : A ⊂ Rn → R by fy(x) = f(x,y).

Theorem 12.7.5. Let A ⊂ Rn and B ⊂ Rm be intervals and suppose f : A×B ⊂
Rn ×Rm → R.

1. If f is continuous on A×B, then∫
A×B

f =

∫
A

(∫
B

fx(y) dy
)
dx =

∫
B

(∫
A

fy(x) dx
)
dy.

2. If f is integrable on A × B and fx is integrable on B for each fixed x ∈ A,
then ∫

A×B

f =

∫
A

(∫
B

fx(y) dy
)
dx =

∫
A

(∫
B

f(x,y) dy
)
dx.

3. If f is integrable on A × B and fy is integrable on A for each fixed y ∈ B,
then ∫

A×B

f =

∫
B

(∫
A

fy(x) dx
)
dy =

∫
B

(∫
A

f(x,y) dx
)
dy.

The proof can be patterned on the arguments required to prove Theorem 12.7.1
and is left to the interested reader. For certain domains Theorem 12.7.5 (part 1)
can be applied repeatedly to reduce a multiple integral of a continuous function f
to a sequence of integrals, as in the next result.

Theorem 12.7.6. If A = [a1, b1] × · · · × [an, bn] is a closed interval in Rn and
f : A → R is continuous, then∫

A

f =

∫ bn

an

(
· · ·
(∫ b1

a1

f(x1, . . . , xn) dx1

)
· · ·
)
dxn.

Moreover, the same value,
∫
A
f , is obtained if the integrals on the right-hand side

are reordered by any other possible permutation of the n integrations.

An application to the computation of the volume of n-dimensional balls appears
in Exercise 13.4.6.
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Exercises.

Exercise 12.7.1. Prove part 2 of Theorem 12.7.2.

Exercise 12.7.2. Write the area of the disk D = {(x, y) ∈ R2 : x2 + y2 ≤ 1} as
an iterated integral in two different ways.

Exercise 12.7.3. Write the two-dimensional volume of the region D = {(x, y) ∈
R2 : 0 ≤ x ≤ 1, x4 ≤ y ≤ x1/3} as an iterated integral in two different ways.

Exercise 12.7.4. Set up volume integrals for the volume of the tetrahedron D
in Example 12.7.4 using the orderings

∫ ∫ ∫
dx dy dz and

∫ ∫ ∫
dy dz dx. (Observe

that, beyond the example and these two orderings, there are an additional three
orderings for iterated integrals for this volume.)

Exercise 12.7.5. Give a proof of Theorem 12.7.5.

Exercise 12.7.6. Sketch the parallelogram

P = {(x, y) ∈ R2 : a ≤ x ≤ b, mx+ c ≤ y ≤ mx+ d},
where m > 0 and c < d, and find its area using an iterated integral.

Exercise 12.7.7. Equality of iterated integrals of continuous functions
It can be interesting to see how the equality of iterated integrals of a continuous
function f follows from the theorem on differentiation under the integral (Theorem
8.10.24). Assume a < b and c < d, and suppose f : [a, b]× [c, d] → R is continuous.

1. Show that the function h(t, y) =
∫ t

a
f(x, y) dx is continuous on [a, b] × [c, d]

and differentiable with respect to t, and ∂h/∂t(t, y) = f(t, y).

2. Show that the function

g(x) =

∫ d

c

f(x, y) dy

is a continuous function of x ∈ [a, b].

3. Let

H(t) =

∫ t

a

(∫ d

c

f(x, y) dy
)
dx−

∫ d

c

(∫ t

a

f(x, y) dx
)
dy.

Verify that H(a) = 0, and then use the functions g(x) and h(t, y) to show that
H(b) = 0. Hint : Show that H ′(t) = 0 for all t ∈ [a, b].



Chapter 13

Transformation of Integrals

The previous chapter has provided us with an integral and a technique for its com-
putation by iterated real integrals in Fubini’s theorem. However, experience with
integration by substitution in introductory calculus shows that integrals are some-
times easier to handle when transformed by a change of variable. In this chapter
we develop the general change of variables formula for the integral. This result has
many important practical and theoretical consequences. In this development we
must consider what types of mappings are suitable as coordinate transformations
and also how Jordan measurable sets transform under the mappings. In particular,
we know that a bounded set S has volume if and only if ∂S has Lebesgue measure
zero (Corollary 12.5.5), and we need to understand how such sets, and other Jordan
measurable sets, transform under suitable coordinate transformations.

The major issues addressed in this chapter may be stated in the form of the
following questions:

If a set S has volume and g : S → Rn is a mapping, does g(S) have volume,
and under what conditions on g? If a function f is integrable on a set D, and
we express the function f in new coordinates (for the purpose of simplifying an
integral computation) by means of an invertible mapping g : S ⊂ Rn → D ⊂ Rn

with g(S) = D, is f ◦ g integrable on S, and under what conditions on g? These
questions are dealt with in Section 2.

If f◦g integrable on S, how is the integral of f onD transformed by means of the
transformation g? The answer is given in the change of variables formula, developed
for linear mappings in Section 3 and for more general mappings in Section 4.

In Section 5, we apply the change of variable formula to examine the definition
of surface integrals from multivariable calculus.

In order to generate interest in the issues involved, and to show that smoothness
beyond continuity is required for our transformations, we begin in Section 1 with
an example which shows that a continuous mapping need not map a set of volume

389
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zero to an image set of volume zero. This example, of interest in its own right, is
a space-filling curve.

13.1. A Space-Filling Curve

In 1890, the mathematician G. Peano (1858-1932) gave the first example of a con-
tinuous function that maps an interval onto the unit square [0, 1] × [0, 1] in the
plane. Such space-filling curves are often called Peano curves. The example given
here is due to Schoenberg [56].

Let f be the real valued function such that f(t) = f(−t) (f is even), f has
period two, and f is defined for t ∈ [0, 1] by

f(t) =

⎧⎨
⎩

0 0 ≤ t ≤ 1/3,
3t− 1 1/3 ≤ t ≤ 2/3,
1 2/3 ≤ t ≤ 1.

Let D be the subset of the plane given by

D = {(t, 0) ∈ R2 : 0 ≤ t ≤ 1}.

Clearly D has two-dimensional volume zero. Let Γ : D → R2 be the curve given
by the parametric equations

x(t) =
1

2
f(t) +

1

22
f(32t) +

1

23
f(34t) + · · ·+ 1

2k
f(32k−2t) + · · · ,(13.1)

y(t) =
1

2
f(3t) +

1

22
f(33t) +

1

23
f(35t) + · · ·+ 1

2k
f(32k−1t) + · · ·(13.2)

for 0 ≤ t ≤ 1. Since 0 ≤ f(t) ≤ 1 and
∑∞

k=1 1/2
k = 1, we have 0 ≤ x(t) ≤ 1 and

0 ≤ y(t) ≤ 1 for 0 ≤ t ≤ 1. Also, by the Weierstrass test, the series for x(t) and y(t)
converge uniformly on [0, 1], and therefore x(t) and y(t) are continuous on [0, 1].
We now show that the image of Γ is the unit square [0, 1]× [0, 1]. Thus, although D
has two-dimensional volume zero, its continuous image Γ(D) has two-dimensional
volume one.

Let (x0, y0) be a point of the square [0, 1]× [0, 1], and write

(13.3) x0 =
a0
2

+
a2
22

+
a4
23

+ · · · , y0 =
a1
2

+
a3
22

+
a5
23

+ · · ·

for the nonterminating binary expansions of x0 and y0, where each ak equals 0 or
1. Let

(13.4) t0 =
2a0
3

+
2a1
32

+
2a2
33

+ · · ·+ 2ak−1

3k
+

2ak
3k+1

+ · · · .

Then t0 ∈ [0, 1], and Γ(t0) = (x0, y0). Indeed, if a0 = 0, then

0 ≤ t0 ≤ 2

32
+

2

33
+ · · · = 2

32
3

2
=

1

3
,

and hence f(t0) = 0; if a0 = 1, then

2

3
≤ t0 ≤ 1,
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and hence f(t0) = 1. In either case, we have f(t0) = a0 where t0 is given by (13.4).
Now observe that for each positive integer k,

3kt0 = (an even integer) +
2ak
3

+
2ak+1

32
+ · · ·

and hence

f(3kt0) = f
(2ak

3
+

2ak+1

32
+ · · ·

)
= ak,

by the same calculation used above for a0. Then, by (13.1)-(13.2) and the definitions
of x0, y0 in (13.3), we have

Γ(t0) = (x(t0), y(t0)) = (x0, y0).

Since (x0, y0) is an arbitrary point of [0, 1] × [0, 1], this shows that Γ is onto the
square.

This space-filling curve shows that a continuous image of a set with volume
zero need not have volume zero. Motivated by this situation, we strengthen the
hypotheses of the mappings we consider in the next section.

13.2. Volume and Integrability under C1 Maps

Both the conceptual understanding and computation of certain integrals often in-
volve a coordinate change, or substitution, that is, an invertible mapping. These
invertible mappings must meet certain requirements. In particular, recall that the
volume measure of a bounded set is based on the Riemann integral, and we can
integrate certain functions over a bounded domain provided the domain has vol-
ume (Corollary 12.5.6). The domain has volume if and only if the boundary of the
domain has volume zero. Thus we need invertible mappings for which the image of
a set having volume zero is another set having volume zero, and the image of a set
having volume is another set having volume.

We now examine the images of volume zero sets.

Proposition 13.2.1. Suppose S ⊂ Rn has volume zero and g : S → Rn satisfies
a Lipschitz condition. Then g(S) has volume zero.

Proof. We use the norm |x|∞ = max1≤i≤n |xi| and recall that the Lipschitz con-
dition means that there is an M such that for any x and y in S,

|g(x)− g(y)|∞ ≤ M |x− y|∞.

Since S is bounded, it can be enclosed in a cube R. Since S has volume zero, we can
invoke the integrability of the characteristic function χA of A, and Theorem 12.6.5
implies that S can be covered by a finite collection of cubes S1, . . . , Sm, intervals
of a partition of R with mesh δ, such that each Si intersects S, and

ν(S1) + · · ·+ ν(Sm) < ε.

Since each Si has side length δ, each image set g(A ∩ Si) is contained in a cube S′
i

with side length Mδ. Thus,

ν(S′
i) = Mnδn = Mnν(Si).
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Therefore g(S) is covered by the cubes S′
1, . . . , S

′
m such that

ν(S′
1) + · · ·+ ν(S′

m) = Mn
m∑
i=1

ν(Si) ≤ Mnε.

This is true for every ε > 0, so ν(g(S)) = 0. �

The typical setup to evaluate multiple integrals as iterated integrals involves a
description of the boundary of the domain of integration. This description requires
a decomposition of the boundary into a finite number of pieces, each of which is
parameterized by a C1 mapping defined on a set of lower dimension. This is why
the next proposition is important.

Proposition 13.2.2. Let S be a bounded subset of Rk, where k < n. If g : S → Rn

satisfies a Lipschitz condition, then g(S) has volume zero.

Proof. We may view Rk as embedded in Rn by viewing the first k components of
x ∈ Rn as describing a point in Rk. Thus, we can view S as embedded in Rn, by
writing

S̃ = {(x1, . . . , xk, 0, . . . , 0) ∈ Rn : (x1, . . . , xk) ∈ S}.
Since S is bounded, it is contained in some closed cube C. Then for arbitrarily small
δ > 0, S̃ is covered by the single n-dimensional closed interval C× [0, δ]×· · ·× [0, δ],

which has volume ν(C)δn−k. Therefore S̃ has volume zero. The mapping g : S →
Rn yields a mapping g̃ : S̃ → Rn defined by

g̃(x1, . . . , xk, 0, . . . , 0) = g(x1, . . . , xk),

and g̃ is Lipschitz on S̃ since g is Lipschitz on S. Consequently, by Proposition
13.2.1, we conclude that g(S) has volume zero in Rn. �

In each of the previous two propositions, the Lipschitz condition on the mapping
g can be replaced by the stronger condition that g is C1 on an open set containing
the closure S of S, since this guarantees a uniform Lipschitz condition on the
compact S, and thus on S.

Proposition 13.2.3. Let S be a set in Rn that has volume, and let U be an open
set that contains S. Let g : U → Rn be C1 and C1-invertible on IntS. Then g(S)
has volume and

∂g(S) ⊆ g(∂S).

Proof. The interior of S, IntS, is open, and by the continuous inverse, g(IntS) is
also open. The mapping g is a C1-invertible mapping of IntS onto g(IntS). Since
S̄ = IntS ∪ ∂S and ∂S = ∂S, we have

g(IntS) ⊆ g(S) ⊆ g(S) = g(IntS) ∪ g(∂S).

This shows that ∂g(S) ⊆ g(∂S) and that ∂g(S) has volume zero since g(∂S) has
volume zero by Proposition 13.2.1. Therefore g(S) has volume. �

The polar coordinate mapping provides a good illustration of this proposition.
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Figure 13.1. The polar coordinate mapping, g(x, y) = (x cos y, x sin y), maps
the rectangle defined by 0 < x ≤ 1, −π < y ≤ π onto the unit disk minus the

origin.

Example 13.2.4 (Polar Coordinates). Define S = {(x, y) ∈ R2 : 0 < x ≤ 1, −π <
y ≤ π}. Define g : S → R2 by

g(x, y) = (x cos y, x sin y).

Then g(S) = {(z1, z2) ∈ R2 : 0 < z21 +z22 ≤ 1}, the unit disk minus the origin. The
mapping g is C1. Observe that

Jg(x, y) = det

[
cos y −x sin y
sin y x cos y

]
= x,

so Jg(x, y) 
= 0 at every point of IntS. In fact, g is C1-invertible on IntS, as we show
below, but g fails to be one-to-one on portions of the boundary. In detail, if (x1, y1)
and (x2, y2) are in IntS and g(x1, y1) = g(x2, y2), then (x1 cos y1, x1 sin y1) =
(x2 cos y2, x2 sin y2) implies that x2

1 = x2
2, hence x1 = x2. Then

cos y1 = cos y2 and sin y1 = sin y2,

but this cannot happen for y1, y2 ∈ (−π, π], unless y1 = y2. Therefore g is one-
to-one on IntS, hence C1-invertible on IntS. We conclude that Proposition 13.2.3
applies and that g(S), the disk minus the origin, has volume. Of course, adding
the origin in, the complete unit disk has volume. Finally, consider the boundary
of S and how it is mapped. Note that g maps the vertical left side boundary
segment of S, where x = 0, onto the point (0, 0), and the top and bottom boundary
segments of S, where y = π and y = −π, respectively, onto the line segment
{(−x, 0) ∈ R2 : 0 ≤ x ≤ 1}. The vertical right side boundary segment where x = 1
is mapped onto the circumference of the unit circle. Consequently, we do have
∂g(S) ⊆ g(∂S). But observe that ∂g(S) 
= g(∂S). (See Figure 13.1.) �
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If a function f is integrable on a set A that has volume and we express f in
new coordinates by considering f ◦ g, where g : U → Rn is a C1 mapping on an
open set U , with a C1 inverse, such that A = g(S) where S has volume and S ⊂ U ,
then we want to know whether f ◦ g is integrable on S. The next theorem gives
the affirmative answer.

Theorem 13.2.5. Let S be a set in Rn that has volume, and let U be a bounded
open set in Rn such that S ⊂ U . Let g : U → Rn be C1 and C1-invertible on U .
If f is integrable on g(S), then f ◦ g is integrable on S.

Proof. By Proposition 13.2.3, g(S) has volume, as does g(S), since g(S) = g(IntS)
∪ g(∂S) and g(∂S) has volume zero and contains the boundary of g(S). We can
extend f to g(S) by zero to points where it was not originally defined, and we
continue to denote the extension by f . This extended f is still integrable on g(S),
since ∂g(S) has volume zero.

It remains to show that f ◦ g is integrable on S. We want to show that f ◦ g
is continuous almost everywhere on S. Let D be a closed set, with volume zero,
contained in g(S) and containing ∂g(S) and all points where f is not continuous.
Then D is compact and contained in g(U). Since D is compact, the C1 inverse
mapping g−1 satisfies a Lipschitz condition on D; hence, g−1(D) has volume zero
by Proposition 13.2.1. �

Exercises.

Exercise 13.2.1. Prove the following statements:

1. If φ1, φ2 : [a, b] → R are continuous functions with φ1(x) ≤ φ2(x) for all
x ∈ [a, b], then the region

Q1 = {(x, y) ∈ R2 : a ≤ x ≤ b, φ1(x) ≤ y ≤ φ2(x)}

between the graphs of φ1 and φ2 is Jordan measurable.

2. If ψ1, ψ2 : [c, d] → R are continuous functions with ψ1(y) ≤ ψ2(y) for all
y ∈ [c, d], then the region

Q2 = {(x, y) ∈ R2 : c ≤ y ≤ d, ψ1(y) ≤ x ≤ ψ2(y)}

between the graphs of ψ1 and ψ2 is Jordan measurable.

Exercise 13.2.2. Let D = {(ρ, φ, θ) ∈ R3 : 0 < ρ ≤ 1, 0 ≤ φ ≤ π, 0 ≤ θ ≤ 2π}.
Let G : D ⊂ R3 → R3, G = (x, y, z), be defined by

x = ρ sinφ cos θ,

y = ρ sinφ sin θ,

z = ρ cosφ.

Show that G(D) has volume, that is, G(D) is Jordan measurable. Hint : Does
Proposition 13.2.3 apply?
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13.3. Linear Images of Sets with Volume

Let L : Rn → Rn be a linear transformation, and let S ⊂ Rn be a set that has
volume. The main result of this section describes the volume of the image, L(S),
in terms of the volume of S. If L is represented by the n × n matrix L, then we
write

detL = detL,

the determinant of the matrix L. We show in this section that

(13.5) ν(L(S)) = | detL| ν(S)

for any set S with volume and any linear transformation L of Rn. Thus the
determinant of a linear mapping acts as a magnification factor for volume under the
transformation. This result, which is of most interest for invertible transformations,
is an important step in the proof of the general change of variables formula in the
next section.

Consider first a nonsingular linear mapping. Proposition 13.2.3 applies in the
case of a nonsingular linear transformation, and thus if S has volume, then so does
the image L(S). It remains to establish the volume formula (13.5) for the image.

We shall need two important facts about determinants:

(i) detT1T2=detT1 detT2 for square matrices; similarly, det(T1T2)=det T1 det T2
for linear transformations of Rn;

(ii) any nonsingular matrix (linear transformation) can be written as a product
of elementary matrices (a composition of linear transformations) of the three
types described below:

(1) Transformations of type 1 take the form

L1(x1, . . . , xn) = (x1, . . . , xk−1, λxk, xk+1, . . . , xn),

where λ is a nonzero real number. Equivalently, L1ej = ej for j 
= k, and L1(ek) =
λek. The matrix representation of L1 in the standard basis is

L1 = diag (1, . . . , 1, λ, 1, . . . , 1).

The determinant is detL1 = detL1 = λ 
= 0. Premultiplication of a matrix by L1

corresponds to multiplying row k of the matrix by λ. The determinant of a type
1 transformation is λ. The inverse of the transformation L1 shown above is the
mapping

L−1
1 (x1, . . . , xn) = (x1, . . . , xk−1,

1

λ
xk, xk+1, . . . , xn),

which is also a Type 1 transformation.

(2) Type 2 transformations take the form

L2(x1, . . . , xn) = (xk1
, xk2

, . . . , xkn
),

where k : {1, 2, . . . , n} → {1, 2, . . . , n} is a permutation map with images denoted
k(i) = ki, 1 ≤ i ≤ n. Premultiplication of a given matrix by a type 2 transformation
interchanges (permutes) the rows of the matrix according to the permutation k.
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The matrix representation of L2 given above can be expressed, by displaying the
columns, as

L2 =
[
ek1

ek2
· · · ekn

]
.

Observe that premultiplication of a matrix by L2 places the first row of the matrix
into row k1, the second row of the matrix into row k2, and so on. The inverse of
the matrix L2 shown above is the transpose of L2, as a direct calculation shows:

LT
2 =

⎡
⎢⎢⎢⎢⎣

eTk1

eTk2

· · ·
eTkn

⎤
⎥⎥⎥⎥⎦ =⇒ LT

2 L2 = I.

Since a matrix and its transpose have the same determinant,

det(LT
2 L2) = (detL2)

2 = det(I) = 1,

hence detL2 = ±1. Thus the determinant of any type 2 transformation equals ±1.

(3) The type 3 transformation takes the form

L3(x1, . . . , xn) = (x1 + x2, x2, x3, . . . , xn) = (x1, . . . , xn) + x2e1.

The matrix representation can be expressed, by displaying the columns, as

L3 =
[
e1 e1 + e2 e3 · · · en

]
.

Matrix L3 has ones in the first two entries of row 1; otherwise, the i-th row, for
i ≥ 2, has a one as the (i, i) entry and zeros elsewhere. Premultiplication of a
given matrix by this transformation matrix corresponds to the elementary row
operation of adding row 2 to row 1 of the matrix. The determinant of the type 3
transformation is detL3 = detL3 = 1. The inverse of the matrix L3 above is the
product of three elementary matrices, each of which has determinant equal to ±1.
We illustrate this with 2× 2 matrices, since in the general case, the first two rows
are extended by zero entries, and rows 3 through n of these matrices have ones on
the main diagonal and zeros elsewhere. Thus, we note that[

1 1
0 1

]−1

=

[
1 0
0 −1

] [
1 1
0 1

] [
1 0
0 −1

]
=

[
1 −1
0 1

]
.

We note that it is possible to add any row to any other row of a matrix by
premultiplying by type 2 permutations to place the desired rows in row positions
1-2, and then applying the type 3 transformation. Also observe that the inverse
of one of these three types of transformation matrices is another transformation
matrix of the same type or a product of these types. Recall from linear algebra
that if T is a nonsingular matrix, then premultiplication by transformations of types
1, 2 and 3 suffice to reduce the augmented matrix [T I] to the form [I T−1]. It
follows that any nonsingular matrix may be expressed as a product of matrices of
types 1,2 and 3.

We consider a useful geometric example in two dimensions.
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Example 13.3.1. We consider the rectangle B = [a1, b1] × [a2, b2] in the plane
and examine how it is mapped by the linear transformation L : R2 → R2 given by
L(x1, x2) = (x1 + x2, x2). The matrix representation of L in the standard basis is

L =

[
1 1
0 1

]
.

L maps B onto the parallelogram P2 = L(B). (See Figure 13.2.) The vertices of
P2 are the images of the four vertices of B, given by

(1) L(a1, a2) = (a1 + a2, a2),

(2) L(b1, a2) = (a2 + b1, a2),

(3) L(a1, b2) = (a1 + b2, b2),

(4) L(b1, b2) = (b1 + b2, b2).

It is straightforward to verify that the horizontal boundary segments of B map
to horizontal boundary segments of L(B), and the vertical boundary segments of
B map to the sheared boundary segments of L(B). (This is in accordance with
Proposition 13.2.3.) The interior of B maps to the interior of L(B). At this point,
we have not established the volume of triangles, and we have not yet proved that
congruent triangles have the same volume, so we will not say that we know the
volume of P2 by elementary geometric considerations. However, we have Fubini’s
Theorem 12.7.2. So we express P2 as the area between the graphs of

x = ψ1(y) = y + a1 and x = ψ2(y) = y + b1,

and apply Theorem 12.7.2 to write

ν(P2) =

∫ b2

a2

∫ ψ1(y)

ψ2(y)

(1) dx dy

=

∫ b2

a2

[ψ2(y)− ψ1(y)] dy

=

∫ b2

a2

(b1 − a1) dy

= (b1 − a1)(b2 − a2).

Since detL = 1, indeed we have ν(L(B)) = | detL| ν(B). �

As in this example, the type 3 transformation L3 leaves all coordinates of a point
unchanged except for the first coordinate, and the first and second coordinates are
mapped in the same way as the two coordinates of the planar mapping in Example
13.3.1.

We first establish the formula for the volume of the image of a closed interval
under the elementary linear transformations.

Lemma 13.3.2. If B is a closed interval in Rn, then for j = 1, 2, 3, Lj(B) has
volume, and

(13.6) ν(Lj(B)) = | detLj | ν(B), for j = 1, 2, 3.
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4

B L(B)

4 7 8 11 16 19

12

Figure 13.2. A two-dimensional interval B and its image L(B) under the
linear shear mapping, L(x1, x2) = (x1 + x2, x2), a type (3) elementary trans-

formation.

Proof. Recall that λ 
= 0 for L1. We know that Lj(B) has volume for j = 1, 2, 3 by
Proposition 13.2.3. Now we establish formula (13.6) for these invertible Lj . Now
L1 maps B = [a1, b1]× · · · × [an, bn] into either

L1(B) = [a1, b1]× · · · × [λak, λbk]× · · · × [an, bn] (if λ > 0)

or

L1(B) = [a1, b1]× · · · × [λbk, λak]× · · · × [an, bn] (if λ < 0).

Hence, in either case, by direct calculation we have

ν(L1(B)) = |λ|ν(B) = | detL1| ν(B).

Now consider the transformation

L2(x1, . . . , xn) = (xk1
, xk2

, . . . , xkn
),

defined by a permutation map k : {1, 2, . . . , n} → {1, 2, . . . , n} with k(i) = ki,
1 ≤ i ≤ n. Then L2 maps B = [a1, b1]× · · · × [an, bn] onto the interval

[ak1
, bk1

]× · · · × [akn
, bkn

],

from which it follows that

ν(L2(B)) =
n∏

i=1

(bki
− aki

) = ν(B) = | detL2| ν(B),

since detL2 = ±1.

The transformation L3 leaves the third through last coordinates of every point
unchanged, and maps the first two coordinates in the same way as the planar
mapping in Example 13.3.1. Thus, we have

L3(B) = P2 ×D,
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where D = [a3, b3]×· · ·× [an, bn] and P2 is the parallelogram described in Example
13.3.1. The set L3(B) is described by the inequalities

y + a1 ≤ x ≤ y + b1, a2 ≤ y ≤ b2, and ai ≤ xi ≤ bi, for i = 3, . . . , n.

(See Example 13.3.1.) Then by Example 13.3.1 and Theorem 12.7.5, we have

ν(L3(B)) =

∫
D

(∫
P2

(1) dx1 dx2

)
dx3 · · · dxn

=

∫
D

(b1 − a1)(b2 − a2) dx3 · · · dxn

= (b1 − a1)(b2 − a2)(b3 − a3) · · · (bn − an)

= ν(B)

= | detL3| ν(B),

since | detL3| = 1, and this completes the proof. �

Using Lemma 13.3.2, we can describe the volume of the image Lj(A), for any
set A that has volume, for the elementary linear transformations Lj , j = 1, 2, 3.

Lemma 13.3.3. If A ⊂ Rn has volume, then for each j = 1, 2, 3, Lj(A) has
volume, and

(13.7) ν(Lj(A)) = | detLj | ν(A), for j = 1, 2, 3.

Proof. Again by Proposition 13.2.3, Lj(A) has volume for j = 1, 2, 3. It remains
to show equality (13.7). We first get an estimate of the volume of A using intervals,
which will lead to an estimate of the volume of Lj(A) for the elementary linear
transformations. Let λ be a nonzero real number. Since A has volume, if B is any
closed interval containing A, then given any ε > 0 there is a partition Pε of B such
that

(13.8) ν(A) =

∫
B

χA = inf
P

U(χA, P ) > U(χA, Pε)−
ε

|λ| ,

the infimum being taken over all possible partitions P of B. Let S1, . . . , SN be a

listing of all the intervals of Pε that contain points of A. Then A ⊆
⋃N

i=1 Si and

U(χA, Pε) =

N∑
i=1

ν(Si).

Hence, by a rearrangement of (13.8),

(13.9)
N∑
i=1

ν(Si) < ν(A) +
ε

|λ| .

We now argue for the equality (13.7) specifically for L1; afterwards, we discuss

how the same argument also applies to L2 and L3. Since A ⊆
⋃N

i=1 Si, we have

L1(A) ⊆
N⋃
i=1

L1(Si),
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and each set L1(Si) has volume, so the union does as well. Consequently, by
Theorem 12.6.2 (4),

(13.10) ν(L1(A)) ≤ ν
( N⋃

i=1

L1(Si)
)
.

Since L1 is one-to-one and the intervals Si have no interior points in common,
the sets L1(Si) have no interior points in common. Hence, by Theorem 12.6.2
(statement 2),

(13.11) ν
( N⋃

i=1

L1(Si)
)
=

N∑
i=1

ν(L1(Si)).

By Lemma 13.3.2, we have

(13.12) ν(L1(Si)) = | detL1| ν(Si) for 1 ≤ i ≤ N.

Hence, from (13.9), (13.10), (13.11) and (13.12), we have

ν(L1(A)) ≤
N∑
i=1

ν(L1(Si))

=

N∑
i=1

| detL1| ν(Si)

< | detL1|
(
ν(A) +

ε

|λ|
)

= | detL1| ν(A) + ε,

if indeed we choose λ = detL1. Since this estimate holds for any ε > 0, we conclude
that

ν(L1(A)) ≤ | detL1| ν(A).

However, the inverse, L−1
1 , of L1 is an elementary linear transformation of the same

type, with 1/λ in place of λ, so the argument just given shows that

ν(A) = ν
(
L−1
1 (L1(A))

)
≤ 1

|λ|ν(L1(A))

and hence
ν(L1(A)) ≥ |λ| ν(A) = | detL1| ν(A).

We conclude that (13.7) holds when j = 1.

To complete the proof, we observe that all the steps of the argument from (13.8)
on are also valid for the elementary linear transformations L2 and L3, except that
we replace “|λ|” by “1”, and “| detL1| = |λ|” by “| detLj | = 1”, as appropriate for
j = 2, 3. (See also Exercise 13.3.2.) This completes the proof of Lemma 13.3.3. �

We are now ready to establish the main result of the section, which is the
change of variables formula for linear mappings.

Proposition 13.3.4. If L : Rn → Rn is a nonsingular linear mapping and A is a
set that has volume, that is,

∫
A
χA exists, then L(A) has volume and

(13.13) ν(L(A)) = | detL| ν(A) =

∫
A

| detL|.



13.3. Linear Images of Sets with Volume 401

Proof. Since A has volume and L is nonsingular, Proposition 13.2.3 guarantees
that L(A) has volume. Observe that the equality on the right holds since the
definition of volume of a set implies that

| detL| ν(A) = | detL|
∫
A

χA =

∫
A

| detL|.

We proceed to show that the equality on the left holds, that is, ν(L(A)) =
| detL| ν(A). Since L is nonsingular, it may be written as a composition of ele-
mentary linear transformations, each of which is nonsingular; thus,

L = Lk1
◦ Lk2

◦ · · · ◦ Lkm
,

where ki ∈ {1, 2, 3} for 1 ≤ i ≤ m. The matrix representation is given by the m-fold
matrix product

L = Lk1
Lk2

· · ·Lkm
.

We have
detL = (detLk1

)(detLk2
) · · · (detLkm

).

Repeated application of Lemma 13.3.3 yields

ν(L(A)) = | detLk1
| ν(Lk2

Lk3
· · · Lkm

(A))

= | detLk1
| | detLk2

| ν(Lk3
· · · Lkm

(A))

· · · · · ·
= | detLk1

| | detLk2
| · · · | detLkm

| ν(A)

= | detL| ν(A),

which proves (13.13) and completes the proof. �

Proposition 13.3.4 is a preliminary version of the change of variables formula
of the following section, since it states that if the linear transformation L is non-
singular, then ∫

L(A)

1 =

∫
A

(1 ◦ L) | detL|.

The integral of the characteristic function (constant 1) over the image set L(A) is
the same as the integral of the composition 1◦L (which is constant 1) multiplied by
| detL|, over the domain set A. In the next section, the formula will be generalized
to cover the case of C1-invertible coordinate transformations g defined on an open
neighborhood of A, and any integrable function f on the image g(A), so that∫

g(A)

f =

∫
A

f ◦ g | detDg|.

Given Proposition 13.3.4, we can now describe an important property possessed
by volume measure. Exercise 12.4.5 shows that the volume measure of a set is
invariant under translations. Exercise 13.3.3 shows that volume measure is invariant
under orthogonal transformations. Any orthogonal transformation can be written
as a composition of a finite number of rotations. Thus, these two exercises show
that volume measure is invariant under any Euclidean rigid motion, that is,
under any finite sequence of translations and rotations. Two sets are congruent if
one of them can be obtained from the other by a rigid motion. Therefore congruent
sets with volume have the same volume.
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Finally, we comment on the case of a singular linear transformation L, for
which detL = 0. In this case (13.5) is equivalent to the statement that for any set
S ⊂ Rn that has volume, the volume of the image L(S) is zero. Intuitively, this
is reasonable since rankL = k < n so that L maps S onto a bounded subset of a
lower-dimensional subspace W ⊂ Rn. Since W has dimension k < n, we may map
it by a Euclidean rigid motion so as to identify it with the first k coordinates of
Rn, and thus we equate the volume of L(S) with the volume of its image in Rn

after the rigid motion. In Proposition 13.2.2 we may use g as the inclusion map of
Rk into Rn to conclude that L(S) has volume zero. This shows that (13.13) also
holds when L is a singular linear transformation.

Exercises.

Exercise 13.3.1. Consider the transformation matrix

L =

⎡
⎣ 0 0 1

1 0 0
0 1 0

⎤
⎦ .

Show that its inverse is its transpose.

Exercise 13.3.2. Trace through the proof of Lemma 13.3.3 to verify that replacing
“|λ|” by “1” and “| detL1| = |λ|” by “| detLj | = 1” as appropriate for j = 2, 3,
establishes that (13.7) holds for j = 2, 3.

Exercise 13.3.3. Volume is invariant under orthogonal transformations
A real n × n matrix L is called orthogonal if its columns form an orthonormal
basis of Rn, or, as is equivalent, L satisfies the condition LTL = I, where I is the
n × n identity matrix. Prove: If L is an orthogonal matrix, then detL = ±1 and
ν(L(A)) = ν(A) for any set A ⊂ Rn that has volume.

13.4. The Change of Variables Formula

Recall that for a C1 mapping g, we write Dg(x) for the derivative of g at x, and
Jg(x) for the Jacobian matrix representation of Dg(x) (the matrix representation
of Dg(x) with respect to the standard basis). We shall write Δg(x) to denote the
determinant of the Jacobian matrix Jg(x), which is also the determinant of the
linear transformation Dg(x). Thus,

(13.14) Δg(x) = detJg(x) = detDg(x).

We shall prove the following Change of Variables Formula:

Theorem.1 Let Q be an interval in Rn, and g : U → Rn a C1 mapping which
is C1-invertible on an open set U containing Q. If f : g(Q) → R is an integrable
function such that f ◦ g is also integrable, then∫

g(Q)

f =

∫
Q

(f ◦ g) |Δg|.

The intuition behind this formula is not difficult to understand. If g were linear,
then, by Proposition 13.3.4, we would have ν(g(S)) = | detg| ν(S) for any set S

1We will eventually establish this change of variables formula under a slightly less restrictive as-
sumption on g: that g is C1 on the interior of the rectangle Q.
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that has volume. We expect that when g is a nonlinear C1 mapping, we should
have

ν(g(S)) ≈ |Δg| ν(S)
for sets S with small volume. Hence, for an interval S of a partition P of Q, we
expect to have

Mg(S)(f) ν(g(S)) ≈ MS

(
(f ◦ g) |Δg|

)
ν(S),

where as usual the M -notation denotes supremum of the indicated function over
the indicated set. There should be a similar approximation with M replaced by
m, denoting the infimum of a function over a set. Of course, g(S) need not be an
interval of a partition of a closed interval containing g(S); however, since the inter-
vals S are disjoint except possibly for boundary points in common, the images g(S)
are also disjoint except possibly for boundary points in common, by Proposition
13.2.3. Thus we expect that∫

g(Q)

f ≈
∑
S

Mg(S)(f) ν(g(S))

≈
∑
S

MS

(
(f ◦ g) |Δg|

)
ν(S)

≈
∫
Q

(f ◦ g) |Δg|.

We recall here the useful result of Theorem 11.2.3, part 1, which we repeat for
convenience as a lemma.

Lemma 13.4.1. Let U be an open set in Rn containing the origin and F : U → Rn

a C1 mapping such that F(0) = 0 and DF(0) = I. If 0 < ε < 1, then there exists
r > 0 such that

(13.15) ‖DF(x)− I‖∞ < ε

for all x in the cube Cr, and consequently

C(1−ε)r ⊆ F(Cr) ⊆ C(1+ε)r.

In the next two results we make more precise the idea that for small mesh
intervals Q, we should have

ν(g(Q)) ≈ |Δg| ν(Q).

Let Q be a closed interval centered at the point a. (The coordinates of a are the
center points of each edge factor of Q.) Suppose g : U → Rn is a C1-invertible
mapping on an open set U containing Q. Suppose the derivative of g is near
constant on Q, say Dg(x) ≈ Dg(a). Then, in view of the inequality

‖[Dg(a)]−1Dg(x)− I‖∞ = ‖[Dg(a)]−1(Dg(x)−Dg(a))‖∞
≤ ‖[Dg(a)]−1‖∞ ‖Dg(x)−Dg(a)‖∞,

suppose that

(13.16) ‖[Dg(a)]−1Dg(x)− I‖∞ < ε.
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We use the lemma to show that (13.16) implies that the image g(Q) closely approxi-
mates the parallelepiped defined by the linear imageDg(a)(Q). The linear mapping
Proposition 13.3.4 will then provide a better estimate for the approximation

ν(g(Q)) ≈ | detDg(a)| ν(Q).

We will need to move from cubes to general intervals. For example, think of the
polar or spherical coordinate mappings, which are not defined on cubes. Therefore
we establish our estimate in two stages, Lemma 13.4.2 (for cubes Q) followed by
Lemma 13.4.3 (for noncubes Q).

Lemma 13.4.2. Let Q = Cr(a) be a cube centered at the point a ∈ Rn, and
g : U → Rn a C1-invertible mapping on an open set U containing Q. If there
exists ε ∈ (0, 1) such that

(13.17) ‖[Dg(a)]−1 ◦Dg(x)− I‖∞ ≤ ε

for all x ∈ Q, then g(Q) has volume and

(13.18) (1− ε)n | detDg(a)| ν(Q) ≤ ν(g(Q)) ≤ (1 + ε)n | detDg(a)| ν(Q).

Proof. That g(Q) has volume follows from Proposition 13.2.3. We now consider
the proof of (13.18). Recall that Cr is the cube of radius r centered at the origin.
Also recall that τa(x) = a + x is the translation by a; then τa(Cr) = Cr(a) = Q.
Let b = g(a), and define

F = [Dg(a)]−1 ◦ τ−1
b ◦ g ◦ τa;

then F maps an open neighborhood of the origin onto another open neighborhood
of the origin. By the chain rule,

DF = [Dg(a)]−1 ◦Dτ−1
b ◦Dg ◦Dτa,

and since the derivative of a translation is the identity, it follows that

DF(x) = [Dg(a)]−1 ◦Dg(τa(x)),

for all x in Cr, and thus for all τa(x) in Q. Since F(0) = 0 and DF(0) = I, by
(13.17) we can apply Lemma 13.4.1 to conclude that

C(1−ε)r ⊆ F(Cr) ⊆ C(1+ε)r.

(See Figure 13.3.) It follows that

(13.19) (1− ε)nν(Cr) ≤ ν(F(Cr)) ≤ (1 + ε)nν(Cr).

From the definition of F, we have Dg(a)(F(Cr)) = τ−1
b (g(Q)), and by the linear

mapping Proposition 13.3.4, we obtain

ν(g(Q)) = | detDg(a)| ν(F(Cr)).

Since ν(Q) = ν(Cr), it follows that multiplication of (13.19) by | detDg(a)| yields
exactly (13.18), as we wished to show. �

Given a noncube interval Q, we could enclose Q in a large cube and extend the
function to be integrated over Q by zero to the large cube, then proceed from there
to subdivide the cube by smaller cubes. We would have to show that in the limit
as the partition mesh goes to zero, the portion of Q that is covered by fractions of
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F (Cr)

Q

τ−1
b

[Dg(a)]−1

Cr

g

τa

a
b

Figure 13.3. Mapping cubes to provide a volume estimate: The mapping

F = [Dg(a)]−1 ◦ τ−1
b ◦ g ◦ τa takes the cube Cr centered at the origin onto

the image F (Cr), and C(1−ε)r ⊆ F(Cr) ⊆ C(1+ε)r. This mapping yields

bounds on the volume of the image g(Q) of the cube Q centered at a. See
Lemma 13.4.2.

small cubes has a negligible contribution to the integral. Instead of doing that, we
now deal directly with the noncube interval Q.

If Q is a noncube closed interval in Rn, let Q = I1 × I2 × · · · × In. Let a be
the center point of Q, that is, the coordinates of a are the midpoints of each factor
of Q. Denote the factor lengths by s1, s2, . . . , sn, and the longest factor length by
smax and the shortest factor length by smin. We can map the unit cube in the max
norm, C1 = {x ∈ Rn : |x|∞ ≤ 1} one-to-one and onto an interval congruent to Q
but centered at the origin, by the mapping

(13.20) ρ(x) =
(1
2
s1x1,

1

2
s2x2, . . . ,

1

2
snxn

)
,

since boundary points of C1 have some coordinate xj = ±1, and the corresponding
image coordinate equals ± 1

2sj . Then map ρ(C1) to Q by the translation τ (x) =
x+ a. The matrix representation of ρ is diagonal with main diagonal entries

1

2
s1,

1

2
s1, . . . ,

1

2
sn.

Therefore

det ρ =
1

2n

n∏
i=1

si =
1

2n
ν(Q).

The inverse mapping is

ρ−1(x) =
( 2

s1
x1,

2

s2
x2, . . . ,

2

sn
xn

)
,

and the norms of ρ and ρ−1 induced by the vector norm | · |∞ are easily seen to be

‖ρ‖∞ =
1

2
smax and ‖ρ−1‖∞ =

2

smin
.
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Consequently, we have

R := ‖ρ−1‖∞ ‖ρ‖∞ =
smax

smin
,

a quantity useful to us below. We observe that if we start with this Q and partition
it by similar intervals, that is, we subdivide each factor with the same number N
of real subintervals, then the intervals of the resulting partition are all similar to Q
and thus maintain the same ratio of smax/smin as Q has. Thus,

R =
smax

smin

remains the same for every interval of the partition.

Lemma 13.4.3. Let Q be a closed interval centered at the point a ∈ Rn, and
g : U → Rn a C1-invertible mapping on an open set U containing Q. Let ρ map
the unit cube C1 to Q as defined in ( 13.20). Let R = |ρ−1|∞ |ρ|∞. If ε > 0 such
that

(13.21) ‖[Dg(a)]−1 ◦Dg(x)− I‖∞ ≤ ε

for all x ∈ Q, and εR < 1, then g(Q) has volume, and

(13.22) (1− εR)n | detDg(a)| ν(Q) ≤ ν(g(Q)) ≤ (1 + εR)n | detDg(a)| ν(Q) .

Proof. That g(Q) has volume follows from Proposition 13.2.3. We proceed to the
proof of (13.22). We map the unit cube C1 in the maximum norm, where |x|∞ ≤ 1,
to the interval Q, taking the origin to a, by the mapping τa ◦ ρ as defined above.
Let b = g(a) and let

S = g ◦ τa ◦ ρ.
Then for x ∈ C1 and y = τa(x) ∈ Q, we have DS(x) = Dg(y) ◦ ρ, since ρ is linear
and the derivative of the translation is the identity. By the chain rule, for x ∈ C1

and y = τa(x) ∈ Q,

[DS(0)]−1DS(x) =
[
Dg(a) ◦ ρ

]−1
Dg(y) ◦ ρ

= ρ−1 [Dg(a)]−1Dg(y) ρ.

Hence,∥∥∥[DS(0)]−1DS(x)− I
∥∥∥
∞

=
∥∥∥ρ−1 [Dg(a)]−1Dg(y) ρ− I

∥∥∥
∞

=
∥∥∥ρ−1

(
[Dg(a)]−1Dg(y)− I

)
ρ
∥∥∥
∞

≤
∥∥ρ−1

∥∥
∞

∥∥∥[Dg(a)]−1Dg(y)− I
∥∥∥
∞

∥∥ρ∥∥∞
=

∥∥ρ−1
∥∥
∞
∥∥ρ∥∥∞ ∥∥∥[Dg(a)]−1Dg(y)− I

∥∥∥
∞

≤ Rε,

where we have used the hypothesis that ‖[Dg(a)]−1Dg(y) − I‖∞ ≤ ε for all y in
Q. If we also have Rε < 1, then S satisfies hypothesis (13.17) in Lemma 13.4.2
with ε replaced by εR < 1 and Q being the cube C1 (for which r = 1). By invoking
Lemma 13.4.2, we conclude that

(1− εR)n| detDS(0)|ν(C1) ≤ ν(S(C1)) ≤ (1 + εR)n| detDS(0)|ν(C1).
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Since ν(C1) = 2n and det ρ = ν(Q)/2n, it follows that

| detDS(0)|ν(C1) = | detDg(a)| | det ρ| ν(C1) = | detDg(a)| ν(Q).

Since S(C1) = g(Q), we conclude that ν(g(Q)) is bounded according to

(1− εR)n | detDg(a)| ν(Q) ≤ ν(g(Q)) ≤ (1 + εR)n | detDg(a)| ν(Q),

which is exactly (13.22), as desired. �

In Theorem 13.4.4 below, we invoke Theorem 12.6.5, which allows us to choose
partitions of the noncube interval Q for which the intervals are similar to Q; that is,
we can always subdivide the factors of Q by the same number N of real subintervals,
so that we get Nn intervals of the partition, with the partition having mesh equal
to smax/N , where smax is the length of the longest factor of Q. Then the ratio of
longest to shortest side of Q, R = smax/smin, is maintained for every interval Qi of
our partitions. Thus we may always map the cube C1 to such intervals Qi having
center point ai by a mapping τai

◦ ρ satisfying R = |ρ−1|∞ |ρ|∞ = smax/smin, since
this ratio is the same for all intervals Qi of our partitions.

Theorem 13.4.4. Let Q be an interval in Rn, and g : U → Rn a C1 mapping
which is C1-invertible on an open set U containing Q. If f : g(Q) → R is an
integrable function such that f ◦ g is also integrable, then

(13.23)

∫
g(Q)

f =

∫
Q

(f ◦ g) |Δg|,

where Δgx = detDg(x) for x ∈ Q.

Proof. Let η > 0, let P be a partition of Q by similar intervals Q1, . . . , Qk, and
let S = {a1, . . . , ak} be the selection such that ai is the center point of Qi, for each
i. By the integrability of f ◦ g and Theorem 12.6.5, there exists a δ1 = δ1(η) > 0
such that if the mesh of P is less than δ1, then

(13.24)
∣∣∣R((f ◦ g) |Δg|, P, S

)
−
∫
Q

f ◦ g |Δg|
∣∣∣ < η

2

for the Riemann sum

R
(
(f ◦ g) |Δg|, P, S

)
=

k∑
i=1

f(g(ai)) |Δg(ai)| ν(Qi).

Since Δg is continuous and f ◦g is integrable on Q, there are bounds A and B such
that

|Δg(x)| ≤ A and |f ◦ g(x)| ≤ M

for all x in Q. As usual, write

mi = inf
Qi

(f ◦ g)(x),

Mi = sup
Qi

(f ◦ g)(x).
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Then our Riemann sum is bracketed by the lower and upper sums for the parti-
tion P :
(13.25)

α :=
k∑

i=1

mi|Δg(ai)|ν(Qi) ≤ R
(
(f ◦ g) |Δg|, P, S

)
≤

k∑
i=1

Mi|Δg(ai)|ν(Qi) =: β.

By Theorem 12.6.5, there is a δ2 = δ2(η) > 0 such that if the mesh of a partition
is less than δ2, then any two Riemann sums for f ◦ g differ by less than η/(12A).
For such partitions, we continue to write Qi for the intervals and k for their total
number; hence, the upper and lower sums differ by at most η/(6A), and thus

(13.26)

k∑
i=1

(Mi −mi)ν(Qi) ≤
η

6A
.

Consequently for a partition with mesh less than min{δ1, δ2}, (13.25) and (13.26)
imply that

(13.27) β − α =

k∑
i=1

(Mi −mi) |Δg(ai)| ν(Qi) <
η

6
,

since |Δg(ai)| ≤ A. To this point in the argument, we have a Riemann sum that
differs from

∫
Q
(f ◦ g) |Δg| by less than η/2, and lies between numbers α and β

which differ by less than η/6.

The goal now is to bracket the value
∫
g(Q)

f between two numbers α′ and β′

that are close to α and β. The intervals Qi of our partition intersect only along
their boundaries, if at all, and therefore∫

g(Q)

f =
k∑

i=1

∫
g(Qi)

f.

Therefore we define α′ and β′, a lower and upper approximation for
∫
g(Q)

f , by

(13.28) α′ :=
k∑

i=1

mi ν(g(Qi)) ≤
∫
g(Q)

f ≤
k∑

i=1

Mi ν(g(Qi)) =: β′,

with mi and Mi as defined previously. We are now able to estimate the differences
α′ − α and β′ − β using Lemma 13.4.3.

Let ε satisfy 0 < εR < 1, where R = smax/smin, the ratio of maximum to
minimum side length for Q and all intervals Qi of our partitions. Suppose that ε
also satisfies

(13.29) (1 + εR)n − (1− εR)n <
η

6AMν(Q)
.

Since g is C1-invertible on the open set U containing Q, there is an upper bound
B for the norm ‖[Dg(x)]−1‖∞ for x in Q, thus

‖[Dg(x)]−1‖∞ ≤ B for x ∈ Q.
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By the uniform continuity of Dg on the compact set Q, there exists a δ3 = δ3(ε)
such that, if the mesh of our partition is less than δ3, then

‖Dg(x)−Dg(ai)‖∞ <
ε

B

for all x in Qi. And this implies that

‖ [Dg(ai)]
−1 ◦Dg(x)− I ‖∞ =

∥∥∥[Dg(ai)]
−1
(
Dg(x)−Dg(ai)

)∥∥∥
∞

≤ ‖[Dg(ai)]
−1‖∞ ‖Dg(x)−Dg(ai)‖∞

≤ B
ε

B
= ε

for all x in Qi. Hence, Lemma 13.4.3 applies and shows that the volume ν(g(Qi))
satisfies the bounds

(1− εR)n | detDg(ai)| ν(Qi) ≤ ν(g(Qi)) ≤ (1 + εR)n | detDg(ai)| ν(Qi),

and clearly | detDg(ai)| ν(Qi) has these same lower and upper bounds as well.
Therefore if the mesh of the partition is less than δ3, then, again writing Δg(ai) =
detDg(ai), we have

(13.30)
∣∣∣ν(g(Qi))− |Δg(ai)| ν(Qi)

∣∣∣ ≤ [(1 + εR)n − (1− εR)n] |Δg(ai)| ν(Qi).

Now assume that the partition P has mesh less than min{δ1, δ2, δ3}. We continue
to write k for the total number of intervals of P . Now we estimate the difference
β′ − β between upper sum approximations of the two integrals of interest, and the
difference α′ − α between lower sum approximations of those integrals. By (13.25)
and (13.28), (13.29) and (13.30), we have

|β′ − β| ≤
k∑

i=1

|Mi|
∣∣∣ν(g(Qi))− |Δg(ai)|ν(Qi)

∣∣∣
≤ M

k∑
i=1

[(1 + εR)n − (1− εR)n] |Δg(ai)| ν(Qi)

≤ MAν(Q) [(1 + εR)n − (1− εR)n] <
η

6
.(13.31)

Also by (13.25) and (13.28), (13.29) and (13.30),

|α′ − α| ≤
k∑

i=1

|mi|
∣∣∣ν(g(Qi))− |Δg(ai)|ν(Qi)

∣∣∣
≤ M

k∑
i=1

[(1 + εR)n − (1− εR)n] |Δg(ai)| ν(Qi)

≤ MAν(Q) [(1 + εR)n − (1− εR)n] <
η

6
.(13.32)

If we let α∗ = min{α, α′} and β∗ = max{β, β′}, then (13.25) and (13.28) imply

that
∫
g(Q)

f and the Riemann sum R
(
(f ◦ g) |Δg|, P, S

)
must lie between α∗ and

β∗. Now (13.27), (13.31) and (13.32) imply that β∗ − α∗ < η/2, and therefore

(13.33)
∣∣∣R((f ◦ g) |Δg|, P, S

)
−
∫
g(Q)

f
∣∣∣ < η

2
.
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Thus, in view of (13.24), both
∫
g(Q)

f and
∫
Q
f◦g |Δg| differ fromR

(
(f◦g) |Δg|, P,S

)
by less than η/2, and hence∣∣∣ ∫

g(Q)

f −
∫
Q

f ◦ g |Δg|
∣∣∣ < η.

Since this holds for every η > 0, the desired result (13.23) follows. �

Theorem 13.4.4 is an important result, and yet it does not in itself cover ex-
amples likely to appear in applications. Consider specifically Example 13.2.4, the
polar coordinate map which is not C1-invertible on an open neighborhood of the
closed interval [0, 1]× [−π, π]. A similar situation occurs in the spherical coordinate
map from (ρ, φ, θ) coordinates to (x, y, z) coordinates.

In fact, the hypothesis that the transformation g is C1-invertible on U and
Q ⊂ U is stronger than necessary. The next statement confirms that our mapping
g only needs to be C1-invertible on the interior of Q, and this can be important in
applications.

Theorem 13.4.5. Let Q be a closed interval in Rn. Suppose g is C1 on an open
set U containing Q and C1-invertible on the interior of Q. If f is an integrable
function such that f ◦ g is also integrable, then∫

g(Q)

f =

∫
Q

f ◦ g |Δg|.

Proof. Recall that Q = IntQ∪ ∂Q and ν(∂Q) = 0. We may partition Q by closed
intervals Qk such that Q1, . . . , Qm, m < k, lie within IntQ; thus

Q∗ :=

m⋃
k=1

Qk ⊂ IntQ.

Write K = Q − IntQ∗. Given any ε > 0, we can choose the partition so that
ν(K) < ε, since ∂Q has volume zero. Then the Theorem 13.4.4 as already proved
gives ∫

g(Q∗)

f =

∫
Q∗

f ◦ g |Δg|.

But

(13.34)

∫
g(Q)

f =

∫
g(Q∗)

f +

∫
g(K)

f

since IntK and IntQ∗ are disjoint and their common boundary has volume zero,
and hence Intg(K) and Intg(Q∗) are disjoint and their common boundary has
volume zero. We also have

(13.35)

∫
Q

f ◦ g |Δg| =
∫
Q∗

f ◦ g |Δg|+
∫
K

f ◦ g |Δg|

by the same facts about K and Q∗. Since f is integrable on g(Q) it is bounded on
g(K), and since g is C1 on U , and hence |Δg| is bounded on Q, its bound provides
a Lipschitz condition for g on all of Q. Thus the integral of f over g(K) in (13.34),
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and the integral of f ◦g |Δg| over K in (13.35), can be made as small as desired by
making ν(K), and hence ν(g(K)), sufficiently small. Then by (13.34) and (13.35),∣∣∣ ∫

g(Q)

f −
∫
Q

f ◦ g |Δg|
∣∣∣ ≤

∣∣∣ ∫
g(Q∗)

f −
∫
Q∗

f ◦ g |Δg|
∣∣∣

+
∣∣∣ ∫

g(K)

f −
∫
K

f ◦ g |Δg|
∣∣∣

≤ 0 +
∣∣∣ ∫

g(K)

f
∣∣∣+ ∣∣∣ ∫

K

f ◦ g |Δg|
∣∣∣,

and the last two terms on the right may be made arbitrarily small, by choice of K
through our choice of partition of Q. This completes the proof. �

It is worth remarking that we called on the Riemann sum result in Theorem
12.6.5 in the proof of the change of variables formula. Theorem 12.6.5 also covers
the single variable case, as written, but we did not need it to establish the change of
variables formula in that case (Theorem 6.7.7), because the earlier result followed
directly from the fundamental theorem of calculus. Of course, estimating the vol-
ume of a C1 image in the multivariable case is more involved than knowing the
interval image of a substitution in Theorem 6.7.7.

The most frequent applications of the change of variables formula in introduc-
tory multivariable calculus occur with the use of polar coordinates in the plane and
cylindrical coordinates or spherical coordinates in space. The change of variables
formula is often described simply by stating the change in the area element dA or
the volume element dV .

Example 13.4.6 (Cylindrical Coordinates). The cylindrical coordinate transfor-
mation (x, y, z) = g(r, θ, z) given by x = r cos θ, y = r sin θ and z = z is defined
on an open neighborhood of the closed interval Q = [a1, a2]× [0, 2π]× [c, d] and is
C1-invertible on the interior of Q. It has Jacobian

|Δg| =

∣∣∣∣∣∣
cos θ −r sin θ 0
sin θ r cos θ 0
0 0 1

∣∣∣∣∣∣ = r,

and hence ∫
g(Q)

f =

∫
Q

(f ◦ g) |Δg| =
∫
Q

f(g(r, θ, z)) r

for an integrable function f such that f ◦ g is integrable. A version of Fubini’s
theorem can then be used to organize the calculation of the integral. �

Example 13.4.7 (Spherical Coordinates). The spherical coordinate transforma-
tion (x, y, z) = g(ρ, φ, θ) given by

x = ρ sinφ cos θ,

y = ρ sinφ sin θ,

z = ρ cosφ
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is defined on an open neighborhood of the closed interval Q = [0, a2]× [0, π]× [0, 2π]
and is C1-invertible on the interior of Q. It has Jacobian determinant

|Δg| =

∣∣∣∣∣∣
sinφ cos θ ρ cosφ cos θ −ρ sinφ sin θ
sinφ sin θ ρ cosφ sin θ ρ sinφ cos θ
cosφ −ρ sinφ 0

∣∣∣∣∣∣ = ρ2 sinφ,

and hence ∫
g(Q)

f =

∫
Q

(f ◦ g) |Δg| =
∫
Q

f(g(ρ, φ, θ)) ρ2 sinφ

for an integrable function f such that f ◦ g is integrable. A version of Fubini’s
theorem can then organize the calculation. �

Some applications of these formulas appear in the exercises.

Exercises.

Exercise 13.4.1. Show that if A has volume and S is an interval, then exactly one
of the following is true: (i) S ⊂ IntA, (ii) S ⊂ (A)c, or (iii) S ∩ ∂A is nonempty.

Exercise 13.4.2. The rectangle S = {(x1, x2) ∈ R2 : 0 ≤ r ≤ 1, 0 ≤ θ ≤
2π} is mapped by (x1, x2) = g(r, θ) = (r cos θ, r sin θ) onto the unit disk, g(S) =
{(x1, x2) ∈ R2 : x2

1 + x2
2 ≤ 1}. Write the change of variables formula for the

integration of a function f over this disk. Then integrate the constant function
f ≡ 1 and thus compute the area of the disk.

Exercise 13.4.3. Spherical and Cylindrical Coordinates

1. Write the change of variables formula for the integration of a function f(x, y, z)
over the upper half sphere z ≥ 0 of radius 3, centered at the origin, using
spherical coordinates.

2. Write the change of variables formula for the integration of a function f(x, y, z)
over the upper half sphere z ≥ 0 of radius 3, centered at the origin, using
cylindrical coordinates.

Exercise 13.4.4. Let S be the solid sphere of diameter 4 centimeters, centered at
the origin in R3. A solid cylindrical core of diameter 2 centimeters is machined out
of the center of this solid sphere.

1. Write an integral using cylindrical coordinates in R3 to represent the volume
of this cylindrical core.

2. Write an integral over a disk in the plane that represents the volume of this
cylindrical core.

3. Find the volume of the portion of the sphere remaining after this cylindrical
core is removed.

Exercise 13.4.5. Interpret the integral∫ 2π

0

∫ π

0

∫ (1−cosφ)/2

0

ρ2 sinφ dρ dφ dθ

geometrically. Describe or sketch the solid region of integration.
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Exercise 13.4.6. Volume of balls
The closed unit ball about the origin in n dimensions, with respect to the Euclidean
norm, we denote here by Bn

1 , and its volume by νn(1). The closed ball about the
origin of radius r > 0 we denote by Bn

r , and its volume by νn(r).

1. Show that νn(r) = rnνn(1). Hint : Define g : Rn → Rn by g(x) = rx.

2. Verify that ν1(1) = 2, ν2(1) = π, and ν3(1) =
4
3π.

3. Show that

νn(1) = νn−2(1)
2π

n
.

Hint for part 3 : Write points in Rn with coordinates (x, y, x3, . . . , xn) and
note that

Bn
1 = {(x, y, x3, . . . , xn) : x

2 + y2 + x2
3 + · · ·+ x2

n ≤ 1}.
Enclose Bn

1 in the n-dimensional interval [−1, 1] × [−1, 1] × · · · × [−1, 1]. If
χn
1 (x, y, x3, . . . , xn) denotes the characteristic function of Bn

1 , then we may
write

(13.36) νn(1) =

∫ 1

−1

∫ 1

−1

[ ∫
Rn−2

χn
1 (x, y, x3, . . . , xn) dx3 · · · dxn

]
dx dy

where Rn−2 is the (n−2)-dimensional interval with all factors equal to [−1, 1].
If x2 + y2 > 1, then χn

1 (x, y, x3, . . . , xn) = 0. Let D = {(x, y) : x2 + y2 ≤ 1}.
If (x, y) ∈ D, then χn

1 (x, y, x3, . . . , xn), viewed as a function of (x3, . . . , xn), is
the characteristic function of the (n− 2)-dimensional Euclidean ball of radius√
1− x2 − y2 centered at the origin. Thus the inner integral in (13.36) equals∫
Rn−2

χn
1 (x, y, x3, . . . , xn) dx3 · · · dxn = (1− x2 − y2)(n−2)/2 νn−2(1).

Hence,

νn(1) = νn−2(1)

∫
D

(1− x2 − y2)(n−2)/2 dx dy.

Now complete the argument by showing that∫
D

(1− x2 − y2)(n−2)/2 dx dy =
2π

n
.

4. Conclude by induction that

ν2k(1) =
πk

k!
and ν2k−1(1) =

2kπk−1

1 · 3 · 5 · · · (2k − 1)
.

Exercise 13.4.7. Volume of balls and the gamma function
Recall the gamma function of Exercise 7.5.9,

Γ(α) :=

∫ ∞

0

xα−1e−x dx,

defined for α > 0. It satisfies Γ(α + 1) = αΓ(α) for α > 0 and, in particular,
Γ(n+ 1) = n! for n = 0, 1, 2, 3, . . ..

1. Verify that Γ( 12 ) =
√
π. Hint : Use the substitution x = u2 and the fact that∫ ∞

0

e−u2

du =

√
π

2
.
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2. Find the values Γ( 32 ), Γ(
5
2 ) and Γ( 72 ).

