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To Virginia, my life’s companion
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Preface to Third Edition

For this edition, I have had the opportunity to write about deep learning

algorithms and the astonishing AlphaGo program that defeats human

masters of the ancient game of Go. I tried to disentangle what is known

about the relationship between Georg Cantor and Leopold Kronecker from

the widespread myths about their relationship. In addition, I have detailed

the drama of ideas in Princeton during the 1930s involving Alonzo Church,

his student Stephen Kleene, and Kurt Gödel, before Alan Turing’s arrival.

I am grateful to Susan Dickie, Harold Edwards, Dana Scott and François

Treves who helped me in various ways. I’m particularly grateful to Thore

Graepelof DeepMind for patiently explaining AlphaGo to me. Finally, I

want to thank Sarfraz Khan, an editor who understood what I was trying to

do and shared my enthusiasm for the project.

Martin Davis     

Berkeley, 2017  



Preface to Second Edition

Alan Turing was born on June 23, 1912. The year 2012, the hundredth

anniversary of his birth, is providing the occasion for events and

publications reflecting on and celebrating his achievements. I am delighted

that this updated version of my book will be part of the excitement, and I

am very grateful to Klaus Peters and Alice Peters for their help in making it

happen. For this edition, I’ve tidied up some loose ends and brought a few

things up to date, even commenting on IBM’s achievement in fielding its

Watson computer as a successful contestant on the popular television quiz

program Jeopardy.

The “universality” of the computers with which we interact today is

evident in the myriad unrelated tasks for which the computers that are on

our desks or our laps are used, but also in the hidden computers that are

embedded in many other devices. If our cameras are computers with lenses

and our telephones are computers with microphones and earphones, it could

almost be said that the hybrid automobile I drive is a computer with four

wheels.

Today it is widely recognized that this universality is an application of a

fundamental insight from an article by Turing published in a mathematical

journal in 1936. When I began researching these matters in the 1980s, much

controversy surrounded credit for the first “stored program” electronic

computers, but Turing’s name was never mentioned. The argument was

whether the credit was due to the mathematician John von Neumann or to

the engineers John Presper Eckert and John Mauchly. David Leavitt kindly

suggested that I am responsible for the recognition of Turing’s role. While

an article I wrote may have had some influence, probably the publication of

some of Turing’s previously unavailable work from the 1940s together with

the availability of information about his secret work towards decrypting

enemy military communications during the Second World War was more

important.1



This is a book of stories about seven remarkable people, their ideas and

discoveries, and their fascinating lives. They investigated the why and how

of logical reasoning. They forced the exhilaration and pitfalls of trying to

come to grips with the infinite. Their heroic efforts to buttress the claims of

rationality encountered unforeseen obstacles. Finally, Alan Turing’s

radically new understanding of the nature of algorithmic processes and its

potential to make a single “all-purpose” machine that could be programmed

to carry out almost any process was a by-product of this tumultuous

development. I had great fun writing this book, and I hope that you will

have fun reading it.

Berkeley, June 30, 2011



Preface

This book is about the underlying concepts on which our modern computers

are based and about the people who developed these concepts. In the spring

of 1951, shortly after completing my doctorate in mathematical logic at

Princeton University where Alan Turing worked a decade earlier, I was

teaching a course at the University of Illinois based on his ideas. A young

mathematician who attended my lectures called my attention to a pair of

machines being constructed across the street from my classroom that he

insisted were embodiments of Turing’s conception. It was not long before I

found myself writing software for early computers. My professional career

spanning half a century revolved around this relationship between the

abstract logical concepts underlying modern computers and their physical

realization.

As computers evolved from the room-filling behemoths of the 1950s to

the small powerful machines of today performing a bewildering variety of

tasks, their underlying logic has remained the same. These logical concepts

developed from the work of a number of gifted thinkers over centuries. In

this book I tell the stories of the lives of these people and explain some of

their thoughts. The stories are fascinating. My hope is that readers will not

only enjoy them, but will come away with a better sense of what goes on

inside their computers and with enhanced respect for the value of abstract

thought.

In developing this book I benefited from help of various kinds. The John

Simon Guggenheim Memorial Foundation provided welcome financial

support during the early stages of the studies that led to this book. Patricia

Blanchette, Michael Friedman, Andrew Hodges, Lothar Kreiser, and

Benson Mates generously shared their expert knowledge with me. Tony

Sale kindly acted as my guide to Bletchley Park where Turing played an

important part in the decoding of secret German military communications

during World War II. Eloise Segal, who alas did not live to see the book

completed, was a devoted reader who helped me avoid expository pitfalls.



My wife, Virginia, stubbornly refused to let me be obscure. Sherman Stein

read the manuscript carefully and suggested many improvements while

saving me from a number of errors. I benefited from help with translations

by Egon Börger, William Craig, Michael Richter, Alexis Manaster Ramer,

Wilfried Sieg, and Francois Treves. Other readers who provided useful

comments were Harold Davis, Nathan Davis, Jack Feldman, Meyer Garber,

Dick and Peggy Kuhns, and Alberto Policriti. My editor, Ed Barber at W.W.

Norton, generously shared his knowledge of English prose style and is

responsible for many improvements. Harold Rabinowitz introduced me to

my agent, Alex Hoyt, who has been unfailingly helpful. Of course this long

list of names is meant only to express gratitude and not to absolve myself of

responsibility for the book’s shortcomings. I would be grateful for

comments or corrections from readers sent to me at: davis@eipye.com.

Martin Davis     

Berkeley, January 2, 2000

mailto:davis@eipye.com


Introduction

If it should turn out that the basic logics of a machine designed

for the numerical solution of differential equations coincide with

the logics of a machine intended to make bills for a department

store, I would regard this as the most amazing coincidence I have

ever encountered.

—Howard Aiken 19561

Let us now return to the analogy of the theoretical computing

machines … It can be shown that a single special machine of that

type can be made to do the work of all. It could in fact be made to

work as a model of any other machine. The special machine may

be called the universal machine …

—Alan Turing 19472

In the fall of 1945, as the ENIAC, a gigantic calculating engine

containing thousands of vacuum tubes, neared completion at the Moore

School of Electrical Engineering in Philadelphia, a group of experts met

regularly to discuss the design of its proposed successor, the EDVAC. As

the weeks went by, the meetings grew increasingly acrimonious, with the

experts finding themselves divided into two groups they dubbed the

“engineers” and the “logicians.” John Presper Eckert, leader of the

“engineers,” was justly proud of his accomplishment with the ENIAC. It

had been thought impossible for 15,000 hot vacuum tubes to work together

long enough without any of them failing, for anything useful to be

accomplished. Nevertheless, by using careful conservative design

principles, Eckert had succeeded brilliantly in accomplishing this feat.

Things came to a head when, much to Eckert’s displeasure, the group’s

leading “logician,” the eminent mathematician John von Neumann,



circulated, under his own name, a draft report on the proposed EDVAC that,

paying little attention to engineering details, set forth the fundamental

logical computer design known to this day as the von Neumann

architecture.

Although an engineering tour de force, the ENIAC was a logical mess. It

was von Neumann’s expertise as a logician and what he had learned from

the English logician Alan Turing that enabled him to understand the

fundamental fact that a computing machine is a logic machine. In its

circuits are embodied the distilled insights of a remarkable collection of

logicians, developed over centuries. Nowadays, when computer technology

is advancing with such breathtaking rapidity, as we admire the truly

remarkable accomplishments of the engineers, it is all too easy to overlook

the logicians whose ideas made it all possible. This book tells their story.



CHAPTER 1

Leibniz’s Dream

Situated southeast of the German city of Hanover, the ore-rich veins of the
Harz mountain region had been mined since the middle of the tenth century.
Because the deeper parts tended to fill with water, they could only be mined
so long as pumps kept the water at bay. During the seventeenth century
water wheels powered these pumps. Unfortunately, this meant that the
lucrative mining operations had to shut down during the cold mountain
winter season when the streams were frozen.

During the years 1680–1685, the Harz mountain mining managers were
in frequent conflict with a most unlikely miner. G. W. Leibniz, then in his
middle thirties, was there to introduce windmills as an additional energy
source to enable all-season operation of the mines. At this point in his life,
Leibniz had already accomplished a lot. Not only had he made major
discoveries in mathematics, he had also acquired fame as a jurist, and had
written extensively on philosophical and theological issues. He had even
undertaken a diplomatic mission to the court of Louis XIV in an attempt to
convince the French “Sun King” of the advantages of conducting a military

campaign in Egypt (instead of against Holland and German territories).1

Some 70 years earlier, Cervantes had written of the misadventures of a
melancholy Spaniard with windmills. Unlike Don Quixote, Leibniz was
incurably optimistic. To those who reacted bitterly to the widespread misery
in the world, Leibniz responded that God, from His omniscient view of all
possible worlds, had unerringly created the best that could be constructed,
that all the evil elements of our world were balanced by good in an optimal
manner.*

But Leibniz’s involvement with the Harz Mountain mining project
ultimately proved to be a fiasco. In his optimism, he had not foreseen the
natural hostility of the expert mining engineers towards a novice proposing



to teach them their trade. Nor had he allowed for the inevitable break-in
period a novel piece of machinery requires or for the unreliability of the
winds. But his most incredible piece of optimism was with respect to what
he had imagined he would be able to accomplish with the proceeds he had
expected from the project.





GOTTFRIED WILHELM LEIBNIZ

Leibniz had a vision of amazing scope and grandeur. The notation he had
developed for the differential and integral calculus, the notation still used
today, made it easy to do complicated calculations with little thought. It was
as though the notation did the work.

In Leibniz’s vision, something similar could be done for the whole scope
of human knowledge. He dreamt of an encyclopedic compilation, of a
universal artificial mathematical language in which each facet of knowledge
could be expressed, of calculational rules which would reveal all the logical
interrelationships among these propositions. Finally, he dreamed of
machines capable of carrying out calculations, freeing the mind for creative
thought. Even with his optimism, Leibniz knew that the task of
transforming this dream to reality was not something he could accomplish
alone. But he did believe that a small number of capable people working
together in a scientific academy could accomplish much of the design in a
few years. It was to fund such an academy that Leibniz embarked on his
Harz Mountain project.

Leibniz’s Wonderful Idea

Leibniz was born in Leipzig in 1646 into a Germany divided into something
like 1,000 separate, semiautonomous political units, and devastated by
almost three decades of war. The Thirty Years War, which didn’t end until
1648, was fought mainly on German soil, although all of the major
European powers had participated. Leibniz’s father, a professor of
philosophy at the University of Leipzig, died when the child was only six.
Over the opposition of his teachers, Leibniz gained access to his father’s
library at the age of eight, and soon became a fluent reader of Latin.

Leibniz, destined to become one of the greatest mathematicians of all
time, got his first introduction to mathematical ideas from teachers who had
no inkling of the exciting work elsewhere in Europe that was
revolutionizing mathematics. In the Germany of that day, even the



elementary geometry of Euclid was an advanced subject, studied only at the
university level. However, in his early teens, his school teachers did
introduce Leibniz to the system of logic that Aristotle had developed two
millennia earlier, and this was the subject that aroused his mathematical
talent and passion.

Fascinated by the Aristotelian division of concepts into fixed
“categories,” Leibniz thought of what he came to call his “wonderful idea”:
he would seek a special “alphabet” whose elements represented not sounds,
but concepts. A language based on such an alphabet should make it possible
to determine by symbolic calculation which sentences written in the
language were true and what logical relationships existed among them.
Leibniz remained under Aristotle’s spell and held fast to this vision for the
rest of his life.

Indeed, for his bachelor’s degree at Leipzig, Leibniz wrote a thesis on
Aristotelian metaphysics. His master’s thesis at the same university dealt
with the relationship between philosophy and law. Evidently attracted to
legal studies, Leibniz obtained a second bachelor’s degree, this time in law,
writing a thesis emphasizing the use of systematic logic in dealing with the
law. Leibniz’s first real contribution to mathematics developed out of his

Habilitationsschrift (in Germany, a kind of second doctoral dissertation) in
philosophy also at Leipzig: As a first step towards his “wonderful idea” of
an alphabet of concepts, Leibniz foresaw the need to be able to count the
various ways of combining such concepts. This led him to a systematic
study of the problem of counting complex arrangements of basic elements,

first in his Habilitationsschrift and then in his more extensive monograph

Dissertatio de Arte Combinatoria.2

Continuing his legal studies, Leibniz presented a dissertation for a
doctorate in law at the University of Leipzig. The subject, so typical for
Leibniz, was the use of reason to resolve cases in law thought too difficult
for resolution by the normal methods. For reasons that are not clear the
Leipzig faculty refused to accept the dissertation, so Leibniz presented it
instead at the University of Altdorf, near Nuremberg where it was received
with acclaim. At the age of 21, his formal education completed, Leibniz
faced the common problem of the newly graduated: how to develop a
career.



Paris

Not being interested in a career as a university professor in Germany,
Leibniz pursued his only real alternative: to find a wealthy noble patron.
Baron Johann von Boineburg, nephew of the Elector of Mainz, was quite
willing to play this role. In Mainz, Leibniz worked on a project to update
the legal system based on Roman civil law, was appointed a judge at the
High Court of Appeal, and tried his hand at diplomatic intrigue. This last
included an abortive attempt to influence the selection of a new king for
Poland and a mission to the court of Louis XIV.

The Thirty Years War had left France as the “superpower” on the
European continent. Mainz, situated on the banks of the Rhine, had known
military occupation during the war. So, the burghers of Mainz understood
very well the importance of forestalling hostile military action, and
therefore, of good relations with France. It was in this context that
Boineburg and Leibniz concocted the scheme, already mentioned, to
convince Louis XIV and his advisers of the great advantages of making
Egypt the object of their military endeavors. The most important historical
effect of this proposition—essentially the same proposition that led
Napoleon to a military disaster over a century later—was that it brought
Leibniz to Paris.

Leibniz arrived in Paris in 1672 to press the Egyptian scheme and to help
untangle some of Boineburg’s financial affairs. Before the end of the year
disaster struck: the news came that Boineburg had died of a stroke.
Although he continued to perform some services for the Boineburg family,
Leibniz was left without a reliable source of income. Nevertheless he
managed to remain in Paris for another four extremely productive years that

included two brief visits to London.3 On the first visit in 1673, he was
unanimously elected to the Royal Society of London based on his model of
a calculating machine capable of carrying out the four basic operations of
arithmetic. Although Pascal had designed a machine that could add and
subtract, Leibniz’s was the first that could multiply and divide as well.*
Leibniz’s machine incorporated an ingenious gadget that became known as
a “Leibniz wheel.” Calculating machines continued to be built incorporating
this device well into the twentieth century. About his machine, Leibniz
wrote:



And now that we may give final praise to the machine we may say
that it will be desirable to all who are engaged in computations
which, it is well known, are the managers of financial affairs, the
administrators of others’ estates, merchants, surveyors,
geographers, navigators, astronomers … But limiting ourselves to
scientific uses, the old geometric and astronomic tables could be
corrected and new ones constructed by the help of which we
could measure all kinds of curves and figures … it will pay to
extend as far as possible the major Pythagorean tables; the table
of squares, cubes, and other powers; and the tables of
combinations, variations, and progressions of all kinds, … Also
the astronomers surely will not have to continue to exercise the
patience which is required for computation. … For it is unworthy
of excellent men to lose hours like slaves in the labor of
calculation which could safely be relegated to anyone else if the

machine were used.4

The machine Leibniz was “praising” was limited to ordinary arithmetic. But
Leibniz grasped the broader significance of mechanizing calculation. In
1674 he described a machine that could solve algebraic equations. A year
later, he wrote comparing logical reasoning to a mechanism, thus pointing
to the goal of reducing reasoning to a kind of calculation and of ultimately

building a machine capable of carrying out such calculations.5

A crucial event for Leibniz, then 26, was meeting the great Dutch
scientist Christiaan Huygens then living in Paris. The 43-year-old Huygens
had already invented the pendulum clock and discovered the rings of
Saturn. What was perhaps to be his most important contribution, the wave
theory of light, was still to come. His conception—that light was
fundamentally to be viewed like the waves spreading across a pond when a
pebble is tossed into it—directly contradicted the great Newton’s account of
light as consisting of a stream of discrete bullet-like particles.* Huygens
gave Leibniz a reading list enabling the younger man to quickly overcome
his lack of knowledge of current mathematical research. Soon Leibniz was
making fundamental contributions.



The explosion of mathematical research in the seventeenth century had
been fueled by two crucial developments:

1.  The technique of dealing with algebraic expressions (what is generally
called “high-school algebra”) had been systematized and became
essentially the powerful technique we still use today.

2.  Descartes and Fermat had shown how, by representing points by pairs
of numbers, geometry could be reduced to algebra.

Various mathematicians were using this new power to solve problems that
would not previously have been accessible. Much of this work involved

what nowadays are called limit processes. Using limits means solving a
problem by using approximations to the required answer that get
systematically closer and closer to that answer. The idea was not to be
satisfied with any particular approximation, but rather, by “going to the

limit,” to obtain an exact solution.
An example that may help to clarify this concept is one of Leibniz’s own

early results, one of which he was quite proud. This was the equation:

π

4
  =  1  −  

1

3
  +  

1

5
  −  

1

7
  +  

1

9
  −  

1

11
  +   ⋯

On the left side of the equals sign is the familiar number π that occurs in the
formulas for the circumference and the area of a circle.* On the right side is

what is called an infinite series; the individual numbers alternately added

and subtracted are called the terms of the series. The dots … mean that it
continues indefinitely. The full infinite pattern consists of fractions, with 1
as numerator and the successive odd numbers as denominators, being
alternately added and subtracted, and is intended to be clear from the finite

part shown: after subtracting 1

11
, add 1

13
, then subtract 1

15
, etc. But can one

actually perform an infinite number of additions and subtractions? Not
really. But, starting at the beginning and breaking off at any point, an
approximation to a “true” answer is obtained, and that approximation gets
better and better as more terms are included. In fact, the approximation can
be made as accurate as one wishes by including enough terms. In the table



on page 7, it is shown how this works out for Leibniz’s series. When
including 10,000,000 terms, a value is obtained that agrees with the true

value of π

4
, namely 0.7853981634 …, to eight places.†

Number of terms Sum correct to eight decimal places

10 0.76045990

100 0.78289823

1,000 0.78514816

10,000 0.78537316

100,000 0.78539566

1,000,000 0.78539792

10,000,000 0.78539816

Table of approximations to Leibniz’s series

Leibniz’s series is so striking because it connects the number π, and
therefore the area of a circle, with the succession of odd numbers in a
particularly simple way. It is an example of one kind of problem that could
be solved using limit processes, that of finding areas of figures with curved
boundaries.

Another kind of problem susceptible to attack using limits was finding
exact rates of change, such as the varying speed of a moving body. During
the last months of 1675, towards the end of his stay in Paris, Leibniz made a
number of conceptual and computational breakthroughs in the use of limit
processes that, taken together, are called his “invention of the calculus”:

1.  Leibniz saw that the problems of finding areas and calculating rates of
change were paradigmatic, in the sense that many different kinds of
problems were reducible to one or the other of these two types.*

2.    He also perceived that the mathematical operations required in
calculating the solutions to problems of these two types were in fact

inverse to each other in much the same sense that the operations of
addition and subtraction (or multiplication and division) are inverse to

one another. Nowadays these operations are called integration and



differentiation, respectively, and the fact that they are inverse is called,
in the textbooks, the “fundamental theorem of the calculus.”

3.  Leibniz developed an appropriate symbolism (the notation still in use

today) for these operations, ∫ for integration and d for differentiation.†

Finally he found the mathematical rules needed for carrying out the
integrations and differentiations that occurred in practice.

Taken together these discoveries transformed the use of limit processes,
from an exotic method accessible only to a handful of specialists, into a
straightforward technique that could be taught in textbooks to many

thousands of people.6 Most important for the purposes of this book, his
success convinced Leibniz of the critical importance of choosing
appropriate symbols and finding the rules governing their manipulation. The

symbols ∫ and d did not represent meaningless sounds like the letters of a
phonetic alphabet; they stood for concepts and thus provided a model for

Leibniz’s boyhood “wonderful idea” of an alphabet representing all

fundamental concepts.
Much has been written about the entirely independent development of the

calculus by Newton and by Leibniz, and about the bitter accusations of
plagiarism tossed back and forth across the English Channel before the
foolishness of such charges was finally understood by all. It is the great

superiority of Leibniz’s notation that is significant for our story.7 A key
technique used in integration (called in the textbooks, the method of
“substitution”) is virtually automatic in Leibniz’s notation, but relatively
complicated in Newton’s. It has even been alleged that slavish devotion to
their national hero’s methods caused the English followers of Newton to lag
far behind their continental contemporaries in developing the mathematical
perspectives that the calculus had uncovered.

Like so many who have tasted the special quality of life in Paris, Leibniz
wanted very much to remain there as long as he could. He attempted to
maintain his Mainz connections while continuing to live and work in Paris.
But it soon became clear that, so long as he remained in Paris no funds from
Mainz would be forthcoming.



Meanwhile an offer of a position arrived from the Dukedom of Hanover,
one of the multitude of principalities of which seventeenth century
Germany was composed. Although Duke Johann Friedrich had some
genuine interest in intellectual matters, and the offer gave some promise of
financial security, Leibniz was not eager to live in Hanover. After delaying
as long as he could, Leibniz accepted the offer early in 1675.

In his letter of acceptance, he asked for the “freedom to pursue his own

studies in arts and sciences for the benefit of mankind.”8 In no hurry to
leave Paris, he stayed until the fall of 1676, departing only when it became
clear that no position in Paris would be forthcoming and that the Duke
would accept no further delay. Leibniz was to spend the rest of his life in
the service of the Dukes of Hanover.

Hanover

Leibniz apparently understood perfectly well that despite his request for
“freedom to pursue his own studies in arts and sciences,” success in his new
position would require him to do work that his patron would find useful and
practical. He undertook to upgrade the ducal library and proposed various
ideas for improving public administration and agriculture. Soon thereafter,
he began promoting his ill-fated project to use windmills for improving the
Harz Mountain mining operations. In 1680, only a year after the Harz
project with Leibniz in charge had finally been approved, his position was
suddenly endangered by the duke’s sudden death.

It now became necessary to convince the new duke, Ernst August, to
continue to found Leibniz’s position and to support the Harz Mountain
project. The new duke was a practical man. Unlike his predecessor, he
wasn’t willing to spend much on the library. Leibniz soon learned not to
involve Ernst August in scholarly discussions.

To help cement his position, he offered to write a short history of the
duke’s family. When the duke finally closed down the Harz project five
years later, Leibniz proposed a more elaborate version: if a few gaps were
filled, the family tree could be traced back to the year 600. The duke
evidently regarded this as a most appropriate way to employ one of the
greatest thinkers of all time. Leibniz was granted a regular salary, a personal



secretary, and travel funds for searching out genealogical information. Most
likely, the optimistic Leibniz hardly imagined that he would find himself
chained to this project for the remaining three decades of his life. Georg
Ludwig, who succeeded Ernst August on his death in 1698, was especially
adamant in nagging Leibniz to get on with the family history.

If Leibniz had any pupils in Hanover, they were women, for he shared
none of the common prejudices concerning the intellectual capabilities of
the female sex. Duchess Sophie, the talented wife of Ernst August, and
Leibniz had frequent conversations about philosophical matters and carried
on an extensive correspondence when Leibniz was away from Hanover. She
made sure also that her daughter Sophie Charlotte, who was to become
Queen of Prussia, also had the benefit of Leibniz’s teachings. Sophie
Charlotte, not content simply to receive Leibniz’s wisdom, energetically
raised questions that helped Leibniz to clarify his ideas. As the
contemporary Leibniz scholar Benson Mates explains:

For most of Leibniz’s life, these women were his principal
advocates at the courts in Hanover and Berlin. Sophie Charlotte’s
sudden death in 1705 devastated him; it was such an obvious loss
to him that he even received formal expressions of sympathy from
the emissaries of foreign governments; and when Duchess Sophie
… died in 1714, his ability to obtain support for anything other

than continuing the Brunswick history came to an end.9

The history project did provide Leibniz with an excuse to travel, and he
made use of this freedom to an extent that vexed his noble patrons. Of
course Leibniz took full advantage of the possibilities of developing and
maintaining scholarly contacts. In Berlin he even was able to found a
Society of Science, later institutionalized as an academy. His extensive
correspondence continued to span the full variety of his interests.

Leibniz seemed never to tire of explaining that, since God had done as

well as was possible in creating the world, there must be a pre-established

harmony between what existed and what was possible and that there was a

sufficient reason (whether or not we could find it) for every single thing in
the world.



In the realm of diplomacy, Leibniz had two pet projects: one was to
reunite the various branches of the Christian church; the other, which
actually succeeded, was to obtain for the Dukes of Hanover the succession
to the British throne. But when Georg Ludwig actually did become George
I of England only two years before Leibniz’s death in 1716, he brusquely
rejected his employee’s request for permission to leave the Hanovarian
backwater for London with his patron, ordering him to hurry up and finish
the family history.

The Universal Characteristic

But what of the “wonderful idea” of Leibniz’s youth, his grand dream to
find a true alphabet of human thought and the appropriate calculational
tools for manipulating these symbols? Although he had resigned himself to
the fact that unaided he could never accomplish such a thing, he never lost
sight of this goal, thinking and writing about it throughout his life. It was
clear that the special characters used in arithmetic and algebra, the symbols
used in chemistry and astronomy, and the symbols he introduced for the
differential and integral calculus provided a paradigm showing how crucial
a truly appropriate symbolism could be.

Leibniz referred to such a system of characters as a characteristic. Unlike
the alphabetic symbols which had no meaning, the examples just mentioned

were, for him, a real characteristic in which each symbol represented some
definite idea in a natural and appropriate way. What was needed, Leibniz

maintained, was a universal characteristic, a system of symbols that was

not only real, but which also encompassed the full scope of human thought.
In a letter explaining this to the mathematician G. F. A. l’Hôspital,

Leibniz wrote: “Part of the secret of” algebra “consists of the characteristic,
that is to say of the art of properly using” the symbolic expressions. This
care for proper use of symbols was to be the “thread of Ariadne” that would
guide the scholar in creating his characteristic.

As the early twentieth century logician and Leibniz scholar Louis Coutu-
rat explained:



… it is algebraic notation that incarnates, so to speak, the ideal of
the characteristic and which is to serve as a model. It is also the
example of algebra that Leibniz cites consistently to show how a
system of properly chosen symbols is useful and indeed

indispensible for deductive thought.10

Perhaps the most enthusiastic explanation of his proposed characteristic was
in another letter, this one to Jean Galloys with whom Leibniz had extensive
correspondence:

I am convinced more and more of the utility and reality of this
general science, and I see that very few people have understood
its extent.…This characteristic consists of a certain script or
language … that perfectly represents the relationships between
our thoughts. The characters would be quite different from what
has been imagined up to now. Because one has forgotten the
principle that the characters of this script should serve invention
and judgment as in algebra and arithmetic. This script will have
great advantages; among others, there is one that seems
particularly important to me. This is that it will be impossible to

write, using these characters, chimerical notions (chimères) such
as suggest themselves to us. An ignoramus will not be able to use

it, or, in striving to do so, he himself will become erudite.11

In the letter to Galloys quoted above Leibniz refers to arithmetic as well as
algebra as showing the importance of an appropriate symbolism. He had in
mind in particular the advantage of the Arabic system of notation that we
still use today based on the digits 0 to 9 over previous systems (like the
Roman numerals) for ordinary calculation. When Leibniz discovered binary
notation, in which any number can be written using only the digits 0 and 1,
he was impressed by the simplicity of this system. He believed that it would
be useful in laying bare properties of numbers that otherwise would be
hidden. Although this belief turned out to be unjustified, this interest on
Leibniz’s part is remarkable in the light of the importance of this binary
notation in connection with modern computers.



Leibniz saw his grand program as consisting of three major components.
First, before the appropriate symbols could be selected, it would be

necessary to create a compendium or encyclopedia encompassing the full
extent of human knowledge. He maintained that once having accomplished
this, it should prove feasible to select the key underlying notions and to
provide appropriate symbols for each of them. Finally, the rules of
deduction could then be reduced to manipulations of these symbols, via

what Leibniz called a calculus ratiocinator, what nowadays might be called
a symbolic logic.

To a present-day reader, it is hardly surprising that Leibniz did not feel
able to accomplish such a program on his own, especially given the constant
pressure he was under to produce the family history that his patron regarded
as his principal task. It is difficult to understand how Leibniz could have
seriously believed that the universe we inhabit, in all of its complexity,
could be reduced to a single symbolic calculus.

We can only hope to begin to comprehend the matter by attempting to see
the world through the eyes of Leibniz. For him nothing, absolutely nothing,
about the world was in any way undetermined or accidental. Everything was
in fact entirely determined by the plan, clear in the mind of God, by means
of which He had created the best world that could be created. Hence, for
Leibniz, all aspects of the world, natural and supernatural, were connected
by links one could hope to discover by rational means. Only from this
perspective can we understand how, in a famous passage, Leibniz could
write of serious “men of good will” sitting around a table to solve some
critical problem. After writing out the problem in Leibniz’s projected
language, his “universal characteristic,” it would be time to say “Let us
calculate!” Out would come the pens and a solution would be found whose

correctness would necessarily be accepted by all.12

Leibniz wrote with enthusiasm about the importance of producing the

calculus ratiocinator, the algebra of logic, that would presumably be
needed to carry out these calculations:

For if praise is given to the men who have determined the number
of regular solids—which is of no use, except insofar as it is
pleasant to contemplate—and if it is thought to be an exercise



worthy of a mathematical genius to have brought to light the more
elegant properties of a conchoid or cissoid, or some other figure
which rarely has any use, how much better will it be to bring
under mathematical laws human reasoning, which is the most

excellent and useful thing we have.13

Unlike the universal characteristic concerning which Leibniz wrote with
such passion and conviction, but produced little in the way of specifics, he

did make a number of attempts to produce a calculus ratiocinator. Part of
his most polished effort in this direction is shown in the above

illustration.14 A good century and a half ahead of his time, Leibniz
proposed an algebra of logic that would specify the rules for manipulating
logical concepts in the manner in which ordinary algebra specifies the rules
for manipulating numbers. He introduced a special new symbol ⊕ to
represent the combining of arbitrary “pluralities of terms.” The idea was
something like the combining of two collections of things into a single
collection containing all of the items in either one. The plus sign encourages
us to think of this operation as being like ordinary addition, but the circle
around it warns us that it is not exactly like ordinary addition because it is
not numbers being added. Some of his algebraic rules are also to be found
in high-school algebra textbooks: to some extent the same rules work for
logical concepts as for numbers.

DEFINITION 3. A is in L, or L contains A, is the same as to say that L can

be made to coincide with a plurality of terms taken together of which A is

one. B ⊕ N = L signifies that B is in L and that B and N together compose or

constitute L. The same thing holds for a larger number of terms.

AXIOM 1. B ⊕ N = N ⊕ B.

POSTULATE. Any plurality of terms, as A and B, can be added to compose

a single term A ⊕ B.

AXIOM 2. A ⊕ A = A.



PROPOSITION 5. If A is in B and A = C, then C is in B. For in the

proposition A is in B the substitution of A for B gives C is in B.

PROPOSITION 6. If C is in B and A = B then C is in A. For in the

proposition C is in B the substitution of A for B gives C is in A.

PROPOSITION 7. A is in A. For A is in A ⊕ A (by Definition 3). Therefore

(by Proposition 6) A is in A.

...................................................

PROPOSITION 20. If A is in M and B is in N, then A ⊕ B is in M ⊕ N.

Sample from one of Leibniz’s logical Calculi

But there’s more to the story. There are also rules that are very different
from those for numbers. The most striking rule of this latter kind, one that
in a somewhat different context George Boole was to make the cornerstone

of his algebra of logic, is Leibniz’s Axiom 2, A ⊕ A = A, which expresses
the fact that combining a “plurality of terms” with itself will yield nothing
new: evidently combining all the things belonging to a given collection with
that same collection of things, will just produce that same collection, all
over again. Of course addition of numbers is quite different: 2 + 2 = 4 not 2.

In the next chapter, we will see how George Boole, presumably ignorant
of Leibniz’s efforts, produced a serviceable symbolic logic along the lines
that Leibniz had pioneered. Boole’s logic subsumed the logic Aristotle had
introduced 2000 years earlier, but it was only with the work of Gottlob
Frege well into the nineteenth century, that the serious limitations shared by

the logical systems of Aristotle and of Boole were really overcome.15

Despite Leibniz’s voluminous correspondence, we have little idea of
what he was like as a person. One biographer claims to see in the few
portraits of Leibniz we possess, the image of a tired, unhappy, pessimistic

man, in contradiction to his optimistic philosophy.16 Others have remarked
that he liked to give cakes to his neighbors’ children. Apparently, he
proposed marriage when he was 50, but thought better of it when the lady



hesitated.17 We have the picture of Leibniz spending long days and often
entire nights seated at his desk managing his enormous correspondence
with remarkable punctuality, his meals brought to him from an inn by his
servants. What is clear is that he was indefatigable in his work.*

It is tempting to indulge in a bit of “what if?” What if Leibniz had not
been shackled to his patrons’ family history, and was free to devote more

time to his calculus rationcinator? Might he not have accomplished what
Boole was only to do so much later? But of course, such speculation is
useless. What Leibniz has left us is his dream, but even this dream can fill
us with admiration for the power of human speculative thought and can
serve as a yardstick for judging later developments.

*Voltaire’s Dr. Pangloss in Voltaire’s Candide was a sendup of this Leibnizian doctrine.
*Blaise Pascal, born on June 19, 1623, at Clermont-Ferrand, France, one of the founders of the

mathematical theory of probability, was a prolific mathematician, physicist, and religious
philosopher. His calculating machine, designed and built circa 1643, brought him considerable fame.
He died in 1662

*Although Huygens’s view came to be generally accepted, the coming of quantum physics in the
twentieth century made it clear that both Newton and Huygens had been right; each grasped an
essential characteristic of light

*The number π
4

 is in fact the area of a circle whose radius is 1

2

†I used my PC to obtain the table of approximations to π

4
 from Leibniz’s series. A short Pascal

program I wrote for the purpose runs for less than a second on a contemporary PC.
*Thus, finding volumes and centers of gravity are problems of the first kind, and computing

accelerations and (in economic theory) marginal elasticity are problems of the second type.
† The symbol for integration ∫ is actually a modified “S” intending to suggest “sum,” and the

symbol “d” is likewise intended to suggest the idea of “difference.”
*In part, this picture comes from the 1951 biography completed by Professor Kurt Huber in prison

while awaiting execution by the Nazis. He had supported the efforts of his students at the University
of Munich who formed the “White Rose” underground group and were decapitated for distributing
anti-Nazi leaflets. There are today a number of streets in Germany named for him including a
Professor Huber Platz at the University of Munich. (I am indebted to Benson Mates for this
information about Professor Huber’s heroic role.)



CHAPTER 2

Boole Turns Logic into Algebra

Martin Davis

George Boole’s Hard Life

The beautiful and intelligent Princess Caroline von Ensbach, one day to be

Queen of England as the wife of George II, met Leibniz in Berlin in 1704

when she was 18. After she went to England with the court, their friendship

continued by correspondence. She tried to persuade her father-in-law, then

George I of England, to bring Leibniz to England, but as we have seen, the

king insisted that Leibniz remain in Germany to complete the Hanoverian

family history.

Caroline found herself entangled in the continuing dispute between Leibniz

and Newton and his followers, each side accusing the other of plagiarism over

the invention of the calculus. She tried to convince Leibniz that the issue was

of no great importance, but he was having none of it. Indeed, Leibniz sought

her support before the king for his desire to be appointed “Historiographer of

England” to match Newton’s position as “Master of the Mint,” asserting that

only in this way could the honor of Germany vis a vis England be maintained.

Leibniz wrote Caroline that when Newton held that a grain of sand exerted

a gravitational force on the distant sun without any evident means by which

such a force could be transmitted, he was in effect calling on miraculous

means to explain a natural phenomenon, something he assured her was

inadmissible. Caroline tried to get some of Leibniz’s writings translated into

English. This effort brought her into contact with Samuel Clarke who had

been recommended to her as a possible translator.



Clarke was a philosopher and theologian and also a disciple of Newton. In

his Being and Attributes of God, dated 1704, Clarke had developed a proof of

the existence of God. Caroline showed him a letter from Leibniz attacking

certain of Newton’s ideas and asked him to reply. This initiated a

correspondence between the two men that continued until just a few days

before Leibniz’s death. Not surprisingly, there was no meeting of minds.





GEORGE BOOLE

From the point of view of our story, the most interesting fact about Samuel

Clarke is that almost a century and a half after Leibniz’s death, George Boole

would demonstrate the efficacy of his own methods by using Clarke’s proof

of the existence of God as an example. In effect, with these methods, Boole

succeeded in bringing to life part of Leibniz’s dream. He had reduced

Clarke’s complicated deduction to a simple set of equations.1

In proceeding from the world of Leibniz and the seventeenth century

European nobility to that of George Boole, we move forward not only two

centuries in time, but also down several layers of social class. George, the first

of four children, was born on November 2, 1815, in the town of Lincoln in the

eastern part of England, to John and Mary Boole who had been childless for

the first nine years of their marriage. John Boole, a cobbler who eked out only

a meager living from his trade, had a passion for learning, and especially for

scientific instruments. He proudly displayed a telescope he had made in his

shop window. Unfortunately, he was not an effective business man and his

talented, conscientious son soon found himself carrying the burden of

supporting the whole family.2

In June 1830, the citizens of Lincoln were treated to a silly controversy in a

local newspaper over the originality of an English translation of one of the

poems of the ancient Greek writer Meleager. The translation had appeared in

the Lincoln Herald as the work of “G. B. of Lincoln, aged 14 years,” and one

P. W. B. took the trouble to write accusing G. B. of plagiarism. P. W. B.

admitted that he was unable to provide a reference to the source from which

he was accusing G. B. of copying, but regarded it as simply beyond belief that

the work could have been produced by a 14-year-old. The battle led to an

exchange of several letters between G.B. and P. W. B., all duly published in

the Herald.

George’s family, who early recognized his ability, were far too poor to

furnish him with a proper formal education, and so, with the help of his



father, George was mainly self-taught. George studied not only Latin and

Greek but also taught himself French and German and was able (much later,

of course) to write mathematical research papers in these languages. George

Boole never belonged to any particular religious denomination, and found it

impossible to believe in the divinity of Christ, but throughout his life he held

strong religious convictions. He soon abandoned his original ambition to join

the clergy of the Church of England, in part because of his beliefs, but also

because of his family’s need for immediate financial help when his father’s

business collapsed. George was not yet 16 when he began his career as a

teacher.

After two years at a small Methodist school some 40 miles from home he

was fired, mainly it seems, owing to complaints about his irreligious

behavior: he worked on mathematics on Sundays, and even in chapel! Indeed,

it was at this time that Boole’s efforts turned more and more to mathematics.

In later years, reminiscing about this period in his life, he explained that

having a very limited budget for buying books, he found that mathematics

books provided the best value because it took longer to work through them

than books on other subjects. He also liked to speak of the inspiration that

suddenly came to him during his stay at the Methodist school. While walking

across a field, the thought flashed across his mind that it should be possible to

express logical relationships in algebraic form. This experience, which a

biographer compares to that of Paul on the road to Damascus, was to bear

fruit many years later.3

After teaching at the Methodist school, Boole took a position in Liverpool.

But after six months of living and teaching there, he felt compelled to leave

because of (in the words of his sister), “the spectacle of gross appetites and

passions unrestrainedly indulged …” presumably by the school head-master.4

His next job, in a village only four miles from home, was also of brief

duration. This time, the reason was that, at the age of 19, concerned to put his

family’s finances on a sound basis, George Boole had decided to start his own

school in his home town, Lincoln. For fifteen years, until accepting a

professorship at a newly founded university at Cork, Ireland, Boole managed

a successful career as a schoolmaster. His schools (there were three in

succession) were the sole support of his parents and his siblings, although

eventually his sister Mary Ann and brother William did participate in the

work.



Although running a day and boarding school, and teaching numerous

classes might be thought to be a full-time job, Boole managed during this

period to make the transition from student of mathematics to creative

mathematician. In addition, he somehow found time for activities of social

improvement. He was a founder and trustee of a Female Penitent’s Home in

Lincoln whose purpose was “to provide a temporary home in which, by moral

and religious instruction and the formation of industrious habits, females,

who have deviated from the paths of virtue, may be restored to a reputable

place in society.” Boole’s biographer speaks of prostitutes (who were

evidently numerous in Victorian Lincoln) as the “penitent” women who were

to be helped by this institution.5 More likely, the typical client was a young

woman of the servant class who found herself pregnant and abandoned after

having been promised marriage by a lover of her own social class.* Some

insight into George Boole’s personal attitudes towards sexual matters may

perhaps be gleaned from what he said in two of his lectures on non-

mathematical subjects. In one, a lecture on education, he warned:

A very large proportion of the extant literature of Greece and Rome

… is deeply stained with allusions and all too often with more than

allusions to the vices of Heathenism. … But that the innocence of

youth can be exposed to the contamination of evil without danger I

do not believe.6

And a lecture on the proper uses of leisure (given after a successful campaign

by the “Lincoln Early Closing Association” to obtain a ten-hour working day)

included Boole’s stern words:

If you seek gratification in those pursuits from which virtue turns

aside, you do so without excuse.7

Boole, following in his father’s footsteps, was also deeply involved with the

Lincoln Mechanics’ Institute. These institutes, mainly devoted to afterhours

education for artisans and other workers, had sprung up all over Victorian

Britain. Boole did committee work for the one in Lincoln, made

recommendations for improving the library, gave lectures, and provided

teaching on a variety of subjects without remuneration.



Yet somehow, amidst all of this, he found time to study some of the most

important English and continental mathematical treatises, and to begin

making his own contributions. Much of Boole’s early work bears witness to

Leibniz’s belief in the power of appropriate mathematical symbolism, of the

manner in which the symbols seem to magically produce correct answers to

problems almost unaided. Leibniz had pointed to the example of algebra. In

England, as Boole began his own work, it was coming to be realized that the

power of algebra comes from the fact that the symbols representing quantities

and operations obeyed a small number of basic rules or laws. This implied

that this same power could be applied to objects and operations of the most

varied kind so long as they obeyed some of these same laws.8

In Boole’s early work, he applied algebraic methods to the objects that

mathematicians call operators. These “operate” on expressions of ordinary

algebra to form new expressions. Boole was particularly interested in

differential operators, so called because they involve the differentiation

operation of the calculus mentioned in the previous chapter.9 These operators

were seen to be of particular importance because many fundamental laws of

the physical universe take the form of differential equations, that is equations

involving differential operators. Boole showed how certain differential

equations could be solved by using methods of ordinary algebra applied to

differential operators. Engineering and science students typically learn some

of these methods in their sophomore or junior year in a course in differential

equations.

During his years as a schoolmaster, Boole published a dozen research

papers in the Cambridge Mathematical Journal. In addition, he submitted a

very long paper to the Philosophical Transactions of the Royal Society. At

first the Royal Society was loath to consider a submission from such an

outsider, but finally decided to accept it, and later awarded it their Gold

Medal.10 Boole’s method was to introduce a technique and then to apply it to

a number of examples. He generally asked for no more in the way of proof

that his methods were correct than that his examples worked out.11

At this time, Boole developed professional correspondences and

friendships with a number of England’s leading young mathematicians. A

quarrel with the Scottish philosopher Sir William Hamilton that his friend

Augustus De Morgan had fallen into brought Boole’s thoughts back to his



long ago flash of insight—that logical relationships might be expressible as a

kind of algebra. Although Hamilton was an erudite scholar in aspects of

metaphysics, he seems to have been something of a quarrelsome fool. Out of

what can only have been his colossal ignorance of the subject, he published

diatribes against mathematics. What had set him off was De Morgan’s

publication on logic that Hamilton claimed plagiarized what he thought of as

his great discovery in logic, what he called the “quantification of the

predicate.” We need waste no time trying to understand this idea or the fierce

controversy it generated—it is of importance only because of the stimulus it

provided to George Boole.12

The classical logic of Aristotle that had so fascinated the young Leibniz

involved sentences like:

1.  All plants are alive.

2.  No hippopotamus is intelligent.

3.  Some people speak English.

Boole came to realize that what is significant in logical reasoning about such

words as “alive,” “hippopotamus,” or “people” is the class or collection of all

individuals described by the word in question: the class of living things, the

class of hippopotamuses, the class of people. Moreover, he came to see how

this kind of reasoning can be expressed in terms of an algebra of such classes.

Boole used letters to represent classes just as letters had previously been used

to represent numbers or operators. If the letters x and y stand for two

particular classes, then Boole wrote xy for the class of things that are both in x

and in y. As Boole himself put it:

… if an adjective, as “good,” is employed as a term of description,

let us represent by a letter, as y, all things to which the description

“good” is applicable, i.e. “all good things,” or the class “good

things.” Let it further be agreed, that by the combination xy shall be

represented that class of things to which the names or descriptions

represented by x and y are simultaneously applicable. Thus, if x

alone stands for “white things,” and y for “sheep,” let xy stand for



“white sheep;” and in like manner, if z stand for “horned things,” …

let zxy represent “horned white sheep,” …13

Boole thought of this operation applied to classes like the operation of

multiplication applied to numbers. However, he noticed a crucial difference:

If once again y is the class of sheep, what is yy? It must be the class of things

that are sheep and are also … sheep. But this is the very same thing as the

class of sheep; so yy = y. It is only a small exaggeration to say that Boole

based his entire system of logic on the fact that when x stands for a class, the

equation xx = x is always true. We will return to this point later.*

George Boole was 32 when his first revolutionary monograph on logic as a

form of mathematics was published. His more polished exposition, The Laws

of Thought appeared seven years later. These were eventful years in Boole’s

life. Boole’s social class and unconventional education had apparently ruled

out his chances for an appointment at an English university. Strangely, it was

the Irish “problem” that gave Boole an opening.

Among the many bitter complaints in Ireland concerning English rule was

the Protestant character of its only university, Trinity College in Dublin. In

response it was proposed by the British government to found three new

universities to be called “Queen’s Colleges” in Cork, Belfast, and Galway.

Remarkably for the time, they would be non-denominational. Despite

denunciations by Irish political and religious figures, who demanded

institutions of a definitely Catholic character, the plans moved forward. Boole

decided to apply for an appointment at one of these universities, and finally

three years later, in 1849, he was appointed professor of mathematics at

Queen’s College in Cork.

By 1849, Ireland had come through the worst of the disaster of famine and

disease brought by the potato blight, a devastating fungus that destroyed most

of the potato crops on which the Irish poor depended. Many who did not

starve to death were killed by the epidemics of typhus, dysentery, cholera, and

relapsing fever to which their weakened immune systems had laid them open.

The English rulers, slow to recognize the fungus as the underlying cause of

the catastrophe, instead blamed the supposed indolence of the Irish. This

social fiction was used to justify the continuing export of food from Ireland

while millions went hungry and starved. Between 1845 and 1852, out of eight



million Irish, at least a million died and another one and a half million

emigrated.14

Boole had little to say about this: his strong expressions of indignation

centered on cruelty to animals. Indeed, his attitude to the Irish people was

rather equivocal as emerges from these lines from a sonnet to Ireland that

Boole wrote just as the college in Cork was being inaugurated:

Yet thou in wisdom still art young, though old 

In misery and tears. Oh that thy store 

Of bitter thoughts, which brood upon the past, 

Were from thy bosom quite erased and worn.15

Although Cork was certainly no major intellectual or cultural center, the

position provided Boole with the possibility of a life far more appropriate to

his stature as one of the great mathematicians of the century than that of a

schoolmaster. His father had recently died and, after making suitable

provision for his mother, he was finally freed from the burden of being the

family provider, and could think of having a personal life.

The mathematics taught at Cork was at a rather low level for a university.

The syllabus began with “Fractional and Decimal Arithmetic” and continued

with topics taught today in secondary school. Boole’s annual salary was £250

in addition to a direct tuition fee of about £2 per term from each student.

Since he had no assistant, he did all the grading of the weekly homework

assignments.

Controversy over the Queen’s Colleges continued. Although Cork’s

president was the distinguished Catholic scientist Sir Robert Kane, Catholics

were certainly under-represented: of the academic staff of 21, only one other

was Catholic. The Catholic Church hierarchy went so far as to forbid

members of the clergy from participating in the work of the colleges. Some

felt that Irish candidates for positions were deliberately passed over for

relatively mediocre Englishmen or Scots. Nor did President Kane endear

himself to his faculty. His wife had no wish to live in Cork, and so the

President tried to run the college from Dublin. This, combined with his

arbitrary pugnacious manner, led to one fight after another between the

president and the faculty, sterile battles in which Boole usually found himself

involved.16



Mary Everest, Boole’s wife-to-be, later recounted some of her first

impressions of the attitudes of some of the residents of Cork towards the man

she would marry. One lady’s answer to “What is the professor of mathematics

like?” was “Oh he’s like—the sort of man to trust your daughter with.”

Another lady explained the absence of her young children by informing Miss

Everest that George Boole had taken them for a walk and that she was always

happy when he walked with them. To the reply that Boole seemed to be a

general favorite, the lady demurred:

He is no favorite of mine, … at least, I don’t enjoy his society. I

don’t care to be with such very good people. … he never shows you

that he thinks you wicked, but when you are near anyone so pure

and holy, you can’t help feeling how shocked he must be at you. He

makes me feel very wicked; but I am always at ease when the

children are with him; I know they are getting some good.17

Mary Everest was the daughter of an eccentric clergyman and a niece of

Lieutenant-Colonel Sir George Everest, whose name was given to the world’s

tallest mountain. She was also a niece of Boole’s friend and colleague, John

Ryall, Vice-President and Professor of Greek at Cork; this family connection

brought George and Mary together. As a child Mary had displayed an aptitude

for mathematics and after George began to tutor her, they grew to be good

friends and frequent letter writers. It seems that Boole believed that their 17-

year age difference precluded anything more, but five years after their first

meeting when Boole was 40, matters came to a head with the death of Mary’s

father. As Mary was financially impoverished, George proposed at once, and

they were married before the year was out.

Their marriage lasted a mere nine years, for Boole died at the age of only

49, after walking three miles to class in a cold October rainstorm. The

ensuing bronchitis soon became pneumonia, and he died two weeks later.

