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Preface

Thanks for turning to the Preface.

This introductory text is written for students at the advanced undergraduate
level and beyond in mathematics and its applications and for those in the sciences
and engineering who desire a rigorous introduction to mathematical analysis. The
major part of the book provides a motivated introduction to analysis in Euclidean
space, beginning with the single variable case and properties of the real number
field. Later chapters include topics that are helpful in the study of more advanced
areas such as ordinary and partial differential equations, Fourier series, Lebesgue
measure and integration, and Hilbert space. These later chapters are intended as
a springboard for such studies, and the applications in the book are there to spark
interest rather than delve deeply into specific application areas. My purpose has
been to write a book that students will find interesting and useful.

The genesis of the book was a collection of written supplements I used in
teaching advanced courses in ordinary and partial differential equations and applied
analysis for more than twenty years. Most of the students in these courses were
majoring in mathematics or applied mathematics, with possibly a quarter of the
class majoring in one of the sciences or engineering or having come to mathematics
from another undergraduate major. Most of the students had no exposure to basic
analysis in Euclidean space or normed spaces in general. In an effort to provide
an appropriate language for making and understanding mathematical statements
about differential equations and dynamical systems, I supplied written handouts on
the basic analysis background required. I found the process of filling in the gaps in
those supplements to be long but enjoyable, and it led me to complete this book.

This book addresses three major goals of analysis instruction in the undergrad-
uate curriculum. The first goal is to present a careful, rigorous study of real valued
functions of a real variable and vector valued functions of a vector variable, starting
from the properties of the real number system. The second goal is to help students
develop the mathematical maturity and critical thinking skills necessary for suc-
cess throughout the upper division of an undergraduate program and beyond. A

Xix



XX Preface

third goal is to provide a passage, a transit point, to a few developments of modern
analysis that have had an important influence in both its theoretical and applied
aspects. With these goals in view, the core of the book is grounded solidly in the
world of Euclidean space, but at appropriate places, the book introduces and ap-
plies inner product, normed, and metric spaces. Thus, readers are made aware that
there are interesting and useful developments beyond Euclidean space in which the
basic concepts of analysis play important roles and may be studied further.

The prerequisite for beginning the book is two semesters of the standard uni-
versity undergraduate curriculum in elementary single variable calculus and an
introductory course in proof technique often having titles such as Transition to
Advanced Mathematics or Introduction to Mathematical Reasoning. This should
suffice for Chapters 1-7. However, undergraduate introductions to multivariable
calculus and linear algebra are prerequisites for the material from Chapter 8 on-
ward, where the focus is on n-dimensional Euclidean space R™ and a few function
spaces. At most American universities, students will have taken a third semester
calculus course in introductory multivariable calculus before entry into a course
such as the present book. Readers with more substantial undergraduate mathe-
matics backgrounds than this will probably make more rapid progress in the book.
In particular, introductory courses in elementary differential equations or numeri-
cal methods may provide some readers with additional motivation for some of the
topics considered.

This text provides a bridge from one-dimensional analysis to more general
spaces, building on the core topics of differentiation and integration and a few well
chosen application areas such as solving equations, inverting functions, measuring
the volume of sets, and understanding basic properties of differential equations, in-
cluding some basic Fourier analysis for application to partial differential equations.
The text culminates with two chapters on the Lebesgue theory and a chapter on
inner product spaces and Fourier expansion in Hilbert space.

The book is suitable for both classroom instruction and self-study and provides
students with a solid background to build on if they wish to move on to more
advanced studies or applications in their areas of interest.

There are several unique features of this text.

(1) The book combines expansive coverage of analysis on the real line and Eu-
clidean space and detailed coverage of the Lebesgue theory suitable for moti-
vated and advanced undergraduates or first-year graduate students. It has top-
ics chapters on fundamental aspects of ordinary differential equations, Fourier
series, and basic problems in partial differential equations.

The book offers three successive bridges in this passage to modern analysis:

Lower Bridge: Chapters 2—7 provide rigorous coverage of real valued func-
tions of a real variable. There is enough material here for a comprehensive
semester course.

Middle Bridge: With Chapters 2—7 providing background in basic con-
cepts, Chapters 8-13 cover analysis in R", including differentiation and in-
tegration of vector functions and the extension of the Riemann integral to
functions on bounded subsets of R™. The inverse function theorem and im-
plicit function theorem apply the derivative and linearization ideas to the local
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can

solution of systems of equations. There is enough coverage of general metric
space and normed space ideas to allow for discussions of some basic appli-
cations, including matrix norms in Chapter 9 and the contraction mapping
theorem in complete metric spaces in Chapter 11. The discussion of matrix
norms is important for work in numerical analysis, which we have indicated in
some exercises. Matrix norms also play an important role in some estimates in
Chapter 13. The contraction mapping theorem is applied to the existence and
uniqueness theorem for ordinary differential equations in Chapter 14. Chap-
ters 813 provide an appropriate springboard for more advanced studies of
analysis, including the background for the differential equations and Fourier
series in Chapters 14 and 15.

Upper Bridge: Chapters 14 and 15 can be used as topics chapters that
draw especially on material from Chapters 7-11. Chapter 15 can also be
viewed as an introduction to ideas that can be pursued in more detail in the
final three chapters of the book. Chapters 16 and 17 cover Lebesgue measure
and the Lebesgue integral, respectively. These topics are motivated and cov-
ered in enough generality so that the spaces of most interest, the integrable
functions (and square integrable functions) on measurable subsets of R or
R™, can be discussed. Applications of these ideas appear in an introduction
to Hilbert space in Chapter 18, which also explores and clarifies, in a more
general setting, some issues arising in Chapter 15 concerning Fourier series.

The concepts of geometric series and contraction mappings are introduced
early in the book. Differentiation of vector functions, the multivariable mean
value theorem, and the inverse and implicit function theorem are all given
full consideration due to their importance in applications and more advanced
studies. Applications of these ideas appear throughout the text. Many intro-
ductory analysis texts do not place enough emphasis on these ideas.

The final five chapters cover topics beyond the standard undergraduate cover-
age: aspects of ordinary differential equations, Fourier series and partial differ-
ential equations, Lebesgue measure, the Lebesgue integral and its comparison
with the Riemann integral, and the study of the Hilbert space L?[—m, 7| and
its isometric isomorphism with the sequence space [? established with the help
of the Lebesgue theory.

The features of this book make it useful as a text in several ways. The book
be useful for students who wish to cross only the first, or the first two, or all

three, of the bridges described earlier.

a. First, it can be a comprehensive text for a semester course in undergraduate

analysis based on Chapters 1-7.

b. Second, a follow-up semester in analysis, emphasizing Euclidean space, can

be based on the material in Chapters 8-13. For a semester-length honors course,

this

second course might include some differential equations or Fourier analysis with

selections from Chapters 14 and 15 for interested students.

c. Third, an undergraduate honors or topics section could be formed by selec-

tions from Chapters 14-18, which go beyond the standard undergraduate coverage
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of analysis in R™. Such a course could benefit undergraduates interested in pro-
ceeding to graduate school.

d. First-year graduate students in mathematics or applied mathematics, the
sciences, or engineering may want a refresher course, either guided or self-study, in
analysis. Such a course could be based on selected portions of Chapters 8-18, with
reference to Chapters 2—7 as needed. Basic analysis is important for many students
in these areas.

The book has enough material for three academic semesters of coursework,
including topics for individual reading or an honors course. It presents material
at a level appropriate for advanced undergraduates and some first-year graduate
students, depending on instructor choices and student backgrounds and interests.
An introduction that covers R™ in a comprehensive manner and discusses metric
spaces that are important in applications will serve these students well.

There are more than 570 exercises. Almost every section of the book includes
an Exercises section at the end. Some of the longer sections include exercises at the
end of subsections. Many of the exercises are supplied with a hint or presented as
guided exercises with multiple parts. The exercises reinforce the reading of the text
and provide opportunities to develop skills in mathematical reasoning, analysis, and
writing. The index has more than 1000 entries.

Remark on Item Numbering: The numbered items within any section are
Definitions, Lemmas, Propositions, Theorems, Corollaries, and Examples; these
items are numbered consecutively as they appear by chapnum.secnum.itemnum
to indicate chapter, section, and item number. Since Exercises appear in blocks at
the end of sections (and a few subsections) they are numbered separately within
a similar scheme, chapnum.secnum.exernum. Numbered equations and figures
are numbered using chapnum.itemnum.

Descriptive chapter summaries follow:

Chapter 1 Sets and Functions. This chapter will be a review for many
readers, but it includes basic notation and essential results on sets and cardinality
that everyone will need.

Chapters 2-7 provide sufficient material for a semester course in the analysis
of real valued functions of a real variable. Their main purpose is to impart a solid
working knowledge of the concepts of analysis so that the student can proceed to the
study of Euclidean metric space R™.

Chapter 2 The Complete Ordered Field R. This chapter presents the
axioms for the real numbers, including the completeness axiom in the form of the
least upper bound property. (References are given for the construction of a field
having this completeness property.) The focus is on motivating and proving the
main properties of the field of real numbers: the Archimedean property, the nested
interval property and decimal representations, the Bolzano-Weierstrass theorem,
and the convergence of Cauchy sequences. The chapter ends with demonstrations
that some results familiar from elementary calculus cannot hold using only the
field of rational numbers; these are included to emphasize the importance of the
least upper bound property and to motivate interested readers to read about the
construction of the real numbers from the rationals.



Preface xxiii

Chapter 3 Introduction to Series. After basic definitions, this chapter in-
troduces the geometric series and applies it in the discussion of the Cantor set. The
Euler number e and alternating series are followed by the simplest versions of the
ratio and root tests, which are based on the geometric series. General versions of
the ratio and root tests appear in Section 3.11 after covering limit inferior and limit
superior in Section 3.10. Other convergence tests include Abel’s test and Dirichlet’s
test. (The integral test appears in Chapter 6.) Absolute versus conditional conver-
gence is introduced in Section 3.7 after alternating series, while a more complete
discussion of the contrast between absolute and conditional convergence appears in
Section 3.12, which includes Riemann’s rearrangement theorem.

Chapter 4 Basic Topology, Limits, and Continuity. The coverage of
basic topology of the real line includes open sets, closed sets, compact sets, and
connected sets. We define the limit of a function and continuity at a point and then
discuss continuity on an interval, uniform continuity, and the continuous image of
compact sets. The chapter ends with a classification of discontinuities of functions.

Chapter 5 Differentiation. After basic definitions, we establish the mean
value theorem and the scalar inverse function theorem, as well as Darboux’s the-
orem on the intermediate value property of derivatives. We point out the role of
the mean value theorem in helping to establish certain mappings as contraction
mappings, and thus show its usefulness for the solution of equations as well as for
basic estimates of differences in function values. Other important results include
Cauchy’s mean value theorem with applications to I’'Hopital’s rules for indetermi-
nate forms, the single variable Taylor’s theorem, and the extreme value theorem.

Chapter 6 The Riemann Integral. After defining partitions and Riemann-
Darboux sums, we discuss the integral of a bounded function, the integrability
of continuous functions and monotone functions, Lebesgue measure zero, and the
criterion for Riemann integrability. The coverage then proceeds with integral prop-
erties and mean value theorems, the fundamental theorem of calculus, Taylor’s
theorem with integral remainder, and improper integrals.

Chapter 7 Sequences and Series of Functions. The major topics are
pointwise convergence and its importance and limitations, uniform convergence and
its advantages; integration and differentiation of series, and the Weierstrass test for
uniform convergence; the existence of a continuous nowhere differentiable function;
power series and Taylor series; series definitions for the elementary transcendental
functions and proofs of some of their properties; and, in the final section, the
Weierstrass approximation theorem.

Chapters 8 and 10-13 are primarily on R™, though Chapter 8 shows a variety
of vector spaces of interest in analysis. Chapter 9 is the metric space preparation
for Chapters 11 and 14—18.

Chapter 8 The Metric Space R"™. After a vector space review in Section 8.1,
the coverage proceeds with the inner product and norm structure of n-dimensional
Euclidean space, and Fourier expansion with respect to an orthogonal basis, in
Sections 8.2-8.4. Section 8.5 presents the spectral theorem for real symmetric ma-
trices in complete detail, which provides a good application and extension of the
discussion in Section 8.4. Section 8.6 discusses the metric distance on R™. Section
8.7 establishes the completeness of R", defined as the convergence of all Cauchy
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sequences. Basic topological definitions are collected in Section 8.8, which includes
the relative topology of a subset of R™. The nested intervals property and the
Bolzano-Weierstrass theorem appear in Section 8.9. Mappings of Euclidean spaces
are covered in Section 8.10 in six short subsections, beginning with limits and con-
tinuity and moving on to topological properties of continuous mappings, including
continuous images of compact sets and connected sets. A result on differentiation
under the integral is included here since it uses facts about continuous mappings
of compact sets.

Chapter 9 Metric Spaces and Completeness. Metric spaces are essential;
bounded subsets of normed spaces are metric spaces but not normed vector spaces.
With the experience of R™ well in hand, the basic topology in Section 9.1 is a direct
generalization of what is now familiar for n-dimensional space. There is only a slight
increase in abstraction here, with some notation required for general metric space.
Section 9.2 presents the contraction mapping theorem for complete metric spaces
in a direct generalization of the scalar version established in Chapter 5. Section
9.3 proves the completeness of the function space C[a,b] with the maximum norm
(uniform norm) and the completeness of the I sequence space, both introduced in
Section 8.3. Other topics include the [P sequence spaces, matrix norms, and the
completeness of the space of n x n real matrices. These function spaces are involved
in the study of ordinary differential equations and Fourier series in Chapters 14 and
15.

Chapter 10 Differentiation in R". In Sections 10.1-10.5 we define and
discuss partial derivatives, the derivative as a linear mapping, the matrix represen-
tation of the derivative for given bases in domain and range, sufficient conditions
for the existence of the derivative, and the chain rule. We prove the mean value
theorem first for real valued functions in Section 10.6 and apply it in Section 10.7
with other single variable calculus ideas to prove the two-dimensional case of the
implicit function theorem. The mean value theorem for vector valued functions
appears in Section 10.8. The chapter winds up with a presentation of Taylor’s
theorem in Section 10.9 and relative extrema without constraints in Section 10.10.

Chapter 11 Inverse and Implicit Function Theorems. In Section 11.1,
the scalar geometric series motivates a convergence result for matrix geometric
series. We apply this result to prove that matrix inversion is a continuous mapping
of the set of invertible n x n real matrices. Section 11.2 proves the inverse function
theorem in R™ as an application of the contraction mapping theorem, and the
continuity of matrix inversion is used in the proof of continuous differentiability
of the local inverse function. Section 11.3 uses the inverse function theorem to
prove the implicit function theorem. The problem of constrained extrema and
the Lagrange multiplier theorem appear in Section 11.4. Section 11.5 presents the
Morse lemma, another application of the inverse function theorem.

Chapters 12 and 13 cover the Riemann integral; the theory of Jordan measurable
sets in R®, the bounded sets that have a well-defined volume; and the C' change of
variables formula.
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Chapter 12 The Riemann Integral in R". Sections 12.1 and 12.2 describe
the extension of the Riemann integral to closed intervals and certain bounded sub-
sets of R™. This extension allows a theory of measurable sets (called Jordan mea-
surable sets or sets with volume), introduced in Section 12.3. This may be the
reader’s first exposure to a type of measure theory. Sections 12.4 and 12.5 develop
the criterion that a function is Riemann integrable if and only if it is continuous
except possibly on a set of Lebesgue measure zero. (The proof includes the case
of real functions of a real variable, which is stated without proof in Section 6.4.)
The Riemann integral and Jordan measure are limited from the larger point of
view required by modern analysis, as they are restricted to certain bounded sets
and bounded functions with limited amounts of discontinuity. Consequently, the
integral does not behave well under pointwise limits, as seen already in the sin-
gle variable case. However, the Riemann integral is adequate for many purposes,
including areas that lie beyond this book, such as the study of finite-dimensional
smooth manifolds and the integration of smooth functions on them. Thus, the Rie-
mann integral in R™ and Jordan measure deserve a place in an introductory text.
(Later in the text, the Lebesgue integral is seen to be a significant extension of
the Riemann integral and one that behaves well under limit processes without the
strong assumption of uniform convergence. Moreover, the Lebesgue theory does
not require a separate theory of improper integrals to handle unbounded functions
and unbounded domains, as the Riemann theory does.)

Chapter 13 Transformation of Integrals. Space-filling curves are intrin-
sically interesting, and we include an example of one in Section 13.1 to motivate
interest in appropriate conditions for coordinate transformations (variable substi-
tutions) in the integral. Section 13.2 considers the transformation of integrable
functions and sets with volume under C! transformations. We develop the change
of variables formula in Sections 13.3 and 13.4. The rather involved proof is as
geometric as we can make it, with the argument building in a fairly natural way,
starting from the case of linear mappings. In Section 13.5, we show that the surface
integrals familiar from introductory multivariable calculus are well defined by virtue
of the change of variables formula. In the same section, we recall the divergence
theorem and then establish a coordinate-free interpretation for the divergence of
a vector field F; if the vector field is a gradient field, F = V f, then we obtain a
coordinate-free interpretation of the Laplacian of f. This is helpful in understand-
ing the physical significance of Laplace’s equation in Chapter 15.