3. Show that

Γ
(
n+

1

2

)
=

√
π
1 · 3 · 5 · · · (2n− 1)

2n
, for n = 1, 2, 3, . . . .

4. Refer to Exercise 13.4.6, part 4. Use the properties Γ(α+1) = αΓ(α), Γ(1) = 1
and Γ( 12 ) =

√
π to show that the volume νn(1) of the unit ball in n dimensions

is given by

νn(1) =
πn/2

Γ(n2 + 1)
, for n = 1, 2, 3, . . . .

Conclude that the volume νn(r) of the ball of radius r > 0 is given by

νn(r) = rn
πn/2

Γ(n2 + 1)
, for n = 1, 2, 3, . . . .

13.5. The Definition of Surface Integrals

The change of variables formula is useful not only as a computational tool but
also as an essential conceptual tool. We demonstrate this in the present section by
illustrating the role of the change of variables formula in the definition of surface
integrals from multivariable calculus. We then briefly recall the divergence theorem
and discuss a coordinate-free interpretation of the divergence of a vector field at a
point, as well as a coordinate-free interpretation of the Laplacian of a real valued
function.

Let us call Ω ⊂ R2 a region if Ω = IntQ where Q is a bounded and Jordan
measurable set, that is, ∂Ω = ∂Q has volume zero. Then any continuous, bounded
real valued function defined on Ω is integrable there.

Definition 13.5.1. Let Ω ⊂ R2 be a region with Ω = IntQ. Suppose Φ : Q → R3

is a C1 mapping that satisfies the following conditions:

1. Φ is one-to-one on Ω.

2. The component functions of Φ = (φ1, φ2, φ3) have bounded first-order partial
derivatives on Ω.

3. For each point (u, v) ∈ Ω,

Φu(u, v)× Φv(u, v) 
= 0,

where

Φu(u, v) =
∂Φ

∂u
(u, v) =

(∂φ1

∂u
(u, v),

∂φ2

∂u
(u, v),

∂φ3

∂u
(u, v)

)
and

Φv(u, v) =
∂Φ

∂v
(u, v) =

(∂φ1

∂v
(u, v),

∂φ2

∂v
(u, v),

∂φ3

∂v
(u, v)

)
.

Then the image S = Φ(Ω) is called a surface (or surface patch) in R3, and Φ
is called a parametrization of the surface S = Φ(Ω).
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It is convenient to view ∂Φ
∂u (u, v) and

∂Φ
∂v (u, v) as row vectors here; when viewed

as columns, they are the columns of the Jacobian matrix JΦ(u, v).

Condition 3 of Definition 13.5.1 guarantees that a surface S = Φ(Ω) has a
well-defined normal vector at each point Φ(u, v) ∈ S, defined by the cross product
indicated there, and this normal vector varies smoothly with the parameters (u, v)
in Ω. Thus, the surface has a well-defined tangent plane at each of its points, the
tangent plane being orthogonal to the normal vector and spanned by ∂Φ

∂u (u, v) and
∂Φ
∂v (u, v). At each (u, v), the normal vector shown then completes a basis that forms
a right-handed coordinate system. Condition 2 of Definition 13.5.1 ensures that the
Euclidean norm of the cross product remains bounded, and hence integrable, since
it is continuous.

Example 13.5.2. Consider an open spherical cap S about the north pole on the
sphere in R3 of radius ρ = 2. Let 0 < a < 2, and suppose this cap S lies above
the disk region in the xy-plane described by x2 + y2 < a2. Then S is the graph of
the function z = g(x, y) = (4− x2 − y2)1/2 over that disk. And S is parametrized
by Φ(u, v) = (u, v, g(u, v)) = (u, v, (4 − u2 − v2)1/2 according to Definition 13.5.1,
since the first order partial derivatives gu and gv are bounded on the open disk
u2 + v2 < a2 < 4:

gu(u, v) = − u

(4− u2 − v2)1/2
and gv(u, v) = − v

(4− u2 − v2)1/2
.

However, if we let S be the entire open upper hemisphere, then the same function
g defined on the open disk u2 + v2 < 4 (when a = 2) yields S as its graph, but
the same Φ mapping now has unbounded partial derivatives gu and gv on the
disk u2 + v2 < 4. Thus, Φ does not parametrize the open upper hemisphere in
accord with Definition 13.5.1. For that purpose, however, consider the spherical
coordinates mapping Ψ : Q → R3,

Ψ(φ, θ) =
(
2 sinφ cos θ, 2 sinφ sin θ, 2 cosφ

)
,

where Q = {(φ, θ) : 0 ≤ φ ≤ π/2, 0 ≤ θ ≤ 2π}. Then Ψ is one-to-one on Ω = IntQ,
is C1 on Q, and has bounded first order partial derivatives, in accordance with
Definition 13.5.1. The image surface Ψ(Ω) is the open upper hemisphere, minus
the north pole and the meridian where θ = 0 (consisting of all points of the form
Ψ(φ, 0) = (2 sinφ, 0, 2 cosφ)). However, this excluded set has volume zero and
therefore cannot affect the value of a surface integral over the hemisphere using the
parametrization Ψ. (Once we have defined surface integrals, this can be confirmed
for this example in Exercise 13.5.3.) �

Definition 13.5.3. Let Ω be a region in R2 and S a surface parametrized by
Φ : Ω → R3. If f : S → R is a continuous and bounded function on S, the surface
integral of f over S is defined by∫

S

f dσ =

∫
Ω

(f ◦ Φ) |Φu × Φv|2 du dv

where | · |2 is the Euclidean norm. In particular, the area of S is defined to be

areaS =

∫
Ω

|Φu × Φv|2 du dv.
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Figure 13.4. Coordinate independence of the surface integral definition: Two

different parametrizations, Φ and Ψ, of a surface patch S are related by Ψ◦g =
Φ, where g is C1-invertible; that is, Ψ−1 ◦Φ is C1-invertible, with C1 inverse
Φ−1 ◦Ψ. Theorem 13.5.4 uses this fact to establish that the value of a surface
integral over S does not depend on the parametrization.

We have included the element of surface area dσ = du dv in this definition
since there is a need to express coordinates in the domain. Observe that the inte-
gral representing the area of a surface is the special surface integral involving the
function f ≡ 1.

If S is a surface which is the graph of a continuously differentiable function g of
u and v, and if S is parametrized by Φ(u, v) = (u, v, g(u, v)) as in Definition 13.5.1,
then it is straightforward to check that

(13.37) Φu(u, v)× Φv(u, v) = (−gu, −gv, 1)

is the normal to the surface at Φ(u, v). By taking the Euclidean norm in (13.37),
the surface integral becomes∫

S

f dσ =

∫
Ω

(f ◦ Φ)
√
1 + [gu]2 + [gv]2 du dv.

This yields a multiple integral to compute
∫
S
f dσ indicated by∫

S

f dσ =

∫ ∫
Ω

(f ◦ Φ)(u, v) |Φu(u, v)× Φv(u, v)|2 du dv

=

∫ ∫
Ω

(f ◦ Φ)(u, v)
√
1 + [gu(u, v)]2 + [gv(u, v)]2 du dv,

with appropriate limits inserted for the double integrals on the right side depending
on Ω, and the possibility of reversing the order of integration to dv du if necessary.

Our main goal now is to show that Definition 13.5.3 unambiguously defines the
value of the surface integral

∫
S
f dσ; in other words, the integral value does not

depend on the parametrization used for S. (See Figure 13.4.)
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Theorem 13.5.4. Let Ω and Ω′ be regions in R2, and let the surface S in R3 be
parametrized by Φ : Ω → R3 and Ψ : Ω′ → R3, so that S = Φ(Ω) = Ψ(Ω′). If
f : S → R is continuous and bounded, then

(13.38)

∫
Ω

(f ◦ Φ) |Φu × Φv|2 du dv =

∫
Ω′
(f ◦Ψ) |Ψu′ ×Ψv′ |2 du′ dv′.

Proof. By assumption, the mappings Φ : Ω → R3 and Ψ : Ω′ → R3 are one-to-one
and onto S. If (u, v) is in Ω, then we define g(u, v) = (u′, v′) to be the unique point
in Ω′ at which

(13.39) Ψ(u′, v′) = Φ(u, v).

This defines g : Ω → R2, and g is one-to-one with image equal to Ω′, since both Φ
and Ψ are onto S.

Denote the component form of these mappings by Φ = (φ1, φ2, φ3), Ψ =
(ψ1, ψ2, ψ3), and g = (g1, g2). Then equation (13.39) is equivalent to the system

ψ1(g1(u, v), g2(u, v)) = φ1(u, v),

ψ2(g1(u, v), g2(u, v)) = φ2(u, v),(13.40)

ψ3(g1(u, v), g2(u, v)) = φ3(u, v).

We want to show that g : Ω → R2 is a C1 mapping that is C1-invertible on Ω.
This will show that it is a legitimate change of variables.

Let (u0, v0) be a point in Ω. By hypothesis,

∂Ψ

∂u′ (g(u0, v0))×
∂Ψ

∂v′
(g(u0, v0)) 
= 0,

hence there is at least one component of this cross product that is nonzero. With
no loss in generality we may assume that the last component of this cross product
is nonzero. This assumption is equivalent to the condition that the determinant

det

[ ∂ψ1

∂u′ (g(u0, v0))
∂ψ2

∂u′ (g(u0, v0))

∂ψ1

∂v′ (g(u0, v0))
∂ψ2

∂v′ (g(u0, v0))

]

= 0.

By the inverse function theorem, the mapping (ψ1, ψ2) : Ω′ → R2 is locally in-
vertible at the point g(u0, v0) with a C1 inverse. From the first two equations of
the system (13.40), we conclude that there is an open neighborhood O of the point
(u0, v0) on which

(g1, g2) = (ψ1, ψ2)
−1(φ1, φ2).

Thus, on the neighborhood O, (g1, g2) is a composition of C1 mappings and there-
fore g is C1 there. Since (u0, v0) was an arbitrary point in Ω, we conclude that g is
a C1 mapping taking Ω one-to-one and onto Ω′. It remains to show that Dg(u, v)
is invertible for each (u, v) in Ω.

System (13.40) can be written as Φ(u, v) = Ψ ◦ g(u, v). Since we now know
that g is C1, the chain rule applies and we have

DΦ(u, v) = DΨ(g(u, v))Dg(u, v), (u, v) ∈ Ω,

and this implies the Jacobian matrix identity

JΦ(u, v) = JΨ(g(u, v)) Jg(u, v), (u, v) ∈ Ω.
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This equality of 3 × 2 matrices implies the equality of all corresponding 2 × 2
submatrices on the left and right sides. The determinants of these 2×2 submatrices
determine the components of the cross products that appear in (13.38). To be
precise, suppose C and A are 3× 2 matrices and B is a 2× 2 matrix such that

C = AB.

Denote the columns, left to right, of C and A by C1, C2 and A1, A2. Then

C1 × C2 = (detB)A1 ×A2.

(See Exercise 13.5.1.) It follows that

(13.41) Φu(u, v)× Φv(u, v) = [detDg(u, v)] Ψu′(g(u, v))×Ψv′(g(u, v)).

Each component of the cross product on the left equals the corresponding compo-
nent of the cross product on the right multiplied by detDg(u, v); that is, for each
standard basis vector ei, 1 ≤ i ≤ 3, we have(

Φu(u, v)× Φv(u, v)
)
· ei = [detDg(u, v)]

(
Ψu′(g(u, v))×Ψv′(g(u, v))

)
· ei.

Taking Euclidean norms in (13.41) gives

(13.42) |Φu(u, v)× Φv(u, v)|2 = | detDg(u, v)| |Ψu′(g(u, v))×Ψv′(g(u, v))|2.

We know that detDg(u, v) 
= 0 for each (u, v) ∈ Ω, since g is C1-invertible on
Ω. Recalling that system (13.40) says that Φ(u, v) = Ψ ◦ g(u, v), the change of
variables formula and (13.42) allow us to express the right-hand side of (13.38) by∫

Ω′
(f ◦Ψ) |Ψu′ ×Ψv′ |2 du′ dv′

=

∫
Ω

(f ◦Ψ ◦ g)(u, v) |Ψu′(g(u, v))×Ψv′(g(u, v))|2 | detDg(u, v)| du dv

=

∫
Ω

(f ◦ Φ)(u, v)) |Φu(u, v)× Φv(u, v)|2 du dv,

which is the left-hand side of (13.38), as we wished to show. �

Theorem 13.5.4 confirms, via the change of variables formula, that surface area
and surface integrals as defined in Definition 13.5.3 do not depend on the particular
parametrization used for a surface S.

Readers may recall the divergence theorem from a first multivariable calcu-
lus course. Let Br(a) be the closed ball of radius r > 0 centered at the point
a in R3, and let Sr(a) = ∂Br(a) be the boundary spherical surface. If F(x) =
(f1(x), f2(x), f3(x)) is a continuously differentiable vector field on an open set con-
taining a, then the divergence theorem applied to the region Br(a) says that

(13.43)

∫
Sr(a)

F · n dσ =

∫
Br(a)

divF dV

where n denotes the outward unit normal to Sr(a) at each point, dσ is the element
of surface area and dV is the element of volume. The integral on the left side
measures the net flux (flow) of the vector field outward across the surface of the
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sphere. The integral on the right side is the integral of the divergence of the field
F over the ball, where

divF =
∂f1
∂x1

+
∂f2
∂x2

+
∂f3
∂x3

.

We will not prove the result of (13.43), but we wish to use it to illustrate a
coordinate-free interpretation of the divergence of F. There is also a coordinate-free
interpretation of the Laplacian of a real function f . Recall the Laplacian of f is
the differential operator

Δf(x) = div∇f(x) =
∂2f

∂x2
1

+
∂2f

∂x2
2

+
∂2f

∂x2
3

.

This discussion will add some insight for readers who will go on to the chapter on
the Dirichlet problem and Fourier series.

Suppose the vector field F is C1 on an open set U containing the point a in
R3. Let r be such that the ball Br(a) ⊂ U , and let (rk) be a decreasing sequence
of numbers less than r, such that rk → 0 as k → ∞. Using the continuity of divF,
let us write

Mk = max |divF(x)| and mk = min |divF(x)|

for x in Brk(a). By the divergence theorem applied to each of these balls about a,

mk ν(Brk(a)) ≤
∫
Srk

(a)

F · n dσ =

∫
Brk

(a)

divF dV ≤ Mk ν(Brk(a)).

Division by ν(Brk(a)) yields

mk ≤ 1

ν(Brk(a))

∫
Srk

(a)

F · n dσ =
1

ν(Brk(a))

∫
Brk

(a)

divF dV ≤ Mk.

As k → ∞, we have Mk → divF (a) and mk → divF (a) by continuity of the
divergence. Hence, we conclude that

divF(a) = lim
ρ→0

1

ν(Bρ(a))

∫
Sρ(a)

F · n dσ.

This limit provides a coordinate-free interpretation of the divergence of F at a in
terms of the flux of F across spheres centered at a as the spherical radius approaches
zero.

We also see from this result that if F is a gradient vector field, F = ∇f , where
f is a C2 real valued function, then

Δf(a) = lim
ρ→0

1

ν(Bρ(a))

∫
Sρ(a)

∇f · n dσ.

The limit gives a coordinate-free interpretation of the Laplacian of f at a in terms
of the flux of ∇f across spheres centered at a as the spherical radius approaches
zero.
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Exercises.

Exercise 13.5.1. Suppose C and A are 3 × 2 matrices and B is a 2 × 2 matrix
such that C = AB. Denoting the columns, left to right, of C and A by C1, C2 and
A1, A2, show that

C1 × C2 = (detB)A1 ×A2.

Exercise 13.5.2. Let h : R3 → R be a continuously differentiable function and
p a point at which ∇h(p) 
= 0. Let y = h(p). Show that there is an open ball B
about p such that the set

S = {x ∈ B : h(x) = y} = h−1(y)

is a surface in R3. Hint : Apply the implicit function theorem.

Exercise 13.5.3. Consider the upper hemisphere of radius ρ = 2 discussed in Ex-
ample 13.5.2, along with the parametrization Ψ : Q → R3 by spherical coordinates
given there, where Q = {(φ, θ) : 0 ≤ φ ≤ π/2, 0 ≤ θ ≤ 2π}, and

Ψ(φ, θ) =
(
2 sinφ cos θ, 2 sinφ sin θ, 2 cosφ

)
.

Recall that Ω = IntQ. Find the surface area of the complete spherical surface of
radius 2 by computing the upper hemispherical surface area as the multiple integral∫

Ω

∫
|Ψφ(φ, θ)×Ψθ(φ, θ)|2 dφ dθ

and then using symmetry to add in the area of the lower hemisphere. Verify the
relation V = ρ

3A between volume V and surface area A for this sphere of radius
ρ = 2. Then verify the relation for the general sphere of radius ρ. Hint : Carry
general ρ throughout the calculation.

13.6. Notes and References

Sagan [55] was the source for the Schoenberg space-filling curve in the first section
of this chapter. The development of the integral in this and the preceding chapter
drew mainly from Edwards [10] and Sagan [54], and to some extent from Lang [42].
The development of the change of variables formula drew mainly from Edwards [10],
which also has a discussion of the classical notation and terminology associated with
the change of variables formula that some readers may find useful. The material
on the definition of surface integrals was influenced by Guillemin and Pollack [22]
and Fitzpatrick [12].

The theory of the Riemann integral is adequate for many applications and pur-
poses, including the study of finite-dimensional smooth manifolds and the integra-
tion of smooth functions and smooth differential forms defined on them. Readers
who have successfully completed the section on surface integrals should have no
trouble with the definition of a manifold, whether 2-dimensional or k-dimensional,
modeled locally on Euclidean space of the same dimension. See Boothby [6], Lee
[44], or Munkres [48] for introductions to finite-dimensional manifolds.



Chapter 14

Ordinary Differential
Equations

The goal of this chapter is to present some fundamental facts about systems of
ordinary differential equations. The chapter involves applications of the fundamen-
tal theorem of calculus, the completeness of the spaces C[a, b] and Cn[a, b], and
the contraction mapping theorem. We begin with scalar differential equations and
then extend the discussion to systems, presenting results on local existence and
uniqueness for initial value problems, extension of solutions and behavior at time
boundaries, and continuous dependence of solutions on initial conditions, parame-
ters, and vector fields.

14.1. Scalar Differential Equations

Let I be an open interval and x : I → R a differentiable function. We will use
the notation ẋ for the derivative function dx/dt. This is a standard notation in the
study of differential equations.

Let f : I → R be a continuous function. Then the differential equation ẋ(t) =
f(t), with initial condition at time t0 given by x(t0) = x0, has a unique solution x(t)
for any (t0, x0) ∈ I ×R. By the fundamental theorem of calculus (differentiation
of integrals) we have

d

dt

∫ t

t0

f(s) ds = f(t) for all t ∈ I.

Thus the function x(t) defined by the integral formula

x(t) = x0 +

∫ t

t0

f(s) ds, t ∈ I,

is a solution of the stated initial value problem. To see that the solution is uniquely
determined by x0, suppose that both u(t) and v(t) satisfy ẋ(t) = f(t), x(t0) = x0;

421
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that is, for all t ∈ I,

u̇(t) = f(t), u(t0) = x0 and v̇(t) = f(t), v(t0) = x0.

Thus, by the fundamental theorem of calculus (integration of derivatives), we have

u(t)− x0 =

∫ t

t0

f(s) ds

and

v(t)− x0 =

∫ t

t0

f(s) ds

for all t ∈ I and therefore u(t) = v(t) on I.

The main goal of this section is to extend this statement about existence and
uniqueness of a solution to cover the more general initial value problem (IVP)

(14.1) ẋ = f(t, x), x(t0) = x0,

where f : D ⊆ R2 → R, D is an open set, and (t0, x0) ∈ D. The function f now
depends on both x and t, and appropriate assumptions on f will be stated below. A
solution of the initial value problem (14.1) is a differentiable function x : I → R,
defined on an open interval I containing t0, such that x(t0) = x0, (t, x(t)) ∈ D for
all t ∈ I, and ẋ(t) = f(t, x(t)).

The next result says that if f is continuous on D, then (14.1) is equivalent to
an integral equation.

Theorem 14.1.1. Suppose that f : D ⊆ R2 → R is continuous, and let I be an
open interval. A continuous function x : I → R such that (s, x(s)) ∈ D for all
s ∈ I satisfies the integral equation

(14.2) x(t) = x0 +

∫ t

t0

f(s, x(s)) ds, t ∈ I,

if and only if x is a solution on I of the initial value problem ( 14.1).

Proof. Suppose x : I → R is continuous on I and satisfies the integral equation
(14.2). Then x(t0) = x0. Since f is continuous on D, the integrand f(s, x(s)) is
continuous on I, and by the fundamental theorem, x(t) is differentiable for each
t ∈ I and

(14.3) ẋ(t) = f(t, x(t)), t ∈ I.

Therefore x : I → R is a solution of (14.1) on I. Conversely, if x : I → R satisfies
the IVP (14.1), then x is differentiable on I and hence continuous on I, so f(t, x(t))
is continuous on I. The evaluation half of the fundamental theorem then implies
that (14.2) holds. �

The advantage of the integral equation is that we can view the initial value
problem as a fixed point problem. Indeed, the proof of the next theorem is an
application of the contraction mapping theorem.

Theorem 14.1.2. Let f : D ⊆ R2 → R be continuous on D, and suppose that for
some a > 0, b > 0, the function f satisfies the Lipschitz condition

|f(t, x1)− f(t, x2)| ≤ K|x1 − x2|



14.1. Scalar Differential Equations 423

t0 − a

Ω

x0 + b

x0 − b

x0

t0 + at0 + δt0t0 − δ

ϕ

Figure 14.1. A function φ satisfying φ(t0) = x0 as a candidate for local
solution of the initial value problem ẋ = f(t, x), x(t0) = x0. The set Ω is
restricted by choice of δ.

for all pairs (t, x1), (t, x2) in the set

Ω = {(t, x) : |t− t0| ≤ a, |x− x0| ≤ b} ⊂ D.

Let M be such that |f(t, x)| ≤ M for all (t, x) in Ω. If δ satisfies

0 < δ < min{a, b/M, 1/K},
there is a unique solution x(t) of the initial value problem ( 14.1) defined on the
interval [t0 − δ, t0 + δ].

Proof. Choose any a > 0 and b > 0 such that the set Ω is contained in D. Since f
is continuous on D and Ω is compact, there is a bound M such that |f(t, x)| ≤ M
for all (t, x) ∈ Ω. Let δ satisfy 0 < δ < a, and consider the space of continuous
functions

B =
{
φ : φ ∈ C[t0 − δ, t0 + δ] and |φ(t)− x0| ≤ b for all t ∈ [t0 − δ, t0 + δ]

}
.

We think of B as our space of candidates for a solution. (See Figure 14.1.)

Note that B contains all continuous functions on [t0 − δ, t0 + δ] that satisfy
φ(t0) = x0 and |φ(t) − x0| ≤ b for all t ∈ [t0 − δ, t0 + δ]. Also, if φ ∈ B, then
(t, φ(t)) ∈ Ω for all t ∈ [t0 − δ, t0 + δ]. Thus, if φ ∈ B, then the Lipschitz estimate
and bound on f will certainly apply. The space B depends on the choice of δ > 0,
but for any δ > 0, B is a closed subset of the complete space C[t0 − δ, t0 + δ], so B
is a complete metric space in the metric determined by the sup norm, by Theorem
9.1.11. (See also Exercise 9.1.5.) Define a mapping T on C[t0 − δ, t0 + δ] by the
right-hand side of the integral equation (14.2), that is,

T [φ](t) = x0 +

∫ t

t0

f(s, φ(s)) ds.
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Our goal is to choose δ such that

(1) T : B → B;

(2) T is a contraction mapping on B.

Suppose φ ∈ B. We want to be sure that the image T [φ] is in B. Since φ ∈ B, φ
is continuous on [t0 − δ, t0 + δ] and (t, φ(t)) ∈ Ω for all t ∈ [t0 − δ, t0 + δ]. Since f
is continuous on Ω, f(t, φ(t)) is defined and continuous for t ∈ [t0 − δ, t0 + δ]. It
follows that T [φ] is defined for t ∈ [t0 − δ, t0 + δ], and T [φ] is a continuous function
on [t0− δ, t0+ δ]. In fact, by the fundamental theorem (differentiation of integrals),
T [φ] is differentiable on (t0 − δ, t0 + δ) and has one-sided derivatives at t0 ± δ. We
need the image T [φ] ∈ B, so we must show that |T [φ](t)− x0| ≤ b. Recalling that
we may have t < t0 as well as t > t0, we can estimate as follows:∣∣T [φ](t)− x0

∣∣ =
∣∣∣ ∫ t

t0

f(s, φ(s)) ds
∣∣∣

≤
∣∣∣ ∫ t

t0

|f(s, φ(s))| ds
∣∣∣

≤ M |t− t0| ≤ Mδ.

If we choose δ < b/M , then T [φ] is in B for each φ in B, and thus T : B → B.
Assume we have now chosen 0 < δ < min{a, b/M}.

We now want to show that T is a contraction on B. We may do so by main-
taining the previous restrictions on δ or by imposing a tighter restriction (and thus
accepting a shorter interval of definition for our local solution). What is required
to make T a contraction on B? We estimate as follows:∣∣(T [φ]− T [ψ])(t)

∣∣ ≤
∣∣∣ ∫ t

t0

f(s, φ(s)) ds−
∫ t

t0

f(s, ψ(s)) ds
∣∣∣

=
∣∣∣ ∫ t

t0

[f(s, φ(s))− f(s, ψ(s))] ds
∣∣∣

≤
∣∣∣ ∫ t

t0

|f(s, φ(s))− f(s, ψ(s))| ds
∣∣∣

≤
∣∣∣K ∫ t

t0

|φ(s)− ψ(s)| ds
∣∣∣

≤ K|t− t0| ‖φ− ψ‖ ≤ Kδ ‖φ− ψ‖,

since |φ(s) − ψ(s)| ≤ ‖φ − ψ‖, the sup norm of φ − ψ. It follows that if 0 < δ <
min{a, b/M}, then T : B → B and

‖T [φ]− T [ψ] ‖ = max
|t−t0|≤δ

|(T [φ]− T [ψ])(t)| ≤ Kδ ‖φ− ψ‖.

Therefore by choosing 0 < δ < min{a, b/M, 1/K}, we have T : B → B and T is a
contraction mapping on B with contraction constant Kδ < 1. (See Figure 14.1.1.)
By the contraction mapping theorem, T has a unique fixed point in B, and the fixed
point φ satisfies the integral equation (14.2) on [t0 − δ, t0 + δ]. Hence, φ must be
a solution of the initial value problem (14.1) on [t0 − δ, t0 + δ], by Theorem 14.1.1.
This proves the existence of a solution of (14.1) on [t0 − δ, t0 + δ].
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On the other hand, if ψ is any solution of the initial value problem (14.1) defined
on the interval [t0− δ, t0+ δ], then ψ is a solution of the integral equation (14.2) on
[t0 − δ, t0 + δ], and by our choice of δ > 0, the image point ψ(t) lies in Ω for all t.
Thus, the function ψ must be an element of the space B, which shows that ψ must
be the fixed point of T : B → B. This proves the uniqueness statement. �

We remark here that if f : D ⊆ R2 → R in Theorem 14.1.2 is continuously
differentiable in (t, x) throughout D, then the mean value theorem implies that f
satisfies a local Lipschitz condition with respect to x in a neighborhood of each
point (t0, x0) in D. We examine this in more detail later for systems.

Consider an autonomous (time-independent) equation, ẋ = f(x), x(t0) = x0,
where f has no explicit dependence on time t. We observe that both Theorem
14.1.1 and Theorem 14.1.2 apply to such equations with no changes in statements
or proofs except to replace “f(t, x)” throughout by “f(x)” and domain “D” in
Rn+1 by an open domain “D” in Rn for f : D ⊆ Rn → Rn. The definition of
the set Ω in Theorem 14.1.2 remains the same. A careful review of the statements
and proofs will verify this. However, for an autonomous equation, as for the gen-
eral nonautonomous case, there are generally restrictions on the time domain for
individual solutions. As an example, consider the equation ẋ = x2, x(0) = x0. The
solution with x(0) = 1 is x(t) = 1/(1 − t), which is defined for −∞ < t < 1. The
solution with x(0) = −1 is −1/(1 + t), defined for −1 < t < ∞. The solution with
x(0) = 0 is x(t) ≡ 0 on −∞ < t < ∞. The general solution of this IVP can be
written φ(t, x0) = x0/(1− t x0), where x(0) = x0, obtained by direct integration.

Exercises.

Exercise 14.1.1. Let t0 = 0 and x0 = 0. The initial value problem

ẋ = f(t, x) = 1 + x2, x(0) = 0,

has solution x(t) = tanx defined on (−π/2, π/2). Using estimates for |f(t, x)| and
|f(t, x1) − f(t, x2)| determined by Ω = {(t, x) : |t| ≤ π/4, |x| ≤ 2}, what is the
maximum local interval of existence described by the statement of Theorem 14.1.2?
Hint : Find the bound M and Lipschitz constant K determined by Ω.

Exercise 14.1.2. For the initial value problem ẋ = 1/(1 + t2), x(0) = 0, show
that, in defining Ω, b can be taken as large, and K as small positive, as we wish,
and a can be taken less than min{b/M, 1/K}. What can you conclude? What is
the unique solution of this IVP?

14.2. Systems of Ordinary Differential Equations

Our purpose is to study the existence and uniqueness of solutions to initial value
problems for systems of ordinary differential equations in Rn. We begin with some
standard notation for representing the problem and its solution. An initial value
problem has the form

(14.4) ẋ = f(t,x), x(t0) = x0,

where x ∈ Rn, ẋ = dx/dt, f(t,x) is an Rn-valued function of (t,x) in some open
set D ⊆ Rn+1, and (t0,x0) ∈ D. The function f is called the vector field of (14.4).
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The most fundamental case to consider is the case of an autonomous system,
defined by a time-independent vector field and described by equations of the form

(14.5) ẋ = f(x), x(t0) = x0,

where f : D ⊆ Rn → Rn, D is an open set, and x0 a given point, in Rn. Thus
(14.5) represents the system of n ordinary differential equations

ẋ1 = f1(x1, . . . , xn),

ẋ2 = f2(x1, . . . , xn)

... =
...

ẋn = fn(x1, . . . , xn)

for the unknown functions xi = xi(t), 1 ≤ i ≤ n, where fi is the i-th component
function of f , along with the initial condition

x(t0) = (x1(t0), x2(t0), . . . , xn(t0)) = x0.

The nonautonomous initial value problem (14.4) is described by similar equations
except that the functions fi may depend explicitly on t, so that the right-hand sides
are functions of (t,x) ∈ D ⊆ Rn+1.

Remark. Observe that we denote the domain of an autonomous system by D ⊆ Rn

and the domain of a nonautonomous system by a script letter, D ⊆ Rn+1.

14.2.1. Definition of Solution and the Integral Equation. We begin with the
definition of solution for an initial value problem of the general form (14.4), which
includes the autonomous case (14.5).

Definition 14.2.1. Let D be an open set in Rn+1, let f : D ⊆ Rn+1 → Rn be a
C1 mapping, and let (t0,x0) ∈ D. A solution of the initial value problem ( 14.4)
is a differentiable function x : I → R, defined on an open interval I containing
t0, such that x(t0) = x0 and for all t ∈ I, (t,x(t)) ∈ D and ẋ(t) = f(t,x(t)). A
solution of the autonomous problem ( 14.5) is a differentiable function x : I → R,
defined on an open interval I containing t0, such that x(t0) = x0 and for all t ∈ I,
x(t) ∈ D ⊆ Rn and ẋ(t) = f(x(t)).

If the vector field f is continuous on D for (14.4) (or D, for (14.5)), then the
initial value problem is equivalent to an integral equation. We state and prove
this for the nonautonomous case, and note, as for the scalar case, that only minor
notational changes are needed for the autonomous case.

Theorem 14.2.2. Suppose that f : D ⊆ Rn+1 → Rn is continuous, and let I
be an open interval containing t0. A continuous function x : I → Rn, such that
(t,x(t)) ∈ D for all t ∈ I, satisfies the integral equation

x(t) = x0 +

∫ t

t0

f(s,x(s)) ds, t ∈ I,

if and only if x is a solution on I of the initial value problem ( 14.4).
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Proof. Suppose x : I → R is continuous on I, (t,x(t)) ∈ D for all t ∈ I, and x
satisfies the integral equation

(14.6) x(t) = x0 +

∫ t

t0

f(s,x(s)) ds, t ∈ I.

Since f is continuous and the composition of continuous functions is continuous,
the integrand f(s,x(s)) is continuous on I, and x(t0) = x0 by the integral equation
with t = t0. By the fundamental theorem of calculus, the right side of (14.6) is
differentiable for t ∈ I, so x(t) is differentiable for t ∈ I and

(14.7) ẋ(t) = f(t,x(t)), t ∈ I.

Therefore x is a solution of the initial value problem on I.

Conversely, suppose that x : I → Rn satisfies (14.7) and x(t0) = x0. Then x is
differentiable on I and hence continuous on I, so f(t,x(t)) is continuous on I. The
evaluation half of the fundamental theorem of calculus then implies that

x(t) = x0 +

∫ t

t0

ẋ(s) ds = x0 +

∫ t

t0

f(s,x(s)) ds t ∈ I,

and the proof is completed. �

Exercise.

Exercise 14.2.1. Consider the autonomous system (14.5).

1. Show that if φ(t) is a solution on the interval (−δ, δ) of ẋ = f(x) with φ(0) =
x0, then ψ(t) := φ(t− τ ) is a solution on the interval (τ − δ, τ + δ) of ẋ = f(x)
with ψ(τ ) = x0.

2. Show that if the IVP for ẋ = f(x) with initial condition x(0) = x0 has a
unique solution in some interval about 0, then the initial value problem with
initial condition x(τ ) = x0 has a unique solution on some interval about τ .

14.2.2. Completeness of Cn[a, b]. For systems of ordinary differential equa-
tions we must consider continuous functions taking values in Rn. We need to know
that the relevant space of continuous functions is complete with respect to an ap-
propriate norm. For the local existence and uniqueness theorem for systems, it
is convenient to work with the space of continuous functions defined on a closed
interval [a, b] and taking values in Rn. We denote this space by Cn[a, b]. We also
find it convenient to work with the norm | · |1 on Rn defined by

|v|1 =
n∑

i=1

|vi|

for v = (v1, . . . , vn) ∈ Rn. We may norm the vector space Cn[a, b] by defining

(14.8) ‖u‖ = max
t∈[a,b]

|u(t)|1, u ∈ Cn[a, b].
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We may refer to this norm as the max norm on Cn[a, b]. The proof that (14.8)
defines a norm on Cn[a, b] is left to Exercise 14.2.2, but we observe that the max-
imum in (14.8) exists since the composition t �→ |u(t)|1 is continuous on [a, b] and
therefore achieves its maximum at some point t0 ∈ [a, b].1

In accordance with the norm (14.8) on Cn[a, b], we see that a sequence (xk) in
Cn[a, b] is a Cauchy sequence if for every ε > 0 there is an N = N(ε) such that if
k, j ≥ N(ε), then

|xk(t)− xj(t)|1 < ε for all t ∈ [a, b].2

Convergence of a sequence (xk) in the norm on Cn[a, b] means exactly uniform
convergence of (xk) on [a, b]; see Exercises 14.2.3 and 14.2.4 for a reminder of the
definition of uniform convergence.

Theorem 14.2.3. The space Cn[a, b] is complete in the norm given by ( 14.8).

Proof. Let (uk) be a Cauchy sequence in Cn[a, b]. We must show that there is an
element u in Cn[a, b] such that

lim
k→∞

‖uk − u‖ = 0.

Since uk is a Cauchy sequence, for every ε > 0 there is an N(ε) such that if
k,m ≥ N(ε), then for all t ∈ [a, b],

|uk(t)− um(t)|1 ≤ ‖uk − um‖ < ε.

Thus for each t ∈ [a, b], the sequence uk(t) is a Cauchy sequence in Rn. Since Rn

is complete, limk→∞ uk(t) exists for each t ∈ [a, b], and we define

u(t) = lim
k→∞

uk(t), t ∈ [a, b].

Now, using only the knowledge that we have a pointwise limit function u, we must
show two things: (i) limk→∞ ‖uk − u‖ = 0, and (ii) u ∈ Cn[a, b].

(i) Let ε > 0. There is an N such that for all k,m ≥ N and all t ∈ [a, b],

|uk(t)− um(t)|1 < ε.

By the continuity of the norm on Rn, if we let m → ∞, then for fixed k ≥ N and
all t ∈ [a, b],

lim
m→∞

|uk(t)− um(t)|1 = |uk(t)− lim
m→∞

um(t)|1 = |uk(t)− u(t)|1 ≤ ε.

Thus for every ε > 0 there is an N such that if k ≥ N , then

‖uk − u‖ ≤ ε.

Hence limk→∞ ‖uk − u‖ = 0.

(ii) Now we show that the limit function u is continuous, hence in Cn[a, b]. Let
t0 ∈ I. For any fixed k, the triangle inequality implies that

|u(t)− u(t0)|1 ≤ |u(t)− uk(t)|1 + |uk(t)− uk(t0)|1 + |uk(t0)− u(t0)|1.
By the convergence of uk to u in norm, for any ε > 0 there is an N such that if
k ≥ N , then the first and third terms on the right-hand side are each less than ε/3.

1Note that elsewhere we have been writing, and will continue to write, C[a, b] instead of C1[a, b]
for the real-valued continuous functions on [a, b].

2Such a sequence is sometimes called a uniformly Cauchy sequence of functions, the uniformity
being with respect to t in the interval [a, b].
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For fixed k ≥ N , continuity of uk at t0 implies that there is a δ > 0 such that if
|t− t0| < δ, then

|uk(t)− uk(t0)|1 < ε/3.

Thus, for any ε > 0 there is a δ > 0 such that if |t− t0| < δ, then

|u(t)− u(t0)|1 < ε/3 + ε/3 + ε/3 = ε.

Therefore u is continuous at t0. Since t0 was an arbitrary point of [a, b], u is
continuous on [a, b]. This completes the proof. �

Exercises.

Exercise 14.2.2. Verify that Cn[a, b] is a normed vector space with the max norm
defined by (14.8).

Exercise 14.2.3. A sequence of functions xk : [a, b] → Rn converges uniformly
on [a, b] to the function x : [a, b] → Rn if for every ε > 0 there is an N = N(ε) such
that if k ≥ N(ε), then

|xk(t)− x(t)|1 < ε for all t ∈ [a, b].

Convergence of a sequence in the normed space Cn[a, b] is equivalent to uniform
convergence of the sequence to its pointwise limit. Show this in two steps:

1. Suppose xk ∈ Cn[a, b] for each k and (xk) converges to x ∈ Cn[a, b] in the
max norm. Show that the sequence of functions xk converges uniformly on
[a, b] to x.

2. Show that if (xk), xk ∈ Cn[a, b], converges uniformly on [a, b] to x, then x is
continuous on [a, b], and xk converges to x in the max norm on Cn[a, b]. Hint :
Examine the proof of Theorem 14.2.3.

Exercise 14.2.4. Refer to the definition of uniform convergence in Exercise 14.2.3.
Let uk = (uk1, . . . , ukn) : [a, b] → Rn and u = (u1, . . . , un) : [a, b] → Rn. Prove the
following:

1. If uk converges uniformly on [a, b] to u, then each component sequence uki,
1 ≤ i ≤ n, converges uniformly on [a, b] to the corresponding component
ui : I → R of u.

2. If each component sequence uki, 1 ≤ i ≤ n, converges uniformly on [a, b] to
a function ui, then the sequence uk = (uk1, . . . , ukn) converges uniformly on
[a, b] to u = (u1, . . . , un).

14.2.3. The Local Lipchitz Condition. In order to guarantee that initial value
problems have a unique solution, we must impose some smoothness condition on the
vector field. Continuity of the vector field at (t0, x0) (or at x0 for an autonomous
field) does not guarantee a unique solution for the initial value problem. For exam-
ple, the initial value problem ẋ = x1/3, x(0) = 0, has more than one solution. One
solution is φ(t) ≡ 0, by inspection. But another solution is defined by ψ(t) = 0 for
t ≤ 0 and ψ(t) = (2/3)3/2t3/2 for t ≥ 0. This function is differentiable, including at
the origin, satisfies ψ(0) = 0, and satisfies the differential equation.

We impose the following stronger form of continuity on the vector field.
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Definition 14.2.4. Let U be an open set in Rn and let f : U → Rn. The mapping
f is said to be locally Lipschitz on U if for every a ∈ U there is an r > 0, and a
number L such that

|f(x1)− f(x2)|1 ≤ L|x1 − x2|1 for all x1,x2 ∈ Br(a).

The number L, which depends on a and r, is called a local Lipschitz constant,
and we say that f satisfies a local Lipschitz condition on Br(a). (Thus f is
locally Lipschitz on U if and only if f satisfies a local Lipschitz condition on a
neighborhood of each point a in U .)

The condition in Definition 14.2.4 is also known as local Lipschitz continuity
of f on U . It should be clear that if f satisfies a local Lipschitz condition on Br(a),
then f is continuous at a. The converse is not true, as Exercise 14.2.5 illustrates
with the example f(x) = x1/3.

By the equivalence of norms on Rn, a mapping that is locally Lipschitz on U
with respect to one norm, say the norm | · |1 as in Definition 14.2.4, is also locally
Lipschitz on U with respect to any other norm, with, generally speaking, a different
local Lipschitz constant for each norm.

Our goal is to show that continuous differentiability of f implies a local Lipschitz
condition in a neighborhood of each point in the domain.

Theorem 14.2.5. Let U be an open set in Rn and let x ∈ U . Suppose f : U → Rn

is C1, and let h ∈ Rn. Suppose the line segment consisting of the points x + th,
0 ≤ t ≤ 1, is contained in U . Then

f(x+ h)− f(x) =

∫ 1

0

Df(x+ th)h dt =

∫ 1

0

Df(x+ th) dt · h.

Proof. Consider the function of t defined by g(t) = f(x+ th). By the chain rule,
Dg(t) = Df(x+ th)h for all t. By the Fundamental Theorem of Calculus, we have

g(1)− g(0) =

∫ 1

0

Dg(t) dt.

Since g(1) = f(x + h) and g(0) = f(x), and since h can be taken outside the
integral, the result follows. �

Now assume that f : U ⊆ Rn → Rn is C1. Let x ∈ U and take any closed ball
B about x which is contained within U . Each of the first order partial derivatives
∂fi/∂xj(x) of each component fi of f is a continuous real valued function on the
compact set B, as is |∂fi/∂xj(x)|. Thus there exist numbers mij > 0 such that∣∣∣ ∂fi

∂xj
(x)
∣∣∣ ≤ mij for all x ∈ B.

We then have

‖Df(x)‖as ≤
n∑

i=1

n∑
j=1

mij =: L for all x ∈ B,
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using the absolute sum norm on the left-hand side. By Theorem 14.2.5, if x1 and
x2 are any two points in B, then, writing h = x2 − x1, we have

|f(x2)− f(x1)|1 =
∣∣∣ ∫ 1

0

Df(x1 + th)h dt
∣∣∣
1
≤
∫ 1

0

|Df(x1 + th)h|1 dt.

We have used the fact that for any vector function v(t),∣∣∣ ∫ 1

0

v(t) dt
∣∣∣
1
≤
∫ 1

0

|v(t)|1 dt.

Since the norm | · |1 is compatible with the absolute sum matrix norm,

|Df(x1 + th)h|1 ≤ ‖Df(x1 + th)‖as |h|1 ≤ L |h|1.

It follows that

|f(x2)− f(x1)|1 ≤ L|x2 − x1|1
for all x1, x2 in B. The Lipschitz constant L depends on the neighborhood B. We
record the result in the next theorem.

Theorem 14.2.6. Let U ⊆ Rn be an open set. If f is C1 on U , then f is locally
Lipschitz on U .

We remark that this theorem can also be established by invoking the mean
value theorem on a neighborhood Br(a).

Continuous differentiability of a vector field f implies a local Lipschitz condi-
tion in a neighborhood of each point of the domain, but not necessarily a global
Lipschitz constant and global Lipschitz condition over the entire domain. As a sim-
ple example, f(x) = 1/x is locally Lipschitz on (0, 1) since it is C1 on this interval,
but there is no global Lipschitz constant L such that |f(x) − f(y)| ≤ L|x − y| for
all x, y ∈ (0, 1).

The vector field in the next example is globally Lipschitz on the entire plane.

Example 14.2.7. The equations of motion for a pendulum with friction are

ẋ1 = x2,

ẋ2 = − sinx1 − x2.

We may consider this system to be defined on the entire plane. The Jacobian matrix
of the vector field f at x is

Jf (x) =

[
0 1

− cosx1 −1

]
.

Using the the sum of absolute entries matrix norm, we have a global bound for the
norm of the Jacobian, given by

‖Jf (x)‖as ≤ 3 for all x ∈ R2,

which gives a global Lipschitz constant for f . �
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Exercises.

Exercise 14.2.5. 1. Show that the function f(x) = x1/3 does not satisfy a Lips-
chitz condition in any interval about the origin.
2. Show that the function f(x) = 1/x does not satisfy a global Lipschitz condition
on the interval (0, 1).

Exercise 14.2.6. 1. Show that f(t, x) = t x1/3 does not satisfy a Lipschitz condi-
tion with respect to x in any open neighborhood of (t0, x0) = (0, 0).
2. Find two different solutions of the initial value problem ẋ = t x1/3, x(0) = 0.

Exercise 14.2.7. Show that for any vector function v(t) defined for a < t < b,∣∣∣ ∫ b

a

v(t) dt
∣∣∣
1
≤
∫ b

a

|v(t)|1 dt.

14.2.4. Existence and Uniqueness of Solutions. For the proof of the existence
and uniqueness theorem for initial value problems, we will focus on the case of
autonomous systems,

(14.9) ẋ = f(x), x(t0) = x0,

where f : U → Rn is a locally Lipschitz mapping on the open set U ⊆ Rn. The proof
is an application of the contraction mapping theorem in Banach spaces. In order
to have a fixed point problem, we formulate the system of differential equations as
an integral equation for an unknown function in the complete space Cn(I) for a
suitable interval I.

We shall use the vector norm | · |1 for vectors in Rn, and the norm

‖φ‖ = sup
t∈I

|φ(t)|1

for elements of the function space Cn(I). For the theorem on local solutions, we can
take I to be a closed and bounded interval, so that the supremum in the definition
of the norm can be taken to be a maximum. Recall that convergence in this norm
means uniform convergence on the interval I.

We observe that for a vector function φ(t), we have∣∣∣ ∫
I

φ(t) dt
∣∣∣
1
≤
∫
I

|φ(t)|1 dt.

A solution of (14.9) on an interval I containing t0 is a function x : I → Rn such
that x(t0) = x0 and ẋ(t) = f(x(t)) for each t ∈ I. We may speak about a solution
on a finite closed interval by considering the appropriate one-sided derivatives at
the endpoints.

Associated with (14.9) we have the integral equation

x(t) = x0 +

∫ t

t0

f(x(s)) ds, t ∈ I,

where x0 is given and I is an interval containing t0. Theorem 14.2.2, applied to an
autonomous vector field f , shows that if f is continuous, then a function x : I → R
is a solution of the initial value problem (14.9) on I if and only if x is a solution on I
of the integral equation. (See also Exercise 14.2.8.) However, as we have seen, mere
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continuity of f does not guarantee a unique solution of (14.9). We now apply the
contraction mapping theorem (Theorem 9.2.3) to prove existence and uniqueness
of a solution of (14.9) for locally Lipschitz vector fields f .

Theorem 14.2.8 (Existence and Uniqueness for Initial Value Problems). Let U
be an open set in Rn, and suppose that f : U → Rn is locally Lipschitz on U . For
any x0 ∈ U and any initial time t0 ∈ R, there exists a δ > 0 such that the initial
value problem ( 14.9) has a unique solution x : [t0 − δ, t0 + δ] → Rn.

Proof. A function x(t) is a solution of the initial value problem on an interval
[t0 − δ, t0 + δ] if and only if

(14.10) x(t) = x0 +

∫ t

t0

f(x(s)) ds for t ∈ [t0 − δ, t0 + δ].

Motivated by (14.10), we define a mapping T of continuous functions by using the
right-hand side of (14.10) to write

(14.11) (Tφ)(t) = x0 +

∫ t

t0

f(φ(s)) ds.

We need an appropriate δ > 0 and an appropriate subset Y of Cn[t0 − δ, t0 + δ]
such that T : Y → Y and T is a contraction mapping on Y . Our desired unique
local solution will then be the unique fixed point of T in Y .

Since f is C1 on U , we may choose an r > 0 sufficiently small such that the
closed ball Br(x0) about x0 is contained in U ,

|f(x)|1 ≤ M for all x ∈ Br(x0),

and f satisfies the local Lipschitz condition

|f(x1)− f(x2)|1 ≤ L|x1 − x2|1, for x1,x2 ∈ Br(x0).

Choose δ > 0 such that δM < r and δL < 1. With δ so chosen, the space
Cn[t0 − δ, t0 + δ] is complete in the sup norm.

Let x0 denote also the constant function in Cn[t0 − δ, t0 + δ] taking the value
x0. Consider the subset Y of Cn[t0 − δ, t0 + δ] defined by

Y = {φ ∈ Cn[t0 − δ, t0 + δ] : φ(t0) = x0 and φ(t) ∈ Br(x0) for all |t− t0| ≤ δ}.
Equivalently, Y consists of those continuous functions φ on [t0− δ, t0+ δ] for which
φ(t0) = x0 and ‖φ−x0‖ ≤ r. Then Y is a closed subset of Cn[t0−δ, t0+δ] (Exercise
14.2.9). Note that if φ is continuous on [t0 − δ, t0 + δ], then the image T (φ) defined
by (14.11) is also continuous on [t0 − δ, t0 + δ], so T maps Y into Cn[t0 − δ, t0 + δ].

We now show that T : Y → Y and that T is a contraction mapping. Let φ ∈ Y .
We have (Tφ)(t0) = x0, and, for |t− t0| ≤ δ,

|(Tφ)(t)− x0|1 =
∣∣∣ ∫ t

t0

f(φ(s)) ds
∣∣∣
1

≤
∫ t

t0

|f(φ(s))|1 ds

≤ δM,
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where we have used the bound for f on Br(x0). Since δM < r, if follows that
Tφ ∈ Y . We now show that T is a contraction mapping on Y . For φ1, φ2 ∈ Y and
|t− t0| ≤ δ, we have

|(Tφ1)(t)− (Tφ2)(t)|1 =
∣∣∣ ∫ t

t0

f(φ1(s)) ds−
∫ t

t0

f(φ2(s)) ds
∣∣∣
1

≤
∫ t

t0

|f(φ1(s))− f(φ2(s))|1 ds

≤ Lδ max
|s−t0|≤δ

|φ1(s)− φ2(s)|1

= Lδ ‖φ1 − φ2‖,
where we have used the Lipschitz condition for f on Br(x0). Taking the supremum
for |t− t0| ≤ δ on the left-hand side, we have

‖T (φ1)− T (φ2)‖ ≤ Lδ‖φ1 − φ2‖.
Since φ1 and φ2 were arbitrary in Y and Lδ < 1, T is a contraction mapping on
Y . By the contraction mapping Theorem 9.2.3, T has a unique fixed point in the
closed set Y , and this fixed point is the desired unique local solution of (14.10), and
hence (14.9), on [t0 − δ, t0 + δ]. �

As we have seen, Theorem 14.2.8 applies to any initial value problem when the
vector field f is C1 on U , since f is then locally Lipschitz on U . A similar approach
can be applied to the nonautonomous initial value problem

ẋ = f(t,x), x(t0) = x0,

under the assumptions that f is continuous on a closed rectangle

Ω = {(t,x) ∈ Rn+1 : |t− t0| ≤ a, |x− x0|1 ≤ b}
about the initial point (t0,x0), and f satisfies a Lipschitz condition with respect to
x on Ω, as in the scalar Theorem 14.1.2. (See Exercises 14.2.11 and 14.2.12.)

The properties of a contraction mapping have been used to prove the existence
and uniqueness of a locally defined solution for initial value problems. There is no
claim that this iterative technique is an especially efficient technique for approxi-
mating solutions.3 However, we do know that the iterates of the T mapping must
converge uniformly to the local solution on the interval [t0 − δ, t0 + δ].

In the next section we consider the extension of a local solution to a maximal
interval of existence.

Exercises.

Exercise 14.2.8. Verify that if the autonomous vector field f is continuous, then
a function x : I → R is a solution on I of the initial value problem ẋ = f(x),
x(t0) = x0, if and only if x is a solution on I of the integral equation

x(t) = x0 +

∫ t

t0

f(x(s)) ds, t ∈ I.

3Contraction mappings do provide efficient practical approximations in many situations; see for
example the basic iteration schemes in Exercises 9.5.8-9.5.9 for linear algebraic systems.



14.3. Extension of Solutions 435

Exercise 14.2.9. Show that the set Y = {φ ∈ Cn[t0−δ, t0+δ] : φ(t0) = x0 and ‖φ−
x0‖ ≤ r} is a closed set in the normed space Cn[t0 − δ, t0 + δ].

Exercise 14.2.10. Carry out the iteration of the contraction mapping T in Theo-
rem 14.2.8 for the following initial value problems, using the stated initial condition:

1. ẋ = x, x(0) = 1;

2. ẋ = x2, x(0) = 1;

3. ẋ = 1 + x2, x(0) = 0.

In each case, compute the iterates φk = T (φk−1) for k = 1, 2, 3, and compare φ3

with the exact solution.

Exercise 14.2.11. Suppose that f(t,x) is continuous on a closed rectangle Ω =
{(t,x) ∈ Rn+1 : |t − t0| ≤ a, |x − x0| ≤ b} about the initial point (t0,x0), and
assume that f satisfies a Lipschitz condition with respect to x on Ω, that is,

|f(t,x)− f(t,y)|1 ≤ L |x− y|1 for (t,x), (t,y) ∈ Ω.

Use a contraction mapping argument to show that the initial value problem ẋ =
f(t,x), x(t0) = x0, has a unique solution on an interval |t− t0| < δ for some δ > 0.
Hint : Make the minor modifications to the Theorem 14.2.8 proof, or see the scalar
Theorem 14.1.2 if needed.

Exercise 14.2.12. Suppose that f(t,x) is continuously differentiable on a closed
rectangle Ω = {(t,x) ∈ Rn+1 : |t − t0| ≤ a, |x − x0| ≤ b} about the initial point
(t0,x0). Show that f satisfies a Lipschitz condition with respect to x on Ω, that is,

|f(t,x)− f(t,y)|1 ≤ L |x− y|1 for (t,x), (t,y) ∈ Ω.

Hint : Employ the mean value theorem.

14.3. Extension of Solutions

The basic existence and uniqueness theorem for initial value problems provides us
with a unique local solution to the problem

(14.12) ẋ = f(x), x(0) = x0,

where f : D → Rn and D is an open subset of Rn. With no loss in generality
we take the initial time to be t0 = 0 in (14.12). We now address the extension of
solutions to their maximal interval of definition.

14.3.1. The Maximal Interval of Definition. We assume that the vector field
f is C1, or at least continuous and locally Lipschitz in x on an open domain D.
A local solution of the initial value problem with x(0) = x0 exists on an interval
[−δ, δ] for some δ > 0. With x(δ) ∈ D, we may extend this local solution to
an interval [−δ, δ + δ1] for some δ1 > 0, using the local existence and uniqueness
theorem, given the initial condition x(δ) at time δ. We may continue this extension
process in forward time so long as the solution has a well-defined finite value in
D at the new right-hand endpoint. Similarly we may extend the solution by steps
to the left. Of course, the culmination of this extension process may be that the
endpoints of these local extensions accumulate at some finite time value, beyond
which the solution can be extended no further. More on this in a moment.
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We first establish that the initial value problem has a maximal open interval of
existence J . Let J be the union of all open intervals on which there is a solution of
the initial value problem. Clearly J is an open interval, and the uniqueness result
may be used to show that the solution of our initial value problem is uniquely
determined on J , since local solutions on any two open subintervals of J must
agree on their intersection.

Why can the solution not be extended beyond J? Suppose J = (α, β) and
β < ∞. If the solution has a finite limit as t → β−, and this finite limit point is in
the domain of the vector field, then the solution can be uniquely extended through
this limit point on some time interval (α, β+δ) for some δ > 0, by the existence and
uniqueness theorem. But such an extension contradicts our definition of J . Thus,
either the solution has no finite limit as t → β−, or, if a finite limit exists, then it
is not a point of the domain of the vector field. In either case, clearly the solution
cannot be extended to time t = β. (Unless, of course, there is the possibility
of extending the definition of the vector field to be C1, or continuous and locally
Lipschitz, on an extended domain; however, we are assuming that no such extension
is made.) Similar considerations apply at the left-hand time boundary α. Thus, the
maximal interval of definition is open, J = (α, β). Theorem 14.3.3 below gives a
precise statement about the behavior of solutions as a time boundary is approached.

Let f be locally Lipschitz on the open set D ⊆ Rn and let φ(t,x0) be the
solution of the system ẋ = f(x) with φ(0,x0) = x0 ∈ D. We also write φt(x0) =
φ(t,x0). Given x0, let (α(x0), β(x0)) be the maximal interval of definition of the
solution φt(x0). The set

{φt(x0) : α(x0) < t < β(x0)}
is called the orbit of x0, and the set

{φt(x0) : 0 ≤ t < β(x0)}
is the forward orbit of x0. The set

{φt(x0) : α(x0) < t ≤ 0}
is the backward orbit of x0. We speak of the solution mapping φ(t,x0), which
is a function defined on some subset of the product space R ×Rn, as the flow of
the system ẋ = f(x), or the flow of the vector field f . The next result describes a
basic composition property of this solution mapping.

Theorem 14.3.1. Let {φt} be the flow for the system ẋ = f(x) on D. Let x0 ∈ D.
For all t, s for which these solution values are defined,

(14.13) φt+s(x0) = φt ◦ φs(x0) = φt(φs(x0)).

This property can also be written φ(t+ s,x0) = φ(t, φ(s,x0)).

Proof. Let s be fixed but arbitrary such that φs(x0) is defined. Let x(t) = φt+s(x0)
and y(t) = φt(φs(x0)). By definition, x(t) and y(t) are solutions of ẋ = f(x) defined
at least for t near zero. The solution x(t) has initial condition x(0) = φs(x0), as
does y(t). By uniqueness, x(t) = y(t) for all t for which these solutions are defined.
This argument applies for any choice of the point φs(x0) on the orbit through x0.
This completes the proof. �
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Example 14.3.2. The flow of the scalar differential equation ẋ = x2 is given by

φt(x) = φ(t, x) =
x

1− xt
.

The domain for the flow is described as follows. For x > 0, the maximal interval
of definition is the time interval (−∞, 1/x). For x < 0, the maximal interval of
definition is (1/x,∞), and for x = 0, the constant solution x = 0 is defined for
−∞ < t < ∞. For this flow, we may verify directly that we have

φt(φs(x0)) =
φs(x0)

1− φs(x0)t
=

x0

1−x0s

1− x0

1−x0s
t
=

x0

1− x0(t+ s)
= φt+s(x0),

which illustrates the property in Theorem 14.3.1. �

We now address the behavior of solutions at the time boundaries of the maximal
interval of definition. The next theorem says that if a solution φt(x0) is not defined
for all time, then it must leave any compact subset of the domain D as t → α(x0)

+

or as t → β(x0)
−.

Theorem 14.3.3 (Behavior of Solutions at Time Boundaries). Let D be an open
set in Rn, x0 ∈ D, and let f : D → Rn be continuous and locally Lipschitz.

1. Let (α(x0), β(x0)) be the maximal interval of definition of the solution φt(x0).
Let K be an arbitrary compact subset of D. If x0 ∈ K and β(x0) < ∞, then
there is a time tK with 0 < tK < β(x0) such that φtK (x0) 
∈ K. Similarly, if
x0 ∈ K and α(x0) > −∞, then there is a time tK with α(x0) < tK < 0 such
that φtK (x0) 
∈ K.

2. Let K be a compact subset of D. If K contains the entire forward orbit of x0,
then φt(x0) exists for all t > 0, that is, β(x0) = ∞. If K contains the entire
backward orbit of x0, then φt(x0) exists for all t < 0, that is, α(x0) = −∞.

Proof. 1. Let K be a compact subset of D. Since f is C1, there are constants
M > 0 and L > 0 such that |f(x)| ≤ M and |f(x)− f(z)| ≤ L|x− z| for x, z ∈ K.
Thus for as long as the solution φt(x0) remains in K, the mean value theorem
implies that

|φt(x0)− φs(x0)| ≤ M |t− s|.
Suppose that φt(x0) ∈ K for all t such that 0 ≤ t < β(x0). Then the limit

lim
t→β(x0)−

φt(x0) =: φβ(x0)(x0)

exists as a finite limit in K. (See Exercise 14.3.1.) By the existence and uniqueness
theorem, there is a δ > 0 and a solution defined on the interval (β(x0)−δ, β(x0)+δ)
which equals φβ(x0)(x0) at time t = β(x0). But this contradicts the definition of
(α(x0), β(x0)) as the maximal interval of definition of φt(x0). Therefore φt(x0)
must leave the set K before time t = β(x0).

The argument for the behavior as t → α(x0)
+ is similar.

2. If K is compact and contains the entire forward orbit of x0 ∈ K, then the
contrapositive of the implication in part 1 immediately implies that β(x0) = ∞.
Similarly, if a compact K contains the entire backward orbit of x0 ∈ K, then by
part 1, α(x0) = −∞. �
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Exercise.

Exercise 14.3.1. Suppose that K is a compact set, and for 0 ≤ t < β(x0),
φt(x0) ∈ K and |φt(x0)− φs(x0)| ≤ M |t− s| for t, s > 0. Show that

lim
t→β(x0)−

φt(x0)

exists as a finite limit in K.

14.3.2. An Example of a Newtonian System. We consider an application
involving a second-order ordinary differential equation of the form ÿ + f(y) = 0,
referred to as a Newtonian equation. By setting x1 = y and x2 = ẋ1 = ÿ, a
Newtonian equation may be written as a first-order system

ẋ1 = x2,

ẋ2 = −f(x1),

a standard formulation in the study of higher order equations. The dot notation
for derivatives with respect to the independent time variable t is also a standard
notation; thus ẋ1 = dx1/dt and ẋ2 = dx2/dt. We define the total mechanical energy
of the system at the point (x1, x2) by

E(x1, x2) =
1

2
x2
2 +

∫ x1

0

f(s) ds

= (kinetic energy) + (potential energy).

In the next example, we take f(y) = f(x1) = sin(x1), which defines a harmonic
oscillator system studied in introductory differential equations courses, also called
a nonlinear pendulum without friction.