Tragically, his death may have been hastened by his wife’s unorthodox

medical views—apparently she treated his pneumonia by placing him

between cold soaking bed sheets.18

The marriage had evidently been a very happy one.19 Mary Boole recalled

it “like the remembrance of a sunny dream.” They had five children, all girls.

Boole’s widow lived well into the twentieth century, dying at the age of 84



while the First World War raged across the channel. She became attached to

various systems of mystical belief and wrote a great deal of nonsense.

Boole’s daughters all had interesting lives. The third daughter, Alicia,

possessed a very remarkable geometric ability: she was able to visualize

clearly geometric objects in four dimensions. This enabled her to make a

number of important mathematical discoveries. However, the youngest

daughter Ethel Lilian was the most astonishing. She was only six months old

when her father died and she remembered her childhood as one of terrible

poverty. Lily, as she was called, became involved with the Russian

revolutionary emigres who made London their home during the late years of

the nineteenth century. While on a trip to the Russian empire (which at that

time included much of Poland) to help her revolutionary friends, she was seen

by her future husband, Wilfred Voynich, from his prison cell, as she stared up

at the Warsaw Citadel. Voynich recognized her years later after he had made

his escape to London. This romantic beginning led to their marriage.

Lily became famous later as the author of The Gadfly, a novel inspired by

her short but passionate love affair with Sidney Riley whose incredible life

formed the basis for a television mini-series called Riley: Ace of Spies. With

irony piled upon irony, Riley, a fervent anti-communist, was executed in

Russia by the Bolsheviks, while his lover’s novel, its true inspiration

unknown, became required reading for Russian school children. In 1955

Pravda reported to its Moscow readers that the author of The Gadfly was

alive and well in New York, and she received from Russia a royalty check for

$15,000. She died five years later at the age of 96.20

George Boole’s Algebra of Logic

Returning to Boole’s new algebra applied to logic, we recall that if x and y

represent two classes, Boole would write xy to stand for the class of those

things that belong to both x and y. He intended the notation to suggest an

analogy with multiplication in ordinary algebra. In contemporary

terminology, xy is called the intersection of x and y.21 We also saw that the

equation xx = x is always true when x represents a class. This led Boole to ask

the question: in ordinary algebra, where x stands for a number, when is the

equation xx = x true? The answer is straightforward: the equation is true



when x is 0 or 1 and for no other numbers. This led Boole to the principle that

the algebra of logic was precisely what ordinary algebra would become if

restricted to the two values 0 and 1. However, to make sense of this, it became

necessary to reinterpret the symbols 0 and 1 as classes. A clue is provided by

the behaviors of 0 and 1, respectively, with respect to ordinary multiplication:

0 times any number is 0; 1 times any number is that very number. In symbols,

Now for classes, 0x will be identical to 0 for every x, if we interpret 0 to be a

class to which nothing belongs; in modern terminology, 0 is the empty set.

Likewise, 1x will be identical to x for every x, if 1 contains every object under

consideration, or, as we may say, 1 is the “universe of discourse.”

Ordinary algebra deals with addition and subtraction as well as

multiplication. Thus, if Boole was to present the algebra of logic as just

ordinary algebra with the special rule xx = x, he had to provide an

interpretation for + and −. So, if x and y represent two classes, Boole took x +

y to represent the class of all things to be found either in x or in y, nowadays

called the union of x and y. Thus, to use Boole’s own example, if x is the class

of men and y is the class of women, then x + y is the class consisting of all

men and women. Also, Boole wrote x – y for the class of things in x that are

not in y.22 If x represents the class of all people and y represents the class of

all children, then x – y would represent the class of adults. In particular, 1 – x

would be the class of things not in x, so that

x  +  (1  −  x)  =  1.

Let us see how Boole’s algebra works. Using ordinary algebraic notation, let

us write x2 for xx. So Boole’s basic rule can be written as x2 = x or x − x2 =0.

Factoring this equation, following the usual rules of algebra,

x(1  −  x)  =  0.

In words: nothing can both belong and fail to belong to a given class x. For

Boole, this was an exciting result, helping to convince him that he was on the

0x  =  0, 1x  =  x.



right track. For as he said, quoting Aristotle’s Metaphysics, this equation

expresses precisely:

… that “principle of contradiction” which Aristotle has described as

the fundamental axiom of all philosophy. “It is impossible that the

same quality should both belong and not belong to the same thing

… This is the most certain of all principles … Wherefore they who

demonstrate refer to this as an ultimate opinion. For it is by nature

the source of all the other axioms …”23

Boole must have been delighted to obtain confirmation such as every scientist

seeks when introducing new and general ideas: to see an important earlier

landmark turn out to be a particular application of the new ideas, in this case

Aristotle’s principle of contradiction. In fact in Boole’s time, it was common

for writers on logic to equate the entire subject with what Aristotle had done

so many centuries earlier. As Boole put it, “the science of Logic enjoys an

immunity from those conditions of imperfection and of progress to which all

other sciences are subject …” The part of logic that Aristotle studied deals

with inferences, called syllogisms, of a very special and restricted kind. They

are inferences from a pair of propositions called premises to another

proposition called the conclusion. The premises and conclusions must be

representable by sentences of one of the following four types:*

Sentence

type

Example

All X are

Y.

All horses are animals.

No X are

Y.

No trees are animals.

Some X

are Y.

Some horses are pure-bred.

Some X

are not

Y.

Some horses are not pure-bred.



The following is an example of a valid syllogism:

That this syllogism is valid means that whatever properties are substituted for

X, Y, and Z, so long as the given two premises are true, the conclusion will be

as well. Here are two instances of this syllogism:

All horses are mammals. All boojums are snarks.

All mammals are vertebrates. All snarks are purple.

All horses are vertebrates. All boojums are purple.

Boole’s algebraic methods can easily be used to demonstrate that this

syllogism is valid. To say that everything in X also belongs to Y is the same as

to say that there is nothing that belongs to X but not to Y, i.e., X (1 − Y) = 0 or

equivalently X = XY. Likewise, the second premise can be written Y = YZ.

Using these equations we get

X  =  XY   =  X(Y Z)  =  (XY )Z  =  XZ,

the desired conclusion.24

Of course, not every proposed syllogism is valid. An example of an invalid

syllogism can be obtained by interchanging the second premise with the

conclusion in the previous example:

This time there is no way to use the premises X = XY and X = YZ to obtain the

supposed conclusion Y = YZ.

In retrospect, it is difficult to understand the widespread belief that

syllogistic reasoning constituted the whole of logic, and Boole was quite

All X are Y .

All Y  are Z.

All X are Z.

All X are Y .

All X are Z.

All Y  are Z.



scathing in his denunciation of this idea. He pointed out that much ordinary

reasoning involves what he calls secondary propositions, that is, propositions

that express relations between other propositions. Such reasoning is not

syllogistic.

For a simple example of such reasoning, let us listen in on a conversation

between Joe and Susan. Joe can’t find his checkbook and Susan is helping

him.

SUSAN: Did you leave it in the supermarket when you were shopping?

JOE: No, I telephoned them, and they didn’t find it. If I had left it there,

they surely would have found it.

SUSAN: Wait a minute! You wrote a check at the restaurant last night and I

saw you put your checkbook in your jacket pocket. If you haven’t

used it since, it must still be there.

JOE: You’re right. I haven’t used it. It’s in my jacket pocket.

Joe looks and (if it’s a good day for logic), the missing checkbook is there.

Let us see how Boole’s algebra could be used to analyze Joe and Susan’s

reasoning.

In their reasoning, Joe and Susan were dealing with the following

propositions (each labeled with a letter):

L  Joe left his checkbook at the supermarket.

F  Joe’s checkbook was found at the supermarket.

W  Joe wrote a check at the restaurant last night.

P    After writing the check last night, Joe put his check book in his jacket

pocket.

H  Joe hasn’t used his check book since last night.

S  Joe’s checkbook is still in his jacket pocket.

They used the following pattern:



PREMISES. If L, then F

Not F

W & P

If W & P & H, then S

H

CONCLUSIONS. Not L

S

Like Aristotle’s syllogisms, this pattern forms a valid inference. As with any

valid inference, the truth of sentences called conclusions is inferred from the

truth of other sentences called premises.

Boole saw that the same algebra that worked for classes would also work

for inferences of this kind.25 Boole used an equation like X = 1 to mean that

the proposition X is true; likewise he used the equation X = 0 to mean that X is

false. Thus, for “Not X,” he could write the equation X = 0. Also, for X & Y he

wrote the equation XY = 1. This works because X & Y is true precisely when

X and Y are both true, while algebraically, XY = 1 if X = Y = 1, but XY = 0 if

either X = 0 or Y = 0 (or both). Finally, the statement “If X then Y” can be

represented by the equation

X(1  −  Y )  =  0.

To see this, think of this statement as asserting

if X  =  1 then Y   =  1.

But indeed, substituting X = 1 in the proposed equation leads to 1 − Y = 0,

that is, to Y = 1.

Using these ideas, Joe and Susan’s premises can be expressed by the

equations



Substituting the second equation in the first, we get L = 0, the first desired

conclusion. Substituting the third and fifth equations in the fourth, we get 1 −

S = 0, that is, S = 1, the other desired conclusion.

Now of course, Joe and Susan had no need for this algebra. But the fact

that the kind of reasoning that ordinarily takes place informally and implicitly

in ordinary human interactions could be captured by Boole’s algebra

encouraged the hope that more complicated reasoning could be captured as

well. Mathematics may be thought of as systematically encapsulating highly

complex logical inferences. This is part of the reason that mathematics is so

useful in science. So an ultimate test of a theory of logic that aims at

completeness is whether it encompasses all mathematical reasoning. We will

return to this matter in the next chapter.

As a final example of Boole’s methods, we turn to Samuel Clarke’s proof

of the existence of God mentioned at the beginning of this chapter. Without

trying to follow Clarke’s long complex deduction, it is at least amusing to see

how Boole proceeds. We quote a small fragment:26

The premises are:—

1st. Something is.

2nd.  If something is, either something always was, or the things

that now are have risen out of nothing.

3rd.  If something is, either it exists in the necessity of its own

nature, or it exists by the will of another being.

4th.  If it exists in the necessity of its own nature, something always

was.

5th.  If it exists by the will of another being, then the hypothesis

that the things which now are have risen out of nothing, is

L(1  −  F) = 0,

F = 0,

W  P = 1,

W  PH(1  −  S) = 0,

H = 1.



false.

We must now express symbolically the above propositions.

Let

x = Something is.

y = Something always was.

z = The things that now are have risen out of nothing.

p= It exists in the necessity of its own nature (i.e., the something

spoken of above).

q= It exists by the will of another being.

Boole then obtains from the premises the equations

One wonders what Clarke would have made of this reduction of his intricate

metaphysical reasoning to manipulations of simple equations. Likely, as a

disciple of Newton, he would have been pleased. On the other hand, the

pugnacious metaphysician Sir William Hamilton who hated mathematics

must have been horrified.

Boole and Leibniz’s Dream

Boole’s system of logic included Aristotle’s and went far beyond it. But it still

fell far short of what was needed to fulfill Leibniz’s dream. Consider the

following sentence:

All failing students are either stupid or lazy.

One might think of this sentence as

1  −  x = 0,

x{yz  +  (1  −  y) (1  −  z)} = 0,

x{pq  +  (1  −  p) (1  −  q)} = 0,

p(1  −  y) = 0,

qz = 0.



All X are Y .

However, this would require that the class of students being stupid or lazy be

treated as a unit and would not permit any reasoning that sought to distinguish

those who were failing because of stupidity from those who were failing

because of laziness. In the next chapter we’ll see how Gottlob Frege’s system

of logic does include reasoning of this subtler kind.

It is quite straightforward to use Boole’s algebra as a system of rules for

calculating, and say that, within its limits, it provided the calculus

ratiocinator Leibniz had sought. Leibniz’s writings on these matters were in

the form of letters and other unpublished documents, and it was only late in

the nineteenth century that a serious effort to gather and publish these was

undertaken. So, there is no reasonable way that Boole could have been aware

of his predecessor’s efforts. Nevertheless it is interesting to compare Boole’s

full-blown system with Leibniz’s fragmentary attempts.

Leibniz’s fragment quoted in our first chapter included as its second axiom,

A ⊕ A = A. Thus the operation Leibniz considered was to obey Boole’s

fundamental rule: xx = x. Moreover, Leibniz proposed to present his logic as a

full-fledged deductive system in which all of the rules are deduced from a

small set of axioms. This is in accord with modern practice and shows

Leibniz, in this respect, to have been ahead of Boole.

George Boole’s great achievement was to demonstrate once and for all that

logical deduction could be developed as a branch of mathematics. Although

there had been some developments in logic after Aristotle’s pioneering work

(notably by the stoics in Hellenistic times and by the twelfth century

scholastics in Europe), Boole had found the subject essentially as Aristotle

left it two millennia earlier. After Boole, mathematical logic has been under

continuous development to the present day.*

*The study (Barret-Ducrocq, 1989) of a similar institution in London recounts many such tales of

woe

*Boole’s equation xx = x can be compared to Leibniz’s A ⊕ A = A. In both cases, an operation

intended to be applied to pairs of items, when applied to an item and itself, yields that same item as a

result.

*Lewis Carroll Carroll (1988, pp. 258–259) tells us that in a “sillygism” one proceeds from two

“prim Misses” to a “delusion.”



*An international organization, the Association for Symbolic Logic publishes two quarterly journals

and holds regular meetings for the dissemination of new research. European logicians also hold annual

meetings. New work on the relationships between logic and computers is presented at the annual

international Logic in Computer Science and Computer Science Logic conferences.



CHAPTER 3

Frege: From Breakthrough to Despair

In June 1902 a letter arrived in Jena, a medieval German town, addressed to

the 53-year-old Gottlob Frege from the young British philosopher Bertrand

Russell. Although Frege believed that he had made important and

fundamental discoveries, his work had been almost totally ignored. It must

then have been with some pleasure that he read, “I find myself in agreement

with you in all essentials … I find in your work discussions, distinctions, and

definitions that one seeks in vain in the work of other logicians.” But, the

letter continued, “There is just one point where I have encountered a

difficulty.” Frege soon realized that this one “difficulty” seemed to lead to the

collapse of his life’s work. It cannot have helped that Russell went on to

write, “The exact treatment of logic in fundamental questions has remained

very much behind; in your works I find the best I know of our time, and

therefore I have permitted myself to express my deep respect to you.”

Frege replied at once to Russell, acknowledging the problem. The second

volume of his treatise in which he had applied his logical methods to the

foundations of arithmetic was already at the printer, and he hastily added an

appendix beginning with “There is nothing worse that can happen to a

scientist than to have the foundation collapse just as the work is finished. I

have been placed in this position by a letter from Mr. Bertrand Russell …”

Many years later, more than four decades after Frege’s death, Bertrand

Russell had occasion to write:

As I think about acts of integrity and grace, I realize that there is

nothing in my knowledge to compare with Frege’s dedication to

truth. His entire life’s work was on the verge of completion, much

of his work had been ignored to the benefit of men infinitely less

capable, his second volume was about to be published, and upon

finding that his fundamental assumption was in error, he responded



with intellectual pleasure clearly submerging any feelings of

personal disappointment. It was almost superhuman and a telling

indication of that of which men are capable if their dedication is to

creative work and knowledge instead of cruder efforts to dominate

and be known.1

Much of the contemporary philosopher Michael Dummett’s work has been

inspired by Frege’s ideas. Yet when he wrote about Frege’s integrity, it was in

a quite different vein:

There is some irony for me in the fact that the man about whose

philosophical views I have devoted, over the years, a great deal of

time to thinking, was, at least at the end of his life, a virulent racist,

specifically an anti-semite. … [His] diary shows Frege to have been

a man of extreme right-wing opinions, bitterly opposed to the

parliamentary system, democrats, liberals, Catholics, the French

and, above all, Jews, who he thought ought to be deprived of

political rights and, preferably, expelled from Germany. I was

deeply shocked, because I had revered Frege as an absolutely

rational man … 2

Frege’s contributions were of immense importance. He provided the first fully

developed system of logic that encompassed all of the deductive reasoning in

ordinary mathematics, and his pioneering work using tools of logical analysis

to study language provided the basis for major developments in philosophy.

Today, under the subject heading “Frege, Gottlob” well over 50 items will be

found in a typical university library. He died in 1925 a bitter man, believing

that his life’s work had led only to futility, his death ignored by the scholarly

community.3

Gottlob Frege was born on November 8, 1848, in Wismar a small German

town. His father, a theologian in the Evangelical faith, headed a girls’ high

school (where his mother was also employed). Frege was 38 when he married

the 35-year-old Margarete Lieseberg who, after 17 years of marriage, died

leaving no children behind.

At the request of a clergyman who was a relative on his mother’s side,

Frege adopted a five-year-old orphan in 1908. It was this son, Alfred, who



brought to light the infamous diary Frege had kept in 1924, a year before his

death, the diary that so outraged and disillusioned Michael Dummett. Alfred

Frege as part of the German military occupation of Paris was killed in action

in June 1944, a little over a week after the Allied landings in Normandy and

just two months before the liberation of Paris. The diary had been typed by

Alfred from his father’s handwritten manuscript and in 1938, five years after

Hitler had seized power, Alfred sent it to the Frege archive maintained by

Heinrich Scholz. At that time the sentiments that so outraged Michael

Dummett would have seemed unexceptional in Germany. The manuscript and

a biography Alfred had written of his father are lost.

Frege was 21 when he entered the university. After two years at Jena he

moved to Göttingen University where, three years later, he received a Ph.D. in

mathematics. Then, he obtained an appointment as lecturer (“Privatdozent”)

at the University of Jena, a position without salary. It seems that Frege was

supported at this time by his mother who, on his father’s death, had taken over

management of the girls’ school. After five years Frege was appointed

Associate Professor (“Ausserordentlichen Professor”) at Jena where he

remained until his retirement in 1918. Because his colleagues didn’t really

value his work, he was never promoted to a full professorship. His death at

Bad Kleinen near Wismar, where his impoverishment had forced him to board

with relatives, came little over a year after the final entry in his deplorable

diary.





GOTTLOB FREGE
(Institute for Mathematical Logic and Foundational Research, Münster University)

In 1873, the year of Frege’s initial appointment at Jena, Germany, newly

united, was in a state of euphoria. The war against the France of Napoleon III

had ended in a great victory. Industry was expanding at breakneck speed.

Until the death of Kaiser Wilhelm I, his Chancellor, Bismarck, continued his

cunning policy of maintaining the security of Germany by means of a

carefully nurtured system of alliances. Bismarck and the “old Kaiser”

remained heroes to Frege for his entire life. However, Bismarck was a

reactionary who saw to it that the emperor maintained total control of military

affairs and foreign relations. He regarded democracy as anathema, and pushed

legislation outlawing many of the activities of the Social Democratic party.

Soon after Wilhelm II succeeded to the throne, he got rid of Bismarck. The

new Kaiser, a vainglorious and insecure man, oversaw a disastrous foreign

policy. Repeatedly misjudging the effect of his maneuvers, he managed to so

alarm the other European powers that France, Russia, and England formed an

alliance against Germany. Faced with the danger of a war on two fronts,

against Russia on the east and against France on the west, the German general

staff produced the clever, but ultimately disastrous, Schlieffen plan, designed

to defeat France quickly before Russia could complete its ponderous

mobilization. 4

So when, with German encouragement, the Austrians attacked Serbia in the

summer of 1914, in response to the assassination of Archduke Ferdinand, and

Russia began mobilization to stress its determination that Austria not be

permitted to destroy fellow Slavs, the German generals explained to the

Kaiser that the Schlieffen plan calling for a German attack through Belgium

had to be implemented at once. The attendant violation of Belgium’s

neutrality brought England into this catastrophic war whose consequences

cast their shadow on the entire twentieth century. In war things rarely go

according to plan, and when the Schlieffen plan attack petered out, the

fighting degenerated into a murderous stalemate, slaughtering the best part of

a generation of European men in trench warfare. Seemingly unaware that the

fighting was going badly, many German academics called for a peace in

which Germany would annex much territory, including all of Belgium.

As victory continued to elude the Germans and the English siege took its

toll, the military command was put into the hands of General Ludendorff.



This capricious gambler (who was later to participate in Hitler’s beer hall

“Putsch”) refused to consider a compromise peace until a British

breakthrough in the Balkans threatened to roll up the German flank. With

defeat staring him in the face, Ludendorff told the Kaiser that an armistice

was essential. So ended the war and the German monarchy.

The government that assumed power in the new German republic was

Social Democratic, and many Germans (Frege among them) came to accept

the story that Germany had been forced into the war against its will, had not

been defeated, but had been betrayed by the socialists, and (many were soon

adding) the Jews. This was the poisonous atmosphere that ultimately made it

possible for Hitler to assume power.

The year 1923 saw the great post-war hyper-inflation in Germany, in part

the result of the unrealistic reparations imposed by the Versailles treaty. This

financial catastrophe wiped out the values of personal savings, and

presumably, of Frege’s pension. It was in this situation that Frege produced

his terrible diary. He looked for a great leader to rescue Germany from the

lowly position into which it had been thrust. Having held high hopes for

Ludendorff to play this role, he was disappointed that he had joined Hitler’s

Putsch. He still had hope that General Hindenburg might be the leader, but

feared that he was too old; Frege did not live to see Hindenburg hand the keys

to the republic to Adolf Hitler.

In his diary entry for April 22, 1924, Frege reminisces about a time when

the Jews of his home town were treated in what he thought was an appropriate

manner and also manages to disclose his views on the French and their

baleful influence:

There was a law at that time that Jews were permitted to stay

overnight in Wismar only in the time of certain annual fairs, … I

suppose this decree was old. The old Wismarkers must have had

experiences with the Jews that had led them to this legislation.

It must have been the Jewish way of doing business together with

the Jewish national characteristics that is tied together closely with

the way of doing business. … There came universal suffrage, even

for Jews. There came the freedom of movement, even for Jews,

presents from France. We make it so easy for the French to bless us

with gifts. If one had only turned to noble and patriotic Germans …

The French had treated us nastily enough indeed before 1813, and



nevertheless we have this blind admiration of all things French. … I

have only in the last years really learned to comprehend

antisemitism. If one wants to make laws against the Jews, one must

be able to specify a distinguishing mark by which one can

recognize a Jew for certain. I have always seen this as a problem.

The problem, merely theoretical for Frege, of defining Jews with sufficient

precision so that one could make laws against them, became quite a practical

problem under the Nazis. Ludwig Wittgenstein, thought to be one of the great

thinkers of the twentieth century and an admirer and disciple of Frege, would

have qualified as a Jew under the Nazi racial code.

Other diary entries rail against the Social Democrats and Catholics:

The Reich suffered from a cancer in 1914, namely Social

Democracy. (April 24)

To be sure, I regarded Ultramontanism and its embodiment in the

Zentrum as very detrimental for our Reich and nation; nevertheless,

the revelations of … Ludendorf in his [recent] article on the efforts

and machinations of the ultramontanes give me insights which have

most deeply disturbed me.* I implore anybody who does not yet

believe in the thoroughly unGerman spirit of the Zentrum to read

and reflect on the stated article of His Excellency Luden-dorf …

This is the most evil enemy which undermined Bismarck’s Reich.

… [The Ultramontanes] will always look to the Pope to get their

instructions. (April 26)5

Frege’s extreme right-wing ideas were hardly rare in Germany after World

War I. Nevertheless, we may wonder whether the diary represents only the

thoughts of a bitter (and possibly senile) old man within a year of his death.

Alas, there is little doubt that Frege had held right-wing views for some time.

Frege’s colleague, Bruno Bauch, a philosophy professor at Jena, founded a

right-wing philosophical society (the DLG) during the war, and he edited its

journal. Frege was one of the early adherents of the DLG, and published in its

journal. Bauch’s writings on the concept of nation insisted that no Jew could

really be a German. His group came out in full support of the Nazis when

they took power in 1933.6



Frege’s Begriffsschrift

It is with a sense of relief that one turns from Frege’s awful views, expressed

as his life drew towards its end, to the brilliant contributions he made as a

young man. In 1879,* he published a booklet of fewer than 100 pages entitled

Begriffsschrift, a hard-to-translate word Frege constructed from the German

words Begriff (“concept”) and Schrift (roughly “script” or “mode of

writing”). It was subtitled, “a formula language, modeled upon that of

arithmetic, for pure thought.” This work has been called “perhaps the most

important single work ever written in logic.”7

Frege sought a system of logic that included all of the deductive inferences

in mathematical practice. Boole took ordinary algebra as his starting point

and used the symbols of algebra to represent logical relations. Since Frege

intended algebra, like other parts of mathematics, to be built as a

superstructure with his logic as a foundation, he regarded it as important to

introduce his own special symbols for logical relationships to avoid

confusion.

Also, where Boole had thought of propositions that express relations

between other propositions as “secondary propositions,” Frege saw that the

same relations that connect propositions can also be used to analyze the

structure of individual propositions, and he made these relations the basis of

his logic. This crucial insight has gained general acceptance and forms the

basis of modern logic.

For example, Frege would analyze the statement that “All horses are

mammals” using the logical relationship if … then …:

if  x is a horse,   then x is a mammal.

Likewise, he would analyze the statement that “Some horses are pure-bred”

using the logical relationship … and …:

x is a horse,   and x is  pure-bred.

However, the letter x is used differently in these two examples. In the first

example one wants to say that what is asserted is true whatever x might be,

that is, for every x. But in the second example what is wanted is only the



assertion for some x. In the symbolism in current use, for every is written ∀

and for some is written ∃. So, the two sentences could be written as follows:

The symbol ∀, an upside-down A, suggests “all” and is called a universal

quantifier. Likewise the symbol ∃, a backwards E, is called an existential

quantifier, and is intended to suggest “exists.” So this second sentence could

be read:

  There exists x such that x is a horse and x is pure-bred.

The logical relation if … then … is usually symbolized ⊃, and the relation …

and … is symbolized …. Using these symbols, the sentences become:8

They can be abbreviated as follows:

Or more briefly:

Joe and Susan’s effort to use logic in locating Joe’s wallet was used as an

example in the previous chapter. In that example, we used letters to abbreviate

sentences as follows:

L  Joe left his checkbook at the supermarket.

F  Joe’s checkbook was found at the supermarket.

W  Joe wrote a check at the restaurant last night.

(∀x) (if x  is  a horse,   then  x  is  a mammal)

(∃x) (x is a horse,   and x is  pure-bred)

(∀x) ( x  is  a horse   ⊃   x  is  a mammal)

(∃x) (x  is  a horse   ∧  x  is  pure-bred)

(∀x) ( horse   ⊃    mammal (x))

(∃x) ( horse   ∧    pure-bred (x))

(∀x) ( h(x)   ⊃    m (x))

(∃x) ( h(x)   ∧    p (x))



P    After writing the check last night, Joe put his check book in his jacket

pocket.

H  Joe hasn’t used his check book since last night.

S  Joe’s checkbook is still in his jacket pocket.

Their reasoning came down to the following pattern:

PREMISES. If L, then F

Not F

W & P

If W & P & H, then S

H

CONCLUSIONS. Not L

S

Using the symbol ¬ to stand for “not,” and the other symbols we’ve

introduced, this now becomes

One final symbol should be mentioned: ∨ standing for … or …. The

following table provides a summary of the symbols that have been

introduced:

¬ not …

L  ⊃  F

¬F

W   ∧  P

¬L

S

W   ∧  P   ∧  H  ⊃  S

H



∨ … or …

∧ …and …

⊃ if … then …

∀ every

∃ some

At the end of the previous chapter, the statement that all failing students are

either stupid or lazy was exhibited as an example whose logical structure

would be missed by Boole’s analysis. In Frege’s logic, it is easy. Writing

the sentence can be expressed as

(∀x) ( F(x)   ⊃    S (x)   ∨  L (x)).

By now it should be clear that Frege was not just developing a mathematical

treatment of logic, but was creating a new language. In this he was guided by

Leibniz’s notion of a universal language that would gain its power from a

judicious choice of symbols.9 The expressiveness of this language can be

gauged from the following examples using L(x, y) to stand for x loves y.

Everyone loves someone. (∀x)(∃y) x loves y (∀x)(∃y)L(x, y)

Someone loves everyone. (∃x)(∀y) x loves y (∃x)(∀y)L(x, y)

Everyone is loved by someone. (∀y)(∃x) x loves y (∀y)(∃x)L(x, y)

Someone is loved by everyone. (∀y)(∃x) x loves y (∀y)(∃x)L(x, y)

Here is one more example:

Everyone  loves  a  lover.

As a first stab we write:

F(x) for x  is  a failing  student,

S(x) for x  is  stupid,

L(x) for x  is  lazy,



(∀x) (∀y) [y  is  a  lover   ⊃   L (x, y)].

Now, if we construe being a lover as simply meaning loving someone, we can

replace y is a lover by (∃z)L(y, z), finally obtaining:

(∀x) (∀y) [(∃z) L (y, z)   ⊃   L (x, y)].

Frege Invents Formal Syntax

Boole’s logic was simply another branch of mathematics to be developed

using ordinary mathematical methods. This of course includes using logical

reasoning. But there is something circular about using logic to develop logic.

For Frege this was unacceptable. His intention was to show how all

mathematics could be based on logic; logic was to provide a foundation for

all the rest of mathematics. For this to be at all convincing, Frege had to find

some way to develop his logic without using logic in the process.

His solution was to develop his Begriffsschrift as an artificial language with

mercilessly precise rules of grammar, or as one says, of syntax. This made it

possible to exhibit logical inferences as purely mechanical operations, so-

called rules of inference, having reference only to the patterns in which

symbols are arranged. It was also the first example of a formal artificial

language constructed with a precise syntax. From this point of view, the

Begriffsschrift was the ancestor of all computer programming languages in

common use today.

The most fundamental of Frege’s rules of inference works like this: if ⋄

and ⋄ are any two sentences of Frege’s Begriffsschrift, then if ⋄ and (⋄ ⊃ △)

are both asserted, then one is permitted to also assert the sentence Δ. It is

important to notice that to carry out this operation, no understanding of what

⊃ means is required. Of course we can see that the rule cannot lead to error

because it only enables one to proceed from ⋄ and (if ⋄ then △) to △. But to

actually employ the rule, it is only necessary to match up the individual

symbols constituting the sentence ⋄ with symbols in the first part of the

longer sentence.10 In our example of locating Joe’s wallet, we had the

premise



W   ∧  P   ∧  H  ⊃  S.

If we were able to also assert W ∧ P ∧ H, then the rule would enable us to

also assert one of the desired conclusions, namely S. Here is how the match-

up would go:

Frege’s logic has become the standard taught to undergraduate students in

logic courses in mathematics, computer science, and philosophy

departments.11 It has been the basis for an enormous body of research, and

indirectly led Alan Turing to formulate the idea of an all-purpose computer.

But this is getting ahead of ourselves.

Frege’s logic was an enormous advance over Boole’s. For the first time an

exact system of mathematical logic encompassed, at least in principle, all the

reasoning ordinarily used by mathematicians. But in attaining this goal,

something was given up. Beginning with some premises in Frege’s logic,

Frege’s rules could be applied in an attempt to reach a desired conclusion. But

if the attempt failed, Frege provided no means to know whether this was

because not enough cleverness or persistence was employed, or whether the

desired conclusion simply did not follow from the given premises. This lack

meant that Frege’s logic did not fulfill Leibniz’s dream that with the words

“Let us calculate,” those knowing the rules of logic would be able to proceed

to determine unfailingly whether or not some conclusion follows.

Why Bertrand Russell’s Letter Was So Devastating

If Frege’s logic was such a great achievement, why did Russell’s letter lead

Frege to despair? Frege regarded his logic as only a stepping stone towards

complete foundation for arithmetic. Although the differential and integral

calculus of Leibniz and Newton led to fruitful developments, there were

serious problems in justifying some of the steps in the reasoning

mathematicians were in the habit of employing. During the nineteenth

century these problems were gradually cleared up, ultimately by developing a

W   ∧  P   ∧  H  ⊃  S.

W   ∧  P   ∧  H .



new and profound theory of the number system of mathematics. However, in

the end we still rely on the so-called natural (or counting) numbers:

1,  2,  3,   …

Frege wanted to provide a purely logical theory of the natural numbers and

thereby to demonstrate that arithmetic, and indeed all of mathematics

including developments stemming from the differential and integral calculus,

could be regarded as a branch of logic. This point of view, which came to be

called logicism, was also that of Bertrand Russell. Logicism has been

explained by the American logician Alonzo Church as maintaining that the

relationship between logic and mathematics is that between the elementary

and the advanced part of one and the same subject.*

Thus Frege wanted to be able to define the natural numbers in purely

logical terms, and then to use his logic to derive their properties. The number

3 for example was to be explained as part of logic. How could this be

possible? A natural number is a property of a set, namely, the number of its

elements. The number 3 is something that all of the following have in

common: the Holy Trinity, the set of horses pulling a troika, the set of leaves

on a (normal) clover leaf, the set of letters {a, b, c}. Without saying anything

about the number 3, one can see that any two of these sets have the same

number of elements. We can simply match them up. Frege’s idea was to

identify the number 3 with the collection of all of these sets. That is, the

number 3 is just the set of all triples. In general, the number of elements in a

given set can be defined to be the collection of all those sets that can be

matched one-to-one with the given set.12

Frege’s two-volume treatise on the foundations of arithmetic showed how

to develop the arithmetic of natural numbers using the logic developed in his

Begriffsschrift. Bertrand Russell’s letter of 1902 showed Frege that this entire

development was inconsistent, that is, self-contradictory. Frege’s arithmetic,

in effect, made use of sets of sets. Russell showed in his letter that reasoning

with sets of sets can easily lead to contradictions.

Russell’s “paradox” can be explained as follows: Call a set extraordinary if

it is a member of itself; otherwise call it ordinary. How could a set be

extraordinary? Russell’s own example of an extraordinary set is: the set of all



those things that can be defined in fewer than 19 English words. Since we

have just defined this set using only 16 words, it belongs to itself and

therefore is extraordinary. Another example is the set of all things that are not

sparrows. Whatever this set might be, it is surely not a sparrow. So this set too

is extraordinary.

Russell proposed to Frege the set E  of all ordinary sets. Is E  ordinary or

extraordinary? It must be one or the other. But it seems to be neither. Could E

be ordinary. If so, since E  is the class of all ordinary sets, it would belong to

itself. But then it would be extraordinary. OK. Then E  would have to be

extraordinary. Therefore, it would not belong to itself, since it is the set of

ordinary sets. But that would make it ordinary! Either way one is led to a

contradiction!

Russell’s paradox is first cousin to a large number of puzzles that are

simply amusing. But when Frege received Russell’s letter, he was not amused.

He realized at once that the contradiction could be readily derived within the

system he was using to develop arithmetic. Now, a mathematical proof that

runs into a contradiction is a demonstration that one of the premises of the

argument was false. This principle is used all the time as a useful proof

method: to prove a proposition, one shows that its denial leads to a

contradiction. But for poor Frege, the contradiction had shown that the very

premises on which his system was built were untenable. Frege never

recovered from this blow.13

Frege and the Philosophy of Language

In 1892 Frege published a paper in a philosophical journal whose title may be

translated as On Sense and Denotation.14 Along with Frege’s logic, it is

because of the issues raised in this paper that philosophers have been so

interested in his work.

Frege pointed out that different words may be used to denote one specific

object although they may have quite different senses or meanings. His famous

example uses the phrases “the morning star” and “the evening star.” Their

sense is quite different: one is the bright star seen after sunset, the other the

one seen before sunrise. But both denote the same planet, Venus. The fact that

both phrases refer to the same object is not obvious; it was at one time a real



astronomical discovery. Some of Frege’s concerns have to do with

substitutivity: Consider the sentence

Venus  is  the  morning  star.

This is very different from

Venus  is  Venus.

This is the case although in fact, one sentence was derived from the other by

replacing one phrase by another denoting the same object.

These ideas represent the beginning of a major branch of twentieth century

philosophy: the philosophy of language.15 In addition, some key concepts in

contemporary computer science may be said to have their origin in this same

essay.16

Frege and Leibniz’s Dream

Frege thought of his Begriffsschrift as embodying the universal language of

logic that Leibniz had called for. Indeed, Frege’s logic can deal with the most

diverse subjects. But to Leibniz it would likely have been a disappointment. It

fell short of his desires in at least two important respects. Leibniz had

imagined a language that was capable not only of logical deduction but that

also would automatically include all the truths of science and of philosophy.

This naive expectation was only conceivable before the massive development

of science in the eighteenth and nineteenth centuries based on careful

experiment as well as theorizing.

From the point of view of our story, it is more appropriate to point to a

different limitation of Frege’s logic. Leibniz had called for a language that

would also be an efficient instrument of calculation, one that would enable

logical inferences to be carried out systematically by the direct manipulation

of symbols. In fact any but the simplest of deductions are almost unbearably

complicated in Frege’s logic. Not only are such deductions tediously long, but

Frege’s rules provide no calculational procedures for determining whether

some desired conclusion can be deduced from given premises in the logic of

his Begriffsschrift.



Because the Begriffsschrift did fully encapsulate the logic used in ordinary

mathematics, it became possible for mathematical activity to be investigated

by mathematical methods. As we will see, these investigations led to some

very remarkable and unexpected developments. The search for a calculational

method that could show whether or not a proposed inference in Frege’s logic

is correct reached its climax in 1936 with a proof that no such general method

exists.

This was bad news for Leibniz’s dream. However, in the process of proving

this negative result, Alan Turing discovered something that would have

delighted Leibniz: he found that it was possible, in principle, to devise one

single “universal” machine that could alone carry out any possible

computation.

*The Zentrum party was oriented towards the Catholic Church. Its “Ultramontanism” referred to the

influence from “over the mountains,” that is, Rome

*I was invited to present an address at a scientific conference in 1979 commemorating the hundredth

anniversary of the Begriffsschrift in which I was to trace its consequences for computer science. This

was the beginning of my second career as a historian of science

*It is now generally recognized that, by the use of numerical coordinates, geometry can also be

reduced to arithmetic. However, Frege always believed that geometry had to be regarded as separate.

I’m indebted to Patricia Blanchette for emphasizing this aspect of Frege’s thought and for other helpful

comments on this section.



CHAPTER 4

Cantor: Detour through Infinity

The sequence of numbers 1, 2, 3, …, the so-called natural or counting

numbers, goes on forever. No matter how large a number you start with, you

can always get a larger number by adding 1. One may conceive of the

natural numbers as generated by a process, beginning with 1 and

successively adding 1:

Such a process, continuing beyond any finite bound, was characterized by

Aristotle as a “potential infinity.” However, Aristotle was not willing to

accept as legitimate the culmination of this process: the infinite set of all

natural numbers. This would be a “completed” or “actual” infinity, and

Aristotle declared that such were illegitimate.1 Aristotle’s views heavily

influenced the scholastic religious philosophers of the twelfth century,

particularly Thomas Aquinas. The problem of the nature of the infinite has

been perplexing for mathematicians, philosophers, and theologians alike.

Theologians could propose that a “completed” infinity was actually an

aspect of God, and conclude that for mere humans it had to remain a

mystery. Leibniz was not put off by such considerations, writing:

I am so in favor of the actual infinite that instead of admitting that

Nature abhors it, as is commonly said, I hold that Nature makes

frequent use of it everywhere, in order to show more effectively

the perfections of its Author.2

The limit processes of the calculus that became so important for

mathematics in the eighteenth and nineteenth centuries exemplified

1 + 1 = 2, 1 + 2 = 3, … , 1  +  99  =  100,  …



potential infinity. In this connection, the great German mathematician Carl

Friedrich Gauss (1777–1855) warned:

… I protest above all against the use of an infinite quantity as a

completed one, which in mathematics is never allowed. The

infinite is only a manner of speaking, in which one properly

speaks of limits.3

After the middle of the nineteenth century mathematical problems that

arose quite naturally out of current concerns seemed to call for the use of

completed infinities in their precise formulation. Among the

mathematicians who were coping with this situation, it was only Georg

Cantor who, flying in the face of Gauss’s warning, accepted the challenge to

create a profound and coherent mathematical theory of the actual infinite.

Cantor’s work unleashed a storm of criticism: not only mathematicians, but

also philosophers and theologians attacked the temerity of one who would

bring the methods of mathematical science to bear on the hitherto

sacrosanct domain of the infinite. Frege was supportive of Cantor’s embrace

of the actual infinite, recognizing its importance for the future of

mathematics. Frege also saw quite clearly that a stormy struggle would

develop between those mathematicians who embraced Cantor’s infinite and

those who regarded it as anathema:

For the infinite will eventually refuse to be excluded from

arithmetic. … Thus we can foresee that this issue will provide the

setting for a momentous and decisive battle.4

What Frege could not have foreseen as he wrote these lines was that the

very foundation for arithmetic that he himself had developed would be an

early casualty of that battle, a victim of the paradox that Bertrand Russell

would call to his attention a decade later in that famous letter, a paradox that

Russell would find while exploring the implications of Cantor’s infinite.

And Frege could certainly never have imagined that the ensuing tumultuous

discussions, investigations, and disputes over Cantor’s infinite would one

day provide key insights leading to the development of all-purpose digital

computers.



Engineer or Mathematician

In an unlikely setting for a future professor of mathematics at a German

university, Georg Cantor was born in 1845 in St. Petersburg, Russia.

Cantor’s mother, Marie Böhm came from a distinguished musical family,

and she herself was an accomplished musician. His father, Georg Waldemar

Cantor, was born in Copenhagen, but was brought to St. Petersburg as a

child. It is believed that he was raised and educated there in a Lutheran

Evangelical mission. Although Marie had been baptized a Roman Catholic,

she also adhered to the Evangelical Church after her marriage, and Georg

Cantor and his three siblings were raised in that faith.5





GEORG CANTOR
(Bildarchiv des Mathematischen Forschungsinstituts Oberwolfach)

Georg Waldemar Cantor was a very successful business man. He worked

as a wholesaling agent in St. Petersburg, and later became a broker at the St.

Petersburg Stock Exchange. One author, referring to the letters Georg had

received from his father while a student, was moved to write:

… one is fascinated by this multifaceted, cultivated, mature, and

kind individual. They [the letters] breathe a spirit not always

found among successful business men.6

Although tuberculosis, the nineteenth century’s great plague, hit poor

neighborhoods with particular force, the rich were not immune. Georg’s

father contracted this dread disease and ultimately died of it. Although still

in his forties, his illness led Georg Waldemar to liquidate his business and

move his family to Germany when his son was 11. But his success had been

such that, even after his death seven years after the move, his four children

were very well provided for.

Georg’s father had believed that engineering was the profession most

appropriate to his son’s talents, but, to Georg’s great joy, he finally

acquiesced in the boy’s desire to be a mathematician. In Berlin, the young

Georg Cantor had the opportunity to study under three great

mathematicians: Karl Weierstrass, Ernst Kummer, and Leopold Kronecker.

Cantor’s mathematical interests began in quite traditional areas. It would

have been difficult to predict at the beginning of his career that he was

destined to expand the horizons of mathematical thought in a revolutionary

direction. Nor that his teacher, Kronecker, would refuse to accept his new

mathematics of the infinite as legitimate.

Halle, where Cantor assumed his first university position and where he

was to spend the rest of his life, was an industrial city 35 miles up the Saale



River from Frege’s home in Jena. Quite typical for a beginning academic

career in Germany at that time, Cantor was appointed a Privatdozent, a

lecturer without pay. Obviously, under these circumstances, independent

financial resources were necessary for launching an academic career. The

leading mathematician at Halle, Eduard Heine, recognized Cantor’s great

mathematical powers, and persuaded him to work on some problems

involving infinite series. In the first chapter, we have already encountered

Leibniz’s famous infinite series:

π

4   =  1  −   13   +   15   −   17   +   19   −   1
11   +  ⋯ .

The “infinities” encountered in such series are potential infinities only,

exactly the sort Gauss (quoted above) had in mind: “ [infinite] only in a

manner of speaking, in which one properly speaks of limits.” For an infinite

series, one seeks a limit to which one gets ever closer as one adds more and

more terms (in the case of Leibniz’s series, this limit is π4 ); one says that the

series converges to the limit. There is no question of a “completed” infinity;

at any stage in the process one has simply added finitely many numbers.

Naturally, the subject of infinite series had advanced considerably in the

two centuries since Leibniz’s time. Cantor studied trigonometric series,7

(so-called because the terms involve the sine and cosine from

trigonometry). He wanted to find out under what circumstances two

different series of this type could converge to the same thing, and in fact, to

prove that such circumstances would be very unusual. This investigation

took Cantor far afield: he found that in order to get the desired results, he

had to treat infinite sets as “completed” wholes and to perform complex

operations on them. Soon, he was developing the theory of sets

(Mengenlehre in German) as an autonomous subject.

Infinite Sets Come in Different Sizes

Granting that it makes sense to deal with the set of all natural numbers, 1, 2,

3, …, as an example of a “completed, actual” infinity, does it also make

sense to ask: how many numbers are there in this set? Are there infinite

numbers that can be used to “count” infinite sets? Leibniz, who had no



objection to completed infinities as such, considered this question in a letter

to the Catholic priest, theologian, and philosopher Nicolas Malebranche.

His conclusion was that such infinite numbers do not exist.

We may explain his reasoning as follows: we can tell that two sets have

the same number of members, without even knowing what that number is,

by matching the elements of one of the sets in a one-one manner with those

of the other set.* For example, if one observes that there are no empty seats

and no standees in an auditorium, then one can conclude (without counting)

that the number of people in the audience and the number of seats are the

same—one is matching up each seat with the person occupying it. Leibniz

held that if such things as infinite numbers did exist, then the same idea

should apply to them: if a one-one matching can be defined between two

infinite sets, then one should be able to conclude that the two sets have the

same number of members.

Then, he proposed to apply this concept to the following two sets: the set

of all natural numbers 1, 2, 3, … and the set of even natural numbers 2, 4, 6,

…. It is easy to devise a one-to-one matching between these two sets by

simply matching, with each natural number its double, like this:

Notice that even though the sets are infinite, the specified matching between

the set of all natural numbers and the set of even numbers is perfectly

explicit. For example, corresponding to the natural number 117 is the even

number 234; corresponding to the natural number 4228 is the even number

8456, etc. Leibniz reasoned that if there were such things as infinite

numbers, the existence of this match-up would force us to conclude that the

“number” of natural numbers is the same as the “number” of even numbers.

But how could this be?

Among the natural numbers, are not only the even numbers themselves,

but also all of the odd numbers, themselves constituting an infinite set. And

one of the most basic mathematical principles, going back to Euclid, is that

the “whole” is greater than any of its parts.8 Hence Leibniz concluded that

1 2 3 4 …

↕ ↕ ↕ ↕

2 4 6 8 …



the very concept of the “number” of all natural numbers is incoherent, that

it makes no sense to speak of the number of elements in an infinite set. As

he put it:

For any number there exists a corresponding even number which

is its double. Hence the number of all numbers is not greater than

the number of even numbers, that is, the whole is not greater than

the part.9

Cantor reasoned much as Leibniz had and faced the same dilemma: either it

makes no sense to speak of the number of elements in an infinite set or

some infinite sets will have the same number of elements as one of their

subsets. However, while Leibniz had chosen one horn of this dilemma,

Cantor chose the other. He went on to develop a theory of number that

would apply to infinite sets, and just accepted the consequence that an

infinite set could have the same number of elements as one of its parts.

Starting where Leibniz had left off, Cantor began studying when it was

possible to set up one-to-one matchings between two different infinite sets.

Leibniz had found that a one-to-one matching could be established between

the set of natural numbers and one of its subsets, the even numbers. Cantor

considered sets that seemed to be larger than the set of natural numbers.

One example he thought about was the set of numbers that can be

represented as (positive) fractions,10 like 1
2  or 5

3 . Since natural numbers

could be represented by fractions with the denominator 1 (like 7
1 ), the set of

natural numbers can be regarded as a subset of this set. But, with a little

thought, Cantor found that he could set up a one-to-one matching between

the set of these fractions and the set of natural numbers. The fractions can

be arranged in a sequence like this:

  11    …

They have been grouped according to the sum of the numerator and the

denominator of each fraction: first fractions with the sum 2 (there’s only

one of these), then those with the sum 3 (there are 2), then those with sum 4

1
2

2
1

1
3

2
2

3
1

1
4

2
3

3
2

4
1

1
5

2
4

3
3

4
2

5
1



(there are 3), then those with sum 5 (there are 4), etc. Now it is easy to set

up a one-to-one matching with the natural numbers:

Since it seems intuitively that there are so many more fractions than

natural numbers, this demonstration could easily lead one to imagine that

every infinite set can be matched up one-to-one with the natural numbers.

Cantor’s great achievement was to show that this is not the case. The

numbers represented by fractions are called rational. If a rational number is

represented as a decimal, the pattern of digits eventually begins to repeat.

Here are some examples:

Numbers that can be represented by decimals, whether or not they

eventually repeat, are called real numbers. Those whose decimal

representations never repeat are called irrational. Here are some examples

of numbers that have been proved to be irrational:

1
1

1
2

2
1

1
3

2
2

3
1

1
4

2
3

3
2

4
1

1
5

2
4

3
3

4
2

5
1

↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

⋯

⋯

1
3 = 0.3333333333333333333333 …
1
4 = 0.2500000000000000000000 …
5
3 = 1.6666666666666666666666 …

24
11 = 2.1818181818181818181818 …
9
7 = 1.2857142857142857142857 …

√2 = 1.414213562373095050 …
3√2 = 1.259921049894873160 …

π = 3.141592653589793240 …  

2√2 = 2.665144142690225190 …



Numbers like √2 and 3√2 as well as all of the rational numbers are called

algebraic because they can serve as solutions of algebraic equations. (Thus,

√2 is a solution of the equation x2 = 2, and 3√2 is a solution of the equation

x3 = 2.) The numbers π and 2√2 have been proved to satisfy no algebraic

equation; such numbers are called transcendental.

After having shown that the fractions can be matched in a one-to-one

manner with the natural numbers, Cantor turned his attention to the set of

all algebraic numbers, and he had little difficulty in once again finding a

way to match them with the natural numbers in a one-to-one manner.

Naturally, he wondered whether the same was true for the set of all real

numbers.