Chapter 14 Ordinary Differential Equations. Section 14.1 presents the
existence and uniqueness theorem for initial value problems for scalar differential
equations as an application of the contraction mapping theorem. A similar mathe-
matical setup for systems appears in Section 14.2, including the equivalent integral
equation, the completeness of a space of solution candidates, and the local Lips-
chitz condition, followed by the proof of existence and uniqueness for initial value
problems. We cover the extension of solutions to a maximal interval of existence
in Section 14.3 and the continuous dependence of solutions on initial conditions
and parameters in Section 14.4. Section 14.5 covers the special case of linear au-
tonomous systems and the matrix exponential solution.
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Chapter 15 The Dirichlet Problem and Fourier Series. In terms of
background, this chapter depends primarily on the reader’s knowledge of uniform
convergence and the ideas of orthogonal Fourier expansion from Section 8.4. Sec-
tion 15.1 provides motivation for studying Laplace’s partial differential equation
and introduces the Dirichlet problem for the unit disk. Section 15.2 introduces the
standard trigonometric set of functions on [—m, 7] and establishes their orthogonal-
ity. Section 15.3 constructs a solution of the Dirichlet problem using separation of
variables and Fourier series. This section includes Poisson’s theorem, which shows
that the solution in the interior of the disk, constructed by the separation of vari-
ables method, matches up continuously with the given boundary data. Uniqueness
of the solution is also established. Section 15.4 explores in guided exercises the ap-
plication of the separation of variables method to some Sturm-Liouville boundary
value problems for the heat equation and the wave equation. Section 15.5 estab-
lishes the best mean square approximation property of the Fourier coefficients. A
trigonometric version of the Weierstrass approximation theorem follows easily, and
we use it to prove Parseval’s equality for continuous functions of period 27w. Sec-
tions 15.6 and 15.7 discuss pointwise convergence of the Fourier series for piecewise
smooth functions and Fejér’s theorem on the uniform convergence of the Cesaro
means for continuous functions of period 2.

Chapter 16 Measure Theory and Lebesgue Measure. The introduction
provides some motivation for the study of measure theory and the form it takes.
Sections 16.1-16.3 motivate and discuss o-algebras, arithmetic in the extended real
numbers, and basic properties of measures. We attempt to indicate that probability
problems are a natural motivator for o-algebras, measure theory, and measurable
functions. Section 16.4 describes the construction of a measure from an outer
measure. Section 16.5 applies this construction to define Lebesgue measure on R
and on R"™, considering the cases where n > 1 separately for those who wish to
focus only on Lebesgue measure on the real line. We prove that all Borel sets (hence
all open sets and all closed sets) are Lebesgue measurable. Vitali’s example of a
nonmeasurable set appears at the end of the chapter.

Chapter 17 The Lebesgue Integral. The introduction describes Lebesgue’s
approach to the integral and contrasts it with that of Riemann in order to motivate
the definition of measurable function. Section 17.1 gives the definition and basic
properties of real valued measurable functions on a measurable space; the section
is mostly set-theoretic and no measure is yet involved. Section 17.2 defines the
simple functions and their integrals on a measure space. Section 17.3 continues
with the definition of the integral for nonnegative measurable functions and then
for general measurable functions, and defines the class of integrable functions. Sec-
tion 17.4 establishes the fundamental limit theorems: the monotone convergence
theorem (which implies the linearity of the integral), Fatou’s lemma, and the dom-
inated convergence theorem. Section 17.5 shows that the Lebesgue integral is a
true extension of the Riemann integral for bounded functions on [a, b]. Section 17.6
shows that the space of integrable functions on a given measure space is a complete
normed space, a Banach space.

Chapter 18 Inner Product Spaces and Fourier Series. This chapter
places the concrete setting of Chapter 15 into the proper abstract framework of
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infinite-dimensional inner product spaces. Sections 18.1 and 18.2 include examples
of orthonormal sets and orthonormal expansions that generalize the simpler setting
of Fourier expansion in R? from Section 8.4. In particular, Section 18.2 character-
izes complete orthonormal sets in a complete inner product space (a Hilbert space).
Section 18.3 discusses mean square convergence (convergence in the L? norm) for
the Fourier series of continuous functions and Riemann integrable functions on [a, b].
Finally, in Section 18.4, we define the Lebesgue space L?[—m, 7] of square integrable
functions, prove that it is a Hilbert space, and show that the standard trigonomet-
ric set is a complete orthonormal set in L2[—m, «]. The Riesz-Fischer theorem is
also included, showing that the Hilbert spaces L?*[—m, 7] and [? are isometrically
isomorphic.

Appendix A The Schroeder-Bernstein Theorem. A formal proof of the
useful Schroeder-Bernstein theorem appears here. The theorem appears in the text
in Section 1.4 with a plausibility argument at that point.

Appendix B Symbols and Notations. This appendix provides a quick
reference for some symbols and notations, including the Greek alphabet.
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Chapter 1

Sets and Functions

Readers of this book will have some previous experience with the language of sets
and familiarity with basic logic and proof techniques. The exercises at the end of
each section of this preliminary chapter provide opportunities for practice in these
areas. Some references for set theory and proof technique are given at the end of
the chapter.

1.1. Set Notation and Operations

Our purpose in this section is to introduce some terminology and notation that is
helpful in making clear and concise statements in mathematical analysis. In order
to provide examples and to make the discussion of some interest, we rely on the
reader’s previous experience to provide some intuition about real numbers, integers,
rational numbers, and functions defined on subsets of real numbers.

By the term set we mean a collection of objects of our conception or imagina-
tion, including a means to distinguish unambiguously the members (or elements) of
a set from objects that are not in the set. This meaning of the term set can lead to
paradoxes if carried too far; see Exercise [LT.Il In this book we will not encounter
such paradoxes beyond Exercise [[LT.1]

Definition 1.1.1. The empty set, denoted (), is the set which contains no ele-
ments.

We imagine the empty set every day: we have no emails from home today (the
collection of emails from home today is the empty set); we have no credit cards
(the set of our credit cards is empty); the set of integer solutions of the equation
22 = 2 is the empty set.

A useful concept in any discussion is the idea of the universal set. The universal
set is the set of all objects being considered in a specific discussion. For example,
when thinking about the properties of integers, the universal set is the set Z of all

1
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integers Another specific discussion may involve all the functions that are defined
and continuous on the real number interval 0 < x < 1 and which take values in the
range interval 0 <y < 1.

We generally denote sets by uppercase letters. These could be Roman letters
A, B,C,..., XY, Z or script letters A, B,C,...,X,), Z. We generally denote ele-
ments of sets by lower case letters a,b,c,...,z,y, z. In later parts of the book we
denote certain vector quantities by boldface letters, a,b,c,...,x,y,z. The sym-
bolic statement
a€A

means that a is an element of (belongs to, is contained in) the set A. The statement
a¢ A

means that a is not an element of the set A. Sets are often defined or identified by
a notation of the form

{z € X : x has property P}.
For example, the set of even integers can be described by

E={x€Z:z=2n, necZ}
since we already understand Z is the set of all integers.
Definition 1.1.2. If X and Y are sets, then the set

X-Y={reX:z¢Y}
is called the complement of Y relative to X or the complement of Y in X.
If the universal set U is understood in a specific discussion, then we may write
Y¢=U-Y

and call it the complement of Y.

Definition 1.1.3. If X and Y are sets, the statement X is a subset of Y, written
X CY, means that if x € X, thenx € Y.

This definition of X C Y allows the possibility that X = Y. If it is important
in a specific discussion that Y contain an element not in X, it is usually clear from
the context, or can be mentioned explicitly, or the notation X C Y can be used.

The empty set is a subset of every set, as follows from the definition of subset.
(See Exercise [LT.2)

The statement that sets X and Y are equal, written X =Y, means that X C Y
and Y C X. This statement of set equality involves two implications: x € X implies
x €Y, ,and x € Y implies ¢ € X. To establish set equality, both implications must
be established.

Definition 1.1.4. Let A and B be sets. The union of A and B, denoted AU B,
is the set
AUB={z:xz € Aor x € B}.

1The set of integers is denoted Z with a nod to the German word Zahlen for numbers.



1.1. Set Notation and Operations 3

The intersection of A and B, denoted AN B, is the set
ANB={z:xz€ Aand z € B}
We say that sets A and B are disjoint if AN B is empty.

For example, let us write O for the set of odd integers. With E denoting the
set of even integers, we have

Z=EUO and ENO=40.
We may also say that Z is the disjoint union of E and O.

We will denote the set of real numbers by R. The standard notations for
intervals of real numbers are probably already familiar. We use these real interval
notations for bounded intervals:

a,bj={zeR:a <z <b},
J={zeR:a<x<b},
|={x€eR:a <z <b},
[a,b) ={z e R:a <z <b}
For unbounded intervals, we use these interval notations:
(a,0)={xeR:a<z} and [a,00)={reR:a<x},

(—oo,b)={zreR:z<b} and (—oo0,b]={x€R:z<b}.

Thus the notation (a,o0) specifies the set of all real numbers x such that = > a.
The interval (a,c0) may also be indicated by writing the inequality a < z < co to
emphasize that no upper bound is intended for z. The interval (—oo,b) may also
be indicated by writing the inequality —oo < = < b to emphasize that no lower
bound is intended for z. We may occasionally write R = (—oo, oo)E

There are useful generalizations of the union and intersection operations on
pairs of sets. We employ the idea of an arbitrary index set Z, which may be either
finite or infinite.

Definition 1.1.5. Let T be an index set (finite or infinite), and suppose that for
each i € T there is associated a set A;. The union of the sets A; is the set

UAiz{x::veAi forsomeiEI}.
i€T

The intersection of the sets A; is the set

ﬂAi:{x:xeAi foralliEI}.

i€l

De Morgan’s laws relate the operations of complementation and general unions
and intersections.

2These uses of the symbol co are intended as convenient reminders (for emphasis) of the unbound-
edness of an interval, in one direction or the other, when writing inequality notations. We do not
consider them as number elements until Section [[6.2} where we admit the two symbols oo as elements
of the extended real number system for use in measure theory, where they enter into arithmetic laws
with the real numbers. At that point, the new elements +oo are also defined to obey the ordering
requirement that —oo < x < oo for every real number z.
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Theorem 1.1.6 (De Morgan’s laws). Let Z be an index set. Given the sets A;, for
1 € T, we have

(1.1) (Na) =Uas

i€ 1€T
and
(1.2) (UAi)Cz M As.
i€l €T

In other words, the complement of the intersection equals the union of the comple-
ments, and the complement of the union equals the intersection of the complements.

Proof. We will prove ([I)) and leave (L2) as Exercise

The complement of the intersection is contained in the union of the comple-
ments: If 2 € ((;c7 A:)¢, then x & (0,7 As, so there is an ig such that = ¢ A;,
hence z € A . Therefore x € |, A5

The union of the complements is contained in the complement of the inter-
section: If z € (J;c7 Af, then for some ig, ¥ € A7, hence x ¢ A;,. Therefore
r ¢ (Nez Ais 50 @ € ([);ez Ai)¢. This completes the proof of (L) O

Exercises.

Exercise 1.1.1. The Russell Paradox

A situation in which an object of our imagination or conception has a certain
property if and only if it does not have that property is called a paradox. Paradoxes
are logically unacceptable, of course. The example here will show that we cannot
say just anything at all in order to define a set, and that some care is required. Let
us say that a set is respectable if it does not contain itself as an element. Now let
B be the set of all respectable sets. Try to answer this question: Is B a respectable
set? The attempt to answer it yields a paradox, as follows:

1. Show that if B is respectable, then B is not respectable.

2. Show that if B is not respectable, then B is respectable.

Exercise 1.1.2. Show that Definition [LT.3] implies that the empty set is a subset
of every set. Hint: The implication, If A then B, is false only when A is true and
B is false.

Exercise 1.1.3. Prove that A = B, if B = {(1,0),(0,1)} and A = {(z,y) : z €
R, ycRand 22+y? =1, z+y = 1}. Hint: Proving B C A means verifying that
(1,0) and (0,1) are solutions of the two equations in the definition of A. Proving
A C B means finding (constructing) all solutions of the equations defining A and
showing they are in the list given by B.

Exercise 1.1.4. Prove the following statements about sets A and B:
1. A— B is empty if and only if A C B.
2. If AN B is empty, then A — B=A and B— A= B.
3. If AC B, then B¢ C A°.
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Exercise 1.1.5. Prove the following statements about sets A, B, C:
1. A-B=AnNB".
2. AN(BUC)=(ANB)U(ANC)and AU(BNC)=(AUB)N(AUC).
3. (AuB)-C=(A-C)U(B-C)and (ANB)—-C=(A-C)n(B-0).
Exercise 1.1.6. Prove De Morgan’s law (L2]).

1.2. Functions

An important construction with sets is the Cartesian product.

Definition 1.2.1. If X and Y are sets, then the Cartesian product of X and
Y is the set
XxY={(z,y):zeXandy e Y},

which consists of all ordered pairs (z,y), withx € X andy €Y.

Now think about the collection of all the functions that are defined and con-
tinuous on the real number interval 0 < z <1 and take values in the range interval
0 <y < 1. You may think about the graph of one of these functions f as a subset
of the Cartesian product [0,1] x [0,1]; the graph is

graph f = {(z,y) € [0,1] x [0,1] : y = f(2)}.

In fact, the function itself may be defined as this particular subset of the Cartesian
product.

Let X and Y be sets. We define a function f from X into Y to be a subset
of the Cartesian product X x Y such that for each z € X, there is associated a
unique y € Y such that (x,y) € f; this y is denoted f(z). Informally we can
think of a function as mapping elements x € X to elements y = f(x) € Y; more
precisely, each = € X is mapped to a unique element f(z) € Y. Consequently we
shall typically write f : X — Y to indicate that f is a function mapping X into Y.
Our visual image of a function graph provides a geometric image to illustrate the
rule associating the value f(x) =y € Y with each z € X.

Definition 1.2.2. Let X and Y be sets and f : X — Y a function. Let A be a
subset of X and B be a subset of Y. The direct image of A under f (or simply,
the image of A) is the set

f(A)={f(z)eY :z € A}.
The inverse image of B under f is the set
f7HB)={z € X: f(z) € B}.
We record the basic properties of inverse images and direct images in Theorem

23 and Theorem [[.2.4] respectively. These properties are left as exercises for the
reader. In particular, the behavior of inverse images under f is easy to describe.

Theorem 1.2.3. Let f: X =Y be a function. The following properties hold:

1. For every BCY, f(f~Y(B)) C B.
2. If By C By C Y, then fﬁl(Bl) - fﬁl(BQ).
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3. [f B1 CY and By C Y, then f71(31 U Bg) = fﬁl(Bl) U fﬁl(Bg).
4. If B CY and By CY, then f_l(Bl n BQ) = f_l(Bl) n f_l(BQ).

5. For every BCY, f~1(B¢) = [f~Y(B)]¢, where B¢ =Y — B is the complement
of BinY.

The behavior of direct images requires some care in the case of intersections
and complements.

Theorem 1.2.4. Let f: X — Y be a function. The following properties hold:

1. For every AC X, AC f71(f(A)).

2. If Ay C Ay C X, then f(A1) C f(Ag).

3. If A1 C X and A2 C X, then f(A1 U Ag) = f(A1) U f(A2).
4. If Ay C X and Ay C X, then f(A1 N A2) C f(A1) N f(As).

Consider property 4 on the image of an intersection. For example, if there are
points a # b in X such that f(a) = f(b), then with A; = {a} and Ay = {b},
the intersection A; N Ay is empty, and hence f(A; N Ay) is the empty set, but
f(A1) N f(Az2) has one element.

Definition 1.2.5 (One-to-One and Onto). A function f : X — Y is one-to-
one (or injective) if for any x1,z2 € X with x1 # x2, we have f(x1) # f(x2).
Equivalently, for all x1,29 € X, f(x1) = f(x2) implies x1 = xo. The function
f is onto (or surjective) if f(X) =Y. The function [ is a bijection if it is
one-to-one and onto.

If f: X — Y is bijective, then the direct image preserves complements, that is,

if AC X, then
J(X = A)=f(A°) =[fA)° =Y — f(A).

However, f : R — [-1,1] = Y defined by f(z) = sinz is onto Y but not one-
to-one, and if A = [0, 7], then f(A°) = [-1,1] and [f(A)]¢ = [-1,1] — f(4) =
[-1,1] — [0,1] = [-1,0). The function g : N — N defined by g(n) = n? is
one-to-one but not onto, and if A = {2}, then g(A°¢) = {1,32%,4%,...}; however,
[9(A)]® = N — {4}.

Definition 1.2.6 (Inverse Function). A function f: A C X — Y is invertible
if it is one-to-one on the set A. If y € f(A), then there is a unique x € A such
that f(x) = y. We write x = f~1(y), and this correspondence defines a function
f7t: f(A) — A called the inverse of f, or the inverse of f restricted to A. The
domain of this inverse is f(A) and the range is A.

Exercises.

Exercise 1.2.1. Prove Theorem [[2:3] In addition, show that f is onto Y if and
only if for every B C Y, f(f~1(B)) = B.

Exercise 1.2.2. Prove Theorem [[LZ4] In addition, show that f is one-to-one if
and only if for every A C X, A= f~1(f(4)).
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1.3. The Natural Numbers and Induction

The natural numbers are the numbers used for counting objects. The set of natural
numbers is denoted by

N:={1,2,3,...}.
The set N is ordered by the less than or equal to relation (denoted by the symbol
<), which has the following properties:

For every k, n and m in N,
1. k < k; (reflexive)
2. if k < n and n <k, then k = n; (antisymmetric)
3. if k < n and n < m, then k < m. (transitive)

These three properties define what is called a partial ordering, but the ordering on
N has an additional property that should be remembered as the most important
property for our purposes in this book.

The most important property of the set of natural numbers is that N is well
ordered by the less than or equal to relation. A partially ordered set is called well
ordered if every nonempty subset of it has a least element. (A nonempty subset
S has a least element if it contains an element a such that a <y for every element
y in S. By the antisymmetry property of a partial ordering, if a least element of .S
exists, there cannot be more than one.)