Example 14.3.4. Let f(x1) = sin(x1) and consider the system

ẋ1 = x2,

ẋ2 = − sin(x1).

The sine function has a Taylor expansion about x1 = 0 beginning with

sin(x1) = x1 −
1

3!
x3
1 + · · · ,

since f ′(0) = 1, f ′′(0) = 0 and f ′′′(0) = −1. For any initial condition, the system
has a unique solution defined on an interval about t = 0. Since ẋ1 = ẋ2 = 0
when x1 = x2 = 0, the origin (0, 0) is an equilibrium (constant) solution of the
system. We now examine the behavior of solutions that start at initial conditions
(x1(0), x2(0)) close to the origin. The total mechanical energy is given by

E(x1, x2) =
1

2
x2
2 +

∫ x1

0

sin(s) ds =
1

2
x2
2 + 1− cos(x1).

The rate of change of energy E along a solution (x1(t), x2(t)) is

d

dt
E(x1(t), x2(t)) = f(x1)ẋ1 + x2ẋ2

= f(x1)x2 + x2(−f(x1)) = 0.
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This is the statement of conservation of energy for such a system. It implies that
any solution must remain within a level set of the total energy function E(x1, x2);
that is,

1

2
x2
2(t) + 1− cos(x1(t)) = E(x1(0), x2(0)) = C constant

for all t for which the solution is defined. Observe that E has a local minimum
value at the origin, where E = 0. By a simple algebraic step, we can express the
level curves of E by solving for x2 in terms of x1, yielding closed curves of constant
energy described by

1

2
x2
2 + (1− cosx1) = C,

that is, x2 = ±[2(C − (1 − cosx1))]
1/2, for C positive and sufficiently small. For

initial conditions sufficiently close to the equilibrium at the origin, the correspond-
ing solutions are trapped within a constant energy curve, and that curve is a closed
curve surrounding the origin. By the results of the current section, the solutions are
therefore defined for all forward time, and solutions must orbit repeatedly around
the origin as t → ∞ (Exercise 14.3.2). In other words, these closed curves represent
periodic solutions of the system. �

Exercise.

Exercise 14.3.2. This exercise shows that the constant energy curves for small
values of E in Example 14.3.4 must be traversed completely by a solution and thus
constitute periodic solutions.

1. Recall that the origin is an isolated equilibrium of the system, and observe
that the closed curves are compact subsets of the plane. Conclude that the
solution must exist for all forward time.

2. Let (x10, x20) be sufficiently close to the origin that its level curve of energy E
is a closed curve about the origin. Show that the velocity vectors (ẋ1(t), ẋ2(t))
have Euclidean norm (x2

2+[sin(x1)]
2)1/2 bounded below for all t by a positive

constant. Conclude that the solution (x1(t), x2(t)) must trace out the entire
closed curve (repeatedly) since the closed curve has finite total length.

14.4. Continuous Dependence

Systems of ordinary differential equations provide valuable models for many deter-
ministic dynamical processes where the solution behavior should exhibit a continu-
ous dependence on initial conditions, physical or other estimated parameters, and
right-hand sides. This section includes precise statements of such properties for
systems of ordinary differential equations.

14.4.1. Continuous Dependence on Initial Conditions, Parameters, and Vec-
tor Fields. We begin with a simple inequality known as Gronwall’s inequality.

Lemma 14.4.1 (Gronwall’s Inequality). Suppose that u(t) and v(t) are nonnegative
continuous functions on [0, T ) that satisfy

u(t) ≤ M +

∫ t

0

v(s)u(s) ds, for t ∈ [0, T ),
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where M ≥ 0 is constant. Then

u(t) ≤ Me
∫ t
0
v(s) ds, for t ∈ [0, T ).

Proof. Let U(t) := M +
∫ t

0
v(s)u(s) ds for 0 ≤ t < T . By assumption, u(t) ≤ U(t)

for t ∈ [0, T ). By the fundamental theorem of calculus,

U̇(t) = v(t)u(t) ≤ v(t)U(t),

where we have used the nonnegativity. Multiply both sides by e−
∫ t
0
v(s) ds. Recall

the product rule, to obtain

d

dt

[
U(t)e−

∫ t
0
v(s) ds

]
≤ 0.

Now integrate both sides from 0 to t, to yield

U(t)e−
∫ t
0
v(s) ds − U(0) ≤ 0.

Since U(0) = M and u(t) ≤ U(t), we have

u(t) ≤ U(t) ≤ Me
∫ t
0
v(s) ds for t ∈ [0, T ).

This completes the proof of Gronwall’s inequality. �

In Gronwall’s inequality we may have T finite or infinite. Note that all state-
ments in the proof hold for 0 ≤ t < T .

Gronwall’s inequality leads to a basic result on the continuous dependence of
solutions on initial conditions.

Theorem 14.4.2 (Continuous Dependence on Initial Conditions). Suppose that in
some open set U , the vector field f satisfies an estimate

|f(x)− f(y)|1 ≤ K|x− y|1,
where K > 0 is constant. Suppose φ1(t) and φ2(t) are solutions of ẋ = f(x) with
initial conditions φ1(0), φ2(0) in U . Then, for all t ≥ 0 for which these solutions
exist and the estimate

(14.14) |f(φ1(t))− f(φ2(t))|1 ≤ K|φ1(t)− φ2(t)|1
holds, we have

|φ1(t)− φ2(t)|1 ≤ |φ1(0)− φ2(0)|1 eKt.

Proof. Write a = φ1(0) and b = φ2(0). For the solutions in question, we have

φ1(t)) = a+

∫ t

0

f(φ1(s)) ds

and

φ2(t) = b+

∫ t

0

f(φ2(s)) ds.

Now we estimate using the absolute sum vector norm, | · |1, obtaining

|φ1(t)− φ2(t)|1 ≤ |a− b|1 +
∫ t

0

|f(φ1(s))− f(φ2(s))|1 ds.
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As long as the Lipschitz estimate (14.14) holds, we have

|φ1(t)− φ2(t)|1 ≤ |a− b|1 +
∫ t

0

K|φ1(s)− φ2(s)|1 ds.

Now we may apply Gronwall’s inequality with u(t) := |φ1(t) − φ2(t)|1, v(t) := K
and M := |a− b|1 to conclude that

|φ1(t)− φ2(t)|1 ≤ |a− b|1 eKt,

for as long as the solutions exist and the estimate (14.14) holds. �

We observe that the required estimates of Theorem 14.4.2 can be shown to
hold for a C1 vector field by choosing U sufficiently small, and then for any two
initial conditions φ1(0) and φ2(0) in U , the corresponding solutions will be defined
at least over some common finite time interval [0, β]. On any such interval, we have

|φ1(t)− φ2(t)|1 ≤ |φ1(0)− φ2(0)|1 eKβ for all t ∈ [0, β].

Thus, as φ2(0) approaches φ1(0) within U , the solution φ2(t) approaches φ1(t)
uniformly in t over the interval [0, β].

Suppose the system depends on several constant parameters which might be
physical constants or other estimated constant parameters. If there are m such
parameters involved, then we can model them by a parameter vector p ∈ Rm.
Then the system takes the form

ẋ = f(x,p),

where x ∈ Rn and p ∈ Rm. We can make this into a first order system in the
vector variable (x,p) ∈ Rn+m by writing

ẋ = f(x,p),

ṗ = 0.

We may use the norm | · |1 on Rn+m and then apply Theorem 14.4.2 to this aug-
mented system. We conclude that if the initial condition vectors (x10,p1) and
(x20,p2) are sufficiently close in the 1-norm, then the corresponding solutions
(x1(t,x10,p1),p1) and (x2(t,x20,p2),p2) satisfy∣∣(x1(t,x10,p1),p1)− (x2(t,x20,p2),p2)

∣∣
1
≤ (|x10 − x20|1 + |p1 − p2|1)eKβ

for all t in a common finite interval of definition [0, β]. Thus, as x20 approaches
x10 and p2 approaches p1, the solution x2(t,x20,p2) approaches x1(t,x10,p1) uni-
formly in t over the interval [0, β].

The next result is a statement about the continuous dependence of solutions
on the right-hand side of the differential equation.

Theorem 14.4.3 (Continuous Dependence on Right-Hand Sides). Suppose W ⊂
Rn is an open set and the vector fields f : W → Rn and g : W → Rn are C1 on
W . Suppose f satisfies the Lipschitz condition

|f(x)− f(y)|1 ≤ K|x− y|1
for x,y in W . Suppose in addition that for all x ∈ W ,

|f(x)− g(x)|1 < ε.
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If x(t) and y(t) are solutions of ẋ = f(x), ẏ = g(y), respectively, on an interval
J = [0, T ), and x(0) = y(0), then

|x(t)− y(t)|1 ≤ ε

K

(
eKt − 1

)
for t ∈ [0, T ).

Proof. For t > 0 we have, using x(0) = y(0),

x(t)− y(t) =

∫ t

0

[ẋ(s)− ẏ(s)] ds =

∫ t

0

[f(x(s))− g(y(s))] ds.

Hence,

|x(t)− y(t)|1 ≤
∫ t

0

|f(x(s))− g(y(s))|1 ds

≤
∫ t

0

|f(x(s))− f(y(s))|1 ds+
∫ t

0

|f(y(s))− g(y(s))|1 ds

≤ K

∫ t

0

(
|x(s))− y(s)|1 +

ε

K

)
ds.

Letting u(t) = |x(t))− y(t)|1, we have

u(t) +
ε

K
≤ ε

K
+

∫ t

0

K
[
u(s) +

ε

K

]
ds.

With v(s) := K, an application of Gronwall’s inequality implies that

u(t) +
ε

K
≤ ε

K
eKt for t ∈ [0, T ),

from which the result follows. �

Exercises.

Exercise 14.4.1. Let h(t) be real valued and continuous on an interval J contain-
ing t0 = 0. Let a be a real constant. Show that the unique solution of the initial
value problem ẋ = ax+ h(t), x(0) = x0, is given by

x(t) = eat
[
x0 +

∫ t

0

e−ash(s) ds
]
= eatx0 + eat

∫ t

0

e−ash(s) ds

for t in J . This is the variation of parameters formula for a scalar nonhomo-
geneuous equation.

Exercise 14.4.2. A study of the planar system

ẋ = −x+ x2y,

ẏ = −y

can help in understanding continuous dependence on initial conditions.

1. Explicit solutions can be obtained. Since y(t) = y0e
−t, the equation for x

is a Bernoulli equation, which can be integrated using the change of variable
u = 1/x and variation of parameters.
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2. Use the exact solutions to show that each branch of the hyperbola xy = 2
is a solution trajectory. This hyperbola forms the boundary of the basin of
attraction of the equilibrium (constant) solution (x, y) = (0, 0), as you will see
in part 3.

3. Using the exact solutions, study the forward time behavior of solutions with
initial condition in a small ball centered on the point (1, 2) on the hyperbola
x1x2 = 2. You should find that solutions starting at points (x0, y0) with
x0y0 > 2 become unbounded in finite forward time. Determine this finite
escape time in terms of the initial condition. In contrast, solutions starting at
points (x0, y0) with x0y0 < 2 will satisfy limt→∞(x(t), y(t)) = (0, 0). Observe
that this does not violate Theorem 14.4.2, because continuous dependence
of solutions on initial conditions is a statement about solution behavior over
some finite time interval, common to the interval of definition for the nearby
solutions being considered.

Exercise 14.4.3. Show that if f(t) is continuous and nonnegative for t ∈ [0, β)

and satisfies f(t) ≤
∫ t

0
f(s) ds for t ∈ [0, β), then f(t) ≡ 0.

14.4.2. Newtonian Equations and Examples of Stability. This subsection
provides an initial exploration of the concept of stability. We consider the sta-
bility of equilibrium (constant) solutions in some examples of Newtonian systems.

The stability definition captures the idea that sufficiently small deviations of
the initial condition from equilibrium will result in solutions that remain close to
the equilibrium for all forward time.

Definition 14.4.4. Suppose x0 is an equilibrium solution of the system ẋ = F(x).
We say that this equilibrium is stable if for every ε > 0 there is a δ = δ(ε) > 0
such that if |x − x0|2 < δ, then the solution φ(t,x) with φ(0,x) = x satisfies
|φ(t,x)− x0|2 < ε for all t ≥ 0. (See Figure 14.2.)

The stability concept might be viewed in the following light. We know that
solutions exhibit continuous dependence on finite intervals (Theorem 14.4.2). The
stability condition for an equilibrium says that the flow of the differential equation
exhibits a continuous dependence on initial conditions on the infinite time interval
[0,∞) in a neighborhood of the equilibrium solution.

In many applications, we want to know that solutions starting near equilibrium
not only remain close to equilibrium but approach the equilibrium asymptotically
as t → ∞. The appropriate definition is stated next.

Definition 14.4.5. Suppose x0 is an equilibrium solution of the system ẋ = F(x).
We say that x0 is asymptotically stable if it is stable and there exists a number
r > 0 such that if |x− x0|2 < r, then the solution φ(t,x) with φ(0,x) = x satisfies

lim
t→∞

φ(t,x) = x0.

(See Figure 14.3.)

Interested readers can consider a Newtonian system with friction in Exercises
14.4.4-14.4.5.
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x0

x

δ

ε

Figure 14.2. Definition 14.4.4: The stability of an equilibrium solution x0.
The solution φ(t,x) with initial condition φ(0,x) = x remains within ε of x0

in forward time provided x is chosen within a distance δ = δ(ε).

x0

x

r

Figure 14.3. Definition 14.4.5: Asymptotic stability of an equilibrium solu-
tion x0 equals stability plus the attractivity property that limt→∞ φ(t,x) = x0

for solutions φ(t,x) with initial condition φ(0,x) = x ∈ Br(x0) for some r > 0.

Exercises.

Exercise 14.4.4. Stability in a Newtonian system
This exercise continues the discussion of a Newtonian system begun in Example
14.3.4. Consider the Newtonian equation with a friction term proportional to the
velocity, ÿ + bẏ + f(y) = 0, b > 0, where f(y) = sin y. Write this as the system

ẋ1 = x2,

ẋ2 = −bx2 − f(x1), b > 0,

by setting x1 = y and x2 = ẋ1 = ÿ.

1. Verify that the origin is an isolated equilibrium (constant) solution.

2. Use the total mechanical energy function E from Example 14.3.4 to conclude
that the origin (0, 0) is stable in the sense of Definition 14.4.4. Also verify that
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the origin is stable even without the friction term. Reminder : Verify that for
|x0|2 sufficiently small, solutions are defined for all forward time.

Exercise 14.4.5. Asymptotic stability in a Newtonian system
We further consider a Newtonian system ẋ = F(x) with a friction term,

ẋ1 = x2,

ẋ2 = −bx2 − f(x1), b > 0.

Assume that f is any C1 function such that f(0) = 0 and f ′(0) = a > 0. (For
example, let f(x1) = sinx1 if you wish.) Then the origin is an isolated equilibrium
solution. Given the presence of friction in the system, we know from the analysis in
Exercise 14.4.4 that the origin is stable. This exercise will establish the asymptotic
stability of the origin when f satisfies the stated conditions.

1. We define a new energy function V (x) = xTPx which is a quadratic form with
P symmetric and positive definite, to be determined below. Then V (x) will
serve as a norm squared in a precise sense, because if P is symmetric positive
definite, then the bilinear form (x,y) = xTPy is an inner product for R2;
hence, (V (x))1/2 = (xTPx)1/2 is a norm on R2. Verify these facts about the
bilinear form.

2. Suppose the system ẋ = F(x) is written as ẋ = Ax+F2(x), where A = DF(0)
and F2(x) involves terms of second or higher order in the Taylor expansion
of the components of F. The rate of change of the energy V along a solution
x(t) is given by

d

dt
V (x(t)) =

d

dt
xT (t)Px(t) = ẋ(t)TPx(t) + x(t)TP ẋ(t)

= xT (t)ATPx(t) + FT
2 (x(t))Px(t) + xT (t)PAx(t) + xT (t)PF2(x(t))

= x(t)T (ATP + PA)x(t) + FT
2 (x(t))Px(t) + xT (t)PF2(x(t))

= xT (t)(ATP + PA)x(t) + 2FT
2 (x)(t)Px(t).(14.15)

Thus we define P to be the unique solution of the linear matrix equation

ATP + PA = −k I,

where I is the 2×2 identity matrix.4 The positive constant k is for convenience.
With P thus defined, we have

(14.16)
d

dt
V (x(t)) = −k xT (t)x(t) + 2FT

2 (x)Px(t) = −k |x(t)|22 + 2FT
2 (x)Px(t).

Since the last term on the right is of at least third order, it follows that
d
dtV (x(t)) < 0 for solutions with initial condition sufficiently close to the

origin. For later reference, we define the function V̇ (x) by

V̇ (x) = ∇V (x) · F(x) = ∇V (x) · (Ax+ F2(x)).

Substitution of a solution x(t) for x in the formula for V̇ gives exactly the
rate of change of V along that solution at any time t. To complete this part,

4The unique solution for P is ensured by the fact that all eigenvalues of A = DF(0) have negative

real part; see [66]. For our system, the eigenvalues are (−b ±
√
b2 − 4a)/2. These eigenvalues are real

and negative if b2 − 4a ≥ 0 (overdamping), and complex conjugates with negative real part −b/2 if

b2 − 4a < 0 (underdamping).
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compute the unique solution of ATP + PA = −k I, where A is the Jacobian
matrix of our planar system above at the equilibrium at the origin. Hint : Let
k = 2 to eliminate fractions in P . Note that ∇V (x) = 2Px.

3. With P in hand from part 2, write V̇ (x) explicitly as indicated in part 2.
Identify F2(x) and show explicitly at least two terms in its Taylor expansion

about the origin. Conclude that V̇ (x) < 0 in some ball about the origin.

4. Show that the origin is asymptotically stable (Definition 14.4.5). Hint and
Outline: If the positive valued V (x1(t), x2(t)) strictly decreases on [0,∞),
then it is bounded below by zero and therefore has a limit, say

lim
t→∞

V (x1(t), x2(t)) = ξ.

We want to show that ξ = 0, because then a solution x(t) with initial condition
sufficiently close to the origin must satisfy x(t) → 0 as t → ∞, since V is
positive-definite in a neighborhood of the origin. Suppose to the contrary
that ξ > 0, and argue for a contradiction: Use continuity of V (x) to argue
that the solution must remain outside some ball Br(0), r > 0. For fixed initial

condition x0, use the fact that V̇ (x) is continuous on the compact set

K = {x ∈ R2 : r ≤ |x|2 ≤ |x0|2}
to conclude that the number

−ν = max
r≤|x|2≤|x0|2

V̇ (x)

exists and −ν < 0. (The number −ν is the slowest rate of change of V along
any solution in the set K.) Then use the fundamental theorem of calculus in
the form

V (x(t)) = V (x0) +

∫ t

0

V̇ (x(s)) ds

to examine the behavior of V (x(t)) for large t, and reach a contradiction.

14.5. Matrix Exponentials and Linear Autonomous Systems

The matrix exponential is a basic tool in the advanced theory of ordinary differential
equations. This section defines the matrix exponential and explains its role in
the fundamental existence and uniqueness theorem for linear systems of ordinary
differential equations with constant coefficients.

Recall that if a is a fixed real number, then the real exponential function eat,
t ∈ R, is defined by the real infinite series of functions

eat := 1 + at+
1

2!
(at)2 + · · ·+ 1

k!
(at)k + · · · =

∞∑
k=0

tk

k!
ak.

Since d
dte

ta = aeta, we see that the function x(t) = eatx0, −∞ < t < ∞, is the
unique solution of the initial value problem ẋ = ax, x(0) = x0.

There is a similar matrix construction that yields the unique solution of the
initial value problem

(14.17) ẋ = Ax, x(0) = x0
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where x ∈ Rn and A is a real n×n matrix. Written out in component detail, such
a system takes the form

ẋ1 = a11x1 + a12x2 + · · ·+ a1nxn,

ẋ2 = a21x1 + a22x2 + · · ·+ a2nxn

· · · = · · ·
ẋn = an1x1 + an2x2 + · · ·+ annxn.

If A ∈ Rn×n, we may consider the matrix exponential series defined by

(14.18) etA := I + tA+
t2

2!
A2 + · · ·+ tk

k!
Ak + · · · =

∞∑
k=0

tk

k!
Ak.

See Exercise 14.5.1. We want to show that for any matrixA, and for any real number
t, the series (14.18) converges. To accomplish this, we wish to apply Theorem
9.5.11 to the matrix exponential series (14.18) in the normed space Rn×n, which is
complete by Theorem 9.5.9. Suppose that 0 < β < ∞. For each real t with |t| ≤ β,
we can estimate the general term of this series by∥∥∥ 1

k!
tkAk

∥∥∥ = |t|k
k!

‖Ak‖ ≤ βk

k!
‖A‖k =: Mk.

The series
∑

Mk converges by the ratio test, its limit being eβ‖A‖. Therefore by
Theorem 9.5.11 we may conclude that the matrix series (14.18) converges for each
real t. Observe that each component entry of the matrix series is a power series in
t, which can be differentiated term-by-term with respect to t. Thus the series for
etA can be differentiated term-by-term with respect to t to obtain

d

dt
etA = A+ tA2 +

t2

2!
A3 + · · ·+ tk

k!
Ak+1 + · · ·

= AetA = etAA.

Thus, etA is a matrix solution of the differential equation ẋ = Ax. Equivalently,
each column of etA is a vector function that solves ẋ = Ax. Thus x(t) = etAx0 is
the unique solution of the initial value problem for ẋ = Ax with x(0) = x0.

The next theorem gives some useful properties of etA, all of which are corollaries
of the uniqueness of solutions of initial value problems (Theorem 14.2.8).

Theorem 14.5.1. If A ∈ Rn×n, then the following properties hold:

1. If AB = BA, then et(A+B) = etAetB for all t.

2. etA is nonsingular for each t, and (etA)−1 = e−tA.

3. If S is nonsingular, then S−1etAS = et(S
−1AS) for all t.

Proof. 1. We show that the function X(t) := etAetB is a solution of Ẋ = (A +
B)X satisfying X(0) = I; the result then follows by the uniqueness of solutions.
Differentiate X(t), using the product rule to get

Ẋ(t) = AetAetB + etABetB .

Note that AB = BA implies that etAB = BetA (consider the defining series). It

follows easily that Ẋ(t) = (A+B)X(t), X(0) = I, hence X(t) = et(A+B).
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2. Let B = −A in statement 1. Then I = et(A−A) = etAe−tA, and statement 2
follows immediately.

3. This property can be deduced from a power series argument, but again we
will use uniqueness of solutions. Let Ā = S−1AS and let X(t) = S−1etAS. Clearly,

X(0) = I. We now show that X(t) satisfies Ẋ(t) = ĀX(t). Differentiate X(t) to
get

Ẋ(t) = S−1AetAS = S−1ASS−1etAS = ĀS−1etAS = ĀX(t).

By uniqueness, X(t) = etĀ = et(S
−1AS), as we wished to show. �

We summarize the situation for the initial value problem (14.17) as follows.

Theorem 14.5.2 (Fundamental Theorem for Linear Autonomous Systems). For
any x0 ∈ Rn there exists a unique solution of the initial value problem (14.17),
given by x(t) = etAx0, and this solution is defined for all real t.

Consider the following simple harmonic oscillator system.

Example 14.5.3. We compute etA for the matrix

A =

[
0 1
−1 0

]
.

This is the coefficient matrix for the simple linear harmonic oscillator system

ẋ1 = x2

ẋ2 = −x1,

which comes from the scalar second-order equation ÿ+y = 0 by setting x1 = y and
x2 = ẏ. The powers of A required for the exponential series follow a periodic cycle
of length four:

A1 = A, A2 = −I, A3 = −A, A4 = I, A5 = A, . . . .

From this fact it is straightforward to find that (14.18) implies

etA =

[
(1− t2

2! +
t4

4! − · · · ) (t− t3

3! +
t5

5! − · · · )
(−t+ t3

3! −
t5

5! + · · · ) (1− t2

2! +
t4

4! − · · · )

]
=

[
cos t sin t
− sin t cos t

]
.

The first column of etA solves the system with initial condition (x1(0), x2(0)) =
(1, 0), and the second column is the solution with (x1(0), x2(0)) = (0, 1). �

Let A be a real n × n matrix. A matrix solution X(t) of ẋ = Ax that is
nonsingular for all t is called a fundamental matrix solution. When A has
complex eigenvalues, a fundamental matrix can have complex entries. Theorem
14.5.1 (statement 2) shows that etA is a fundamental matrix solution, and it can
always be used to produce the general real valued solution of the system. It is
straightforward to check that if X(t) is any fundamental matrix solution and C is
any invertible matrix of the same size, then X(t)C is also a fundamental matrix
solution (Exercise 14.5.4). From this fact and the uniqueness of solutions of initial
value problems, we have

etA = X(t)X(0)−1,

as each side is a matrix solution of ẋ = Ax, and each side equals the identity matrix
when t = 0.
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There are some special solutions of the system ẋ = Ax that are easily identified.
In particular, let λ be an eigenvalue of A and let v be a corresponding eigenvector
(possibly complex). Thus Av = λv. Then the function φ(t) = eλtv is a (possibly
complex valued) solution, since

φ̇(t) =
d

dt
[eλtv] =

( d

dt
eλt
)
v = λeλtv = eλtAv = Aφ(t).

Suppose now that A is diagonalizable with eigenvalues λ1, . . . , λn. If the vectors
v1, . . . ,vn form a basis of n linearly independent eigenvectors of A (which exist
since A is diagonalizable) with Avj = λjvj , then we have the n special solutions

φ1(t) = eλ1tv1, . . . , φn(t) = eλntvn.

Place these solutions as columns in the square matrix

Φ(t) = [φ1(t) · · · φn(t)].

Then Φ(t) is a fundamental matrix solution of ẋ = Ax, with Φ(0) = [v1 · · · vn].
It follows that

etA = Φ(t)Φ(0)−1 = Φ(t)[v1 · · · vn]
−1.

Example 14.5.4. Consider the system

ẋ =

[
3 −2
1 1

]
x.

We will construct the general solution using the matrix solution etA. The charac-
teristic equation is det(λI − A) = (λ − 3)(λ − 1) + 2 = λ2 − 4λ + 5 = 0, so the
eigenvalues are λ = 2± i. An eigenvector for 2 + i is

v1 =

[
1 + i
1

]
.

An eigenvector for λ = 2− i is

v2 =

[
1− i
1

]
.

These two eigenvectors are linearly independent since

det

[
1 + i 1− i
1 1

]
= 2i 
= 0.

Therefore two solutions are given by

φ1(t) = e(2+i)t

[
1 + i
1

]
, φ2(t) = e(2−i)t

[
1− i
1

]
.

Thus,

Φ(t) :=

[
e(2+i)t(1 + i) e(2−i)t(1− i)

e(2+i)t e(2−i)t

]
is a matrix solution. One can check that the columns φ1(t), φ2(t) are linearly
independent for each t, and thus Φ(t) is a fundamental matrix solution. The general
real valued solution using etA is given by

x(t) = etAx0 = Φ(t)Φ(0)−1x0,
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and a straightforward calculation gives

etA =

[
e2t(cos t+ sin t) −2e2t sin t

e2t sin t e2t(cos t− sin t)

]
.

A detailed component description of the general solution can now be given (Exercise
14.5.3). �

The general solution of nonhomogenous linear autonomous systems can be ex-
pressed using the variation of parameters formula for systems; see Exercise 14.5.5.

Exercises.

Exercise 14.5.1. Show that if we carry out the iteration of the contraction map-
ping T in the existence and uniqueness Theorem 14.2.8 for the system ẋ = Ax,
using the initial approximation x0, we generate the partial sums of etAx0.

Exercise 14.5.2. Show that for each real number t, ‖etA‖ ≤ e|t| ‖A‖.

Exercise 14.5.3. Verify the computation of etA in Example 14.5.4, and write the
detailed component description of the general solution of the system given there.

Exercise 14.5.4. Show that if X(t) is any fundamental matrix solution of ẋ = Ax
and C is any invertible matrix of the same size, then X(t)C is also a fundamental
matrix solution. Deduce that etA = X(t)X(0)−1.

Exercise 14.5.5. Let h(t) be a real vector function taking values in Rn and con-
tinuous on an interval J containing t0 = 0. Let A be a real n × n matrix. Show
that the unique solution of the initial value problem ẋ = Ax+ h(t), x(0) = x0, is
given by

x(t) = etA
[
x0 +

∫ t

0

e−sAh(s) ds
]
= etAx0 + etA

∫ t

0

e−sAh(s) ds

for t in J . This is the variation of parameters formula for a nonhomogeneuous
linear system with constant coefficient matrix A.

14.6. Notes and References

The text by Hirsch and Smale [28] is an interesting and rigorous introduction to
systems of ordinary differential equations at the advanced undergraduate level, with
many of the later chapters also appropriate for beginning graduate students. See
also the second edition by Hirsch, Smale and Devaney [29] as well as Brauer and
Nohel [7].

We concentrated on linear autonomous systems in Section 14.5. The text by
Hale [24] includes material on linear nonautonomous systems and their variation
of parameters formula.

Ordinary differential equations play an important role in mathematical control
theory; Terrell [66] is an introduction to some core ideas for advanced undergrad-
uates and beginning graduate students, and has many additional references.



Chapter 15

The Dirichlet Problem and
Fourier Series

Fourier series representations of functions are important in many applications, es-
pecially problems that involve partial differential equations. Fourier series use inte-
gration to define the series coefficients, in contrast to Taylor series representations,
which use differentiation. Fourier series can be useful in problems where a function
can be discontinuous at a limited number of points, or might not have a continuous
derivative. We introduce Fourier series by way of an important problem in the area
of partial differential equations involving Laplace’s equation.

Section 1 provides a brief introduction to Laplace’s equation, indicating why it
appears in many of the equations of mathematical physics.

Section 2 introduces the important orthogonality relations satisfied by the basic
sine and cosine functions on [−π, π]. These functions are the building blocks for
Fourier series. We then define the Fourier coefficients for a Riemann integrable
function on [−π, π].

Section 3 introduces the Dirichlet problem for the unit disk and describes how to
construct special product solutions by means of the separation of variables method.
An infinite linear combination of the special product solutions (an infinite series)
represents the unique solution to the Dirichlet problem.

Section 4 offers guided exercises to show how the ideas from Section 3 can be
used to construct series solutions to some basic problems for the one-dimensional
heat equation (temperature in a thin metal rod) and the one-dimensional wave
equation (displacement of a vibrating string).

Section 5 shows that the Fourier coefficients of a function provide the best mean
square approximation of the function using the basic sine and cosine functions on
[−π, π]. (This is approximation in the L2 norm for Riemann integrable functions).
The result on mean square approximation leads to Bessel’s inequality and also to

451
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Parseval’s equality for continuous functions on [−π, π]. Parseval’s equality is an
analogue of the Pythagorean theorem in Euclidean space Rn.

Section 6 presents a useful pointwise convergence result for Fourier series. We
note the general difficulty of the pointwise convergence problem, and then prove a
theorem on the uniform convergence of the Fourier series of a continuous function
with a piecewise continuous derivative.

Finally, Section 7 presents Fejér’s theorem, which says that the Cesàro means
of the Fourier series of a continuous function converge uniformly to the function.

15.1. Introduction to Laplace’s Equation

We will introduce the use of Fourier series by way of an important problem in the
area of partial differential equations involving Laplace’s equation

Δu(x, y, z) = 0, (x, y, z) ∈ U.

Recall that Δu = div gradu = uxx+uyy+uzz is called the Laplacian of u, defined
in an open set U in R3. The Laplacian operator Δ, and in particular, Laplace’s
equation, appears throughout mathematical physics in a variety of contexts. The
dependent variable u should be thought of as a concentration (or density) of some
quantity in equilibrium. Consider a vector field F giving the flux density in U , so
that by the equilibrium hypothesis, about any point a in U the flux of u across a
small sphere Sr(a) centered at a is zero, that is,∫

Sr(a)

F · n dσ = 0,

where n is the outward unit normal to Sr(a). By the divergence theorem (13.43),∫
Br(a)

divF dV =

∫
Sr(a)

F · n dσ = 0

where Br(a) is the ball of radius r centered at a. If F is C1, this implies

divF = 0 throughout U.

In many physical contexts, it is reasonable to assume that the flux density F is
proportional to the gradient of u, gradu. If the flow is from higher density regions
to lower density regions, then

F = −k gradu, k > 0.

In these situations, we have

divF = 0 =⇒ div gradu = Δu = 0,

which is Laplace’s equation.

Laplace’s equation in the plane is

uxx(x, y) + uyy(x, y) = 0, (x, y) ∈ U.

It describes steady-state temperature (heat) distributions over a given domain U .
The heat equation in planar regions is

ut(x, y, t) = uxx(x, y, t) + uyy(x, y, t), (x, y, t) ∈ U × [0,∞).
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In the steady state or equilibrium state, a solution u = u(x, y, t) of the heat equation
is independent of time t, thus ut(x, y, t) = 0 for all (x, y, t), and hence u = u(x, y)
is a function of position alone and u satisfies Laplace’s equation in U . The problem
of solving Laplace’s equation over a region U when the values of u are specified
on the boundary of U is called the Dirichlet problem for U . We shall consider
the Dirichlet problem for the unit disk in the plane, and its solution by means of
Fourier series.

First, we need the building blocks of Fourier series.

15.2. Orthogonality of the Trigonometric Set

The building blocks of Fourier series are the elements of the trigonometric set
given by

(15.1)
{
1, cosx, sinx, cos 2x, sin 2x, . . . , cosnx, sinnx, . . .

}
.

If f and g are two Riemann integrable functions defined on an interval [a, b], their
inner product is defined by

(f, g) =

∫ b

a

f(x)g(x) dx,

and we say that f and g are orthogonal if (f, g) = 0, sometimes denoted by f ⊥ g.
A development of Fourier series based on the trigonometric set could be based on
any interval of length 2π. We also employ the extensions of functions defined on
that interval to periodic functions of period 2π on the whole real line. We choose
to work with the interval [−π, π] as the basic interval.

From the basic trigonometric identities,

2 cosnx cosmx = cos(n+m)x+ cos(n−m)x;

2 cosnx sinmx = sin(n+m)x− sin(n−m)x;

2 sinnx sinmx = cos(n−m)x− cos(n+m)x,

we have the following orthogonality relations satisfied by the elements of the trigono-
metric set:

(15.2)

∫ π

−π

cosnx dx =

∫ π

−π

sinnx dx = 0 (n ≥ 1),

that is, cosnx ⊥ 1 and sinnx ⊥ 1 for all n ≥ 1;

(15.3)

∫ π

−π

cosnx sinmxdx = 0 (n,m ≥ 1, n 
= m),

(15.4)

∫ π

−π

cosnx cosmxdx =

∫ π

−π

sinnx sinmxdx = 0 (n,m ≥ 1, n 
= m),

and finally,
∫ π

−π
(1)(1) ds = 2π, and

(15.5)

∫ π

−π

cos2 nx dx =

∫ π

−π

sin2 nx dx = π (n ≥ 1).
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We may summarize (15.2), (15.3) and (15.4) by the statement that the elements
of the trigonometric set are pairwise orthogonal. Such a set is called simply an
orthogonal set.

Now suppose that a series in the elements of the orthogonal set converges
uniformly to a function f(x) on [−π, π], that is, for certain constants ak and bk, we
have

f(x) =
1

2
a0 +

∞∑
k=1

(ak cos kx+ bk sin kx), x ∈ [−π, π],

where the partial sums converge uniformly to f . The explanation for the choice of
the constant term in the form 1

2a0 will be given in a moment. Being the sum of
a uniformly convergent series of continuous functions, the function f is continuous
on [−π, π]. The uniform convergence also implies that term-by-term integration of
the series is valid, and this, together with the orthogonality relations, allows us to
determine the coefficients. For example, integration of the series for f implies∫ π

−π

f(x) dx =

∫ π

−π

1

2
a0 dx = 2π

1

2
a0 = πa0.

For fixed n ≥ 1, multiplication of the series by cosnx and term-by-term integration
yields ∫ π

−π

f(x) cosnx dx =

∫ π

−π

an cos
2 nx dx = πan.

Thus the coefficients an are given by the formulas

an =
1

π

∫ π

−π

f(x) cosnx dx, n = 0, 1, 2, . . . .

(The case n = 0 here explains our choice of the form 1
2a0 for the constant term in

the series.) Similarly, for fixed n ≥ 1, multiplication of the series by sinnx yields∫ π

−π

f(x) sinnx dx =

∫ π

−π

bn sin
2 nx dx = πbn.

Thus the coefficients bn are given by the formulas

bn =
1

π

∫ π

−π

f(x) sinnx dx, n = 1, 2, . . . .

With the preceding construction as motivation, we now consider a Riemann
integrable function f , which need not be continuous at every point of [−π, π], and
we define the numbers

(15.6) an =
1

π

∫ π

−π

f(x) cosnx dx (n = 0, 1, 2, . . .)

and

(15.7) bn =
1

π

∫ π

−π

f(x) sinnx dx (n = 1, 2, . . .)

to be the Fourier coefficients of f with respect to the trigonometric set. The
series

(15.8)
1

2
a0 +

∞∑
k=1

(ak cos kx+ bk sin kx)
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with the coefficients defined by (15.6), (15.7) is then called the Fourier series of f .
If f is actually the sum of a series of the form (15.8) on [−π, π], then the argument
in the preceding paragraph shows that the Fourier series of f is the only possible
such series that can converge uniformly to f . However, given a Riemann integrable
function f , the question of whether the Fourier series of f actually converges to f
uniformly, or even pointwise at every point, remains to be addressed. We present a
basic result on pointwise convergence in Section 15.6. The question of the validity
of term-by-term integration of the Fourier series of a general integrable function, or
of the series multiplied by one of the elements of the trigonometric series, as carried
out above, was answered fully only after the introduction of the Lebesgue integral.

In this book we shall work with Fourier series in the form (15.8) for real valued
functions f . However, (15.8) may also be expressed in complex number form, based
on the Euler identity eix = cosx+ i sin x and the inner product

(f, g) =

∫ π

−π

f(x)g(x) dx

for functions that may take on complex values on [−π, π]. The complex conjugate

of g(x) is g(x). The functions einx, n ∈ Z, are pairwise orthogonal on the interval
[−π, π]:

(einx, eimx) =

∫ π

−π

einxe−imx dx =

{
0 for n 
= m,
2π for n = m,

as is easily verified (Exercise 15.2.2). The complex form of (15.8) allows for exten-
sions of the theory to complex valued functions. For the interested reader, Exercise
15.2.3 shows the complex coefficients.

Exercises.

Exercise 15.2.1. Verify the relations (15.2), (15.3), (15.4) and (15.5) for the
trigonometric set in (15.1) on the interval [−π, π].

Exercise 15.2.2. Verify the pairwise orthogonality of the functions einx, n ∈ Z,
on [−π, π], and the fact that (einx, einx) = 2π for all n.

Exercise 15.2.3. Complex form of Fourier series
Let f be a Riemann integrable function. Then the Fourier coefficients are defined.
Show that the real Fourier series (15.8) with coefficients an, bn given by (15.6),
(15.7) can be expressed in the form

∑∞
−∞ cke

ikx, where the complex Fourier coef-
ficients cn, n ∈ Z, are given by

(15.9) cn =
1

2π
(f, einx) =

1

2π

∫ π

−π

f(x)e−inx dx, n = 0,±1,±2, . . . .

More precisely, show that this definition of cn implies that cn = 1
2 (an − ibn) for

n 
= 0, and that c0 = 1
2a0. Show that c−n = cn, and hence show that for each

integer n,
n∑

k=−n

cke
ikx =

1

2
a0 +

n∑
k=1

(ak cos kx+ bk sin kx),
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u(1, θ) = f(θ)

u(r, θ)

Figure 15.1. The Dirichlet problem for the unit disk: Determine u(r, θ) in
the interior of the disk if u(1, θ) = f(θ) is known on the boundary circle.

the n-th partial sum of the Fourier series, expressed in complex form. If the limit
exists for a particular x, then, by definition,

∞∑
−∞

cke
ikx = lim

n→∞

n∑
k=−n

cke
ikx = lim

n→∞

[1
2
a0 +

n∑
k=1

(ak cos kx+ bk sin kx)
]
.

Verify that if term-by-term integration of the series
∑∞

−∞ cke
ikx is valid, then the

orthogonality relations of the set {einx : n ∈ Z} imply that the coefficients cn must
be given by (15.9).

15.3. The Dirichlet Problem for the Disk

The Dirichlet problem for the closed unit disk is the boundary value problem for
Laplace’s equation

uxx(x, y) + uyy(x, y) = 0, for x2 + y2 < 1,

where

u(x, y) = f(x, y), for x2 + y2 = 1.

The function f is the given boundary condition. The problem is expressed in
polar coordinates for the unit disk as follows: The function u(r, θ) is to satisfy the
differential equation

(15.10) urr(r, θ) +
1

r
ur(r, θ) +

1

r2
uθθ(r, θ) = 0

for (r, θ) in the interior of the disk, that is, for r < 1, and the boundary condition

(15.11) u(1, θ) = f(θ), −π ≤ θ ≤ π.

See Exercise 15.3.1. For the boundary condition f(θ) in (15.11), we require that
f(θ + 2π) = f(θ) for all θ. (See Figure 15.1.)

Following the approach of Fourier, we look for special solutions of Laplace’s
equation (15.10) in product form u(r, θ) = R(r)Θ(θ). Substituting this product
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into (15.10) yields

R′′(r)Θ(θ) +
1

r
R′(r)Θ(θ) +

1

r2
R(r)Θ′′(θ) = 0.

Multiplication by r2 and division by u = RΘ (we seek nonzero solutions) yields

r2R′′(r) + rR′(r)

R(r)
= −Θ′′(θ)

Θ(θ)
.

Since this is to be an identity in (r, θ), and the left-hand side depends only on r
while the right-hand side depends only on θ, both sides equal a common constant
λ,

r2R′′(r) + rR′(r)

R(r)
= λ and − Θ′′(θ)

Θ(θ)
= λ.

The variables have been separated, hence the name separation of variables method
for this approach. Since u(r, θ) is to be 2π-periodic in θ, we require that Θ(θ)
be 2π-periodic in θ, so Θ(θ) must also satisfy the periodic boundary condition
Θ(−π) = Θ(π). We now construct these product solutions.

The ordinary differential equations to be solved may be written as the boundary
value problem,

(15.12) Θ′′(θ) + λΘ(θ) = 0, Θ(−π) = Θ(π),

together with

(15.13) r2R′′(r) + rR′(r)− λR(r) = 0.

The idea is to first solve the boundary value problem (15.12) for those values of λ
yielding nonzero solutions for Θ(θ). Then, for each such value of λ, solve (15.13),
yielding a nonzero solution for R(r).

The reader is invited to show (Exercise 15.3.2) that the boundary value problem
(15.12) requires that λ ≥ 0, and, in fact, that λ = n2 for nonnegative integer n.
For these λ, we obtain for n > 0 the solutions

Θn(θ) = an cosnθ + bn sinnθ,

and for n = 0,the solution

Θ0(θ) =
1

2
a0,

where the an and bn are real constants.

Then, in (15.13), set λ = λn = n2 to obtain

r2R′′(r) + rR′(r)− n2R(r) = 0,

which is an Euler equation. With λn = n2 we find the solutions

R(r) = A0 +B0 ln r if n = 0

and

R(r) = Anr
n +Bnr

−n if n = 1, 2, . . . .

Since our solutions should be continuous at the origin r = 0 we require that Bn = 0
for all n. By choosing unit constants for the An, we have Rn(r) = rn. (See Exercise
15.3.3.)
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We now have a sequence of basic solutions Rn(r)Θn(θ), indexed by the non-
negative integers n, which we may write in the form

u0(r, θ) =
1

2
a0 (constant),

u1(r, θ) = r(a1 cos θ + b1 sin θ),

u2(r, θ) = r2(a2 cos 2θ + b2 sin 2θ)

· · ·
un(r, θ) = rn(an cosnθ + bn sinnθ)

· · ·
Since Laplace’s equation is linear in the dependent variable, any finite sum of these
product solutions is also a solution of Laplace’s equation. We now consider the
possibility of a solution u(r, θ) in the form of an infinite series,

(15.14) u(r, θ) =
1

2
a0 +

∞∑
n=1

rn(an cosnθ + bn sinnθ),

and ask whether the series sum, assuming it exists, also satisfies the boundary
condition, u(r, θ) = f(θ), −π ≤ θ < π. On the one hand, by setting r = 1 in
(15.14), it appears we must have

(15.15) u(1, θ) = f(θ) =
1

2
a0 +

∞∑
n=1

(an cosnθ + bn sinnθ),

which means we desire the convergence of the series to the sum f(θ) when r = 1.
On the other hand, if, in a purely formal way, we let r → 1− in (15.14), we hope to
have the same result, namely limr→1− u(r, θ) = f(θ). These wishes deal with two
different processes. The first deals with the convergence of the Fourier series of f
to f itself, since we will choose the usual Fourier coefficients below for the series
determined by f . The second wish concerns the question of recovering the solution
value at a boundary point from knowledge of the solution u(r, θ) at points in the
interior of the disk.

Fourier used the pairwise orthogonality property of the trigonometric set{
1, cos θ, sin θ, cos 2θ, sin 2θ, . . .

}
on [−π, π] to define the appropriate coefficients an and bn for the expansion (15.15)
of f(θ) by the formulas

an =
1

π

∫ π

−π

f(t) cosnt dt and bn =
1

π

∫ π

−π

f(t) sinnt dt.

As we have seen in Section 15.2, these are necessarily the values of the coefficients
if the series on the right-hand side of (15.15) converges and can be integrated term-
by-term. Given these Fourier coefficients, we assume for now that the series (15.14)
converges and the sum u(r, θ) is a solution of the Dirichlet problem.

If f(θ) is continuous and piecewise smooth,1 its Fourier series converges abso-
lutely and uniformly to f , as we will see later in Theorem 15.6.7. For any (r, θ) in

1This means that f ′(x) exists at all but finitely many points in any bounded interval, and the
left-hand and right-hand limits of f ′ exist at those points where f ′ fails to exist. See Definition 15.6.3
for the general definition of piecewise smooth function.
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the interior of the disk, the series for u(r, θ) is dominated termwise by the series
for f , so the series for u(r, θ) also converges absolutely and uniformly in the disk,
under those conditions on f . The differentiated series (with respect to either r or
θ) have continuous terms, and converge uniformly in the interior of the disk, so
u(r, θ) can be differentiated term-by-term to verify that it really is a solution of
Laplace’s equation in the interior of the disk, under the stated assumptions on f .
Thus there is a large class of functions f that serve as boundary data in solvable
Dirichlet problems.

It turns out that not every continuous function f(θ) is the limit of the par-
tial sums of its Fourier series at every point of its domain. In fact, there are
continuous functions for which the Fourier partial sums diverge at certain points.
However, even if the Fourier partial sums defined by f do not converge to f at
certain points, there are other modes of convergence for Fourier series, for example
Cesàro summability in Fejér’s theorem on continuous functions (Theorem 15.7.3),
and convergence in the L2 norm (Theorem 18.4.7), that provide useful information
about large classes of functions.

We now consider a useful alternative representation for the solution u(r, θ),
which will also allow a reconstruction of the boundary data for continuous f . The
resulting integral formula for u(r, θ) is called the Poisson integral formula. To
derive this integral formula for the solution, we begin with the Fourier coefficients
of f as defined above. Substitution of these coefficient formulas into the series for
u(r, θ) gives

u(r, θ) =
a0
2

+
∞∑

n=1

rn
( 1
π

∫ π

−π

f(t) cosnt dt cosnθ +
1

π

∫ π

−π

f(t) sinnt dt sinnθ
)
.

An equivalent expression is

u(r, θ) =
a0
2

+
1

π

∞∑
n=1

rn
∫ π

−π

f(t)(cosnt cosnθ + sinnt sinnθ) dt.

Since cosn(θ − t) = cosnt cosnθ + sinnt sinnθ, we have

u(r, θ) =
a0
2

+
1

π

∞∑
n=1

rn
∫ π

−π

f(t) cosn(θ − t) dt.

Remembering the formula for a0, we can express u(r, θ) by

u(r, θ) =
1

π

∫ π

−π

f(t)
(1
2
+

∞∑
n=1

rn cosn(θ − t)
)
dt.

The sum in parentheses in the integrand can be simplified further. Let α = θ − t,
and define the complex number z = reiα = r(cosα+ i sinα). Then zn = rneinα =
rn(cosnα+ i sinnα). Let Rew denote the real part of a complex number w. Since
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1

θ

0

r

√
1− 2r cos θ + r2

Figure 15.2. Some geometry of the Poisson kernel P (r, θ): The side of the
triangle that joins the polar point (1, 0) to (r, θ) has length determined by the
law of cosines, and the Poisson kernel P (r, θ) equals 1/2π times the ratio of
1− r2 to the square of this length.

the series converges for |z| = r < 1 we may write

1

2
+

∞∑
n=1

rn cosn(θ − t) = Re
(1
2
+

∞∑
n=1

zn
)

= Re
(
− 1

2
+

1

1− z

)
(for |z| < 1)

= Re
1 + z

2(1− z)

= Re
(1 + z)(1− z̄)

2|1− z|2

=
1− |z|2
2|1− z|2

=
1− r2

2(1− 2r cosα+ r2)
.(15.16)

Substituting this into the previous integral formula for u(r, θ), and recalling that
α = θ − t, we have the Poisson integral formula,

(15.17) u(r, θ) =
1

2π

∫ π

−π

f(t)
1− r2

1− 2r cos(θ − t) + r2
dt.

This formula expresses the solution of the Dirichlet problem with boundary data f
as an integral of f times a shifted version of the Poisson kernel P (r, θ) defined by

(15.18) P (r, θ) :=
1

2π

1− r2

1− 2r cos θ + r2
,

which is independent of f . (See Figure 15.2.) Thus the Poisson integral formula
takes the form

u(r, θ) =

∫ π

−π

f(t)P (r, θ − t) dt.
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The integral formula is valid for points (r, θ) in the interior of the disc, due
to our summation of the geometric series in its derivation. If we set r = 0 in the
integral formula, we find that

u(0, θ) =
1

2π

∫ π

−π

f(t) dt,

which says that the value of the steady state temperature distribution at the center
of the disc is the average value of f over the boundary circle. This also follows from
the series representation of u(r, θ) in view of the definition of the coefficient a0.

Note that if we set r = 1 in the Poisson integral formula, we cannot get the
correct result. However, we have Poisson’s theorem.

Theorem 15.3.1 (Poisson). If f is continuous and 2π-periodic, and u(r, θ) is given
by ( 15.17), then

lim
r→1−

u(r, θ) = f(θ),

uniformly in θ.

Poisson’s theorem follows from key properties of the Poisson kernel P (r, θ) as
a function of θ. These properties are not difficult to establish. In particular:

(1) P (r, θ) = P (r,−θ), that is, P (r, θ) is an even function of θ. This is clear from
(15.18) since cos θ is an even function.

(2) For each r < 1, the maximum of P (r, θ) occurs at θ = 0, and the maximum
value is (1 + r)/2π(1− r).

(3) For each r < 1, P (r, θ) is decreasing on 0 ≤ θ ≤ π with a minimum value of
(1− r)/2π(1 + r) at θ = π. Thus, P (r, θ) > 0.

(4) For each r < 1, we have
∫ π

−π
P (r, θ) dθ = 1.

(See Figure 15.3.) We can view the Poisson integral formula (15.17) as a weighted
sum of the values of the boundary data f(θ).

We now turn to the proof of Poisson’s theorem.

Proof of Poisson’s Theorem 15.3.1. We must show that given any ε > 0, there
is an r0 < 1 such that for all r with r0 < r < 1, we have

|u(r, θ)− f(θ)| < ε.

When we integrate a function 2π-periodic in θ over the interval [−π, π], the result is
the same as integrating that function over the interval [a+π, a−π] for any number
a. Since P (r, θ) is positive and 2π-periodic in θ, it follows that for fixed r < 1,

|u(r, θ)− f(θ)| =
∣∣∣ ∫ θ+π

θ−π

P (r, θ − t)[f(t)− f(θ)] dt
∣∣∣

≤
∫ θ+π

θ−π

P (r, θ − t) |f(t)− f(θ)| dt.

For t near θ, we can make |f(t) − f(θ)| small by the continuity of f . For larger
differences θ − t, we can still make P small by taking r close to 1. So we write the
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 3

-3 -1  1  3

r = .5

r = .9

Figure 15.3. Graphs of the Poisson kernel P (r, θ), for r = .5 (dotted curve)
and r = .9 (solid curve).

last integral above as the sum of two integrals, as follows. For any δ with 0 < δ < π,
we have

|u(r, θ)− f(θ)| ≤
∫ θ+π

θ−π

P (r, θ − t) |f(t)− f(θ)| dt

=

∫
|θ−t|≤δ

P (r, θ − t) |f(t)− f(θ)| dt

+

∫
δ<|θ−t|<π

P (r, θ − t) |f(t)− f(θ)| dt.

Denote the sum of integrals on the right by I1 + I2.

To estimate I1, first note that θ − π, θ + π ∈ [−2π, 2π], and f is uniformly
continuous on [−2π, 2π]. Given ε > 0, there is a δ with 0 < δ < π such that if
|θ − t| < δ, then

|f(t)− f(θ)| < ε

2
.

For this δ,

I1 ≤ ε

2

∫
|θ−t|≤δ

P (r, θ − t) dt <
ε

2
,

where we have used the integral property (4) of the Poisson kernel.

For the integral I2 over δ < |θ − t| < π, observe that

max
δ<|θ−t|<π

P (r, θ − t) =
1

2π

1− r2

1− 2r cos δ + r2
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by property (3) of the Poisson kernel. Thus,

I2 ≤ 1

2π

1− r2

1− 2r cos δ + r2

∫
δ<|θ−t|<π

|f(t)− f(θ)| dt.

With δ fixed such that 0 < δ < π, we have

lim
r→1−

1

2π

1− r2

1− 2r cos δ + r2

∫
δ<|θ−t|<π

|f(t)− f(θ)| dt = 0,

since (1−2r cos δ+r2) → 2−2 cos δ 
= 0 and (1−r2) → 0. Hence there is an r0 < 1
such that if r0 < r < 1, then the bound on I2 is less than ε/2.

Combining the estimates for I1 and I2, we have that for r0 < r < 1,

|u(r, θ)− f(θ)| ≤ I1 + I2 <
ε

2
+

ε

2
= ε,

as was to be shown. �

Poisson’s theorem has the following interesting consequence.

Theorem 15.3.2. Let f, g : R → R be continuous functions of period 2π, or,
equivalently, f, g ∈ CP [−π, π]. If f and g have the same Fourier series, that is,
the same Fourier coefficients, then f(x) = g(x) for all x ∈ R.

Proof. By assumption, f and g have the same Fourier coefficients a0, an and bn.
By Theorem 15.3.1, for each fixed θ, the function

u(r, θ) =
1

2
a0 +

∞∑
n=1

rn(an cosnθ + bn sinnθ)

converges to f(θ) and to g(θ) as r → 1−. Hence f(θ) = g(θ) for all θ by uniqueness
of limits. �

We note that Theorem 15.3.2 implies that the mapping from CP [−π, π] to the
sequence space l2 defined by f �→ (a0, a1, b1, a2, b2, . . .), where a0, an, bn are the
Fourier coefficients of f , is a one-to-one mapping.

We have found a solution of the Dirichlet problem for the closed unit disk, at
least for boundary data f that is continuous and piecewise smooth, and we have
given two representations for that solution, by series and by the Poisson integral
formula. But we have not proved that the Dirichlet problem has a unique solution
for a given f . We now fill that gap.

The uniqueness of the solution to the Dirichlet problem follows from an impor-
tant property of any solution of Laplace’s equation Δu = 0 that is continuous on
the boundary of the disk D.

Theorem 15.3.3. Let u be a harmonic function in the open unit disk D that is
continuous on D = D ∪ ∂D. Then u achieves its maximum and minimum values
at points on the boundary,

max
D

u = max
∂D

u and min
D

u = min
∂D

u.
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Proof. We prove the statement about the maximum value. The argument for
the minimum is similar. The proof is by contradiction. We assume that Δu =
uxx + uyy = 0 in D and that the maximum of u does not occur on ∂D. Then there
is a point (x0, y0) ∈ D such that

d := u(x0, y0)−max
∂D

u > 0.

Consider the function v : D → R defined by

v(x, y) = u(x, y) + ε[(x− x0)
2 + (y − y0)

2],

where ε > 0. Then v is C2 on D and continuous on ∂D. We have

|v(x, y)− u(x, y)| ≤ ε, (x, y) ∈ D,

and v(x0, y0) = u(x0, y0). Hence, if we take ε < d/2, then

v(x0, y0) = u(x0, y0) > max
∂D

v.

This implies that the maximum value of v is achieved at some point (x1, y1) in the
open disk D. Necessary conditions for this maximum of v are that vx(x1, y1) =
vy(x1, y1) = 0, and vxx(x1, y1)≤0 and vyy(x1, y1)≤0. Consequently, Δv(x1, y1)≤0.
However,

Δv(x1, y1) = Δu(x1, y1) + εΔ[(x− x0)
2 + (y − y0)

2]

= 0 + 4ε > 0.

This is the contradiction we were seeking. Therefore u achieves its maximum value
on the boundary of D. The argument for the minimum value is similar and is left
to Exercise 15.3.9. �

The uniqueness of a solution to the Dirichlet problem now follows easily.

Theorem 15.3.4. There is at most one solution of the Dirichlet problem, Δu = 0
on D with u = f on ∂D, where u is C2 on D and f is a continuous function on
∂D.

Proof. Let f be continuous on ∂D, and suppose that u1 and u2 both solve the
Dirichlet problem with boundary data f . Let w = u1 − u2. Then

Δw = Δu1 −Δu2 = 0 on D,

and w = 0 on ∂D. By Theorem 15.3.3, necessarily w ≤ 0 on D. The same argument
applies to −w, so −w ≤ 0. (Or, by the minimum property of Theorem 15.3.3, we
have w ≥ 0.) Hence, w = 0 on D, so u1 = u2 on D. Since u1 = u2 = f on ∂D, this
completes the proof. �

We end the section with an example to provide encouragement for readers to
study complex variable techniques in the Dirichlet problem and in other problems
in partial differential equations. The example shows that complex variables and
complex analysis can be helpful. The example also shows the importance of knowing
about the uniqueness of solutions.
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Example 15.3.5. If f(θ) = cos 2θ, then in our expression for the Poisson integral
formula, the solution of the Dirichlet problem is

u(r, θ) =
1

2π

∫ π

−π

cos 2t
1− r2

1− 2r cos(θ − ρ) + r2
dt.

This is difficult to evaluate exactly by integration techniques or tables. But we
show here that f(θ) = cos 2θ = Re z2, where z = x + iy = reiθ = eiθ when r = 1,
on the boundary circle. For any point within the disk,

Re z2 = Re [(x+ iy)(x+ iy)] = Re (x2 − y2 + i2xy) = x2 − y2,

and x2 − y2 is a solution to Laplace’s equation uxx + uyy = 0. Moreover, on

the boundary circle, we have x2 − y2 = cos2 θ − sin2 θ = cos 2θ, as we wished to
show. Therefore Re z2 = x2 − y2 = r2 cos2 θ − r2 sin2 θ = r2 cos 2θ is the unique
solution of the Dirichlet problem with boundary data f(θ) = cos 2θ. More generally,
from complex analysis, both the real part u(x, y) and the imaginary part v(x, y)
of a complex analytic function f(z) = u(x, y) + iv(x, y) are solutions of Laplace’s
equation, by virtue of the Cauchy-Riemann equations,

ux(x, y) = vy(x, y) and uy(x, y) = −vx(x, y),

which must be satisfied by the real and imaginary parts of any complex analytic
function. �

One can consider the Dirichlet problem for any open planar domain Ω that
is simply connected (informally, the domain has no holes) with piecewise smooth
boundary. The famous Riemann mapping theorem of complex analysis asserts that
such a domain can be mapped conformally (that is, by a complex differentiable
mapping) onto the open unit disk with the boundary of Ω being mapped to the
unit circle. Thus, in principle, the Dirichlet problem for Ω can be transformed to
the Dirichlet problem for the unit disk, whose solution we have obtained in this
section.

Exercises.

Exercise 15.3.1. Show that the polar coordinate transformation x = r cos θ, y =
r sin θ transforms the equation uxx(x, y) + uyy(x, y) = 0 into the polar form

urr(r, θ) +
1

r
ur(r, θ) +

1

r2
uθθ(r, θ) = 0.

Hint : Think of u = u(r, θ) = u(r(x, y), θ(x, y)). Start with ux = urrx + uθθx and
uy = urry + uθθy. Recall that r = (x2 + y2)1/2 and θ = arctan(y/x).

Exercise 15.3.2. Show that the boundary value problem Θ′′(θ) + λΘ(θ) = 0,
Θ(−π) = Θ(π), has nonzero solutions only for λ ≥ 0, and that the allowable values
of λ are given by λn = n2 for nonnegative integer n. Thus verify the solutions
for Θ(θ) stated in the text. Hint : Consider the cases λ < 0, λ = 0 and λ > 0
separately.

Exercise 15.3.3. Verify that the equation r2R′′(r) + rR′(r) − n2R(r) = 0, for
nonnegative integer n, has the solutions stated in the text. Note: To construct
these solutions, instead of simply verifying them, we note that an Euler equation
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with independent variable r may be transformed to a constant coefficient linear
equation in the independent variable t by means of the change of variable r = et.

Exercise 15.3.4. Verify statements (2) and (3) concerning the maximum and
minimum values of the Poisson kernel P (r, θ) for fixed r < 1.

Exercise 15.3.5. Verify property (4) concerning the integral of the Poisson kernel
P (r, θ) for r < 1. Hint : From (15.18) and the left-hand side of (15.16), we have

P (r, θ) =
1

π

[1
2
+

∞∑
n=1

rn cosnθ
]
.

Justify the term-by-term integration of the series.

Exercise 15.3.6. Argue that if f is 2π-periodic and piecewise continuous, that is,
f has at most finitely many discontinuities in any finite interval, all jump disconti-
nuities, then

lim
r→1−

∫ π

−π

f(t)P (r, θ0 − t) dt = f(θ0)

at any point θ0 where f is continuous.

Exercise 15.3.7. Establish the following results:

1. If f is continuous of period 2π, or equivalently, f ∈ CP [−π, π], and if the
Fourier series of f converges uniformly to a function g, then g = f .

2. The Fourier series of f(θ) = |θ|, −π ≤ θ ≤ π, converges uniformly. Hint :
Looking forward a bit, you may use the statement of Theorem 15.6.7 to confirm
that the series converges to f(θ) for all θ.

Exercise 15.3.8. Suppose f is continuous and 2π-periodic, with

M = max
−π≤θ≤π

f(θ) and m = min
−π≤θ≤π

f(θ).