We can follow the ruminations of the 28-year-old Cantor in letters written

in 1873 to Richard Dedekind, a young mathematician Cantor had met quite

by chance the previous year while on vacation in Switzerland. Cantor, who

had recently been promoted to a professorship at Halle, wrote showing

Dedekind that (as we have already seen), one can construct a one-to-one

matching between the natural numbers and the more inclusive set of all

positive fractions. He even showed that the same is true for the set of all

algebraic numbers. In his letter, Cantor raised the question of the possibility

of a one-to-one matching between the set of natural numbers and the set of

all real numbers. Dedekind’s reply suggested that he believed the question

to be of little interest. About a week later, in another letter, Cantor was able

to prove to Dedekind the remarkable fact that the set of real numbers cannot

be matched with the set of natural numbers in a one-to-one manner, that

infinite sets come in at least two sizes.

Apparently, Cantor himself wasn’t even sure that this finding was worth

publishing. He only submitted it for publication after his former teacher

Karl Weierstrass encouraged him to do so. The revolutionary implications

of what Cantor had done were hardly evident in the four-page paper. The

emphasis of the paper was not on the fact that infinite sets had been shown

to come in more than one size, but rather that as a corollary, Cantor had

obtained a new proof that there exist real numbers that are transcendental.

Cantor’s proof amounted to noting that since the algebraic numbers can be

matched one-one with the natural numbers, and the real numbers cannot be



so matched, it follows that the set of real numbers is different from the set

of algebraic numbers. It follows that there must be a real number that is not

algebraic, that is, transcendental.11

Meanwhile, Cantor’s personal life flourished. In 1874, he married Vally

Guttman, a close friend of his sister and a gifted musician. They had six

children and, from all accounts, were a loving devoted family. Although

Cantor had a reputation for being forceful and even difficult in professional

contexts, he was apparently quite gentle at home. According to one account

of mealtime at the Cantor’s:

… at mealtimes he would sit silently and allow his children to

lead the conversation, and then rise and thank his wife for the

meal with: “Are you content with me and do you then also love

me?”12

But as he began devoting more and more of his efforts to developing set

theory, Cantor began encountering increasing opposition to his unsettling

new ideas. Particularly disappointing was his former teacher Kronecker’s

unwillingness to accept Cantor’s work as a legitimate part of mathematics.

In this atmosphere, an appointment to a university where Cantor could have

contact with colleagues of his own stature was not to be. He would have to

remain in the backwater that was Halle. Cantor’s efforts to coax his friend

Dedekind to come to Halle failed. In 1886, acquiescing to the inevitable,

Cantor purchased a magnificent house for his family in Halle.

Cantor’s Quest for Infinite Numbers

Ignoring Gauss’s warning that mathematicians had no business with

completed infinities, Cantor felt drawn by the lure of the infinite, hitherto

the province of theologians and metaphysicians. His mathematical research

had provided the basis for his radical ideas, but he pressed on far beyond

what that research mandated. The natural numbers 1, 2, 3, … are used in

ordinary discourse in two different but related ways. They are used to count

and to rank, as illustrated by the sentences:

•  There are four people in this room.



•  Joe’s horse came in fourth.

Everyday language recognizes this with its distinction between cardinal and

ordinal numbers for which different words are provided: one, two, three, …

but first, second, third, …. Cardinal numbers are used to specify how many

things there are in some set; ordinal numbers are used to specify how these

things are arranged in a particular order. Cantor’s finding that there is no

one-to-one correspondence between the natural numbers and the real

numbers led him to think about infinite cardinal numbers, and his work on

trigonometric series suggested a way to conceptualize infinite ordinal

numbers.

Cantor assumed that associated with every set (finite or infinite) there is

its unique cardinal number. Cantor thought of the cardinal number of a set

as obtained by disregarding the specific nature of the items making up the

set, so that what remained were simply featureless “units.” In particular, if

two sets can be matched in a one-to-one manner, then they will have the

same cardinal number.

Let M stand for some perfectly arbitrary set. Then Cantor introduced the

notation M  for the cardinal number of that set M.13 For example,* if

then

Of course it is easy to set up a one-to-one matching between A and B:

What happens when two sets do not have the same cardinal number? In

symbols, it is a question of sets M and N such that M   ≠  N . In such a

case, one of the two cardinal numbers is the larger and the other the smaller.

A  =  {♣ ♢ ♡ ♠}, B  =  {3,  6,  7,  8}, and C  =  {6,  5},

A   =  B   =  4 and C   =  2.

♣ ♢ ♡ ♠

↕ ↕ ↕ ↕

3 6 7 8



Using the standard symbols < (“is less than”), and > (“is greater than”) we

can write M   <  N  (or equivalently, N   >  M ) to indicate that it is N

that has the larger cardinal number. To prove that this is indeed the case

what is needed is a one-to-one match-up between M and some subset of

N.14 Thus, in the example above where A   >  C  (because 4 > 2), the

subset {⋄ ♡} of A can be matched with C like this:

As long as one sticks to finite sets, all of this might well seem to be a matter

of expressing simple familiar matters in abstruse terms. Indeed, the power

of Cantor’s ideas only becomes apparent when applied to infinite sets.

Cantor called the cardinal numbers of infinite sets, transfinite. His first

example of a transfinite number was the cardinal number of the set of

natural numbers for which Cantor introduced the symbol ℵ0, usually read

“aleph-null,” ℵ being the first letter of the Hebrew alphabet.*

Cantor used the symbol C  for the cardinal number of the set of real

numbers (because the set of real numbers is sometimes called the

continuum). Cantor was convinced that C  was the very next transfinite

cardinal number after ℵ0. The statement that this is true, that is, that there

are no cardinal numbers between ℵ0 and C , is known as Cantor’s

continuum hypothesis. Despite intense efforts over many years, Cantor was

never able to resolve the matter: he could neither prove nor disprove the

continuum hypothesis. This failure caused Cantor no end of distress. With

what we know today, we can see that poor Cantor was just bashing his head

against a stone wall. Fundamental discoveries by Kurt Gödel in 1938 and

Paul Cohen in 1963 revealed that if the continuum hypothesis can be

resolved at all, it will require going beyond the methods of ordinary

mathematics. So Cantor’s inability to settle the matter is hardly surprising.

Indeed, even today, experts are divided on the question of whether the

Gödel-Cohen negative results are the best that can be expected, or whether

new powerful methods may yet yield a more satisfying result.

6 5

↕ ↕

♢ ♡



In Cantor’s work on trigonometric series he was led to consider a certain

process that could be applied over and over again in stages: a first stage, a

second stage, a third stage, and so on. But what pushed Cantor over the

edge into the transfinite was the realization that even after all these infinitely

many stages, there were more. Soon he was speaking of an ωth stage, an

(ω + 1)th stage, and beyond, and developing the arithmetic of what he came

to call transfinite ordinal numbers.*

Let’s look first at the finite set {♣ ♢ ♡} Its members can be ranked in

six different ways:

However, these six rankings all exhibit the same pattern: a first item,

followed by a second item, followed by a third item. This is true of any

finite set: all of the different ways of ranking its members exhibit the same

underlying pattern. If the set consists of n items, any ranking will show a

first item, a second item, … and finally an nth item. Cantor saw that with

infinite sets the situation is entirely different. Infinite sets can be ranked in

different ways with very different patterns. For example, suppose the

natural numbers 1, 2, 3, … are arranged so that all of the even numbers

precede all of the odd numbers like this:

2,  4,  6,  …  ,  1,  3,  5 …

If we try to use ordinal numbers to show the rank of each item in the

progression, we find that the familiar finite ordinal numbers are all used in

taking care of the even numbers:

1st 2nd 3rd … ? ? ? …

↓ ↓ ↓ ↓ ↓ ↓

2 4 6 … 1 3 5 …



Cantor saw how to use transfinite ordinal numbers to handle this difficulty.

So after all the finite ordinal numbers, Cantor postulated a first transfinite

ordinal number he designated by the Greek letter ω (omega). This was then

followed by ω + 1, ω + 2, etc. Cantor could then have provided ranks for

the odd numbers in the above example quite easily:

Cantor found that the natural numbers could be ranked in many many

different ways using larger and larger transfinite ordinal numbers. He called

the finite (ordinal) numbers, that is the natural numbers 1, 2, 3,…, the first

number class and the transfinite ordinal numbers needed to supply ranks in

different arrangements of the natural numbers, the second number class.

Considering the set of transfinite ordinal numbers constituting this “second

number class,” Cantor designated its cardinal number by the symbol ℵ1.

Remarkably, Cantor was able to prove that not only is ℵ0 the smallest

transfinite cardinal number, but that ℵ1 is the very next cardinal number

after ℵ0. So, ℵ1  >  ℵ0, and there are no cardinal numbers that are larger

than ℵ0 and smaller than ℵ1.

Now, the continuum hypothesis that Cantor had been trying so hard to

prove is the statement that C  is the very next cardinal number after ℵ0.

Since he knew that ℵ1 really is the next cardinal number after ℵ0, the

continuum hypothesis amounted to the succinct question:

C  
?
=  ℵ1.

Unfortunately, simply writing this equation brought Cantor no closer to

proving that it was true.

After the first and second number classes, is there a third number class?

Absolutely! In ranking sets with cardinal number ℵ1 the numbers of the first

and second number classes do not suffice. Cantor introduced ω1 as the

transfinite ordinal number beginning the third number class, and he called

1st 2nd 3rd … ωth (ω  +  1)th (ω  +  2)th …

↓ ↓ ↓ ↓ ↓ ↓

2 4 6 … 1 3 5 …



the cardinal number of the set of all ordinal numbers in this third number

class ℵ2. Then, ℵ2 turned out to be the very next cardinal number after ℵ1.

Cantor saw that there is no end to this process: after ℵ2 comes ℵ3, then ℵ4,

and so on. And after all of these comes ℵω, and on and on.

In developing these ideas Cantor was exploring a domain that had been

visited by no one before him. There were no mathematical rules on which

he could rely. He had to invent it all himself, relying on his intuition.

Considering the nature of the terrain he was investigating, it is remarkable

that the bulk of his work has held up very well. But from the beginning

there were those who opposed Cantor’s entire enterprise. Kronecker’s

objections have already been mentioned. A story that has been circulating

among mathematicians and has been widely believed has it that the

influential French mathematician Henri Poincaré said that one day Cantor’s

set theory “would be regarded as a disease from which one had recovered.”

Although the story seems to be apocryphal, its very currency shows what

Cantor was up against.

The Diagonal Method

If students today learn one thing that Cantor accomplished, it is almost

certainly his so-called diagonal method. This method was published in a

paper of only four pages in 1891 after Cantor had all but ceased doing

mathematical research and after his definitive articles on transfinite numbers

had not only been published, but had even been reprinted. It was in 1874

that Cantor had published his proof that there is no one-to-one

correspondence between the natural numbers and the real numbers, or, as

Cantor would later express it, ℵ0  <  C . The proof used methods borrowed

from the basic theory of limit processes as developed by Weierstrass. Using

the diagonal method, the same conclusion can be seen to be obtainable from

basic logical principles. The diagonal method will come up again and again

in our story.

In explaining the diagonal method, it will be helpful to use the metaphor

of a labeled package. What will be special is that the things used as labels

will be exactly the same sort of thing that is inside the package. As an

example, consider the four suits in a deck of playing cards: ♣ ♢ ♡ ♠. Let



us use each of them as a label on a package containing some of these same

suits, like this:

We can exhibit the same information in the form of a table in which we use

a plus sign to indicate that an item is inside a package and a minus sign to

indicate that it is not:

In this table, the vertical column on the left lists the four labels, and the

contents of the “packages” are displayed in horizontal rows. The plus and

minus signs along the diagonal are encircled for emphasis. Now the

diagonal method is a technique for combining the same kind of item into a

new package whose contents is different from each of the labeled packages.

Here’s how it works: we make a new table in which we insert the opposite

sign to the one on the diagonal for each item. Thus, since the sign that goes

with ♣  is minus, in our new table, ♣  gets a plus sign. Similarly ♢  gets

minus, ♣ gets minus, and finally ♡ gets plus, like this:

♣ ♢ ♡ ♠

+ − − +

So, our new package is {♣ ♠}. How can we be sure that it is different from

any of the labeled packages? Well, it can’t be the package labeled by ♣ ,

because ♣ is not in that package, and it is in our new package. It can’t be

the package labeled by ♢, because ♢ is in that package and it is not in our

new package, and so on.

♣ ♢ ♡ ♠

↕ ↕ ↕ ↕

{♢ ♡} {♢ ♠} {♢ ♡ ♠} {♣ ♢}



Now the packages are, of course, sets. And the labeling is a way of

setting up a one-to-one matching between the sets and members. The

method is perfectly general: it doesn’t matter whether you begin with a

finite set or an infinite set. If you use each element of that set to label some

one particular set made up of some of those same elements, then the

diagonal method can be used to obtain a new set of those elements, different

from all the sets that have been labeled.

Let’s see how this would work if we begin with the set of natural

numbers 1, 2, 3,…. We imagine putting some of these numbers into a

package. One package might consist of just the numbers {7,11,17}. Another

might consist of all of the even numbers. Now let us imagine using the

natural numbers as labels, as in the following infinite array:

where each of M1, M2, M3, M4, … is a package of natural numbers. At this

point, we manufacture our new set M different from every one of these by

using the following table:

1 – if 1 is in M1 otherwise +

2 – if 2 is in M2 otherwise +

3 – if 3 is in M3 otherwise +

4 – if 4 is in M4 otherwise +

… … … …

In other words, 1 belongs to M just in case 1 doesn’t belong to M1; 2

belongs to M just in case 2 doesn’t belong to M2; etc. Therefore, M is a set

of natural numbers different from M1, different from M2, etc. Now because

M1, M2, M3, M4, … stands for any possible one-to-one matching between

the numbers 1, 2, 3, … and sets of natural numbers, we see that no such

1 2 3 4 …

↕ ↕ ↕ ↕ …

M1 M2 M3 M4 …



matching can include all sets of natural numbers. In other words, the

cardinal number of the set of all sets of natural numbers is greater than ℵ0.

Actually, it is possible to prove that this cardinal number is none other than 

C , the cardinal number of the set of real numbers.15 Thus, the diagonal

method provides another way to see that there are more real numbers than

natural numbers.

This method is so very general that it provides another way (different

from Cantor’s successive ℵs) to generate lots of transfinite cardinal

numbers. For example, we can think of packages of real numbers labeled by

real numbers. The diagonal method shows that no such labeling can include

all sets of real numbers. Hence the cardinal number of the set of all such

sets must be greater than C , the cardinal number of the set of real

numbers.16 And, there is no need to stop there. The question of how

cardinal numbers obtained in this manner are interlaced with Cantor’s 

ℵ0,  ℵ1,  ℵ2,  … remains a source of difficulty and controversy to this day.

Depression and Tragedy

From the first Cantor faced opposition based on objections to the very idea

that finite human beings living in a finite world could hope to make

meaningful assertions about the infinite. But just around the turn of the

century, things became much worse with the discovery that unfettered

reasoning with Cantor’s transfinite could lead to very paradoxical and even

ridiculous results.

The trouble all began with attempts to collect the totality of Cantor’s

transfinite cardinal or ordinal numbers into a single set. If there is a set of

all cardinal numbers, what could its cardinal number be? It turned out that it

would have to be larger than any cardinal number. How could this be? How

could a cardinal number be larger than all cardinal numbers?

Shortly after Cantor became aware of this disconcerting paradox, the

Italian mathematician Burali-Forti found a similar difficulty in trying to deal

with the set of all transfinite ordinal numbers: he showed that such a set

would lead to a transfinite ordinal number larger than any transfinite ordinal

number, clearly a ridiculous conclusion.



Then Bertrand Russell came on the scene and delivered the most

shocking blow of them all. He considered the question: can there be a set of

all sets? If there were such a set, what would happen if the diagonal method

were applied to it? In other words, what if we thought of packaging up

arbitrary sets, and then use sets to label the packages? Of course, we’d get a

set different from all those that had been provided with labels. It was in

contemplating this situation, that Bertrand Russell found his famous

paradox of the set of all those sets not members of themselves. This was the

paradox, discussed in the previous chapter, that Russell communicated to

the shattered Frege.

Although Russell discovered his paradox by thinking about Cantor’s

ideas, the paradox itself does not depend at all on considerations involving

transfinite numbers. To many mathematicians, it seemed as though the most

basic logical reasoning had become unreliable, filled with pitfalls. Not

surprisingly, most mathematicians continued their usual work remote from

these matters.

But for those who were concerned with fundamental issues about the

nature of mathematics, the situation was nothing less than a crisis in the

foundations of mathematics. These mathematicians and philosophers soon

found themselves dividing into opposing camps. In particular there were

those who saw set theory as an integral part of mathematics to be preserved

at all costs and those who sought to insulate the body of mathematics from

contamination by Cantor’s transfinite. Work by logicians during the first

three decades of the twentieth century was dominated by these issues.

Cantor suffered the first in a series of “nervous breakdowns” in 1884, an

intense depression that lasted about two months. Having recovered, Cantor

attributed his mental problems to the intensity of his work on the continuum

hypothesis and to Kronecker’s unfavorable view of his work. At this time he

even wrote Kronecker a letter proposing that they renew a friendly

relationship to which Kronecker responded cordially.

Cantor’s explanation of his difficulties was widely accepted for many

years despite several episodes of what is now viewed as bipolar disease.

Regardless of the severity of external events, it is now generally understood

that the disorder’s fundamental cause is rooted in defective brain chemistry,



with environmental factors, like those to which Cantor had attributed his

depression, precipitating rather than causing major disruptions.17

This episode pretty much marked the end of Cantor’s ground-breaking

work in the theory of sets except for the paper already mentioned on the

diagonal method. More and more, between episodes of severe mental

illness, Cantor concerned himself with philosophy, theology, and, of all

things, the question of the authorship of Shakespeare’s plays. About this last

topic, Cantor developed notions of the significance of this work and of those

eager to suppress it that bordered on paranoia. The year 1899 brought crisis

and tragedy for Cantor. It was the year in which he first faced the paradoxes

of set theory. And then he suffered a devastating loss with the death of his

beloved 13-year-old son.

It was not Georg Cantor’s style to pursue a subject as a dilettante. He

made himself an expert on the Elizabethan period in general and on

Shakespeare’s plays in particular, and published a number of monographs

purporting to prove that Shakespeare’s plays had been written by Francis

Bacon. This, of course had nothing to do with set theory or the transfinite.

However, Cantor saw his investigations in philosophy and theology as

definitely connected with his work on the infinite. Cantor believed that

beyond the transfinite there is an “absolute infinite” that mere human

understanding can never fully encompass. Even the bedeviling paradoxes

that arose in set theory were to be understood from this point of view. For

example, the multitude of all transfinite cardinals should be regarded as

being absolutely infinite, and that is why contradictions arise from thinking

of them as merely transfinite.

A Decisive Battle?

In German philosophical thought, the towering figure was Immanuel Kant

whose critical philosophy was framed by two key questions:

•  How is pure mathematics possible?

•  How is pure natural science possible?



Kant’s answer to the first question relied on what he called “pure intuitions”

of space (for geometry) and of time (for arithmetic). He conceived of these

intuitions as being entirely independent of empirical sensations.18 Despite

Kant’s emphasis on the importance of science, post-Kant philosophy in

nineteenth-century Germany evolved in a different direction, moving to an

“absolute idealism” that conceived of ideas and concepts as primary and

sought to understand the world almost as though these were what it was

made of.

One of the leaders of this movement was Georg Wilhelm Friedrich Hegel

whose lectures were attended by hundreds of eager disciples. Hegel had

many followers (among whom, famously, were Karl Marx and Friedrich

Engels), and scholars still find much worthwhile in his writings. However,

he was capable of contorted reasoning that simply invites ridicule,

especially in his massive two-volume Science of Logic in which readers

were asked to ponder the deep thoughts:

Nothing is simple equality with itself.

Being is Nothing.

Nothing is Being.

Both of these categories in the transition from each to the other dissolve

into the further category: Becoming.

Meanwhile, towards the end of the century, deriving its impetus in part from

the “positivistic” ideas of August Comte, and partly from developments in

science, a new “empiricist” philosophy was developing in Germany. For the

empiricists, the primary items in terms of which the world is to be

understood are sense data. Cantor saw this empiricism as a reaction to

nonsense like Hegel’s, but found it to be crude and simplistic.

The great scientist Hermann von Helmholtz, one of the principal

exponents of empiricist philosophy, wished to bring back Kant’s central

focus on empirical science. A little pamphlet he wrote on counting and

measuring infuriated Georg Cantor. In 1887, in an article surveying

transfinite numbers from mathematical, philosophical, and theological

viewpoints, Cantor made a point of attacking this pamphlet as expressing an

“extreme empirical-psychological point of view with a dogmatism one

would not have thought possible …” He went on to complain:



Thus, in today’s Germany we see, as a reaction against the

overblown Kant-Fichte-Hegel-Schelling Idealism, an academic-

positivistic skepticism that powerfully dominates the scene. This

skepticism has inevitably extended its reach even to arithmetic, in

which domain it has led to its most fateful conclusions.

Ultimately, this may turn out most damaging to this positivistic

skepticism itself.

This article was included in a collection of Cantor’s papers dealing with the

transfinite published in 1890. Frege, given the task of reviewing the volume,

chose to emphasize the remark just quoted. In a remarkable passage

(already quoted in part at the beginning of this chapter), appearing in print

just a decade before he was to receive Bertrand Russell’s devastating letter,

Frege wrote:

Yes indeed! This is the very reef on which it will founder. For

ultimately, the role of the infinite in arithmetic is not to be denied;

yet, on the other hand, there is no way it can coexist with this

epistemo-logical tendency. Thus we can foresee that this issue

will provide the setting for a momentous and decisive battle.19

Georg Cantor died suddenly of heart failure on January 6, 1918, while the

World War was still raging. Today although the battle that Frege predicted

in his military metaphor has provided many surprises, it has hardly resulted

in any decisive outcome. Perhaps the most surprising by-product of this

battle was Alan Turing’s mathematical model of an all-purpose computer.

Appendix: Cantor and Kronecker

From school mathematics, one easily gets the impression that mathematics

is a stale subject that had reached its finished form long ago. It was largely

through the writings of E.T. Bell that, as a teenager, I came to understand

that mathematics is an exciting activity in which the answers to open

questions are eagerly sought by professional mathematicians. Bell, a

professor of mathematics at the California Institute of Technology, was a

prolific writer. In addition to his popular books on mathematics and



mathematicians, he was the author of over 200 technical papers, as well as a

number of science fiction novels written under the name John Taine. One

could with justice say, however, that Bell never let the facts stand in the way

of a juicy story. In his still popular Men of Mathematics, he wrote as

follows:

Rightly or wrongly, Cantor blamed Kronecker … The aggressive

clanishness of Jews has often been remarked, sometimes as an

argument against employing them in academic work, but it has

not been so generally observed that there is no more vicious

academic hatred than that of one Jew for another when they

disagree on purely scientific matters … When two intellectual

Jews fall out they disagree thoroughly, throw reserve to the dogs,

and do everything in their power to cut one another’s throats.20

This passage is vile in so many ways that one’s first reaction might well be

to not dignify it by discussing it. But it must be discussed because this and

other things that Bell wrote about Kronecker and Cantor have had an

enduring effect. To begin with, it is appalling that a distinguished scholar

would resort to such prejudiced stereotypes. Especially in 1937, when

Hitler and the Nazis had been in power in Germany for more than four

years, and Bell’s Jewish colleagues there were dismissed from their

positions and otherwise persecuted,

Bell’s comment showed a hard-to-believe callous insensitivity. But what

is worse, it isn’t even true! Kronecker was indeed a Jew and readily

affirmed the fact. Cantor may well have had one or more Jewish ancestors,

but his family had been Christian for two generations, and Cantor himself

had a deep interest in Christian theology. In a later edition of the book, the

antisemitism has been removed, but we still can read “When Cantor and

Kronecker fell out they disagreed all over, … and did everything but slit the

other’s throat.”21

Bell continues the theme of Kronecker as Cantor’s implacable enemy.

Cantor’s teachers during his student days included “his future enemy

Kronecker.”22 Kronecker was not merely Cantor’s enemy, he was “his arch-

enemy.”23 Bell certainly doesn’t hesitate to show us Cantor’s bloody



wounds: “Kronecker attacked ‘the positive theory of infinity’ and its

hypersensitive author vigorously and viciously with every weapon that

came to hand, …” 24 Colorful stories about famous mathematicians are

passed on as gossip from one generation of mathematicians to the next.

Quite possibly Bell had picked up these stories in that way. But even in a

book intended for a general audience, responsible scholars owe it to their

readers to be reasonably sure that what they write is true.

I must confess that in previous editions of this book, I uncritically

followed the crowd in accepting this account of the relationship between

Cantor and Kronecker without making any effort to verify any of it.

Kronecker, a great mathematician, had very decided views that found him

opposed to the mathematical ideas developed by his colleagues Cantor,

Dedekind, and Weierstrass. He didn’t believe that completed infinities had

any legitimate place in mathematics. He was a virtuoso practitioner of his

kind of algorithmic mathematics based on the arithmetic of natural

numbers, and he insisted that assertions that some mathematical object

exists are meaningless without an algorithm for calculating that object.25

He certainly did not like Cantor’s mathematics and was not shy about

expressing his opinion.

There is scant evidence of any personal animosity,26 but lots of evidence

of Cantor’s ambivalent attitude towards Kronecker. He wrote many letters in

which he expressed a belief that Kronecker was acting to interfere with the

publication of his work. At the same time he seems to have had friendly

relations with Kronecker, being a guest at his house in Berlin on more than

one occasion. It should be realized that, given attitudes in Europe at that

time, in relation to one of his teachers, Cantor would have felt that etiquette

required him to show a certain deference. One of these visits followed a

letter from Cantor to Kronecker. In the letter Cantor wrote:*

As a result of a certain sharpness in the evaluation of my scientific

works, I have come to be, not without some guilt myself in the

matter, in a position of opposition to you from which I yearn to

extricate myself. In the letter Cantor also said, “Perhaps, by

giving a more accurate explanation of my works …, I will

succeed in causing you to be better disposed toward them, …”



Kronecker replied:

I have just received your kind note … and … I have received it

with gratitude … and I would be very happy if you … would visit

me … and we could have a scientific discussion, as we so often

have in the past.

In the letter Kronecker noted a “divergence” in their scientific views, but

said, “I see no reason whatever that our personal relations should be

disturbed by this divergence.” The letter was signed “your old friend,

Kronecker”27 This meeting did occur and, although Cantor had no success

in persuading Kronecker to change his views, it seems to have been quite

amicable. After the meeting Cantor wrote to a friend as follows:

I arrived at seven o’clock in the evening to have a visit. However,

he invited me to remain for tea en famille which I accepted. The

discussions lasted until 1AM. … As far as my personal relations

with Kronecker are concerned, they are and remain excellent after

I approached him in the most conciliatory mannner, and he most

cordially accepted the hand I had proffered.28

This hardly accords with Bell’s picture of Kronecker and Cantor doing

“everything in their power to cut one another’s throats.”

What Bell wrote would have little continuing significance, but, alas,

much of it has come to be generally accepted. In previous editions of this

book I called Kronecker “Cantor’s nemesis,” and I was hardly alone. And in

recent years, a scholar with a sterling reputation, Joseph Dauben, Professor

of History at the City University of New York and winner of prestigious

awards, in his writings affirms the picture Bell had drawn and provides it

with a scholarly patina.

I am indebted to his book on Cantor’s ideas for calling my attention to

Frege’s prediction of a “momentous and decisive battle” quoted in the

previous section. However, when I read what Dauben said, it was clear that

he could not have understood Frege. Dauben wrote: “This was the issue,

said Frege, over which mathematics will be wrecked.” No one who had any

understanding of Frege’s work and ideas could imagine that in 1892, he



would have believed that mathematics was in danger of being “wrecked.”

He quotes from Frege correctly: “Here is the reef on which it will founder.”

But he seems to suppose that the pronoun “it” (“sie” in the German

original) refers to mathematics.

This is very strange because this pronoun must refer to something in the

passage from Cantor to which Frege is responding, and that passage

contains no reference to the subject of mathematics as a whole. It is clear

from the context that the pronoun refers to “positivistic skepticism.” Frege

agrees with Cantor that this positivistic skepticism can not provide what is

essential for the philosophy of arithmetic and suggests that it will be this

very positivistic skepticism that will be damaged in the encounter.29

Dauben continues his theme of Frege as prophesizing that mathematics

would be “wrecked.” In “The Splintering of Mathemtics,” he writes:

Frege’s fatal prediction of 1892 concerning the future of

mathematics had come true in little more than a decade.

Dauben then presents the great French mathematician Poincaré as an

implacable opponent of Cantor’s mathematics:

Intuitionists like Poincaré argued that most of the ideas of

Cantorian set theory should be banished from mathematics once

and for all. … Transfinite set theory, Cantor’s great contribution

to mathematics, involved nothing in Poincaré’s view but

contradictory and therefore meaningless concepts. The paradoxes

of set theory were direct evidence that Cantor’s ideas were a grave

disease that seemed to infect all mathematics. Poincaré’s

medicine was hard stuff indeed: his prescription called for the

elimination of virtually every aspect of Cantor’s work from

respectable, permissible, and finite mathematics.30

In support of this, Dauben cites Poincaré’s address titled “The Future of

Mathematics,” delivered to the International Congress of Mathematicians in

Rome in 1908. Poincaré’s skeptical attitude toward Cantor’s work has been

noted earlier in this chapter. What he said on this occasion was much milder



and in no way justifies Dauben’s assertions. In a brief paragraph on

“Cantorism,” Poincaré said:

I spoke earlier of the need to return again and again to the first

principles of our science and of the gains this could yield for the

study of the human mind. It is this need that has inspired two

efforts that have held a very large place in the most recent history

of mathematics. The first is Cantorism which has rendered to

science the services that we all know. One of the characteristic

features of Cantorism is this: instead of achieving generality by

building up more and more complicated constructions and

defining by construction, it proceeds by beginning with a

sufficiently large set, and defines only by specifying a concept as

an appropriate subset. Hence the horror that it has at times

engendered in some minds, Hermite’s for example, whose

preferred stance was to compare mathematical science to natural

science. For most of us these prejudices had dissipated, but then

we came up against paradoxes, apparent contradictions that would

have elated Zeno of Elea and the Megara school. And now

everyone is busy seeking the remedy. Speaking for myself, and I

am not alone, I believe it is important to only introduce entities

that can be completely defined in a finite number of words.

Whatever will be the remedy that will eventually be adopted, we

can look forward to the pleasure of the physician asked to follow

a beautiful pathological case.31

This passage is certainly not friendly to Cantor’s work, but it hardly

supports Dauben’s assertions. It is clear that Poincaré is using the word

“Cantorism” to include much more than Cantor’s own work. In fact,

Cantor’s transfinite numbers are not even mentioned. The reference to

nonconstructive proofs likely refers to work on the foundations of calculus

by Weierstrass and Dedekind as well as Cantor, and perhaps also on

Hilbert’s work on invariants. (Hilbert is the subject of the following chapter,

in which his work on invariants will be discussed.).

Hermite’s notorious “horror” was over an example that Weierstrass had

produced. And rather than calling for the Cantorian ideas to be extirpated



from mathematics, as Dauben insists, Poincaré says that mathematicians

had become used to them and it was only the paradoxes that were now a

problem. And the medical metaphor suggests, not that “Cantorism” is a

disease infecting the body politic of mathematics, but rather that a cure to

the paradoxes would be found and would yield great pleasure.

Finally, if Dauben had perused the proceedings of the 1908 Congress,

rather than a “wrecked” splintered mathematics, he would have found a

flourishing enterprise with addresses given in four languages on diverse

topics. Other than Poincaré’s address, which relegated his discussion of

foundational matters to the final page of a 15-page essay on the future of

mathematics, none of the plenary addresses dealt with foundational matters.

From other parts of Poincaré’s address, it is apparent that he had no

intention of abandoning the services that Cantorism had rendered.32

Kronecker, on the other hand, rejected these services. He maintained that

one should always define “by construction,” and that working with

completed infinities was both unnecessary and of dubious validity. Whether

Kronecker, had he not died almost two decades before the 1908 Congress,

would have eventually come to see the benefits of Cantorism to

mathematics is something we will never know.

After my realization that Dauben had seriously misunderstood what

Frege had said, I should have shown some skepticism toward what he said

about Kronecker and Cantor. But I did not. In previous editions of this

book, basing myself on Dauben’s book, I wrote that Kronecker had tried to

prevent the publication of one of Cantor’s early papers on set theory. The

paper had been submitted to a journal whose editorial board included

Kronecker. Indeed, in his book Dauben asserted:

Though Kronecker did not succeed in suppressing Cantor’s paper,

the delay in publication represented the first major conflict Cantor

was to experience over the acceptance of his work. [This] was the

first occasion for open hostility.

In a more recent article entitled The Battle for Cantorian Set Theory,

concerning this same paper, Dauben wrote, “Kronecker … delayed

publication of a paper Cantor had written.”33 The only evidence Dauben



provides in either publication is a letter Cantor wrote in which he expressed

the belief that his paper was not being published promptly. Grattan-Guiness,

a reputable and distinguished historian of mathematics wrote:

Allegedly Kronecker had held up publication of this paper …

Cantor himself is the principal source of this story, … In fact, if

there was a delay, it cannot have been a long one (the date of

submission of the paper, 11 July 1877, is not obviously out of line

with others in the same volume); and, given the way in which

Cantor had chosen to express himself, Kronecker deserves our

sympathy.34

What can we conclude from all of this? To begin with, that something

can be generally believed and be asserted by reputable experts, and still be

false. As far as Kronecker and Cantor are concerned, what evidence there is

about their relationship almost all comes from letters written by Cantor.

Cantor was a brilliant innovative thinker who, based on a few abstract

principles and his sound mathematical intuition, created a new mathematics

of the infinite. His theorems have survived intact and continue to be

developed by set theorists whose efforts are grounded in a much more

rigorous framework than was available to him.

Cantor was a deeply troubled man, afflicted by the ups and downs of

bipolar disease. He was much distressed by the fact that his teacher,

Kronecker, apparently regarded his work as pointless. He believed at

various times that Kronecker’s opposition went beyond mere words, that he

acted to delay or suppress his work. However, his personal relations with

Kronecker remained cordial, and all of his contributions were published

despite their radical content. Kronecker, a wealthy man, could feel aloof

from academic squabbles, content to pursue his mathematics, making

immense contributions, using the methods he found appropriate. And we

can admire both men and, to the extent that our interest, ability. and training

permits, enjoy the fruits of their labors.

*This is the idea Frege invoked in his thwarted attempt to define “number.”

*Note the use of curly braces {…} to signal that the items listed are thought of as forming a set



*Cantor’s recourse to the Hebrew alphabet may well be the reason for a rather widespread (and

incorrect) assumption that he was a Jew. As Cantor explained in a letter dated April 30, 1895 (my

translation), “it seemed to me that for this purpose, other alphabets were [already] over-used.” (I’m

indebted to Sherman Stein who showed me a copy of this letter.)

*ω is the last letter in the Greek alphabet and is pronounced “omega.”

*I am indebted to my good friend and colleague Harold Edwards, an expert on Kronecker’s

mathematics and a distinguished historian of mathematics, for calling my attention to the lack of

evidence for the common view of Kronecker as Cantor’s implacable enemy. He graciously made his

extensive research on this matter available to me



CHAPTER 5

Hilbert to the Rescue

In 1737, George II of England, son of Leibniz’s last patron George I,

founded a university in the medieval town of Göttingen located on the Leine

River in central Germany. The city walls, several Gothic churches, and half-

timbered houses on old streets survive to this day in this charming

university town. Göttingen University has a proud tradition of mathematical

excellence dating back to the nineteenth century, having been home to such

mathematical greats as Carl Friedrich Gauss, Bernhard Riemann, Lejeune

Dirichlet, and Felix Klein. But the true glory days for mathematics in

Göttingen came in the twentieth century when, drawn mainly by David

Hilbert’s reputation, students from everywhere came to what remained the

undisputed world center for mathematics until the exodus resulting from the

Nazi takeover of Germany in 1933.

During my graduate student days in the late 1940s, anecdotes about

Goöttingen in the 1920s were repeated from one generation of students to

the next. We heard about the endless cruel pranks that were played on the

mathematician Bessel-Hagen who remained ever gullible. My own favorite

story was about the time that Hilbert was seen day after day in torn trousers,

a source of embarrassment to many. The task of tactfully informing Hilbert

of the situation was delegated to his assistant, Richard Courant. Knowing

the pleasure Hilbert took in strolls in the countryside while talking

mathematics, Courant invited him for a walk.

Courant managed matters so that the pair walked through some thorny

bushes, at which point Courant informed Hilbert that he had evidently torn

his pants on one of the bushes. “Oh no,” Hilbert replied, “they’ve been that

way for weeks, but nobody notices.” It was during these same 1920s that

Hilbert mounted a remarkable campaign to use mathematics to validate



itself. It was a strange sequence of events that led from Hilbert’s campaign

to Alan Turing’s insight into the nature of computation.

David Hilbert was born and grew up in a Protestant family in the town of

Königsberg in the Eastern part of Prussia, a town proud to remember that it

had been the home of the philosopher Immanuel Kant. In 1870 when

Bismarck orchestrated a war with the France of Napoleon III, and used the

stunning German victory to accomplish the unification of Germany into an

empire with the King of Prussia as its Kaiser, Hilbert was a child of eight.

By the time he entered the University of Königsberg to study mathematics,

his remarkable talent for the subject had been recognized, and his

characteristic style of absorbing mathematics in conversation established.

With his friends Hermann Minkowski and Adolf Hurwitz, he would go on

long walks, talking mathematics all the way. 1





DAVID HILBERT
(Author’s Collection)

During the two centuries that had elapsed between the invention of the

calculus by Leibniz and Newton and the years when David Hilbert was

becoming a mathematician, a host of workers had found many spectacular

applications of limit processes. Many of these results were obtained by

purely formal manipulation of symbols with little concern for their

underlying meaning. But by the middle of the nineteenth century, a day of

reckoning had arrived. Problems were arising that demanded conceptual

understanding that went beyond mere symbols. At the forefront of this

effort were Georg Cantor, his teacher Karl Weierstrass, and his friend

Richard Dedekind.

In 1888 Hilbert went on a trip to the major centers of mathematics in

Germany to make contact with the leading figures in his field. In Berlin he

visited Leopold Kronecker, renewing an acquaintance he had made two

years earlier. Kronecker was a great mathematician, some of whose work

was to play a fundamental role in Hilbert’s accomplishments. But, as

Hermann Weyl, Hilbert’s one-time student, wrote in an obituary notice half

a century later, Hilbert saw Kronecker as using “his power and authority to

stretch mathematics upon the Procrustean bed of arbitrary philosophical

principles …”

These “principles” led Kronecker to a profoundly negative attitude

towards a good deal of the mathematics of his day. It was not only Cantor’s

transfinite that Kronecker found objectionable, but also the entire effort by

Weierstrass, Cantor, and Dedekind to provide a firm rigorous foundation for

the limit processes of the calculus. Kronecker felt that these efforts were

unnecessary and unreliable. He was particularly insistent that mathematical

proofs of existence be constructive. That is, to be acceptable to Kronecker, a

proof that there actually are mathematical entities satisfying certain

conditions would have to provide a method to explicitly exhibit the entities

in question. Hilbert would soon challenge this dictum in his own work.

Many years later, he would explain the distinction to students by pointing

out the certainty that among the students in the lecture hall (none of whom,

apparently, was totally bald), there was one with the least number of hairs

on his head although he had no evident way to identify such a student.2



Hilbert’s Early Triumphs

The world is in flux, but some things do not change. Mathematicians are

often concerned with finding out exactly which things stay the same when

other things change. In such a case, they speak of things that are invariant

under certain transformations. The investigation of what came to be called

algebraic invariants was initiated by George Boole in one of his early

papers.3 By the final quarter of the nineteenth century, algebraic invariants

had become a major focus of mathematical research. Heroic bouts of

algebraic manipulation were brought to bear on the problem of finding

invariants.

A true virtuoso in this endeavor was the German mathematician Paul

Gordan, dubbed by his contemporaries the “king of invariants.” Threading

his way through thickets of algebra, Gordan was led to conjecture a

simplifying theorem about the structure of algebraic invariants. According

to Gordan’s conjecture, in considering all of the invariants of a particular

algebraic expression, there would always be a finite number of key

invariants in terms of which all of the others could be expressed by means

of a simple formula. However, his direct onslaught enabled him to prove his

conjecture only in a very special case.

Gordan’s conjecture was regarded as one of the major problems faced by

mathematicians of the day, and it was generally supposed that the person

who managed to prove it would do so by displaying a virtuosity with

manipulative algebra rivaling Gordan’s. In this climate, David Hilbert’s

proof of Gordan’s conjecture came as a great shock. Instead of complicated

formal manipulations, Hilbert relied on the power of abstract thought.

It was after meeting Gordan that Hilbert found himself captivated by the

problem Gordan had set. His solution, found after six months of work,

rested on an extremely general result, known today as Hilbert’s Basis

Theorem, whose proof was quite straightforward. Using this theorem,

Hilbert demonstrated that the supposition that Gordan’s conjecture is false

leads to a contradiction.

This spectacular proof of Gordan’s conjecture would not have been

satisfactory to Kronecker because of its non-constructive nature. Instead of

furnishing a list of the key invariants whose existence Hilbert had



established, this proof had merely shown that the supposition of their

nonexistence would lead to a contradiction. However, with its

demonstration of the power of abstract thought, Hilbert’s proof opened a

window on the mathematics of the coming century.

The more general viewpoint uncovered by Hilbert’s proof had the

incidental effect of killing the classical theory of algebraic invariants.

Today, Gordan is mainly remembered for his reaction to Hilbert’s proof.

“This is not mathematics,” he exclaimed, “it is theology.”

After the sensation created by his solution of Gordan’s problem, which

had immediately elevated him to the first rank among contemporary

mathematicians, Hilbert did not rest on his laurels. But before leaving the

theory of invariants for good, he cleaned up some details, in particular

giving another proof of Gordan’s conjecture that was fully constructive.4 In

addition he published a veritable barrage of papers on a variety of

mathematical topics.

Strikingly, one short paper had an unmistakably “Cantorian” flavor that

Kronecker surely would have disdained. However, notwithstanding his

prolific output, Hilbert’s practical career continued to languish as he

remained for years a Privatdozent in Koönigsberg, dependent for his meager

earnings on fees for his lectures. In one case, he delivered an entire course

of lectures to just one student, a mathematician from Baltimore. In a letter

to his good friend Minkowski, Hilbert remarked ironically that there were

11 dozents competing for the same number of students.

The year 1892 marked some crucial changes in young Hilbert’s life. It all

began with the death of the 68-year-old Kronecker just before the new year,

and the retirement of Karl Weierstrass. The closed world of academic

mathematical life in Germany began to unfreeze, leading to a virtual game

of academic musical chairs in German mathematics. At last, after six years

as a Dozent, Hilbert could finally move into a regular academic position at

Königsberg.

In this same year he married Käthe Jerosch, his favorite dancing partner.

A year later, his son Franz was born. Meanwhile, Felix Klein, the leading

light of the mathematics faculty at Göttingen, was determined to lure

Hilbert there. By the spring of 1895, Klein’s maneuverings had proved



successful, and Hilbert had moved to Göttingen where he remained until his

death 48 years later.

If Hilbert’s dazzling proof of Gordan’s conjecture had brought closure to

the classical theory of algebraic invariants, his comprehensive Zahlbericht

(literally, “report on number”), produced at the behest of the German

Mathematical Society, was an opening onto a vast mathematical panorama.

The society had expected a report on the current state of a relatively new

branch of mathematics, algebraic number theory, a topic many

mathematicians had been finding baffling.5 What they got was a critically

thought-out reworking of the field from first principles. We were still

studying it with pleasure and profit in my graduate-student days half a

century later.

Hilbert had come to Göttingen with lectures already prepared for courses

on a great variety of mathematical subjects, because of the lectures he had

been giving during his dozent days in Königsberg. Otto Blumenthal, the

first of the 69 students to complete a doctoral dissertation under his

supervision, was able to report 40 years later his clear recollection of the

impression Hilbert made on him on when he arrived in Göttingen: “This

medium-sized, nimble man with his broad reddish beard and his quite

ordinary clothes seemed quite unprofessorial … [in comparison to the other

professors].”

Blumenthal describes Hilbert’s lectures as “very much to the point, but

with a rather dull delivery style and a tendency to repeat important

propositions. However, the rich content and the simple clarity of the

presentation led one to forget the form. He would introduce things that were

new and that he himself had done, without making a special point of it. It

was evident that he took pains to see that everyone understood; he lectured

for the students, not for himself.”6

Students were astonished to find that for the winter 1898 term, Hilbert

was proposing to give a course entitled Elements of Euclidean Geometry.

They had thought of him as being entirely immersed in algebraic number

theory and had no notion that he might be interested in geometric subjects.

The topic announced seemed particularly strange because Euclidean

geometry was, after all, a subject in the secondary-school curriculum.

Astonishment only grew when the course began and the students found



themselves exposed to an entirely new development of the foundations of

geometry. This was the first hint of Hilbert’s profound interest in the

foundations of mathematics. It is this interest that will provide our main

focus.

In his lectures, Hilbert provided a set of axioms for geometry that

plugged some gaping holes in Euclid’s classic treatment. He emphasized the

abstract nature of the subject: it must be shown by pure logic that the

theorems follow from the axioms without the corrupting influence of what

we can “see” by looking at a diagram. In a famous anecdote, he is alleged to

have said that the theorems must continue to hold if, instead of points, lines,

and planes, one were to talk of “tables, chairs, and beer mugs” so long as

these latter objects are assumed to obey the axioms.

Finally, to put a cap on his achievement, Hilbert provided a proof that his

axioms are consistent, that no contradiction can be derived from them. This

proof showed that any inconsistency in his axiom system for geometry

would result in an inconsistency in the arithmetic of real numbers. So what

Hilbert had done was to reduce the consistency of Euclidean geometry to

that of arithmetic, leaving the problem of the consistency of arithmetic for

another day!

Towards a New Century

The mathematicians present at an international conference in Paris in

August 1900 inevitably wondered what the new century would bring to

their subject. It was on a sultry day that the 38-year-old David Hilbert,

whose stunning accomplishments had taken him to the top of his

profession, was delivering an invited address in which he presented, as a

challenge to the mathematicians of the twentieth century, 23 problems that

seemed utterly inaccessible by the methods available at the time.7 In a burst

of characteristic optimism, Hilbert declared that every mathematician shares

the conviction

“that every definite mathematical problem must necessarily be

susceptible of an exact settlement … This conviction … is a

powerful spur to our work. We hear within us the perpetual call:



There is the problem. Seek its solution. You can find it by pure

reason …”

The first problem on Hilbert’s list was deciding the truth of Cantor’s

continuum hypothesis (the assertion that there are no sets with a cardinal

number between that of the set of natural numbers and that of the set of all

sets of natural numbers). This was a ringing endorsement of Cantor’s

transfinite despite the apparent threat posed by paradoxes.

The second problem was precisely the loose end left by Hilbert’s proof of

the consistency of the axioms of Euclidean geometry: to somehow establish

the consistency of the axioms for the arithmetic of real numbers. Previous

consistency proofs had been proofs of relative consistency; this means that

they had worked by reducing the consistency of one set of axioms to that of

another. But Hilbert realized that with arithmetic he had reached logical

bedrock, and new “direct” methods would be needed.

This problem also provided an opportunity for Hilbert to explain his own

view of the meaning of existence in mathematics. Whereas Kronecker had

proclaimed that to prove the existence of mathematical entities requires that

a method be provided for “constructing” or “exhibiting” the items in

question, for Hilbert existence simply required a proof that assuming the

existence of such entities would not lead to a contradiction:

“… if it can be proved that the attributes assigned to a concept can

never lead to a contradiction by the application of a finite number

of logical processes, I say that the mathematical existence of the

concept … is thereby proved.”

According to Hilbert, the contradiction arising from supposing the existence

of a set consisting of all of Cantor’s transfinite cardinal numbers merely

showed that such a set does not exist. Especially after the paradox that

Bertrand Russell communicated to Frege in his devastating letter of 1902

became generally known, the difficulties with the foundations of

mathematics began to be seen as constituting a crisis, and the problem of

the consistency of arithmetic continued to fester. It was only during the

1920s that Hilbert with his students and disciples launched a frontal attack

on this problem with consequences they could hardly have foreseen.



The set of 23 problems that Hilbert proposed in 1900 has fascinated

generations of mathematicians. The problems spanned a great variety of

topics in pure and applied mathematics, and presaged the breadth of

Hilbert’s own contributions to come. In his obituary essay about Hilbert,

Hermann Weyl commented that anyone who had solved one of the

problems on Hilbert’s list thereby entered “the honors class of the

mathematical community.”

In 1974, the American Mathematical Society sponsored a special

symposium (I was privileged to be a participant) in which experts were

invited to speak on the mathematical developments that had arisen from

these problems in the intervening years. The fecundity of the Hilbert

problems can be seen in the fact that the proceedings of this symposium

were published in a volume of over 600 pages.8

The Battle over the Infinite

The misgivings many mathematicians felt about Cantor’s transfinite, and

indeed about the entire direction of foundational research, came to a head

with Bertrand Russell’s making known the contradiction he had found in

what seemed to be straightforward reasoning. As we have seen, Frege

simply gave up on his life’s work when he received a letter containing

Russell’s paradox. One may wonder whether Frege recalled the prophecy he

had made ten years earlier:

For ultimately, the role of the infinite in arithmetic is not to be

denied; … Thus we can foresee that this issue will provide the

setting for a momentous and decisive battle.9

Although Frege and Cantor’s friend Dedekind withdrew from the battle,

there was no lack of warriors to enter the fray. In the early years of the

twentieth century, Hilbert and Henri Poincaré were generally thought to be

the two greatest living mathematicians, and they both engaged with gusto,

but on opposite sides.

After 1900, the next International Congress of Mathematicians occurred

in 1904, two years after Russell had announced his paradox. In Hilbert’s



address to the congress, he made evident his approach to the “crisis” by

outlining the form a consistency proof for arithmetic might take.10 He did

not fail to add that the proof could be extended to encompass Cantor’s

transfinite as well.

Poincaré was quick to observe that Hilbert was guilty of circular

reasoning: the very methods the proof was intended to justify were used in

the supposed proof that those methods cannot lead to a contradiction. It

would be some years before Hilbert came to terms with this objection.

Poincaré saw some use in what he called “Cantorism”; however, he insisted:

There is no actual (given complete) infinity. [Poincaré’s italics]

The Cantorians have forgotten this, and they have fallen into

contradiction.11

Here Poincaré is echoing the words of Gauss written some eight decades

earlier, already quoted in the previous chapter: “I protest above all against

the use of an infinite quantity as a completed one, which in mathematics is

never allowed.” Cantor’s great life work had been a heroic challenge to this

tradition.