An important consequence of N being well ordered is that the natural numbers
are totally ordered, which means that for any natural numbers n and m, either
n < m or m < n. The reason is that the nonempty set S = {n,m} has a least
element; if it is n, then n < m, and if it is m, then m < n.

Proofs by mathematical induction are based on the following result, which is a
consequence of well ordering.

Theorem 1.3.1. Suppose S is a subset of the set N of natural numbers such that
(1) 1€ 5;
(2) for eachn € N withn > 1, n € S impliesn+1€ 5.

Then S = N.

Proof. The proof is by contradiction. Suppose (1) and (2) hold and that S # N.
Let F =N — 5. Then F is nonempty, and by well ordering, F' has a least element
t € F. Sincel € S;t=# 1, hencet > 1. Let s =t¢t—1. Then s € N and
s < t. Moreover, s cannot be an element of F' since t is the least element of F'.
Therefore s € S. But then s+ 1= (¢t —1)+1=1¢ € S by (2). This is the desired
contradiction. (]

Many arithmetical statements can be proved with the help of Theorem [[.3.11

Example 1.3.2. Suppose we wish to prove that the following formula, denoted
A(n), holds for each natural number n:
A(n) : k=
k=1

n(n+1)
—
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We can proceed this way: Let S = {n € N : A(n) is true}. We want to show
that S = N. Thus we want to show that properties (1) and (2) (the hypotheses
of Theorem [[31]) hold. Note that 1 € S because statement A(1) is the statement
that 2119:1 k= w, and this is certainly true. Now suppose that A(n) is true,
that is, n € S, so that

n(n—&—l).

k= 5

NE

=
Il

1
Then compute that

n+1 n

Y k= (Zk)—k(n—f—l):w—i-(n—kl),
k=1 k=1

by the hypothesis that A(n) is true. Now rearrange the right-hand side of this
result to obtain

n+1
(n+2)(n+1)
=TT

which is precisely the statement A(n+ 1). Hence the truth of A(n) (that is, n € S)
implies the truth of A(n+ 1) (that is, n+1 € S). Thus A(n) is true for all n € N.
A

Most applications of Theorem [[.3.1] follow the general pattern of this example.
Assuming that step (1) holds, the work consists in showing the induction step in
(2): ne S impliesn+1€S.

The principle of mathematical induction can be restated in the following useful
form.

Theorem 1.3.3 (Mathematical Induction). Suppose that for each positive integer
n we are giwen a statement A(n). Suppose further that we can prove the following
two properties:

(1) A(1) is true;
(2) for each positive integer n, the truth of A(n) implies the truth of A(n +1).

Then for all positive integers n, statement A(n) is true.

Proof. The proof is by contradiction, and has essentially the same structure as
the proof of Theorem [[L3.1] allowing only for the change in the language of the
properties (1) and (2) given here. Let S = {n € N : A(n) is true}. Thus, we
assume (1) and (2) hold, and that the set I = N — S, consisting of the positive
integers n for which the statement A(n) is false, is nonempty. By well ordering
of the positive integers, there is a least element m in F, and statement A(m) is
false. By (1), m # 1, so m > 1. Since m is the least element of F, m — 1 ¢ S;
that is, statement A(m — 1) is true. But then, by (2), statement A(m) is true since
m = (m — 1) + 1. The desired contradiction is that statement A(m) is both true
and false. Therefore hypotheses (1) and (2) imply that for all positive integers n,
statement A(n) is true. O
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The following statement of the induction principle has a modified property (2)
which appears to be stronger than (2) in Theorem [[33] In fact, Theorem [[33] is
equivalent to Theorem [1.3.4]

Theorem 1.3.4 (Mathematical Induction II). Suppose that for each positive in-
teger n we are given a statement A(n). Suppose further that we can prove the
following two properties:

(1) The statement A(1) is true.

(2) For each positive integer n, the truth of A(k) for all k with 1 < k < n implies
the truth of A(n).

Then the statement A(n) is true for all positive integers n.

Proof. Assume (1) and (2) hold. Let F be the set of integers n > 0 for which the
statement A(n) is false, and assume that F' is nonempty, having least element m.
Then A(m) is false. By hypothesis (1), m # 1, so m > 1. Since m is the least
element of F, for every k < m statement A(k) is true. Then by hypothesis (2),
statement A(m) is true. The deduction that A(m) is both true and false is the
contradiction which completes the proof. (Il

Theorem [[34] is helpful, for example, in the proof that all real symmetric
matrices are diagonalizable by a real orthogonal matrix; see Theorem R.5.7

Sometimes it is convenient to start the indexing of a list of statements with the
index 0 rather than 1. In the proof of the induction principle, we could have replaced
the initial number 1 by the number 0, and the argument would have proceeded just
as well. (The nonnegative integers are well ordered.)

Example 1.3.5. With practice, we find that induction is lurking behind many
simple statements we want to make. Suppose {4, : j € N} is a collection of sets
(of numbers or other objects) and we wish to talk about the union of all these
sets, denoted Ujoil Aj. Some, or many, of the sets A; may overlap (have nonempty
intersection), or not, as the case may be, but in some situations, any overlap is a
mere inconvenience. For example, at several places later in the book we find it is
useful to express the same union as a union of sets that are pairwise disjoint. In
other words, we want to write

o0 o0
U4a=UBs
j=1 j=1

where the sets B; are pairwise disjoint, meaning that B; N B; is empty for ¢ # j.
We may also say that the collection {B; : j € N} is a disjoint collection or a disjoint
sequence (see Definition below). We also say that the union of the sets B; is
a disjoint union. A simple definition that yields such sets B; is to define By = Ay,
and then to say we define

n—1

B,=A, — UAj’ for n > 2,

j=1
or equivalent wording. It is the principle of induction that assures us that the sets
B,, have truly been defined for every positive integer n. A



10 1. Sets and Functions

The concept of a sequence is important throughout this book.

Definition 1.3.6. A sequence in a set X is a function f: N — X.

Defining f,, = f(n) (by induction), we often denote sequences by enclosing the
elements in parentheses, (f1, fa, f3,...), though this is not a strict rule. It is legit-
imate to simply refer to a sequence fi, for example. The notation, (f1, fa, f3,...),
carries with it the natural ordering of the images inherited from the ordering of
N. A notation such as (f)72; can be used if it is important to indicate explicitly
the starting value of the index. For uniformity of notation when discussing general
properties of sequences, it is assumed that £ = 1 is the starting value unless spec-
ified otherwise. This is the reason for using N as the domain in Definition
But it would be counterproductive to insist on always starting with index k = 1.
The index set {0,1,2,3,...} = {0} UN is frequently used in the study of infinite
series. For a sequence f, it is not only the range of f, denoted {f(k) : k € N}, that
matters, but often the ordered listing of elements is of interest as well. As shown
in the section on Equivalence of Sets and Cardinality, in principle any countably
infinite set can serve as the domain (or index set) of a sequence. Finite sequences
in X can also be useful. They normally have domain {1,...,n} for some n € N.

The set Z of integers, the numbers that can represent the results of transactions
involving whole currency units, is denoted by

Z={.,-3-2,-1,01,2,3,...}.

The set Z is totally ordered by <, but not well ordered.

The algebraic operations of addition and multiplication of integers operate on
the product set

ZxZ={(a,b):a€ZandbeZ},

and are viewed as functions from Z x Z to Z. Any two integers a, b can be added
to give another integer, a 4+ b, or multiplied to give an integer ab. Each of these
binary algebraic operations is commutative,

a+b=b+a and ab=ba, forallabeZ,
and associative,
a+(b+c)=(a+b)+c and a(bc) = (ab)e, forall a,b,ceZ.
Multiplication is distributive over addition:

a(b+c)=ab+ac, forall a,bceZ.

The number 0 is the unique additive identity for the set Z: a + 0 = a for any
a € Z, and 0 is the only number with that property. For each a € Z, there is a
unique additive inverse, denoted —a, such that @ + (—a) = 0. The number 1 is the
unique multiplicative identity for Z: la = a for any a € Z. The set Z does not
include multiplicative inverses for every nonzero integer. Only the numbers 1 and
—1 have multiplicative inverses in Z.
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Exercises.

Exercise 1.3.1. Prove by induction: For each natural number n,

5 +1)(2n+1)
Zk 5 .

Exercise 1.3.2. Prove by mductlon' For each natural number n,

Exercise 1.3.3. Recall that a positive mteger is a prime number if its only
positive integer factors are 1 and itself. Prove: Every positive integer is either a
prime number or the product of prime numbers. Hint: Use Theorem L34l

Exercise 1.3.4. Prove the finite geometric sum formula: If r £ 1, then for any

positive integer n,
St
T .
11—

Exercise 1.3.5. Let h > 0. Use 1nduct10n to prove Bernoulli’s inequality: For all
positive integers n, (1 + h)™ > 1+ nh.

Exercise 1.3.6. Let k£ and n be nonnegative integers with 0 < k£ < n. The
binomial coefficients are defined by

(%)= msm

where 0! := 1, and for n > 1, n! is the product of the first n positive integers:
nl=n(n—1)(n—2)---(3)(2)(1).

1. Pro ethat( " )+(n)*<n+1)for1<k<

Y k—1 k) T\ k =H=

2. Prove the special binomial theorem: For real y and any positive integer n,

Qe =3 (1)

k=0
Hint: Use part (1) for the induction step. Observe that for a general finite sum
such as Y ak, equivalent expressions are ag+Y_,_; ar and ap+Y 5| Gp—1.
3. Show that Bernoulli’s inequality, (1 + k)™ > 1 4+ nh for positive real h and
positive integer n, follows from the special binomial theorem.

4. Prove the general binomial theorem: For real © # 0 and y, and any positive

integer n,

x "= " ):v"_k k

(& +y) ;;) () v
Exercise 1.3.7. For the index set N of natural numbers, define the real number
intervals J, = (1,1 + 1/n) for n € N. Find | Jp and Jpn. Then find
(Unen /n)¢ and (Myen /o)
Exercise 1.3.8. Repeat the previous exercise with the real number intervals J,, =
[1,14+1/n], n € N.

neN neN
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1.4. Equivalence of Sets and Cardinality

Let J, C N be the set of the first n positive integers, J, = {1,2,3,...,n}. A set
X is finite, by definition, if and only if there exists an n € N such that there is a
bijection f : J, — X. If a set X is not finite, then X is infinite. For finite sets,
we can refer to the number of elements in the set; the number of elements is some
positive integer n. For infinite sets, we cannot speak so easily about the number of
elements. For example, it might seem that the set E of even positive integers has
only half as many elements as the set N of positive integers. It might seem that
there must be more numbers on the real number line than there are numbers in the
real interval [0,1]. If we are thinking of the inclusion mapping x — x from [0, 1]
to (—oo,00) or from F to N, then of course there are numbers not in the image
of this injective mapping. But this does not rule out the possibility of a bijection
between [0, 1] and (—o0, 00) or between E and N.

The way to approach these questions is by means of bijections and the concept
of two sets X and Y having the same cardinality.

Definition 1.4.1. Let U be a set. Subsets X andY of U have the same cardinal-
ity if there exists a bijection h : X —'Y, in which case we write card(X) = card(Y').

It is useful to have the concept of an equivalence relation on a set M, which
gives a classification of the elements which are alike in a specific way. Let M be a
set or collection. An equivalence relation on M is a relation, denoted ~, between
selected pairs of elements of M such that (i) z ~ z for all z; (ii) if © ~ y, then
y ~ x; and (iii) if x ~ y and y ~ z, then 2 ~ z. These properties are known as the
(i) reflexive, (ii) symmetric, and (iii) transitive, properties of the relation. A more
formal definition of an equivalence relation ~ on M is to define it as that subset
R of the Cartesian product M x M consisting of all pairs (z,y) such that z ~ y.
Then (i) (x,z) € R for all z; (ii) if (z,y) € R, then (y,z) € R; and (iii) if (z,y) € R
and (y,z) € R, then (z,z) € R.

If U is a set and M is the collection of all subsets of U, then the relation
defined by X ~ Y if and only if card(X) = card(Y") is an equivalence relation on
M. Reflexivity and symmetry are clear from the definition. The relation is also
transitive, because if there are bijections h : X — Y and g : Y — W, so that X
and Y have the same cardinality, and Y and W have the same cardinality, then
goh: X — W is also a bijection, and thus X and W have the same cardinality.

Example 1.4.2. Let E be the set of even positive integers, and let f : N — E be
f(k) = 2k. Then f is a bijection, with inverse f~! : E — N given by f~1(k) = k/2.
So E and N have the same cardinality. Define g : Z — N by setting g(n) = 2n if
n > 0,and g(n) = —2n+1if n < 0. We can visualize the one-to-one correspondence

given by g and its inverse g~

0,1,-1,2,-2,3,-3,...) - (1,2,3,4,5,6,7,...),

-1

(1,2,3,4,5,6,7,...) 2= (0,1,-1,2,-2,3,-3,...).

Thus, Z and N have the same cardinality, and by transitivity of the relation, Z and
FE also have the same cardinality. A
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Let X and Y be sets. If there exists an injective (one-to-one) function f : X —
Y, then, in the absence of further knowledge, there is the possibility that there are
elements in Y that are not in the image f(X). Without further knowledge, the
question remains whether there exists a bijection between X and Y. It can often
happen that injective mappings f : X — Y and g : Y — X are available, but
neither f nor g is onto. In such a case, the knowledge gap associated with specific
injective mappings can always be closed. This is the assertion of the Schroeder-
Bernstein theorem.

Theorem 1.4.3 (Schroeder-Bernstein). Let X and Y be sets. If there exists a
one-to-one mapping f : X — Y and a one-to-one mapping g : Y — X, then X and
Y have the same cardinality.

Plausibility argument. The rigorous proof of this theorem might be a hard sell,
and therefore it is deferred to an appendix for those who might be interested.
Instead, consider the following plausibility argument:

To help in thinking about the situation, we can think of the elements of X
as cats and the elements of Y as dogs. We say that each cat x € X picks a dog
f(x) € Y to chase, and different cats chase different dogs. Similarly, each dogy € Y
picks a cat ¢g(y) € X to chase, and different dogs chase different cats. With each
dog and cat chasing a unique cat and dog, respectively, we note four possible types
of patterns, or chasing chains:

* Chasing chains that form a finite loop consisting of an even number of animals;
within such a loop, we match each cat with the dog it chases.

* Chasing chains that are doubly infinite, with no start and no end; within such
a chain, we match each cat with the dog it chases.

* Chasing chains that start with a cat, but have no end; within such chains, we
match each cat with the dog it chases.

* Chasing chains that start with a dog, but have no end; in such chains, we
match each cat with the dog chasing it.

Given these four possibilities, we may convince ourselves that the elements of X
and Y may be put into one-to-one correspondence. But the construction of such
a correspondence is not obvious. For example, the number of chasing chains of
each type is not known. As noted, this is best considered a plausibility argument.
If you are satisfied, it is perfectly fine, and the examples after the theorem are
recommended. O

The Schroeder-Bernstein theorem is an important tool in the study of cardi-
nality. We consider some examples.

Example 1.4.4. The real intervals [0,1] and [0, 1) have the same cardinality. Let
f:]0,1) = [0,1] be the inclusion mapping, f(z) = z, and let g : [0,1] — [0,1) be
g(x) = /2. Then f are g are both injective, hence [0,1] and [0, 1) have the same
cardinality by Theorem [[LZ.3l A

Theorem[[Z43land elementary functions can be used to show that any two of the
intervals (a,b), [a,b], (a,b], [a,b), (a,o0), [a,c0), (—00,b), (—o0,b], and (—o0, 0)
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have the same cardinality. Stated more briefly, any two nontrivial real intervals are
in one-to-one correspondence.

Example 1.4.5. We show that (0,1) and (—oo, 00) have the same cardinality. The
function f : (—7/2,7/2) — (—00,00) given by f(x) = tanz is strictly increasing,
hence one-to-one, and f is onto (—oo,0). The function g : (0,1) = (—7/2,7/2)
defined by g(x) = —7/2 + 7z is a bijection. Hence, (0,1) and (—o0,00) have the
same cardinality since f o g is a bijection. VAN

Definition 1.4.6. A set X is denumerable if it has the same cardinality as the
set N of natural numbers, that is, there exists a bijection h: N — X.

A set X is denumerable if and only if there is a bijection h : N — X. The
bijection h provides an enumeration or listing, of the set X, given by the sequence
(h1,ha, hs,...), where hy, := h(k) for each k € N. We say that X is enumerated by
the given sequence.

Example 1.4.7. Cousider the bijection g : Z — N given earlier where g(n) = 2n
if n>0,and g(n) = —2n+ 1 if n < 0. Thus,

0,1,-1,2,-2,3,-3,...) -5 (1,2,3,4,5,6,7,...).

In fact, g~ ! provides the enumeration of Z by mapping the sequence on the right,
which is N, one-to-one and onto Z, the sequence on the left. VAN

The next result says that denumerable sets frequently appear.
Proposition 1.4.8. Every infinite set S has a denumerable subset.
Proof. We define a denumerable subset D of S and give its enumeration. From

each nonempty subset of S we can select a specific element of that subset. For S it-
self, let 1 be the chosen element of S. For the subset S—{x1} = {z1}¢, let 23 be the

chosen element. Suppose that we have selected elements x1,x2, 23, ..., %,_1 such
that for each k =2,...,n— 1, element a € {z1,...,25-1}° =S — {z1,...,2x_1}
Then from the subset S — {x1,...,2p—1} = {Z1,...,2,—-1}°, we select an element

Zn. By induction we have defined a set {1, x2,23,...} of distinct elements of S
indexed by the set of positive integers. Then D = {x1,x9,x3, ...} is a denumerable
subset of S. O

Proposition 1.4.9. If S is an infinite subset of N, then S is denumerable and
there is a unique enumeration of S, (ki,ke,ks, ..., kn,knt1,-..) such that k; <
ko <ks <--  <kp<kpyr <---.