Show that the solution u(r, θ) of the Dirichlet problem with boundary data f sat-
isfies m ≤ u(r, θ) ≤ M .

Exercise 15.3.9. Complete the proof of Theorem 15.3.3 by showing that a function
u harmonic on the unit disk D and continuous on D achieves its minimum value at
a point on ∂D.

Exercise 15.3.10. Let Dn = B1(0) = {x ∈ Rn : |x| < 1}, the open unit ball in
Rn, and let Δu := ux1x1

+ · · ·+ uxnxn
be the Laplacian operator on C2 functions

of n variables. Prove that there is at most one solution of the Dirichlet problem,
Δu = 0 on Dn with u = f on ∂Dn, where u is C2 on D and f is a continuous
function on ∂D.

Exercise 15.3.11. Suppose f is a function whose Fourier series converges to f on
[−π, π]. Show that the Dirichlet problem for the circle x2+y2 = R2, with boundary
data f(θ), has the solution

u(r, θ) =
1

2
a0 +

∞∑
n=1

( r

R

)n
(an cosnθ + bn sinnθ),
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where an and bn are the Fourier coefficients of f(θ), and that the Poisson integral
formula for this solution is

u(r, θ) =
1

2π

∫ π

−π

R2 − r2

R2 − 2Rr cos(θ − t) + r2
f(t) dt.

15.4. More Separation of Variables

This section is offered as a brief exploration, via guided exercises, to apply the
separation of variables technique to some basic problems for the heat equation and
the wave equation.

15.4.1. The Heat Equation: Two Basic Problems. The one-dimensional heat
equation is

ut(x, t) = uxx(x, t).

It models the distribution of heat in a thin metallic rod of uniform density, assuming
that the rod is insulated along its lateral surface so that there is no exchange of
heat with the surrounding medium through this surface. More precisely, u(x, t) is
the temperature of the rod at position x at time t. The time rate of change of
the temperature, ut, is proportional to the one-dimensional Laplacian of u, uxx.
(Take the proportionality constant to be 1.) We consider two problems for the heat
equation that combine elements discussed previously for Fourier series.

Exercises.

Exercise 15.4.1. The rod with fixed temperature at the ends
For convenience we consider a metal rod of length π. The temperature of the rod
at position x at time t is u(x, t). The temperature at the ends x = 0 and x = π
is fixed at zero, and the initial temperature distribution is given. Thus we assume
that

ut(x, t) = uxx(x, t), 0 < x < π, t > 0,

u(0, t) = 0, u(π, t) = 0, and u(x, 0) = f(x) for 0 < x < π, where f is assumed to
be piecewise smooth.

1. Using the boundary conditions at the endpoints, show that the search for
product solutions φ(x)T (t) leads to the boundary value problem (BVP)

φ′′(x) + λφ(x) = 0, φ(0) = 0, φ(π) = 0

together with T ′(t) + λT (t) = 0, where λ is a constant.

2. Show that the BVP of part 1 has nonzero solutions only for positive λ. (Con-
sider the cases λ < 0, λ = 0 and λ > 0 separately.) Show that, in fact, the
eigenvalues are λn = n2, n = 1, 2, 3, . . ., with corresponding eigenfunctions
φn(x) = sinnx, n = 1, 2, 3, . . .. (The λn are the eigenvalues of the linear
differential operator −d2/dt2.)

3. Show that for each λn = n2, n = 1, 2, 3, . . ., we may take Tn(t) = e−n2t, giving

the product solutions un(x, t) = φn(x)Tn(t) = sin(nx)e−n2t, n = 1, 2, 3, . . ..
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4. To match the initial condition defined by f , use a series of the form

u(x, t) =
∞∑

n=1

bn sin(nx)e
−n2t

and require that

u(x, 0) = f(x) =
∞∑

n=1

bn sin(nx).

This requires a sine series for f valid on 0 < x < π. To achieve it, extend f
to an odd function fodd on the interval −π < x < π, and use the Fourier series
of fodd to get the sine series required, with coefficients

bn :=
1

π

∫ π

−π

fodd(x) sin(nx) dx.

In fact, since the integrand is an even function (odd times odd = even), we
can actually write

bn =
2

π

∫ π

0

f(x) sin(nx) dx,

since fodd(x) = f(x) for 0 < x < π.

5. Construct the solution in the case where f(x) = x for 0 < x < π. First, show
that fodd has Fourier sine series

fodd(x) =
∞∑

n=1

(−1)n+1 2

n
sin(nx).

Justify the term-by-term differentiations required to show that the solution of
the heat equation problem with fixed end temperatures is then given by

u(x, t) =

∞∑
n=1

(−1)n+1 2

n
sin(nx)e−n2t.

Note that by construction, the sum of this series satisfies the boundary con-
ditions and the initial condition.

Exercise 15.4.2. The rod with insulated ends
Again we consider a metal rod of length π. The temperature at position x at time
t is u(x, t), and the problem of insulated ends is described by

ut(x, t) = uxx(x, t), 0 < x < π, t > 0,

with boundary conditions

ux(0, t) = 0, ux(π, t) = 0,

and initial condition

u(x, 0) = f(x), 0 < x < π,

where f is assumed to be piecewise smooth. The boundary conditions say that
there is no heat flow into or out of the rod ends.
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1. Using the boundary conditions at the endpoints, show that the search for
product solutions leads to the boundary value problem (BVP)

φ′′(x) + λφ(x) = 0, φ′(0) = 0, φ′(π) = 0

together with T ′(t) + λT (t) = 0, where λ is a constant.

2. Show that in this case the boundary value problem for φ has eigenvalues λ0 =
0, λn = n2, for n = 1, 2, 3, . . ., with corresponding eigenfunctions φ0(x) = 1,
φn(x) = cosnx, for n = 1, 2, 3, . . ..

3. Show that we may take T0(t) = 1 for λ0 = 0, and Tn(t) = e−n2t for n =

1, 2, 3, . . ., giving the product solutions un(x, t) = φn(x)Tn(t) = cos(nx)e−n2t,
n = 1, 2, 3, . . ., and u0(x, t) = 1.

4. To match the initial condition defined by f , use a series of the form

u(x, t) =
1

2
a0 +

∞∑
n=1

an cos(nx)e
−n2t

and require that

u(x, 0) = f(x) =
1

2
a0 +

∞∑
n=1

an cos(nx).

This requires a cosine series for f valid on 0 < x < π. To achieve it, extend
f to an even function feven on the interval −π < x < π, and use the Fourier
series of feven to get the cosine series required, with coefficients

an :=
1

π

∫ π

−π

feven(x) cos(nx) dx.

In fact, since the integrand is an even function (even times even = even), we
can actually write

an =
2

π

∫ π

0

f(x) sin(nx) dx,

since feven(x) = f(x) for 0 < x < π.

5. Construct the solution in the case where f(x) = x for 0 < x < π. First, show
that feven has Fourier cosine series

feven(x) =
π

2
− 4

π

∞∑
n=1

1

(2n− 1)2
cos(2n− 1)x.

Justify the term-by-term differentiations required to show that the solution of
the heat equation problem with insulated ends is given by

u(x, t) =
π

2
− 4

π

∞∑
n=1

1

(2n− 1)2
cos[(2n− 1)x] e−(2n−1)2t.

Note that by construction, the sum of this series satisfies the boundary con-
ditions and the initial condition.
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Exercise 15.4.3. Consider the function

f(x) = 100, 0 < x < π.

Construct three different Fourier series for f , as follows:

1. Extend f to an even function on [−π, π]. Find the Fourier series for this
extension. This Fourier series is called the Fourier cosine series for f on [0, π].

2. Extend f to an odd function on [−π, π]. Find the Fourier series for this
extension. This Fourier series is called the Fourier sine series for f on [0, π].

3. Extend f to [−π, π] by setting f(x) = 0 for −π < x < 0. Find the Fourier
series for this extension.

4. Solve the heat equation problem with fixed temperature at the ends, if f(x) =
100 for 0 < x < π.

5. Solve the heat equation problem with insulated ends, if f(x) = 100 for 0 <
x < π.

15.4.2. The Wave Equation with Fixed Ends. The one-dimensional wave
equation is

utt(x, t) = uxx(x, t).

It models the vibrations of a stretched string under additional boundary conditions
on the ends of the string. Think of a guitar string, for example. The real function
u(x, t) is the displacement of the string, at position x at time t, from its equilibrium
position, which is taken to be u = 0. We consider a basic problem involving the
wave equation in which the string ends are fixed in position with displacement zero.
Notice that initial conditions for both position and velocity are needed since the
equation is second order in the time t.

Exercise.

Exercise 15.4.4. The vibrating string with fixed ends
For convenience we consider a string of length π. The fixed end problem is described
by

utt(x, t) = uxx(x, t), 0 < x < π, t > 0,

with boundary conditions

u(0, t) = 0, u(π, t) = 0,

and the initial displacement and initial velocity of the string modeled by

u(x, 0) = f(x), ut(x, 0) = g(x), 0 < x < π,

where f and g are assumed to be piecewise smooth.

1. Using the separation of variables method, construct a series solution for the
wave equation with fixed ends.

2. Carry out the solution for a “plucked string” where the initial displacement is
given by

f(x) =

{
1
50x, 0 < x ≤ π/2,
1
50 (π − x), π/2 ≤ x < π

and the initial velocity is g(x) = 0 for 0 < x < π. (See Figure 15.4.)
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0 π/2 π

u(x,0) = f(x)

Figure 15.4. The initial profile, u(x, 0) = f(x), of the plucked string. The
initial velocity is ut(x, 0) = g(x) = 0.

15.5. The Best Mean Square Approximation

If f is Riemann integrable over [−π, π], then also its square f2 is Riemann integrable
over [−π, π], so ∫ π

−π

f2(x) dx < ∞.

Suppose we approximate f by a trigonometric polynomial of the form

(15.19) T (x) =
1

2
c0 +

n∑
k=1

(ck cos kx+ dk sin kx),

that is, a trigonometric polynomial of degree n, as we shall call it. The next
theorem states that the Fourier partial sums of a Riemann integrable function f on
[−π, π] provide the best mean square approximation of f among all trigonometric
polynomials.

Theorem 15.5.1. If f is Riemann integrable over [−π, π] and T (x) is a trigono-
metric polynomial of degree at most n as in ( 15.19), then the integral∫ π

−π

[f(x)− T (x)]2 dx

is minimized when the coefficients ck and dk are equal to the Fourier coefficients of
f , that is, ck = ak in ( 15.6) for 0 ≤ k ≤ n, and dk = bk in ( 15.7) for 1 ≤ k ≤ n.

Proof. If T (x) has the form (15.19), then expansion of the squared integrand yields∫ π

−π

[f(x)− T (x)]2 dx =

∫ π

−π

f2(x) dx− 2

∫ π

−π

f(x)T (x) dx+

∫ π

−π

T 2(x) dx

=

∫ π

−π

f2(x) dx− πa0c0 − 2π
n∑

k=1

(akck + bkdk)

+
1

2
πc20 + π

n∑
k=1

(c2k + d2k).(15.20)

Write

(15.21) sn(x) =
1

2
a0 +

n∑
k=1

(ak cos kx+ bk sin kx)
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sn

f

f − sn

cos x

1
sinnx

Vn

Figure 15.5. The Fourier partial sum sn is the best mean square approxima-
tion to f from Vn = span {1, cosx, sinx, . . . , cosnx, sinnx}. The error f−sn
is orthogonal to Vn.

for the n-th partial sum of the Fourier series of f . If we let T (x) = sn(x), then
(15.20) immediately implies

(15.22)

∫ π

−π

[f(x)− sn(x)]
2 dx =

∫ π

−π

f2(x) dx− 1

2
πa20 − π

n∑
k=1

(a2k + b2k).

Then a direct comparison of (15.20) and (15.22) shows that∫ π

−π

[f(x)− T (x)]2 dx =

∫ π

−π

[f(x)− sn(x)]
2 dx

+
1

2
π(a0 − c0)

2 + π
n∑

k=1

[(ak − ck)
2 + (bk − dk)

2].

It follows that ∫ π

−π

[f(x)− sn(x)]
2 dx ≤

∫ π

−π

[f(x)− T (x)]2 dx,

and equality holds if and only if c0 = a0 and ck = ak, dk = bk for k = 1, . . . , n.
This completes the proof. �

Theorem 15.5.1 says that the best mean square approximation to f from the
subspace spanned by the functions

1, cosx, sin x, . . . , cosnx, sinnx,

is the Fourier partial sum sn = 1
2a0 +

∑n
k=1(ak cos kx + bk sin kx). (See Figure

15.5.)
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We can obtain more from the identity (15.22) in the proof. A simple rearrange-
ment yields the inequality

1

2
πa20 + π

n∑
k=1

(a2k + b2k) ≤
∫ π

−π

f2(x) dx,

which holds for each positive integer n. Letting n → ∞, we conclude that

(15.23)
1

2
πa20 + π

∞∑
k=1

(a2k + b2k) ≤
∫ π

−π

f2(x) dx,

where the series on the left converges. This inequality is known as Bessel’s in-
equality. The convergence of the series on the left implies the convergence of both∑

a2k and
∑

b2k. This yields the important fact known as the Riemann-Lebesgue
theorem.

Theorem 15.5.2 (Riemann-Lebesgue). If f is Riemann integrable over [−π, π],
then the Fourier coefficients of f satisfy limk→∞ ak = 0 and limk→∞ bk = 0.

For an arbitrary Riemann integrable function f , the Fourier series is defined,
but it need not be the case that the two series

∑
ak and

∑
bk converge. If these

series converge absolutely, then the Fourier series converges uniformly, by the Weier-
strass test. However, there are Riemann integrable functions for which the Fourier
series does not converge uniformly, for example any function with finitely many
jump discontinuities in [−π, π].

We now show that equality holds in (15.23) for continuous functions of period
2π, yielding the identity

(15.24)
1

2
πa20 + π

∞∑
k=1

(a2k + b2k) =

∫ π

−π

f2(x) dx,

called Parseval’s equality. Observe that by (15.22), Parseval’s equality (15.24)
is equivalent to the statement that

lim
n→∞

∫ π

−π

[f(x)− sn(x)]
2 dx = 0.

We will see that Parseval’s equality for continuous functions follows from a trigono-
metric version of the Weierstrass approximation theorem, stated next.

Theorem 15.5.3 (Trigonometric Weierstrass Approximation Theorem). Suppose
f is a continuous function of period 2π, or equivalently, f is continuous on [−π, π],
f(−π) = f(π), and f is extended to the real line by the definition f(x+2π) = f(x)
for all x. Then for every ε > 0 there is a trigonometric polynomial T (x) of the
form ( 15.19), such that

|f(x)− T (x)| < ε

for all real x.

Proof. Consider f as the boundary data in the Dirichlet problem for the unit disk.
By Poisson’s theorem, given ε > 0 there is an r0 = r0(ε) such that for r0 < r < 1,

|u(r, x)− f(x)| < ε

2
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for −π ≤ x ≤ π, where

u(r, x) =
1

2
a0 +

∞∑
k=1

rn(an cosnx+ bn sinnx)

solves the Dirichlet problem with boundary data f , and

an =
1

π

∫ π

−π

f(x) cosnx dx, n = 0, 1, 2, . . . ,

bn =
1

π

∫ π

−π

f(x) sinnx dx, n = 1, 2, . . . .

Let M = max−π≤x≤π |f(x)|. Then |an| ≤ 2M and |bn| ≤ 2M . Hence, for any
positive integer N ,∣∣∣ ∑

n≥N

rn(an cosnx+ bn sinnx)
∣∣∣ ≤ 4M

∑
n≥N

rn = 4M
rN

1− r
,

where we have used the geometric series sum with 0 < r < 1. We may choose
N = N(ε) sufficiently large that the bound on the right-hand side is less than ε/2.
Then, in particular for

TN (x) =
1

2
a0 +

N∑
k=1

rn(an cosnx+ bn sinnx),

the N -th partial sum of u(r, x), and any fixed r with r0 < r < 1, we have

|f(x)− TN (x)| = |f(x)− u(r, x)|+ |u(r, x)− TN (x)|
<

ε

2
+

ε

2
= ε

for all x ∈ [−π, π], and by periodicity for all real x. Thus the trigonometric poly-
nomial TN (x) fulfills the stated requirement. �

It is worth remarking here that Theorem 15.5.3 does not contradict the fact that
the Fourier series of a continuous function need not converge pointwise everywhere,
much less uniformly, to the function, since the trigonometric polynomial T in this
theorem is not a partial sum of the Fourier series of f .

Parseval’s equality for continuous functions of period 2π is now a direct conse-
quence of Theorem 15.5.3.

Theorem 15.5.4 (Parseval’s Theorem). If f is continuous on [−π, π], f(−π) =
f(π), and an, bn are the Fourier coefficients of f , then

(15.25)
1

2
πa20 + π

∞∑
k=1

(a2k + b2k) =

∫ π

−π

f2(x) dx.

Proof. Let sn(x) be the n-th partial sum of the Fourier series of f , as in (15.21).
Theorem 15.5.3 applies to the extension of f to the real line, and for any n ≥ N =
N(ε) as in Theorem 15.5.3, Theorem 15.5.1 implies that∫ π

−π

[f(x)− sn(x)]
2 dx ≤

∫ π

−π

[f(x)− TN (x)]2 dx < 2πε2.
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This shows that

lim
n→∞

∫ π

−π

[f(x)− sn(x)]
2 dx = 0,

and by (15.22) the proof is complete. �

The results of this section are reminiscent of the results on orthogonal expansion
in Rn. In particular, Parseval’s equality (15.25) is the analogue of the Pythagorean
theorem for continuous functions on [−π, π]. This may not be obvious from (15.25),
because our elements u = 1, cosnx, sinnx, n ∈ N, were not normalized so that
(u, u) =

∫ π

−π
u2(x) dx = 1. See Exercise 15.5.2.

The development of Fourier series can be carried out for Riemann integrable
functions defined over any finite interval. For a brief start on such a program, see
Exercise 15.5.4.

Exercises.

Exercise 15.5.1. Find the best mean square approximation of f(x) = sin4(x) by
a trigonometric polynomial of degree four or less, and display the approximating
trigonometric polynomial. Hint : No integrations are required.

Exercise 15.5.2. We write (h, g) :=
∫ π

−π
h(x)g(x) dx. We have seen in Example

8.2.5 and Exercise 8.2.4 that this product (h, g) has all the properties of an inner
product except that (h, h) = 0 does not imply h ≡ 0, only that h(x) = 0 almost
everywhere in [−π, π]. Thus, if we define ‖f‖2 = (f, f)1/2, then we obtain a norm on
the vector space of equivalence classes of Riemann integrable functions determined
by the equivalence relation that h ≈ g if and only if h(x) = g(x) almost everywhere
in [−π, π]. Show that if we list the normalized trigonometric set{ 1√

2π
,
cos(x)√

π
,
sin(x)√

π
,
cos(2x)√

π
,
sin(2x)√

π
, . . . ,

}
as the sequence u0, u1, u2, u3, u4, . . ., then Parseval’s identity (15.25), repeated here
for convenience, ∫ π

−π

f2(x) dx =
1

2
πa20 + π

∞∑
k=1

(a2k + b2k),

where a0, ak, bk are the Fourier coefficients of f , takes the form

‖f‖22 = (f, f) =

∫ π

−π

f2(x) dx =
∞∑
k=0

(f, uk)
2.

Exercise 15.5.3. Orthogonal sequences on [0, π]
Note: The result of part 2 of this exercise is used later in the proof of Theorem
15.6.2 on pointwise convergence of Fourier series.

1. Show that each of the sequences (cos(nt)), n ≥ 0, and (sin(nt)), n ≥ 1, are
pairwise orthogonal on the interval [0, π], that is, for n 
= m,∫ π

0

cos(nt) cos(mt) dt = 0 and

∫ π

0

sin(nt) sin(mt) dt = 0.
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2. Use the ideas of this section to deduce that for any Riemann integrable func-
tion f on [0, π],

lim
n→∞

∫ π

0

f(t) cos(nt) dt = 0 and lim
n→∞

∫ π

0

f(t) sin(nt) dt = 0.

Hint : We have the Fourier cosine series for feven and the Fourier sine series
for fodd. Establish Bessel’s inequality for the coefficients of these two series.

Exercise 15.5.4. Orthogonal sequences on [−L,L]

1. Show that the functions

1, cos
(πx
L

)
, sin

(πx
L

)
, . . . , cos

(kπx
L

)
, sin

(kπx
L

)
, . . .

are pairwise orthogonal on [−L,L].

2. Define the Fourier coefficients of a function f defined on [−L,L] with respect
to this orthogonal set.

15.6. Convergence of Fourier Series

As we mentioned earlier, there are functions whose Fourier series diverges at a point
of continuity. Thus, to assure the convergence of the Fourier partial sums sn(x)
to f(x) for a particular x, we need a stronger hypothesis than continuity of f at
the point x. The goal of this section is to establish a sufficient condition for the
convergence of the Fourier series of f at x to the value f(x), a condition general
enough to cover many applications.

Let f be Riemann integrable over [−π, π] and extend f to a periodic function
on the whole real line with period 2π. (The actual values of f at x = 2nπ, n ∈ Z, do
not matter, since a change in these values cannot affect the definition of the Fourier
coefficients.) We begin with an alternative expression for the Fourier partial sums
sn(x). Using the integral definitions for the Fourier coefficients an and bn, in (15.6),
(15.7), respectively, we have

sn(x) =
1

2
a0 +

n∑
k=1

(ak cos(kx) + bk sin(kx))

=
1

π

∫ π

−π

[1
2
+

n∑
k=1

(cos(kx) cos(kt) + sin(kx) sin(kt))
]
f(t) dt

=
1

π

∫ π

−π

[1
2
+

n∑
k=1

cos k(x− t)
]
f(t) dt

by the formula for the cosine of the difference of angles. Thus, we define the function

(15.26) Dn(x) =
1

π

[1
2
+

n∑
k=1

cos(kx)
]
=

1

2π
+

1

π

n∑
k=1

cos(kx),

called the Dirichlet kernel. For each n, Dn(x) is an even function of period 2π,
since each of the functions cos(kx) is even and has period 2π. Then the Fourier
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partial sum sn(x) may be expressed as

(15.27) sn(x) =

∫ π

−π

Dn(x− t) f(t) dt.

For fixed x, if we let u = x− t, du = −dt, then the integral in (15.27) is∫ π

−π

Dn(u) f(x− u) (−1)du.

Now let u = −t, du = −dt, and use the fact that Dn is an even function, to obtain
the same integral in the form ∫ π

−π

Dn(t) f(x+ t) dt.

Finally, since Dn and f have periodic 2π and Dn is even, we may replace t by −t
in the integrand, and write

(15.28) sn(x) =

∫ π

−π

Dn(t) f(x− t) dt.

We summarize the most important properties of the Dirichlet kernel Dn(x).

Lemma 15.6.1. The Dirichlet kernel Dn(x) satisfies

Dn(x) =
1

2π
+

1

π

n∑
k=1

cos(kx) =
sin(n+ 1

2 )x

2π sin
(
1
2x
) for n = 1, 2, 3, . . . ,

with the value determined by the limit of the right-hand side at points where the
denominator is zero. Moreover,∫ π

−π

Dn(x) dx = 1, for n = 1, 2, 3, . . . .

Proof. By the result on the finite geometric sum
∑n

k=1 e
ikx in Example 3.11.10,

the real part of that sum is given by

n∑
k=1

cos(kx) =
cos 1

2 (n+ 1)x sin 1
2nx

sin 1
2x

,

and hence,

1

2
+

n∑
k=1

cos(kx) =
1

2
+

cos 1
2 (n+ 1)x sin 1

2nx

sin 1
2x

.

Multiplying both sides by 2 sin 1
2x, we have

2 sin
1

2
x
[1
2
+

n∑
k=1

cos(kx)
]
= sin

1

2
x+ 2 cos

1

2
(n+ 1)x sin

1

2
nx.

The final product term on the right can be written as the difference of the identities

sin(A+B) = sinA cosB + cosA sinB

and

sin(A−B) = sinA cosB − cosA sinB,
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 1  1

 2

Figure 15.6. Graphs of the Dirichlet kernel Dn(x) over [−π, π]: Left, D5(x);
Right, D10(x).

with A = 1
2 (n+ 1)x and B = 1

2nx. This yields

2 cos
1

2
(n+ 1)x sin

1

2
nx = sin

(
n+

1

2

)
x− sin

1

2
x.

Thus,

2 sin
1

2
x
[1
2
+

n∑
k=1

cos(kx)
]
= sin

(
n+

1

2

)
x,

and hence
1

2
+

n∑
k=1

cos(kx) =
sin(n+ 1

2 )x

2 sin
(
1
2x
) .

A division by π yields the stated formula for Dn(x).

Within the interval [−π, π], sin
(
1
2x
)
is zero only when x = 0, and each Dn(x)

has a finite limit there, since an application of l’Hôpital’s rule gives

lim
x→0

sin(n+ 1
2 )x

2 sin
(
1
2x
) = lim

x→0

(n+ 1
2 ) cos(n+ 1

2 )x

cos
(
1
2x
) = n+

1

2
.

Thus, each Dn(x) is Riemann integrable over [−π, π]. In fact,∫ π

−π

Dn(x) dx =

∫ π

−π

1

2π
dx = 1,

since
∫ π

−π
cos(kx) dx = 0 for each k. �

The properties of the Dirichlet kernel help to motivate the pointwise conver-
gence theorem given below. See Figure 15.6 for the graphs of D5(x) and D10(x)
over [−π, π].

Now consider Dn(x − t) as a function of t for fixed x. By Lemma 15.6.1, the
roots of Dn(x− t) are at the points t = x+ kδ, where k is a nonzero integer and

δ =
2π

2n+ 1
.
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 3

 6

 1.4

Figure 15.7. The sifting property of the Dirichlet kernel: The dotted graph
of f(t) = 4+ 1

5
t2 and the graph of D20(1.4− t) as a function of t. The integral

of Dn(1.4− t)f(t) over the interval (x−δ, x+δ), for small δ > 0, approximates

f(1.4). In general,
∫ x+δ
x−δ Dn(x− t) f(t) dt ≈ f(x).

The graph of Dn(x− t) has a main arch of almost triangular shape over the interval
(x − δ, x + δ), and most of the weighting by Dn(x − t) is concentrated near x.
The integration from −π to π used in computing sn(x) in (15.27) produces a near
negligible contribution from outside the interval (x − δ, x + δ), but inside that
interval, f(t) ≈ f(x). The height of the main arch is (2n + 1)/2π. Thus the area
under the main arch is approximately

1

2
(base) (height) = δ

(2n+ 1)

2π
=

2π

2n+ 1

(2n+ 1)

2π
= 1.

(See Figure 15.7, which shows the graph of a continuous function f along with the
graph of Dn(x− t) as a function of t.) Thus the formula (15.27) for sn(x) implies
that for large n,

sn(x) ≈
∫ x+δ

x−δ

Dn(x− t) f(t) dt ≈ f(x)

∫ x+δ

x−δ

Dn(x− t) dt ≈ f(x).

With the considerations above as motivation, the next theorem gives a verifiable
sufficient condition for the Fourier series of f to converge. Before proving it, we
note that the value of f at a single point x may be reassigned in any way we
want without changing the values of the Fourier coefficients of f and thus without
changing the Fourier series of f . When the indicated one-sided limits exist, we
write

f(x−) = lim
t→x−

f(t)

for the left-hand limit of f at x, and

f(x+) = lim
t→x+

f(t)
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for the right-hand limit of f at x. Similarly, when f(x−) and f(x+) exist, we write

f ′(x−) = lim
t→0+

f(x− t)− f(x−)

t

for the left-hand derivative of f at x, and

f ′(x+) = lim
t→0+

f(x+ t)− f(x+)

t

for the right-hand derivative of f at x.

Theorem 15.6.2. Let f be Riemann integrable over [−π, π], and extended to the
entire real line by the condition f(x + 2π) = f(x). Let sn(x) be the n-th partial
sum of the Fourier series of f . Then sn(x) → [f(x+) + f(x−)]/2 at every point x
at which the limiting values f(x−), f(x+), f ′(x−) and f ′(x+) exist.

Proof. The integrability hypothesis on f ensures that the Fourier series of f is
defined. By the integral statement in Lemma 15.6.1, for any x we may write

f(x) = f(x)

∫ π

−π

Dn(t) dt =

∫ π

−π

f(x)Dn(t) dt,

since x is treated as a constant for the integration with respect to t. Then, using
expression (15.28) for sn(x), we have

(15.29) sn(x)− f(x) =

∫ π

−π

[f(x− t)− f(x)]Dn(t) dt.

At a given value x, the Fourier series of f converges to f(x) if and only if this
difference has limit zero as n → ∞. We fix a value x for the discussion to follow.
In the integral on the right side, we may replace t by −t, using the fact that the
integrand is periodic with period 2π and Dn is even, and also write

(15.30) sn(x)− f(x) =

∫ π

−π

[f(x+ t)− f(x)]Dn(t) dt.

On adding (15.29) and (15.30), we obtain

2[sn(x)− f(x)] =

∫ π

−π

[f(x− t) + f(x+ t)− 2f(x)]Dn(t) dt,

and hence

(15.31) sn(x)− f(x) =
1

2

∫ π

−π

[f(x− t) + f(x+ t)− 2f(x)]Dn(t) dt.

In (15.31), the integrand is an even function, so we may write

(15.32) sn(x)− f(x) =

∫ π

0

[f(x− t) + f(x+ t)− 2f(x)]Dn(t) dt.

For the fixed x in this discussion, we now impose the hypothesis that the
limiting values f(x−), f(x+), f ′(x−) and f ′(x+) all exist. As noted before the
theorem statement, we may replace the value f(x) by the expression [f(x+) +
f(x−)]/2. This means that if f is continuous at this x, then f(x) = [f(x+) +
f(x−)]/2 is unchanged, and if f is discontinuous at this x, then we are reassigning
the value of f at this single point x to be the average of the left-hand and right-hand
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limits there. Thus, in (15.32) we set f(x) = [f(x+) + f(x−)]/2 on both sides and
split the resulting integral into two parts, to obtain

sn(x)− [f(x+) + f(x−)]/2 =

∫ π

0

[f(x− t)− f(x−)]Dn(t) dt

+

∫ π

0

[f(x+ t)− f(x+)]Dn(t) dt.(15.33)

Our goal is to show that each of these integrals approaches zero as n → ∞. Consider
the second integral on the right in (15.33). Using the compact formula for Dn(t)
from Lemma 15.6.1, we may write it as

(15.34)
1

π

∫ π

0

f(x+ t)− f(x+)

t

t

2 sin
(
1
2 t
) sin

(
n+

1

2

)
t dt.

If f ′(x+) is finite (our hypothesis), then the difference quotient for f in this inte-
grand has the finite limit f ′(x+) as t → 0+. Also,

lim
t→0

t

2 sin
(
1
2 t
) = lim

t→0

1

cos
(
1
2 t
) = 1,

by l’Hôpital’s rule. We may take these limiting values as the values of the corre-
sponding factors in the integrand when t = 0, and thus define the function

φ(t) =
f(x+ t)− f(x+)

t

t

2 sin
(
1
2 t
) for 0 ≤ t ≤ π.

(Recall that x is fixed.) Then φ is Riemann integrable on [0, π]. Moreover, (15.34)
is now

(15.35)
1

π

∫ π

0

φ(t) sin
(
n+

1

2

)
t dt.

Since sin(n+ 1
2 )t = sin

(
t
2

)
cos(nt) + cos

(
t
2

)
sin(nt), (15.35) equals the sum

1

π

∫ π

0

φ(t) sin
( t
2

)
cos(nt) dt+

1

π

∫ π

0

φ(t) cos
( t
2

)
sin(nt) dt.

The functions φ(t) sin( t2 ) and φ(t) cos( t2 ) are both Riemann integrable over [0, π].
Thus by Exercise 15.5.3, both integrals approach zero as n → ∞. This completes
the proof that the second integral on the right in (15.33) approaches zero as n → ∞.
A similar argument shows that the first integral on the right in (15.33) approaches
zero as n → ∞. Consequently, (15.33) implies that sn(x) → [f(x+) − f(x−)]/2.
This is true for each point x at which the limiting values f(x−), f(x+), f ′(x−)
and f ′(x+) exist, and the theorem is proved. �

Definition 15.6.3. A function f is piecewise smooth if, on any bounded inter-
val, f is C1 except possibly at finitely many points, at each of which the one-sided
limits f(x−), f(x+), f ′(x−) and f ′(x+) exist as finite values.

(See Figure 15.8.) From this definition it follows that Theorem 15.6.2 applies
to piecewise smooth functions f of period 2π, and we see that the Fourier series
of such a function converges at every point to the value [f(x+) + f(x−)]/2. We
record two corollaries of Theorem 15.6.2 as theorems in their own right.
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Figure 15.8. A piecewise smooth function graph over its domain interval.

Theorem 15.6.4. If f is piecewise smooth and has period 2π, then the Fourier
series of f converges to f(x) at any point x where f is continuous.

Proof. At any point x where f is continuous, we have f(x−) = f(x+) = f(x). By
Theorem 15.6.2, the Fourier series of f converges at x to the value f(x). �

Theorem 15.6.5. If f is Riemann integrable and of period 2π, then the Fourier
series of f converges to f(x) at any point x where f is differentiable.

Proof. At any point x where f is differentiable, f is continuous and we have
f(x−) = f(x+) = f(x) and f ′(x−) = f ′(x+) = f ′(x). By Theorem 15.6.2, the
Fourier series of f converges at x to the value f(x). �

The sums for many specific numerical series follow from a knowledge of the
convergence of specific Fourier series or from Parseval’s equality. We offer one
example here.

Example 15.6.6. Consider the continuous, piecewise smooth function g(x) = |x|
for −π ≤ x < π. The Fourier series of g is

π

2
− 4

π

∞∑
k=1

cos(2k − 1)x

(2k − 1)2
,

and it converges uniformly to g, as we will see in Theorem 15.6.7 below. See Figure
15.9 for the graph of g and the first three terms of the Fourier series of g. Since
g(0) = 0, we have

0 =
π

2
− 4

π

∞∑
k=1

1

(2k − 1)2
,

from which we find that

π2

8
=

∞∑
k=1

1

(2k − 1)2
= 1 +

1

32
+

1

52
+ · · · .

On the other hand, an application of Parseval’s equality for this continuous function
gives

1

π

∫ π

−π

|x|2 dx =
1

2
π2 +

16

π2

(
1 +

1

34
+

1

54
+ · · ·

)
.
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 1

 2

 3

-6 -4 -2  0  2  4  6

Figure 15.9. Three terms of the Fourier series for g(x) = |x|, whose dotted
graph is nearly indistinguishable from the partial sum over −π ≤ x < π.

The left-hand side here equals 2π2/3, and after rearrangement, we have

π4

96
= 1 +

1

34
+

1

54
+ · · · .

Since we have the fourth powers of the odd positive integers only, this is not the
full p-series with p = 4. But suppose we want S =

∑∞
n=1 1/n

4, the full p-series
with p = 4. Since the p-series is known to converge, we may write

S =
(
1 +

1

34
+

1

54
+ · · ·

)
+
( 1

24
+

1

44
+

1

64
+ · · ·

)
=

π4

96
+

1

24

(
1 +

1

24
+

1

34
+

1

44
+

1

54
+ · · ·

)
=

π4

96
+

1

16
S.

Now solve for S to find that S =
∑∞

n=1 1/n
4 = π4/90. �

For those who have read or worked out Exercise 15.5.2, the following comment
is of interest. For a function that is square integrable, that is,∫ π

−π

[f(x)]2 dx < ∞,

the square of the L2 norm of f is defined by

‖f‖22 =

∫ π

−π

[f(x)]2 dx.

(This notation was first introduced in (8.2) of Section 8.3.) The norm ‖f‖2 serves as
the norm in the space of square integrable functions on [−π, π], or, more precisely,
the space of equivalence classes of Riemann integrable functions on [−π, π], as
described in Exercise 15.5.2. Parseval’s equality for a continuous function f gives
this L2 norm in terms of the Fourier coefficients of f . After the Lebesgue integral
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is defined, and we consider the larger space of functions that are square integrable
in the sense of Lebesgue, it can be shown that Parseval’s identity holds for all
functions in that space.

The final result of the section is the result alluded to earlier that the Fourier
series of a continuous, piecewise smooth function f converges absolutely and uni-
formly to f .

Theorem 15.6.7. If f : [−π, π] → R is continuous and piecewise smooth (that
is, f ′ is piecewise continuous) and f(−π) = f(π), then the Fourier series of f
converges absolutely and uniformly to f .

Proof. The key ideas in the proof are Bessel’s inequality for the derivative f ′ and
the Weierstrass test for uniform convergence. Let

(15.36)
1

2
a0 +

∞∑
k=1

(
ak cos(kx) + bk sin(kx)

)
be the Fourier series of f . If we show that for each k ≥ 1 there is a number Mk

such that ∣∣ak cos(kx) + bk sin(kx)
∣∣ ≤ Mk

and the series
∑∞

k=1Mk converges, then the uniform convergence of (15.36) follows
from the Weierstrass test.

From the inequality 0 ≤ (r − s)2 = r2 − 2rs+ s2 for real numbers r and s, we
have

(15.37) 2rs ≤ r2 + s2,

and hence

(r + s)2 = r2 + 2rs+ s2 ≤ 2(r2 + s2).

It follows that for all k ≥ 1,(
ak cos(kx) + bk sin(kx)

)2 ≤ 2
(
a2k cos

2(kx) + b2k sin
2(kx)

)
≤ 2(a2k + b2k).

Consequently, for k ≥ 1,∣∣ak cos(kx) + bk sin(kx)
∣∣ ≤

√
2
√
a2k + b2k

< 2
1

k

√
k2(a2k + b2k)

≤ 1

k2
+ k2(a2k + b2k) =: Mk,

where the final line follows from (15.37). Since
∑∞

k=1 1/k
2 converges, it only remains

to show that
∑∞

k=1 k
2(a2k + b2k) converges.

The derivative f ′ is piecewise continuous and hence integrable on [−π, π], so
the Fourier series of f ′ is defined. In fact, kbk and −kak are the Fourier coefficients
of f ′ with respect to cos kx and sin kx, respectively. To see this, we integrate by
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parts in the definition of these coefficients and use f(−π) = f(π) to find, for k ≥ 0,

1

π

∫ π

−π

f ′(x) cos(kx) dx =
1

π

[
f(x) cos(kx)

∣∣∣π
−π

+

∫ π

−π

kf(x) sin(kx) dx
]

=
1

π

[
f(π)(cos(kπ)− cos(−kπ)) + k

∫ π

−π

f(x) sin(kx) dx
]

=
k

π

∫ π

−π

f(x) sin(kx) dx

= kbk.

A similar argument shows that, for k ≥ 1,

1

π

∫ π

−π

f ′(x) sin(kx) dx = −kak.

Then Bessel’s inequality for f ′ implies that

∞∑
k=1

k2(a2k + b2k) ≤
1

π

∫ π

−π

[f ′(x)]2 dx < ∞,

and hence the series on the left-hand side converges, as desired. Therefore the
Fourier series of f converges absolutely and uniformly by the Weierstrass test, and
by Theorem 15.6.4 it must converge to f itself. �

Exercises.

Exercise 15.6.1. In Example 15.6.6, we found the Fourier series for the periodic
extension of g(x) = |x|, −π ≤ x < π to all of R. Show that the Fourier series
converges to g(x) for every real x, and that the convergence is uniform.

Exercise 15.6.2. The 2π-periodic extension of the function

f(x) =

{
−1, if − π < x < 0,
1, if 0 < x < π

is called a square wave function.

1. Find the Fourier series of f , noting that f is an odd function. Graph f and
several partial sums of the Fourier series, for example, the first 4 nonzero
terms, then the first 8 nonzero terms.

2. Show that the Fourier series converges for every real x, and graph the sum
of the series. Notice the overshoot (or undershoot) in the plot of the partial
sums near the discontinuity at x = 0. Then see Exercise 15.6.3.

Exercise 15.6.3. Estimate by visual examination the size of the maximum over-
shoot (or undershoot) of the partial sums approximating the square wave function in
Exercise 15.6.2 on either side of the discontinuity at x = 0. Hint : Use a mathemat-
ical software package or the trace feature on a graphing calculator. The overshoot
(or undershoot) is an unavoidable characteristic of the Fourier partial sums near a
jump discontinuity. It is generally designated as the Gibbs phenomenon after the
mathematical physicist J. W. Gibbs who studied it.
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Exercise 15.6.4. Consider the 2π-periodic extension of the function

f(x) =
1

2
(π − x), 0 ≤ x < 2π.

We call the extension the sawtooth function, denoted also by f . Notice that f has
discontinuities at x = 2nπ, n ∈ Z.

1. Find the Fourier series of f , noting that f is an odd function. Graph f and
several partial sums of the Fourier series, for example, the first 5 nonzero
terms, then the first 10 nonzero terms.

2. Show that the Fourier series converges for every real x, and graph the sum of
the series. Then see Exercise 15.6.5.

Exercise 15.6.5. Estimate by visual examination the size of the maximum over-
shoot (or undershoot) of the partial sums approximating the sawtooth function in
Exercise 15.6.4 on either side of the discontinuity at x = 0.

Exercise 15.6.6. Smoothness and the decay of Fourier coefficients
Let f be a periodic function of period 2π.

1. Show that if f is C1, then there is a number M1 > 0 such that the Fourier
coefficients ak, bk of f satisfy

|ak| ≤
M1

k
and |bk| ≤

M1

k
for all k.

Hint : Integrate by parts.

2. Show that if f is Cn, then there is a number Mn > 0 such that the Fourier
coefficients ak, bk of f satisfy

|ak| ≤
Mn

kn
and |bk| ≤

Mn

kn
for all k.

3. Use the Riemann-Lebesgue theorem (Theorem 15.5.2) to improve the result
of part 2 to read that if f is Cn, then the Fourier coefficients ak and bk of f
satisfy

lim
k→∞

kn|ak| = 0 and lim
k→∞

kn|bk| = 0.

15.7. Fejér’s Theorem

We noted earlier that there exist functions for which the Fourier partial sums di-
verge at some points of continuity. There is a different notion of summability of
a Fourier series that provides a more reliable representation of function values for
continuous functions. In this section we explore this alternative summation pro-
cess, known as Cesàro summability, which means we consider not the Fourier partial
sums themselves, but rather their arithmetic means.

Let sn(x) be the n-th partial sum of the Fourier series of f , given by

sn(x) =
1

2
a0 +

∞∑
k=1

(
ak cos(kx) + bk sin(kx)

)
.
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Define a new sequence of sums, σn(x), by

(15.38) σn(x) =
1

n+ 1

n∑
k=0

sn(x), n = 0, 1, 2, . . . .

Then σn(x) is the arithmetic mean of the first n+1 Fourier partial sums of f , also
called the n-th Cesàro sum of f , or the n-th Fejér mean of f . (See Exercise
15.7.1.) The importance of Fejér’s theorem, to be proved below, is that for any
continuous function f , the Cesàro sums σn converge uniformly to f .

We shall write the n-th Fejér mean σn(x) in a form similar to the form (15.28)
for the n-th Fourier partial sum sn(x), that is,

(15.39) σn(x) =
1

π

∫ π

−π

Kn(t) f(x− t) dt,

but with a kernel function Kn(t) different from the Dirichlet kernel Dn(t).

First we need a compact formula for the n-th Fejér mean, σn(x).

Lemma 15.7.1. If x 
= 2mπ, m ∈ Z, then

n∑
k=0

sin
(
k +

1

2

)
x =

sin2 1
2 (n+ 1)x

sin( 12x)
, n = 1, 2, 3, . . . .

Proof. The statement to be proved is equivalent to

(15.40) sin(
1

2
x)

n∑
k=0

sin
(
k +

1

2

)
x = sin2

1

2
(n+ 1)x.

If we let A = 1
2x and B = (k + 1

2 )x in the formulas

cos(A±B) = cosA cosB ∓ sinA sinB,

then the difference cos(A−B)− cos(A+B) equals

2 sin(
1

2
x) sin

(
k +

1

2

)
x = cos(kx)− cos(k + 1)x.

If we sum both sides from k = 0 to k = n, the terms on the right-hand side telescope
to yield

2 sin(
1

2
x)

n∑
k=0

sin
(
k +

1

2

)
x = 1− cos(n+ 1)x.

From the identity sin2 θ = (1− cos 2θ)/2, we have

sin2
1

2
(n+ 1)x =

(1− cos(n+ 1)x)

2
,

and in view of (15.40), the lemma is proved. �

Let f be continuous and periodic with period 2π. From (15.28), we have

sk(x) =

∫ π

−π

Dk(t) f(x− t) dt,
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 1

Figure 15.10. The graph of the Fejér kernel K10(x) over [−π, π].

where Dk(t) is the Dirichlet kernel. Hence,

σn(x) =
1

n+ 1

n∑
k=0

sk(x) =
1

n+ 1

∫ π

−π

[ n∑
k=0

Dk(t)
]
f(x+ t) dt,

where again we have used the 2π periodicity of Dk and f and the fact that Dk is
an even function, to replace t by −t in the integrand. By Lemma 15.6.1,

Dk(t) =
sin(k + 1

2 )x

2π sin( 12x)
, k = 0, 1, 2, . . . ,

and thus it follows from Lemma 15.7.1 that
n∑

k=0

Dk(t) =
sin2 1

2 (n+ 1)x

2π sin2( 12x)
.

Consequently, if we define the Fejér kernels Kn(x) by

(15.41) Kn(x) :=
1

n+ 1

[ n∑
k=0

Dk(x)
]
=

1

n+ 1

sin2 1
2 (n+ 1)x

2π sin2( 12x)
,

then

(15.42) σn(x) =

∫ π

−π

Kn(t)f(x+ t) dt.

Figure 15.10 shows the graph of K10(x) over [−π, π].

From the definition, Kn(x) ≥ 0 for all x, and also
∫ π

−π
Kn(x) dx = 1 since∫ π

−π
Dk(x) dx = 1 for 0 ≤ k ≤ n. We summarize these facts, and one additional

estimate, in the following lemma.

Lemma 15.7.2. The Fejér kernels Kn(x) satisfy, for each integer n ≥ 0,

(15.43) Kn(x) =
1

n+ 1

[ n∑
k=0

Dk(x)
]
=

1

n+ 1

sin2 1
2 (n+ 1)x

2π sin2( 12x)
,
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with the value determined by the limit of the right-hand side at points where the
denominator is zero, and hence Kn(x) ≥ 0 for all x. Moreover, we have

(15.44)

∫ π

−π

Kn(x) dx = 1, n ≥ 0.

In addition, for any δ such that 0 < δ < π,

(15.45) 0 ≤ Kn(x) ≤
1

2(n+ 1)

π

δ2
, δ ≤ |x| ≤ π.

Proof. It only remains to prove (15.45). To see it, note that the graph of the
line y = x/π lies below the graph of sin( 12x) for 0 ≤ x ≤ π, and since both of

these functions are odd, we have | sin( 12x)| ≥ |x|/π for −π ≤ x ≤ π. Hence,

sin2( 12x) ≥ x2/π2 for −π ≤ x ≤ π. By (15.43), if 0 < δ < π, then

0 ≤ Kn(x) ≤
1

2π(n+ 1)

π2

x2
≤ 1

2(n+ 1)

π

δ2

for δ ≤ |x| ≤ π. �

We can now prove Fejér’s theorem for continuous 2π-periodic functions.

Theorem 15.7.3 (Fejér). Let f be continuous on [−π, π] with f(−π) = f(π), and
extend f to the entire real line by the condition f(x + 2π) = f(x). Let σn be the
n-th Cesàro sum of f . Then σn converges uniformly to f on R.

Proof. Since f is continuous and periodic, there is a number M such that |f(x)| ≤
M for all x, and f is uniformly continuous on R. By (15.42) and (15.44), we may
write

σn(x)− f(x) =

∫ π

−π

Kn(t)[f(x+ t)− f(x)] dt.

The idea is that for t small, we can make the difference in function values small by
uniform continuity of f , and for t larger, we can bound Kn for large n and use the
uniform bound for f . Thus the integral on the right-hand side will be split into
three parts, over the intervals [−π,−δ], [−δ, δ] and [δ, π] for appropriate 0 < δ < π.
By uniform continuity of f , given ε > 0, there is a δ = δ(ε) > 0 with 0 < δ < π



490 15. The Dirichlet Problem and Fourier Series

such that |f(x+ t)− f(x)| < ε/2 if |t| < δ. By (15.45) and (15.44), we then have

∣∣σn(x)− f(x)
∣∣ ≤

∫ π

−π

Kn(t)
∣∣f(x+ t)− f(x)

∣∣ dt
≤

∫ −δ

−π

π

2(n+ 1)δ2
2M dt

+

∫ δ

−δ

Kn(t)
ε

2
dt

+

∫ π

δ

π

2(n+ 1)δ2
2M dt

≤ 2(π − δ)
πM

(n+ 1)δ2
+

ε

2

∫ δ

−δ

Kn(t) dt

≤ 2Mπ2

(n+ 1)δ2
+

ε

2
,

where we have used Kn(t) ≥ 0 and (15.44) in the last line. This estimate holds for
all x ∈ R and all n. Finally, for n sufficiently large, we will have

∣∣σn(x)− f(x)
∣∣ ≤ 2Mπ2

(n+ 1)δ2
+

ε

2
<

ε

2
+

ε

2
= ε.

Therefore σn converges uniformly to f on R. �

Fejér’s theorem states that every continuous function of period 2π can be ap-
proximated arbitrarily closely in the uniform norm by linear combinations of ele-
ments in the trigonometric set

{ 1√
2π

,
cos(x)√

π
,
sin(x)√

π
,
cos(2x)√

π
,
sin(2x)√

π
, . . .

}
.

Later in Theorem 18.3.4, we will examine mean square convergence (that is, L2

norm convergence), in the space CP [−π, π] of continuous 2π-periodic functions, as
an application of Fejér’s theorem.

Exercises.

Exercise 15.7.1. Given a series
∑∞

k=0 ak and its partial sums sn =
∑n

k=0 ak,
define the arithmetic means

σn =
s0 + s1 + · · ·+ sn

n+ 1
, n = 0, 1, 2, . . . .
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(If the series indexing starts with k = 1, then σn = (s1 + · · ·+ sn)/n.) Then σn is
called the n-th Cesàro sum of the series

∑∞
k=0 ak. If limn→∞ σn = L exists, we

say the series
∑∞

k=0 ak is Cesàro summable to L.

1. A series that diverges may be Cesàro summable. As an example, show that
the divergent series

∑∞
k=0(−1)k = 1− 1 + 1− 1 + · · · is Cesàro summable to

1/2.

2. Prove: If
∑∞

k=0 ak = L exists, that is, limn→∞ sn = L, then
∑∞

k=0 ak is Cesàro
summable to L, limn→∞ σn = L. Hint : By considering the shifted sequences
sn − L and σn − L, we may assume that L = 0. Then, for n0 < n, write

σn =
s0 + · · ·+ sn0

n+ 1
+

sn0+1 + · · ·+ sn
n+ 1

.

Use boundedness of (sn)
∞
n=0 to bound the first term on the right, and use

convergence of (sn)
∞
n=0 to make the second term less than a given ε > 0.

Exercise 15.7.2. Deduce the trigonometric Weierstrass Theorem 15.5.3 from Fejér’s
Theorem.

Exercise 15.7.3. Deduce Theorem 15.3.2 from Fejér’s Theorem.

Exercise 15.7.4. The Cesàro sums σn exhibit no overshoot (no Gibbs phenome-
non) when used to approximate the sawtooth function of Exercise 15.6.4. Illustrate
this by computing and graphing σ5 and σ10 for that function.

15.8. Notes and References

The presentation of the Dirichlet problem and some of its consequences follows
Seeley [58] with additional help from Friedman [17]. For much more on Fourier
analysis and partial differential equations, see the detailed introductions by Folland
[14], Gonzalez-Velasco [20], Haberman [23] or Strauss [63]. Gonzalez-Velasco [20]
integrates some historical material on Fourier analysis with the mathematics of par-
tial differential equations, and provides an interesting portrait of the development
of analysis concepts from the eighteenth to the twentieth century.

The reader has probably observed the simplicity in form of the series solution
to the Dirichlet problem for the disk, given the Fourier series for the boundary data
f . The construction of the product solutions, in effect, introduced the factor rn in
front of each nonconstant term of the Fourier series for f :

u(r, θ) =
1

2
a0 +

∞∑
n=1

rn
(
an cosnθ + bn sinnθ

)
.

In effect, this construction pulls the boundary data into the interior of the disk.
This result is related to the concept of Abel summation of a given series of real or
complex numbers. See Stein and Shakarchi [61] for this, as well as an extensive
introduction to Fourier analysis.

Another side of Fourier analysis is the theory of Fourier transforms, which are
useful in representing functions on the real line that are not periodic and in solving
certain problems in partial differential equations with unbounded domains. For
substantial introductions, see Folland [14], Körner [37], or Stein and Shakarchi
[61].
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The subject of pointwise convergence of Fourier series is difficult. Dirichlet
proved in 1829 a version of Theorem 15.6.2 for piecewise continuous and piecewise
monotone functions, and Fejér’s theorem appeared in 1904. These theorems are
sufficient for most problems a reader might encounter in an undergraduate intro-
duction to partial differential equations. One indication of the difficulty in studying
pointwise convergence is that it is possible for the Fourier series of a continuous
function to diverge at some (in fact, infinitely many) points. For specific examples
and discussion, see Duren [9] or Stein and Shakarchi [61]. In 1966, L. Carleson
proved that the Fourier series of every function whose square is integrable in the
sense of Lebesgue converges almost everywhere, so that the points of divergence
constitute a set of Lebesgue measure zero. See Folland [15] for more information
and references.

For more on the Gibbs phenomenon, mentioned in the exercises for the section
on pointwise convergence of Fourier series, see Gonzalez-Velasco [20] or Strauss
[63].



Chapter 16

Measure Theory and
Lebesgue Measure

The theory of measure is an extension of the concepts of length of an interval,
area of a planar region, and volume of a solid region. Both single variable and
multivariable calculus deal with these notions by means of the Riemann integral of
real functions. Chapters 12 and 13 have extended the scope of that work with the
theory of Jordan measure (the theory of volume) based on the Riemann integral
over bounded intervals in Rn.

During the latter part of the nineteenth century and the early twentieth century,
the deficiencies of the Riemann integral with respect to limit processes led to a
reexamination of the notions of integral and measure. Fundamentally, there are
two approaches to the topics of integral and measure: (i) Develop measure theory
first, and then define integration based on the theory of measure; and (ii) first
develop integration theory over certain sets and then define the measure of other
sets in terms of the integral. Chapter 12 followed approach (ii) and developed
Jordan measure (volume measure) based on the Riemann integral over bounded
intervals. In this and the following chapter, we follow approach (i). The present
chapter includes a unified development of Lebesgue measure for R and Rn, and the
following chapter develops the Lebesgue integral for functions defined on subsets of
R and Rn. This allows us to measure a larger class of sets and to integrate a larger
class of functions over those sets. As we will see, the Lebesgue integral behaves well
under limit processes without the assumption of uniform convergence.

After some introductory motivational comments, Section 1 discusses the prop-
erties of σ-algebras, the set-theoretic foundation for measure theory. Section 2
briefly summarizes the extended real number system. Section 3 presents the gen-
eral properties of measures. Section 4 details the construction of a measure from
a simpler structure known as an outer measure. Section 5 applies the construction
from Section 4 to define Lebesgue measure on R and Rn.

493
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Motivations. The essential concepts needed for the development of Lebesgue
measure are few. Based on ideas from the study of area and volume, there are some
simple properties that any measure should have, and these requirements also say
something about the class of sets we want to measure.

Let us write μ for our measure function on sets. If we can measure sets A and
B, then we know μ(A) and μ(B), the measure of A and the measure of B, and we
should also be able to measure A∩B and A∪B. If A∩B is empty, then we should
have μ(A ∪ B) = μ(A) + μ(B). For example, by considering the disjoint union
(a, b] = (a, b) ∪ {b}, and naturally requiring μ((a, b)) = b − a, we necessarily have
μ({x}) = 0 for any point x, and hence the measure of any finite set of real numbers
should be zero. (We have already seen other sets in R or Rn which have Lebesgue
measure zero.) In general, we should have μ(A∪B) = μ(A)+μ(B)−μ(A∩B), since
the measure of the intersection is counted twice already in the sum μ(A) + μ(B).
This also shows that the measure of the empty set must be zero. If A ⊂ B, then we
want μ(A) ≤ μ(B), but this follows from the measure of disjoint sets just stated,
since μ(B) = μ(A) + μ(B − A). However, for that statement to be meaningful,
we need to be able to measure the complement B − A for any measurable sets A
and B.

We must allow that certain sets A have μ(A) = ∞, for example, any interval
of the form [n,∞) ⊂ R. Similar considerations apply to certain unbounded sets
in Rn. So the measure function μ can take values in the set R ∪ {∞}, which we
denote by [0,∞]. It will be essential to measure any open set. In particular, by the
structure theorem for open subsets of R, this means we must be able to measure
countable disjoint unions. If countable unions and complements can be measured,
then countable intersections can also be measured.

The theory discussed here develops a satisfactory theory of measure having
these, and other, important properties. Most importantly, this theory of measure
leads to a satisfactory concept of the integral for a sufficiently large class of functions
to meet the needs of modern mathematical analysis. In particular, the resulting new
integral will have more satisfactory behavior under the limit processes of analysis
without requiring uniform convergence.

Additional motivation for measure theory comes from the theory of probability,
in which events are modeled by subsets of a measure space. As noted above, events
(sets) of interest often arise as countable unions or countable intersections of other
events. Whether we study a probability measure or a more general measure, we
need the set-theoretic structure known as a σ-algebra.

16.1. Algebras and σ-Algebras

Let X be a set. When A ⊂ X, the notation Ac means the complement of the set
A in X.

Definition 16.1.1. An algebra is a collection A of subsets of X such that

1. A contains X and the empty set.

2. If A ∈ A, then Ac ∈ A.
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3. If A,B ∈ A, then A ∪ B ∈ A. An algebra A is a σ-algebra if, in addition,
the following property holds.

4. If Aj ∈ A for j ∈ N, then
⋃∞

j=1 Aj is in A.

When a reminder of the ambient set X is needed, we may say that an algebra
(or σ-algebra) A is an algebra (or σ-algebra) of X.

If A,B belong to an algebra A, then, since A ∩B = (Ac ∪Bc)c, 2 and 3 imply
that A ∩ B also belongs to A. By an induction argument, an algebra contains
the union of any finite collection of its elements and the intersection of any finite
collection of its elements.

If sets Aj , j ∈ N, belong to a σ-algebra A, then, since
⋂∞

j=1Aj = (
⋃∞

j=1A
c
j)

c,

properties 2 and 4 of the definition imply that
⋂∞

j=1Aj also belongs to A. Therefore
a σ-algebra contains the union of any countable collection of its elements and the
intersection of any countable collection of its elements.

For any set X, the collection of all subsets of X is a σ-algebra.

Example 16.1.2. Consider the set X = {1, 2, . . . , N}. There are 2N subsets of
X. In fact, there is a one-to-one correspondence between the collection of these
subsets and the collection of strings of zeros and ones of length N , since each
subset of {1, 2, . . . , N} corresponds uniquely to a yes or no answer about whether
each integer k, 1 ≤ k ≤ N , belongs to that subset. These 2N subsets of X form a
σ-algebra on X. But they do not form a σ-algebra on N, the full set of positive
integers. For example, the collection is not closed under complements in N. A
counting argument similar to the one just given shows that the collection of all
subsets of N is a σ-algebra with uncountably many elements. �

A pair (X,A) consisting of a set and a σ-algebra (of X) is called a measurable
space. A set A ∈ A is said to bemeasurable, orA-measurable. The terminology
implies an intention to assign some measure to the sets in A. We define measures
on σ-algebras in the next section.

Proposition 16.1.3. If A is an algebra of subsets of X and (Ai)
∞
i=1 is a sequence

of sets in A, then there is a sequence (Bi)
∞
i=1 of sets in A which are pairwise disjoint

(Bi ∩Bj is empty for i 
= j) and such that

∞⋃
i=1

Bi =
∞⋃
i=1

Ai .

Moreover,
⋃n

k=1 Bk =
⋃n

k=1Ak for each n.

Proof. Let B1 = A1, and define inductively the sets Bn for each integer n ≥ 2, by

Bn = An −
n−1⋃
i=1

Ai.

Since A is an algebra of subsets of X, each set Bn is in A. By definition, Bn ⊆ An

for each n. (Thus
⋃n

k=1 Bk ⊆
⋃n

k=1 Ak for each n.) If m 
= n, say m > n, then

Bm = Am−
⋃m−1

i=1 Ai, and since Bn ⊆ An ⊆ Bc
m for m > n, we have that Bm

⋂
Bn
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is empty. Therefore the sets Bi are pairwise disjoint. Moreover,
⋃∞

i=1 Bi ⊆
⋃∞

i=1 Ai

since each Bi ⊆ Ai.

If x ∈
⋃∞

i=1 Ai, then x ∈ Ai for some i. Let n be the smallest value of i for

which x ∈ Ai. Then it must be that x ∈ Bn = An −
⋃n−1

i=1 Ai, and therefore
x ∈

⋃∞
i=1 Bi. Thus

⋃∞
i=1 Ai ⊆

⋃∞
i=1 Bi.

Finally, given n, if x ∈
⋃n

k=1Ak, then x ∈ Aj for some 1 ≤ j ≤ n. Let

m be the least such index in this range. Then x ∈ Am −
⋃m−1

k=1 Ak = Bm, and
therefore x ∈

⋃n
k=1Bk. Given the reverse containment noted above, the proof is

now complete. �

Proposition 16.1.3 does not assume thatA is a σ-algebra, as there is no assertion
that the countable union is an element of A; however, the proposition automatically
holds for any σ-algebra A.

The next result shows that the intersection of any collection of σ-algebras of X
is also a σ-algebra of X.

Proposition 16.1.4. Let X be a set.

1. If Aα is a σ-algebra of X for each α in a nonempty index set I, then
⋂

α∈I Aα

is also a σ-algebra.

2. If C is a collection of subsets of X, then the intersection of all σ-algebras of
X that contain C is a σ-algebra of X. This is called the σ-algebra of X
generated by C, denoted σ(C). If B is any σ-algebra of X that contains C,
then σ(C) ⊆ B.

Proof. 1. If each Aα is a σ-algebra of X, then the intersection
⋂

α∈I Aα satisfies
the defining properties 1-4 for a σ-algebra.