Bertrand Russell was not one of those who retired from the battlefield.

He worked assiduously to develop a system of symbolic logic in terms of

which Frege’s project to reduce arithmetic to pure logic could be carried out

without running into the paradoxes. In communicating his efforts to his

contemporaries, he was aided greatly by the symbolization introduced by

the Italian logician Giuseppe Peano (essentially the one introduced in

Chapter 3), far easier to penetrate than Frege’s. Poincaré bitterly attacked

Russell’s efforts:

It is difficult to see that the word if acquires when written ⊃, a

virtue it did not possess when written if

Nor did Poincaré fail to note that to take Russell’s effort seriously would

open the possibility of reducing mathematics to mere computation

(Leibniz’s dream!), and to ridicule the very idea:



Thus it will be readily understood that in order to demonstrate a

theorem, it is not necessary or even useful to know what it means.

… we might imagine a machine where we should put in axioms at

one end and take out theorems at the other, like that legendary

machine in Chicago where pigs go in alive and come out

transformed into hams and sausages. It is no more necessary for

the mathematician than it is for these machines to know what he

is doing.

Bertrand Russell’s effort to resurrect Frege’s program took the form of the

monumental three-volume Principia Mathematica (published in the years

1910–1913) that Russell authored with Alfred North Whitehead. This work

started out with the pure logic of Frege’s Begriffsschrift and ended with

subject matter that was clearly mathematics with simple direct steps in

between, very much in the spirit of Poincaré’s Chicago machine. The

paradoxes were avoided by an elaborate and unwieldy structure of layers in

which, in effect, any particular set could only have members from just one

layer. This layering so crippled ordinary mathematics that a special dubious

axiom of reducibility was provided to cut through the fences that had been

erected between the layers.12

The Principia was also marred by an underlying confusion. While Frege

had understood clearly that he was dealing with two levels of language, a

new formal language he was constructing and ordinary language in which

this new language could be discussed, the Whitehead-Russell opus was

unclear on this matter and commingled the two levels.13 This meant that

the problem of the consistency of the entire structure, so crucial for Hilbert,

would not even arise in Russell’s context. Despite all this, the Principia was

a landmark achievement demonstrating once and for all that the complete

formalization of mathematics in a system of symbolic logic is perfectly

feasible.

While Bertrand Russell labored to find a logical basis for the full breadth

of classical mathematics while avoiding the paradoxes, a brilliant young

Dutch mathematician, L. E. J. Brouwer had convinced himself that much of

it was fatally flawed and needed to be discarded. Brouwer’s doctoral



dissertation of 1907 showed great hostility to Cantor’s transfinite and to

much of contemporary mathematical practice. In 1905, Brouwer had taken

time from his mathematical pursuits to publish a short book, Life, Art and

Mysticism, drenched in romantic pessimism. After portraying life in this

“sad world” as an illusion, this morose young man concluded with:

Look at this world, full of wretched people, who imagine that

they have possessions, … who now nurture an insatiable appetite

for knowledge, power, health, glory, and pleasure.

Only he who recognizes that he has nothing, that he cannot

possess anything, that security is unattainable, who completely

resigns himself and sacrifices all, who gives everything, who does

not know anything, who does not want anything and does not

want to know anything, who abandons and neglects all, he will

receive all: the world of freedom is opened to him, the world of

painless contemplation and—of nothing.14

Despite his praise for the life of self-abnegation, Brouwer embarked on a

self-righteous campaign to reconstruct mathematical practice from the

ground up so as to satisfy his philosophical convictions. Although he could

easily have chosen a conventional mathematical topic, he was determined

instead, to write his doctoral dissertation on the foundations of

mathematics.15 His adviser reluctantly agreed, but appalled by his prize

student’s insistence on injecting his strange and irrelevant ideas into his

dissertation, he wrote:

… I have again considered whether I could accept Chapter II as it

stands, but honestly Brouwer, I cannot. I find it all interwoven

with some kind of pessimism and mystical attitude to life which is

not mathematics, nor has anything to do with the foundations of

mathematics.16

For Brouwer, mathematics existed in the consciousness of the

mathematician, and was ultimately derived from time as the “mathematical

Primordial Intuition.” The real mathematics is in the mathematician’s



intuition and not in its expression in language. Far from mathematics being

logic (as Frege and Russell had maintained), logic is derived from

mathematics. For Brouwer, Cantor’s belief that he had found different sizes

of infinity was so much nonsense, and his continuum problem was a

triviality. Hilbert was mistaken in claiming that consistency is all that is

needed for mathematical existence. On the contrary:

… to exist [Brouwer’s italics] in mathematics means: to be

constructed by intuition; and the question whether a certain

language is consistent, is not only unimportant in itself, it is also

not a test for mathematical existence.17

Echoing Kronecker’s call for construction as the only valid method for

establishing existence in mathematics, Brouwer went further and denounced

the use of a fundamental law of logic, Aristotle’s law of the excluded middle

(which simply asserts that any proposition is either true or false) when

applied to infinite sets.18 For Brouwer, some propositions can neither be

said to be true or to be false; these are propositions for which no method is

currently known by means of which this can be decided one way or the

other. Hilbert’s original proof of Gordan’s conjecture used the law of the

excluded middle in the way mathematicians usually do: he showed that

denying the conjecture would lead to a contradiction. To Brouwer such a

proof was unacceptable.

After completing his dissertation, Brouwer made a conscious decision to

temporarily keep his contentious ideas under wraps and to concentrate on

demonstrating his mathematical prowess. The arena he selected was the

burgeoning new field of topology. He obtained a number of deep results

including his important fixed point theorem.*

In 1910, when the 29-year-old Brouwer published this fundamental

principle, he had already won Hilbert’s admiration. David Hilbert was

greatly impressed and even invited the younger man to join the editorial

board of his prized journal, the Mathematische Annalen, an invitation he

would live to regret. After obtaining a regular academic appointment at the

University of Amsterdam in 1912 (with the help of Hilbert, who was one of



those who wrote on his behalf), Brouwer felt free to return to his

revolutionary project which he was now calling intuitionism.

Hermann Weyl was Hilbert’s prize student, one of the great

mathematicians of his century, the one eventually chosen to take Hilbert’s

place at Göttingen. His interests spanned mathematics, physics, philosophy,

and even art. Much to Hilbert’s dismay, Weyl convinced himself that the

foundation for dealing with limit processes that had been erected by Weier-

strass, Cantor, and Dedekind was shaky. He couldn’t bring himself to accept

the system of real numbers on which all of it was based. The entire edifice,

he famously declared, “is a house built on sand.”19

Weyl’s own attempt to reconstruct the continuum of real numbers, Das

Kontinuum ultimately failed to satisfy him, and, when he learned how

Brouwer proposed to go about it, he was hooked. “… Brouwer, that is the

revolution,” he declared.

This was too much for Hilbert, who may well have thought, “Et tu

Bruté!” The 1920s were indeed revolutionary times in Germany. The

country had lost the First World War and had been forced to accept the

humiliating Versailles Treaty. The Social Democratic government that took

power after the abdication of the Kaiser was beset by severe economic

problems and by attempts from the left and right to overthrow it. Extreme

rhetoric was to be heard on all sides. In this heady atmosphere, in an

address delivered in 1922, Hilbert responded to his former student’s

desertion as if to treason:

What Weyl and Brouwer are doing amounts in essence to taking

the path once laid out by Kronecker: they seek to provide a

foundation for mathematics by pitching overboard whatever

discomforts them and declaring an embargo a la Kronecker. But

this would mean dismembering and mutilating our science, and,

should we follow such reformers, we would run the risk of losing

a large part of our most valued treasures. Weyl and Brouwer

outlaw the general notion of irrational number, of function, even

of number-theoretic function, Cantor’s [ordinal] numbers of

higher number classes, etc. The theorem that among infinitely

many natural numbers there is always a least, and even the logical



law of the excluded middle, e.g., in the assertion that either there

are only finitely many prime numbers or there are infinitely many:

these are examples of forbidden theorems and modes of inference.

I believe that impotent as Kronecker was to abolish irrational

numbers (Weyl and Brouwer do permit us to retain a torso), no

less impotent will their efforts prove today. No! Brouwer’s

[program] is not as Weyl thinks, the revolution, but only a

repetition of an attempted putsch with old methods, that in its day

was undertaken with greater verve yet failed utterly. Especially

today, when the state power is thoroughly armed and fortified by

the work of Frege, Dedekind, and Cantor, these efforts are

foredoomed to failure.20

Noting the martial flavor of Hilbert’s diatribe, one might have thought that

he was among those numerous Europeans who greeted the coming of war in

1914 with frenzied euphoria. But this was far from being the case. From the

first Hilbert let it be known that he regarded the war as foolish. In August

1914, 93 famous German intellectuals addressed a manifesto to “the

civilized world” in response to the indignation in England, France, and the

United States over the actions of the German military in Belgium, asserting:

“It is not true that we have criminally violated the neutrality of Belgium …

It is not true that our troops have brutally destroyed Louvain.”

Hilbert had been asked to sign, but he refused, insisting that he just didn’t

know whether the charges were true. In 1917, five years before Hilbert’s

denunciation of Weyl and Brouwer, while bloody trench warfare was still in

the process of devouring a generation of European men, Hilbert published a

laudatory obituary notice about the recently deceased great French

mathematician Gaston Darboux. When student demonstrators, gathered in

front of his house, called for the repudiation of this memorial to an “enemy

mathematician,” Hilbert responded by demanding and receiving an official

apology.21

When opposition arose to the proposal that the brilliant young

mathematician Emmy Noether be appointed Privatdozent at Göttingen, on

the grounds that this could lead to a woman becoming a professor and a

member of the university senate, Hilbert declared: “I do not see that the sex



of a candidate is an argument against her admission as a Privatdozent. After

all, the Senate is not a bath-house.”22 In September 1917, while Germany

and its neighbor France were engaged in doing their best to slaughter one

another’s citizens, Hilbert delivered a lecture in Zürich entitled Axiomatic

Thought that began with the provocative sentence:

Just as in the life of peoples, one folk can only flourish if things

also go well with all of its neighbors, and as the interest of the

nations require not only that order reigns within each individual

nation, but also that relations among the nations be properly

arranged, so is it also in the life of the sciences.23

Metamathematics

The problem of the consistency of arithmetic was problem number two in

Hilbert’s 1900 address to the International Congress of Mathematicians. But

it was only during the 1920s that Hilbert formulated his serious approach to

the problem. His student Wilhelm Ackermann, and his assistant Paul

Bernays worked closely with him, and John von Neumann also

contributed.*

Hilbert began with the logical system of the Whitehead-Russell Principia

Mathematica, and at first went along with the Frege-Russell goal of

defining number in purely logical terms. But he was soon led to abandon

this goal as untenable, while continuing to see the symbolic logic they had

developed as crucial.

In Hilbert’s new program, mathematics and logic were to be developed

together in a purely formal symbolic language. Such a language may be

thought of being viewable from the “inside” or from the “outside.” From the

inside, it is just mathematics, with each tiny deductive step made utterly

explicit. But from the outside it is only a lot of formulas and symbol

manipulation, which may be handled without regard to meaning. The task

was to prove that no pair of formulas could be derived in the language that

explicitly contradicted one another, or equivalently (as it turns out), that

such formulas as 1 = 0 or 0 ≠ 0 cannot be derived.



The criticisms by Poincaré and Brouwer had to be faced: nothing

worthwhile could result from a consistency proof that relied on the methods

it was intended to secure. Hilbert’s bold idea was a brand-new kind of

mathematics that he called metamathematics or proof theory. The desired

consistency proof was to be carried out within metamathematics. While

within the formal system the fullest unrestricted use of mathematical

methods of every kind was to be permitted, metamathematical methods

were to be restricted to methods beyond dispute, methods Hilbert called

“finitary.” Thus Hilbert hoped to be able to thumb his nose at Brouwer and

Weyl, saying in effect, “I’ve proved that mathematicians will never run into

a contradiction using their usual methods, and I’ve proved it using methods

of which even you approve.” Or as von Neumann actually put it, “Proof

theory should construct, so to speak, classical mathematics on an

intuitionistic basis and in this way reduce intuitionism ad absurdum.”24

Among the mathematical “treasures” his methods would rescue, Hilbert

emphatically included Cantor’s transfinite numbers, of which he said, “This

appears to me to be the most admirable flower of the mathematical intellect

and in general one of the highest achievements of purely rational human

activity.”25 Dismissing the criticisms of Brouwer and Weyl, he proclaimed,

“No one shall be able to drive us from the paradise that Cantor created for

us.”26

Prepared to concede that Hilbert’s program might well succeed in its own

terms, Brouwer remained unimpressed: “… nothing of mathematical value

will thus be gained: an incorrect theory, even if it cannot be inhibited by any

contradiction that would refute it, is none the less incorrect, just as a

criminal policy is none the less criminal even if it cannot be inhibited by

any court that would curb it.”27

The battle of words between Hilbert and Brouwer escalated to a war of

deeds when Hilbert resorted to quasi-legal methods to dump Brouwer from

the editorial board of the Mathematische Annalen, leading Albert Einstein

to complain about “this frog and mouse” battle.28 The controversy between

Hilbert and his collaborators, on the one hand, and Brouwer and Weyl, on

the other, was certainly rooted in basic philosophical questions about the

nature of knowledge. Indeed, views on both sides were heavily influenced



by the ideas of Immanuel Kant. However, unlike much philosophical

controversy, the positions taken by Hilbert and Brouwer took the form of

programs, leading to quite specific problems, and thus were exposed to the

possibility of refutation by events.

The main problem facing Brouwer’s intuitionism was to actually carry

out the reconstruction of mathematics called for in his program, to convince

working mathematicians that they could carry on without the classical

continuum of real numbers and without the law of the excluded middle and

still not risk losing some of their “most valued treasures.” However, the

intuitionistic mathematics that Brouwer actually produced suffered from

what Weyl much later called “an almost unbearable awkwardness … “ and

made few converts.29

Although Brouwer never recanted his views, he felt more and more

isolated, and spent his last years under the spell of “totally unfounded

financial worries and a paranoid fear of bankruptcy, persecution and

illness.” He was killed in 1966 at the age of 85, struck by a vehicle while

crossing the street in front of his house.30 Perhaps the greatest irony in the

story is that intuitionism lives on after all, not, as Brouwer had intended, as

the corrected practice of working mathematicians, but rather as the study of

formal logical systems that are designed to incorporate elements of his

ideas.31 Some of these systems have actually formed the basis for working

computer programs that carry out formal deductions.32

Of course, the principal problem posed by Hilbert’s program was the

problem with which it all began: the consistency of arithmetic. Ackermann

and von Neumann worked on this problem and achieved partial results, and

it was believed that it was just a matter of sharpening technique to get the

full result. In 1928, Hilbert with his student Ackermann published a skinny

little textbook on logic based on the lecture courses Hilbert (with Bernays’s

assistance) had been giving since 1917. In this book two problems were

posed about the basic logic of Frege’s Begriffsschrift, what is called

nowadays first-order logic.

In a sense, both problems had been in the air for some time, but it was

Hilbert’s insight that logical systems could be viewed from the outside that

led to the sharp form in which they were stated. One of these problems was



to prove that first-order logic is complete in the sense that any formula that

viewed from the outside is valid can be derived inside the system using only

the rules proposed in the textbook.

The second, which became known as Hilbert’s Entscheidungsproblem,

was to provide a method that would, given a formula of first-order logic,

determine in a finite number of well-defined effective steps whether or not

that formula is valid. As we shall see in Chapter 7, these two problems,

especially the Entscheidungsproblem, brought into the twentieth century, as

concrete problems for mathematicians to solve, matters about which

Leibniz could only dream in the seventeenth.

In this same year 1928, Hilbert addressed an International Congress of

Mathematicians in Bologna. Except when international conditions made it

impossible, these Congresses took place regularly at four-year intervals. Of

course, there was no Congress in 1916 because of World War I.

Conferences were held in 1920 and 1924, but the postwar bitterness was so

great that the Germans were not invited. It was Hilbert who insisted that the

German mathematicians accept the invitation to attend the 1928 Congress,

against the protests of those, like Ludwig Bieberbach (later a Nazi) and

Brouwer, who wanted the meeting boycotted as a protest against the

Versailles Treaty.

In his address, Hilbert posed a problem concerning a formal system

based on applying the rules of first-order logic (essentially Frege’s rules) to

a system of axioms for the natural numbers. Nowadays this system is

known as Peano arithmetic (after the Italian logician Giuseppe Peano), or

PA. Hilbert asked for a proof that PA is complete, meaning that for any

proposition that can be expressed in PA, either it can be proved in PA that

the proposition is true or it can be proved in PA that the proposition is false.

The solution of this problem two years later by a young logician named

Kurt Gödel, was not at all what Hilbert had anticipated, and indeed turned

out to have devastating import for Hilbert’s program.

Catastrophe

Hilbert’s wife Käthe is described by his biographers as a wise and sensible

person, a loyal helper to her husband, many of whose papers were



handwritten by her, a mother and dispenser of wisdom about life to the

young mathematicians to whom the Hilbert house seemed always to be

open.

Hilbert thought himself a man of the world and used to quip that the best

possible vacation is taken with a colleague’s wife. He never tired of

flirtations and would try to dance with the prettiest young women when the

occasion allowed. His “flames” were so notorious that at a jolly birthday

celebration, impromptu verses were produced about his “loves” with a

different one for each letter of the alphabet. But when it came to “K”

everyone was stumped. At this point Käthe remarked, “Well, you could at

least think of me for once.” Immediately the following verse was generated

(the very free translation is mine):

Gott sei Dank Thanks be to God

nicht so genau, She won’t have strife.

Nimmt es Käthe “Who cares,” says Käthe,

seine Frau And she is his wife.

Their son Franz was a source of distress (in different ways) to husband and

wife. His strong physical resemblance to his father only served to

emphasize that it was not accompanied by any resemblance in the mental

sphere. Despite efforts to pretend otherwise, it became clear that Franz was

a badly disturbed young man, and it finally became necessary to

institutionalize him. Hilbert’s reaction to this tragedy was that he no longer

had a son; his wife felt otherwise.

In 1929 a wonderful new building to house the Göttingen Mathematical

Institute opened its doors. Funding had been provided by the Rockefeller

Foundation and the German government, largely as the result of Richard

Courant’s skillful diplomacy. But the days when Göttingen could be the

world center of mathematical research were almost at an end.

When Hilbert retired in 1930, Hermann Weyl accepted an offer to take

over his position. That same year Hilbert was honored by being granted the

title “honorary citizen” by his birth city Königsberg. He was invited to give

a special address that fall in Königsberg to a meeting of scientists and

physicians, and Hilbert chose an appropriately general topic: natural



science and logic. In a wide-ranging speech, he emphasized the crucial role

that mathematics plays in science and that logic plays in mathematics. With

his usual optimism, he insisted that there are no unsolvable problems. He

concluded with the words: 33

During the days immediately preceding Hilbert’s address, a symposium on

the foundations of mathematics took place in Königsberg. The speakers

were Brouwer’s student and disciple A. Heyting, the philosopher Rudolf

Carnap, and (representing Hilbert’s proof theory program) John von

Neumann. At the round-table discussion that concluded the event, a shy

young man named Kurt Gödel (the subject of our next chapter) made a

quiet announcement that, to those who grasped its import, signaled a new

era in foundational studies.

Von Neumann got the point at once, and concluded that the jig was up,

that Hilbert’s program could not succeed. When Hilbert learned of Gödel’s

announcement his initial reaction was to become angry at what may well

have seemed to him a frontal attack on his “ Wir werden wissen.” But when

Bernays came to write up the achievements of Hilbert’s proof theory in two

massive volumes that appeared in 1934 and 1939, Gödel’s work played a

prominent role. 34

Nineteen thirty-two was the year of Hilbert’s 70th birthday, and it was

duly celebrated in the new Mathematical Institute building. There were

toasts and music, and of course, dancing, and the old man was on the dance

floor for most of the dances. Nineteen thirty-two was also the year when,

the depression being in full swing, the Nazis made great gains in the

elections to the Reichstag. The following January, Hitler was appointed

Chancellor, and the collapse of German science followed soon thereafter.

Jews were not allowed to teach, and one after another, they found their way

abroad.

Richard Courant, despite his service in the German army during World

War I, found himself an outcast at the Mathematical Institute for which he

had done so much, and ended up at New York University where he was

Wir  müssen  wissen (We  must  known)
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eventually to found another mathematical institute. The Courant Institute

occupies a handsome building in Greenwich Village in New York City.

Hermann Weyl, though an “Aryan,” found the situation in Germany

intolerable and accepted a position at the new Institute for Advanced Study

in Princeton joining Albert Einstein.*

Hilbert seems to have been bewildered by the new political situation, on

the one hand speaking out against the regime even as it became increasingly

dangerous to do so, on the other, unable to comprehend that the vaunted

German legal system was unable to protect against arbitrary assaults. At a

gathering, Hilbert asked Blumenthal, his first doctoral student, what courses

he was teaching. Being told that he was no longer permitted to teach, the

old man reacted with indignation unable to comprehend why Blumenthal

did not take legal action. Blumenthal himself made his way to Holland, but

when the Germans invaded in 1940, he found himself trapped. He died in

1940 in the notorious ghetto that had been established at Theresienstadt in

what is now the Czech Republic.

Hilbert died in 1943 with World War II still raging. Käthe followed two

years later. On Hilbert’s tombstone were the words:

*In 1994 the Nobel Prize in economics was awarded to two economists and the mathematician

John Nash. The award to Nash was for a theorem from his doctoral dissertation of 1950 that had

found numerous applications in economics and elsewhere. In this dissertation, Nash had made

ingenious use of the Brouwer fixed point theorem.

*John von Neumann, one of the great mathematicians of the twentieth century, was born in

Budapest in 1903. A child prodigy, he grew up in a wealthy family willing to devote resources to

nurturing his talent. He worked in a great variety of topics in pure and applied mathematics

(including mathematical physics and economics). He became a member of the Institute for Advanced

Study in Princeton at its founding in 1933, and held this position until his death in 1957. During the

Second World War he became heavily involved in military problems, including the atomic bomb

project in Los Alamos. This interest, which continued into the Cold War period, led to his concern for

the development of advanced computational equipment.

*I was fortunate to hear lectures by both of these great scientists during my graduate student days

in the late 1940s. Neither lecture was outstanding as an example of scientific exposition, but that was

not the point. We flocked eagerly to Fuld Hall (where the Institute for Advanced Study has its

headquarters) to hear these legendary figures.
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Hermann Weyl, was to introduce a series of lectures by the Japanese mathematician Kodaira. What

I remember best about his lecture was the pleasure with which he spoke about mathematical ideas.

Weyl’s lecture was rather poorly organized while Kodaira’s lectures were models of clear

mathematical exposition.

Einstein’s lecture was occasioned by his discovery that a set of equations for a “unified field

theory” could be derived from what is called a “variational principle.” He totally lost track of the time

as he wrote on the blackboard, and only stopped when J. Robert Oppenheimer (the director of the

Institute) called the time to his attention.



CHAPTER 6

Gödel Upsets the Applecart

In the fall of 1952, shortly after my wife Virginia and I had arrived in Princeton
for a two-year stay at the Institute for Advanced Study, we were driving down
“Olden Lane” approaching the Institute when we found our way blocked by an
odd pair walking slowly in front of our car. The taller man was quite unkempt
while the other was immaculately dressed in a business suit and carried a
briefcase. As I cautiously passed them, we could see that the walkers were Albert
Einstein and Kurt Gödel. “Einstein and his lawyer,” Virginia quipped.

It was not only in their dress that these good friends differed. After the 1952
presidential election, Einstein declared, “Gödel has gone completely crazy … He

voted for Eisenhower.” 1 To the liberal Einstein, voting for a Republican was
inconceivable. Their views on some fundamental philosophical issues were also
far apart.

In formulating his special theory of relativity, Einstein had been influenced by
the skeptical positivism of Ernst Mach with its attack on Immanuel Kant’s
doctrine that our notions of space and time (although objective) are independent
of empirical observation.

Gödel began reading Kant as a teenager and remained very much interested in
the work of the classical German philosophers (especially Leibniz), all of his life.
Indeed, in an unpublished manuscript found among his papers after his death, he
maintained that relativity theory, properly understood, confirms certain of Kant’s

views about the nature of time. 2 Echoing the complaint of Frege and Cantor
about the limitations of positivism, Gödel has let it be known that it was precisely
by rejecting those ideas that it became possible for him to see connections that

other logicians had overlooked, making his momentous discoveries possible. 3

After Gödel’s death in 1978, a Kurt Gödel Society, devoted to research in logic
and related areas in computer science, was founded in Vienna, and that is where
its meetings ordinarily take place. However, in August 1993 the society met in
Brno, in the Czech Republic, where Gödel had been born 87 years earlier.
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In addition to a scientific program, the meeting featured a ceremony in which
Brno’s civil authorities dedicated a commemorative plaque placed on Gödel’s
childhood home. I well remember the occasion: we stood under our umbrellas in
the chill pre-autumnal drizzle, while the inevitable speeches (in Czech) were
followed by several numbers played by a local band in colorful folk costume.

Kurt Gödel was born in 1906 in Brno, then still part of the Austro-Hungarian
Empire. Bertrand Russell, for some reason, believed that Gödel was Jewish. In
actuality his mother’s family was Protestant, while his father was nominally an
Old Catholic, although they were not church-goers. Kurt’s schooling was entirely
in German schools. Because of his meticulous habits and his apparent
unwillingness to throw anything away, an unusually complete picture of his
primary schooling is available. His report cards show a student who received top
grades in all subjects, and his workbooks give evidence of a curriculum heavy on
drilling.

At the age of eight, Kurt fell ill with rheumatic fever, but it seems that no
lasting physical damage resulted in his case. On the other hand, Gödel did
become a life-long hypochondriac, very likely as the result of this illness. His
older brother Rudolf stated that even as a child, Kurt Gödel showed signs of

mental instability.4

When the Austro-Hungarian Empire was dismembered after World War I, the
Gödel family found itself part of the large German-speaking minority in the
newly formed Czechoslovakia. German-speaking Vienna, a mere 68 miles to the
south of Brno, with its fine university, soon drew Rudolf and Kurt to it. After a
rigorous secondary-school education in Brno with an almost perfect academic
record, Kurt moved to Vienna in the fall of 1924, sharing an apartment with
Rudolf who had moved there some time before as a medical student. Although
Kurt’s original intention had been to study physics, the beauty of the patterns
among the integers revealed in lectures he heard on the theory of numbers
persuaded him that mathematics was his true calling.

The Austrian Republic, formed from the debris of the Austro-Hungarian
Empire at the end of World War I, lasted a mere 20 years before it was absorbed
into Nazi Germany in 1938. These were years of tumult and confusion, with the
nation often teetering on the edge of civil war between “red” (that is, social
democratic) Vienna and the deeply conservative countryside. It was in this
turbulent atmosphere that the famed Vienna Circle flourished.

Whitehead and Russell had developed an artificial language for mathematics in
which proofs of theorems could be represented by purely symbolic formal
operations. The Vienna Circle was formed in 1924 by a group of philosophers



and scientists continuing in the empiricist-positivist tradition of Mach and
Helmholtz. It will be recalled (see the quotations at the end of Chapter 4) that
Cantor and Frege had bitterly attacked these ideas. The cricle abhorred traditional
metaphysics while it believed that an important goal for philosophy should be the
development and study of symbolic systems like that of Whitehead-Russell that
would encompass not only mathematics, but also empirical science.

When the founder, Moritz Schlipp, was assassinated in 1936 by a deranged
former student, the Nazis justified the killing on the grounds of Schlipp’s
supposed left-wing views. Among the other important adherents of the circle
were Rudolf Carnap, who had studied with Frege, and Hans Hahn who was to be
Gödel’s principal teacher.*

Gödel’s Doctoral Dissertation

While Bertrand Russell’s ideas about the foundations of mathematics had taken

concrete form in the massive three-volume Principia Mathematica, those of his
student, the brilliant and quixotic Ludwig Wittgenstein, were presented to the

world in his slim 75-page Tractatus Logico-Philosophicus. The ideas of these
two philosophers played an important role in the ongoing discussions at meetings
of the Vienna Circle.

When Gödel began attending these meetings in 1926 at the invitation of his
teacher Hans Hahn, he found himself out of sympathy with much of what he
heard. Even so, the heady mixture of Russell’s demonstration that all of ordinary
mathematics can be encapsulated in a formal logical system and Wittgenstein’s
emphasis on the problems of speaking about language from within language must
have influenced the direction of the young Gödel’s research. These concerns of
Wittgenstein echoed Hilbert’s stance that formal logical systems could not only
represent mathematical reasoning on the inside, but could also be studied from
the outside using mathematical methods.

In the courses on logic that Hilbert had been giving at Göttingen, he adopted

the basic rules of logical deduction proposed by Frege in his Begriffsschrift and

incorporated by Whitehead and Russell in their Principia Mathematica. In his
1928 textbook on logic (written with his student Wilhelm Ackermann), Hilbert
posed the question of whether there are gaps in these rules, that is, deductive
inferences that ought to be correct, but for which the rules do not suffice to obtain
the conclusion from the premises. His belief was that there are no such gaps, but

he wanted a proof that this is the case, that the rules are complete.



Gödel chose this problem for his doctoral dissertation. Although he succeeded
in short order in obtaining the result Hilbert wanted, there was some irony in the
situation. The techniques that Gödel used were quite familiar to the logicians of
the day, but, as we shall see, their hands had been tied by the influence of the
Brouwer-Weyl strictures together with Hilbert’s tacit acceptance of them as
appropriate in metamathematical investigations.

Logical deduction proceeds from premises to a conclusion. When the symbolic
logic of Frege-Russell-Hilbert is used, each premise as well as the conclusion is

represented by a logical formula, which just amounts to a string of symbols.5

Some of these symbols stand for purely logical concepts, some serve as mere
punctuation, and some refer to the specific subject matter in question. Here is a
sample logical inference in which the first two lines shown are the premises and
the third line is the conclusion.

Using the logical symbolism introduced in Chapter 3, we can translate this into
the language of logic as follows:

H(W)

In this inference the logical symbols used are ⊃ ∀ and ∃ whose meanings are
recalled in the following table:

The letters x and y serve as variables which stand in (like pronouns) for arbitrary

individuals in the population being considered. The L, W, H and S have meanings
relevant to the particular subject matter as shown below:

Anyone  in  love  is  happy.
Willam  loves  Susan.

Willam  is  Susan.

(∀x) ((∃y) L(x, y) ⊃ H(x)) 

L(W , S)

⊃ if  …  then  …

∀ every

∃ some



So we can read the inference as follows:

For all x, if there is a y such that x loves y, then x is happy.

Willam  loves  Susan.
Willam  is  Susan.

Now what it means to say that this inference is valid is that no matter what
underlying universe of individuals we may choose, no matter what relationship

between such individuals we represent by the letter L, no matter what property of

such individuals we represent by the letter H, and no matter which particular

individuals we choose to designate as W and S, as long as we do this in such a
manner that the two premises are both true statements, then the conclusion will

be true as well. To help clarify what it means for an inference to be valid, it may
be helpful to consider another interpretation of the same symbolic inference with
a very different subject matter:

In order to see that this example is also included under the symbolic inference

(*), we let the variables x and y stand for arbitrary species of mammals, and
interpret the other letters according to the table:

Thus, the symbolic inference may be read:

For all x, if there is a y such that x preys on y, then x has sharp teeth.

Wolves prey on sheep.
Wolves have sharp teeth.

L = the relation of loving

H = the property of being happy

W = William

S = Susan

Predators have sharp teeth.
Wolves prey on sheep.

Wolves have sharp teeth.

L = relation of one species preying on another

H = property of having sharp teeth

W = wolves

S = sheep



Hilbert asked for a proof that for every inference that is valid in the sense just
explained, there is a step-by-step proof of the conclusion from the premises using
the Frege-Russell-Hilbert rules. In other words, Hilbert wanted a proof that if a
proposed inference has the property:

for any interpretation of the letters in the formulas with respect to
which the premises are true statements, the conclusion is true as well,

then the Frege-Russell-Hilbert rules can be used to lead from the premises to the
conclusion. In Göodel’s doctoral dissertation, he succeeded in providing exactly
what Hilbert had requested.

Gödel’s proof was explained with a directness and clarity that were to mark his
later publications as well. But although this work was an impressive achievement
whose great importance became clear only with the passage of time, there was
little novelty in his methods, all perfectly well known to logicians at the time.
This could well lead one to wonder at the inability of the powerful team of
Hilbert, Ackermann, and Bernays to find its way to a proof. Indeed, Gödel
commented many years later that the theorem was an “almost trivial
consequence” of results in a paper by the Norwegian logician Thoralf Skolem
that had appeared in 1923, six years before Gödel’s dissertation (although
presumably neither Gödel nor his adviser had been familiar with this paper). In a
letter written in 1967, Gödel looking back at the 1920s, referred to a “blindness
… of logicians [that] is indeed surprising.” But, he continued:

I think the explanation is not hard to find. It lies in a widespread lack, at
that time, of the required epistemological attitude toward
metamathematics and toward non-finitary reasoning.6

Following the Brouwer-Weyl criticisms (discussed in the previous chapter) of
“non-finitary” reasoning, and Hilbert’s defining his “metamathematics” as
permitting only finitary reasoning, it was at least tacitly accepted that
investigations of formal logical systems from the “outside” had to be strictly

limited to finitary methods, methods to which Brouwer could not object.7 But, in
fact, Gödel’s completeness theorem cannot be proved without the use of non-
finitary methods. Without quarreling with the aims of Hilbert’s program and its
methodological restrictions, Gödel explained why non-finitary methods were
appropriate in this case as follows:



… it was not the controversy regarding the foundations of mathematics
that caused the problem treated here to surface (as was the case, for
example, for the problem of the consistency of mathematics); rather,
even if it never been questioned that ‘naive’ mathematics is correct as
to its content, this problem could have been meaningfully posed within
this naive mathematics (unlike, for example, the problem of

consistency), which is why a restriction on the means of proof does not

seem to be more pressing here than for any other mathematical

problem.8 [italics added]

Undecidable Propositions

The second problem on Hilbert’s famous 1900 list had called for a proof of the
consistency of the arithmetic of real numbers. At that time, no one had any notion
of what such a proof might be like, and in particular how it could avoid the trap
of circularity, how it could avoid using in the proof the very methods that the
proof sought to justify. As we have seen in the previous chapter, during the 1920s
Hilbert introduced his program of metamathematics: axioms to be proved
consistent were to be encapsulated in a formal logical system in which a proof is
only an arrangement of a finite number of symbols.

Then, the proof that no contradiction could be derived in this system was to be
carried out using what Hilbert called “finitary methods” that were even more
restrictive than what Brouwer would have been willing to allow. When Gödel
turned to these matters after completing his doctoral dissertation, Hilbert’s
program seemed well on the way to success.

At the International Congress in Bologna in 1928, Hilbert had spoken about
the system, nowadays called Peano’s arithmetic (abbreviated PA) that
encapsulates the basic theory of the natural numbers 1, 2, 3,…. When Gödel
began to think about Hilbert’s program, Hilbert’s student Acker-mann and John
von Neumann seemed to be advancing towards a finitary consistency proof for
PA. Both had found such proofs for a limited subsystem of PA, and it was
thought that progress was blocked only by technical difficulties which would be
overcome in time.

Gödel may well have believed this. In any case, he set himself the problem of

proving the consistency of more powerful systems relative to PA. There had been
a number of important relative consistency proofs, so this was a natural idea.
Gödel had hoped to give a finitary reduction of the consistency of powerful



systems, adequate for the arithmetic of real numbers and more, to the consistency
of PA. This was very much following in Hilbert’s path.

Hilbert had reduced the consistency of Euclidean geometry to that of the
arithmetic of real numbers, and Gödel proposed to carry the reduction one step
further. Had Gödel succeeded, a proof of the consistency of PA by Hilbert’s
followers would have automatically provided a proof of the consistency of the
arithmetic of real numbers as well, thus fulfilling the request Hilbert had made in
his second problem of 1900. But it was not to be. Gödel not only failed in this
endeavor, he proved that he could not have succeeded! At the end, instead of
helping to secure mathematics against the Brouwer-Weyl critique as he had
evidently hoped, he effectively buried Hilbert’s program.

As Gödel began to think about these matters, he found himself rethinking what

it meant to view a formal logical system from the outside as opposed to the

inside. Russell and Whitehead had shown quite convincingly that all of ordinary

mathematics can be developed inside such a system. Hilbert, in his
metamathematics, was proposing to use mathematical methods, severely

restricted to be sure, to study such systems from the outside. So, why can’t

metamathematics be developed inside a formal logical system?
Viewed from the outside, these systems involve relationships among strings of

symbols. On the inside, these systems can express propositions about various
mathematical objects including natural numbers. Moreover, it isn’t difficult to

think of ways that strings of symbols can be coded by natural numbers. Aha! By

using such codes, the outside can be brought inside. To illustrate the use of such
codes, let us look again at how the premise “Anyone in love is happy” was
symbolized:

(∀x) ((∃y) L(x,  y)  ⊃  H(x))

What we have here is an arrangement or “string” of the 10 symbols:

,  L H  ⊃  ∀ ∃ x y( )

We can use a simple coding scheme in which each symbol is replaced by one of
the decimal digits, for example as follows:

, L H ⊃ ∀ ∃ x y ( )

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

0 1 2 3 4 5 6 7 8 9



Replacing the symbols by digits in (†) as indicated, we get the code number

846988579186079328699.

Note that not only is it easy to go from the string of symbols to the number that
codes it, but it is just as easy to go in the reverse direction. Of course, when there
are more than ten symbols, a different encoding must be used, but this causes no
difficulty. For example, if we code each symbol by a pair of decimal digits, up to
100 symbols can be accommodated. Essentially the same methods can be applied
to any formal logical system, so that the various locutions of such systems (all of
which are seen from the outside to be presented as strings of symbols) can be

coded via natural numbers.9

Gödel had no problem seeing how codes could indeed be used to develop the

metamathematics of formal logical systems inside those very same systems. But
in the process, he found himself thinking thoughts that were strictly forbidden
according to precepts being promulgated in the Vienna Circle. Gödel found that

there are propositions that viewed from the outside of such systems could be seen

to be true, yet could not be proved inside of them.
For many adherents of the Vienna Circle, any notion of mathematical truth

other than provability was meaningless, a chimera of idealistic metaphysics.
Being unencumbered by such beliefs, Gödel was led to the remarkable
conclusion that on the contrary, not only is there a meaningful notion of
mathematical truth, but its extent goes beyond what can be proved in any given
formal system.

This conclusion applied to a wide range of formal logical systems: it applied to
comparatively weak systems like PA and even to systems like Whitehead and

Russell’s Principia Mathematica (abbreviated PM) that encapsulated the full
power of classical mathematics. For any of these systems, there are true
propositions expressible in the system, but not provable in the system. As its title

indicates, in Gödel’s remarkable paper, On Formally Undecidable Propositions

of Principia Mathematica and Related Systems, published in 1931, he chose to
present his results for PM, thus showing that even powerful logical systems could

not hope to encompass the full scope of mathematical truth.10

The crucial step in Gödel’s proof was his demonstration that the property of a

natural number of being the code of a proposition provable in PM is itself

expressible in PM. Using this fact, Gödel could construct propositions in PM that
to one who knew the specific code being used could be seen to express the



assertion that some proposition is not provable in PM. That is, he was able to
construct propositions A that, read via the encoding, assert that some proposition

B is not provable in PM.

Now, someone not privy to the code looking at A would see a string of symbols
expressing some complicated and mysterious proposition about natural numbers.

But via the code, the mystery vanishes: A expresses the proposition that some

string of symbols B represents a proposition not provable in PM. Ordinarily A

and B would be different propositions. Gödel asked the question: Could they be
the same? Indeed they could, and Gödel was able to demonstrate this by making

use of a mathematical trick he had learned from Georg Cantor: the diagonal

method. By using this trick, matters could be so arranged that the proposition
asserted to be unprovable and the proposition making that assertion were one and
the same. In other words, Gödel had seen how to obtain a most remarkable

proposition, we’ll call U, with the properties:

•  U says that some particular proposition is not provable in PM.

•  That particular proposition is none other than U itself.

•  Therefore, U says: “U is not provable in PM.”

In the Vienna Circle, it was generally believed that the only notion of “truth” that
makes sense for propositions expressed in a system like PM is that of provability
according to the rules of the system. The properties of this proposition U make
this belief untenable. If we are willing to assume that PM doesn’t lie, that

whatever is proved in PM is actually true,11 then we can see that U is true, but
not provable in PM as follows:

1.  U is true. Suppose that it were false. Then, what it says would be false. So it
couldn’t be unprovable and would have to be provable, and therefore true.

This contradicts the supposition that U was false. Hence it must be true.

2.  U is not provable in PM. Since it is true, what it says must be true, and so it
is not provable in PM.

3.  The negation of U, written ¬U, is not provable in PM. Because U is true,

¬U must be false, and therefore also not provable in PM.



To emphasize that U has the property that neither it nor its negation is provable in

PM, it is called an undecidable proposition. But it cannot be emphasized too

strongly that this undecidability is only with respect to provability inside the

system. From our outside viewpoint, it is clear that U is true.*

Now here is a puzzle: we know that U is true although unprovable in PM.
Since all of ordinary mathematics is encapsulated in PM, why can’t the proof that

U is true be carried on inside PM? Gödel came to realize that this is almost
possible, but that there is a catch. What can be proved inside PM is:

If PM is consistent then U .

So it is only the additional assumption that PM is consistent that blocks the proof

of U inside PM. Since we know that U can’t be proved inside PM, we must
conclude that the consistency of PM cannot be proved in PM. However, the thrust
of Hilbert’s program was to prove that systems like PM are consistent using
“finitary” methods that were thought to constitute a very modest subset of those
available in PM. Yet Gödel had proved that even the full power of PM is
insufficient to prove its own consistency. So, at least as originally imagined,

Hilbert’s program was dead!12

Kurt Gödel, Computer Programmer

In the year 1930, the realization of an actual physical device that could function
as a general-purpose information-processing programmable computer was still
decades in the future. Yet someone knowledgeable about modern programming
languages today looking at Gödel’s paper on undecidability written that year will
see a sequence of 45 numbered formulas that looks very much like a computer
program.

The resemblance is no accident. In demonstrating that the property of being

the code of a proof in PM is expressible inside PM, Gödel had to deal with many
of the same issues that those designing programming languages and those writing
programs in those languages would be facing. At the most fundamental level,
contemporary computers can perform only simple basic operations on short
strings of 0s and 1s.

Designers of so-called high-level programming languages face the task of
providing programmers with locutions that encapsulate the highly complex
operations with which they would like to work. Programs written using these



locutions to be carried out by a computer must be translated into machine
language—into a detailed listing of the basic operations needed to execute them.

This is done by special translation programs called interpreters or compilers.*
The keystone in Gödel’s proof of the existence of undecidable propositions is

the fact that provability in PM can be expressed in PM itself. Gödel knew very
well that he would be presenting his revolutionary results to a highly skeptical
audience, and he wanted to eliminate any doubt. Thus he faced the problem of
breaking down complex operations on the codes of the strings of symbols
corresponding to the axioms and rules of inference of PM viewed from the

outside, and transforming them into expressions written in the symbolic language
of PM.

To solve this problem, Gödel created what amounted to a special language in

which the operations needed could be developed in a step-by-step fashion.13

Each step consisted of a definition of an operation on numbers that, via the code
Gödel was using, corresponded to a parallel operation on expressions of PM. The
definitions were expressed in Gödel’s special language in terms of items that had
already been defined in previous steps. The special language was so designed that
operations introduced by such a definition were guaranteed to be appropriately
expressible inside PM.

Leibniz had certainly proposed the development of a precise artificial language
in which much human thought would be reduced to calculation. Frege, in his

Begriffsschrift, had shown how the usual logical reasoning by mathematicians
could indeed be captured. Whitehead and Russell had succeeded in developing
actual mathematics in an artificial language of logic. Hilbert had proposed the
metamathematical study of such languages. But before Gödel no one had shown
how these metamathematical concepts could be embedded in the languages

themselves.14

In addition to constructing an undecidable proposition U, Gödel wished to
demonstrate that this proposition required for its statement no exotic
mathematical concepts. For this purpose, Gödel used a theorem from the
elementary theory of numbers known as the Chinese remainder to show how all
the operations expressible in his special language could also be expressed in the

basic language of the arithmetic of natural numbers.15 From this it followed that

the undecidable proposition U could be expressed in this basic language. What

this meant specifically is that U could be written using a vocabulary that
permitted only variables whose values could be any natural number, the



arithmetic operations + and ×, the symbol = of equality, and the basic operations
of Frege’s logic, nowadays written: ¬ ⊃ ∧ ∨ ∃ ∀. The remarkable conclusion
was that even restricted to this meager vocabulary, propositions that are
undecidable in PM could be constructed.

Conference at Königsberg

On August 26, 1930, at the Reichsrat Cafe in Vienna, the 24-year-old Kurt Gödel

was talking to Rudolf Carnap about the Conference on the Epistemology of the

Exact Sciences planned for Königsberg 10 days later. Carnap, almost 40, and a
leading figure in the Vienna Circle, was scheduled to deliver a major address on
the “logicist” program for the foundations of mathematics, a program that had

reached its fullest realization in the Principia Mathematica of Whitehead and
Russell.

Carnap’s notes reveal that Gödel had told him about his sensational discovery

that there were propositions about the natural numbers undecidable in Principia

Mathematica. The two logicians (together with other participants in the

Conference) traveled to Königsberg.
On the first day of the conference, there were three hour-long addresses on the

foundations of mathematics. Carnap led with his address on logicism, and
remarkably, made no mention of Gödel’s new results. Carnap was followed by A.
Heyting, a student of L. E. J. Brouwer, who spoke on Brouwer’s intuitionism.
The final address of the day was by John von Neumann, whose topic was

Hilbert’s program.16

On the second day, in addition to three more hour-long talks there were three
20-minute presentations including one by Gödel on his doctoral dissertation on
the completeness of Frege’s rules. Gödel’s bombshell came on the third day
during a round-table discussion of the foundations of mathematics. He began
with a rather long but tentative discussion of what would be gained from a

consistency proof for a system like Principia Mathemat-ica. He asserted that
even if such a system is known to be consistent, it was still perfectly possible that
one could prove in the system a proposition about the natural numbers, that,
viewed from outside, could be seen to be false. So mere consistency of a formal
system provided no guarantee that what was proved in that system was correct.

Apparently, a favorable comment by von Neumann encouraged him to go
further. Gödel went on to assert that assuming the consistency of systems like

Principia Mathematica, “one can even give examples of propositions” of a



simple arithmetic form that are true, but unprovable in such a system.
“Therefore,” he continued, “if one adjoins the negation of such a proposition to”

Principia Mathematica, one obtains a consistent system in which a false

proposition is provable.17

John von Neumann seems to have grasped immediately the import of what
Gödel had done and indeed sought him out for discussion at the session’s end.
There is no evidence that anyone else realized what had happened. Von Neumann
continued to think about the matter and convinced himself that (for reasons
explained above) it follows from Gödel’s result that consistency is unprovable,
and concluded that that was the end of Hilbert’s program.

By the time a letter from von Neumann arrived with this information, Gödel
had already submitted for publication his own paper containing this same
conclusion. Von Neumann’s letter thanking Gödel for a preprint of this paper
said, perhaps ruefully, “Since you have established the unprovability of
consistency as a natural continuation and deepening of your earlier results, of

course I will not publish on that subject.”18 Logic and the foundations of
mathematics had been one of von Neumann’s important interests. He became a
good friend of Gödel, lectured widely on Gödel’s work, and spoke of him as the

greatest logician since Aristotle.19

Von Neumann stopped working in logic. When his interests returned to logic
over a decade later, it was in logic as embodied in hardware: the all-purpose
digital computer.

One of von Neumann’s collaborators in his later work with computers, reports
the following amusing story that von Neumann used to tell about his efforts to
prove the consistency of arithmetic:

At the end of a day’s work [von Neumann] would go to bed and very
often awaken in the night with new insights. … In this case he was
busily engaged in trying to develop a proof [of the consistency of
arithmetic] and was unsuccessful! One night he dreamed how to
overcome his difficulty and carried his proof much further along …
The next morning he returned to the attack, again without success, and
again that night retired to bed and dreamed. This time he saw his way
through the difficulty, but when he arose … he saw there was still a gap
…



Things would have worked out differently, von Neumann quipped, if he had

dreamed a third night!19

The conference at which Gödel dropped his bombshell was but an adjunct to
the major event taking place in Königsberg that week: a convention of the Society
of German Scientists and Physicians. The opening address was delivered by
David Hilbert the day following the round table. This was the occasion in which
Hilbert articulated the slogan still on his tombstone in which he declared his faith

that all mathematical questions must and will be answered: “wir müssen wissen;

wir werden wissen,” [we must know; we shall know].
Gödel’s incompleteness theorem shows that if mathematics is restricted to

what can be encapsulated in specific formal systems like PM, then Hilbert’s faith
was in vain. For any specific given formalism there are mathematical questions
that will transcend it. On the other hand, in principle, each such question leads to
a more powerful system which enables the resolution of that question. One
envisions hierarchies of ever more powerful systems each making it possible to
decide questions left undecidable by weaker systems.

Although all of this is incontrovertible as a matter of theory, it is less clear to
what extent it will ever become a matter of mathematical practice. Gödel has left
as his legacy to mathematicians the task of learning to use these more powerful
systems in settling intractable problems. Although some courageous researchers
have been working along these lines, most mathematicians remain unaware of

these issues, and some experts greet this work with extreme skepticism.20

Love and Hate

One of Gödel’s fellow students in Vienna, Olga Taussky-Todd, who later became
a prominent number theorist, reports that Gödel’s ability was well-recognized
among the students, and that when a student experienced difficulty, he always
stood ready to help. She tells the following amusing anecdote:

There is no doubt that Gödel had a liking for members of the opposite
sex, and he made no secret about this fact. … I was working in the
small seminar room outside the library in the mathematical seminar.
The door opened and a very small, very young girl entered. She was
good looking … and wore a beautiful, quite unusual summer dress. Not
much later Kurt entered and she got up and the two of them left
together. It seemed a clear show off on the part of Kurt.21



Gödel met Adele, the woman who was to be his life’s companion, during his
student days, a decade before they married. At the time, she was still married to
her first husband and worked as a dancer.*. His parents could hardly have been
pleased by his choice. It was not only that she was six years older than Kurt and a
Roman Catholic as well. It appears that female dancers in Vienna had the

reputation, deserved or not, of being sexually available for a modest sum.22

Perhaps for these reasons, Kurt was quite circumspect about his relationship
with Adele which seems to have been a close intimate one for some time before
their marriage, and when they finally did marry, her existence came as quite a

surprise to Gödel’s colleagues.23 Rudolf (who himself had remained a bachelor)
wrote shortly after his brother’s death, “I would not presume to pass judgment on

my brother’s marriage.”24

Marital happiness remains a great mystery, and the prognostications of those
older and presumably wiser are often wrong. This was the case with the Gödels
whose marriage proved to be long-lasting and happy.