Proof. There is a smallest element of S, which we denote by k. Suppose we have
defined ki, ks,...,k, such that k; < ks < --- < k, and such that if kK € S but
k ¢ {ki,ko,...,kn}, then k > k,. Then define k,,41 to be the smallest element of
S which is greater than k,,. Then the mapping h(n) = k,, n € N, gives the desired
enumeration of S. (]

The next corollary explains why denumerable sets may be considered the small-
est infinite sets.



1.4. Equivalence of Sets and Cardinality 15

Corollary 1.4.10. If D is a denumerable set and S is an infinite subset of D, then
S is denumerable.

Proof. Given any enumeration of D, its infinite subset S corresponds to an infinite
subset of N via the given enumeration. Then by the previous proposition, S is
denumerable. O

Corollary 1.4.11. If D is a denumerable set and f : D — S is onto S, then S is
either denumerable or finite.

Proof. Since f is onto S, for each y € S there is some element x, € D such that
f(zy) = y. Define g : S — D by g(y) = x,. Then g is one-to-one, because if
y,z € S and g(y) = g(z), then

y=f(xy) = fl9(y)) = flg(2)) = f(x.) = 2.

Now ¢(S) C D and since g is one-to-one, g provides a bijection of S and ¢(S). If
g(S) is infinite, then g(S), and hence S, is denumerable by the previous corollary.
Otherwise, g(.5), and hence S, is finite. O

Proposition 1.4.12. The Cartesian product N x N is denumerable.

Proof. Let h: N x N — N be the mapping

h(n,m) =2"3™.
It can be shown that h is one-to-one (Exercise [[[41]). Hence, by Proposition [L4.9]
N x N is denumerable. O

Corollary 1.4.13. If D is a denumerable set, then the Cartesian product D x D
is denumerable.

Proof. If h : N — D is a bijection, then so is the mapping H : N x N — D x D
defined by H(n,m) = (h(n), h(m)). O

The proof of the next proposition is left to Exercise [.4.2]

Proposition 1.4.14. If for each k € N, Dy is a denumerable set, then the union
D =, Dy is denumerable.

Finally, we say that a set is countable if it is either finite or denumerable. In
either case, the set may be put into a one-to-one correspondence with a subset of
the counting numbers N. The context should make the meaning clear as to whether
a finite or infinite set is intended.

Exercises.

Exercise 1.4.1. Complete the proof of Proposition by showing that the
mapping h : N x N — N given by h(n,m) = 2"3™ is one-to-one. Hint: Use
the Fundamental Theorem of Arithmetic (the Unique Factorization Theorem for
positive integers).
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Exercise 1.4.2. Prove Proposition [[4I4l Hint: Enumerate each of the sets Dy
as follows: D1 = (11171‘12,.%13, N .), D2 = (I21,$22,I23, . .), and so on. Define
f:NxN — Dby f(i,j) = z;; and show that f is onto D = |J;—; Dy. Then apply
Corollary L4111

Exercise 1.4.3. Suppose that for each k¥ € N, Dy is nonempty and is either a
finite or a denumerable set. Show that the union D = [J;—, Dy is denumerable.

Exercise 1.4.4. Let ~ be an equivalence relation on a set M. Show that ~
determines a partition of M into disjoint subsets, called the equivalence classes
relative to ~, such that the elements within each class are all equivalent under the
relation, and M is the union of the equivalence classes.

1.5. Notes and References

The description of the Russell paradox in Exercise [Tl is from Sagan [54]. The
Unique Factorization Theorem for positive integers referenced in Exercise [L41] is
in Birkhoff and Mac Lane [4] or any modern algebra text.

Halmos [26] is an excellent and readable presentation of the essentials of set
theory. For more on basic logic and methods of proof, see Krantz [39].
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Chapter 2

The Complete Ordered Field
of Real Numbers

The algebraic structure known as a field is an efficient way of organizing and ex-
pressing the properties of the rational numbers, the real numbers, and the complex
numbers, among other important number systems such as the finite fields that play
an important role in modern cryptography. The main goal of this chapter is to
explain the algebraic structure of fields and, in particular, the special structure of
the field of real numbers. The special structure of the real numbers is described in
the statement that the real number system is a complete ordered field. 1t will take
some space, time, and effort to explain the terms involved in that statement, but
the result will be a deeper understanding of the real numbers as the foundation for
all of modern analysis.

It might seem appropriate to define the real numbers before discussing their
properties. The real number field can be defined by means of constructions based
on the rational numbers. We give references later for the standard constructions.
Those constructions are important because they establish that the real number
system, endowed with its special properties needed for the success of calculus,
actually exists as a consistent number system. The rigorous construction of a
complete ordered field ensures that the definition we give of the real number field
is more than an empty exercise.

However, for an understanding of analysis, what is needed is an understanding
of the properties of the real numbers, and for that purpose we do not detour to
study the rigorous proof of existence and uniqueness of a complete ordered field. In
short, you can proceed to study the properties of the real numbers without worry
that the effort is an empty exercise. After all, you have previous experience with
the problem-solving power of calculus, so there must be something substantial at
the foundations. That something is the existence of a complete ordered field. The
properties of the field of real numbers are all presented in the axioms for a complete
ordered field, and these axioms appear in the first two sections of the chapter.
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Sections 2.3-2.7 explore the properties of the real numbers that are of fundamental
importance for analysis. For interested readers, Section 2.8 includes references for
the construction of a complete ordered field and provides encouragement for the
study of such a construction.

2.1. Algebra in Ordered Fields

Readers of this book have years of experience in dealing with the field operations
and properties of the rational numbers and the real numbers. A field is a set F'
together with two binary operations, defined by functions A : F' x F — F and
M : F x F — F called addition and multiplication, respectively, which satisfy the
axioms set out in items Al - A4, M1 - M4, and D1 in the next subsection. We shall
denote the addition and multiplication operations on elements of F' in the familiar
way indicated by A(z,y) = z +y and M(z,y) = zy.

2.1.1. The Field Axioms. The axioms for addition in F are as follows:

Al Forall z,y € F, z +y = y + z. (commutativity)
A2. Forall z,y,z € F, (x+y) +z =2+ (y + z). (associativity)

A3. There exists an element 0 € F' (an additive identity) such that z +0 =z
for all z € F'.

A4. For every x € F there is an element y € F' such that z +y = 0.
The additive identity 0 in A3 is uniquely determined. Also, an additive inverse y for
z in A4 is uniquely determined by z, and we write it as —z, so that z 4+ (—z) = 0.

We can form finite sums for elements x1, xs, ..., x, € I by defining inductively
T+ T4+ X = (T 22+ Tpo1) + T

Finite sums do not depend on the ordering of the terms; one can give a proof by
induction of this fact, but we shall not do so. The sum z1 + 22 + -+ 4+ x,, can be
written using the concise and unambiguous summation notation

n
E Tk.
k=1

The axioms for multiplication in F' are as follows.

MI1. For all z,y € F, zy = yz. (commutativity)
M2. For all z,y,z € F, (xy)z = z(yz). (associativity)

M3. There exists an element 1 € F (a multiplicative identity) different from
the additive identity 0, such that z1 = 1x =z for all x € F.

M4. If z € F and x # 0, there exists an element v € F' such that zv = vax = 1.
(multiplicative inverse)

The multiplicative identity 1 is unique. Given x € F with x # 0, the multiplicative
inverse v of z in M4 is uniquely determined by z, and we write it =% or 1/x. In
a field, we can never divide by the additive identity (Exercise 21.1]).
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We can form the product of finitely many elements x1, xs, ..., x, € F by defin-
ing inductively
T1Zo - Tp_1Tp = (T1T2* Tn—1)Tn.
The product does not depend on the ordering of the terms; again, one can give a
proof by induction of this fact. The product x1xs---x, can be written using the
concise and unambiguous product notation

n
[T
k=1

If n is a positive integer and = € F, then we define 2" = zz-- -z = [[}_ = If
a# 0 € F, then we define a® = 1, the multiplicative identity. Then for any integers
m,n>0anda € F,

a™t" =a"ma".
Also we define a=™ = (a~1)™; with this definition, one can show that the law of
exponents a™ " = a™a™ holds for all integers m,n.

The axiom of distributivity relates addition and multiplication, asserting that
multiplication distributes over addition:

D1. For all z,y,z € F, 2(y + z) = zy + xz. (distributivity)
We observe that by the commutativity of multiplication, we also have
(y+2)e=x(y+2) =zy+ 2z =yx + 2z.

Example 2.1.1. The set Q of rational numbers, with the usual operations of
addition and multiplication, satisfies the field axioms and is therefore a field. A

Example 2.1.2. The set R of real numbers, which you may think of as the set
of decimal expansions if you like, with the usual operations of addition and mul-
tiplication you have always used, is assumed to be a field. (Later in the chapter,
we define decimal representations for the real numbers.) If ¢ € Q, then ¢ is a real
number, hence R contains Q as a subset. (We show later in the chapter how this
containment follows from the field axioms and the order axiom discussed below.)
In fact, the addition and multiplication operations on R, when restricted to Q,
are exactly the operations of Q, so Q is a subfield of R. In the remainder of this
chapter, we shall identify the property or properties of R that distinguish it from
Q and allow us to do analysis. VAN

There are only two elements whose existence is specifically demanded by the
field axioms: the additive identity and the multiplicative identity. These two ele-
ments alone describe a particular field, as follows.

Example 2.1.3. The set Zo = {0,1} is made into a field by defining addition by
0+0=0,0+41=1,140=1, and 1 +1 = 0, and defining multiplication by
(0)(0) =0, (0)(1) =0, (1)(0) =0, and (1)(1) = 1. One can verify directly that the
field axioms hold. A

Here are some basic properties that follow from the field axioms. In any field,
(=1)z = —=z, so the additive inverse of = equals the product of x and the additive
inverse of the multiplicative unit. Also, —(ab) = (—a)b = a(—b) follows easily from
the axioms and the uniqueness of additive inverses.



20 2. The Complete Ordered Field of Real Numbers

Example 2.1.4. The field C of complex numbers is the set of ordered pairs (a, b),
where a,b € R, with the operations of addition and multiplication for (a,b), (¢, d) €
C defined by
(a,b) + (¢,d) = (a+ ¢, b+ d)

and

(a,b)(c,d) = (ac — bd, be + ad),
respectively. Although it may not be tremendously exciting to do so, one can
check directly that both of these operations are commutative and associative, and
multiplication distributes over addition:

[(a,0) + (¢, d)](e, f) = (a,b)(e, f) + (¢, d) (e, f).

The additive identity is (0,0). The additive inverse of (a,b) is (—a,—b). The
multiplicative identity is (1,0), and the multiplicative inverse of (a,b) # (0,0)
is (a/(a? + b%),—b/(a? + b%)). These facts can all be verified directly from the
stated definitions. Instead of doing that, we wish to show the reasonableness of
the definitions. Let us write a = (a,0). If we set ¢ = (0,1), then by the definition
of multiplication, i = (0,1)(0,1) = (=1,0) = —1. Again by the definition of
multiplication and our agreed notations, (0,b) = (b,0)(0,1) = bi. Thus, for any
(a,b) € C, the definition of addition and our agreed notations allow us to write

(a,b) = (a,0) 4+ (0,b) = a + bi.

One can now verify that the definition of multiplication is exactly the one needed
to ensure that if > = —1 and multiplication and addition are indeed commutative,
then (a + bi)(c + di) can be expanded by the usual rules to yield the product
(ac — bd) + (be + ad)i = (ac — bd,bc + ad). Finally, if z = a + 0i = a, then
z is a real number, hence C contains R as a subset. In fact, the addition and
multiplication operations on C, when restricted to R, are exactly the operations of
R, by definition, so R is a subfield of C. A

2.1.2. The Order Axiom and Ordered Fields. Let F' be a field and P C F a
subset that satisfies the following conditions:

Ol. If z,y € P, then z +y € P and zy € P.

02. For each x € F, exactly one of the following is true:
reP, or =0, or —ax€P.
Then P is called a positive set.

An ordered field is a field F' that contains a positive set P. The idea of a
positive set is that an order comparison between two elements of F' only requires a
determination of whether an element is in the positive set, because in a field we have
additive inverses and therefore can subtract one element from another element. (Is
it true that b — a > 0, that is, is it true that b — a € P?) We begin by learning a
little bit about the positive set P. First, if F' is an ordered field with positive set P,
and a € F with a # 0, then a? € P. Here is the proof: If a # 0, then either a € P
or —a € P. If a € P, then a® € P by the definition of a positive set. If —a € P,
then (—a)? € P, and (—a)? = (—a)(—a) = (=1)(=1)a? = —(=1)a? = a?, so again
a?> € P. Since 1 #0in F and 12 = 1, we know that 1 € P.

Other important properties of ordered fields include the following ones.
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The product of a positive element and a negative element of F' must be negative:
Ifae P (a>0)and —b € P (b<0), then a(—b) = (—a)b = —(ab) € P, and hence
ab < 0.

In an ordered field, z € P implies x~! € P. Here is the proof: If z € P, then
x#0, 50 x71 exists and 71 # 0. If —x~! € P, then P contains
r(—z7 ) = —(zz™t) = —1,
but this contradicts the fact that 1 € P. Hence, ! € P.

In order to derive further properties involving order, it is best to define the
usual order symbols <, >, < and > and work with them. In an ordered field, we
write a < b if and only if b+ (—a) € P. We also write b > a to mean a < b. In
particular, z > 0 if and only if x € P. We write a < b if and only if a« = b (meaning
b—a=0)ora<b

Condition O2 implies that the positive set of an ordered field induces a total
ordering by <. Any ordered field is totally ordered.

Example 2.1.5. The set of positive rational numbers

Q" ={p:peQ,p>0}
is the set of positive elements of the rational number field Q. Q is totally ordered

by <, but not well ordered. VAN

Example 2.1.6. The set of positive real numbers
Rt ={r:reR,r >0}

is the set of positive elements of the real number field R. R is totally ordered by
<, but not well ordered. AN

In an ordered field, we have seen that —1 is not an element of the positive set
P. This fact allows us to see that there is no possible positive set P for the field of
complex numbers. Thus, the complex field C is not an ordered field.

Proposition 2.1.7. The field C of complex numbers is not an ordered field. (No
positive set exists in C.)

Proof. Suppose C has a positive set. Since i> = —1 and i? is the square of a
nonzero element, —1 is an element of the positive set, which is a contradiction of
our earlier deduction that —1 is not in the positive set of an ordered field. Therefore
a positive set for C does not exist. O

Theorem 2.1.8. Let x, y and z be elements of an ordered field F' with positive set
P. The following properties hold:

Ifx <y, thenx+ 2z <y—+z.

If x <y and z € P, then xz < yz.

If x <y and —z € P, then yz < xz.

Ife <y, thenz < (z+y)/2<y.

If x <y andy < z, then x < z.

ok W=
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Proof. 1. Since z < y, y — x € P. We want to show that (y+ z) — (z + z) € P.
But (y+2)—(x+2)=y—x € P, hence x + 2z < y + z.

2. Since x <y, y —x € P. Hence yz —xz = (y —x)z € P since y — x and z are
positive elements. Part 3 is left as an exercise for the reader.

4. Using part 1 twice, we have 2x =z + 2 < 4+ y < y +y = 2y. Hence, on
multiplication by 271 € P, two applications of part 2 imply that z < (z+y)/2 < y.

5. This follows from the transitivity of <. Or we can say that by hypothesis,
y—zx€Pandz—y € P, hence (z—y)+(y—xz)=2—x € P. O

We know that Q and R are ordered fields but C is not. Our next goal is to see
in what ways R and Q are different.

The earliest geometers knew that the hypotenuse of a right triangle having
two unit-length sides is incommensurate with the side, that is, the side cannot be
subdivided into a whole number of standard lengths, such that the ratio of the
unit-length side to the hypotenuse is an exact ratio of whole numbers. In modern
language, the real number /2 is not a rational number. We prove this now, but
before beginning the proof, we note that a positive integer is even if its square is

even (Exercise 2-T.0).

Lemma 2.1.9. There is no rational number = such that z* = 2.

Proof. Suppose there exists a rational number z with 22 = 2. Write = p/q with
p,q € Z and suppose that p and ¢ have no common integer factor (other than 1).
Then
2=0?=p"/¢* = 2¢° ="

From this we conclude that p? is an even integer, so we may write p?> = 2k for a
positive integer k. But then ¢? = p?/2 = 4k?/2 = 2k? must also be even. So both
p? and ¢® are even. If the square of a positive integer is even, then the integer itself
is even. (The equivalent contrapositive statement is: If an integer is odd, then its
square is odd.) Thus both p and ¢ are even, and this contradicts the assumption
that p and ¢ have no common factor other than 1. O

Lemma points out a specific deficiency of the rational number field that
we will return to later on. (There are many other gaps; for example, /2 is not
rational, and neither are 7 and the Euler number e.) For now we continue the
general discussion of properties of fields and, in particular, ordered fields.

Every ordered field F' contains a copy of the natural numbers, under the iden-

tification
nen-l:=14---41, néeN,
—_———
n terms

where 1 is the multiplicative identity of F'. In order for this statement to make useful
sense, we must show that all these elements are actually distinct, in an ordered
field. (Note that these elements in Zs simply give the two elements 0,1 € Z,, since
1-1=1,2-1=141=0,3-1=1, and so on. But Z is not an ordered field.)

Theorem 2.1.10. In an ordered field, the elements n -1, n € N, that is, the
elements 1,1+ 1,14+ 141,... are all positive and distinct.
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Proof. Let A(n) be the statement A(n) : (Z?Zl 1) € P, where P is the positive
set of the ordered field. In the summation, the index runs through the positive

integers from 1 to n, and the term being summed is the multiplicative unit of the
field. Then A(1) is true since E;Zl 1=1¢€ P. Assume that A(n) : (Z?Zl 1) epP

is true. Then
n+1 n

Yi= (Zl) f1eP,

j=1 j=1
since P is closed under addition. By the induction principle, for each positive
integer n, statement A(n) is true, that is, for each n, (Z?Zl 1) e P.