2. Note that σ(C), the intersection of all σ-algebras that contain C, exists,
since the collection of all subsets of X is a σ-algebra containing C. Then clearly
σ(C) ⊆ B for any σ-algebra B that contains C. �

With a view toward our main interest, we make a few comments on R and
Rn before continuing the general development. A topological space, such as R or
Rn, has a collection of open sets that define the topology of the space. We want
all the open sets to be measurable. Our task is to define an appropriate σ-algebra
M of subsets of Rn and a positive measure μ on M, with all the open sets being
elements of M. The next definition provides a start to that task.

Definition 16.1.5. The σ-algebra Bn generated by the collection of open subsets
of Rn is called the Borel σ-algebra of Rn. The elements of Bn are called Borel
sets, and they are also said to be Borel measurable. More generally, if X is a
metric space, the Borel σ-algebra of X is the smallest σ-algebra that contains all
the open sets of X, and its elements are called the Borel sets of X.

The Borel σ-algebra Bn is the intersection of all σ-algebras that contain all
open sets in Rn. (See Proposition 16.1.4.) The next proposition shows several
equivalent ways to generate the Borel σ-algebra B1 of the real line.
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Proposition 16.1.6. The Borel σ-algebra B1 of the real numbers is generated by
each of these collections:

1. C1 = {(a, b) : a, b ∈ R, a < b};
2. C2 = {[a, b] : a, b ∈ R, a < b};
3. C3 = {[a, b) : a, b ∈ R, a < b};
4. C4 = {(a, b] : a, b ∈ R, a < b};
5. C5 = {(a,∞) : a ∈ R}.

Proof. We want to show that B1 = σ(Cj) for 1 ≤ j ≤ 5. We will prove that
B1 = σ(C1) and that σ(C2) = σ(C1). The remaining equalities are left as an
exercise.

1. B1 = σ(C1): First, observe that, the Borel σ-algebra B1 contains σ(C1) be-
cause B1 contains every bounded open interval. On the other hand, σ(C1) contains
not only all bounded open intervals, but unbounded ones as well, since

(−∞, b) =
∞⋃
k=1

(b− k, b) ∈ σ(C1) and (a,∞) =
∞⋃
k=1

(a, a+ k) ∈ σ(C1).

Thus, by the structure theorem for open sets of the real line, σ(C1) contains all the
open sets, and hence σ(C1) contains B1. Therefore B1 = σ(C1).

2. σ(C2) = σ(C1): Given [a, b], with a < b, we can write

[a, b] =
∞⋂
k=1

(
a− 1

k
, b+

1

k

)
,

which shows that [a, b] is in σ(C1), and it follows that σ(C2) ⊆ σ(C1). On the other
hand, given (a, b), with a < b,

(a, b) =

∞⋃
k=k0

[
a+

1

k
, b− 1

k

]
, where

2

k0
< b− a.

This shows that (a, b) is in σ(C2), hence σ(C1) ⊆ σ(C2). Therefore σ(C2) =
σ(C1) = B1.

The remaining equalities σ(C5) = σ(C4) = σ(C3) = B1 are left to Exercise
16.1.1. �

The Lebesgue σ-algebraM to be defined later will contain the Borel σ-algebra,1

but there will be Lebesgue measurable sets that are not Borel sets. Since M is to be
a σ-algebra, all closed sets will be in M and consequently all compact sets will be
in M. The development of the Lebesgue σ-algebra M and the Lebesgue measure
μ on M can be handled in a unified way for any Rn, n ≥ 1. This is done in Section
16.5. We cannot measure every subset of R (or Rn) and maintain the desirable
properties we require of a measure. There are subsets of R that are not Lebesgue
measurable. One such set will be constructed in Exercise 16.5.13.

1This is proved in Theorem 16.5.8 after the construction of Lebesgue measure.
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Our goals for the next three sections are to discuss arithmetic in the extended
real numbers, to set out the fundamental properties of measures, and then to con-
struct a measure from an outer measure. These results prepare the way for the
definition of Lebesgue measure.

Exercise.

Exercise 16.1.1. Prove the remaining equalities σ(C5) = σ(C4) = σ(C3) = B1

asserted in Proposition 16.1.6.

16.2. Arithmetic in the Extended Real Numbers

This section briefly summarizes the necessary arithmetic for the extended real num-
ber system, that is, the real number field with the two elements +∞ and −∞ ap-
pended. The ordering is given by −∞ < x < +∞ for any real number x. We often
write ∞ for +∞. The set of extended real numbers may be denoted by [−∞,∞],
and the nonnegative extended reals may be denoted by [0,∞].

In [−∞,∞], the usual field operations hold for addition and multiplication of
real numbers. The following laws hold for arithmetic involving real numbers x and
±∞.

For addition and subtraction:

1. x+ (±∞) = (±∞) + x = ±∞.

2. x− (±∞) = −(±∞) + x = ∓∞.

3. ∞+∞ = ∞ and −∞−∞ = −∞.

The operations (±∞) + (∓∞) and (±∞)− (±∞) are undefined.

For multiplication:

4. For each x ∈ R,

x(±∞) = (±∞)x =

⎧⎨
⎩

±∞ if x > 0,
0 if x = 0,
∓∞ if x < 0.

5. (±∞)(±∞) = +∞ and (±∞)(∓∞) = −∞

As we see, in measure theory it is useful to define 0(∞) = (∞)0 = 0. For
example, we want the integral of the constant zero function over the infinite interval
[0,∞) to be zero.

The use of the elements ±∞ and the laws for the extended real numbers provide
a language for speaking about cases that are likely to arise often enough in measure
theory to justify some terminology.

What about upper and lower bounds for sets of extended real numbers? If a
set S has no real number upper bound, we may write supS = ∞. Similarly, if a
set S has no real number lower bound, we may write inf S = −∞. Thus supS and
inf S are defined in [−∞,∞] for any nonempty set S.
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Given the definitions above and the operations in the field R itself, we say that
R∪{+∞,−∞} = [−∞,∞] is the system of extended real numbers. A function
f that takes values in [−∞,∞] is an extended real valued function.

16.3. Measures

In this section we present the general properties of measures. We shall use the
symbol Σ for a σ-algebra on an arbitrary set X. We start with a general definition
of a measure on an arbitrary set, so that we can consider some very simple examples
of measures. With some basic properties of measures in place, we will be in a better
position to think about how a measure might be constructed.

Definition 16.3.1. Let (X,Σ) be a measurable space, that is, Σ is a σ-algebra
of X. A positive measure (or simply, a measure) on (X,Σ) is a function
μ : Σ → [0,∞] such that μ(A) < ∞ for at least one set A ∈ Σ, and μ is countably
additive, which means that if {Aj} is a countable collection of pairwise disjoint
members of Σ, then

μ
( ∞⋃

j=1

Aj

)
=

∞∑
j=1

μ(Aj).

The triple (X,Σ, μ) is then called a positive measure space (or simply, a mea-
sure space).

We assume there is some set that has finite measure in order to avoid a measure
of no interest to us. This assumption also has the desirable consequence that
the measure of the empty set is zero, for if μ(A) < ∞, then we can define the
countable, pairwise disjoint collection consisting of A1 = A and Aj equal to the
empty set for j ≥ 2. By countable additivity, μ(A) = μ(

⋃∞
j=1 Aj) = μ(A)+μ(∅)+0.

By subtracting the finite μ(A), we find the empty set has measure zero. By a
similar argument, we see that countable additivity implies that a measure is finitely
additive, which means that if Aj ∈ Σ, for 1 ≤ j ≤ n, and the sets Aj are pairwise
disjoint, then

μ
( n⋃

j=1

Aj

)
=

n∑
j=1

μ(Aj).

A pairwise disjoint collection of sets may be called a disjoint collection or a collection
of disjoint sets. Any countable union of disjoint sets is also called a disjoint union.

More advanced treatments of measure theory include other types of measures.
In this book we consider only positive measures, and we will say measure and mea-
sure space without the qualifier positive. When the σ-algebra on X is understood,
we say that μ is a measure on X.

Example 16.3.2. Let X = N, the set of positive integers, and let Σ be the σ-
algebra of all subsets of N. Define μ : Σ → [0,∞] by letting μ(A) be the cardinality
of A, for each subset A of X. Then μ is a measure on X, called the counting
measure on X. �

If (X,Σ, μ) is a measure space and μ(X) = 1, then (X,Σ, μ) is a probability
measure space.
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An interesting probability measure space is the interval I = (0, 1], which we
now briefly discuss. When we have defined Lebesgue measure on a σ-algebra of
subsets of the real line, we will have a measure on the unit interval I by simply
intersecting the sets of that σ-algebra with I itself. Since Lebesgue measure assigns
every interval a measure equal to the interval length, the Lebesgue measure of I is
1, and hence Lebesgue measure is a probability measure on I.

There is a reason for omitting 0 from our unit interval. Every ω ∈ I can be
written in the form

ω =
∞∑
i=1

ai
2i
, ai ∈ {0, 1}.

Since the ai completely determine ω, we may write

ω = .a1 a2 a3 · · · ,
which is the binary expansion of ω. With a given ω, we associate a sequence β of
coin tosses, known as a Bernoulli trial (or Bernoulli sequence) by placing an H as
the n-th term of the sequence if an = 1 and a T as the n-th term if an = 0. Let
B be the set of all sequences β of the symbols H and T . To make our mapping
ω �→ β ∈ B well-defined, we agree to use only nonterminating binary expansions for
the elements of I. This means that we toss out all terminating binary expansions,
the ones that have an infinite tail of zeros. For example ω = .010̄ = .001̄, and we
choose to use the expansion ω = .001̄ for the number 1/4. By this choice, we also
toss out all Bernoulli sequences that end in all tails. (We should not be concerned
about their loss. And this is why we omit 0 from I.) Then the mapping from I
to B given by ω �→ β is well-defined and one-to-one, but not onto. The set BT of
Bernoulli sequences that end in all tails is countable, because the set of sequences
that end in tails after the n-th term in the sequence is finite, having 2n elements,
for each n. (See Exercise 1.4.3.) Thus BT is a countable union of finite sets, hence
countable. Therefore we have the following correspondence.

Proposition 16.3.3. Let BT denote the set of Bernoulli sequences that end in all
tails. Then B − BT is indexed by the points in I = (0, 1] using nonterminating
binary expansions for elements ω ∈ I.

We can make use of the probability space I even though, at this point, we
know only the Lebesgue measure of finite unions of disjoint intervals. We use the
following Borel principle.

Borel Principle. Suppose E is a probabilistic event occurring in certain
Bernoulli sequences. Let BE denote the subset of B for which the event occurs,
and let SE be the corresponding subset of I. Then the probability that E occurs is
equal to m(SE).

Here is a sampling of events for which we can determine the probability.

1. Let E be the event that a head is thrown on the first toss. We expect the
probability of this event is 1/2 for a fair coin. Then E corresponds to the
subset SE of I consisting of all those binary representations that begin with a
1 in the first digit. A number ω is in SE if and only if ω = .1a2a3 . . .. Thus, ω
is in SE if and only if ω ≥ .1000 . . . and ω ≤ .1111 . . .. Therefore SE = [1/2, 1],
and the measure of SE is 1/2, as expected.
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2. Let E be the event that the first 10 tosses are some prescribed sequence and
everything else is arbitrary. The corresponding subset of I is

SE = {ω ∈ I : ω = .a1 a2 . . . a10 . . .}

where only a1, . . . , a10 are prescribed. If s = .a1 a2 . . . a100̄, then SE = [s, s+
(1/210)). Since the measure of the interval SE is 210, this is the probability
of event E. This is expected, as the first ten tosses can occur in 210 different
ways, equally likely for a fair coin. By a similar analysis, if E is the event that
the first n tosses are some prescribed sequence, then the probability of E is
the measure of the interval SE = [s, s+ (1/2n)), where s = .a1 . . . an0̄, which
is 1/2n. Again, this meets our expectations.

3. Suppose E is the event that in the first 10 tosses, exactly 3 heads appear. The
associated subset of I is

SE = {ω ∈ I : ω = .a1 a2 . . . a10 . . . , where exactly 3 of the first n ai are 1}.

Now fix the first n digits, exactly three of which equal 1. If s = .a1 a2 . . . a100̄,
then SE contains the interval [s, s + (1/210)). With other choices of the first
10 digits (each choice having exactly three digits equal to 1) there are a total
of ( 10

3

)
=

10!

7! 3!
=

10 · 9 · 8
3 · 2 = 120

intervals (the number of combinations of three things chosen from ten), each
having measure 1/210, all of which belong to SE . Moreover, these intervals
are pairwise disjoint, since the distance between any two of these s numbers
represented by the first ten digits must be greater than 1/210. Thus the total
measure of these intervals is

1

210
120 =

120

1024
= .1171875,

yielding a probability of E equal to .1171875.

4. (Gambler’s Ruin) This example is more involved, but provides important in-
sight and motivation. Suppose a gambler starts with $X and bets on a se-
quence of coin tosses. At each toss he wins $1 if a head appears and loses $1 if
a tail appears. What is the probability of event E, gambler’s ruin, that he will
lose his entire original stake? We need an appropriate notation to describe
the amount won or lost at each toss, the payoff or loss after k tosses, and the
ways in which the gambler can lose the entire stake. For ω ∈ I, define the
k-th Rademacher function Rk : I → R by

Rk(ω) = 2ak − 1,

where ω = .a1 a2 a3 . . . in the binary expansion we are using. Thus

Rk(ω) =

{
+1 if ak = 1,
−1 if ak = 0,

so Rk(ω) is the amount won or lost on the k-th toss.
See Figure 16.1 for the graphs of the first three Rademacher functions.

The functions Rk allow a description of event E, the gambler’s ruin. The
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Figure 16.1. The first three Rademacher functions: R1, R2 and R3.
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total amount won or lost after k tosses is given by

fk(ω) :=
∑
j≤k

Rj(ω).

Then the event Ek, that the gambler loses his stake at the k-th toss, corre-
sponds to the subset SEk

of I given by

SEk
= {ω ∈ I : fj(ω) > −X for j < k, and fk(ω) = −X }.

Any one of these events Ek signals the gambler’s ruin. Hence the complete
loss of the original stake, event E, is represented by the union

SE =
⋃
k=1

SEk
=
⋃
k=1

{ω ∈ I : fj(ω) > −X for j < k, and fk(ω) = −X }.

At least two observations are important here. The first is that event E is
described by a countably infinite union of sets, which needs to be measurable.
The second is the realization that it will be important to be able to measure
sets of the form

{ω ∈ I : f(ω) > α} and {ω ∈ I : f(ω) ≤ α}

for suitable functions f . The first observation emphasizes the need for a σ-
algebra of measurable sets, and the second observation points toward the later
definition of measurable function.

So as not to leave the reader hanging about the gambler’s fate, it can be
shown that the Lebesgue measure, m(SE), of the set SE equals

m(SE) =

∞∑
k=1

m(SEk
) = 1.

Thus, if the gambler bets long enough, he eventually loses his initial stake, no
matter how large that stake may be. Exercise 16.3.4 may develop some initial
intuition towards this result.

We cannot delve deeply into probability measures and problems in this book.
However, probability can provide accessible motivation and concrete problems when
learning about measure and integration.

We can now establish a few properties of measures. Suppose a set is the union of
a nested sequence of sets or the intersection of a nested sequence of sets. Measures
have a nice continuity property with respect to such monotone sequences, as seen
in the next proposition.

Proposition 16.3.4. Let (X,Σ, μ) be a measure space. Then the following prop-
erties hold:

1. If A,B ∈ Σ and A ⊆ B, then μ(A) ≤ μ(B). If μ(B) < ∞, then μ(B − A) =
μ(B)− μ(A).

2. If Ak ∈ Σ for k = 1, 2, . . ., then μ(
⋃∞

k=1Ak) ≤
∑∞

k=1 μ(Ak).
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3. If Ak ∈ Σ for k = 1, 2, . . ., and Ak ⊆ Ak+1 for all k, then

μ
( ∞⋃
k=1

Ak

)
= lim

k→∞
μ(Ak).

4. If Ak ∈ Σ for k = 1, 2, . . ., with Ak+1 ⊆ Ak for all k, and μ(Ak0
) < ∞ for

some positive integer k0, then

μ
( ∞⋂
k=1

Ak

)
= lim

k→∞
μ(Ak).

Proof. 1. Write B = A ∪ (B − A), a disjoint union, and thus

μ(B) = μ(A) + μ(B −A).

Since μ(B − A) ≥ 0, μ(B) − μ(A) ≥ 0, hence μ(A) ≤ μ(B). If μ(B) < ∞, then
μ(A) < ∞ as well, so μ(B −A) = μ(B)− μ(A) is well defined.

2. By Proposition 16.1.3, we may write
⋃∞

k=1Ak =
⋃∞

k=1 Bk for a sequence of
pairwise disjoint sets Bk with Bk ⊆ Ak for each k. Then

μ
( ∞⋃
k=1

Ak

)
= μ
( ∞⋃
k=1

Bk

)
=

∞∑
k=1

μ(Bk) ≤
∞∑
k=1

μ(Ak).

3. Letting A0 = ∅, we may write
⋃∞

k=1Ak =
⋃∞

k=1(Ak − Ak−1), which is now
a disjoint union. Hence,

μ
( ∞⋃
k=1

Ak

)
= μ

( ∞⋃
k=1

(Ak −Ak−1)
)
=

∞∑
k=1

μ(Ak −Ak−1)

= lim
m→∞

m∑
k=1

μ(Ak −Ak−1) = lim
m→∞

μ
( m⋃
k=1

(Ak −Ak−1)
)

= lim
m→∞

μ(Am).

4. By hypothesis, the sequence Ak0
−Ak is an increasing sequence of sets, and

∞⋃
k=1

(Ak0
− Ak) = Ak0

−
∞⋂
k=1

Ak.

Thus, by item 1, we have

μ
( ∞⋃

k=1

(Ak0
−Ak)

)
= μ(Ak0

)− μ
( ∞⋂
k=1

Ak

)
.

The sequence μ(Ak) is decreasing and bounded below by zero. By items 3 and 1,
we have

μ
( ∞⋃

k=1

(Ak0
−Ak)

)
= lim

k→∞
μ(Ak0

−Ak)

= lim
k→∞

[μ(Ak0
)− μ(Ak)]

= μ(Ak0
)− lim

k→∞
μ(Ak).

Comparing the two results, we have μ
(⋂∞

k=1 Ak

)
= limk→∞ μ(Ak). �
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Definition 16.3.5. Let (X,Σ, μ) be a measure space. A measure μ is said to be
complete if every subset of a set having measure zero is measurable (and hence
has measure zero). That is, if A ⊂ B and μ(B) = 0, then A ∈ Σ and μ(A) = 0.

Working with a complete measure avoids some annoying technical issues, so it
is worth knowing that any measure μ on X which is not complete may be extended
to a larger σ-algebra of X on which it is complete. However, this extension result is
not needed in this book. The main measures of interest to us, Lebesgue measure on
the real line and Lebesgue measure on Rn, are complete measures. Nevertheless,
the notion of complete measure should be kept in mind in a few of the statements
later on. For example, Lebesgue measure on the real line will be defined on a σ-
algebra containing, but strictly larger than, the Borel σ-algebra B1, and Lebesgue
measure restricted to B1 is not a complete measure.

Exercises.

Exercise 16.3.1. Use the counting measure of Example 16.3.2 to give an example
of A ⊂ B where μ(B) = ∞ and the expression μ(B) − μ(A) is undefined. Also
give an example of a sequence Ak+1 ⊂ Ak for each k, where the limit statement in
Proposition 16.3.4 (item 4) does not hold.

Exercise 16.3.2. Is the counting measure of Example 16.3.2 a complete measure?

Exercise 16.3.3. Determine the probabilities of these events using measure argu-
ments:

1. Find the probability of the coin toss event E, that the first 3 coin tosses are
all heads. That is, identify the corresponding subset SE of X = (0, 1] and
determine its Lebesgue measure.

2. Find the probability of the event E that the first 3 coin tosses are all tails.
Identify the relevant subset SE of X = (0, 1] and determine its Lebesgue
measure.

Exercise 16.3.4. Suppose the gambler has an initial stake of one dollar. Determine
the probability of his ruin occuring at the first, third, and fifth toss.

16.4. Measure from Outer Measure

A standard way to construct a measure is to first construct a preliminary rougher
measurement of sets called an outer measure. A measure may then be constructed
from an outer measure. In particular, the Lebesgue measures on R and Rn will be
constructed from suitable outer measures on those spaces. Thus we begin with the
definition of outer measure for an arbitrary set X.

Definition 16.4.1. Let X be a set. An outer measure on X is a function μ∗ on
the σ-algebra of all subsets of X such that

1. μ∗(A) ≥ 0 for every subset A of X, and μ∗(∅) = 0;

2. if A ⊆ B, then μ∗(A) ≤ μ∗(B);

3. if Ak ⊆ X for each k, then μ∗(
⋃∞

k=1Ak) ≤
∑∞

k=1 μ
∗(Ak).
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Remark. Property 2 of this definition is called monotonicity of the outer mea-
sure, and property 3 is called countable subadditivity of the outer measure. By
taking Ak empty for k ≥ n, property 3 implies that an outer measure is finitely
subadditive: μ∗(

⋃n
k=1 Ak) ≤

∑n
k=1 μ

∗(Ak) for any subsets Ak, 1 ≤ k ≤ n, of X.

If a measure μ is defined on the σ-algebra of all subsets of X, then μ is an outer
measure on X by Proposition 16.3.4, part 2. For example, the counting measure
on N is an outer measure.

An outer measure on X is easy to construct. Let K be any collection of subsets
of X that includes the empty set, and that covers X in the following sense: for
any subset A of X, there is a sequence Ek in K such that A ⊆

⋃∞
k=1 Ek. Such

a collection K is called a sequential covering class of X. The idea is that for
a given X, the covering class should be chosen to consist of sets that generate a
desired σ-algebra of measurable sets. For example, the collection of intervals of the
form [a, b), a < b, is a sequential covering class of R, and it generates the Borel
σ-algebra.

Let K be a sequential covering class of X, and let λ : K → [0,∞] be any
extended real valued function that satisfies λ(∅) = 0. For each subset A of X,
define

(16.1) μ∗(A) := inf
{ ∞∑

k=1

λ(Ek) : Ek ∈ K and A ⊆
∞⋃
k=1

Ek

}
.

The function λ provides the mechanism for ensuring that the covering sets are
assigned their appropriate measure. For R and Rn, λ is the volume function on
certain intervals. The role of λ becomes clearer when we define Lebesgue measure
in the next section.

Theorem 16.4.2. For any sequential covering class K on X and for any extended
real valued function λ : K → [0,∞] with λ(∅) = 0, the function μ∗ defined by ( 16.1)
is an outer measure on X.

Proof. Properties 1 and 2 of outer measure are immediate from (16.1). It only
remains to show subadditivity of μ∗. Let Ak be subsets of X. Let ε > 0. By (16.1),
for each k, there is a sequence of sets Ekj ∈ K such that Ak ⊆

⋃∞
j=1 Ekj and

∞∑
j=1

λ(Ekj) ≤ μ∗(Ak) +
ε

2k
.

This is valid even when μ∗(Ak) = ∞, since the left-hand side must then be ∞, by
(16.1). We have

⋃∞
k=1Ak ⊆

⋃∞
k,j=1 Ekj , which is a countable union of sets from K,
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and hence

μ∗( ∞⋃
k=1

Ak

)
≤

∞∑
k,j=1

λ(Ekj) (by (16.1))

≤
∞∑
k=1

(
μ∗(Ak) +

ε

2k
)

≤
( ∞∑

k=1

μ∗(Ak)
)
+ ε.

Observe that the last line is valid if μ∗(Ak) = ∞ for some k, or if μ∗(Ak) is finite
for all k and

∑∞
k=1 μ

∗(Ak) = ∞. Since ε was arbitrary, this proves subadditivity of
μ∗. �

Now the main task is to construct a measure from a given outer measure.
An outer measure is a way of assigning a number to every subset of a set X by
approximating each set using sets from a relevant sequential covering class. A
relevant covering class should consist of sets we want to be measurable, and which
can be used to generate, or approximate well, the sets of most interest to us. For
example, in the construction of Lebesgue measure on R it will be convenient to
use the sequential covering class consisting of the intervals [a, b) for a, b ∈ R. The
closed intervals in Rn will provide an appropriate sequential covering class for
n ≥ 2. The development below shows that the outer measure generates a σ-algebra
of measurable sets that includes, but is larger than, the Borel σ-algebra.

To help motivate the definition of measurability, we make a couple of observa-
tions. Recall that a measure is necessarily finitely additive on disjoint sets. If a
set A is to be measurable, and we split an arbitrary set E into the sets E ∩A and
E ∩ Ac, then we could say that the set A behaves well with respect to the outer
measure of E if μ∗(E) = μ∗(E ∩A)+μ∗(E ∩Ac). As our measurable sets, we want
only those sets A that behave well with respect to the outer measure of every set
E. This observation motivates the next definition.

Definition 16.4.3. Let μ∗ be an outer measure on X. A subset A of X is μ∗-
measurable if for each set E ⊆ X,

(16.2) μ∗(E) = μ∗(E ∩A) + μ∗(E ∩ Ac).

It follows from this definition that the empty set and X are both μ∗-measurable
(Exercise 16.4.1). The definition is symmetric in A and its complement Ac, so a
set is μ∗-measurable if and only if its complement is μ∗-measurable. Since E =
(E ∩ A) ∪ (E ∩ Ac), and an outer measure is subadditive, we always have

μ∗(E) ≤ μ∗(E ∩A) + μ∗(E ∩ Ac).

Hence to establish (16.2) for a set A, it suffices to show that

(16.3) μ∗(E) ≥ μ∗(E ∩A) + μ∗(E ∩ Ac).

Moreover, since (16.3) clearly holds in case μ∗(E) = ∞, it is only necessary to
consider sets E with μ∗(E) < ∞.

The next result says that the restriction of an outer measure μ∗ to its μ∗-
measurable sets is a measure on a σ-algebra.
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Theorem 16.4.4. If μ∗ is an outer measure on X, then the collection M of μ∗-
measurable sets is a σ-algebra of X, and μ := μ∗|M is a complete measure on X.

Proof. We show first that M is an algebra. As noted above, the empty set and X
are both μ∗-measurable, and A ∈ M if and only if Ac ∈ M, by the symmetry of
the definition. Let A,B ∈ M. We want to show that A ∪ B ∈ M. Let E be any
subset of X. Since A ∈ M and B ∈ M,

μ∗(E) = μ∗(E ∩ A) + μ∗(E ∩Ac) (since A ∈ M)

= μ∗(E ∩ A ∩B) + μ∗(E ∩A ∩Bc)

+ μ∗(E ∩Ac ∩B) + μ∗(E ∩Ac ∩Bc).(16.4)

Since B ∈ M, (16.4) follows from (16.2) with E replaced first by E ∩ A, then by
E ∩Ac. We have (A∪B)c = Ac ∩Bc and A ∪B = (A ∩B) ∪ (A ∩Bc) ∪ (Ac ∩B).
After intersecting both A∪B and (A∪B)c with E, and using subadditivity of μ∗,
we have

μ∗(E ∩ (A ∪B)c)) = μ∗(E ∩ (Ac ∩Bc))

μ∗(E ∩ (A ∪B)) ≤ μ∗(E ∩A ∩B) + μ∗(E ∩ A ∩Bc) + μ∗(E ∩ Ac ∩B).

By adding these expressions, left and right, and using (16.4), we obtain

μ∗(E) ≥ μ∗(E ∩ (A ∪B)) + μ∗(E ∩ (A ∪B)c),

and conclude that A ∪B ∈ M. This shows that M is an algebra.

The next step is to show that M is a σ-algebra. Since M is an algebra,
Proposition 16.1.3 implies that any countable union of sets of M is equal to a
countable disjoint union of sets of M. Thus, to show that M is a σ-algebra it
suffices to show that any countable disjoint union of sets of M is again in M.
Let Aj be a sequence of disjoint sets, with Aj ∈ M. For each positive integer
n, let Bn =

⋃n
j=1 Aj , and let B =

⋃∞
j=1 Aj . If E is any subset of X, then, by

measurability of An (and replacing E by E ∩Bn in (16.2)),

μ∗(E ∩Bn) = μ∗(E ∩Bn ∩An) + μ∗(E ∩Bn ∩Ac
n)

= μ∗(E ∩An) + μ∗(E ∩Bn−1),

since Bn ∩ An = An and Bn ∩ Ac
n = Bn−1. We can apply the same argument to

the last term on the right, to get

μ∗(E ∩Bn−1) = μ∗(E ∩ An−1) + μ∗(E ∩Bn−2).

After applying this argument n− 1 times, we obtain

(16.5) μ∗(E ∩Bn) =

n∑
j=2

μ∗(E ∩ Aj) + μ∗(E ∩B1) =

n∑
j=1

μ∗(E ∩ Aj),
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since B1 = A1. Since M is an algebra, Bn ∈ M. Since Bn ⊆ B, we have Bc ⊆ Bc
n.

For every set E, and each n, (16.5) implies that

μ∗(E) = μ∗(E ∩Bn) + μ∗(E ∩Bc
n)

=
( n∑

j=1

μ∗(E ∩Aj)
)
+ μ∗(E ∩Bc

n)

≥
( n∑

j=1

μ∗(E ∩Aj)
)
+ μ∗(E ∩Bc),

since Bc ⊆ Bc
n for each n. We may let n → ∞, and conclude that

μ∗(E) ≥
( ∞∑

j=1

μ∗(E ∩ Aj)
)
+ μ∗(E ∩Bc)(16.6)

≥ μ∗( ∞⋃
j=1

E ∩Aj

)
+ μ∗(E ∩Bc)

= μ∗(E ∩B) + μ∗(E ∩Bc) ≥ μ∗(E),

by subadditivity of μ∗ in each of the last two lines. This shows that the countable
disjoint union B =

⋃∞
j=1Aj is in M. As we noted above, this result implies, by

Proposition 16.1.3, that M is a σ-algebra. The other important fact about (16.6)
is that all three of the greater than or equal to signs must be equalities.

It remains to show that μ∗ restricted to M is a measure, and that if μ∗(E) = 0,
then E ∈ M. First, μ∗ restricted to M is a measure if it is countably additive,
since we know already that μ∗(∅) = 0 < ∞. The equality (16.6), developed for
countable disjoint unions, and expressed here in its true form, as

μ∗(E) =
( ∞∑

j=1

μ∗(E ∩Aj)
)
+ μ∗(E ∩Bc),

holds for any set E and any disjoint union B =
⋃∞

j=1Aj , where each Aj is in M.
Now let E = B in this equation, to obtain

μ∗(B) =

∞∑
j=1

μ∗(Aj).

This proves the countable additivity of μ∗|M. Therefore μ := μ∗|M is a measure
on X.

Now suppose that A ⊂ B, B ∈ M, and μ∗(B) = 0. We have μ∗(A) ≤ μ∗(B)
since an outer measure has this monotonic property by definition. Hence μ∗(A) = 0.
It remains to show that A is μ∗-measurable. If E is any subset of X, then two
applications of monotonicity yield

μ∗(E ∩ A) + μ∗(E ∩Ac) ≤ 0 + μ∗(E ∩ Ac) ≤ μ∗(E).

This inequality shows that A is μ∗-measurable. Therefore μ = μ∗|M is a complete
measure. �
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Exercises.

Exercise 16.4.1. Let μ∗ be an outer measure on X. Verify that the empty set
and X are both μ∗-measurable.

Exercise 16.4.2. Using the structure theorem for open sets in R, we could define
the total length of an open set O, λ(O), to be the sum of the lengths of the
(countably many) disjoint open intervals whose union equals O. Then, if E is a
subset of R, define

μ∗(E) = inf{λ(O) : O is open and E ⊂ O}.
1. Verify that the open intervals constitute a sequential covering class of R.

2. Verify that Theorem 16.4.2 applies, and thus μ∗ is an outer measure on R.

16.5. Lebesgue Measure in Euclidean Space

This section includes the definitions of Lebesgue measure on R, and on Rn, by
applying the results of the preceding section. These measures will be denoted by m
(for the case of the real line) andmn, for n ≥ 2, if a reference to dimension is needed.
There is some simplification possible for the case of the real line. Some readers may
have a primary interest in the real line, so we consider that case separately. For
each space Rn, we show that the Lebesgue σ-algebra Mn defined below contains
the Borel σ-algebra Bn, and hence Mn contains all open sets and all closed sets.

16.5.1. Lebesgue Measure on the Real Line. Let K be the collection of real
intervals J = [a, b), with a < b. Then K is a sequential covering class of R. Let
λ(∅) = 0, and define λ(J) = λ([a, b)) = b − a for each element J = [a, b) ∈ K.
Then we define m∗ on the σ-algebra of all subsets of R in accordance with (16.1).
Therefore define

(16.7) μ∗(A) := inf
{ ∞∑

k=1

λ(Jk) : Jk ∈ K and A ⊆
∞⋃
k=1

Jk

}
for A ⊆ R. Then m∗ is an outer measure, by Theorem 16.4.2, called the Lebesgue
outer measure on R. Let M = M1 be the collection of m∗-measurable sets in
accordance with Definition 16.4.3. Then the restriction m = m∗|M is a complete
measure on R by Theorem 16.4.4. The collection M is the Lebesgue σ-algebra
of R, and m is Lebesgue measure on R. The elements of M are known as the
Lebesgue measurable sets in R. The triple (R,M,m) is the one-dimensional
Lebesgue measure space.

It might seem that much is left mysterious by this definition of (R,M,m) by
way of Theorem 16.4.4 from the previous section, since we have not determined the
Lebesgue measure of many sets. However, the usefulness of Definition 16.4.3 and
Theorem 16.4.4 lies in their generality. As we noted when defining outer measure,
the function λ on the sequential covering class K is the mechanism that ensures
that the covering sets are assigned their appropriate (outer) measure. In the present
case, our interest is in showing that m∗([a, b)) = λ([a, b)), where λ([a, b)) = b − a
by definition. This result is not obvious from the definition of m∗([a, b)), though it
is clear that it should be true, and we need it in the proof of Theorem 16.5.3 below.
Lemma 16.5.1 is a nontrivial result that depends on the completeness of R.
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Lemma 16.5.1. For every bounded interval [a, b) with a < b,

m∗([a, b)) = λ([a, b)) = b− a.

Proof. By definition, λ([a, b)) = b − a and [a, b) is in the covering class K, so
m∗([a, b)) ≤ λ([a, b)). Suppose [a, b) is covered by a union

⋃∞
k=1 Jk, where the

Jk belong to K. Then [a, b) = [a, b)
⋂∞

k=1

(⋃∞
k=1 Jk

)
=
⋃∞

k=1

(
[a, b)

⋂
Jk
)
. Each

intersection [a, b)
⋂
Jk is either empty or another interval of the same type; we

assume without loss of generality that each intersection is nonempty. Thus the
union

⋃∞
k=1

(
[a, b)

⋂
Jk
)
of intervals closed at the left end and open at the right

end covers [a, b). (Recall we have not established that intervals of this type are m∗-
measurable, nor do we know the value of m∗([a, b)

⋂
Jk) yet, since it is an interval

of the same type as [a, b).)

The proof of the lemma is by contradiction.

We suppose that the lengths of the covering intervals [a, b)
⋂
Jk sum to a num-

ber less than b−a. That is, we assume that λ([a, b)) is not the infimum that defines
m∗([a, b)). Then there are numbers a′ > a, b′ < b, and δ > 0, such that[ ∞∑

k=1

λ
(
[a, b)

⋂
Jk

)]
+ δ < b′ − a′ < b− a.

Let 0 < ε < δ. The interval [a′, b′] is covered by these half-open intervals. For each
k, we can extend [a, b)

⋂
Jk past its left endpoint a distance ε/2k, creating an open

interval by the extension, and thus we conclude that the interval [a′, b′] is covered
by countably many open intervals whose lengths sum to less than b′−a′. But [a′, b′]
is compact.2 So there are finitely many of these open intervals that cover [a′, b′].
Let {ak1

, ak2
, . . . , akN

} be an ordered enumeration of the left endpoints of these
finitely many open intervals, and write the intervals as {(aki

, bki
) : 1 ≤ i ≤ N}.

Then we have
∑N

i=1(bki
− aki

) < b′ − a′. This is the contradiction we were seeking.
Therefore m∗([a, b)) = λ([a, b)) = b− a. �

Lemma 16.5.2. The outer measure m∗ is finitely additive on disjoint intervals of
the form [a, b).

Proof. It suffices to prove the result for two disjoint intervals of this form, which
we shall label as [a, b) and [c, d). Subadditivity of m∗ implies that

m∗([a, b) ∪ [c, d)
)
≤ m∗([a, b)) +m∗([c, d)) = (b− a) + (d− c),

where the last equality is from Lemma 16.5.1. On the other hand, the definition of
Lebesgue outer measure implies that for any η > 0, there is a covering of [a, b)∪[c, d)
by intervals Ek such that

∞∑
k=1

λ(Ek) ≤ m∗([a, b) ∪ [c, d)
)
+ η.

We may assume without loss of generality that each Ek intersects only one of the
intervals [a, b) and [c, d). (Otherwise, we may subdivide each Ek, if necessary, so

2The fact that [a′, b′] is compact was proved in Theorem 4.2.7, which depended on the completeness
of R by way of the nested interval theorem.
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that each of the (new) intervals Ek intersects only one of the intervals [a, b) and
[c, d).) Thus we split the covering {Ek} into two coverings, {E′

k} covering [a, b) and
{E′′

k} covering [c, d). Then

m∗([a, b)) +m∗([c, d)) ≤
∑
k

λ(E′
k) +

∑
k

λ(E′′
k )

=
∞∑
k=1

λ(Ek)

≤ m∗([a, b) ∪ [c, d)
)
+ η.

Since η > 0 is arbitrary, this shows that m∗([a, b) ∪ [c, d)
)
≥ (b− a) + (d− c). �

Observe now that it remains to show that each interval [a, b) is m∗-measurable.
This is done in the next result, which shows that all open sets and all closed sets
of the real line are Lebesgue measurable.

Theorem 16.5.3. The Lebesgue σ-algebra M contains the Borel σ-algebra B.

Proof. Since M is a σ-algebra and B is the σ-algebra generated by the collection
of bounded intervals of the form J = [a, b), a < b, it suffices to show that each
interval J = [a, b) is m∗-measurable. To do so, we must show that

m∗(E) ≥ m∗(E ∩ J) +m∗(E ∩ Jc)

for every set E with m∗(E) < ∞. (This inequality is satisfied automatically if
m∗(E) = ∞.) Let E be an arbitrary set with finite outer measure and let J = [a, b).
By definition of m∗(E), given ε > 0, there exists a sequence of intervals Ij = [aj , bj)
such that E ⊆

⋃
j Ij and

(16.8)
∑
j

λ([aj , bj)) =
∑
j

(bj − aj) ≤ m∗(E) + ε.

Since E ⊆
⋃

j Ij , intersecting E with J and with Jc yields

m∗(E ∩ J) ≤
∑
j

m∗(Ij ∩ J)

and

m∗(E ∩ Jc) ≤
∑
j

m∗(Ij ∩ Jc),

by subadditivity of m∗. Summing these results gives

(16.9) m∗(E ∩ J) +m∗(E ∩ Jc) ≤
∑
j

[
m∗(Ij ∩ J) +m∗(Ij ∩ Jc)

]
.

Consider a term in this sum, with j fixed. First, Ij ∩ J is an interval that is either
empty or is closed on the left and open on the right. Second, depending on the
relative locations of Ij and J , the set Ij ∩ Jc is a union of exactly zero, one, or
two disjoint intervals of the same type. (See Exercise 16.5.1.) It follows that Ij
is a disjoint union of intervals of the same type, and hence, by Lemma 16.5.1 and
Lemma 16.5.2,

(16.10) m∗(Ij) = bj − aj = m∗(Ij ∩ J) +m∗(Ij ∩ Jc).
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Figure 16.2. The illustration shows the case where Ij = [aj , bj), J = [a, b),
and aj < a < b < bj , so that the set Ij ∩ Jc consists of the two disjoint
intervals shown on the bottom number line. Lemma 16.5.1 and Lemma 16.5.2
establish equality in (16.10) for this case as well as the other possible cases of
relative positioning of Ij and J .

Note that each term on the right is an interval length or the sum of two disjoint
interval lengths. (See Figure 16.2, which illustrates Ij ∩Jc in the case where J ⊂ Ij
as a proper subset with aj < a < b < bj , and then Ij ∩ Jc is the union of the two
intervals, [aj , a) and [b, bj).)

Now back to our arbitrary set E with m∗(E) < ∞. It follows from (16.8),
(16.9) and (16.10), that

m∗(E ∩ J) +m∗(E ∩ Jc) ≤
∑
j

m∗(Ij) =
∑
j

(bj − aj) ≤ m∗(E) + ε.

Since ε > 0 was arbitrary, this shows that J is m∗-measurable. �

The outer measure of any point on the line is zero, and since every singleton
set belongs to B, we have m({point}) = 0. By countable additivity, any countable
set has Lebesgue measure zero. But there are uncountable sets having Lebesgue
measure zero, for example, the Cantor set (Example 6.4.3). We also have

m([a, b]) = m({b}) +m([a, b)) = 0 +m([a, b)) = b− a,

and

m((a, b)) = lim
n→∞

m([a+ 1/n, b)) = lim
n→∞

(b− a− 1/n) = b− a,

by Proposition 16.3.4. Similarly, it now follows that

m((a, b]) = lim
n→∞

m((a, b+ 1/n)) = lim
n→∞

(b+ 1/n− a) = b− a.
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If an open set O is the countable disjoint union of open intervals (aj , bj), then
countable additivity of m implies that

m(O) =
∑
j

m((aj , bj)) =
∑
j

(bj − aj),

as we expected. For example, the open set
⋃∞

k=1(k − 1/2k, k+ 1/2k) has Lebesgue
measure

∞∑
k=1

2

2k
=

∞∑
k=1

1

2k−1
= 2.

It is again worth remarking that every closed set is measurable, since M is a
σ-algebra so that the complement of every open set is measurable. Hence every
compact set, being closed, is measurable. We remark that m∗ is not a measure
on the σ-algebra of all subsets of R, because there exist nonmeasurable sets. An
example of a nonmeasurable set appears at the end of the chapter.

Though not the last word on Lebesgue measure on the real line, this section
equips us with the Lebesgue σ-algebra M, a sufficiently rich supply of measurable
sets to help develop the Lebesgue integral of real valued functions on subsets of R
in the following chapter.

Exercises.

Exercise 16.5.1. Verify the statement in the proof of Theorem 16.5.3 that the set
Ij ∩ Jc is a union of either zero, one, or two intervals closed on the left and open
on the right, and hence, for each j, m∗(Ij ∩ J) +m∗(Ij ∩ Jc) = m∗(Ij).

Exercise 16.5.2. Refer to Exercise 16.4.2 and the outer measure determined there
by the covering class consisting of the empty set and the open intervals (a, b),
with a < b, and the definition that λ(∅) = 0 and λ((a, b)) = b − a. Prove that
μ∗((a, b)) = λ((a, b)) = b− a. Hint : Follow Lemma 16.5.1, as needed.

16.5.2. Metric Outer Measure; Lebesgue Measure on Euclidean Space.
Now let X = Rn and let K be the collection consisting of the empty set and
all intervals in Rn of the form

(16.11) E =
{
x = (x1, . . . , xn) : ai ≤ xi ≤ bi for i = 1, . . . , n

}
where a = (a1, . . . , an) and b = (b1, . . . , bn). In what follows we often use the
symbol E, sometimes subscripted, for closed intervals. Then K is a sequential
covering class of Rn. Define λ on K by λ(∅) = 0 and

λ(E) =
n∏

i=1

(bi − ai),

which is of course the n-dimensional volume of (16.11). Then define m∗
n on the

σ-algebra of all subsets of Rn in accordance with (16.1). Therefore define

(16.12) μ∗(A) := inf
{ ∞∑

k=1

λ(Ek) : Ek ∈ K and A ⊆
∞⋃
k=1

Ek

}
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forA ⊆ Rn. Thenm∗
n is an outer measure, by Theorem 16.4.2, called the Lebesgue

outer measure on Rn. Let Mn be the collection of m∗
n-measurable sets in ac-

cordance with Definition 16.4.3. By Theorem 16.4.4, the restriction mn = m∗
n|Mn

is a complete measure on Rn, called Lebesgue measure on Rn, and Mn is the
Lebesgue σ-algebra of Rn. The elements of Mn are known as the Lebesgue
measurable sets in Rn. The triple (Rn,Mn,mn) is the n-dimensional Lebesgue
measure space.

We could verify now that the Lebesgue outer measure of any interval in Rn is
given by its n-dimensional volume. Let us focus on an open interval E in Rn. An
argument similar to the one in Lemma 16.5.1, using compactness of a closed interval
interior to E and proof by contradiction, shows that we cannot have m∗

n(E) <
νn(E) = λ(E), and hence m∗

n(E) = νn(E) = λ(E). Actually, the same argument
works to show that for any interval E, whether open, closed, or otherwise, m∗

n(E) =
νn(E) = λ(E). Since every interval is a Borel set, we will revisit the intervals after
we show that every Borel set is Lebesgue measurable.

There is an important property of Lebesgue outer measure for Rn which will
help in showing that the Borel σ-algebra, Bn, is included in Mn for n ≥ 2. First,
some definitions. Let X be a metric space with metric ρ. If B is any subset of X
and x ∈ X, then the distance from x to B is

ρ(x,B) := inf{ρ(x, y) : y ∈ B}.

If A is also a subset of X, then

ρ(A,B) := inf{ρ(x, y) : x ∈ A, y ∈ B}

defines the distance between A and B. Clearly, ρ({x}, B) = ρ(x,B). The diameter
of a set A is

d(A) := sup{ρ(x, y) : x, y ∈ A},
and A is bounded if d(A) < ∞.

Definition 16.5.4. Let μ∗ be an outer measure defined on the σ-algebra of all
subsets of a metric space X with metric ρ. Then μ∗ is a metric outer measure
if, whenever A and B are subsets of X such that ρ(A,B) > 0, then

μ∗(A ∪B) = μ∗(A) + μ∗(B).

If μ∗ is a metric outer measure, this definition implies that if, in a finite union⋃n
k=1Ak, the distance between any two of the sets is positive, then μ∗(⋃n

k=1 Ak

)
=∑n

k=1 μ
∗(Ak).

The next result shows that Lebesgue outer measure is a metric outer measure.

Theorem 16.5.5. For each positive integer n, the Lebesgue outer measure m∗
n is

a metric outer measure on the σ-algebra of all subsets of Rn.

Proof. We shall write ρ for the metric on Rn. Let A and B be subsets of Rn such
that ρ(A,B) > 0. By subadditivity of outer measure,

m∗
n(A ∪B) ≤ m∗

n(A) +m∗
n(B).
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We must show the reverse inequality. Let ε > 0. By definition of the outer measure,
there is a collection {Ek}∞k=1 of closed intervals such that

∞∑
k=1

λ(Ek) ≤ m∗
n(A ∪B) + ε.

We may assume that the diameter of each Ek is less than ρ(A,B), because other-
wise we can subdivide each Ek into a finite number of subintervals that have this
property. Therefore we can split the collection {Ek} into two collections {E′

k} and
{E′′

k} such that {E′
k} covers A and {E′′

k} covers B. Then

m∗
n(A) +m∗

n(B) ≤
∑
k

λ(E′
k) +

∑
k

λ(E′′
k )

=
∞∑
k=1

λ(Ek)

≤ m∗
n(A ∪B) + ε.

Since ε > 0 is arbitrary, this shows that m∗
n(A ∪B) ≥ m∗

n(A) +m∗
n(B). �

We remark here that Lebesgue outer measure for the real line is also a metric
outer measure, since this theorem applies to sets A and B in R with ρ(A,B) > 0
and covering intervals Ek = [ak, bk). A special case of this property was proved in
establishing (16.10), in the proof of Theorem 16.5.3.

We return now to general metric outer measures on a metric space X. The
next two theorems will establish that if μ∗ is a metric outer measure, then every
Borel set is indeed μ∗-measurable.

First, if μ∗ is a metric outer measure and μ∗(A) < ∞, then μ∗(A) is the limit
of the outer measures of an increasing sequence of closed subsets of A.

Theorem 16.5.6. Let X be a metric space with metric ρ, and let μ∗ be a metric
outer measure on X. Let A and B be any subsets of X such that A ⊂ B, B is an
open set, and μ∗(A) < ∞. For each positive integer n, let

An = {x ∈ A : ρ(x,Bc) ≥ 1/n}.
Then An is closed, An ⊆ An+1, and

μ∗(A) = lim
n→∞

μ∗(An).

Proof. Each An is closed: Let xk ∈ An and suppose xk → x as k → ∞. If y ∈ Bc,
then ρ(xk, y) ≥ 1/n for all k, and therefore

ρ(x, y) = lim
k→∞

ρ(xk, y) ≥
1

n
.

Since this is true for every y ∈ Bc, by taking the infimum over y in Bc, it follows
that ρ(x,Bc) ≥ 1/n. Hence, x ∈ An.

By definition of the sets An, we have An ⊆ An+1 ⊆ A for each n, and therefore
the sequence μ∗(An) is increasing and limn→∞ μ∗(An) ≤ μ∗(A) < ∞. (See Figure
16.3.) In order to prove the theorem, it suffices to show that limn→∞ μ∗(A2n) =
μ∗(A), by Theorem 2.4.17.
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Figure 16.3. To accompany Theorem 16.5.6: The closed sets An approximate
a set A having finite outer measure.

Let us show that A =
⋃∞

n=1 An. If x ∈ A, then x ∈ B, and since B is open,
there is an ε > 0 such that the open ε-ball about x is contained in B. Hence,
ρ(x,Bc) ≥ ε. This shows that x ∈ An if ε ≥ 1/n. Hence, A ⊆

⋃∞
n=1 An. Since each

An ⊆ A by definition, it follows that A =
⋃∞

n=1 An.

Let Gn = An+1 −An for each n ≥ 1. Then A =
⋃∞

n=1 An =
⋃∞

n=1 Gn, and we
have

A = A2n ∪
[ ∞⋃
k=2n

Gk

]
= A2n ∪

[ ∞⋃
k=n

G2k

]
∪
[ ∞⋃
k=n

G2k+1

]
.

We will prove that as n → ∞, the outer measure of the two unions in brackets on
the right-hand side approaches zero. We note that the sets Gn are pairwise disjoint.
By the subadditivity of outer measure,

(16.13) μ∗(A) ≤ μ∗(A2n) +

∞∑
k=n

μ∗(G2k) +

∞∑
k=n

μ∗(G2k+1).

By definition of the Gn, if x ∈ G2l and y ∈ G2k+2, with l ≤ k, then x ∈ A2l+1 and
y ∈ A2k+3 −A2k+2, and therefore

ρ(x,Bc) >
1

2l + 1
and ρ(y,Bc) <

1

2k + 2
.

Thus,

ρ(x, y) >
1

2l + 1
− 1

2k + 2
>

1

2k + 1
− 1

2k + 2
> 0.
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(See Exercise 16.5.6.) Hence,

ρ(G2l, G2k+2) = inf
{
ρ(x, y) : x ∈ G2l, y ∈ G2k+2

}
≥ 1

2k + 1
− 1

2k + 2
> 0.

We observe that A2n ⊇
⋃n−1

k=1 G2k, and by the lower bound for ρ(G2l, G2k+2) when
l ≤ k, the distance between any two sets in this finite union is positive. Since μ∗ is
a metric outer measure,

μ∗(A) ≥ μ∗(A2n) ≥ μ∗
( n−1⋃

k=1

G2k

)
=

n−1∑
k=1

μ∗(G2k).

Since this inequality holds for each n, and μ∗(A) < ∞, it follows that the series
∞∑
k=1

μ∗(G2k)

converges. Similarly, since A2n ⊇
⋃n−1

k=1 G2k+1, and the distance between any two
sets in this union is positive,

μ∗(A) ≥ μ∗(A2n) ≥ μ∗
( n−1⋃

k=1

G2k+1

)
=

n−1∑
k=1

μ∗(G2k+1).

Therefore the series ∞∑
k=1

μ∗(G2k+1)

converges. Now, letting n → ∞ in (16.13), we conclude that

μ∗(A) ≤ lim
n→∞

μ∗(A2n) + 0 + 0 = lim
n→∞

μ∗(A2n).

Hence, we have

μ∗(A) ≤ lim
n→∞

μ∗(A2n) = lim
n→∞

μ∗(An) ≤ μ∗(A),

and the theorem follows. �

The next theorem is the main result about metric outer measures. Recall
that the Borel sets are the elements of the σ-algebra generated by the open sets
(Definition 16.1.5). Of course this is the same as the σ-algebra generated by the
closed sets.

Theorem 16.5.7. If μ∗ is a metric outer measure on a metric space X, then every
closed set is μ∗-measurable. Consequently, every Borel set in X is μ∗-measurable.

Proof. Let F be a closed set in X. For any set A with μ∗(A) < ∞, we have
μ∗(A−F ) < ∞ and A−F ⊂ F c, and F c is an open set. By Theorem 16.5.6, there
is an increasing sequence of closed sets An contained in A− F such that

(16.14) ρ(An, F ) ≥ 1/n

and

(16.15) lim
n→∞

μ∗(An) = μ∗(A− F ).

By (16.14), we have ρ(An, A ∩ F ) > 0 for each n, and hence

μ∗(A) ≥ μ∗[(A ∩ F ) ∪An] = μ∗(A ∩ F ) + μ∗(An)
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for each n. By letting n → ∞ and using (16.15), we obtain

μ∗(A) ≥ μ∗(A ∩ F ) + lim
n→∞

μ∗(An) = μ∗(A ∩ F ) + μ∗(A− F ).

Since A is an arbitrary set with finite outer measure, this shows that F is μ∗-
measurable. Since F was an arbitrary closed subset of X, every closed set is μ∗-
measurable. We know that the μ∗-measurable sets form a σ-algebra, and since this
σ-algebra contains every closed set, it contains every open set, and hence contains
the Borel σ-algebra of X. �

The desired result for the Lebesgue measure space (Rn,Mn,mn) now follows
immediately from Theorem 16.5.5 and Theorem 16.5.7.

Theorem 16.5.8. The Lebesgue σ-algebra Mn contains the Borel σ-algebra Bn.

Theorem 16.5.8 assures us that we can measure all open sets and all closed
sets, along with many other sets, as the σ-algebras Bn and Mn do not have the
same cardinality. We note also that, as in the case of the real line, there are
nonmeasurable subsets of Rn.

Every interval, whether open, closed, or otherwise, is an element of Bn, and
hence is measurable. As mentioned earlier, if E is an open interval in Rn, then
mn(E) = νn(E) = λ(E). If E is a closed interval, then E = IntE ∪ ∂E, and we
know that νn(∂E) = 0, hence mn(∂E) = 0, and therefore mn(E) = mn(IntE) +
mn(∂E) = νn(E). Finally, if E is any interval properly contained in E and properly
containing IntE, then monotonicity of measure implies

νn(E) = mn(IntE) ≤ mn(E) ≤ mn(E) = νn(E).

This is all as expected for intervals.

There is an interesting structure theorem for the open sets in Rn that allows
us to make some further observations about Lebesgue measure. Two intervals in
Rn (whether open, closed, or otherwise) are nonoverlapping if their interiors are
disjoint, that is, they intersect only in some boundary points, if at all. Thus the
intersection of the two intervals equals the intersection of their boundaries. Simi-
larly, the intervals in an arbitrary collection of intervals are called nonoverlapping
if any two of them are nonoverlapping.

Theorem 16.5.9 (Structure of Open Sets in Rn). Every open set in Rn, n ≥ 1,
can be expressed as a countable union of nonoverlapping closed cubes.

Proof. Consider the collection of all points in Rn with integer coordinates and the
corresponding collection C0 of closed cubes with edge length 1 having vertices at
these points. From bisecting each edge of a given cube in C0, we obtain 2n new
closed cubes with edge length 1/2. Denote the total collection of such cubes from
all the cubes of C0 by C1. On continued bisection of these cubes, we generate, for
each positive integer k, a collection Ck of cubes having edge length 1/2k, and each
cube in Ck is the union of 2n nonoverlapping cubes from Ck+1. By induction, each
collection Ck is countable.

Let O be any open set in Rn. Let S0 be the collection of all cubes in C0 which
lie entirely within O. Then let S1 be the collection of those cubes in C1 which lie
entirely within O but are not subcubes of any cube in S0. Then define inductively
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for k ≥ 1 the collection Sk of cubes in Ck which lie entirely within O but are not
subcubes of any cube in S0, S1, . . . , Sk−1. Write S =

⋃∞
k=1 Sk, the collection of all

cubes that belong to one of the collections Sk, k ∈ N. Then S is countable, since
each Sk is countable, and by construction, the cubes in S are nonoverlapping and
contained entirely within O. Hence S ⊆ O.

We now show that O ⊆ S =
⋃∞

k=1 Sk. Let us denote an arbitrary cube in S by
Q. Since O is open, for any point in O there is an open cube Bδ, with edge length
δ > 0, about the point, such that Bδ ⊂ O. Since the edge length of the cubes in
Ck approaches zero as k → ∞, the point is eventually enclosed by a cube in some
Sk. Hence, O =

⋃
Q∈S Q. �

If O is open in Rn, then we can write O =
⋃∞

k=1Qk, where the Qk are
nonoverlapping closed cubes as in Theorem 16.5.9, and it is true that mn(O) =∑∞

k=1mn(Qk), since each Qk intersects other cubes in the union only within ∂Qk,
and therefore its intersection with them has measure zero. (See Exercise 16.5.8.)

The next result shows that every Lebesgue measurable set in Rn can be ap-
proximated arbitrarily closely in measure by open sets and closed sets.

Theorem 16.5.10. Let A be a subset of Rn. The following two statements are
true and equivalent to each other:

1. If A is measurable, then for every ε > 0 there is a closed set F ⊆ A such that
mn(A− F ) < ε.

2. If A is measurable, then for every ε > 0 there is an open set O ⊇ A such that
mn(O −A) < ε.

Proof. 1. Suppose m∗
n(A) < ∞. Let ε > 0. By Theorem 16.5.6, there is a

closed set F ⊂ A such that m∗
n(A) − m∗

n(F ) < ε. If A is measurable, then so
is A − F . Additivity of measure gives mn(A) = mn(F ) + mn(A − F ), hence
mn(A−F ) = mn(A)−mn(F ), so mn(A−F ) < ε. Thus, statement 1 holds for sets
A with finite outer measure.

Now suppose A has infinite outer measure. Then A is measurable. Let Bj

denote the open Euclidean ball of radius j centered at the origin, for each positive
integer j. Set A1 = A ∩ B1, and for each j, let Aj = A ∩ (Bj − Bj−1). Then
A =

⋃∞
j=1 Aj , and each Aj is measurable with finite measure. By Theorem 16.5.6,

for each j there is a closed set Fj ⊆ Aj such thatmn(Aj−Fj) = mn(Aj)−mn(Fj) <
ε/2j . Let F =

⋃
j Fj . Then F ⊆ A. We observe that F is a closed set: Any cluster

point of F must belong to either B1 or to Bj−Bj−1 for some j ≥ 2, and therefore it
must be a cluster point of either F1 or of some Fj with j ≥ 2. Since the sets Fj are
closed, the cluster point in question belongs either to F1 or to some Fj with j ≥ 2,
and hence belongs to F . Therefore F is closed. Since A− F =

⋃∞
j=1(Aj − Fj) is a

disjoint union of measurable sets, it follows that

mn(A− F ) =
∞∑
j=1

mn(Aj − Fj) <
∞∑
j=1

ε/2j = ε,

as we wished to show.
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2. If A is measurable, then so is Ac. By statement 1, given any ε > 0 there is
a closed set F ⊆ Ac such that mn(A

c − F ) < ε. Then A ⊆ F c, F c is open, and
mn(F

c −A) = mn(F
c ∩Ac) = mn(A

c −F ) < ε. This proves the desired statement
with O := F c.

We have shown that statement 1 implies 2. Now assume that statement 2
holds. If A is measurable, then so is Ac. Given ε > 0, statement 2 implies that
there exists an open set O ⊇ Ac such that mn(O − Ac) < ε. Then Oc ⊆ A and Oc

is closed. Moreover, mn(A−Oc) = mn(A∩O) = mn(O−Ac) < ε. Thus, statement
1 holds. �

If we replace mn by the outer measure m∗
n in each of the necessary conditions

for measurability in Theorem 16.5.10, we obtain sufficient conditions for statement
(16.2) of Definition 16.4.3. Thus, each of the modified conditions provides a char-
acterization of Lebesgue measurability. To be precise, one can prove the following
statements about subsets A of Rn:

1∗. If for every ε > 0 there is a closed set F ⊆ A such that m∗
n(A−F ) < ε, then A

satisfies m∗
n(E) = m∗

n(E ∩A) +m∗
n(E ∩Ac) for every set E in Rn. Therefore

A is Lebesgue measurable.

2∗. If for every ε > 0 there is an open set O ⊇ A such that m∗
n(O−A) < ε, then A

satisfies m∗
n(E) = m∗

n(E ∩A) +m∗
n(E ∩Ac) for every set E in Rn. Therefore

A is Lebesgue measurable.

We will not prove statements 1∗ and 2∗ here, but see the Notes and References for
this chapter.

The definition of Lebesgue outer measure used intervals with edges parallel to
the standard coordinate axes. But the outer measure of a set should not depend
on the position in space of the coordinate axes. We prove below that the outer
measure does not depend on the position of the orthogonal coordinate axes. To do
this, we consider a fixed rotation of the standard coordinate axes.

A rotation of Rn is determined by a mapping of the standard ordered basis,
{e1, . . . , en}, to a new orthonormal ordered basis, {u1, . . . ,un}, with ej �→ uj ,
1 ≤ j ≤ n, to be definite. Let E be an interval with edges parallel to the ek and
let Ẽ denote the corresponding rotated interval with edges parallel to the uk. The
inverse orthogonal transformation such that uj �→ ej , 1 ≤ j ≤ n, maps Ẽ back to

E. The volume λ(E) = νn(E) is unchanged by rotation: λ(Ẽ) = λ(E).

Let m̃∗
n(A) denote the outer measure of a set A relative to these rotated inter-

vals; thus,

(16.16) m̃∗
n(A) = inf

{∑
k

λ(Ẽk) : A ⊆
⋃
k

Ẽk

}
where the Ẽk are closed intervals with edges parallel to the uk.

Theorem 16.5.11. For every A ⊆ Rn, m̃∗
n(A) = m∗

n(A).

Proof. All intervals in the proof are closed intervals.

Given an interval Ẽ with edges parallel to the uk, and any ε > 0, there exists
a countable collection {Ek} of standard basis intervals such that Ẽ ⊆

⋃∞
k=1 Ek and
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∑∞
k=1 λ(Ek) ≤ λ(Ẽ) + ε. To see this, let Ẽ1 be an interval containing Ẽ in its

interior, such that λ(Ẽ1) ≤ λ(Ẽ)+ ε. By Theorem 16.5.9, the interior of Ẽ1 can be
expressed as the union of nonoverlapping closed intervals Ek. Thus,

Ẽ ⊂
∞⋃
k=1

Ek = Int Ẽ1.