Gödel’s attempts to develop a professional career in Austria occurred against
the background of tumultuous and calamitous political, social, and economic
events. The German-speaking state that emerged from the debris of the Austro-
Hungarian Empire at the close of World War I was forbidden by the Allies to do
what most Austrians desired: to unify with Germany. At any rate, independent
democratic Austria did not last very long. A low-intensity civil war between the

fascist Heimwehr and the social democratic Schutzbund reached a climax in
1927. When an old man and a child were killed by reactionaries and a jury
refused to convict the killers, a mass demonstration called by the Social
Democrats led to the burning to the ground of the Ministry of Justice building
and the deaths of almost 100 people.

By the end of 1929, the president of the republic had obtained the power to
rule by emergency decree. Meanwhile the great world-wide economic crisis (in
the U.S. known as the Great Depression) was making moderation seem
irrelevant. The Dollfuss regime, elected in 1932, took an authoritarian turn
ending any meaningful role for parliament.

Things went from very bad to immeasurably worse. In early 1934, with Hitler
already in power in Germany, all political parties were abolished except for
Dollfuss’s Fatherland Front. A few months later Dollfuss was murdered by
Austrian Nazis attempting unsuccessfully to seize power. His successor,
Schuschnigg, kept Hitler at bay for a few years with the help of Mussolini. But
the end came in March 1938 when Austria was absorbed into Nazi Germany.



Gödel began the long academic climb with an official appointment as Dozent
in February 1933. In the meantime he had been quite active in the logic seminar
run by his thesis advisor Hahn as well as in an ongoing colloquium run by the
mathematician Karl Menger (who was also active in the Vienna Circle).

A considerable number of Gödel’s interesting results from this period, some of
them quite important, were published as brief articles in the proceedings of

Menger’s colloquium.25 Gödel’s first course as a Dozent was given during the
summer of 1933 under difficult conditions. The university had to be closed one
day because of Nazi activities, and there was a week when Nazi terrorist bombs
exploded in various parts of Vienna.

When an offer came to spend the academic year 1933–34 at the newly formed
Institute for Advanced Study in Princeton, Gödel could hardly have turned it
down. Not only would he escape the madness at home, but also he could look
forward to being with such stellar colleagues as Albert Einstein and John von
Neumann. However, the prospect of leaving family and friends (and perhaps
especially Adele) for most of a year, surely provoked some anxiety in the shy
hypochondriacal young man. Indeed, after setting out to meet the ship scheduled
to take him across the Atlantic, he decided that he had a fever and turned back.
Only family persuasion got him to catch another ocean liner and make the
voyage.

Mathematical Drama in Princeton in the 1930s

In the 1930s (and indeed through the 1950s) the Princeton mathematics
department was housed in Fine Hall, a low level attractive red-brick building.*.
At the time, Fine Hall housed not only the mathematics faculty of Princeton
University, but also the mathematicians who were part of the recently established
Institute for Advanced Study. The great influx to the United States of scientists
fleeing the Nazi regime had begun. The concentration of mathematical talent at
Princeton during the 1930s came to rival and then surpass that at Göttingen.
Among those seen in the corridors of Fine Hall were Hermann Weyl, Albert
Einstein, and John von Neumann, whose interests had moved very far from von
Neumann’s work on Hilbert’s program for the foundations of mathematics.

The logician Alonzo Church was also present as a member of the Princeton
University faculty. Stephen Kleene and Barkley Rosser, who were to have
distinguished careers as mathematicians, were there as Church’s doctoral

students.†



Mathematicians have been dealing with algorithms for numerical calculations
since ancient time. We all learned algorithms for adding and multiplying numbers
and working with fractions during our childhood. But when Church introduced a
new notation in connection with a familiar mathematical concept, he surely had
no idea that he was embarking on a path that was to lead to a characterization of
what is algorithmically possible, and that he would be able to exhibit an example
that he would actually prove to be algorithmically unsolvable. This new notation

concerned mathematical functions.
Typically a function is presented as a mathematical formula containing one or

more letters. When these letters are each replaced by a number, a value can be

calculated, the value of the function. But the function itself is not the formula, but
is rather the association the formula provides between a given value and the

calculated result. As a simple example, we can consider the expression x2 + 3. If
we let f stand for the function specified by this formula, we could write

f(x)  =  x2  +  3.

Then, f (1) = 4, f (3) = 12 etc. Church decided that a notation was needed to show
the function as arising from the expression. Using the Greek letter λ (lambda), he
would write:

f  =  λx[x2  +  3].

Church designed a complete formal system for the foundations of mathematics
incorporating his λ notation. He would have seen it as much simpler than the

rather ponderous Principia Mathematica of Whitehead and Russell. And he
thought it would succeed in avoiding the paradoxes like the one Russell had
brought to Frege’s attention. In this he was mistaken: his students Kleene and
Rosser proved that their teacher’s system was inconsistent, that it led to
contradictions.

One could imagine him echoing Shakespeare’s Julius Caesar’s ‘’Et tu Brute”

when Caesar recognized his protegé among the conspirators stabbing him. Unlike
Frege, Church did not give up when an inconsistency was found in his system.
He thought, quite correctly, that the λ notation was worth salvaging from the

wreckage. He developed a much less ambitious system, the λ-calculus, and was
able to prove that that system is consistent.



There was no possibility that this bare-bones system could provide a
foundation for all of mathematics, but one could ask whether any significant
mathematics at all could be developed within Church’s λ-calculus. As a language
it was built from letters serving as variables, punctuation marks, and, of course λ.
In particular there was no obvious way to represent numbers, even the natural
numbers 1, 2, 3, …. Now of course, the natural numbers can be represented in
different ways. The Arabic numerals

1,  2,  3,  4,  5,  6,  7,  8,  9,  10,  11,   …  ,  99,  100,   …

in our familiar decimal notation provide one such representation. The Roman
numerals

I, II, III, IV, V, VI, VII, VIII, IX, X, XI, … , IC, C  …

provide another. Algorithms for working with numbers will depend very much on
how they are represented. It’s much easier to multiply two numbers represented
by Arabic numerals than as Roman numerals! But any systematic infinite
sequence of strings of symbols could be used. Faced with the meager resources
of the λ-calculus, Church and Kleene arrived at the following way to represent
the natural numbers:

These formulas look complicated, but the pattern should be clear. So to calculate
2 + 3 in the λ-calculus, beginning with

one would somehow need to get the result

λx[λy[x(x(x(x(x(y)))))]].

1 → λx[λy[x(y)]]

2 → λx[λy[x(x(y)]]

3 → λx[λy[x(x(x|(y))]]

4 → λx[λy[x(x(x(x(y)))]]

. → …

. → …

. → …

λx[λy[x(x(y))]] and λx[λy[x(x(x(y)))]]



But it wasn’t at all obvious that algorithms could be developed within the λ-
calculus to carry out addition, multiplication and other arithmetic operations.
Kleene undertook the investigation of arithmetic in the λ-calculus as the topic of
his doctoral dissertation. Subtraction seemed especially difficult. Many years
later Kleene laughed as he explained that the idea for a λ-calculus algorithm for
subtracting 1 occurred to him when he was sitting in his dentist’s chair.

Church and Kleene decided to call a function λ-definable if there is a λ-
calculus algorithm for calculating its values. After such initial difficulties, Kleene
became so good at developing λ-calculus algorithms that he could prove that just
about any function on the natural numbers he could think of was λ-definable.

And Church began to wonder how far this could go.26

Having finally overcome his reluctance to leave Vienna and his bride Adele,
Gödel arrived in the U.S. in the fall of 1933. During the spring of 1934 he was at
Princeton where he gave a series of lectures on undecidability. Kleene and Rosser
took excellent notes on these lectures, and presumably Church attended as well.

In connection with metamathematical concepts (like being the code number of
a proof), Gödel had introduced a class of functions defined on the natural

numbers that he had called recursive. He chose this name because functions
belonging to this class were typically defined by specifying their value for an
initial input value, and then specifying how, knowing the value of the function for
a given input value, to specify the value of the function for the next input value.
He remarked in these lectures that the recursive functions had the important
property that their values could be computed by a “finite procedure,” or as we
would say, by an algorithm.

He went further and suggested that the class of recursive functions could be
extended to a larger class, still embodying the idea of using recursion that would

include all functions defined on the natural numbers whose values could be
calculated by an algorithm. And, as a step in that direction, he defined a class of
functions he called “general recursive.”

At that time Church had a conversation with Gödel in which in which they
talked about what Church called “effectively calculable,” or as we would say,
calculable by an algorithm. Gödel raised the question of whether all effectively

calculable functions are general recursive in the sense he had defined in his
lectures. Relying on the work on λ-definability, Church had previously proposed
to Kleene that λ definability was an appropriate definition of effective
calculability. He now made the same proposal to Gödel. At this point Gödel was



not yet ready to accept either general recursiveness functions or λ-definability as
equivalents of effective calculability. Kleene set to work to find more evidence.

Studying Gödel’s general recursive functions. he found that they were related
in a very simple way to functions in Gödel’s original narrower class of recursive

functions which Kleene proposed to now call the primitive recursive functions.27

He also proved that the the λ-definable functions and the general recursive

functions, although defined so differently, were exactly the same functions.
Basing himself on all of this, Church published a paper in which he declared

that these functions are exactly those that are effectively calculable, an assertion

that became known as Church’s Thesis. Church stressed that the remarkable fact
that two such different conceptions turned out to yield the very same class of
functions furnished evidence for this thesis. Relying on his thesis, Church was

able to exhibit a specific problem which he declared to be unsolvable in the sense
that that there was no λ-definable procedure (or equivalently no general recursive

procedure) for solving it. He gave his paper the provocative title An Unsolvable

Problem of Elementary Number Theory.28 Meanwhile, on the other side of the
Atlantic, the young Alan Turing quite independently working on the same issues.
When his machine-oriented approach (to be discussed in the following chapter)
turned out to be equivalent to general recursiveness and λ-definability, Church
had even more evidence that his thesis was correct.

Back in Vienna

Afew months after Gödel’s return to Vienna in June 1934, he suffered a “nervous
breakdown” and spent some time in the Purkersdorf Sanitarium “an
establishment for the well-to-do, part spa, part clinic, part rest home” where he

was examined by the Nobel-prize-winning psychiatrist Julius Wagner-Jauregg.29

Gödel’s return was to an Austria assailed by dismal events. The Nazi attempted
takeover and Dollfuss’s assassination occurred late in July, one day after Hans
Hahn, Gödel’s dissertation supervisor, died of complications of cancer surgery.
At the university, things were deteriorating. Administrators were required to join
the fascist Fatherland Front, and there was widespread firing of professors who
were thought to be on the left and even firings of some apolitical Jewish scholars.
There is no way to know what role these events may have played in Gödel’s
breakdown.

With the advantage of hindsight it is easy to see the menace in the steady
advance of fascism. But to those who would have chosen to flee had they been



gifted with knowledge of the future, matters were not so simple. One could
always hope that things would work out. Gödel’s brother noted that none of his
family members was “very interested in politics,” and so, they didn’t understand
the significance of Hitler coming to power in Germany in 1933. However, he
went on:

Two events quickly opened our eyes: the murder of Chancellor Doll-
fuss and the murder (by a National Socialist student) of the philosopher
Professor Schlick in whose circle my brother had moved.30

While remaining in touch with the Institute in Princeton about future
possibilities, Gödel continued to pursue an academic career in Vienna. He gave
his second course at the university beginning in May 1935, and in September of
that year set out once again for a visiting appointment in Princeton. This time he
did not remain in America very long. Prostrated by a deep depression, he
resigned his appointment and returned home early in December.

Gödel later spoke of 1936, the year of Schlick’s assassination, as the worst
year in his life. His mental condition continued to be poor, and he spent much
time in sanatoria. But 1937 marked a great improvement. In June, while giving a
course at the university in set theory, Gödel achieved a momentous breakthrough
in his work on Cantor’s continuum hypothesis, the first problem on Hilbert’s
famous 1900 list. (More about that later.)

Hitler’s invasion of Austria and its absorption into Germany took place in
March of 1938, and Gödel set out for his third visit to America in October
leaving behind Adele, his bride of just over two weeks.* This time his year in
America was quite fruitful. After spending the fall semester in Princeton, where
he lectured on his discoveries regarding Cantor’s continuum hypothesis, he took
up a visiting appointment for the spring term at Notre Dame University where his
old colleague Karl Menger had settled after fleeing Vienna. But when the
academic year was over, he returned to Vienna and to Adele late in June 1939, a
little over two months before the German invasion of Poland that was to
precipitate World War II.

Gödel returned to a Vienna, now an integral part of Nazi Germany, being
systematically remade as part of Hitler’s “New Order.” At the university, the
position of Dozent had been abolished and a new position called “Dozent neuer
Ordnung” (that is, Dozent of the New Order) had been put in its place. The new
position did carry a small salary, but it required a new application, and the
candidate had to pass muster with respect to political views and racial purity. In



September, shortly after war broke out, Gödel did apply. To his surprise and
indignation, his application was not approved. The report to the dean from the
bureaucrat in charge of dozent applications noted that Gödel had worked under
“the Jewish Professor Hahn” and that he had moved in “Jewish-liberal” circles.
On the other hand he had never been known to say anything “against National
Socialism.” Under these circumstances it was impossible to approve the
application or turn it down. An undecidable proposition!

Another serious blow came when, after months of delay, Gödel was called up
for a physical to determine his fitness for military service. Once again he was
surprised: he was pronounced fit for “garrison duty.” Somehow amidst all of this,
in November, he and Adele moved from their suburban rental flat into a recently

purchased apartment in the city.31 Gödel’s apparent obliviousness to what was
going on around him can only be described as pathological denial.

This is illustrated by the tale recounted by Gustav Bergmann, a member of the
Vienna Circle and a Jew, one of a stream of Jewish refugees arriving in America.
Shortly after his landing in October 1938, he was invited to lunch by Gödel (then
visiting in Princeton) and was astounded to hear Gödel inquire, “And what brings

you to America, Herr Bergmann?”32 It seems that what finally brought Gödel’s
precarious situation home to him, shortly after his move, was his being set upon

in the street by a bunch of rowdies who struck him and knocked off his glasses.33

After Germany’s rapid conquest of Poland, the winter of 1939–1940 became
known as the period of “phony war.” The German onslaught on Western Europe
that resulted in the defeat of France was still months away. The attack on Russia
was not to take place until June 1941. In fact, Germany had signed a non-
aggression pact with the Soviet Union, and Stalin’s Russia was supplying
Germany with products useful to the military.

It was in December 1939 that Gödel finally decided to make an all-out effort to
leave Europe. In order to do this, he needed to obtain exit permits for Adele and
himself from the German authorities and a visa from the U.S. authorities. Neither
was easy. The newly appointed director of the Institute for Advanced Study in
Princeton, Frank Aydelotte, was the hero of this endeavor. In approaching the
U.S. State Department he was not above stretching the truth. In his
correspondence, he wrote “Professor Gödel” although he knew perfectly well that
Gödel was no professor. In answer to a question about what Gödel’s teaching
duties at the Institute would be, Aydelotte calmly lied, saying “Professor Gödel’s
responsibilities” would “involve teaching” but at an advanced, hence informal
level.



In addition, Aydelotte wrote the German Embassy in Washington emphasizing
that Gödel was an “Aryan” and one of the greatest mathematicians in the world.
This did the trick: all necessary documents were forthcoming, and the Gödels
could leave. However, the Atlantic crossing being deemed too dangerous, they
traveled the long way around: through Siberia to Japan, then across the Pacific,

and finally by train to Princeton, arriving in mid-March.34

One of the first to greet Gödel was Oskar Morgenstern, who was to become
one of his best friends. Morgenstern, an economist, had known Gödel casually in
the Vienna Circle and had accepted a position as professor at Princeton
University after he was fired from his leading position in Austria. Eagerly
inquiring about the current situation in Vienna, he was taken aback when Gödel

replied, “The coffee is wretched.”35

Hilbert’s Dictum

At the head of Hilbert’s problem list in his 1900 address was Cantor’s continuum
hypothesis. This is the assertion that infinite sets of real numbers come in just two

sizes: small and large. The “small” infinite sets of real numbers are those that are
just as large as the set of natural numbers, meaning that such sets can be matched
up in a one-to-one fashion with the set {1, 2, 3,…}. The “large” sets are those
that can be matched up in a one-to-one fashion with the set of all real numbers.
The continuum hypothesis is the statement that every infinite set of real numbers
must be of one or the other of these types, so that there are none whose size is in
between. (In the language of Cantor’s transfinite cardinal numbers, the assertion

is: the cardinal number of every infinite set of real numbers is either ℵ0 or C .)
In his address, Hilbert said that the continuum hypothesis was “very plausible”

but that “in spite of the most strenuous efforts, no one has succeeded in proving”

it.36 Hilbert returned to the problem a quarter of a century later, claiming that he
could use his metamathematics to prove the continuum hypothesis. However, this
turned out to be an illusion. In 1934 a treatise by the Polish mathematician
Waclaw Sierpinski was entirely devoted to propositions that had been found to be
equivalent to the continuum hypothesis, or to be related to it in other ways. Yet,
despite all of these continuing “strenuous efforts,” it remained undecided whether
the continuum hypothesis was true or false.

Gödel came to believe that the continuum hypothesis was undecidable from
the available formal systems serving as foundations for mathematics. Such
systems included not only Russell and Whitehead’s PM, but also systems based



on axioms for set theory. Gödel was able to justify his belief only in part: in

1937, he saw how to prove that in these systems it is not possible to disprove the

continuum hypothesis.37 Although he was convinced that it would turn out that it

would be equally impossible to prove the continuum hypothesis in these systems,
he never was able to prove that this is actually the case. (Gödel was vindicated a
quarter of a century later when Paul Cohen developed powerful new methods by
means of which he was able to show that the continuum hypothesis is indeed
undecidable from the systems in question.)

In his address in Paris in 1900 and again in the retirement address he gave in
Königsberg in 1930, Hilbert had proclaimed his faith in the solvability of every
mathematical question. Was the continuing inability of mathematicians to resolve
Cantor’s continuum problem an indication that Hilbert had been wrong? The
undecidable propositions Gödel had found involving natural numbers were

undecidable inside the formal systems in question, but as we have seen, viewed
from the outside, they were clearly true.

But the continuum hypothesis was different. Gödel’s work provided no hint
regarding the truth or falsity of the continuum hypothesis. Up to this point Gödel
had been unencumbered by narrow foundational views, able to plough ahead
using whatever mathematical methods were needed. But now his results forced
him to think about the philosophical implications of what he had done.

The specific individual real numbers with which mathematicians ordinarily

deal, such as π and √2, can be defined in formal systems like PM. But, as was
already clear in Cantor’s time, the cardinal number of the set of all possible
definitions in such systems is only ℵ0 while the cardinal number of the set of all
real numbers is C , which as we know, is larger. So most real numbers have no
definition: they are undefinable.

This is spooky. How can you count things that you can’t define? Does it make
sense to talk about sets of real numbers when some of the numbers in such a set
are undefinable? Maybe the undecidability of the continuum hypothesis
(conjectured by Gödel and later proved by Paul Cohen) is telling us that the
continuum hypothesis does not have a clear meaning, that it is inherently vague.
Dealing with this issue is to face starkly the question of the role of the actual
infinite in mathematics, the very issue that Frege had predicted would lead to a

“momentous and decisive battle.” 38

Manuscripts for lectures on Gödel’s work on the continuum hypothesis that he
gave shortly after obtaining his results on the problem show that he was
equivocal. The continuum hypothesis, he suggested, might well turn out to be



“absolutely undecidable,” showing that Hilbert had been mistaken in believing
that every mathematical problem could be solved. In the early 1940s, Gödel
moved on to philosophical studies, in part no doubt to help him come to terms
with his views about infinite sets. He became especially devoted to Leibniz, the
classical philosopher with whom he felt the greatest affinity.

Members of the Institute for Advanced Study were under no obligation to give
lectures, work with students, or even publish. Gödel responded to this relaxed
atmosphere by lecturing or publishing only in response to very specific

invitations. An important source of such invitations was the Library of Living

Philosophers, a series of books each devoted to a living philosopher. Each
volume was a collection of invited essays about the ideas of the philosopher in
question, followed by rejoinders by the philosopher himself.

Gödel was invited to contribute to three of these volumes: the ones on Bertrand
Russell, Albert Einstein, and Rudolf Carnap. The Russell volume appeared in
1944 with Gödel’s contribution, a rather shocking essay. After an incisive
discussion of Russell’s mathematical logic, Gödel announced that sets and
concepts may be “conceived as real objects … existing independently of our
definitions and constructions. … the assumption of such objects is quite as
legitimate as the assumption of physical objects and there is quite as much reason
to believe in their existence.” So much for vagueness!

Three years later, in an invited expository article on the continuum hypothesis,
Gödel reiterated his belief in the genuine existence of sets, emphasized that
existing foundational systems were necessarily incomplete and capable of
extension, and predicted that new axioms would be found that would finally and

definitively settle the continuum hypothesis, by enabling one to prove that it is

false.39

Until his work on the continuum hypothesis, Gödel’s interactions with
philosophical issues had consisted mainly of ignoring the scruples of others that
were preventing them from seeing what was clear to him. But now he was
treading deep philosophical waters. What are numbers anyway? Are they a mere
human construct or do they have some kind of objective existence? Was 2 + 2 = 4
true before there were people on the planet to assert it? These issues have been
debated for centuries. The doctrine that abstract objects (like numbers and sets of
numbers) have an objective existence with properties that people can only
discover, not invent, is generally ascribed to Plato and therefore is called
Platonism. Gödel’s adherence to this doctrine marked a clear shift in his views.



In a lecture given in Cambridge, Massachusetts in 1933, he had claimed that

Platonism could not “satisfy any critical mind.”40 Researchers in set theory
through the final decades of the twentieth century followed Gödel’s injunction to
seek new axioms, but despite much interesting work, the continuum hypothesis
remains unsettled.

The most truly astonishing passage in Gödel’s contribution to the Russell

volume concerned Leibniz’s pet project for a universal characteristic. Writing
over two centuries after Leibniz’s death, Gödel held out the hope that such a
language could be developed and that it would revolutionize mathematical
practice.

But there is no need to give up hope. Leibniz did not in his writings

about the Characteristica universalis speak of a utopian project; if we
are to believe his words he had developed this calculus of reasoning to
a large extent, but was waiting with its publication till the seed could
fall on fertile ground. He went so far as to estimate the time which
would be necessary for his calculus to be developed by a few select
scientists to such an extent “that humanity would have a new kind of an
instrument increasing the powers of reason far more than any optical
instrument has ever aided the power of vision.” The time he names is
five years, and he claims that his method is not any more difficult to
learn than the mathematics or philosophy of his time.41

Now, we have seen that what Leibniz had produced by way of a “calculus of
reasoning,” despite being amazing for its time, was a puny paltry thing compared
with what Boole and Frege later accomplished. Whatever could Gödel have been
thinking? Alas, it seems that he believed in a conspiracy to suppress Leibniz’s
ideas. Gödel had a number of very strange beliefs about many subjects,
amounting to at least a touch of clinical paranoia. Yet his prestige among
logicians is so great that there is hesitancy to simply dismiss any of his ideas.
More about Gödel’s mental problems later.

When Gödel was asked to write about Einstein for the Library of Living

Philosophers, he chose as his topic the relationship between Einstein’s relativity
theory and Kant’s philosophy. He found that the equations of the general theory
of relativity (Einstein’s theory of gravitation) possess a solution quite different
from any physicists had imagined. Remarkably, Gödel’s solution to these



equations represents a universe in which a journey long enough and fast enough
could end up in the past.

Naturally such a world is vulnerable to the paradoxes of time travel familiar to
readers of science fiction: for example, could one travel to the past and kill one’s
own grandparent as a child? Gödel’s surprisingly un-philosophical solution to
this dilemma was to point out that such a voyage would be quite impractical if
only because of the quantity of fuel required.

Gödel routinely revised his articles over and over again with meticulous care,
withholding them from publication until he was completely satisfied. Even after
publication, he would take the opportunity of a reprinting of one of his pieces to
introduce further revisions. All in all this tended to be extremely frustrating to his
editors watching deadlines recede. In the case of Gödel’s promised essay on

Rudolf Carnap for the Library of Living Philosophers, the volume finally
appeared without his contribution.

However, six versions of his intended critique of Carnap’s views on logic and

mathematics were found among Gödel’s papers, and the editors of his Collected

Works decided to publish two of them. Another manuscript found among his
papers was a handwritten draft (with various insertions, deletions, and footnotes)
of the text of a lecture Gödel had given in Providence, Rhode Island, during

Christmas week 1951.* In the lecture, entitled Some Basic Theorems on the

Foundations of Mathematics and Their Implications, Gödel, in effect, placed
Hilbert’s dictum regarding the solvability of every mathematical question in the
context of the nature of the human mind. Gödel raised the question of whether
the human mind was in all essentials equivalent to a computer, a question still
being vigorously debated in the context of prospects for artificial intelligence.

Without proposing to answer the question (although it ultimately became clear
that he believed the correct answer is negative), Gödel maintained that either
answer is “decidedly opposed to materialistic philosophy.” If the full power of the
human mind can be emulated by a finite mechanical device, then Gödel’s own
incompleteness theorem can be brought to bear to show that some proposition
about the natural numbers, while true, can never be proved by human beings, an

absolutely undecidable proposition.
This would contradict Hilbert’s dictum. But according to Gödel, it would also

require some measure of idealistic philosophy just to make sense of a statement
that assumes the objective existence of natural numbers with properties beyond
those that human beings can ascertain. On the other hand, Gödel reasoned that if
the human mind is not reducible to mechanism, whereas, as he believed was



evident, the physical brain is so reducible, it would follow that the mind
transcends physical reality, which again would be incompatible with materialism.
It is not so much that this argument is totally persuasive, but rather that in
bringing together considerations of theoretical logic, human physiology, the
ultimate potential for computers, and fundamental philosophy, Gödel had once
again shown his dazzling capacity to think in radically novel and unexpected

directions.42

A Strange Man and a Sad End

As Kurt Gödel neared retirement age, he hoped that the logician Abraham
Robinson, then at Yale, would take his place at the Institute for Advanced Study.
Before any of this could happen, Robinson was diagnosed with inoperable
pancreatic cancer, and died soon after. During his final months, Robinson
received the following letter from Gödel:

In view of what I said in our discussion last year [about Robinson
coming to the Institute for an extended period of time] you can imagine
how very sorry I am about your illness, not only from a personal point
of view, but also as far as logic and the Institute for Advanced Study
are concerned.

As you know, I have unorthodox views about many things. Two of
them would apply here:

1.  I don’t believe that any medical diagnosis is 100% certain.

2.  The assertion that our ego consists of protein molecules seems to
me one of the most ridiculous ever made.

I hope you are sharing at least the second opinion with me. I am glad to
hear that, in spite of your illness, you are able to spend some time in
the mathematics department. I am sure this will provide some welcome
diversion.43

This letter is quintessential Gödel. What he said about his distrust of medical
diagnosis was certainly an understatement. When he suffered a total blockage of
his urinary duct resulting from an enlarged prostate, he not only refused to accept
the diagnosis, but also insisted that his problem could be treated with additional



doses of the laxatives on which he had already become quite dependent. At one
point he angrily ripped out the catheter that had been inserted. Refusing the
surgery that usually relieves the blockage, he finally accepted the catheter and
used it for the rest of his life.

His attempt to console Robinson by referring obliquely to his belief that the
mind is more than “protein molecules” apparently with the suggestion that there
would be an afterlife is another typical touch.

The boundary between Gödel’s unorthodox views and outright clinical
paranoia was not always clear-cut. Morgenstern records his surprise that Gödel
took ghosts quite seriously. More important, Gödel was convinced that the
refrigerators and radiators in his various apartments in Princeton were giving off
noxious gases, as a result of which he and Adele moved a number of times.
Finally he simply had the offending appliances removed, making his apartment
“a pretty uncomfortable place in the winter time.”

When Gödel sought to become a U.S. citizen, he prepared, in typical Gödel
fashion, for the perfunctory examination on American institutions before a judge
—he submitted the Constitution to the kind of meticulous analysis only he would
have performed. Moreover, he became quite agitated when he concluded that the
Constitution was actually inconsistent. While driving to Trenton, the state capital,
for the process, Einstein and Morgenstern, his supporting witnesses, tried to
distract Gödel from his “discovery,” fearing it might cause trouble if broached.
Einstein told one joke after another. But when the judge asked Gödel whether he
thought a dictatorship like that in Germany was possible in the United States, the
candidate began to explain his “discovery.” Fortunately, the judge quickly
understood with whom he was dealing and interrupted, so that all ended happily.

One may chuckle easily at such anecdotes revealing aspects of Gödel’s
strangeness. But it was not all so amusing. In a paranoid state over the safety of
the food available to him, and with his devoted wife too ill to be much help, he
literally starved himself to death. So, on January 14, 1978, ended the life of one

of the great minds of the twentieth century.44

Appendix: Gödel’s Undecidable Statement

The PM system is much too complicated to describe here. Instead the simpler PA
system will be used to show some of the ingredients entering into the
construction of undecidable propositions. PA can be set up using the 16 symbols

⊃  ¬  ∨   ∧  ∀ ∃ 1–  ⊕   ⊗  x y z ( ) ′  =̇  .



Eccentric versions of the symbols 1, +, × and = have been used to emphasize that
these are to be regarded as mere symbols, while at the same time suggesting their

intended meaning. The letters x, y, and z are used as variables intended to range
over the natural numbers. Because it is necessary to provide for more than three
variables, the symbol ′ is available to generate as many variables as one pleases

by tacking it on to those letters. Thus y′ and z‴ are variables. Because there are
more than 10 symbols, we’ll use a coding scheme in which each symbol is
replaced by a pair of decimal digits:

The natural numbers are represented by certain strings of these symbols called

numerals as follows:

Numeral Number represented Code

1– 1 21
(1–  ⊕  1–) 2 4121222142
((1–  ⊕  1–) ⊕  1–) 3 414121222142222142
(((1–  ⊕  1–) ⊕  1–)  ⊕  1–) 4 41414121222142222142222142
…… … …

Most strings of the 16 symbols are just gibberish, for example:

⊃  1– ′ ( )

whose codes are 152223311411 and 441021434142, respectively. But certain of

these strings, called sentences, can be used to express propositions, true or false,
about the natural numbers. Thus, the string

((1–  ⊕  1–) ⊗  (1–  ⊕  1–)  =̇  (((1–  ⊕  1–)  ⊕  1–)  ⊕  1–))

whose code is

414121222142234121222142444141412122214222214222214242

expresses the true proposition that 2 times 2 is 4, while

⊃ ¬ ∨ ∧ ∀ ∃ 1– ⊕ ⊗ x y z ( ) ′ =̇

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

10 11 12 13 14 15 21 22 23 31 32 33 41 42 43 44

∃  ⊕   ⊗  x ∀ ¬   or =̇  



((1–  ⊕  1–) ⊗  (1–  ⊕  1–)  =̇  ((1–  ⊕  1–)  ⊕  1–))

expresses the false proposition that 2 times 2 is 3. The sentence

(∀x) (¬(x  =̇  1–)  ⊃  (∃y) (x  =̇  (y  ⊕  1–))

whose code is

4114314241114131442142104115324241314441322221424242

expresses the proposition that every natural number except 1 has an immediate
predecessor.

To complete our description of PA it would be necessary to specify certain

sentences as axioms as well as the rules of inference to be used in proceeding
from the axioms to the provable sentences. The list of steps along the way,
beginning with axioms and ending with a sentence provable in PA, is called the

proof of that sentence. Although to do this in full detail would take us too far
afield, we consider as a simple example of what is involved, the sentence

(∀x) (¬(1–  =̇  (x  ⊕  1–))

which is intended to express the proposition that 1 is not the immediate successor
of any natural number. This sentence might well be chosen as one of the axioms.
Since sentences like this beginning with the symbol ∀ are intended to express

assertions stating that some property holds for all natural numbers, one natural
rule of inference that would apply to sentences of that kind would permit a

substitution of some numeral for x (after removing the universal quantifier (∀x)).
This is just a matter of proceeding from a general statement to a specific instance
of it. Here is a simple example:

(∀x) ¬(1– =̇ (x ⊕ 1–))

¬(1– =̇ (1– ⊕ 1–))

The conclusion, a provable sentence of PA, is obtained by substituting 1– for the

variable x, and expresses the fact that 1 and 2 aren’t equal.

In addition to strings that express propositions, there are others, called unary,
that can be used to define sets of natural numbers. Such strings are to contain the

symbol x but not the quantifiers (∀x) or (∃x) (although it may contain quantifiers



with respect to other variables such as y or x″). In addition, unary strings are to

possess the crucial property that if x is replaced everywhere by some numeral the
resulting string is a sentence. An example of a unary string is:

(∃y)  (x  =̇   ((1–  ⊕  1–)  ⊗  y))

whose code is

4115324241314441412122214223324242

If x is replaced by (1–  ⊕  1–) the true sentence

(∃y)  ((1–  ⊕  1–)  =̇   ((1–  ⊕  1–)  ⊗  y))

is obtained. If 1– is used instead, the false sentence

(∃y)  (1–  =̇   ((1–  ⊕  1–)  ⊗  y))

is obtained. This unary string can be thought of as providing a definition of the
set of even numbers. The more complicated unary string: string:

(∀y) (∀z) ((x  =̇  (y  ⊗  z))  ⊃  ((y  =̇  1)  ∨  (y  =̇  x)))

whose code is

41143242411433424141314441322333424210414132441421241324431424242

defines the set consisting of 1 and all prime numbers. For a given unary string A

and natural number n we’ll use the notation [A: n] to stand for the sentence

obtained by replacing x in A by the numeral that represents the number n. For
example,

[(∃y)  (x  =̇   ((1–  ⊕  1–)  ⊗  y))  :  2]

stands for the sentence

(∃y)  ((1–  ⊕  1–)  =̇   ((1–  ⊕  1–)  ⊗  y)).



Now we can explain how Gödel’s methods can be used to produce a sentence U
of PA that expresses the proposition that it is not provable in PA. Using the code
numbers assigned to unary strings, we can arrange all of them in order of the
sizes of their codes. In this ordering the unary string with the smallest code is 

(x  =̇  1–), and its code is 4131442142, over four billion. We write A1 to stand for

this unary string, and imagine all unary strings arranged in a sequence

A1,  A2,  A3,   …

according to the size of their codes. Because these are unary strings, for any

natural numbers n, m, the string [An: m] will be a sentence. Some of these

sentences will be provable in PA; others will not. For each n we can consider the

set of those values of m for which [An: m] is not provable in PA. Recalling our
discussion of Cantor’s diagonal method, we see that such a set can be thought of

as a package with n as its label.
Applying the diagonal method, that is, identifying the label with one of the

elements in the package it labels, we form the set K consisting of those numbers

n such that [An: n] is not provable in PA. The fact that provability in PA turns out
to be definable in PA enables us to find (and, of course, this is the hard part) a

unary string B that defines this very set K in PA. Now there must be some number

q such that B = Aq because all unary strings were included in the sequence of As.

Thus, for every natural number n, the sentence [Aq: n] expresses the proposition

[An  :  n] is not provable in PA.

In particular, with n being given the value q, we can see that [Aq: q] expresses
the proposition

[Aq  :  q] is not provable in PA.

So [Aq: q] is a sentence of PA that expresses the proposition that it is not
provable in PA.

*  Carnap’s doctorate was from the University of Jena where he studied under Frege. He was a leading

figure in the philosophy called logical positivism. From 1935 on, he held positions at American universities,
first at the University of Chicago and then at UCLA.



Hans Hahn, Gödel’s dissertation advisor, made important contributions to a number of branches of
mathematics, and was also interested in philosophical questions.

*For an explanation of how Gödel was able to construct a statement such as U that asserts its own
unprovability, see the appendix at the end of this chapter.

*An interpreter works by translating the individual steps of a program into machine language, and

actually executing each step before proceeding to the next. A compiler translates an entire program into
machine language. The machine language program thus produced can be run as a stand-alone item, without
further need for the compiler. Much contemporary commercial software is generated by compilers.

*According to one account she danced at Der Nachfalter, a nightclub whose name “the moth” was
intended to suggest shadowy creatures of the night. Another version has it that she was a ballet dancer

*The building where Princeton’s mathematics department is housed today is also called Fine Hall; it is
visible as a concrete tower from U.S. Highway 1, a mile away

†Alonzo Church (1903—1995) played a crucial role in the development of a flourishing research effort in

logic in the United States. He established the influential Journal of Symbolic Logic and served as its editor
for over 40 years. Among Church’s 31 doctoral students were Alan Turing and, incidentally, me as well.

*There is some reason to believe that there was some plan afoot for the newlyweds to travel together to
Princeton. See Dawson (1997, pp. 128—129).

*This was the prestigious once-a-year Gibbs lecture, given at the invitation of the American Mathematical
Society. I was lucky to be in the audience at the lecture which had a profound influence on my own views
about the foundations of mathematics.



CHAPTER 7

Turing Conceives the All-Purpose Computer

As early as 1834, Charles Babbage had conceived an automatic calculating

machine. His proposed but never constructed analytical engine was intended

to carry out numerical computations of the most varied kind.* To emphasize

the power and scope of his engine, Babbage remarked facetiously that “it

could do everything but compose country dances.” 1 While for Babbage, it

was self-evident that machines designed for computation could not be

expected to compose dances, it does not strike us today as being at all out of

the question. In fact, today’s computers can perfectly well be programmed to

compose country dances (although perhaps not of the finest quality).

Someone today seeking a similar figure of speech

Computers can do everything but . . .

to emphasize the power and scope of computers would not find it easy to

complete the sentence. Almost any imaginable task involving symbols,

numbers, or text is already within the competence of computers or some

expert is insisting that it soon will be so. As a last resort one could try

“Computers can do everything but read our thoughts,” or “Computers can do

everything but communicate with angels.”

Clearly, our very concept of what constitutes computation has been altered

drastically. The underlying conception on which this expanded view of

computation is based was formulated by Alan Turing in 1935 in the process

of solving a problem in mathematical logic posed by David Hilbert.

Babbage had intended to build his engine entirely out of mechanical

components like gears, and given the complexity of the proposed device, it is

not surprising that he failed. It was only with the development, beginning in

the 1930s, of electromechanical calculators using electrical relays, that

machines achieved the scope Babbage had envisioned. But during the 1930s



and 1940s none of those involved with this work spoke of machines going

beyond straightforward mathematical calculation. As we will see, the person

who first succeeded in bringing Babbage’s vision to life was Howard Aiken.

He wrote:

If it should turn out that the basic logics of a machine designed for

the numerical solution of differential equations coincide with the

logics of a machine intended to make bills for a department store, I

would regard this as the most amazing coincidence that I have ever

encountered.2

Aiken made this remarkable assertion in 1956 when computers that could

readily be programmed to do both of these things were already commercially

available. If Aiken had grasped the significance of Alan Turing’s paper,

published two decades earlier, he would never have made such a preposterous

statement.

A Child of the Empire

Alan Turing’s father, Julius Turing, was a great success as a civil servant in

India. In the spring of 1907, after more than a decade of service, he was ready

for a leave to England. It was on the voyage home, via the Pacific, that he met

Alan’s mother, Ethel Sara Stoney. She had been born in Madras, and after

growing up in Ireland and spending six months in Paris, had returned to India.

A shipboard romance developed swiftly, and they crossed the United States

together, stopping for a tour of Yellowstone Park. With her father’s approval,

they married in Dublin in the fall, before returning to India that winter.

Alan’s older brother John was born in September 1908. Julius’s duties

required extensive travel in the south of India, often accompanied by Ethel

Sara and the baby. It was in the fall of 1911, while on these rounds, that Alan

was conceived. After Julius managed to obtain another leave, the family

sailed together to England. Alan Mathison Turing was born in London on

June 23, 1912.3

The remorseless work required to manage the empire made a life together a

difficult proposition for the Turing family. The father’s career was in India

where the prevalence of tropical disease was particularly dangerous for young



children, and where a befitting education for them was not to be had. The

mother could be with her husband or with her children; only when the father

was on leave could she be with both. Alan was only 15-months old when his

mother arranged to leave him and his four-year-old brother to board with a

retired colonel and his wife in England, while she returned to India.





ALAN TURING
(© National Portrait Gallery, London)

Mrs. Turing managed to spend a few months with the children in 1915, and

in the spring of 1916 both parents made the voyage home. But this time the

trip was dangerous because of the German submarines, and so Mrs. Turing

remained in England when her husband returned to India. Thus the grim war

actually benefited Alan by keeping his mother in England. He was a

precocious happy child who made friends readily, but was clumsy and untidy.

It was not at all uncommon for six-year-old boys to be sent to boarding

schools, but Alan’s mother kept him at home, sending him to a local day

school to learn the Latin deemed essential. There he struggled with scratchy

pens, leaky fountain pens, and terrible penmanship.

When his mother left for India in 1919, the seven-year-old Alan returned to

the colonel’s establishment. After an interval of almost two years, she

returned to find that her child had not been doing very well. Instead of the

cheerful little boy she had left, she found an “unsociable” introverted child

whose basic education had been badly neglected. After doing her best to get

him ready, she enrolled him in the small boarding school where his brother

John was already a student. The two were together only for a few months

before John left for a “public school.”* So it was, that after a summer

vacation, Alan was left by his parents to cope alone with boarding school life.

He showed what he felt about the prospect by running miserably after his

parents’ departing automobile.

By the time the 14-year-old Alan Turing began his residence at the

Sherborne public school, his passion for science and mathematics had been

established. He found himself in an environment in which competitive sports

were valued and mathematics most emphatically was not.* One of his

teachers thought of science in general as “low and cunning,” and spoke of

mathematics as imparting a bad smell to a room.4

Alan’s mathematical genius was recognized but belittled. His parents were

warned of the danger of his becoming a mere science specialist. Above all,

there was the dirty, blotted work in his almost illegible handwriting.

Meanwhile, having little to do with the other boys and paying little attention



to his classes (but doing well enough on exams), Alan carried on his own

little mathematical investigations and studied Einstein’s theory of relativity.

Life changed for Alan when he found a friend, and more than a friend.

Christopher Morcom shared Alan’s passion for science and mathematics.

Unlike Alan, Christopher was a diligent student who took all of his school

work seriously, and whose written work was impeccably neat. Alan’s

admiration for Chris knew no bounds, and he determined to be more like him.

It is unclear at what point in his life Alan Turing became fully aware of his

homosexuality, but it is natural to suppose that, at least for Alan, the

friendship with Chris had erotic overtones. Turing’s biographer calls Alan’s

feelings “first love,” and indeed they had that intensity. It is impossible to

know how the relationship would have developed, how Alan’s feelings might

have been modulated, had not tragedy intervened. Unbeknownst to Alan, his

friend had been suffering from tuberculosis, and he died in February 1930,

remaining forever enshrined as a symbol of perfection in Alan’s mind.5

By his final year at Sherborne, Alan had become so successful in his

studies that he was able to win a scholarship to Kings College at Cambridge

University. In addition to room and board, he was provided with a stipend of

£80 a year, just about half of what a skilled worker could have hoped to earn

at the time.6 Where mathematics had been in bad odor at Sherbourne, at

Cambridge Turing found himself in an atmosphere in which his mathematical

genius could flourish.

Cambridge’s great mathematician was G. H. Hardy (1877–1937) whose

Course of Pure Mathematics, published in 1908 has been a classic textbook

from which successive generations of student mathematicians came to grips

with the fundamental properties of limit processes. (It is still in print as this is

being written.)

Hardy has been portrayed in connection with a self-educated postal clerk

from Madras named Ramanujan, whose mathematical genius Hardy brought

to light, both in a public television program and in a popular film.

Among the lecture courses available to Turing were those of Hardy and

also those of the mathematical physicist and astronomer Sir Arthur

Eddington, who had led the 1919 expedition to West Africa, where a total

eclipse of the sun had made it possible to observe the behavior of starlight

passing near the sun, and thereby obtain the first confirmation of Einstein’s



prediction, in his general theory of relativity, concerning the bending of such

light as the result of the sun’s gravitational pull.

Eddington’s lectures raised the question of why so many statistical

observations seemed to align themselves along the famous bell-shaped curve

known as the “normal” distribution. Eddington’s lectures would also have

covered the still new quantum theory then revolutionizing physics. But the

work in this area that attracted Turing’s serious attention was a recently

published book on the mathematical foundations of quantum mechanics by

John von Neumann (whom we have met in the previous two chapters and will

encounter again), a book Alan had won as a prize at Sherborne.

The ubiquitous occurrence of the bell-shaped normal distribution stressed

in Eddington’s lectures fascinated Turing, and he sought an underlying

mathematical explanation. He found it by working out a proof that a diverse

range of statistical distributions do tend “in the limit” to the normal

distribution. This was an application par excellence of the limit processes of

the calculus. Alan Turing didn’t know that he had discovered nothing new,

that his result was well known as the “central limit theorem.” Nevertheless,

his achievement was found sufficiently impressive for him to be offered a

position as a fellow, although ordinarily this would have required something

new.

Turing was now a Cambridge “don” with an annual stipend of £300. It was

a three-year appointment with an almost automatic renewal for another three.

There were no specific duties attached to the fellowship, and Turing could

now take dinner at “high table,” literally looking down on the undergraduates.

If he wished, he could earn additional income by serving as a tutor to

undergraduates. The appointment placed Turing on a path ordinarily expected

to lead to an academic career.*

At Sherborne, the alleged bad smell of mathematics and the admonitions to

avoid being a mere “scientific specialist” were forgotten amidst the

celebration of the success of one of their old boys. The students were granted

a special half-day holiday, and the verse

Turing

Must have been alluring

To get made a don

So early on.7



was shamelessly passed around.

It didn’t take long after his appointment for Turing to produce his first bit

of genuinely new mathematics leading to a published paper. As it happened,

what he had obtained was an improvement of a theorem proved by von

Neumann in a highly specialized field known as the theory of “almost-

periodic functions.” Turing was now well on the way to a career as a

successful research mathematician whose accomplishments would be of

interest only to other specialists. Then, he attended a course of lectures on the

foundations of mathematics given at Cambridge in the spring of 1935, and

Turing learned about the Entscheidungsproblem.

Hilbert’s Entscheidungsproblem

Leibniz had dreamt of human reason reduced to calculation and of powerful

mechanical engines to carry out calculations. Frege had provided for the first

time a system of rules that could plausibly account for all of human deductive

reasoning. Gödel, in his doctoral dissertation of 1930, had proved that Frege’s

rules were complete, answering a question posed by Hilbert two years earlier.

Hilbert had also sought explicit calculational procedures by means of which it

would always be possible to determine, given some premises and a proposed

conclusion, written in the notation of what has come to be called “first-order

logic” whether Frege’s rules would enable that conclusion to be derived from

those premises.8

The task of finding such procedures came to be known as Hilbert’s

Entscheidungsproblem (literally: decision problem), Of course, systems of

calculational procedures for solving specific problems were not new. Indeed

the traditional mathematical curriculum has been largely made up of such

calculational procedures, otherwise known as algorithms. We begin by

learning algorithms for addition, subtraction, multiplication, and division of

numbers, we move on to algorithms for manipulating algebraic expressions

and solving equations, and, if we continue to calculus, we learn how to use

the algorithms originally developed by Leibniz for that subject.

However, Hilbert was asking for an algorithm of unprecedented scope. In

principle, an algorithm for his Entscheidungsproblem would have reduced all

human deductive reasoning to brute calculation. To a considerable extent, it

would have been a fulfillment of Leibniz’s dream.



Mathematicians often like to approach a difficult problem from two

directions. On the one hand, they try to do what they can with special cases of

the general problem. Moving in the other direction, they try to reduce the

general problem to certain special cases. If all goes well, the two approaches

meet in the middle, providing a solution to the general problem.

Work on the Entscheidungsproblem proceeded on exactly these lines, and

indeed the gap between the special cases for which algorithms had been

found and the cases to which the general problem had been reduced had been

narrowed to such an extent that it was possible to hope that a small further

advance would eliminate the gap entirely, and thus provide the algorithm

Hilbert sought.9 One skeptic was Cambridge’s G. H. Hardy who somewhat

indignantly commented: “There is of course no such theorem, and this is very

fortunate, since if there were we should have a mechanical set of rules for the

solution of all mathematical problems, and our activities as mathematicians

would come to an end.”10 Hardy was certainly not the first craftsman to be

convinced that his skill could never be replaced by a mere mechanism, but

this craftsman turned out to be right!

Another Cambridge don, M. H. A. (Max) Newman, 15 years older than

Turing and a Fellow of St. John’s College, was to play an important and

continuing role in the younger man’s career. Newman had made pioneering

contributions to topology, at the time a relatively new branch of mathematics.

Roughly speaking, topology deals with properties of geometric figures that

remain undisturbed by any amount of stretching, so long as there is no

tearing.

Newman’s lecture course on topology at Cambridge introduced many

young mathematicians to this burgeoning field, and he wrote an excellent

textbook on the subject. When Newman attended the 1928 International

Congress of Mathematicians in Bologna, he heard Hilbert set forth goals that,

only two years later, the young Kurt Gödel would show were unattainable.

Apparently intrigued by these developments, Newman gave a lecture course

in the spring term of 1935 on the foundations of mathematics featuring

Gödel’s incompleteness theorem as its climax. Attending this course, Turing

learned about Hilbert’s Entscheidungsproblem. Quite apart from the

incredulity of mathematicians such as Hardy, after Gödel’s work it was hard

to believe that there could be an algorithm such as Hilbert had wanted. Alan



Turing began to think about how it could be possible to prove that no such

algorithm exists.