In order to see that these elements are all distinct, consider the difference
between any two of them. The difference is either (i) one of these sums and hence
an element of P, or (ii) the additive inverse of one of these sums. In either case, an
element of P or the additive inverse of an element of P cannot be the zero element
of F. O

An immediate corollary of this theorem is that any ordered field is infinite.
We are now justified in making the identification
neon-l:=14+---+1, neN,
—_———
n terms

where 1 is the multiplicative identity of F', and asserting that every ordered field
contains a copy of the natural numbers. With this understanding we write N C F.
Consequently, every ordered field F' also contains a copy of the integers Z and the
rational numbers Q, since for any positive integers m and n in F, the elements
0, —m, and m/n = mn~! are in F. It is with this understanding that we write
N CZ C QC F, where F is any ordered field. In particular, the ordered field of
most interest to us is the field R of real numbers, and N C Z C Q C R.

We are assuming that both R and Q satisfy the field axioms. The order relation
on Q is embedded in the order relation on R, and the positive set of Q is contained
in the positive set of R. It will be essential for us to isolate the way in which R
differs from Q, and that is the subject of the next section.

Exercises.

Exercise 2.1.1. No division by zero.
Prove: In a field, the additive identity 0 has no multiplicative inverse. Hint: Proof
by contradiction.

Exercise 2.1.2. Show that Z5 is not an ordered field.

Exercise 2.1.3. Prove property 3 of Theorem 2.8 Then prove the following
properties in an ordered field F' as an extension of Theorem 2. 1.8

6. If x <0, then 1/x < 0.

7. If zy > 0, then either (z > 0 and y > 0) or (z < 0 and y < 0).

8 If 22 +y? =0, then z = 0 and y = 0.

9. If x < y, then there are infinitely many elements z with x < z < y.
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Exercise 2.1.4. Let F be an ordered field and a € F with a > 0. Prove: If a < b,
then for each positive integer n, a™ < b™.

Exercise 2.1.5. Show that a positive integer is even if its square is even. Hint:
The contrapositive statement: If a positive integer is odd, then its square is odd.

2.2. The Complete Ordered Field of Real Numbers

Many people identify the set R of real numbers with the set of all points on a
number line. We may also think of the real numbers as the collection of all decimal
numbers[] This is a valid point of view, as we will see later. However, our main goal
in this section is to describe the property that distinguishes the rational number
field from the real number field, because it is this distinguishing property that
allows us to fill the gaps in the rational number line such as v/2. To describe this
property, we need some additional concepts.

Definition 2.2.1. Let S be a subset of an ordered field F'.

1. We say that S is bounded above if there is an element b € F such that
s <b forall s €S, and b is then called an upper bound for S.

2. We say that S is bounded below if there is an element a € F such that
a < s forall s €S, and a is then called a lower bound for S.

3. The set S is bounded if it is bounded above and bounded below.

The subset of the rational numbers defined by
S = {s € Q:either s <0, or s >0 and s* < 2}

is nonempty, since 1 € S. S is not bounded below, but it is bounded above. For
example, b = 2 is an upper bound for S: The proof is by contradiction, for if s € .S
and s > 2 = b, then s? > 22 = 4, which contradicts the assumption that s € S. So
we clearly have s < b =2 for all s € S. In a similar way, one can show that b = 3/2
is also a rational upper bound for S, and so is 142/100 = 71/50. In fact, for any
rational number b which is an upper bound for S, there is another rational number
B which is an upper bound for S and 5 < b. In fact there is no least upper bound
for this set .S of rational numbers.

Definition 2.2.2 (Supremum and Infimum). Let F' be an ordered field and S C F.

1. If S is bounded above, then an element b € F is the least upper bound or
supremum of S if b is an upper bound for S and b < u for all upper bounds
u for S.

2. If S is bounded below, then an element m € F is the greatest lower bound
or infimum for S if m is a lower bound for S and l < m for all lower bounds
l for S.

If S is a nonempty set which has no upper bound, we may write sup.S = oo,
and if S is nonempty and has no lower bound, we may write inf S = —oo. This is
a notational convenience.

IThere is actually a certain restriction which we shall note later.
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Using the concept of least upper bound, it is possible to show that if F' is an
ordered field and we define the set .S as above, that is,

S = {s € F : either s < 0, 01"32023Lnds2<2}7

and if sup S exists in F, then (sup S)? = 2. (This argument will be carried out in
the proof of Theorem Z3.TTl below.) However, since we have shown that there is no
rational number z such that z? = 2, it follows that the set S, defined as a subset
of the field F = Q, does not have a least upper bound in Q.

If a least upper bound for S exists, then it must be unique. Indeed, if b; and
bo are least upper bounds for S, then we have b; < by, since by is also an upper
bound for S, and by < by, since by is also an upper bound for S; hence, b; = by. If
a greatest lower bound for S exists, then it must be unique (Exercise 2Z2.7]).

The intervals (0, 7] and (0, 7) both have least upper bound 7; it is the maximum
of (0, ], whereas (0, 7) has no maximum. Standard terminology for the least upper
bound of S is the supremum of S, written sup S.

The intervals [—7,0) and (—m,0) both have greatest lower bound —; it is the
minimum of [—m,0), whereas (—m,0) has no minimum. Standard terminology for
the greatest lower bound of S is the infimum of S, written inf S.

The one remaining axiom of the real number field is the least upper bound
property of R.

LUB. (Least Upper Bound) Every nonempty subset S C R that is bounded
above has a least upper bound in R, that is, there is a real number b such
that b =sup S.

The least upper bound property is often called the Completeness Axiom for R,
since it is this property of the real numbers that guarantees there are no gaps in
the real number line.

Definition 2.2.3. An ordered field F is called complete if it has the least upper
bound property.

The fields Q and R both satisfy the axioms for an ordered field, and R also
satisfies the least upper bound property. However, we have seen that Q is not a
complete ordered field, since the set

S = {s € Q:either s <0, or s >0 and s* < 2}
is bounded above but does not have a least upper bound in Q.

We are assuming that the field of real numbers is complete, since we are as-
suming the least upper bound property for R. In the last analysis, this is perfectly
legitimate, but it may be somewhat unsatisfying. If you are one of the readers for
whom this assumption is unsatisfying, then congratulations to you and rest assured
that it is legitimate, because it is possible to show that a complete ordered field ex-
ists. In other words, the deductions we make from the least upper bound property
are not an empty exercise. A complete ordered field can be constructed, starting
from the rational field Q. Moreover, the constructed complete ordered field can be
represented by the more familiar decimal representation of numbers on the (real)
number line. We can establish the decimal representation based (ultimately) on
the least upper bound property. That is, the decimal representation depends on
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the least upper bound property and some of its consequences. We do not pause
here to construct R from Q and prove that R has the least upper bound property.
For some guidance and references for this construction, see the last section of this
chapter.

We will eventually see that there are several properties of R equivalent to the
least upper bound property. One of them is the greatest lower bound property of R.

GLB. (Greatest Lower Bound) Every nonempty subset S C R that is bounded
below has a greatest lower bound in R; that is, there is a real number m
such that m = inf S.

Indeed, it is not difficult to show that S is bounded below if and only if the set
—S:={-s:s5€85}
is bounded above, and in this case we have
(2.1) inf S = —sup(-29).

We conclude that if there exists a supremum for any set that is bounded above,
then there exists an infimum for any set that is bounded below. For example, the
interval S = (m,4] has the number 7 as greatest lower bound, even though S has
no minimum number. For this set S, note that

inf § = inf(r, 4] = —sup[—4, —7) = — sup(—9).

On the other hand, if S is bounded above then —S is bounded below, and — inf(—.5)
= sup(.S). Thus, if there exists an infimum for any set that is bounded below, then
there exists a supremum for any set that is bounded above. See Exercise 2.2.41 It is
only necessary to assume one of these two properties, and then the other property
can be deduced as a theorem, as we have just argued.

We will continue to refer to the least upper bound property of R as the Com-
pleteness Axiom, the one additional axiom that makes R very different from Q.
The deepest and most interesting results about real valued functions of a real vari-
able depend on the least upper bound property. A study of the consequences of
this property will lead us to several more properties of R that are equivalent to
the least upper bound property, and we should view these equivalent properties as
different aspects or different expressions of the completeness of R.

The following result is a fundamental characterization of the least upper bound
and greatest lower bound for bounded subsets of an ordered field.
Theorem 2.2.4. Let S be a subset of the ordered field F.
1. An upper bound M of S is the least upper bound for S if and only if for every
positive element € there is an element x € S such that M —e < x < M.

2. A lower bound m of S is the greatest lower bound for S if and only if for every
positive element € there is an element y € S such that m <y < m +e.

Proof. We prove statement 1 here and leave statement 2 to Exercise 2.2.3

Suppose M = sup S and suppose that there exists an ¢y € F with ¢y > 0 such
that © < M — ¢y for every z € S. Then M — ¢y is an upper bound for S which
is strictly less than M, a contradiction of the definition of M. Thus M = sup S
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implies that for every ¢ € F with € > 0 there is an element x € S such that
M—-—e<ax< M.

Now let M be an upper bound for S such that for every ¢ € F with ¢ > 0
there is an element x € S such that M — e < x < M. If M is not the least
upper bound for S, then there is an My < M such that Mj is an upper bound
for S, so that z < My for all x € S. Given ¢ = M — My, there is an x € S such
that M —e = M — (M — My) < = < M, which says that My < z, contrary to
the assumption that My was an upper bound for S. This completes the proof of
statement 1. (Il

We end the section with some basic results on supremum and infimum.

Theorem 2.2.5. The following properties hold for the supremum and infimum of
subsets of real numbers:

1. Let B be a bounded set of real numbers. If o > 0, then
(2.2) sup{ab: b € B} = asup B, inf{ab:b € B} = ainf B.

2. IfT is a given index set and sets A = {a, : v € '}, B = {by : v € T'} are
bounded, then
(2.3) sup{ay +by:vy€eIl'} < supA+supB,
(2.4) inf{ay +by:vy€T'} > infA+infB.
3. If T, A are given index sets and A = {a, : v € T}, B = {bs : § € A} are
bounded, then
(2.5) sup{a, +bs:v€l, 0 € A} = supA+supB,
(2.6) inf{a, +bs:vel,6 € A} = infA+infB.

Proof. We prove only (Z4) and (Z6]) and leave the remaining properties for Ex-
ercise 2271

Proof of (2.4)): From the definition of infimum, for every v € I we have a, >
inf A and b, > inf B, hence a, + b, > inf A+inf B. Now ([24) follows immediately.

Proof of (Z8): By the definition of inf A and inf B, the right-hand side of (Z.])
must be a lower bound for the set {a, + b5 : v € I',d € A}. Given any € > 0, there
is an a-, € A such that

ay, <inf A+¢€/2
and a bs, € B such that
bs, < inf B + ¢/2.
Then a., + bs, is an element of {a, +bs : v € I',§ € A} such that
Gy, + b5, <inf A +inf B +e.

By Theorem 2.2.4] the greatest lower bound of {ay +bs : v € I',6 € A} must be
inf A+ inf B. O
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Exercises.

Exercise 2.2.1. Let S be a subset of an ordered field with S bounded below. Show
that if a greatest lower bound for S exists, then it must be unique.

Exercise 2.2.2. Show: If a set contains one of its upper bounds, then that bound
must be the supremum of the set. If a set contains one of its lower bounds, then
that bound must be the infimum of the set. A finite set contains its supremum and
infimum.

Exercise 2.2.3. Prove statement 2 of Theorem [2.2.4]

Exercise 2.2.4. Prove: If S is a set which is bounded above and bounded below,
then inf(—S) = —sup S and sup(—S) = —inf S.

Exercise 2.2.5. Prove: If S is nonempty and bounded, then inf S < sup S. What
must be true of S if S is nonempty and inf .S = sup S?

Exercise 2.2.6. Let F = {a + bV2:a,be Q}, considered as a subset of R. Show
that F is a field which contains an element z such that z? = 2. (This example
should dispel any idea that the real numbers are introduced merely to have a field
in which 2 has a positive square root.)

Exercise 2.2.7. Prove the parts of Theorem [2.2.5] not proved in the text.

2.3. The Archimedean Property and Consequences

We have seen that N C Z C Q C R, where R is the complete ordered field of real
numbers. We wish to understand the distribution of the integers and the rationals
within the field of real numbers. Understanding the distribution of the integers Z
within any ordered field (and hence within Q and R) requires no new concepts, so
we deal with that issue first.

Lemma 2.3.1. Let F' be an ordered field. For any integer n, there are no integers
in the open interval (n,n+1) C F.

Proof. For the case n = 0, note that every positive integer k € F' satisfies k > 1.
(This can be established by induction.) So the interval (0,1) contains no positive
integer, and since it clearly contains no negative integer, the interval (0, 1) contains
no integer at all. Now for the case of general n. Suppose there exists an integer k
in the interval (n,n 4 1). Then

n<k<n+l — 0<k-n<]l.

Thus k — n is an integer in the interval (0,1), which contradicts the conclusion
we just reached above. The contradiction is due to the assumption that there
existed an integer k in the interval (n,n 4+ 1). So the interval (n,n + 1) contains no
integers. ]

In R, any bounded subset S consisting only of integers must contain both sup S
and inf S, as the next lemma shows.

Lemma 2.3.2. If S CZNR and S is bounded above, then S contains a mazrimum
element; that is, supS € S. If S C ZN R is bounded below, then S contains a
minimum element; that is, inf S € S.
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Proof. If S C Z is bounded above, then m = sup S € R exists by the completeness
axiom. By definition of supremum, m —1 is not an upper bound for S, so there is an
integer n in S such that m —1 < n < m. Then m < n+ 1, and since m is an upper
bound for S, we must have S C (—oo, m|. By Lemma 23] there is no integer in
the interval (n,n+1), so there is no element of S in (n,n+1). Sincen < m < n+1,
n itself is an upper bound for .S, and therefore we have n = m =sup S € S.

If S C Z is bounded below, then —S = {—s : s € S} is bounded above, hence
sup(—9S) = —sp € —S for some sg € S, by the argument above. But then
inf S = —sup(—S) = —(—s¢) = so,

which shows that S contains its minimum element. O

In general, the supremum of a set that is bounded above need not be an element
of that set, since the set need not contain a maximum element. The infimum of a
set that is bounded below need not be an element of that set, since the set need
not contain a minimum element. Remember that Lemma is about bounded
sets of integers.

There is a property of Q that is also possessed by R. This is the Archimedean
property, which holds for some, but not all, ordered fields. The Archimedean prop-
erty is the key to understanding the distribution of Q within R.

Definition 2.3.3. An ordered field F is called Archimedean if for every x € F
there is an n € N such that n > x.

The Archimedean property asserts, for those fields F' that have it, that the set
N within F' is unbounded. There is no upper bound for N in an Archimedean field.

Proposition 2.3.4. The rational field Q is Archimedean.

Proof. Tt is sufficient to consider positive © = p/q € Q with both p > 0 and ¢ > 0.

Since ¢ > 1, we have z = p/q < p, and hence x = p/g <p+1 € N. O
Example 2.3.5. Let S = {%, %, i,...,%,...} be considered as a subset of the

rational field Q. Then inf S exists and inf S = 0. In order to see this, we use the
Archimedean property of Q and apply statement 1 of Theorem 224l For every
e € Q with € > 0, there is an element 1/n € S such that 0 < 1/n < 0 + €; this is
true since for any given € € Q with € > 0 there is an n € N such that n > 1/e.
Note that 0 =inf S ¢ S. A

The Archimedean property of Q is an easy consequence of the order properties
in Q. We want to show that R is also Archimedean; in fact, it will be essential
for us to know this. The Archimedean property of R follows from the least upper
bound property of R and Lemma

Theorem 2.3.6. The field R of real numbers is Archimedean.
Proof. The proof is by contradiction. Suppose that R is not Archimedean. Then

there is an element x € R such that n < z for all n € N. Then N is a bounded
subset of R and z is an upper bound for N. By Lemma 2:3.2]

ng :=supN € N,
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and therefore n < ng for every n € N. But ng + 1 € N, and ng + 1 > ng, which is
a contradiction of the fact that ng = sup N. Thus R is Archimedean. O

It is the Archimedean property of R that allows us to make the following
statement: Given any real ¢ > 0 there exists a positive integer n such that 1/n < e.
(Given € > 0, there is an n such that 1/e < n by the Archimedean property, and
hence 1/n < ¢.)

It is clear from Lemma 23] that if n is an integer, then the real interval
[n,n 4+ 1) contains exactly one integer, namely n. It is also true that for any real
number «, the real interval [a, @ + 1) contains exactly one integer. The proof calls
on the Archimedean property of the real numbers.

Theorem 2.3.7. For any real number a, the interval [a, e + 1) contains exactly
one integer.

Proof. Let
S={neZ:n<a+1l}.

Since —(« + 1) is a real number, the Archimedean property implies that there is a
positive integer n such that n > —(a + 1), and thus —n < a + 1. Since —n is an
integer, S is nonempty. Since S is bounded above by « + 1, Lemma implies
there is a maximum member m of S. If m < o, then m+1<a+1,som+1€ S,
which contradicts the fact that m is the largest member of S. Thus, m > « and
the integer m satisfies « < m < a + 1.

Now suppose there are integers m; and mo with a < m; < me < a+ 1. Then
mo —mq > 0. Since my > o and my < a + 1,
O<mg—m < (a+1)—a=1,

which says that mo — m; is an integer in the interval (0,1), a contradiction of
Lemma 23371 So there is exactly one integer in the interval [o, a + 1). O

We can now describe the distribution of the rational numbers and the irrational
numbers along the real number line.