Since the Ek are nonoverlapping and
⋃N

k=1 Ek ⊂ Ẽ1,

N∑
k=1

λ(Ek) ≤ λ(Ẽ1)

for each N . Letting N → ∞ proves the claim that
∑∞

k=1 λ(Ek) ≤ λ(Ẽ) + ε.

Given a standard interval E with edges parallel to the uk, and ε > 0, similar
reasoning shows that there exists a countable collection {Ẽk} of the rotated intervals

such that E ⊆
⋃∞

k=1 Ẽk and
∑∞

k=1 λ(Ẽk) ≤ λ(E) + ε.

Let A be any subset ofRn. Given ε > 0, let {Ek}∞k=1 be such that A ⊆
⋃∞

k=1 Ek

and
∑∞

k=1 λ(Ek) ≤ m∗
n(A) + ε/2. For each k, choose {Ẽk,j}∞j=1 such that

(16.17) Ek ⊆
∞⋃
j=1

Ẽk,j and

∞∑
j=1

λ(Ẽk,j) ≤ λ(Ek) +
ε

2k+1
.

From (16.17), we have

∞∑
k,j=1

λ(Ẽk,j) ≤
∞∑
k=1

λ(Ek) +

∞∑
k=1

ε

2k+1

=
[ ∞∑
k=1

λ(Ek)
]
+

ε

2
≤

[
m∗

n(A) +
ε

2

]
+

ε

2
= m∗

n(A) + ε.

Since A ⊆
⋃∞

k,j=1 Ẽk,j , it follows that m̃
∗
n(A) ≤ m∗

n(A)+ε. Since ε > 0 is arbitrary,

m̃∗
n(A) ≤ m∗

n(A).

Now observe that, given A and any ε > 0, a symmetric argument can be made
with the covering of A by the Ek replaced by a covering by the rotated intervals
Ẽk. One can choose {Ek,j}∞j=1 such that A ⊆

⋃∞
k,j=1Ek,j and m∗

n(A) ≤ m̃∗
n(A)+ ε.

Hence, m∗
n(A) ≤ m̃∗

n(A). We conclude that m∗
n(A) = m̃∗

n(A). Since A is an
arbitrary subset of Rn, this completes the proof. �

The outer measure could also be defined by using the sequential covering class
consisting of the empty set and all parallelepipeds with edges parallel to the el-
ements of any fixed ordered basis of Rn. The proof follows the pattern in the
argument for Theorem 16.5.11.

Looking toward the next chapter for a moment, we note that subsets of a
measure space are naturally given the structure of a measure space in their own
right; see Exercise 16.5.10. This allows us to define spaces of integrable functions
defined on subintervals ofR or subsets ofRn. In this connection, we note that every
Jordan measurable set is Lebesgue measurable with the same volume measure: for
the intervals, this is known to us now, and for general sets with volume, it follows
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from the fact that if χA is Riemann integrable, then it is integrable in the sense of
Lebesgue, with the same value.

The final item of this section is an example of a nonmeasurable set of real
numbers.

Example 16.5.12 (G. Vitali’s Nonmeasurable Set). Let us divide R into equiv-
alence classes based on the relation that x ∼ y if and only if x − y is a rational
number. It is easy to verify that this is an equivalence relation on R. One of
the equivalence classes consists of all the rational numbers. A different equivalence
class contains the Euler number e, and if e is equivalent to w, then e−w = q ∈ Q,
so w = e − q for rational q. Thus the equivalence class containing e consists of all
numbers of the form e − q, where q is rational. Similarly, the equivalence class of√
5 consists of all numbers of the form

√
5− r, with r rational. From each equiva-

lence class, we choose one number which lies in the interval (0, 1), and denote the
collection of these numbers by N . Such a choice in (0, 1) from each equivalence
class is possible since Q is dense in R. �

Theorem 16.5.13 (G. Vitali’s Nonmeasurable Set). The set N defined in Example
16.5.12 is not Lebesgue measurable.

Proof. For any rational number q, define the translated set

N + q = {w + q : w ∈ N}.

By adding a rational to each element of N , we obtain another set that has exactly
one element from each equivalence class: If w1 and w2 are in N and w1 
= w2, then
w1 + q − (w2 + q) = w1 − w2, which is not rational, so w1, w2 belong to distinct
classes. If q1 and q2 are distinct rational numbers, then the translations N +q1 and
N + q2 are disjoint (Exercise 16.5.9).

For every real number α in the interval (0, 1), there is exactly one rational
number q such that x is contained in N + q, and this q lies in the interval (−1, 1):
Given α ∈ (0, 1), let β ∈ N be the one number in N equivalent to α. By definition
of the equivalence, α − β ∈ Q, and since both α and β are in (0, 1), we have
−1 < α− β < 1. Thus, α = β + (α− β) ∈ N + (α− β) as claimed.

For rational q ∈ (−1, 1), the sets N + q are pairwise disjoint, and since N ⊂
(0, 1), each of these sets N + q is contained in (−1, 2). By the previous paragraph,
(0, 1) is contained in the union of these sets. Hence,

(0, 1) ⊆
⋃

q∈Q∩(−1,1)

(N + q) ⊆ (−1, 2).

Lebesgue outer measure is translation invariant, since the measure of intervals is
translation invariant (Exercise 16.5.4). Hence, m∗(N + q) = m∗(N ). Monotonicity
and subadditivity of the outer measure gives

1 ≤ m∗
( ⋃

q∈Q∩(−1,1)

(N + q)
)
≤

∑
q∈Q∩(−1,1)

m∗(N + q) =
∑

q∈Q∩(−1,1)

m∗(N ).

This implies m∗(N ) > 0.
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If N is measurable, then so are all the translations, N + q. Therefore the
measure of the countable disjoint union

⋃
q∈Q∩(−1,1)(N + q) satisfies

1 ≤ m
( ⋃

q∈Q∩(−1,1)

(N + q)
)
=

∑
q∈Q∩(−1,1)

m(N ) ≤ m
(
(−1, 2)

)
= 3.

This is not possible, since m(N ) > 0 implies
∑

q∈Q∩(−1,1) m(N ) = ∞. We conclude

that the set N is not Lebesgue measurable. �

Exercises.

Exercise 16.5.3. Let E be an open interval in Rn. Show, from the definition of
outer measure, that μ∗

n(E) = νn(E) = λ(E). Hint : Lemma 16.5.1.

Exercise 16.5.4. Translation invariance of Lebesgue measure

1. Show that Lebesgue outer measure for R is invariant under translations: For
every set E ⊂ R and any real number y,

m∗(E) = m∗(E + y), where E + y := {x+ y : x ∈ E}.
2. Show that if A is a Lebesgue measurable subset of R, and B = {a+b : a ∈ A}

for some fixed number b, then B is measurable and m(B) = m(A).

3. Show that n-dimensional Lebesgue measure mn on Rn is translation invariant.
Hint : Show it for Lebesgue outer measure.

Exercise 16.5.5. Let L be any line, or line segment, in Rn, and let H be any
hyperplane of dimension k < n, or a subset thereof, in Rn.

1. Show that L has Lebesgue measure zero. Hint : Lebesgue measure is rotation
invariant, by Theorem 16.5.11, and translation invariant, by Exercise 16.5.4.

2. Show that H has Lebesgue measure zero.

Exercise 16.5.6. Let X be a metric space with metric ρ and let A ⊂ X.

1. Show that |ρ(x,A)− ρ(y,A)| ≤ ρ(x, y) for any two points x, y ∈ X. Hint : For
any z ∈ A, ρ(x, z) ≤ ρ(x, y) + ρ(y, z). Take the infimum over z in A.

2. Prove: If ρ(x,A) > α and ρ(y,A) < β and α > β, then ρ(x, y) > α− β.

Exercise 16.5.7. Let ρ be a metric on Rn. Show that if A and B are nonempty
compact sets in Rn and A ∩ B is empty, then ρ(A,B) > 0. Hint : Use Exercise
16.5.6.

Exercise 16.5.8. If O is open in Rn, then write O =
⋃∞

k=1 Qk, where {Qk} is a
countable collection of nonoverlapping closed cubes, as in Theorem 16.5.9. Show
that mn(O) =

∑∞
k=1mn(Qk). Hint : Use the fact that each Qk intersects other

cubes in the collection only within ∂Qk, and therefore its intersection with them
has measure zero, but write O as a disjoint union.

Exercise 16.5.9. Consider the nonmeasurable set N at the end of this section.
Show that if q1 and q2 are distinct rational numbers, then the translations N + q1
and N + q2 are disjoint.
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Exercise 16.5.10. Assume that Σ is a σ-algebra of the set X.

1. Let E ⊂ X. Show that ΣE := {A ∩ E : A ∈ Σ} is a σ-algebra of E.

2. Suppose that (X,Σ, μ) is a measure space, and suppose E ∈ Σ. Show that
(E,ΣE, μE) is a measure space, where μE(A ∩ E) := μ(A ∩ E) for each set
A ∩ E ∈ ΣE .

16.6. Notes and References

This chapter was influenced by Friedman [17], Royden [51], Wheeden and Zygmund
[67], and Bass [3]. Other useful resources that develop Lebesgue measure and
the Lebesgue integral with a variety of different approaches include Fleming [13],
Hoffman [30], Jones [33] and Rudin [52].

The definition of measurability (Definition 16.4.3) based on Lebesgue outer
measure is due to C. Carathéodory. Given the Lebesgue outer measure, an alter-
native definition of measurability is that a set E in Rn is measurable if for every
ε > 0 there is an open set O such that E ⊂ O and m∗

n(O − E) < ε. This is the
definition of measurability in Wheeden and Zygmund [67] for Lebesgue measure
on Rn. The statement (16.2) of measurability is then proved as a theorem that
characterizes measurable sets.

A metric outer measure is also called a Carathéodory outer measure.

For the theorem that any incomplete measure can be extended to a larger
σ-algebra on which it is complete, see Rudin [53].

The material on Bernoulli trials and the event of gambler’s ruin is from Adams
and Guillemin [1].

The definition of the nonmeasurable set N in Theorem 16.5.13 uses the Axiom
of Choice. Readers intrigued by nonmeasurable sets, or those who want to learn
more about views on the Axiom of Choice at the time of G. Vitali’s publication of his
nonmeasurable set in 1905, might want to read Bressoud [8] for an appreciation of
the issue, including historical perspective and indications of surprising consequences
of the axiom. In addition, Bressoud [8] outlines (by means of exercises on page 158)
the construction of a Jordan measurable set which is not a Borel set. Every Jordan
measurable set is Lebesgue measurable, so the example gives a set belonging to M
but not to B. In fact, the Borel σ-algebra B and Lebesgue σ-algebra M do not
have the same cardinality.





Chapter 17

The Lebesgue Integral

In this chapter we develop the integral for real valued, and extended real valued,
functions defined on a measure space (X,Σ, μ). The results include the Lebesgue
integral of functions defined on the Lebesgue measure space (Rn,Mn,mn), for any
fixed positive integer dimension n. A reader who wishes to focus only on the real
line or on Rn may assume that (X,Σ, μ) is the Lebesgue measure space of their
choice throughout the chapter, but there is no advantage or simplification in the
development by such a specification.

Let us first consider why we are interested in the Lebesgue integral. Then we
offer some brief comments to motivate how the integral will be developed.

Although the Riemann integral is useful for many purposes, it has two defi-
ciencies that make it unsatisfactory as a general theory of integration for analysis.
Stated simply, these are the deficiencies: (1) Not enough functions are Riemann
integrable to constitute complete spaces of integrable functions, and (2) limiting
operations require uniform convergence for satisfactory results. Analysis generally
requires complete spaces to obtain the most definitive and satisfactory results, and
uniform convergence is too restrictive as a general requirement for limiting opera-
tions involving integrals.

Consider for a moment the geometric idea of integrating a nonnegative function.
The strategy of the Riemann integral over [a, b] is to partition [a, b] into subintervals,
multiply the supremum and infimum of the function over each subinterval by the
length of the subinterval, and sum the results over all the subintervals. Thus we
obtain two sums, an upper sum and lower sum, that approximate the area between
function graph and horizontal axis. We imagine letting the mesh size of the partition
approach zero, and label as integrable those functions for which the infimum of all
the upper sums equals the supremum of all the lower sums. We observe that
this process involves the approximation of f by step functions. (The Riemann
integral implicitly uses step functions, and we formally define a step function in
this chapter as a function that has a finite range such that each function value is
assumed on an interval in the domain.)

527
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Lebesgue’s idea was to subdivide the range of the nonnegative function rather
than the domain. His definition reads similarly to a Riemann sum, except that, for
a subinterval [yi−1, yi] of the range of f , the contribution to the estimate of area
now takes the form of the real number product

[yi−1]μ
(
f−1([yi−1, yi])

)
,

where μ is our measure in the domain space. Clearly, we must require of our
functions f that the inverse images f−1([yi−1, yi]) are measurable. The choice
of the lower value yi−1 to approximate f over the set f−1([yi−1, yi]) means an
approximation of f from below. To be specific, if for each positive integer n, we
divide the interval [0, n] in the range space into n2n subintervals of equal length
1/2n, then we estimate the contribution to area from each range subinterval by(k − 1

2n

)
μ
({

x ∈ R :
k − 1

2n
≤ f(x) ≤ k

2n

})
,

where 1 ≤ k ≤ n2n. By summing these contributions from k = 1 to k = n2n we
arrive at the area estimate

n2n∑
k=1

(k − 1

2n

)
μ
({

x ∈ R :
k − 1

2n
≤ f(x) ≤ k

2n

})
.

This estimates the area under the graph of f as the area under a simple function
with n2n distinct function values. (A simple function is defined in this chapter
as a function that has a finite range such that each function value is assumed on
a measurable set in the domain.) By continuing to expand the coverage of the
range space using the interval [0, n] for increasing n, and continuing the dyadic
subdivision of the range intervals, Lebesgue arrived at a definition of the integral
of a nonnegative function on the real line, which reads∫

R

f dm = lim
n→∞

n2n∑
k=1

(k − 1

2n

)
m
({

x ∈ R :
k − 1

2n
≤ f(x) ≤ k

2n

})
,

where the measure m indicated here is Lebesgue measure on the real line. Such
an approach requires that all these inverse images for f are measurable sets in the
domain. This leads us to the first order of business, the definition of measurable
functions.

17.1. Measurable Functions

Let (X,Σ) be a measurable space. We define measurable real functions using only
the set-theoretic properties involving the σ-algebra Σ, independently of any partic-
ular measure that might be defined on Σ. This is motivated by the idea noted above
that we must be able to measure the inverse image of any interval. We observe that
if E is any subset of X, then E inherits the structure of a measurable space from
X and Σ: (E,ΣE) is a measurable space as in Exercise 16.5.10.

Definition 17.1.1. Let (X,Σ) be a measurable space. If f : X → R, then
f is measurable if for every real number a, the set {x ∈ X : f(x) < a} =
f−1
(
(−∞, a)

)
is measurable. Suppose E ⊆ X and f : E → R. Then f is mea-

surable if for every real number a, {x ∈ E : f(x) < a} = E ∩ f−1
(
(−∞, a)

)
is

measurable.
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Proposition 17.1.2. If (X,Σ) is a measurable space, E ⊆ X, and f : E → R is
measurable, then E is measurable, E ∈ Σ.

Proof. We have E =
⋃∞

n=1 f
−1
(
(−∞, n)

)
, so E is a countable union of measurable

sets, hence E is measurable. �

The next proposition gives several equivalent conditions for measurability of a
real function.

Proposition 17.1.3. Suppose (X,Σ) is a measurable space, E ⊆ X and f : E →
R. The following statements are equivalent:

1. For each real number a, the set {x ∈ E : f(x) < a} is measurable.

2. For each real number a, the set {x ∈ E : f(x) ≤ a} is measurable.

3. For each real number a, the set {x ∈ E : f(x) > a} is measurable.

4. For each real number a, the set {x ∈ E : f(x) ≥ a} is measurable.

Each of statements 1-4 implies the following statement:

5. For each real number a, the set {x ∈ E : f(x) = a} is measurable.

Proof. The inverse images in statements 1 and 4 are complements of each other in
E. So statement 1 is equivalent to 4. Similarly, the inverse images in statements 2
and 3 are complementary in E, so statements 2 and 3 are equivalent. We can write{

x : f(x) < a
}
=

∞⋃
n=1

{
x : f(x) ≤ a− 1

n

}
,

so if statement 2 holds, then so does 1, since a countable union of measurable sets
is measurable. On the other hand, we have{

x : f(x) ≤ a
}
=

∞⋂
n=1

{
x : f(x) < a+

1

n

}
,

so if statement 1 holds, then so does 2, since a countable intersection of measurable
sets is measurable. Thus statements 1 and 2 are equivalent. Similar arguments
show the equivalence of statements 3 and 4. Hence, statements 1-4 are equivalent.

Finally, suppose that one, and hence all, of 1-4 hold. If a is a real number, then{
x : f(x) = a

}
=
{
x : f(x) ≤ a

}
∩
{
x : f(x) ≥ a

}
,

which is an intersection of measurable sets, and hence measurable. �

Example 17.1.4. Any constant function f : X → R, f(x) ≡ C ∈ R, is measur-
able, since the inverse image {x ∈ X : f(x) < a} is either the empty set (if C ≥ a)
or all of X (if C < a). �

Measurable functions link the topology of R and the σ-algebra of the measur-
able space, according to the next result.

Proposition 17.1.5. Let (X,Σ) be a measurable space. A function f : X → R is
measurable if and only if for any open set O in R, the set

f−1(O) = {x ∈ X : f(x) ∈ O}
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is measurable, that is, f−1(O) ∈ Σ. If E ⊆ X and f : E → R, then f is measurable
if and only if for any open set O in R, the set

E ∩ f−1(O) = {x ∈ E : f(x) ∈ O}

is measurable.

Proof. It suffices to consider the domain X. Suppose f is measurable. For any
a < b, we have (a, b) = (−∞, b) − (−∞, a], using the difference notation for set
complement. Thus,

f−1((a, b)) = f−1((−∞, b))− f−1((−∞, a]),

the difference of two measurable sets, so f−1((a, b)) is measurable for any open
interval (a, b). Since any open set O of R is a countable union

⋃∞
k=1(ak, bk) of open

intervals, it follows that f−1(O) =
⋃∞

k=1 f
−1((ak, bk)) is measurable, for each open

set O of R.

Suppose that f−1(O) is measurable for each open set O. Then f−1((−∞, a))
is measurable for each real number a. Hence, by definition, f is measurable. �

Note the similarity of Proposition 17.1.5 with the statement that a function
f : R → R is continuous if and only if the inverse image of any open set in R is
open. In each context, the relevant structure is preserved under inverse images.

If (X,Σ) = (Rn,M), the Lebesgue measurable space, the measurable functions
are called the Lebesgue measurable functions, or simply the measurable func-
tions on Rn.

Example 17.1.6. Let n be a fixed positive integer. The characteristic function of
a set E ⊆ Rn, χE : Rn → R, is defined by χE(x) = 1 if x ∈ E and χE(x) = 0
otherwise. Then χE is measurable if and only if the set E is measurable. �

The real valued continuous functions on Rn constitute an important class of
measurable functions (Exercise 17.1.1).

We now consider the measurability of various combinations of measurable func-
tions.

Proposition 17.1.7. Let (X,Σ) be a measurable space and E ⊆ X. If f, g : E → R
are measurable and c is a real constant, then f+g, f−g, fg and cf are measurable.

Proof. Constant functions are measurable (Example 17.1.4), so we only need to
show that sums and products of measurable functions are measurable.

Assume f and g are measurable. We now show that condition 1 of Proposition
17.1.3 holds for the sum f + g. The inequality f(x) + g(x) < a holds if and only
if f(x) < −g(x) + a, and by the density of the rationals in R, this holds if and
only if there is a rational number r such that f(x) < r < −g(x) + a, which is
equivalent to the statement that there is a rational number r such that f(x) < r
and g(x) < a− r. Thus,

{x ∈ E : f(x) + g(x) < a} =
⋃
r∈Q

{x ∈ E : f(x) < r} ∩ {x ∈ E : g(x) < a− r}.
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Since this is a countable union of measurable sets, it is measurable. Since a was
arbitrary, it follows that f + g is measurable.

For products, observe first that f measurable implies f2 is measurable (Exercise
17.1.4). Since we can write

fg =
1

2
[(f + g)2 − f2 − g2],

measurability of f and g implies that fg is measurable. �

We recall the definitions of sup, inf, lim sup and lim inf of a sequence of real
numbers. (See Definition 3.10.2 for lim sup and lim inf.) We apply the definitions
to a sequence of functions fn having a common domain E, and thus define the
functions sup fn, inf fn, lim sup fn and lim inf fn, as follows:

� (sup fn)(x) := sup{fn(x) : n ∈ N};
� (inf fn)(x) := inf{fn(x) : n ∈ N};
� (lim sup fn)(x) := infm sup{fn(x) : n ≥ m};
� (lim inf fn)(x) := supm inf{fn(x) : n ≥ m}.

Remember that the sequence (sup{fn(x) : n ≥ m})∞m=1 is decreasing with limit be-
ing its infimum, and the sequence (inf{fn(x) : n ≥ m})∞m=1 is increasing with limit
being its supremum. There is little risk of ambiguity in dropping the parentheses
around the function labels on the left side, and we do so from here on.

In integration theory we sometimes deal with functions that can take on the
value ∞ or −∞. As usual, we write [−∞,∞] = R ∪ {−∞} ∪ {∞}. We say that
f : E ⊆ X → [−∞,∞] is an extended real valued measurable function
if f satisfies one (and hence all) of statements 1-4 of Proposition 17.1.3, and, in
addition, the sets

{x ∈ E : f(x) = −∞} and {x ∈ E : f(x) = ∞}

are measurable.

Proposition 17.1.8. Let (X,Σ) be a measurable space. Let f be an extended real
valued function defined on a set E ⊆ X. Then f is measurable if and only if the
sets f−1({−∞}) and f−1({∞}) are measurable and f−1(O) = {x : f(x) ∈ O} is
measurable for every open set O in R.

Proof. This is immediate from Proposition 17.1.5 and the definition of extended
real valued measurable function stated above before this proposition. �

Proposition 17.1.9. Let (X,Σ) be a measurable space. Suppose that for each
positive integer n, fn is a measurable real or extended real valued function defined
on E ⊆ X. Then the functions

sup fn, inf fn, lim sup fn, lim inf fn

are defined on E and measurable.
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Proof. Let f(x) = sup fn(x), x ∈ E. If a ∈ R, then f(x) > a if and only if
fn(x) > a for some n, hence

{x ∈ E : f(x) > a} =

∞⋃
n=1

{x ∈ E : fn(x) > a},

and since each of the sets in this countable union is measurable, their union is
measurable. This is true for each real number a, so f = sup fn is measurable. If
f(x) = ∞ for some x, we have

{x ∈ E : f(x) = ∞} =

∞⋂
m=1

{x ∈ E : f(x) > m},

which is a countable intersection of measurable sets, and hence measurable.

Since inf fn = − sup(−fn), it follows that inf fn is measurable since −fn,
sup(−fn) and − sup(−fn) are measurable. (Alternatively, letting g = inf fn, we
see that g(x) < a if and only if fn(x) < a for some n, hence

{x ∈ E : g(x) < a} =

∞⋃
n=1

{x ∈ E : fn(x) < a},

and thus {x ∈ E : g(x) < a} is measurable, for each real number a. Also, {x ∈ E :
g(x) = −∞} =

⋂∞
m=1{x ∈ E : g(x) < −m}, a countable intersection of measurable

sets.)

Now lim sup fn(x) = infm sup{fn(x) : n ≥ m}, and for each m, supn≥m fn is
measurable by the argument of the first paragraph above. By the argument of the
second paragraph above, infm supn≥m fn is measurable, so lim sup fn is measurable.
Similarly, lim inf fn(x) = supm inf{fn(x) : n ≥ m} is the supremum of a sequence
of measurable functions, and therefore lim inf fn is measurable. �

Let us review Proposition 17.1.7, which was proved for real valued f and g. If
f and g are extended real valued, then in order to define f + g and f − g we must
rule out the possibility of the undefined expressions −∞+∞ and ∞−∞. If these
expressions never occur for the pair f , g, and if f and g are extended real valued
measurable functions, then so are f + g and f − g. (See also Exercise 17.1.8.)

Most of the terminology in the next definition is familiar from our experience
with the Riemann integral.

Definition 17.1.10. Let (X,Σ, μ) be a measure space. A property holds almost
everywhere (a.e.) if the set on which it fails to hold is a set of measure zero. In
particular:

1. Two functions f and g are equal almost everywhere, written f = g a.e.,
if they have a common domain E ⊆ X and μ({x ∈ E : f(x) 
= g(x)}) = 0.
(We also say that f = g a.e. in E.)

2. A sequence of functions fn having a common domain E ⊆ X converges
almost everywhere to a function g, written fn → g a.e., if there is a set N
with μ(N) = 0 such that fn(x) → g(x) for each x ∈ E−N . (We also say that
fn → g a.e in E.)



17.1. Measurable Functions 533

The next results assume a measure μ is defined on the σ-algebra Σ of X. We
can also work with the measure space (E,ΣE, μE) for any measurable set E ∈ Σ.

Proposition 17.1.11. Let (X,Σ, μ) be a measure space. Let f and g be functions
defined on a subset E of X. Suppose μ is a complete measure. If f is real valued or
extended real valued, and measurable, and if f = g a.e. in E, then g is measurable.

Proof. Since f is measurable, the domain E is measurable. Let N = {x ∈ E :
f(x) 
= g(x)}. Then μ(N) = 0 by hypothesis. Let a be any real number. We can
write

{x : g(x) < a} = {x ∈ E : f(x) < a} ∪ {x ∈ N : g(x) < a} − {x ∈ N : g(x) ≥ a}.
The first set on the right is measurable since f is measurable. The last two sets on
the right are measurable since they are subsets of N , which has measure zero, and
the measure μ is a complete measure. Since Σ contains the union and difference of
measurable sets, and a was arbitrary, {x : g(x) < a} is measurable for every real
number a. If f takes on real values only, it now follows that g is measurable.

If f takes on the value −∞, then we can write

{x : g(x) = −∞} =
( ∞⋂

m=1

{x : f(x) < −m}
)
∪
( ∞⋂

m=1

{x ∈ N : g(x) < −m}
)

−{x ∈ N : g(x) > −∞},
which is a measurable set. If f takes on the value ∞, then we can write

{x : g(x) = ∞} =
( ∞⋂

m=1

{x : f(x) > m}
)
∪
( ∞⋂

m=1

{x ∈ N : g(x) > m}
)

−{x ∈ N : g(x) < ∞},
which is a measurable set. This completes the proof that g is measurable. �

We have seen by examples that the space of continuous functions on [a, b] and
the space of Riemann integrable functions on [a, b] are not closed under pointwise
limits. A great advantage of the class of measurable functions is that it is closed
under pointwise limits.

Proposition 17.1.12. Let (X,Σ, μ) be a measure space. Suppose the functions fn
are measurable and have a common domain E ⊆ X. The following statements are
true:

1. If the sequence fn converges everywhere in E to a function g, then g is mea-
surable.

2. If μ is a complete measure and fn → g a.e. in E, then g is measurable.

Proof. By Proposition 17.1.9, lim sup fn is a measurable function.

1. If fn → g everywhere in E, then g = limn→∞ fn = lim sup fn, so g is
measurable.

2. If there is a set N ⊆ E with μ(N) = 0 such that fn(x) → g(x) at all points
x ∈ E − N , then g(x) = lim sup fn(x) for all x ∈ E − N , so g is a measurable
function defined on E ∩Nc. Thus, g is equal to the measurable function lim sup fn
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almost everywhere in E. Since the measure μ is complete, Proposition 17.1.11
applies, and we conclude that g is measurable. �

In Proposition 17.1.12, the limit function g can be defined, or redefined, however
we might wish on N and still remain measurable, because any subset of N is
measurable (with measure zero) since μ is a complete measure.

Exercises.

Exercise 17.1.1. Show that if f : Rn → R is continuous, then f is measurable.

Exercise 17.1.2. Show that if f and g are measurable functions defined on E ⊆ X,
then so are max(f, g) and min(f, g), defined on E by

max{f, g}(x) = max{f(x), g(x)} and min{f, g}(x) = min{f(x), g(x)}.
Then show that the maximum, max{f1, . . . , fn}, and minimum, min{f1, . . . , fn},
of any finite collection of measurable functions on E is measurable.

Exercise 17.1.3. Prove: If (X,Σ) is a measurable space and f : X → R is a
measurable function, then for any Borel set B of R, the set f−1(B) is measurable.
Hint : Consider the collection of sets E such that f−1(E) is measurable, and show
that it is a σ-algebra.

Exercise 17.1.4. Let (X,Σ) be a measurable space and E ∈ Σ. If f is defined on
E and measurable, then |f | and |f |2 = f2 are measurable.

Exercise 17.1.5. Show that if f : R → R is measurable and g : R → R is
continuous, then g ◦ f is measurable.

Exercise 17.1.6. Prove: A monotone function f : R → R is measurable.

Exercise 17.1.7. Let (X,Σ) be a measurable space and E ∈ Σ. The positive
part of a function f defined on E is the function f+ defined on E by

f+(x) =

{
f(x), if f(x) > 0,
0, if f(x) ≤ 0.

The negative part of f is the function f− defined on E by

f−(x) =

{
−f(x), if f(x) < 0,
0, if f(x) ≥ 0.

1. Verify that f+(x) = max{f, 0}, f−(x) = min{f, 0}, and f = f+ − f−.

2. Let f : X → R. Show that f is measurable if and only if f+ and f− are
measurable.

Exercise 17.1.8. Suppose f and g are measurable extended real valued functions
having the same domain in R. Prove: If f and g are finite almost everywhere, then
f + g is measurable no matter how the sum is redefined at points where it takes
the form ∞−∞ or −∞+∞.

Exercise 17.1.9. Suppose f and g are measurable extended real valued functions
having the same domain in R, and f and g are finite almost everywhere. Show
that their product fg is measurable.
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17.2. Simple Functions and the Integral

The building blocks of integration theory are the simple functions. These functions
have finite range, but constitute a much larger class of functions than the step
functions used to approximate Riemann integrals.

Definition 17.2.1. Let (X,Σ) be a measurable space. A function s : X → R is a
simple function if it has a finite range {a1, . . . , am} and the sets

Ei = {x ∈ X : s(x) = ai}, 1 ≤ i ≤ m,

are measurable. Thus,

(17.1) s(x) =
m∑
i=1

aiχEi
.

We note that in the canonical expression (17.1) in this definition, the sets Ei

are disjoint due to the listing of the finite range set. It is possible that one of
the distinct values ai listed for s is 0. The class of simple functions includes the
characteristic functions of measurable sets. Every simple function is measurable;
this follows readily from the definition, or, with reference to the representation
(17.1), measurability follows from Proposition 17.1.7 and the measurability of the
characteristic functions χEi

.

Recalling the definition of the Riemann integral of a function, we observe that
it involves special simple functions, the step functions, where each of the sets Ei is
an interval and the domain [a, b] is partitioned by the intervals Ei.

Definition 17.2.2. A real valued function φ defined on [a, b] is a step function
if there is a partition {x0 = a, x1, . . . , xn−1, xn = b} of [a, b] such that for each
k = 1, . . . , n, the function φ assumes only one value on the interval [xk−1, xk].

With the introduction of simple functions in Definition 17.2.1, we considerably
enlarge the basic building blocks to be used in developing the theory of measur-
able functions and, ultimately, the Lebesgue integral. It is especially important
that nonnegative simple functions can be used to approximate any nonnegative
measurable function, whether bounded or unbounded.

Theorem 17.2.3. Let (X,Σ) be a measurable space. If f is a nonnegative mea-
surable function, then there exists an increasing sequence sn of nonnegative simple
functions such that f(x) = limn→∞ sn(x) for all x.

Proof. The function f may be unbounded. In any case, for each positive integer
n, we partition the interval [0, n) in the range space into n2n subintervals of equal
length 1/2n, and define

sn(x) =

{
(k − 1)/2n if (k − 1)/2n ≤ f(x) < k/2n (1 ≤ k ≤ n2n);
n if f(x) ≥ n.

Since f is nonnegative and measurable, each function sn is a nonnegative simple
function. At each x, sn(x) ≤ sn+1(x) ≤ f(x), because in the passage from n to
n + 1, we halve each of the previous subintervals of the range interval [0, n) and
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add 2n+1 subintervals of the range interval [n, n+1). Suppose that at the point x,
f(x) < ∞. For any n such that f(x) < n,

0 ≤ f(x)− sn(x) ≤
1

2n
,

and thus limn→∞ sn(x) = f(x). At any point x where f(x) = ∞, sn(x) = n for
each n, so for every x, limn→∞ sn(x) = f(x). �

Given a measure μ on X, we can define the Lebesgue integral of simple func-
tions.

Definition 17.2.4. Let (X,Σ, μ) be a measure space. If s is a simple function on
X with range {a1, . . . , am}, and Ei = {x : s(x) = ai}, then the Lebesgue integral
of s over X is defined to be ∫

X

s dμ =
m∑
i=1

ai μ(Ei).

(If ai = 0 for some i and μ(Ei) = ∞, then aiμ(Ei) = 0 · ∞ = 0.)

A simple function might be expressed in more than one way as a linear com-
bination of characteristic functions. For example, we have χA∪B = χA + χB if
A and B are disjoint, and χA∪B = χA + χB − χA∩B if A and B have nonempty
intersection. So we should check that the definition of

∫
X
s dμ does not depend on

how s is written. If s has the canonical expression (17.1) in Definition 17.2.1 and
we also have s =

∑n
j=1 bjχBj

, then

m∑
i=1

aiμ(Ei) =

n∑
j=1

bjμ(Bj).

The verification of this is left to the reader.

We note that it is possible to have
∫
X
s dμ = ±∞.

Definition 17.2.5. If s is a simple function on X with range {a1, . . . , am}, we say
that s is integrable (on X) if

∫
X
|s| dμ < ∞.

The proof of the next result is left to Exercise 17.2.4.

Theorem 17.2.6. If s is a simple function on X with range {a1, . . . , am}, then s
is integrable if and only if μ(Ei) < ∞ for each set Ei = {x : s(x) = ai} for which
ai 
= 0.

The next theorem lists some basic properties of the integral for simple functions.
The reader is invited to supply the proofs in Exercise 17.2.5.

Theorem 17.2.7. Let φ and ψ be integrable simple functions on a measure space
(X,Σ, μ). Then the following properties hold:

1. If φ ≥ 0 a.e., then
∫
X
φ dμ ≥ 0.

2. If φ ≤ ψ a.e., then
∫
X
φ dμ ≤

∫
X
ψ dμ.

3. |φ| is an integrable simple function, and∣∣∣ ∫
X

φ dμ
∣∣∣ ≤ ∫

X

|φ| dμ.

4.
∫
X
|φ+ ψ| dμ ≤

∫
X
|φ| dμ+

∫
X
|ψ| dμ.
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Exercises.

Exercise 17.2.1. Let φ and ψ be simple functions on X. Show that

1. |φ| is a simple function.

2. φ+ ψ and φψ are simple functions.

3. If E is any measurable set, then the product χEφ is a simple function.

Exercise 17.2.2. In Theorem 17.2.3, there is no guarantee that the approximating
simple functions are zero outside some set of finite measure. Suppose f is nonneg-
ative and measurable on R. Show that there exists an increasing sequence sn of
simple functions with pointwise limit f such that m({x : sn(x) 
= 0}) < ∞ for each
n. Hint : R is a countable union of sets having finite Lebesgue measure.

Exercise 17.2.3. Suppose a simple function s : X → R can be expressed in two
ways as

s(x) =

m∑
i=1

aiχAi
(x) and s(x) =

n∑
j=1

bjχBj
(x).

Show that
m∑
i=1

aiμ(Ai) =

n∑
j=1

bjμ(Bj),

and hence the integral of a simple function is well defined by Definition 17.2.4.

Exercise 17.2.4. Prove Theorem 17.2.6.

Exercise 17.2.5. Prove Theorem 17.2.7.

17.3. Definition of the Lebesgue Integral

We now deal with a measure space (X,Σ, μ). The definition of the Lebesgue integral
proceeds from nonnegative simple functions to nonnegative measurable functions,
and finally to general measurable functions. Extended real valued functions may
also be handled. Such functions can appear as pointwise limits of sequences of
measurable functions.

The integral of simple functions is considered at the end of the previous section,
but the definition for nonnegative simple functions is included here. Recall that
every simple function is measurable, by Definition 17.2.1.

Definition 17.3.1. Let (X,Σ, μ) be a measure space.

1. If s is a nonnegative simple function on X with range {a1, . . . , am}, and Ei =
{x ∈ X : s(x) = ai}, then the Lebesgue integral of s is

(17.2)

∫
X

s dμ =

m∑
i=1

ai μ(Ei).

(If ai = 0 for some i and μ(Ei) = ∞, then aiμ(Ei) = 0 · ∞ = 0.)

2. If f is a nonnegative measurable function, we define the Lebesgue integral
of f to be

(17.3)

∫
X

f dμ = sup
{∫

X

s dμ : 0 ≤ s ≤ f and s is simple
}
.
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3. If f is measurable, then the Lebesgue integral of f is

(17.4)

∫
X

f dμ =

∫
X

f+ dμ−
∫
X

f− dμ,

where f+(x) = max(f(x), 0) and f−(x) = max(−f(x), 0) are the positive and
negative parts of f , respectively, provided at least one of the integrals

∫
X
f+ dμ

and
∫
X
f− dμ is finite.

Remarks on the Definition. Consider definition (17.3) for nonnegative mea-
surable functions. If f = s ≥ 0 is a simple function in (17.3), then we obtain the
same value for the integral of f = s there as we do in (17.2). Also, (17.3) is a
natural definition, given the approximation of f from below by simple functions in
Theorem 17.2.3. This is analogous to the approximation of a nonnegative Riemann
integrable function by lower sums based on a partition of the domain interval. How-
ever, we can handle a considerably larger class of functions with (17.3) because we
employ a σ-algebra of sets in the domain space X rather than only the closed and
bounded intervals in R or Rn. Much of the power and effectiveness of the Lebesgue
integral in the limit theorems of Section 17.4 is due to (17.3). Now consider (17.4).
If f = s is a simple function that takes on both positive and negative values, then
(17.4) is consistent with Definition 17.2.4 in the previous section. Moreover, a sim-
ple function is integrable if and only if μ(Ei) < ∞ for each set Ei = {x : s(x) = ai}
for which ai 
= 0, in accord with Theorem 17.2.6.

Definition 17.3.2. If f : X → R is measurable and
∫
X
|f | dμ < ∞, then we say

that f is (Lebesgue) integrable on X.

If f is integrable on X, then for any measurable subset E of X,

|χE(x)f(x)| ≤ |f(x)|
for all x, and we define the Lebesgue integral of f over E by

(17.5)

∫
E

f dμ =

∫
X

χEf dμ.

Then f is integrable on E, since
∫
E
|f | dμ =

∫
X
|χEf | dμ ≤

∫
X
|f | dμ < ∞.

We can also relax the assumption that our functions are defined on all of X
to begin with, and define the integral over measurable sets E ⊂ X as follows: If
f is defined on a measurable set E, we can extend f by zero to all of X. If χEf
is measurable, then equation (17.5) defines the integral of f over E. If χEf is
integrable, that is,

∫
E
|f | dμ =

∫
X
|χEf | dμ < ∞, then we say that f is integrable

on E. This is the same as working directly with the measure space (E,ΣE, μE),
by restriction of (X,Σ, μ) as in Exercise 16.5.10, and the measurable functions and
integrable functions on E.

We have noted that one difference between the Lebesgue integral and the Rie-
mann integral is that the Riemann approach subdivides the domain of the function
and the Lebesgue approach subdivides the range of the function. But we emphasize
that subdividing the range requires that we be able to measure a much larger class
of subsets of the domain than just the intervals. See also Exercise 17.3.3.

There are a few more properties of the integral that can be established now;
see Exercises 17.3.1-17.3.2. These properties are sufficient to allow us to prove the
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monotone convergence theorem in the next section (Theorem 17.4.1). Using the
monotone convergence theorem, we will establish the additivity of the integral in
Theorem 17.4.2, and combined with Exercise 17.3.1, this will establish the linearity
of the integral.

Exercises.

Exercise 17.3.1. Show that if f is a real valued measurable function on X and
α a real constant, then

∫
X
αf dμ = α

∫
X
f dμ. Hint : Start with the simple func-

tions, then consider the nonnegative measurable functions, and then the general
measurable functions.

Exercise 17.3.2. Prove the following, where all functions involved are assumed
to be nonnegative and measurable on X, and all sets involved are assumed to be
measurable subsets of X:

1. If 0 ≤ f ≤ g everywhere in E, then 0 ≤
∫
E
f dμ ≤

∫
E
g dμ.

2. If A ⊆ B, then
∫
A
f dμ ≤

∫
B
f dμ.

3. If f ≡ 0 on E, then
∫
E
f dμ = 0, even when μ(E) = ∞.

4. If μ(E) = 0, then
∫
E
f dμ = 0, even if f = ∞ everywhere on E.

Exercise 17.3.3. Let f : R → R be a bounded nonnegative measurable function
on the real line and let m denote Lebesgue measure. Let sn be the increasing
sequence of nonnegative simple functions in Theorem 17.2.3 with limn→∞ sn(x) =
f(x) for all x ∈ R. Verify that

lim
n→∞

∫
R

sn dm = lim
n→∞

n2n∑
k=1

(k − 1

2n

)
m
({

x ∈ R :
k − 1

2n
≤ f(x) ≤ k

2n

})
.

This formula is Lebesgue’s original definition of the integral of f . The proof that
this limit equals

∫
R
f dm in agreement with (17.3) in Definition 17.3.1 is part of

the proof of the monotone convergence theorem in the next section.

17.4. The Limit Theorems

The limit theorems of this section are a primary reason the Lebesgue integral is a
major improvement on the Riemann integral and the preferred choice for work in
advanced analysis. We are given a measure space (X,Σ, μ), and, as usual in this
book, the measure μ is a complete measure. In particular, the results hold for the
Lebesgue measure spaces R and Rn.

Theorem 17.4.1 (Monotone Convergence). Suppose the functions fn are nonneg-
ative and measurable on X, and

fn(x) ≤ fn+1(x)

for all x and all n. If f(x) = limn→∞ fn(x) for all x ∈ X, then∫
X

f dμ = lim
n→∞

∫
X

fn dμ.
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Proof. Since fn ≤ fn+1, the sequence
∫
X
fn dμ is a monotone increasing sequence

of real numbers. Thus, the limit of the integrals exists as an extended real number,
either finite or infinite. By Proposition 17.1.9, the limit function f is measurable.
Since fn ≤ f , we have

∫
X
fn dμ ≤

∫
X
f dμ for each n (Exercise 17.3.2 (statement

1)). Hence,

lim
n→∞

∫
X

fn dμ ≤
∫
X

f dμ.

Let L = limn→∞
∫
X
fn dμ. We want to show that L ≥

∫
X
f dμ. This will

follow from Definition 17.3.1 (statement 2) if we show that L ≥
∫
X
s dμ for every

nonnegative simple function s with s ≤ f . Let s =
∑m

k=1 akχEk
be a nonnegative

simple function with s ≤ f , and let β be a number with 0 < β < 1. Let An = {x ∈
X : fn(x) ≥ β s(x)}. Then An is measurable for each n. Since the sequence fn
increases with limit f everywhere, An ⊂ An+1 for each n, and

⋃∞
n=1 An = X. For

each n, ∫
X

fn dμ ≥
∫
An

fn dμ ≥ β

∫
An

s dμ

= β

∫
An

m∑
k=1

akχEk
dμ = β

∫
X

m∑
k=1

akχEk∩An
dμ

= β
m∑

k=1

akμ(Ek ∩An).(17.6)

We have Ek ∩ An ⊆ Ek ∩ An+1 for each n, and
⋃∞

n=1 Ek ∩ An = Ek. We have
limn→∞ μ(Ek ∩ An) = μ(Ek) by Proposition 16.3.4 (property 3). Thus, letting
n → ∞ in (17.6) yields

L ≥ β
m∑

k=1

akμ(Ek) = β

∫
X

s dμ.

Since β was arbitrary in (0, 1), L ≥
∫
X
s dμ. Since s was arbitrary with s ≤ f ,

L ≥
∫
X
f dμ, and the proof is complete. �

Neither of the hypotheses, nonnegative fn or monotone increasing sequence
(fn), can be dropped from Theorem 17.4.1. If the functions fn are not nonnegative,
and fn increases with limit f , then the conclusion of Theorem 17.4.1 need not hold
(Exercise 17.4.1). If the fn are nonnegative, but are not increasing to a limit f ,
then the conclusion of Theorem 17.4.1 need not hold (Exercise 17.4.2).

We can now prove the additivity of the integral for a measure space (X,Σ, μ).
This, combined with Exercise 17.3.1, will complete the proof of the linearity of the
integral.

Theorem 17.4.2. If f and g are nonnegative and measurable on X, or if f and g
are real valued and integrable, then∫

X

(f + g) dμ =

∫
X

f dμ+

∫
X

g dμ.

Proof. The result will be proved first for nonnegative simple functions, then for
nonnegative measurable functions, and then for real valued integrable functions.
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Suppose f and g are nonnegative simple functions. Then we may write f =∑m1

j=1 ajχAj
where the Aj are pairwise disjoint and have union equal to X, and

g =
∑m2

j=1 bjχBj
where the Bj are pairwise disjoint and have union equal to X.

(Recall that aj = 0 and bj = 0 are possible values of f and g.) Then

f + g =

m1∑
i=1

m2∑
j=1

(ai + bj)χAi∩Bj
,

and we compute that∫
X

f + g dμ =

m1∑
i=1

m2∑
j=1

(ai + bj)μ(Ai ∩Bj)

=

m1∑
i=1

m2∑
j=1

ai μ(Ai ∩Bj) +

m1∑
i=1

m2∑
j=1

bj μ(Ai ∩Bj)

=

m1∑
i=1

ai μ(Ai) +

m2∑
j=1

bj μ(Bj)

=

∫
X

f dμ+

∫
X

g dμ.

Therefore the integral is additive for nonnegative simple functions.

Suppose now that f and g are nonnegative and measurable. There exist se-
quences sn and γn of nonnegative simple functions such that sn is increasing with
pointwise limit f and γn is increasing with pointwise limit g. Then sn + γn is a
sequence of nonnegative simple functions with limit f + g, and by the monotone
convergence theorem, ∫

X

(f + g) dμ = lim
n→∞

∫
X

(sn + γn) dμ.

By the linearity of the integral for simple functions, the existence of the limits, and
the monotone convergence theorem, we have

lim
n→∞

∫
X

(sn + γn) dμ = lim
n→∞

∫
X

sn dμ+ lim
n→∞

∫
X

γn dμ

=

∫
X

f dμ+

∫
X

g dμ.

Thus the integral is additive for nonnegative measurable functions.

Now suppose that f and g are real valued and integrable. The sum f + g is
integrable, since |f | and |g| are nonnegative measurable functions, and additivity
for them implies that∫

X

|f + g| dμ ≤
∫
X

(|f |+ |g|) dμ =

∫
X

|f | dμ+

∫
X

|g| dμ < ∞.

Now we use the positive and negative parts of f , g and f + g. Write

f + g = (f + g)+ − (f + g)− and f + g = f+ − f− + g+ − g−.

Then we have

(f + g)+ + f− + g− = f+ + g+ + (f + g)−.
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By the additivity established above for nonnegative measurable functions,∫
X

(f + g)+ dμ+

∫
X

f− dμ+

∫
X

g− dμ =

∫
X

f+ dμ+

∫
X

g+ dμ+

∫
X

(f + g)− dμ.

By Definition 17.3.1 (item 3) and a rearrangement of the previous equation,∫
X

(f + g) dμ =

∫
X

(f + g)+ dμ−
∫
X

(f + g)− dμ

=

∫
X

f+ dμ−
∫
X

f− dμ+

∫
X

g+ dμ−
∫
X

g− dμ

=

∫
X

f dμ+

∫
X

g dμ,

which proves additivity for real valued integrable functions. �

Corollary 17.4.3. If the functions fk, k ∈ N, are nonnegative and measurable on
X, then ∫

X

( ∞∑
k=1

fk

)
dμ =

∞∑
k=1

∫
X

fk dμ.

Proof. Consider the partial sums, sn =
∑n

k=1 fk. The sequence (sn) is increasing
and limn→∞ sn =

∑∞
k=1 fk. We have∫
X

( ∞∑
k=1

fk

)
dμ =

∫
X

(
lim
n→∞

n∑
k=1

fk

)
dμ

=

∫
X

(
lim
n→∞

sn

)
dμ

= lim
n→∞

∫
X

sn dμ,

by the monotone convergence theorem. We also have

lim
n→∞

∫
X

sn dμ = lim
n→∞

∫
X

( n∑
k=1

fk

)
dμ

= lim
n→∞

n∑
k=1

∫
X

fk dμ

=
∞∑
k=1

∫
X

fk dμ,

by the linearity of the integral and the definition of series sum. �

Theorem 17.4.4 (Fatou’s Lemma). If the functions fn are nonnegative and mea-
surable on X, then ∫

X

lim inf fn dμ ≤ lim inf

∫
X

fn dμ.

Proof. The proof uses only the definition of the lim inf of a sequence of real num-
bers and the monotone convergence theorem. Let gn(x) = infk≥n fk(x) for all x.
Then the functions gn are nonnegative, they satisfy gn ≤ gn+1 for all n, and
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limn→∞ gn(x) = lim inf fn for all x. By definition, gn ≤ fk for all k ≥ n, so∫
X
gn dμ ≤

∫
X
fk dμ for all k ≥ n. It follows that

(17.7)

∫
X

gn dμ ≤ inf
k≥n

∫
X

fk dμ.

Let n → ∞ in (17.7). The monotone convergence theorem gives the limit of the
left-hand side of (17.7), and the definition of lim inf gives the limit of the right-hand
side. Thus, ∫

X

lim inf fn dμ ≤ lim inf

∫
X

fn dμ,

which proves Fatou’s lemma. �

As an immediate consequence of Fatou’s lemma, if lim inf
∫
X
fn dμ < ∞, then

f := lim inf fn is an integrable function onX. See Exercise 17.4.3 for an application.

Theorem 17.4.5 (Dominated Convergence). Suppose the functions fn are measur-
able on X and fn(x) → f(x) for all x ∈ X. If there exists a nonnegative integrable
function g on X such that |fn(x)| ≤ g(x) for all x ∈ X, then f is integrable and

lim
n→∞

∫
X

fn dμ =

∫
X

f dμ.

Proof. The function g − fn is measurable and nonnegative, and we have

lim
n→∞

[g(x)− fn(x)] = g(x)− f(x)

for all x. By Fatou’s lemma (Theorem 17.4.4),∫
X

lim inf(g − fn) dμ =

∫
X

(g − f) dμ ≤ lim inf

∫
X

(g − fn) dμ.

Since fn → f pointwise, we have |fn(x)| → |f(x)|, and hence |f(x)| ≤ g(x) for all
x. This proves that |f | is integrable, hence f is integrable. Then∫

X

g dμ−
∫
X

f dμ ≤ lim inf

∫
X

(g − fn) dμ

=

∫
X

g dμ+ lim inf
(
−
∫
X

fn dμ
)

=

∫
X

g dμ− lim sup

∫
X

fn dμ.

Hence, by a simple rearrangement,∫
X

f dμ ≥ lim sup

∫
X

fn dμ.

By considering g + fn, Fatou’s lemma yields∫
X

g dμ+

∫
X

f dμ ≤ lim inf

∫
X

(g + fn) dμ =

∫
X

g dμ+ lim inf

∫
X

fn dμ,

and therefore ∫
X

f dμ ≤ lim inf

∫
X

fn dμ.

It follows that lim inf
∫
X
fn dμ = lim sup

∫
X
fn dμ, and thus, limn→∞

∫
X
fn dμ exists

and equals
∫
X
f dμ. �
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If we think for a moment in terms of functions defined on the real line, the
hypothesis in Theorem 17.4.5 that g ≥ 0 and integrable ensures that the area
under the graph of g has finite area, and the hypothesis that |fn(x)| ≤ g(x) for all
x and all n ensures that the graphs of |fn| are trapped inside the region under the
graph of g. Simple examples show that such hypotheses are needed to ensure the
conclusion that the integral and limit operations can be interchanged. For example,
consider the functions fn on R, for integers n ≥ 0, given by

fn(x) =

{
1 for n < x < n+ 1,
0 otherwise.

Then fn converges pointwise to the zero function on R. However, for all n,∫
R
fn dm = 1, so that

lim
n→∞

∫
R

fn dm 
=
∫
R

(0) dm.

For this sequence fn there is no integrable function g such that |fn(x)| ≤ g(x) for
all x and all n.

The limit property of the dominated convergence theorem is a considerable
improvement over the Riemann integral, as it does not require uniform convergence
of the sequence. Consider for example the sequence of functions fn from Exercise
7.1.3, repeated here for convenience.

Example 17.4.6. Let {q1, q2, q3, . . .} = Q∩ [0, 1] be an enumeration of the rational
numbers in the interval [0, 1]. Define fn : [0, 1] → R by

fn(x) =

{
0 if x ∈ {q1, q2, q3, . . . , qn},
1 if x ∈ [0, 1]− {q1, q2, q3, . . . , qn}.

Then each fn is measurable on [0, 1], and fn converges pointwise to the Dirichlet
function f , where f(x) = 0 if x ∈ Q ∩ [0, 1] and f(x) = 1 if x ∈ [0, 1] −Q, which
is not Riemann integrable. However, |fn(x)| ≤ g(x) ≡ 1 for all x ∈ [0, 1], so f is
integrable in the Lebesgue sense, and

lim
n→∞

∫
[0,1]

fn dm =

∫
[0,1]

f dm = 1,

by Theorem 17.4.5. �

The fact that the Dirichlet function is Lebesgue integrable is not so important
in and of itself; however, the ease with which the Lebesgue integral handles it is
impressive, and this function is just one of the many holes in the space of Riemann
integrable functions that are now filled due to the Lebesgue integral. We return to
this issue in the final section of the chapter when we discuss the completeness of
the space of functions that are integrable in the sense of Lebesgue.

Corollary 17.4.7. Suppose the functions fk, k ∈ N, are integrable on X and such
that

∞∑
k=1

∫
X

|fk| dμ < ∞.
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Then the series
∑∞

k=1 fk converges absolutely a.e. in X, the sum is integrable on
X, and ∫

X

( ∞∑
k=1

fk

)
dμ =

∞∑
k=1

∫
X

fk dμ.

Proof. Let g =
∑∞

k=1 |fk| = limn→∞
∑n

k=1 |fk|. By Corollary 17.4.3 of the mono-
tone convergence theorem, we have∫

X

g dμ = lim
n→∞

n∑
k=1

∫
X

|fk| dμ =
∞∑
k=1

∫
X

|fk| dμ < ∞,

using the present hypothesis. Therefore g is integrable. This implies, in particular,
that g must be finite almost everywhere on X. Hence, the series

∑∞
k=1 fk converges

absolutely almost everywhere on X.

Let sn =
∑n

k=1 fk. Then we have

|sn| ≤
n∑

k=1

|fk| ≤
∞∑
k=1

|fk| = g.

The dominated convergence theorem applies to the sequence sn, and we conclude
that limn→∞ sn is integrable and∫

X

( ∞∑
k=1

fk

)
dμ =

∫
X

(
lim
n→∞

sn

)
dμ = lim

n→∞

∫
X

sn dμ = lim
n→∞

n∑
k=1

∫
X

fk dμ,

as we wished to show. �

We expect the integral of a function f to be countably additive on disjoint sets.
Indeed, for any measure space (X,Σ, μ), the integral of a nonnegative measurable
function f on X defines another measure on (X,Σ).

Theorem 17.4.8. Let (X,Σ, μ) be a measure space and let f be a nonnegative
measurable function on X. Suppose

∫
A
f dμ < ∞ for some set A ∈ Σ. Then the

function λ : Σ → [0,∞] given by

λ(E) =

∫
E

f dμ

defines a measure on (X,Σ).

Proof. We only need to show countable additivity of λ. Let E =
⋃∞

n=1 En where
the sets En are measurable and pairwise disjoint. Let

fn(x) =
n∑

k=1

f(x)χEk
(x), x ∈ X.

Then the fn are nonnegative and measurable, fn≤fn+1 for each n, and limn→∞ fn(x)
= f(x)χE(x). By Theorem 17.4.1,

lim
n→∞

∫
X

fn dμ =

∫
X

f χE dμ =

∫
E

f dμ.
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By the linearity of the integral and the definition of λ,∫
X

fn dμ =

∫
X

( n∑
k=1

f χEk

)
dμ =

n∑
k=1

∫
X

f χEk
dμ =

n∑
k=1

λ(Ek).

Hence,

λ(E) =

∫
X

f χE dμ = lim
n→∞

n∑
k=1

λ(Ek) =
∞∑
k=1

λ(Ek),

as we wished to show. �

The assumption in Theorem 17.4.8 that
∫
A
f dμ < ∞ for some set A ∈ Σ

implies that λ(∅) = 0.

Theorem 17.4.8 allows us to break up a measurable set E into a countable
disjoint union of measurable sets, and then integrate f over the separate pieces,
summing the results to get

∫
E
f dμ. In particular, if E has measure zero, then

(17.8)

∫
X

f dμ =

∫
E

f dμ+

∫
Ec

f dμ =

∫
Ec

f dμ.

Thus it is clear that the integrability of a function, and the value of the integral of a
function, are not affected by altering the function on a set of measure zero. We may
even ignore a set of measure zero in many statements about integrals, if convenient.
For example, in the monotone convergence theorem we may replace the phrase
“f(x) = limn→∞ fn(x) for all x” with the phrase “f(x) = limn→∞ fn(x) a.e.”. In
the dominated convergence theorem, we may replace the phrase “fn(x) → f(x) for
all x” by “fn(x) → f(x) a.e. in X”, and the phrase “|fn(x)| ≤ g(x) for all x” by
“|fn(x)| ≤ g(x) a.e. in X”.

The next result is another application of dominated convergence.

Theorem 17.4.9. Suppose f and g are measurable functions on X. If g is inte-
grable and |f(x)| ≤ g(x) a.e. in X, then f is integrable.

Proof. It suffices to show that |f | is integrable. Since |f | is measurable, there is an
increasing sequence sn of nonnegative simple functions such that limn→∞ sn(x) =
|f(x)| for all x. Then 0 ≤ sn ≤ g(x) a.e. in X. Let E = {x ∈ X : |f(x)| > g(x)}.
By Exercise 17.3.2,∫

X

sn dμ =

∫
X−E

sn dμ ≤
∫
X−E

g dμ =

∫
X

g dμ < ∞.

Thus, sn is integrable for each n. By Theorem 17.4.5, |f | is integrable. �

In the following theorem, we use (17.8) implicitly when μ(E) = 0.

Theorem 17.4.10. Let f and g be real valued measurable functions on a measure
space (X,Σ, μ). Then the following properties hold:

1. If f ≥ 0 a.e. in X, then
∫
X
f dμ ≥ 0.

2. If f ≤ g a.e. in X, then
∫
X
f dμ ≤

∫
X
g dμ.
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3. If b1 and b2 are real constants such that b1 ≤ f(x) ≤ b2 a.e. in a measurable
set E with μ(E) < ∞, then

b1 μ(E) ≤
∫
E

f dμ ≤ b2 μ(E).

4.
∫
X
|f + g| dμ ≤

∫
X
|f | dμ+

∫
X
|g| dμ.

5. If f is integrable, then |f | is integrable, and |
∫
X
f dμ| ≤

∫
X
|f | dμ.

Proof. 1. If f ≥ 0 a.e. in X, then for any simple function s with 0 ≤ s ≤ f , we
have

∫
X
f dμ ≥

∫
X
s dμ ≥ 0 by (17.3).

Statement 2 follows from statement 1 by considering g−f and using additivity.

Statement 3 follows from statement 2 and the integral of constant simple func-
tions.

Statement 4 follows from the triangle inequality, |f(x)+g(x)| ≤ |f(x)|+ |g(x)|,
the estimate in statement 3, and additivity of the integral.

5. If f is integrable, the integrability of |f | is immediate from Definition 17.3.2.
Since −f, f ≤ |f |, we have −

∫
X
f dμ ≤

∫
X
|f | dμ and

∫
X
f dμ ≤

∫
X
|f | dμ by

statement 2, and thus |
∫
X
f dμ| ≤

∫
X
|f | dμ. �

The theory of the integral developed here can be extended to complex valued
functions on a measure space. See Exercise 17.4.12 for a quick look at complex
valued functions on a subset of the real line with Lebesgue measure.

Exercises.

Exercise 17.4.1. Let X = (0,∞) with Lebesgue measure. Let fn(x) = −1/n for
all x ∈ (0,∞). Show that the conclusion of Theorem 17.4.1 does not hold.

Exercise 17.4.2. Let X = (0,∞) with Lebesgue measure. Let fn = nχ(0,1/n).
Show that the conclusion of Theorem 17.4.1 does not hold.

Exercise 17.4.3. Suppose E is a measurable set and the functions fn are measur-
able on E with limn→∞ fn(x) = f(x), x ∈ E. Show that if supn

∫
E
|fn| dμ ≤ M <

∞, then
∫
E
|f | dμ ≤ M . Hint : Use Fatou’s lemma.

Exercise 17.4.4. Show that Fatou’s lemma implies the monotone convergence
theorem.

Exercise 17.4.5. Suppose f : R → R is an integrable function. Show that∫
R

f dm = lim
n→∞

∫
R

f(x)e−|x|2/n dx.

Exercise 17.4.6. Let fn = 1
nχ(0,n).

1. Show that fn → 0 uniformly on R, although
∫
R
fn dm = 1 for each n. Why

does this example not contradict Theorem 17.4.5?

2. Compare lim infn→∞
∫
R
fn dm and

∫
R
lim infn→∞ fn dm.

Exercise 17.4.7. Prove: If f is a measurable function on E ⊆ X and f = 0 a.e.
on E, then

∫
E
f dμ = 0. If f and g are measurable on E and f = g a.e. on E, then∫

E
f dμ =

∫
E
g dμ.
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Exercise 17.4.8. Prove: If f is a nonnegative measurable function on E ⊆ X and∫
E
f dμ = 0, then f = 0 a.e. on E. Hint : Write P = {x ∈ E : f(x) > 0} =⋃∞

n=1 Pn, where Pn = {x ∈ E : f(x) > 1/n}.

Exercise 17.4.9. Suppose f : X → R is measurable. Show that f is integrable if
and only if |f | is integrable. Show that f is integrable if and only if f+ and f− are
integrable.