Turing’s Analysis of Computation Process

Turing knew that an algorithm is typically specified by a list of rules that a

person can follow in a precise mechanical manner, like a recipe in a

cookbook. But he shifted his focus from the rules to what the person actually

did when carrying them out. He was able to show, by a process of

successively stripping away inessential details, that such a person could be

limited to a few extremely simple basic actions without changing the final

outcome of the computation.

Turing’s next step was to see that the person could be replaced by a

machine capable of performing these same basic actions. Then, by proving

that no machine performing only those basic actions could determine whether

a proposed conclusion follows from given premises using Frege’s rules, he

was able to conclude that no algorithm for the Entscheidungsproblem exists.

As a byproduct, he found a mathematical model of an all-purpose computing

machine.

To try to follow what Turing’s thought processes might have been, let us

imagine ourselves watching a computation in progress. What was the person

doing the computing actually doing? She (for it seems that most often women

did this work in the 1930s) was making marks on a sheet of paper.* She could

be observed shifting her attention back and forth from what she had written

earlier to what she is writing now.

Turing wanted to strip this description of irrelevant detail. Was she sipping

a cup of coffee while working? Surely not relevant. Was she writing with

pencil or with pen? Again, that surely doesn’t matter. What about the size of

the sheets of paper? Well, if the paper size is small, she may well need to look

back at previous sheets more often. But Turing easily convinced himself that

this was a matter of convenience not of necessity. Nothing essential would

really change if she were restricted to paper so short that she couldn’t write

symbols under one another, in effect if she used something like a roll of paper

tape ruled into horizontal squares. To keep things simple, let us imagine that

she is working out a multiplication example:



Without losing anything essential, we can imagine her doing her work along a

paper tape like this:

Turing convinced himself that, while it might be a bit of a nuisance to deal

with a complicated calculation along such a one-dimensional tape, there was

no fundamental problem in doing so. Let us continue to observe the

computation in progress, now restricted to a roll of paper tape. We watch as

our subject glances back and forth along the tape, writing symbols,

sometimes backing up and erasing symbols so new symbols can be written in

their place. Her decision about what to write next will depend on which

symbols she is paying attention to, but also on her current state of mind. Even

in the case of our simple multiplication example, as she notes pairs of digits,

her state of mind will determine whether she multiplies or adds them. As she

begins, her tape looks like this:

An arrow (⇓) appears above the digits 1 and 7 to indicate that those symbols

are initially receiving her attention. Multiplying them gives 7 which she

writes on the tape:

She has now shifted her attention to the digits 3 and 7 which are to be

multiplied in turn. After the phase of the computation in which she multiplies

pairs of digits is completed, she will need to add her two partial products:

4231
      × 77
29617

296170
325787



She begins this phase by adding 7 and 0, obtaining:

Now she must add 1 and 7 to get 8. Notice that the digits that have her

attention at this point, 1 and 7, are the same digits that she multiplied when

she began the calculation. But although the digits are the same, her state of

mind is different and leads her to add them instead.

The simple example illuminates crucial features of any computation. A

person carrying out a computation—in arithmetic, algebra, calculus, or any

other branch of mathematics—operates under the following constraints:

•  At each stage of a computation only a small number of symbols receive

attention.

•    The action taken at each such stage depends only on the particular

symbols receiving attention and on the current state of mind of the

person carrying out the computation.

How many symbols can a person deal with simultaneously? And how many

are really needed to carry out a computation correctly? As for the first

question, the number surely depends on the particular person, but in any case

the answer is not very many. Regarding the second question, the answer is 1.

This is because the effect of paying attention to several symbols

simultaneously can always be obtained by paying attention to each of them

singly.11

Moreover the effect of shifting attention from a particular square on the

tape to another a certain distance away can be obtained by a succession of

moves, each of which involves a shift one square to the right or one to the left.

This analysis leads to the conclusion that any computation whatever can be

envisioned as proceeding in the following manner:



•  The computation is carried out by writing symbols in squares on a ruled

paper tape.

•  At each step the person performing the computation pays attention to the

symbol written in only one of these squares.

•  Her next action will depend on this symbol and her state of mind.

•  This next action will consist of writing a symbol on the square to which

she has been paying attention and then possibly shifting her attention to

the square immediately to the left or immediately to the right.

Now it is easy to see that the person doing the work can be replaced by a

machine: the tape—which can be visualized as magnetic tape with the written

symbols represented by coded information along the tape—moves back and

forth in the machine. The states of mind of the person carrying out the

computation are represented by different configurations of the internals of the

machine. The machine must be designed so that at each moment it is sensitive

to exactly one symbol on the tape, the scanned symbol.

Depending on its internal configuration and on the scanned symbol, the

machine will write a symbol on the tape (replacing the one scanned) and then

either continue to scan the same square, or else shift to the position

immediately to the left or to the right on the tape. For the purpose of the

computation, it doesn’t matter how the machine is constructed or even what it

is made of; all that is significant is that it have the capability of assuming a

number of different configurations (also called states) and that it behave

appropriately in each such configuration or state.

The point is not to actually build one of these so-called Turing machines—

after all, they are merely mathematical abstractions.* What is important is

that on the basis of Turing’s analysis of the notion of computation, it is

possible to conclude that anything computable by any algorithmic process can

be computed by a Turing machine. So if we can prove that some particular

task cannot be accomplished by a Turing machine, we can conclude that no

algorithmic process can accomplish that task. That is how Turing proved that

there is no algorithm for the Entscheidungsproblem. In addition, Turing

showed how to produce a Turing machine that alone could do anything that

could be done by any Turing machine whatever—a mathematical model of an

all-purpose computer.



Turing Machines in Action

Turing’s analysis of the process of computation has led to the conclusion that

any computation can be carried out by one of the severely circumscribed

devices that have come to be called Turing machines. It will be worthwhile to

examine a few simple examples.

What is needed to exhibit a particular Turing machine? To begin with, a list

of all of its possible states is required. Then, for each of these states and each

symbol that might be encountered on the tape, it is necessary to specify the

machine’s action in that state when confronted by that symbol. This action, let

it be recalled, is to consist simply of a possible change of symbol on the

square being scanned, a movement one square to the left or to the right, and a

possible change of state. Using uppercase letters to stand for the different

machine states, we can symbolize the statement:

When the machine is in state R scanning the symbol a on the tape, it

will replace a by b, move one square to the right, and then shift into

state S

by the formula R a: b → S. The analogous statement calling for motion one

square to the left will similarly be symbolized as R a: b ← S. Finally, a

statement calling for a change of the symbol on the tape without any motion

along the tape will be symbolized as R a: b ⋆ S. It is usual to call these

formulas quintuples because it takes five symbols to specify one of them (not

counting the colon). Any Turing machine may then be characterized by a list

of such quintuples.

Let us see how to produce a Turing machine that tests a given natural

number to see whether it is even or odd. The given number will be written in

the familiar (decimal) notation as a string of the digits 1, 2, 3, 4, 5, 6, 7, 8, 9,

0. Of course it is very easy to tell at a glance whether a number (written this

way) is even or odd. Just look at the rightmost digit: if it is 1, 3, 5, 7, or 9, the

number is odd; otherwise it is even. But the setup we’ll use will have the

machine beginning by scanning the leftmost digit. Since a Turing machine can

only deal with one digit at a time and can only move one square at a time,

how to manage this computation isn’t totally obvious. The “input” number is

written on the tape like this:



Here 94383 is written on the tape, and the machine is shown in its initial state

Q scanning the leftmost square. Although the tape is shown with only five

squares (just enough to contain the input) it is crucial that there be no limit to

the amount of tape available for a computation. For this reason a blank square

will always appear if the machine tries to move off the right end of the tape.

We treat the blank as a special character, written □.

Our Turing machine will always start in state Q scanning the leftmost

square. Whatever number is input to the machine, it will eventually terminate

with a tape that is blank except for one square. That one square will contain a

0 if the original input was even and a 1 if it was odd. The machine will have

four states symbolized by Q, E, O, and F. As stated Q is the initial state.

Q 0: □ → E Q 2: □ → E Q 4: □ → E Q 6: □ → E Q 8: □ → E

Q 1: □ → O Q 3: □ → O Q 5: □ → O Q 7: □ → O Q 9: □ → O

E 0: □ → E E 2: □ → E E 4: □ → E E 6: □ → E E 8: □ → E

E 1: □ → O E 3: □ → O E 5: □ → O E 7: □ → O E 9: □ → O

O 0: □ → E O 2: □ → E O 4: □ → E O 6: □ → E O 8: □ → E

O 1: □ → O O 3: □ → O O 5: □ → O O 7: □ → O O 9: □ → O

E: □ ⋆ 0 F O: □ ⋆ 1 F

The set of quintuples constituting the Turing machine

Whatever state the machine is in, if it scans an even digit it will erase that

digit (i.e., it will print a blank over it), move one square to the right, and then

enter state E. Similarly, scanning an odd digit, it will erase it, move to the

right, and enter state O. Eventually it will have scanned and erased the entire

input and arrive at an empty square. At this point it will print a 0 if it has

arrived in state E and a 1 if it has arrived in state O. Then, it will move one

square to the left and halt. The set of quintuples constituting this machine is

shown in the illustration on the previous page.



The complete computation beginning with the sample input 94383 shows

the operation of the machine in detail:

The machine begins in state Q scanning the 9. The applicable quintuple is in

the second row, last column of the listing. This quintuple causes the machine



to erase the 9, move one place to the right, and to enter the state O. In state ⋄

scanning a 4, the quintuple in the fifth row, third column applies.

Accordingly, the machine erases the 4, moves to the right and enters state

E. Next, in state E, scanning a 3, the quintuple in the fourth row, second

column causes the 3 to be erased and the machine continues right, entering

state O. In O, scanning 8, it’s the fifth row, last column that comes into play,

erasing the 8, moving right and entering state E. Once again in state E

scanning 3, it’s the fourth row, second column that applies causing the 3 to be

erased and the machine to move right entering state O.

In O scanning a blank square, the last row, second column applies. The

blank is replaced by 1, and the machine stays put and enters state F. In state F,

facing a blank, there is no applicable quintuple, and the machine (doubtless

tired from all of this work) halts. At the conclusion of the computation, there

is only the digit 1 on the tape, which is correct because the input was odd.

Unlike physical devices, Turing machines benefit from their existence as

mere mathematical abstractions by having no limitations on the amount of

tape they can use. The Turing machine consisting of the single quintuple

Q  □   :   □   →  Q

when started on a blank tape will just keep moving to the right “forever” as

the amount of tape traversed keeps expanding:



A Turing machine computation can continue “forever” without ever halting

even when it only traverses a fixed amount of tape. For example, consider the

Turing machine consisting of the two quintuples:

.

With input 12, this machine will bounce back and forth “forever” like this:

Q 1  :  1  →  Q and Q 2  :  2  ←  Q



This behavior is dependent on the input. For example, if the input is 13, the

computation of that same machine will be as follows:



In state Q scanning 3, no quintuple is applicable and the machine halts.

In summary, some Turing machines with some inputs eventually halt;

others do not. Applying Cantor’s diagonal method to this situation led Turing

to problems that could not be solved by Turing machines, and from there to

the unsolvability of the Entscheidungsproblem.

Turing Applies Cantor’s Diagonal Method

The climax of Max Newman’s course that had brought the

Entscheidungsproblem to Alan Turing’s attention was Gödel’s

incompleteness theorem. So it was natural for Turing, contemplating the

representation of his machines as lists of quintuples, to think of using natural

numbers as codes for the machines, and of using Cantor’s diagonal method.

We’ll follow Turing’s line of thought, and set up a code similar to, but not

identical with, the one he used.

For the purpose of setting up our coding scheme, we think of the quintuples

constituting a Turing machine written one after the other separated by

semicolons. Thus the Turing machine consisting of the pair of quintuples:

would be written: Q1:1→Q;Q2:2←Q. Then we replace each symbol by a

string of decimal digits according to the following scheme:

•  Strings beginning and ending with 8 with only the digits 0, 1, 2, 3, 4, 5

between will be used for symbols on the tape. The table below gives the

representations we’ll use for the decimal digits and □ (as tape symbols)

and also for the symbols → ← ⋆: ;

Q 1  :  1  →  Q and Q 2  :  2  ←  Q



Symbol Representation Symbol Representation

0 8008 □ 8558

1 8018 → 616

2 8028 ← 626

3 8038 ⋆ 636

4 8048 : 646

5 8058 ; 77

6 8518

7 8528

8 8538

9 8548

•  Strings beginning and ending with 9 with only the digits 0, 1, 2, 3, 4, 5

between will be used for states. In particular, the start state Q will be

represented by the string 99.

Thus the two-quintuple Turing machine would be coded by 998018 646 8018

616 99 77 998028 646 8028 626 99. For the Turing machine we built to

distinguish even from odd numbers, we can code the states E, O, F by 919,

929, and 939, respectively. The code number for the entire machine would

then be:

9980086468558616919 77 9980286468558616919 77

9980486468558616919 77 9985186468558616919 77

9985386468558616919 77 9980186468558616929 77

9980386468558616929 77 9980586468558616929 77

9985286468558616929 77 9985486468558616929 77

91980086468558616919 77 91980286468558616919 77

91980486468558616919 77 91985186468558616919 77

91985386468558616919 77 91980186468558616929 77

91980386468558616929 77 91980586468558616929 77

91985286468558616929 77 91985486468558616929 77

92980086468558616919 77 92980286468558616919 77

92980486468558616919 77 92985186468558616919 77

92985386468558616919 77 92980186468558616929 77



92980386468558616929 77 92980586468558616929 77

92985286468558616929 77 92985486468558616929 77

91985586468008636939   77   92985586468018636939

Although this is just one big number, it has been displayed with spaces to

show the codes for the individual quintuples. Notice that it is a

straightforward matter to recover the quintuples from the code: First find the

77s that separate the codes of the individual quintuples, and then decode each

quintuple. For example, the code 92985386468558616919 separates into 929

8538 646 8558 616 919 which decodes into O 8: □  → E. Of course the

coding could have been set up in many different ways, but this scheme has

this important and useful property of transparent decodability.*

As with the above examples, any Turing machine can be thought of as

initially scanning the leftmost digit of a number written on its tape. For some

of these numbers, the machine will eventually halt, while for others it may

continue forever. Let us call the set of those natural numbers in the first of

these categories the halting set of that particular Turing machine. Now, if we

think of the halting set of a Turing machine as constituting a package and of

the code number of that machine as labeling that package, then we have a

typical setup for applying the diagonal method: labeled packages in which the

labels are exactly the kinds of things in the packages—in this case, natural

numbers.† The diagonal method will permit us to manufacture a set of natural

numbers we will call D that is different from any halting set of a Turing

machine. Here’s how:

D will consist entirely of code numbers of Turing machines. For

each Turing machine, its code number will belong to D if and only

if it does not belong to the halting set of that machine.

Thus, if the code number of some particular Turing machine belongs to its

halting set, then that code number doesn’t belong to D. On the other hand, if

that code number doesn’t belong to the machine’s halting set, then it does

belong to D. In either case D cannot be the same set of numbers as the halting

set of the machine in question. Since this is the case for every Turing

machine, we can conclude:



The set D is not the halting set of any Turing machine.

But wait! We present a stubborn person who remains unconvinced. We listen

in on a conversation between the Stubborn Person (SP) and the Omniscient

Author (OA):

SP: I didn’t quite follow that reasoning, but in any case I know that I can

construct a Turing machine whose halting set is D. In fact (showing a

piece of paper) here it is.

OA: I see. Would you kindly calculate the code number of your machine.

SP: Gladly! Let me see. The number is

998038646855861692977. . . . . . 7792985286468558616929

(showing some enormous number).

OA: OK. And is this number in the halting set of your machine?

SP: Wait! I must work this out. No. No. It’s not in my machine’s halting

set.

OA: Now listen, Stubborn Person! If this number is not in your machine’s

halting set, then from the way D was defined, the number must be in D.

Since this number is in D and is not in your machine’s halting set, the

two sets must be different.

SP: Let me check my work. Oh I see. I made a small mistake. Very silly of

me. In fact this number is in my machine’s halting set. I apologize for

my foolish mistake.

OA: Not so fast! From the way D was defined, if the code number of your

machine is in its halting set, then it most certainly is not in D. So the

two sets must be different.

SP: What you are saying sounds plausible enough. But if I were to agree

that you’d proved your point, then I’d no longer be a Stubborn Person.



Unsolvable Problems

A set of natural numbers D has been defined that is different from the halting

set of any Turing machine. But what possible connection can this possibly

have to the Entscheidungsproblem? The connection has to do with the reason

that Hilbert called this the fundamental problem of mathematical logic.

Hilbert understood that a solution to the Entscheidungsproblem would

provide an algorithm for settling all mathematical questions. This same

understanding underlay Hardy’s certainty that there would never be a solution

to the Entscheidungsproblem. If we take this seriously, it implies that if there

is any example of a mathematical problem which can be shown to be

algorithmically unsolvable, then the Entscheidungsproblem must be

unsolvable. The set D will provide us with such an example.

We consider the following problem:

Find an algorithm to determine for a given natural number whether or

not it belongs to the set D.

This is our example of an unsolvable problem. Our first step in showing that

there is no such algorithm is to observe that by Turing’s analysis of the

computation process, if there were such an algorithm, there would be a Turing

machine that could accomplish the same thing. Just as with the Turing

machine constructed to distinguish even from odd numbers, we can visualize

such a machine as beginning to scan the leftmost digit of the given number in

an initial state Q, like this.

Likewise, we would want the machine to halt eventually, with a tape that is

blank except for a single digit: 1 if the input number belongs to the set D, and

0 if it doesn’t. Finally we would want it to halt in a state F with the property

that no quintuples of the machine begin with the letter F.* For example,



Now let us imagine adding the following two quintuples to our imagined

Turing machine:

With an input that belongs to D, the new machine will behave as before,

eventually coming to a halt with 1 on the tape. However, with an input that

doesn’t belong to D, this machine will move to the right forever. Hence, the

halting set of this supposed new machine is exactly the set D. However, this is

impossible because D was constructed using the diagonal method so as to be

different from the halting set of any Turing machine whatsoever. So our

supposition that there is an algorithm for distinguishing members from non-

members of D must have been wrong. There is no such algorithm! The

problem of algorithmically distinguishing members from non-members of D

is unsolvable!

As we have seen, Hilbert and Hardy both believed that an algorithmic

solution to the Entcheidungsproblem would imply that any mathematical

problem can be decided by an algorithm. So once we have a mathematical

problem that is algorithmically unsolvable, the unsolvability of the

Entscheidungsproblem should follow. To see how to make the connection

with the set D, we associate with each natural number n the following

proposed premise and conclusion:

PREMISE. The natural number n is the code number of some Turing machine

and the same number n is placed on its tape with the leftmost digit

scanned.

CONCLUSION. A Turing machine started in that manner will eventually

halt.

F 0  :   □   →  F and F  □   :   □   →  F.



Using the language of first-order logic both of these sentences can be

translated into logical notation. It is then possible to prove that the conclusion

can be derived using Frege’s rules from the premise if and only if the Turing

machine in question really will eventually halt when started with its own code

number on its tape. And, this in turn is true if and only if n does not belong to

D.

So, if we possessed an algorithm for the Entscheidungsproblem, we could

use it to decide membership in D. Namely given a natural number n we could

use our supposed algorithm for the Entscheidungsproblem to check whether

or not the conclusion follows from the premise. If it does, we would know

that n doesn’t belong to D, and if not, we would know that n does belong to

D. It follows that the Entscheidungsproblem is algorithmically unsolvable.12

Turing’s Universal Machine

There was something troubling about what Turing had done. He had proved

that no Turing machine could be used to solve the Entscheidungs-problem.

However, to conclude that there is no algorithm of any kind for the

Entscheidungsproblem, Turing had recourse to his discussion of what

happens when a human carries out a computation.

Just how convincing was his argument that any such computation could

just as well be carried out by a Turing machine? To buttress his case, Turing

proved that a variety of complicated mathematical calculations could be done

on Turing machines.* But the most audacious and far-reaching idea he came

up with for testing the validity of what he had done was the universal

machine.

Think of two natural numbers written on a Turing machine tape (in the

usual decimal notation) separated by a blank square. The first number is to be

the code of some Turing machine, and the second is to be an input to that

machine:

CODE NUMBER OF A TURING

MACHINE M  Input to M

INPUT TO M



Now imagine a person given the task of working out what the Turing machine

whose code number is the first number on the tape would do if confronted by

the second number on the tape as input. The task is straightforward. The

person could begin by obtaining the actual quintuples constituting the

machine coded by the first number on the tape. Then, she could just “play”

machine, that is she could simply do on the tape whatever the quintuples

command.

Turing’s analysis purported to demonstrate that any straightforward

computational task can be carried out by a Turing machine. Applying this

idea to the present task, one is led to imagine a Turing machine that, begun

with the code number of a Turing machine M  followed by a numerical input

to M  on its tape, would do exactly what the machine M  would have done if

confronted with that same input. This would be one single Turing machine

that alone could do anything that any Turing machine could do. Turing tested

this remarkable conclusion by setting himself the task of showing how one

could actually produce the quintuples of such a “universal” machine. In a few

pages of what now would be called code, he succeeded brilliantly in doing

exactly this! 13

People had been thinking about calculating machines since Leibniz’s time

and even earlier. Before Turing, the general supposition was that in dealing

with such machines the three categories—machine, program, and data—were

entirely separate entities. The machine was a physical object; today we would

call it hardware. The program was the plan for doing a computation, perhaps

embodied in punched cards or connections of cables in a plugboard. Finally,

the data was the numerical input. Turing’s universal machine showed that the

distinctness of these three categories is an illusion. A Turing machine is

initially envisioned as a machine with mechanical parts, hardware. But its

code on the tape of the universal machine functions as a program, detailing

the instructions to the universal machine needed for the appropriate

computation to be carried out. Finally, the universal machine in its step-by-

step actions sees the digits of a machine code as just more data to be worked

on.

This fluidity among these three concepts is fundamental to contemporary

computer practice. A program written in a modern programming language is

data to the interpreter or compiler that manipulates it so that its instructions



can actually be executed. In fact Turing’s universal machine can be regarded

as an interpreter, since it functions by interpreting successive quintuples in

order to perform the tasks they specify.

Turing’s analysis provided a new and profound insight into the ancient still

of computing. The notion of computation came to be seen as embracing far

more than arithmetic and algebraic calculations. And at the same time, the

vision appeared of universal machines that in principle could compute

everything that is computable. Turing’s examples of specific machines are

already instances of the art of programming; the universal machine in

particular is the first example of an interpretative program. The universal

machine also provides a model of a “stored program” computer in which the

coded quintuples on the tape play the role of stored program, and in which the

machine makes no fundamental distinction between program and data.

Finally, the universal machine shows how hardware in the form of a set of

quintuples thought of as the functioning of a mechanism can be replaced by

equivalent software in the form of those same quintuples in coded form stored

on the tape of a universal machine.

While working out his proof that there is no algorithmic solution to the

Entscheidungsproblem, Turing did not suspect that similar conclusions were

being reached on the other side of the Atlantic. Newman had already received

a first draft of Turing’s paper when an issue of the American Journal of

Mathematics containing Alonzo Church’s article “An Unsolvable Problem of

Elementary Number Theory arrived in Cambridge.” As was discussed in the

previous chapter, Church had already shown in this article that there are

algorithmically unsolvable problems. The article did not mention machines,

but it did point to the concepts of λ-definability and general recursiveness,,

both of which were proposed as explications of the intuitive notion of

effective calculability. The two notions proved to be equivalent, and Church’s

unsolvable problem was in fact unsolvable with respect to either equivalent

notion.

Although in this paper, Church had not drawn the conclusion that Hilbert’s

Entscheidungsproblem was unsolvable with respect to these notions, Volume

1 (1936), Number 1 of the new quarterly Journal of Symbolic Logic contained

a brief note by Church in which he did exactly that. Turing quickly proved



that his notion of computability was equivalent to λ-definability, and decided

to spend some time in Princeton.

While much of what Turing had accomplished amounted to a rediscovery

of what had already been done in the United States, his analysis of the notion

of computation and his discovery of the universal computing machine were

entirely novel, and went beyond anything that had been done in Princeton.*

Kurt Gödel had been unconvinced by Church’s proposals, and, writing many

years later, he insisted that it was only Turing’s analysis that finally convinced

him of their correctness.14

Alan Turing in Princeton

When Alan arrived in Princeton on September 29, 1937, it was no longer

what it had been over the past three years. Gödel had returned to Vienna, and

Kleene and Rosser, having completed their studies, had gone their separate

ways, launching their own careers. So, that left Alonzo Church. Although

mathematicians in England did not typically bother to pursue doctorates, it

was most convenient for Turing to arrange his stay at Princeton University by

becoming a graduate student, really an anomalous status given his

accomplishments. In the two years of his stay at Princeton, he completed a

remarkable doctoral dissertation (with Alonzo Church as advisor). Since

Gödel’s proposition deemed undecidable in a given system could be seen to

be true when viewed from outside the system, a natural approach was to add

such a proposition to the given system as a new axiom, thus obtaining a new

system in which that undecidable proposition was no longer undecidable. Of

course, applying Gödel’s methods, the new system would be seen to have

undecidable propositions of its own. In his dissertation, Turing studied

hierarchies of systems obtained by doing this over and over again.

Another concept introduced in his dissertation is a Turing machine

modified so that it could interrupt its computation to seek external

information. By means of such machines, it becomes possible to speak of one

of a pair of unsolvable problems being “more unsolvable” than the other. All

in all, the ideas introduced in the dissertation were to provide the basis for the

work of a succession of researchers.15

During his first year at Princeton, Alan had to make do with the meager

stipend that his fellowship at Cambridge provided. This had been quite



sufficient in Cambridge where room and board were also provided. However,

during his second year he felt himself quite rich because he had been awarded

the prestigious Procter Fellowship. Among the letters of recommendation

written in support of his application for this fellowship was the following:

June 1, 1937

Sir,

Mr A. M. Turing has informed me that he is applying for a

Proctor [sic] Visiting Fellowship to Princeton University from

Cambridge for the academic year 1937–1938. I should like to

support his application and to inform you that I know Mr Turing

very well from previous years: during the last term of 1935, when I

was a visiting professor in Cambridge, and during 1936–1937,

which year Mr Turing has spent in Princeton, I had opportunity to

observe his scientific work. He has done good work in branches of

mathematics in which I am interested, namely: theory of almost

periodic functions, and theory of continuous groups. [emphasis

added]

I think that he is a most deserving candidate for the Proctor

Fellowship, and I should be very glad if you should find it possible

to award one to him.

I am, Respectfully, John von Neumann16

Given that von Neumann had been deeply involved with Hilbert’s program for

the foundations of mathematics, it is very surprising that Turing’s work on

computability and his unsolvability proof for the Entscheidungsproblem are

not mentioned in this letter. It is hard to believe that von Neumann didn’t

know about it.

I believe the key to making sense of this is the phrase “branches of

mathematics in which I am interested.” von Neumann, one of the great

mathematicians of the century, an omnivorous reader with an almost

photographic memory, evidently decided, after Gödel had demonstrated the

futility of much of his work in this area, that he wanted nothing more to do

with logic. He is even reputed to have said that after what Gödel did in 1931,

he never again read a paper on logic.17 This matter is of some importance



because of the role of Turing’s work on von Neumann’s thinking about

computers during and after World War II.

Some evidence is provided by a letter from von Neumann’s friend and

collaborator Stanislaw Ulam written to Turing’s biographer Andrew Hodges.*

This letter mentioned a game that von Neumann had proposed during the

summer of 1938 when he and Ulam were traveling together in Europe; the

game involved “writing down on a piece of paper as big a number as we

could, defining it by a method which indeed has something to do with some

schemata of Turing’s.” Ulam’s letter also stated that “… von Neumann

mentioned to me Turing’s name several times in 1939 in conversations,

concerning mechanical ways to develop formal mathematical systems.”

Ulam’s letter makes clear that, whatever may have been the case earlier, by

the outbreak of World War II in September 1939, von Neumann was well

aware of Turing’s work on computability.18

Turing’s universal computer was a marvelous conceptual device that could

alone execute any algorithmic task. But could one actually build such a thing?

And aside from what such a machine could accomplish in principle, could it

be designed and constructed so as to be able to solve real-world problems in

an acceptable time frame, and using reasonable available resources? These

questions were in Turing’s mind from the very first. In an obituary article in

the Times (of London), Turing’s teacher Max Newman wrote:

The description that he then gave of a “universal” computing

machine was entirely theoretical in purpose, but Turing’s strong

interest in all kinds of practical experiment made him even then

interested in the possibility of actually constructing a machine on

these lines.19

Turing didn’t confine himself to merely thinking about this possibility. To

familiarize himself with the available technology, Turing went to the trouble

of building a device using electro-mechanical relays that multiplied numbers

written in binary notation. For this purpose he gained access to the Physics

Department graduate student machine shop, and constructed various parts of

the device, building the necessary relays himself.*

Alan Turing’s War



Turing returned to Cambridge in the summer of 1938. Although the war was

still over a year in the future, he was recruited for an ongoing effort to break

the codes used in German military communications. Codes and decoding had

entered Turing’s work and also Gödel’s, but those codes were deliberately

chosen to be transparent unlike the codes the Germans were using which were

intended to be impenetrable. Indeed the Germans continued to believe

throughout the war that their codes were impenetrable.

Following a pact between Nazi Germany and Communist Russia that

surprised the world, German troops invaded Poland on September 1, 1939.

Honoring a commitment, England and France declared war on Germany a

few days later, and on September 4 Turing reported to Bletchley Park, a

Victorian estate north of London, where a small team, mostly made up of

academics, had gathered to read the messages the enemy intended to keep

from them. The team was not destined to remain small. By the end of the war

the estate was home to a number of “huts” in which various aspects of the

decryption and analysis of messages was carried out. In addition to senior

personnel, and of course the military, there were a considerable number of

“wrens,” women who had signed up for the Naval Auxiliary Corps and found

themselves instead operating machines designed by Turing and his

colleagues.

German military communications used a modified commercial encrypting

machine called the Enigma. This machine had an alphabetic keyboard, and

when a key for a particular letter was pressed, a letter would appear in a little

window, the encrypted version of the original. When an entire message had

been encrypted, it would be sent out by ordinary radio telegraphy. The

intended recipient would enter the encrypted letters into another Enigma

machine, and the original message would appear. Inside the machine were a

number of rotating wheels acting to change the match between input letter

and the letter’s encrypted version from letter to letter. In the military version,

security was enhanced by an additional plugboard. Each day there would be a

different initial setting of the machine which had to be the same for the sender

and the recipient.

A group of Polish mathematicians had done an amazing job of deciphering

German Enigma messages before the war began, but when the Germans

added a layer of complexity to the machines, they were stymied, and passed

their work onto the British. The cryptanalysts at Bletchley Park liked to work



on puzzles, and at times they were deeply engrossed in the intellectual aspects

of their problems, and were enjoying themselves. But the work was deadly

serious.

Turing’s particular responsibility was the communications between

German submarines and their home base. Ships bringing badly needed

supplies to the British Islands were being destroyed by these submarines at an

alarming rate. If the U-boats weren’t stopped, it seemed entirely possible that

England would simply be starved out.

Success in decrypting the Enigma traffic was helped by a seized code book

from a captured submarine and by some carelessness on the part of senders

that unintentionally gave away crucial information. But the crucial role was

played by Turing who saw how to design a machine (called a “Bombe” for no

reason anyone seems to be able to recall) that proved very effective in using

this information to deduce the settings of the German’s Enigma on any given

day.

Fittingly enough, the Bombes systematically carried out chains of logical

reasoning that eliminated one possible Enigma configuration after another

from among the huge number possible, until only a few were left. These were

then worked over by hand until the correct one emerged. Unlike the usual

experience with an untried gadget, Turing’s Bombes, built from his design,

worked correctly as soon as they were made.*

At Bletchley Park, Turing was affectionately called “the prof” and his

eccentricities became the sources of anecdotes. Years later people spoke of

his habit of keeping his tea mug chained to the radiator. Perhaps the most

revealing anecdote from the Bletchley Park days concerns how Turing learned

to shoot a rifle. In the dark days of 1940 and 1941 when England seemed

open to invasion, the Churchill government formed a citizen’s militia, the

“Home Guard.” Although, because of the importance of his work, he wasn’t

required to join the Home Guard, Alan Turing decided to join so he could

learn to shoot a rifle.

Recruits for the Home Guard were required to attend regular drills, and,

after a while, Turing decided that these were a waste of time—so he stopped

attending. Called to order by one Colonel Fillingham with a reputation for

easily becoming “apoplectic,” Turing patiently explained that he had joined

only to learn to shoot, and now that he had become an excellent shot, he no

longer had any reason to attend. Said the colonel: “But it is not up to you



whether you attend … it is your duty as a soldier to attend. … You are under

military law.” The colonel reminded Turing that in applying to join, he had

filled out a form with the question: “Do you understand that by enrolling in

the Home Guard you place yourself liable to military law?” To which Turing

replied that he had indeed answered that question, but that the answer he had

written was “No.” In considering that question, it was evident to Turing that

there would be no advantage to him in a “yes” 20 answer.20

In addition to being amusing, this anecdote reveals much of Turing’s

character. He tended to ignore much of the social framework in terms of

which most of us act, and, in any situation, he would think things through,

starting from scratch, seeking the optimal action. Most people confronting a

question like the one on the Home Guard application form would realize that

only an affirmative answer would be acceptable, but Turing took the question

at face value, and thought seriously about what would be the best answer.

Although this way of thinking worked very well for Turing in his scientific

research, it did not work so well in his interactions with people and social

institutions, and ultimately, years later, it led to disaster.

Turing became friendly with Joan Clarke, a young mathematician enlisted

in the Bletchley Park endeavor. He found himself in love with her, proposed

marriage and was gladly accepted. She found it definitely worrisome, when, a

few days later, he told her of his homosexual “tendencies,” but she was

willing to carry on with the engagement. A few months later, shortly after

they had taken a vacation trip together, Turing decided that although he really

loved Joan, it just wouldn’t work, and he broke off the engagement.

Apparently this was the first and last time that he permitted himself to

imagine an amorous relationship with a woman.

Meanwhile, Turing never stopped thinking about the applicability a

universal machine. He guessed that this notion of universality held the secret

of the enormous power of the human brain, that in some manner our brains

are actually universal machines. He imagined that if a universal machine

could be built, it could be made to play games like chess, that it could be

induced to learn much as a child does, and ultimately it could be made to

exhibit behavior one would be led to call “intelligent.” There was much

conversation along these lines in Bletchley Park, and Turing even sketched

algorithms that a machine could use in playing chess. At the same time, some



of the hardware needed for building a universal machine was being developed

right there in Bletchley Park.

Some of the messages intercepted in England, communications that

originated at the highest levels of the Nazi regime, were not Enigma-

encrypted, and were not transmitted by ordinary telegraphy. It was soon

realized that that they had the characteristics of teleprinter output. This was a

system in which each individual letter in a text was represented by a row of

holes in a paper tape. Unlike the older Morse code telegraphy, no human

operator was required. It seemed that the Germans were using a single

machine that could encrypt and transmit a message as a single operation. The

recipient would have a machine that would do the decoding. At Bletchley

Park, this system was called “fish,” and Turing’s teacher, Max Newman,

undertook the task of deciphering it. Some of the methods to be used were

playfully called turingismus indicating their source.* But turingismus

required the processing of lots of data, and for the decryption be of any use,

the processing had to be done very quickly.21

In the 1930s most people in the United States and Europe had radios in

their homes. In those days, before transistors had been invented, radios

contained a number of vacuum tubes (called “valves” in Britain). In use, these

glowed like low-intensity light bulbs and became quite hot. Like light bulbs,

they burned out frequently and had to be replaced. When one’s radio stopped

working, one could pull the tubes from their sockets and bring them into a

shop for testing. After replacing the ones that had gone bad, the radio would

usually come back to life. The RCA catalog of tubes listing hundreds of

different models of tubes with their specific characteristics, was indispensable

to engineers and popular with hobbyists.

In March 1943, Alan Turing was returning from a visit of several months in

the United States where he had helped launch the American effort to

construct their own Bombes and to take over the monitoring of naval Enigma

traffic. He whiled away the time during his Atlantic passage by studying this

catalog, for it had been found that vacuum tubes could be used to carry out

the kind of logical switching for which electric relays had previously been

used. And the tubes were fast: their electrons moved at speeds close to that of

light, while relays depended on mechanical motion.

Vacuum-tube circuits had been used experimentally for telephone

switching, and Turing had made contact with a gifted engineer, T. Flowers,



who was at the forefront of this research. Under the direction of Flowers and

Newman, a machine that was essentially a physical embodiment of

turingismus was rapidly developed. This machine, dubbed the Colossus, was

an engineering marvel, containing 1500 vacuum tubes. It was the world’s first

electronic automatic calculation device. Not surprisingly, the computations it

carried out were logical rather than arithmetic in nature.

Intercepted German communications in the form of punched paper tapers

were fed to the machine by an extremely fast tape reader: as the tape moved

through the reader, beams of light passing through the holes in the paper were

intercepted by photoelectric cells which passed the signal on to the Colossus.

It was important that the tape be read rapidly in order not to slow down the

operation of the vacuum tube circuits. Flowers’s outstanding feat was not only

getting an operational machine constructed in a few months, but also

managing to get useful work done by a machine containing so many tubes.

Indeed many had thought that the inevitable frequency of tube failures would

make this impossible.

By the time the war ended in 1945, Turing had become convinced that

vacuum tube circuits could be used to construct a universal computer. He had

developed a practical knowledge of vacuum tube electronics and had devoted

considerable thought to practical issues of implementation. He had thought

about the great variety of situations and problems to which such a machine

could be applied. He needed only the support and facilities to bring the great

project to fruition.

*Charles Babbage was born in London in December 1792. An accomplished mathematician, he was

part of a group seeking to bring continental mathematical ideas to the British universities. He developed

a particular interest in mechanical calculation and conceived a “difference engine,” designed for the

efficient construction of mathematical tables. Soon Babbage was inspired to propose his far more

ambitious analytical engine. He died in 1871 an embittered man, frustrated over the failure to complete

this project.

*As most readers probably realize, the British “public” schools are in fact elite private institutions.

Attendance at one was a crucial milestone on a boy’s journey towards a successful upper-middle-class

career.

*Wellington, the victor of the Battle of Waterloo, is supposed to have said that battle was won “on the

playing fields of Eton.” Eton was regarded as the most elite of the public schools.

*The doctorate, a standard requirement for a university appointment in France, Germany, and the

United States, was rarely sought by English academics before the Second World War.

*In fact at this time, “computer” meant a person (typically female) whose job was performing

computations.



*Turing called his abstract inventions α-machines—”a” for “automatic.”

*Note that this coding scheme allows for symbols on the tape other than the decimal digits and □,

symbols coded by such strings as 81118. This allows for symbols that can mark particular squares on

the tape so they can be found on a return visit. It is possible to prove that the use of such additional

symbols does not increase the computational power of Turing machines. It can also be proved that the

use of the decimal system is irrelevant to what Turing machines can do. (Davis et al., 1994, pp. 113—

168).

†For a quick refresher on this see pp. 57–59 of this book.

*It should be emphasized that if there really were an algorithm for distinguishing members of D from

non-members, there would be no problem with these input-output embellishments. After all, there

would be no difficulty with handing the input number to a person to execute the supposed algorithm in

that form, nor would there be a problem in having the person put the output on the tape in the desired

form.

*For example, Turing showed how to construct machines that could produce the sequences of 0s and

1s representing the binary representations of the real numbers e and π. He did the same for various other

real numbers that come up in standard mathematics: roots of polynomial equations with integer

coefficients and even the real zeros of Bessel functions.

*The first volume of the Journal of Symbolic Logic in which Church’s proof of the unsolvability of

the Entscheidungsproblem appeared also contained a short paper by the American logician E. L. Post

that formulated a concept quite close to Turing’s (Davis (1965, pp. 289–291)). Post was my teacher

when I was an undergraduate at City College in New York City.

*Stanislaw Ulam (1909—1984) was a leading pure and applied mathematician who worked in many

branches of mathematics and a good friend of von Neumann. One of his ideas ultimately led to an

important way to extend the ordinary axioms of set theory in a manner that shed light on Gödel’s work

on the continuum hypothesis. Not everyone will applaud Ulam’s most significant contribution: the basic

design of fission-fusion thermonuclear weapons.

*Conveniently enough, the shop was in the Palmer Physics Laboratory located next door to Fine Hall,

the mathematics building—there was even a passageway joining the two buildings.

*Gordon Welchman, a mathematician who was six years older than Turing, added a very important

feature to Turing’s design that greatly enhanced its performance. Readers interested in the technical

details of how the Enigma traffic was deciphered are referred to Welchman’s account (Welchman, 1982)

and to Hodges (1983). Hinsley and Stripp (1933) contains interesting accounts of life in Bletchley Park

during the war by a number of the participants in the deciphering effort.

*ismus is a German suffix used much like the English ism.



CHAPTER 8

Making the First Universal Computers

Who Invented the Computer?

Modern computers are complex amalgams of logic and engineering and it

would be possible to single out any one person as the inventor. Nevertheless

in 1973, in resolving a patent dispute (in the case Honeywell v. Sperry

Rand), a judge came close to doing just that. As our story moves from the

underlying logical ideas behind modern allpurpose computers to their

construction, engineering issues and the people who were able to deal

effectively with them come to the fore. Accounts of the history of

computing have made varying claims, and before continuing our story, it’s

worth having a quick look at the cast of characters.

JOSEPH-MARIE JACQUARD (1752–1834). The Jacquard loom that

weaves cloth with a pattern specified by a stack of punched cards

revolutionized weaving practice, first in France, and eventually all over the

world. With perhaps understandable hyperbole, it is commonly said among

professional weavers that this was the first computer. Although it is a

wonderful invention, the Jacquard loom was no more a computer than is a

player piano. Like a player piano, it permits a mechanical device to be

controlled automatically by the presence or absence of punched holes in an

input medium.1

CHARLES BABBAGE (1792–1871). Babbage proposed to use punched

cards like Jacquard’s for his never-built analytical engine. He owned a

selfportrait of Jacquard in the form of a weaving.

ADA LOVELACE (1815–1852). Her father, Lord Byron, never saw her

after her first year. She had a great passion for mathematics and was



particularly passionate about Babbage’s proposed analytical engine. She

translated a French memoir about the analytical engine to which, with

Babbage’s encouragement, she added extensive comments. She has been

called the world’s first computer programmer—a major programming

language has been named Ada in her honor. Her aphorism relating the

analytical engine to Jacquard’s loom is often quoted:

We may say most aptly that the Analytical Engine weaves

algebraical patterns just as the Jacquard-loom weaves flowers

and leaves.2

CLAUDE SHANNON (1916–2001) In his master’s thesis at MIT

(published in 1938), Shannon showed how George Boole’s algebra of logic

could be used to design complex switching circuits. This thesis “… helped

to change digital circuit design from an art to a science.”3 His mathematical

theory of information has played a crucial role in contemporary

communication technology. Shannon did pioneering work in computer

algorithms for chess playing. He showed how to construct a universal

Turing machine with only two states. (Shannon was my boss in 1953 when

I had a summer job at Bell Labs.)

HOWARD AIKEN (1900–1973). His Automatic Sequence Controlled

Calculator, constructed by IBM for Harvard University using electric relays

and inaugurated in 1944, did everything Babbage envisioned. Having

developed a machine specifically intended for the kind of number crunching

needed by physicists and engineers, Aiken found it difficult to see that a

machine intended to be all-purpose could be effective for this kind of

computation.

KONRAD ZUSE (1910–1995). He was a German computer pioneer who,

working in total isolation during World War II with very limited support

from the Nazi government, managed to design and construct a working

calculator which like Aiken’s used electric relays. However, unlike Aiken’s

machine, Zuse’s used binary rather than decimal arithmetic, and he took

advantage of the simplified construction this enabled.



JOHN ATANASOFF (1903–1995). This obscure physicist at Iowa State

University (working with his assistant Clifford Berry) designed and built a

small special-purpose calculator based on vacuum tube electronics during

the years leading to the U.S. entry into World War II. Although this

machine could only deal with problems of a very special kind, it was

important because it demonstrated the usefulness of vacuum tube circuits

for computation.4

JOHN MAUCHLY (1907–1980). Although Mauchly was trained as a

physicist, it was his vision that was behind the development of the world’s

first large scale number-crunching electronic calculator known as the

ENIAC at the Moore School of Electrical Engineering of the University of

Pennsylvania in Philadelphia. Mauchly had visited Atanasoff in Ames,

Iowa, and apparently had been given full access to his electronic calculator.

J. PRESPER ECKERT JR. (1919–1995). It was the brilliant electrical

engineer Eckert whose remarkable efforts were mainly responsible for the

successful construction of the ENIAC.

HERMAN GOLDSTINE (1913–2004). The mathematician Herman Gold-

stine, inducted into the U.S. Army in 1942, was assigned to the Ballistic

Research Laboratory of Army Ordnance as a first lieutenant. As the Army’s

representative on the ENIAC project, he brought von Neumann into the

group at the Moore School. In the later disputes with Eckert and Mauchly,

he supported von Neumann. After the war, he became von Neumann’s chief

collaborator in work concerning computation. His book on the history of

computation (Goldstine, 1972) emphasized von Neumann’s role, and was

criticized for that reason. (In 1954, he was the person to whom I had to

apply for permission to use the computer at the Institute for Advanced

Study.)

EARL R. LARSON (1911–2001). He was the U.S. District judge who, in

1973, found the patent that Eckert and Mauchly had obtained on the ENIAC

invalid. His opinion included the statement:



Eckert and Mauchly did not themselves first invent the automatic

electronic digital computer, but instead derived that subject matter

from one Dr. John Vincent Atanasoff.5

John von Neumann and the Moore School

As we saw in the previous chapter, John von Neumann had taken on the

task of explaining Hilbert’s program at the symposium on the foundations

of mathematics in Königsberg in 1930. This was the symposium at which

Kurt Gödel dropped his bombshell asserting that he had established the

necessary incompleteness of formal systems for mathematics, and it was

apparently von Neumann who was the first at that conference to grasp the

significance of what had been accomplished.

Soon after that, von Neumann wrote Gödel quite excitedly: “ … I

achieved a result that seems to me to be remarkable. For I was able to show

that the consistency of mathematics is unprovable.” What von Neumann had

seen was that by using Gödel’s methods, it could be proved that systems

like those Hilbert had in mind were inadequate to prove their own

consistency. As we have already noted, by the time Gödel received this

letter, he had come to the same conclusion and sent by return mail a printed

abstract containing that result.

John von Neumann was a vain, brilliant man. He was used to putting his

stamp on a mathematical subject by the sheer force of his powerful intellect.

He had devoted considerable effort to the problem of the consistency of

arithmetic, and in his presentation at the Königsberg symposium, had even

come forward as an advocate for Hilbert’s program. Seeing at once the

profound implications of Gödel’s achievement, he had taken it one step

further—proving the unprovability of consistency, only to find that Gödel

had anticipated him. It was enough.

Although he was full of admiration for Gödel, and even lectured on his

work, he refused to have anything more to do with logic. He is said to have

boasted that after Gödel, he simply never read another paper on logic. Logic

humiliated him, and von Neumann was not used to being humiliated.

Nevertheless, von Neumann’s need for powerful computational machinery

eventually forced him to return to logic.



As with Turing, von Neumann’s wartime work called for large-scale

computation. But, where the cryptanalytic work at Bletchley Park

emphasized the side of computation involving symbolic patterns, so in tune

with Turing’s earlier work, it was old-fashioned heavy number crunching

that von Neumann needed. Not surprisingly, he eagerly accepted an

opportunity to participate in an exciting project at the Moore School of

Electrical Engineering in Philadelphia to construct a powerful electronic

calculator, the ENIAC. It was the 30-year-old mathematician Herman

Goldstine who brought von Neumann into the ENIAC project. As Goldstine

tells the story, von Neumann learned of the ENIAC project quite

fortuitously when the two met for the first time at a railway station during

the summer of 1944. Von Neumann soon joined the discussions with the

ENIAC group at the Moore School.

The Colossus with its 1,500 vacuum tubes was already an engineering

marvel; the ENIAC with 18,000 tubes was simply astonishing. The

conventional wisdom of the time was that no such assemblage could do

reliable work; it was believed that a tube would be bound to fail every few

seconds. The chief engineer on the ENIAC project, John Presper Eckert, Jr.,

was largely responsible for the project’s success.

Eckert insisted on very high standards of component reliability. Tubes

were operated at extremely conservative power levels, and the failure rate

was kept to three tubes per week. The ENIAC was an enormous machine,

occupying a large room, and was programmed by connecting cables to a

plugboard rather like an old-fashioned telephone switchboard.6 The ENIAC

was modeled on the most successful machines available at the time for

dealing with the kinds of problems expected to be posed to the ENIAC:

differential analyzers.

Differential analyzers were not “digital” devices operating on numbers

digit by digit. Rather numbers were represented by physical quantities that

could be measured (like electric currents or voltages) and components were

linked together to emulate the desired mathematical operations. These

“analog” machines were limited in their accuracy by that of the instruments

used for the measurements. The ENIAC was a digital device, the first

electronic machine able to deal with the same kind of mathematical

problems as differential analyzers. Its designers built it of components



functionally similar to those in differential analyzers, relying on the

capabilities of vacuum tube electronics for greater speed and accuracy.7

By the time that von Neumann began meeting with the Moore School

group, it was clear that there were no important obstacles to the successful

completion of the ENIAC, and attention was focused on the next computer

to be built, tentatively called the EDVAC. Von Neumann immediately

involved himself with the problems of the logical organization of the new

machine. As Goldstine recalled:

Eckert was delighted that von Neumann was so keenly

interested in the logical problems surrounding the new idea, and

these meetings were scenes of greatest intellectual activity.

This work on the logical plan for the new machine was exactly

to von Neumann’s liking and precisely where his previous work

on formal logics came to play a decisive role. Prior to his

appearance on the scene, the group at the Moore School

concentrated primarily on the technological problems, which

were very great; after his arrival he took over leadership on the

logical problems.8

In June 1945 John von Neumann produced his famous First Draft of a

Report on the EDVAC which, in effect, proposed that the soon-to-be-built

EDVAC be realized as a physical model of Turing’s universal machine. Like

the tape on that abstract device, the EDVAC was to possess a storage

capability, called “memory,” holding both data and coded instructions. In

the interest of practicality, the EDVAC was to have an arithmetic component

that could perform each basic operation (addition, subtraction,

multiplication, or division) in a single step, whereas in Turing’s original

conception, these operations would need to be built up in terms of primitive

operations such as “move one square to the left.”