Definition 2.3.8. A subset S of the real numbers is dense in R if for any two
real numbers a < b, there is an s € S such that a < s < b.

A statement equivalent to Definition 2.3.8 is that a subset S C R is dense in
R if every nonempty open interval (a,b) C R intersects S.

We will prove the existence of the real number square roots v/2 and —v/2 later
in the section; we know that they are irrational numbers. The next theorem shows
that the set Q of rational numbers is dense in R, and that as a consequence, the
set I of irrational numbers is also dense in R.

Theorem 2.3.9. The complete ordered field of real numbers has the following prop-
erties:

1. (The Density of Rationals): For any two real numbers a < b, there is a rational
number q such that a < q < b.

2. (The Density of Irrationals): For any two real numbers a < b, there is an
irrational number x such that a < x < b.
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Proof. (The Density of Rationals): Given real numbers a and b with a < b, let
6 =b—a > 0. By the Archimedean property, there is a natural number n such that
n(b—a) > 1. By Theorem 231 there is an integer m in the interval [nb — 1, nb).
Since n # 0,
nb—1<m<nb = b—1/n<m/n<b.
Since 1/n < b—a, —1/n > a — b, so that
a=b+(a—b)<b—1/n<m/n<b,

which says that the rational number m/n is in the interval (a,b).

(The Density of Irrationals): The density of the irrationals follows from the
density of the rationals together with the fact that irrational numbers exist. To see
this, let a, b satisfy a < b. Now v/2 > 0, hence 1/\/5 > 0, so a/\/§ < b/\/§ By the
density of the rationals, there is a rational number ¢ such that a/ V2<q< b/ V2.
Hence, a < ¢v/2 < b. The number ¢y/2 must be irrational, since it is the product
of a rational and an irrational number. (]

The proof of the density of the rationals and the irrationals should make us
pause and ponder the result. It is impossible for us to minimize the importance of
the Archimedean property or the existence of even a single irrational number.

A few final thoughts on the Archimedean property are in order before we move
on to the absolute value function and its basic properties.

An Archimedean ordered field need not be complete. The rational field Q is
an example.

There exist ordered fields that are not Archimedean. They play no role in this
book. However, the interested reader can see Exercise 2.3.2] for an example.

We now discuss the absolute value function on an ordered field F'. The absolute
value of a € F, denoted |a|, is defined by

la = a if a > 0,
A= —a ifa<o.

By considering the cases a < 0 and a > 0, it should be clear that we may write
+a < |a| for any a € F. The next theorem lists the main properties of the absolute
value function.

Theorem 2.3.10. The absolute value in an ordered field F' has the following prop-
erties for a,b € F':

1. |la| >0, and |a| =0 if and only if a = 0;
2. |ab| = |al[b];
3. la+b| < |a| + |b] (the triangle inequality);
4. |la| = [bl| < |a+b| (the reverse triangle inequality).
Proof. 1. If a = 0, then |a| = 0, by definition. If a # 0, then |a| > 0, by the

two cases in the definition. Now given that |a| > 0, the contrapositive of the last
statement amounts to saying that if |a| = 0, then a = 0.
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2. Counsider cases. If ¢ > 0 and b > 0, then ab > 0, hence |ab| = ab = |a||b|. If
either a = 0 or b = 0, then ab = 0, so |ab] = 0 = |a||b]. If a < 0 and b > 0, then
ab < 0, so |ab] = —ab = |a||b|. A similar argument applies if ¢ > 0 and b < 0.

3. fa+b>0,then |[a+b =a+b < |a|] + |b| since a < |a| and b < |b|. If
a+b<0,then |a+b =—(a+b) =—a—>b<|a| +|b| since —a < |a|] and —b < [b|.
If a+b=0, then |a + b = 0 < |a|] + |b| since |a|] > 0 and |b] > 0.

4. We have a = a+b—b, so |a| < |a+b|+|—b| = |a+b| + |b], using statement

3. Consequently, |a| — |b] < |a + b|. Now reverse the roles of a and b, and write
b=0b+a—a. Then |b| < |a+b|+|a|, and hence |b| — |a|] < |a+ b|. The two results
together yield ||a| — [b]] < |a + b]. O

Theorem [2.3.10] applies to R since R is ordered.

We have seen that there is no rational number x such that z?> = 2. The
completeness of the real number field guarantees that there is a real number solution
to this equation. The proof of this result uses the algebraic properties of a field and
the Archimedean property of the real numbers.

Theorem 2.3.11. There exists a positive real number x such that 22 = 2.

Proof. Define the set
SZ{SERISZO&HdSQSQ}.

S is nonempty, since 1 € S. S is bounded above by 3, for if s € .S and s > 3, then
52 > 32 =9, a contradiction of s> < 2. Therefore s € S implies s < 3. We want to
show that sup S is the desired positive square root of 2. Now let r = sup S, which
exists by the least upper bound property. The three possibilities are that 72 < 2,
r2 > 2, or 2 = 2. We show that the first two options cannot occur.

Suppose that 72 < 2, and let § = 2 —r2 > 0. In order to reach a contradiction,
we want to show that there is a positive integer m such that (r + %)2 < 2. By the
binomial theorem, for any positive integer m we have

1\2 9 1 1
(r—i——) =r"+2r—+—.
m m m
By the Archimedean property of R, there exists a positive integer m such that
2r

— d — 2,
5/2<m an 5/2<m<m
Hence,
1 1 )
2. 2r—+—=<-+=-=90
27) Tm+m2<2+2 ’

and we have
1\2 9 1 1 9
(7‘—!——) =l pr— 4+ — <4 5=2.
m m m

But this says that r + % € S and thus contradicts » = sup S. We may conclude
that r2 > 2.
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If 72 > 2, then we let § = 72 —2 > 0. One can then show that there is a positive
integer m such that (r — T—}L)Q > 2: To see this, note that for any positive integer m,

142 1 1 1 1
(r——) :r2—2r—+—>r2—(2r—+—2),
m m m m o m

and, as above, we may choose m such that (2.7) holds, and hence

1\2 9 1 1 9
(r——) >r —(27"——1——2) >rf—0=2.
m m m
But this implies that r — % is an upper bound for S (for if not, then there is an
s € S such that r — L < s and then (r — 1)? < s? < 2). However, r — = < r, and
r is the least upper bound for S. This contradiction rules out the option 72 > 2.

The only remaining possibility is that 72 = 2. This proves the existence of a
positive square root of 2. Uniqueness follows easily from the fact that 0 < z < y
implies 22 < y2. O

The positive real number x such that 22 = 2 is not rational. Note that —x also
satisfies (—z)? = 2, since (—2)(—z) = 22 = 2. Of course we write = /2 and
—x = —/2. (The use of the radical sign as a root notation is defined more generally
by a Remark after Theorem 2.3.12]) Theorem 23.17] confirms the existence of real
numbers that are not rational, as V2 and —v/2 are not rational. If z is a real number
and z is not rational, then z is called an irrational number. (We anticipated this
proof of existence of irrationals in Theorem when we proved the density of the
rationals and the irrationals.) We denote the set of irrational real numbers by I.
Thus, I=R—-Qand R=QUIL

The argument given to prove Theorem [Z3.11] actually shows that if F' is an
ordered field, and

S = {s € F : either s < 0, orsEOandsQSZ},

and if sup S ewists in F, then (sup S)? = 2. However, since we have shown that
there is no rational number z such that z? = 2, it follows that the bounded set
S C Q = F does not have a least upper bound in Q. Thus Q is not complete; Q
does not have the least upper bound property.

We now apply the least upper bound property of the field of real numbers to
prove the existence of n-th roots.

Theorem 2.3.12. Ifa is a real number such that a > 0 and n is a positive integer,
then there exists a unique real number r > 0 such that r"™ = a.

Proof. The unique n-th root of a = 0 is, of course, r = 0. Now assume a > 0.
Define the set
S={seR:s>0and s" <a}.

We want to show that S is bounded above and sup S is the desired n-th root of a.
The number a + 1 is an upper bound for S. For if not, then there is an s € S such
that s > a+ 1, which implies s > (a+ 1)™ > 1+ na > a by Bernoulli’s inequality,
and this contradicts the definition of S. Now let 7 = sup S. The three possibilities
are that v < a, ™ > a, or r” = a. We show that the first two options cannot
occur.
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Suppose that r™ < a, and let § = a —r™ > 0. In order to reach a contradiction,
we want to show that there is a positive integer m such that (r + T—}L)” < a. By the
binomial theorem, for any positive integer m we have

1\ n n n 1 n—1 n 1
- _ k - ) k
(T+m) Z(k’)Tm"—k " +kzo(k)Tm"—k'

By the Archimedean property of R, for each integer k in the range 0 < k <n —1
there exists a positive integer my such that

(D

<mg <m
d/n i k

Hence, for k =0,1,...,n—1,

( n ) po 1 d
T < —.
k mz_k n

By choosing m = max{mq, m1,...,m,_1}, we have

n—1
(r—i—a) =r +I;)(k)rmn_k<r —|—n5:r +d=a.

But this says that r» + % € S, and thus contradicts » = sup S. We may conclude
that ™ > a.

If ¥ > a, then we let § = ™ —a > 0. One can then show that there is a
positive integer m such that (r — 1)" > a. (See Exercise Z3.0l) But this implies

that r» — % is an upper bound for S (for if not, then there is an s € S such that
r— L < sand then (r — L)” < s" < a). However, r — = < 7, and r is the least

upper bound for S. This contradiction rules out the option ™ > a.

The only remaining possibility is that ™ = a. This proves the existence of a
positive n-th root of a. Uniqueness follows easily from the fact that 0 < z < y
implies 2™ < y". O

Remark (Radical Sign Notation for n-th Roots). The unique n-th root of a number
a > 0 may be written using the common radical sign notation as /a.

Corollary 2.3.13. Ifa < 0 and n is an odd positive integer, then there exists a
unique real number b < 0 such that b = a.

Proof. The positive number |a| = —a has a unique n-th root r, with ™ = |a| = —a
and r > 0. Let b = —r. Then 0" = (—1)"r" = —r" = —(—a) = a. The proof of
uniqueness is left to the reader. O

We summarize the discussion so far with the following definition.
Definition 2.3.14 (Roots). Let n be a positive integer.

1. If £ > 0, then we define x'/™ to be the unique nonnegative real number y such
that y™ = x.

2. If = is real and n is odd, then x
Yy =x.

Un s the unique real number y such that
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We can now define power expressions x” for rational r. If x is real and n is a

positive integer, then, provided z'/™ is defined and /™ # 0, we write
Ifl/n _ 1
pl/n’

If x is a real number and r is rational, say r = p/q where p,q € Z and p and ¢ have
no common factors other than 1 (so r is in lowest terms), we define

o = @y,

provided '/ is defined. With these definitions, the usual laws of rational exponents
hold. Instead of listing these laws here, the reader can view them in Section [.5]
where the definition of b", for b > 0, is extended to arbitrary real exponents r.

We turn to the complex field C for a moment. Even though C is not an ordered
field, there is a very useful function on C that has the same basic properties as the
absolute value of real numbers. This absolute value function for C must be defined
without reference to an order relation. If z = a + bi € C, then define

|z| = |a + bi| = Va2 + b2.

The real number |z| is called the absolute value of z (or the modulus of z). If
we think of z = a + bi as the point (a,bd) in the coordinate plane, then |z| is the
Euclidean distance from (a,b) to the origin. If z is real, that is, z = a + 0¢, then
one can verify that |z| = Va2 = |al.

The conjugate of the complex number z = a + bi is denoted z and is defined
by Z = a — bi. Geometrically, Z is the reflection of z in the z-axis of the coordinate
plane. If z = a + bi, then

22 = (a+bi)(a—bi) = a® + b* + 0i = a® + b*.
Consequently, if z = a + bi # 0, then

1 1 z a—bi a bi
z = — = = =

2 22 a24b2 a2+ b2 a2+ b2’

which confirms the formula stated in Example 2.1.4] for the multiplicative inverse
of a nonzero complex number.

Before proceeding, we prove explicitly a simple result that will be used repeat-
edly.

Lemma 2.3.15. Let L be a real or complex number. If |L| < e for every ¢ > 0,
then L = 0.

Proof. Clearly |L| > 0 by the definition of absolute value. If |L| > 0, then take
e = |L|/2. By hypothesis, |L| < |L|/2, hence 2|L| < |L|, but |L| > 0 implies that
2 <1, which is a contradiction. Hence |L| =0, so L = 0. O

Exercises.

Exercise 2.3.1. Prove: Given any real number ¢ > 0 there exists a positive integer
n such that 1/2" < e.
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Exercise 2.3.2. Let Q[z] denote the collection of rational expressions of the form
f(x)/g(x), where
f(@) = apz" +an_12"" '+ + a1z + ap, where n € N,
() = bypx™ + bpy_12™ -+ bz + by, where m € N, b, #0,

a;,b; € Q, and f(x), g(x) have no linear factor in common.

(a) Show that Qlz] is a field.

(b) Show that Q[x] is ordered by the positive set P consisting only of those el-
ements f(x)/g(x) for which the product of the lead coefficients of f(z) and
g(z) is positive, that is, a,b,, > 0.

(¢) Show that Q[z] does not have the Archimedean property.

Exercise 2.3.3. Show that for all a,b in an ordered field, |a — b| < |a| + |b| and
—la] < a < |a|. Given that —|a| < a < |a| and —|b| < b < |b], add the corresponding
parts of these inequalities to obtain

—la| = |b] < a+b < a4+ (b,
and show that this gives another proof of the triangle inequality.

Exercise 2.3.4. Show that properties 1-4 of Theorem 2.3.101 hold for the absolute
value of compler numbers.

Exercise 2.3.5. Prove by induction: For any positive integer n and any real num-
bers ai,ag,...,an, a1 +ag + -+ an| < lay| + |az| + - + |an]-

Exercise 2.3.6. Show that if »™ > a, then there is a positive integer m such that
(r — )" > a. Hint: For any positive integer m,

I e N

Exercise 2.3.7. Prove: f z €c Qand y € I, thenx +y € L. If x € Q, x # 0, and
y €1, then zy € I.

2.4. Sequences

Many of the basic concepts of analysis involve processes of approximation. A fun-
damental tool for discussing approximation is the concept of a sequence, and a solid
understanding of the convergence of sequences will enable us to understand other
limit processes that occur later.

Recall the definition of a sequence in a set X (Definition [[3.6]). A sequence
in a field F is a function ¢ : N — F. A sequence will generally be indicated by
writing (ax). (Recall that we distinguish the sequence (ax) from the range of the
sequence, {a(k): k € N}.)

We present the common basic properties of sequences in any of the fields of
essential interest to us: Q, R and C. Most of the properties we present for sequences
also hold for sequences in C, since they depend on an absolute value function to
measure distance between elements. We just need to remember that C is not
ordered.
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The values of a sequence inherit a natural ordering from the ordering of the
natural numbers. The notation aj, indicates the particular value of the k-th element
of a sequence with respect to this ordering, whereas the full ordered sequence is
indicated by writing (ax); however, we may occasionally write “the sequence a;”
and then the meaning is clear. More complete notations, such as (ay), (ax)3>, or
(ar)$°, may be used for sequences if it is essential to indicate the starting index.

Definition 2.4.1. A sequence (ax) in R has limit L € R if for every real € > 0
there exists a natural number M = M((€) such that if k > M, then |a — L| < e.
We indicate the limit by writing limy_, ar = L, and we also say that the sequence
converges to L or is convergent (to L).

Although the complex field C is not an ordered field, the absolute value function
allows a similar definition for complex number sequences: A sequence (ay) in C has
limit L € C if for every real e > 0 there exists a natural number M = M/(e) such
that if & > M, then |ax — L| < e.

It is essential to know that if a real or complex sequence has a limit, then the

limit is uniquely determined.

Theorem 2.4.2. A sequence of real or complex numbers that converges has a
unique limit.

Proof. Let (ax)52, be areal or complex sequence that converges to a limit Ly, that
is, limy_, oo ax = L1. Suppose there is another number Lo such that limy_, . ap =
Lo. We want to show that L; = Ls.

Choose any € > 0. Since limy_, o ar = L1, there is an Ny (e/2) > 0 such that
lar — L1] < €/2 for all k> Ny(e/2).
Since limy_, o, ap = Lo, there is an Na(€e/2) > 0 such that
lap, — La| < €/2 for all k > Na(e/2).
Then for all &k > N(¢) := max{N;(¢/2), Na(e/2)},
|Li — La| = |L1 — ax + ar, — Lo| < |L1 — ag| + |ar — La| < €/2 +€/2 = €.
Since € > 0 was arbitrary, we conclude that |L; — L] = 0, by Lemma 2315 O

Instead of writing limg_c ax = L, we may sometimes indicate this limit by
writing
ar > L as k— oo,

or sometimes simply by ar — L, when it is understood that k& — oo. If a sequence
has no limit, then we say that the sequence diverges, or is a divergent sequence.

Here is a simple, but very important, example of a convergent sequence.

Example 2.4.3. The real number sequence (1/n), n € N converges with limit 0.
We must use the Archimedean property of R. Given € > 0, there is an M € N such
that 1/M < ¢, because 1/e > 0, and thus there is an M € N such that M > 1/e by
the Archimedean property. Then for k > M we have |1/k — 0| =1/k <1/M < e.
Since € > 0 was arbitrary, lim, . 1/n = 0. A
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We say that a set S of real numbers is bounded if there is a real number M
such that |z| < M for all z € S. A sequence (ai) in R or C is bounded if the
range of the sequence is a bounded set. Thus (ay) is a bounded sequence if and
only if there is a real number M such that |a;| < M for each k.