Exercise 17.4.10. Suppose f and g are real valued functions on X. If f is in-
tegrable and g is measurable, and g = f a.e. in X, then g is integrable and∫
X
g dμ =

∫
X
f dμ.

Exercise 17.4.11. Let (Rn,Mn,mn) be the Lebesgue measure space and suppose
f : Rn → R is an integrable function. Prove: If E is a measurable set and f ≥ δ > 0
on E, then m(E) < ∞.

Exercise 17.4.12. Let f = u + iv be a complex valued function defined on the
measure space (R,M,m), where u and v are the real and imaginary parts of f .
We say that f is a complex valued measurable function if the real part u and
imaginary part v are measurable functions. If f = u+ iv is measurable, we say that
f is integrable over R if u and v are integrable over R, and then the Lebesgue
integral of f is defined by∫

R

f dm =

∫
R

u dm+ i

∫
R

v dm.

1. Suppose u and v are real valued measurable functions on R. Show that f =
u+ iv is integrable if and only if |f | is integrable.

2. Prove the linearity of the integral for complex valued integrable functions on
R, using complex scalars.

Exercise 17.4.13. Suppose f : R → R is integrable and bounded. Show that
for every ε > 0 there is a δ = δ(ε) > 0 such that if A is any set with m(A) < δ,
then

∫
A
|f | dm < ε and hence |

∫
A
f dm| < ε. (This property is called the absolute

continuity of the integral.)

Exercise 17.4.14. 1. Suppose f : R → R is nonnegative and measurable. Let

fn(x) =

{
f(x) if f(x) ≤ n,
n if f(x) > n.

Show that limn→∞
∫
R
fn dm =

∫
R
f dm. Hint : Note that fn = min(f, n).

2. Show that a similar result holds if f is a general integrable function, and we
define functions fn by

fn(x) =

{
f(x) if |f(x)| ≤ n and |x| ≤ n,
0 otherwise.

Exercise 17.4.15. Suppose (X,Σ, μ) is a measure space and E ⊆ X is a measur-
able set. If (fn)

∞
k=1 is a decreasing sequence of nonnegative integrable functions on

E with pointwise limit f on E, then limn→∞
∫
E
fn dm =

∫
E
f dm.
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17.5. Comparison with the Riemann Integral

The goal of this section is to show that a Riemann integrable function on [a, b] is
measurable and Lebesgue integrable on [a, b], and the two integrals have the same
value. Thus the Lebesgue integral is a true extension of the Riemann integral.

We consider bounded functions f : [a, b] → R. If f is Riemann integrable over

[a, b], we denote its Riemann integral as usual by
∫ b

a
f(x) dx. If f is measurable and

Lebesgue integrable over [a, b], we indicate its Lebesgue integral by
∫
[a,b]

f dm.

Recall that a step function s : R → R is a simple function s =
∑m

k=1 akχEk

where each set Ek is an interval. Thus, every step function is a Lebesgue measurable
simple function. With this in view, it is immediate from the definitions that∫ b

a

s(x) dx =

∫
[a,b]

s dm

for every step function s on [a, b].

Theorem 17.5.1. If f : [a, b] → R is Riemann integrable over [a, b], then f is
measurable and Lebesgue integrable, and∫ b

a

f(x) dx =

∫
[a,b]

f dm.

Proof. Suppose f : [a, b] → R is Riemann integrable. Then f is bounded on [a, b]
and continuous on [a, b] − E, where the set E of discontinuities of f has measure
zero, m(E) = 0. Write f = f+ − f−, where

f+(x) = max(f(x), 0) and f−(x) = max(−f(x), 0)

are the positive and negative parts of f , respectively. Let E+ be the set of dis-
continuities of f+ and let E− be the set of discontinuities of f−. Then E+ ⊆ E
and E− ⊆ E, so m(E+) = 0 and m(E−) = 0. Thus f+ and f− are nonnegative
Riemann integrable functions.

Now, the definition of the Lebesgue integral of f requires that f be measurable
and that ∫

[a,b]

f dm =

∫
[a,b]

f+ dm−
∫
[a,b]

f− dm,

where at least one of the integrals on the right-hand side is finite. Thus our task is
to establish the theorem statement for nonnegative Riemann integrable functions.

Consider the positive part f+. By definition of the Riemann integral,∫ b

a

f+(x) dx = sup
s≤f+

∫
[a,b]

s dm = inf
t≥f+

∫
[a,b]

t dm,

where s and t are step functions. If we know that f+ is measurable, then, since
every step function is a simple function, we conclude that

(17.9) sup
s≤f+

∫
[a,b]

s dm ≤ sup
φ≤f+

∫
[a,b]

φ dm ≤ inf
ψ≥f+

∫
[a,b]

φ dm ≤ inf
t≥f+

∫
[a,b]

t dm,

where the inner supremum and infimum are over simple functions φ and ψ, and
it is the supremum over simple φ ≤ f+ that defines

∫
[a,b]

f+ dm, provided f+ is
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f+(x0)−

sn(x0)

f+(x0)

x0 − δ x0 + δx0

Figure 17.1. A shaded subinterval of a partition Pn of [a, b], on which
the step function sn equals the infimum of f+ over the subinterval. As
n → ∞, the subinterval length for the partitions Pn approaches zero, and
limn→∞ sn(x0) = f+(x0), if f+ is continuous at x0.

measurable. Thus, to conclude that f+ is integrable in the Lebesgue sense and the
theorem statement is true, we only need to establish that f+ is measurable.

Let Pn be a sequence of partitions of [a, b] using equal length subintervals,
such that the mesh of the partition (the length of the subintervals) goes to zero as
n → ∞. For each n, let sn be the step function defined by this partition such that
sn(x) = infx∈J f+(x), where J is any subinterval of the partition Pn. We claim
that sn converges pointwise to f+ at every point of continuity of f+. In order to
prove this claim, suppose that x0 is a point of continuity of f+. Then given ε > 0,
there exists δ(ε) > 0 such that if |x− x0| < δ(ε), then 0 ≤ f+(x0)− sn(x0) < ε. As
n → ∞, the sequence sn(x0) increases, and if x0 lies within interval J of partition
Pn, then

sn(x0) = inf
x∈J

f+(x) ≤ f+(x0)

for all n. (See Figure 17.1.) Hence, limn→∞ sn(x0) = f+(x0) when f+ is continuous
at x0. Therefore sn converges to f+ pointwise outside its set E+ of discontinuities,
hence almost everywhere in [a, b], since f+ is Riemann integrable.

Now the step functions sn are measurable, and by Proposition 17.1.12, their
pointwise limit a.e., f+, is measurable. Hence, Riemann integrability and measur-
ability of f+, combined with (17.9), imply that∫ b

a

f+(x) dx = sup
φ≤f+

∫
[a,b]

φ dm =

∫
[a,b]

f+ dm.
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The argument is the same for f−, and thus

∫ b

a

f−(x) dx = sup
φ≤f−

∫
[a,b]

φ dm =

∫
[a,b]

f− dm.

Hence, we have

∫ b

a

f(x) dx =

∫ b

a

(f+(x)− f−(x)) dx

=

∫ b

a

f+(x) dx−
∫ b

a

f−(x) dx

=

∫
[a,b]

f+ dm−
∫
[a,b]

f− dm

=

∫
[a,b]

f dm,

as desired. �

See Exercise 17.5.1 for a different proof that a Riemann integrable function is
Lebesgue measurable.

For unbounded functions, or for unbounded intervals of integration, the Rie-
mann integral is extended by means of improper integrals, when they are conver-
gent. For nonnegative functions on finite intervals, a convergent improper integral
agrees with the Lebesgue integral; see Exercise 17.5.2 for a typical case.

The improper integral of a function on R which is not nonnegative may exist
without the function being Lebesgue integrable; an example is given in Exercise
17.5.3. On the other hand, functions which are absolutely integrable on R in either
the Riemann or the Lebesgue sense are assigned the same integrals by these theories;
for precise statements, see Exercises 17.5.4, 17.5.5.

Finally, if J is an interval in Rn, then we define a function F : J → Rm to be
Lebesgue measurable if and only if each real component function is measurable with
respect to the n-dimensional Lebesgue σ-algebra Mn (Definition 17.1.1). We define
F to be Lebesgue integrable if and only if each real component function is Lebesgue
integrable with respect to n-dimensional Lebesgue measure mn (Definition 17.3.2).
We recall that a function F : J → Rm is Riemann integrable if and only if each real
component function is Riemann integrable (Definition 12.1.2). Using the techniques
we have been working with, it is possible to show that every Riemann integrable
F : J → Rm is Lebesgue measurable and integrable, and the two integrals agree.

In the final section of this chapter, we define the normed vector space of
Lebesgue integrable functions on a measure space (X,Σ, μ) and show that it is
a complete normed space, a Banach space. By the result of the present section, in
the case of X = [a, b] with Lebesgue measure, this complete space contains R[a, b].
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Exercises.

Exercise 17.5.1. Here is a different proof that a Riemann integrable function f on
[a, b] is Lebesgue measurable. Let V be any open subset of R. Show that f−1(V )
is measurable as follows:

1. Let G = {x ∈ [a, b] : f is continuous at x}. Show that for each x ∈ G, there
is an open interval Ux such that x ∈ Ux ⊂ f−1(V ).

2. Let U =
⋃

x∈G Ux. Show that f−1(V )− U ⊆ [a, b]−G.

3. Conclude that f−1(V ) is measurable.

Exercise 17.5.2. 1. Suppose f is nonnegative on [a, b] and Riemann integrable on
every subinterval [a+ ε, b], ε > 0. Suppose that the improper integral

I = lim
ε→0

∫ b

a+ε

f(x) dx

exists. Show that f is Lebesgue integrable on [a, b] and
∫
[a,b]

f dm = I.

2. Compute
∫
[0,1]

f dm if f(x) = 1/
√
x for 0 < x ≤ 1, and f(0) = 1.

Exercise 17.5.3. Show that the function f(x) = sin x/x is not Lebesgue integrable
on (1,∞), but the improper Riemann integral exists. Hint : Let u = 1/x and
dv = sinx dx.

Exercise 17.5.4. Show that if f is Lebesgue integrable on (−∞,∞) and if the
improper Riemann integral limn→∞

∫ n

−n
f(x) dx exists, then∫

R

f dm = lim
n→∞

∫ n

−n

f(x) dx.

Hint : Consider f+
n = f+ χ[−n,n], and similarly for f−.

Exercise 17.5.5. Let f be a bounded Riemann integrable function on bounded
intervals of R, and suppose that |f | is Riemann integrable in the sense that∫ ∞

−∞
|f(x)| dx := lim

n→∞

∫ n

−n

|f(x)| dx < ∞.

Show that f is Lebesgue integrable on (−∞,∞), and∫
R

f dm =

∫ ∞

−∞
f(x) dx.

17.6. Banach Spaces of Integrable Functions

In this section we define the normed vector space of integrable functions on a
measure space (X,Σ, μ) and show that it is a complete normed space, a Banach
space.

Definition 17.6.1. Let (X,Σ, μ) be a measure space. We denote by L1(X,Σ, μ)
the set of functions f : X → R such that f is measurable and

∫
X
|f | dμ < ∞, with

the identification that f = g if and only if the set of points x where f(x) 
= g(x) is
a set of measure zero.
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Thus the elements of L1((X,Σ, μ)) are actually equivalence classes of functions;
however, we operate in practice with individual functions, always keeping in mind
the equivalence involved in the definition. Recalling that a function f : X → R is
Lebesgue integrable on X if f is measurable and

∫
X
|f | dμ < ∞ (Definition 17.3.2),

we see that L1(X,Σ, μ) is the set of Lebesgue integrable functions on the measure
space.

Theorem 17.6.2. The vector space L1(X,Σ, μ) of Lebesgue integrable functions is
a normed space with norm

‖f‖1 =

∫
X

|f | dμ

for f ∈ L1(X,Σ, μ).

Proof. If f and g are in L1(X,Σ, μ) and α, β are real numbers, then∫
X

|αf + βg| dμ ≤
∫
X

(|α| |f |+ |β| |g|) dμ

=

∫
X

|α| |f | dμ+

∫
X

|β| |g| dμ

= |α|
∫
X

|f | dμ+ |β|
∫
X

|g| dμ < ∞,

by the linearity of the integral. Thus, αf + βg ∈ L1(X,Σ, μ). It follows easily that
L1(X,Σ, μ) is a vector space.

Clearly ‖f‖1 ≥ 0 for every f ∈ L1(X,Σ, μ), and we have seen that ‖f‖1 = 0 if
and only if f = 0 almost everywhere on X, hence, if and only if f is a representative
of the zero equivalence class in L1(X,Σ, μ). We also see easily that ‖αf‖1 =
|α| ‖f‖1. The proof of the triangle inequality appears in the estimate above by
taking α = 1 and β = 1. �

A sequence (fk) in L1(X,Σ, μ) converges to f in the L1 norm if

lim
k→∞

‖fk − f‖1 = 0.

Theorem 17.6.3. L1(X,Σ, μ) is a Banach space, complete in the norm ‖ · ‖1.

Proof. For simplicity in the proof, we denote by L1 the space L1(X,Σ, μ).

Let (fk) be a Cauchy sequence in L1. There is an n1 such that if m,n ≥
n1, then ‖fm − fn‖1 < 1/4. There is an n2 > n1 such that if m,n ≥ n2, then
‖fm − fn‖1 < 1/8. Continuing in this way, we inductively define nk > nk−1 such
that if m,n ≥ nk, then ‖fm − fn‖1 < 1/2k+1. The indices so chosen thus define a
subsequence (fnk

) of our original Cauchy sequence (fk).

We now show that the subsequence (fnk
) converges pointwise almost every-

where in X and the limit is an integrable function. By construction of the subse-
quence, we have

‖fnk+1
− fnk

‖1 <
1

2k+1
.
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Let g1 = fn1
, and for k ≥ 2, let gk = fnk

− fnk−1
. Then for each k, gk ∈ L1,

‖gk‖1 < 1/2k and

(17.10) fnk
=

k∑
j=1

gj .

Now consider the series
∑∞

k=1 gk. For the integrals of the gk, we have

∞∑
k=1

∫
X

|gk| dμ =

∞∑
k=1

‖gk‖1 <

∞∑
k=1

1

2k
< ∞.

By Corollary 17.4.7 of the dominated convergence theorem, the series
∑∞

k=1 gk
converges absolutely almost everywhere in X and the sum is integrable on X. By
(17.10), we may write this sum as

lim
k→∞

fnk
=

∞∑
j=1

gj

almost everywhere in X. Let f be the pointwise limit of (fnk
) where the sequence

converges, and define f to be zero on the complementary set of measure zero. Then
f is integrable, as noted, by Corollary 17.4.7.

We want to show that our Cauchy sequence fk converges to f in norm in L1.
It suffices to show that the subsequence (fnk

) converges to f in norm (Exercise
17.6.1). Given ε > 0, there is an n0 such that if m, k ≥ n0, then ‖fm − fk‖1 < ε,
and since the subsequence indexing has nm ≥ m and nk ≥ k, it follows that if
m, k ≥ n0, then

‖fnm
− fnk

‖1 =

∫
X

|fnm
− fnk

| dμ < ε.

Hold k fixed, and let m → ∞, to obtain by Fatou’s lemma,

‖f − fnk
‖1 =

∫
X

|f − fnk
| dμ

=

∫
X

lim inf
m

|fnm
− fnk

| dμ

≤ lim inf
m

∫
X

|fnm
− fnk

| dμ ≤ ε.

Thus, given ε > 0, there is an n0 such that if k ≥ n0, then ‖f−fnk
‖1 ≤ ε. Therefore

the subsequence (fnk
) converges to f in norm. Hence the Cauchy sequence (fk)

itself converges to f in norm. This proves the completeness of L1 = L1(X,Σ, μ). �

Theorem 17.6.3 covers the space of most interest to us, the Lebesgue measure
space of the interval [a, b] of the real number line, which we denote simply by
L1[a, b]. It also covers the spaces L1(R,M,m) and L1(Rn,Mn,mn), as well as the
Lebesgue measure spaces defined for any fixed measurable subset of R or Rn. All
of these spaces are Banach spaces, by Theorem 17.6.3.

An important part of the proof of Theorem 17.6.3 is the analysis of the pointwise
convergent subsequence (fnk

). However, we should be careful not to read too much
into the existence of such a subsequence. The original Cauchy sequence (fk) need
not converge pointwise at any point. Consider the following example.
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Example 17.6.4. Let X = [0, 1]. For each n, we divide [0, 1] into n subintervals
of equal length 1/n. For fixed n, the subintervals are

[k/n, (k + 1)/n], 0 ≤ k ≤ n− 1.

Now define a sequence of functions fj ∈ L1[0, 1] as follows: Let f1 be the charac-
teristic function of [0, 1]; let

f2 = χ[0,1/2] and f3 = χ[1/2,1];

then let
f4 = χ[0,1/3], f5 = χ[1/3,2/3], f6 = χ[2/3,1],

and so on. Then fj → 0 in norm in L1[0, 1], since ‖fj‖1 = 1/n if fj is the
characteristic function of an interval of length 1/n. However, the sequence fj does
not converge pointwise anywhere in [0, 1]. To see this, note that any given x in
[0, 1] will lie outside infinitely many of the subintervals [k/n, (k + 1)/n] as n → ∞,
hence fj(x) = 0 for infinitely many j. However, x will also lie within infinitely
many of the subintervals [k/n, (k + 1)/n] as n → ∞, hence fj(x) = 1 for infinitely
many j. Therefore limj→∞ fj(x) does not exist for any x ∈ [0, 1]. Nevertheless, as
in the proof of Theorem 17.6.3, there exists a subsequence of (fj) that converges
pointwise almost everywhere in [0, 1] (Exercise 17.6.2). �

Exercise 17.6.3 provides an example to show that pointwise convergence does
not imply convergence in the L1 norm.

The final chapter of the book returns to some ideas of inner product spaces and
Fourier series and applies the ideas of this chapter to the study of Hilbert space
and orthonormal sets.

Exercises.

Exercise 17.6.1. Prove: If (fk) is a Cauchy sequence in a normed space V , and a
subsequence (fnk

) converges in norm to an element f of V , then (fk) converges to
f in norm. Hint : Recall the proof of Theorem 2.7.2.

Exercise 17.6.2. Identify a subsequence of the sequence (fj) of Example 17.6.4
that converges pointwise almost everywhere (or everywhere) in [0, 1].

Exercise 17.6.3. Let X = (0, 1) with Lebesgue measure. Consider the functions
fk(x) = k2χ(0,1/k), k ∈ N. Show that fk ∈ L1

(
(0, 1)

)
for each k and fk → 0

pointwise on (0, 1), but fk does not converge to zero in the L1 norm.

17.7. Notes and References

The presentation of the Lebesgue integral in this chapter was influenced by Fried-
man [17], Royden [51], Wheeden and Zygmund [67], and Bass [3].

Fubini’s theorem for Lebesgue integrable functions, not mentioned in the text,
requires product measures and can be found in Folland [15], Kolmogorov and Fomin
[36], Rudin [53], or Wheeden and Zygmund [67].

For a comprehensive introduction to Lebesgue measure and integration moti-
vated by the historical questions that led to their development, see the excellent
text by Bressoud [8]. The work of H. Lebesgue (1875-1941) on the integral began
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to appear in 1900, and quickly began to influence work in mathematical analysis.
See Lebesgue [43] for his own informal account of his ideas. Lebesgue measure and
integration theory became the widely recognized foundation of modern probability
theory with the systematic presentation by A. N. Kolmogorov in 1933; the original
German presentation was followed by a Russian translation in 1936, and the first
English translation in 1950. See Kolmogorov [35].

What about the fundamental theorem of calculus in the context of the Lebesgue
integral? Definitive results on this topic involve the concepts of functions of bounded
variation and absolutely continuous functions, and this is left for the reader to
explore; see Bressoud [8], Folland [15], Gariepy and Ziemer [19], Kolmogorov and
Fomin [36], or Royden [51].



Chapter 18

Inner Product Spaces and
Fourier Series

The basic concepts of inner product spaces appear in Section 8.2 in the discus-
sion of the Euclidean metric space Rn. Several important inner product spaces
were introduced there, including C[a, b], the space of continuous real valued func-
tions on [a, b], and R[a, b], the space of (equivalence classes of) Riemann integrable
functions on [a, b]. The Cauchy-Schwarz inequality (Theorem 8.2.3) for an inner
product space is proved there. A formal definition of norm for vector spaces and
an introduction to the norm induced by an inner product appear in Section 8.3.
Section 8.4 introduced orthogonal sets and orthogonal expansion of vectors in Rn.

This chapter begins with examples of orthonormal sets and then presents the
basic theory of orthonormal (Fourier) expansions. We examine the role of orthonor-
mal sets in important spaces introduced earlier and highlight the importance of
complete inner product spaces. In the last section, which is based on the Lebesgue
integral, we show, in particular, that the Lebesgue space of square integrable func-
tions on an interval is a complete inner product space, a Hilbert space. In partic-
ular, the sequence space l2 and the Lebesgue function space L2([−π, π],M,m) are
isometrically isomorphic Hilbert spaces.

18.1. Examples of Orthonormal Sets

Since our main interest now is in function spaces, we use the common function
symbols, such as f , g for general elements in the space. In an inner product space
V , we have the norm ‖f‖ =

√
(f, f) for f in V . We begin by recalling the definition

of an orthonormal set.

Definition 18.1.1. Let V be an inner product space. A set X of vectors in V is
an orthogonal set if the elements of X are pairwise orthogonal, that is, (f, g) = 0
for any two distinct elements f and g in X. A set X is an orthonormal set if X
is an orthogonal set and ‖f‖ = 1 for every f in X.

557
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We begin with important examples of orthonormal sets in Rn and l2.

Example 18.1.2. The standard basis vectors e1, . . . , en in Rn form an orthonor-
mal set inRn. The full set of these n vectors is a basis forRn, hence an orthonormal
basis for Rn. Any proper subset of this basis, say {e1, . . . , ek} for 1 ≤ k < n, is
still an orthonormal set, though not a basis, in Rn. �
Example 18.1.3. In the sequence space l2, the set {ek : k ∈ N}, with the ordered
components of ek denoted ekj , j ∈ N, and defined by

ekj =

{
1 if j = k,
0 if j 
= k,

is an orthonormal set. �

We have the following examples of orthonormal sets in the spaces R[−π, π] and
R[0, π].

Example 18.1.4. In the space R[−π, π], consider the set {φk : k = 0, 1, 2, . . .}
given by φ0(x) = 1/

√
2π and, for each integer k ≥ 1,

φ2k−1(x) =
1√
π
cos kx, φ2k(x) =

1√
π
sin kx.

Displayed in sequence, the elements φk are given by

1√
2π

,
1√
π
cosx,

1√
π
sin x,

1√
π
cos 2x,

1√
π
sin 2x, . . . .

These elements constitute an orthonormal set in R[−π, π], called the standard
trigonometric set. �
Example 18.1.5. In each of the spaces C[0, π] and R[0, π], the sets{

sinx, sin 2x, sin 3x, . . .
}

and
{
1, cosx, cos 2x, cos 3x, . . .

}
are orthogonal sets. (See Exercise 15.5.3.) From a somewhat deeper point of
view, these orthogonal sets can be recognized as being analogous to the tip of an
iceberg: each is the set of eigenfunctions of a boundary value problem for a linear
Sturm-Liouville differential operator. There are many important Sturm-Liouville
boundary value problems that give rise to other orthonormal sets of functions on
an interval. We saw examples of such problems involving the heat equation and
the wave equation when the space variable belongs to [0, π]. For more on other
Sturm-Liouville boundary value problems, see the Notes and References for this
chapter. �

Exercises.

Exercise 18.1.1. Let X be an orthogonal set in an inner product space V . Prove
that X is a linearly independent set (Definition 8.1.11).

Exercise 18.1.2. Gram-Schmidt orthogonalization procedure
Let V be an inner product space. Suppose {f1, f2, f3, . . .} is a linearly independent
set in V . Define v1 = f1, and then define

vn = fn −
n−1∑
k=1

(fn, vk)

‖vk‖2
vk, for n ≥ 2.
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Prove that {v1, v2, v3, . . .} is an orthogonal set in V , and that for each n,

span {v1, . . . , vn} = span {f1, . . . , fn}.

Exercise 18.1.3. Consider the inner product space C[−1, 1].

1. Using the Gram-Schmidt procedure, find an orthogonal basis for the four-
dimensional subspace of C[−1, 1] spanned by the functions 1, t, t2, and t3.

2. The Legendre polynomials P0, P1, P2, . . . are obtained from the Gram-Schmidt
procedure applied to the functions 1, t, t2, . . . except that the resulting func-
tions are normalized to satisfy Pk(1) = 1 for each k (rather than requiring
(Pk, Pk) = 1). The first four Legendre polynomials are P0(t) = 1, P1(t) = t,
P2(t) = 1

2 (3t
2 − 1) and P3(t) = 1

2 (5t
3 − 3t). Show that these functions are

pairwise orthogonal in C[−1, 1]. Do they span the same subspace of C[−1, 1]
described in part 1?

3. Find the Legendre polynomial P4(t).

18.2. Orthonormal Expansions

The main goal of this section is to establish useful generalizations for real inner
product spaces of the results on orthonormal expansion of vectors in R3 given in
Section 8.4. Along the way, certain facts discussed earlier for Fourier series with
respect to the orthonormal trigonometric set on [−π, π] now can be viewed in a
more general setting.

In what follows, V is always an infinite-dimensional real inner product space and
we denote the norm of an element f in V by ‖f‖. Thus, ‖f‖ = (f, f)1/2. Elements
of orthogonal sets are generally denoted by uk or vk. The results in subsection 18.2.1
do not require completeness of the inner product space V . However, in subsection
18.2.2, we assume that V is a Hilbert space (Definition 9.3.3), a complete inner
product space.

18.2.1. Basic Results for Inner Product Spaces. The Pythagorean theorem
for finite sums of orthogonal elements in V is a direct generalization of the situation
for an orthogonal set in Rn (Exercise 8.4.3).

Theorem 18.2.1 (Pythagorean theorem). Let V be a real inner product space.
The following statements are true:

1. If {vk : 1 ≤ k ≤ m} is a finite orthogonal set in V , then

∥∥∥ m∑
k=1

vk

∥∥∥2 =
m∑

k=1

‖vk‖2.

2. If {uk : 1 ≤ k ≤ m} is a finite orthonormal set in V , then for any real
numbers ak, ∥∥∥ m∑

k=1

akuk

∥∥∥2 =
m∑

k=1

a2k.
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Proof. Let F = {1, 2, . . . ,m}. Statement 1 follows by expanding the inner product
to obtain ∥∥∥∑

k∈F

vk

∥∥∥2 = (
∑
k∈F

vk,
∑
k∈F

vk) =
∑
i,j∈F

(vi, vj),

and then using orthogonality to eliminate the terms that involve (vi, vj) for i 
= j.
The terms that remain form the sum∑

k∈F

(vk, vk) =
∑
k∈F

‖vk‖2.

Statement 2 follows from 1 by setting vk = akuk, since ‖akuk‖2 = a2k. �

Suppose {uk : k ∈ N} is an orthonormal set in V . We address the following
questions, motivated by the results in R3 (and Rn) in Section 8.4, and by the best
mean square approximation result for Fourier series in Section 15.5:

(1) If f is represented by a convergent expansion, f =
∑∞

k=1 ckuk, relative to the
uk, for some real numbers ck, is it true that ck = (f, uk)?

(2) If we use only the first n elements uk in approximating f by a linear combi-
nation, f ≈

∑n
k=1 ckuk, do the coefficients ck = (f, uk) give the best result as

measured by the norm on V ?

(3) Under what conditions can an arbitrary element f in V be represented by a
convergent expansion, f =

∑∞
k=1 ckuk, relative to the uk?

We proceed to answer the first two questions.

If we take the inner product of elements of V with a fixed element z, we get
a continuous mapping from V into the real numbers. This is the content of the
following theorem.

Theorem 18.2.2. Let V be a real inner product space and let z be any fixed element
of V . The mapping defined by

f �→ (f, z)

is continuous. Consequently, if
∑∞

k=1 fk converges in norm to f in V , then

(f, z) =
( ∞∑

k=1

fk, z
)
=

∞∑
k=1

(fk, z).

Proof. First note that if z = 0, then the mapping f �→ (f, 0) is the constant zero
function, which is continuous. Now assume z 
= 0. Since the inner product is
linear in the first argument, we have |(f, z) − (g, z)| = |(f − g, z)|. Thus, by the
Cauchy-Schwarz inequality,

|(f, z)− (g, z)| = |(f − g, z)| ≤ ‖f − g‖ ‖z‖.
Given ε > 0, we have |(f, z)−(g, z)| < ε provided we choose ‖f−g‖ < δ(ε) = ε/‖z‖.
This shows that the inner product with a fixed z is uniformly continuous on V .

Suppose
∑∞

k=1 fk converges in norm to f in V . Letting sn =
∑n

k=1 fk, we have

(f, z) =
( ∞∑

k=1

fk, z
)
=
(

lim
n→∞

sn, z
)
= lim

n→∞
(sn, z).
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By the definition of sn, the linearity of the inner product in the first argument, and
the definition of the sum of an infinite numerical series, we have

(f, z) = lim
n→∞

(sn, z) = lim
n→∞

n∑
k=1

(fk, z) =
∞∑
k=1

(fk, z),

as was to be shown. �

Given an orthonormal set {uk : k ∈ N} in V and f ∈ V , we define the Fourier
coefficients of f with respect to this set (or, with respect to the uk) to be the
numbers ck = (f, uk). The next result says that if an element f in V equals a
convergent series expansion, f =

∑∞
k=1 ckuk, with respect to the orthonormal set,

then the coefficients ck must be the Fourier coefficients of f with respect to the uk.

Theorem 18.2.3. Let V be a real inner product space and let {uk : k ∈ N} be an
orthonormal set in V . If f ∈ V and f =

∑∞
k=1 ckuk for some real numbers ck, then

for all k,

ck = (f, uk).

Proof. If f =
∑∞

j=1 cjuj , then by Theorem 18.2.2, we have

(f, uk) =
( ∞∑

j=1

cjuj , uk

)
=

∞∑
j=1

cj(uj , uk) = ck

for each positive integer k. �

This answers question (1) posed at the beginning of the section. The only
way to represent f ∈ V exactly by a convergent expansion with respect to an
orthonormal set {uk : k ∈ N}, if possible at all, is that the coefficients are the
Fourier coefficients ck = (f, uk).

Now suppose we approximate an element f in V using only the first n elements
uk of an orthonormal set, and we use a linear combination,

∑n
k=1 ckuk. What

choice of coefficients gives the closest approximation to f in the norm on V ? As
in the case of the trigonometric set in Section 15.5, the best choice is the Fourier
coefficients. (Think of the normalized trigonometric set in Exercise 15.5.2.)

Lemma 18.2.4. Let V be a real inner product space and {uk : k ∈ N} an or-
thonormal set in V . If yn =

∑n
k=1 ckuk, then

‖f − yn‖2 = ‖f‖2 −
n∑

k=1

(f, uk)
2 +

n∑
k=1

[ck − (f, uk)]
2.

Proof. We calculate, starting from ‖f − yn‖2 = (f − yn, f − yn) and using or-
thonormality of the uk, as follows: If yn =

∑n
k=1 ckuk, then the bilinearity of the

inner product implies that

‖f − yn‖2 = (f − yn, f − yn)

= (f, f)− 2(f, yn) + (yn, yn)

= ‖f‖2 − 2
n∑

k=1

ck(f, uk) +
n∑

k=1

c2k.
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For each k, completion of the square gives

c2k − 2ck(f, uk) = [ck − (f, uk)]
2 − (f, uk)

2,

and the desired result follows by summing these terms from k = 1 to k = n. �

Lemma 18.2.4 leads directly to the approximation of f by a finite linear combi-
nation yn =

∑n
k=1 ckuk that minimizes ‖f − yn‖ over all such linear combinations.

Theorem 18.2.5. Let V be a real inner product space and {uk : k ∈ N} an
orthonormal set in V . For any f ∈ V and positive integer n, and for any choice of
real numbers c1, . . . , cn,

(18.1)
∥∥∥f −

n∑
k=1

(f, uk)uk

∥∥∥ ≤ ∥∥∥f −
n∑

k=1

ckuk

∥∥∥.
Proof. For any choice of real numbers c1, . . . , cn in the sum yn =

∑n
k=1 ckuk,

Lemma 18.2.4 implies that

(18.2) ‖f − yn‖2 = ‖f‖2 −
n∑

k=1

(f, uk)
2 +

n∑
k=1

[ck − (f, uk)]
2.

Only the last sum on the right-hand side,
∑n

k=1[ck−(f, uk)]
2, which is nonnegative,

depends on the choice of the ck, and clearly ‖f − yn‖2 is minimized when ck =
(f, uk). This proves (18.1). �

Thus far we have seen that for a given f , the Fourier coefficients ck = (f, uk)
yield the best approximation to f ,

∑n
k=1(f, uk)uk, that uses only the first n ele-

ments uk in a linear combination. In addition, we know that if f =
∑∞

k=1 ckuk,
then necessarily ck = (f, uk).

There is another important consequence of Lemma 18.2.4: It implies the con-
vergence of the series

∑∞
k=1(f, uk)

2 for any f in V .

Theorem 18.2.6 (Bessel’s Inequality). Let V be a real inner product space and let
{uk : k ∈ N} be an orthonormal set in V . For any f ∈ V the series

∑∞
k=1(f, uk)

2

converges, and
∞∑
k=1

(f, uk)
2 ≤ ‖f‖2.

Proof. By Lemma 18.2.4, if sn =
∑n

k=1(f, uk)uk, then

‖f − sn‖2 = ‖f‖2 −
n∑

k=1

(f, uk)
2 ≥ 0.

Hence, for each n,
n∑

k=1

(f, uk)
2 ≤ ‖f‖2,

which bounds the n-th partial sum of the series
∑∞

k=1(f, uk)
2 by ‖f‖2. Since

the sequence of partial sums is increasing and bounded above by ‖f‖2, the series
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converges. Letting n → ∞ yields

∞∑
k=1

(f, uk)
2 = lim

n→∞

n∑
k=1

(f, uk)
2 ≤ ‖f‖2,

as we wished to show. �

Another way to state the conclusion of Bessel’s inequality is to say that for any
f in V , the sequence of Fourier coefficients (f, uk) is an element of the sequence
space l2.

The convergence of the series
∑∞

k=1(f, uk)
2 immediately implies the following

corollary of Bessel’s inequality, a general Riemann-Lebesgue theorem.

Theorem 18.2.7 (Riemann-Lebesgue). If {uk : k ∈ N} is an orthonormal set in
V , then for any f ∈ V ,

lim
k→∞

(f, uk) = 0.

We encountered the special case of this result involving the space R[−π, π] and
the (normalized) standard trigonometric set in Theorem 15.5.2 (also known as the
Riemann-Lebesgue theorem), which took the following form: If f ∈ R[−π, π], then

lim
k→∞

∫ π

−π

f(x) cos kx dx = 0 = lim
k→∞

∫ π

−π

f(x) sin kx dx.

We have omitted the normalization constants 1/π in these limit statements.

18.2.2. Complete Spaces and Complete Orthonormal Sets. Thus far we have
not assumed that our inner product space V is a Hilbert space (Definition 9.3.3).
The previous results did not require that V be complete in the norm induced
by the inner product. Our previous examples for these results in an infinite-
dimensional setting are: the space of continuous 2π-periodic functions, denoted
CP [−π, π]; the space of Riemann integrable functions, R[−π, π]; and l2. We
have seen that CP [−π, π] and R[−π, π] are not complete in the norm given by
‖f‖2 =

∫ π

−π
f2(x) dx. We know from Theorem 9.3.4 that l2 is a Hilbert space.

In the labeled results for the remainder of the section we assume that V is a
Hilbert space.

Lemma 18.2.8. Suppose V is a Hilbert space, and {uk : k ∈ N} is an orthonormal
set in V . Then for every f ∈ V , the series

∑∞
k=1(f, uk)uk converges in norm to an

element of V , and ∥∥∥ ∞∑
k=1

(f, uk)uk

∥∥∥ ≤ ‖f‖.

Proof. Let f ∈ V . By Bessel’s inequality, the series
∑∞

k=1(f, uk)
2 converges.

Write sn =
∑n

k=1(f, uk)uk for the n-th partial sum of the series
∑∞

k=1(f, uk)uk.
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For n > m, the partial sums satisfy∥∥∥ n∑
k=1

(f, uk)uk −
m∑

k=1

(f, uk)uk

∥∥∥2 =
∥∥∥ n∑

k=m+1

(f, uk)uk

∥∥∥2

=

n∑
k=m+1

(f, uk)
2,

by orthonormality of the uk. By the convergence of
∑∞

k=1(f, uk)
2, the partial sums

sn form a Cauchy sequence in V . Since V is complete,
∑∞

k=1(f, uk)uk converges in
norm to an element of V . Now the Pythagorean theorem and Bessel’s inequality
yields ∥∥∥ ∞∑

k=1

(f, uk)uk

∥∥∥2 = lim
n→∞

∥∥∥ n∑
k=1

(f, uk)uk

∥∥∥2

= lim
n→∞

n∑
k=1

(f, uk)
2 =

∞∑
k=1

(f, uk)
2 ≤ ‖f‖2.

Taking the square root of both sides completes the proof. �

Without the assumption that V is complete in Lemma 18.2.8, the conclusion
of this lemma can fail.

Example 18.2.9. Let V be the subspace of l2 consisting of finite linear combina-
tions of the unit vectors ek, for k ≥ 2, and the vector

ξ := e1 +
∑
k≥2

1

k2
ek,

where ek has a 1 in the k-th entry and zeros elsewhere. The series in this definition of
ξ converges in l2 since the partial sums form a Cauchy sequence and l2 is complete.
Elements in V have the form

c1ξ +
∑
k∈F

ckek,

where F is any finite subset of {2, 3, 4, . . .}, and c1 and the ck are real numbers.
Then V has the inner product and norm of l2, and the set {ek : k ≥ 2} is an
orthonormal set in V . Note that e1 is not an element of V . However, ξ ∈ V ,
and the sequence of partial sums of the Fourier series of ξ with respect to the set
{ek : k ≥ 2} is Cauchy, but has no limit in V : We can see this from the calculation,
valid in l2, that

∞∑
m=2

(ξ, em)em =
∑
m≥2

(
e1 +

∑
k≥2

1

k2
ek , em

)
em =

∑
m≥2

1

m2
em = ξ − e1,

which is not an element of V since e1 is not in V . This shows that V is not complete
and that the conclusion of Lemma 18.2.8 fails in V . �

Lemma 18.2.8 shows that the Fourier series of every f in a Hilbert space con-
verges, but the lemma provides only a norm inequality relating the series sum and
f . For example, in l2, using the orthonormal set E = {e2, e4, e6, . . .} of evenly
indexed standard unit vectors, we cannot exactly represent every element by its
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Fourier series with respect to E, and many elements will be poorly approximated
by that Fourier series. This clearly suggests that some condition on the orthonor-
mal set {uk : k ∈ N}, in addition to completeness of V , is needed to ensure that
for every f in V ,

(18.3) f =
∞∑
k=1

(f, uk)uk.

Let us first consider some necessary conditions for (18.3), and to do that we need
not assume completeness of V :

If (18.3) holds for every f in V , then there cannot be an orthonormal set in
V that properly contains {uk : k ∈ N}, for if there is a vector h in V such that
(h, uk) = 0 for all k ∈ N and h =

∑∞
k=1(h, uk)uk, then h = 0.

Also, if the series
∑∞

k=1(f, uk)uk converges and equals f , the norm of the sum
must equal the norm of f , hence ‖

∑∞
k=1(f, uk)uk‖ = ‖f‖. We know that for finite

sums, the Pythagorean theorem implies that for every n,∥∥∥ n∑
k=1

(f, uk)uk

∥∥∥2 =

n∑
k=1

(f, uk)
2.

Thus, if (18.3) holds, then by taking the limit as n → ∞, we have

‖f‖2 =
∥∥∥ ∞∑

k=1

(f, uk)uk

∥∥∥2 =

∞∑
k=1

(f, uk)
2.

The equality ‖f‖2 =
∑∞

k=1(f, uk)
2 is called Parseval’s equation. (We have seen it

in Theorem 15.5.4 for the non-normalized trigonometric set in the space CP [−π, π].)
Conversely, if Parseval’s equation holds for every f in V , then every f in V is the
sum of its Fourier series with respect to the set {uk : k ∈ N}: This follows from a
direct calculation of ‖f − sn‖2 = (f − sn, f − sn) by expanding the inner product
and using orthonormality. (See Exercise 18.2.8.) We note as well that Parseval’s
equation, if holding for all f in V , implies that if h ∈ V and (h, uk) = 0 for all
k ∈ N, then ‖h‖2 = 0 and hence h = 0.

In view of Lemma 18.2.8, it is natural to consider the three conditions just
noted in a Hilbert space, and to try to close the loop of implications. This leads to
the following theorem.

Theorem 18.2.10. Let V be a Hilbert space and {uk : k ∈ N} an orthonormal set
in V . The following conditions are equivalent:

(1) If h ∈ V and (h, uk) = 0 for all k ∈ N, then h = 0.

(2) For every f ∈ V , we have f =
∑∞

k=1(f, uk)uk, where the series converges in
norm.

(3) Every f ∈ V satisfies Parseval’s equation, ‖f‖2 =
∑∞

k=1(f, uk)
2.

Proof. In our comments before the theorem we noted that conditions (2) and (3)
are equivalent, and that each implies condition (1). (We remark here that these
implications did not require the completeness of the space V .)

Thus it remains to show that (1) implies (2), and this is where we use the
assumption that V is a Hilbert space.
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Assume that (1) holds. For any f ∈ V , the series
∑∞

k=1(f, uk)uk converges to
an element of V , by Lemma 18.2.8. To see that the limit must be f , we consider
the difference f −

∑∞
k=1(f, uk)uk, and note that for every m ∈ N, orthogonality of

the uk and continuity of the inner product imply that

(
f −

∞∑
k=1

(f, uk)uk, um

)
= (f, um)−

( ∞∑
k=1

(f, uk)uk, um

)
= (f, um)− (f, um) = 0.

Hence, by (1), we have f −
∑∞

k=1(f, uk)uk = 0. This is true for every f in V and
thus (2) holds. �

Theorem 18.2.3 and Theorem 18.2.10 together provide the answer to the third
question posed at the beginning of this section, when V is a Hilbert space: Un-
der what conditions is an arbitrary element f in V represented by a convergent
expansion, f =

∑∞
k=1 ckuk, relative to the orthonormal set {uk : k ∈ N}?

With every element f in a Hilbert space V with orthonormal set {uk : k ∈ N},
we can associate the following three objects:

1. the sequence of Fourier coefficients, (f, uk);

2. the series sum, g =
∑∞

k=1(f, uk)uk, which is an element of V ;

3. the difference h := f − g.

Condition (2) of Theorem 18.2.10 states that for every f ∈ V , the corresponding g
equals f ; condition (1) states that for every f ∈ V , the difference h = f − g is zero;
and (3) says that for every f ∈ V , ‖f‖ = ‖g‖. These are equivalent properties of
an orthonormal set {uk : k ∈ N} in a Hilbert space V .

To provide some terminology, we consider the conditions (1), (2) and (3) for a
moment outside of their connection with Theorem 18.2.10.

Definition 18.2.11. Let V be a real inner product space. An orthonormal set
{uk : k ∈ N} in V is called maximal in V if condition (1) of Theorem 18.2.10
holds: If h ∈ V and (h, uk) = 0 for all k ∈ N, then h = 0. If condition (2) holds,
then {uk : k ∈ N} is called an orthonormal basis for V .

Remark. The term orthonormal basis in Definition 18.2.11 can be understood in
the sense that under condition (2), every element of the space V can be approximated
arbitrarily closely in norm by a finite linear combination of the elements in the set
{uk : k ∈ N}, in particular by the Fourier partial sums. We note that some
resources refer to an orthonormal set that is maximal in V as being complete
in V ; this is another standard term, but it is of course a different use of the term
complete than the one meaning convergence of Cauchy sequences. We use the
terminology maximal in V in Definition 18.2.11 for condition (1) stated there, to
avoid any potential ambiguity.

It can be convenient to work with an orthogonal set that is not normalized, as
we have seen with the trigonometric set on [−π, π], and the term maximal (respec-
tively, basis) can be used for an orthogonal set {φk : k ∈ N} in a space V , if the
normalized set with elements φk/‖φk‖ is a maximal orthonormal set (respectively,
an orthonormal basis) in V .
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If V is a Hilbert space, then an orthonormal set in V is maximal if and only
if it is an orthonormal basis for V . It is not difficult to see that the orthonormal
set {ek}∞k=1 in the Hilbert space l2 is a maximal orthonormal set in l2 and an
orthonormal basis for l2. (Exercise 18.2.5.)

In general, without V being a complete space, condition (1) does not imply
condition (2), as the next example shows.

Example 18.2.12. Consider again the space V of Example 18.2.9 with the or-
thonormal set U = {ek : k ≥ 2}. We claim that U is maximal in V : To see this,
suppose h ∈ V and (h, ek) = 0 for all k ≥ 2. Since h ∈ l2 and

{e1} ∪ U = {ek : k ∈ N}
is a maximal orthonormal set in l2, we have h =

∑∞
k=1(h, ek)ek, and since (h, ek) =

0 for k ≥ 2, it follows that h = (h, e1)e1. However, since e1 is not in V , the only
possibility that h is an element of V is that (h, e1) = 0 and hence h = 0. Therefore
U is maximal in V . However, condition (2) fails for the orthonormal set U in V :
As we saw in Example 18.2.9, the vector

ξ := e1 +
∑
k≥2

1

k2
ek,

an element of V , is not the sum of its Fourier series
∑

m≥2(ξ, em)em with respect

to U . Of course, condition (3) also fails for U , since ‖ξ‖2 
=
∑∞

k=2(ξ, ek)
2. �

We remarked in the proof of Theorem 18.2.10 that completeness of V was not
needed for the implications (2) implies (3) and (3) implies (1), but only to close
the loop by proving (1) implies (2) and (1) implies (3). There are important exam-
ples of function spaces V where conditions (2), (3) and (1) hold without V being
complete: The proof of Theorem 15.5.4 shows that (2) holds for the trigonomet-
ric set in CP [−π, π]. Theorem 18.3.8 in the next section shows that (2) holds for
the trigonometric set in the space R[−π, π]. These are useful results concerning
the trigonometric set, though each of these spaces fails to be a Hilbert space with
the L2 norm. This success of the trigonometric set in CP [−π, π] and R[−π, π] is
explained within a larger framework in the final section of the book. There we
show that the space L2[−π, π] of functions square integrable in the Lebesgue sense,
which includes all Riemann integrable functions on [−π, π], is a Hilbert space (The-
orem 18.4.3), and that the trigonometric set is an orthogonal basis for that space
(Theorem 18.4.7) and maximal in L2[−π, π].

Exercises.

Exercise 18.2.1. Find the closest approximation to the point (1, 2, 3), as measured
in the standard Euclidean norm, using an approximation that lies within the plane
given by the equation

x+ y + z = 0.

Here x, y, z are the coordinates of a point in R3. Hint : You will need orthogonal
basis vectors in order to use the simple inner product coefficient formulas.

Exercise 18.2.2. Let A be m × n and b ∈ Rm. When Ax = b is not consistent,
that is, when b is not in the range space (column space) of A, then there is no exact
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solution of this linear algebraic system. However, if A has full column rank, that
is, if A is one-to-one, then there is a unique vector c that minimizes the squared
error over all vectors x; thus,

||Ac− b||22 = min
x∈Rn

||Ax− b||22.

Find this least squares solution x = c for the system⎡
⎣ −4 2

0 5
5 0

⎤
⎦[ x1

x2

]
=

⎡
⎣ 1

2
3

⎤
⎦ .

Exercise 18.2.3. Find the best approximation in the L2 norm to the function

f(x) = x, 0 ≤ x ≤ π :

(i) by an element of the space U1 = span {cosx, cos 2x};
(ii) by an element of the space U2 = span {sin x, sin 2x};
(iii) by an element of the space U3 = span {sin x, cosx}.
Exercise 18.2.4. Apply Theorem 18.2.5 in the inner product space C[−1, 1] to
find the polynomial function of degree two, ax2 + bx + c, which provides the best
approximation to ex over the interval [−1, 1], in the least squares sense of the L2

norm in this space. Hint : See Exercise 18.1.3.

Exercise 18.2.5. Recall that the sequence space l2 is a Hilbert space, by Theorem
9.3.4.

1. Show that the orthonormal set {ek : k ∈ N} in l2 is a maximal orthonormal
set in l2, where ek has k-th entry 1 and all other entries zero.

2. Identify an infinite orthonormal set in l2 which is not maximal in l2.

Exercise 18.2.6. Let V be a real Hilbert space and suppose that {uk : k ∈ N} is
a maximal orthonormal set in V . Show that for all f and g in V ,

(f, g) =

∞∑
k=1

(f, uk)(g, uk).

(Note that the case f = g yields Parseval’s equality.)

Exercise 18.2.7. Suppose {uk : k ∈ N} is a maximal orthonormal set in a Hilbert

space V . Let Φ : V → l2 be defined by Φ(f) = f̂ where f̂k = (f, uk) for each k.
Prove the following statements.

1. Φ is linear, that is, Φ(αf) = αΦ(f) and Φ(f + g) = Φ(f) + Φ(g) for all

f, g ∈ V and α ∈ R. Thus, if f̂k and ĝk are the Fourier coefficients of f and g,

respectively, then αf̂k are the Fourier coefficients of αf , and f̂k + ĝk are the
Fourier coefficients of f + g.

2. Φ is one-to-one on V : If f and g have the same sequence of Fourier coefficients
with respect to {uk : k ∈ N}, then f = g.

Exercise 18.2.8. Let V be a real inner product space (not necessarily a Hilbert
space) and {uk : k ∈ N} an orthonormal set in V . Show that if ‖f‖2=

∑∞
k=1(f, uk)

2

for every f in V , then the Fourier series of every f in V converges to f . Hint : Let
sn =

∑n
k=1(f, uk)uk and expand ‖f − sn‖2 = (f − sn, f − sn).
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18.3. Mean Square Convergence

Let V be an inner product space. In Theorem 18.2.5 we considered the best mean
square approximation to an element f in V using a finite linear combination of
orthogonal elements, as we did earlier for the Fourier partial sums of Riemann
integrable functions in Theorem 15.5.1.

The previous section emphasized the importance of working with a complete
space. Suppose V is a Hilbert space and U = {uk : k ∈ N} is an orthonormal
set in V . If U is maximal in V , then we have f =

∑∞
k=1(f, uk)uk for all f in V .

If, on the other hand, U is not maximal in V , then what is the object to which
the series

∑∞
k=1(f, uk)uk converges? By Lemma 18.2.8, it converges, but the limit

will not be f , in general, if U is not maximal in V . The limit of the series is
the best approximation to f in norm from among all functions that have the form∑∞

k=1 ckuk, where the coefficient sequence (ck) satisfies
∑∞

k=1 |ck|2 < ∞. (We recall
that the vector series

∑∞
k=1 ckuk converges if and only if the real series

∑∞
k=1 |ck|2

converges, by the proof of Lemma 18.2.8.)

We record this result on infinite linear combinations as a theorem.

Theorem 18.3.1. If {uk : k ∈ N} is an orthonormal set in an infinite-dimensional
Hilbert space V , then ∥∥∥f −

∞∑
k=1

(f, uk)uk

∥∥∥ ≤ ∥∥∥f −
∞∑
k=1

ckuk

∥∥∥
for all choices of real numbers ck with

∑∞
k=1 |ck|2 < ∞. Equality holds only when

ck = (f, uk) for all k.

Proof. Write

f −
∞∑
k=1

ckuk =
[
f −

∞∑
k=1

(f, uk)uk

]
+

∞∑
k=1

(
(f, uk)− ck

)
uk.

The difference f−
∑∞

k=1(f, uk)uk is orthogonal to all the uk, as seen in the argument
for Theorem 18.2.10, and thus it is orthogonal to every term in the second series
on the right-hand side. A simple limit argument using the continuity of the inner
product then shows that the difference f −

∑∞
k=1(f, uk)uk is orthogonal to the

sum of the second series on the right. Thus, by the Pythagorean theorem (for two
orthogonal vectors), we have∥∥∥f −

∞∑
k=1

ckuk

∥∥∥2 =
∥∥∥f −

∞∑
k=1

(f, uk)uk

∥∥∥2 + ∥∥∥ ∞∑
k=1

(
(f, uk)− ck

)
uk

∥∥∥2.
However, ∥∥∥ ∞∑

k=1

(
(f, uk)− ck

)
uk

∥∥∥2 =

∞∑
k=1

|(f, uk)− ck|2,

as the proof of Lemma 18.2.8 shows. Hence,∥∥∥f −
∞∑
k=1

ckuk

∥∥∥2 =
∥∥∥f −

∞∑
k=1

(f, uk)uk

∥∥∥2 + ∞∑
k=1

|(f, uk)− ck|2.



570 18. Inner Product Spaces and Fourier Series

Since the last sum on the right is nonnegative, this equation proves the inequality
in the theorem statement, as well as the necessary condition for equality asserted
there. �

Theorem 18.3.1 extends the results given earlier for approximation of f by
finite sums

∑n
k=1 ckuk. This theorem also highlights the geometric significance of

the Fourier series of an element f in V .

18.3.1. Comparison of Pointwise, Uniform, and L2 Norm Convergence. Our
main interest in this chapter is the inner product space of functions on a closed
interval [a, b] that are square integrable in the sense of Lebesgue, denoted by L2[a, b].
We formally define this space and study it in the next section. One goal is to
establish that L2[a, b] is a complete inner product space, a Hilbert space. We will
also show that the normalized standard trigonometric set is a maximal orthonormal
set in L2[a, b] if b − a = 2π. Before doing that, however, we consider the relations
among the three modes of convergence of main interest to us in this book: pointwise,
uniform, and L2 norm convergence. This seems an appropriate place to do this,
since mean square convergence is relatively newer to us at this point, and yet it is
our primary interest in this chapter.

We first considered the L2 norm in Section 8.3 for Riemann integrable functions.
Suppose for the moment that fn and f are Riemann integrable. Convergence of fn
to f in the L2 norm means convergence in mean square, that is,

‖fn − f‖2 =
(∫ b

a

|fn(x)− f(x)|2 dx
)1/2

→ 0

as n → ∞.

We now consider the relation between any two of these modes of convergence
of a sequence fn to f : pointwise, uniform, and mean square convergence.

The functions given by fn(x) = xn, x ∈ [0, 1], define a sequence in C[0, 1] with
discontinuous pointwise limit f , since f is zero everywhere in [0, 1] except at 1,
where f(1) = 1. This example reminds us that pointwise convergence does not
imply uniform convergence. (The convergence cannot be uniform since the limit
is not continuous on [0, 1].) It also shows that mean square convergence does not
imply uniform convergence, since we have∫ 1

0

|fn(x)− f(x)|2 dx =

∫ 1

0

(xn − 0)2 dx =

∫ 1

0

x2n dx =
x2n+1

2n+ 1

∣∣∣1
0
=

1

2n+ 1
→ 0

as n → ∞.

We want to show that pointwise convergence of fn to f does not imply con-
vergence in mean square, and convergence of fn to f in mean square does not
imply pointwise convergence to f everywhere in the domain. For examples that
contrast pointwise and mean square convergence, let [a, b] = [0, 1], and consider the
following:

Example 18.3.2. Define fn(x) = n for 0 < x < 1/n, and fn(x) = 0 elsewhere
for x in [0, 1]. Then fn converges pointwise to f = 0 on [0, 1], because for x > 0,
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fn(x) = 0 for all 1/n < x, hence for all n > 1/x. However, we have

‖fn‖22 = ‖fn − 0‖22 =

∫ 1

0

|fn(x)|2 dx =

∫ 1/n

0

n2 dx = n,

and therefore fn does not converge to the zero function in the L2 norm. �

Example 18.3.3. Define fn(x) = 1 for 0 ≤ x ≤ 1/n, and fn(x) = 0 for 1/n < x ≤
1. Then we have

‖fn‖22 = ‖fn − 0‖22 =

∫ 1

0

|fn(x)|2 dx =

∫ 1/n

0

(1) dx =
1

n
,

and therefore fn converges to the zero function in the L2 norm. However, since
fn(0) = 1 for all positive integer n, the fn do not converge pointwise to the zero
function everywhere in the domain. �

In this last example, the failure of pointwise convergence to zero occurs only at
a single point in [0, 1]. However, Example 18.4.4 of the next section gives a sequence
of functions on [0, 1] that converges to the zero function in the L2 norm, yet the
sequence fails to converge pointwise at every point in [0, 1].

On the other hand, there is the positive result that uniform convergence of fn
to f on a bounded interval implies convergence in the L2 norm (Exercise 18.3.1).
This result need not hold, however, for uniform convergence on unbounded intervals
(Exercise 18.3.2).

Finally, with a view toward the next section, we summarize the main results in
this book (proved earlier, or still to come) about the convergence of Fourier series:
If f is a 2π-periodic function, then the Fourier series of f converges to f

(i) absolutely and uniformly (Theorem 15.6.7), and in L2 norm (Theorem 18.4.7),
if f is continuous and piecewise smooth;

(ii) pointwise (Theorem 15.6.2) and in L2 norm (Theorem 18.4.7), if f is piecewise
smooth;

(iii) in L2 norm (Theorem 18.4.7), if f ∈ L2[−π, π].

Exercises.

Exercise 18.3.1. Suppose that f and fn, n ≥ 1, are square integrable on [a, b].
Show that if fn converges uniformly to f on [a, b], then

lim
n→∞

∫ b

a

|fn(x)− f(x)|2 dx = 0.

Hint : Apply the definition of uniform convergence (Definition 7.1.5).

Exercise 18.3.2. The result of Exercise 18.3.1 need not hold for uniform conver-
gence on an unbounded interval. Give an example of square integrable functions
fn : [0,∞) → R such that fn → 0 uniformly on [0,∞), but fn does not converge in
norm to the zero function. Hint : Consider functions fn with value 1/2n on disjoint
intervals of length 2n.
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18.3.2. Mean Square Convergence for CP [−π, π]. We return now to the
space CP [−π, π] and consider again the convergence of the Fourier partial sums
in the L2 norm. Recall that f ∈ CP [−π, π] if f is continuous and f(−π) = f(π), so
that f extends to a continuous function on R. We have established already, in the
proof of Theorem 15.5.4, that the Fourier partial sums of a continuous 2π-periodic
function converge to the function in mean square, that is, in the L2 norm. Theorem
15.5.4 was an application of the trigonometric Weierstrass approximation Theorem
15.5.3 and the best mean square approximation property for Riemann integrable
functions in Theorem 15.5.1.

We show here how the mean square convergence follows from Fejér’s Theorem
(Theorem 15.7.3).

Theorem 18.3.4. Let f ∈ CP [−π, π] and let

sn =
1

2
a0 +

n∑
k=1

(ak cos kx+ bk sin kx)

be the n-th partial sum of the Fourier series of f . Then

lim
n→∞

‖f − sn‖22 =

∫ π

−π

|f(x)− sn(x)|2 dx = 0,

and Parseval’s equality holds:

1

2
πa20 + π

∞∑
k=1

(a2k + b2k) =

∫ π

−π

f2(x) dx.

Proof. Let f ∈ CP [−π, π], and let sn be the sequence of partial sums of the Fourier
series of f , and σn the sequence of Cesàro sums. Given ε > 0, by Theorem 15.7.3
there is a positive integer N = N(ε) such that if n ≥ N , then

|σn(x)− f(x)| <
√
ε

2
√
π

for all x ∈ [−π, π].

Thus if n ≥ N , then, in the norm induced by the inner product on CP [−π, π],

‖σn − f‖22 =

∫ π

−π

|σn(x)− f(x)|2 dx ≤
∫ π

−π

ε

4π
dx =

ε

2
.

By definition, for each n, the n-th Cesàro sum σn is a linear combination of the
functions φ0, φ1, φ2, . . . , φ2n−1, φ2n, that is,

1√
2π

,
cosx√

π
,
sinx√

π
, . . . ,

cosnx√
π

,
sinnx√

π
,

and by the theorem on best mean square approximation of f by the Fourier partial
sums (Theorem 15.5.1), we have

‖sn − f‖22 ≤ ‖σn − f‖22 ≤ ε

2
< ε.

This proves what we wanted, as it shows that

lim
n→∞

∫ π

−π

[f(x)− sn(x)]
2 dx = 0,

and again, by (15.22), this is equivalent to Parseval’s equality. �
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18.3.3. Mean Square Convergence for R[−π, π]. We show here that every
Riemann integrable function on [−π, π] (or any interval of length 2π) can be ap-
proximated arbitrarily closely in the L2 norm by its Fourier partial sums. The
argument proceeds as follows: (i) every function f ∈ R[−π, π] can be approxi-
mated in norm by step functions; (ii) every step function can be approximated
in norm by a continuous function on [−π, π]; (iii) thus, every Riemann integrable
function on [−π, π] can be approximated arbitrarily closely in the L2 norm by a
continuous function; and finally, (iv) an application of Theorem 18.3.4 and Theorem
15.5.1 completes the argument.

Our step functions g : [−π, π] → R have the form

(18.4) g =
m∑

k=1

akχEk

where the Ek are the disjoint open intervals corresponding to a partition P = {x0 =
a, x1, . . . , xm−1, xm = b} of [−π, π]. For purposes of integration, it does not matter
how such a g is defined at specific points xk of the partition. We show now that
any function f in R[−π, π] can be approximated arbitrarily closely in the L2 norm
by such a step function.

Lemma 18.3.5. Let f ∈ R[−π, π]. For every ε > 0 there is a step function g of
the form ( 18.4) on [−π, π] such that

‖f − g‖2 < ε.

Proof. Since f ∈ R[−π, π], there is a number M such that |f(x)| ≤ M for all
x ∈ [−π, π]. Given ε > 0, there is a partition P = {a, x1, . . . , xm−1, b} of [−π, π]
such that ∫ π

−π

f(x) dx− L(f, P ) <
ε2

2M
.

Define g(x) = inf{f(x) : xk−1 ≤ x ≤ xk} =: ak if xk−1 < x < xk, for 1 ≤ k ≤ m.
Then g is a step function taking the form (18.4), and g(x) ≤ f(x) ≤ M a.e. in
[−π, π]. Moreover, by definition of the lower sum for P ,

∫ π

−π
g(x) dx = L(f, P ).

Hence, ∫ π

−π

[f(x)− g(x)] dx =

∫ π

−π

f(x) dx− L(f, P ) <
ε2

2M
.