Whereas the ENIAC had performed its arithmetic operations on numbers

represented in terms of the ten decimal digits, the EDVAC was to enjoy the

simplicity made possible by binary notation. The EDVAC was also to

contain a a component exercising logical control by bringing instructions to

be executed one at a time from the memory into the arithmetic component.



This way to organize a computer has come to be known as the “von

Neumann architecture,” and although what computers are made of today is

very different from the parts that were available for the EDVAC, today’s

computers are for the most part still organized according to this basic plan.9

The EDVAC report never advanced beyond the draft stage, and it is

incomplete in a number of ways. In particular, there are many places where

a reference to be inserted later is indicated. Turing’s name is never

mentioned, but his influence is evident to the discerning eye. The notion

that the EDVAC should be “all purpose” is mentioned more than once. Like

Turing, von Neumann surmised that some of the remarkable capability of

the human brain was the result of its possessing the power of a universal

computer. In the EDVAC report, von Neumann refers over and over again to

the analogy between the brain and the machine he is discussing. He notes

that vacuum tube circuits can be designed to behave in many ways like the

neurons in our brains, and, without worrying about the engineering details,

he describes how the arithmetic and logical control components needed for

the EDVAC could be built of such circuits.

Although the report is almost entirely devoid of references, there is a

conspicuous exception: there are a number of references to a paper by a pair

of MIT researchers, published in 1943, that set out a mathematical theory of

such idealized neurons. One of the authors of this paper later stated that he

had been directly inspired by Turing’s 1936 article (the one in which his

universal machine was explicated), and in fact the paper has just one

reference—to Turing’s article. More revealing still, the authors take the

trouble to demonstrate that a universal Turing machine can be modeled

using their idealized neurons, and cite this fact as the principal reason for

believing that their work is on the right track.10

Eckert and Mauchly came to bitterly protest von Neumann’s release of

the EDVAC Report under his own name. An element of controversy, which

will probably never be fully resolved, is the question of how much of the

EDVAC report represented von Neumann’s contribution. Although Eckert

and Mauchly later denied that von Neumann contributed very much, shortly

after the report appeared they wrote as follows:



During the latter part of 1944, and continuing to the present time,

Dr. John von Neumann … has fortunately been available for

consultation. He has contributed to many discussions on the

logical controls of the EDVAC, has prepared certain instruction

codes, and has tested these proposed systems by writing out the

coded instructions for specific problems. Dr. von Neumann has

also written a preliminary report in which most of the results of

earlier discussions are summarized. … In his report, the physical

structures and devices … are replaced by idealized elements to

avoid raising engineering problems which might distract attention

from the logical considerations under discussion.11

There is other evidence that von Neumann wanted to be sure that the

machine he was specifying was as close as was practically possible to being

universal. So he emphasized the “logical control” of a computer as being

crucial for its being “as nearly as possible all purpose.”12 In order to test

the general applicability of the EDVAC, von Neumann wrote his first

serious program, not for the kind of number-crunching application for

which the machine was mainly developed, but rather to simply sort data

efficiently. The success of this program helped to convince von Neumann

that “… it is legitimate to conclude already on the basis of the now available

evidence, that the EDVAC is very nearly an ‘all purpose’ machine, and that

the present principles for the logical controls are sound.”13

Articles written within a year of the EDVAC report confirm von

Neumann’s awareness of the basis in logic for the principles underlying the

design of electronic computers. The introduction to one such article states:

In this article we attempt to discuss [large scale computing]

machines from the viewpoint not only of the mathematician but

also of the engineer and the logician, i.e., of the … person or

group of persons really fitted to plan scientific tools.14

Another article clearly alludes to Turing’s ideas even as it emphasizes that

purely logical considerations are not enough:



It is easy to see by formal-logical methods that there exist codes

that are in abstracto adequate to control and cause the execution

of any sequence of operations which are individually available in

the machine and which are, in their entirety, conceivable by the

problem planner. The really decisive considerations from the

present point of view, in selecting a code, are of a more practical

nature: simplicity of the equipment demanded by the code, and

the clarity of its application to the actually important problems

together with the speed of its handling those problems. It would

take us much too far afield to discuss these questions at all

generally or from first principles.15

It is well understood that the computers developed after World War II

differed in a fundamental way from earlier automatic calculators. But the

nature of the difference has been less well understood. These postwar

machines were designed to be all-purpose universal devices capable of

carrying out any symbolic process whatever, so long as the steps in the

process were specified precisely. Of course, some processes may require

more memory than is available or may simply take too long to be feasible,

so these machines can only be approximations to Turing’s idealized

universal machine. Nevertheless it was crucial that they had a large

“memory” (corresponding to Turing’s infinite tape) in which instructions

and data could coexist.

This fluid boundary between what was instruction and what was data

meant that programs could be developed that treated other programs as data.

In early years, programmers mainly used this freedom to produce programs

that could and did modify themselves. In today’s world of operating

systems and hierarchies of programming languages, the way has been

opened to far more sophisticated applications. To an operating system, the

programs that it launches (e.g., word processor or email program) are data

for it to manipulate, providing each program with its own part of the

memory and (when “multitasking”) keeping track of the tasks each needs

carried out. Compilers translate programs written in one of today’s popular

programming languages into the underlying instructions that can be directly

executed by the computer: for the compiler, these programs are data.



After the experience with the ENIAC and with the Colossus, those

interested in computational equipment would not settle for speeds of

operation slower than what they knew could be obtained using vacuum tube

electronics. For an all-purpose computer modeled on Turing’s universal

machine, a physical device was needed that could function as an appropriate

large memory.

On the tape of Turing’s abstract universal machine, moving from a

particular square to another distant one required a laborious process of

repeatedly moving one square at a time. This was fine for Turing’s purposes

in 1936. Those theoretical “machines” were not meant to do anything

practical. However, a fast electronic computer needed a fast memory. This

required that the data stored at any place in the memory should be directly

accessible in a single step, that is, the memory should be “random access.”

In the late 1940s, two devices offered themselves as candidates for use as

computer memory: the mercury delay line and the cathode ray tube. The

delay line consisted of a tube of liquid mercury; data was stored in the form

of an acoustic wave in the mercury bouncing back and forth from one end

of the tube to the other. Cathode ray tubes are familiar in early TV sets and

computer monitors. Data could be stored as a pattern on the surface of the

tube. There were serious engineering problems with both of these devices,

but fortunately for the EDVAC project, Eckert had developed improved

delay lines during the war for use with radar. However, by the early 1950s

cathode ray tubes had become the preferred memory medium.

In discussions of this period, the new computers that were being

developed are usually referred to as embodying “the stored program

concept” because, for the first time, the programs to be executed were

stored within the computer. Unfortunately this terminology has served to

obscure the fact that what was really revolutionary about these machines

was their universal all-purpose character, while the stored-program aspect

was only a means to an end. The point of view of Turing and von Neumann

is conceptually so simple and has so much become part of our intellectual

climate, that it is difficult to understand how radically new it was. It is far

easier to appreciate the importance of a new invention like the mercury

delay line, than of a new and abstract idea.

Eckert later claimed that he had already thought of the so-called “stored

program concept” well before von Neumann had appeared on the scene. His



evidence was a memo that spoke of “automatic programming” set up on

“alloy discs” or “etched discs.” There is nothing here that even remotely

suggests the concept of the all-purpose computer with a large flexible

memory in which instructions and data cohabit. But to characterize the

great advance that had been made as the “stored-program concept” is to

invite such confusion.16

The bitterness between Eckert and Mauchly on the one hand, and von

Neumann and Goldstine on the other came to a head when Eckert and

Mauchly attempted to develop a commercial product based on their work.

They sought patents for the ENIAC and for the EDVAC. Their application

for an EDVAC patent got nowhere precisely because the circulation of von

Neumann’s draft report had placed it in the public domain. As already

explained, they did receive a patent for the ENIAC, later found invalid by a

court. Eckert and Mauchly were certainly prescient in envisioning the

commercial possibilities for all-purpose electronic computers, but they were

unable to profit from their prophetic insight.17

With the departure of Eckert and Mauchly, the Moore School lost much

of its edge, and von Neumann and Goldstine went on to develop a computer

at the Institute for Advanced Study in Princeton using a cathode ray tube

memory. A special purpose tube developed by RCA Corporation on which

von Neumann had set his hopes did not work out, but the English engineer

Frederic Williams (1911–1977) developed methods by which ordinary

cathode ray tubes could be used effectively as computer memories and for

some years the “Williams memory” dominated the scene. A number of

machines similar to the Institute machine were built, affectionately termed

“johnniacs” after Johnny von Neumann. When IBM decided that it was

time to market all-purpose electronic computers, their first model (the 701)

was quite similar to the johnniacs.*

Alan Turing’s ACE

At the end of World War II, Britain’s National Physics Laboratory (NPL)

underwent a considerable expansion including a new Mathematics Division.

J. R. Womersley (1907–1958), appointed head of this division, had seen the

practical implications of Turing’s 1936 Computable Numbers paper quite



early on. In 1938 he had gone so far as to undertake the design of a

universal machine using electric relays, but abandoned the idea because he

saw that such a device would be too slow. On a visit to the United States in

February 1945, he saw the ENIAC and obtained a copy of von Neumann’s

EDVAC report. His reaction was to hire Alan Turing.

By the end of 1945, Turing had produced his remarkable ACE

(Automatic Computing Engine) report. One detailed comparison of the

ACE report with von Neumann’s EDVAC report, notes that whereas the

latter “is a draft and is unfinished … more important … is incomplete … “

the ACE report “is a complete description of a computer, right down to the

logical circuit diagrams” and even including “a cost estimate of £11,200.”

In a list of ten problems that might be handled by the ACE, Turing, showing

the breadth of his vision, included two that did not directly involve

numerical data: playing chess and solving simple jigsaw puzzles.18

Turing’s ACE was a very different kind of machine from von Neumann’s

EDVAC, corresponding closely to the different attitudes of the two

mathematicians. Although von Neumann was concerned that his machine

be truly “all-purpose,” his emphasis was on numerical calculation and the

logical organization of the EDVAC (and of the later johnniacs) was intended

to expedite this direction. Since Turing saw the ACE being used for many

tasks for which heavy arithmetic was inappropriate, the ACE was organized

in a much more minimal way, closer to the Turing machines of the

Computable Numbers paper.

Arithmetic operations were to be carried out by programming: by

software rather than hardware. For this reason, the ACE design provided

special mechanism for incorporating previously programmed operations in

a longer program.19 Turing was particularly caustic concerning a proposal

to modify the ACE in a von Neumann direction:

[It] is … very contrary to the line of development here, and much

more in the American tradition of solving one’s difficulties by

means of much equipment rather than by thought. … Furthermore

certain operations which we regard as more fundamental than

addition and multiplication have been omitted.20



Turing’s minimalist ideas were destined to have little or no influence on

computer development. But in retrospect one can see that so-called

microprogramming which makes the the most basic “basement-level”

computer operations directly available to the programmer was anticipated

by the ACE design. Also, the personal computers we use nowadays are built

around silicon microprocessors that are in effect universal computers on

chips, and these have become more elaborate. An opposing paradigm, the

so-called RISC (reduced instruction set computing) architecture, adopted by

a number of computer manufacturers, uses a minimal instruction set on the

chip, with needed functionality supplied by programming, again very much

in line with the ACE philosophy.

On February 20, 1947, Turing addressed the London Mathematical

Society on the subject of the ACE in particular and digital electronic

computers in general. He began by referring to his 1936 Computable

Numbers paper:

I considered a type of machine which had a central mechanism,

and an infinite memory which was contained on an infinite tape.

… One of my conclusions was that the idea of a ‘rule of thumb’

process and a ‘machine process’ were synonymous … Machines

such as the ACE may be regarded as practical versions of … the

type of machine I was considering … There is at least a very

close analogy … digital computing machines such as the ACE …

are in fact practical versions of the universal machine.21

Turing went on to raise the question of “… how far it is in principle

possible for a computing machine to simulate human activities.” This led

him to propose the possibility of a computing machine programmed to learn

and permitted to make mistakes. “There are several theorems which say

almost exactly that … if a machine is expected to be infallible, it cannot

also be intelligent … But these theorems say nothing about how much

intelligence may be displayed if a machine makes no pretence at

infallibility.”

This was an oblique reference to Gödel’s incompleteness theorem about

which there will be more to say in the next chapter. Turing concluded his



lecture with a plea for “fair play for computers” that should not be expected

to be more infallible than human beings, and a suggestion that chess playing

would be an appropriate exercise on which to begin. All of this was at a

time when not a single one of these devices had yet been completed! By all

reports, the audience was stunned into silence.22

When the Bletchley Park leaders were having trouble getting adequate

resources and support, they sent a letter to Winston Churchill who

immediately saw to it that they got what they needed. Construction of the

ACE could command no such priority, and, in addition, the administration

of the NPL behaved in a most inept manner.

T. Flowers, who had done such a bravura job of getting the Colossus

built, would have been the ideal person to build the ACE. Although he did

some work on delay lines for computer memory under contract with NPL,

he was much too busy with postwar telecommunications work to be of

much help.

There was concern about the minimalist design of the ACE, perhaps

tinged with a feeling that the Americans were the ones to trust with

technological issues rather than an eccentric English don. What this don had

done to help win the war remained a deeply guarded secret for many years.

When Williams showed that his cathode ray tube memory would work, he

was offered a contract to work on the ACE, which he declined. This

negotiation was quite inept on the part of the NPL administration. They

imagined that Williams could be hired to build the NPL computer, whereas

Williams had access to sufficient resources to build his own computer at

Manchester.

Finally Turing had had enough and left, first taking up a fellowship at

Cambridge, and then accepting a job offer from the University of

Manchester where his old friend and war-time comrade Max Newman was

starting a computer project. Afterwards with a change of personnel, a small

version of the ACE was built successfully at NPL. Called the “Pilot ACE” it

worked well for years.

Eckert, von Neumann, and Turing



As historians well know, the way a story is told changes with time, often

drastically. In the story of what is usually called the “stored program

concept,” there have been three principal versions. The first account saw the

concept as the product of von Neumann’s genius as promulgated in his

EDVAC report. Eckert cried “foul” and insisted that he had proposed a

stored-program computer before von Neumann had joined the Moore

School group. The EDVAC report, he asserted, represented the joint

thinking of the group. Publications appeared supporting Eckert’s

position.23 Turing’s name was not mentioned at all. Supporting von

Neumann’s claim and oblivious to Turing’s role, Goldstine wrote:

von Neumann was the first person, as far as I am concerned, who

understood explicitly that a computer essentially performed

logical functions, and that the electrical aspects were ancillary.24

Of course, Turing understood that very well indeed.

The gap between the thinking that went into the ENIAC and the universal

computer is so immense that I find it difficult to believe that Eckert had

envisioned anything like the latter. When Turing complained about “the

American tradition of solving one’s difficulties by means of much

equipment rather than by thought,” he likely had the ENIAC in mind. From

Turing’s conclusion that “the idea of a ‘rule of thumb’ process and a

‘machine process’ [are] synonymous” it is plain that converting numbers

from decimal to binary and back is the most trivial of machine operations.

Not seeing this, and concerned with the need for quantities to be input

and output in decimal notation, Eckert and Mauchly solved their problem

by designing their behemoth of a machine that carried out all of its internal

operations in decimal notation. Many problems that occur in practice

require finding approximate values for certain limit operations of the

calculus. Because the analog machines, called differential analyzers,

included special modules that could compute such approximations, Eckert

and Mauchly incorporated modules performing similar functions in their

ENIAC. But this is totally unnecessary and inappropriate for a digital

machine. Calculus textbooks describe methods for calculating these values

requiring nothing more than the four basic operations of arithmetic.



Eckert did perform one immense service in connection with the EDVAC

and that was to propose the mercury delay line as an answer to the problem

of the need for a large memory. Eckert had worked with these delay lines

for use with radar and knew a great deal about them. Therefore, it is telling

that in the memo he later cited as proving that he had thought of the “stored

program concept” first, he spoke of “automatic programming” set up on

“alloy discs” without mentioning the delay lines that he knew all about and

that would have been far more creditable as a memory medium.

It is interesting to contrast von Neumann’s view of computer

programming as an activity with Turing’s; von Neumann made it clear that

he thought of it as a clerical task requiring little intellect. A revealing

anecdote tells of a practice at the Institute for Advanced Study computer

facility of using students to translate computer instructions written using

human-readable mnemonics into machine language by hand.

A young hot-shot programmer proposed to write an assembler that would

do this conversion automatically. Von Neumann is said to have responded

angrily that it would be wasteful to use a valuable scientific tool to do a

mere clerical job. In his ACE report, Turing said that the process of

computer programming “should be very fascinating. There need be no real

danger of it ever becoming a drudge, for any processes that are quite

mechanical may be turned over to the machine itself.”25

Although the Eckert and the von Neumann versions of the story are still

heard, a third version has become prominent. This third version has von

Neumann getting the idea of a practical universal computer from Turing’s

work. In 1987, when I wrote an article expounding that point of view, I felt

myself to be very much alone.26 Since then information about Turing’s role

in decrypting German communications during the war has become much

more widely known. Also many people have become aware of the shameful

way he was persecuted for having had a homosexual affair.

Breaking the Code, a successful play performed in London and on

Broadway that was also the basis for a television play shown on PBS has

dramatized these matters as well as the importance of Turing’s

mathematical ideas.27 Television documentaries have also told his story.

And so, lo and behold, Alan Turing’s name was on the list of the 20 greatest



“scientists and thinkers” of the twentieth century proposed by TIME

magazine (in its March 29, 1999 issue).* Said TIME:

So many ideas and technological advances converged to create the

modern computer that it is foolhardy to give one person the credit

for inventing it. But the fact remains that everyone who taps at a

keyboard, opening a spreadsheet or a word-processing program, is

working on an incarnation of a Turing machine.

Exactly! And here is what Time had to say about von Neumann:

Virtually all computers today from $10 million supercomputers to

the tiny chips that power cell phones and Furbies, have one thing

in common: they are all “Von Neumann machines,” variations on

the basic computer architecture that John von Neumann, building

on the work of Alan Turing, laid out in the 1940s.

A Grateful Nation Rewards Its Hero

When Turing arrived in Manchester in the fall of 1948, it was still

recovering from the war, and there were neighborhoods that retained their

grim aspect left over from the city’s role in the early days of the Industrial

Revolution. One writer uses a famous book by Friedrich Engels as a source

in commenting on the squalor of working-class housing in the Manchester

of 1844:

What he [Engels] … describes … fall[s] within a uniform context

of mass immiseration, degradation, brutalization, and

imhumanization, the like of which had never before been seen on

the face of the earth. … On reaching these courts, he finds himself

met with an assault of “dirt and revolting filth, the like of which is

not to be found … [and] without qualification the most horrible

dwellings I have until now beheld … In one of these courts, right

at the entrance … is a privy without a door. The privy is so dirty

that the inhabitants can only enter or leave by wading through

puddles of stale urine and excrement.”28



Of course, mass sanitation had seen dramatic improvements during the

ensuing century, and in any case, someone of Turing’s social class would

not have lived in a working-class neighborhood. Nevertheless, Turing’s

association with a member of the “lower” classes was to lead to disaster.

One can only imagine how bitter Turing must have felt about the inept

management at NPL that had squandered his talent and had nullified the

confident dream he had revealed in his ACE Report and in his address to the

London Mathematical Society. Meanwhile, computers were being built. At

Cambridge University, Maurice Wilkes (1913–2010) directed the

construction of an EDVAC-type computer called the EDSAC. Unlike

Turing’s situation at NPL, Wilkes had adequate funding in house for his

project. It must have been particularly galling to Turing to recollect that at

NPL, he had scorned a memo from Wilkes as being in “the American

tradition of solving one’s difficulties by means of much equipment rather

than by thought.”

By 1949 the EDSAC was operational and open for business. The

supposed discoveries by Wilkes and his collaborators of microprogramming

and the systematic use of subroutines, both of which were clearly spelled

out in Turing’s ACE report, can only have added to his distress. At

Manchester, where Turing was supposed to be somehow directing the

computer project there, Williams made it quite clear that he was not

interested in some mathematician’s ideas about the construction of his

computer. The Mark I Manchester computer, also running successfully in

1949, was a brilliant vindication of Williams’ technique for using “off the

shelf” cathode ray tubes as his memory devices, soon copied in American

computers. But again, its basic logical design derived from von Neumann’s

EDVAC report and not from Alan Turing.29

About Turing’s ACE, Herman Goldstine remarks that although the design

was “attractive in some respects,” it “did not in the long run flourish and

selection weeded it out.”30 The suggestion that this was somehow the result

of a kind of natural selection is really unfair. The Pilot ACE embodying

Turing’s ideas worked perfectly well. There is no reason to think that a full

scale ACE-style computer would not have worked well if the organization

and resources to build one had been there.



The issue is best understood in the more general context of the question

of which computer functions should be supplied by hardware and which by

software. Turing had proposed a relatively simple machine in which a lot

was left to be supplied by software, but where, in compensation, the

programmer had very substantial control of underlying machine operations.

This would be particularly advantageous for writing programs that are

intended to carry out logical rather than numerical calculations. As the field

developed people continued to debate this tradeoff, for example in

connection with RISC (reduced instruction set computing) architecture.*

When Turing arrived at the University of Manchester in 1948, few people

had any notion of what he had done during the war, although he continued

to be consulted by the government. He had been hired with the

understanding that he would exercise some administrative functions in

connection with Williams’ Mark I computer, but as things worked out, the

engineers pretty much ran their own show, and what Turing did along these

lines was carried out in a rather desultory fashion. Instead of using his

position to introduce some of the elegant ideas proposed in his ACE report

to make the programmer’s job pleasant and easy, he became a user of the

machine, and worked directly with the 0s and 1s of machine language. He

worked on some computational problems that he had thought about before

the war, but his interests soon turned to biology.

He sought to answer the question of how living things, starting out as

assemblages of identical cells, managed to develop the varied forms

encountered in the natural world. This problem of morphogenesis gave rise

to differential equations, and Turing naturally turned to the computer for

information about the solutions of these equations. While using the machine

for the kind of number-crunching application he had proposed to go beyond

in popular articles and public addresses, he demonstrated his continuing

imaginative vision of the potential of computers for human-like

intelligence.

It was just before Christmas 1951 that Turing managed to launch a brief

affair with the 19-year-old youth, Arnold Murray. Murray was a very bright

young man from a poor working-class family. When Turing accosted him in

the street, he was on probation, having been caught in a petty theft. Turing

invited him to his house which must have seemed a palace to Murray. Less



than a month after Christmas, Turing returned home one evening to

discover that his house had been broken into and burglarized. Although the

total value of what had been taken amounted to no more than £50, Turing

was quite upset. It turned out that Murray had a pretty good idea who had

carried out the theft, namely someone he knew named Harry. Harry had

evidently felt secure in robbing a homosexual who presumably would not

dare go to the police. He was certainly right that a prudent man in Turing’s

position would not do anything so foolish as to go to the police. But that is

exactly what Turing did.

The police had little trouble working out what had happened between

Turing and Murray, and when confronted, Turing denied nothing. He did

not believe that there was anything shameful or wrong about the nature of

his sexual feelings or in the harmless ways he went about fulfilling them. Be

that as it may, the law was quite clear on the matter: what Turing and

Murray had done in giving one another pleasure were acts of “gross

indecency,” punishable by up to two years in prison.

The judge before whom Turing’s case came, acting out of what he

believed were humane motives, permitted Turing to escape prison if he

would agree to be treated by hormone injections for a year in order to

diminish his sex drive. The hormone chosen was estrogen, and, whatever

effect it may have had on Turing’s sex drive, it had the incidental effect of

causing him to grow breasts.

In October 1938, Turing saw Walt Disney’s Snow White and the Seven

Dwarfs. “He was very taken with the scene where the Wicked Witch

dangled an apple on a string into a boiling brew of poison, muttering

Dip the apple in the brew.

Let the Sleeping Death seep through.

It seems that he took pleasure in chanting this verse over and over again.31

On June 7, 1954, Alan Turing ended his life by eating an apple slice that

had been dipped into a cyanide solution. There has been much speculation

about what led him to this irreversible act. The play Breaking the Code

proposes that governmental authorities were objecting to the vacation trips

abroad that, after his conviction, had become his most promising source of



sex partners. Sex in England had become dangerous, perhaps too dangerous

to attempt. That the authorities in the atmosphere of the 1950s, did object to

his trips abroad, seems not in the least implausible. After his conviction, he

lost his security clearance. But there was no way to erase the secret

information he carried in his brain. What is definitely known is that a man

he had met on a trip to Norway had been stopped by the police and deported

when he came to England to visit Turing. Alas, it seems all too possible that

Alan Turing was hounded to his death by the governing authorities of a

nation whose unsung savior he had been.

*My personal introduction to computer programming occurred in the spring of 1951 when I began

writing code for the ORDVAC, a johnniac built at the University of Illinois in Champaign-Urbana. In

the summer of 1954, I wrote a program (not unrelated to Leibniz’s dream) that ran on the original

johnniac at the Institute for Advanced Study. That computer can be seen at the Smithsonian

Institution in Washington.

*Kurt Gödel was another of the 20.

*I personally wrestled with the basically number-crunching instruction set of von Neumann’s

Institute for Advanced Study computer during the summer of 1954. I was implementing an algorithm

for testing the truth of sentences of PA (defined in the Appendix to Chapter 6) that involved addition,

but not multiplication. (The editors of an anthology of technical papers in this field of computational

logic said in their preface, referring to my program: “In 1954 a computer program produced what

appears to be the first computer generated mathematical proof” (Siekmann and Wrightson, 1983, p.

ix).) I don’t doubt that the ACE instruction set would have been a good deal more suitable for my

purpose.



CHAPTER 9

Beyond Leibniz’s Dream

In his address before the London Mathematical Society, Turing said:

I expect that digital computing machines will eventually stimulate

a considerable interest in symbolic logic … The language in

which one communicates with these machines … forms a sort of

symbolic logic.1

The connection between logic and computation to which Turing alludes has

been a principal theme of this book. Nevertheless, readers may still ask:

how is it that logic and computation are related? What does arithmetic have

to do with reasoning? A clue is provided by a colloquial use of the verb “to

reckon,” in which it does not have its usual meaning: “to calculate.”

I reckon he’s sweet talking her in the moonlight right now.

We are listening to the melancholy hero of a grade-B film speaking of his

rival, not knowing (as we do) that it was our hero who had already won her

heart. In statement, he is not thinking of arithmetic; he is talking about

reasoning. He reasons based on what he thinks he knows about his rival’s

perfidious ways. The connection between calculation and reasoning

suggested by this use of the word “reckon” is genuine and profound.

Reckoning with numbers is a form of reasoning, and a great deal of the

reasoning that people do can be regarded as a kind of computation. It is

very interesting that, as our example shows, this relationship is generally

understood, at least on a subliminal level. We can see this appreciation as

well when someone is described as a calculating sort of person.

Reducing logical reasoning to formal rules is an endeavor going back to

Aristotle. It was the underlying basis for Leibniz’s dream of a universal



computational language. And it underlay Turing’s achievement in showing

that all computation could be carried out on his universal machines.

Computation and logical reasoning are indeed two sides of the same coin.

This insight is used not only to make it possible to program computers to

perform a bewildering variety of tasks, but indeed in the very way that

computers are designed and built.

In January 1999, the American Association for the Advancement of

Science held its annual meeting in Anaheim, California under the heading

Challenges for a New Century. This was a serious, very rich meeting with

lectures and symposia covering an enormous array of topics. Surveying the

program, a symposium entitled On the Unusual Effectiveness of Logic in

Computer Science caught my attention. The presentations by five leading

computer scientists (who are also logicians) attested to the correctness of

Turing’s prediction. Their statement in the program about the symposium

reads in part:

… during the past twenty-five years there has been an extensive,

continuous, and growing interaction between logic and computer

science. In many respects, logic provides computer science with

both a unifying foundational framework and a tool for modeling

… This symposium provides an overview of the surprising

effectiveness of logic in computer science by presenting some of

the areas in which logic played a crucial role in computer science:

artificial intelligence, computational complexity, distributed

computing, database systems, and design verification.2

Eliza, Watson, and Deep Blue

In 1965, Joseph Weizenbaum, a computer scientist at MIT, wrote a program

called ELIZA that engaged in a dialogue with a user entering English

sentences from a keyboard.3 ELIZA was meant to simulate in very crude

manner a psychotherapist of the non-directive school. Here is a

transcription of my actual conversation with a version of ELIZA:

ELIZA: HOW DO YOU DO: PLEASE TELL ME YOUR PROBLEM.



MARTIN: My problem is indescribable.

ELIZA: WHY DO YOU SAY YOUR PROBLEM IS

INDESCRIBABLE?

MARTIN: Because whenever I attempt to describe it, I cry.

ELIZA: IS THAT THE REAL REASON?

MARTIN: Perhaps not.

ELIZA: YOU DON’T SEEM QUITE CERTAIN.

MARTIN: Ah, certainty.

ELIZA: CAN YOU EXPAND ON THAT?

MARTIN: Yes. But it will lead to intimate matters.

ELIZA: WHY ARE YOU SO POSITIVE?

MARTIN: I try to maintain my dignity.

ELIZA: YOUR DIGNITY?

MARTIN: You wouldn’t understand that.

ELIZA: WE WERE DISCUSSING YOU—NOT ME.

MARTIN: I have had quite enough. Goodbye!

ELIZA: YOU SAY YOU HAVE HAD QUITE ENOUGH.

MARTIN: I said Goodbye.

ELIZA: CAN YOU ELABORATE ON THAT?



MARTIN: Goodbye.

ELIZA: GOODBYE. THAT WILL BE $75, PLEASE.

Of course ELIZA understands nothing. The program implements a very

simple algorithm that responds to key words when they are present and

otherwise echoes the user’s sentence. For example “you” is a key word and

its presence will generally cause the response: WE WERE DISCUSSING

YOU—NOT ME. The sentence “You are my mother” contains the two key

words “mother” and “you.” It will elicit the response TELL ME MORE

ABOUT YOUR FAMILY because the key word “mother” overrides the key

word “you.” The key word “yes” elicits the response WHY ARE YOU SO

POSITIVE? Notice that ELIZA responds to “Goodbye” only when it begins

a sentence.

There has been an almost unbelievable advance in computer technology

from the vacuum tube machines of Turing’s time (including those I

personally wrote code for in the 1950s), to the solid state IBM 7090 that

Weizenbaum would already have had available when he wrote the ELIZA

program, and from that to the “smart phones” many of us carry in pockets

or purses. But all of them embody the same underlying logic that Turing

proposed. From his abstract universal machine with no limitations of space

or time, Turing inferred that to the extent that a physical device was able to

carry out a small number of basic instructions sufficiently rapidly and was

equipped with sufficient data storage, it would be able to carry out any

algorithm in a reasonable time. My own Android phone can do a

remarkably good job of transcribing my spoken English into text, and I can

download to it an app (the current term for a computer program) that can

play a much better chess game than I can.

In 1950, Alan Turing published his classic essay “Computing Machinery

and Intelligence” in which he proposed a way to discuss the question of

whether a computer could be said to exhibit intelligent behavior without

getting into the morass of philosophical and theological questions into

which that question often leads. For this purpose he proposed an objective

easy-to-administer test that he called the imitation game: if a computer can

be programmed to carry on a conversation with a reasonably intelligent

person on whatever topics are raised so effectively that a user cannot tell



whether he or she is talking to a person or to a machine, then said Turing,

we should be prepared to agree that the computer is exhibiting

intelligence.4 He wrote:

I believe that in about fifty years’ time it will be possible to

programme computers … to play the imitation game so well that

an average interrogator will have not more than a 70 per cent

chance of making the right identification after five minutes of

questioning. … I believe that at the end of the century the use of

words and generally educated opinion will have altered so much

that one will be able to speak of machines thinking without

expecting to be contradicted.5

Regarding this last point, later in this chapter we will encounter scholars

who resolutely refused to agree that activities that we regard as involving

“knowing” and “thinking” when people do them, should have the same

words applied to these activities when machines do them, even when they

do them quite well.

In 2011, there was considerable excitement when a behemoth of a

computer named Watson developed by IBM, succeeded in defeating the

best human players in the popular television quiz program Jeopardy.

Watson did not have access to the Internet, but its massive database

included the entire Wikipedia encyclopedia and much else beside. The

Jeopardy format helped Watson seem to be more fluent in ordinary English

than it actually was. The players were furnished with a “clue” and were to

come up with the question to which that clue was the answer. For example,

presented with the clue “he succeeded in turning Aristotle’s syllogistic

reasoning into manipulation of equations,” the contestant should reply:

“Who was George Boole?” The structured format required of the contestant

was a real advantage for Watson’s programmers who did not have to cope

with the kind of free-wheeling dialog that the Turing test requires.

Watson used the words and phrases making up the clue to search its data

base for matches. It used an algorithm to provide a numerical score for each

of the possible responses its search suggested, and only signified that it was

ready to respond if and when a sufficiently high score was achieved. The



producers of Jeopardy took advantage of the opportunity to display their

showmanship. Watson was furnished with a stage presence in the form of a

loud speaker, and its response was enunciated by a speech synthesizer. But

quite apart from this hullabaloo, Watson’s performance was a spectacular

achievement by the IBM researchers.

While computational linguists continue to seek the holy grail of imbuing

computers with the capability of using ordinary language, it is natural to

seek machine intelligence in domains not dependent on ordinary language.

One such domain is the game of chess. It would be difficult to deny that a

person playing even a reasonably good game of chess is exercising

intelligent thought. And it is common knowledge that chess-playing

programs that play very good games of chess are readily available. Most

ordinary players must set these to play at less than the programs’ best in

order not to be regularly defeated.

In February 1996, the chess-playing computer Deep Blue managed to

defeat world champion Garry Kasparov. May we then say that Deep Blue

exhibited intelligence? In an article written in his usual provocative style,

the philosopher John R. Searle tells us that Deep Blue cannot properly even

be said to play chess.

Here is what is going on inside Deep Blue. The computer has a

bunch of meaningless symbols that the programmers use to

represent the positions of the pieces on the board. It has a bunch

of equally meaningless symbols that the programmers use to

represent options for possible moves. The computer does not

know that the symbols represent chess pieces and chess moves,

because it does not know anything.6

To hammer the point home, Searle has recourse to a variant of a parable that

he has made quite famous. The original story tells of a man in a room who

receives symbols from outside the room and by looking things up in a book

determines which symbols he should send out in reply. It turns out that the

book is so written that the symbols flying back and forth constitute a

conversation in Chinese. But the man knows no Chinese and has no idea

what the symbols represent. Leaving aside what conclusion one may draw

from this bizarre tale, let us move on to Searle’s “Chess Room”:



Imagine that a man who does not know how to play chess is

locked inside a room, and there he is given a set of, to him,

meaningless symbols. Unknown to him, these represent positions

on a chessboard. He looks up in a book what he is supposed to do,

and he passes back more meaningless symbols. We can suppose

that if the rule book, i.e., the program, is skillfully written, he will

win chess games. People outside the room will say, “This man

understands chess, and in fact he is a good chess player because

he wins.” They will be totally mistaken. The man understands

nothing of chess, he is just a computer. And the point of the

parable is this: if the man does not understand chess on the basis

of running the chess-playing program, neither does any other

computer solely on that basis.

Readers of this book will perhaps notice the arbitrary separation of software

from hardware in this example. The man in the room simply functions as a

crude version of a universal computer. Of course a bare-bones computer

doesn’t play chess. It is only the man together with the instruction book for

which any such claim might be made. Here is my version of Searle’s

parable:

A precocious child whose mother is passionate about chess

becomes tired of watching her play and demands that he be

allowed to play her opponent. His mother agrees on the condition

that he move the pieces only when she tells him to and exactly

where she says. He does as requested and doing what his mother

whispers in his ear achieves a checkmate. Observing the scene,

Searle tells us that the child doesn’t know anything about chess,

and is certainly not playing chess. Who could disagree?

It is part of the contemporary philosophers’ method to tell stories they know

to be quite preposterous for the purpose of bringing out connections that

might otherwise not be apparent. But it may not be entirely pointless to

bring the Chess Room down to earth. I once had a colleague who had been

part of the team that designed Deep Thought, the powerful chess-playing

computer that was the predecessor of Deep Blue. He provided me with



some numbers on the basis of which I calculated that if the hardware and

software constituting Deep Thought were put in the form of a book (more

likely a library) of instructions that a human being could carry out, then it

would take several years to do the processing needed to make one move.

Better put a family in that Chess Room, so the children can take over when

the parents die! Otherwise, no game will actually be completed.

Searle tells us that Deep Blue “has a bunch of meaningless symbols.”

Well, if you could look inside Deep Blue while it was in operation, you

wouldn’t see any symbols, meaningful or not. At the level of circuits,

electrons are moving around. Just as, if you look inside Kasparov’s skull

while he is playing, you wouldn’t see any chess pieces, you’d see neurons

firing. The way our brains are organized to deal with what we think of as

symbolic information is still only dimly understood. The way computers

(like Deep Blue) are organized for this purpose is much better understood,

because the engineers and programmers build it in. But in both cases,

processes that function at something like the molecular level are integrated

into patterns that we can think of as involving symbolic manipulation.

Searle tells us that the symbols that Deep Blue has are meaningless. Well,

whatever does a pawn or a knight “mean”? This is not a useful question.

Searle makes much of the fact that Deep Blue doesn’t “know” that it is

playing chess. In fact he insists it doesn’t “know” anything. Actually,

professional knowledge engineers would likely insist that Deep Blue does

know all sorts of things. For example, it “knows” to which squares a bishop

at a given square can move. It all depends on what “knows” means. Be that

as it may, we can agree that Deep Blue does not know that it is playing

chess. Can we therefore conclude that it is not in fact playing chess? Here’s

another parable:

Anthropologists studying the Xlupu people of northern New

Guinea have made a remarkable discovery of something which

must surely be one of the greatest coincidences of all time.

Although the Xlupu have lived in total isolation until this year, it

appears they engage in a religious ceremony in which pairs of

them engage in a symbolic ritual exactly equivalent to our game

of chess. They do not use a board or pieces, but rather make

intricate designs in boxes of sand. It is only because Dr. Splendid,



the leader of the anthropological expedition that first encountered

the Xlupu, is himself an enthusiastic amateur chess player, that he

was able to see in the patterns being drawn, equivalents of the

successive moves in a chess game.

Are these Xlupu playing chess? They surely don’t know that that is what

they are doing. Ah! Searle might reply (yes, I am putting words in his

mouth): “But the Xlupu are conscious, and Deep Blue is not.” The question

of whether a programmed computer might ever be conscious has played a

major role in discussions of these matters by Searle and others. Whatever

may come to pass in the future, one certainly must agree that Deep Blue is

not conscious.

Our consciousness is a principal way in which each of us experiences his

or her unique individuality. But we know it only from the inside. We

experience our own consciousness but not that of anyone else. I experience

my consciousness as an internal conversation. My wife assures me that her

consciousness is dominated by visual images. Are her consciousness and

mine really the same kind of thing? What is it and what purpose does it

serve? As I write, I seek the right word, and (when I’m lucky) it appears in

my consciousness from the depths below. How my brain manages to do

such a clever thing I have no idea. The simple truth is that at this time the

phenomenon of consciousness remains mysterious.

Computers Play Board Games

People talked about computers playing chess before there were any

computers. It was discussed at Bletchley Park during the code breakers’

leisure time. Claude Shannon published a paper explaining how it could be

done in 1950 when the existing machines were far too weak for the purpose.

A player of a game like chess is faced at each stage of play with a choice of

possible moves.

Programs that play such games are traditionally conceived in terms of

data arranged in a structure called a “tree.” At each stage the various moves

that a player can make are thought of as forming “branches.” The length of

such a tree can show all the moves of a possible game from beginning to



end. The width of the tree indicates the range of possible moves at a given

stage of play. If we call the players “white” and “black” with white having

the first move, we can imagine a branch for each possible white move. From

the end of each such branch, we can imagine branches emanating,

corresponding to each possible black move. Continuing in this way, the tree

quickly becomes enormous. Designers of computer programs to play the

game seek to prune the tree to make it manageable.

Shannon suggested that one should provide a way to represent the values

of given positions of pieces positioned on a chessboard so that an

appropriate move could maximize the value of the position that would result

from that move. For chess, players traditionally value a pawn at 1, knights

and bishops at 3, a rook at 5, and the queen at 9. Using these numbers

together with the estimated value of such features as control of the center of

the board, mobility of the pieces, and safety of the king, a numerical value

can be obtained for a given position.

A good player tries to look ahead for several moves, anticipating the

opponent’s likely response to a given move. Once the computer becomes

sufficiently powerful to support such a look-ahead for a number of moves,

this simple idea can form the skeleton of an effective chess-playing

program. The most powerful chess playing programs available at this time,

able to defeat the best human players, augment this with a look-up library

of opening moves and responses as well as of end-game scenarios in

addition to various other features that add subtlety to the game-playing

algorithm.

Until very recently, mastery of the ancient Chinese game of Go was

securely in the hands of human players. On the face of it, Go is much more

complex than chess. Where chess is played on a board with 64 squares on

which the pieces can be placed, Go is played on a 19 × 19 board with 361

places where pieces can be placed.

As in chess the winner is entirely determined by the moves the players

make, taking alternate turns and choosing as they wish among the legal

moves in the position they face. Like checkers, but unlike chess, in Go there

is just one kind of piece. In Go the pieces are called stones and are

traditionally colored black or white. A computer program to play such a

game is based on an algorithm that “prunes” the game tree by choosing



favorable moves at each stage of play. Go was such a formidable problem,

at least in part, because its tree is so very long and extremely wide. It was

thus a remarkable achievement when the program AlphaGo, developed by

the DeepMind group, defeated the South Korean Go master player Lee

Sedol in four games of a five-game match played in March 2016.

DeepMind was founded in London in 2010 and acquired by Google in

2014. It has grown from a group of a dozen or so computer scientists and

software engineers to a team of more than 500 people working on artificial

intelligence and machine learning. Susan Dickey, a Google software

engineer, was able to arrange an hour-long meeting with one of these

computer scientists, Thore Graepel, via video connection with Susan and

me in a Google office in San Francisco and Thore in London.*

As early as the 1940s, researchers explored mathematical models

suggested by biological nervous systems.7 These models are called neural

networks. They are conceptualized as networks of interconnected so-called

“neurons.” Each neuron has several input channels that receive numerical

signals from other neurons and one output channel that transmits such

signals. Each input channel has a number associated with it called its

weight; at each stage the total signal received by a neuron is the number

obtained by multiplying each input value to a channel by the weight for that

channel and then adding all of those numbers.

What if anything the neuron transmits at that stage is decided depending

on the value of this total signal. Although one may imagine a neural

network implemented as a huge number of tiny electronic gadgets

interconnected by a network of wires, in practice a neural network has only

a virtual existence as a program stored in a computer. As computers have

become more powerful, the variety and complexity of neural networks that

have been built, studied, and applied to serious problems has increased

dramatically.

Contemporary neural networks are usually imagined as consisting of

interconnected layers and have the capability of changing some of the

weights of their individual neurons. This capability enables such neural

networks to learn how to perform various computational tasks. They are

provided with examples of what is wanted and use this data to to modify



themselves so as to steadily improve their performance. This technique for

training a neural network is often referred to as deep learning.

Such deep learning techniques have been very successful in training

neural networks to identify specific objects in a video image. Video images

exist in the form of an array of pixels stored in a computer. Neural networks

have been trained to distinguish a bird from a squirrel and to identify

individual human faces. The networks that accomplish this feat are usually

designed to be “convolutional”: what people and animals accomplish by

scanning a visual field through eye movements, a convolutional neural

network accomplishes by carrying out the enormous number of

computations needed to recognize that objects in different parts of a video

image are the same kind of thing.

These computations are greatly facilitated by having special “graphical

processing unit” chips as part of the hardware. These GPU chips were

originally designed and manufactured for machines intended for playing

computer games.8 The algorithm implemented in AlphaGo can be thought

of as a tree search algorithm taking advice from two auxiliary convolutional

neural networks: a policy network and a value network. Both networks were

trained by giving them access to a huge library of games played between

expert players over many years. The policy network estimates how likely

various possible moves are to to be played by an expert Go player stating

from a particular arrangement of pieces on the Go board.

Thore told us, “This policy network was already a pretty good Go player.

I am a pretty good amateur player myself. On my first day at DeepMind,

David Silver invited me to play against this network, and I was sure I would

win. But it beat me! Then I was sure I wanted to be part of the AlphaGo

team.”

The other network, the value network, starting with any Go position,

estimates for one of the players the probability that that player will win.

Convolution plays a role similar to that in object recognition: just as a bird

in one corner of a video image needs to be recognized as still a bird when

it’s in a different part of the image, a certain configuration of the stones in

one part of the Go board needs to be recognized as similar to one in a

different part. The hardware used by AlphaGo includes GPUs to make this

work efficiently.



In 2016 AlphaGo was brought to Korea to challenge Lee Sedol to a five-

game match. Thore said, “Although we had great confidence in Al-phaGo,

you never know what chance will come up with in a tournament.

Fortunately, AlphaGo won the first three games. By the fourth game, our

team was actually rooting for Lee Sedol, and was happy for him when he

succeeded.” Then AlphaGo won the fifth game.

In May 2017 at the Future of Go Summit in China, AlphaGo won all

three games against world champion Ke Jie. Thore continued, “Go players

have started to pick up patterns of play that AlphaGo invented. In training

for the May competition, we let AlphaGo play against itself and create new

games of higher quality, resulting in a set of training data for a stronger

version of AlphaGo. With this kind of bootstrapping, a machine learning

system can continue to grow.”

Computers, Brains, and Minds

Turing and von Neumann were both led to compare computers with the

human brain for an excellent reason. Knowing that people were capable of

so many diverse patterns of thought, they conjectured that we can do so

many very different things because embedded in our brain is a universal

computer. That’s the reason that von Neumann was so struck by a theory of

artificial neurons when he set out to design the EDVAC. What universal

computers can do is to execute algorithms. Searle says, “… in fact humans

do rather little that is literally computing. Very little of our time is spent

working out algorithms … “ Is he so sure?

Answer the question: have you ever read anything by Charles Dickens?

The answer (yes or no) comes welling up from the depths. How do we do

it? We have no idea. But the hypothesis that it is done by some kind of

algorithmic processes that access the required information from some

databases in our brain is on the face of it quite attractive.

Research on computer processing of raw visual data entering a computer

from one or more TV cameras is very suggestive of the kind of process

needed to produce the sharp picture our brain presents to us from the raw

data going from the retina to the brain. We don’t know that the way we do



such things is by means of our brains carrying out algorithms, but we

certainly don’t know that that’s not how it’s done.

Roger Penrose is an outstanding mathematician and mathematical

physicist who has done exciting work on the geometry of the universe. He

has considered the question of whether the functioning of the human mind

is fundamentally algorithmic, and has invoked Gödel’s incompleteness

theorem to answer the question with a resounding “No.” One way to

express Gödel’s theorem is as follows:

Given an algorithm that produces true statements about the

natural numbers one-after-another, we can always obtain another

true statement about the natural numbers, let us call it the Gödel

sentence, that is not generated by that algorithm.9

Penrose argues that no particular algorithm proposed to be equivalent to the

mind’s working can possibly be adequate for that purpose because by an act

of “insight,” we can see that the Gödel sentence for that algorithm is true.

This argument is deeply fallacious for a reason that Turing explained in his

lecture to the London Mathematical Society in 1947, four decades before

Penrose wrote on the subject.

What Turing pointed out is that Gödel’s theorem applies only to

algorithms that generate only true sentences. But no human mathematician

can claim infallibility. We all make mistakes! So there is nothing in Gödel’s

theorem to preclude the mathematical powers of a human mind being

equivalent to an algorithmic process that produces false as well as true

statements.10

Searle and Penrose reject the conjecture that the human mind is in all

essentials equivalent to a computer. But both of them tacitly accept the

premise that whatever the human mind may be, it is produced by the human

brain, subject to the the laws of physics and chemistry. Kurt Gödel, on the

other hand, was quite prepared to believe that the brain is in effect a

computer, but rejected the idea that there is no mind beyond what the

human brain can do. Most readers will recognize that the classical “mind-

body” problem is at the core of Gödel’s concerns. His position that the mind



is in some way independent of our existence as physical entities is usually

called “Cartesian dualism.”11

This discussion has taken us far beyond Leibniz’s dream, to a realm

somewhere between philosophy and science fiction. However, taking note

of what has become of computers since the days of the EDVAC and ACE

reports, should not lead us to forget the continued viability of Turing’s

vision of a universal computer. This was present in abstract form in his

1936 Computable Numbers article, and laid out more explicitly in the ACE

report: Given sufficient fast memory storage, and sufficiently fast data

processing, one universal machine can execute any algorithmic process.

One would indeed be well advised to be cautious in predicting what

computers may or may not be able to do in the future.

*My friend Susan Dickey and I were colleagues in the Computer Science Department at NYU

many years ago. I am grateful to her for arranging this meeting and for the excellent notes she took. I

am also very grateful to Thore for the clear and careful explanations he provided. This discussion is

based on what Thore told us and on Susan’s notes. Of course any errors are mine.



Epilogue

We have followed the lives of a group of brilliant innovators spanning three

centuries. All of them in one way or another were concerned with the nature

of human reason. Their individual contributions added up to the intellectual

matrix out of which emerged the all-purpose digital computer. Except for

Turing, none of them had any idea that his work might be so applied.

Leibniz saw far, but not that far. Boole could hardly have imagined that

his algebra of logic would be used to design complex electric circuits. Frege

would have been amazed to find equivalents of his logical rules

incorporated into computer programs for carrying out deductions. Cantor

certainly never anticipated the ramifications of his diagonal method.

Hilbert’s program to secure the foundations of mathematics was pointed in

a very different direction. And Gödel, living his life of the mind, hardly

thought of applications to mechanical devices.