Theorem 2.4.4. A sequence of real or complex numbers that converges is bounded.

Proof. Suppose (ay) is a sequence that converges to the limit L. Consider a specific
value of € > 0, say € = 1. There is an N(e) = N(1) such that

lap — L| <1 forall k> N(1).
Since |ag| — |L| < |ax — L| we have
lag| < |L|+1 for all k > N(1).
Now let
M :=max {|L| + 1, |a1|, |az|, ..., lan)| }-
Then for each k € N, |ai| < M, so the sequence (a) is bounded. O

Limit calculations routinely use the following results on constant multiples,
sums, products, and quotients of convergent sequences.

Theorem 2.4.5. Let (ax)5° and (by)5° be convergent sequences (in R or C), with

lim ap =a and lim b, =b.
k—o00 k—o0

Then the following statements are true:

1. If ¢ is any real or complex constant, then the sequence c(ay) := (cay) is con-
vergent, and

lim cay = ca = ¢ lim ay.
k—o0 k—o0

2. The sequence (ay + by)$° is convergent, and

lim (ak + bk) =a+b= lim ay + lim bg.
k—o0 k—o00 k—o0
3. The sequence (aby)3° is convergent, and
lim (axby) = ab = [ lim ag][ lim bg].
k—o0 k—o0 k—o0

4. If b # 0, then the sequence (ar/by)5° is convergent, and
a  limg oo ag
k—o0 bk b n limk_)oo bk '
Proof. We prove statements 2 and 3 here, and leave statements 1 and 4 to Exercise
241

2. Let € > 0. By hypothesis, there is an N; = Nj(e) such that if ¥ > Ny, then
lax, — a| < €/2, and there is an Ny = Na(e) such that if £ > Na, then |by — b| < ¢/2.
Thus, if £ > max{Ny, Na}, then

|ak+bk—(a+b)\

lar —a + by — bl

€
2
Since € > 0 is arbitrary, this shows that limg_, o (ag + bx) = a + b.

< |ak—a|+|bk—b|<§+

= €.
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3. By Theorem [Z47] there are bounds M; > 0, My > 0 such that |ag| < M;
and |b,| < My for all k. We estimate as follows:

|akbk — ab\ = |akbk — aby, + ab, — ab|
< ag — al|b| + |a||bx, — b
< lag — a|Ma + M |by —b].

Given € > 0, there is an N7 = Nj(e) such that & > Ny implies |ay — a| < €¢/(2Ma),
and there is an Ny = Na(e) such that k& > Ny implies |by — b| < €/(2M7). Then
k > max{Ny, N2} implies

€ €
S Mo M,
o 2 M,
Therefore limy_ oo (agby) = ab = [limg_ o0 ag|[limg— o0 bx]- |

|akbk - ab| < = €.

Limit computations often require some preliminary estimates. A comparison
result such as the following one is often useful.

Theorem 2.4.6 (The Squeeze Theorem). Let (ay), (br) and (c) be sequences of
real numbers such that for each k,

ap < by < .
If limy o ap = limy_, o ¢ = L for some real number L, then

k—o0
Proof. Write by — L = b, — ap + ar — L. For each k, ar < b < ¢, hence
|br, — L| < |bx, — ag| + |ax — L| < |ex, — ag| + |ar — L.
Since ¢, — ax = ¢ — L + L — ag, we may also write
|br, — L| < |ex, — L| + 2|ag, — L.

Given € > 0, there exists My such that k > M; implies |¢;, — L| < €/2, and there
exists My such that k > M implies |ar, — L| < €/4. If k > max{M;, M>}, then

|br — L| < |ex, — L| + 2|ax, — L| < €/2 4 2¢/4 = €.
Consequently, limg_, o |by — L| = 0, and hence limy_, o by, = L. O
The squeeze theorem for real sequences is quite useful.

Example 2.4.7. For each k € N, 0 < 1/(1 4+ k) < 1/k, and since 1/k — 0 as

k — o0, the squeeze theorem implies that limy_,o, 1/(1 4+ k) = 0. A
Example 2.4.8. Suppose we wish to determine the limit indicated here:
. k4 3sink
im ————
k—oo 2+ k‘2

Note that for each k € N,
k+SSink’<k—|—3|sink‘| k+3 1 3
2+ k2 B

0<‘ =
N S F N SR SR NS>

Since limy, o0 1/k = 0 = limy,_, o 3/k?, the squeeze theorem implies that the indi-
cated limit is 0. A
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The ordering of the real numbers plays an important role in the squeeze theorem
for limits of real sequences. Since C is not an ordered field, in general it is only the
absolute values of complex numbers that obey order relations inherited from R. Is
there a squeeze theorem for complex sequences? In other words, if (ax), (b), and
(ci) are complex sequences with

lax| < |bg| < |ex| for each k,

and there exists a complex number L such that limy_, ar = L = limyg_,o ¢, iS
it true that limy_,., by = L7 The answer is negative; Exercise requests a
counterexample.

A subsequence of a given sequence (ay) is a sequence obtained from (ax) by
deleting some terms from (ax) and then reindexing the remaining terms such that
the k-th term that remains had index nj in the original sequence. Thus if the
subsequence is (by), we have

bi =an,, b=an,, ... bp=an, ...,
where n1 < ng < ng < ---, that is, ny < npy1 for every k. We may then denote
the subsequence (by) also by (an, ) by considering the composition indicated here:
k— n(k) = nk — a(n(k)) =: an,.
In other words, the sequence (b;) = (an,) is a subsequence of (ay) if (ny) is a

strictly increasing sequence of positive integers. This gives the formal definition of
subsequence.

Definition 2.4.9. A subsequence of a sequence a : N — R is a composition of a
with a strictly increasing function from N into N. If the elements of the sequence
are denoted ay, (so k — a(k) = ai), then the elements of a subsequence may be
denoted an, (s0 k> ny — a(ng) = an, ).

A useful fact to remember about the notation for any subsequence (ay, ) of (ax)
is that ny > k for every k € N; this may be proved by induction (Exercise 2:4.3)).

Example 2.4.10. The odd positive integers form a subsequence of the positive
integers: If ap = k for k € N, and n, =2k — 1 for k € N, then a,, = 2k — 1 yields
the sequence of odd positive integers. A

Example 2.4.11. The sequence (ay) = (1,1/2,1/3,...) converges with limit 0. In

fact, any subsequence of this sequence also converges with limit 0. VAN

The statement in the last example is generalized in the next theorem.

Theorem 2.4.12. If the sequence (ay) converges to L, then every subsequence of
(ar) also converges to L.

Proof. If a, — L as k — oo, then for every € > 0 there is an N(¢) such that

lax, — L] < e for all k> N(e).

For any subsequence (ay, ), we have ny > k, so k > N(e) implies ny > N(e), and
therefore
|an, — L| <€ forall k> N(e).

Since € > 0 is arbitrary, we conclude that limy_, an, = L. O
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There is a simple corollary of this theorem: If the sequence (ay) converges
with limit L, then for each fixed natural number m, limy_, o @x4+m = L, since the
sequence (agtm) is a subsequence of (a). Thus, sequential convergence does not
depend on the first few terms of the sequence; in fact, sequential convergence does
not depend on any finite number of leading terms of a sequence.

In the next example we determine some candidates for a sequential limit.

Example 2.4.13. Define a1 = v/2 + ai. The sequence is completely determined
if we specify a value for aq, say a; = /2. Note that if limj_,c ar = L exists, then
limyg 00 ax+1 = L as well, and hence, by writing the equation as a%H = 2+ ag, the
limit laws imply that L? = 2+ L. Thus the limit L, if it exists, satisfies L2 = 2+ L,
so either L = —1 or L = 2. By the definition of the sequence, we cannot have L
negative. But we should not jump to the conclusion that L = 2 is the limit, because
the existence question really matters and we have not yet settled it. Recall that we
stated that if the limit L exists then L must satisfy L? = 2+ L. So our conclusion
thus far is this: If a real sequence is determined by the equation apy1 = /2 + ax
and the specification of a1 > —2, and if the limit L = limy_, o, ay exists, then L = 2.

VAN

The concept of a monotone sequence is key to the understanding of more general
sequences.

Definition 2.4.14. A sequence (ax) of real numbers is monotone increasing if
ap+1 > ay for all k, and monotone decreasing if a1 < ay for all k. A sequence
is monotone if it is either monotone increasing or monotone decreasing.

Given a monotone sequence (ar)f°, we may indicate that it is monotone in-
creasing by writing a1 < as < ..., or that it is monotone decreasing by writing
ay > ay > .... If a sequence is specified (or known) to be either increasing or
decreasing, then the term monotone is not strictly necessary.

Theorem 2.4.15 (Monotone Sequence Theorem). Let (by) be a sequence of real
numbers. If the sequence (by) is monotone increasing and bounded, then it converges
and

lim b, = sup{bs}.
k—o0 k
If (bg) is monotone decreasing and bounded, then it converges and
li = inf .
i, b = mfbe}

Proof. Suppose (by) is monotone increasing and bounded, and let B = sup,{bx};
by assumption, B < co. Given any e > 0, by the definition of supremum there is
an N = N(e) such that B — e < by, and hence |by — B| < €. Since the sequence is
monotone increasing, for k > N we have by < by, < B. Therefore |b, — B| < ¢ if
k > N. Thus, limk_mo bk =B.

The statement on bounded decreasing sequences is proved by a similar argu-
ment, which is left as Exercise 2.4.4] |

Theorem [2.4.T5] asserts that any bounded monotone sequence is convergent. It
allows us to complete the discussion of convergence from Example 224131
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Example 2.4.16. The sequence in Example 2413 such that ax11 = v/2 + a and
a; = /2 can be shown to be monotone increasing and bounded above (Exercise
2435). Tt converges with the limit L = 2 = sup{ay}. A

We have seen that every subsequence of a convergent sequence with limit L
must converge to the same limit L. However, the convergence of a subsequence
does not generally imply the convergence of the original sequence. The next result
is an important exception.

Theorem 2.4.17. If (by) is an increasing sequence and if some subsequence (by,, )
of (bi) converges and limy_,o0 by, = b, then (by) itself converges to the same limit,
limk_)oo bk =b.

Proof. Since the subsequence (b, ) is increasing, the convergence assumption im-
plies that

b= lim b,, = sup{by, }
k— o0 kEN )
Thus, for every € > 0, there is an N = N(e) such that

b—e<bpy. <bn <b

TN (e)
for all k > N(e). Since ny > k for all & € N, we have b,, > b for all & € N.
Hence, by, < b for all k, and bnN(e) < by <by, <bforall k> NN (e)- Therefore

|br —b] < e forall k> npy.

Since € is arbitrary, this shows that limg_,.. bx = b. O

Exercises.
Exercise 2.4.1. Prove parts 1 and 4 of Theorem [2.4.5]

Exercise 2.4.2. Give an example of complex number sequences (ax), (br) and (cx)
such that for each k, |ax| < |bg| < |ck|, and limg—s o0 ap = limg_oo ¢ = L for some
complex number L, but limy_,., by # L. Hint: Consider an example where both
(ar) and (ci) are constant sequences.

Exercise 2.4.3. Show by induction that if (a,, ) is a subsequence of (ay), then for
each k € N, n; > k.

Exercise 2.4.4. Show that if the sequence (by) is monotone decreasing and bounded,
then it converges, and limy_, o by = infy{by}.

Exercise 2.4.5. Show that the sequence defined by ap1 = 2+ ag, a1 = V2, is
monotone increasing and bounded above. (Hint: Use induction to establish both
properties.) Then conclude that limg_,o ar = 2.

What if a; =1 or a1 = 27 What if a; > —27 What happens if a; = —27

Exercise 2.4.6. Prove: If a,, > 0 and a,, — L > 0, then \/a,, — VL.
Exercise 2.4.7. Show that the sequence (a,), defined by
ap=1, and apy1=-14++vV8+a, (n>1),

is increasing and bounded. Find lim,, o ay.
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2.5. Nested Intervals and Decimal Representations

The least upper bound property implies the monotone sequence theorem, and the
monotone sequence theorem implies the next result called the nested interval theo-
rem.

Theorem 2.5.1 (Nested Interval Theorem). For each positive integer n let a,, and
by, be real numbers such that a,, < by,. Let I, := [an, by] and suppose that for all n,

InJrl g In
Then (Nor, I, is nonempty. If, in addition,
lim (b, —ay) =0,

n—oo

then there is exactly one point x that belongs to I, for every n, and the sequences
(an) and (by,) both converge to x.

Proof. The hypothesis that the intervals are nested, that is, I),11 C I,, for each n,
means that for every n,

ap < an4+1 < bn—i—l < bn

The sequence (a,,) is increasing and bounded above by b1, and the sequence (b,,)
is decreasing and bounded below by ay. By Theorem 2415 there are numbers a
and b such that, for all n,

(2.8) a, <a and b<b,,
and lim,, o an = @, lim, 00 b, = b. By @3), a,b € (,—; I,. By hypothesis,
(bp, — apn) — 0, and the difference law for limits implies that

0= lim (b, —a,) =b—a.

n—roo

Thus a = b, and if we set = a = b, then by ([Z8)), z € I,, for every n. Finally, the
existence of two distinct points that belong to every interval I,, would contradict
the hypothesis that (b, — a,) — 0. O

The remaining goal of this section is to define a decimal representation for each
real number and to show that for each decimal representation of a certain type, there
is a unique real number associated with it. The argument for Theorem below
shows that the elements of a complete ordered field have unique representations as
nonterminating decimal expansions, and this helps to confirm one of the long-held
intuitions about the real numbers that most of us develop. But first we must clarify
some terminology.

A decimal expansion is an expression of the form dy.d dads . . ., where for each
positive integer n, the digit d,, € {0,1,2,...,9}, and dy can be any nonnegative
integer. A terminating decimal expansion is one for which there is an m € N
such that for each k > m, dp = 0. A decimal expansion is nonterminating if it
is not terminating. It will be convenient to define and work with nonterminating
expansions. For the moment, we need not give any arithmetic meaning to a decimal
expansion in its entirety (this is best done later, using the basic concepts of infinite
series). Right now, it is only important to note that Theorem uses concepts
and facts about R that are familiar thus far in the book.



44 2. The Complete Ordered Field of Real Numbers

Given a positive real number x > 0, there is a unique integer n(x) such that
n(xz) < x < n(z) + 1. The integer n(x) is called the integer part of z > 0, for
the purpose of decimal representation using nonterminating expansions. Note that
n(z) is the largest integer less than z, and = — n(z) € (0,1]. For example, z = .1
implies n(z) = 0, and x = 2 implies n(x) = 1, which allows the nonterminating
expansion 2 = 1.999. (A bar over a digit or group of digits indicates that the
pattern repeats thereafter.) With this definition of the integer part of a positive
real number in hand, we can focus on the decimal representation of real numbers
in the interval (0, 1].

Theorem 2.5.2. There is a one-to-one correspondence between the interval (0,1]
of real mumbers and the set of nonterminating decimal expansions of the form
0.d1dods . . ., with each di, € {0, 1,2,..., 9}

Proof. The first part of the proof is the definition of the mapping from (0, 1] to
the set of decimal representations and the proof that this mapping is one-to-one.
Let « € (0,1]. Then n(z) = 0. The selection of the digit d; is as follows. Express
the interval (0, 1] as the union of 10 disjoint intervals of the form (a, b], each having
length equal to 1/10. These are the intervals (0,1/10], (1/10,2/10], and so on, up
to (9/10,1]. Then z is in exactly one of these intervals, and if it is the k-th interval
counting from the left, denoted I; := ((k — 1)/10, k/10], then set d; = k — 1. (This
is equivalent to choosing d; equal to n(10z).)

In order to select the digit do in the representation of x, express the previous
interval Iy = ((k — 1)/10,k/10] as the union of 10 disjoint intervals of the form
(a,b], each having length equal to 1/102 = 1/100. Then z is in exactly one of these
intervals, and if it is the j-th one, then set do = j — 1. (This j-th interval of I is
the interval we denote I := ((k —1)/10+ (5 — 1)/100, (k — 1)/10 + 5/100].)

Continue in the way indicated above. More specifically, after selecting the m-
th digit d,,, in the interval I,,, having length 1/10™, divide I,,, into 10 subintervals
of the form (a,b] having length 1/10™*L; if x is in the i-th subinterval, then set
dm+1 - ’L - ].

This procedure associates with « € (0, 1] a decimal representation of the form
0.dydods . . ..

Let I,, be the union of I,,, and its left-hand endpoint, so that I,, is a closed
interval. The association z + 0.d1dads ... is one-to-one because by construction of
the nested sequence of closed intervals (I,,), with = € I, for each m, the length
of I, is 1/10™, and lim,, yo, 1/10™ = 0. (In this limit statement we have used
the Archimedean property of R.) Thus there cannot be distinct points in the
intersection of the intervals I,,,.

The next part of the proof establishes that the mapping x — 0.d1dads . ..
defined above is onto the set of decimal representations of the indicated form.
Given a decimal expansion 0.didad3 ..., we must ‘decode it’ to show there is an
x € (0,1] which is associated with it via the mapping. The given digits determine
the appropriate intervals within which x should be found. Starting with d; and
proceeding left to right with the given digits, we may select the appropriate closed
interval I, of length 1/10™ based on the digit d,,. The resulting sequence of closed
intervals I,, is a nested sequence, and the limit of the lengths is lim,,, o, 1/10™ = 0,
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by construction. Hence, by the nested interval theorem, (1, I, = {x} for some
unique z € R. By the selection of these intervals, the element x is associated,
via the mapping defined in the first part of the proof, with the representation
0.d1dads . . ., with which we started. O

Based on the digit selection procedure of Theorem 2.5.2] the decimal repre-
sentation of the number 1 is given by 0.999. The decimal representation of 1/2 is
0.4999.