Since (f − g)2 = f2 − 2fg + g2 = f(f − g) + g(g − f), we have∫ π

−π

[f(x)− g(x)]2 dx ≤
∫ π

−π

|f(x)| |f(x)− g(x)| dx+

∫ π

−π

|g(x)| |g(x)− f(x)| dx

≤ 2M

∫ π

−π

[f(x)− g(x)] dx (since g(x) ≤ f(x))

< 2M
ε2

2M
< ε2,

and therefore ‖f − g‖2 < ε. �

The step functions (18.4) on [−π, π] can be approximated arbitrarily closely in
the L2 norm by continuous functions on [−π, π].
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Lemma 18.3.6. Let g : [−π, π] → R be a step function of the form ( 18.4). Then
for every ε > 0 there is a function h in CP [−π, π] such that

‖g − h‖2 < ε.

Proof. Let ε > 0. Suppose first that the step function g = c χ(−π,π) ≡ c on
(−π, π). Whatever we might take g to be at −π and π, suppose that |g(x)| ≤ M
for all x ∈ [−π, π]. Let

h(x) =

{
c if − π + δ ≤ x ≤ π − δ,
0 if x = −π or x = π,

where δ is to be determined, and then extend h to all of [−π, π] by requiring it to
be linear over the intervals [−π,−π + δ] and [π − δ, π], and continuous on [−π, π].

We have |g(x) − h(x)| ≤ |g(x)| + |h(x)| ≤ M + c ≤ 2M for all x ∈ [−π, π].
Therefore |g(x)− h(x)|2 ≤ 4M2 for all x ∈ [−π, π]. Hence,∫ π

−π

[g(x)− h(x)]2 dx =

∫ −π+δ

−π

[g(x)− h(x)]2 dx+

∫ π

π−δ

[g(x)− h(x)]2 dx

≤ 4M2δ + 4M2δ = 8M2δ.

We may choose δ such that δ < ε2/8M2 to complete the definition of h. Then we
have ‖g − h‖2 < ε as desired.

Now let g be an arbitrary step function of the form (18.4) and let P be the
partition associated with g. By an argument similar to the one just given, replacing
−π and π by xk−1 and xk for 1 ≤ k ≤ m, we have that for each k, there is a
continuous function hk on [xk−1, xk] such that hk(xk−1) = 0 = hk(xk) and∫ xk

xk−1

[g(x)− hk(x)]
2 dx <

ε2

m
.

(See Figure 18.1.) Let h(x) = hk(x) for xk−1 ≤ x ≤ xk, 1 ≤ k ≤ m. Then h is
continuous on [−π, π], because for k = 2, . . . ,m, hk(xk−1) = 0 = hk(xk). Note also
that h(−π) = 0 = h(π). We have∫ π

−π

[g(x)− h(x)]2 dx =

m∑
k=1

∫ xk

xk−1

[g(x)− hk(x)]
2 dx < m

ε2

m
= ε2,

and hence ‖g − h‖2 < ε. �

We noted that h(−π) = 0 = h(π), because it means that h can be extended
to a continuous function on the real line of period 2π, and this fact is useful in
Theorem 18.3.8 below.

It now follows easily that every Riemann integrable function on [−π, π] can be
approximated arbitrarily closely in the L2 norm by a continuous function.

Theorem 18.3.7. Let f ∈ R[−π, π]. For every ε > 0 there is an h ∈ CP [−π, π]
such that

‖f − h‖2 < ε.

Proof. Let ε > 0. By Lemma 18.3.5 there is a step function g such that ‖f−g‖2 <
ε/2. By Lemma 18.3.6 there is a continuous function h ∈ CP [−π, π] such that
‖g − h‖2 < ε/2. Thus, ‖f − h‖2 ≤ ‖f − g‖2 + ‖g − h‖2 < ε. �
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−π π

Figure 18.1. Approximating a step function by a continuous function.

The next result extends the result of Theorem 18.3.4.

Theorem 18.3.8. Let f ∈ R[−π, π] and let

sn =
1

2
a0 +

n∑
k=1

(ak cos kx+ bk sin kx)

be the n-th partial sum of the Fourier series of f . Then

lim
n→∞

‖f − sn‖22 =

∫ π

−π

|f(x)− sn(x)|2 dx = 0,

and Parseval’s equality holds:

1

2
πa20 + π

∞∑
k=1

(a2k + b2k) =

∫ π

−π

f2(x) dx.

Proof. Let f ∈ R[−π, π] and let sn be the n-th partial sum of the Fourier se-
ries of f . Given ε > 0, there is a continuous function h ∈ CP [−π, π] such that
‖f − h‖2 < ε/2. Let tn be the partial sums of the Fourier series of h. By Theorem
18.3.4, limn→∞ ‖h − tn‖2 = 0, so there is an N = N(ε) such that if n ≥ N , then
‖h− tn‖2 < ε/2. By Theorem 15.5.1 on the best mean square approximation of f
by the Fourier partial sums, if n ≥ N , then

‖f − sn‖2 ≤ ‖f − tn‖2 ≤ ‖f − h‖2 + ‖h− tn‖2 < ε/2 + ε/2 = ε.

This shows that

lim
n→∞

∫ π

−π

[f(x)− sn(x)]
2 dx = 0,

and by (15.22), this is equivalent to Parseval’s equality. �

Note that if f and g are Riemann integrable functions defined on [−π, π], and
f and g have the same Fourier series (the same Fourier coefficients), then Theorem
18.3.8 implies that ‖f − g‖2 = 0, and hence f = g a.e. in [−π, π].
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18.4. Hilbert Spaces of Integrable Functions

The first goal of this section is to define the space of square integrable functions
on a measure space, and show that it is a complete inner product space, a Hilbert
space. In particular, this result applies to the square integrable functions on the
Lebesgue measure space ([a, b],M[a,b],m[a,b]), which we denote simply by L2[a, b].

The second goal is to show that the normalized standard trigonometric set
is a maximal orthonormal set in the space L2[a, b] when b − a = 2π. Thus, the
trigonometric set is a maximal orthonormal set in the Hilbert space L2[−π, π] of
square integrable functions on [−π, π].

The section culminates in the Riesz-Fischer theorem, which establishes an iso-
morphism between the Hilbert spaces L2[−π, π] and l2.

We first define the space of square integrable functions on a measure space. The
definitions are stated in enough generality to cover the spaces of most interest to us.
Throughout, readers can think of (X,Σ, μ) as being (E,M,m) for a measurable
set E of R, or (E,Mn,mn) for a measurable set E of Rn.

Definition 18.4.1. Let (X,Σ, μ) be a measure space. We denote by L2(X,Σ, μ)
the set of functions f : X → R such that f is measurable and

∫
X
|f |2 dμ < ∞, with

the identification that f = g if and only if the set of points where f(x) 
= g(x) is a
set of measure zero.

Thus the elements of L2(X,Σ, μ) are equivalence classes of functions, though
we operate in practice with individual functions, always keeping in mind the equiv-
alence involved in this definition.

Our first goal is to prove that L2(X,Σ, μ) is a complete inner product space,
a Hilbert space. In order to define the inner product in L2(X,Σ, μ) as (f, g) =∫
X
fg dμ, we need to know that if f, g ∈ L2(X,Σ, μ), then fg is integrable. If

f, g ∈ L2(X,Σ, μ), then f and g are measurable, hence fg is measurable, and
therefore |fg| is measurable. We have

0 ≤
∫
X

|fg| dμ =

∫
|f |≥|g|

|fg| dμ+

∫
|g|>|f |

|fg| dμ

≤
∫
|f |≥|g|

|f |2 dμ+

∫
|g|>|f |

|g|2 dμ

≤
∫
X

|f |2 dμ+

∫
X

|g|2 dμ < ∞.

Thus, fg is integrable. We can now show that L2(X,Σ, μ) is a vector space. To do
so, we only need to show that it is closed under the operations of scalar multipli-
cation and addition. Readers can easily verify closure of L2(X,Σ, μ) under scalar
multiplication by real numbers. Let f, g ∈ L2(X,Σ, μ). Then∫

X

|f + g|2 dμ =

∫
X

(f2 + 2fg + g2) dμ

≤
∫
X

f2 dμ+ 2

∫
X

|fg| dμ+

∫
X

g2 dμ < ∞,

and thus f + g ∈ L2(X,Σ, μ). We summarize the facts thus far, as follows.
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Theorem 18.4.2. For any measure space (X,Σ, μ), the vector space L2(X,Σ, μ)
is an inner product space with inner product

(f, g) =

∫
X

fg dμ, f, g ∈ L2(X,Σ, μ),

and a normed space with norm

‖f‖2 = (f, f)1/2 =
(∫

X

f2 dμ
)1/2

, f ∈ L2(X,Σ, μ).

We note that (f, f) = 0 means
∫
X
f2 dμ = 0, hence f = 0 a.e. in X, by Exercise

17.4.8. The Cauchy-Schwarz inequality in L2(X,Σ, μ),

|(f, g)| ≤ ‖f‖2 ‖g‖2,
displayed in detail, is∣∣∣ ∫

X

fg dμ
∣∣∣ ≤ (∫

X

f2 dμ
)1/2(∫

X

g2 dμ
)1/2

for f, g ∈ L2(X,Σ, μ).

Theorem 18.4.3. The vector space L2(X,Σ, μ) is a Hilbert space, complete in the
norm induced by the inner product.

Proof. Let (fk), k ∈ N, be a Cauchy sequence in L2(X,Σ, μ). Then there is a
subsequence (fnk

), k ∈ N, such that

‖fnk+1
− fnk

‖2 <
1

2k

for all k. Choose any function h ∈ L2(X,Σ, μ). By the Cauchy-Schwarz inequality,∫
X

∣∣h(fnk+1
− fnk

)
∣∣ dμ ≤ 1

2k
‖h‖2.

Hence,
∞∑
k=1

∫
X

∣∣h(fnk+1
− fnk

)
∣∣ dμ ≤ ‖h‖2.

The monotone convergence theorem (Theorem 17.4.1) applies to the increasing
sequence of nonnegative, measurable partial sums of

∑∞
k=1

∣∣h(fnk+1
− fnk

)
∣∣. Thus

we can interchange the summation and the integral, to obtain∫
X

( ∞∑
k=1

∣∣h(fnk+1
− fnk

)
∣∣) dμ ≤ ‖h‖2.

Therefore we have

(18.5)
∞∑
k=1

∣∣h(x)(fnk+1
(x)− fnk

(x))
∣∣ = |h(x)|

∞∑
k=1

∣∣(fnk+1
(x)− fnk

(x))
∣∣ < ∞

almost everywhere in X. Hence,
∞∑
k=1

∣∣(fnk+1
(x)− fnk

(x))
∣∣ < ∞
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almost everywhere in X: To see this, note that if this series diverges on a set E
of positive measure, we could choose h to be nonzero on a subset of E of positive
measure, which would contradict (18.5).

The m-th partial sum of the series
∑∞

k=1

(
fnk+1

(x)− fnk
(x)
)
, which converges

absolutely almost everywhere in X, is given by

m∑
k=1

(
fnk+1

(x)− fnk
(x)
)
= fnm+1

(x)− fn1
(x),

and hence we can define

f(x) = lim
m→∞

fnm
(x)

at points where the series converges, and set f = 0 at points in the complementary
set of measure zero.

We have a pointwise limit a.e. of the subsequence (fnm
) to the function f . We

now want to show that f = limk→∞ fk in norm. Let ε > 0. Since (fk) is Cauchy,
there exists a positive integer N = N(ε) such that if n, k ≥ N , then ‖fn−fk‖2 < ε.
For each k ≥ N , Fatou’s lemma (Theorem 17.4.4) implies∫

X

|f − fk|2 dμ =

∫
X

lim inf
m→∞

|fnm
− fk|2 dμ

≤ lim inf
m→∞

∫
X

|fnm
− fk|2 dμ

= lim inf
m→∞

‖fnm
− fk‖22 ≤ ε2,(18.6)

where we used the fact that m ≥ N implies nm ≥ N , hence ‖fnm
− fk‖2 < ε. It

follows from (18.6) that f − fk ∈ L2(X,Σ, μ) for k ≥ N . Thus,

f = fk + (f − fk) ∈ L2(X,Σ, μ),

and by (18.6),

‖f − fk‖2 ≤ ε, for k ≥ N = N(ε).

This is true for every ε > 0, and hence fk → f in L2(X,Σ, μ). Therefore L2(X,Σ, μ)
is complete. �

A slightly different proof of Theorem 18.4.3 is considered in Exercise 18.4.6.

Mirroring our comments after the proof of completeness of L1(X,Σ, μ) in The-
orem 17.6.3, and recalling Example 17.6.4, we again should not read too much into
the existence of a pointwise convergent subsequence of the Cauchy sequence (fk)
in Theorem 18.4.3.

Example 18.4.4. We again consider X = [0, 1] and the sequence of functions
(fj) defined in Example 17.6.4. Since each fj is the characteristic function of a
subinterval of [0, 1], each fj is square integrable and therefore an element of L2[0, 1].
Moreover, by the construction of the sequence (fj) in Example 17.6.4, ‖fj‖2 = 1/

√
n

if fj is the characteristic function of an interval of length 1/n. Therefore fj → 0 in
norm in L2[0, 1]. However, as shown in the earlier example, the sequence fj fails to
converge pointwise everywhere in [0, 1], since lim sup fj(x) = 1 and lim inf fj(x) = 0
for every x ∈ [0, 1]. �
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Now let [a, b] be a real interval, and consider (X,Σ, μ) = ([a, b],M,m), the
Lebesgue measure space induced by the Lebesgue measure on R in accordance
with the construction in Exercise 16.5.10. We shall simply write L2[a, b] for the
space L2([a, b],M,m). If b − a = 2π, then we know that the normalized standard
trigonometric set is an orthornormal set in L2[a, b]. In particular, the trigonometric
set is an orthornormal set in L2[−π, π].

We wish to show that the trigonometric set is a maximal orthornormal set in
L2[−π, π]. This will follow in Theorem 18.4.7 below from the following facts: (a)
the density of the Riemann integrable functions in L2[−π, π]; and (b) the mean
square convergence result for R[−π, π] in Theorem 18.3.8.

We consider a general closed interval [a, b] for the density result.

Theorem 18.4.5. Let f ∈ L2[a, b]. Given any ε > 0, there is a simple function
h ∈ L2[a, b] such that ‖f −h‖2 < ε. Thus, the simple functions in L2[a, b] are dense
in L2[a, b].

Proof. Suppose f ∈ L2[a, b] and f ≥ 0 on [a, b]. By Theorem 17.2.3, there is an
increasing sequence sn of nonnegative simple functions such that limn→∞ sn = f
pointwise on [a, b]. Since 0 ≤ f(x)− sn(x) ≤ f(x) for all x,

|f(x)− sn(x)|2 ≤ |f(x)|2,
and |f |2 is integrable. By the dominated convergence theorem (Theorem 17.4.5),

lim
n→∞

∫
[a,b]

|f − sn|2 dm =

∫
[a,b]

lim
n→∞

|f − sn|2 dm =

∫
[a,b]

0 dm = 0.

Thus, ‖f − sn‖22 → 0, and hence ‖f − sn‖2 → 0, as n → ∞. Therefore given any
ε > 0, there is an N = N(ε) such that if n ≥ N , then ‖f − sn‖2 < ε. This proves
the result for nonnegative f ∈ L2[a, b].

Now let f ∈ L2[a, b] and suppose f takes positive and negative values. Write
f = f+ − f−. Since f+, f− ≥ 0, given ε > 0, there exist simple functions h1 and
h2 such that

‖f+ − h1‖2 <
ε

2
and ‖h2 − f−‖2 <

ε

2
.

Then h = h1 − h2 is a simple function, and

‖f − h‖2 = ‖f+ − f− − h1 + h2‖2
≤ ‖f+ − h1‖2 + ‖h2 − f−‖2 < ε.

Since ε > 0 is arbitrary, this completes the proof. �

In order to show that the Riemann integrable functions are dense in L2[a, b],
it suffices to show that the step functions on [a, b] are dense in L2[a, b], since the
step functions are dense in R[a, b]. (See Definition 17.2.2 for the definition of step
functions.)

Theorem 18.4.6. Let f ∈ L2[a, b]. Given any ε > 0, there is a step function
g ∈ L2[a, b] such that ‖f − g‖2 < ε. Thus, the step functions are dense in L2[a, b].

Proof. First, suppose that f = χE where E is a measurable set in [a, b]. Let ε > 0.
Since E has finite measure, Theorem 16.5.10 (statement 2) implies that there is an
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open set O in [a, b] such that E ⊂ O and m(O−E) = m(O)−m(E) < ε2/2, hence
m(O) < m(E) + ε2/2. We can write

O =
∞⋃

n=1

On,

where the On are pairwise disjoint open intervals relative to [a, b]. (If O is a finite
union of open intervals in [a, b], then we may append empty sets to form a countable
union for the argument that follows, or simply note that χO is a step function that
approximates χE and proceed as shown below.) Since m(O) =

∑∞
n=1 m(On) and

m(O) < ∞, the series converges. Thus, there is an N = N(ε) such that

∞∑
n=N+1

m(On) <
ε2

2
.

Let V =
⋃N

n=1 On. Then χV is a step function that approximates χO, and hence
approximates χE . We now show that in the norm on L2[a, b], we have ‖χV−χE‖2<ε.
To see this, note first that

V − E ⊂ O − E =⇒ m(V − E) ≤ m(O − E) <
ε2

2
.

We also have E − V ⊂
⋃∞

n=N+1 On, so m(E − V ) ≤ ε2/2. Hence, by the definition
of characteristic function, we have∫

[a,b]

|χV − χE |2 dm =

∫
[a,b]−(V ∪E)

|χV − χE |2 dm+

∫
V−E

|χV − χE |2 dm

+

∫
E−V

|χV − χE |2 dm+

∫
E∩V

|χV − χE |2 dm

=

∫
V−E

|χV − χE |2 dm+

∫
E−V

|χV − χE |2 dm

=

∫
V−E

(1)2 dm+

∫
E−V

(1)2 dm

= m(V − E) +m(E − V ) < ε2/2 + ε2/2 = ε2.

It follows that ‖χV − χE‖2 < ε.

Now let f be an arbitrary element of L2[a, b] and let ε > 0. By Theorem 18.4.5,
there is a simple function h ∈ L2[a, b] such that ‖f − h‖2 < ε/2. We may write

h =
M∑
k=1

ckχEk
,

where for 1 ≤ k ≤ M , ck 
= 0 and Ek is measurable in [a, b]. By the result proved
above for characteristic functions of measurable sets, there exist step functions gk,
1 ≤ k ≤ M , such that

‖gk − χEk
‖2 <

ε

2M |ck|
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for each k. Since the gk are step functions, the linear combination g :=
∑M

k=1 ckgk
is also a step function, and

‖f − g‖2 ≤ ‖f − h‖2 + ‖h− g‖2

= ‖f − h‖2 +
∥∥∥ M∑

k=1

ckχEk
−

M∑
k=1

ckgk

∥∥∥
2

≤ ‖f − h‖2 +
M∑
k=1

|ck| ‖χEk
− gk‖2

<
ε

2
+

M∑
k=1

|ck|
ε

2M |ck|

=
ε

2
+

ε

2
= ε.

This completes the proof that the step functions are dense in L2[a, b]. �

We can now show that when b−a = 2π, the normalized trigonometric set {φk}
is a maximal orthonormal set in L2[a, b] = L2[a, a + 2π]. It suffices to prove this
for the interval [−π, π].

Theorem 18.4.7. The normalized standard trigonometric set {φk : k ≥ 0} is a
maximal orthonormal set in L2[−π, π].

Proof. Let f ∈ L2[−π, π] and let sn be the n-th partial sum of the Fourier series
of f with respect to the φk. We want to show that ‖f − sn‖2 → 0 as n → ∞, as
the maximality of the trigonometric set in L2[−π, π] then follows from Theorem
18.2.10. Let ε > 0. By Theorem 18.4.6, there is a step function g ∈ R[−π, π] such
that

‖f − g‖2 <
ε

2
.

If tn is the n-th partial sum of the Fourier series of g, then by the mean square
convergence result in R[−π, π] (Theorem 18.3.8), we have

lim
n→∞

‖g − tn‖2 = 0.

Thus, there is an N = N(ε) such that if n ≥ N , then

‖g − tn‖2 <
ε

2
.

By the best mean square approximation theorem (Theorem 15.5.1), we have

‖f − sn‖2 ≤ ‖f − tn‖2

for all n, since tn is a linear combination of φ0, φ1, φ2, . . . , φ2n−1, φ2n. Therefore if
n ≥ N , then

‖f − sn‖2 ≤ ‖f − tn‖2 ≤ ‖f − g‖2 + ‖g − tn‖2 < ε.

This shows that limn→∞ ‖f − sn‖2 = 0 and completes the proof. �
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Theorem 18.4.7 can also be expressed as the density of the trigonometric poly-
nomials in L2[−π, π]. (See also Exercise 18.4.5).

We also note that the density of R[−π, π] in L2[−π, π] combined with Theorem
18.3.7 shows that C[−π, π] is dense in L2[−π, π].

If f ∈ L2[−π, π], then its Fourier coefficients with respect to the normalized
trigonometric set {φk : k ≥ 0} are defined. Thus we have a linear mapping Φ :
L2[−π, π] → l2 given by

Φ(f) =
(
(f, φk)

)∞
k=0

,

and Bessel’s inequality implies that Φ(f) is in l2. Parseval’s equality holds, since it
is equivalent to limn→∞ ‖f − sn‖2 = 0, and implies that Φ preserves norms,

‖Φ(f)‖22 =
∞∑
k=0

(f, φk)
2 = ‖f‖22.

Thus Φ is called an isometry. The norm-preserving property implies that Φ is
one-to-one, for if Φ(f) = Φ(g), then Φ(f − g) = 0, and hence f = g in L2[−π, π].

It is natural to ask whether Φ : L2[−π, π] → l2 is onto l2. Does every element
of l2 correspond to a square integrable function on [−π, π]? Is the space L2[−π, π]
large enough to contain a function whose Fourier coefficients with respect to the set
{φk} equal a prescribed sequence in l2? The Riesz-Fischer theorem tells us that Φ
does map L2[−π, π] onto l2. This fact was, and remains, a triumph of the Lebesgue
theory of the integral.

Theorem 18.4.8 (Riesz-Fischer). Let {φk : k ≥ 0} be the normalized standard
trigonometric set on [−π, π]. Suppose ξ = (ck)

∞
k=0 ∈ l2, and we define

sn =

n∑
k=0

ckφk.

Then there is an element f ∈ L2[−π, π] such that sn converges in norm to f , and
ξ is the sequence of Fourier coefficients of f with respect to the orthonormal set
{φk : k ≥ 0}.

Proof. Since {φk} is an orthonormal set, if n > m, then by the Pythagorean
theorem,

‖sn − sm‖22 =
∥∥∥ n∑

k=m+1

ckφk

∥∥∥2
2
=

n∑
k=m+1

c2k.

Since (ck) ∈ l2, (sn) is a Cauchy sequence in L2[−π, π]. Since L2[−π, π] is complete,
there is an f ∈ L2[−π, π] such that limn→∞ ‖f − sn‖2 = 0. Hence, f =

∑∞
k=0 ckφk,

the convergence being in norm.

Let n > k. Then

(f, φk)− ck = (f, φk)− (sn, φk) = (f − sn, φk).

The Cauchy-Schwarz inequality then gives∣∣(f, φk)− ck
∣∣ = ∣∣(f − sn, φk)

∣∣ ≤ ‖f − sn‖2 ‖φk‖2 = ‖f − sn‖2,
since ‖φk‖2 = 1. Letting n → ∞, we conclude that ck = (f, φk), and this is true
for every k ≥ 0. �
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The Riesz-Fischer theorem tells us that Φ(f) = ((f, φk))
∞
k=0 not only preserves

norms (an isometry), but also Φ preserves inner products: Given any ξ and η in l2,
there exist f and g in L2[−π, π] such that

(f, g) =

∞∑
k=0

(f, φk)(g, φk) =
(
Φ(f),Φ(g)

)
= (ξ, η).

The mapping Φ thus defines what is called a unitary equivalence between the
Hilbert spaces L2[−π, π] and l2. We note that the space of Riemann integrable
functions R[−π, π] is not unitarily equivalent to l2, as there are elements of l2 that
are not the sequence of Fourier coefficients of any Riemann integrable function.

The Riesz-Fischer theorem allows us to view L2[−π, π] as an infinite-dimensional
analogue of finite-dimensional Euclidean space. In this view every function is the
sum, in the sense of convergence in norm, of its Fourier series with respect to a max-
imal orthonormal set, with Parseval’s equality playing the role of the Pythagorean
theorem. The space L2[−π, π] is complete and fills the gaps where Cauchy sequences
in R[−π, π] do not converge to an element of R[−π, π]. Of course there are signifi-
cant differences between this infinite-dimensional space and the finite-dimensional
case, including the fact that the unit ball in L2[−π, π] is not compact (Exercise
18.4.1).

In this book we have concentrated on the closed interval [a, b]. There are many
boundary value problems of classical and modern physics, known as Sturm-Liouville
problems, that require for their complete solution and understanding, the space of
square integrable functions on an intervalD of the real numbers. We examined a few
of the simplest Sturm-Liouville problems in our coverage of the heat equation and
wave equation examples on D = [0, π]. In cases where the interval D is unbounded,
an inner product can be defined using a weight function specific to the problem
which allows for finite integrals over the unbounded domain. The space of square
integrable functions on D, defined in terms of a problem-specific weighted inner
product, is complete. These spaces are Hilbert spaces. Some of the best known ex-
amples of orthonormal sets arise from Sturm-Liouville boundary value problems as
the eigenfunctions of second-order linear differential operators, or functions closely
related to the eigenfunctions. For various intervals D, some examples are: the Le-
gendre polynomials on (−1, 1), the Hermite polynomials and associated Hermite
functions on (−∞,∞), and the Laguerre polynomials on (0,∞). The Hermite
functions and the Laguerre polynomials are important in quantum mechanics. The
Bessel functions are important in the study of the wave equation, in particular the
study of vibrations of circular membranes such as drumheads. Folland [14] is an
interesting text and reference for these problems and their mathematical properties.

We end with a final comment on the term-by-term integration of Fourier series.
Using his new integral, Lebesgue showed that the Fourier series of an integrable
function can always be integrated term-by-term (Exercise 18.4.2). Recall that it
was this term-by-term integration, under the assumption of uniform convergence
of the series, that motivated the appropriate formulas for the Fourier coefficients.
Thus our definition of Fourier coefficients for any integrable function is fully justified
from the standpoint of the Lebesgue integral.
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Exercises.

Exercise 18.4.1. Show that the unit ball in L2[−π, π] is not compact. Hint :
Consider l2 and see Exercise 9.1.12.

Exercise 18.4.2. Term-by-term integration of Fourier series
Suppose that f is integrable and square integrable on [−π, π], so that∫ π

−π

|f(x)| dx < ∞ and

∫ π

−π

|f(x)|2 dx < ∞.

Let

sn =
1

2
a0 +

n∑
k=1

(ak cos kx+ bk sin kx)

be the Fourier partial sums for f . Show that if −π ≤ a ≤ π, then the series∫ x

a

a0
2

dθ +

∞∑
k=1

∫ x

a

(ak cos kθ + bk sin kθ) dθ

converges uniformly to
∫ x

a
f(θ) dθ on [−π, π]. Hint : This is equivalent to showing

that the sequence
∫ x

a
sn(θ) dθ converges uniformly to

∫ x

a
f(θ) dθ on [−π, π], which

is equivalent to showing that
∫ x

a
(sn(θ) − f(θ)) dθ converges uniformly to zero on

[−π, π]. Use the Cauchy-Schwarz inequality. This result does not assume that the
Fourier series of f converges uniformly or even pointwise; it says that the term-by-
term integrated series is justified and yields the correct result for the integral of
f .

Exercise 18.4.3. Show that the function f(x) = 1/
√
x is Lebesgue integrable on

(0, 1), but that its square f2(x) = 1/x is not Lebesgue integrable on (0, 1).

Exercise 18.4.4. By Exercise 8.3.17, every finite-dimensional subspace of a normed
space is complete, and hence closed. On the other hand, it is clear that a closed
subspace is necessarily complete. Give an example of an infinite-dimensional sub-
space of L2[−π, π] which is dense in L2[−π, π] and not closed. Consider the same
question for l2.

Exercise 18.4.5. Let V be a Hilbert space with an orthonormal basis {uk : k ∈
N}. Show that the following condition is equivalent to conditions (1)-(3) of Theo-
rem 18.2.10:

(4) Finite linear combinations of elements of {uk : k ∈ N} are dense in V .

Suggestion: Show that (4) implies (1) (f ∈ V and (f, uk) = 0 for all k implies
f = 0), and (3) (Parseval’s equality) implies (4).

Exercise 18.4.6. At the beginning of the proof that L2(X,Σ, μ) is a Hilbert space,
we let (fn), n ∈ N, be a Cauchy sequence in L2(X,Σ, μ), such that the subsequence
(fnk

), k ∈ N, satisfied

‖fnk+1
− fnk

‖2 <
1

2k

for all k. Instead of choosing an arbitrary function h ∈ L2(X,Σ, μ) and proceeding
as in the text, show that we could obtain a pointwise limit almost everywhere in X
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for this subsequence, as follows:

1. Let

gm =
m∑

k=1

|fnk+1
− fnk

| and g =
∞∑
k=1

|fnk+1
− fnk

|.

Verify that for each m, gm is measurable, and by the triangle inequality for
the norm in L2(X,Σ, μ), ‖gm‖2 < 1.

2. Use Fatou’s lemma (Theorem 17.4.4) to show that

‖g‖22 ≤ lim inf
m→∞

‖gm‖22 ≤ 1,

and hence ‖g‖2 ≤ 1.

3. Conclude that 0 ≤ g(x) < ∞ almost everywhere in X, and therefore the series
defining g converges a.e. in X.

4. Then show that the series

fn1
(x) +

∞∑
k=1

(
fnk+1

(x)− fnk
(x)
)

converges for almost all x in X to a limit function f . (The remainder of the
proof then proceeds as before.)

Exercise 18.4.7. A case where pointwise implies mean square convergence
Suppose fn ∈ L2[a, b] for all n and fn → f pointwise on [a, b]. Show that if there
exists g ∈ L2[a, b] such that |fn(x)| ≤ |g(x)| for all n and all x ∈ [a, b], then fn → f
in norm. Hint : Apply the dominated convergence theorem.

Exercise 18.4.8. Consider the intervals (0, 1] and [1,∞) as measure spaces with
Lebesgue measure.

1. Show that f(x) = x−3/4 is in L1((0, 1]), but not in L2((0, 1]).

2. Show that f(x) = x−3/4 is in L2([1,∞)), but not in L1([1,∞)).

18.5. Notes and References

This chapter is influenced by Folland [14], Hoffman [30], Rudin [52], and John-
sonbaugh and Pfaffenberger [32]. My thanks go to an anonymous reviewer for
Examples 18.2.9-18.2.12.

For more on Fourier analysis and its applications, including a comprehensive
look at Sturm-Liouville problems, see Folland [14]. Other books that discuss these
problems in detail are González-Velasco [20], Haberman [23] and Strauss [63].

Epstein [11] and Kreyszig [41] are introductory texts on functional analysis
that cover linear operators on Hilbert space. In this connection, a background in
linear algebra from Halmos [25] can be helpful, as it projects a point of view towards
the infinite-dimensional problems of Hilbert space while covering finite-dimensional
spaces.

For an interesting book on topology and modern analysis, function spaces and
function approximation, see Simmons [59].





Appendix A

The Schroeder-Bernstein
Theorem

This appendix presents a formal proof of the Schroeder-Bernstein theorem.

A.1. Proof of the Schroeder-Bernstein Theorem

Theorem A.1.1 (Schroeder-Bernstein). Let X and Y be sets. If there exists a
one-to-one mapping f : X → Y and a one-to-one mapping g : Y → X, then X and
Y have the same cardinality.

Proof. Let Y1 = f(X), X̃1 = g(Y ) and X1 = g(Y1). If Y1 = Y , or equivalently,

X1 = X̃1, then f is one-to-one from X onto Y . Otherwise, if we construct a
one-to-one mapping k from X onto X̃1, then

h(x) := g−1(k(x))

will be a one-to-one mapping of X onto Y , as desired. We now construct such a
mapping k : X → X̃1. (See Figure A.1.)

Recall that g ◦ f is a one-to-one mapping and hence, by our definitions above,
a one-to-one mapping from X onto its subset X1. Let X0 = X. Now define sets
X̃n and Xn for n = 1, 2, . . . as follows:

X̃1 = g(Y ) (as above) X1 = g(f(X0)) (as above)

X̃2 = g(f(X̃1)) X2 = g(f(X1))

X̃3 = g(f(X̃2)) X3 = g(f(X2))

...
...

X̃n+1 = g(f(X̃n)) Xn+1 = g(f(Xn)).

Since X1 ⊂ X̃1, we see by induction that Xn ⊂ X̃n for all n ≥ 1. And since
X̃1 ⊂ X0 we have X̃2 ⊂ X1, and by induction we conclude that X̃n+1 ⊂ Xn for all
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f

g
Y1 = f(X)

YX

X1 = g(Y1)

X̃1 = g(Y )

Figure A.1. Initial construction of sets in the Schroeder-Bernstein theorem.

n ≥ 1. Thus, X1 ⊂ X̃1 ⊂ X0 = X, and for all n ≥ 1, we have

X̃n+1 ⊂ Xn ⊂ X̃n.

Let X0 = X and define a mapping k : X → X by

k(x) =

⎧⎨
⎩

g(f(x)) if x ∈ Xn − X̃n+1, n = 0, 1, 2, . . . ,

x if x ∈ X̃n −Xn, n = 1, 2, 3, . . . ,
x if x ∈

⋂∞
n=1 Xn.

By the way the sets Xn and X̃n are constructed, k maps (Xn−X̃n+1) onto (Xn+1−
X̃n+2) for n = 0, 1, 2 . . .. Since the composition g◦f is one-to-one over each of these
sets, we have that k is defined and one-to-one on X; moreover, the range of k must
be

(A.1)
[ ∞⋃
n=1

(Xn − X̃n+1)
]

∪
[ ∞⋃
n=1

(X̃n −Xn)
]

∪
[ ∞⋂
n=1

Xn

]
= X̃1.

(See Exercise A.1.1.) Therefore k is the desired one-to-one mapping from X onto

X̃1, and hence h(x) = g−1(k(x)) is a one-to-one mapping of X onto Y . �

Exercise.

Exercise A.1.1. Verify that the mapping k is defined on all of X, and that the
range of k equals X̃1 as shown in (A.1).



Appendix B

Symbols and Notations

B.1. Symbols and Notations Reference List

� denotes end of an example
� denotes end of a proof
∃ there exists
∀ for every; for all
∈ belongs to, is an element of
∅ the empty set
a := b a is defined to be b
a =: b b is defined to be a
≡ identically equal to, e.g., cos2 t+ sin2 t ≡ 1
S1 =⇒ S2 S1 implies S2; if S1, then S2;

the contrapositive is : if not S2, then not S1

the converse is : if S2, then S1

S1 ⇐⇒ S2 S1 if and only if S2

{x ∈ S : P} the set of x ∈ S with property P
⊂, ⊆ proper subset of, subset of
A ∪B union of A and B
A ∩B intersection of A and B
Bc complement of B, if universe understood
A−B complement of B in A, that is, A ∩Bc

supS supremum (least upper bound) of S
inf S infimum (greatest lower bound) of S
N set of natural numbers (positive integers)
Q rational number field
R real number field
Rn real space of dimension n
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Rn×n space of n× n matrices with real entries
Rm×n space of m× n matrices with real entries
Inv(Rn,Rn) set of invertible n× n real matrices
C complex number field
Cn complex space of dimension n
C[a, b] space of real valued continuous functions on [a, b]
Cn[a, b] space of Rn valued continuous functions on [a, b]
CP [−π, π] space of continuous functions of period 2π
R[a, b] space of Riemann integrable functions on [a, b]
L2[−π, π] space of functions square integrable on [−π, π]
f(t) → L means limt→c f(t) = L, if c understood
Br(a) {x : |x− a| < r}
Br(x0) {x : ‖x− x0‖ < r}, space and norm understood
Br(x0) {x : ‖x− x0‖ ≤ r}, space and norm understood
|x|2 Euclidean norm of x ∈ Rn

|x| norm of vector x ∈ Rn, often subscripted, e.g., |x|2
‖A‖ norm of matrix A, often subscripted, e.g., ‖A‖∞
‖f‖ norm of real valued function
‖F‖ norm of vector valued function
ẋ, ẋ first derivative of x, x with respect to t
ẍ, ẍ second derivative of x, x with respect to t

x(j), x(j) order j derivative of x, x with respect to t
xT , AT transpose of column vector x, or matrix A
P > 0 symmetric positive definite matrix P
P ≥ 0 symmetric positive semidefinite matrix P
Re z real part of complex number z
Im z imaginary part of complex number z
z complex conjugate of z
N(A) null space of matrix A
R(A) range space (columnspace) of matrix A
spanS all finite linear combinations of vectors from S
V ⊥ orthogonal complement of V
Djf(x) derivative of f(x1, . . . , xn) with respect to xj at x
∂f/∂xj(x) derivative of f(x1, . . . , xn) with respect to xj at x
DF(a) derivative of F : Rn → Rm at a
∂F/∂x(a) derivative DF(a)
JF(a) m× n Jacobian matrix of F : Rn → Rm at a
detA determinant of matrix A
Jg(x) Jacobian matrix of g
Δg(x) det Jg(x), also, detDg(x)
dh(x) derivative of real valued h at x
f
∣∣
V
, F
∣∣
V

restriction of f, F to the domain V
m(A) Lebesgue measure of set A ⊆ R
mn(A) n-dimensional Lebesgue measure of set A ⊆ Rn

μ(A) μ-measure of set A
ν(A) volume of set A, if dimension is understood
νn(A) n-dimensional volume of set A ⊆ Rn
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B.2. The Greek Alphabet

Twenty-one of the lowercase letters are listed, along with eleven of the uppercase
letters that are sometimes useful. Names of letters appear to the right. The letters
iota, kappa, and omicron are missing from this list, as they resemble the Roman
letters i, k, and o too closely to distinguish them.

α alpha
β beta
γ Γ gamma
δ Δ delta
ε epsilon
ζ zeta
η eta
θ Θ theta
λ Λ lambda
μ mu
ν nu
ξ Ξ xi
π Π pi
ρ rho
σ Σ sigma
τ tau
υ Υ upsilon
φ Φ phi
χ chi
ψ Ψ psi
ω Ω omega
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C1, 301

C1-invertible, 341

Ck, 301

μ∗-measurable set, 507

σ-algebra, 495

Borel, 496

defined by μ∗-measurable sets, 508

generated, 496

lp sequence space, 287

o(h) notation

definition, 126

with derivative definition, 126

a.e. (almost everywhere), 376, 532

Abel’s test, 83

absolute continuity

of the integral, 548

absolute convergence, 72, 292

and rearrangements, 87

of function series, 191

absolute value

definition, 31

properties, 31

accumulation point, 48, 96, 253, 272

additive

countably, 499

finitely, 499

additivity

of Lebesgue integral, 540

adjoint

classical, 338

algebra (of sets), 494

algebraic number, 47

almost everywhere (a.e.), 158, 376, 532

alternating series, 71

harmonic, 72

Archimedean property

definition, 29

of the rationals, 29

of the reals, 29

area

of surface, 415

asymptotic stability

of equilibrium, 443

autonomous, 425, 426

autonomous system, 432

existence and uniqueness, 433

extension of solutions, 436

flow of, 436

solution of, 432

average value, 164

backward orbit, 436

Banach space

C[a, b], 281

defined, 281

sequence space lp, 287

basis, 223

behavior at time boundaries, 437

Bernoulli’s inequality, 11, 58

Bernstein polynomials, 216

Bessel’s inequality

in R[−π, π], 473

inner product space, 562

bijection, 6

binary expansions, 45

597
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binomial coefficients, 11
binomial theorem, 11
Bolzano-Weierstrass property, 274
Bolzano-Weierstrass theorem, 48, 256

sequential, 49
Borel σ-algebra, 496
Borel set, 496
boundary, 92, 253, 272
boundary point, 92, 253, 272
bounded set, 256, 271, 515

Cantor set, 66
measure zero, 158

Cartesian product, 5
Cauchy criterion for series, 62
Cauchy principal value, 177
Cauchy sequence, 50, 249

in normed space, 229
Cauchy’s mean value theorem, 140
Cauchy-Hadamard theorem, 199
Cauchy-Schwarz inequality, 225
Cayley-Hamilton theorem, 340
Cesàro sum, 491
Cesàro sum (Fejér mean), 487
Cesàro summable, 490, 491
chain rule, 126
change of variables formula, 389

cylindrical coordinates in, 412
multivariable, 407, 410
polar coordinates in, 411
single variable, 168
spherical coordinates in, 411

characteristic function, 367
class C1 function, 301
class Ck function, 301
classical adjoint, 338
closed

relative to a set, 255
closed interval, 256

in Rn, 362
closed set, 95, 253, 256

metric space, 272
normed space, 229

closed sets
finite unions of, 254, 273
intersections of, 254, 273

closure of a set, 97, 272
cluster point, 48, 96, 253, 272
cofactor, 338
compact set, 99, 263, 274

in metric space, 275
complete measure, 505

from outer measure, 508
complete metric space, 249
completeness

of C[a, b], 280
of Cn[a, b], 428
of l2, 281
of Rn, 252
of normed space, 229
of ordered field, 25

complex conjugate, 35
complex exponential function, 203
complex field, 20
composition, 110
conditional convergence, 73

and rearrangements, 89
conditionally convergent, 73
congruent sets, 401
conjugate (complex number), 35
conjugate exponents, 284
connected set, 102, 268
conservation of energy, 439
constrained extremum, 351
continuity

at a point, 257
local Lipschitz, 430
of composite functions, 258
of inverse, 339
on a domain, 111
vector functions, 259

continuity at a point
definition, 109
sequential characterization, 110

continuous dependence
on initial conditions, 440
on right-hand sides, 441

contraction constant, 135, 278
contraction mapping, 135, 278
contraction mapping theorem, 279

scalar case, 135
convergence

absolute, 292
absolute, 72, 191
conditional, 73
in metric space, 249
mean square, 572, 573
monotone sequence, 41
of a real sequence, 37
of complex Cauchy sequences, 51
of Fourier series, 480
of real Cauchy sequences, 51
pointwise, 181, 191
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series, 61
uniform, 183, 191

convex, 316
convex set, 269
cosine function, 209

inverse, 214
periodicity, 211

cosines
law of, 229

countable, 15
countably additive, 499
counting measure, 499
critical point, 332
cube, 324

radius of a, 324
curl, 302
cylindrical coordinates

in change of variables formula, 412

Darboux’s theorem, 133
De Morgan’s laws, 4
decimal expansion, 43

nonterminating, 43
terminating, 43

dense
in R, 30, 97
in Rn, 253

dense in an open set, 97, 253, 272
density

of simple functions in L2[a, b], 579
of step functions in L2[a, b], 579
of the irrationals, 30
of the rationals, 30
of trig polynomials in L2[−π, π], 581

denumerable, 14
derivative, 122

directional, 317
of vector function, 305
uniqueness of, 305

derivatives
partial, 297

diameter, 515
differentiable, 122

implies continuous, 123, 306
products and quotients, 124
sums and differences, 124
vector function, 305

differentiation
term-by-term, 193
under the integral, 267

dimension, 223
direct image, 5

properties of, 6
directional derivatives, 317

existence of, 317
Dirichlet function, 151, 544
Dirichlet kernel, 476

formula, 477
Dirichlet problem, 453
Dirichlet’s test, 84
disconnected set, 102, 268
discontinuity

of first kind, 117
of second kind, 117

disjoint collection, 9, 499
disjoint sets, 3, 9
disjoint union, 3, 9, 499
distance (from a point to a set), 515
div (divergence), 302
divergence, 302
divergence theorem (for a ball), 418
divergence to ±∞, 58
dominated convergence theorem, 543

eigenspace, 244
eigenvector, 243
element of surface area, 416
elementary functions

transcendental values, 213
elementary linear transformations, 395
empty set, 1
energy

conservation, 439
mechanical, 438

enumeration, 14
equilibrium

asymptotically stable, 443
stable, 443

equivalence of norms, 233
equivalence relation, 12
Euclidean (standard) inner product, 225
Euclidean metric, 248
Euclidean norm, 228
Euclidean rigid motion, 401
Euler number

definition, 59
irrationality of, 70
series for, 69

Euler’s identity, 86
existence and uniqueness

autonomous system, 433
scalar differential equation, 422

exponential
base b, 206
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complex, 203
derivative of, 207
matrix, 447
real, 203

extended real numbers, 499
laws, 498
undefined operations, 498

extended real valued function, 499
extension by zero, 366
extension of solutions, 436
extreme value theorem, 116, 264
extreme values

relative, 127
extremum

constrained, 351

Fatou’s Lemma, 542
Fejér kernels

formula, 488
Fejér mean (Cesàro sum), 487
Fejér’s theorem, 489
field, 18

addition axioms, 18
distributivity axiom, 19
multiplication axioms, 18
ordered, 20
positive set of, 20

finite set, 12
finitely additive, 499
fixed point, 278
flow

composition property of, 436
of autonomous system, 436

forward orbit, 436
Fourier coefficients

as l2 sequence, 562
best approximation, 562
best approximation via, 561
decay rate of, 486
defined, 561
definition, 454
in Rn, 240
mean square minimization property,

471
motivation, 454

Fourier series, 455
complex form, 455
pointwise convergence of, 480
uniform convergence for piecewise

smooth periodic functions, 484
Fubini’s theorem, 384
function, 5

characteristic, 367
decreasing, 129
Dirichlet, 151, 544
extended real measurable, 531
gamma, 214
increasing, 129
integrable, 552
inverse, 6
inverse tangent, 212
Lebesgue measurable, 530
measurable, 528
monotone decreasing, 118
monotone increasing, 118
natural logarithm, 202
negative part, 534
positive part, 534
simple, 535
square integrable, 576
step, 535
strictly decreasing, 129
strictly increasing, 129

fundamental matrix solution, 448
fundamental theorem

linear autonomous systems, 448
fundamental theorem of calculus

differentiation of indefinite integral,
166

evaluation of definite integral, 166

gambler’s ruin, 501
gamma function, 214, 215
Gauss-Seidel iteration, 294
geometric series

matrix, 337
numerical, 64
uniform convergence of, 192

Gibbs phenomenon, 485
grad (gradient), 302
gradient, 301
Gram-Schmidt orthogonalization

in Rn, 247
in inner product space, 558

greatest lower bound (infimum), 24
greatest lower bound property, 26
Gronwall inequality, 439

Hölder’s inequality, 285
harmonic function, 303
harmonic series, 62

alternating, 72
heat equation, 467

fixed ends, 467
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insulated ends, 468
Heine-Borel theorem, 101, 263
Hilbert sequence space l2, 230
Hilbert space, 563

defined, 281
hyperbolic cosine, 213
hyperbolic sine, 213

implicit function theorem
Dini’s 2D, 319
for vector functions, 348

improper integral
on (a, b] or [a, b), 175
on [a,∞) or (−∞, b], 174
on open infinite intervals, 176

indefinite integral, 161
uniform continuity of, 165

index (of critical point), 356
induction, 7–9
inequality

Bernoulli’s, 11, 58
Bessel’s (inner product space), 562
Bessel’s in R[−π, π], 473
Cauchy-Schwarz, 225
Gronwall’s, 439
reverse triangle, 228

infimum
function sequence, 531

infimum (greatest lower bound), 24, 25
infinite series, 61
infinite set, 12
initial conditions

continuous dependence on, 440
initial value problem

for a scalar equation, 422
integral equation, 422, 426
solution, 422, 426
systems, 425

injective function, 6
inner product

(standard) Euclidean, 225
complex, 242
Euclidean (standard), 225
real, 224

inner product space
real , 225

integrability
complex valued function, 548
general measurable function, 538, 553
of a simple function, 536
on a bounded set, 366
real function, 364

Riemann’s criterion for, 364
vector function , 364

integrable functions, 552
Banach space, 553
interchange of sum and integral, 544

integral
on a bounded set, 366
surface, 415

integral equation
initial value problem, 422, 426

integral test, 156
integration

term-by-term, 192
integration by parts, 168
integration by substitution, 168
interchange of sum and integral

integrable functions, 544
nonnegative measurable functions,

542
interior point, 92, 253, 271

normed space, 229
intermediate value theorem, 112, 261
intersection, 3
interval

in Rn, 268
intervals, 3

nonoverlapping, 519
of a partition, 362

invariant subspace, 244
inverse

continuity of, 339
smoothness of, 340

inverse function, 6
inverse function theorem

for vector functions, 342
one-dimensional, 132

inverse image, 5, 260
properties of, 5

inverse Laplace transform, 179
inverse tangent function, 212
invertible

C1, 341
irrational number, 33
isolated point, 96, 253, 272
iteration

Gauss-Seidel, 294
Jacobi, 294
Newton, 138

Jacobi iteration, 294
Jacobian determinant, 402
Jacobian matrix of a mapping, 308
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Jordan measurable sets
properties of, 379

Jordan measure
weaknesses of, 368

Jordan measure (Jordan content), 367
Jordan measure zero, 368
jump discontinuity, 117

l’Hôpital’s rule
0/0 forms, 141
∞/∞ forms, 141

Lagrange multiplier, 352
Lagrange multiplier theorem, 353
Lagrange remainder, 144
Laplace transform, 178

inverse, 179
Laplace’s equation, 303
Laplacian, 452
Laplacian operator, 303
law of cosines, 229
least upper bound (supremum), 24
least upper bound property, 25
Lebesgue σ-algebra

contains Borel σ-algebra, 512
of R, 510
of Rn, 515

Lebesgue integral
absolute continuity of, 548
additivity of, 540
complex valued function, 548
dominated convergence theorem, 543
extends Riemann integral, 549
monotone convergence theorem, 539
of general measurable functions, 538
of nonnegative measurable functions,

537
of simple functions, 536, 537
order properties of, 546
over a subset, 538
properties for simple functions, 536

Lebesgue measurable function, 530
Lebesgue measurable sets

approximation by closed sets, 520
approximation by open sets, 520
in Rn, 515
in R, 510

Lebesgue measure
on Rn, 515
on R, 510
rotation invariance, 521
translation invariance, 524

Lebesgue measure zero, 157, 369

and Riemann integrability, 373
of countable unions, 371

Lebesgue outer measure
on R, 510
on Rn, 515

Lebesgue-measurable functions
algebraic combinations of, 530

left-hand limit, 117
Legendre polynomials, 559
lemma

Fatou’s, 542
Morse, 356

liminf, 77
characterization, 79
function sequence, 531
measurability, 531

limit function
pointwise, 181

limit inferior (liminf)
characterization, 79
definition, 77

limit of a function, 103, 257
at infinity, 105
sequence criterion, 107, 258
uniqueness, 105, 257

limit of a sequence, 37
limit superior (limsup)

characterization, 78
definition, 77

limsup, 77
characterization, 78
function sequence, 531
measurability, 531

linear combination, 222
linear functional, 318
linear transformation, 288

bounded, 295
linear transformations

elementary, 395
linearity

of Riemann integral, 377
linearly dependent, 222
linearly independent, 222
Lipschitz

condition, 115, 430
constant, 115, 430
locally, 430

little-oh notation
definition, 126
with derivative definition, 126

local Lipschitz
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condition, 430
constant, 430
continuity, 430

logarithm
derivative of, 207
natural, 202

lower Riemann integral, 151
lower sum, 362

matrix
negative semidefinite, 334
orthogonal, 242, 402
positive semidefinite, 334
solution, 448
symmetric, 242, 332

matrix exponential
harmonic oscillator system, 448
properties of, 447
series, 447

matrix geometric series, 337
matrix norm

absolute sum, 289
compatible with vector norm, 288
definition, 288
induced by a vector norm, 289

max norm
on Cn[a, b], 427

maximal interval of definition, 436
maximal orthonormal set, 566
maximum, 116

relative, 331
maximum absolute column sum, 294
maximum absolute row sum, 290
maximum value

local, 127
mean square convergence, 572, 573

for CP [−π, π], 572
for R[−π, π], 575

mean value theorem, 129
Cauchy’s, 140
for real functions, 316
for vector functions, 323

measurability
liminf, 531
limsup, 531
of max and min, 534
pointwise limits, 533

measurable function
approximation by step functions, 535
complex valued, 548
extended real, 531
integrability, 538, 553

Lebesgue, 530
real valued, 528

measurable space, 495
measure, 499

complete, 505
counting, 499
outer, 505

measure space, 499
Lebesgue, 510, 515
probability, 499

measure zero, 157
measure zero (Lebesgue), 369
mechanical energy, 438

conservation, 439
mesh, 381
metric, 248
metric outer measure, 515
metric space, 248

compactness in, 275
metrics on C[a, b], 249
minimum, 116

relative, 331
minimum value

local, 127
Minkowski’s inequality, 286
monotone convergence theorem, 539
monotone sequence, 41
Morse lemma, 356

natural logarithm
definition, 169

natural logarithm (base e), 206
natural logarithm function (log), 202
natural numbers, 7
negative part, 534
negative semidefinite, 334
nested interval property

in Rn, 256
nested interval theorem, 43
Newton’s method, 138
Newtonian system

asymptotic stability, 445
stability, 444

nonmeasurable set, 523
nonnegative measurable functions

interchange of sum and integral, 542
nonoverlapping intervals, 519
norm, 228

L1 (Lebesgue integrable), 553
L2 (Lebesgue integrable), 577
L2 (Riemann integrable), 230
Euclidean, 228
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on R[a, b], 230
parallelogram law, 236

norm equivalence, 233
normed space, 228
norms

on C[a, b], 233
on Rn, 231

nowhere dense, 97, 253, 272

one-to-one function, 6
onto function, 6
open

relative to a set, 254
open ball

metric space, 271
normed space, 229

open cover, 99, 262
finite subcover of, 99, 262
subcover of, 99, 262

open interval, 256
in Rn, 361

open set, 92, 253, 256
metric space, 272
normed space, 229

open sets
finite intersections of, 254, 273
structure theorem in R, 94
structure theorem in Rn, 519
unions of, 254, 273

orbit, 436
backward, 436
forward, 436

ordered field, 20
complete, 25
order axiom, 20

orthogonal basis, 239
orthogonal complement, 244
orthogonal functions, 453
orthogonal matrix, 242, 402
orthogonal set, 454, 557
orthogonality

on [−L,L], 476
on [0, π], 475

orthonormal basis, 566
in R3, 239

orthonormal set, 557
maximal, 566

oscillation, 153, 259
at a point, 373
on an open set, 373

outer measure, 505
metric, 515

monotonicity, 506
subadditivity, 506

pairwise disjoint, 9
paradox, 4
parallelogram law, 229, 236
parametrization (of surface), 414
parametrized surface, 414
Parseval’s equality, 473, 475, 565

for C[−π, π], 474
Parseval’s theorem

for R3, 241
partial derivatives, 297

equality of mixed, 299, 301
partial order, 7
partition

definition, 149
intervals of a, 362
lower sum associated with, 362
mesh, 381
of a closed interval in Rn, 362
refinement, 149
refinement of a, 363
selection for, 381
upper sum associated with, 362

path connected, 269
pi (definition), 211
piecewise smooth, 481
pointwise convergence, 181, 191

almost everywhere, 532
and measurability, 533
of Fourier series, 480

pointwise sum, 191
Poisson integral formula, 460

derivation, 459
Poisson kernel, 460
Poisson’s theorem, 461
polar coordinates

in change of variables formula, 411
polynomial function, 108
positive part, 534
positive semidefinite, 334
power series, 196
probability measure space, 499
product

Cartesian, 5
product rule, 124
Pythagorean theorem, 239, 559

quadratic form, 246
quotient rule, 124
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radius of a cube, 324
radius of convergence, 197
ratio test, 75, 80
rational function, 108
real exponential function, 203

base b, 206
rearrangement (of series), 87
refinement, 363
region, 414
relative extreme values, 127
relative extremum, 331

necessary condition, 331
relative maximum, 331
relative minimum, 331
relative topology, 255
remainder

in Taylor’s theorem, 330
reverse triangle inequality, 228
Riemann integrability

and Lebesgue measure zero, 373
on a bounded set, 366
on interval, 364
under coordinate transformation, 394

Riemann integrable
continuous functions, 154
definition, 151
monotone functions, 155

Riemann integral
linearity of, 377
lower, 151
some properties of, 380
upper, 151

Riemann rearrangement theorem, 89
Riemann zeta function, 157
Riemann’s criterion for integrability,

153, 364
Riemann-Darboux sums, 149
Riemann-Lebesgue theorem, 473, 563
Riesz-Fischer theorem, 582
right-hand limit, 117
rigid motion

Euclidean, 401
Rolle’s theorem, 128
root test, 76, 80
Russell paradox, 4

saddle point, 331
same cardinality, 12
sawtooth function, 486
Schroeder-Bernstein theorem, 13, 587
second derivative test

for two real variables, 333

for vector variables, 332
selection, 381

Riemann sum for, 381
separation of variables, 457
sequence, 10

divergent, 37
bounded, 38
Cauchy, 50, 249
convergent, 37
decreasing, 41
increasing, 41
monotone, 41
of real functions, 191

sequence space
lp, 287

sequential covering class, 506
sequentially compact, 274
series

alternating, 71
convergence, 61
Fourier, 455
harmonic, 62
infinite, 61
matrix exponential, 447
matrix geometric, 293
numerical geometric, 64

set, 1
μ∗-measurable, 507
Borel, 496
bounded, 38, 271, 515
Cantor, 66
closed, 95, 256
closure of a, 97
compact, 99
complement of, 2
connected, 102
containment, 2
disconnected, 102
empty, 1
intersection, 3
Jordan measurable, 367
nonmeasurable, 523
nowhere dense, 97
open, 92, 256
orthogonal, 454, 557
orthonormal, 557
totally bounded, 275
trigonometric, 453
union, 2, 3
universal, 1
with volume, 367
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simple function, 528, 535
integrability of, 536

sine function, 209
inverse, 214
periodicity, 211

smoothness of matrix inverse, 340
solution

fundamental matrix, 448
of initial value problem, 426

space-filling curve, 390
spanning set, 223
spherical coordinates

in change of variables formula, 411
square integrable functions, 576

Hilbert space, 577
Riemann space, 230

square wave function, 485
squeeze theorem, 106
stability

of equilibrium, 443
standard (Euclidean) inner product, 225
standard basis vectors, 223
step function, 535, 549
Sturm-Liouville problems, 558, 583
subsequence, 40
subset, 2
subspace, 221
sum

pointwise, 191
summation by parts, 83
supremum

function sequence, 531
supremum (least upper bound), 24, 25
surface

area of, 415
parametrized, 414

surface (in 3-space), 414
surface area element, 416
surface integral, 415
surjective function, 6
symmetric matrix, 242, 332

indefinite, 246
negative definite, 246
positive definite, 246

tangent function, 212
periodicity, 212

Taylor polynomial, 171
degree n, 330

Taylor remainder, 171, 330
Taylor series, 199
Taylor’s formula, 144

Taylor’s theorem, 144, 171
for vector variables, 330
integral remainder in, 171
Lagrange remainder, 144
Lagrange’s remainder in, 173

term-by-term differentiation, 193
term-by-term integration, 192
tertiary expansions, 45
theorem

Bolzano-Weierstrass, 48, 256
Cauchy-Hadamard, 199
contraction mapping, 135, 279
Darboux, 133
Dini’s 2D implicit function, 319
divergence, 418
extreme value, 116, 264
Fejér’s, 489
Fubini’s, 384
fundamental, 166
Heine-Borel, 101, 263
implicit function, 348
intermediate value, 112
inverse function, 342
Lagrange multiplier, 353
Lebesgue dominated convergence, 543
mean value, 129, 316, 323
monotone convergence, 539
nested interval, 43
Parseval’s, 241, 474
Poisson, 461
Pythagorean, 239, 559
Riemann rearrangement, 89
Riemann-Lebesgue, 473, 563
Riesz-Fischer, 582
Rolle’s, 128
Schroeder-Bernstein, 13, 587
Taylor’s, 144, 171, 330
trigonometric Weierstrass, 473
Weierstrass approximation, 217

time boundaries
behavior at, 437

topology, 255
relative, 255

total order, 7
totally bounded set, 275
transcendental numbers, 47
triangle inequality, 228
trigonometric polynomial, 471
trigonometric set, 453

maximal in L2[−π, π], 579, 581
orthogonality of, 453
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uniform continuity
definition, 113
on compact sets, 114
vector functions, 259

uniform convergence
Fejér’s theorem, 489
in C[a, b] and Cn[a, b], 429
sequences, 183
series, 191
Weierstrass test, 193

uniform metric on C[a, b], 281
uniform norm on C[a, b], 281
union, 2, 3
unit ball

l2, 278
in L2[−π, π], 584

unitary equivalence
between L2[−π, π] and l2, 583

universal set, 1
upper Riemann integral, 151
upper sum, 362

variation of parameters
for linear autonomous systems, 450
for scalar equation, 442

vector field
for system of ODEs, 425

vector functions
notation, 297

vector space
complex, 221
real, 220

volume, 367
invariance, 373, 402
of balls, 413
set with, 367

volume zero, 367
images of sets with, 391

wave equation, 470
fixed ends, 470

Weierstrass approximation theorem, 217
trigonometric, 473

Weierstrass test, 193
well order, 7

Young’s inequality, 285



PUBLISHED TITLES IN THIS SERIES

41 William J. Terrell, A Passage to Modern Analysis, 2019

38 Mark Bridger, Real Analysis, 2019

37 Mike Mesterton-Gibbons, An Introduction to Game-Theoretic Modelling, Third
Edition, 2019

36 Cesar E. Silva, Invitation to Real Analysis, 2019
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A Passage to Modern Analysis is an extremely well-written and reader-friendly 
invitation to real analysis. An introductory text for students of mathematics and 
its applications at the advanced undergraduate and beginning graduate level, 
it strikes an especially good balance between depth of coverage and accessible 
exposition. The examples, problems, and exposition open up a student’s intu-
ition but still provide coverage of deep areas of real analysis. A yearlong course 
from this text provides a solid foundation for further study or application of real 
analysis at the graduate level.

A Passage to Modern Analysis is grounded solidly in the analysis of R and Rn , 
but at appropriate points it introduces and discusses the more general settings 
of inner product spaces, normed spaces, and metric spaces. The last five chap-
ters offer a bridge to fundamental topics in advanced areas such as ordinary 
differential equations, Fourier series and partial differential equations, Lebesgue 
measure and the Lebesgue integral, and Hilbert space. Thus, the book intro-
duces interesting and useful developments beyond Euclidean space where the 
concepts of analysis play important roles, and it prepares readers for further 
study of those developments.
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