This story underscores the power of ideas and the futility of predicting

where they will lead. The Dukes of Hanover thought they knew what

Leibniz should be doing with his time: working on their family history. Too

often today, those who provide scientists with the resources necessary for

their lives and work try to steer them in directions deemed most likely to

provide quick results. This is not only likely to be futile in the short run, but

more important, by discouraging investigations with no obvious immediate

payoff, it short-changes the future.
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Hofmann (1974).
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5For Leibniz’s writing about machinery for reasoning and for equation solving, see Couturat (1961,
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referred to Bourbaki (1969, pp. 207–249) for an excellent account of the historical development of the
calculus.

7There is another interesting story (but one that really belongs in another book) about Leibniz’s
differential and integral calculus: his systematic use of “infinitesimal” numbers. Infinitesimals were
supposed to be positive numbers so very tiny that no matter how many times such a number is added
to itself, the number 1 (or even the number .0000001) will never be reached. The legitimacy of such
quantities was challenged from the outset; the philosopher Bishop Berkeley scoffed at infinitesimals as
“ghosts of departed quantities.” By the end of the nineteenth century, mathematicians were in
agreement that the use of infinitesimals could not be justified (although physicists and engineers
continued to employ them). Discussion of infinitesimal methods as used by Leibniz as well as their



eventual rehabilitation in the twentieth century by the logician Abraham Robinson will be found in the

book (Edwards, 1979) already cited. The Scientific American article (Davis and Hersh, 1972) gives
another account of Robinson’s achievement.

8Aiton (1985, p. 53).
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further references.

10The letter to L’Hopital quoted was dated April 28, 1693 (Couturat, 1961, p. 83). The quote from
Couterat is from the same page of the same source. For the “thread of Ariadne” see Bourbaki (1969, p.
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11The letter from Leibniz to Jean Galloys Leibniz (1849/1962) on his Universal Characteristic was
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12Gerhardt (1978, vol. 7, p. 200).
13Parkinson (1966, p. 105).
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15For some discussion of Leibniz’s attempts to go beyond Aristotle’s analysis, see Mates (1986, pp.
178–183).

16Huber (1951, pp. 267–269).
17Aiton (1985, p. 212).
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,

and the distributive law
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x  +  y  =  y  +  x, xy  =  yx



We are using the usual algebraic convention of writing, for example, xy instead of x × y.
9Multiplication of two differential operators (which is taken to mean applying first one and then the

other) doesn’t always obey the commutative law.
10Boole’s gold medal (MacHale, 1985, pp. 59–62, 64–66). In addition to Boole’s work employing

the methods of the calculus, he published a paper in two parts in the Cambridge Mathematical Journal
for 1842 that can be thought of as founding a new and important branch of algebra, the theory of
invariants. However, after this first contribution, Boole never again worked on invariants. We will be
considering invariants again in the chapter on David Hilbert.

11Boole’s casual attitude to proof in connection with limit processes may be contrasted with
contemporary efforts on the continent to develop an appropriate rigorous foundation for such matters.
Interested readers are referred to Edwards (1979), especially Chapter 11.

12The Scottish philosopher Sir William Hamilton is not to be confused with his contemporary, the
Scottish mathematician, Sir William Rowan Hamilton.

13Boole (1854, pp. 28–29).
14Daly (1996); Kinealy (1996)
15MacHale (1985, p. 173).
16MacHale (1985, p. 92).
17MacHale (1985, p. 107).
18MacHale (1985, pp. 240–243).
19MacHale (1985, p. 111).
20MacHale (1985, pp. 252–276).
21The modern notation for the intersection of x and y is x ∩ y rather than xy. Also the empty set is

usually represented by the Danish letter  rather than by 0. Of course the notation he used was
important for Boole because it made it easy to connect with ordinary algebra.

22Boole restricted the operation + to classes having no elements in common. Here we follow

contemporary usage and do not enforce this restriction. So x + y is the class of things belonging to x or

y or both. Nowadays one speaks of the union of x and y, written x ∪ y. Also, Boole restricted the

notation x − y to the case that the class that y represents is part of the class that x represents. But there
is no need for this restriction either.

23Boole (1854, p. 49).
24As Boole emphasizes, what is involved algebraically in demonstrating the validity of a syllogism

is the elimination of one variable from two simultaneous equations in three variables.
Although Boole realized perfectly well that propositions of the form “All X are Y” could be

represented in his algebra as X(1 − Y) = 0, he preferred to use X = υY where υ is what he called an

indefinite symbol. This was apparently suggested by the mathematician Charles Graves (MacHale,
1985, p. 70). It was really a terrible idea and a quite unnecessary complication of Boole’s system.

25Boole’s method of relating secondary propositions to his algebra of classes was to bring time into

the picture. With each proposition Boole would in effect associate the class of instants of time for

which that proposition was true. To say that proposition X is true, Boole would write X = 1 meaning
that the class of instants in which the proposition is true encompasses the entire time span under

θ



consideration. Likewise, X = 0 would express that X is false, because there are no instants of time in

which X is true. Given a proposition X&Y which expresses the truth of both X and Y, the set of instants

in which it is true is just the set intersection XY. Finally, for a proposition if X then Y to be true, what is

required is that any time that X is true, Y is also true, that is that there is no time when X is true and Y

is false. As an equation: X(1 − Y) =0. (Boole, 1854, pp. 162–164).
26Boole (1854, pp. 188–211).

Chapter 3

1For Russell’s letter, Frege’s reply and Russell’s later comment, see van Heijenoort (1967) pp. 124–
128.

2For Frege’s notorious diary as well as Michael Dummett’s comment, see Frege (1996).
3I am very much indebted to Professor Lothar Kreiser of the University of Leipzig who graciously

replied to my request for information about Frege. See his masterful biography (Kreiser, 2001). Terrall
Bynum’s brief biography in Bynum (1972) was also helpful.

4I found Craig (1978) an excellent source on German history. For the origins of the First World
War, see also Geiss (1967); Kagan (1995). A number of postcards from Frege to the philosopher
Ludwig Wittgenstein, who was an artillery observer in the Austrian army during the war, have
survived. Not surprisingly, they show Frege to have been a patriotic German (Frege, 1976).

5Frege (1996).
6Sluga (1993); Frege (1976, pp. 8–9).
7For the quoted comment, see van Heijenoort (1967, p. 1). The same source includes an excellent

translation of Frege’s Begriffsschrift with commentary, pp. 1–82. Another translation is in Bynum
(1972, pp. 101–166).

8The symbols we are using are those in common use today not those used by Frege. Of course the
fundamental insight was recognizing what needed to be symbolized rather than what specific symbols
were used. Frege’s were not widely adopted in part because they presented difficulties for the
typesetter but mainly because the notation used by the Italian logician Giuseppe Peano as adapted by
Bertrand Russell became much better known.

9Frege wrote “ … what I wanted to create was not a mere calculus ratiocinator but a lingua

charactera in Leibniz’s sense.” Quoted in van Heijenoort (1967, p. 2). See also Kluge (1977).
10This rule is known as modus ponens. The terminology derives from the scholastic logicians of the

twelfth century.
11What we are calling Frege’s logic is usually called first-order logic. This is to distinguish it from

systems of logic in which the quantifiers ∀ and ∃ are applied to properties as well as to individuals.

Here is an example of a sentence in what is known as second-order logic:

(∀F)  (∀G)  [(∀x)  (F (x)  ⊃  G (x))  ⊃   (∃x)  (F (x)  ⊃  G (x)) ].

Actually, Frege went beyond first-order logic in that he did consider quantification of properties; so
our speaking of first-order logic as “Frege’s logic” is not quite accurate.



12Strictly speaking, this explanation of “number” is closer to what Bertrand Russell proposed than
to Frege’s own exposition. But it is close enough to show why it was vulnerable to Russell’s paradox.

13Interesting work done while this book was being written showed that a considerable part of
Frege’s program for the logical development of arithmetic can be saved (Boolos, 1995).

14Frege (1960).
15Dummett (1981); Baker and Hacker (1984).
16For clarity it is important to be able to state precisely the meaning of the locutions that occur in

computer programming languages, or as one says, to provide the semantics of such a language. One

approach to this question that has been much studied, known as denotational semantics, is ultimately
based on Frege’s ideas. See Davis et al. (1994, pp. 465–556).

Chapter 4

1Rucker (1982, p. 3).
2Quoted from Dauben (1979, p.124). This is a translation from Leibniz’s original in French

(Cantor, 1932, p 179).
3Dauben (1979, p. 120).
4Frege (1892, p. 272). This citation is of a review by Frege of some of Cantor’s work. More will be

said about this review later in this chapter.
5For biographical information about Cantor, I have relied on Grattan-Guinness (1971), Purkert and

Ilgauds (1987), and Meschkowski (1983).
6Meschkowski (1983, p. 1) (my translation).
7Great interest by mathematicians and physicists in trigonometric series was stimulated by the

surprising discovery by the French mathematician Fourier early in the nineteenth century that there
was little apparent limitation to what they could converge to. An example of a trigonometric series is

cos  x  +   cos  2x
4   +   cos  3x

9   +   cos  4x
16   +   cos  5x

25   +   …

Remarkably, this series converges to 1
4 x2  −   1

2 πx  +   1
6 π2 if x has any value between 0 and 2π. (The

angle x is measured in radians.) If x is set equal to 0, we get

π2

6
  =  1  +   1

4
  +   1

9
  +   1

16
  +   1

25
  +   …  ,

a result which, like Leibniz’s series for π
4

, connects π with the natural numbers, in this case with the
perfect squares:

1  ×  1  =  1,   2  ×  2  =  4,   3 ×  3  =  9,   4  ×  4  =  16,   5  ×  5  =  25,    …  .

8Euclid (1956, p. 232).
9Gerhardt (1978, v. 1., p. 338). The translation from Latin is by Alexis Manaster Ramer.
10As we all learned in elementary school, different fractions can represent the same number, e.g.,



1
2

  =   2
4

  =   3
6

  =  .  .  .  .  .

So the one-to-one match between fractions and natural numbers shown is a match with the fractions

as symbols rather than with the numbers the symbols stand for. But this is easily fixed: just remove
from the list of fractions all those not in lowest terms.

11The existence of transcendental numbers had been proved by the French mathematician Liouville
in an entirely different manner three decades earlier. What Liouville had been able to prove is that a
number whose decimal expansion includes enormously long stretches of 0s had to be transcendental.
An example to which Liouville’s method would apply is the number

. 10100001 000000000000000000000000000
27

 1 000 .  .  .  0
64

 10 .  .  .  .

Here the successive blocks of 0s between the 1s are of lengths 11 = 1, 22 = 4, 33 = 27, 44 = 64, etc. At

the time Cantor wrote his paper, a proof that π is transcendental was still a decade away. The fact that

2√2 is transcendental was not proved until 1934.
12Grattan-Guinness (1971, p. 358).
13Cantor’s notation for cardinal numbers is not used much today. Instead of M , contemporary

authors write |M|.
14In fact, the proposition that of any two unequal cardinal numbers, one must be larger than the

other, is not so evident in the case of infinite sets. The matter was not really cleared up during Cantor’s
lifetime.

15To see why the cardinal number of the set of all sets of natural numbers is the same as that of the
set of real numbers, it is helpful to consider the representation of numbers using, not the familiar
decimal system, but instead, the binary system, in which there are only the two digits 0 and 1. When

we write 1
3   =  .33333  …, that simply means

1
3   =   3

10   +   3
100   +   3

1000   +   3
10000   +   …  .

In the binary system, positive real numbers less than 1 are represented by infinite strings of 0s and 1s.
For example

Here when we write 1
3

  =  .0101010101 . . ., mean

1
3   =   1

4   +   1
16   +   1

64   +  .  .  .  .  .

(The denominators are successive powers of 2 instead of 10.)
Now, starting with any set of natural numbers, we can find a unique corresponding real number as

follows: we generate a string of 0s and 1s by writing 1 in the nth place if n is a member of the given

1
4

= .0100000000 . . . ,
1
3

= .0101010101 . . . ,
1
π

= .0101000101 . . . ,

√ 1
2 = .1011010100 . . . .



set and 0 otherwise. For example, if we begin with the set of even numbers, we end up with .01010101

…, i.e., as we have seen, 1
3

. If instead, we begin with the set of odd numbers, we get

.10101010 . . .  =   2
3 .

This shows that the set of all sets of natural numbers has the same cardinal number as the set of real
numbers between 0 and 1. But Cantor was able to prove (and it’s not really difficult) that this set has
the same cardinal number as the set of all real numbers.

There is a minor technical nuisance that in good conscience I must mention. Certain rational
numbers will have two different binary representations and hence will be matched with two different
sets of natural numbers. An example is:

So the real number 1
2

 corresponds both to the set consisting only of the number 1 and to the set
consisting of all natural numbers except 1. Although this spoils our one-to-one match-up, the difficulty
can be overcome using the fact that the set of rational numbers for which this happens has cardinal
number ℵ0.

16As Cantor pointed out, the cardinal number of the set of all sets of real numbers is also the

cardinal number of the set of all functions from real numbers to real numbers.
17See Grattan-Guinness (1971) and Dauben (1979). Dr. Barbara Rosen kindly provided

professional advice to me on this matter.
18I’m grateful to Michael Friedman for help with Kant and related matters (although he should not

be held responsible for my attack on Hegel).
19Quoted from Cantor (1932, pp. 383–384) and Frege (1892). I have profited greatly from the help

of Egon Börger, William Craig, Michael Richter, and Wil-fried Sieg in translating these, quite difficult
for me, passages from German.

I learned about these comments from Dauben (1979, p. 225).
For the benefit of any readers who are fluent in German, I include the original passages. Cantor

wrote:

So sehen wir die in Deutschland als Reaktion gegen den überspannten Kant-Fichte-Hegel-

Schellingschen Idealismus eingetretene, jetzt herrschende und mächtige akademisch-

positivistische Skepsis endlich auch bei der Arithmetik angelangt, wo sie, mit der äussersten,

für sie selbst viel̃leicht verhängnisvollsten Konsequenz, die letzten, ihr noch möglichen
Folgerung zu ziehen scheint.

Agreeing with Cantor’s prediction, Frege wrote:

In der That! hier ist die Klippe, wo sie schreitern wird. Denn das Unendliche wird sich in
der Arithmetik doch schliesslich nicht leugnen lassen, und anderseits ist es mit jene
erkentnis-theoretischen Richtung unvereinbar. Hier ist, wie es scheint, das Schlachtfeld, wo
eine grosse Entscheidung fallen wird.

20Bell (1937, p. 621).

1
2

= .1000000 . . .

= .0111111 . . . .



21Bell (1986, pp. 562–563). This awkward bowdlerization was almost certainly not written by Bell
who had been dead for 26 years when this edition appeared.

22Edwards (2009).
23Edwards (1988).
24Bell (1937, p. 619), Bell (1986, p. 561).
25Bell (1937, p. 617), Bell (1986, p. 559).
26Bell (1937, p. 629), Bell (1986, p. 570).
27For Cantor’s letter to Kronecker, see Schönflies (1927, p. 10), and for Kronecker’s reply, see

Meschkowski (1967, p. 238). Both translations are by Harold Edwards.
28Schönflies (1927, pp. 12–13).
29Dauben (1979, p. 225). See Note 19 for Cantor and Frege’s remarks in the original German.
30Dauben (1979, p. 225).
31Poincaré (1909, p. 182). The translation given of the sentence beginning “One of the

characteristic features of Cantorism” is somewhat anachronistic. A more literal translation is:

One of the characteristic features of Cantorism is this: instead of achieving generality by
building up more and more complicated constructions and defining by construction, it

begins with the genus supremum and only defines, as the scholastics would have said, per

genus proximum et differentiam specificam.

I am indebted to Wilfried Sieg and François Treves for help with the translation. I include the original
French below:

J’ai parlé plus haut du besoin que nous avons de remonter sans cesse aux premiers principes
de notre science et du profit qu’en peut tirer l’etude de l’ésprit humain. C’est ce besoin qui a
inspiré deux tentatives qui ont tenu une très grande place dans l’histoire la plus récente des
mathématiques. La premiere est le cantorisme, qui a rendu à la science les services que l’on
sait. Un des traits caractéristiques du cantorisme, c’est qu’au lieu de s’élever au général en
bˆtissant des constructions de plus en plus compliquées et de dfinir par construction, il part

du genus supremum et ne définit, comme auraient dit les scholastiques, que per genus

proximum et differentiam specificam. De là l’horreur qu’il a quelque temps inspirée à
certains esprits, à HERMITE par exemple, dont l’idée favorite etait de comparer les sciences
mathématiques aux sciences naturelles. Chez la plupart d’entre nous ces préventions
s’étaient dissipées, mais il est arrivé qu’on s’ est heurté â certains paradoxes, a certaines
contradictions apparentes, qui auraient comblé de joie ZÉNON d’Elée et l’école de Mégare.
Et alors chacun de chercher le remède. Je pense pour mon compte, et je ne suis pas seul, que
l’important c’est de ne jamais introduire que des etres que l’on puisse définir complètement
en un nombre fini de mots. Quel que soit le remede adopte, nous pouvons nous promettre la
joie du médecin appelé à suivre un beau cas pathologique.

32Dauben (1979, pp. 69–70). Dauben (1995, p. 227).
33For example, the section on partial differential equations refers to the so-called “Dirichlet

Principle” and the usefulness of Hilbert’s efforts to establish it rigorously.



34Grattan-Guinness (2000, p. 89).

Chapter 5

1For information about Hilbert, I’ve made use of the biography (Reid, 1986), the biographical essay
by Otto Blumenthal (Hilbert, 1935/1970, pp. 388–429), and Hermann Weyl’s obituary essay (Weyl,
1944).

2Many readers will be familiar with the fact that √2 is an irrational number. (As explained in the
previous chapter, this means that it cannot be expressed as a fraction with natural numbers as
numerator and denominator, or equivalently, that its decimal representation is non-repeating.) Using

this fact, it is possible to give an elegant non-constructive proof of the following theorem:

There exist irrational numbers a and b such that ab is rational.

In carrying out the proof, we use the letter q to stand for the number √2
√2

. Now q must be either

rational or irrational. If q is rational, we get what we wanted to prove by letting a  =  b  =  √2. If q is

irrational, we can take a = b and b  =  √2. Then,

ab  =  q√2  =  (√2
√2
)

√2

  =  √2
(√2⋅√2)

  =  (√2)
2
  =  2;

so, once again we have an irrational number raised to an irrational exponent giving a rational number

as result. The proof is non-constructive because it doesn’t give specific numbers a and b that satisfy

the theorem, but only two separate possibilities, one of which must work. (Actually q is irrational, but
there is no known easy proof of that fact.)

3In the theory of algebraic invariants, it was the so-called unimodular transformations that were of

particular interest. These took the form of substituting for an unknown quantity (say x) in an equation,

the expression (py + q)/(ry + s) where y is a new unknown, and p, q, r, s are particular numbers chosen

so that ps − rq = 1 or = −1. Boole found that for the general quadratic equation ax2 + bx + c = 0

(“general” because the letters a, b, c can stand for any numbers), the expression b2 − 4ac (which the

algebra textbooks call the discriminant of the equation) is an invariant of such unimodular
transformations in the following sense.

After the indicated substitution is made in the given quadratic equation, and after clearing of

fractions, a new quadratic equation in the unknown y results. This equation can be written Ay2 + By +

C = 0 where A, B, C depend on all the quantities a, b, c, p, q, r, s. The precise sense in which b2 − 4ac

is an invariant is that the new equation has the same discriminant as the given equation, i.e., b2 − 4ac

= B2 − 4AC.

Without the special condition ps − rq = ±1, the relation between the two discriminants is

B2  −  4AC  =   (b2  −  4ac) (ps  − rq)2.



Any readers wishing to work this out and are not deterred by a little high-school algebra are advised to
begin by writing

ax2  +  bx  +  c  =  a(x  −  x1) (x  −  x2)

where x1, x2 are the two roots of the equation, and by noting that, using the quadratic formula,

b2  −  4ac  =  4a2 (x1  −  x2)
2

4In his obituary notice for Hilbert (Weyl, 1944), Hermann Weyl wrote:

Indeed, by discovering new ideas and introducing new powerful methods he not only
brought the subject up to the level set for algebra by Kronecker and Dedekind, but made
such a thorough job of it that he all but finished it … With justifiable pride he concludes his

paper, Über die vollen Invariantensysteme, with the words: “Thus I believe the most
important goals of the theory of … [algebraic] invariants have been attained,” and therewith
quits the scene.

5In its classical form, the theory of numbers deals with the remarkable relationships and patterns to
be found among the natural numbers 1, 2, 3, …, particularly questions involving prime numbers and
divisibility. In algebraic number theory, some of these matters are considered in domains obtained by
adjoining to the integers, roots (real or complex) of certain algebraic equations. Gauss had worked

with numbers of the form m  +  n√−1 where m, n are ordinary integers, had found which of these
“Gaussian integers” were prime, and had proved that the theorem that numbers can be factored into
primes in exactly one way, holds for these numbers just as it does for the ordinary integers. However,

if one works with numbers having the form m  +  n√10, this turns out not to be the case. A
counterexample is

6  =  2 ⋅ 3  =  (2  +  √10) (−2  +  √10)

where it can be shown that 2,  3,  2  +  √10, and −2  +  √10b are all primes so that unique
factorization fails. Cantor’s friend Dedekind and his nemesis Kronecker had shown how to restore
unique factorization by considering what came to be called “prime ideals.” On their strolls, Hilbert and

his friend Hurwitz, had discussed these competing approaches and agreed that both were scheusslich

(atrocious). In contrast, the treatment in Hilbert’s Zahlbericht is elegant.
6Hilbert (1935/1970, pp. 400, 401).
7There wasn’t time during the lecture for Hilbert to state all 23 of his problems, and he contented

himself with a selection. For the full address with all 23 problems in an English translation by Mary
Winston Newson, see Browder (1976, pp. 1–34).

8See Browder (1976). I’m a coauthor of the article on the tenth problem.
9The quotation is given in detail at the close of Chapter 4.
10van Heijenoort (1967, pp. 129–138).
11For Poincaré’s criticisms of Cantor, Hilbert, and Russell, see Poincaré (1952, Chapter III).



12The technical term for Russell’s “elaborate and unwieldy” layers is “the ramified theory of
types.”

13As with Frege’s Begriffsschrift, the main rule of inference in Principia is that which proceeds
from a pair of formulas of the form A   ⊃  B and A  to the corresponding formula B (known as

modus ponens or as the rule of detachment). Although Frege is very clear about this, Whitehead and

Russell muddy the waters by expressing the rule as their “primitive proposition”: Anything implied by

a true proposition is true. (Whitehead and Russell, 1925, p. 94).
14Brouwer (1996).
15Brouwer’s doctoral dissertation was written in Dutch. An English translation appears in Brouwer

(1975, pp. 13–97).
16van Stigt (1990, p. 41).
17The quote is from Brouwer’s dissertation (Brouwer, 1975, p. 96).
18In the example given of a non-constructive proof,2 the law of the excluded middle is used in the

assertion “q must be either rational or irrational.”
19Weyl was upset by the use of so-called impredicative definitions in the work of Cantor and

Dedekind. Something is defined impredicatively if the definition is in terms of a set of which the item
being defined is a member. From the point of view of a philosophy in which mathematical objects are
“constructed” a bit at a time, such a definition is seen as being objectionable because the set in

question cannot have been constructed before one of its elements. The contrary philosophical view
that mathematical objects are pre-exisiting and definitions merely single them out (like the
characterization: Mathilda is the tallest person in the room) rather than construct them is called
Platonism and was unacceptable to Weyl.

20This was part of an address delivered in 1922, first in Copenhagen and then in Hamburg. I’m
indebted to Walter Felscher for calling my attention to the connection between Hilbert’s heated
rhetoric and the times he was living through. The full text of the address can be found (in English
translation) in Mancosu (1998, pp. 198–214). I found the translation accurate enough, but not
communicating adequately the fire in the original. In my own attempt to do better, I consulted several
translations as well as the original (Hilbert, 1935/1970, pp. 159–160).

21Reid (1986, pp. 137–138, 144, 145). For the background of the manifesto by German
intellectuals, see Tuchman (1962/1988, p. 322).

22Reid (1986, p. 143).
23Hilbert (1935/1970, p. 146) (my translation).
24Hilbert’s program is discussed in an interesting essay in Mancosu (1998, pp. 149–197). See also

Sieg (1999) for a thorough discussion and analysis based on unpublished documents showing clearly
the evolution of Hilbert’s thought. For interesting information about Bernays’s contributions, see Zach
(1999). For von Neumann on intuitionism ad absurdum, see Mancosu (1998, p. 168). It should be
mentioned that although Hilbert’s description of just which methods would be permitted as being
“finitary” was never made completely explicit, it is generally agreed that what he had in mind was
even more restrictive than what Brouwer was prepared to permit.

25van Heijenoort (1967, p. 373).
26van Heijenoort (1967, p. 376).
27van Heijenoort (1967, p. 336).



28Reid (1986, p. 187).
29van Stigt (1990, p. 272).
30van Stigt (1990, p. 110).
31van Stigt (1990, pp. 285–294); Mancosu (1998, pp. 275–285).
32Intuitionistic logic in computer science (Constable, 1986).
33Hilbert (1935/1970, pp. 378–387).
34Dawson (1997, p. 69).

Chapter 6

1For Einstein on Gödel voting for Eisenhower, see Dawson (1997, p. 209). I’ve been fortunate to
have this superb biography of Gödel available. I’ve also made use of the brief collection (Weingartner
and Schmetterer, 1983) based on an invitation-only symposium on Gödel in Salzburg in 1983 (that I
was privileged to attend). There is much interesting material in the obituary memoir (Kreisel, 1980) by
Georg Kreisel, who for a time had been a close friend of Gödel, but unfortunately, it is not entirely
reliable. A brief sensitive biography of Gödel by the logician Solomon Feferman is in Gödel
(1986/1990, vol.I, pp. 1–36).

2Gödel (1986/1990, vol. III, pp. 202–259).
3Dawson (1997, pp. 58, 61, 66).
4Weingartner and Schmetterer (1983, p. 27).
5The phrase “The symbolic logic of Frege-Russell-Hilbert” is an oversimplification. The basic logic

that Hilbert singled out, what is known today as first-order logic, was only part of the systems of Frege
and of Russell.

6For Gödel on the blindness of logicians, see Dawson (1997, p. 58). The complete text of Gödel’s
dissertation as well as the published article based on it (in the original German as well as in English
translation) can be found in Gödel (1986/1990, vol.I, pp. 60–123). An illuminating introductory note
by Burton Dreben and Jean van Heijenoort precedes the dissertation and the article and appears on pp.
44–59.

7Although Hilbert’s finitistic methods in metamathematics are often characterized as
“intuitionistic,” it is likely that what Hilbert had in mind was even more restrictive than what Brouwer
would permit. For a discussion of this matter, see Mancosu (1998, pp. 167–168).

8Gödel (1986/1990, vol. I, p. 65).
9Although it is of no real importance, it might be mentioned that the technique Gödel used for

coding strings did not use the representation of numbers by decimal digits. Instead he used the fact
that factorization of a natural number into prime factors is unique, and placed the code numbers
assigned to individual symbols as exponents on the corresponding prime numbers. A simple example

should make the difference clear. The string L(x, y) would be coded in our scheme by 186079. In

Gödel’s scheme the code number would be 21385670117139.
10There have been a number of English translations of this epochal article. The best translation

(and the one approved by Gödel) is available both in Gödel (1986/1990, vol. I, pp. 144–145) (page



facing with the original German) and in van Heijenoort (1967, pp. 596–616). Readers interested in
Gödel’s story of how he discovered his incompleteness theorem should see Dawson (1997, p. 61).

11To avoid the use of a philosophically suspect notion like “truth,” Gödel had recourse to a
technical substitute he called omega-consistency, a kind of strengthened consistency property. So the

correct statement of his theorem is: if PM is omega-consistent, then there is a proposition U such that

neither U nor ¬U is provable in PM. An important improvement came a few years later when J.B.
Rosser showed how to replace the assumption of omega-consistency by that of ordinary consistency.
Together with other work that had been done in the meantime (in particular that of Alan Turing to be
discussed in the following chapter), it became possible to state Gödel’s results in the attractive form:
no matter what additional axioms are added to PM, so long as the new axioms are specified by an

algorithm and so long as they do not lead to a contradiction (i.e., a proposition of the form A ∧ ¬A)

being provable, there will be a proposition U undecidable in the system.
12After Gödel had proved that the consistency of PM could not be proved using all of the

mathematical resources encapsulated in PM, it would have been natural to conclude that it was
hopeless to expect success for Hilbert’s goal of proving this consistency using the limited finitary
methods he was willing to permit. This was certainly von Neumann’s conclusion. Gödel was not so

sure; the hope he held out was that there might be some proof methods not permitted inside PM that
could be accepted as “finitary” and which would lead to consistency proofs. What has happened in the
decades since Gödel’s discovery is that methods have been developed with some claim to meeting this
criterion. As a result, Hilbertian proof theory continues to undergo vigorous development as a research
area, although few would claim that the consistency theorems that have been proved have added any
confidence in the validity of the systems in question.

13The programming languages that are mainly in use in the software industry (like C and

FORTRAN) are usually described as imperative. This is because the successive lines of programs

written in these languages can be thought of as commands to be executed by the computer. Object-

oriented languages like C++ are also imperative. In the so-called functional programming languages
(like LISP), the lines of a program are definitions of operations. Rather than telling the computer what

to do, they define what the computer is to provide. Gödel’s special language is very much like a
functional programming language.

14Returning to the example of PA with the specific encoding we had suggested, we can examine
some of the issues involved in translating metamathematical concepts into numerical operations. The
first question we can raise is: given the code number for some string, how can we tell how long the
string is? Now, since we allowed two digits per symbol, the answer is simple: the length is half the

number of digits in the code. For a code number r, let’s write L (r) for the length of the
corresponding string. Next: given two strings, a new string can always be formed by placing the
second immediately after the first; what is the code of this new string given that the strings have codes

r and s, respectively? The answer is given by the formula r102L (r)  +  s. This is because multiplying r

by this power of 10 has the effect of placing just as many 0s after it as there are digits in s. Following

Gödel, we write this r * s. Now suppose that r and s are the codes of two sentences; what is the code
of the new sentence we get by placing the symbol D between them and parentheses around the result?

Consulting the coding table we see that the answer is 41 * r * 10 * s * 42. Continuing in this way, ever
more complex metamathematical notions translate into arithmetic operations

15The Chinese remainder theorem apparently goes back to the eleventh century in China. The

theorem can be illustrated by the following exercise. Find a number which when divided by 6 will



leave a remainder of 2 and when divided by 11 will leave a remainder of 5. A little experimenting
shows that 38 does the job. The Chinese remainder theorem guarantees that a number can always be
found leaving given numbers as remainders when divided by other given numbers, so long as no two
of these other given numbers have any common factor (except of course 1). So, for example, there will
be a number whose remainders on dividing by 3, 7, 10, 11 are 1, 4, 8, 9 respectively. But the
conclusion cannot be guaranteed if 7 is replaced by 14 (because then the divisors 14 and 10 would
have the factor 2 in common). Gödel used the Chinese Remainder Theorem as a coding device: a long
sequence of numbers can be specified by a collection of divisors designed to have no pair with a
common factor and a single number to be divided by each of them. Since “remainder” is easily
definable in the basic language of arithmetic, this could be used to express relationships involving
sequences of natural numbers in this language.
Gödel’s technique for using the Chinese remainder theorem to code finite sequences of natural
numbers played an important role in my own professional life. As part of the research for my doctoral
dissertation (accepted by Princeton University in 1950) I worked on the tenth problem in Hilbert’s
1900 list, and the Chinese remainder theorem was extremely important for the partial results I was
able to obtain. Later work with Hilary Putnam and with Julia Robinson continued to make essential
use of this theorem. The crucial final step in the solution of Hilbert’s tenth problem was provided by
the 22-year-old Russian mathematician Yuri Matiyasevich in 1970. Interested readers can consult the
article Davis and Hersh (1973) intended for a general audience.

16The full text of the Königsberg addresses by Carnap, Heyting, and von Neumann can be found in
Benacerraf and Putnam (1984, pp. 41–65).

17For the complete statements of Gödel’s remarks at the Königsberg roundtable (in the original
German as well as English translations) together with illuminating comments by John Dawson, see
Gödel (1986/1990, vol.I, pp. 196203). See also Dawson (1997, pp. 68–71).

18Dawson (1997, p. 70).
19Goldstine (1972, p. 174).
20This research involves very large transfinite cardinal numbers and is well beyond the scope of

this book. For an interesting article by a leading skeptic, see Feferman (1999).
21Dawson (1997, pp. 32–33, p. 277).
22Dawson (1997, p. 34).
23Dawson (1997, p. 111).
24Weingartner and Schmetterer (1983, p. 27).
25The most interesting of these contributions had to do with certain formal systems developed by

Brouwer’s student, Heyting, that were intended to encapsulate Brouwer’s foundational ideas. Brouwer
remained convinced that no precisely defined formal language could do justice to his concepts, but he
did express a grudging interest in what Heyting had done. One of Heyting’s systems, HA (for Heyting
arithmetic) is very much like PA except that for the underlying logic, rules in keeping with what
Brouwer thought acceptable are used instead of Frege’s rules. In particular, the law of the excluded
middle is not available in HA. What Gödel found was a simple way of translating PA into HA, so that,
contrary to the idea that intuitionism is narrower than classical mathematics, in this case there is a
sense in which it includes it. In particular, any proof of the consistency of HA translates at once into a
proof of the consistency of PA.

26In the λ-calculus, algorithms use operations of a specified kind. A simple example of such an

operation begins with {λx[a(x)}b(c) and produces the result a(b(c)). This is in accord with the



intuition that λx[a(x) denotes a function that replaces x with a given input, in this case b(c). Finally, a

function of natural numbers is called λ-definable if its values, expressed in the λ-calculus notation for
natural numbers, can be calculated by an algorithm consisting of a sequence of such operations.

27It is convenient to use a the symbol ◇  as a superscript to represent the successor of a given

natural number, i.e., the number that immediately follows it (so, for example, 1◇ = 2 and 4◇ = 5). A

recursive definition of addition of natural numbers needs to show two things: first, the result of adding
1 to a given number and, second, the result of adding the successor of a given number to another
number. This is accomplished by the equations:

  =  (x  +  y)◇.

These equation can be used to calculate the sum of any pair of natural numbers. For example,

3  +  2  =  3  +  1◇  =  (3  +  1)◇  =  (3◇)
◇

  =  4◇  =  5

Next we consider the equations

  ×  y  +  x

which furnish a recursive definition of multiplication. This definition together with the preceding
definition of addition can be used to calculate the result of multiplying two natural numbers. For
example,

2  ×  2  =  2  ×  1◇  =   (2  ×  1)  +  2  =  2  +  2  =  2  +  1◇  =  (2  +  1)◇  =  (2◇)
◇

  =  3◇  =  4.

The functions in Gödel’s original class of recursive functions (renamed primitive recursive functions
by Kleene) were built by a succession of such recursive definitions.

Wilhelm Ackermann, one of Hilbert’s students, showed that by working with a recursive definition
that increased the values of two variables simultaneously, one could define a function that is not
primitive recursive. A simpler example of such a “double recursion”, was found by the Hungarian
mathematician Rósza Péter, and is often incorrectly called the Ackermann function. Both
Ackermann’s original example and Péter’s are general recursive functions that are not primitive
recursive. Péter’s recursion begins with 0 rather than 1; her equations are:

As an example, we calculate g(1, 2):

x  +  1  =  x◇, and x  +  y◇

x  ×  1  =  x, and x  ×  y◇  =  x

g (0,  y) = y  +  1

g (x◇,  0) = g (x,  1)

g (x◇,  y◇) = g (x,  g (x◇,  y)).

g(1,  2) = g(0,  g(1,  1))

= g(0,  g(0,  g(1,  0))))

= g(0,  g(0,  g(0,  1))))

= g(0,  g(0,  2))

= g(0,  3)

= 4.



This function grows very rapidly, faster than any primitive recursive function such as xxxx

. Already g(4,

3) = 265536 – 3, a number much larger than the total number of atoms in the entire observable
universe. General recursive definitions can be far more complicated than such a double recursion.

Nevertheless, Kleene was able to prove: For every general recursive function f (x1, x2,…,xn), there

are primitive recursive functions g(x) and h(x1, x2, …, xn, y) such that

f (x1,  x2,   …  ,  xn)  =  g (miny [h (x1,  x2,   …  ,  xn,  y)  =  0]).

Here, as the notation suggests, miny[h(x1, x2, …, xn, y) = 0] is the least value of y corresponding to

given values of x1, x2, …, xn for which h(x1, x2, …, xn, y) = 0.

28Church (1936).
29Dawson (1997, pp. 103–106).
30Weingartner and Schmetterer (1983, p. 20).
31Dawson (1997, p. 142, 146).
32Dawson (1997, p. 91).
33Dawson (1997, p. 147).
34Dawson (1997, pp. 143–145, 148–151).
35Dawson (1997, p. 153).
36Browder (1976, p. 8).
37More precisely, what Gödel showed is that if systems like PM or those based on axioms for set

theory are consistent, then they remain consistent if the continuum hypothesis is adjoined as a new
axiom. So if these systems are consistent, the continuum hypothesis cannot be disproved in them.

38The battle rages on. That the continuum hypothesis is “inherently vague” was the position taken
by the eminent logician Solomon Feferman, in Feferman (1999). After some initial wavering, Gödel
eventually came to believe that the continuum hypothesis is not at all vague, that in fact, it is a
perfectly meaningful assertion, and that most likely it is false.

39Gödel (1986/1990, vol. II, pp. 108, 186).
40Gödel (1986/1990, vol. III, pp. 49–50).
41Gödel (1986/1990, vol. II, pp. 140–141).
42Gödel (1986/1990, vol. III) contains most of the previously unpublished works of Gödel.
43Dauben (1995, p. 458), for Gödel’s hope that Robinson would be his successor; Dauben (1995,

pp. 485–486) for the quoted letter.
44Dawson (1997, pp. 153, 158, 179–180, 245–253).

Chapter 7

1Huskey (1980, p. 300).
2Ceruzzi (1983, p. 43).



3I have been fortunate to have available Andrew Hodges’ poignant, beautifully written biography of
Turing (Hodges, 1983).

4Hodges (1983, p. 29).
5Turing expressed his feelings about his dead friend in vivid terms: Alan “worshiped the ground he

trod on” and he “made everyone else seem so ordinary” (Hodges, 1983, p. 35, p. 53).
6Hodges (1983, p. 57).
7Hodges (1983, p. 94).
8Actually, Hilbert did not put the Entscheidungsproblem in quite that way: he asked for a procedure

to determine whether a given expression of first order logic is valid in every possible interpretation.
However, after Gödel had proved his completeness theorem, it became clear that the form in which the
problem is stated here is equivalent to Hilbert’s formulation.

9Work on the Entscheidungsproblem mainly dealt with expressions called prenex formulas. These
are expressions involving the logical symbols ¬ ⊃ ∧ ∨ ∀ ∃ with the property that all occurrences of
the so-called existential and universal quantifiers, (∃..) (∀..), are at the beginning of the expression
(reading left to right) preceding all other symbols. It was not difficult to prove that the

Entscheidungsproblem could be reduced to the problem of providing an algorithm for determining for

a given prenex formula, whether it is satisfiable, that is, whether there is some way of interpreting the

non-logical symbols in the formula so that it expresses a true sentence. To illustrate this concept,
consider the two prenex formulas:

(∀x)  (∃y)  (r (x)  ⊃  s (x,  y)) and  (∀x)  (∃y)  (q (x)  ∧  ¬q (y)).

The first is satisfiable: for example, we can take the variables x, y to stand for people alive at some

particular moment, we can interpret r(x) to mean “x is a monogamously married man” and s(x, y) to

mean “y is the wife of x”; so, with this interpretation, the first prenex formulas says simply “every
monogamously married man has a wife,” certainly a true statement. On the other hand, the second
prenex formula is not satisfiable because no matter what universe of individuals is selected, and no

matter how the symbol q is interpreted, this formula would stipulate that all individuals have the

property that q represents and that some individual does not.
Prenex formulas can be classified by the particular pattern of existential and universal quantifiers

with which they begin. Thus, for example, one speaks of the prefix class ∀∃∀ to mean the set of all
prenex formulas beginning (∀..)(∃..)(∀..), and so on. In a paper published by Kurt Gödel in 1932, he
produced an algorithm that could test for satisfiability any prenex formula belonging to the prefix class

∀∀∃  …  ∃.

In a paper published a year later, he proved that to solve the Entscheidungs-problem, it would suffice
to provide an algorithm to test the satisfiability of all prenex formulas in the prefix class

∀∀∀∃  …  ∃.

Thus, the gap between what had been done and what was needed had been reduced to a universal
quantifier, a single ∀.

The relevant papers by Gödel (in the original German as well as in English translation) will be
found in Gödel (1986/1990, vol. I, pp. 230–235, 306–327). An illuminating introduction by Warren



Goldfarb in the same volume, pp. 226–231, describes some of the earlier work on the problem as well.
10Hodges (1983, p. 93).
11Turing’s discussion of this point was more careful (Turing, 1936, pp. 250–251). (Reprinted :

Davis (1965, pp. 136–137); Turing (2001, pp. 18–19); Copeland (2004, pp. 75–77).)
12Although the unsolvability of the Entscheidungsproblem could be proved in the manner

described it would be pretty messy because of the need to develop Turing machine structures for
handling integers written in decimal notation. To approach what Turing actually did, we first show that
the problem of determining of a given Turing machine whether it will ever halt when started with a
totally blank tape, is unsolvable. For suppose there was an algorithm for this problem. Then here is an

algorithm for testing membership in D: To test whether a code number n belongs to D, we first write

the quintuples making up the Turing machine T  with code number n. Then we write quintuples that

cause that n to be written on a Turing machine tape. Adjoining those quintuples to those of the

machine T , we get a new machine that will first put n on its tape, and then do what T  would have
done with that input. This new machine will eventually halt when started with a blank tape if and only

if T  will eventually halt when started with n on its tape, which in turn is true if and only if n doesn’t

belong to D. So a supposed algorithm for testing whether a given Turing machine started on a blank
tape will eventually halt could be used to solve the unsolvable problem of determining membership in

D.
Next we notice that the problem of finding out whether a given Turing machine ever prints one

particular symbol is also unsolvable. This is because it is easy to arrange matters so that whenever a
Turing machine halts it finds itself in a state F which begins no quintuples. We choose a new symbol X
that doesn’t occur in any of the quintuples of the machine. We then adjoin the quintuples:

F a  :  X  ⋆  F

where a can be any of the symbols that occur in the original quintuples. This new machine will then
print X whenever the original machine would have halted. Thus we have that there is no algorithm to
determine whether a Turing machine starting with a blank tape will ever print some particular symbol.
This is the problem that Turing expressed in the language of first order logic and thus obtained the

unsolvability of the Entscheidungsproblem.
13Turing (1936, pp. 243–246). (Reprinted: Davis (1965, pp. 129–132); Turing (2001, pp. 31–34);

Copeland (2004, pp. 69–72).)
14Davis (1965, pp. 71–72), Davis (1982).
15For a reprint of Turing’s dissertation, see Davis (1965, pp. 155–222). It may be mentioned that

the hierarchies mentioned extended into Cantor’s transfinite. So, after a 1st, 2nd, 3rd, etc. system,

would come system ω, followed by system ω + 1, etc.
16Hodges (1983, p. 131).
17Hodges (1983, p. 124).
18Hodges (1983, p. 145). To those familiar with the later work of Kolmogorov and Chaitin on

descriptive complexity, this game may well suggest that von Neumann was thinking along those lines.
19Hodges (1983, p. 545).



20The anecdote about Turing’s adventures with the Home Guard was recounted by the
mathematician Peter Hilton, a co-worker with Turing at Bletchley Park (Hodges, 1983, p. 232).

21This work was by no means a solo undertaking. Probably the person who made the greatest
contribution was W. T. Tutte. For a technical description of the issues addressed by Professor Tutte
including the part played by Turing see the web site: http://home.cern.ch/~frode/crypto/tutte.html

Chapter 8

1See also M. Davis and V. Davis (2005).
2For this quote, see Goldstine (1972, p. 22). The fascinating biography of Ada Lovelace (Stein,

1987) suggests that much that has been written about her is myth rather than fact. See also M. Davis
and V. Davis (2005).

3Goldstine (1972, p. 120).
4Atanasoff’s machine was designed to solve simultaneous systems of linear equations. An example

of this kind of problem is:

The machine was designed to handle as many as 30 equations in 30 unknowns.
5Lee (1995, p. 44). The biographical material in this section is largely derived from this source.
6A. Burks and A. Burks (1981).
7Differential analyzers contained a number of modules designed to calculate suitable numerical

approximations to the value of definite integrals. The ENIAC contained modules that did the same
thing, but more accurately, using well-known algorithms for this purpose.

8Goldstine (1972, p. 186, p. 188).
9Although von Neumann’s First Draft of a Report on the EDVAC was widely circulated and was

very influential, it was only published in 1981 as an appendix to a book rather skeptical about the
significance of his contributions (Stern (1981, pp. 177–246)). See also Dyson (2012).

10McCulloch and Pitts (1945/1965); Von Neumann (1963, p. 319).
11Goldstine (1972, p. 191).
12Randell (1982, p. 384).
13Goldstine (1972, p. 209); Knuth (1970).
14Von Neumann (1963, pp. 1–32).
15Von Neumann (1963, pp. 34–79).
16For examples of studies that minimize von Neumann’s contributions to the development of

computers and ignore Turing’s entirely, see Metropolis and Worlton (1980) and Stern (1981). For
excerpts from Eckert’s memo (it is an engineer’s “disclosure”), see Stern (1981, p. 28).

17Stern (1981) discusses the vicissitudes of the Eckert-Mauchly commercial endeavors.

2x  +  3y  −  4z  = 5,

3x  −  4y  +  2z = 2,

x  −  3y  − 5z = 4.

http://home.cern.ch/~frode/crypto/tutte.html


18The analysis of the ACE report quoted is from the excellent paper by Carpenter and Doran
(1977). The report itself can be found in Turing (1992, pp. 1–86). For many years it circulated only in
mimeographed form and was not easily available.

19What Turing proposed was, in contemporary terminology, the use of a stack for subroutine

management. A stack is simply an arrangement of data in a last-in-first-out (LIFO) structure. Thus,
when a computation is interrupted to make use of a previously programmed subroutine, a reminder
would be noted of what had to be done after the subroutine terminated. Since subroutines could call
other subroutines, this would lead to a stack of such reminders. Turing suggested the picturesque
terms “bury” for placing a reminder on the stack and “unbury” for retrieving it from the “top” of the
stack. (Nowadays the terms PUSH and POP are used.)

20Hodges (1983, p. 352).
21Turing (1992, pp. 87–88); Copeland (2004, pp. 378–379).
22Hodges (1983, p. 361). For Turing’s text: Turing (1992, pp. 102–105); Copeland (2004, pp. 392–

394).
23Metropolis and Worlton (1980); Stern (1981).
24Goldstine (1972, pp. 191–192).
25Turing (1992, p. 25).
26Davis (1988).
27Whitemore (1988).
28Marcus (1974, pp. 183–184). The book quoted is Engels’ famous The Condition of the Working

Class in England in 1844.
29Lavington (1980, pp. 31–47).
30Goldstine (1972, p. 218).
31Hodges (1983, p. 149).

Chapter 9

1Turing (1992, p. 103); Copeland (2004, p. 392).
2The five computer scientists who spoke at the AAAS meeting together with the titles of their

presentations were as follows:

Joseph Y. Halpern, Epistemic Logic in Multi-Agent Systems;

Phokion G. Kolaitis, Logic in Computer Science: An Overview;

Christos Papadimitriou, Complexity As Metaphor;

Moshe Y. Vardi, From Boole to the Pentium;

Victor D. Vianu, Logic As a Query Language.



3Lee (1995, p. 724).
4Turing (1950). Reprinted: Turing (1992, pp. 133–160); Copeland (2004, pp. 433–464).
There has been much discussion concerning the precise setup Turing had in mind, and what the

significance would be of a machine passing the “test.” I don’t propose to say anything about these
matters.

5Turing (1950, p. 442). Reprinted: Turing (1992, p. 142); Copeland (2004, p. 449).
As Jack Copeland has called to my attention, in previous editions of this book and elsewhere, I have

carelessly stated that Turing predicted that more would be achieved by 2000 than what he actually did
predict. As to whether the 70% prediction has been met by today’s technology, I will not attempt to
say. An “average interrogator” can be very gullible. However, I wanted to point out that Turing had not
foreseen how difficult it would be to develop a computer program that had the capability with ordinary
English conversation of an elementary school child. I do not believe that this has been accomplished,
and such conversational ability is surely a necessary condition for even this 70% result to be achieved
in any meaningful way. However my making this point hardly makes me one of “Turing’s critics” as
Copeland asserted in Copeland et al (2017, p. 272). No one familiar with what I have written about
Turing and his work could imagine that my remarks were intended as criticism. Given the primitive
technology Turing had available, it was only someone with his audacious vision who could at that
time have imagined computers as thinking. In fact, I had proclaimed the importance of Turing’s ideas
at a time when his thought was still quite neglected among computer scientists and historians of
computation (Davis, 1988).

6The article Searle (1999) contains references to some of his other writing on related topics. The
piece is actually a review of a popular book by Ray Kurzweil. It is no part of my purpose to defend
Kurzweil, whose ideas have achieved some notoriety, from Searle’s onslaught, but only to use the
review as a convenient source for some of Searle’s often expressed views. Kurzweil has been willing
to prophesy a role and capability for computers within a sort time span that most would consider at
least extravagant. He imagines that some kind of symbiotic relation between people and computers
will enable a kind of immortality, and he predicts that this will be feasible by 2040.

7McCulloch and Pitts (1945/1965).
8The function that maps the values arriving at the input channels to a neuron to the total numerical

input is linear. Likewise the functions that map data from one portion of a video image to another are
linear. So the numerical operations are those students encounter in a course in linear algebra such as
matrix multiplication. GPUs are specialized to perform these operations efficiently.

9Gödel’s theorem could only have been stated in this way after the notion of algorithmic process
had been elucidated by Turing, Church, and others.

10Penrose first made this case in his popular and entertaining book (Penrose, 1989). Although a
number of logicians have tried to set him straight, he continues to hold his misguided views. For an
essay that I have written on this subject; see Davis (1990). Penrose (1990) contains replies to his
critics, and Davis (1993) is my reply to his replies.

11For more information about this and further references, see Gödel (1986/1990, vol. II, p. 297).
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