This digit selection procedure produces nonterminating expansions. Conse-
quently, rational numbers are represented by nonterminating expansions that re-
peat, rather than by terminating expansions. (The one exception to this rule is the
expansion for 0, which is 0.000, but this is the only terminating expansion we use.)
Conversely, each repeating expansion represents a rational number, a fact that is
perhaps easiest to realize after the basic concepts of infinite series are introduced.

What about positive z not in (0,1]? If z > 0, then we define the decimal
representation of x to be n(x).didads ..., where 0.dydads . .. is the representation
of z — n(x) € (0,1].

For = < 0, we take the integer part of z to be the least integer greater than
x, instead of the greatest integer less than z. Then we can use the decimal rep-
resentation of the positive number —x and introduce a negative sign in front. For
example, we want —1/2 to be represented by —.4999. Thus, the expansion of —1
is —0.999.. ..

With a good understanding of the proof of Theorem 2.5.2] it is clear that there
is nothing in the structure of the argument that requires the use of the digits in the
set {0,1,2,...,9}. It is really no more difficult to consider expansions using the
digits from the set {0,1,2,...,b — 1}, where b € N and b > 2. This means that at
each step, we subdivide into b subintervals rather than 10 subintervals. Then the
appropriate nested intervals I, in the modified argument will have length 1/b™,
and again the crucial fact that lim,, . 1/0™ = 0 holds true, by the Archimedean
property. With b = 2, we obtain binary expansions 0.dydyds ... for = € (0,1]
with each d,, € {0,1}. With b = 3 we have tertiary expansions 0.d;dads . .. for
x € (0,1] with each d,, € {0,1,2}. Proceeding as indicated above for positive and
negative elements, the binary expansion of 1 is 0.111, and the binary expansion of
—1is —0.111; the tertiary expansion of 1 is 0.222, and the tertiary expansion of
—11is —0.222. (For simplicity in what follows, we simply refer to the dy digit as an
integer.)

If b € N and b > 2, we call the unique nonterminating expansion of a nonzero
real number x using only the digits in the set {0,1,2,...,b— 1} the expansion of
z in the number base b. We can state the following result.

Theorem 2.5.3. Let b € N with b > 2. There is a one-to-one correspondence
between R — {0} and the set of nonterminating base b expansions of the form
do.dydads . .. where d, € {0,1,2,...,b—1} for k € N, and dy is an integer.

We now show that R and Q do not have the same cardinality.

Theorem 2.5.4. The complete ordered field R is uncountably infinite.
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Proof. We choose to work with the base two nonterminating binary expansions.

Suppose to the contrary that R is countably infinite, and let an enumeration of
R be given by the following listing of base 2 expansions from Theorem 25.3] (plus
the expansion for 0, listed first here):

To = Qpp-@p1Q02Q03...= 0.000... s
T = a10-211012013 - ..,
T2 = Qa20.021022023 ...,

)

where, for j > 1, a;; is either 0 or 1, and for each i, a;o is an integer. Now define a
binary expansion r* = dy.dydads . .. as follows:

Step 0. Set dy = 1.

Step 1. Set dy =1 if a;1 =0; set dy =0 if a1y = 1.

Step 2. Set do = 1 if asy = 0; set dy = 0 if azs = 1, and so on.

The digits dy, of r* are defined for all k, and r* differs from 7 in the k-th digit,
since for each k > 0, di # agg. Therefore r* is not in the assumed listing of all
elements of R. The listing is assumed to consist of the nonterminating expansions
guaranteed by Theorem 253 Can r* be a terminating expansion? If that were the
case, then all elements in the above listing past some index j have their diagonal
digit equal to 1, since di = 0 for k > j implies agr = 1 for k > j. However, in that
case the listing does not include all the expansions guaranteed by Theorem 2.5.3]
since there would be only finitely many 7, specifically those for 0 < k < j, which
could have a zero diagonal entry apr. However, this is absurd, as we may easily
specify infinitely many binary nonterminating expansions which have zero diagonal
entry agr. This contradiction implies that r* is nonterminating, and thus r* is one
of the expansions guaranteed by Theorem 2.5.31 However, r* is not in the listing,
as we have seen, and this contradiction proves the theorem. O

It is immediate from Theorem 254 that the set I of irrational numbers is
uncountably infinite: We have R = QUI, and if I is countable, then so is R, a con-
tradiction. We have deduced the fact that there are uncountably many irrationals
from the the least upper bound property (by way of the Archimedean property and
the nested interval theorem). Let us see how the nested interval theorem fails for
Q. We know there is a v/2 gap in the rational number line. The number z = /2
has a decimal expansion 1.dydsds . ... For each n, let r, be the truncation of this
expansion after the digit d,,, so

Tn = l.dldgdg ‘e dn = 1.d1d2d3 NN dn-
It is clear from the digit selection procedure in Theorem [2.5.2] that this truncated
expansion represents the number
dl d2 dn

=g T T T

For each n, we have v/2 € I,,, where I, is the n-th interval chosen in the digit
selection procedure for v/2. If J, = I,, N Q, then J, is an interval in the ordered
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field Q and the endpoints of J,, are in Q. However,

ﬁan(ﬁIR)sz{\/ﬁ}mQ,

which is empty. The nested interval theorem fails in Q.

An algebraic number is a real or complex number that satisfies a polynomial
equation with integer coeflicients. (An equivalent definition is that an algebraic
number is a real or complex number that satisfies a polynomial equation with
rational coefficients.) For example, v/2 and /2 are real algebraic numbers, and
i = +/—1 is a complex algebraic number. Every rational number is a real algebraic
number, and V2 and /2 are algebraic irrationals. The algebraic irrationals can
be described as the set of real numbers zg that satisfy an equation of the form

apxy + alngl + i+ ap_120+a, =0,
for integers a; and some n > 2, but no linear equation of the form
bol’ —+ bl = 0,

with integer by and b;. Denote the set of algebraic irrationals by I,. Let I; = I—-1;
the elements of I; are called transcendental numbers. Then R =QUI, UI;, a
disjoint union.

Exercises.

Exercise 2.5.1. Give an example to show that a nested sequence of open intervals
(or half-open intervals) can have empty intersection.

Exercise 2.5.2. Show that the argument of Theorem 2.5.2] does not assign any
number x € (0,1] a terminating expansion. Thus, according to the discussion
following the theorem, no nonzero real number is assigned a terminating expansion.

Exercise 2.5.3. A nonterminating decimal expansion r is repeating if for some

nonnegative integers n < m, r = dy.dy ...dp_1dy . ..dp,. Otherwise, it is nonre-
peating.

1. Show that each repeating decimal expansion represents a rational number,
and each rational number is represented by a repeating decimal expansion.

2. Show that there are countably many nonterminating, repeating decimal ex-
pansions.

3. Show that there are uncountably many nonterminating, nonrepeating decimal
expansions.

Exercise 2.5.4. Let x > 0 and suppose that the portion 0.ddsds...d, of the
expansion for x — n(z) € (0, 1] has been selected as in the proof of Theorem 25.2]
where dy = n(z). Show that

di  do dn, dy  do dn+1

— — e — << = — cee .

TR T I [V TV AL TV
Exercise 2.5.5. Let p > 0 be a prime number. Show that ,/p is an algebraic
irrational number. Hint: If p divides a product ¢;g2 of integers ¢; and g¢o, then
either p divides ¢; or p divides gs.
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Exercise 2.5.6. Show that the set I, of algebraic irrationals is countably infinite.
Show that the set of real algebraic numbers I, U Q is countably infinite. Conclude
that the set I; of transcendental numbers is uncountable. (Thus transcendental
numbers exist, but it is difficult to prove that specific real numbers are transcen-
dental. In particular, e and 7 are known to be transcendental.)

2.6. The Bolzano-Weierstrass Theorem

We have seen that any bounded, infinite monotone sequence in R has a limit. On
the other hand, bounded nonmonotonic sequences need not converge.

Example 2.6.1. Consider the bounded sequence given byﬁ

k@k

o= e

which does not converge: The subsequence asy = €2¥ /(14 €2*) has limit 1, and the
subsequence agy_1 = —e271/(1 + €2¥71) has limit —1, as k — co. A

Perhaps intuition suggests that a bounded infinite subset of the real numbers
should have the property that its points tend to cluster or accumulate about some
point. We will see in this section that such an intuition is sound. It is not difficult
to see that the sequence in Example 2.6.1] has convergent subsequences. But the
sequence (sink)$2, is more difficult to think about. It is bounded. Its range has
infinitely many elements, otherwise the sequence would be eventually constant,
and that is not possible, as the sine function has least period 27 and therefore
cannot eventually repeat itself over a unit interval. It is not clear if sink can get
arbitrarily close to £1, for example, unless we know how closely positive integers
can approximate the numbers nw/2, n € N. We cannot seem to pin down any
other specific point where the elements of this sequence cluster. Are there any?

In order to clarify the issue, we need the next definition.

Definition 2.6.2. Let S be a subset of an ordered field F. A point p € F is a
cluster point (or accumulation point) of S if for each ¢ € F with ¢ > 0 the
interval (p — €,p+€) in F contains infinitely many points of S distinct from p.

We note that there is a distinction between a bounded sequence with infi-
nite range (it is an ordered infinite set with infinitely many elements) and general
bounded infinite sets. We will soon clarify that the distinction makes no difference
as far as the question of existence of a cluster point.

We can now state the Bolzano-Weierstrass theorem for bounded infinite sets in
R. It says that an infinite search is guaranteed to find a cluster point for the set
{sink : k € N}.

Theorem 2.6.3 (Bolzano-Weierstrass I). Every bounded infinite set of real num-
bers has a cluster point, which need not be an element of the set.

2Basic properties of the exponential function e and the other elementary functions are established
in Section
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Proof. Let S be a bounded infinite subset of R. Then there is a finite interval
[a,b], a < b, such that S C [a,b]. Bisect the interval [a,b] into its left and right
halves, [a, (a 4+ b)/2] and [(a 4 b)/2,b], each of which is a closed interval. At least
one of these closed intervals must contain infinitely many elements of S. (If both
halves contain infinitely many, then for definiteness choose the left half.) Denote
the chosen half by I;. Now bisect I;. Either the left half or the right half of Iy
contains infinitely many elements of S. Call that half I;. Assuming I,, has been
chosen, we choose the half (either left or right) of I,, which contains infinitely many
elements of S and call that half I,,, 1. By induction, this defines a sequence of closed
intervals I,,, n € N, such that for each n, I,,11 C I,,, and each I,, contains infinitely
many elements of S. For each n, the length of I,,1 is half the length of I,,. In fact,
for each n, the length of I,, is (b—a)/2"™. By the nested interval theorem (Theorem
251)), there is exactly one point xg that is an element of each I,,. We want to show
that xg is a cluster point of S. Given any e > 0, there is an n such that the length
of I, is (b—a)/2™ < e. Since xg € I, if y € I,,, then |y — 20| < €, and hence I, is
contained in the interval (zg — €, zo+€). Since I,, contains infinitely many elements
of S, this proves that xg is a cluster point of S. O

There is also a useful version of the Bolzano-Weierstrass theorem for infi-
nite sequences. Before we state and prove it, note that the sequence (by) =
((=1)%) = (=1,1,—1,1,...) has convergent subsequences, but the range is the finite
set {1, —1}, which clearly has no cluster points. Any sequence with finite range has a
convergent subsequence, whether or not the sequence is eventually constant. Thus,
for the sequential Bolzano-Weierstrass theorem we only need to consider bounded
infinite sequences (that is, bounded sequences with infinite range). An example is
the sequence (sin(1/k))?2 ,, for which the range set {sin(1/k) : k € N} is infinite.
Observe that the range has the cluster point 0, since limg_,o sin(1/k) = 0. In fact,
we have the following basic consequence of the definition of sequential convergence

(Definition 2-4T]).

Proposition 2.6.4. Suppose that (ay)72, is an infinite sequence in R, that is, the
range {ay, : k € N} of the sequence is an infinite subset of R. If limg oo ar, = L €
R, then L is a cluster point of the infinite set {ay : k € N}.

Proof. If L is the limit of the sequence, then given e, = 1/k > 0, there is an N (eg)
such that if k > N(eg), then |ay — L| < 1/k. Since the sequence has infinitely many
elements, there must be infinitely many of them within a distance 1/k of L that
are distinct from L. This is true for each positive integer k, hence L is a cluster
point of the range of the sequence. O

Here is the sequential Bolzano-Weierstrass theorem.

Theorem 2.6.5 (Bolzano-Weierstrass I1). Every bounded infinite sequence of real
numbers (that is, every bounded sequence with infinite range) has a convergent
subsequence.

Proof. If (a) is a bounded infinite sequence, then the range {a;} has a cluster
point a, by Theorem [Z6.3] Thus, given €, = 1/k, there is an element a,, such
that |an, — a| < 1/k. Moreover, for each k we may choose ngy; > ny, since each
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interval about a contains infinitely many elements of the range of the sequence.
This construction yields a subsequence (a,, ) that converges to a. O

These two results, Bolzano-Weierstrass I (for bounded infinite sets) and Bolzano-
Weierstrass II (for bounded infinite sequences), are actually equivalent. As an
exercise, one can show that Theorem 2.6.3] follows from Theorem 2.G.7]

There is no Bolzano-Weierstrass theorem for Q. For example, one can define a
monotone increasing sequence (si) in the set

S = {s € Q:either s <0, or s >0 and s* < 2}

having no limit in Q, since sup S does not exist in Q. Thus, we also see that there
is no analogue of the monotone sequence theorem (Theorem [ZZTH]) for Q.

Exercises.

Exercise 2.6.1. 1. Does the set {1/n: n € N} have a cluster point?

2. Does the sequence
k

tanfl((—l)k c )

1+eF
have a convergent subsequence? How many cluster points does the range of this
sequence have?

Exercise 2.6.2. Show that if every bounded infinite sequence of real numbers has
a convergent subsequence, then every bounded infinite set of real numbers has a
cluster point.

Exercise 2.6.3. Show that the sequential Bolzano-Weierstrass Theorem [2.6.5] im-
plies the nested interval Theorem 2511

2.7. Convergence of Cauchy Sequences

If an infinite sequence (ay) of real numbers converges, then the elements of the
sequence must get arbitrarily close to each other as k — oo, since the limit must be
the only cluster point of the range of the sequence. We want to investigate whether
the converse is true: If the elements of an infinite sequence (ax) in R get arbitrarily
close to each other as k — oo, does the sequence converge to a limit in R? First,
we need the definition of what it means for the elements of a sequence in R to get
arbitrarily close to each other as k — oo.

The next definition applies to both real and complex number sequences.

Definition 2.7.1 (Cauchy Sequence). A sequence (ay) in R or C is called a
Cauchy sequence if for each € > 0, there is a natural number N = N(e€) such
that for all m,n > N,

|am — an| < e.

In fact, the concept of Cauchy sequence makes sense in any ordered field F,
since the absolute value function is defined in F'. (We see later in the book that the
concept of Cauchy sequence makes sense in any normed vector space; for example,
C is a complex vector space normed by the absolute value function.) As we noted
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above, a convergent sequence must be a Cauchy sequence. The proof is left as an
exercise.

There are Cauchy sequences of rational numbers that do not have a rational
number limit. In other words, not every Cauchy sequence of rationals converges
to an element of Q. Think of the sequence of finite decimal approximations of
V2, which is a Cauchy sequence of rational numbers that does not converge to an
element of Q.

Theorem 2.7.2. Every Cauchy sequence in R converges to a limit in R.

Proof. We may assume that the sequence has infinite range. Suppose that (ay) is
a Cauchy sequence. Since the sequence is Cauchy, it is bounded: Let ¢ = 1 in the
definition of Cauchy sequence; then there is an integer N such that if n,m > N,
then |a, — an| < 1, hence |ay| — |am| < 1. Fix m = N + 1. Then for n > N,

lan] < lansa] + 1.
If we let M = max{|a;| : 1 <j < N}, then for all positive integers k,
lax| < max{M, |an 1] + 1}

By the Bolzano-Weierstrass theorem (Theorem [2.6.5]), the sequence (ay) has a sub-
sequence (a,, ) that converges to a limit L. So we want to show that a Cauchy
sequence that has a subsequence with limit L must itself converge to L. Let € > 0.
Since (an, ) converges, there is an integer N such that

lan, — L| < % if k> N
Since (ag) is Cauchy, there is an integer Ny such that
lan — am] < % if n,m > Na.
Thus, if we take & > max{Ny, N2}, then, since nj > k for each k,
lak — an,| < % and |an, — L] < %

Consequently, for k > max{Ny, N2},

€
2
which proves that (ax) converges with limit L. O

€
|ak_L|§|ak—ank|+|ank_L‘<§+ =€,

It can be shown that the convergence of Cauchy sequences in R (Theorem
272) implies the least upper bound property, hence these two properties of R are
actually equivalent.

Corollary 2.7.3. Every Cauchy sequence in C converges to a limit in C.
Proof. If z;, = aj + ib defines a Cauchy sequence in C, then (aj) and (b) are
real Cauchy sequences, since
|am — an] < |2m — 2n] and | — bn| < |2m — 2nl-
Hence, a;, — a € R and by — b € R, by Theorem [Z7.2] Since
|2k — (a+ib)| = |[(ax — a) +i(bg — b)| < |ar, — a| + |i(bg — b)| = |ar — a| + |bg — b],
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the squeeze theorem for real sequences implies that limy oo |2k — (@ 4+ @b)] = 0
(Exercise 2.7.2)). Hence, zx — (a +ib) € C. O

The result of Corollary 2.7.3] is what is meant by the completeness of the
complex field C: Every Cauchy sequence in C converges to an element of C.

We have not proved a Bolzano-Weierstrass theorem for the complex field C.
However, there is such a theorem, a